
Data Ingestion and Storage Strategies for Data Warehouses in the Context
of Data Streaming: An Overview of Recent Advances

Alexandre de Queiroz Burle (aqb@cin.ufpe.br)

Federal University of Pernambuco
secgrad@cin.ufpe.br

www.cin.ufpe.br/~graduacao

Recife
2024

www.cin.ufpe.br/~graduacao


Alexandre de Queiroz Burle (aqb@cin.ufpe.br)

Data Ingestion and Storage Strategies for Data Warehouses in the Context
of Data Streaming: An Overview of Recent Advances

A B.Sc. Dissertation presented to the Center of Informatics
of Federal University of Pernambuco in partial fulfillment
of the requirements for the degree of Bachelor in Computer
Engineering.

Concentration Area: Databases
Advisor: Robson do Nascimento Fidalgo
(rdnf@cin.ufpe.br)

Recife
2024



Ficha de identificação da obra elaborada pelo autor,
    através do programa de geração automática do SIB/UFPE

                   
     

Burle, Alexandre de Queiroz.
     Data ingestion and storage strategies for data warehouses in the context of
data streaming: an overview of recent advances / Alexandre de Queiroz Burle. -
Recife, 2024.
     53 p. : il., tab.

     Orientador(a): Robson do Nascimento Fidalgo
     Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Informática, Engenharia da Computação - Bacharelado,
2024.
      Inclui referências. 

      1. Data Warehouse. 2. Data Stream. 3. ETL. 4. Join. I. Fidalgo, Robson do
Nascimento. (Orientação). II. Título. 

    000  CDD (22.ed.)



Alexandre de Queiroz Burle

Data Ingestion and Storage Strategies for Data
Warehouses in the Context of Data Streaming: An

Overview of Recent Advances

Trabalho de Conclusão de Curso apresentado
como pré-requisito para conclusão do Curso de
Bacharelado em Engenharia da Computação do
Centro de Informática da Universidade Federal
de Pernambuco. Defendida e aprovada em 17 de
Outubro de 2024 pela seguinte banca examina-
dora:

Robson do Nascimento Fidalgo
Orientador/CIn-UFPE

Luciano de Andrade Barbosa
Examinador/CIn-UFPE



ACKNOWLEDGEMENTS

First and foremost, I want to thank my family. They have been present through my
graduation, helping me in every way I needed to make sure I would make the most out of it.
Namely, I would like to thank my mother, Candida, my father, Mario, and my sister, Isabela.

I would also like to thank my graduation colleagues Danilo Vaz, Humberto Lopes,
Matheus Teotonio, Rodrigo Duarte, and Uanderson Souza, who ended up becoming great friends
of mine. They helped me with group projects and studying for tests and promoted my best
moments during my bachelor’s degree, even outside the campus.

I want to thank PET Informática for promoting the Petlab program, which was one of the
first extracurricular activities that I was able to participate in.

I want to thank the Voxar Labs and everyone involved, where I learned much about
research and got my first internship. It was the place that kick-started my life as a developer.

Last, I want to thank Centro de Informática and everyone involved for promoting an
excellent learning environment and many opportunities.



ABSTRACT

In the current landscape of data-driven decision-making, data warehouses have proven
to be highly valuable tools, especially with the emergence of big data characterized by its
volume, velocity, and variety. This study provides a systematic review of data ingestion and
storage strategies for data warehouses in the context of data streaming, focusing on the latest
advancements and methodologies to address the challenges posed by continuous data streams.
Modeling schemas of data warehouses are not the focus of recent studies, as existing schemas
seem to satisfy current needs. Instead, the focus has shifted towards optimizing operational
processes like ETL (Extract, Transform, Load) and join operations. The review highlights
techniques such as parallel processing, in-memory computing, and distributed computing as
critical to enhancing data ingestion and storage capabilities. This work synthesizes recent
research, providing insights into how modern data warehouses can efficiently process and store
streaming data to support real-time analytics and decision-making. The findings offer valuable
guidance for developing scalable and efficient data warehousing solutions.

Keywords: Data Warehouse; Data Streaming; ETL; Data Ingestion; Data Storage



RESUMO

No cenário atual de tomada de decisões orientada por dados, os data warehouses têm se
mostrado ferramentas altamente valiosas, especialmente com o surgimento do big data, carac-
terizado por seu volume, velocidade e variedade. Este estudo fornece uma revisão sistemática
das estratégias de ingestão e armazenamento de dados para data warehouses no contexto de data
streaming, focando nos avanços e metodologias mais recentes para enfrentar os desafios impostos
pelos fluxos contínuos de dados. Os esquemas de modelagem dos data warehouses não são o
foco dos estudos recentes, pois os esquemas existentes parecem satisfazer as necessidades atuais.
Em vez disso, o foco tem se voltado para a otimização de processos operacionais como ETL
(Extract, Transform, Load) e operações de join. A revisão destaca técnicas como processamento
paralelo, computação em memória e computação distribuída como críticas para melhorar as
capacidades de ingestão e armazenamento de dados. Este trabalho sintetiza pesquisas recentes,
fornecendo insights sobre como os data warehouses modernos podem processar e armazenar
dados em streaming de forma eficiente para apoiar análises e tomadas de decisão em tempo
real. As conclusões oferecem orientações valiosas para o desenvolvimento de soluções de data
warehousing escaláveis e eficientes.

Palavras-chave: Armazém de Dados; Transmissão de Dados; ETL; Ingestão de Dados;
Armazenamento de Dados



LIST OF FIGURES

Figure 1 – The layers of a data warehouse. The blue rectangle represents the focus
of this work: data ingestion and storage. . . . . . . . . . . . . . . . . 15

Figure 2 – Star schema structure. The black lines represent the relation between fact
and dimension tables, and the dashed red line represents the star-shape
formed by the schema. . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 3 – Number of studies at each stage of the paper selection process. . . . . . 22

Figure 4 – Frequency of publication years for the selected papers. . . . . . . . . . 40
Figure 5 – Architecture of dynamic data warehouse with an in-memory query

processor [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 6 – Cruncher architecture [1]. . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 7 – Snowflake schema used to model spatial data in a data warehouse[25]. . 42
Figure 8 – DOD-ETL system architecture for the ETL process[21]. . . . . . . . . 43
Figure 9 – Distributed real-time ETL architecture with the usage of a distributed

in-memory database[26]. . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 10 – Join architecture with the addition of a second disk buffer[30]. . . . . 45
Figure 11 – Join architecture using a stream cache[20]. . . . . . . . . . . . . . . . 46
Figure 12 – Join architecture using an intermediate buffer in the disk probing

phase[31]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 13 – Join architecture using the combination of additional disk buffer, stream

cache, and intermediate buffer[31]. . . . . . . . . . . . . . . . . . . . 47



LIST OF TABLES

Table 1 – Summary of papers in the DW Architecture category. . . . . . . . . . . 23
Table 2 – Summary of papers in the ETL category. . . . . . . . . . . . . . . . . . 24
Table 3 – Summary of papers in the Join category. . . . . . . . . . . . . . . . . . 25
Table 4 – Summary of papers in the Others category. . . . . . . . . . . . . . . . . 25
Table 5 – Problems and Solutions in the ETL phase of Near Real-Time Data

Warehousing based on the table in [43]. . . . . . . . . . . . . . . . . . . 29
Table 6 – Bigram and Trigram Phrase Counts . . . . . . . . . . . . . . . . . . . . 39



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 THEORETICAL FOUNDATION . . . . . . . . . . . . . . . . . . . . . 14
2.1 DATA WAREHOUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 STAR SCHEMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 ETL PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 DATA STREAMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 JOIN OPERATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 PROPOSED METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 SEARCH STRATEGY . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 SELECTION PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Pre-Select Papers From Search . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Exclusion Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Inclusion Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Selected Papers From Search . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.5 Snowballing and Categorizing . . . . . . . . . . . . . . . . . . . . . . . 22

4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 DATA WAREHOUSE ARCHITECTURE . . . . . . . . . . . . . . . . . 26
4.1.1 An End-to-End Framework for Building Data Cubes over Trajectory

Data Streams (2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Cruncher: Distributed In-Memory Processing for Location-Based

Services (2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 Data Warehouse Design Approaches from Social Media: Review and

Comparison (2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.4 An Adaptive and Real-Time Architecture for Financial Data

Integration (2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.5 E-commerce Big Data Computing Platform System Based on

Distributed Computing Logistics Information (2019) . . . . . . . . . . 27
4.1.6 On Construction of a Big Data Warehouse Accessing Platform for

Campus Power Usages (2019) . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.7 A Rewrite/Merge Approach for Supporting Real-Time Data

Warehousing via Lightweight Data Integration (2020) . . . . . . . . . 28



4.1.8 Research and Design on Architecture for Big Data Platform in Power
Grid Dispatching and Control System (2023) . . . . . . . . . . . . . . 28

4.2 ETL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Problems and available solutions on the stage of extract, transform,

and loading in near real-time data warehousing (a literature study)
(2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Integrating Big Data: A Semantic Extract-Transform-Load
Framework (2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.3 A big data perspective of current ETL techniques (2016) . . . . . . . . 30
4.2.4 Incremental ETL pipeline scheduling for near real-time data

warehouses (2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.5 The challenges of Extract, Transform and Loading (ETL) system

implementation for near real-time environment (2017) . . . . . . . . . 31
4.2.6 ETL-aware materialized view selection in semantic data stream

warehouses (2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.7 DOD-ETL: distributed on-demand ETL for near real-time business

intelligence (2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.8 Privacy-enhancing ETL-processes for biomedical data (2019) . . . . . 32
4.2.9 From Big Data to business analytics: The case study of churn

prediction (2020) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.10 Metadata-Driven Industrial-Grade ETL System (2020) . . . . . . . . . 33
4.2.11 Distributed real-time ETL architecture for unstructured big data (2022) 33
4.3 JOIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 A Cached-based approach to enrich Stream data with master data (2015) 34
4.3.2 Skewed distributions in semi-stream joins: How much can caching

help? (2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.3 Optimising Hybridjoin to Process Semi-Stream Data in

Near-Real-Time Data Warehousing (2019) . . . . . . . . . . . . . . . . 35
4.3.4 A memory-optimal many-to-many semi-stream join (2019) . . . . . . . 35
4.3.5 Optimizing semi-stream Cachejoin for near-realtime data warehousing

(2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.6 Big Data Velocity Management–From Stream to Warehouse via High

Performance Memory Optimized Index Join (2020) . . . . . . . . . . . 36
4.3.7 An Efficient Data Access Approach With Queue and Stack in

Optimized Hybrid Join (2021) . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 OTHER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 A Scalable Real-Time Analytics Pipeline and Storage Architecture for

Physiological Monitoring Big Data (2018) . . . . . . . . . . . . . . . . 37



4.4.2 Challenges and Solutions for Processing Real-Time Big Data Stream:
A Systematic Literature Review (2020) . . . . . . . . . . . . . . . . . . 38

4.4.3 The stream data warehouse: Page replacement algorithms and quality
of service metrics (2023) . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.4 A New Approach Based on ELK Stack for the Analysis and
Visualisation of Geo-referenced Sensor Data (2023) . . . . . . . . . . . 38

4.5 OVERVIEW OF DATA INSIGHTS . . . . . . . . . . . . . . . . . . . . . 39
4.6 OVERALL APPROACHES USED IN ALL CATEGORIES . . . . . . . . 39
4.7 SPECIFICS OF THE MOST RELEVANT STUDIES . . . . . . . . . . . 40
4.7.1 Data Warehouse Architecture . . . . . . . . . . . . . . . . . . . . . . . 40
4.7.1.1 A rewrite/merge approach for supporting real-time data warehousing via

lightweight data integration . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7.1.2 Cruncher: Distributed In-Memory Processing for Location-Based Services 41
4.7.1.3 An end to end framework for building data cubes over trajectory data streams 42
4.7.2 ETL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7.2.1 DOD-ETL: distributed on-demand ETL for near real-time business

intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7.2.2 Distributed real-time ETL architecture for unstructured big data . . . . . . 44
4.7.3 Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7.3.1 Optimising HYBRIDJOIN to Process Semi-Stream Data in Near-real-time

Data Warehousing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7.3.2 A Cached-based Approach to Enrich Stream Data with Master Data . . . 45
4.7.3.3 Optimizing Semi-Stream CACHEJOIN for Near-Real Time Data Warehousing 46
4.8 APPROACHES TO OVERCOME CHALLENGES IN DW FOR DATA

STREAMS PER CATEGORY . . . . . . . . . . . . . . . . . . . . . . . . 47
4.9 RQ1: HOW IS DATA MODELED IN A DATA WAREHOUSE? . . . . . 48
4.10 RQ2: HOW IS DATA INGESTED INTO A DATA WAREHOUSE? . . . . 48
4.11 RQ3: HOW IS A DATA WAREHOUSE BUILT AND USED IN THE

CONTEXT OF DATA STREAMING? . . . . . . . . . . . . . . . . . . . 49

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



121212

1
INTRODUCTION

In recent years, the importance of data warehouses has grown significantly as organiza-
tions increasingly rely on data-driven decision-making to maintain a competitive edge [10]. A
data warehouse (DW) serves as a centralized repository for structured data, enabling efficient
query processing, reporting, and analysis. This technology supports Business Intelligence (BI)
systems by providing a unified and consistent view of an organization’s data, facilitating the
generation of reports, dashboards, and in-depth analyses [15].

The emergence of big data has further highlighted the necessity of robust data warehous-
ing solutions. Big data is characterized by its volume, variety, and velocity [7], and refers to
exceptionally large and complex datasets that exceed the capabilities of traditional data man-
agement systems to store, process, and analyze. These characteristics pose unique challenges,
requiring technologies like distributed computing and parallel processing. Big data encompasses
structured data, often found in data warehouses, and unstructured or semi-structured data, which
may reside in data lakes. However, while traditional data warehouses are effective for structured
data, they often need help handling the high-velocity data streams and the diverse formats
associated with big data. This has led to the development of new strategies and technologies that
the performance and scalability of data warehouses in the context of big data [23].

Data streaming, a key component of big data, involves continuously ingesting and
processing data. This approach contrasts with the traditional usage of big batches of data
processing, which collects and processes data at intervals that may not be suited for critical
applications. Data streaming is essential for applications requiring immediate insights, such
as fraud detection, real-time analytics, and monitoring systems [16, 24]. Hence, integrating
data streaming with data warehousing has driven the evolution of traditional DW to support
high-velocity data and the adoption of new architectural paradigms.

Recent advancements in data warehousing focus on addressing the challenges posed by
data streaming. Techniques such as parallel processing, in-memory computing, and distributed
computing have been employed to enhance data ingestion and storage capabilities. These
approaches ensure that data warehouses can efficiently process and store high-velocity data
streams, providing timely insights and supporting data-driven decision-making [42, 17].

This work presents a comprehensive review of data ingestion and storage strategies for



131313

data warehouses in the context of data streaming. It aims to provide insights into the latest
research and technologies that address the operational challenges of handling continuous data
streams. Chapter 2 presents a theoretical foundation covering fundamental concepts and schemas
used in data warehousing. Chapter 2.6 reviews related work. Chapter 3 outlines the proposed
approach, detailing the research questions, search strategy, and selection process. Chapter 4.5
discusses the results, analyzing the selected studies to answer the research questions. Finally,
Chapter 5 concludes the paper, summarizing the findings.



141414

2
THEORETICAL FOUNDATION

2.1 DATA WAREHOUSE

A data warehouse (DW) is a repository that stores data from diverse business sources. It
serves as the cornerstone for Business Intelligence (BI) systems, providing a comprehensive and
unified view of an organization’s data. The DW supports the generation of reports, dashboards,
and in-depth data analysis, enabling data-driven decision-making.

The DW typically stores current and historical data, allowing for trend analysis over time.
This historical perspective is invaluable for identifying business performance patterns, trends,
and anomalies. By integrating data from multiple sources, the DW ensures that users can access
consistent and reliable information.

Before data is stored in the DW, it undergoes either Extract, Transform, Load (ETL) or
Extract, Load, Transform (ELT) processes (see section 2.3). Figure 1 illustrates the layers of a
DW, including the ETL process.

The DW enables users to perform complex ad-hoc queries with minimal latency, pro-
viding insights in a timely manner. Its ability to store and manage vast volumes of data, often
reaching the petabyte scale, makes the DW an indispensable tool for BI initiatives.

2.2 STAR SCHEMA

The star schema is a widely adopted and practical modeling approach for data warehouses
[3]. It organizes multidimensional data into a central fact table surrounded by multiple dimension
tables, forming a star-like structure (see Figure 2).

The fact table is the central component of the star schema and stores the quantitative
measures or metrics of the analyzed business process. These metrics, typically numeric values
such as sales amounts, quantities, or costs, are essential for decision-making. The fact table
also contains foreign keys that reference the primary keys of the dimension tables, establishing
relationships between facts and their context.

Dimension tables provide the descriptive context for the facts. Each dimension table
represents a business entity, such as products, customers, or time, and contains attributes that



151515

Figure 1: The layers of a data warehouse. The blue rectangle represents the focus of this work:
data ingestion and storage.

Figure 2: Star schema structure. The black lines represent the relation between fact and dimension
tables, and the dashed red line represents the star-shape formed by the schema.



161616

describe these dimensions. For example, a product dimension table may include product name,
category, price, and supplier attributes. These attributes assist in understanding and analyzing
the facts in the fact table.

A variation of the star schema is the snowflake schema, where dimension tables are
normalized into multiple related tables. In this schema, dimension tables can have other di-
mension tables, which helps minimize data redundancy. While normalization reduces data
redundancy and can save storage space, it makes the schema more complex and can slow down
query performance.

Another common data warehouse schema is the galaxy schema, where multiple fact
tables share dimension tables, further enhancing data modeling capabilities.

The star schema offers several key advantages. Its structure simplifies understanding
and querying, making it accessible to non-technical users who benefit from the data warehouse
through report generation and business analytics tasks, even without a background in data storage.
The star schema is optimized for analytical queries due to the simple, well-defined relationships
between tables, resulting in efficient query processing and fast response times. Furthermore, it is
highly scalable, easily accommodating large volumes of data and the addition of new dimensions
as business needs evolve.

However, the star schema’s denormalized structure can lead to data redundancy, with
some columns appearing in multiple tables to facilitate faster data retrieval. This redundancy can
increase storage requirements and complicate data maintenance, particularly in data streaming
environments where data is continuously ingested and updated. Here, the snowflake schema
holds an advantage. Its normalized dimensions use less disk memory and allow updates to
happen in a single place at the cost of increased complexity in the data warehouse’s model.

2.3 ETL PROCESS

ETL (Extract, Transform, Load) is a process in data integration and preparation for data
warehouses. The ETL process consists of three main stages.

The first stage, extraction, involves retrieving data from different sources such as opera-
tional databases, external systems, flat files, or APIs. The primary challenge during extraction
is handling data in diverse formats and structures, ensuring that all necessary information is
captured for subsequent processing.

The second stage is the transformation stage, which reshapes and refines the data to
ensure data consistency and reliability within the system. This step often includes cleaning
the data by removing duplicates or irrelevant entries, normalizing it into standard formats, and
integrating data from multiple sources. Additionally, transformations may involve enriching the
data with calculated fields or converting it into a format more suitable for the data warehouse
schema. The transformation phase is crucial for maintaining data quality, enabling accurate
analysis, and ensuring the data meets business requirements.



171717

The third and last stage is the loading stage, where the transformed data is transferred
into the data warehouse. This stage can involve loading the data into fact and dimension tables
in a star or snowflake schema, depending on the data model used in the DW. The loading step
ensures that the data becomes available for querying, reporting, and analysis.

2.4 DATA STREAMING

Data streaming refers to the continuous, real-time processing of data as it is generated.
Unlike traditional batch processing, which involves collecting and processing data in intervals,
data streaming processes individual pieces of data or small batches as they arrive. In data
streaming, data flows continuously from the source to the destination, allowing for instant
ingestion, processing, and analysis. However, it is important to clarify that while data streaming
often deals with real-time data, the data being streamed does not necessarily need to have been
collected in real-time. Streaming frameworks can handle both real-time data—data that is
delivered immediately after collection without any significant delay—and historical or delayed
data that is streamed for retrospective analysis or other purposes.

Moreover, data streaming architectures support distributed processing, enabling them to
handle high-velocity and high-volume data efficiently. These systems ensure that even under
heavy loads or network failures, the data stream can be processed without interruptions. This
robustness makes data streaming a popular solution in large-scale environments where data must
be processed continuously and reliably.

2.5 JOIN OPERATORS

Join operators are fundamental for combining data from multiple tables based on columns,
which are typically keys. In data warehouses, where data is spread in dimension tables, joins
play a pivotal role in querying data across fact and dimension tables. By enabling the merging of
data from various sources, join operations are essential for retrieving comprehensive business
insights, thereby supporting analysis and reporting of the data.

Several join operations are utilized in practice, including inner joins, outer joins, and
semi-joins, each with a specific use case. While these operations are typically employed in
batch processing for static datasets, the real-time demand of modern data systems has led
to the development of optimized join methods, such as stream joins, designed for streaming
environments where data is continuously ingested.

A semi-stream join is a join operation specifically optimized for streaming data. This
operation allows the continuous joining of incoming data streams with either a static dataset or
another stream. Unlike traditional join operations, which function in a batch-oriented manner,
semi-stream joins operate as data arrives, enabling real-time data integration.

Stream joins are crucial for real-time analytics systems, where new data must be inte-



181818

grated into existing analyses without delay. For example, in retail, a stream join can merge
real-time sales transaction data with static product information, allowing immediate sales trends
and inventory levels to be monitored. This is essential for operational tasks such as dynamic
pricing or stock replenishment.

More specifically, the semi-stream join is utilized in the context of data streams, with the
main advantage lying in their ability to perform real-time processing while optimizing memory
usage. Since semi-stream joins only return matching rows from the incoming data stream, they
require less memory than full join operations, making them suitable for environments handling
high-velocity data streams.

2.6 RELATED WORKS

While several studies provide an overview of data streams, they predominantly focus on
"big data" rather than specifically addressing data warehouses. Although big data encompasses
data warehouses, the primary focus of these studies tends to diverge, emphasizing other types of
data storage, such as data lakes, which operate differently and have distinct storage goals.

Siddiqa et al. [41] provide an overview of technologies used to store big data. This
work highlights the trend of replacing relational data storage solutions with non-relational
alternatives, exploring categories such as key-value, document-oriented, column-oriented, and
graph databases, all of which fall under NoSQL storage. The work focuses on the technologies
themselves, analyzing aspects such as features, applications of the technology, vendor, and
design goal.

In another paper by Siddiqa et al. [40], the focus remains on big data, encompassing the
entire data flow within the "big data management process." This process considers the storage
aspect and includes network management, security, and classification/prediction. The paper
discusses approaches for each stage of big data management and proposes a process flow for
these applications. The authors also analyze data management techniques, assessing if they
provide availability, scalability, integrity, heterogeneity, resource, optimization, and velocity.

Ashraf et al. [39] also address big data flow, from data source to data storage, emphasizing
data processing along the way. The study evaluates when real-time processing is necessary
compared to batch or near real-time approaches and discusses existing work in each stage of
the data flow. Although data ingestion and storage are covered, the scope does not specifically
include data warehouses. The authors state that big data often deals with unstructured data,
which cannot be processed using relational databases.

Regarding the overall architecture of big data systems, Pääkkönen et al. [36] propose a
reference architecture for big data systems and map the systems of well-known platforms (such
as Netflix and LinkedIn) to this architecture. The proposed architecture encompasses the data
flow among different system functionalities, including data extraction, analysis, visualization,
and storage. The study also highlights the leading technologies used in each system functionality.



191919

Despite addressing data ingestion and storage, the focus is not on improving these functionalities
specifically for data warehouses.

Almeida [5] examines time series data processing in real-time within the context of big
data. This study explores data processing frameworks and analyzes forecasting and anomaly
detection in data streams. Although handling data streams in real-time is relevant to this work,
Almeida’s paper does not mention data warehouses, concentrating more on data analysis than
on ingesting and storing data in a data warehouse. For example, the authors address many
forecasting and anomaly detection algorithms.

Three review articles [11, 18, 27, 43] intersect with the scope of this work, but they not
include analysis of papers from recent years, nor have the same scope. However, having been
selected in the filtering process, these papers will be discussed in Chapter 4.5.

This work differentiates itself from previous studies by emphasizing data warehousing
in the context of data streaming, addressing both the ETL (Extract, Transform, Load) process
and the storage layer within the data warehousing architecture. This comprehensive approach
synthesizes the most recent research in this rapidly evolving field, aiming to equip readers with
knowledge of the latest advancements in data warehousing.



202020

3
PROPOSED METHOD

The selection and filtering process for studies of interest in this work was based on a
systematic mapping study found in the literature [22]. This work aims to provide an overview
of the latest studies on ingesting and storing data in data warehouses within the context of
data streaming, addressing the following research questions: How is data modeled in a data
warehouse? (RQ1), How is data ingested into a data warehouse? (RQ2), and How is a data
warehouse built and used in the context of data streaming? (RQ3).

RQ1 investigates how data is modeled in data warehouses for streaming data applications.
RQ2 explores the ETL processes used in these contexts. RQ3 examines the modifications made to
data warehouse implementations and data stream applications, referred to as "DW architecture,"
to handle stream data.

3.1 SEARCH STRATEGY

The studies analyzed in this work were extracted from IEEE Xplore, ScienceDirect,
and SpringerLink digital libraries. These libraries were chosen for being commonly used in
systematic reviews and mainly because of the access to the studies made possible by the Centro

de Informática (CIn) VPN (Department of Computer Engineering at the Federal University of
Pernambuco). For all three digital libraries, the search string used was "("data warehouse" OR
"data warehousing") AND ("stream data" OR "streaming data" OR "data stream" OR "data
streaming")". The searches were conducted on July 2nd, 2024, as described follows:

In the IEEE Xplore website1, the search string was entered in the search bar on the
home page. The "Subscribed Content" option was selected, and the "year" range was set to
2015-2024. "Conferences" and "Journals" were chosen, resulting in 59 studies (56 conferences
and 3 journals).

Then, in the ScienceDirect website2, the search string was entered in the search bar on the
home page. The options selected were Subscribed journals, English, Computer Science, Review
Articles, and Research Articles. The years 2015 to 2024 (inclusive) were chosen, yielding 242

1https://ieeexplore.ieee.org/Xplore/home.jsp
2https://www.sciencedirect.com/



212121

studies (33 review articles and 209 research articles).
Lastly, in the SpringerLink website3 using the old search interface of the home page,

the search string was entered in the search bar. The following options were selected: Article,
English, and Computer Science. The "Include Preview-Only content" option was unchecked,
and the "Date Published" filter was set to 2015-2024, resulting in 238 studies.

To organize and track the studies found, Zotero4 was used. The studies were exported to
Zotero using the export options provided by the websites (IEEE Xplore and ScienceDirect) in
RIS format, including title and abstract, or by using the Zotero Extension for Google Chrome
(SpringerLink). All studies in Zotero were then exported as a CSV file and then loaded into
Google Sheets for the subsequent steps of the study filtering process.

3.2 SELECTION PROCESS

This stage of the filtering process aimed to exclude studies that did not address at least
one of the research questions and to select studies relevant to the objective of this paper.

3.2.1 Pre-Select Papers From Search

Only the title and abstract of the studies selected in the previous were analyzed at this
stage. These fields were compiled into a Google Sheets file and reviewed by the author while
applying the exclusion and inclusion criteria. Retracted studies and duplicates were removed
during this step.

The main idea at this stage was to filter out studies that did not fit the scope of this work.
For instance, some papers might not mention "data warehouse" or "data warehousing" in the title
or abstract but discuss closely related concepts such as "ETL" or "semi-stream join". Therefore,
papers clearly not within the scope of this work were excluded, while the remaining papers
advanced to the next stage of selection. From the 536 studies initially selected, 64 were chosen.

3.2.2 Exclusion Criteria

The following criteria were applied to filter out studies:

■ Studies not in the context of data streaming.

■ Studies not focused on ETL or data storage or data warehouse architecture (e.g.,
papers focused on OLAP, Data Mining, or clustering).

■ Studies focused on other types of data storage besides data warehouses (e.g., data
lakes).

3https://link.springer.com/search
4https://www.zotero.org/



222222

3.2.3 Inclusion Criteria

The following criteria were applied to select studies for the next stage of the filtering
process:

■ Studies published from 2015 to 2024 (inclusive).

■ Studies written in English.

■ Studies where the author has access to the full paper.

■ Studies developed in the context of data streaming.

3.2.4 Selected Papers From Search

In this stage, the full text of each study was analyzed to determine if it fit within the
scope of this work. The inclusion and exclusion criteria were applied, yielding 25 studies from
64 selected in section 3.2.1.

Figure 3 shows the number of studies at each stage of the paper selection process from
the results of the string search.

Figure 3: Number of studies at each stage of the paper selection process.

3.2.5 Snowballing and Categorizing

Based on the studies referenced in the papers selected in section 3.2.4, a snowballing
process was performed, and 5 more studies were included in this work, yielding a total of 30
studies that will be analyzed. These studies were then categorized into the Data Warehouse
Architecture, ETL, Join, and Others categories.



232323

4
RESULTS

The following section will better explain the work done in each selected paper by category,
namely: DW architecture, ETL, Join, and Others. After that, the main findings of this work, as
well as the answers to the research questions, will be addressed. Tables 1, 2, 3, and 4 summarize
the papers by its categories.

Table 1: Summary of papers in the DW Architecture category.

Title Ref. Section Approach Summary

An end-to-end framework for
building data cubes over
trajectory data streams

[25] 4.1.1
Snowflake Schema; Prime
Number Encoding

Incremental Principal Component Analysis
(IPCA) for region-based streaming, snowflake
schema, prime number encoding for trajectory
data

Cruncher: Distributed
in-memory processing for
location-based services

[1] 4.1.2
Big Data tool; Cache; batch-
ing technique

Distributed spatial data warehouse and stream-
ing system built on Apache Spark with adaptive
RDD partitioning for query processing

Data warehouse design
approaches from social media:
review and comparison

[27] 4.1.3 Literature Review

A Literature Review that analyzes existing solu-
tions for social media and proposes two classes
of Data warehouse design: "behavior analy-
sis" and "sentiment analysis in data warehouse
schema"

An adaptive and real-time
based architecture for
financial data integration

[12] 4.1.4
Discretized Streams; Hybrid
Ontology; Big Data Tool;
RDD

Uses hybrid financial ontology, resilient dis-
tributed datasets (RDDs), and real-time dis-
cretized streams with Apache Kafka for dealing
with real-time financial data.

E-commerce big data
computing platform system
based on distributed
computing logistics
information

[14] 4.1.5

Big Data Tool; Metadata Man-
agement; Hierarchical Data
Management; Distributed
Computing

Hierarchical data warehouse system using
Hadoop, Hive, and Kafka

On construction of a big data
warehouse accessing platform
for campus power usages

[8] 4.1.6
Big Data Tool; Distributed
Computing

Real-time power monitoring platform using
Apache Sqoop and Hive-based data warehouse

A rewrite/merge approach for
supporting real-time data
warehousing via lightweight
data integration

[9] 4.1.7
Separation of Old and New
Data; Parallelism; Query
rewrite

Addition of a Dynamic DW for stream data
while disk data is maintained in a "static" ware-
house. Also proposes an intelligent query
rewrite.

Research and Design on
Architecture for Big Data
Platform in Power Grid
Dispatching and Control
System

[37] 4.1.8
Distributed Computing; Big
Data Tool

Unified architecture for data collection, man-
agement, service, and algorithm library using
HBase, Hive, and Spark for real-time and batch
processing



242424

Table 2: Summary of papers in the ETL category.

Title Ref. Section Approach Summary
Problems and available
solutions on the stage of
extract, transform, and
loading in near real-time data
warehousing (a literature
study)

[43] 4.2.1 Literature Review
A literature review on the problems and available
solutions for ETL in near real-time DW

Integrating Big Data: A
Semantic
Extract-Transform-Load
Frame- work

[7] 4.2.2 Ontology; Semantic
Semantic ETL framework that enhances data
integration by introducing semantic technologies
in the Transform stage

A big data perspective of
current ETL techniques

[18] 4.2.3 Literature Review

Review of current ETL techniques for data
streams, highlighting existing challenges, cat-
egorizing approaches to these challenges and
assessing their efficiency.

Incremental ETL pipeline
scheduling for near real-time
data warehouses

[38] 4.2.4
Parallelism; Consistency
Zones

Incremental ETL pipeline that processes data
changes in near real-time by executing jobs in
parallel, triggered by incoming queries. Consis-
tency zones are introduced to ensure synchro-
nized execution of tasks.

The challenges of Extract,
Transform and Loading (ETL)
system implementation for
near real-time environment

[2] 4.2.5 Literature Review
Identifies challenges in ETL for near real-time
environments, proposing solutions for extraction,
transformation, and loading stages.

ETL-aware materialized view
selection in semantic data
stream warehouses

[28] 4.2.6
Materialized View Selection;
Cache

Algorithm for dynamic materialized view selec-
tion, optimizing query performance in semantic
data stream warehouses.

DOD-ETL: distributed
on-demand ETL for near
real-time business
intelligence

[21] 4.2.7
Cache; Big Data Tool; Paral-
lelism

Distributed on-demand ETL framework using
micro-batch processing and in-memory comput-
ing with Apache Spark and Kafka.

Privacy-enhancing
ETL-processes for biomedical
data

[35] 4.2.8
Parallelism; Cell Suppression
Algorithm

Integration of data anonymization, encryption,
and access control into ETL for biomedical data,
ensuring privacy and utility.

From Big Data to business
analytics: The case study of
churn prediction

[44] 4.2.9
Big Data Tool; Parallelism;
Distributed computing

Scalable ETL pipeline using Apache Hadoop,
Spark, and machine learning for churn predic-
tion in telecom.

Metadata-Driven
Industrial-Grade ETL System

[4] 4.2.10 Metadata management
Metadata-driven ETL system for industrial appli-
cations, automating processes with a metadata
management framework

Distributed real-time ETL
architecture for unstructured
big data

[26] 4.2.11
Distributed Computing; Big
Data Tool; Parallelism; Cache

Novel ETL architecture using Apache Kafka,
Spark, and MongoDB for real-time unstructured
big data processing



252525

Table 3: Summary of papers in the Join category.

Title Ref. Section Approach Summary
A cached-based approach to
enrich stream data with
master data

[20] 4.3.1 Cache
Cached-based Stream-Disk Join (CSDJ) algo-
rithm

Skewed distributions in
semi-stream joins: How much
can caching help?

[29] 4.3.2 Cache
Tuple-level caching and load shedding tech-
niques

Optimising Hybridjoin to
Process Semi-Stream Data in
Near-Real- Time Data
Warehousing

[30] 4.3.3 Cache; Parallelism
Addition of a second disk buffer to allow the
probing and loading phases to happen in parallel

A memory-optimal
many-to-many semi-stream
join

[32] 4.3.4 Cache Semi-Stream Balanced Join (SSBJ) algorithm

Optimizing semi-stream
Cachejoin for near-realtime
data warehousing

[31] 4.3.5 Cache; Parallelism
Addition of hash table for frequent tables with
cache eviction and inequality algorithms

Big Data Velocity
Management–From Stream to
Warehouse via High
Performance Memory
Optimized Index Join

[19] 4.3.6 Cache inequality
Proposes the MOIJ (Memory Optimal Index-
based Join) algorithm.

An efficient data access
approach with queue and
stack in optimized hybrid join

[34] 4.3.7
Parallelism; Cache; Old/New
Data

Parallel-Hybrid Join (P-HYBRIDJOIN) and
Hybrid Join with Queue and Stack (QaS-
HYBRIDJOIN) algorithms

Table 4: Summary of papers in the Others category.

Title Ref. Section Approach Summary
A scalable real-time analytics
pipeline and storage
architecture for physiological
monitoring big data

[6] 4.4.1 Big data tools
Architecture built around Apache Kafka for
high-speed.

Challenges and Solutions for
Processing Real-Time Big
Data Stream: A Systematic
Literature Review

[11] 4.4.2 Systematic review
Systematic literature review on challenges and
solutions for real-time big data stream process-
ing

The stream data warehouse:
Page replacement algorithms
and quality of service metrics

[13] 4.4.3 Page replacement
Page replacement algorithms (TRAFF, LATEN,
HYBRI) and quality of service metrics

A New Approach Based on
ELK Stack for the Analysis
and Visualisation of
Geo-referenced Sensor Data

[33] 4.4.4 ELK stack
Use of ELK stack for spatial data warehouse and
georeferenced sensor data analysis



262626

4.1 DATA WAREHOUSE ARCHITECTURE

4.1.1 An End-to-End Framework for Building Data Cubes over Trajectory
Data Streams (2015)

Masciari [25] introduces a framework for analyzing trajectory data streams, emphasizing
memory-efficient data representation, warehousing, and querying. The framework addresses
the high dimension and redundancy commonly seen in trajectory data, such as GPS logs, which
necessitates compression techniques.

The data warehouse employs a snowflake schema optimized for spatial features of
trajectory data. It includes trajectory information such as location and time, organizing data by
regions that contain trajectory crossings, thus enhancing query capabilities about sub-trajectories.
The schema also addresses challenges like the "distinct count" issue when an object remains
within the same region across multiple timestamps.

Encoded trajectories using prime number encoding form the basis for building specialized
data cubes called Trajectory Cuboids (TRACs). These cuboids are tailored to efficiently query
both location and time-based data, continually updating with streaming data to ensure the
relevance and timeliness of the information.

4.1.2 Cruncher: Distributed In-Memory Processing for Location-Based
Services (2016)

Abdelhamid et al. [1] present Cruncher, a distributed spatial data warehouse and stream-
ing system built on Apache Spark. Cruncher incorporates several optimizations for spatial data
handling, including adaptive RDD partitions for query processing and a novel batching technique
that dynamically adjusts batch content ordering. It utilizes adaptive data partitioning to manage
query and data hotspots. It incorporates a garbage collector and an efficient caching strategy to
optimize in-memory data processing and minimize data redundancy.

4.1.3 Data Warehouse Design Approaches from Social Media: Review and
Comparison (2017)

Moalla et al. [27] conduct a literature review on data warehouse design approaches
for social media, comparing existing methodologies while highlighting their limitations. They
address how each study included in their paper approached the data warehouse design and then
categorized these approaches into two main types: behavioral analysis and the integration of
sentiment analysis.

Behavioral analysis delves into web user activities on social media platforms, focusing
on interactions like friendship creation, group formation, and messaging, particularly around



272727

events in areas such as politics or sports. This analysis helps decision-makers understand user
behavior patterns.

The integration of sentiment analysis into data warehouse schemas captures emotional
and psychological responses to products or events. This approach leverages user-generated text
to derive insights into public sentiment, aiding strategic decision-making processes.

4.1.4 An Adaptive and Real-Time Architecture for Financial Data Inte-
gration (2019)

Fikri et al. [12] propose an adaptive, real-time architecture for financial data integration
to address the latency and semantic heterogeneity issues commonly found in traditional ETL
processes. Their solution, called RDD4OLAP (Resilient Distributed DataStream for Online
Analytical Processing), incorporates a hybrid financial ontology, resilient distributed datasets
(RDDs), and real-time discretized streams.

The hybrid financial ontology standardizes business metadata across heterogeneous
information systems, ensuring consistent understanding and mapping of financial data. RDDs
enable efficient, fault-tolerant, in-memory data processing across a cluster of machines, providing
the necessary resilience and speed for real-time analytics. The real-time discretized stream,
facilitated by Apache Kafka, supports continuous data ingestion and processing, ensuring the
financial data warehouse is always current.

The proposed architecture includes producers that connect to company information
systems and convert data into the hybrid ontology format. Consumers then subscribe to these
data streams and process them into RDDs. These RDDs are subsequently transformed and loaded
into an in-memory data warehouse, allowing for real-time data integration and querying.

4.1.5 E-commerce Big Data Computing Platform System Based on Dis-
tributed Computing Logistics Information (2019)

Hu [14] outlines the architecture and implementation of a big data computing platform
tailored for e-commerce. The platform is designed to overcome traditional data warehouse limi-
tations in handling continuous large-scale data by integrating distributed computing technologies
and real-time data processing frameworks.

The hierarchical data warehouse system described includes layers for data knowledge
and metadata management, using Hadoop and Hive for data storage and computing and Kafka
messaging queues. This architecture promotes error identification and resolution through its
layer-specific responsibilities while implementing real-time computing engines to manage high-
velocity data streams typical in e-commerce environments.



282828

4.1.6 On Construction of a Big Data Warehouse Accessing Platform for
Campus Power Usages (2019)

Chang et al. [8] detail the creation of a real-time power monitoring platform for a
university campus. The platform’s architecture features multiple layers, with the third layer
housing the ETL process, data processing, and a search engine. Apache Sqoop is utilized for
data ingestion into a Hive-based data warehouse, structured to operate within a four-machine
cluster employing a master-slave configuration.

4.1.7 A Rewrite/Merge Approach for Supporting Real-Time Data Ware-
housing via Lightweight Data Integration (2020)

Ferreira et al. [9] introduced a rewrite/merge approach that divides the data warehouse
into two main components: the Static Data Warehouse (S-DW) and the Dynamic Data Warehouse
(D-DW).

The S-DW stores most historical data and maintains the indexes, constraints, and ma-
terialized views required for efficient query processing. In contrast, the D-DW handles recent
data and is optimized for real-time data integration by avoiding indexes and materialized views.
Consequently, the D-DW contains significantly less data than the S-DW, allowing quicker data
loading and refresh operations.

The proposed architecture includes a Merger Component that rewrites incoming queries
into sub-queries. These sub-queries are executed in parallel on both the S-DW and the D-DW.
The results from both components are then merged to provide a unified and up-to-date response
to the user. This approach enables real-time data integration without substantially impacting
query performance.

4.1.8 Research and Design on Architecture for Big Data Platform in Power
Grid Dispatching and Control System (2023)

Feng et al. [37] present a big data platform architecture for power grid dispatching and
control. The platform architecture comprises four primary components: data collection, data
specification, data service, and a general mathematical algorithm library. The data collection
component integrates multi-source data from different systems. The data specification component
prepares raw data in a synchronization layer for cleaning and fusion. The data service component
organizes data into a unified layer, standardizing and labeling it for consistency. The general
mathematical algorithm library supports data analysis and mining with advanced algorithms.

The data warehouse architecture of the platform is structured hierarchically to support
multiple business topics. The source data layer gathers data from multiple systems. The
synchronization layer temporarily stores and prepares raw data. The unified layer processes and



292929

transforms data into standardized datasets. The analysis layer extracts business data for business
intelligence and analysis, customizing it for specific needs.

The data flow in the big data platform involves writing real-time data to the synchro-
nization layer (HBase) through messages, which are cleaned and stored in HBase and Hive.
The storage design combines distributed and relational databases to handle real-time and batch
processing.

4.2 ETL

4.2.1 Problems and available solutions on the stage of extract, transform,
and loading in near real-time data warehousing (a literature study)
(2015)

Wibowo [43] performed a literature review to identify problems on the ETL stage of a
DW, and convey existing solutions. The author divides its review into the three phases of the
ETL process (extract, transform, and load). The problems and solutions are shown in table 5.

Stage Problem Available Solutions

Extraction
Integrate Multiple - Heteroge-
neous data source

Change Data Capture + Stream Proces-
sor + Data Integration Tools

Overload data source
Update significance and number of
record changed method
Special format for CDC log table

Transformation Master data overhead Master data cache + Database queue
Need intermediate server to
aggregate data

ELT (Extract Load Transform)

Loading Performance degradation
Staging table (Trickle and Flip)
Multi stage trickle and flip

OLAP internal inconsistency

On staging table, OLAP is done outside
the data warehouse update period
Snapshot data
RTDC (Real Time Data Cache)
Layer-based view

Table 5: Problems and Solutions in the ETL phase of Near Real-Time Data Warehousing based
on the table in [43].

4.2.2 Integrating Big Data: A Semantic Extract-Transform-Load Frame-
work (2015)

Bansal and Kagemann [7] propose a semantic ETL framework that enhances data inte-
gration by introducing semantic technologies in the Transform stage. While the Extract and Load
phases remain unchanged, the transform stage was modified. It is important to highlight that, in



303030

the transform stage, there is a manual analysis of datasets, their schema, and their purposes. The
results of this manual analysis allow the schema to be mapped to an existing ontology specific to
the domain in question or, if preferred, the creation of a new ontology. More than one ontology
may be needed if dealing with data sources from different domains, in which case alignment rules
are needed. The Transform stage is divided into three steps: Data Preparation, Semantic Data
Model, and Semantic Data Instances. In the semantic data model stage, the ontology creation,
mapping of data fields, and alignment of similar data fields from multiple sources happen. In
the data preparation step, the data is cleaned through duplicate removal, data normalization,
integrity check, data filtering, and sorting and grouping. The next stage is the Semantic data
model stage, where ontology creation, mapping of data fields, and alignment of similar data
fields from multiple sources happen. Finally, RDF generation happens in the semantic data
instances stage.

4.2.3 A big data perspective of current ETL techniques (2016)

Phanikanth and Sudarsan [18] review current ETL techniques from a big data perspec-
tive, highlighting the challenges posed by data streams and the difficulties traditional ETL
processes face in meeting these demands. They categorize ETL approaches into Traditional
ETL, "Near-Real-Time" ETL, and Real-Time ETL, discussing the analyzed papers’ architectural
considerations, scalability issues, and performance optimization techniques. Their analysis
reveals that most current ETL techniques focus on structured data, with 14 out of 18 studies
concentrating on this data type. Additionally, 11 studies adopt a "near-real-time" approach to
ETL, while 7 studies use a "batch" approach. No study opted for a real-time strategy.

4.2.4 Incremental ETL pipeline scheduling for near real-time data ware-
houses (2017)

Qu and Deßloch [38] propose an incremental ETL pipeline that uses parallelism to
execute a series of maintenance jobs. Each job handles a batch of delta tuples extracted from
source-local transactions. This method ensures that data warehouse tables are brought up-to-date
in response to incoming queries. The pipeline operates in a directed acyclic graph structure,
where each transformation operator runs in a dedicated thread. As a result, data ingestion can
be performed non-terminating, continuously processing new jobs as they arrive. However, this
parallelism introduces potential data consistency challenges, particularly when multiple operators
concurrently access and update staging tables or slowly changing dimension (SCD) tables.

To address these consistency challenges, the authors introduce two "consistency zones"
types designed to maintain data integrity in SCDs and incremental joins. Consistency zones
ensure that operations on shared tables occur in a controlled, synchronized manner, preventing
anomalies such as stale data or phantom reads during concurrent updates. Consistent zones allow



313131

multiple operators to work in parallel while guaranteeing that each job is processed in the correct
sequence, maintaining the overall consistency of the data warehouse.

4.2.5 The challenges of Extract, Transform and Loading (ETL) system
implementation for near real-time environment (2017)

Sabtu et al. [2] examine the challenges of implementing ETL systems in near real-time
environments, identifying key issues such as latency, data consistency, and system scalability.
The authors review existing ETL frameworks and their limitations, categorizing the challenges
within the extraction, transformation, and loading stages.

In the extraction stage, the main challenge is capturing change data from streaming
sources like network traffic and sensors without overloading the system. Solutions include
streaming processors and Change Data Capture (CDC) techniques, which ensure continuous
updates without disrupting operations.

For the transformation stage, maintaining data consistency while frequently updating
master data poses a challenge. Solutions involve using methods that avoid compromising master
data integrity and employing frequent, smaller batch processing to handle continuous data
streams efficiently.

The loading stage faces challenges in maintaining optimal performance during OLAP to
avoid overlaps and inconsistencies. Proposed solutions include using dynamic mirror technology
and staging data separately for analysis and updates to ensure data accuracy.

The paper explores various techniques and solutions in the literature, such as cloud-based
infrastructures and real-time data caching.

4.2.6 ETL-aware materialized view selection in semantic data stream ware-
houses (2018)

Berkani et al. [28] address optimizing query performance in semantic data stream
warehouses through ETL-aware materialized view selection. The authors propose a novel
algorithm that integrates the ETL process into selecting materialized views, ensuring that these
views are up-to-date and relevant to query workloads.

The methodology comprises three main components: "main memory and cache manage-
ment", dynamic materialized view selection, and a stream ETL process.

The memory and cache management component ensures efficient usage of memory
during ETL transformations and materialized view maintenance by using main memory as the
primary storage, thus avoiding disk access bottlenecks. Memory is divided into four partitions:
buffer of inputs, buffer of streams, view cache, and cache memory.

The dynamic materialized view selection component identifies the most relevant materi-
alized views for the current workload and stores them in the view cache. Views no longer used



323232

are evicted from memory to optimize space and performance.
The stream ETL process begins by extracting instances from RDF data sources into the

buffer of inputs. Instances that do not require data from the DW are merged and loaded directly
into the DW, while the remaining instances are processed in the buffer of streams. The buffer of
streams handles data from both sources and the DW to perform necessary ETL transformations.
Finally, ETL operations are executed in the cache memory.

4.2.7 DOD-ETL: distributed on-demand ETL for near real-time business
intelligence (2019)

Machado et al. [21] introduce DOD-ETL, a distributed on-demand ETL framework
designed to support near real-time business intelligence. DOD-ETL addresses key challenges
in ETL processes, including handling multiple heterogeneous data sources, performance degra-
dation, and master data overhead. The framework combines strategies from previous works to
achieve high availability, low latency, and horizontal scalability.

DOD-ETL leverages micro-batch processing and in-memory computing, integrating with
Apache Spark and Apache Kafka for high-speed data ingestion, transformation, and loading.
The framework employs in-memory databases on each processing node, enabling prompt access
to master data and ensuring consistent join operations for data with varying arrival rates.

The architecture of DOD-ETL includes a distributed, parallel, and technology-independent
pipeline. It utilizes stream processing alongside an in-memory master data cache, a buffer to
manage late data with timestamps, and a unified programming model for compatibility with
multiple stream processing frameworks. DOD-ETL also incorporates log-based change data
capture (CDC) to process data on-demand, minimizing the impact on the source database.

4.2.8 Privacy-enhancing ETL-processes for biomedical data (2019)

Prasser et al. [35] tackle the challenge of implementing privacy-enhancing ETL processes
for biomedical data. They propose a solution that integrates data anonymization, encryption,
and access control into the ETL pipeline, emphasizing risk assessment to preserve the data’s
integrity and schematic properties. Their approach used a cell suppression algorithm, which
enforces risk thresholds by recursively removing specific attribute values from records. This
algorithm treats suppressed values as a unique category, forming equivalence classes that reduce
re-identification risk by ensuring all records in a class are indistinguishable. This method
maintains data plausibility and correctness without perturbing input data or generating synthetic
data.

Additionally, the proposed ETL pipeline operates stream-oriented, where each row of
data is treated as an atomic and isolated unit within the data stream. This row-by-row processing
enables pipeline parallelism, ensuring efficient and privacy-preserving data handling in real-time
ETL environments.



333333

4.2.9 From Big Data to business analytics: The case study of churn predic-
tion (2020)

Zdravevski et al. [44] present a case study on applying big data ETL processes to
churn prediction in the telecommunications industry. They demonstrate a scalable ETL pipeline
combining traditional ETL tools for small-volume dimensional data and use big data technologies
for high-volume transactional data. Spark processes big data on Object Storage Services (OSS)
while integrating dimensional data from the data warehouse, ensuring efficient handling of wide
fact tables for denormalization or foreign key setup.

The paper introduces Distributed Load Agents to offload the load process to remote
machines, minimizing database server impact. The on-demand Hadoop cluster acts as an edge
node from the data warehouse perspective.

Three ETL data-flow scenarios are outlined, focusing on data in fact tables. Initial steps
involve Spark loading and distributing business and surrogate keys of dimensions across nodes.
Subsequent steps read new data from OSS with high parallelism, utilizing its hierarchical storage
structure. Processed data is then loaded into HDFS and subsequently into the data warehouse
using a distributed load algorithm. The workflow ends with loading collected metadata into the
data warehouse before cluster termination.

4.2.10 Metadata-Driven Industrial-Grade ETL System (2020)

Suleykin and Panfilov [4] discuss the design and implementation of a metadata-driven
ETL system for industrial applications, particularly in the railway transportation environment.
The authors address the complexity and rigidity of traditional ETL systems by leveraging a
proprietary metadata management framework (MMF) to automate and streamline ETL processes.

The proposed system optimizes the workflow using a metadata model to define data
structures, transformations, and dependencies. The MMF automates typical ETL tasks by
generating Airflow Directed Acyclic Graphs (DAGs), which execute ETL jobs using open-source
technologies. The MMF provides a single entry point for metadata management, automatic
pipeline construction, and synchronization of development environments, reducing errors and
the need for manual configuration.

The architecture includes a PostgreSQL-based metadata repository that stores system
contours, source structures, and loading steps. Also, the MMF supports distributed data storage.

4.2.11 Distributed real-time ETL architecture for unstructured big data
(2022)

Mehmood and Anees [26] present a novel ETL architecture designed for real-time
processing of unstructured big data. This architecture addresses the challenge of join operations
among sources with different data transfer rates, which can lead to stream data loss. Also, it



343434

utilizes a distributed approach, leveraging Apache Kafka for data ingestion, Apache Spark for
real-time processing, and MongoDB for storage.

The ETL architecture consists of three main layers: Data Collection, Processing, and
Distributed Data Store layers.

The data collection layer captures heterogeneous stream tuples from multiple sources
into several partitions without data loss.

The processing layer performs parallel transformation processes, including user-defined
stream filtering, join query processing and other queries. The join window performs stream-disk
join operations by loading in-memory distributed database data into a disk-based dataframe. Join
queries run over both stream and disk-data dataframes, combining attributes based on a common
attribute, with the resulting joined tuples being consumed by various real-time applications such
as data lakes, data warehouses, and analytical tools.

The distributed data store layer, built on a NoSQL database, provides load balancing,
scalability, and in-memory data access. This architecture uses a distributed message processing
system with message queuing middleware to compensate for differences in data source rates,
ensuring seamless data integration.

4.3 JOIN

4.3.1 A Cached-based approach to enrich Stream data with master data
(2015)

Naeem et al. [20] propose the Cached-based Stream-Disk Join (CSDJ) algorithm to
enhance semi-stream joins for one-to-many equijoins in skewed data distributions. CSDJ
introduces a cache module that frequently stores portions of the disk-based relation in memory
that are frequently accessed, acting as a stream-probing phase to reduce disk I/O and improve
performance.

The CSDJ algorithm has two phases: the stream-probing phase and the disk-probing
phase. The stream-probing phase quickly matches incoming stream tuples against the cached R

tuples in HR. If no match is found, the disk-probing phase scans the disk-based relation R.
The architecture includes a disk buffer, queue, stream buffer, hash table Hs for stream

tuples, and hash table HR for cached R tuples. This design ensures efficient join operations by
alternating between the stream-probing and disk-probing phases, optimizing performance and
reducing disk access.



353535

4.3.2 Skewed distributions in semi-stream joins: How much can caching
help? (2017)

Naeem et al. [29] investigate the impact of caching and load shedding techniques on
the performance of semi-stream joins, mainly when dealing with skewed data distributions,
and focusing on one-to-many equijoins. The authors propose two optimization techniques:
tuple-level caching and load shedding.

Tuple-level caching involves storing frequently accessed master data tuples in memory
to reduce disk I/O and improve join performance. This method ensures optimal memory usage
by caching only the most frequent tuples, unlike previous page-level caching approaches. They
combine this caching technique with existing semi-stream join algorithms like MESHJOIN and
HYBRIDJOIN, creating CMESHJOIN and CHYBRIDJOIN, respectively.

Load shedding aims to increase the rate of join outputs by shedding the most expensive
stream tuples to process. This allows the algorithm to identify and discard the most costly tuples,
improving output rates.

4.3.3 Optimising Hybridjoin to Process Semi-Stream Data in Near-Real-
Time Data Warehousing (2019)

Naeem et al. [30] propose an optimized version of the HYBRIDJOIN algorithm by
introducing a second disk buffer. This enhancement allows the probing and loading phases to
run in parallel, with one buffer in the probing phase while the other is in the loading phase. This
parallelism reduces wait times, as one buffer is always ready for use immediately after the other
completes its task, thereby improving overall efficiency by reducing the wait time for a buffer to
load.

4.3.4 A memory-optimal many-to-many semi-stream join (2019)

Naeem et al. [32] introduce the Semi-Stream Balanced Join (SSBJ) algorithm, designed
to optimize memory usage in many-to-many semi-stream joins. The SSBJ algorithm addresses
the challenge of joining a fast-incoming data stream with a larger, slower-changing dataset on
disk. It does so by introducing a "cache inequality" criterion for optimal memory allocation,
balancing between a cache for frequently accessed master data and a hash table for stream data.
This method differs from existing caching approaches, which often assume clustered indices or
unique key constraints, making them unsuitable for many-to-many joins.

The SSBJ algorithm features two phases: the cache phase and the disk phase. The stream
input first enters the cache phase, where it is joined with the cached master data in HR. If no
match is found, the stream tuple is forwarded to the disk phase, based on MESHJOIN, with
added cache migration logic. This alternation between phases ensures efficient join operations.



363636

The architecture includes a disk buffer, switching buffer, stream buffer, and two hash
tables: Hs (for stream tuples) and HR (for cached R tuples). The cache phase quickly matches fre-
quent stream tuples, while the disk phase handles the remaining tuples, optimizing performance
and reducing disk access. The dominant components, Hs and HR, ensure efficient memory usage
and cache management.

The authors mention that in further work, the two phases can be parallelized and executed
in different threads.

4.3.5 Optimizing semi-stream Cachejoin for near-realtime data warehous-
ing (2019)

Naeem et al. [31] propose two modifications to the existing CACHEJOIN approach for
semi-stream join. The first modification is called P-CACHEJOIN (Parallel Cache Join), and the
second is OP-CACHEJOIN (Optimized Parallel Cache Join).

P-CACHEJOIN enables the parallel execution of the SP and DP phases of CACHEJOIN.
The SP (Stream Probe) phase starts by probing incoming stream records against a cached set
of records recurrently accessed. In the DP (Disk Probe) phase, a partition of the data stored in
the disk is loaded into memory for joining with the stream records that did not find a match
during the SP phase. The modification for P-CACHEJOIN introduces an intermediate buffer,
which stores stream records that do not match during the SP phase. This architecture allows the
DP phase to proceed in parallel by fetching unmatched records from the intermediate buffer,
reducing the idle time between phases and increasing throughput.

OP-CACHEJOIN further optimizes P-CACHEJOIN by addressing the disk I/O bottle-
neck. It introduces a second disk buffer, which allows the parallel loading of stored data while
the DP phase is using the original disk buffer. This setup ensures that the DP phase can switch
between buffers with reduced delay.

4.3.6 Big Data Velocity Management–From Stream to Warehouse via High
Performance Memory Optimized Index Join (2020)

Naeem et al. [19] present the Memory Optimal Index-based Join (MOIJ) algorithm,
designed to optimize memory usage and enhance the performance of semi-stream joins in near-
real-time data warehousing. This work is similar to the SSBJ algorithm presented by Naeem
et al. [32], with the primary difference being the consideration of indexed master data. MOIJ
uses the "cache inequality" approach to determine the optimal memory distribution between
a cache for frequently accessed master data and the main hash table for stream data. This
algorithm incorporates a tuple-level cache, storing only the most frequent master data tuples, and
dynamically adjusts memory allocation based on data distribution, similar to SSBJ.



373737

4.3.7 An Efficient Data Access Approach With Queue and Stack in Opti-
mized Hybrid Join (2021)

Aziz et al. [34] propose two optimized algorithms, Parallel-Hybrid Join (P-HYBRIDJOIN)
and Hybrid Join with Queue and Stack (QaS-HYBRIDJOIN), to enhance the efficiency of semi-
stream joins in near-real-time data warehousing. The existing HYBRIDJOIN algorithm uses a
single buffer to load disk partitions, leading to suboptimal performance due to waiting for the
next partition to overwrite the existing one.

P-HYBRIDJOIN addresses this limitation by introducing a second disk buffer (db2)
alongside the original buffer (db1). These buffers operate in parallel, with one buffer in the
probing phase while the other loads the next partition into memory. This parallel operation
eliminates waiting times and significantly improves the service rate. During the probing phase of
db1, db2 is loaded into memory, and once db1 completes its probing, db2 becomes available for
the join operator. This cycle continues, ensuring that the join operation never waits for data to be
loaded into memory.

QaS-HYBRIDJOIN further optimizes the join process by incorporating a queue and
stack (QaS) component. This new component replaces the queue (Q) in P-HYBRIDJOIN and is
implemented as a double-linked list. QaS allows for simultaneous joining with both the oldest
and newest key attributes. Specifically, db1 handles the oldest index attributes from the queue,
while db2 handles the newest index attributes from the stack. This configuration potentially
increases the number of matches by allowing the join process to utilize both recent and old key
attributes effectively.

4.4 OTHER

4.4.1 A Scalable Real-Time Analytics Pipeline and Storage Architecture
for Physiological Monitoring Big Data (2018)

Baljak et al. [6] present a scalable, distributed architecture designed to collect, store, and
analyze high-volume, high-velocity physiological data from bedside monitors. The proposed
system leverages the open-source stream processing software Apache Kafka to ensure high-speed,
real-time data handling.

The architecture manages two types of data: high-resolution EKG (electrocardiogram)
waveforms and vital signs (e.g., blood pressure). The data flow begins with sensors publishing
the data as topics in Kafka. The data is then consumed and written directly into a database (for
vital signs) or converted into an intermediary format for fast data collection. Subsequently, the
data is integrated into an existing data warehouse (DW), enabling end users to perform queries.

For EKG waveforms, the data is stored in JSON files due to its size, with their locations
indexed in the DW to facilitate quick access and analysis. This architecture effectively supports



383838

the real-time integration and querying of large-scale physiological data.

4.4.2 Challenges and Solutions for Processing Real-Time Big Data Stream:
A Systematic Literature Review (2020)

Mehmood and Anees [11] conducted a systematic literature review to analyze the chal-
lenges and solutions in real-time big data stream processing, particularly for real-time data
warehousing (DWH). The authors identified key challenges in this field, including in-memory
computing, distributed computing, low latency requirements, effective resource allocation, fast
disk I/O operations, distribution of stream engines, and real-time processing of spatiotemporal
data streams.

The review highlighted various tools and technologies developed to address these chal-
lenges, such as Apache Spark, Yahoo! S4, MapReduce, and Kafka Streams. The authors found
that while numerous algorithms exist for real-time join processing of structured data in ETL
for real-time DWH, there is less work on unstructured data. The study emphasizes the need for
further research in real-time stream processing for unstructured data and suggests developing
stream engines that are flexible and adaptable to specific business requirements. Additionally, the
authors propose exploring cloud-based DWH solutions and purpose-built ETL tools for improved
efficiency and scalability.

4.4.3 The stream data warehouse: Page replacement algorithms and qual-
ity of service metrics (2023)

Gorawski et al. [13] focus on the memory paging mechanism of a stream OLAP cube,
termed the Cube Iterator. This mechanism manages the continuous flow of data from historical
(persistent) and real-time (volatile) sources, providing users with up-to-date analytical results.
The authors identify page replacement algorithms as critical for optimizing this data transfer
process. They propose three new algorithms that adapt to changing data environments and
user requirements. These algorithms consider data retrieval time, consumption speed, and
user-defined constraints to balance the needs of data producers (sources) and consumers (users).
Additionally, the authors introduce two quality of service metrics: one for consumers, focusing
on data delivery speed and continuity, and another for producers, emphasizing database load and
query efficiency.

4.4.4 A New Approach Based on ELK Stack for the Analysis and Visuali-
sation of Geo-referenced Sensor Data (2023)

Ngo et al. [33] propose using the ELK (Elasticsearch, Logstash, Kibana) stack as a
spatial data warehouse for analyzing georeferenced sensor data, particularly in environmental



393939

applications like the CEBA project. The authors detail a method to implement and query
multidimensional models in Elasticsearch, showcasing its ability to handle time series, spatial
data, and objects. They introduce the Integration and Aggregation Tool (IAT), a streaming ETL
component that integrates diverse sensor data and loads it into Elasticsearch, driven by user
configuration. The system architecture is presented as divided into sensors, data processing,
storage, and visualization.

4.5 OVERVIEW OF DATA INSIGHTS

Analyzing the most frequent combination of words used in the titles and abstracts of the
selected papers (as shown in Table 6) confirms that the selected studies fall within the scope
of data ingestion and storage in a data warehouse (DW) in the context of data streaming. This
word frequency analysis also reflects the categories used to group the papers. Common and
general phrases, such as "of the," "in this," and "in order to," were removed to clean the data
about bigram and trigram phrases.

Table 6: Bigram and Trigram Phrase Counts

Bigram Phrase Frequency Trigram Phrase Frequency
big data 28 real-time data warehousing 7
data warehouse 20 real-time stream processing 7
data warehousing 15 data warehouse design 4
real-time data 14 extract transform load 4
stream data 13 railway kpi data 4
master data 13 near real-time data 4
stream processing 12 disk-based master data 4
near real-time 11
etl system 9
semi-stream join 9
real-time stream 9

The distribution of publication years for the selected studies (shown in Figure 4) indicates
that research on handling data streaming in data warehouses is ongoing. It is important to note
that the paper selection was performed midway through 2024, so additional papers may still be
published this year that will not be part of this work.

4.6 OVERALL APPROACHES USED IN ALL CATEGORIES

The analysis of the selected studies provided insights into the strategies employed to
address the challenges of data ingestion and storage in data warehouses within the context of data
streaming. Common techniques identified are parallelization, distributed computing, efficient
memory usage, adding memory as a trade-off with better time efficiency, and different data



404040

Figure 4: Frequency of publication years for the selected papers.

handling for disk and stream data. These strategies enhance the performance and scalability of
data warehouses, enabling them to handle the demands of data streams effectively.

4.7 SPECIFICS OF THE MOST RELEVANT STUDIES

The following sections provide more details of the proposed approach of the most relevant
studies.

4.7.1 Data Warehouse Architecture

4.7.1.1 A rewrite/merge approach for supporting real-time data warehousing

via lightweight data integration

The authors propose a method to separate streaming data from historical data by intro-
ducing a dynamic data warehouse (DW) specifically designed to handle recent stream data (see
Figure 5). This dynamic DW stores only the most up-to-date streaming data, while older data is
eventually transferred to a static data warehouse, which resides on disk and manages historical
data.

Due to its need for frequent updates, the dynamic DW avoids using indexes and mate-
rialized views, thereby reducing processing time since it does not require constant updates to
these structures. On the other hand, the static DW is responsible for maintaining indexes and
materialized views, allowing it to handle historical data efficiently. The dynamic DW is called a



414141

Figure 5: Architecture of dynamic data warehouse with an in-memory query processor [9].

"lighter" warehouse, reflecting its simplified structure and reduced overhead.
Additionally, the system includes an in-memory component represented by the "In-

memory QP" situated alongside the static DW. This component processes queries in real-time
by executing them in parallel across both the dynamic and static data warehouses. Once both
warehouses return their results, the system merges these results using a "Merger" component
and presents the final output to the user. This approach ensures that queries benefit from both
real-time and historical data without sacrificing performance or data freshness.

4.7.1.2 Cruncher: Distributed In-Memory Processing for Location-Based Ser-

vices

The authors propose the development of an in-memory data warehouse specifically
designed for spatial data (see Figure 6). Built on top of Apache Spark, the system addresses
Spark’s limitations, which are that it is not inherently optimized for spatial data processing. A key
modification introduced by the authors is the reordering of batch data during processing, allowing
for more efficient system updates compared to Spark’s default sequential stream processing.

Cruncher also dynamically monitors frequently accessed data to optimize partition
updates and reduce the processing time required to retrieve data, unlike static partitions. Cruncher
uses three components to implement its features: a KD-Tree to store the location of partitions, a
high-granularity grid called the data catalog to track the frequency of spatial data usage, and a
lineage graph that monitors updates to the system’s resilient distributed datasets (RDDs).

Additional features of Cruncher include inter-query optimization, a garbage collector that
retains only the most up-to-date spatial data in memory, and data persistence, achieved through
the lineage graph which stores the history of data transformations. The system also provides
users a graphical user interface (GUI), further enhancing accessibility.



424242

Figure 6: Cruncher architecture [1].

4.7.1.3 An end to end framework for building data cubes over trajectory data

streams

The authors use the snowflake schema, shown in Figure 7, to model spatial data, and this
is an example of how more traditional schema is still being used to model data in the context of
data streaming. The schema is a snowflake because the space dimension table contains a region
ID, which points to another dimension table.

Figure 7: Snowflake schema used to model spatial data in a data warehouse[25].



434343

4.7.2 ETL

4.7.2.1 DOD-ETL: distributed on-demand ETL for near real-time business

intelligence

The authors propose a distributed, technology-independent ETL architecture that lever-
ages caching, parallelism, and a real-time data flow, as depicted in the study’s flow diagram in
Figure 8. The process begins with a data source where a Change Data Capture (CDC) mechanism
tracks database operations (CRUD) in real time by monitoring database logs.

Once extracted, the data is processed by the Message Producer, which partitions the data
and creates messages using the table keys. These messages are then sent to a message queue,
which operates on a publish/subscribe model, directing the messages to the Stream Processor for
further processing.

The In-Memory Table Updater maintains distributed in-memory tables, storing the
data necessary for the transformation stage. The Data Transformer performs the actual data
transformations, retrieving any missing data from the distributed in-memory cache and processing
the data partitions in parallel. Finally, the Target Database Updater converts the transformed data
into SQL queries and loads it into the target data repository.

It is important to note that the Extract, Transform, and Load (ETL) processes are
executed in parallel for each data partition (that was created in the Message Producer component),
maximizing the efficiency and speed of the data pipeline. This approach ensures near real-time
processing and supports the scalability needed for business intelligence applications.

Figure 8: DOD-ETL system architecture for the ETL process[21].



444444

4.7.2.2 Distributed real-time ETL architecture for unstructured big data

The authors propose an ETL architecture that utilizes a distributed database before
loading data into a real-time data warehouse, as shown in Figure 9. The system’s data flow begins
at the data collection layer, which gathers data from various sources, potentially in different
formats. This data is then passed to the processing layer, where three key transformations occur
in parallel: data filtering and transformation, the processing of join queries, and the execution of
other queries.

The stream join process occurs in the join window, which is integrated with the distributed
database. Here, a tuple from the stream, represented in the stream dataframe, is matched with
data from the disk, stored in the disk-data dataframe, via the join query operator. However,
this "disk" is not a traditional disk; it is a distributed database, providing advantages such as
load distribution, scalability, and in-memory storage. This complexity is managed through the
distributed system transparent layer, which abstracts the distributed nature of the underlying
database.

Once the data has been processed through this system, it can be loaded into a real-time
data warehouse, ensuring that it is readily available for real-time analysis.

Figure 9: Distributed real-time ETL architecture with the usage of a distributed in-memory
database[26].

4.7.3 Join

4.7.3.1 Optimising HYBRIDJOIN to Process Semi-Stream Data in Near-real-

time Data Warehousing

The authors propose an optimization to the traditional HYBRIDJOIN algorithm by
introducing a second buffer (see Figure 10). This addition allows the system to perform the
loading and probing phases in parallel, thereby enhancing the efficiency of the join process.



454545

In the join process, disk-based elements are first loaded into a buffer, where they are
compared with incoming stream data. This step is referred to as the loading phase. The probing
phase follows, during which the system uses the data in the buffer to compare with stream data
tuples. The optimization introduced by the authors eliminates idle time between these phases
by ensuring that while one buffer is busy loading data, the other is simultaneously being used
for probing. This way, the system does not need to wait for the loading phase to complete
before starting the probing, as there is always a buffer ready for probing while the other handles
loading. This parallel execution significantly reduces the processing delay in semi-stream joins,
improving the overall performance in near-real-time data warehousing environments.

Figure 10: Join architecture with the addition of a second disk buffer[30].

4.7.3.2 A Cached-based Approach to Enrich Stream Data with Master Data

The authors introduce a caching mechanism designed to store the most frequently
accessed tuples (as seen in Figure 11), thereby optimizing the join process between stream data
and disk-based master data. A frequency monitor is employed to track access patterns and
determine when tuples in the cache should be replaced by more frequently accessed tuples from
the disk. In this way, if a disk-based tuple becomes more frequently used than one in the cache,
it is moved into the cache.

This approach is advantageous because accessing tuples stored on disk is more costly
in terms of time and resources compared to accessing them in memory. By storing the most
frequently accessed tuples in the cache, the system reduces the need for repeated disk access,
which improves the overall efficiency of the join process. Incoming stream data first checks the
cache for the required tuples, and only if the desired tuple is not found in the cache does the
system query the disk. This layered approach optimizes performance by prioritizing faster cache
access while maintaining access to all data on disk when necessary.



464646

Figure 11: Join architecture using a stream cache[20].

4.7.3.3 Optimizing Semi-Stream CACHEJOIN for Near-Real Time Data Ware-

housing

The authors introduce an intermediate buffer (seen in Figure 12) that stores tuples that
have undergone the probe phase in the stream but did not yield a match. Since the intermediate
buffer retains tuples from the data stream that have already passed through the stream cache, the
cache probing phase can get the next tuple to process it while the intermediate buffer is used to
probe the disk in parallel. This concurrent probing is only interrupted when the intermediate
buffer if full, necessitating a pause in the stream probe, or when the buffer is empty, resulting in
a pause of the disk probe—though, but these scenarios are considered rare.

Figure 12: Join architecture using an intermediate buffer in the disk probing phase[31].

Additionally, the author proposes a hybrid approach that integrates the utilization of an
auxiliary disk buffer and a stream cache, as discussed previously, alongside the intermediate
buffer to store stream tuples (see Figure 13). This design facilitates parallel processing of both
stream and disk probing, as well as the loading and probing phases of data within the disk’s
buffer.



474747

Figure 13: Join architecture using the combination of additional disk buffer, stream cache, and
intermediate buffer[31].

4.8 APPROACHES TO OVERCOME CHALLENGES IN DW FOR DATA

STREAMS PER CATEGORY

In the domain of data warehouse (DW) architecture, the analyzed studies underscore the
importance of both dynamic and static data warehouses, alongside the adoption of big data tools
and in-memory processing techniques. One approach involves the separation of DW into static
and dynamic components, where the static component stores historical data with indexes and
materialized views, while the dynamic component is optimized for real-time integration without
indexes [9]. Tools like Apache Kafka and Apache Spark are frequently utilized to manage
high-velocity data streams, ensuring efficient processing and real-time analytics [12, 1].

Regarding ETL processes, the studies strongly focus on parallelism, efficient memory
management, and distributed architectures as key strategies for handling continuous, large-scale
data flows. In this context, parallelism allows multiple ETL tasks to execute simultaneously,
reducing overall processing time and latency [21, 44]. Efficient memory management, such
as in-memory databases and cache optimization, is crucial in maintaining high performance,
particularly in real-time environments where data volumes are immense [26], the usage of
cache also helps speed up the transformation process by providing missing data to perform
the transformation. Distributed architectures further enhance scalability by distributing the
ETL workload across multiple computing nodes, ensuring balanced processing and improved
throughput [18, 7].

In the context of join operations, the studies frequently utilize techniques such as cache
memory, parallelization, and distributed computing to address performance bottlenecks in data
streaming environments. Cache memory plays a pivotal role in reducing disk I/O by storing
frequently accessed data, thereby accelerating join processes [32, 29]. Parallelization enables
concurrent execution of join operations, significantly improving processing times [30, 34].
Additionally, distributed computing is employed to spread join tasks across multiple nodes,
balancing the computational load and enhancing scalability [31, 19].



484848

4.9 RQ1: HOW IS DATA MODELED IN A DATA WAREHOUSE?

The first research question aimed to explore data modeling perspectives in data ware-
houses within the context of data streaming. The analysis reveals that traditional schemas (such
as star and snowflake schema) with fact and dimension table schema are still commonly used,
for example, in applications with geospatial data [25]. Instead of proposing new schemas to
model the data in a DW, recent studies have shifted towards addressing operational challenges
such as dealing with high-volume and high-velocity data of data streaming. This indicates a
maturity in data modeling practices where the main concern is optimizing the performance and
efficiency of data handling processes such as ETL and joins. Still, regarding the data aspect,
studies use metadata management[14][4], ontology[12][7], and semantics [7][28] to model data
in data warehouses as a consequence of heterogeneous data from multiple data sources. Ontology
is important for describing a project’s domain’s entities and their relation. Semantics are used
to ensure that terms have clear and standardized meanings. For example, two sources may use
different terms to reference the same thing, like "customer" and "client"; that’s where semantics
come in, to map different "terms" to the system’s semantics. Lastly, metadata management
allows the system to retrieve information about the sourced data. Managing these aspects is
important for data consistency across the system.

4.10 RQ2: HOW IS DATA INGESTED INTO A DATA WAREHOUSE?

The second research question investigates the methods employed for data ingestion
into data warehouses. The studies suggest that parallel processing, in-memory computing, and
distributed computing are key techniques to enhance data ingestion processes.

The works adopted techniques to allow parallelism in the execution of data extraction
tasks [21], dataset processing [35][44], data transformation [26], and loading tasks, significantly
reducing latency. Parallelism is also applied to make stream joins faster by using disk buffers
and executing the loading and probe phases in parallel in these disks[30]. Another approach is
to execute the stream and disk probing phases in parallel by probing the disk for the tuples that
were not in the cache[31].

In-memory computing leverages the fast access speeds of modern memory systems to
perform transformations quickly[28], process in-memory queries[26] and store data (such as
tables) for quick access. Also, an in-memory table updater may be used to update a system’s
in-memory tables[21]. The usage of caches appeared both in works that address stream joins,
where caching allows stream data to access a cached table with disk information before going to
the disk if needed, and also in ETL where cache is used to provide missing information to the
transformation stage [21].

Lastly, distributed computing facilitates the division of tasks across multiple nodes,
ensuring load balancing and scalability, which is crucial for real-time data environments. It is



494949

possible to use distributed load agents to perform the load stage of ETL[44]. The extract phase
can also take advantage of distributed computing to extract data from multiple sources[26]. Big
data tools also make it easier to use distributed computing, like the Hadoop Distributed File
System or Kafka, with distributed messaging queues.

Besides Parallelism, cache, and distributed computing, another approach is dealing with
stream data and historical data separately [9][34].

4.11 RQ3: HOW IS A DATA WAREHOUSE BUILT AND USED IN THE

CONTEXT OF DATA STREAMING?

The third research question focuses on the architectural aspects of building data ware-
houses and how the data warehouse is used in a system’s architecture in the context of data
streaming.

The studies emphasize how data warehouses are incorporated into the system and the
architecture of the data warehouse itself. Architectures can combine static (deals with old
data) and dynamic (deals with the data stream) data warehouses [9] to handle real-time time by
reducing indexes and materialized views updates in the disk. Another approach is to maintain
the system’s statistics to manage partitioning, caching, and query processing [1]. On top of that,
the cache can be used to make use of distributed computing to decentralize the workload [14].

Big data tools play an important role in managing data streams, and they are explicitly
mentioned in many of the works analyzed, which rely on them to enable real-time data ingestion
and storage. Tools such as Apache Kafka, Spark, Hive, Impala, Hadoop, Sqoop, and HDFS
are critical for enabling systems to handle high-velocity data, and many rely on these tools to
manage the complexities of big data. Apache Kafka builds real-time data pipelines and provides
messaging queues, allowing distributed streaming of high-throughput event data across systems.
Apache Spark handles large-scale datasets’ real-time and batch processing through high-speed,
distributed data processing and in-memory computation. Apache Hive enables querying and
managing large datasets in distributed storage, while Apache Impala facilitates low-latency SQL
queries on data stored in Hadoop. Apache Hadoop serves as a framework for distributed storage
and processing of big data using clusters of commodity hardware. Sqoop efficiently transfers
bulk data between Hadoop and relational databases, bridging structured and unstructured data.
Finally, HDFS (Hadoop Distributed File System) offers a scalable, fault-tolerant file system for
storing massive datasets across distributed machines.



505050

5
CONCLUSION

This study provided a comprehensive overview of recent advancements in data ingestion
and storage strategies for data warehouses within the context of data streaming. The analysis of
selected studies has highlighted various techniques and architectural approaches that address the
challenges of handling high-velocity, continuous data streams.

One of the significant findings is the continued reliance on traditional data modeling
schemas such as the star and snowflake schemas. Despite the focus of contemporary research
shifting towards optimizing operational aspects like data ingestion, these schemas remain foun-
dational due to their effectiveness in organizing and querying a large amount of data. This
highlights the maturity of data modeling practices where the emphasis is on enhancing the
performance and efficiency of data processing rather than reinventing the schema design.

The insights gained from this study underscore the importance of advanced techniques
such as cache/in-memory processing, parallelization, distributed computing, and usage of big
data tools. These strategies not only enhance the performance and scalability of data warehouses
but also ensure their capability to handle the demands of real-time data environments effectively.

The advancements in data ingestion and storage strategies highlighted in this review
show the trend for the ongoing development of efficient and scalable data warehouses. By
addressing the operational challenges and leveraging advanced for ingesting high volume and
high velocity data, data warehouses can continue providing timely and reliable insights, facili-
tating informed decision-making in various fields. Future research should continue exploring
innovative approaches to optimize these processes further and address emerging data streaming
and warehousing challenges.



515151

REFERENCES

[1] A. S. Abdelhamid, M. Tang, A. M. Aly, A. R. Mahmood, T. Qadah, W. G. Aref, & S.
Basalamah (2016). Cruncher: Distributed in-memory processing for location-based services.
In 2016 IEEE 32nd International Conference on Data Engineering (ICDE), 1406–1409.
Journal Abbreviation: 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[2] A. Sabtu, N. F. M. Azmi, N. N. A. Sjarif, S. A. Ismail, O. M. Yusop, H. Sarkan, & S. Chuprat
(2017). The challenges of Extract, Transform and Loading (ETL) system implementation for
near real-time environment. In 2017 International Conference on Research and Innovation in
Information Systems (ICRIIS), 1–5. Journal Abbreviation: 2017 International Conference on
Research and Innovation in Information Systems (ICRIIS).

[3] A. Silva & C. Antunes (2013). Towards the Integration of Constrained Mining with Star
Schemas. In 2013 IEEE 13th International Conference on Data Mining Workshops, 413–420.
Journal Abbreviation: 2013 IEEE 13th International Conference on Data Mining Workshops.

[4] A. Suleykin & P. Panfilov (2020). Metadata-Driven Industrial-Grade ETL System. In 2020
IEEE International Conference on Big Data (Big Data), 2433–2442. Journal Abbreviation:
2020 IEEE International Conference on Big Data (Big Data).

[5] Almeida, A., Brás, S., Sargento, S., & Pinto, F. C. (2023). Time series big data: a survey on
data stream frameworks, analysis and algorithms. Journal of Big Data, 10(1):83.

[6] Baljak, V., Ljubovic, A., Michel, J., Montgomery, M., & Salaway, R. (2018). A scalable
realtime analytics pipeline and storage architecture for physiological monitoring big data.
CHASE 2018 Special Issue, 9-10:275–286.

[7] Bansal, S. K. & Kagemann, S. (2015). Integrating Big Data: A Semantic Extract-Transform-
Load Framework. Computer, 48(3):42–50.

[8] Chang, C.-H., Jiang, F.-C., Yang, C.-T., & Chou, S.-C. (2019). On construction of a big data
warehouse accessing platform for campus power usages. Journal of Parallel and Distributed
Computing, 133:40–50.

[9] Cuzzocrea, A., Ferreira, N., & Furtado, P. (2020). A rewrite/merge approach for supporting
real-time data warehousing via lightweight data integration. The Journal of Supercomputing,
76(5):3898–3922.

[10] Dibouliya, A. (2023). Review on: Modern data warehouse how is it accelerating dig-
ital transformation. nternational Journal of Advance Research, Ideas and Innovations in
Technology.

[11] E. Mehmood & T. Anees (2020). Challenges and Solutions for Processing Real-Time Big
Data Stream: A Systematic Literature Review. IEEE Access, 8:119123–119143.

[12] Fikri, N., Rida, M., Abghour, N., Moussaid, K., & El Omri, A. (2019). An adaptive and
real-time based architecture for financial data integration. Journal of Big Data, 6(1):97.

[13] Gorawski, M., Pasterak, K., Gorawska, A., & Gorawski, M. (2023). The stream data
warehouse: Page replacement algorithms and quality of service metrics. Future Generation
Computer Systems, 142:212–227.



525252

[14] Hu, J. (2019). E-commerce big data computing platform system based on distributed
computing logistics information. Cluster Computing, 22(6):13693–13702.

[15] Inmon, W. H. (2005). Building the Data Warehouse. John Wiley & Sons, New York, NY,
USA, 4th edition.

[16] J. Kreps, N. N. & Rao, J. (2014). Kafka: A distributed messaging system for log processing.
In Proceedings of the NetDB’11: 6th International Workshop on Networking Meets Databases.

[17] K. Grolinger, W. A. Higashino, A. T. & Capretz, M. A. (2014). Data management in
cloud environments: Nosql and newsql data stores. Journal of Cloud Computing: Advances,
Systems and Applications, 2(1):1–24.

[18] K. V. Phanikanth & S. D. Sudarsan (2016). A big data perspective of current ETL techniques.
In 2016 International Conference on Advances in Computing and Communication Engineering
(ICACCE), 330–334. Journal Abbreviation: 2016 International Conference on Advances in
Computing and Communication Engineering (ICACCE).

[19] M. A. Naeem, F. Mirza, H. U. Khan, D. Sundaram, N. Jamil, & G. Weber (2020). Big Data
Velocity Management–From Stream to Warehouse via High Performance Memory Optimized
Index Join. IEEE Access, 8:195370–195384.

[20] M. A. Naeem, I. S. Bajwa, & N. Jamil (2015). A Cached-based approach to enrich
Stream data with master data. In 2015 Tenth International Conference on Digital Information
Management (ICDIM), 57–62. Journal Abbreviation: 2015 Tenth International Conference
on Digital Information Management (ICDIM).

[21] Machado, G. V., Cunha, , Pereira, A. C. M., & Oliveira, L. B. (2019). DOD-ETL: distributed
on-demand ETL for near real-time business intelligence. Journal of Internet Services and
Applications, 10(1):21.

[22] Maciel, L., Oliveira, A., Rodrigues, R., Santiago, W., Silva, A., Carvalho, G., & Miranda,
B. (2022). A systematic mapping study on robotic testing of mobile devices. In 2022
48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
475–482.

[23] Marr, B. (2016). Big Data in Practice. John Wiley & Sons, Chichester, UK.

[24] Marz, N. & Warren, J. (2015). Big Data: Principles and best practices of scalable real-time
data systems. Manning Publications, Shelter Island, NY, USA.

[25] Masciari, E. (2015). An end to end framework for building data cubes over trajectory data
streams. Journal of Intelligent Information Systems, 45(2):131–164.

[26] Mehmood, E. & Anees, T. (2022). Distributed real-time ETL architecture for unstructured
big data. Knowledge and Information Systems, 64(12):3419–3445.

[27] Moalla, I., Nabli, A., Bouzguenda, L., & Hammami, M. (2017). Data warehouse design
approaches from social media: review and comparison. Social Network Analysis and Mining,
7(1):5.



535353

[28] N. Berkani, L. Bellatreche, & C. Ordonez (2018). ETL-aware materialized view selection
in semantic data stream warehouses. In 2018 12th International Conference on Research Chal-
lenges in Information Science (RCIS), 1–11. Journal Abbreviation: 2018 12th International
Conference on Research Challenges in Information Science (RCIS).

[29] Naeem, M., Dobbie, G., Lutteroth, C., & Weber, G. (2017). Skewed distributions in
semi-stream joins: How much can caching help? Information Systems, 64:63–74.

[30] Naeem, M. A., Aziz, O., & Jamil, N. (2019a). Optimising hybridjoin to process semi-stream
data in near-real-time data warehousing. In CONF-IRM, 27.

[31] Naeem, M. A., Mehmood, E., Malik, M. G. A., & Jamil, N. (2019b). Optimizing Semi-
Stream CACHEJOIN for Near-Real- Time Data Warehousing:. Journal of Database Manage-
ment, 31(1):20–37.

[32] Naeem, M. A., Weber, G., & Lutteroth, C. (2019c). A memory-optimal many-to-many
semi-stream join. Distributed and Parallel Databases, 37(4):623–649.

[33] Ngo, T. T. T., Sarramia, D., Kang, M.-A., & Pinet, F. (2023). A New Approach Based on
ELK Stack for the Analysis and Visualisation of Geo-referenced Sensor Data. SN Computer
Science, 4(3):241.

[34] O. Aziz, T. Anees, & E. Mehmood (2021). An Efficient Data Access Approach With Queue
and Stack in Optimized Hybrid Join. IEEE Access, 9:41261–41274.

[35] Prasser, F., Spengler, H., Bild, R., Eicher, J., & Kuhn, K. A. (2019). Privacy-enhancing
ETL-processes for biomedical data. International Journal of Medical Informatics, 126:72–81.

[36] Pääkkönen, P. & Pakkala, D. (2015). Reference Architecture and Classification of Tech-
nologies, Products and Services for Big Data Systems. Big Data Research, 2(4):166–186.

[37] Q. Feng, F. Di, R. Ye, L. Xie, Y. Wang, L. Tao, Y. Huang, D. Li, & C. Feng (2023). Research
and Design on Architecture for Big Data Platform in Power Grid Dispatching and Control
System. In 2023 IEEE 6th Information Technology,Networking,Electronic and Automation
Control Conference (ITNEC), 6:887–891. Journal Abbreviation: 2023 IEEE 6th Information
Technology,Networking,Electronic and Automation Control Conference (ITNEC).

[38] Qu, W. & Deßloch, S. (2017). Incremental etl pipeline scheduling for near real-time data
warehouses. In Datenbanksysteme für Business, Technologie und Web (BTW 2017), 299–308.
Gesellschaft für Informatik, Bonn.

[39] S. Ashraf, Y. M. Afify, & R. Ismail (2022). Big Data for Real-Time Processing on Streaming
Data: State-of-the-art and Future Challenges. In 2022 International Conference on Electrical,
Computer, Communications and Mechatronics Engineering (ICECCME), 1–8. Journal
Abbreviation: 2022 International Conference on Electrical, Computer, Communications and
Mechatronics Engineering (ICECCME).

[40] Siddiqa, A., Hashem, I. A. T., Yaqoob, I., Marjani, M., Shamshirband, S., Gani, A., &
Nasaruddin, F. (2016). A survey of big data management: Taxonomy and state-of-the-art.
Journal of Network and Computer Applications, 71:151–166.

[41] Siddiqa, A., Karim, A., & Gani, A. (2017). Big data storage technologies: a survey.
Frontiers of Information Technology & Electronic Engineering, 18(8):1040–1070.



545454

[42] Stonebraker, M. & Çetintemel, U. (2013). "one size fits all": An idea whose time has come
and gone. Communications of the ACM, 51(12):76–83.

[43] Wibowo, A. (2015). Problems and available solutions on the stage of Extract, Transform,
and Loading in near real-time data warehousing (a literature study). In 2015 International
Seminar on Intelligent Technology and Its Applications (ISITIA), 345–350.

[44] Zdravevski, E., Lameski, P., Apanowicz, C., & Ślzak, D. (2020). From Big Data to business
analytics: The case study of churn prediction. Applied Soft Computing, 90:106164.


	Introduction
	Theoretical Foundation
	Data Warehouse
	Star Schema
	ETL Process
	Data Streaming
	Join Operators
	Related Works

	Proposed Method
	Search Strategy
	Selection Process
	Pre-Select Papers From Search
	Exclusion Criteria
	Inclusion Criteria
	Selected Papers From Search
	Snowballing and Categorizing


	Results
	Data Warehouse Architecture
	An End-to-End Framework for Building Data Cubes over Trajectory Data Streams (2015)
	Cruncher: Distributed In-Memory Processing for Location-Based Services (2016)
	Data Warehouse Design Approaches from Social Media: Review and Comparison (2017)
	An Adaptive and Real-Time Architecture for Financial Data Integration (2019)
	E-commerce Big Data Computing Platform System Based on Distributed Computing Logistics Information (2019)
	On Construction of a Big Data Warehouse Accessing Platform for Campus Power Usages (2019)
	A Rewrite/Merge Approach for Supporting Real-Time Data Warehousing via Lightweight Data Integration (2020)
	Research and Design on Architecture for Big Data Platform in Power Grid Dispatching and Control System (2023)

	ETL
	Problems and available solutions on the stage of extract, transform, and loading in near real-time data warehousing (a literature study) (2015)
	Integrating Big Data: A Semantic Extract-Transform-Load Framework (2015)
	A big data perspective of current ETL techniques (2016)
	Incremental ETL pipeline scheduling for near real-time data warehouses (2017)
	The challenges of Extract, Transform and Loading (ETL) system implementation for near real-time environment (2017)
	ETL-aware materialized view selection in semantic data stream warehouses (2018)
	DOD-ETL: distributed on-demand ETL for near real-time business intelligence (2019)
	Privacy-enhancing ETL-processes for biomedical data (2019)
	From Big Data to business analytics: The case study of churn prediction (2020)
	Metadata-Driven Industrial-Grade ETL System (2020)
	Distributed real-time ETL architecture for unstructured big data (2022)

	Join
	A Cached-based approach to enrich Stream data with master data (2015)
	Skewed distributions in semi-stream joins: How much can caching help? (2017)
	Optimising Hybridjoin to Process Semi-Stream Data in Near-Real-Time Data Warehousing (2019)
	A memory-optimal many-to-many semi-stream join (2019)
	Optimizing semi-stream Cachejoin for near-realtime data warehousing (2019)
	Big Data Velocity Management–From Stream to Warehouse via High Performance Memory Optimized Index Join (2020)
	An Efficient Data Access Approach With Queue and Stack in Optimized Hybrid Join (2021)

	Other
	A Scalable Real-Time Analytics Pipeline and Storage Architecture for Physiological Monitoring Big Data (2018)
	Challenges and Solutions for Processing Real-Time Big Data Stream: A Systematic Literature Review (2020)
	The stream data warehouse: Page replacement algorithms and quality of service metrics (2023)
	A New Approach Based on ELK Stack for the Analysis and Visualisation of Geo-referenced Sensor Data (2023)

	Overview of Data Insights
	Overall Approaches Used in All Categories
	Specifics of the Most Relevant Studies
	Data Warehouse Architecture
	A rewrite/merge approach for supporting real-time data warehousing via lightweight data integration
	Cruncher: Distributed In-Memory Processing for Location-Based Services
	An end to end framework for building data cubes over trajectory data streams

	ETL
	DOD-ETL: distributed on-demand ETL for near real-time business intelligence
	Distributed real-time ETL architecture for unstructured big data

	Join
	Optimising HYBRIDJOIN to Process Semi-Stream Data in Near-real-time Data Warehousing
	A Cached-based Approach to Enrich Stream Data with Master Data
	Optimizing Semi-Stream CACHEJOIN for Near-Real Time Data Warehousing


	Approaches to Overcome Challenges in DW for Data Streams per Category
	RQ1: How is data modeled in a data warehouse?
	RQ2: How is data ingested into a data warehouse?
	RQ3: How is a data warehouse built and used in the context of data streaming?

	Conclusion
	REFERENCES

