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ABSTRACT

The ability of a system to perform operations simultaneously is known as concurrency.

In concurrent systems, the extensive number of ways in which components can interact

with one another significantly elevates the complexity of analysing the behaviour of such

systems. CSP (Communicating Sequential Processes) introduces a convenient notation to

accurately describe concurrent systems. Over the years, computational tools have been

developed to enable the analysis of specifications in CSP, such as: the Failures-Divergence

Refinement (FDR) tool, and theories in Isabelle (e.g., CSP-Prover, HOL-CSP). Previ-

ously, an initial characterisation of CSP has been developed in Coq: CSPCoq. Here, we

significantly extend the possibilities of using CSP to reason about concurrency in Coq.

Now, we support compound communications, parametrised processes, and CSP operators

that were not considered before. Well-formedness conditions are formalised in Coq and

proof automation tactics are provided. The notions of Structured Operational Seman-

tics (SOS), Labelled Transitions Systems (LTS), traces refinement, and deadlock of CSP

specifications have also been captured in Coq. Graphical representation of LTSs is en-

abled via the DOT language and the Graphviz visualisation software. Moreover, we have

developed a VSCode extension that automatically converts specifications in CSPM (the

machine-readable dialect of CSP) to CSPCoq.

Keywords: communicating sequential processes; CSP; coq; proof assistant; vscode ex-

tension.



RESUMO

A habilidade de um sistema realizar operações simultâneas é conhecida como concorrên-

cia. Em sistemas concorrentes, o grande número de maneiras nas quais os componentes

podem interagir entre si eleva significativamente a complexidade de analisar o comporta-

mento desses sistemas. CSP (Communicating Sequential Processes) introduz uma notação

conveniente para descrever precisamente sistemas concorrentes. Ao longo dos anos, fer-

ramentas computacionais foram desenvolvidas para permitir a análise de especificações

em CSP, tais como: a ferramenta Failures-Divergence Refinement (FDR) e teorias em

Isabelle (por exemplo, CSP-Prover, HOL-CSP). Anteriormente, uma caracterização ini-

cial de CSP foi desenvolvida em Coq: CSPCoq. Aqui, estendeu-se significativamente as

possibilidades de usar CSP para raciocinar sobre concorrência em Coq. Agora, há suporte

para comunicações compostas, processos parametrizados e operadores de CSP que não

foram considerados previamente. Condições de boa formação são formalizadas em Coq e

táticas de automação de prova são fornecidas. As noções de Semântica Operacional Estru-

turada (SOS), Sistemas de Transição Rotulada (LTS), refinamento no modelo de traces

e deadlock de especificações CSP também foram capturadas em Coq. É ainda possível

criar representações gráficas de LTSs através do uso da linguagem DOT e da ferramenta

de visualização Graphviz. Por fim, foi desenvolvida uma extensão para o VSCode que

converte automaticamente especificações em CSPM (o dialeto em ASCII de CSP) para

CSPCoq.

Palavras-chaves: communicating sequential processes; CSP; coq; assistente de provas;

extensão para o vscode.
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1 INTRODUCTION

The ability of a system to perform operations simultaneously is known as concurrency.

In concurrent systems, the extensive number of ways in which components can interact

with one another significantly elevates the complexity of analysing the behaviour of such

systems. These interactions can lead to phenomena such as deadlock, divergence, non-

determinism, and race conditions, which must be addressed to prevent the occurrence of

undesirable behaviour. Generally, tests cannot provide sufficient evidence to guarantee

the absence of these undesirable phenomena.

With this challenge in mind, Hoare (1978) proposed CSP (Communicating Sequen-

tial Processes), which is a convenient notation to accurately describe concurrent systems.

The theories that support CSP make it possible for the analysis and proof of properties

of interest in the described systems. For example, it is possible to demonstrate that a

system is free from deadlock. Over the years, computational tools have been developed

to enable the analysis of specifications in CSP. The Failures-Divergence Refinement tool,

FDR (GIBSON-ROBINSON et al., 2014), is tailored for CSPM (a combination of CSP with

a functional language); and the Process Analysis Toolkit, PAT (SUN et al., 2009), is tai-

lored for CSP# (a combination of CSP with an object-oriented language). A comparison

between these two dialects of CSP has been carried out by Shi et al. (2012).

Despite the undeniable utility of tools such as FDR and PAT in the automatic analysis

of concurrent systems described in CSP, since they base their analyses on the model

checking technique, they suffer from a common problem: the state space explosion problem

when analysing complex, large-scale systems.

An alternative approach consists of the use of a different analysis technique, based

on theorem provers and proof assistants. The tools CSP-Prover (ISOBE; ROGGENBACH,

2005), HOL-CSP (CRISAFULLI; TAHA; WOLFF, 2023) and Isabelle/UTP (FOSTER; ZEYDA;

WOODCOCK, 2015) follow this approach and are based on the Isabelle theorem prover.

However, the same development has not been carried out in the context of the Coq proof

assistant.

In the Coq Package Index1, within the category “Theory of concurrent systems”,

the closest related contribution is coq-ccs. It formalises different equivalence notions
1 Link: <https://coq.inria.fr/coq-package-index>

https://coq.inria.fr/coq-package-index
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on labelled transitions systems underlying CCS – the Calculus of Communicating Sys-

tems (MILNER, 1980). A closer related contribution is the of work of Freitas (2020), which

provides an initial characterisation of CSP in Coq: CSPCoq. There was a little reuse of the

first version of CSPCoq in the development of this work, in Section 2.3 we present which

parts were reused and the main additions we provide.

Despite the important progress in the direction of formalising CSP in Coq developed

by Freitas (FREITAS, 2020), there is still significant room for improvement and expansion

of the theory, particularly, by addressing syntactic and semantic aspects that were left

behind by this first contribution. With this in mind, the research question addressed in

this work is the following: how can we further extend the CSPCoq theory to support a

more comprehensive syntax and semantics?

1.1 GOALS

The main goal of this work is to extend the existing theory of CSP in Coq, considering

both new syntactic and semantic elements. This unfolds into subgoals as follows:

• Goal 1 (G1): Extend the CSPCoq syntax to consider a wider range of CSP operators.

• Goal 2 (G2): Update the structured operational semantics of CSPCoq accordingly.

• Goal 3 (G3): Update the Graphviz visualisation of labelled transition systems.

• Goal 4 (G4): Update the definition of traces refinement accordingly.

• Goal 5 (G5): Formalise the notion of deadlock freedom.

• Goal 6 (G6): Implement a translator from CSPM to CSPCoq.

• Goal 7 (G7): Illustrate the possibilities of CSPCoq via classical examples.

1.2 SOLUTION OVERVIEW

This section introduces a small example to illustrate the solution made available by

this work. To begin, we have adapted the CSPM example proposed by Schneider (1999)

that concerns a parking permit machine. It is a simple system that allows users to insert

cash and receive a ticket or change. The system is represented by Code 1.1.
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Code 1.1 – Specification of the parking permit machine.

1 channel cash, ticket, change
2
3 TICKET = cash -> ticket -> TICKET
4 CHANGE = cash -> change -> CHANGE
5
6 MACHINE = TICKET [{cash, ticket} || {cash, change}] CHANGE

Source: Current Author

There are three events in the specification: cash, ticket, and change. The TICKET

process receives cash, issues a ticket to the user, and then resets to its initial state.

The CHANGE process works in the same way, but instead, it receives cash, and provides

change to the user. The MACHINE process is defined in terms of the parallel composition

of the TICKET and CHANGE processes. The alphabetised parallel operator is used to

define the events each side of the parallel composition is allowed to perform: TICKET can

perform cash and ticket, whereas CHANGE can perform cash and change; both processes

synchronise on the occurrence of cash, which is the event shared by both of them.

To facilitate the representation of CSP specifications in CSPCoq, we developed an au-

tomatic translator from both representations. This translator is provided as an extension

to Visual Studio Code (VSCode). Figure 1 shows the CSPCoq code produced for this ex-

ample. The extension also copies to the directory the definitions that allow for reasoning

about CSP specifications.

In Code 1.2, we highlight a fragment of the generated CSPCoq code. The process

Machine is defined referring to the MACHINE BODY definition; nil indicates that the

process Machine takes no arguments (i.e., it receives an empty list of arguments). The

definition MACHINE BODY comprises the alphabetised parallelism of processes refer-

ences to TICKET and CHANGE. The alphabets (set of events) that drive the parallel

composition are defined as {cash, ticket} for TICKET, and {cash, change} for CHANGE.

Here, the alphabets are defined in terms of a normal set (normal set) of events; opposed

to production sets, as explained later. Additionally, we also provide nil to the definition

of the events, since we are not referring to compound events (i.e., those that involve

communications).

When creating a CSP specification in Coq, we ensure by proof that a great number

of well-formedness conditions are satisfied. A number of custom automation tactics are

invoked to automatically discharge the associated proofs.
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Figure 1 – Specification of the parking permit machine in CSPCoq

Source: Current Author

Code 1.2 – MACHINE process in CSPCoq.

Definition MACHINE : ProcessDeclaration :=
Process "MACHINE" nil MACHINE BODY .

Definition MACHINE BODY : ProcessBody :=
(ProcessAlphaParallel

(ProcessReference "TICKET" nil)
(normal set (... (event "cash" nil) (... (event "ticket" nil) ...)))
(normal set (... (event "cash" nil) (... (event "change" nil) ...)))
(ProcessReference "CHANGE" nil)).

Source: Current Author

We support graphical representation of the Labelled Transition Systems (LTS) of CSP

processes via the DOT language and the Graphviz visualisation software. The function

generate dot (lts : LTS) : string yields a textual (string) representation of a given LTS.

To achieve this, we formalise in Coq the Structured Operational Semantics (SOS) of CSP,

along with how an LTS is constructed after a given CSP process.

After invoking generate dot, Graphviz can be used to render the corresponding image.

Figure 2 shows the graphical representation of the LTS of the parking permit machine;

actually, a simplification of the real LTS, since internal events (associated with unfolding

process references) are hidden. In Figure 2, the red circle denotes the initial state of the

LTS.
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Figure 2 – LTS of the parking permit machine.

Source: Current Author

Furthermore, our CSP characterisation in Coq allows for formal reasoning about clas-

sical properties of concurrent systems, namely: traces refinement and deadlock freedom.

1.3 MAIN CONTRIBUTIONS

In summary, the main contributions of this work is the following ones.

• A significantly expanded syntax of CSP in Coq (relates to G1);

• Formalisation of well-formedness conditions (relates to G1 and G2);

• Automation tactics for proving well-formedness conditions (relates to G1 and G2);

• Formalisation of the structured operational semantics of CSP (relates to G2);

• Formalisation of labelled transition systems of CSP processes (relates to G3);

• Graphical representation of LTSs via Graphviz (relates to G3);

• Formalisation of traces and traces refinement (relates to G4);

• Formalisation of deadlock freedom (relates to G5);

• Translation from CSPM to CSPCoq using ANTLR (relates to G6);

• VSCode extension for translating from CSPM to CSPCoq (relates to G6);

• Illustration of CSPCoq considering the dining philosophers example (relates to G7).
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1.4 DOCUMENT STRUCTURE

This document is arranged as follows. In Chapter 2, the fundamental background in-

formation necessary to understand the work is presented, including the theoretical foun-

dations of CSP, the Coq proof assistant, the preliminary CSPCoq theory by Freitas (2020)

and the ANTLR framework. In Chapter 3, we present our updated theory for CSP in

Coq. In Chapter 4, we describe the tool support for CSPCoq, including the translator

from CSP to CSPCoq, and the VSCode extension. Lastly, in Chapter 5, we bring up our

final thoughts taking into consideration related and future work.
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2 BACKGROUND

This chapter overviews the fundamental concepts required to understand this work.

Section 2.1 presents some fundamental concepts related to the theory of Communicating

Sequential Processes and its machine-readable language (CSPM). In Section 2.2, we discuss

the Coq proof assistant and its role in formalising and verifying theorems. Once we have

covered these aspects, we progress to Section 2.3, where we explore the preliminary theory

of CSP in Coq proposed previously by Freitas (2020). Lastly, in Section 2.4, we discuss

the ANTLR tool, which is used in this work for implementing the translator from CSP

to CSPCoq.

2.1 COMMUNICATING SEQUENTIAL PROCESSES

Communicating Sequential Processes (HOARE, 1978) was introduced by Tony Hoare

as a theory to describe concurrent systems. Considering the time when computer systems

started to become more complex, his theory provided theoretical means for reasoning

about concurrent execution, particularly, when dealing with deadlock and nondetermin-

ism.

Hoare’s initial work describes how processes interact and exchange messages across

channels. In his foundational work, CSP emerged as a framework for modelling the in-

teraction between different processes within a system. Understanding elements such as

processes and communication events is indispensable before moving on.

Communication events are the basic building blocks of CSP. They represent atomic

actions one or more processes can perform, such as sending or receiving a message through

a channel. In addition to normal events, CSP has two special ones. The first one is tau (𝜏).

It represents an internal, an invisible action within a process, that is not observable from

the external environment. Additionally, there is also the tick (✓) event that indicate the

successful termination of a process. The ✓ acts as a marker of this completion, offering a

clear endpoint to a sequence of communications or actions within a system.

Processes can execute events independently or with other processes when performing a

coordinated action. The two fundamental processes of CSP are 𝑆𝐾𝐼𝑃 and 𝑆𝑇𝑂𝑃 . 𝑆𝐾𝐼𝑃

represents a process that ends successfully, only performing ✓. 𝑆𝑇𝑂𝑃 is a process that
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cannot engage in any event and represents a deadlock situation.

The basic processes mentioned above can be combined using a set of operators in order

to describe complex behaviours. We talk about some of them later on as an example. But

first, let us understand how the theory of CSP was extended into a set of practical tools.

In the 1990s, under the supervision of Roscoe, Scattergood (1998) made an impor-

tant contribution by introducing CSPM, a machine-readable dialect of CSP. This version

featured a functional programming language that aimed to facilitate the use of tools for

automated analysis using CSP. One of the central features of CSPM is its support by

FDR (Failures-Divergences Refinement), a refinement checker that facilitates the practi-

cal implementation of formal verification techniques and identifies potential issues such

as deadlock, livelock, and other undesirable behaviours.

To demonstrate the utilisation of this dialect, we present a CSPM specification of the

dining philosophers’ problem, which will serve as the running example for this work. The

dilemma of the dining philosophers is a classic illustration in the study of concurrent

systems, it serves as a metaphor for illustrating the issues of resource allocation and

process synchronisation that can lead to deadlock conditions. In Code 2.1, we present the

CSPM specification of this classical problem.

Code 2.1 – Specification of the dining philosophers in CSPM.

1 N = 5
2
3 PHILNAMES = {0..N-1}
4 FORKNAMES = {0..N-1}
5
6 channel thinks, sits, eats, getsup : PHILNAMES
7 channel picks, putsdown : PHILNAMES.FORKNAMES
8
9 PHIL(i) = thinks.i -> sits!i -> picks!i!i -> picks!i!((i+1)%N) ->

10 eats!i -> putsdown!i!((i+1)%N) -> putsdown!i!i -> getsup!i -> PHIL(i)
11
12 FORK(i) = picks!i!i -> putsdown!i!i -> FORK(i)
13 [] picks!((i-1)%N)!i -> putsdown!((i-1)%N)!i -> FORK(i)
14
15 PHILS = ||| i : PHILNAMES @ PHIL(i)
16 FORKS = ||| i : FORKNAMES @ FORK(i)
17
18 SYSTEM = PHILS [| {|picks, putsdown|} |] FORKS

Source: (ROSCOE, 2010)

𝑁 is a constant that states the number of philosophers around the table, five in the

example. PHILNAMES and FORKNAMES define sets of identifiers for the philosophers
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and forks ranging from 0 to 𝑁−1, which turns to be 4 in this situation. Subsequently, there

are channels declarations, in which thinks, sits, eats, and getsup represent the states of

a philosopher by their identifiers; picks and putsdown uses a combination of philosopher

and fork identifiers to indicate which philosopher is picking up or putting down which

fork. It is important to note that the aforementioned channels communicate values and,

thus, are called examples of compound events.

𝑃𝐻𝐼𝐿(𝑖) defines the behaviour of the 𝑖-th philosopher. The process describes an un-

ending cycle where a philosopher thinks, sits down, picks up the left and then the right

fork, eats, puts down the right and then the left fork, and gets up to repeat the cycle. The

-> operator, called prefix, ensures that these actions will happen one after another in the

order that was specified. At the end, the definition of 𝑃𝐻𝐼𝐿(𝑖) refers to itself, implying

recursion.

The 𝐹𝑂𝑅𝐾(𝑖) process allows the 𝑖-th fork to be picked up by its right-hand or left-

hand philosopher and then to be put down, repeating the processes. Since the fork is a

shared resource, it is going to be picked up by the philosopher who attempts the picks

action first. The [] operator, called external choice, models a decision that has to be

made between two possible actions, meaning that after being picked up, the fork must

be put down by the same philosopher before it can be picked up again. Additionally, this

choice is external to the process FORK , reflecting an environmental choice, unlike the

internal choice |∼|, which represents a different behaviour. In the case of internal choice,

the decision of what happens next is made by the process itself, rather than being influ-

enced by the environment’s inputs.

PHILS introduces the use of an indexed, also called replicated, version of the inter-

leaving operator. It allows the parallel execution of multiple instances of a process, each of

which is differentiated by an index. The operator ||| indicates that the processes are run

in parallel without requiring synchronisation among them. The expression i : PHILNAMES

denotes that the interleaving is indexed over the set PHILNAMES : for each 𝑖 in this set,

a process instance will be created. Lastly, @ : PHIL(i) specifies which process template

is used for each instance and how the identifier 𝑖 is passed to this template. FORKS

will operate similarly, considering the FORKNAMES set and the process behaviour of a

FORK.

Ultimately, SYSTEM uses the synchronous parallel operator [| |] to combine the

PHILS and FORKS processes. They operate independently, except for the actions within
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the synchronisation set that is {| picks, putsdown|}. The symbol {| |} denotes a

production set, which comprises all values that can be communicated over the provided

channels. This synchronisation is required to ensure that the philosophers can only pick

up or put down forks when the corresponding forks are available.

If every philosopher picks up his left fork at the same time, no philosopher will be able

to pick up his right fork because it will have already been taken by another philosopher.

This results in a circular wait condition, which is one of the conditions for a deadlock.

Tools like FDR can verify properties like deadlock freedom of CSP models. As a model

checker, it computes all possible states of the model while searching for the property of

interest.

While handling large or complex systems, due to the exhaustive state space explo-

ration, this search approach typically leads to the so called state explosion problem; the

computation does not render to be feasible in a reasonable amount of time. In the follow-

ing section, we introduce the utilisation of proof assistants such as Coq as an alternative

that can provide a more scalable approach, at the expense of semi-automated proof effort,

to verifying concurrent systems. By considering such tools, for instance, verification can

be performed by relying on structural induction principles.

Finally, it is important to note that this brief introduction to CSP does not cover all

available operators of the language; for instance, the dining philosophers example does not

use the hiding and interrupt operators. Therefore, CSPCoq considers a more comprehensive

set of operators than the ones covered by this example.

Beyond that, it is also essential to understand the concepts of traces and refinement.

Traces are sequences of events a process engages in during its interactions with the en-

vironment, recorded chronologically. These traces, which can be either finite or infinite,

offer a means to gather information regarding a process’s behaviour. Moreover, refine-

ment ensures that a more detailed specification meets the conditions of a more abstract

one. CSP uses the traces and refinement model to verify that a refined process conforms

to the specified behaviours and constraints, allowing the substitution of a less desirable

component with a superior one without compromising the system’s characteristics. In this

model, a process is said to refine another one if, and only if, the set of traces of the former

is a subset of the set of traces of the latter.
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2.2 THE COQ PROOF ASSISTANT

Proof assistants, also known as interactive theorem provers, are tools for writing proofs

and verifying the correctness of software systems. At the heart of proof assistants is

the capacity to formalise mathematical theorems and their proofs by utilizing formal

languages. The theory of Coq (BERTOT et al., 2010) was developed in France in the 1980s

by a group of researchers led by Thierry Coquand and Gérard Huet. It is based on the

Calculus of Inductive Constructions (COQUAND; HUET, 1988), a powerful type theory

for constructive logic. Gallina is the native functional programming language of Coq. It

provides a solid foundation for reasoning about correctness. Its type system is important

for making sure that specifications are well-formed and free of errors.

Coq’s environment contains an extensive library that provides predefined theorems,

lemmas, and proof tactics that enable development upon existing formalisations rather

than starting from scratch. To facilitate proof construction, Coq employs tactics, which

are small programs designed to guide the development of proofs by breaking them down

into smaller, more manageable steps. Some tactics help decompose complex goals into

straightforward subgoals, while others facilitate applying established logical rules.

Code 2.2 shows how enumerated types, such as bool, can be created in Gallina. Besides

the name of the type, one defines a finite number of constructors. In this case, we have just

two constructors: true and false that take no arguments. This type definition covers only

syntactic aspects. The associated semantics comes from how other definitions manipulate

elements of the type.

Code 2.2 – Definition of the type bool.

Inductive bool : Type :=
| true
| false.

Source: (PIERCE et al., 2018)

In Code 2.3, we have the function negb. Given a boolean b as argument, it yields

another boolean with the opposite semantic value. This function is defined by pattern-

matching on b. If b is a value created from the application of the true constructor, the

function yields a value created from the application of the false constructor. Conversely,

if b is false, the function yields true.
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Code 2.3 – Definition of the function negb.

Definition negb (b:bool) : bool :=
match b with

| true ⇒ false
| false ⇒ true

end.
Source: (PIERCE et al., 2018)

The function defined in Code 2.3 is non-recursive and, thus, uses the keyword Definition.

Recursive functions are defined using the keyword Fixpoint. When defining recursive

functions, the automatic mechanism embedded in Coq needs to be able to prove that

the function always terminate. Generally speaking, if this cannot be proved, the recursive

function cannot be defined. There are some strategies to address this situation. We cover

some of them in the next chapter on demand.

To illustrate constructors that have parameters, let us examine the following definition

of natural numbers: nat (see Code 2.4). This type is not considered enumerated, since the

set of natural numbers is infinite. Nevertheless, its definition covers a finite number of con-

structors. In this non-binary representation of natural number, we have two constructors.

The underlying concept is that every natural number is either zero or the successor of a

preceding natural number. Therefore, it introduces two constructors, O and S, the capital

letter O represents zero and the S stands for successor. Note that the second constructor

has a parameter of type nat.

Code 2.4 – Inductive definition of type nat.

Inductive nat : Type :=
| O
| S (n : nat).

Source: (PIERCE et al., 2018)

So, if the number zero is represented by O, S O represents 1, S (S O) represents 2, and

so on. Any natural number can be constructed using just these two constructors thanks

to inductive principle associated with this recursive definition. It embodies the essence of

mathematical induction, where you have a base case O and an inductive step, which is:

if n is a natural number, then S n is also a natural number.

After a brief introduction to data types and functions, let us dive into the most common

tactics, such as intros, simpl and reflexivity through a proof example. As mentioned before,

under the hood, a tactic is a function designed to manipulate proof objects and, thus,
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guide the development of proofs. Considering the nat definition presented before, it is

possible to prove that adding 0 to any number yields the same number. In other words, 0

is the neutral element for adding numbers. Code 2.5 shows the formalisation and proof of

this statement in Coq. The proof tactics are provided between the commands Proof and

Qed; the former initiates the proof environment, whereas the latter concludes the proof

when no proof obligations are left.

Code 2.5 – Theorem plus O n.

Theorem plus O n : ∀ n : nat, 0 + n = n.
Proof.
intros n. simpl. reflexivity.

Qed.
Source: (PIERCE et al., 2018)

Table 1 shows the step-by-step evolution of the proof object by the application of the

proof tactics. The proof object encompasses the proof hypotheses (context), which are

listed at the top, and the proof goals, which are listed under a horizontal bar. In this

proof, firstly, universal instantiation is performed by the intros tactic. After executing

intros n, the variable n is moved from the goal area to the hypothesis area, and the goal

is updated. Now, one needs to prove that 0 + 𝑛 = 𝑛 holds for an arbitrary 𝑛 of type nat.

The simpl tactic simplifies the current goal by reducing expressions. From the definition

of +, it follows that 0 + 𝑛 yields 𝑛. At this point, the proof goal is 𝑛 = 𝑛. The proof is

completed by using the reflexivity tactic, since both sides of the equality encompass the

same term. Finally, Qed finishes the proof environment provided that there are no more

goals to prove.

Let us bring another proof to illustrate the destruct tactic, which performs case anal-

ysis. For inductively defined data types, such as booleans, destruct can break down the

proof into separate cases (subgoals), considering the different possible ways of constructing

booleans. Code 2.6 shows the proof that negb is involutive.

Code 2.6 – Theorem negb involutive.

Theorem negb involutive : ∀ b : bool, negb (negb b) = b.
Proof.
intros b. destruct b eqn:E .
- reflexivity.
- reflexivity.

Qed.
Source: (PIERCE et al., 2018)
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Table 1 – Proof steps of the theorem plus O n.

Command Proof situation
Proof. 1 subgoal

∀ 𝑛 : nat, 0 + 𝑛 = 𝑛

intros n. 1 subgoal
𝑛 : nat

0 + 𝑛 = 𝑛

simpl. 1 subgoal
𝑛 : nat

𝑛 = 𝑛

reflexivity. No more subgoals.
Qed.

Source: Current Author

Table 2 shows how the proof object evolves along the proof script, and each line

shows the proof situation after finishing the corresponding commands. After entering

on proof mode, we perform universal instantiation concerning the variable 𝑏. Then, the

tactic destruct performs case analysis on the possible values of 𝑏. As the bool has two

constructors, two subgoals are created: one when 𝑏 is true, another when 𝑏 is false. The

original proof goal is updated accordingly. In the context, a hypothesis 𝐸 is created to

store the assumption associated with each subgoal. In Table 2 (fourth row), note that only

𝐸 : 𝑏 = true is shown, since this is the information available at this moment (i.e., just after

performing the destruct tactic). The hypothesis 𝐸 : 𝑏 = false is made available when the

second proof goal is focused. The command - focuses on the first subgoal, which is finished

by applying reflexivity. The same is done for the second subgoal, which terminates the

proof.

Coq encompasses a big number of built-in tactics: almost 400 tactics are provided by

default1. Additionally, new custom tactics can be defined by the user. This is done by

using a specific language called Ltac.

Regarding Integrated Development Environments (IDE), CoqIDE provides a user-

friendly interface for specification and proof development. There is also an extension to

VSCode2. It is possible to use Coq in the browser with an online IDE called jsCoq (ARIAS;
1 Tactic index: <https://coq.inria.fr/doc/V8.19.0/refman/coq-tacindex.html>
2 Link: <https://github.com/coq-community/vscoq>

https://coq.inria.fr/doc/V8.19.0/refman/coq-tacindex.html
https://github.com/coq-community/vscoq
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Table 2 – Proof steps of the theorem negb involutive.

Command Proof situation
Proof. 1 subgoal

∀ 𝑏 : bool, negb (negb 𝑏) = 𝑏

intros b. 1 subgoal
𝑏 : bool

negb (negb 𝑏) = 𝑏

destruct b eqn:E. 2 subgoals
𝑏 : bool
𝐸 : 𝑏 = true

(1/2)
negb (negb true) = true

(2/2)
negb (negb false) = false

- reflexivity. This subproof is complete, but
there are some unfocused goals:

(1/1)
negb (negb false) = false

- reflexivity. No more subgoals.
Qed.

Source: Current Author

PIN; JOUVELOT, 2017). The Coq community has also contributed to a rich ecosystem of

plugins and extensions that enhance Coq’s functionality.

2.3 FIRST VERSION OF CSPCoq

A preliminary theory for CSP in Coq was proposed by Freitas (2020). It provides an

abstract and concrete syntax based on CSPM for a subset of CSP operators. The abstract

syntax describes types such as events, channels, alphabets, and processes that are wrapped

up into a specification that also takes into account well-formedness conditions (WFC).

The proof of WFCs is automated by custom tactics. To get closer to CSPM, the authors

used the Notation feature provided by Coq to define a custom concrete sytax. In Table 3,

one can see a comparison made between the syntax of CSPM and this first version of

CSPCoq.

As it can be seen, the syntax of CSPM and the previous version of CSPCoq are quite

close. However, due to reserved symbols in the Coq language, it was necessary to adapt



28

Table 3 – The syntax of CSPM and the first version of CSPCoq.

Operator CSPM CSPCoq

Stop STOP STOP

Skip SKIP SKIP

Event prefix e -> P e --> P

External choice P [] Q P [] Q

Internal choice P |~| Q P |~| Q

Alphabetized parallel P [A || B] Q P [[ A \\ B]] Q

Generalized parallel P [| A ]] Q P [| A |] Q

Interleave P ||| Q P ||| Q

Sequential composition P ; Q P ;; Q

Event hiding P \ A P \ A

Process definition P = Q P ::= Q

Process reference P ProcRef "P"
Source: (FREITAS, 2020)

some notations to ensure that the Coq compiler is capable of parsing CSPCoq code. In

Code 2.7, there are two examples illustrating the concrete syntax of the first version of

CSPCoq. The first one defines the PRINTER process that performs the events accepts,

print, and then deadlocks. In the second example, we have a MACHINE process, similar

to the one explained in Section 1.2 (see Code 1.1): a process that combines the behaviour

of TICKET and CHANGE via an alphabetised parallelism. The syntactic differences with

respect to CSPM are evident.

Code 2.7 – Concrete syntax of the first version of CSPCoq.

“PRINTER” ::= “accept” --> “print” --> STOP

“MACHINE” ::= ProcRef “TICKET”
[[ {{“cash”, “ticket”}} \\ {{“cash”, “change”}} ]]
ProcRef “CHANGE”

Source: (FREITAS, 2020)

In this work, we significantly extend the previous CSPCoq theory. We support a

much richer syntax, considering constants, arithmetic and boolean expressions, compound

events, parametrised processes, and more CSP operators: conditional guards, if-then-else

conditionals, interruption, and replicated operators such as replicated external choice,

internal choice, alphabetised parallel, generalised parallel, interleave and sequential com-

position. This brings new challenges to the formalisation of the CSP theory in Coq, since
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it is necessary to have static and dynamic typing systems, in addition to reason about

the process behaviour evolution in light of the associated context; now, we may have lo-

cal variables introduced by process parameters, channel communication, and replicated

operators. These changes impacts the whole theory, for instance: the number of well-

formedness conditions, the definition of the structured operational semantics, the notion

of labelled transitions systems, and the Graphviz integration. In the upcoming chapter,

we will discuss in details the updated theory of CSPCoq.

Table 4 provides an overview of the amount of the reused code from the first version

of CSPCoq. The table lists the main concepts of CSPCoq, and their reuse level. It is not

straightforward to determine an accurate number of reused LOCs. There is almost no

direct correspondence between the files structure now and then; additionally, a diff com-

mand would not yield a reliable output, since that, even when there was a high level of

reuse, small changes were required. Therefore, we summarise the reuse level using a cate-

gorical mensuration. A low level of reuse implies that the file was utilised as a reference,

but the code was rewritten from scratch. A high level of reuse means that the file was

adapted to the updated version of CSPCoq. None indicates that there was no reuse at all.

Table 4 – Level of reused code from the first version of CSPCoq

File Level of reuse
Constants syntax None
Expressions syntax None
Channels syntax Low
Processes syntax Low
Well-formedness conditions None
SOS Low
LTS High
Traces High

Source: Current Author

Now, the syntax of CSPCoq is so elaborate that, due to the limitations of Notation, it

is not straightforward to define a suitable concrete syntax. The differences with respect to

the syntax of CSPM would become even greater. This would impose an adoption barrier,

since users of CSPCoq would need to become familiar with this new syntax. Therefore, we

opted to provide a translator from CSPM to CSPCoq implemented using ANTLR.
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2.4 ANTLR

ANother Tool for Language Recognition (ANTLR) (PARR, 2013) is a powerful parser

generator used in the development of compilers, interpreters, and frameworks for process-

ing complex languages. ANTLR allows developers to define grammars using an intuitive

syntax, then, with the grammatical descriptions, ANTLR generates the source code for a

parser in a target language, such as Java, Python, and JavaScript.

In Figure 3, a diagram illustrates the typical data flow of a language recogniser. First,

a lexer processes the input text and, after iterating over each character, identifies tokens.

Then, the parser analyses whether the tokens are provided in an order accepted by the

grammar of the source language. If this is the case, it yields the corresponding parse tree.

As said before, the code for the lexer and the parser is automatically generated from the

given grammars.

Figure 3 – Typical language recogniser data flow.

Source: PARR (2013)

ANTLR’s set of features goes beyond just parsing, it also enables the execution of

custom actions by traversing parse trees, such as building abstract syntax trees (ASTs)

or even performing semantics. The two methods for traversing and processing parse trees

generated from an ANTLR grammar are visitors and listeners. Both are based on the

design patterns of same name, and allow the developers to implement custom behaviour

when certain nodes in the parse tree are reached. Listeners are suited for a more passive

way of processing the tree since they are automatically called by the ANTLR parser.

Visitors, however, offer a more complex and customisable way of implementation, requiring

a higher level of manipulation since they may not strictly follow the tree structure defined

by the grammar.

In Code 2.8, we illustrate how to define an ANTLR4 grammar using the EBNF nota-

tion. The example defines a grammar called Expr, which provides a simple language for
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arithmetic expressions. The first rule (prog) serves as an entry point for parsing, indicat-

ing that a valid program consists of an expression followed by an end-of-file token. This

ensures that every input must result in a complete expression to be considered valid. The

expr rule defines the syntax for arithmetical expressions. As the rule is recursive, it allows

for nested expressions.

During the parsing process, the NEWLINE rule indicates that return and newline char-

acters should be ignored and not considered when interpreting expressions. The INT rule

defines how numerical literals within expressions are recognised.

Code 2.8 – ANTLR4 Grammar for Expressions

grammar Expr;

prog: expr EOF ;

expr: expr ('*'|'/') expr
| expr ('+'|'-') expr
| INT
| '(' expr ')'
;

NEWLINE : [\r\n]+ -> skip;

INT : [0-9]+ ;

Source: Current Author

Provided the Expr grammar, the ANTLR4 tools generate automatically the lexer and

parser files for the desired target language. In this work, Java is selected as the preferred

option. Depending on the flags used to compile the grammar, a few other files, such as

listeners and visitors, can be made available.

Considering the Expr grammar, in Figure 4, one can see part of the file tree structure

associated with the generated files. The file Expr.g4 contains the input grammar of this

toy expression language. The file Expr.tokens lists the types of tokens of this language.

The files ExprLexer.java and ExprParser.java comprise the lexer and parser code, re-

spectively. Finally, ExprBaseVisitor.java implements the ExprVisitor.java interface,

and it can be adapted to provide a custom visitor for the language. For instance, one that

would traverse the parse tree and evaluate the expression.
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Figure 4 – Files generated from the Expr grammar.

example/

Expr.g4

..

Expr.tokens

ExprBaseVisitor.java

ExprLexer.java

ExprParser.java

ExprVisitor.java

It is also important to note that the ANTLR ecosystem includes a rich set of documen-

tation and community-contributed resources, such as grammar repositories and tutorials.

There are plug-ins available for popular IDEs like IntelliJ IDEA, Eclipse, and VSCode.
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3 AN UPDATED THEORY FOR CSP IN COQ

In this chapter, we present our updated theory for CSP in Coq. The formalisation of

CSPCoq comprises more than 3,300 lines of Coq code, and is organised into the folders:

Syntax, Semantics, Automation, and Specification. The first two folders contain the

definition of the syntax and semantics of CSPCoq. The folder Automation contains useful

custom automation tactics. Finally, the folder Specification formalises the notion of a

CSP specification, gluing together syntactic and semantic aspects. The code is publicly

available at: <https://doi.org/10.5281/zenodo.11228166>.

In Section 3.1, we present the concrete syntax of CSPCoq, covering how expressions,

channels, constants, and processes are defined. In Section 3.2, we present the static and

dynamic typing system of CSPCoq. The typing system forms the basis for the verification

of many well-formedness conditions, as described in Section 3.3, along with the associ-

ated custom verification tactics. In Section 3.4, we present the structured operational

semantics (SOS) of CSPCoq. The SOS is used to define the notion of labelled transition

systems, which is discussed in Section 3.5, in addition to the integration with Graphviz.

In Section 3.6, we formalise the notions of refinement according to the traces semantic

model. Finally, in Section 3.7, we define the property of deadlock freedom.

3.1 SYNTAX

A CSP specification consists of the declaration of constants, channels, and processes.

The following sections describe how these concepts are formalised in Coq, in addition

to expressions. At the end, we show how all the elements are combined into a CSP

specification.

3.1.1 Expressions

The Exp type defines various kinds of arithmetical and boolean expressions. It is im-

portant to mention that we follow a shallow embedding approach to avoid having to reuse

Coq’s types to represent CSP’s basic types (e.g., natural numbers and boolean values).

Furthermore, this design decision enables the use of Coq’s functions over basic types in

https://doi.org/10.5281/zenodo.11228166
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CSPCoq specifications, to some extent, similar to the functional language supported by

CSPM. In Code 3.1, we present a fragment of the inductive definition of Exp.

Code 3.1 – Definition of Expression.

Inductive Exp : Type :=
| EBool (b : bool)
| ENum (n : nat)
| EId (id : CSPId)
| EPlus (e1 e2 : Exp)
| ...
| EEq (e1 e2 : Exp)
| ...
| EAnd (e1 e2 : Exp)
| ...

Coercion EBool : bool >-> Exp.
Coercion ENum : nat >-> Exp.
Coercion EId : CSPId >-> Exp.

Source: Current Author

Boolean literals and natural numbers are created by the constructors EBool and

ENum, respectively. The constructor EId allows one to refer to CSP identifiers (e.g.,

a constant, a local variable) within expressions. CSPId is basically a string. In what fol-

lows, we have typical constructors for arithmetical (e.g., EPlus), comparisons (e.g., EEq),

and boolean (e.g., EAnd) expressions. Coercions are created to automatically promote

basic types from the Coq system (i.e., boolean literals, natural numbers, and strings) to

elements of the type Exp.

Our formalisation of expressions also accounts for sets and sequences of expressions, as

it can be seen in Code 3.2. A set of expressions is defined using the Coq’s set type, whereas

sequences are represented as lists. It is not shown here, but to use sets, it is necessary to

prove the decidability of the equality of expressions (theorem exp dec). When adding an

expression to a set, it is necessary to test whether this expression is already a member of

the set.

Code 3.2 – Definition of sets and sequences of expressions.

Definition ExpSet : Type := set Exp.
Definition ExpSeq : Type := list Exp.

Source: Current Author

One might wonder whether it would be possible to represent sequences of sequences.



35

As just defined, ExpSeq represents a sequence of expressions. An expression can refer to

a constant via the EId constructor, and constants can be defined as sequences of expres-

sions. Therefore, it is indeed possible to represent sequences of sequences of expressions.

Nevertheless, at this moment, although it is syntactically possible to represent such a

structure, it is still not possible to reason (i.e., give semantics) about it due to limitations

of the current typing system. Tuples are not directly supported, but they can be modelled

using sequences.

To illustrate the above definitions, the expression (𝑖 + 1)%𝑁 is represented in the

CSPCoq’s concrete syntax as follows: ((EMod ((EPlus (EId "i") (ENum 1))) (EId "N"))).

3.1.2 Channels

Channels are the next building block of our theory. They are used to represent the

communication (events) between processes. Code 3.3 shows how channels are declared.

Code 3.3 – Definition of Channel.

Inductive ChannelDeclaration : Type :=
| channel declaration : list ChannelName → list GeneralSet → ChannelDeclaration.

Source: Current Author

The constructor channel declaration has two arguments: a list of names (Channel-

Name) and a list of types (GeneralSet). The name of a channel is a string; that is,

ChannelName refers to the Coq’s string type. This constructor receives a list of names,

since it is possible to declare multiple channels at once, all of them sharing the same type

signature. In Code 3.4, we exemplify the declaration of the channels thinks, sits, eats, and

getsup, from the dining philosophers example.

Code 3.4 – Declaration of channels thinks, sits, eats, and getsup.

Definition channeldec1 : ChannelDeclaration :=
channel declaration ["thinks" ; "sits" ; "eats" ; "getsup"] [(id set "PHILNAMES")].

Source: Current Author

The type of a channel is defined by a list of GeneralSet. If an empty list is provided, we

say that this channel declaration is actually declaring a single event. Otherwise, we will

have compound events, where data is transferred between the communicating processes.

Code 3.5 presents the definition of GeneralSet. A channel may communicate boolean
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values (bool type), arbitrary natural numbers (nat type) or restricted to a given interval

(nat interval type set). The communicated values may belong to an explicitly defined set

of expressions (exp set) or events (event set). It is also possible to refer to CSP identi-

fiers that were previously used to define constants (id set). For instance, in the previous

example, the declaration of the channel thinks refers to the constant PHILNAMES.

Code 3.5 – Definition of GeneralSet.

Inductive GeneralSet : Type :=
| nat type : GeneralSet
| nat interval type set : Exp → Exp → GeneralSet
| bool type : GeneralSet
| exp set : ExpSet → GeneralSet
| event set : EventSet → GeneralSet
| id set : CSPId → GeneralSet.

Source: Current Author

As said before, channels are used to represent the communication between processes,

giving rise to single and compound events. Code 3.6 shows the formalisation of Events.

An event refers to the name of a channel, and to a list of communications. These are the

parameters of the constructor event.

Code 3.6 – Definition of Event.

Inductive Event : Type :=
| event : ChannelName → list Communication → Event.

Source: Current Author

The Communication type represents different kinds of messages that can be commu-

nicated via channels. This includes input (?), output (!) and default (.) communications.

When performing an input communication, one provides the name (CSPId) of the lo-

cal variable that will store the read value. For output and default communications, one

provides the communicated value, which is any valid Exp.

Code 3.7 – Definition of Communication.

Inductive Communication : Type :=
| input communication : CSPId → Communication
| output communication : Exp → Communication
| default communication : Exp → Communication.

Source: Current Author

To illustrate, consider the following example: the event 𝑝𝑖𝑐𝑘𝑠!𝑖!𝑖 is declared in CSPCoq

as event "picks" [output communication (EId "i") ; output communication (EId "i")]. For
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an event that has no communication, such as the event 𝑐𝑎𝑠ℎ considered in Section 1.2, we

would have event "cash" nil. This indicates that the 𝑐𝑎𝑠ℎ event does not involve any data

transfer. Sets of events can be declared following the definition of EventSet (see Code 3.8).

Code 3.8 – Definition of EventSet.

Inductive EventSet : Type :=
| normal set : set Event → EventSet
| production set : set Event → EventSet.

Source: Current Author

A set of events may be created using normal set and production set constructors. Con-

sidering the channel declaration, a normal set comprises only complete events; whereas

a production may contain incomplete events. Assuming that PHILNAMES refers to the

interval {0..𝑁 −1}, where 𝑁 = 5 (see Code 2.1), the CSPM declaration {|𝑡ℎ𝑖𝑛𝑘𝑠|} is equiv-

alent to the following set of events {𝑡ℎ𝑖𝑛𝑘𝑠.0, 𝑡ℎ𝑖𝑛𝑘𝑠.1, 𝑡ℎ𝑖𝑛𝑘𝑠.2, 𝑡ℎ𝑖𝑛𝑘𝑠.3, 𝑡ℎ𝑖𝑛𝑘𝑠.4}. In

CSPCoq, we would have production set (set add event dec (event "thinks" nil) nil). We

pass to the constructor production set an incomplete event (i.e., thinks with no commu-

nications), and add it to the empty set (nil). Note that the function set add relies on the

theorem event dec that proves the decidability of the equality of events. This is necessary

to ensure that a set has no repetition of elements. Alphabets are basically sets of events.

To conclude our formalisation of channels and events, we have the types SpecialEvent

and GeneralEvent (see Code 3.9). The former defines the events 𝜏 and ✓, whereas the

latter formalises that an event may be a normal (normal event) or a special (special event)

one.

Code 3.9 – Definition of normal and special events.

Inductive SpecialEvent : Type :=
| tau : SpecialEvent
| tick : SpecialEvent.

Inductive GeneralEvent : Type :=
| normal event : Event → GeneralEvent
| special event : SpecialEvent → GeneralEvent.

Source: Current Author
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3.1.3 Constants

Constants are used to represent fixed values that can occur elsewhere in CSP spec-

ifications. The ConstantDeclaration (see Code 3.10) defines how constants are declared

in CSPCoq. A constant may refer to an expression (exp declaration), to a GeneralSet

(set declaration), or to a GeneralSeq (seq declaration). Although not presented before,

a GeneralSeq is similar to a GeneralSet, but comprises sequences of elements instead of

sets. When declaring a constant, as expected, one needs to provide its name (CSPId).

Code 3.10 – Definition of ConstantDeclaration.

Inductive ConstantDeclaration : Type :=
| exp declaration : CSPId → Exp → ConstantDeclaration
| set declaration : CSPId → GeneralSet → ConstantDeclaration
| seq declaration : CSPId → GeneralSeq → ConstantDeclaration.

Source: Current Author

To illustrate, consider the example shown in Code 3.11. It declares the constant

PHILNAMES, which consists of the general set formed by the numbers within the in-

terval (nat interval type set) ranging from 0 to 𝑁 − 1, where 𝑁 is another constant,

whose definition is not shown here.

Code 3.11 – Definition of the constant PHILNAMES.

Definition PHILNAMES : ConstantDeclaration := set declaration "PHILNAMES"
(nat interval type set (ENum 0) (EMinus (EId "N") (ENum 1)))

Source: Current Author

3.1.4 Processes

The type ProcessDeclaration (see Code 3.12) defines how a CSP process is declared.

Its single constructor receives the process name (CSPId), the name of its parameters,

which can be none (i.e., an empty list), and the definition of the associated process body

(an element of ProcessBody).

Code 3.12 – Definition of ProcessDeclaration.

Inductive ProcessDeclaration : Type :=
| Process (name : CSPId) (ids: list CSPId) (body : ProcessBody).

Source: Current Author
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Code 3.13 shows a fragment of the definition of ProcessBody. It includes various con-

structors to represent the basic CSP processes (SKIP and STOP), along with the dif-

ferent CSP operators, namely: process reference (ProcessReference), process prefix (Pro-

cessPrefix), external choice (ProcessExtChoice), internal choice, alphabetised parallelism,

generalised parallelism, interleaving, sequential composition, hiding, conditional guards,

if-then-else conditionals, interruption, and replicated operators. Each constructor has the

adequate parameters. For example, when referring to a process, the constructor Process-

Reference takes as arguments the name of the referred process (CSPId), and a list of

arguments (a list of Exp).

Code 3.13 – Definition of ProcessBody.

Inductive ProcessBody : Type :=
| SKIP
| STOP
| ProcessReference (name : ProcessName) (args : list Exp)
| ProcessPrefix (event : Event) (proc : ProcessBody)
| ProcessExtChoice (proc1 proc2 : ProcessBody)
| ...
| ProcessReplicated (op : ReplicatedOperator) (proc : ProcessBody).

Source: Current Author

The replicated operators are defined by an auxiliary type: ReplicatedOperator. In

Code 3.14, we present a fragment of its definition. For example, the constructor Repli-

catedInterleave is the one used to define the process PHILS (see Code 2.1).

Code 3.14 – Definition of ReplicatedOperator.

Inductive ReplicatedOperator : Type :=
| ReplicatedExtChoice (id : CSPId) (set : GeneralSet)
| ReplicatedIntChoice (id : CSPId) (set : GeneralSet)
| ...
| ReplicatedInterleave (id : CSPId) (set : GeneralSet)
| ...

Source: Current Author

To illustrate the above definitions, consider the process PHILS = ||| i : PHILNAMES

@ PHIL(i) shown in Code 3.15. Its body (PHILS BODY ) consists of the replicated inter-

leave (ReplicatedInterleave) of references (ProcessReference) to the process PHIL indexed

by an 𝑖 belonging to the set PHILNAMES. The process PHILS is then defined by invoking

the constructor Process providing the process name, an empty list (nil) of arguments, and

the previously defined process body.
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Code 3.15 – Definition of the process PHILS.

Definition PHILS BODY : ProcessBody := ProcessReplicated
(ReplicatedInterleave "i" (id set "PHILNAMES"))
(ProcessReference "PHIL" [(EId "i")]).

Definition PHILS : ProcessDeclaration := Process "PHILS" nil PHILS BODY .
Source: Current Author

3.1.5 Specifications

A CSP specification (in CSPCoq, an element of Specification – see Code 3.16) com-

bines the syntax (i.e., the declaration of constants, channels, and processes) and the static

semantics (i.e., well-formedness conditions that can be statically verified) of CSP specifi-

cations. In Coq, a record is used to define a composite type that contains multiple fields.

Records are similar to classes in object-oriented languages.

Code 3.16 – Definition of Specification.

Record Specification : Type := Build Spec
{

constants : list ConstantDeclaration;
channels : list ChannelDeclaration;
processes : list ProcessDeclaration;

well formedness conditions : ...
}.

Source: Current Author

When one defines a record in Coq, it will automatically generate a constructor function

for the Record (Build Spec in Code 3.16). This constructor is used for creating instances

of the record. The distinguishing feature of records in Coq is that the fields may be related

to data (in our case, the declaration of CSP elements), but also to properties (in our case,

static well-formedness conditions). Therefore, when creating an instance of the record,

one needs to provide the expected data, but also prove all associated properties.

In Code 3.17, when creating the specification phils SPEC, this combination of data

and properties becomes evident. Note that the record instance is created within proof

mode (Proof).
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Code 3.17 – The CSPCoq specification of the dining philosophers example.

Definition phils SPEC : Specification.
Proof.
apply (Build Spec

[N ; PHILNAMES ; FORKNAMES ]
[channeldec1 ; channeldec2 ]
[PHIL ; FORK ; PHILS ; FORKS ; SYSTEM ]

).
prove wfcs.

Defined.
Source: Current Author

After invoking the constructor Build Spec, the required properties are listed as proof

obligations. The tactic prove wfcs is a custom tactic defined in this work, and explained

later, that automatically discharges these proofs. Finally, one can use the keyword Defined

to conclude the definition of the record instance.

In the following sections, we detail the typing system (Section 3.2) that is used to define

the statically verified well-formedness conditions (Section 3.3), but also other elements of

the semantics (e.g., the SOS).

3.2 TYPING SYSTEM

Upon the introduction of compound events that communicate values between pro-

cesses, it is necessary to consider a typing system. However, in our context, typing cannot

always be performed statically. As we allow for parametrised processes and the types

of parameters are left implicit, the types of arguments need to be dynamically inferred.

Therefore, we account for a static and dynamic typing system. When checking static

well-formedness conditions, we try to statically infer as many types as possible in order to

anticipate problems. The dynamic typing system is used by the semantic models employed

to analyse dynamic properties of the CSP specifications (e.g., deadlock freedom).

3.2.1 Values and types

At this moment, we support communications of natural and boolean values (see

Code 3.18). The constructor undefined value is used to represent that it is (still) not

possible to infer the value of some expression or identifier. This occurs both during static
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Code 3.18 – Definition of supported types and values.

Inductive Value : Type :=
| undefined value : Value
| natural value : nat → Value
| boolean value : bool → Value.

Inductive InferredType : Type :=
| invalid
| undefined
| boolean
| natural.

Source: Current Author

(as we do not focus on evaluating expressions) and dynamic (when there is a typing error

that prevents the evaluation) typing. For instance, during static analysis, if 𝑖 is a pa-

rameter of a process, the value of 𝑖 + 1 is left undefined, since it requires evaluating the

associated process call. There are also elements that are not associated with an explicit

value, such as processes.

The Coq type InferredType is used during type inference. If we are capable of inferring

the type, we use the constructors boolean or natural. If it still not possible to type the

term (i.e., during static typing), we use the constructor undefined. However, if we deduce

that the term has an invalid type, we use the constructor invalid.

3.2.2 Execution context

Our typing system is directly associated with the notion of an execution context (see

Code 3.19). This is necessary because we have both global definitions (such as constants

and channels), but also local ones (such as variables introduced by input communications

and replicated operators).

A context is defined as a list of ContextEntry, which is a record with the following

five fields: id – the identifier of the global or local definition; level – a natural number

indicating the declaration level (0 is used to denote the GLOBAL LEVEL and increasing

numbers denote inner declaration scopes); value – the value obtained after evaluating the

identifier (if applicable); type – the inferred type; and, decoration – the syntactic structure

associated with the current entry. In what follows, we provide more details about the last

two fields.
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Code 3.19 – Definition of ContextEntry and Context.

Definition GLOBAL LEVEL : nat := 0.

Record ContextEntry : Type := Build ContextEntry
{

id : CSPId;
level : nat;
value : Value;
type : list InferredType;
decoration : DecoratedDeclaration;

}.

Definition Context : Type := list ContextEntry.
Source: Current Author

It is important to note that the inferred type is actually a list of InferredType. Consider

the following examples: in 𝑁 = 0, the inferred type of 𝑁 would be [natural]; in 𝑁 = {0, 1},

the inferred type of 𝑁 would be [natural, natural]. That is the underlying reason for

defining the field type as a list of InferredType.

In Code 3.20, we see the definition of DecoratedDeclaration, which is the type of the

field decoration in ContextEntry. There are five syntactic constructions that are respon-

sible for creating context entries. The first one (event decoration) is associated with an

input communication. Therefore, when we have an event such as ev?x?y, two entries are

introduced in the context, and both of them are associated (decorated) with this event.

Code 3.20 – Definition of DecoratedDeclaration.

Inductive DecoratedDeclaration : Type :=
| event decoration : Event → DecoratedDeclaration
| const decoration : ConstantDeclaration → DecoratedDeclaration
| channel decoration : ChannelDeclaration → DecoratedDeclaration
| replicated decoration : ReplicatedOperator → DecoratedDeclaration
| parameter decoration : ProcessDeclaration → DecoratedDeclaration
| process decoration : ProcessDeclaration → DecoratedDeclaration.

Source: Current Author

The global declaration of constants, channels, and processes also introduce new en-

tries in the context. In these situations, we use const decoration, channel decoration, and

process decoration, respectively. The parameters of a process also produce new context

entries within its process body (parameter decoration). Finally, the replicated operator

(e.g., ||| i : {0,1} @ ...) also creates new context entries (replicated decoration).
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The creation of context entries is facilitated by auxiliary functions; some of them are

shown in Code 3.21. Provided the expected arguments, the functions EventEntry and

ProcessEntries yield new entries for events and processes, respectively. In Code 3.21, note

that {| |} is a Coq notation for creating record instances; it is not related to the notion of

production sets of CSP. In EventEntry, we provide as argument a single type t, since each

communicated value is associated with a single value/type. In ProcessEntry, note that no

value is provided as argument, since a process is not associated with a single value. In

such a situation, undefined value is considered.

Code 3.21 – Auxiliary functions for creating context entries.

Definition EventEntry (name : CSPId) (l : nat) (v : Value)
(t : InferredType) (e : Event) : ContextEntry :=

{| id := name ; level := l ; value := v ; type := [t] ;
decoration := event decoration e |}.

Definition ProcessEntry (name : CSPId) (l : nat)
(t : list InferredType) (p : ProcessDeclaration) : ContextEntry :=

{| id := name ; level := l ; value := undefined value ; type := t ;
decoration := process decoration p |}.

Source: Current Author

To illustrate the definitions presented in this section, let us consider the dining philoso-

phers example, see Code 3.22 for a quick reference. In Code 3.23, we can see the context

statically inferred for all global definitions; we omit the fields value and decoration for

legibility purposes.

Code 3.22 – Fragment of the dining philosophers specification in CSPM.

1 N = 5
2 PHILNAMES = {0..N-1}
3 FORKNAMES = {0..N-1}
4 channel thinks, sits, eats, getsup : PHILNAMES
5 channel picks, putsdown : PHILNAMES.FORKNAMES
6 PHIL(i) = ...
7 FORK(i) = ...
8 PHILS = ||| i : PHILNAMES @ PHIL(i)
9 FORKS = ||| i : FORKNAMES @ FORK(i)

10 SYSTEM = PHILS [| {|picks, putsdown|} |] FORKS

Source: (ROSCOE, 2010)
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Code 3.23 – Global context for the dining philosophers example.

[
{| id := "N" ; level := 0 ; ... type := [natural] ; ... |} ;
{| id := "PHILNAMES" ; level := 0 ; ... type := [natural] ; ... |};
{| id := "FORKNAMES" ; level := 0 ; ... type := [natural] ; ... |};
{| id := "thinks" ; level := 0 ; ... type := [natural] ; ... |};
{| id := "sits" ; level := 0 ; ... type := [natural] ; ... |};
{| id := "eats" ; level := 0 ; ... type := [natural] ; ... |};
{| id := "getsup" ; level := 0 ; ... type := [natural] ; ... |};
{| id := "picks" ; level := 0 ; ... type := [natural; natural] ; ... |};
{| id := "putsdown" ; level := 0 ; ... type := [natural; natural] ; ... |};
{| id := "PHIL" ; level := 0 ; ... type := [undefined] ; ... |};
{| id := "FORK" ; level := 0 ; ... type := [undefined] ; ... |};
{| id := "PHILS" ; level := 0 ; ... type := []; ... |};
{| id := "FORKS" ; level := 0 ; ... type := [] ; ... |};
{| id := "SYSTEM" ; level := 0 ; ... type := [] ; ... |}

] : Context

Source: Current Author

The level of all entries is 0, since all of them are related to global declarations. As

explained before, the types of parameters are not statically determined and, thus, are left

undefined – see the entries for PHIL and FORK. As the processes FORKS, PHILS and SYSTEM

do not have parameters, their entries are associated with an empty list of types.

Now, after explaining and exemplifying execution contexts, we are in a better position

for getting into some details of static typing. Code 3.24 shows a fragment of the function

that statically types expressions. It is defined by pattern-matching on the expression exp.

If the expression concerns a boolean or a natural literal, the inferred type is boolean or

natural, respectively.

If the expression refers to an identifier (i.e., EId i), we try to find the closest entry

in the context for i. By closest we mean from the inner to the outer scope level. This is

necessary since CSP allows for multiple local definitions of the same identifier, but with

different scope levels. If no entry is found, the function FindClosestEntry yields None.

In such a case, the inferred type for exp is invalid (i.e., it is referring to an undeclared

identifier). If the identifier is found, FindClosestEntry yields Some entry. Then, the entry

is going to be inspected to see whether this is a valid reference (e.g., the name of a process

cannot be referred within an expression) and, then, retrieved its inferred type.

In Code 3.24, we can also see an example of static typing of arithmetic expressions.

Assuming that exp is equal to 𝑒1 + 𝑒2, if the inferred types of 𝑒1 and 𝑒2 are natural, then,
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the type of exp is also natural. If the type of one of the inner expressions is natural, but

the type of the other expression is undefined, such as the 𝑖 + 1 in 𝑝𝑖𝑐𝑘𝑠!𝑖!((𝑖 + 1)%𝑁)

from Code 2.1, the type of exp is undefined as well. If the types of both expressions are

undefined, the type of exp is also undefined. In all other situations, the type of exp is

invalid.

Code 3.24 – Function for statically typing expressions.

Fixpoint StaticType Exp (ctx : Context) (exp : Exp) : InferredType :=
match exp with
| EBool ⇒ boolean
| ENum ⇒ natural
| EId i ⇒ match FindClosestEntry ctx i with

| None ⇒ invalid
| Some entry ⇒ ...
end

| EPlus e1 e2 ⇒ match StaticType Exp ctx e1 , StaticType Exp ctx e2 with
| natural, natural ⇒ natural
| undefined, natural ⇒ undefined
| natural, undefined ⇒ undefined
| undefined, undefined ⇒ undefined
| , ⇒ invalid
end

| ...
end.

Source: Current Author

3.3 WELL-FORMEDNESS CONDITIONS

To be valid, besides adhering to the syntax of CSPCoq, a CSP specification needs

to meet a number of well-formedness conditions (WFC). Otherwise, the behaviour of

processes may be undefined or invalid. All WFCs are first checked statically (i.e., when

creating a CSP specification) to anticipate violations. Some of them are rechecked during

dynamic semantic analysis; particularly, those related to types, since the static typing

system is incomplete (i.e., some terms cannot be statically typed), as explained before.

There are also WFCs that have already been handled by the ANTLR parser, but even so,

we check them in the Coq implementation to ensure that specifications written directly

in CSPCoq are also correct.

Here, it is important to say that CSPCoq anticipates problematic situations that are

only identified by FDR during dynamic process analysis. For instance, let P(i) = STOP,
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if one declares Q = P, the specification is loaded successfully by FDR. However, when

analysing the behaviour of Q, FDR raises an error. In CSPCoq, this problem is statically

detected. We have a total of 39 WFCs associated with expressions (Table 5), constants

(Table 6), channels (Table 7), and processes (Table 8). In what follows, we list and explain

all of them.

In Coq, a CSPId is defined as a string. However, in the context of CSP specifica-

tions, an identifier cannot be defined by the empty string (wfc exp 1 ). Additionally, it

should start with a letter, and be followed by letters, digits, underscores, or single quotes

(wfc exp 2 ). Although the identifier of these two WFCs starts with wfc exp, they ap-

ply to all CSPIds, not only those embedded in expressions. Here, the identifier of WFCs

reflects the location where the related Coq definition is. In this case, CSPId is declared

when defining expressions. Other definitions such as constants, channels and processes

refer to the same definition of CSPId.

Table 5 – Well-formedness conditions of CSPCoq (expressions).

Identifier Description
wfc exp 1 CSPId must not be the empty string.
wfc exp 2 CSPId must start with a letter, and be followed by letters, digits, un-

derscores, or single quotes.
wfc exp 3 The argument of EId must refer to a declared CSP identifier, which

needs to be a constant, parameter or local variable.
wfc exp 4 The arguments of EPlus, EMinus, EMult, EDiv, EMod, ELe, EGe, ELt,

and EGt must be of type nat.
wfc exp 5 The arguments of EEq, and ENeq must be of the same type.
wfc exp 6 The arguments of ENot, EAnd, and EOr must be of type bool.
wfc exp 7 All expressions in ExpSet must be of the same type.
wfc exp 8 All expressions in ExpSeq must be of the same type.

Source: Current Author

In expressions, when referring to a CSPId, this identifier needs to be previously de-

clared; additionally, it should be related to a constant, to a process parameter, or to a

local variable (wfc exp 3 ), which is introduced by input communications or replicated

operators. Within an expression, for instance, we cannot refer to a process.

The other WFCs in Table 5 are related to type correctness: arithmetic expressions

are about numbers (wfc exp 4 ), equalities and inequalities should be applied to ex-

pressions of the same type (wfc exp 5 ), boolean expressions are about boolean literal
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(wfc exp 6 ), and we only accept homogenous sets and sequences of expressions (wfc exp 7

and wfc exp 8 ).

Regarding the declaration of constants, the name of a constant must be unique at the

global level (see Table 6 – wfc const 1 ). At inner scope levels, local variables may be

introduced with previously used identifiers.

Table 6 – Well-formedness conditions of CSPCoq (constants).

Identifier Description
wfc const 1 In ConstantDeclaration, the name of the constant must be unique at

the global scope.
Source: Current Author

Table 7 shows WFCs that are related to channels and events. When creating a channel

declaration, one provides a list of channel names and a type signature (list of channel

types) shared by all declared channels (e.g., channel thinks, sits : PHILNAMES). The

type signature can be an empty list (i.e., an event is being declared), but the list of channel

names must not be empty (wfc ch 1 ). Similarly to constants, the name of channels must

be unique at the global scope (wfc ch 2 ).

Via the constructor id set, the type of a channel can refer to an identifier defined

elsewhere (e.g., channel thinks : PHILLNAMES). However, this identifier must be of a

constant, and it must be equivalent to a set (wfc ch 3 ). For instance, in the example just

provided, it would not make sense if PHILNAMES were defined as a constant value (e.g.,

N-1). Recall that PHILNAMES is defined as {0..N-1}: a set of numbers ranging from 0

to N-1. A similar restriction applies to the constructor id seq of GeneralSeq (wfc ch 4 ),

which is used in the context of the replicated sequential operator.

When creating sets and sequences of events (EventSet and EventSeq, respectively),

any compound event (i.e., with communications) must not involve input neither output

communication, but only default ones (wfc ch 5 and wfc ch 7 ). Input and output com-

munications only occur in the context of the prefix operator. When creating normal sets

or normal sequences of events (opposed to production sets and production sequences), it

is not possible to refer to incomplete compound events (wfc ch 6 and wfc ch 8 ). For in-

stance, {|thinks|} is a valid definition, since we have a production set. However, {thinks}

would not be accepted.

As expected, all events must refer to declared channels (wfc ch 9 ), and the types of

communications must be compatible with the channel type signature (wfc ch 10 ). Finally,
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Table 7 – Well-formedness conditions of CSPCoq (channels).

Identifier Description
wfc ch 1 In ChannelDeclaration, the list of ChannelName must not be empty.
wfc ch 2 In ChannelDeclaration, the name of the channels must be unique at

the global scope.
wfc ch 3 In GeneralSet, the argument of id set must refer to declared constant,

which comprises a set (i.e., it cannot refer to a sequence, neither to
arithmetic and boolean expressions).

wfc ch 4 In GeneralSeq, the argument of id seq must refer to declared constant,
which comprises a sequence (i.e., it cannot refer to a set, neither to
arithmetic and boolean expressions).

wfc ch 5 In EventSet, all compound events must not involve input neither output
communication.

wfc ch 6 In EventSet, the arguments of normal set must not be incomplete com-
pound events.

wfc ch 7 In EventSeq, all compound events must not involve input neither output
communication.

wfc ch 8 In EventSeq, the arguments of normal seq must not be incomplete
compound events.

wfc ch 9 In Event, the channel name must refer to a declared channel.
wfc ch 10 In Event, the types of communications must be compatible with the

channel declaration.
wfc ch 11 In GeneralSet, the arguments of nat interval type set must be of type

nat.
wfc ch 12 In GeneralSeq, the arguments of nat interval type seq must be of type

nat.
Source: Current Author

when creating intervals, the arguments of the constructor must be numbers (wfc ch 11

and wfc ch 12 ).

Table 8 shows the WFCs associated with CSP processes. As for constants and channels,

the name of a process must be unique at the global scope (wfc proc 1 ). The name of the

parameters must also be unique at their declaration scope (wfc proc 2 ); in other words,

two different parameters of the same process cannot have the same name. In the body of

a process, when using the process reference operator, the name provided to the operator

must be of a declared process (wfc proc 3 ). Moreover, the number of arguments must be

equal to number of declared parameters (wfc proc 4 ).

The conditions wfc proc 5 to wfc proc 14 are about invalid recursions. Let us consider

an example to illustrate the undesired situations: P = (a -> b -> P) \ {a}, where a
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and b are events, and \ {a} denote the hiding operator (i.e., the event a is hidden

from outside this process). According to the SOS of CSP, which is detailed later, when

unfolding the reference to P, we accumulate the hiding operator; that is, we would have:

P = (a -> b -> ((a -> b -> P) \ {a})) \ {a}. This prevents the unfolding process

from reaching a fix point. Therefore, such situations are not allowed in CSP for a variety

of operators.

In FDR, this restrictions are checked only upon the dynamic process evaluation. Differ-

ently, in CSPCoq, we do this statically, anticipating the detection of undesired situations.

To do this, we statically traverse the process declarations, but also following processes

references. While doing this, we accumulate which recursions are deemed valid, and which

are not. When we find a process reference operator, we check whether the recursion is a

valid one. This algorithm is implemented by the function OnlyValidRecursion.

An interesting point worth mentioning is that all Coq functions must terminate. Fur-

thermore, in general terms, we would like the Coq infrastructure to be capable of detecting

termination automatically. To accomplish this, we limit the number of recursive calls of

OnlyValidRecursion to itself. This limit is equal to the number of declared processes.

As this analysis is performed by traversing the syntactic structure of a process, we do

not need to analyse any process more than once. Here, we omit further details of Only-

ValidRecursion.

The WFCs wfc proc 15 and wfc proc 16 enforce that the expressions in guards and if-

then-else commands must be of type boolean. The wfc proc 18 guarantees that the names

introduced by input communications of an event must be locally unique; for instance,

c?v?v, would not be accepted.

Regarding wfc proc 17, we are being more strict than CSP and FDR. In CSP, let ch

be a channel declared as channel ch : Bool.Bool, the following event is admissible: ch?v.

In this situation, the variable v will hold the composite value of type Bool.Bool. At this

moment, our typing system does not account for composite values and, thus, we impose

the restriction that the number and types of communications in events must be precisely

the same of the corresponding channel declaration. Nevertheless, the above example is

possible in CSPCoq with no loss of expressiveness by writing ch?v1?v2.
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Table 8 – Well-formedness conditions of CSPCoq (processes).

Identifier Description
wfc proc 1 In ProcessDeclaration, the name of a process must be unique at the

global scope.
wfc proc 2 In ProcessDeclaration, the name of the parameters must be unique at

their declaration scope.
wfc proc 3 In ProcessReference, the name must refer to a declared CSP process.
wfc proc 4 In ProcessReference, the number of arguments of the referred process

must be the same.
wfc proc 5 In ProcessAlphaParallel, we cannot have a recursion to the current

(previous) process(es).
wfc proc 6 In ProcessGenParallel, we cannot have a recursion to the current (pre-

vious) process(es).
wfc proc 7 In ProcessInterleave, we cannot have a recursion to the current (previ-

ous) process(es).
wfc proc 8 In ProcessSeqComp, the LHS process cannot have a recursion to the

current (previous) process(es).
wfc proc 9 In ProcessHiding, we cannot have a recursion to the current (previous)

process(es).
wfc proc 10 In ProcessInterrupt, the LHS cannot have a recursion to the current

(previous) process(es).
wfc proc 11 In ReplicatedAlphaParallel, we cannot have a recursion to the current

(previous) process(es).
wfc proc 12 In ReplicatedGenParallel, we cannot have a recursion to the current

(previous) process(es).
wfc proc 13 In ReplicatedInterleave, we cannot have a recursion to the current (pre-

vious) process(es).
wfc proc 14 In ReplicatedSeqComp, we cannot have a recursion to the current (pre-

vious) process(es).
wfc proc 15 In ProcessGuard, the condition must be of type boolean.
wfc proc 16 In ProcessIfElse, the condition must be of type boolean.
wfc proc 17 In ProcessPrefix, the number and types of communications must be the

same of the channel declaration.
wfc proc 18 In ProcessPrefix, the names introduced by the event must be locally

unique.
Source: Current Author

3.3.1 Formalisation of well-formedness conditions

Differently from tools like FDR and PAT, where WFCs are algorithmically verified

from informal specifications, in CSPCoq, all WFCs are formally stated as logical propo-
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Code 3.25 – Definition of Specification with well-formedness conditions.

Record Specification : Type := Build Spec
{

constants : list ConstantDeclaration;
channels : list ChannelDeclaration;
processes : list ProcessDeclaration;

well formedness conditions :
let ...
in

(* wfc exp 1, wfc exp 2 *)
∀ (id : CSPId), In id ids → ValidFormat id
∧ ... ∧
(* wfc exp 4, wfc exp 5, wfc exp 6 *)
∀ (pair : Exp × Context)), In pair exps context →

StaticType Exp (snd pair) (fst pair) ̸= invalid
∧ ... ∧
(* wfc ch 3 *)
∀ (id : CSPId), In id id sets →

∃ (c : ConstantDeclaration) (g : GeneralSet),
In c constants ∧ set declaration id g = c

...
}.

Source: Current Author

sitions, and their verification is carried out by showing that the predicates are logically

equivalent to True. Therefore, when we say that a given CSP specification meets all

formally defined WFCs, we actually have a proof that it does.

In this section, we illustrate the formalisation of WFCs by showing some of the associ-

ated predicates. In Code 3.25, we have the definition of the record Specification along with

the formalisation of the well-formedness conditions. As explained before, when creating

an instance of this record, besides providing data for the fields constants, channels, and

processes, one needs to prove that the predicate in well formedness conditions is logically

equivalent to True.

In well formedness conditions, we use a let-in clause to introduce local variables that

are shared among the various predicates. These definitions are omitted here due to space

restrictions. The first shown predicate relates to wfc exp 1 and wfc exp 2 : the validity

of CSP identifiers. The variable ids is a list with all CSPIds within the whole CSP spec-

ification. Then, we state that, for all id in ids, the format of id is valid. The auxiliary

function ValidFormat yields a predicate that is true if, and only if, the identifier is not



53

the empty string and its spelling adhere to the expected format.

The next shown predicate relates to the well-typedness of expressions (wfc exp 4,

wfc exp 5, and wfc exp 6 ). Since the type of expressions depends on the execution con-

text, we traverse the syntactic structure of the CSP specification, and store in exps context

a list of pairs: the expression and the associated execution context. Then, we state that,

for all pairs in exps context, the statically inferred type is not invalid.

The last shown predicate states that, for all applications of id set (the constructor

that creates GeneralSets by referring to a previously declared identifier), there should

exist a ConstantDeclaration in the CSP specification whose name is the one referred by

the id set application. Additionally, the predicate restricts this constant to the declaration

of a constant set (see the application of the constructor set declaration).

3.3.2 Automated verification

The verification of well-formedness conditions, that is, proving that the associated

predicates are true, is facilitated by a set of custom tactics developed by this work. They

are defined using Ltac: the Coq’s language for designing new tactics. In this section, we

briefly comment on some of them.

In different proof situations, we have in the proof context a hypothesis of the form

𝐻 : 𝑃1 ∨ ... ∨ 𝑃𝑛, where 𝑃𝑖 denotes predicates. In such a situation, it is necessary to

analyse the proof goal on a case basis analysis, assuming separately that each 𝑃𝑖 is true.

The tactic flat or destruct (see Code 3.26) was defined by us to aid on such a situation.

It destructs 𝐻 in a flat way; that is, generating 𝑛 proof goals, each one of them with the

respective 𝑃𝑖 in the proof context. This tactic illustrates that proof automation can be

defined using patterns, similarly to functions in Gallina. The tactic examines the proof

environment (in Code 3.26, referred as goal), and searches for a hypothesis of the form

∨ . Then, it repeatedly applies the destruct tactic to perform case analysis.

Code 3.26 – Automation tactic: flat or destruct.

Ltac flat or destruct :=
match goal with
| H : ∨ ⊢ ⇒ repeat (destruct H as [H | H ])
end.

Source: Current Author
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Code 3.27 illustrates another important feature of Ltac: proof automation with back-

tracking. For instance, when proving wfc ch 3 (see the previous section), one needs to find

a ConstantDeclaration that meets certain criteria. To deal with the existential quantifi-

cation, we apply the eexists tactic, which performs a symbolic existential instantiation;

that is, introducing a symbol (e.g., ?𝑥) that will be bound later. In such a situation, we

typically have a proof goal of the form ?𝑥 = 𝑒1 ∨ (𝑥 = 𝑒2 ∨ (𝑥 = 𝑒3 ∨ ...)).

The tactic find declaration (see Code 3.27) is used to faciliate the proof of such goals.

First, it applies the left tactic that modifies the proof goal leaving only the left side

of the disjunction (i.e., ?𝑥 = 𝑒1 in our example). Then, we apply reflexivity that

assumes that ?𝑥 is equal to 𝑒1 and substitutes this symbolic variable ?𝑥 by 𝑒1 in the

remaining proof goals. However, if for some reason proving the remaining goals fails, the

tactic find declaration backtracks; this is indicated by the symbol +. After backtracking, it

performs right, which leaves the proof goal as ?𝑥 = 𝑒2 ∨ (𝑥 = 𝑒3 ∨ ...). By a recursive call

to itself, the tactic now tries left and reflexivity again. In summary, we are iterating

over the equalities in the disjunction and try whether we can complete the proof assuming

that some 𝑒𝑖 is the accurate witness for the existential quantification.

Code 3.27 – Automation tactic: find declaration.

Ltac find declaration :=
(left ; reflexivity)
+
(right ; find declaration).

Source: Current Author

Tactics such as the ones just presented are then combined to create decision procedures

that try to prove all stated well-formedness conditions. The top-level tactic is prove wfcs,

which tries to prove all 39 WFCs. This is precisely the tactic that was shown in Code 3.17,

which concludes the creation of the CSPCoq specification for the dinning philosophers

example.

Considering this running example, the average time to prove all WFCs is of about 10

seconds1. Table 9 shows the time required to prove each WFC for a given run. As it can

be seen, about 80% of the proof time is spent while proving only three WFCs: wfc exp 3,

wfc ch 10, and wfc proc 17.
1 Metrics collected on an i7 @ 2.40GHz x 4, with 8 GB of RAM running Ubuntu 20.04.2 LTS.
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Table 9 – Well-formedness conditions of CSPCoq (expressions).

Well-formedness conditions Proof time
wfc exp 1, wfc exp 2 0.608 secs (0.586u,0.s) (success)
wfc exp 3 1.203 secs (1.202u,0.s) (success)
wfc exp 4, wfc exp 5, wfc exp 6 0.258 secs (0.257u,0.s) (success)
wfc exp 7 0.01 secs (0.01u,0.s) (success)
wfc exp 8 0.012 secs (0.012u,0.s) (success)
wfc ch 1 0.001 secs (0.001u,0.s) (success)
wfc ch 2, wfc const 1, wfc proc 1 0.408 secs (0.408u,0.s) (success)
wfc ch 3 0.022 secs (0.022u,0.s) (success)
wfc ch 4 0.015 secs (0.015u,0.s) (success)
wfc ch 5 0.018 secs (0.018u,0.s) (success)
wfc ch 6 0.004 secs (0.004u,0.s) (success)
wfc ch 7 0.004 secs (0.004u,0.s) (success)
wfc ch 8 0.003 secs (0.003u,0.s) (success)
wfc ch 9 0.142 secs (0.141u,0.s) (success)
wfc ch 10 4.696 secs (4.669u,0.019s) (success)
wfc ch 11, wfc ch 12 0.042 secs (0.038u,0.003s) (success)
wfc proc 2 0.003 secs (0.003u,0.s) (success)
wfc proc 3, wfc proc 4 0.029 secs (0.029u,0.s) (success)
wfc proc 5, wfc proc 6, wfc proc 7,
wfc proc 8, wfc proc 9 wfc proc 10,
wfc proc 11, wfc proc 12, wfc proc 13,
wfc proc 14

0.103 secs (0.102u,0.s) (success)

wfc proc 15, wfc proc 16 0.007 secs (0.007u,0.s) (success)
wfc proc 17 2.289 secs (2.278u,0.007s) (success)
wfc proc 18 0.05 secs (0.05u,0.s) (success)
total time: 9.995 secs (9.92u,0.039s) (success)

Source: Current Author

To prove these three WFCs, we need to do something similar to the find declaration

tactic. Optimising the search, which is currently linear, may reduce the time required.

Furthermore, the most time consuming proof (i.e., the one associated with wfc ch 10 )

involves traversing the syntactic structure and building pairs of contexts and events. We

believe that there are also opportunities for improving how these elements computed are

manipulated during the proof. Investigating these opportunities is left as future work.
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3.4 STRUCTURED OPERATIONAL SEMANTICS

Since this work significantly extended and modified the syntax and static semantics of

CSPCoq, up to this point, there was little reuse of the work of Freitas (2020). Regarding

the remaining sections of this chapter, namely the SOS, the definition of LTSs, and the

notion of traces refinement, the level of reuse increased.

Concerning the structured operational semantics, rules about operators that are not

affected by the context (e.g., internal and external choices) were just lifted to the current

development. However, many other rules needed to be further updated, since they affect

or are affected by the environment. Other rules were created from scratch, since they are

related to operators not previously considered. In what follows, we detail some of these

situations.

A structured operational semantics describes how individual steps of a computation

takes place. In our case, given an initial state, how the behaviour of a CSP process evolves

by the employed operators. The CSPCoq SOS is defined as relation (sosR) associating

States (previous and after states) by means of a GeneralEvent (denoting the computation).

A state is defined as the combination (pair) of a ProcessBody and its Context – see

Code 3.28. We define the notation P @ C to represent the pair (P,C), where P is a

ProcessBody and C is a Context.

The SOS is defined inductively by enumerating all rules that allow the creation of valid

associations between states and events. In Code 3.28 the rule for successful termination is

shown (success termination rule). If the state is characterised by the SKIP process and

an arbitrary context ctx, by the application of this rule we reach the state (STOP, ctx).

This is an example of a rule that was straightforwardly lifted from the work of Freitas

(2020): it suffices to incorporate the context to the rule, and state that SKIP does not

change it. Note that we use the notation S1 // ev ==> S2 to denote that, according to

the SOS, state S1 is related to state S2 by the event ev.
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Code 3.28 – The sosR relation.

Definition State : Type := ProcessBody × Context.
Notation "P ’@’ C" := (P,C ) (at level 110).

Reserved Notation "S1 ’//’ a ’==>’ S2" (at level 150, left associativity).
Inductive sosR : State → GeneralEvent → State → Prop :=
| success termination rule (ctx : Context) :

(SKIP @ ctx // special event tick ==> STOP @ ctx)

Source: Current Author

A more interesting rule is the reference rule one (see Code 3.29). Let P be a process

reference to the process whose name is name, and args be the passed arguments, the

source state of the rule is then represented as P @ ctx. The target state is Q @ ctx’, where

Q is the process body associated with the process of name name. The context ctx’ of the

target state is defined by updating ctx in light of the provided arguments. This update

introduces to the context local variables, whose names are those of the parameters of Q,

and whose values are those obtained from the dynamic evaluation of args. Additionally,

when updating the context, if the types of the parameters of Q were undefined up to this

point, they are updated accordingly based on the values of args. Note that we also require

args to be valid arguments (i.e., the obtained values are consistent with the types of the

parameters). The state (P,ctx) is associated with (Q,ctx’) by means of the special event

𝜏 , which represents the unfolding of the process reference.

Code 3.29 – The reference rule of the SOS.

| reference rule (ctx : Context) (name : CSPId) (args : list Exp) :
∀ (ctx’ : Context) (P Q : ProcessBody),

P = ProcessReference name args →
Some Q = ContextProcessBody ctx name →
ValidArguments ctx name args →
ctx’ = UpdateContextByArguments ctx name args →
(P @ ctx // special event tau ==> Q @ ctx’)

Source: Current Author

Code 3.30 shows the rule for the prefix operator. Here, the most interesting part

concerns the evaluation of an event; particularly, when it involves input communications.

First, the initial ctx needs to be updated; new variables are introduced to the context.

Second, depending on the type signature of the channel, we may read different values from

the input communication. Therefore, by the application of this rule, we may be able to

reach different target states from the same source one. In Code 3.30, this is accomplished
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via the universally quantified variable events. The function eval Event evaluates the event

given the source context, and yields all possible concrete events we may have. For instance,

let ch be defined as channel ch : {0,2,4}, when we evaluate ch?x, we obtain a set with

three events: {ev.0, ev.2, ev.4}. We require that all events in events are valid with respect

to the declaration of the associated channel. This verification is done with the aid of the

function Forall. It creates a predicate by the application the ValidEvent function to each

event in events. Finally, note in Code 3.30 that the source state is related to the target

one by any ev’ in events.

Code 3.30 – The prefix rule of the SOS.

| prefix rule (ctx : Context) (ev : Event) (P : ProcessBody) :
∀ (ctx’ : Context) (events : set Event) (ev’ : Event),

events = (eval Event ctx ev) →
Forall (fun e ⇒ ValidEvent ctx e) events →
In ev’ events →
ctx’ = UpdateContextByEvent ctx ev ev’ →
(ProcessPrefix ev P @ ctx // normal event ev’ ==> P @ ctx’)

Source: Current Author

Another interesting situation arises by the need to merge different contexts. See

Code 3.31. This rule concerns the generalised parallelism when the behaviour of both

processes evolve based on the occurrence of a synchronous event. Here, as before, we need

to evaluate the events in the synchronisation alphabet; events stores all obtained events.

Code 3.31 – The gener parall joint rule of the SOS.

| gener parall joint rule (ctx : Context) (P Q : ProcessBody) (A : Alphabet) :
∀ (ctx’ ctx’’ ctx’’’ : Context) (events : set Event) (P’ Q’ : ProcessBody) (ev : Event),

events = eval Alphabet ctx A →
Forall (fun e ⇒ ValidEvent ctx e) events →
In ev events →
(P @ ctx // normal event ev ==> P’ @ ctx’) →
(Q @ ctx // normal event ev ==> Q’ @ ctx’’) →
ctx’’’ = MergeContexts ctx’ ctx’’ →
(ProcessGenParallel P A Q @ ctx // normal event ev ==>
ProcessGenParallel P’ A Q’ @ ctx’’’)

Source: Current Author

To illustrate the need to merge contexts, consider the example shown in Code 3.32.

When the event ch.0.false occurs, the context of P evolves such that now there is a

local variable called v1 whose value is 0. However, regarding Q, we have two different local

variables: v2, and v3. Therefore, we need to merge both contexts. One process cannot
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access the variables of the other, since we have already statically checked that this does

not occur. Our semantics has a limitation that, at this moment, in Q, we would not allow

for the use of the name v1. We plan to lift this restriction in the future. In Code 3.31, the

function MergeContexts is responsible for merging the contexts reached by the evolution

of P and Q: ctx’ and ctx” , respectively.

Code 3.32 – Illustrating the need to merge execution contexts.

channel ch : {0,1}.{false,true}

P = ch?v1.false -> STOP
Q = ch?v2?v3 -> STOP
R = P [| {|ch|} |] Q

Source: Current Author

Regarding the relation sosR, we still need to take into account the replicated operators.

This was left as future work. We need to investigate which approach is better: to define

specific SOS rules or to process the syntactic structure of replicated operators to replace

it by an equivalent representation.

3.5 LABELLED TRANSITIONS SYSTEMS

The behaviour of a CSP process can be described by its labelled transition system,

which is built from the SOS. Here, it was quite straightforward to lift the definition of

Freitas (2020) to the current development of CSPCoq. The notion of LTSs is also defined

inductively (ltsR – see Code 3.33), as the SOS. It sufficed to adapt the types involved

to consider a different characterisation of states, which now have an associated context.

Therefore, we do not get into too many details here, but only give an overview.

A Transition can be seen as a triple (𝑠, 𝑒𝑣, 𝑠′) relating two states 𝑠 and 𝑠′ by means

of the event 𝑒𝑣. In Coq, this is represented using pairs: ((𝑠, 𝑒𝑣), 𝑠′). In Code 3.33, prod

is the Coq’s constructor of pairs. The relation ltsR is inductively defined, and follows a

breath-first search principle. Its members are triples of the form (𝑇, 𝑆, 𝑆 ′), where 𝑇 is a

set of transitions, 𝑆 denotes the states still to be covered, and 𝑆 ′ denotes the covered

states.
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Code 3.33 – The definition of LTS.

Definition Transition := prod (prod State GeneralEvent) State.
Definition LTS := set Transition.
Inductive ltsR : LTS → set State → set State → Prop :=
| lts empty rule (visited : set State) : ltsR nil nil visited
| lts inductive rule ...

Source: Current Author

Initially, 𝑆 contains only the initial state of the corresponding CSP process, and 𝑆 ′ is

empty. The LTS is built by the application of two rules (lts empty rule and lts inductive rule).

First, according to the SOS, we determinate the transitions emanating from the initial

state. Then, we update 𝑇 , 𝑆 and 𝑆 ′ accordingly: new transitions are added to 𝑇 , the initial

state is moved from 𝑆 to 𝑆 ′, and the new reached states are added to 𝑆. By following an

inductive principle, we proceed until 𝑆 becomes empty; that is, when there are no new

states to be covered.

To finish, we lift the relation ltsR to deal with CSPCoq specifications (see Code 3.34;

some details are omitted). We say that specification lts spec name lts is true if, and only

if, the following holds. There is a process declaration P in spec, whose name is equal to

name, and ltsR holds from the initial state, which is characterised by the process body of

P and the evaluation of the global context (evaluated ctx).

Code 3.34 – Lifting the relation ltsR to CSPCoq specifications.

Definition specification lts (spec : Specification)
(name : CSPId) (spec lts : LTS) : Prop :=
let ... in

∃ (P : ProcessDeclaration),
In P spec.(processes) ∧ NameProcess P = name
∧ ...
∧ ltsR spec lts [(BodyProcess P, evaluated ctx)] nil.

Source: Current Author

3.5.1 Graphviz integration

Graphical representation of LTSs is enabled using the DOT language and the visuali-

sation software Graphviz. We define in Coq printing functions that yield textual (string)

representations of the elements involved in the CSPCoq theory of labelled transition sys-

tems (i.e., from arithmetical and boolean expressions to transitions).



61

The top-level function is generate dot (see Code 3.35). It calls the auxiliary function

style initial state to style the initial state according to the DOT notation. We assume that

the initial state is the source state of the first transition and, thus, we perform pattern-

matching on this transition. The other states and transitions of the LTS are formatted

by iterating over the complete list of transitions 𝑙𝑡𝑠; this is done by the recursive function

generate dot aux.

Code 3.35 – Functions to generate DOT representation.

Definition style initial state (s0 : State) : string :=
"<" ++ (State2String s0 ) ++ "> [style=bold, color=red];".

Definition generate dot (lts : LTS) : string :=
match lts with
| [] ⇒ ""
| (s0 , , ) :: ⇒

"digraph LTS { " ++ (style initial state s0 ) ++ (generate dot aux lts) ++ " }"
end.

Source: Current Author

Code 3.36 shows a fragment of the DOT code generated for Figure 11. The first

< ... > denotes the initial state, which is styled in bold and red. Afterwards, we have

the definition of all transitions of the LTS. The source and target states are separated by

->, and the associated label is provided using the keyword label.

Code 3.36 – Fragment of generated DOT code.

digraph LTS {
< ... > [style=bold, color=red];
< ... > -> < ...> [label=<tau>];
< ... > -> < ... > [label=<thinks.0>];

} }

Source: Current Author

In the next chapter, when addressing our tool support for CSPCoq, we show the graph-

ical representation of the first states of the LTS for the dining philosophers example.

3.6 TRACES REFINEMENT

Similarly to LTSs, refinement in the traces model is another concept that was easily

lifted from the work of Freitas (2020). A trace is a list of events (see Code 3.37) that
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can be performed from a given state. In a trace, we can have normal events, but also

the special event ✓. It should be noted that, although Coq can handle infinite lists, we

currently consider traces to have a finite number of events. Nevertheless, the semantics of

a process can be describe by an infinite set of traces.

The relation traceR defines which traces are valid for a given source state. This relation

is built from three rules. The first one (empty trace rule), states that the empty trace is a

valid trace for any state. The second rule (event trace rule) accounts for the evolution of

the process behaviour by the occurrence of visible events (normal ones and ✓). Provided

that e is not 𝜏 , to show that traceR s1 (e :: tl) holds, one needs to prove that, according

to the SOS, the state s2 is reached from s1 by performing e, and that traceR s2 tl holds.

The third rule (tau trace rule) allows for the evolution of the process behaviour by the

occurrence of internal events (i.e., 𝜏).

Code 3.37 – Definition of trace and traceR.

Definition Trace := list GeneralEvent.
Inductive traceR : State → Trace → Prop :=
| empty trace rule (s : State) :

traceR s nil
| event trace rule (s1 s2 : State) (e : GeneralEvent) (tl : Trace) :

¬ eq e (special event tau) →
(s1 // e ==> s2 ) →
traceR s2 tl →
traceR s1 (e :: tl)

| tau trace rule (s1 s2 : State) (t : Trace) :
(s1 // (special event tau) ==> s2 ) →
traceR s2 t →
traceR s1 t.

Source: Current Author

The definition traceRefinement (see Code 3.38) states that a set of traces T1 is refined

by another set of traces T2 if, and only if, T2 ⊆ T1 ; incl is the Coq function for checking

that T2 is a subset of T1. Let name1 and name2 be the names of two CSP processes,

when lifting the notion of traces refinement to CSPCoq specifications, we say that the

process with name name1 (𝑃name1) is refined by the process with name name2 (𝑃name2),

denoted by 𝑃name1 ⊑𝑡 𝑃name2, if, and only if, traces1 is the traces of 𝑃name1, traces2 is the

traces of 𝑃name2, and traceRefinement traces1 traces2 holds. Here, we omit the definition

of specification trace that lifts the notion of traces to CSPCoq specifications.
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Code 3.38 – Lifting the notion of traces refinement to CSPCoq specifications.

Definition traceRefinement (T1 T2 : list Trace) : Prop := incl T2 T1 .

Definition specification traceRefinement
(spec : Specification) (name1 name2 : CSPId) : Prop :=

∀ (traces1 traces2 : set Trace),
(∀ (t : Trace), In t traces1 ↔ specification trace spec name1 t)
∧ (∀ (t : Trace), In t traces2 ↔ specification trace spec name2 t)
∧ traceRefinement traces1 traces2 .

Source: Current Author

3.7 DEADLOCK FAILURES FREEDOM

To conclude this chapter, let us address the deadlock (freedom) concept by focusing

on deadlock analysis according to the failures model. The failures model is a structured

approach to understanding and detecting deadlocks by looking at the sequences of events

the process can perform and the sets of events they can refuse after a given trace. While

the failures model is powerful, it does not account for infinite internal activities, known as

divergences, which can also lead to unresponsive states in processes. Taking into account

divergences requires considering the failures-divergence model, which will be explored in

future work. With this in mind, see Code 3.39. A state s is in deadlock (deadlock state)

if, and only if, there are no emanating transitions from it; that is, according to the SOS,

we cannot find a state s’ that can be reached from s by performing an event e.

The definition deadlock lts lifts this notion to LTSs. If the LTS is empty (i.e., there are

no transitions emanating from the initial state), we have a deadlock. Another possibility

arises if there is a transition t in the LTS that reaches a state in deadlock.

Code 3.39 – Lifting the notion of deadlock to CSPCoq specifications.

Definition deadlock state (s : State) : Prop :=
¬(∃ (s’ : State) (e : GeneralEvent), s // e ==> s’).

Definition deadlock lts (lts : LTS) : Prop :=
(length lts = 0) ∨
(∃ (t : Transition), In t lts ∧ deadlock state (snd t)).

Definition specification deadlock
(spec : Specification) (name : CSPId) : Prop :=

∀ (lts : LTS), specification lts spec name lts → deadlock lts lts.
Source: Current Author

Finally, the definition specification deadlock lifts the notion of deadlock to CSPCoq
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specifications. Let name be the name of a CSP process in spec, we say that there a

deadlock in name if, and only if, the LTS of name has a deadlock according to the

previous definition deadlock lts. To prove deadlock freedom of a given CSP process, it

suffices to prove the negation of specification deadlock.

The running example of the dining philosophers is not deadlock free since the philoso-

phers can reach a state where they are all holding a fork and waiting for the other fork

to be released. However, the proof of this result in our Coq characterisation, along with

an analysis of the required effort, is left as future work.
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4 TOOL SUPPORT FOR CSPCoq

In this chapter, we present the tools we have developed to foster the use and adop-

tion of CSPCoq. First, in Section 4.1, we discuss how we have used ANTLR4 to create

an automatic translator from CSPM to CSPCoq. Afterwards, in Section 4.2, we show how

this translator is integrated into VSCode as an extension. Finally, in Section 4.3, we de-

scribe how Graphviz can be used to render graphical representations of labelled transition

systems.

4.1 TRANSLATION FROM CSPM TO CSPCoq

Our integration with the ANTLR4 tools is via a Java project. With the ANTLR

support, provided a lexical and syntactic grammar for CSP, it automatically generates

the Java code for a lexer and a parser. Within the lexer, we establish the guidelines that

define how the input strings are broken down into meaningful tokens. These tokens include

keywords, identifiers, literals, and CSP operators. In Figure 5, we show a fragment of our

lexical grammar. We use regular expressions to define the format of valid CSPIDs and

natural literals. In the lexical grammar, we also define how block and line comments are

delimited: {- ... -} and -- ..., respectively.

Figure 5 – Fragment of the supported Lexical grammar of CSP.

CSPID: [a-zA-Z][a-zA-Z0-9_]*;
NATLITERAL: [0-9]+;
...
LBRACE : '{';
RBRACE : '}';
LFATBRACE : '{|';
RFATBRACE : '|}';
...
BLOCKCOMMENT: '{-' .*? '-}' -> skip;
LINECOMMENT: '--' ~[\r\n]* -> skip;

Source: Current Author

Once the input is broken down into tokens, the parser will determine how these tokens

will come together to form the syntax of the language. The syntactic grammar is respon-

sible for describing how tokens are combined to construct valid syntactic elements of the
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language. In Figure 6, we present a fragment of our syntactic grammar. A spec (in our

case, a CSP specification) can be either empty or contain any of the following declara-

tions, followed by the end of file marker: constant_declaration, channel_declaration,

and process_declaration.

Figure 6 – Fragment of the supported syntactic grammar of CSP.

spec : (constant_declaration | channel_declaration | process_declaration)* EOF ;
...
channel_declaration :

CHANNEL (CSPID (COMMA CSPID)*)
| CHANNEL (CSPID (COMMA CSPID)*) COLON (general_set (DOT general_set)*)
;
...
process_declaration :

CSPID DEFSYMBOL process_body
| CSPID LPAR RPAR DEFSYMBOL process_body
| CSPID LPAR (CSPID (COMMA CSPID)*) RPAR DEFSYMBOL process_body
;
...
process_body :

PSKIP
| PSTOP
| CSPID (LPAR (exp (COMMA exp)*)? RPAR)?
| event PREFIX process_body
| process_body EXTCHOICE process_body
| process_body INTCHOICE process_body
| process_body LBRACKET alphabet PARALLELISM alphabet RBRACKET process_body
| process_body LFATBRACKET alphabet RFATBRACKET process_body
| process_body INTERLEAVE process_body
| process_body SEQUENTIAL process_body
| process_body HIDING alphabet
| exp GUARD process_body
| IF exp THEN process_body ELSE process_body
| process_body INTERRUPT process_body
| replicated_operator process_body
;

Source: Current Author

It is possible to declare single events (channels with no communications), but also

channels involving communications. In the latter, the term general_set represents the

type of the 𝑖-th channel communication. Although not presented in Figure 6, the definition

of general_set is aligned with the Coq formalisation discussed in Chapter 3. Actually,

this applies to all elements of these grammars.
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A process_declaration associates a CSPID with a process_body. The process may

also have parameters. The definition of process_body mimics the definition of ProcessBody

(see Code 3.13).

To integrate with ANTLR4 tools, a number of configurations are required in our Java

project. We need to specify the project’s main class, such that it is known as the entry

point for the execution of the application; in our case, it is the class Translate.java. Ad-

ditionally, we include ANTLR 4.13.1 as a dependency for generating the lexer, the parser,

and the default visitor codes. Finally, aiming at facilitated distribution and deployment,

we configure the creation of a JAR file (cspcoq) that bundles all required components,

including the Coq files for our CSPCoq theory.

The translation from CSPM to CSPCoq is implemented as methods of the visitor class

CSPEvalVisitor.java: while traversing the syntax tree obtained from parsing the source

file, we generate the corresponding Coq code that represents the CSP specification in

CSPCoq. The translator was extensively tested with JUnit51. We used EclEmma2 to anal-

yse the coverage of our test campaign. As shown in Figure 7, we achieved a 100% statement

coverage on our custom visitors, which means that our manually written CSP examples

successfully tested (covered) all code paths implemented within the different types of

visitors for translating CSP specifications.

4.2 AN EXTENSION FOR VSCODE

Visual Studio Code, commonly called VSCode, is a popular open-source code editor

that Microsoft maintains. According to the latest Stack Overflow survey (OVERFLOW,

2023), it was the preferred Integrated Development Environment (IDE) among profes-

sional developers and those learning to code. Due to its rich extensibility model, VSCode

supports many languages and tools with extensions.

Given this community-driven approach and an updated documentation of VSCode, we

have decided to develop a VSCode extension (called CSPcoq) to facilitate the use of our

translator from CSPM to CSPCoq. First, we started the extension project following the

standard guidelines using their Yeoman generator. A few project configurations, such as

extension type and package manager, can be established upfront through the generator.
1 Link: <https://junit.org/junit5/>
2 Link: <https://www.eclemma.org/>

https://junit.org/junit5/
https://www.eclemma.org/
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Figure 7 – Coverage metrics of our test campaign.

Source: Current Author

In our case, we selected the Extension TypeScript type, since this is one of the types that

facilitates manual installation and installation via the marketplace. The generator offers

alternative types of extensions like Colour Theme and Code Snippets as well.

Our extension follows the default file structure of an extension. The main files we have

changed are the following ones: (i) the package.json file, which is called the extension

manifest and contains all the information and configuration of the extension; and (ii) the

extension.ts file, which has the extension source code. The anatomy of our extension

can be seen in Figure 8.

An extension can immediately work when activated, but there are ways to configure

commands the user can trigger under certain conditions. Such commands are possible

through the VSCode API, which contains a set of JavaScript APIs for developers. Every

command has a unique identifier, and they can be manually accessed from the UI inside

the command palette or have a key binding configured to trigger the command directly.
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Figure 8 – Files structure of our extension to VSCode.

cspcoq-extension/

.vscode/

lib/

cspcoq-1.0.0.jar

src/

extension.ts

.gitignore

README.md

cspcoq-1.0.0.vsix

package.json

tsconfig.json

Following the first possibility, inside the package.json file, a command with the name

cspcoq.translate is created, which is referenced in the extension.ts file. Through a

registerCommand function, we integrate the command with the translator we developed.

When the translator is called, two conditions must be met: a file has to be open, and its ex-

tension must be .csp. After fulfilling these conditions, there is a call to the runJavaProcess

function. Here, we access the lib folder to find the .jar file generated from the ANTLR

Java-based project, which handles the translation. We also extract from the .jar and

copy to the current folder the Coq files that formalise the CSPCoq theory.

Along with our extension, we recommend using the official VSCode extension for Coq,

which is called VsCoq3. It allows for Coq syntax highlight and enable proof checking within

the VSCode environment. Since our project uses Coq versions under 8.17, we recommend

using the VsCoq Legacy extension that is compatible with versions greater than or equal

to 8.7 until 8.17. For CSPM syntax highlighting, we suggest the use of the extension

called CSP Language Support4. The combination of these three VSCode extensions (CSP

Language Support, VsCoq, and ours – CSPcoq) provides an integrated environment for

writing CSP specifications and analysing their behaviour with the support of the Coq

proof assistant.

To publish our extension to the VSCode marketplace, it is necessary to create an or-
3 Link: <https://marketplace.visualstudio.com/items?itemName=coq-community.vscoq1>
4 Link: <https://marketplace.visualstudio.com/items?itemName=LongPham.cspsupport>

https://marketplace.visualstudio.com/items?itemName=coq-community.vscoq1
https://marketplace.visualstudio.com/items?itemName=LongPham.cspsupport
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ganisation inside Azure DevOps, besides a few other configuration steps. At this moment,

for simplification, we opted for manual installation via a .vsix file. The manual installa-

tion process works as follows: (i) one should click on the extensions icon, (ii) click on the

kebab button and choose “Install from VSIX...”, and (iii) select the desired .vsix file; in

our case, cspcoq-1.0.0.vsix.

After installing and activating the extension, it is necessary to reload the VSCode

window. By openning a .csp file with CSPM code, our translator becomes available via

a custom command, as explained before. Figure 9 shows the CSPM specification for the

dining philosophers example in VSCode. Note on the left panel that there are no other

files in the current folder.

Figure 9 – The dinning philosophers example in VSCode.

Source: Current Author

To translate the file phils.csp to the corresponding CSPCoq representation, one should

start the command palette, search for the “CSPcoq: Translate” command and press enter.

The translation process starts, and a toast appears on the screen. If the translation is

successful (i.e., the CSPM code does not contain syntactic errors), on the left panel, the

user will see a new file called philsGen.v, in this case, along with the files of the CSPCoq

theory. Now, the user can open the philsGen.v, and use the VsCoq extension to analyse

desired properties of her CSP specification. In Figure 10, we can see the generated and

copied .v files on the left panel. On the main panel, we have the file philsGen.v open. If
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the CSPM code is updated, the user can repeat the translation process and the philsGen.v

file will be overwritten accordingly.

Figure 10 – Files produced for the dinning philosophers example.

Source: Current Author

4.3 GRAPHVIZ INTEGRATION

At this moment, the integration with Graphviz is via command line. First, one needs

to invoke the function generate dot (see Section 3.5.1). This needs to be done using some

IDE for Coq. For instance, one could open the file philsGen.v in VSCode (with the VsCoq

extension), and use the Coq keyword Compute to call the aforementioned function.

Provided an LTS (i.e., a set of Transitions), the function yields a textual (string)

representation of the given labelled transition system in the DOT language. This string is

sent to the default output stream of the IDE being used. Then, it is necessary to copy the

contents of the string and save into a file. Finally, via command line, we can use Graphviz

to generated a graphical representation as a jpeg file, for instance.

To illustrate, let us consider the part of the LTS obtained from a process reference

to PHIL(0) – see Code 2.1. By executing the following command, Figure 11 is generated.

Assume that the output of generate dot has been save in the file PhilsTest.gv.

dot -Nlabel="" -Nshape=circle -Tjpeg PhilsTest.gv -o PhilsTest1.jpeg
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Figure 11 – Graphical representation of LTSs.

Source: Current Author

According to the SOS, from the associated initial state, we have a 𝜏 transition repre-

senting the unfolding of the process reference. Then, the first event to occur is thinks.0.

This is precisely what is seen in Figure 11.

A distinguishing feature of our integration with Graphviz is that it is also possi-

ble to render the LTS showing the inner structure of nodes. This facilitates inspecting

and debugging a CSP specification. A node is characterised by a State, which associates

a ProcessBody with a Context. By executing the following command, on the same file

(PhilsTest.gv), we generate the image with the internal representation of nodes (see

Figure 12).

dot -Nshape=circle -Tjpeg PhilsTest.gv -o PhilsTest2.jpeg

The difference between the two commands is that, in the latter, we removed the

argument -Nlabel="", which hides the contents of nodes. In Figure 12, we highlight the

state reached after performing the 𝜏 . Before the @, we see the process body of PHIL(0).

After the @, we see the associated context. Note that we have in the context a local

variable (i.e., level = 1) i, whose value is equal to 0. This is the variable introduced by

the process reference.
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Figure 12 – Graphical representation of LTSs showing the state information.

Source: Current Author
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5 CONCLUSION

This work contributes to the development of an updated theory for Communicating

Sequential Processes within the Coq proof assistant. A broader range of CSP specifications

can now be formalised in Coq thanks to the addition of composite channels, parametrised

processes, and a richer set of CSP operators. These additions brought new challenges that

motivated the definition of static and dynamic typing systems. A set of 39 well-formedness

conditions are verified by proof when creating a CSP specification in Coq. The associated

proof goals are automatically discharged by custom automation tactics created by us.

Our Coq formalisation allows for reasoning about the structured operational semantics,

labelled transition systems, traces refinement, and deadlock freedom of CSP specifications.

In addition to the enhancements made to the language CSPCoq, this project has de-

veloped tools that intend to streamline the use and adoption of CSPCoq. Specifications

written in CSPM are seamlessly translated into their corresponding Coq characterisation,

and this is made available for users via an extension to VSCode, a popular IDE. We

also integrate our implementation with Graphviz to enable the graphical visualisation of

labelled transitions systems obtained from CSP specifications. In the following sections,

we address related (Section 5.1) and future (Section 5.2) work.

5.1 RELATED WORK

First, let us compare our contribution with the preliminary work of Freitas (2020).

There was almost no reuse of the previous theory with respect to the syntactic definitions,

as detailed in Section 2.3. Our account of WFCs is also distinct from this previous work.

Concerning the SOS, there was some reuse, lifting rules that are not greatly affected by the

new typing system. Differently, regarding the definition of LTSs, and traces refinement, we

basically lifted the previous definitions to the current development of CSPCoq. Deadlock-

freedom analysis is also an exclusive contribution of our work.

In the following sections, we provide more details about other tools that also enable

formal verification of CSP specifications via proof assistants; namely, CSP-Prover (ISOBE;

ROGGENBACH, 2005), HOL-CSPM (BALLENGHIEN; TAHA; WOLFF, 2023), and Isabelle/UTP

(FOSTER et al., 2019). Then, we summarise our comparison, also taking into account tools
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that rely on model checkers; namely, FDR (GIBSON-ROBINSON et al., 2014), PAT (SUN et

al., 2009), and ProB (LEUSCHEL; BUTLER, 2008). Our comparison focuses on the following

criteria.

• Strategy: if it is based on model checking or proof development.

• Verification of WFCs: how WFCs are verified – algorithmically vs. by proof.

• SOS: whether it takes into account an SOS.

• Denotational: whether it takes into account a denotational semantics.

• LTS: whether it supports graphical visualisation of LTSs.

• Traces refinement: whether it supports traces-refinement analysis.

• Deadlock freedom: whether it supports deadlock-freedom analysis.

CSP-Prover, HOL-CSPM, and Isabelle/UTP are all based on Isabelle (NIPKOW; PAUL-

SON; WENZEL, 2002), which is designed to assist in the formal proof of logical theorems.

The Archive of Formal Proofs (AFP), a repository of proofs, theories, examples, and sci-

entific development in Isabelle, serves as a repository of verified proofs that can be used

and referenced in new verification projects. Contributions to the AFP are peer-reviewed,

ensuring that proof meets high standards of correctness, readability, and relevance. At

this moment, CSP-Prover is the only one that is not available at AFP, however, its use

has been demonstrated to be promising by the community, and reported on different

publications.

5.1.1 CSP-Prover

CSP-Prover is an interactive theorem prover designed specifically for refinement proofs

within the CSP process algebra. The CSP syntax is deeply encoded. A denotational se-

mantics approach was chosen due to the focus on the CSP Failures model. The implemen-

tation of the theory considers traces and stable-failures semantics. The authors argue that

the encoding of these semantics is well-formed, since Isabelle only allows for consistent

theories.
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5.1.2 HOL-CSPM

The HOL-CSPM (BALLENGHIEN; TAHA; WOLFF, 2023) framework offers support for

the specification, analysis, and verification of concurrent systems using CSP within a

framework that is backed by Higher-Order Logic (HOL). Isabelle/HOL is a specific in-

stantiation of Isabelle used for Higher-Order Logic, and it provides support for a broad

range of logical constructs, including HOL-CSP and HOL-CSPM.

HOL-CSP version 2.0 (TAHA; YE; WOLFF, 2019) is part of the Isabelle ecosystem and

provides a foundational framework and tools for modelling and reasoning about CSP.

HOL-CSPM enables the specification of concurrent systems in CSPM and leverages the

formal verification environment provided by HOL-CSP. HOL-CSPM is based on a deno-

tational semantics. If one needs to reason about an operational semantics, an alternative

is to use HOL-CSP-OpSem (BALLENGHIEN; WOLFF, 2023), which is built on top of HOL-

CSPM.

5.1.3 Isabelle/UTP

The Unifying Theories of Programming (UTP) is a fundamental approach to bridge

the different programming paradigms and specification languages (HOARE; JIFENG, 1998).

Isabelle/UTP implements UTP within Isabelle/HOL, which serves as a comprehensive

framework for studying and formalising various languages and semantics, including those

of CSP. Isabelle/UTP enables the seamless combination of theories to model complex

systems. Its integration with Isabelle’s type system and proof tactics enhances the ability

to perform rigorous verification. In the latest versions of Isabelle/UTP, the CSP theory is

available through the Circus (WOODCOCK; CAVALCANTI, 2002) family of notations and

not as a separate theory.

5.1.4 Summary of comparison

In Table 10, we summarise the comparison of CSPCoq with its related work. The

investigated tools support different variations of CSP. While ProB and FDR targets CSPM,

PAT is tailored for CSP#. The other tools combine CSP with Isabelle’s language or Coq’s

one (i.e., Gallina).
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Table 10 – Comparison with related work.

Work Known as Language Tool Strategy WFCs verif. SOS Denot. LTS Traces Deadlock
(GIBSON-
ROBINSON et
al., 2014)

– CSPM FDR model check. algorithmically yes yes yes yes yes

(SUN et al.,
2009) – CSP# PAT model check. algorithmically yes yes yes yes yes

(LEUSCHEL;
BUTLER, 2008) – CSPM ProB model check.

constraint sol. algorithmically yes no yes yes yes

(ISOBE;
ROGGEN-
BACH, 2005)

CSP-Prover CSP+
Isabelle Isabelle proof dev. by proof no yes no yes yes

(BALLENGHIEN;
TAHA; WOLFF,
2023)

HOL-CSPM CSP+
Isabelle Isabelle proof dev. by proof yes yes no yes yes

(FOSTER et al.,
2019) Isabelle/UTP Circus+

Isabelle Isabelle proof dev. by proof no yes no yes yes

Our
contribution – CSPCoq+

Gallina Coq proof dev. by proof yes no yes yes yes
Source: Current Author
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On the one hand, some approaches allow for automatic verification of CSP specifica-

tions (FDR, PAT, and ProB), in general, using model checking techniques, which suffer

from scalability issues. ProB differentiates itself for allowing automated verification by

using constrains solvers, which render sound but potentially incomplete results. On the

other hand, our solution, CSP-Prover, HOL-CSPM, Isabelle/UTP and CSPCoq verifies

CSP specifications by means of proof development, which, in general terms, is a semiau-

tomatic procedure, highly dependent on the user’s experience, but that can scale better

than model checking approaches.

Tools like FDR, PAT, and ProB verifies well-formedness conditions of CSP specifica-

tions in an algorithmic way: procedures are implemented to verify (statically and dynam-

ically) whether the associated WFCs hold. Differently, the other alternatives presented in

Table 10 perform such a verification by creating proofs scripts.

Reasoning about traces and deadlock-freedom is supported by all investigated works.

The same cannot be said about the formalisation of SOS, and graphical visualisation of

LTSs. Although this is supported by all tools based on model checking, regarding those

using proof assistants, apart from CSPCoq, only an extension of HOL-CSPM encodes

the operational semantics of CSP. However, this extension does not provide graphical

visualisation of LTSs. Regarding the CSP denotational semantics, this is addressed by

most works, apart from ProB and our CSP characterisation in Coq.

Different tools have their strengths and weaknesses when it comes to the verification

of CSP specifications. Isabelle’s ecosystem has several theories that can be used to model

and verify CSP specifications. By proposing an alternative based on Coq, we allow for the

integration of this theory into other projects that are based on Coq, besides benefiting

from Coq’s type theory and proof mechanisms.

5.2 FUTURE WORK

Despite the various contributions of this work, we envisage many interesting opportu-

nities worth pursuing in the future. In what follows, we comment on the main ones.

• Further validate CSPCoq. In this work, we validated our theory for Communi-

cating Sequential Processes taking into account on a small number of examples.

Therefore, considering more examples is an important next step.
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• Enrich the syntax of CSPCoq. Although we support a rich set of CSP operators,

we are aware of some specifications that are still not allowed; for instance, we do

not account for the renaming operator.

• Optimise the static verification of WFCs. As discussed in Chapter 3, the

static verification of some WFCs is time consuming, compared to others. We should

investigate ways of reducing the time required by these verification steps.

• Extend the integration with Gallina. At this moment, when creating natural

and boolean expressions, one can invoke arbitrary functions of Gallina that yield

natural and boolean values; this is a consequence of our shallow embedding. In the

future, we could extend this integration by enriching our representation of expres-

sions. For instance, we could provide support for lists and sets. This would have an

impact on the semantics (i.e., the defined typing system).

• Address other semantic models. CSP different semantic models. At this mo-

ment, we focused on an operation semantics, and on the traces model. In the future,

other semantic models should be considered too.
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