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Abstract

It is presented a new model of population growth and, in particular, the classical
Sollow’s economic growth model is analyzed when employed this new model for population
growth. Furthermore, it is introduced the technology in Campello’s macroeconomic model
of optimal economic growth focusing on the energy sector. For this tasks, dynamic system
tools — in special, the maximum principle — are employed. The results of the growth
models with those modifications in the population dynamics maintain the classical results
of the Sollow’s model in the sense that they assert the existence of equilibrium points.
The models of economic growth focusing of energy resources yield new results concerning
price of energy sources, the dynamic of the shadow prices of technology and population,
ete.

Keywords: Economic Growth, Population Growth, Technology, Energy Sources.
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Resumo

Apresenta-se um novo modelo de crescimento populacional e, em particular, o modelo
classico de crescimento econdémico de Sollow é analisado quando empregado este novo
modelo. Além disto, introduz-se a tecnologia no modelo macroecondémico de crescimento
econdmico de Campello focando no setor energético. Para tanto, ferramentas de sistemas
dindmicos — em especial, o principio do maximo — sao aplicadas. Os resultados dos modelos
de crescimento com a modificacao na dindmica populacional mantém os resultados cléassi-
cos do modelo de Sollow no sentido em que afirmam a existéncia de pontos de equilibrio.
Os modelos de crescimento focando no setor energético produziram novos resultados com
respeito ao preco das fontes energéticas, a dindmica do prego sombra da tecnologia e da
populacao, etc.

Palavras-chave: Crescimento Econémico, Crescimento Populacional, Tecnologia, Fontes

Energéticas.
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Chapter 0 Introduction

O Introduction

0.1 Objectives

0.1.1 General Objectives

1. To present a new model of population growth;

2. To introduce the technology in Campello’s macroeconomic model® of optimal eco-

nomic growth focusing on the energy sector.

0.1.2 Specific Objectives

1. to analyze the classical Sollow’s economic growth model (Solow, 1956) when em-

ployed this new model for population growth;

2. To obtain results that give ideas for policies for the entire energy market.

0.2 Technology, economics, politics

I

‘... eu pensava que os problemas tecnologicos pudessem ser resolvidos com

engenharia apenas.”

F. M. Campello de Souza.

In fact, it was a wrong idea from the young Campello around 1966. Indeed, technology,
economics and politics are undoubtedly intertwined entities.

Technology projects arise as answer for provided needs of a society. However, why
one chooses this or that technological approach? It is definitely not a simple questions
and many aspects — such as, for instance, cultural features — may influence the decision

making. Although the author realize the importance of this discussion, this work is not

!This model is presented in “Introducdo do Aquecimento Solar na Matriz Energética”, Recife, 1997,
CNPq Resource Project, not published.
2« .1 thought that the technological problems could be solved by using just engineering.”
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intended to go deeper in that subject. As discussed in (Strandberg, 2002), technology is,
at first, a political decision — which is not made necessarily by politicians per se — among
all available proposed projects. In contrast, one can think that this decision should be
made by using decision theory!

Nevertheless, after the choice, it is certain that one must pay for the selected project,

because

“Ideas can emerge from an individual, but capital is needed to bring the

idea to fruition and production.”
Dr. Gene Strandberg (Strandberg, 2002)

It is also important to point out that some researches do not result in an immediate appli-
cation what characterizes technological investment as cost-intensive. According Strand-
berg (Strandberg, 2002), venture capital is essential to finance technology research and
development what is not the Brazilian case. Roughly speaking, there is no venture capital
in Brazilian economy. Furthermore, tax abatements, roads, and other incentives by local
and state authorities play a fundamental role for the technological sector development.

Today, universities, large companies and governmental facilities are the entities that
produce much of the new technology in the United States of America. Governmental and
private company funds usually finance university research on account of the universities’
highly competent human capital and available laboratories. Emerging or established
technology companies also have used the human capital of American universities with the
advantages of no costs in insurance and vacation time, equipping laboratories, etc. On
other hand, the universities also gain both from indirect funds and prestige. In fact, all
parts involved seem to win by reason of this cooperation.

It is obvious, since the humans are the “atoms” of any society, that most important

capital investment is the human capital one.

“Part of a nation’s wealth is in dollars, but more of its wealth is in human

knowledge and application.”

Dr. Gene Strandberg (Strandberg, 2002)
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Brazil spend a lot of money with the universities, but nevertheless it is common that some
of the great Brazilian’s minds leave the country and never return. Many people have been
worried with our natural resources explored by other nations over the history, while an
important Brazilian’s loss have been in human capital over the recent years.

Human capital investment means both education in general and specifical knowledge
— such as engineering, chemistry, physic, philosophy, mathematics, economics, etc. The
principle is simple: to produce a collective improvement, one must enhance the individuals
and then these better individuals together will compound a much better society. As said

by Aristotle
“the whole is more than the sum of its parts”

Aristotle

In particular, human capital evolution have provided clear effects in the technological
sector in both developed countries and the developing countries such as China, Korea,
Singapore, etc.

Brazil must as soon as possible improve his politics concerning the research and de-
velopment. One can perceive that the most advanced countries are expanding politically,
economically, technologically and hence leaving the developing countries more depen-
dent upon their technologies. As result, Brazil remains without global effectiveness and
changed from Portugal’s colony to be colony of this technologically advanced countries.

In the scientific view, the inclusion of technology into some macroeconomic models
can explain why the capital per worker, or yield per worker can rise over time. There-
fore, although there is no consensus concerning the way to insert technology in economic
models, it is fundamental either to apply or suggest some reasonable manner to model

the technological role.

0.3 Emergy and economic growth

According Stamford da Silva (Stamford da Silva, 1999), the industrial revolution
brought new habits concerning the consumption behavior of modern societies, in partic-

ular, the energy consumption behavior. Today, any economy requires energy for several
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ends such as to manufacture goods, provide transportation, run electronic devices and
others. Since the means of production changed from animal power to steam power and
after to the internal combustion engines and electricity, i.e., the manual work gave place
to the machine, one cannot think about economic growth without take account the energy
capacities because as well as a man needs food, the machine needs energy. Indeed, the
way in which a nation manage its energy sector — in other words, the way how a nation
feeds its machine — is a important feature of its economy.

Stamford da Silva also asserts that it is common to associate economic growth with
increase of energy consumption. It is important to note that an increase on the energy
consumption do not necessarily implies on development, in special for the developed coun-
tries. Some aspects must be considered to understand the interaction between economic

growth and energy consumption (Fideles da Silva, 1997), namely:

e novel technological arrangements can allow more efficiency in the energy system, in

special in the final consumption.

e politics for conservation of energy, in special, the electric energy provide reduction

in consumption and attenuate the need of future amplification of energy production.

e Furthermore, the developed countries can be benefited from transporting its energy-

intensive industrial park to sub-developed countries, etc.

According Edmonds and Reilly (Edmonds & Reilly, 1985), the main influences in the

use of energy are:

e demography;

productivity of work;

yield;

productivity of work;

energy productivity;

uncertainty.



Chapter 0 Introduction

“A incerteza € a marca indelével do universo™

F. M. Campello de Souza.

For some phenomena, the uncertainty can be neglected without significant damage, how-
ever it is not the case for the use of energy. The demography influences the energy demand
as well by the number of individuals that consomme energy as by the individuals that use
energy producing goods and for its transport. In such way, the residential and commercial
sector, the transport and industrial sector are influenced by the population growth. The

work productivity is defined as
_ GDP

P
W L

where GDP is the gross domestic product and L is the labor force, i.e, the gross domestic
product per worker. It is an index of yield level. Therefore, high W P rate are often
associated to high growth rate of energy use. Empiric studies have shown that the yield
influences in a non-proportional way due the heterogeneity of the economics. The yield-
energy elasticity is employed to measure the change per cent of the of the used percentage
of yield growth. The energy price influences the level and composition, and this influence
is measured by using the elasticity of the energy price. Since an energy price augment
lead to reduction in energy use, this elasticity should be negative. The term energy
productivity refers to the production level obtained per energy employed. Technological
and managemental changes may provide variations in this measure.

The rate energy consumption by gross domestic product which is called energy inten-

sity (EI),

E[:@
E

where E denotes energy consumption, is the yardstick for the interaction between eco-
nomic growth and energy consumption. The graphic 1 shows the behavior of the energy
intensities over time. Notice that each energy intensity grows until reach a maximum
point and then decline. The energy intensities of the developed countries are already

decreasing probably due the politics regarding energy conservation and the technological

3The uncertainty is the indestructible feature of the universe
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advances, while the developing countries’ IE’s are still growing even. However, the tech-
nological transfers among the globalized world might reduce the way for the maximum

point for the developing countries.

El
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YEARS

*Source! Fidelas da Silva, 1997

Figure 1: Energy Intensity

The primary sources and the way how they are employed constitutes compound an
energy system. The choice of an energy system, as any technological one, is naturally
complex. In Brazil, after the oil crisis, the hydroelectric generation was intensified to
become the main source of energy due to the adequate nature conditions.

The energetic balance is made by the Balango Energético Nacional (BEN) from the
Ministério das Minas e Energia. In Brazil, over the years, the hydroelectric power remains
as the most important primary energy source in both production and consumption while
the oil remain as the source among the non-renewable ones. In 2006, Brazil still produces
and consumes more electricity than oil, and the non-conventional sources have contributed
few in the production and consumption of energy yet?*.

One must be worried because the hydroelectric energy is bounded since hydro-electric
plants cannot either be construct in anywhere and produce any level of power. Therefore,
as asserted by Endress and Roumasset (Endress & Roumasset, 1994), when the limit be

reached, a substitute should be employed to keep the growth.

4http://ben.epe.gov.br/BEN2006/
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0.4 Paradigm
“All models are wrong, but some are useful.”
George Box

According Campello de Souza (Campello de Souza, 2002), in general, a system is
a connection of united objects through either an interaction or interdependence. For
a system engineer, a system is a device, a process or a scheme, that can behave in a
predictable manner. The physic hypothesis and analogies which represent the “real world”,
whatever it means, must allow an immediate view or lead suitable structures and schemes
for investigations.

That structures and schemes which either facilitate the discussions and logic con-
structions or allow that experiment are made to determine more accurately the nature of
phenomenon are said to be models. Therefore, a model is an construct that corresponds
to an investigated object or some feature of it; it represents essential characteristics of a
process or system and can provide information about the system in an useful way. The
models discussed in the this research will follow the Pierce’s scientific thought presented

in (Pierce, 2000).

0.5 Organization

The next chapter shall treat some aspects concerning optimal economic growth. The
chapter 1 contains a brief review about the classical Sollow’s model and also presents a
modification in that model regarding the population dynamics. The chapter 2 presents
economic growth models focusing on energy resources. The models are variations of
the work Stamford da Silva (Stamford da Silva, 1999) which is, by its side, based on

Campello’s model. At last, the chapter three contains the conclusions and suggestions.



Chapter 1 Optimal Economic Growth

1 Optimal Economic Growth

1.1 Introduction

Economic growth, the rate at which national income is growing, is the most fundamen-
tal indicator of an economy’s health. It is measured, usually, by the annual percentage
rate change in a nation’s gross domestic product (GDP), which is simply the economy’s
total income accruing from output; the market value of all goods and services produced
within an economic area over a given period of time. Other measures of economic growth
include gross national product (GNP), which measures the total output of a country’s
citizens regardless of where they are living and working. In order to give a more easily
comparable picture of a countries’ economic health, one uses the per capita GDP, usu-
ally measured in dollars (the final sales of goods and services in a country per person,
adjusted for inflation). However GDP is the preferred measure for growth, as it indicates
the amount of economic activity within a nation’s borders.

Economic growth is to be understood as a sustained rise in a nation’s production of
goods and services. It results from investments in human and physical capital, research
and development, technological change, and improved institutional arrangements and
incentives. When individuals, regions, and nations specialize in what they can produce at
the lowest cost and then trade with others, both production and consumption increase.

Among the signs of economic growth, which largely affects the material well-being of
a country, one can mention, for instance, eager buyers crowding checkout lanes, cranes
erecting buildings or help-wanted signs filling store windows. When the economy expands,
jobs are created and goods and services to meet people’s needs increase. It is important,
so, to analyze and understand the causes of growth and what countries can do to maintain
or enhance it.

Some inherent traits are responsible for some differences in economic growth. It is
well known that throughout history, some economies have expanded faster than others.

Amongst such inherent factors are climate and geography. People living near navigation
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routes or in temperate climates, at times, have fared better than people living far away
from coastlines or in frigid climates. One can think also that culture plays a role in
growth.

Notwithstanding these inherent factors, government and central bank policies also play
a role. Policies affecting access to technology, sound money and banking practices, and
prudent taxing and spending can improve or stifle economic growth.

In general terms, the expression “economic development” is thought of as an overall
improvement in the quality of life in a given country. This includes, typically, a better
health care, a cleaner environment and more freedom in terms of choosing work and leisure
activities. In a period of economic growth, the overall wealth of a country increases, as
do the variety and abundance of goods and services.

The phenomenon is complex, but some factors that influence economic growth have
been identified. These include government, international trade and finance, technology
and investment, political, social and geographical conditions, and money and banking.

The terms “sustainable” and “sustainability” appeared in the 1980s and made people
increasingly aware of the growing global problems of overpopulation, drought, famine,
and environmental degradation that had been the subject of Limits to Growth in the
early 1970s, (Meadows et al., 1972). The enormous problems and suffering that are
being experienced with growing intensity every day throughout the underdeveloped world
became more evident. A new era of economic growth started — growth that is forceful
and at the same time socially and environmentally sustainable. Forceful, here, is in the
sense of rapid, and there appears to be a conflict between forceful and sustainable. That
is not the case. Sustainable development can be pursued if population size and growth
are in harmony with the changing productive potential of the ecosystem.

Economies grow because there are more people, more machines, or more natural re-
sources. They also grow because they find better ways to put things together, i.e., tech-
nology. The technological level, in general, advances over time. The man improves upon
or replace the known technologies by using research and development activities and for
this aim he employs all kinds of knowledge, namely, physics, chemistry, engineering, math-

ematical, etc.
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One may mention lasers, holography, virtual reality, genomics, telecommunications,
telematics, optics, photonics, computational biology, integration technology, biotechnol-
ogy, nanotechnology, wireless, materials science, global positioning systems, robotics, cog-
nitive science, etc.

In a free market democratic regime, three conditions are important in order for an

economy to be able to grow:

1. Establishing and protecting individual property rights;
2. Entrepeneurialism, markets, and public policies that offer economic incentives;

3. Demographics.

On the other hand, economic development means economic growth accompanied by
some other factors that — ensure a sustainable growth and — enhance level of overall
economic welfare resulting from the growth. Some of such factors that should accompany
growth include appropriate changes in output distribution (in favour of the poorer segment
of the population) and economic structure (e.g., away from primary production).

However, it is not intended here to discuss the inadequacy of level of per capita income
as an economic development indicator. The main essence of economic development is
economic welfare. But, for a number of reasons, the level of per capita income is not
a perfect measure of the level of development, just as its growth too is not a perfect
indicator of rate of economic development — thus, they are both imperfect yardsticks for
comparing (both the level and growth of) development (and, hence, economic welfare)
over time and across countries.

The sources of development are:

e Natural resources; some countries benefit immensely, and other countries are stag-
nant despite plentiful resources. Others have none, yet enjoy high income. It can be
said, thus, that natural resources are neither necessary nor sufficient for economic

development;

e Population; population growth increases GD P, but may decrease GD P per capita
because of required investments in human and physical capital. What happens is

that as development occurs, people choose to have smaller families.

10
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e Investment;
e Technological Innovation;

e Economic Policy (monetary policy, fiscal policy, regulation, government ownership,

international trade and finance.

Indeed, there exists an intricate interplay between factors like labor force, technol-
ogy, institutional arrangements, and capital that makes economic models often a great
challenge.

The Reverend Thomas Malthus, on his “An FEssay on the Principle of Population”
modeled population growth as an exponential growth model. In classical mathematical
models of economic growth, it is usually assumed that the labor force, L has an indepen-

dent growth equation as employed by Malthus:

L

— = L.
dt &

Malthus’s population model predicts population growth without bound although it is
obvious that the human population cannot grow at a constant rate indefinitely. What
is often observed instead is that as the population grows, some members interfere with
each other in competition for some critical resource. That competition diminishes the
growth rate, until the population ceases to grow. It seems reasonable that a good pop-
ulation model must therefore reproduce this behavior. The logistic growth model, that
was proposed by Pierre Francois Verhulst in 1838, is just such a model.

Letting L represent population size and ¢ represent time, the logistic growth model is

given by:

dL

& =hL [1—%}, (1.1.1)

where the parameter § defines the growth rate and B is the carrying capacity.
A modified labor population dynamics which introduces a natural dependence on the
yield of the economy is proposed here. On account of this new approach, a larger level of

golden rule capital per worker will be obtained .

11
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1.2 The classical economic growth model

The simple one sector model, as presented, for instance, in (Intriligator, 1971), will
be discussed in this section. In that model, the economy produces a single homogeneous

good which represents Gross Domestic Product (GDP). The variables are the following:

e K is the capital;

L is the labor force;

Y is the economy output (yield, income);

C' is the consumption;

I is the investment;

F is the production function.

The basic hypothesis are:

The income identity:

Y =1+C, (1.2.1)

which states that Gross National Product (GNP) can be either consumed or invested.
The output (GNP), is represented by an aggregated production function which de-

pends on capital and labor:

Y = F(K, L) (1.2.2)

That production function is assumed invariant over time and twice differentiable, the

Inada conditions, (Intriligator, 1971), where for all positive factor inputs:

oF oF

F(K,L) >0 5 (K,L) >0 S-(K, L) > 0;
O*F 0?F
aKQ(K’L) < 0; W(K’L) <0; forall K,L>0 (1.2.3)

12
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and, taking limits:

oF oF oF oF
Jim S, L) = 00r - lim (K, L) =00y Jim (K L) =0y lim =7 (K, L) = 0;
(1.2.4)
The production function, as an assumption, exhibits constant returns of scale:
F(aK,aL) = aF (K, L), (1.2.5)

where « is a positive real number!.
The investment, I, is used both to accumulate capital and to recover the depreciation

of capital:

dK

K=1I, 1.2.6
— TH (1.2.6)

where p is the capital depreciation rate. Another way to representing the dynamic of

capital is by

dK

—r uK = sF(K, L) (1.2.7)

where sF'(K, L) = I, i.e., the investment represents a fraction of the whole yield.

The equation for the labor force growth is (exponential growth):

dL

— =0L. (1.2.8)

Considering the variables per capita and from the assumption of the constant returns
of scale of the production function, one arrives at the following equation called the fun-

damental differential equation of neoclassical economic growth:

dk

o = Ok (k) — (1.2.9)

'In other words, it is not assumed that “the whole is more than the sum of its parts”

13
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or

dk
O = —(u+ )k + 5f(h), (1.2.10)
where the small cap letters stand for their capital letters divided by the labor force L.

Equation 1.2.9 has, for no consumption per capita (¢ = 0), two equilibrium points,

namely, £k =0 and k£ = k.

~.
~.
~.,
~.,
~.,
~.,
~.
~.
~

Figure 1.1: f(k) — Ak

Augmenting the level of consumption per capita, one can reach a level which is known
as the golden rule level of capital per worker. It is the greatest level of capital per worker
for which there is still an equilibrium point, & = 0. In the sequel, & stands for dx /dt for
every x.

The problem is then to choose a piecewise continuous trajectory c satisfying the Equa-

tion 1.2.9, the income identity and a boundary condition that maximizes a welfare function

J:/ e~ %u(c)dt, (1.2.11)
0

where ¢ is the discount rate, and w is a utility function. The utility function is assumed

twice differentiable, and where, for all positive values of c:

0 0?
a—Z(c) > 0; a—CZ(c) <0, forall ¢>0. (1.2.12)
It is also assumed that:
. Ou . Ou
(IJI_I% %(c) = 00; Cli)rgo a(c) =0 (1.2.13)

14
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The problem is solved using the Pontryagin maximum principle, which leads to the

following system of differential equations:

1 d
c=—— {—(A+5)+—f} c
a(c) dk (1.2.14)
k= f(k)— Xk —c
where A = 1+ (8 and
0?u/0c?
=—Cc — 1.2.15
o(e) =~ oo (1.2.15)
is defined as the elasticity of marginal utility.
By linearizing the system at the equilibrium point
dk  dc
—=—=0 1.2.16
dt  dt ( )
corresponding to the higher value of the capital per capita, K, one gets:
dk
pri —(c—=c*)+0(k—k*)
L2 f (1.2.17)
de _ "2
— = k—k*
dt  o(c) ( )
The eigenvalues of this linear system are:
1
= 1.2.18
= (12.18)

The equilibrium point is then a saddle point, whose stable branch consists of all points

that eventually reach a balanced growth equilibrium.
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Chapter 1 Optimal Economic Growth

1.3 A proposed model

Instead of considering an exponential growth, the labor force is supposed to follow a
logistic equation:

dL ~vL
= BL {1 _ —F(K, L)} , (1.3.1)

The rational for this model is as follows. For small values of L, the growth rate is small.

The maximum value of dL/dt is attained when

d vL
—(L|1l——=——+=]])=0
iz (- 7))
As L increases, the term inside brackets will be decreasing, up to a point where it vanishes.

If

i) <0

the growth rate of the population will be negative in accordance with Malthusian thinking.
The worker population then stabilizes, at a value that depends upon the income, given
by F(K,L). The larger the value of the income, the larger the value of the stabilized L.

The time rate of capital per worker will be given now by (details is appendix D):

=k g+ R e (132

From the properties of the production function f(k), one can prove some interesting

properties for the function g : R* U {0} — R, given by

k
I PRALIERTI R
(k) f(k)
0, if k=0.
Since ¢ is continuous at 0,
: Cal _
lim 1) + s = 9(0) =0,
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it is clear that g is continuous.

Proposition 1.3.1 If f is a nonnegative concave function defined on R* U {0} and

f(0)=0, then g is monotonic-increasing.

Proof: It is sufficient to prove that h : R™ U {0} — R, given by h(k) = k/f(k) and
h(0) = 0 is monotonic-increasing. Let k; and ks be two positive real numbers such that

k1 < kg. Therefore ki = Aky, where 0 < A\ < 1. Since f is concave,

FOO(L = A) + kX)) > (1= A F(0) + Af (ko)

() > Af (7o)
(k) > (k)

2

Thus, since f(k) > 0 for all k£ > 0,

]{1 kQ
flky)  f(k2)

Q.E.D.

Proposition 1.3.2 Iflim;_o f'(k) = oo, f is a nonnegative concave function defined on

R*T* U {0} and f(0)=0, then limy_, ¢’ (k) = oo.
Proof: From the previous proposition,

d k

Therefore, since limy_. f'(k) = oo, it is clear that limy_¢ ¢’ (k) = 0.
Q.E.D.

Further, it is assumed that limy_,, f(k) = oc.

Proposition 1.3.3 If f is a nonnegative concave function defined on RT U {0}, f(0)=0,
limy 0o f(k) = 00 and limg_.o f'(k) =0, then limy_.« ¢'(k) = 0.
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Proof: It has been proved that

> 0.

d ( k ):f(k)—kf’(k)
ak \ 7 (%) 72(k)

It is also clear that

L k) _ fk) = kf'(F)

> > 0.

Fk) ~ 12(k) F2(k)

Since limy_ ., f(k) = oo and by employing the sandwich theorem,

Ak
Jm 2 (m) B
Thus,
y Bk _ o dfk) o d (k)
lim (f(k>+m) = fim = 0 i o (W’)) -
Q.ED.

Moreover, if f is a concave Cobb-Douglas function (i.e., with decreasing return of
scale), then g is also concave.

One can show that the income identity, the gross investment identity, the production
function and the Expressionl.3.1 together implies a new fundamental differential equation
of economic growth:

dk

o=t Ak+gk) —c. (1.3.3)

The Figure 1.2 shows the per worker production function f(k), g(k) and Ak

Figure 1.2: Production function f, g and A\k.

Figure 1.3 shows the function h(k) = g(k) — Ak which has two important points,
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namely, a unique maximum point k and a root k, i.e.,

h(k) > h(k), Vk>0

and
h(k) =0
Lol T~ glk) = Xk
v T ~.
....... ~.
~~~~~~~~ Nk
k) — Mk

Figure 1.3: f(k) — Ak and g(k) — Ak.

Observe that k = h(k)—c, therefore the stability properties of this differential equation
depend upon the level of consumption per worker. Remember that the capital per worker
is a nonnegative value, that is, ¢ > 0. If there is no consumption then k& = h(k) and hence
there exists two equilibrium points, k& = 0 (which is locally unstable) and k = k (which is

stable, as shown in Figure 1.4).

S fR) - Ak

Figure 1.4: Equilibrium points

Augmenting the level of consumption per capita, one can again reach a so-called golden
rule level of capital per worker. Notice that this new golden rule level is larger than the

golden rule level of section 1.2.
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Now, the optimal control model is

McaXJ = /OO e~ tu(c)dt (1.3.4)
k=—(u+B)k+gk)—c (1.3.5)
0<c<f(k) (1.3.6)

The maximum principle leads to the following system of differential equations (details

in Appendix D):

b=~ 8) + g (R))e
a(c) (1.3.7)

k=—-Xk+g(k)—c

By linearizing the system at the equilibrium point

dk _ de _
dt — dt

corresponding to the higher value of capital per capita, k, one gets:

% =—(c—c")+0(k—Fk")

. d%g (1.3.8)
de _“qm2 .
dt o) (k= k")

The eigenvalues of this linear system are:

(1.3.9)

Therefore, since f is an Cobb-Douglas function, the equilibrium point is a saddle point.
In many countries, one observes that the capital per worker is growing over time and it
is not explained by these models presented before. A common way to explain the capital

per worker growth in macroeconomic growth models has been made by using technological
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progress.
The technological progress will be modeled by a continuous and smooth function of ¢

as described in the following differential equation (Romer, 1994):
A=cA,

where ¢ is a positive constant.
A possible manner to introduce the technical progress into the production function is

to add an “augmenting” factor to labor, analytically:
Y = F(K,AL).

This approach is known as Harrod-neutral or labor-augmenting technical progress.
Therefore, the model is now given by

dL ~vAL
o~ Pr {1 a F(K,AL)] '

In the appendix E there is the computations of that model.

1.4 Conclusions

The results of the growth models with those modifications in the population dynamics
maintain the classical results of the Sollow’s model in the sense that they assert the
existence of equilibrium points, K/L in the first formulation and K/AL in the second
one. Therefore, one should note that it is not necessary to be worried concerning the
validation of the model. Validations of the Sollow’s model also confirm those model’s

presented here.
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2 Economic growth focusing on energy

sources

According to Campello de Souza (Campello de Souza, 2006), the choice of an energy
system (i.e., primary energy resources and their related technologies) has been a complex
matter involving social, environmental and political issues. It is not clear how to argue
pro or against this or that energy system option. The task of analyzing the future offer
and demand of energy, and trying to harmonize them, as well as the establishing of
prices for the various energy alternatives, is made more complex due to the effects of
the technological progress, the availability of resources, the adopted regulation schemes
(norms, rates, etc), the need of improving human capital and the particular national
economic policy as a whole.

Energy resources would be allocated, under perfect competition, in an optimal way,
that is, maximizing producer’s profits and consumer’s utilities. In some economies, how-
ever, many sectors, amongst them the energy sector, are perceived to exhibit many fea-
tures which contradict then perfect competition condition, namely: oligopolist market
structures, pollution, natural technical monopolies, non-renewability of some energy re-
sources, etc. Since there is not a perfect competition environment, it is therefore inter-
esting some kind of central planner which guides the behavior of the economic agents of
the energy sector. For this task, this central planner should use a scientific approach.

This chapter investigates the economic growth problem treated in (Stamford da Silva,
1999) incorporating some changes in its models. Three models are analyzed and they
contain, as in Stamford da Silva’s work, factors that are often separately handled, namely:
energy sources; capital and labor; and water applied to non-energetic ends.

Those macroeconomic models differ from the Stamford da Silva’s work (Stamford da
Silva, 1999) in interpreting the research and development (R&D) effect and in modeling
its evolution over time, as presented in (Romer, 2001). They are set in continuous time
and deterministic. Moreover, they do not analyze monetary matters, and consumption

distribution among the labor force is not modeled; instead an average individual is con-
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sidered. It is also assumed that all individual generations have the same preferences. It
is not considered energy source exports. Nonconventional energy technologies — such as
solar, aeolian, nuclear, etc — are not presumed as backstop technologies. It is assumed that
those technologies are ready for use and can replace conventional technologies. Among
all assumptions, it seems the strongest and unusual one, but, indeed, it may occur soon.

An optimal economic growth model that incorporates several aspects of the energy
resources, allowing the establishment of planning policies, is presented. The process of
dynamic optimization can be understood as a centralizing planning where an authority

maximizes an objective functional (the Welfare).

2.1 Notation

J — welfare functional;

e () — discount rate;

L — labor force;

u — utility per worker;
e ¢ — consumption per worker of non-energy goods.
e ¢ — time;

e o — consumption per worker of energy goods;

(8 — population growth rate;

F — production function of non-energy goods;

E — consumption rate of aggregate energy resources for non-energy uses;

A — technological level,;

e W — consumption rate of water for non-energy ends;

e s — expenses concerning imported energy resources;
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e D — water stock;
The subscripts in remaining variables have the following meanings:
e 0 — indicates non-energy goods, excluding the water for non-energy use;

e W —indicates non-energy water, i.e., water that is employed to produce non-energy

goods;
e H — indicates hydroelectric resources;
e NR — indicates non-renewable energy resources;
e 1R — indicates renewable energy, namely, solar energy, eolian, nuclear, etc;
e A — indicates technology;

e [/ —indicates energy exports.
Thus,

e K — capital employed to produce non-energy goods, excluding capital regarding

non-energy water;

e [y — labor force employed to produce non-energy goods, excluding the labor force

regarding non-energy water;
e [y — investment in the non-energy goods sector;
e iy — depreciation rate of capital Ky;
e IV — annual consumption rate of non-energy water;
e Fy — production function of non-energy water;
e Ky — capital employed to provide non-energy water;
e Ly, — labor force employed to provide non-energy water;
e Gy — weighing function of non-energy water;

e [y — investment in the non-energy water sector;
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e Ly — depreciation rate of capital Ky ;

e Fy — annual consumption rate of hydroelectric resources;

e [’y — production function of hydroelectric resources;

e Ky — capital employed to produce hydroelectric energy;

e Ly — labor force employed to produce hydroelectric energy;
e (Gy — weighing function of hydroelectric resources;

e [y — investment in the hydroelectric sector;

e 1y — depreciation rate of capital Kpy;

e [/ygr — annual consumption rate of non-renewable resources;
e Fyg — production function of non-renewable resources;

e K g — capital employed to produce non-renewable energy;
e Ly — labor force employed to produce non-renewable energy;
e Gy — weighing function of non-renewable resources;

e [y — investment in the non-renewable sector;

e ung — depreciation rate of capital Kyg;

e [/p —annual consumption rate of renewable resources;

e [’ — production function of renewable resources;

e K — capital employed to produce renewable energy;

e Ly — labor force employed to produce renewable energy;

e (G — weighing function of renewable resources;

e [ — investment in the renewable energy sector;

e 1 r — depreciation rate of capital Kg;
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e [’y — production function of technology;

e K4 — capital employed to produce technology;

Ly — labor force employed to produce technology;

e [, — investment in the technological sector;

14 — depreciation rate of capital K 4;

2.2 Optimal control Models

A plausible reason to explain how more output can be produced today from a given
amount of labor and capital than could be produced in the past, seems to be, indeed,
the technological evolution. Therefore, a research and development sector is introduced
in the Stamford da Silva’s work (Stamford da Silva, 1999) representing the production of
new technologies.

The economy is partitioned into six sectors: a non-energetic goods-producing sector
where non-energy output is produced; an R&D sector where additions to the stock of
knowledge are made; a water sector, where water for non-energetic ends is provided; and
three more sectors which compose the whole energy sector. The energy sector is decom-
posed into an hydroelectric sector, a renewable energy sector (excluding the hydroelectric
one which has an specific sector), and a non-renewable energy sector.

Furthermore, another model is proposed, where there is not an R&D sector and tech-

nological progress is assumed to be exogenous.

2.2.1 Technological dynamics

It is assumed in one model that technology progress is exogenous; representing, for
instance, an economy in which all its technology is brought from abroad. In that formu-

lation, the dynamics of the technology is modeled by

A = €A, (2.2.1)
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where € is an exogenous parameter (in the technological sense, not the managerial one).

On the other hand, other models presented in this chapter consider technology growth
as being endogenous. It is modeled by a conventional approach in which technology
labor (L,), technology capital (K4), and technology itself (A) are combined to provide

technology growth as
A=Fu(Ka Ly)A, (2.2.2)
where Fy : {RTU{0}} x {RTU{0}} — R.

2.2.2 Resource consumption dynamics

The consumption rate of the energy resource reserve (D;) is given as in (Hotelling,

1931) by:

where F; is defined, as in section 2.1, as annual consumption rate of energy source i.
The water stock is diminished by both, the use as a productive input and the use in

hydroelectric generation. The dynamic of the water stock (D) is represented by
D=f(t)— (Eg+W) (2.2.4)

where Ep is defined as the annual consumption rate of hydroelectricity, W is defined as the
annual consumption rate of water for non-energy ends, f(t) is assumed to be a continuous

and differentiable function over ¢ (maybe periodic) that models the water cycle.

2.2.3 Production of water and energy

It is supposed that the energy and water markets are in equilibrium. Furthermore, it
is assumed that all energy and produced water are consumed on production of non-energy
goods.

Each sector — hydroelectric, renewable, non-renewable, and water for energy produc-
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tion (hydro-electric energy) — has an annual consumption rate determined by using four
factors of production, namely, its capital, its labor force, its technological level. These
functions of annual consumption rate are assumed invariant over time.

Hydroelectric consumption rate is expressed by

where Ky is the capital employed in the hydroelectric sector, Ly is the labor employed
in the hydroelectric sector, D is the water reserve, and A is the technological level.

Notice that the expression 2.2.5 is a product of two functions:

Fy: {RTU{0}} x {R*U{0}} = R

which is defined as the production function for hydroelectric resources, and

D — Gy (D) (2.2.7)

which is called the weighing function of hydroelectric resources.
The production function of hydroelectric resources is assumed twice differentiable,

where, for all positive factor inputs:

OFn  OPFy
3K, Fm ALu) > 0 K (K, A.Ly) <0 (2.2.8)
OFu . PFy

8A.LH(KH’A'LH) >0; a(A.LH)z(K%A'LH) <0 (2.2.9)

for all Ky, A.Ly > 0. Observe also that A and Ly enter into that function as a product.
The factor ALy is often referred as effective labor.

The weighing function of hydroelectric resources is assumed monotonically increasing,

28



Chapter 2 Economic growth focusing on energy sources

ie.,

oGu

—5 (D) >0, (2.2.10)

differentiable, and it is assumed also that:

ll)ilr%) Gu(D) =0; l%im Gu(D) =1, (2.2.11)
G, 3G,

The function Gy being monotonically increasing means diminished returns when the
reserve is consumed.

Similarly, the annual consumption rate of water for non-energy ends is determined by

W = Fy (Kw, ALw)Gyw (D) (2.2.13)

where Ky, is the capital employed in the water sector, Ly, is the labor employed in
water sector, D is the water reserve, and A is the technological level. The functions
Fw(Kw,ALw), Fnr(Kygr, Lng) and Fr(Kg, ALR) are defined as production functions
for non-energy water, non-renewable resources and renewable resources respectively, while
Gw (D), Gyr(Dng), Gr(Dg) are the weighing functions of non-energy water, non-renewable
resources and renewable resources, respectively.

The functions Fy (Kw, ALw), Fnr(Kngr, Lnr) and Fr(Kg, ALg) are also assumed
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twice differentiable and for all positive inputs:

OF; 0?*F
aKVVVV (Kw,A.Ly) > 0; aKgV (Kw,A.Ly) <0 (2.2.14)
OFw 0’ Fw
Ky, AL : ———(Kw,A.L 2.2.15
oF 82F
8K]]\\[[}; (KNR;A‘LNR) > 0; aKéVR (KNR,A LNR) 0 (2216)
NR
OFNR O*Fnr
. P 2.2.1
A LNR(Kw,A Lw) > 0; 8(/1 LNR>2 <0 ( 7)
OF O*F
aK’;(KR, A.Lg) > 0; aKf(KR, A.Lp) <0 (2.2.18)
oF O*F
aAfR(KR,A.LR) > 0; —8<A'L];)2(KR,A.LR) <0 (2.2.19)

The weighing function of non-energy water and non-renewable resources are also assumed

monotonically increasing, that is,

aGW aGNR
9%Cw
op (D) =0 ap

(Dnr) >0, (2.2.20)

differentiable and the following conditions are supposed to hold:

8GNR aGNR
lim = o0; lim = 0. 2.2.22
DNlR—>0 GDNR o DN;:—@O 8DNR ( )
For the renewable sector, R, one may consider
Gr(Dgr) =1 (2.2.23)
2.2.4 The investment identity
The investment identities given by
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represent the fact that investments are employed both to augment the stock of capital

and to replace depreciated capital.

2.2.5 The labor force

Among several possible ways of modeling the labor force growth, two of them are
presented here.

The labor force growth can be described, as usual, as
L =pL. (2.2.25)

Robert Malthus in his “Essay on the principle of population”, in 1798, was the first
economic thinker which states that limited resources implies a limited population growth.
However, he did not forecast the technological development due mainly to the industrial
revolution during the XVIII century. Indeed, technological progress has promoted an
amazing augment of productivity. On account of the Malthus’s idea, a different manner

of representing population growth is proposed. The labor force growth is described as
i= 51;(1 — NF(Ky, ALy, E, W)—lAL), (2.2.26)
where

F:{R" U{O}}4 — R

(K[),ALmE, W) — F(Kg,A.Lo,E, W) (2227)

It is a logistic function where the carrying capacity is F/y (and v is a constant). This
model for the labor force growth means the more an economy produces, the more the
labor force can grow.

Moreover, the labor force is allocated amongst the economic sectors, then defines the

following identity for the models with an R&D sector:
L=Ly+Lr+Lyr+Lyg+Lw+ Ly (2.2.28)
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where

e the non-energy labor force is defined as Ly;

hydroelectric labor force as Ly;

renewable energy labor force as Lg;

e non-renewable energy labor force as Lyg;

technology labor force as L 4.

If there is not an R& D sector, the identity is

L=Ly+Lr+Lyr+ Lyg+ Lw (2.2.29)

2.2.6 The income identity

This neoclassical growth model characterizes economics in an aggregative way. A
single non-energetic good is produced, the output of which at time ¢ is Y (¢), using four
factor inputs, namely, non-energetic capital Ko(t), the product of technology and non-
energetic labor force A(t)L(t), the annual consumption rate of aggregate energy resources
E(t) and the annual non-energy water consumption rate W (t), where ¢ is assumed to be
continuous. In the case where the technological progress is considered as exogenous, the

income identity is modeled by

Y = F(Ko,ALo, E, W) = [0 + [W + IH + [R =+ [NR + S(EE) + LC. (2230)

On the other hand, when technological progress is assumed endogenous, the yield identity

is expressed as

Y = F(Ko, ALy, EEW) =1+ Iw + Iy + Ig + Ing + 14 + s(Eg) + Le. (2.2.31)

Notice that in the endogenous case there exists an R& D sector. The yield identities, as just
defined, represent a basic identity of economic growth models. However, it is important

to observe that the identity considers the expenses for the acquisition of imported energy
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resources. Therefore, it classifies that model as an open one concerning energetic resources,
what is, in a certain way, a classical use.

It is supposed that the market is in equilibrium and that all output is either consumed
or invested.

This approach provided a better comprehension concerning the trade-off between water
for non-energy use and hydroelectric energy ends (Stamford da Silva, 1999). Furthermore,
as shall be seen later in the energetic balance expression, the variable E depends on the
variable W. It implies, after the chain rule, results that alters the usual analysis of
marginal productivity of water.

The production function is assumed invariant over time and twice differentiable, the

Inada conditions, (Intriligator, 1971), where for all positive factor inputs:

oF oF

— (Ko, ALy, E . ———(Ky, ALy, E : 2.2.32
aKO( 05 05 7W)>O’ 6ALO< 05 0, aW)>07 ( 3 )
O*F O*F

O (Ko, AL, B,W) < 0; 2 (Ko, ALg, E, W) < 0 (2.2.33)
oKz Y ALY

2.2.7 The energy balance

As in Stamford’s model, the entire consumption rate of energy sources for non-energy

ends are expressed by:

where o denotes energetic resources consumption per capita, —W represents the amount
of hydroelectricity that would be reduced in the entire energy if the water was used for
other ends. Notice that in an economy where the energy system does not have a great
amount of hydroelectricity, this formulation is not essential. It is not the Brazilian case,

where the hydroelectric power represents a great part of the total energy!.

Thttp://ben.epe.gov.br/BEN2006/
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2.2.8 Objective functional

The objective functional follows an utilitarian scheme which have been adopted by
many researchers(Intriligator, 1971). It is assumed that the central planner, whatever it
means, has a utility function that gives utility at any instant of time, denoted by u, as
a function of consumption per worker, ¢, consumption per worker of energetic goods, «,
and population growth rate, 5. It means that all generations of individuals have the same
preferences.

It is also assumed that utility at any instant of time is not directly dependent on ¢, «,
0 or utility at any other instant of time.

It is further assumed that utilities along the time can be added (integrated) but never-
theless these utilities are adequately discounted to represent the impatience of the central
planner. In this research, it is considered an infinite time horizon, so, a Welfare functional,

J, is defined as follows:
J = / e % Lu(c, a, B)dt, (2.2.35)
0

where ¢ is a constant. The utility function is assumed monotonic-increasing regarding

both ¢ and «, that is,

ou ou
— — 2.2.
(e 8) >0, SL(ca,8) >0, (2:2.36)

for every ¢, a > 0 . It is also assumed that the utility is quite flat for a wide range of

values of 3 but it rises when [ converges to zero or when ( becomes too large.
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2.3 The zero Model

The basic model to be analyzed is the following:
Max W = / e " Lu(c, a, B)dt,
0

subject to

F(Kg,ALo,E,W) :[0+[W+[H+[R+INR+S(EE>+LC

E=Ep+Exgr+FEy+Eg—W — La
L=Lo+Lr+Lyg+Lyg+Lw
E; = Fy(K;, AL,))Gy(D;); i=R,NR
Ey = Fy(Ky, ALy)Gy (D)
W = Fyw(Kw, ALw)Gw (D)
K;=—wK;+1I; i=0R NR HW,A
D;=—E;; i=R,NR
D= f(t)— (Eg+W)
L=pL

A=¢€A

(2.3.1)

(2.3.2)
(2.3.3)
(2.3.4)
(2.3.5)
(2.3.6)
(2.3.7)
(2.3.8)
(2.3.9)
(2.3.10)
(2.3.11)

(2.3.12)

It is essentially the Stamford da Silva’s work, but with an extra differential equation that

represents the evolution of technology.

Notice that the state variables are:
e Kiyi=0,R,NR,H,W;

e D;i=R, NR;

e D, L and A.

The control forces are:

e [;,1=0,R NR,H W,
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e ,, 1=R,NR,H,;
o W, Eg, aand (.

The Hamiltonian of this basic formulation is

H =e*{Lu(c,a, B) + Z @i(—pil + 1) + Zpi(—Ei)+

po(f(t) = (Eu +W)) + pacA+ quSL} (2.3.13)

By applying the maximum principle one can obtain some interesting results. A detailed

mathematical computation about the zero problem can be found in Appendix A.

2.3.1 The zero model’s results

First, shadow prices ¢;, where i = 0, R, NR, H, W, are all equal to du/0dc:

ou

P— pr— pr— pr— _ -_— 2-3-14
do = aw =4 = qr = INR = 5 ( )

that is, in the optimal path, the marginal value of capital K; must be equal to the marginal

utility regarding the non-energy goods consumption per-worker.

8F_8_F_ 0s
OE, OF 0FEg

(2.3.15)

Expression 2.3.15 means that the price of each domestic energy resource must be equal
to the price of the imported energy resource. It means that there is a unique price for all
primary energy resources because all energy resource contributes equally to the yield.

Another result is provided by the relation:

OF _ du/da _p (2.3.16)
q

OE — dufdc
Expression 2.3.16 implies that the price of energy resources must be equal to the substi-
tution rate between non-energy goods and energy goods. Moreover, it also contents that
the substitution rate between non-energy goods and energy goods must be equal to the

rate between the marginal value of energy resource in the reserve and the marginal value
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of capital.

ou

Equation 2.3.17 implies that the marginal value of labor force (the shadow price of
labor force) in the economy must be equal to the negative marginal utility regarding labor

force growth rate.

Pr _ PNE _ DD _ & (2.3.18)

Pr  PNR PD
This result known as the Hotelling rule which is an expected result when extraction
rates are employed as control forces (notice that it is assumed that the extraction rates
are equal to consumption rates). It means that the marginal value of energy resource in
the reserve must rise according the interest rate, i.e., energy resources must be treated as

any capital good.

in _dxe _dn _dw _do

=0+pu (2.3.19)
4dr gNR qH qw do

Expression 2.3.19 implies, similarly as the previous result, that the marginal value of

the capital K; must rise according the interest rate ¢ plus depreciation rate p;, where

i=R,NR, H,W,O0.

KWR = UNR = HH = Hw = [L (2.3.20)

The identity 2.3.20 states that capital goods for every energy sectors and water sector

must be homogenous, i.e., their depreciation rates must be the same.

OF

— = o — 2.3.21
91, Ho — H (2.3.21)

Since the depreciation rates po and p are assumed constant, equation 2.3.21 asserts
that the contribution of non-energy capital in producing non-energy goods is constant.

In other words, the price of the non-energy capital in producing non-energy goods must
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be constant.

Lo > [ (2.3.22)

The inequality 2.3.22 implies that depreciation of non-energy capital must be greater

than depreciation rates pg, ung, g and py .

ou
i =—; t=D,R,NR. 2.3.23
pi= s ( )
Expression 2.3.23 contents that the marginal value of the energy resource i (shadow

price for energy resource i) in the reserve must be equal to the marginal utility regarding

energy consumption per worker.

oF oF

The most important result of the work of Stamford da Silva isshown above in the
expression 2.3.24. This result asserts that water contributes by a hundred percent more
in producing non-energy goods than energy resources do. In other words, the price for
water must be twice the price for energy resources.

The inclusion of the dynamics of technological change lead to the following new results:

oF
OALy

pa=(0—€))pa—qo Ly (2.3.25)

The expression 2.3.25 establish the dynamic of the marginal value of the technological
level. When the other variables are maintained constant, ceteris paribus, the larger the
discount rate value, the lower the technological growth rate, the lower the marginal value
of the non-energy capital, the lower the labor force of the non-energy goods sector, the
lower the marginal production regarding the effective labor, the larger shadow price of

the technological level derivative.

qr = (6 — B)ar + qo (c + a.?—é) —u (2.3.26)
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The expression 2.3.26 establish growth of the marginal value of the labor force. When
the other variables are maintained constant, ceteris paribus, the larger the discount rate
value, the lower the population growth rate, the larger the marginal value of the non-
energy capital, the larger the consumption per worker of non-energy goods, the larger the
consumption per worker of energy goods, the larger the price for energy, the lower the
utility per worker, the larger the shadow price of the marginal value of the labor force

derivative.

39



Chapter 2 Economic growth focusing on energy sources

2.4 The first Model

In this model the technological change is supposed to be endogenous. The country

economy) develops its own technology.
y

Max W = /00 e Lu(c, o, B)dt, (2.4.1)

0

subject to

F(Ko, ALy, E,W) =Io+ Iy + Iy + Ig + Ing + T4 + s(Eg) + Le (2.4.2)
E=Ep+Exg+Ey+Eg—W — La (2.4.3)
L=Ly+Lp+Lyp+Ly+Lw+ Ly (2.4.4)
E; = Fy(K;, AL;))G4(D;); i=R,NR (2.4.5)
Ey = Fy(Ky, ALy)Gy(D) (2.4.6)
W = Fy (Kw, ALw)Gw (D) (2.4.7)
K;=—wK;+1; i=0,R NR HW,A (2.4.8)
D;=—FE;; i=R/NR (2.4.9)
D=f(t)— (Eg+W) (2.4.10)
L=3L (2.4.11)
A=Fu (K4 Ly)A (2.4.12)

Notice that state variables are:
o K;,i=0,R,NR,H,W, A,

e D;,i=R,NR;

e D, L and A.

The control forces are:

e [;,i=0,R NR, HW, A;

e Fi,i=R,NR, H;
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o W, Eg, aand (.
The Hamiltonian of this formulation is

H 26_&{[/71(6, a, ﬁ) + Z qi(—mKl- + ]Z) + Zpi(—Ei)-i-

po(f(t) = (B +W)) + pa(Fa(Ka, La)A) + qrBL} (2.4.13)

A detailed mathematical computation about the first model can be found in Appendix

2.4.1 The first model’s results

The shadow prices ¢;, where i = 0, R, NR, H, W, A, are all equal to du/dc,

ou

o= 4w = qn = 4r = ANR = 4a = 57 (2.4.14)

that is, it implies, as said before in section 2.3.1, that the marginal value of the capital
must be equal to the marginal utility of the non-energetic consumption (notice that in the

first model there is another costate variable, namely, ¢4 regarding the technology sector).

oF oF 0s

OF  Ou/da p
e == 2.4.1
OE  Ouf/oc ¢ ( 6)
ou
Pr _ PNE _PD _ & (2.4.18)

Pr PNR PD

Expressions 2.4.15, 2.4.16, 2.4.17, 2.4.18 are also results of the zero model, that remain
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here.

dr _ vk _ 91 _ 9w _9p _ 94 _ %0 _ 5, (2.4.19)
4r  4gvr 45 49w 4D ga Qo
As in expression 2.3.19, the identity 2.4.19 implies that the marginal value of the

capital K; must rise according the interest rate ¢ plus depreciation rate p;, where ¢ =

R,NR,H,W,0, A.

Hr = UNR = HH = Hw = [ (2.4.20)
5—[2 — o — (2.4.21)
ho > 11 (2.4.22)
du
pi=5 i=D.RNR. (2.4.23)
g—j; - 22—2 (2.4.24)
dL=(0— B+ @ <c + a.?—é) —u (2.4.25)

Equations 2.4.20, 2.4.21, 2.4.23, 2.4.24, 2.4.25 and the inequality 2.4.22 are also re-
peated results of the zero model.

Now, the new result is:

Culpa = 1) (s
- 2.4.2
PA= A (OF, oK 1) ¢ (2.4.26)

This expression, 2.4.26, establishes the technology shadow price behavior along the time.
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2.5 The second model

In this model, a substantial modification of the labor force growth equation is intro-

duced.

Max W :/ e Lu(c, a, B)dt,
0

subject to

F(K@,ALO,E,W):]0+Iw+]H+IR+INR+IA+S(EE)+LC

E=FEr+Exg+Ey+FEp—W — La

L=Lo+Lrp+Lyg+Ly+Lw+La
E; = Fy(K;, AL))G;(D;); i=R,NR
Ey = Fy(Ky, ALy)Gy(D)

W = Fy (Kw, ALy)Gw (D)

K= —mwK;+1I; i=0,R NR HW,A
D;,=—E;; i=R,NR

D= f(t)— (Ey+W)

L = BL(1 —yF(Ky, ALy, E,W)~'L)

A=F4 (K4 Ly)A

Recall the rational for Equation 2.5.11 presented in Section 2.2.5.

Notice that the state variables are:
o K;,i=0,R,NR,H, W, A,

e D;i=R, NR;

e D, L and A.

The control forces are:

e [;,i=0,R NR, H W, A;
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e F;,i=R,NR, H;
o W, Eg, aand (.
The Hamiltonian of this formulation is
H =e{Lu(c,a, 8) + Y qi(—miKi + L) + Y pi(—Ei)+

po(f(t) = (Ex +W)) + pa(Fa(Ka, La)A)+

qr(BL(1 — yF (Ko, ALy, E,W)™'L)) } (2.5.13)

A detailed mathematical computation about the second model can be found in Ap-

pendix C.

2.5.1 Second model’s results

Although many results of the previous models remain in the second model, namely,

ou
Go = aw =4 = qr = INR = 4 = 5 (2.5.14)
ou

.= —: i=D,R NR.; 2.5.15
pi=goi ( )
Pr _ PNE _PD _ . (2.5.16)

PR PNR Pp
dr _ vk _9n _dw _p _94 _ D _4, . (2.5.17)

qr gNR qH qw 4qD qa qo

IR = UNR = HH = Hw = [4; (2.5.18)

oF oF
o _,0f, 2.5.19
ow OF’ ( )
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there is also new results.

oF _OF _ Ju/oc  Os
OE; OE  0Ou/dc+ qupy.(L/F)? OFEg

(2.5.20)

Expression 2.5.20, on account of the logistic labor force growth equation, asserts that
the price for domestic energy resources is no more equals to the price for imported energy
resource as obtained in the zero and first models. Indeed, the price for the domestic
energy resource is lower than the price for imported energy resource, according to the

factor
Ju/0c
Ou/0c + qrBy.(L/F)?

The larger the value of qz3v.(L/F)?, the larger will be the departure from the previous

models.

OF ou/0a B P
OE — Ou/dc+ quBy.(L/F)? ~ q+ quBy.(L/F)?

(2.5.21)

Expression 2.5.21 implies that the price of energy resources is no more equals to the

substitution rate between non-energy goods and energy goods.

C.(pa — p) o0 m)t

PA= F DR IR (2.5.22)
OF
C. (u o —)
qr = : ORo) oo (2.5.23)
g L\2 OF -
(%) o,
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2.6 Conclusions

At first, it is important to observe that some classical results were obtained in those

models, namely:

ou
Qo =qw =qu =4r=ANR = 57 (2.6.1)

e the Hotelling rule

@ — p_NR = @ =9 ) (262>
PR PNR Pp

Moreover, many results of the work of Stamford da Silva remains in the model zero and

one , for instance:

oF  OF 0s

OE; OFE 0OFEgp ’ (2.63)
[ ]

OF  Ou/da p

OF  0u/dc q (26.4)
[ ]

ou
__Ou 2.6.

[ ]

4qr gNR qH qw 4o
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IR = UNR = HH = Hw =1 ; (2.6.7)
[ J
oOF oF
W — a_E (2-6-8)

The fact that those results are preserved act as argument of validity of those models

even.

For the zero model, the new result were:

OF

pa=(0 —€))pa — qo@ALO'LO ; (2.6.9)
[ ]
. oF
g = (0 = B)ar + qo (c + a.a—E) —u (2.6.10)

These results are, in special, difficult to interpret, but assuming an specific production
function or solving (or simulating )those partial differential equations one may obtain a
better comprehension about the phenomena.

For the one model, the new results were:

) OF .
qr = (0 — B)ar + qo <C+ a-a—E) —u (2.6.11)

_ C.(pa— p) (64-p)t
PA= A 0F, JoKk .

(2.6.12)
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The first result remains from the zero model, and the second establish the dynamics of the

technology shadow price. Since the shadow price must increase, or at leat not decrease, the

depreciation of the technological capital must be larger than the depreciation of the other

sector. Otherwise, if the shadow price decrease no one will want to develop technology.

For the two model, the new results were:

oF _OF _ Ju/oc  Os
OE; OE  0du/dc+ qupy.(L/F)? OFEg

OF Ou /0 P

OE ~ du/dc+ quBy.(L/F? ~ q+ quBy.(L/F)?

whose are only adjustments of similar results of zero and one model;

_ C.(pa —p) G+t .
PA= A OF, JoK .)€ ’

OF
O g — p— =
_ <M0 3 3K0) ()t
v = N2 0F  ©
(%) oK,

(2.6.13)

(2.6.14)

(2.6.15)

(2.6.16)

The first remains form the one model and the second establishes the dynamic of the

shadow price of the labor force. Therefore, since shadow price must increase over the

time, implies that
oF

_< —_
oK, Ho — M
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3 Concluding Remarks and Suggestions

3.1 Concluding remarks

The main conclusions are:

e The results of the chapter one’s growth models with those modifications in the
population dynamics maintain the classical results of the Sollow’s model(Solow,
1956) in the sense that they assert the existence of equilibrium points, K/L in the
first formulation and K /AL in the second one. Therefore, one should note that it
is not necessary to be worried concerning the validation of the model. Validations

of the Sollow’s model also confirm those model’s presented here.

e (lassical results were obtained in those models of chapter two, namely:

ou
Go=aw =4n =R = INR = 5 (3.1.1)

2. the Hotelling rule

b _ e _ B _ g

; (3.1.2)
Pr PNR PD

e many results of the work of Stamford da Silva(Stamford da Silva, 1999) remains
in the model zero, one and two of chapter two. In sauch way, the fact that those

results are preserved act as argument of validity of those models even.

e For the zero model,

oF

pa =(0 —€))pa
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qr = (5—5)QL+Qo<C+a.g—g> —u (3.1.4)

are, in special, difficult to interpret, but assuming an specific production function or
solving (or simulating )those partial differential equations one may obtain a better

comprehension about the phenomena.

e For the one model

_ Clpa—1) oy
pa = A.(@FA/aKA)e . (3.1.5)

. Since the shadow price must increase, or at leat not decrease, the depreciation of
the technological capital must be larger than the depreciation of the other sector.

Otherwise, if the shadow price decrease no one will want to develop technology.

e For the two model, the new results were:

1.
OF _ O0F _ Ju/oc Os (3.1.6)
OE;  OE  0u/oc+ quBy.(L/F)?* OEg o
2.
or Ou /o B p (3.1.7)
OE  Ou/Oc+ qLfy.(L/F)* g+ qupy-(L/F)? -
whose are only adjustments of similar results of zero and one model, and
1.
OF
C. (Mo —H— 8_K0>
qL = o e (3.1.8)
(%) om
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Since shadow price must increase over the time, implies that

or

_< .
0K, Ho — M

3.2 Suggestions

As said in chapter 0, section 0.3:
“ .. as well as a man needs food, the machine needs energy.”

This simple idea can inspire different macroeconomic models since the energy would be
the “consumption” of the machine.

For the model presented in chapter 1 section 1.3, one can assume a particular pro-
duction function and then it may yield new results. Further, one can try to solve or to
simulate the partial differential equations that appear due the maximum principle in the
chapter 2.

In this dissertation, it was only analyzed the macroeconomic aspects. Therefore, it
is natural to suggest a microeconomic study concerning the energy sector. In particular,
one should study why the solar energy is not used in Brazil. One should, for instance, try

to attain the following objectives:

1. To study the tradeoff between prices for solar water heating system (SWHS) device

and its lifetime cycle;

2. To study the consumer’s decision problem: to invest or not to invest in a Solar

Water Heating System, SWHS, device?
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A Appendix

A.1 Optimal control problem 0

MaxW:/ e " Lu(c, o, B)dt,
0

subject to

F(K(),ALU,E,W>:10+Iw—|—]H—|—IR—|—INR—|—[A—|—S(EE>—l—LC

E=Ep+Exg+Ey+Ep—W — La
L=Lo+Lg+Lyg~+Ly+Lw+ Ly
E; = F(K;,AL))Gy(D;); i=R,NR

Ey = Fy(Ky, ALg)Gy (D)

W = Fyw(Kw, ALy)Gw (D)
K;=—wK;+1;; i=0,R NR,HW,A
D;=—FE;; i=R,NR
D=f(t)— (Eg+W)

L=3L

A=¢€A

A.2 Hamiltonian

H :e_&{Lu(C, a,3) + Z Qi(— G + 1) + Zpi(—Ei)—l-

po(f(t) = (Eg +W)) + paeA+ qLBL}

o4

(A.1.1)

(A.1.2)
(A.13)
(A.1.4)
(A.L5)
(A.L6)
(A.L7)
(A.1.8)
(A.L9)

(A.1.10)

(A.1.11)

(A.1.12)

(A.2.1)
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From expression A.1.2 the variable ¢ can be represented as

1

c=—[F(Ko, ALy, E.W) — Iy — Iy — Iy — Iz — Ing — s(Eg)].

L
Therefore, one obtains:

oc 1 dc 1 , oc 1
a—F—Z 78—11——3 (Z—O,R,NR,H,W) _— = —

From F = Er+ Engr+ Eg + Eg — W — La, one gets then

OF OF OF
1 (=R NRHE) 22_-_1 Z&__p
OE, (i=RNEH.E) o " Da

A.3 Control forces
e [;,i=0,R NR HW;
e Fi,i=R,NR, H;
o W, Eg, a and .

To maximize the Hamiltonian:

oOH
o1,

=0 :i=0,W,R,NR,H.

OH s 0
a_li =€ a_IZ{LU(C(IZ)) + Z qz(_Msz + Iz) + sz<_Ez)+
po(f(t) = (Ex +W)) + pacA+ qLBL}
ou Oc
5t ou 1
—¢ {L' dc 01, + ql} 0
Thus,
q; = % i=0,W,R,NR, H.
Oc
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oH
OFy

Thus,

o
oF;

Thus,

= (A.3.3)

o (LB + 3 e+ 1) + 3 p~Fi)+

po(f(t) = (Eg +W)) + pacA+ q 3L}
ou Oc OF OF
—5t _
{L'(?C'GF‘GEQEH }_0

ou OF
bo _0F
. OF (A.3.5)
OH ,
55 =0 ii=RNE (A.3.6)
0
st
=e a—E{LU(C(F(E(Ei)))) Y ai(—pEi+ L) + Y pi(—E)+
po(f(t) = (Ex +W)) + paeA+ qLBL}
Oou Oc OF OF
_ oty Ow Oc OoF oL
— { "9c OF OE OF, p’} 0
ou OF ,

o6
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From A.3.2:
bi 3_F .
L= G5 i=RNR (A.3.8)
oH
35 = (A.3.9)
O oot O (e F(B(E)), s(Be)) + 3 as( il + 1) + 3 pi(—Fo)+
aEE aEE E))s E 7 (RAN) 7 7 7

po(f(t) = (Eux +W)) + paeA+qBL}
Oouys0c OF OFE  Oc Os
_ sty Quygoc O dc
= {L'ac (aF‘aE‘aEE + as'aEE>}

{5 G om0

Thus, assuming du/dc > 0:

oF O0s

— = A3.1
OF OFg (A.3.10)
OF OF OFE OF 0s .
OH
I A.3.12
ow 0 (A.3.12)

oH

O =t D Lu(e(F(BOV), W) + Y ok + 1)+ Y B

po(f(t) — (Eg + W)) + pacA+ qr 8L}

o7
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o (05 01

pD_%-

From A.3.4, A.3.13 and assuming du/dc > 0:

oF _OF
ow — TOF
OH

a0

0H

po(f(t) = (By +W)) + paeA + q. 6L}
:e,gt{L' [@ Oc OF OF E)u]} _0

9c 0F 0F da | da

Thus,
ou OF _u
dc OF  Oa
From A.3.7, A.3.4:
pi=2% i=D,RNR
Oa
And assuming du/dc > 0:
OF _ Ou/0a
OE — Ou/dc
OH
o3 "

o8

(A.3.13)

(A.3.14)

(A.3.15)

W et L Ll e(F(B (), 0) + 3 ek + 1)+ Y pi(— B+

(A.3.16)

(A.3.17)

(A.3.18)
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OH 0
5 :efét%{Lu(ﬁ) + Z Gi(—pi I + 1) + Zpi(_Ei)+

po(f(t) = (Ex +W)) + paeA+qLBL}

B
:e—&{L.—“ + L.qL} —0

ol6]
Thus,
ou

- __ A.3.19
qL BE ( )

For the co-state variables:

de% p; OH

pn 9D i=R,NR (A.3.20)

e " (pi — 0p;) = — 6_&%{LU(C(F(E(Ez‘(Dz‘))))) + > G+ L)+

S 0 ~Ei(Di) + po(f(t) — (i + W) + pacA+
qLBL}

B "9c OF OE OF, oD, P"aD,

Therefore,

pi—5pi+<pi—%-a—E>.aDi 1= R, NR.
From expression A.3.7:
% —§; i=R,NR. (A.3.21)
de=% .pp OH
= —— A.3.22
dt oD ( )
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(oo — dpp) = — L Lule(P(B(ER(D), WD), W DY) + 3 ae(—pek + 1)+

S pi(—Ei) + po(f(t) = (Ex(D) + W(D))) + pacA+

QLﬁL}

e 0t )0
OEy OW
_pD[85+8_D]}

o — i+ o~ PL.0) B (O OF _0u 0F ) oW

From expressions A.3.4 and A.3.13:

Pp _
o 0 (A.3.23)
de—;tt.qz- _ _gg .i=R,NR. (A.3.24)
6—6t(qi —dq;) = — 6—515%{Lu(c(F(E(EZ'(Ki))))) + Z ¢i(—pi K + 1)+
N pil—Ei(K)) + po(f(t) — (Eg + W) + pacA+
QLﬂL}

ou OF\ OF; .
— Na. A ;1= R, NR.
6+ m)ai+ (v = 5.5) ox, TN
From expression A.3.7:
% _ 54 i=R NR (A.3.25)

i
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de % .qy OH

e (A.3.26)
) s 0
¢! — bqm) == & g Dule(F(B(En(Km)) + 3 o~k + L)+
sz i) +po(f(t) = (Eu(Ku) + W)) + paeA+
QLﬁL}
ou dc OF OF OF oFE
_ =0t ve oo v v YH v
- {L ¢ OF OF 0, ok 41~ “HHPD( 8KH>}
Gr = (0 + pr)am + ( Pp — %a_E)‘—aKH
From expression A.3.4:
qu _5
=0+ g (A.3.27)
qH
de ™ g OH
&= K. (A.3.28)
0
—ot/ + . - —ot T )
e (4w — dqw) = —e aKW{L“( (F(E(W(Kw)), W (Ew))) + Y ai(—pi + L)+
> pi(—Ei) + pp(f(t) — (By + W(Kw))) + pacA+
CILﬁL}
ou Oc (OF OE OW oF oW
_ _ =0t el St _
- {L'80'6F<8E'8W'8KW+8W'8KW>+qw( )

#o( = 3.}

o Lo~ o5)) o

QW:(5+MW)Qw+<p —% %
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Optimal control problem 0

From expression A.3.13:

From expressions A.3.2, A.3.25, A.3.27 and A.3.29:

and

in _

qr

7&((10 —0qo) =

From expression A.3.2:
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(LA S (A.3.29)
aw
KR = UNR = HH = Hw = /i (A.3.30)
np _ i _ Qv _dp _ o _ 5, (A.3.31)
dnr  4qx 49w 4D Qo
de % .qqy OH
= — A.3.32
dt 0K, (A-332)
e‘sti{Lu(c(F(Ko))) - Z Gi(—i K + 1)+
8KO K3 1 (] 1
> pi(=E) +po(f(t) = (Eu + W) + pacA+
QLﬁL}
Oou Odc OF
I
=L 50 ar K, T o= po)§
ou OF
s _
= (0 + po)qo Jc 0K,
do OF
=9 — A.3.
0 + o 9k, (A.3.33)
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From expression A.3.31:

OF
Assuming 0F /0K, > 0:
fo > [ (A.3.35)
—6t H
de”"pa __OH (A.3.36)

dt 0A

e (pa — Opa) = — e—&a%{Lu(c(F(ALo, E(Ey(Fy(ALgy)), Er(Fr(ALR))

s Enr(Fnr(ALyg)), W(Ew (ALw))), W (Fw(ALw)))))
+ > a(—pKi + L) + Y pi(—Ei(Fi(AL)))
+po(f(t) = (Eu(Fu(ALn)) + W(Fw(ALw))))+

pacA+ L}
ALy OE 0En OFy 0ALp OE OExn OFxg
0A ' 0En 0Fn 9ALn 0A | 0Enpn 0Fwr OALnp
OALNr  OE OW 0Fy O0ALwy OF oW 0Fy
9A oW 0Fy 0ALw 0A } oW DFyw 0ALy
aALw]) <_ 8ER 6FR (‘3ALR> <_ 8ENR
oA B\ T OF, 9ALn 0A ) TPNEUT GEva
8FNR aALNR> (_ 8EH 8FH GALH - ow
ALy OA PO\ = 9F, 0AL,  0A  OFy
OFy OALy
OALy 0A

>+p,46

63



Appendix A Optimal control problem 0

du OF OFy ou OF
=0 = pa— 3o ALy GH(D)'@ALH'LH(%&)_E _pD>
8FR ou OF 8FNR ou OF
Gr(Dr) gL (ac 55 ~Pr) — Gve(Dyn) o Ln( 5 o
OFy ou OF ou OF
_pNR) G )'8ALW'LW< ocor Pt %'W)
) ou OF
ba =00 = €)pa— 5057
. OF
pa=(6 —¢€))pa— qoaA—Lo'LO (A.3.37)
de= qr, OH
=7 (A.3.38)
d
7625 -0
(e = 8a1) = — e ' { Lu(e(L. F(BD)) + Y as(—pusks + 1)+
> pi(—Ei) +pp(f(t) — (Ey + W) + pacA+
QLﬁL}
ou 7 Oc Oc OF OF
_ -0t ve vrve
- C {L e (8L Y or oE 8L) ““LQLB}
ou 1 OF
_ =6t il S
- c {L'ac( L 8E>+U+QL6}
. A OF
g = (0 — B)ar + — e (c—l—oz.a—E) —u
OF
gr = (0 — B)ar + qo (c + a. a_E) —u (A.3.39)
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B Appendix

B.1 Optimal control problem 1

MaxW:/ e " Lu(c, o, B)dt,
0

subject to

F(K(),AL(LE,W):10+Iw+IH—|—[R—|—INR—|—IA+S(EE)—l—LC

E=Ep+Exg+Ey+Ep—W — La
L=Lo+Lg+Lyg~+Ly+Ly+ Ly
E; = F(K;,AL))Gy(D;); i=R,NR

Ey = Fy(Ky, ALg)Gy (D)

W = Fyw(Kw, ALy)Gw (D)
K;=—wK;+1;; i=0,R NR,HW,A
D;=—FE;; i=R,NR
D=f(t)— (Eg+W)

L=3L

A=Fy(Ka LA

B.2 Hamiltonian

H :e_&{Lu(C, a,3) + Z Qi(— G + 1) + Zpi(—Ei)—l-

po(f(t) = (Bg +W)) + pa(Fa(Ka, La)A) 4+ qr 8L}
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Appendix B Optimal control problem 1

From expression B.1.2 the variable ¢ can be represented as

1

¢=—[F(Ko, ALy, E.W) — Iy — Iy — Iy — Ip — Ing — 14 — s(Ep)].

L
Therefore, one obtains:

1 1 1
0c e L Gi—orNrmwa (21

oOF L 01 L " Os L
From F = Er+ Engr+ Eg + Eg — W — La, one gets then
o oE oF
=1 ((=R,NR,H,E) ;—=-1;, — =-L
OE; (i=RNRHE) 50 ' Da

B.3 Control forces
e [;,i=0,R NR HW, A;
e Fi,i=R,NR, H;
o W, Eg, a and .

To maximize the Hamiltonian:

0H
01,

=0; i=0,W,R NR,H,A.

OH 5 0

6_Ii =e G_L{Lu(c(]’)) + ZQZ’(_/%‘KZ' + ;) + Zpi<_Ei)+

po(f(t) = (Bg + W) + pa(Fa(Ka, La)A) + qLBL}

:e_‘”{L.%.gZ + qi} _0

Thus,

q; = %; 1=0,W,R,NR,H, A.
Oc
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Optimal control problem 1

OH
OFy

Thus,

o
oF;

=~ (B.3.3)

o (LB + 3 e+ 1) + 3 p~Fi)+

po(f(t) = (Eu +W)) + pa(Fa(Ka, La)A) + q1.8L}
_&{L‘au dc OF OF

(B.3.4)

Pp _ oF (B.3.5)

oOH
oE;

=0, i=R,NR (B.3.6)

:eétaiEi{Lu(c(F<E<Ei))>) + D il + 1) + Y pi(—Ei)+

po(f(t) = (B +W)) + pa(Fa(Ka, La)A) + qLfL}

:e_ét{ @@a_Fa_E_pi}zo

Thus,

"Jdc OF OF OE;

ou OF
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From B.3.2 and assuming du/dc > 0:

= op i=RNE (B38)
o0H
o, (B.3.9)
5;2 —e 0t aZE {Lu(c(F(E(ER)),s(Eg))) + Z Gi(—p K + I;) + Zpi(_Ei)Jr

po(f(t) = (Eu+W)) 4+ pa(Fa(Ka, La)A) + qrBL}
Ou s 0c OF OF Oc Os
_ —stf; OuOc OF dc
= {L'ac (aF‘aE‘aEE + as'aEE>}

{5 G om0

Thus, assuming du/dc > 0:

oF O0s

R B.3.1
OF OFg (B:3.10)
OF OF OFE OF 0s .
OH
I B.3.12
ow 0 (B:3.12)

oH

O =t D Lu(e(F(BOV), W) + Y ok + 1)+ Y B

po(f(t) = (Eg +W)) + pa(Fa(Ka, La)A) + q.fL}
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ou (0F  OF
—— === = B.3.1
vo = 50 (ow ~ 95) (B:3.13)
From B.3.4, B.3.13 and assuming du/dc > 0:
OF OF
— =2— B.3.14
ow OFE (B.3.14)
OH
—_— = B.3.1
e =0 (B.3.15)
OH 4 0
P ° a—a{LU(C(F(E(Oé)))y @)+ Y ai(—wlG+ L)+ Y pi(—E)+
po(f(t) = (BEy + W) + pa(Fa(Ka, La)A) 4+ quBL}
Ou Oc OF OF  0Ou
ot gu oc of o& | ouly _
= L5 55 55 50 * 5a))
Thus,
ou OF _u
dc OE  Oa
From B.3.7, B.3.4:
o4 i _ D RNR (B.3.16)
pi aa7 L= y LU . L.
And, assuming du/dc > 0:
OF  Ou/o«a
— = B.3.1
OFE  0Ou/oc (B-3.17)
OH
- — B.3.18
5= (B.3.18)
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oH 0
=7 = " {Lu(B) + ZCJi(—/MKi +1;) + Zpi(_Ei)+
B ole]
po(f(t) = (Eg +W)) + pa(Fa(Ka, La)A) + qLBL}
ou
st ou _
=e {Lﬂﬁ + L.qL} 0
Thus,
ou
= —— B.3.1
qL BE ( 3 9)
For the co-state variables:
de% p; oH .
i _aDi i=R,NR (B.3.20)

e (pi — 0pi) = — e a—Q{LU(C(F(E(Ei(Dz‘))))) + > GG+ L)+

> 0i(—Ei(Dy) + po(f(t) = (B +W)) + pa(Fa(Ka, La)A)+

- "9c OF OE OF, oD, P oD,

Therefore,

i = Opi + <pi— %'a_E)aDi .i— R, NR.

From expression B.3.7:

% — 6. i=R,NR. (B.3.21)

—ot H
de”pp __OH (B.3.22)

dt oD
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(oo — dpp) = — L Lule(P(B(ER(D), WD), W DY) + 3 ae(—pek + 1)+

> pi(—E) +pp(f(t) = (Eu(D) + W(D))) + pa(Fa(Ka, La)A)+

QLﬁL}

e g )0 o
OEy OW
_pD[85+8_D]}

o — i+ o~ PL.0) B (O OF _0u 0F ) oW

From expressions B.3.4 and B.3.13:

Pp
o ) (B.3.23)
de™%.q; oH
i~ ok I-RANR (B.3.24)
i~ da) = - e—‘“%{Lu<c<F<E<Ei<Ki>>>>> + 3 -k + )+
> pi(—Ei(K:)) + pp(f(t) = (B + W)) + pa(Fa(Ka, La)A)+

Ou dc OF OF OF;

==L o5 o, o, 4O W“’i(‘g—%)}

ou OF\ OF;
= (0 i)di (z___) : ;i=R,NR.
O+ m)e+\pi= 5055 ) o1, 1= BN
From expression B.3.7:
% _§4u: i=RNR. (B.3.25)

i
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de % .qy OH

T (B.3.26)
. s O
e Man — ) = — e~ g { Lule(F(B(Ep(Ku)) + 3 ai(—paks + L)+
> pi(=E) +po(f(t) = (Bu(Ku) + W) + pa(Fa(Ka, La)A)+
QLﬁL}
ou Oc OF OF OF oF
_ =0t e oo v v~ YH _Y=H
- {L Jc 9F OF 0Ey oky T “HHpD( 6KH>}
Gr = (0 + pr)am + ( Pp — %a_E)‘—aKH
From expression B.3.4:
qu
— 6+ iy (B.3.27)
qm
de ™ g OH
rra o (B.3.28)
0
=6t . - —it T )
e (dw — dqw) = —e aKW{L“( C(F(EW (Kw)), W(EKw)) + Y qi(—mil; + L)+
> pi(—Ei) +pp(f(t) — (By + W(Kw))) + pa(Fa(Ka, La)A)+
QLﬁL}

OF OF

= 5+ (- 2[5 F1).

ow
OKw
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From expression B.3.13:

(LA S (B.3.29)
aw
From expressions B.3.2, B.3.25, B.3.27 and B.3.29:
WR = UNR = HH = Hw = [L (B.3.30)
and
r _vr _ G _ 4w _Gp _4a _do _ 5., (B.3.31)
dr  9qNnrR 9 4w 4D dA 4o
de % .qqo OH
= — B.3.32
dt 0K, ( )
—5t( 5 0
Mo — da) = — e 5 { Lu(e(F(K) + 30 as(—pakKo+ T+
> pi(=E) + po(f(t) = (Bu +W)) + pa(Fa(Ka, La)A)+
QLﬂL}
ou Oc OF
— _ 0t L.
R i, T po)§
ou OF
5 _
= (0 + po)qo Jc 0K,
From expression B.3.2:
o oF
=0 - — B.3.33
qo o 0Ky ( )
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From expression B.3.31 and B.3.33:

oF

=y — B.3.34
9K, Mo — H (B.3.34)
Assuming 0F /0K, > 0:
fo > [ (B.3.35)
de % .q4 OH
- B.3.36
dt 0K 4 ( )
ot st 0
e (da = 004) = — o Lule, 0, 0) + D a—puki + L)+
> pi(=E) +po(f(t) = (B + W) + pa(Fa(Ka, La)A)+
C]LﬁL}
OF
_ 6t _ A
== {aal-m) +pAA'6KA}
: OF
Ga = (0 + f14)qa — paA. aKi (B.3.37)
From B.3.31:
qa = C.elTt (B.3.38)
Thus, form B.3.37 and assuming A, 0F /0K 4 > 0:
_ _Cla— i) o (B.3.39)

PA= A (0F, oK )
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de % py OH
P o (B.3.40)

e (pa — Opa) = — e—&(%{Lu(c(F(ALO, E(Ey(Fy(ALgy)), Er(Fr(ALR))

s Enr(FNrR(ALNR)), W (Fw(ALw))), W (Fw(ALw)))))
+ > a(—pKi + L) + Y pi(—Ei(Fi(AL)))
+pp(f(t) = (Eu(Fu(ALg)) + W (Fw(ALw))))+

paA(Fa(Ka, La)A) + QLﬁL}

{L GU(ac[ oF 8AL0+8_F{ OF OEy OFy
0ALy . OE 0By OFy 0ALp 0B O0Eyg OFyn
0A OFr OFgr OALR 0OA OFEnpr OFng OALNR
8ALNR+ oFE OW OFy aALW} oF OW OFy
0A OW 0Fy 0ALy 0A OW OFy OALw
aALw]) <_6ER 6FR (‘3ALR> <_8ENR
9A PR\~ 9F, 0ALs 04 ) T PNE\ T GEvn
6FNR 8ALNR> pD<_8EH 8FH GALH ow

OALnr OA OFy O0ALy 0A  OFy
OFw OALy
ou OF 0Fy ou OF
Pa=(0 = Fa(Ka, La)lpa = 5. GALy 0T 0= Gu(D)- gL (80 oF _pD>
(9FR ou OF 8FNR ou OF
— Grp(D L — =
GrlDr)-577 - OALR (80 OF pR) Grr(Dnr)-577— OALNR' R(ac OF
OFw ou OF ou OF
_pNR> - GW(D)'@ALW'LW< 298 PP o aw)

ou OF
FA(Ky4, L —
(5 A( A, A))pA 8 "OALy’
(5 F (K L )) — or L B341)
pA = Al A, La))PA QAOALO 0 ( 9.
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de~ % g OH

¢y~ bar) = — e 5L Tule( L, F(BL)) + Y al -k + T+

> pi(=E) +pp(f(t) = (Ew + W)+ pa(Fa(Ka, La)A)+

QLﬁL}

= {5 G oropor) )

—_ e—&{L.%( — % — a.?—?) +u+ qLﬁ}

ou oF
qr = (6 — B)ar + a—(c—l—a 8_E> —u
oF
qr = (0= B)qr + qa (c + a. 8_E> —u (B.3.43)
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C Appendix

C.1 Optimal control problem 2

MaXW:/ e Lu(c, v, B)dt,
0

subject to

F(Ko,ALo,E,W) :[0—|—IW+IH+IR+[NR+[A+S(EE>+LC

E=FEp+Exg+ Ey+FEg—W — La
L=1Lo+Lg+Lyg+Ly+ L+ La
E; = Fy(K;, AL))G;(D;); i=R,NR

Ey = Fy(Ky, ALy)Gy(D)

W = Fy(Kw, ALy)Gw (D)
K;=—wK;+1;; i=0,R NR,H WA
D;=—FE;; i=R,NR
D= f(t)— (Exg+W)

L =BL(1 —yF(Ky, ALy, E,W) L)

A=F (Ka Ly)A
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C.2 Hamiltonian

H =e™*"{Lu(c,, B) + Z @i(—pil + ;) + sz'(—Ei)"‘

po(f(t) = (Ex +W)) + pa(Fa(Ka, La)A)+

qL(ﬁL(l - 'VF(KOa AL07 E7 W)_lL))}

From expression C.1.2 the variable ¢ can be represented as

1

C:—[F(Ko,ALQ,E,W)—IO—]W—IH—IR—]NR—IA—S(EE)].

L

Therefore, one obtains:

Oc 1 Oc 1 Oc 1
oF L ‘a1 UTORNRHWA) i50=-7
From F = Er+ Enr + Eg + Eg — W — La, one gets then
oF oF oF
=1 =R NRHEFE) (—=-1 — =-L
OF, (i=R.NE.HE) 50 " Dol

C.3 Control forces
e [;,i=0,R NR, HW, A,
e Fi,i=R,NR, H;
o W, Eg, a and [3.

To maximize the Hamiltonian:

0H
oI,

=0; i=0,W,R NR,H,A.
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oOH 4

e L)) + Y e+ 1)+ Y p(-E)+

po(f(t) = (Eg +W)) + pa(Fa(Ka, La)A)+

qr(BL(1 — vF (Ko, ALy, E,W)"'L))}

ou Oc
=0t el . —
—¢ {L‘ dc 01, +ql} 0
Thus,
ou )
G=—:; i=0,W,R NR,H,A.
oc
OH
OEy 0
O oot D Lo FEE)) + 3 -+ 1)+ Y p(—E)+
aEH 8EH 1 (3 1 (A (A 3
po(f(t) = (Ex +W)) + pa(Fa(Ka, La)A)+
qr(BL(1 — yF(E(Ey))"'L))}
ou Oc OF OF N2 OF OF
_ -6t ou oc o oL L\ o 91 _
—° {L'ac‘aF'aE'aEH pD*‘JLm‘(F) '8E'8EH}
Thus,
ou L\2\ OF
o= (Gt (5) )55 =0
From C.3.2:

Pp . 3_F
q+qrBy.(L/F)? oE

OH
OE;

=0;, 1=R,NR.
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po(f(t) = (Bg +W)) + pa(Fa(Ka, La)A) + ar(BL(1 — yF(E(E;)) 7' L)) }

ou Oc OF OF LN\2 OF OF
—stf, Ou oc of oL L= o _
{L‘ac‘aF‘aE‘aEi pZ“’LM(F) '8E'8Ei}
Thus,
ou L\2\ OF )
pi — <8_c + %ﬁ%(ﬁ) )8_E =0; i=R,NR. (C.3.7)
From C.3.2:
Pi oF
- C.3.8
q+aqrBy.(L/F)*  OF ( )
0H
35 = (C.3.9)

STHE _GJt%{LU(C(F<E<EE)), s(Eg))) + Z Gi(— K + 1) + Zpi(—Ei)_i_

po(f(t) = (Er + W) + pa(Fa(Ka, La)A) + qu(BL(1 = yF(E(Eg)) ' L))}
:e_at{L@<@6_F8_E dc 6s>+qLﬁ%<%>28F 8E}:0

9 \OF 9E 9E, ' 9s 0F, OE OF,
Thus,
ou N2\ OF Ou O0Os
(G +09(7) )35 ~ o8 = (C.310)

Assuming du/dc + qBv(L/F)? > 0:

oF q 0s

— = . C.3.11

OE  q+quBy(L/F)? OEg ( )
orF OF OFE  OF q 0s (C.3.12)

0F;, OE 0E; O0E q+qBv(L/F)? 0Ey
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OH
=Y (C.3.13)
g_vfé oot {Lu (EW), W)+ ai(—mli + L)+ > pi(—E;)+

pD(f(t) — (Bg +W)) 4+ pa(Fa(Ka, La)A) + qu3L(1 — yF(E(W),W)"'L)}

:e“”{L (8u Oc [GF 8E+8F]> pD+qLﬁv< ) [8F 6E+8F”:O

dc OF LOE oW ' oW OE OW oW
Thus,
ou oF  OF
Pp — (8— + qrBy- ( ) > [W — a—E} 0 (C.3.14)
From C.3.4, C.3.14:
OF oF
OH
o =0 (C.3.16)
OH -
P ! {LU (B(@), ) + > aqi(—pEi+ L)+ Y pi(—E)+

pp(f(t) — (B +W)) +pa(Fa(Ka, La)A) + qr(BL(1 — yF(E(a)) ™' L)) }

:e_5t{L <6u Oc OF OF 8u> qLﬁ7< )2 OF 6E}

9¢ 9F 9E 9o da 9E D

Lo~ L (e rae(5) ) =0

Thus,

or ou/0a
OE — Ou/da + qrBy.(L/F)?

(C.3.17)
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oOH

a@—g _e_&%{Lu(ﬁ) + Z ¢(— K + 1) + Z}%(-E@‘)‘i‘

pD(f(t) — (EH + W)) —i—pA(FA(KA, LA)A) + qLﬁL(l — ’YF(KO, ALO, E, W)ilL)}

ou a W
:67&{[/ aﬁ—i-LQL(l_’y (K07AL07E ) 1L)} =0
Thus,
ou L
- ta (1 B 7_) —0 (C.3.19)

For the co-state variables:

de=" p, H
edt Pi _ —SD. .i=R,NR (C.3.20)

e~ (p; — op;) = — e ,{LU(C(F(E(Ei(Di))))) + > a(—pl+ L)+
> pi(—Ei(D2) + po(f(t) — (B + W) + pa(Fa(Ka, La)A)+

qrBL(1 — vF(E(E-(D))))*lL)}
L {Lﬁu Oc OF OF OF; 4(9E
=c dc OF OE OF, D, Y"aD,

2 0F OF (‘3E}

+qu( ) "OF OF, 0D,

Therefore,

p¢=5pi+<pi— [Z—Jquﬂ’y( ) }gg) S_ZEDZ ;i=R,NR.

From expression C.3.7:
pi=0pi; 1=R,NR. (C.3.21)
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de % pp 0H
= —— .3.22
ar oD (C322)

)

oD
> pi(=E) +po(f(t) = (Eu(D) + W(D))) + pa(Fa(Ka, La)A)+
01811~ yF(E(En(D), W(D))"'L)}

( Ou dc (OF [ OE O OF 0 OF 0
=—e L % 82(62[851 a%l + av]f/‘a‘g} av];‘avz[)/>

¢~ (pp — dpp) = — ¢ {LU(C(F(E(EH(D), W(D)), W (D)) + D ai(—pli + L)+

-5+ 5p) + 00 () (5p Loz, 9.+ 5w 9p)*
o)
oW 0D

Pp =0pp + (pp - (g— +qrBy. ( ) )gg) %+

(o~ (Gt + (7)) 3w - 51 3

From expressions C.3.4 and C.3.14:

D
de=.q; H
edt L _SK .i=R,NR. (C.3.24)
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Appendix C Optimal control problem 2

)
Y . iy
e (i — o)) = — e tﬁ{Lu<c<F<E<Ei<Ki>>>>> 3 al i+ L)+
> pi(—Ei(K:)) +pp(f(t) = (B +W)) + pa(Fa(Ka, La)A)+
aBL( vF(E(E(K-)))-lL)}
Oou Oc OF OF OF; OF;
_ _ 0t el . B
= LS 5FoE o5, oK, T4 o)+ i 6KZ->+
20F OF O,
+QLM( ) 9E OE, 8K}
ou OF\ OE;, .
i = (0 + pi)g; + <pz [a +qLBy. ( ) ]6E> K, ;i=R,NR.
From expression C.3.7:
Z— — 0+ p; i=R NR. (C.3.25)
de™% .qy OH
T (C.3.26)
)
_ St/ - . -
e M(an — ) = — e~ | Lule(F(B(E(Ku)) + 3 ai(—pakSs + L)+
> pi(—Ei) +pp(f(t) — (Bu(Ki) + W) + pa(Fa(Ka, La)A)+
aBL( ~ vF(E(Ey(Km) L) }
=L 9c DF OF 0Fy 0k, 4 H) oo - 8KH>

wh (5) o o ot}

QH:(5+MH)QH+<pD_(g_+QLBV< ) )gg) g%
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Appendix C Optimal control problem 2

From expression C.3.4:

9 — 5+ pu
qH

de™ " .qw _ OH
dt  OKw

50

—ot( - . —

(C.3.27)

(C.3.28)

{Lu( (F(E(W(Kw)), W(Kw) + > ai(—pmKi + L)+

> pi(=E) +po(f(t) = (Bu + W (Kw))) + pa(Fa(Ka, La)A)+

aBL(1L = YF(E(W (Kw)), W (Ky))"'1)}
__6_5t{L@@(a_F OB QW OF oW
B "0c OF \OE OW 0Ky  OW 0Ky

(- omy) * 07 () (5o o7 *

oF

QW:(5+MW)Qw+<pD— (g ~|—C_IL57< > )[W—a—E

From expression C.3.14:

qw Y
qw

From expressions C.3.2, C.3.25, C.3.27, C.3.29:

HR = UNR = UH = fw =

and

dr _ gyr _Qu _ 4w _ 4o _ 4a _ o
qr gNR qH qw qp qa qo
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oW 0Ky

— =0+ u

> + qw (—pw)+

(C.3.29)

(C.3.30)

(C.3.31)



Appendix C

Optimal control problem 2

67&(@0

de% .qqy OH

By expression C.3.2:

From expression C.3.31:

Thus, from C.3.33:

Tk (C.3.32)
)
— — 7625_ Y . .
Sg0) = — &~ g { Lule(F(Ko))) + D i+ 1)+
> pi(=E) +po(f(t) = (By + W) + pa(Fa(Ka, La)A)+
aBL(L = 7F(Ko) L)}
ou Oc OF 2 0F
_ __ =6t - - 27
- {L dc oF 9K, T 00 “OHqu( ) 8[(0}
ou OF L\2 OF
do = (6 + po)go — e 0K, CJLﬂV‘(F) 9K,
OF 2 OF
<6+ o — 8K0> —qrB. ( ) oK, (C.3.33)
go = C.eltmt (C.3.34)
OF
C. (Mo o 87)
qL = T e (C.3.35)
(%) ox;
—ot
de™".qs _ _OH (C.3.36)

dt 0K 4
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Appendix C Optimal control problem 2

0

oty -
€ (qA (5(]14) € aKA{Lu(C O‘aﬁ + qu M%K + [)

> pi(=E) +po(f(t) = (Bu + W)+ pa(Fa(Ka, La)A)+
a1BL(1 — F(Ko, AL, E, W)—lL)}

0
i)

=— 6_5t{CIA(_NA) + paA.

Ga= (04 pa)ga — pAAgIF(i (C.3.37)
From C.3.31:
qa = C.elt (C.3.38)
Thus, form C.3.37:
D4 = C.(pa — ) O+t (C.3.39)

A(OF1/0K 1)
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Appendix C Optimal control problem 2
de % py OH
. _s O
e % (pa—dpa) =—e 5ta—A{Lu(c(F(ALO, E(Ey(Fy(ALy)), Er(Fr(ALR))

, Enr(Fnr(ALNR)), W(Fw (ALw))), W(ALw))))

+ > G+ L)+ Y pi(—E(F(AL)))

+pp(f(t) = (Bu(Fu(ALn)) + W (Fw(ALw))))+
pa(Fa(Ka, La)A) + qrL(1 = vF(ALo, E(En(Fr(ALn)),

Er(Fr(ALR)), Exr(FNr(ALNR)), W (Fw(ALw))), W(ALw))

:—e‘”{L.%(@[ OF 6AL0+E)_F{ OE OFEy OFy
Oc \OF LOAL, 0A OFE \OEy OFy OALy
OALy OF OERp OFr OALp OF OEnr OFygr
04 | 9En 0Fn 0ALn 0A | OFnn OFwn 0ALnn
8ALNR+_8E oW  OFw 8ALW}%_8F oW  OFw
0A OW OFy OALy 0A OW OFy OALw’
DA PR\ = 9F, 0ALy  0A ) TPYE\T GFyn

8FNR 8ALNR) D< 6EH 6FH 8ALH ow

OALnr OA © OFy 0ALy 0A  OFy
OFy OALy I\27 OF 0ALg
ALy 0A )*pAFA(KA’LA)”Lm(F) [aALO' oA

0E\QE, 0Fy 0ALy 0A

OF 0En OFn 0ALp OE OEwn OFyn
OE, 0Fn 9ALn 0A | 9Fnm 0Fvn OALnp

0A oW 9Fy 0ALy 0A oW OFy DALy
8ALW]}

oA

38

—1L)}



Appendix C Optimal control problem 2

ou OF

=(0 — Fa(Ka,La))pa — 9c DALY

GH(D).aiFLHH.LH (o - (g— +q187. (;)2) g—g>+
GulDw)ip=La(on— (G +uo(5) ) 55)+
Gr(Dyp). aix?; Lva(pvn — (et 0 (%)) o)+
G (D). aiiw L (po - ( +qLﬂv( ))[W_E)_ED
QLM( )28?4}20L

~0 = Falas Laoa = S ko — u61(7) ar-To

oF 2 OF
pa =(0 — Fa(Ka, La))pa — 9N GAL, Ly — QLﬁ’Y< ) 8AL0L (C.3.41)
de % q, OH
o oL (C.3.42)
5ty o
e (g — 0qr) = — e t@L{Lu(( —1—2(] — i K + 1)+
ZP i) +pp(f(t) — (Bu +W)) + pa(Fa(Ka, La)A)+
aSL( - F(E(L)) L)}
Ou/0c  Oc OF OF
_ -t Oc  Oc OF OF
—— {05 (or * or-amar) *

wi(1-2(5) - () 7p)}

- () e

wi(1-2(3) -1 (5) 55)}

= (1= () e (£ s (o020 -
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Appendix C Optimal control problem 2

qr = (5 — ﬁ[l — 27(%) — av(%)Qg—g} )qL +qa (c + 04.2—2) —u (C.3.43)
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Appendix D Insert a title

D Appendix

D.1 Model 1

The income identity,
Y=C+1=F(K,L). (D.1.1)

The first modified labor force growth model,

L=pL (1-%). (D.1.2)
The gross investment identity,
K=-pK+I =—-pK+F(K,L)-C (D.1.3)
From D.1.1 and D.1.3:
K=—uK+F(K,L)-C (D.1.4)

Remember that the production function exhibits constant returns of scale, that is,

F(aK,aL) = aF(K,L), (D.1.5)

where « is a positive real number.
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Appendix D Insert a title

Thus,
K\ LK-KL K K L
(1)-"F -1 rn)
— uk+ fGh >—c—kzﬁ( _ka)
Bk
—(M+5)k+f()+m—c
Bk
:—/\k?+f(k>+m—c
= M+ g(k) —
8.k
where g(k) = f(k) + D) and A\ = pu+ (.

0H _Ou
de e y=
_ou
y_ac
de %y o0H B ,
di _—%: 5ty(>\—9(k))
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(D.1.6)
(D.1.7)
(D.1.8)
(D.1.9)

(D.1.10)

(D.1.11)

(D.1.12)

(D.1.13)

(D.1.14)

(D.1.15)

(D.1.16)



Appendix D Insert a title

¢ = % (—(A+6) + g(k))c (D.1.17)
Thus,
b= ——(—(A+0) + g'(K))e
a(c) (D.1.18)

k=M +g(k) —c
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Appendix E Insert a title

E Appendix 5

E.1 Model 1

The income identity,
Y=C+1=F(K,AL). (E.1.1)

The first modified labor force growth model,

i=3L (1—%). (E.1.2)

The gross investment identity,
K=—puK+1. =—puK+ F(K,AL) - C (E.1.3)
From E.1.1 and E.1.3:
K =—uK + F(K,AL) - C (E.1.4)
Remember that the production function exhibits constant returns of scale, that is,
F(aK,aAL) = aF (K, AL), (E.1.5)

where « is a positive real number.
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Thus,
K\ ALK-KAL K K AL K L A B16
(ﬂ)_W_E_E'Z'Z_E'Z'Z (E-1.6)
 uK F(K,AL) C K L K A
STALT T AL AL AL L AL A (E.L7)
= —pk+ f(k)—c—kp (1—%) —ky (E.1.8)
B Bk
=~ Bk + f(h) + 55 e (E.L.9)
:—)\k+f(k:)+%— (E.1.10)
= Me+g(k) —c (E.1.11)
where g(k) = f(k) + bk and A = p + 3
ST gy AT
J:/ooe—étu(c)dt (E.1.12)
H=e " {u(c) +y (= k +g(k) — ¢)} (E.1.13)
OH 0
a_i]: e —y=0 (E.1.14)
ou
y=5 (E.1.15)
—ot
dedt Yy _ _aa_[];[ _ eféty (A — g’(k)) (E.1.16)
dy .
AL X5 (K) = ~ole)-: (E.117)
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- % (—=(A+6) + g/ (k) e (F.1.18)
Thus,
b= ——(—(A+0) + g'(K))e
a(c) (E.1.19)

k=M +g(k) —c
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