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RESUMO

A pose 6DoF (seis graus de liberdade) de objetos rígidos é fundamental para resolver
várias tarefas na visão computacional, facilitando a interação entre elementos físicos e virtuais.
Recentes avanços em visão computacional, particularmente através de aprendizado profundo
(DL), aumentaram significativamente a precisão das técnicas de estimação de pose. Modelos
de DL são capazes de extrair detalhes intrinsecos da cena, capacitando-os a discernir e se
adaptar a diversos cenários com eficiência. Além disso, as metodologias de DL demonstram
versatilidade excepcional, sendo capazes de assimilar vários tipos de entrada. Ainda, é notável
a capacidade deestes métodos em extrair características de objetos exclusivamente a partir
de dados RGB, ajustando modelos que apresentam desempenho em tempo real em uma var-
iedade de dispositivos. Essa capacidade não só simplifica os requisitos computacionais, mas
também amplia a aplicabilidade desses modelos em configurações do mundo real. No entanto,
algoritmos de DL muitas vezes requerem grandes bases de dados, adaptadas a distribuições
específicas. Adquirir, anotar e manter tais bases não é apenas caro e demorado, mas também
suscetível a imprecisões, falhando em encapsular completamente o domínio de aplicação. Nos-
sos estudos iniciais analisaram o impacto das mudanças de distribuição dos dados na estimativa
de pose 6DoF, revelando a dependência dos modelos aos dados de treinamento e sua suscep-
tibilidade aos desafios do mundo real (ou seja, generalização no conjunto de teste). Variações
raramente encontradas durante o treinamento, como mudanças na aparência do objeto (por
exemplo, tamanho, cor, geometria), condições do ambiente (por exemplo, iluminação, veloci-
dade de movimento, oclusão) e hardware da câmera (ou seja, quando o modelo é treinado
com uma câmera, mas testado com outra), podem afetar drasticamente a precisão do modelo.
Para enfrentar esse desafio, propomos uma pipeline que gera uma variedade diversificada de
sequências sintéticas usando modelos CAD de objetos. Ao randomizar elementos da cena em
cada quadro, mesmo que as condições pareçam incoerentes ou surrealistas, podemos treinar
modelos supervisionados usando dados simulados, reduzindo assim a dependência de dados
reais rotulados e permitindo adaptação a transformações contínuas. Além disso, estendemos
nossa pipeline introduzindo uma nova estratégia baseada em geração sintética randomizada
foto-realista para mitigar variações de domínio na estimativa de pose monocular 6DoF, en-
quanto são preservadas características originais da cena para reduzir a lacuna entre o domínio
real e simulado. Aproveitando uma combinação de técnicas de reconstrução NeRF (Neural
Radiance Fields) e randomização de domínio, nossa abordagem demonstra a viabilidade de



alcançar modelos precisos de estimativa de pose com menor dependência de dados reais. Fi-
nalmente, propomos uma pipeline de estimativa de pose 6DoF sem CAD usando imagens
randomizadas para rastreamento de objetos. Como contribuição adicional, propomos o C3PO,
uma base de dados cross-device organizada para diferentes dispositivos de acordo com difer-
entes desafios da estimativa de pose. O conjunto de dados inclui mais de 100000 imagens RGB
completas com anotações de pose para três objetos impressos em 3D e três câmeras difer-
entes, abordando questões como oclusão, mudanças de iluminação, desfoque de movimento,
variação de cor e variação de escala. Usando o C3PO, podemos avaliar o desempenho do
método diante de diferentes desafios para analisar o impacto dos dados randomizados. Exper-
imentos comparativos com o estado-da-arte em conjuntos de dados publicamente disponíveis,
incluindo linemod, linemod-Occlusion, C3PO e HomebrewedDB, indicam a validade de nossa
abordagem. Destacamos a importância de nossas contribuições enfatizando o impacto da ran-
domização nos desafios associados a variações de domínio, como mudanças na iluminação,
desfoque de movimento e oclusão de objetos.

Palavras-chaves: Estimação de pose. Detecção de objetos. Randomização de domínio.



ABSTRACT

The 6DoF (six-degrees-of-freedom) pose of rigid objects is pivotal in solving various tasks
within computer vision, facilitating seamless interaction between physical and virtual elements.
Recent advancements in vision-based pose estimation, particularly through deep learning (DL),
have significantly enhanced accuracy. DL models are adept at extracting intricate scene de-
tails, empowering them to discern and adapt to diverse scenarios with efficiency. Still, DL
methodologies demonstrate exceptional versatility, capable of assimilating various input types.
Noteworthy is their ability to distill object features exclusively from RGB data, fitting mod-
els that exhibit real-time performance across a spectrum of devices. This capability not only
streamlines computational requirements but also broadens the applicability of such models
in real-world settings. However, DL often requires extensive datasets tailored to specific tar-
get distributions. Acquiring, annotating, and maintaining such datasets is not only costly and
time-consuming but also susceptible to inaccuracies, failing to fully encapsulate the application
domain. Our initial studies analyzed the impact of distribution shifts on 6DoF pose estimation,
revealing models’ reliance on training data and their susceptibility to real-world challenges (i.e.,
generalization on test set). Variations rarely encountered during training, such as changes in
object appearance (e.g., size, color, geometry), environmental conditions (e.g., illumination,
motion speed, occlusion), and camera hardware (i.e., when the model is trained with one
camera but tested with a different one), can drastically affect model accuracy. To address this
challenge, we propose a pipeline that generates a diverse array of synthetic sequences using
CAD models of objects. By randomizing scene elements in each frame, even if conditions ap-
pear incoherent or surrealistic, we can train supervised models using simulated data, thereby
reducing the dependency on labeled real data and enabling adaptation to continuous trans-
formations in the target distribution. Furthermore, we extended our pipeline by introducing a
novel strategy based on a photo-realistic randomized synthetic generation to mitigate target
domain variations within monocular deep 6DoF pose estimation while preserving source fea-
tures to reduce the domain gap. Leveraging a combination of NeRF (Neural Radiance Fields)
reconstruction and domain randomization techniques, our approach demonstrates the feasibil-
ity of achieving accurate pose estimation models with reduced reliance on real data. Finally,
we propose a CAD-free 6DoF pose estimation pipeline using randomized frames for object
tracking, seamlessly integrating object detection and optical flow. As an additional contribu-
tion, we propose C3PO, a cross-device dataset organized for each device according to different



challenges in pose estimation. The dataset includes more than 100000 full RGB images with
pose annotations for three 3D printed objects and three different cameras, addressing issues
such as occlusion, illumination changes, motion blur, color variation, and scale variation. Using
C3PO, we can assess the method’s performance in the face of different isolated challenges to
analyze the impact of randomized data in each variation. Comprehensive experiments against
state-of-the-art methods on publicly available datasets, including linemod, linemod-Occlusion,
C3PO, and HomebrewedDB, indicate the validity of our approach. Emphasizing the impact of
randomization in addressing challenges associated with domain variations, such as changes in
environmental lighting, motion blur, and object occlusion, underscores the significance of our
contributions.

Keywords: Pose estimation. Object detection. Domain randomization.
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1 INTRODUCTION

Estimating the six degrees-of-freedom (6DoF) pose of rigid objects in RGB images has been
a longstanding challenge in computer vision. This task has broad industrial applications, in-
cluding mixed reality (TJADEN et al., 2018), robotics (TREMBLAY et al., 2018; LI et al., 2022), au-
tonomous vehicles (TREMBLAY et al., 2018; CAO et al., 2024), human-computer interaction (WU

et al., 2017), medical applications, smart cities, and others (GUAN et al., 2024). Recently, pose
estimation has seen significant advancements in accuracy due to machine learning (ML) meth-
ods, which leverage data to infer relevant characteristics from the observed domain without
relying solely on hand-crafted features (HOQUE et al., 2021; SUNDERMEYER et al., 2023).

In pose estimation, neural networks, particularly deep learning models, can learn and encode
essential information about objects in a scene, achieving impressive performance by learning
attributes directly from pixels provided by input images (TEKIN; SINHA; FUA, 2018; ZAKHAROV;

SHUGUROV; ILIC, 2019; PENG et al., 2019; PARK; PATTEN; VINCZE, 2019; DI et al., 2021; SU et al.,
2022; XIE; BHATNAGAR; PONS-MOLL, 2023). While these RGB-based models may not always
surpass their RGB-D counterparts (KEHL et al., 2016; TAN; NAVAB; TOMBARI, 2017; TIAN et

al., 2020; NGUYEN et al., 2024; HONG; HUNG; CHEN, 2024; PARK; KIM; SEO, 2024) (which
utilize additional sensor data) in specific scenarios, they offer the advantage of more accessible
training and suitability for deployment on simpler devices. However, a large dataset is necessary
to compensate for additional data, such as depth maps.

Extracting knowledge from the data source allows the model to adapt to variations within
the distribution. Consequently, sufficient real data is essential for optimizing these models,
providing the necessary information to extract relevant features and map task characteristics.
However, obtaining a high-quality pose estimation dataset suitable for training these methods is
non-trivial. Changing the target domain alters the sample distribution, impacting the features
learned from the initial source domain. Annotating a large set of images encompassing all
possibilities of the target domain is cumbersome, costly, and time-consuming. For example, in
pose estimation, we must capture data that includes variations in scene illumination, motion,
sensor noise, and background or foreground information.

Additionally, it is crucial to account for how object characteristics can vary due to view-
point, time of day, location, or interaction with other objects (HINTERSTOISSER et al., 2012;
TEJANI et al., 2018; GARON; LAURENDEAU; LALONDE, 2018; CUNHA et al., 2020a). These fac-
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tors can complicate the annotation process, as well as the setup of the capturing environment,
calibration of cameras, and configuration of illumination and viewpoints, all of which need a
standardized procedure. Moreover, annotations are not guaranteed to be free from inaccura-
cies, which can introduce errors and bias during model training (CUNHA et al., 2022; HODAN

et al., 2018).
Furthermore, the availability of a CAD model introduces another challenge when applying

the model to new domains. Many algorithms rely on 3D CAD data to establish correspondences
between 3D object data and visible pixels in the camera’s image. Obtaining precise 3D data,
especially for large and complex objects, or acquiring the hardware necessary to capture such
data can be difficult. In real-world applications, slight variations in 3D information between
different objects can lead to inaccuracies in pose predictions (CUNHA et al., 2022).

Domain adaptation emerges as an effective strategy to mitigate domain variability. Domain
adaptation methods aim to improve task execution on an unlabeled domain by exploiting rele-
vant information from a labeled source domain (PATEL et al., 2015; CSURKA, 2017; ZAKHAROV

et al., 2022). Techniques such as rendering photorealistic images (DENNINGER et al., 2020; ZA-

KHAROV et al., 2022) or randomizing scene properties (CUNHA et al., 2022; HINTERSTOISSER et

al., 2019) inject additional knowledge into training, thereby reducing reliance on real labeled
images. Within the scope of domain adaptation, domain randomization (DR) is a category of
algorithms designed to extend knowledge from a source domain by creating random simulated
data with few or no labeled samples. The objective of DR is to generate data with the highest
possible variation by altering the scene setup, including changes in objects’ positions, materials,
textures, illumination, and background. This approach ensures that during model deployment,
new real samples are perceived as just another variation (TOBIN et al., 2017; TREMBLAY et al.,
2018). Consequently, the ML model can handle real-world challenges not explicitly labeled or
mapped in the training data.

While synthetic datasets make creating diverse scenes and conditions easier, a gap remains
between simulated and real samples, potentially leading to variations in expected results.
Randomization approaches may also introduce noise, hindering the model’s ability to recognize
objects in real-world scenarios (CUNHA et al., 2020b). Additionally, many methods that rely on
3D CAD information for rendering new images face challenges when CAD data is unavailable,
a disparity known as the reality gap.

In a preliminary study, we analyzed the impact of data variability on 6DoF pose estima-
tion. Specifically, we investigated how changes in camera sensors and environments affect
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the model’s predictions. Based on our findings, we propose different training strategies that
combine real and randomized synthetic images to reduce the number of real images required
during training (CUNHA et al., 2020b; CUNHA et al., 2022). This approach has also enhanced
the model’s performance when encountering previously unseen challenges. However, it fails to
map certain aspects in variations that cannot be easily mapped in the synthetic domain (e.g.,
the interaction of lighting and the object).

Recently, Neural Radiance Fields (NeRFs) (MILDENHALL et al., 2021; VERBIN et al., 2022)
have offered a photorealistic solution for novel view rendering. These models use a few real
images to encode properties in a neural network, reducing the impact of the domain gap
caused by inaccurate rendering parameters. By implicitly recovering 3D scene information
from a few real images with known poses, NeRFs eliminate the need for additional 3D data,
such as CAD models. However, their inability to generalize to new scene properties, common
in 6DoF pose estimation tasks, highlights the need to combine the generalization capacity of
domain randomization strategies with NeRF rendering. This hybrid approach aims to bridge
the domain gap and enhance model performance by addressing CAD-free randomization. Thus,
we incorporate domain randomization into NeRF image generation and use this data to train
a pose estimation model. The combination of NeRF and DR enables the generation of realistic
frames and the training of models in various scenarios without relying on CAD models.

In this context, the main objective of this research is to develop a domain randomization
approach enhanced by algorithms capable of learning real-world characteristics. This method
aims to simplify the distribution available for training, transforming it into a more generalizable
scenario and targeting coherent guided randomization. Consequently, we intend to train basic
models using a randomized training strategy in a self-supervised manner, enabling continuous
identification, creation, and adaptation of patterns from domain variations. Additionally, the
proposed method addresses experiments in cross-device scenarios, evaluating data variability
from different devices. To further reduce the domain gap caused by rendered synthetic frames,
we combine our randomization approach with NeRFs. This allows us to leverage the features
learned by NeRF, enhancing model representation through the randomization approach. This
hybrid approach aims to bridge the domain gap and improve model performance based on
CAD-free randomization. By incorporating randomization into NeRF image generation, we
can train a pose estimation model, enabling the generation of realistic frames and training
models in various scenarios.
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1.1 OBJECTIVES

This research investigates the challenges posed by domain variation in the context of 6DoF
pose estimation, which affect the effective use of RGB monocular deep learning-based models
in real-world scenarios. The specific objectives of this research are outlined below.

• Investigate challenges in optimizing models for different distributions in the context of
6DoF object pose estimation, including addressing variability in the target’s appearance,
object occlusion, changes in environmental illumination, and motion blur.

• Explore the impact of camera variations on pose estimation models’ predictions and
evaluate how to train these models to handle such variations.

• Propose new learning strategies to develop solutions that can train models without the
target object or with minimal data, enabling adaptation to domain variations.

• Evaluate the proposed solutions through qualitative and quantitative experiments, using
appropriate metrics to validate the results in the specified scenarios.

As a contribution to this work, the following points can be highlighted:

• We introduce C3PO, a cross-device 3D printed object dataset for 6DoF pose estimation.
C3PO includes images captured from various devices and is structured around multiple
challenges that account for environmental settings and object appearance variations.

• A domain randomization approach adapted to the context of 6DoF pose estimation,
considering the unique features of cameras and objects that define scene variations.

• A NeRF-based domain randomization (Rand-NeRF) pipeline for synthesizing images in
6DoF object pose estimation, eliminating the need for CAD models. To the best of our
knowledge, this is the first method that integrates domain randomization and neural
representation without CAD models, bridging the domain gap and enhancing model
performance through CAD-free randomization.

• A Comprehensive evaluation of our approaches using publicly available datasets to assess
model robustness and identify primary limitations. Our results demonstrate comparability
to state-of-the-art benchmarks in simple scenarios and surpass performance in challeng-
ing scenarios involving changes in environmental light, motion blur, and occlusion.
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1.2 WORK STRUCTURE

Chapter 2 discusses related works. Chapter 3 details the process of acquiring, processing,
annotating, and validating the dataset created for evaluating our use case. In Chapter 4, a
thorough analysis of the dataset distribution highlights the differences among each sequence
created. Chapter 5 outlines the baseline method for 6DoF pose estimation, the training config-
uration, and the metrics used to evaluate pose accuracy. Additionally, preliminary experiments
demonstrate the technical performance of the generated dataset. Chapter 6 and Chapter 7
describe the randomized data generator and the training strategies applied to integrate ren-
dered randomized frames with real frames. These chapters assess how training with different
data distributions impacts model accuracy. In Chapter 8, we present evidence of the impact
of each variation by replicating the preliminary experiments from Chapter 5. We also discuss
each challenge and strategy, describing which combination of data works best for each case
evaluated. Chapter 9 outlines our improvements on the proposed method by incorporating
NeRFs into the randomization pipeline. Chapter 10 demonstrates the method’s performance
over several experiments compared to the state-of-the-art. Finally, Chapter 11 concludes our
work. A general overview of the proposed approach can be seen in Figure 1.2

Figure 1 – Overview of the approach proposed in this paper. P1 refers to data acquisition and processing
(Chapter 3 and Chapter 4), P2 and P2.2 refers to domain randomization generation and the
detector training using real or synthetic data (Chapters 5, 6, and 8) and P3.3 refers to the pipeline
extension using NeRF to represent the object’s geometry (Chapters 9 and 10).

Source: CUNHA et al. (2024)
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2 RELATED WORKS

2.1 6DOF POSE ESTIMATION

2.1.1 Classical pose estimation

Recently, many robust markerless 6DoF pose estimation approaches have been proposed.
Out of these, RGB-D techniques have received special attention (TAN; NAVAB; TOMBARI,
2017; TIAN et al., 2020; NGUYEN et al., 2024; HONG; HUNG; CHEN, 2024; PARK; KIM; SEO,
2024). These works obtain a high accuracy due to the RGB input frame and the depth maps.
Nevertheless, those depth maps suffer from limited view distance and struggle with illumination
such as sunlight. RGB-D techniques are prone to fail in those cases, as they are left with
just the RGB data. Considering how much less common and more expensive RGB-D sensors
(compared to standard RGB), multiple works have also attempted to solve this issue using
purely RGB (TJADEN et al., 2018; TEKIN; SINHA; FUA, 2018; DI et al., 2021; SU et al., 2022; XIE;

BHATNAGAR; PONS-MOLL, 2023).
Several approaches have sought to develop methods using only RGB information (SONG;

SONG; HUANG, 2020; VALENÇA et al., 2021; LIU et al., 2022; HAI et al., 2023). Most of these
models are more complex and must deal with less information in learning. The lack of depth
information from the sensors used in RGB techniques increases the need for intermediate steps
to estimate the depth values for each pixel, sometimes deeper models are used to increase the
level of representation, and these models are less computationally efficient.

Traditionally, techniques have used image processing and geometric concepts to tackle
this problem. Region-based works (WANG et al., 2019; TJADEN et al., 2018) evaluate the color
distribution in image regions. Edge-based works attempt to match the CAD model’s edges
to the RGB input’s gradients (TRINH et al., 2018). Feature-based use keypoints and descrip-
tors (HU et al., 2019; HE et al., 2020). Other techniques attempt to use traditional machine
learning algorithms to interpret extracted features and optimize a hypothesis (SAHIN; KIM,
2018; DOUMANOGLOU et al., 2016). Finally, there are hybrid approaches that merge the afore-
mentioned geometric concepts with machine learning (TAN; NAVAB; TOMBARI, 2017; TEJANI

et al., 2018; TIAN et al., 2020).
Based on the main characteristics of geometric and machine learning methods, Tan et al.

propose a hybrid approach (TAN; NAVAB; TOMBARI, 2017), which combines the main features
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of the optimization and learning processes to perform tracking in 6DOF. The model performs
temporal tracking using a Random Forest with manually defined characteristics and optimiza-
tion. The learning algorithm is capable of dealing with different scenarios and challenges due
to its nature to generalize information from the training data, while the optimization process
is less sensitive to cases of local minima, converging the model for better accuracy and causing
noises like jitter. Using RGBD information, the algorithm matches information extracted from
the object’s contours (RGB) and the object’s internal region (depth). The extracted informa-
tion is passed to the Random Forest algorithm, which consists of a set of simple classifications
that, when grouped, investigate the transformation of the vectors that update the object’s
pose. Optimization is used to minimize the energy function that records the correspondence
between the projections of the points obtained for the object model and the scene, avoiding
prediction errors that can occur in transformation queries. The model is capable of handling
occlusion issues, polluted backgrounds, and low lighting conditions. However, the method is
sensitive to sunlight, fast movement, and depends on the distance from the camera to the
tracked object. Another work that is based on previously defined characteristics and combines
optimization and learning methods is proposed in (TEJANI et al., 2018). The characteristics used
are obtained through the adaptation of methods for pattern matching. The generated descrip-
tors are integrated into the Random Forest algorithm, which is trained on the RGBD data
distribution. Training can be performed with synthetic images of 3D models of objects. During
pose inference, the process is iteratively refined, being designed to deal with high occlusion
and polluted background scenarios, generating detections for multiple objects simultaneously.

Kehl et al. propose the combination of deep learning and voting to perform detection in
6DOF from RGBD images (KEHL et al., 2016). The work follows the voting paradigm based on
local features, as input images are divided into patches containing color and depth information.
The architecture is trained to receive patches and return the same information as output. The
objective is to generate a function that produces features extracted from the intermediate
layers of the architecture that are dimensionally reduced and stored in a feature dictionary.
The set of stored information is associated with each known pose annotation for the training
data.Inference is performed by using K-Nearest Neighbor (KNN) to each region of the image,
selecting a pose with the highest number of votes associated with the characteristics found in
the input image. Training this method avoids the use of data augmentation and can be carried
out using synthetic data. However, detection failures may occur when used for real data due
to the risk of overfitting the model to synthetic data.
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2.1.2 Deep 6DoF pose estimation

In recent years, deep learning has become popular in pose estimation. Those can learn
about the object of interest by being trained with images without needing pre-defined features
or clues like traditional approaches do. This characteristic makes deep learning especially
suitable for performing pose estimation in scenarios with little available information, such
as plain RGB. Though it has been shown to work for real-time object tracking (with temporal
consistency) (GARON; LALONDE, 2017; LI et al., 2018; WEN et al., 2023), most DL works attempt
to perform object detection on a frame by frame basis (KEHL et al., 2017; TEKIN; SINHA; FUA,
2018; PARK; PATTEN; VINCZE, 2019; SONG; SONG; HUANG, 2020; DI et al., 2021; SU et al., 2022;
LI et al., 2023).

Garon et al., in their work (Deep 6-DoF) (GARON; LALONDE, 2017) use a CNN to perform
pose estimation, using multiples inputs from the RGB sensor. The algorithm can track objects
using two consecutive frames from the target video to estimate the relative transformation,
training the network with synthetic images. The Deep 6-DoF uses a simple architecture, so it
can be very efficient, allowing its usage for real-time tracking. However, the model is sensitive
to tracking loss, failing to recover when the detected object is lost, propagating the estimation
error throughout the rest of the execution. The model is trained to handle cases of severe
occlusion and is the first CNN-based model using the temporal information of consecutive
frames. However, it does not get better accuracy scores and can only track one object per
model.

Newer deep learning approaches have been using more complex, deeper pipelines to perform
both pose prediction and refinement directly (LI et al., 2018; ZAKHAROV; SHUGUROV; ILIC, 2019;
DI et al., 2021). As an example, the DeepIM proposed by Li et al. (LI et al., 2018) uses the
result of PoseCNN (XIANG et al., 2017) for the development of a new approach to 6-DoF pose
refinement. Based on the PoseCNN estimation, DeepIM performs an iterative process to refine
the pose using the FlowNet architecture (DOSOVITSKIY et al., 2015). The technique iteratively
adjusts the pose building a SE(3) representation to predict the relative transformation between
the object observed in the image and the object rendered with the estimated pose. Thus, it
can render a new image by applying the transformation computed. The process ends when
the pose on the input image matches the pose estimated on the rendered image. This process
makes the model accurate, leaving a very low execution time and unsuitable for real-time
applications.
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On the other hand, some approaches simplify the problem by attempting to detect image
keypoints (HE et al., 2020) or bounding box corners (TEKIN; SINHA; FUA, 2018; SONG; SONG;

HUANG, 2020) and only then perform minimization calculations in a more traditional way,
such as by solving least-squares problems or similar algorithms. The simplified architectures of
such approaches make training the model much easier while achieving high accuracy values.
However, they still suffer from a major drawback: the need for large amounts of annotated
data. Deep learning 6DoF works can detect synthetic objects when trained with synthetic data,
but most still require real data to detect real objects.

2.2 6DOF DATASETS AND BENCHMARKS

Over the years, several datasets have been proposed to assist in the investigation and eval-
uation of methods for pose estimation (HODAN et al., 2018; YUAN; HOOGENKAMP; VELTKAMP,
2021). Most of them provide color (RGB) and depth information, captured by RGB-D cam-
eras such as the Asus Xtion Pro Live, Primensense Carmine, and Microsoft Kinect. Also, some
datasets already provide a synthetic set to train deep learning and model-based approaches,
rendering images through different views of the 3D object on a black background. The synthetic
data are relevant to evaluating strategies that can be optimized by the geometric information
in the synthetic data, preserving the real samples to be used only in the test cases.

Each dataset evaluates a specific problem, focusing on a particular set of challenges for
pose estimation. Likewise, the organization of strategies for labeling, validating information,
and structuring the samples are distinct for each dataset. Most datasets can assess occlusion,
illumination changes, cluttered environment, and motion blur challenges. However, no dataset
provides structured data for each challenge isolated on the same problem.

LINEMOD (HINTERSTOISSER et al., 2012)1 is a very popular dataset in the pose estimation
domain. The dataset is composed of 11 non-textured objects with different geometric charac-
teristics. The images come from the Kinect sensor, properly calibrated to gather the object’s
relative pose to the camera. The CAD model of each object is also available. The LINEMOD
deals with light changes and motion blur, generating scenes polluted by other distracting
objects in a fixed environment. In its extension, named Linemod-occluded, the dataset also
addresses the problem of partial occlusion between the objects. Despite its extensive use, the
linemod has an average of 1000 labeled images for each object, requiring data processing and
1 http://campar.in.tum.de/Main/StefanHinterstoisser
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partitioning techniques to train deep learning techniques. Also, the dataset provides a small
set of synthetic images that can help train specific techniques.

Garon et al. (GARON; LALONDE, 2017)2 provide examples for evaluating tracking models
in cases of partial occlusion. The dataset contains four objects recorded in scenes where each
object suffers a different degree of occlusion. The authors also provide the functions used to
generate synthetic images for training, facilitating the creation of new virtual images with the
same process used in the paper.

In the industry context, T-LESS (HODAN et al., 2017)3, ITODD (DROST et al., 2017)4,
HomebrewedDB (KASKMAN et al., 2019)5, and PROFACTOR3D (AKKALADEVI et al., 2016)
bring different objects with aspects mapped to simulate industrial use cases. The scenes simu-
late an environment with well-controlled lighting, while objects are characterized by pieces of
generic and similar shapes with a high level of symmetry. In contrast, Toyota light and TUD
light6 focus on the illumination aspect, providing scenes with variations of the ambient with
8 and 5 different lighting settings, respectively. TUD light also addresses the motion problem
with non-stationary objects. Finally, the large scale datasets HOPE7, Rutgers APC (RENNIE

et al., 2016)8, and YCB (XIANG et al., 2017)9 were proposed for the robotic manipulation sce-
nario. The datasets contain different warehouse objects in cluttered environments and changes
in ambient light. Some objects also have similar characteristics (such as product boxes), are
symmetrical in many axes, and are differentiated only by their color or texture.

Recently, the BOP Benchmark (HODAN et al., 2018) succeeded in unifying the metrics used
and the datasets organization, facilitating the evaluation of new pose estimation approaches.
Also, the BOP authors propose an online rating system10 to evaluate new techniques and keep
up-to-date the main state-of-the-art results on the datasets contained in the benchmark (HO-

DAŇ et al., 2020). Nevertheless, no dataset with real information addresses environmental and
device variations for the same object, aspects relevant to industry, and end-user applications.
Still, it is costly to replicate the process used in each dataset (data capture, annotation, and
synthetic data generation) to generate information for new use cases.
2 http://vision.gel.ulaval.ca/ jflalonde/publications/projects/deepTracking/index.html
3 http://cmp.felk.cvut.cz/t-less/
4 https://www.mvtec.com/company/research/datasets/mvtec-itodd/
5 http://campar.in.tum.de/personal/ilic/homebreweddb/index.html
6 http://cmp.felk.cvut.cz/sixd/challenge_2017/
7 https://github.com/swtyree/hope-dataset
8 https://robotics.cs.rutgers.edu/pracsys/rutgers-apc-rgb-d-dataset/
9 https://rse-lab.cs.washington.edu/projects/posecnn/
10 https://bop.felk.cvut.cz/home/
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2.3 DOMAIN ADAPTATION

Obtaining and labeling relevant data from a specific problem is essential for training learn-
ing models; many deep learning approaches need many examples for training. Most machine
learning techniques rely on data provided in training to perform prediction of new datasets,
assuming a similar distribution between the source domain used for training and a target do-
main related to the real test case (CSURKA, 2017; ALGHONAIM; JOHNS, 2021). As seen in the
previous section, several large-scale datasets for object detection are available publicly con-
taining several types of objects and scenarios for training (CALLI et al., 2015; EVERINGHAM et

al., 2012; DENG et al., 2009). However, it is often necessary to generate specific datasets when
dealing with a particular problem or domain not mapped on the data available.

Some approaches use transfer learning to adapt the knowledge obtained from a certain
domain to a similar one. A small set of data (real or simulated) from the new domain can
adjust the learned information of a model previously trained on a large dataset (PAN; YANG,
2009; HINTERSTOISSER et al., 2018). Transfer-learning is useful when the domain of interest is
well known, obtaining data variations that map the test scenarios.

Still, domain adaptation approaches turn up as an alternative to mitigate the domain
variability. It is similar to transfer learning approaches, aiming to improve task execution on
an unlabeled domain by exploiting and augmenting relevant information from a labeled source
domain. Some works propose methods to create a model with unsupervised training that can
perform predictions for unseen variations in the same task or quickly adapt their parameters
to infer solutions for different distributions (PATEL et al., 2015).

Recent works discuss the importance of knowing the real camera specifications and how
they can impact simulating data to reproduce and adapt the real domain (LIU et al., 2020;
OUYANG et al., 2021; ZAKHAROV et al., 2022). In this way, Mandl et al. (MANDL et al., 2021)
propose an approach for coherent rendering capable of jointly simulating all major components
of an arbitrary camera using a neural network. The method can learn from a generic set of
images the camera’s properties, simulating the lens effect, sensors noises and colors, and the
ISP characteristics. By doing this, the authors demonstrate the improvements in rendering
virtual scenes simulating fine details of real images without major loss.

In contrast, Volpi et al. (VOLPI; LARLUS; ROGEZ, 2021) shows the importance of addressing
domain shifts over time. Data distribution can vary according to changes related to the envi-
ronment (e.g., illumination, noise, occlusion) or the target (e.g., shape, color, appearance). So,
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the model must learn to deal with such variations without forgetting earlier information. To
achieve this, the authors propose a meta-learning strategy simulating auxiliary meta-domains
generated through augmented images to avoid model catastrophic forgetting when introduced
to new visual domains.

Rozanstev et al. (ROZANTSEV; LEPETIT; FUA, 2015) propose an algorithm able to learn
the rendering parameters to simulate the environment behavior, reducing the gap between the
simulated and real domain. The learned parameters can create new training images of the
object of interest in arbitrary 3D poses. The approach effectively simulates the blurring and
motion effects for the object boundaries. Also, it can capture the image’s noise and the features
of the object’s material. Likewise, Rozanstev et al. (ROZANTSEV; SALZMANN; FUA, 2018) extend
the concept of adaptation by introducing a two-stream deep architecture. The networks are
trained jointly in the two domains (i.e., synthetic and real), and their weights are related but
distinct. The algorithm applies a regularization strategy to prevent the weights from being too
far from each other. Zakharov et al. (ZAKHAROV et al., 2022) enhance this concept by utilizing
photorealistic rendering generated by a neural network to simulate scene variations. Their
approach involves training models to understand the physically based properties of objects.
These models are then used to create a sampler that randomizes the values predicted into
the rendering engine. By employing a CAD model, the system predicts material properties and
their variations for more accurate rendering.

Furthermore, domain randomization (DR) is an alternative to extend knowledge from a
source domain, creating simulated data when few or no labeled samples are available to ex-
tract knowledge. The objective of DR is to make synthetic data generate the most variation
as possible from the source domain, considering new samples as just another simulated varia-
tion (TOBIN et al., 2017; ALGHONAIM; JOHNS, 2021; TREMBLAY et al., 2018; ZAKHAROV et al.,
2022; CUNHA et al., 2022). So, the ML model can handle real-world challenges that are not
labeled or mapped in the solution. Some techniques investigate the use of DR in the context
of object detection and pose estimation, mixing simulated information with real data. Thus,
DR diminishes the concern with replicating the real world’s exact characteristics.

2.4 SYNTHETIC DATA GENERATION

Capturing and annotating real datasets are time-consuming and prone to constant error at
multiple stages. This fact is especially true for 6DoF, as the ground truth is hard to capture,
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given the higher complexity of the information. Nevertheless, many deep learning approaches
still require large amounts of real data to work properly due to the reality gap between virtual
and real images. The reality gap makes it hard for the network to learn about the real object
by seeing only a virtual version. Tobin et al. (TOBIN et al., 2017) explored the concept of
domain randomization of synthetic frames to tackle the reality gap. Using it, they trained a
neural network to localize simple geometric shapes on top of a table for robotic manipulation.
This work also provided a robotics-oriented localization training dataset with high variability
to the neural network that can generalize to real-world data. The dataset generator was built
using the MuJoCo Physics Engine (TODOROV; EREZ; TASSA, 2012) and generates images by
randomizing the positions and textures of the object of interest and surrounding objects, as
well as randomizing illumination, camera position, distractor configuration, and the type and
amount of noise present on the images. Although performing a task simpler than 6DoF pose
estimation, this work is relevant as the system can achieve high accuracy (1.5 cm) without
pre-training on real images.

Tremblay et al. (TREMBLAY et al., 2018), from NVIDIA, also used DR to present a system
for training deep neural networks for 2D car detection on outdoor scenarios. They render scenes
using Unreal Engine (UE4) by randomly changing the objects’ number, type, texture, camera
translation and rotation, illumination, background, and floor textures. Also, it includes a set of
distractors, either contextual distractors (objects similar to possible real scene elements, posi-
tioned randomly but coherently) or flying distractors (geometric shapes with random texture,
size, and position). Their network presented better results when using the synthetic DR dataset
mixed with real images. Other alternatives tested were using only real images and using a mix
of real and realistic (non-randomized) synthetic data from the VKITTI dataset (GAIDON et al.,
2016). Even though this work does not perform 3D detection or 6DoF estimation, it is a step
forward in this direction, as the complexity of the objects and scenes is very significant.

NVIDIA also published their Deep learning Dataset Synthesizer (NDDS) (TO et al., 2018),
a UE4 plugin that can generate synthetic data in real-time by randomizing lights, objects,
cameras, poses, textures, and distractors. The plugin can export images, segmentation, depth
maps, object pose annotations, bounding boxes, keypoints, and custom stencils. The Falling
Things dataset (FAT) (TREMBLAY; TO; BIRCHFIELD, 2018) uses NDDS and focuses on the
context of 6DoF object detection. Each photorealistic image consists of a stereo frame pair
with corresponding depth images, 3D poses, bounding boxes, and the segmentation image of
each scene’s objects. The objects were extracted from the YCB dataset (CALLI et al., 2015)
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and used in 3 virtual environments within UE4 in random positions that change after the
objects fall into the scenes. However, it does not perform DR.

The Synthetic Image Dataset for 3D Object Pose Recognition with Distractors (SIDOD)
dataset (JALAL et al., 2019) is similar to the FAT dataset but with the presence of flying
distractors (see (TREMBLAY et al., 2018)) and domain randomization. Lee et al. (LEE et al.,
2019) extended NDDS to handle robotic joints and export the joint information to the network
training. Still, all these NDDS datasets are synthetic, without similar real frames to compare
against, so they are best suited for fully synthetic approaches.

Hinterstoisser et al. (HINTERSTOISSER et al., 2019) proposed a strategy that generates
cluttered synthetic frames and trains a network to perform 2D detection of complex objects.
Though the scenes are cluttered, the technique guarantees that the objects are presented
equally to the neural network. The model trained with only synthetic data outperformed the
model trained with only real data. The authors also investigated individual aspects of the image
generation pipeline, which revealed that blur and illumination color are the scene aspects that
influence results the most.

In the 6DoF context, Tremblay et al. (TREMBLAY et al., 2018) proposed a DOPE deep
learning approach that infers the 6DoF poses of known objects from a single RGB image
without requiring refinement. The system uses a combination of photorealistic images from the
FAT dataset (TREMBLAY; TO; BIRCHFIELD, 2018) and non-photorealistic domain randomized
frames with varying types of flying distractors (cones, pyramids, spheres, cylinders, partial
toroids, arrows), randomized illumination, occlusion, and distractor and background textures.
Their DOPE approach had comparable performance to a state-of-the-art network trained using
a mix of real and synthetic data and was the first deep 6DoF work to achieve such precision
levels with only synthetic data. Our work aims to deepen our understanding of how these data
distributions influence a network. In particular, investigate how DR alone can make networks
easier to train and more robust to challenges. The motivation is that photorealistic frames
(such as those from the FAT dataset) are hard to generate and can be comparable in difficulty
and time consumption to recording and annotating real data, depending on the challenge.
Thus, it is important to understand how the simpler way (domain randomization) alone can
impact results.
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2.5 NEURAL RENDERING

Recently, numerous approaches have emerged within the scope of neural network render-
ing (MANDL et al., 2021; ZAKHAROV et al., 2022; LI et al., 2023; YEN-CHEN et al., 2021; GE et al.,
2022). These approaches utilize models to predict object or scene geometry, either from a set
of real images or CAD models, enabling the generation of synthetic labeled images. Within this
landscape, various strategies for image generation have been explored, including the utilization
of generative networks (KIM et al., 2024; HOU et al., 2024; LIU; LUO; LIU, 2021), differentiable
functions (LIN; WANG; LUCEY, 2020; ZAKHAROV et al., 2020), and neural radiance fields (LI et

al., 2023; BARRON et al., 2022; MARTIN-BRUALLA et al., 2021; BIAN et al., 2023; VERBIN et al.,
2022).

NeRF (Neural Radiance Fields) (MILDENHALL et al., 2021) was initially proposed for syn-
thesizing novel viewpoints of entire scenes. The model employs a neural network to encode a
5D input vector containing the spatial location and viewing direction of a point, returning a
view-dependent volume density and emitted radiance at that location. By querying these co-
ordinates along camera rays, classical volume rendering can project the output into an image.
Since the process is fully differentiable, it only requires a set of images with known poses for
training. This model has shown impressive results in rendering photorealistic novel views of
complex scenes and has become seminal in the field of neural rendering for view synthesis.

However, NeRF has limitations. Once the features are learned, the scene properties can-
not be changed. Additionally, the model struggles to replicate certain scene aspects, such as
reflections in materials. Another significant drawback is that querying the rays is a demanding
process, requiring substantial time and resources for training and rendering images. Over the
years, numerous works have attempted to improve these characteristics, such as optimizing
inference through region sampling (YEN-CHEN et al., 2021; PERAZZO et al., 2023; SHAFIEI et al.,
2021; LIU et al., 2020; DENG et al., 2022; CHEN et al., 2022), enhancing reconstruction qual-
ity (BOSS et al., 2021; SRINIVASAN et al., 2021; WIZADWONGSA et al., 2021; ZHANG et al., 2021b),
or improving its representation (MARTIN-BRUALLA et al., 2021; VERBIN et al., 2022; BARRON et

al., 2022; BIAN et al., 2023; ZHANG et al., 2021a).
As the representation capacity of NeRF improved, it began to be applied in various com-

puter vision contexts (GAO et al., 2022; CAO et al., 2024; LI et al., 2022; CLEAC’H et al., 2023;
XU et al., 2024). Recently, iNeRF (YEN-CHEN et al., 2021) proposed inverting the Neural Ra-
diance Field to perform pose estimation. By leveraging NeRF’s differentiable characteristics,
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iNeRF optimizes an unknown pose by iteratively comparing the resulting image with the target
image, attempting to minimize the photometric difference between pixels. NerfPose (LI et al.,
2023) extended this idea by using NeRF’s implicit representation in place of CAD models in
the pose estimation pipeline. This allows for learning object pose estimation from a few anno-
tated images with known poses without relying on CAD structures. With the advancements in
NeRFs, several works were being proposed on the scope of pose estimation (WEN et al., 2023;
SU et al., 2021; LIN et al., 2021; BIAN et al., 2023). In this work, we aim to evaluate a novel
strategy that utilizes photorealistic randomized synthetic generation to mitigate target domain
variations in monocular deep 6DoF pose estimation while preserving source features to reduce
the domain gap. By combining NeRF reconstruction with domain randomization techniques,
we hypothesize that it is possible to achieve accurate pose estimation models with a reduced
reliance on real data and without prior information from CAD models.
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3 DATA ACQUISITION AND ANNOTATION

As previously mentioned, many existing datasets focus on specific problems. However, only
some offer examples that address distinct challenges for different objects, making evaluating
techniques in varied scenarios difficult. No public dataset currently addresses variations in envi-
ronment or devices for the same object (real or synthetic), which are crucial issues for end-user
applications. To address this gap, we created a new dataset, C3PO (cross-device dataset of 3d
printed objects), specifically for 3D printed objects, structured to present different challenges
in each sequence (CUNHA et al., 2022). Each scene in the dataset includes specific variations in
environmental characteristics (such as lighting, occlusion, and fast motion) and object char-
acteristics (including color, geometry, and scale). We recorded all videos using three different
cameras, each with distinct properties. The videos taken with different cameras maintain con-
sistent scene parameters (i.e., the same configuration for the environment and object), allowing
for the assessment of how a model trained with one camera performs when tested with an-
other under the same conditions. In total, the dataset comprises 108, 330 annotated frames
(real and synthetic). The dataset, including images, labels, and objects, is publicly available on
GitHub.1. The following sections describe the environment configuration and frame generation
in detail.

3.1 CAMERA CALIBRATION

We used different back-facing mobile cameras, namely, an Apple iPhone X and a Samsung
Galaxy S8. Additionally, we included a DSLR Canon EOS 80D with an 18mm lens. In the
following sections, we will refer to these cameras as X, S8, and EOS, respectively. The
sequences were recorded at a resolution of 1920 × 1080 and a frame rate of 60 FPS. Camera
parameters were recovered using a script for camera calibration available through OpenCV 2.
For each camera, we obtained the focal length (𝑓𝑥, 𝑓𝑦) and principal points (𝑐𝑥, 𝑐𝑦). These
parameters collectively constitute the camera’s intrinsic matrix (𝐾), as defined by the matrix
in Equation 3.1. Additionally, we recover the camera’s distortion coefficient vector (𝑑) defined
by the radial (𝑘1, 𝑘2, 𝑘3) and tangential (𝑝1, 𝑝2) lens distortions 3.2.
1 https://github.com/o-kbc/eC3PO
2 https://github.com/lvrma/CaLib
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𝐾 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (3.1)

𝑑 = [𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2] (3.2)

It is important to note that we used the default setup for the EOS camera, given its
wide range of configurable parameters, which are not customizable on smartphones (e.g., ISO,
shutter speed, aperture size). To address the general case where the model needs to handle
various conditions, we maintained the automatic settings available on each device. Despite
ensuring consistent viewpoints and locations, using the EOS introduces an additional challenge
due to the variability in image processing during acquisition. Figure 3.1 shows examples of
images taken by each camera. The images were captured from the same position and at the
same time, using the default camera setup. A quick visual analysis reveals how the field of
view and color representation can vary between sensors due to differences in digitalization and
internal processing pipelines. These variations can significantly affect how the RGB data is
represented.

Figure 2 – Images taken for each camera used. From left to right: Galaxy s8, IPhone X, EOS 80D.

Source: CUNHA et al. (2024)

3.2 POSE-MARKERFIELD

Our real data acquisition tool, called pose-markerfield, was developed in C++ using
OpenCV and OpenGL for frame annotation. Unlike state-of-the-art approaches, our tool an-
notates frames using only RGB information. This capability allows us to use a wide variety
of cameras, including different mobile cameras, personal webcams, or monitoring cameras, to
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generate data and validate techniques across diverse real-world applications. Additionally, set-
ting up scenes and generating annotated frames is straightforward to replicate on any standard
device.

For each object, we create a field of ARuCo markers (GARRIDO-JURADO et al., 2014). At
the center of each marker field, there is a designated area that defines the location of the
real object during recording. The total size of this area is based on the object’s dimensions
obtained from its CAD model. Since we cannot directly recover the depth, the CAD model’s
pivot is repositioned before the annotation process so that its z-axis value aligns with the
plane of the marker field. This pivot adjustment simplifies the annotation process, requiring
only the x and y axes to be adjusted to find the initial pose, which may vary due to different
camera offsets. By knowing the initial camera position (relative to the marker field) and its
calibration parameters (e.g., 𝐾 and 𝑑), we can adjust the annotation to recover the relative
camera-object rotation (𝑟) and translation (𝑡) vectors for each frame, defined in Equation 3.3.
Figure 3.2 shows an example of the marker field used and an object placed on it for data
acquisition.

𝑟 = [𝑟𝑥, 𝑟𝑦, 𝑟𝑧]; 𝑡 = [𝑡𝑥, 𝑡𝑦, 𝑡𝑧] (3.3)

An initial offset is applied to the object’s position to align with the camera’s principal point
shift. Similarly, the object’s scale is adjusted to match its real dimensions, ensuring the correct
projection of the CAD model. All values for position (𝑋, 𝑌, 𝑍), rotation (𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, 𝑦𝑎𝑤),
and scale (𝑜𝑠) are parameterized and corrected during the annotation process. The user must
validate the initial pose before beginning the annotation process. Once the initial pose is
confirmed, the system iteratively processes all frames, capturing the relative movement between
the camera and the marker field. Given the known real dimensions of the object, the size of the
markers, and the object’s position within the marker field, we can calculate the camera-object
relative position based on the estimated position of the marker field.

By projecting the CAD model using the 6DoF pose, we can segment the pixels correspond-
ing to the object, removing the background and creating a binary segmentation mask. The
segmented frame is then combined with a random background from the VOC dataset (EV-

ERINGHAM et al., 2012), given the constant marker field beneath the object. Changing the
background is necessary to avoid overfitting, as we do not want the model to learn the mark-
ers as part of the object. The projected 3D model’s depth map is also stored to supplement
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Figure 3 – Example of the markerfield created for the data acquisition. The object is placed on the central area
marked on the field, and the CAD model pivot is adjusted to the same position of the markerfield
origin (Z=0).

Source: CUNHA et al. (2024)

the lack of RGB-D data. Using the CAD’s 3D structure, we can create a pseudo-depth map
of the object. While this does not account for other objects in the scene, it is helpful for
the randomization generation. Finally, using the 6DoF pose and CAD data, the eight corners
of the object’s 3D bounding box can be projected onto the frame according to the relation
specified in equation 3.4, where 𝑃 𝑇

2𝑑 = [𝑥, 𝑦, 𝑤], 𝑃 𝑇
3𝑑 = [𝑋, 𝑌, 𝑍, 𝑊 ], and 𝑅 is defined by the

rotation matrix corresponding to the rotation vector 𝑟. This initial pose and points are stored
along with the segmentation mask, depth map, and new background. Figure 3.2 illustrates the
results obtained from the pose-markerfield process.

𝑃2𝑑 = 𝐾[𝑅|𝑡]𝑃3𝑑 (3.4)
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Figure 4 – Result obtained in the annotation using the pose-markerfield. From left to right: original frame
with the estimated bounding box corners; segmentation mask obtained through the CAD model
projection; Filtered image with no background; Result of the frame augmentation merging a random
background with the filtered image.

Source: CUNHA et al. (2024)

3.3 ENVIRONMENT CONFIGURATION AND SCENES GENERATION

The cameras were placed on a stabilizer during recording to prevent unwanted jitter. Each
sequence was recorded with the camera pointed toward the object at a fixed distance, capturing
viewpoints in a half-sphere pattern around the object and the surface plane it stood on. The
recorded sequences encompass a wide range of viewpoints, camera rotations, and challenges
such as motion blur and varying illumination conditions, including a moving point light in a
dark room, indirect sunlight, and diverse indoor lighting patterns.

Figure 5 – Printed object used in this work. In total we have three for train and test and three objects used
exclusively in test.

Source: CUNHA et al. (2024)

The objects used for recording were made from solid-color Polylactic Acid (PLA), a standard
3D printing material known for partially reflecting the scene’s illumination. Three objects were
selected for analysis in each training configuration. The bunny object, printed with green
filament, is the largest, measuring (18×20×18 centimeters) for (𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡×𝑑𝑒𝑝𝑡ℎ). The
car object, printed with red filament, has a smaller size, measuring (7.5×6×10.5) centimeters.
The squirrel object, featuring the most complex geometry, measures (10.5 × 18 × 16.5)
centimeters and was printed with blue filament. Figure 3.3 illustrates each object.

Additionally, we have included three supplemental test objects (Figure 3.3): a small red
bunny measuring (9×10×8) centimeters (similar filament color and scale as the car); a white
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Figure 6 – Illustration of the printed objects used in the simple scenes (training) and the environment challenges
occlusion, motion, and illumination (test). From left to right: Green bunny; Red car; Blue squirrel.

Source: CUNHA et al. (2024)

bunny with the same size as the large green bunny; and a small squirrel with the same color
as the original squirrel but measuring (3.5 × 6 × 5.5) centimeters. We have used these objects
to create scenes to evaluate how color, geometry, and scale variation affect the models. As
mentioned, the three main objects in their basic appearance (a green bunny, a red car, and a
blue squirrel) are used in training, recorded in the simple sequence, while their variations are
used exclusively for testing.

Figure 7 – Illustration of the printed objects used in test scenes. From left to right: White bunny (color); Red
bunny (color-scale); Blue squirrel (scale).

Source: CUNHA et al. (2024)

The specific sequences are organized below by environment challenge and object variation.
Figure 3.3 shows an example of each sequence recorded for two devices.

• Simple: The camera moves around the object with slow and controlled movements.
Indoor illumination is bright. These sequences were split into distinct train and test sets;

• Motion: Same as Simple but with faster camera motion, introducing motion blur and
shaking;
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• Occlusion: Same as Simple, but with occluders around the main object, obstructing
part of the view;

• Dark: Same as Simple but with all indoor lights turned off and only a small amount of
ambient light leaking into the room, allowing for the camera to see the object barely;

• Lantern: Same as Dark, but the environment light varies abruptly around the object.
The scene is set in a dark room with a focused, moving spotlight from a lantern moving
over parts of the object at random;

• Scale: Same as Simple, but the object is of an unexpected scale. This challenge was
done only for the blue squirrels;

• Color: Same as Simple, but the object of interest has an unexpected color, although its
geometry remains the same as seen in training. We have only recorded this scene for the
bunnies.

This research uses frames from the simple variation for training and testing, while frames
from other sequences are used exclusively for testing. In our notation, "Sequence(Camera)"
refers to the sequence type and its camera. For example, Simple(S8) refers to a Simple
sequence recorded using the Galaxy S8.

Figure 8 – Example of the real dataset generated for the test cases. The top and bottom images refer to
iPhone X and EOS 80D, respectively. The challenges are ordered from left to right, such as simple,
motion, scale, color, occlusion, lantern, and dark.

Source: CUNHA et al. (2024)

The table 1 shows the image distribution across scenes for each camera. As described
earlier, the variations include simple (test), occlusion, motion, lantern, and dark, containing
images for the three main objects (Figure 3.3). Color and scale are represented by the additional
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Table 1 – Dataset distribution for all cameras and scene variations. The last column shows the total number
of images for each scenario. The last row displays the number of frames for each camera.

Scene Galaxy S8 IPhone X EOS 80D Total Scene
Simple 5139 5149 5177 15465

Simple (test) 2204 2208 2222 6634
Motion 533 545 507 1585

Occlusion 3744 3644 3694 11082
Color 2508 2532 2485 7525
Scale 2498 2567 2480 7545

Lantern 3781 3792 3744 11317
Dark 3794 3689 3694 11177

Total Camera 24201 24126 24003 –

objects (Figure 3.3). The size of motion is smaller than other scenes, as we keep the same
procedure to acquire the viewpoints while walking fast around the object. In total, we have
24, 201, 24, 126, and 24, 003 images for the Galaxy S8, iPhone X, and EOS 80D, respectively.
Overall, we have 72, 330 real labeled images.
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4 ANALYSIS ON THE DATA DISTRIBUTION

We introduce the C3PO dataset to assess our use case within the context of 3D-printed
objects. This scope is particularly challenging for the textureless nature of such objects, which
often have fewer discernible features (CUNHA et al., 2020a; CUNHA et al., 2022). Through this
dataset, we aim to evaluate the performance of deep learning models when faced with unseen
challenges and scenarios not included during training while exploring potential alternatives for
enhancing inference. This chapter analyzes the dataset’s distribution, elucidating the variations
among samples used for training and testing models for each challenge and device.

As detailed earlier, RGB-based pose estimation methods can extract valuable insights from
the image’s pixel data, making them versatile for various applications and device types. How-
ever, relying solely on visual cues from RGB channels could impact the model’s accuracy. RGB
represents an additive color space where all channels are correlated based on the intensity of
light hitting the surface, resulting in a blend of chrominance and luminance details. Variations
in captured images can stem from covariance changes induced by environmental factors such
as low illumination, sunlight, or blur, as well as device-specific characteristics like lens effects,
field of view, chromatic aberration, sensor noise, and color.

Figure 4 shows the simple scenario created for the C3PO dataset, featuring slow and
controlled movements around the objects. The figure presents examples of each object (bunny,
car, and squirrel) captured using three cameras (EOS 80D, Galaxy S8, and iPhone X). Upon
visual inspection, it becomes apparent that variations in represented color, sharpness, and field
of view cause the primary discrepancies among the images from different cameras. Notably,
the EOS 80D camera contains a wider field of view than the other devices. At the same time,
the iPhone X tends to produce images with brighter tones even under similar environmental
conditions. As mentioned earlier, we have limited control over the processing of frames on the
iPhone X and Galaxy S8. Each camera follows a specific preprocessing pipeline, which includes
adjustments in color representation to balance the captured light from the environment. Also,
variations in lenses and sensors may introduce additional distortions or noise that the device
processes before rendering the final result. Additionally, lens positions and aperture sizes are
typically fixed values in smartphone devices, with corrections applied post-capture by software.
While we can physically control some parameters of the EOS 80D, we opted to keep them fixed
for simplicity. Nevertheless, a visual comparison of each image in figure 4 shows noticeable
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differences in how objects are represented. While such differences may seem insignificant in the
context of 2D detection, they can significantly impact inference in 6DoF pose estimation. This
perception is because we have more free variables to estimate, requiring millimetric precision
while estimating the pose. Therefore, it becomes a challenge for RGB-only models to handle
these variations effectively, especially when training data is limited. Insufficient training samples
can lead to overfitting, emphasizing the importance of dataset size in optimizing models.

Figure 9 – Illustration of the differences between the images of each object and cameras used in this work.
Objects are ordered from top to bottom as bunny, car, and squirrel. The images for each camera
are ordered from left to right as EOS 80D, Galaxy S8, and iPhone X, respectively.

Source: CUNHA et al. (2024)

Figure 4 illustrates the density plot histogram over HSV space. The dataset is sampled to
calculate channel density, cropping the area delimited by the object’s dimension. The values
are grouped, correlating each channel on the 2d histogram, relating the channels H (Dominant
Wavelength) and S (color purity). H and S direction variations remain large for all devices,
although they change at different ranges for the S channel. In any case, these punctual dif-
ferences can be easily corrected with techniques to augment the data on training, adding
robustness to such variations.
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Figure 10 – 2D histogram density plot using HS channels for the EOS 80D, Galaxy S8, and iPhone X with the
bunny simple scenario.

Source: CUNHA et al. (2024)

In motion scenes containing faster movements, the overall behavior remains quite similar to
that of the simple scenario. As expected, the variation in speed does not significantly alter the
distribution of colors quantitatively. However, as depicted in Figure 4, the variation becomes
more uniform due to blurring, resulting in a compact plot (right column). As we can see, there
are slight changes in how color is distributed merely by altering the movement speed. While the
color distribution remains uniform, the RGB frames (left column) reveal that fast movement
causes motion blur and can hide significant features that might otherwise be extracted from
pixels. This observation presents a challenge, resulting in a loss of object details that could be
discerned.

Figure 11 – Simple (top) and motion (bottom) scenario using EOS camera. The left part illustrates the 2D
histogram density plot using HS channels for each scenario.

Source: CUNHA et al. (2024)
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For occlusion, as depicted in Figure 4, the color variation within the object area becomes
pronounced. The occluding elements make it challenging to discern a clear pattern within
the target area, potentially complicating this scenario for monocular RGB-based methods.
Additionally, in Figure 4, apart from the obstruction in the object’s geometry, we observe a
nearby object with similar material and color to the target, which could distract the detector.

Figure 12 – Top images illustrate the occlusion scenario for each object. The bottom ones show the 2D
histogram density plot using HS channels for each correspondent object in the same column.

Source: CUNHA et al. (2024)

As expected, the color scenario has a significative variation akin to the occlusion case.
However, the regions of higher color densities are dispersed across different ranges. Unlike
the simple scenario, this substantial deviation presents a more complex challenge for data
augmentation strategies, as each distribution behaves differently. Figure 4 illustrates the color
scenario for the bunny object captured with the EOS 80D camera. This complexity brings
a significant challenge for RGB-based pose estimation, as color is essential when extracting
features from pixels for textureless objects.

The lantern and dark scenarios are the most challenging for capturing RGB information.
These scenes suffer from different types of illumination, including light color, position, and
intensity variations. As depicted in Figure 4, contrary to the occlusion case, the density plot
reveals minimal information about the image color. In these instances, particularly in the
dark scenario, discerning any characteristic in the frame, including geometric details, proves
exceedingly tricky.

Lastly, we compute the Structural Similarity Image Metric (SSIM) (WANG et al., 2004;
HORE; ZIOU, 2010; MANDL et al., 2021). The 𝑆𝑆𝐼𝑀(𝑥, 𝑦) is defined by equation 4.1, where for
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Figure 13 – Top images illustrate the color scenario for the bunny object. The bottom ones show the 2D
histogram density plot using HS channels for each correspondent object in the same column.

Source: CUNHA et al. (2024)

Figure 14 – The top left and bottom left images correspond to the lantern and dark scenario using the bunny
and iPhone X. The top right and bottom right are their correspondent density plots for the RGB
channels.

Source: CUNHA et al. (2024)

an input image 𝑥,𝑦 the values 𝜇𝑥, 𝜇𝑦, 𝛿𝑥, 𝛿𝑦, and 𝛿𝑥𝑦 represent, respectively, the pixel sample
mean of 𝑥, the pixel sample mean of 𝑦, variance of 𝑥, variance of 𝑦, and the covariance of 𝑥 and
𝑦. 𝑐1 and 𝑐2 are two variables that stabilize the division with a weak denominator defined by the
dynamic range of pixel values. SSIM is utilized for image quality assessment and can measure
the similarity between two images. We utilize the simple scenario (training distribution) as a
reference to acquire the metric values for each scene variation (test distribution). As mentioned
in section 3.3, training exclusively applies images from the simple scenario, while the other
scenes are reserved for testing. We compute both metrics within the area delimited by the
object’s dimensions, similar to the density plot.
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𝑆𝑆𝐼𝑀(𝑥, 𝑦) = (2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝛿𝑥𝑦 + 𝑐2)
(𝜇2

𝑥 + 𝜇2
𝑦 + 𝑐1)(𝛿2

𝑥 + 𝛿2
𝑦 + 𝑐2) (4.1)

Table 2 displays the average value for each camera and the overall average for all scenes.
Although the results highlight significant differences between the test scenarios and the training
set, the obtained values confirm the previous analysis: the motion scenario aligns closely with
the training distribution, whereas the scenarios involving occlusion, color variation, and scale
exhibit more pronounced discrepancies from the training set, making them more challenging to
deal. Lantern and dark cases are the most challenging, with very low similarity levels concerning
the training set.

Table 2 – Results taking the simple scenario (training set) as a reference to calculate the SSIM value for each
test scenario.

Motion Occlusion Color Scale Lantern Dark
Model SSIM SSIM SSIM SSIM SSIM SSIM

AVG-S8 0.4117 0.2476 0.2979 0.2845 0.2056 0.1779
AVG-EOS 0.4208 0.2504 0.3143 0.2619 0.1888 0.1667
AVG-X 0.4052 0.2378 0.2983 0.2663 0.1698 0.1464

AVG 0.4126 0.2453 0.3035 0.2709 0.1881 0.1637
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5 DEEP 6DOF POSE ESTIMATION

We draw inspiration from the supervised network proposed by Tekin et al. (TEKIN; SINHA;

FUA, 2018) to evaluate the impact of different training data. We selected this approach be-
cause it is robust, simple to train, and publicly available1. Although this model does not achieve
the highest overall accuracy on benchmarks like Linemod and Linemod-Occlusion, it produces
results comparable to state-of-the-art RGB-based models for 6DoF pose estimation. Addition-
ally, its structure is easily adaptable to new architectures. Since our goal is to assess the impact
of data variation and synthetic data on RGB-only approaches, this method is suitable for our
purposes.

The approach employs a deep end-to-end network with a monocular RGB input to estimate
the object’s pose. It extends the YOLOv2 (REDMON; FARHADI, 2017) model to predict the eight
bounding box corners, the object’s centroid, and a confidence value for each detection. The
6DoF pose is then optimized using the PnP (LEPETIT; MORENO-NOGUER; FUA, 2009) algorithm,
which compares these predicted 2D projections in the image plane with the corresponding
points of the 3D bounding box from the object’s CAD model.

Building on the initial architecture, we updated the model by integrating a new detection
architecture (i.e., YOLOv8). We extended the output layer to regress the nine keypoints cor-
responding to the object center and 3D bounding box. Additionally, we enhanced the network
to accept intrinsic camera parameters and distortion coefficients as input, enabling it to han-
dle multiple camera devices and domains more effectively while optimizing the pose from 3D
corners. In the original model proposed by Tekin, the architecture predicts the bounding box
points along with object class probabilities and confidence scores, requiring a two-step training
process to optimize each component separately. Our updated architecture, utilizing YOLOv8
as the backbone, decouples the heads for predicting class and keypoints. This improvement
eliminates the need for a preliminary optimization step to locate objects in the image before
predicting the keypoints. Moreover, with the YOLOv8 backbone, we leverage the Spatial Pyra-
mid Pooling (SPP) layers to extract multi-scale feature representations, enhancing the model’s
ability to capture spatial hierarchies and improving pose estimation accuracy.

We aim to adjust class probabilities during each optimization step using the 𝐿𝑐𝑙𝑎𝑠𝑠𝑒𝑠 func-
tion as the cross-entropy loss. The original YOLO architectures use the IoU score as the
1 https://github.com/Microsoft/singleshotpose
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confidence value. However, as Tekin et al. discussed, this score is unsuitable for estimating the
3D projections. Thus, as suggested, we apply the score defined by the function 𝐿𝑐𝑜𝑛𝑓 = 𝑐(𝑖)

(Equation 5.1). The confidence function 𝑐(𝑖) for a sample 𝑖 returns the confidence value for a
predicted 2D point (𝑥𝑝𝑟, 𝑦𝑝𝑟) based on its distance 𝐷(𝑖) from the ground-truth (𝑥𝑔𝑡, 𝑦𝑔𝑡). The
distance must be less than the threshold 𝑑𝑡ℎ. The L2-norm (𝐿𝑝𝑜𝑖𝑛𝑡𝑠) is used to optimize the 3D
bounding box projected into the image plane, computed according to the equation 3.4. Since
the prediction branches are independent, we can train both from the beginning. Our total loss
function (𝐿𝑡𝑜𝑡𝑎𝑙) is defined by Equation 5.2.

𝑐(𝑖) =

⎧⎪⎪⎨⎪⎪⎩
𝑒

𝛼(1− 𝐷𝑇 (𝑖)
𝑑𝑡ℎ

) if 𝐷𝑇 (𝑖) < 𝑑𝑡ℎ

0 otherwise
(5.1)

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑎𝑠𝑠𝑒𝑠 + 𝜆𝑐𝑜𝑛𝑓𝐿𝑐𝑜𝑛𝑓 + 𝜆𝑝𝑜𝑖𝑛𝑡𝑠𝐿𝑝𝑜𝑖𝑛𝑡𝑠 (5.2)

5.1 MODEL TRAINING

The desktop used in this work has a quad-core CPU @ 3.60 GHz, 32 GB of RAM, and
a GeForce RTX 3060 GPU with 12 GB VRAM. We have trained each model for 500 epochs
using an SGD optimizer and a learning rate of 𝛼 = 0.001, decreasing tenfold every 100 epoch.
The training initializes the models using weights pre-trained on ImageNet, which are available
on the ultralytics repository 2

We augmented the images for each epoch by applying the object mask to a random
background from the VOC dataset (EVERINGHAM et al., 2012). This augmentation prevented
overfitting caused by the constant marker field below the object; an example is shown in
Figure 5.1. Following the approach in Tekin et al. (TEKIN; SINHA; FUA, 2018), we used a mask
for data augmentation tasks such as resizing the object, changing its position, and applying
random color distortions. During training, frames were uniformly scaled in width and height by
a random factor of 32, within the range of 320 to 680 pixels, to increase robustness to scale
changes further. Camera parameters were adjusted accordingly.

2 https://github.com/ultralytics/ultralytics
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Figure 15 – Example of augmentation performed in the detector training. We remove the background with
marker field information to prevent the model from learning features from the markers.

Source: CUNHA et al. (2024)

5.2 METRICS

The pose accuracy predicted was measured using 2 different metrics, described below.

5.2.1 Reprojection Accuracy (Rep.)

We consider a prediction correct if and only if the mean 2D Euclidean distance between
the predicted pose and the ground truth, considering the 2D projection of all mesh vertices,
is less than 5 pixels (TEKIN; SINHA; FUA, 2018). The 2D projection is defined according to
equation 5.3, where 𝐾 represents the 3 × 3 intrinsic camera matrix containing the camera
calibration data, 𝐸 = [𝑅|𝑡] represents the 3 × 4 extrinsic parameter matrix describing the
object’s 3D rotation and translation, 𝑣 = [𝑥, 𝑦, 𝑧, 𝑤] is a CAD model vertex in homogeneous
coordinates, and 𝜋(𝑣) = [𝑥/𝑧, 𝑦/𝑧] is the normalization operator which brings the object from
the projective to the real space.

𝑋2𝐷 = 𝜋(𝐾 · 𝐸 · 𝑣) (5.3)

5.2.2 3D Pose Accuracy (ADD)

The accuracy is measured by the pose accuracy (ADD) or its variation for symmetric
objects (ADD-S) (HINTERSTOISSER et al., 2013). The ADD is defined by equation 5.4. This
expression is based on the pose error (𝐸) and represents the average 3D Euclidean distance



48

between all mesh vertices (𝑉 ), with a length of 𝑁 , when multiplied by the 6DoF ground truth
pose (𝑃𝑔𝑡) and the predicted pose (𝑃𝑝𝑟).

𝐸 = 1
𝑁

𝑁∑︁
𝑖=0

||(𝑃𝑝𝑟 · 𝑉𝑖) − (𝑃𝑔𝑡 · 𝑉𝑖)|| (5.4)

Following (HINTERSTOISSER et al., 2013), a pose is considered correct if 𝐸 < .10𝑑, where
𝑑 is the maximum distance between two mesh vertices, representing the CAD diameter. The
ADD-S metric measures the error for symmetric objects as the average distance to the closest
model point.

Figure 5.2.2 shows a visual representation of how the thresholds work to compute the
errors in Rep. and ADD.

Figure 16 – Visual representation of the threshold computed in Rep. and ADD from left to right, respectively.

Source: CUNHA et al. (2024)

5.3 POSE ESTIMATION EVALUATION

This section evaluates the pose estimation performance across various challenges in the
C3PO dataset. For this evaluation, models were trained using only the simple sequences for
each object and camera. Thus, we can evaluate the behavior of the technique for testing
situations not anticipated by the training set. We refer to models trained on the real dataset
as FullReal, and use the notation "FullReal(Camera)" to specify a model trained with images
from a particular camera. For example, FullReal(EOS) refers to the model trained with the
EOS training set images.
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5.3.1 Testing models on the simple sequences

Since the Simple scenes were the only ones used in training, these tests evaluated the
scenario in which the model is trained and tested on the same distribution, which is the most
common in machine learning techniques.

As expected, Table 3 shows that models trained on real data perform well when tested
on data from the same distribution. Specifically, the models demonstrate good performance
for a known camera since the test scenario closely resembles the training data. However, the
accuracy decreases when a model is evaluated using an unseen camera during training. For
instance, the FullReal(X) model in Table 3 sees its accuracy drop from 86.93% and 53.19% to
approximately 48% and 21% (for Rep. 2D and ADD respectively), when going from Simple(X)
to Simple(S8) or Simple(EOS). In Figure 5.3.1, we can visually observe the error by projecting
the object mesh with the pose predicted by the model. The results shown in the figure were
obtained by training the model on the X images and testing it on the three cameras (X, S8,
and EOS).

Table 3 – Models trained and tested on the Simple scenario. Results are obtained by averaging individual
scores for the three main objects: green bunny, red car, and blue squirrel.

Simple(S8) Simple (X) Simple(EOS)

Model Rep. ADD
(10%)

Rep. ADD
(10%)

Rep. ADD
(10%)

FullReal(S8) 84.37 42.85 38.95 10.88 57.97 14.06
FullReal(X) 48.78 21.75 86.93 53.19 49.86 21.09
FullReal(EOS) 23.46 3.12 21.70 1.90 79.15 26.54

Figure 17 – Results obtained by testing a model trained on images from X and tested on all devices (X, S8,
and EOS; left to right, respectively).

Source: CUNHA et al. (2024)



50

5.3.2 Camera variation

Table 4 illustrates the impact of varying the source of the samples used in training. The
models FullReal10(S8), FullReal50(S8), and FullReal(S8) were trained with 10%, 50%, and
100% of the S8 training set, respectively. Similarly, FullReal(S8, X) and FullReal(S8, X, EOS)
utilized the full datasets from their respective cameras.

Table 4 – Performance of models trained with real data from different cameras.

.
Simple(S8) Simple(X) Simple(EOS)

Model Rep. ADD
(10%)

Rep. ADD
(10%)

Rep. ADD
(10%)

FullReal10(S8) 46.03 17.73 21.24 11.32 34.45 20.98
FullReal50(S8) 70.66 31.49 24.25 12.48 57.57 15.87
FullReal(S8) 84.37 42.85 38.93 10.88 57.97 14.06
FullReal(S8,X) 84.80 47.34 88.78 39.81 55.18 32.12
FullReal(S8,X,EOS) 92.86 41.85 89.23 30.69 93.16 46.14

The table 4 shows that the performance of the FullReal10(S8) and FullReal50(S8) models
is lower than the others, as expected, due to the limited training data. Notably, the Full-
Real(S8) model performed worse than FullReal10(S8) and FullReal50(S8) on Simple(X) and
Simple(EOS). This result indicates that models trained with more data from a single cam-
era might overfit the specific properties of that camera, which is crucial to consider when
developing such models.

Interestingly, FullReal(S8, X) and FullReal(S8, X, EOS) outperform FullReal(S8) even on
Simple(S8), suggesting that training with data from multiple cameras improves the model’s
generalization to different camera parameters. However, labeling data from multiple cameras
is costly and time-consuming, making this approach less feasible in practice.

5.3.3 Environment and object variation

From Table 5, it is evident that the model struggles to detect several variations of the
environment and object characteristics. As discussed in Chapter 4, accuracy is significantly
decreased for occlusion, color, scale, lantern, and dark scenarios. However, the trained models
achieved similar accuracy for the motion scenes compared to the simple scenario. Curiously,
there is an improvement in accuracy for the FullReal(EOS) model in the motion(S8) scenario.
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In motion sequences, the faster movements introduce more blur and jitter, potentially softening
specific characteristics of the S8 camera. Consequently, the model trained with images from
the EOS camera performs better in this scenario. This observation extends to the FullReal(X)
model, which shows a slight decrease in Rep. accuracy and an increase in ADD accuracy.
Still, results for the FullReal(S8) model decrease in the Motion(S8) scene compared to the
Simple(S8). While the training and test distributions are identical for Simple(S8), Motion(S8)
introduces unforeseen variations that affect pose estimation accuracy.

Table 5 – Results for the specific challenges described in Section 3.3 recorded using the Galaxy S8.

Simple(S8) Motion(S8) Occlusion(S8) Color(S8) Scale(S8) Lantern(S8) Dark(S8)

Model Rep. ADD
(10%)

Rep. ADD
(10%)

Rep. ADD
(10%)

Rep. ADD
(10%)

Rep. ADD
(10%)

Rep. ADD
(10%)

Rep. ADD
(10%)

FullReal(S8) 84.37 42.85 60.78 40.7 8.37 7.37 0.00 0.00 0.00 0.07 2.34 2.37 0.07 0.15
FullReal(X) 48.78 21.75 45.82 22.82 6.98 4.58 0.00 0.00 0.00 0.23 5.74 6.61 0.00 0.00
FullReal(EOS) 23.46 3.12 57.95 40.7 5.95 5.38 0.00 0.24 0.00 0.07 0.19 0.80 0.00 0.00
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6 GENERATING SYNTHETIC DATA THROUGH DOMAIN RANDOMIZATION

As an alternative to deal with the failures caused by domain variations, we built a tool (DR-

Render) to train new models using a domain randomization approach. The randomized data
helps the estimator deal with unpredicted challenges in real cases, minimizing the influence of
domain variation. DR-Render was based on the work proposed by Tremblay et al. (TREMBLAY

et al., 2018), which creates deep learning models trained with a mixture of real and synthetic
data to detect vehicles in images and their variations using as few real images as possible.
Figure 6 illustrates our randomization approach, and the entire pipeline can be visualized in
figure 6.

Figure 18 – Diagram illustrating the DRRender process and the objects included in the randomization during
the synthetic data generation.

Source: CUNHA et al. (2020b)

Similar to the methodology proposed by Tremblay et al. (TREMBLAY et al., 2018), our
synthetic scenes follow a basic structure for randomization. Each frame is rendered with varia-
tions such as altering the object’s material appearance, introducing lights spawned at random
locations with varying colors and intensities, and incorporating flying distractors in the form
of cubes, cylinders, spheres, and capsules. Given our focus on the 3D domain, we expanded
upon these variations by incorporating changes to the floor plane texture and creating a sky-
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box, which defines the area where the object is positioned above the floor plane. The skybox
and floor plane textures were changed to prevent the model from learning environmental fea-
tures unrelated to the object itself. We used textures from the Visual Object Classes (VOC)
dataset (EVERINGHAM et al., 2012), which offers a wide range of textures suitable for our clut-
tered indoor scenario. Additionally, we varied the type of lighting (point, radial, and sunlight)
to simulate diverse environmental conditions and their interactions with the object, resulting
in shadows at varying intensities and directions. The number of lights within the skybox limits
was randomly set between 0 and 15.

Figure 19 – Diagram illustrating the complete pipeline using the annotation, DR-Render, and detector for pose
estimation.

Source: CUNHA et al. (2022)

Furthermore, for the 6DoF scenario, we expanded our randomization approach to simulate
different parameters for the virtual cameras used to generate the data. These virtual cameras
were configured with varying sensor sizes, output sizes, and intrinsic parameters (such as
focal length and principal point in pixels, as defined in equation 3.1) to mimic those obtained
by calibrating the physical cameras used during real data acquisition. We could generate a
corresponding virtual representation for each camera by simulating its real parameters and
adjusting their values as needed. Additionally, as documented in Kehl et al. (KEHL et al.,
2017), randomizing the camera’s position enhances robustness to multiple viewpoints during
pose estimation. Consequently, the virtual camera was consistently oriented towards the origin
(directed at the object of interest). Its spawn location was randomized within the skybox cube,
with radial distances limited from 4𝑚 to 10𝑚, azimuth angles ranging from 0∘ to 180∘, and
polar angles ranging from 0∘ to 360∘, following the spherical coordinate system. These ranges
were chosen with consideration for the indoor, small object scenario addressed in this study.

Additionally, we introduced flying distractors based on simple 3D geometries to enhance
robustness against occlusions. Unlike Tremblay et al. (TREMBLAY et al., 2018), whose focus
was on vehicles, our scenario (involving small indoor objects) frequently encountered instances
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where significant occlusions occurred in frames. Consequently, we implemented an additional
step in the rendering process to address this issue. To mitigate cases of total or near-total
occlusion, we implemented a filter to discard frames where more than 35% of the object’s
2D area was occluded. Moreover, we varied the material color of the object of interest to
encourage the network to learn its structure rather than relying solely on its appearance. Given
our textureless scenario, the object’s color was randomized without adding texture images.
Figure 6 and 6 show examples of the resulting images.

Figure 20 – Resulting frames from the DRRender generation. The process creates synthetic data by randomiz-
ing the light, positions, textures, materials, objects in the environment, and the camera parameters.

Source: CUNHA et al. (2020b)

Figure 21 – Resulting frames from the DRRender generation changing rendering parameters for the same
object.

Source: CUNHA et al. (2024)
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7 TRAINING STRATEGIES USING DOMAIN RANDOMIZATION

To assess the influence of incorporating randomized data, we trained using various strate-
gies combining real and synthetic datasets to refine the models. Additionally, we analyzed
each combination of real and synthetic images by varying the proportion of each image do-
main during training. This approach aims to determine the extent to which synthetic data
can be utilized while minimizing the reliance on real samples in the training process. Figure 7
provides a diagram illustrating each training variation. These strategies apply distinct portions
of the datasets generated through the pose-markerfield and DRRender, enabling the identifi-
cation of diverse training combinations tailored to specific test scenarios. We describe below
each training strategy used.

Figure 22 – Diagram illustrating the strategies for training the 6DoF detectors combining the real and synthetic
datasets.

Source: CUNHA et al. (2024)

• Full real training (training strategy 1): A model trained exclusively with real images
generated by the pose-markerfield, using images from the simple sequence as it is the
unique variation exposed during training. This resulting model is referred to as FullReal.

• Full DR training (training strategy 2): A model trained using only synthetic data
generated by the DRRender. The resulting model is referred to as FullDR.
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• Mixed training (training strategy 3): A model optimized combining the training batches
with real images and synthetic frames at random. We train models varying the portions
of real data on the batches. The resulting models are named Mixed10, Mixed50, and
Mixed100, each one corresponding to the amount of real data used (10%, 50%, and
100% of the real images available, respectively).

• Fine-tuning training (training strategy 4): The model training uses only the synthetic
set in its entirety (FullDR); then, the model is fine-tuned with real frames in a second
training step (simple sequences). The hyper-parameters to the first train and to fine-tune
are the same. As with the mixed training, we have tuned models using 10%, 50%, and
100% of the real frames resulting in the Fine10, Fine50, and Fine100, respectively.

We executed each training strategy for every object and camera evaluated, resulting in 70

trained models. Following the notation in section 5.3, "Strategy{ratio}(Camera)" refers
to a model trained using a particular strategy with a specific camera, using only a subset of
the real samples available to train, specified by the 𝑟𝑎𝑡𝑖𝑜 value. For instance, Fine50(S8)

denotes a model trained with DRRender synthetic data and fine-tuned with 50% of the Galaxy
S8 training set. Similarly, Mixed10(S8) refers to a model trained using a combination of
synthetic images and 10% of the real images from the Galaxy S8 training set. In all variations,
the entire synthetic dataset is used when required. In total, there are 12, 000 labeled synthetic
images for each geometry. Thus, the synthetic training set has 36, 000 images.
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8 EVALUATION OF POSE ESTIMATION USING DOMAIN RANDOMIZATION

As in section 5.3, we evaluate the pose estimation performance given the different chal-
lenges contained in the dataset. This section replicates the same tests but compares the models
trained with different strategies using synthetic data generated through the DRRender. Model
training uses only simple sequences for each object and camera, and the test uses other sce-
narios. The training parameters and metrics are the same as in section 5.1 and section 5.2,
respectively.

8.1 SIMPLE SEQUENCES

Table 6 shows that for a known camera, models trained solely on real data (FullReal)
perform the best, as discussed in section 5.3.1. Introducing synthetic data or training with fewer
real images (10% of the training set) slightly decreases model accuracy. However, training with
synthetic images while retaining 50% or 100% of the real dataset for fine-tuning (Fine50 and
Fine100) achieved comparable or better accuracy than FullReal models. In the simple scenario,
synthetic images can introduce unnecessary variations, sometimes reducing accuracy.

Nevertheless, Fine and Mix models show promising results when evaluated on the same
scene using a previously unseen camera during training, while the accuracy of FullReal models
decreases. Although Fine(X) and Mix(X) variations do not match FullReal(X) accuracy in the
Simple(X) scenario, they improve accuracy on Simple(S8) and Simple(EOS). This observa-
tion suggests that synthetic data enhances the robustness of camera changes. Models might
benefit from synthetic frames simulating real cameras’ internal parameters, using different
colors, and ignoring distortion parameters. Notably, the accuracy variation for the EOS 80D
is more significant than for the Galaxy S8 and iPhone X, likely because the EOS 80D is not a
smartphone camera. Models trained with the EOS 80D face more difficulty generalizing when
tested on sequences from other cameras. Therefore, in real applications, considering camera
characteristics (sensor, lens distortion, color representation) and overall hardware is crucial
before deciding on an approach.

The results indicate that the FullReal model is the best strategy when the training data
fully maps the target distribution. The average (AVG) models in Table 6 demonstrate the
significant impact of the training camera on accuracy. For instance, the model trained with
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sequences from the Galaxy S8 shows a drop of 20 ∼ 30 accuracy points when tested with
sequences from the iPhone X and the EOS 80D. This decrease can significantly affect the end
user’s experience in real applications. The mentioned variation in results can be assessed in
Figure 8.1, which shows the average results of each model trained on X, S8, and EOS images
and tested on the entire simple sequence test set for each device. If sufficient camera-specific
data is unavailable, fine-tuning and alternative approaches must be used. Synthetic data allows
training with less real data (at least 50% less) while still achieving similar accuracy for the same
camera or slightly better accuracy for a different camera, decreasing the annotation effort.

Table 6 – Models tested on the Simple scenario using synthetic data on training. Results are obtained by
averaging individual scores for the three main objects: green bunny, red car, and blue squirrel. AVG
refers to a single camera’s average of all Full, Mix, and Fine variations.

Simple(S8) Simple (X) Simple(EOS)

Model Rep. ADD
(10%)

Rep. ADD
(10%)

Rep. ADD
(10%)

FullReal(S8) 84.37 42.85 38.95 10.88 57.97 14.06
Mix10(S8) 35.91 15.91 14.98 10.23 29.37 13.03
Mix50(S8) 61.24 36.67 27.39 17.03 36.77 29.78
Mix100(S8) 67.74 46.73 32.98 28.45 44.10 30.63
Fine10(S8) 72.99 39.95 37.42 17.56 41.17 22.37
Fine50(S8) 77.19 41.38 50.65 26.54 63.60 33.16
Fine100(S8) 81.07 52.91 51.73 28.24 65.46 31.84

AVG(S8) 68.64 39.48 36.30 19.85 48.35 24.98

FullReal(X) 48.78 21.75 86.93 53.19 49.86 21.09
Mix10(X) 25.59 21.97 44.31 26.44 33.61 25.93
Mix50(X) 42.44 29.76 70.63 50.53 46.24 34.07
Mix100(X) 53.47 43.34 74.66 50.05 52.03 38.19
Fine10(X) 38.35 22.95 65.92 32.32 44.54 27.78
Fine50(X) 54.18 26.40 85.87 44.30 51.30 41.57
Fine100(X) 55.14 27.55 87.52 56.86 52.16 40.70

AVG(X) 45.42 27.67 73.69 44.81 47.11 32.76

FullReal(EOS) 23.46 3.12 21.70 1.90 79.15 26.54
Mix10(EOS) 7.09 3.89 8.58 1.94 35.12 8.825
Mix50(EOS) 17.90 7.07 22.64 8.38 64.48 32.59
Mix100(EOS) 21.59 8.74 24.69 9.01 70.49 33.53
Fine10(EOS) 22.96 11.65 17.13 9.02 63.89 15.28
Fine50(EOS) 34.52 22.91 18.45 11.03 72.97 24.70
Fine100(EOS) 33.89 18.30 24.53 8.03 75.69 23.96

AVG(EOS) 23.06 10.81 19.67 7.04 66.00 23.63

Figure 8.1 illustrates the impact of camera variation on accuracy for each object. As
expected, with its complex geometry, the squirrel presented the lowest results overall. However,
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Figure 23 – Average results of all objects testing the models trained on each device in simple sequences.

Source: CUNHA et al. (2024)

the results for the squirrel are also the most balanced among the three objects.

8.1.1 Environment and object variation

Next, we discuss the challenges presented in Table 7 considering the training strategies
using domain randomization. It is important to note that though we are just testing with the
Galaxy S8 sequences, we are also making the same sequences publicly available for the other
cameras. In this discussion, we used only one camera (S8) to isolate behaviors and variations
better.

Table 7 – Results for the specific challenges described in section 3.3 recorded using the Galaxy S8.

Motion(S8) Occlusion(S8) Color(S8) Scale(S8) Lantern(S8) Dark(S8)

Model Rep. ADD
(10%)

Rep. ADD
(10%)

Rep. ADD
(10%)

Rep. ADD
(10%)

Rep. ADD
(10%)

Rep. ADD
(10%)

FullReal(S8) 60.78 40.7 8.37 7.37 0.00 0.00 0.00 0.07 2.34 2.37 0.07 0.15
Mix10(S8) 41.49 42.2 5.99 7.78 37.40 9.41 2.39 4.78 1.09 1.61 0.07 0.15
Mix50(S8) 47.08 52.92 10.58 12.57 43.04 15.08 1.51 3.18 2.53 2.66 1.19 2.63
Mix100(S8) 53.07 51.49 18.56 31.73 47.24 18.58 3.98 1.59 5.66 6.37 7.65 9.33
Fine10(S8) 44.56 43.46 11.97 22.15 8.05 8.84 0.79 3.01 2.66 2.34 0.00 0.00
Fine50(S8) 59.05 46.9 5.38 12.57 5.58 8.01 0.79 2.30 8.39 6.94 0.15 0.23
Fine100(S8) 62.67 50.66 8.98 14.37 5.45 6.53 0.87 1.59 4.71 4.76 0.31 0.69

FullReal(X) 45.82 22.82 6.98 4.58 0.00 0.00 0.00 0.23 5.74 6.61 0.00 0.00
Mix10(X) 32.51 42.2 5.79 8.38 33.22 13.91 0.79 0.71 2.40 4.51 0.07 0.31
Mix50(X) 39.13 51.49 10.17 14.97 38.13 10.22 1.11 3.50 5.73 15.01 0.23 0.55
Mix100(X) 40.15 46.92 19.16 21.55 43.44 6.67 3.39 1.19 13.07 22.53 1.59 3.18
Fine10(X) 47.24 38.58 10.77 24.55 5.80 1.60 0.79 0.79 1.77 5.04 0.00 0.00
Fine50(X) 46.14 46.69 14.37 24.78 3.64 2.24 0.79 0.81 4.76 9.28 0.00 0.00
Fine100(X) 51.88 62.67 8.98 24.55 0.00 1.08 0.15 0.79 8.23 16.14 0.07 0.15

FullReal(EOS) 57.95 40.7 5.95 5.38 0.00 0.24 0.00 0.07 0.19 0.80 0.00 0.00
Mix10(EOS) 48.34 31.81 5.99 4.19 25.02 11.66 0.79 0.31 0.00 0.16 0.00 0.00
Mix50(EOS) 61.41 60.93 9.58 12.57 36.28 14.15 0.55 0.66 0.69 0.08 0.07 0.23
Mix100(EOS) 57.48 40.94 18.58 31.73 32.75 9.89 0.23 0.71 0.56 0.08 0.31 0.47
Fine10(EOS) 64.8 50.39 11.97 22.15 6.72 8.24 0.79 0.87 0.72 0.24 0.00 0.00
Fine50(EOS) 68.5 65.11 6.58 12.57 5.07 5.63 0.79 1.03 2.58 2.82 0.07 0.23
Fine100(EOS) 63.7 62.44 8.98 14.39 5.07 4.60 0.31 1.27 1.45 1.53 0.07 0.07

In the motion sequences, the movements are faster, causing more blur and jitter. As seen
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Figure 24 – Results obtained for models trained varying strategies for each type of camera. From top to
bottom: car, green bunny, and squirrel.

Source: CUNHA et al. (2024)

in section 5.3.3, accuracy is lost compared to the Simple scenario. Since our synthetic scenes
did not include motion blur, no model can be considered fully trained for this challenge.
However, models trained with the S8 camera using the Fine and Mix variations achieved
accuracy values similar to the FullReal models. Even Fine10, Fine50, Mix10, and Mix50 had
accuracy values comparable to Full. Thus, we can say that training with more images that do
not contain blur does not necessarily help deal with this challenge, so there is a diminishing
return behavior toward the number of training examples used. As observed in section 5.3.3
for the FullReal(EOS) results, synthetic data seems to have inserted enough variation for the
models trained with different cameras to enable some models to handle blurred images better.
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Models using only 50% of the real dataset, like Mix50 and Fine50, nearly doubled their ADD
scores compared to the FullReal models. This result supports the idea that camera parameter
overfitting can be mitigated by using synthetic and real training data.

The same conclusions from section 5.3.3 remain for the occlusion test case. The results
suffer a more pronounced drop in the accuracy scores. Despite this, the Fine and Mix models
tend to improve overall accuracy significantly, especially Mix. Thus, using occlusions in the
synthetic frames is relevant to forcing the models to learn variations in the object’s geometry.
Such information is unavailable in the FullReal training using simple images, resulting in Full-
Real models not learning to handle obstructions in the object’s appearance. Even using only
10% and 50% of the real data, Mix and Fine models achieved accuracy similar to FullReal.

As seen in section 5.3.3, the FullReal models cannot detect an object of a different color,
indicating that color information can quickly become highly relevant during RGB training, to
the point of overfitting. This behavior happened even though we applied color distortions when
augmenting the real data, albeit with the intent of adding robustness to sensor and illumination
variations, not objects of a different color. However, color augmentation can be further tuned
depending on the situation. Actual object color changes in synthetically rendered images are
likely more effective in dealing with this variation in real frames. Nevertheless, the Fine models
performed slightly better than the FullReal ones. It might be due to the constant changes in
the object’s material during synthetic training, causing the model to carefully ponder learning
the object’s color. Such information seems necessary for a model to deal with color changes.
The results showed that the model could preserve these changes for the second training phase.
However, the overfitting caused by real data in the FullReal models has also happened to the
Fine models in their second step, obtaining less expressive results. The Mix models further
confirm this idea, which has obtained the best results for the object’s color variation. The Mix
strategy seems to enable the model to give more weight to the object’s geometry, probably
due to the texture variation in the synthetic images presented during all the training. It is
important to remember that such variations happen during rendering and consider aspects of
the object’s interaction with the ambient lighting, thus including a broader range of variations
without additional adjustments.

In the case of scale, the original model is, in theory, capable of handling variations in
scale, but what we see in the results of this challenge is very different. The small object used
is roughly 3 times smaller in every dimension, which accounts for a roughly 27 times smaller
volume, which is very significant. This difference is visible in figure 3.3, more significant than all
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variations inserted in the augmentation and synthetic generation. For this particular approach,
the bounding box points predicted in pixels are too close for a tiny object, resulting in very
high error rates. Our metrics are also harsher on a smaller object, as the diameter threshold
concerning the squirrel’s 3D model remains the same. The Mix models performed slightly
better in this scenario than other models. The reason is similar to the case of color variation.
The model is frequently subjected to a more severe scale change during all the training, using
synthetic and real images. Still, the lower results obtained for the EOS can be explained by it
having a wider field of view as per figure 3.3, which can make the object even smaller.

The Full models performed worse in the lantern scenario than in previous cases. Models
trained with synthetic images have seen different types of illumination during training, including
light color, position, and intensity variations. Therefore, these models can handle this challenge
better, even if such light variations did not exist in the real dataset, representing a step towards
overcoming the reality gap. The Fine strategy seems better than the Mix, as realistic light
information is needed to tackle this challenge. It might also be promising to improve the
data augmentation on real frames by changing the saturation and brightness. This step might
increase the real-world usability of the synthetic light variation, as it simulates photorealistic
illumination changes in the scene.

The dark is the most challenging case and got the worst results overall. Finding any
characteristic in the frame in this scenario, including geometry details and color, is difficult.
Even the lighting variations in the randomized rendering were insufficient to deal with this
case. This scenario is one of the hardest unsolved challenges in the scope of monocular RGB-
only methods. Only Mix100 trained for the S8 got usable results. It might be partly due to
automatic processing done by the S8’s sensor, which helped it work in low-light conditions,
coupled with the network being trained in this same camera domain. Such frame preprocessing
strategies might be the only way for monocular RGB approaches to handle challenges like this,
apart from estimating depth out of RGB images.

8.1.2 Training strategies

Our tests yielded some expected conclusions: training a model exclusively with labeled
real images that accurately represent the scene, illumination, and challenges is the optimal
choice. Similarly, using training data from different cameras enhances performance when a
model needs to work with multiple cameras. Even for a model targeted at a single camera,
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training with data from other cameras can be beneficial if that data covers the relevant scene
challenges.

However, this strategy reveals significant flaws when the target distribution changes. As
seen in Tables 6 and 7, even with all available real training data (i.e., FullReal models),
accuracy decreases when the camera or environmental conditions change. Synthetic data is
advantageous for applications where the entire target distribution is unknown or varies fre-
quently. Mix and Fine models outperform FullReal models when varying camera parameters
and introducing environmental challenges.

Mixing synthetic and real data during training generally improves test performance, even
if just slightly. Models trained with a few real images (10% and 50%) can still achieve ac-
curacy similar to their FullReal counterparts. Results show that it is possible to train models
more efficiently using less real data without losing accuracy. Although precision gains may
be insignificant, especially for more complex challenges, the results are promising given the
difficulty of acquiring large amounts of accurate, real, domain-specific labeled data. The mixed
training process is complex, requiring the model to learn the characteristics of different distri-
butions simultaneously. However, this approach reduces sensitivity to overfitting environmental
parameters, suggesting that synthetic data acts as a regularizer.

For Fine models, trained on synthetic data and fine-tuned with real data, the best variations
used 50% of the real dataset. This shows that more real data is not always better. The
two-step training process allows the model to first learn environmental challenges and object
characteristics, then fine-tune with real data. Too much fine-tuning leads to overfitting and a
loss of generalization. Fine-tuned models are the best approach for handling camera changes
but struggle more than Mix models to retain synthetic variations needed for other challenges.

These results, especially when comparing the Fine and Mix models, explain how crucial
model initialization is to the training process, depending on the generalization behavior de-
sired. Regardless of the approach chosen, the FullReal strategy is the worst unless there is
specific training data for a particular target, with little to no variation. As we know, the reality
gap can impact overall performance, making it necessary to use some real data, even if the
amount is reduced. Even with randomization, which creates significant variation, estimating
initial parameters coherent with our distribution is still necessary. Therefore, there is a strong
argument for using synthetic data for monocular RGB 6DoF detection, especially for our in-
door scenario using handheld objects and cameras. Thus, we can improve these strategies by
leveraging knowledge extracted from a small amount of real samples and combining it with
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domain randomization. Figure 8.1.2 shows examples of how each training strategy handles the
variations tested. As described, FullReal models can deal with tests in the same domain, Fine
models handle changes when the object’s appearance is preserved, and Mixed models manage
drastic visual changes in objects.

Figure 25 – Example of results obtained for each training strategy on the domain variations proposed in C3PO.
From top to bottom, it shows images taken from X, EOS, and S8 in the Occlusion, Motion, and
Color variation, respectively. From left to right, we can observe the results from FullReal, Fine,
and Mixed models tested on the same camera where the model was trained.

Source: CUNHA et al. (2024)
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9 RAND-NERF: ADVANCING 6DOF POSE ESTIMATION USING RANDOM-

IZATION AND NERF AUGMENTATION

9.0.1 Motivation

NeRF (MILDENHALL et al., 2021) was initially proposed to reconstruct a viewed scene from
a set of sample images with known poses. Utilizing an MLP model, we can encode a frame that
represents the scene based on each of its 3D coordinates, along with the corresponding view
direction, and map this information to color and density estimations at those positions. NeRF
encodes a scene as a continuous representation in the MLP (𝐹Θ). Given a 3D point in space
(𝑥) and its view direction (𝑑) as input, it predicts the RGB color (𝑐) and the volume density
(𝛿); 𝐹Θ(𝑥, 𝑑) ↦→ (𝑐, 𝛿). As it was designed for model-free scene reconstruction, the model
exhibited shortcomings in reconstructing certain aspects of real scenes. Subsequent models
have enhanced the rendering process by addressing various characteristics such as reflections,
ambient illumination, render performance, and fine-detail reconstruction.

RefNeRF (VERBIN et al., 2022) expanded upon this idea by introducing a new pipeline
with an architecture capable of predicting interpretable components to describe objects in
the rendering process. Its architecture decouples scene properties by predicting normals (𝑛̂),
roughness (𝜌), specular tint (𝑠), specular color (𝑐𝑠), and diffuse color (𝑐𝑑). The final object
components are further estimated by incorporating the predicted data into the tone-mapping
process. Color is defined as specified in equation 9.1.

𝑐 = 𝛾(𝑐𝑑 + 𝑠 ⊙ 𝑐𝑠) (9.1)

Building upon the concept of RefNeRF, we propose using a NeRF architecture capable of
predicting interpretable components that describe object properties for physical-based render-
ing. Predicting these components meaningfully enables us to adjust the predicted parameters,
creating a domain-randomized representation of the original scene.

9.0.2 NeRF Randomization

The proposed architecture is illustrated in Figure 26. Initially, we train the NeRF model
following the RefNeRF pipeline, retaining features corresponding to the physically based ren-
dering. The training of the reconstruction model (i.e., NeRF) involves a two-step process.
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Figure 26 – Training structure combining domain randomization in NeRF optimization. In step 1, we conduct
multi-stage training using NeRF to optimize object reconstruction while introducing noise to the
predicted components to simulate feature variations for randomization during rendering. In step
2, the optimized model is used to render images to train pose regression and refinement networks.
Both models are employed during the inference phase to recover object pose without relying on
prior geometry, such as CAD models or additional real images.

Source: CUNHA et al. (2024)

Initially, we guide the NeRF to learn genuine object features without altering visual aspects,
employing the L1-norm to compute loss between real input (𝐼𝑟) and synthetic image (𝐼𝑠).
Subsequently, we fine-tune the model parameters, prioritizing the optimization of high-level
details, utilizing the contextual loss function 9.2. VGG features (Ψ) are applied in the loss
(𝐿𝑐) to extract information from both the rendered and target images, trying to prioritize a
cross-domain alignment between the perceived features. Figure 27 shows the results obtained
after the object is learned by the NeRF model (before adjusting object borders). Although the
DRRender image contains the best image quality, it cannot reproduce the noises and distor-
tions observed in the real image. NeRF images aim to render a photorealistic representation
while preserving some aspects of the real camera capture.

𝐿𝑐 = |Ψ(𝐼𝑟) − Ψ(𝐼𝑠)| (9.2)

In the second step, we adjust the values of the component representing the object’s color
and illumination, introducing bias to the predicted diffusion and specular components (𝜑𝑑, 𝜑𝑠)

sampled from a normal distribution (𝒩 (0, 1)). Color is computed as equation 9.1 after updating
the parameters (𝑐𝑑) and (𝑐𝑠) according equation 9.3. This forces the model to reconstruct fine
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Figure 27 – Visual result of the reconstruction obtained by rendering with NeRF model and comparing with
the synthetic rendered image from DRrender. From left to right, it is possible to observe the real
image, NeRF image, and DRRender image, respectively.

Source: CUNHA et al. (2024)

details while accommodating variations in color representation without penalizing optimization.
In the context of domain randomization, our goal is to approximate object geometry, and fidelity
in mapping the object’s real features is not strictly necessary. We utilize the object mask in
the dataset annotations to filter information during model training. The NeRF model outputs
both the RGB frame and a disparity map, which can be converted into the object depth map.
The coordinates in the final representation are then normalized. This process is illustrated in
Figure 28. The model is adjusted to create RandNeRF by altering the predicted information
using RGB frames in the object area. Since we have the binary segmentation mask of the
object in the scene, we can change the object’s appearance without altering the background.

𝑐′
𝑑 = 𝑐𝑑 + 𝜑𝑑; 𝑐′

𝑠 = 𝑐𝑠 + 𝜑𝑠 (9.3)

Figure 28 – To induce randomization aspects in the NeRF representation, we adjusted the model by changing
the colors of the object during optimization, creating the RandNeRF model. This was done using
a binary segmentation mask to filter the relevant area representing the object’s pixels.

Source: CUNHA et al. (2024)

To enhance the robustness against occlusion, we introduce distractor objects into the ren-
dered frames. Inspired by Tremblay et al. (TREMBLAY et al., 2018) and our DR-Render (CUNHA
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et al., 2022), we incorporate 3D distractor objects post-image rendering. This addition of 3D
object distractors maps contextual characteristics responsible for occlusion, seamlessly integrat-
ing simulated information into the same domain. Following the suggestion by Hintertoisser et
al. (HINTERSTOISSER et al., 2019), incorporating 3D correspondent data proves advantageous,
improving the models’ capacity to learn occlusion characteristics in real scenes and outper-
forming the use of random 2D shapes or random images as occluders. To refine the interaction
between the target object and distractor objects, we leverage the generated masks from both,
applying a Gaussian filter to the intersecting regions. This approach is intended to simulate
real camera artifacts that emerge when a surface transition occurs for close objects. The occlu-
sion is added dynamically during training after the NeRF models generate randomized images.
The images are generated to ensure a maximum of 35% object occlusion. Finally, we simulate
motion blur, convolving simple directional filters with the final image. Figure 29 illustrates the
final result after processing the rendered image.

Figure 29 – RandNeRF randomization result after image processing applying in-plane rotations and random
background.

Source: CUNHA et al. (2024)

9.0.3 Training models with randomization

In the second step, we utilize the rendered image to train a coarse pose estimator. Using
our detector described in chapter 5, we expand a CNN to perform regression on the image
points representing the projection of the object’s 3D bounding box. We can train the detector
using randomized synthetic frames by employing NeRF to render the image at each step,
passing the point location and view direction as input (Figure 26). We train the network by
optimizing the 𝐿𝑡𝑜𝑡𝑎𝑙 loss defined in equation 5.2. During inference, to estimate the relative
pose (i.e., extrinsic matrix), we leverage the camera intrinsic parameters and coefficients using
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the Perspective-n-Point (PnP) algorithm.
Following the initial pose estimation, pose refinement is based on the displacement between

two consecutive images. Using the randomization process with NeRFs, we dynamically render
various viewpoints. In each iteration, we input both an initial pose and a perturbed pose,
representing a variation of the initial pose in the NeRF model. Subsequently, we render images
from both inputs, compute the pose difference, and convert it into image coordinates (Δ𝑥,
Δ𝑦). This information serves as the basis for initializing the training of the pose refinement
network. Figure 30 shows the pose refinement architecture. The model contains two branches:
In the first branch, we train feature extraction to capture data from two different domains (e.g.,
real and synthetic), creating a correlation volume that is processed to generate a feature block
of correlated pairs. The second branch is responsible for extracting context information from
the domain we want to predict (the real one) and is composed of frozen weights. The correlated
pairs from the real and synthetic domains are concatenated with the contextual feature map.
Finally, we compute the displacements from the returned activations and optimize them using
the GRU layer, as done by the RAFT model (TEED; DENG, 2020). Throughout the process, we
aim to minimize the displacement between the two input frames, utilizing the pseudo-depth
estimated by NeRF as a supervised signal during training. We calculate the displacement
between the two RGB frames during the inference step.

Figure 30 – Pose refinement architecture.

Source: CUNHA et al. (2024)
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Figure 31 – Inference step: We provide the input RGB image to the pose estimation network, which predicts
an initial pose. We then utilize the NeRF model to generate a new image (based on the predicted
pose) and feed both images to the pose refinement network. The estimated difference between
the real and synthetic image is then employed to update the predicted pose.

Source: CUNHA et al. (2024)

9.0.4 6DoF pose estimation and tracking

In the inference phase (Figure 31), we rely on the representation previously learned during
NeRF training rather than depending on CAD models. Our coarse pose estimator estimates
the initial pose. We utilize this prediction to generate an image using the NeRF model. Sub-
sequently, both the area corresponding to the initial prediction and the rendered image are
fed into our pose refinement network. The coarse pose generates a template image rendered
by our NeRF model. We then compare the rendered result with the original image to detect
any displacement between the expected pose (input image) and the estimated pose (rendered
image). The pose refinement network, taking the input and the rendered image, predicts this
displacement between our initial estimation. The resulting displacement (x, y in the image
plane) is applied to refine our initial pose predicted by the CNN detector.
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9.1 IMPLEMENTATION DETAILS

9.1.1 Randomization and training

The desktop employed in this work was a quad-core CPU running at 3.60 GHz, 32 GB
of RAM, and an NVIDIA GeForce RTX 3060 GPU 12GB VRAM. NeRF training requires two
days for each object in our setup. To minimize the use of real labeled frames, instead of
using the entire training set, we randomly select a subset consisting of 10% of the available
samples. To ensure representative viewpoints around the object, we define a distance between
consecutive selections, which is set at 5% of the total number of frames. We use the RGB frame
and the object mask (e.g., depth annotation) during training, along with the pose annotation
available in the dataset (rotation matrix and translation vector) to determine the point location
and viewing direction. Additionally, the space where we project the rays is constrained by
the object’s position, defining the near and far parameters for NeRF training based on the
object’s center and diameter. Following NeRF training, we generated a randomized dataset
by manipulating the diffusion and specular components predicted by the model. For each
component, we introduced noise sampled from a uniform distribution. We rendered 10, 000

images for each object, encompassing diverse viewpoints, colors, and distractor objects. The
distractors consisted of basic geometric shapes randomly placed in the scene, complemented
by contextual information from other learned objects.

For both the pose estimator and pose refinement networks, we conducted training for 500

epochs using an ADAM optimizer with a learning rate of 𝛼 = 0.001 and applied cosine an-
nealing as the scheduler. A warm-up period of 20 epochs was adopted in the pose estimation
phase. For each epoch, we introduced randomization by augmenting images with random back-
grounds. As mentioned earlier, this augmented background served the purpose of preventing
overfitting. Additionally, to enhance robustness against scale changes, we keep the uniform
sampled scales in width and height by a random factor ranging from 320 to 680, with corre-
sponding adjustments to camera parameters. During pose refinement, the CRAFT (SUI et al.,
2022) served as the base network for calculating image differences. The accuracy is measured
by the pose accuracy (ADD) or its variation for symmetric objects (ADD-S) (HINTERSTOISSER

et al., 2013). The ADD is defined by equation 5.4. Following the previous experiments, a pose is
considered correct if 𝐸 < .10𝑑, where 𝑑 is the maximum distance between two mesh vertices,
representing the CAD diameter.
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9.1.2 Datasets

To validate the approach, we utilized the linemod (HINTERSTOISSER et al., 2013) and
linemod-occlusion (BRACHMANN et al., 2014) datasets (Figure 9.1.2), which are widely applied
in the literature for assessing methods in the 6DoF pose estimation task. The linemod dataset
encompasses variations in object pose, featuring the object centrally positioned in the scene
against a cluttered background. Linemod-occlusion, an extension of linemod, includes the same
scenes annotated with different objects, introducing variations in object position and causing
occlusion depending on the viewpoint.

Figure 32 – Linemod and Linemod-occlusion datasets

Source: HINTERSTOISSER et al. (2013), BRACHMANN et al. (2014)

In addition, we conducted evaluations on the HomebrewedDB dataset (KASKMAN et al.,
2019) (Figure 9.1.2), which comprises diverse scenes featuring the same objects with variations
in ambient light. This evaluation aims to validate the robustness of the randomized model in
handling generalization under different light conditions.

Figure 33 – HomebrewedDB dataset

Source: KASKMAN et al. (2019)
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Finally, we applied the C3PO dataset (CUNHA et al., 2022) (Figure 9.1.2), consisting of
small 3D-printed objects recorded in front of various challenges presented in specific scenes,
such as dark ambient lighting, fast motion, and occlusion as discussed in chapter 4.

Figure 34 – C3PO dataset

Source: CUNHA et al. (2022)
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10 EVALUATING RAND-NERF: RESULTS AND DISCUSSIONS

10.1 6DOF ESTIMATION ON LINEMOD

We validated the model’s accuracy under straightforward scenarios in the initial evaluation
by comparing our approach with state-of-the-art models on the linemod dataset; results are
shown in Table 8.

Table 8 – Results obtained on the Linemod dataset using the ADD-S metric. Bold font indicates the best
category result, while underlined values are the best between methods without CAD models. We
compare Rand-NeRF performance against DPOP (ZAKHAROV; SHUGUROV; ILIC, 2019), PVNet (PENG
et al., 2019), LieNet (DO et al., 2019), and NerfPose (LI et al., 2023).

Object DPOD PVNet LieNet Nerf-Pose Rand-NeRF (Ours)

CAD yes yes no no no

Ape 53.3 43.6 38.8 93.1 90.1
Benchvise 95.2 99.9 71.2 99.6 98.9

Cam 90.0 86.9 52.5 98.9 97.2
Can 94.1 95.5 86.1 99.7 97.3
Cat 60.4 79.3 66.2 98.1 87.6
Drill 97.4 96.4 82.3 98.7 94.3
Duck 66.0 52.6 32.5 94.2 89.8

Eggbox 99.6 99.2 79.4 99.9 96.6
Glue 93.8 95.7 63.7 99.3 99.6

Hole puncher 64.9 81.9 56.4 96.5 94.2
Iron 99.8 98.9 65.1 97.8 99.4

Lamp 88.1 99.3 89.4 98.7 91.5
Phone 71.4 92.4 65.0 97.3 92.4

Average 82.6 86.3 65.27 97.83 94.53

Following the approach outlined in NerfPose proposed by Li et al. (LI et al., 2023), we
categorized the results into CAD-based and model-free methods (e.g., without using CAD).
Model-free methods pose a more significant challenge as there is no prior information about
the object geometry, making training and evaluation more demanding. As depicted in Table 8,
our model demonstrates accuracy comparable to other models in the dataset. Notably, in
the model-free category, NerfPose achieved the best overall results in pose estimation. Given
linemod’s limited variation in scene conditions, our randomization approach is less effective
in this scenario. Furthermore, CAD-based approaches are not able to outperform model-free
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methods. Thus, considering that CAD information is not always available, our approach stands
out by achieving results that are close to the best, even without CAD data. It is important
to highlight that although the original training set contains approximately 1000 images, we
use only 100 real images in the training process. Despite this significant reduction, we achieve
comparable results, thereby reducing the need for a large set of real labeled images.

10.2 OCCLUSION HANDLING ON LINEMOD-OCCLUSION

Table 9 compares the mean ADD-S in Linemod (LM) and Linemod occlusion (LM-OCC).
Comparing the results on LM-OCC, our model-free approach and NerfPose exhibit a less
pronounced drop in accuracy. Both approaches employ specific steps to address occlusion
during training. Therefore, our context-based occlusion approach has proven to be the most
effective in handling these scenarios. CAD-based approaches face more challenges in occlusion,
as they need to match the model data with what is visualized in the image.

Table 9 – Mean ADD-S value obtained on Linemod (LM) and Linemod-Occlusion(LM-OCC). We compare
Rand-NeRF with PoseCNN (XIANG et al., 2017), PVNet (PENG et al., 2019), and NerfPose (LI et al.,
2023)

PoseCNN PVNet NerfPose Rand-NeRF (Ours)
CAD yes yes no no

Mean LM 62.7 86.3 97.8 94.5
Mean LM-OCC 24.9 40.8 51.4 58.2

10.3 DOMAIN VARIATION ON HOMEBREWEDDB

In this experiment, we follow the setup outlined by Zakharov et al. (ZAKHAROV et al., 2022).
All methods are trained on HomebrewedDB-scene5 and evaluated on the test set of scene5
and scene10. The primary objective is to assess the impact of illumination variation while
keeping the objects in the scene consistent. In this evaluation, we categorize the approaches
into CAD-based, utilizing only synthetic data generated with a CAD model; CAD-based+real,
incorporating supplementary real data; and modeless, which does not rely on any information
from CAD models during training. As shown in table 10, our approach performs comparably
with state-of-the-art models in simple pose estimation (e.g., same scene). The highest accuracy
is achieved by the Pix2PixHD method (WANG et al., 2018), which relies on both real and CAD
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data for training. However, as we alter the scene configuration by evaluating the model under
different lighting conditions (scene 10), our approach can maintain accuracy with a slight loss
and outperform all other methods. We train the model to handle illumination changes while
varying the predicted color during training. This enables us to retain learned information from
real images, adjusting its parameters when presenting these images to the pose estimation
model.

Table 10 – Results obtained on the HB dataset using the mean ADD-S, training on scene 5 and evaluating
on scene 5 and 10 (varying illumination). Bold font indicates the best category resultt.

Model train scene-5 scene-10

RenderNet (ZAKHAROV et al., 2022) CAD 88.2 40.4
Pix2Pix (ISOLA et al., 2017) CAD+real 73.5 29.1

Pix2PixHD (WANG et al., 2018) CAD+real 89.6 32.3
Rand-NeRF (Our) CAD-free 83.1 75.1

10.4 SCENE CHALLENGES ON C3PO DATASET

This test evaluates our approach in the C3PO dataset (CUNHA et al., 2022). This dataset
was developed to address variations in scenes, objects, and devices, containing frames cap-
tured under diverse challenges such as fast motion, occlusion, object color variation, and light
changes. A set of images gathered from various devices is also available. Still, since our work
does not aim to address cross-device robustness at this stage, we utilized a specific set from
a single device, varying scene and object characteristics.

We believe that using the rendering encoded in the model structure, rather than explic-
itly modeling the object, has additional benefits. NeRF can capture details of the real object
that are difficult to model, simplifying the process by requiring only a few images to approxi-
mate the object structure. This approach allows us to introduce variations based on an initial
estimation of the real features. Furthermore, achieving photorealism and defining variations
through explicit modeling is a complex task. We compare the results with the approach of our
previous model (CUNHA et al., 2022) (DR-Render), which is a CAD-based domain randomiza-
tion using traditional rendering engines. Table 11 illustrates that our approach outperforms
DR-Render in all settings, effectively handling simple scenarios, fast motion, and occlusion.
DR-Render, being based on rendering engines, faces the reality gap problem. Randomization
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is applied only to synthetic frames with a higher difference from real ones. Still, it requires a
considerable amount of real data for further optimization, potentially diminishing the impact
of randomization on the model’s weights. Our approach uses synthetic data, incorporating only
a few real images mapped into the NeRF model, with randomization directly applied to the
reconstructed image. Although it may not be a perfect representation, the difference is less
pronounced, as we are only varying a previously learned set of parameters instead of initializing
scenes with random values for light, colors, and materials. Figure 35 and Figure 36, we can
see visual results projecting the pose predicted by the RandNeRF pipeline for each object and
two different challenges in the C3PO dataset.

Table 11 – Mean ADD-S results obtained on the C3PO dataset under different scene conditions. Bold font
indicates the best category result.

Model Fast
motion

Occlusion Object
color

Lantern

DR-Render (CUNHA et al., 2022) 50.6 31.7 18.6 06.9
Rand-NeRF 75.1 64.7 50.2 32.8

Moreover, despite the decrease in the score, our technique can handle object color variation
and environments with dark illumination (e.g., lantern pointing towards the object).

Figure 35 – RandNeRF visual result for each object in C3PO dataset.

Source: CUNHA et al. (2024)
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Figure 36 – RandNeRF visual result for the challenges motion and occlusion in C3PO dataset.

Source: CUNHA et al. (2024)

10.5 LIMITATIONS

As seen from section 10.1, randomization proves less effective in scenarios where varia-
tions are not pronounced. Although the method successfully detects the object, randomization
unnecessarily escalates training complexity in scenarios that are not beneficial. Rendering ran-
domized frames demands considerable computational effort, requiring the creation of random
scenarios with maximal variation, even if such scenarios are not realistic. This behavior, previ-
ously observed in the DR-Render approach, remains consistent in the Rand-NeRF scenario.

Additionally, the pipeline is highly dependent on the detection approach. When the ini-
tial pose estimation is sufficiently close, we can accurately recover the pose by adjusting
pixel displacements. However, with a disparate estimation, achieving the expected result be-
comes challenging. Similarly, while the method can match poses in moderate movement, larger
movements necessitate more iterations to align the object in the scene. Also, the NeRF rep-
resentation is not always accurate and may introduce slight variations in the true pose. Since
randomization is not focused on representation fidelity, it becomes essential when estimating
the pose and can impact the overall model’s performance. Furthermore, rendering images from
NeRFs at each step contributes to increased inference time.

10.6 RUNNING TIME

Using a 448x448 input image with an RTX 3060, the inference process takes only 0.06

seconds (0.02 seconds for the detection phase and 0.04 seconds for pose refinement). Rendering
the image at each step takes 0.2 seconds, resulting in a total time of approximately 0.26

seconds.
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11 CONCLUSIONS

This work explored various aspects of training a monocular RGB-based deep learning model
for 6DoF pose estimation. By examining multiple scenarios of domain variation, we highlighted
important considerations for assessing new methods within this scope. Our findings confirm
that domain variations can significantly impact model predictions. While traditional augmenta-
tions can address simple variations, they often fail to generalize to more severe domain changes.
Specifically, when environmental settings and object appearances are altered, a more sophisti-
cated approach that accounts for the 3D properties of the scene is required. Additionally, we
emphasized the importance of considering camera settings, as device-specific characteristics
can affect generalization when only RGB data is available. Increasing the training set can mit-
igate this issue, but it is essential to recognize that sufficient labeled samples may not always
be readily available.

Furthermore, we have proposed a practical approach, the DR-Render method, which eval-
uates the impact of different training strategies on the performance of a 6DoF pose estimator.
This method incorporates randomization concepts extended to 3D rendering for pose esti-
mation. While the models trained using this approach still require real data, making them
unsuitable for end-user applications in a broad sense, we have also suggested strategies to
mitigate this issue by reducing the number of labeled images needed. We have also assessed
which training strategies are most effective for under-explored scenarios involving variations in
the environment, target object, and capturing device.

Moreover, we have introduced a unique resource in the form of a labeled dataset, C3PO,
which contains both real and synthetic images. This dataset is distinct in its comprehensive
coverage of essential aspects of pose estimation evaluation, including scenes designed to pose
specific challenges and replicated using a variety of devices. To our knowledge, no other public
dataset offers this combination of cross-device samples structured by challenges derived from
objects and environments.

The suggestions in this work are particularly relevant for 3D-printed, low-texture objects,
for which we believe our results to be even more directly applicable. For future work, we must
perform a careful ablation study to identify the role of each domain randomization aspect when
rendering synthetic scenes and how other synthetic generation approaches can impact 6DoF
detection. It would also be interesting to evaluate how real data augmentation approaches
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individually influence these points.
Additionally, we have extended our model by proposing a new pipeline based on NeRF

and domain randomization. NeRF has proven to be an impressive approach for the realistic
reconstruction of viewed frames. Domain randomization, on the other hand, allows us to
simulate scene variations without being constrained by realistic configurations. By combining
NeRF’s capability to reconstruct scenes with real information and enhancing its robustness to
scene variations through randomization strategies, we have achieved a powerful synergy that
holds significant potential for improving 6DoF pose estimation.

We simulate random light variations by altering the estimated color and process images
through augmentations and random occlusions. This approach demonstrates its utility in train-
ing 6DoF pose estimation models without the need for large datasets. Moreover, we showcase
how randomization improves model generalization in the face of scene variations such as light
changes, fast motion, and occlusions. Acknowledging that this work presents diverse challenges,
there is ample room for improvements in the method’s pipeline.

Furthermore, we can extend the approach by incorporating additional randomization steps,
conducting a comprehensive analysis through an ablation study, and reducing dependence on
the detector model.

11.0.1 Contributions

The direct and indirect contributions of this work are listed below.

• DA CUNHA, KELVIN B.; BRITO, CAIO ; VALENÇA, LUCAS ; FIGUEIREDO, LUCAS
; SIMÕES, FRANCISCO ; TEICHRIEB, VERONICA . The impact of domain random-
ization on cross-device monocular deep 6DoF detection. PATTERN RECOGNITION
LETTERS, v. 159, p. 224-231, 2022.

• DA CUNHA, KELVIN B.; BRITO, CAIO ; VALENCA, LUCAS ; SIMOES, FRANCISCO ;
TEICHRIEB, VERONICA . A Study on the Impact of Domain Randomization for Monoc-
ular Deep 6DoF Pose Estimation. In: 2020 33rd SIBGRAPI Conference on Graphics, Pat-
terns and Images (SIBGRAPI), 2020, Recife/Porto de Galinhas. 2020 33rd SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI), 2020. p. 332.

• Da Cunha, Kelvin; Uchiyama, Hideaki; Simões, Francisco; Teichrieb, Veronica. AugNerf:
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Advancing 6DoF object pose estimation via NeRF and domain randomization. (SUB-
MITTED)

• FELIX, HEITOR ; SIMÕES, FRANCISCO ; CUNHA, KELVIN ; TEICHRIEB, VERONICA
. Image Processing Techniques to Improve Deep 6DoF Detection in RGB Images. In:
XXI Symposium on Virtual and Augmented Reality, 2019. Anais Estendidos do Simpósio
de Realidade Virtual e Aumentada (SVR). p. 19.

• Norberto, J. M., Cunha, K. B. D., Silva Júnior, M. R. D., Simões, F. P. M. (2023,
November). Automating the audit of the Brazilian electronic ballot operation: A new
dataset for 6DoF pose estimation of the voter terminal based on domain randomization.
In Proceedings of the 25th Symposium on Virtual and Augmented Reality (pp. 56-65).
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