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ABSTRACT

This thesis investigates the application of Explainable Artificial Intelligence (XAI) in Su-
pervised Machine Learning (SML) models. The motivation for this study stems from the
development of Educational Data Mining (EDM), an area that frequently uses such models to
analyze and extract insights from large datasets. A central issue of this work is the challenge
of generating global explanations for SML, particularly in cases where data independence
is not guaranteed. This is a recurring but still underexplored problem in EDM. Neglecting
data interdependencies can lead to biased explanations, overestimating irrelevant variables or
disproportionately assigning importance to predictors with similar relevance. To address these
challenges, this work builds on Accumulated Local Effects (ALE), a recent method for post-hoc
global explanation that visualizes the impact of features. ALE’s pseudo-orthogonality property
allows for isolating individual variable effects, distinguishing it from widely used methods in
EDM such as partial dependence plots and Shapley-based explanations. In a preliminary stage,
ALE techniques is compared to other existing ones by using a new methodology that evaluates
how different these techniques approximate the true variable effects in various contexts of data
dependency. In a preliminary stage, ALE techniques are compared to other existing ones using
a new methodology that evaluates how well these techniques approximate the true variable ef-
fects in various contexts of data dependency. Furthermore, based on the ALE promising results
of this stage, this work proposes new ALE-based scores to measure the impact of variables
in SML. The scores are model-agnostic and can report both the magnitude and direction of
the individual impact of features. The scores prove to be efficient in various scenarios when
compared to existing metrics on synthetic and real-world datasets. Moreover, an empirical
study using data from Brazilian secondary schools not only confirms the usefulness of the new
scores in a real-world scenario but also extends the contributions of this thesis by identifying
and offering new perspectives on the determinants of Brazilian school success over more than
a decade.

Keywords: explaineble AI; interpretable ML; global explainers; EDM; feature importance;
ALE.



RESUMO

Esta tese investiga a aplicação de Inteligência Artificial Explicável (IAE) em modelos
de Aprendizagem de Máquina Supervisionada (AMS). A motivação para esse estudo decorre
do desenvolvimento da Mineração de Dados Educacionais (MDE), uma área de estudo que
frequentemente emprega tais modelos para analisar e extrair conhecimentos de vastos con-
juntos de dados. Um aspecto central dessa tese é o desafio de gerar explicações globais para
AMS, particularmente em situações onde a independência entre os dados não é garantida.
Esta é uma problemática recorrente, mas ainda pouco explorada na MDE. A negligência das
interdependências entre os dados pode levar a explicações enviesadas, valorização excessiva
de variáveis irrelevantes ou atribuição desproporcional de importância a preditores de similar
relevância. Para resolver estes desafios, a tese baseia-se em um método recente para a vi-
sualização do impacto das variáveis em modelos supervisionados, conhecido em inglês como
Accumulated Local Effects (ALE), que se refere à distribuição acumulada de efeitos locais. A
propriedade pseudo-ortogonal de ALE permite isolar os efeitos de variáveis individualmente,
distinguindo-a de métodos amplamente usados em MDE, como os gráficos de dependência
parcial e explicações baseadas em valores de Shapley. Em uma etapa inicial, as técnicas ALE
são comparadas a outras existentes utilizando uma nova metodologia que avalia quão bem
essas técnicas se aproximam do efeito real das variáveis nos modelos em vários contextos de
dependência de dados. Além disso, com base nos resultados promissores dessa etapa, este tra-
balho propõe novos escores baseados em ALE para medir o impacto das variáveis em modelos
de AMS. Esses escores são agnósticos a modelos e podem capturar tanto a magnitude quanto
a direção do impacto individual das variáveis. Os escores demonstram eficiência em vários
cenários quando comparados com as métricas existentes em conjuntos de dados sintéticos e
reais. Além disso, um estudo empírico utilizando os dados das escolas secundárias brasileiras
não apenas ratifica a utilidade dos novos escores em um cenário do mundo real, mas tam-
bém estende as contribuições desta tese ao identificar e oferecer novas perspectivas sobre os
determinantes do sucesso escolar brasileiro ao longo de mais de uma década.

Palavras-chaves: IA explicável; aprendizagem de máquina interpretável; explicadores globais;
mineração de dados educacionais; importância de variáveis; ALE.
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1 INTRODUCTION

This thesis introduces and implements global eXplainable Artificial Intelligence (XAI) tech-
niques to enhance Knowledge Discovery in Databases (KDD), particularly within the educa-
tional domain. By integrating methodologies from both Machine Learning (ML) and Educa-
tion—fields distinguished by their unique terminologies - this work relaxes the use of certain
terms for clarity. Here, ’variable’, ’feature’, and ’predictor’ are used interchangeably to represent
individual, measurable attributes of the phenomena observed in the datasets. Similarly, ’label’
’target’, ’dependent variable,’ and ’outcome’ denote the variables whose values the models aim
to predict. Additionally, the term ’marginal effects’ is utilized in two contexts. In econometrics,
it indicates the incremental effect, while in statistics, it pertains to the probability distribution
of a variable. Contextual clarifications are provided throughout to avoid misinterpretations.

1.1 CONTEXTUALIZATION

In modern society, data is a critical resource for guiding human decision-making processes.
More recently, with the technological advances of the twentieth century, our capability to store,
process, and analyze large volumes of data has put forward the data potential to enhance
human activities (PROVOST; FAWCETT, 2013). As we transition into this new era characterized
by data ubiquity, emergent paradigms in data analysis have arisen to meet the challenges and
opportunities presented by this voluminous and complex data landscape.

In 2001, Breiman called for the use of an algorithm approach as a more accurate and
informative alternative to the use of data to solve problems (BREIMAN, 2001b). The algorithmic
modeling he refers to is ML, which, unlike traditional approaches which adjust data for a
predefined model, learns empirically from data to estimate functions for making predictions on
new data. According to Breiman, ML tools facilitate a move away from exclusive reliance on
parametric models, adopting a more diverse set of tools. This approach could enable researchers
to move beyond confirmatory research based on theory models and also allow them to derive
new theories directly from data (MOLINA; GARIP, 2019).

In supervised ML (VAPNIK, 1999), models are iteratively optimized to minimize out-of-
sample prediction error, a focus that diverges from disciplines more concerned with under-
standing the underlying data-generating processes (MULLAINATHAN; SPIESS, 2017). However,
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(SHMUELI, 2010; ZHAO; HASTIE, 2021) argue that a model exhibiting both strong predictive
performance and consistent assumptions closely approximates the underlying natural laws gov-
erning the data. This dual focus not only highlights the significance of ML

’s predictive capabilities but also the critical importance of ensuring that models align with
real-world phenomena. Further reinforcing this notion is the stance taken by (CAO, 2009), who
stresses the importance of aligning data mining models with complex real-world challenges.
Cao advocates for the integration of domain-specific knowledge throughout the entire KDD
process, a strategy that promises to deliver more reliable and actionable insights.

Nonetheless, the emphasis on predictive performance in ML has prompted researchers to
adopt increasingly complex models, often at the expense of interpretability. For instance, the
coefficients in additive linear models or the rules derived from decision trees offer straightfor-
ward interpretability, explicitly mapping input features to model outputs (MOLNAR, 2023). In
contrast, opaque models like neural networks and ensemble methods, though potentially su-
perior in prediction, do not readily reveal the mechanisms relating input features to outcomes
(LINARDATOS; PAPASTEFANOPOULOS; KOTSIANTIS, 2020). The complexity of these models
poses significant challenges for interpretation within a KDD process, especially when seeking
scientific insights and explanations for wrong decisions made, particularly before the Justice.

Within this context, and given the widespread adoption of ML in many tasks, the field of
XAI has quickly become an important focus within the larger field of ML. XAI aims to ex-
plain the reasoning and decision-making processes of these models in a human-understandable
manner (MILLER, 2019). These explanations are valuable not only for applications aimed at de-
riving insights from data but also for those whose primary objective is prediction. For instance,
while categorizing a patient’s health status in a hospital or predicting a student’s likelihood of
dropping out is beneficial, understanding the factors driving these predictions can significantly
enhance the utility of the model by facilitating targeted interventions (RAZAVIAN et al., 2015;
PELLAGATTI et al., 2021; BERENS et al., 2019). Furthermore, the transparency of ML models in
sectors like criminal justice (WANG et al., 2023) and finance (BUSSMANN et al., 2021; CHEN et

al., 2023) are increasingly mandated by legal and ethical considerations.

1.2 MOTIVATION AND SCOPE

The use of ML models in the educational domain, called Educational Data Mining (EDM)
has gained considerable attention in recent literature (ROMERO; VENTURA, 2020). The EDM
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encompasses a diverse array of applications, ranging from predicting student dropout rates
(ARAQUE; ROLDÁN; SALGUERO, 2009; AGUIAR et al., 2015) to facilitating the creation of per-
sonalized learning paths (FANCSALI et al., 2018). Beyond predictive accuracy, the interpretability
of these models can be critical for their responsible integration into educational settings.

In certain contexts, the accuracy of predictions may even take a back seat to the insights
gained from model explanations. For instance, in the field of educational assessment, EDM has
emerged as a potent tool for analyzing large-scale assessment (LSA) datasets. These datasets
are invaluable for identifying key variables impacting educational systems, aiming to pro-
vide empirical evidence to inform discussions on educational policies (HERNÁNDEZ-TORRANO;

COURTNEY, 2021). EDM allows for the extraction of knowledge from significant relationships
within these extensive databases (GAMAZO; MARTÍNEZ-ABAD, 2020). Unlike traditional ap-
proaches that rely on theoretical distribution, EDM models are developed and validated using
empirical data. This flexibility enables researchers to revisit and refine existing theoretical
models (HUANG et al., 2003).

There are many discussions of what has consisted of a model explanation, and they can
be delivered in many ways (GUIDOTTI et al., 2018). Feature-based explanations are among the
most prevalent, focusing on identifying critical features that influence model output at either
the example level (local) or the sample level (global). At the global level, these feature-based
explanations are commonly conveyed through summary metrics reporting scores of the overall
feature contribution or through plots detailing its different effects over the data sample (FILHO;

BRITO; ADEODATO, 2023a).
Moreover, the explanation methods can be internal to the model (intrinsically) as the

coefficients of linear regression and the path of a tree or by applying a second model that
analyzes the initial one (post-hoc). Another criterion to classify these methods is related to
their generalizability, whether they are model-specific or model-agnostic. While every intrinsic
method is specific, all model-agnostic work is in a post-hoc framework (FILHO; ADEODATO;

BRITO, 2021).
This thesis is principally concerned with the critical evaluation of the global explanations

in the post-hoc framework, which has raised concerns due to two key challenges. The first
challenge pertains to the predictive model itself: high predictive performance is not a sufficient
indicator that the model has captured the true relationships in the data. Rather, it may be
exploiting spurious correlations, thereby limiting the validity of any insights extracted from the
model (MITTELSTADT; RUSSELL; WACHTER, 2019). The second challenge, which is the focus
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of this thesis, lies in the explanation methods. Even if the model could accurately captures the
true data relationships, the explanation methods may not effectively illustrate how the model
actually works (RUDIN, 2019; MITTELSTADT; RUSSELL; WACHTER, 2019).

Incorporating domain knowledge and ensuring the model’s structural integrity can help
mitigate the first issue (FRYE et al., 2021; ZHAO; HASTIE, 2021). However, the problem of
collinearity - where variables are interdependent - remains a significant issue for the second
challenge (HOOKER; MENTCH; ZHOU, 2019). Collinearity becomes problematic when overlooked
in the explanations. This issue is especially pronounced in methods that rely heavily on the
structure of the model while neglecting the crucial interrelationships within the datasets.

Recently, in the EDM field, many scholars have been relying on global explanations derived
from XAI techniques that assume data independence in an attempt to extract knowledge
from data. However, data independence might be a strong assumption for many EDM tasks,
especially when using structural data based on personal and contextual information. This kind
of data tends to be highly correlated with strong inter-feature dependencies. For example, in
predicting student success based on LSA data, socioeconomic variables often have a significant
influence on student achievement, along with other contextual variables such as demographics,
school environment and process, parental education level, and access to educational resources
(COLEMAN, 1968; ANDRADE; SOARES, 2008).

Standard supervised ML is widely recognized for its emphasis on performance. This focus
can lead to learned functions that do not accurately reflect the true data-generating process
behind student success (first challenge). Consequently, insights into this phenomenon are valu-
able only when the predictive function is thoroughly explained within the context of the data
distribution used for training. An explainable approach that overlooks the data interrelation-
ships may not yield reliable explanations (the second challenge). This issue becomes more
critical when data dependencies naturally introduce biases in the explanations. For example,
low relevant variables can be attributed a high relevance only due to co-dependency with a
high relevant variable.

A common strategy of global post-hoc techniques involves modifying the value of a specific
feature as a sign of its impact on the model (SCHOLBECK et al., 2020). Essentially, features
are manipulated to generate new predictions. From a model-centric viewpoint, ignoring data
relationships in these interventions can lead to misalignment with the actual data distribution.
This may lead to the creation of unrealistic data points and, consequently, the potential for
unusual predictions. For example, Figure 1 illustrates this situation in a dataset that controls
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the weight and height of adults. If data dependencies are overlooked during interventions,
scenarios like very low weight paired with very tall height might be erroneously generated (red
points in the Figure), which are improbable or even physically implausible in reality. Predictions
based on these unlikely data points can thus yield unreliable results, significantly reducing the
practical value of the model’s explanations. This issue is referred to as the "extrapolation"
problem (MOLNAR et al., 2022; RUDIN, 2019). This can also pose a problem in educational
datasets, where points outside the distribution are used to compute feature effects and inform
decision-making.

Figure 1 – Illustration of the extrapolation problem. Blue dots are the observed data points. Red dots are new
data points derived from interventions that do not align with the actual data distribution.

Source: self-provided

In light of these challenges, this thesis is motivated by the need for more rigorous methods
to determine global feature contributions in EDM, especially when feature independence cannot
be assumed. This work is significant not only for educational practitioners engaged in data-
driven tasks, who would benefit from more reliable interpretations of ML models, but also for
the ML research community. Researchers can generalize the methods and ideas presented here
to advance the literature on XAI, fostering a more comprehensive adoption of ML systems.
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1.3 PROBLEM STATEMENT

In the realm of supervised learning within EDM, consider the function 𝑌 = 𝑓(𝑋), where
𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) represents a set of structured variables, 𝑀 denotes the variance-
covariance matrix and 𝑔 a post-hoc XAI model. Assuming 𝑓 is an effectively performing model
and can be considered as a source of knowledge about an underlying phenomenon, insights
about 𝑋 can be gleaned from 𝑔 by analyzing how 𝑓 utilizes 𝑋 to predict 𝑌 , especially when
considering the dependencies encapsulated in 𝑀 .

Moreover, in the context of global explanations, it is expected that the explanation con-
tained in 𝑔 represents the individual role of each component to which 𝑔 refers. Specifically, the
attributed relevance to 𝑥1 = 𝑔(𝑥1) should pertain solely to the role of 𝑥1. Similarly, 𝑔(𝑥1, 𝑥2)

should represent the combined effect of 𝑥1 and 𝑥2 exclusively. This property will ensure an
interpretation of 𝑔 akin to the coefficients of linear models, where the 𝛽 values indicate the
individual impact of each feature, assuming the model’s conditions are met. Nevertheless, if 𝑀

is not taken into account or is not correctly handled by 𝑔, biases may skew the interpretation
of individual components of 𝑓 resulting in mixed effects of features or even unrealistic feature
effects representations.

A review of the literature on applying XAI in EDM primarily focusing on extracting knowl-
edge from data, presented in Section 2, indicates that commonly used techniques for explaining
opaque models may result in unrealistic explanations of 𝑋. This is largely due to a lack of
constraints to address 𝑀 in the computation of 𝑔. Specifically, the review highlights the use
of Partial Dependence (PD) and SHapley Additive Explanation (SHAP) as the predominant
tools for informing feature effects through plots.

The PD plots, introduced in 2001 by Friedman (FRIEDMAN, 2001), serve as one of those
pioneering techniques for visualizing the effects of predictors. In recent years, SHAP (LUND-

BERG; LEE, 2017) has gained widespread acceptance in both industrial and academic settings
(BHATT et al., 2020) for delineating local and global effects of features. However, prevalent
implementations of PD and SHAP overlook the matrix 𝑀 . In other words, the feature relation-
ships presented in 𝑀 cannot be maintained during feature effect computations. This oversight
can compromise the accurate interpretation of the individual relevance of components in 𝑓 .

In EDM, one example of how this problem can arise involves variables related to socioe-
conomic factors. Socioeconomic status is often gauged using multiple correlated variables,
such as parental education level, access to cultural resources, and availability of technological
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devices. These variables frequently play a crucial role in many educational contexts. Variables
that may not be inherently significant to an underlying predictive function but are correlated
with those significant ones could be inappropriately emphasized if the correlation presented in
𝑀 is extrapolated, introducing bias to the explanations of the individual role of features and
their interactions on function 𝑀 .

The Accumulated Local Effects (ALE) plots (APLEY; ZHU, 2020) were recently introduced
as an alternative to elucidate feature effects. The primary motivation behind ALE is to address
the extrapolation problem by ensuring a pseudo-orthogonality property. This property enables
ALE to approximate orthogonality — where components operate independently from each
other — thereby facilitating the isolation of individual explanations for each component within
a predictive function. Consequently, ALE presents itself as an effective and straightforward
alternative for explaining models where data exhibits significant dependence as is common in
most EDM applications. However, to the best of our knowledge, it has not yet been employed.

Moreover, it’s important to note that ALE has primarily been used to illustrate feature
effects through plots of partial derivatives. These plots demonstrate the varying effects of a
single variable across its value range, offering detailed insights. However, this level of detail
may not always be practical. For example, when analyzing multiple variables simultaneously,
such complexity can reduce human intelligibility, considering that an average person is capable
of processing only a limited amount of information at once (MILLER, 1956). Furthermore, plots
are not feasible to describe interactions between more than two features (APLEY; ZHU, 2020).

In the context of KDD’s systematic processes, simpler metrics like scores offer a pragmatic
approach. They can initially identify key variables, which then facilitates more in-depth explo-
ration of the roles these features play. Scores are also useful for feature selection, providing
a straightforward method for determining the most influential variables. Furthermore, scores
are well-suited for comparative and trend analysis, aiding in the evaluation of the relevance of
features across different educational systems and over time. This adaptability makes scores a
valuable tool for broader analysis in educational settings, akin to the traditional coefficients in
linear models, which are commonly used in education research.

Building upon the review presented in Chapter 2, it becomes evident that methods such
as the Mean Decrease in Impurity (MDI) derived from tree-based models, along with the PFI
and average SHAP values, are among the most prominent techniques for elucidating feature
attribution through scores. The MDI assesses a feature’s relevance by averaging the degree to
which the feature is used as a split criterion during tree construction. Its variations PFI, which
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was initially designed for random forests and further extended for other tree-based models,
was also further conceptualized to be applied in a model-agnostic manner. The PFI takes the
difference (or ratio) of model performance between the baseline model and the model when the
feature is randomly permuted. The PFI is designed to provide a score for each feature based
on how much difference replacing the feature with noise makes in predictive performance. PFI
addresses some well-known limitations of MDI, such as its bias towards features with a high
number of categories and continuous variables (LI et al., 2019). However, PFI, as the average
SHAP, is a permutation-based method that computes explanations out-of-distribution, thus
raising concerns about their applicability in assessing the importance of features in dependent
datasets (STROBL et al., 2008; RUDIN, 2019; NEMBRINI, 2019; NICODEMUS, 2011).

Beyond the challenge of managing dependent data, ranking-based metrics, which illustrate
the relative importance of variables in model performance such as PFI may not effectively
illustrate the direct relationship between features and the target variable. This is a crucial aspect
for EDM practitioners who seek to glean insights from data. It would be more advantageous if
these scores also represent the individual contributions of features to predictions, rather than
solely to performance. The scores should be able to be either positive or negative, indicating
the specific nature of the relationship between the features and the target variable. Adopting
this approach would align more closely with the interpretation of coefficients in traditional
linear models.

Therefore, this thesis problem centers on the need for a robust method that can elucidate
the isolated roles of each component in the predictive function. Given this challenge and ALE
properties, the following question guides this research: Can ALE be incorporated into the range
of XAI tools to be used in EDM to inform more accurate feature contribution either by plots
and scores, even when data are not independent?

1.4 OBJECTIVE AND CONTRIBUTIONS

Addressing these inquiries, the main objective of this thesis is to assess ALE as a reliable
alternative to explain the individual and isolated effects of features and their interactions in the
supervised learning paradigm. Specifically, it focuses on ensuring robustness in the presence of
dependent data, aiding in extracting knowledge from educational datasets.

This work aims to bridge this gap by not only critically evaluating the limitations of existing
explanations but also introducing novelties that allow a more trustworthy adoption of ML in
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EDM. Specifically, the following research questions address the core objectives of the study.
RQ1 - How do widely used feature effects techniques compare with ALE in accurately

identifying true feature effects considering different inter-data dependencies?
By responding to RQ1, the thesis aims to raise empirical evidence about the robustness

of ALE in recovering the role of features in supervised models under correlated data. While
the properties of ALE have been previously delineated, primarily through mathematical and
qualitative frameworks (APLEY; ZHU, 2020; MOLNAR, 2023), a notable gap remains in empir-
ical quantitative analysis, particularly in evaluating how ALE strategies differ in explanations
compared to commonly used techniques such as PD and SHAP. This gap not only underscores
the need for a thorough comparative analysis of ALE with established methods, as suggested
in (MOLNAR et al., 2022), but also highlights its potential for enhancing explanations in the
field of EDM.

RQ2 - How effectively can score-based explanations derived from the ALE framework report
individual and isolated attribution of the features in terms of their magnitude and direction
compared to existing methods?

Addressing RQ2, this thesis aims to fill a gap in the area of score-based explanations,
which is the most prevalent approach in EDM. By adopting the ALE framework, this work
introduces new metrics that surpass the limitations of current methods, particularly in the
context of correlated data. This advancement will facilitate knowledge discovery in educational
data using supervised machine learning.

These research questions will be answered sequentially, aiming to provide two main con-

tributions: 1) empirical evidence of ALE robustness compared with currently used

methods in EDM and 2) a new set of score-based metrics of feature effects size..
The first main contribution of this thesis is the evaluation of ALE against other widely

used techniques in EDM, specifically in scenarios involving dependent data. This contribution
fulfills the need for a thorough analysis of different strategies for managing data dependencies
in the context of post-hoc global feature effects. Furthermore, it enhances the XAI literature by
introducing a novel methodology for benchmarking feature effects. This methodology evaluates
the robustness of various feature effect techniques in accurately representing the actual data-
generating process. The design of this methodology involved the use of synthetic data, which
enables a direct comparison between the known data-generating process and the outcomes
provided by the explanation techniques.

The second major contribution of this thesis is a novel set of metrics developed to quantify
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feature effect sizes. Building on prior research, which introduced scores summarizing graph-
based techniques, (LONG; LONG, 1997; GREENWELL; BOEHMKE; MCCARTHY, 2018; LEE et al.,
2023) this work introduces four innovative metrics inspired by the ALE framework. Each
metric is designed to provide unique insights into the significance of features, offering diverse
perspectives on their importance. These metrics are model-agnostic, suitable for a range of
model types, and designed to reveal the extent and direction of feature effects, similar to the
way traditional coefficients do in educational analysis. The effectiveness of these metrics has
been tested, demonstrating their capacity to identify key variables and to isolate the effects
of features, even among highly correlated variables. This validation was conducted using both
synthetic and real-world datasets.

1.5 OUT OF SCOPE

Since this thesis encompasses a broad context, it is important to highlight a set of subjects
that are outside the scope of this thesis:

• Introduce new strategy to deal with the extrapolation issue. The extrapolation
problem is a well-known issue in the literature and is sometimes even considered a trade-
off, where it is not possible to be fully adherent to the data and model simultaneously
(LUNDBERG et al., 2020; CHEN et al., 2020). Rather than proposing novel strategies, this
thesis focuses on discussing and expanding the understanding and application of existing
strategies within this context. The primary focus is on extracting knowledge from data.

• Guidelines for Explaining EDM Models: This thesis advocates for the ALE framework
as a favorable and appropriate alternative for globally elucidating the role of features in
predictive models, especially within educational contexts dealing with correlated data.
However, it does not intend to set rigid guidelines for explaining EDM models. As
discussed in Chapter 2, explanations can vary both in form and function, tailored to
suit the explainability requirements of the intended audience. The diversity of these
explanations and their integration can substantially enhance knowledge discovery.

• Compromise with causality. While the primary aim is to provide dependable insights
into the mechanisms generating the underlying data, it’s important to acknowledge that
traditional supervised models do not ensure an accurate reconstruction of the data-
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generating process. Often, these models rely on spurious correlations for making pre-
dictions rather than establishing causal relationships. Consequently, this work does not
delve into any causality-related issues.

1.6 SCIENTIFIC PRODUCTIONS

This section presents the publications that have arisen from this work. The research began
before the focus of this thesis was formally established, consistently centered around applying
supervised learning to extract knowledge from educational data. This exploration aimed to aid
decision-making and support the formulation of educational policies. These endeavors have
culminated in multiple publications, both in conference proceedings (CP) and peer-reviewed
journals (JP).

Table 1 – Conferences

ID Reference
CP1 Silva Filho, R.L.C. ; Adeodato, P.J.L. . Data Mining Solution for Assessing the

Secondary School Students of Brazilian Federal Institutes. In: 8th Brazilian Con-
ference on Intelligent Systems (BRACIS), 2019, Salvador, p. 574

CP2 Silva Filho, R. L. C. ; Adeodato, P. J. L. ; dos Santos Brito, K. . Interpreting
Classification Models Using Feature Importance Based on Marginal Local Effects.
In: 10th Brazilian Conference on Intelligent Systems(BRACIS), 2021, São
Paulo, p. 484
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Table 2 – Journals

ID Reference
JP1 Silva Filho, R. L. C., Brito, K., Adeodato, P. J. L. (2023). A data mining

framework for reporting trends in the predictive contribution of factors related
to educational achievement. Expert Systems with Applications, 221, 119729.
ℎ𝑡𝑡𝑝𝑠 : //𝑑𝑜𝑖.𝑜𝑟𝑔/10.1016/𝑗.𝑒𝑠𝑤𝑎.2023.119729

JP2 Silva Filho, R. L. C., Brito, K., Adeodato, P. J. L. (2023). Leveraging Causal Rea-
soning in Educational Data Mining: An Analysis of Brazilian Secondary Education.
Applied Sciences, 13(8), 5198. ℎ𝑡𝑡𝑝𝑠 : //𝑑𝑜𝑖.𝑜𝑟𝑔/10.3390/𝑎𝑝𝑝13085198

JP3 Silva Filho, R. L. C., Brito, K., Adeodato, P. J. L. (2023). Beyond scores: A
machine learning approach to comparing educational system effectiveness. Plos
One, 13(8), 5198. 10.1371/𝑗𝑜𝑢𝑟𝑛𝑎𝑙.𝑝𝑜𝑛𝑒.0289260

JP4 Silva Filho, Carnoy M. (2023). Trends in social class and race achievement gaps
among secondary school graduates in Brazil. Under revision: Large-scale As-
sessment in Education, 2023.

JP5 Silva Filho, R. L. C. ; Adeodato, P. J. L. ; dos Santos Brito, K. . Measuring
extrapolation: an comprehensive analysis of feature effects. "Working Paper"

Source: self-provided

1.7 OVERVIEW

This thesis is organized into a total of six chapters. In this chapter (Chapter 1), the
motivations for carrying out this research were presented together with a brief overview of the
objectives and research questions.

Chapter 2 provides an overview of the foundational areas and concepts critical to this
thesis. It outlines the fields of XAI which are related to the gaps this thesis aims to fill.
Furthermore, an overview of EDM and its intersection with XAI is provided, in addition to the
formal definitions of techniques frequently cited throughout the thesis.

Chapters 3 and 4 present the main contributions of this thesis. Chapter 3 formally delineates
how different strategies to handle the data relationships affect post-hoc XAI techniques. It
further empirically demonstrates the robustness of ALE in recovering the true effects of features
in comparison with other techniques on different data dependence scenarios.

Motivated by the results of Chapter 3, Chapter 4 subsequently introduces ALE-based
metrics for assessing feature effect size. Each chapter begins with an introduction section
that provides the necessary context and motivation, along with a brief review of related works
that are specific to the chapter’s individual contribution. This structure results in a smoother
overlap between chapter introductions, which, while not ideal, is necessary to ensure clarity and
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better position its contributions to the literature. The chapters also detail the methodology,
experiments, and results of each contribution.

Chapter 5 showcases the usefulness of the ALE-based metrics developed in Chapter 4 to a
practical case study. It presents a data-mining solution to investigate what and how variables
have impacted Brazilian secondary school performance over a period of 11 years.

Finally, Chapter 6 presents the concluding remarks and discusses the main contributions
of this thesis, and directions are outlined for possible future research.

Figure 2 depicts the overview of this thesis through a diagram. The diagram, delineated
by a blue box, illustrates the direct correlation between specific chapters of the thesis and
their corresponding scientific publications, highlighting the integration of these publications
into the thesis discourse. In contrast, the gray box encapsulates additional publications that,
while not directly tied to individual thesis chapters, fall within the broader scope of the thesis
topic - extract knowledge from educational data using ML. Notably, all presented publications
are authored by the thesis candidate as the first author during the Ph.D. period.

Figure 2 – Overview of Thesis Structure and Related Publications: Publications directly related to thesis chap-
ters are shown in blue boxes, while additional publications within the thesis topic are in gray boxes.
All works are first-authored

Source: self-provided
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2 BACKGROUND AND LITERATURE REVIEW

2.1 SUPERVISED LEARNING

Supervised learning is a subfield of ML in which a model is trained on a labeled dataset to
perform predictive tasks in a unseen dataset. The objective is to find a function 𝑓 : 𝑋 → 𝑌 ,
where 𝑋 is the feature space and 𝑌 is the output space, such that the function approximates
the underlying mapping from input features to outputs as closely as possible.

Specifically, given a labeled dataset 𝐷 = (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛), where 𝑥𝑖 ∈ 𝑋 and
𝑦𝑖 ∈ 𝑌 , the supervised learning algorithm aims to minimize a loss function 𝐿(𝑓(𝑋), 𝑌 ) over
𝐷, defined as:

𝐿(𝑓) =
𝑛∑︁

𝑖=1
𝐿(𝑓(𝑥𝑖), 𝑦𝑖)

Where, 𝐿 measures the discrepancy between the predicted output 𝑓(𝑥𝑖) and the true label
𝑦𝑖. To enhance the model’s generalization capabilities, 𝑓 is evaluated on an statistically inde-
pendent dataset, thereby mitigating the risk of optimistic empirical performance estimation.

2.1.1 Contrast with traditional statistical methods

Despite the models used in traditional statistics can be seen as one of the tools available
in ML (HASTIE ROBERT TIBSHIRANI, 2014), there is a fundamental difference in how they
estimate the weight of functions. To elucidate the distinctions between supervised learning
and traditional statistical models, lets consider a linear model within the supervised learning
framework, defined as:

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖 (2.1)

In contrast to the Ordinary Least Squares (OLS) approach prevalent in traditional statistical
analyses, the objective in the context of supervised learning is also to optimize the coefficients
𝛽 in a manner that minimizes out-of-sample error. Specifically, OLS optimizes 𝛽 by minimizing
only in-sample error, without explicit consideration for out-of-sample generalizability. The key
divergence stems from supervised learning’s strategic focus on balancing the bias-variance
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trade-off, thereby allowing a certain level of bias (in-sample error) to mitigate excessive variance
(out-of-sample error) (ATHEY; IMBENS, 2019).

The objective function for linear regression under supervised learning paradigm can be
formalized as:

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖))2 + 𝜆𝑅(𝑓) (2.2)

In this equation, (𝑦𝑖 −𝑓(𝑥𝑖))2, represents the in-sample error, while the regularization term
𝑅(𝑓) acts to prevent overfitting by constraining the model’s complexity, thereby reducing the
out-of-sample error. The chosen regularization parameter 𝜆 plays a crucial role in modulat-
ing the extent of this constraint, thereby influencing the model’s generalization performance
(HASTIE ROBERT TIBSHIRANI, 2014).

2.2 XAI

The wide use of Artificial Intelligence (AI) and ML has increasingly emphasized the impor-
tance of transparency and user comprehension of model behaviors, primarily under the terms
Explainable AI (XAI) and Interpretable ML (IML). Despite the significant growth of this re-
search area in recent years (ARYA et al., 2019), foundational works in the field can be traced
back to the 1980s (FAGANT; SHORTLIFFE; BUCHANAN, 1980; BAREISS; PORTER; WIER, 1988).
While some authors argue that XAI and IML can be conceptually distinct (WATSON, 2022),
they are more commonly used interchangeably in the broader scientific literature as both terms
share the objective of enhancing the transparency of ML models (MOLNAR, 2022)

In this thesis, the term "interpretability" will used to refer to its common dictionary mean-
ing, while "explainability" will be specifically employed to describe the systematic extraction
of knowledge about predictive models.

2.2.1 Inherent interpretable models

Inherent interpretable models, often referred to as intrinsically interpretable models, are
those models distinguished by their transparent and easily understandable internal mechan-
ics. These model provide explicit explanations of the relationships between input features
and output predictions, facilitating a deeper understanding of their recommendations in the
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decision-making processes.
Examples of such models include linear regression, decision trees, and induction rules. In

the linear regression 2.1, for instance, each 𝛽 coefficient quantifies the change in a dependent
variable for a one-unit change in an independent variable, assuming all other variables are held
constant. In other words, the model additive parametrization allows an isolated interpretation
of the effects of individual features. Many other adaptions allow a linear model to capture
more complex relationships (HASTIE ROBERT TIBSHIRANI, 2014), such as interactions and
non-linearity. Nevertheless, in models that involve transformations of this linear predictor into
other discrete outcomes, such as in the logit and probit models, the 𝛽 interpretation is not
straightforward and limited (MOOD, 2017; LONG; LONG, 1997).

The decision trees categorize outcomes based on decision rules at each node. On the other
hand, inducing rules out of tree structure do not narrow the dimensional space as it occurs in
the trees. These induced rules are clear statements in the natural language of how inputs lead
to outputs in several different perspectives (FILHO; ADEODATO, 2019).

The primary advantage of using inherent interpretable models is their ease of interpretation,
which is especially beneficial to high-stakes decisions (RUDIN, 2019). However, they are often
outperformed by more complex models when it comes to predictive performance (LOYOLA-

GONZALEZ, 2019). The simplicity that makes them easy to interpret can also be a drawback,
as it might lead to the oversimplification of intricate relationships in the data. This can be
a significant limitation when dealing with complex systems where multiple variables interact
nonlinearly.

2.2.2 Post-hoc explainable techniques

When a second model is used to explain the first, it is categorized as a post-hoc explainable
technique. Model-agnostic explanation model is any function 𝑔 that approximates the original
model 𝑓 (LUNDBERG; LEE, 2017). While intrinsically interpretable models provide insights into
predictions using their internal components, post-hoc techniques treat models as opaque,
relying solely on their prediction function and data (MOLNAR, 2022).

Post-hoc techniques are typically model-agnostic and offer the flexibility to explain various
types of models, including those that are transparent, in an effort to enhance existing explana-
tions. For instance, in a logistic regression model, a model-agnostic technique can illustrate the
individual feature effects across the entire range of the feature values, whereas the coefficients
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only indicate the order of feature contributions. Similarly, understanding feature effects can
complement the intrinsic rule-based explanations provided by a decision tree.

2.2.3 Measuring explainability

Explainability is a domain-specific notion and has a big criticism of the lack of formalization
(RUDIN, 2019; WATSON, 2022; LIPTON, 2018). Explanations can take various forms, and there
isn’t a clear definition of what constitutes an explanation. Moreover, explanations can differ
based on the type of input variables. For images, explanations are often visualized as heatmaps,
whereas for text inputs, they typically involve highlighting text passages or emphasizing words
(MOLNAR, 2022).

This thesis focuses on tabular data. For certain tasks within this domain, visual graphs by
using plots may be the preferred form of explanation, while others might favor text or scores.
This variation makes it challenging to find a widely accepted definition of explainability, even
within this narrowed scope. Such diversity in explanations presents a challenge in defining
quantifiable evidence for the field (DOSHI-VELEZ; KIM, 2017).

Unlike supervised learning, where much of the literature has advanced based on clear bench-
marks of model performance, the sub-field of XAI or IML still faces vagueness in definitions.
This is due to the challenge of measuring the trustworthiness of model explanations, as there
is no ground truth for comparison in the real world which is only known by its observable
data. Determining which explanation is superior is also difficult (ARYA et al., 2019), even for
inherently interpretable models. For instance, we can’t always say whether a decision tree path
is more or less clear than a linear model’s coefficients (MOLNAR, 2022).

Considering the variety of ways in which explanations can be derived, their evaluation
depends on the intended purpose of use. For example, one can assess how effectively humans
utilize explanations (EHSAN et al., 2021; WANG et al., 2019), or evaluate the explanatory function
itself by measuring aspects such as size or sparsity (YANG; RUDIN; SELTZER, 2017; USTUN;

RUDIN, 2016; CLAASSEN; MOOIJ; HESKES, 2013). Additionally, it is possible to quantify certain
aspects related to explanations, such as evaluating the extent to which explanations predict
model outputs (CHEN et al., 2022; LAKKARAJU; BACH; LESKOVEC, 2016). For benchmarking
purposes, a common practice is the use of synthetic data with a known data-generating process.
This approach facilitates the comparison of actual explainability with expected explanations in
various contexts.
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2.2.4 Who needs explanation?

The demand for ML explanations is pertinent across various sectors with the specific needs
and objectives varying by domain and stakeholder diversity. Model explainability is not merely
a desirable attribute but can be a crucial aspect for reasons ranging from model debugging to
scientific exploration. This section delineates the roles of key stakeholders and the significance
of explanations beyond performance within their respective domains.

Model creators, typically the developers of ML models, find interpretability crucial for
debugging tasks (BHATT et al., 2020). It is important to know how the model relies on features
to make predictions in order to fix unexpected behavior. For instance, the model creator
might be interested in a model that makes decisions based on meaningful features rather
than sensitive features in order to enhance generalizability or fairness. Such scrutiny cannot
be achieved by only observing performance.

Operators, who use a model’s outputs in their tasks, also require an understanding of the
decision-making rationale. For instance, classifying a patient in a hospital into a particular
health status should not be particularly helpful. It could be more useful to investigate the
conditions that have contributed to this (RAZAVIAN et al., 2015), and this becomes even more
crucial in the event of legal matters. Additionally, in the education domain, understanding why
a student might drop out could be more valuable than just predicting it (PELLAGATTI et al.,
2021; BERENS et al., 2019). This is because, as in medicine, the treatment depends on the
probable cause.

The people who are subject of decision-making also have to get a kind of explanation. For
instance, a loan approval model may recommend the rejection of an applicant based on specific
financial variables. Understanding the rationale behind a decision empowers the applicant to
make informed future choices or contest an unjust or biased decision. Regulatory examiners,
often working in regulated industries, expect similar explanations. They are responsible for
auditing ML models to ensure compliance with industry standards and ethical norms (CHEN et

al., 2023; FLORES; BECHTEL; LOWENKAMP, 2016).
Finally, data analysts are increasingly utilizing ML models for tasks aimed at understanding

data-generating processes in both industrial and scientific research contexts (FREIESLEBEN et

al., 2022; FILHO; BRITO; ADEODATO, 2023a). These models often supplant traditional statistical
methods due to their flexibility in handling large volumes of data without requiring prior domain
knowledge. Although ML models can offer high predictive accuracy, they may lack explanatory
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power, thereby impeding a comprehensive understanding of the phenomena under investigation.
Incorporating interpretability can address this limitation by elucidating the relationships among
variables, consequently facilitating hypothesis generation for subsequent research.

2.2.5 Explanations scope

In addition to the types of model explanation techniques and the nature of the data, ex-
plainers can be categorized based on their scope. Local explainers refer to individual predictions,
while global explainers quantify the average behavior of a model. Specifically, explanations can
be further categorized into feature effects, which are commonly expressed through graphs, and
feature importance, which provides score-based summary measures of the overall contribution
of features.

Feature effects describe how the impact of a feature varies across its value range, using a
simplified function derived from 𝑓 , 𝑔 : 𝑋𝑠 −→ 𝑌 , being 𝑋𝑠 a set of features to be explained
with a size typically of 1 or 2 features. Examples of global feature effects are Marginal Effects
(ME)(LONG; MUSTILLO, 2021; MIZE; DOAN; LONG, 2019), ALE plots (APLEY; ZHU, 2020), PD
plots (FRIEDMAN, 2001) and SHAP (LUNDBERG; LEE, 2017).

Score-based explanations, often referred to as feature importance, essentially provide a
ranking of features based on how much each one decreases the model’s prediction error. The
most commonly used methods are the tree-based MDI (BREIMAN, 2001a) and the model-
agnostic PFI(FISHER; RUDIN; DOMINICI, 2018) and its variations (MOLNAR et al., 2023; STROBL

et al., 2008). Additionally, there are score-based versions of some feature effects techniques
such as PD (GREENWELL; BOEHMKE; MCCARTHY, 2018), ME (LONG; LONG, 1997) and SHAP
(LEE et al., 2023).

2.2.6 Can XAI really obtain knowledge about the world?

Discussing the cability of XAI to extract knowledge from the world is essential, given
that the core argument of this thesis hinges on XAI being an invaluable tool for deriving
trustworthy insights. This view is in line with the growing trend among researchers towards
more transparent AI and ML models, as a response to their increasing integration in society
(ARYA et al., 2019). These researchers advocate that the empirical use of ML could pivot
scientific research towards a theory-independent method, allowing data to convey its own
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story without pre-existing hypotheses about the data, as noted in various studies (KITCHIN,
2014; ANDERSON, 2008; NAIMI; WESTREICH, 2014; ANDREWS, 2023; LIEBERSON; HORWICH,
2008).

While models known for their inherent transparency have faced minimal criticism, post-hoc
techniques encounter more scrutiny despite their widespread use across various fields such as
education (LEZHNINA; KISMIHÓK, 2022; MARTÍNEZ-ABAD; GAMAZO; RODRÍGUEZ-CONDE, 2020),
healthcare (JAUHIAINEN et al., 2021; STIGLIC et al., 2020), social science (BERGER, 2023; BEL-

LANTUONO et al., 2023), and sociology (LI et al., 2023; FAN et al., 2023).
The primary critique stems from the potential mismatch between what the opaque model is

doing and what the post-hoc model attempts to explain (RUDIN, 2019; MULLAINATHAN; SPIESS,
2017; BABIC et al., 2021). On the other hand, (SULLIVAN, 2022) argues that gaining real-world
knowledge with ML models is feasible as long as the link between model and phenomenon
uncertainty can be assessed. Similarly, (CICHY; KAISER, 2019) and (ZEDNIK, 2021) suggest that
XAI can aid in understanding the real world, but they remain vague about how the model and
phenomenon are connected.

Through the lens of philosophy of science and epistemology, authors in (FLEISHER, 2022)
draw parallels between XAI and the fundamental concepts of understanding. While there is
some disagreement in the field, there is consensus that understanding is not an all-or-nothing
state. Genuine understanding comes in degrees and can accommodate some inaccuracy and
falsehood. In other words, understanding can still be valid even if the information or concepts
it’s based on are not entirely accurate. This ties into the concept of idealization in scientific
models, which refers to the process of simplifying or abstracting certain aspects of a phe-
nomenon or model to make it more tractable (JEBEILE; KENNEDY, 2015). Building on this,
(FLEISHER, 2022) argues that XAI research has a solid foundation in science and promising
avenues.

Rudin and colleagues (RUDIN, 2019) advocate for the use of inherently interpretable models
rather than combining opaque models with post-hoc techniques, especially in high-stakes
decisions. Although this may initially seem like a criticism of post-hoc techniques, the critique
centers around the inappropriate selection of models that are too complex without much
performance improvement. Nevertheless, the use of inherent interpretable models does not
prohibit the application of post-hoc methods. In fact, post-hoc methods are model-agnostic
and can be applied to any model and can provide extra insights. As (MOLNAR, 2022) notes,
inherent interpretable models should always be included in benchmarks.
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In this context, it is posited that XAI, particularly via post-hoc techniques, has the potential
to augment model interpretability. Such enhancement is achieved either by providing additional
insights into inherently interpretable models or by shedding light on functions of otherwise
opaque models. And while these insights may not perfectly mirror the target model, they can
be crucial in developing new theories based on real-world data. These theories can then be
explored further to advance science and knowledge. Therefore, results from ML explanations
provide not an end goal, but the starting point for further analysis and conceptualization.

2.2.7 Model-agnostic global explainers

2.2.7.1 ME plots and scores

The Marginal Effects (ME), or analytical derivative, were initially defined in the traditional
statistical literature. The marginal term here is derived from the econometrics discipline as the
"additional" effect, which has a different mean from the rest of this thesis, where the marginal
term is related to the probability distribution of an underlying feature.

The ME were established as an alternative to explain the coefficients of features in non-
linear models, especially those entailing interactions that obscure the direct interpretation of
coefficients. These more complex models lose their direct interpretation of coefficients, meaning
that interpretation requires a first understanding of the details of the specified model(LEEPER,
2021; LONG; LONG, 1997). The ME are also useful to inform the variable contribution in the
natural scale on Generalized Linear Models (GLM), which involve transformations of the linear
predictor into other discrete outcomes, such as logistic regressions, where coefficients typically
lack direct interpretability and do not align with the scale of interest.

The ME effects of a variable 𝑋𝑠 are in the function of all other remaining variables 𝑋𝑐 and
represent for continuous variables the change in the probability when the 𝑋𝑠 varies in small
change, as defined:

𝑀𝐸(𝑋𝑠) = lim
ℎ→0

𝑓(𝑋𝑐|(𝑋𝑠 + ℎ)) − 𝑓(𝑋𝑐|𝑋𝑠)
ℎ

(2.3)

In practice, ℎ is the value of 𝑋𝑠 and the ME effects can be straightforwardly plotted over
𝑋𝑠 . However, usually, summary measures are the main unit of interest, such as:

• Marginal Effect at the Mean (MEM) is simply the computation of the MEs around the
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mean of the feature distribution. In practice, MEM is close to the AME if 𝑓(𝑋) is not
too noisy.

• ME at the Representative Value (MER) is a simplification of MEM calculation for a value
that could be an interesting operation point for the research domain. The marginal
effect is calculated for each variable at a particular combination of X values. Thus,
MER provides a means to understand and communicate model estimates at theoretically
important combinations of feature values.

2.2.7.2 PD plots and scores

The Partial Dependence (PD) plots serve as a graphical representation that quantifies the
effect of specific features on the predicted outcome within a supervised learning model while
holding other variables constant (ceteris paribus). These plots offer insights into the average
marginal contribution of a feature of interest 𝑋𝑠 to the model’s prediction, with the remaining
features 𝑋𝑐 held constant. By doing so, if the predictive model closes the real world, PDs
allow a causal interpretation of the role of 𝑋𝑠 in the model if data meets the independence
assumption (ZHAO; HASTIE, 2021). The underlying function can be mathematically described
as follows:

𝑃𝐷(𝑋𝑠) = 1
𝑛

𝑛∑︁
𝑖=1

𝑓(𝑋𝑠 = 𝑗, 𝑋𝑐) (2.4)

where 𝑓(𝑋𝑠 = 𝑗, 𝑋𝑐) represents the model’s predicted output when the feature 𝑋𝑠 is
intervened upon to assume a specific value 𝑗, while the remaining features 𝑋𝑐 are held their
observed values in the dataset. The value 𝑗 is drawn from the marginal distribution of 𝑋𝑠. To
be plotted, 𝑗 assumes values within a defined grid of the ordered 𝑋𝑠 where 2.4 is computed.
For categorical features, 𝑗 assumes each category as a possible value.

A more specific method for estimating PD is utilizing Individual Conditional Expectation
(ICE) curves. ICE curves (GOLDSTEIN et al., 2015) provide a distinct curve 𝑃𝐷(𝑋𝑠) for each
individual data point 𝑖 in the sample. Essentially, the PD is computed as the average of these
ICE curves. This granular decomposition facilitated by ICE allows for identifying potential
interaction effects between 𝑋𝑠 and the remaining features 𝑋𝑐 at global level, which may not
be observed when solely relying on PDs.
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In an attempt to yield scores from PD, (GREENWELL; BOEHMKE; MCCARTHY, 2018) pro-
posed a simple score considering that a feature’s importance is inversely related to the flatness
of its PD Plot; a flatter PD plot suggests lesser importance, while greater variation in the
PD indicates higher significance. Ass PD ignores feature relationships, this PD-based score
captures only the main effect of the feature and ignores potential feature interactions

2.2.7.3 ALE plots

The Accumulated Local Effects (ALE) technique was established as an additional alterna-
tive to illustrate the feature effects. Distinct from prior methods, ALE focuses on variations
in predictions rather than the predictions themselves, thereby isolating individual feature ef-
fects. Also, ALE is computed by parts of the data in an attempt to keep adherent to the data
relationships without extrapolating.

In the ALE framework, intervals are theoretically defined as in ME, using derivatives, but in
practice, ALE employs a grid 𝑍 based on quantiles of the feature of interest 𝑋𝑠 . This process
involves computing the effect of 𝑋𝑠 separately for each quantile 𝑧 intervening on 𝑋𝑠 twice:
assuming the lower and upper quantile limits, while keeping all other variables, 𝑋𝑐, constant.
The essence of ALE lies in adjusting 𝑋𝑠 for all observations between these two bounds and
calculating the change in the prediction function. This method seeks to capture the local effect
(LE) of 𝑋𝑠 within the confines of each quantile, effectively isolating its influence by comparing
the outcomes when data interventions are applied at the quantile’s lower and upper limits.

Assuming data independence and a linear effect of 𝑋𝑠 within the quantile interval, the aver-
age differences in the predictions between the maximum and minimum interventions represent
the isolated local effect of 𝑋𝑠, which is computed as:

𝐿𝐸(𝑋𝑠, 𝑧) = 1
𝑛

𝑛∑︁
𝑖=1

𝑓(𝑋𝑠 = 𝑋max(z)
𝑠 , 𝑋𝑐) − 𝑓(𝑋𝑠 = 𝑋min(z)

𝑠 , 𝑋𝑐) (2.5)

For visualization, this LE is subsequently accumulated over the grid 𝑍. Theoretically, this
accumulation is accomplished by integrating the expectations over intervals defined by the
derivatives of the variable of interest. In practice, however, it can be estimated via summation
across grid 𝑍 as per Equation 2.5. Notably, this equation is also centered, ensuring that the
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average of 𝐴𝐿𝐸(𝑋𝑠) is zero with respect to the marginal distribution of 𝑋𝑠.

𝐴𝐿𝐸(𝑋𝑠) =
∑︁

𝑧∈𝑍,𝑧

𝐿𝐸(𝑋𝑠, 𝑧)

= 𝐴𝐿𝐸(𝑋𝑠, 𝑧) − 1
𝑛

𝑛∑︁
𝑖=1

𝐿𝐸(𝑋𝑠, 𝑧)
(2.6)

Estimating interaction effects requires a modification to the equations. For instance, in
the case of two interactions (second-order), the intervals in 2.5 have to change to rectangular
regions. Additionally, in 2.6, second-order ALE require double-centering concerning both vari-
ables involved in the interaction (see details in (APLEY; ZHU, 2020)). Importantly, ALE is not
inherently suitable for analyzing categorical variables that lack ordinality.

2.2.8 ALE decomposition

In linear models, the predictive function is a sum of the components that can be treated
individually, the intercept, and the weight of each feature included in the function (2.1).
The same can be applied to any high-dimensional function that can be decomposed into a
sum of components of increasing dimensionality. In the following equation from (MOLNAR;

CASALICCHIO; BISCHL, 2019), the predictive function is expressed as a sum of the intercept,
individual (first order) feature effects, and interactions (second and higher order) effects.

𝑓(𝑋) =
Intercept⏞ ⏟ 

𝑓0 +

1st order effects⏞  ⏟  
𝑝∑︁

𝑗=1
𝑓𝑗(𝑥𝑗) +

2nd order effects⏞  ⏟  
𝑝∑︁

𝑗<𝑘

𝑓𝑗𝑘(𝑥𝑗, 𝑥𝑘) + . . . +
p-th order effect⏞  ⏟  

𝑓1,...,𝑝(𝑥1, . . . , 𝑥𝑝) (2.7)

Unlike other techniques, ALE allows the function decomposition as unique components
(APLEY; ZHU, 2020). The ALE components are computed conditional on the values of intervals
and over the marginal distribution of all other features. This orthogonality-like property- called
pseudo-orthogonality by the ALE author, ensures that the main effects can indicate how each
feature affects the prediction, independent of the values of the other feature. The interaction
effect indicates the joint effect of the features, not considering the main effects of related
features.
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2.2.8.1 Global SHAP explanations

The aim of SHapley Additive ExPlanation (SHAP) is to clarify individual model predictions
by quantifying the contribution of each feature via the Shapley Values (SV) (SHAPLEY; others,
1953). Initially designed for local interpretability, SHAP can be seamlessly adapted for global
model explanation by aggregating individual feature contributions (LUNDBERG et al., 2020).
The most used SHAP-based score to indicate feature contribution is the absolute average of
SV for each feature. Owing to its robust theoretical foundation and extensive implementa-
tions as software libraries, SHAP has emerged as a predominant technique in both industrial
applications and academic research (BHATT et al., 2020).

The SV derives from coalitional game theory, where each feature value assumes the role of
a player in a cooperative game, and the model prediction represents the total value or payout
of the coalition. The SV is designed to allocate this collective payout equitably among the
contributing features. Specifically, the SV 𝜑𝑣(𝑖) for a player 𝑖 with a characteristic function 𝑣

is computed as follows:

𝜑𝑣(𝑖) =
∑︁

𝑆⊆𝑁∖{𝑖}

|𝑆|! (|𝑁 | − |𝑆| − 1)!
|𝑁 |! (𝑣 (𝑆 ∪ {𝑖}) − 𝑣(𝑆)) (2.8)

Where the summation iterates over all possible coalitions 𝑆 that exclude the player 𝑖,
thereby calculating the average additional contribution of player 𝑖 across all these coalitions.
The term |𝑆| denotes the cardinality of coalition 𝑆 while |𝑁 | indicates the cardinality of the
complete set of players 𝑁 .

The fraction |𝑆|!(|𝑁 |−|𝑆|−1)!
|𝑁 |! function as the weighting factor for each coalition 𝑆. It quantifies

the number of ways to form 𝑆 and then adds 𝑖 relative to the total number of ways to form
any coalition, including 𝑖.

Finally, the term(𝑣 (𝑆 ∪ {𝑖}) − 𝑣(𝑆)) calculates the additional contribution of player 𝑖 to
coalition 𝑆.

When accounting for all possible coalitions, SHAP assumes feature independence and
integrates over the marginal distribution, akin to PD Plots and other permutation-based ex-
plainability techniques. Consequently, this approach introduces the issue of extrapolation.

SHAP inherits axiomatic properties from SV, namely Efficiency, Symmetry, Dummy, and
Additivity.

• Efficiency, also termed as local accuracy in the SHAP context (LUNDBERG; LEE, 2017),
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stipulates that the sum of SV for all features must equate to the total predictive value
generated by the coalition of all features.

• Dummy axiom pertains to features that do not affect the model’s prediction; such
features are allocated a zero SV, reflecting their lack of contribution.

• Additivity or Linearity property is particularly relevant in post-hoc interpretability set-
tings. It posits that the total attribution of a feature is the summation of all SVs asso-
ciated with that feature across different models or scenarios.

In addition to these inherited properties, SHAP introduces unique attributes:

• Missingness is designed to uphold the Efficiency property during the SHAP computa-
tion, especially when data may be incomplete or missing.

• Consistency ensures that the attribution of a feature changes in correlation with its
SV. If a feature becomes more important, its attribution should increase correspondingly,
and vice versa.

Consequently, SHAP can be represented as an additive feature attribution method.

𝑔(𝑧′) = 𝜑0 +
𝑀∑︁

𝑣=1
𝜑′

𝑣 (2.9)

Where 𝑔 is the explanation model, 𝑧′ ∈ {0, 1}𝑀 is the number of simplified input features
- a binary vector indicates the presence or absence of a given feature within the coalition 𝑆.

2.2.8.2 PFI scores

The Permutation Feature Importance (PFI) is a model-agnostic metric used to evaluate
the contribution of each feature to the predictive power of a trained ML model, 𝑓 . Given
a feature matrix 𝑋 and a target vector 𝑌 , the PFI for a particular feature is calculated by
measuring the increase in a specified error measure 𝐿(𝑌, 𝑓) when the values of that feature
are randomly permuted.

Let 𝑓 : 𝑋 → 𝑌 be the trained model, where 𝑋 ∈ R𝑛×𝑝 is the feature matrix with 𝑛

samples and 𝑝 features, and 𝑌 is the target space. The error measure 𝐿(𝑌, 𝑓) quantifies the
discrepancy between the predicted and true target values. The PFI of a given feature 𝑥𝑖 is
defined as follows:
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PFI(𝑥𝑖) = 𝐸 [𝐿(𝑌, 𝑓(𝑋)) − 𝐿 (𝑌, 𝑓(𝑥-𝑖,perm))] (2.10)

Here, 𝑥-𝑖,perm denotes the feature matrix 𝑋 where the 𝑖-th feature column has been per-
muted randomly. The expectation 𝐸[·] is taken over multiple permutations to obtain a stable
estimate.

A higher PFI value for a feature indicates a greater contribution to the model’s predictive
capability. Conversely, a low or negative PFI suggests that the feature may be irrelevant or
even detrimental to the model’s performance. Usually, the PFI values are normalized to be
ranked. Typically, PFI values are normalized and sorted such that they sum to one, to facilitate
comparative ranking among the features.

2.2.8.3 MDI scores

The Mean Decrease in Impurity (MDI) is a metric specifically designed for assessing feature
importance in tree-based models like Random Forests and Gradient Boosting Trees. As PFI,
MDI is a loss-based metric and measures the average reduction in impurity—typically Gini
impurity, entropy, or mean squared error—that a feature brings about when used for splitting
in the decision trees that constitute the model.

For a given feature 𝑥𝑖, its MDI(𝑥𝑖) is defined as:

MDI(𝑥𝑖) = 1
𝑇

𝑇∑︁
𝑡=1

Δ𝐼(𝑡, 𝑥𝑖) (2.11)

where 𝑇 is the total number of trees in the ensemble, and Δ𝐼(𝑡, 𝑥𝑖) is the reduction in
impurity in tree 𝑡 attributable to feature 𝑋𝑖.

The impurity reduction Δ𝐼(𝑡, 𝑥𝑖) for a specific tree 𝑡 and feature 𝑥𝑖 is given by:

Δ𝐼(𝑡, 𝑥𝑖) =
∑︁

𝑛∈Nodes(𝑡,𝑥𝑖)
𝑤𝑛Δ𝐼𝑛 (2.12)

where Nodes(𝑡, 𝑥𝑖) is the set of nodes that use 𝑥𝑖 for splitting in tree 𝑡, 𝑤𝑛 is the proportion
of samples reaching node 𝑛, and Δ𝐼𝑛 is the impurity reduction achieved by the split at node
𝑛.

As in PFI, the MDI values are often normalized and sorted to provide a ranking of feature
importances.
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2.3 EDM

In recent times, a rapidly expanding body of ML literature has emerged, introducing a
diverse range of new tools, including algorithms, data preprocessing techniques, frameworks,
and model validation methods. These tools have been developed to provide support for em-
pirical researchers who utilize data to address a variety of problems (ATHEY; IMBENS, 2019).
When these tools are specifically tailored for use with educational data, they serve as the
foundation of a growing research area known as Education Data Mining (EDM). EDM, as
described by (ROMERO; VENTURA, 2020), represents an interdisciplinary field dedicated to the
analysis of extensive and complex educational datasets, with the goal of building predictions
and extracting actionable insights and knowledge to support decision-makers in the realm of
education.

The application of EDM extends across multiple domains within the educational sector.
Much of the research in this domain has been centered on data derived from learning man-
agement systems within specific educational institutions (FISCHER et al., 2020), mainly in uni-
versities (ROMERO; VENTURA, 2020). Research studies in EDM encompass various subfields,
including the investigation of cognitive strategies (FANCSALI et al., 2018; MOUSSAVI; GOBERT;

PEDRO, 2016), prediction of student dropout (CHATURAPRUEK et al., 2018; JAYAPRAKASH et

al., 2014), and the development of intelligent tutoring systems (JIANG; PARDOS; WEI, 2019). A
common thread in all these areas is the task of predicting student performance, a task that,
despite significant enhancements facilitated by advanced ML algorithms, still requires further
advancements in providing explanations for the underlying factors driving these predictions
(YANG; WANG, 2021; KOVALEV; KOLODENKOVA; MUNTYAN, 2020).

The provision of such explanatory insights can be critical, as presenting probabilities may
prove inadequate for enhancing educational systems. For example, in automating an admis-
sion system with an EDM solution, fully understanding the factors behind these probabilities
can improve the admission process. It provides the committee with important information to
increase fairness and transparency (ALGHAMDI et al., 2020; MAULANA et al., 2023). Also, other
processes like loan grants can benefit from these explanations (MAULANA et al., 2023).

Additionally, there are EDM applications specifically designed to extract insights from data,
making explanations a key objective. For example, EDM has been effective in processing large
datasets generated by modern LSA tests in the field of Educational Assessment (LIU; RUIZ,
2008; FILHO et al., 2023; FILHO; BRITO; ADEODATO, 2023b; SAARELA et al., 2016). In these
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cases, the main goal is to discover knowledge about educational systems, providing crucial
insights that support discussions on educational policies and guide the generation of novel
hypotheses for subsequent confirmatory work.

In the domain of supervised learning, regression and classification tasks are commonly
employed techniques (ALDOWAH; AL-SAMARRAIE; FAUZY, 2019). These tasks utilize algorithms
that are universally recognized across various data mining fields, including Support Vector Ma-
chines, Decision Trees and their variations, Logistic Regression, and Neural Networks. While
there is no consensus on the single most utilized algorithm, tree-based algorithms—especially
Random Forest—emerge as a clear preference (RASTROLLO-GUERRERO; GÓMEZ-PULIDO; DURÁN-

DOMÍNGUEZ, 2020; KHAN; GHOSH, 2021; MARTÍNEZ-ABAD; GAMAZO; RODRÍGUEZ-CONDE, 2020;
NAMOUN; ALSHANQITI, 2020). This preference may be attributed to their widespread imple-
mentation across ML tools and the straightforward manner in which they allow for the inter-
pretation of feature importance via MDI scores

2.4 XAI ON EDM

Despite the critical relevance of explanations from predictive models, the literature on
interpretability in EDM is relatively sparse. A recent review focusing on the prediction of
student performance reveals that most studies have neglected to provide explanations when
using non-transparent predictive models (CHITTI; CHITTI; JAYABALAN, 2020). This lack of
attention to explanations was also documented in (LIVIERIS et al., 2023).

Among the studies that emphasizing, the approaches vary. Most studies adopt pre-existing
off-the-shelf tools to provide explanations, while others incorporate these tools as integral
components for intervention purposes (MU; ANDREAJETTEN; BRUNSKILL, 2020; AFZAAL et al.,
2021). For local explanations, widely employed tools include SHAP (LIVIERIS et al., 2023; CHIU,
2020; DOEWES; PECHENIZKIY, 2020; OLIVEIRA et al., 2023) and LIME (LIVIERIS et al., 2023;
MATETIC, 2019; ZABRISKIE et al., 2019; HASIB et al., 2022; CHEN et al., 2022). In contrast, score-
based metrics emerge as the predominant choice for global explanations. These metrics serve
the dual objectives of identifying significant features for interventions and facilitating feature
selection. Among the most frequently utilized measures are the MDI of tree-based models
(CORTEZ; SILVA, 2008; ASHRAF; ANWER; KHAN, ; ZHAO et al., 2020) and absolute average
SHAP (HOQ; BRUSILOVSKY; AKRAM, 2023; ROHANI et al., 2023). Additionally, methods such as
PD plots (HONG; KIM; HONG, 2022; MASCI; JOHNES; AGASISTI, 2018) and SHAP (CHIU, 2020;
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HOQ; BRUSILOVSKY; AKRAM, 2023) are commonly employed to visually illustrate the influence
of individual features.

To the best of our knowledge, the ALE technique discussed and explored in this thesis as an
alternative for explaining global feature contributions when data independence cannot be as-
sumed, has not yet been widely employed in EDM. Only in (RANGONE; PIZARRO; MONTEJANO,
2022), where the authors presented a general framework for auto-ML, was ALE considered as
one of the explainers that could be utilized in the interpretation step. However, specific details
or examples of its use were not provided.

2.4.1 Educational Assessment discipline

Educational Assessment refers to the discipline that aims to systematically evaluate student
learning, skills, and performance to understand and improve educational outcomes. It encom-
passes a range of methods, but since the 1950s, quantitative analysis has been the standard
procedure (MALLINSON; NOAH; ECKSTEIN, 1969). Moreover, a predominant data source is de-
rived from the LSA tests.

The LSAs are standardized tests that collect, beyond student performance, much other
information about the educational context in which the students are involved in. The LSAs
thought standardizing psychometrics methodologies such as Item Response Theory built a
robust process for assessing the capabilities of students to learn what they were supposed
to learn. Also, the periodicity of these tests enables temporal comparisons by observing the
different paths that collected information might take across educational systems over time,
making them a topic of interest among educators, researchers, and policymakers (JOHANSSON,
2016; KAPLAN; HUANG, 2021).

Educational achievement is a multifactorial construct, influenced by a complex interplay
of closely intertwined variables (ABAD; LÓPEZ, 2017). Within the EDM paradigm, a typical
straightforward application of LSA data is a prediction function 𝑓(𝑋) = 𝑌 , by which the
contextual information 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛) collected by the LSA questionnaires and comple-
mented by other sources are mapped to the LSA score 𝑌 , a measure of educational achieve-
ment. This approach aligns with the concept of the education production function (BOWLES,
1970; SCHEERENS, 1991), where input contextual variables lead to educational outcomes.

In this framework, EDM can easily adapt to the large volume of data derived from modern
LSAs to optimize scientific discovery and enhance the debate surrounding practices in the
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field of education (GABRIEL; SIGNOLET; WESTWELL, 2018; GOMES; HIRATA; OLIVEIRA, 2020;
MARTÍNEZ-ABAD; GAMAZO; RODRÍGUEZ-CONDE, 2020; LEZHNINA; KISMIHÓK, 2022; MARTÍNEZ-

ABAD; GAMAZO; RODRÍGUEZ-CONDE, 2018). To identify and characterize the influence and
interactions of factors related to educational achievement, high-performing supervised ML
models and XAI can derive meaningful insights by understanding how 𝑓 uses 𝑋 to predict
𝑌 (CHEN; ZHANG; HU, 2021; DONG; HU, 2019; GOROSTIAGA; ROJO-ÁLVAREZ, 2016; HU; DONG;

PENG, 2022; MARTÍNEZ-ABAD; GAMAZO; RODRÍGUEZ-CONDE, 2020)
Although inherent interpretable models are often used in this direction (ADEODATO, 2016;

MARTÍNEZ-ABAD; GAMAZO; RODRÍGUEZ-CONDE, 2020) (GAMAZO; MARTÍNEZ-ABAD, 2020), many
other scholars rely on explanations derived from opaque models. The tree-based algorithms
such as random forest and gradient boosting are the most commonly used (GAMAZO; MARTÍNEZ-

ABAD, 2020) algorithm, and many scholars have relied on their intrinsically derived feature
importance (MAIA; BUENO; SATO, 2021; REBAI; YAHIA; ESSID, 2020; MASCI; JOHNES; AGASISTI,
2018; LEZHNINA; KISMIHÓK, 2022; CHANG; CHEN, 2018; MARTÍNEZ-ABAD, 2019; GABRIEL; SIG-

NOLET; WESTWELL, 2018; RODRIGUES et al., 2021; DEPREN; AŞKıN; ÖZ, 2017; HU; DONG; PENG,
2022; CHEN; ZHANG; HU, 2021). The preference for the use of scores to characterize the rel-
evance of features is also aligned with traditional studies that rely on coefficients of additive
models. However, there is a growing trend towards employing post-hoc feature effects tech-
niques, such as PD plots and SHAP values, for a more detailed understanding of feature
influences (LEZHNINA; KISMIHÓK, 2022; MASCI; JOHNES; AGASISTI, 2018; REBAI; YAHIA; ESSID,
2020; SCHILTZ et al., 2018).
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3 MEASURING ERROR ON FEATURE EFFECTS

This chapter is dedicated to benchmarking the performance of various global explainable
feature effect techniques under diverse data dependency scenarios, directly addressing RQ1.
In addition to comparing these techniques, this work contributes to the existing literature by
introducing a novel metric. This metric quantifies the degree of deviation of the explained
feature effects from their true values. The introductory section establishes the significance and
relevance of this chapter’s contributions within the broader context of existing literature. Key
concepts related to the contributions are defined, followed by a description of the benchmarking
methodology employed. The chapter then presents and summarizes the experimental results,
highlighting their role in addressing RQ1 and their impact on the field of XAI

RQ1 - How do widely used feature effects techniques compare with ALE
in accurately identifying true feature effects considering different inter-data
dependencies?

3.1 INTRODUCTION

The global model explainability can be treated as a problem that entails the process of
discerning, on average, how alterations in an input variable influence the model’s predictions.
In the case of linear models, the constant effects of features allow the attribution of feature
contribution to be easily quantified using point estimates and variances of the model’s pa-
rameters, which are essentially the estimated coefficient scores (HASTIE ROBERT TIBSHIRANI,
2014). Conversely, ML models, which may encapsulate non-linear relationships, necessitate a
more nuanced understanding of the intricate associations between the variables of interest
and the target variable. While scores are still paramount to reporting the relevance of features
in ML for many tasks, more detailed visual representations to illustrate the behavior of the
relationships between the feature of interest and the target can produce better communication
about the whole feature behavior.

Several propositions have been made to alleviate the independence assumptions of some
model feature effects explainers. These propositions often rely on the use of conditional instead
of marginal distribution of features to avoid extrapolating the confinements of data relation-
ships. Despite these advancements, the literature still lacks comprehensive analyses regarding
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the extent to which different strategies to handle data relationships affect explanations of
feature effects (MOLNAR et al., 2022). Prior works have predominantly relied on theoretical
discourse or visual demonstrations (APLEY; ZHU, 2020; GKOLEMIS et al., 2022; GKOLEMIS et

al., 2023; MANGALATHU et al., 2022; BAKHSHI; AHMED, 2021), akin to the illustration in Fig-
ures 3 and 4, to elucidate how explanations diverge when the actual data relationships are
preserved during the computation of explanations and when not. Introducing a quantitative
aspect would enhance the flexibility of this comparison framework, making it adaptable for
future benchmarks.

In a quantitative comparison akin to the current study, (MOLNAR et al., 2023) evaluated
model fidelity. The model fidelity concerns the difference between the predictions of the ML
model and the explanation method. The authors capture the overall difference in the model
prediction and the prediction of the partial function when employed by the PD plots and
when deployed by ALE plots. These differences were next averaged across all data points and
features. The author found similar results when comparing model fidelity to PD and ALE.

Other work (GKOLEMIS et al., 2022) compared the accuracy of ALE and a version of a more
computationally efficient ALE to recover the known true feature effects. The authors use the
Normalized Mean Squared Error (NMSE) to compare the computed partial functions and the
true feature effects. The NMSE is based on the expected value of the computed functions
divided by their variance.

Distinct from (MOLNAR et al., 2023), this study will assess the computed feature effects
against the theoretically defined true feature effects in controlled experiments where the data
generating functions are known. This is important since even a predictive model with expla-
nations closely aligned to the model could, paradoxically, deviate significantly from the actual
data-generating process (FISHER; RUDIN; DOMINICI, 2018; SLACK et al., 2020). Such a compar-
ison offers a more robust methodology for determining whether the model’s explanations are
more consistent with the actual data or the model’s intrinsic structure.

Moreover, different from both (MOLNAR et al., 2023) and (GKOLEMIS et al., 2022), this study
will individually evaluate the entire range of the explained feature, potentially uncovering
a more nuanced understanding of discrepancies between explainable models. Unlike NMSE
from (GKOLEMIS et al., 2022), which disproportionately emphasizes larger errors, the Absolute
Difference Between Explanations (ABX) proposed on this chapter, which is described bellow,
uniformly accounts for all deviations across the feature’s range, providing a more balanced
evaluation and a more realistic assessment of a technique’s accuracy. Finally, to the best of
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our knowledge, this study is the first to incorporate SHAP global explanations into such a
benchmark.

3.1.1 The extrapolation problem

One commonly utilized framework in the field of XAI is based on posthoc analysis and
frequently involves the processes of sampling a subset of data, intervening on the data, getting
model predictions using the fitted model, and subsequently aggregating them to quantify
changes in outputs and produce model explanations (SCHOLBECK et al., 2020). While there are
numerous variations in how each step is executed, a critical step within this framework is the
intervention step.

Interventions involve altering the values of the features of interests on the ceteris paribus

reasoning. When the interventions are beyond the confines of the actual conditional distri-
bution, it becomes possible to generate unlikely data points. Such circumstances compel the
model to make predictions in regions where it was not trained, potentially yielding unexpected
results. Consequently, changes in the model’s outputs can lead to unrealistic model explana-
tions regarding the true data-generating process. This issue would not be a concern if the goal
were to understand the function’s behavior itself, but it certainly presents difficulties when the
aim is to uncover the potential data-generating process.

XAI techniques that modify features based on their values concerning the entire dataset
pose a significant challenge when explaining non-additive functions. These model-agnostic
techniques inherently assume feature independence and intervene by using the marginal distri-
bution of a feature, which can lead to misinterpretations when this intervention extrapolates
outside of the training data’s scope. The root of this issue lies not in the predictive models
themselves but rather in the assumptions that these interpretive techniques make about the
underlying data. In a hypothetical situation where it is possible to assume that the feature
of interest is independent of others, extrapolation would not be a concern. Otherwise, the
model’s outputs could even be interpreted as the causal effect of the potential intervention of
𝑋 on 𝑦 (ZHAO; HASTIE, 2021). However, this is often not the case in real-world scenarios.

Based on (MOLNAR, 2023), Figure 3 illustrates a simulation of this issue. The figure provides
explanations for the function 𝑓 for each variable in 𝑋 = 𝑥1, 𝑥2 regarding their predictive role
in 𝑌 involving four different techniques: PD plots and SHAP, which tend to extrapolate by
utilizing the marginal distribution of the feature of interest for intervention, and ALE and ME
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plots, which do not.
To simulate the unexpected behavior of 𝑓 when predicting outside of the training data

envelope - thus violating conditional relationships accessing regions of the input space not
covered by the training data - 𝑓 was artificially constrained to make incorrect predictions
within this region. Specifically, it was programmed to consistently predict a constant value in
a region of the data distribution that does not exist, illustrating a potential problem when the
function is used to predict beyond the bounds of its training data. The predictive function was
adjusted to make predictions as follows:

f(x1, 𝑥2) =

⎧⎪⎪⎨⎪⎪⎩
2 if 𝑥1 > 0.7 and 𝑥2 < 0.3

𝑥1 + 𝑥2 otherwise

Figure 3 – Explanation of the customized linear regression model for predicting a constant in a region beyond
the training data bounds. The dataset was generated using the function 𝑓(𝑥1, 𝑥2) = 𝑌 = 𝑥1 + 𝑥2

Source: self-provided

Notably, PD plot and SHAP (for 𝑥1) demonstrate greater sensitivity to the artificial bias
introduced in the model. Conversely, ME and ALE plots remain robust in this same scenario,
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consistently revealing the true linear effects of both 𝑥1 and 𝑥2 as defined in the function 𝑓 .
In other words, PD plot and closely align with the model (predict a constant in the region
where 𝑥1 > 0.7 and 𝑥2 < 0.3) but move away from the data-generating function. While this
isn’t problematic per se, as the PD plot and SHAP approximate the model’s behavior, they
can pose challenges when they are used to explain the roles of highly correlated features due
to their susceptibility to extrapolation.

3.1.2 Importance of interventional distribution

While preserving the conditional distribution seems to be the right way to explain the global
behavior of dependent features, there is another important aspect: the use of interventional
instead of observational expectation. Just keeping the conditional distribution without using an
unrealistic combination of data points is not enough to recover the right effects of dependent
variables. The need for interventional expectation in model-agnostic explainable techniques
instead of observational has been already formally discussed in (JANZING; MINORICS; BLÖBAUM,
2020) as a recommendation to researchers who intend to extend the SHAP technique.

The concept of interventional expectation was first introduced in the causality literature
(PEARL, 1993) aiming to elucidate the effect of manipulating a specific feature within a
hypothetical scenario. In this context, the manipulation entails substituting the value of𝑥1

for that feature, while holding the values of all other features constant. Specifically, given
𝑋 = 𝑥1, 𝑥2, ..., 𝑥𝑛 a function 𝑓(𝑋) that predict 𝑌 , the interventional expectation regarding
𝑥1 is defined by using the "do-operator" through 𝐸[𝑌 |𝑑𝑜(𝑋1 = 𝑥1)]. The "do-operator" de-
fined by Pearl allows researchers to formalize and analyze the causal effect of setting a variable
𝑋 to a particular value 𝑥, effectively simulating an intervention in the system.

In the traditional statistical literature, the use of ME plots have long been proposed as one
of the reliable way to interpret models in place of the coefficients (LONG; LONG, 1997). The
ME corresponds to the average differences in the outcome when the features partially change
from one specified value to another. The ME uses the observed conditional distribution and
does not extrapolate the joint distribution present in the data. However, ME is not able to
differentiate the effects of correlated variables as the changes in the outputs are computed
while changing all dependent variables in tandem using the observed distribution.

To illustrate how the use of observed distribution in a highly correlated scenario fails to
recover the individual role of features, Figure 4 shows the same issue as Figure 3, where
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the predictive function has unexpected results when predicting outside of the training data
envelope. Now, the output 𝑌 is defined by 𝑓(𝑥) = 𝑥1 + 𝑥3

2 and the data was fitted by the
non-linear random forest algorithm, which might be able to detect the new cubic effect of
𝑥2. In this case, differently from ALE plot that correctly traces a linear effect to 𝑥1 and an
exponential effect to 𝑥2 , ME recovered the same effects for both variables.

The tension between the use of observational and interventional distribution has also been
discussed around the implementation of SHAP. Some authors argue that the use of observed
expectation can attribute importance to irrelevant features (JANZING; MINORICS; BLÖBAUM,
2020; SUNDARARAJAN; NAJMI, 2020) while using interventional can lead to extrapolation issues.
In (CHEN et al., 2020), the authors suggest that there is no correct choice for this value function.
Instead, the crux of the interpretation hinges on whether the aim is fidelity to the model or
alignment with the data.

Within this context, ALE technique emerges as a suitable tool for global explanations of
feature effects to real applications, where variables are not independent. ALE has a good
balance of the tradeoff of being true to the model and true to the data, as it uses the
interventional conditional expectation. In other words, ALE takes advantage of interventions
to break variable dependencies while adhering to the data joint distribution when computing
effects by parts of the data.
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Figure 4 – Explanation of the customized random forest model for predicting a constant in a region beyond
the training data bounds. The dataset was generated using the function 𝑦 = 𝑥1 + 𝑥3

2

Source: self-provided
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3.2 METHODS

This section present the methods used tom compare ALE plots with existing techniques
to report global features explanations addressing RQ1. Initially, we introduce a novel metric
designed to quantify the deviation of a technique’s explanations from the actual effects when
elucidating a feature within a dataset characterized by a known data-generating process. As
benchmarks, we select the most widely utilized methods identified in the literature review
presented in Section 2, specifically: ME, SHAP, and PD plots. Unlike ALE, ME, and PD,
which provide global explanations, SHAP is primarily focused on local interpretations. However,
SHAP explanations can be aggregated in various ways to derive global insights (LUNDBERG et

al., 2020). For comparison purposes, a version comparable to the others, termed Grid_SHAP,
was defined. The remaining techniques were implemented in accordance with their respective
formal definitions (see Section 2.2.8.1) without centering them around the mean.

3.2.1 An alternative for global SHAP

The Grid_SHAP was defined as a partial-dependence-based alternative to ALE for straight-
forward comparison with other techniques. Grid_SHAP aggregates the SHAP values (SVs)
within equally spaced intervals in terms of the data distribution. While the original SVs are
centered around the mean, allowing the interpretation of the effects of a feature on a certain
prediction for a specific instance from the base value, Grid_SHAP is uncentered, with the
definition as follows:

𝑉 = 𝜑0 + 𝜑𝑖(𝑥) + 𝐸[𝜑𝑖(𝑥)] (3.1)

where 𝑉 is the uncentered SVs, 𝑥𝑖 is the 𝑖 variable of the dataset 𝑋, 𝜑𝑖(𝑥) the originally
computed SVs for the feature 𝑥𝑖, 𝜑0 is the expected model output (baseline effect). 𝜑𝑎𝑑𝑗. And:

𝑉𝑖(𝑞) = 1
|𝑄𝑥𝑖

(𝑞)|
∑︁

𝑥∈𝑄𝑥𝑖 (𝑞)
𝑉𝑖(𝑥) (3.2)

where, 𝑉𝑖(𝑞) represents the calculated average Shapley value for feature 𝑖 within quantile
𝑞. The expression |𝑄𝑥𝑖

(𝑞)| indicates the size of quantile 𝑞 for feature 𝑖, reflecting the number
of data instances it comprises.



56

The 𝑉𝑖(𝑥) were computed using the FastShap package 1, a fast version of SHAP that uses
monte carlo simulation to approximate SVs. This approach greatly facilitated the experimen-
tation due to the high computational cost of computing the exact SVs in a model-agnostic
manner.

3.2.2 Absolute Difference Between Explanations - ABX

Different from previous works, which qualitatively compare the robustness of global feature
effects techniques, we take advantage of the theoretical effects of variables in synthetic data
and compute the Absolute difference Between Explanations(ABX). The ABX is motivated
due to the need for a measure that captures the difference in the actual feature effects and
the computed explanations across all feature ranges. So, whether an underlying explanation
technique is robust in some parts of the data but fails drastically in others, ABX would allow a
fair comparison with others, which comes close during the whole feature range. ABX measures
the absolute value of the area between the baseline explanation (theoretical) and the explained
effects based on data without respect if the explainer overestimates or underestimates the
feature effects. Formally, ABX is defined as:

𝐴𝐵𝑋 =
∫︁ 𝑚𝑎𝑥

𝑚𝑖𝑛
|𝜑(𝑥) − 𝜑(𝑥)|𝑑𝑥 (3.3)

Visually and geometrically, the ABX statistic has a straightforward interpretation: it repre-
sents the absolute summation of the areas between the two curves over the feature explanation,
as shown in Figure 5. Lower values of ABX signify a more robust technique, with zero being
the minimum possible value, occurring when both functions completely overlap over the entire
interval.

3.2.3 Experimental setup

Artificial data was used to provide a dataset where the true variable effects are known. Even
in such a scenario, it is not guaranteed that the fitted function can recover the data-generating
process, as discussed earlier in Section 2.2.6. To simplify the process for the predictive functions,
simple scenarios were simulated. Specifically, four different datasets were created based on:
1 https://cran.r-project.org/web/packages/fastshap/index.html
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Figure 5 – A explanation plot which shows the theoretical true effects and the explained by a model-agnostic
technique. The shaded regions between the two curves represents the ABX statistic

Source: self-provided

𝑦𝑖 = 𝑓(𝑋 𝑖) = 𝑋 𝑖
1 · 𝑋 𝑖

2 + 𝜖𝑖, where 𝜖𝑖 ∼ 𝑁(0, 0.01). The variables 𝑋1 and 𝑋2 are dependent
from the same uniform distribution 𝑁(0, 1) with the addition of a stochastic noise 𝑁(0, 0.5).

• In the independent scenario 𝑦 depends linearly only of 𝑋1 and 𝑓(𝑋) = 𝑋1 + 𝜖

• In the dependent linear scenario 𝑦 depends linearly of both 𝑋1 and 𝑋2 being 𝑓(𝑋) =

𝑋1 + 𝑋2𝜖

• In the first dependent non-linear scenario 𝑦 depends linearly of 𝑋1 and non-linearly of
𝑋2 being 𝑓(𝑋) = 𝑋1 + 𝑋2

2 𝜖

• In the second dependent non-linear scenario a more complex function was defined, and
𝑦 depends .linearly on 𝑋1 and hold a non-linear cubic polynomial relationship with 𝑋2

being 𝑦 = 𝑥1 + (𝑥2 − 0.9𝑥3
2) + 𝜖

All experiments were conducted within the R programming environment, utilizing a 30-
Monte Carlo simulation framework to ensure robust statistical analysis. As discussed in Chapter
2, one of the primary models selected for data fitting in EDM is the Random Foresst (RF),
a choice motivated by its widespread acceptance and proven effectiveness in EDM tasks. In
addition to RF, we explored another algorithmic class often used in EDM by incorporating a
Neural Network (NN) model. Unlike the RF model, which is characterized by piecewise con-
stant functions potentially leading to more noticeable changes in model output with variations
in input variables, the NN model is based on differentiable functions, generally resulting in
smoother transitions of output as input variables change. This contrast introduces greater di-
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versity into our experimental design, allowing for a more comprehensive evaluation of post-hoc
explanation techniques.

The NN was employed from the nnet package2, and the RF from the randomForest

package3. For each scenario, the number of sampled data points was varied with 𝑁 ∈

200, 500, 1000. The parameters for the NN algorithm—comprising ten nodes in the single hid-
den layer, a linear output activation function, and a regularization parameter of 0.0001—were
determined to be approximately optimal through multiple iterations of 5-fold cross-validation
for the first data scenario. The RF algorithm was executed with default parameters.

To calculate the ABX a numerical approximation was used. The approximation is based
on the Trapezoidal Rule, implemented through the pracma4 package in R. This approach
involves linearly interpolating between data points to form an approximate representation of
the curve. The area under this curve is then estimated by dividing it into trapezoidal segments
and summing their respective areas.

Across all synthetic data scenarios, the average ABX from the 30-Monte Carlo process was
adopted as the final measure. To investigate the influence of the number of quantiles on the
results, metrics were computed by dividing the data into quantiles with 𝑘 = 10 and 𝑘 = 50,
where 𝑘 represents the number of equally distributed parts.

2 <https://cran.r-project.org/web/packages/nnet/index.html>
3 <https://cran.r-project.org/web/packages/randomForest/index.html>
4 <https://cran.r-project.org/web/packages/pracma/index.html>

https://cran.r-project.org/web/packages/nnet/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/pracma/index.html
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3.3 RESULTS

This chapter emphasized the empirical evaluation of the performance of the most used
feature effects techniques: ALE, SHAP, ME, and PD plots. The primary objective is to discern
the differences in the explanations provided by these techniques in terms of the global effects
of variables compared to the true variable effects inherent in the data-generating process. The
introduced ABX metric serves as the benchmark for this evaluation. Lower ABX values are
preferable as they indicate a closer alignment of the explainable technique’s output with the
true variable effects along all the variable ranges.

Two distinct types of supervised models were considered: RFs and NNs, with hyperparam-
eters optimized through a cross-validation process under various conditions. It is crucial to
acknowledge that the conditions under which models are applied can inherently influence their
outputs and, consequently, the interpretations derived from model explanation techniques.
Nevertheless, we applied both models and explanation techniques consistently across these
conditions to ensure that our evaluation remains unbiased. Moreover, in all tested conditions,
both models demonstrated robust performance, with a Root Mean Square Deviation (RMSD)
close to the standard deviation of the theoretical noise added to the target variable. This
indicates that the models were effectively capturing underlying patterns in the data.

The results of the experiments are presented in Table 3 for 𝑥1 and in Table 4 for 𝑥2. Only
values for 𝑘 equal to 10 are presented, as there is no significant difference compared to the
𝑘 equal to 50. Both models, NN and RF, performed well when measuring the RMSD. The
RMSD values were found to be very close to the standard deviation of the artificial noise
(0.1) added to the target variable. This suggests that, to a considerable extent, the models
are effectively capturing the underlying relationship between the predictors 𝑥1, 𝑥2 and the
response variable 𝑦 .

Examining Table 3, it is evident that ALE technique outperforms the other techniques in
all scenarios where data is dependent. In the hypothetical scenario of independent data - a
condition that may diverge from real-world situations, where data typically exhibits some level
of correlation - all techniques yield comparably satisfactory results for the RF model, with ME
producing the best values. However, while ME most accurately captures the effects of variable
1 (𝑥1), it produces suboptimal results for variable 2 (𝑥2) (Table 4), which has no effect on 𝑦

in this independent scenario. It is probable that some effect was assigned to the 𝑥2 through 𝑥1

even variables being independent of each other. This highlights the pitfalls of using the data
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Table 3 – ABX statistic for the variable 𝑥1

ALE grid_SHAP ME PD
Scenario NN RF NN RF NN RF NN RF

independent
N = 200 0.0784 0.0760 0.2613 0.0490 0.0352 0.0383 0.3297 0.0446
N = 500 0.0437 0.0702 0.1407 0.0351 0.0242 0.0345 0.1820 0.0346
N = 1000 0.0365 0.0605 0.1046 0.0222 0.0212 0.0274 0.1513 0.0274

linear
N = 200 0.0757 0.0818 0.5398 0.5141 0.4904 0.4994 0.5250 0.5075
N = 500 0.0465 0.0630 0.5268 0.5052 0.4913 0.4973 0.5303 0.4961
N = 1000 0.0471 0.0547 0.5188 0.4944 0.4881 0.4792 0.4850 0.4994

non-linear 1
N = 200 0.0778 0.0735 0.3918 0.3255 0.3241 0.3131 0.4757 0.3365
N = 500 0.0482 0.0671 0.3408 0.3344 0.3177 0.3154 0.3712 0.3300
N =1000 0.0321 0.0500 0.3748 0.3345 0.3201 0.3173 0.4411 0.3365

non-linear 2
N =200 0.0651 0.0860 0.3657 0.2788 0.2695 0.2678 0.4064 0.2952
N = 500 0.0552 0.0678 0.3238 0.2777 0.2707 0.2685 0.3577 0.3002
N = 1000 0.0410 0.0703 0.2948 0.2818 0.2714 0.2720 0.3031 0.3116

Source: self-provided

joint distributions without interventions when explaining models under independent data.
In the same independent scenario, permutation-based techniques (PD and SHAP), which

perform interventions (albeit at the cost of extrapolation), produce commendable results for
the RF model but not for the NN model. Initially, this discrepancy may be attributed to the
high flexibility of NNs (GRINSZTAJN; OYALLON; VAROQUAUX, 2022), which can potentially yield
many functions consistent with the observed data but divergent from the true data-generating
process. This flexibility can lead to a mismatch between explanations derived from the NN
model and the actual data-generating process.

Upon closer examination, however, ALE and ME, which unlike ME plots and SHAP do not
extrapolate the training data, exhibit comparably low ABX across both RF and NN models
within the independent scenario. Consequently, the discrepancy from RF to NN in ME and
PD outputs, indeed, suggests that the extrapolation can be problematic even in independent
scenarios when explaining highly complex models such as NNs. NN may inadvertently yield
unusual predictions outside of the training data, thus compromising their ability to capture
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Table 4 – ABX statistic for the variable 𝑥2

ALE grid_SHAP ME PD
Scenario NN RF NN RF NN RF NN RF

independent
N = 200 0.0678 0.0729 0.5576 0.5002 0.5031 0.5014 0.5886 0.5009
N = 500 0.0476 0.0505 0.5098 0.4926 0.4981 0.4927 0.5267 0.4933
N = 1000 0.0278 0.0475 0.5035 0.5002 0.5003 0.5019 0.5360 0.5005

linear
N = 200 0.0782 0.0726 0.5351 0.5142 0.4962 0.5016 0.5036 0.5072
N = 500 0.0471 0.0618 0.5200 0.5042 0.4910 0.4910 0.5325 0.4987
N = 1000 0.0505 0.0542 0.5160 0.4948 0.4840 0.4814 0.4782 0.4983

non-linear 1
N = 200 0.0631 0.0885 0.5166 0.4905 0.4837 0.4760 0.5885 0.5026
N = 500 0.0367 0.0550 0.5027 0.4947 0.4793 0.4805 0.5281 0.4957
N =1000 0.0326 0.0547 0.5118 0.4928 0.4809 0.4799 0.5905 0.5021

non-linear 2
N =200 0.0705 0.0732 0.5435 0.5063 0.5111 0.5124 0.5747 0.5237
N = 500 0.0480 0.0715 0.5250 0.5056 0.5091 0.5070 0.5231 0.5264
N = 1000 0.0449 0.0514 0.5144 0.5088 0.5119 0.5125 0.5065 0.5397

Source: self-provided

the effect even from the independent features due to the model’s complex behavior.
Conversely, step-wise algorithms, such as RF, tend to exhibit greater stability in their

predictions owing to their construction from multiple decision trees, which individually handle
variations in data in a more controlled manner.

The quantity of data points significantly affects the outcomes in the independent scenario.
Generally, an increase in data points enhances the performance of all examined techniques
within both algorithms. This trend is also observable in the dependent scenario for the ALE
technique, which slightly improves ABX as the number of data points increases. Although a
similar improvement can be observed for other techniques, it is not enough to decrease the
ABX to levels comparable to those achieved by ALE technique.

The results for the ALE technique is even more favorable when considering the variable 𝑥2

as shown in Table 4. In the independent scenario, all techniques failed to assign no effect to
𝑥2 for both NN and RF models. In other scenarios, where the data are dependent, the ALE
technique achieves better results, while the other techniques exhibit higher ABX values.
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3.4 SUMMARY

This chapter explores the differences in explanations from various methods across different
data dependencies. It presents a methodology designed to accurately measure the extent to
which global explanatory methods can recover the true data-generating process. It presented
a comprehensive benchmarking using artificial data, which embodies different generative pro-
cesses across various scenarios to assess PD, ME, SHAP, and ALE plots. The methodology
introduces ABX, a metric that measures the extent to which explained effects deviate from
the theoretical feature effects.

The methodology has demonstrated that the ALE technique surpasses other techniques
in feature explanation within datasets that resemble real-world conditions—namely, scenarios
where variables are correlated. Specifically, in scenarios where the data-generating function is
dependent on more than one variable (in that case 𝑥1 and 𝑥2) ALE achieves statistically superior
results by closely approximating the true effects of features across their entire value range, in
comparison to SHAP, ME, and PD plots. The experiments also show how the independence
assumptions of explainers such as PD plots and SHAP can compromise the explanations of
highly complex models like NNs, even in hypothetical scenarios where the data-generating
function is truly independent.

The ABX metric, introduced in this chapter, provides a quantitative measure to quantify
discrepancies in global feature effect explanations and establishes a foundation for future
benchmarking efforts in the field of XAI.

This study highlights the importance of selecting the appropriate XAI technique based
on the specific characteristics of the dataset in question. Specifically, ALE demonstrated
paramount robustness in explaining feature effects when data is not independent. Therefore,
providing empirical evidence that the techniques that either allow for extrapolation or do not
use interventions can diminish the practical utility of their explanations.
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4 ALE-BASED SCORE-EFFECTS SIZE

This Chapter presents novel metrics to highlight the relevance of features in supervised
learning models, directly addressing the RQ2. Initially, the introduction section outlines the
motivation and significance of the chapter’s contribution. Additionally, it delineates pertinent
literature to clearly demarcate the contributions within the existing research landscape. Sub-
sequently, the chapter defines the scores formally and presents the experimental setup for
validating them. The findings are then detailed, followed by a summary section that analyzes
the main results and how they answer the RQ2.

RQ2 - How effectively can score-based explanations derived from the ALE
framework report individual and isolated attribution of the features in terms
of their magnitude and direction compared to existing methods?

4.1 INTRODUCTION

While visualizations provide a more comprehensive understanding of feature effects, score-
based explanations continue to be widely adopted in applied educational research (FILHO;

BRITO; ADEODATO, 2023a). These explanations are particularly beneficial for feature selection
processes, interpreting models with numerous features, and (WEI; LU; SONG, 2015; FILHO;

ADEODATO; BRITO, 2021) describe interactions between more than two features (APLEY; ZHU,
2020)

In the educational domain, a standard score to interpret variable relevance is the coefficients
of additive models. The coefficient represents the weight of each variable in the predictive
function. Under inherent assumptions, the coefficients represent the extent and the direction
of the role of the variable in the data-generating process. This enables educational practitioners
to address questions regarding the average effect of variables within the predictive function.

The extrapolation problem was extensively discussed in Chapter 3 in the framework of
feature effects. The extrapolation consists of using regions of the covariate space with little or
no data and also is present in the context of score-based explanations. Specifically, within the
context of PFI, the model’s performance is evaluated in these data-sparse regions, which may
produce scores that lack a strong link to the underlying data-generating process. Moreover,
PFI often faces challenges in discerning the significance of individual features in datasets
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characterized by substantial inter-variable dependencies. This complexity arises because the
informational content of permuted features can persist via associations with other variables
(STROBL et al., 2008; HOOKER; MENTCH; ZHOU, 2019)

In the SHAP framework, the absolute average is constantly used as a signal of feature
relevance (SCAVUZZO et al., 2022). This strategy has also been adopted for other methods,
such as PD plots (GREENWELL; BOEHMKE; MCCARTHY, 2018) and ME (LONG; MUSTILLO,
2021). As demonstrated in the previous chapter, all these techniques also have problems when
data are dependent.

To address this issue, alternatives to PFI have been proposed. The principal advancement
of these methods is to allow feature permutation within the conditional distribution instead of
the marginal distribution.

In (CANDÈS et al., 2018; WATSON; WRIGHT, 2021), the researchers attempt to emulate
the conditional distribution by leveraging ’knockoffs’—replicas of the original features that
maintain the joint distribution while being independent of the outcome variable, conditioned
on the other features. Nevertheless, the intricacy of this method lies its reliance on complex
task - accurately creating knockoffs that faithfully mirror the dataset’s joint distribution. Fur-
thermore, the computational demands of this process are considerable. This computational
cost also apply to PFI alternative methods that require retraining models (HOOKER; MENTCH;

ZHOU, 2019; LEI et al., 2018; GREGORUTTI; MICHEL; SAINT-PIERRE, 2017).
Adopting simpler and more effective strategies to constrain the permutation process and

avoid extrapolation, Conditional Permutation Feature Importance (cs_PFI), as initially pro-
posed by (STROBL et al., 2008) and subsequently refined in (DEBEER; STROBL, 2020), utilizes
the tree structures generated from random forest models to constrain the extrapolation prob-
lem. Similarly, (MOLNAR et al., 2023) computes the cs_PFI using an auxiliary decision tree
to form subgroups for each feature, treating the feature of interest as the target variable.
The tree splits turn the data points within leaves relatively independent with respect to other
variables. The cs_PFI is computed within leaves and subsequently aggregated to produce an
overall unbiased PFI.

This chapter aims to contribute to this suite of tools for assessing the robustness of
score-based explanations in identify and isolate the relevance of features in supervised learning
models, especially in situations where feature independence cannot be presumed. The new
scores are motivated by the robustness of ALE technique under such conditions. The decom-
position property of ALE, as outlined in Chapter 2 is particularly relevant in scenarios where
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data is not independent. It aids in 1) ensuring that variables of low relevance are assigned
minimal attribution, even if they are correlated with significant variables, and 2) distinguishing
relevant variables regardless of their co-dependency.

The new scores are extracted from the ALE framework and can be computed for any model.
Akin to cs_PFI, which is also model-agnostic, the new scores are computed across subgroups,
but without the need to employing an auxiliary model to establish the subgroups. Additionally,
the new scores can provide more information than traditional PFI-based scores. PFI-based
techniques, which are ranking-based, focus on highlighting the relative importance of variables
with respect to model performance—a perspective that does not fully align with the needs
of educational practitioners who are interested in understanding the roles of features in the
target variable. Typically, such an inquiry requires an examination of the relevance of features
in model predictions rather than solely in performance, as has traditionally been conveyed by
the coefficients of linear models.

It is expected that these new scores of feature effect size will be useful in practical sce-
narios where data are not independent, serving as an alternative to generating insights about
the relevance of features and their interactions within the supervised learning paradigm. For
comparison, a series of experiments with both artificial and real-world data will demonstrate
how these scores can compete with and surpass the limitations of existing scores. Using the
ALE framework to produce these scores also introduces certain limitations to the interpretation
of the scores, which will be further discussed.
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4.2 SCORES DEFINITION

In this section, we propose the ALE-based scores that allow the computation of 1) a
more isolated individual effects of variables 2) to give different insights in the data-generating
process even when data is not independent. Initially, this section presents metrics analogous
to the coefficients in linear models, capable of reporting both the magnitude and direction of
feature effects. Subsequently, it discusses a metric that only quantifies the overall relevance of
features.

Formulating a single score to represent the effect size of a feature presents a complex
challenge. In linear models, where the effects of features remain constant across their entire
range, the slope obtained from the ALE method corresponds exactly with the linear model’s
coefficients. Utilizing a Bootstrap sampling approach in this scenario could potentially yield
a confidence interval closely akin to that obtained through t-statistics, as illustrated in Table
5. However, this does not hold true for non-linear models. In such cases, assigning a single
numerical value to express feature effects often fails to capture their intricate dimensions fully.
Instead, a complete ALE plot is required to comprehensively capture the nuances of feature
effects.

Nevertheless, considering ALE’s decomposition property (see: Section 2.6), scores can
meaningfully represent the individual effects of features if explicitly defined. For instance,
ALE calculates isolated effects within specific data segments. When these segments are not
too narrow or too broad and representative of the wider population, with minimal prediction
noise, they can be particularly informative. In such cases, identifying the segment with the
most pronounced feature effects can yield valuable insights into the degree to which a feature
impacts the target variable. This is especially relevant for considering potential interventions
in the current dataset.

The potential interventions are safeguarded due to ALE’s implementation, which performs
the do-operator (see: Section 3.1.2) for every data point of the segment. For instance, it
can be insightful for the educational practitioner to understand that, regardless of individual
differences, a potential educational policy (represented by one feature) may not be able to
change the chances of any student success (target variable) more than a specified threshold.
Similarly, finding out that an underlying policy tends to yield great results for a representative
group of students can drive further research to determine who benefits most and who does
not. Furthermore, the effect of a feature at a specific value can reveal its individual impact on
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a particular group of interest of the researcher.
Building on this thought, four new metrics for feature effect size have been introduced. To

ensure more reliable estimations, these metrics are designed to be computed on unseen data,
distinct from the data on which the model was trained, as detailed in Algorithm 1:

Table 5 – Demonstration of the similarity of the coefficients and confident intervals of a linear regression and
the slope computed from the ALE plot under a bootstrap sampling on artificial data

Feature Slope Lower CI Upper CI ALE_slope Lower CI Upper CI
0 44.018 44.015 44.021 44.021 44.015 44.027
1 -0.0025 -0.006 0.001 0.001 -0.006 0.007
2 -0.004 -0.007 -0.001 -0.000 -0.007 0.005
3 73.229 73.226 73.232 73.232 73.226 73.239
4 52.552 52.549 52.555 52.555 52.548 52.561
5 9.5595 9.556 9.563 9.563 9.557 9.568
6 63.286 63.283 63.289 63.289 63.283 63.295
7 13.519 13.516 13.522 13.522 13.516 13.528
8 69.562 69.559 69.565 69.565 69.559 69.572
9 40.185 40.182 40.188 40.188 40.182 40.195

Source: self-provided

Algorithm 1 Estimating ALE-based scores with optional uncertainty estimation
Require: model 𝑓 , data 𝐷 = {𝑋1, 𝑋2, . . . , 𝑋𝑘}, int 𝑗

1: Optional: Apply a sampling strategy (cross-validation or bootstrap) on 𝐷
2: Compute quantiles 𝑄 of order 𝑗 using 𝐷 for the target feature 𝑋𝑘, 𝑞ì𝑛{1, ..., 𝑄𝑘}
3: for 𝑞 ∈ 𝑄𝑘 do
4: 𝑋̂𝑚𝑎𝑥 := 𝑋 do(𝑥𝑘 := max(𝑞))
5: 𝑋̂𝑚𝑖𝑛 := 𝑋 do(𝑥𝑘 := min(𝑞))
6: 𝐿𝐸𝑞(𝑘) := 𝑓(𝑋̂𝑚𝑎𝑥) − 𝑓(𝑋̂𝑚𝑖𝑛)
7: end for
8: 𝐴𝐿𝐸(𝑘) = ∑︀𝑄𝐾

𝑞=1 𝐿𝐸𝑞(𝑘)
9: Compute score based on a matrix 𝐴𝐿𝐸(𝑘) of size 𝑗𝑋𝑘

The ALE function is defined as a summation of local effects ascertained by the par-
tial derivative. However, in practice, ALE implementations employ quantiles. The definition
of quantiles already presents a challenge for accurately recovering feature effects under the
visualization of ALE plots and further influences the precision and correctness of scores in-
terpretation. Specifically, small quantiles may model noise, while larger quantiles may fail to
uphold the inherent linearity assumptions of ALE within quantiles.

Therefore, for a more reliable interpretation of the scores, the quantiles (as defined by 𝑗

in Algorithm 1, line 2) should be representative of the sample. This representation should be



68

meaningful within the domain context to reveal its summarized feature effects, while assuming
linear feature effects within each quantile. In the domain of education, deciles and quantiles
are common units of interest (CARNOY; ROSA; SIMõES, 2022; CARNOY et al., 2017)

Lastly, to account for the uncertainty inherent in the model and data, the metrics can be
calculated using a cross-validation approach or a bootstrap sampling strategy. While Bootstrap
allows for the construction of confidence intervals by the cost of high computational cost,
cross-validation can produce generalized estimates with low computational effort. The ALE
computation is relatively stable in absence of outliers, as the definition of quantiles tends to
remain consistent. This stability is especially notable when the unique values of a feature are
few or closely to the 𝐽 definition. The greatest source of uncertainty typically lies within the
model itself, as an algorithm may approximate different functions while delivering comparably
effective performance. If outliers are present, appropriate handling would involve winsorizing the
data distribution’s tails or adjusting the quantile estimation method to minimize the influence
of extreme values on predictions

In Line 9, in Algorithm 1, the process for summarizing the influence of a feature on model
predictions is defined. Within this context, three metrics are first introduced, calibrated to the
same scale as the model’s output, offering insights into both the magnitude and direction of
the feature’s effect size. For clarity, these metrics are didactically compared to the traditional
coefficients of linear models. Subsequently, a fourth metric, based on a ranking system, is
introduced.

Consider: 𝑗 represents the feature of interest 𝑘 the quantile for feature 𝑗. 𝐴𝐿𝐸𝑗(𝑘) represents
the uncentered Accumulated Local Effect for a specific feature 𝑗 up to the 𝑘-th quantile. 𝑧1𝑗(𝑘)

is the lower bound of the 𝑘-th quantile for feature 𝑗. 𝑧2𝑗(𝑘) is the upper bound of the 𝑘-th
quantile for feature 𝑗. 𝑛 is a specific value of interest of 𝑗

1) Maximum Uncentered ALE (MUA): the MUA metric urges actionability and ex-
tracts the maximum change in the predictions (𝑦) that a feature of interest may derive. The
maximum is related to a specific data interval and may be positive or negative, requiring a
previous absolute comparison to achieve the highest value.

MUA(𝑗) = max
𝑘

𝐴𝐿𝐸𝑗(𝑘) (4.1)

2) Uncentered ALE at a Specific Value (UAS): the UAS is an arbitrary choice of a
specific value 𝑛 of the feature of interest. In practice, it requires discovering into which quantile
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this value falls and returns the accumulated uncentered ALE up this quantile. This metric may
be helpful when the analyst has sufficient domain knowledge or is verifying hypotheses.

UAS(𝑗, 𝑛) = 𝐴𝐿𝐸𝑗(𝑘) | 𝑧1𝑗(𝑘) ≤ 𝑛 ≤ 𝑧2𝑗(𝑘) (4.2)

3) Average Uncentered ALE (AUA): the AUA represents the first-order moment of
the distribution and offers insights into the general magnitude and direction of feature effects
across specified intervals. The AUA captures the average isolated impact of a feature of interest
on the predictions over these intervals. A lower AUA value does not necessarily indicate an
insignificant variable; rather, it may reflect a variable with a lower average effects.

AUA(𝑗) = 1
𝐾

𝐾∑︁
𝑘=1

𝐴𝐿𝐸𝑗(𝑘) (4.3)

4.2.1 An analogy to the coefficients of linear regression

This section draws a simplified analogy between the coefficients of linear regression and the
newly introduced metrics (MUA, AUA, and UAS). This analogy is instrumental as the coeffi-
cients represent completely different measures. However, it will be important to demonstrate
how the new metrics can support research inquiries in the field of education.

In linear regression, the coefficients of a variable quantify its overall effect size. When a
variable’s effect is not constant across its distribution, interaction terms are introduced. These
terms account for the variable’s differential impact across specific segments of its distribution,
such as quartiles. Consider the following model:

Y = 𝛽0 + 𝛽1𝐴 + 𝛽2(𝐴 × 𝐷3) + 𝜖 (4.4)

Here, 𝛽1 represents the baseline effect of variable 𝐴, while 𝛽2 (the coefficient of the
interaction term 𝐴×𝐷3) captures the additional effect of 𝐴 in the third quartile regarding the
remains. In the case of a monotonically increasing effect of 𝐴 on 𝑌 , the sum 𝛽1 + 𝛽2 aligns
with the MUA. Conversely, if 𝐴’s effect is monotonically decreasing, the MUA corresponds
to 𝛽1 added to the coefficient of the first quartile’s interaction term, which is not included in
Equation 4.4.

MUA thus represents the maximal average effect of variable 𝐴 across its quartiles. As the
metrics is an uncentered version of ALE framework, the average effect of variables will always
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be included, which makes them more informative to the actual dataset. This is particularly
important as the function is unknown and the interpretation relies only on a unique number.
The AUA represents the mean of all such summations between 𝛽1 and the coefficients of
the interaction terms for each quartile. Meanwhile, the informs the same 𝛽1 added to the
interaction term of the quartile that encompasses a chosen specific value.

ALE Absolute Range (AAR): the AAR is a non-directional metric, distinguishing it
from those previously mentioned. It quantifies the feature contribution by measuring the total
absolute range from the minimum to the maximum effect. The AAR can be scaled from 0
to 1, providing a ranking-based alternative. This scaling enhances generalizability, facilitating
broader comparisons of a specific feature’s AAR across various datasets and models. A lower
range indicates less reliance on the feature by the model.

AAR(𝑗) =
⃒⃒⃒⃒
max

𝑘
𝐴𝐿𝐸𝑗(𝑘) − min

𝑘
𝐴𝐿𝐸𝑗(𝑘)

⃒⃒⃒⃒
(4.5)

4.2.2 Building confidence intervals

Confidence intervals are crucial for inference and analyzing the reliability of estimates. They
provide an estimate of the range within which the true metric values are likely to fall, given a
specified confidence level. To construct these intervals in the context of ALE-based metrics,
strategies such as data-only bootstrap or full-bootstrap can be used. The data-only bootstrap
accounts solely for data uncertainty, whereas the full-bootstrap method considers uncertainties
arising from both data and the model training. This method involves repeatedly resampling the
dataset (and retraining the ML model for the full bootstrap), designated for explanation, with
replacement and recalculating the metrics for each sample, thereby capturing data estimates
variability.

Nevertheles, bootstrap sampling can be computationally demanding, particularly for large
datasets or complex models. As an efficient alternative to capture robust estimates, k-fold
cross-validation can be employed, though it does not inherently provide confidence intervals.
In this method, the entire dataset is utilized for both training and explaining the model. The
data is divided into ′𝑘′ subsets. The model is trained ′𝑘′ times, using a different fold as the
explanation set each time, while the remaining data is used for training. This ensures that
every data point contributes to both training and feature explanations.
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Figures 6 and 7illustrate the use of both data-only and full-bootstrapping strategies for all
metrics, including their confidence intervals at a 5% significance level. The was defined using
the median for each feature. The AAR was not normalized. These metrics are derived from
predictions of house prices using the openly available California Housing dataset1 , employing
the random forest regression algorithm with its default parameters as implemented in scikit-
learn2. Prior to modeling, data preprocessing was conducted to manage outliers, setting bounds
at the 97.5th and 2.5th percentiles to mitigate the impact of extreme values. This dataset was
chosen for demonstrating uncertainty computation because it is open, simple, and extensively
used in the MLliterature, which can facilitate future comparisons

Figure 6 – Illustration of the confidence interval construction at a 5% significance level through a data and
model (full) bootstrap over 100 iterations

Source: self-provided.

4.2.3 Interaction feature effects size

Although ALE framework can be defined for any interaction order effects (APLEY; ZHU,
2020), the visualization through plots is typically reliable only up to second-order effects. This is
1 <https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html>
2 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
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Figure 7 – Illustration of the confidence interval construction at a 5% significance level through a data-only
bootstrap over 100 iterations

Source: self-provided

because higher-order effects cannot be effectively represented in plots. By employing a scoring
system, the interaction of n-order effects can be made more readable; however, interpretability
decreases and utility becomes more limited as the value of 𝑛 increases. Following ALE definition
(APLEY; ZHU, 2020), the computation of scores essentially follows the algorithm 1. Notably,
instead of one-dimensional quantiles, n-effects analysis requires n-dimensional partitions, and
an adjustment for the right interpretation of the interaction additional effect is necessary.

For a given model function 𝑓 , the analysis typically begins with partitioning each feature
into quantiles or intervals. In the context of second-order effects, a two-dimensional grid is
created by forming the Cartesian product of the quantiles of both features (APLEY; ZHU,
2020). This approach is then extended to 𝑛 dimensions for higher-order effects involving more
features. The essence of this analysis lies in how the model’s response varies across these
multidimensional partitions.

In the end, it is necessary to subtract the main effects of both features from each partition’s
local effects. Thus, the interpretation of the interaction is essentially the uncentered additional
effect resulting from the interaction of both features.
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4.3 METHODS

This section details the methodology employed to assess the efficacy of the proposed
metrics in addressing RQ2. The evaluation was defined with two primary objectives: 1) to
verify whether variables of low relevance are attributed minimal significance, even when they
are highly correlated with relevant variables, and 2) to ascertain if the proposed metrics can
effectively isolate the effects of relevant variables that are also correlated with each other.

To systematically achieve these objectives, the evaluation process was structured into two
phases. First, synthetic data was simulated with the desired dependencies of the features and a
qualitative comparison is then carried out to examine how various methods emphasize variables
in different scenarios. Following this, evaluation metrics are introduced for a quantitative
analysis. Using simulated data allows for a more precise demonstration of the metrics’ behavior
than analyzing a real dataset, where additional interdependencies among features might skew
the results. Although it is not possible to ensure that the fitted model will recover exactly the
simulated data-generating process, it is expected to come close by keeping the setup simple
and focusing on a small set of variables. Additionally, the same model will be explained for
different techniques, which will allow a comparison of differences in the technique’s behavior
even if the models fit data differently from the expected.

In the second phase, the proposed metrics are evaluated using two publicly accessible real-
world data sets from the medical and educational domains. The first data set exhibits high
interdependence among features with numerous variable pairs demonstrating a Pearson corre-
lation coefficient exceeding 0.8. The second data set pertains to the educational domain, which
is the primary focus of this thesis. For this dataset, domain-specific knowledge is leveraged to
elucidate disparities between highlighted feature contributions.

The baseline metrics employed for comparison include MDI from tree-based models, the
model-agnostic version of PFI, the Average SHAP, and the conditional version of PFI cs_PFI.
The MDI scores were directly extracted using the scikit-learn library (PEDREGOSA et al., 2011).
Average SHAP were computed via the TreeExplainer package 3. The TreeExlainer (TreeSHAP)
was proposed by (LUNDBERG et al., 2020) and is confined to certain tree-based algorithms. From
the same author of the SHAP, The TreeSHAP offers computational efficiency over the original
SHAP formulation and is also more robust to the extrapolation issue making it a better baseline
3 <https://shap.readthedocs.io/en/latest/example_notebooks/tabular_examples/tree_based_models/

UnderstandingTreeSHAPforSimpleModels.html>

https://shap.readthedocs.io/en/latest/example_notebooks/tabular_examples/tree_based_models/UnderstandingTreeSHAPforSimpleModels.html
https://shap.readthedocs.io/en/latest/example_notebooks/tabular_examples/tree_based_models/UnderstandingTreeSHAPforSimpleModels.html
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alternative than the original SHAP. The PFI was implemented as defined in (FISHER; RUDIN;

DOMINICI, 2018), utilizing mean squared error for regression and accuracy for classification
as the performance metric. The cs_PFI was implemented in accordance with (MOLNAR et al.,
2023). The cs_PFI approach requires the utilization of an auxiliary decision tree to partition
the feature space prior to feature permutation. The tree has a maximum depth of 2 and the
minimum number of observations in each leaf as 10% of the dataset. For both PFI and cs_PFI,
the random feature permutation was executed five times, and the average was adopted as the
final score.

In addressing the constraints associated with MDI and TreeSHAP, which are solely ap-
plicable to tree-based algorithms, the RF algorithm was chosen. The RF is prevalent in
EDM(MARTÍNEZ-ABAD; GAMAZO; RODRÍGUEZ-CONDE, 2020) and has also demonstrated op-
timal performance in many tasks using tabular data (GRINSZTAJN; OYALLON; VAROQUAUX,
2022). The ALE-based score AUA was chosen for qualitative benchmarking, as it offers a
more intuitive measure and aligns closely with the interpretation needs of educational practi-
tioners interested in the main effects of variables on predictions. For the quantitative analysis,
the normalized AAR was employed due to its stronger adherence to other ranking-based tech-
niques. Regarding SHAP, the common average was utilized in the qualitative analysis, and the
absolute average SHAP for the quantitative analysis.

4.3.1 Evaluation metrics

To address RQ2, the primary objective is to define metrics that can isolate the effects of
individual variables in dependent data. It is essential to ensure that irrelevant variables are
not inaccurately considered important due to their correlation with significant variables. For
this purpose, the metric PropTrueVar is introduced. It calculates the proportion of the total
relevance attributed to all variables that is assigned to the irrelevant variables. Technically
PropTrueVar is defined by:

𝑃𝑟𝑜𝑝𝑇𝑟𝑢𝑒𝑉 𝑎𝑟 = 1 − score_important_variable∑︀(all_scores) (4.6)

Additionally, not separating the effects of different features can lead to incorrect conclu-
sions as it cannot be possible to identify from which variable the effects come, particularly
when several correlated variables similarly affect the target variable. To assess such cases, the
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EquiTrueVars metric is defined. It measures the fairness in attributing importance to correlated
variables that are theoretically equally relevant to the target variable. Fairness is quantified
by the standard deviation (𝜎 of the attributed scores for the important variables. Low 𝑠𝑖𝑔𝑚𝑎

values indicate that the explanation correctly assigned similar relevance to the equally im-
portant variables, while high values suggest a lack of fairness in importance attribution. The
EquiTrueVars is defined as follows:

𝐸𝑞𝑢𝑖𝑇𝑟𝑢𝑒𝑉 𝑎𝑟𝑠 = 1 − 𝜎(score_important_variables) (4.7)

Lastly, the EquiPropTrueVars metric is introduced to measure both aspects. It evaluates
the combined property by first assessing the attribution given to important variables (using
EquiTrueVars) and then penalizing methods that tend to overemphasize irrelevant variables
(based on PropTrueVar).

𝐸𝑞𝑢𝑖𝑃𝑟𝑜𝑝𝑇𝑟𝑢𝑒𝑉 𝑎𝑟𝑠 = 𝐸𝑞𝑢𝑖𝑇𝑟𝑢𝑒𝑉 𝑎𝑟𝑠 − (𝑃𝑟𝑜𝑝𝑇𝑟𝑢𝑒𝑉 𝑎𝑟 − 1) (4.8)

4.3.2 Assessing scores for feature selection

Feature selection stands as a critical aspect of ML, garnering increased focus with the
advent of high-dimensional datasets from diverse fields. While not directly tied to the central
research questions of this thesis, the relevance of feature selection remains significant in ML,
particularly in the context of enhancing model performance while reducing model complexity.
This section is dedicated to exploring how ALE-based scores can offer a viable alternative in
this direction. The focus here shifts from detailing the relationship between features and the
target variable to evaluating the contribution of features to model performance. The AAR,
which measures the total effect range from minimum to maximum, emerges as a potential
indicator of feature importance in this regard.

Given that an exhaustive comparison of feature selection methods falls outside the scope
of this thesis, for the sake of simplicity, this study will narrow its focus to EDM and MDI from
tree-based models, particularly due to MDI’s widespread application in feature selection tasks.
Additionally, evaluating the method’s impact on the performance and complexity of RF models
introduces some bias in favor of MDI. This inherent bias arises because MDI is computed as
part of the training process of the Random Forest model, which is also used to fit the data.
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Therefore, if AAR demonstrates comparable performance to MDI in this context, it would
be a substantial indication of AAR’s effectiveness as a feature selection tool. The MDI was
extracted from the RandomForest model of the Sci-kit learn library 4.

The initial experiment utilizes another open-source UCI dataset, specifically an educational
dataset (REALINHO et al., 2022) containing 36 independent variables. This experiment highlights
the divergences between the MDI and AAR methods in their potential for feature reduction.

Initially, irrelevant variables (close to zero, "< 0.0001") are excluded to evaluate model
performance. Subsequently, the model’s efficacy is evaluated using the top 10 features as iden-
tified by both MDI and AAR metrics. These metrics are derived from the same RF algorithm
applied to a subset (30%) of the dataset, while the remaining portion (70%) is used to assess
model performance in predicting student dropout (enrolled or graduated). The AAR and MDI
values were normalized such that their sum equals one. This normalization ensures a standard
scale for comparison.

To illustrate feature selection in high-dimensional settings when the number of features
is large (𝑝) relative to the number of observations (𝑛), this study used two datasets from
OpenML (VANSCHOREN et al., 2014). Specifically, dataset id=312 with 𝑛=2407 and 𝑝 = 299
and dataset id=1485 with 𝑛= 2600, 𝑝= 500), both previously employed in feature selection
research. Here, varying thresholds of feature irrelevance are analyzed concerning both model
complexity (number of features) and performance.

4.3.3 Synthetic data

Simple scenarios were set where is easier to identify differences in the metrics behavior.
Especially, considering a set of variables 𝑋 drawn from the same normal distribution 𝑁(0, 1)

with values ranging between zero and 1 and 𝜀 following 𝑁(0, 0.12) as well as a dependence
between variables pairs 𝑀 plus noise 𝑁(0, 0.052) (ex.:𝑥1 = 𝑥2 + 𝜀), diverse scenarios were
simulated to explore different dependency structures. Each scenario has 1000 data points and
𝑌 is a function of 𝑋 with different dependence pairs 𝑀 :

Scenario 1: 𝑋 is matrix of size 5, 𝑌 depends only on 𝑥1: 𝑌 = 𝑥1 + 𝜀 and 𝑀 maps a
strong dependence between 𝑥1, 𝑥2, being the all the other variables independent

Scenario 2: 𝑋 is matrix of size 5, 𝑌 depends only on 𝑥1: 𝑌 = 𝑥1 + 𝜀 and 𝑀 maps a
strong dependence between 𝑥1, 𝑥2; 𝑥2, 𝑥3; 𝑥4, 𝑥1, being only 𝑥5 independent
4 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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Scenario 3: 𝑋 is matrix of size 5, 𝑌 depends on 𝑥1 and 𝑥2: 𝑌 = 𝑥1 + 𝑥2 + 𝜀 and 𝑀

maps a strong dependence between 𝑥1, 𝑥2 ;𝑥2, 𝑥3; 𝑥4, 𝑥1, being only 𝑥5 independent
Scenario 4: 𝑋 is matrix of size 5 𝑌 depends on 𝑥1: 𝑌 = 𝑥1 and 𝑀 maps the Pearson

correlation 𝑝 being 0.5 ≤ 𝑝 < 1.0 among all variables.
Scenario 5: 𝑋 is matrix of size 5 𝑌 depends equally on 𝑥1, 𝑥2 and 𝑥3: 𝑌 = 𝑥1 + 𝑥2 + 𝑥3

and 𝑀 is defined by 𝑐𝑜𝑜𝑟 being 0.5 ≤ 𝑐𝑜𝑜𝑟 < 1.0. The variable 𝑐𝑜𝑜𝑟 controls that extent of the
correlation among variables through: 𝑋1 = 𝑐𝑜𝑟𝑟×𝑋2+𝑐𝑜𝑟𝑟×𝜀 and 𝑋3 = 𝑐𝑜𝑟𝑟×𝑋1+𝑐𝑜𝑟𝑟×𝜀

Scenario 6: 𝑋 is a matrix of size 10 . The target variable 𝑌 is equally influenced by a set
of five relevant variables, denoted as 𝐺1 = {𝑥1 : 𝑥5} and has a weak relation with variables
from 𝐺2 = {𝑥6 : 𝑥10}. The 𝐺1 are generated with intercorrelation controlled by the parameter
𝑐𝑜𝑟𝑟𝑖𝑛𝑡𝑟𝑎. The remaining five variables are correlated with 𝐺1 through the 𝑐𝑜𝑟𝑟𝑖𝑛𝑡𝑒𝑟. Both
𝑐𝑜𝑟𝑟𝑖𝑛𝑡𝑟𝑎 and 𝑐𝑜𝑟𝑟𝑖𝑛𝑡𝑒𝑟 will vary from 0.1 to 0.8.

4.3.4 Real-world data

To demonstrate the practical use of the new metrics on real-world data, two more openly
available scientific datasets from the repository were used5. The first is the Breast Cancer
dataset (DUA; GRAFF, 2017), well known in the ML community for its high interdependence
between variables. The second is an educational dataset (YıLMAZ; SEKEROGLU, 2020), which
is particularly relevant as it comes from the domain that motivates this thesis. In these exper-
iments, the focus is gaining a qualitative understanding of how differently the proposed and
baseline metrics isolated and distinguished the effects of variables.

The breast cancer data included benign and malignant cell samples from 369 patients, 212
with cancer, and 157 with fibrocystic breast masses. Each sample contained thirty features
which were used by the model to predict the type of cancer. The educational data consisted
of the performance of 145 higher education students, 57 with scores above or equal to 4
and 88 below, described in 31 variables linked to socioeconomics, demographic, and student
behavior. At all, 30 features (all features less "STUDENT ID", "COURSE ID) were used to
predict student grade. The grade target variable was transformed to a classification task and
grades below 4, receive 0 otherwise 1.
5 <https://archive.ics.uci.edu/datasets>

https://archive.ics.uci.edu/datasets
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4.3.5 Experimental setup

In the first phase of the experiments, which involved synthetic data, regression and clas-
sification functions from Scenarios 1 to 3 were tested and evaluated qualitatively. For the
classification, all 𝑌 > 0 was set to 1, otherwise 0. From Scenarios 4 to 6 the entire dataset
was used for model fitting, and the defined evaluation metrics were extracted across the same
30-Monte Carlo replicates.

For both datasets, the algorithms were applied to a 5-fold cross-validation setting in a
binary classification task. Thus, both algorithms were applied to the same folds with scikit-
learn default parameters, and the mean was adopted as a feature contribution for each metric.
It’s important to note that all metrics were computed using identical fold partitions, ensuring
consistency in the evaluation process.
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4.4 RESULTS

This section presents the results of experiments conducted to validate the proposed scores
to extract insights about the data-generating process. Initially, the findings from synthetic
data are displayed, followed by two examples using real-world data. Ultimately, additional
experiments underscore the potential of the proposal in the context of the feature selection
task.

4.4.1 Synthetic data

4.4.1.1 Qualitative analysis

In Figure 8, the results for Scenario 1 are depicted. In this simplified setup, all methods
accurately identify 𝑥1 as the key variable. However, the strong correlation between 𝑥1 and 𝑥2

leads ThreeShap and MDI to incorrectly assign substantial relevance to 𝑥2 in the classification
model. In contrast, AUA and permutation-based methods (PFI and cs_PFI) exhibit better
results. On the other hand, for the regression model, all metrics had the expected result
highlighting 𝑥1 by far as the most important variable assign almost zero relevance to the other
variables. It is worth noting that the permutation-based models display some variability in the
scores, a consequence of their random sampling process. Increasing the number of iterations
could reduce this variability while also increasing computational load.

With similar results, Figure 9 shows to the Scenario 2 how TreeShap and MDI give too
much relevance for the other correlated feature in the classification task, even though 𝑦 depends
only on 𝑥1. The MDI and cs_PFI correctly assign minimal relevance to the uninformative but
dependent variable 𝑥2, whereas AUA attributes slightly higher, yet still very low relevance
to this variable. This is expected, as AUA computes differences in predictions while PFI and
cs_PFI differences in performance. As only one variable determines outcomes, permuting any
other feature does not change performance, although it may introduce some prediction noise.
Nevertheless, this noise does not critically affect the recognition of 𝑥1 as the unique key variable
to the second scenario. This pattern is evident in the regression task, where all techniques
yield satisfactory results. However, techniques that measure changes in predictions, such as
TreeShap and AUA, do account for some noise in the irrelevant variables. The TreeShap and
MDI also erroneously attribute so much relevance to the independent and irrelevant variable
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Figure 8 – Scenario 1 - Comparison of the ALE-based metric (AUA) with the baseline for the classification
and regression task using the random forest model fitted over 100 Monte Carlo replicates.

Source: self-provided

𝑥5 in the classification task.
Figure 10 displays the results for Scenario 3. Unlike the second scenario, where a single

variable determines the outcome, the target variable 𝑦 in the third scenario is influenced by
both 𝑥1 and 𝑥2. Given that 𝑥1 is dependent on 𝑥2, PFI and cs_PFI encounter difficulties
in accurately assessing the relevance of these variables, erroneously favoring one over the
other in both classification and regression tasks to PFI and only in the regression task for
cs_PFI. Conversely, TreeSHAP, MDI, and AUA yield more accurate feature relevance rankings.
However, in the classification task, both AUA and MDI incorrectly attribute some importance
to the feature 𝑥5, which, although highly correlated with 𝑥1, has no direct influence on 𝑦. The
error is more critical for MDI, which assigns approximately half the relevance to 𝑥5 as it does
to 𝑥1, whereas AUA erroneously assigns a notably lower relevance.
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Figure 9 – Scenario 2- Comparison of the ALE-based metric (AUA) with the baseline for the classification and
regression task using the random forest model fitted over 100 Monte Carlo replicates.

Source: self-provided

4.4.1.2 Quantitative analysis

Figure 11 shows how the performance of methods changes to the PropTrueVar as the
Pearson correlation between variables escalates from 0.1 to 0.8 as defined in Scenario 4.

A PropTrueVar value approaching 1 signifies an effective technique in assigning higher
relevance to the true explanatory variable, whereas a value substantially deviating from 1
indicates a less reliable method. Figure 11 corroborates previous findings, revealing a more
robustness of PFI, cs_PFI and the ALE-based (AAR) across interactions, while MDI and
TreeSHAP fail to identity and isolate the effects of the unique relevant variable 𝑥1 as the level
o colinearity increase. Also, TreeSHAP shows a high variability in this simple setting, probably
due to its strategy to handle the conditional expectation based on the branch of trees.

Figure 12 illustrates the method’s performance on EquiTrueVar using Scenario 5. PFI
achieves the worst results due to its difficulty in highlighting two important variables when
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Figure 10 – Scenario 3 - Comparison of the ALE-based metric (AUA) with the baseline for the classification
and regression task using the random forest model fitted over 100 Monte Carlo replicates.

Source: self-provided

they are not independent. The ALE-based score shows great performance at all measured levels
of feature dependence. The superiority of the ALE-based method is also evident in Scenario 6

when assessing the EquiPropTrueVars. The EquiPropTrueVars measures a scenario in which the
correlation between relevant 𝐺1 and irrelevant variables 𝐺2 increases, alongside the correlation
within 𝐺1 variables. Figure 13 illustrates the superior performance of the ALE-based approach
(AAR) across almost all values of intra- and inter-correlations. The performance with respect
to EquiPropTrueVars diminishes when the intra-dependence within 𝐺1 becomes critically high,
while the dependence between 𝐺1 and 𝐺2 appears to have a lesser impact on the proposed
metric. However, in nearly all configurations, the ALE method achieves the best results.
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Figure 11 – Scenario 4 - The performance for the metric PropTrueVar across different levels of correlation
between the true, relevant variable, and irrelevant variables. PropTrueVar measures the proportion
of total relevance attributed to all variables that are assigned for the true relevant variable. The
PFI, cs_PFI, and ALE-based scores achieve better results when the correlation is high (after 0.6).

Source: self-provided

Figure 12 – Scenario 5- The performance for the metric EquiTrueVar across different levels of correlation
between the two true relevant variables. The ALE-based scores achieve better results.

Source: self-provided

4.4.2 Real-world data

The results for the Breast Cancer dataset are depicted in Figure 14. The red bars represent
the top 10 features as determined by each metric. Intriguingly, the strong interdependence
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Figure 13 – Scenario 6- The performance for the metric EquiPropTrueVar across different levels of correlation
between relevant variables and irrelevant variables as well as within the relevant variables. The
ALE-based scores achieve better results for almost all settings.

Source: self-provided

among many variables in this dataset highlights the limitations of permutation-based metrics
such as cs_PFI and PFI, which depend on differences in model error for their calculations.
Looking at the absolute value of feature effects size, these metrics suggest that almost none
of the features are relevant, as evidenced by the assignment of values close to zero. There
are numerous variables with zero effect, and no variable changes the model accuracy by more
than 2𝑥10−3 in cs_PFI and 2𝑥10−2 in PFI.

In the previous experiment, cs_PFI and PFI metrics performed well for PropTrueVar, where
only a single variable was relevant. However, in the current scenario, they cannot distinguish
the impact of individual variables due to the high interdependence among variables, which is
visually evident in Figure 15 where dark colors represent strong correlations as measured by
the Pearson coefficient.

In contrast to PFI and cs_PFI, the AAR, MDI, and TreeSHAP methods consistently identify
many relevant features despite some discrepancies. They revealed a similar set of features
within the top 10. All metrics were organized in a ranking-based setting. For the glsALE-based
score, the glsAAR was used, and for TreeSHAP, the absolute average method was employed.
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Figure 14 – Cancer data - Red bars represent the top 10 features determined by each metric.

Source: self-provided

4.4.2.1 An inconsistency of TreeSHAP

In the Educational dataset examined, Figure 16 illustrates that the MDI exhibits greater
density in its outputs compared to other metrics. Specifically, cs_PFI and PFI are the most
sparse and exhibit high symmetry. Both metrics underscored features 29 (cumulative grade
point average in the last semester) and 8 (salary) as paramount. Moreover, feature 29 emerged
as a significant variable across multiple metrics. However, a discrepancy was observed between
AUA and TreeSHAP regarding the direction of this feature contribution. AUA indicated a
negative influence for feature 29, counter to domain knowledge, while TreeSHAP suggested
a positive influence. To further scrutinize this divergence, we employed the original version of
SHAP (in red in Figure 16), which corroborated AUA’s findings.

Furthermore, an additional logistic regression model further substantiated this negative
effect with a statistically significant coefficient of -0.99. PD plots for both logistic regression
and random forest models also corroborated this negative direction, raising evidence of the
negative effect of feature 29 to this dataset.

Upon closer analysis of the cross-validation process, it was observed that TreeShap as-
signs both positive and negative effects across iterations, a phenomenon not seen with other
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Figure 15 – Cancer data correlation map. Dark colors represent strong correlations.

Source: self-provided

techniques. These changes in sign, depending on the fold, introduce noise into the final signal
of relevance and diminish the overall relevance of the feature due to positive and negative
cancellations.

The inconsistency observed in TreeSHAP might be related to its strategy of holding con-
ditional expectations to avoid data extrapolation, as previously documented (FILHO; BRITO;

ADEODATO, 2023a). In a controlled experiment, the authors evaluated multiple algorithms
using different metrics of feature contribution on a dataset where two features were identically
correlated with the target variable and shared the same joint distribution. Despite these condi-
tions, the two features received significantly different average feature contributions, but only in
the TreeSHAP metric. This divergence arises from the different conditional expectations used
to compute the effects of both features, even though they have exactly the same distribution.
The conditional distribution used to compute feature effects depends on the specific terminal
branches where the features are located within the decision trees. In this experiment, the small
sample size and the repeated stochastic nature of random forest modeling likely contribute to
this inconsistency across the 5-fold cross-validation process.
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4.4.2.2 The robustness of the ALE-based score

In Figure 16, a dendrogram computed using the scipy package6 identifies a set of features
highly correlated with Salary (feature 8), a variable widely acknowledged as a determinant of
educational performance (COLEMAN, 1968; COLEMAN, 2019). This correlated group comprises
features such as Transportation to the University (9), Accommodation Type in Cyprus (10),
Mother’s Education (11), and Parental Status (14). Upon closer inspection of this cluster
(highlighted in orange in Figure 16), it becomes evident that various techniques may ac-
centuate correlated features, thereby introducing potential false positives. The MDI metric
distributes relevance broadly across the entire group, with Mother’s Education (11) emerging
as the most significant. Conversely, other metrics, with the exception of TreeSHAP, align with
domain knowledge and prioritize Salary (8). Among these, PFI, cs_PFI, and AUA appear to
be more robust in isolating inter-feature dependencies within the group. TreeSHAP, however,
probably erroneously attributes nearly equal importance to Accommodation Type in Cyprus

(10) as it does to Salary (8), despite the former should not be directly related to educational
performance.
6 <https://scipy.org/>

https://scipy.org/
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Figure 16 – Feature attribution to the educational data. The orange area highlights a cluster of features highly
correlated with the Salary, as illustrated in the left dendrogram. The dendrogram was computed
using the scipy package with the complete linkage option.

Source: self-provided

4.4.3 Feature selection

In assessing the efficacy of ALE-based scores for feature selection, the AAR proved effective,
reducing model complexity without significantly impacting model performance, akin to the
baseline MDI. The initial experiment, utilizing educational data, underscored the benefits of
AAR, achieving a 28% reduction in the number of features with only a slight impact on
model performance. In contrast, despite the fact that MDI had been built during random
forest training and can have the full information about how the algorithm used features, it
was less effective in reducing feature count, deeming only one variable as irrelevant (< 0.001).
Notably, when comparing the performance of models using the top 10 variables identified by
both scores, the results were consistent despite a disagreement in 4 variables within the top
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10. The Table 6 presents these findings, showcasing outcomes for the random forest algorithm.

Table 6 – Comparison between MDI from RF and the ALE-based score AAR for feature selection in an openly
educational dataset to predict student drop-outs.

Model AUC_ROC Number of features

Random Forest (All Features) 0.91 36
Random Forest (MDI Relevant Features) 0.91 35
Random Forest (AAR Relevant Features) 0.90 25
Random Forest (MDI Top 10 features) 0.88 10
Random Forest (AAR Top 10 Features) 0.88 10

Source: self-provided

In the second series of experiments with OpenML datasets, the AAR method effectively
reduced the number of features. For dataset id=312, shown in Figure 18, reducing the number
of features did not significantly boost the model’s performance, as the Area Under Receiver
Operating Characteristic Curve (AUC_ROC) (FAWCETT, 2006) remained stable for both AAR
and MDI methods. However, AAR was more successful in cutting down the number of features.
In the initial threshold, AAR reduced the number of features by 16%, compared to MDI’s
reduction of 13%. At the subsequent evaluated thresholds, AAR achieved reductions of 44%
and 60%, while MDI achieved reductions of 26% and 54%, respectively.

With dataset id=1485, removing features led to better model performance. This aligns
with earlier results, showing AAR’s efficiency in simplifying the model without compromising
its effectiveness, particularly up to a threshold of 0.002. At a threshold of 0.001, AAR managed
to reduce 20% more features than MDI. Notably, at a threshold of 0.03, MDI performed better,
possibly due to its direct connection to the RF model used for fitting the data. To investigate
this further, the RF model was replaced with a logistic regression model in the second step. The
results are presented in Figure 19. Using the logistic model, AAR demonstrated even stronger
results up to a 0.002 threshold, while MDI continued to achieve greater feature reduction at
the 0.003 threshold. However, as expected, the difference in performance at this threshold is
now negligible.
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Figure 17 – Comparative analysis of the ALE-based AAR score and MDI from RF in reducing model complexity
by minimizing the number of features. The dataset is from OpenML (id=312) in a classification
task. The number represents the number of remaining features on the dataset for each metric.

Source: self-provided

Figure 18 – Comparative analysis of the ALE-based AAR score and MDI from RF in reducing model complexity
by minimizing the number of features. The dataset is from OpenML (id=1485) in a classification
task. The number represents the number of remaining features on the dataset for each metric.

Source: self-provided
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Figure 19 – Comparative analysis of the ALE-based AAR score and MDI from RF in reducing a logistic re-
gression model complexity by minimizing the number of Features. The dataset is from OpenML
(id=1485) in a classification task. The numbers represent the number of remaining features on
the dataset for each metric.

Source: self-provided
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4.5 SUMMARY

This chapter introduces four novel metrics - MUA, UAS, AUA, and AAR - derived from
ALE framework that quantify the significance of features within predictive models. Each met-
ric provides a clear definition that captures a specific aspect of feature relevance. Although
primarily driven by the limitations of existing metrics in EDM, which frequently overlook the
contributions of features in datasets with interrelated dependent variables, these new metrics
also enhance the overall interpretability of supervised learning models. The experimental eval-
uation demonstrates the enhanced robustness of the ALE-based framework in such contexts
when compared to established methodologies. Specifically, a first round of experiments illus-
trates the ability of the new metrics to effectively identify critical features in synthetic datasets
engineered with varying generating functions and degrees of feature interdependence. These
new metrics either surpass or match the performance of existing baseline measures. Specifically,
the ALE-based metric generally yielded better results compared to SHAP and MDI, as they
do not attribute significance to features that are irrelevant yet highly correlated with another
relevant feature. Furthermore, they also outperformed PFI and cs_PFI in identifying multiple
important features that are also correlated among them. When evaluating both properties,
ALE metrics achieve better results.

We focus on RF and NN. Both models demonstrated good performance, with an close
to the standard deviation of the theoretical noise added to the target variable, indicating that
the models were capable of detecting underlying patterns

Further, empirical evidence from real-world datasets corroborates the findings from syn-
thetic experiments, showcasing the ALE-based metrics’ capacity to discern the main effects of
variables. In a qualitative experiment utilizing an educational dataset and domain expertise to
assess the expected relevance of key variables, ALE-based scores yielded better results than the
baseline. They accurately identified and isolated the relevance of variables without attributing
significance to potentially irrelevant features solely due to their correlation with relevant ones.

Moreover, the chapter discusses the potential pitfalls of using SHAP-based scores, partic-
ularly when computed through the computationally efficient TreeShap method for tree-based
algorithms. It can lead to misleading interpretations due to its constraints to avoid extrapola-
tion based on the tree structure of the explained model.

Finally, the potential of the proposal for feature selection and dimensional reduction tasks
was demonstrated using openly real-world datasets, including one from the educational domain
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and two high-dimensional datasets which are commonly used in feature selection benchmark-
ing. The experiments showcased the ALE framework as a reliable, model-agnostic alternative
for this purpose, capable of reducing model complexity with minimal performance degradation
comparable to the baseline, sometimes achieving significantly better results. Specifically, the
ALE-based score achieves better or comparable results when contrasted with the widely used
feature importance of random forest (MDI) in various scenarios. The ALE could remove irrel-
evant variables while increasing or keeping the model performance even in scenarios inherently
biased in favor of the baseline.
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5 CASE STUDY - BRAZILIAN SECONDARY EDUCATION ASSESSMENT

Building on the insights from the previous chapters, which demonstrated the utility and
reliability of ALE in clarifying the roles of features in models performing well amidst non-
independent data, this chapter illustrate a case study employing the proposed ALE-based
metrics. These metrics are applied to assess the impact of various features on student perfor-
mance, as well as to trace the evolution of these influences over time.

The adoption of scores offers a more apt alternative compared to other explanation types,
especially in the context of analyzing feature effects over an extended period within complex
multivariate scenarios (FILHO; BRITO; ADEODATO, 2023a). Through this reporting approach,
educational practitioners can gain a clearer understanding of how numerous features fluctuate
over time, thereby improving the interpretation of models to support data-driven decision-
making.

Scores provide a succinct, overarching measure of the model’s output, distilling the essence
of complex relationships into a single, interpretable metric. This approach is particularly ad-
vantageous when the primary goal is to gain an initial, high-level understanding of the model’s
behavior across multiple dimensions. While scores may not offer the nuanced details of feature-
specific effects, they serve as an effective starting point from a human-centric perspective for
further, in-depth analysis. Specifically, in this study case, using a unique score to represent the
overall contribution of features facilitates a more transparent and comprehensive understanding
of the role of many features over time.

5.1 INTRODUCTION

A prominent application of educational data mining is in exploring LSA. The advent of
ML as an alternative to traditional statistical models, which have been prevalent in policy-
oriented research since Coleman’s 1968 study (COLEMAN, 1968), marks a significant shift in
this domain.

The modernization of LSAs has notably improved data collection regarding educational
system performance (HERNÁNDEZ-TORRANO; COURTNEY, 2021). Beyond performance metrics,
LSAs gather information on the education system, including students’ socio-demographic and
school characteristics. A prime example is the Programme for International Student Assessment
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(PISA), which offers a global perspective on secondary education learning outcomes (Varkey

Foundation, 2018). Following international efforts, national LSAs have also played a significant
role in the evaluation and improvement of their educational systems (JOHANSSON, 2016).

The availability of vast, structured educational data has spurred researchers’ interest in
more flexible methods that overcome the limitations of traditional statistical techniques. These
limitations include constraints in handling a large number of variables without prior assump-
tions about the data (MARTÍNEZ-ABAD; GAMAZO; RODRÍGUEZ-CONDE, 2018; MASCI; JOHNES;

AGASISTI, 2018). These studies often utilize the supervised learning paradigm to predict LSA
achievement (output) based on contextual variables from LSA questionnaires (inputs). Charac-
terizing this input-output mapping enables the identification of sources for educational policies
and practices associated with academic achievement. This characterization has been expressed
either through the models themselves (GOMES; JELIHOVSCHI, 2020; FILHO; ADEODATO, 2019)
or through post-hoc explanation techniques (GABRIEL; SIGNOLET; WESTWELL, 2018; SCHILTZ

et al., 2018).
This chapter contributes to such research, aiming to identify and track key features related

to student performance. The primary goal is to demonstrate the applicability of ALE-based
metrics introduced in the previous chapter. Additionally, this chapter offers new contributions:
1) It defines a new model-agnostic process for reporting trends in the predictive contribution
of features in repeated cross-sectional data, and 2) it presents a case study within the context
of the Brazilian secondary education system, providing new insights for educational literature.

5.2 METHODOLOGY

To effectively report the trends in how contextual features predict LSA outcomes, the edu-
cational production function framework (BOWLES, 1970) and repeated cross-sectional analysis
(BUCK; ERMISCH; JENKINS, 1995) were utilized.

To effectively report the trends in how contextual features predict LSA outcomes, this chap-
ter utilizes the educational production function framework (BOWLES, 1970) and conducted a
repeated cross-sectional analysis (BUCK; ERMISCH; JENKINS, 1995). This analysis was guided
by the well-established Cross-Industry Standard Process for Data Mining (CRISP-DM) (CHAP-

MAN et al., 1999)and complemented by the Domain-Driven Data Mining (D3M) approach (CAO;

LIN; CHENGQI, 2005; CAO, 2009). This process involves multiple phases integral to the. Here,
domain knowledge plays a pivotal role throughout, ensuring that the developed models are not
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only statistically sound with a good predictive performance, but also actionable and relevant
in real-world applications.

Figure 20 – The case-study methodology

source: self-provided

Figure 20 outlines the case-study methodology. Specifically, consider a dataset 𝐷 =

[𝑑1, . . . , 𝑑𝑘] with contextual features 𝑋 = [𝑥1, . . . , 𝑥𝑆] ∈ R𝑆×𝐾 , where 𝐾 represents the
number of time steps (LSA waves), and 𝑆 is the number of features. The data preprocessing
step involves standardizing 𝐷 across 𝐾 to ensure uniform meaning and measurement for 𝑋.
In the modeling step, a compact set of predictive functions 𝐹 = [𝑓1, . . . , 𝑓𝑆], where each
𝑓(𝑋) = 𝑌 and 𝑌 = 0, 1 ∈ R𝐾 , is constructed and applied sequentially. Let 𝑥𝑖,𝑘 denote the
input feature 𝑖 at time 𝐾, and 𝑋𝑖,: ∈ R𝐾 be an independent time vector of feature 𝑖. The
most effective models in 𝐹 during the evaluation step, for each feature vector at time 𝐾

(𝑋:,𝑘 ∈ R𝑆), will yield a corresponding vector of scores in the explanation step. The reporting
step culminates in a score matrix 𝑀 of dimensions 𝑆 × 𝐾 × 𝐹 , offering valuable insights into
the dataset. Incorporating diverse model types in 𝐹 can enhance understanding of the data
generating process.

In general, the comparison of feature relevance from different models, even with the same
metric, may be inappropriate and requires caution (FISHER; RUDIN; DOMINICI, 2018). Important
variables for one well-performing model may be unimportant for another model. On the other
hand, this practice may help to make the analysis even more insightful if combined with domain
knowledge as defined in (FILHO; BRITO; ADEODATO, 2023a) as "Rashomon" set analysis.
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5.2.1 Background and data source

The National Secondary School Exam (ENEM) was conceived to assess the quality of
Brazilian secondary schools based on a student evaluation of the test. In 2009, it was reframed
to the Item Response Theory, thereby making it comparable over time. The ENEM was es-
tablished as the mechanism for student admission to higher education. Hence, the ENEM
has become a reliable, rich data source regarding the Brazilian secondary system. The ENEM
microdata contains student socio-economic-cultural information and their grades achieved in
the test. Together with the national school census (CE), which details the conditions of Brazil-
ian schools, from physical infrastructure to faculty information, they build a robust, extensive
database of Brazilian secondary education. Both databases were publicly available on the INEP
website1. The period covered is from 2009 to 2019. The dataset refers to over 40 million stu-
dents in thousands of schools across the country. However, only students in the last year of
public secondary education were considered.

As the school “ID” is the primary key in combining the ENEM and school census datasets,
all students who did not attend schools that were identified to be in the survey across years
were removed. This led to a large decrease of about 80% of the dataset. Additionally, the
following criteria defined the scope.

1. Students were not included if they were not in the last year of municipal or state public
secondary schools..

2. Students were not included if they did not follow a regular curriculum

3. As a double-check, students not in the most probable age range meeting criteria 1 and
2 (17-19 years old) were also eliminated.

4. Only schools with ten or more students were selected..

5. To ensure that all schools had at least a minimum infrastructure to function, schools
with no electric energy, sanitation, or piped water were excluded.

1 https://www.gov.br/inep/pt-br/acesso-a-informacao/dados-abertos/microdados
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5.3 PREPROCESSING

The CE and ENEM datasets have suffered several changes over time. As an illustration,
there were 293 variables in the ENEM questionnaire in 2009, while in the following year, 2010,
only 57. Added to this difference in the number of variables collected, there were also changes
related to the representation of the variables, such as 1) features were binary for some years
and categorized by quantity for others; 2) categories were represented by numbers in some
years and by strings in others; and 3) in the case of some variables, categorical features were
transformed to binary features.

It was important to standardize the data to overcome these issues and to allow the com-
parison of the findings over the years. First, only variables presented in all waves were used.
Next, the data were standardized in regard to content and meaning. A variable with less infor-
mation was used as a reference for mapping the others. For instance, if a variable was binary
in one year and multiple categorical in others, the binary version was adopted for all years.
The income features were normalized using a contemporary minimum wage. The variables
related to the use of technological devices were individually treated. For example, before 2019,
the available information on technology devices at school was measured by just one variable
(student’s computer), in 2019, the questions also asked about notebooks and tablets - these
were turned into a single indicator. Missing values for all variables were analyzed separately,
since there were not many of them, and were given the model value. Alternatively, the mean
of the non-missing values was used for those that did not have a clear explanation. The chosen
variable to indicate the outcomes was the arithmetic mean of the students’ test scores in all
areas of knowledge covered in the test. To reduce the influence of outliers, all numerical vari-
ables were normalized for each year separately, using the 𝛼-winsorized values of the distribution
(𝑎𝑙𝑝ℎ𝑎/2 = 0.025 at each tail) as their minimum and maximum.

5.3.1 New features

Some features frequently brought to the fore in discussions on the quality of secondary
Education (OCDE, 2013), especially those related to the faculty, are not initially present in
the databases. Nevertheless, some may be derived from the information available on datasets
and four new features were created: a) Faculty appropriate training (measuring the ratio of
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teachers with the appropriate background for the subject they teach)2 b) Number of jobs (the
average number of schools where teachers work) c) Faculty pedagogical training (those in the
faculty with pedagogical training), d) Faculty <DOMAIN> (four derived features indicating
the ratio of faculty teachers per each knowledge covered by ENEM), e) Faculty work overload
(the ratio of teachers per number of subjects covered in school), and f) Faculty education
(weighted average of teacher educational level, Ph.D. – higher weight, Bs. lower weight). The
source information for creating the variables was available in the CE datasets, which is able
to identify all classes and subjects assigned to teachers for each school together with their
backgrounds. To verify whether the teacher has the correct background in order to create
the Faculty appropriate training index, an auxiliary table released by INEP was used. Lastly,
forty-one (41) input features compound the final dataset, as listed in Appendix B, as long as
their descriptive statistics.

5.3.2 Evaluating comparability over time

A cross-validation scheme assessed whether data followed a uniform distribution over time
and were statistically comparable. This simple experiment evaluated the performance of the
model when data corresponding to one year was omitted from the estimation procedure.
Therefore, each year was used to compute the model performance while the others were used
to train. The average standard deviation of the AUC was 0.02 of the RF, indicating that the
datasets are stable over time, thereby enabling a good generalization.

5.3.3 Experimental setting

To facilitate comparison, the and RF algorithms were employed. The is simple and
additive, while the RF may account for interactions without assuming any prior distribution for
the data. It is expected that the combined analysis of explanations derived from these different
algorithms, if well-performed, may be insightful for knowledge extraction. The performance of
the models, as well as the feature contribution, was assessed by means of k-fold cross-validation
(k = 10) for each LSA data cycle. All preprocessing and data analysis were performed with
Python 3.6, using the scikit-learn library with default parameters.
2 For each subject the weight "1" was assigned if its teachers had graduation in the relevant area and "0.5"

if they did not. Also, the index was normalized by 13, the considered total of mandatory subjects in the
Brazilian educational secondary curriculum (see: http://basenacionalcomum.mec.gov.br/historico/)
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5.4 RESULTS

This section presents the results of Brazilian case study. With regard to evaluating the
models, Figure 21 presents the AUC_ROC and the maximum distance between Kolmogorov-
Smirnov curves( KS2_max)(KOLMOGOROV, 1933). Both metrics achieved good results, with
RF outperforming LR with a slight difference in both metrics over the whole period (1% for
AUC_ROC and 4% for KS2_Max in the period).

Figure 21 – AUC and KS2_max of logistic regression and random forest models

Source: self-provided

Figure 22 presents the feature contribution of both models by the maximum uncentered
ALE (MUA). This metric indicates the maximum and isolated influence given the trained data
of an underlying feature in predicting school achievement. Both models similarly highlight
the well-known determinants of school performance during the whole period, such as income

(per capita), race, mother’s education, father’s education, and students’age regarding size and
direction. This ratifies the most substantial influence of these features on school performance,
as has been well-established in the education literature (CALDAS; BANKSTON, 1997; COLEMAN,
1968; COLEMAN, 2019). It also confirms previous Brazilian studies (CARNOY; ROSA; SIMõES,
2022) that have used a somewhat different methodology. The per capita income significantly
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influences the likelihood of a school being categorized in the third quartile, with an approximate
factor of 0.6. This is roughly three times greater than the impact of parents’ education, which
holds an estimated factor close to 0.2, over the entire period under study. Race has also been
significantly related to achievement. While brown students are linked to the school in the lower
quartile, white students are linked to higher achievement. Moreover, the feature that indicates
the number of computers available to students (Student’s computer) seems to be a favorable
policy with an upward trend (darker points are far from line zero) in classifying schools in the
higher quartile, especially in the LR models.

5.4.1 Faculty features

By using the combined analysis, it becomes insightful to explore why certain variables were
highlighted in one model but not in another. A LR model, when devoid of explicit interactions,
essentially operates as an additive model, capable of emphasizing only the main linear effects of
a feature. This appears to be the case for Faculty education in Figure 22. Contrary to existing
educational studies (CALDAS; BANKSTON, 1997; DARLING-HAMMOND, 2000), Faculty education

lacks significant explanatory power in LR ( Figure 22) models. The Faculty education index,
which includes the proportion of teachers with Bs., Specialization, Master’s, and Ph.D. degrees,
has increased (from 0.13 in 2009 to 0.18 in 2019) but may not exert uniform impact across
all schools. This variation could stem from the differential impact of the index in conjunction
with other model features that the RF model could slightly capture. This variation might
result from inherent relationships or the diverse efforts of various states in enhancing teacher
education levels across the country (FILHO; BRITO; ADEODATO, 2023b). Although there is
no feature explicitly representing states, the non-linear effect captured by the RF could be
indicated through the proxy behavior of other features.

Yet in the faculty context, the similar positive size of Faculty work overload (equal to 1
when all teachers teach just one subject) and Faculty adequate training (equal to 1 when all
teachers have an appropriate background in the subjects they teach) in both models suggest
that teaching more than one subject is not a problem if they have the appropriate training. On
the other hand, the importance of the number of schools where teachers work (Faculty jobs)
decreases in both models, passing from positive to negative effects. This behavior conforms
to earlier qualitative results (BARBOSA, 2013; SOUZA; OLIVEIRA; NASCIMENTO, 2020).
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Figure 22 – Feature effects size measured by the MUA= from LR (a) and RF (b) in classifying Brazilian
secondary schools using the ENEM score as a performance metric from 2009 to 2019

Source: self-provided
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5.4.2 Closer examination of the faculty features

One relevant way to better understand the specific scenarios is to separate some of the
features to observe them more deeply. For example, in Figure 22, the RF model highlighted
some variance among the different faculty areas. These effects seem to derive from a nonlin-
ear relationship with data since the LR model could not find them. Therefore, an additional
line plot (Figure 23) may help to figure out how these features relate. In addition, Faculty

appropriate training and Faculty work overload might enhance the analysis even more. As ex-
pected, behavior among features related to faculty domains is uneven since they are frequency
encoded. Thus, a linear regression was embedded into the plot to obtain a better perception of
their trends. The importance of Natural Science faculty and Languages faculty has increased
over time, while the Math faculty has taken the opposite direction together with the Humani-

ties Faculty. The indexes Faculty appropriate training and Faculty work overload demonstrate
positive importance over the whole period, however with different behaviors. The former is
stable with greater importance and seems to be strongly correlated with the Languages faculty

and Natural science faculty. The importance of the latter has been decreasing, as in the case
of the Math faculty and Humanities faculty.

Figure 23 – Specific feature effects size measured by MUA related to the faculty.

Source: self-provided

Figure 24 reveals the behavior detailing the Pearson’s coefficients among the importance of
these features. These findings suggest that the importance of the Math faculty and Humanities
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Faculty (History, Geography, Philosophy, and Sociology) could be decreasing in some schools
due to a heavy workload. Although this is difficult to verify in the training data since it is
derived from an unknown nonlinear relationship, the data illustrates that 30% of humanities
teachers teach more than one discipline. Moreover, 90% of the schools in the final dataset do
not report a physics teacher during the period. Thus, it is probable that a math teacher might
have to cover this subject, as already reported in (SANTOS; CURI, 2012). On the other hand,
Foreign Languages, Arts, and Physical Education (subjects from the language domain) have
the lowest indexes for the Faculty adequate training (0.5, 0.6, and 0.7 respectively, against an
average of 0.8 for the others), and any endeavor to boost it could be contributing to the slight
increase in the importance of Faculty adequate training over time. However, these results
require caution and more studies with domain expert validation.

Figure 24 – Matrix correlation of MUA to the specific set of features related to the faculty.

Source: self-provided

From another perspective, Figure 25 explains how different combinations of features have
influenced school performance during the entire period. It demonstrates the influence of non-
actionable features (race and gender), school features (related to infrastructure), faculty fea-
tures, and student features (parents’ education and income) in the period by using a box plot.
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The metric used is the UAS (on average) from RF models.
The group of student features has more potential to improve educational performance,

followed by the non-actionable features, which have a higher potential for damage. In general,
the school features have a low influence, while the teacher features have a limited, although
relevant, importance in improving the quality of schools.

Figure 25 – Feature effects size measured by UAS (on average) by group regardless of the time.

Source: self-provided

5.5 SUMMARY

This chapter illustrated the significance of the proposed metrics in a real-world application:
Identify and track the relevance of features in secondary educational outcomes in the Brazilian
public educational system. The application was defined as a repeated cross-sectional analysis,
which required a definition of a new process since, to our knowledge, there are no other
examples of this trend analysis using supervised learning.

The findings of this study may also provide valuable insights for researchers interested in
Brazilian secondary education. While it is well-established in the literature that factors such as
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income, age, race, and parent’s education have a strong impact on educational achievement,
it is still an open question as to how these factors evolve and influence achievement over
the period of study. Moreover, student computers at school, which presents mixed findings
regarding its effects in the literature, have been highlighted in this chapter as one of the most
effective policies regarding variables related to schools. Additionally, the knowledge extraction
process leverages hypotheses that have either only been discussed qualitatively or not at all.
For example, the study has suggested that improving Faculty education, Faculty appropriate

training (especially for language teachers), and addressing Faculty workload could be important
for improving secondary school achievement. Nevertheless, this investigation is not able to
provide causal conclusions, and further research by domain experts is needed to confirm the
findings.
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6 CONCLUSION

This chapter presents the concluding remarks of this thesis, emphasizing its contributions
to the fields of XAI and supervised learning, clearly illustrated within the context of EDM.
Moreover, this chapter delineated the inherent limitations encountered during the research
and discussed a few themes that future works should focus on.

6.1 CONCLUDING REMARKS

The application of ML in data analysis represents a significant research opportunity. The
recent growth in data collection enables the use of ML techniques that are versatile enough to
capture intricate data relationships. However, using ML for this purpose presents challenges,
as these techniques may lack transparency in how they adjust to the data to make predictions.
Developing model explanations can help overcome this issue, enhancing knowledge extraction
from complex data and supporting more informed, strategic data-driven decisions.

The objective of this thesis is to evaluate and propose methods to derive global explanations
in the context of supervised ML. Specifically, it focuses on providing a more unbiased and
isolated understanding of feature roles in predictive models.

With advancements in ML and XAI, many researchers increasingly use these tools to ex-
tract insights from data. In the educational domain, this kind of research is widely employed to
identify significant predictor variables aiming to foster the educational ecosystem and advance
the field of EDM. However, a comprehensive literature review reveals that conventional XAI
methods used in EDM have interpretability limitations when applied to dependent data, fre-
quent situation in educational contexts, which is a key motivation for using ML models. These
methods often rely on assumptions that are frequently unmet, limiting the insights gained
from the data.

The problem arises from the tendency of these methods to "extrapolate" existing data
relationships when computing the contribution of variables within a predictive function. Ad-
ditionally, existing techniques often do not align with the primary objectives of educational
practitioners when analyzing effect sizes in statistical analysis. For instance, the score-based
explanations often focus on a variable’s impact on model performance rather than on its
directly contribution to the model’s predictions.
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The ALE technique have been proposed as a prominent XAI technique that can minimize
the extrapolation problem when computing feature effects. However, there is a limited assess-
ment of these ALE capabilities when compared to other widely used explanation techniques.
Additionally, ALE has only been defined for visualizing feature effects with limited discussion
of use of ALE to derive score-based explanations.

Witin this context, this thesis goes to this problem formulating two main research questions:
RQ1 - How do widely used feature effects techniques compare with ALE in accurately

identifying true feature effects considering different inter-data dependencies?
RQ2 - How effectively can score-based explanations derived from the ALE framework report

individual and isolated attribution of the features in terms of their magnitude and direction
compared to existing methods?

In response to RQ1, Chapter 3 benchmarked the most used explainable techniques on
EDM and ALE, a recent contribution of XAI that employes some constraints to avoid data
extrapolation. The benchmarking indentify ALE as the most suitable technique to report
features effects when features are correlated. Building on this finding, Chapter 4 answer RQ2
by proposing a set of ALE-based metrics to enhance the clarity and utility of the supervised
model explanations focused on overall variables effect size. Chapter 5 then demonstrated the
practical application of these metrics in a real-world educational context.

6.1.1 Summary of contributions

6.1.1.1 A benchmarking of feature effects techniques

Answering RQ1 and aiming to provide empirical evidence regarding the robustness of
ALE as compared to baseline methods in dependent data, a benchmarking of the feature
effect technique was established. To the best of our knowledge, this is the first quantitative
comparison of the accuracy of PD plots and ALE against a ground truth. Also, other techniques
widely used in literature ME and SHAP were included, enhancing the benchmarking for a
broader comparison. A new comparison metric, the ABX, was introduced to measure the area
between the true and explained features.

The ALE outperformed in accurately recovering the feature effects in all scenarios under
dependent data. Also, the experiments highlight the potential risk of explaining highly flexible
algorithms, such as neural networks, using techniques that extrapolate the manifold even on
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independent datasets. This phenomenon is already known and has also been simulated in this
thesis (Chapter 4, Figure 16), but, to our knowledge, it has not yet been identified in empir-
ical experimentation. These results may aid the XAI field, which can use the benchmarking
framework as well for applied researchers, especially on EDM, that could identify the pitfalls
of the most currently used XAI techniques to derive insights about the data.

6.1.1.2 New scores of feature effects size

Motivated by the robustness of ALE and the limitations of existing scores of feature im-
portance, this contribution introduces four new model-agnostic measures of variable effect
size based on ALE. These measures are designed for enhanced interpretability of feature roles
in predictions, especially in scenarios involving dependent data. Three of these metrics offer
distinct single-explanation perspectives, elucidating the extent and direction of feature effects
in relation to the target variables. Each metric presents a unique interpretation, adding depth
to the understanding of feature influence. The fourth metric offers a normalized ranking of
feature impact, facilitating their comparison across different datasets and models.

In evaluations, these features exhibit similar or superior performance compared to existing
metrics in the XAI literature, proving effective in identifying key variables in both synthetic
and real datasets. The metrics can be employed either in cross-validation settings for more
robust estimates or bootstrap, allowing yield confident intervals to account for variability and
uncertainty inherent to the data and the model.

Calculating scores using ALE introduces specific limitations inherent to model-agnostic
methods. The generalizability of the results largely depends on how representative the sample
is of the population. Furthermore, an important aspect of ALE is its computation by segments
rather than analyzing the entire dataset at once. As a result, it is necessary to consider the
actual data sample used along with how each provided metric is computed for an appropriate
interpretation and generalization of the explanation outputs. Despite this limitation, the local
nature of ALE has partial benefits for the purpose of the metrics. The ALE ensures that
explanations remain faithful to the relationships in the data. Additionally, ALE enables the
computation of the isolated variable effects and their interactions within this interval.

However, relying solely on one score to represent the entire distribution produced by the
ALE function may be problematic and conceal important aspects of the shape of variable
effects, especially in cases where they are noisy or have been calculated based on a limited
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number of data points. Following the ALE limitation, the metrics cannot also be computed for
categorical variables without order relation. Finally, although ALE permits the computation of
interaction effects, which have also been defined in the context of scores in this thesis, the
empirical experimentation focused solely on assessing them by computing the main effects of
feature size.

6.1.1.3 A empirical trend analysis of Brazilian secondary schools determinants

To demonstrate the usefulness and the meaningful of the proposed scores in the exploration
of educational data, an empirical case study was presented. The real scenario seeks to identify
and track the determinants of Brazilian public education from 2009 to 2019. To the best of
our knowledge, we are the first to explore the impact of contextual features on educational
outcomes through supervised learning over time. Previous studies have handled this problem
only at a single point in time. While (FRANCO et al., 2020) used multiple years of ENEM data
in Brazil to conduct similar research, their work did not aim to make results comparable, which
does not allow for tracking the feature effects size over time.

Moreover, the defined process is also a contribution of this thesis to researchers interested
in conducting repeated cross-sectional analysis using supervised learning. The process is flexible
enough to be applied to any domain.

The findings of this case study also provided valuable new insights for researchers inter-
ested in Brazilian secondary education. Lastly, it should be noted that the preprocessed and
standardized data used in this analysis is an additional contribution of this thesis and is avail-
able (FILHO, 2022) for other researchers interested in the quantitative analysis of Brazilian
secondary education.

6.2 FUTURE WORKS

As the use of ML increases, so does the demand for interpretability, making XAI a rapidly
growing field with numerous new interpretation methods being introduced. In this thesis, rather
than developing a new method, the focus is on applying an established method, ALE, to the
context of reporting global feature contributions in the educational domain. This approach
aims to deepen and extend our understanding of its potential to enhance the interpretability
of educational models.
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The contribution of this thesis can be improved and further explored in future works. For
instance, the benchmarking process of Chapter 3 could be expanded to include more algorithms
as well as a wider range of data scenarios, including the presence of outliers and missing values.
Similarly, these variations could be applied to the evaluation of the new metrics of Chapter 4.
Specifically, while the potential of these metrics as a feature selection method was presented,
detailed scrutiny was beyond the scope of this thesis. Consequently, there remains a need for
empirical evidence to establish their effectiveness fully in this direction.

Moreover, from a broader perspective, by concentrating on using XAI in EDM to obtain
global explanations, I believe that investigating the following related topics could substantially
advance the field.

6.2.1 True to the model, true to the data, and true to the context

A central challenge in explainable methods lies in balancing fidelity to the model and the
data. This tension forms a core part of this thesis’s motivation. Overemphasis on the model
can lead to unreliable explanations due to neglect of data relationships. Conversely, focusing
solely on data may preclude leveraging complex functions that fit the data ALE have emerged
as a promising solution to this dilemma, especially in the context of supervised learning for
knowledge extraction from data. However, we argue there is another perspective that new XAI
techniques must be aware of in education: the context perspective.

Contextual understanding involves comprehending how features semantically affect obser-
vations. While ALE and other global techniques effectively identify varying feature effects
across their value range, there is limited exploration in contextualizing which observations cor-
respond to each feature value. A potential breakthrough could be a technique that uncovers
heterogeneous feature effects, pinpointing relevant groups based on their distinct responses to
a feature within the model. This approach aligns with the existing literature on model fair-
ness in EDM, which aims to identify the poor performance of ML models in sensitive groups.
Viewing it through the lens of XAI at the feature level could significantly enhance the utility
of EDM in providing valuable insights from educational data.
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6.2.2 Data dependence is the real world

Historically, traditional linear models have been the most widely used method for extracting
knowledge from data in the education domain. When specifying these models, the interpreta-
tion of coefficients is seen as the effect of a variable on the dependent variable. This perspective
has guided researchers in supervised learning, with the primary aim of harnessing ML’s pow-
erful pattern recognition capabilities while maintaining a level of interpretability that tries to
mimic traditional statistical models. Within this context, this thesis endeavors to introduce
alternatives that better address the complexity of data dependence on educational datasets,
dealing with the trade-off between being true to the data and true to the model.

However, a different approach to dealing with data dependence, treating it as an inherent
part of the ML paradigm and also from the real world, can extend the meaningfulness of
XAI in EDM. ML is inherently associative, and this property can be leveraged to gain deeper
insights into the data-generating process. Instead of focusing solely on isolating the effects
of individual features or their interactions, ML allows researchers to explore the network of
relationships within the data. This approach recognizes the complexity and interconnectedness
of educational environments as part of the problem. It enables a more holistic view, shifting the
focus from measuring isolated feature effects to understanding the network of relationships
within the data. For example, this could involve exploring how and when different aspects
of the school environment interact with student backgrounds or how policy changes ripple
through various layers of the education system.

6.2.3 Beyond a one-size-fits-all

This thesis has established the ALE as a robust XAI technique for reporting global feature
contributions, particularly in the context of dependent data. While the potential of ALE is es-
tablished, and the ALE framework has been further explored in this study in order to enhance
data interpretability, it is important to recognize that XAI in and ML is inherently exploratory.
No single method uniformly suits all scenarios. The efficacy of combining techniques, both for
complementary insights and ensemble approaches, presents a significant area for exploration.
This concept has been demonstrated in (FISHER; RUDIN; DOMINICI, 2018), where multiple mod-
els were utilized to generate more reliable scores. Furthermore, the adoption of frameworks that
integrate various techniques aiming for more model-specific explanations has shown promise,



113

as discussed in (LI et al., 2019). We believe that the synergistic application of multiple XAI tech-
niques and paradigms, particularly aimed at enhancing the quality of insights in educational
contexts, represents a promising direction for future research.
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