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“The best way to predict the future is to create it" - (This sentence is
usually attributed to Peter Drucker)



ABSTRACT

Proactive auto-scaling of Microservice-based Applications has become popular in industry
and academia. Proactive systems analyse historical data patterns to estimate future trends,
assuming they will occur again. Early detection of potential problems, like high latency, enables
prompt action, including service replication, to fix the issues before they arise. Several studies
propose proactive auto-scaling systems for microservices. However, they have design limitations
in their forecasting systems that may negatively impact forecast runtime accuracy. For example,
all these systems rely on a single forecasting model for the prediction task. Using a single
forecasting model increases the risk of inaccurate estimates, leading to unsuitable interventions
that could harm the customer experience. This work presents PMA (Proactive Microservices
Auto-scaler), a MAPE-K-based auto-scaling system that uses forecasting models to anticipate
and avoid microservices performance issues. PMA offers three models to address existent
design limitations: univariate, multivariate and a Multiple Predictor Systems strategy that
uses multiple models for prediction. Several experiments were performed to evaluate PMA and
compare its performance to Predict Kube (PK), a leading adaptive industry tool. In 93.75%
of the experiments, PMA outperformed PK for managing the applications. This work aims to
improve proactive microservices auto-scaling systems, addressing some of their current design
limitations to develop a more accurate and reliable forecasting system.

Keywords: Proactive Self-adaptive Systems. Auto-Scaling. Microservices. Time Series Fore-
casting. Ensemble Learning. Cloud Computing.
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1 INTRODUCTION

This chapter presents the context of adaptation in microservices. It also outlines the primary
motivations for this thesis, the problem being addressed, a summary of partial solutions, a
proposal and unique contributions. Finally, it explains how the rest of this thesis is structured.

1.1 CONTEXT AND MOTIVATION

Microservices have become the de-facto method for building cloud-native applications as
they align with the demands of cloud architectures. Microservices is a developing architectural
style where an entire application is divided into several autonomous services (LEWIS; FOWLER,
2014). Each service performs a specific business operation, running as a separate process
and communicating with each other over well-defined Application Programming Interfaces
(APIs) (LEWIS; FOWLER, 2014; HASSAN; ALI; BAHSOON, 2017). Developing Microservice-based
Applications (MBAs) benefits development teams by offering enhanced scalability, high avail-
ability, flexibility and resilience to failure (LARRUCEA et al., 2018).

Microservices have become widely adopted in the industry. A survey (VAILSHERY, 2021)
revealed that 85% of large companies with 5000+ workers are adopting a microservices archi-
tecture. Some successful companies adopting this approach include Alibaba, Amazon, Face-
book, Netflix, and Twitter (GAN et al., 2019b; LUO et al., 2021). Another survey (IBM, 2021)
demonstrated that companies implementing microservices architecture had experienced signif-
icant benefits. These benefits include a 30% increase in customer satisfaction, a 29% increase
in customer retention, a 28% reduction in time-to-market, a 28% improvement in application
quality and a 27% increase in scalability.

Microservices have also been employed in various cloud areas such as serverless, fog, edge,
and containerised applications (LI; XIA, 2016; TAHERIZADEH; STANKOVSKI, 2017; ABDULLAH

et al., 2021; SCHULER; JAMIL; KüHL, 2021; TOKA et al., 2021; DANG-QUANG; YOO, 2022). They
have been used to build applications such as data storage and analysis, customer relationship
management, e-commerce and finance (IBM, 2021). However, properly adopting microservices
is onerous and involves many challenges that must be considered, such as the complexity of
learning microservices, security concerns, run-time performance degradation and the need for
expert engineering alongside distributed data management (IBM, 2021).



23

1.2 PROBLEM STATEMENT

Managing microservices is more complex than managing a single monolithic application.
Microservices were developed to meet new business requirements, including updating, adding,
and replicating services without compromising the software while running. However, operating
in such a dynamic environment increases the chances of Service Level Agreement (SLA) viola-
tions, resulting in financial penalties and performance degradation (TOFFETTI et al., 2015). For
example, updating a microservice may introduce a bug and result in temporary unavailability
of the application, which was not agreed upon in the SLA. Adaptation is a common approach
to handling run-time microservice performance degradation, such as high response time and
service unavailability. Adaptation is when an organism changes its structure or functions to fit
its environment better (DA; DALMAU; ROOSE, 2011). Auto-scaling is a widely employed adapta-
tion technique for microservices (ALIPOUR; LIU, 2017; TOKA et al., 2021; QASSEM et al., 2023).
It dynamically adjusts application resources to meet workload demand. Auto-scaling can be
done by replicating/removing microservices (horizontal scaling) or allocating or withdrawing
their resources (vertical scaling). Adaptations in MBAs often occur in response to changes in
expected behaviour, such as deploying new microservices replicas to handle unexpected high
demand (AL-MASRI, 2018).

Such changes can be noticed after they occur (reactive) or predicted in advance (proactive).
The latter has recently drawn more attention in the scientific community (KAKADE et al., 2023;
SHIM et al., 2023; QASSEM et al., 2023) and companies1 due to its benefits (MORENO et al., 2015;
ANGELOPOULOS et al., 2016; MARTíNEZ et al., 2017) over the reactive approach. Proactive
adaptation gives more time to explore larger solution spaces and allows the managed system
to be adapted before it saturates (MARTíNEZ et al., 2017).

Changes can be noticed after they occur (reactive) or predicted in advance (proactive).
The latter has recently drawn more attention in the scientific community (KAKADE et al., 2023;
SHIM et al., 2023; QASSEM et al., 2023) and companies2 due to its benefits (MORENO et al., 2015;
ANGELOPOULOS et al., 2016; MARTíNEZ et al., 2017) over the reactive approach. Some benefits
of proactive adaptation include more time to explore larger solution spaces and allowing the
system to adapt before it saturates (MARTíNEZ et al., 2017). Meanwhile, proactive approaches
can also introduce unnecessary overhead and complexity when predictions are inaccurate,
1 https://dysnix.com/predictkube
2 https://dysnix.com/predictkube
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potentially leading to resource wastage or premature adaptations.
Some challenges that the adoption of proactive auto-scaling tools for microservices helps

overcome include:
Challenge 1: Addressing inefficient resource management that compromises the

scalability and resilience of microservices. The lack of proactiveness in MBAs manage-
ment can lead to inefficient resource allocation and compromise the scalability and resilience
of the application. Without continuous monitoring and adjustment, services may not scale
appropriately in response to demand variations, leading to overloads during peak times and
under-utilisation during slow periods. This not only negatively impacts performance and oper-
ational costs but also the managed system’s ability to quickly adapt to changes in workload
or to recover from failures efficiently, compromising service continuity and quality.

Challenge 2: Dealing with late problem detection to avoid degraded user expe-

rience. If issues are not addressed proactively, they may only be noticed after significantly
impacting the managed system. Identifying problems late can result in unplanned downtime
and make it harder to resolve issues, as finding and fixing the root cause becomes more chal-
lenging. Furthermore, a lack of proactivity can lead to inconsistent performance and availability
of services, which can harm user experience.

Nonetheless, the proactive auto-scaling performance relies heavily on the accuracy of the
predictive model. Thus, developing a proactive, adaptive tool requires more caution than a
reactive one. Several approaches have been proposed to anticipate performance degradation
issues through forecasting. However, as demonstrated in this thesis, they suffer from design
limitations that could negatively impact run-time forecast performance, leading to drops in
accuracy. Low prediction accuracy can lead to two potential undesirable outcomes. Firstly, it
may fail to detect performance degradation. Secondly, it may predict a false positive. In either
case, relying on such an estimation to take action can lead to issues such as high latency,
unavailability, and failures. Thus, improving the forecast performance in proactive auto-scaling
tools remains an open research question.

Existing adaptive proactive tools use different forecasting algorithms in their designs. Each
work presents its chosen algorithm as the silver bullet for the prediction task. However, as the
free lunch theorem (YAO; DAI; SONG, 2019) demonstrates, no model is best for all scenarios,
and the effectiveness of auto-scaling proactive tools can be questionable without understand-
ing the algorithms used. Likewise, they also employ different forecasting strategies, but there
has yet to be a consensus among studies on which techniques are most appropriate in different
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scenarios. Furthermore, current adaptive proactive tools only use a single algorithm in their
prediction tool, increasing the risk of inaccurate estimates. Therefore, addressing these limita-
tions in forecasting algorithms and strategies is crucial to improving the overall performance
and reliability of proactive auto-scaling tools.

Considering the challenges and research limitations identified, the main research problem
addressed in this thesis is:

How to adapt Microservice-based Applications (MBAs) proactively?

Therefore, based on the problem mentioned above, the following hypothesis is investigated:

A multi-model self-adaptive tool that employs diverse learning algorithms and prediction

techniques enhances the reliability of microservice auto-scaling by mitigating single-model

dependency risks while improving prediction accuracy by combining multiple models.

The research questions guiding this thesis are derived from the hypothesis:

• RQ1.1 - Which algorithms and prediction techniques are the most accurate and cost-
effective (in terms of quick fitting and forecasting) for microservices forecasting, and
how can these findings be applied to enhance proactive tools?

• RQ1.2 - Can the proactive auto-scaling of MBAs be improved by delegating the fore-
casting task to several models?

1.3 PARTIAL SOLUTIONS

Numerous studies have demonstrated the effectiveness of proactive auto-scaling for auto-
scaling MBAs. For example, Alipour & Liu (2017) forecasted CPU usage with Machine Learning
(ML) models to assist resource auto-scaling. Podolskiy et al. (2018) compared several ML and
statistical models to predict microservices series. Coulson, Sotiriadis & Bessis (2020) proposed
a self-adaptive pipeline that auto-scales microservices based on future traffic estimated by
a Deep Learning (DL) model. Marie-Magdelaine & Ahmed (2020) forecasted traffic with a
DL model to auto-scaling microservices. Fontana de Nardin et al. (2021) reorganised the
deployment of microservices applications to reduce energy consumption based on CPU usage
forecasts from statistical models. Toka et al. (2021) and Dang-Quang & Yoo (2022) forecasted
workload with the same purpose as Alipour & Liu.
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Although several studies propose proactive auto-scaling tools for MBAs, they have de-
sign limitations that may negatively impact forecast run-time accuracy. For example, previous
works often do not clearly explain why they chose a particular forecasting algorithm (ALIPOUR;

LIU, 2017; PODOLSKIY et al., 2018; GALANTINO et al., 2021; MOHAMED; EL-GAYAR, 2021). Fur-
thermore, some works are limited to specific forecasting algorithms, such as ML, without
considering DL or statistical ones (YADAV; Rohit; YADAV, 2021; GOLI. et al., 2021; DANG-QUANG;

YOO, 2021). At the same time, they claim their chosen algorithms are the silver bullet for mi-
croservice proactive auto-scaling, but if different algorithms are deemed best, none are indeed
the one.

Furthermore, all previous works rely on a single model for the forecasting task. Although
some of the studies mentioned above (TOKA et al., 2021; HUANG et al., 2021) have employed
multiple models, they have applied the Classical Forecasting Approach (CFA) (SILVA; NETO;

CAVALCANTI, 2021). This approach evaluates a set of learning algorithms and selects only
the one with the highest forecast accuracy. However, the no free lunch theorem (YAO; DAI;

SONG, 2019) demonstrates that no single model can be optimal for all scenarios. Therefore,
relying solely on one model increases the risk of inaccurate estimates, which can lead to
inappropriate interventions that may harm the customer experience. Linked to this, several
research fields have reported that utilising a multi-model approach improves prediction accuracy
compared to CFA (WIDODO; BUDI, 2011; KOURENTZES; BARROW; CRONE, 2014; ADHIKARI;

VERMA; KHANDELWAL, 2015; MOURA; CAVALCANTI; OLIVEIRA, 2021).
Other limitations of current auto-scaling tools include employing a limited scope of mi-

croservices performance metrics to trigger adaptations, e.g., only CPU usage is considered (ALIPOUR;

LIU, 2017; PODOLSKIY et al., 2018; ROSSI; CARDELLINI; PRESTI, 2020; MARIE-MAGDELAINE;

AHMED, 2020; Fontana de Nardin et al., 2021; DANG-QUANG; YOO, 2021; TOKA et al., 2021). Also,
some works focus only on forecast accuracy, ignoring model fit and forecasting times (COULSON;

SOTIRIADIS; BESSIS, 2020; ROSSI; CARDELLINI; PRESTI, 2020; TOKA et al., 2021). At run-time,
these times are crucial in auto-scaling tools operating in pay-as-you-go environments as mi-
croservices. The forecasting time indicates the duration of the predicting task, while the fit
time determines the training duration. Both times impact the tool performance and the cloud
budget allocation.
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1.4 OBJECTIVES

This thesis aims to develop a proactive and adaptive tool for auto-scaling microservices.
The tool employs different learning algorithms and prediction strategies to improve reliability
by reducing the risks associated with relying on a single forecasting model and enhancing
forecasting accuracy by combining multiple models.

To achieve this main objective, the following specific objectives are defined:

• Conduct a comparative analysis between different classes of learning algorithms for auto-
scaling microservices.

• Perform a comparative study of different forecasting strategies for auto-scaling microser-
vices.

• Propose a new forecasting strategy to enable multiple models into the forecaster com-
ponent.

1.5 PROPOSAL

This thesis answers the previously mentioned research questions by introducing PMA

(Proactive Microservices Auto-scaler), a generic, holistic, adaptive, proactive tool that applies
horizontal auto-scaling to managing MBAs. PMA is structured as a MAPE-K (IBM, 2006)
control loop. It collects and preprocesss microservice performance metrics. Then, it uses the
preprocessed performance metrics as input to predict demand using forecasting models. After,
it inspects the estimation to identify any goal violations, e.g., microservice 𝜇1 will demand 90%
of CPU usage, violating the threshold of 80%. Next, it reviews the violations and determines
the best adaptive action to restore the performance of the managed system. Finally, if needed,
PMA applies horizontal auto-scaling actions to adapt the microservices.

The main component of PMA is its prediction component. PMA offers three forecasting
strategies: univariate, multivariate, and Multiple Predictor Systems (MPS). These strategies
cannot be employed simultaneously. The univariate strategy estimates are based on historical
data from a single performance metric, e.g., CPU usage. Conversely, the multivariate strategy
uses historical data from multiple performance metrics, e.g., CPU usage and memory. The MPS
strategy employs multiple models and can be implemented univariate or multivariate. Each
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strategy has advantages and disadvantages, which are discussed in more detail throughout the
thesis. It is worth noting that PMA is the first self-adaptive proactive tool to provide three
different forecasting strategies.

The proposed MPS strategy is a technique that helps to reduce uncertainties when selecting
a single forecasting model (KOURENTZES; BARROW; CRONE, 2014). Its main idea is to improve
the accuracy and reliability of estimates by combining different forecasting models. This means
that the forecasting process is not dependent on a single source, which makes the tool more
adaptable. The MPS models are trained to predict distinct microservice behaviours. Instead
of having all models trained on general microservice behaviour, MPS creates models that are
experts in predicting specific patterns. For example, one model may be an expert in predicting
weekend workload, while another may be an expert in predicting evening hours. Therefore,
when it is time to forecast, MPS can detect the current pattern and choose the most suitable
model to estimate.

1.6 CONTRIBUTIONS

The main contribution of this thesis is PMA, a MAPE-K-based self-adaptive tool that
proactively adapts microservices at run-time. PMA is a generic, holistic, adaptive, proactive
tool that aims to manage microservices through horizontal auto-scaling. It offers three fore-
casting strategies: univariate, multivariate, and MPS. These strategies estimate the usage of
performance metrics for a particular microservice at run-time. Based on this estimation, the
tool decides whether an adaptation is needed. If necessary, the adaptation consists of exe-
cuting scaling-in/scaling-out operations. PMA is the first self-adaptive proactive tool to offer
three different forecasting strategies for auto-scaling microservices. Likewise, it is the first
mechanism to use MPS.

Other contributions of this thesis are as follows:

• An analysis of popular learning algorithms for forecasting microservices time

series. The analysis aims to guide the selection of learning algorithms for designing
new adaptive and proactive microservice systems. It compares ten learning algorithms
from the three most prominent predicting classes (i.e., ML, DL and statistical). The
evaluated algorithms are a statistical algorithm (AutoRegressive Integrated Moving Av-
erage (ARIMA)) (PRYBUTOK; YI; MITCHELL, 2000)), five DL ones (Dual-Stage Attention-
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Based RNN (DARNN) (QIN et al., 2017), Deep State Space Model (DeepState) (RANGA-

PURAM et al., 2018), DeepAR (SALINAS et al., 2020), Long Short-Term Memory (LSTM)
(MA et al., 2020) and Temporal Fusion Transformer (TFT) (LIM et al., 2021)) and four
traditional ML (Multilayer Perceptron (MLP) (HAYKIN, 2001), Support Vector Regres-
sor (SVR) (DRUCKER et al., 1997), Random Forest (RF) (BREIMAN, 1996) and eXtreme
Gradient Boosting (XGBoost) (CHEN; GUESTRIN, 2016)). The evaluation considers not
only accuracy but also the fit and forecasting time of the algorithms. However, since
no measure of competence computes model fitting and forecasting times, this thesis
proposes a new competence measure called Model Effort Time (MET) to address this
gap. This analysis presents the first comparison of well-known learning algorithms from
three main predicting classes for predicting microservices performance metrics.

• A comparative study of popular forecasting strategies for auto-scaling microser-

vices. This comparative study addresses a research gap comparing univariate and mul-
tivariate proactive auto-scaling of microservices applications. The Predict Kube (PK),
one production-grade solution, is compared to a proposed custom-made proactive auto-
scaling multivariate system named Multivariate Forecasting Tool (MFT). They were
evaluated to adapt four popular open source benchmark applications (Daytrader (DAY-

TRADER, 2024), Quarkus-HTTP-Demo (QHD) (QUARKUS-HTTP-DEMO, 2024), Online
Boutique (OB) (ONLINE-BOUTIQUE, 2024) and Travels (TRAVELS, 2024)) considering
three forecasting horizons (1, 3, and 5 minutes). This comparative study is the first to
evaluate both TSF strategies (i.e., univariate and multivariate) for proactive auto-scaling
of microservices at run-time.

• Multiple Predictor Systems (MPS) for predicting microservices performance

metrics. It introduces a new strategy for forecasting microservices time series by se-
lecting the most suitable forecasters from a pool of models for each prediction. In the
proposal, the Generation phase can generate homogeneous pools (several learning al-
gorithms of the same type) or heterogeneous pools (combining different learning algo-
rithms). In the Selection phase, the generated pool can be chosen through dynamic
selection algorithms, such as Dynamic Selection (DS), Dynamic Weighting (DW), and
Dynamic Weighting With Selection (DWS) (MENDES-MOREIRA et al., 2009), or statically
combined using Mean and Median (MOURA; CAVALCANTI; OLIVEIRA, 2021). The Integra-
tion phase can differ depending on the Selection approach taken. It may not be required
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(DS), or it can involve using a simple mean (Mean and Median) or a weighted mean
(DW and DWS) to combine pool predictions. The proposed MPS is the first strategy
that uses multiple predictors to improve the accuracy and reliability of a microservices
prediction system.

1.7 OUT OF SCOPE

The research addresses issues related to the proactive auto-scaling of MBAs. Hence, the
investigation does not include the following item associated with the topic.

Online learning. Model retraining is expected to be required in production due to the
dynamic nature of microservices. Microservices are designed to be adaptable and flexible over
time. However, this flexibility can cause changes in their behaviour, which may require their
models to be retrained. Some reasons for retraining include microservice life-cycle evolution,
application demand changes, and microservices topology reorganisation.

Decentralised control mechanisms. This thesis does not delve into decentralised control
loop architecture, which distributes decision-making processes across multiple nodes, poten-
tially increasing system resilience and scalability.

1.8 WORK ORGANISATION

This thesis is structured as follows.
Chapter 2 introduces the fundamental concepts used in this thesis, such as self-adaptive

tools, microservices, time series and MPS.
Chapter 3 proposes the PMA, the main contribution of this thesis. The chapter begins

with an overview of the PMA and presents its architecture. Next, it details the design and
implementation of MAPE-K-based components: Monitor, Analyser, Planner, and Executor.

Chapter 4 presents a comparative analysis between different forecasting algorithms for
microservices time series prediction. The chapter begins by introducing and discussing the
problem of literature. Then, it outlines the experimental protocol of the comparative analysis.
After that, the results of the analysis are presented and discussed. This chapter complements
and enhances the understanding of the PMA univariate forecasting module.

Chapter 5 delves into a comparative study between univariate and multivariate forecasting
for auto-scaling microservices. The chapter begins by presenting the literature problem and
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exposing the experimental protocol of the study. After that, the results are presented and
discussed. This chapter enhances and expands the comprehension of the PMA multivariate
forecasting module.

Chapter 6 proposes an MPS to forecast microservices time series. The MPS selects the
most suitable forecasters for each prediction from a pool of models. The chapter begins by
contextualising the problem and objectives of the chapter. Then, it shows the proposed method
and details the experimental protocol applied. After that, it presents an experimental evaluation
and discusses its results. This chapter provides a better understanding of how the PMA MPS
forecasting module works.

Chapter 7 presents the experimental evaluation of the PMA. The chapter begins by in-
troducing the experimental evaluation objectives. Then, it details the experimental protocol
employed. After that, it presents the PMA evaluation outcomes and debates its results. Finally,
it discusses how the PMA results correlate to Chapters 4, 5, and 6 results.

Chapter 8 summarised existing works related to PMA. The chapter begins by introducing
self-adaptive reactive systems. Then, it covers proactive auto-scaling systems designed for
microservices. After that, it shows proactive works for cloud applications. Next, it presents a
comparative analysis of all works.

Finally, Chapter 9 brings the conclusion of this thesis. The chapter begins by showing the
final remarks. Next, it presents the contributions and some limitations of this thesis. Then, it
concludes by debating ways to broaden the research in future work.

1.9 READING SCRIPT

Consider using the following reading guides based on your familiarity with the discussed
topics to facilitate comprehension of the presented thesis.

Readers with a background in time series forecasting and MPS should read the chapters
sequentially as the thesis is organised. If the reader already has a background in time series and
MPS, it will help them to understand the proposed forecasting strategies of PMA. Afterward,
the readers can move on to a detailed explanation of each strategy provided in specific chapters.

Readers with little or no time series knowledge should first read the background (Chapter
2), followed by the PMA overview (Section 3.1). After, it is suggested that the chapters be read
in the following order: 4, 5, 6, 3, 7, 8 and 9. This reading timeline first introduces forecasting
strategies, making the PMA easier to understand.
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Readers with knowledge of time series but none of MPS should first read the background,
followed by the PMA overview (Section 3.1). After, it is recommended to read the chapters in
the following order: 6, 3, 4, 5, 7, 8 and 9. This way of reading allows the reader to understand
MPS and brings the background needed to understand the rest of the chapters.
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2 BACKGROUND

This chapter overviews all concepts essential to understanding the proposal presented in
this thesis. Section 2.1 introduces basic concepts about self-adaptive tools, emphasising the
MAPE-K architecture. Section 2.2 discusses Microservice-based Applications (MBAs), Virtual
Machines (VMs), containers and Container Management Tools (CMTs). Section 2.3 shows
time series concepts and steps related to the forecasting process. Section 2.4 presents primary
concepts about Multiple Predictor Systems (MPS).

2.1 SELF-ADAPTIVE TOOLS

Deploying and maintaining cloud-based systems without assistance has become challenging
due to their complexity (HUEBSCHER; MCCANN, 2008). Various approaches have been suggested
to aid run-time management, with autonomic computing being the standout.

Autonomic Computing aims to improve computer systems by reducing the necessity for hu-
man maintenance and increasing their adaptability (HUEBSCHER; MCCANN, 2008). Adaptation
is when an organism changes its structure or functions to fit its environment better (DA; DAL-

MAU; ROOSE, 2011). Therefore, adaptive managed systems adapt to changes in their execution
environment to continue reaching their predefined goals (WEYNS et al., 2013).

Salehie & Tahvildari (2009) proposed a six-question taxonomy for eliciting requirements
from self-adaptive tools.

• Where does the need for change lie? Which artefacts, layers, and granularity levels
are affected? For instance, where would adaptation be necessary if there is a sudden
change in workload?

• When is the adaptation applied? When must the adaptation be applied, and how
often and at any time? Adaptive tools can be reactive or proactive:

– Reactive adaptation takes place after a problem occurs;

– Proactive adaptation occurs before the problem occurs.

• What element and artefact need to be modified? For instance, a microservice,
acting as the element, may require additional computational resources, which are the
artefacts.
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• Why does the adaptive tool need to act? For instance, the adaptive system needs
to act to decrease managed system response time and avoid Service Level Agreement
(SLA) violations.

• How does the adaptive tool adjust the managed system? Any actions taken to
bring the managed system back to its intended state or goal can be considered as how,
including load balancing, fault tolerance, configuration management, etc. There are two
prominent scaling strategies: horizontal scaling and vertical scaling.

– Horizontal scaling, also known as scaling in/out, replicates/removes components.
For instance, the adaptive tool instantiates a new VM due to a drastic workload
increase.

– Vertical scaling, also known as scaling up/down, increases/decreases the re-
sources of the components. For instance, the adaptive tool reduces the number
of vCPUs allocated to a VM due to low demand.

– Hybrid scaling combines vertical and horizontal strategies to adapt the managed
system.

• Who controls the adaptive process? This question pertains to the extent of human-
level participation required for the self-adaptive tool to operate effectively. For instance,
cloud provider managers, system administrators, self-adaptive tool configurators, and ap-
plication developers can all play crucial roles in the adaptive loop, contributing expertise,
making decisions, and intervening manually when necessary.

2.1.1 Feedback Loop

The Feedback Loops are well-known architectures for developing adaptive tools (SALEHIE;

TAHVILDARI, 2009; WEYNS et al., 2013). Figure 2.1 presents one of these architectures, known
as MAPE-K. MAPE-K (KEPHART; CHESS, 2003; IBM, 2006; SALEHIE; TAHVILDARI, 2009) is a
reference model that consists of cyclic phases described in the following.

• The Managed Element is a system that the Autonomic Manager manages at run-time.

• The Monitor collects, correlates, groups and filters information (metrics, symptoms, and
policies) from the Managed Element through Sensors.



35

Figure 2.1 – MAPE-K architecture.
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• The Analyser checks the collected information, seeking changes in the usual behaviour
of the managed system.

• The Planner proposes actions that maintain the objectives of the Managed Element. It
identifies the necessary changes and how to implement them.

• The Executor executes the proposed actions defined by the Planner through Effectors.

• Knowledge is a passive element used to store data from the four phases of the Au-
tonomous Manager. It can maintain historical data, performance metrics, resource usage
policies, and other relevant information..

2.2 MICROSERVICES

Microservices is a developing architectural style where an entire application is divided into
several autonomous services (LEWIS; FOWLER, 2014). Inspired by service-oriented computing,
microservices address the limitations found in monolithic architecture to meet new market
demands. Monolithic architecture involves designing and developing a complete application as
a single unit module. On the other hand, a Microservice-based Application (MBA) consists of
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a set of autonomous, independently deployed, and well-defined specific business functionalities
services (TAIBI et al., 2017). The use of microservices brings development benefits (NEWMAN,
2015):

• Microservices applications comprise independent modules that can implement specific
technologies, eliminating technology lock-in and enabling software modularisation. There-
fore, developers can leverage the best technologies to reach established performance
levels or address context-specific problems.

• Microservices have well-defined specific business functionalities. If a failure occurs, only
part of the MBA, such as customer registration, is affected without breaking the entire
application, thereby improving fault tolerance.

• The decoupling of microservice architecture enables services to be scaled individually,
improving the availability and resilience to varying workloads.

Along with the benefits, some challenges are inherent in using microservice-based archi-
tectures. MBAs are distributed systems whose highly dynamic components can be updated,
removed, added, and replicated while the system executes. Therefore, MBAs require additional
solutions to support continuous monitoring and deployment, testing, versioning and deprecat-
ing, and state management (LARRUCEA et al., 2018). One way to face these challenges is
through self-adaptive tools (ANGELOPOULOS et al., 2016; ALIPOUR; LIU, 2017; SAMPAIO et al.,
2019).

2.2.1 Containers and Virtual Machines

Cloud applications often use virtualisation techniques to achieve scalability (MALHOTRA et

al., 2014). These applications can be deployed on VMs or containers. A VM can be defined as
an efficient and isolated copy of a real machine (LAURENO, 2006). A Hypervisor is a software
layer located between the hardware and the operating system that manages and allocates
hardware resources from the actual machine (the host) to the VM (the guest), allowing multiple
operating systems to run on the same device (DESAI et al., 2013). Containers offer a similar
concept of virtualisation but are a lighter alternative because they consume fewer resources
and are faster to provision (PAHL, 2015).
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Figure 2.2 compares Hypervisors and containers. Hypervisor virtualisation is suitable when
cloud applications require different operating systems, e.g., Ubuntu and Windows. If this is
not a requirement, containers stand out because they share the operating system, binaries and
libraries.

Figure 2.2 – Hypervisors vs Containers.
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VMs and containers offer scalability but at different levels. For instance, suppose a sce-
nario where a growth in application throughput can demand its adaptation, i.e., scaling out.
Furthermore, consider that the growth tends to occur in specific system parts rather than be-
ing widespread (SAMPAIO et al., 2019). If the application is a microservice, each service could
be deployed on a different VM, e.g., registering customers in VM1 and shopping products
in VM2. Nevertheless, provisioning up a VM can take anywhere from one to over ten min-
utes (LI; WANG; RUAN, 2019). On the other hand, containers are a well-established technology
for deploying microservices (PAHL, 2015). Containers do not allocate extra resources like the
operating system, reducing expenses and speeding up provision compared to hypervisors. As
a result, a single physical host can support hundreds of containers as opposed to a limited
number of VMs (BERNSTEIN, 2014).

2.2.1.1 Container Management Tool

Managing deployment, scaling, storage, life-cycle, and communication becomes increasingly
complex as the number of containers increases. To address these issues, Container Management
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Tools (CMTs) like Kubernetes1 and Docker Swarm2 have emerged (FLORIO; NITTO, 2016).

2.2.1.2 Kubernetes

Kubernetes (K8s) (KUBERNETES, 2024a) is the de-facto standard for managing and or-
chestrating the deployment of containerised applications. It is an open-source container or-
chestration engine that automates application deployment, scaling, and management. In K8s,
pods are the smallest deployable units of computing that can be created and managed. Each
pod can contain one or multiple containers.

2.2.1.3 Docker Swarm

Docker Swarm is an open-source tool that manages and orchestrates resources like con-
tainers. Docker Swarm turns a group of nodes into a Docker Cluster. It abstracts the man-
agement complexity, offering a set of operations, such as deployment, update, and replication
of containers, through a single Application Programming Interface (API). Docker Swarm has
some advantages, such as being native to Docker and easy to configure and use (SOPPELSA;

KAEWKASI, 2016).

2.2.2 Self-adaptive Tools For Microservices

Self-adaptive tools are commonly applied to handle the dynamism of managed systems like
MBA. Two popular self-adaptive tools are detailed in the following:

2.2.2.1 Horizontal Pod Auto-Scaler

K8s has a reactive controller for adapting pods named Horizontal Pod Auto-scaler (HPA)3.
HPA automatically scales the allocated resources, replicating or removing pods of the appli-
cation to satisfy the service demand (HIGHTOWER; BEDA; BURNS, 2017). HPA triggers an
adaptation when there is a mismatch between the current and desired metric value. Equation
2.1 defines the HPA trigger approach:
1 https://kubernetes.io/
2 https://docs.docker.com/engine/swarm/
3 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
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RR = ⌈NCP × CMV
DMV⌉, (2.1)

where RR is the number of required replicas to meet the current demand, NCP is the number
of current pods deployed, and CMV and DMV are the current and desired metric values.

2.2.2.2 Predict Kube

Predict Kube (PK)4 is an artificial intelligence-based predictive auto-scaling tool designed
to optimise resource allocation and performance management in K8s environments. PK en-
hances K8s orchestration by incorporating predictive analytics with a proactive, data-driven
resource management strategy. It integrates with the K8s ecosystem through Kubernetes
Event-driven Auto-scaling (KEDA)5 and uses Prometheus6 as a database.

PK leverages Time Series Forecasting (TSF) techniques to predict future resource de-
mands based on historical data. This proactive approach allows the tool to anticipate workload
fluctuations and adjust resource allocation, minimising response times and improving overall
performance. PK collects and preprocesses historical performance metrics and applies machine
learning algorithms to model the managed system behaviour. Then, it uses the model forecasts
to identify potential issues. It proactively applies horizontal auto-scaling actions to optimise
and maintain managed system performance if issues are found.

2.3 TIME SERIES

A time series comprises observations, typically measured at successive intervals and uni-
formly spaced in time (LORIDO-BOTRAN; MIGUEL-ALONSO; LOZANO, 2014). Equation 2.2 de-
fines a time series:

𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛} , (2.2)

where 𝑡1, 𝑡2 and 𝑡𝑛 are time-series observations, and n is the size of the time series.
4 https://dysnix.com/predictkube
5 https://keda.sh/
6 prometheus.io
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Time series examples include daily temperature values measured by a sensor, application
or server performance metric values per minute, hourly battery level values of an electronic
device, and monthly traffic values transmitted by an internet service provider.

An essential characteristic of a time series is that its observations depend on each other,
making it possible to analyse and model these dependencies (EHLERS, 2007). Time series
analysis is widely used in various fields to tackle problems, including temporal association
(SOMPOLINSKY; KANTER, 1986), time series grouping (KISILEVICH et al., 2010), time series
classification (GRAVES et al., 2006) and TSF (ALIPOUR; LIU, 2017).

Time series can also be classified as univariate or multivariate. A univariate time series is
a series with a single time-dependent variable, also called a feature. A multivariate series has
two or more time-dependent features. In multivariate series, each variable depends not only
on its past values but also on the other variables.

2.3.1 Time Series Forecasting

This thesis focuses on Time Series Forecasting (TSF) of microservices performance metrics.
TSF involves building a model that can accurately represent the behaviour of a given series
and utilise it to make predictions. Three popular classes of algorithms have been used in the
literature for creating representative TSF models: Machine Learning (ML), Deep Learning
(DL) and statistical (MARIE-MAGDELAINE; AHMED, 2020; ROSSI; CARDELLINI; PRESTI, 2020;
MOHAMED; EL-GAYAR, 2021).

Training a time series model involves four phases: data acquisition, preprocessing, model
training, and prediction.

Data acquisition collects historical data on the behaviour to be modelled, e.g., the CPU
usage, memory or data traffic. As mentioned at the beginning of Section 2.3 explained, the col-
lected data must be organised as a time series. Figure 2.3 shows Nasdaq Stock data organised
as a time series.

Preprocessing prepares the data to train the learning algorithm by performing two tasks:
data scaling and restructuring. The scaling modifies the data values in a standardised way
for smaller ranges. It is essential for the convergence of models, avoiding issues like unsta-
ble gradients during training (ZHANG; PATUWO; HU, 1998) and preventing performance drops
in scale-sensitive algorithms such as Support Vector Machine (SVM) (SHALABI; SHAABAN;

KASASBEH, 2006). Commonly applied scaling algorithms include min-max normalisation, z-
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Figure 2.3 – Nasdaq stock series.
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score normalisation and decimal scaling (SHALABI; SHAABAN; KASASBEH, 2006).
Next, the scaled data must be restructured as a supervised learning problem. An alternative

for restructuring is the sliding window method (YU et al., 2014), which transforms the time
series into fixed-size sliding windows. The fixed size is equivalent to the time series lags. Lags,
or past observations of the time series, are typically the most important data for predicting the
current observation. For instance, computer sales in March may be related to sales in February.
Figure 2.4 shows a time window composed of 20 lags.

Figure 2.4 – Time window with 20 lags.
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The auto-correlation function (SCARGLE, 1989) or optimisation algorithms (Ribeiro et al.,
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2011) are alternatives for defining lags. The example of selling computers involves continuous
lags. However, there may be cases where the lags are not continuous. For instance, the number
of scientific publications in Brazil during July may be related to the one in May and March.
Therefore, although June and April are temporarily close to July, they do not correlate. After
selecting the lags, the entire time series is transformed into sliding windows, as illustrated in
Figure 2.5.

Figure 2.5 – Sliding window method.
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The preprocessed data is typically divided into three samples: training, validation, and
testing (KUMAR; SINGH, 2018; WONG, 2018). The training sample is used as input to the
training algorithm. The validation sample validates the model hyper-parameters. The testing
sample validates the trained model, as it was not exposed to the algorithm during training.
Some approaches in the literature use only two samples, i.e., training and testing without
validation (NIKRAVESH; AJILA; LUNG, 2017).

The data splitting helps to detect the problem of model over-fitting. Over-fitting is a
common issue where a model has high accuracy in predicting data used during training (training
and validation samples) but lower accuracy in predicting new data, i.e., testing samples. The
most common percentages used for splitting data into training and testing are 60% and
40% (AJILA; BANKOLE, 2016; NIKRAVESH; AJILA; LUNG, 2017; KUMAR; SINGH, 2018) or 80% and
20% (ALIPOUR; LIU, 2017). For three samples, the split is typically 60%, 20%, and 20% (WONG,
2018). After preprocessing, samples are ready for algorithm training.

Model training involves creating a model that accurately represents the behaviour of a
time series. Various learning algorithms exist in the literature, each utilising different training
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approaches. However, they all aim to maximise model behaviour representation of the time
series by performing an iterative training process.

The iterative training process can be performed in several ways, including the grid search
method (CHANG; LIN, 2011). The grid search steps are defined as follows:

1. Choose a set of parameters;

2. Select a subset of these parameters for training;

3. The training sample is used to train the model;

4. The validation sample is used in the trained model;

5. An accuracy metric evaluates the forecasting of Step 4;

6. Repeat Steps 2 through 5 until there are no more parameters;

7. Choose the set of parameters with the highest forecast accuracy.

Step 5 involves calculating the forecasting accuracy, which measures the difference between
the forecast/classification and its actual value. Many accuracy metrics are available, such as
Root Mean Square Error (RMSE), Symmetric Mean Absolute Percentage Error (SMAPE),
Average Relative Variance (ARV) or Mean Absolute Error (MAE) (WILLMOTT et al., 1985;
AHMED et al., 2010; SILVA et al., 2018).

Finally, the model can make forecasts/classifications in the prediction step.

2.4 MULTIPLE PREDICTOR SYSTEMS

Multiple Predictor Systems (MPS), also called ensemble, have been commonly employed
for TSF. The basic idea of the ensemble is to combine the strengths of different learning
algorithms to build a more accurate and reliable forecasting system (QIU et al., 2017). As
reported in (WIDODO; BUDI, 2011; KOURENTZES; BARROW; CRONE, 2014; ADHIKARI; VERMA;

KHANDELWAL, 2015; MOURA; CAVALCANTI; OLIVEIRA, 2021), MPS obtains better accuracy
than approaches based on only one predictor. MPS encompass three phases: Generation,
Selection and Integration. In the Generation phase, a pool of forecasting models is trained.
The pool is called homogeneous when a single learning algorithm trains all models; otherwise,
it is heterogeneous. In the second phase, one or more models from the pool are selected.
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Lastly, the Integration phase provides the final system forecast by combining forecasts from
the different models chosen earlier. Chapter 6 provides more details about these phases.

2.5 CONCLUDING REMARKS

This chapter provided an essential overview to understand the proposal presented in this
thesis. Initially, basic concepts about self-adaptive tools, emphasising the MAPE-K architec-
ture, were presented. Then, MBAs, VMs, containers, and CMTs were discussed. Next, time
series concepts and steps related to the forecasting process were described. Finally, an intro-
duction to MPS was provided.
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3 PROACTIVE MICROSERVICES AUTO-SCALER

This chapter introduces the PMA in detail. Section 3.1 overviews PMA and the Managed
System. Next, Sections 3.2, 3.3, 3.4 and 3.5 present the Monitor, Analyser, Planner and
Executor, respectively.

3.1 OVERVIEW

PMA (Proactive Microservices Auto-scaler)1 is a generic, holistic and adaptive proactive
tool that applies horizontal auto-scaling to manage microservices. PMA uses forecasting models
to predict microservice performance metrics at run-time. The estimated performance metrics
are used to decide whether an adaptation is necessary. If needed, the adaptation consists
of executing scaling-in/scaling-out actions. PMA has three forecasting strategies: univariate,
multivariate, and Multiple Predictor Systems (MPS).

Figure 3.1 provides an overview of the PMA and the Managed System. The Managed

System consists of applications, denoted as MBA X and MBA Y executed in a Container

Management Tool (CMT) like Kubernetes or Docker. As mentioned in Section 2.2, each
Microservice-based Application (MBA) has a set of microservices, denoted as 𝜇𝑥1, 𝜇𝑥2, and
𝜇𝑥3, whose execution generates performance metrics including CPU usage, memory, response
time, traffic. These metrics are stored inside the Collector Stack.

The Knowledge base is a passive component for storing data such as forecasting models

and PMA settings, e.g., microservices to be adapted and performance metrics to be collected.
The Monitor fetches the performance metrics, preprocesss them, and makes them available
to other adaptive components. The Analyser uses the preprocessed performance metrics as
input to forecast demand using forecasting models. The Analyser can employ three distinct
forecasting strategies: univariate, multivariate, and MPS. However, it can only operate with
one strategy at a time. The Forecaster predicts the demand for each microservice and stores
the outcome in a Metric Forecast report. The Checker inspects the Metric Forecast, identifies
goal violations and generates an Analysis Report. For instance, microservice 𝜇𝑥1 will demand
90% of CPU usage, violating the threshold of 80%.

The Planner reviews the Analysis Report and determines the best action to restore the
managed system. The Planner also has strategies to dump actions that may affect the MBA.
1 PMA source-code is publicly available on the GitHub repository: https://github.com/gfads/PMA
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Figure 3.1 – General overview of PMA.
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For instance, it will block an action identical to a previous one executed within a short time
to ensure the stability of the MBA. The Planner outcome is an Adaptation Plan that includes
scaling in/out commands. Finally, the Executor performs the commands using the CMT aid.

The following sections present components and details that make up PMA.
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3.2 MONITOR

The Monitor fetches and processes performance metrics from the Collector Stack and
makes them available to other feedback loop components. The following monitoring parameters
are configurable:

• Manageable microservices. The PMA configurator can customise it to auto-scale all
or only certain microservices.

• Performance metrics. The PMA configurator can choose which performance metrics
to use for auto-scaling. PMA can use any metrics stored within the Collector Stack, e.g.,
CPU usage, response time or the number of replicas per service.

• Fetch sample format. PMA needs different metrics structures for auto-scaling. The
Monitor provides two formats: aggregate and individual. The individual metric is the
current performance metric value. For instance, 𝜇𝑥1 microservice runs with three replicas.
The aggregate metric is a set of observations of a performance metric, similar to a time
series (see Section 2.3), e.g., CPU usage in the last 10 minutes collected every minute.
As a result, the aggregated metric requires a historical interval, such as 10 minutes, and
periodicity, e.g., 1 minute. PMA uses individual metrics in Planner for demand calculation
and aggregated metrics in Forecast Demand to predict the performance metrics.

• Waiting time. The time between monitoring cycles.

3.3 ANALYSER

The Analyser aims to proactively identify whether the allocated resources, such as the
number of replicas and other performance metrics, are adequate to satisfy the estimated
demand of each microservice. The Analyser is composed of two modules: Forecaster Demand
and Checker. The Forecast Demand predicts the performance metric(s) of the services, e.g.,
estimated response time in the next 5 minutes. The Checker reviews whether the estimated
performance metric(s) violates managed system objectives, e.g., CPU usage at 90%, but the
goal is 80%.

The following sections present the components of Analyser in detail.
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3.3.1 Forecaster

The Forecaster anticipates the performance metric(s) demand of each service. It can esti-
mate demand using three forecasting strategies: univariate, multivariate and MPS.

The univariate strategy estimates are based on historical data from a single performance
metric, e.g., traffic data. On the other hand, the multivariate prediction uses multiple per-
formance metrics for the same purpose, e.g., a combination of response code, request URL,
and number of bytes sent. The MPS employs multiple models, and each model can be trained
using either the univariate or multivariate strategy. The main idea of MPS is to increase the
accuracy and reliability of predictions by combining various forecasting models. By doing so,
forecasting is delegated to multiple models, making the self-adaptive tool less dependent on a
single model.

As presented in Section 2.3.1, four steps must be followed to train forecast models. After
the models are trained, the Forecaster uses the processed historical data from the Monitor
as input to estimate the performance metric. For instance, the CPU usage or the number of
pods in the next 5 minutes. PMA is highly configurable, allowing any performance metrics.
Furthermore, any approach can be used to train forecasting models as long as the fundamentals
of the strategies are maintained (see Sections 2.3 and 2.3.1).

This work adopted Time Series Forecasting (TSF) as a training approach due to its pop-
ularity for proactive auto-scaling tools of microservices (GOLI. et al., 2021; DANG-QUANG; YOO,
2022; KAKADE et al., 2023). For each microservice to be adopted, PMA requires one (univariate
and multivariate) or multiple (MPS) offline-trained models.

3.3.2 Checker

The Checker verifies whether the estimated demand of each microservice violates managed
system goals. The Checker uses a Ratio (R) between the predicted and expected managed
system values to detect violations, similar to the approach proposed by the Horizontal Pod
Auto-scaler (HPA) (see Section 2.2.1.2). Ratio (R) is defined in Equation 3.1:

𝑅 = 𝐹𝑉

𝐷𝑉
, (3.1)

where FV is the future forecasting resource demand, while DV is the defined resource demand
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goal for the microservice.
R is used to classify the state of the microservice. The Checker uses an interval rather

than relying on a fixed value set by the PMA configurator to minimise the occurrence of false
positives. Therefore, Checker has upper and lower limits to a managed system goal, e.g., a
response time of 80ms has a lower limit of 70ms and an upper limit of 90ms. More replicas are
needed if R > upper limit. On the other hand, if the lower limit ≤ R ≤ upper limit, then the
microservice has the ideal number of replicas. Lastly, if the R > lower limit, the microservice
has more replicas than required.

3.4 PLANNER

The Planner determines which adaptive actions should be applied in the MBA. It can
propose horizontal auto-scaling actions, e.g., scaling in/out of replicas. Actions are taken to
address violations found during analysis, such as microservices with too few or too many
replicas. Creating additional replicas is required to maintain the defined goal if the number of
replicas is low. Conversely, optimisation of resources requires adaptation when there are extra
replicas.

The planner calculates the number of replicas per microservice to meet future demand,
following the HPA’s approach (see Section 2.2.1.2). Equation 3.2 defines the HPA:

RR = ⌈NCP × CMV
DMV⌉, (3.2)

where RR is the number of required replicas to meet the current demand, NCP is the number
of current pods deployed, and CMV and DVM are the current and desired metric values,
respectively.

The Planner also implements a module to prevent successive adaptations and ensure the
managed system stability. Its primary purpose is to avoid making identical changes to the same
microservice within a short period. This module is critical because each adaptation can add
extra strain on the managed system. If not handled properly, this could result in a continuous
cycle of adjustments, making the original issue even worse.

The module utilises a structure similar to an etcd2 key-value store to maintain the status
of adaptations. Each microservice has an entry, and within each entry, the last adaptation
2 https://etcd.io/
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action, such as scaling-in and scaling-out, along with their respective timestamps, is recorded.
Before triggering a new adaptation, the records serve as a reference point for the Planner that
checks the timestamp of the last occurrence of the specific adaptation for the microservice
in question. If this previous adaptation occurred within a predefined cool-down period, the
Planner blocks the new adaptation.

The cool-down is the minimum time interval required between two identical adaptations.
Each auto-scaling action can have a designated cool-down period. For instance, the auto-
scaling tool may require a 5-minute cool-down period for scaling-in and a 4-minute cool-down
period for scaling-out. Likewise, the module also manages each microservice and adaptive
action individually. For example, MBA X A has been blocked for 2 minutes after a scaling-in
and 4 minutes after scaling-out adaptations. At the same time, MBA Y has been blocked for
3 minutes after a scaling-out action.

3.5 EXECUTOR

The Executor translates and carries out adaptation plans created by the Planner. An
adaptation plan is a high-level command sequence that needs to be translated into ones
recognised by a CMT, such as Kubernetes and Docker Swarm. After the translation, the
Executor uses the Invoker to send requests with low-level commands to the CMT Management
Application Programming Interface (API).

The Management API changes the CMT by modifying the number of replicas of the
microservice depending on the scaling action. The Management API also informs the Executor
whether the command execution was successful. Figure 3.2 shows process details inside the
Executor.
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Figure 3.2 – Internal processes of the Executor.
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3.6 CONCLUDING REMARKS

This chapter began with an overview of PMA. Then, it outlined its phases, including the
Monitor, Analyser, Planner, and Executor. Likewise, the operational process between these
components was presented. It involves monitoring, forecasting, analysing performance metrics,
and planning and executing scale adaptations based on these forecasts.
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4 LEARNING ALGORITHMS COMPARATIVE ANALYSIS

This chapter presents a comparative analysis of different classes of learning algorithms
for univariate forecasting of microservices performance metrics. Section 4.1 explains how this
chapter is related to PMA. Section 4.2 states and motivates the problem the comparative
analysis solves. Section 4.3 details the experimental setup used. Section 4.4 presented an
experimental evaluation to assess the performance of the different learning algorithms. Section
4.5 covers the outcomes and results of the study.

4.1 CONTEXT

The PMA (Proactive Microservices Auto-scaler) has an Analyser phase, which uses three
prediction strategies to assist decision-making. One of these strategies is the univariate ap-
proach, which involves independently using individual performance metrics and their predictive
capabilities for auto-scaling microservices. The comparative analysis presented in this chapter
serves as a precursor to implementing the PMA univariate outlined in Chapter 3.

While past research has explored univariate approaches (PODOLSKIY et al., 2018; TOKA et

al., 2021; GOLI. et al., 2021), there has yet to be a consensus on the predictive algorithms for
microservices, including their forecasting accuracy and their prediction and training costs.

This analysis seeks to establish a solid foundation for the subsequent implementation of
univariate predictive modelling techniques within the PMA. It aims to verify that the selected
algorithms work effectively and can identify both positive and negative factors that impact
predictive modelling results. As a result, this thesis is expected to improve the univariate
forecasting process, allowing it to produce more accurate forecasts and better support data-
driven decision-making.

4.2 PROBLEM STATEMENT

Time Series Forecasting (TSF) is a dominant approach to predict performance degra-
dation in proactive auto-scaling of microservices (KANG; LAMA, 2020; YADAV; Rohit; YADAV,
2021). Typically, there are three main classes of prediction algorithms employed for TSF: Ma-
chine Learning (ML) (GOLI. et al., 2021), Deep Learning (DL) (COULSON; SOTIRIADIS; BESSIS,
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2020) and statistical algorithms (YADAV; Rohit; YADAV, 2021). Some approaches employ only
a single learning algorithm class, e.g., ML (ALIPOUR; LIU, 2017; GOLI. et al., 2021) or sta-
tistical (ALIPOUR; LIU, 2017; ROSSI; CARDELLINI; PRESTI, 2020; Fontana de Nardin et al., 2021;
GALANTINO et al., 2021). At the same time, others use algorithms from different classes and
pick up the one with the highest forecast accuracy, an approach denoted as the Classical Fore-
casting Approach (CFA), e.g., ML and DL (COULSON; SOTIRIADIS; BESSIS, 2020; MOHAMED;

EL-GAYAR, 2021), DL and statistical (DANG-QUANG; YOO, 2021; WANG, 2021), statistical and
ML (PODOLSKIY et al., 2018; KANG; LAMA, 2020; YADAV; Rohit; YADAV, 2021) and statistical,
ML and DL (HUANG et al., 2021; TOKA et al., 2021).

However, most previous works claim their algorithms are the silver bullet for the proactive
auto-scaling of microservices, but if different algorithms are deemed better, none are indeed
the one. Also, these approaches usually demonstrate at least one of the following weak points:

1. Poor justification of the selected algorithms (ALIPOUR; LIU, 2017; PODOLSKIY et al., 2018;
GALANTINO et al., 2021; MOHAMED; EL-GAYAR, 2021);

2. Limited evaluation by not contemplating the main classes of prediction algorithms or
employing a short list of algorithms (YADAV; Rohit; YADAV, 2021; GOLI. et al., 2021; DANG-

QUANG; YOO, 2021);

3. Only considering specific microservices performance metrics (ALIPOUR; LIU, 2017; PODOL-

SKIY et al., 2018; ROSSI; CARDELLINI; PRESTI, 2020; MARIE-MAGDELAINE; AHMED, 2020;
Fontana de Nardin et al., 2021; DANG-QUANG; YOO, 2021; TOKA et al., 2021);

4. Only focused on forecast model accuracy, disregarding model fit and forecasting times (COUL-

SON; SOTIRIADIS; BESSIS, 2020; ROSSI; CARDELLINI; PRESTI, 2020; TOKA et al., 2021),
crucial in auto-scaling tools operating in pay-as-you-go environments as microservices;

5. Employ real-world restricted time series, focusing only on specific behavioural changes
such as spikes in response time, or synthetic series (ALIPOUR; LIU, 2017; PODOLSKIY et

al., 2018; COULSON; SOTIRIADIS; BESSIS, 2020; KANG; LAMA, 2020).

Furthermore, choosing the best learning algorithm from the vast range available, each with
unique features that distinguish them in different time series can be a challenging task(SILVA

et al., 2018).
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This chapter deals with all these weaknesses to guide the selection of learning algorithms,
streamlining the design of new adaptive microservice tools. It compares ten known learning
algorithms from the three most prominent predicting classes, i.e., ML, DL and statistical.
Also, it evaluates not only the accuracy but also considers the fit and forecasting time of the
algorithms. Finally, 40 time series extracted from microservices operating in production in a
large-scale deployment within the Alibaba Cluster (LUO et al., 2021) were used to evaluate
the algorithms. These series consist of metrics commonly used to identify changes in the
expected behaviour and trigger the microservices adaptation process (ALIPOUR; LIU, 2017;
ROSSI; CARDELLINI; PRESTI, 2020; HUANG et al., 2021; MOHAMED; EL-GAYAR, 2021), namely
CPU usage, memory, response time and traffic.

The following research questions guide this comparative analysis:

RQ4.1 - What are the most accurate algorithms for predicting microservices time series?

RQ4.2 - Does the accuracy of the algorithms depend on the microservice time series to
be forecasted?

RQ4.3 - Which are the most accurate and faster models for fitting and forecasting
microservices time series?

4.3 EXPERIMENTAL PROTOCOL

This section outlines the experimental protocol for comparing the three commonly adopted
predicting classes for forecasting microservice performance metrics. The description covers the
adopted datasets, learning algorithms, training procedures, evaluation metrics and statistical
analysis.

4.3.1 Datasets

The experiments use real-world microservices time series collected from Alibaba production
clusters1 (LUO et al., 2021). This dataset was chosen because it comprises time series data
from nearly twenty thousand microservices running over ten thousand bare-metal nodes during
1 More detailed information about the Alibaba database is available in a public repository:

https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2021
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twelve hours in 2021. It includes performance metrics such as CPU usage, memory, response
time and traffic.

All four metrics are widely adopted for proactive microservice auto-scaling (GALANTINO

et al., 2021; MOHAMED; EL-GAYAR, 2021; YADAV; Rohit; YADAV, 2021). For each metric, a
subset of the time series was randomly selected. Next, the ten least similar series from the
subset were chosen according to the DTW algorithm (MORI; MENDIBURU; LOZANO, 2016;
YOSHIDA; CHAKRABORTY, 2017). The selected traffic and response time series also cover dif-
ferent communication mechanisms among microservices: inter-process communication (STEEN;

TANENBAUM, 2017), remote invocation (SRIRAMAN; WENISCH, 2018) and indirect communi-
cation (GAN et al., 2019a). CPU usage and memory series are composed of values measured
every 30 seconds, resulting in an average of 1440 points. Traffic and response time series are
composed of values measured every 1 minute, resulting in an average of 720 points per series.
Appendix A provides a detailed description of the time series.

The min-max normalisation (SHALABI; SHAABAN; KASASBEH, 2006; de Amorim; CAVALCANTI;

CRUZ, 2023) was adopted to scale the series to the interval [0, 1]. Equation 4.1 defines the
min-max normalisation:

𝑇𝑛𝑜𝑟𝑚 = 𝑇𝑖−𝑡ℎ − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

(4.1)

where 𝑇𝑖−𝑡ℎ is the original value of a time series observation; 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 are minimum/ma-
ximum values obtained from the time series; 𝑇𝑛𝑜𝑟𝑚 is the normalised value of 𝑇𝑖−𝑡ℎ.

The series was also divided as follows: 60% points for training (7 hours and 12 minutes),
20% for validation (2 hours and 24 minutes) and the last 20% for testing (2 hours and 24
minutes) as done by Rangapuram et al. (2018), Wong (2018) and de Oliveira et al. (2020).

4.3.2 Parameters Setting

The comparative analysis investigated one statistical algorithm (AutoRegressive Integrated
Moving Average (ARIMA) (PRYBUTOK; YI; MITCHELL, 2000)), five DL ones (Dual-Stage
Attention-Based RNN (DARNN) (QIN et al., 2017), DeepAr (SALINAS et al., 2020), Deep State
Space Model (DeepState) (RANGAPURAM et al., 2018), LSTM (MA et al., 2020) and TFT (LIM

et al., 2021)) and four traditional ML ones (Multilayer Perceptron (MLP) (HAYKIN, 2001),
Random Forest (RF) (BREIMAN, 1996), Support Vector Regressor (SVR) (DRUCKER et al.,



56

1997) and eXtreme Gradient Boosting (XGBoost) (CHEN; GUESTRIN, 2016)).
ML and ARIMA algorithms were selected because they are commonly used for forecasting

microservices performance metrics (PODOLSKIY et al., 2018; PRACHITMUTITA et al., 2018; ROSSI;

CARDELLINI; PRESTI, 2020; GOLI. et al., 2021; MOHAMED; EL-GAYAR, 2021; DANG-QUANG; YOO,
2021; YADAV; Rohit; YADAV, 2021). Also noteworthy is the variability of the ML learning tech-
niques: a neural network, a support vector machine and two ensemble learning approaches.
DL algorithms are also adopted for microservices performance metrics forecasting, but ex-
isting solutions mainly focus on Long Short-Term Memory (LSTM) (COULSON; SOTIRIADIS;

BESSIS, 2020; DANG-QUANG; YOO, 2021; TOKA et al., 2021). Therefore, the DL subset was
extended to cover other popular algorithms (DARNN (QIN et al., 2017), DeepAr (SALINAS et

al., 2020), DeepState (RANGAPURAM et al., 2018), TFT (LIM et al., 2021)) as done by Elsayed
et al. (2021). These algorithms were selected due to their higher forecast accuracies in the
univariate series, which is the series category this chapter investigates. Temporal Fusion Trans-
former (TFT) (VASWANI et al., 2017) adoption is also noteworthy in this extended list as it is a
Transformer-type learning algorithm that has not yet been employed for proactive auto-scaling
of microservices.

The time series were organised utilising six time-sliding window lag sizes (L = {10, 20, 30,
40, 50 and 60}) selected using the Autocorrelation Function (ACF) (BOX et al., 2015). Due to
the high number of hyper-parameter combinations, notably in algorithms like XGBoost with
6,561 combinations, only a subset of 60 random combinations is used per training, following
the approach used by Lim et al. (2021).

4.3.3 Metrics

Mean Square Error (MSE) (Equation 4.2), a widely adopted competence measure, was
used to assess forecast model accuracy (ARMSTRONG; COLLOPY, 1992; de Mattos Neto et al.,
2014; OLIVEIRA; SILVA; NETO, 2022). MSE is defined in Equation 4.2:

𝑀𝑆𝐸 = 1
|𝑇 |

𝑇∑︁
𝑖=1

(𝑡𝑖 − 𝑝(𝑡𝑖))2, (4.2)

where 𝑡𝑖 is the real value of the series, 𝑝(𝑡𝑖) is the value forecasted to the observation 𝑡𝑖 by
the model p, and |𝑇 | is the number of observations.

As far as the authors know, no measure of competence currently computes model fitting
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Table 4.1 – Hyper-parameters used in training models along with their source.

Algorithms Hyper-parameters
ARIMA Autoarima library
DARNN ‘enconder’: [16, 32, 64, 128, 256], ‘decoder’: [16, 32, 64, 128, 256] (QIN et

al., 2017)
DeepAr ‘encoder’: [8], ‘decoder’: [8], ‘batch’: [64], ‘learning_rate’: [0.0001], ‘layers’:

[3], ‘lstm_nodes’: [40] (SALINAS et al., 2020)
DeepState The algorithm itself selects the hyper-parameters (RANGAPURAM et al., 2018)

LSTM ‘batch_size’: [64, 128], ‘epochs’: [1, 2, 4, 8, 10], ‘hidden_layers’: [2, 3, 4, 5,
6], ‘learning_rate’: [0.05, 0.01, 0.001], (COULSON; SOTIRIADIS; BESSIS, 2020)

MLP ‘hidden_layer_sizes’: [2, 5, 10, 15, 20], ‘activation’: [‘logistic’], ‘solver’:
[‘adam’], ‘max_iter’: [1000], ‘num_exec’: 10 (OLIVEIRA; SILVA; NETO, 2022)

RF ‘min_samples_leaf’: [1, 5, 10], ‘min_samples_split’: [2, 5, 10, 15],
‘n_estimators’: [100, 500, 1000] (ESPINOSA et al., 2021)

TFT ‘dropout_rate’: [0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9], ‘learning_rate’: [0.0001,
0.001, 0.01], ‘num_heads’: [1, 4], ‘batch’: [64, 128, 256] (LIM et al., 2021)

SVR ‘gamma’: [0.001, 0.01, 0.1, 1] ‘kernel’: [‘rbf’, ‘sigmoid’] ‘epsilon’: [0.1, 0.001,
0.0001] ‘C’: [0.1, 1, 10, 100, 1000, 10000] (OLIVEIRA; SILVA; NETO, 2022)

XGBoost ‘col_sample_by_tree’: [0.4, 0.6, 0.8], ‘gamma’: [1, 5, 10], ‘learning_rate’:
[0.01, 0.1, 1], ‘max_depth’: [3, 6, 10], ‘n_estimators’: [100, 150, 200],
‘reg_alpha’: [0.01, 0.1, 10], ‘reg_lambda’: [0.01, 0.1, 10], ‘subsample’: [0.4,
0.6, 0.8] (PRASETYO; HOGANTARA; ISNAINIYAH, 2021)

and forecasting times. Therefore, this chapter proposes a new competence measure called MET
to fill this gap. Model Effort Time (MET) is the average sum of the fitting and forecasting
time. MET is defined in Equation 4.3:

𝑀𝐸𝑇 = 1
𝑁𝑅

𝑁𝑅∑︁
𝑖=1

(𝜑𝑖 + 𝜂𝑖), (4.3)

where 𝜑𝑖 and 𝜂𝑖 are the fitting and forecasting times of the model in run 𝑖, and 𝑁𝑅 is the
number of runs defined as 30.

MET is calculated using only the best model hyper-parameters per series. The grid search
approach (BELETE; HUCHAIAH, 2022) time was not considered due to the varying number of
hyper-parameter combinations among algorithms. Thus, those with smaller length combina-
tions would benefit, e.g., RF. For both measures, lower values mean a better model.

https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.html
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4.3.4 Statistical Analysis

The non-parametric Friedman Test (FRIEDMAN, 1940) was used to compare the forecast
accuracy performance of all algorithms over the series, as done by Mende & Koschke (2009),
Cornejo-Bueno et al. (2019) and Mastelini & de Carvalho (2021). The Friedman test ranks
the algorithms according to their forecast accuracy performance, i.e., the best-performing
algorithm gets 1, the second-best gets 2, and so on. For algorithms which have the same
forecasting accuracy performance, the average rank is assigned to them. The average rank of
an algorithm is the average of its ranks across all series by metric.

The Nemenyi post-hoc test (NEMENYI, 1963) was applied to evaluate the average algorithm
ranks similar to Graczyk et al. (2010). This test provides a pairwise comparison to report any
significant difference between individual algorithms. Individual algorithms significantly differ if
their average ranks exceed the Critical Difference (CD) defined in Equation 4.4.

𝐶𝐷 = 𝑞

⎯⎸⎸⎷ |Δ|(|Δ| + 1)
6|𝜆|

, (4.4)

where |𝜆| is the number of series, |Δ| denotes the number of algorithms, and 𝑞 is a critical
value.

The Nemenyi Test was applied with a 95% confidence level, and the CD diagram (DEMVSAR,
2006) was used to visualise its results. Horizontal lines in the diagram connect algorithms
whose average ranks are lower than CD, i.e., no evidence was found to guarantee a significant
difference between them.

4.4 RESULTS

This section compares different classes of learning algorithms for forecasting microservices
performance metrics. Drawing on insights from Chapter 3, where the multivariate PMA mod-
ule was introduced, the following analysis evaluated the performance of popular forecasting
algorithms to forecast microservices performance metrics. By identifying the most effective
predictive algorithms and clarifying their forecasting accuracy and predicting and fitting costs,
this section aims to optimise the PMA univariate module. Establishing a robust foundation of
predictive modelling techniques aids in refining the univariate forecasting process within the
PMA, enabling more accurate and data-driven decision-making in microservice auto-scaling.
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Section 4.4.2 assesses the MET for fitting and forecasting the series and correlates it with
their accuracy. The comparative analysis source code, figures, datasets and detailed model
accuracies by time series are available in a public repository2.

4.4.1 Models Accuracy

Table 4.2 presents the MSE average and standard deviation accuracy of the models to
forecast 40 different series (10 series per microservice metric). SVR obtained the best results
(lowest MSE) for CPU usage, memory, and traffic series. DeepAr stands out in the response
time series. Nevertheless, both algorithms alternate as best or second-best across all metrics.
ARIMA, DARNN, and XGBoost repeatedly alternate as having the worst results.

Table 4.2 – Accuracy of the models by microservice performance metric. Mean and standard deviation results
of the MSE competence measure. The best results are highlighted in bold, and the second-best
results are underlined per microservice metric. Error-values are in the 10−3 scale.

Algorithms CPU usage Memory Response time Traffic
ARIMA 82.02 (74.74) 14.12 (20.93) 21.42 (11.68) 34.39 (37.51)
DARNN 107.1 (84.23) 57.75 (71.18) 32.42 (21.43) 42.79 (50.71)
DeepAr 5.309 (5.920) 0.924 (1.666) 8.891 (5.781) 6.734 (6.462)

DeepState 20.39 (40.35) 1.264 (2.197) 10.01 (5.279) 8.329 (6.319)
LSTM 16.83 (13.90) 1.662 (2.024) 15.71 (7.161) 9.904 (6.726)
TFT 5.629 (6.178) 0.928 (1.743) 12.68 (8.702) 9.789 (10.45)
MLP 9.350 (7.097) 2.991 (3.147) 9.936 (5.634) 7.952 (5.773)
RF 20.25 (27.76) 84.90 (101.7) 21.03 (26.17) 17.94 (20.31)

SVR 3.232 (1.972) 0.736 (1.661) 9.117 (6.496) 6.701 (6.445)
XGBoost 42.48 (50.75) 92.84 (98.70) 37.01 (32.27) 26.09 (22.89)

Some algorithms had better results only on specific metrics. For instance, DeepState is
better for memory, response time, and traffic, TFT for CPU usage and memory, and LSTM for
memory and traffic series. MLP had good results on all metrics but underperformed SVR and
DeepAr. RF does not stand out for any metric, having worse results in memory forecasting.

The Friedman test indicated a statistical difference between the accuracy of the models. So,
a pairwise comparison was performed using the Nemenyi post-hoc test, whose results are shown
in Figure 4.1. The CD diagram shows no statistical difference between SVR, DeepAr, TFT,
and DeepState accuracies across all metrics. Likewise, it confirms that ARIMA, XGBoost, and
DARNN are statistically worse than SVR and DeepAr in most results except for DeepAr, which
2 https://github.com/gfads/comparative-analysis-microservices-prediction
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is performed equally to ARIMA and XGBoost in traffic. Also, there is no statistical evidence
that other algorithms were worse than SVR, DeepAr, TFT, and DeepState on specific metrics
such as CPU usage (MLP and RF), memory (LSTM), response time and traffic (LSTM, MLP
and RF).

Figure 4.1 – The graphical representation of the Nemenyi post-hoc test results on the CD diagram. Each
microservice metric has its CD diagram. Horizontal lines in the diagram connect algorithms
whose average ranks are lower than CD, i.e., no evidence was found to guarantee a significant
difference between them.
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Furthermore, these results show that the algorithms of both predicting classes (DL and
ML) obtain high (SVR and DeepAR), medium (MLP and LSTM), and low (XGBoost and DA-
RNN) forecast accuracies, i.e., choosing a specific predicting class does not guarantee better
forecast accuracy. Hence, the results indicate a metric-dependent problem, and the algorithm
choice decision must be carefully addressed during tool design.

Based on the accuracy obtained in the 40 analysed time series, Table 4.3 recommends the
best learning algorithms for each microservice performance metric. The ✓ indicates whether
the algorithm should be used per microservice series. Otherwise, X is used.

Considering the results, the most accurate algorithms for forecasting microservices

time series are DeepAr, DeepState, TFT and SVR, answering 4.1. Three algorithms
(DeepAR, DeepState, TFT) belong to the DL predicting class, and one, SVR, belongs to the
traditional ML class. However, SVR accuracy deserves a highlight since DL algorithms tend
to be overly complex compared to traditional techniques. The results also show that MLP is
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Table 4.3 – A recommendable summary of the evaluated algorithms considering accuracy only. The choices
were based on the statistical Friedman and the Nemenyi post-hoc tests. The ✓ means that the
algorithm is recommended to forecast the metric. Otherwise, ✗ is used.

Algorithms CPU usage Memory Response time Traffic
ARIMA ✗ ✗ ✗ ✗

DARNN ✗ ✗ ✗ ✗

DeepAr ✓ ✓ ✓ ✓

DeepState ✓ ✓ ✓ ✓

LSTM ✗ ✓ ✓ ✓

MLP ✓ ✗ ✓ ✓

RF ✓ ✗ ✓ ✓

SVR ✓ ✓ ✓ ✓

TFT ✓ ✓ ✓ ✓

XGBoost ✗ ✗ ✗ ✗

more accurate in response time and traffic series, LSTM in memory and RF in CPU usage.
Likewise, even the recommended algorithms are more prominent in specific series, e.g., TFT
(CPU usage and memory) and DeepState (memory, response time and traffic). Therefore, it
is possible to conclude that the accuracy of the models depends on the time series to

be predicted, giving a positive answer to 4.2.

4.4.2 Model Effort Time

Although higher forecasting accuracy is essential for proactive auto-scaling tools, other
factors can also affect their performance. Forecast time affects the reaction time of the adaptive
tool to changes and fitting time affects its operation, e.g., a slow self-adaptive tool startup
or unavailability due to lengthy model retraining. Thus, for real applications, both times are
crucial in determining whether the adaptation execution takes place on time. Both times were
summed and defined for analysis as MET in Equation 4.3.

Table 4.4 presents the average MET results of each algorithm by microservice performance
metric. As expected, traditional ML algorithms are faster than ARIMA and DL due to their
lower complexity. The MET in DL algorithms is broad, going from faster algorithms than
ARIMA (DARNN and LSTM) to the two slowest evaluated (TFT and DeepState). The fastest
algorithms per predicting classes are MLP and SVR in ML and DARNN and LSTM in DL.
Finally, ARIMA has comparable MET to DeepAr and LSTM.

Considering MET and accuracy, SVR is the best for forecasting microservice met-
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Table 4.4 – Average MET results of algorithms. The best results are highlighted in bold for each prediction
algorithm class and microservice metric, while the second-best results are underlined. The MET
value is in seconds.

Predicting Class Algorithms CPU usage Memory Response time Traffic
Statistical ARIMA 7.22 7.51 8.12 8.84

DARNN 2.56 2.66 2.79 2.92
DeepAr 9.23 9.22 9.22 9.22

DeepState 92.31 92.34 92.38 92.45
LSTM 6.18 6.50 6.77 7.11

DL

TFT 17.91 17.91 17.90 17.90
MLP 0.05 0.05 0.05 0.05
RF 0.97 1.06 0.96 0.94

SVR 0.12 0.13 0.13 0.15
ML

XGBoost 0.20 0.20 0.22 0.24

rics, answering 4.3. Although SVR, DeepAR, DeepState, and TFT do not have significantly
different accuracies, SVR stands out for its lower MET. DeepAr and TFT are also outstanding
choices in an environment without strict time constraints. LSTM is another alternative, but
only for forecasting specific metrics. DeepState is discouraged due to its lengthy MET and,
consequently, its impact on a microservices execution environment. MLP and RF can also
be adopted because they have good accuracy in microservices-specific metrics and do not
have lengthy MET. Finally, ARIMA, DARNN, and XGBoost have low accuracy and should be
avoided in series with behaviour similar to that of the Alibaba database.

Table 4.5 summarises the findings of the comparative study by associating the algorithms
and microservice performance metrics considering MET and accuracy. The ✓ indicates that
the algorithm accurately forecasts the microservice metric based on the Friedman statistical
test. Otherwise, ✗ is used. The ‘*’ indicates whether an algorithm has a MET above the
median of those evaluated. Algorithms that were not accurate for any metric were omitted.



63

Table 4.5 – A final summary of the findings of the comparative analysis correlating the algorithms and mi-
croservice performance metrics evaluated. The ✓ indicates that the algorithm accurately forecasts
the microservice metric based on the Friedman statistical and the Nemenyi post-hoc tests. Oth-
erwise, ✗ is used. The * indicates whether an algorithm has a MET above the median of those
evaluated. Algorithms that were not accurate for any metric were omitted.

Algorithms CPU usage Memory Response time Traffic
DeepAr* ✓ ✓ ✓ ✓

LSTM* ✗ ✓ ✓ ✓

MLP ✓ ✗ ✓ ✓

RF ✓ ✗ ✓ ✓

SVR ✓ ✓ ✓ ✓

TFT* ✓ ✓ ✓ ✓

4.5 DISCUSSION

The findings presented in this chapter contribute to the domain of proactive adaptation
of microservices. First, the existing solutions commonly indicate that DL algorithms are more
accurate for forecasting time series than traditional ML algorithms (PATERAKIS et al., 2017;
MEHTAB; SEN, 2020; RAHIMZAD et al., 2021; KUMAR et al., 2022; BAMISILE et al., 2022). However,
as microservices operate in pay-as-you-go environments, the cost and accuracy of forecasting
models must be factors to consider. As demonstrated, traditional ML models are as accurate
and have lower MET as DL ones for forecasting microservices time series. Therefore, service
providers can save costs by adopting accurate traditional ML models in their adaptive proactive
tools. This finding is similar to another recently reported by Elsayed et al. (2021), who also
points out that traditional ML algorithms outperformed DL ones in time series from other
domains, such as electricity, urban air quality, stock exchange and solar energy.

Second, although SVR and DeepAr are models with higher accuracy agnostic to the pre-
dicted metric type, most models tend to perform better on specific performance metrics.
This trait of learning algorithms is a known forecasting problem (SILVA; NETO; CAVALCANTI,
2021), where it is understood that no forecast model is the best in all possible scenarios (YAO;

DAI; SONG, 2019). Therefore, prediction mechanisms for adaptive tools need a solution to the
single-model problem. Inspired by the problem described, a Multiple Predictor Systems (MPS)
is proposed in Chapter 6 for building microservices auto-scaling tools using a multiple predictor
approach.

The results of this analysis have important implications for the PMA, particularly in the
strategy of univariate prediction. It shows that traditional ML models can achieve forecast
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accuracy similar to DL ones but with lower MET, making it a cost-effective strategy for use
in PMA. A cost-effective strategy is essential for microservices environments where prediction
accuracy and computational efficiency are crucial. Validating traditional ML models as effec-
tive predictors ensures that the PMA can maintain high forecast performance while optimising
resource usage and reducing operational costs. These findings lay a solid foundation for the
PMA univariate predictive strategy proposed in Chapter 3, enhancing its ability to make accu-
rate, timely, and cost-efficient auto-scaling decisions based on individual performance metrics.

4.6 CONCLUDING REMARKS

This chapter presents a comparative analysis of different classes of learning algorithms for
forecasting microservices performance metrics. Firstly, the problem solved by the compara-
tive analysis is stated and motivated. Next, the experimental setup used is detailed. Then,
an experimental evaluation is presented to assess the performance of the different learning
algorithms. Finally, the outcomes were discussed in detail.
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5 FORECASTING STRATEGIES COMPARATIVE STUDY

This chapter compares univariate and multivariate strategies for proactive auto-scaling of
Microservice-based Applications (MBAs). Section 5.1 explains how this chapter is related to
PMA. Section 5.2 provides the context for the problem and objectives of the comparative study.
Section 5.3 details the experimental protocol applied. Section 5.4 presents an experimental
evaluation to measure the performance of both strategies. Section 5.5 discusses the results.

5.1 CONTEXT

Univariate forecasting is a crucial strategy in time series analysis, which involves predicting
future values based solely on past observations of a single performance metric, as demon-
strated in Chapter 4. This strategy assumes that the past behaviour of a variable, such as the
historical demand for a service, contains enough information to forecast its future behaviour.
In microservices, where different components of an application are deployed and scaled in-
dependently, univariate forecasting can be used to predict the workload or resource needs of
individual services based on their historical usage patterns. Despite its simplicity and ease
of implementation, univariate forecasting has limitations, particularly when the interactions
between different microservices or external factors significantly impact their performance.

The literature about forecasting methods for microservices also looks into multivariate pre-
diction. This strategy assumes that the past behaviour of a specific performance metric, such
as CPU usage, is influenced by the behaviour of other metrics, such as response time and mem-
ory. The multivariate approach is better at capturing complex dependencies and interactions
among different services and external factors, potentially providing more accurate forecasts.
However, existing studies often apply univariate and multivariate forecasting techniques and
do not explain why they chose a particular strategy. Therefore, the current literature requires a
thorough comparative study to identify when and why one strategy may outperform the other
in forecasting the behaviour of microservices.

This chapter addresses this research gap by comparing univariate and multivariate fore-
casting techniques for microservices. It aims to evaluate the performance of each approach
and establish the basis for creating a comprehensive, proactive, and adaptable forecasting
tool. The forecasting tool proposed is the Multivariate Forecasting Tool (MFT), essentially



66

the multivariate PMA module discussed in Chapter 3, with a different name.

5.2 PROBLEM STATEMENT

Existing solutions have used univariate and multivariate forecasting strategies for proac-
tive auto-scaling of MBAs (COULSON; SOTIRIADIS; BESSIS, 2020; ROSSI; CARDELLINI; PRESTI,
2020). For example, some approaches use univariate strategies to predict response time (ROSSI;

CARDELLINI; PRESTI, 2020), traffic (DANG-QUANG; YOO, 2022; TOKA et al., 2021), and CPU
usage (WANG, 2021). Conversely, other approaches employ multivariate strategies to predict
traffic (COULSON; SOTIRIADIS; BESSIS, 2020; GOLI. et al., 2021) and response time (MOHAMED;

EL-GAYAR, 2021). Univariate strategies are more straightforward to implement than multivari-
ate ones. However, as multivariate forecasting uses different features, it can capture complex
dependencies and interactions among services and external factors, potentially providing more
accurate forecasts. However, most solutions neither explain why they choose a particular fore-
casting strategy (ALIPOUR; LIU, 2017; GALANTINO et al., 2021; MOHAMED; EL-GAYAR, 2021;
PODOLSKIY et al., 2018) nor consider comparing both alternatives. Also, the approaches pro-
posed are typically evaluated in limited and artificial scenarios (COULSON; SOTIRIADIS; BESSIS,
2020; DANG-QUANG; YOO, 2021; ROSSI; CARDELLINI; PRESTI, 2020), which hampers the appli-
cability of the findings.

Thus, although several approaches have embraced these strategies for adapting MBAs,
little effort has been devoted to evaluating and understanding their performance at run-time.
A comparative study can help the PMA configurator to choose the best PMA forecasting
module according to their purpose and execution environment.

This chapter presents a comparative study evaluating univariate and multivariate proactive
scaling of MBAs. The Predict Kube (PK) (see Section 2.2.2.2) is compared to a proposed
custom-made proactive auto-scaling multivariate system named Multivariate Forecasting Tool
(MFT). MFT is essentially the multivariate PMA module discussed in Chapter 3, with a
different name. They were evaluated to adapt four popular open-source benchmark applica-
tions, namely Daytrader (DAYTRADER, 2024), Quarkus-HTTP-Demo (QHD) (QUARKUS-HTTP-

DEMO, 2024), Online Boutique (OB) (ONLINE-BOUTIQUE, 2024) and Travels (TRAVELS, 2024).
The experiments considered three forecasting horizons, namely, 1, 3, and 5 minutes.

The following research questions guide this comparative study:
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RQ5.1 - Is an auto-scaler that adopts multivariate forecasting more efficient in managing
MBAs than one that employs univariate forecasting?

RQ5.2 - Does the efficiency of the auto-scaler forecast strategy depend on the charac-
teristics/traits of the managed application?

The next section presents details of the comparative study.

5.3 EXPERIMENTAL PROTOCOL

This section introduces the experimental protocol adopted to compare the Time Series

Forecasting (TSF) strategies univariate and multivariate for the proactive auto-scaling of
MBAs.

5.3.1 Setup

All experiments were conducted on a local K8s cluster of six nodes, comprising one master
and five workers. Each node, running Ubuntu 22.04 LTS, is a Virtual Machine (VM) equipped
with Intel® Xeon® CPU 1220 (four vCpus) and 16GB DDR3 RAM.

This comparative study considers MBAs as applications composed of one or more services
running in a container in a K8s cluster. Four heterogeneous applications were used, namely
Daytrader (DAYTRADER, 2024), OB (ONLINE-BOUTIQUE, 2024), QHD (QUARKUS-HTTP-DEMO,
2024) and Travels (TRAVELS, 2024). Daytrader and QHD are both Java applications1. Day-
trader is an online stock trading system where users can log in, view their portfolios, look up
stock quotes, and buy or sell stock shares. QHD is a simple CRUD (Create, Read, Update
and Delete) REST application. Travels is a marketplace with six microservices written in Go,
where users can search for and book flights, hotels, cars, or insurance. OB is an e-commerce
platform with ten microservices written in various languages like Go, Java, Node.js, Python,
and C#. Finally, each application has a database attached: DB22 (Daytrader), Redis3 (OB),
PostgreSQL4 (QHD), and MySQL (Travels).
1 https://www.java.com/
2 https://www.ibm.com/analytics/db2
3 https://redis.io/
4 https://www.postgresql.org/
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Several companies have adopted these applications to benchmark their operations. For ex-
ample, IBM (International Business Machines) uses Daytrader to assess its products internally5,
while RedHat uses QHD to evaluate its Quarkus framework. Google showcases technologies
such as K8s, gRPC, and Stackdriver with OB (ONLINE-BOUTIQUE, 2024), and Istio uses Travels
as a showcase6 for its service mesh.

5.3.2 Proactive Tools

Next are the details about the two proactive tools subjects to be compared in this section.

5.3.2.1 Predict Kube

PK7 is a proactive adaptive tool that scales services in a K8s cluster (see Section 2.2.2.2).
To activate the auto-scaling, the PK configurator must specify a performance metric, such as
response time, and its desired value, i.e., response time must be less than 200ms. Furthermore,
the PK configurator must set a forecast horizon and historical time window. The prediction
horizon determines how far into the future the tool needs to estimate, e.g., application traffic
in ten minutes. The historical time window refers to the minimum amount of past data the
system needs to train its models, e.g., three days of data.

In operation, PK predicts the performance metric, and depending on whether it is above
or below the set threshold, pods are added or removed to keep the metric as close as possible
to the threshold. This approach is similar to the Horizontal Pod Auto-scaler (HPA)8 but uses
the forecast performance metric instead of its current value for decision-making (see section
2.2.1.2). PK trains a forecasting model for every microservice that needs to be adapted at
run-time.

PK is not essentially a self-adaptive proactive univariate system. The developer may pro-
pose a score (combination of multiple metrics) and the desired threshold. However, proposing
a score that accurately models an application in a dynamic distributed environment is chal-
lenging (SAMPAIO et al., 2023). Likewise, finding a score that applies to multiple applications
can be challenging.
5 https://www.ibm.com/docs/en/linux-on-systems?topic=bad-daytrader
6 https://kiali.io/docs/tutorials/travels/
7 https://dysnix.com/predictkube
8 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
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It is worth observing that details about the training procedures of PK, including the data set
split, training parameters or time window size, and algorithms used, are not publicly available.

5.3.2.2 Multivariate Forecasting Tool

Nowadays, there are no industry tools for proactively auto-scaling MBAs using a multi-
variate strategy. Existing literature solutions often do not adhere to proper building standards,
such as MAPE-K (COULSON; SOTIRIADIS; BESSIS, 2020; HUANG et al., 2021). Also, some are
designed for specific adaptation scenarios, like K8s (DANG-QUANG; YOO, 2022), while others
are limited to particular forecasting models, such as Machine Learning (ML) (GOLI. et al., 2021).
Motivated by these shortcomings and inspired by their architectures, a generic, holistic and
custom-made tool was developed for comparison purposes.

Multivariate Forecasting Tool (MFT) is a proactive auto-scaler written in Python (PYTHON,
2024), integrated with K8s through the K8s API (KUBERNETES, 2024b) and uses Prometheus
as a database. An offline-trained multivariate model per microservice is required to deploy the
auto-scaler. MFT does not define predefined features to train the model. Each independent
variable in the data set can be used as either input or target for the model. MFT models
the correlations among features within the time series, resulting in a black box function that
captures the behaviour of the system, abstracting the PK score formulation. The source code
for MFT is available in an open-source repository9.

Training Features. The evaluated applications provide different metrics (features) to be
collected and utilised for model training. For example, Daytrader and QHD provide perfor-
mance metrics like CPU usage and memory, applications metrics such as response time and
traffic, JVM information including as heap memory, and connection pool info such as database
connections. Meanwhile, OB and Travels provide only performance metrics, e.g., CPU usage
and memory. To broaden the availability of OB and Travels metrics, K8s has been expanded
with the Istio service mesh (ISTIO, 2024). Table 5.1 summarises the features used for training
the model of each application.

Model Training. The series was scaled to the interval [0, 1] using min-max normalisation
(SHALABI; SHAABAN; KASASBEH, 2006), defined in Equation 4.1. The series was divided as
follows: 70% points for training and the last 30% for testing, as done by Alipour & Liu (2017)
and Yadav, Rohit & Yadav (2021). According to the configured forecast horizon, the series
9 https://github.com/gfads/univariate-multivariate-prediction
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Table 5.1 – Features used for training MFT models per application.

Application Features Target

Daytrader ACP, C, DCP, HM, M, NP, PCGS, RT,
T, TP, TCGS, GJVMO

NP

QHD C, DCP, HM, M, NP, RT, T, PCGS,
TCGS, GJVMO

NP

OB C, M, ERT, ET NP
Travels C, M, ERT, ET NP

Features: Application Connection Pool (ACP), CPU Usage (C), Database Connection Pool (DCP), Envoy
Response Time (ERT), Envoy Traffic (ET), Global JVM Operations (GJVMO), Heap Memory (HM), Memory
(M), Number of Pods (NP), Per-second GC scavenge (PCGS), Response Time (RT), Thread Pool (TP),
Traffic (T), Total GC Scavenge (TCGS).

was also organised into different lag sizes, with 20 lags for 1 minute, 7 for 3 minutes and 4
for 5 minutes. MFT adopts Long Short-Term Memory (LSTM) for multivariate forecasting
because it is widely employed to microservices (COULSON; SOTIRIADIS; BESSIS, 2020; MARIE-

MAGDELAINE; AHMED, 2020; TOKA et al., 2021; DANG-QUANG; YOO, 2022; WANG, 2021). LSTM
were trained using a grid search approach to find the best hyper-parameters per model. Table
5.2 summarises the hyper-parameters used for LSTM training.

Table 5.2 – Hyper-parameters for LSTM training.

Parametersa Values
Batches 64, 128
Epochs 1, 2, 4, 8, 10

Learning Rate Adam=[0.05, 0.01, 0.001]
Units 50, 75, 125

Hidden layers 2, 3, 4, 5, 6
aThe hyper-parameters used were slightly adapted from Coulson, Sotiriadis & Bessis (2020).

5.3.3 Metrics

The efficiency of an adaptive MBA is commonly measured by its ability to ensure cus-
tomer experience, such as meeting Service Level Agreement (SLA) requirements, as well as
its cost-effectiveness. Therefore, the quality measures proposed by Straesser et al. (2022),
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which consider cost-effectiveness and customer experience, were slightly adapted and used in
the comparative evaluation of MFT and PK. This thesis adopts response time as a customer
experience metric instead of the failures adopted by Straesser et al..

The total cost (𝐶) of an experiment is the sum of all pods allocated during it. 𝐶 is defined
in Equation 5.1.

𝐶 =
∑︁

𝜇∈𝑀

∑︁
𝜈∈𝑁

𝐴𝑁𝜈(𝜇), (5.1)

where 𝑀 is a set of all microservices of an application that needs to be scaled, 𝑁 is a set of
all measurement intervals in the experiment, and 𝐴𝑁𝜈(𝜇) is the absolute number of deployed
instances of 𝜇 in the measurement interval 𝜈.

The response time percentiles (90𝑡ℎ, 95𝑡ℎ and 99𝑡ℎ) are an alternative to measuring cus-
tomer experience. The 95𝑡ℎ and 99𝑡ℎ percentiles are commonly used in software applications
and Web Services (DING et al., 2019). However, the 99𝑡ℎ percentile may not be proper if there
are outliers in the response time sample generated by external factors to the application. On the
other hand, 95𝑡ℎ is more flexible and can include outliers and genuinely slow requests, making
it a more reliable measure for assessing customer experience. Therefore, this thesis considered
the 95𝑡ℎ percentile (𝑅𝑇 ) to evaluate the customer experience, called hereafter response time.

The auto-scaling efficiency (𝐴𝐸𝑤) metric is defined as a weighted average of response time
and cost (STRAESSER et al., 2022). 𝐴𝐸𝑤 is defined in Equation 5.2.

𝐴𝐸𝑤 = 𝜔
𝑅𝑇

𝑅𝑇𝑚𝑎𝑥

+ (1 − 𝜔) 𝐶

𝐶𝑚𝑎𝑥

, (5.2)

where 𝜔 is an adjustable weight for the desired costs and the response time ratio. 𝑅𝑇 is the
95𝑡ℎ response time, and 𝐶 is the total cost. 𝐶𝑚𝑎𝑥 is a normalisation factor that maps the costs
to a scale between 0 and 1. 𝐶𝑚𝑎𝑥 is defined in Equation 5.3:

𝐶𝑚𝑎𝑥 = 𝑀 ×𝑁 × 𝐴𝑁𝑚𝑎𝑥, (5.3)

where 𝑀 is the number of microservices of an application, 𝑁 is the number of measured
intervals, and 𝐴𝑁𝑚𝑎𝑥 is the maximum number of pods allocated by a microservice considering
all its experiments. In short, 𝐶𝑚𝑎𝑥 would be equivalent to the cost 𝐶 if a service 𝑀 had
𝐴𝑁𝑚𝑎𝑥 instances deployed throughout the experiment. 𝑅𝑇𝑚𝑎𝑥 is a normalisation factor that
maps the response time to a scale between 0 and 1. 𝑅𝑇𝑚𝑎𝑥 is defined in Equation 5.4:
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𝑅𝑇𝑚𝑎𝑥 = max{𝑟𝑡1, 𝑟𝑡2, ..., 𝑟𝑡𝑛}, (5.4)

where 𝑟𝑡1, 𝑟𝑡2, and 𝑟𝑡𝑛 are response times of 𝑛 experiments for a given microservice 𝜇 ∈ 𝑀 .
In short, 𝑅𝑇𝑚𝑎𝑥 is the worst response time observed in a given application.

Some scenarios can prioritise the operation costs or response time differently, and 𝜔 (ad-
justable weight) offers the capacity to adjust accordingly. For example, a lower response time is
commonly prioritised over reducing the costs of customer-oriented business applications. The
comparative evaluation considered 𝜔 = 0.5 (𝐴𝐸0.5), which weighted cost and response time
equally. For all evaluation measures, lower values mean better results.

5.3.4 Workloads

Periodic workloads were used in the experiments. These workloads are commonly observed
in Web applications (ABDULLAH et al., 2021; IQBAL; ERRADI; MAHMOOD, 2018). Appendix B
provides more details on periodic workloads.

Periodic workloads are modelled using the mathematical sine function, as referenced in
Abdullah et al. (2021). The sine function is defined in Equation 5.5:

𝜒𝜈𝑖
= 𝜒𝜈0 − 𝛼𝑠𝑖𝑛(2𝑖𝜋

𝛾
) + 𝑠𝑐𝑅𝑎𝑛𝑑(N(0, 1)), (5.5)

where 𝜒𝜈𝑖
is the number of requests in the time interval 𝜈𝑖, 𝜒𝜈0 is the number of requests in

the time interval 𝜈0. 𝛼 and 𝛾 are the amplitude and duration of the periodic pattern. Also,
𝑠𝑐𝑅𝑎𝑛𝑑(N(0, 1)) is a scale factor that injects normal random noise with mean zero and unit
variance in the workload.

In all experiments, the periodic arrival rate behaviour consists of 180-time intervals of 1
minute each, i.e., three hours. The value of 𝜒𝜈0 was set to 1, and 𝛾 was set to 60. The
amplitude 𝛼 has different values depending on the target application, as follows: Daytrader
(850), QHD (1000), OB (100) and Travels (150). The parameter values for 𝜒𝜈0 , 𝛾, and 𝛼

were adapted from those used by Abdullah et al. (2021). The amplitude 𝛼 refers to the highest
throughput an application can handle, similar to Abdullah et al. (2021). The parameters used
in the experiments are summarised in Table 5.3.
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Table 5.3 – Parameters adopted to generate the periodic workload per application.

Application Parameter Value
𝜒𝜈0 1
𝛾 60
𝑠𝑐 4

All

𝜈𝑖 (time intervals) 180
Daytrader 𝛼 850

QHD 𝛼 1000
OB 𝛼 100

Travels 𝛼 150

5.3.5 Auto-scaling Rules

The experiments considered horizontal auto-scaling, a widely-used approach to auto-scaling
cloud applications (SINGH et al., 2019). The scaling mechanism triggers once every 15 seconds
with a 5-minute stabilisation cool-down on both tools as done by the HPA. Due to technical
setup restrictions, the maximum number of replicas per application has been limited to ten.

Both proactive tools were evaluated on three different forecasting horizons: 1 minute (1M),
3 minutes (3M) and 5 minutes (5M), similar to Alipour & Liu (2017), Dang-Quang & Yoo
(2021), Galantino et al. (2021) and Toka et al. (2021). PK was configured to predict CPU
usage, and the 80% threshold has been set to trigger adaptation, as done by Lanciano et al.
(2021). MFT was configured to predict the number of pods, as done by Coulson, Sotiriadis &
Bessis (2020).

5.3.6 Database

Both evaluated tools require previous data to operate proactively, i.e., time series. According
to PK documentation10, a historical time window of at least seven days is suggested. However,
most papers use smaller data sets considering the previously defined forecasting horizons (GOLI.

et al., 2021; MARIE-MAGDELAINE; AHMED, 2020; MOHAMED; EL-GAYAR, 2021; TOKA et al., 2021;
YADAV; Rohit; YADAV, 2021). Table 5.4 shows the results of experiments carried out to compare
the strategies in a shorter historical time window (12 hours) and the recommended one (7
10 https://keda.sh/docs/2.6/scalers/predictkube/#trigger-specification
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days).
The results indicate that even though the PK with the long historical time window, referred

to as PKL, has lower costs in the 3M and 5M forecast horizons, these values are similar to those
achieved for PK with a short historical time window. PKL was the most efficient strategy on
the 5M horizon but did not have the lowest response time in any forecast horizon. Furthermore,
the strategies were expected to have a significant discrepancy in efficiency, as PKL uses 14
times more data than PK and MFT for training, something not observed in the experiments.

Table 5.4 – Efficiency, total cost and response time results of auto-scaling tools to adapt Daytrader using
univariate and multivariate strategies. The best results for each metric by each application are in
bold, while the best results by forecast horizon are underlined.

Forecasting
Horizon

Strategy C RT 𝐴𝐸0.5

PK 540 121.138 0.569
PKL 604 137.578 0.6431-minute
MFT 581 127.769 0.604
PK 500 125.506 0.569
PKL 495 126.902 0.5713-minute
MFT 705 158.403 0.743
PK 554 148.340 0.660
PKL 546 142.106 0.6375-minute
MFT 669 131.982 0.648

Thus, considering these empirical results and that both strategies use the same historical
window size for training, it was decided to use the shorter 12-hour version on the comparative
analysis, similar to what was done by Mohamed & El-Gayar (2021) and Yadav, Rohit & Yadav
(2021). The time series are generated before the experiments and follow the parameters defined
in Section 5.3.4, except for 𝑡𝑖, which is extended to 720 minutes (12 hours). A self-adaptive
tool for managing microservices must be employed throughout the experiment to generate
time series data for model training. Therefore, the widely used reactive tool HPA was adopted.
More details about HPA are provided in Section 2.2.2.1.

5.4 RESULTS

This section presents the comparative results of the univariate and multivariate strategies
for proactive auto-scaling of MBAs. Drawing on the knowledge from Chapter 4, which focused
on univariate forecasting, and Chapter 3, where the multivariate PMA module was introduced,
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this analysis delves into how these forecasting strategies can enhance the PMA tool to provide
a more effective proactive auto-scaling. The research questions presented in Section 5.2 help
guide the proposed comparative analysis. The comparative study source code, figures, and
datasets are publicly available11.

Figures 5.1, 5.2, and 5.3 compare the efficiency, response time, and cost of univariate (PK)
and multivariate (MFT) strategies for managing the evaluated MBAs (see Section 7.2.1) across
different forecast horizons. MFT is more efficient than PK in most applications, except for
Daytrader. MFT reduced application response time compared to PK in 75% of the experiments,
except for Daytrader 1M and 3M and QHD 1M. Regarding cost, PK incurred lower costs in
Daytrader and QHD, while MFT was more cost-effective in OB and Travels.

The comparative analysis leads to the following conclusions:

Figure 5.1 – Auto-scaling efficiency (𝐴𝐸0.5) results of univariate and multivariate strategies managing MBAs.
For efficiency, lower values mean better results.
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Daytrader. PK was more efficient than MFT in managing Daytrader in the 1M (-5.81%)
and 3M (-23.49%) forecast horizons but slightly less efficient in the 5M (+1.84%) one. MFT
decreased response time by -12.40% on the 5M horizon but increased by +5.19% on 1M and
+20.77% on the 3M horizons. MFT also incurred higher costs than PK in all forecast horizons
(+7.06%, +29.08%, and +17.19%, respectively). PK configured with the 3M horizon was
the one that incurred lower costs, while the one with the 1M horizon had the lowest response
time.

QHD. MFT was more efficient in managing QHD than PK in the 3M (-48.97%) and
11 https://github.com/gfads/univariate-multivariate-prediction
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Figure 5.2 – 𝑃 95 percentile response time of MBAs managed by univariate and multivariate strategies. For
response time, lower values mean better results.
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Figure 5.3 – Scaled total cost ( 𝐶
𝐶𝑚𝑎𝑥

) of MBAs managed by univariate and multivariate strategies. For scaled
total cost, lower values mean better results.
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5M (-15.29%) forecast horizons, but it was less efficient in the 1M horizon (+20.57%). MFT
decreased the response time of QHD by -125.15% for 3M and -30.06% for 5M forecasting
horizons, and increased by +32.92% for the 1M one. Similar to experiments with Daytrader,
MFT incurred higher costs than PK in all forecast horizons (+2.17%, +12.91%, and +8.79%,
respectively). The PK configured with the 5M horizon was the one that incurred lower costs,
while the MFT configured with the 3M horizon had the lowest response time.

OB. Unlike previous results, MFT is more efficient in managing OB when compared to
PK in all forecast horizons (-55.51%, -141% and -56.22%). MFT also incurred lower costs
(-68.13%, -66.34%, and -70.10%) and decreased response time (-32.44%, -276.92%, and -
31.99%). MFT configured with the 5M horizon was the one that incurred lower costs, while
the 1M horizon one had the lowest response time.

Travels. Similarly to OB, MFT is more efficient in managing OB when compared to PK in
all forecast horizons (-16.62%, -14.33% and -15.51%). MFT incurred lower costs than PK (-
28.26%, -29.65%, and -32.50%) and decreased response time (-8.66%, -4.30%, and -4.47%).
MFT configured with the 1M forecast horizon had the lowest response time, while the 5M one
also incurred the lowest costs.

5.5 DISCUSSION

The experiments showed that using a multivariate forecasting strategy (MFT) instead of a
univariate one (PK) maintains or decreases the response time in most evaluated applications,
except for Daytrader. The results indicate a correlation between the efficiency of the forecasting
strategy and the application to be managed.

For example, the forecasting strategies are similar in efficiency in applications with a single
container, e.g., Daytrader and QHD. MFT was more efficient on average for QHD (+15.15%)
but was outperformed by PK for Daytrader (-8.81%). Also, MFT efficiency is guaranteed at
a higher average cost than PK (+17.77% and +7.95%, respectively). On the other hand, for
multi-container applications, such as OB and Travels, MFT is considerably more effective than
PK (+85.59% and +13.51%, respectively), incurring lower costs (-68.19% and -24.79%).

Other interesting findings are that higher incurred costs do not result in lower response
time, i.e., resource allocation has to be efficient, as experiments with lower response times
commonly also had lower costs. Experiments with a forecast horizon of 1M had the lowest
response times in all applications. On the other hand, the 5M forecast horizon tends to incur
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lower costs and is generally more efficient than the 3M horizon, except for Daytrader.
The results also indicate that as the application size increases, more than a single feature

may be required to estimate the behaviour of the system. As a result, auto-scaling tools that
rely solely on forecasts from univariate models to perform actions may fail as they do not
consider the complete state of the system. On the other hand, in low-complexity applications,
adopting a multivariate strategy has little or no advantage. Likewise, as demonstrated, the
multivariate strategy commonly incurs more costs to maintain the efficiency of the managed
system.

Based on the findings, the efficiency of the forecasting strategy is impacted by

the application to be managed, mainly due to its complexity, confirming a positive answer
to RQ5.1. RQ5.2 is also answered positively, but with reservations, since the multivariate
strategy is more effective than the univariate one for complex applications. Thus, adopting a

multivariate approach becomes even more advantageous than a univariate strategy

as the application complexity increases.
The experiments conducted lay the groundwork for PMA, particularly the multivariate

module presented in Chapter 3. The results emphasise the value of multivariate strategies for
complex microservice systems, demonstrating significant advantages in multi-container envi-
ronments. Consequently, they directly impact the PMA design and implementation, validating
the need to incorporate multivariate models to capture the comprehensive state of the system.
PMA is improved by multivariate forecasting, which makes it more versatile and generic. As a
result, it becomes more effective in executing accurate and efficient auto-scaling actions across
different scenarios.

5.6 CONCLUDING REMARKS

This chapter compared univariate and multivariate strategies for proactive auto-scaling
of MBAs. Initially, the problem statement highlighted and discussed the research gap in the
literature. Then, a detailed experimental protocol was provided for the comparative study.
Next, an experimental evaluation was presented to assess the performance of the univariate
and multivariate strategies. Finally, the results were deliberated.
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6 MULTIPLE PREDICTOR SYSTEMS

This chapter introduces a Multiple Predictor Systems (MPS) for forecasting microservices
time series, selecting the most suitable forecasters from a pool of models for each new test
pattern. Section 6.1 explains how this chapter is related to PMA. Section 6.2 contextualises
the problem and objectives of this chapter. Section 6.3 presents the proposed method. Section
6.4 details the experimental protocol applied. Subsequently, Section 6.5 shows an experimental
evaluation to assess the performance of what is being proposed. After this, Section 6.6 discusses
the results.

6.1 CONTEXT

The PMA tool was designed to optimise auto-scaling in microservices environments. This
tool integrates three distinct forecasting modules: univariate, multivariate, and MPS. Each
module offers a unique approach to predicting Microservice-based Applications (MBAs) per-
formance, enhancing the PMA adaptability and accuracy in diverse scenarios.

This chapter focused on the MPS module and highlighted its essential role in enhancing
system performance and resource management in complex microservices environments. The
discussed results offer real-world evidence supporting the development and implementation
of the MPS module, underlining its crucial role within the PMA tool. The multi-predictor
or ensemble method improves forecasting accuracy and reliability by leveraging the strengths
of different algorithms to create a robust forecasting system. This chapter builds upon the
foundational concepts introduced in Chapter 3 and presents practical validations.

6.2 PROBLEM STATEMENT

As mentioned in Chapter 4, Time Series Forecasting (TSF) has been widely adopted for
building proactive auto-scaling microservices systems (KANG; LAMA, 2020; YADAV; Rohit; YADAV,
2021; KAKADE et al., 2023). Nevertheless, existing solutions apply the Classical Forecasting
Approach (CFA) (SILVA et al., 2020). CFA evaluates a set of learning algorithms and selects
only the one with the highest forecast accuracy. However, the free lunch theorem (YAO; DAI;

SONG, 2019) demonstrates that no single model can be optimal for all scenarios. Therefore,
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using only one predictor increases the risk of inaccurate estimates. The inaccurate estimates
can conduct unsuitable interventions that may harm the customer experience.

A multi-predictor approach can mitigate the CFA problem by delegating the forecast task to
multiple models. MPS, also called an ensemble, is an alternative for building systems with mul-
tiple predictors. The basic idea of the ensemble is to combine the strengths of different learning
algorithms to build a more accurate and reliable forecasting system (QIU et al., 2017). MPS
obtained better accuracy than approaches based on only one predictor, as reported by Widodo
& Budi (2011), Kourentzes, Barrow & Crone (2014), Adhikari, Verma & Khandelwal (2015)
and Moura, Cavalcanti & Oliveira (2021).

MPS encompass three phases: Generation, Selection and Integration. In the Generation
phase, a pool of forecasting models is trained. The pool is called homogeneous when a single
learning algorithm trains all models; otherwise, it is heterogeneous. In the second phase, one
or more models from the pool are selected. Lastly, the Integration phase provides the final
system forecast by combining forecasts from the different models chosen earlier.

This chapter proposes an MPS for forecasting microservices performance metrics. In the
proposal, the Generation phase can generate homogeneous pools (Bagging method (BREIMAN,
1996)) or heterogeneous pools (combining different learning algorithms). In the Selection
phase, the generated pool can be chosen through dynamic selection algorithms (Dynamic
Selection (DS), Dynamic Weighting (DW) and Dynamic Weighting With Selection (DWS))
or statically combined (Mean and Median). The Integration phase can differ depending on the
selection approach taken. It may not be required (DS), or it can involve using a simple mean
(Mean and Median) or a weighted mean (DW and DWS) to combine pool predictions.

The following research questions guide the proposal presented:

• RQ6.1 - How can MPS be used to forecast microservices performance metrics?

• RQ6.2 - How effective are homogeneous and heterogeneous pools in increasing the
accuracy of forecasting microservices performance metrics?

• RQ6.3 - How do dynamic and static selection impact the accuracy of homogeneous and
heterogeneous pools for predicting microservices performance metrics?

• RQ6.4 - How effective are MPS and CFA for forecasting microservices performance
metrics?

The following sections detail the MPS.
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6.3 OVERVIEW

Figure 6.1 overviews the proposed MPS. MPS encompasses three phases: generation,
selection and integration. The generation phase uses a time series database (𝜆) and a list of
learning algorithms (Δ) to train a pool of forecasting models (𝑃 ). Next, the selection phase
chooses the most suitable models in 𝑃 to forecast a given test pattern (𝑥𝑗), considering the
𝐷𝑠𝑒𝑙 time series. 𝐷𝑠𝑒𝑙 is a validation dataset that contains a set of time series. It can be just 𝜆
or has additional time series. The selected models 𝜌𝑖 ∈ 𝑃 forecast 𝑥𝑗. The integration phase
combines the forecast of the 𝜌𝑖 models to generate the system forecast (𝑃 (𝑥𝑗)).

MPS 

Generation Selection Integration

Figure 6.1 – MPS overview. 𝜆 is a time series database; Δ is a list of learning algorithms; 𝑃 is a pool of fore-
casting models; 𝐷𝑠𝑒𝑙 is the validation dataset; 𝑥𝑗 is a new test pattern; 𝜌1(𝑥𝑗), 𝜌2(𝑥𝑗), ..., 𝜌𝑛(𝑥𝑗)
are the forecasts of each model 𝑝𝑖 ∈ 𝑃 selected by the selection phase; 𝑃 (𝑥𝑗) is the final forecast
of the MPS.

The following sections detail the MPS phases.

6.3.1 Generation

Figure 6.2 presents an overview of the generation phase that aims to train a diverse pool
of models capable of modelling different time series behaviours. The generation phase has two
modules: Preprocessor and Pool Generator.

The Preprocessor module preprocesses the 𝜆 time series for training the learning algorithms

(Δ). First, a scaling algorithm modifies the 𝜆 time-series observations in a standardised way
for smaller ranges. Scaling can facilitate model training and improve forecast accuracy.

Next, the time series 𝜆 must be restructured as a supervised learning problem. An alterna-
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Generation 

Preprocessor Pool Generator

Figure 6.2 – Overview of the MPS generation phase. 𝜆 is a time series database; 𝜆′ is the preprocessed time
series database; Δ is a list of learning algorithms; 𝑃 is a pool of forecasting models.

tive for restructuring is the sliding window method (YU et al., 2014), which transforms the time
series into fixed-size sliding windows. The fixed size is equivalent to the time series lags. Lags
are past observations of the time series that most impact the training of the models. Auto-
correlation function or optimisation algorithms (SCARGLE, 1989) are alternatives for defining
lags. Finally, a preprocessed 𝜆′ is sent to the next module.

The Pool Generator module uses 𝜆′ and a list of learning algorithms (Δ) to generate a pool
of models 𝑃 . The generated pool can be either homogeneous, which means all models were
trained using the same learning algorithm, or heterogeneous, which means different learning
algorithms were used to train the models (MOURA; CAVALCANTI; OLIVEIRA, 2021).

The heterogeneous pools comprise a model for each learning algorithm. For example, if Δ

has two algorithms and is trained on a 𝜆′ structured into two distinct sliding window sizes (e.g.,
𝐿 = {20, 40}), four different models are trained (ϒ = {𝜐20

1 , 𝜐
40
1 , 𝛿

20
2 , and 𝛿40

2 }). Then, the 𝜐𝑙
𝑖

model that composes the heterogeneous pool has the highest accuracy among its variations,
e.g., assuming that 𝜐20

1 and 𝜐40
2 were more accurate than 𝜐40

1 and 𝜐20
2 , these models must be

integrated into the pool as algorithms 1 and 2, respectively.
Homogeneous pools, by contrast, are composed of models of a single learning algorithm.

The selected algorithm used to generate the homogeneous pool is the one that trained the
𝜐𝑙

𝑖 ∈ ϒ with the highest forecast accuracy. The homogeneous pool can be created by methods
such as Adaboosting (BARROW; CRONE, 2016) or Bagging (BREIMAN, 1996) that use the
parameters (learning algorithm and sliding window size) of the most accurate 𝜐𝑙

𝑖 model as
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input.

6.3.2 Selection

Figure 6.3 presents the overview of the selection phase that chooses one or a subset of the
most suitable models in 𝑃 to forecast a given test pattern (𝑥𝑗). The selection phase performs
a dynamic or static selection of models and comprises two modules: Region of Competence
Definition and Model Selector.

Figure 6.3 – Overview of the MPS selection phase. 𝑥𝑗 is a new test pattern; 𝐾 is the size of the Region of
Competence (RoC); 𝑆 is a similarity measure; 𝐷𝑠𝑒𝑙 is the validation dataset; Ψ is an RoC; 𝐶𝑀
is a competence measure; 𝑃 is a pool of forecasting models; 𝑃 is the pool of models selected.

Selection

Model Selector
Region of

Competence
Definition

For dynamic selection, a new 𝑃 (pool) is chosen for each test pattern x𝑗. The first step is
defining a Region of Competence (RoC) (Ψ) composed of the K time windows most similar to
test pattern x𝑗 in Dsel. The correlation between two-time windows is calculated using similarity

measures (S) – for example, Euclidean distance (SILVA et al., 2018).
The Model Selector selects the 𝑃 models most suitable for forecasting 𝑥𝑗. First, it cal-

culates the accuracy using a competence measure (𝐶𝑀) of each model 𝑝𝑖 ∈ 𝑃 to forecast
patterns in Ψ. Subsequently, according to accuracy, 𝑃 models are ranked from best to worst.
Finally, 𝑃 models are selected according to the dynamic selection algorithm employed. For
example, DS selects only the best model. In contrast, others, such as DW, select a subset of
the best models from 𝑃 , having a size greater than or equal to one (ROONEY et al., 2004).

All models are used for static selection, i.e., 𝑃 = 𝑃 . Therefore, the pool is the same for
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any test pattern (𝑥𝑗).

6.3.3 Integration

Figure 6.4 presents an overview of the integration phase that generates the final system
forecast (𝑃 (𝑥𝑗)). The integration phase comprises two modules: Forecaster and Integrator.

Integration 

Forecaster Integrator



Figure 6.4 – Overview of the MPS integration phase. 𝑃 is a pool of models selected; 𝑥𝑗 is a new test pattern;
𝜌1(𝑥𝑗), 𝜌2(𝑥𝑗), ..., 𝜌𝑛(𝑥𝑗) are the forecasts of each model 𝑝𝑖 ∈ 𝑃 selected by the selection phase;
𝑃 (𝑥𝑗) is the final forecasting of the MPS.

In the Forecaster module, each 𝜌𝑖 ∈ 𝑃 model forecasts test pattern x𝑗. Afterwards, the
Integrator module must merge the forecasts to compute the final system forecast 𝑃 (x𝑗).
Forecasts are combined using approaches such as linear combination (MENDES-MOREIRA et al.,
2012) or simple procedures such as mean and median (MOURA; CAVALCANTI; OLIVEIRA, 2021).
If 𝑃 results in a single model, the integration becomes unnecessary, i.e., 𝜌1(𝑥𝑗) = 𝑃 (𝑥𝑗).

6.4 EXPERIMENTAL PROTOCOL

This section presents the experimental protocol for validating the MPS proposed in Section
6.3, including the datasets and techniques employed.

6.4.1 Datasets

Sixteen time series were used for the experiments, four for each performance metric: CPU
usage, memory, response time and traffic. They are a random sub-sample of those used in
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Section 4.3. These real-world series were collected from Alibaba production clusters1 (LUO et

al., 2021). The Alibaba dataset includes performance metrics such as CPU usage, memory,
response time and traffic.

The selected series (see Table 6.1) comprises different communication mechanisms among
microservices: inter-process communication (IPC) (STEEN; TANENBAUM, 2017), remote invo-
cation (RI) (SRIRAMAN; WENISCH, 2018) and indirect communication (IC) (GAN et al., 2019a).
CPU usage and memory series consist of 30-second records taken over twelve hours, produc-
ing an average of 1440 observations. On the other hand, response time and traffic series are
composed of 1-minute records over the same twelve-hour period, resulting in an average of
720 observations. Figure 6.5 shows all real-world time series.

Table 6.1 – Description of the real-world datasets.

Metric Series Trend Stationary Frequency Mean Median Std Size Communication
1 ✗ ✗ Seconds 0.34 0.33 0.05 1,426 RI, IC, IPC
2 ✗ ✓ Seconds 0.34 0.40 0.11 1,427 RI
3 ✗ ✗ Seconds 0.18 0.15 0.07 1,420 RI, IC, IPC

CPU
usage

4 ✗ ✗ Seconds 0.32 0.31 0.04 1,421 RI, IC
1 ✓ ✗ Seconds 0.53 0.52 0.04 1,427 RI, IC
2 ✗ ✓ Seconds 0.51 0.50 0.03 1,426 RI
3 ✓ ✓ Seconds 0.52 0.52 0.00 1,426 RI, IPC

Memory

4 ✗ ✓ Seconds 0.45 0.45 0.02 1,424 RI, IC
1 ✗ ✗ Minutes 1.00 1.02 0.20 720 RI
2 ✗ ✗ Minutes 23.75 23.95 3.06 720 RI
3 ✓ ✗ Minutes 59.94 58.24 14.79 721 IC

Response
time

4 ✗ ✗ Minutes 470.38 371.96 255.56 715 IC
1 ✓ ✗ Minutes 222.39 220.58 12.42 721 RI
2 ✗ ✗ Minutes 50.75 54.37 11.69 721 RI
3 ✗ ✗ Minutes 111.60 44.29 87.34 713 IC

Traffic

4 ✗ ✗ Minutes 258.10 255.12 40.43 721 IPC

All series are referred to hereafter as 𝜆. More descriptive details, plots, and time series
files can be found in a public repository2. 𝜆 time series were used in an experimental study
considering a one-step-ahead forecasting scenario. Each time series was divided as follows: the
first 60% for training, 20% for validation and the last 20% for testing, as adopted by Wong
(2018). The following sections detail the experimental protocol according to the MPS phases
presented in Section 6.3.
1 More details about the entire database are available in the Alibaba public repository:

https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2021.
2 https://github.com/gfads/mps-methodology/
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Figure 6.5 – Real-world time series.

6.4.2 Generation

The experimental protocol used in the Preprocessor and Pool Generator modules includes:
Preprocessor. Min-max normalisation (SHALABI; SHAABAN; KASASBEH, 2006) was adopted

to scale the 𝜆 time series to the interval [0, 1]. This normalisation method was defined in Sec-
tion 4.1. 𝜆 time series was also organised into sliding windows, as done in the comparative
analysis (see Chapter 4), having six distinct maximum sizes for lags (L = {10, 20, 30, 40, 50
and 60}) selected using the auto-correlation function (BOX et al., 2015), producing a prepro-
cessed 𝜆′ = {𝜆′

1, 𝜆
′
2, ..., 𝜆

′
6}.

Pool Generator. The experimental study is performed using different learning algorithms.
The list of algorithms Δ includes four Machine Learning (ML) algorithms (Multilayer Percep-
tron (MLP) (HAYKIN, 2001), Support Vector Regressor (SVR) (DRUCKER et al., 1997), Random
Forest (RF) (BREIMAN, 1996), and eXtreme Gradient Boosting (XGBoost) (CHEN; GUESTRIN,
2016)), one statistical algorithm (AutoRegressive Integrated Moving Average (ARIMA) (PRYB-

UTOK; YI; MITCHELL, 2000)) and one Deep Learning (DL) algorithm (Long Short-Term Memory
(LSTM) (MA et al., 2015)).

The list of algorithms used for evaluation in this chapter is smaller than the one used in
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Chapter 4. This is because it was shown in Chapter 4 that traditional ML models were either
equally or more accurate than DL models. As this evaluation aims to assess the accuracy of
the MPS, any algorithms could be included in the list. Thus, a subset favouring them was
selected as ML algorithms train and predict faster than DL ones. LSTM has been selected
as an instance of DL algorithms due to its popularity in microservices forecasting (COULSON;

SOTIRIADIS; BESSIS, 2020; GOLI. et al., 2021; MOHAMED; EL-GAYAR, 2021) and the performance
it showcased in Chapter 4. All algorithms were trained using a grid search approach to find
the best hyper-parameters per model. Table 6.2 shows the hyper-parameters used for training
the models. The validation set was used to select the best hyper-parameters per model and
the time-sliding window size.

Table 6.2 – Hyper-parameters used for training the models.

Algorithm Hyper-parameters
ARIMA Autoarima library
LSTM ‘batch_size’: [64, 128], ‘epochs’: [1, 2, 4, 8, 10], ‘hidden_layers’: [2, 3, 4, 5,

6], ‘learning_rate’: [0.05, 0.01, 0.001] (COULSON; SOTIRIADIS; BESSIS, 2020)
MLP ‘hidden_layer_sizes’: [5, 10, 15, 20], ‘activation’: [ ‘tanh’, ‘relu’, ‘logistic’],

‘solver’: [ ‘lbfgs’, ‘sgd’, ‘adam’], ‘max_iter’: [100, 500, 1000, 2000, 3000],
‘learning_rate’: [ ‘constant’, ‘adaptive’] (RUBAK, 2023)

RF ‘min_samples_leaf’: [1, 5, 10], ‘min_samples_split’: [2, 5, 10, 15],
‘n_estimators’: [100, 500, 1,000] (ESPINOSA et al., 2021)

SVR ‘gamma’: [0.001, 0.01, 0.1, 1] ‘kernel’: [‘rbf’, ‘sigmoid’] ‘epsilon’: [0.1, 0.001,
0.0001] ‘C’: [0.1, 1, 10, 100, 1,000, 10,000] (OLIVEIRA; SILVA; NETO, 2022)

XGBoost ‘col_sample_by_tree’: [0.4, 0.6, 0.8], ‘gamma’: [1, 5, 10], ‘learning_rate’:
[0.01, 0.1, 1], ‘max_depth’: [3, 6, 10], ‘n_estimators’: [100, 150, 200],
‘reg_alpha’: [0.01, 0.1, 10], ‘reg_lambda’: [0.01, 0.1, 10], ‘subsample’: [0.4,
0.6, 0.8] (MOHAMED; EL-GAYAR, 2021)

The heterogeneous pool has six models, one for each learning algorithm in the Δ list.
However, adopting six lags generates six variations of a single model type. Therefore, the
one chosen to compose the heterogeneous pool by type had the best accuracy considering its
variations (see Section 6.3.1).

The homogeneous pool uses only a single learning algorithm in the generation process.
The selected learning algorithm has higher accuracy considering the 36 model variations: six
learning algorithms at six different lags. Next, the selected parameters train the new models
with the Bagging method (BREIMAN, 1996). The homogeneous pool size varies from 10 to
150 (by steps of 10). The final size adopted follows the same procedure for selecting the
homogeneous pool algorithm.

https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.html
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The adopted protocol includes several lags and homogeneous pool sizes to cover a broader
range of experimental scenarios. The objective was to investigate the influence of these pa-
rameters on microservices’ time series. The individual performance of each variation and the
analysis of the homogeneous pool sizes are available in the supplementary material3.

The trained accuracy of the models is evaluated using the RMSE, as done by Kumar &
Singh (2018), Moreno-Vozmediano et al. (2019), Moura, Cavalcanti & Oliveira (2021). The
Root Mean Square Error (RMSE) is defined in Equation 6.1:

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1
|𝑇 |

𝑇∑︁
𝑡=1

(𝑡𝑖 − 𝑝(𝑡𝑖))2 (6.1)

where 𝑡𝑖 is the actual value of the time series; 𝑝(𝑡𝑖) is the value forecasted by the model; |𝑇 |

is the number of observations in each 𝜆’.

6.4.3 Selection

The experimental protocol used in the Region of Competence Definition and Model Selector
modules includes:

Region of Competence Definition. The Region of Competence (RoC) size (𝐾) was
defined as ten, and the similarity measure (𝑆) adopted was the Euclidean Distance, as done
by Moura, Cavalcanti & Oliveira (2021), Mendes-Moreira et al. (2009).

Model Selector. The models were selected using three dynamic selection algorithms:
Dynamic Selection (DS), Dynamic Weighting (DW) and Dynamic Weighting With Selection
(DWS) (MENDES-MOREIRA et al., 2009; MOURA; CAVALCANTI; OLIVEIRA, 2021). The compe-
tence measure (𝐶𝑀) adopted to assess the forecast accuracy of the models Ψ is RMSE, the
same used for model training (see Section 6.4.2).

All dynamic algorithms adopted need the distance vector 𝑑𝑘, which is the distance between
RoC (𝜓1, 𝜓2, ..., 𝜓𝐾) and test pattern 𝑥𝑗, defined in Equation 6.2.

𝑑𝑘 =
1

𝑑𝑖𝑠𝑡𝑘∑︀𝐾
𝑖=1

(︁
1

𝑑𝑖𝑠𝑡𝑗

)︁ , (6.2)

where 𝑑𝑖𝑠𝑡𝑘 is the distance between a pattern 𝜓𝑘 ∈ Ψ and test pattern 𝑥𝑗; 𝑑𝑘 is the weight
vector.
3 https://github.com/gfads/mps-methodology/tree/main/results
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DS selects only the 𝜌𝑖 model with the lowest error in CM. 𝑑𝑘 provides weighting for the
errors. The DS forecast integration is unnecessary as only one model is selected. DS selection
is defined in Equation 6.3.

𝑃 = 𝑚𝑖𝑛
1≤𝑘≤𝐾

{𝐶𝑀 × 𝑑𝑘} (6.3)

where CM is an competence measure and 𝑑𝑘 is a distance vector defined in Equation 6.2.
DW selects and gives weighting to all P pool models. Weight 𝛽𝑖 referring to the model

𝜌𝑖 is calculated as defined in Equation 6.4.

𝛽𝑖 =

1√︁∑︀𝐾

𝑘=1(𝑑𝑘×𝐶𝑀𝑘,𝑖)

∑︀𝑁
𝑛=1

⎛⎝ 1√︁∑︀𝐾

𝑘=1(𝑑𝑘×𝐶𝑀𝑘,𝑛)

⎞⎠ , (6.4)

where N is the 𝑃 pool size; 𝑘 represents the index of the neighbour; 𝐶𝑀𝑘,𝑖 is the error of
model 𝜌𝑖 to forecast 𝜓𝑘 ∈ Ψ.

DWS selects and weights only a subset of P pool models. Models with an error greater
than half of the error range are discarded, i.e., 𝐸𝑖 > (𝐸𝑚𝑎𝑥 −𝐸𝑚𝑖𝑛)/2, where 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑖𝑛

are the highest and lowest error of any 𝜌𝑖 ∈ 𝑃 , respectively. After that, the subset is submitted
to the same process adopted by DW.

6.4.4 Integration

The experimental protocol used in the Integrator module includes:
Integrator. The integrator varies according to the selection algorithm adopted. DS does

not need integration because it selects a single model. DW and DWS use weighted averages
in their integrations.

Two integration strategies were adopted in which selection algorithms were not applied,
namely Mean and Median, as done by Moura, Cavalcanti & Oliveira (2021). The integration
strategies calculate the mean and median of forecasts from pool 𝑃 , respectively. The objec-
tive was to contrast popularly used dynamic selection algorithms against simple integration
approaches.
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6.4.5 Evaluation Measures

The RMSE was adopted to evaluate the accuracy of the approaches. It is also applied to
the model training and selection (see Sections 6.4.2 and 6.4.3).

The Diebold-Mariano Statistical test (DIEBOLD; MARIANO, 2002) was used to check whether
the proposed MPS performs as well as the CFA, as done by Neto et al. (2022). The test aims
to determine whether the two forecasts are significantly different. If the p-value is greater than
0.05, the accuracy of the MPS approach is deemed statistically equivalent to that of CFA.
However, if the p-value is less than or equal to 0.05, the more accurate approach is the one
with the lowest RMSE value.

The Accuracy Percentage Difference (APD) was adopted to compare the approaches: MPS
and CFA, as done by Wang et al. (2018), Silva, Neto & Cavalcanti (2021). The APD is defined
in Equation 6.5:

𝐴𝑃𝐷 = (𝜖𝛼 − 𝜖𝛽)
𝜖𝛼

× 100, (6.5)

where 𝜖𝛼 is the baseline accuracy (i.e., CFA), and 𝜖𝛽 is the accuracy of the proposed approach,
i.e., MPS. The higher the percentage difference (positive), the better the proposed approach
outperforms the baseline.

6.5 RESULTS

This section evaluates the MPS as an alternative to improve the forecasting accuracy of
microservices time series. The proposed MPS is the one used in the PMA MPS module. The
evaluation compares the CFA, which uses only a single forecasting model, against the proposed
MPS, which uses a pool of predictive models. The results of experiments on the real-world
series are presented, followed by a statistical evaluation of the findings. Detailed results on the
accuracy of the approaches, including additional metrics, can be found in a public repository4.

Table 6.3 shows the RMSE of the CFA models, considering the 16 real-world time series
described in Section 6.4.1. The SVR had better accuracy on eight series (50%), MLP on four
(25%), RF on two (12.5%), and XGBoost and LSTM on one each (7.5%).
4 https://github.com/gfads/mps-methodology/
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Table 6.3 – RMSE results of the CFA models for real-world series. The best result per time series is in bold.
Error values are in 10−3 scale.

Models
Metric Series ARIMA LSTM MLP RF SVR XGBoost

1 76.42 53.76 36.23 38.35 35.56 37.54
2 149.33 38.94 32.08 133.73 25.89 182.84
3 348.04 434.01 61.81 311.33 41.99 230.30

CPU
usage

4 110.16 86.53 64.95 121.04 65.73 86.13
1 12.37 2.52 1.38 33.47 1.36 13.93
2 114.68 6.24 4.25 580.65 3.83 544.53
3 181.06 151.42 73.29 80.65 75.44 86.59

Memory

4 30.48 32.41 24.19 316.97 23.34 358.88
1 96.07 103.16 56.10 163.33 53.51 210.35
2 155.71 83.22 51.23 60.98 51.70 60.46
3 93.15 87.68 64.33 61.13 63.90 59.40

Response
time

4 67.93 56.52 51.50 50.90 51.97 52.70
1 67.62 69.89 65.90 62.96 66.40 66.01
2 54.90 87.28 38.09 109.37 39.20 152.84
3 328.30 197.74 51.03 77.72 45.21 130.78

Traffic

4 123.07 122.38 128.44 143.07 128.11 177.10

Figures 6.6a and 6.6b summarise the successful model (i.e., the most accurate model
compared to other CFA models) for each time series and microservice performance metric.
Regarding the series (Figure 6.6a), SVR and RF were the most accurate for forecast Series 1,
and SVR and MLP were the most accurate for Series 2. More models stand out in Series 3 and
4, with MLP, SVR and RF being more accurate in Series 3 and LSTM, MLP, SVR and RF in
Series 4. Based on the metrics analysis (Figure 6.6b), SVR was more accurate for CPU usage
and memory series, MLP achieved a good result in at least one of the metrics, and LSTM, RF
and XGBoost achieved better results in predicting the response time and traffic metrics. It is
worth highlighting the performance of the SVR model in the different series.

Although the SVR was the best model compared to other monolithic models, it was not
better in all series. Thus, choosing only a single model can be a risky strategy due to the
limitation of CFA. Hence, as mentioned in Section 5.5, MPS emerges as an alternative to this
problem since it uses a pool of forecasting models.

Table 6.4 compares the RMSE results of the MPS approach and CFA on the real-world
series. CFA results are those achieved by SVR, the model with the highest accuracy in the
real-world time series. The MPS achieved better results than CFA in 87.5% (14 out of 16
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Figure 6.6 – Successful CFA models of real-world series evaluated from the point of view of time series (a)
and metrics (b).
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datasets). The homogeneous attained better accuracy at 62.5%, the heterogeneous at 25%
and the CFA at 12.5%. CFA outperformed MPS only in Series 1 CPU usage and Series 2
memory. Dynamic algorithms (DS, DW and DWS) stood out in homogeneous pool results,
while the Median static combination and DS excelled in the heterogeneous pool.

It is worth noting that some of the results are the same in different selection strategies.
For example, DW and DWS for CPU usage Series 1 and 3 or Traffic Series 3 and 4. As the
selection mechanisms of DW and DWS algorithms are similar, they can select the same models
to forecast all test patterns, resulting in the same final accuracy.

Regarding the CPU usage metric, the MPS algorithm outperformed the CFA in 75% of the
series. The SVR algorithm was the most accurate for Series 1. The DS homogeneous algorithm
was the best for Series 2 and 4, and the Mean homogeneous algorithm for Series 3. Similarly,
the MPS algorithm was more accurate than CFA in 75% of the series for the memory metric.
The DS homogeneous achieved the highest accuracy for Series 1, SVR for Series 2, DWS
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Table 6.4 – Accuracy (RMSE) of MPS and CFA for real-world time series. The best results are in bold, and
the second-best ones are underlined per time series. Error values are in 10−3 scale.

CFA Homogeneous Heterogeneous
Metric Series SVR MEAN MEDIAN DS DW DWS MEAN MEDIAN DS DW DWS

1 35.56 37.30 37.26 37.85 37.34 37.34 39.16 35.90 38.00 68.83 74.21
2 25.89 25.93 25.87 25.56 26.13 26.14 80.58 79.30 42.81 48.08 45.10
3 41.99 41.01 41.39 41.79 41.05 41.05 217.48 268.05 42.02 154.53 152.75

CPU
usage

4 65.73 63.15 63.88 62.10 62.76 62.75 75.81 76.29 71.59 113.36 113.94
1 1.36 1.34 1.35 1.33 1.34 1.34 10.24 7.28 12.37 5.29 5.27
2 3.83 4.17 4.26 3.87 4.11 4.11 171.89 4.37 7.94 8.41 8.40
3 75.44 68.50 69.58 73.43 67.71 67.52 89.85 80.95 83.37 79.08 78.90

Memory

4 23.34 23.41 23.43 23.59 23.40 23.40 115.83 27.40 23.24 24.92 24.69
1 53.51 52.91 52.70 51.68 52.85 52.85 83.95 71.44 159.46 139.09 150.06
2 51.70 49.73 49.76 50.83 49.49 49.48 60.65 52.57 60.86 72.82 72.19
3 63.90 58.70 58.63 60.14 58.48 58.50 62.87 59.91 64.43 90.51 93.02

Response
time

4 51.97 51.43 51.52 54.32 51.06 51.64 49.77 49.47 49.78 56.72 56.73
1 66.40 62.41 62.66 63.26 62.59 62.91 58.18 60.07 62.03 74.68 75.20
2 39.20 36.75 36.95 42.17 36.57 36.57 63.64 60.87 52.85 66.22 72.17
3 45.21 49.71 49.80 45.78 48.47 42.59 105.53 62.11 70.22 190.75 190.97

Traffic

4 128.11 176.31 177.50 133.10 169.86 169.86 126.15 124.29 130.39 125.22 125.22

homogeneous for Series 3 and DS heterogeneous for Series 4.
MPS outperformed CFA in all response times and traffic series. Regarding response time,

DS homogeneous was more accurate for Series 1, DWS homogeneous for Series 2, DW ho-
mogeneous for Series 3 and Median heterogeneous for Series 4. Regarding traffic series, Mean
heterogeneous achieved better results for Series 1, DW and DWS homogeneous for Series 2,
DWS homogeneous for Series 3 and Median heterogeneous for Series 4.

Although the CFA was more accurate than the MPS in some series (2 out of 16), all
homogeneous algorithms achieved similar accuracies. For most heterogeneous pool results,
only the Median and DS algorithms achieved CFA-like accuracy. The results also show that
the Median was more accurate than the Mean in most heterogeneous MPS results. Static
combination pools comprise all trained models, including less accurate ones, such as ARIMA,
RF and XGBoost. Therefore, any outlier (i.e., inaccurate forecast) can decrease the accuracy
of the Mean selection algorithm. The Median mitigates the impact of inaccurate models by
using the median forecast of the pool, which does not consider outliers commonly found at
the extremes. Such a statement is also supported by the fact that static combinations achieve
similar accuracy in homogeneous pools. As these pools are comprised of a single algorithm,
their forecasts are less diverse, mitigating the existence of outliers. Furthermore, when dynamic
algorithms have the same accuracy as static ones, static integration approaches should be
prioritised for system building, as they do not perform the selection phase, which speeds up
the forecast.
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Statistical Analysis. Table 6.5 shows the percentage accuracy difference between the best
homogeneous and heterogeneous algorithms compared to the best, intermediate and worst CFA
models in the real-world series. The algorithms are classified based on their overall accuracy
across all series. The highest overall accuracy determines the best algorithm. CFA Intermediate
Model (IM) and Worst Model (WM) are the third and last algorithms considering overall
accuracy. Based on this criterion, the best algorithm for homogeneous and heterogeneous
pools in real-world series is DS. SVR is the Best Model (BM), LSTM is the IM, and XGBoost
is the WM.

The symbols +, −−, and ∼ in Table 6.5 mean that the proposed homogeneous and
heterogeneous algorithms attained better, worse, or equal statistical accuracy than the CFA
models (see Section 6.4.5). The final three rows in Table 6.5 summarise the results. Wins

are computed as the percentage of series where the proposed algorithm (i.e., homogeneous or
heterogeneous) achieves statistically significant improved accuracy over CFA. Loss means the
opposite scenario to that described previously. Tie denotes the percentage of series where the
proposed algorithm and CFA accuracy were not statistically different.

Considering the 48 comparisons between the MPS and CFA (i.e., 16 datasets with three
CFA variations), the best homogeneous approach obtained 25 wins (52.1%), 22 ties (45.8%)
and one loss (2.10%). On the other hand, the best heterogeneous approach obtained 18
wins (37.5%), 21 ties (43.75%) and nine losses (18.75%). These results indicate that the
homogeneous approach is more accurate than the heterogeneous approach for forecasting
microservices time series.

When focusing solely on BM results, the best homogeneous approach was equal to or
better in 100% of cases, while the best heterogeneous approach only achieved this in 62.5% of
cases. Therefore, since the best CFA model was unknown before analysis, these results suggest
that using a homogeneous approach can enhance the accuracy of the forecast adaptive system
and mitigate the CFA problem. At the same time, opting for a heterogeneous approach aiming
for the highest accuracies is not recommended.
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Table 6.5 – Percentage (%) difference between the best homogeneous and heterogeneous algorithms compared
to BM, IM, and WM in real-world series computed using Equation 6.5. The statistical result was
obtained using the Diebold Mariano statistical test (see Section 6.4.5). DS is the best homogeneous
and heterogeneous algorithm, SVR is the BM, LSTM is the IM, and XGBoost is the WM

Homogeneous Heterogeneous
Metric Series BM IA WM BM IM WM

1 -6.45 (∼) 29.59 (+) -0.83 (∼) -0.39 (−−) 29.31 (+) -1.22 (∼)
2 1.26 (∼) 34.35 (+) 86.02 (+) -65.37 (−−) -9.96 (∼) 76.58 (+)
3 0.49 (∼) 90.37 (+) 81.86 (+) -0.08 (∼) 90.32 (+) 81.75 (+)

CPU
usage

4 5.53 (∼) 28.24 (+) 27.90 (+) -8.91 (∼) 17.27 (+) 16.88 (∼)
1 2.87 (∼) 47.49 (+) 90.49 (+) -806.9 (−−) -390.3 (−−) 11.22 (+)
2 -0.85 (∼) 38.05 (+) 99.29 (+) -107 (−−) -27.19 (−−) 98.54 (+)
3 2.67 (∼) 51.51 (+) 15.20 (+) -10.51 (∼) 44.94 (+) 3.71 (∼)

Memory

4 -1.07 (∼) 27.19 (+) 93.43 (+) 0.45 (∼) 28.29 (+) 93.52 (+)
1 3.42 (∼) 49.90 (+) 75.43 (+) -198 (−−) -54.57 (−−) 24.19 (+)
2 1.69 (∼) 38.92 (+) 15.93 (+) -17.70 (∼) 26.87 (+) -0.66 (∼)
3 5.88 (∼) 31.41 (+) -1.24 (∼) -0.83 (∼) 26.52 (+) -8.46 (∼)

Response
time

4 -4.52 (∼) 3.89 (∼) -3.09 (∼) 4.22 (∼) 11.93 (∼) 5.54 (∼)
1 4.73 (∼) 9.49 (∼) 4.16 (∼) 6.58 (∼) 11.25 (∼) 6.02 (∼)
2 -7.57 (∼) 51.69 (+) 72.41 (+) -34.82 (−−) 39.45 (+) 65.42 (+)
3 -1.27 (∼) 76.85 (+) 65.00 (+) -55.34 (∼) 64.49 (+) 46.30 (+)

Traffic

4 -3.89 (∼) -8.75 (−−) 24.85 (+) -1.78 (∼) -6.55 (∼) 26.37 (+)
Wins 0.0% 81.3% 75.0% 0.0% 56.3% 56.3%
Ties 100.0% 12.5% 25.0% 62.5% 25.0% 43.8%
Loss 0.0% 6.3% 0.0% 37.5% 18.8% 0.0%

6.6 DISCUSSION

Section 6.2 raised research questions that were implicitly discussed throughout all sections.
More straightforward answers to these questions are presented in the following:

1. RQ6.1 - How can MPS be used to forecast microservices performance metrics?

A set of phases demonstrated how to apply MPS to forecast microservices time series
(see Sections 6.3 and 6.4). The phases include time series generation and preprocessing,
model training, and the generation of model pools, selection, and integration.

2. RQ6.2 - How effective are homogeneous and heterogeneous pools in increasing

the accuracy of forecasting microservices performance metrics? MPS homoge-
neous pools are more accurate than heterogeneous ones for forecasting microservices
performance metrics. However, heterogeneous pools are formed from a smaller number
of models (6) compared to homogeneous ones (10-150). Likewise, the poor accuracy of
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particular models (e.g., ARIMA, RF and XGBoost) contributed to decreased heteroge-
neous pool accuracy, especially in static combination algorithms. Therefore, removing
low-accurate forecasting models is highlighted as an extra step for heterogeneous pools
before the selection phase (see Section 6.3).

3. RQ6.3 - How do dynamic and static selection impact the accuracy of ho-

mogeneous and heterogeneous pools for predicting microservices performance

metrics? All selection algorithms achieved high accuracy for homogeneous pools, while
only Median and DS stand out for heterogeneous pools. The static combination accu-
racy varied depending on the pool. The Mean was more effective for homogeneous pools,
while the Median was more accurate for heterogeneous pools. Nonetheless, it is worth
noting that the difference in accuracy between Mean and Median is more significant in
heterogeneous pools. For instance, the Median is more accurate for heterogeneous pools
than the Mean in 81.25% of the experiments, i.e., 13 out of 16. DS was the selection
algorithm most accurate for forecasting real-world series.

4. RQ6.4 - How effective are MPS and CFA for forecasting microservices per-

formance metrics? The best homogeneous approach was equal to or more accurate
than the BM of the CFA in 100% of the results, i.e., 16 out of 16. On the other hand,
compared to the best heterogeneous approach, it was equal to or more accurate than
the BM of the CFA in only 62.5% of the cases, i.e., 10 of the 16. Therefore, since the
BM of the CFA was unknown before analysis, these results suggest that using a homo-
geneous MPS approach can enhance the accuracy of the forecast adaptive system and
mitigate the CFA problem. At the same time, opting for the heterogeneous one aiming
for the highest accuracies is not recommended. Finally, it is essential to highlight the
high accuracy achieved by the SVR, which stood out in the study presented.

These findings significantly impact the overall implementation of the PMA tool, espe-
cially the MPS module discussed in Chapter 3. They offer valuable insights into the practical
applications to be applied and the effectiveness to be expected of the MPS module. The
detailed exploration of how MPS can be used to forecast microservices performance metrics
(RQ6.1) sheds light on the practical implementation phases involved in applying MPS. This
information directly informs the design and implementation of the MPS module within the
PMA tool, guiding the development of forecasting methodologies explicitly tailored for mi-
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croservices environments. Also, comparing homogeneous and heterogeneous pools regarding
forecasting accuracy (RQ6.2) highlights the importance of pool composition in achieving accu-
rate predictions. This insight directly influences the selection and integration processes within
the MPS module, informing decisions regarding the inclusion or exclusion of specific models
based on their performance.

Furthermore, examining the influence of dynamic and static selection algorithms on fore-
casting accuracy (RQ6.3) helps determine the most appropriate selection algorithms for various
pool compositions. This knowledge assists in improving the selection process within the MPS
module, ensuring that the most precise forecasting models are chosen for implementation.
Lastly, the comparison between the MPS and CFA approaches (RQ6.4) highlights the out-
performance of the MPS. This finding emphasises integrating forecasting strategies like MPS
into the PMA tool to improve the accuracy and reliability of their predictions. These findings
provide valuable insights into the MPS approach and its selection processes, highlighting the
potential to improve the performance and efficiency of MBA auto-scaling when integrating
the PMA tool.

6.7 CONCLUDING REMARKS

This chapter introduced the MPS, which uses multiple predictors to forecast microservices
time series. Its objective is to overcome the CFA limitation, making auto-scaling systems
for microservices more reliable and accurate. The chapter begins by discussing the research
gap in the literature. After this, the proposed MPS was presented, and the experimental
protocol applied was detailed. Finally, an experimental evaluation was presented to assess the
performance of the proposed MPS, followed by a discussion of the findings.
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7 PMA EXPERIMENTAL EVALUATION

This chapter presents an experimental evaluation of PMA. Section 7.1 outlines the per-
formance evaluation objectives. Next, Section 7.2 details the experimental protocol used in
the evaluation. Sections 7.3 and 7.4 present and discuss the evaluation results, respectively.
Finally, Section 7.5 discusses how the PMA results correlate to those presented in Chapters 4,
5 and 6.

7.1 OBJECTIVES

The chapter evaluates the effectiveness of PMA proactive strategies for auto-scaling Microservice-
based Applications (MBAs). The PMA experimental evaluation objectives are:

• Evaluate the PMA strategies performance to adapt MBAs proactively; and

• Compare and analyse the results obtained in this chapter with those presented in Chap-
ters 4, 5 and 6.

To benchmark the performance of the PMA tool, its proactive strategies are compared
with those of Predict Kube (PK). PK (see Section 2.2.2.2) is a widely used industry tool
for auto-scaling in K8s environments. The evaluation focuses on assessing the effectiveness of
adaptive tools to manage MBAs aiming to maintain customer experience and be cost-effective.

The following research questions guide the PMA experimental evaluation:

• RQ7.1 - How effective are univariate, multivariate and Multiple Predictor Systems
(MPS) strategies for auto-scaling MBAs?

• RQ7.2 - How effective are PMA and PK self-adaptive tools for auto-scaling MBAs?

7.2 EXPERIMENTAL PROTOCOL

The experimental protocol used to evaluate PMA is similar to the one employed in Chapter
5. However, they have a few differences, such as using real-world workloads and evaluating
two new PMA modules: univariate and MPS. Only the crucial details are presented here to
prevent redundancy. Nevertheless, the text will guide the reader towards more vital information
whenever required.
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7.2.1 Setup

All experiments were conducted on a local K8s cluster of six nodes, comprising one master
and five workers. Each node, running Ubuntu 22.04 LTS, is a Virtual Machine (VM) equipped
with Intel® Xeon® CPU 1220 (four vCpus) and 16GB DDR3 RAM.

The PMA evaluation uses the applications: Daytrader (DAYTRADER, 2024), Online Bou-
tique (OB) (ONLINE-BOUTIQUE, 2024), Quarkus-HTTP-Demo (QHD) (QUARKUS-HTTP-DEMO,
2024), and Travels (TRAVELS, 2024). More details about these applications are presented in
Section 5.3.1, as these are the same ones used in Chapter 5.

7.2.2 Proactive Tools

PMA is compared to PK (see Section 2.2.2.2). PMA offers three forecasting strategies:
univariate, multivariate, and MPS (see Chapter 3). All of them are considered in this evaluation.

7.2.3 Metrics

The efficiency of an adaptive MBA is commonly measured by its ability to ensure cus-
tomer experience, such as meeting Service Level Agreement (SLA) requirements, as well as its
cost-effectiveness. Therefore, the quality measures proposed by Straesser et al. (2022), which
consider cost-effectiveness and customer experience, were used to compare PMA and PK. The
metrics adopted for evaluation are Auto-scaling Efficiency (𝐴𝐸𝑤), Response Time (RT) and
Cost (C), defined in Section 5.3.3.

7.2.4 Workloads

The proactive tools are evaluated using four real-world workloads: Alibaba (LUO et al.,
2021), ClarkNet (ARLITT; WILLIAMSON, 1996), NASA (ARLITT; WILLIAMSON, 1996) and FIFA
WorldCup98 (ARLITT; JIN, 2000). All of them have been used to evaluate self-adaptive auto-
scaling tools (TAHIR et al., 2020; ABDULLAH et al., 2021; DANG-QUANG; YOO, 2021; XU et al.,
2022; SHIM et al., 2023).

The Alibaba database comprises time series extracted from nearly twenty thousand mi-
croservices running over ten thousand bare-metal nodes during twelve hours in 2021. The
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Traffic series 2, presented in Section 6.4, was adopted for evaluation and will be referred to as
Alibaba.

The ClarkNet (ARLITT; WILLIAMSON, 1996) dataset includes two traces containing all
HTTP requests made to the ClarkNet WWW server over two weeks. The first trace was
collected from August 28, 1995, at midnight to September 3, 1995, at 11:59 pm, totalling
seven days. The second trace was collected from September 4, 1995, at midnight to September
10, 1995, at 11:59 pm, also totalling seven days. The two-week traces account for 3,328,587
requests.

The NASA (ARLITT; WILLIAMSON, 1996) dataset includes two traces containing all HTTP
requests made to the NASA Kennedy Space Center WWW server in Florida over two months.
The first trace was collected from July 1, 1995, at midnight to July 31, 1995, at 11:59 pm,
totalling 31 days. The second trace was collected from August 1, 1995, at midnight to August
31, 1995, at 11:59 pm, also totalling 31 days. The two-month traces account for 3,461,612
requests.

The FIFA WorldCup 98 (ARLITT; JIN, 2000) includes one trace containing all HTTP re-
quests made to the 1998 World Cup website over 88 days. The trace was collected from April
30, 1998 to July 26, 1998. The trace contains 1,352,804,107 requests.

PMA and PK require previous data to operate proactively. Hence, all the traces were
processed and transformed into a time series of 15 hours, comprising 900 observations of 1
minute each. The first 12 hours were utilised to generate data to train the forecasting models.
The final three hours were dedicated to comparing the tools. The reason for training forecast
models with 12 hours of data was discussed in Section 5.3.6. The workloads were emulated
using Jmeter (JMETER, 2024), following the same approach described in Section 5.3.4. Figure
7.1 shows all real-world time series.

7.2.5 Training of PMA Forecasting Modules

The min-max normalisation was adopted to scale the series to the interval [0, 1] (SHALABI;

SHAABAN; KASASBEH, 2006). Min-max normalisation was defined in Equation 4.1. It was also
divided as follows: 70% points for training and the last 30% for testing, as done by Alipour &
Liu (2017) and Yadav, Rohit & Yadav (2021). The series was restructured as time windows,
each consisting of 20 lags. These steps were used to train the models for three strategies.

The univariate and MPS models were trained according to the proposals presented in



101

Figure 7.1 – Evaluation workloads.
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Chapters 4 and 6. However, the model training for MPS employed a homogeneous pool and
Dynamic Selection (DS) due to their performance in Chapter 6. Furthermore, the forecasting
model pool comprises 100 models, a commonly used size (YAO; DAI; SONG, 2019). The list
of algorithms for both components is the same used in Chapter 6 and includes four Machine
Learning (ML) algorithms (Multilayer Perceptron (MLP) (HAYKIN, 2001), Support Vector Re-
gressor (SVR) (DRUCKER et al., 1997), Random Forest (RF) (BREIMAN, 1996), and eXtreme
Gradient Boosting (XGBoost) (CHEN; GUESTRIN, 2016)), one statistical algorithm (AutoRe-
gressive Integrated Moving Average (ARIMA) (PRYBUTOK; YI; MITCHELL, 2000)) and one
Deep Learning (DL) algorithm (Long Short-Term Memory (LSTM) (MA et al., 2015)).

All algorithms were trained using a grid search approach to find the best hyper-parameters
per model. Table 6.2 shows the hyper-parameters used for training the univariate and MPS
models and their source. The validation set was used to select the best hyper-parameters per
model and the time-sliding window size. The multivariate models were trained using the same
approach as the Multivariate Forecasting Tool (MFT) models in Chapter 5. A multivariate
LSTM algorithm was utilised with a grid search approach (see in Table 5.2). Also, different
features for each application were selected (see Table 5.1). Appendix D summarises the best
algorithms for univariate and MPS strategies for each application and workload.
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7.2.5.1 Auto-scaling Rules

The experiments were limited to horizontal auto-scaling, a widely used approach for mi-
croservices auto-scaling research (SINGH et al., 2019). The scaling mechanism triggers once
every 15 seconds with a 5-minute stabilisation cooldown on both tools as done by the Hori-
zontal Pod Auto-scaler (HPA) (HPA, 2024). Due to technical setup restrictions, the maximum
number of replicas per containerised application has been limited to ten.

All proactive strategies were configured to predict one step ahead. The forecasting horizon
adopted was 1 minute. PK, univariate and MPS were configured to predict CPU usage, and
the 80% threshold has been set to trigger adaptation, as done by Lanciano et al. (2021).
Multivariate was configured to predict the number of pods, as done by Coulson, Sotiriadis &
Bessis (2020).

7.3 RESULTS

This section compares PMA and PK for proactive auto-scaling of MBAs. The research
questions presented in Section 7.1 help guide the proposed evaluation analysis. Tables 7.1, 7.2,
and 7.3 compare the efficiency (𝐴𝐸0.5), cost (𝐶) and response time (𝑃 95) of PMA strategies
and PK for managing MBAs. Source code, figures, and datasets of this experimental evaluation
are available in a public repository1.

7.3.1 Auto-scaling Efficiency

PMA was more efficient than PK in managing MBAs in almost all experiments (93.75%),
except for the QHD application in the ClarkNet workload. PMA MPS was the more efficient
approach in 50% of the experiments, i.e., 8 out of 16. Meanwhile, PMA univariate was the
best in 43.75% of the experiments, i.e., 7 out of 16. In contrast to the experiments conducted
in Chapter 5, the PMA multivariate did not perform well in complex applications, e.g., OB
and Travels. Furthermore, it was not the most efficient tool in any experiment.

PMA MPS had the lowest average efficiency (77.08%), followed by PMA univariate (78.49%),
PK (80.22%) and PMA multivariate (80.82%). Although the PMA multivariate had the worst
auto-scaling efficiency, it was the best for managing the QHD application, with an average
1 https://github.com/gfads/PMA
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Table 7.1 – Auto-scaling efficiency (𝐴𝐸0.5) results of PMA and PK managing MBAs. For efficiency, lower
values mean better results. The best result for each application and workload is in bold, while the
second best is in italics.

Application Workload PK Univariate Multivariate MPS
Alibaba 97.13 98.99 86.40 82.07
ClarkNet 82.82 73.84 75.56 79.28
NASA 58.47 53.48 69.16 64.53

Daytrader

WorldCup98 92.82 93.41 93.51 79.96
Alibaba 99.59 95.58 88.91 85.97
ClarkNet 44.73 74.95 49.91 47.99
NASA 80.80 55.62 67.82 63.99

QHD

WorldCup98 63.49 62.58 65.08 81.31
Alibaba 91.65 92.77 94.55 91.32
ClarkNet 91.85 87.24 88.90 87.09
NASA 85.09 86.04 87.08 84.64

OB

WorldCup98 88.52 86.66 90.25 84.74
Alibaba 92.98 87.46 92.84 96.46
ClarkNet 57.76 51.89 70.00 52.51
NASA 88.46 88.52 88.10 84.12

Travels

WorldCup98 67.38 66.89 85.16 67.41
Average 80.22 78.50 80.83 77.09

efficiency of 67.93%. PMA MPS had the second-highest efficiency score of 69.82%, while
PK got the third position with 72.15%, followed closely by the PMA univariate with 72.18%.
PMA MPS was also the best for managing OB and Daytrader, while PMA univariate performed
better for Travels. PK was not the most efficient tool in any application. Finally, PMA MPS
was more efficient on Alibaba and ClarkNet workloads, while PMA univariate did the same on
NASA and WorldCup98.

Costs (C). PMA incurs lower costs than PK in managing MBAs in all experiments.
PMA MPS incurs lower costs in 56.25% of the experiments, i.e., 9 out of 16. Meanwhile,
the PMA univariate was less costly in 31.25% of the experiments (5 out of 16) and the
PMA multivariate one in 12.5%, i.e., 2 out of 16.

PMA MPS had the best cost average (68.94%), followed by PMA univariate (73.74%),
PMA multivariate (74.46%), and PK (77.77%). PMA MPS incurred lower costs for Daytrader,
Travels, and OB, while PMA multivariate was the best for QHD. Likewise, PMA MPS incurred
lower costs for Alibaba, NASA and WorldCup98, while PMA multivariate was the best for
ClarkNet.
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Table 7.2 – Scaled total cost ( 𝐶
𝐶𝑚𝑎𝑥

) of MBAs managed by PMA and PK. For scaled total cost, lower values
mean better results. The best result for each application and workload is in bold, while the second
best is in italics.

Application Workload PK Univariate Multivariate MPS
Alibaba 98.53 97.97 74.77 66.11
ClarkNet 68.51 52.35 53.04 58.56
NASA 37.90 26.41 64.86 29.06

Daytrader

WorldCup98 85.64 91.71 91.53 66.11
Alibaba 99.17 98.90 99.17 99.17
ClarkNet 59.67 49.91 61.33 42.17
NASA 61.60 58.84 59.12 54.14

QHD

WorldCup98 75.51 71.82 72.56 62.62
Alibaba 89.21 91.02 89.09 87.68
ClarkNet 83.70 82.62 82.53 82.07
NASA 75.43 72.08 77.52 69.99

OB

WorldCup98 79.95 78.55 80.51 76.54
Alibaba 93.07 88.90 97.04 92.92
ClarkNet 77.75 67.33 40.00 67.22
NASA 81.09 77.04 77.96 74.16

Travels

WorldCup98 77.64 74.36 70.31 74.44
Average 77.77 73.74 74.46 68.94

Response Time (RT). PMA decreased response time compared to PK in 68.75% of
the experiments, i.e., 11 out of 16. The PK had the lowest response time in 37.25% of the
experiments, i.e., 6 out of 16, followed by univariate with the lowest response time in 31.25%,
i.e., 5 out of 16. Meanwhile, the PMA MPS had the best response time in 25% of the
experiments (i.e., 4 out of 16), and PMA multivariate had the best response time in 6.25%,
i.e., 1 out of 16.

PK had the lowest response time average (82.67%), followed by PMA univariate (83.25%),
PMA MPS (85.24%), and PMA multivariate (87.19%). PMA MPS had the lowest response
time for OB and Daytrader, while PMA univariate and PMA multivariate did the same for
Travels and QHD. PMA univariate had the lowest response time for NASA and WorldCup98
workloads. Meanwhile, PMA MPS had the lowest response time for Alibaba, and PK had the
lowest for ClarkNet.
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Table 7.3 – Scaled normalised response time ( 𝑅𝑇
𝑅𝑇𝑚𝑎𝑥

) of MBAs managed by PMA and PK. For scaled response
time, lower values mean better results. The best result for each application and workload is in
bold, while the second best is in italics.

Application Workload PK Univariate Multivariate MPS
Alibaba 95.73 100.00 98.02 98.03
ClarkNet 97.13 95.33 98.08 100.00
NASA 79.03 80.54 73.45 100.00

Daytrader

WorldCup98 100.00 95.11 95.49 93.81
Alibaba 100.00 92.26 78.66 72.77
ClarkNet 29.80 100.00 38.49 53.81
NASA 100.00 52.41 76.53 73.83

QHD

WorldCup98 51.47 53.33 57.60 100.00
Alibaba 94.09 94.52 100.00 94.96
ClarkNet 100.00 91.86 95.27 92.12
NASA 94.75 100.00 96.64 99.29

OB

WorldCup98 97.09 94.77 100.00 92.95
Alibaba 92.88 86.02 88.63 100.00
ClarkNet 37.76 36.46 100.00 37.81
NASA 95.83 100.00 98.24 94.09

Travels

WorldCup98 57.12 59.41 100.00 60.38
Average 82.67 83.25 87.19 85.24

7.4 DISCUSSION

The experiments compared PMA and PK using efficiency, cost, and response time metrics
for different applications and workloads. The investigation demonstrated that PMA univariate
and PMA MPS were a more efficient proactive system than PK in managing MBAs. PMA uni-
variate and PMA MPS allocates lower resources while maintaining response times similar to
PK.

The experiments also showed that each PMA tool has advantages and disadvantages de-
pending on the evaluation measures and applications to be managed. For example, PMA uni-
variate and PMA MPS outperformed PK in efficiency and cost. However, the same is not valid
for response time. PMA MPS and PMA univariate are +3.13% and +1.73% more efficient
on average than PK, respectively, while PMA multivariate is -0.61% less efficient. Likewise,
PMA MPS, PMA univariate and PMA multivariate incur -8.84%, -4.03% and -3.31% lower
costs on average than PK. On the other hand, compared to PMA univariate, PMA multivari-
ate and PMA MPS, PK offers a lower average response time of -0.58%, -4.53%, and -2.57%,
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respectively.
The results also revealed some characteristics of PMA and PK. Firstly, the PK yields a

lower response time but has a high allocation cost. PMA univariate provides a similar response
time to PK (+0.58% on average) but with a lower allocation cost, i.e., -4.03% on average.
Correspondingly, the PMA MPS delivers a higher response time than PK (+2.57% on aver-
age) but with a significantly lower allocation cost, i.e., -8.84% on average. Conversely, the
PMA multivariate tool provides a higher response time to PK (+4.53% on average) and a
lower allocation cost, i.e., -3.31% on average. These results made the PMA MPS the best
tool based on efficiency measures.

Also, the effectiveness of PMA MPS and PMA univariate differs depending on the applica-
tion to be managed. MPS performs better for Daytrader and OB applications, while univariate
stands out with Travels. Likewise, even though the PMA multivariate is the worst tool in terms
of efficiency, it was the most efficient for managing the QHD application. Thus, it is crucial
to tailor auto-scaling strategies to the unique characteristics of each application and workload
to optimise efficiency, reduce costs, and improve response times.

Section 7.1 raised research questions that were implicitly discussed throughout this chapter.
More straightforward answers to these questions are presented in the following:

• RQ7.1 - How effective are univariate, multivariate and MPS strategies for

auto-scaling MBAs? The experiments reveal that the most efficient PMA strategies
are MPS, univariate, and multivariate, in descending order. MPS is the best strategy
because it offers a response time similar to other mechanisms at a significantly lower
cost. The univariate strategy is less efficient than MPS but provides better response time
at a higher cost. The PMA multivariate was less costly than the PMA univariate but had
the worst response time. Even so, the PMA multivariate was the most effective for the
QHD application. Thus, depending on self-adaptive system objectives, both PMA MPS
and PMA univariate are primary choices due to their higher prediction accuracy and
efficiency. However, the results from the QHD application showed that there is at least
one scenario where the multivariate strategy proves to be effective. It is up to the
PMA configurator to determine which tool best suits their needs.

• RQ7.2 - How effective are PMA and PK self-adaptive tools for auto-scaling

MBAs? The evaluation showed that PMA was more efficient than PK in managing
MBAs in 15 out of 16 experiments (93.75%), except for the QHD application in the
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ClarkNet workload. Furthermore, PMA incurs lower costs than PK in all experiments
and decreased response time compared to PK in 11 out of 16 (68.75%). Nevertheless,
when only the response time is considered, PK performance compared to PMA stands
out. PK had a lower average response time than PMA univariate by 0.58%, PMA multi-
variate by 4.53%, and PMA MPS by 2.57%. However, as mentioned earlier, cost is also
critical for adaptive tools. In this regard, PMA univariate outperformed PK by 4.03%,
PMA multivariate by 3.31% and PMA MPS by 8.84%. Therefore, it is possible to state
that the PMA is an advance in the literature compared to the industry solution (PK),
especially when using univariate and MPS strategies.

7.5 GENERAL DISCUSSION

This section analyses and compares all the results presented in this thesis. Specifically, it
will examine the findings from Chapters 4, 5, and 5 with those presented in this chapter.

Chapter 4 compared popular ML, DL and statistical algorithms for univariate forecasting
of microservices time series. The evaluation results indicated that DL algorithms are not
necessarily more accurate than ML algorithms to forecast microservices time series, contrary
to common expectations in the literature (ELSAYED et al., 2021). The algorithms with the
highest prediction accuracy were SVR and DeepAr, with SVR being chosen as more suitable
due to its lower cost, i.e., shorter prediction and training time.

Chapter 5 performed a comparative study comparing univariate and multivariate strategies
to proactive auto-scaling MBAs. The study aimed to determine whether the efficiency of
the forecasting strategy was correlated with the complexity of the managed application. The
results demonstrated that the multivariate strategy was more effective for controlling complex
applications like OB and Travels, while the univariate strategy performed better for less complex
applications. Furthermore, the results indicated that as the complexity of the environment
increases, more than a single feature may be required to estimate the behaviour of the system.

Chapter 6 introduced a MPS to forecast microservices time series using multiple models.
The Classical Forecasting Approach (CFA) often falls short as no model can be considered the
best for all possible scenarios, as stated in the free lunch theory (YAO; DAI; SONG, 2019). The
results revealed that using multiple models to forecast microservice time series significantly
increased the accuracy and reliability of the predictor system compared to the CFA.

This chapter compared the proposed proactive, adaptive PMA system to PK, a leading
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adaptive industry tool. According to the findings, the most effective way to manage MBAs is
through the PMA MPS, followed by the PMA univariate and PMA multivariate. Furthermore,
PMA MPS and PMA univariate have proven more efficient in managing MBAs than PK.

When analysing the outcomes of all the chapters, it is important to highlight specific
points:

• The findings from the univariate evaluation (Chapter 4) are consistent with the results
obtained in the MPS evaluation (Chapter 6). Both chapters identified the SVR model as
the most effective CFA model. Furthermore, the XGBoost and ARIMA algorithms have
exhibited low accuracy.

• The results observed in the MPS evaluation (Chapter 6) are corroborated by the PMA ex-
perimental evaluation (Chapter 7). Both chapters indicate that adopting MPS improved
the forecast system to auto-scaling MBAs. The proposed MPS was evaluated at project
time and then corroborated at runtime. This finding demonstrates that MPS can improve
proactive auto-scaling tools for microservices.

• The results observed in the MFT assessment (Chapter 6) were not corroborated by the
PMA experimental evaluation (Chapter 7). This chapter evaluation has shown that a
multivariate strategy may not always be the optimal solution for managing complex
applications. However, it is worth mentioning that the PMA evaluation used different
workloads. Furthermore, the comparative study has known limitations described in Sec-
tion 9.4, which were partially overcome in this evaluation. Based on the PMA evaluation,
it was found that the univariate PK strategy performed slightly better than the multi-
variate PMA strategy. The difference in performance between them is only 0.60%. Thus,
a simple univariate strategy can be as effective as a complex multivariate one for the
evaluated applications and workloads.

7.6 CONCLUDING REMARKS

This chapter presented the experimental evaluation of the proactive, adaptive system pro-
posed in this thesis. The chapter begins by discussing the experimental evaluation objectives.
After this, the experimental protocol used was detailed. Next, the experimental evaluation
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outcomes were presented and discussed. Finally, the PMA results were contrasted to those in
Chapters 4, 5 and 6.



110

8 RELATED WORK

This chapter provides an overview of the current literature related to the PMA. Section 8.1
describes reactive tools. Section 8.2 covers proactive auto-scaling tools designed for microser-
vices, while Section 8.3 shows proactive works for cloud applications. Section 8.4 presents a
comparative analysis of all related work.

8.1 REACTIVE APPROACHES

CAUS (KLINAKU; FRANK; BECKER, 2018) is a heuristic reactive auto-scaling tool for Microservice-
based Application (MBA). CAUS regularly checks the microservice workload to identify man-
aged system violations and trigger horizontal auto-scaling adaptations. The heuristic auto-
scaling tool was structured as a centralised MAPE-K feedback loop. PMA and CAUS perform
a horizontal adaptation of microservices and structures their tool using centralised MAPE-K.

Zhang et al. (ZHANG et al., 2018) presented an adaptive reference model for microser-
vices, which was used as a foundation for building a self-adaptive framework called MSSAF.
MSSAF comprises an auto-scaling tool, a translation system, and a managed system. The
auto-scaling tool operates over a centralised MAPE-K feedback loop. The translation system
interprets adaptation strategies. The managed system is a MBA. PMA and MSSAF are ap-
proaches for auto-scaling microservices that aim to maintain Quality of Service (QoS) based
on performance.

REMaP (SAMPAIO et al., 2019) was built on a centralised MAPE-K feedback loop and
applied concepts from Models@run.time. REMaP uses affinity and resource usage to analyse
microservices. Affinity is a metric proposed by the author that is defined as the relationship
between two microservices given by the number and size of messages exchanged over time.
REMaP can identify high-affinity microservices and group them on the same physical server,
which reduces the number of servers. REMaP auto-scaling migrates microservices (and their
replicas) between cluster nodes, while PMA adapts microservices by horizontally scaling in/out
the replicas.

As expected, all reactive approaches differ from PMA as they only act after a problem
has occurred.
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8.2 MICROSERVICE PROACTIVE APPROACHES

Proactive approaches centred on adapting MBAs are divided according to their prediction
strategy: univariate and multivariate.

8.2.1 Univariate

Alipour & Liu (2017) proposed a microservice architecture that combined monitoring, Time

Series Forecasting (TSF) and auto-scaling. Two models were employed for TSF: Multinomial
Logistic Regression (MLR) and Linear Regression (LR). A synthetic dataset generated by ND-
Bench1 was used in the experiments. The dataset corresponds to records of CPU usage every
minute for two weeks, i.e., 20160 observations. LR forecasts the CPU usage, and MLR clas-
sifies it, e.g., high, medium or low CPU usage. Both forecast and classification are sent to
an adaptive logic process which adjusts the MBA, executing horizontal scaling in-out actions.
The authors pioneered the integration of TSF and auto-scaling to build a self-adaptive mi-
croservice tool. However, they restrict their approach to Machine Learning (ML) algorithms,
while PMA also considers Deep Learning (DL) and statistical ones.

Podolskiy et al. (2018) compared several predictive models for microservices time series.
The models investigated were Exponential Smoothing (ES), Seasonal Autoregressive Frac-
tionally Integrated Moving Average (SARFIMA), Seasonal Autoregressive Integrated Moving
Average (SARIMA), LR, Singular Spectrum Analysis (SSA), and Support Vector Regressor
(SVR). Also, models based on AutoRegressive Integrated Moving Average (ARIMA) are ex-
tended with Generalised Autoregressive Conditional Heteroskedasticity (GARCH). A real-world
time series, available per request and provided by Instana, was adopted for evaluation. The
dataset corresponds to response time records every hour for four weeks, i.e., 673 observations.
The paper focused on determining the best models that accurately forecast the time series
while minimising model training time. The authors showed that SSA and SARIMA models
achieved fast and accurate forecasting for predicting microservices time series. They focus
on evaluating several forecasting models. Therefore, microservice auto-scaling is out of their
scope.

Rossi, Cardellini & Presti (2020) proposed Me-Kube, a K8s extension that introduced a hy-
brid hierarchical architecture for auto-scaling microservices. The hybrid architecture addressed
1 https://github.com/Netflix/ndbench
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the shortcomings of K8s’ decentralised auto-scaling tool, i.e., Horizontal Pod Auto-scaler
(HPA). The lower level performs decentralised adaptations considering only the state of each
element (microservices), while the upper-level coordinates and performs adaptations consid-
ering the overall purpose of the application. Me-Kube adaptations can be both reactive and
proactive. The ARIMA model was used to forecast the response time of the microservices so
that they could adapt proactively. However, no information is provided on the datasets used
for model training. The authors showed that Me-kube decreased response time and Service
Level Objective (SLO) violations but allocated more pods than the centralised approach of
HPA. PMA has three different forecasting strategies evaluated on various workloads; it is im-
plemented over a MAPE-K feedback loop and provides mechanisms to prevent unnecessary
adaptations. On the other hand, they implement Me-kube on a hybrid MAPE-K feedback loop,
using only the ARIMA. Although they were proactive and achieved better results than HPA,
their evaluation was conducted in an experiment with a specific workload, so it may not be
generalisable to other scenarios.

Applying a strategy different from the others, RScale (KANG; LAMA, 2020) is a resource
auto-scaling tool that provides end-to-end performance guarantees for containerised microser-
vices deployed in the cloud. RScale employs the Gaussian Process Regression, a probabilistic
ML performance model. The performance model quickly adapts to dynamic changes in the
cloud environment and provides confidence bounds in its forecasts. It can also learn more
from less data. A synthetic dataset was extracted from the Online Boutique (OB) applica-
tion to evaluate the RScale. However, no information about its features, frequency, or size
is available. RScale results indicate that it can handle end-to-end tail latency of microser-
vice workloads, even with multi-tenant performance interference and changes in environment
dynamics. PMA does not use models that guarantee bounded confidence in the forecasts. How-
ever, its Multiple Predictor Systems (MPS) strategy can increase the robustness and accuracy
of the adaptive tool.

Like Alipour, Marie-Magdelaine & Ahmed (2020) proposed a proactive auto-scaling frame-
work for MBAs. The framework employs a Long Short-Term Memory (LSTM) model to fore-
cast microservices metrics, such as traffic. It uses the forecast value to adapt horizontally
(scaling in/out) and vertically (scaling up/down). The adaptations aim to maintain the end-
to-end latency of the applications to fulfil the agreed QoS. LSTM accuracy was evaluated by
a real-world traffic time series comprising 600 observations. Also, the framework was evalu-
ated using synthetic traffic series extracted from OB. The results revealed that the auto-scaling
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framework reduced application latency and increased throughput under flash crowds compared
to HPA. PMA proposes a horizontal auto-scaling tool with three prediction strategies but does
not apply vertical auto-scaling.

Fontana de Nardin et al. (2021) proposed Elergy, a lightweight elasticity model that auto-
scales MBAs focusing on energy. Elergy uses an ARIMA model to forecast CPU usage. It
auto-scales containers vertically or migrates them to prevent violations. Four synthetic CPU
usage time series considering four distinct workload patterns (decreasing, increasing, wave,
and constant) were generated for evaluation. The use of Elergy reduced energy consumption
(1.93% to 27.92%) compared to a non-elastic scenario. PMA and Elergy are two proactive
microservices auto-scaling tools. However, PMA focuses on resource management, while Elergy
focuses on energy consumption.

Toka et al. (2021) introduced a new Kubernetes container engine for auto-scaling mi-
croservices. The engine operates either reactively, based on the CPU usage as Kubernetes,
or proactively, predicting future traffic through four different models: LSTM, Auto-Regressive

(AR), Hierarchical Temporal Memory (HTM) and Reinforcement Learning (RL). The engine
switches to reactive adaptation if no model reaches a minimum pre-establish accuracy. A traffic
time series containing the number of hits to a Facebook page measured every second for two
weeks including 604800 observations was adopted in the evaluation. The authors significantly
decreased the number of rejected requests of the application (22% to 72%) and had slightly
higher resource usage (2% to 9%) compared to HPA. They have enhanced their adaptive
tool by utilising three models in their prediction engine. However, since each model is applied
separately, the tool is still vulnerable to the Classical Forecasting Approach (CFA) problem.

Kakade et al. (2023) propose a proactive tool for auto-scaling containers. Similar to other
works, the forecasted value anticipates future demands and proposed adaptive actions. Two DL
models (Bi-directional Long Short-term Memory (Bi-LSTM) and LSTM) were investigated.
Both models were evaluated using synthetic CPU usage series. The proposed auto-scaling tool
decreased response time by 50% than HPA. They compare only DL models for forecasting
microservices series, while PMA also uses statistical and ML models.

8.2.2 Multivariate

Advancing on Alipour and Liu’s approach, Coulson, Sotiriadis & Bessis (2020) proposed a
self-adaptive pipeline for auto-scaling microservices. The pipeline employed a stacked LSTM
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model that forecasted future application requests and suggested adaptive recommendations
actions. The recommendations were sorted according to their effectiveness by dealing with
the forecasted demand. A synthetic time series containing nine features, including request
response time, bytes sent, response code, and others, was extracted from a prototype system
to validate the pipeline. The authors pioneered integrating multi-step-ahead and multivariate
forecasting into a microservice self-adaptive tool. Their work provided a helpful road map for
developing, tuning, and evaluating microservice auto-scaling solutions. They focus on long-
term multivariate forecasting, while PMA focuses on short-term forecasting.

To address the bottleneck problem in microservices, Huang et al. (2021) proposed a work-
load prediction approach. The approach is implemented through a Gate Recurrent Unit (GRU),
a variation of LSTM. GRU was compared to other popular statistical (ARIMA and ES), ML
(K-modes) and DL (Deep Belief Networks (DBN)) models. A multivariate time series with
five features (CPU usage, memory, disk usage, network usage and traffic) was synthetically
generated for the evaluation. The authors revealed that GRU has lower accuracy than all other
models, indicating a promising candidate for the bottleneck problem. They compared differ-
ent models for bottleneck detection, while PMA is a self-adaptive tool focusing on resource
management.

Goli. et al. (2021) developed a new proactive auto-scaling tool for containerised applica-
tions. Their tool analyses the forecast CPU usage to trigger horizontal auto-scaling adapta-
tions. However, they also estimate how this adaptation can impact other services. The impact
is estimated using a multivariate model that uses the current and forthcoming number of
containers, CPU usage and traffic as input. The tool is built based on the MAPE-K framework
and incorporates various ML models, such as LR, Random Forest (RF) and SVR. The authors
demonstrated that awareness of how a service can impact other services during auto-scaling
avoids cascading bottlenecks, improving the overall performance of the application. PMA has
a proactive multivariate strategy, allowing the use of different metrics in its prediction. It also
has mechanisms to prevent successive adaptations that may harm the stability of the MBA.

Like Podolskiy, Dang-Quang & Yoo (2021) evaluated the forecast accuracy of statistical
and DL models to predict short- and long-term traffic time series. The forecast component
assists the K8s framework decision-making, allowing proactively horizontally auto-scaling con-
tainers. Two DL models (Bi-LSTM and LSTM) and a statistical model (ARIMA) were investi-
gated. The evaluation included two commonly adopted datasets: NASA (ARLITT; WILLIAMSON,
1996) and FIFA World Cup 98 (ARLITT; JIN, 2000). The NASA and FIFA World Cup 98 datasets
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contain records of HTTP requests over two and three months, respectively. The authors re-
vealed that Bi-LSTM outperformed HPA in managing containers and had a prediction time of
530 to 600 times faster than the ARIMA. They proposed an adaptive tool that includes DL
and statistical algorithms. PMA extends this approach by considering traditional ML models.

Qassem et al. (2023) proposed a proactive auto-scaling tool for microservices. The auto-
scaler is built on a centralised MAPE-K feedback loop and uses an RF model to forecast
CPU usage and memory. The auto-scaler uses the forecast value to adapt horizontally (scal-
ing in/out) and vertically (scaling up/down). They evaluated the RF using the FastStorage
(FASTSTORAGE, 2024) dataset containing workload traces of 1,250 Virtual Machines (VMs).
The auto-scaler was evaluated using a proposed synthetic experiment with the Sock-Shop2

application. Their results show an improvement in application response time (60%) and tail
latency (19.6×). PMA performs only horizontal auto-scaling but has three distinct forecasting
strategies.

8.3 CLOUD PROACTIVE APPROACHES

Nikravesh, Ajila & Lung (2017) used TSF to minimise Service Level Agreement (SLA)
violations in cloud applications. Their work is an alternative to the reactive adaptation, whose
deficiency is neglecting the startup time of VM. The autoscaling strategy uses workload fore-
casting for decision-making. They use SVR or Multilayer Perceptron (MLP) models for pre-
diction. A decision fusion technique selects the most appropriate model during run-time based
on the current workload pattern. The main finding of the research is that the prediction ac-
curacy of the models is positively impacted by using different prediction algorithms for the
different cloud workload patterns. This thesis has also corroborated this finding for predicting
microservices time series. PMA uses two other classes of forecasting models (DL and statistical
algorithms) and focuses on microservices (not on cloud applications). Also, it implements the
MAPE-K feedback loop.

Palmerino et al. (2019) focused on the evolution of corrective actions applied to cloud ap-
plications over time. Adaptive solutions usually consider that the cost and time required to take
corrective action are always static. However, these factors can fluctuate continuously depend-
ing on the managed system environment. For instance, network congestion could cause data
transmission to take longer than anticipated. The authors proposed two forecasting models
2 https://github.com/microservices-demo/microservices-demo
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(ARIMA and Multiple Regression Analysis (MRA)) to predict the future state of the applica-
tion. ARIMA predicts when an application objective defined in the SLA can be violated, while
MRA predicts the cost and time of each corrective action. PMA uses additional forecasting
models and focuses on adapting microservices. They do not use the MAPE-K feedback loop.
However, their two-model approach enables the best corrective action to be chosen based on
the future application state.

Shim et al. (2023) proposed a proactive auto-scaling framework based on MAPE-K for
cloud applications. It uses the forecast value to propose adaptive actions. Two DL models
(Bi-LSTM and LSTM), a statistical model (ARIMA) and a Transformer (Informer) were in-
vestigated. The evaluation included two datasets: NASA (ARLITT; WILLIAMSON, 1996) and
FIFA World Cup 98 (ARLITT; JIN, 2000), as done by Dang-Quang & Yoo (2021). The authors
demonstrated that Transformers perform well when forecasting time series of cloud appli-
cations. PMA also demonstrated that transformers perform well in forecasting microservices
series. However, PMA focuses on microservices rather than on cloud applications.

8.4 SUMMARY

The literature highlights several approaches to auto-scaling in microservices and cloud
applications, focusing on maintaining QoS through reactive and proactive strategies. Common
characteristics include:

The need to adapt microservices. The dynamic nature of microservices and their execu-
tion environment demands adaptation. Microservices are complex distributed applications that
require monitoring and adaptation. Both reactive and proactive auto-scaling have been applied.
Reactive auto-scaling has been implemented to optimise deployment, enhance performance,
and prevent cascading failure (ANGELOPOULOS et al., 2016; FLORIO; NITTO, 2016; KLINAKU;

FRANK; BECKER, 2018; SAMPAIO et al., 2019). Proactive auto-scaling has been applied to im-
prove resource and energy management for microservices and VMs, bottleneck detection, and
mitigation of SLO violations (AJILA; BANKOLE, 2016; ALIPOUR; LIU, 2017; NIKRAVESH; AJILA;

LUNG, 2017; HUANG et al., 2021; TOKA et al., 2021). Maintaining application performance at
run-time is a common goal in these adaptive tools.

Proactive adaptation features. Most papers focus on monitoring/predicting perfor-
mance metrics such as CPU usage, memory, response time, and traffic metrics. Also, most
proactive adaptive microservices tools use DL (COULSON; SOTIRIADIS; BESSIS, 2020; MARIE-
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MAGDELAINE; AHMED, 2020), ML ((ALIPOUR; LIU, 2017; GOLI. et al., 2021)), and statistical
learning algorithms ((PODOLSKIY et al., 2018; ROSSI; CARDELLINI; PRESTI, 2020)) for TSF.
Furthermore, applying TSF algorithms is the most popular method for forecasting microser-
vices.

Emphasis on QoS. Many studies focus on maintaining or enhancing QoS. Proactive
approaches aim to predict changes in demand to prevent any possible QoS decline before it
happens. On the other hand, reactive approaches are based on current workload data and aim
to respond quickly to sudden spikes in demand to maintain service quality.

Use of MAPE-K Feedback Loops. Many discussed tools, such as CAUS (KLINAKU;

FRANK; BECKER, 2018), REMaP (SAMPAIO et al., 2019) and Me-kube (ROSSI; CARDELLINI;

PRESTI, 2020), rely on the MAPE-K (Monitor, Analyse, Plan, Execute over shared Knowledge)
as a reference model for building their adaptive solutions.

Datasets for training. The effectiveness of a proactive auto-scaling strategy heavily relies
on the quality and characteristics of the datasets used for training prediction models. These
datasets range from synthetic benchmarks to real-world time series.

The current trend in related work is focused on developing more intelligent and predictive
scaling mechanisms that can adjust to changing workloads with minimal human intervention.
This trend aims to ensure high levels of service quality in cloud and microservices dynamic
environments. The PMA was developed to help advance this objective. Table 8.1 summarises
all the discussed related works by specific characteristics.
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Table 8.1 – Related work summary.

Author
Performance

Metrics
Forecasting

Classes
TSF

Strategy
Validation

Competences
Evaluated

MAPE-K

Alipour et al. (2017) C ML U S A, FIT ✗

Nikravesh et al. (2017) T ML U S A ✗

Podolskiy et al. (2018) T S, ML U R A, FIT ✗

Klinaku et al. (2018) MQ - - - - ✓

Zhang et al. (2018) C - - - - ✓

Sampaio et al. (2019) C, M, ME - - - - ✓

Palmerino et al. (2019) L, CO S, ML U S A ✗

Coulson et al. (2020) RT, BS, RC, URL, NP S, DL M S A ✗

Rossi et al. (2020) T S U Unknown A ✓

Kang et al. (2020) C, T, NU ML U S A ✗

Marie-Magdelaine et al. (2020) T DL U S,R - ✓

Fontana et al. (2021) C S U S A ✗

Dang et al. (2021) T S,DL M R A, FOT ✓

Huang et al. (2021) C, M, D, N S, DL M S A ✗

Toka et al. (2021) T S, DL U R A ✗

Goli et al. (2021) C ML M S A ✓

Kakade et al. (2023) C DL U S A ✗

Shim et al. (2023) T DL, S U R A ✓

Al-Qassem et al. (2023) C, M, D, N ML U R A ✓

PMA
ACP, C, DCP, HM,
M, NP, PCGS, RT,

T, TP, TCGS, GJVMO
ML, DL, S U, M, MPS S,R A, FIT, FOT ✓

Performance Metrics: Application Connection Pool (ACP), Bytes Sent (BS), CPU Usage (C),
Disk I/O (D), Database Connection Pool (DCP), Latency (L), Global JVM Operations (GJVMO),
Heap Memory (HM), Memory (M), Messages Exchanges (ME), Message Queue (MQ), Network
I/O (N), Number of Pods (NP), Per-second GC scavenge (PCGS) Response Code (RC), Response
Time (RT), Thread Pool (TP), Traffic (T), and Total GC Scavenge (TCGS).
Forecasting classes: Deep Learning (DL), Machine Learning (ML), Statistical (S).
TSF Strategy: Univariate (U), Multivariate (M), Multiple Predictor Systems (MPS).
Validation: Synthetic Series (S) and Real-world Series (R).
Competences Evaluated: Accuracy (A), Fitting Time (FIT), and Forecasting Time (FOT).

8.5 CONCLUDING REMARKS

This chapter presented existing related works similar to the proposed approach. Initially,
several reactive auto-scaling tools were introduced. Next, proactive auto-scaling tools for mi-
croservices and cloud applications were examined. Finally, the related works were summarised
and deliberated.
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9 CONCLUSION AND FUTURE WORK

This chapter presents the conclusion of this thesis. Section 9.1 presents the final remarks.
Section 9.2 answers the research questions presented in Chapter 1. Section 9.3 presents the
contributions of this thesis. Section 9.4 presents some limitations of the proposed approach.
After this, Section 9.5 finishes debating ways to extend future work.

9.1 THESIS REMARKS

Although several studies propose proactive auto-scaling tools for microservices, they have
design limitations that may negatively impact the forecast accuracy at run-time. This thesis has
delved into current forecasting approaches and strategies to enhance proactive Microservice-
based Application (MBA) adaptation. As a result, this thesis introduced PMA (Proactive
Microservices Auto-scaler), a generic, holistic, adaptive and proactive tool that applies hori-
zontal auto-scaling actions to managing MBA. PMA is a multi-model self-adaptive tool that
employs different learning algorithms and forecasting strategies.

PMA is built upon the MAPE-K feedback loop, which consists of four phases: monitoring,
analysis, planning and execution. The monitor fetches and processes performance metrics from
the microservices and makes them available to other feedback loop components. The Analyser
is designed to proactively assess if the resources for each microservice assigned are enough to
fulfil their predicted needs. To accomplish this, it predicts the required performance metrics for
each service, employing one of three forecasting modules: univariate, multivariate, or Multiple
Predictor Systems (MPS). PMA univariate uses one performance metric for prediction, while
PMA multivariate uses multiple ones. PMA MPS employs multiple models, which can be
univariate or multivariate. PMA MPS main idea is to increase the accuracy and reliability of
predictions by combining various forecasting models. These forecasting strategies employed
learning algorithms from the three most prominent predicting classes for microservices, i.e.,
Machine Learning (ML), Deep Learning (DL) and statistical.

This feedback loop comprises four phases that enable the autonomous management of
microservices. These phases include monitoring, analysis, planning, and execution. Further-
more, a knowledge base is integrated throughout all phases to store relevant information for
the adaptation process.
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The planner determines which adaptive actions should be applied to ensure the stability
of the managed system. It can propose horizontal auto-scaling actions, e.g., scaling in/out
of replicas. These actions address violations found during analysis, such as microservices with
too few or too many replicas. After the planner creates adaptation plans, the executor carries
them out.

The PMA has the potential to:

• Improve MBA performance. Unlike reactive tools that scale resources after perfor-
mance issues have arisen, PMA can adapt resources in advance by forecasting future
resource needs, ensuring that microservices can handle incoming workloads without per-
formance degradation.

• Improve cost efficiency. The enhanced forecasting allows PMA to reduce resource
wastage, and thus costs, associated with over-provisioning and decrease response times
by ensuring that adequate resources are always available.

• Improve forecasting strategies for self-adaptive tools. PMA employs various fore-
casting strategies, such as univariate, multivariate, and MPS. It is a highly flexible self-
adaptive tool that harnesses the strengths of each forecasting strategy, whether they
focus on a single performance metric, multiple metrics or employ multiple models. As a
result, PMA better adapts to changes at runtime.

9.2 RESEARCH QUESTIONS

Chapter 1 raised research questions that were implicitly discussed throughout all chapters.
More straightforward answers to these questions are presented in the following:

RQ1.1 - Which algorithms and prediction techniques are the more accurate and

cost-effective for microservices forecasting, and how can these findings be applied

to enhance proactive tools?

Several findings were learned from evaluating different forecasting algorithms and strate-
gies:

The accuracy of the forecasting models depends on the time series to be pre-

dicted. Proactive tools can use dynamic selection mechanisms to improve the accuracy of
forecasting algorithms based on the nature of the data to be predicted. The dynamic selection
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mechanism could act into a preliminary analysis phase where various algorithms are tested on
a subset of the data to determine which provides the best accuracy for the specific time series.

ML algorithms have lower predicting and fitting times and are as accurate as

complex DL models. Proactive tools, especially those operating under budget constraints
or in pay-as-you-go environments like microservices, can prioritise using ML algorithms to
optimise accuracy and cost.

Standard algorithms. When building proactive tools for microservices where a thorough
analysis is not feasible due to financial or time constraints, algorithms like Support Vec-
tor Regressor (SVR) and DeepAR can be suitable due to their high performance. However,
the predicted time series should resemble those used in this thesis. These algorithms have
demonstrated high accuracy and can assist self-adaptive tools in achieving better resource
management.

Univariate vs Multivariate. Proactive tools should consider the complexity of the ap-
plication before deciding on the forecasting approach. A univariate approach might suffice for
more non-complex applications, but shifting to a multivariate approach can yield better fore-
casting results as the application complexity increases. Thus, proactive tools should be created
to adapt their forecasting strategies based on continuous evaluations of application complexity
and performance demands. It may involve implementing mechanisms to periodically reassess
the characteristics of the application and modify the forecasting approach accordingly.

Not all time series can be accurately modelled using the same algorithm. Proactive
tools can improve by incorporating mechanisms to evaluate and switch between algorithms
based on ongoing performance assessments. The adaptive approach allows the managed system
to maintain high accuracy across distinct scenarios, as is standard in MBAs.

These findings can guide the design and enhancement of proactive tools, making them
more accurate, cost-effective, and adaptable to the needs of the applications they manage.
A flexible and dynamic forecasting tool can significantly improve the ability of the managed
system to respond to unexpected events effectively.

RQ1.2 - Can the proactive auto-scaling of MBAs be improved by delegating the

forecasting task to several models? The experiments showed that the proactive auto-
scaling of MBAs can be improved by delegating the forecasting task to several models. During
the MPS evaluation (Chapter 6), the MPS showed to be as accurate as or more accurate than
the Classical Forecasting Approach (CFA) in all the results (16 out of 16). In the PMA assess-
ment, the MPS strategy was more efficient than the Predict Kube (PK) in 75% of the results
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(12 out of 16). These findings suggest that adopting MPS significantly enhances the proactive
auto-scaling of microservices. The MPS approach can enhance the accuracy and robustness
of predictive tools. As a result, these better-managed applications can experience savings in
operating costs and high availability.

9.3 SUMMARY OF CONTRIBUTIONS

The main contribution of this thesis is the PMA, a MAPE-K-based self-adaptive tool
designed for the proactive adaptation of MBAs. PMA has three forecasting modules: univariate,
multivariate, and MPS. These modules can forecast performance metrics and, based on this
estimation, decide whether an adaptation is needed. If necessary, the adaptation consists of
executing scaling-in/out actions. PMA is the first self-adaptive proactive tool to offer three
different forecasting modules. Likewise, it is the first tool to use MPS for microservices time
series.

Other contributions of this thesis are as follows:

• An analysis of popular learning algorithms for forecasting microservices time

series. It compared ten known learning algorithms from the three most prominent pre-
dicting classes, i.e., ML, DL and statistical. The analysis provided a comparative insight
into the accuracy, fit, and forecasting time of the algorithms. It aimed to guide the
selection of learning algorithms for designing new adaptive and proactive microservice
tools. The evaluation considers not only accuracy but also the fit and forecasting time
of the algorithms. However, since no measure of competence computes model fitting
and forecasting times, this thesis proposes a new competence measure called Model
Effort Time (MET) to address this gap. This analysis presented the first comparison
of well-known learning algorithms from three main predicting classes for forecasting
microservices performance metrics.

• A comparative study focusing on the proactive auto-scaling of microservices,

evaluating univariate and multivariate forecasting strategies. The study compared
PK with Multivariate Forecasting Tool (MFT) using four popular open-source applica-
tions across different forecasting horizons. The MFT was integrated into the PMA as a
module, and it was referred to as the PMA multivariate. This comparative study is the
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first to evaluate univariate and multivariate for proactive auto-scaling of microservices
at run-time.

• A MPS for predicting microservices performance metrics This approach involves
selecting the most suitable forecasters from a pool of models to enhance prediction accu-
racy and reliability. The proposed MPS is the first strategy that uses multiple predictors
as an alternative to improve the accuracy and reliability of microservices forecasting
tools.

The PMA development and implementation is a step towards the auto-scaling of mi-
croservices. Furthermore, the comparative analysis and study and the proposed MPS offer
valuable insights into selecting forecasting algorithms and optimising auto-scaling strategies.
These contributions paved the way for building more resilient, flexible, accurate, and efficient
proactive microservices auto-scaling tools, establishing PMA as a new benchmark for proactive
auto-scaling of microservices.

9.4 RESEARCH LIMITATIONS

Some limitations in this thesis are noteworthy and should be highlighted:
Chapter 4. The analysis has not included multivariate time series forecasting, so the re-

sults cannot be generalised for them. Although AutoRegressive Integrated Moving Average
(ARIMA) is a commonly used statistical algorithm, the evaluation has not considered other al-
gorithms. Also, the evaluation was restricted to time series data belonging to a single database,
specifically the Alibaba database.

Chapter 5. The results of comparing two auto-scaling techniques cannot be generalised.
PK is a stable proactive auto-scaling K8s tool, and MFT was designed following the pattern
of existing approaches (COULSON; SOTIRIADIS; BESSIS, 2020; GOLI. et al., 2021; MOHAMED; EL-

GAYAR, 2021). However, a more comprehensive range of alternatives should be considered to
draw more generalised findings. Furthermore, the workload used in the assessment is simplified.
Modelling a periodic workload may be a simple task for predictive algorithms. Finally, although
Long Short-Term Memory (LSTM) is widely used for forecasting microservices performance
metrics, many other algorithms are available.

Chapter 6. The outperformance of MPS over CFA have not considered cost. As MPS
contains several models, its adoption costs more than the CFA. Therefore, since cost is a
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critical factor for MBAs, the financial implications of using MPS must be considered. Further-
more, the proposal has not assessed its scalability. Managing multiple models is significantly
more complex than managing a single one. Therefore, incorporating MPS poses challenges for
PMA configurator, such as determining which microservices to manage, establishing the life
cycle of the pool models, and deciding on the appropriate pool size.

Chapter 7. Because the PMA components match those proposed in other chapters, it
shares similar limitations as previously described. Additional limitations are also present:

• Although ARIMA is a commonly employed statistical algorithm, the evaluation did not
explore other statistical algorithms.

• The LSTM is widely used for multivariate prediction of microservices performance met-
rics. However, many other multivariate algorithms are available.

• The PK and PMA comparison cannot be generalised. Although PK is a leading adaptive
industry tool, more precise conclusions require evaluating PMA against other industrial
and academic tools.

• The scalability cost of the proposal has not been evaluated. Managing multiple mod-
els in PMA MPS is far more complex than managing a single model, as practised in
PMA univariate.

• The cost evaluation only considered the expenses of running the managed system, not
those of running PMA and PK. It would be helpful to determine the memory and CPU
usage required to run them.

9.5 FUTURE WORKS

Building on the research limitations and findings presented, here are several ideas for future
work that could further advance the field of proactive auto-scaling tools for microservices:

PMA as a self-adaptive tool. Adding more capabilities into the PMA, such as self-healing
and self-protection, may be worth considering to provide a more comprehensive approach to
MBA management. Reinforcement Learning can also be a significant step in enhancing the
decision-making effectiveness in the PMA planning phase. Reinforcement Learning can help
PMA learn optimal scaling actions through trial and error, resulting in fewer conflicting actions
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with managed system objectives. Also, incorporating cost metrics into the decision-making
process can improve cost efficiency and promote sustainable cloud practices.

PMA as a forecasting tool. Developing techniques for run-time model retraining to
handle microservices’ life-cycle evolution and changes in time series behaviour may be worth
considering to provide a more robust forecasting approach. These techniques should include
mechanisms for continuous monitoring and automatic detection of significant shifts in data pat-
terns, triggering retraining processes for forecasting models to maintain or enhance accuracy.
Transfer learning could also be beneficial, allowing forecasting models to leverage knowledge
from previously encountered scenarios to adapt to new patterns efficiently. Anomaly detec-
tion algorithms can also assist in identifying and isolating atypical behaviour in microservices,
ensuring the robustness of PMA against unstable data and improving its forecasting accu-
racy. Another PMA condition that could be enhanced is exploring other statistical, ML, and
DL algorithms to improve the accuracy of PMA forecasting and resource utilisation. These
forecasting models could be tested under different workloads and operational conditions to
determine the most effective strategies for specific scenarios.

PMA is a robust and resilient tool. It would be helpful to evaluate the scalability
and performance of the PMA under extreme conditions, such as sudden spikes in demand
or hardware failures. Such an evaluation is crucial for several reasons, including identifying
scalability limits, ensuring reliability, improving resilience, optimising performance, and planning
disaster recovery.

PMA into different domains. It could be helpful to look into integrating PMA with other
technologies like serverless and edge computing. Furthermore, it is essential to explore how well
it can adapt and perform in different domains, such as healthcare, finance, and the Internet
of Things. Such explorations will help to identify domain-specific challenges and opportunities
for proactive auto-scaling. It is also necessary to enhance PMA capabilities for multi-cloud
and cross-cloud support, develop strategies to manage microservices across multiple cloud
providers and optimise resource allocation in a heterogeneous cloud environment.

Improving proactive auto-scaling for microservices is a complex task involving solving tech-
nological and application-specific challenges. The journey towards more sophisticated and
robust auto-scaling tools is ongoing, and these proposed directions for future work represent
promising steps forward in optimising run-time proactive MBA management.
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APPENDIX A – DESCRIPTION OF ALIBABA SERIES

Tables A.1 and A.2 aim to provide a comprehensive overview of the Alibaba series (LUO

et al., 2021). Table A.1 highlights the distinct features and trends of these series, making it
easier to analyse and compare. Table A.2 shows the microservices and containers from which
data in the Alibaba dataset was extracted.

Table A.1 – A detailed description of Alibaba time series.

Metric Series Seasonal Stationary Trend Frequency Mean Median Std Size
Communication

Mechanisms

C 1 S 0.342 0.330 0.049 1426 RPC HTTP MQ

C 2 S 0.176 0.175 0.026 1428 RPC

C 3 S 0.169 0.163 0.025 1425 RPC

C 4 S 0.344 0.397 0.113 1427 RPC

C 5 S 0.125 0.077 0.082 1423 RPC MQ

C 6 S 0.180 0.151 0.066 1420 RPC HTTP MQ

C 7 S 0.083 0.078 0.019 1424 RPC MQ

C 8 S 0.378 0.380 0.072 1431 RPC MQ

C 9 S 0.097 0.096 0.010 1428 RPC MQ

C 10 S 0.316 0.311 0.040 1421 RPC MQ

M 1 S 0.528 0.524 0.044 1427 RPC MQ

M 2 S 0.611 0.725 0.135 1424 RPC MQ

M 3 S 0.515 0.512 0.014 1427 RPC HTTP

M 4 S 0.511 0.502 0.026 1426 RPC

M 5 S 0.861 0.862 0.010 1431 RPC MQ

M 6 S 0.523 0.523 0.004 1426 RPC HTTP

M 7 S 0.464 0.463 0.007 1422 RPC HTTP MQ

M 8 S 0.279 0.283 0.019 1426 HTTP

M 9 S 0.808 0.806 0.015 1417 RPC MQ

M 10 S 0.445 0.446 0.016 1424 RPC MQ

RT 1 M 1.002 1.016 0.196 720 RPC

RT 2 M 337.680 333.625 38.488 720 RPC

RT 3 M 6.990 7.112 1.068 720 RPC

RT 4 M 23.754 23.950 3.064 720 RPC

RT 5 M 259.589 254.659 41.350 721 HTTP

RT 6 M 12.662 12.250 7.492 227 HTTP

RT 7 M 50.415 52.052 10.224 721 HTTP

RT 8 M 59.940 58.240 14.790 721 MQ

RT 9 M 15.000 15.041 1.090 721 MQ

RT 10 M 470.378 371.962 255.561 715 MQ
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T 1 M 222.392 220.583 12.420 721 RPC

T 2 M 139.128 143.117 10.188 721 RPC

T 3 M 74.175 71.992 9.810 720 RPC

T 4 M 50.750 54.367 11.690 721 RPC

T 5 M 219.579 222.430 69.082 719 MQ

T 6 M 111.599 44.290 87.337 713 MQ

T 7 M 4.669 4.677 1.285 721 MQ

T 8 M 151.233 151.442 8.202 721 HTTP

T 9 M 7.664 7.663 0.779 721 HTTP

T 10 M 258.095 255.120 40.429 721 HTTP

Metrics: CPU usage (C), Memory (M), Response Time (RT) and Traffic (T)

Table A.2 – Listing of the microservices and containers from which the Alibaba dataset data was extracted.

Metric Series Microservices Container

C 1
a1e86e4d8e89da93f40ea4d0ff844517

f4e6643363f4e0e2575d265febb42c1f

39b74d87e4fa46ef39d9ca578cb71fd4

1ff006af9f94e1c54967da6e34ce05be

C 2
b1601b7399bdfe0c5624ae79665315fa

50a6ff01fb9e08779a3d5689039e229c

1fa8ea4c2b2132bf01290ffd9bb2d09d

c918fa152c663ce5dd295e8f70c89c49

C 3
7d23087eb792acb037003e30b86b836f

f9e44d4df6179e78b684ce8892aa5eec

c3bcb0cb09fd91008ac84664c238fcd4

235167e811463c05205c6aed54e706c0

C 4
cd15e277536a82697e10dd402532ebec

8082bd865dcb18c45bff323dc154edac

b9f37b7f0e17af067ddd5293a880c50b

a16768ad4c0e5a35d0c8be41cb272d56

C 5
b8be9ee0bb33cc822722a125fad0c825

f69a9c373afed2a063996e351a2324e0

a6c14c91631ffc85e876460ed337fe22

f388b9df20e11fd5c50217c70e212c8e

C 6
3ebf2b6b3c81cff20d8280c847226256

5a016feea468a35b5b9402cdb7b5e657

9d4f3fb5674cf0c0a53600608f66b533

70dd15c97480c21c9729cc18f9db1a49

C 7
4599f7a798d7579464bf803f8e465f1c

6e72821a327653ba764a4083203f1b6f

74c18a3846730757eec5920726ef0c13

b36ce4376552970e47d1f210fc732230

C 8
cc0b7e3616b733c02dd218fe52c40b91

1d98945cf32e1e114cf46692b033cafb

79c6b8f79044912becec70b8a2963319

56a6630f51d616e59323638024e6ac68

C 9
85fb296baeb19fc32c446b044b788186

f25c6158f8f4cb1a29547143d69f2089

fa00d4626fa2dc8521d74cb1ba36a5ed

102f8479b30eee542ecb8c5e96185596

C 10
14b7e680bd155b30d61e395c40ffb9b6

0b013d9a05414635186eeb622590e789

3a768af0d7ae7660faefb2ee2f96daac

58f1808a8a0871b9d4aa87ea3e640f80

M 1
655e0269bb90b5ffe6a9d7a22bfc21df

4cfc0aae9dc186e11d8f5388789653f7

2b6f93562a079e6d3b2b1571162469ea

ff3b48a6880307d224b4cab280e31070

M 2
103f50cb873950444c74ab1b92c007cb

fe8eced210268cde0eb8c3a059e7f3bb

ebf49c2ee410b8786f7a1144fdcafeb6

3fb5395da92f3b3f43af65892921d7a5

M 3
f1e9137370b218b2428565c0ad8e1aa1

2a4c48deb54a4dc2429191f32f30f998

bf3f28a85cf4e023fb65e5bd0a9d238c

c2ae56cadf934d16af3253b75a1ff977
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M 4
2d37b4120ad5a4f3e8f5e746a5fe83f2

569ec2bde0dcb3cf4147c25bdaa7f13c

4dfffe64135d1375aed0a933e4744614

3dc83b9b7b50001a618c415bfd666961

M 5
e4ed7cd27c4cc804a416aa347b47eea6

eae054714d8c0ec2645cc4f610c487ca

541cafe2de1a9bc4f63019c635c7c266

dee072dd6b2b7512ba5b9d4f7e94a7eb

M 6
54cbf33f387c96eba6a0b3d83ba1796a

85f70c47f53891f02682b0ef8edccb62

348c43aae7f0b6921adc746760804ca9

31de217babb3346e7ff8327f67395e05

M 7
b708a6b01a261167011b934178bcd031

d92197602da0c7ec2b32e36795f90991

a0df7d75d9bcd7a80ef06e0c9443aff8

3fbff710489a84d58a3cca27c83f920e

M 8
7695b43b41732a0f15d3799c8eed2852

665fe8da29fd700c383550fc16e521a3

4fdc0bf40114dc4c4a77a85bcd63e37e

6cc7ec554394f65fd6120a3df97e4927

M 9
ec4b52c7e74ef232643dc244c3bac86e

d5a55de1a3cec705914e3b7cea632f0f

a74862e810a2c3aada8bb44f8f8c633e

dd0ca4706faddc5a78280687386a796b

M 10
dbcbac8c618d9d04d39fdd41759a1ba2

51e5ad1eae1ebdd98255c36942ba3d93

09702f93678ffe7e5ba455621047cc67

779e3940f1b67e14426e4c06f869397c

RT 1
e5b95cb4a294ca8b852a217ac602f69c

266e6b0799d399a2fe9dbc386cc845b4

78811eca8e788dd03f6637684eda4d86

998db1a7641e113b9320f6173b742cb7

RT 2
d1cfb72cb3209836a6c2efce9d1b4b7c

e29fcf7dd521d6265cd29ab41f66301b

81ea9777c3b89089e53bf2f6c4816a0f

5deefff0c6898478021f8a2bc0bd1dfa

RT 3
273ab562e5b930887de6eeb565910412

067edcd76558268defe4beea89201d42

61c838ff9bce9171fd12691ff483115a

c255f44120c79e4ab9cc3f02003ee022

RT 4
02bb03429fd7f79d5d8acb3b7f3f82e0

f0ce949cc8f812638c90470c7ff957f4

3540ae72b44e2a2095ada05641008e52

206826d0145532939330bfa02389753a

RT 5
d1cfb72cb3209836a6c2efce9d1b4b7c

e29fcf7dd521d6265cd29ab41f66301b

97063bb98b67eb10e64839414cb2fec3

08a5a0209a22eed97de61d8d2fd8e2c1

RT 6
1cd9d5ae0fcdc971f9a2dbdd426f51c7

a85a1e9f06f1f4ddea48df1562b88e52

81c5418ca73828c45221e7e576904084

fe74c5300b76a3ba679377b295f28abb

RT 7
73dc0b88853241955161056b00351811

2b11b6648ed1fedeb0f39567a0e29346

f013c9ed2a459cc066b227512e796a85

69fa69e8a6362de27ce2689b16e396a2

RT 8
788af055ddb4322a7082f5b3a03511e7

d7c0dab5d7b175d13e83008369246e3e

fcbccd4c317e6004acdf116a58f9bbd0

5a574a2871258d439ba3f1a27c5c90ef

RT 9
9c5a60d5b8b67b6e4860979bc485e60c

0314d218a1f8bc0541a1c09942b6f8c2

d4a93bf231fd8ba2f988bcc0d642baa6

6df2745134b146bca42483d5b6acf7c7

RT 10
a02426f289a5396ce87d0ab1ff795b40

d57b266e1571513ea1fe9ef6eab8c772

f3f2377e29277d5a212f6d2c1a620aed

25e149d7c450cb3e3ac82482e7be88f7

T 1
2bcc2832736be67623ce452166a42e2e

deefb2f5c8afb3677b52fd095dea7957

08bf9215a57c0c2af15c616ea374cd84

ddb2aa8de2e4360dcaf59186af21c346

T 2
7b3b9cb2faed94c69ae18e8275ec186a

4ffe6b2e2588782db56b1481ecf13ffc

828ce50573245ffaa5bb611a0fae1db0

d540ebf5d6e7a073ae9d4037acadf1e7

T 3
8e0c180ac6ac8dde938ba41545771120

0c59d5d7389d3ae579dbcef1172e9931

642489fa34e850b405900f51b0399c22

c447a8a62fafea5dbe4a16a88e147e24
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T 4
a705a0a47ebd57460258a7fe818f67cf

4e0898fdd9bdde946697594c415d4079

2de26f4893dfec3d98ccf50b51af3b7c

4f3bcdd16c19c7a78ff3ab258ff5eb2d

T 5
40f23d72d4d74a9663705cac9d435e6b

40f64b5c94e7b0b05f2978afd15365e5

d55d50b42e40dfbee8e9905e8d62ac91

46955b1be18590224af8281998d493c3

T 6
9c5a60d5b8b67b6e4860979bc485e60c

0314d218a1f8bc0541a1c09942b6f8c2

d4a93bf231fd8ba2f988bcc0d642baa6

6df2745134b146bca42483d5b6acf7c7

T 7
a8e72f7a9b6188b25a130b386821ac57

40c763386e9b8b72addcaf38218ded85

f13a7e649eefd0032fd8f7ab9ad4ddfd

3dd08b3d27ec49578dc72b0df480f02c

T 8
b70842c1b31dc88da528ba646e3a6876

cdce7a5425337dbeefeab70d033556ee

b3f46a1c327a6ee8d201ec050088b6cd

0386b577121ba71c84eb59c63796a55a

T 9
e982765b911e7a7e625252f69980362c

3b1792f3487a1a39bd314351e1eb6fc3

3e2e936bbcecf6f91cc2e5e1e57d28ad

50dc7a9f2f7dda34605a32d63526ff4b

T 10
d1cfb72cb3209836a6c2efce9d1b4b7c

e29fcf7dd521d6265cd29ab41f66301b

97063bb98b67eb10e64839414cb2fec3

08a5a0209a22eed97de61d8d2fd8e2c1

Metrics: CPU usage (C), Memory (M), Response Time (RT) and Traffic (T)
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APPENDIX B – GENERATING SYNTHETIC TIME SERIES

Synthetic time series can be generated by requesting a MBA with a specific workload over
time (ABDULLAH; IQBAL; ERRADI, 2019; ABDULLAH et al., 2021; Fontana de Nardin et al., 2021).
This is the same approach used for generating the workloads in Chapter 5.

Generated Workloads. A workload is a set of incoming requests to a target application
over time. Web applications such as microservices are commonly submitted to four common
workload patterns: increasing, decreasing, periodic, and random (ABDULLAH; IQBAL; ERRADI,
2019; ABDULLAH et al., 2021). An increasing workload is observed when incoming requests
to the application increase at a specific rate over time, while a decreasing workload is the
inverse of an increasing one. A periodic workload is observed when the incoming requests to
the application have a particular pattern that repeats periodically. Finally, a random workload
is observed when there is no pattern in the incoming requests.

Tools like httpperf1, Jmeter2 and Locust3 are commonly employed to generate a workload
pattern for a target application. The workload pattern is created by adjusting the number of
active users in the tool during the experiment. The equations proposed by (IQBAL; ERRADI;

MAHMOOD, 2018) were used to calculate these adjustments.
The number of active users (𝜒𝑛𝑢𝑖

) in the 𝑖-th interval in an increasing workload is given
by:

𝜒𝑛𝑢𝑖
= 𝜒𝑛𝑢0 + (𝑖− 1)𝐵 + 𝑠𝑐𝑅𝑎𝑛𝑑(N(0, 1)), (B.1)

where 𝜒𝑛𝑢0 is the number of active users requesting the target application at the time interval
𝜈0; 𝐵 is a constant that defines the number of active users added to each new interval 𝜈;
𝑆𝑐 is a scale factor used to inject normal random noise with mean zero and unit variance in
the workload. In all experiments, 4320-time intervals were considered, each consisting of one
minute; 𝐵 and 𝑆𝑐 were defined as 0.15. For the increasing workload, 𝜒𝑛𝑢0 was set as 1.

The number of active users (𝜒𝑛𝑢𝑖
) in the 𝑖-th interval in a decreasing workload is defined

as:

𝜒𝑛𝑢𝑖
= 𝜒𝑛𝑢0 − (𝑖− 1)𝐵 + 𝑠𝑐𝑅𝑎𝑛𝑑(N(0, 1)), (B.2)

1 <https://github.com/httperf/httperf>
2 <https://jmeter.apache.org>
3 <https://locust.io>

https://github.com/httperf/httperf
https://jmeter.apache.org
https://locust.io
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where 𝜒𝑛𝑢0 was set as 600.
The number of active users (𝜒𝑛𝑢𝑖

) in the 𝑖-th interval in a periodic workload can be
computed as follows:

𝜒𝑛𝑢𝑖
= 𝜒𝑛𝑢0 − 𝛼𝑠𝑖𝑛(2𝑖𝜋

𝛾
) + 𝑠𝑐𝑅𝑎𝑛𝑑(N(0, 1)), (B.3)

where 𝛾 is the duration of the periodic pattern; 𝛼 is its amplitude. 𝜒𝑛𝑢0 , 𝛾 and 𝛼 were set as
300;

The number of active users (𝜒𝑛𝑢𝑖
) in the 𝑖-th interval in a random workload is given by:

𝑟𝑠𝑖𝑔𝑛 = 𝑅𝑎𝑛𝑑(0, 1),

𝜒𝑛𝑢𝑖
=

⎧⎪⎪⎨⎪⎪⎩
𝜒𝑛𝑢(𝑖− 1) × (1 + 𝑟𝑐) 𝑖𝑓 𝑟𝑠𝑖𝑔𝑛 > 0.50,

𝜒𝑛𝑢(𝑖− 1) × (1 − 𝑟𝑐) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(B.4)

where 𝑟𝑠𝑖𝑔𝑛, 𝑟𝑐 are random numbers, and 𝜒𝑛𝑢(𝑖 − 1) is number of active users in previous
interval. The draw of 𝑟𝑠𝑖𝑔𝑛 ranges between 0 and 1; 𝑟𝑐 ranges between 0 and 𝑐. 𝜒𝑛𝑢0 was set
as 300; 𝑐 was define as 2%.

Generated Time Series. Locust4 (workload generation tool) and Online Boutique (OB)5

(target application) were adopted for workload generation, as done by Yu, Chen & Zheng
(2019), Li, Chen & Lin (2019) and Marie-Magdelaine & Ahmed (2020).

Four OB application performance metrics (CPU usage, memory, response time and traffic)
were collected as time series for each workload pattern. These metrics are commonly forecast
to anticipate microservices performance degradation for auto-scaling systems (ALIPOUR; LIU,
2017; ROSSI; CARDELLINI; PRESTI, 2020; HUANG et al., 2021; MOHAMED; EL-GAYAR, 2021). The
experiments resulted in 16-time series6 (described in Table B.1) with 4,320 observations per
minute of the front-end microservice. Figure B.1 shows all synthetic time series.

4 <https://locust.io/>
5 <https://github.com/GoogleCloudPlatform/microservices-demo>
6 <https://github.com/gfads/mps-methodology/tree/main/time_series>

https://locust.io/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/gfads/mps-methodology/tree/main/time_series
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Table B.1 – Description of the synthetic datasets.

Metric Series Trend Stationary Frequency Mean Median Std Size
Decreasing ✓ ✗ Minutes 244.28 260.61 44.42 4,320
Increasing ✓ ✓ Minutes 148.47 160.59 33.13 4,320
Periodic ✗ ✓ Minutes 221.67 272.34 89.31 4,320

CPU
usage

Random ✗ ✗ Minutes 233.28 237.98 34.27 4,320
Decreasing ✓ ✗ Minutes 134E+6 129E+6 129E+5 4,320
Increasing ✓ ✗ Minutes 875E+5 864E+5 235E+5 4,320
Periodic ✗ ✓ Minutes 104E+6 104E+6 788E+4 4,320

Memory

Random ✗ ✓ Minutes 972E+5 974E+5 192+4 4,320
Decreasing ✓ ✗ Minutes 514.91 561.58 162.41 4,320
Increasing ✓ ✓ Minutes 557.31 624.80 194.04 4,320
Periodic ✗ ✓ Minutes 561.31 691.47 296.56 4,320

Response
Time

Random ✗ ✗ Minutes 476.82 454.16 150.82 4,320
Decreasing ✓ ✗ Minutes 3,046.08 3,450.78 1,147.25 4,320
Increasing ✓ ✓ Minutes 3,226.51 3,679.96 1,338.79 4,320
Periodic ✗ ✓ Minutes 3,169.47 3,803.33 1,866.10 4,320

Traffic

Random ✗ ✗ Minutes 2,378.14 2,132.67 968.34 4,320

Figure B.1 – Synthetic time series.
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APPENDIX C – MPS SYNTHETIC RESULTS

This chapter presents additional experiments to evaluate the MPS methodology as an
alternative to improve the accuracy of forecasting time series from MBAs. The evaluation
compares the CFA, which uses only a single forecasting model, against the proposed MPS
methodology, which uses a pool of predictive models. The results of experiments on the
synthetic series are presented, followed by a statistical evaluation of the findings.

Table C.1 shows the Root Mean Square Error (RMSE) of the CFA models, considering
the 16 synthetic series described in Appendix B. The MLP achieved better accuracy on eight
series (50%), SVR on seven (43.75%), and LSTM on one (7.5%).

Table C.1 – RMSE results of the CFA models. The best result per time series is in bold. Error values are in
10−3 scale.

Models
Metric Series ARIMA LSTM MLP RF SVR XGBoost

Decreasing 235.60 96.49 11.23 422.89 7.18 408.51
Increasing 30.51 25.34 24.91 33.74 24.91 47.92
Periodic 1,220.88 16.77 32.80 8.66 7.78 9.91

CPU
usage

Random 711.42 40.48 33.45 33.09 32.59 35.44
Decreasing 12.57 4.52 0.47 30.86 0.40 45.89
Increasing 101.36 58.83 51.88 218.16 33.91 195.08
Periodic 92.20 40.32 29.14 36.27 29.92 42.70

Memory

Random 31.03 6.93 2.79 2.81 2.59 3.02
Decreasing 209.80 42.21 49.18 317.32 43.77 298.74
Increasing 112.57 63.39 62.61 65.73 62.64 84.12
Periodic 3,071.79 38.89 37.57 38.91 37.99 41.23

Response
time

Random 126.88 42.33 39.62 40.91 39.66 40.98
Decreasing 154.25 118.86 9.94 429.73 10.14 400.68
Increasing 76.55 34.87 34.63 104.03 34.80 137.23
Periodic 3,494.19 20.83 19.71 20.86 19.43 22.78

Traffic

Random 125.01 22.99 19.00 19.67 19.03 19.75

Figures C.1a and C.1b summarise the successful model (i.e., the most accurate model
compared to other CFA models) for each time series and microservice performance metric.
Figure C.1a shows that LSTM, MLP and SVR stood out in the decreasing series. MLP and
SVR had a similar dominance in periodic and random series. At the same time, MLP was
prevailing in increasing series. Figure C.1b shows that MLP was the best model for the response
time and traffic series, while SVR was the best for the CPU usage and memory series. ARIMA,
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RF and XGBoost did not perform exceptionally well in the evaluated series. Nevertheless, these
models performed similarly to the most accurate model in some series, such as ARIMA for
increasing memory series, SVR for random response time series, and XGBoost for random CPU
usage series, among many other examples.

Figure C.1 – Successful CFA models of synthetic series evaluated from the point of view of time series (a) and
metrics (b).
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However, none was suitable for forecasting all series, reaffirming the results observed in the
real-world series (see Section 6.5).

Table C.2 compares the RMSE of the MPS approach and CFA on the synthetic series. MPS
results include homogeneous and heterogeneous pools using five selection approaches: Dynamic
Selection (DS), Dynamic Weighting (DW), Dynamic Weighting With Selection (DWS), Mean
and Median (see Section 6.4.3). CFA results are those achieved by MLP, the model with the
highest accuracy in the synthetic series, as was done in Section 6.5.

Two peculiarities in the results are worth noting. Firstly, some results are distinct but
not noticeable due to numerical approximation. Some examples are Mean and Median ho-
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Table C.2 – Accuracy (RMSE) of MPS and CFA for synthetic series. The best results are in bold, and the
second-best ones are underlined per time series. Error values are in 10−3 scale.

CFA Homogeneous Heterogeneous
Metric Series MLP MEAN MEDIAN DS DW DWS MEAN MEDIAN DS DW DWS

Decreasing 11.2 18.9 7.08 49.4 18.8 18.8 193.5 165.8 7.19 124.6 123.3
Increasing 24.9 24.9 24.9 25.1 24.9 24.9 28.0 26.2 27.1 26.8 26.9
Periodic 32.8 7.80 7.80 7.99 7.88 7.88 204.1 9.38 8.61 83.2 83.6

CPU
usage

Random 33.4 31.7 31.7 32.0 31.7 31.7 121.0 32.8 49.4 92.9 94.5
Decreasing 0.47 0.40 0.40 0.43 0.40 0.40 15.2 8.42 3.89 3.23 3.09
Increasing 51.9 33.1 33.6 33.7 33.1 33.1 90.8 70.8 33.9 64.3 64.3
Periodic 29.1 28.8 27.8 30.0 26.0 27.8 37.7 36.8 29.7 58.7 58.8

Memory

Random 2.79 2.59 2.59 2.60 2.59 2.59 6.03 2.70 7.60 9.02 9.54
Decreasing 49.2 172.0 340.3 107.6 139.7 139.8 123.1 106.8 205.2 81.3 75.5
Increasing 62.6 62.5 62.5 63.8 62.5 62.5 62.4 62.4 72.9 64.6 64.6
Periodic 37.6 37.5 37.5 38.1 37.5 37.5 515.2 38.3 38.9 84.5 84.1

Response
time

Random 39.6 39.7 39.7 40.3 39.7 39.7 44.6 39.7 41.7 61.2 60.7
Decreasing 9.94 10.6 10.0 73.1 10.8 10.8 183.2 136.2 10.1 58.2 57.1
Increasing 34.6 34.7 34.7 37.3 34.7 34.7 45.4 34.7 61.2 43.9 43.5
Periodic 19.7 19.4 19.4 19.6 19.4 19.4 583.2 19.8 20.8 43.0 42.5

Traffic

Random 19.0 19.0 18.9 19.2 19.0 19.0 28.1 19.2 19.9 46.7 47.0

mogeneous in CPU usage (increasing, periodic, and random) and homogeneous algorithms in
decreasing memory and increasing traffic series. Secondly, some results are identical. As the
selection mechanisms of DW and DWS algorithms are similar, they can select the same models
to forecast all test patterns, resulting in the same final accuracy. Some examples are increasing
CPU usage and periodic traffic series.

The MPS approach achieved better results than CFA in 68.75% (11 out of 16 datasets).
The homogeneous approach attained better accuracy at 62.5%, the heterogeneous approach at
6.25% and the CFA at 31.25%. CFA outperformed MPS in increasing CPU usage, decreasing
and random response time series, and decreasing and increasing traffic series. The Median
homogeneous was the best algorithm at 31.25% of the series, DW homogeneous at 31.25%,
and the Median heterogeneous at 6.25%.

The homogeneous MPS was better than CFA for CPU usage series in 75% of the results.
The Median homogeneous was the most accurate approach for decreasing and random, DW
homogeneous for periodic and MLP for increasing series. For memory metric, MPS was more
accurate than CFA in all series. The DW homogeneous was the best approach for decreasing,
increasing and periodic, and the Median homogeneous for increasing series.

The MPS approach and CFA performed similarly for response time and traffic series. The
CFA was more accurate for decreasing and random response time series and decreasing and
increasing traffic series. Meanwhile, Median heterogeneous was the most accurate for increasing
response time, DW homogeneous for periodic response time, and Median homogeneous for
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periodic and random traffic series.
Although CFA was more accurate than the MPS in some series (5 out of 16), all homoge-

neous algorithms achieved similar accuracies in these cases, except for decreasing response time
series. Only the Median and DS algorithms achieved CFA-like accuracy in most heterogeneous
pool results.

It has been observed that many of the findings in the real-world series are also valid in
the synthetic ones. For instance, unlike heterogeneous algorithms, all homogeneous algorithms
have similar accuracy. Furthermore, in most results, homogeneous algorithms are more accurate
than heterogeneous ones. Likewise, the Median is more accurate than the Mean in most
heterogeneous results.

Statistical Analysis. Table C.3 shows the percentage accuracy difference between the
best homogeneous and heterogeneous algorithms compared to the best, intermediate and
worst CFA models in the synthetic series. The algorithms are classified based on their overall
accuracy across all series. The highest overall accuracy determines the best algorithm. CFA
Intermediate Model (IM) and Worst Model (WM) are the third and last algorithms considering
overall accuracy. Based on this criterion, the best algorithms for synthetic series are DW
(homogeneous) and DS (heterogeneous), MLP is the Best Model (BM), LSTM is the IM, and
ARIMA is the WM.

The symbols +, −−, and ∼ mean that the proposed homogeneous and heterogeneous
algorithms attained better, worse, or equal statistical accuracy than the CFA models (see
Section 6.4.5). The final three rows of each table summarise the results. Wins are computed
as the percentage of series where the proposed algorithm (i.e., homogeneous or heterogeneous)
achieves statistically significant improved accuracy over CFA. Loss means the opposite scenario
to that described previously. Tie denotes the percentage of series where the proposed algorithm
and CFA accuracy were not statistically different.

In the synthetic series, the best homogeneous approach was equal to or more accurate than
BM in 62.5% of cases and as accurate as or more accurate than IM and WM in all cases. On
the other hand, the best heterogeneous approach achieved equal to or better accuracy than
BM in only 31.25% of the series. However, the best heterogeneous approach showed equal or
better results in 87.5% and 100% of the cases compared to IM and WM, respectively.

Considering the 48 comparisons between the MPS approaches and CFA (i.e., 16 datasets
with three CFA variations), the best homogeneous approach obtained 40 wins (83.33%), 2 ties
(4.17%) and six losses (12.5%). On the other hand, the best heterogeneous approach obtained



149

Table C.3 – Percentage (%) difference between the best homogeneous and heterogeneous algorithms compared
to BM, IM, and WM in synthetic series computed using Equation 6.5. The statistical result
was obtained using the Diebold Mariano statistical test (see Section 6.4.5). DW is the best
homogeneous algorithm, DS is the best heterogeneous algorithm, MLP is the BM, LSTM is the
IM, and ARIMA is the WM

Homogeneous Heterogeneous
Metric Series BM IA WM BM IM WM

Decreasing -67.06 (−−) 92.78 (+) 92.04 (+) 35.96 (+) 97.23 (+) 96.95 (+)
Increasing -0.05 (−−) 15.65 (+) 18.32 (+) -8.93 (−−) 8.16 (+) 11.06 (+)
Periodic 76.30 (+) 38.86 (+) 99.36 (+) 73.75 (+) 32.29 (+) 99.29 (+)

CPU
usage

Random 5.19 (+) 13.78 (+) 95.54 (+) -47.78 (∼) -34.39 (∼) 93.05 (+)
Decreasing 15.26 (+) 97.76 (+) 96.85 (+) -733.3 (−−) 77.99 (+) 69.02 (+)
Increasing 36.26 (+) 76.12 (+) 67.37 (+) 34.64 (+) 75.52 (+) 66.55 (+)
Periodic 10.80 (∼) 32.12 (∼) 71.80 (+) -1.75 (∼) 22.57 (+) 67.84 (+)

Memory

Random 7.11 (+) 46.78 (+) 91.64 (+) -172.3 (−−) -56.05 (∼) 75.50 (+)
Decreasing -184.1 (−−) 22.27 (+) 33.40 (+) -317.3 (−−) -14.17 (−−) 2.18 (+)
Increasing 0.19 (+) 3.21 (+) 44.49 (+) -16.42 (−−) -12.90 (−−) 35.25 (+)
Periodic 0.20 (+) 3.61 (+) 98.78 (+) -3.53 (−−) 0.01 (∼) 98.73 (+)

Response
time

Random -0.26 (−−) 4.57 (+) 68.70 (+) -5.15 (−−) -0.08 (∼) 67.17 (+)
Decreasing -8.20 (−−) 96.08 (+) 93.03 (+) -2.06 (−−) 96.30 (+) 93.42 (+)
Increasing -0.27 (−−) 50.01 (+) 54.64 (+) -76.86 (−−) 11.83 (+) 20.00 (+)
Periodic 1.66 (+) 7.02 (+) 99.45 (+) -5.42 (−−) 0.33 (∼) 99.41 (+)

Traffic

Random 0.17 (+) 11.05 (+) 84.82 (+) -4.89 (−−) 6.55 (+) 84.06 (+)
Wins 56.25% 93.75% 100% 18.75% 56.25% 100%
Ties 6.25% 6.25% 0% 12.5% 31.25% 0%
Loss 37.5% 0% 0% 68.75% 12.50% 0%

28 wins (58.33%), seven ties (14.57%) and 13 losses (27.1%). These results indicate that the
homogeneous approach is more accurate than the heterogeneous approach for forecasting
microservices time series. This finding was also demonstrated in the experiments with real-
world time series (see Section 6.5).

When focusing solely on BM results, the best homogeneous approach was equal to or
better in 62.5% of cases, while the best heterogeneous approach only achieved this in 31.25%
of cases. Therefore, since the best CFA model is unknown before analysis, these results suggest
that using a homogeneous approach can enhance the accuracy of the forecast adaptive system
and mitigate the CFA problem. At the same time, opting for a heterogeneous approach aiming
for the highest accuracies is not recommended.
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APPENDIX D – PMA FORECASTING STRATEGIES DETAILS

Table D.1 details the accuracy and parameters used by the PMA univariate and MPS
strategies for each workload and application in the experimental evaluation of Chapter 7.

Table D.1 – Details of the accuracy and parameters used by the PMA univariate and MPS strategies for each

workload and application in the experimental evaluation of Chapter 7.

Univariate MPS

App Workload ARIMA LSTM MLP RF SVR XGBoost Model Pool (Size)

Alibaba 76.27 48.38 2.88 5.70 2.91 19.38 MLP Homo (100)

Clarknet 32.15 39.10 5.79 5.84 5.87 9.98 MLP Homo (100)

NASA 46.02 49.03 1.33 2.04 1.51 6.62 MLP Homo (100)
Cart

WorldCup98 40.00 18.96 4.24 4.87 4.95 6.29 MLP Homo (100)

Alibaba 7.08 5.23 0.33 0.44 0.39 0.48 MLP Homo (100)

Clarknet 38.89 428.83 1.47 1.76 1.51 4.76 MLP Homo (100)

NASA 26.44 29.27 0.90 1.44 0.95 1.92 MLP Homo (100)
Checkout

WorldCup98 15.45 6.00 0.58 0.73 0.52 0.71 SVR Homo (100)

Alibaba 31.88 48.20 2.35 2.94 2.14 17.24 SVR Homo (100)

Clarknet 16.43 14.19 4.90 4.98 5.15 8.79 MLP Homo (100)

NASA 73.50 49.93 15.08 15.54 13.80 24.73 SVR Homo (100)
Currency

WorldCup98 11.66 17.78 3.38 3.43 3.53 9.30 MLP Homo (100)

Alibaba 1.22 6.26 0.40 0.40 0.39 0.81 SVR Homo (100)

Clarknet 2.34 2.22 0.48 0.61 0.49 2.01 MLP Homo (100)

NASA 21.12 20.62 5.23 5.73 4.49 11.09 SVR Homo (100)
Frontend

WorldCup98 2.57 1.50 0.54 0.55 0.54 0.56 SVR Homo (100)

Alibaba 9.71 206.97 1.41 1.55 1.49 1.53 MLP Homo (100)

Clarknet 16.11 17.01 3.15 3.68 3.04 7.34 SVR Homo (100)

NASA 34.42 43.39 7.83 9.82 8.71 9.84 MLP Homo (100)
Product

WorldCup98 16.56 15.81 3.77 3.78 4.00 4.22 MLP Homo (100)

Alibaba 24.25 19.36 0.29 0.41 0.29 0.45 MLP Homo (100)

Clarknet 110.60 25.40 1.52 1.97 1.69 2.79 MLP Homo (100)

NASA 45.48 73.40 20.29 20.88 26.06 21.58 MLP Homo (100)
Recommendation

WorldCup98 224.09 8.74 0.92 0.70 0.61 2.00 SVR Homo (100)

Alibaba 30.27 28.44 14.65 10.13 13.85 12.62 RF Homo (100)

Clarknet 25.68 18.20 102.76 3.40 4.55 9.38 RF Homo (100)

NASA 37.65 34.66 11.43 11.67 12.08 11.69 MLP Homo (100)
Cars

WorldCup98 34.48 3.77 0.44 0.50 0.44 0.51 SVR Homo (100)

Alibaba 33.01 6.00 0.22 0.28 0.22 0.33 SVR Homo (100)

Clarknet 58.25 8.00 0.79 0.83 0.79 0.87 SVR Homo (100)

NASA 22.92 28.07 0.74 1.02 0.62 1.62 SVR Homo (100)
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Discounts

WorldCup98 49.57 106.84 6.84 7.35 7.34 8.29 MLP Homo (100)

Alibaba 23.59 8.48 1.91 2.03 1.97 2.18 MLP Homo (100)

Clarknet 22.18 19.15 2.51 2.62 2.41 2.03 XGBoost Homo (100)

NASA 41.67 58.15 1.02 1.62 0.95 2.49 SVR Homo (100)
Flights

WorldCup98 37.45 6.44 0.49 0.70 0.51 1.42 MLP Homo (100)

Alibaba 10.56 0.85 0.08 0.12 0.08 0.11 MLP Homo (100)

Clarknet 11.49 10.79 1.50 1.25 1.17 1.23 SVR Homo (100)

NASA 50.18 49.79 14.31 9.05 8.91 11.82 SVR Homo (100)
Hotels

WorldCup98 10.78 8.01 2.04 2.17 2.07 6.23 MLP Homo (100)

Alibaba 34.34 2.02 0.34 0.43 0.28 0.45 SVR Homo (100)

Clarknet 44.31 15.22 1.01 1.23 0.96 1.25 SVR Homo (100)

NASA 27.04 31.72 8.42 8.59 9.18 10.83 MLP Homo (100)
Insurances

WorldCup98 31.01 64.36 2.97 3.04 3.08 7.91 MLP Homo (100)

Alibaba 7.23 2.24 0.21 0.68 0.64 0.42 MLP Homo (100)

Clarknet 11.64 10.70 4.23 4.28 4.17 4.30 SVR Homo (100)

NASA 29.83 25.02 8.68 9.56 9.70 10.05 MLP Homo (100)
Travels

WorldCup98 26.63 17.72 3.67 3.79 3.71 4.87 MLP Homo (100)

Alibaba 50.77 7.24 2.94 3.27 3.65 3.29 MLP Homo (100)

Clarknet 27.66 15.91 5.82 5.34 5.35 5.84 RF Homo (100)

NASA 27.56 29.01 10.07 10.78 10.99 13.62 MLP Homo (100)
Quarkus

WorldCup98 13.26 15.31 4.07 4.11 4.53 4.30 MLP Homo (100)

Alibaba 8.90 4.36 0.81 1.03 0.82 1.34 MLP Homo (100)

Clarknet 10.93 9.21 2.22 2.09 2.32 4.10 RF Homo (100)

NASA 22.23 23.99 8.62 9.72 8.47 12.73 SVR Homo (100)
Daytrader

WorldCup98 6.59 5.73 1.54 1.47 1.55 1.52 RF Homo (100)
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