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ABSTRACT

The RoboCup Small Size Soccer League (SSL) is a robot soccer competition that de-
mands extremely low latency software systems due to the fast-paced nature of the matches.
Traditionally, teams in this category have relied on monolithic software architectures. However,
these architectures often struggle with scalability, maintenance, and flexibility issues, making
evolution extremely hard. A viable alternative is to adopt a microservices approach, which
enables the system to be more modular and adaptable.

This project proposes to design a microservices-based architecture tailored for SSL,
with the goal of achieving modularity, efficiency and low latency. Additionally, the project
implements and analyzes the communication overhead introduced by the distributed nature of

the proposed architecture.

Keywords: Microservices architecture. RoboCup Small Size League. Robotic systems. Dis-

tributed systems. Event-Driven Architecture



RESUMO

A RoboCup Small Size Soccer League (SSL) € uma competicao de futebol de robos
que exige sistemas de software de laténcia extremamente baixa devido a dindmica acelerada das
partidas. Tradicionalmente, as equipes dessa categoria t€ém utilizado arquiteturas de software
monoliticas. No entanto, essas arquiteturas frequentemente enfrentam problemas de escalabili-
dade, manutencdo e flexibilidade, o que torna a evolugdo extremamente dificil. Uma alternativa
vidvel € a adocdo de uma abordagem baseada em microsservicos, que permite que o sistema
seja mais modular e adaptavel.

Este projeto propde modelar uma arquitetura baseada em microsservigos aplicada ao
SSL, com o objetivo de alcancar modularidade, eficiéncia e baixa laténcia. Além disso, o projeto
implementa e analisa a sobrecarga de comunicacdo introduzida pela natureza distribuida da

arquitetura proposta.

Palavras-chave: Arquitetura de microsservigcos. RoboCup Small Size League. Sistemas

robéticos. Sistemas Distribuidos. Arquitetura Dirigida a Eventos
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INTRODUCTION

A monolithic architecture is a software design approach where all components and func-
tionalities of an application are integrated into a single and cohesive unit. This design paradigm
facilitates straightforward development and deployment processes, making it an attractive op-
tion for many early-stage projects and small-scale applications. In a monolithic architecture, all
application’s components, such as the user interface, business logic, and data access layer, are
tightly coupled and run as a single process. While this approach simplifies initial development
and offers high performance, it also has significant drawbacks.

The tightly coupled approach of monolithic systems compromises the independence
of the components and, consequently, flexibility, modularity, and maintainability. Therefore,
any change in a single module necessitates a full-scale redeployment of the entire application.
This tends to slow down the development cycle and to increase the risk of introducing bugs and
system failures. Additionally, scaling specific parts of the application independently is complex,
often resulting in higher operational costs.

Many organizations are turning to microservices-based architecture to address these
issues as a more scalable and flexible solution [54]. Unlike monolithic systems, a microservices
architecture breaks down the application into smaller, loosely coupled services, each responsible
for a specific functionality [6]. This modular approach allows for independent development,
deployment, and scaling of services, enhancing agility and reducing the risk of system-wide
failures. Additionally, microservices can leverage different technologies and frameworks best
suited for their specific tasks, promoting innovation and technological diversity.

In the field of robotics competition, RoboCup ! [38] stands out as a renowned interna-
tional robotics competition that serves as a platform for advancing autonomous robotics and
artificial intelligence. Within the RoboCup, the Small Size League (SSL) (Figure 1) is one of
the oldest categories, utilizing intelligent, collaborative omnidirectional robots controlled in a
highly dynamic environment. Compared to other RoboCup categories, the SSL imposes strict

speed requirements due to the game’s fast-paced nature and challenges in agility and decision-

'RoboCup is a world competition of several modalities of autonomous robots that have existed since 1997,
which has the ambitious intention of developing a team of humanoid robots capable of defeating the most recent
FIFA World Cup champion in the middle of 21st century [28].
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making, compelling teams to design robots capable of navigating dynamic environments while

executing complex strategies.

Figure 1: SSL robots in RoboCup field during a real game. Source: The author.

Traditionally, SSL teams have relied on monolithic software architectures to control
their robots [59, 82, 3]. In these systems, parallel execution is achieved through state shar-
ing and multi-threading, enabling fast response times and precise control over robot behav-
ior. As the complexity of robotic systems increases and the demand for more sophisticated
functionalities grows, monolithic designs can become unwieldy and difficult to manage. Ad-
ditionally, the tightly coupled nature of these systems can hinder the adoption of emerging
technologies and inhibit experimentation with alternative approaches, such as existing ones for
rendering/visualization and user interaction, in which performance requirements are less restric-
tive. However, since they are coupled in the same application, they use frameworks in the same
programming languages and technologies already used to develop the main requirements.

To overcome these challenges, microservices architectures, as previously mentioned, are
a modern and promising solution for creating modular, flexible, and scalable software systems.
Adopting this approach, however, requires careful design to handle component communication,
concurrency, and synchronization, especially in systems with high parallelism.

This work proposes an architecture, implementation, and performance analysis of a
microservices-based system applied to the RoboCup Small Size League soccer category. De-
spite the benefits of microservices, their implementation in real-time robotic applications, par-
ticularly those with strict latency requirements like SSL, has presented challenges. However,
through careful design and optimization, the advantages of microservices can be leveraged with-
out compromising performance. The viability and benefits of this alternative paradigm are
demonstrated through experimentation and analysis, paving the way for future advancements in

autonomous robotic systems within the RoboCup community.
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1.1 OBIJECTIVES

The main objective of this project is to study and propose an efficient, low-latency
microservices-based architecture for a multi-robot system software applied in the RoboCup

Small Size League. The specific objectives of the project are:

= Modeling the architecture components, defining the microservices, and the inter-
actions between the modules that compose the system following Domain-Driven

Design principles with informal diagrams and the Unified Modeling Language.

» Implementing a subset of the final control system and the base structure of the ar-

chitecture components to ensure scalable integration of the microservices.

» Evaluating, via experimentation, the performance impact due to components com-

munication of the microservices-based architecture.

This work is divided into 6 chapters. Chapter 2 explores the necessary background
for understanding the development of software architectures, covering various architectural
paradigms and software modeling techniques. Chapter 3 delves into the work proposal, ex-
ploring the RoboCup SSL and robotics systems focused on the development of the SSL. VAR
system. Chapter 4 analyzes the performance impacts of communication and processing within
the microservice architecture pipeline, with a particular focus on latency in real-time scenarios
relevant to SSL. Chapter 5 provides a review of related works, exploring the context of existing
research and developments in the robotics field. Chapter 6 concludes the study, summarizing the
findings and implications for future work in advancing robotic systems through microservices

architectures.



17

BACKGROUND

This chapter provides the necessary background for understanding the development
and modeling software architectures. The chapter introduces various software architecture
paradigms, including monolithic, distributed, service-oriented, microservices, and event-driven
architectures, exploring each approach’s benefits and downsides. Additionally, it delves into
software modeling, focusing on microservices design and the use of the Unified Modeling Lan-
guage to represent complex systems. This background lays the groundwork for the practical

applications and case studies discussed in the following chapters.

2.1 SOFTWARE ARCHITECTURE

This section explores monolithic and distributed architectures, with a focus on Service-
Oriented Architecture, microservices-based architecture, and Event-Driven Architecture. Addi-
tionally, the chapter explores strategies for each architectural style, emphasizing their respective
benefits and drawbacks. It also discusses the role of message-oriented middleware in facilitating
communication within microservices-based architectures, particularly those employing event-

driven designs.

2.1.1 Overview

The software architecture of a system covers its structure, the architectural features it
must support, the architectural decisions made during design, and the design principles that
guide the overall development [63]. It acts as a high-level blueprint that defines a system’s
structure, behavior, and interactions between its components.

Software architecture deeply aligns with the organizational dynamics of development
teams. Melvin Conway, a prominent figure in computer science, articulated an observation
now known as Conway’s Law [17], which posits that the design of systems by organizations
inherently mirrors their communication structures. A development team’s organizational layout
and communication channels provide substantial influence over software systems’ architectural

decisions and outcomes. Understanding and effectively managing these dynamics is pivotal for
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crafting cohesive and efficient software architectures, aligning with technical imperatives and
organizational objectives.

Furthermore, the chosen architectural style significantly influences the communication
patterns among system components. Architecture styles can be broadly classified into two main
categories: monolithic and distributed [63]. Monolithic architectures consolidate all code into a
single deployment unit, whereas distributed architectures consist of multiple deployment units
connected via remote access protocols. Architectural paradigms prescribe how components
discover one another, exchange data, and handle potential failures. Each style deeply impacts
scalability, maintainability, and performance, necessitating careful consideration during archi-
tectural design.

A team structured into isolated development units tends to favor a monolithic architec-
ture, where all functionalities are tightly integrated [25]. Even when the separation of concerns
is taken into account (for instance, in a layered architecture), the organizational structure of a
monolith naturally leads to the development of tightly coupled systems. In such environments,
each development unit operates independently with minimal interaction with other teams, lead-
ing to a lack of collaboration and limited communication. This can hinder scalability and flex-
ibility, as making changes or additions to the system requires understanding and modifying a
large, interconnected codebase.

In 2003, Eric Evans introduced Domain-Driven Design (DDD) [23] as a response to
the growing challenges posed by monolithic systems, by promoting better organization, main-
tainability, and scalability. DDD provides a base to implement a Service-Oriented Architecture
(SOA), since both methodologies prioritize clear boundaries and separation of concerns. Com-
panies that embrace distributed architectures often structure their teams around service bound-
aries rather than traditional technical partitions. This strategy, known as the Inverse Conway
Maneuver [25], is beneficial because the team’s structure significantly influences various as-
pects of software development and should align with the problem’s size and scope. Figure 2

shows two types of high-level partitioning according to technical and domain aspects.

Technical partitioning Domain partitioning

(__ Presentation | CatalogCheckout | |Updatelnventory

[ Business rules ]
[ Service ] ShipToCustomer -
(C_rersstence ] alytcs | UpdateAccounts

I

Database
Database

Figure 2: Two types of top-level partitioning in architecture. Source: Mark Richards and Neal
Ford [63].




19

While Conway’s Law serves as a guiding principle rather than a strict rule, it under-
scores the critical importance of considering the development team’s structure throughout the
architecture design process. A well-aligned architecture facilitates streamlined communication
and collaboration within the team, contributing to the long-term maintainability and sustain-
ability of the system.

Moreover, at the core of software architecture lies the system’s structural organization,
which dictates how the system is decomposed into manageable components. These components
encapsulate specific functionalities and interact to deliver the overall system behavior. Deci-
sions regarding these components’ identification, size, and complexity are pivotal in shaping

the architecture’s effectiveness.

2.1.2 Monolith Architecture

Monolithic architecture traditionally refers to a software design where all components of
an application -— such as the user interface, business logic, and data access layers -— are tightly
integrated [54, 42]. Even though a monolith architecture can be modularized within a layered
architecture, the organizational structure of a monolith naturally leads to the development of
tightly coupled systems.

The monolithic approach has historically been favored for its simplicity in development
and deployment processes. Besides, in terms of performance, monolithic applications benefit
from all components sharing the same memory space, resulting in lower latency and higher
efficiency. This unified structure allows for performance optimization. However, monolith ar-
chitecture has significant downsides. It inherently lacks modularity, which restricts scalability
and results in collective resource sharing within a single system [46]. Therefore, scaling the
entire application rather than individual components can lead to inefficient resource utilization
and increased operational costs [41]. As the application grows, resource bottlenecks may arise,
degrading overall system performance. Additionally, the development, maintenance, and modi-
fication of monolithic applications become progressively more challenging and time-consuming
due to their expanding size and complexity [76]. As the codebase grows, it becomes increas-
ingly difficult to understand, maintain, and modify, leading to slower development processes
and a higher risk of defects. Deployment risks also increase, as changes to a monolithic appli-
cation can affect the entire system, requiring longer release cycles and more extensive testing.

Furthermore, monolithic architectures are inflexible, making it difficult to adapt to tech-
nological advancements and changing business requirements. Implementing changes often re-
quires extensive modifications to the entire project, impeding agility. Large development teams
working on the same code may also face coordination challenges, leading to potential conflicts

and reduced productivity.
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2.1.3 Distributed Architecture

A distributed architecture contrasts a monolithic design, comprising multiple services
operating within their own ecosystems, communicating via networking protocols [63]. Dis-
tributed architectures offer significant advantages over monolithic and layered-based architec-
tures, including better scalability, decoupling, and control over development, testing, and de-
ployment. Components within a distributed architecture tend to be more self-contained, allow-
ing for better change control and easier maintenance, which leads to more robust and responsive
applications. Distributed architectures also lend themselves to more loosely coupled and mod-

ular applications.

2.1.3.1 Service-Oriented Architecture

A SOA can effectively address issues inherent in a monolithic architecture. SOA is a
methodology within Service-Oriented Computing (SOC) [83], applying distinct software com-
ponents to construct business applications. Each service represents a specific business capability
and can communicate with other services across various platforms and programming languages.
This approach allows developers to reuse services across different systems and combine multi-
ple independent services to perform complex operations.

The core components of SOA include three key elements: the service implementation
(the code performing specific functions like authentication or invoice calculation), the service
contract (detailing the service’s terms, conditions, prerequisites, and costs), and the service
interface (facilitating communication between services and systems by specifying how to invoke
the service). This design minimizes dependencies and allows users with a limited understanding
of the underlying logic to utilize the service. In SOA, service providers create, maintain, and
offer services, while service consumers request and utilize these services, which are governed
by a service contract ensuring clear rules and expectations.

Services are accessed remotely from the user interface using protocols like REST [45],
messaging [48], RPC [60], or SOAP [75]. An API layer consisting of a reverse proxy or gateway
between the user interface and services can be incorporated (Figure 3). This approach brings
together common shared concerns like metrics, security, and service discovery, and moves them
away from the user interface.

At the beginning of SOA in the 1990s, the core was centered on enterprise-level reuse,
aiming to reduce software rewriting through strategic architectural structuring [63]. This ap-
proach organized various layers to achieve this goal. Business services, which define domain
behaviors without containing code, are typically defined by business users. Enterprise services
are fine-grained, shared implementations designed to build atomic behaviors around specific
business domains. These enterprise services aim to prevent rewriting parts of the business
workflow and accumulating reusable assets over time. However, the dynamic nature of business

requirements often complicates this goal. Application services address specific needs without
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[ User Interface ]
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Figure 3: Basic topology of the service-based architecture style with an API Layer. Source:
Mark Richards and Neal Ford [63].

the same level of granularity or reuse. In contrast, infrastructure services manage operational
concerns such as monitoring and security, typically handled by a shared infrastructure team.
SOA typically utilizes an Enterprise Service Bus (ESB) to facilitate communication and
coordination among services [8]. The ESB is a central hub that integrates various services,
ensuring seamless interoperability across different platforms and languages, as illustrated in
Figure 4 which shows the topology of orchestration-driven service-oriented architecture. The
ESB provides essential functions such as message routing, transformation, and protocol me-
diation, which streamline the interaction between services and enhance the system’s overall

efficiency [5]. However, the ESB also present several limitations,

» Increasing Inter-dependencies: Implementing an ESB can introduce significant
complexity. The centralized nature of an ESB requires meticulous configuration and
management to ensure seamless communication among services, especially when

they share many resources and need to coordinate to perform their functionality;

= Single Point of Failure: As a central hub, the ESB represents a single point of
failure. Any disruption or failure in the ESB can impact the entire service network,
leading to potential system outages and reduced reliability. Clients and services

cannot communicate with each other at all if the ESB goes down;

» Performance Bottlenecks: As the ESB serves as a central point for message routing
and processing, it can become a performance bottleneck. High volumes of service
interactions can lead to increased latency and reduced throughput. Also, scaling
an ESB to handle growing service demands can be difficult and resource-intensive.
The need for powerful infrastructure to support an ESB adds to the overall system

complexity.

SOA is a natural fit when doing DDD [23]. SOA’s approach of using coarse-grained ser-



22

Business ( ss )J(C 8 J)J( 8 J( B J( BS )

Services
r ry A

v v v
Orchestration Engine ]

Enterprise
Service Bus

Integration Hub )

[

e (g ) (B J)( B (B (B )

X v
goplcat Infrastruct
i e G G

Figure 4: Topology of orchestration-driven service-oriented architecture. Source: Mark
Richards and Neal Ford [63].

vices to encapsulate specific domain functionalities matches the idea of bounded contexts from
DDD [37]. This mutual focus facilitates loose coupling and supports reusability, emphasiz-
ing isolated contexts. Integrating SOA and DDD principles contributes to creating functionally

robust software systems that are easier to maintain, scale, and structure.

2.1.3.2 Microservices Architecture

Microservices architecture is a SOA rooted in the concept of small components that
focus on performing one single task well [53]. First mentioned in 2006 by Werner Vogels [71],
microservices emerged as a modern and promising approach to creating modular, portable,
and scalable software. A microservice-based architecture methodology closely aligns with the
Single Responsibility Principle (SRP), a foundational concept in clean architecture introduced
by Robert C. Martin (Uncle Bob) [43], which posits that a component should have only one
reason to change.

Microservices architecture represents a significant evolution of the SOA architectural
style, addressing its limitations to better align with modern cloud-based enterprise environ-
ments. Unlike SOA, which relies on a centralized ESB, microservices architecture consists
of highly granular and autonomous software components known as microservices. These mi-
croservices are designed to be fine-grained, ensuring each microservice operates independently.
In a microservices-based architecture, each component has its own communication protocols,
which are exposed through lightweight APIs. This decentralization eliminates the need for a
centralized ESB, as consumers interact directly with the microservices through their respective
APIs (Figure 5). Additionally, in SOA, databases are typically centralized, whereas microser-
vices architectures promote decentralized data management, with each microservice having
its own local database. This independence allows each microservice to manage its data au-
tonomously, reducing inter-service dependencies and enhancing scalability, flexibility, and fault
isolation.

Microservices offer a compelling solution for these challenges by promoting a high
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Figure 5: Difference between SOA and microservices. Source: DZone [22].

degree of modularization, directly aligning with the SRP, where each microservice operates
independently, leading to minimal coupling and enabling scalability, agile management, and
technological versatility. Besides, the independence of microservices allows them to be written
in different programming languages and use different databases, facilitating greater flexibility
and innovation in software development compared to monolithic approaches.

As microservices inherently derive from a SOA approach, a microservices-based archi-
tecture is naturally well-suited to Domain-Driven Design. This alignment arises from the funda-
mental principles shared by both paradigms, emphasizing modularity, scalability, and the clear
demarcation of service boundaries. Historically, the microservice-based architectural style has
been deeply interconnected with domain-driven design, to the extent that the terms microservice
and bounded context are often used interchangeably [37]. This close relationship underscores
the efficacy of DDD in structuring and managing microservices, enabling the development of
robust, scalable, and maintainable systems that align closely with business domains and pro-
cesses. Figure 6 illustrates the topology of the microservices architecture style.

The benefits of microservices extend beyond traditional software development, offering
significant advantages to several application domains, including robotics. The increasing com-
plexity of robotic systems, especially those with modular architectures, makes microservices a
compelling solution. This high degree of modularization allows each microservice to indepen-
dently handle a specific robotic function such as environment perception, behavioral decisions,
navigation, and object manipulation.

Nevertheless, a microservice architecture presents challenges in real-time robotics en-
vironments compared to monolithic architecture. Ensuring low latency and high throughput,

crucial for real-time applications — such as those found in SSL environments — are major con-
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Figure 6: The topology of the microservices architecture style. Source: Mark Richards and
Neal Ford [63].

cerns related to microservices approaches. Communication overhead between components can
also introduce delays, impacting system responsiveness. Moreover, managing distributed trans-
actions and ensuring consistency across components becomes complex, particularly when deal-
ing with real-time data. Scalability is another issue, requiring careful orchestration to scale
microservices while maintaining performance dynamically. Additionally, monitoring and de-
bugging in real-time environments pose challenges, as traditional methods may not suffice.

By addressing issues related to real-time applications through meticulous design and op-
timization, the benefits of microservices can be harnessed without compromising performance.
Furthermore, leveraging appropriate technologies can facilitate the successful implementation

of microservices in real-time scenarios.

2.1.3.3 Event-Driven Architecture

The Event-Driven Architecture (EDA) style is widely adopted for its ability to cre-
ate scalable, high-performance applications. It operates asynchronously with decoupled event
processing components that receive and handle events [63]. This architecture is versatile and
suitable for both small applications and complex systems. Moreover, EDA integrates seam-
lessly with other architectural styles, offering a versatile approach to system design, such as
event-driven microservices [53].

Event-based communications are not a replacement for request-response communica-
tions but a completely different way of communicating between services, emphasizing decou-
pling and asynchronous interaction between services [10]. A distinct advantage of EDA lies in
its foundational decoupling of event producers from consumers. This architecture allows pro-
ducers to broadcast events without precise knowledge of the consumers. In parallel, consumers
can asynchronously process events, conferring a notable degree of system design flexibility and

resilience. Such decoupling also permits individual system components’ independent evolution,
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deployment, and scalability, enhancing overall system robustness.

In an EDA, two primary topologies are utilized, broker and mediator, each suitable for
distinct requirements [63]. The mediator topology is chosen when precise control over event
workflow is necessary, while the broker topology stands out in scenarios demanding high re-
sponsiveness and dynamic event processing. Understanding these topologies’ characteristics
and implementation strategies is crucial for selecting the most appropriate one for a given situ-
ation.

The broker topology works without a central event mediator. Instead, message flow is
decentralized across event processor components, facilitated by a lightweight message broker.
Key elements within the broker topology include the initiating event, which triggers the event
flow; the event broker, which manages event channels and facilitates event processing; event
processors, which handle specific tasks associated with events; and processing events, which
communicate task completion asynchronously within the system. Event processors initiate tasks
in response to events from the event broker and propagate processing outcomes through new
events. Figure 7 illustrates the event processing flow within the broker topology, highlighting

its event broker setup across clustered instances.
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Figure 7: Broker topology. Source: Mark Richards and Neal Ford [63].

The mediator topology in EDAs addresses the limitations of the broker topology by in-
corporating an event mediator to manage and control workflows requiring coordination among
multiple event processors. The mediator’s centralized control allows it to maintain event state,
manage error handling, and handle recoverability, contrasting with the decentralized approach
of the broker topology. However, this results in a more coupled architecture than the broker
topology [25]. Key components include the initiating event, event queue, event mediator, event
channels, and event processors. Unlike the broker topology, where events are broadcast, the
mediator topology routes the initiating event to an event queue, which the event mediator then

processes. The mediator generates processing events and sends them to dedicated event chan-
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nels point-to-point. Event processors listen to these channels, process the events, and respond
to the mediator without broadcasting their actions. Figure 8 illustrates the event processing flow

within the mediator topology.
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Figure 8: Mediator topology. Source: Mark Richards and Neal Ford [63].

In the mediator topology, processing occurrences are conceptualized as commands, rep-
resenting actions that need to occur rather than events that indicate actions that have already
occurred [63]. Commands in the mediator topology necessitate execution and cannot be dis-
regarded, ensuring that specific tasks are carried out in a predetermined sequence. In contrast,
events in the broker topology serve as notifications of completed actions, and subsequent pro-
cessors may choose to ignore them based on their relevance. This difference underscores the
mediator topology’s emphasis on coordinated, mandatory workflows as opposed to the broker
topology’s more flexible, event-driven approach.

Additionally, while the mediator topology resolves some issues of the broker topology,
it introduces its own challenges. Modeling dynamic processes in complex event flows can be
difficult, often necessitating a hybrid model. The mediator must scale to avoid bottlenecks, and
performance may be lower due to centralized control over event processing. Additionally, event

processors are less decoupled, impacting overall system performance.

2.1.3.4 Middleware

Traditionally, communication between distributed software components has relied on
sockets, utilizing protocols such as Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP). As distributed systems have become more prevalent, middleware has emerged
as a higher-level, more resilient, and simpler way of connecting components across different
processes, machines, and networks. Middleware is an intermediary layer between applications
and the operating system, bridging the gap between application functionalities and the underly-
ing software/hardware infrastructure [12] (Figure 9).

Typically, middleware facilitates interaction and communication between diverse ap-
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Figure 9: Traditional middleware architecture. Source: Bernstein [12].

plications across distributed components. Its primary goal is simplifying distributed systems
by enabling application developers to abstract away lower-layer implementations. Banavar et
al. [7] have underscored its significance in enabling interoperability and communication across
disparate systems and platforms. Additionally, middleware effectively masks the heterogeneity
of various architectures, operating systems, programming languages, and networking technolo-
gies, thereby streamlining application development and management [61].

Mascolo et al. [44] categorize middleware solutions based on their communication

primitives: procedural, object/component, transactional, and message-oriented.

» Procedural Middlewares (RPCs): Use Remote Procedure Calls (RPC) for function
calls across systems, behaving as local calls. RPCs lack group and asynchronous
communication support, limiting scalability and being unsuitable for dynamic envi-

ronments.

= Object/Component Middlewares: Enable communication between distributed ob-
jects where a client requests operations from a server object on a different node.
Suitable for fixed systems but not for dynamic environments due to high operational

costs and reliance on synchronous communication.

= Transactional Middlewares: Support systems with components spanning multi-
ple nodes, ensuring operations occur on all nodes via the two-phase commit (2PC)
protocol. Despite supporting synchronous and asynchronous communication, trans-
actional middlewares incur high overhead, which may be impractical in dynamic

scenarios.

s Message-Oriented Middleware (MOM): Facilitate communication between dis-

tributed components using message exchanges. Clients send requests to servers,
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which respond with execution results via messages. MOM supports asynchronous

communication, which is essential for decoupling clients and servers.

These foundational concepts are enhanced by actual implementations that add another
abstraction layer with customized resources and functionalities. The choice of middleware
largely depends on the communication pattern—such as client-server, publish-subscribe, or
producer-consumer—and synchronization requirements.

Despite the advantages, using middleware in distributed systems introduces certain
costs. The abstractions and transparencies it provides, such as hiding details like location,
technology, and fault tolerance, can lead to increased latency and resource usage, affecting
computational efficiency. This is particularly critical in real-time systems, such as those used
in robotics, where stringent requirements for computational efficiency, availability, reliability,
robustness, and responsiveness must be met. The communication primitives selected during
software development, including middleware or socket choice, communication patterns, and
package definitions, are crucial for developing systems that meet these demands.

MOM is particularly well-suited for microservices-based architectures that employ event-
driven designs. It facilitates asynchronous communication, which decouples services and allows
them to interact without direct dependencies, enhancing system resilience and scalability. This
decoupling ensures that a failure or slowdown in one service does not directly impact others.

MOM architectures are particularly notable for their ability to facilitate communication

across heterogeneous systems. They typically consist of three key components:

= Messages: Data packets exchanged between middleware nodes, including notifica-
tions, events, and data requests. Message size is typically flexible and managed by

the middleware for network transport.

= Message Queues: Intermediate queues that decouple data and execution flow be-

tween nodes, supporting asynchronous communication.

» Message Broker: A server in MOM architectures coordinating message exchange,

handling message queues, validation, translation, and routing.

Asynchronous communication is essential for maintaining loose coupling between ser-
vices within microservices architectures. MOM enables services to publish events to other
services independently, eliminating the need to wait for remote code. It also facilitates time and
logic decoupling, promoting scalability and flexibility. This approach promotes scalability and
flexibility, ensuring that services operate independently of each other’s existence [53].

In EDAs, MOM enables event sourcing by capturing, storing, and making all events
available for consumption by relevant services. This empowers services to react quickly to
changes, promoting responsive systems, which is especially beneficial in dynamic environments

like robotics.
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MOM offers two primary approaches, broker-based and brokerless, distinguished pri-
marily by the presence of a centralized broker. Broker-based architectures (Figure 10) centralize
message routing and queuing through a dedicated broker, offering benefits like space and time
decoupling. However, they may introduce significant latency due to message transit through the

central broker, which can be detrimental in applications requiring real-time responsiveness [40].
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Figure 10: Broker-based MOM approach. Source: Adapted from Lilis ez al. [40].

Brokerless architectures (Figure 11) emerge as an alternative to mitigate latency issues
inherent in broker-based systems [40]. By eliminating the central broker, brokerless architec-
tures enable direct communication between nodes, significantly reducing message transit times
and enhancing overall system responsiveness. This feature is particularly advantageous in sce-
narios where minimal latency is critical for timely decision-making and operational efficiency
in robotics and automation. A directory service [25] can be implemented to address the chal-
lenge of service coupling in brokerless architectures [40], as illustrated in Figure 12. It replaces
centralized broker functionality by facilitating efficient node discovery and management, im-

proving service discovery in dynamic and distributed environments.

Publisher Subscriber 1
E Zmessaqe e
v
Addresses
Statically
Programmed
4 Subscriber N

----------- IY] ---------------- .

Figure 11: Brokerless MOM approach. Source: Adapted from Lilis et al. [40].

MOM is essential for implementing robust, scalable, and maintainable microservices-
based architectures with event-driven designs. Balancing the benefits of abstraction and trans-
parency against potential impacts on latency and resource usage is key to leveraging the full

potential of MOM in microservices architectures.
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al. [40].

2.1.4 The Architectural Approach Adopted in This Work

The architecture proposed in this work is based on a distributed architecture using an
Event-Driven microservices approach. It applies a MOM to enable asynchronous communica-
tion in a dynamic, low-latency environment, which is necessary for the RoboCup SSL scenario.
The proposed approach is based on discussions with RoboClIn’s [68] SSL team, who acted as

domain experts following DDD principles.

2.2  SOFTWARE MODELING

This section explores software modeling, highlighting the crucial role of modeling lan-
guages in designing and developing complex systems. It begins with an introduction to model-
ing languages, mainly about their significance in effectively capturing, documenting, and com-
municating system designs. The primary focus is on the Unified Modeling Language (UML),
a widely adopted standard in software engineering. The section examines the importance of
UML, detailing its components and their applications across different stages of software devel-

opment, such as visualizing, specifying, constructing, and documenting.

2.2.1 Overview

Modeling languages are critical tools in designing and developing complex systems.
They provide structured methods for representing, analyzing, and communicating various as-
pects of a system, which is essential for managing complexity and ensuring effective collab-
oration among stakeholders and developers. Over the past few decades, the development and
adoption of these languages have been significantly advanced by the Model-Driven Engineering
and Model-Driven Development approaches [14].

A modeling language describes and designs systems through a set of notations and
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constructs [S1]. These notations may include various forms such as diagrams, which visually
represent system structure and behavior; pseudo-code, which outlines algorithms and processes
in a simplified text format; executable code, which demonstrates system functionality through
actual programming code; and textual descriptions, which provides detailed narratives of system
components and interactions.

The significance of modeling languages lies in their ability to simplify complexity, en-
hance communication, and improve design and analysis processes. By allowing designers to
abstract and focus on key aspects of a system, modeling languages help reduce cognitive load
and facilitate a clearer understanding of intricate details. Visual notations, such as diagrams,
offer a straightforward view of system components and their interactions, aiding in compre-
hending system architecture and behavior.

Modeling languages also play a crucial role in effective communication among stake-
holders. A well-defined modeling language ensures that all parties, including developers, de-
signers, and clients, have a shared understanding of the system. This common language helps
minimize misunderstandings and promotes clearer communication. Also, models serve as valu-
able documentation that captures design decisions, system architecture, and functional require-
ments, essential for future maintenance, development, and knowledge transfer.

Regarding design and analysis, modeling languages facilitate validation and verification
by enabling designers to simulate different scenarios and interactions before implementation.
This allows potential issues to be identified early in the development process. Furthermore,
modeling supports iterative improvement, allowing designers to refine and enhance the system
based on feedback and analysis. This iterative approach helps adapt the design to meet evolving
requirements and constraints.

Modeling languages are widely used across various domains, including software engi-
neering, systems engineering, and business process modeling. An architectural language refers
to any form of expression used to describe software architecture, ranging from informal nota-
tions like box-and-line diagrams to formal Architecture Description Languages, such as Sys-
tems Modeling Language (SysML) [18] for systems engineering, Business Process Model and
Notation (BPMN) [31] for business processes are tailored to specific needs, and UML [11], one
of the most recognized modeling languages in software engineering, which provides a standard-
ized set of notations and diagrams to represent different aspects of software systems, making it

a versatile tool for designing, visualizing, and documenting software architecture.

2.2.2 Microservices Modeling

Microservice architectures offer substantial benefits, including the ability to design, de-
velop, test, and release services with increased agility. However, architecting microservices
is challenging due to the complexity of managing a distributed system. These challenges re-

quire careful design and robust strategies to maintain system reliability and performance in a
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decentralized environment.

Research interest in microservices architecture has increased since 2015, reflecting the
growing adoption and exploration of microservices in various industries [19]. This trend was
followed by a marked increase in publications on architectural languages for microservices
beginning in 2018, where researchers frequently extended existing modeling languages, such
as UML, BPMN, and graph-based frameworks, with profiles to develop more effective tools for
describing and managing these architectures [32].

D1 Francesco et al. [19] observed that most proposed microservice architectures were
described using informal languages, with UML being used only occasionally. They identified
nine distinct languages that had either been utilized or proposed for modeling specific aspects
of microservice architectures, highlighting the absence of a predominant architectural language.
As noted in their study, this diversity may hinder effective communication and modeling, in-
dicating a need for a standardized language to improve consistency, facilitate reasoning about
system qualities, and enhance stakeholder communication.

Zaafouri et al. [85] conducted a systematic review highlighting the importance of mod-
eling languages in SOA to manage complexity and scalability. The study identifies the UML,
BPMN, and Service Component Architecture (SCA) [56] as the most widely used languages in
large-scale SOA implementations. UML, in particular, is noted for its versatility in modeling
complex systems’ structural and behavioral aspects.

The analysis of current microservices modeling practices reveals the critical role that
UML plays in effectively managing the complexities of microservices architectures. UML pro-
vides a wide set of diagrams that can accurately represent the relationships and components
within a microservices system. Additionally, the Object Management Group (OMG) extended
UML with the SoaML [55] standard to cater specifically to SOAs, incorporating service con-
cepts such as consumers, providers, contracts, and choreography. Despite the existence of other
standards, UML continues to be the preferred language among practitioners for modeling SOA
and microservice architectures, as noted by Zaafouri et al. [85].

The challenges of microservices architecture faced by architectural languages include
microservice identification and decomposition [32]. To address these issues, many experts have
identified DDD as an effective solution to define the microservices scope through bounded con-
texts [53, 64]. Unlike Object-Oriented Modeling [13], which centers on structuring software
around objects, DDD emphasizes understanding the business domain and its complexities [81].
DDD relies on informal diagrams and a ubiquitous language to define bounded contexts, foster-
ing communication between technical and non-technical stakeholders and allowing flexibility
in expressing domain concepts [23].

The proposed framework defines a microservices-based architecture for SSL using prin-
ciples from DDD - to define services based on key concepts and relationships within the context
—, and applies different UML diagrams to increment the system design, where each diagram

represents a subset of the system. Table 1 briefly describes the diagrams used in this work. In
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Section 3.2.1 we further detail the relevance of each of these diagrams in the integrated model

we propose.

Table 1: Applied UML Diagrams and Their Modeling Capabilities. Adapted from Miles et
al. [51].

Diagram Category | Diagram Type | Purpose and Usage

Class Defines the system’s static structure by model-
ing classes, types, interfaces, and the relationships
among them, such as inheritance and associations.

Structural

Component Depicts the high-level components of the system
and their interfaces, focusing on how these com-
ponents interact and are organized within the ar-
chitecture.

Interaction Sequence Describes the sequence of interactions between ob-
jects in the system, emphasizing the order and tim-
ing of messages passed between them.
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PROPOSED APPROACH

This chapter discusses the work proposal, exploring the SSL environment, emphasiz-
ing the challenges of real-time decision-making, coordination, and low-latency communication
and the software’s critical role in meeting these demands. Finally, the chapter outlines the fi-
nal objectives and the specific approach: the SSL. VAR (Small Size League Video Assistant

Referee).

3.1 OVERVIEW

RoboCup is a prestigious international robotics competition designed to advance the
fields of autonomous robotics and artificial intelligence. Within the competition, the SSL is
one of the oldest and most challenging categories. The league’s emphasis on speed, agility,
and decision-making presents unique challenges, requiring teams to design robots capable of
navigating dynamically changing environments while executing complex strategies. In the SSL
robot soccer competition, matches are played between two teams of mobile robots. The com-
petition relies heavily on SSL Vision [88], a standardized vision system which tracks all the
objects on the field and works by processing data from one or more cameras that are mounted
above the playing surface. This system tracks robots identified by color patterns on their tops
(Figure 13), the orange golf ball used in play, and the field lines.

The game is controlled by the community-maintained ssl-game-controller [66], operated
by a human referee. This software translates the decisions of the referee into Ethernet commu-
nication signals broadcast to the network. This centralized control system ensures that all teams
operate under the same conditions and helps maintain fairness and consistency throughout the
competition.

One or more automatic referee applications can supervise a game and report events to
the game controller. The competition defines an additional vision tracker protocol that contains
filtered and enriched tracking data. These messages are not published by SSL Vision but are
provided by systems such as TIGERs AutoReferee [77]. This protocol is intended for use by
the game controller and teams that do not yet have their sophisticated filters.

The SSL Vision software operates on a dedicated computer, processing field data and
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Figure 13: Standard Vision Pattern Colors. Source: RoboCup Federation [24].

broadcasting the global positions of the robots and ball(s) across the network. The ssl-game-
controller operates on another dedicated computer, processing referee information and broad-
casting it to teams via Ethernet. Each team uses an off-field computer to receive positional
information and referee commands, enabling them to define team strategies, which dictate the
actions and behaviors of the robots in the real environment. Each team’s computer performs
most of the computation and exchanges information with the robots using wireless commu-
nication. This setup allows for real-time adjustments and decision-making, which are crucial
for the fast-paced nature of SSL matches. Figure 14 shows the general dataflow for the SSL

environment.
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Figure 14: General Dataflow for Small Size League Environment. Adapted from RoboCup
Federation [24].
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3.2 PROPOSAL

The central objective of this work is to develop a microservice-based architecture for
a strategy pipeline to Multi-Robot Systems (MRS), explicitly focusing on the RoboCup Small
Size League category. In conjunction with the strategy pipeline, the architecture aims to include
a playback component that provides live data for game streaming and facilitates data segmen-
tation for external applications requiring time-based queries, such as replay systems and time
series modeling. The proposed architecture draws inspiration from the essential components a
robotic agent needs to navigate a physical environment, emphasizing the integration of percep-
tion, decision-making, behavior, and control [58]. The main components of robot navigation,

as illustrated in Figure 15, include:

» Sensors: The physical components that provide the necessary input for the agent’s

perception, such as cameras, ultrasound or infrared sensors.

n Perception: Processes sensor data to extract key information, such as obstacle loca-

tions or the robot’s position, applying algorithms for object detection.

» Localization: Determines the robot’s location using techniques like odometry, GPS,

or Simultaneous Localization and Mapping (SLAM).

» Mapping: Creates a representation of the environment using methods such as occu-

pancy grids or geometric mapping.

» Path Planning: Finds an optimal path from the robot’s current location to its desti-

nation, while avoiding obstacles in the environment.

» Control: Executes the planned path by sending commands to the robot’s actuators,

which controls the robot’s actions.

However, navigating in the dynamic environment of SSL poses significant challenges
to understanding and debugging plays. Due to the speed and complexity of the game, deter-
mining the precise sequence of events and identifying the cause of unexpected behaviors can be
difficult. Human-referee decisions become particularly challenging when discrepancies arise
between the automatic referee’s commands and the actual events on the field. Currently, the
common system for reviewing game moments is ssl-logtools [65]. However, ssl-logtools does
not support an authentic replay of a team’s past decisions. It only re-transmits the vision and
referee packets through the network, simulating real packets and requiring the strategy software
to run and process the incoming packets again, thus re-executing the strategy. Any changes in
the software, as well as the inherent non-determinism of dynamic decisions within the software,

can result in slightly different behaviors.
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Figure 15: Flow diagram for mobile robot navigation that inspired the strategy microservices-
based architecture. Source: Patle er al. [58].

Furthermore, building a complete microservice-based architecture from scratch presents
significant challenges, especially for a complex domain like a robotics competition. Devel-
oping a subset of the target architecture as a proof of concept in software engineering is a
well-established practice. It enables developers to identify potential issues early, validate as-
sumptions, and gather empirical data on the system’s performance and scalability. According
to Martin Fowler, building a proof of concept helps in understanding the feasibility of the ar-
chitecture and mitigating risks associated with unproven technologies or methodologies [26].
Similarly, iterative development, as illustrated by the Agile methodology, emphasizes the value
of incremental delivery and continuous feedback to enhance the overall design and implemen-
tation process [9].

Additionally, microservices architectures are known for potential latency challenges due
to inter-service communication. Acknowledging this, the proposed work is designed as a case
study to evaluate whether microservices can meet the strict latency requirements of the SSL
environment. The objective is to explore whether this architectural approach, despite its inherent
communication overhead, can be effectively applied to the RoboCup SSL system.

Therefore, given the inherent challenges in real-time decision-making and system de-
bugging within SSL matches, this work focuses on developing a subset of the entire architec-
ture, the SSL. VAR system, an advanced microservice-based architecture designed to process
both external vision and referee data to create an understanding of the environment, providing

an API for live data and time-based queries for the raw and processed information.

3.2.1 Software Modeling

Effective software modeling ensures the design and implementation phases align with

the system’s intended functional requirements. Defining bounded contexts is fundamental in
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microservices architecture, as it delineates clear boundaries for each service, ensuring they are
responsible for distinct parts of the system. Dynamic interaction diagrams play a significant role
in depicting the flow of information and control among various system components. These di-
agrams help visualize how components interact over time, highlighting potential issues and op-
timizing system performance. Component architecture diagrams provide a high-level overview
of the system’s structure, illustrating how different components interact and depend on each
other. This macro perspective is essential for ensuring that all system parts are well-integrated

and that the overall architecture supports the system’s goals.

3.2.1.1 Service Definition

Traditionally, use cases outline scenarios where a system is utilized to fulfill user re-
quirements, focusing on specific functionalities the system must deliver. These use cases are
instrumental in guiding traditional object-oriented development’s design, testing, and documen-
tation processes. However, fine granularity is not necessarily suitable to capture microservices-
based functions (services).

In a microservices architecture, the emphasis shifts from defining individual use cases
to establishing bounded contexts, as DDD illustrates. Rather than broad scenarios, microser-
vices development begins with understanding the problem domain and defining clear boundaries
within which specific services operate. While use cases may assist in identifying functionali-
ties, they are less effective in microservices environments, where the primary focus is defining
domain boundaries and service responsibilities from the beginning. This ensures that each mi-
croservice is aligned with a specific business function, contributing to a more resilient, scalable,
and maintainable system.

As outlined previously, a key objective for future work on this project is to develop a
strategy pipeline for SSL that draws inspiration from the fundamental components a robotic
agent requires to navigate a physical environment effectively. However, unlike traditional robot
navigation architectures, this design targets external control software for a multi-robot system,
incorporating intermediate and boundary modules to ensure cohesive communication and ef-
fective orchestration of the system’s agents on the physical environment.

Additionally, the proposed architecture closely aligns with the efforts of RoboClIn’s [68]
SSL team, where the solution design emerged through detailed discussions with the team mem-
bers. These members acted as domain experts in line with DDD principles, and their insights
played a critical role in shaping the architectural choice. The RobdClIn’s SSL team is informally
divided into areas such as vision, strategy, navigation, and embedded systems. These divisions
align well with DDD’s concept of bounded contexts, where each area operates relatively inde-
pendently while maintaining cohesion within its specific domain.

The design of this architecture is driven by the specific responsibilities assigned to each

microservice, as detailed in Table 2. Additionally, Figure 16 illustrates the designed bounded
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contexts inspired by the main components of robot navigation (Figure 15).
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Figure 16: Proposed bounded contexts inspired by Patle et al. [58]. Source: The author.

Table 2: Responsibility of each modeled microservice.

Microservice Responsibility

Perception Receives visual information from the external world, sent by the
software provided by the SSL competition, which contains data
on the location of entities and the field.

Referee Receives information about the game stage, sent by the competi-
tion’s arbitration software.
Decision Processes and extracts relevant information about the robot’s en-

vironment, indicating the behavior the agents should take individ-
ually to guarantee coordinated behavior between the agents.
Behavior Coordinates the sequence of actions that each robot must execute
to complete a specific behavior, which involves controlling local
movement and action decisions.

Navigation Manages and moves the agent intending to find an ideal path from
the robot’s current location to its destination and avoid obstacles
and other environmental hazards.

Communication | Represents the link between the external control software and the
physical agents, being responsible for sending the necessary in-
formation for the robot to perform the desired behavior in the real
environment.

Playback Aggregates data from all strategy microservices to provide com-
prehensive match information. It supports real-time game stream-
ing and enables time-based queries for the UI component or ex-
ternal applications, such as time series analysis.
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3.2.1.2 Interaction Diagrams

Interaction diagrams play an essential role in modeling the dynamic interactions be-
tween the components of a system, serving as an integral part of the logical view of the de-
sign [51]. These diagrams depict how various parts of the system communicate to execute
specific responsibilities, effectively bridging the gap between the system’s structural design and
operational behavior.

In the context of SSL VAR, the system is organized into three core services: Perception,
Referee, and Playback. Each service has its interaction diagram, which is fundamental for
understanding the flow of data and communication between system components, known as
participants. Each participant is represented by a lifeline, a vertical line indicating an object’s
presence at a particular moment in the sequence. To offer an integrated view of the system
and illustrate the structure of an interaction diagram, Figure 17 presents the interaction diagram
for the PlaybackService. The interaction diagrams for the Perception and Referee services are
detailed in Appendix A.1.

The Playback interaction diagram outlines the sequence of interactions between system

participants across three main flows:

1. onReceiveProcessingData: The PlaybackService begins receiving and processing
data from the PerceptionService and RefereeService to gather detection and game
status data, respectively, saving both to the appropriate collections and aggregating

them to create a Sample, which is provided on a live match.

2. onReceiveLiveMatch: The user initiates the process by selecting to watch a live
match, and then the live match is streamed continuously using a loop while the

match is running, with the PlaybackService retrieving live samples in real-time.

3. onReceiveChunkRequest: The user initiates the process by selecting to watch a
replay from a given start timestamp, and then PlaybackService retrieves the corre-
sponding data chunk. The system retrieves both detection and game status data for
the specified time range from the collections, providing the replayed information

back to the user.

The key strength of sequence diagrams is their ability to depict the sequential flow of
messages between participants. These messages can be either synchronous, where the sender
pauses and waits for the receiver to process the message before proceeding, or asynchronous,
where the sender continues executing without waiting for a response, allowing the system to
manage multiple processes concurrently. Asynchronous programming messages often trans-
late into threads or tasks that operate independently of the main program flow, enabling paral-
lel execution and enhancing system performance. They are also fundamental to event-driven
programming paradigms, where the sender dispatches a message and continues without de-

lay, leaving the receiver to handle the message as it arrives. In Figure 17, startLiveStream
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Figure 17: The interaction diagram for Playback service. Source: The author.

and replay(startTime) represent synchronous messages, while the message receiving through
send(detectionWrapper) and send(gameStatus) represent asynchronous communication.
However, while sequence diagrams are practical for modeling straightforward interac-
tions, they can become cumbersome and difficult to manage when dealing with more complex
scenarios like loops, conditionals, or alternative flows. To address this, sequence fragments
were introduced [51]. A sequence fragment is a structural element in UML sequence diagrams
that encapsulates a specific portion of the diagram within a bounded box. This box not only
groups related interactions but also provides a means to represent control flow constructs in
a clear and structured way. Each sequence fragment is labeled with an operator in its top-left
corner, indicating the type of interaction it governs. These operators greatly enhance the expres-
siveness of sequence diagrams, enabling a more organized and modular approach to modeling

complex interactions. The Astah UML software offers a variety of operators [4], such as par
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for parallel processes, allowing interactions within the fragment to coincide without any thread
synchronization; loop for repetitive actions, which iterates through interactions until a specified
condition evaluates to false; critical for critical regions where interactions within the fragment
involve shared resources that must be accessed in a thread-safe manner; and opt for optional

sequences, where interactions are executed only if a guard condition evaluates to true.

3.2.1.3 Component Architecture

The component architecture diagram in UML is a crucial tool for visualizing the high-
level structure of a system, focusing on its components and their interactions, which provides
a static view of the system’s architecture. This diagram highlights the dependencies between
components, their interfaces, and the overall configuration of the system, offering insights into
how different parts of the system collaborate to achieve the desired functionality.

Understanding the component architecture diagram is essential for grasping the over-
all system design and its integration points. The component architecture diagram provides a
foundational understanding of how these functionalities are structurally organized and intercon-
nected within the system. The proposed diagram represents a microservice-based architecture
designed for the RoboCup SSL competition that allows for flexible handling of live and histor-
ical match data, ensuring smooth integration between all microservices and external systems.
Figure 18 illustrates the SSL VAR architecture diagram.

This architecture integrates various services to handle the flow of information, both
from the external environment (vision system and referee) and internal team decision-making

processes. Below is an explanation of the workflow based on the illustrated services:

s WebUI: The front-end component of the system interacts with the Gateway, where

the user can view live data streams or a replay from a given timestamp.

» Gateway: Serves as an intermediary between the Ul and internal services. It man-

ages requests for updating parameters, retrieving chunks, or streaming live data.

= Perception Service: Interacts with external vision systems, such as SSL Vision [88],
and simulators like grSim [57] and simulator-cli [67], to receive raw vision data. It
also integrates tracked vision sources, such as TIGERs AutoReferee [77]. It pro-
cesses both raw and tracked vision data to deliver relevant information to the Refer-

eeService and PlaybackService.

= Referee Service: Processes game-state information from the referee system, man-
aged by the ssl-game-controller [66], along with processed vision data from the
PerceptionService. It provides live game status updates, which are then published to

the PlaybackService.
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Figure 18: The component diagram for SSL VAR architecture. Source: The author.

= Playback Service: Represents the central service of the architecture to integrate
users with strategy services, being responsible for real-time data streaming and
replay functionality. It retrieves match chunks from the Detection Collection and
GameStatus Collection, allowing users to replay matches or analyze specific times-
tamps. It ensures the synchronization of visual and game-state information from the

Perception and Referee services during live streams and replays.

= Detection and GameStatus Collections: Represents the collections to store pro-
cessed data. The Detection Collection holds positional and detection-related infor-
mation, while the GameStatus Collection stores game events such as goals, fouls,
and game states. Both collections are essential for accurate replays and detailed

analysis of past matches.

» External Vision Systems: Integrates with additional vision systems that follow a
defined protocol, which provides raw vision data from a physical camera above the

field or from simulators.

» Tracked Vision Systems: Works alongside external vision systems providing en-
riched tracking data (e.g., the TIGERs AutoReferee [77]), mainly for teams that do
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not yet have their sophisticated filters.

During a match, the PerceptionService receives real-time raw positional data from cam-
eras (or running simulators), processes it, and publishes it to the RefereeService and Playback-
Service. The RefereeService collects game status information (e.g., game stages, fouls, goals)
from the ssl-game-controller [66] and detection-related information from PerceptionService,
processes the data to determine the game status and publishes the processed information to the
PlaybackService. The PlaybackService aggregates all published data and stores it in the Detec-
tion and GameStatus collections. The PlaybackService allows users, via the WebUI, to stream
live matches with synchronized data from Perception and Referee services, and request specific
match timestamps for replay. The communication between the frontend and the PlaybackSer-

vice is intermediate by the Gateway component.

3.2.1.4 Detailed Services

Class diagrams are foundational tools in modeling the architecture of object-oriented
systems, serving as a critical means for visualizing the structure and relationships among vari-
ous system components. These diagrams meticulously depict the system’s classes, highlighting
their attributes, operations, and the intricate interconnections that define the system’s architec-
ture. One of the most significant aspects of class diagrams is the use of interfaces, which specify
a set of operations that any implementing class must adhere to. By abstracting the behavior from
its implementation, interfaces foster a modular design approach, enabling different system parts
to interact seamlessly without becoming tightly coupled to specific class implementations.

The strategic use of interfaces in UML enhances the flexibility and maintainability of
the system’s design. By relying on interfaces instead of concrete classes, developers can craft
software that is easier to extend or modify and more resilient to change. This design philosophy
supports creating modular and loosely coupled systems, ensuring that changes in one part of
the system do not adversely affect others. This approach to design is crucial in developing
systems that can evolve and adapt to new requirements with minimal disruption to the existing
architecture [51].

These design principles were rigorously applied in the model and development of the
SSL VAR system, where interfaces played a pivotal role in creating a robust and flexible ar-
chitecture. Additionally, the SSL VAR system’s architecture employs several key design pat-
terns [27] to enhance flexibility, scalability, and maintainability.

Figure 19 presents the class diagram for the PlaybackService to offer an integrated view
of the central component of the architecture and illustrate the service structure focusing on the
main workflow without external types. The complete detailed service diagrams for the SSL
VAR system and the third-party data needed to understand the SSL context are illustrated in
Appendix A.2.
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Figure 19: The class diagram for Playback service. Source: The author.

3.2.2 Implementation

Implementing the SSL VAR system involves a meticulously designed architecture that
ensures performance and flexibility. This section delves into the strategies and technologies
to realize the system’s core components. It outlines the deployment of strategy microservices
and the configuration of the API Gateway, which together facilitate the efficient handling and
communication of data within the system. The choice of technologies and design patterns
reflects a commitment to achieving low-latency operation while accommodating the complex
demands of real-time robotic systems.

A microservices-based architecture is designed to be language-agnostic, allowing for the
implementation of components in various programming languages. C++ and Golang were uti-
lized in the current implementation, capitalizing on their performance and concurrency features.

However, the architecture is flexible enough to accommodate other programming languages and
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data persistence technology, as further details are provided in the sequel.

3.2.2.1 Microservices

The backend microservices are integral to the SSL. VAR system, each serving a spe-
cific yet interconnected role essential for the effective operation of the multi-robot system. This
subsection delves into the functionalities of the Perception, Referee, and Playback microser-
vices, which collectively manage critical data processing and system coordination tasks. The
Perception microservice is responsible for capturing and analyzing visual data from the ex-
ternal environment, the Referee microservice handles game-related information and enforces
game rules, and the Playback microservice oversees the management and retrieval of match
data, supporting functionalities such as live game streaming and replay capabilities. This mod-
ular design facilitates specialized management of each microservice’s functions, enhancing the
system’s efficiency and adaptability.

The system is designed around an Event-Driven Architecture, utilizing asynchronous
communication through an inter-process communication (IPC) protocol with a publisher-subscriber
pattern enabled by ZeroMQ (ZMQ) [33]. ZMQ is selected for its exceptional performance,
lightweight footprint, and fine-grained control, making it particularly well-suited for low-latency
applications. This event-driven architecture allows each microservice to function independently
while ensuring seamless event propagation and distribution throughout the system. For sce-
narios requiring synchronous communication, such as the interaction between the Playback
microservice and the API Gateway for time-based match data chunks, ZMQ also facilitates
communication using the dealer-router pattern. Unlike other middleware systems commonly
employed in robotics, ZMQ offers performance optimization and control ideal for real-time sys-
tems’ stringent demands. Additionally, the system employs Protocol Buffers [36] for serializing
all inputs and outputs, ensuring efficient and consistent data processing across the architecture.

To minimize communication overhead and enhance performance within the system, sev-
eral strategies were implemented, particularly in the Perception and Referee services. A crucial
element of this optimization was the adoption of a producer-consumer design pattern comple-
mented by multi-threading. In this architecture, the producer controller efficiently manages
input data by utilizing a poller [86] to aggregate messages from multiple sources at specified
intervals. Instead of sending individual messages as they arrive, the producer consolidates these
inputs into a single payload and forwards it to the consumer controller for processing. This ap-
proach allows the consumer controller to focus solely on processing functionality, eliminating
the need to handle incoming message traffic directly.

This design helped reduce the communication overhead by preventing the consumer
controller from being interrupted by each new message, thus enabling more efficient processing.
Additionally, it prevented the message queue between the producer and consumer controllers

from becoming overcrowded, which could otherwise lead to delays and negatively impact real-



47

time performance. By efficiently managing the flow of data between components, this approach
helped ensure the system maintained low latency while processing incoming data in a timely
manner.

Additionally, the microservices architecture inherently supports polyglot persistence,
enabling each service to select a database tailored to its specific requirements, optimizing per-
formance and data management. The choice of an appropriate Database Management System
(DBMYS) is crucial. It must be informed by the unique needs of each microservice, with a
particular emphasis on achieving optimal read and write performance.

NoSQL databases offer distinct advantages in handling unstructured data efficiently,
allowing for rapid read/write operations in various formats, such as JSON documents or key-
value pairs. Among the prominent NoSQL databases -— Redis, MongoDB, and Cassandra -—
each is suited to different use cases. While graph-based NoSQL databases excel in applications
centered on complex data relationships, they are less suited to scenarios like the one addressed
in this work, where rapid processing of unstructured data is paramount [70]. MongoDB, as a
document-oriented database, typically provides faster read/write operations than Cassandra, a
column-based database, in most scenarios [2]. However, Redis, a key-value store, surpasses
MongoDB and Cassandra in speed, leveraging in-memory data storage to deliver exceptionally
high-speed operations [74]. Redis was selected as a proof of concept for this architecture due
to its outstanding performance in low-latency, high-throughput environments.

The final architecture, illustrated in Figure 20, encompasses critical components such
as Perception, Referee, Decision, Behavior, Navigation, and Communication. The SSLL VAR
is a subset of this architecture; the components needed for building the SSL. VAR system are

detailed in Figure 21.
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The author.
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3.2.2.2 API Gateway

The API Gateway is a critical interface within the SSL. VAR system, managing the
interactions between internal microservices and external components. Its role is to abstract the
complexities of service communication and provide a cohesive entry point for various requests.
The API Gateway primarily utilizes the facade design pattern [27] to enable communication
between systems and components operating with different technologies. Internally, the gateway
uses a modular approach to handle communication channels independently, ensuring efficient
and scalable performance.

The gateway architecture is designed to handle multiple communication protocols con-
currently, ensuring seamless integration and efficient data flow between different system com-
ponents. It features UDP multicast workers that listen for messages from various external
sources, including External Vision [88, 57, 67], TIGERs AutoReferee [77], and the ssl-game-
controller [66]. Each worker is assigned a specific multicast address and processes incoming
data, forwarding it to a central proxy channel for further handling.

Beyond UDP multicast, the gateway integrates a ZeroMQ server that serves as a broker,
facilitating the conversion and routing of messages from UDP to ZeroMQ. This ensures efficient
message delivery across the system while maintaining the integrity of the communication pro-
tocol and package structure. The gateway effectively manages the serialization, deserialization,
and routing of messages to the appropriate microservices through its multi-protocol framework.

Additionally, the gateway includes a Google Remote Procedure Call (gRPC) [34] server
to manage synchronous communication with external clients, enabling real-time interactions.
gRPC is a middleware based on remote procedure calls commonly used for client-server com-
munication, ensuring a common interface between components through the language of Proto-
col Buffers. gRPC provides a standardized interface and efficiently supports various communi-
cation needs, including unary and streaming requests/responses. Therefore, given the need for
specific functionalities such as timestamp-based and game live requests, it is an ideal fit for the
particular domain of interest.

The comprehensive microservices-based architecture, which integrates frontend, gate-
way, backend, and external components, is illustrated in Figure 22. This figure represents the
system’s design and the communication protocols that enable seamless interaction between the
elements. The architecture’s scalability is evident in its fully decoupled structure, where each
component communicates through well-defined messaging protocols, ensuring flexibility and
ease of expansion. This architecture is particularly suited for real-time applications like robot

soccer, where the ability to handle multiple communication streams with low latency is crucial.

3.2.2.3 Infrastructure

The development and deployment of the SSL. VAR system are built on a robust, platform-

independent infrastructure through Docker [47]. Docker allows developers to package applica-
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Figure 22: The general microservices-based architecture with generic components. Source:
The author.

tions and their dependencies into lightweight, portable containers, ensuring that the software
behaves consistently across different environments. This is particularly beneficial in dynamic
environments like RoboCup, where various system components must interact seamlessly.

The development work was performed using Visual Studio Code [49], integrated with
a Visual Studio Code Dev Containers [50] setup. Devc Containers provide a standardized de-
velopment environment that can be easily shared among team members. By defining a devel-
opment container, developers can ensure that everyone works with the same dependencies and
tools, regardless of their local machine setup. This not only simplifies the onboarding process
for new developers but also accelerates the development cycle, as the environment setup time is
minimized.

To optimize the build process, Dockerfiles for the SSL. VAR system were designed to
support Docker multi-stage builds [20]. Multi-stage builds enable developers to create separate
build stages within a single Dockerfile, allowing them to efficiently manage the creation of
both development and production images. The choice of lightweight base images, such as
Distroless [30] and Scratch [21], significantly minimizes resource consumption, improving both
the performance and scalability of the system. Table 3 summarizes the resource usage of the
implemented services and third-party containers.

To optimize the build process for the SSL. VAR system, Dockerfiles were designed to
leverage Docker multi-stage builds [20]. Multi-stage builds enable developers to create distinct
build stages within a single Dockerfile, which facilitates the efficient management of both devel-
opment and production images. This approach allows for a clear separation of the build environ-
ment from the runtime environment, ensuring that only the necessary components are included
in the final production image. By minimizing the size of the image and eliminating unnecessary

files, developers can significantly decrease build times and simplify deployment processes. Fur-
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thermore, this streamlined workflow promotes better organization within the codebase, making
it easier to manage dependencies and updates over time. Selecting lightweight base images,
such as Distroless [30] and Scratch [21], is crucial as it significantly reduces resource consump-
tion, enhancing both the performance and scalability of the system.

Table 3 summarizes the resource usage of the implemented service container images
compared to commonly used third-party containers in the RoboCup SSL community, including
TIGERs AutoReferee [77] and the simulator-cli [67]. Notably, the proposed service images
demonstrate substantially better resource usage than the currently employed third-party con-

tainers.

Table 3: Resource Usage of SSL VAR and Third-Party Containers

Source Component Image Size (MB) | Base Image
Gateway 28.5 Distroless
Perception 7.79 Scratch
SSL VAR
Referee 9.2 Scratch
Playback 34.1 Distroless
) TIGERS AutoReferee 610 N/A
Third-Party
simulator-cli 471 N/A
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EVALUATION

This chapter analyzes the performance impacts associated with communication and pro-
cessing within the microservice architecture pipeline, as outlined in earlier chapters. It examines
how interactions among various components within a microservices-based architecture influ-
ence the system’s latency.

To ensure the scalability and efficiency of the SSL. VAR system’s architecture, it was
crucial to conduct preliminary experiments focusing on the communication overhead within the
microservices architecture. This experiment assessed the system’s ability to handle commu-
nication loads, simulating conditions encountered in a fully operational strategy pipeline for a
future and complete strategy software for robot control in RoboCup SSL games. By evaluating
the communication efficiency and latency under simulated conditions, the experiment aimed to
establish whether the architecture could support the stringent real-time requirements of the cat-
egory games. Understanding the communication overhead is crucial, as it directly impacts the
overall system’s ability to process and relay information promptly, ensuring that the architecture
can handle the complexities of a fully integrated strategy pipeline in future implementations.

A performance analysis [35] was conducted to evaluate a microservice architecture (Fig-
ure 23) within the context of RoboCup SSL competitions. Although not all components were
fully implemented, this does not impact the analysis, as the primary focus was to confirm that
the architecture could meet the demanding performance criteria necessary for timely and effi-
cient command generation despite the communication overhead due to the distributed architec-
ture. The evaluation was performed on a system configured with Ubuntu 20.04, featuring an
Intel® Core™ i7-8565U CPU @ 1.80GHz x 8, 16 GB of RAM, and a 256 GB SSD. Docker
containers were employed to orchestrate the environment, providing a consistent and isolated
setup for each test. The experiments involved simulating a runtime workload with 3000 mes-
sages. To ensure the precision of the results, the initial and final 1000 messages were excluded,
thereby concentrating the analysis on the middle 1000 messages that offer a clear view of the
system’s core performance metrics.

The primary focus of this experiment was to validate the essential architectural flow of
the proposed architecture, with particular attention to robot strategy processing. These compo-

nents were selected due to their critical role in real-time operations during robot soccer matches.
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Figure 23: The proposed architecture’s pipeline used for evaluating communication overhead.
Source: The author.

The primary performance metric was the total duration required for the pipeline to receive, pro-
cess, and transmit external input as robot commands. This metric provides insight into the
efficiency and responsiveness of the microservice architecture, highlighting its ability to meet
the stringent latency requirements of real-time scenarios.

A baseline latency of 16 milliseconds (ms) was established to assess performance, cor-
responding to the 60 Hz frame rate at which SSL Vision [88] transmits images in real-time
SSL games. This benchmark was crucial in determining whether the proposed architecture
could handle third-party data processing and generate robot commands within the required time
frame, considering the communication overhead. This metric provides insight into the effi-
ciency and responsiveness of the microservice architecture, highlighting its ability to meet the
stringent latency requirements of real-time scenarios.

As illustrated in Figure 24, the proposed architecture achieved a maximum communi-
cation overhead of 0.43 0.03 ms in the most critical scenario, which represents 0.03% of the
given processing budget (16 ms). This level of overhead falls well within acceptable limits,
and shows the efficiency of the microservice architecture in managing communication between
its various components. This minimal overhead reflects the system’s capability to handle the
intricate interactions among microservices without introducing significant delays.

This finding shows that a microservices approach can be used effectively without com-
promising the RoboCup SSL latency, keeping the robustness and reliability of the microser-
vice architecture. The ability of the system to adhere to stringent performance requirements
confirms its suitability for compelling gameplay. By consistently generating and transmitting
commands within the precise time constraints imposed by the game’s dynamic nature, the ar-
chitecture demonstrates its readiness for real-world application and its capability to support
high-performance requirements in competitive scenarios. This ensures that the system can de-
liver timely and accurate responses crucial for successful gameplay, validating the efficacy of

the architectural design and its implementation.
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Figure 24: Distribution of pipeline latency for complete robot strategy architecture based only
on communication overhead. Source: The author.
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RELATED WORK

The evolution of software architectures in MRS has seen a significant shift from tra-
ditional monolithic designs to more modular and scalable approaches, such as microservices.
Historically, monolithic architectures have been favored for their simplicity and performance
advantages, particularly in applications where low latency and high efficiency are paramount.
This preference has been evident in the SSL of robot soccer, where teams have traditionally
employed monolithic systems to control their robots [3, 59, 82].

The Robot Operating System (ROS) has emerged as a pivotal framework in the devel-
opment of distributed architectures for robotics systems, providing a versatile platform that sup-
ports complex and modular designs [79]. Expanding on ROS’s capabilities, Rahimi et al. [62]
introduces a microservices architecture specifically crafted for the robot soccer domain. How-
ever, despite its popularity, ROS presents several significant drawbacks. First, ROS can be
overly complex and cumbersome, requiring substantial effort for codification and maintenance.
This complexity can lead to increased development time and difficulty in debugging. Second,
ROS introduces considerable overhead, which can degrade performance, particularly in real-
time applications with critical low latency requirements. Third, the tightly integrated nature of
ROS components can make it challenging to adopt new technologies or experiment with alter-
native approaches without significant rework. Due to these limitations, previous studies in the
SSL domain have opted to discontinue using ROS [1, 73].

However, as robotic systems’ complexity has increased, more flexible and scalable solu-
tions are required. The field of MRS has seen significant exploration and innovation in software
architectures. The service-oriented approach has become a foundational element in robotics,
offering key modularity, scalability, and interoperability advantages. Trifa et al. [78] demon-
strates how service technologies can streamline communication and control, mainly through
standardized interfaces in a swarm of robots, facilitating seamless tele-control. Similarly, Chen
et al. [16] proposes the design of robots or devices as SOA units capable of executing a broad
range of robotic functions, thereby enhancing the versatility and integration potential of these
systems. Narita ef al. [52] highlights the RoboLink Protocol, which employs Web Services
communication standards to ensure reliable inter-robot communication.

Several studies have explored the integration of microservices within robotics, high-
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lighting its potential to enhance system efficiency and scalability. For instance, Georgiades et
al. [29] propose a microservice-based software framework for multi-drone autonomous sys-
tems that is fault-tolerant, expandable, and easily monitored. Additionally, Schiffer et al. [72]
illustrate a microservice architecture for a web-based configurator for robot-based automation
solutions, demonstrating how this approach enables functionalities such as collaborative multi-
user configuration and role-based configuration sessions. Furthermore, Xia et al. [84] propose a
microservice-based architecture for cloud robotics in intelligent spaces, utilizing container tech-
nology to provide a highly efficient and flexible development/deployment mechanism and cost-
effectiveness compared to traditional monolithic architectures. Zhou et al. [87] introduces a
virtual microservices-based model for robotic swarm systems, demonstrating how the approach
simplifies task composition and swarm control by focusing on high-level virtual services rather
than managing individual robot actions, as illustrated through a detailed rescue mission case
study. Kudriashov [39] proposes a distributed architecture to robotics systems named ALKE-
TON. It designs two significant conceptual components to reduce the coupling of microservices
and improve scalability. Similarly, Schéffer et al. [71] propose a concept of microservices ar-
chitecture with standardized robot configurators, including 2D and 3D visualizations, among
other functionalities. However, these works do not specify latency and performance analysis
based on overall communication overhead, primordial to low-latency MRS.

The transition to microservices architectures in robotics represents a significant ad-
vancement in addressing the growing need for modularity, scalability, and system flexibility.
Microservices enable the independent development, deployment, and scaling of components,
making integrating new technologies and adapting to evolving requirements easier. This mod-
ular approach enhances robotic systems’ overall resilience and maintainability, offering a more
robust foundation for complex and dynamic environments. While the benefits of microservices
are clear, it remains essential to ensure that these advantages are not undermined by potential
increases in communication overhead. Careful design and optimization are key to maintain-
ing the low-latency performance required for critical robotics applications, ensuring that the
full potential of microservices can be realized in advancing the capabilities of modern robotic

systems.
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CONCLUSION

This work introduces SSL VAR, a cutting-edge microservices architecture explicitly
designed for low-latency MRS, catering to the intricate requirements of the RoboCup SSL en-
vironment. The SSL. VAR framework features a Video Assistant Referee (VAR) system, which
employs a microservices-based approach to deliver essential functionalities. Key features in-
clude dedicated microservices for perception and referee processing, enabling precise and real-
time analysis of the robot’s environment and game conditions. This modular design supports
the independent development and scaling of these specialized components, allowing for the
integration of various technologies and ensuring a highly flexible system.

Furthermore, SSL. VAR provides robust support for live match data streaming and re-
play functionalities. The architecture includes capabilities for real-time game streaming and
time-based query support, which is crucial for implementing replay systems and other exter-
nal components. This provides integration with external applications, providing detailed match
insights and historical data retrieval. An API Gateway effectively manages communication
between the microservices and external components, facilitating seamless data exchange and
system integration. The architecture’s layered design ensures adaptability and scalability while
adhering to strict low-latency performance requirements, thus enhancing the overall efficiency
and responsiveness of the system.

The results of this study demonstrate that the microservices approach can be effectively
utilized without compromising performance and that the careful selection and implementation
of suitable technologies can enable successful real-time applications. The proposed architec-
ture represents a significant advancement in robot competitions, showcasing the potential of
microservices and innovative software patterns in a challenging, performance-critical environ-
ment. The successful implementation of SSL. VAR in real-time scenarios underscores its po-
tential for broader application and highlights the advantages of a microservices architecture in
complex, high-stakes settings.

Future work will focus on transitioning RobdClIn’s [68] SSL software from its current
monolithic architecture [3] to the microservices-based architecture proposed in this document.
This transition will involve a more detailed performance analysis to optimize latency and ensure

the system’s long-term scalability and efficiency. A comparative analysis of the microservices
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architecture against the existing monolithic structure is also a critical next step. This will involve
conducting quantitative performance evaluations to assess key metrics such as latency, through-
put, and system responsiveness, aiming to validate the improvements brought by microservices
over the monolithic approach.

Furthermore, the work will explore the system’s scalability under more demanding com-
petition scenarios. The transition will consider how the architecture can handle increased com-
plexity and workload while maintaining real-time performance. By analyzing scalability in
greater detail, future enhancements can be better guided to ensure that the system is robust and
efficient in the face of higher demands. Another critical area for future work is the evaluation
of system robustness. The ability of the system to handle failures or errors in a highly dy-
namic, real-time environment will be rigorously tested, focusing on fault tolerance and error
recovery strategies. This will ensure the architecture maintains stability and functionality in
high-pressure competition scenarios.

Regarding software modeling, one potential area for improvement in the architectural
modeling of this system is the transition from the UML to the C4 Model [15] for representing
software architecture. While UML is a traditional and widely adopted tool for software design,
it can sometimes introduce unnecessary complexity, particularly in systems involving microser-
vices. Given the need for both high-level abstraction and clear communication in a fast-paced,
real-time system, adopting the C4 Model could provide several key advantages. The C4 Model
offers a clear, structured approach that emphasizes the relationships and interactions between
components, making it easier for teams to understand the architecture without getting lost in the
details. It promotes clarity and focus by providing different levels of abstraction — from context
to component diagrams — allowing for high-level and detailed views as needed. This could en-
hance communication among stakeholders and streamline the development process, ultimately
supporting better collaboration in a rapidly evolving environment.

Lastly, the integration of the microservices architecture with both frontend and back-
end components will progress as an open-source project under the RobdCln initiative !. The
design of a complementary microservices architecture for the frontend is currently under de-
velopment [80], and the combination of these efforts aims to significantly enhance the system’s
overall functionality and performance, making it better suited for the stringent demands of
RoboCup SSL competition. Figure 25 presents the target architecture, providing a comprehen-

sive overview of the interactions among the various services within the system.

'Available at https://github.com/robocin/ssl-core
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APPENDIX

A.1 INTERACTION DIAGRAMS

This appendix provides detailed interaction diagrams for the Perception and Referee ser-
vices, complementing the main discussion on system architecture. These diagrams are instru-
mental in visualizing the flow of data and interactions between system participants, facilitating
a deeper understanding of the operational structure of the SSL. VAR system.

The PerceptionService interaction diagram highlights the reception and processing of
visual data from external vision systems. The PerceptionService interaction diagram outlines

the sequence of interactions between system participants across three main flows:

1. onReceiveParams: The user triggers the process by updating system parameters
through the UI. The updated parameters are received by the PerceptionService,

which then updates its vision processing parameters accordingly.

2. onReceiveVision: The PerceptionService continuously receives raw vision data
from external vision systems (e.g., SSL Vision [88], grSim [57], simulator-cli [67]).
In parallel, it receives tracked vision data from TIGERs AutoReferee [77] with a

pre-processed detection information.

3. onReceiveData: The PerceptionService continuously processes the received vision
data (raw and tracked) in a loop. It takes unprocessed vision data from a queue, and
if the queue is not empty, it processes the vision data and publishes the detection
results. These results are then sent to both the RefereeService and the PlaybackSer-
vice, ensuring that detection and vision tracking data are synchronized across the

system.
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sd perception-service J

PerceptionService
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|
|
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Figure 26: The interaction diagram for Perception service. Source: The author.

The RefereeService interaction diagram details the flow of game-state information pro-

cessed from both referee commands and detection data from the PerceptionService. The dia-

gram captures the sequence of interactions between system participants across three main flows:

1. onReceiveParams: The process is initiated by the user, who updates system pa-

rameters via the UI. These updated parameters are received by the RefereeService,

which adjusts its processing behavior based on the new inputs.

2. onReceiveMessage: The RefereeService continuously receives referee commands

from the external ssl-game-controller [66]. Simultaneously, it processes detection
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data received from the PerceptionService, integrating referee commands with on-

field information to maintain accurate game state awareness.

3. onReceiveData: The RefereeService processes the incoming data in a continuous
loop. It retrieves unprocessed data from a queue, and if data is available, it pro-
cesses it and publishes the resulting game status. This information is then sent to the

PlaybackService, facilitating live streaming and replay functionalities.

Along with the PlaybackService interaction diagram presented in Section 3.2.1.2 (Fig-
ure 17), these interactions form the core of the system’s data processing and communication

steps.

sd referee-service J

| RefereeService | | GameController || PerceptionService ” PlaybackService

: User

1: updateParams(params)

[onReceiveParams]

|
|
|
par : RefereeRun :
|
|

11: updateParams(refereeParan@|

[onReceiveMessage] |

1
T
loop : ReceiveDetectionAndReferlee [true])

critical : PutUnprocessedData

[mutexUnprocessedDataQueue]

|
I
par | 2: send(referee: Referee)

[game_controller]

_q -
] —— = —

I;

[onReceiveData]

|
;
T
I
|
I

I
I
loop : ProcessRefereeData [true]u |

I I

critical : TakeUnprocessedDatAl) :

1

I

I

[

I

I

}

I

I

I

I

I

I

I

Il

U

I

[mutexUnprocessedDataQueue]

opt : ProcessAndPublish :

[! unprocessedDataQueue.isEmpty]

]
par : PuinFhGameStatus I

|
[playback]l 4: publish(gameStatus)

I

Figure 27: The interaction diagram for Referee service. Source: The author.
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A.2 DETAILED SERVICES

This appendix provides detailed class diagrams for the Perception and Referee services,
and the third-party values provided by the competition, complementing the main discussion on
system architecture in Section 3.2.1.4. The complete detailed service diagrams for the SSL
VAR system, as presented in Figures 28, 29, and 30, illustrate how interfaces and modular
design principles were embedded into the system’s architecture.

The third-party classes shown in the diagrams are Protocol Buffers files, standardized
across the RoboCup SSL community and maintained by the competition organizers. These
files have been integrated into the SSL VAR repository for version control [69]. To prevent
cluttering the service diagrams with these standard classes, they have been excluded from the
service diagrams and are instead presented separately in Figures 31, 32, 33 and 34.

These diagrams depict the structured interactions and relationships within the system
and underscore the importance of interface-driven design in maintaining the system’s adapt-
ability and ease of integration.

Additionally, as mentioned in Section 3.2.1.4, the SSL VAR system’s architecture em-
ploys several key design patterns [27] to enhance flexibility, scalability, and maintainability.
The Abstract Factory pattern was implemented to create message handlers specific to middle-
ware. This pattern enables the integration of alternative middleware solutions by defining in-
terfaces for MessageReceiver and MessageSender and providing new factory implementations
as needed. This approach ensures the system can adapt to different middleware components
while preserving its architectural integrity. Moreover, the Abstract Factory pattern was applied
to repository management across the service. It provides a structured approach for creating
repositories with different technologies by employing a single factory interface. This allows
for the consistent and efficient creation of repositories, as developers can produce families of
related objects without specifying their concrete classes.

The Decorator pattern was utilized to compose various filtering algorithms for ball and
robot entities on the field, including advanced techniques essential for dynamic robotics en-
vironments. These filtering algorithms enhance the system’s ability to handle noisy data and
distinguish between significant movements and minor disturbances. Incorporating these algo-
rithms significantly improves tracking accuracy and state estimation while minimizing false
positives in high-speed scenarios. The Decorator pattern allows for the dynamic augmenta-
tion of these filtering algorithms, enabling sophisticated filtering processes without altering the
underlying structures of the filters themselves. This flexibility promotes code reusability and
adaptability.

The Builder pattern was employed to construct complex data structures by applying
filtering algorithms to ball and robot entities. This pattern separates the construction process
of a complex object from its representation, facilitating incremental assembly through method

calls. This approach is handy when dealing with multiple filtering algorithms, each focusing
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on different aspects of entity behavior and applying these filters to various properties of each
entity. The modular construction improves code readability and maintainability, especially in
scenarios involving intricate filtering processes.

The Facade pattern was introduced to provide a simplified interface to the complex pro-
cessing logic within the system. By encapsulating the details of internal operations, this pattern
ensures that business logic remains decoupled from underlying complexities. For example,
the ConsumerController instances interact with the system through a unified Facade interface,
which handles payloads’ breaking down and processing. This abstraction layer enhances mod-
ularity and ease of use, allowing developers to manage the system through a more coherent and
streamlined interface.

Lastly, the Factory Method pattern was applied to create diverse game commands based
on external inputs and the game environment. By defining a common interface for creating game
commands and implementing concrete factories, this pattern allows for the dynamic creation of
commands suited to various conditions. This flexibility is crucial for managing different game

scenarios and adapting to changing environments.
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pkg perception

<<type>>
Param

- name : string
- value : Value
- description : string

Tor

<<type>>
Payload

-raw_packets

- parameters :

-tracked_packets : TrackerWrapperPacket]

: SSL_WrapperPacket[0..*]

Param[0.]

& =
Y
<<actor>> <<actor>>
<<actor>>
WebUI AutoRef ExternalVision

<<interface>>
IMessageReceiver

+ receive() : Payload

i

<<component>>
ZeroMQMessageReceiver

- subscriber : ZMQSubscriber

- goal_depth : float

<<control>>
ProducerController <<component>>
~queue: . ZeroMQFactory
<<component>> P eeive : =
<<type>> <<singleton>> . 0:
Parameter +produce() : void ' + 0:
"""" -instance : ParametersManager !
s vaue -params : M |
- description : string IS ]
& are i <<interface>>
PayloadQueue !
i +update(params : Parameter([0..*]) : void <<control>> | y
' _[ - queue : queue Facade 5
. ' +put(item : Payload) : void 3 :
. ; +takeAll( : Payload[0.] :
' <<component>> | <<component>>
ParametersProcessor s ZeroMQMessageSender
+process(params : Parameter[0.]) : void - publisher : ZMQPublisher
<<control>> J7
<<interface>>
- queue : Pa)./loadaueue IMessageSender
-p! : Pay
- sender : IMessageSender jon - e - voit
PayloadProcessor | t-------o-ooo--oiooooooooos g Y 8 void]
- 2 + consume() : void + send(detections : DetectionWrapper) : void|
- detection : DetectionProcessor -
- params : ParametersProcessor ] ]
<<component>> <<type>> 1
DetectionProcessor DetectionWrapper |
"""""""""" T - filter : VisionFilter -~~~ . detection : Detection 1
| +process(raws : SSL_WrapperPacket, tracked : TrackerWrapperPacket[0..]) : D gawpetectionst ?sL_WrapperPacﬁel[n 1 !
: - T [0.. i
v <<component>> 1
<<component>> VisionFilter H
-last_detection : Detection v
+ convertTrackedFrame(tracked : TrackedFrame) : Detection | | ~Serialid:int . “g:lz» <<type>>
- convertTrackedRobot(robot : TrackedRobot) : Robot Zcameraimonttorskicamer 1 Detection
convertTr T : Ball P : RawDetection[0.*]) : Detection - serial_id : int
- merge(detections : Detection[0.."]) : Detection O 0.4 1 | -created_at: double

! - goal_width : float - balls : Ball[0."]
' -robots : Robot[0.]
' -field : Field
' 0.x - goal_center_to_penalty_mark : float
<< >> '
hm,_w'"p.“"e"t ' <<component>>
H ‘CameraMonitor
+convertD : SSL_D ) : RawDetection ' - last_detection : Detection
- convertBall(ball : SSL_DetectionBall) : RawBall ' - ball_monitor: <stype>>
- convertRobot(robot : SSL i ' - robot_monitors : Robot
j | ] i + _detection : - source : string
! ! ' H ; - confidence : float
' | i ! ! 1 -robot_id : Robotld
' H P eRR e L P L LT R ‘; e I - position : Point2Df
! ' | . 0.* [ -angle : float
| ! H ' - velocity : Point2Df
' H ' ' <<component>> <<component>> - angular_velocity : float
' ‘ TRUDES ' - ion : Point2Df
' : RawDetection ' - last_ball : Ball - last_robot : Robot - ;aqll:‘st :oa{
! ! ~frame_number : int : +update(raw_ball : RawBall) : bool | | +update(raw_robot : RawRobot) : void e s
: : - camera_id : int ' " ! T -feedback : Feedback
| temmm >| - balls : RawBall[0..*] H | ' I
! -yellow_robots : RawRobot]0.. | ! H .
! - blue_robots : RawRobot]0.. | ! H . <<type>>
i ' ' i i Feedback
H 1 : : : H - dribbler_ball_contact : bool
| | | : H - kick_charge_percentage : float
! ! ' ! - battery_percentage : float
' <<type>> ' ! H - wheels : Wheel[0."]
1 0 0.* | -confidence : float [<--- 2
| - - position : Point2D : ' <<type>> <<type>>
: <<type>> ' | Ball Kickinformation
! RawBall | : - source : string - robot_id : Robotid
”””””””” - confidence :float [« ~ Tt TTToToooooood : - confidence : float - start_position : Point2Df
: - position : Point3Df > - start_velocity : Point3Df
' - velocity : Point3Df - start_timestamp : double
H - acceleration : Point3Df - predicted_stop_position : Point2Df
: - kick_i ion : Ki - predicted_stop_ti : double
i
P R
<<component>> <<interface>> <<interface>> '
i BallFilter RobotFilter i
Vi
- result : Ball +filter(ball : Ball) : Ball +filter(robot : Robot) : Robot <<component>>
+ setSource(src : string) : void RobotBuilder
+setConfidence(value : float) % T It Robot
+ setPosition(point : Point3Df) : void T =resulti:zRobo
+ setVelocity(vel : Point3Df) : void Ba"Fmer"’Demra‘or <<component>> + setSource(src : string) : void
+ setAcceleration(acc : t3Df) : void RobotFilterDecorator + setConfidence(value : float) : void
: T B H : void - wrappee : BallFilter - wrappee : RobotFilter :Seﬁab.(:_ﬂD(‘ld H Robo_(h:;l:)fv;md ”
getResult() : Bal +filter(ball : Ball) : Ball setPosition(pos : Point2Df) : voi
« ) +filter(robot : Robot) : Robot +setAngle(angle : float) : void
+setVelocity(vel : int) : Point3Df
+ setAngularVelocity(w : int) : float
+ setAcceleraton(acc : Point2Df) : void
+ ius(r : float) : void
<<component>> + : float) : void
BallFlickFilter BallKalmanFilter RobotFlickFilter RobotKalmanFilter + setDribblerWidth(w : float) : void
+ H ) : void
+filter(ball : Ball) : Ball +filter(ball : Ball) : Ball +filter(robot : Robot) : Robot +filter(robot : Robot) : Robot +getResult() : Robot

Figure 28: The class diagram for Perception service. Source:

The author.
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pkg referee

<<type>>
Payload

- detections : Detection[0.."]

1

-thirdPartyRef's : Referee[0.."]
-params : Param[0.."]

<<control>>
ProducerController

- queue : PayloadQueue

— ——
«:::t::g» <<actor>> <<actor>>
WebUI Perception SSL Game Controller
: Ty Ar 7
<<interface>>
<<component>>
IMessageReceiver P P .

ayload[0.."]

-receiver : +receive() : Payload - subscriber : ZMQSubscriber
i
1 :
gasmelisting <<component>> : - !
-value : Value PayloadQueue <<interface>> !
- description : string <<control>> MessageHandlerAbstractFactory |
_| -queue : queue --- Facade :
+ put(item : Payload) : void : 9\? 8 '
: ! I
!
I
!

- GAME_STAGE_NORMAL_HALF_TIME : int=3
- GAME_STAGE_NORMAL_SECOND_HALF_PRE : int=4
- GAME_STAGE_NORMAL_SECOND_HALF : int=5

- GAME_STAGE_EXTRA_TIME_BREAK : int=6

- GAME_STAGE_EXTRA_FIRST_HALF_PRE : int=7
-GAME_STAGE_EXTRA_FIRST_HALF : int=8

- GAME_STAGE_EXTRA_HALF_TIME : int=9

- GAME_STAGE_EXTRA_SECOND_HALF_PRE : int=10

- GAME_STAGE_EXTRA_SECOND_HALF : int=11

- GAME_STAGE_PENALTY_SHOOTOUT_BREAK : int=12
-GAME_STAGE_PENALTY_SHOOTOUT : int=13

- GAME_STAGE_POST_GAME : int =14

<<component>> T
<<singleton>> H
ParametersManager ' L
-instance : ParametersManager trol : ;:::mnp::z:ﬁ;
-params : Parameter{0.."] acon ':::rcller "
|
+ getinstance() : ParametersManager - queue : PayloadQueue ' +cr
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updat e(p‘arams arameter(0.."]) : voi ~sender : IMessageSender L cr der
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<<type>> R <<component>> -
P ! <<interface>> <<component>>
arameter Raramstarafroceasay IMessageSender ZeroMQMessageSender
-key:string = E------ . P N . N
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GameStage PayloadProcessor TSR
- GAME_STAGE_UNSPECIFIED : int=0 -referee : RefereeProcessor -robot_ids : Robotld[0.]
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- GAME_STAGE_NORMAL_FIRST_HALF : int=2 -yellow_cards : int
-time_to_expire_yellow_cards : double[0..]

|

<<component>>
RefereeProcessor

+ process(ref : Referee, detection : Detection) : void

GameStatusMapper

-red_cards : int

-timeouts_left : int
-total_timeout_time_left : double
-total_fouls_committed :
- consecutive_ball_placement_failures : int
-is_ball_placement_enabled : bool
-has_ball_placement_failures_reached_maximum : bool
-maximum_allowed_robots : int
is_robot_substitution_requested : bool
is_robot_substitution_allowed : bool
-robot_substitutions_left : int

-robot_substitution_time_left : double
i
|
| GameStageMapper T
i
+fr : Stage) : + fromTeamAndRefereeTeaminfo(team : Team, ref : Teaminfo) : Team
GameCommandMapper referee::GameEventsMapper
+ fromDetectionAndReferee(detection : Detection, ref : Referee) : GameC: + it: Event) : TTTTTTTTTTTo _}
: v
'
<<type>> v <<type>> o 3
- - sources : string[0.."]
PrepareKickoff K— <<type>> —> Hatt - timestamp : double
GameCommand p Fme n
- ball_left_field_touch_line : BallLeftField
-halt : Halt - ball_left_field_goal_lin
<<type>> -in_game : InGame <<type>> - ball_left_field_boundary : BallLeftFieldBoundary
Kickoff -stop : Stop Stop - aimless_kick : AimlessKick
-remaining_time : double < -home_ball_placement : BallPlacement - goalkeeper_held_ball : GoalkeeperHeldBall
-away_ball_placement : BallPlacement
-home_prepare_kickoff : PrepareKickoff <<type>> - robot_if
<<type>> | -away_prepare_kickoff : PrepareKickoff > Interval -robot_pushed_robot : RobotPushedRobot
PreparePenalty - home_kickoff : Kickoff
|| -away_kickoff : Kickoff -
-home_prepare_penalty : PreparePenalty <stype>> -robot_tipped_over : RobotTippedOver
<<type>> -away_prepare_penalty : PreparePenalty —>1 InGame
Penalty -home_penalty : Penalty - robot_kicked_
_remaining_time : double < -away_penalty : Penalty -robot_crash_unique : RobotCrashUnique
— - -home_prepare_direct_free_kick : PrepareDirectFreeKick <<type>> - robot_crash_drawn : RobotCrashDrawn
-away_prepare_direct_free_kick : PrepareDirectFreeKick — Timeout -robot_too_fast_in_sto
<<type>> -home_direct_free_kicl -robot_too_close_to_|
PrepareDirectFreeKick K | -away_direct_free. - robot_i _ball
i L <<type>> . -
-away_timeout : Timeout BallPlacement - no_progress_ln_garr!e :NoProgressinGame
<<type>> -interval : Interval - multiple_cards : MultipleCards
DirectFreeKick L -position : Point2Df - multiple_fouls : MultipleFouls
— - -too_many_robots : TooManyRobots
-remaining_time : double - ball_placement,

PrepareKickoffCommand

+ makeCommand() : GameCommand

KickoffCommand

+makeCommand() : GameCommand

HaltCommand

+ makeCommand() : GameCommand

StopCommand

GameEvent

: BallLeftField

-robot_too_close_to_defense_area : RobotTooCloseToDefenseArea
_defense_area : RobotinDefenseArea

- robot_held_ball_deliberately : RobotHeldBallDeliberately
-robot_dribbled_ball_too_far : RobotDribbledBallTooFar

-robot_touched_ball_in_defense_area : RobotTouchedBallinDefenseArea
_too_fast : RobotKickedBallTooFast

: RobotTooFastinStop
k_point : RobotTooCloseToKickPoint

- robot_double_touched_ball : RobotDoubleTouchedBall

: BallPlacemer
- ball_placement_failed : BallPlacementFailed

- penalty_kick_failed : PenaltyKickFailed

- possible_goal : Goal

-goal : Goal

-invalid_goal : Goal

- robot_substitution : RobotSubstitution

- challenge_fl ChallengeFlag

- emergency_stop : EmergenceStop

g_behavior_minor : UnsportinBehaviorMinor
g_behavior_major : UnsportingBehaviorMajor

+ makeC 1d() : GameC d

7N - remaining_time : double
I
i
I
|
I
!
|
!
I
I
!
|
!
I
|
i

PreparePenaltyCommand

+ makeCommand() : GameC

<<interface>>
GameCommandFactory

IntervalCommand

+ makeCommand() : GameCommand

PenaltyCommand

+ makeCommandy() : GameCommand

InGameCommand

+ makeCommand() : GameCommand

PrepareDirectFreeKickCommand

+ makeCommand() : GameCommand

DirectFreeKickCommand

+ makeCommand() : GameCommand

+ makeCommand() : GameCommand

TimeoutCommand

+ makeCommand() : GameCommand

BallPlacementCommand

+ makeCommand() : GameCommand

Figure 29: The class diagram for Referee service. Source: The author.
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pkg playback

MessageHandlerAbstractFactory

<<interface>>

Facade

<interface>>
RepositoryAbstractFactory

+createMessageSender() : IMessageSender

<<component>>
ZeroMQFactory

* 8 i
+ createMessageSender() : IMessageSender

¥ vaMatch0 ; Samplo
: double) : Chunk
+ getGameEvents() : GameEvent[0.."]

<<controb>>
GameEventsController

[

~ball_left_field_goal_line : BallLeftField
- ball_left_field_boundar

allLeftFieldBoundary

<<type>>
Sample

- aimless_kick : AimlessKick
lkeeper_held_ball :

-robot_too_close_to_defense_area : RobotTooCloseToDefenseArea

-robot_in_defense_area : RobotinDefenseArea

~first_timestamp : double
-timestamp : double

L—{ -field : Fi

- detection : Detection

-game_status : GameStatus

- raw_detection : RawDetection

: TrackedDetection

- tracked_detectio

-robot_pushed_robot : RobotPushedRobot
-robot_held_ball_deliberately : RobotHeldBallDeliberately
-robot_dribbled_ball_too_far : RobotDribbledBallTooFar

- robot_tipped_over : RobotTippedOver
-robot_touched_ball_in_defense_area : RobotTouchedBallinDefenseArea
-robot_kicked_ball_too_fast : RobotKickedBallTooFast

- robot_crash_unique : RobotCrashUnique

-robot_crash_drawn : RobotCrashDrawn

1

<<type>>
Chunk

~last_timestamp : double
- samples : Sample[0.]

-robot_too_fast in \_stop : RobotTooFastinStop
-robot_too_close_to_kick_point : RobotTooCloseToKickPoint
-robot_interfered. ballmlac;menl RobotinterferedBallPlacement
- robot_double_touched_ball : RobotDoubleTouchedBall
-no_progress_in_game : NoProgressinGame
- multiple_cards : MultipleCards
- multiple_fouls : MultipleFouls
-too_many_robots : TooManyRobots
-ball_placement_succeeded : BallPlacementSucceeded
- ball_placement failed : BallPlacementFailed
-penalty_kick_failed : PenaltyKickFailed
- possible_goal : Goal
-goal : Goal
| -invalid_goal : Goal

- robot_substitution : RobotSubstitution
-challenge_flag : ChallengeFlag
- emergency_stop : EmergenceStop
-unsporting_behavior_minor : UnsportinBshaviorMinor

DetectionCollecti

<<repository>>
T o '

<<repository>>

- client : RedisClient

- client : RedisClient

<<component>>
RedisRepositoryFactory

! -sender : IMessageSender i
+ getGameEvents() : GameEventf0.] |
ZeroMQMessageReceiver <<component>> ,
tion_subscriber : ZercMOMessageSenderj <<controb>> |
- referee_subscriber : ZMQSubscriber - publisher : ZMQPublisher ReplayController '
SL0uteriZMaRoutssj _ sender : IMessageSender '
+ sendSample(sample : Sample) : void [ it Rt '
+ sendChunk(chunk : Chunk) : void ! '::‘?:"‘:L’I‘.’i’s’"s:“‘:‘:’;) g SO :
J7 e Ry ° '
<<interface>> <cinterface>> [ !
IMessageReceiver IMessageSender o i
+ : ic + : Sample) : void L <<controb> '
+ receiveReferee() : GameStatus . : Chunk) : void N : !
T i
11| -sender : IMessageSender '
| | +getLatestsampleq : Sample '
' | -getLatestDetection() : DetectionWrapper '
H - getLatestGameStatus() : GameStatus |
L - i
L <<type>> ] !
[ Camera | !
v ~balls : Ball[0."] . '
T -robots : Robot(0.] ' I
[ <<entity collection>> <<entity collection>>
I <ctype>> ; " !
o /’\ DetoctionWrapper DetectionCollection GameStatusCollection
. <<type>> - detection : Detection - - { + addDetection(dstection : DahcnonWrappar) void + : double, statuses : : void
v RawDetection o :SSL, 3 “]) : void * : double) : 3
I ~cameras : Camera[0."] -tmckedFrame Trackedmee[O 1] rqe(LatestDetect[on() Delecﬂonwmpp
o : double, end : double) : DetectionWrapper[0."]
L <<type>> ! | <cropositonp> | <cropository>
D TrackedDetection !
. ~source_uniaue_id : sring Detecti client : MongoDBClient 1 7| -ctient : MongoDBCIient
v - source_software_name : string '
Va -source_ capabllllles Capability[0.] o= i
H e <<component>>
. -sources : string[0. .
[ -robots : TrackedRobot[0.] -timestamp : double MongoDEReposttonykactory,
i -ball_left_field_touch_line : BallLeftField ;
i
i
I

<<type>>
GameStatus

- unsporting_behavior_major :

-source_id : string

-match_type : MatchType
-home_team : Team

-away_team : Team

-game_stage : GameStage

- game_stage_time_left : double
-total_commands_issued : int

- command_issued_timestamp : double

-command : GameCommand

-next_command : GameCommand

-game_events : GameEvent[o.]

- game_events_proposals : GameEventsProposal[0.]

Figure 30:

The class diagram for Playback service. Source: The author.
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pkg detection

<<type>>
SSL_DetectionBall

- confidence : float
-x : float 0.*

<<type>>
SSL_DetectionFrame

-y :float

-z : float
-area:int

- pixel_x : float
- pixel_y : float

<<type>>
SSL_DetectionRobot

- confidence : float
-robot_id : int

- : float 0.*
-y :float

-frame_number : int

-t_capture : double

-t_sent : double

-camera_id : int

- balls : SSL_DetectionBall
-robots_yellow : SSL_DetectionRobot
-robots_blue : SSL_DetectionRobot

<<type>>
SSL_WrapperPacket

- detection : SSL_DetectionFrame
- geometry : SSL_GeometryData

- orientation : float
- pixel_x : float
- pixel_y : float
- height : float

<<type>>
SSL_GeometryFieldSize

-length :int

-width : int

- goal_width : int

- goal_depth : int

- boundary_width : int

- penalty_area_depth : int

- penalty_area_width : int

- goal_center_to_penalty_mark : int

0.1

<<type>>
SSL_GeometryData

-field : SSL_GeometryFieldSize

Figure 31: The class diagram for third-party detection data. Source: The author.
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pkg game_cont

roIIerJ

<<type>>
BallLeftField

-by_team : Team
-by_bot: int
-location : Vector2D

Al

<<type>>
imlessKick

-by_bot

-kick_lo

-by_team : Team

-location : Vector2D

cation : Vector2D

<<type>>

Goal

-by_team

- kicking_|
-location

- max_ball

: Team

- kicking_team : Team

bot : int
: Vector2D

- kick_location : Vector2D

I_height : float

-num_robots_by_team : int
-last_touch_by_team : int
-message : string

B,

<<type>>
otTooFastinStop

- by_team : Team

- by_bet :int

- location : Vector2D
- speed : float

<<

type>>

DefenderTooCloseToKickPoint

-by_bot : int

-by_team : Team

-location : Vector2D
- distance : float

<<enum>>
Type

- UNKNOWN_GAME_EVENT_TYPE : int
- BALL_LEFT_FIELD_TOUCH_LINE : int
-BALL_LEFT_FIELD_GOAL_LINE : int

- AIMLESS_KICK : int

- ATTACKER_TOO_CLOSE_TO_DEFENSE_AREA : int
-BOUNDARY_CROSSING : int
-KEEPER_HELD_BALL : int
-BOT_DRIBBLED_BALL_TOO_FAR : int
-BOT_PUSHED_BOT : int
-BOT_HELD_BALL_DELIBERATELY : int
-BOT_TIPPED_OVER : int

- ATTACKER_TOUCHED_BALL _IN_DEFENSE_AREA : int
-BOT_KICKED_BALL_TOO_FAST : int
-BOT_CRASH_UNIQUE : int
-BOT_CRASH_DRAWN : int

- DEFENDER_TOO_CLOSE_TO_KICK_POINT : int
-BOT_TOO_FAST_IN_STOP : int
-BOT_INTERFERED_PLACEMENT : int

- POSSIBLE_GOAL : int

-GOAL : int

-INVALID_GOAL : int

- ATTACKER_DOUBLE_TOUCHED_BALL : int

- PLACEMENT_SUCCEEDED : int

- PENALTY_KICK_FAILED : int
-NO_PROGRESS_IN_GAME : int
-PLACEMENT_FAILED : int

-MULTIPLE_CARDS : int

-MULTIPLE_FOULS : int

-BOT_SUBSTITUTION : int

- TOO_MANY_ROBOTS : int

- CHALLENGE_FLAG : int

-EMERGENCY_STOP : int

- UNSPORTING_BEHAVIOR_MINOR : int

- UNSPORTING_BEHAVIOR_MAJOR : int

<<type>>
BotCrashDrawn

-b
-b

-cl
- 5|
- Cl

ot_yellow : int
o_bluet : int

-location : Vector2D

rash_speed : float
peed_diff : float
rash_angle : float

<<type>>

BotCrashUnique

-by_team : Team

- violator : int
-victim :int
-location : Vector2D
-crash_speed : float
- speed_diff : float
-crash_angle : float

<<type>>

BotPushedBot

-by_team : Team

- violator : int

- victim : int

-location : Vector2D

- pushed_distance : float

<<type>>

BotTippedOver

-by_team : Team
-by_bot : int

-location : Vector2D

- ball_location : Vector2D

<<type>>

DefenderinDefenseArea

<<type>>
Event

<<type>>
AttackerTooCloseToDefenseArea

- by_team : Team
-by_bot:int

- location : Vector2D

- distance : float

- ball_location : Vector2D

<<type>>
BotHeldBallDeliberately

-by_team : Team
-by_bot : int
-location : Vector2D
- duration : float

<<type>>
BotinterferedPlacement

-by_team : Team
-by_bot : int
-location : Vector2D

<<type>>
MultipleCards

-by_team : Team

<<type>>
MultipleFouls

-by_team : Team

<<type>>
NoProgressinGame

-location : Vector2D
-time : float

<<type>>
PlacementFailed

-type : Type

- origin : string[0..]

- ball_left_field_touch_line : BallLeftField

-ball_left_field_goal_line : BallLeftField

-aimless_kick : AimlessKick

- attacker_too_close_to_defense_area : AttackerTooCloseToDefenseArea
- defender_in_defense_area : DefenderinDefenseArea
-boundary_cressing : BoundaryCrossing

-keeper_held_ball : KeeperHeldBall

-bot_dribbled_ball_to_far : BotDribbledBallTooFar

-bot_pushed_bot : BotPushedBot

-bot_held_ball_deliberately : BotHeldBallDeliberately

-bot_tipped_over : BotTippedOver

- attacker_touched_ball_in_defense_area : AttackerTouchedBalllnDefenseArea
-bot_kicked_ball_too_fast : BotKickedBallTooFast

-bot_crash_unique : BotCrashUnique

- by_team : Team
- remaining_distance : float

<<type>>
UnsportingBehaviorMinor

-by_team : Team
-reason : string

<<type>>
UnsportingBehaviorMajor

-by_team : Team
-reason : string

-bot_crash_drawn : BotCrashDrawn

- defender_too_close_to_kick_point : DefenderTooCloseToKickPoint
-bot_too_fast_in_stop : BotTooFastinStop

- bot_interfered_placement : BotinterferedPlacement
-possible_goal : Goal

-goal : Goal

-invalid_goal : Goal

- attacker_double_touched_ball : AttackerDoubleTouchedBall
-pl it ded : Placemer ded

- penalty_Kick_failed : PenaltyKickFailed
-ho_progress_in_game : NoProgressinGame

- placement_failed : PlacementFailed

- multiple_cards : MultipleCards

- multiple_fouls : MultipleFouls

- bot_substitution : BotSubstitution

-too_many_robots : TooManyRobots

- challenge_flag : ChallengeFlag

-emergency_stop : EmergencyStop

- unsporting_behavior_minor : UnsportingBehaviorMinor

- unsporting_behavior_mAJOR : UnsportingBehaviorMajor

-by_team : Team
-by_bot : int
-location : Vector2D
- distance : float

<<type>>
KeeperHeldBall

-by_team : Team
-location : Vector2D
- duration : float

<<type>>
PlacementSucceeded

-by_team : Team
-time_taken : float
- precision : float

- distance : float

<<type>>
BotSubstitution

- by_team : Team

<<type>>
ChallengeFlag

-by_team : Team

<<type>>
BotDribbledBallTooFar

<<type>>

AttackerDoubleTouchedBall <<type>>

PenaltyKickFailed

<<typ!
AttackerTouchedBalllnDefenseArea

e>>

-by_team : Team
-by_bot : int

- distance : float

-location : Vector2D

BotKi

<<type>>
ckedBallTooFast

- chipp:

-by_team : Team
-by_bot : int

-location : Vector2D
-initial_ball_speed : float

ed : bool

<<type>>
EmergencyStop

-by_team : Team
-by_bot: int
-start : Vector2D

-by_team : Team
-by_bot : int
-location : Vector2D

-by_team : Team
-location : Vector2D

-by_team : Team

-end : Vector2D

<<type>>
TooManyRobots

-by_team : Team
-num_robots_allowed : int
-num_robots_on_field : int
- ball_location : Vector2D

<<type>>
BoundaryCrossing

-by_team : Team
-location : Vector2D

Figure 32: The class diagram for third-party game events data. Source: The author.
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pkg game_controllerJ

<<enum>>
Stage

<<type>>
Referee

-NORMAL_FIRST_HALF_PRE : int
-NORMAL_FIRST_HALF : int

- NORMAL_HALF_TIME : int

- NORMAL_SECOND_HALF_PRE : int
- NORMAL_SECOND_HALF : int

- EXTRA_TIME_BREAK : int
-EXTRA_FIRST_HALF_PRE : int

- EXTRA_FIRST_HALF : int

- EXTRA_HALF_TIME : int
-EXTRA_SECOND_HALF_PRE : int

- EXTRA_SECOND_HALF : int

- PENALTY_SHOOTOUT_BREAK : int
- PENALTY_SHOOTOUT : int

- POST_GAME : int

<<enum>>
MatchType

- source_identifier : string
-match_type : MatchType

- packet_timestamp : int

- stage : Stage

- stage_time_left : int
-command : Command
-command_counter : int

- command_timestamp : int
-yellow : Teaminfo

- blue : Teaminfo

- designed_position : Point

- blue_team_on_positive_half : bool
- hext_command : Command
-game_events : Event[0..]

-game_event_proposals : GameEventProposalGroup[0.."]

- current_action_time_remaining : int
- status_message : string

<<enum>>
Command

-HALT :int

-STOP : int

-NORMAL_START : int
-FORCE_START : int
-PREPARE_KICKOFF_YELLOW : int
-PREPARE_KICKOFF_BLUE : int

-PREPARE_PENALTY_YELLOW : int
-PREPARE_PENALTY_BLUE : int
-DIRECT_FREE_YELLOW : int
-DIRECT_FREE_BLUE : int
-TIMEOUT_YELLOW : int
-TIMEOUT_BLUE : int
-BALL_PLACEMENT_YELLOW : int
-BALL_PLACEMENT_BLUE : int

<<type>>
Teaminfo

-UNKNOWN_MATCH : int

- GROUP_PHASE : int

- ELIMINATION_PHASE : int
-FRIENDLY : int

<<type>>
Point

-x : float
-y : float

<<type>>
GameEventProposalGroup

-id : string
-game_events : Event[0..]
-accepted : bool

-hame : string

-score : int

-red_cards : int
-yellow_card_times : int[0..]
-yellow_cards : int
-timeouts : int
-timeout_time : int

- goalkeeper : int

- foul_coounter : int

- ball_placement_failures :
- can_place_ball : bool
-max_allowed_bots : int

- bot_substitution_intent : bool

- ball_placement_failures_reached : bool
- bot_substitution_allowed : bool

- bot_substitutions_left : int

- bot_substitution_time_left : int

nt

Figure 33: The class diagram for third-party referee data. Source: The author.
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pkg game_controllerJ

<<type>>
KickedBall
<<type>>
<R<2:)poetl>; - pos : Vector2D ;:t;;;g; <<type>>
- -vel : Vector3D TrackedBall
-id: |nF a start_t!mestamp double | ---------- > -x Eﬂoat k- ------ ~pos : VectoraD
-team : Team - stop_timestamp : double -y : float N
i . -vel : Vector3D
- stop_pos : Vector2D -z :float visibility : float
R -robot_id : Robotld - :
I \\
' v | *
} Y | 0.1 0.
| A !
l N :
! N\ Vi
| I <<type>>
} ' Vector2D
: \\\ -x : float
: \ -y : float
! \
| \ /:\
| N
! Y ‘ 1 1
, N I
\/ <<type>> <<type>>
P —— TrackedRobot TrackedFrame <<type>
Team -robot_id : Robotld 0.* 1 - frameNumber : int 0.1 1 TrackerWrapperPacket
A P -pos : Vector2D ) -timestamp : double ) P —
:gENth:th:r;tlnt < - orientation : float - balls : TrackedBall ; :zL‘:'::t::rgne - strin
BLUE : ini el eciorZD LD 8 VT TR tracked. frame.' TracgkedFrame
= E -vel_angular : int - kickedBall : KickedBall = = E
- visibility : float - capabilities : Capability

0."

0.*

<<enum>>
Capability

- CAPABILITY_UNKNOWN : int

- CAPABILITY_DETECT_FLYING_BALLS : int
- CAPABILITY_DETECT_MULTIPLE_BALLS : int
- CAPABILITY_DETECT_KICKED_BALLS :int

Figure 34: The class diagram for third-party tracked vision data. Source: The author.
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