ne-
e~
e~

c— o
Ry
IN Centro de

T Informatica
' ' ' UFPE

)

Universidade Federal de Pernambuco
Centro de Informatica

Pés-Graduacao em Ciéncia da Computagao

An Experimental Analysis of TCP
Congestion Control Algorithms Within
Virtualized Environments

Pedro Rafael Ximenes do Carmo

Dissertacao de Mestrado

Recife
2024

Universidade Federal de Pernambuco
Centro de Informatica

Pedro Rafael Ximenes do Carmo

An Experimental Analysis of TCP Congestion Control
Algorithms Within Virtualized Environments

Trabalho apresentado ao Programa de Pos-Graduagdo em
Ciéncia da Computagdo do Centro de Informdtica da Uni-
versidade Federal de Pernambuco como requisito parcial
para obtencdo do grau de Mestre em Ciéncia da Com-

putagado.

Orientador: Prof. Djamel F. H. Sadok

Recife
2024

.Catalogagao de Publicagdo na Fonte. UFPE - Biblioteca Central

Carmo, Pedro Rafael Ximenes do.

An experimental analysis of TCP congestion control algorithms
within virtualized environments / Pedro Rafael Ximenes do Carmo.

- Recife, 2024.
118f.: 11.

Dissertagdo (Mestrado), Universidade Federal de Pernambuco,
Centro de Informédtica, Programa de Pés-Graduacdo em Ciéncia da
Computacdo, 2024.

Orientacgdo: Djamel Fawzi Hadj Sadok.

1. Virtualization; 2. TCP; 3. Network Congestion. I. Sadok,
Djamel Fawzi Hadj. II. Titulo.

UFPE-Biblioteca Central CDD 004.6

Pedro Rafael Ximenes do Carmo

“An Experimental Analysis of TCP Congestion Control Algorithms
Within Virtualized Environments”

Dissertacdo de mestrado apresentada ao
Programa de P6s-Graduagdo em Ciéncia da
Computagdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtengao do titulo de Doutor em Ciéncia da
Computagio. Area de Concentracio: Redes
de Computadores e Sistemas Distribuidos.

Aprovado em: 29/07/2024.

BANCA EXAMINADORA

Prof. Dr. Renato Mariz de Moraes
Centro de Informatica / UFPE

Prof. Dr. Eduardo James Pereira Souto
Instituto de Computagdao / UFAM

Prof. Dr. Djamel Fawzi Hadj Sadok
Centro de Informatica / UFPE
(orientador)

Acknowledgements

Agradeco a todos que, de alguma forma, contribuiram para a realizacdo desta disser-
tacdo. Em especial os meus pais, Pedro e Ana, a minha namorada, Dayane, aos meus
avos, tios e padrinhos que sempre sonharam comigo, aos Professores Djamel Sadok e
Judith Kelner, aos meus colegas de pesquisa, Assis, Eduardo e Diego, e todos os outros
colegas do Grupo de Pesquisa em Redes e Telecomunicagdes (GPRT). Todo o apoio,
incentivo e colaboragdo foram essenciais para a conclusdo deste trabalho. Meu sincero
muito obrigado a cada um de vocés.

il

They say the universe is expanding. That should help with the traffic.
—STEVEN WRIGHT

Abstract

In the growing landscape of virtualized networks, the performance of TCP congestion
control algorithms remains a critical factor in ensuring efficient data transmission. This
dissertation presents a comparative and experimental analysis of four prominent TCP
congestion control algorithms — Vegas, CUBIC, BBRv2, and DCTCP - in virtualized
environments. Motivated by the need to understand how these algorithms work in vir-
tualized environments, this study investigates their behavior in various scenarios with
varying network conditions, including baseline performance, under basic network fail-
ures, and in competitive scenarios. This study differs from others found in the literature
by evaluating virtualization scenarios and using a physical testbed environment instead
of simulations to evaluate the performance of TCP congestion control algorithms. The
testbed consists of dedicated physical servers and network devices configured to emu-
late various network conditions. This configuration enables precise control and repro-
ducibility of experiments, providing accurate measurements of key evaluation metrics:
sending rate, throughput, throughput fairness, round trip time (RTT), and retransmis-
sion rates. The findings indicate that, in virtualized environments, algorithms such as
Vegas, CUBIC, DCTCP, and BBRv2 exhibit unique performance characteristics that af-
fect network efficiency and reliability. Factors such as resource sharing and overhead
between virtual machines impact the algorithm’s performance. Delay-based algorithms
such as Vegas are more affected by virtualization-induced latency. At the same time,
CUBIC’s window growth strategy can lead to suboptimal performance due to increased
queuing delays in virtual switches. BBRv2’s balanced approach is well suited to the dy-
namic conditions imposed by virtualization but can be affected by additional processing
overhead and variable latency. The study concludes that no algorithm universally out-
performs the others in all scenarios. Instead, the choice of congestion control algorithm
should depend on the context, considering specific network conditions and performance
requirements. This dissertation contributes to understanding the dynamics of TCP con-
gestion control in virtualized environments, offering insights that can guide the selection
and optimization of these algorithms to improve network performance. Based on the
findings, network administrators managing virtualized environments should select TCP
congestion control algorithms according to specific operational needs. Vegas is ideal for
minimizing latency, CUBIC and DCTCP for maximizing throughput, and BBRv2 for
maintaining fairness and adaptability in dynamic network conditions. Furthermore, the

ABSTRACT vi

study reveals that the virtualization context introduces an additional layer of complex-
ity when deploying these algorithms in cloud-based scenarios. This critical distinction
highlights the need to account for the unique challenges posed by virtualization when
evaluating and optimizing TCP performance in modern data center environments.

Keywords: Virtualization, Network Congestion, Congestion Control Algorithms, Cloud
Computing, Virtual Machines (VMs)

Resumo

No cendrio crescente das redes virtualizadas, o desempenho dos algoritmos de controle
de congestionamento TCP continua sendo um fator critico para garantir uma transmis-
s@o de dados eficiente. Esta dissertacdo apresenta uma andlise comparativa e experimen-
tal de quatro algoritmos proeminentes de controle de congestionamento TCP — Vegas,
CUBIC, BBRv2 e DCTCP — em ambientes virtualizados. Motivado pela necessidade
de entender como esses algoritmos funcionam em ambientes virtualizados, este estudo
investiga seu comportamento em vdrios cendrios variando as condi¢des de rede. Isso
inclui desempenho baseline, sob falhas bésicas de rede e em cendrios competitivos.
Este estudo se diferencia dos demais encontrados na literatura ao avaliar cendrios de
virtualizacdo e utilizar um ambiente de teste fisico em vez de simulagdes para avaliar
o desempenho de algoritmos de controle de congestionamento TCP. A infraestrutura de
teste consiste em servidores fisicos dedicados e dispositivos de rede configurados para
emular uma variedade de condicdes de rede. Essa configuracdo permite controle pre-
ciso e reprodutibilidade de experimentos, fornecendo medi¢des precisas das principais
métricas de avaliag@o: taxa de envio, taxa de transferéncia, indice de justi¢a de through-
put, tempo de ida e volta (RTT) e taxas de retransmissdo. As descobertas indicam que,
em ambientes virtualizados, algoritmos como Vegas, CUBIC, DCTCP e BBRv2 ex-
ibem caracteristicas de desempenho unicas que afetam a eficiéncia e a confiabilidade da
rede. Fatores como compartilhamento de recursos e sobrecarga entre maquinas virtuais
impactam o desempenho do algoritmo. Algoritmos baseados em atraso, como Vegas,
sdo mais afetados pela laténcia induzida pela virtualizagdo, enquanto a estratégia de
crescimento de janela do CUBIC pode levar a um desempenho abaixo do ideal devido
ao aumento dos atrasos nas filas em switches virtuais. A abordagem equilibrada do
BBRv2 ¢é adequada as condicdes dinamicas impostas pela virtualizacdo, mas pode ser
afetada pela sobrecarga adicional de processamento e pela laténcia varidvel. O estudo
conclui que nenhum algoritmo supera universalmente os outros em todos os cendrios.
Em vez disso, a escolha do algoritmo de controle de congestionamento deve depender do
contexto, considerando condi¢des especificas da rede e requisitos de desempenho. Esta
dissertacdo contribui para a compreensdo da dindmica de controle de congestionamento
TCP em ambientes virtualizados, oferecendo insights que podem orientar a selecio e
otimizagdo desses algoritmos para melhorar o desempenho da rede. Com base nas de-
scobertas, os administradores de rede que gerenciam ambientes virtualizados devem se-

vii

RESUMO viii

lecionar algoritmos de controle de congestionamento TCP de acordo com necessidades
operacionais especificas. Vegas € ideal para minimizar a laténcia, CUBIC e DCTCP
para maximizar o throughput € BBRv2 para manter a imparcialidade e adaptabilidade
em condi¢des de rede dindmicas. Além disso, o estudo revela que o contexto de virtual-
izacdo introduz uma camada adicional de complexidade ao implantar esses algoritmos
em cendrios baseados em nuvem. Essa distingdo critica destaca a necessidade de levar
em conta os desafios exclusivos impostos pela virtualizacdo ao avaliar e otimizar o de-
sempenho do TCP em ambientes modernos de data center.

Palavras-chave: Virtualizacdo, Congestionamento de Rede, Algoritmos de Controle
de Congestionamento, Computacao em Nuvem, Maquinas Virtuais (VMs)

Contents

1 Introduction

1.1 Research Questions
1.2 Objectives
1.3 Work Organization
2 Related Works
2.1 Practical Evaluations and Experiments of TCP Congestion Control
2.2 Discussions, Surveys, and Proposals
3 Background
3.1 Virtualized Environments
3.1.1 Virtualized Environments in Data Centers and Cloud
3.1.2 Kernel-based Virtual Machine (KVM)
3.1.3 Linux in Virtualized Environments
3.2 Transmission Control Protocol (TCP)
3.3 Congestion Control Essence
3.3.1 Congestion
3.3.2 Impacts and Causes of Network Congestion
3.4 TCP Congestion Control Algorithms

3.4.1 Initial algorithms

3.4.2 Types of algorithms: Loss-Based, Delay-Based, and Hybrid
Approaches

Chapter Conclusion

4 Methodology

4.1
4.2

4.3

Experiment Setup

Metrics and Tools for Experiment Evaluation
4.2.1 Evaluation Metrics

4.2.2 Tools for Measurement
Experimental Design

4.3.1 Baseline scenario

4.3.2 Basic Network Failures Scenario

ix

— WL W BN

14
15
16
17
18
20
20
20
21
22

22
37

38
40
41
42
43
44
45
46

CONTENTS

4.3.3 Multiple Algorithms Scenario
4.4 Methodology Justification

Results
5.1 Baseline Evaluation
5.2 Basic Network Failures Scenario: Two-Level Delayed Flow Analysis
5.3 Basic Network Failures Scenario:
Four-Level Delayed Flow Analysis
5.4 Basic Network Failures Scenario: Packet Loss Impact on Single VM
5.5 Basic Network Failures Scenario: Packet Loss Impact in Dual-VM Setup
5.6 Multiple: Dual-Algorithm Competition (2 VMs)
5.7 Multiple: Asymmetric Competition (4 VMs)
5.8 Chapter Conclusion

Discussion

6.1 Overview of Key Findings

6.2 Implications of Baseline Evaluation

6.3 Analysis of Basic Network Failures
6.3.1 Impact of Delays in Different Scenarios
6.3.2 Packet Loss Effects

6.4 Insights from Multiple Algorithm Competitions

Comparison with Existing Literature

Practical Implications

Key Takeaways

Conclusion

7.1 Limitations and Future Research
Limitations
Future Research

7.2 Conclusion

48
49

s1
52

68

78
85
91
98

929

99

99
101
101
102
104
105
108
110

111
111
111
112
112

3.1

3.2

4.1
4.2

5.1

5.2

53

54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

List of Figures

Ilustration of resource utilization in traditional and virtualized environ-
ments, based on a figure by [Tec23].

Congestion window size (cwnd) behavior using CUBIC congestion con-
trol. The regions indicate fast recovery (green), slow growth (yellow),
and polling for more bandwidth (blue), with the packet loss event marked
by a dotted vertical line.

Network Topology in the Data Center Testbed.
Diagram of the experimental scenarios explored in this study.

Comparison of key metrics for each experiment with a different number
of VMs based on the values in Table 5.1.

Throughput (A) and Fairness (B) for algorithms in the Baseline scenario
with 2 VMs.

Throughput (C) and Fairness (D) for algorithms in the Baseline scenario
with 4 VMs.

Fairness analysis for different Number of VMs: (A) 8, (B) 16, and (C) 32.

Cwnd for algorithms in Baseline scenario.

RTT for algorithms in Baseline scenario.

Retransmissions for algorithms in Baseline scenario.

Network setup for the “Two-Level Delayed Flow Analysis” scenario.
Throughput for algorithms in Delayed with Two Flows scenario.
Fairness for algorithms in Delayed with Two Flows scenario.

CWND (KBytes) for algorithms in Delayed with Two Flows scenario.
Network setup for the “Four-Level Delayed Flow Analysis” scenario.
Throughput (A) and Fairness (B) for Delayed with Four Flows scenario.
CWND (KBytes) for algorithms in Delayed with Four Flows scenario.
Network setup for the “Packet Loss Impact on Single VM” scenario.
Throughput for algorithms in Packet Loss Single VM scenario.

CWND (KBytes) for algorithms in Packet Loss Single VM scenario.
Network setup for the “Packet Loss Impact in Dual-VM Setup” scenario.
Throughput for algorithms in Packet Loss in Dual-VM Setup scenario.

xi

15

25

38
45

53

54

55
56
59
60
61
62
65
66
67
68
72
73
74
76
71
78
81

5.20
5.21

5.22
5.23
5.24
5.25
5.26
5.27
5.28

5.29
5.30

LIST OF FIGURES

Fairness for algorithms in Packet Loss in Dual-VM Setup scenario.
CWND (KBytes) for algorithms in Packet Loss in Dual-VM Setup sce-
nario.

Retransmission for algorithms in Packet Loss in Dual-VM Setup scenario.

Network setup for the “Dual-Algorithm Competition (2 VMs)” scenario.
Throughput for algorithms in Dual-Algorithm Competition scenario
Fairness for algorithms in Dual-Algorithm Competition scenario

CWND (KBytes) for algorithms in Dual-Algorithm Competition scenario.

Network setup for the “Asymmetric Competition (4 VMs)” scenario.
Throughput for algorithms in Asymmetric-Algorithm Competition sce-
nario

Fairness for algorithms in Asymmetric-Algorithm Competition scenario
CWND for algorithms in Asymmetric-Algorithm Competition scenario.

Xii

82

83

85
88
89
90
91

95
96
97

2.1
3.1

4.1
4.2
4.3

5.1

5.2

53

54

5.5

5.6

5.7

6.1

List of Tables

Comparison of works
Detailed Summary of TCP Congestion Control Algorithms

Server’s Hardware Specification
Routers’s Nic Specification
Network Protocols and Tools

Comparative Analysis of TCP Congestion Algorithms in “Baseline”
Scenario

Comparative Analysis of TCP Congestion Algorithms in “Delayed with
Two Flows” Scenario

Comparative Analysis of TCP Congestion Algorithms in “Delayed with
Four Flows" Scenario

Comparative Analysis of TCP Congestion Algorithms in “Packet Loss
Impact on Single VM" Scenario

Comparative Analysis of TCP Congestion Algorithms in “Packet Loss
Impact in Dual-VM Setup" Scenario

Comparative Analysis of TCP Congestion Algorithms in ‘Multiple: Dual-
Algorithm Competition" Scenario

Comparative Analysis of TCP Congestion Algorithms in “Multiple: Asym-
metric Competition" Scenario

Recommendation Table. Cells with two values show that both algo-
rithms were equally relevant. The "-" symbol indicates that no algorithm
was better for that metric or that all algorithms performed poorly.

xiii

11
36

40
40
42

52

63

69

74

78

85

92

109

Acronyms

ACK Acknowledgement.

BBR Bottleneck Bandwidth and Round-trip propagation time.
BBR2 Bottleneck Bandwidth and Round-trip propagation time version 2.
BDP Bandwidth-Delay Product.

BIC Binary Increase Congestion Control.

bps Bits per second.

BtIBw Bottleneck Bandwidth.

CBR Constant Bit Rate.

CTCP Compound TCP.

CUBIC Cubic Congestion Control.

Cwnd Congestion Window.

DCN Data Center Network.

DCTCP Data Center TCP.

ECN Explicit Congestion Notification.

FAST Fast Active Queue Management Scalable TCP.

Gbps Gigabits per second.

HS-TCP High-Speed TCP.

IaaS Infrastructure as a Service.

IT Information Technology.

Xiv

Acronyms

KBytes Kilobytes.

KVM Kernel-based Virtual Machine.
Mbps Megabits per second.

ms Milliseconds.

MTU Maximum Transmission Unit.
NETEM Network Emulator.

NFV Network Function Virtualization.
NIC Network Interface Card.

NS2 Network Simulator 2.

NS3 Network Simulator 3.

OS Operating System.

PaaS Platform as a Service.

PCC Performance Oriented Congestion Control.
QoS Quality of Service.

RTprop Round-Trip Propagation Time.
RTT Round-Trip Time.

SaaS Software as a Service.

SDN Software-Defined Networking.
SR-IOV Single Root Input/Output Virtualization.
SYN Synchronize.

SYN-ACK Synchronize-Acknowledge.
TC Traffic Control.

TCP Transmission Control Protocol.

TCP/IP Transmission Control Protocol/Internet Protocol.

XV

Acronyms XVi

TLS Transport Layer Security.

txqueuelen Transmit Queue Length.

UDP User Datagram Protocol.

vCC Virtualized Congestion Control.

VEGAS Vegas Congestion Control Algorithm.
VM Virtual Machine.

vMCC Virtualized Multipath Congestion Control.

CHAPTER 1

Introduction

In the rapidly evolving realm of the internet, virtualized environments have become piv-
otal in enhancing operational efficiency. They play a crucial role in resource optimiza-
tion, significantly altering the management and execution of Information Technology
(IT) operations [ACA21]. The IT field encompasses the use of computers, networks,
storage systems, and other hardware and software for processing, storing, and exchang-
ing data. This advancement facilitates a more agile and scalable infrastructure, which is
critical for adapting to rapidly changing technological demands.

One of the benefits of virtualization technology is that it allows multiple virtual in-
stances to share a single physical hardware, significantly reducing the need to invest
in extensive physical infrastructures. This leads to substantial Cost Reduction, as it
requires fewer hardware purchases and maintenance [RAZ20]. Furthermore, virtual-
ization supports a seamless, prompt implementation of applications running on differ-
ent operating systems, empowering companies to adjust efficiently to evolving indus-
try trends. Centralized Management in virtualized environments simplifies administra-
tive tasks, ensuring smoother operations and enhanced security. Lastly, unlike physi-
cal hosts, Virtual Machines (VMs) are flexible software components that may be mi-
grated and replicated on demand. For example, VM replication supports zero downtime
[CFH™"05] software upgrade operation, whereas VM migration may be used to achieve
energy saving, load balancing, and high availability services [Bell3].

Among the various virtualization solutions, Kernel-based Virtual Machine (KVM)
technology stands out for its efficiency and scalability, which is why it has been selected
for experimental analysis in this dissertation. KVM transforms the Linux kernel into a
hypervisor, enabling the operation of multiple virtual instances on a single physical
hardware [Gotl1]. In addition to cost savings, KVM capitalizes on the robust secu-
rity and performance features of the Linux kernel. It supports a wide range of guest
operating systems, facilitating the implementation of applications across diverse envi-
ronments. This flexibility empowers companies to adjust efficiently to evolving industry
trends. Lastly, integrating KVM with existing Linux system management tools facili-
tates centralized management of the virtualized environment, simplifies administrative
tasks, ensures smoother operations, and enhances security.

Given that our concern is with packet processing, focus is given to Transmission
Control Protocol (TCP) flows and their delay at the data plane. TCP is fundamental

1.1. RESEARCH QUESTIONS 2

in Internet architecture and ensures reliable and ordered delivery of data transmission
packets across networks [Pos81]. Its Congestion Control mechanism is vital in main-
taining network stability and efficiency. TCP’s Connection-Oriented nature guarantees
that data packets are delivered in order and without loss, making it indispensable for
most high-level applications such as Web and e-mail. Furthermore, its Standardization
and Interoperability ensure consistent performance across diverse network infrastruc-
tures.

In virtualized environments, the dynamics of TCP congestion control assume new
and complex aspects. These dynamics are poorly understood and have notable gaps in
existing literature, highlighting the pressing need for further research [TTS15]. TCP’s
congestion control algorithms face unique challenges in these environments due to the
nature of the virtual network interfaces and shared physical resources. This disserta-
tion delves into an experimental analysis of these algorithms within such environments,
aiming to uncover insights that could lead to more efficient network traffic management
[NG23].

This research empirically analyzes the performance of various TCP congestion con-
trol algorithms within a virtualized context, focusing on Vegas, CUBIC, BBR2, and
DCTCP. These algorithms represent a broad spectrum of approaches to congestion con-
trol, including Vegas’s proactive packet loss avoidance based on anticipated congestion
signals, CUBIC’s scalability and robustness in diverse network conditions, BBR2’s ap-
proach aiming at maximizing bandwidth while minimizing latency, DCTCP’s ability to
fine-tune its response to congestion signals in data center environments. By evaluating
these algorithms under the unique constraints and opportunities presented by virtualized
environments, the study aims to highlight their efficiencies, limitations, and the impact
of virtualization on their operational dynamics. Through a detailed experimental frame-
work that includes baseline scenario analysis, network failure simulations, and multiple
algorithm competitions for network and processing resources, this dissertation seeks to
provide a comprehensive understanding of how TCP congestion control algorithms per-
form and interact in virtualized settings. The outcomes of this research are expected
to offer valuable insights for network administrators and system designers in optimiz-
ing TCP congestion control within virtualized infrastructures, thereby enhancing overall
network performance and reliability.

1.1 Research Questions

To guide the empirical investigation and ensure a focused analysis, the following re-
search questions have been formulated:

1. How do TCP congestion control algorithms perform in a virtualized environ-
ment? This question seeks to understand the operational dynamics of the adopted

1.2. OBJECTIVES 3

algorithms when faced with the unique processing overhead of virtualization due
to shared resources and the use of virtual network interfaces.

2. How do network conditions influence the behavior of TCP congestion control
algorithms in virtualized environments? This question intends to evaluate the
adaptability and robustness of each congestion control algorithm under various
stress conditions and network configurations.

3. What recommendations can be made for network administrators and system
designers in selecting and optimizing TCP congestion control algorithms for
virtualized environments? Based on the findings, this question aims to offer
actionable insights and guidelines to enhance network performance and commu-
nication reliability in virtualized infrastructures.

Addressing these research questions will provide a comprehensive understanding of
the performance of TCP congestion control algorithms in virtualized settings, offering
valuable insights for the design and management of efficient and reliable networks.

1.2 Objectives

The primary objective of this dissertation is to conduct an in-depth experimental analysis
of TCP congestion control algorithms within virtualized environments. This investiga-
tion aims to understand the interplay between of the algorithms’ complex dynamics and
performance metrics when deployed in such settings. The study sets forth the following
specific objectives to accomplish these goals:

1. To Assess the Performance of Selected TCP Congestion Control Algorithms:
This involves a detailed examination of BBR2, CUBIC, DCTCP, and VEGAS
algorithms designed to understand their behavior and effectiveness in managing
network congestion within virtualized environments.

2. To Investigate the Effectiveness of Algorithms under Various Network Con-
ditions: This includes scenarios of baseline network operations, simulated net-
work failures, and multiple algorithm deployments to mimic real-world network
variability and stress conditions.

3. To Measure Performance Using Key Evaluation Metrics: Employing metrics
such as throughput, sending rate, and end-to-end latency in the form of Round-
Trip Time (RTT), throughput fairness, and retransmission rates to quantitatively
assess the performance of each TCP congestion control algorithm.

1.3. WORK ORGANIZATION 4

4. To Provide a Comparative Analysis of Algorithms: Offering insights into each
algorithm’s comparative strengths and weaknesses, facilitating a better under-
standing of their suitability for different virtualized network scenarios.

5. To Propose Recommendations for Optimal Algorithm Selection: Based on the
findings, suggest guidelines for network administrators and system designers on
selecting appropriate TCP congestion control algorithms for specific virtualized
environments and applications.

6. To Contribute to the Body of Knowledge: Enhance the existing literature on
TCP congestion control by providing empirical evidence and analysis specific to
virtualized environments, thereby addressing a significant gap in current research.

By accomplishing these objectives, this dissertation will build valuable insights and
guidelines that could significantly improve the design, management, and optimization
of TCP congestion control mechanisms in virtualized networking environments.

1.3 Work Organization

The dissertation is structured to provide an overview of related works (Section 2) and
a comprehensive background (Section 3), followed by a detailed methodology (Section
4), experimental results (Section 5), and a discussion of the findings (Section 6). Finally,
the dissertation concludes with limitations, future research, and final thoughts (Section
7). The ultimate goal is to contribute to optimizing TCP performance in virtualized
environments, a key area in network management.

CHAPTER 2

Related Works

In this chapter, we survey the current state of the art in performance evaluation of TCP
congestion control algorithms. The examined works contribute significantly to this dis-
sertation by providing insights into the design of the experiments and methodologies
adopted or as a theoretical reference to understand the nuances and behavior of these
congestion control algorithms under specific conditions. Through this survey, we es-
tablished a foundation for the proposed investigation, identifying gaps in the existing
literature and outlining the path for this research’s original contribution to the field of
study. We have divided the chapter into two main sections to address these facets. These
sections dissect the landscape through two distinct lenses: practical evaluation and ex-
perimentation of these algorithms, as well as theoretical discussions, surveys, and pro-
posals for new algorithms. This dual approach furnishes the comprehensive background
necessary for the proposed investigation and uncovers gaps within the existing literature,
thereby delineating the trajectory for this research’s novel contributions to the field.

2.1 Practical Evaluations and Experiments of TCP Congestion
Control

This section delves into papers concerned with practical evaluations and experiments
with TCP congestion control algorithms. It highlights the significance of empirical
studies in shedding light on the algorithms’ real-world performance and behavior. Such
information offers a tangible basis for defining the algorithms that best fit the different
contemporary network demands. The result of this analysis serves as a comparative ba-
sis with the work proposed in this dissertation, showing the gaps in the current literature
and how this dissertation addresses them.

The study by Turkovic et al. [TKU19] investigates congestion control while con-
sidering the performance and interactions of various congestion control algorithms of
the TCP and QUIC protocols, with a greater emphasis put on TCP. Given the role of
congestion control in maintaining the efficiency and stability of network traffic, the re-
search is motivated by the need to understand how different algorithms — categorized
as loss-based, delay-based, and hybrid — deal with resource allocation challenges and
network performance in shared environments. The first objective of the research is to

2.1. PRACTICAL EVALUATIONS AND EXPERIMENTS OF TCP
CONGESTION CONTROL

perform a comparative analysis of these algorithms to identify the way they manage net-
work resources, respond to congestion signals, and impact overall network throughput
and latency. Secondly, the study aims to explore the interactions between these algo-
rithms when they coexist within the same network infrastructure, an aspect previously
little explored in the literature. The ultimate goal is to discover insights that can guide
the development of more effective but also fair congestion control strategies, especially
in increasingly complex and demanding network scenarios.

The researchers built a controlled test environment to emulate various network con-
ditions, enabling precise analysis of how different congestion control algorithms work
and interact. This configuration involved implementing a network topology that could
mimic real-world Internet paths, incorporating scenarios with varying RTTs and net-
work bottlenecks. The network topology used in the study is known as “dumbbell”
topology. This configuration is widely used in network research to simulate how differ-
ent data streams interact and compete for bandwidth at a central congestion point. In
the topology used by the authors, two sets of hosts, clients, and servers are connected
through two central routers that are in turn connected, representing the network bottle-
neck. Each side of the “dumbbell” simulates a distinct local network; on the client side,
multiple Hosts generate traffic that traverses the central congestion point to reach server
hosts on the other side, representing a common congestion point — a scenario often en-
countered in communications networks. This framework allows researchers to directly
observe the impact of different congestion control algorithms under controlled condi-
tions, including the response to RTT variations. The methodology involves classifying
congestion control algorithms into three main groups — loss-based, delay-based, and
hybrid — and evaluating their performance, including throughput, fairness, and RTT-
fairness metrics. The researchers used a comprehensive set of tools and techniques
for this analysis, including IPERF3 for network traffic generation, TSHARK for packet
capture and analysis, and TC and NETEM of Linux for emulating network conditions
(for example, introducing artificial latency and limiting the bandwidth available on the
bottleneck link). As previously mentioned, the evaluation criteria also include transfer
rate and throughput to measure the efficiency of data transfer under different conges-
tion control mechanisms; fairness, to evaluate the equitable distribution of bandwidth
between different flows, especially in situations where different algorithms compete for
resources; and RTT fairness, which examines the impact of RTT variations on network
resource allocation, a common phenomenon in real-world networks.

The experiments carried out by Turkovic et al. were organized into distinct phases,
each focused on specific aspects of congestion control. Initially, experiments were car-
ried out in the baseline scenario; this scenario isolates the characteristics of each algo-
rithm under the presence or absence of cross traffic, which simulates Acknowledgement
(ACK) compression. None of the evaluated algorithms could fully utilize the avail-
able bandwidth, even without cross traffic, with the highest throughput measured at

2.1. PRACTICAL EVALUATIONS AND EXPERIMENTS OF TCP
CONGESTION CONTROL

approximately 74M bps on a 100M bps link. This highlights a general limitation in
the ability of algorithms to maximize network utilization without additional traffic. The
second scenario is called BW scenario. In the BW scenario, each analyzed algorithm
is compared to itself and all others. Here, the authors evaluate intra-algorithm fair-
ness, where flows using delay-based algorithms experience a significant reduction in
throughput when sharing the bottleneck with loss-based or hybrid algorithms. The au-
thors explain that delay-based algorithms detect congestion earlier when queues start to
fill up, while loss-based algorithms keep increasing their sending rate until a loss is de-
tected. This behavior increases the observed RTT for all flows, forcing the delay-based
flow to reduce its sending rate significantly. It is reported that algorithms based on delay
and BBR can maintain good levels of intra-fairness, that Cubic is more prone to oscil-
lations, and that the convergence time of its flows is high, around the 20s, needing to be
synchronized whenever losses are detected. Finally, they state that BBR, using a hybrid
strategy, was not stable, contrary to what has been reported in the literature. The third
scenario is called RTT scenario with flows having different RTTs, proposed to test the
fairness of RTT between different algorithms by varying the RTTs of the flows. The au-
thors observed that “RTT fairness" metrics are poor for all algorithms, with loss-based
algorithms being those with better performance when compared to the other two groups
but presenting a significant time for convergence, which is a problem for short-lived
flows. The authors observed that loss-based algorithms such as CUBIC, despite claim-
ing to be an RTT-Fairnes algorithm, also favor flows with lower RTTs. Finally, the work
points out that hybrid algorithms such as BBR undergo significant dynamics in sharing
between their flows, favoring those with higher RTT. This leads to complex dynamics
between these flows.

In summary, with these three experiments, the authors observed that loss-based al-
gorithms are more aggressive and induce significant packet retransmissions. In contrast,
delay-based and hybrid algorithms operate without creating losses or retransmissions.
Loss-based algorithms lead to higher RTTs due to queue filling, while the others uti-
lize resources without increasing RTT. Sensitivity to ACK compression affects all al-
gorithms, reducing throughput, particularly delay-based ones. Hybrid algorithms show
variable behavior, sometimes resembling those based on loss and sometimes those based
on delay. Furthermore, the study highlighted the substantial impact of algorithm selec-
tion on network latency, with loss-based algorithms contributing to increased queue
lengths and, consequently, higher latency for all network flows. The study emphasizes
the need for mechanisms to facilitate resource isolation between competing flows, sug-
gesting that achieving optimal network performance goes beyond the choice of conges-
tion control algorithm. Instead, it requires a holistic strategy that addresses the interac-
tion between multiple algorithms and their collective impact on network resources. It is
an essential step towards understanding and improving congestion control in computer
networks.

2.1. PRACTICAL EVALUATIONS AND EXPERIMENTS OF TCP
CONGESTION CONTROL

Despite extensive and detailed experimentation, this paper does not address virtu-
alized environment scenarios. Still, in our work, we use the methodology adopted by
Turkovic et al. as inspiration, especially in using the "dumbbell" topology and in the
detailed structuring of experiments to evaluate the performance of different congestion
control algorithms. Turkovic et al.’s meticulous approach in using the categorization
that divides algorithms into loss-based, delay-based, and hybrid, as well as analyzing
their interactions, guided the design of our experimental framework. However, our work
distinguishes itself by focusing on specific scenarios of virtualized environments, which
present unique challenges and additional complexities regarding network resource man-
agement and the performance of congestion control algorithms. Furthermore, additional
experiments are proposed to explore the impact of network failures and competition be-
tween multiple congestion control algorithms operating simultaneously in virtualized
scenarios. By introducing new experiments, we seek to explore how virtualization im-
pacts the effectiveness of these algorithms and their ability to deal with congestion. This
guidance for virtualized environments complements the findings of Turkovic et al. and
advances the discussion, highlighting the need for congestion control strategies that are
optimized for such environments, considering their intrinsic characteristics and limita-
tions.

In their work, Nguyen, Gangadhar, and Sterbenz [NGS16] adopt a methodology to
evaluate the performance of various TCP congestion control algorithms within a spe-
cific context of Data Center Networks (DCNs). Using the Network Simulator 3 (NS3)
network simulation tool, the authors constructed a fat-tree topology with carefully se-
lected parameters to represent a typical DCN configuration. This topology includes a
distribution of hosts under a network architecture that allows evaluating the performance
of TCP congestion control algorithms under a variety of network conditions, including
different types of traffic flows: “mice", “cat," and “elephant”. Where “mice" streams
are small and require quick response, such as a quick database query; “cat" are inter-
mediate messages critical to network operation, such as state synchronization between
servers; and “elephant" are large data transfers that require high bandwidth, such as a
data backup. The evaluated TCP algorithms — NewReno, Vegas, HighSpeed, Scalable,
Westwood+, BIC, CUBIC, and YeAH — were tested to measure four main metrics:
queue length, number of dropped packets, average packet delay, and aggregate band-
width. The results revealed significant differences in the performance of these variants,
highlighting how each responds to the unique challenges presented by DCNs. For ex-
ample, Vegas performed better in keeping queue length low and reducing the number of
dropped packets, which are important attributes for minimizing latency and improving
throughput efficiency in DCN environments. In contrast, variants such as BIC and CU-
BIC, known for their aggressiveness in long-distance and high latency networks, faced
difficulties, resulting in a high number of dropped packets and greater queue occupancy,
which is disadvantageous for the DCN scenario that demands low latency and high pre-

2.1. PRACTICAL EVALUATIONS AND EXPERIMENTS OF TCP
CONGESTION CONTROL

cision in packet delivery. The analysis suggests the need for a more adaptive algorithm
design that can accommodate the dynamic characteristics and specific throughput and
latency requirements of DCNs without compromising the stability and efficiency of the
overall network.

This dissertation differs from the work of Nguyen et al. by adopting an experimen-
tal approach based on a physical environment rather than simulations to investigate the
behavior of these algorithms, in addition to using a different topology. By utilizing phys-
ical servers with virtualized environments, this work provides a practical and applicable
perspective, enabling a more in-depth and tangible analysis of the performance of TCP
algorithms in real-world scenarios. This methodological difference not only enriches
the understanding of the capabilities and limitations of congestion control algorithms in
DCNs but also ensures that our conclusions are directly relevant to implementing and
optimizing network infrastructures in data centers.

The paper of Abadleh et al. [ATB"22] also performs a comparative analysis of
TCP congestion control algorithms, including the TCP Tahoe, TCP Reno, TCP New
Reno, and TCP Vegas variants. Using various metrics such as throughput, latency, and
packet loss rate, the authors use the Network Simulator 2 (NS2) simulator to create two
distinct scenarios, seeking to evaluate the behavior of these algorithms under different
network conditions. The research adopted a methodology that simulates TCP variants’
performance under varying Constant Bit Rate (CBR) bandwidth loads, focusing on key
metrics to evaluate congestion control. In the first scenario, the configuration involves a
single TCP flow between two nodes, supplemented by additional CBR traffic to simulate
network congestion. This setup was used to test the isolated performance of each TCP
variant under increasing network load levels. The second scenario presents a more com-
plex configuration, including two TCP flows and one User Datagram Protocol (UDP)
flow, all under CBR traffic ranging from 1 Mbps to 10 Mbps. This arrangement sim-
ulates a congested network environment, allowing the assessment of competition for
bandwidth between the TCP flows and the impact of UDP traffic on TCP performance.
The study’s results highlighted TCP Vegas as superior in the situations tested due to
its ability to detect and respond to congestion early, resulting in higher throughput and
lower latency in several test scenarios. Based on the findings, the authors suggest explor-
ing machine learning techniques to identify the best congestion control method based
on network traffic.

While the work provides a valuable comparison between three loss-based congestion
control algorithms (TCP Tahoe, TCP Reno, and TCP New Reno) and one delay-based
(TCP Vegas), it does not address hybrid algorithms that could offer additional insights
into the performance in diverse network environments. Furthermore, the use of the NS2
simulator, although helpful in creating controlled scenarios, may not fully capture the
complexity and variables inherent in real networks, potentially limiting the applicability
of the results. Another significant limitation is the lack of consideration for virtualized

2.1. PRACTICAL EVALUATIONS AND EXPERIMENTS OF TCP

1
CONGESTION CONTROL 0

scenarios, which are increasingly common and present unique challenges due to their
dynamic and shared nature, directly affecting the performance of congestion control
algorithms. The limitations above are taken into account in this dissertation.

In the work of Patel et al. [PSK*20], the NS3 network simulator is used to eval-
uate TCP congestion control algorithms - Newreno, Westwood, Veno, BIC, and Cu-
bic. Using NS3 simulator, authors observed and measured the behavior of the diverse
congestion control algorithms. Their analysis focused on how each algorithm adjusts
congestion window size and throughput under various network conditions, essential to
understanding its effectiveness in mitigating congestion. The tested algorithms include
TCP variations developed to address specific limitations and improve performance in
different network scenarios. For example, Newreno is known for its ability to efficiently
recover from multiple packet losses in a single transmission window. At the same time,
Cubic and BIC are designed for high-speed, long-haul networks. Veno, in turn, aims
to optimize performance in wireless networks by identifying packet losses due to con-
gestion or random errors. Westwood adapts the sending rate based on the estimated
available bandwidth, seeking more efficient network use. The network topology used
in the simulations consists of a series of TCP and UDP sources connected to receivers
through three intermediate routers, configured to induce congestion conditions by lim-
iting bandwidth and introducing delays. This configuration allowed authors to examine
the algorithms’ behavior in various congestion scenarios, reflecting the complexity of
real networks. The results highlight significant differences in the algorithms’ perfor-
mance in adjusting the congestion window size and achieved throughput, with Veno
demonstrating superiority in identifying and adapting to random packet losses. At the
same time, BIC and Cubic proved to be more effective in networks with high bandwidth
and high delay.

The study by Patel et al. presents limitations that deserve attention. Firstly, the se-
lection of algorithms focuses on loss-based approaches, with four of the five algorithms
tested following this methodology and only one (Veno) being hybrid, without including
purely delay-based algorithms, like TCP Vegas. This choice limits the understanding
of the performance of algorithms that use delay metrics to adjust the transmission rate,
which may be more appropriate in congested network scenarios or those with high vari-
ability. Furthermore, the exclusive use of simulations through NS3, although practical
and controllable, may not fully capture the complexity and nuances of real network en-
vironments, especially in virtualized scenarios, which is the focus of our work. This
omission leaves a gap in understanding how congestion control algorithms behave in
current widely used virtualized infrastructures, present across cloud computing plat-
forms and data centers.

The comparison between this dissertation and existing literature is crucial for es-
tablishing its novelty and significance. Table 2.1 provides a concise comparison, high-
lighting differences in analysis methodologies, test environment setups, TCP congestion

2.2. DISCUSSIONS, SURVEYS, AND PROPOSALS 11

control algorithms studied, and evaluation metrics.

Uses Uses

Work Virtual- Simulators Protocol Categories Performance

ization? or Physical considered Metrics
: Testbed?

. Sending Rate,

[TKU19] No Physical 1CR, Delay, Loss, Hybrid Throughput,
Testbed QUIC .

Goodput, Fairness
Simulator Queue length, Packet

[NGS16] No (ns-3) TCP Delay, Loss, Hybrid Drop Rate,
Throughput, Latency

. Throughput,
[ATB22] No Sl(mnlsl_l;;or TCP Delay, Loss Latency, Packet
Drop Rate
Simulator . Window Size
+ b
[PSK™20] No (ns-3) TCP Delay, Hybrid Throughput
Sending Rate,
This Physical Delay, Loss, Hybrid Throughput,
work Yes Testbed TCP and ECN Fairness,
Round-Trip Time,
Retransmission

Table 2.1: Comparison of works

2.2 Discussions, Surveys, and Proposals

This section transitions the focus from practical experimentation to a theoretical one,
embracing surveys, comprehensive discussions, and innovative proposals for new TCP
congestion control algorithms. Such theoretical contributions enrich our understanding
of the algorithms’ foundational principles and inspire future research directions.

In the context of congestion control algorithms aimed specifically at DCNs, the work
of C. Nandhini and Govind P. Gupta [NG23] presents an analysis of the challenges and
proposed solutions in this domain. This study highlights the inadequacy of traditional
TCP congestion control algorithms in dealing with the unique characteristics of traffic
in DCNS, such as its bursty nature, sensitivity to delays, and throughput. Addressing
specific problems such as TCP Incast, TCP Outcast, Pseudo-Congestion Effect, Buffer
Pressure, and Queue Buildup, the article provides a detailed overview of the need for
specialized algorithms to improve the performance of data center networks. Reviewing
several categories of algorithms, including solutions based on Explicit Congestion No-

2.2. DISCUSSIONS, SURVEYS, AND PROPOSALS 12

tification (ECN), non-ECN-based, routing-based, and proactive protocols, the authors
provide a comprehensive overview of current strategies and their contributions to miti-
gating congestion in DCNs. Among the solutions examined are DCTCP, New DCTCP,
D2TCP, LPD, DC-Vegas, ICTCP, TIMELY, AMTCP, CAAR, ExpressPass, Express-
Pass++, MPCR, and EC4, each with its highlighted peculiarities, advantages and limi-
tations.

This dissertation focuses on a detailed experimental analysis of the TCP Vegas,
CUBIC, BBR2, and DCTCP congestion control algorithms, specifically within virtu-
alized environments, differentiating itself from the scope of Nandhini and Gupta’s arti-
cle. While they provide a theoretical and comparative overview of congestion control
algorithms in DCNs, this work delves into practical experimentation, examining the
performance of other algorithms, defined by other criteria, under controlled conditions
that simulate realistic network scenarios. This approach allows us to understand the
effectiveness of these algorithms in virtualized environments and contribute specific
empirical evidence to the existing literature, enriching the understanding of congestion
control in highly dynamic and varied DCN contexts.

In the study “Virtualized Congestion Control (vCC)” [CRBV'16], the authors present
a methodology for integrating advanced congestion control algorithms in data centers
without the need to modify virtual machine (VM) operating systems or legacy appli-
cations. By implementing a translation layer in hypervisors, this method allows newly
developed congestion algorithms to be applied across the board, benefiting existing ap-
plications with improvements in latency, throughput and fairness in the distribution of
network resources. The central methodology of the study involves the virtualization of
congestion control, in which hypervisors act as mediators between the VMs’ legacy con-
gestion algorithms and the new algorithms implemented in the hypervisor itself. This
approach allows congestion control to be updated and optimized centrally without the
complexity and risks associated with updating individual operating systems or appli-
cations. In the results presented, the authors demonstrate the effectiveness of vCC in
improving network performance in data center scenarios. Through proofs of concept
carried out on the Linux kernel and VMware’s ESXi hypervisor, significant improve-
ments were observed in fairness, performance, and the ability to control bandwidth
allocations for VMs, validating the proposal that it is possible to benefit applications
legacy systems with advances in congestion control algorithms without the need for
direct modifications.

The study on Virtualized Congestion Control (vCC) enriches the discussion pro-
posed in this dissertation, highlighting the relevance of the interaction between conges-
tion algorithms and virtualized environments. By introducing an innovative methodol-
ogy for implementing and evaluating congestion control algorithms without changing
legacy operating systems, vCC highlights critical gaps that our research aims to inves-
tigate further. In particular, we aim to explore the performance nuances of congestion

2.2. DISCUSSIONS, SURVEYS, AND PROPOSALS 13

algorithms under different virtualized network scenarios, further identifying opportuni-
ties to optimize performance in data centers.

Chi Xu et Al. [XZLC20] explores the performance of multipath congestion control
in virtualized cloud environments, where data centers often implement multiple redun-
dant paths. However, existing congestion control schemes, mostly based on single-path
TCP design, cannot exploit the diversity of available paths, resulting in network under-
utilization and congestion on specific links. Through real-world experiments with pro-
duction applications, the authors reveal that although multipath congestion control im-
proves per-connection throughput and achieves more effective traffic balancing, it faces
performance degradation when there is an abrupt increase in the number of connections
or sub-flows that share paths. These challenges are attributed to virtual switches’ QoS
policies and interface mapping schemes. As a solution, the authors propose Virtualized
Multipath Congestion Control (vMCC), which integrates ECN into virtual switches and
ECN-aware multipath congestion control algorithms, demonstrating through compre-
hensive evaluations that vMCC improves throughput, time fairness, and RTT and en-
ergy efficiency for cloud data center traffic, benefiting typical cloud workloads. This
work focuses on virtualized environments, a highly relevant scenario for our analysis.
While the work highlights the importance and challenges of multipath congestion con-
trol in these environments, it also presents the predominance of single-path algorithms
in current settings, which are the main focus of our analyses, showing an analysis whose
goal is to broaden understanding and optimizing the performance of such algorithms in
virtualized data centers. The work also highlights the importance of ECN, which is used
with the DCTCP protocol in our experiments.

CHAPTER 3

Background

This chapter introduces the fundamental concepts necessary for understanding the scope
of this research, including the significance of virtualized environments, the basic prin-
ciples of the Transmission Control Protocol (TCP), and a review of TCP congestion
control algorithms, emphasizing their application in virtualized settings.

3.1 Virtualized Environments

Virtualized environments play a critical role in the modern IT infrastructure, offering
a range of benefits in terms of resource efficiency, scalability, and flexibility. They
enable multiple instances of operating systems to run on a single physical platform,
optimizing hardware usage and reducing operational costs. Key features of virtualized
environments include:

* Resource Optimization: Maximizes hardware utilization by dynamically dis-
tributing resources among virtual machines.

¢ Cost Reduction: Decreases the need for hardware investment and associated
maintenance costs.

* Rapid Deployment: Allows for quick setup and deployment of new operating
system instances or applications.

* Centralized Management: Simplifies the administration of resources, security
policies, and backups.

As illustrated in Figure 3.1, the diagram highlights the significant efficiency gains
achievable through virtualization. In a traditional setup, hardware resources such as
CPU cores, RAM, and HDD space are often underutilized, with low overall utilization
percentages. However, when a hypervisor is employed, as shown in the virtualized en-
vironment example, these resources are dynamically allocated across multiple virtual
machines, resulting in a much more optimized use of computing resources. This ca-
pability optimizes hardware usage and leads to substantial cost savings and operational
efficiency, which are critical in large-scale data center operations.

14

3.1. VIRTUALIZED ENVIRONMENTS 15

CLOUD

/ Traditional \ / Virtualized \

Hypervisor
XX Cores XX Cores
XX GB Ram XX GB Ram
XX GB HDD XX GB HDD

20% Utilization 5% Utilization

XX Cores
XX GB Ram

XX GB HDD
65% Utilization

Figure 3.1: Illustration of resource utilization in traditional and virtualized environ-
ments, based on a figure by [Tec23].

This section delves into the principles underlying virtualized environments, with a
focus on their application in data centers, the role of cloud computing, and the utilization
of Kernel-based Virtual Machine (KVM) and Linux as core components of virtualiza-
tion infrastructure.

3.1.1 Virtualized Environments in Data Centers and Cloud

Virtualization in data centers is used to optimize resource utilization, improve scala-
bility, and increase fault tolerance. By abstracting the hardware layer (CPU, memory,
storage, and network resources), virtualization allows the creation of several isolated
virtual machines (VMs) on a single physical server. This approach maximizes data cen-
ter efficiency by enabling a greater density of VMs per server, which reduces physical
space and energy consumption. Virtualization also simplifies application management
and deployment because VMs can be easily created, modified, and migrated between
servers [Bell3]. Cloud computing represents the evolution of virtualized environments
into scalable, on-demand computing resources delivered over the Internet. It builds

3.1. VIRTUALIZED ENVIRONMENTS 16

on the concept of virtualization, offering these resources as services: Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) [APR15].
Cloud computing abstracts the complexity of physical infrastructure, allowing users to
access computing power, storage, and networking resources through a web interface
without needing to manage the underlying hardware [Bad]. The scalability and flexibil-
ity of cloud services support a wide range of applications, from simple web hosting to
complex, distributed applications and big data analytics.

3.1.2 Kernel-based Virtual Machine (KVM)

KVM is an open-source virtualization technology integrated into the Linux kernel. It
allows Linux to function as a hypervisor, creating a virtualized environment where the
kernel manages the VMs [KKL*07]. KVM converts the Linux kernel into a bare metal
hypervisor that can directly access physical hardware. This integration with Linux al-
lows KVM to take advantage of the performance and security features of the host op-
erating system, making it a powerful and efficient solution for creating and managing
VMs. KVM supports multiple guest operating systems, including Linux, Windows®,
and MacOS®, and is compatible with cloud computing platforms, further highlighting
its versatility in virtualized environments.

We chose a Kernel-Based Virtual Machine (KVM) for conducting experiments on
congestion control algorithms in virtualized environments. KVM offers several distinct
advantages that are critical to the nature and requirements of these experiments. Be-
tween them:

Enhanced Resource Management. @ KVM allows each virtual machine (VM)
to run its own kernel [dOFFdC*22]. This architecture enables KVM to provide finer
control over hardware resources through full virtualization. KVM integrates closely
with the underlying hardware via the Linux kernel, allowing each VM direct access
to virtualized hardware resources such as CPU, memory, and network interfaces while
maintaining strong isolation between VMs.

Full Virtualization. Unlike Docker®, which uses Operating System (OS)-level
virtualization to share the host’s kernel with containers, KVM enables full virtualiza-
tion. This means each VM operates with its own set of virtualized hardware, including
a network stack that can be independently configured with different congestion control
algorithms. This isolation is paramount when comparing the performance of these algo-
rithms, as it ensures that the behavior of one VM does not inadvertently affect another,
leading to more reliable and consistent experimental results [dOFFdC*22].

Suitability for Network Research. KVM’s architecture, which allows for de-
tailed configuration and monitoring of virtual network interfaces, makes it particularly
suitable for network research. Researchers can implement, modify, and monitor differ-
ent congestion control algorithms at a granular level within each VM, something that

3.1. VIRTUALIZED ENVIRONMENTS 17

container-based technologies are not designed to support as directly or efficiently.

In summary, the use of KVM in the described experiments is justified by its di-
rect access to hardware, support for full virtualization, and enhanced performance fea-
tures. These characteristics make KVM our choice for conducting detailed, controlled
research on congestion control algorithms in virtualized environments, where the accu-
racy of performance measurement and the isolation of test conditions are paramount.

3.1.3 Linux in Virtualized Environments

Linux plays a key role in the infrastructure of virtualized environments. It is not only the
underlying operating system for KVM but also the preferred guest operating system on
VMs due to its open-source nature, stability, and security features. Linux’s lightweight,
modular architecture makes it ideal for deploying containerized applications and tradi-
tional VMs.

In summary, the theoretical basis of virtualized environments is based on the prin-
ciples of abstraction, partitioning, and efficient resource management. Data centers
leverage virtualization to optimize hardware usage, and cloud computing extends this
concept to provide resources as scalable services. Technologies like KVM and Linux
provide the tools to implement these environments effectively.

That said, it is next important to go into more detail about how packet processing
works in Linux, as this can help us understand and draw better conclusions from the
results obtained from the experiments.

Linux Network Path. The “Linux Network Path" refers to the path data packets
take to be processed on Linux systems. These packets travel from arriving at the Net-
work Interface Card (NIC) to the operating system, processing them, and delivering
them to the receiving application. This pathway is crucial for network performance,
especially in virtualization scenarios, where packet delivery efficiency directly impacts
the performance of virtual machines and the services they provide.

When a packet arrives at the NIC of a Linux-based system, it is first processed by
the network interface hardware, which checks for basic errors and, depending on the
configuration, determines which receive queue the packet should be directed to. This is
part of the multi-queue functionality of modern NICs, which allows packet processing
workload to be distributed across multiple CPU cores, increasing efficiency and reduc-
ing processor bottlenecks. After being accepted by the NIC, the packet is passed to the
operating system, where the Linux kernel takes control. The kernel processes packets
in several steps. Firstly, it employs features like Netfilter/iptables for packet filtering,
enabling actions such as dropping, modifying, or accepting packets based on security
rules. Next, it determines through packet routing whether the received packet is intended
for the system or should be forwarded to another network interface. Finally, for packets
destined for the system, the kernel directs them to the appropriate protocol stack (e.g.,

3.2. TRANSMISSION CONTROL PROTOCOL (TCP) 18

TCP or UDP), ultimately delivering them to the user application via sockets [FRE21].

In virtualized environments, packets can have an even more complex path due to
the additional abstraction layer. Before reaching the virtual machine’s destination, they
must pass through the hypervisor and possibly one or more virtual network bridges or
switches. This additional path introduces latency and can affect throughput, especially
if the hypervisor is not well-optimized or the virtual network configuration is not ideal.

Network Path Optimization in Linux systems encompasses various strategies, par-
ticularly in virtualization scenarios. Configuring hardware offloads on the NIC reduces
CPU load by enabling hardware to handle tasks like TCP segmentation and flow con-
trol. Adjusting interrupt (IRQ) affinity evenly distributes packet processing across CPU
cores, significantly enhancing performance. Moreover, utilizing technologies like Sin-
gle Root Input/Output Virtualization (SR-IOV) in virtualized environments allows VMs
direct access to NIC hardware, bypassing the hypervisor and reducing latency. Efficient
packet processing in Linux is paramount for overall system performance, especially in
virtualized environments, making understanding and optimizing this path essential for
system administrators and network architects striving to maximize network efficiency
and application performance.

3.2 Transmission Control Protocol (TCP)

Since the early days of the Internet, the Transmission Control Protocol (TCP) has played
a fundamental role in communicating data between computer systems. Developed in the
1980s, it was originally specified in RFC 793 [Pos81] and emerged as part of the Trans-
mission Control Protocol/Internet Protocol (TCP/IP) suite of protocols, which form the
backbone of global network communications. TCP was developed to solve the nascent
network’s need for a reliable communications protocol to manage data sequence trans-
fer between computers efficiently. As part of the Internet protocol suite, TCP operates
at the transport layer of the OSI model, a crucial layer that facilitates end-to-end com-
munication between network applications. The responsibilities of this layer include en-
suring the integrity of data transmission through error checking and correction, as well
as sequencing data packets to maintain the order of information flow. In essence, TCP
orchestrates the complex task of dividing messages into packets, transmitting them over
the network, and reassembling them at the destination, thus, ensuring that a sequence of
bytes is delivered accurately and sequentially from one program to another on a differ-
ent computer. Through its robust error recovery and flow control mechanisms, TCP has
become instrumental in enabling the reliable and efficient exchange of information over
the Internet.

How does TCP work? TCP operates following a connection-oriented model, re-
quiring a handshake process to establish a connection before any data can be sent. This

3.2. TRANSMISSION CONTROL PROTOCOL (TCP) 19

handshake process, typically referred to as the three-way handshake, involves three
steps: Synchronize (SYN), Synchronize-Acknowledge (SYN-ACK), and ACK. This
process aims to ensure that both the sender and receiver are ready for data transmission
and to agree on initial sequence numbers, which are used to keep track of the bytes
in the stream. This mechanism establishes a reliable end-to-end communication path,
preventing data transmission on an unreliable or non-existent path.

Reliable Delivery. TCP guarantees reliable data delivery through mechanisms such
as sequence numbers, acknowledgments (ACKs), and retransmissions. Each byte of
data sent over a TCP connection is assigned a sequence number, which the receiving
end uses to reorder data segments that may arrive out of order and identify any missing
segments. If a segment is not acknowledged by the receiver within a certain timeframe,
the sender assumes it was lost and retransmits it. This process ensures that even if
packets are lost, duplicated, or arrive out of order, the receiving application is presented
with a continuous, ordered stream of data without gaps or duplicates.

Flow Control. Flow control in TCP is managed through the sliding window, which
prevents a fast sender from overwhelming a slow receiver. The receiver specifies a
window size in each ACK, indicating how much more data it can accept. The sender
must not send data beyond what the receiver’s buffer can handle, ensuring that data
flow is regulated according to the receiver’s capacity. This mechanism adapts to the
network conditions and the receiver’s processing speed, preventing buffer overflow at
the receiver’s end.

Full Duplex. TCP supports full duplex communication, allowing data to be trans-
mitted in both directions simultaneously on a single connection. This is achieved by
treating each direction independently, with its own sequence numbers, acknowledg-
ments, and sliding windows. This capability allows for more efficient use of a connec-
tion, as data can flow back and forth without the need for establishing separate connec-
tions for each direction.

Connection Termination. TCP connections are terminated through a four-way
handshake process. This process involves the exchange of FIN (finish) and ACK seg-
ments. Each side of the connection must separately signal that it has finished sending
data and then acknowledge the other side’s finish signal. This ensures that both ends
have received all data before the connection is closed, preventing data loss at the end of
a communication session.

Ports. TCP uses port numbers to identify sending and receiving applications.
Each TCP segment header contains source and destination port numbers, which enable
multiple applications to use the network simultaneously. Ports allow a single host with a
single IP address to run networked services that are accessible independently, enabling
multiplexing over the network and within the operating system.

Congestion Control. Finally, TCP implements congestion control algorithms to
avoid saturating the network. When network congestion is detected—indicated by time-

3.3. CONGESTION CONTROL ESSENCE 20

outs or receipt of duplicate ACKs—TCP reduces its data transmission rate. Mechanisms
such as a slow start, congestion avoidance, fast retransmitting, and fast recovery are used
to achieve this. These mechanisms adjust the data transmission rate based on the net-
work’s capacity to handle traffic, which helps minimize packet loss and ensure efficient
utilization of network resources. Congestion Control is the focus of this study, so we
will go into more detail in the following sections.

Each of these features is essential to TCP’s role in providing a reliable, efficient, and
flexible transport layer protocol.

3.3 Congestion Control Essence

The topic of network congestion in the Transmission Control Protocol (TCP) was ini-
tiated by the work of Van Jacobson and Michael J. Karels in 1988. Their research,
“Congestion Avoidance and Control," [Jac88] established the fundamental framework
for congestion control mechanisms within TCP. Before this, the Internet faced substan-
tial challenges due to its inability to manage congestion effectively, which often led to
the degradation and collapse of network performance. Jacobson and Karels identified
the root causes of congestion and introduced algorithms that became the cornerstone of
TCP congestion control. These algorithms were based on the principle of detection and
adaptation to congestion, adjusting the data transmission rate according to the condi-
tions perceived in the network. Their work provided immediate relief from prevailing
network congestion problems and set the stage for future research and development in
this area.

3.3.1 Congestion

At its core, congestion in a network occurs when multiple sources send data at rates
that exceed the capacity of the network to handle, leading to an overload of network
resources such as routers and links. This overload causes buffers at routers to fill up and
exceed their capacity, resulting in dropped packets and the need for retransmissions.
The primary indicators of congestion include increased packet loss rates and growing
round-trip time (RTT), which measures the time taken for a signal to be sent and the
time it takes to acknowledge that signal to be received.

3.3.2 Impacts and Causes of Network Congestion

The negative impacts of network congestion can significantly degrade the quality of net-
work services. Some of the primary adverse effects include increased latency, packet
loss, and reduced throughput. The causes of network congestion are varied and often
interrelated, encompassing issues such as insufficient network bandwidth relative to the

3.4. TCP CONGESTION CONTROL ALGORITHMS 21

volume of transmitted data, which stands as a primary congestion aggregator. Addition-
ally, congestion can arise from a sudden surge in data traffic, typical during peak usage
times, overwhelming network resources. The scenario is further complicated by poorly
optimized routing algorithms, which can lead to an uneven distribution of traffic. This
results in certain paths becoming congested while others remain underutilized. More-
over, inadequate or improperly configured Quality of Service (QoS) policies contribute
to the problem by failing to prioritize critical traffic, leading to network congestion that
supports a mix of traffic types [TTS15].

3.4 TCP Congestion Control Algorithms

TCP congestion control algorithms play a crucial role in managing how data is sent
by adjusting the transmission rate in response to the current state of the network. This
dynamic adjustment prevents the network from becoming overloaded, minimizes packet
loss, and ensures a fair bandwidth distribution among users.

The evolution of TCP congestion control algorithms reflects the growth and chang-
ing demands of the Internet. Initially, the Internet was a compact network serving a
limited number of users, where congestion was rare. However, as the network expanded
exponentially, introducing more complex and variable conditions, the original TCP al-
gorithms had to evolve. This evolution aimed to face the challenges posed by new
applications, increasing user expectations in terms of speed and reliability and the vast
scale of modern networks.

From the beginnings of simple algorithms like Tahoe and Reno, designed by Van
Jacobson [Jac88] to introduce primary congestion prevention and control, to sophisti-
cated systems like CUBIC and BBR (Bottleneck Bandwidth and Round-trip propagation
time) [HRX08] [CCG™17], which are optimized for broadband high speed connections
and minimize latency, TCP congestion control has continually adapted. These algo-
rithms use various techniques to estimate the congestion level in the network and adjust
the data transmission rate accordingly. The choice of algorithm can significantly affect
the performance and reliability of connections, especially in environments with high
bandwidth-delay products or where packet loss does not simply indicate congestion.

The evolution of congestion control algorithms has been significantly influenced by
the transition to high-speed networks and the advent of virtualization and cloud com-
puting. High-speed environments, especially those capable of transmitting data at a
rate of 10 Gb/s, have required the development of algorithms such as HighSpeed TCP,
H-TCP, and CUBIC, which are designed to utilize large bandwidths while maintaining
fairness between flows efficiently. Additionally, Google’s introduction of BBR marked
a shift toward algorithms that base their operation on estimating network bandwidth and
RTT rather than relying solely on loss signals, demonstrating significant performance

3.4. TCP CONGESTION CONTROL ALGORITHMS 22

improvements in throughput and latency.

Recently, the focus has shifted to optimizing TCP congestion control for the specific
characteristics of modern data centers and emerging 5G networks. This includes de-
veloping algorithms such as DCTCP, which aim to minimize queue lengths at switches
within data centers, and adapting existing algorithms to operate efficiently within the
constraints of 5G networks. Ongoing research and experimentation in TCP congestion
control algorithms highlight the ongoing effort to adapt TCP to evolving network tech-
nologies and usage patterns, ensuring reliable and efficient data transmission over the
Internet.

3.4.1 Initial algorithms

As mentioned, the basis for modern TCP congestion control was laid by Van Jacobson
in 1988 [Jac88] in response to significant congestion collapse incidents that threatened
the growing Internet’s viability. Jacobson’s work introduced several vital mechanisms
that remain at the heart of TCP congestion control:

* Slow Start: The algorithm starts with a low data transmission rate and exponen-
tially increases the size of the congestion window until congestion is detected,
ensuring that the network is not overwhelmed by sudden spikes in data.

* Avoid Congestion: Once congestion is detected, this mechanism gradually ad-
justs the congestion window to probe network capacity, aiming to maintain the
transfer rate without causing further congestion.

* Fast Retransmission: This enhancement allows faster recovery from packet loss
without waiting for timeouts by re-transmitting lost packets after receiving a cer-
tain number of duplicate acknowledgments.

* Fast Recovery: A mechanism that reduces the size of the congestion window less
drastically than a slow start, allowing faster recovery to optimal throughput after
detecting packet loss.

These algorithms, first implemented in TCP Tahoe and later refined in TCP Reno,
marked a fundamental change in network management, introducing a dynamic approach
to congestion control that could adapt to changing network conditions.

3.4.2 Types of algorithms: Loss-Based, Delay-Based, and Hybrid Approaches

As TCP evolved, its congestion control strategies branched into three distinct but over-
lapping approaches: loss-based, delay-based, and hybrid algorithms [ATRK10]. Each

3.4. TCP CONGESTION CONTROL ALGORITHMS 23

approach was developed in response to different network environments’ unique chal-
lenges and characteristics. Loss-based algorithms, the first to emerge, rely on packet
loss as the main indicator of congestion, decreasing data transmission rates in response
to packet loss. On the other hand, delay-based algorithms, a more recent innovation,
use observed increases in data packet transmission times as an early sign of potential
congestion, seeking to adjust the sending rate before any loss occurs proactively. Lastly,
hybrid algorithms combine packet loss signals and transmission delay to form a more
comprehensive and adaptive congestion control strategy.

This section conducts a comparative analysis of these three approaches, examining
the context of their emergence, the evolution of their conception, and operational rele-
vance. The goal is to provide a nuanced understanding of how these algorithms work
individually and in conjunction with each other to maintain the delicate balance of net-
work traffic. As the Internet continues to expand and diversify, with an ever-increasing
demand for bandwidth and speed, such analysis becomes essential for future innovations
in TCP congestion control mechanisms.

In this work, for our experimental evaluation, we have selected representative algo-
rithms from each category—loss-based, delay-based, and hybrid approaches—as focal
points for our analysis. These chosen algorithms stand as benchmarks within their re-
spective groups, offering a deep dive into the operational mechanics and strategic nu-
ances that define their functionality. The selection process was guided by criteria aimed
at isolating those algorithms that exemplify the core principles of their categories and
exhibit a significant impact on network performance in diverse environments. This sub-
set of algorithms, which includes examples like CUBIC for loss-based, TCP Vegas for
delay-based, and BBR2 and DCTCP for hybrid approaches, will be explored in greater
detail compared to their counterparts. The motivation behind choosing these specific
algorithms revolves around their historical significance, widespread adoption, and the
innovative solutions they provide to congestion control challenges. We considered only
those algorithms already implemented in the Linux kernel as selection criteria. By fo-
cusing on these algorithms, we aim to shed light on the trajectory of TCP congestion
control strategies and their implications for current and future network infrastructures.

Loss-Based: Loss-based algorithms emerged since the early days of the Internet
when the primary indication of network congestion was packet loss. As routers and
switches reach capacity, they drop packets, a sign that the network is congested. The
fundamental assumption was that packet loss directly resulted from buffer overflows in
the routers, indicating that the data transmission rate exceeded the network’s capacity to
handle the traffic. These algorithms are particularly effective in stable wired networks,
where packet loss is a reliable congestion indicator. They are simple to implement
and have historically formed the backbone of TCP’s congestion control mechanism.
However, as networks have become faster and more complex, with variable speeds and
higher bandwidth-delay products, the limitations of loss-based algorithms have become

3.4. TCP CONGESTION CONTROL ALGORITHMS 24

evident. They often lead to underutilization of network capacity, especially in networks
where packets can be lost due to reasons other than congestion, such as wireless net-
works where interference and signal attenuation can cause packet loss.

» Tahoe[Jac88]: This flavor was the first one to appear. Tahoe introduced essential
mechanisms such as slow start and congestion avoidance. It reacts to any packet
loss by starting the congestion window from scratch, using a slow start phase.

* Reno[Jac90]: Reno is a direct evolution of the Tahoe, improving it with the quick
recovery algorithm. It differs from Tahoe in that it does not always reset the
congestion window for a packet when detecting packet loss but reduces it by half,
which provides a more moderate response to congestion and faster recovery.

* NewReno[FH99]: A further refinement of Reno, NewReno improves recovery
during multiple packet losses. It waits for confirmation of all sent data before fast
retransmission to exit fast recovery, which helps when more than one packet is
lost in a single data window.

* Binary Increase Congestion Control (BIC)[XHRO04]: Explicitly tailored for
high-speed, long-distance networks, BIC uses a binary search approach to quickly
find the window size just below that which would induce loss, allowing for rapid
increases in the window size in stable conditions.

* Cubic Congestion Control (CUBIC)[HRX08]: An evolution of BIC, CUBIC
changes the window growth function to cubic. This change allows the congestion
window to grow independently of the round-trip time, enabling more aggressive
window growth after a reduction due to packet loss, especially in networks
with large bandwidth-delay products. For the category of loss-based algorithms,
we chose CUBIC for our evaluation. CUBIC is currently the default algorithm
in systems that use the Linux kernel, which is one of the most used algorithms.
CUBIC has been in the Linux kernel since version 2.6./6. Since kernel version
2.6.19, CUBIC has replaced BIC-TCP as the default TCP congestion control al-
gorithm in the Linux kernel.

CUBIC differentiates itself from other algorithms by using a cubic window growth
function to adjust the congestion window (cwnd) after experiencing congestion.
This has two main advantages: using the available bandwidth more quickly when
the current congestion window is very low and being less aggressive when the
current congestion window is close to the maximum reference value (cwndmax)-
CUBIC’s window growth function is a cubic function of time since the last con-
gestion event. The cubic function is defined as [HRXO08]:

ewnd(t) = C- (t — K)* + cwndinax 3.1

3.4. TCP CONGESTION CONTROL ALGORITHMS 25

where:

cwnd(t) is the congestion window size at time ¢ after a congestion event.

C is a constant that controls the aggressiveness of the window growth.

t is the elapsed time since the last congestion event.

K is the time to increase the window size to cwndp,x, the window size before
the congestion event, calculated as:

K=1{ w (3.2)

where f is the multiplicative decrease factor in Fast Recovery phasis, and
cwndmay 18 the maximum window size before the congestion event. See the
Figure 3.2.

Cubic Congestion Control (CUBIC)

cwnd

=== cWndmax
=== Packet Loss Event
Fast Recovery
Slow Growth
Probing More Bandwidth

e R

Figure 3.2: Congestion window size (cwnd) behavior using CUBIC congestion control.
The regions indicate fast recovery (green), slow growth (yellow), and polling for more
bandwidth (blue), with the packet loss event marked by a dotted vertical line.

CUBIC’s operation can be described in several phases following a congestion
event:

Unknown cwnd. Initially, if there has not yet been a packet loss event, the growth
occurs following the right side of the cubic function (the blue area in Fig 3.2).
This approach is more conservative than the exponential function used by other
algorithms.

3.4. TCP CONGESTION CONTROL ALGORITHMS 26

Congestion Detection. Like other TCP variants, CUBIC reduces its window
size upon detecting packet loss (indicating congestion), typically by halving the
cwnd. This is consistent with TCP’s general approach to handling congestion but
diverges in how it increases the cwnd after this event.

CUBIC Growth. After reducing the window size due to congestion, CUBIC en-
ters the cubic growth phase, where it uses its cubic function to adjust the cwnd.
The growth rate is independent of RTT, which makes CUBIC fairer to flow with
different RTTs and more efficient on networks with high Bandwidth-Delay Prod-
ucts (BDPs).

Fast Convergence. To improve fairness and efficiency in bandwidth sharing,
especially when competing with other flows, CUBIC implements a fast conver-
gence mechanism. If the current cwndp,x is smaller than the previous cwndpax,
indicating a recent congestion event, CUBIC reduces cwndp,,x more aggressively
to allow for faster convergence among competing flows. If it is a temporary con-
gestion event, we will see a growth of the congestion window according to the left
and right branches of the cubic function (Figure 3.2. In summary, CUBIC Fast
Convergence is a mechanism designed to enhance the fairness and efficiency of
bandwidth usage in TCP networks, especially where multiple data flows exist.

CUBIC offers several advantages that contribute to its effectiveness across di-
verse network conditions. Its scalability is highlighted by decoupling the win-
dow growth rate from the round-trip time (RTT), enabling CUBIC to perform
well in high-speed and long-distance networks where traditional TCP variants
might struggle. Additionally, CUBIC implements a fast convergence mechanism
that promotes fairness among multiple flows competing for the same bottleneck
bandwidth, ensuring a more equitable distribution of network resources. This is
complemented by the cubic growth function of CUBIC, which strikes a delicate
balance between aggressive window growth for rapid bandwidth utilization and
cautious growth as it nears congestion, promoting stable network performance.
This combination of scalability, fairness, and stability makes CUBIC a robust
choice for congestion control in various networking scenarios. The main dis-
advantage of CUBIC is that it will never be able to use 100% of the available
resources and potentially can introduce a high number of retransmissions since it
relies on packet drops as an indication of congestion.

* Hybla: Developed to address performance degradation in TCP connections with
alarge RTT, such as satellite links, Hybla aims to counteract the influence of RTT,
striving to give these connections a fair chance to compete with those with smaller
RTTs.

* High-Speed TCP (HS-TCP): This algorithm adjusts the congestion window in-

3.4. TCP CONGESTION CONTROL ALGORITHMS 27

crease and adjusts parameters to be more suitable for high-speed networks with
large congestion windows, allowing more precise control over the congestion win-
dow than standard TCP.

Delay-Based: Delay-based algorithms have become an alternative to loss-based al-
gorithms, particularly to address their inefficiencies in emerging network environments.
These algorithms use packet delay rather than loss to infer congestion. The rationale is
that as a network approaches congestion, the queuing delay experienced by packets will
increase even before any packets are dropped. By monitoring packet round-trip times
(RTTs), these algorithms attempt to detect congestion early and adjust the sending rate
to prevent packet loss and ensure smoother traffic flow. Delay-based algorithms are
best suited for networks where low latency is crucial and packet loss does not necessar-
ily signal congestion, such as in wireless or mobile networks. They are also relevant in
high-speed networks with large bandwidth-delay products, where loss-based algorithms
can significantly underperform due to their conservative nature. By using delay as an
indicator, these algorithms can prevent network buffers from becoming fully occupied,
thus maintaining low latency and avoiding queuing delays that can cause instability in
real-time applications such as VoIP or video conferencing.

* Fast Active Queue Management Scalable TCP (FAST))[JWL"05]: FAST main-
tains a small but consistent buffer occupancy at the bottleneck by using queue
delay as a congestion signal. It aims for high throughput and low latency under
stable network conditions.

* Veno[FL03]: Veno combines features from Vegas and Reno, trying to be more
robust on networks with random losses, such as wireless networks, while being
more aggressive on networks where packet loss does not necessarily indicate con-
gestion.

 Timely[MLD"15]: Designed for data center networks, Timely uses the RTT gra-
dient, as opposed to absolute delay, to make congestion decisions, reacting to
changes in RTT to manage the sending rate.

* Vegas[BP95]: Vegas distinguishes itself by preemptively managing congestion
by monitoring RTT variations. This method allows for early congestion detection
and adjustment of sending rates before packet loss becomes evident. It is more
proactive than loss-based algorithms but can be less aggressive in claiming avail-
able bandwidth. For the category of delay-based algorithms, we selected TCP Ve-
gas for our evaluation. This choice is mainly because TCP Vegas is a foundational
model for numerous other delay-based and hybrid congestion control algorithms
[TKU19]. Vegas has been in the Linux kernel since version 2.6.6.

3.4. TCP CONGESTION CONTROL ALGORITHMS 28

TCP Vegas uses the difference between expected and actual throughput rates to
adjust its congestion window size, aiming to detect and respond to the onset of
congestion before packet loss occurs. The operation of TCP Vegas can be divided
into key steps [BP95]:

First, Vegas calculates the expected throughput as the size of the congestion win-
dow divided by the minimum RTT observed for the connection. The actual
throughput is calculated as the size of the congestion window divided by the cur-
rent RTT. By comparing these two throughput values, Vegas assesses the extent
of congestion. If the actual throughput is significantly less than the expected
throughput (indicating potential congestion), Vegas reduces the rate at which it
increases the congestion window (cwnd). If the actual throughput is close to the
expected throughput, Vegas maintains a steady increase in the congestion window,
aiming for optimal utilization without contributing to congestion. If the actual
throughput is greater than expected, indicating underutilization of the network,
Vegas increases the congestion window to capture available bandwidth. In the
congestion avoidance phase, Vegas carefully adjusts the cwnd to avoid conges-
tion. By monitoring the RTT and keeping the congestion window increase mod-
erate when the network begins to show signs of congestion, Vegas aims to keep
queues at intermediate routers short, thus, reducing delays and avoiding packet
losses.

TCP Vegas uses two critical thresholds to regulate behavior: Alpha (&) and Beta
(B). o is the lower threshold for the difference between expected and actual
throughput. If the difference is less than ¢, Vegas concludes that there is little or
no congestion and, thus, increases the congestion window more aggressively. 3
is the upper threshold for the difference. If the difference exceeds B, it indicates
potential congestion, prompting Vegas to decrease or slow down the increase of
the congestion window.

In short, TCP Vegas uses round-trip time (RTT) measurements instead of wait-
ing for signs of packet loss to adjust its congestion window proactively. This
approach enables Vegas to detect congestion sooner than loss-based mechanisms,
facilitating smoother throughput and enhancing network stability by preemptively
managing congestion levels. By aiming to efficiently use the available band-
width without causing unnecessary queue buildup, Vegas not only promotes fairer
bandwidth distribution among competing flows but also significantly reduces the
occurrence of packet loss and retransmissions. This stability is a double-edged
sword; while it contributes to a smoother network experience, it also renders the
algorithm more conservative, leading to a slower growth in the congestion win-
dow (cwnd). The delay-based nature of Vegas introduces specific challenges, no-
tably its vulnerability to pseudo-congestion effects where RTT fluctuations might

3.4. TCP CONGESTION CONTROL ALGORITHMS 29

not accurately reflect actual network congestion levels. Such inaccuracies in RTT
estimates can arise from factors including delayed ACKs, cross traffic, dynamic
routing changes, queues within the network infrastructure, and virtualized en-
vironments, known by adding overhead due to resource sharing. Additionally,
Vegas’s conservative congestion window growth strategy, while reducing packet
loss, can delay bandwidth utilization, particularly in mixed-traffic environments
where loss-based algorithms prevail. In these scenarios, Vegas may transition to
a more loss-based behavior, adapting its strategy in response to the competitive
dynamics of the network. Despite these limitations, predominantly its sensitiv-
ity to RTT measurement accuracy and potential under-performance in networks
dominated by aggressive loss-based algorithms, TCP Vegas offers a proactive so-
lution for congestion control, with considerations for its operational context and
the nature of competing traffic.

Hybrid: Hybrid algorithms combine the principles of loss-based and delay-based
algorithms to create a more adaptive and robust approach. The emergence of hybrid
algorithms has been driven by the need to address the shortcomings of loss and delay-
based algorithms, especially in mixed network environments that feature a variety of
technologies, speeds, and traffic patterns. The hybrid performs well in various network
conditions. They are particularly relevant in heterogeneous networks, including old and
new technologies, wired and wireless connections, and stable and variable links. These
environments require a flexible approach to congestion control that can adapt to different
congestion indicators — packet loss, delay, or a combination of both.

Hybrid algorithms take a more nuanced approach when considering multiple sig-
nals, which can lead to better decisions about when to increase or decrease the data
transmission rate. This versatility makes them suitable for networks where the cause of
congestion is not always clear, such as in cases where packet loss may occur due to rea-
sons other than congestion, such as signal degradation in wireless networks, or where
latency variable can be confused with network congestion, as in virtualized scenarios,
where delay does not necessarily indicate congestion.

The adaptability of hybrid algorithms allows them to maintain high throughput in
high-capacity networks while responding to changing network conditions, thus, ensur-
ing efficient and fair use of network resources. For example, in networks where real-
time applications coexist with bulk data transfers, hybrid algorithms can help maintain
the quality of service for latency-sensitive applications while ensuring that significant
data transfers are completed efficiently.

In essence, hybrid algorithms aim to capture the best of both worlds: the responsive-
ness of loss-based algorithms to clear indications of congestion and the pro-activeness
of delay-based algorithms in anticipating and avoiding congestion. By doing so, they
can optimize network performance, reduce latency, and avoid bandwidth underutiliza-
tion and inefficiencies seen with purely loss- or delay-based approaches.

3.4. TCP CONGESTION CONTROL ALGORITHMS 30

* Compound TCP (CTCP)[TSZS06]: CTCP takes a dual approach, with a delay-
based component and a loss-based component working together to optimize through-
put without compromising network stability. It increases the ability to utilize
available bandwidth while maintaining impartiality fully.

* Illinois[LBS06]: This algorithm dynamically adjusts the congestion window in-
crease and decrease factors using loss and delay indications. It offers a more re-
sponsive and less aggressive approach to congestion control, suitable for diverse
network conditions.

¢ Performance Oriented Congestion Control (PCC)[DLZ"15]: PCC operates
based on utility maximization. Unlike traditional TCP, which reacts to packet
loss or delay events, PCC continually explores different sending rates and adopts
the rate that maximizes a predefined performance objective.

 Bottleneck Bandwidth and Round-trip propagation time (BBR)[CCG™17]:
BBR is an algorithm developed by Google® that represents a significant change
in traditional TCP congestion control strategies. Unlike conventional algorithms
that rely on packet loss or delay as signals to infer network congestion, BBR uses
bandwidth and delay as primary metrics to control the data transmission rate.
BBR has been in the Linux kernel since version 4.9.

BBR operates based on two fundamental metrics:

1. Bottleneck Bandwidth (BtIBw): The maximum rate at which data can be
transferred across the current network bottleneck without inducing queue
buildup.

2. Round-Trip Propagation Time (RTprop): The minimum time for a signal
to travel to the destination and back represents the baseline round-trip time
on the network.

BBR works in 4 separate phases and goes through these phases to adjust the
packet shipping rate:

1. Startup: In this initial phase, BBR quickly probes bandwidth, exponentially
increasing the sending rate with each round trip until it detects packet loss,
which signals that a potential bandwidth bottleneck has been reached.

2. Drain: To drain any queue that may have formed during initialization and
ensure that it does not overestimate the BtIBw, BBR switches to the Drain
phase, which reduces the sending rate to allow queued packets to be deliv-
ered. This helps achieve BBR’s goal of minimal queue delays.

3.4. TCP CONGESTION CONTROL ALGORITHMS 31

3. ProbeBW: BBR enters the ProbeBW phase after the queues are drained,
where it periodically increases and decreases the sending rate to probe the
current BtIBw. It uses a cyclical approach, spending most of its time sending
data at a rate it believes matches the network bandwidth but occasionally
polling above or below that rate.

4. ProbeRTT: Because network paths can change, BBR occasionally enters
a state that reduces its sending rate to a minimum value for a brief period.
This allows measuring the network’s propagation delay (RTprop) in the ab-
sence of any self-induced congestion. This phase ensures the BBR’s RTprop
estimate is current and prevents the algorithm from persistently inflating the
network queues.

BBR’s decision-making is based on several algorithms that allow it to estimate
BtIBw and RTprop and to adjust its pacing rate and congestion window:

— Bandwidth Estimation: BBR uses the delivery rate of ACKed packets to
estimate the currently available bandwidth. It keeps a maximum value of
recent bandwidth samples as the estimated BtIBw.

— MinRTT Estimation: BBR measures the RTT of each packet sent and
maintains the minimum RTT seen in a time window (typically 10s) as the
current RTprop estimate.

— Pacing Rate Setting: BBR sets the pacing rate (the rate at which packets
are sent) based on the estimated BtIBw and a pacing gain factor, which is
adjusted in different phases to speed up or slow down the sending to the
probe’s bandwidth.

— Congestion Window Control: Although BBR mainly controls the sending
rate through pacing, it also sets a congestion window (cwnd) as a secondary
measure to avoid sending too much data. The cwnd is usually set as a mul-
tiple of the estimated BtIBw and the minimum RTT, ensuring the BBR does
not have more data in transit than the network can handle.

Due to its characteristics, BBR can achieve high throughput and low latency, es-
pecially in networks with high bandwidth-delay products, where traditional loss-
based algorithms can perform poorly. BBR tends to reduce packet loss as it does
not rely on packet loss as a signal to decrease the sending rate. It responds to
actual changes in available network bandwidth more directly than loss-based al-
gorithms.

However, in some cases, BBR can be more aggressive than loss-based algorithms,
potentially leading to unfair bandwidth allocation when competing for network

3.4. TCP CONGESTION CONTROL ALGORITHMS 32

capacity. It can also maintain high sending rates even under conditions of per-
sistent congestion, potentially causing long queues on bottleneck links if network
buffers are large.

* Bottleneck Bandwidth and Round-trip propagation time version 2 (BBR2)
[CCY™19]: BBR2 is the successor to the original BBR congestion control algo-
rithm. Although BBR was acknowledged for its ability to achieve high through-
put and low latency, it had several shortcomings, especially in environments with
multiple concurrent flows and handling packet loss. BBR2 was developed to ad-
dress these issues and provide a fairer and more efficient approach to conges-
tion control. For the category of hybrid-based algorithms, we selected BBR2 for
our evaluation. As a relatively new addition to the congestion control landscape,
BBR?2 represents the cutting edge in TCP congestion control technology, with its
deployment in the Linux kernel highlighting its facilitate for adoption in modern
network infrastructures. With its focus on minimizing latency and improving fair-
ness while maintaining high throughput positions, BBR2 is a compelling choice
for our analysis of advanced congestion control mechanisms. BBR2 is currently
being used on a small percentage of global YouTube® traffic and deployed as the
default TCP congestion control for internal Google® traffic [CCY119]. BBR2
has an implementation available for the Linux kernel, which can be installed via
the official repository tutorial !.

BBR2 improvements. BBR2 maintains its predecessor’s model-based design,
focusing on bandwidth and round-trip time to make decisions, but introduces sev-
eral important updates:

— Improved loss handling: Traditional BBR can be too aggressive in packet
loss environments, leading to unfair bandwidth allocation and possible queu-
ing. BBR2 addresses this by incorporating loss-based signals into its model,
allowing it to respond more appropriately to packet loss and thus improving
its coexistence with loss-based congestion control algorithms.

— Ecosystem fairness: BBR2 improves fairness by sharing bandwidth with
other congestion control algorithms. It uses a more conservative approach
to increase its sending rate, which helps prevent bandwidth hogging and
ensures a more equitable distribution of network capacity across all streams.

— Enhanced startup and drain: The startup and drain phases have been ad-
justed to better respond to network conditions. BBR2 can exit the Startup
phase early if it detects that it has reached a bandwidth bottleneck, reducing
the potential for excessive queuing. Additionally, the Drain phase has been
refined to eliminate queues more effectively.

Thttps://github.com/google/bbr/blob/v2alpha/README.md

3.4. TCP CONGESTION CONTROL ALGORITHMS 33

— ProbeRTT Refinements: BBR2 enhances the ProbeRTT phase to ensure
that the minimum RTT estimate is accurate and responsive to long-term
changes in the network path. This helps prevent the algorithm from per-
sistently growing network queues.

— Improved bandwidth estimation: BBR2 includes updates to its bandwidth
estimation algorithm to better respond to actual changes in available band-
width, which helps it better adapt to fluctuating network conditions.

— ECN Support: BBR2 fully supports Explicit Congestion Notification (ECN),
which allows you to react to signs of congestion before packet loss occurs.
This allows maintaining high throughput while reducing the likelihood of
packet loss and queuing delays. We will discuss ECN more later in this
section.

BBR?2 operates on a similar phase cycle to Traditional BBR, with adjustments to
improve its behavior:

— Startup: Checks bandwidth and exits to Drain when it detects bandwidth
saturation or packet loss.

— Drain: Reduces outstanding data on the network to the estimated BDP to
ensure no queue delays are added.

— ProbeBW: Cycles through gain values to probe for bandwidth while main-
taining a small amount of queuing.

— ProbeRTT: Ensures a fresh min RTT sample periodically to react to changes
in the network path.

BBR2 builds on the strengths of the original BBR algorithm while addressing
its weaknesses. It brings a more sophisticated approach to congestion control,
considering not only the maximum achievable bandwidth but also the effects of
packet loss and the need for fairness in sharing bandwidth. The improvements
in BBR2 reflect an ongoing effort to optimize network throughput and latency,
ensuring that the TCP congestion control algorithm remains responsive to modern
networks’ diverse and changing conditions.

Explicit Congestion Notification (ECN). In addition to the three main categories
of TCP congestion control algorithms — loss-based, delay-based, and hybrid — there is
an auxiliary mechanism known as Explicit Congestion Notification (ECN) that deserves
mention. ECN extends the IP and TCP protocols, offering an alternative to traditional
congestion indicators such as packet loss and delay.

ECN was developed to address the inefficiencies associated with the binary feedback
loop of packet loss. It arose from the realization that preemptively signaling congestion

3.4. TCP CONGESTION CONTROL ALGORITHMS 34

before packet loss occurs could avoid the abrupt reduction in throughput that typically
results from loss-based congestion control mechanisms. ECN allows network nodes
(such as routers and switches) to mark packets to indicate the start of congestion without
dropping packets. This early warning system allows endpoints to react to congestion
more quickly and smoothly without the penalties associated with packet loss, such as
retransmissions and timeouts.

ECN uses the two bits of the IP header that were initially reserved but undefined
in the standard protocol. The network infrastructure can set these bits to indicate that
congestion is imminent. When the receiver receives a packet with ECN bits set, it
notifies the sender via the TCP header’s ECN-Echo flag. The sender then reacts by
reducing its transmission rate, much as it would in response to packet loss, but typically
with a less drastic decrease.

ECN is particularly useful on high-speed networks where recovery from packet loss
can be time-consuming and detrimental to the quality of service. It is also advantageous
in scenarios where packet loss is not a reliable indicator of congestion, such as wireless
networks. ECN is beneficial for real-time applications sensitive to delay and jitter, as it
helps avoid latency introduced by packet loss and subsequent retransmissions.

The implementation and use of ECN require that the network infrastructure and end-
points support the protocol. Although the adoption of ECN was gradual, its implementa-
tion increased as manufacturers of networking equipment and operating systems began
to include ECN capabilities in their products. ECN represents a significant step towards
a more agile and efficient network congestion control system, and its integration with
existing TCP algorithms further increases the robustness of data communication over
the Internet.

e Data Center TCP (DCTCP) [AGM™10]: Data Center TCP (DCTCP) is a TCP
congestion control mechanism specifically designed to address the unique re-
quirements of data center networks, where high-bandwidth, low-latency commu-
nication is critical. Developed by researchers at Microsoft®, DCTCP aims to
minimize network congestion and ensure high throughput and low latency, partic-
ularly in data center environments where small, momentary congestion events can
significantly impact application performance. DCTCP leverages Explicit Con-
gestion Notification (ECN) to detect and control congestion. We also selected
DCTCEP for our in-depth evaluation. DCTCP was selected because it proposes to
solve problems found in data center environments, in addition to being a represen-
tative of algorithms that use ECN to adjust the congestion window. Furthermore,
the DCTCP is on the operating system Windows Server 2012® and has been in
the Linux kernel since version 3.18.

DCTCP represents a hybrid approach, combining the principles of loss- and delay-
based algorithms but with a unique twist provided by ECN. DCTCP operates by

3.4. TCP CONGESTION CONTROL ALGORITHMS 35

leveraging Explicit Congestion Notification (ECN) within the network to detect
early signs of congestion before packet loss occurs. When a switch or router in
a data center network begins to experience congestion, it marks packets by set-
ting the ECN bits in the IP header rather than dropping them. The receiver, upon
detecting these ECN marks, notifies the sender by setting the ECN-Echo flag in
the TCP header of its acknowledgments (ACKs). This feedback loop allows the
sender to adjust its congestion window size more accurately and responsively,
reducing its sending rate to alleviate congestion.

However, unlike traditional TCP algorithms that would reduce the window by
half, DCTCP adjusts the window by a fraction proportional to the fraction of
marked packets in a data window. This allows for much more precise sending
rate control, leading to shorter queuing delays, reduced packet loss, and high
burst tolerance.

DCTCP significantly reduces queue build-ups in switches and routers, thereby
decreasing network latency and avoiding packet loss. This is particularly bene-
ficial in data center environments, where even minimal packet loss and latency
can degrade the performance of distributed applications. However, it also has
some limitations. Implementing DCTCP requires both sender and receiver to sup-
port ECN marking, as well as switches that can be configured for ECN marking
based on queue length. This can complicate deployment in heterogeneous en-
vironments. Also, DCTCP’s benefits are most pronounced within the controlled
environment of a data center. Outside of this context, its performance can be less
predictable, especially over the Internet, where ECN marking is not universally
supported. DCTCP can lead to fairness issues when coexisting with non-ECN-
capable flows. Because it reduces its window size less aggressively than tradi-
tional TCP, DCTCP flows can potentially take a larger share of the bandwidth.
Finally, the performance of DCTCP is highly sensitive to the configuration of the
ECN marking threshold in network switches. Improper settings can lead to ei-
ther excessive marking (leading to underutilization of the network) or insufficient
marking (failing to prevent congestion).

DCTCP could fall into the hybrid category due to its use of ECN marks as a
congestion signal, a delay-based characteristic while responding to real conges-
tion events (albeit ECN-signaled) similar to loss-based algorithms. However, one
could also argue that DCTCP belongs in its own category due to its unique re-
sponse to ECN brands. It is not purely delay-based, as it does not directly mea-
sure packet transmission delays, nor is it purely loss-based, as it does not rely on
packet loss as the primary signal for congestion.

3.4. TCP CONGESTION CONTROL ALGORITHMS 36

Table 3.1: Detailed Summary of TCP Congestion Control Algorithms

Category | Algorithm

Key Characteristics

Tahoe Introduced essential mechanisms like slow start and conges-
tion avoidance. Reacts to packet loss by starting the conges-
tion window from scratch.

Reno Evolves from Tahoe with quick recovery, reducing the con-
gestion window by half upon detecting packet loss, allow-

Loss-Based ing faster recovery.
NewReno Improves on Reno by handling multiple packet losses more

efficiently, waiting for all sent data confirmation before ex-
iting fast recovery.

BIC Tailored for high-speed, long-distance networks, using a bi-
nary search approach to find the window size just below loss
induction quickly.

Cubic Utilizes a cubic window growth function, enabling aggres-
sive window growth post-loss, particularly effective in net-
works with large bandwidth-delay products.

Vegas Uses RTT variations to manage congestion proactively, in-
creasing the window more conservatively but efficiently,
aiming to prevent queue buildup.

FAST Maintains low latency and high throughput by keeping
Delay- buffer occupancy consistent at the bottleneck, using queue
Based delay as a congestion signal.

Veno Combines features from Vegas and Reno, aiming for robust-

ness in networks with random losses and more aggressive in
non-congested networks.

Timely Designed for data center networks, it uses RTT gradients
instead of absolute delay, adjusting rates based on RTT
changes.

CTCP) Integrates delay and loss indications, optimizing through-
put without sacrificing stability, suitable for varied network
conditions.

llinois Dynamically adjusts congestion window based on loss and
delay signals, less aggressive and more responsive to con-
Hybrid gestion.

PCC Based on utility maximization, different sending rates are
continually explored to maximize a performance objective
independent of traditional signals.

BBR Uses bottleneck bandwidth and RTT as primary metrics,
moving through phases to optimize bandwidth utilization
and minimize queuing.

BBR2 Enhances BBR by incorporating improvements in loss han-
dling, bandwidth sharing, and ensuring fairness among mul-
tiple flows.

Others DCTCP Utilizes ECN to provide precise congestion feedback within

data center environments, reducing latency and packet loss
by adjusting the congestion window based on ECN marks.

3.4. TCP CONGESTION CONTROL ALGORITHMS 37

Chapter Conclusion

This chapter explored the evolution and different approaches of TCP congestion control
algorithms. They were categorized into three main groups established in the existing
literature: loss-based, delay-based, and hybrid. Table 3.1 presents a detailed summary
of the algorithms presented in this chapter and highlights those used in the experiments.

Loss-Based Algorithms: Historically the first ones to be implemented, these algo-
rithms include TCP Tahoe, Reno, NewReno, BIC, and CUBIC. They rely on detecting
packet loss as a sign of a congestion event. TCP implementations falling in this class
are effective in stable networks. However, they may not perform well on networks with
high latency variation (i.e., jitter) or where packet loss can occur for reasons unrelated
to congestion, such as with wireless networks.

Delay-Based Algorithms: These algorithms, exemplified by TCP Vegas, FAST,
Veno, and Timely, use delay measures such as the round-trip time (RTT) to predict
and control congestion before packet loss occurs. They are especially advantageous
in environments where latency is critical and packet loss is not a reliable indicator of
congestion. However, they may be less aggressive in acquiring available bandwidth,
which may result in underutilization in networks with mixed traffic.

Hybrid Algorithms: Combining the advantages of the first two groups, hybrid al-
gorithms, such as TCP Compound, Illinois, PCC, BBR, and its evolution BBRv2, seek
to adapt to various network conditions, using both loss and delay signals. These algo-
rithms are designed to be robust in heterogeneous network environments, offering high
performance, fairness, and bandwidth usage efficiency.

Auxiliary Congestion Control Mechanisms: Besides the categories above, we
present the Explicit Congestion Notification (ECN) mechanism. ECN works as an ex-
tension of the IP and TCP protocols, allowing network devices to mark packets to sig-
nal congestion without dropping them, offering a smoother response to congestion. A
case in point is the DCTCP algorithm, which leverages ECN in data centers for precise
congestion management. This protocol combines delay and loss-based features with a
unique response to ECN feedback, differentiating it from congestion control strategies.

Each class of the above algorithms makes unique contributions to network conges-
tion management, with specific features best suited to certain types of networks and
applications. These algorithms have evolved in recent years to keep up with changes in
network architecture and traffic patterns, ensuring that network infrastructure can effec-
tively support growing data demands. In summary, the selection of congestion control
algorithms must consider specific network characteristics and application requirements
to optimize both network performance and stability.

CHAPTER 4

Methodology

This chapter describes the adopted methodology for evaluating TCP congestion control
algorithms in a virtualized data center environment. We adopt an empirical approach
to analyze the performance and behavior of TCP congestion control algorithms within
virtualized environments, specifically tailored to mimic the network dynamics typically
found in data centers. The experimental topology is designed to simulate inter-server
communication, a critical aspect of data center operations, which directly impacts the
efficiency and reliability of cloud services and applications.

Datacenters

Server 1 Server 2

Virtualized machines Virtualized machines

1GbpS V_NIC i) A [NIC 1] N lepS
Router 1 . Iperf3 traffic Router 2
: direction :
Biam 010 i, AEme SIS o ST B B TSRS :
\

100Mbps (Bandwidth of the bottleneck)

Figure 4.1: Network Topology in the Data Center Testbed.

38

39

Experimental Setup Overview. The experimental scenario comprises two primary
servers, referred to as Server 1 and Server 2. Each server is connected to its respec-
tive router (Router 1 connects Server 1, whereas Router 2 connects Server 2). A direct
connection was established between the two routers to facilitate inter-server communi-
cation. This setup forms a controlled network environment that allows for the precise
measurement and analysis of TCP traffic between VMs hosted on the servers.

To closely emulate real-world data center conditions, each server hosts multiple
KVM-type virtual machines. The KVM technology is chosen for its widespread adop-
tion in cloud computing infrastructures and its capability to provide a scalable and se-
cure virtualization solution. Each VM on Server 1 is configured to generate network
traffic towards a corresponding VM on Server 2, creating a symmetrical flow of data
that replicates the server-to-server communication patterns observed in data centers.
The purpose of this setup is to provide a realistic and controlled environment for testing
TCP congestion control algorithms.

Traffic Generation. The VMs on each server are configured to replicate common
scenarios found in data center environments. These scenarios have been selected to
reflect various operating conditions, such as varying processing loads, network latency,
and data transfer rates. This emulation provides a comprehensive understanding of the
performance of TCP congestion control algorithms under different, yet still realistic,
data center conditions.

Evaluation. The evaluation of TCP congestion control algorithms is based on pre-
defined metrics. These metrics reflect critical network performance aspects, including
throughput, round-trip time, and packet retransmission. The algorithms are tested under
various scenarios, providing insights into their effectiveness and adaptability to varying
network conditions.

Physical Testbed. Unlike many studies that rely on simulated networks, this re-
search distinguishes itself by utilizing physical testbed hardware to host virtual ma-
chines. This method ensures an enhanced level of realism in experimental outcomes by
replicating real-world network environments, complete with network delays, bandwidth
constraints, and hardware-specific behaviors that simulations often fail to capture accu-
rately. Additionally, this approach allows for direct observation of network behaviors,
providing deeper insights into how these factors impact performance dynamics.

Results Presentation. The results obtained from this experimental setup will be
presented and analyzed systematically. This is accompanied with a detailed discus-
sion of the performance of different TCP congestion control algorithms under various
emulated scenarios, providing valuable insights into their suitability for deployment in
actual data center environments.

4.1. EXPERIMENT SETUP 40

4.1 Experiment Setup

This section investigates the specifics of our experimental infrastructure, which plays a
key role in analyzing TCP congestion control algorithms in virtualized environments.
The main objective of this study is to emulate a network scenario that reflects com-
munication between servers in a data center, thus offering insights into the internal dy-
namics of data center networks (DCN). To this end, we meticulously designed a test
environment to simulate the complexities and operational conditions of DCNS, focusing
exclusively on the performance of TCP congestion control algorithms in a controlled
environment that reflects real-world data center operations.

Network Infrastructure and Topology. Recall that Server 1 and Server 2 connect
to two routers, Router 1 and Router 2 respectively, which in turn are connected through
a dedicated link. Each server is equipped with high-performance hardware, featuring a
64-bit six-core Intel Xeon 3204 CPU, 64 Gbytes of RAM, and a 10 Gigabits per second
(Gbps) network interface card (NIC). These servers are identically configured to en-
sure consistency in the testing environment, with their detailed specifications provided
in Table 4.1. This configuration ensures ample computing and networking resources to
support the demands of multiple kernel-based virtual machines (KVMs) running simul-
taneously on each server.

Table 4.1: Server’s Hardware Specification

SO Ubuntu 20.04.6 LTS
Kernel 5.4.0-169-generic
Processor Intel(R) Xeon(R) Bronze 3204
RAM 64 Gbytes
Disk ATA-DISK DELLBOSS VD SSD 240Gb
NIC Intel x540-AT2 10Gbps

Table 4.2: Routers’s Nic Specification

NIC1 1210 1Gbps Network Connection
NIC2 82579LM 1Gbps Network Connection (Lewisville)

The network topology, illustrated in Figure 4.1, is deliberately constructed to re-
flect the server-to-server connectivity prevalent in data centers. This design choice
is informed by previous research in literature [DSFJ15], [dOFFdC*22], [dFdC*23],
[TKU19], which confirms the relevance of our topology. Routers are configured with
dual NICs: NIC 1 connects to the respective server and NIC 2 bridges the connection to
the opposite router. The NIC’s details can be found in Table 4.2. This configuration not

4.2. METRICS AND TOOLS FOR EXPERIMENT EVALUATION 41

only replicates the interconnected nature of data center networks but also ensures that
experimental conditions represent typical DCN operating environment.

Configuration and Limitations. To standardize the experimental conditions and
eliminate external variables, all nodes and VMs in our setup operate using Linux as their
operating system with kernel version 5.4.0-169-generic. A key parameter, the Transmit
Queue Length (txqueuelen), is set to 1000.

A critical aspect of our experimental design is the emphasis on the network bottle-
neck situated between Router 1 and Router 2 as in a Dumbbell topology. The bandwidth
of this bottleneck link is artificially limited to 100 Mbps using ethfool, a decision that
serves two purposes: creates strict conditions under which congestion control algo-
rithms operate and ensures that any observed congestion is the result of network limi-
tations and not VM processing capabilities. This approach allows for a focused exami-
nation of TCP congestion control algorithms, evaluating their performance in scenarios
where the network, not the hardware, is the limiting factor.

A critical aspect of our methodology is the physical realization of the testbed. Un-
like most literature studies that rely on emulations or simulations through tools like OM-
NeT++ and NS-3, our investigation employs a physical infrastructure. This approach
is instrumental for several reasons. First, it allows for exploring the TCP congestion
control algorithms under real-world conditions that are often difficult to replicate ac-
curately in simulated environments. Physical testbeds offer a better level of fidelity in
terms of hardware interactions, network delays, and traffic dynamics that simulations
can only approximate. Secondly, by engaging with actual hardware and network con-
figurations, our study addresses the complexities and unpredictable events inherent in
real data center operations, providing insights that can both be directly applicable and
highly relevant to the field.

4.2 Metrics and Tools for Experiment Evaluation

To rigorously evaluate the performance of TCP congestion control algorithms within
virtualized environments, our study employs a set of carefully selected metrics and tools
that can be found in Table 4.3. This selection is guided by their relevance to our re-
search objectives and their prevalence in related literature. The algorithms listed under
scrutiny— Vegas, CUBIC, BBRv2, and DCTCP—represent a diverse range of strategies
for congestion control, as detailed in Section 3.4. These techniques were chosen for
their distinct approaches, widespread use, and availability in the latest Linux kernel,
providing a comprehensive perspective on congestion management techniques.

4.2. METRICS AND TOOLS FOR EXPERIMENT EVALUATION 42

Table 4.3: Network Protocols and Tools

Choice Reason
Protocol TCP Wide usage, built-in
congestion control mech-
anisms, and relevance to
real-world applications.
Algorithms VEGAS, CUBIC, BBR2, These algorithms use

DCTCP

different approaches, are
widely used, and are im-
plemented and available
for use in the latest Linux
kernel.

Evaluation Metrics

Sending Rate, Through-
put, Fairness, Round-Trip
Time, Retransmission,
Congestion Window

Metrics used in literature
works

Tools

IPERF3, TSHARK, ETH-
TOOL, TC, NETEM

Tools used in literature
works

4.2.1 Evaluation Metrics

The following metrics, commonly used in literature, serve as the foundation for our
experimental analysis:

* Sending Rate: This metric measures the amount of data sent by a source per unit
of time, typically in bits per second (bps). This metric refers to the data being sent
out by the source over the network, regardless of whether it has been received
or delivered at the final destination. It is crucial to evaluate how efficiently a
congestion control algorithm can utilize available network bandwidth.

* Throughput: Throughput refers to the rate at which packets are actually suc-
cessfully delivered over a network channel. It is a direct indicator of network
efficiency and the effectiveness of a congestion control algorithm in managing
congestion to maximize data transmission rates.

* Throughput Fairness: Fairness assesses how evenly network resources are dis-
tributed among multiple flows. For the evaluated algorithms, it is important to
ensure that no single flow disproportionately dominates the available bandwidth,
allowing for equitable resource allocation among competing flows. In this con-
text, the Jain’s Fairness Index [Jai84] was used to quantitatively evaluate the fair-

4.2. METRICS AND TOOLS FOR EXPERIMENT EVALUATION 43

ness of resource distribution. This index is given by the formula:

J() (?=1xi)2
X1, X250y Xp) = —— o ——

n-Yii X
where x1,x3,...,x, are the throughput allocations to each flow, and = is the total
number of flows. The index provides a numerical measure ranging from 0 to
1, where a value closer to 1 indicates a more equitable allocation of throughput
among the flows, ensuring that no single flow is unfairly favored or disadvantaged.

* Round-Trip Time (RTT): The time it takes for a packet to travel from the source
to the destination and for the acknowledgment (ACK) of that packet to return to
the source. RTT is a key indicator of network congestion; longer RTTs suggest
increased congestion levels.

* Retransmission: Counts the number of packets that must be resent due to loss,
excessive delay or network corruption. Frequent packet retransmissions can sig-
nificantly degrade network performance, and packet drops, highlighting areas for
congestion control improvement.

* Congestion Window (Cwnd): The Congestion Window is a TCP state variable
that limits the amount of data a source can send into the network before receiving
an acknowledgment. The size of the Cwnd adjusts dynamically based on net-
work conditions: it increases during periods of low congestion to allow more data
to flow. It decreases when congestion is detected, thereby controlling the trans-
mission rate and helping to prevent network congestion. Monitoring the Cwnd is
crucial because it directly influences the sender’s transmission rate and the overall
throughput of the network.

These metrics are foundational for network performance evaluation, offering in-
sights into the behavior and efficiency of congestion control mechanisms under various
conditions.

4.2.2 Tools for Measurement

To gather accurate data on these metrics, we utilize a suite of established tools recog-
nized for their reliability and precision among the network research community.

* [PERF3: A versatile tool for measuring maximum network bandwidth and per-
formance. In our experiments, [IPERF3 facilitates the generation of traffic patterns
necessary to assess the throughput and sending rate of different congestion control
algorithms.

4.3. EXPERIMENTAL DESIGN 44

* TSHARK: The command-line version of Wireshark, TSHARK, allows for the cap-
ture and analysis of network packets. It’s instrumental in calculating RTT and
retransmission rates by examining traffic traces before and after a bottleneck.

* ETHTOOL: Used for querying and controlling network driver and hardware set-
tings. In our setup, ETHTOOL enables bandwidth limitation at the bottleneck
link, a critical aspect of our experimental design.

* Traffic Control (TC): A Linux utility for managing network bandwidth allocation.
TC is employed to simulate network conditions such as latency and loss, essential
for testing the resilience and adaptability of congestion control algorithms.

* Network Emulator (NETEM): An enhancement to TC, NETEM provides advanced
options for emulating network properties. It’s used with TC to create a more com-
prehensive range of test scenarios.

Measurements are carried out using TSHARK, IPERF3, and socket statistics to cap-
ture a detailed view of network performance across different congestion control sce-
narios. Traffic traces are collected before and after the network bottleneck to ensure
a thorough analysis. The collected data is averaged per flow, using configurable time
intervals to provide a balanced and accurate representation of each algorithm’s perfor-
mance.

4.3 Experimental Design

The experimental design of this study is structured to systematically evaluate the perfor-
mance of TCP congestion control algorithms within virtualized environments. The ex-
perimental scenarios are crafted to explore the characteristics of these algorithms under
various conditions, starting from a controlled environment to more complex scenarios
simulating real-world data center conditions.

As illustrated in Figure 4.2, the experimental scenarios are organized into three main
categories: Baseline scenario, Basic Network Failures, and Multiple Algorithms. Each
category is designed to progressively increase the complexity of the network conditions
under which the TCP congestion control algorithms are evaluated. The Baseline sce-
nario serves as the foundation, providing a controlled environment. In contrast, the
Basic Network Failures and Multiple Algorithms scenarios introduce varying levels of
complexity, including delayed flows and packet loss, as well as competition between
different algorithms.

This section introduces and explains the experimental scenarios, focusing initially
on the baseline scenario.

4.3. EXPERIMENTAL DESIGN 45

Dual-Algorithm Competition - 2 VMs ‘

|

N - -
— Multiple Algorithms |

/

Asymmetric Competition - 4 VMs ‘

Two-Level Delayed Flows ‘

N

Four-Level Delayed Flows ‘

Basic Network Failures |

Packet Loss on Single VM ‘

(]

Packet Loss on Dual-VM ‘

Figure 4.2: Diagram of the experimental scenarios explored in this study.

4.3.1 Baseline scenario

The primary objective of the baseline scenario is to assess the intrinsic behavior of each
selected TCP congestion control algorithm—Vegas, CUBIC, BBRv2, and DCTCP—when
operating independently in an environment devoid of resource competition. Each algo-
rithm is tested separately, without competing with the others, to ensure their default
characteristics are observed in isolation. This approach provides a clear benchmark for
subsequent comparative analysis, where the algorithms’ performances will be evaluated
against each other.
Environment Setup.

* VMs. To assess scalability and performance under varying loads, the experiments
will involve a different number of VMs on both the sender and receiver sides. The
adopted configurations will include 1, 2, 4, 8, 16, and 32 VMs, allowing for a
comprehensive evaluation across a spectrum of network densities.

* Experiment Duration. Each test within this scenario is designed to last 60 sec-
onds. This duration is selected to ensure adequate time for the algorithms to
stabilize and adapt to the network conditions and reach a steady state, facilitating
reliable measurement of performance metrics.

4.3. EXPERIMENTAL DESIGN 46

* Traffic Generation Command. The iperf3 tool is used to generate network
traffic that attempts to use all available bandwidth, with the transmission rate
adapting to network conditions. The command usedis iperf3 -c $VM_Addr
-t 60 -1 0.1 —-f m, where:

— —c specifies the IP address of the receiver VM.
— —t 60 sets the duration of the test to 60 seconds.

— —1i 0.1 establishes a reporting interval of 0.1 seconds (or 100 ms), offering
granular insight into the traffic behavior over time.

— —f mindicates that the output format of the report should be in Megabits per
second (Mbps) providing a standardized measure for analyzing throughput.

This baseline scenario is crucial for establishing a clear understanding of how each
congestion control algorithm operates under ideal conditions, devoid of any external
pressures such as network congestion or competition for bandwidth. It serves as a ref-
erence point for analyzing the impact of more complex network scenarios on these al-
gorithms’ performance, thereby facilitating a deeper understanding of their capabilities
and limitations within virtualized environments typical of data center networks.

4.3.2 Basic Network Failures Scenario

The resilience and adaptability of TCP congestion control algorithms are critical for
maintaining network performance under adverse conditions. Our second experimental
scenario focuses on Basic Network Failures to evaluate these features. This scenario
is meticulously designed to simulate real-world network challenges, including delays
and packet losses, which are common in data centers and can significantly impact the
effectiveness of congestion control mechanisms.

The main objective of this scenario is to investigate how Vegas, CUBIC, BBRv2, and
DCTCP respond to controlled network failures, specifically delays and packet losses,
common in real-world network environments. This evaluation helps understand each
algorithm’s resilience and efficiency under stress conditions.

This scenario is subdivided into four tests, each exploring different aspects of net-
work instability.

1. Two-Level Delayed Flow Analysis. The objective is to compare the perfor-
mance of congestion control algorithms under normal conditions flow (0 Mil-
liseconds (ms) delay) against a flow delayed by 200 ms applied to 50% of VMs.
This simulates the impact of consistent network latency on algorithm behavior

* VMs: 2, 4 (equal number on sender and receiver sides).

4.3. EXPERIMENTAL DESIGN 47

* Experiment Duration: 60 seconds.

* Traffic Generation Command: iperf3 -c $VM_Addr -t 60 -1
0.1 —fm

* Delay Implementation Command: tc gdisc add dev $interface
root netem delay 200ms, applied to introduce a fixed 200ms delay
on the designated interface, emulating network latency.

2. Four-Level Delayed Flow Analysis. The objective of this setup is to assess how
varying levels of delay (ranging from 100ms to 400ms) affect the performance of
each algorithm. This scenario provides insights into the algorithms’ adaptability
to fluctuating latency.

* VMs: 4 (equal number on sender and receiver sides).
* Experiment Duration: 60 seconds.

* Traffic Generation Command: Similar to the baseline scenario (Subsec-
tion 4.3.1) using iperf3 to generate traffic.

* Four-Level Delayed Flow Analysis Command: tc gdisc add dev
Sinterface root netem delay S$delay, with $delay setto 100ms,
200ms, 300ms, and 400ms for different VMs, simulating variable network
latency.

3. Packet Loss Impact on Single VM. The objective is to evaluate the algorithms’
resilience to packet loss, focusing on understanding how a small percentage of
packet loss (1% or 5%) impacts the network performance.

VMs: 1 (same number on sender and receiver sides).

* Experiment Duration: 60 seconds.

Traffic Generation Command: Similar to the baseline scenario (Subsec-
tion 4.3.1) using iperf3 to generate traffic.

Packet Loss Command: tc gdisc add dev S$interface root
netem loss $DROP_RATE, where SDROP_RATE specifies the packet
loss rate, testing the algorithms’ performance under minor loss conditions.

4. Packet Loss Impact in Dual-VM Setup. The objective is to explore the be-
havior of congestion control algorithms when one VM experiences packet loss
while another operates under normal conditions. This scenario helps identify how
algorithms manage unequal network quality across flows.

* VMs: 2 (one experiencing packet loss wheres the other VM does not).

4.3. EXPERIMENTAL DESIGN 48

* Experiment Duration: 60 seconds.

¢ Traffic Generation Command: Similar to the baseline scenario (Subsec-
tion 4.3.1) using iperf3 to generate traffic.

* Selective Packet Loss Command: Similar to scenario Single VM, but
applied selectively to one VM to simulate differential network conditions
across simultaneous flows.

Command Explanations

* tc gqdisc add dev $interface root netem delay $DELAY: This
command configures network emulation on the specified network interface $inter-
face. By adding a queuing discipline (qdisc) with the netem (network emulator)
module, it introduces a fixed or Four-Level Delayed Flow Analysis ($delay) to
outgoing packets, enabling the simulation of network latency. We configured this
on the routers to simulate specific network conditions.

* tc gqdisc add dev $interface root netem loss $DROP_RATE:
Similar to the delay command, this one uses the netem module to emulate packet
loss on the network interface. The $DROP_RATE parameter specifies the per-
centage of packets to be randomly dropped, allowing for the simulation of net-
work unreliability. We configured this on the routers to simulate specific network
conditions.

The above commands, in conjunction with the traffic generated by iperf3, create a
controlled environment to meticulously assess the resilience and efficiency of conges-
tion control algorithms under various conditions of network impairments. This scenario
aims to mirror the complexities of real-world networks, providing valuable insights into
the algorithms’ performance in practical deployments.

4.3.3 Multiple Algorithms Scenario

The focal point of this scenario is to investigate the interaction and performance dynam-
ics when different TCP congestion control algorithms are deployed concurrently within
the same network environment. This examination is crucial for understanding how these
algorithms compete for network resources and manage fairness, efficiency, and stability
in scenarios where multiple types of traffic coexist. It aims to reflect the complexity
of real-world data center operations, where diverse applications and services may use
different congestion control mechanisms.

The scenario is structured to compare the performance implications of running mul-
tiple TCP congestion control algorithms simultaneously. It does so through two specific
experimental configurations:

4.4. METHODOLOGY JUSTIFICATION 49

1. Dual-Algorithm Competition (2 VMs): This configuration involves two virtual
machines, each employing a different congestion control algorithm. This setup
allows for directly comparing two algorithms under identical network conditions,
focusing on their ability to manage bandwidth and maintain network performance
when directly competing for resources.

2. Asymmetric Competition (4 VMSs): This configuration expands the competitive
environment by having one VM operating with a congestion control algorithm and
three VMs using another congestion control algorithm. This setup tests the algo-
rithms’ performance and fairness in an uneven competitive scenario, highlighting
their scalability and efficiency when the distribution of network resources is un-
equal among participants.

Environment Setup.

* VMs: The experiments are conducted with configurations of 2 and 4 VMs, cor-
responding to the scenarios described above. This approach allows for a scalable
assessment, from minimal to more competitive network conditions.

* Experiment Time: 60 seconds.

* Traffic Generation Command: Similar to the baseline scenario (Subsection
4.3.1) using iperf3 to generate traffic.

By analyzing how different congestion control algorithms interact within the same
network, this scenario sheds light on their real-world applicability in data centers where
diverse traffic patterns coexist. It evaluates not just the raw performance in terms of
throughput and latency but also the algorithms’ ability to coexist harmoniously, main-
taining fairness and efficiency without compromising the overall network stability. This
analysis is pivotal for network administrators and system designers in selecting and con-
figuring TCP congestion control algorithms that best suit their operational environments
and application requirements.

4.4 Methodology Justification

This section outlines the rationale behind the developed experimental methodology,
specifically the decision to run each experiment for 60 seconds with measurements taken
every 0.1 seconds without conducting repeated runs.

Experimental Duration.

The duration of 60 seconds for each experiment is chosen based on the need to
capture the full spectrum of the TCP congestion control algorithms’ behavior within a

4.4. METHODOLOGY JUSTIFICATION 50

manageable time frame. This period allows the algorithms—Vegas, CUBIC, BBRv2,
and DCTCP to exhibit their reactions to network conditions, including the initial slow
start, congestion avoidance, and any necessary fast retransmit or fast recovery phases.
The chosen duration strikes an fair balance between thoroughness and efficiency, ensur-
ing that the data collected is comprehensive and practical for analysis.

Experimental Duration = 60 seconds 4.1)

Measurement Frequency. Measurements are taken every 0.1 seconds to obtain a
detailed and high-resolution dataset, crucial for analyzing TCP congestion control al-
gorithms’ transient and dynamic responses to rapidly changing network conditions. At
a link speed of 100 Mbps and a standard Maximum Transmission Unit (MTU) of 1500
bytes, each 0.1-second measurement period is expected to capture data from approxi-
mately 800 packets if the algorithm achieves full link utilization. This high frequency
of measurement and the corresponding data volume allow for capturing the nuanced
performance of the algorithms, providing insights into their efficiency, stability, and
fairness under various scenarios.

Measurement Frequency = 0.1 seconds 4.2)

Lack of Repetition.

The methodology of this dissertation takes advantage of the predictability and uni-
form conditions of the experiment environment. Designing an experimental setup that
reduces external variability to a minimum ensures the reliability of each singular ex-
ecution. Given these conditions, further iterations will likely provide redundant data,
thereby affirming the sufficiency of the initial experiments for drawing reliable conclu-
sions. This strategy enhances resource and time efficiency, facilitating a wider explo-
ration of scenarios within the project’s constraints.

The experimental approach, characterized by a 60-second duration, high-resolution
measurements, and a single iteration per scenario, is tailored to effectively document the
dynamics of TCP congestion control algorithms in virtualized settings. This method-
ology balances the need for detailed, practical insights with the practical limitations of
time and resource availability, ensuring the production of meaningful, applicable re-
sults. The framework of this study is consistent with precedents set by earlier research,
such as that by Turkovic et al. [TKU19], Lu and Zhu [LZ15], and Abdelmoniem and
Bensaou [AB21], which also adopted a similar approach to experimental design.

CHAPTER 5

Results

This chapter comprehensively analyzes the data collected from our experimental in-
vestigation into the performance of various TCP congestion control algorithms within
virtualized environments, specifically under the conditions described in the experimen-
tal design scenarios. It seeks to identify, examine, and understand the impact of these
algorithms on network behavior, their resource utilization efficiency, resilience in the
face of network impairments, and their ability to coexist and maintain fairness when
deployed concurrently. We meticulously dissect the outcomes of each experimental
scenario, starting from the baseline evaluations in controlled environments to the exam-
ination of algorithmic behavior under network failures and culminating in the analysis
of multiple algorithms operating simultaneously within the same network. By system-
atically unpacking the results, we intend to offer clear insights into the strengths and
weaknesses of each congestion control algorithm.

The analysis is based on the evaluation metrics previously outlined, namely, sending
rate, throughput, fairness, round-trip time, and retransmission rate. Each metric offers
a unique view through which the performance and behavior of the congestion control
algorithms can be assessed, providing an understanding of their operational character-
istics. By detailing the outcomes of our experimental study, this chapter contributes
valuable empirical evidence to the ongoing discourse on optimizing TCP congestion
control algorithms for virtualized environments, particularly within the context of data
center networks. The insights from this analysis were designed to inform academic re-
search and practical applications, guiding the development of more efficient network
traffic management strategies.

Each scenario analyzed in this chapter is accompanied by a table summarizing the
average values for the key metrics over the entire experiment duration, which lasted
60 seconds. These averages provide a broad overview of the algorithms’ performance
across different conditions. While these average values offer a snapshot of the overall
behavior, the variations and trends within these metrics over time are captured in the
graphs presented throughout this section, offering more profound insights into how the
algorithms adjust and perform dynamically during the experiments.

In calculating these averages, the entire duration of the experiment, including the ini-
tial transient or warm-up phase, was considered. This approach was chosen to maintain
consistency across all experimental scenarios, ensuring that each algorithm’s perfor-

51

5.1. BASELINE EVALUATION 52

mance could be directly compared under uniform conditions. By including the transient
phase, the results reflect the complete lifecycle of the connection, capturing both the
initial adjustment period and the stable-state performance of each algorithm.

Moreover, the transient phase was relatively short compared to the overall exper-
iment time. This ensures that the averages still accurately represent the algorithms’
performance over the total duration of the test without significantly skewing the results.
Including this period provides a more comprehensive view of each algorithm’s behav-
ior, particularly in scenarios where the initial setup and adjustment periods are critical
to understanding the algorithm’s real-world applicability. This is especially relevant for
short-lived connections, where the transient phase constitutes a significant portion of
the connection’s lifetime and thus has a more pronounced impact on the overall perfor-
mance metrics.

5.1 Baseline Evaluation

Table 5.1: Comparative Analysis of TCP Congestion Algorithms in “Baseline” Scenario

Number Congestion Average Cwnd Total Average RTT Average Throughput Total Data Sent Average Sending Rate Average Fairness
of VMs Algorithm (KBytes) Retransmissions (ms) per Flow (MB/s) (MB) per flow (MBytes/sec) Index
BBR2 178.11 0 12.312 11.103 677.265 11.07
L CUBIC 1687.07 0 136.88 11.383 694.342 11.28
DCTCP 3297.38 0 140.545 11.305 689.601 11.26
VEGAS 9.57 0 0.722 10.852 661.96 10.67 -
BBR2 169.1 0 24.975 5.706 696.127 57 0.965769
) CUBIC 1582.51 0 256.88 5721 694.342 57 0.943689
DCTCP 3254.04 0 261.545 5.715 689.601 57 0.978461
VEGAS 10.07 0 5.722 5.767 696.127 5.7 0.994295
BBR2 192.21 0 55.304 2.94 720.381 2.98 0.902139
4 CUBIC 1140.15 567 375.519 2.953 735.338 2.96 0.886089
DCTCP 1218.66 539 371.071 2.945 739.098 2.98 0.879746
VEGAS 19.11 0 6.021 2.955 721.139 2.9 0.900219
BBR2 187.12 739 103.613 1.569 771.741 1.59 0.826530
8 CUBIC 600 831 387.702 1.541 775.101 1.57 0.752891
DCTCP 795.57 710 402.043 1.554 784.982 1.6 0.591061
VEGAS 26.57 0 16913 1.556 759.553 1.53 0.806581
BBR2 127.55 4379 126.18 0.867 862.8 0.9 0.817516
16 CUBIC 344.29 1159 409.536 0.849 866.67 0.89 0.642008
DCTCP 336.72 2750 411.519 0.769 782.835 0.8 0.578799
VEGAS 323 0 41.677 0.784 764.829 0.77 0.647575
BBR2 101.59 15088 21147 0.45 902.42 0.48 0.763927
3 CUBIC 208.12 2207 439.07 0.48 992.54 0.51 0.583744
N DCTCP 211.06 3686 416.31 0.47 961.52 0.50 0.469320
VEGAS 49.02 0 113.31 047 945.14 0.48 0.612059

This section highlights the main results of the baseline experiments that were con-
ducted. In this scenario, each algorithm was tested separately, without competing with
the others, to ensure that their default characteristics were observed in isolation. The
following discussion summarizes the results for several essential metrics: sending rate,
throughput, round trip time (RTT), fairness indices for throughput, and congestion win-
dow (CWND). The summary of results for this scenario is found in Table 5.1.

5.1. BASELINE EVALUATION 53

Number of VMs: 1 Number of VMs: 2 Number of VMs: 4
Cwnd Cwnd

Cwnd
3208 / 325¢ 121
) A”s L |, 1l |
RTT o Phioughput RTT b Fhioughput RTT
(Per Fiow) (Per Flow)
— BBR2 — BBR2
— cuBiC — cuBiC
= DCTCP = DCTCP
— VEGAS — VEGAS

Retransmissions Retransmissions

Number of VMs: 8 Number of VMs: 16
Cwnd Cwnd
7 345

95\
a0z, 1s
RTT foughput
(Per Fiow)
— BeR2
= CUBIC
— ocrep)
—— VEGAS /

567

foughput
(Per Flow)

foughput
(Per Fiow)

379
Retransmissions Retransmissions

Figure 5.1: Comparison of key metrics for each experiment with a different number of
VMs based on the values in Table 5.1.

1. Sending Rate Observations

* The sending rates for all algorithms exhibited comparable magnitudes, which
indicates a general consistency in data transmission capabilities across the
algorithms under test.

* Vegas showed slightly lower sending rates, which aligns with its conserva-
tive design. However, this lower rate was not significantly smaller than its
strong performance in other metrics.

* CUBIC demonstrated higher sending rates in the configurations with 1 and
32 VM.

* BBR2 and DCTCP displays sending rate values comparable to CUBIC.
2. Throughput and Fairness

* With two flows, all algorithms achieved optimal fairness starting from 10
seconds into the experiments, with Vegas reaching this level almost imme-

5.1. BASELINE EVALUATION

Througput
BBR2 flows

Algorithm

=
o

e}

IS

Througput (MBytes)
N ()}

0 10 20 30 40 50 60
t (sec)

Througput
DCTCP flows

=
N

Algorithm
VM1
—_— M2

Througput (MBytes)
N £~y o © 5

o
o

10 20 30 40 50 60
t (sec)

(A) Throughput for algorithms in the Baseline scenario with 2 VMs

Jain's Fairness Index
BBR2 with 2 flows

—— BBR2 |

:

Jain's Fairness Index
o
(6]

54
Througput
CUBIC flows
Algorithm
VM1
— M2
0 10 20 30 40 50 60
t (sec)
Througput
VEGAS flows
Algorithm
vM1
— /M2
0 10 20 30 40 50 60
t (sec)
Jain's Fairness Index
CUBIC with 2 flows
-
— CUBIC

yd

0.0
0 10 20 30 40 50 60 O 10 20 30 40 50 60
Throughput (MB) Throughput (MB)
Ej Jain's Fairness Index Jain's Fairness Index
© DCTCP with 2 flows VEGAS with 2 flows
= 1.0 N 7 N
0 / — DCTCP —— VEGAS
[0)
£ 05
‘©
[
v 0.0
-% 0 10 20 30 40 50 60 O 10 20 30 40 50 60

Throughput (MB)

Throughput (MB)

(B) Fairness for algorithms in the Baseline scenario with 2 VMs

Figure 5.2: Throughput (A) and Fairness (B) for algorithms in the Baseline scenario

with 2 VMs.

5.1. BASELINE EVALUATION 55

Througput Througput
BBR2 flows CUBIC flows
12 Algorithm Algorithm
— VM1 VM1
— VM2 — VM2
10 — VM3 VM3

—_ VM4 —_ VM4

o]

Througput (MBytes)
(=3}

0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Througput Througput
DCTCP flows VEGAS flows
12 Algorithm Algorithm
VM1 WMl
10 — VM2 —_ M2
VM3 — VM3
M4 —_— VM4

Througput (MBytes)
. (=] [e+]

N

0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
(C) Throughput for algorithms in the Baseline scenario with 4 VMs
5 Jain's Fairness Index Jain's Fairness Index
o BBR2 with 4 flows CUBIC with 4 flows
£ 1.0
" W
%))
o)
£ 05
o —— BBR2 — CUBIC
wn 0.0
-% 0 10 20 30 40 50 60 O 10 20 30 40 50 60
- Throughput (MB) Throughput (MB)
é Jain's Fairness Index Jain's Fairness Index
o DCTCP with 4 flows VEGAS with 4 flows
c
— 1.0 /\Ww‘Vf"\W\
7]
7]
)
£ 05
&= — DCTCP —— VEGAS
v 0.0
-% 0 10 20 30 40 50 60 O 10 20 30 40 50 60
- Throughput (MB) Throughput (MB)

(D) Fairness for algorithms in the Baseline scenario with 4 VMs

Figure 5.3: Throughput (C) and Fairness (D) for algorithms in the Baseline scenario
with 4 VMs.

5.1. BASELINE EVALUATION 56

é Jain's Fairness Index Jain's Fairness Index
o BBR2 with 8 flows CUBIC with 8 flows
£ 10
)]
0n
o) W’—w\
E 0.5
S —— BBR2 —— CUBIC
v 0.0
-% 0 10 20 30 40 50 60 O 10 20 30 40 50 60
- Throughput (MB) Throughput (MB)
E Jain's Fairness Index Jain's Fairness Index
k] DCTCP with 8 flows VEGAS with 8 flows
£ 10
]
0
& W\/\/\/\/\/’\/———A\
E 0.5
S —— DCTCP —— VEGAS
v 0.0
-% 0 10 20 30 40 50 60 O 10 20 30 40 50 60
- Throughput (MB) Throughput (MB)
(A) 8 Vms
fv‘ Jain's Fairness Index Jain's Fairness Index
T BBR2 with 16 flows CUBIC with 16 flows
£ 10
)]
%]
)
g 0.5
o —— BBR2 —— CUBIC
w 0.0
-% 0 10 20 30 40 50 60 O 10 20 30 40 50 60
- Throughput (MB) Throughput (MB)
fﬁ Jain's Fairness Index Jain's Fairness Index
'g DCTCP with 16 flows VEGAS with 16 flows
= 1.0
a —— DCTCP
O \/\A—/\-__,_—'\/\
g 0.5
o —— VEGAS
w 0.0
% 0 10 20 30 40 50 60 O 10 20 30 40 50 60
- Throughput (MB) Throughput (MB)
(B) 16 Vms
aj Jain's Fairness Index Jain's Fairness Index
§e] BBR2 with 32 flows CUBIC with 32 flows
£ 10
@ —— CUBIC
[0}
£05
i —— BBR2
» 0.0
-% 0 10 20 30 40 50 60 0 10 20 30 40 50 60
- Throughput (MB) Throughput (MB)
aj Jain's Fairness Index Jain's Fairness Index
'8 DCTCP with 32 flows VEGAS with 32 flows
= 1.
A 0 —— DCTCP
[0}
S —— VEGAS
v 0.0
-% 0 10 20 30 40 50 60 O 10 20 30 40 50 60
- Throughput (MB) Throughput (MB)
(C) 32 Vs

Figure 5.4: Fairness analysis for different Number of VMs: (A) 8, (B) 16, and (C) 32.

5.1. BASELINE EVALUATION 57

diately, which may reflect its efficiency in establishing fair bandwidth dis-
tribution early on in low-competition scenarios. This can be seen in Figures
5.2 and 5.3.

¢ As the number of VMs increased, BBR2 exhibited the best fairness index,
particularly when using 8 VMs onwards, suggesting its proficiency in main-
taining an equitable bandwidth distribution in more competitive environ-
ments compared to others. VEGAS followed closely behind BBR2 in terms
of fairness, with CUBIC coming next as shown in Figure 5.4.

3. Round-Trip Time (RTT)

* Inexperiments with one and two VMs, CUBIC and DCTCP recorded RTTs
approximately 10x higher than BBR2 and about 150x higher than VEGAS,
while RTT remained close to Ims. This vast difference points to the effi-
ciency of VEGAS in maintaining low latency and the propensity of CUBIC
and DCTCEP to tolerate higher delays even under low competition.

* Vegas maintained the lowest latency across all scenarios, with a maximum
average RTT observed being 113 ms for 32 VMs, contrasting this with CU-
BIC’s highest recorded RTT of 439 ms (for 32 VMs).

* BBR2 exhibited an interesting pattern in the configurations of 4,8,16 and
32 VM, initially registering high RTT values that stabilized between 20
and 30 seconds into the experiments, reflecting an adjustment period before
achieving low latency comparable to Vegas.

For more information on latency (RTT results), see Figure 5.6.

4. Congestion Window (CWND)

* In scenarios with minimal competition, DCTCP and CUBIC used high
CWND values, corresponding to their aggressive nature in claiming avail-
able bandwidth. See Figure 5.5.

* BBR2 and Vegas had considerably more conservative CWND values, align-
ing with their design goals and favoring a less aggressive approach to band-
width usage. See Figure 5.5.

* With increased competition, there was a tendency for CWND values to be-
come more varied, which indicates adaptive responses to the changing avail-
ability of network resources.

5.1. BASELINE EVALUATION 58

5. Retransmissions

* Retransmissions were observed starting from the experiment with four flows,
with approximately 500 occurrences for both DCTCP and CUBIC. When
increasing the number of flows up to 32, BBR2 presents the highest number
of absolute retransmissions; however, in Figure 5.7, we see that this higher
number of retransmitted packets occurs primarily during the warm-up or
transient period at the beginning of the flow.

Additional Observations

Using the values from Table 5.1, we generated the radar charts illustrated in Fig-
ure 5.1 to offer additional relevant insights. The radar graphs highlight the consistent
performance of BBR2, which maintains a balanced profile across all metrics, except re-
transmissions, reflecting its robustness even with increasing competition. CUBIC and
DCTCP examination exhibits a propensity for higher CWND and Throughput values at
the expense of increased RTT and retransmissions, which becomes particularly higher
in scenarios with higher VMs. VEGAS, with its conservative stance, exhibits lower
transfer rates and CWND values but excels in achieving low RTT, demonstrating its
efficiency in avoiding congestion without aggressive bandwidth usage.

These visual findings not only corroborate the quantitative data presented in Table
5.1 but also bring to light the different behavior of each algorithm as the network density
increases.

Concluding Remarks

The baseline experiments provided a controlled platform to understand the inherent
behaviors of each TCP congestion control algorithm. It was evident that more conser-
vative algorithms like VEGAS and BBR2 are designed to maintain low latency and
fair bandwidth distribution, even as network demands scale. Conversely, CUBIC and
DCTCEP displayed a propensity for more aggressive bandwidth utilization, which may
benefit throughput in scenarios where high data transfer rates are prioritized. However,
they can harm fair bandwidth distribution and lead to high RTT values.

These observations lay the groundwork for further comparative analysis under more
complex network conditions, which could be seen in subsequent experiment scenarios.
The results from this baseline serve as a critical reference for understanding how each
algorithm might perform in isolation and competition within a data center environment.

Congestion Window Size (Cwnd) Congestion Window Size (Cwnd)

Congestion Window Size (Cwnd)

Congestion Window Size for 1 VMs Experiment

5.1. BASELINE EVALUATION

Algorithm
3000 / — BBR2
- CUBIC
— DCTCP
— VEGAS
2000
1000 i
—
0
0 10 20 30 40 50 60 0 10 20 30 40 50
t (sec) t (sec)

Congestion Window Size for 4 VMs Experiment

3000

2000

1000

Congestion Window Size for 16 VMs Experiment

3000

2000

1000

£

60

Algorithm
— BBR2
— CUuBIC
= DCTCP
— VEGAS
10 20 30 40 50 60 0 10 20 30 40 50
t (sec) t (sec)

Algorithm
— BBR2
— CUBIC
= DCICP
—— VEGAS

— ~L*,:L/ &m\ .

60

10

20 30 40 50 60 0 10 20 30 40
t (sec) t (sec)

Figure 5.5: Cwnd for algorithms in Baseline scenario.

50

60

59

Congestion Window Size for 2 VMs Experiment

Algorithm
—— BBR2
— CUBIC
—— DCTCP
—— VEGAS

Congestion Window Size for 8 VMs Experiment

Algorithm
— BBR2
—— CUBIC
— DCTCP
—— VEGAS

Congestion Window Size for 32 VMs Experiment

Algorithm
—— BBR2
— CUBIC
—— DCTCP
—— VEGAS

5.1. BASELINE EVALUATION

Round-Trip Time (RTT) for 1 VMs Experiment
8

Algorithm
0 —— BBR2
& — cuBIC
'g - DCTCP
204 — VEGAS
E
0.2
/
0.0
0 10 20 30 40 50 60
t (sec)
Round-Trip Time (RTT) for 4 VMs Experiment
8
Algorithm
—— BBR2
—— CuBIC
DCTCP

\ /\/\'\/'/\/\V/'ﬂ — Veoas

30 40 50 60
t (sec)

Round-Trip Time (RTT) for 16 VMs Experiment
8

Algorithm
—— BBR2
—— CUBIC
— DCTCP
—— VEGAS

0 10 20 30 40 50 60
t (sec)

Round-Trip Time (RTT) for 2 VMs Experiment

//

0 10

20

30
t (sec)

40

50

60

Round-Trip Time (RTT) for 8 VMs Experiment

0 10

20

30
t (sec)

40

50

60

Round-Trip Time (RTT) for 32 VMs Experiment

30
t (sec)

Figure 5.6: RTT for algorithms in Baseline scenario.

60

Algorithm
BBR2
CUBIC
DCTCP
VEGAS

Algorithm
BBR2
CuBIC
DCTCP
VEGAS

Algorithm
BBR2
CUBIC
DCTCP
VEGAS

Number of Retransmissions (Retr)

Number of Retransmissions (Retr)

5.1. BASELINE EVALUATION 61

Number of Retransmissions for 4 VMs Experiment Number of Retransmissions for 8 VMs Experiment

i Algorithm Algorithm
—— BBR2 —— BBR2
—— CUBIC —— CUBIC

300 — DCTCP — DCTCP
— VEGAS — VEGAS

200

100

0 VAN = ~ _Ada":—-
0 10 20 30 40 50 60 0 10 20 30 40 50 60

t (sec) t (sec)

Ng(gnber of Retransmissions for 16 VMs Experiment Number of Retransmissions for 32 VMs Experiment
4

Algorithm Algorithm

— BBR2 — BBR2
— CuBIC — CuBIC

300 — DCTCP — DCTCP
— VEGAS — VEGAS

200

N &lhm j\\‘/"‘\

0 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)

Figure 5.7: Retransmissions for algorithms in Baseline scenario.

5.2. BASIC NETWORK FAILURES SCENARIO: TWO-LEVEL

2
DELAYED FLOW ANALYSIS 6

5.2 Basic Network Failures Scenario: Two-Level Delayed Flow
Analysis

Server 1 Server 2

Virtualized machines Virtualized machines

...................

Router 1 Router 2

Figure 5.8: Network setup for the “Two-Level Delayed Flow Analysis” scenario.

This section presents the analysis of the “Two-Level Delayed Flow Analysis” ex-
periments. It examines the performance of the congestion control algorithms under
standard conditions flow (0 ms delay) in the same environment of another flow delayed
by 200 ms. The delay was applied to half of the virtual machines (VMs), simulating the
impact of the competition of a flow with greater delay versus a flow with less delay on
the algorithm’s behavior, mainly regarding fairness. The experiments were conducted
over 60 seconds with two and four flows. A summary of results for this scenario is
found in Table 5.2. Figure 5.8 represents the network setup for this scenario.

1. Sending Rate Observations

* With two flows across all algorithms, the one with no delay (Oms delay)
achieved a higher Sending Rate. For BBR2, the difference between the Oms
versus 200ms flows is smaller than for the other TCP flavors, confirming its
theoretical tendency of a potential to offer greater fairness. With four flows,
the behavior is similar, but the difference is smaller, probably due to greater
competition between the flows. See Table 5.2.

2. Throughput and Fairness

* A close look at Figure 5.9 shows that for all evaluated TCP algorithms, flows
with Oms have more access to bandwidth share than flows with a delay of

5

.2. BASIC NETWORK FAILURES SCENARIO: TWO-LEVEL

DELAYED FLOW ANALYSIS 63

Table 5.2: Comparative Analysis of TCP Congestion Algorithms in “Delayed with Two
Flows” Scenario

Number

VM Number

VM Delay Congestion Average Cwnd Total Average RTT Average Throughput Total Data Sent ~ Average Sending Rate Average

of VMs (ms) Algorithm (KBytes) Retransmissions (ms) per Flow (MB) (MB) per flow (MBytes/sec) Fairness Index
VM1 0 BBR? 11188.59 0 19.00 8.22 501.65 8.19 085
VM2 200 184122.55 0 220.00 331 208.40 3.36
VM1 0 102323.71 0 174.00 9.06 552.85 9.01
2 VM2 200 CUBIC 185674.01 0 365.00 2.61 164.62 2.73 0.78
VM1 0 201140.22 0 178.00 9.05 552.18 9.02
VM2 200 perep 185670.98 0 364.00 2.61 164.56 2.72 0.78
VM1 0 604.13 1 1.00 9.22 562.38 9.07
3 2
VM2 200 VEGAS 52269.80 190 208.00 2.03 127.73 2.06 0.72
VM1 0 3818.55 0 17.00 321 195.59 321
VM2 200 186275.70 0 216.00 332 21231 342
VM3 0 BBR2 2958.11 0 17.00 2.13 129.80 2.14 0.87
VM4 200 187546.04 0 216.00 332 212.24 342
VM1 0 102300.58 0 344.00 5.14 323.98 525
VM2 200 79029.91 42 550.00 1.53 101.03 1.64
VM3 0 CUBIC 118652.19 0 351.00 3.62 22424 3.63 0.77
4 VM4 200 80312.90 64 594.00 1.43 88.65 1.47
VM1 0 201136.13 0 356.00 4.67 289.62 4.73
VM2 200 175518.39 65 541.00 1.89 121.02 2.00
VM3 0 perep 195864.47 0 358.00 4.28 265.30 4.33 0.78
VM4 200 52051.14 34 573.00 113 68.74 1.18
VM1 0 600.09 0 2.00 3.96 241.68 3.89
VM2 200 55039.84 212 208.00 2.05 133.17 2.14
VM3 0 VEGAS 593.83 0 2.00 3.80 231.67 372 091
VM4 200 54613.95 234 210.00 2.07 132.73 2.12

200ms. However, a different behavior is observed for BBR2 with four flows,
where the flows with a delay of 200ms have access to bandwidth greater than
or equal to the Oms flows over time, unlike the experiment with the same al-
gorithm with two flows. This behavior, where VMs with a delay of 200ms
have higher throughput than those with a delay of Oms when the number of
VMs is increased from 2 to 4, can be attributed to the way BBR2 seeks to
balance fairness between flows with different RTTs, to compensate for in-
herent delays and prevent underutilization of bandwidth by delayed streams.
With only two flows, BBR2 tends to prioritize the flow with lower RTT due
to faster responsiveness. However, as competing flows increase, the algo-
rithm seeks to ensure more equitable treatment, possibly allowing flows with
higher RTT to send more data. This is part of the dynamic adjustments that
BBR2 makes to optimize throughput and minimize latency under various
network conditions [KGCBH20].

BBR2 achieved the highest throughput fairness index across both delay sce-
narios. It was the only algorithm not requiring retransmissions, positioning
it as the most reliable in the given conditions.

Vegas displayed the lowest throughput fairness index with two flows but
showed a substantial improvement with four flows, suggesting an enhanced
ability to distribute bandwidth fairly under more competitive scenarios.

CUBIC and DCTCP presented very similar throughput fairness indices
overall and throughout the experiment duration. They performed less ef-

5.2. BASIC NETWORK FAILURES SCENARIO: TWO-LEVEL

4
DELAYED FLOW ANALYSIS 6

fectively than BBR2 but were more equitable than Vegas in the two flows
setup.

* We observed that the bandwidth distribution becomes more equitable across
all algorithms with four flows. This is likely due to the increased compe-
tition for bandwidth. However, BBR2 remains the algorithm that achieves
higher fairness values. CUBIC, which claims to achieve RTT Fairness, ex-
hibits issues with the less equitable bandwidth distribution between flows
with different RTTs. In virtualized scenarios, where there may be delays
due to the inherent overhead of virtualization, this can pose a problem.

Throughput and fairness can be checked in Figures 5.9 and 5.10.
3. Congestion Window (CWND)

* Analyzing the CWND, BBR2 maintained a smaller window size for the Oms
delay flow and a larger window for the 200ms delay flow, demonstrating its
adaptability to varying delay conditions. Something similar happens with
VEGAS but on a smaller scale.

* Vegas had a consistently lower CWND across both conditions (0 ms flow
and 200 ms flow), aligning with its conservative congestion control strategy.

* CUBIC and DCTCP showed higher CWND values, especially in the no-
delay scenario, indicative of their aggressive stance in claiming available
bandwidth.

CWND values can be checked in Figure 5.11.

Concluding Remarks

The “Two-Level Delayed Flow Analysis” experiments within the “Basic Network
Failures Scenario” provided insightful data on how each congestion control algorithm
handles flows with different latency values. BBR2 demonstrated superior performance
in maintaining throughput fairness and minimizing retransmissions, suggesting its suit-
ability for environments with varying latencies. Vegas showed scalability with an in-
creased number of flows, while CUBIC and DCTCP maintained a consistent approach
across different VM configurations. The results indicate that BBR2’s adaptive mecha-
nisms for handling delay make it a robust choice for virtualized data center environments
facing consistent latency issues, analogous to the scenario investigated here.

Througput (MB) Througput (MB) Througput (MB)

Througput (MB)

5.2. BASIC NETWORK FAILURES SCENARIO: TWO-LEVEL

DELAYED FLOW ANALYSIS

Througput / BBR2
Oms vs 200ms - 2 flows

BBR2
10 VM1_0ms
—— VM2_200ms
5
0 W
0 10 20 30 40 50 60
t (sec)
Througput / DCTCP
0Oms vs 200ms - 2 flows
DCTCP
10 VM1_0ms
—— VM2_200ms
5
/S ”
0
0 10 20 30 40 50 60
t (sec)
Througput / BBR2
0ms vs 200ms - 4 flows
BBR2
10 VM1_0ms
— VM2_200ms
™ —— VM3_0ms
5 1 — VM4_200ms
TV O AL 75—
=7 el
0
0 10 20 30 40 50 60
t (sec)
Througput / DCTCP
Oms vs 200ms - 4 flows
DCTCP
10 VM1_0ms
— VM2_200ms
VM3_0ms
5 — VM4_200ms
0 —4

0 10 20 30 40 50 60
t (sec)

Througput / CUBIC

Oms vs 200ms - 2 flows

™M

L/

0

10

20

Througput / VEGAS

30
t (sec)

40

50

Oms vs 200ms - 2 flows

60

N

0

10

20

Througput / CUBIC

30
t (sec)

40

50

0Oms vs 200ms - 4 flows

60

L iisissonssdy’

0

10

20

Througput / VEGAS

30
t (sec)

40

50

Oms vs 200ms - 4 flows

60

0

10

20

30
t (sec)

40

50

60

65

CusIC
VM1 _Oms
— VM2_200ms

VEGAS
VM1 _Oms
— VM2_200ms

cuBIC

VM1_0Oms
— VM2_200ms

VM3_0ms
—— VM4_200ms

VEGAS

VM1_0ms
— VM2_200ms

VM3_0ms
—— VM4_200ms

Figure 5.9: Throughput for algorithms in Delayed with Two Flows scenario.

Jain's Fairness Index Jain's Fairness Index Jain's Fairness Index

Jain's Fairness Index

5.2. BASIC NETWORK FAILURES SCENARIO: TWO-LEVEL

66
DELAYED FLOW ANALYSIS

Jain's Fairness Index Jain's Fairness Index

BBR2 - Oms vs 200ms CUBIC - Oms vs 200ms
1.00

—— CUBIC - 2 flows /J
0.75 -/\/
0.50
—— BBR2 - 2 flows
0.25
0 10 20 30 40 50 60 O 10 20 30 40 50 60

Throughput (MB) Throughput (MB)

Jain's Fairness Index Jain's Fairness Index

DCTCP - Oms vs 200ms VEGAS - Oms vs 200ms
1.00

—— DCTCP - 2 flows f,J —— VEGAS - 2 flows
0.75 -/\/
0.50
0.25
0 10 20 30 40 50 60 O 10 20 30 40 50 60
Throughput (MB) Throughput (MB)
Jain's Fairness Index Jain's Fairness Index

BBR2 - Oms vs 200ms vs Oms vs 200ms CUBIC - Oms vs 200ms vs Oms vs 200ms
1.00

0.75
0.50
—— BBR2 - 4 flows —— CUBIC - 4 flows
0.25
0 10 20 30 40 50 60 O 10 20 30 40 50 60
Throughput (MB) Throughput (MB)
Jain's Fairness Index Jain's Fairness Index

DCTCP - Oms vs 200ms vs Oms vs 200ms VEGAS - Oms vs 200ms vs Oms vs 200ms
1.00

0.75
0.50
—— DCTCP - 4 flows —— VEGAS - 4 flows
0.25
0 10 20 30 40 50 60 O 10 20 30 40 50 60
Throughput (MB) Throughput (MB)

Figure 5.10: Fairness for algorithms in Delayed with Two Flows scenario.

4000
o 3000
g =

5 2000

1000

3000

2000

Cwnd

1000

5000
4000
© 3000
s
O 2000

1000

3000

2000

Cwnd

1000

5.2. BASIC NETWORK FAILURES SCENARIO: TWO-LEVEL
DELAYED FLOW ANALYSIS

Cwnd / BBR2

Oms vs 200ms - 2 flows

10 20 30 40 50 60
t (sec)
Cwnd / DCTCP
Oms vs 200ms - 2 flows
10 20 30 40 50 60
t (sec)
Cwnd / BBR2

Oms vs 200ms - 4 flows

10 20 30 40 50 60
t (sec)
Cwnd / DCTCP
Oms vs 200ms - 4 flows
10 20 30 40 50 60
t (sec)

BBR2
VM1_0ms
— VM2_200ms

bpcTep
VM1_0ms
— VM2_200ms

BBR2

VM1_0ms
— VM2_200ms
—— VM3_0ms
— VM4_200ms

DCTCP

VM1_0ms
— VM2_200ms

VM3_0ms
— VM4_200ms

3000

2000

Cwnd

1000

2500
2000
© 1500
5
O 1000

500

67

Cwnd / CUBIC
Oms vs 200ms - 2 flows

CuBIC
VML_Oms
— VM2_200ms

[S)
=
S)
N
o
w
o
N
o
wu
o
)
o

t (sec)

Cwnd / VEGAS
Oms vs 200ms - 2 flows

VEGAS
VM1_0ms
— VM2_200ms
0 10 20 30 40 50 60
t (sec)
Cwnd / CUBIC
Oms vs 200ms - 4 flows
CuBIC
VM1_Oms
—— VM2_200ms
2 VM3_0ms
\/ —— VM4_200ms
0 10 20 30 40 50 60

t (sec)

Cwnd / VEGAS
Oms vs 200ms - 4 flows

VEGAS
VM1_0ms
— VM2 _200ms
VM3_0ms
— VM4_200ms
0 10 20 30 40 50 6

0
t (sec)

Figure 5.11: CWND (KBytes) for algorithms in Delayed with Two Flows scenario.

5.3. BASIC NETWORK FAILURES SCENARIO:

FOUR-LEVEL DELAYED FLOW ANALYSIS 08

5.3 Basic Network Failures Scenario:
Four-Level Delayed Flow Analysis

Server 1 Server 2

Virtualized machines Virtualized machines

Figure 5.12: Network setup for the “Four-Level Delayed Flow Analysis” scenario.

This section presents the findings from the “Four-Level Delayed Flow Analysis”
experiment, which aims to understand how the congestion control algorithms respond
to fluctuating network latency. The experiment introduced a Four-Level Delayed Flow
Analysis ranging from 100ms to 400ms among the VMs to simulate a dynamically
latency-changing network environment. The analysis is based on the performance met-
rics observed over a 60-second duration. The summary of results for this scenario is
found in Table 5.3. Figure 5.12 represents the network setup for this scenario.

1. Sending Rate Observations

* The flow with a 100ms delay has a higher Sending Rate for all algorithms.
However, for CUBIC and BBR2, the difference in the Sending rate of the
100ms flow compared to the other flows is smaller. See Table 5.3.

2. Throughput, Fairness and Congestion Window (CWND)

For the “Four-Level Delayed Flow Analysis” scenario, we combine the analysis
of Throughput and CWND to address our experiment’s outcomes. This is due to a
behavior we wish to discuss that involves both metrics. CWND dynamics can be
checked in Figure 5.14. Similarly, throughput dynamics can be checked at Figure
5.13.

5.3. BASIC NETWORK FAILURES SCENARIO:
FOUR-LEVEL DELAYED FLOW ANALYSIS

Table 5.3: Comparative Analysis of TCP Congestion Algorithms in “Delayed with Four
Flows" Scenario

69

Number VM Number VM Delay Congestion ~ Average Cwnd Total Average RTT ~ Average Throughput Total Data Sent Average Sending Rate Average

of VMs (ms) Algorithm (KBytes) Retransmissions (ms) per Flow (MB) (MB) per flow (MBytes/sec) Fairness Index

VM1 100ms 188967.654 0 186.0 5.199 327.536 5.331
VM2 200ms BBR2 183117.382 0 286.0 2.722 176.959 2.845 077
VM3 300ms B 165500.369 0 387.0 1.877 116.392 1.929 :
VM4 400ms 153441.811 0 492.0 1311 71.346 1.381
VM1 100ms 176615.266 0 198.0 5.234 329.717 5.374
VM2 200ms CUBIC 101669.623 208 301.0 2.722 176.918 2.831 076
VM3 300ms . 89790.400 0 401.0 1.749 108.458 1.779 :
VM4 400ms 92074.295 12 504.0 1.321 77.934 1.383

4 VM1 100ms 194601.361 0 131.0 6.526 411.142 6.707
VM2 200ms 54502.489 252 236.0 1.900 123.509 1.988
VM3 300ms berep 52835.249 89 347.0 1.294 80.210 1.333 0.5
VM4 400ms 51976.732 144 470.0 0.949 55.962 1.004
VM1 100ms 389651.847 0 146.0 6.118 385.455 6.289
VM2 200ms 47457.408 156 248.0 1.601 104.087 1.686
VM3 300ms VEGAS 93444234 31 353.0 2.215 137.342 2.258 0.65
VM4 400ms 47943.467 29 456.0 0.882 52.043 0.935

* All algorithms exhibit discrepancies in bandwidth distribution, favoring those
with lower RTT. However, within this context, we have BBR2 and CUBIC
emerged as the best-performing algorithms in maintaining throughput fair-
ness across delayed flows. CUBIC took about 20 seconds to adjust the flow
bandwidth, indicating an initial adjustment period before stabilizing. See
Figure 5.13.

* Due to its characteristic of being a delay-based algorithm, Vegas tends to
“misinterpret” the delay as congestion, an expected outcome for this algo-
rithm. Nevertheless, its fairness indices throughout the experiment remain
marginally higher than those of DCTCP. See Figure 5.13.

* DCTCP, VEGAS, and CUBIC exhibited higher CWND for the 100 ms de-
lay flow compared to other flows. Among these, CUBIC showed the small-
est difference in CWND sizes between the different delays, while VEGAS
showed the largest discrepancy.

* We can see that BBR2 demonstrates an interesting behavior. The charts in
Figure 5.13 show that throughput inversely correlates with the delay intro-
duced; flows with lower delays achieve higher throughput initially. How-
ever, after 10s, the throughput converges to less distant values, leading to a
more equitable bandwidth distribution across all flows.

With regard to BBR2, we observed a tendency for CWND size to fluctuate (Fig-
ure 5.14). On average, these CWND values remain remarkably close, with the
most substantial difference and variation observed between the 100ms and 400ms
streams reaching only around 20% (check the table 5.3).

This behavior can be explained by the fact that BBR2 mainly estimates the avail-

5.3. BASIC NETWORK FAILURES SCENARIO:

FOUR-LEVEL DELAYED FLOW ANALYSIS 70

able network bandwidth (BtIBw) to calculate the congestion window (CWND) but
also considers the minimum round-trip delay (RTprop) when adjusting CWND.
By dynamically optimizing network resource allocation based on real-time band-
width assessments rather than using delay metrics alone, BBR2 effectively aligns
with its goal of operating in the Kleinrock’s optimal point [CCG™17, CCY ' 19].
This strategy helps prevent excessive queue buildup and aims to optimize perfor-
mance.

In virtualization environments, where VMs may experience different latency due
to hypervisor actions or resource contention, BBR2 responsively adapts to RTT
variations. This adaptability proves crucial in scenarios involving four streams,
as BBR2’s ability to adjust to the competitive dynamics between VMs is essen-
tial. The ProbeRTT phase, during which BBR2 temporarily reduces the conges-
tion window, facilitates periodic bandwidth redistribution, benefiting flows with
longer RTTs. This mechanism could explain the observed throughput oscilla-
tions among flows, mainly how flows with 300ms and 400ms RTTs occasionally
achieve higher or similar throughput compared to those with shorter RTTs.

Such oscillations likely result from BBR2’s efforts to ensure fairness among streams
by adjusting to the corrected RTTprop, a vital metric for the algorithm’s optimized
functioning in virtualized environments with temporal multiplexing. By dynam-
ically adjusting the sending rate and CWND based on these metrics, BBR2 can
counteract the effects of inflated RTT due to virtualization, allowing for proactive
adaptation to bandwidth availability and congestion levels.

A similar behavior emerges with CUBIC, where its CWND also enters a period of
adjustment. However, CUBIC’s adjustment process appears slower, gradually re-
sponding to changes observed in the network. For example, as Figure 5.13 shows,
CUBIC starts adjusting between 20s and 30s into the experiment, while BBR2
initiates this process as early as 10s. Despite this slower initial response, CUBIC
maintains performance with less fluctuation over time, achieving slightly better
and more stable fairness values. This behavior indicates that although CUBIC
responds to network changes less promptly than BBR2, its ability to sustain con-
sistent performance and fairness in bandwidth distribution becomes apparent once
the network stabilizes. This behavior can be explained by the fact that CUBIC
employs a cubic growth function for its CWND to optimize long-term network
throughput, allowing for a more gradual increase in bandwidth usage after a con-
gestion event.

3. Retransmissions

* BBR2 is the only algorithm with no packet retransmission during the entire
experiment for any flow.

5.3. BASIC NETWORK FAILURES SCENARIO:

1
FOUR-LEVEL DELAYED FLOW ANALYSIS !

Concluding Remarks

The insights from the “Four-Level Delayed Flow Analysis” experiment highlight
the importance of algorithm adaptability in environments with fluctuating network con-
ditions. The results indicate that both BBR2 and CUBIC are potentially more adapt-
able to environments with variable network latency, as evidenced by their throughput
fairness over time. The CWND adaptation mechanism of BBR2 significantly affects
its ability to handle latency fluctuations effectively, maintaining a balanced throughput
among competing flows. However, it is worth noting that BBR2’s throughput is incon-
sistent, exhibiting slight variation. On the other hand, CUBIC’s gradual attainment of
fairness suggests that while it may take longer to adapt to changes in latency, it even-
tually achieves a comparable level of throughput fairness. These findings underscore
the potential suitability of BBR2 and CUBIC for networks where latency can vary sig-
nificantly over time, providing valuable guidance for network engineers in designing
and managing TCP congestion control mechanisms within data centers and virtualized
settings.

It is crucial for future network infrastructure planning to consider the adaptabil-
ity of congestion control algorithms to latency variability. This experiment provides a
foundation for such considerations, offering a comparative perspective on how different
algorithms perform under changing network latency.

5.3. BASIC NETWORK FAILURES SCENARIO:
FOUR-LEVEL DELAYED FLOW ANALYSIS

Througput / BBR2 Througput / CUBIC
100ms vs 200ms vs 300ms vs 400ms - 4 flows 100ms vs 200ms vs 300ms vs 400ms - 4 flows
8 BBR2 CcuBIC
VM1_100ms VM1_100ms
- VM2_200ms VM2_200ms
— VM3_300ms — VM3_300ms
—~ 6 —— VM4_400ms —— VM4_400ms
m
=3
=
>
Q4
o
= |
o
i
<
F2

0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Througput / DCTCP Througput / VEGAS
100ms vs 200ms vs 300ms vs 400ms - 4 flows 100ms vs 200ms vs 300ms vs 400ms - 4 flows

8 DCTCP VEGAS
VM1_100ms VM1_100ms
VM2_200ms VM2_200ms
— VM3_300ms — VM3_300ms
6 —— VM4_400ms —— VM4_400ms

Througput (MB)
N

2 j%}&\;m
0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)

(A) Throughput for algorithms in Delayed with Four Flows scenario

Jain's Fairness Index over Time for 100ms vs 200ms vs 300ms vs 400ms Experiment

Jain's Fairness Index Jain's Fairness Index
BBR2 CUBIC
= 100ms vs 200ms vs 300ms vs 400ms 100ms vs 200ms vs 300ms vs 400ms
o 1.0
°
k=
n 0.8
n
Q
Eos6
©
[N
w 0.4
< —— BBR2 - 4 flows —— CUBIC - 4 flows
©
0 10 20 30 40 50 60 O 10 20 30 40 50 60
Throughput (MB) Throughput (MB)
Jain's Fairness Index Jain's Fairness Index
DCTCP VEGAS
% 100ms vs 200ms vs 300ms vs 400ms 100ms vs 200ms vs 300ms vs 400ms
o 1.0
'g —— DCTCP - 4 flows —— VEGAS - 4 flows
» 0.8
n
9]
Z06
©
[N
w 0.4
A=
LA
0 10 20 30 40 50 60 O 10 20 30 40 50 60
Throughput (MB) Throughput (MB)

(B) Fairness for algorithms in Delayed with Four Flows scenario

72

Figure 5.13: Throughput (A) and Fairness (B) for Delayed with Four Flows scenario.

5000

4000

3000

Cwnd

2000

1000

3000

2500

2000

Cwnd

1500

1000

500

100ms vs 200ms vs 300ms vs 400ms - 4 flows

5.3. BASIC NETWORK FAILURES SCENARIO:

73

FOUR-LEVEL DELAYED FLOW ANALYSIS

Cwnd / BBR2
100ms vs 200ms vs 300ms vs 400ms - 4 flows

30
t (sec)

Cwnd / DCTCP

40

50

60

20

30
t (sec)

40

50

60

BBR2

VM1_100ms
—— VM2_200ms
— VM3_300ms
— VM4_a00ms

ocTee
VM1_100ms
VM2_200ms
— VM3_300ms
—— VM4_a00ms

3000
2500
2000

°

£ 1500

o

1000

500

7000
6000
5000

- 4000

c

& 3000

2000

1000

Cwnd / CUBIC
100ms vs 200ms vs 300ms vs 400ms - 4 flows

cusic
VM1_100ms
VM2_200ms
— VM3_300ms
— VM4_400ms

10 20 30 40 50 60
t (sec)

Cwnd / VEGAS
100ms vs 200ms vs 300ms vs 400ms - 4 flows

VEGAS
VM1_100ms
VM2_200ms

— VM3_300ms

— VM4_400ms

10 20 30 40 50 60
t (sec)

Figure 5.14: CWND (KBytes) for algorithms in Delayed with Four Flows scenario.

IMPACT ON SINGLE VM

5.4. BASIC NETWORK FAILURES SCENARIO: PACKET LOSS

74

5.4 Basic Network Failures Scenario: Packet Loss Impact on
Single VM

Server1

Virtualized machines

VMl
[1% or 5%
loss rate]

Server 2

Virtualized machines

VML
[1% or 5%
loss rate]

Figure 5.15: Network setup for the “Packet Loss Impact on Single VM” scenario.

This section examines the resilience of the congestion control algorithms to packet
loss scenarios by assessing their performance in a Single VM setup under two different
packet loss rates: 1% and 5%. The experiment lasted 60 seconds to understand the
packet loss’s impact on each algorithm’s network performance. The summary of results
for this scenario is found in Table 5.4. Figure 5.15 represents the network setup for this

scenario.

Table 5.4: Comparative Analysis of TCP Congestion Algorithms in “Packet Loss Impact
on Single VM" Scenario

Number VM Loss

Congestion Average Cwnd

Total

Average RTT Average Throughput Total Data Sent Average Sending Rate

of VMs (%) Algorithm (KBytes) Retransmissions (ms) per Flow (MB) (MB) per flow (MBytes/sec)
1% BBR2 5105.134 4929 5.0 11.070 675.300 10.868
5% BBR2 1147.440 21475 1.0 9.849 600.785 9.217
1% CUBIC 818.556 4558 1.0 10.441 636.891 10.189
1 5% CUBIC 239.272 4227 4.0 1.941 118.381 1.794
1% DCTCP 1186.811 4967 1.0 11.005 671.329 10.775
5% DCTCP 307.123 6811 2.0 3.101 192.243 2.929
1% VEGAS 607.649 4171 1.0 9.588 584.889 9.319
5% VEGAS 239.518 4088 2.0 1.935 118.042 1.746

5.4. BASIC NETWORK FAILURES SCENARIO: PACKET LOSS

IMPACT ON SINGLE VM 7

1. Sending Rate Observations

* BBR2 demonstrated higher average sending rates, maintaining efficient data
transfer even under packet loss conditions, while VEGAS showed the lowest
rates.

* CUBIC, DCTCP, and VEGAS experienced a notable decrease in average
sending rates when the packet loss increased from 1% to 5%, in contrast to
BBR2, which exhibited a less significant decrease.

2. Throughput and Fairness

* As for the sending rate, BBR2 shows higher throughput rates than the others,
indicating a high throughput rate even under loss conditions. VEGAS has
the lowest throughput rates as shown in Figure 5.16.

3. Congestion Window (CWND)

* BBR2 managed to sustain a considerably larger congestion window than
other algorithms at a packet loss rate of 1%. This indicates it can discern
between losses caused by network congestion or other factors. Even at a 5%
loss rate, BBR2 maintained a larger CWND, though with a higher loss rate,
compared to its peers. BBR2 estimates bandwidth; for this, it can maintain
a higher cwnd. See Figure 5.17.

4. Round-Trip Time (RTT)
* All algorithms maintained a low and stable RTT.

Concluding Remarks

The “Single VM packet loss” experiments reveal that BBR2 stands out in terms of
resilience to packet loss, maintaining higher throughput and a more stable RTT than
other algorithms. The findings suggest that BBR2 is potentially more adept at distin-
guishing between congestion-induced losses and losses caused by other factors. In con-
trast, VEGAS struggles with lower throughput and sending rates. CUBIC and DCTCP,
while generally stable at a 1% loss rate, show signs of instability at a 5% rate of packet
loss.

These results are instrumental for network designers in selecting TCP congestion
control algorithms that can deliver consistent performance in the presence of packet
loss, a common challenge in virtualized environments.

Througput (MB) Througput (MB) Througput (MB)

Througput (MB)

5.4. BASIC NETWORK FAILURES SCENARIO: PACKET LOSS

Througput for BBR2 Througput for CUBIC
1% VMs Experiment 1% VMs Experiment
BBR2 cusic
10 ’ VTV VIV VIV VIV \-‘ .- //\/\/\/\'\/\/\/WV\/WV«"‘V\ T
5
0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Througput for DCTCP Througput for VEGAS
1% VMs Experiment 1% VMs Experiment
AV et e DCTCP VEGAS
10 \ — VM1_1% [\»\M’W\/‘f‘\ — VM1_1%
5
0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Througput for BBR2 Througput for CUBIC
5% VMs Experiment 5% VMs Experiment
BBR2 CcuBIC
10 — VM1 5% — VM1.5%
5 WW}M
0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Througput for DCTCP Througput for VEGAS
5% VMs Experiment 5% VMs Experiment
DCTCP VEGAS
10 — VM1_5% — VM1_5%
5 /\/\/\«/\/\/‘\/\\/\/\A/\/\I\/\
: WA A
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)

Figure 5.16: Throughput for algorithms in Packet Loss Single VM scenario.

5.4. BASIC NETWORK FAILURES SCENARIO: PACKET LOSS

Cwnd for BBR2
1% VMs Experiment

150
§ 100
O
50
0 10 20 30 40
t (sec)
Cwnd for DCTCP
1% VMs Experiment
25
= 20
15
0 10 20 30 40
t (sec)
Cwnd for BBR2
5% VMs Experiment
40
o
=
2
© 20
0 10 20 30 40
t (sec)
Cwnd for DCTCP
5% VMs Experiment
8
o 6
=
2
Vg
2
0 10 20 30 40
t (sec)

IMPACT ON SINGLE VM

Cwnd for CUBIC

1% VMs Experiment

BBR2

—_ W _1%
o 15
=4
2
O
10
50 60 0 10 20 30 40
t (sec)
Cwnd for VEGAS
1% VMs Experiment
DCTCP
—_— W_1%
210
2
O
8
50 60 0 10 20 30 40
t (sec)
Cwnd for CUBIC
5% VMs Experiment
BBR2
—_ WM 5% 6
o
c
5 4
2
50 60 0 10 20 30 40
t (sec)
Cwnd for VEGAS
5% VMs Experiment
DCTCP 6
— WM _5%
24
H
O
2
50 60 0 10 20 30 40
t (sec)

77
cuBIC
— W_1%
50 60
VEGAS
—_ 1%
50 60
CuBIC
— WM _5%
50 60
VEGAS
— \M_5%
50 60

Figure 5.17: CWND (KBytes) for algorithms in Packet Loss Single VM scenario.

5.5. BASIC NETWORK FAILURES SCENARIO: PACKET LOSS

IMPACT IN DUAL-VM SETUP 8

5.5 Basic Network Failures Scenario: Packet Loss Impact in
Dual-VM Setup

Datacenters
Server 1 Server 2
Virtualized machines Virtualized machines
VML VM2 VM1 Mz
[0% loss [1% or 5% [0% loss [1% or 5%
rate] loss rate; rate] loss rate;

[(NICT]
(NITZ]

Figure 5.18: Network setup for the “Packet Loss Impact in Dual-VM Setup” scenario.

Figure 5.18 represents the network setup for this scenario.

The objective of this scenario is to evaluate the behavior of congestion control al-
gorithms when one VM experiences packet loss while another operates under normal
conditions. This scenario helps identify how the algorithms manage uneven network
quality between flows. The summary of results for this scenario is found in Table 5.5.

Table 5.5: Comparative Analysis of TCP Congestion Algorithms in “Packet Loss Impact
in Dual-VM Setup" Scenario

Number VM Number VM Loss Congestion Average Cwnd Total Average RTT Average Throughput Total Data Sent Average Sending Rate Average

of VMs (%) Algorithm (KBytes) Retransmissions (ms) per Flow (MB) (MB) per flow (MBytes/sec) Fairness Index
VM1 0% BBR2 10504.784 0 18.0 8.132 496.065 8.114 0.84
M2 1% 4378.351 1441 18.0 3.259 198.779 3217)
VMI 0% BER2 10205.913 0 14.0 10.032 611.960 10.008 0.63
VM2 5% 1318.408 2850 16.0 1.303 79.490 1.244 .
VM1 0% 102865.649 0 138.0 11.192 682.697 11.149
VM2 1% CUBIC 1109.171 103 138.0 0.241 14.727 0.239 0.52
VM1 0% 102917.850 0 137.0 11.355 692.674 11.218

2
VM2 5% CUBIC 415.935 181 146.0 0.082 5.066 0.079 0.2
VM1 0% 201136.128 0 141.0 11.276 687.845 11.143
M2 1% PTP T Tiagon 171 139.0 0371 23015 0375 03
VM1 0% 201138.176 0 141.0 11.259 686.790 11.216
M2 5% berer 478.007 324 150.0 0.137 8.612 0.132 0.53
VM1 0% 586.460 0 1.0 6.262 381.971 6.152
VM2 1% VEGAS 536.584 2228 1.0 5.251 320.330 5.098 0.99
%

VM1 0% VEGAS 566.186 0 1.0 9.637 587.853 9.470 0.65

VM2 5% 240.051 3396 2.0 1.506 91.867 1.391

5.5. BASIC NETWORK FAILURES SCENARIO: PACKET LOSS

IMPACT IN DUAL-VM SETUP 7

1. Sending Rate Observations

* VEGAS and BBR2 showed more balanced sending rates between flows with
different loss rates. Specifically, with 1% loss, VEGAS maintained nearly
identical sending rates for both flows. With loss increased to 5%, both VE-
GAS and BBR2 exhibited an imbalance in sending rates but still outper-
formed DCTCP and CUBIC in terms of sending rate distribution equity.
See column “Average Sending Rate per flow” in Table 5.5.

2. Throughput and Fairness

* VEGAS and BBR2 maintained the best throughput fairness indices. With
1% loss, VEGAS almost reached the maximum fairness index. When the
loss was increased to 5%, the fairness indices of VEGAS and BBR2 wors-
ened but remained better than the other algorithms. In the case of VEGAS,
this worsening is much more related to the fact that packet loss caused an
increase in the RTT of the flow with 5% losses than related to the loss itself
since VEGAS is a delay-based algorithm. See Figure 5.19 and 5.20.

3. Congestion Window (CWND)

* DCTCP and CUBIC assign high CWND values to lossless flows (0% loss),
reaching approximately 3000 for DCTCP and 1500 for CUBIC, regardless
if the other flows have 1% or 5% loss. Conversely, VEGAS and BBR2
allocate considerably lower values to the lossless flow, with BBR2 around
175 and VEGAS at 12. This approach results in a closer CWND value range
between 0%, 1%, and 5% flows for VEGAS and BBR2. See Figure 5.21.

4. Round-Trip Time (RTT)

¢ For 1% and 5% losses, BBR2 and VEGAS maintained RTTs below 20ms,
while DCTCP and CUBIC reached RTTs close to 140ms.

5. Retransmissions

* BBR2 and VEGAS had more retransmissions, with 1441 and 2228 packets
for 1% loss and 2850 and 3396 for 5%, respectively. CUBIC and DCTCP
suffered significantly fewer retransmissions, with CUBIC retransmitting 103
packets for 1% and 181 for 5% packet loss whereas DCTCP retransmitted
171 packets for 1% and 324 for 5% loss level. These numbers reflect the
tendency of CUBIC and DCTCP not to allow packet-loss flows to access
available bandwidth. See Figure 5.22.

5.5. BASIC NETWORK FAILURES SCENARIO: PACKET LOSS 30
IMPACT IN DUAL-VM SETUP

Concluding Remarks

The “Packet Loss Impact in Dual-VM Setup” experiment underlines the adaptability
and performance of VEGAS and BBR2 in handling packet loss disparities across dif-
ferent flows. VEGAS and BBR2 proved more efficient in managing packet loss, with
better balance in sending rate and higher throughput fairness indices. Both maintain
relatively high throughput rates and low RTTs even under significant loss conditions,
suggesting superior robustness in such scenarios. Despite a general decline in perfor-
mance as packet loss increased, VEGAS and BBR2 maintained superior throughput and
fairness indices compared to CUBIC and DCTCP. CUBIC and DCTCP, although ex-
hibiting fewer retransmissions, showed inferior performance in terms of fairness, which
may be a disadvantage in networks with variable packet loss.

5.5. BASIC NETWORK FAILURES SCENARIO: PACKET LOSS

1
IMPACT IN DUAL-VM SETUP 8

Througput for BBR2 Througput for CUBIC
1% VMs Experiment 1% VMs Experiment
8 BBR2 CcuBIC
E 10 — VM1_0% — VM1_0%
- — VM2_1% VM2_1%
2
© 5
3
o fv/\\,v/rﬁw\\/\uf\ﬁ—'\,/m
=
= 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Througput for DCTCP Througput for VEGAS
1% VMs Experiment 1% VMs Experiment
o L DCTCP VEGAS
= 10 \ — VM1 0% — VM1 0%
- VM2_1% — VM2_1%
>
&
g 5
2
€=
= 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Througput for BBR2 Througput for CUBIC
5% VMs Experiment 5% VMs Experiment
a BBR2 CuBIC
= 10 — VM1_0% — VM1_0%
- — VM2_5% VM2_5%
3
o
g‘ 5
o
-E 0 _f/\” VNW\J\/—/\MV\A/\/
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Througput for DCTCP Througput for VEGAS
5% VMs Experiment 5% VMs Experiment
E DCTCP VEGAS
= 19 / \ — VM1_0% — VM1_0%
o VM2_5% - VM2_5%
a
g‘ 5
o
= / / =,
E 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)

Figure 5.19: Throughput for algorithms in Packet Loss in Dual-VM Setup scenario.

5.5. BASIC NETWORK FAILURES SCENARIO: PACKET LOSS
IMPACT IN DUAL-VM SETUP

Jain's Fairness Index Jain's Fairness Index
é BBR2 - 1% drop - 2 flows CUBIC - 1% drop - 2 flows
- 1.0
= —— CUBIC - 1% drop - 2 flows
w0
3 0.8
=
=
©
© 0.6
_2 ’ —— BBR2 - 1% drop - 2 flows
©
- 0 20 40 60 0 20 40 60
Mean RTT (sec) Mean RTT (sec)
Jain's Fairness Index Jain's Fairness Index
é DCTCP - 1% drop - 2 flows VEGAS - 1% drop - 2 flows
- 1.0
c —— DCTCP - 1% drop - 2 flows /
@
(4]
=
©
w
_*g —— VEGAS - 1% drop - 2 flows
©
o 0 20 40 60 0 20 40 60
Mean RTT (sec) Mean RTT (sec)
Jain's Fairness Index Jain's Fairness Index
é BBR2 - 5% drop - 2 flows CUBIC - 5% drop - 2 flows
- 1.0
< —— BBR2 - 5% drop - 2 flows —— CUBIC - 5% drop - 2 flows
@
(9]
<
s
Lk
£
@©
- 0 20 40 60 0 20 40 60
Mean RTT (sec) Mean RTT (sec)
Jain's Fairness Index Jain's Fairness Index
é DCTCP - 5% drop - 2 flows VEGAS - 5% drop - 2 flows
- 1.0
c —— DCTCP - 5% drop - 2 flows —— VEGAS - 5% drop - 2 flows
(9]
@ 0.8
c
‘©
w
» 0.6
=
©
= 0 20 40 60 0 20 40 60
Mean RTT (sec) Mean RTT (sec)

Figure 5.20: Fairness for algorithms in Packet Loss in Dual-VM Setup scenario.

82

5.5. BASIC NETWORK FAILURES SCENARIO: PACKET LOSS

IMPACT IN DUAL-VM SETUP

Cwnd for BBR2
1% VMs Experiment

BBR2

VM1_0%
150 — VM2 1%
©
c
= 100
@]
50
0 10 20 30 40 50 60
t (sec)
Cwnd for DCTCP
1% VMs Experiment
3000 DCTCP
VM1_0%
—_— VM2_1%
2 2000
3
© 1000
0
0 10 20 30 40 50 60
t (sec)
Cwnd for BBR2
5% VMs Experiment
200
BBR2
VM1_0%
—_— VM2_5%
e
£ 100
@
0
0 10 20 30 40 50 60
t (sec)
Cwnd for DCTCP
5% VMs Experiment
DCTCP
3000 VM1_0%
— VM2_5%
T 2000
2
“ 1000
0

0 10 20 30 40 50 60
t (sec)

83

Cwnd for CUBIC
1% VMs Experiment
CuBIC
1500 VM1_0%
—_— VM2_1%
2 1000
8
500
0
0 10 20 30 40 50 60
t (sec)
Cwnd for VEGAS
1% VMs Experiment
12 VEGAS
VM1_0%
—_— VM2 1%
T 10
3
@]
8
0 10 20 30 40 50 60
t (sec)
Cwnd for CUBIC
5% VMs Experiment
CuBIC
1500 VM1_0%
—_— VM2 5%
2 1000
8
500
0
0 10 20 30 40 50 60
t (sec)
Cwnd for VEGAS
5% VMs Experiment
VEGAS
10 VM1_0%
— VM2_5%
e
[
2
O

i]\W/J\\M/W\N\/VMJ\
0 10 20 30 40 50 60
t (sec)

Figure 5.21: CWND (KBytes) for algorithms in Packet Loss in Dual-VM Setup sce-

nario.

5.5. BASIC NETWORK FAILURES SCENARIO: PACKET LOSS

84
IMPACT IN DUAL-VM SETUP
Number of Retransmissions for BBR2 Number of Retransmissions for CUBIC
1% VMs Experiment 1% VMs Experiment
BBR2 40 CUBIC
40 VM1_0% VM1_0%
g — VM2_1% o —_— VM2_1%
3* = R =
% 20 g 20
< o
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Number of Retransmissions for DCTCP Number of Retransmissions for VEGAS
1% VMs Experiment 1% VMs Experiment
60 bcrep VEGAS
VM1_0% 40 VM1_0%
e —_— VM2_1% g —_— VM2_1%
* 40 - * -
] 5
& 20 & 20
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Number of Retransmissions for BBR2 Number of Retransmissions for CUBIC
5% VMs Experiment 5% VMs Experiment
200 BBR2 CUBIC
VM1_0% 40 VM1_0%
g — VM2 5% g — VM2.5%
T 100 =
D @ 20
[~4 o
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Number of Retransmissions for DCTCP Number of Retransmissions for VEGAS
5% VMs Experiment 5% VMs Experiment
100
DCTCP VEGAS
VM1_0% 100 VM1_0%
;E — VM2_5% ’4‘: — VM2 5%
5 = 5 50
4 4
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60

t (sec)

t (sec)

Figure 5.22: Retransmission for algorithms in Packet Loss in Dual-VM Setup scenario.

5.6. MULTIPLE: DUAL-ALGORITHM COMPETITION (2 VMS) 85

5.6 Multiple: Dual-Algorithm Competition (2 VMs)

Datacenters

Server 1 Server 2

Virtualized machines Virtualized machines

Mz VM2
(alg B) (Alg B)

Figure 5.23: Network setup for the “Dual-Algorithm Competition (2 VMs)” scenario.

In the “Multiple Algorithms Scenario” group, the “Dual-Algorithm Competition (2
VMs)” experiment was designed to assess how different TCP congestion control algo-
rithms perform when directly competing for network resources. This setup involved
two virtual machines running different congestion control algorithms under identical
network conditions. This configuration aimed to reveal how these algorithms manage
bandwidth and network performance amidst direct competition with other algorithms.
The summary of results for this scenario is found in Table 5.6. Figure 5.23 represents
the network setup for this scenario.

Table 5.6: Comparative Analysis of TCP Congestion Algorithms in ‘Multiple: Dual-
Algorithm Competition" Scenario

Number VM Number Congestion Average Cwnd Total Average RTT Average Throughput Total Data Sent Average Sending Rate Average
of VMs Algorithm (KBytes) Retransmissions (ms) per Flow (MB) (MB) per flow (MBytes/sec) Fairness Index
VMO BBR2 43469.10 0 174.00 2.361 146.361 2.358 074
VM1 DCTCP 200625.76 0 177.00 9.10 555.127 9.06 :
VMO CUBIC 102393.10 0 202.00 7.729 479.185 7.807 0.6
VM1 BBR2 74333.77 0 207.00 3.64 222.051 3.633 :
VMO CUBIC 98509.29 0 270.00 5.721 354.689 5.754 0.98
, VM1 DCTCP 198323.90 0 275.00 5.731 349.562 5.708 :
- VMO CUBIC 102850.97 0 142.00 10.88 663.695 10.835 056
VM1 VEGAS 4188.07 1 141.00 0.584 35.608 0.577 i
VMO VEGAS 1431.03 1 8.00 2.868 174.928 2.817 0.80
VM1 BBR2 5556.22 0 9.00 8.561 522218 8.55 i
VMO VEGAS 4434.88 0 143.00 0.613 38.017 0.615 056
VM1 DCTCP 201105.41 0 147.00 10.846 661.591 10.806 i

5.6. MULTIPLE: DUAL-ALGORITHM COMPETITION (2 VMS) 86

1. Sending Rate and Throughput

* DCTCP and CUBIC dominated the link capacity by sending more data
when competing against VEGAS and BBR2, with a more pronounced dom-
inance over VEGAS. When DCTCP and CUBIC competed against each
other, their performance was quite similar, displaying data transmission rates
close to each other and achieving a fairness index near 1. BBR2 sends more
data only when disputes with VEGAS as depicted in Figure 5.24.

2. Congestion Window (CWND)

* Both DCTCP and CUBIC achieved larger CWND sizes when competing
against other algorithms, indicating their aggressive approach toward band-
width utilization. DCTCP, in particular, displayed the largest CWND sizes,
even when matched against CUBIC, suggesting its slightly more assertive
stance in claiming network capacity. However, against CUBIC, DCTCP
competed more equally regarding congestion window size than against VE-
GAS and BBR2. See Figure 5.26.

* An interesting dynamic was observed between CUBIC and BBR2. BBR2
started at a disadvantage with a smaller CWND but saw its window size in-
crease as the experiment progressed. By the end, BBR2 was able to compete
on par with CUBIC. A similar pattern emerged in the BBR2 vs. DCTCP
competition, albeit more gradually, due to DCTCP’s larger CWND sizes
and its more aggressive behavior. See Figure 5.26.

3. Round-Trip Time (RTT)

* Low and stable Round-Trip Time (RTT) values for virtual machines (VMs)
are observed during the experiment, regardless of the algorithm used.

* VEGAS VS. BBR2: Notably, this combination features the lowest RTT (8
and 9 milliseconds), significantly lower than all other combinations, indicat-
ing a highly efficient interaction between VEGAS and BBR2, resulting in
minimal latencies.

* The interaction between VEGAS, BBR2, and the other algorithms high-
lights a dichotomy in congestion control: VEGAS and BBR2 maintain low
RTTs when operating together, demonstrating an efficient synergy. How-
ever, faced with adversaries such as CUBIC or DCTCP, whose aggressive
congestion window widening strategies or reliance on packet loss detection
challenge their methodologies, both face difficulties. Adapting to emulate
loss-based behaviors in environments dominated by such algorithms, VE-
GAS sees its performance degraded. Similarly, BBR2, designed to optimize

5.6. MULTIPLE: DUAL-ALGORITHM COMPETITION (2 VMS) 87

bandwidth and RTT without relying strictly on packet losses, may compro-
mise efficiency in these adverse conditions. In BBR2, this can be seen in
the increase in the congestion window when competing with CUBIC and
DCTCP. This incompatibility results in longer queues and increases in RTT,
highlighting the significant impact of the congestion control strategy on net-
work dynamics. On the other side, when VEGAS and BBR2 operate to-
gether, they can mutually benefit from their control approaches: VEGAS,
by keeping RTTs low through proactive congestion prevention, creates a
network environment that allows BBR2 to operate efficiently within capac-
ity limits available without inducing packet losses that could result from an
overloaded network.

Concluding Remarks

These findings highlight the distinct strategies and capabilities of congestion control
algorithms in managing network resources under competition. DCTCP and CUBIC’s
aggressive tactics allow them to outperform against the more conservative VEGAS and
BBR2. However, the adaptability of BBR2, demonstrated by its ability to recover and
compete effectively as the experiment progresses, showcases the nuanced balance be-
tween aggression and efficiency in network resource management.

5.6. MULTIPLE: DUAL-ALGORITHM COMPETITION (2 VMS)

Througput Througput
BBR2 vs DCTCP CUBIC vs BBR2
12 Algorithm Algorithm
— BBR2.O — cuBIC.O
» 10 —— DCTCP_1 — BBR2_1
]
=
o 8
2
= 6
>
&
5 4
2
£ 2
0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Througput Througput
CUBIC vs DCTCP CUBIC vs VEGAS
Algorithm Algorithm
— cuBIC.0 — cuBIC0
= — DCTCP 1 \ — VEGAS 1
]
o
>
@
=
=
=]
o
=)
=1
2
=
- }
0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Througput Througput
VEGAS vs BBR2 VEGAS vs DCTCP
12 Algorithm Algorithm
— VEGAS_0 /\ — VEGAS_0
% 10 —— BBR2_1 —— DCTCP_1
]
=
o 8
2
= 6
=]
&
5 4
g
£ 2
0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)

Figure 5.24: Throughput for algorithms in Dual-Algorithm Competition scenario

88

Jain's Fairness Index Jain's Fairness Index

Jain's Fairness Index

5.6. MULTIPLE: DUAL-ALGORITHM COMPETITION (2 VMS) 89

Jain's Fairness Index Jain's Fairness Index
BBR2 vs DCTCP (2 flows) CUBIC vs BBR2 (2 flows)
1.0
—— BBR2 W
03 —— CUBIC

0 10 20 30 40 50 60 O 10 20 30 40 50 60

Throughput (MB) Throughput (MB)
Jain's Fairness Index Jain's Fairness Index
CUBIC vs DCTCP (2 flows) CUBIC vs VEGAS (2 flows)

1.0 :
V' —— CUBIC \\, - cusch
0.5

0 10 20 30 40 50 60 O 10 20 30 40 50 60

Throughput (MB) Throughput (MB)
Jain's Fairness Index Jain's Fairness Index
VEGAS vs BBR2 (2 flows) VEGAS vs DCTCP (2 flows)
1.0
AN | e
W= —— VEGAS

0 10 20 30 40 50 60 O 10 20 30 40 50 60
Throughput (MB) Throughput (MB)

Figure 5.25: Fairness for algorithms in Dual-Algorithm Competition scenario

5.6. MULTIPLE: DUAL-ALGORITHM COMPETITION (2 VMS) 90

Cwnd Cwnd
BBR2 vs DCTCP CUBIC vs BBR2

Algorithm Algorithm

— BBR2.0 — cuBICL0
3000 — peTeP.1 — BBR2.1

2500

2000 ; /\’/\ﬂ

2
|
3 1500 V V
1000
500
0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Cwnd wnd
CUBIC vs DCTCP CUBIC vs VEGAS
Algorithm Algorithm
— cuBIC.0 — CcuBIC.O
3000 — DCTCP_1 — VEGAS_1
2500
2000
ko]
s
O 1500
1000
500
0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
t (sec) t (sec)
Cwnd Cwnd
VEGAS vs BBR2 VEGAS vs DCTCP
Algorithm Algorithm
— VEGAS_0 — VEGAS_ 0
— BBR2.1 — DCTCP_1

t (sec) t (sec)

Figure 5.26: CWND (KBytes) for algorithms in Dual-Algorithm Competition scenario.

5.7. MULTIPLE: ASYMMETRIC COMPETITION (4 VMS) 91

5.7 Multiple: Asymmetric Competition (4 VMs)

Server 1 Server 2

Virtualized machines Virtualized machines

wMm2
[Aig B]

Figure 5.27: Network setup for the “Asymmetric Competition (4 VMs)” scenario.

In the “Multiple Algorithms Scenario” group, the “Asymmetric Competition (4
VMs)” experiment evaluated how different congestion control algorithms perform in an
uneven competitive environment. This setup involved one VM operating with a conges-
tion control algorithm. At the same time, the other three VMs used another algorithm,
creating an asymmetric competition to assess performance and fairness when network
resources are distributed unevenly. The summary of results for this scenario is found in
Table 5.7. Figure 5.27 represents the network setup for this scenario.

1. BBR2 as the Solo Algorithm

* When BBR2 is the single flow used, it is at a small disadvantage regarding
bandwidth usage and sending rate compared to 3xCUBIC and 3xDCTCP
flows. Its fairness index (throughput) approaches 1 over time. Against
3xVEGAS, BBR2 has the advantage, with the fairness index fluctuating
significantly between values below and above 0.5. See Figure 5.29.

2. CUBIC as the Solo Algorithm

* CUBIC, when competing as the single flow against 3xBBR2, maintains
higher throughput. Against 3XDCTCP, one of the 3XDCTCP flows com-
petes closely with CUBIC for leadership. Against 3xVEGAS, CUBIC sig-
nificantly dominates, nearly monopolizing the available bandwidth. Fairness
indices are close to 1 against 3XDCTCP but drop to nearly 0 against 3xVE-
GAS as shown in Figure 5.29.

5.7. MULTIPLE: ASYMMETRIC COMPETITION (4 VMS)

92

Table 5.7: Comparative Analysis of TCP Congestion Algorithms in “Multiple: Asym-

metric Competition" Scenario

Number VM Number Congestion ~ Average Cwnd Total Average RTT Average Throughput Total Data Sent ~ Average Sending Rate Average
of VMs Algorithm (KBytes) Retransmissions (ms) per Flow (MB) (MB) per flow (MBytes/sec) Fairness Index

VMO BBR2 45548.12 4 393.00 1.283 80.841 1.303
VMI CUBIC 99267.34 40 395.00 4.304 266.873 4.312 0.80
VM2 CUBIC 86385.21 5 395.00 3.088 194.558 3.125 :
VM3 CUBIC 86024.33 3 400.00 3.006 186.395 3.00
VMO BBR2 42891.04 20 424.00 1119 71.648 1.129
VM1 DCTCP 173309.16 22 436.00 3.769 233.704 3.797 0.83
VM2 DCTCP 165547.06 35 438.00 3.417 215.258 3.494 o
VM3 DCTCP 162086.66 13 439.00 3.433 212.846 3.454
VMO BBR2 13213.43 0 22.00 8.393 511.982 8.366
VMI VEGAS 1390.31 0 21.00 1.063 64.842 1.043 0.48
VM2 VEGAS 1134.55 0 21.00 0.936 57.075 0.918 :
VM3 VEGAS 1633.88 0 21.00 1.376 83.939 1.36
VM1 BBR2 38110.52 4 308.00 1.574 96.028 1.573
VM2 BBR2 61784.20 8 306.00 2343 145.244 2.381 0.76
VM3 BBR2 61747.13 5 304.00 2411 149.474 245 :
VMO CUBIC 97875.18 9 301.00 5471 339.225 5.503
VMO CUBIC 96203.17 2 413.00 3.725 234.691 379
VMI DCTCP 67002.09 24 417.00 2.309 143.15 2.309 0.89
VM2 DCTCP 99290.08 5 423.00 3.515 221.468 3.575 :
VM3 DCTCP 58498.19 516 419.00 2.239 141.031 227
VMO CUBIC 102279.80 0 153.00 10.165 620.094 10.121

4 VM1 VEGAS 4636.95 0 154.00 0.53 32.331 0.526 035
VM2 VEGAS 991.34 0 152.00 0.193 11.941 0.195 o
VM3 VEGAS 6428.38 0 149.00 0.938 58.133 0.951
VMO DCTCP 112838.98 45 329.00 5.001 310.069 5.026
VMI BBR2 56796.82 26 334.00 2.049 127.048 2.081 0.82
VM2 BBR2 73989.44 33 332.00 2.743 170.064 2773 :
VM3 BBR2 51181.55 37 330.00 2.05 127.075 2.076
VMO DCTCP 93791.76 47 387.00 2.984 190.964 3.076
VM1 CUBIC 94679.76 2 396.00 3.597 226.628 3.654 0.84
VM2 CUBIC 74044.67 106 400.00 2701 167.475 2.689 :
VM3 CUBIC 64338.77 90 395.00 2.445 154.036 2.469
VMO DCTCP 201132.03 0 168.00 8.996 557.735 9.059
VMI VEGAS 4232.39 0 172.00 0.397 24.626 0.407 0.42
VM2 VEGAS 5729.03 0 170.00 0.578 35.806 0.587 :
VM3 VEGAS 16026.40 0 168.00 1.797 111.409 1.81
VMO VEGAS 1082.35 0 24.00 1.624 99.088 1.596
VM1 BBR2 4145.60 0 25.00 2.811 171.499 2.806 083
VM2 BBR2 5675.55 0 24.00 3.156 195.672 3.208 o
VM3 BBR2 9610.86 0 25.00 4.192 255.731 4.177
VMO VEGAS 761.88 0 355.00 0.20 12.774 0.179
VMI CUBIC 105499.91 0 365.00 4.768 295.625 4.789 0.68
VM2 CUBIC 86693.06 0 363.00 3.377 212.749 3.432 :
VM3 CUBIC 89864.49 0 368.00 3.348 207.598 3.351
VMO VEGAS 3950.73 0 400.00 0.269 16.948 0.278
VM1 DCTCP 201113.60 0 406.00 4.057 251.521 4.107 0.74
VM2 DCTCP 195861.96 0 410.00 3.653 230.112 3.757 :
VM3 DCTCP 193244.78 0 415.00 3.648 226.186 3.693

3. DCTCEP as the Solo Algorithm

* DCTCP’s behavior is similar to CUBIC’s. DCTCP faces disadvantages
against 3xCUBIC. Its advantage over 3XxBBR2 and 3xVEGAS is slightly
less than CUBIC’s advantage over these algorithms as Figure 5.28 illus-
trates.

4. VEGAS as the Solo Algorithm

* VEGAS faces disadvantages across all configurations, yet these disadvan-
tages are minor when compared to scenarios where Vegas is configured as
3xVEGAS. Against 3xBBR2, the bandwidth is equally shared in the experi-
ment from instants 20 s to 30, with the fairness index approaching 1. Against

5.7. MULTIPLE: ASYMMETRIC COMPETITION (4 VMS) 93

3xCUBIC and 3xDCTCP, the fairness index drops closer to 0.75, as shown
in Figure 5.29.

5. Other Observations

* Round-Trip Time (RTT). Here, the observed RTT behavior aligns with
findings from the “Dual-Algorithm Competition (2 VMs)” scenario. Specif-
ically, the VEGAS and BBR2 pairing consistently exhibits low and stable
RTT values, reinforcing their effective synergy across increased competi-
tion levels with four VMs.

* DCTCP consistently shows a CWND of around 3000 KBytes, much higher
than other algorithms, but this drops significantly against CUBIC in both
scenarios—when competing against three flows and facing off against a sin-
gle flow. Against 1xXBBR2, the CWND drops to 1500 around 10 seconds
into the experiment, and against 3XBBR2 drops to 1500 around 40 seconds.
See Figure 5.30.

* CUBIC maintains a CWND of around 1500 regardless of the scenario. VE-
GAS maintains lower CWND values due to its conservative nature as shown
in Figure 5.30.

* BBR2 does not primarily adjust its congestion window to manage through-
put; it estimates the available network bandwidth and adjusts its sending rate
accordingly. This behavior allows BBR2 to maintain efficient throughput
even when competing with multiple Vegas flows, which adjust their con-
gestion windows based on packet delay variations. Therefore, BBR2’s ap-
proach to bandwidth management can sometimes result in a lower observed
CWND compared to other algorithms under similar conditions, especially
against less aggressive algorithms like VEGAS. See Figure 5.28.

Concluding Remarks

The asymmetric competition experiment with four virtual machines (VMs) provides
critical insights into the performance dynamics of TCP congestion control algorithms in
environments characterized by uneven competition. Among the key findings, BBR2’s
ability to adapt its bandwidth usage swiftly and effectively in a scenario where it is
outnumbered showcases its robustness in various network conditions. With its aggres-
sive bandwidth consumption, CUBIC demonstrates its capacity to optimize throughput
in competitive network environments, particularly when it dominates less aggressive
algorithms such as VEGAS.

In contrast, VEGAS’s performance is notably less effective in this competitive set-
ting, pointing towards its limitations in aggressively contested network environments.
This observation suggests a potential mismatch between VEGAS’s conservative ap-
proach and scenarios where aggressive bandwidth acquisition is beneficial.

5.7. MULTIPLE: ASYMMETRIC COMPETITION (4 VMS) 94

The experiment underscores the necessity of selecting congestion control algorithms
that align with the competitive landscape of the network. This choice is crucial for main-
taining an equilibrium between throughput, fairness, and efficient resource utilization.
Insights into the behavior of round-trip times (RTT) and congestion window (CWND)
sizes further guide network administrators in optimizing network performance through
strategic algorithm selection.

For instance, in a dual-algorithm competition scenario where BBR2 and CUBIC
coexist, BBR2 maintains lower round-trip times (RTTs) by minimizing queuing de-
lays. At the same time, CUBIC might aggressively increase its congestion window
(CWND) in high-bandwidth environments, suggesting that BBR2 is more suited for
latency-sensitive applications. In contrast, CUBIC is advantageous when maximizing
throughput is the priority. With its less aggressive approach to increasing CWND, Vegas
is recommended for networks where maintaining low network congestion is paramount.
DCTCP shows superior performance in data centers or environments with mixed RTTs,
where its algorithm effectively reduces RTT fluctuations and stabilizes congestion win-
dow sizes, thus maintaining consistent performance levels across various traffic types.
Each of these examples guides network administrators in optimizing network perfor-
mance through strategic algorithm selection, emphasizing the importance of understand-
ing the specific demands and characteristics of the network environment when choosing
a congestion control strategy.

5.7. MULTIPLE: ASYMMETRIC COMPETITION (4 VMS) 95

Througput Througput
BBR2 vs 3CUBIC BBR2 vs 3DCTCP
12 Algorithm Algorithm
— BBR2_0 — BBR2_0
- 10 — cusica — bercra
4] — cusic2 — ocrcr2
= 8 — cuBiC_3 — DCTCP_3
[==]
=
= 6
=
S
3 4 S e e S
= 2 ”
o}
o 10 20 30 40 50 60 o 10 20 30 40 50 60
t (sec) t (sec)
Througput Througput
BBR2 vs 3VEGAS CUBIC vs 3BBR2
12 Algorithm Algorithm
— BBR2_0 — cusico
= 10 — VEGAS_1 — BBR21
k] — VEGAs 2 — BBR2 2
s s — VEGAS 3 — BBR2_3
=
= 6
=3
(=9
S a4
2
= 2
o
(o} 10 20 30 40 50 60 o} 10 20 30 40 50 60
t (sec) t (sec)
Througput Througput
CUBIC vs 3DCTCP CUBIC vs 3VEGAS
12 Algorithm Algorithm
cusic_o — cusic_o
- 10 — DCTCP_1 —— VEGAS_1
k] — bcree 2 — VEGAS 2
s s — bcrer 3 —— VEGAS_3
Z
= 6
=1
S
s 4
=4
£ 2 y
o A —
o 10 20 30 40 50 60 o 10 20 30 40 50 60
t (sec) t (sec)
Througput Througput
DCTCP vs 3BBR2 DCTCP vs 3CUBIC
12 Algorithm Algorithm
— bcree o — bocrce o
% 10 — BBR21 — cusic1
k] — BBR2 2 — cusic2
s s — BBR2.3 — cusic3
=Z
= 6
=
=9
S a
=3
= 2
(o}
o 10 20 30 40 50 60 o} 10 20 30 40 50 60
t (sec) t (sec)
Througput Througput
DCTCP vs 3VEGAS VEGAS vs 3BBR2
12 Algorithm Algorithm
— bcreeo — VEGAS_O
- 10 —— VEGAS_1 — BBR2_1
<41 — VEGAs2 — BBR22
% 8 —— VEGAS_3 —— BBR2 3
=
+ 6
=7
S
5 4
2
- I U I N
o
(o} 10 20 30 40 50 60 o} 10 20 30 40 50 60
t (sec) t (sec)
Througput Througput
VEGAS vs 3CUBIC VEGAS vs 3DCTCP
12 Algorithm Algorithm
— VEGAS 0 — VEGAS 0
= 10 — cusic1 — bcrer 1
k] — cusic2 — bcrer2
s s — cusic_3 — bcrce 3
=
= 6
=
=N
S a
=
=
o}
(o] 10 20 30 40 50 60 o 10 20 30 40 50 60
t (sec) t (sec)

Figure 5.28: Throughput for algorithms in Asymmetric-Algorithm Competition sce-
nario

1.0

0.5

Jain's Fairness Index

1.0

0.5

Jain's Fairness Index

1.0

0.5

Jain's Fairness Index

1.0

0.5

Jain's Fairness Index

1.0

0.5

Jain's Fairness Index

1.0

0.5

Jain's Fairness Index

5.7. MULTIPLE: ASYMMETRIC COMPETITION (4 VMS) 96

Jain's Fairness Index over Time

Jain's Fairness Index
BBR2 vs 3CUBIC (4 flows)

—— BBR2

0 10 20 30 40 50 60

Throughput (MB)

Jain's Fairness Index
BBR2 vs 3VEGAS (4 flows)

—— BBR2

0 10 20 30 40 50 60

Throughput (MB)

Jain's Fairness Index
CUBIC vs 3DCTCP (4 flows)

—— CUBIC

0 10 20 30 40 50 60

Throughput (MB)

Jain's Fairness Index
DCTCP vs 3BBR2 (4 flows)

—— DCTCP

0 10 20 30 40 50 60

Throughput (MB)

Jain's Fairness Index
DCTCP vs 3VEGAS (4 flows)

—— DCTCP

1

0 10 20 30 40 50 60

Throughput (MB)

Jain's Fairness Index
VEGAS vs 3CUBIC (4 flows)

Jain's Fairness Index
BBR2 vs 3DCTCP (4 flows)

—— BBR2

10 20 30 40 50 60
Throughput (MB)

Jain's Fairness Index
CUBIC vs 3BBR2 (4 flows)

— CUBIC

10 20 30 40 50 60
Throughput (MB)

Jain's Fairness Index
CUBIC vs 3VEGAS (4 flows)

—— CuUBIC

J

10 20 30 40 50 60
Throughput (MB)

Jain's Fairness Index
DCTCP vs 3CUBIC (4 flows)

—— DCTCP

10 20 30 40 50 60
Throughput (MB)

Jain's Fairness Index
VEGAS vs 3BBR2 (4 flows)

—— VEGAS

10 20 30 40 50 60
Throughput (MB)

Jain's Fairness Index
VEGAS vs 3DCTCP (4 flows)

—— VEGAS

0 10 20 30 40 50 60

Throughput (MB)

—— VEGAS

10 20 30 40 50 60
Throughput (MB)

Figure 5.29: Fairness for algorithms in Asymmetric-Algorithm Competition scenario

Cwnd

Cwnd

Cwnd

Cwnd

Cwnd

5.7. MULTIPLE: ASYMMETRIC COMPETITION (4 VMS)

Cwnd
BBR2 vs 3CUBIC
Algorithm
— — BBR2 0
2500

2000

1500

1000

o
I
o
N
o
w
o
N
9]
u
o
)
o

t (sec)
Cwnd
BBR2 vs 3VEGAS
Algorithm
— BBR2_O
—— VEGAS_1

—— VEGAS 2
—— VEGAS_3

3000

2500

2000

1500

1000

(=]
=
o
N
o
w
o
N
9]
u
S)
o
o

t (sec)

cwnd
CUBIC vs 3DCTCP
Algorithm
— cusic_o
— obcrer
— bcrer2
55006 — bcrer s

3000

2000

1500

1000

o
I
o

20 30 40 50 60
t (sec)
Cwnd
DCTCP vs 3BBR2
Algorithm
— bcree o

3000
2500

2000

1500

1000

o
I
o

20 30 a0 50 60
t (sec)

Cwnd
DCTCP vs 3VEGAS

g
3000 / VEGAS_1
2500 VEGAS_3
2000
1500

1000

10 20 30 a0 50 60
t (sec)
cwnd
VEGAS vs 3CUBIC
Algorithm
3000 =
2500 — cueic3

2000

1500

1000

o 10 20 30 40 50 60
t (sec)

Cwnd
BBR2 vs 3DCTCP

Algorithm

— BBR2_0

— obcrera

— ocree2

— bcree3

o 10 20 30 40 50 60

t (sec)

Cwnd
CUBIC vs 3BBR2

Algorithm
— cusic_o
— BBR2_1
— BBR2 2
— BBR2.3
o 10 20 30 40 50 60
t (sec)
cwnd
CUBIC vs 3VEGAS
Algorithm
— cusic_o
— VEGAS 1
—— VEGAS 2
— vEGAS 3
 — e
o 10 20 30 40 50 60
t (sec)
Ccwnd
DCTCP vs 3CUBIC
Algorithm
— Dbcrce o
— cusic1
— cusic 2
— cusic_3
o 10 20 30 40 50 60
t (sec)
cwnd
VEGAS vs 3BBR2
Algorithm
—— VEGAS 0
—— BBR2 1
— BBR2 2
—— BBR2 3
o 10 20 30 40 50 60
t (sec)
cwnd
VEGAS vs 3DCTCP
Algorithm
—— VEGAS 0
— bcrera
— bpcrce 2
—)
o 10 20 30 40 50 60
t (sec)

97

Figure 5.30: CWND for algorithms in Asymmetric-Algorithm Competition scenario.

5.8. CHAPTER CONCLUSION 98

5.8 Chapter Conclusion

The experimental analysis of TCP congestion control algorithms within virtualized en-
vironments has provided valuable insights into the behavior and performance of various
algorithms under different network conditions. Across multiple experimental scenarios,
including baseline tests, delayed flow analysis, and packet loss assessments, it became
clear that the choice of congestion control algorithm significantly impacts network per-
formance, particularly in terms of throughput, latency, and fairness.

Algorithms like BBR2 and Vegas demonstrated a tendency towards maintaining
lower latency and fairer bandwidth distribution, making them suitable for environments
where minimizing delay and ensuring equitable resource allocation are priorities. BBR2,
in particular, showed robust performance across scenarios with varying latencies and
packet loss, highlighting its adaptability and potential for use in dynamic virtualized
environments.

On the other hand, more aggressive algorithms such as CUBIC and DCTCP ex-
celled in maximizing throughput, particularly in scenarios where high data transfer rates
are crucial. However, this often came at the cost of increased latency and potential un-
fairness in bandwidth distribution, which could be detrimental in environments with
prevalent latency-sensitive applications.

The comparative analysis of these algorithms underscores the importance of context-
specific selection when deploying TCP congestion control strategies in virtualized data
centers. For instance, BBR2 and Vegas are better suited for scenarios requiring stable
performance under varying network conditions. Meanwhile, CUBIC and DCTCP are
preferred where throughput maximization is the primary goal.

The results presented in this chapter provide a basis for network engineers and re-
searchers to make informed decisions about deploying TCP congestion control algo-
rithms. By understanding the strengths and limitations of each algorithm under various
conditions, stakeholders can better optimize network performance to meet the specific
needs of their applications and infrastructure.

CHAPTER 6

Discussion

6.1 Overview of Key Findings

This comprehensive analysis of TCP congestion control algorithms within virtualized
environments unveils significant insights into the performance dynamics of Vegas, CU-
BIC, BBR2, and DCTCP under various operational scenarios. Our experiments high-
light the distinct behaviors of these algorithms in baseline evaluations, their resilience
and adaptability to basic network failures, and their competitive interactions in sce-
narios involving multiple algorithms. Key findings demonstrate the nuanced trade-offs
between efficiency, fairness, and latency management across different congestion con-
trol strategies. For instance, Vegas’s conservative approach is advantageous in latency-
sensitive environments, whereas CUBIC and DCTCP exhibit strengths in scenarios pri-
oritizing throughput. BBR2, with its balanced approach, stands out for its scalability
and fairness, particularly in densely populated virtual environments, showcasing its po-
tential as a versatile solution in cloud data centers.

The implications of these findings extend to the design and management of virtual-
ized network architectures, underscoring the importance of selecting and tuning conges-
tion control algorithms to suit specific operational needs and environmental conditions.
The adaptability of BBR2 in maintaining performance stability across varying network
densities, its resilience to packet loss, and its capability to ensure fairness in competitive
settings illustrate the algorithm’s suitability for dynamic cloud-based infrastructures.
These insights contribute to a deeper understanding of congestion control dynamics in
virtualized settings and guide network administrators and system architects in optimiz-
ing network performance and reliability. The strategic selection of TCP algorithms,
based on comprehensive analysis and tailored to the unique demands of virtualized en-
vironments, emerges as crucial in enhancing the efficiency and robustness of cloud data
centers.

6.2 Implications of Baseline Evaluation

Vegas’s lower sending rates and conservative CWND increase suggest its applicabil-
ity in scenarios where preventing network congestion is paramount, advocating for its

99

6.2. IMPLICATIONS OF BASELINE EVALUATION 100

selection in latency-sensitive environments. Conversely, the higher sending rates and
aggressive CWND increase demonstrated by CUBIC and DCTCP align with use cases
that prioritize maximizing data transfer rates, even at the cost of higher latency. BBR2’s
performance, characterized by a balance between throughput efficiency and fairness,
indicates its potential as a scalable solution for complex data center networks, where
equitable resource distribution among a high number of VMs is critical.

The observation of retransmissions, particularly pronounced in BBR2 during the
initial flow stages, underscores the algorithms’ adaptability to network conditions. This
adaptability is essential for maintaining stable performance across varying network den-
sities and conditions, suggesting a need for algorithms that can quickly adjust to chang-
ing network environments.

These findings have strategic implications for network architecture design and man-
agement, especially in selecting and tuning congestion control algorithms to match spe-
cific operational requirements. For network administrators and system architects, un-
derstanding the balance between efficiency, fairness, and latency facilitated by each
algorithm is crucial in optimizing network performance and reliability in cloud data
centers.

The baseline evaluation of TCP congestion control algorithms—Vegas, CUBIC,
BBR2, and DCTCP—within a virtualized environment reveals nuanced implications
for their deployment in cloud data centers. In virtualized scenarios, where server-to-
server communication involves mediation through multiple virtual machines (VMs) on
high-performance servers, network management and configuration rely heavily on the
observed behaviors of these algorithms. For instance, the conservative approach of Ve-
gas, with its lower sending rates and RTTs, aligns with environments prioritizing latency
sensitivity over throughput maximization, making it suitable for applications requiring
quick response times. Conversely, CUBIC and DCTCP’s aggressive bandwidth utiliza-
tion strategies, reflected in their higher sending rates and CWND values, suggest their
applicability in scenarios where maximizing data transfer rates is crucial, albeit at the
potential cost of increased latency and retransmissions. BBR2’s adaptability, demon-
strated through its adjustment period and subsequent performance stability, offers a bal-
anced approach for managing throughput efficiency and fairness in densely populated
virtual environments. This adaptability is particularly relevant in cloud infrastructures,
where dynamic resource allocation and fluctuating network conditions demand algo-
rithms that can swiftly adjust to maintain optimal performance.

6.3. ANALYSIS OF BASIC NETWORK FAILURES 101

6.3 Analysis of Basic Network Failures

This section delves into the results of TCP congestion control algorithms under varying
network delays in virtualized environments.

6.3.1 Impact of Delays in Different Scenarios

The “Impact of Delays in Different Scenarios" analysis across both "Two-Level Delayed
Flow Analysis" and "Four-Level Delayed Flow Analysis" experiments offers insights
into the performance and fairness of TCP congestion control algorithms under varied
delay conditions within virtualized environments. The experiments reveal that BBR2
consistently maintains a higher degree of fairness and throughput efficiency, regardless
of the delay, showcasing its robustness and reliability in handling latency variations
without necessitating retransmissions. This suggests BBR2’s potential as a preferable
algorithm in cloud data center networks, where latency inconsistencies are typical, due
to its ability to balance congestion window sizes adaptively and minimize latency im-
pacts on throughput.

Conversely, while demonstrating scalability with increased flows, Vegas indicates its
conservative bandwidth utilization might not always be optimal in varied-delivery sce-
narios. However, it improves in fairness with higher loads. CUBIC and DCTCP’s per-
formance, characterized by aggressive bandwidth claims, remains consistent across sce-
narios, suggesting their suitability for applications prioritizing throughput over latency.
However, their larger congestion windows in no-delay scenarios highlight a potential
for increased latency under competition, which could impact applications sensitive to
delay.

The nuanced behaviors observed across these algorithms under delay variations un-
derscore the critical need for algorithm selection and tuning tailored to specific net-
work conditions and application requirements within virtualized environments. BBR2’s
adaptability to delay conditions without sacrificing fairness or necessitating retransmis-
sions positions it as a compelling option for managing network traffic in cloud-based
infrastructures facing dynamic latency challenges. These findings contribute to a deeper
understanding of TCP congestion control dynamics in virtualized settings and guide net-
work administrators in optimizing configurations to achieve desired performance out-
comes in complex, latency-variable network ecosystems.

The virtualization perspective. In a cloud-based data center environment character-
ized by fluctuating network conditions due to virtualization overhead and resource mul-
tiplexing, the adaptability and fairness of algorithms like BBR2 are crucial. While
BBR2’s mechanism, which relies on RTT measurements to estimate available band-
width, generally ensures robust network performance, it is susceptible to inaccuracies in

6.3. ANALYSIS OF BASIC NETWORK FAILURES 102

environments where virtualization layers dynamically change their load, potentially af-
fecting RTT estimations. This can lead to misestimation of bandwidth and consequently
impact performance and fairness. Recognizing this limitation, further investigation into
new ways in which to adapt BBR2 could or enhanced to better handle such fluctua-
tions in virtualized settings is essential. Nevertheless, the overall performance of BBR2
in maintaining throughput fairness with minimal latency impact highlights its suitabil-
ity for cloud data centers. Ensuring consistent and predictable network performance
remains critical for supporting diverse and latency-sensitive applications, and BBR2,
despite its limitations, essentially meets these requirements.

6.3.2 Packet Loss Effects

The experiments investigating the impact of packet loss on TCP congestion control al-
gorithms within virtualized environments, both on a single VM and across two VMs,
reveal insights into each algorithm’s resilience and adaptability to packet loss. BBR2’s
performance stands out in maintaining higher sending rates and throughput, even as
packet loss rates increase, showcasing its robustness and superior handling of packet
loss. This resilience is attributed to BBR2’s ability to sustain larger congestion win-
dows and effectively discern between congestion-induced losses and those arising from
other factors, thereby minimizing the negative impact on network performance. Unlike
traditional TCP congestion control algorithms that primarily rely on a single metric,
such as packet loss or delay, to infer network congestion, BBR2 employs a more holis-
tic strategy. This involves the utilization of multiple signals, including bandwidth esti-
mation and round-trip time (RTT) measurements, to form a nuanced understanding of
the network’s state. By not solely depending on packet loss or delay variations, BBR2
can differentiate between congestion-induced packet loss and packet loss resulting from
other causes, such as transient network errors or link failures.

Furthermore, BBR2’s mechanism to maintain more oversized congestion windows
under packet loss scenarios is rooted in its ability to gauge the network’s available
bandwidth and end-to-end delay accurately. This accurate bandwidth estimation allows
BBR2 to adjust its sending rate proactively rather than reactively downsizing the con-
gestion window after a loss is detected, a common approach in loss-based algorithms.
Consequently, BBR2 can sustain higher levels of throughput, as it avoids the conser-
vative reduction in sending rates that characteristically hampers other algorithms in the
face of packet loss.

Moreover, BBR2 introduces improvements in loss detection and response, allowing
it to respond to actual congestion signals with more precision and less dependency on ar-
bitrary thresholds. This nuanced approach ensures that BBR2 can maintain operational
efficiency and fairness, even in networks where packet loss does not directly signal
congestion. BBR2’s strategy is to utilize a comprehensive set of network performance

6.3. ANALYSIS OF BASIC NETWORK FAILURES 103

indicators, enabling it to sustain robust and efficient transmission rates by accurately
interpreting the network’s congestion state without over-relying on any single metric.

Conversely, despite struggling with lower throughput and sending rates under packet
loss conditions, Vegas demonstrates improved fairness and balance in sending rates
across flows in the two VM scenarios, especially as packet loss increases. This sug-
gests that Vegas and BBR2 offer a more equitable distribution of network resources
among competing flows, an essential trait for maintaining performance consistency in
environments with variable network quality.

CUBIC and DCTCP, while exhibiting less sensitivity to increased packet loss in
sending rate and throughput, tend to have higher congestion windows for lossless flows,
potentially exacerbating unfairness in bandwidth allocation among flows with varying
packet loss rates. Their higher RTTs and fewer retransmissions, compared to BBR2
and Vegas, reflect a different approach to handling packet loss, prioritizing bandwidth
utilization over fairness or latency in these scenarios. However, it is crucial to note that
DCTCP offers significant advantages in data center environments that other algorithms
do not manage effectively. Specifically, DCTCP’s utilization of Explicit Congestion
Notification (ECN) allows for more granular control of congestion, which is particularly
effective in addressing the incast problem common to data center traffic. This capability
makes DCTCP highly suitable for environments with dense server deployments and
high volumes of parallel data retrieval operations, where minimizing congestion spikes
and avoiding packet drops are critical.

The findings underscore the importance of choosing TCP congestion control algo-
rithms that perform well under ideal conditions and maintain fairness and efficiency in
the face of packet loss, a common challenge in virtualized cloud environments. BBR2’s
adaptability and robustness under packet loss conditions and its ability to maintain low
RTTs and high throughput position it as a strong candidate for scenarios where network
reliability and performance consistency are paramount.

The virtualization perspective. In virtualized environments, where resources are dy-
namically shared among multiple virtual machines (VMs) on the same physical hard-
ware, the impact of packet loss on TCP congestion control algorithms becomes even
more significant. The experiments highlighting the effects of packet loss on single and
multiple VMs demonstrate the critical importance of algorithm resilience and fairness
in such settings. Specifically, BBR2’s robust performance under packet loss condi-
tions—maintaining high throughput and low RTTs aligns well with the demands of
virtualized data centers, where fluctuating network quality and resource competition are
commonplace. This resilience ensures that applications running on VMs can continue to
communicate efficiently, even in the face of network challenges. The varying responses
of TCP congestion control algorithms to packet loss, as observed in the experiments,
underscore the importance of selecting and tuning these algorithms to suit the unique

6.4. INSIGHTS FROM MULTIPLE ALGORITHM

104
COMPETITIONS

characteristics of virtualized environments, where ensuring consistent and reliable net-
work performance is crucial for supporting a wide range of applications and services.

6.4 Insights from Multiple Algorithm Competitions

The insights drawn from the "Dual-Algorithm Competition (2 VMs)" and "Asymmetric
Competition (4 VMs)" scenarios within the multiple algorithms competition experi-
ments offer a look at the dynamics of TCP congestion control algorithms when faced
with direct network resource competition. In the dual-algorithm setup, the aggressive
bandwidth utilization strategies of DCTCP and CUBIC allowed them to dominate over
the more conservative approaches of VEGAS and BBR2, particularly evident in their
ability to maintain larger congestion windows and achieve higher sending rates.

Conversely, the asymmetric competition scenario, involving one VM against three
operating under a different algorithm, highlights the adaptability and resilience of BBR2
in the face of uneven competition. Despite the inherent disadvantages in bandwidth
usage and sending rates, BBR2’s performance against multiple instances of CUBIC and
DCTCP demonstrates its capability to maintain fairness over time, a crucial attribute
in diverse network conditions. CUBIC’s consistent performance, maintaining higher
throughput even when solo against multiple BBR2 or DCTCP flows, further exemplifies
its robustness in monopolizing available bandwidth.

With its conservative nature, VEGAS consistently found itself at a disadvantage
across both scenarios, struggling to compete effectively against the more aggressive
algorithms. This indicates a potential mismatch between VEGAS’s conservative band-
width utilization strategy and high competition and resource contention environments.

These experiments underscore the significance of algorithm selection based on the
competitive landscape of the network environment. The ability of BBR2 to adapt and
compete for resources, even when outnumbered, alongside CUBIC’s aggressive and
dominant performance, provides critical insights for network administrators in opti-
mizing congestion control strategies. It highlights the necessity of understanding the
balance between aggression, efficiency, and fairness in managing network resources,
especially in virtualized environments where the competition for bandwidth is a con-
stant challenge.

The virtualization perspective. 'The aggressive behaviors of DCTCP and CUBIC, which
enable these algorithms to secure more bandwidth when competing, highlight the poten-
tial for performance optimization in environments where network resources are heavily
contested. However, this advantage also points to the risk of creating imbalances in
resource allocation, particularly in virtualized settings where multiple applications or
services may share physical resources. The adaptability and resilience of BBR2, espe-

6.4. COMPARISON WITH EXISTING LITERATURE 105

cially in maintaining fairness in asymmetric competitions, illustrate the importance of
algorithmic flexibility in environments characterized by fluctuating demand and diverse
workload profiles. The challenges VEGAS faces in these competitive scenarios reveal
the limitations of more conservative algorithms in aggressive competition landscapes,
emphasizing the need for network administrators to carefully consider the specific char-
acteristics and demands of their virtualized environments when selecting and tuning
congestion control algorithms. This strategic decision-making is essential to ensur-
ing that virtualized networks can efficiently support a wide range of applications while
maintaining high levels of performance and fairness, even under intense competition for
bandwidth.

Comparison with Existing Literature

In comparing the results obtained in this dissertation with those reported in the related
works, it becomes evident how virtualized environments’ specific conditions and con-
figurations influence TCP congestion control algorithm performance differently from
traditional network settings.

Turkovic et al. [TKU19] focused on a controlled test environment to analyze the
performance of TCP congestion control algorithms under various network conditions.
Their study revealed that loss-based algorithms are more aggressive, resulting in high
retransmission rates and latency, while delay-based algorithms are more conservative,
presenting, in general, lower throughput rates. Hybrid algorithms like BBR balance
these extremes, but favor flows with higher RTT. In this dissertation, similar results were
observed: loss-based algorithms showed aggressive behavior with many retransmissions
and higher delay. In contrast, delay-based algorithms maintained low RTT but faced
difficulties maintaining a high throughput rate under competition.

In their “Base-Line scenario”, Turkovic et al. found that delay-based algorithms,
such as Vegas, were more conservative, resulting in lower throughput. Loss-based al-
gorithms like Cubic were aggressive and consequently had high numbers of retrans-
missions. Our work observed similar results in virtualized environments, adding that
virtualization overhead further influenced throughput and RTT metrics. In both studies,
hybrid algorithms such as BBR and BBR2 showed intermediate performance, but vir-
tualization introduced additional variations in performance, such as latency spikes and
variations in bandwidth utilization.

In the “bandwidth scenario (BW)", Turkovic et al. noted that delay-based algorithms
lose performance when competing with loss-based or hybrid algorithms. They also
identified that hybrid algorithms, such as BBR, showed better fairness properties than
loss-based ones. Our work also observed that, in virtualized environments, delay-based
algorithms were at a disadvantage in competitive scenarios and that BBRv2 showed

6.4. COMPARISON WITH EXISTING LITERATURE 106

fairer performance in terms of resource sharing. However, the virtualization overhead
has increased unpredictability, resulting in a less stable fairness. For example, multiple
VMs competing for the same physical resources can lead to uneven bandwidth alloca-
tion and variability in throughput, hurting the observed inter-fairness.

Turkovic et al. concluded that delay-based algorithms had better inter-fairness prop-
erties, ensuring a fair distribution of resources between different algorithms operating
on the same network, with a Jain fairness index close to 1, indicating that available re-
sources were shared fairly between the flows. Hybrid algorithms, such as BBR, also
demonstrated good fairness properties but were less consistent than delay-based ones.
In virtualized environments, we observed that virtualization overhead added signifi-
cant variability, negatively impacting inter-fairness. Loss-based algorithms like Cubic
showed more significant throughput oscillations and lower fairness than when used in a
non-virtualized environment.

Both studies observed that loss-based algorithms such as CUBIC achieve good intra-
fairness properties when competing against each other, with flows eventually converging
to an equitable bandwidth distribution. However, in our work, we noticed that this con-
vergence can be slower and less predictable in virtualized environments due to the dy-
namics of VM resource allocation. Hybrid algorithms, such as BBRv2, have improved
over the original BBR but still face fairness challenges in virtualized environments.
Bandwidth distribution between flows using BBRv2 was observed to be fairer, but vari-
ability in VM resource allocation resulted in latency spikes and fluctuating throughput,
especially under varying workloads.

Finally, in the “RTT scenario,” Turkovic et al. found that hybrid algorithms like
BBR favored flows with higher RTT. In contrast, delay-based algorithms were able to
maintain low RTTs but suffered when competing with loss-based algorithms. This re-
search observed that BBRv?2 often favored flows with lower RTT in virtualized environ-
ments. Several factors can explain this difference in behavior, including the influence
of hypervisor overhead, the jitter introduced by virtualization, and variability in dy-
namic resource allocation and hypervisor resource scheduling policies that may favor
flows with lower RTT. In virtualized environments, the hypervisor manages the distribu-
tion of physical resources among VMs, introducing variability and additional overhead.
These scheduling policies can result in a resource allocation that favors flows with lower
RTT, as these flows can respond more quickly to changes in resource allocations, lead-
ing to more stable and efficient performance. Furthermore, hypervisor overhead and
the introduction of jitter can be more detrimental to flows with higher RTT, which are
more sensitive to these variations. However, it is important to note that BBRv2 does not
always favor flows with lower RTT in virtualized environments. As illustrated in our
study, different behaviors were observed depending on the number of flows. For exam-
ple, in a scenario with four flows, BBRv2 allowed flows with a delay of 200ms to access
bandwidth greater than or equal to flows with Oms delay over time. This contrasts with

6.4. COMPARISON WITH EXISTING LITERATURE 107

the scenario with only two flows, where BBRv2 prioritized the flow with lower RTT.
This behavior is further discussed in Section 5.2. In summary, virtualization introduces
an additional layer of complexity, with dynamic resource allocation impacting RTT met-
rics more significantly than in Turkovic et al.’s controlled tests. However, the dynamic
adjustments made by BBRv2 help optimize throughput and minimize latency across
various network conditions.

Therefore, while the fundamental behavior of TCP congestion control algorithms is
consistent between the two studies, the virtualization context in our research reveals an
additional layer of challenge in deploying these algorithms in real virtualization-based
networks compared to controlled test environments analyzed by Turkovic et al. This
crucial difference highlights the importance of considering the effects of virtualization
when evaluating the performance of TCP congestion control algorithms in modern data
center scenarios.

Nguyen et al. [NGS16] used the ns-3 network simulator to evaluate TCP algo-
rithms in Data Center Networks (DCNs), finding significant performance variances
among algorithms like Vegas, which kept queue lengths low, and BIC and CUBIC,
which struggled with high packet drop rates and queue occupancy. Our physical experi-
ments highlight similar trends in algorithm performance concerning queue management
and packet drops. However, introducing virtualized components adds complexity, with
hypervisor overhead and virtual network functions influencing algorithm behavior more
significantly than non-virtualized DCNs. For instance, our results show that CUBIC’s
aggressiveness, beneficial in traditional settings for maximizing throughput, can lead
to inefficient bandwidth utilization and increased latency in virtualized environments
due to the additional processing required by virtual switches and hypervisors. It’s criti-
cal to note that CUBIC does not directly adapt to such additional processing overhead.
Instead, the increased likelihood of packet loss and variable delay imposed in these en-
vironments might cause CUBIC to incorrectly perceive network conditions, leading to
inefficient bandwidth utilization and potentially increased latency.

Abadleh et al.’s [ATB"22] comparative analysis indicates that TCP Vegas had the
best performance in terms of throughput, latency, and retransmission rate due to packet
loss in the scenario with a single TCP flow under congestion when compared to TCP
Tahoe, Reno, and New Reno. However, in the scenario with two TCP flows and one
background UDP flow, Vegas’ performance in terms of throughput was lower than that
of TCP Tahoe, a loss-based algorithm, due to reduction of its aggressive in the send-
ing rate when detecting congestion, allowing Tahoe to utilize more bandwidth. In our
experiments, TCP Vegas also showed good performance in terms of latency and re-
transmission rate when in a scenario where it was present on its own. However, Vegas’
performance in terms of throughput was lower than that of the other compared algo-
rithms, including Cubic, which is loss-based like Tahoe, due to its aggressive reduction
in the sending rate when detecting congestion, and this difference was more accentuated

6.4. PRACTICAL IMPLICATIONS 108

due to virtualization-related issues, such as hypervisor overhead and variability in VM
resource allocation, which can affect the efficiency of Vegas congestion control.

Patel et al. [PSK*20] reported that CUBIC and BIC were more effective in environ-
ments with high bandwidth and latency, attributing this to their aggressive congestion
window growth strategies. However, CUBIC’s performance demonstrated a nuanced
complexity in our virtualized context. While its aggressive window growth strategy
aimed to maximize throughput, we observed that this approach can lead to suboptimal
performance in virtualized environments in some cases. The virtualization layer intro-
duces additional latency and packet processing overhead, which can mitigate the ad-
vantages of CUBIC’s aggressive window growth. For example, in scenarios with high
VM density, CUBIC’s rapid increase in sending rate often resulted in increased packet
queuing at the virtual switch, leading to higher latency and occasionally greater packet
loss when the queues overflowed. This highlights the critical impact of virtualization-
specific factors on algorithm performance. Our results suggest that while CUBIC re-
mains a robust choice for traditional networks, its efficacy in virtualized environments
may be compromised, necessitating adjustments or the consideration of alternative al-
gorithms better suited to the unique challenges presented by virtualization.

In summary, this dissertation’s results extend the understanding of TCP congestion
control algorithm performance by highlighting the distinct impact of virtualized envi-
ronments. Our study underscores the need for further optimization. The nuanced behav-
iors observed in our experiments, particularly regarding the interaction between algo-
rithmic strategies and virtualization-specific factors, point to the complexity of ensuring
optimal performance in such environments and suggest avenues for future research and
development.

Practical Implications

The experimental analysis of TCP congestion control algorithms—Vegas, CUBIC, BBR2,
and DCTCP—within virtualized environments offers profound practical implications
for network management, particularly in cloud data centers. These findings guide net-
work administrators and system architects in selecting and fine-tuning congestion con-
trol algorithms to optimize network performance, reliability, and fairness in varying
operational scenarios. Each algorithm exhibits unique characteristics that align with
specific network management goals, from latency sensitivity to throughput maximiza-
tion and fairness in resource allocation. Based on our experimental results, Table 6.1
provides recommendations targeted towards each congestion control algorithm under
different network scenarios, guiding network administrators in optimizing their network
configurations.

For latency-sensitive applications, such as real-time communication and interactive

6.4. PRACTICAL IMPLICATIONS 109

Table 6.1: Recommendation Table. Cells with two values show that both algorithms
were equally relevant. The "-" symbol indicates that no algorithm was better for that
metric or that all algorithms performed poorly.

Scenario Metrics
Most Data Less
Successfully Best RTT | More Fairness ..
. Retransmission
Delivered
Baseline e CUBIC ® VEGAS | @ BBR2 ® VEGAS
e DCTCP
Basic Failures (Delay) | @ BBR2 - ® BBR2 e BBR2
e CUBIC
Basic Failures (Drop) | e BBR2 e VEGAS | ® BBR2 -
e VEGAS
Multiple e CUBIC e VEGAS | @ BBR2 @ VEGAS
e DCTCP

services, Vegas’s conservative congestion control mechanism can prevent network con-
gestion effectively, maintaining lower round-trip times (RTTs) and reducing the like-
lihood of packet retransmissions. This approach ensures quick response times, which
is crucial for enhancing user experience in latency-critical environments. As shown in
Table 6.1, Vegas consistently provided the best RTT in the Baseline, Basic Failures, and
Multiple scenarios, making it an excellent choice for applications where low latency is
essential. On the other hand, scenarios that prioritize data transfer rates over latency,
such as bulk data transfers and large-scale backups, may benefit from the aggressive
bandwidth utilization strategies of CUBIC and DCTCP. These algorithms are designed
to maximize throughput, albeit potentially at the cost of increased latency and higher re-
transmission rates, which may be acceptable trade-offs in contexts where data delivery
speed is paramount.

BBR2’s balanced performance profile, characterized by its adaptability and effi-
ciency in maintaining throughput fairness and minimizing RTTs, makes it particularly
suitable for complex, densely populated data center networks. Its ability to quickly
adjust to changing network conditions without necessitating frequent retransmissions
positions BBR2 as a scalable solution for cloud data centers, where equitable resource
distribution among a high number of virtual machines (VMs) is critical. As indicated in
Table 6.1, BBR2 excelled in fairness across various scenarios. It demonstrated resilience
with regard to delay and packet drop situations, underscoring its potential as a reliable
congestion control option in environments where network reliability and performance
consistency are paramount.

The practical implications of these insights extend to the strategic design and man-
agement of virtualized network architectures. Understanding the specific strengths and

6.4. KEY TAKEAWAYS 110

limitations of each TCP congestion control algorithm allows network administrators to
tailor their approach to meet the diverse requirements of different applications and ser-
vices hosted in cloud data centers. Additionally, the dynamic nature of cloud-based
infrastructures, characterized by fluctuating network conditions and diverse workload
profiles, demands a flexible approach to network management. The findings from the
analysis of basic network failures and multiple algorithm competitions highlight the im-
portance of algorithm adaptability in maintaining stable and fair network performance
across varying scenarios. Continuous monitoring, analysis, and adjustment of conges-
tion control strategies are essential to ensuring that virtualized networks can efficiently
support a wide range of applications while adapting to the evolving demands of cloud
data centers.

Key Takeaways

Based on the results summarized in Table 6.1, we provide the following key takeaways
to guide network administrators in selecting the most appropriate congestion control al-
gorithm for virtualized environments. These recommendations apply to scenarios anal-
ogous to this study’s investigation.

* Latency-Sensitive Applications: For a virtualized environment hosting latency-
sensitive applications, such as real-time communication and interactive services,
Vegas is suggested. It consistently provided the best RTT in the Baseline, Basic
Failures (Drop), and Multiple scenarios.

* High-Throughput Requirements: In virtualized scenarios where maximizing
data transfer rates is crucial, such as bulk data transfers and large-scale backups,
CUBIC and DCTCP tend to be favorable choices. These algorithms excelled
with regard to metrics representing exchanged data for the Baseline and Multiple
scenarios.

* Fairness and Resilience: BBR2 tends to be well-suited for virtualized environ-
ments requiring balanced performance and fairness. It demonstrated superior fair-
ness across various scenarios and showed resilience to delay and packet drop sit-
uations, making it suitable for complex, densely populated data center networks.

General Recommendation: Network administrators managing virtualized environ-
ments should select TCP congestion control algorithms based on specific operational
needs. Vegas is ideal for minimizing latency, CUBIC and DCTCP for maximizing
throughput, and BBR2 for maintaining fairness and adaptability in dynamic network
conditions. As mentioned, these recommendations are particularly relevant for scenar-
ios analogous to this study’s investigation.

CHAPTER 7

Conclusion

7.1 Limitations and Future Research

Limitations

The experimental analysis conducted in this work focuses on TCP congestion control
algorithms in virtualized environments and provides insights into their dynamics and
performance in the evaluated context. This study uses a specific virtualization plat-
form, KVM, and selected four TCP algorithms (Vegas, CUBIC, BBR2, DCTCP) due
to time and resource constraints. While limiting the generalization of findings across
different platforms or algorithms, these choices allow for in-depth exploration within a
manageable scope. Despite the diversity in simulated network conditions, they do not
encompass the total variability of real-world environments. This limitation is a trade-
off needed for maintaining controlled and reproducible experimental conditions. Fur-
thermore, the scale of the experiments was determined subject to resource availability,
which inherently limits the exploration of interactions between multiple algorithms un-
der competitive conditions. The observed performance of TCP algorithms is also linked
to their specific implementations in the Linux kernel, which may change over time.
Furthermore, this study did not include the QUIC protocol in its experiments, focus-
ing only on TCP. The decision to exclude QUIC was due to several factors. First, QUIC
operates over UDP, introducing a different set of implementation dynamics and com-
plexities compared to TCP [PTFK23]. Integrating and testing QUIC would require sig-
nificant modifications to the experimental setup, including changes to traffic generation
tools and monitoring frameworks. Additionally, QUIC is still evolving, and its various
versions may not be as stable or widely supported in virtualized environments as TCP.
Second, although QUIC is gaining popularity, according to recent data from Cloudflare
Radar [Clo24] on adopting and using transport protocols on the internet, TCP demon-
strates significant dominance over QUIC. The Cloudflare Radar reveals that, from July
2023 to July 2024, a combination of the Transport Layer Security (TLS) 1.2 and TLS
1.3 protocols, both running over TCP, made up approximately 69% of secure traffic. In
contrast, QUIC, which incorporates TLS 1.3 for security, represents 30.5% of secure
traffic. Given the focus on TCP and time and resource constraints, the inclusion of
QUIC was beyond the feasible scope of this study. However, the performance charac-

111

7.2. CONCLUSION 112

teristics of QUIC in cloud and data center environments would be an interesting avenue
for future research.

Future Research

Several promising areas can be explored to build upon the findings of this dissertation.
Future research could explore TCP congestion control across different virtualization
technologies, such as Docker, VMware, LDoms/Oracle VM Server, or XEN, to assess
whether the results from KVM remain consistent across platforms. Including newer or
alternative TCP algorithms might provide a deeper understanding of congestion control
strategies and their applications. Real-world deployment with cloud service providers
could validate laboratory results under operational network conditions, offering insights
into the practical effectiveness of different congestion control mechanisms. Investigat-
ing the potential of machine learning and Al to predict and adjust TCP performance in
real time could lead to more adaptive congestion control strategies. Additionally, the
impact of hardware innovations like Software-Defined Networking (SDN) and Network
Function Virtualization (NFV) on TCP congestion control deserves further exploration
to optimize network traffic management in modern network infrastructures. Explor-
ing how these technologies mitigate data center network issues like TCP incast, mi-
crobursts, and congestion spreading is also essential. These phenomena, particularly in
high-throughput, low-latency environments, can severely disrupt network performance
and reliability. Future investigations can enhance network management solutions’ ro-
bustness, adaptability, and efficiency by extending research to these areas, particularly
in virtualized environments.

7.2 Conclusion

This dissertation was dedicated to carrying out exploratory research in the domain of
TCP congestion control algorithms in virtualized environments. Through a methodical
experimental structure, this study observed the complex interaction between mecha-
nisms of TCP congestion control algorithms — specifically Vegas, CUBIC, BBR2, and
DCTCP - and the operational scenarios of virtualized infrastructures. The findings pro-
vide evidence of the distinctive performance characteristics of these algorithms, high-
lighting the critical role of strategic selection and optimization in increasing network
efficiency, fairness, and reliability in cloud-based systems.

Experiments were carried out to dissect the operational dynamics of each algo-
rithm under a spectrum of conditions, starting with baseline network operations go-
ing through simulated network failures and competitive scenarios involving multiple
algorithms. The experimental analysis produced critical insights, particularly the dif-
ferential adaptability of these algorithms to the challenges and opportunities presented

7.2. CONCLUSION 113

by virtualized environments. For example, the latency-sensitive nature of Vegas, the
throughput-oriented strategies of CUBIC and DCTCP, and BBR2’s balanced approach
between maximizing bandwidth and minimizing latency show the diverse approaches
available to network administrators to adapt network performance to specific applica-
tion needs and operating conditions.

The implications of these findings provide tangible, practical guidance for designing
and managing virtualized networks. This study highlights the importance of a nuanced
understanding of TCP congestion control algorithms to optimize the performance of
cloud data centers. It highlights the need for network administrators and systems de-
signers to adopt a dynamic and informed approach to algorithm selection, ensuring that
virtualized networks can meet the growing demands of cloud computing with agility
and efficiency.

Furthermore, this research contributes to filling the significant gap in the literature on
TCP congestion control in virtualized environments. By providing empirical evidence
and differentiated analysis of the performance of these algorithms in such environments
using a physical testbed, the study improves our understanding of the dynamics of vir-
tualized networks. It provides a foundation for future research, encouraging further in-
vestigation into the complex interactions between network protocols and virtualization
technology.

In conclusion, this document answers the research questions posed at the outset and
opens new avenues for exploration and application. A continuous evolution of network
management practices in cloud data centers is required, driven by an increasingly more
profound understanding of the interaction between TCP congestion control algorithms
and virtualized environments. Congestion control significantly impacts the design and
optimization of virtualized networks, ensuring that they are robust, efficient, and capable
of supporting the growing demands of the digital era.

[AB21]

[ACA21]

[AGM™'10]

[APR15]

[APS99]

[ASABB19]

[ATB*22]

[ATRK10]

Bibliography

Ahmed M Abdelmoniem and Brahim Bensaou. Implementation and
evaluation of data center congestion controller with switch assistance.
arXiv preprint arXiv:2106.14100, 2021.

Abhineet Anand, Amit Chaudhary, and M Arvindhan. The need for
virtualization: when and why virtualization took over physical servers.

In Advances in Communication and Computational Technology: Select
Proceedings of ICACCT 2019, pages 1351-1359. Springer, 2021.

Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Pad-
hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. Data center tcp (dctep). In Proceedings of the ACM SIG-
COMM 2010 Conference, pages 63—74, 2010.

Md Imran Alam, Manjusha Pandey, and Siddharth S Rautaray. A com-
prehensive survey on cloud computing. International Journal of Infor-
mation Technology and Computer Science (IJITCS), 7(2):68, 2015.

M. Allman, V. Paxson, and W. Stevens. RFC2581—TCP congestion
control. Technical report, RFC, 1999.

Rasool Al-Saadi, Grenville Armitage, Jason But, and Philip Branch.
A survey of delay-based and hybrid tcp congestion control algorithms.
IEEE Communications Surveys & Tutorials, 21(4):3609-3638, 2019.

Ahmad Abadleh, Aya Tareef, Alaa Btoush, Alaa Mahadeen, Maram M
Al-Mjali, Sager S Alja’Afreh, and Anas Ali Alkasasbeh. Comparative
analysis of tcp congestion control methods. In 2022 13th International

Conference on Information and Communication Systems (ICICS), pages
474-478. IEEE, 2022.

Alexander Afanasyev, Neil Tilley, Peter Reiher, and Leonard Kleinrock.
Host-to-host congestion control for tcp. IEEE Communications Surveys
1& Tutorials, 12(3):304-342, 2010.

114

[Bad]

[Bell3]

[BPI95]

[CCGT17]

[CCYT19]

[CFH'05]

[Clo24]
[CRBV*16]

[dFdC'23]

[DLZ"15]

BIBLIOGRAPHY 115

Mukhtiar Badshah. What is a virtual data center? - open
source listing. https://www.opensourcelisting.com/
what—-is—-a-virtual-data-center (Accessed on 2024-02-01).

Anton Beloglazov. Energy-efficient management of virtual machines in
data centers for cloud computing. 2013.

Lawrence S. Brakmo and Larry L. Peterson. Tcp vegas: End-to-end
congestion avoidance on a global internet. IEEE Journal on Selected
Areas in Communications, 13(8):1465-1480, 1995.

Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. Bbr: Congestion-based congestion con-
trol. Communications of the ACM, 60(2):58-66, 2017.

Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Ian Swett,
Victor Vasiliev, Priyaranjan Jha, Yousuk Seung, Matt Mathis,
and Van Jacobson. BBR v2: A Model-based Congestion Con-
trol [Slides]. In IETF 104: Prague, March 2019. Retrieved
from https://datatracker.ietf.org/meeting/104/
materials/slides-104-iccrg-—an—-update-on-bbr-00,
2019.

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration
of virtual machines. In Proceedings of the 2nd conference on Sympo-
sium on Networked Systems Design & Implementation-Volume 2, pages
273-286, 2005.

Cloudflare. Adoption and usage, 2024. Accessed: 2024-07-01.

Bryce Cronkite-Ratcliff, Aran Bergman, Shay Vargaftik, Madhusudhan
Ravi, Nick McKeown, Ittai Abraham, and Isaac Keslassy. Virtualized
congestion control. In Proceedings of the 2016 ACM SIGCOMM Con-
ference, pages 230-243, 2016.

Assis T. de Oliveira Filho, Eduardo Freitas, Pedro R.X. do Carmo,
Djamel F.H. Sadok, and Judith Kelner. Measuring the impact of sr-iov

and virtualization on packet round-trip time. Computer Communica-
tions, 211:193-215, 2023.

Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael
Schapira. {PCC}: Re-architecting congestion control for consistent

[dOFFdC*22]

[DSFJ15]

[FH99]

[FLO3]

[FRE21]

[Gotl1]

[HRXO08]

[Jac88]

[Jac90]

[Jai84]

[JWL105]

BIBLIOGRAPHY 116

high performance. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), pages 395408, 2015.

Assis T de Oliveira Filho, Eduardo Freitas, Pedro RX do Carmo,
Djamel HJ Sadok, and Judith Kelner. An experimental investigation of
round-trip time and virtualization. Computer Communications, 184:73—
85, 2022.

Ramide Dantas, Djamel Sadok, Christofer Flinta, and Andreas Johns-
son. Kvm virtualization impact on active round-trip time measurements.
In 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), pages 810-813, 2015.

S. Floyd and T. Henderson. RFC2582—the NewReno modification to
TCP’s fast recovery algorithm. Technical report, RFC, 1999.

Cheng Peng Fu and Soung C Liew. Tcp veno: Tcp enhancement for
transmission over wireless access networks. IEEE Journal on selected
areas in communications, 21(2):216-228, 2003.

Eduardo Felipe Fonseca de FREITAS. Experimental evaluation on
packet processing frameworks under virtual environments. Master’s the-
sis, Universidade Federal de Pernambuco, 2021.

Yasunori Goto. Kernel-based virtual machine technology. Fujitsu Sci-
entific and Technical Journal, 47(3):362-368, 2011.

Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly
high-speed tcp variant. ACM SIGOPS operating systems review,
42(5):64-74, 2008.

Van Jacobson. Congestion avoidance and control. ACM SIGCOMM
computer communication review, 18(4):314-329, 1988.

V. Jacobson. Modified TCP congestion avoidance algorithm. email to
the end2end list, April 1990.

Raj Jain. A quantitative measure of fairness and discrimination for re-
source allocation in shared systems. DEC, Sep. 1984, 1984.

Cheng Jin, David Wei, Steven H Low, Julian Bunn, Hyojeong D Choe,
John C Doylle, Harvey Newman, Sylvain Ravot, Suresh Singh, Fer-
nando Paganini, et al. Fast tcp: From theory to experiments. [EEE
network, 19(1):4-11, 2005.

[KGCBH20]

[KKL07]

[LBS06]

[LZ15]

[MLD™15]

[NG23]

[NGS16]

[Pos81]
[PSK120]

[PTFK23]

BIBLIOGRAPHY 117

Elie F. Kfoury, Jose Gomez, Jorge Crichigno, and Elias Bou-Harb. An
emulation-based evaluation of tcp bbrv2 alpha for wired broadband.
Computer Communications, 161:212-224, 2020.

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
kvm: the linux virtual machine monitor. In Proceedings of the Linux
symposium, volume 1, pages 225-230. Dttawa, Dntorio, Canada, 2007.

Shao Liu, Tamer Basar, and Ravi Srikant. Tcp-illinois: A loss and delay-
based congestion control algorithm for high-speed networks. In Pro-
ceedings of the st international conference on Performance evaluation
methodolgies and tools, pages 55—es, 2006.

Yifei Lu and Shuhong Zhu. Sdn-based tcp congestion control in data
center networks. In 2015 IEEE 34th international performance comput-
ing and communications conference (IPCCC), pages 1-7. IEEE, 2015.

Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wether-
all, and David Zats. Timely: Rtt-based congestion control for the data-
center. ACM SIGCOMM Computer Communication Review, 45(4):537—
550, 2015.

C Nandhini and Govind P Gupta. Exploration and evaluation of conges-
tion control algorithms for data center networks. SN Computer Science,
4(5):509, 2023.

Truc Anh N. Nguyen, Siddharth Gangadhar, and James P. G. Sterbenz.
Performance evaluation of tcp congestion control algorithms in data
center networks. In Proceedings of the 11th International Conference
on Future Internet Technologies, CF1 16, page 21-28, New York, NY,
USA, 2016. Association for Computing Machinery.

Jon Postel. Rfc0793: Transmission control protocol, 1981.

Sanjeev Patel, Yash Shukla, Nikhil Kumar, Tejasv Sharma, and Kul-
gaurav Singh. A comparative performance analysis of tcp congestion
control algorithms: Newreno, westwood, veno, bic, and cubic. In 2020

6th International Conference on Signal Processing and Communication
(ICSC), pages 23-28. IEEE, 2020.

Haorui Peng, William Tarneberg, Emma Fitzgerald, and M. Kihl. Per-
formance evaluation of quic vs. tcp for cloud control systems. 2023

[RAZ20]

[Tec23]

[TKU19]

[TSZS06]

[TTS15]

[XHRO4]

[XZLC20]

BIBLIOGRAPHY 118

International Conference on Software, Telecommunications and Com-
puter Networks (SoftCOM), pages 1-6, 2023.

Amarildo Rista, Jaumin Ajdari, and Xhemal Zenuni. Cloud computing
virtualization: A comprehensive survey. In 2020 43rd International
Convention on Information, Communication and Electronic Technology
(MIPRO), pages 462—-472. IEEE, 2020.

Park Place Technologies. Traditional data center vs virtualization: Dif-
ferences, 2023. Accessed: 2024-06-22.

Belma Turkovic, Fernando A Kuipers, and Steve Uhlig. Fifty shades of
congestion control: A performance and interactions evaluation. arXiv
preprint arXiv:1903.03852, 2019.

Kun Tan, Jingmin Song, Qian Zhang, and Murad Sridharan. A com-
pound tcp approach for high-speed and long distance networks. In
Proceedings-IEEE INFOCOM, 2006.

Rohit P Tahiliani, Mohit P Tahiliani, and K Chandra Sekaran. Tcp con-
gestion control in data center networks. In Handbook on Data Centers,
pages 485-505. Springer, 2015.

Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary increase conges-
tion control (bic) for fast long-distance networks. In IEEE INFOCOM
2004, volume 4, pages 2514-2524. IEEE, 2004.

Chi Xu, Jia Zhao, Jiangchuan Liu, and Fei Chen. Revisiting multipath
congestion control for virtualized cloud environments. 2020 IEEE/ACM
28th International Symposium on Quality of Service (IWQoS), pages 1—
10, 2020.

This volume has been typeset in IAIgXwith the UFPEThesis class (www.cin.ufpe.br/~paguso/
ufpethesis).

