
Flávio Arthur Oliveira Santos

Advancing Deep Learning Models for Robustness and Interpretability in Image
Recognition

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2023



Flávio Arthur Oliveira Santos

Advancing Deep Learning Models for Robustness and Interpretability in Image
Recognition

Tese de Doutorado apresentada ao Programa
de Pós-graduação em Ciência da Computação
do Centro de Informática da Universidade Fed-
eral de Pernambuco, como requisito parcial para
obtenção do título de Doutor em Ciência da Com-
putação.

Área de Concentração: Inteligência computa-
cional
Orientador: Dr. Cleber Zanchettin
Coorientador: Dr. Paulo Jorge Freitas de
Oliveira Novais

Recife
2023



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                  
                                        Catalogação na fonte 

Bibliotecário Josias Machado da Silva Junior, CRB4-1690                
  

   
 
S237a Santos, Flávio Arthur Oliveira 

Advancing deep learning models for robustness and interpretability in image 
recognition / Flávio Arthur Oliveira Santos – 2024. 

  113 f.: il., fig., tab.  
 
  Orientador: Cleber Zanchettin 
  Coorientador: Paulo Jorge Freitas de Oliveira Novais 
  Tese (Doutorado) – Universidade Federal de Pernambuco. CIn, Ciência da 

Computação, Recife, 2024. 
                       Inclui referências e apêndice. 
 

  1. Deep learning. 2. Robustez. 3. Ataques adversários. 4. Interpretabilidade. 
I. Zanchettin, Cleber (orientador). II. Novais, Paulo Jorge Freitas de Oliveira 
(coorientador). III. Título. 
 
      006.31                   CDD (23. ed.)                            UFPE - CCEN 2024 – 39 
 
                             
       

 

 



Flávio Arthur Oliveira Santos

“Advancing Deep Learning Models for Robustness and Interpretability in 
Image Recognition”

Tese de Doutorado apresentada ao Programa 
de Pós-Graduação em Ciência da 
Computação da Universidade Federal de 
Pernambuco, como requisito parcial para a 
obtenção do título de Doutor em Ciência da 
Computação. Área de Concentração: 
Inteligência Computacional

Aprovada em: 06/12/2023.

___________________________________________________
 Orientador: Prof. Dr. Cleber Zanchettin

BANCA EXAMINADORA

____________________________________________
Prof. Dr. Tsang Ing Ren

Centro de Informática/ UFPE

____________________________________________
Prof. Dr. Ricardo Matsumura Araújo

Centro de Desenvolvimento  Tecnológico / UFPel

____________________________________________
Prof. Dr. Leonardo Nogueira Matos
Departamento de Computação / UFS

_______________________________________________
Profa. Dra. Dalila Duraes

Departamento de Informática / Universidade do Minho

_______________________________________________
Prof. Dr. Byron Leite Dantas Bezerra

Escola Politécnica de Pernambuco / UPE



ACKNOWLEDGEMENTS

Firstly, I express my deep gratitude to my advisor, Professor Cleber Zanchettin, for all
the patience, corrections on papers and documents (many sent at the last minute), and
enriching discussions throughout this thesis. His dedication, combined with the freedom
of research, was crucial for the development of this work.

I also thank my co-advisor, Professor Paulo Novais, and my friends from the ISLab
at the University of Minho. You were essential during my time in Portugal, providing an
important and enriching experience.

My thanks extend to my colleagues, Professor Luís A. Nunes Amaral and Dr. Wei-
hua Lei, from Northwestern University. Your approach to Deep Learning and enriching
discussion (primarily with Dr. Weihua Lei) was crucial for my growth as a researcher.

To the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), I am
grateful for the scholarship, a key support for the development of this work.

I express my gratitude to all collaborators of the Centro de Informática at UFPE. Hav-
ing access to this infrastructure, operational 24 hours a day, and having an administrative
sector that simplifies bureaucracy is crucial for the development of research.

Finally, but not least, I want to thank a group of people who were crucial throughout
this process: my family. To my parents, Jorgeval de Andrade Santos and Rosilda Santos
Oliveira, and my sister, Danielly Oliveira Santos, I thank you for always offering me
support, encouragement, and freedom in my decisions. This was crucial for everything. I
also express my gratitude to my brother, Kleber Tarcisio Oliveira Santos, for introducing
me to Computer Science; undoubtedly, without this step, I would not be here. Finally, I
thank my wife, Maynara Donato de Souza, for our discussions about Mathematics and
Deep learning, her patience during the hard times, her support, and her constant presence,
even when the Atlantic Ocean separated us.



ABSTRACT

Deep Learning architectures are among the most promising machine learning models
today. They are used in various domains, including drug discovery, speech recognition, ob-
ject recognition, question and answer, machine translation, and image description. Surpris-
ingly, some studies even report superhuman performance, that is, a level of performance
superior to human experts in certain tasks. Although these models exhibit high precision
and coverage, the literature shows that they also have several limitations: (1) they are
vulnerable to adversarial attacks, (2) they have difficulty inferring data outside the train-
ing distribution, (3) they provide correct inferences based on spurious information, and
(4) their inferences are difficult for a domain expert to interpret. These limitations make
it challenging to adopt these models in high-risk applications, such as autonomous cars
or medical diagnostics. Overcoming these limitations requires robustness, reliability, and
interpretability. This thesis conducts a comprehensive exploration of techniques and tools
to improve the robustness and interpretability of Deep Learning models in the domain of
image processing. These contributions cover four key areas: (1) the development of the
Active Image Data Augmentation (ADA) method to improve model robustness, (2) the
proposition of the Adversarial Right for Right Reasons (ARRR) loss function to ensure
that models are "right for the right reasons" and adversarially robust, (3) the introduction
of the Right for Right Reasons Data Augmentation (RRDA) method, which improves the
context of the information to be represented among the training data to stimulate the
model’s focus on signal characteristics, and (4) the presentation of a new method for
interpreting the behavior of models during the inference process. We also present a tool
for manipulating visual features and assessing the robustness of models trained under
different usage situations. The analyses demonstrate that the ADA method improves the
robustness of models without compromising traditional performance metrics. The ARRR
method demonstrates robustness against the color bias of images in problems based on
the structural information of the images. In addition, the RRDA method significantly im-
proves the model’s robustness in relation to background shifts in the image, outperforming
the performance of other traditional RRR methods. Finally, the proposed model analy-
sis tool reveals the counterintuitive interdependence of features and assesses weaknesses
in the models’ inference decisions. These contributions represent significant advances in
Deep Learning applied to image processing, providing valuable insights and innovative
solutions to challenges associated with the reliability and interpretation of these complex
models.

Key-words: deep Learning; robustness; adversarial attacks; interpretability.



RESUMO

As arquiteturas de Deep Learning estão entre os modelos de aprendizado de máquina
mais promissores na atualidade. Elas são utilizadas em diversos domínios, incluindo de-
scoberta de medicamentos, reconhecimento de fala, reconhecimento de objetos, perguntas
e respostas, tradução de automática e descrição de imagens. Surpreendentemente, alguns
estudos relatam até mesmo desempenho super-humano, ou seja, um nível de desempenho
superior ao de especialistas humanos em determinadas tarefas. Embora esses modelos
exibam alta precisão e cobertura, a literatura mostra que também possuem várias limi-
tações: (1) são vulneráveis a ataques adversários, (2) possuem dificuldade em inferir dados
fora da distribuição de treinamento, (3) fornecem inferências corretas com base em in-
formações espúrias e, além disso, (4) suas inferências são de difícil interpretação por um
especialista do domínio. Essas limitações tornam desafiador adotar esses modelos em apli-
cações de alto risco, como carros autônomos ou diagnósticos médicos. A superação destas
limitações demanda robustez, confiabilidade e interpretabilidade. Nesta tese, é realizada
uma exploração abrangente de técnicas e ferramentas, voltadas para aprimorar a robustez
e interpretabilidade de modelos de Deep Learning no domínio de processamento de ima-
gens. Essas contribuições abrangem quatro áreas-chave: (1) o desenvolvimento do método
de aumento de dados de imagem ativo (ADA) para melhorar a robustez do modelo, (2) a
proposição da função de perda adversarial right for right reasons (ARRR) para garantir
que os modelos estejam "certos pelos motivos certos" e adversarialmente robustos, (3) a
introdução do método de aumento de dados right for right reasons (RRDA) que mel-
hora dentre os dados de treinamento o contexto das informações a serem representadas
para estimular o foco do modelo em características de sinal, e (4) a apresentação de um
novo método para interpretar o comportamento dos modelos durante o processo de in-
ferência. Apresentamos ainda uma ferramenta para manipular características visuais e
avaliar a robustez dos modelos treinados sob diferentes situações de uso. As análises real-
izadas demonstram que o método ADA melhora a robustez dos modelos sem comprometer
métricas tradicionais de desempenho. O método ARRR demonstra robustez ao viés de
cor das imagens em problemas baseados em informações estruturais das imagens. Além
disso, o método RRDA melhora significativamente a robustez do modelo em relação a
deslocamentos de fundo da imagem, superando o desempenho de outros métodos RRR
tradicionais. Finalmente, a ferramenta de análise de modelos proposta permite revelar
a interdependência contraintuitiva de características e avaliar fraquezas nas decisões de
inferência dos modelos. Estas contribuições representam avanços significativos no campo
do Deep Learning aplicado ao processamento de imagens, fornecendo insights valiosos e
soluções inovadoras para desafios associados à confiabilidade e interpretação desses mod-
elos complexos.

Palavras-chaves: deep Learning; robustez; ataques adversários; Interpretabilidade.
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1 INTRODUCTION

Deep learning (DL) models have achieved state-of-the-art performance in various tasks and
domains, including drug discovery (LI et al., 2021), speech recognition (PARK et al., 2020), ob-
ject recognition (DOSOVITSKIY et al., 2021), question and answer (ZHU et al., 2021), machine
translation (TAKASE; KIYONO, 2021), image description (PAN et al., 2020), natural language un-
derstanding (KHURANA et al., 2022), and image understanding (ZHAI et al., 2022). Some studies
even report ’superhuman’ performance, suggesting its performance surpasses that of human
experts (FUCHS et al., 2021). Notably, recent advancements in Visual Language Model (VLM)
such as CLIP (RADFORD et al., 2021) and ALIGN (JIA et al., 2021a) have enabled applications
to achieve remarkable zero-shot image classification performances. This is achieved by simply
querying a pre-trained model without requiring any additional model training or fine-tuning.

Such claims have created a self-reinforcing cycle of increasing popularity, leading to the
adoption of deep learning models to ever more areas of research and applications (GOOGLE. . . ,
; AMAZON. . . , ; POWERED. . . , ). However, the endorsement of these models in high-stakes
domain applications (e.g., healthcare and legal systems) has been limited due to their lack of
interpretability and their bias towards spurious signals (GEIRHOS et al., 2020).

Investigations to understand the decisions of DL models have uncovered several situations
in which the models can fail. For instance, Szegedy et al. (2013) found counter-intuitive
properties of DL models, demonstrating that adding minimal noise to the model input can
lead the model to change its decision to an incorrect prediction. This fragility is known as an
Adversarial Attack. While it exposes potential issues with the robustness of DL models, existing
literature argues that the data used in these attacks is artificially generated and falls in the
out-of-distribution data concept. Despite these counterarguments, several works demonstrate
that DL models can fail drastically, even when dealing with natural images (HENDRYCKS et

al., 2021). Unfortunately, adversarial attacks are not the only reason for model failure. We can
find DL models making wrong decisions due to background information or structure similarity
(NGUYEN; YOSINSKI; CLUNE, 2015; ALCORN et al., 2019; BEERY; HORN; PERONA, 2018). Figure
1 illustrates some of these cases, suggesting the models make decisions based on incorrect
information, such as background information (XIAO et al., 2021), shortcut learning (GEIRHOS et

al., 2020), or spurious correlations between contextual features and the input label (EISENSTEIN,
2022).

In the face of these shortcomings and limitations of DL models, there is a need to ex-
plore new architectures and methods that can mitigate these issues. One such approach is
the zero-shot image classification model based on VLMs, which classifies an image based on
its description, thus being naturally interpretable. The standard pipeline of this zero-shot ap-
proach is to compute the similarity score between the query image embedding and various
category name embeddings to determine how close the image’s content is to each category
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Figure 1 – Example of image classification failures. Debugging DL models is impor-
tant to diagnose failures and help understand model decisions. Several works
explore model decisions with different types of input information. For example,
situation 1) shows that the model fails to classify a cow when it is present on
a background different than usual. In situation 2), a bullfrog is misclassified
as a fox squirrel and a highway as a dam. Unlike the first two examples, situa-
tion 3) presents an example of an adversarial attack, demonstrating that after
adding noise to the input, the model fails drastically, even though it made
the correct decision on the original image. Situation 4) shows that the model
fails to classify an image correctly while maintaining the same background
but changing the object position. The main figures of the plots were obtained
from (NGUYEN; YOSINSKI; CLUNE, 2015; ALCORN et al., 2019; HENDRYCKS et
al., 2021).

name. The category with the highest similarity score to the query image is chosen as the classi-
fication result. In this direction, a new approach has been proposed to combine Large Language
Model (LLM) with VLMs to perform zero-shot image classification (MENON; VONDRICK, 2023),
specifically using the ChatGPT (OPENAI, 2023) with OpenAI’s Contrastive Language-Image
Pretraining (CLIP) (RADFORD et al., 2021). Instead of using the straight category name em-
bedding, the ChatGPT+CLIP method computes the similarity score between the category
descriptions extracted from ChatGPT and the image embedding using CLIP. This zero-shot
approach achieves approximately 75% accuracy on the ImageNet dataset (DENG et al., 2009a;
MENON; VONDRICK, 2023). Despite this remarkable success, it is crucial to understand its lim-
itations as we know for other deep learning models (Figure 1). For instance, as these VLMS
are trained using hundreds of millions of (image, text) pairs, are they biased to background
information such as standard models?

All of these discussion highlights that the still open problem is how to train robust mod-
els that make inferences based on the correct information, such as signal features or infor-
mation relevant to the problem being solved. Several works have been proposing new loss
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functions to guide the model to focus on signal features (ROSS; HUGHES; DOSHI-VELEZ, 2017;
SCHRAMOWSKI et al., 2020; VIVIANO et al., 2021; SIMPSON et al., 2019; RIEGER et al., 2020;
ERION et al., 2019), thereby using signal information instead of contextual information in the
inference process. These methods are referred in the literature as Right for the Right Reasons
(RRR). These loss functions generally use second-order gradient optimization (DRUCKER; CUN,
1992) and incorporate a right reasons factor into the loss function. The right reasons factor
encourages the model to use the signal information in decision-making.

Though RRR has shown promising results, these methods have not been evaluated on a
large-scale benchmark and generally use interpretability methods in the loss function, making
them dependent on interpretability accuracy (CARVALHO; PEREIRA; CARDOSO, 2019; MOHSENI,
2019; TORRES et al., 2023), dependent to specific interpretability methods implementation
(RIEGER et al., 2020; ERION et al., 2019), and have an additional computational cost as we need
to compute second-order derivatives during training.

These critical concerns make it evident that the reliance on interpretability methods, as
observed in RRR methods, introduces notable challenges. Indeed, there is not even agreement
on the definition of interpretability and explainability (FLORA et al., 2022), nor an objective
definition on what does mean feature importance, feature attribution, feature reliance, and so
on. This lack of formalism implies that if an interpretability method attributes high importance
to an input feature, we can not make any assumptions on the model behavior (BILODEAU et

al., 2022). Thus, these issues make it evident that we must define interpretability methods as
an end-task, objectively expressing what we want to interpret.

Based on these observations and discussions, we may raise some questions: Can we ensure
that the model’s decisions align with human knowledge in a more agnostic manner (without
needing specific interpretability methods? How can we define the interpretability method as
an end task? How can we ensure that a model is using some specific feature information in
the inference decision-making?

1.1 OBJECTIVES

This thesis focuses on deep learning-based image recognition models. Our main objective is
to improve these models in relation to robustness and interpretability. Our main hypothesis
asserts that training these models with appropriate data and appropriate loss functions may
improve their robustness and make them base their decisions on signal features rather than
background or non-informative features. In addition, we also hypothesize that with well-defined
and objective pipelines, we can extract better insights about the model’s interpretability.

Motivated by the recent development of interpretability methods and adversarial training,
we explore how to use these techniques to generate new data and enhance the model training
process to align model decisions with the human decision. Besides, we explore how to use
interpretability maps to structure model decision analysis and how to define interpretability
objectively as an end task.
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We formulated the following research questions to guide our investigation: How can inter-
pretability maps be leveraged to generate curated training data? How can human knowledge
contribute to the generation of new training samples? Do adversarial samples impact the right
for the right reasons methods? How does this new data impact model decision-making? How
can we evaluate which input image information mostly impacts the model decisions? Finally,
can we define the interpretability method as an optimization problem?

Instead of relying on a single method or analysis to answer these research questions, we
employ a holistic methodology to incorporate various methods and components to provide a
more comprehensive and nuanced understanding of these points. The methods are present from
chapter 3 to 7, where each chapter is self-contained so the reader can read each independently.
We group the methods into two categories: (1) data methods that generate new data samples
to guide the model alignment with human decision-making and (2) methods to evaluate which
input region impacts the model decisions. Figure 2 summarizes the data methods, while Figure
3 summarizes the methods to analyze the input feature impact on model prediction.

We applied all the proposed methods in several generic and specific scenarios. All contribu-
tions aim to drive deep learning approaches in image recognition toward reliable, interpretable,
robust, and trustworthy models. In the following, we present an outline of the proposed con-
tributions distributed in different chapters.

Chapter 2, State-of-the-art: This thesis is centered around key aspects of deep learning,
including Interpretability, Adversarial robustness, and Right for the right reasons methods. In
this chapter, we provide an overview of the state-of-the-art for each topic.

Chapter 3, Active image data augmentation, published in (SANTOS et al., 2019)
and (SANTOS et al., 2022): In this chapter, we propose the Active image data augmentation
(ADA) (SANTOS et al., 2019) method which uses the interpretability maps to generate new
training data by removing the non-signal information the model attribute high importance.
Using this approach, we argue that the model will learn to produce the right answer without
using these non-signal features. As there are several Interpretability methods, we perform an
extensive experiment in (SANTOS et al., 2022) to evaluate their impact on ADA.

Chapter 4, Right reasons data augmentation, published in (SANTOS; ZANCHET-

TIN, 2023)1: Despite the widely used interpretability methods, there are still concerns regard-
ing its relation with model causality, so we can not guarantee that the input feature with high
attribution values drives the model prediction. Thus, we proposed the Right reasons data aug-
mentation (RRDA), which explores the input signal masks as a priori information and generate
new input samples to force the model to make inference based on the signal features instead
of background features.

Chapter 5, Adversarial right for the right reasons, published in (SANTOS; SOUZA;

ZANCHETTIN, 2023b): Several works have shown that the interpretability maps of models
trained with adversarial samples highlight the signal information or the objects edges more than
1 Best paper of the LXAI Workshop at ICCV 2023.
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Figure 2 – Example of the data generation methods. The three proposed data gen-
eration contributions to align the model with human decision-making. a) The
active image data augmentation method uses interpretability maps to remove
the non-signal region, which is most important to the model but not for the hu-
man decision-making process. b) The right reasons data augmentation creates
random backgrounds to augment training samples. b) The adversarial right for
the right reasons uses adversarial samples during model training.

models trained with traditional approaches. We proposed the Adversarial Right for the Right
Reasons (ARRR) method to explore whether adding adversarial samples into RRR training
methods will improve the model’s robustness and interpretability.

Chapter 6, Background dependence of Visual language models, published in
(SANTOS; SOUZA; ZANCHETTIN, 2023a): Contrastive visual language models, such as CLIP
and ALIGN, are trained to map input images and input text into the same feature space,
minimizing the distance between their embeddings. Typically trained with hundreds of millions
of (image, text) pairs, these models enable high-accuracy zero-shot image classification after
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Figure 3 – Example of the input feature analysis methods. a) The VLM’s back-
ground sensitivity analysis computes the difference between its prediction on
the original image and the same image with a different background. b) The
U Analysis uses interpretability maps to find input feature co-dependence to
model prediction; for example, the red and green box is necessary to appear
in the input image so the model predicts correctly. c) Iterative post-hoc at-
tribution methods employ an optimization view of interpretability and find a
binary mask that points to the important input features for model prediction.
d) The Model Inspector tool allows the user to manipulate the input image
and verify how it affects the model prediction.

training (MENON; VONDRICK, 2023) and are a new baseline to image models. Recognizing their
significance, this chapter conducts an evaluative analysis of zero-shot image classifiers based
on CLIP and ALIGN models. It examines their sensitivity to background information, which is
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a flaw in traditional approaches.
Chapter 7, Model inspector tool, published in (SANTOS et al., 2023) and (SANTOS

et al., 2021): This chapter proposes the Model inspector tool, along with two methods to
analyze image classification models, namely U Analysis (UA) and Iterative post-hoc attribution
(IPHA) method. The Model Inspector allows users to load an image classification model
and input images to evaluate the model performance. Then, the user may perform several
image transformations to evaluate how the model deals with those transformations. The U
Analysis represents a pipeline of image transformations based on the interpretability maps and
highlights feature co-dependence on the model prediction. Finally, the IPHA proposes to map
the model interpretability problem as an optimization problem; it can highlight which features
are important to model prediction and the non-important ones.
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2 STATE-OF-THE-ART

This thesis is closely related to different deep learning topics, such as interpretability, adversarial
robustness, and right for the right reasons methods. Thus, aiming to contextualize the reader,
we review each topic in this chapter, highlighting the most relevant methods to this work.

2.1 INTERPRETABILITY METHODS

Deep learning (DL) models have achieved state-of-the-art results in several applications across
different domains, such as natural language processing (OTTER; MEDINA; KALITA, 2021) and
computer vision (DONG; WANG; ABBAS, 2021). This success is not limited to the scientific
field; today, DL models have become pervasive through numerous applications1. Despite this
success, they face challenges in being used in production in certain areas, such as medical
systems (MIOTTO et al., 2017) and law systems (DEEKS, 2019). Many of these systems require
explaining the decision made by the model, or the user needs at least an indication of why
the model suggested a particular inference for an input. The difficulty of using those models
in these domains is not unfounded; they are known to be black-box models due to generally
working with high-dimensional data and being composed of a high number of layers and
nonlinear processing, making it not easy to track their decision process.

In an effort to mitigate the black-box issue of DL models, the scientific community has
proposed interpretability methods for explaining the DL models decision. According to Doshi
Velez and Been Kim (2017) (DOSHI-VELEZ; KIM, 2017), the authors define interpretability as
"the ability to explain or to present in understandable terms to a human" (p.2). By enhancing
the interpretability of deep learning models, we not only address concerns surrounding their
black-box decision-making processes but also their applicability in critical domains such as
healthcare, finance, and autonomous systems. This quest for interpretability reflects a broader
commitment to building trust and facilitating the integration of these advanced models into
real-world scenarios. Now, let’s explore a practical example of the notation, vectors dimensions,
input and output vectors when we compute the interpretability of deep learning models.

In practice, let 𝐹 : R𝑛 → 𝐶 represent a deep learning model, where R𝑛 denotes the
𝑛-dimensional real space, and 𝐶 is the set of categories. Consider an input vector 𝑥 in R𝑛

associated with the input data. The interpretability of 𝐹 𝑐(𝑥) yields a vector 𝑎 in R𝑛, where each
𝑖-th position in 𝑎 indicates the importance of the 𝑖-th position in 𝑥 to the output 𝐹 𝑐(𝑥). The
𝑎 vector is also referred to as an attribution map, interpretability map, or the interpretability
of the model output 𝐹 𝑐(𝑥).

One of the pioneering interpretability methods was proposed by Strumbelj e Kononenko
(2010). In this work, the authors proposed an approach to obtain model interpretability by
1 https://www.technologyreview.com/2015/02/09/169415/deep-learning-squeezed-onto-a-phone/
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calculating Shapley Values. The method randomly permutes the features and gradually adds
each feature to a chosen reference point. The difference between the outputs obtained after
adding each feature corresponds to its importance value. This process is repeated 𝑁 times,
and the final importance of each feature is obtained by averaging all 𝑁 executions.

In addition, other interpretability methods have emerged over the years (ZHANG et al.,
2021). Most methods found in the literature share some common characteristics; for example,
they may be based on the gradient of the model’s prediction with respect to the input vector,
attempt to create a local linear version of the model, and may also construct the model
interpretability based on a baseline version of the input data vector. In the following, we
present a review of these methods grouped into these categories.

Gradient-Based Models

According to our literature review, Deconvolution (ZEILER; FERGUS, 2014) is the pioneering
work in obtaining interpretability of Convolutional Neural Network (CNN) models following a
top-down approach. The method can be seen as a traditional CNN model as it uses the same
components (filters, pooling), but in reverse order. Instead of mapping the input image into
the filter space, it maps the filter information into the input image space. Initially, an input
image is given to the trained CNN model, and the feature maps of a layer 𝐿 are obtained.
To analyze an activation 𝑖 of layer 𝐿, all activations different from 𝑖 are set to zero, and
the feature map is passed to a DeConvNet. Then, the DeConvNet performs the following
operations successively: (i) UnPool, (ii) ReLU, (iii) Transpose Filter. These three operations
are repeated until a representation in the pixel space is obtained. In the Transpose Filter layer,
the same filters as the original CNN are used, but they are transposed to return the feature
maps to the dimension of the input image. Since the pooling layer cannot be transposed,
DeConvNet defines a hook structure to save the positions of the poolings in the original CNN.

Deconvolution (ZEILER; FERGUS, 2014) is almost equivalent to calculating the gradient of
the output of an arbitrary neuron with respect to the input vector (Vanilla Gradient). The
minor difference is that when the signal is backpropagated through a ReLU function, it changes
to zero for each negative value of the previous gradient. Following a more formal approach, the
Vanilla Gradient method (SIMON; RODNER; DENZLER, 2014; SIMONYAN; VEDALDI; ZISSERMAN,
2014) was proposed. It obtains an interpretability map containing the degree of importance
of each position in the input vector 𝑥. Given an output score 𝑖 from a model 𝑓 , it calculates
the absolute value of the gradient ∇𝑓 𝑖

𝑥 to obtain the importance of each position of 𝑥 for 𝑖

output of model 𝑓 .
As discussed earlier, Vanilla Gradient (SIMON; RODNER; DENZLER, 2014) does something

similar to Deconvolution. However, instead of changing the negative values of previous gra-
dients to zero, it changes these values to zero when the values of the respective layer in the
forward step are negative (i.e., it follows the derivative of the ReLU function). The Guided
Backpropagation method (SPRINGENBERG et al., 2015) combines both methods, changing to
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zero all values where the gradient values are zero or where the forward step of the respective
layer is negative.

The Gradient-Weighted Class Activation Mapping (Grad-Cam) (SELVARAJU et al., 2017)
uses gradient information to produce activation maps that highlight the most input’s important
parts to the model inference. According to the authors, the most significant difference between
Grad-Cam and the presented methods, such as Deconvolution and Guided Backpropagation,
is that Grad-Cam can highlight the most discriminative information for the predicted class. In
contrast, the other methods obtain high-resolution maps highlighting many image details. The
Grad-Cam steps are present in equations 2.1-2.2. In general, Grad-Cam computes the gradient
of the class c output score 𝑦𝑐 with respect to the feature map A (𝜕𝑦𝑐

𝜕𝐴
), then weights (𝛼𝑐

𝑘)
the importance of each feature map 𝐴𝑘, and calculates the combination of their respective
gradients using all 𝛼𝑐

𝑘 as weights. Next, as in equation 2.2, it applies the ReLU function (NAIR;

HINTON, 2010) to the result of the linear combination to obtain only the positive contributions.
It is important to highlight that the feature map A can be the output of any layer from the
deep learning model, but generally the last convolutional layer output is used. Despite Grad-
Cam finding regions considered discriminatory, it fails to find important details. Therefore, the
authors introduced the Guided Grad-Cam method in the same work, which consists of the
multiplication between the outputs of Guided Backpropagation and Grad-Cam.

𝛼𝑐
𝑘 = 1

𝑍

∑︁
𝑖

∑︁
𝑗

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖𝑗

(2.1)

Grad-CAM𝑐 = ReLU
(︃∑︁

𝑘

𝛼𝑐
𝑘𝐴𝑘

)︃
(2.2)

While presenting interesting results, gradient-based interpretability methods such as Vanilla
gradient, GradCam, Deconvolution, and Guided Backpropagation generate interpretability
maps with a lot of noise. Therefore, Smilkov et al. (2017) proposed the Smooth Gradient
method to obtain interpretability maps with less noise. The method involves adding noise to
the original image and obtaining its interpretability for 𝑁 times. The final interpretability map
is obtained from the average of the 𝑁 interpretability maps.

In addition to producing interpretability maps with noise, gradient-based methods have
other limitations. For example, they can not propagate the importance signal in regions where
the gradient is zero, and they may also have problems in regions of discontinuities. To mitigate
these two issues, Shrikumar, Greenside e Kundaje (2017) proposed the Deep Lift method,
which uses a reference point to obtain the interpretability map. The reference point must be
considered neutral and chosen appropriately for each problem. To obtain the importance of
the features, Deep Lift calculates the difference in the activation of the neurons between when
the model processes the original input and when it processes the reference input, assigning
importance to each feature based on this difference.
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Different from the approaches presented so far, Sundararajan, Taly e Yan (2017) devel-
oped the interpretability method Integrated Gradients (IG) based on an axiomatic approach.
The authors proposed two axioms that interpretability methods must obey. The axioms are
Sensitivity and Implementation invariance. The Sensitivity axiom suggests that if two images
differ only in one pixel and produce different inferences, then the interpretability method must
assign a non-zero importance to this pixel. The Implementation invariance axiom states that
the interpretability method must be robust to implementation, i.e., different implementations
of the same method should return the same interpretability. Given the input vector 𝑥, the base-
line vector 𝑥

′ , and the class c of interest, the IG suggests the interpretability by accumulating
the gradients of all points on the straight line between the baseline vector and the vector of
interest, as shown in Equation 2.3.

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖 ::= (𝑥𝑖 − 𝑥
′

𝑖)×
∫︁ 1

𝛼=0

𝜕𝐹 𝑐(𝑥′ + 𝛼× (𝑥− 𝑥
′))

𝜕𝑥𝑖

𝑑𝛼 (2.3)

The version of IG presented in Equation 2.3 is computationally expensive, as there are
infinite values from 𝛼 = 0 until 𝛼 = 1. However, in practice, an approximate version of IG is
calculated as shown in Equation 2.4. In this version, 𝑚 is the number of points between the
baseline vector and the vector of interest, which also represents the number of steps in the
Riemann integral approximation.

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝐴𝑝𝑟𝑜𝑥.
𝑖 ::= (𝑥𝑖 − 𝑥

′

𝑖)×
𝑚∑︁

𝑘=1

𝜕𝐹 𝑐(𝑥′ + 𝑘
𝑚
× (𝑥− 𝑥

′))
𝜕𝑥𝑖

× 1
𝑚

(2.4)

Although the Integrated Gradient method presents interpretability maps with little noise
when compared to other purely gradient-based methods, it has two negative points: (i) the
choice of the baseline (STURMFELS; LUNDBERG; LEE, 2020), and (ii) the choice of the number
of points on the line that it will calculate the gradient to be accumulated (m in Equation 2.4).
To mitigate these negative points of the IG method, Xu, Venugopalan e Sundararajan (2020)
proposed the Blur Integrated Gradient (BIG) method. BIG eliminates the choice of a baseline
vector by using several vectors similar to the original version but with noise. Thus, instead of
calculating the gradient with respect to all points on the straight line between the baseline
and the original vector, BIG accumulates the gradients between the original vector and those
with noise.

Inheriting ideas from the various approaches discussed so far, Sattarzadeh et al. (2020)
proposed the Semantic Input Sampling for Explanation (SISE) method. SISE consists of 4
steps: (1) Feature map extraction, (2) Feature map selection, (3) Attribution mask, and (4)
Visualization map. Figure 2.1 illustrates the four steps of the SISE method. In the first step,
it is necessary to choose the layers of interest, and then an input vector feeds the model to
obtain the feature maps produced by the layers. In the second phase, a subset of feature maps
is selected from all obtained features. Next, the selected feature maps are post-processed in the
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third step to produce an Attribution mask. Finally, in the fourth step, all produced Attribution
masks are combined, and a single interpretability map of the model is produced.

Figure 4 – Graphic representation of the steps of the SISE method. The Forward pass
step feeds the model with the input image and performs the inference, while
in the Backward pass, a quantity of feature maps from the intermediate layers
is chosen. During the last two steps, Attribution mask and Visualization mask,
attribution maps are created for each feature map, and then all these maps are
grouped to form the final interpretability of the model. Source: (SATTARZADEH
et al., 2020)

Adaptive Semantic Input Sampling for Efficient Explanation of Convolutional Neural Net-
works (Ada-SISE) (SUDHAKAR et al., 2021) is an extension of the SISE method. The authors
of Ada-SISE noticed that many feature maps with redundant information were chosen in the
second step of the SISE method, making it computationally expensive. To mitigate this issue,
the Ada-SISE method selects the feature maps adaptively and has a lower computational cost.
The results obtained showed that the feature maps obtained by Ada-SISE were not qualita-
tively compromised when compared to SISE and even, in some cases, showed the information
more clearly.
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Linearization/Decomposition Methods

The interpretability methods discussed earlier are based on the gradient of the neural network.
Following an approach that does not require directly calculating the gradient, Bach et al.
(2015) proposed the Layer-wise relevance propagation (LRP) method. LRP is a conservative
method whose purpose is to understand the decision of a deep network by decomposing the
output 𝑓(𝑥) into the input vector 𝑥, thus obtaining the degree of relevance of each dimension
of 𝑥. The method is conservative because the sum of the relevance of each pixel is equal to
the output value of the mode that we want to interpret. After feeding the model with the
input vector 𝑥 and obtaining the output 𝑓(𝑥), LRP defines a set of rules (e.g., the Basic Rule,
Epsilon Rule, and Gamma Rule) for backpropagate the value 𝑓(𝑥) to the input vector 𝑥 and
thus obtain the relevance of each 𝑥 feature. Figure 2.1 illustrates the execution of the LRP
method.

Figure 5 – Representation of the Layer-wise relevance propagation method. The arrows
in the red-shaded region, starting from the output, represent the execution
of backpropagation of the importance of each processing unit. Source: (MON-
TAVON et al., 2019)

Deep Taylor Decomposition (DTD) (MONTAVON et al., 2017) is an evolution of the LRP
method. Its main proposal is to decompose the activation of a neuron through the contribution
of each input pixel. It calculates this relevance using a first-order Taylor series expansion
through a reference point 𝑥0 where 𝑤𝑇 𝑥0 = 0 (for the case of linear regression). The relevance
of the chosen initial neuron is equal to the sign obtained in the forward phase.

Taking a different approach from the approaches presented earlier, LIME (RIBEIRO; SINGH;

GUESTRIN, 2016) obtains the interpretability of any model by linearizing the classifier decisions
at the point of interest. To build this linearization, LIME creates several points in the vicinity
of the point of interest and trains a simple (linear) model using these new points. Kernel
Shap (LUNDBERG; LEE, 2017) is an extension of the LIME method, whose goal is to obtain
the Shapley Values through formulating the LIME method. It achieves this goal by changing
parameters such as error function, kernel, and regularization terms chosen heuristically.

All methods discussed so far assume the input vector 𝑥 as important and try to create
a contribution map to obtain the output 𝑓(𝑥). Taking a different perspective, PatternNet
(PN) and PatternAttribution (PA) (DUMITRU et al., 2018) assume that an input vector is
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composed as follows: 𝑥 = 𝑠 + 𝑑; 𝑖𝑛𝑝𝑢𝑡 = 𝑠𝑖𝑔𝑛𝑎𝑙 + 𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑜𝑟. Where 𝑠 is the signal part
containing the relevant information for the model’s inference, while 𝑑 is a distractor composed
of obscuring information that makes the task more challenging. In addition, the authors argue
that visualizing the output of the function as a whole is simple, as seen in the methods
presented so far. Thus, (i) visualizing the signal and (ii) the relevance of each signal feature
is more complicated. So, they proposed the PatternNet (PN) method to find the signal 𝑠 and
PatternAttribution (PA) to find the relevance of each region of 𝑠.

2.2 ADVERSARIAL ATTACKS AND TRAINING

Adversarial training boosts the robustness of deep learning models by intentionally exposing
them to adversarial examples during training. This process not only teaches the model to
identify and correct vulnerabilities but also promotes the learning of more efficient and robust
features. As a result, models become less sensitive to minor variations and more capable of
generalizing across the training data set. As our main goal is not to propose a new adversarial
attack method but to use its adversarial noise, we will focus on the most standard adversarial
approaches in this section.

As far as we know, Fast Gradient Sign Method (FGSM) is the first adversarial attack
method. Goodfellow, Shlens e Szegedy (2015) proposed the FGSM to generate adversarial
attacks, where it involves calculating the gradient of the error function with respect to the
input vector and obtaining the signs (direction) of each dimension of the gradient vector.
The authors argue that the gradient direction is more important than the specific point of
the gradient because the space in which the input vector is contained is not composed of
sub-regions of adversarial attacks. Other variations of FGSM are also present in the literature,
such as R-FGSM (TRAMÈR et al., 2018) and Step-LL (KURAKIN; GOODFELLOW; BENGIO, 2017).

An alternative to make the model robust to adversarial attacks is training it with adversarial
samples. In Equation 2.5, we present a cost function for adversarial training based on FGSM.
Given a standard error function (𝐽) and the input vector 𝑥, it obtains the final error based on the
sum of two steps: (1) Computes the error based on the original input vector (𝐽(𝜃, 𝑥, 𝑦)), and
(2) Computes the error based on the FGSM adversarial attack (𝐽(𝜃, 𝑥+𝜖sign(∇𝑥𝐽(𝜃, 𝑥, 𝑦)))).

𝐽 ′(𝜃, 𝑥, 𝑦) = 𝛼𝐽(𝜃, 𝑥, 𝑦) + (1− 𝛼)𝐽(𝜃, 𝑥 + 𝜖sign(∇𝑥𝐽(𝜃, 𝑥, 𝑦))) (2.5)

As FGSM only generates the adversarial noise based on gradient directions. Madry et al.
(2018) conducted a study on adversarial attacks from a min-max perspective, to be precise
about the class of attack they try to recognize and consequently defend against. Equation
2.6 presents this min-max formulation. The 𝑚𝑎𝑥 part of this formulation aims to find an
adversarial noise that produces the highest value of the error function L when added to the
input vector. The 𝑚𝑖𝑛 term aims to find the model parameters that minimize the error function
L, making the model robust to the max-attack. From this analysis, the authors proposed the
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Projected Gradient Descent (PGD) method, which they call a first-order universal attack, i.e.,
the most difficult attack using only first-order information.

𝑚𝑖𝑛
𝜃

𝑝(𝜃), where 𝑝(𝜃) = E
(𝑥,𝑦)∈𝐷

[𝑚𝑎𝑥
𝛿∈𝑆

𝐿(𝜃, 𝑥 + 𝛿, 𝑦)] (2.6)

Despite the PGD method achieving good results, it is computationally expensive because
it needs to calculate the gradient of the function several times. To mitigate this restriction,
Shafahi et al. (2019) proposed the Free Adversarial Training (FAT) method. The main contri-
bution of the FAT method is to reuse the gradient of the function computed at the moment
when the model performs the gradient descent in the optimization step. However, with only
one gradient calculation step, they cannot construct an attack that causes as much error as
in PGD. To minimize this drawback, the authors propose training the same input batch for 𝑚

times, so the model will be robust to more than one version of an attack for the same input
vector.

2.3 INTEGRATING PRIOR KNOWLEDGE INTO MODEL INTERPRETABILITY

DL models can identify patterns even when we shuffle the data classes (ZHANG et al., 2017).
They are characterized by a high number of layers (HE et al., 2015) and the use of nonlinear
functions, making it difficult to interpret their decisions. In section 2.1, we discussed a set of
methods proposed to interpret their decisions. This interpretability can indicate features that
may be considered important or unimportant for model prediction. After obtaining it, we can
assess whether the model uses the same features humans use for decision-making in the same
problem. From this analysis, we may raise a question: what to do when the model is making
the correct decision for reasons the domain expert considers incorrect? Or, how do we ensure
that the model uses the features considered correct by the domain expert for decision-making?
The interpretability methods presented earlier only return the degree of importance of each
feature; thus, they do not solve this problem and only help to find it. In addressing this issue,
a class of methods has been proposed to make the model able to infer correctly for the right
reasons (used by the domain expert for decision-making). This section aims to present and
discuss some of these methods.

Understanding the importance of the gradient vector of the model’s output with respect
to the input vector (𝜕𝑓𝑖

𝜕𝑥
) is crucial. This gradient provides the direction and magnitude needed

to adjust each input vector dimension to maximize the model’s output. The gradient vector
has been used as one form of interpretability, where dimensions with a high absolute value
are considered more important for the model during the inference process. From this analysis
of gradient usage, Ross, Hughes e Doshi-Velez (2017) proposed the Right for the right rea-
sons (RRR) method by introducing the Vanilla Gradient during training and regularizing the
model to use only the features that are genuinely important for the problem in the domain
expert’s view. This regularization is performed by penalizing the gradients of features con-
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sidered unimportant by the domain expert, forcing them to have a zero value. Equation 2.7
shows the loss function proposed by RRR authors, it has two main components, namely Right
answer and Right for the reasons. The right answer is only the cross entropy loss function to
force the model to answer correctly. In contrast, the Right for the right reasons performs a
point-wise multiplication between the domain expert binary mask (i.e., a variable with 1 in the
non-important features and 0 on the signal) by the gradient of the model output with relation
to the input, then sums its values. Thus, the Right for the right reasons factor computes how
much the model uses non-important features.

𝐿(𝜃, 𝑋, 𝑦, 𝐴) =
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1
−𝑦𝑛𝑘 log(𝑦′

𝑛𝑘)
𝑅𝑖𝑔ℎ𝑡 𝐴𝑛𝑠𝑤𝑒𝑟

+𝜆1

𝑁∑︁
𝑛=1

𝐷∑︁
𝑑=1

(𝐴𝑛𝑑
𝜕

𝜕𝑥𝑛𝑑

𝐾∑︁
𝑘=1

log(𝑦′

𝑛𝑘))2

𝑅𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑟𝑒𝑎𝑠𝑜𝑛𝑠

+ 𝜆2
∑︁

𝑖

𝜃2
𝑖

𝑅𝑒𝑔𝑢𝑙𝑎𝑟

(2.7)

Also, using interpretability maps, Liu e Avci (2019) propose a way to introduce prior
information into models, forcing them to use specific features of the input vector. Their
method involves introducing the L2 error between the output of an interpretability method and
the desired importance value (prior information). The experiments conducted by the authors
showed that after applying this method, the models did not experience a performance loss
according to traditional metrics, and the model became fairer considering the domain expert’s
opinion.

Continuing in this direction of making the model consistent with a domain expert, Erion et
al. (2019) proposes a new and flexible interpretability method called Expected Gradient (EG).
Also, like Liu e Avci (2019), they incorporated prior information into the model using EG as an
interpretability method. From the experiments conducted, they show that to find the features
that the model actually uses for inference, the EG method has more reliable results than its
predecessor Integrated Gradients.

Another approach in this context, Du et al. (2019) proposed the CREX method, which
forces the model’s interpretability to be equal to an interpretability obtained by a domain
expert. Additionally, it also enforces that the model’s interpretability is sparse. This second
point is essential when the model does not have domain expert annotations during training or
has them partially.

Rieger et al. (2020) proposed the Contextual Decomposition Explanation Penalization
(CDEP) method, aiming to enable the addition of domain knowledge to the models so that
they can penalize unimportant features and only use those that are genuinely important. To
achieve this goal, CDEP uses the Contextual Decomposition (CD) method (MURDOCH; LIU;

YU, 2018) as a base. CD decomposes the input vector into regions of interest and obtains an
output score from the network for each of these regions. Thus, CDEP uses the scores obtained
by CD and forces the score of the region with unimportant features to be zero, making the
region of features considered important by the domain expert responsible for the model’s
inference. Equation 2.8 represents the modeling of the authors of CDEP, where the function
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𝐿𝑒𝑥𝑝𝑙 is responsible for obtaining the model’s interpretability and forcing it to be equal to an
interpretability 𝑒𝑥𝑝𝑙𝑋 .

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

𝐿(𝑓𝜃(𝑋), 𝑦)
𝑃 𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

+𝜆 𝐿𝑒𝑥𝑝𝑙(𝑒𝑥𝑝𝑙𝜃(𝑋), 𝑒𝑥𝑝𝑙𝑋)
𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑒𝑟𝑟𝑜𝑟

(2.8)

Unlike the methods previously discussed, Schramowski et al. (2020) proposed the Ex-
planatory Interactive Learning (XIL) method to involve domain experts in the model training
process. The role of the expert in XIL is to provide feedback on the model’s interpretability so
that the model adjusts to use the features considered relevant by the expert. In addition to
the interactive use of domain experts, XIL also uses the RRR method during model training.

Following a different approach from using interpretability methods, Bao et al. (2018) pro-
poses introducing human knowledge a priori into attention models, allowing the model to
produce attention weights of better quality and, consequently, achieve better results in the
given problem.

2.4 CONCLUSION

In this chapter, the state-of-the-art methods related to the proposed thesis were presented. We
began the discussion with a general overview of interpretability methods in the literature. Next,
we introduced adversarial training methods and concluded by discussing training approaches
that make the model consistent with the opinion of a domain expert.

After describing all these works, a noteworthy point for the reader is the importance of
the gradient vector of the model’s output (𝑓(𝑥)𝑐) with relation to the input vector (𝑥). This
gradient vector is used in different methods across all three topics discussed. For instance,
interpretability methods utilize the information from this vector or a variation of it to highlight
the important input features for the model inference. Adversarial training methods use it to
determine how feature values should be altered to drive inference errors. Finally, RRR methods
use it to identify if models are using relevant features for the inference.
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3 ACTIVE IMAGE DATA AUGMENTATION

One of the questions discussed in this thesis is whether interpretability methods can help guide
the model to use important features for the problem, thus making the model’s decisions con-
sistent with a knowledge specialist. The RRR methods presented in the theoretical background
chapter, such as Right for the right reasons (ROSS; HUGHES; DOSHI-VELEZ, 2017), Expected
Gradient (ERION et al., 2019), and Contextual Decomposition Explanation Penalization (RIEGER

et al., 2020), have shown that introducing the interpretability information into the cost/error
function may guide the training process to learn how to use features that are relevant to the
problem. However, some interpretability methods (i.e., Vanilla (SIMON; RODNER; DENZLER,
2014; SIMONYAN; VEDALDI; ZISSERMAN, 2014)) already compute the gradient of model output
with relation to the input; adding them into the loss function will be an additional compu-
tational cost because the final loss function will compute second-order derivatives. Besides,
some methods depend on a specific interpretability method to work, and identifying the best
interpretability method is difficult.

Instead of optimizing the interpretability output to align with the knowledge specialist mask,
let’s pose a question: if interpretability highlights important features for model inference, what
happens if we generate a new input sample by removing features that the model deems highly
important but the knowledge specialist does not consider essential for the problem? Figure
6 illustrates this question with a motivation example. For this example, we trained a U-Net
model (RONNEBERGER; FISCHER; BROX, 2015) to perform gray matter segmentation (PRADOS

et al., 2017), and it achieved a Dice score (DICE, 1945a) of 0.91 on the validation data, which is
an excellent result. However, suppose we exclude some pixels of the input image (not related
to gray matter pixels), even keeping all the gray matter pixels in the image. In that case,
the U-Net model is no longer able to segment the input image correctly (Figure 6 b)). This
behavior can be a problem because the model is not using the gray matter pixels to segment
the image; it is using contextual pixels of the gray matter or even shortcut learning pixels.

This motivation example helps us to raise another question: What if we train the model with
this modified data? Will the model learn to focus on the right features? We explore this question
by introducing a method called Active Image Data Augmentation (ADA)1. The fundamental
idea behind ADA is to remove information from the input vector that the model attributes high
importance, but a domain export does not. ADA dynamically adjusts training data based on
1 This chapter is based on these two works: 1) Santos, Flávio Arthur Oliveira, Cleber Zanchet-

tin, Leonardo Nogueira Matos, and Paulo Novais. "Active image data augmentation." In Hybrid
Artificial Intelligent Systems: 14th International Conference, HAIS 2019, León, Spain, Septem-
ber 4–6, 2019, Proceedings 14, pp. 310-321. Springer International Publishing, 2019. URL <https:
//link.springer.com/chapter/10.1007/978-3-030-29859-3_27> and 2) Arthur Oliveira Santos, Flávio,
Cleber Zanchettin, Leonardo Nogueira Matos, and Paulo Novais. "On the Impact of Interpretability
Methods in Active Image Augmentation Method." Logic Journal of the IGPL 30, no. 4 (2022): 611-621.
URL <https://academic.oup.com/jigpal/article-abstract/30/4/611/6123345>.

https://link.springer.com/chapter/10.1007/978-3-030-29859-3_27
https://link.springer.com/chapter/10.1007/978-3-030-29859-3_27
https://academic.oup.com/jigpal/article-abstract/30/4/611/6123345
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Figure 6 – Motivation problem. a) Given the original input image, the U-Net model
correctly segments its spinal cord grey matter region. b) After we compute the
model interpretability from the output a) and erase the most important region
unrelated to the grey matter region (signal), the model can no longer segment
the spinal cord grey matter region, even if it is on the input image.

the interpretability of its inferences, and it does not rely on a specific interpretability method
or use the second-order derivative in the cost function.

3.1 METHOD

ADA is an approach we proposed to improve the robustness of models and guide the training
process to focus on signal features for the given task. In summary, ADA involves generating
new training samples in each training cycle. First, ADA uses an interpretability method to
identify how important is each input feature for model inference. Then, it selects the most
important region of size 𝑁 ×𝑁 , which is not in the signal, and all pixel values in this region
are set to 0 (removing its information). After applying ADA systematically, we hypothesize
that the model will learn to focus on regions with features related to the target task. In the
following, the equations 3.1-3.4 illustrate the step-by-step process of the ADA method.

𝑦 = 𝑓(𝑥; 𝜃) (3.1)
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The Equation 3.1 illustrates the inference process of a model. In this equation, the function
𝑓 represents the model, 𝑥 is the input vector, 𝜃 is the model’s parameters 𝑓 , and 𝑦 is the
result obtained from the inference 𝑓(𝑥).

𝑚𝑎𝑝𝑠(𝑐, 𝑥) =
⃦⃦⃦⃦
⃦𝜕𝑦𝑐

𝜕𝑥

⃦⃦⃦⃦
⃦ (3.2)

The Equation 3.2 represents the step of constructing the interpretability map of the model’s
prediction with respect to the input vector. The variable 𝑐 represents the category/class for
which we will obtain the interpretability maps. The equation is an example of the Vanilla
Gradient interpretability method (SIMON; RODNER; DENZLER, 2014), but different ones can be
used in this context.

Next, the function 𝑏𝑢𝑖𝑙𝑑_𝑚𝑎𝑠𝑘 (Equation 3.3) represents the step where a binary mask
is constructed to erase information important to the model but irrelevant to the task.

𝑚𝑎𝑠𝑘 = 𝑏𝑢𝑖𝑙𝑑_𝑚𝑎𝑠𝑘(𝑚𝑎𝑝𝑠(𝑐, 𝑥), 𝑔𝑟𝑜𝑢𝑛𝑑_𝑡𝑟𝑢𝑡ℎ, 𝑛, 𝑧) (3.3)

In equation 3.3, a binary mask of dimensions 𝑁 ×𝑁 is constructed, but only a contiguous
region of dimensions 𝑍 × 𝑍 has a value of 0; all other values are changed to 1. The 𝑍 × 𝑍

region is the most important for the model’s inference according to 𝑚𝑎𝑝𝑠(𝑐, 𝑥). The function
𝑏𝑢𝑖𝑙𝑑_𝑚𝑎𝑠𝑘 can be implemented in a computationally efficient manner through the use of
dynamic programming.

Next, equation 3.4 uses the mask returned by 𝑏𝑢𝑖𝑙𝑑_𝑚𝑎𝑠𝑘 to create the new training
data. The operation * denotes element-wise multiplication between two vectors. The resulting
vector 𝑥𝑛𝑒𝑤 represents the new input data close to 𝑥 but with removed information from the
most important region (𝑍 × 𝑍).

𝑥𝑛𝑒𝑤 = 𝑥 *𝑚𝑎𝑠𝑘 (3.4)

It is important to note that the ADA method differs from randomly removing a region from
the input data because it chooses what to remove based on interpretability methods. Thus,
we can consider it as a form of interpretability-guided data augmentation.

3.1.1 Training method using Active image data augmentation

Algorithm 1 presents the ADA method, and Figure 7 graphically represents its training pipeline.
ADA consists of two main steps: (1) training the model for 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑒𝑝𝑜𝑐ℎ𝑠 using the original
data (Lines 2-3), thus it can learn the original data distribution; and (2) executing several cycles
in which each generates new data using the ADA method (Lines 4-7) and trains the model for
𝑎𝑑𝑎_𝑒𝑝𝑜𝑐ℎ𝑠 using this new data (Lines 6-7).

The ADA training method runs (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑒𝑝𝑜𝑐ℎ𝑠+𝑐𝑦𝑐𝑙𝑒𝑠*𝑎𝑑𝑎_𝑒𝑝𝑜𝑐ℎ𝑠) training epochs.
This number is an important choice as it is directly related to the computational cost of the
ADA.
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Figure 7 – Graphical representation of the ADA training method. a) first, the model is
trained during 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑒𝑝𝑜𝑐ℎ𝑠 epochs using only original data; b) second,
for each image in the training set, we generate the ADA data, and in step c) we
train the model during 𝑎𝑑𝑎_𝑒𝑝𝑜𝑐ℎ𝑠 using original and ADA data. The steps
b) and c) are executed cycles times.

Algoritmo 1: ADA’s training method.
Input: 𝐴𝑑𝑎_𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑚𝑜𝑑𝑒𝑙, 𝑑𝑎𝑡𝑎, 𝑐𝑦𝑐𝑙𝑒𝑠, 𝑎𝑑𝑎_𝑒𝑝𝑜𝑐ℎ𝑠

1 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙_𝑑𝑎𝑡𝑎← 𝑑𝑎𝑡𝑎 + 𝑐𝑙𝑎𝑠𝑠𝑖𝑐_𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝑑𝑎𝑡𝑎) ;
2 for 𝑖← 0; 𝑖 < 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑒𝑝𝑜𝑐ℎ𝑠 do
3 𝑚𝑜𝑑𝑒𝑙.𝑡𝑟𝑎𝑖𝑛(𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙_𝑑𝑎𝑡𝑎) ;
4 for 𝑖← 0; 𝑖 < 𝑐𝑦𝑐𝑙𝑒𝑠 do
5 𝑛𝑒𝑤_𝑑𝑎𝑡𝑎← 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙_𝑑𝑎𝑡𝑎 + 𝐴𝑑𝑎(𝑑𝑎𝑡𝑎, 𝑚𝑜𝑑𝑒𝑙) ;
6 for 𝑗 ← 0; 𝑗 < 𝑎𝑑𝑎_𝑒𝑝𝑜𝑐ℎ𝑠 do
7 𝑚𝑜𝑑𝑒𝑙.𝑡𝑟𝑎𝑖𝑛(𝑛𝑒𝑤_𝑑𝑎𝑡𝑎);

8 return 𝑚𝑜𝑑𝑒𝑙

3.2 EXPERIMENTS

In the experiments, we used five interpretability methods in ADA and evaluated their impact
on the robustness of the trained models. These methods include: Vanilla Gradient (SIMON;

RODNER; DENZLER, 2014), Guided Backpropagation (SPRINGENBERG et al., 2015), Grad-Cam
(SELVARAJU et al., 2017), Guided Grad-Cam, and Input x Gradient. The Spinal Cord Grey
Matter Segmentation (SCGM) dataset (PRADOS et al., 2017) was used in this experiment.
The DeepSeg model (PORISKY et al., 2017) achieved good results in SCGM. As it is based
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on a U-Net architecture (RONNEBERGER; FISCHER; BROX, 2015), we decided to use the U-Net
architecture to execute these experiments. The following section describes the SCGM dataset,
evaluation metrics, U-Net architecture, and details about the experiments.

3.2.1 Spinal Cord Grey Matter Segmentation - SCGM

The SCGM dataset consists of Magnetic Resonance Imaging (MRI) images from different
patients. It comprises 80 sub-datasets, with 40 designated for training and 40 for testing.
According to SCGM (PRADOS et al., 2017), each group of 20 datasets was acquired from
the following institutions: University College London, Polytechnique Montreal, University of
Zurich, and Vanderbilt University. More specific details about how the data were acquired
can be found in (PRADOS et al., 2017). As SCGM does not have a defined validation dataset,
we used 20% of the original training data to produce the validation data. Our experiment
also includes a robustness scenario, which is crucial for evaluating the efficiency of the ADA
method. We used the validation data to construct this scenario since we do not have access
to the test data of SCGM. The evaluation process for SCGM is conducted through an online
system 2.

3.2.2 Metrics

The evaluation process of the proposed method uses five different evaluation metrics. They
measure different types of information between the model’s output and the labels of the ground
truth data. They are divided into three categories: overlap, distance, and statistical. Table 1
summarizes the metrics, including their names, abbreviations, scale ranges, and categories.

Table 1 – Summary of evaluation metrics. Adapted from (PRADOS et al., 2017)

Metric Name Abbreviation Range Category
Dice Similarity Coefficient DSC 0˘100 Intersection
(DICE, 1945b)
Hausdorff Surface Distance HSD > 0 Distance
(TAHA; HANBURY, 2015)
Sensitivity (TP) TPR 0˘100 Statistical
Specificity (TN) TNR 0˘100 Statistical
Precision PPV 0˘100 Statistical

In the distance category metric, the lower the obtained value, the better the result. However,
in the metrics of the Intersection and Statistical categories, the higher the values obtained,
the better the results. It is important to note that the metrics Sensitivity, Specificity, and
Precision represent classical metrics such as true positive rate, true negative rate, and precision,
respectively.
2 http://niftyweb.cs.ucl.ac.uk/program.php?p=CHALLENGE
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3.2.3 Models

The U-Net (RONNEBERGER; FISCHER; BROX, 2015) used in this work comprises three down-
sampling layers, three upsampling layers, and an output layer with a logistic sigmoid activation
function. It is important to note that after each convolutional layer, a dropout regularization
layer (SRIVASTAVA et al., 2014) is used, followed by batch normalization (IOFFE; SZEGEDY, 2015).
During the first 100 training epochs, the following traditional data augmentation methods were
used: Rotation, Shift, Scale, Channel Shift, and Elastic Deformation. Table 2 presents all the
parameters defined based on previous works (PERONE; CALABRESE; COHEN-ADAD, 2018).

The U-Net model was trained for 100 epochs using only the original data. Then, five
U-Net models were created and initialized with the same state as this first U-Net at epoch
100. Each of these five instances of U-Net was trained using the ADA method with a specific
interpretability method, namely: (i) Vanilla Backprop, (ii) Input X Gradient, (iii) Grad-Cam,
(iv) Guided Backprop, and (v) Guided Grad-Cam. These interpretability methods were chosen
because they share common characteristics. For example, all of them are based on the gradient
vector and do not require a reference input vector. The dropout rate used by U-Net was 0.5,
and the batch normalization momentum was 0.4. The optimization method used was Adam
(KINGMA; BA, 2014) with an initial learning rate of 0.001 and a batch size of 16. Each instance
of the U-Net models was trained for 31 ADA cycles, with each cycle training the instance for
30 epochs using data obtained from ADA with an occlusion region of size 20× 20. We chose
the epoch of each model with the best validation results to produce the robustness results.

Table 2 – Parameters used in the data augmentation.

Method Parameters value
Rotation (degrees) [−4.6, 4.6]
Shift (%) [−0.03, 0.03]
Scaling [0.98, 1.02]
Channel Shift [−0.17, 0.17]
Elastic Deformation 𝛼 = 30.0, 𝜎 = 4.0

3.2.4 Robustness Database

We used the validation data from SCGM to construct the robustness dataset. New images
were generated with a 20x20 region occluded. Thus, we evaluated the model’s performance
in a scenario with images containing incomplete information. Algorithm 2 outlines how these
new evaluation data, which we refer to as the robustness dataset, were constructed.

The function 𝑒𝑟𝑎𝑠𝑒_𝑟𝑒𝑔𝑖𝑜𝑛 in Algorithm 2 takes the image as input and sets to 0 all pixels
within the square of area 𝑍 × 𝑍 that starts at position (𝑖, 𝑗) and ends at (𝑖 + 𝑧, 𝑗 + 𝑧).v



42

Algoritmo 2: Function to build the robustness dataset.
Input: 𝐵𝑢𝑖𝑙𝑑_𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠_𝐷𝑎𝑡𝑎

1 𝑑𝑎𝑡𝑎, 𝑛, 𝑧 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠_𝑑𝑎𝑡𝑎← [] ;
2 for 𝑥 ∈ 𝑑𝑎𝑡𝑎 do
3 for 𝑖← 0; 𝑖 < 𝑛; 𝑖+ = 𝑧 do
4 for 𝑗 ← 0; 𝑗 < 𝑛; 𝑗+ = 𝑧 do
5 𝑥_𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑑← 𝑒𝑟𝑎𝑠𝑒_𝑟𝑒𝑔𝑖𝑜𝑛(𝑐𝑙𝑜𝑛𝑒(𝑥), 𝑖, 𝑗, 𝑧) ;
6 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠_𝑑𝑎𝑡𝑎.𝑎𝑝𝑝𝑒𝑛𝑑(𝑥_𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑑) ;

7 return 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠_𝑑𝑎𝑡𝑎

3.3 RESULTS AND DISCUSSIONS

Figure 8 presents the convergence curve of the five U-Net models, each using a different
interpretability method. This convergence curve was generated by evaluating the U-Net models
with the original validation data at each epoch. This analysis reveals that the model using Grad-
Cam achieves better validation results in the early epochs, surpassing a dice score of 80. In
contrast, the best among the other methods achieves a dice score of 79. This result indicates
that the model did not generalize enough before applying the ADA method. However, after
the initial epochs of ADA with Grad-Cam, the model improved validation performance after
a few epochs. In addition to the promising early results of U-Net with Grad-Cam, the curve
shows that after epoch 123, all methods perform similarly, suggesting they converge to almost
the same point.

After analyzing Figure 8, Table 3 highlights the results of each model on the validation
data. Each model achieves a similar best Dice score (DSC) to the others, but the U-Net
with Guided Gradient exhibits the highest DSC, followed by the U-Net using Grad-Cam. It is
important to note the difference in precision and recall achieved by Grad-Cam compared to
the other methods.

Table 3 – Results obtained using the validation data from SCGM.

Models DSC HSD TPR TNR PPV
Vanilla Backprop 86.56 1.72 87.72 99.95 86.21
InputXGradient 86.45 1.70 87.33 99.95 86.38
Guided Gradient 86.72 1.71 87.57 99.95 86.70
Grad-Cam 86.61 1.72 89.53 99.94 84.61
Guided Grad-Cam 86.56 1.70 87.65 99.95 86.34
U-Net 87.00 4.79 96.92 99.07 78.95

The main objective of ADA is to improve the model’s robustness. Therefore, creating a
dataset to evaluate robustness in the proposed scenario was necessary. This dataset was built
from the validation data. Section 3.2.4 presents the details related to the construction of this
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Figure 8 – Analysis of the convergence of the model. The x-axis means the epoch and the
y-axis means the Dice score after trained in the respective epoch. The zoomed-
in region shows that Grad-Cam performs better than other interpretability
methods in the early training epochs

database. All results presented so far using the original validation data were important only to
show that the models trained using ADA maintain the original quality of the U-Net without
ADA.

Table 4 presents the results obtained from the database built to analyze robustness. They
suggest that the U-Net with Grad-Cam performs better than all other models. Additionally, the
precision-recall curve behavior of the U-Net model with Grad-Cam is different from all others,
as the precision is relatively lower than the others, and the recall is higher. These results
suggest that the ADA method yields better results in the robustness scenario. Moreover, they
provide strong evidence that the Grad-Cam method can guide the U-Net model to focus on
information that is truly relevant to solving the problem.

3.3.1 Analysis of the Initial Training Steps with ADA

The results obtained showed that the impact of interpretability methods on ADA is primarily
linked to the early epochs of its execution, which is an interesting behavior as it reduces the
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Table 4 – Results obtained using the robustness dataset.

Models DSC HSD TPR TNR PPV
Vanilla Backprop 85.86 1.72 86.73 99.94 85.99
InputXGradient 85.76 1.71 86.36 99.95 86.15
Guided Gradient 86.03 1.71 86.57 99.95 86.50
Grad-Cam 86.15 1.73 88.84 99.94 84.45
Guided Grad-Cam 85.90 1.70 86.68 99.95 86.12

need for many iterations as well as computational costs. To analyze this phenomenon in detail,
this section analyzes the interpretability maps obtained by different methods in the initial steps
of ADA.

The interpretability methods used in ADA suggest which region of the input image should
be occluded to construct the new training image. Thus, given a new image, we calculate
the IoU index between the regions that the method deems important to assess their similarity.
Figure 9 presents an example of the original input image and the image obtained after applying
ADA. The IoU is calculated based on the mask used to occlude each region of the input image.

Figure 9 – Data augmentation samples obtained from the first ADA cycle. Given an input
image, we compute the most important region for each interpretability method,
and then we compute the IoU metric between their masks.

The IoU matrix in Figure 10 presents the average of all IoU matrices calculated from
all images in the training data. Since the IoU matrix is obtained in the early steps of ADA,
and Grad-Cam showed better results in the initial epochs, this experiment demonstrates that
Grad-Cam produces new training images different from those produced by other methods.
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Figure 10 – IoU matrix between all methods. Grad-Cam presents a lower IoU when com-
pared to all other methods. This implies that the regions occluded by it are
very different from those occluded by the others, as shown in the figure 9.

3.4 CONCLUSION

Active Image Data Augmentation aims to improve the model’s robustness by helping them
focus on important information in the input vector. ADA uses interpretability methods in the
process, so we evaluated it using different interpretability methods to identify their influence
on the final model performance.

The results obtained showed that all models using different interpretability methods achieved
competitive results. Still, they suffered a tiny performance drop on the original test set com-
pared to a model trained only with original data. All models achieved closed dice score values
on original test set, which suggest that in future work is necessary to apply statistical test in a
more robust experiment to verify if there is statistical significance in the results. Additionally, in
the robustness evaluation, all models showed similar results, but the approach using Grad-Cam
yielded better results in the early epochs. This suggests that Grad-Cam may guide ADA to
help the model focus on the signal information from the input vector in the early epochs.
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4 RIGHT REASONS DATA AUGMENTATION

Several recent works have proposed new loss functions to guide the model to focus on signal
features (ROSS; HUGHES; DOSHI-VELEZ, 2017; SCHRAMOWSKI et al., 2020; VIVIANO et al., 2021;
SIMPSON et al., 2019; RIEGER et al., 2020; ERION et al., 2019), thereby using signal information
instead of contextual information in the inference process. These methods are referred to in
the literature as Right for the Right Reasons (RRR) approaches. These loss functions generally
use second-order gradient optimization (DRUCKER; CUN, 1992) and incorporate a right reasons
factor into the loss function. The right reasons factor is responsible for encouraging the model
to use the signal information in decision-making. Equation 4.1 presents a generic loss function
for RRR training. This generic loss function consists of a 𝑅𝑖𝑔ℎ𝑡_𝑎𝑛𝑠𝑤𝑒𝑟 factor to guide the
model to decide correctly and a 𝑅𝑖𝑔ℎ𝑡_𝑟𝑒𝑎𝑠𝑜𝑛 factor to instruct the model to focus on signal
information. The terms 𝜆1 and 𝜆2 are parameters to weigh the contributions of both factors.

𝐿(𝜃, 𝑋, 𝑦, 𝐴) = 𝜆1𝑅𝑖𝑔ℎ𝑡_𝑎𝑛𝑠𝑤𝑒𝑟(𝜃, 𝑋, 𝑦)

+𝜆2𝑅𝑖𝑔ℎ𝑡_𝑟𝑒𝑎𝑠𝑜𝑛(𝜃, 𝑋, 𝑦, 𝐴)
(4.1)

In chapter 3 we argue that the RRR methods have an additional computational cost and
some of them need a specific interpretability method. Thus, we propose Active Image Data
Augmentation (ADA) to mitigate these issues. However, the ADA method also has weaknesses.
For example, we need to evaluate what is the best interpretability method for it, the number
of standard training epochs, the number of ADA cycles, the number of ADA epochs, the size
of the patch that will be removed, and which information we will insert in the removed region.
In addition, we would like to highlight that all of these RRR methods (including ADA) depend
on the fairness of interpretability methods.

All the RRR methods try to adjust the model during the training and ignore that contex-
t/background dependence may be a data issue instead of a model issue. Rather than explicitly
optimizing the model to focus on signal features, we would like to wonder: what happens
if we have a batch of inputs of different categories with the same background (i.e., Figure
11)? We assume the model will try to use the signal features as this is the only difference
between the inputs. Based on this motivation, in this chapter, we propose the Right reason
data augmentation (RRDA)1 to learn robust and fair model.

1 This chapter is based on Santos, Flávio Arthur Oliveira, and Cleber Zanchettin. "Exploring Image
Classification Robustness and Interpretability with Right for the Right Reasons Data Augmentation."
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops,
pp. 4147-4156. 2023. URL <https://openaccess.thecvf.com/content/ICCV2023W/LXCV/html/
Santos_Exploring_Image_Classification_Robustness_and_Interpretability_with_Right_for_
the_ICCVW_2023_paper.html>

https://openaccess.thecvf.com/content/ICCV2023W/LXCV/html/Santos_Exploring_Image_Classification_Robustness_and_Interpretability_with_Right_for_the_ICCVW_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023W/LXCV/html/Santos_Exploring_Image_Classification_Robustness_and_Interpretability_with_Right_for_the_ICCVW_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023W/LXCV/html/Santos_Exploring_Image_Classification_Robustness_and_Interpretability_with_Right_for_the_ICCVW_2023_paper.html
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Figure 11 – Right reasons data augmentation - Motivation. This sample illustrates
a batch of three images of three different categories, but they have the same
image. We argue that if the discriminative information is only the signal
features, the model will learn to focus on this information during the inference
step.

4.1 RIGHT FOR THE RIGHT REASONS - A DATA-CENTRIC PERSPECTIVE

Right for the Right Reasons (RRR) is a property of models relating to their robustness, fairness,
and reliability. RRR models are trained to extract pertinent patterns from the input signal and
make inferences based on meaningful signals rather than spurious correlations. According to
the Cambridge Dictionary, context is the situation within which something exists or happens,
and that can help explain it2. Thus, context should not be the primary focus, but rather, it
should assist in understanding the primary focus. Issues with data can lead models to learn
shortcuts from context information (GEIRHOS et al., 2020), correlating context information with
the input label and resulting in an unfair model. Several works (ROSS; HUGHES; DOSHI-VELEZ,
2017; SCHRAMOWSKI et al., 2020; SIMPSON et al., 2019; RIEGER et al., 2020; ERION et al., 2019;
VIVIANO et al., 2021) propose new optimization loss functions for the model to learn to ignore
non-signal information.

Consequently, after the training process, models will learn to extract patterns related to
the signal. In this work, we take a different approach by proposing a data-centric perspective
to achieve RRR. We argue that if a model is trained on the Right Reasons Data (RRD), it
will inherently be RRR. In the following sections, we present the Right for the Right Reasons
Data (RRRD) concept and discuss how to transform raw data into right reasons data.

RRRD assumes an input data vector 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] that comprises both class-
informative (signal) and context-informative features. We argue that if, after training a model
𝑓 with a dataset 𝐷, it correlates a set of context-informative features 𝐶 with label 𝑦, this is
likely because 𝐷 is context-biased, and the context 𝐶 only appears in input samples with label
2 https://dictionary.cambridge.org/us/dictionary/english/context
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𝑦. Therefore, 𝐷 cannot be considered an RRRD dataset because its context information alone
is enough for the model to discriminate between samples. Next, we present the definitions
necessary to understand this concept. These definitions assume the existence of an oracle 𝑂

that is robust, fair, and trustworthy.

Definition 4.1.1 Given an input vector 𝐼 of category 𝑐, a subset of features, denoted as 𝐼𝐶,
is defined as ’class-informative’ if it is sufficient for the model 𝑂 to classify 𝐼 as category 𝑐.

Definition 4.1.2 Given an input vector 𝐼 of category 𝑐, a subset of features, denoted as 𝐶,
is defined as ’context-informative’ if its intersection with 𝐼𝐶 is empty, and it is insufficient on
its own for the model 𝑂 to classify 𝐼 as category 𝑐.

Definitions 4.1.1 and 4.1.2 provide clarity on what we consider class-informative and
context-informative features. Moreover, these definitions imply that 𝐼𝐶 and 𝐶 are disjoint
sets, and their union constitutes the complete input vector.

4.1.1 Right Reasons Data Augmentation

This section discusses the issue of models learning patterns from context rather than signal
when the data correlates context and label. We propose a solution through a data augmenta-
tion method named Right Reasons Data Augmentation (RRDA). It aims to transfer context
information between data samples, encouraging the model to utilize signal information for dis-
crimination, thereby enhancing fairness and robustness. Figure 12 presents a sample of RRDA
performed on a batch of images. Algorithm 3 provides a pseudo-code illustrating its generic
implementation.
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Figure 12 – Example of RRDA performing data augmentation on a batch of 8
input images. Each column represents an input image. The first row shows
the original input batch, and the second row shows the output obtained from
the RRDA algorithm.

Given a batch of samples 𝑋, the labels 𝑦, and a binary context information mask 𝐶𝐼,
the RRDA algorithm 3 iterates over each batch sample (Line 4) and selects a random one to
replace its context information (Lines 5-7). It then adds the new samples and their respective
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labels to a new batch list (Lines 8-11). The primary objective of the RRDA algorithm is to
embody the idea of context shift in a generic manner. For simplicity, it presumes the data
is structured and all context and class-informative features are in the same position for all
samples. Therefore, when computing 𝑛𝑒𝑤_𝑙𝑒𝑓𝑡 (Line 6), we insert zeros in 𝑋[𝑙𝑒𝑓𝑡] context
and add the context information from 𝑋[𝑟𝑖𝑔ℎ𝑡]. This process may not apply to unstructured
data (e.g., images and text) because context and signal positions often vary for each sample
in the dataset. Consequently, specific implementation for each domain must address this issue.

Algoritmo 3: RRDA algorithm
1: procedure RRDA(𝑋, 𝑦, 𝐶𝐼) ◁ Compute RRDA for a batch X
2: 𝑟𝑟𝑑𝑎_𝑏𝑎𝑡𝑐ℎ← [] for 𝑙𝑒𝑓𝑡 ≤ 𝑙𝑒𝑛(𝑋) do
3:

𝑟𝑖𝑔ℎ𝑡← 𝑟𝑎𝑛𝑑𝑜𝑚(𝑙𝑒𝑛(𝑋))
4: 𝑛𝑒𝑤_𝑙𝑒𝑓𝑡← (1− 𝐶𝐼[𝑙𝑒𝑓𝑡])⊙𝑋[𝑙𝑒𝑓𝑡] + 𝑋[𝑟𝑖𝑔ℎ𝑡]⊙ 𝐶𝐼[𝑟𝑖𝑔ℎ𝑡]
5: 𝑛𝑒𝑤_𝑟𝑖𝑔ℎ𝑡← (1− 𝐶𝐼[𝑟𝑖𝑔ℎ𝑡])⊙𝑋[𝑟𝑖𝑔ℎ𝑡] + 𝑋[𝑙𝑒𝑓𝑡]⊙ 𝐶𝐼[𝑙𝑒𝑓𝑡] ◁ Replace context

between two samples.
6: 𝑟𝑟𝑑𝑎_𝑏𝑎𝑡𝑐ℎ.𝑎𝑝𝑝𝑒𝑛𝑑((𝑛𝑒𝑤_𝑙𝑒𝑓𝑡, 𝑦[𝑙𝑒𝑓𝑡]))
7: 𝑟𝑟𝑑𝑎_𝑏𝑎𝑡𝑐ℎ.𝑎𝑝𝑝𝑒𝑛𝑑((𝑛𝑒𝑤_𝑟𝑖𝑔ℎ𝑡, 𝑦[𝑟𝑖𝑔ℎ𝑡]))
8:
9: return 𝑟𝑟𝑑𝑎_𝑏𝑎𝑡𝑐ℎ ◁ The RRDA new batch and labels

10: end procedure

4.2 EXPERIMENTS AND RESULTS

Evaluating RRR is challenging as it requires a task with both signal and context information.
Additionally, data manipulation and the creation of new data are necessary for assessing the
model’s robustness in the face of context shifts, thereby extending beyond the typical test
accuracy evaluation. Background sensitivity serves as a task for evaluating the impact of
image backgrounds on object recognition models. We used this task to evaluate RRR methods
and the proposed RRDA. If the model can ignore the background information and exhibit
robustness to context shifts, it indicates a focus on the signal information. This aligns with
the requirements and scope of this work.

4.2.1 Datasets

To evaluate background sensitivity, we need datasets with image labels and object segmenta-
tion. Therefore, we utilize the ImageNet-9 (XIAO et al., 2021) challenge, which is specific to
background robustness, and construct a similar background challenge with RIVAL10 (MOAYERI

et al., 2022).
ImageNet-9 (IN-9) (XIAO et al., 2021) is a dataset designed for evaluating background

sensitivity in object recognition. It is a subset of ImageNet (DENG et al., 2009b) and consists of
nine classes, each containing 5.045 training and 450 testing images. The image bounding box
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annotations, crucial for evaluating background sensitivity, are not abundant for each category in
the original ImageNet split. Consequently, the authors of IN-9 grouped the ImageNet categories
according to their ancestors in the WordNet (MILLER, 1995) hierarchy. In addition to the raw
images from ImageNet, IN-9 includes seven synthetic dataset variations intended to assess
the background sensitivity of image classification models. These variations result from the
processing of foreground or background elements in the original dataset. Figure 13 provides a
visual example of each dataset variation.

RIVAL10 (MOAYERI et al., 2022), a subset of ImageNet aligning with the CIFAR10 dataset
classes and comprising roughly 26k images, also offers object segmentation for each image
and comprehensive attribution annotation for each object. To verify the generalization of our
proposal, we employ the full object segmentation from RIVAL10 to generate the mixed-same,
mixed-rand, mixed-next, and only-fg variations.

Figure 13 – ImageNet-9 challenges. The top row displays samples of challenges that
alter the foreground information, while the bottom row introduces the chal-
lenges that modify the background information. The original challenge in-
cludes images with neither foreground nor background information changes.
In the ’Original’ scenario, the original background of the image is used. ’BG’
refers to the background, and FG’ to the image foreground. In the ’Mixed
Same’ scenario, the background is swapped with the background of another
image belonging to the same class. In the Mixed Rand scenario, the back-
ground is swapped with the background of another image from a different
random class. In the ’Mixed Next’ scenario, the background is swapped with
one of another image belonging to the next class, i.e., if the class index for
the image is 2, then we swap backgrounds with an image from class 7.
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Table 5 – Challenge results for ImageNet9 dataset. The table organizes the results
by dataset, with each row representing an evaluation. The columns ’Architec-
ture’ and ’Method’ represent the architecture and training method used. The
’ImageNet-9’ column represents the results for the model trained with each re-
spective dataset. The ’Original’, ’Mixed same’, ’Mixed rand’, and ’Mixed next’
columns represent the accuracy results for each challenge, while the ’BG-Gap’
column represents the difference between the ’Mixed rand’ and ’Mixed same’
results.

ImageNet-9
Architecture Method Mixed Mixed Mixed BG Original

same rand next Gap

ResNet-18 Standard 92.67 82.99 80.22 9.68 96.15
ResNet-18 ActDiff 90.27 84.47 83.26 5.80 93.46
ResNet-18 GradMask 86.77 76.34 73.43 10.42 90.79
ResNet-18 ADA 92.20 81.80 79.28 10.40 96.05
ResNet-18 RRR 91.90 82.12 78.77 9.78 95.31
ResNet-18 ActDiff 89.56 85.90 84.89 3.65 92.49

+ RRDA
ResNet-18 Standard 88.30 83.41 82.37 4.88 90.62

+ RRDA
ViT Standard 94.15 86.84 84.69 7.3 98.35
ViT ActDiff 95.98 90.27 89.46 5.7 98.99
ViT GradMask 93.38 86.52 84.77 6.7 97.04
ViT ADA 91.73 81.98 80.12 9.7 97.24
ViT RRR 90.42 80.04 78.54 10.4 96.74
ViT Standard 97.28 96.00 95.88 1.28 99.06

+ RRDA
ViT ActDiff 96.12 93.26 93.04 2.86 98.79

+ RRDA

4.2.2 Implementation details

We used two pretrained models in the experiments, specifically the ResNet-18 from Torchvi-
sion3 (HE et al., 2015) and ViT (DOSOVITSKIY et al., 2020) from timm4. Both models were
end-to-end fine-tuned with Stochastic gradient descent (SGD) by 50 epochs using a learning
rate equal to 0.001 and batch size 32. In addition, we ablate the weight contribution of the
Right answer factor (i.e., 𝜆2 in equation 4.1) for all non-standard methods and present the
best result in the paper. Table 7 presents the 𝜆2 ranges used in the experiments.
3 ResNet18 model from <https://pytorch.org/vision/main/models/resnet.html>
4 vit_base_patch16_224_in21k model from <https://github.com/huggingface/

pytorch-image-models>

https://pytorch.org/vision/main/models/resnet.html
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models
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Table 6 – Challenge results for RIVAL10 dataset. This table is structured in the
same way as table 5.

RIVAL10
Architecture Method Mixed Mixed Mixed BG Original

same rand next Gap

ResNet-18 Standard 95.01 87.82 88.65 7.19 99.19
ResNet-18 ActDiff 94.91 86.55 87.16 8.36 98.77
ResNet-18 GradMask 90.65 83.96 84.34 6.69 96.61
ResNet-18 ADA 95.20 88.64 89.35 6.55 99.07
ResNet-18 RRR 94.82 87.89 88.67 6.92 98.90
ResNet-18 ActDiff 96.25 94.57 94.21 1.68 98.52

+ RRDA
ResNet-18 Standard 95.38 93.93 93.89 1.46 96.80

+ RRDA
ViT Standard 95.31 87.99 88.61 7.32 99.24
ViT ActDiff 96.92 92.26 91.47 4.65 99.62
ViT GradMask 96.52 90.81 91.09 5.71 99.49
ViT ADA 96.27 88.84 90.09 7.45 99.69
ViT RRR 53.01 34.09 35.19 18.94 64.76
ViT Standard 96.67 96.44 96.48 0.23 97.81

+ RRDA
ViT ActDiff 97.69 94.45 94.09 3.24 99.75

+ RRDA

Table 7 – Regularizer rate values used during training for the right for the right
reasons methods.

Method 𝜆2
ActDiff [20, 23]
GradMask [10−5, 5 * 10−3]
RRR [101, 103]

4.2.3 Background Challenge Results

Table 5 presents the results from the Background challenge. The 𝑜𝑟𝑖𝑔. column displays the
results obtained from the original test split. All models achieve an accuracy above 90%, except
for ViT with RRR, which does not generalize well on the RIVAL10 dataset. The BG-Gap
column represents the difference between the Mixed Rand and Mixed Same results, indicating
the variation in model accuracy when evaluated with biased (i.e., a background of the same
class) and unbiased backgrounds. Therefore, a lower BG-Gap reflects a more robust model
capable of handling backgrounds from different categories. It is important to highlight that
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the BG-Gap should be analyzed jointly with original accuracy because a perfect model (i.e.,
100% on mixed rand and same) and a random model (i.e., 10% accuracy on mixed rand and
same) will have BG-Gap equal to zero. The results suggest that not all RRR methods are
robust to background sensitivity, as evidenced by the BG-Gap from GradMask, ADA, and RRR
being worse than Standard training with the ResNet architecture on IN-9. Furthermore, the
best BG-Gap on both datasets was achieved by the ViT trained with Standard + RRDA.

Does Robustness Depend on Dataset Characteristics? The results reveal a significant
difference between the accuracies on IN-9 and RIVAL, suggesting that specific dataset features,
such as categories, number of classes, image distribution, and the relationship between signal
and background, may considerably impact model robustness.

On the connection between the challenges. Figure 14 presents the correlation between
the results of the challenges for each dataset. These results indicate a strong correlation
between the Mixed same and Original, as well as between the Mixed rand and Mixed next
scenarios. This result suggests how the models correlate signal with background information
because mixed same have background information from the same categories, and mixed next
as well mixed rand have the background from different classes.
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Figure 14 – Correlation between the challenges. We compute the Person correlation
between the challenge results for each dataset. It shows a positive correlation
between all pairs, but the correlation between Mixed same and Original, and
Mixed rand and Mixed next are the higher values in both datasets.

4.2.4 Analysis of BG-Gap distributions

Is background robustness architecture dependent? Supervised learning design encom-
passes three major components: the model, the data, and the optimization loss. Thus far, we
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have primarily discussed different data and optimization loss functions to guide the model to
adhere to the RRR principle. We aim to evaluate the impact of the architectural choice on
robustness. We specifically highlight the difference between the results of the ResNet and ViT
architectures, as shown in Figure 15a. The figure illustrates that the ViT architecture is more
robust than ResNet, achieving a background gap minimum that is at least twice as low as
that of ResNet on both datasets. Furthermore, both the maximum and median background
gaps of ViT are lower than those of ResNet (PAUL; CHEN, 2022). These findings are in line
with existing literature, where authors have argued that ViT exhibits greater robustness than
ResNet in terms of image transformations (PAUL; CHEN, 2022).

Does RRDA impact background robustness? Figure 15b compares the BG-Gap distri-
butions with and without RRDA. It demonstrates a substantial impact of RRDA on BG-Gap,
with high-density values for low BG-Gap approaching 0. In contrast, the BG-Gap for models
without RRDA is close to 10 for both datasets. Additionally, the median values exhibit stark
differences between the two situations. These results indicate that architecture design is cru-
cial in model fairness and robustness. This suggests a new direction for research, focusing on
the development of "right for the right reasons" architectures rather than solely on data and
optimization loss functions. Additionally, the analysis of BG-Gap distributions suggests that
RRDA significantly impacts model background robustness.

Is BG-Gap dependent on original accuracy? Figure 16 presents the correlation between
the BG-Gap metric and original accuracies. The correlation on RIVAL10 results is positive,
while in ImageNet-9, it is negative. Nevertheless, although in both cases, the correlation is
not strong enough, these insights could have significant implications for the training of deep
learning models for image classification, suggesting that striving only for high accuracy might
inadvertently lead to models that overfit the background of images and the more robust model
is not necessarily the best in test accuracy.

4.2.5 Model Dependence on Edge Information

Edge information is vital for image recognition as it represents boundaries between different
pieces of information, such as the foreground and background. In this section, we question
whether this information is necessary for models to make correct inferences and how robust
they are to changes in edge information. We create new variations of the original IN-9 and
RIVAL-10 datasets to perform the edge analysis by removing edge information with a fixed
width W. As the edge represents the transition between object information and background
information, we occlude parts of the signal and background by replacing it for black pixels,
thereby eliminating this transition. Figure 17a) presents an example of the model dependence
on the edge information pipeline, using an image from the original set and its version with the
edge removed.

We applied edge removal to the IN-9 and RIVAL-10 original sets and all background
variations, namely Mixed-same, Mixed-rand, and Mixed-next, with edge sizes varying from 5 to
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RRDA Non-RRDA
Figure 15 – BG-Gap distributions for different configurations. The BG-Gap distribution is

built from the BG Gap column in Table 5. The a) plot shows the comparison
between ResNet and ViT architectures based on BG-Gap distribution for
ImageNet-9 and RIVAL-10 datasets, while the b) plot compares the BG-Gap
when we use RRDA with when we do not use (i.e., Non-RRDA).

Figure 16 – Correlation between BG-Gap and Original accuracy. We compute
the Spearman correlation between all original accuracies higher or equal to
80% and BG-Gaps for each dataset scenario. In addition, we concatenate
them both and compute the Spearman correlation (i.e., ’Both’ scenario). The
results do not present a strong positive or negative correlation between the
values in all scenarios.
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Figure 17 – a) Pipeline of Edge Analysis. Given an input image of class 𝑦, we first
conduct an edge analysis that erases the image edge of width 𝑊 . We then
compute the model’s inference to produce a triplet consisting of the model
name, class, and predicted class. This edge analysis is computed for all seven
models, using an edge width ranging from 5 to 50 pixels. b) Results Ob-
tained from Edge Dependence Analysis. The results are grouped by
dataset, namely ImageNet9 and Rival10. For each dataset, each column rep-
resents a different challenge arranged in a sequence of increasing difficulty,
starting with the original data and ending with the original data whose back-
ground is from the next class. Within each column, each cell represents the
accuracy obtained for a specific edge size, starting from 5 and ending at 50.

50. It is important to highlight that images with high-edge sizes almost do not have information,
but these scenarios are important to visualize the tendency of the results. The results of
this analysis are presented in Figure 17b). These results indicate that edges are essential
for all models across all challenges, as an increase in edge size corresponds to a decrease in
accuracy. Another notable observation is the relationship between challenge difficulty and edge
dependency. As the difficulty of the challenge increases, the models become more dependent
on edge information, as indicated by lower accuracy scores. For instance, focusing on an edge
size of five, accuracy decreases in line with the difficulty level of the challenge.
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A significant finding is that models using the RRDA augmentation method exhibit greater
edge information robustness than the standard and raw RRR methods. While the standard
method with RRDA maintains similar performance across all challenges, the raw standard
method demonstrates greater robustness when evaluated on the original challenge. This sug-
gests that the standard method is tailored to the original distribution and depends on the back-
ground. In general, ActDiff with RRDA augmentation outperformed other methods, demon-
strating consistent accuracy across all challenge variations.

Table 8 – Signal Information Results. Comparison of model performance when
trained with images containing only foreground (FG) or background (BG) in-
formation.

ImageNet-9 RIVAL10
Arch. Method Only Only Only Only

FG BG FG BG

RN-18 Standard 85.01 32.52 89.50 41.30
RN-18 ActDiff 86.96 16.20 91.01 40.50
RN-18 GradMask 77.24 23.98 85.41 32.50
RN-18 ADA 86.72 31.78 91.01 41.32
RN-18 RRR 86.10 30.32 88.47 39.69
RN-18 ActDiff 85.43 20.79 94.42 29.99

+ RRDA
RN-18 Standard 85.14 22.37 93.97 24.35

+ RRDA
ViT Standard 91.80 42.35 91.43 42.36
ViT ActDiff 95.31 41.04 95.04 44.91
ViT GradMask 90.57 33.63 92.00 45.03
ViT ADA 87.70 36.35 93.95 47.94
ViT RRR 86.12 33.24 37.10 27.87
ViT Standard 97.30 32.74 96.94 16.35

+ RRDA
ViT ActDiff 95.68 44.17 95.65 48.58

+ RRDA

4.2.6 Models Dependence on Signal Information

Definitions 4.1.1 and 4.1.2 clarify what we consider as class and context informative features.
In the context of an image classification task, with humans acting as a fair oracle, the object
signal is sufficient for us to perform the classification. This section analyzes model accuracy
when presented with only object signals or background information. Table 8 presents the
results.



58

The results demonstrate that high test set accuracy does not necessarily translate to high
accuracy when faced with only foreground information. All models trained without RRDA
experience a decrease in accuracy of at least 5% (i.e., Orig. - Only FG accuracy). However,
the ViT model trained with Standard + RRDA is the least affected, achieving almost the same
accuracy with Only FG as with the Original test, with this difference being less than 1% on
the RIVAL10 dataset.

Comparing the results of all ViT models with those of ResNet models trained with the same
method, it is evident that ViT consistently achieves higher Only FG accuracy. This reinforces
the claim that the choice of architecture is a fundamental building block in achieving robust
models.

Standard
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RRR

ADA

ActDiff

ActDiff+RRDA

GradMask
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Figure 18 – Analysis of Signal-to-Noise Ratio for Saliency. For each model and
dataset, we compute the signal-to-noise ratio for each image using the Saliency
interpretability method. We then create a box plot to display the distribution
of these ratios. The left panel presents the signal-to-noise ratio distributions
for the model trained with IN-9, while the right panel illustrates the scenario
with RIVAL 10.

4.2.7 Interpretability Methods are Fragile

Interpretability methods generate an attribution matrix, where each input dimension indicates
the importance of the corresponding input feature dimension for the model’s output predic-
tion. These methods enable us to analyze the difference in feature attribution between a model
robust to background changes and one that is not. To carry out this analysis, we compute
the signal-to-noise ratio (i.e., the ratio between the mean importance of the signal and back-
ground) for each input image in each model and construct a box plot to analyze the differences
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Figure 19 – Analysis of Signal-to-Noise Ratio for Integrated Gradients. This
pipeline follows the same steps as in Figure 18. However, this scenario uses
the Integrated gradients interpretability method instead of Saliency.

between models. Figures 18 and 19 present the results for the Saliency and Integrated gradients
interpretability method (SIMON; RODNER; DENZLER, 2014), respectively.

The results show that all ViT models exhibit a higher signal-to-noise ratio than the corre-
sponding ResNet-18 models trained with the same method on IN-9 for the Saliency method.
However, this pattern does not hold for the RIVAL 10 dataset, again underscoring that dataset
characteristics are crucial in these analyses.

Does high background robustness imply high signal importance? When analyz-
ing robust models that achieve high accuracy on only-FG and all mixed challenges, it might
seem natural to expect these models to attribute high importance to the signal and low im-
portance to the background (i.e., have a high signal-to-noise ratio). However, our analysis
reveals that this assumption does not always hold. For example, even one of the less robust
models, ResNet-18+GradMask, exhibits a high signal-to-noise ratio in RIVAL10. Furthermore,
while RRR and GradMask have higher signal-to-noise ratios than standard+RRDA, they are
less robust. This suggests that methods that learn to attribute low importance to the back-
ground (i.e., those with a high signal-to-noise ratio) are not necessarily the most robust. These
counter-intuitive findings warrant further investigation, as they raise several research questions
regarding the accuracy of interpretability methods and whether high signal importance is a
cause or a consequence of model robustness.
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4.3 CONCLUSION

This chapter evaluates methods such as RRR, GradMask, ActDiff, and ADA for their ro-
bustness to image background sensitivity using the ImageNet-9 and RIVAL10 datasets. The
results indicate that these methods struggle to create a robust model that focuses on signal
information rather than context information. In response, we propose the Right Reasons Data
Augmentation (RRDA) method to guide the training process and create robust models that
prioritize signal over context information. Remarkably, our results show that RRDA improves
the model performance upon the standard and ActDiff outcomes.

The vulnerability of RRR, GradMask, and ADA to background sensitivity is intriguing.
To obtain deeper insights, we conducted an interpretability analysis to understand how these
models attribute importance to different features. We computed the signal-to-noise ratio to
quantify the importance of the relationship between signal and context. The results from
this analysis, along with the challenges presented by the ImageNet-9 and RIVAL10 datasets,
suggest that having a high signal-to-noise ratio (i.e., signal features having high importance)
is not necessarily an indicator of model robustness. This helps clarify why RRR and GradMask
did not improve in terms of background sensitivity. Besides, this raises questions about the
fairness of interpretability methods.
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5 ADVERSARIAL RIGHT FOR THE RIGHT REASONS

Deep neural networks are robust to classify complex and high-dimensional data accurately.
These models automatically select important features or learn new data representations based
on what was learned during the training step. Thus, there is no guarantee that the input vectors
with correct information (domain expert discriminatory information) guide the decision-making
process. The Right for the right reasons (RRR) methods try to mitigate this problem by direct-
ing the models during training and making them use important information when performing
the inference. Following other research directions, (ZHANG; ZHU, 2019) evaluated how Ad-
versarial Trained Convolutional Neural Networks (ATCNN) process the input information and
showed that it learn to extract features related to the structure of the objects and are less
biased to object texture than standard models. These properties from ATCNN models are
important for a fair and robust model. Therefore, we ask, may adversarial training improve the
RRR methods? 1 Before answering this question, we perform an analysis with a Toy problem
to compare the interpretability maps of adversarial trained models with standard and RRR
trained models.

Toy problem motivation

This setup uses a toy problem described in (ROSS; HUGHES; DOSHI-VELEZ, 2017). It comprises
a two-class color dataset, as in figure 20. The first class is composed of images whose corners
have the same color, and the three top-middle blocks have different colors. The images from
class 2 are the ones in which none of the two class-1 conditions are satisfied.

The evaluation setup consists of training a Multilayer-Perceptron (MLP) architecture with
three different approaches: (i) standard, (ii) adversarial training, and (iii) right for the right
reasons. The MLP model comprises two hidden layers, the first with 50 units and the last
with 30 units. Both layers use the ReLU activation function. After training, we compute the
test accuracy and adversarial robustness accuracy and perform a qualitative analysis of the
interpretability of each model decision. Thus, we can compare how the models give importance
to each input.

Table 9 presents the results obtained from this analysis. All models have competitive
accuracy on the test set, and the model trained using the adversarial approach has better
accuracy on the adversarial evaluation scenario, as expected.

From Figure 21, we can see the qualitative analysis of the interpretability obtained from
each trained model. This analysis shows that the model trained with the standard approach uses
1 This chapter is based on Santos, Flávio Arthur O., Maynara Donato de Souza, and Cleber Zanchet-

tin. "Towards Background and Foreground Color Robustness with Adversarial Right for the Right
Reasons." In International Conference on Artificial Neural Networks (ICANN 2023), pp. 169-
180. Cham: Springer Nature Switzerland, 2023. URL <https://link.springer.com/chapter/10.1007/
978-3-031-44192-9_14>

https://link.springer.com/chapter/10.1007/978-3-031-44192-9_14
https://link.springer.com/chapter/10.1007/978-3-031-44192-9_14
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Figure 20 – Input examples of the Toy problem dataset. The toy problem has two
different classes defined by two well-defined rules. Thus, we can use it to
evaluate if the model inference uses features related to the rules.

Table 9 – Results of the toy problem analysis.

Model Test Accuracy Adversarial Accuracy
Standard Training 99.0 45.0
Adv. Training 99.0 92.0
RRR 100.0 87.0

many unimportant features, while the models trained with adversarial and RRR approaches use
the important ones. These results positively strengthen our question, indicating that adversarial
training can help the model to be right for the right reasons. Therefore, we propose a new
method to incorporate adversarial samples in the RRR methods, which we named Adversarial
Right for the Right Reasons (ARRR).

Figure 21 – Qualitative analysis of the input interpretability of all trained models. Figures
a, b, and c represent the interpretability obtained from the standard training,
adversarial training, and RRR model, respectively. The white dot highlights
the most important features of each model inference.
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5.1 ADVERSARIAL RIGHT FOR THE RIGHT REASONS

We propose introducing adversarial training in the right for the right reasons methods, gen-
erating a new approach we named Adversarial Right for Right Reasons (ARRR). Figure 22
presents the ARRR method pipeline.

𝐿𝑜𝑠𝑠(𝑋, 𝑦, 𝐼, 𝑟𝑟) = 𝜆1 𝐿𝑝𝑒(𝑓𝜃(𝑋), 𝑦)
𝑃 𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

+𝜆2 𝐿𝑟𝑟𝑟(𝐼(𝑓𝜃(𝑋)), 𝑟𝑟)
𝑅𝑅𝑅 𝑒𝑟𝑟𝑜𝑟

(5.1)

The equation 5.1 represents the general structure of the right for the right reasons loss
functions. The vector 𝑋 represents the input vector, 𝑦 the input target, 𝐼 the interpretability
method, and 𝑟𝑟 the right reasons. It is composed of two loss functions, the first one (𝐿𝑝𝑒) to
compute the prediction error and the second one (𝐿𝑟𝑟𝑟) to calculate how the model is giving
importance to the right reasons features.

In order to introduce adversarial training in this loss function, we propose to replace the
input vector X with its adversarial attack, named 𝑋𝑎𝑡𝑘. Thus, the adversarial right for the right
reasons loss equations results in the equation 5.2.

𝐿𝑜𝑠𝑠(𝑋𝑎𝑡𝑘, 𝑦, 𝐼, 𝑟𝑟) = 𝜆1 𝐿𝑝𝑒(𝑓𝜃(𝑋𝑎𝑡𝑘), 𝑦)
𝑃 𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟

+𝜆2 𝐿𝑟𝑟𝑟(𝐼(𝑓𝜃(𝑋𝑎𝑡𝑘)), 𝑟𝑟)
𝑅𝑅𝑅 𝑒𝑟𝑟𝑜𝑟

(5.2)
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Adversarial Attack

Penalize background features

Figure 22 – Steps of adversarial right for the right reasons method. The ARRR
method comprises three stages, presented in parts a), b), and c), respectively.
Given an input image, first, it computes an adversarial noise using some
adversarial attack approach. Second, it uses this adversarial noise to generate
an adversarial attack and feed the model to compute the inference loss. From
the loss, ARRR uses RRR methods to penalize the importance of background
pixels, thus learning to focus on signal information.

5.2 EXPERIMENTS AND RESULTS

We rely on the experiments suggested by (RIEGER et al., 2020) to evaluate the proposed method.
In this section, they have been grouped into two categories: (i) Structure-based problems, in
which the model must be able to learn the structure of objects, and (ii) Texture-based problems,
in which the extraction of features related to textures is critical for accurate classification. As
we want to analyze whether the model extracts the features that are important to solve the
problem, all the data sets used have information that is not important for the problem in
question and is biased. Thus, they must learn to ignore those unimportant and biased features
to have good results on the test set.
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Figure 23 – Examples of the Decoy MNIST and Color MNIST datasets. Both
datasets are built from MNIST samples and have ten classes. Besides, they
have a bias in the training input information. Thus, if the model learns the
shortcut to minimize the training loss, it will have low accuracy in the test set.
Decoy MNIST has a gray patch class-indicative in the training samples, while
the Color MNIST has a color indicative. However, these biases are different
in the test set.

5.2.1 Structure-based

We have used two toy datasets based on MNIST to perform this analysis: (1) Color MNIST
and (2) Decoy MNIST. Like MNIST, both databases comprise ten classes, 60,000 training,
and 10,000 test images. The difference between them and the original MNIST lies in the
information contained in each one. The first dataset has a color-class indicative in the training
set, but the colors-class is different in the test set; thus, if the model learns to identify the
color instead of the shape, it will have poor results in the test set. The second dataset, Decoy
MNIST, has a gray-scale patch in a random image position, indicating the class. Thus, if the
model learns to identify the patch instead of the object to classify shape (in this dataset,
the object is a number from 0-9), it will achieve poor results. To evaluate the impact of the
adversarial training in these models, we trained a simple CNN model with the FGSM attack
and used it in combination with RRR, CDEP, and EG approach. It is important to highlight
that image processing functions can solve both datasets’ biases. However, it can be used to
evaluate if the deep learning models can ignore such biases easily identified by humans.

From the results presented in Table 10, we can see that the adversarial training helps
to improve the accuracy of all models, and even when we train the model only with the
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FGSM, it achieves better accuracy than Vanilla, RRR, and EG training. In both tasks, Decoy
Mnist and Color Mnist, the model should be capable of identifying the number structure (class
information) to classify it correctly, so these results confirm the findings in (ZHANG; ZHU, 2019)
and indicate that adversarial training can help the model to be right for the right reasons in
structure-based problems.

Table 10 – Results of the structure-based problem.

Model ColorMNIST DecoyMNIST
Vanilla 0.2 60.1
CDEP 31.0 97.2
RRR 0.2 99.0
EG 10.0 97.8
FGSM 20.51 99.70
RRR + FGSM 19.90 99.70
EG + FGSM 11.35 98.90
CDEP + FGSM 46.27 99.55

5.2.2 Texture-based

In image classification problems, texture is an important signal information, and some tasks can
be categorized as texture-based because the pattern to be extracted and identified is texture.
This section evaluates the connection between adversarial training and the right for the right
reasons considering a texture-based task. We use the ISIC Skin Cancer dataset (CODELLA et

al., 2018), a benchmark comprising 21,654 images. Its task is to classify skin lesions as benign
or malignant. However, the dataset has a bias in half of the benign images. The bias is a
color patch present only in benign images; thus, if the model identifies that color patch, it
can classify half of the benign lesions without knowing any pattern about the malignant or
benign lesion. Therefore, it is an important benchmark to evaluate whether the model learns
to identify the right or biased pattern. Figure 24 presents some samples from the ISIC dataset.

Table 11 presents the results obtained from this analysis. We disagreed with the experiments
performed in (RIEGER et al., 2020) on this task. Since the dataset is unbalanced, the batch
size parameter is important. Due to computational constraints, they used different batch sizes
for each right for the right reasons. In this work, we re-implemented the RRR and the CDEP
model with a ResNet-18 instead of a VGG to keep the batch size equal for every experiment.
So, the first three rows of the table 11 represent the results obtained in the (RIEGER et al.,
2020) work, and the last one is from our execution. Our implementation of the CDEP and
RRR methods did not present any weakness because their results are better than those in
(RIEGER et al., 2020).

In general, the adversarial training did not improve the evaluation metrics in this scenario,
except when we compare the AUC metric on the CDEP with and without adversarial training.
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Figure 24 – Examples of the ISIC dataset.

Table 11 – Results of the texture-based problem.

Model AUC
(NO
PATCHES)

F1 (NO
PATCHES)

AUC
(ALL)

F1
(ALL)

Vanilla (RIEGER et al., 2020) 0.87 0.56 0.93 0.56
RRR (RIEGER et al., 2020) 0.75 0.46 0.86 0.44
CDEP (RIEGER et al., 2020) 0.89 0.61 0.94 0.60
Vanilla 0.91 0.69 0.94 0.69
RRR 0.91 0.67 0.95 0.67
CDEP 0.88 0.62 0.91 0.62
FGSM 0.82 0.52 0.90 0.52
RRR + FGSM 0.89 0.67 0.94 0.67
CDEP + FGSM 0.89 0.64 0.94 0.64

This result indicates that adversarial training can not help the model be right for the right
reasons on texture-based image classification tasks. Our intuition about these results is that
the inputs generated by adversarial methods change the texture of the input image, which
is very important for this task. Thus, this can change the class texture pattern, making it
challenging for the model to learn this information.

5.3 CONCLUSION

In this chapter, we proposed the adversarial rights for the right reasons method (ARRR)
to combine two important properties that deep neural networks must have: 1) adversarial
robustness and 2) right for the right reasons. Our assumption is combining adversarial samples
and right for the right reasons constraints can boost the model’s robustness. We evaluate
the proposed approach with two categories of image classification problems: structure-based
and texture-based. The findings indicate that introducing adversarial training on the RRR loss
helps the model robustness on the structure-based problem and achieves competitive results
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on texture-based problems.
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6 BACKGROUND DEPENDENCE OF VISUAL LANGUAGE MODELS

Deep learning models usually require a large dataset to achieve satisfactory generalization
performance on image recognition tasks (KOLESNIKOV et al., 2020; KRIZHEVSKY; SUTSKEVER;

HINTON, 2012). However, recent advancements in Visual Language Models (VLMs) (RAD-

FORD et al., 2021) have enabled applications to perform zero-shot image classification with
a surprising performance by simply querying a pre-trained model. These VLMs models are
trained with millions of image-text pairs and optimized to align the similarity between both
image representation and text representation, thus learning to correlate the visual with text
information.

Even with its impressive achievements, it’s essential to comprehend its constraints, just
as we do with other deep learning models. For instance, we know that non-VLM models may
learn spurious correlations between data and labels (TIAN et al., 2022), they are susceptible to
adversarial attacks (GOODFELLOW; SHLENS; SZEGEDY, 2015), and they do not generalize to
out-of-distribution samples (YANG et al., 2022). While these limitations have been extensively
studied in standard-trained image recognition models, there is a lack of studies concerning the
zero-shot image recognition models based on VLMs.

Previous work has studied the correlation between image backgrounds and image labels
(XIAO et al., 2021). It demonstrated that image recognition models are biased towards this
contextual information, and even human vision may rely on object context (TORRALBA, 2003).
The same literature suggests that the problem relies on the fact that the background variation
is much more common and diverse in the real world than training datasets. Thus, as LLMs
and VLMs are trained using large datasets, it is crucial to analyze if it may reduce the problem
due to the diversity of data.

This chapter1 aims to comprehensively evaluate and present insights into how those zero-
shot image classifiers based on VLMs utilize the image background information and whether
they are susceptible to such biases. Our efforts range from an interpretability analysis aiming to
understand how it attributes similarity scores in these situations to computing and comparing
the similarity scores corresponding to each target category description for each image and its
variations from the background shift.

The evaluation protocol comprises the ChatGPT+CLIP, ChatGPT+ALIGN (JIA et al.,
2021b), CLIP, and ALIGN models (MENON; VONDRICK, 2023) as zero-shot image classification
and compares their performance with standard architectures such as Vision Transformer (ViT)
(DOSOVITSKIY et al., 2020) and ResNet (HE et al., 2015). The experiments are performed on
ImageNet-9 (XIAO et al., 2021) and RIVAL10 Background (Developed in Chapter 4) datasets,
1 This chapter is based on Santos, Flávio Arthur Oliveira, Maynara Donato de Souza, and Cleber

Zanchettin. "Evaluating zero-shot image classification based on visual language model with relation
to background shift." In Neural Information Processing Systems Conference: LatinX in AI (LXAI)
Research Workshop 2023, New Orleans, USA, 2023.
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which are benchmarks used for robustness evaluation. Our accomplishments contribute to the
lack of analysis in this context, allowing a deeper understanding of the zero-shot LLM-based
model’s behavior and how it responds to the challenges.

6.1 METHODS

Zero-shot image classifier

We employed two distinct approaches for zero-shot image classification to conduct our analysis.
The first leverages the VLM, computing the similarity score between the label text and the
input image. The second approach involves the fusion of ChatGPT with VLM, referred to
as Large Language Model + VLM (LLM+VLM) (MENON; VONDRICK, 2023). In the case
of image classification using LLM+VLM, the model initially acquires category descriptions
from the LLM. Next, it follows the computations as in Equations 6.1 and 6.2. Specifically, it
calculates the average of similarities (𝜑) between the image embedding 𝑥 and the descriptor
text embedding 𝑑 for each descriptor in a set of descriptors 𝐷(𝑐) associated with a fixed class
𝑐. Finally, it determines the image category based on the highest class score within the set of
classes 𝐶, as present in equations 6.2.

𝑠(𝑐, 𝑥) = 1
|𝐷(𝑐)|

∑︁
𝑑∈𝐷(𝑐)

𝜑(𝑑, 𝑥) (6.1)

𝑃 (𝑥) = argmax
𝑐∈𝐶

𝑠(𝑥, 𝑐) (6.2)

We performed our analysis with two different VLMs, namely ALIGN (JIA et al., 2021b) and
CLIP (RADFORD et al., 2021). ALIGN2 (JIA et al., 2021b) is a visual language model which uses
contrastive learning train to align image representation with text representation, it uses an
EfficientNet (TAN; LE, 2019) to encoder image information and BERT (DEVLIN et al., 2018) as
text encoder. Similarly, CLIP (RADFORD et al., 2021) is also a VLM that learns to produce similar
representations for a given image and text pair. However, the CLIP uses the ViT (DOSOVITSKIY

et al., 2020) as an image encoder and a causal language model as a text encoder.

Background shift evaluation protocol

We propose a comprehensive analysis to evaluate the limitations of zero-shot image classifiers
based on LLM+VLM concerning image background shifts. The key questions for this analysis
are as follows:

• Q1: What is the impact of the background shifts on VLM image classifiers?
2 As the original align model is not available, we used the version from kakaobrain/align-base released

in huggingface
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• Q2: How does the VLM image classifier behave when dealing with images containing
only signal information?

• Q3: How does the VLM image classifier behave with images containing only background
information?

• Q4: What is the similarity score distribution for images with different backgrounds, and
how does it relate to the model performance?

Questions 1, 2, and 3 will be answered based on the mixed-same, mixed-rand, mixed-next,
only-fg, and only-bg challenges. To address question 4, we will process all images from mixed
protocol and analyze how the zero-shot classifier attributes similarity scores, providing insights
about the classifier’s similarity attributions.

6.2 RESULTS

This section presents the experimental results and addresses the questions we have formulated.
Our aim is not to create the most background robust model but to assess the zero-shot image
classifier based on VLM and LLM+VLM, thereby contributing to a better understanding of
its limitations and offering insights for future research. In chapter 4, we introduced the Right
Reasons Data Augmentation (RRDA) method, aiming to enhance model fairness by improving
model robustness against background shifts. Therefore, we have used their results as a baseline
for assessing how a zero-shot image classifier handles background shifts.

6.2.1 Background sensitivity results

The mixed-same protocol uses a dataset composed of original signals but with backgrounds
from a random image within the same category. Thus, if there is a high correlation between
backgrounds that generally appear in the same object category and the category label, the
model will also achieve high accuracy on this task. On the other hand, achieving high accu-
racy on mixed-rand and mixed-next means that the model is robust to background shifts and
indicates that it classifies according to signal information instead of only background or con-
sidering the background. In addition to these analyses, we also compute the BG-Gap metric,
which is the difference between mixed-same and mixed-rand accuracy, measuring how much
the model correlates class background with the target category. Table 12 presents our results
for this evaluation.

Impact of Background Challenge. The results confirm that all trained models exhibit
limitations when faced with background shifts. As the BG-Gap is larger than 0 for all methods,
it is evident that dealing with background challenges remains difficult in image classification,
even for VLM-based models, which are trained with millions of (image, text) pairs. However,
the ALIGN model achieved the lowest BG-Gap between the VLM approaches on the ImageNet-
9 dataset and the lowest between all methods on the RIVAL10 dataset. This is surprising as
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Table 12 – Background challenge results. Each row represents a challenge evaluation
protocol with the architecture, training method, and dataset in columns Ar-
chitecture, Method, and Dataset, respectively. The mixed same, mixed rand,
and mixed next columns represent the accuracy results for the respective back-
ground challenge, while the BG-Gap means the difference between Mixed rand
and Mixed same.

Architecture Method Dataset Mixed Mixed Mixed BG Original
same rand next Gap

ResNet-18 Standard ImageNet-9 92.67 82.99 80.22 9.68 96.15
ResNet-18 ActDiff ImageNet-9 90.27 84.47 83.26 5.80 93.46
ResNet-18 GradMask ImageNet-9 86.77 76.34 73.43 10.42 90.79
ResNet-18 ADA ImageNet-9 92.20 81.80 79.28 10.40 96.05
ResNet-18 RRR ImageNet-9 91.90 82.12 78.77 9.78 95.31
ViT Standard ImageNet-9 94.15 86.84 84.69 7.3 98.35
ViT ActDiff ImageNet-9 95.98 90.27 89.46 5.7 98.99
ViT GradMask ImageNet-9 93.38 86.52 84.77 6.7 97.04
ViT ADA ImageNet-9 91.73 81.98 80.12 9.7 97.24
ViT RRR ImageNet-9 90.42 80.04 78.54 10.4 96.74
CLIP Top-1 ImageNet-9 86.44 78.72 77.24 7.72 92.59
ALIGN Top-1 ImageNet-9 85.75 79.95 77.35 5.79 91.70
ChatGPT+CLIP Top-1 ImageNet-9 89.36 80.89 79.21 8.47 94.03
ChatGPT+ALIGN Top-1 ImageNet-9 87.21 79.53 78.32 7.68 92.05

ResNet-18 Standard RIVAL10 95.01 87.82 88.65 7.19 99.19
ResNet-18 ActDiff RIVAL10 94.91 86.55 87.16 8.36 98.77
ResNet-18 GradMask RIVAL10 90.65 83.96 84.34 6.69 96.61
ResNet-18 ADA RIVAL10 95.20 88.64 89.35 6.55 99.07
ResNet-18 RRR RIVAL10 94.82 87.89 88.67 6.92 98.90
ViT Standard RIVAL10 95.31 87.99 88.61 7.32 99.24
ViT ActDiff RIVAL10 96.92 92.26 91.47 4.65 99.62
ViT GradMask RIVAL10 96.52 90.81 91.09 5.71 99.49
ViT ADA RIVAL10 96.27 88.84 90.09 7.45 99.69
ViT RRR RIVAL10 53.01 34.09 35.19 18.94 64.76
CLIP Top-1 RIVAL10 94.02 89.42 89.03 4.60 97.33
ALIGN Top-1 RIVAL10 96.15 93.30 92.66 2.85 98.68
ChatGPT+CLIP Top-1 RIVAL10 94.06 89.86 89.71 4.20 97.96
ChatGPT+ALIGN Top-1 RIVAL10 94.53 91.22 91.22 3.31 97.13
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Table 13 – Individual foreground and background challenge results. The results
are presented individually for both datasets. The columns Only FG and Only
BG mean the model accuracy results when facing images with only foreground
and background information, respectively.

ImageNet-9 RIVAL10
Architecture Method Only Only Only Only

FG BG FG BG

ResNet-18 Standard 85.01 32.52 89.50 41.30
ResNet-18 ActDiff 86.96 16.20 91.01 40.50
ResNet-18 GradMask 77.24 23.98 85.41 32.50
ResNet-18 ADA 86.72 31.78 91.01 41.32
ResNet-18 RRR 86.10 30.32 88.47 39.69
ViT Standard 91.80 42.35 91.43 42.36
ViT ActDiff 95.31 41.04 95.04 44.91
ViT GradMask 90.57 33.63 92.00 45.03
ViT ADA 87.70 36.35 93.95 47.94
ViT RRR 86.12 33.24 37.10 27.87

CLIP Top-1 84.62 32.67 90.71 39.63
Align Top-1 87.24 25.78 95.95 32.89
ChatGPT+CLIP Top-1 86.99 38.32 91.88 39.61
ChatGPT+Align Top-1 86.94 27.53 93.40 31.27

it is a zero-shot model, and other methods such as ActDiff (VIVIANO et al., 2021), GradMask
(SIMPSON et al., 2019), ADA (SANTOS et al., 2019), and RRR (ROSS; HUGHES; DOSHI-VELEZ,
2017) use the object foreground mask to ignores the background information.

The only difference between CLIP and ChatGPT+CLIP, and between ALIGN and Chat-
GPT+ALIGN, is that the models with ChatGPT use the object feature descriptions in the
prompt, while the CLIP and ALIGN use only the label name. Thus, does the object feature
description help improve the background robustness? The answer is no, as ChatGPT-based
models have a larger BG-Gap than its relative on ImageNet-9, and on RIVAL10, it only en-
hances the CLIP model by a tiny margin.

6.2.2 Signal and background analysis

The background sensitivity evaluation showed that the ALIGN model is more background
robust than the other methods on the RIVAL10 dataset - including standard models. In this
section, we evaluate whether zero-shot models can classify images accurately, considering only
the signal information and not considering the background features. In this context, we force
the model to make decisions based solely on signal features. In addition, we also evaluate
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whether these models may classify only the background information as the object target to
verify its accuracy. Table 13 presents the results of this analysis.

Considering only foreground information. The ALIGN model performs best on RI-
VAL10 when assuming only the signal information, achieving the highest accuracy among all
evaluated models. It experiences a minor decrease of only 2.73% compared to its original
test set accuracy. In contrast, both the ChatGPT+CLIP and individual CLIP models show
a more significant drop, with approximately a 7% decrease in accuracy in the original test
set. This decline is at least twice that of the best-performing model. It suggests that the
classification-by-description approach used in ChatGPT+CLIP and the CLIP models may not
perform foreground-only classification as accurately as the original image classification.

Considering only background information. Evaluating the performance of models using
solely background information is challenging as it lacks object-specific information. Thus,
we neither expect high nor low accuracy but rather randomness results. Nevertheless, we
can analyze it jointly with only foreground information (only-FG). Suppose a model displays
low accuracies for both only-BG and only-FG protocols but achieves high accuracy in the
original classification task. This suggests that the model has learned to classify based on
the co-occurrence of background and foreground information rather than performing separate
background or foreground recognition. This insight is valuable in understanding the behavior
of models like ChatGPT+CLIP, CLIP, ResNet-18, and ViT trained with Standard, GradMask,
ADA, and RRR methods. These models obtained only-FG accuracies close to 85%, low only-BG
accuracies, but high original accuracy.

6.2.3 Similarity analysis

The background sensitivity and foreground signal analysis have shown that CLIP, ChatGPT+CLIP,
and ChatGPT+ALIGN are less robust to background shifts than ALIGN and make mistakes
even when the input contains only signal information. However, the reasons for this behav-
ior still need to be completely understood. Debugging deep learning models is difficult, as it
requires various tools (KOKHLIKYAN et al., 2020; SHAH; FERNANDEZ; DRUCKER, 2019), inter-
pretability methods, and specific analysis (ZHANG; ZHU, 2019). Nevertheless, as the classifica-
tion by description (i.e., ChatGPT+CLIP and ChatGPT+ALIGN) approach has the advantage
of being naturally interpretable (it classifies images based on the similarity between the input
image 𝑥 and text category 𝑐 descriptions 𝐷(𝑐)), we use their similarity scores to infer how
they behave with different challenges protocols (namely original, mixed same, mixed rand, and
mixed next). Figure 25a) and 25b) illustrate the pipeline to obtain each feature’s similarity
scores and the resulting similarity distributions for two categories (In the apprendix we present
for all categories.).

Impact of dataset distribution on similarity scores. The results represent the distri-
butions of each description’s similarity scores for the different challenges. The similarity scores
in the original test set differ significantly from the other challenges protocols, having higher
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0 Antlers or smaller, bony knobs
called pedicles 
1 Different deer species may have
specific characteristics, such as the
size and shape of their antlers, body
size, or distinctive markings on their fur.
2 Ears on the sides of the head,
which can be alert and mobile
3 Four-legged mammal
4 Graceful and slender body
5 Hooves on the feet
6 Large, round eyes
7 Short tail
8 Various coat colors and patterns
depending on the species and season,
such as brown, tan, gray, or reddish
hues
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Figure 25 – Illustration of the distributions of different description similarity
scores. a) Given the original input image and its mixed-same version, we
compute the model prediction with the ChatGPT+CLIP model. b) After
obtaining the model prediction for each image, we extract the similarity scores
for each target description and compare their differences. The Feature legend
box shows all the descriptions for the Deer category. c) For each original image
and its version from mixed-same, mixed-rand, and mixed next, we perform
the a) and b) pipeline with ChatGPT+CLIP and ChatGPT+ALIGN models.
Next, we build a box plot for each challenge and category, thus comparing
how the model attributes similarity scores in each challenge. The plot shows
the results for the categories Bird from RIVAL10 and Fish ImageNet-9.
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scores across all descriptions and categories for ChatGPT+CLIP, but it does not hold for Chat-
GPT+ALIGN. This result suggests that the ChatGPT+CLIP is mispredicted due to producing
low similarity scores for target descriptions, but this does not happen with ChatGPT+ALIGN
always.

6.2.4 Description score variability

The LLM+VLM models may exhibit two distinct behaviors when making errors on challenge
images: 1) a decrease in the target similarity score, or 2) an increase in the similarity score
of some non-target classes. Our similarity analysis revealed that ChatGPT+CLIP consistently
yields low target similarity scores on challenge datasets. However, ChatGPT+ALIGN does not
consistently exhibit the same pattern, leaving the reasons for its mistakes unclear.

To address this, we introduce the Score Variability metric (SV in equation 6.3) in this sec-
tion. This metric quantifies how the model alters its similarity scores when predicting challenge
images. For a given challenge image (𝑥𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒) and category c, the SV function calculates
the ratio of changes relative to the equivalent original image similarity score. Consequently,
the model may produce a negative ratio score (𝑆𝑉 −) or a positive ratio score (𝑆𝑉 +).

The negative ratio score means that the model is giving a higher similarity score between
challenge image and class c than original image and class c, while a positive score means that
the model decrease the similarity when faced challenge background. Therefore, if class c is not
the target (Pred. column in table 14) and the similarity score is negative, it indicates that the
model is recognizing a non-target object into the challenge image.

𝑆𝑉 (𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, 𝑥𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒, 𝑐) = 𝑠(𝑐, 𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)− 𝑠(𝑐, 𝑥𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒)
𝑠(𝑐, 𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)

(6.3)

The results from table 14 show that in 𝑆𝑉 −, all variations in the target are higher than
pred, while on 𝑆𝑉 +, all variations from pred. are higher than the target. This implies that
when the model decreases its similarity score, it tends to do so more prominently in the target
class than in the non-target class. Conversely, when the model increases its similarity score,
the elevation is more significant in non-target classes (i.e., predictions). Besides, overall, the
ChatGPT+ALIGN has higher SV values than ChatGPT+CLIP, but the results on mixed rand
and mixed next with 𝑆𝑉 + indicate that the ChatGPT+ALIGN gives a higher similarity score
for the non-target category instead of giving low similarity score for target category.
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Table 14 – Score variability results. Each row presents the results for a metric evalu-
ated in a challenge and model. The columns Target and Pred. show the score
variability (%) in the target and class predicted, respectively.

ImageNet-9 RIVAL10
Challenge Model Metric Target Pred. Target Pred.

Mixed same ChatGPT+CLIP 𝑆𝑉 + 5.93 13.56 5.5 17.11
Mixed same ChatGPT+ALIGN 𝑆𝑉 + 22.31 1.04 10.5 27.56
Mixed rand ChatGPT+CLIP 𝑆𝑉 + 5.03 19.23 5.06 22.95
Mixed rand ChatGPT+ALIGN 𝑆𝑉 + 21.16 77.34 9.46 40.6
Mixed next ChatGPT+CLIP 𝑆𝑉 + 6.27 19.31 5.66 23.75
Mixed next ChatGPT+ALIGN 𝑆𝑉 + 19.16 85.29 10.39 41.89

Mixed same ChatGPT+CLIP 𝑆𝑉 − 10.05 4.4 11.68 3.75
Mixed same ChatGPT+ALIGN 𝑆𝑉 − 24.07 10.40 20.04 11.79
Mixed rand ChatGPT+CLIP 𝑆𝑉 − 12.31 4.11 15.26 5.13
Mixed rand ChatGPT+ALIGN 𝑆𝑉 − 28.71 26.85 24.42 10.78
Mixed next ChatGPT+CLIP 𝑆𝑉 − 13.45 4.39 14.44 5.05
Mixed next ChatGPT+ALIGN 𝑆𝑉 − 30.04 11.09 21.97 11.77

6.3 CONCLUSION

This chapter analyzes how zero-shot image classifiers based on visual language models are
sensitive to image background changes. We used the ImageNet-9 and RIVAL10 datasets as
benchmarks, CLIP, ChatGPT+CLIP, ALIGN, and ChatGPT+ALIGN, as a zero-shot image
classifier. Our findings indicate that all tested models have limitations when faced with back-
ground shifts. However, the ALIGN model achieved the best results across most metrics,
demonstrating its effectiveness in handling the background challenge. In contrast, both the
ChatGPT+CLIP and individual CLIP models showed a more significant decline in accuracy,
suggesting that it may correlate the background information with the target label.

Additionally, we conducted a similarity scores and a description score variability analysis to
understand the reason behind the ChatGPT+CLIP and ChatGPT+ALIGN wrong predictions.
The results indicate that the ChatGPT+CLIP and ChatGPT+ALIGN predict wrongly due to
different reasons. The ChatGPT+CLIP attributes a low similarity score to the object category
when facing a non-target background, while ChatGPT+ALIGN attributes a higher similarity
score to the non-target category.
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7 MODEL INSPECTOR TOOL

Interpretability methods have become increasingly important with the growth in model com-
plexity and the resulting lack of transparency in the decision-making process. The model
transparency and interpretability are usually associated with the degree to which a human can
understand the cause of a decision. When making predictions with a neural network, the data
input is fed through many multiplication layers with the learned weights and non-linear trans-
formations. A single prediction can involve millions of mathematical operations, thus making
it difficult for humans to follow the exact mapping from input data to inference. We would
have to consider millions of weights that interact in a complex way to understand a prediction
by a neural network. We need specific interpretability methods to interpret the behavior and
predictions of neural networks.

In recent years, several methods have been proposed to interpret deep learning model
outputs (SIMONYAN; VEDALDI; ZISSERMAN, 2014; SELVARAJU et al., 2017; SUNDARARAJAN;

TALY; YAN, 2017; SUDHAKAR et al., 2021). Given an input 𝑥, model 𝑓 , and target category
𝑦, these interpretability methods build an attribution map 𝑎 with the same size as 𝑥, where
𝑎𝑖 means how much important the feature 𝑥𝑖 for 𝑓𝑦(𝑥). There are some libraries developed
with Python1 that we can use to instantiate these methods and interpret models developed
in Pytorch (PASZKE et al., 2019) or TensorFlow (ABADI et al., 2016), for example Captum 2,
Innvestigate (ALBER et al., 2019), and TensorFlow Interpretability 3. These libraries have an
easy-to-use interface where we can instantiate the interpretability methods to produce the
attribution maps for our inputs. Still, we need to codify all input interactions that we want
to infer the impact of feature changes in model output or attribution maps, thus being a
challenge to beginner or even intermediate users to debug its models.

To mitigate this issue, we developed the Model Inspector4,5 tool that allows users to ma-
nipulate various visual features of an input image to understand better the model’s sensitivity
to different types of information. Our goal is to provide a more comprehensive framework for
model understanding and help researchers and practitioners better understand the strengths
and weaknesses of deep learning models in image classification. The Model Inspector also
1 https://www.python.org/
2 https://captum.ai/
3 https://tf-explain.readthedocs.io/en/latest/
4 This chapter is based on these two works 1) Santos, Flávio AO, Maynara Donato de Souza, Pe-

dro Oliveira, Leonardo Nogueira Matos, Paulo Novais, and Cleber Zanchettin. "Image Classifi-
cation Understanding with Model Inspector Tool." In International Conference on Hybrid Arti-
ficial Intelligence Systems (HAIS 2023), pp. 611-622. Cham: Springer Nature Switzerland, 2023.
URL <https://link.springer.com/chapter/10.1007/978-3-031-40725-3_52>. 2) Santos, Flávio Arthur
Oliveira, Cleber Zanchettin, José Vitor Santos Silva, Leonardo Nogueira Matos, and Paulo Novais.
"A hybrid post hoc interpretability approach for deep neural networks." In International Conference
on Hybrid Artificial Intelligence Systems (HAIS 2021), pp. 600-610. Cham: Springer International
Publishing, 2021. URL <https://link.springer.com/chapter/10.1007/978-3-030-86271-8_50>

5 Model inspector tool is available at <https://github.com/faos/image-classifier-model-inspector>

https://link.springer.com/chapter/10.1007/978-3-031-40725-3_52
https://link.springer.com/chapter/10.1007/978-3-030-86271-8_50
https://github.com/faos/image-classifier-model-inspector
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has two novel methods, which we named U Analysis (UA) and Iterative post-hoc attribution
(IPHA); U Analysis allows us to evaluate the importance of different patches in an image
and understand the impact of removing them on the model’s classification performance, while
IPHA defines interpretability as a optimization problem and finds which input features mostly
contributes to the model decision.

As this chapter presents a tool with two methods, we discuss each of them in a independent
section. In the following, we will present the U Analysis in section 7.1, IPHA in section 7.2,
and finally the Model inspector in section 7.3.

7.1 U ANALYSIS

Different methods were proposed to visualize features and concepts learned by the neural net-
work models, which have a performance that is less ’interpretative’ and are usually qualitatively
evaluated. These methods compute how much each input feature contributes to the model
output/prediction, but they do not explain the input features’ interdependence nor the order
of importance. In this chapter, we propose the U Analysis (UA), a systematic method to verify
the co-dependence of input image patches for model prediction, a group of patches that must
coexist for the model to predict accurately.

Algoritmo 4: U Analysis.
Input: Given a trained deep learning model 𝑓 , input image 𝑥, target,

interpretability vector 𝐼, window size 𝑤, order type 𝑜𝑟𝑑𝑒𝑟, and noise type
𝑛

1 𝑟𝑒𝑔𝑖𝑜𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑠← 𝑔𝑒𝑡_𝑟𝑒𝑔𝑖𝑜𝑛_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝐼, 𝑤) ;
2 𝑟𝑒𝑔𝑖𝑜𝑛_𝑠𝑜𝑟𝑡𝑒𝑑← 𝑠𝑜𝑟𝑡_𝑟𝑒𝑔𝑖𝑜𝑛(𝑟𝑒𝑔𝑖𝑜𝑛_𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑜𝑟𝑑𝑒𝑟) ;
3 𝑔𝑒𝑛_𝑏𝑎𝑡𝑐ℎ← 𝑟𝑒𝑚𝑜𝑣𝑒_𝑟𝑒𝑔𝑖𝑜𝑛𝑠(𝑥, 𝑟𝑒𝑔𝑖𝑜𝑛_𝑠𝑜𝑟𝑡𝑒𝑑, 𝑛𝑜𝑖𝑠𝑒) ;
4 𝑝𝑟𝑒𝑑_𝑏𝑎𝑡𝑐ℎ← 𝑓(𝑔𝑒𝑛_𝑏𝑎𝑡𝑐ℎ) ;
5 𝑦_𝑏𝑎𝑡𝑐ℎ_𝑝𝑟𝑒𝑑← 𝑝𝑟𝑒𝑑_𝑏𝑎𝑡𝑐ℎ.𝑎𝑟𝑔𝑚𝑎𝑥(1) ;
6 𝑝𝑜𝑠_𝑝𝑟𝑒𝑑_𝑐𝑜𝑟𝑟𝑒𝑐𝑡← 𝑤ℎ𝑒𝑟𝑒(𝑦_𝑏𝑎𝑡𝑐ℎ_𝑝𝑟𝑒𝑑 == 𝑡𝑎𝑟𝑔𝑒𝑡) ;
7 𝑢_𝑡𝑟𝑖𝑝𝑙𝑒𝑠← [] ;
8 for 𝑖 = 0 to 𝑙𝑒𝑛(𝑝𝑜𝑠_𝑝𝑟𝑒𝑑_𝑐𝑜𝑟𝑟𝑒𝑐𝑡)− 1 do
9 𝑖𝑑𝑥_𝑙𝑒𝑓𝑡 = 𝑝𝑜𝑠_𝑝𝑟𝑒𝑑_𝑐𝑜𝑟𝑟𝑒𝑐𝑡[𝑖] ;

10 𝑖𝑑𝑥_𝑟𝑖𝑔ℎ𝑡 = 𝑝𝑜𝑠_𝑝𝑟𝑒𝑑_𝑐𝑜𝑟𝑟𝑒𝑐𝑡[𝑖 + 1] ;
11 if (𝑖𝑑𝑥_𝑟𝑖𝑔ℎ𝑡− 𝑖𝑑𝑥_𝑙𝑒𝑓𝑡) is larger than one then
12 𝑚𝑖𝑑𝑑𝑙𝑒_𝑖𝑑𝑥← 𝑐ℎ𝑜𝑖𝑐𝑒_𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑖𝑑𝑥_𝑙𝑒𝑓𝑡, 𝑖𝑑𝑥_𝑟𝑖𝑔ℎ𝑡);
13 𝑢_𝑡𝑟𝑖𝑝𝑙𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑((𝑖𝑑𝑥_𝑙𝑒𝑓𝑡, 𝑖𝑑𝑥_𝑚𝑖𝑑𝑑𝑙𝑒, 𝑖𝑑𝑥_𝑟𝑖𝑔ℎ𝑡)) ;

14 return 𝑢_𝑡𝑟𝑖𝑝𝑙𝑒𝑠

The Algorithm 4 presents the U Analysis steps with a Python-based syntax. Given an input
image 𝑥, model 𝑓 , and attribution map 𝐼, the UA method first computes the importance of
each x’s patch of dimension 𝑊 ×𝑊 by summing up all attribution weight of each respective
feature. Next, it sorts the x’s patches by importance. It cumulatively replaces each one of the
input images by noise, creating new 𝑥𝑖 images, where the 𝑥𝑖 images are equal to 𝑥, except that
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they do not have the information about the first 𝑖 patches (i.e., 𝑔𝑒𝑛_𝑏𝑎𝑡𝑐ℎ variable). Thus,
assuming that the input image has N patches, the 𝑥𝑁 image does not have any information
(i.e., only noise such as zeros, ones, or Gaussian noise). Figure 26 shows a sample of the UA
processing.

Input

Importance

Pixel
Interpretability

Grid
Interpretability

Step 43
 Category 12

Step 0
Category 12

Step 44
 Category 7

Step 46 
Category 12

0                    0.5                       1

Step 64

U Analysis - Removing from the less important patch to the most important

1)

2)

Figure 26 – U Analysis pipeline. The UA has two main steps: 1) given an input image,
it computes the model inference and interpretability, and then it processes the
grid-level interpretability. 2) Given the grid level interpretability, it sorts each
image patch according to its importance. It removes patch-by-patch from the
input image from the least important to the most important.

After constructing the sequence of new images, it is possible to see that all the information
from image 𝑥𝑖 is present in 𝑥𝑗<𝑖. Thus, if we have a case where 𝑙𝑒𝑓𝑡 < 𝑚𝑖𝑑𝑑𝑙𝑒 < 𝑟𝑖𝑔ℎ𝑡 and
𝑓(𝑥𝑙𝑒𝑓𝑡) = 𝑦, 𝑓(𝑥𝑚𝑖𝑑𝑑𝑙𝑒)! = 𝑦, and 𝑓(𝑥𝑟𝑖𝑔ℎ𝑡) = 𝑦, it means that the information contained in
𝑥𝑙𝑒𝑓𝑡 and 𝑥𝑟𝑖𝑔ℎ𝑡 is sufficient for the model to infer correctly. However, the patches in 𝑥𝑚𝑖𝑑𝑑𝑙𝑒

but not in 𝑥𝑟𝑖𝑔ℎ𝑡 create negative strength for 𝑦 when they coexist with the other patches. We
call this counter-intuitive case a U-occurrence.

7.2 ITERATIVE POST HOC ATTRIBUTION

Given a trained neural network 𝑓 and an input vector 𝑥, the interpretability methods produce
an interpretability map (or attribution maps) 𝑚𝑎𝑝 whose dimension is equal to 𝑥 dimension
and the 𝑚𝑎𝑝𝑖 value in 𝑖 position means how important is the feature 𝑥𝑖 to 𝑓(𝑥) prediction.
Due to the subjectivity of the term 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒, the evaluation of interpretability methods
is mostly qualitative. Sometimes, it is hard to evaluate the interpretation because different
interpretability methods produce different interpretations from the same model and input.
Thus, due to its subjectivity, in this chapter, we propose a direct hybrid approach combining
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optimization methods with the deep neural network to select the features responsible for
producing the model prediction.

The first definition says that if a region r is relevant to the model prediction, the model
prediction will decrease if we erase its information. Next, the second definition shows how we
can compare the importance of two distinct regions.

• Definition 1 Given a model 𝑓 : 𝑅𝑛 → {0, 1}. A region r is important to 𝑓 prediction
only if 𝑓(𝑥) > 𝑓(𝑑𝑒𝑔𝑟𝑎𝑑𝑒(𝑥, 𝑟)).

• Definition 2 A region 𝑟𝑖 is more important than 𝑟𝑗 to 𝑓 prediction only if 𝑓(𝑑𝑒𝑔𝑟𝑎𝑑𝑒(𝑥, 𝑟𝑖)) <

𝑓(𝑑𝑒𝑔𝑟𝑎𝑑𝑒(𝑥, 𝑟𝑗)).

Given a trained deep neural network 𝑓 and an input image 𝑥, we would like to know which
pixels from 𝑥 most contribute to the 𝑓(𝑥) output according to definitions 1 and 2. Thus, we
can model this question as an optimization problem present in the equation 7.1. To solve the
𝑎𝑟𝑔𝑚𝑎𝑥 problem in the equation 7.1, we can employ search and optimization algorithms such
as Hill Climbing (GENT; WALSH, 1993), Ant Colony (DORIGO; BIRATTARI; STUTZLE, 2006),
Genetic Algorithms (GOLDBERG, 1989), Particle Swarm (KENNEDY; EBERHART, 1995), and
others.

arg max
𝑚𝑎𝑠𝑘

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑚𝑎𝑠𝑘) = 𝑓(𝑚𝑎𝑠𝑘 ⊙ 𝑥 + (1−𝑚𝑎𝑠𝑘)⊙ 𝐶) (7.1)

The algorithm 5 and figure 27 present the IPHA method. It receives the deep learning model
𝑓 , an input vector 𝑥, and returns two versions of the vector 𝑥, one with the important features
(𝑥_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡) and the other with only the non-important features of 𝑥 (𝑥_𝑛𝑜𝑛_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡).

Figure 27 – Overview of the iterative post hoc attribution method.
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Algoritmo 5: Iterative post hoc attribution.
Input: Given a trained deep learning model 𝑓 , input vector 𝑥, constant vector 𝐶,

and an optimizer algorithm
1 𝑃𝑦 ← 𝑓(𝑥) ;
2 𝑒𝑣𝑎𝑙← 𝑙𝑎𝑚𝑏𝑑𝑎 𝑥, 𝑐, 𝑚𝑎𝑠𝑘 : 𝑓(𝑚𝑎𝑠𝑘 ⊙ 𝑥 + (1−𝑚𝑎𝑠𝑘)⊙ 𝐶) ;
3 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠← 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟(𝑓, 𝑥, 𝑐, 𝑒𝑣𝑎𝑙) ;
4 𝑥_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡← 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠⊙ 𝑥 + 𝑛𝑜𝑛_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠⊙ 𝐶 ;
5 𝑥_𝑛𝑜𝑛_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡← 𝑛𝑜𝑛_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠⊙ 𝑥 + 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠⊙ 𝐶

;
6 return 𝑥_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡, 𝑥_𝑛𝑜𝑛_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡

Since we want to select the important pixels in 𝑥, the mask parameter in the equation 7.1
is a vector composed of 0 and 1 with the exact dimension of 𝑥, that is 𝑚𝑎𝑠𝑘 ∈ 𝑅𝑛. The
vector 𝐶 is a constant vector responsible for filling the information in 𝑥 removed by mask. 𝐶 is
a constant because we do not want to insert any new pattern in 𝑥, so it needs to be unbiased.
If we search in the space {0, 1}1 to select the mask that maximizes the 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑚𝑎𝑠𝑘)
function, we should evaluate 2𝑛 masks. This has a high computational cost for the analysis
and can be impractical. However, we can search for an approximate solution using local search
methods to mitigate this computational cost. The local search methods are iterative algorithms
that begin with an arbitrary solution to the problem and make small changes to find better
solutions.

We can use local search methods to mitigate the 2𝑛 (𝑛 is the number of features) cost
and find an approximate solution to our problem. We jointly employ the local search method
Hill-Climbing (GENT; WALSH, 1993) with the neural network 𝑓 to obtain preliminary results.
The algorithm 6 presents our hill-climbing implementation.

Algoritmo 6: Hill Climbing.
Input: 𝑓, 𝑥, 𝐶, 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑛𝑢𝑚_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

1 𝑏𝑒𝑠𝑡_𝑚𝑎𝑠𝑘 ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝑥.𝑠ℎ𝑎𝑝𝑒, 0, 1) ;
2 for 𝑖← 0; 𝑖 < 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
3 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠← 𝑔𝑒𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑏𝑒𝑠𝑡_𝑚𝑎𝑠𝑘, 𝑛𝑢𝑚_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) ;
4 𝑛𝑒𝑥𝑡_𝑒𝑣𝑎𝑙← −𝐼𝑁𝐹 ;
5 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒← 𝑁𝑈𝐿𝐿 ;
6 for 𝑚𝑎𝑠𝑘 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
7 if 𝑛𝑒𝑥𝑡_𝑒𝑣𝑎𝑙 < 𝑒𝑣𝑎𝑙(𝑚𝑎𝑠𝑘) then
8 𝑛𝑒𝑥𝑡_𝑒𝑣𝑎𝑙← 𝑒𝑣𝑎𝑙(𝑚𝑎𝑠𝑘) ;
9 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒← 𝑚𝑎𝑠𝑘 ;

10 if 𝑒𝑣𝑎𝑙(𝑏𝑒𝑠𝑡_𝑚𝑎𝑠𝑘) < 𝑛𝑒𝑥𝑡_𝑒𝑣𝑎𝑙 then
11 𝑏𝑒𝑠𝑡_𝑚𝑎𝑠𝑘 ← 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 ;

12 return 𝑏𝑒𝑠𝑡_𝑚𝑎𝑠𝑘

As we can see from the algorithm 6, the 𝑔𝑒𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 function is a significant part of this
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method because it generates new solutions from the actual best solution. Since our solution
is a mask composed of 0 and 1, to create a new neighbor, we randomly select a position in
the mask and change to 0 a grid of dimension 2× 2 around it. Another important part of our
solution is the 𝑒𝑣𝑎𝑙 function. We have defined it as the 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 function present in the
equation 7.1.

7.3 MODEL INSPECTOR

The image comprises different types of visual information, such as shape, color, texture, pat-
terns, and objects. Each type of information may impact the model classification decision in
different ways. For example, a model may be biased to texture, color, or shape (NGUYEN;

YOSINSKI; CLUNE, 2015; ALCORN et al., 2019; HENDRYCKS et al., 2021; ZHANG; ZHU, 2019).
Thus, tweaking these types of information in the input image and evaluating the model with
the new image can help assess the classification model’s robustness regarding different versions
of the same signal, thus producing a local analysis of the model. Interpretability methods also
can be used to debug image classification models. They produce how important is each input
image pixel for model decision and attribution map to visualize. Thus, the pixel importance
can be used to compute metrics such as Top-K erasing and RFS (MOAYERI et al., 2022)

Beyond these types of visual information, an image can be composed of two main spatial
regions: foreground and background. The foreground is the image’s main focus, which includes
the subjects or objects of interest. On the other hand, the background is all the information
that is not in the foreground. Usually, in image classification tasks, we want to classify the
information that is in the foreground. Thus, it can be considered the signal while the back-
ground is the context. Background robustness is the ability of an image classification model
to classify a signal even when it is on a different background. (XIAO et al., ) showed that image
classification models may be biased to background information and make a wrong prediction
even when the foreground is present in the image but has a not common background. Thus,
it is important to evaluate if the signal information is enough for the model to classify the
image accurately or if the model is biased to background information.

The discussion presented so far shows we need a pipeline to evaluate the image classifi-
cation model weakness. Therefore, we propose the image classification Model Inspector tool
6, whose goal is to allow users to evaluate image classification robustness against different
types of transformations. It comprises three modules in which the user can evaluate the image
classification against different image processing functions, interpretability maps, and signal vs.
noise sensitivity. The Model Inspector is developed as a Web App in which the user can load
models from Pytorch (PASZKE et al., 2019) or Timm7 library and interact with its input-output
results. In the following, we will detail each Model inspector’s module.
6 https://github.com/faos/image-classifier-model-inspector
7 https://timm.fast.ai/
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7.3.1 Image processing

The image processing module comprises several image transformation functions that add noise
to the input image. The user can apply these transformations in the input image and visualize
the model output difference with the original image, thus getting insights about the model ro-
bustness related to the transformation. The module implements three types of noise: Gaussian,
Shot, and Impulse. Although we may add them intentionally, they can be naturally caused by
phenomena such as random variations in light, sensor noise in the camera, interference in the
transmission process, or bit errors. These noise functions can also be found in (HENDRYCKS;

DIETTERICH, 2019), where the authors created ImageNet (DENG et al., 2009a) variations with
them to evaluate the robustness of several image classification architectures on the ImageNet
(DENG et al., 2009a) dataset.

Gaussian, Shot, and Impulse noise are transformations that change the image color of
texture. However, in addition to them, the image processing module also has spatial transfor-
mations (e.g., Patch Shuffle, Horizontal Shuffle, Vertical Shuffle) that deform the shape of the
objects in the image. Still, it keeps the texture and color information, so it is helpful to infer
whether the object’s shape is important to the model predictions. Patch shuffle transformation
splits the input image in disjoint squared patches with size 𝑊 ×𝑊 , shuffles them, and creates
a new image. On the other hand, horizontal shuffle creates disjoint horizontal patches with
height H and size equal to the input image, shuffle them, and create a new image. The vertical
shuffle is similar to the horizontal; the difference is that the patches are vertical, so their size is
equal to the image height, and the width is W. Figure 28 presents the pipeline of this module
and an example of each analysis function.

7.3.2 Interpretability

The interpretability module comprises two main components: (1) interpretability methods and
(2) U Analysis. In the first component, we implement a wrapper for the Captum library so the
user can select the interpretability method and visualize its outputs. The second component
implements the U Analysis discussed before, where the user can choose the noise method and
window size. Besides, if the analysis finds counter-intuitive samples, it will show them. It is
important to highlight that the attribution map used in the U Analysis is the output of the
first component.

7.3.3 Signal

The signal module allows the users to interact with the input by selecting which region of the
input image they consider the signal. The users may select the signal with three formats: rect-
angle, circle, and polygon. After selecting the signal, the module computes the signal-to-noise
and background texture analyses. The signal-to-noise analysis calculates the importance of the
signal region and compares it with the context to verify which region is more important to
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Figure 28 – Image processing pipeline. Part 1) shows the main pipeline of the image
processing. Given an input image, the user should select which function it will
use to process the image and compare the model inference with the original
image inference. Part 2) shows the functions available in the model inspector;
they are grouped into texture and structure.

the model. The background texture analysis allows the user to apply all the image transforma-
tions from the first module to the image background only, thus verifying if the model decision
is impacted by background texture changes while keeping the signal information. The noise
analysis proposed in (MOAYERI et al., 2022) inspired the background texture analysis. Figure
29 presents the signal pipeline.
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Figure 29 – Signal analysis pipeline. This module allows the user to select the signal
of the input image using different formats, for example, polygon, rectangle,
and circle. After selecting the signal, it can add the transformation to the
image background to verify the model sensitivity to background changes while
keeping the original signal. The main pipeline comprises three steps: 1) select
the input image, 2) select the signal information, and 3) apply the background
processing functions. The signal selection and background processing have an
output to compare the model inference using only each information.

7.4 EXPERIMENTS AND RESULTS

We group the experiments and results according to each method and tool. Thus, next we
present a section for each one.

7.4.1 U Analysis

This section presents the experiments and results achieved with the U Analysis. First, we
describe the datasets and architecture used and then present the percentage of U occurrence
found. To perform the experiments, we used the CIFAR-10 (KRIZHEVSKY; HINTON et al., 2009)
and Self-Taught Learning 10 (STL-10) (COATES; NG; LEE, 2011) datasets. The CIFAR-10
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dataset comprises 60,000 32x32 color images grouped into ten classes and has 50,000 images
for training and 10000 for testing. It is a well-balanced dataset. Thus, each class has 5,000
training and 1,000 testing images.

On the other hand, STL-10 has the same classes as CIFAR-10 (i.e., airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck) but has 13,000 96x96 color images, where
5,000 are for training and 8,000 for testing. We train a ResNet-18 (HE et al., 2015) instance for
each dataset using SGD with a learning rate 1𝑒− 2. Each network was trained by 50 epochs,
and we chose the model with the best accuracy on the test set to perform the U Analysis.
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Figure 30 – U analysis results. The graph shows the results grouped by each parameter
type (i.e., Attribution methods, type of noise, noise window size, and noise
window order) and value. Besides, each curve represents the results for each
dataset. The blue curve represents the results obtained from the CIFAR-10
dataset, while the orange is with STL-10.

The U analysis has several hyperparameters. For example, we can use different interpretabil-
ity methods to compute the contribution of each input pixel to the model output. The order
in which we sort the patch can be random, increasing, or decreasing, and we can replace
the original patch information with several types of noise, and the patch’s size (noise window
size) itself is a parameter. To perform the U Analysis with the ResNet-18, we use 10 different
interpretability methods, 3 sorting types, 6 noise types, and 5 different patch sizes, resulting
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in 900 runs for each dataset. Figure 30 presents the results achieved by the U analysis with all
datasets and parameters. The results group the U occurrence for each hyperparameter value
to infer which configuration is more susceptible to finding counter-intuitive behavior in image
classification.

The findings show that all the attribution methods used have almost the same U occur-
rence. Thus, they affect it in the same way. This conclusion is similar to the sorting method, in
which all of them have almost the same U occurrence percentage, except the Increasing order
in CIFAR-10, which is slightly higher than others. Although the attribution methods and noise
window order have close U occurrence percentages, the type of noise has different values for
each parameter value. The U occurrence was the lowest for both datasets when we used the
image region mean and Gaussian noise. We argue that this behavior can be due to different
reasons. For example, while the Gaussian noise does not represent information regarding the
dataset, it is easy for the model to ignore it; the image region mean is a statistic of the patch
that was removed. Thus, it still has information about the original patch.

The results show that the noise window size is the most important hyperparameter, with
a patch size of 10%, the parameter value with the most U occurrence in all scenarios. This
result indicates that tiny patches instead of bigger ones may impact the ResNet-18, as the
33% presents a low U occurrence. In addition, the ResNet-18 may correlate the features of
lower patches instead of bigger ones.

7.4.2 ITERATIVE POST HOC ATTRIBUTION

To evaluate the IPHA method, we have compared the mask obtained using the IPHA with
Hill-Climbing with a wide range of interpretability methods (e.g., Saliency, Guided Backprop,
GradCam, Guided GradCam, and Integrated Gradients). Since the mask represents the location
of the important features, we compute the model outputs in two scenarios: (i) when we use
only the pixels of the mask and (ii) when we do not use the features in the mask (i.e., (1 -
mask)). Since it obtains the most important features in the first scenario, the model output
must be high (or close to when using the full features), while the model output must be
low in the second scenario. We trained a ResNet (HE et al., 2015) model with the CIFAR-10
(KRIZHEVSKY; HINTON et al., 2009) dataset to perform the experiments.

In the equation 7.1, we have presented our optimization problem. The C vector is a constant
that must be a neutral value. To be fair, in the experiments, we have tried different types of the
constant vector. In figure 31, we present all types of constants used: the noise value is black (0),
Gaussian, Normalization mean, and white (1). The rows represent the types of noise, and the
columns represent the mask with the most important pattern according to each interpretability
method. It is important to highlight that to obtain the most important features from the
Saliency, GradCam, Guided Backpropagation, Guided GradCam, and Integrated Gradients, we
have computed the interpretability and selected the top-k features, where k is 512 because we
have 1024 features in total.
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Figure 31 – Samples of noisy types used in the experiments.

We have defined the Feature Impact index (FII) present in equation 7.2 to evaluate our
method. The goal of FII is to compute the absolute distance between the model output with the
complete information 𝑓(𝑥) and the model output using only the selected features 𝑓(𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑).
The selected feature may be the (i) non-important features or the (ii) important features.
Thus, when we use the non-important as the selected feature, we expect that the FII returns
a low value. However, when we use the important features, the FII must be higher.

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐼𝑚𝑝𝑎𝑐𝑡𝐼𝑛𝑑𝑒𝑥(𝑓, 𝑥, 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑) = 𝑎𝑏𝑠(𝑓(𝑥)− 𝑓(𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑)) (7.2)

Figure 32 presents the results of the analysis from the mask with the less important pixels.
As the mask indicates the less important pixels, we expect that the model considering only
those pixels is low, so the difference between the original model output and the output based
on the non-important features will be higher. Since we believe only the non-important pixels,
we must replace the important with some neutral value. Thus, we use different constant values
to produce the results. Each y-axis in the graph means the impact of the model when using
the respective constant type. The results show that the Hill Climbing (HC) approach has
found the less important features and achieved almost 95% when considering the 0 value as
constant. Besides, all results obtained from the HC method are higher than 80%. Although
the other interpretability methods are established in the literature, they did not achieve any
results above 80%.

From the figure 33, we can see the results from the analysis of when we use the mask
pointing to the important features. Since the mask points to the important features, we expect
that the model output is high. So, the difference between the original model output and the
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Figure 32 – Results of the first scenario, evaluating the non-important features selected
by each method. The FII index in the y-axis is the average of all images
in the test set of the CIFAR-10. Each y-axis represents the results obtained
from different types of constant values. Examples of the constant values are
present in the figure 31. Since we are selecting the non-important features in
this graph, if the method select it correctly then the model output is close to 0
and the difference between the original prediction the non-important feature
prediction should the higher. Thus, the higher the FII index, the better the
interpretability method in this scenario.

output based on the important features is lower. We also used different constant values in the
evaluation process as in the previous scenario. The results show that, in our evaluation scenario,
the GradCam is the best method to indicate the important feature. Their average difference
is lower than 30% in every constant value. Considering only 0 as the constant value, the HC
approach could find the non-important features and produce results close to the GradCam.
However, in other scenarios, their outputs were at least 20% higher than the GradCam.

Figure 33 – Results of the second scenario, evaluating the important features selected by
each method. As this scenario refers to the most important features, the model
output with the selected features is expected to be close to the model output
with the full features. Thus, a lower the FII index better is the interpretability
method in this scenario.
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The results obtained from the GradCam method in the second scenario are intriguing
because it remained consistent in all constants. We believe this result is because when we
select the lowest top-512 features using the GradCam attribution maps, the model selects
squared regions, thus erasing a meaning pattern (e.g. body of the deer). This particularity of
GradCam lies in its ability to generate an attribution map that matches the size of the input
vector. To achieve this, its interpretability derived from the convolutional layer must be resized
to the input size (In our experiment, we resized an 8x8 attribution (from the last convolutional
layer) to fit a 32x32 input size). Consequently, this resizing process may result in neighboring
pixels having nearly identical attribution values. On the other side, the other interpretability
methods selects specific pixels. The Figure 31 highlights this difference.

7.4.3 Model inspector demonstration

This section analyzes the model inspector tool and shows how the user can use it to infer
insights about image classifier models. This analysis uses a ResNet-18 architecture trained
with FGVC Aircraft (MAJI et al., 2013) dataset to classify the aircraft manufacturer. Figure 34
presents the outputs obtained from the model inspector and has three crops extracted.

Part 1 shows the Image processing module applying the Gaussian transformation on the
input image, while part 2 is the Patch shuffle transformation. Part 3 shows a sample of the
signal module when we select the aircraft as the signal and apply the Gaussian noise into the
background. All three parts have a barplot on the right to compare the ResNet output when
we input the original image and the respective transformed image. Part 1 shows that when
we insert Gaussian noise in the input image, the model changes its prediction, thus being
sensitive to Gaussian noise. Part 2 also shows that when we destroy the spatial information
with patch shuffle, the model also changes its prediction, which means that the signal structure
is important for the prediction. Finally, part 3 shows that when we insert noise only in the
background, the model does not change its prediction. Thus, joining these results with part 1,
we can conclude that the model is sensitive to change in the signal only as it keeps its decision
when we keep the original signal.
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Figure 34 – Model inspector demonstration. Parts 1 and 2 show the outputs of the
Image processing module for texture and structure transformation, respec-
tively. Part 3 shows the result of the signal background texture transforma-
tion. On the left side, all parts have a select box so the user can select the
transformation, and on the right side, there is a slider so the user can select
the parameter value for the transformation.
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7.5 CONCLUSION

In this chapter, we presented U Analysis, IPHA, and the Model Inspector tool. U Analysis is
a novel method for visualizing and interpreting the behavior of image classification models. It
allows us to understand the importance of patches in an image and their interactions, which
can be used to understand how models make inferences and identify their weaknesses. IPHA
is an optimization view for the interpretability of deep learning models. In addition, the Model
Inspector tool allows users to interact with the input image and analyze the robustness of
image classification models by changing visual information, such as texture, color, and shape.

Our experiments show that after applying U Analysis, we can demonstrate that the U-
occurrence phenomenon can occur in some cases, thus showing the image classification models
have counter-intuitive feature interaction. Besides, the IPHA results show that it can select
the less relevant features to the model prediction more accurately than the interpretability
methods used in the experiments. Finally, we also showed that Model Inspector can be used
to evaluate the robustness of image classification models to different versions of an image and
to detect biases in the model’s decision-making process.

The U Analysis, IPHA, and Model Inspector are powerful tools for understanding and
interpreting image classification models and can be used to improve their performance and
identify their weaknesses. These methods may help further research in model interpretability
and lead to developing even more advanced tools for analyzing and understanding deep learning
models.
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8 CONCLUSIONS

This thesis shows that sometimes deep learning models for image recognition make the right
inference (e.g., segmentation, classification) based on feature information that is not consid-
ered relevant for the problem-domain experts (e.g., shortcut learning, background information).
We illustrated this weakness with examples such as Grey matter segmentation in Chapter 3,
Background bias in Chapter 4, and a Toy problem in Chapter 5. We argue that it is possible
to improve this by dynamically removing the background information that the model is at-
tributing high importance and training the model (Active image data augmentation, Chapter
3). Augmenting the background information helps the model ignore the unrelated information
from the training sample and infer based on the signal information (Right reasons data aug-
mentation, Chapter 4). We also show that adding adversarial samples into the right for the
right reasons training pipeline helps the trained model focus on the information’s structure
(Adversarial right for the right reasons, Chapter 5). Finally, we evaluated the robustness of
visual language models to background shift, a common problem in standalone models and still
present in large models (Chapter 6). We also proposed a new tool and two analysis methods to
help practitioners debug its models and gain insights about its inference: the Model inspector
tool, U Analysis, and Iterative post hoc attribution (Chapter 7).

After evaluating the proposed methods with experimental pipelines, we show that ADA
enhances the robustness of the U-Net by helping it segment the spinal cord grey matter
considering the signal information. The proposed RRDA improves the model bias to back-
ground information and indicates that a high signal-to-noise ratio does not necessarily mean
the model is robust to the background. In addition, the ARRR method is effective in en-
hancing model robustness in structure-based and challenging to use in texture-based image
classification problems. Finally, the VLMs background analysis has shown that ALIGN is more
background robust than CLIP, and the Model inspector tool, U Analysis, and IPHA meth-
ods demonstrate the occurrence of counter-intuitive feature interactions and provide a more
accurate selection of relevant features compared to existing interpretability methods. These
tools offer powerful insights into the model behavior, aiding in performance improvement and
weakness identification.

The main objective of this thesis is to improve the deep learning-based image recognition
models concerning robustness and interpretability. The results and conclusions demonstrate
that we achieved this goal as the ADA, RRDA, and ARRR methods allow us to train more
robust models, focusing on features related to the problem (signal and structure) instead of
spurious features (e.g., background and color bias). In addition, the VLMs background analysis,
IPHA, U Analysis, and Model Inspector tool address the interpretability issue, enabling us to
understand how VLMs make an inference, objectively interpret the model inference, and allow
the user to verify how the model changes its inferences according to image transformations.
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8.1 PUBLICATIONS

This section presents a summary of all contributions made during the development of this
thesis. These works illustrate the breadth and depth of our efforts to make advancements
toward model robustness and interpretability. The publications are sorted by the year.

1. Santos, Flávio Arthur Oliveira, Cleber Zanchettin, Leonardo Nogueira Matos, and Paulo
Novais. "Active image data augmentation." In Hybrid Artificial Intelligent Systems: 14th
International Conference, HAIS 2019, León, Spain, September 4–6, 2019, Proceedings
14, pp. 310-321. Springer International Publishing, 2019. (HAIS, 2019)

2. Santos, Flávio Arthur Oliveira, Cleber Zanchettin, José Vitor Santos Silva, Leonardo
Nogueira Matos, and Paulo Novais. "A hybrid post hoc interpretability approach for deep
neural networks." In International Conference on Hybrid Artificial Intelligence Systems,
pp. 600-610. Cham: Springer International Publishing, 2021. (HAIS 2021)

3. Arthur Oliveira Santos, Flávio, Cleber Zanchettin, Leonardo Nogueira Matos, and Paulo
Novais. "On the Impact of Interpretability Methods in Active Image Augmentation
Method." Logic Journal of the IGPL 30, no. 4 (2022): 611-621. (IGPL 2022)

4. Santos, Flávio AO, Maynara Donato de Souza, Pedro Oliveira, Leonardo Nogueira Matos,
Paulo Novais, and Cleber Zanchettin. "Image Classification Understanding with Model
Inspector Tool." In International Conference on Hybrid Artificial Intelligence Systems,
pp. 611-622. Cham: Springer Nature Switzerland, 2023. (HAIS 2023)

5. Santos, Flávio Arthur O., Maynara Donato de Souza, and Cleber Zanchettin. "Towards
Background and Foreground Color Robustness with Adversarial Right for the Right Rea-
sons." In International Conference on Artificial Neural Networks, pp. 169-180. Cham:
Springer Nature Switzerland, 2023. (ICANN 2023)

6. Santos, Flávio Arthur Oliveira, and Cleber Zanchettin. "Exploring Image Classification
Robustness and Interpretability with Right for the Right Reasons Data Augmentation." In
Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops,
pp. 4147-4156. 2023. (ICCVW 2023)

7. Santos, Flávio Arthur Oliveira, Maynara Donato de Souza, and Cleber Zanchettin. "Eval-
uating zero-shot image classification based on visual language model with relation to
background shift." In Neural Information Processing Systems Conference: LatinX in AI
(LXAI) Research Workshop 2023, New Orleans, USA, 2023. (LXAI NIPS 2023)
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8.2 LIMITATIONS AND FUTURE WORKS

Despite the improvements achieved through our contributions, it is important to recognize the
limitations that each one of them has. Next, we will highlight the individual limitations and
thoughtful consideration for future works and directions that need more investigation.

Application: A natural extension of the ADA and RRDA is the application for other tasks
of computer vision (i.e., object localization) and other domains, such as natural language pro-
cessing (NLP) and time-series (TS). Although both implementation and proposal are generic
to use binary input masks, defining them for NLP is challenging because of issues such as
ambiguity and semantic complexity. Hence, they must be well-defined and guarantee no loss
of information and context.

Methods combination: As the IPHA method searches for a mask that points out the
important features and another one that points out the non-important features, we could
combine the IPHA method with ADA and evaluate its impact as an interpretability method.
Besides, we can also evaluate the interpretability maps of the RRDA models with IPHA to
verify if there is any impact concerning non-RRDA models.

IPHA: The main contribution of the IPHA is to visualize interpretability as an optimiza-
tion problem with well-defined objectives, with the subjectivity of concepts as importance or
attribution. Here, we only evaluated it with the Hill Climbing (GENT; WALSH, 1993) method to
search for an optimization solution. However, it is only a proof-of-concept and still has room for
improvement. Naturally, we can apply other search methods such as Ant Colony (DORIGO; BI-

RATTARI; STUTZLE, 2006), Genetic Algorithms (GOLDBERG, 1989), Particle Swarm (KENNEDY;

EBERHART, 1995), and others (HOOS; STÜTZLE, 2015). In addition, we can improve the mask
structure generated by IPHA, forcing it to generate masks with some specific structure (e.g.,
rectangle, circle, square, and other).

Model inspector: Model inspector allows users to perform input image transformations
and verify how the model changes its predictions, thus possibly identifying model weakness and
bias. In the current version, the Model Inspector only allows user load weights of image clas-
sification models available from timm 1 library and Pytorch 2. Thus, a future implementation
is necessary to allow users to load their custom models or even a generic model implemented
using a different framework. Besides, it also can be extended to other computer vision tasks
such as image segmentation or localization.

Signal masks: The results (especially the RRDA) showed that with the input signal mask,
we can train background robust models and guide the model to focus on the signal during the
inference process. However, obtaining this mask is costly, as we need an additional label for
each input data. Thus, we need additional improvements on RRDA to not consider the input
mask, build the input mask automatically (without human labeling), or at least label a few
examples and achieve the same robustness level. These variations are still open problems that
1 <https://github.com/huggingface/pytorch-image-models>
2 <https://pytorch.org/vision/stable/models.html#classification>

https://github.com/huggingface/pytorch-image-models
https://pytorch.org/vision/stable/models.html##classification
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need to be solved.
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APPENDIX A – APPENDIX FOR CHAPTER 6

INTERPRETABILITY RESULTS

We performed an interpretability analysis in the manuscript’s main text to understand how the
ChatGPT+CLIP and ChatGPT+ALIGN model attributes the similarity score. Given an input
image 𝑥 and its background variations, we compute the similarity for each category description
(i.e. 𝜑(𝑑, 𝑥)) and build a panel for each category and its descriptions. This analysis is important
because it enables us to understand how ChatGPT+CLIP and ChatGPT+ALIGN attributes
the similarity scores in each situation.

Figures 36, 35, 37, 38, show the complete results for both datasets (ImageNet-9 and RI-
VAL10) and models (ChatGPT+CLIP and ChatGPT+ALIGN). The results are coherent with
the manuscript’s main text and show that the ChatGPT+CLIP attributes higher similarity
scores to images from the original distribution. These results raise important questions about
the CLIP correlates the image information with text information; as the same object informa-
tion is present in all the challenges and the descriptions are about the object, why does CLIP
decrease the similarity when we change the background? Addressing this question is out of
the scope of this thesis, and it can be investigated in future works.
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Figure 35 – Interpretability analysis for all classes in RIVAL 10 dataset for
ChatGPT+CLIP. Due to paper size limitations, the main text of the
manuscript showed the similarity scores distributions for two categories of
each dataset. However, here we show all results for all categories. The box-
plot colors follows the same pattern of the main text plot, which the blue color
represents the original challenge, orange the mixed-same, green the mixed-
rand and red the mixed-next.
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Figure 36 – Interpretability analysis for all classes in ImageNet-9 dataset for
ChatGPT+CLIP.
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Figure 37 – Interpretability analysis for all classes in ImageNet-9 dataset for
ChatGPT+ALIGN.
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Figure 38 – Interpretability analysis for all classes in RIVAL-10 dataset for
ChatGPT+ALIGN.
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