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Abstract

It is presented a new model of population growth and, in particular, the classical

Sollow’s economic growth model is analyzed when employed this new model for population

growth. Furthermore, it is introduced the technology in Campello’s macroeconomic model

of optimal economic growth focusing on the energy sector. For this tasks, dynamic system

tools – in special, the maximum principle – are employed. The results of the growth

models with those modifications in the population dynamics maintain the classical results

of the Sollow’s model in the sense that they assert the existence of equilibrium points.

The models of economic growth focusing of energy resources yield new results concerning

price of energy sources, the dynamic of the shadow prices of technology and population,

etc.

Keywords: Economic Growth, Population Growth, Technology, Energy Sources.
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Resumo

Apresenta-se um novo modelo de crescimento populacional e, em particular, o modelo

clássico de crescimento econômico de Sollow é analisado quando empregado este novo

modelo. Além disto, introduz-se a tecnologia no modelo macroeconômico de crescimento

econômico de Campello focando no setor energético. Para tanto, ferramentas de sistemas

dinâmicos – em especial, o princípio do máximo – são aplicadas. Os resultados dos modelos

de crescimento com a modificação na dinâmica populacional mantém os resultados clássi-

cos do modelo de Sollow no sentido em que afirmam a existência de pontos de equilíbrio.

Os modelos de crescimento focando no setor energético produziram novos resultados com

respeito ao preço das fontes energéticas, a dinâmica do preço sombra da tecnologia e da

população, etc.

Palavras-chave: Crescimento Econômico, Crescimento Populacional, Tecnologia, Fontes

Energéticas.

iv



List of Figures

1 Energy Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 f(k) − λk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Production function f , g and λk. . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 f(k) − λk and g(k) − λk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Equilibrium points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



Contents

0 Introduction 1

0.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1.1 General Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.2 Technology, economics, politics . . . . . . . . . . . . . . . . . . . . . . . . 1

0.3 Energy and economic growth . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.4 Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Optimal Economic Growth 8

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 The classical economic growth model . . . . . . . . . . . . . . . . . . . . . 12

1.3 A proposed model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Economic growth focusing on energy sources 22

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Optimal control Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Technological dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Resource consumption dynamics . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Production of water and energy . . . . . . . . . . . . . . . . . . . . 27

2.2.4 The investment identity . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.5 The labor force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.6 The income identity . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vi



2.2.7 The energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.8 Objective functional . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 The zero Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 The zero model’s results . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 The first Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 The first model’s results . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 The second model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.1 Second model’s results . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Concluding Remarks and Suggestions 49

3.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References 52

A Appendix 54

A.1 Optimal control problem 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.2 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.3 Control forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B Appendix 65

B.1 Optimal control problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.2 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.3 Control forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

C Appendix 77

C.1 Optimal control problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C.2 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

C.3 Control forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D Appendix 91

D.1 Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vii



E Appendix 5 94

E.1 Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

viii



ix



Chapter 0 Introduction

0 Introduction

0.1 Objectives

0.1.1 General Objectives

1. To present a new model of population growth;

2. To introduce the technology in Campello’s macroeconomic model1 of optimal eco-

nomic growth focusing on the energy sector.

0.1.2 Specific Objectives

1. to analyze the classical Sollow’s economic growth model (Solow, 1956) when em-

ployed this new model for population growth;

2. To obtain results that give ideas for policies for the entire energy market.

0.2 Technology, economics, politics

“. . . eu pensava que os problemas tecnológicos pudessem ser resolvidos com

engenharia apenas.”2

F. M. Campello de Souza.

In fact, it was a wrong idea from the young Campello around 1966. Indeed, technology,

economics and politics are undoubtedly intertwined entities.

Technology projects arise as answer for provided needs of a society. However, why

one chooses this or that technological approach? It is definitely not a simple questions

and many aspects – such as, for instance, cultural features – may influence the decision

making. Although the author realize the importance of this discussion, this work is not

1This model is presented in “Introdução do Aquecimento Solar na Matriz Energética”, Recife, 1997,
CNPq Resource Project, not published.

2“. . . I thought that the technological problems could be solved by using just engineering.”
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Chapter 0 Introduction

intended to go deeper in that subject. As discussed in (Strandberg, 2002), technology is,

at first, a political decision – which is not made necessarily by politicians per se – among

all available proposed projects. In contrast, one can think that this decision should be

made by using decision theory!

Nevertheless, after the choice, it is certain that one must pay for the selected project,

because

“Ideas can emerge from an individual, but capital is needed to bring the

idea to fruition and production.”

Dr. Gene Strandberg (Strandberg, 2002)

It is also important to point out that some researches do not result in an immediate appli-

cation what characterizes technological investment as cost-intensive. According Strand-

berg (Strandberg, 2002), venture capital is essential to finance technology research and

development what is not the Brazilian case. Roughly speaking, there is no venture capital

in Brazilian economy. Furthermore, tax abatements, roads, and other incentives by local

and state authorities play a fundamental role for the technological sector development.

Today, universities, large companies and governmental facilities are the entities that

produce much of the new technology in the United States of America. Governmental and

private company funds usually finance university research on account of the universities’

highly competent human capital and available laboratories. Emerging or established

technology companies also have used the human capital of American universities with the

advantages of no costs in insurance and vacation time, equipping laboratories, etc. On

other hand, the universities also gain both from indirect funds and prestige. In fact, all

parts involved seem to win by reason of this cooperation.

It is obvious, since the humans are the “atoms” of any society, that most important

capital investment is the human capital one.

“Part of a nation’s wealth is in dollars, but more of its wealth is in human

knowledge and application.”

Dr. Gene Strandberg (Strandberg, 2002)

2



Chapter 0 Introduction

Brazil spend a lot of money with the universities, but nevertheless it is common that some

of the great Brazilian’s minds leave the country and never return. Many people have been

worried with our natural resources explored by other nations over the history, while an

important Brazilian’s loss have been in human capital over the recent years.

Human capital investment means both education in general and specifical knowledge

– such as engineering, chemistry, physic, philosophy, mathematics, economics, etc. The

principle is simple: to produce a collective improvement, one must enhance the individuals

and then these better individuals together will compound a much better society. As said

by Aristotle

“the whole is more than the sum of its parts”

Aristotle

In particular, human capital evolution have provided clear effects in the technological

sector in both developed countries and the developing countries such as China, Korea,

Singapore, etc.

Brazil must as soon as possible improve his politics concerning the research and de-

velopment. One can perceive that the most advanced countries are expanding politically,

economically, technologically and hence leaving the developing countries more depen-

dent upon their technologies. As result, Brazil remains without global effectiveness and

changed from Portugal’s colony to be colony of this technologically advanced countries.

In the scientific view, the inclusion of technology into some macroeconomic models

can explain why the capital per worker, or yield per worker can rise over time. There-

fore, although there is no consensus concerning the way to insert technology in economic

models, it is fundamental either to apply or suggest some reasonable manner to model

the technological role.

0.3 Energy and economic growth

According Stamford da Silva (Stamford da Silva, 1999), the industrial revolution

brought new habits concerning the consumption behavior of modern societies, in partic-

ular, the energy consumption behavior. Today, any economy requires energy for several

3



Chapter 0 Introduction

ends such as to manufacture goods, provide transportation, run electronic devices and

others. Since the means of production changed from animal power to steam power and

after to the internal combustion engines and electricity, i.e., the manual work gave place

to the machine, one cannot think about economic growth without take account the energy

capacities because as well as a man needs food, the machine needs energy. Indeed, the

way in which a nation manage its energy sector – in other words, the way how a nation

feeds its machine – is a important feature of its economy.

Stamford da Silva also asserts that it is common to associate economic growth with

increase of energy consumption. It is important to note that an increase on the energy

consumption do not necessarily implies on development, in special for the developed coun-

tries. Some aspects must be considered to understand the interaction between economic

growth and energy consumption (Fideles da Silva, 1997), namely:

• novel technological arrangements can allow more efficiency in the energy system, in

special in the final consumption.

• politics for conservation of energy, in special, the electric energy provide reduction

in consumption and attenuate the need of future amplification of energy production.

• Furthermore, the developed countries can be benefited from transporting its energy-

intensive industrial park to sub-developed countries, etc.

According Edmonds and Reilly (Edmonds & Reilly, 1985), the main influences in the

use of energy are:

• demography;

• productivity of work;

• yield;

• productivity of work;

• energy productivity;

• uncertainty.

4



Chapter 0 Introduction

“A incerteza é a marca indelével do universo”3

F. M. Campello de Souza.

For some phenomena, the uncertainty can be neglected without significant damage, how-

ever it is not the case for the use of energy. The demography influences the energy demand

as well by the number of individuals that consomme energy as by the individuals that use

energy producing goods and for its transport. In such way, the residential and commercial

sector, the transport and industrial sector are influenced by the population growth. The

work productivity is defined as

WP =
GDP

L

where GDP is the gross domestic product and L is the labor force, i.e, the gross domestic

product per worker. It is an index of yield level. Therefore, high WP rate are often

associated to high growth rate of energy use. Empiric studies have shown that the yield

influences in a non-proportional way due the heterogeneity of the economics. The yield-

energy elasticity is employed to measure the change per cent of the of the used percentage

of yield growth. The energy price influences the level and composition, and this influence

is measured by using the elasticity of the energy price. Since an energy price augment

lead to reduction in energy use, this elasticity should be negative. The term energy

productivity refers to the production level obtained per energy employed. Technological

and managemental changes may provide variations in this measure.

The rate energy consumption by gross domestic product which is called energy inten-

sity (EI),

EI =
GDP

E

where E denotes energy consumption, is the yardstick for the interaction between eco-

nomic growth and energy consumption. The graphic 1 shows the behavior of the energy

intensities over time. Notice that each energy intensity grows until reach a maximum

point and then decline. The energy intensities of the developed countries are already

decreasing probably due the politics regarding energy conservation and the technological

3The uncertainty is the indestructible feature of the universe
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Chapter 0 Introduction

advances, while the developing countries’ IE’s are still growing even. However, the tech-

nological transfers among the globalized world might reduce the way for the maximum

point for the developing countries.

Figure 1: Energy Intensity

The primary sources and the way how they are employed constitutes compound an

energy system. The choice of an energy system, as any technological one, is naturally

complex. In Brazil, after the oil crisis, the hydroelectric generation was intensified to

become the main source of energy due to the adequate nature conditions.

The energetic balance is made by the Balanço Energético Nacional (BEN) from the

Ministério das Minas e Energia. In Brazil, over the years, the hydroelectric power remains

as the most important primary energy source in both production and consumption while

the oil remain as the source among the non-renewable ones. In 2006, Brazil still produces

and consumes more electricity than oil, and the non-conventional sources have contributed

few in the production and consumption of energy yet4.

One must be worried because the hydroelectric energy is bounded since hydro-electric

plants cannot either be construct in anywhere and produce any level of power. Therefore,

as asserted by Endress and Roumasset (Endress & Roumasset, 1994), when the limit be

reached, a substitute should be employed to keep the growth.

4http://ben.epe.gov.br/BEN2006/
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0.4 Paradigm

“All models are wrong, but some are useful.”

George Box

According Campello de Souza (Campello de Souza, 2002), in general, a system is

a connection of united objects through either an interaction or interdependence. For

a system engineer, a system is a device, a process or a scheme, that can behave in a

predictable manner. The physic hypothesis and analogies which represent the “real world”,

whatever it means, must allow an immediate view or lead suitable structures and schemes

for investigations.

That structures and schemes which either facilitate the discussions and logic con-

structions or allow that experiment are made to determine more accurately the nature of

phenomenon are said to be models. Therefore, a model is an construct that corresponds

to an investigated object or some feature of it; it represents essential characteristics of a

process or system and can provide information about the system in an useful way. The

models discussed in the this research will follow the Pierce’s scientific thought presented

in (Pierce, 2000).

0.5 Organization

The next chapter shall treat some aspects concerning optimal economic growth. The

chapter 1 contains a brief review about the classical Sollow’s model and also presents a

modification in that model regarding the population dynamics. The chapter 2 presents

economic growth models focusing on energy resources. The models are variations of

the work Stamford da Silva (Stamford da Silva, 1999) which is, by its side, based on

Campello’s model. At last, the chapter three contains the conclusions and suggestions.

7



Chapter 1 Optimal Economic Growth

1 Optimal Economic Growth

1.1 Introduction

Economic growth, the rate at which national income is growing, is the most fundamen-

tal indicator of an economy’s health. It is measured, usually, by the annual percentage

rate change in a nation’s gross domestic product (GDP ), which is simply the economy’s

total income accruing from output; the market value of all goods and services produced

within an economic area over a given period of time. Other measures of economic growth

include gross national product (GNP ), which measures the total output of a country’s

citizens regardless of where they are living and working. In order to give a more easily

comparable picture of a countries’ economic health, one uses the per capita GDP , usu-

ally measured in dollars (the final sales of goods and services in a country per person,

adjusted for inflation). However GDP is the preferred measure for growth, as it indicates

the amount of economic activity within a nation’s borders.

Economic growth is to be understood as a sustained rise in a nation’s production of

goods and services. It results from investments in human and physical capital, research

and development, technological change, and improved institutional arrangements and

incentives. When individuals, regions, and nations specialize in what they can produce at

the lowest cost and then trade with others, both production and consumption increase.

Among the signs of economic growth, which largely affects the material well-being of

a country, one can mention, for instance, eager buyers crowding checkout lanes, cranes

erecting buildings or help-wanted signs filling store windows. When the economy expands,

jobs are created and goods and services to meet people’s needs increase. It is important,

so, to analyze and understand the causes of growth and what countries can do to maintain

or enhance it.

Some inherent traits are responsible for some differences in economic growth. It is

well known that throughout history, some economies have expanded faster than others.

Amongst such inherent factors are climate and geography. People living near navigation

8



Chapter 1 Optimal Economic Growth

routes or in temperate climates, at times, have fared better than people living far away

from coastlines or in frigid climates. One can think also that culture plays a role in

growth.

Notwithstanding these inherent factors, government and central bank policies also play

a role. Policies affecting access to technology, sound money and banking practices, and

prudent taxing and spending can improve or stifle economic growth.

In general terms, the expression “economic development” is thought of as an overall

improvement in the quality of life in a given country. This includes, typically, a better

health care, a cleaner environment and more freedom in terms of choosing work and leisure

activities. In a period of economic growth, the overall wealth of a country increases, as

do the variety and abundance of goods and services.

The phenomenon is complex, but some factors that influence economic growth have

been identified. These include government, international trade and finance, technology

and investment, political, social and geographical conditions, and money and banking.

The terms “sustainable” and “sustainability” appeared in the 1980s and made people

increasingly aware of the growing global problems of overpopulation, drought, famine,

and environmental degradation that had been the subject of Limits to Growth in the

early 1970s, (Meadows et al., 1972). The enormous problems and suffering that are

being experienced with growing intensity every day throughout the underdeveloped world

became more evident. A new era of economic growth started — growth that is forceful

and at the same time socially and environmentally sustainable. Forceful, here, is in the

sense of rapid, and there appears to be a conflict between forceful and sustainable. That

is not the case. Sustainable development can be pursued if population size and growth

are in harmony with the changing productive potential of the ecosystem.

Economies grow because there are more people, more machines, or more natural re-

sources. They also grow because they find better ways to put things together, i.e., tech-

nology. The technological level, in general, advances over time. The man improves upon

or replace the known technologies by using research and development activities and for

this aim he employs all kinds of knowledge, namely, physics, chemistry, engineering, math-

ematical, etc.

9
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One may mention lasers, holography, virtual reality, genomics, telecommunications,

telematics, optics, photonics, computational biology, integration technology, biotechnol-

ogy, nanotechnology, wireless, materials science, global positioning systems, robotics, cog-

nitive science, etc.

In a free market democratic regime, three conditions are important in order for an

economy to be able to grow:

1. Establishing and protecting individual property rights;

2. Entrepeneurialism, markets, and public policies that offer economic incentives;

3. Demographics.

On the other hand, economic development means economic growth accompanied by

some other factors that — ensure a sustainable growth and — enhance level of overall

economic welfare resulting from the growth. Some of such factors that should accompany

growth include appropriate changes in output distribution (in favour of the poorer segment

of the population) and economic structure (e.g., away from primary production).

However, it is not intended here to discuss the inadequacy of level of per capita income

as an economic development indicator. The main essence of economic development is

economic welfare. But, for a number of reasons, the level of per capita income is not

a perfect measure of the level of development, just as its growth too is not a perfect

indicator of rate of economic development — thus, they are both imperfect yardsticks for

comparing (both the level and growth of) development (and, hence, economic welfare)

over time and across countries.

The sources of development are:

• Natural resources; some countries benefit immensely, and other countries are stag-

nant despite plentiful resources. Others have none, yet enjoy high income. It can be

said, thus, that natural resources are neither necessary nor sufficient for economic

development;

• Population; population growth increases GDP , but may decrease GDP per capita

because of required investments in human and physical capital. What happens is

that as development occurs, people choose to have smaller families.

10



Chapter 1 Optimal Economic Growth

• Investment;

• Technological Innovation;

• Economic Policy (monetary policy, fiscal policy, regulation, government ownership,

international trade and finance.

Indeed, there exists an intricate interplay between factors like labor force, technol-

ogy, institutional arrangements, and capital that makes economic models often a great

challenge.

The Reverend Thomas Malthus, on his “An Essay on the Principle of Population”

modeled population growth as an exponential growth model. In classical mathematical

models of economic growth, it is usually assumed that the labor force, L has an indepen-

dent growth equation as employed by Malthus:

dL

dt
= βL.

Malthus’s population model predicts population growth without bound although it is

obvious that the human population cannot grow at a constant rate indefinitely. What

is often observed instead is that as the population grows, some members interfere with

each other in competition for some critical resource. That competition diminishes the

growth rate, until the population ceases to grow. It seems reasonable that a good pop-

ulation model must therefore reproduce this behavior. The logistic growth model, that

was proposed by Pierre Francois Verhulst in 1838, is just such a model.

Letting L represent population size and t represent time, the logistic growth model is

given by:

dL

dt
= βL

[

1 −
L

B

]

, (1.1.1)

where the parameter β defines the growth rate and B is the carrying capacity.

A modified labor population dynamics which introduces a natural dependence on the

yield of the economy is proposed here. On account of this new approach, a larger level of

golden rule capital per worker will be obtained .

11



Chapter 1 Optimal Economic Growth

1.2 The classical economic growth model

The simple one sector model, as presented, for instance, in (Intriligator, 1971), will

be discussed in this section. In that model, the economy produces a single homogeneous

good which represents Gross Domestic Product (GDP). The variables are the following:

• K is the capital;

• L is the labor force;

• Y is the economy output (yield, income);

• C is the consumption;

• I is the investment;

• F is the production function.

The basic hypothesis are:

The income identity:

Y = I + C, (1.2.1)

which states that Gross National Product (GNP) can be either consumed or invested.

The output (GNP), is represented by an aggregated production function which de-

pends on capital and labor:

Y = F (K,L) (1.2.2)

That production function is assumed invariant over time and twice differentiable, the

Inada conditions, (Intriligator, 1971), where for all positive factor inputs:

F (K,L) > 0;
∂F

∂K
(K,L) > 0;

∂F

∂L
(K,L) > 0;

∂2F

∂K2
(K,L) < 0;

∂2F

∂L2
(K,L) < 0; for all K,L > 0 (1.2.3)

12



Chapter 1 Optimal Economic Growth

and, taking limits:

lim
K→0

∂F

∂K
(K,L) = ∞; lim

L→0

∂F

∂L
(K,L) = ∞; lim

K→∞

∂F

∂K
(K,L) = 0; lim

L→∞

∂F

∂L
(K,L) = 0;

(1.2.4)

The production function, as an assumption, exhibits constant returns of scale:

F (αK,αL) = αF (K,L), (1.2.5)

where α is a positive real number1.

The investment, I, is used both to accumulate capital and to recover the depreciation

of capital:

dK

dt
+ µK = I, (1.2.6)

where µ is the capital depreciation rate. Another way to representing the dynamic of

capital is by

dK

dt
+ µK = sF (K,L) (1.2.7)

where sF (K,L) = I, i.e., the investment represents a fraction of the whole yield.

The equation for the labor force growth is (exponential growth):

dL

dt
= βL. (1.2.8)

Considering the variables per capita and from the assumption of the constant returns

of scale of the production function, one arrives at the following equation called the fun-

damental differential equation of neoclassical economic growth:

dk

dt
= −(µ + β)k + f(k) − c, (1.2.9)

1In other words, it is not assumed that “the whole is more than the sum of its parts”
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Chapter 1 Optimal Economic Growth

or

dk

dt
= −(µ + β)k + sf(k), (1.2.10)

where the small cap letters stand for their capital letters divided by the labor force L.

Equation 1.2.9 has, for no consumption per capita (c = 0), two equilibrium points,

namely, k = 0 and k = k̃.

k

f(k) − λk

k̂ k̃

Figure 1.1: f(k) − λk

Augmenting the level of consumption per capita, one can reach a level which is known

as the golden rule level of capital per worker. It is the greatest level of capital per worker

for which there is still an equilibrium point, k̇ = 0. In the sequel, ẋ stands for dx/dt for

every x.

The problem is then to choose a piecewise continuous trajectory c satisfying the Equa-

tion 1.2.9, the income identity and a boundary condition that maximizes a welfare function

J =

∫

∞

0

e−δtu(c)dt, (1.2.11)

where δ is the discount rate, and u is a utility function. The utility function is assumed

twice differentiable, and where, for all positive values of c:

∂u

∂c
(c) > 0;

∂2u

∂c2
(c) < 0, for all c > 0. (1.2.12)

It is also assumed that:

lim
c→0

∂u

∂c
(c) = ∞; lim

c→∞

∂u

∂c
(c) = 0 (1.2.13)
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The problem is solved using the Pontryagin maximum principle, which leads to the

following system of differential equations:















ċ =
1

σ(c)

[

−(λ + δ) +
df

dk

]

c

k̇ = f(k) − λk − c

(1.2.14)

where λ = µ + β and

σ(c) = −c ·
∂2u/∂c2

∂u/∂c
(1.2.15)

is defined as the elasticity of marginal utility.

By linearizing the system at the equilibrium point

dk

dt
=

dc

dt
= 0 (1.2.16)

corresponding to the higher value of the capital per capita, K, one gets:























dk

dt
= −(c − c∗) + δ(k − k∗)

dc

dt
=

c∗
d2f

dk2

σ(c∗)
(k − k∗)

(1.2.17)

The eigenvalues of this linear system are:

1

2











δ ±

√

√

√

√

√

δ2 −
4c∗

d2f

dk2

σ(c∗)











(1.2.18)

The equilibrium point is then a saddle point, whose stable branch consists of all points

that eventually reach a balanced growth equilibrium.
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1.3 A proposed model

Instead of considering an exponential growth, the labor force is supposed to follow a

logistic equation:

dL

dt
= βL

[

1 −
γL

F (K,L)

]

. (1.3.1)

The rational for this model is as follows. For small values of L, the growth rate is small.

The maximum value of dL/dt is attained when

d

dL

(

L

[

1 −
γL

F (K,L)

])

= 0

As L increases, the term inside brackets will be decreasing, up to a point where it vanishes.

If
[

1 −
γL

F (K,L)

]

< 0,

the growth rate of the population will be negative in accordance with Malthusian thinking.

The worker population then stabilizes, at a value that depends upon the income, given

by F (K,L). The larger the value of the income, the larger the value of the stabilized L.

The time rate of capital per worker will be given now by (details is appendix D):

dk

dt
= −(µ + β)k + f(k) +

βγk

f(k)
− c (1.3.2)

From the properties of the production function f(k), one can prove some interesting

properties for the function g : R
+ ∪ {0} → R, given by

g(k) =















f(k) +
βγk

f(k)
, if k > 0

0, if k = 0.

Since g is continuous at 0,

lim
k→0

f(k) +
βγk

f(k)
= g(0) = 0,
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it is clear that g is continuous.

Proposition 1.3.1 If f is a nonnegative concave function defined on R
+ ∪ {0} and

f(0)=0, then g is monotonic-increasing.

Proof : It is sufficient to prove that h : R
+ ∪ {0} → R, given by h(k) = k/f(k) and

h(0) = 0 is monotonic-increasing. Let k1 and k2 be two positive real numbers such that

k1 < k2. Therefore k1 = λk2, where 0 < λ < 1. Since f is concave,

f(0(1 − λ) + k2λ) > (1 − λ)f(0) + λf(k2)

f(k1) > λf(k2)

f(k1) >
k1

k2

f(k2)

Thus, since f(k) > 0 for all k > 0,

k1

f(k1)
<

k2

f(k2)

Q.E.D.

Proposition 1.3.2 If limk→0 f ′(k) = ∞, f is a nonnegative concave function defined on

R
+ ∪ {0} and f(0)=0, then limk→0 g′(k) = ∞.

Proof : From the previous proposition,

d

dk

(

k

f(k)

)

> 0, ∀k > 0

Therefore, since limk→0 f ′(k) = ∞, it is clear that limk→0 g′(k) = ∞.

Q.E.D.

Further, it is assumed that limk→∞ f(k) = ∞.

Proposition 1.3.3 If f is a nonnegative concave function defined on R
+ ∪ {0}, f(0)=0,

limk→∞ f(k) = ∞ and limk→∞ f ′(k) = 0, then limk→∞ g′(k) = 0.
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Proof : It has been proved that

d

dk

(

k

f(k)

)

=
f(k) − kf ′(k)

f 2(k)
> 0.

It is also clear that
1

f(k)
=

f(k)

f 2(k)
>

f(k) − kf ′(k)

f 2(k)
> 0.

Since limk→∞ f(k) = ∞ and by employing the sandwich theorem,

lim
k→∞

d

dk

(

k

f(k)

)

= 0.

Thus,

lim
k→∞

d

dk

(

f(k) +
βk

f(k)

)

= lim
k→∞

df(k)

dk
+ β lim

k→∞

d

dk

(

k

f(k)

)

= 0

Q.E.D.

Moreover, if f is a concave Cobb-Douglas function (i.e., with decreasing return of

scale), then g is also concave.

One can show that the income identity, the gross investment identity, the production

function and the Expression1.3.1 together implies a new fundamental differential equation

of economic growth:

dk

dt
= −(µ + β)k + g(k) − c. (1.3.3)

The Figure 1.2 shows the per worker production function f(k), g(k) and λk

k

λk

f(k)

g(k)

Figure 1.2: Production function f , g and λk.

Figure 1.3 shows the function h(k) = g(k) − λk which has two important points,
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namely, a unique maximum point k̂ and a root k̃, i.e.,

h(k̂) ≥ h(k), ∀k > 0

and

h(k̃) = 0.

k

f(k) − λk

g(k) − λk

Figure 1.3: f(k) − λk and g(k) − λk.

Observe that k̇ = h(k)−c, therefore the stability properties of this differential equation

depend upon the level of consumption per worker. Remember that the capital per worker

is a nonnegative value, that is, c ≥ 0. If there is no consumption then k̇ = h(k) and hence

there exists two equilibrium points, k = 0 (which is locally unstable) and k = k̃ (which is

stable, as shown in Figure 1.4).

k

f(k) − λk

k̂ k̃

Figure 1.4: Equilibrium points

Augmenting the level of consumption per capita, one can again reach a so-called golden

rule level of capital per worker. Notice that this new golden rule level is larger than the

golden rule level of section 1.2.
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Now, the optimal control model is

Max
c

J =

∫

∞

0

e−δtu(c)dt (1.3.4)

k̇ = −(µ + β)k + g(k) − c (1.3.5)

0 ≤ c ≤ f(k) (1.3.6)

The maximum principle leads to the following system of differential equations (details

in Appendix D):















ċ =
1

σ(c)
(−(λ + δ) + g′(k))c

k̇ = −λk + g(k) − c

(1.3.7)

By linearizing the system at the equilibrium point

dk

dt
=

dc

dt
= 0,

corresponding to the higher value of capital per capita, k, one gets:























dk

dt
= −(c − c∗) + δ(k − k∗)

dc

dt
=

c∗
d2g

dk2

σ(c∗)
(k − k∗)

(1.3.8)

The eigenvalues of this linear system are:

1

2











δ ±

√

√

√

√

√

δ2 −
4c∗

d2g

dk2

σ(c∗)











(1.3.9)

Therefore, since f is an Cobb-Douglas function, the equilibrium point is a saddle point.

In many countries, one observes that the capital per worker is growing over time and it

is not explained by these models presented before. A common way to explain the capital

per worker growth in macroeconomic growth models has been made by using technological
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progress.

The technological progress will be modeled by a continuous and smooth function of t

as described in the following differential equation (Romer, 1994):

Ȧ = εA,

where ε is a positive constant.

A possible manner to introduce the technical progress into the production function is

to add an “augmenting” factor to labor, analytically:

Y = F (K,AL).

This approach is known as Harrod-neutral or labor-augmenting technical progress.

Therefore, the model is now given by

dL

dt
= βL

[

1 −
γAL

F (K,AL)

]

.

In the appendix E there is the computations of that model.

1.4 Conclusions

The results of the growth models with those modifications in the population dynamics

maintain the classical results of the Sollow’s model in the sense that they assert the

existence of equilibrium points, K/L in the first formulation and K/AL in the second

one. Therefore, one should note that it is not necessary to be worried concerning the

validation of the model. Validations of the Sollow’s model also confirm those model’s

presented here.
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Chapter 2 Economic growth focusing on energy sources

2 Economic growth focusing on energy

sources

According to Campello de Souza (Campello de Souza, 2006), the choice of an energy

system (i.e., primary energy resources and their related technologies) has been a complex

matter involving social, environmental and political issues. It is not clear how to argue

pro or against this or that energy system option. The task of analyzing the future offer

and demand of energy, and trying to harmonize them, as well as the establishing of

prices for the various energy alternatives, is made more complex due to the effects of

the technological progress, the availability of resources, the adopted regulation schemes

(norms, rates, etc), the need of improving human capital and the particular national

economic policy as a whole.

Energy resources would be allocated, under perfect competition, in an optimal way,

that is, maximizing producer’s profits and consumer’s utilities. In some economies, how-

ever, many sectors, amongst them the energy sector, are perceived to exhibit many fea-

tures which contradict then perfect competition condition, namely: oligopolist market

structures, pollution, natural technical monopolies, non-renewability of some energy re-

sources, etc. Since there is not a perfect competition environment, it is therefore inter-

esting some kind of central planner which guides the behavior of the economic agents of

the energy sector. For this task, this central planner should use a scientific approach.

This chapter investigates the economic growth problem treated in (Stamford da Silva,

1999) incorporating some changes in its models. Three models are analyzed and they

contain, as in Stamford da Silva’s work, factors that are often separately handled, namely:

energy sources; capital and labor; and water applied to non-energetic ends.

Those macroeconomic models differ from the Stamford da Silva’s work (Stamford da

Silva, 1999) in interpreting the research and development (R&D) effect and in modeling

its evolution over time, as presented in (Romer, 2001). They are set in continuous time

and deterministic. Moreover, they do not analyze monetary matters, and consumption

distribution among the labor force is not modeled; instead an average individual is con-
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sidered. It is also assumed that all individual generations have the same preferences. It

is not considered energy source exports. Nonconventional energy technologies – such as

solar, aeolian, nuclear, etc – are not presumed as backstop technologies. It is assumed that

those technologies are ready for use and can replace conventional technologies. Among

all assumptions, it seems the strongest and unusual one, but, indeed, it may occur soon.

An optimal economic growth model that incorporates several aspects of the energy

resources, allowing the establishment of planning policies, is presented. The process of

dynamic optimization can be understood as a centralizing planning where an authority

maximizes an objective functional (the Welfare).

2.1 Notation

• J – welfare functional;

• δ – discount rate;

• L – labor force;

• u – utility per worker;

• c – consumption per worker of non-energy goods.

• t – time;

• α – consumption per worker of energy goods;

• β – population growth rate;

• F – production function of non-energy goods;

• E – consumption rate of aggregate energy resources for non-energy uses;

• A – technological level;

• W – consumption rate of water for non-energy ends;

• s – expenses concerning imported energy resources;
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• D – water stock;

The subscripts in remaining variables have the following meanings:

• 0 – indicates non-energy goods, excluding the water for non-energy use;

• W – indicates non-energy water, i.e., water that is employed to produce non-energy

goods;

• H – indicates hydroelectric resources;

• NR – indicates non-renewable energy resources;

• R – indicates renewable energy, namely, solar energy, eolian, nuclear, etc;

• A – indicates technology;

• E – indicates energy exports.

Thus,

• K0 – capital employed to produce non-energy goods, excluding capital regarding

non-energy water;

• L0 – labor force employed to produce non-energy goods, excluding the labor force

regarding non-energy water;

• I0 – investment in the non-energy goods sector;

• µ0 – depreciation rate of capital K0;

• W – annual consumption rate of non-energy water;

• FW – production function of non-energy water;

• KW – capital employed to provide non-energy water;

• LW – labor force employed to provide non-energy water;

• GW – weighing function of non-energy water;

• IW – investment in the non-energy water sector;
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• µW – depreciation rate of capital KW ;

• EH – annual consumption rate of hydroelectric resources;

• FH – production function of hydroelectric resources;

• KH – capital employed to produce hydroelectric energy;

• LH – labor force employed to produce hydroelectric energy;

• GH – weighing function of hydroelectric resources;

• IH – investment in the hydroelectric sector;

• µH – depreciation rate of capital KH ;

• ENR – annual consumption rate of non-renewable resources;

• FNR – production function of non-renewable resources;

• KNR – capital employed to produce non-renewable energy;

• LNR – labor force employed to produce non-renewable energy;

• GNR – weighing function of non-renewable resources;

• INR – investment in the non-renewable sector;

• µNR – depreciation rate of capital KNR;

• ER – annual consumption rate of renewable resources;

• FR – production function of renewable resources;

• KR – capital employed to produce renewable energy;

• LR – labor force employed to produce renewable energy;

• GR – weighing function of renewable resources;

• IR – investment in the renewable energy sector;

• µR – depreciation rate of capital KR;
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• FA – production function of technology;

• KA – capital employed to produce technology;

• LR – labor force employed to produce technology;

• IA – investment in the technological sector;

• µA – depreciation rate of capital KA;

2.2 Optimal control Models

A plausible reason to explain how more output can be produced today from a given

amount of labor and capital than could be produced in the past, seems to be, indeed,

the technological evolution. Therefore, a research and development sector is introduced

in the Stamford da Silva’s work (Stamford da Silva, 1999) representing the production of

new technologies.

The economy is partitioned into six sectors: a non-energetic goods-producing sector

where non-energy output is produced; an R&D sector where additions to the stock of

knowledge are made; a water sector, where water for non-energetic ends is provided; and

three more sectors which compose the whole energy sector. The energy sector is decom-

posed into an hydroelectric sector, a renewable energy sector (excluding the hydroelectric

one which has an specific sector), and a non-renewable energy sector.

Furthermore, another model is proposed, where there is not an R&D sector and tech-

nological progress is assumed to be exogenous.

2.2.1 Technological dynamics

It is assumed in one model that technology progress is exogenous; representing, for

instance, an economy in which all its technology is brought from abroad. In that formu-

lation, the dynamics of the technology is modeled by

Ȧ = ǫA, (2.2.1)
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where ǫ is an exogenous parameter (in the technological sense, not the managerial one).

On the other hand, other models presented in this chapter consider technology growth

as being endogenous. It is modeled by a conventional approach in which technology

labor (LA), technology capital (KA), and technology itself (A) are combined to provide

technology growth as

Ȧ = FA(KA, LA)A, (2.2.2)

where FA : {R+ ∪ {0}} × {R+ ∪ {0}} → R.

2.2.2 Resource consumption dynamics

The consumption rate of the energy resource reserve (Di) is given as in (Hotelling,

1931) by:

Ḋi = −Ei ; i = R,NR (2.2.3)

where Ei is defined, as in section 2.1, as annual consumption rate of energy source i.

The water stock is diminished by both, the use as a productive input and the use in

hydroelectric generation. The dynamic of the water stock (D) is represented by

Ḋ = f(t) − (EH + W ) (2.2.4)

where EH is defined as the annual consumption rate of hydroelectricity, W is defined as the

annual consumption rate of water for non-energy ends, f(t) is assumed to be a continuous

and differentiable function over t (maybe periodic) that models the water cycle.

2.2.3 Production of water and energy

It is supposed that the energy and water markets are in equilibrium. Furthermore, it

is assumed that all energy and produced water are consumed on production of non-energy

goods.

Each sector — hydroelectric, renewable, non-renewable, and water for energy produc-
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tion (hydro-electric energy) — has an annual consumption rate determined by using four

factors of production, namely, its capital, its labor force, its technological level. These

functions of annual consumption rate are assumed invariant over time.

Hydroelectric consumption rate is expressed by

EH = FH(KH , ALH)GH(DH) (2.2.5)

where KH is the capital employed in the hydroelectric sector, LH is the labor employed

in the hydroelectric sector, D is the water reserve, and A is the technological level.

Notice that the expression 2.2.5 is a product of two functions:

FH : {R+ ∪ {0}} × {R+ ∪ {0}} → R

(KH , ALH) 7→ FH(KH , ALH) (2.2.6)

which is defined as the production function for hydroelectric resources, and

GH : {R+ ∪ {0}} → R

D 7→ GH(D) (2.2.7)

which is called the weighing function of hydroelectric resources.

The production function of hydroelectric resources is assumed twice differentiable,

where, for all positive factor inputs:

∂FH

∂KH

(KH , A.LH) > 0;
∂2FH

∂K2
H

(KH , A.LH) < 0 (2.2.8)

∂FH

∂A.LH

(KH , A.LH) > 0;
∂2FH

∂(A.LH)2
(KH , A.LH) < 0 (2.2.9)

for all KH , A.LH > 0. Observe also that A and LH enter into that function as a product.

The factor ALH is often referred as effective labor.

The weighing function of hydroelectric resources is assumed monotonically increasing,
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i.e.,

∂GH

∂D
(D) > 0, (2.2.10)

differentiable, and it is assumed also that:

lim
D→0

GH(D) = 0; lim
D→∞

GH(D) = 1; (2.2.11)

lim
D→0

∂GH

∂D
(D) = ∞; lim

D→∞

∂GH

∂D
(D) = 0; (2.2.12)

The function GH being monotonically increasing means diminished returns when the

reserve is consumed.

Similarly, the annual consumption rate of water for non-energy ends is determined by

W = FW (KW , ALW )GW (D) (2.2.13)

where KW is the capital employed in the water sector, LW is the labor employed in

water sector, D is the water reserve, and A is the technological level. The functions

FW (KW , ALW ), FNR(KNR, LNR) and FR(KR, ALR) are defined as production functions

for non-energy water, non-renewable resources and renewable resources respectively, while

GW (D), GNR(DNR), GR(DR) are the weighing functions of non-energy water, non-renewable

resources and renewable resources, respectively.

The functions FW (KW , ALW ), FNR(KNR, LNR) and FR(KR, ALR) are also assumed
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twice differentiable and for all positive inputs:

∂FW

∂KW

(KW , A.LW ) > 0;
∂2FW

∂K2
W

(KW , A.LW ) < 0 (2.2.14)

∂FW

∂A.LW

(KW , A.LW ) > 0;
∂2FW

∂(A.LW )2
(KW , A.LW ) < 0 (2.2.15)

∂FNR

∂KNR

(KNR, A.LNR) > 0;
∂2FNR

∂K2
NR

(KNR, A.LNR) < 0 (2.2.16)

∂FNR

∂A.LNR

(KW , A.LW ) > 0;
∂2FNR

∂(A.LNR)2
< 0 (2.2.17)

∂FR

∂KR

(KR, A.LR) > 0;
∂2FR

∂K2
R

(KR, A.LR) < 0 (2.2.18)

∂FR

∂A.LR

(KR, A.LR) > 0;
∂2FR

∂(A.LR)2
(KR, A.LR) < 0 (2.2.19)

The weighing function of non-energy water and non-renewable resources are also assumed

monotonically increasing, that is,

∂GW

∂D
(D) > 0,

∂GNR

∂DNR

(DNR) > 0, (2.2.20)

differentiable and the following conditions are supposed to hold:

lim
D→0

GW = 0; lim
D→∞

GW = 1; (2.2.21)

lim
DNR→0

∂GNR

∂DNR

= ∞; lim
DNR→∞

∂GNR

∂DNR

= 0. (2.2.22)

For the renewable sector, R, one may consider

GR(DR) = 1 (2.2.23)

2.2.4 The investment identity

The investment identities given by

K̇i = −µiKi + Ii ; i = 0, R,NR,H,W,A (2.2.24)
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represent the fact that investments are employed both to augment the stock of capital

and to replace depreciated capital.

2.2.5 The labor force

Among several possible ways of modeling the labor force growth, two of them are

presented here.

The labor force growth can be described, as usual, as

L̇ = βL. (2.2.25)

Robert Malthus in his “Essay on the principle of population”, in 1798, was the first

economic thinker which states that limited resources implies a limited population growth.

However, he did not forecast the technological development due mainly to the industrial

revolution during the XVIII century. Indeed, technological progress has promoted an

amazing augment of productivity. On account of the Malthus’s idea, a different manner

of representing population growth is proposed. The labor force growth is described as

L̇ = βL
(

1 − γF (K0, A.L0, E,W )−1AL
)

, (2.2.26)

where

F : {R+ ∪ {0}}4 → R

(K0, AL0, E,W ) 7→ F (K0, A.L0, E,W ). (2.2.27)

It is a logistic function where the carrying capacity is F/γ (and γ is a constant). This

model for the labor force growth means the more an economy produces, the more the

labor force can grow.

Moreover, the labor force is allocated amongst the economic sectors, then defines the

following identity for the models with an R&D sector:

L = L0 + LR + LNR + LH + LW + LA (2.2.28)
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where

• the non-energy labor force is defined as L0;

• hydroelectric labor force as LH ;

• renewable energy labor force as LR;

• non-renewable energy labor force as LNR;

• technology labor force as LA.

If there is not an R&D sector, the identity is

L = L0 + LR + LNR + LH + LW (2.2.29)

2.2.6 The income identity

This neoclassical growth model characterizes economics in an aggregative way. A

single non-energetic good is produced, the output of which at time t is Y (t), using four

factor inputs, namely, non-energetic capital K0(t), the product of technology and non-

energetic labor force A(t)L(t), the annual consumption rate of aggregate energy resources

E(t) and the annual non-energy water consumption rate W (t), where t is assumed to be

continuous. In the case where the technological progress is considered as exogenous, the

income identity is modeled by

Y = F (K0, AL0, E,W ) = I0 + IW + IH + IR + INR + s(EE) + Lc. (2.2.30)

On the other hand, when technological progress is assumed endogenous, the yield identity

is expressed as

Y = F (K0, AL0, E,W ) = I0 + IW + IH + IR + INR + IA + s(EE) + Lc. (2.2.31)

Notice that in the endogenous case there exists an R&D sector. The yield identities, as just

defined, represent a basic identity of economic growth models. However, it is important

to observe that the identity considers the expenses for the acquisition of imported energy
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resources. Therefore, it classifies that model as an open one concerning energetic resources,

what is, in a certain way, a classical use.

It is supposed that the market is in equilibrium and that all output is either consumed

or invested.

This approach provided a better comprehension concerning the trade-off between water

for non-energy use and hydroelectric energy ends (Stamford da Silva, 1999). Furthermore,

as shall be seen later in the energetic balance expression, the variable E depends on the

variable W . It implies, after the chain rule, results that alters the usual analysis of

marginal productivity of water.

The production function is assumed invariant over time and twice differentiable, the

Inada conditions, (Intriligator, 1971), where for all positive factor inputs:

∂F

∂K0

(K0, AL0, E,W ) > 0;
∂F

∂AL0

(K0, AL0, E,W ) > 0; (2.2.32)

∂2F

∂K2
0

(K0, AL0, E,W ) < 0;
∂2F

∂AL2
0

(K0, AL0, E,W ) < 0 (2.2.33)

2.2.7 The energy balance

As in Stamford’s model, the entire consumption rate of energy sources for non-energy

ends are expressed by:

E = ER + ENR + EH + EE − W − Lα (2.2.34)

where α denotes energetic resources consumption per capita, −W represents the amount

of hydroelectricity that would be reduced in the entire energy if the water was used for

other ends. Notice that in an economy where the energy system does not have a great

amount of hydroelectricity, this formulation is not essential. It is not the Brazilian case,

where the hydroelectric power represents a great part of the total energy1.

1http://ben.epe.gov.br/BEN2006/
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2.2.8 Objective functional

The objective functional follows an utilitarian scheme which have been adopted by

many researchers(Intriligator, 1971). It is assumed that the central planner, whatever it

means, has a utility function that gives utility at any instant of time, denoted by u, as

a function of consumption per worker, c, consumption per worker of energetic goods, α,

and population growth rate, β. It means that all generations of individuals have the same

preferences.

It is also assumed that utility at any instant of time is not directly dependent on c, α,

β or utility at any other instant of time.

It is further assumed that utilities along the time can be added (integrated) but never-

theless these utilities are adequately discounted to represent the impatience of the central

planner. In this research, it is considered an infinite time horizon, so, a Welfare functional,

J , is defined as follows:

J =

∫

∞

0

e−δtLu(c, α, β)dt, (2.2.35)

where δ is a constant. The utility function is assumed monotonic-increasing regarding

both c and α, that is,

∂u

∂c
(c, α, β) > 0,

∂u

∂α
(c, α, β) > 0, (2.2.36)

for every c, α > 0 . It is also assumed that the utility is quite flat for a wide range of

values of β but it rises when β converges to zero or when β becomes too large.
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2.3 The zero Model

The basic model to be analyzed is the following:

Max W =

∫

∞

0

e−δtLu(c, α, β)dt, (2.3.1)

subject to

F (K0, AL0, E,W ) = I0 + IW + IH + IR + INR + s(EE) + Lc (2.3.2)

E = ER + ENR + EH + EE − W − Lα (2.3.3)

L = L0 + LR + LNR + LH + LW (2.3.4)

Ei = Fi(Ki, ALi)Gi(Di); i = R,NR (2.3.5)

EH = FH(KH , ALH)GH(D) (2.3.6)

W = FW (KW , ALW )GW (D) (2.3.7)

K̇i = −µiKi + Ii; i = 0, R,NR,H,W,A (2.3.8)

Ḋi = −Ei; i = R,NR (2.3.9)

Ḋ = f(t) − (EH + W ) (2.3.10)

L̇ = βL (2.3.11)

Ȧ = ǫA (2.3.12)

It is essentially the Stamford da Silva’s work, but with an extra differential equation that

represents the evolution of technology.

Notice that the state variables are:

• Ki, i = 0, R,NR,H,W ;

• Di, i = R,NR;

• D, L and A.

The control forces are:

• Ii, i = 0, R,NR,H,W ;
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• Ei, i = R,NR,H;

• W , EE, α and β.

The Hamiltonian of this basic formulation is

H =e−δt
{

Lu(c, α, β) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pAǫA + qLβL
}

(2.3.13)

By applying the maximum principle one can obtain some interesting results. A detailed

mathematical computation about the zero problem can be found in Appendix A.

2.3.1 The zero model’s results

First, shadow prices qi, where i = 0, R,NR,H,W , are all equal to ∂u/∂c:

q0 = qW = qH = qR = qNR =
∂u

∂c
(2.3.14)

that is, in the optimal path, the marginal value of capital Ki must be equal to the marginal

utility regarding the non-energy goods consumption per-worker.

∂F

∂Ei

=
∂F

∂E
=

∂s

∂EE

(2.3.15)

Expression 2.3.15 means that the price of each domestic energy resource must be equal

to the price of the imported energy resource. It means that there is a unique price for all

primary energy resources because all energy resource contributes equally to the yield.

Another result is provided by the relation:

∂F

∂E
=

∂u/∂α

∂u/∂c
=

p

q
(2.3.16)

Expression 2.3.16 implies that the price of energy resources must be equal to the substi-

tution rate between non-energy goods and energy goods. Moreover, it also contents that

the substitution rate between non-energy goods and energy goods must be equal to the

rate between the marginal value of energy resource in the reserve and the marginal value
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of capital.

qL = −
∂u

∂β
(2.3.17)

Equation 2.3.17 implies that the marginal value of labor force (the shadow price of

labor force) in the economy must be equal to the negative marginal utility regarding labor

force growth rate.

ṗR

pR

=
ṗNR

pNR

=
ṗD

pD

= δ (2.3.18)

This result known as the Hotelling rule which is an expected result when extraction

rates are employed as control forces (notice that it is assumed that the extraction rates

are equal to consumption rates). It means that the marginal value of energy resource in

the reserve must rise according the interest rate, i.e., energy resources must be treated as

any capital good.

q̇R

qR

=
q̇NR

qNR

=
q̇H

qH

=
q̇W

qW

=
q̇0

q0

= δ + µ (2.3.19)

Expression 2.3.19 implies, similarly as the previous result, that the marginal value of

the capital Ki must rise according the interest rate δ plus depreciation rate µi, where

i = R,NR,H,W, 0.

µR = µNR = µH = µW = µ (2.3.20)

The identity 2.3.20 states that capital goods for every energy sectors and water sector

must be homogenous, i.e., their depreciation rates must be the same.

∂F

∂K0

= µ0 − µ (2.3.21)

Since the depreciation rates µ0 and µ are assumed constant, equation 2.3.21 asserts

that the contribution of non-energy capital in producing non-energy goods is constant.

In other words, the price of the non-energy capital in producing non-energy goods must
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be constant.

µ0 > µ (2.3.22)

The inequality 2.3.22 implies that depreciation of non-energy capital must be greater

than depreciation rates µR, µNR, µH and µW .

pi =
∂u

∂α
; i = D,R,NR. (2.3.23)

Expression 2.3.23 contents that the marginal value of the energy resource i (shadow

price for energy resource i) in the reserve must be equal to the marginal utility regarding

energy consumption per worker.

∂F

∂W
= 2

∂F

∂E
(2.3.24)

The most important result of the work of Stamford da Silva isshown above in the

expression 2.3.24. This result asserts that water contributes by a hundred percent more

in producing non-energy goods than energy resources do. In other words, the price for

water must be twice the price for energy resources.

The inclusion of the dynamics of technological change lead to the following new results:

ṗA =(δ − ǫ))pA − q0
∂F

∂AL0

.L0 (2.3.25)

The expression 2.3.25 establish the dynamic of the marginal value of the technological

level. When the other variables are maintained constant, ceteris paribus, the larger the

discount rate value, the lower the technological growth rate, the lower the marginal value

of the non-energy capital, the lower the labor force of the non-energy goods sector, the

lower the marginal production regarding the effective labor, the larger shadow price of

the technological level derivative.

q̇L = (δ − β)qL + q0

(

c + α.
∂F

∂E

)

− u (2.3.26)
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The expression 2.3.26 establish growth of the marginal value of the labor force. When

the other variables are maintained constant, ceteris paribus, the larger the discount rate

value, the lower the population growth rate, the larger the marginal value of the non-

energy capital, the larger the consumption per worker of non-energy goods, the larger the

consumption per worker of energy goods, the larger the price for energy, the lower the

utility per worker, the larger the shadow price of the marginal value of the labor force

derivative.
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2.4 The first Model

In this model the technological change is supposed to be endogenous. The country

(economy) develops its own technology.

Max W =

∫

∞

0

e−δtLu(c, α, β)dt, (2.4.1)

subject to

F (K0, AL0, E,W ) = I0 + IW + IH + IR + INR + IA + s(EE) + Lc (2.4.2)

E = ER + ENR + EH + EE − W − Lα (2.4.3)

L = L0 + LR + LNR + LH + LW + LA (2.4.4)

Ei = Fi(Ki, ALi)Gi(Di); i = R,NR (2.4.5)

EH = FH(KH , ALH)GH(D) (2.4.6)

W = FW (KW , ALW )GW (D) (2.4.7)

K̇i = −µiKi + Ii; i = 0, R,NR,H,W,A (2.4.8)

Ḋi = −Ei; i = R,NR (2.4.9)

Ḋ = f(t) − (EH + W ) (2.4.10)

L̇ = βL (2.4.11)

Ȧ = FA(KA, LA)A (2.4.12)

Notice that state variables are:

• Ki, i = 0, R,NR,H,W,A;

• Di, i = R,NR;

• D, L and A.

The control forces are:

• Ii, i = 0, R,NR,H,W,A;

• Ei, i = R,NR,H;
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• W , EE, α and β.

The Hamiltonian of this formulation is

H =e−δt
{

Lu(c, α, β) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A) + qLβL
}

(2.4.13)

A detailed mathematical computation about the first model can be found in Appendix

B.

2.4.1 The first model’s results

The shadow prices qi, where i = 0, R,NR,H,W,A, are all equal to ∂u/∂c,

q0 = qW = qH = qR = qNR = qA =
∂u

∂c
, (2.4.14)

that is, it implies, as said before in section 2.3.1, that the marginal value of the capital

must be equal to the marginal utility of the non-energetic consumption (notice that in the

first model there is another costate variable, namely, qA regarding the technology sector).

∂F

∂Ei

=
∂F

∂E
=

∂s

∂EE

(2.4.15)

∂F

∂E
=

∂u/∂α

∂u/∂c
=

p

q
(2.4.16)

qL = −
∂u

∂β
(2.4.17)

ṗR

pR

=
ṗNR

pNR

=
ṗD

pD

= δ (2.4.18)

Expressions 2.4.15, 2.4.16, 2.4.17, 2.4.18 are also results of the zero model, that remain
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here.

q̇R

qR

=
q̇NR

qNR

=
q̇H

qH

=
q̇W

qW

=
q̇D

qD

=
q̇A

qA

=
q̇0

q0

= δ + µ (2.4.19)

As in expression 2.3.19, the identity 2.4.19 implies that the marginal value of the

capital Ki must rise according the interest rate δ plus depreciation rate µi, where i =

R,NR,H,W, 0, A.

µR = µNR = µH = µW = µ (2.4.20)

∂F

∂K0

= µ0 − µ (2.4.21)

µ0 > µ (2.4.22)

pi =
∂u

∂α
; i = D,R,NR. (2.4.23)

∂F

∂W
= 2

∂F

∂E
(2.4.24)

q̇L = (δ − β)qL + q0

(

c + α.
∂F

∂E

)

− u (2.4.25)

Equations 2.4.20, 2.4.21, 2.4.23, 2.4.24, 2.4.25 and the inequality 2.4.22 are also re-

peated results of the zero model.

Now, the new result is:

pA =
C.(µA − µ)

A.(∂FA/∂KA)
e(δ+µ)t (2.4.26)

This expression, 2.4.26, establishes the technology shadow price behavior along the time.
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2.5 The second model

In this model, a substantial modification of the labor force growth equation is intro-

duced.

Max W =

∫

∞

0

e−δtLu(c, α, β)dt, (2.5.1)

subject to

F (K0, AL0, E,W ) = I0 + IW + IH + IR + INR + IA + s(EE) + Lc (2.5.2)

E = ER + ENR + EH + EE − W − Lα (2.5.3)

L = L0 + LR + LNR + LH + LW + LA (2.5.4)

Ei = Fi(Ki, ALi)Gi(Di); i = R,NR (2.5.5)

EH = FH(KH , ALH)GH(D) (2.5.6)

W = FW (KW , ALW )GW (D) (2.5.7)

K̇i = −µiKi + Ii; i = 0, R,NR,H,W,A (2.5.8)

Ḋi = −Ei; i = R,NR (2.5.9)

Ḋ = f(t) − (EH + W ) (2.5.10)

L̇ = βL(1 − γF (K0, AL0, E,W )−1L) (2.5.11)

Ȧ = FA(KA, LA)A (2.5.12)

Recall the rational for Equation 2.5.11 presented in Section 2.2.5.

Notice that the state variables are:

• Ki, i = 0, R,NR,H,W,A;

• Di, i = R,NR;

• D, L and A.

The control forces are:

• Ii, i = 0, R,NR,H,W,A;
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• Ei, i = R,NR,H;

• W , EE, α and β.

The Hamiltonian of this formulation is

H =e−δt
{

Lu(c, α, β) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A)+

qL(βL(1 − γF (K0, AL0, E,W )−1L))
}

(2.5.13)

A detailed mathematical computation about the second model can be found in Ap-

pendix C.

2.5.1 Second model’s results

Although many results of the previous models remain in the second model, namely,

q0 = qW = qH = qR = qNR = qA =
∂u

∂c
; (2.5.14)

pi =
∂u

∂α
; i = D,R,NR.; (2.5.15)

ṗR

pR

=
ṗNR

pNR

=
ṗD

pD

= δ; (2.5.16)

q̇R

qR

=
q̇NR

qNR

=
q̇H

qH

=
q̇W

qW

=
q̇D

qD

=
q̇A

qA

=
q̇0

q0

= δ + µ; (2.5.17)

µR = µNR = µH = µW = µ; (2.5.18)

∂F

∂W
= 2

∂F

∂E
; (2.5.19)
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there is also new results.

∂F

∂Ei

=
∂F

∂E
=

∂u/∂c

∂u/∂c + qLβγ.(L/F )2
·

∂s

∂EE

(2.5.20)

Expression 2.5.20, on account of the logistic labor force growth equation, asserts that

the price for domestic energy resources is no more equals to the price for imported energy

resource as obtained in the zero and first models. Indeed, the price for the domestic

energy resource is lower than the price for imported energy resource, according to the

factor
∂u/∂c

∂u/∂c + qLβγ.(L/F )2
.

The larger the value of qLβγ.(L/F )2, the larger will be the departure from the previous

models.

∂F

∂E
=

∂u/∂α

∂u/∂c + qLβγ.(L/F )2
=

p

q + qLβγ.(L/F )2
(2.5.21)

Expression 2.5.21 implies that the price of energy resources is no more equals to the

substitution rate between non-energy goods and energy goods.

pA =
C.(µA − µ)

A.(∂FA/∂KA)
e(δ+µ)t (2.5.22)

qL =

C.

(

µ0 − µ −
∂F

∂K0

)

βγ.
(L

F

)2 ∂F

∂K0

· e(δ+µ)t (2.5.23)
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2.6 Conclusions

At first, it is important to observe that some classical results were obtained in those

models, namely:

•

q0 = qW = qH = qR = qNR =
∂u

∂c
; (2.6.1)

• the Hotelling rule

ṗR

pR

=
ṗNR

pNR

=
ṗD

pD

= δ ; (2.6.2)

Moreover, many results of the work of Stamford da Silva remains in the model zero and

one , for instance:

•

∂F

∂Ei

=
∂F

∂E
=

∂s

∂EE

; (2.6.3)

•

∂F

∂E
=

∂u/∂α

∂u/∂c
=

p

q
; (2.6.4)

•

qL = −
∂u

∂β
; (2.6.5)

•

q̇R

qR

=
q̇NR

qNR

=
q̇H

qH

=
q̇W

qW

=
q̇0

q0

= δ + µ ; (2.6.6)
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•

µR = µNR = µH = µW = µ ; (2.6.7)

•

∂F

∂W
= 2

∂F

∂E
(2.6.8)

The fact that those results are preserved act as argument of validity of those models

even.

For the zero model, the new result were:

•

ṗA =(δ − ǫ))pA − q0
∂F

∂AL0

.L0 ; (2.6.9)

•

q̇L = (δ − β)qL + q0

(

c + α.
∂F

∂E

)

− u (2.6.10)

These results are, in special, difficult to interpret, but assuming an specific production

function or solving (or simulating )those partial differential equations one may obtain a

better comprehension about the phenomena.

For the one model, the new results were:

•

q̇L = (δ − β)qL + q0

(

c + α.
∂F

∂E

)

− u ; (2.6.11)

•

pA =
C.(µA − µ)

A.(∂FA/∂KA)
e(δ+µ)t. (2.6.12)
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The first result remains from the zero model, and the second establish the dynamics of the

technology shadow price. Since the shadow price must increase, or at leat not decrease, the

depreciation of the technological capital must be larger than the depreciation of the other

sector. Otherwise, if the shadow price decrease no one will want to develop technology.

For the two model, the new results were:

•

∂F

∂Ei

=
∂F

∂E
=

∂u/∂c

∂u/∂c + qLβγ.(L/F )2
·

∂s

∂EE

(2.6.13)

•

∂F

∂E
=

∂u/∂α

∂u/∂c + qLβγ.(L/F )2
=

p

q + qLβγ.(L/F )2
(2.6.14)

whose are only adjustments of similar results of zero and one model;

•

pA =
C.(µA − µ)

A.(∂FA/∂KA)
e(δ+µ)t ; (2.6.15)

•

qL =

C.

(

µ0 − µ −
∂F

∂K0

)

βγ.
(L

F

)2 ∂F

∂K0

· e(δ+µ)t . (2.6.16)

.

The first remains form the one model and the second establishes the dynamic of the

shadow price of the labor force. Therefore, since shadow price must increase over the

time, implies that
∂F

∂K0

< µ0 − µ .
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3 Concluding Remarks and Suggestions

3.1 Concluding remarks

The main conclusions are:

• The results of the chapter one’s growth models with those modifications in the

population dynamics maintain the classical results of the Sollow’s model(Solow,

1956) in the sense that they assert the existence of equilibrium points, K/L in the

first formulation and K/AL in the second one. Therefore, one should note that it

is not necessary to be worried concerning the validation of the model. Validations

of the Sollow’s model also confirm those model’s presented here.

• Classical results were obtained in those models of chapter two, namely:

1.

q0 = qW = qH = qR = qNR =
∂u

∂c
; (3.1.1)

2. the Hotelling rule

ṗR

pR

=
ṗNR

pNR

=
ṗD

pD

= δ ; (3.1.2)

• many results of the work of Stamford da Silva(Stamford da Silva, 1999) remains

in the model zero, one and two of chapter two. In sauch way, the fact that those

results are preserved act as argument of validity of those models even.

• For the zero model,

1.

ṗA =(δ − ǫ))pA − q0
∂F

∂AL0

.L0 ; (3.1.3)
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2.

q̇L = (δ − β)qL + q0

(

c + α.
∂F

∂E

)

− u (3.1.4)

are, in special, difficult to interpret, but assuming an specific production function or

solving (or simulating )those partial differential equations one may obtain a better

comprehension about the phenomena.

• For the one model

pA =
C.(µA − µ)

A.(∂FA/∂KA)
e(δ+µ)t. (3.1.5)

. Since the shadow price must increase, or at leat not decrease, the depreciation of

the technological capital must be larger than the depreciation of the other sector.

Otherwise, if the shadow price decrease no one will want to develop technology.

• For the two model, the new results were:

1.

∂F

∂Ei

=
∂F

∂E
=

∂u/∂c

∂u/∂c + qLβγ.(L/F )2
·

∂s

∂EE

(3.1.6)

2.

∂F

∂E
=

∂u/∂α

∂u/∂c + qLβγ.(L/F )2
=

p

q + qLβγ.(L/F )2
(3.1.7)

whose are only adjustments of similar results of zero and one model, and

1.

qL =

C.

(

µ0 − µ −
∂F

∂K0

)

βγ.
(L

F

)2 ∂F

∂K0

· e(δ+µ)t . (3.1.8)

.
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Chapter 4 Concluding Remarks and Suggestions

Since shadow price must increase over the time, implies that

∂F

∂K0

< µ0 − µ .

3.2 Suggestions

As said in chapter 0, section 0.3:

“. . . as well as a man needs food, the machine needs energy.”

This simple idea can inspire different macroeconomic models since the energy would be

the “consumption” of the machine.

For the model presented in chapter 1 section 1.3, one can assume a particular pro-

duction function and then it may yield new results. Further, one can try to solve or to

simulate the partial differential equations that appear due the maximum principle in the

chapter 2.

In this dissertation, it was only analyzed the macroeconomic aspects. Therefore, it

is natural to suggest a microeconomic study concerning the energy sector. In particular,

one should study why the solar energy is not used in Brazil. One should, for instance, try

to attain the following objectives:

1. To study the tradeoff between prices for solar water heating system (SWHS) device

and its lifetime cycle;

2. To study the consumer’s decision problem: to invest or not to invest in a Solar

Water Heating System, SWHS, device?
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Appendix A Optimal control problem 0

A Appendix

A.1 Optimal control problem 0

Max W =

∫

∞

0

e−δtLu(c, α, β)dt, (A.1.1)

subject to

F (K0, AL0, E,W ) = I0 + IW + IH + IR + INR + IA + s(EE) + Lc (A.1.2)

E = ER + ENR + EH + EE − W − Lα (A.1.3)

L = L0 + LR + LNR + LH + LW + LA (A.1.4)

Ei = Fi(Ki, ALi)Gi(Di); i = R,NR (A.1.5)

EH = FH(KH , ALH)GH(D) (A.1.6)

W = FW (KW , ALW )GW (D) (A.1.7)

K̇i = −µiKi + Ii; i = 0, R,NR,H,W,A (A.1.8)

Ḋi = −Ei; i = R,NR (A.1.9)

Ḋ = f(t) − (EH + W ) (A.1.10)

L̇ = βL (A.1.11)

Ȧ = ǫA (A.1.12)

A.2 Hamiltonian

H =e−δt
{

Lu(c, α, β) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pAǫA + qLβL
}

(A.2.1)
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Appendix A Optimal control problem 0

From expression A.1.2 the variable c can be represented as

c =
1

L

[

F (K0, AL0, E,W ) − I0 − IW − IH − IR − INR − s(EE)
]

. (A.2.2)

Therefore, one obtains:

∂c

∂F
=

1

L
;

∂c

∂Ii

= −
1

L
(i = 0, R,NR,H,W ) ;

∂c

∂s
= −

1

L
. (A.2.3)

From E = ER + ENR + EH + EE − W − Lα, one gets then

∂E

∂Ei

= 1 (i = R,NR,H,E) ;
∂E

∂W
= −1 ;

∂E

∂α
= −L . (A.2.4)

A.3 Control forces

• Ii, i = 0, R,NR,H,W ;

• Ei, i = R,NR,H;

• W , EE, α and β.

To maximize the Hamiltonian:

∂H

∂Ii

= 0 ; i = 0,W,R,NR,H. (A.3.1)

∂H

∂Ii

=e−δt ∂

∂Ii

{

Lu(c(Ii)) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pAǫA + qLβL
}

=e−δt
{

L.
∂u

∂c
.
∂c

∂Ii

+ qi

}

= 0

Thus,

qi =
∂u

∂c
; i = 0,W,R,NR,H. (A.3.2)
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Appendix A Optimal control problem 0

∂H

∂EH

= 0 (A.3.3)

∂H

∂EH

=e−δt ∂

∂EH

{

Lu(c(F (E(EH)))) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pAǫA + qLβL
}

=e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.

∂E

∂EH

− pD

}

= 0

Thus,

pD −
∂u

∂c
.
∂F

∂E
= 0 (A.3.4)

From A.3.2, and assuming ∂u/∂c > 0:

pD

q
=

∂F

∂E
(A.3.5)

∂H

∂Ei

= 0 ; i = R,NR (A.3.6)

∂H

∂Ei

=e−δt ∂

∂Ei

{

Lu(c(F (E(Ei)))) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pAǫA + qLβL
}

=e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.
∂E

∂Ei

− pi

}

= 0

Thus,

pi −
∂u

∂c
.
∂F

∂E
= 0; i = R,NR (A.3.7)
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From A.3.2:

pi

q
=

∂F

∂E
; i = R,NR. (A.3.8)

∂H

∂EE

= 0 (A.3.9)

∂H

∂EE

=e−δt ∂

∂EE

{

Lu(c(F (E(EE)), s(EE))) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pAǫA + qLβL
}

=e−δt
{

L.
∂u

∂c

( ∂c

∂F
.
∂F

∂E
.
∂E

∂EE

+
∂c

∂s
.

∂s

∂EE

)}

=e−δt
{∂u

∂c

(∂F

∂E
−

∂s

∂EE

)}

= 0

Thus, assuming ∂u/∂c > 0:

∂F

∂E
=

∂s

∂EE

(A.3.10)

∂F

∂Ei

=
∂F

∂E
.
∂E

∂Ei

=
∂F

∂E
=

∂s

∂EE

; i = R,NR,H (A.3.11)

∂H

∂W
= 0 (A.3.12)

∂H

∂W
=e−δt ∂

∂W

{

Lu(c(F (E(W ),W ))) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pAǫA + qLβL
}

=e−δt
{

L.
[∂u

∂c
.
∂c

∂F
.
(∂F

∂E
.
∂E

∂W
+

∂F

∂W

)]

− pD

}

= 0
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pD −
∂u

∂c
.
( ∂F

∂W
−

∂F

∂E

)

= 0 (A.3.13)

From A.3.4, A.3.13 and assuming ∂u/∂c > 0:

∂F

∂W
= 2

∂F

∂E
(A.3.14)

∂H

∂α
= 0 (A.3.15)

∂H

∂α
=e−δt ∂

∂α

{

Lu(c(F (E(α))), α) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pAǫA + qLβL
}

=e−δt
{

L.
[∂u

∂c
.
∂c

∂F
.
∂F

∂E
.
∂E

∂α
+

∂u

∂α

]}

= 0

Thus,

∂u

∂c
.
∂F

∂E
=

∂u

∂α

From A.3.7, A.3.4:

pi =
∂u

∂α
; i = D,R,NR (A.3.16)

And assuming ∂u/∂c > 0:

∂F

∂E
=

∂u/∂α

∂u/∂c
(A.3.17)

∂H

∂β
= 0 (A.3.18)
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∂H

∂β
=e−δt ∂

∂β

{

Lu(β) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pAǫA + qLβL
}

=e−δt
{

L.
∂u

∂β
+ L.qL

}

= 0

Thus,

qL = −
∂u

∂β
(A.3.19)

For the co-state variables:

de−δt.pi

dt
= −

∂H

∂Di

; i = R,NR (A.3.20)

e−δt(ṗi − δpi) = − e−δt ∂

∂Di

{

Lu(c(F (E(Ei(Di))))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei(Di)) + pD(f(t) − (EH + W )) + pAǫA+

qLβL
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.
∂E

∂Ei

.
∂Ei

∂Di

− pi.
∂Ei

∂Di

}

Therefore,

ṗi = δpi +
(

pi −
∂u

∂c
.
∂F

∂E

)

.
∂Ei

∂Di

; i = R,NR.

From expression A.3.7:

ṗi

pi

= δ; i = R,NR. (A.3.21)

de−δt.pD

dt
= −

∂H

∂D
(A.3.22)
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e−δt(ṗD − δpD) = − e−δt ∂

∂D

{

Lu(c(F (E(EH(D),W (D)),W (D)))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH(D) + W (D))) + pAǫA+

qLβL
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F

(∂F

∂E

[ ∂E

∂EH

.
∂EH

∂D
+

∂E

∂W
.
∂W

∂D

]

+
∂F

∂W
.
∂W

∂D

)

− pD

[∂EH

∂D
+

∂W

∂D

]}

ṗD = δpD +
(

pD −
∂u

∂c
.
∂F

∂E

)

.
∂EH

∂D
+

(

pD +
∂u

∂c
.
∂F

∂E
−

∂u

∂c
.
∂F

∂W

)

.
∂W

∂D

From expressions A.3.4 and A.3.13:

ṗD

pD

= δ (A.3.23)

de−δt.qi

dt
= −

∂H

∂Ki

; i = R,NR. (A.3.24)

e−δt(q̇i − δqi) = − e−δt ∂

∂Ki

{

Lu(c(F (E(Ei(Ki))))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei(Ki)) + pD(f(t) − (EH + W )) + pAǫA+

qLβL
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.
∂E

∂Ei

.
∂Ei

∂Ki

+ qi(−µi) + pi

(

−
∂Ei

∂Ki

)}

q̇i = (δ + µi)qi +
(

pi −
∂u

∂c
.
∂F

∂E

)

.
∂Ei

∂Ki

; i = R,NR.

From expression A.3.7:

q̇i

qi

= δ + µi; i = R,NR. (A.3.25)
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de−δt.qH

dt
= −

∂H

∂KH

(A.3.26)

e−δt(q̇H − δqH) = − e−δt ∂

∂KH

{

Lu(c(F (E(EH(KH))))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH(KH) + W )) + pAǫA+

qLβL
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.

∂E

∂EH

.
∂EH

∂KH

+ qH(−µH) + pD

(

−
∂EH

∂KH

)}

q̇H = (δ + µH)qH +
(

pD −
∂u

∂c
.
∂F

∂E

)

.
∂EH

∂KH

From expression A.3.4:

q̇H

qH

= δ + µH (A.3.27)

de−δt.qW

dt
= −

∂H

∂KW

(A.3.28)

e−δt(q̇W − δqW ) = − e−δt ∂

∂KW

{

Lu(c(F (E(W (KW )),W (KW )))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH + W (KW ))) + pAǫA+

qLβL
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F

(∂F

∂E
.
∂E

∂W
.
∂W

∂KW

+
∂F

∂W
.
∂W

∂KW

)

+ qW (−µW )

+ pD

(

−
∂W

∂KW

)}

q̇W = (δ + µW )qW +
(

pD −
∂u

∂c

[ ∂F

∂W
−

∂F

∂E

])

.
∂W

∂KW
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From expression A.3.13:

q̇W

qW

= δ + µW (A.3.29)

From expressions A.3.2, A.3.25, A.3.27 and A.3.29:

µR = µNR = µH = µW = µ (A.3.30)

and

q̇R

qR

=
q̇NR

qNR

=
q̇H

qH

=
q̇W

qW

=
q̇D

qD

=
q̇0

q0

= δ + µ. (A.3.31)

de−δt.q0

dt
= −

∂H

∂K0

(A.3.32)

e−δt(q̇0 − δq0) = − e−δt ∂

∂K0

{

Lu(c(F (K0))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH + W )) + pAǫA+

qLβL
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂K0

+ q0(−µ0)
}

q̇0 = (δ + µ0)q0 −
∂u

∂c
.
∂F

∂K0

From expression A.3.2:

q̇0

q0

= δ + µ0 −
∂F

∂K0

(A.3.33)
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From expression A.3.31:

∂F

∂K0

= µ0 − µ (A.3.34)

Assuming ∂F/∂K0 > 0:

µ0 > µ (A.3.35)

de−δt.pA

dt
= −

∂H

∂A
(A.3.36)

e−δt(ṗA − δpA) = − e−δt ∂

∂A

{

Lu(c(F (AL0, E(EH(FH(ALH)), ER(FR(ALR))

, ENR(FNR(ALNR)),W (FW (ALW ))),W (FW (ALW )))))

+
∑

qi(−µiKi + Ii) +
∑

pi(−Ei(Fi(ALi)))

+ pD(f(t) − (EH(FH(ALH)) + W (FW (ALW ))))+

pA.ǫA + qLβL
}

= − e−δt
{

L.
∂u

∂c

( ∂c

∂F

[ ∂F

∂AL0

.
∂AL0

∂A
+

∂F

∂E

{ ∂E

∂EH

.
∂EH

∂FH

.
∂FH

∂ALH

.

∂ALH

∂A
+

∂E

∂ER

.
∂ER

∂FR

.
∂FR

∂ALR

.
∂ALR

∂A
+

∂E

∂ENR

.
∂ENR

∂FNR

.
∂FNR

∂ALNR

.

∂ALNR

∂A
+

∂E

∂W
.
∂W

∂FW

.
∂FW

∂ALW

.
∂ALW

∂A

}

+
∂F

∂W
.
∂W

∂FW

.
∂FW

∂ALW

.

∂ALW

∂A

])

+ pR

(

−
∂ER

∂FR

.
∂FR

∂ALR

.
∂ALR

∂A

)

+ pNR

(

−
∂ENR

∂FNR

.

∂FNR

∂ALNR

.
∂ALNR

∂A

)

+ pD

(

−
∂EH

∂FH

.
∂FH

∂ALH

.
∂ALH

∂A
−

∂W

∂FW

.

∂FW

∂ALW

.
∂ALW

∂A

)

+ pAǫ
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ṗA =(δ − ǫ)pA −
∂u

∂c
.

∂F

∂AL0

.L0 − GH(D).
∂FH

∂ALH

.LH

(∂u

∂c
.
∂F

∂E
− pD

)

− GR(DR).
∂FR

∂ALR

.LR

(∂u

∂c
.
∂F

∂E
− pR

)

− GNR(DNR).
∂FNR

∂ALNR

.LNR

(∂u

∂c
.
∂F

∂E

− pNR

)

− GW (D).
∂FW

∂ALW

.LW

(

−
∂u

∂c
.
∂F

∂E
− pD +

∂u

∂c
.
∂F

∂W

)

ṗA =(δ − ǫ)pA −
∂u

∂c
.

∂F

∂AL0

.L0

ṗA =(δ − ǫ))pA − q0
∂F

∂AL0

.L0 (A.3.37)

de−δt.qL

dt
= −

∂H

∂L
(A.3.38)

e−δt(q̇L − δqL) = − e−δt ∂

∂L

{

Lu(c(L, F (E(L)))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH + W )) + pA.ǫA+

qLβL
}

= − e−δt
{

L.
∂u

∂c

( ∂c

∂L
+

∂c

∂F
.
∂F

∂E
.
∂E

∂L

)

+ u + qLβ
}

= − e−δt
{

L.
∂u

∂c

(

−
c

L
− α.

∂F

∂E

)

+ u + qLβ
}

q̇L = (δ − β)qL +
∂u

∂c

(

c + α.
∂F

∂E

)

− u

q̇L = (δ − β)qL + q0

(

c + α.
∂F

∂E

)

− u (A.3.39)
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B Appendix

B.1 Optimal control problem 1

Max W =

∫

∞

0

e−δtLu(c, α, β)dt, (B.1.1)

subject to

F (K0, AL0, E,W ) = I0 + IW + IH + IR + INR + IA + s(EE) + Lc (B.1.2)

E = ER + ENR + EH + EE − W − Lα (B.1.3)

L = L0 + LR + LNR + LH + LW + LA (B.1.4)

Ei = Fi(Ki, ALi)Gi(Di); i = R,NR (B.1.5)

EH = FH(KH , ALH)GH(D) (B.1.6)

W = FW (KW , ALW )GW (D) (B.1.7)

K̇i = −µiKi + Ii; i = 0, R,NR,H,W,A (B.1.8)

Ḋi = −Ei; i = R,NR (B.1.9)

Ḋ = f(t) − (EH + W ) (B.1.10)

L̇ = βL (B.1.11)

Ȧ = FA(KA, LA)A (B.1.12)

B.2 Hamiltonian

H =e−δt
{

Lu(c, α, β) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A) + qLβL
}

(B.2.1)
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From expression B.1.2 the variable c can be represented as

c =
1

L

[

F (K0, AL0, E,W ) − I0 − IW − IH − IR − INR − IA − s(EE)
]

. (B.2.2)

Therefore, one obtains:

∂c

∂F
=

1

L
;

∂c

∂Ii

= −
1

L
(i = 0, R,NR,H,W,A) ;

∂c

∂s
= −

1

L
. (B.2.3)

From E = ER + ENR + EH + EE − W − Lα, one gets then

∂E

∂Ei

= 1 (i = R,NR,H,E) ;
∂E

∂W
= −1;

∂E

∂α
= −L . (B.2.4)

B.3 Control forces

• Ii, i = 0, R,NR,H,W,A;

• Ei, i = R,NR,H;

• W , EE, α and β.

To maximize the Hamiltonian:

∂H

∂Ii

= 0; i = 0,W,R,NR,H,A. (B.3.1)

∂H

∂Ii

=e−δt ∂

∂Ii

{

Lu(c(Ii)) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A) + qLβL
}

=e−δt
{

L.
∂u

∂c
.
∂c

∂Ii

+ qi

}

= 0

Thus,

qi =
∂u

∂c
; i = 0,W,R,NR,H,A. (B.3.2)
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∂H

∂EH

= 0 (B.3.3)

∂H

∂EH

=e−δt ∂

∂EH

{

Lu(c(F (E(EH)))) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A) + qLβL
}

=e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.

∂E

∂EH

− pD

}

= 0

Thus,

pD −
∂u

∂c
.
∂F

∂E
= 0 (B.3.4)

From B.3.2, and assuming ∂u/∂c > 0:

pD

q
=

∂F

∂E
(B.3.5)

∂H

∂Ei

= 0; i = R,NR (B.3.6)

∂H

∂Ei

=e−δt ∂

∂Ei

{

Lu(c(F (E(Ei)))) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A) + qLβL
}

=e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.
∂E

∂Ei

− pi

}

= 0

Thus,

pi −
∂u

∂c
.
∂F

∂E
= 0; i = R,NR (B.3.7)

67



Appendix B Optimal control problem 1

From B.3.2 and assuming ∂u/∂c > 0:

pi

q
=

∂F

∂E
; i = R,NR. (B.3.8)

∂H

∂EE

= 0 (B.3.9)

∂H

∂EE

=e−δt ∂

∂EE

{

Lu(c(F (E(EE)), s(EE))) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A) + qLβL
}

=e−δt
{

L.
∂u

∂c

( ∂c

∂F
.
∂F

∂E
.
∂E

∂EE

+
∂c

∂s
.

∂s

∂EE

)}

=e−δt
{∂u

∂c

(∂F

∂E
−

∂s

∂EE

)}

= 0

Thus, assuming ∂u/∂c > 0:

∂F

∂E
=

∂s

∂EE

(B.3.10)

∂F

∂Ei

=
∂F

∂E
.
∂E

∂Ei

=
∂F

∂E
=

∂s

∂EE

; i = R,NR,H (B.3.11)

∂H

∂W
= 0 (B.3.12)

∂H

∂W
=e−δt ∂

∂W

{

Lu(c(F (E(W ),W ))) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A) + qLβL
}

=e−δt
{

L.
[∂u

∂c
.
∂c

∂F
.
(∂F

∂E
.
∂E

∂W
+

∂F

∂W

)]

− pD

}

= 0
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pD −
∂u

∂c
.
( ∂F

∂W
−

∂F

∂E

)

= 0 (B.3.13)

From B.3.4, B.3.13 and assuming ∂u/∂c > 0:

∂F

∂W
= 2

∂F

∂E
(B.3.14)

∂H

∂α
= 0 (B.3.15)

∂H

∂α
=e−δt ∂

∂α

{

Lu(c(F (E(α))), α) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A) + qLβL
}

=e−δt
{

L.
[∂u

∂c
.
∂c

∂F
.
∂F

∂E
.
∂E

∂α
+

∂u

∂α

]}

= 0

Thus,

∂u

∂c
.
∂F

∂E
=

∂u

∂α

From B.3.7, B.3.4:

pi =
∂u

∂α
; i = D,R,NR. (B.3.16)

And, assuming ∂u/∂c > 0:

∂F

∂E
=

∂u/∂α

∂u/∂c
(B.3.17)

∂H

∂β
= 0 (B.3.18)
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∂H

∂β
=e−δt ∂

∂β

{

Lu(β) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A) + qLβL
}

=e−δt
{

L.
∂u

∂β
+ L.qL

}

= 0

Thus,

qL = −
∂u

∂β
(B.3.19)

For the co-state variables:

de−δt.pi

dt
= −

∂H

∂Di

; i = R,NR (B.3.20)

e−δt(ṗi − δpi) = − e−δt ∂

∂Di

{

Lu(c(F (E(Ei(Di))))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei(Di)) + pD(f(t) − (EH + W )) + pA(FA(KA, LA)A)+

qLβL
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.
∂E

∂Ei

.
∂Ei

∂Di

− pi.
∂Ei

∂Di

}

Therefore,

ṗi = δpi +
(

pi −
∂u

∂c
.
∂F

∂E

)

.
∂Ei

∂Di

; i = R,NR.

From expression B.3.7:

ṗi

pi

= δ; i = R,NR. (B.3.21)

de−δt.pD

dt
= −

∂H

∂D
(B.3.22)
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e−δt(ṗD − δpD) = − e−δt ∂

∂D

{

Lu(c(F (E(EH(D),W (D)),W (D)))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH(D) + W (D))) + pA(FA(KA, LA)A)+

qLβL
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F

(∂F

∂E

[ ∂E

∂EH

.
∂EH

∂D
+

∂E

∂W
.
∂W

∂D

]

+
∂F

∂W
.
∂W

∂D

)

− pD

[∂EH

∂D
+

∂W

∂D

]}

ṗD = δpD +
(

pD −
∂u

∂c
.
∂F

∂E

)

.
∂EH

∂D
+

(

pD +
∂u

∂c
.
∂F

∂E
−

∂u

∂c
.
∂F

∂W

)

.
∂W

∂D

From expressions B.3.4 and B.3.13:

ṗD

pD

= δ (B.3.23)

de−δt.qi

dt
= −

∂H

∂Ki

; i = R,NR. (B.3.24)

e−δt(q̇i − δqi) = − e−δt ∂

∂Ki

{

Lu(c(F (E(Ei(Ki))))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei(Ki)) + pD(f(t) − (EH + W )) + pA(FA(KA, LA)A)+

qLβL
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.
∂E

∂Ei

.
∂Ei

∂Ki

+ qi(−µi) + pi

(

−
∂Ei

∂Ki

)}

q̇i = (δ + µi)qi +
(

pi −
∂u

∂c
.
∂F

∂E

)

.
∂Ei

∂Ki

; i = R,NR.

From expression B.3.7:

q̇i

qi

= δ + µi; i = R,NR. (B.3.25)
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de−δt.qH

dt
= −

∂H

∂KH

(B.3.26)

e−δt(q̇H − δqH) = − e−δt ∂

∂KH

{

Lu(c(F (E(EH(KH))))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH(KH) + W )) + pA(FA(KA, LA)A)+

qLβL
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.

∂E

∂EH

.
∂EH

∂KH

+ qH(−µH) + pD

(

−
∂EH

∂KH

)}

q̇H = (δ + µH)qH +
(

pD −
∂u

∂c
.
∂F

∂E

)

.
∂EH

∂KH

From expression B.3.4:

q̇H

qH

= δ + µH (B.3.27)

de−δt.qW

dt
= −

∂H

∂KW

(B.3.28)

e−δt(q̇W − δqW ) = − e−δt ∂

∂KW

{

Lu(c(F (E(W (KW )),W (KW )))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH + W (KW ))) + pA(FA(KA, LA)A)+

qLβL
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F

(∂F

∂E
.
∂E

∂W
.
∂W

∂KW

+
∂F

∂W
.
∂W

∂KW

)

+ qW (−µW ) + pD

(

−
∂W

∂KW

)}

q̇W = (δ + µW )qW +
(

pD −
∂u

∂c

[ ∂F

∂W
−

∂F

∂E

])

.
∂W

∂KW
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From expression B.3.13:

q̇W

qW

= δ + µW (B.3.29)

From expressions B.3.2, B.3.25, B.3.27 and B.3.29:

µR = µNR = µH = µW = µ (B.3.30)

and

q̇R

qR

=
q̇NR

qNR

=
q̇H

qH

=
q̇W

qW

=
q̇D

qD

=
q̇A

qA

=
q̇0

q0

= δ + µ. (B.3.31)

de−δt.q0

dt
= −

∂H

∂K0

(B.3.32)

e−δt(q̇0 − δq0) = − e−δt ∂

∂K0

{

Lu(c(F (K0))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH + W )) + pA(FA(KA, LA)A)+

qLβL
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂K0

+ q0(−µ0)
}

q̇0 = (δ + µ0)q0 −
∂u

∂c
.
∂F

∂K0

From expression B.3.2:

q̇0

q0

= δ + µ0 −
∂F

∂K0

(B.3.33)
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From expression B.3.31 and B.3.33:

∂F

∂K0

= µ0 − µ (B.3.34)

Assuming ∂F/∂K0 > 0:

µ0 > µ (B.3.35)

de−δt.qA

dt
= −

∂H

∂KA

(B.3.36)

e−δt(q̇A − δqA) = − e−δt ∂

∂KA

{

Lu(c, α, β) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH + W )) + pA(FA(KA, LA)A)+

qLβL
}

= − e−δt
{

qA(−µA) + pAA.
∂FA

∂KA

}

q̇A = (δ + µA)qA − pAA.
∂FA

∂KA

(B.3.37)

From B.3.31:

qA = C.e(δ+µ)t (B.3.38)

Thus, form B.3.37 and assuming A, ∂FA/∂KA > 0:

pA =
C.(µA − µ)

A.(∂FA/∂KA)
e(δ+µ)t (B.3.39)
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de−δt.pA

dt
= −

∂H

∂A
(B.3.40)

e−δt(ṗA − δpA) = − e−δt ∂

∂A

{

Lu(c(F (AL0, E(EH(FH(ALH)), ER(FR(ALR))

, ENR(FNR(ALNR)),W (FW (ALW ))),W (FW (ALW )))))

+
∑

qi(−µiKi + Ii) +
∑

pi(−Ei(Fi(ALi)))

+ pD(f(t) − (EH(FH(ALH)) + W (FW (ALW ))))+

pA(FA(KA, LA)A) + qLβL
}

= − e−δt
{

L.
∂u

∂c

( ∂c

∂F

[ ∂F

∂AL0

.
∂AL0

∂A
+

∂F

∂E

{ ∂E

∂EH

.
∂EH

∂FH

.
∂FH

∂ALH

.

∂ALH

∂A
+

∂E

∂ER

.
∂ER

∂FR

.
∂FR

∂ALR

.
∂ALR

∂A
+

∂E

∂ENR

.
∂ENR

∂FNR

.
∂FNR

∂ALNR

.

∂ALNR

∂A
+

∂E

∂W
.
∂W

∂FW

.
∂FW

∂ALW

.
∂ALW

∂A

}

+
∂F

∂W
.
∂W

∂FW

.
∂FW

∂ALW

.

∂ALW

∂A

])

+ pR

(

−
∂ER

∂FR

.
∂FR

∂ALR

.
∂ALR

∂A

)

+ pNR

(

−
∂ENR

∂FNR

.

∂FNR

∂ALNR

.
∂ALNR

∂A

)

+ pD

(

−
∂EH

∂FH

.
∂FH

∂ALH

.
∂ALH

∂A
−

∂W

∂FW

.

∂FW

∂ALW

.
∂ALW

∂A

)

+ pAFA(KA, LA)

ṗA =(δ − FA(KA, LA))pA −
∂u

∂c
.

∂F

∂AL0

.L0 − GH(D).
∂FH

∂ALH

.LH

(∂u

∂c
.
∂F

∂E
− pD

)

− GR(DR).
∂FR

∂ALR

.LR

(∂u

∂c
.
∂F

∂E
− pR

)

− GNR(DNR).
∂FNR

∂ALNR

.LNR

(∂u

∂c
.
∂F

∂E

− pNR

)

− GW (D).
∂FW

∂ALW

.LW

(

−
∂u

∂c
.
∂F

∂E
− pD +

∂u

∂c
.
∂F

∂W

)

ṗA =(δ − FA(KA, LA))pA −
∂u

∂c
.

∂F

∂AL0

.L0

ṗA =(δ − FA(KA, LA))pA − qA

∂F

∂AL0

.L0 (B.3.41)
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de−δt.qL

dt
= −

∂H

∂L
(B.3.42)

e−δt(q̇L − δqL) = − e−δt ∂

∂L

{

Lu(c(L, F (E(L)))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH + W )) + pA(FA(KA, LA)A)+

qLβL
}

= − e−δt
{

L.
∂u

∂c

( ∂c

∂L
+

∂c

∂F
.
∂F

∂E
.
∂E

∂L

)

+ u + qLβ
}

= − e−δt
{

L.
∂u

∂c

(

−
c

L
− α.

∂F

∂E

)

+ u + qLβ
}

q̇L = (δ − β)qL +
∂u

∂c

(

c + α.
∂F

∂E

)

− u

q̇L = (δ − β)qL + qA

(

c + α.
∂F

∂E

)

− u (B.3.43)
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C Appendix

C.1 Optimal control problem 2

Max W =

∫

∞

0

e−δtLu(c, α, β)dt, (C.1.1)

subject to

F (K0, AL0, E,W ) = I0 + IW + IH + IR + INR + IA + s(EE) + Lc (C.1.2)

E = ER + ENR + EH + EE − W − Lα (C.1.3)

L = L0 + LR + LNR + LH + LW + LA (C.1.4)

Ei = Fi(Ki, ALi)Gi(Di); i = R,NR (C.1.5)

EH = FH(KH , ALH)GH(D) (C.1.6)

W = FW (KW , ALW )GW (D) (C.1.7)

K̇i = −µiKi + Ii; i = 0, R,NR,H,W,A (C.1.8)

Ḋi = −Ei; i = R,NR (C.1.9)

Ḋ = f(t) − (EH + W ) (C.1.10)

L̇ = βL(1 − γF (K0, AL0, E,W )−1L) (C.1.11)

Ȧ = FA(KA, LA)A (C.1.12)
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C.2 Hamiltonian

H =e−δt
{

Lu(c, α, β) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A)+

qL(βL(1 − γF (K0, AL0, E,W )−1L))
}

(C.2.1)

From expression C.1.2 the variable c can be represented as

c =
1

L

[

F (K0, AL0, E,W ) − I0 − IW − IH − IR − INR − IA − s(EE)
]

. (C.2.2)

Therefore, one obtains:

∂c

∂F
=

1

L
;

∂c

∂Ii

= −
1

L
(i = 0, R,NR,H,W,A) ;

∂c

∂s
= −

1

L
. (C.2.3)

From E = ER + ENR + EH + EE − W − Lα, one gets then

∂E

∂Ei

= 1 (i = R,NR,H,E) ;
∂E

∂W
= −1 ;

∂E

∂α
= −L . (C.2.4)

C.3 Control forces

• Ii, i = 0, R,NR,H,W,A;

• Ei, i = R,NR,H;

• W , EE, α and β.

To maximize the Hamiltonian:

∂H

∂Ii

= 0; i = 0,W,R,NR,H,A. (C.3.1)
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∂H

∂Ii

=e−δt ∂

∂Ii

{

Lu(c(Ii)) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A)+

qL(βL(1 − γF (K0, AL0, E,W )−1L))
}

=e−δt
{

L.
∂u

∂c
.
∂c

∂Ii

+ qi

}

= 0

Thus,

qi =
∂u

∂c
; i = 0,W,R,NR,H,A. (C.3.2)

∂H

∂EH

= 0 (C.3.3)

∂H

∂EH

=e−δt ∂

∂EH

{

Lu(c(F (E(EH)))) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A)+

qL(βL(1 − γF (E(EH))−1L))
}

=e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.

∂E

∂EH

− pD + qLβγ.
(L

F

)2

.
∂F

∂E
.

∂E

∂EH

}

= 0

Thus,

pD −
(∂u

∂c
+ qLβγ.

(L

F

)2)∂F

∂E
= 0 (C.3.4)

From C.3.2:

pD

q + qLβγ.(L/F )2
=

∂F

∂E
(C.3.5)

∂H

∂Ei

= 0; i = R,NR. (C.3.6)
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∂H

∂Ei

=e−δt ∂

∂Ei

{

Lu(c(F (E(Ei)))) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A) + qL(βL(1 − γF (E(Ei))
−1L))

}

=e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.
∂E

∂Ei

− pi + qLβγ.
(L

F

)2

.
∂F

∂E
.
∂E

∂Ei

}

= 0

Thus,

pi −
(∂u

∂c
+ qLβγ.

(L

F

)2)∂F

∂E
= 0; i = R,NR. (C.3.7)

From C.3.2:

pi

q + qLβγ.(L/F )2
=

∂F

∂E
(C.3.8)

∂H

∂EE

= 0 (C.3.9)

∂H

∂EE

=e−δt ∂

∂EE

{

Lu(c(F (E(EE)), s(EE))) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A) + qL(βL(1 − γF (E(EE))−1L))
}

=e−δt
{

L.
∂u

∂c

( ∂c

∂F
.
∂F

∂E
.
∂E

∂EE

+
∂c

∂s
.

∂s

∂EE

)

+ qLβγ.
(L

F

)2

.
∂F

∂E
.
∂E

∂EE

}

= 0

Thus,

(∂u

∂c
+ qLβγ.

(L

F

)2)∂F

∂E
−

∂u

∂c
.

∂s

∂EE

= 0 (C.3.10)

Assuming ∂u/∂c + qLβγ(L/F )2 > 0:

∂F

∂E
=

q

q + qLβγ(L/F )2
.

∂s

∂EE

(C.3.11)

∂F

∂Ei

=
∂F

∂E
.
∂E

∂Ei

=
∂F

∂E
=

q

q + qLβγ(L/F )2
.

∂s

∂EE

(C.3.12)
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∂H

∂W
= 0 (C.3.13)

∂H

∂W
=e−δt ∂

∂α

{

Lu(c(F (E(W ),W ))) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A) + qLβL(1 − γF (E(W ),W )−1L)
}

=e−δt
{

L.
(∂u

∂c
.
∂c

∂F

[∂F

∂E
.
∂E

∂W
+

∂F

∂W

])

− pD + qLβγ.
(L

F

)2

.
[∂F

∂E
.
∂E

∂W
+

∂F

∂W

]}

= 0

Thus,

pD −
(∂u

∂c
+ qLβγ.

(L

F

)2)[ ∂F

∂W
−

∂F

∂E

]

= 0 (C.3.14)

From C.3.4, C.3.14:

∂F

∂W
= 2

∂F

∂E
(C.3.15)

∂H

∂α
= 0 (C.3.16)

∂H

∂α
=e−δt ∂

∂α

{

Lu(c(F (E(α)), α)) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A) + qL(βL(1 − γF (E(α))−1L))
}

=e−δt
{

L.
(∂u

∂c
.
∂c

∂F
.
∂F

∂E
.
∂E

∂α
+

∂u

∂α

)

+ qLβγ.
(L

F

)2

.
∂F

∂E
.
∂E

∂α

}

=L.
∂u

∂α
− L.

∂F

∂E

(∂u

∂c
+ qLβγ.

(L

F

)2)

= 0

Thus,

∂F

∂E
=

∂u/∂α

∂u/∂α + qLβγ.(L/F )2
(C.3.17)
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∂H

∂β
= 0 (C.3.18)

∂H

∂β
=e−δt ∂

∂β

{

Lu(β) +
∑

qi(−µiKi + Ii) +
∑

pi(−Ei)+

pD(f(t) − (EH + W )) + pA(FA(KA, LA)A) + qLβL(1 − γF (K0, AL0, E,W )−1L)
}

=e−δt
{

L.
∂u

∂β
+ L.qL(1 − γF (K0, AL0, E,W )−1L)

}

= 0

Thus,

∂u

∂β
+ qL

(

1 − γ
L

F

)

= 0 (C.3.19)

For the co-state variables:

de−δt.pi

dt
= −

∂H

∂Di

; i = R,NR (C.3.20)

e−δt(ṗi − δpi) = − e−δt ∂

∂Di

{

Lu(c(F (E(Ei(Di))))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei(Di)) + pD(f(t) − (EH + W )) + pA(FA(KA, LA)A)+

qLβL(1 − γF (E(Ei(Di))))
−1L)

}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.
∂E

∂Ei

.
∂Ei

∂Di

− pi.
∂Ei

∂Di

+ qLβγ.
(L

F

)2

.
∂F

∂E
.
∂E

∂Ei

.
∂Ei

∂Di

}

Therefore,

ṗi = δpi +
(

pi −
[∂u

∂c
+ qLβγ.

(L

F

)2]∂F

∂E

)

.
∂Ei

∂Di

; i = R,NR.

From expression C.3.7:

ṗi = δpi; i = R,NR. (C.3.21)
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de−δt.pD

dt
= −

∂H

∂D
(C.3.22)

e−δt(ṗD − δpD) = − e−δt ∂

∂D

{

Lu(c(F (E(EH(D),W (D)),W (D)))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH(D) + W (D))) + pA(FA(KA, LA)A)+

qLβL(1 − γF (E(EH(D),W (D))−1L)
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F

(∂F

∂E

[ ∂E

∂EH

.
∂EH

∂D
+

∂E

∂W
.
∂W

∂D

]

+
∂F

∂W
.
∂W

∂D

)

− pD

[∂EH

∂D
+

∂W

∂D

]

+ qLβγ.
(L

F

)2

.
(∂F

∂E

[ ∂E

∂EH

.
∂EH

∂D
+

∂E

∂W
.
∂W

∂D

]

+

∂F

∂W
.
∂W

∂D

)}

ṗD =δpD +
(

pD −
(∂u

∂c
+ qLβγ.

(L

F

)2)∂F

∂E

)

.
∂EH

∂D
+

(

pD −
(∂u

∂c
+ qLβγ.

(L

F

)2)[ ∂F

∂W
−

∂F

∂E

])

.
∂W

∂D

From expressions C.3.4 and C.3.14:

ṗD

pD

= δ (C.3.23)

de−δt.qi

dt
= −

∂H

∂Ki

; i = R,NR. (C.3.24)
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e−δt(q̇i − δqi) = − e−δt ∂

∂Ki

{

Lu(c(F (E(Ei(Ki))))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei(Ki)) + pD(f(t) − (EH + W )) + pA(FA(KA, LA)A)+

qLβL(1 − γF (E(Ei(Ki)))
−1L)

}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.
∂E

∂Ei

.
∂Ei

∂Ki

+ qi(−µi) + pi

(

−
∂Ei

∂Ki

)

+

+ qLβγ.
(L

F

)2 ∂F

∂E
.
∂E

∂Ei

.
∂Ei

∂Ki

}

q̇i = (δ + µi)qi +
(

pi −
[∂u

∂c
+ qLβγ.

(L

F

)2]∂F

∂E

)

.
∂Ei

∂Ki

; i = R,NR.

From expression C.3.7:

q̇i

qi

= δ + µi; i = R,NR. (C.3.25)

de−δt.qH

dt
= −

∂H

∂KH

(C.3.26)

e−δt(q̇H − δqH) = − e−δt ∂

∂KH

{

Lu(c(F (E(EH(KH))))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH(KH) + W )) + pA(FA(KA, LA)A)+

qLβL(1 − γF (E(EH(KH)))−1L)
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂E
.

∂E

∂EH

.
∂EH

∂KH

+ qH(−µH) + pD

(

−
∂EH

∂KH

)

+

qLβγ.
(L

F

)2 ∂F

∂E
.

∂E

∂EH

.
∂EH

∂KH

}

q̇H = (δ + µH)qH +
(

pD −
(∂u

∂c
+ qLβγ.

(L

F

)2)∂F

∂E

)

.
∂EH

∂KH

84



Appendix C Optimal control problem 2

From expression C.3.4:

q̇H

qH

= δ + µH (C.3.27)

de−δt.qW

dt
= −

∂H

∂KW

(C.3.28)

e−δt(q̇W − δqW ) = − e−δt ∂

∂KW

{

Lu(c(F (E(W (KW )),W (KW )))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH + W (KW ))) + pA(FA(KA, LA)A)+

qLβL(1 − γF (E(W (KW )),W (KW ))−1L)
}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F

(∂F

∂E
.
∂E

∂W
.
∂W

∂KW

+
∂F

∂W
.
∂W

∂KW

)

+ qW (−µW )+

pD

(

−
∂W

∂KW

)

+ qLβγ.
(L

F

)2(∂F

∂E
.
∂E

∂W
.
∂W

∂KW

+
∂F

∂W
.
∂W

∂KW

)}

q̇W = (δ + µW )qW +
(

pD −
(∂u

∂c
+ qLβγ.

(L

F

)2)[ ∂F

∂W
−

∂F

∂E

])

.
∂W

∂KW

From expression C.3.14:

q̇W

qW

= δ + µW (C.3.29)

From expressions C.3.2, C.3.25, C.3.27, C.3.29:

µR = µNR = µH = µW = µ (C.3.30)

and

q̇R

qR

=
q̇NR

qNR

=
q̇H

qH

=
q̇W

qW

=
q̇D

qD

=
q̇A

qA

=
q̇0

q0

= δ + µ. (C.3.31)
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de−δt.q0

dt
= −

∂H

∂K0

(C.3.32)

e−δt(q̇0 − δq0) = − e−δt ∂

∂K0

{

Lu(c(F (K0))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH + W )) + pA(FA(KA, LA)A)+

qLβL(1 − γF (K0)
−1L)

}

= − e−δt
{

L.
∂u

∂c
.
∂c

∂F
.
∂F

∂K0

+ q0(−µ0) + qLβγ.
(L

F

)2 ∂F

∂K0

}

q̇0 = (δ + µ0)q0 −
∂u

∂c
.
∂F

∂K0

− qLβγ.
(L

F

)2 ∂F

∂K0

By expression C.3.2:

q̇0 =
(

δ + µ0 −
∂F

∂K0

)

q0 − qLβγ.
(L

F

)2 ∂F

∂K0

(C.3.33)

From expression C.3.31:

q0 = C.e(δ+µ)t (C.3.34)

Thus, from C.3.33:

qL =

C.

(

µ0 − µ −
∂F

∂K0

)

βγ.
(L

F

)2 ∂F

∂K0

· e(δ+µ)t (C.3.35)

de−δt.qA

dt
= −

∂H

∂KA

(C.3.36)
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e−δt(q̇A − δqA) = − e−δt ∂

∂KA

{

Lu(c, α, β) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH + W )) + pA(FA(KA, LA)A)+

qLβL(1 − F (K0, AL0, E,W )−1L)
}

= − e−δt
{

qA(−µA) + pAA.
∂FA

∂KA

}

q̇A = (δ + µA)qA − pAA.
∂FA

∂KA

(C.3.37)

From C.3.31:

qA = C.e(δ+µ)t (C.3.38)

Thus, form C.3.37:

pA =
C.(µA − µ)

A.(∂FA/∂KA)
e(δ+µ)t (C.3.39)
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de−δt.pA

dt
= −

∂H

∂A
(C.3.40)

e−δt(ṗA − δpA) = − e−δt ∂

∂A

{

Lu(c(F (AL0, E(EH(FH(ALH)), ER(FR(ALR))

, ENR(FNR(ALNR)),W (FW (ALW ))),W (ALW ))))

+
∑

qi(−µiKi + Ii) +
∑

pi(−Ei(Fi(ALi)))

+ pD(f(t) − (EH(FH(ALH)) + W (FW (ALW ))))+

pA(FA(KA, LA)A) + qLβL(1 − γF (AL0, E(EH(FH(ALH)),

ER(FR(ALR)), ENR(FNR(ALNR)),W (FW (ALW ))),W (ALW ))−1L)
}

= − e−δt
{

L.
∂u

∂c

( ∂c

∂F

[ ∂F

∂AL0

.
∂AL0

∂A
+

∂F

∂E

{ ∂E

∂EH

.
∂EH

∂FH

.
∂FH

∂ALH

.

∂ALH

∂A
+

∂E

∂ER

.
∂ER

∂FR

.
∂FR

∂ALR

.
∂ALR

∂A
+

∂E

∂ENR

.
∂ENR

∂FNR

.
∂FNR

∂ALNR

.

∂ALNR

∂A
+

∂E

∂W
.
∂W

∂FW

.
∂FW

∂ALW

.
∂ALW

∂A

}

+
∂F

∂W
.
∂W

∂FW

.
∂FW

∂ALW

.

∂ALW

∂A

])

+ pR

(

−
∂ER

∂FR

.
∂FR

∂ALR

.
∂ALR

∂A

)

+ pNR

(

−
∂ENR

∂FNR

.

∂FNR

∂ALNR

.
∂ALNR

∂A

)

+ pD

(

−
∂EH

∂FH

.
∂FH

∂ALH

.
∂ALH

∂A
−

∂W

∂FW

.

∂FW

∂ALW

.
∂ALW

∂A

)

+ pAFA(KA, LA) + qLβγ
(L

F

)2[ ∂F

∂AL0

.
∂AL0

∂A
+

∂F

∂E

{ ∂E

∂EH

.
∂EH

∂FH

.
∂FH

∂ALH

.
∂ALH

∂A
+

∂E

∂ER

.
∂ER

∂FR

.
∂FR

∂ALR

.
∂ALR

∂A
+

∂E

∂ENR

.
∂ENR

∂FNR

.
∂FNR

∂ALNR

.

∂ALNR

∂A
+

∂E

∂W
.
∂W

∂FW

.
∂FW

∂ALW

.
∂ALW

∂A

}

+
∂F

∂W
.
∂W

∂FW

.
∂FW

∂ALW

.

∂ALW

∂A

]}
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ṗA =(δ − FA(KA, LA))pA −
∂u

∂c
.

∂F

∂AL0

.L0+

GH(D).
∂FH

∂ALH

.LH

(

pD −
(∂u

∂c
+ qLβγ.

(L

F

)2)∂F

∂E

)

+

GR(DR).
∂FR

∂ALR

.LR

(

pR −
(∂u

∂c
+ qLβγ.

(L

F

)2)∂F

∂E

)

+

GNR(DNR).
∂FNR

∂ALNR

.LNR

(

pNR −
(∂u

∂c
+ qLβγ.

(L

F

)2)∂F

∂E

)

+

GW (D).
∂FW

∂ALW

.LW

(

pD −
(∂u

∂c
+ qLβγ.

(L

F

)2)[ ∂F

∂W
−

∂F

∂E

])

−

qLβγ
(L

F

)2 ∂F

∂AL0

L0

ṗA =(δ − FA(KA, LA))pA −
∂u

∂c
.

∂F

∂AL0

.L0 − qLβγ
(L

F

)2 ∂F

∂AL0

L0

ṗA =(δ − FA(KA, LA))pA − qA

∂F

∂AL0

.L0 − qLβγ
(L

F

)2 ∂F

∂AL0

L0 (C.3.41)

de−δt.qL

dt
= −

∂H

∂L
(C.3.42)

e−δt(q̇L − δqL) = − e−δt ∂

∂L

{

Lu(c(L, F (E(L)))) +
∑

qi(−µiKi + Ii)+

∑

pi(−Ei) + pD(f(t) − (EH + W )) + pA(FA(KA, LA)A)+

qLβL(1 − F (E(L))−1L)
}

= − e−δt
{

L.
∂u

∂c

( ∂c

∂L
+

∂c

∂F
.
∂F

∂E
.
∂E

∂L

)

+ u+

qLβ
(

1 − 2γ
(L

F

)

− αγ
(L

F

)2 ∂F

∂E

)}

= − e−δt
{

L.
∂u

∂c

(

−
c

L
− α.

∂F

∂E

)

+ u+

qLβ
(

1 − 2γ
(L

F

)

− αγ
(L

F

)2 ∂F

∂E

)}

q̇L =
(

δ − β
[

1 − 2γ
(L

F

)

− αγ
(L

F

)2 ∂F

∂E

])

qL +
∂u

∂c

(

c + α.
∂F

∂E

)

− u
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q̇L =
(

δ − β
[

1 − 2γ
(L

F

)

− αγ
(L

F

)2 ∂F

∂E

])

qL + qA

(

c + α.
∂F

∂E

)

− u (C.3.43)
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D Appendix

D.1 Model 1

The income identity,

Y = C + I = F (K,L). (D.1.1)

The first modified labor force growth model,

L̇ = βL

(

1 −
L

F (K,L)

)

. (D.1.2)

The gross investment identity,

K̇ = −µK + I. = −µK + F (K,L) − C (D.1.3)

From D.1.1 and D.1.3:

K̇ = −µK + F (K,L) − C (D.1.4)

Remember that the production function exhibits constant returns of scale, that is,

F (αK,αL) = αF (K,L), (D.1.5)

where α is a positive real number.
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Thus,

˙(

K

L

)

=
LK̇ − KL̇

L2
=

K̇

L
−

K

L
.β

(

1 −
L

F (K,L)

)

(D.1.6)

= −µk + f(k) − c − k.β

(

1 −
1

f(k)

)

(D.1.7)

= −(µ + β)k + f(k) +
β.k

f(k)
− c (D.1.8)

= −λk + f(k) +
β.k

f(k)
− c (D.1.9)

= −λk + g(k) − c (D.1.10)

where g(k) = f(k) +
β.k

f(k)
and λ = µ + β.

J =

∫

∞

c

e−δtu(c)dt (D.1.11)

H = e−δt {u(c) + y (−λk + g(k) − c)} (D.1.12)

∂H

∂c
=

∂u

∂c
− y = 0 (D.1.13)

y =
∂u

∂c
(D.1.14)

de−δty

dt
= −

∂H

∂k
= e−δty (λ − g′(k)) (D.1.15)

dy

dt
y

= λ + δ − g′(k) = −σ(c).
ċ

c
(D.1.16)
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ċ =
1

σ(c)
(−(λ + δ) + g′(k)) c (D.1.17)

Thus,















ċ =
1

σ(c)
(−(λ + δ) + g′(k))c

k̇ = −λk + g(k) − c

(D.1.18)
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E Appendix 5

E.1 Model 1

The income identity,

Y = C + I = F (K,AL). (E.1.1)

The first modified labor force growth model,

L̇ = βL

(

1 −
γAL

F (K,AL)

)

. (E.1.2)

The gross investment identity,

K̇ = −µK + I. = −µK + F (K,AL) − C (E.1.3)

From E.1.1 and E.1.3:

K̇ = −µK + F (K,AL) − C (E.1.4)

Remember that the production function exhibits constant returns of scale, that is,

F (αK,αAL) = αF (K,AL), (E.1.5)

where α is a positive real number.
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Thus,

˙(

K

AL

)

=
ALK̇ − KȦL

(AL)2
=

K̇

AL
−

K

AL
·
A

A
·
L̇

L
−

K

AL
·
L

L
·
Ȧ

A
(E.1.6)

= −
µK

AL
+

F (K,AL)

AL
−

C

AL
−

K

AL
·
L̇

L
−

K

AL
·
Ȧ

A
(E.1.7)

= −µk + f(k) − c − k.β

(

1 −
1

f(k)

)

− kγ (E.1.8)

= −(µ + β + γ)k + f(k) +
β.k

f(k)
− c (E.1.9)

= −λk + f(k) +
β.k

f(k)
− c (E.1.10)

= −λk + g(k) − c (E.1.11)

where g(k) = f(k) +
β.k

f(k)
and λ = µ + βγ.

J =

∫

∞

c

e−δtu(c)dt (E.1.12)

H = e−δt {u(c) + y (−λk + g(k) − c)} (E.1.13)

∂H

∂c
=

∂u

∂c
− y = 0 (E.1.14)

y =
∂u

∂c
(E.1.15)

de−δty

dt
= −

∂H

∂k
= e−δty (λ − g′(k)) (E.1.16)

dy

dt
y

= λ + δ − g′(k) = −σ(c).
ċ

c
(E.1.17)
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ċ =
1

σ(c)
(−(λ + δ) + g′(k)) c (E.1.18)

Thus,















ċ =
1

σ(c)
(−(λ + δ) + g′(k))c

k̇ = −λk + g(k) − c

(E.1.19)
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