
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

ALEXANDRE STRAPAÇÃO GUEDES VIANNA

Testing Guidelines for Data Stream Processing Applications

Recife
2023

ALEXANDRE STRAPAÇÃO GUEDES VIANNA

Testing Guidelines for Data Stream Processing Applications

A Ph.D. Thesis presented to the Center for Infor-
matics of the Federal University of Pernambuco in
partial fulfillment of the requirements for the degree
of Philosophy Doctor in Computer Science.

Concentration Area: Software Engineering

Advisor: Kiev Santos da Gama

Recife
2023

Vianna, Alexandre Strapação Guedes.
 Testing guidelines for data stream processing applications /
Alexandre Strapação Guedes Vianna. - Recife, 2023.
 249 f.: il.

 Tese (Doutorado) - Universidade Federal de Pernambuco, Centro
de Informática, Programa de Pós-Graduação em Ciência da
Computação, 2023.
 Orientação: Kiev Santos da Gama.
 Inclui referências e apêndices.

 1. Processamento de fluxos de dados; 2. Teste de software; 3.
Engenharia de software; 4. Testes de aplicações que processam
fluxos de dados. I. Gama, Kiev Santos da. II. Título.

UFPE-Biblioteca Central

.Catalogação de Publicação na Fonte. UFPE - Biblioteca Central

Alexandre Strapação Guedes Vianna

“Testing Guidelines for Data Stream Processing Applications”

Tese de Doutorado apresentada ao Programa
de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Doutor em Ciência da
Computação. Área de Concentração:
Engenharia de Software e Linguagens de
Programação.

Aprovada em: 18/12/2023.

 Orientador: Prof. Dr. Kiev Santos da Gama

BANCA EXAMINADORA

Prof. Dr. Nelson Souto Rosa
Centro de Informática/UFPE

Prof. Dr. Sérgio Castelo Branco Soares

Centro de Informática /UFPE

__
Prof. Dr. Breno Alexandro Ferreira de Miranda

Centro de Informática /UFPE

__
Profa. Dra. Thais Vasconcelos Batista

Departamento de Informática e Matemática Aplicada/UFRN

__
Prof. Dr. Paulo Sergio Lopes de Souza

Instituto de Ciências Matemáticas e de Computação/USP

ACKNOWLEDGEMENTS

Um doutorado não se faz sozinho; ele depende da construção coletiva do conhecimento
de uma comunidade de pesquisadores que, ao longo do tempo, pavimentaram o caminho que
percorri. Esta é uma conquista da sociedade como um todo. Por isso, agradeço a todos que
contribuíram de alguma forma, direta ou indiretamente.

Agradeço especialmente à minha esposa e companheira de vida, Lívia, que com amor esteve
ao meu lado, me apoiando e incentivando ao longo desta jornada. Foram cinco anos em que
ela escutou pacientemente meus dilemas e compartilhou das conquistas, como a aprovação de
artigos, a qualificação e a defesa.

Minha gratidão aos meus pais, Pedro e Cristina, que sempre estiveram presentes em toda
a minha trajetória de vida e estudos, oferecendo apoio, ensinamentos e exemplos de vida. Esse
alicerce foi essencial durante o doutorado. Agradeço também às minhas irmãs, Catarina e
Carolina, aos meus cunhados, Helder e Leandro, e à minha cunhada Vitória, por todo o apoio
e incentivo. Aos meus sogros, Yvan e Tereza, sou grato pelo apoio constante e pela acolhida
ao longo dessa jornada. E às minhas sobrinhas, Marina, Helena, Violeta e Aurora, agradeço
pelos momentos de descontração, nos quais pude deixar de lado as preocupações.

Agradeço ao meu orientador, Kiev Gama, por seu papel fundamental ao me guiar por uma
trajetória repleta de desafios. Ele foi sempre solícito, e, nas inúmeras reuniões que realizamos,
me ajudou a encontrar soluções, sugeriu melhorias e me apresentou a uma rede de colabo-
radores de pesquisa. Além da orientação técnica e acadêmica, descobri em Kiev um ser humano
excepcional, que me apoiou e acreditou em mim nos momentos mais difíceis. Suas palavras
de incentivo e nossas conversas foram essenciais para que eu seguisse em frente. Obrigado!

Aos meus colegas de pesquisa, Carlos Zimmerle, Fernando Kenji, Waldemar Neto e João
Neto, que foram parceiros incansáveis nos trabalhosos experimentos que conduzi. Em especial,
agradeço a Carlos, por seu apoio contínuo em diversas etapas do trabalho, e a Kenji, pelo
incentivo e suporte em vários momentos.

Sou grato também aos colegas do IFPE Campus Igarassu, que, além de oferecerem incen-
tivo e apoio, possibilitaram o meu afastamento por dois anos, essencial para que eu pudesse
me dedicar plenamente ao doutorado.

Agradeço ainda aos meus amigos de vida, Hugo, Luis, Amaro, Saulo, Magno, Lucas, João
Paulo, Rodolfo, Eiji, Dario e Uirá, por todo o apoio e amizade.

Aos membros das bancas de qualificação e defesa – Nelson Rosa, Breno Miranda, Sergio
Soares, Thais Batista e Paulo Souza – agradeço pela cuidadosa análise do meu trabalho e pelas
valiosas contribuições, direcionamentos e sugestões que o ajudaram a se consolidar. Agradeço
também a todos os docentes e funcionários do Cin/UFPE que, de alguma forma, contribuíram
para este trabalho, fornecendo serviços e infraestrutura essenciais. Sou grato ainda ao INCT
INES (Instituto Nacional para Engenharia de Software - CNPq/465614/2014-0), pelo apoio
na pesquisa e na participação em eventos.

”Se vi mais longe, foi por estar de pé sobre os ombros de gigantes” (NEWTON, 1675).

RESUMO

A abordagem de Processamento de Fluxos de Dados (PFD) foca no processamento em
tempo real, aplicando técnicas para captura de dados e subsequente processamento de re-
sultados sem armazenamento prévio. Essa abordagem ganhou relevância na indústria devido
ao crescimento da quantidade de dados gerados por diversas fontes. O PFD é valioso por
extrair informações que são úteis em curtos períodos após a geração dos dados, aplicando-se
em áreas como detecção de fraudes, comportamento anômalo em sistemas de computadores
e monitoramento industrial. Com a crescente adoção em diversos setores, testar aplicações de
PFD torna-se relevante ao mesmo tempo que apresenta desafios devido a fatores como requi-
sitos de performance, temporalidade das mensagens, paralelismo de processamento, volume e
variabilidade de dados, complexidade da infraestrutura e não-determinismo.

Este trabalho visa desenvolver e avaliar diretrizes para testes de aplicações DSP, abor-
dando aspectos relevantes para a indústria e colaborando com profissionais na identificação
de práticas atuais. A metodologia inclui três etapas: investigação, proposição e avaliação. A
investigação envolveu estudos empíricos com praticantes do PFD, incluindo um estudo explo-
ratório com questionários e entrevistas para validar a relevância do tema, identificar desafios e
mapear práticas. Seguiu-se uma revisão de literatura cinza, analisando 154 documentos para
revelar desafios, objetivos, técnicas, estratégias e ferramentas de testes no contexto industrial
de PFD.

A etapa de proposição consistiu no desenvolvimento de diretrizes de testes fundamentadas
nas informações coletadas na fase de investigação. A avaliação das diretrizes envolveu grupos
focais e uma pesquisa com profissionais, visando entender percepções, benefícios, fraquezas,
melhorias e aplicabilidade das diretrizes no contexto industrial. Os resultados indicaram uma
percepção positiva das diretrizes, com sugestões de melhorias incorporadas na versão final.

Em resumo, esta tese investigou um tema emergente na indústria por meio de metodolo-
gias adequadas e colaboração de praticantes, contribuindo para diminuir a lacuna entre o
conhecimento acadêmico e industrial sobre testes de aplicações de PFD. As diretrizes desen-
volvidas foram avaliadas e disponibilizadas online, representando uma contribuição tangível à
comunidade de PFD.

Palavras-chaves: processamento de fluxos de dados. teste de software. engenharia de soft-
ware. testes de aplicações que processam fluxos de dados.

ABSTRACT

The Data Stream Processing (DSP) approach focuses on real-time data processing, em-
ploying data capture techniques and processing on-the-fly results (without prior storage). This
approach has gained significance in the software industry due to the growth in the data volume
generated by various sources. DSP is valuable for extracting useful information shortly after
data generation and is typically used in areas such as fraud detection, anomalous user behaviour
monitoring in computer systems, and industrial equipment monitoring. With its increasing
adoption across various sectors, testing DSP applications becomes relevant while presenting
challenges due to factors like performance requirements, message temporality, processing par-
allelism, data volume and variability, infrastructure complexity, and non-determinism.

This work aims to develop and evaluate guidelines for testing DSP applications, address-
ing aspects relevant to the industry and collaborating with professionals in identifying current
practices. The methodology encompasses three main phases: investigation, proposition, and
evaluation. The investigation involved empirical studies with DSP practitioners, including an
exploratory study with questionnaires and interviews to validate the topic’s relevance, under-
stand practical aspects, map challenges, and identify topics for deeper exploration in subsequent
studies. This was followed by a Grey Literature Review (GLR), analyzing 154 documents to
identify challenges, testing objectives, techniques, and tools in the industrial context of DSP.

The proposition phase consisted of developing the testing guidelines for DSP applica-
tions, grounded in the insights collected during the investigation phase. The final phase was
the evaluation of the proposed guidelines, involving focus groups and a survey with industry
professionals to assess perceptions, benefits, weaknesses, areas for improvement, and the ap-
plicability of the guidelines in the industrial context. The results indicated a positive reception
of the guidelines, with suggestions for improvements incorporated into the final version.

In summary, this doctoral thesis investigated an emerging topic in the industry employing
appropriate methodologies and practitioner collaboration. The resulting publications contribute
to bridging the gap between academic and industrial knowledge regarding DSP application
testing. The developed guidelines were evaluated and made available online, representing a
tangible contribution to the DSP community.

Keywords: data stream processing. software testing. software engineering. data stream pro-
cessing applications testing.

LIST OF FIGURES

Figure 1 – Traditional DBMS processing versus DSMS processing. 24
Figure 2 – DSP Infrastructure. 25
Figure 3 – A 5-Seconds Sliding Time Window. 27
Figure 4 – A 5-Elements Sliding Window. 28
Figure 5 – A 5-Seconds Tumbling Time Window. 28
Figure 6 – A 5-Elements Tumbling Window. 28
Figure 7 – Complex Event Processing Diagram. 29
Figure 8 – Overview of Research Methods. 43
Figure 9 – GLR Protocol . 48
Figure 10 – Evaluation Process . 57
Figure 11 – General IT experience versus data stream experience of questionnaire re-

spondents. 66
Figure 12 – Result of Source Selection in Numbers. 81
Figure 13 – Selected Sources by Year . 82
Figure 14 – Quality Assessment Score Histogram . 83
Figure 15 – Guidelines steps overview . 120
Figure 16 – Resources overview . 129
Figure 17 – Survey Participants Working Country. 152
Figure 18 – Survey Participants Education Level. 152
Figure 19 – Survey Participants Experience. 152
Figure 20 – Focus Group Interaction in Miro Online Whiteboard. 153

LIST OF TABLES

Table 1 – Summary of Works on Data Stream Testing 40
Table 2 – Search Strings. 49
Table 3 – List of inclusion criteria. 51
Table 4 – Quality assessment checklist. 53
Table 5 – Systematic map. 53
Table 6 – Summary of Recruitment Channels for Survey 60
Table 7 – Country where questionnaire respondents work. 64
Table 9 – Questionnaire Respondents Companies Business Sectors. 65
Table 10 – Questionnaire Respondents Education Level. 65
Table 11 – Interview Participant Profile. 67
Table 12 – Most significant adopted tools . 77
Table 13 – Most significant challenges . 84
Table 14 – Key Points of Challenges to DSP application testing. 85
Table 15 – Key points of testing purposes. 92
Table 16 – Summary of approaches by the target of the test. 97
Table 17 – Summary of performance testing key points. 98
Table 18 – Summary of regression testing key points. 100
Table 19 – Summary of property-based testing key points. 101
Table 20 – Summary of chaos testing key points. 103
Table 21 – Summary of contract/schema testing key points. 104
Table 22 – Key Points of Strategies for Obtain Testing Data. 106
Table 23 – Tools, mains uses and associated challenges 113
Table 24 – Focus Group Participants Profile . 151
Table 25 – Summary of promoted changes regarding #G1 evaluation 157
Table 26 – Summary of promoted changes regarding #G2 evaluation 159
Table 27 – Summary of promoted changes regarding #G3 evaluation 162
Table 28 – Summary of promoted changes regarding #G4 evaluation 165
Table 29 – Summary of promoted changes regarding #G5 evaluation 167
Table 30 – Summary of promoted changes regarding #G6 evaluation 170
Table 31 – Summary of promoted changes regarding #G7 evaluation 173

Table 32 – Tools List . 226

CONTENTS

1 INTRODUCTION . 17

1.1 CONTEXT AND MOTIVATION . 17
1.2 OBJECTIVE . 19
1.3 RESEARCH QUESTIONS . 20
1.4 CONTRIBUTIONS . 21
1.5 DOCUMENT STRUCTURE . 22
2 FUNDAMENTAL CONCEPTS . 23

2.1 DATA STREAM . 23
2.2 DATA STREAM INFRASTRUCTURE . 25
2.3 DATA STREAM ANALYSIS APPROACHES 26
2.3.1 Windowing . 27

2.3.1.1 Sliding Window . 27

2.3.1.2 Tumbling Window . 28

2.3.2 Watermarks . 29

2.3.3 Complex Event Processing . 29

2.3.4 Learning from Data Streams . 30

2.3.5 Summarizing Techniques . 30

2.4 SOFTWARE TESTING . 31
2.4.1 Test Oracle . 31

2.4.2 Test Adequacy Criteria . 33

2.4.3 Test Selection Criteria . 34

2.5 STATE-OF-THE-ART IN DATA STREAM TESTING 35
2.6 SUMMARY . 40
3 RESEARCH METHODS . 42

3.1 EXPLORATORY STUDY . 43
3.1.1 Questionnaire . 44

3.1.2 Interview . 45

3.1.3 Data Analysis . 46

3.2 GREY LITERATURE REVIEW . 47
3.2.1 Search process . 48

3.2.2 Source Selection . 50

3.2.3 Data extraction and synthesis . 51

3.2.3.1 Quality Assessment . 51

3.2.3.2 Data Extraction . 52

3.2.3.3 Data Synthesis . 54

3.3 GUIDELINES DEVELOPMENT . 54
3.4 EVALUATION . 56
3.4.1 Planning . 57

3.4.1.1 Objective . 57

3.4.1.2 Participants Profile . 58

3.4.2 Research Design . 58

3.4.2.1 Focus Group . 58

3.4.2.2 Survey . 60

3.4.3 Data Collection . 61

3.4.4 Analysis and Synthesis . 61

3.4.4.1 Threats to Validity . 62

3.5 SUMMARY . 62
4 EXPLORATORY STUDY . 64

4.1 DEMOGRAPHICS . 64
4.1.1 Survey Demographics . 64

4.1.2 Interview Demographics . 66

4.2 ANALYSIS ON SURVEY AND INTERVIEW DATA 68
4.2.1 The Core Category: Testing Data Stream Software 68

4.2.2 Category: Testing Approaches . 70

4.2.2.1 Category: Levels of Testing . 70

4.2.2.2 Stream Simulation . 72

4.2.3 Category: Testing Tools . 73

4.2.4 Category: Test Data . 74

4.3 RESULTS SYNTHESIS AND DISCUSSION 76
4.3.1 Approaches and techniques being adopted to test DSP applications. 76

4.3.2 Test frameworks and tools have been adopted 77

4.3.3 Data used to test DSP applications 77

4.4 THREATS TO VALIDITY . 78

4.5 SUMMARY . 79
5 GREY LITERATURE REVIEW . 80

5.1 INITIAL SEARCH . 80
5.2 APPLICATIONS OF INCLUSION AND EXCLUSION CRITERIA 80
5.3 DEMOGRAPHIC DATA . 81
5.4 QUALITY ASSESSMENT RESULTS . 83
5.5 RESULTS AND DISCUSSION . 84
5.5.1 Summary of research findings . 84

5.5.1.1 RQ1. What are the challenges to DSP application testing? 84

5.5.1.2 RQ2. What are the testing purposes? . 90

5.5.1.3 RQ3. What are the approaches and specific types of tests performed? . . . 96

5.5.1.4 RQ4. What are the strategies adopted by practitioners to obtain testing data?105

5.5.1.5 RQ5. What are the tools and under what circumstances are they used in

the context of DSP application testing? 111

5.5.2 Implications for research and practice 112

5.5.2.1 Implications for practice . 113

5.5.2.2 Implications for research . 114

5.5.3 Threats to Validity . 115

5.6 CONCLUSIONS . 117
5.7 SUMMARY . 118
6 TESTING GUIDELINES FOR DATA STREAM PROCESSING AP-

PLICATIONS . 119

6.1 THE GUIDELINES . 119
6.1.1 Colleting Information . 120

6.1.1.1 Information to be collected in the initial phases of the project. 122

6.1.2 Establish test objectives . 123

6.1.2.1 Questions to support establishing test objectives 124

6.1.3 Resource Planning . 129

6.1.3.1 Human Resources . 130

6.1.3.2 Time Resources . 131

6.1.3.3 Financial resources . 133

6.1.4 Developing a test data strategy . 134

6.1.4.1 Data Quality Characteristics . 135

6.1.4.2 Test Data Strategies . 136

6.1.5 Particular aspects of Data Stream Processing 138

6.1.5.1 Time Issues . 139

6.1.5.2 Non-determinism . 141

6.1.5.3 Faul Tolerance . 142

6.1.6 Example scenario . 145

6.1.6.1 Colleting Information . 145

6.1.6.2 Establishing test objectives . 146

6.1.6.3 Resource Planning . 148

6.1.6.4 Test Data Strategy . 149

6.2 GUIDELINES EVALUATION AND RESULTS DISCUSSIONS 150
6.2.1 Participants Overview . 150

6.2.2 Focus Groups Conduction . 151

6.2.3 Evaluation of Guideline #G1 . 153

6.2.4 Evaluation of Guideline #G2 . 157

6.2.5 Evaluation of Guideline #G3 . 159

6.2.6 Evaluation of Guideline #G4 . 162

6.2.7 Evaluation of Guideline #G5 . 164

6.2.8 Evaluation of Guideline #G6 . 167

6.2.9 Evaluation of Guideline #G7 . 170

6.2.10 Evaluation of General Feedbacks . 173

6.2.10.1 RQ2.1 Perceived Strengths . 173

6.2.10.2 RQ2.2 Weaknesses and Areas for Improvement 174

6.2.10.3 RQ2.3 Perceived Applicability in Industrial Context 175

6.2.10.4 Additional Feedback: Suggestions on Guidelines Format 175

6.3 SUMMARY . 176
7 CONCLUSION . 177

7.1 FINAL CONSIDERATIONS . 177
7.2 SUMMARY OF MAIN CONTRIBUTIONS 178
7.3 PUBLICATIONS . 179
7.4 FUTURE WORK . 179

REFERENCES . 181

APPENDIX A – QUESTIONNAIRES 207

APPENDIX B – INTERVIEW SCRIPT 215

APPENDIX C – FOCUS GROUP DISCUSSION GUIDE 219

APPENDIX D – QUESTIONNAIRES 221

APPENDIX E – LIST OF TESTING TOOLS 226

APPENDIX F – GLR SELECTED SOURCES 229

APPENDIX G – PYTHON SCRIPT: GOOGLE SEARCH 241

APPENDIX H – PYTHON SCRIPT: CONVERT WEBSITE TO

PDF . 243

APPENDIX I – GUIDELINES V1 (BEFORE EVALUATION) . . . 246

APPENDIX J – GUIDELINES CHEAT SHEET (BEFORE EVAL-

UATION) . 249

17

1 INTRODUCTION

This chapter introduces the work at hand. Section 1.1 contextualises the problem’s theme,
challenges and research motivation for the problem. Section 1.2 presents the general objective
as well as the specific ones. Section 1.3 then lists the central research questions and develops
derived research questions. Finally, Section 1.4 describes the document’s structure.

1.1 CONTEXT AND MOTIVATION

Over the last few years, there has been a considerable increase in data generated by com-
puter systems such as Internet of Things (IoT) devices (MORALES et al., 2016), smartphones,
and user interaction in the real world and websites (HASAN; ORGUN et al., 2018; FIGUEIRAS et

al., 2018; FAWCETT; PROVOST, 1999). In parallel, streaming data – not media (video/audio)
streaming – is also becoming important for social media platforms such as Facebook, Twitter,
and LinkedIn (PÄÄKKÖNEN, 2016). These companies were not prepared to deal with the large
volume of data generated by the interactions of millions of users on social networks and, due
to the lack of tools, companies have developed their own stream processing tools: Facebook’s
Puma, Swift, and Stylus; Twitter’s Storm and Heron; and LinkedIn’s Kafka (PANDEY et al.,
2019). All these systems produce a high volume of events, increasing the data processing de-
mand. Approaches in the context of Big Data were proposed to deal with this issue (Philip Chen;

ZHANG, 2014; KAISLER et al., 2013). Conventional data processing strategies, such as batch
processing, store all data before processing it (BABCOCK et al., 2002). This method adds latency
and may not handle large volumes of data as fast as some applications require. Nowadays,
low latency is critical in some time-sensitive application contexts like fraud detection sys-
tems (ASSUNCAO; VEITH et al., 2018). In these circumstances, Data Stream Processing (DSP)
has emerged as a branch of Big Data to handle real-time and data-intensive applications (LIU;

IFTIKHAR; XIE, 2014).
The DSP approach focuses on real-time data processing. It applies specific techniques

for capturing and processing relevant data for on-the-fly results, i.e., without requiring stor-
age (STONEBRAKER; ÇETINTEMEL; ZDONIK, 2005). This approach allows the processing of the
data immediately after its generation. The stream processing strategy is recommended when
there is a need to continuously query data flows to detect patterns within a short time inter-

18

val (GOLAB; ÖZSU, 2003). Many business sectors exploit DSP benefits, such as the financial
market, banking system, e-commerce, marketing, social networks, communication industry,
infrastructure monitoring, and others (GAROFALAKIS; GEHRKE; RASTOGI, 2016). The solutions
and tools around DSP are advancing quickly due to the business demands and the continuous
need to provide solutions in that context.

Like in any other software, testing to find bugs in features and verify compliance with non-
functional requirements plays an essential role in the quality assurance of DSP. Besides, DSP
is significantly involved in critical applications in several organizations’ businesses, where the
impacts of failures can be catastrophic or cost many resources. For example, a failure to detect
fraud in credit card transactions can result in a considerable loss in just a few minutes (KHINE;

KHIN, 2020). In other situations, such as a smart grid for monitoring power infrastructures,
DSP focuses on predicting failures that can cause a collapse of essential systems that can
affect different sectors of society (CHOI et al., 2018).

However, testing such kind of software is not a simple task due to factors hindering test-
ing such as message temporality, parallelism, data volume, data variability, message speed,
etc (PUNN et al., 2019). There are many difficulties related to distributed processing infras-
tructure, in which data from different sources are processed in geographically dispersed clus-
ters (CHEN; PAIK; LI, 2016). In addition, data arrives at high speed and the applications that
process it must do so under very strict constraints. Therefore, data streams pose several
challenges for application testing.

Compared to conventional databases, DSP is a field that has been maturing over the
last decades. There are still no standards or semantics that publish consensus across the
community. Consequently, a DSP test infrastructure must be extensible and well-prepared for
the new challenges in this field (RAIZMAN et al., 2010). Designing a test infrastructure covering
all these factors is difficult since it is challenging to simulate configurations where errors
manifest (RAIZMAN et al., 2010). Developing an efficient and effective streaming test system
is complex as it requires people who are skilled and capable of understanding the stream data
to be processed, considering the technical nuances of stream processing infrastructure.

Nevertheless, the relevance of testing DSP in the industry can be identified in many informal
sources such as tools discussion lists (FOUNDATION, 2022), question & answer sites (Stack

Overflow, 2017; Stack Exchange, 2017), tools documentations (Apache Flink, 2021; Amazon Kinesis,
2017), lecture themes at technical events (MALASKA, 2019; WIESMAN, 2018; GAMOV, 2020),
professional social networks (WAEHNER, 2022), blog posts (ALADEV, 2021; OSWILL, 2019;

19

KHARE, 2020), open-source software repositories (Mocked Streams, 2016; AUTHORJAPPS, 2019;
LEOPARDI, 2017; KARAU, 2016), podcast (Software Engineering Daily, 2020), and other web-
published materials. Hence, it is noticeable that the community has been promoting collective
advances in specific issues, such as developing strategies, good practices, open-source tools,
and libraries for testing DSP applications. Still, the industry know-how in DSP application
testing is fragmented into several online documents, such as websites, blogs, forums, and
software repositories.

Although widely adopted in the industry, there is limited formal literature on testing DSP
applications. The existing formal literature brings contributions addressing particular issues
of testing DSP applications by proposing strategies, techniques, and tools for specific cases.
However, there is a lack of academic work broadly addressing the subject and relating the
different aspects of the whole context. Therefore, due to advances in practical industry DSP
issues that are driven by market demand there is a gap between industry knowledge and
academic knowledge about testing DSP applications. Also, there are no consolidated materials,
such as roadmaps, guidelines, or best practices compilation, guiding practitioners in DSP
application testing.

In this sense, this doctoral work aims to research through collaboration with the DSP
application academic and industry community. Although there are many challenges in con-
ducting software research involving industry-academia collaborations, it promotes many bene-
fits (WOHLIN, 2013). For researchers, collaboration allows them to access real-world problems
and datasets, and to obtain feedback from experienced practitioners in developing robust sys-
tems (RODRÍGUEZ; KUVAJA; OIVO, 2014). As for industry, collaboration supports technological
improvement and innovation in the sector, also promoting industrial relevance in academic
research (GAROUSI et al., 2017).

1.2 OBJECTIVE

Recognizing the significance of DSP in today’s landscape—especially since this technology
is valuable to the business operations of many companies—and considering the pivotal role of
testing within the DSP context for enhancing software quality, combined with the observed
lack of comprehensive guidelines for testing DSP applications, our guiding research hypothesis
is:

20

Hypothesis: “It is feasible to formulate valuable guidelines for the industry grounded

on diverse pieces of knowledge and experiences from practitioners, which have been

systematically collected, selected, and synthesized through appropriate research

methods.”

Therefore, our research aims to advance the state-of-the-art in DSP application testing by
addressing these issues, guiding us to our main objective:

Main Objective: “To develop and evaluate testing guidelines for DSP applica-

tion by studying industry-relevant aspects and collaborating with practitioners to

identify current industry practices.”

To achieve this primary objective, we established the following specific objectives:

• Explore the field of testing in the context of DSP through studies involving practitioners
to identify relevant practical aspects.

• To investigate in depth the domain of industry practices regarding the testing challenges,
testing purposes, testing techniques, strategies for obtaining testing datasets and the
tools employed in order to build a base of relevant information about testing practices
in the field.

1.3 RESEARCH QUESTIONS

To achieve the objective, this thesis aims to answer the following research questions:

RQ1: How do practitioners deal with DSP application testing?

With this central question, we investigated the following derived questions:

RQ1.1 What are the challenges to DSP application testing?

RQ1.2 What are the testing purposes?

RQ1.3 What are the approaches and specific types of tests performed?

RQ1.4 What are the strategies adopted by practitioners to obtain testing data?

21

RQ1.5 What are the tools, and under what circumstances are they used in DSP appli-
cation testing?

RQ2: What are the practitioners’ perceptions about the proposed guidelines?

With this question, we aim to collect the impressions of experienced practitioners regarding
the proposed guidelines. The choice of evaluation with practitioners was because they are the
target users of the proposed guidelines and have the knowledge and practical experience to
provide feedback aligned with the industry reality. Specifically, we seek to evaluate practitioners’
impressions regarding practical applicability, expected benefits, positive aspects, and potential
adverse effects while also gathering suggestions for enhancement.

1.4 CONTRIBUTIONS

During the course of the investigation, this thesis made three main contributions.

• Exploratory Study on Practitioners’ Impressions of Testing in the DSP Context:

We carried out the first exploratory study on this topic with practitioners who work
directly with DSP in the industry. The study included 12 semi-structured interviews and
gathered 101 survey responses. Our findings highlighted the significance of this topic
for the industry and recorded practitioners’ perceptions about testing DSP applications.
Furthermore, the study offered valuable insights and data to guide future research in this
domain. Detailed results and contributions from this study can be found in Chapter 4.

• Study regarding the state of practice in testing DSP applications: At the
same time, we conducted a comprehensive Grey Literature Review (GLR) on the state
of practice in testing DSP applications. This was the first review of its kind on this
topic, resulting in the mapping and synthesis of practical knowledge and experience
regarding testing DSP applications. Our methodology led to the selection of 154 sources,
helping us identify the primary challenges of testing, main test objectives, specific testing
approaches, and strategies for obtaining test data. Additionally, we reported 50 tools
utilized in different testing activities. This study gathers extensive information from an
industrial perspective, guiding future research in the domain. The complete study is
detailed in Chapter 5.

22

• Testing Guidelines for DSP Applications: The primary contribution of this thesis
is the development (including the validation with practitioners) of guidelines designed
to support professionals in planning DSP application testing. These guidelines take into
account the unique characteristics of DSP applications. They were formulated based
on previous primary study findings and further refined with practitioners’ feedback. To
make it easily accessible to developers, the guidelines have been made available in website
format, representing a tangible research contribution to the community.

1.5 DOCUMENT STRUCTURE

The remainder of this document is structured as follows:

• Chapter 2 exposes the fundamentals of DSP, the central concept of this thesis. It also
explains the standard technologies infrastructure, data stream analysis approaches, and
state-of-the-art data stream testing.

• Chapter 3 details the research methods, describing methodological aspects of the in-
vestigation, guidelines development process and evaluation phases.

• Chapter 4 presents the results of the exploratory study based on interviews, ques-
tionnaires, and grounded theory. It shows demographic data, analysis, results synthesis,
discussion, and threats to validity.

• Chapter 5 presents the results of the GLR. It describes the GLR method application,
demographic data and a concise summary of the results along with the discussion.

• Chapter 6 presents the testing guidelines for DSP applications, the main contribution
of this doctoral thesis.

• Chapter 7 presents the conclusions and contributions of this thesis and directions for
future research.

23

2 FUNDAMENTAL CONCEPTS

This chapter presents the fundamentals of DSP, the central concept of this thesis. The
chapter begins with Section 2.1, which presents the data stream definition and a brief history.
Section 2.2 presents the consolidated DSP infrastructure. Section 2.3 describes data stream
analysis approaches. Finally, state-of-the-art in data stream tests is presented in Section 2.5.

2.1 DATA STREAM

The first studies about DSP were published in the 60s (STEPHENS, 1997). They presented
some concepts about dataflow systems and the evolution of Database Management Systems
(DBMSs). In the 70s, the Lucid language was developed with the objective of processing
dataflows (precursor of the data stream) (WADGE; ASHCROFT, 1985). The volume of data traffic
increased with the expansion of personal computers and the Internet in the 1980s. The data
volume peaked in the 21st century with smartphones and IoT devices. Unfortunately, traditional
data management systems did not offer real-time support for this data volume (ZHAO et al.,
2017). In the current century, another challenge is the speed of value changes in data streams
since it has to be processed continuously in real-time. Researchers are taking advantage of
parallel processing and distributed computing studies, and have proposed techniques to deal
with these challenges. Nowadays, the main techniques integrating the base of DSP are Map-
reduce (CONDIE et al., 2010), continuous queries (BABU; WIDOM, 2001) and temporal data
models (KRÄMER; SEEGER, 2004). The evolution of concepts and techniques associated with
DSP leads us to the following definition.

Definition: A data stream can be understood as a sequence of unbounded
and never-ending (potentially) generated data, in which the order of arrival
cannot be controlled (GOLAB; ÖZSU, 2003). Due to the massive volume and
speed of data, it is not convenient to store it and its computation must
be done in real-time without prior storage by queries running continuously
against data streams.

In summary, a Data Stream Management System (DSMS) processes a continuous and
infinite data stream immediately upon arrival without prior storage. In contrast, traditional
Database Management Systems (DBMS) aggregate data to represent the final state of an

24

operation. Once the results are aggregated, they are stored in the database and subsequently
queried. Figure 1 illustrates the two approaches. To clarify the distinction, we examine the
approaches within an e-commerce context. Online shoppers frequently add and remove items
from their carts during a shopping session. Using data aggregation, the DBMS-based method
captures only the cart’s final state. The DSMS approach continuously keeps processing the
shopping cart events stream (addition or remotion of products), evaluating all cart operations
in real-time. The DSMS approach allows for in-depth event analysis, such as the identification
of users’ shopping behaviour patterns.

Figure 1 – Traditional DBMS processing versus DSMS processing.

The software industry has successfully adopted solutions using this approach for appli-
cations with high data volume requiring real-time answers. For example, anti-fraud systems,
real-time dashboards, clickstream for user behaviour analysis (HANAMANTHRAO; THEJASWINI,
2017), analysis of user engagement in marketing campaigns, user sentiment on social net-
works (HASAN; ORGUN et al., 2018), geofences (virtual fences based on location sensors), mon-
itoring IoT data in smart cities (TÖNJES et al., 2014), investment robots in the stock market
and equipment failure detection. In these situations, the result of any analysis would be worth-
less if delivered late. DSP is constantly evolving, and its importance has become remarkable in
recent years. There are many challenges around data streams (MEHMOOD; ANEES, 2020), such
as the autonomous management of DSP, fault tolerance (VIANELLO et al., 2018), resource elas-
ticity (ASSUNCAO; VEITH et al., 2018), data stream mining (KREMPL et al., 2014), evolving data
streams (BIFET et al., 2009), and integration with machine learning algorithms (KRAWCZYK,
2016; NOKLEBY; RAJA; BAJWA, 2020).

25

2.2 DATA STREAM INFRASTRUCTURE

In recent years, many technologies have emerged to compose the DSP infrastructure (KO-

LAJO; DARAMOLA; ADEBIYI, 2019; FRAGKOULIS et al., 2023). Analysing architectures proposed
and discussed in the literature (TANTALAKI; SOURAVLAS; ROUMELIOTIS, 2020; NAMIOT, 2015;
KIRAN et al., 2015), we have identified five essential categories of components: producer, in-
gestion, stream analytics, storage and delivery. Figure 2 presents the traditional organization
of this infrastructure.

Figure 2 – DSP Infrastructure.

Bellow, a list of the infrastructure components is presented, along with a brief description
and examples of tools adopted in each case.

1. Streaming Data Sources: Data producers send data to message brokers. In general,
they can be sensors or equipment from the IoT universe, smartphone applications, social
networks, business data or thousands of other data sources on the Internet.

2. Ingestion: Some message brokers (e.g., Kafka) are systems focused on stream process-
ing, and they work similarly to the traditional publish-subscribe messaging system by
managing queues of producers and consumers (MEEHAN et al., 2017). However, instead
of standardized protocols, such as AMQP, MQTT and STOMP, message brokers for
stream processing adopt a custom protocol on top of TCP/IP for communication be-
tween applications and the clusters. Moreover, they are more robust tools designed for

26

high performance. Message brokers for stream processing are distributed systems with
parallelization support, redundancy, and fault tolerance features (ISAH; ZULKERNINE,
2018). Furthermore, these tools are also concerned with specific data streams aspects,
such as the semantics of message processing: at-least-once, at-most-once, and exactly-
once. Some examples of popular ingestion tools are Apache Kafka, Amazon Kinesis,
Flume and Apache NiFi.

3. Stream Analytics: Stream processors are broker consumers who perform data stream
analysis processing logic. They apply several specific data stream analysis techniques,
such as CEP, windowing, summary, machine learning, and others (described in Sec-
tion 2.3) (SAHAL; BRESLIN; ALI, 2020). The analysis can generate alerts sent to ap-
plications and aggregate data sent to real-time dashboards or databases. The stream
processor output can also result in a new data stream sent to the broker as input. Source
examples of stream processor tools are Apache Flink, Spark Streaming, Kafka Streams,
and Kinesis Data Streams.

4. Delivery: Finally, at this point, the stream processing results reach their final goal
by feeding dashboards and Business Intelligence tools to managers (GÜRCAN; BERIGEL,
2018).

5. Storage: Aggregated data from stream processing can be stored in databases. Several
database systems are suitable for handling large volumes of data, making it possible to
employ big data and data mining techniques in further processing (WANG et al., 2020).
Some examples of storage tools for this context are S3 Dynamic DB, Azure Cosmos DB,
Cassandra, Elastic Search and HDFS.

2.3 DATA STREAM ANALYSIS APPROACHES

A data stream analysis involves extracting relevant data and detecting patterns with very
short delays (i.e., low latency). However, analysing stream data can be quite challenging be-
cause of the massive and endless amount of data that continuously arrives. Researchers are
taking advantage of algorithms and distributed processing advances (CHERNIACK et al., 2003),
proposing techniques to address the challenges of processing massive volumes of data effi-
ciently to meet real-time requirements. Filters may include a sequence of operations-based

27

transformations, such as selections, aggregations, joins, and operators defined by relational al-
gebra (CUGOLA; MARGARA, 2012a). Well-known techniques involve windowing, Complex Event
Processing (CEP), machine learning, filters, randomization, sampling, synopsis, sketches, and
summaries.

2.3.1 Windowing

Windowing is a stream processing technique where elements are grouped according to
timestamps or quantity. Windowing is also known as micro-batches and is considered near
real-time processing. Depending on the window size, the delay window increases. Latency typi-
cally ranges from a few milliseconds to a few seconds (VEITH; ASSUNCAO; LEFEVRE, 2021; QIN;

EICHELBERGER; SCHMID, 2019). Several windowing strategies are applicable for different pur-
poses, such as tumbling, hopping, sliding, session and snapshot (AKIDAU et al., 2015; CARBONE

et al., 2016; GOLAB; OZSU, 2022). Below, we describe two well-known windowing approaches:
sliding Windows and tumbling windows.

2.3.1.1 Sliding Window

Sliding windows continuously slide through data streams and are delimited by time intervals
or the number of elements. The sliding window allows window overlapping between executions
so that elements can belong to more than one sliding window and be processed many times in
consecutive executions. Figure 3 illustrates the execution of a sum function in a sliding time
window with a five-second size, while Figure 4 shows a five-element sliding window.

Figure 3 – A 5-Seconds Sliding Time Window.

28

Figure 4 – A 5-Elements Sliding Window.

2.3.1.2 Tumbling Window

A tumbling window segments a data stream into distinct and non-overlapping segments.
The critical aspects of a tumbling window are that they repeat but do not overlap, so an
event cannot belong to more than one tumbling window. A five-second tumbling time window
execution is illustrated in Figure 5, and Figure 6 shows a five-element tumbling window.

Figure 5 – A 5-Seconds Tumbling Time Window.

Figure 6 – A 5-Elements Tumbling Window.

29

2.3.2 Watermarks

Watermarks are crucial for managing event time and addressing out-of-order events in data
streams. They act as a timestamp indicating the completion of all data events with a timestamp
earlier than or equal to the watermark’s time. This mechanism helps overcome challenges
like network latencies and varying processing speeds, which cause unordered event arrival.
Watermarks link processing time (when events are processed) and event time (when events
actually occur). They provide a lower-bound timestamp for all unreceived events, ensuring that
future records will have event times greater than the watermark. This allows DSP systems
to accurately perform time-sensitive operations, such as windowed aggregations and joins, by
informing when a time window is complete and ready for processing (AKIDAU et al., 2021). They
are often used with windowing techniques to determine time window boundaries accurately.
They are essential in large-scale, real-time DSP systems for handling event timing despite the
unordered nature of event arrival.

2.3.3 Complex Event Processing

CEP is usually associated with identifying complex complex patterns based on various
events from different sources and temporal relationships (BUCHMANN; KOLDEHOFE, 2009).
This technique processes sequential primitive input events against a pattern to detect and
report composite events, as illustrated in Figure 7. Employing CEP facilitates the aggregation
of diverse information, analysis of cause-and-effect relationships between events, and provides
insights into critical business issues. These capabilities enable proactive action-taking.

Figure 7 – Complex Event Processing Diagram.

Despite the event’s complexity, queries are built with high-level languages inspired by

30

relational algebra (SQL-like) (LANGHI; TOMMASINI; VALLE, 2020). Even the construction of
queries can be easily adapted to web-based and graphical tools (ZIMMERLE; GAMA, 2018),
making it easier for non-developer managers to construct custom searches. CEP is normally
adopted for scenarios in which there is a high volume of events occurring. Main application
fields for CEP include real-time marketing, predictive maintenance, stock market trading,
sensor networks and business activity monitoring.

2.3.4 Learning from Data Streams

Traditional machine learning algorithms have been adapted for pattern detection in data
stream contexts, such as anomaly detection, trajectory prediction, failure prediction, outliers
and detection of abnormal activities (VALSAMIS et al., 2017). It is a very challenging task (NOK-

LEBY; RAJA; BAJWA, 2020; VRIES; SOMEREN, 2012) and costly to employ machine learning in a
data stream, mainly due to the high-speed requirements, limited computational resources (BU et

al., 2009), time constraints and the non-stationary dynamic environment. Often, it is necessary
to sacrifice accuracy in order to meet the application’s basic requirements, which probabilistic
models can solve. Another significant challenge is the concept of drift, where the underlying
distribution of the data changes over time. This drift can be gradual or abrupt, affecting the
model’s performance as previously learned patterns become obsolete.

There are fundamental questions in learning from stream data, such as continuously main-
taining learning models that evolve over time, learning and forgetting deviating concepts, and
detecting changes. Traditional systems learn models inaccurately when they mistakenly as-
sume that the underlying concept is stationary. The concept drift is a remarkable challenge
for learning data streams. In the literature, many works address methodologies and strategies
to deal with this issue and mitigate the problem (KHAMASSI et al., 2018; SAYED-MOUCHAWEH,
2016; DEMŠAR; BOSNIĆ, 2018).

2.3.5 Summarizing Techniques

The massive volume and velocity of data present significant challenges in delivering ac-
curate results for streaming data. As the required level of accuracy increases, the demand
for computing resources correspondingly escalates. In many cases, approximate responses are
satisfactory when they are highly reliable. In this context, it is possible to use summary tech-

31

niques derived from statistical science to deal with memory limitations. The algorithms’ design
must also be based on computational theory techniques to implement time and space-efficient
solutions. Following, we present a list of some summary techniques:

• Sampling: is the process of statistically selecting input stream elements that should
be analyzed. Sampling has often been applied as a data reduction technique to produce
approximate responses to queries about data streams. Sampling is essential in developing
techniques for clustering data streams (IKONOMOVSKA; LOSKOVSKA; GJORGJEVIK, 2007).

• Aggregation: represents the elements in an aggregated value using some statistical
measure, such as average, variance, or the sum (BABU; WIDOM, 2001).

• Frequency: Knowing the frequency of an element over time is desirable for many ap-
plications. For example, in digital marketing, we want to calculate how many times an
advertisement has been shown throughout the day.

2.4 SOFTWARE TESTING

In this section, we address software testing and include observations in the context of
DSP, and highlight the need to adapt traditional testing paradigms. Building on insights from
Felderer et al. (FELDERER; RUSSO; AUER, 2019), we highlight the distinct challenges posed
by DSP systems, such as their dynamic data flows, real-time processing demands, and the
complexities of ensuring data integrity and system robustness. Below we detail three relevant
issues: Test Oracle, Test Adequacy Criteria and Test Selection Criteria. We seek to provide a
nuanced understanding of how software testing strategies should evolve to meet characteristics
of DSP applications.

2.4.1 Test Oracle

Test Oracles in traditional software testing serve as a benchmark for evaluating the accuracy
of a program’s output. However, the inherent characteristics of DSP – continuous and unlimited
data streams, real-time processing, and dynamic data schemas – present unique challenges that
require a re-evaluation and adaptation of traditional methodologies for building test oracles.

Barr et al. (BARR et al., 2014) highlight the inherent difficulties in accurately specifying
expected results in environments characterized by high variability and non-determinism, such

32

as DSP. They advocate the adoption of more flexible and adaptive test oracle designs that can
accommodate the unpredictable nature of non-determinism systems, such considerations are
applicable to the DSP context. Weyuker (WEYUKER, 1982) previously introduced the notion
of pseudo-oracles, which may be particularly relevant in DSP testing, providing a means of
approximating expected results when an exact comparison is impractical.

Vinay Arora’s et al. (ARORA; BHATIA; SINGH, 2016) provides a comprehensive review of
techniques that could be highly relevant for constructing Test Oracles in DSP. The article
classifies testing approaches for concurrent programs into eight categories: reachability testing,
structural testing, model-based testing, mutation-based testing, slicing-based testing, formal
methods, random testing, and search-based testing. These approaches are particularly pertinent
to DSP due to similarities in handling non-deterministic behaviors, synchronization issues, and
ensuring correctness under dynamic operational conditions.

For instance, model-based testing can aid in dynamically adjusting Test Oracles to DSP
system specifications or data schema changes. Reachability testing and formal methods could
support the validation of streaming data processes against a range of acceptable outcomes.
Mutation testing and slicing-based testing can enhance the robustness of Test Oracles by simu-
lating potential anomalies or variations in data streams, thus ensuring sensitivity to unexpected
changes. These methodologies from concurrent program testing could inform the development
of flexible, dynamic, and robust Test Oracles for DSP, addressing the unique challenges posed
by real-time, data-intensive systems. The adoption of these approaches can ensure the effective
and reliable testing of DSP systems, enhancing their dependability in critical applications.

Incorporating stateful considerations into test oracles, as suggested by Carzaniga et al.
(CARZANIGA et al., 2014), addresses the temporal aspects of DSP applications where the cor-
rectness of an output may depend on previous states or sequences of events. This emphasizes
the need for test oracles that can not only validate individual outputs, but also the integrity
of processing logic over time.

Adapting test oracles to DSP involves adopting these methodologies – dynamic, proba-
bilistic and stateful validation – to ensure effective testing of DSP systems. These adaptations
preserve the core purpose of test oracles, but reflect the unique requirements and challenges
of DSP environments.

33

2.4.2 Test Adequacy Criteria

In the domain of software testing, test adequacy criteria serve as a reference to determine
when the testing phase of a software system is considered sufficiently complete, attesting to
a level of reliability and correctness of the system (CHEN et al., 2020; KAPUR; SHRIVASTAVA;

SINGH, 2017). Traditional criteria include code coverage – encompassing declaration, branch,
and path coverage – as well as fault detection rates. The choice of criteria depends on the
system’s context, and the system’s criticality must be considered to establish the desired level
of reliability (LV; YIN; CAI, 2014; SANTOS et al., 2017).

Traditionally, test adequacy criteria have focused on static aspects of software, such as code
structure or functional requirements. Methods like structural testing (HOSSAIN et al., 2023),
functional testing (SEGURA; BENAVIDES; CORTÉS, 2008), model-based testing (ANDREWS et al.,
2003) and fault-based (RUTHERFORD; CARZANIGA; WOLF, 2008) testing have been extensively
applied. These leverage criteria, such as code coverage, ensure that all program elements are
executed at least once during testing and that various input scenarios are explored to uncover
potential errors (ZHU; HALL; MAY, 1997). Such methodologies have established a baseline for
assessing test completeness, guiding testers in identifying unexplored parts of the application
and informing decisions on when additional testing is no longer productive.

However, DSP systems introduce dynamic and temporal dimensions that necessitate reeval-
uating these traditional criteria. DSP systems are characterized by continuous data ingestion,
real-time processing requirements, scalability, state management, and dynamic data patterns,
all influencing the decision of when to halt testing activities. This context requires methodolo-
gies to assess the system’s endurance over lengthy periods without performance or accuracy
degradation (HIRZEL et al., 2014; CARBONE et al., 2015). For instance, the system’s ability
to adapt to changing data patterns and scale based on incoming data volume necessitates
dynamic testing criteria to evaluate the system’s performance and accuracy under varying
conditions (TANTALAKI et al., 2020; CARDELLINI et al., 2022). Additionally, state management
in DSP—whether stateful or stateless—adds complexity in ensuring correctness and consis-
tency across distributed components, especially in failure recovery scenarios (LIU et al., 2020;
XU et al., 2020).

Consequently, adapting suitability criteria to the DSP context involves incorporating met-
rics considering data variability, processing latency, and system scalability. This includes data
coverage metrics that measure the diversity of data items processed and the completeness

34

of scenarios covered, including handling data biases and anomalies. Latency measurements
should be employed to verify that the system meets real-time processing requirements under
varying load conditions. Test adequacy criteria for DSP must also consider the system’s state
behaviour and its ability to maintain correctness over time, assessing its resilience to changes
in data patterns and its capability to recover or adapt without degrading system performance.
Techniques like mutation testing, which simulates potential variations in the data stream, can
provide insights into system robustness (NETO et al., 2022).

Determining when to stop testing in the DSP context requires adapting conventional fitness
metrics approaches. DSP’s dynamic, continuous processing, real-time nature, combined with
scalability and state management challenges, necessitates a set of criteria focused on the
system’s ability to handle these characteristics and maintain operational integrity. Continuous
testing becomes an integral part of the DSP system development and maintenance flow,
employing a combination of static analysis to ensure code quality and dynamic monitoring to
evaluate system behaviour under real-world data conditions.

2.4.3 Test Selection Criteria

Test case selection aims to identify which test cases to execute to minimize the use of
testing resources while ensuring the most comprehensive evaluation possible of the system
under test (HERZIG et al., 2015). Typical test selection criteria include code and path coverage,
requirements coverage, fault detection potential, and test execution cost. Furthermore, in the
context of regression testing, these criteria expand to consider the connections between archi-
tectural modules and the mapping of features that may have been affected by changes (BISWAS

et al., 2011). Additionally, the criteria encompass risk assessment and the criticality of features
to the business, thus directing testing efforts towards components that significantly influence
system functionality and user satisfaction (KHANDAI; ACHARYA; MOHAPATRA, 2012; SRIKANTH;

HETTIARACHCHI; DO, 2016).
However, in the context of large, complex, and distributed systems, such as the DSPs

discussed in this thesis, the challenge of deciding which set of test cases to perform in each
situation is magnified due to the huge number and variety of possible test cases. The sur-
vey of Sadri-Moshkenani et al. raises test case selection and prioritization approaches in the
context of cyber-physical systems, which can also be considered for the DSP context (SADRI-

MOSHKENANI; BRADLEY; ROTHERMEL, 2022). Also, in this context, testing objectives are varied

35

and include functional correctness, performance and scalability, fault tolerance and recovery,
and data quality and integrity. The prioritization of these objectives is a crucial part of the
test case selection strategy, tailored to the specific context of each application. In the litera-
ture, we find efforts to improve the selection of test cases, such as the proposal by Olsthoorn
and Panichella based on multi-objective evolutionary algorithms (OLSTHOORN; PANICHELLA,
2021). Therefore, a thorough analysis of risk and impact on the business is essential in test
case selection, as data streams often play a critical role in companies’ core operations.

Performance parameters in DSP applications are notably sensitive to changes, whether in
the application code or the configurations of the stream processing structure, an issue that
becomes more prominent in complex applications involving multiple data stream processing
steps. This complexity and sensitivity to changes underscore the importance of change trace-
ability and a thorough understanding of data flow in DSP systems (ZVARA et al., 2019). Data
undergoes several transformative processing stages, and changes at any stage in the process-
ing pipeline can trigger cascading effects across components (DIVÁN; REYNOSO, 2020). Thus,
a comprehensive mapping of data flows becomes indispensable for effective test case selec-
tion, facilitating targeted and efficient testing. It also ensures system modifications do not
inadvertently compromise its integrity or performance.

Furthermore, economic considerations regarding the cost of running tests play a significant
role in the context of DSP systems. The infrastructure for stream processing can be quite
costly, and testing expenses can escalate, especially in the cloud, due to hardware allocation
for real-time processing (SOUZA et al., 2020). These costs become especially pronounced during
system-level performance tests that manage large cloud data volumes and involve paid third-
party services. Therefore, understanding and managing the economic aspects of test selection
is crucial.

2.5 STATE-OF-THE-ART IN DATA STREAM TESTING

Although there are no literature reviews or exploratory studies on testing practices in the
DSP context, existing works focus on individual tools and approaches and some studies on
testing and data stream software quality. In the following section, several research works and
their contributions to the field have been explored.

Kallas et al. (KALLAS et al., 2020) proposed DiffStream, a differential testing library for
Apache Flink, implemented in Java. It can be used with common testing frameworks, such as

36

JUnit, or as a stand-alone tool for Flink programs. The tool focuses on differential output test-
ing for distributed DSP systems, verifying whether two implementations produce equivalent
output streams in response to the same input stream. DiffStream serves various purposes, in-
cluding checking for bugs in MapReduce programs, supporting the development of applications
that are hard to parallelize, and monitoring DSP applications with minimal performance impact.
The effectiveness and usability of the proposed test framework were evaluated by conducting
four case studies: Taxi Distance, where it detected logic errors in calculating taxi routes using
GPS data; Topic Count, which identified concurrency issues in counting topics in text streams;
Real-World MapReduce Programs, revealing functional mismatches in MapReduce transforma-
tions adapted for streaming; and Performance for Online Monitoring, demonstrating minimal
performance overhead, making it suitable for real-time application monitoring. These studies
underscore DiffStream’s versatility in uncovering bugs and concurrency problems, as well as its
applicability in performance evaluation for distributed stream processing systems, confirming
its utility across various testing scenarios. DiffStream is available on GitHub as an open-source
tool1.

Other works propose to apply property-based testing techniques to DSP application testing.
This approach focuses on generating test cases based on properties defined by a set of Boolean
expressions. Property-based testing checks if a system under test abides by a property. A
significant benefit of applying this approach in the DSP context is greater coverage of test
cases. Espinosa et al. (ESPINOSA et al., 2019) introduced FlinkCheck, the property-based testing
tool for Apache Flink. FlinkCheck provides a bounded temporal logic for generating function
inputs and stating properties. This tool randomly generates a specified number of finite input
stream prefixes with the required structure and evaluates the Flink runtime’s output streams.
In this context, Riesco and Rodríguez-Horatlá (RIESCO; RODRÍGUEZ-HORTALÁ, 2019) proposed
a combination of temporal logic and property-based testing to DSP applications testing. An
Application Programming Interface (API) for testing Spark Streaming programs was made
available, and it allows the writing of tests in a Scala functional language with the ScalaCheck
library.

The work by (ZVARA et al., 2017) presented a holistic tracing framework for batch and
streaming systems, which may be used to debug DSP applications by tracing individual in-
put records. Thus, issues caused by outliers become traceable in complex topologies. They
built a prototype implementation for an open-source data processing engine, Apache Spark.
1 https://github.com/fniksic/diffstream

37

The evaluation indicated that the tool helps to identify a variety of common problems in
real-time (e.g., bottlenecks, irregular characteristics of incoming data, anomalies propagated
unexpectedly through the system). It can also assist developers improve system performance
by detecting inefficiencies in the computing topology and reducing latency. This approach
is valuable to prevent developers from spending countless hours identifying these problems
manually, but it only works for problems in real-time running environments.

Restream (SCHLEIER-SMITH; KROGEN; HELLERSTEIN, 2016) is a tool that can replay streams
from historical event logs. The tool is designed for accelerated replay and parallel processing,
preserving sequential semantics. ReStream was compared against multiple implementations
built on Apache Spark and outperformed them all, surpassing the single-threaded implementa-
tion and exceeding the performance of Spark. Although ReStream simulates streams precisely
in a controlled environment, there is a lack of features to simulate fault tolerance scenarios.
On the contrary, it handles fault tolerance cases by avoiding them during the simulation, for
instance ignoring duplicated messages and resending messages that may have been lost.

Regarding the replay of historical data, there is the work by Gu et al. (GU et al., 2018), which
also proposes a specific tool, Penguin, for data stream replay. However, Penguin was mainly
designed for analytical purposes in scenarios where some portions of the extensive historical
data need to be processed in a specified replay order (e.g., ordered by the timestamps).
A notable feature of this tool is that it comes with specific operators to configure replay
characteristics, for example, replay speed, message order, cache usage, message selection filters,
merge messages, and map operation to perform a function on each record to generate a new
message. These features may be helpful to test environments as they may be able to modify
replay characteristics and approximate the simulation of the production environment or to
specific test scenarios desired.

The work by Xu et al. (XU et al., 2013) discusses the validation and detection of abnor-
mality in data streams by an analytical model, which can be defined as a function of sensor
measurements. They implemented two general strategies to validate streams from industrial
equipment: model-and-validate and learn-and-validate. The experiment shows that both ap-
proaches apply to real industrial data from IoT devices. However, these approaches may involve
scalability challenges. Also, Pizonka et al. (PIZONKA; KEHRER; WEIDLICH, 2018) stated that
data quality plays a pivotal role in many IoT applications, which demands continuous moni-
toring and validation of streaming data. They proposed VortoFlow, a tool that enables users
to capture validity requirements regarding value ranges as part of an information model and

38

express it with a Domain-Specific Language. They demonstrated the general feasibility and
applicability of VortoFlow using the case of a weatherboard.

Other works like (FEILER, 2010) also explored model-based validation of stream data in the
context of IoT, and indicate data quality as one of the root causes bugs in IoT DSP. Multiple
components are involved in handling the data stream, and they all can affect it by inserting
noise and data distortion. They pointed out that the most recurring sources of problems are
time sensitivity, data format, out-of-range values limits, concurrency, latency, and missing
elements.

Due to the amount of information that flows through a data stream, data test generation is
a relevant topic for testing DSP applications. In some situations, real historical data is unavail-
able, and the synthetic data generation can be the only way to have test data. It is necessary
to generate many events with specific structures and values to test these systems’ functional-
ities. The proposed tool by Gutiérrez-Madroñal et al. (GUTIÉRREZ-MADROÑAL; MEDINA-BULO;

DOMÍNGUEZ-JIMÉNEZ, 2018), IoT–TEG, uses high-level languages, such as XML, for describ-
ing events patterns and rules for event test generation. It has controlled randomization to
generate values within a set between a minimum and maximum value. Although this approach
simplifies data generation by producing random data within defined ranges, generating data
in patterns similar to real events would be interesting. For example, generating latitude and
longitude data from a vehicle’s Global Positioning System (GPS) in a logical sequence should
represent automobile-compatible behaviour.

In this sense, a better data generation mechanism can be achieved through data prepro-
cessing, statistical models and machine learning techniques. Iglesias et al. (IGLESIAS et al.,
2020) introduced MDCStream, which provides a highly flexible mechanism to manipulate data
distribution of real data stream to generate new synthetic data. The tool allows the configu-
ration of several data characteristics, such as the range of dimensions, statistical distributions,
randomisable seed, data dependencies and correlations, etc. Similarly, Komorniczak and Ksie-
niewicz (KOMORNICZAK; KSIENIEWICZ, 2022) have employed a one-dimensional interpolation
technique to transform real-world datasets into customisable synthetic data streams.

Generating accurate test data streams is especially challenging in the presence of concept
drift, which refers to slight updates to data concepts over time. Additionally, imbalances in the
class distribution can further complicate the generation of representative test data. Regard-
ing imbalanced data streams, techniques like the Synthetic Minority Oversampling Technique
(SMOTE) come into play, as evidenced by works like Krawczyk et al. (KRAWCZYK, 2016) and

39

Bernardo and Bella (BERNARDO; VALLE, 2021). These works aim to generate synthetic data
stream samples to address difficulties from imbalanced data streams. The potential of deep
learning techniques in data augmentation is addressed by Iglesias et al. (IGLESIAS et al., 2023),
who have systematically reviewed generative models such as Variational Autoencoder (VAE)
and Generative Adversarial Network (GAN). These models can augment data by adding noise
and permutations or crafting new synthetic datasets. Further endorsing the capacity of GANs,
Zhang et al. (ZHANG et al., 2018) and Li et al. (LI et al., 2022) utilise GAN-based algorithms to
create synthetic time series data, indicating the potential of such machine learning techniques
in enhancing data samples for testing in DSP applications. Finally, Table 1 encapsulates each
work’s primary focus and main features to provide an overview of the discussed literature.

40

Work Tool or Ap-
proach

Main Focus Notes

(KALLAS et al., 2020) DiffStream Differential output testing for
distributed DSP systems

Applications monitoring
with minimal impact

(ESPINOSA et al., 2019),
(RIESCO; RODRÍGUEZ-
HORTALÁ, 2019)

Property-
based Testing
Tools

Property-based testing with
temporal logic

Testing in Scala functional
language

(ZVARA et al., 2017) Tracing
Framework

Debug DSP applications
by tracing individual input
records

Focuses on real-time prob-
lems

(SCHLEIER-SMITH;
KROGEN; HELLER-
STEIN, 2016)

ReStream Replay streams from histori-
cal event logs

Lacks fault tolerance sim-
ulation

(GU et al., 2018) Penguin Replay stream data for ana-
lytical purposes

Allows modification of re-
play characteristics

(XU et al., 2013) Validation
Model

Validation and detection of
abnormality in data streams

Scalability challenges

(PIZONKA; KEHRER;
WEIDLICH, 2018)

VortoFlow Capture validity require-
ments regarding value ranges

Domain-Specific Lan-
guage

(FEILER, 2010) Model-Based
Validation

Explore data quality issues in
IoT data streams

Identified root causes of
system problems

(GUTIÉRREZ-
MADROÑAL; MEDINA-
BULO; DOMÍNGUEZ-
JIMÉNEZ, 2018)

IoT–TEG Data test generation for data
stream software

Random data generation
within ranges

(IGLESIAS et al., 2020) MDCStream Manipulate data distribution
to generate synthetic data

Flexible configuration of
data characteristics

(KOMORNICZAK; KSIE-
NIEWICZ, 2022)

Interpolation
Technique

Synthesise data streams us-
ing static datasets

Customizable with user-
defined parameters

(KRAWCZYK, 2016),
(BERNARDO; VALLE,
2021)

SMOTE Generate synthetic data
stream samples

Address imbalanced data
streams

(IGLESIAS et al., 2023) Deep Learn-
ing Genera-
tive Models

Increase data amount with
augmentation techniques

Reviews VAE and GAN al-
gorithms

(ZHANG et al., 2018),
(LI et al., 2022)

GAN-based
Algorithms

Creation of synthetic time se-
ries data

Synthetic data based on
salient features distribu-
tion

Table 1 – Summary of Works on Data Stream Testing

2.6 SUMMARY

This chapter established the foundational concepts necessary for understanding DSP ap-
plications. Characterized by their high volume and velocity, DSP applications provide real-time

41

processing through continuous queries without prior storage, distinguishing them from tradi-
tional batch processing. The chapter also elucidated various DSP approaches highlighting each
approach’s trade-offs and use cases.

It introduced concepts like event time, processing time, and watermarks to address time-
sensitive data challenges. Additionally, the chapter discussed the typical architecture of DSP
systems, encompassing the roles of broker, stream processor, consumers and producers. It
underscored the importance of fault tolerance, scalability, and state management in DSP
applications.

The chapter acknowledged the unique challenges presented by the real-time architectural
complexities, necessitating distinct strategies for testing. This encompassed ensuring data
quality, managing stateful operations, and handling out-of-order events.

Finally, the chapter explored existing research in the field, specifically addressing test-
related aspects. Seventeen works were briefly discussed and summarized in a table. It is worth
noting that there was no comprehensive study covering DSP testing.

42

3 RESEARCH METHODS

This chapter presents the methods adopted to conduct this research and thus achieve
the proposed objective. Figure 8 summarizes the methodology used to develop and evaluate
the proposed testing guidelines for DSP applications. The process starts with recognizing the
lack of formal DSP testing literature, the gap between academic and industry knowledge,
and the scarcity of consolidated documents guiding the testing of DSP applications. Four
sequential steps conduct the methodology: (1) An Exploratory Study gathering insights via
12 interviews and 101 surveys to confirm the topic’s relevance for industry and practitioners’
perspectives on the subject; (2) A GLR examining 154 grey sources to discern current testing
practices, challenges, goals, data strategies, and adopted tools; (3) The development of an
initial guidelines version (Guidelines V1) predicated on GLR findings and formal literature;
and finally (4) The guidelines were evaluated through a 12-participant focus group and a
22-response survey, culminating in the refined Guidelines V2.

In the remainder of this chapter, we detail the methodology steps. Empirical studies from
the investigation phase are carefully described in Section 3.1 (Qualitative Study) and Sec-
tion 3.2 (GLR). Subsequently, the guidelines development methodology is presented in Sec-
tion 3.3. Finally, Section 3.4 describes the evaluation process for the guidelines.

43

Figure 8 – Overview of Research Methods.

3.1 EXPLORATORY STUDY

Our objective at this step is to carry out an exploratory study in order to improve the
understanding of the problem, map the state of practice, and identify the challenges related
to DSP application testing. For this purpose, we administered a questionnaire and conducted
interviews. The use of multiple data collection methods, such as questionnaires and interviews,
allows data triangulation in order to support the validity of the results. While surveys are
valuable for extensively capturing quantitative data, semi-structured interviews add depth,
context, and qualitative data to the research (GHAZI et al., 2018). By complementing surveys
with interviews, we aim for a comprehensive and multi-faceted understanding of the study’s
topic.

We chose grounded theory as the research method due to its capacity to construct theories

44

from empirical data. According to Glaser (CHARMAZ; BELGRAVE, 2007), grounded theory is
recommended when a researcher asks: "What is going on here?". This questioning is aligned
with the explorative nature of our study. Grounded theory was introduced in 1967 with the
publication of Glaser and Strauss (GLASER; STRAUSS, 2017). The method later evolved into
two versions with separate terminology and processes as Glaser and Strauss developed different
perspectives (GOULDING, 1998). These two versions are known as the Glaserian and Straussian
grounded theory methods.

Moreover, some modifications and variations have been proposed to the method, coming
in at least seven different versions (DENZIN; BRYANT; CHARMAZ, 2007). We decided to follow
classical Glaser’s method since we wanted to approach the field with no research questions
but rather a general interest in it. Also, we wanted to let the concepts and categories emerge
from the data. We carried out our research using existing guidelines on conducting a Grounded
Theory research (STOL; RALPH; FITZGERALD, 2016).

3.1.1 Questionnaire

Aiming at a broader audience and quantitative data, we administered a questionnaire with
general statements about data streams and specific questions on DSP application testing (Ap-
pendix A). The statements were of four types: (1) closed-ended single choice questions; (2)
closed-ended multiple choice questions; (3) questions about data scored on a 5-point Likert
scale response format from strongly disagree to strongly agree; and (4) open-ended questions
which allowed respondents to provide more in-depth and nuanced answers. The questionnaire
development received support from two other experienced researchers who contributed by re-
viewing the questionnaire and offering suggestions for enhancements. One of these contributors
is a master’s student with two years of research experience in the field, while the other is a PhD
professor with over ten years of research expertise in the area. In order to conclude the ques-
tionnaire preparation, a pilot application study was carried out with a researcher specialized in
the DSP field. The pilot aimed to verify the question’s relevance and significance, validating
the questionnaire while addressing potential ambiguities or biases to enhance its reliability in
capturing genuine aspects of the field.

Over nearly four months (from November 2018 to February 2019), we strategically dissemi-
nated the questionnaire among technical communities associated with Data Stream Processing
(DSP), as well as directly to professionals who listed DSP experience on their curriculum on

45

LinkedIn. This targeted approach ensured our outreach was focused on individuals with at
least one year of experience working in the DSP field, aligning with our requirement for par-
ticipation. From discussion lists to social media forums, we aimed to engage a knowledgeable
and experienced audience relevant to our study. The decision to stop responses at 100 was
made as we began receiving fewer replies over time, with each new response adding minimal
relevant content. This pattern suggested that additional data collection might only reiterate
insights already acquired (JEDLITSCHKA; CIOLKOWSKI; PFAHL, 2008). Initially, we received 105
responses, but after a thorough review, we excluded four responses that failed to meet our
criteria for serious and thoughtful participation, characterized by excessive one-word answers,
nonsensical replies, and uniform responses to Likert-scale items. Consequently, our dataset
was finalized with 101 valid responses, emphasizing the specific nature of our respondent pool
where participation was voluntary and relevant DSP experience was a prerequisite.

3.1.2 Interview

Collecting data via interviews provides flexibility, enabling the interviewer to investigate
intriguing or unexpected responses further, uncovering nuances linked to the participants’
context. Additionally, it allows seeking for clarifications or justifications.

The sample universe comprises software developers with one year of experience working
with DSP applications from any nationality as long as they communicate in Portuguese or
English. A year in the field allows professionals to comprehend the main characteristics and
nuances of the DSP context, going beyond foundational knowledge to encompass advanced
scenarios—increasing the richness and applicability of our findings. While we mandated a
minimum of one year of experience, we did not set a higher threshold to avoid excessively
narrowing our sample pool.

Our semi-structured interview guide consists of five sections, which can be found in Ap-
pendix B. In Section B.1, we started the interview by introducing ourselves and providing a
brief overview of the study, ensuring interviewees understand their anonymity and the consent
terms. Section B.2 covers the interviewee’s profile and background, gathering details about
their education, general IT experiences, specific DSP experience and professional career. In
Section B.3, we aim to discover their hands-on experience with DSP application development,
highlighting projects that involve DSP and the strategies their organizations employ to han-
dle DSP, including tools, mechanisms, processes, and more. Section B.4 addresses questions

46

about DSP application testing practices, exploring faced challenges in this context. Section B.5
focuses on testing tools and their features. To conclude, we allowed the interviewees to ask
questions and encouraged them to share general comments or add pertinent information not
covered in the interview.

For recruitment, we used the university’s contact network, encompassing professors and
alumni, and also conducted manual searches on professional social networking platforms, re-
sulting in 12 participants. Each interviewee signed a consent form granting permission for the
recording of their interviews and the anonymized publication of the research results. Interviews
were conducted from December 2018 to February 2019 via Skype, lasting between 41 and 54
minutes, with an average duration of 48 minutes.

3.1.3 Data Analysis

The primary data analysis technique employed was coding (SALDAÑA, 2015). The adopted
guidelines organize the procedures into three steps: Open Coding Data Collection, Selective
Coding Data Analysis, and Theoretical Coding.

In the first step, we systematically read and coded all interview transcripts to identify
initial categories. Following the open coding method (GLASER, 1992), we began without any
preconceived codes. Every relevant sentence in each transcript generated a new code. This
approach was necessary as, at this preliminary phase, it was unclear which data would prove
pertinent.

During the second step, we clustered the initial codes by comparing new incidents with
previous codes. As the coding progressed, some clusters emerged, each becoming a cate-
gory (SALDAÑA, 2015). A fundamental objective here was to identify the core category, facili-
tating integration with the other categories. All relationships between categories must be based
on this core category to imply a consolidated grounded theory (GLASER, 1992). We employed
a constant comparative method and contrasted codes/categories within the same interview.
Subsequently, comparisons were made between one interview and others, delimiting coding
to only those categories related to one—or occasionally multiple—core categories to establish
a succinct theory. This step concludes when theoretical saturation is achieved when no new
codes or categories emerge from the recent participants (LUZ; PINTO; BONIFÁCIO, 2018).

Simultaneous to the second step, we matched our findings (categories and relationships)
with responses to the open-ended questions from the questionnaire. Only passages that confirm

47

or contrast with interview findings were coded. This data triangulation aims to minimize
research bias, since using only one data source is a threat, considering that people’s reports in
an interview are not always consistent with reality. A classic instance of this is the tendency
of individuals to underestimate the time needed to accomplish tasks (KRUGER; EVANS, 2004).

In the last step, post-saturation, a theory is formulated to explain categories and their rela-
tionships. An essential task in this step is to reintegrate the proposed theory with the existing
literature on the data stream. This step establishes conceptual relations between discovered
codes and categories with insights and theories in the academic literature. Ultimately, we pro-
posed a cohesive and homogeneous theory, emphasizing the roles of categories as enablers and
results.

3.2 GREY LITERATURE REVIEW

The GLR is suitable for exploring complex topics that lack consolidated formal literature
and also for investigating emerging issues, especially those currently evolving in the industrial
context (GAROUSI; FELDERER; MäNTYLä, 2019). Kamei et al. (KAMEI et al., 2020) discovered
that Brazilian software engineering researchers mainly use grey literature to understand new
topics and seek answers to practical and technical questions. The practitioner community also
shows high interest in this topic, as demonstrated by a previously exploratory study (VIANNA;

FERREIRA; GAMA, 2019). Given these observations, the GLR is a suitable approach to continue
our study with a deeper investigation of the issues that emerged during the exploratory study.
Therefore, we conducted a GLR to select, analyze, and synthesize the relevant knowledge
and pertinent expertise developed by practitioners working in the context of DSP application
testing. We are especially interested in answering questions derived from the central research
question, RQ1.

RQ1.1 What are the challenges to DSP application testing?

RQ1.2 What are the testing purposes?

RQ1.3 What are the approaches and specific types of tests performed?

RQ1.4 What are the strategies adopted by practitioners to obtain testing data?

RQ1.5 What are the tools, and under what circumstances are they used in DSP appli-
cation testing?

48

We elaborated our GLR protocol based on the guidelines of Garousi et al. (GAROUSI;

FELDERER; MäNTYLä, 2019). Figure 9 presents an overview of our GLR process, which has four
main phases: 1) review planning, 2) search process, 3) source selection and 4) data extraction
and data synthesis. In the following sections, we describe the protocol phases. For replication
purposes, the data used in this study is available online at: <https://doi.org/10.6084/m9.
figshare.22259539>

Figure 9 – GLR Protocol

3.2.1 Search process

The development of search strings is the first activity of the search process. We started
including terms related to the research questions and then refined the strings by performing
several tests and tuning in order to obtain more relevant results. Ultimately, we reached five
search strings, each associated with an RQ. Table 2 shows the search strings.

We employed searches using the Google search engine, targeted searches on IT-specialized
websites and supplemented our findings with a snowballing step. This strategy is well de-
scribed in the guidelines provided by Garousi et al. (GAROUSI; FELDERER; MäNTYLä, 2019).
The adoption of similar strategies has been experienced and discussed by other GLR works,
such as (GODIN et al., 2015), (MAHOOD; EERD; IRVIN, 2014), and (ADAMS et al., 2016). Several
reviews, including (TOM; AURUM; VIDGEN, 2013), (GAROUSI; MÄNTYLÄ, 2016), (KULESOVS,

https://doi.org/10.6084/m9.figshare.22259539
https://doi.org/10.6084/m9.figshare.22259539

49

Table 2 – Search Strings.

Associated
RQ

Search String

RQ1 (challenges OR difficulties) AND (“data stream” OR datastream) AND (test
OR testing)

RQ2 (purposes OR objective OR goal) AND (“data stream” OR datastream)
AND (test OR testing)

RQ3 (“testing approach” OR “testing strategy” OR “unit test” OR “integration
test” OR “system test” OR “acceptance test” OR “functional test” OR
“load test” OR “performance test”) AND (“data stream” OR datastream)
AND (test OR testing)

RQ4 (“testing data” OR “test data”) AND (“data stream” OR datastream)
AND (test OR testing)

RQ5 (“testing framework” OR “testing tool” OR “testing library”) AND (“data
stream” OR datastream) AND (test OR testing)

2015) and (MÄNTYLÄ; SMOLANDER, 2016), mainly used Google Search Engine for grey litera-
ture searches.

Although Google can identify key relevant sources, it often returns much irrelevant con-
tent due to its ranking system, which considers various factors that may not align with our
research aims (GOOGLE, 2021; FU; LIN; TSAI, 2006). In line with recommendations by Kamei et
al. (KAMEI et al., 2021), we expanded our search to target IT-specialised websites. Even though
regular Google searches turn up results on these sites, only some of their pages are ranked
for the final pool of results, making targeted searches on these sites necessary. We discovered
that conducting standardised searches across multiple specialised websites was challenging, as
they lack uniform logical operators for constructing search strings. As a result, we employed
Google’s advanced search engine to target specialised website URLs.

Therefore, we selected three popular IT-specialized websites among software engineering
practitioners:

(1) Medium 1: A platform where professionals share articles about experiences and
technical challenges.

(2) Stack Overflow 2: A popular Q&A website for IT professionals, hosting discussions
on both practical and theoretical programming topics.

1 <www.medium.com>
2 <www.stackoverflow.com/questions>

www.medium.com
www.stackoverflow.com/questions

50

(3) LinkedIn Pulse 3: A blog platform within LinkedIn where professionals and orga-
nizations publish articles about their technical projects.

To streamline the search process, we employed two Python scripts: one for conducting
searches on the Google search engine (Appendix G) and another for converting search re-
sults, specifically web pages, into PDF format for simplified review and archival purposes
(Appendix H). The methodology involves initially executing the five predefined search strings
via Google’s standard configuration. Subsequently, these search strings are rerun on Google,
but with the searches confined to each of the designated IT-specialized websites. The source
codes are accessible in a public online repository4.

An important note on using Google: while it may indicate finding millions of results, its
relevance-based ranking system often provides only between 100 to 300 (GOOGLE, 2021). This
limited output is what Google’s algorithm considers most relevant. As a result, similar search
queries can yield different outcomes due to this ranking system. Given this dynamic, we opted
for five distinct search strings one per research question rather than a single complex string
with multiple keywords.

3.2.2 Source Selection

This phase aimed to select the relevant sources that should proceed to the extraction
and analysis phase. In this study, the term “source” represents a grey literature document,
equivalent to a “study” in a systematic literature review. The selection begins by applying
the inclusion and exclusion criteria. These criteria were initially developed based on Garousi’s
guidelines and subsequently refined through discussions among the researchers collaborating
in the study (authors of the paper related to this chapter). Both the inclusion and exclusion
criteria consist of questions that can be answered exclusively with “Yes” or “No”. For a source
to be included, it must be answered “Yes” for all inclusion criteria and “No” for all exclusion
criteria. In this GLR, the exclusion criteria are the opposite of the inclusion criteria. Therefore,
we present only the inclusion criteria in Table 3 along with justifications.
3 <www.linkedin.com/pulse>
4 Scripts for the search process can be found at <https://github.com/AlexandreSGV/glr_scripts>

www. linkedin.com/pulse
https://github.com/AlexandreSGV/glr_scripts

51

Table 3 – List of inclusion criteria.

Criteria Justification

IC1 The source is essentially textual
(may contain figures), and the
text is in English and can be fully
accessed.

Choosing English as the primary language ensures a
broader reach, as it is one of the dominant languages
in the IT and academic world. Some content may be
partially available for free, requiring payment to fully
access it.

IC2 The source is not duplicated or
republished.

Duplication or republishing can introduce bias. To
identify similar textual content, we adopted the tool
WCopyfind 5.

IC3 The source is not an academic
paper.

As this is a GLR, it focuses on non-academic sources
to capture industry knowledge. However, academic ar-
ticles found should be saved for later discussions.

IC4 The originality is not in doubt. Doubts about a source’s originality risk introducing
misinformation. We search for text excerpts on Google
and check the author’s other publications. The publica-
tion platform’s feedback mechanisms (e.g., comments,
likes) help estimate originality.

IC5 The source was published be-
tween January 2010 and De-
cember 2020 (included).

We focused on 2010-2020, marked by the evolution of
modern stream processing and the emergence of major
DSP systems (CARBONE et al., 2020).

IC6 The source is related to DSP ap-
plications testing.

The primary focus is on testing in the DSP context, so
sources must relate to this domain.

IC7 The source addresses some
of the issues related to DSP
application testing: challenges,
tools, processes, approaches,
best practices, guidelines, prac-
tical examples, tutorials, experi-
ence reports, and opinions.

This criterion ensures that the review encloses content
related to the research questions, including compre-
hensive insights ranging from theoretical discussions
to hands-on experiences.

3.2.3 Data extraction and synthesis

3.2.3.1 Quality Assessment

The sources are evaluated through a quality assessment checklist based on the AACODS
framework (TYNDALL, 2010), designed to enable evaluation and critical appraisal of such
grey literature. It evaluates the source considering the following aspects: Authority, Accuracy,
Coverage, Objectivity, Date, and Significance. The checklist’s development process had the
collaboration of a researcher specialized in GLR, and then it was submitted to a pilot study
involving the other two collaborators. The checklist’s application is blindly paired and, in
cases of disagreement, a third evaluator participates in the decision. Table 4 presents the final

52

checklist.
As proposed in Garousi’s guidelines, we included the source’s impact aspect, which is

composed of metrics about interactions with the source, such as the number of views, shares,
and likes. We also collected specific metrics for software repositories, like the number of
watchers, stars, and forks. Additionally, we also considered the source classification as a quality
factor. GLR sources can be classified according to the outlet control, from the 1st tier with
the most credibility to the 3rd tier with the least credibility (ADAMS; SMART; HUFF, 2017).

The quality assessment’s final output is a numeric score between 0 and 1, summarizing the
quality grade for each source. In order to calculate the quality score, each Yes/No response
was scaled to values 1 and 0, while responses with numeric values were normalized to values
between 0 and 1. However, we realized that, due to the significant differences between the
obtained values, the simple normalization of values between 0 and 1 would make most values
zero after rounding. It was necessary to carry out a distribution transformation to smooth out
the significant discrepancies between the values. Therefore, we conducted a sensitivity analysis
using different distribution functions and analyzed the goodness-of-fit of each distribution to
our original data. The exponential distribution best fits because it smoothed high values while
retaining the underlying distribution’s characteristics. After transforming and normalizing the
numerical values, we separately calculated the average score for each aspect of Table 4 and
obtained the overall average.

The results of the quality assessment were used to prioritize sources, giving special attention
to those with the highest scores. Such sources undergo a detailed and careful analysis, as they
are more likely to be relevant. We also weigh the quality score when corroborating our findings.
However, we did not use quality assessment scores to exclude any sources. This decision was
made primarily to ensure we did not discard pertinent data. Even studies with lower-quality
scores can contribute valuable insights or perspectives that might be absent in higher-scoring
studies (YANG et al., 2021). Furthermore, we acknowledged the potential for selection bias
despite safeguards like paired quality reviews, standardized reviewer training, and preliminary
pilot studies.

3.2.3.2 Data Extraction

Data extraction is based on systematic mapping, presented in Table 5. It was prepared to
structure the content extracted from the selected sources, and the results were then synthesized

53

Table 4 – Quality assessment checklist.

Aspect Question

Authority of the producer
• Is the organisation/author reputable? (in a general way)
, E.g., the Software Engineering Institute, large IT companies, and well-known organizations or individuals in the field.
• Produced/published other work (grey or formal) in the field? (Data Stream)

Accuracy
• Does the source have a clearly stated aim?
• How many references/links? Total
• Supported by authoritative, documented references or credible sources? (Grey literature or formal references)

Coverage • Does the source clearly addresses a specific RQ?

Objectivity
• Is the statement a subjective opinion?
• Are the conclusions free of bias? Is there no vested interest?
, E.g., a tool comparison by authors who are working for a particular tool vendor.

Date

• Year
• Does the item have a clearly stated date related to content?
• How many contemporary references?
Check the bibliography for contemporary material. (up to 5 years from source year)

Significance • Does it add context? (background)
• Does it enrich or add something unique to the research?

Impact
(Quantify interactions)

General websites:
• Views
• Likes, claps or upvotes
• Comments
• Backlinks (Distinct Refering Domains)

GitHub
• Watch
• Star
• Fork

Outlet type

• 1st tier Grey Literature (measure = 1): High outlet control/ High credibility:
Bachelor/Master/Ph.D. thesis, Software/Tool Documentation, White Paper, Blog Post (in company website)
• 2nd tier Grey Literature (measure = 0.5): Moderate outlet control/ Moderate credibility:
Blog Post (technical blog platform), Q&A Websites, Slide presentation, Tool Repository, Wiki Articles
• 3rd tier Grey Literature (measure = 0): Low outlet control/ Low credibility:
Email Discussion List, Blog Post (individual), Tweets

and reported. The systematic mapping relates the RQs (Column 1) with the corresponding
attribute/aspect (Column 2) and a set of categories (Column 3). Column 4 indicates whether
the category selection is Multiple (M) or Single (S) for the corresponding attribute/aspect.
Developing the predefined set of categories was based on our past experiences with the quali-
tative study presented in Section 3.1. As the initial set of categories can restrict the findings,
new categories that emerge from the sources through the conduction of open and axial coding
will be included in the systematic mapping (HASHIMOV, 2015).

Table 5 – Systematic map.

RQ Attribute/Aspect Categories (M)ultiple/
(S)ingle

- Contribution type Guidelines, Method (technique), Tool, Tutorial, Best Practice, Experience Reports,
Philosophical & Opinion

S

RQ1.1 Issues and challenges
Data Privacy, Performance, Costs of Tests, Message Schema, Contracts Checking,
Fault Tolerance, Exactly-Once Semantics, Concept Drift, Test Automation,
Lack of Tools, Lack of Specialised People or Know-how, Latency

M

RQ1.2 Testing approaches Load/Stress Test, Unit Test, Integration Tests, System Tests, Generative Test,
Property-based Test, Regression Tests, Data Stream Simulation, End-to-End Tests

M

RQ1.3 Tools Testing Frameworks, Data Generators, Simulation Tools, Data Replay Tools,
Mocking tools, Contract Testing Tool

M

RQ1.4 Test purposes and goals Correctness of Results, Bug detection, Performance, Fault Tolerance M
RQ1.5 Test data Historical Data, Synthetic Data, Sampling Production Data, Custom Data Set M

54

The extraction process is carried out with peer review. The extraction tool adopted is a
Google Docs Spreadsheet that performs the systematic mapping from Table 5. The researchers
carefully analyze the source, marking the categories related to it. For each marked category,
the researcher must incorporate an annotation with the text copied from the original source
representing the category. Annotations are traceability links between the extracted data and
primary sources. Additionally, the researcher may include comments on the source that would
be useful in the synthesis phase. After the extraction, a systematic comparison of the pair’s
results is performed. Disagreement cases should be resolved by discussion.

3.2.3.3 Data Synthesis

The synthesis approach is based on qualitative methods with both quantitative and qual-
itative data analysis techniques. We adopted a qualitative analysis based on open, axial, and
selective coding (SALDAÑA, 2015). The first step is open coding, in which textual data is
associated with codes; then, axial coding explores the relationships among codes; and finally,
there is selective coding, where codes are grouped into core categories. This coding process is
guided by the pre-defined categories in the systematic mapping. After collecting the data, we
will be able to structure the categories better and synthesize the evidence found in the coding
with a focus on answering the research questions.

On the other hand, in the quantitative analysis, we evaluate the most frequent codes related
to research questions in order to get more findings, such as the most cited test tools, the most
recurring problems, the most discussed challenges, and common test purposes. Particularly,
question/answer websites, like StackOverflow, enable quantitative analysis of the popularity
of tools, problems, and recurring questions that software engineers face in DSP application
testing. Finally, we perform a quantitative analysis of demographic data, such as the source
authors’ profile, the temporal distribution of the selected sources, the type of document, the
most cited references and others.

3.3 GUIDELINES DEVELOPMENT

This thesis proposed guidelines for testing DSP applications, representing the main out-
come of this study. These guidelines were developed primarily based on thoroughly synthesising
relevant information from two preceding studies: the exploratory study and the GLR. These

55

studies provided an extensive data source on testing practices specific to the DSP context,
serving as a substantial foundation for creating a comprehensive testing guide for DSP appli-
cations.

In formulating these guidelines, we integrated recommendations from related academic
works predominantly identified during the GLR. We also looked at studies regarding the testing
field that engaged directly with practitioners as primary sources, bridging knowledge between
industrial applications and academic research. Integrating academic insights with practical find-
ings ensures that the guidelines are scientifically robust and grounded in real-world practices.

To design our document, we analysed existing guidelines from academic literature and
practical models used in the industry, such as: The Twelve-Factor App 6, OWASP Testing
Guide 7, Unit Testing Guidelines 8, The Principles of OOD 9, Guidelines for Software Develop-
ment 10, Atlassian REST API design guidelines version 11, and Zalando RESTful API and Event
Guidelines 12. This review aided us in developing a format for our guidelines that is structured,
user-friendly, and accessible, catering to the needs of both practitioners and researchers. Our
goal was to create a document that is not only informative but also easily comprehensible and
applicable in practical settings. The guidelines underwent evaluation through focus groups and
surveys (Section 3.4). Feedback from these evaluations was employed in refining and enhancing
the document, verifying its perceived relevance and applicability.

Finally, with the intent of contributing back to the industry, which contributed to this
research, and to ensure broad dissemination among professionals, we prepared a web format
version of the guidelines (<http://datastreamtesting.space>) targeted at practitioners. Addi-
tionally, we created a condensed one-page version in cheat sheet format (Appendix J), available
as an image or PDF. This concise version outlines the guidelines to their most essential ele-
ments, making them suitable for easy web publishing and social media sharing. This approach
aligns with the findings of Florea and Stray’s study (FLOREA; STRAY, 2020), which underscored
the preference of software testing practitioners for learning from informal online sources.
6 <12factor.net/>
7 <owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf>
8 <geosoft.no/unittesting.html>
9 <http://butunclebob.com/FitNesse.UserGuide>
10 <www.cyber.gov.au/resources-business-and-government/essential-cyber-security/ism/

cyber-security-guidelines/guidelines-software-development>
11 <developer.atlassian.com/server/framework/atlassian-sdk/atlassian-rest-api-design-guidelines-version-1/

>
12 <opensource.zalando.com/restful-api-guidelines/>

http://datastreamtesting.space
12factor.net/
owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf
geosoft.no/unittesting.html
http://butunclebob.com/FitNesse.UserGuide
www.cyber.gov.au/resources-business-and-government/essential-cyber-security/ism/cyber-security-guidelines/guidelines-software-development
www.cyber.gov.au/resources-business-and-government/essential-cyber-security/ism/cyber-security-guidelines/guidelines-software-development
developer.atlassian.com/server/framework/atlassian-sdk/atlassian-rest-api-design-guidelines-version-1/
developer.atlassian.com/server/framework/atlassian-sdk/atlassian-rest-api-design-guidelines-version-1/
opensource.zalando.com/restful-api-guidelines/

56

3.4 EVALUATION

The proposed guidelines must be evaluated to check their benefits and overall quality.
Flawed guidelines could exacerbate the challenges of DSP application testing (JEDLITSCHKA;

PFAHL, 2005). Our evaluation addresses the research question RQ2, which seeks to understand
practitioners’ perceptions of the proposed guidelines regarding applicability, strengths, and
potential adverse effects. An essential aspect of this evaluation is to verify that the guidelines
document is clear, self-explanatory, and easily comprehensible.

To this end, we proposed an evaluation from the perspective of experienced practitioners
in the DSP field. Our methodology is inspired by reading first the document and then the
theoretical evaluation of guidelines discussed in (KITCHENHAM et al., 2008). We employed a
triangulated approach to mitigate potential biases inherent in single-method feedback collec-
tion, integrating insights from both focus group discussions and survey responses from distinct
participant groups (THURMOND, 2001). Triangulation enhances data reliability and validity
by cross-checking information from multiple sources, thus reducing the likelihood of skewed
results. Ammenwerth et al. study indicate how triangulation can support both the validation
and completeness of results (AMMENWERTH; ILLER; MANSMANN, 2003).

The focus group method gathers qualitative data and insights from a selected group of in-
dividuals on a specific topic (SEAMAN, 1999; DILSHAD; LATIF, 2013). We consider this method
appropriate to evaluate our proposed test guidelines, as it enables participants to provide com-
prehensive insights through interactive discussions. The collaborative nature of focus groups
can lead to the generation of new ideas and solutions that may not emerge in individual inter-
views or surveys. The structure of our focus group study is based on the proposal by Morgan
et al. (MORGAN; KRUEGER; KING, 1998), complemented by guidelines and best practices from
Nyumba et al. (NYUMBA et al., 2018) and Breen (BREEN, 2006).

Surveys, as an empirical method, are frequently used in software engineering to collect
data from a broader population (GHAZI et al., 2018). This method is suitable for evaluating
the proposed guidelines, allowing participants to share their impressions, opinions, criticisms
and experiences. These insights provide a valuable complement to the qualitative feedback
obtained from focus groups. We guided our survey design by the literature review on guidelines
for conducting surveys, which emphasised the importance of careful planning, executing, and
analysing of the data (MOLLÉRI; PETERSEN; MENDES, 2016).

Figure 10 illustrates the four main stages of our evaluation process, which include both

57

focus group and survey methods: (1) planning, (2) research design, (3) data collection, and (4)
data analysis and synthesis. The activities represented in yellow apply to both components of
the evaluation. The blue boxes denote steps specific to the focus group methodology, while the
red boxes correspond to the survey component. This visual schema delineates the progression
from initial objectives to reporting findings.

Figure 10 – Evaluation Process

3.4.1 Planning

3.4.1.1 Objective

The evaluation primarily addresses RQ2: ’What are the practitioners’ perceptions of the

proposed guidelines?’ Our central aim is to determine if practitioners find the proposed guide-
lines effective in assisting decision-making processes for testing DSP applications. Specifically,
we seek to identify potential strengths, weaknesses and areas for enhancement, and assess their
applicability in industrial contexts. The feedback from the focus group will be instrumental
in revising these guidelines. Accordingly, we have formulated the following derived research
questions to guide our inquiry:

RQ2.1 What are the perceived strengths of the guidelines?

RQ2.2 What are the identifiable weaknesses or areas for improvement in the guidelines?

58

RQ2.3 How do practitioners perceive the applicability of the guidelines in an industrial
context?

3.4.1.2 Participants Profile

For both the focus group and the survey in our studies, participants were required to have
a minimum of one year’s experience working with DSP applications. This criterion aligns with
the experience level of practitioners who participated in the interviews and questionnaire of
the exploratory study, as detailed in Section 3.1. By ensuring a consistent professional profile
among participants across all phases of research, we seek to validate the guidelines with a
group that mirrors the profile of those who contributed to the initial information-gathering
stage.

For the focus group, we intentionally recruited a different set of professionals for the as-
sessment phase than those involved in the interviews of the exploratory study. This approach
was adopted to gather fresh, unbiased perspectives and increase the results’ validity. By diver-
sifying the pool of evaluating practitioners, we aimed to capture a broader range of knowledge
and experience, ensuring that validations were not biased by being overly tailored to the views
of the initial group. This methodological choice aligns with standard research practices to
reduce bias and improve the generalization of the proposed guidelines (ROMANO et al., 2021).
Regarding survey participants, we did not impose this restriction as we could not guarantee
control of this variable due to the recruitment strategy.

3.4.2 Research Design

Below, we bring the research design details into two sections for the focus group and survey
studies, respectively.

3.4.2.1 Focus Group

Establish Teamwork: The focus group session was conducted by a collaborative team com-
posed of a moderator-researcher and an observer. The moderator-researcher facilitates partici-
pants’ interactions and discussions while adhering to a predefined discussion script. Meanwhile,
the observer is responsible for documenting and taking notes on verbal exchanges and non-

59

verbal interactions throughout the session. They also assist the facilitator in maintaining focus
on the discussion and preventing interruptions. Moreover, the observer can support the facil-
itator by clarifying discussion topics and managing media materials on the Whiteboard. The
author of the guidelines, Alexandre Vianna, played the role of moderator-researcher, while Kiev
Gama played the observer role.

Participant Recruitment: Participants were identified via profile searches on the LinkedIn
social network, targeting profiles that featured terms and technologies related to DSP. For each
potential participant, we meticulously examined their profile, scrutinizing their experience, cer-
tifications, listed skills, portfolio, and engagement (posts and comments) pertinent to DSP.
In our initial communication, we introduced the research project and extended an invitation
to participate. Subsequent message exchanges were used to further confirm the candidates’
qualifications and their fit for the study’s requirements.

Online Environment: Due to the geographical dispersion of professionals, the focus groups
were held online rather than in person. Stewart et al. (STEWART; SHAMDASANI, 2017) highlight
that online focus groups are a well-established method in research, but they require adaptations
to traditional approaches. We used the Miro Online Whiteboard(REALTIMEBOARD, 2023) as
our collaborative platform. This tool is designed to facilitate interactive discussions and enable
real-time collaboration. It allows participants to visually communicate, share ideas, and provide
feedback through several features, such as text, images, shapes, notes, and comments. The
platform’s compatibility across different devices ensures that participants can easily access the
focus group sessions from any location with Internet connectivity. Instructions and support
were provided to all participants ahead of the sessions to minimize technical difficulties and
ensure smooth participation.

Discussion Guide: The discussion guide conducted the conversation during the one-hour
meeting. The discussion went through each of the guidelines, encouraging participants to
share their thoughts and experiences related to the guidelines. Participants were asked to ad-
dress issues related to the research questions. Throughout the discussion, participants were
prompted about various aspects of the guidelines, such as clarity, comprehensiveness, rele-
vance, and applicability. The Miro Online board (REALTIMEBOARD, 2023) tool was used to
expose the pertinent excerpts, tables, and figures from the guidelines document, fostering dis-

60

cussion on crucial points while enabling the collection of observations, ideas, and suggestions
through interactive visual mechanisms. In Appendix C, the script prepared for the focus group
is presented, considering the evaluation objectives to be achieved. Note that the time allo-
cated to each section was approximate and was adapted to suit the flow of the discussion. The
facilitator managed the conversation to ensure all research questions were addressed within
the 60-minute timeframe.

3.4.2.2 Survey

Participant Recruitment: The recruitment process for the survey followed a similar approach
taken for the focus group, with a broader outreach. We extended our search beyond LinkedIn,
sharing the survey through targeted email lists and online discussion groups that are frequented
by DSP professionals. Our communication strategy was more direct: we succinctly outlined the
research context in our messages and invited individuals to participate. Over 500 personalized
invitations were sent via LinkedIn direct messages. We also posted messages in six LinkedIn
discussion groups and reached out through seven email lists dedicated to users of DSP-related
tools. Below, Table 6 presents the email lists and discussion groups where the survey was
disseminated.

Table 6 – Summary of Recruitment Channels for Survey

Channel Description e-mail address/URL
Email Lists

Apache Spark Users user@spark.apache.org
Apache Samoa Developers dev@samoa.incubator.apache.org
Apache Storm Users user@storm.apache.org
MOA Community moa-users@googlegroups.com
Apache Samza Developers dev@samza.apache.org
Apache Kafka Users users@kafka.apache.org
Apache Flink Users user@flink.apache.org

LinkedIn Discussion Groups
CEP & Algo Trading <https://www.linkedin.com/groups/3892946/>
Apache Flink Group <https://www.linkedin.com/groups/7414853/>
Streaming Analytics & CEP <https://www.linkedin.com/groups/44123/>
KAFKA Data Streams <https://www.linkedin.com/groups/10370853/>
AI & Data Science Community <https://www.linkedin.com/groups/5096075/>
Stream Processing & Big Data <https://www.linkedin.com/groups/6586282/>

https://www.linkedin.com/groups/3892946/
https://www.linkedin.com/groups/7414853/
https://www.linkedin.com/groups/44123/
https://www.linkedin.com/groups/10370853/
https://www.linkedin.com/groups/5096075/
https://www.linkedin.com/groups/6586282/

61

Survey Questions: The survey questions are presented in Appendix D. Section 1 laid out
the research context and presented the guidelines while establishing the minimum experience
required for participant eligibility. Section 2 gathered demographic information in order to map
the respondent’s profile diversity. Sections 3 to 7 were dedicated to an in-depth assessment
of each guideline, utilizing a relevance scale for participants to rate relevance and open-ended
questions for qualitative feedback. This structure was designed to elicit detailed insights, includ-
ing practical applications, suggestions, and critiques. The final section, Section 8, concluded
the survey with an invitation for additional comments and an option for participants to receive
updates on the research progress, thus fostering ongoing engagement with the professional
community.

3.4.3 Data Collection

The data collection process comprised a pilot focus group session, which served as a
rehearsal to refine our discussion guide, identify potential issues, and train the facilitator’s
skills. Participants in the pilot were exclusive to that phase and did not partake in the main
focus group discussions. Following the pilot, two main focus group sessions were conducted.

All focus group sessions were audio-recorded with the explicit consent of the participants.
The consent form they signed stated their understanding and agreement to the recording
of the sessions. The interaction via the Miro Online Board captures real-time annotations,
discussions, and collaborative interactions among participants, thus providing an additional
layer of data.

The survey was disseminated to a broader participant pool via Google Forms in parallel
with the focus group discussions. The recorded and transcribed focus group discussions, Miro
Online Board annotations, and survey responses formed a comprehensive dataset for our study.

3.4.4 Analysis and Synthesis

This phase began with a detailed analysis of the focus group discussion transcripts, annota-
tions from the Miro Online Board (REALTIMEBOARD, 2023), and responses to the open-ended
survey questions. Open coding was meticulously applied to each qualitative data source to
assign initial codes (GLASER, 1992; SALDAÑA, 2015). These initial codes were then examined
for interconnections through axial coding. Clustering code in core categories facilitated the

62

identification of recurring themes and sentiments.
Subsequently, selective coding was undertaken, where these categories were further synthe-

sized to form a comprehensive understanding of the practitioners’ perspectives on the proposed
guidelines. This synthesis was enriched by quantitative measures from the survey, such as the
Likert scale responses regarding the participants’ perceived relevance of the guideline items.

The culmination of this process is a report that encapsulates the practitioners’ impressions
of the guidelines, including strengths, weaknesses and areas for improvement, and applicabil-
ity in an industrial setting. It highlights participants’ consensus, discrepancies, and nuanced
perspectives. The report will serve as a foundation for the refinement of the guidelines.

3.4.4.1 Threats to Validity

Given that the moderator was also the author of the guidelines, there is a potential threat to
the validity of our findings. Participants might have felt inhibited or reluctant to highlight issues,
errors, or inaccuracies in the guidelines due to the author’s presence. This could compromise the
candidness of their feedback. To counteract this potential bias, we distributed an anonymous
questionnaire featuring a singular open-ended question. The intent was clarified:

“If, for any reason, you felt uneasy critiquing the guidelines during the focus

group session, this form offers a platform for you to share opinions and criticisms

anonymously, pinpointing any perceived problems, errors, or inaccuracies.”

3.5 SUMMARY

In this chapter, we presented the methodological approach adopted for the thesis:

• Exploratory Study: In this initial phase, interviews and surveys were conducted with
industry practitioners to confirm the topic’s relevance in the industry. The study aimed
to gather insights from professionals to understand their perspectives and challenges in
DSP testing.

• Grey Literature Review (GLR): This phase examined informal sources like blogs, whitepa-
pers, and industry reports. The study aimed to identify current practices, challenges,
strategies, and tools used in DSP testing.

63

• Development of Guidelines: The guidelines were developed based on insights from the
GLR and related formal literature. These guidelines were designed to reflect the current
best practices and address the challenges identified in earlier phases.

• Evaluation of Guidelines: The final phase involved evaluating the formulated guidelines
through focus group discussions and surveys with industry practitioners. This step was
crucial to refining the guidelines.

Each step contributed to the overall goal of creating a valuable, practice-grounded set
of guidelines for testing DSP applications.

64

4 EXPLORATORY STUDY

4.1 DEMOGRAPHICS

Before presenting the results from the collected data, some demographic data about the
subjects is presented. Throughout the text, interviewees will be referenced as P[1-12] according
to Table 11, while the questionnaire respondents will be mentioned as Q[1-101].

4.1.1 Survey Demographics

Among the 101 valid answers, 92 respondents were male and nine female. The questionnaire
participants’ profiles were quite varied in terms of workplace, experience, and company business
sector. Table 7 shows the countries where the participants work. As it can be seen, there is a
predominance of countries with large economies and consolidated software industries, such as
the USA, India, Brazil, France and Germany.

Table 7 – Country where questionnaire respondents work.

Country Total respondents
USA 27
India 11
Brazil 10
France 8
Germany 6
Italy, Spain, Sweden 4
Poland, Sri Lanka 3
Canada, Denmark, Netherlands, Singapore, Switzerland, Turkey 2
Australia, China, Colombia, Czech Republic, Dubai, England, Ire-
land, Kazakhstan, Nigeria, Portugal, Vietnam

1

Table 9 presents the company’s business sectors in which the participants work. In this
question it was allowed to mark more than one item. Industry, Business Intelligence and
Financial Systems were the most prominent sectors, and the relationship between these fields
and stream processing is evident. There was a significant number of participants involved with
the research and development (R&D) of tools for stream processing. This number may be
associated with the dissemination of the questionnaire in the communities of the users of

65

tools. An interesting aspect is that most of the respondents involved with R&D were from
companies instead of academia. A possible interpretation of this result would be the emerging
need for companies to invest in research and development of solutions in this context, meaning
that DSP presents challenges that are not neglected.

Table 9 – Questionnaire Respondents Companies Business Sectors.

Company Sector Quant.
Industry 46
Business Intelligence 46
Financial Systems (credit card, financial market, stock exchange) 42
Research and Development of Software and Technologies for processing data
stream.

42

E-commerce 37
Digital marketing 29
Telecommunications 23
Social Networking Monitoring 19
Monitoring of equipment and infrastructures (oil pumps, oil pipelines, oil
rigs, mining equipment, nuclear power plants and others)

18

Road Transport Monitoring Systems (Freight) 12
Power Distribution Systems (monitoring of transmission networks, electric
stations, power plants and others)

12

Urban Transportation Systems 10
Air Traffic Control Systems 7
Maritime Traffic Control Systems 5

Table 10 shows the level of education of the participants. It is observed that 68 out of the
101 participants have master’s or doctorate degrees. It is a high degree of qualification which
may be associated with the profile of those who work with this technology. The involvement
with the development of data stream tools and the participants’ high level of training bring
very relevant contributions to this work.

Table 10 – Questionnaire Respondents Education Level.

Highest Education Level Respondents
Doctorate degree 20
Master’s degree 48
Associate/Bachelor/Graduate degree 25
Trade/technical/vocational training 2
Some college credit, no degree 5
High school degree or equivalent 1

66

The graph in Figure 11 illustrates IT professional experience (upper blue bar) in years versus
data stream experience time (lower red bar). It is interesting that 86 of the 101 participants
are concentrated in the range of 1 to 7 years of data stream experience. This behaviour does
not follow the overall IT experience in which 37 of the 101 participants have 1 to 7 years of
experience. This concentration may be associated with the growth of the data stream field in
recent years.

Figure 11 – General IT experience versus data stream experience of questionnaire respondents.

4.1.2 Interview Demographics

Table 11 summarizes the participant’s profiles. We reached 12 participants with varied
profiles in both time of experience and profile of the companies and projects in which they
work. As for the professional experience, there are some participants with little experience time,

67

such as P5, P9 and P11, who have three years or less of professional performance. Although
they have little experience time, they have enough to contribute by being involved in companies
with very relevant cases in the data stream field. For example, participant P9 has one year of
professional experience but works with stream processing in a company that delivers meals by
applications; this company operates in Latin America, where more than 400,000 requests are
processed daily.

Table 11 – Interview Participant Profile.

P# Education
Level

Job Title ITX DSX Company Main Sector #ITE #DSP
Developers

P1 Master Backend Engineer 14 2 Financial
(Benefits & Rewards Services)

8+ 2

P2 Master Software Architect 21 4 Software Consulting 2000+ 7
P3 Bachelor Software Engineer 8 2 Location Data Services 70+ 6
P4 Bachelor Software Engineer 9 3 Financial

(Banking Services on App)
200+ 100

P5 Bachelor Software Engineer 3 2 Financial
(Banking Services on App)

200+ 100

P6 Bachelor Big Data Engineer 16 4 Financial
(Traditional Bank)

5000+ -

P7 Master
(in progress)

Big Data Engineer 10 4 Financial
(Investment Broker)

1600+ 8

P8 Master Software Engineer 6 3 Software Consulting 2000+ 100
P9 Bachelor Data Engineer 1 1 Food Delivery Service 250+ 50
P10 PhD Software Engineer 22 10 Solutions for Smart Cities 10+ 5
P11 Bachelor Data Engineer 3 2 Data Science Solutions 11+ 3
P12 Bachelor Software Developer 8 4 E-commerce 40+ 6

ITX means IT experience in years, DSX means DSP applications development experience in years, ITE means the number of IT
employees in the company, and DSP Developers refers to the estimated number of developers working in DSP context.

We also interviewed very experienced professionals, such as P2, P6 and P10, who have
more than 15 years of professional performance. Participant P6 works with DSP in a large bank
and has a vast background in the Big Data domain, having certifications in stream processing
platforms, besides having worked in several companies in the financial sector. Participant P2
has 21 years of experience and currently works in an international software consultancy that
serves a large bank. Also, he has a master’s degree in which he researched and proposed design
standards for event processing. P10 has a PhD degree and academic experience with stream
processing, having a background in the development of cloud service platforms for mobile apps,
and today is a co-founder of a start-up that develops solutions for smart cities.

Company profiles are also diverse, ranging from traditional large companies, some of them
listed on top rankings from Fortune (FORTUNE, 2021)and Forbes (FORBES, 2021), with thou-
sands of IT employees, to start-ups with few professionals who are developing innovative
services involving DSP. This diverse spectrum allows us to capture different experiences and
visions on the subject.

68

4.2 ANALYSIS ON SURVEY AND INTERVIEW DATA

As mentioned in Section 3.1, we analysed our data following some coding techniques. With
these techniques, the core category Testing Data Stream Software emerged as well as three
subcategories: Testing Approaches, Testing Tools and Test Data. In the next sections, we
present each category.

4.2.1 The Core Category: Testing Data Stream Software

Testing emerged as a highlighted issue for DSP applications, with more than one hundred
code references. For instance, a comment from interviewee P6 reveals the importance of quality
assurance in a DSP of anti-fraud features in the financial sector. This is crucial because failures
result in substantial losses in a short time.

“The anti-fraud feature processes the user interaction data stream.

It checks in real-time against a previously trained model if these

data fit the pattern of regular interaction or a fraudulent interac-

tion. What is the cost of false negatives? It can be huge.” (P6,
Data Engineer, Financial)

Participants were asked about test culture in their companies. In response, 10 out of
12 participants said that a test culture is present in their companies. On the other hand,
two interviewees (P10 and P12) commented that testing is essential in their companies, but
sometimes they give up automated testing. In such cases, their applications have complex
infrastructures and the tests are manually performed by manipulating inputs from the system
running in the acceptance environment.

“We have a test culture, but we are not fanatics of testing. When

things start getting complicated, and we have to develop many

systems to be able to test, then we end up not doing it. We run

the system in the acceptance environment with real data and per-

form system-level testing.” (P10, Software Engineer, Smart Cities
Sector)

69

“There is a strong test culture in the company. We have a robust

and evolved test stack for the complete transactional part, which

concerns the purchase, payment, and the entire checkout flow of

the marketplace.” (P12, Software Developer, E-commerce Sector)

In some interviews, participants commented on specific issues that threat DSP applica-
tion testing. The most frequent problems are message synchronization, multiple data streams
operations, data heterogeneity, fault tolerance, difficulties on traceability and generating test
data. Below, a response from Q-59 highlights message synchronization issues.

“Our data stream is immensely partitioned and duplicated. We

have a complicated tumbling window with custom ‘go-next’ logic

requiring various events. Stream synchronization and window tum-

bling is the biggest challenge.” (Q-59)

This category also emerged from questionnaire answers. When asked (question 32) about
challenges in DSP, 14 of 73 valid responses mentioned topics related to software quality. For
example, fault recovery, test data generation, ensure exactly-once semantics, and automated
testing in continuous integration systems. Participant Q-45 explicitly mentioned a difficulty in
testing DSP applications as well as the need of tools for this purpose.

“The testing aspect of stream processing is difficult, and there is

not a great tool set for testing.” (Q-45)

Participants reported relevant aspects that hamper the development and testing of DSP
applications. The quotation below synthesises these comments:

“The biggest challenge is scale. The problem is the data growth

rate, so we reached a petabyte here, and it keeps growing. Then

things start to get rough.” (P9, Data Engineer, Food Delivery
Service)

There is a consensus on the need for testing automation, with 73% of survey respondents
considering that tools to automate the testing process are valuable and desirable, and 10 of
the respondents argue the importance of testing tools being embedded into continuous inte-
gration systems. This idea corroborates with the practices of the DevOps culture, including

70

questionnaire participant Q-10, who reinforces this belief with the statement “Automated test-

ing is critical in a DevOps world”. When the test process involves manual activities or specific
technical knowledge, this may be a bottleneck in the development process. The importance of
test automation was also explicitly mentioned by questionnaire participant Q-46.

"There is a lot of manual work in application testing. In the future,

it would make sense to work on a higher abstraction development.”

(Q-46)

Finally, the importance of testing was broadly commented in both the interviews and
questionnaires. Specific difficulties were also identified for testing DSP applications. Therefore,
data stream testing emerges as a fruitful topic to explore as the core category of this work.

4.2.2 Category: Testing Approaches

The following subsections present a summary of the most recurring approaches on testing
DSP applications.

4.2.2.1 Category: Levels of Testing

Traditional testing methodologies continue to be employed to test DSP applications. How-
ever, participants also reported adaptations and special configurations in traditional test levels
for DSP applications. The comment of interviewee P6 illustrates this position:

“Software development has not changed, so unit testing and in-

tegration testing are continuing, but now considering data stream

particularities.” (P6, Data Engineer, Financial)

Regarding unit tests, 10 interviewees and 59 survey respondents indicate that unit tests
are consolidated for testing data stream modules. In general, no particular difficulties were
reported when implementing unit tests in the context of DSP. The comment of P7 is an
example of this position:

71

“Usually, we test based on unit testing in development, and only

after passing in all unit tests, we can deploy it to production.” (P7,
Big Data Engineer, Financial)

As for integration tests, no challenge has been reported, and it can be easily automated
using test data mocking tools. However, difficulties start in system tests, because it involves
all services running. Some participants reported building a copy of the production environment
for system testing, but this requires an abundant infrastructure, and it is a costly solution.
Comments of P2 reinforce challenges on system test:

“Here we perform system tests. But in the stream part, it is not

that easy to test end-to-end. It involves raising and connecting

several micro-services.” (P2, Software Architect, Software Con-
sulting Sector)

Interviewee P2 also comments on performing manual tasks on applications testing.

“Today our life cycle is not fully automated. There is some process

of stream testing that is performed by humans; the analyst assem-

bles the system test and monitors it. Our continuous integration

system does not have something that automatically triggers that

test and sends a report with the results.” (P2, Software Architect,
Software Consulting)

Another issue highlighted by the participants was the relevance of load tests in system test
levels to find typical data stream problems that occur with system stress:

“Data stream has exacerbated the importance of load testing,

especially in the stage environment with all modules installed.”

(P6, Data Engineer, Financial)

Finally, the following quotation synthesizes the testing process from the company of re-
spondent Q-24. This comment corroborates the previous quotes and observations:

72

“i) Unit testing, locally on devs’ machines ii) Integration test-

ing, locally on devs’ machines. We leverage Flink’s ability to run

stream-processing in a local environment. iii) End-to-end testing

on staging environment. We use production test data from an in-

house built generator.” (Q-24)

4.2.2.2 Stream Simulation

Stream simulation is an approach for testing stream applications realistically. It involves
replaying historical or generated data. Nineteen questionnaire participants reported performing
stream simulation as a test approach. They reported using their solutions based on existing
streaming tools and homemade scripts.

“There are some scripts we use to simulate streams, which are

method callers, one to read the stored data and the other to write

on the topic.” (P3, Software Engineer, Location Data Services)

Simulation tools may provide features for handling typical problems of DSP applications,
such as the message entry semantics, loss of messages, duplicate messages, corrupt messages,
message asynchronicity, latency, hardware failures, throughput and others. In fact 83% of
respondents consider fault tolerance features helpful in data stream simulation tools. The
following excerpt illustrates these comments:

“Simulating fault tolerance is interesting because with a history

replay we can perform the processing and then assert the results.

Meanwhile, there may be some scenarios of service dying and ris-

ing, machines with problems and latency on the network. We can

check if even with this high entropy, the answers are consistent.”

(P4, Software Engineer, Financial)

Another use of stream simulation from stored data would be to correct the past when
there is a bug in the application, and it has processed the wrong data for a period of time.
In that case, you need to discard the erroneous results from that period and re-run that part
of the stream with the new version of the application without bugs. This correction can be

73

done by simulators, giving up the real-time. This situation is associated with the concept of
the immutability of events in stream processing, the simulator allows to re-execute the event
history and to revert the problems by calculating the correct results. Two interviewees mention
this specific case.

“I have to revert and reproduce the same data that was consumed

and then process them again, even giving up real-time response.

This can be done with this simulation tool.” (P3, Software Engi-
neer, Location Data Services)

4.2.3 Category: Testing Tools

Below, we present test tools along with observations about the tool’s purpose. For unit
tests, there is the Spark Testing Base, which emerged in questionnaires and on P9’s interview:

“There’s a rich set of testing libraries, such as Holden Karau’s

Spark Testing Base, which is pretty standard in many compa-

nies."(P9, Data Engineer, Food Delivery Service)

Pact is a contract testing tool, which is used for testing the schema registry in stream
processing messages, ensuring that stream services can communicate with each other.

“There is the tool to test communication via messages like Pact,

it checks when you break the contract of another team.” (P8,
Software Engineer, Software Consulting)

In the context of fault tolerance, the Chaos Monkey tool was cited. It submits applications
to random infrastructure failures. However, this tool does not simulate specific stream failures
like message semantics problems.

“To test fault tolerance, we use Chaos Monkey. It creates a chaotic

scenario in the infrastructure, turns off machines and services,

increases latency, and affects processing capacity. It tries to force

the whole architecture to fail.” (P9, Data Engineer, Food Delivery
Service)

74

Participant Q-38 mentions that the WSO2 stream processing tools have features related
to stream simulation, data replay and historical and application debugging.

“WSO2 Stream Processor offers debugging and allows you to re-

play historical data, simulate random events and replay events in

an accelerated way.” (Q-38)

There are also reports about in-house tools for system tests. An example is the Ducktape
tool cited by Q-1 participant.

“System testing is done via Ducktape (in-house built tool, but

open source). It includes applications correctness tests, perfor-

mance tests, and fault-tolerance tests.” (Q-1)

Finally, although many participants claim to build and use their own solutions for generating
test data, the libraries Clojure Test Check and ScalaCheck were mentioned as useful tools to
build generative tests based on properties.

“Clojure has good tools for generative testing, streaming has mes-

sage contracts, and the applications have entry and exit contracts,

so we usually use generative test tools that rely on contracts to

generate test data in an automated way.” (P4, Software Engineer,
Financial)

4.2.4 Category: Test Data

Test data is a subject that emerged a few times in the interviews and questionnaires, with
many test data sources being reported, such as replay of historical data, real-time production
data mirroring, and synthetic data generators. The quote below exemplifies the use of various
test data sources:

“Replay historical data, real-time use of production data piped

to test environment, custom data generation using algorithms. In

replay & real-time data use, the data is often remapped/sanitized

for testing & proper simulation in a test environment.” (Q-100)

75

Although widely adopted, replaying historical data is a sensitive point, especially in contexts
where data is confidential and privacy is a priority, such as banking and financial applications.
Therefore, data generation may be the only option in many situations. Interviewee P2 has
expressed concern about privacy with the following comment:

“The ideal would be the use of historical data, the problem is the

restriction of secrecy and privacy, so we work with mock data.

We face this barrier in the application of insurance analysis, bank

information and restricted information on people.” (P2, Software
Architect, Software Consulting)

Meanwhile, eight questionnaire participants mentioned privacy concerns in using historical
data, and they suggested data generators as an alternative way of getting around this problem.
The following excerpt of Q-96 illustrates this concern from one of the participants in the
questionnaire:

“Mostly replay of historical data. Privacy laws make this less

straightforward. We are experimenting with data generators that

take into account dependencies between different tables/topics.”

(Q-96)

Regarding data generators, 59 participants in the questionnaire indicated the use of test
data generators. Interviewee P3 mentioned the use of Domain-Specific Languages (DSL) based
tools as a technical solution for generating test data.

“A tool in which I can easily produce data in a pattern, for example,

a DSL in that it would be effortless to describe the data and that

I want to make it happen in the stream.” (P3, Software Engineer,
Location Data Services)

Test data stands out as a source of difficulties. Historical data is often unavailable for
privacy reasons. Although it is a viable alternative in some cases, a random data generator
may not generate data that are consistent with the real application scenarios. Participant P11
addressed the importance of using realistic data for testing DSP applications:

76

“We have difficulty in testing fraud detection. We can not always

simulate every case. We usually have to simulate forcing some sit-

uation of artificial fraud with a fake GPS, which does not represent

the scenario of fraud that really happens.” (P11, Data Engineer,
Data Science Solutions)

In this case, a more robust approach, based on artificial intelligence techniques, is needed.
Thus, generators could be intelligent to the point of receiving as input a stream set and be
able to detect the format of the messages, standard values and sequential pattern of values
on different topics, generating multiple test streams. In the questionnaires, three answers
reinforced the idea of the need to generate meaningful test data, as one of them quoted next:

“Generation of meaningful data (not just random) in case there are

aggregations or joins within a window, that would allow providing

meaningful deterministic output.” (Q-23)

4.3 RESULTS SYNTHESIS AND DISCUSSION

The previous section presented each category, where participants reported difficulties and
relevant aspects when testing DSP applications. The remainder of this section presents a
synthesis of the findings and promotes discussions based on relationships between categories
and literature.

4.3.1 Approaches and techniques being adopted to test DSP applications.

The traditional methodologies and techniques of software testing remain valid in the DSP
context. So, considering data stream particularities, unit tests, integration tests, and system
tests are recommended. The comment from P6 in Section 4.2.2 motivates this aspect.

Unit tests are widely employed, and no particular difficulties were reported on unit tests.
Participant P7 reinforces this statement (Section 4.2.2). In the same way, integration testing is
being performed with data mocking tools. However, many challenges emerged on system-level
tests. Interviewee P2 (Section 4.2.2) addresses this issue.

Due to non-determinism in distributed systems, DSP applications are subject to inconsis-

77

tencies such as glitches (COOPER; KRISHNAMURTHI, 2006). The problems of DSP are revealed
when different modules have to interact. Therefore, solutions to support testing of DSP ap-
plications have to focus on integration and system testing.

Finally, stream simulation emerged as a specific data stream approach for more realistic
system-level testing. Simulation tools exercise specific data stream problems through load tests
and fault tolerance simulation. In Section 4.2.2, we presented some benefits of using simulators
according to practitioners’ comments.

4.3.2 Test frameworks and tools have been adopted

Participants revealed which tools they are using for testing DSP applications as well as their
purposes. Table 12 summarizes the most cited tools. Generally, practitioners indicated the use
of custom-developed in-house tools, specialized test libraries for stream processing, adaptations
of conventional testing tools, and tools integral to constructing the testing infrastructure.
More detailed information is presented in Section 4.2.3. These tools were also identified in the
subsequent study, the GLR. In Section 5.5.1.5, the use of these and other tools was discussed
in detail.

Table 12 – Most significant adopted tools

Purposes Uses Tool Name
Contract Testing Tool Pact
Fault Tolerance Chaos Monkey
Integration Tests Local Stack, Jenkins, Flink Test Util
Property-based Test ScalaCheck
Stream Simulation, Data Replay
and Data Generation

WSO2 Stream Process

System Tests Pepper-Box plug-in on Jmeter
Ducktape

Unit Test Spark Unit Test Modules, Mocked
Streams, Flink Spector

4.3.3 Data used to test DSP applications

Test data stands out as a source of difficulties. The category Test Data revealed several test
data sources (e.g., historical or custom data, mirroring production streams and generators).

78

Historical data seems to be a good option, and it has been adopted by many companies.
The main issue in adopting this technique is the fact that, in many cases, stream data is
sensitive (for instance, financial data). Some companies mitigate this issue by anonymising all
historical data, but there are contexts where privacy laws, such as EU General Data Protection

Regulations (VOIGT; BUSSCHE, 2017), significantly restrict access to data. Comments from
participants Q-100 and P2 (Section 4.2.4) illustrate this issue.

When real or historical data is not available, an alternative is to build a test database or
use data generators such as Threat Stream Generator tool (WHITING; HAACK et al., 2008).
Participants Q-96 and P3 claim that data generators are being used in their companies.

However, many data generators are not capable of generating consistent test data. Partic-
ipant P11 presents the importance of realistic data to test fraud detection features. For that
matter, participant Q-23 explains the need to generate significant test data. Therefore, data
generators are still an open issue for DSP applications. Solutions in that sense can explore
statistical models and machine learning techniques to generate more realistic data.

4.4 THREATS TO VALIDITY

A Grounded Theory framework offers rigorous procedures for data analysis. However, any
qualitative research may contain some degree of research bias. Indeed, other researchers might
have different interpretations, and so diverse conclusions may emerge from the same data.
This is a common threat related to GT studies. Consequently, these studies do not claim
to generate definitive findings. The resulting theory, for instance, might be different in other
contexts (DENZIN; BRYANT; CHARMAZ, 2007). To mitigate this threat, we reported and made
available all produced material so that other researchers can reproduce the data analysis in
order to prove or compare the work done in this study.

To obtain willing participants, it was essential to guarantee that any sensitive data — not
just of the individual participants but also their companies and third-party clients — would be
kept confidential to researchers under human ethics guidelines governing this study. That way,
all data were analysed anonymously.

One of the limitations when applying a computer-administrated questionnaire is the time
spent on an accurate answer (RICHMAN et al., 1999). To mitigate this threat, we ignored all
answers that lasted less than 5 minutes and those that wrote too short answers. Thus, with
these parameters, four answers were discarded, leaving 101 answers.

79

We used the triangulation technique to increase confidence and reduce the subjectivity
of our results (JONSEN; JEHN, 2009). Triangulation can be defined as the combination of
diverse methodologies in the study of the same phenomenon. In our case, we combined inter-
views (Section 3.1.2) and questionnaires (Section 3.1.1). Besides, all categories and themes
that emerged from data analysis were extracted and combined by two researchers. In case of
disagreement, the third researcher was considered an Oracle.

Finally, our study posits itself from the point of view of practitioners with different back-
grounds and working in companies from different domains (Section 4.1). However, we do not
claim that our results are valid for other scenarios. Moreover, one of the main results is that
testing a stream application depends on its context.

4.5 SUMMARY

This chapter presented the exploratory study based on qualitative research, which involved
semi-structured interviews with 12 professionals and questionnaires administration to others
101. The interviews went through a transcription and coding process, and the questionnaires
were analysed to reinforce findings.

The study reported testing challenges related to performance, fault tolerance, realistic
system-level testing, and stateful operations issues. Approaches like unit testing, integration
testing, end-to-end testing, replaying historical data, and simulating real-time scenarios have
been employed. Tools such as Apache Kafka, Apache Flink, Apache Storm, and other in-
house solutions were prominent in handling DSP tests. However, a significant gap in formal
knowledge and training in DSP testing was identified, highlighting a need for more structured
learning resources and standardized guidelines to support testing activities in this field.

This study contributes to the thesis by exploring the field of research, reporting the per-
spective of practitioners and providing directions for topics to be explored in future studies.

80

5 GREY LITERATURE REVIEW

This study has been fully published in an article that presents the results in detail, providing
all the evidence needed to substantiate each finding (VIANNA et al., 2023). Given that, the
research report is particularly extensive and includes numerous quotes from grey sources, we
have opted to provide in this chapter a concise summary of the results along with the discussion,
allowing us to concentrate on discussing the main findings.

5.1 INITIAL SEARCH

The execution of our searches unfolded in the following steps:

1. We ran each of the five search strings on Google and saved the results.

2. We configured Google to search within the domains of the three specialized web-
sites—Stack Overflow, Medium, and LinkedIn Pulse. After executing each of the five
strings on these sites, we combined these results with those from the initial Google
search.

3. We removed any duplicate links.

We ceased to save results once a new page of ten results no longer produced relevant
sources as expected to satisfy the saturation criteria. Ultimately, our search process yielded
1960 sources, and then, we applied an automatic filter to remove 293 duplicate links, resulting
in a final pool of 1667 grey sources. Throughout this process, we utilized scripts to automate
tasks like searching (using a Google search python API (VILAS, 2020)), metadata collection,
duplicate source checking, and content downloading for research documentation.

5.2 APPLICATIONS OF INCLUSION AND EXCLUSION CRITERIA

Two collaborating researchers assisted in the criteria application. We held a training session
for the evaluators, followed by a pilot study in which each collaborator assessed five sources.
Afterwards, individual meetings were held to collect feedback and address questions. The pilot
study improved the checklist’s applicability and criteria refinement. Each source was analyzed
individually, and then through a paired review, a third evaluator decided the tie cases. In total,

81

the application of the inclusion and exclusion criteria yielded 101 studies. In subsequent steps,
we added 53 sources using the snowballing technique (WOHLIN, 2014), examining reference
lists and back-links, bringing the final count to 154 studies. Figure 12 provides an overview
of the applications of inclusion and exclusion criteria results, detailing the number of sources
discarded at each inclusion criterion stage. The list of selected sources is available in Appendix F
and is referenced throughout the text as Source [ID].

Figure 12 – Result of Source Selection in Numbers.

5.3 DEMOGRAPHIC DATA

From a total of 154 sources selected, 42 were found with standard Google searches, while
59 came from searches on specialized sites, including 25 from Medium, 28 from Stack Over-
flow, and six from LinkedIn Pulse. Snowballing has added another 53 fonts to the pool. The
most common source type is blog posts, with 78 sources, of which 27 are on organizational
blogs, 12 on individual blogs, and 39 on technical blog platforms. The following are 33 Q&A
websites, 17 Software/Tool Documentation, 17 Tool Repository, 3 Email Discussion List, 4
Slide Presentation, and 2 White Paper. Figure 13 shows, as a bar chart, the number of sources
selected each year. We observed that we did not have obtained sources from years before 2013
and that the number of sources increased each year in subsequent years, reaching 59 in 2020.
We observed that the tendency towards an increase in the number of grey sources in recent
years might have been amplified by search engine bias and automatic date updating in some

82

sources, such as tool documentation. Another possible reason for this trend is that some web
content becomes unavailable over time. For example, companies may change their name or
publishing policies, and then technical blogs may be discontinued, leading to fewer sources
being found in the first few years.

Figure 13 – Selected Sources by Year

Among the companies, we highlight the ones with the highest participation: Apache Foun-
dation, Amazon Web Services, and Confluent; they all provide services, tools, and training
related to DSP. The contents produced by these companies are the official tools documenta-
tion and posts on organizational blogs. Other traditional technology companies, such as Dell,
Google, and Microsoft, are also present among the authors but with lesser participation. Com-
panies in diverse business sectors, such as Airbnb, Alibaba, Otto Group, and Deliveroo, employ
DSP in their technological solutions and have produced content on organizational blogging
platforms.

Individual authors include independent consultants, book authors, members of the open-
source community, and employees of companies working in the DSP field. The industry is the
most frequent author affiliation, with 146 sources, three sources from academia, and five from
industry and academia collaborations.

83

5.4 QUALITY ASSESSMENT RESULTS

As described in Section 3.2.3.1, the quality assessment score ranges between 0 and 1,
representing the sources’ average quality according to the aspects from Table 4. Figure 14
presents the histogram of the number of sources distributed in each score range. The average
score of the 154 sources was 0.59, with the highest score of 0.92 and the lowest being 0.28.
The average score on standard Google was 0.61, on Medium 0.57, on Stack Overflow 0.51,
on LinkedIn Pulse 0.44, and snowballing 0.63. The higher average score of Google’s standard
search may be explained by the fact that this type of search brought up 1st-level Grey Literature
sources, such as software/tool documentation, white papers, and blog posts on company
websites. We opted not to exclude studies based on quality assessment scores to preserve
potentially relevant content with low scores and acknowledge the potential for bias in the
assessment process. Instead, we integrated these scores into our analysis, detailing them with
the source references in Appendix F for a nuanced evaluation of each source’s contribution
and reliability.

Figure 14 – Quality Assessment Score Histogram

84

5.5 RESULTS AND DISCUSSION

In this section, we first summarize our main research findings, discussing the most relevant
ones, then the implications for research and practice, and finally, we discuss threats to validity.

5.5.1 Summary of research findings

Below, we present a summary of the results obtained for each research question, followed
by a discussion involving the related academic literature.

5.5.1.1 RQ1. What are the challenges to DSP application testing?

Our first RQ focused on identifying professionals’ challenges when testing the DSP applica-
tions. The RQ1 findings also reinforced the claim that testing DSP applications is challenging
overall, as 92 of 154 grey sources address testing challenges in this context. At least 36
sources were topics in mailing lists or Q&A websites, on which practitioners raised specific
technical questions and reported difficulties in testing DSP applications. Users sometimes re-
ported generic difficulties and challenges addressed to particular aspects. Table 13 summarizes
the most recurrent challenges and the number of sources related to each; these challenges are
detailed in the subsections below. Table 14 summarizes the four main challenges that emerged
from the grey literature, and the remainder of the section addresses each of them in detail.

Table 13 – Most significant challenges

Challenge Source
%

The complexity of Data Stream
Processing Applications

21 13.86

Testing Infrastructure 19 12.5
Test Data 15 9.87
Time issues 9 5.92

The complexity of DSP Applications. The complexity factor of DSP is already well known,
and it has been reported in the formal literature (NAMIOT, 2015; CUGOLA; MARGARA, 2012b).
The grey literature reports the factors that practitioners consider most challenging, such as

85

Table 14 – Key Points of Challenges to DSP application testing.

Challenges Key points

The com-
plexity of
DSP Appli-
cations

• Non-determinism, asynchrony, complex transformations, lack of theoretical
knowledge and changing variables make the test challenging.

• Testing strategies must test each transformation individually and then to-
gether, which can be time-consuming and require significant effort.

• Qualification of the test team and theoretical knowledge regarding DSP is
required.

Test Infras-
tructure

• Building the test infrastructure as close as possible to the production envi-
ronment is important, but it can be expensive.

• Automation tools and mocking services help reduce costs and simplify the
construction of test infrastructure.

Obtaining
test data

• Good test data is essential for realistic testing.
• Real data is difficult to obtain due to security and data privacy regulations.
• Historical data provides an initial data model, but generating and validating

outputs is necessary to build a reliable oracle.

Time issues • Timing affects aggregation, joining mechanisms, and the order in which
events are generated, processed and ingested.

• Special handling of timing issues is needed when setting up tests, and tool
support is essential for controlling the application’s clock and watermarks.

• Choosing the processing time interval depends on the application’s timing
characteristics and requires a balance between precision and computational
costs.

• Controlling the clock in the test environment allows speed-up test execution.

non-determinism, asynchronicity, complex transformations, a lack of theoretical knowledge on
stream processing, and scenarios with continuously changing variables.

The DSP non-determinism makes test development challenging since multiple test runs
can produce different results, making it hard to reproduce test scenarios and validate the
correctness. In the formal literature, we find research testing strategies that may be adopted
for DSP testing. For example, the study by Boroday et al. (BORODAY; PETRENKO; GROZ, 2007)
proposes a test generation approach based on model verification for non-deterministic systems,
while Leesatapornwongsa et al. (LEESATAPORNWONGSA et al., 2016) characterizes typical bugs
related to non-determinism in distributed applications. Diaz et al. (DIAZ; SOUZA; SOUZA, 2021)
propose test criteria to guide the selection of test cases in message-passing parallel programs;
it helps to reveal nondeterminism-related defects, particularly in loops. Chen et al. (CHEN et

al., 2015) provide a survey on deterministic replay focused on testing and debugging systems
by controlling race conditions and non-deterministic factors.

86

Asynchronous stream processing can introduce race conditions, where the data processing
order affects results, making their identification and resolution challenging. Yu et al. (YU;

SRISA-AN; ROTHERMEL, 2017) proposed a framework to support testing for process-level race
conditions, which considers asynchronous variables and provides some insights to address the
problem in the DSP context. Asynchronicity also makes it challenging to test functions with
timing dependencies, where the output of one processing step depends on the output of a
previous step.

DSP applications can involve a sequence of multiple transformations, which can have
complex rules and logic, where the output of one transformation stage depends on the output
of a previous stage (DÁVID; RÁTH; VARRÓ, 2018). Consequently, building a test oracle also
becomes a complex task. Testing strategies must test each transformation individually and
then together, which can be time-consuming and require significant effort.

A practitioner also reported that a lack of theoretical knowledge about DSP made testing
challenging. DSP testing requires qualified professionals with specific knowledge of the context;
otherwise, they may be unable to interpret test results or elaborate efficient test strategies.
This report refers to our statements regarding the complexity of DSP applications presented in
the introduction and reiterated throughout the text. Furthermore, the comment reinforces the
need for research work in the field to provide contributions to the industry and practitioners.
Bath’s study (BATH, 2020) addresses the different specialist competencies that professional
testers of the next generation may need. Testing big data applications is discussed as a chal-
lenging context for testers due to characteristics such as performance, scalability, functional
correctness, data currency, and testing of backup and recovery capabilities. This study supports
our grey literature findings regarding the challenges of testing DSP applications.

Finally, it was also reported that the context of DSP applications is subject to continuously
changing variables, such as data schema, configurations, infrastructure, partitions, offsets, and
exception scenarios. These variables can make maintaining test coverage challenging, as ex-
isting test cases can become incompatible with changes, and test data may require updates
to its structure. Constant changes also make it challenging to maintain automated tests and
configure the test environment to accurately reflect the production environment. Regarding
test case obsolescence in evolving software, Imtiaz et al. (IMTIAZ et al., 2019) conducted a
systematic literature review that reports insights into how to prevent and repair test breakages.

Test infrastructure. From grey sources, we extracted reports on the importance of building

87

the test infrastructure as similar as possible to the production environment. Generally, the
DSP applications adopt a large-scale cloud infrastructure based on microservices architecture,
where the network interconnects the various distributed services. The first problem is the cost
of allocating such infrastructure in the test environment, which typically includes allocating
hardware resources, network services, tool licenses, and the consumption of third-party ser-
vices. The second problem is the qualification of the testing team. In addition to knowledge
of infrastructure technologies, they must also be skilled in testing techniques and frameworks.
The mixed-methods study conducted by Waseem et al. (WASEEM et al., 2021) reported desir-
able skills for testing microservices systems, such as writing good unit test cases, analytical
and logical thinking, and knowledge of test automation tools. In short, the infrastructure’s
complexity entails allocating costs and demands a qualified team.

The grey literature indicates infrastructure automation tools to reduce the time and re-
sources spent on building test infrastructure. The tools help set up and configure services
automatically, which were cited at the end of Section 5.5.1.5 and listed in Table 32. In the
formal literature, Rafi et al. (RAFI et al., 2012) promoted a systematic literature review and a
survey with 115 practices to investigate both views regarding the benefits and limits of test
automation. The results corroborated the grey literature and indicated that a high degree of
infrastructure automation saves costs. While Hynninen et al. (HYNNINEN et al., 2018) pro-
moted a survey to explore industry practices concerning software testing, the study reported
that more and more companies had adopted test automation and more sophisticated testing
infrastructure, even in mission-critical software. Although test automation is an answer to
facing infrastructure complexity, it is not an easy task, and practitioners considered one of
the most challenging among all testing activities, according to a survey with 72 practitioners
promoted by Garousi et al. (GAROUSI et al., 2020).

In addition, the grey literature also indicates mocking services, APIs, and infrastructures
as a strategy to reduce costs and simplify the construction of the test infrastructure. Table 32
lists some tools for service mocks and DSP mechanisms. In the formal literature, Chen et
al. (CHEN et al., 2017) state that mocking reduces testing costs in large-scale systems by
reducing dependencies on external service providers. However, the author pointed out that
the cost reduction would be more significant with automated approaches for creating and
maintaining mocking services.

To conclude, the formal literature brings some contributions that help practitioners deal
with the challenging context of the DSP applications test infrastructure. Benkhelifa et al. (BENKHE-

88

LIFA et al., 2019) reviewed cloud-based testing research, identified challenges, and characterized
requirements associated with cloud testing environments, then proposed a framework for cloud-
based virtual infrastructure testing servitization. Harsh et al. (HARSH et al., 2019) present a
cloud-testing architecture focused on large-scale distributed applications, and the proposed
solution benefits from managing resources and services to execute end-to-end tests simulating
realistic operational conditions. Both works present approaches compatible with typical test in-
frastructures of DSP applications, supporting practitioners in constructing test infrastructures.

Obtaining Test Data. In the grey sources, we encountered statements emphasizing the
importance of having good test data for realistic testing. However, in most cases, accurate test
data based on real data is out of the question due to data security and privacy regulations such
as the General Data Protection Regulation (GDPR). Strategies based on manually generating
custom data can be a huge, time-consuming, and non-trivial task, whereas automatic test
data generation strategies also present challenges in generating relevant test cases.

When historical data is available to develop the test dataset, it only provides an initial
model of how the data streams are in the production environment, which does not guarantee
a reliable test oracle. In grey literature, a practitioner reported that historical data results are
not easily verifiable. Historical data may consist of only the inputs without the desired outputs,
or if there are outputs, they may be unreliable. Therefore, generating and validating outputs
to construct an oracle is necessary. This activity depends on the documentation containing
the characterization and examples of desired outputs. Another problem is that historical data
may not include new features.

In the formal literature, we found studies in line with the grey literature’s findings regarding
testing data challenges. The work by Felderer et al. (FELDERER; RUSSO; AUER, 2019) provides
an overview of the current state of testing data-intensive software and cites test data quality as
a relevant factor for testing data-intensive systems. The study by Benkhelifa et al. (BENKHE-

LIFA et al., 2019), focused on testing cloud-based infrastructure, considers security issues and
legal impediments to real business data use a challenge. Finally, the difficulty of generating
high-quality data sets covering all relevant characteristics is a practical and methodological
obstacle, as exposed by the study by Hummel et al. (HUMMEL et al., 2018).

Time issues. Time is a fundamental factor in DSP, as it affects aggregation and joining mech-
anisms, as well as the order in which events are generated, processed, and ingested (STONE-

89

BRAKER; ÇETINTEMEL; ZDONIK, 2005). The grey literature highlights the difficulty of simulating
business-realistic temporal characteristics and evaluating time constraints in a test environ-
ment. Therefore, special handling of timing issues is required when setting up tests, and tooling
support is essential for controlling the application’s clock and watermarks. Testers can adopt a
simulated clock to gain control for testing purposes in test environments. DSP frameworks of-
fer control functions and interfaces in their test utilities to support the simulation of processing
time.

Practitioners have reported that test execution would take a long time without clock con-
trol mechanisms in the test environment. Although no formal literature explicitly addresses
this topic, the documentation of DSP frameworks such as Flink1, Kafka2, and Spark3 de-
scribes clock control, functions for skipping some test cycles, and artificial watermark gen-
eration mechanisms. Test acceleration can be achieved using a simulated clock to generate
time events faster than in real-time. For example, Flink supports event-time processing, where
timestamps are used to process events. Clock acceleration in Flink can be achieved by imple-
menting a version of the WatermarkGenerator interface to generate artificial watermarks that
advance event time. Another option is to accelerate test execution by skipping some test cycles
through functions that advance the clock. For instance, this approach can be implemented
in Apache Kafka using the TopologyTestDriver.advanceWallClockTime function from Kafka
Testing Utilities, which effectively skips over periods of time in the test environment to speed
up the tests. However, this approach can result in a loss of precision and potentially hide bugs.
Therefore, it is essential to consider the trade-off between test execution speed and result
accuracy.

Another aspect related to time issues that testers should be aware of is the processing time
interval in the test environment. The choice of the processing time interval may impact the
testing process’s accuracy and efficiency. A long interval may lead to inaccurate results, while a
short processing interval means more frequent updates and accurate results but accompanied
by an increase of computational overhead. Choosing the processing time interval depends on
the application’s characteristics, particularly the algorithms and functions that evaluate time
factors or rely on timely updates. Some functions may work adequately over varying processing
time ranges, while others may be quite sensitive and require more restricted processing time
1 <https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/event-time/generating_

watermarks/>
2 <https://kafka.apache.org/24/javadoc/org/apache/kafka/streams/TopologyTestDriver.html>
3 <https://spark.apache.org/docs/latest/api/java/org/apache/spark/util/Clock.html>

https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/event-time/generating_watermarks/
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/event-time/generating_watermarks/
https://kafka.apache.org/24/javadoc/org/apache/kafka/streams/TopologyTestDriver.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/util/Clock.html

90

intervals. Experiments can be conducted to select the processing time, and it is essential
to balance the need for accuracy and computational costs. In the test environment, it is
recommended to reproduce the configuration of the processing interval faithful to the one
used in production.

In the formal literature, we find research that addresses the difficulties that temporal as-
pects impose on testing distributed applications. Works such as (LIMA; FARIA, 2017; LIMA,
2019; LIMA; FARIA; HIERONS, 2020) address the conformance checking, observability, and con-
trollability of time-constrained distributed systems. The test infrastructure communication
overhead influences the test results, so checking the conformance of the observed execution
traces against the specification becomes challenging. Researchers proposed Unified Modeling
Language (UML) based specifications enriched with time constraints and algorithms for decen-
tralized conformance checking in this context. Moreover, the study by Hierons and Ural (HI-

ERONS; URAL, 2008) presents an algorithmic approach for checking the interaction sequence
of distributed components and the test specification. The approach is free from controllability
and observability problems. Finally, the study by Charaf and Azzouzi (CHARAF; AZZOUZI, 2016)
presents an approach to generate timed distributed testing rules that avoid synchronization
problems by considering the delay of messages between the under-test implementation and
testers.

5.5.1.2 RQ2. What are the testing purposes?

From a business perspective, the test’s purposes are related to financial impacts on the com-
pany and the competitiveness of the business’s product. DSP applications handle high-volume
operations per minute, turning a minor bug into a potential catastrophe and, consequently, a
race against time to fix failures. Depending on the business sector, a minute of DSP failing
may harm a startup as well as large companies. In the technical context, performing software
testing aims to improve software quality. When analysing the sources, we observed that the
test purposes placed by the practitioners corresponded to characteristics of the ISO/IEC 25010
software quality model (ISO/IEC. . . , 2011). We mapped the characteristics of the quality model
with the practitioners’ observations on the purpose of DSP application tests, such as func-
tional suitability, performance efficiency, reliability, and maintainability. Table 15 summarizes
the main aspects of each testing purpose, and the remainder of the section describes them in
more detail.

91

92

Table 15 – Key points of testing purposes.

Testing Pur-
pose

Key Point Description

Functional
suitability

Functional
correctness

A key concern is ensuring that DSP applications deliver correct results. Unit
tests for business rules functions are the first step towards achieving correct-
ness, but integration and system tests in environments similar to production
are also necessary.

Variation in
correctness

The notion of correctness varies according to the business context, as incorrect
results may be tolerated in preference to other requirements such as reliability.
The level of correctness of a DSP system can also be traded off with non-
functional requirements.

Differential
testing

Approaches based on differential testing, such as DiffStream, can be used
to verify the correctness of DSP applications. This involves executing two
implementations in response to the same input stream and comparing the
equivalence of their outputs.

Mutation
testing

Mutation testing improves test suite performance by generating syntactic
variations of the original program using mutation operators to reveal pro-
gramming errors caught by the test suite.

Performance
efficiency

Time-
behaviour

Time behaviour is affected by storage write speed, algorithmic characteris-
tics, network throughput, latency, memory, processing power, DSP topology,
and configurations. Testing the application under stress to understand data
volume and latency is crucial.

Resource
utilization

The rational use of infrastructure resources is crucial as it financially impacts
companies and their products’ competitiveness. Performance testing assesses
the application’s utilization of hardware resources to promote optimizations.

Capacity Knowing infrastructure capabilities and understanding the bottlenecks and
resources needed to scale is crucial. In a DSP system refers to the system’s
ability to handle a specified volume of data processing. Testing the infras-
tructure’s operating limits helps to map bottlenecks and delimit operational
limits.

Reliability

Fault
tolerance

DSP applications must be fault-tolerant, as hardware failures, network oscil-
lations, and other issues can cause the system to fail.

Disaster
recovery

The ability of the system to recover from severe failures that overwhelm fault
tolerance mechanisms. The system must be restored to normal operation as
quickly as possible after a catastrophic failure, and checkpoints and data loss
must be considered.

Chaos testing It can help uncover potential system weaknesses and provide valuable insights
for improving fault tolerance and recovery mechanisms.

Overhead and
performance
degradation

Fault tolerance mechanisms can lead to performance degradation due to over-
head, so tradeoffs between fault tolerance and the impact on system perfor-
mance must be considered.

Maintainability

Modifiability The ability to modify code without introducing new defects is crucial for
cost-effective bug fixing and system evolution. This can be achieved through
regression testing, ensuring that codebase changes do not negatively impact
existing functionality.

Architecture A DSP system’s architectural design can significantly impact its maintain-
ability. Microservices-based architectures, for example, may reduce the test-
ing effort required for regression testing by restricting tests to the modified
microservice and its interfaces.

Functional suitability. In the grey literature, we identified that functional correctness is one
of the concerns when testing DSP applications. However, we also found evidence suggesting

93

that the level of concern about delivering correct results changes according to the role of DSP
in organizations’ business. Furthermore, the notion of correctness in DSP applications does
not strictly mean delivering correct results. Some incorrect results are tolerated depending on
the context, while others are not. The findings indicate that using unit tests for business rules
functions is the first step towards achieving correctness. However, the unit tests are insufficient
to ensure that these functions will not fail in production by not exercising many features of
complex distributed software. Although more costly and challenging, the grey sources indicate
that testing strategies should include integrated and system tests in environments similar to
production, where many DSP characteristics will be present.

In the academic context, we find discussions about the variation of the notion of the cor-
rectness of complex data-intensive systems. The work by Hummel et al. (HUMMEL et al., 2018)
highlights the difficulty of determining whether an operation result is correct or incorrect.
Such difficulty hinders the testability of this type of software, as it is not possible to have
accurate test data to test. Furthermore, as Gunawi et al. (GUNAWI et al., 2014) explained, in
some business contexts, incorrect results may be tolerated in preference to other requirements
such as reliability. These statements support the GLR’s finding that the notion of correctness
varies according to the context. Following the same path, the work by Akidau et al. (AKIDAU

et al., 2015) treats the level of correctness of a DSP system in a tradeoff with non-functional
requirements. This approach starts from the premise that the correctness level can vary accord-
ing to the problem domain and available resources. The work proposes the Dataflow Model,
an approach based on formal models to help developers properly balance the dimensions of
correctness, latency, and cost dimensions to suit their context.

Regarding correctness-focused approaches, Kallas et al. (KALLAS et al., 2020) propose an
approach based on differential tests to verify the correctness of DSP applications. The work
presents a testing framework that includes the DiffStream library for the assisted execution of
two implementations in response to the same input stream. The framework also provides an
algorithm to compare the equivalence of the outputs generated by the two implementations.
We also found the research by Gutiérrez-Madroñal et al. (GUTIÉRREZ-MADROÑAL; GARCÍA-

DOMÍNGUEZ; MEDINA-BULO, 2019) addressing the mutation testing technique to improve the
performance of test suites in verifying the correctness of event processing programs. The
technique generates syntactic variations mutants of the original program by applying mutation
operators. Artificial faults injected into the original program represent developers’ programming
errors, and running the tests reveals whether the test suite caught the inserted error.

94

Performance efficiency. We identified 41 quotes related to performance efficiency. Table 15
outlined three key points concerning performance efficiency testing purposes: (1) Time be-
haviour, where testing aimed to verify the application’s response times in contexts where time
behaviour was crucial; (2) Resource Utilization, focusing on the rational use of resources and
measuring the ideal amount allocated to develop efficient resource sizing strategies; and (3)
Capacity, in a DSP system refers to the system’s ability to handle a specified volume of data
processing within given constraints with tests concentrating on the system’s operational ca-
pacity. Capacity can be measured through throughput metrics in stress testing assisting in
mapping bottlenecks and defining the infrastructure’s operational limits.

From grey literature, we highlighted [Source 10], a white paper by a hardware vendor
that presented results from performance experiments on a DSP-focused platform. This white
paper underscored the industry’s attention to DSP hardware platform performance. Perfor-
mance concerns were also prevalent in academia, evidenced by several studies discussing DSP
systems’ performance (TANTALAKI; SOURAVLAS; ROUMELIOTIS, 2020; MISHRA; VARMA et al.,
2020; ZEUCH et al., 2019). Karimov et al. (KARIMOV et al., 2018) introduces recommenda-
tions and metrics for evaluating DSP systems. Other academic studies compared DSP frame-
works’ performance(SAMOSIR; INDRAWAN-SANTIAGO; HAGHIGHI, 2016; CHINTAPALLI et al., 2016;
SHAHVERDI; AWAD; SAKR, 2019) and evaluated specific techniques’ performance (MONTE et al.,
2020; TUN; NYAUNG; PHYU, 2019). Additionally, academic research examined the efficient use
of resources by data stream frameworks in cloud-based infrastructures, with Chatterjee and
Morin (CHATTERJEE; MORIN, 2018) conducting a comparative study on resource usage across
three frameworks for the same application.
Reliability. Stream processing is usually associated with companies with high-reliability re-
quirements, and we often found a recurrence of this subject in grey sources. In total, we found
32 quotes related to reliability. For example, in [Source 29], investment in testing was explicitly
cited as an element in ensuring the reliability of the Alibaba Group’s Blink DSP framework.
In this context, the GLR reliability-related findings essentially focus on fault tolerance and
recoverability.

Fault tolerance targets keeping the system running under adverse conditions, such as hard-
ware, network, and software end third-party services. At the same time, recoverability focuses
on the system’s ability to recover from a failure with the minor damage possible. Chaos Testing
strategies reported by practitioners in Section 5.5.1.3 address fault tolerance and recoverability.
In this approach, controlled experiments are conducted using specific tools to simulate failures,

95

testing the application’s ability to continue running in the face of failures and its ability to
recover from failure scenarios. These experiments help uncover potential system weaknesses
and provide valuable insights for improving fault tolerance and recovery mechanisms. By ex-
posing the system to various failure scenarios in a controlled environment, Chaos Testing can
also help to build confidence in the system’s ability to handle unexpected events.

Fault tolerance in DSP has been addressed by several works over time, confirming the
relevance of the issue that came to light in the GLR. Academic studies such as (SHAH; HELLER-

STEIN; BREWER, 2004; BALAZINSKA; HWANG; SHAH, 2009; AKBER; CHEN; JIN, 2021) bring fault
tolerance techniques to the DSP context. Wang et al. (WANG et al., 2022) perform a sys-
tematic overview and classification of fault tolerance approaches for DSP. It also proposes an
evaluation framework tailored to measure quality in terms of runtime overhead and recovery
efficiency of fault tolerance approaches. Finally, the work presents three directions for develop-
ing future fault tolerance approaches in DSP: Adaptive Checkpointing, Integration of Modern
Hardware, and Parallel Recovery. Although fault tolerance is a desirable feature in DSP, such
mechanisms can cause performance degradation due to overhead. Vianello et al. (VIANELLO et

al., 2018) performed an evaluation experiment to measure the overhead cost generated by a
fault tolerance mechanism in a DSP system. The results indicate a 10-fold increase in latency
when these mechanisms are active. The fault tolerance and overhead tradeoff have also been
reported in the grey literature Zachary Ennenga in [Source 18].
Maintainability. The maintainability is pervasive in several grey sources, particularly those
associated with the DSP Complexity and Test Infrastructure challenges presented in Sec-
tion 5.5.1.1. Such challenges increase the difficulty and cost of DSP application modification
and testing. Mostly we have found grey sources referring to the practitioners’ concern with
the ability to modify code without introducing new defects. Low degrees of modifiability can
result in costly bug fixing and system evolution processes. Additionally, it can lead to more
bug insertions into previously functioning features, known as regression. At this point, practi-
tioners emphasize the importance of regression testing in dealing with modifiability, and such
a strategy is described in Section 5.5.1.3.

In the formal literature, studies focus more on architectural aspects as a relevant factor
of maintainability in the context of DSP software (ASSUNCAO; VEITH et al., 2018; HOQUE; MI-

RANSKYY, 2018; ASTORGA et al., 2018). However, as the Silva et al. (SILVA et al., 2018) study
exposes, regression testing generally requires robust automation of the development infras-
tructure, and the construction and maintenance of such a test suit for continuously updated

96

regression tests are challenging. The difficulty of maintaining large numbers of tests can be
mitigated through regression test reduction techniques such as Requirement Based, Cover-
age Based, Genetic Algorithm, etc (SULEIMAN; ALIAN; HUDAIB, 2017). Especially, the study
by Hoque and Miranskyy (HOQUE; MIRANSKYY, 2018) shows that in contrast to monolithic
architectures, microservices-based architectures restrict the execution of regression tests to the
modified microservice and its interfaces, leading to a reduction of testing efforts.

5.5.1.3 RQ3. What are the approaches and specific types of tests performed?

This RQ identified and selected which testing approaches practitioners have been using
according to the grey literature. The findings are based on 155 citations in 82 grey sources
reporting the testing approach. We first present the testing approaches according to the target
of test, then focus on the most relevant specific approaches. As an aid, we have included
Tables 16, 17, 18, 19, 20, and 21 with a brief summary of each testing approach in the following
subsections. These tables highlight fundamental aspects, testing purposes, challenges, tools,
and variables to consider for each approach. In this discussion we adopted the SEWBOK
Version 3 terminology for software testing presented in chapter 4 of the guide (BOURQUE;

FAIRLEY, 2014).
Approaches by Target of Test. This topic covers DSP application testing, considering
relevant aspects regarding unit, integration, and system testing levels.

• Unit tests, essential for verifying module functionality, often do not address distributed
systems’ unique characteristics and non-functional requirements, such as end-to-end
response time. Stateless operator unit testing follows traditional practices, but testing
stateful operators demands careful state management and cache data handling. Timed
process operators introduce additional challenges, necessitating control over application
clocks and event timestamps. Stepien et al. (STEPIEN; PEYTON, 2020), and Buchgeher
et al. (BUCHGEHER et al., 2020) address the limitations of unit testing in distributed
systems. Hill et al. (HILL et al., 2009) and Li et al. (LI et al., 2006) discuss strategies and
tools for developing unit tests that meet distributed systems characteristics.

• Integration tests, targeting logically integrated components, expose issues from module
interactions, particularly timing issues identified in Section 5.5.1.1. Timing challenges

97

and the need for application clock handling and event timestamp configuration become
apparent in integration testing.

• System testing, focusing on the entire software product, brings forth the complexity
of DSP applications, as detailed in Section 5.5.1.1. This stage highlights distributed
applications’ typical characteristics, such as non-determinism and message asynchrony.
System tests need to run in an environment closely mirroring production, making in-
frastructure automation crucial. The complexity of DSP applications in system tests,
particularly in SaaS-based infrastructures, underscores the challenges in cost and envi-
ronment configuration. This aligns with the Testing Infrastructure challenge presented
in Section 5.5.1.1. The academic literature highlights the difficulty of testing large-scale
distributed systems due to the complexity and size of the infrastructure, as evidenced
by studies such as Hanawa et al. (HANAWA et al., 2010) and Harsh et al. (HARSH et al.,
2019).

Table 16 – Summary of approaches by the target of the test.

Approaches by Target of Test

Fundamental aspects: Unit tests for DSP applications involve particularities on stateful and
timed process operators. Integration and system-level testing are important to address the specific
characteristics of distributed systems, which are associated with several defects in DSP applica-
tions.
Related challenge: The Testing Infrastructure Complexity challenge as we found reports about
the complexity and cost of setting up realistic system test infrastructures. The Time Issues chal-
lenge is also addressed on behalf of timed process operators.
Tools adopted: Terraform, Jenkins, Confluent CLI, Ansible, Docker, Vagrant, and AWS CloudFor-
mation. (component mocking and infrastructure automation to address complex infrastructures)
Stateful operations: Stateful operations involve maintaining a state between successive invoca-
tions of the operation, which can lead to complex testing scenarios. The key challenges in testing
stateful operations include verifying that the state values are updated correctly and that cache
data is purged as required. DSP platforms, such as Apache Flink and Kafka Streams, provide
utility classes to support stateful operator testing.
Timed process operators: rely on timestamps and the application clock to control their be-
haviour, making it necessary to manipulate time variables. Testing timed process operators require
controlling the clock and providing event timestamps. DSP platforms provide utility classes and
features to support timed process operator testing, as discussed in the topic Time Issues from
Section 5.5.1.1.

Performance Testing. We have selected 75 quotes from 27 grey sources related to per-
formance tests. The abundance of findings from the grey literature on performance testing
highlights its relevance to the industrial context. At the same time, several academic works

98

address the performance evaluation of DSP applications and associated contexts. Academic
works bring tooling and technical contributions that meet the concerns expressed by practi-
tioners about performance tests, so on this topic, there is consonance between industry and
academia.

Table 17 – Summary of performance testing key points.

Performance Testing

Fundamental aspects: Focus on evaluating whether the performance meets the application
requirements, optimizes computational resources, and brings cost savings. For optimization pur-
poses, tests must be executed with different configurations due to the many variables affecting
the results.
Testing Purpose: Performance Testing essentially addresses the Performance Efficiency testing
purpose.
Tools adopted: JMeter, Pepper-Box, ZeroCode Samurai, Kafkameter, Sangrenel, Artillery,
Gatling, Ducktape and Grafana. These tools support generating loads and monitoring metrics.
Variables to consider: Hardware resources, network resources, number of topics, producers,
consumers, message size, timeout values, cache sizes, replication factors, etc.

Findings from the grey literature indicate that performance testing aims to assess whether
the performance meets the application requirements and helps bring cost savings by enabling
developers to optimize computational resources. Practitioners state that DSP application per-
formance tests must be executed with different configurations due to the multiple variables
that affect the results, including hardware and network resources, number of topics, produc-
ers, consumers, message size, timeout values, cache sizes, replication factors, and more. Thus,
performance testing is a tool that also helps tune the system for specific scenarios. It helps to
estimate the adequate hardware resources and adjust the various DSP tools settings. From a
business perspective, testing also brings cost savings by facilitating developers to optimize the
use of computational resources.

Stream processing platforms provide several capabilities for generating loads for perfor-
mance tests. However, we identified that practitioners also use other tools and libraries with
functionalities to meet specific needs and to configure more accurate traffic patterns. Table 17
listed several tools for generating loads and monitoring metrics during performance testing.

Academic interest in performance testing has been increasing since the 2000s, particularly in
contexts related to DSP’s typical features, such as large-scale distributed applications, cloud,
and microservices that handle numerous simultaneous requests (DUMITRESCU et al., 2004;
ZHOU et al., 2013; BARROS et al., 2007). In 2007 De Barros (BARROS et al., 2007) proposed
various techniques to overcome challenges in building environments and performance test tools

99

that accurately simulate the same conditions observed in the production environment of large-
scale distributed systems, also providing techniques to characterize load patterns for tests. In
2015, Jiang and Hassan (JIANG; HASSAN, 2015) surveyed the state of load testing research
and practice, reporting techniques for designing, executing, and analysing the results of a load
test. The paper by Eismann et al. (EISMANN et al., 2020) lists the difficulties that microservices
architectures bring to performance testing, as it requires additional care when setting up test
environments or conducting tests.

In the formal literature, we can find several benchmarking works of DSP frameworks (CAP-

PELLARI; CHUN; ROANTREE, 2016; CHINTAPALLI et al., 2016; SAMOSIR; INDRAWAN-SANTIAGO;

HAGHIGHI, 2016; SUN et al., 2018; KARIMOV et al., 2018; SHAHVERDI; AWAD; SAKR, 2019;
MISHRA; VARMA et al., 2020). These works focus on evaluating the performance of DSP frame-
works in specific application contexts by varying functionalities and configurations. They also
document methods and tools for conducting performance tests and list performance metrics
considered relevant to the DSP context, such as memory consumption, CPU load, response
time, and network throughput.

Other studies contribute to methods and tools to evaluate DSP applications’ performance.
For example, Pagliari et al. (PAGLIARI; HUET; URVOY-KELLER, 2020) propose the NAMB tool
(Not only A Micro-Benchmark), a generic generator of DSP applications prototypes that pro-
vides high-level descriptions language to support developers in quickly building and assessing
the performance impact of design choices. Garcia et al. (GARCIA et al., 2022b) presents SP-
Bench, a framework for benchmarking DSP applications which aims to support users in creating
custom benchmarks of real-world DSP applications. The tool offers an API and Command Line
Interface (CLI).

We also find academic works proposing and evaluating techniques to improve DSP per-
formance in specific contexts. Nardelli et al. (NARDELLI et al., 2019) proposed heuristics to
calculate the placement of DSP applications in geo-distributed infrastructures. Wu et al. (WU

et al., 2018) propose reducing the intra-node inter-process communication latency by reducing
memory copy operations and waiting time for every single message. Garcia et al. (GARCIA et

al., 2022a) analyzes the impact of micro-batch and data intensity on DSP applications with
different parallel programming interfaces.

Regression Testing. Regression tests focus on verifying that each software modification does
not introduce problems in other system components. Regression tests are associated with the

100

maintainability objectives (detailed and discussed later in this section), as they bring more
security when making changes.

Table 18 – Summary of regression testing key points.

Regression Testing

Fundamental aspects: address regression bugs and application performance degradation intro-
duced by software evolution. Automated CI-based test infrastructure is necessary to perform these
tests.
Testing Purpose: Regression testing primarily addresses the testing purpose of Maintainability.
Tools adopted: Apache Griffin, Flink Spector, Flink Testing Utilities, Fluent Kafka Streams Tests,
Kafka for Junit, Kafka Streams Testing Utilities, MemoryStream, Passert, Spark Testing Base and
Spring Cloud Stream Test Support.
Variables to consider: Configuration changes, non-determinism of distributed systems,
microservices-based architectures, test coverage of input parameters, data privacy issues, and
cost of resources and time.
Microservices-based architectures: are widely adopted in DSP applications infrastructure but
bring peculiarities to regression tests. Building a regression testing infrastructure that supports
isolated microservice and integration tests with other components that may affect their functioning
is necessary.

Grey literature shows that practitioners are concerned about regression bugs and application
performance degradation caused by software evolution. To address these issues, practitioners
consider regression testing essential, and the need for an automated CI-based test infrastructure
to perform these tests has emerged. The Grey Literature findings also reported the robust
automation of the development infrastructure required for regression testing, including high
unit test coverage and Continuous Integration (CI) mechanisms. In the case of performance
regression tests, a trustworthy test environment is preferable to the production environment,
which increases the cost of test infrastructure.

While there is no specific formal literature on regression testing in the DSP context, related
works in real-time distributed systems, microservices architectures, and large-scale software
have been explored and discussed. Yamato (YAMATO, 2015) proposed a testing framework for
real-time distributed systems to prevent new bugs introduced by configuration changes. Babaei
and Dingel (BABAEI; DINGEL, 2021) tackled the non-determinism issue in distributed systems
regression testing with MRegTest. This replay-based framework facilitates deterministic replay
of traces and reduces testing costs by replaying executions that modify critical user-specified
variables.

Microservices-based architectures in DSP applications present challenges for regression
testing. Kargar and Hanifizade (KARGAR; HANIFIZADE, 2018) proposed an automated method

101

that integrates microservices regression tests into Continuous Delivery (CD) steps. Gazzola et
al. (GAZZOLA et al., 2022) propose a tool that monitors deployed service executions at run-time,
recording executions that can be later converted into regression test cases for future version
services. However, data privacy issues may arise when monitoring production execution, as
noted by the authors.

Academic studies have also explored the resource and time costs of running numerous
regression tests on large-scale systems, as shown in Orso et al.’s work (ORSO; SHI; HARROLD,
2004). Techniques such as minimization, selection, and prioritization have been developed to
address these issues. Minimization eliminates redundant test cases, and selection identifies
relevant test cases for recent changes, and prioritization orders test cases for early failure de-
tection (YOO; HARMAN, 2012; SULEIMAN; ALIAN; HUDAIB, 2017).

Property-based Testing. Property-based testing was reported as a technique adopted in the
DSP context to generate representative test cases based on variable properties and undergo a
refinement process called shrinking, which minimizes the number of inputs required to repro-
duce a failure. This method helps address the problem of missing real data for testing while
mitigating irrelevant data from random data generators. It is a low-cost strategy that can be
easily applied and yield good test coverage.

Table 19 – Summary of property-based testing key points.

Property-based Testing

Fundamental aspects: automatically generate representative test cases based on variable prop-
erties and refine them through a process called shrinking. It is a quick and inexpensive strategy
to get more relevant test data.
Related Challenge: It relates to the Obtaining Test Data challenge, as it is a test approach that
automatically generates test data, mitigating the problem of missing real data and generating
irrelevant data.
Tools adopted: ScalaCheck, StreamDatam and EctoStreamFactory property-based testing library.
Apache Flink and Apache Spark Streaming frameworks have property-based testing tooling based
on ScalaCheck.
Variables to consider: properties of the input data and the temporal logic to guide the generation
of random streams with time stamps.
Mocking API: The adaptation of property-based testing tools to generate mock API data for
unit and integration tests when API services are unavailable in testing environments.

Grey Literature shows that the DSP community is already aware of the benefits of the
property-based testing approach for the DSP context; it has also been documented in the for-
mal literature. Espinosa et al. (ESPINOSA et al., 2019) and Riesco et al. (RIESCO; RODRÍGUEZ-

102

HORTALÁ, 2019) have brought property-based testing tooling to the Apache Flink and Apache
Spark Streaming, respectively. These tools are based on the ScalaCheck library and use tem-
poral logic to generate random streams and verify time-related properties. Furthermore, API
testing is one of the uses of property-based testing, and the work of Karlsson et al. (KARLS-

SON; ČAUŠEVIĆ; SUNDMARK, 2020; KARLSSON; ČAUŠEVIĆ; SUNDMARK, 2021) exemplifies its
applicability for this purpose. Such use is also relevant for DSP, where APIs are increasingly
incorporated. Additionally, property-based tools can be adapted to generate mock API data
for unit and integration tests when API services are unavailable in testing environments.

Chaos Testing.

Chaos engineering addresses the question: “How much confidence can we have in the

complex systems that we put into production?”. Basiri et al. (BASIRI et al., 2016) defined
chaos engineering in modern distributed systems as a controlled experiment that measures
a system’s ability to operate under realistic conditions. Large-scale DSP, characterized by its
distributed hardware and software infrastructures with numerous potential fault variables, fit
well within the context of chaos engineering. Recognizing the impossibility of guaranteeing
constant infrastructure reliability, chaos engineering focused on preparing systems to function
in adverse conditions by accepting that failures are inevitable.

As the number of distributed software and hardware components grew, the likelihood of
runtime system abnormalities increased. Chaos engineering was reported in grey literature
as an effective technique for testing and verifying the fault tolerance of large and complex
distributed software systems. Practitioners expressed concerns about infrastructure failures
in production environments potentially causing application malfunctions. They implemented
testing practices where the system was intentionally subjected to failure to ensure that auto-
recovery mechanisms functioned satisfactorily.

Chaos engineering is attracting the attention of both industry and research, as it is a tech-
nique for exercising and verifying the fault tolerance of distributed, large and complex software
systems. Netflix employed the approach to testing the fault tolerance of microservices-based
infrastructures. The work by Tucker et al. (TUCKER et al., 2018) analyzes the implementation
of the chaos engineering techniques and reports the benefits generated for the company’s
business.

Chaos engineering has been explored in the formal literature in contexts associated with
DSP, such as cyber-physical systems (KONSTANTINOU et al., 2021), cloud infrastructure (TORKURA

103

Table 20 – Summary of chaos testing key points.

Chaos Testing

Fundamental aspects: reduce the likelihood of failures in production. Chaos test subjects the
applications to adverse conditions, such as network instabilities, hardware failures, and third-party
service instabilities, and tests their fault tolerance ability and recoverability.
Testing Purpose: Essentially, it is related to testing propouse Reliability.
Tools adopted: Chaos Monkey randomly terminates service instances to test their fault tolerance.
Jepsen allows the simulation of network partitions and faults to test the system’s consistency and
availability. Thundra is a serverless observability platform with a chaos engineering tool for testing
serverless applications’ fault tolerance. WireMock includes a feature for simulating network faults
to test the system’s fault tolerance.
Optimizing fault tolerance configurations: Chaos testing can be used to optimize fault toler-
ance configurations for DSP jobs, which can help balance performance and availability.
Variables to consider: Network instabilities, hardware failures, software failures, third-party ser-
vice instabilities, timing issues, resource utilization and QoS constraints.

et al., 2020), and containerized applications (SIMONSSON et al., 2021). Specifically, in the DSP
context, the work by Geldenhuys et al. (GELDENHUYS et al., 2021) proposes the Khaos tool.
This tool employs Chaos Engineering principles to allow automatic runtime optimization of
fault tolerance configurations for DSP jobs.

Chen et al. (CHEN et al., 2022) introduced a framework for adopting chaos engineering in
large-scale distributed big data systems. The framework focuses on fault tolerance, resilience,
and reliability and includes steps such as exception injection, exception recovery, system cor-
rectness verification, observable real-time data statistics, and result reporting. The work is
based on real industrial applications and draws from experiences introducing Chaos Engineer-
ing at the Swedish company ICA Gruppen AB.

Contract/Schema Testing. The schema works as a contract to specify the message format
in DSP systems, and validation consists of checking the compatibility of messages following
the schema. Reports in the grey literature warn that a lack of data schema correctness con-
trol can cause compatibility breakages in DSP applications. Schema issues can be caused by
programming errors, failure to communicate between development teams or schema updates.
The larger the system, in terms of subsystems interacting and third-party services involved,
the greater the chance of schema incompatibility failures

Practitioners recommend adopting unit and integration tests to validate that interfaces
follow the message schema. A compatibility fault tolerance approach is recommended for third-
party modules, such as external APIs. The ability to interoperate between different schema

104

versions to support schema evolution has also been identified. Schema registry management
tools, such as Apache Avro and Confluent Schema Registry, can provide compatibility models
among schema versions.

Table 21 – Summary of contract/schema testing key points.

Contract/Schema Testing

Fundamental aspects: Ensure that messages exchanged between different system components
comply with a specified message schema. This is essential for preventing compatibility breakages
in DSP applications, which can result in crashes or incorrect data processing.
Testing Purpose: Supports the Maintainability testing purposes, as it helps prevent contract
incompatibility caused by updates.
Tools adopted: Apache Avro provides functionality for schema evolution and backward and
forward compatibility. AWS Deequ supports both static and dynamic schema validation. Great
Expectations provides functionality for defining and validating data expectations, including schema
validation.
Variables to consider: message format, message source and destination, integration with third-
party systems, backward and forward compatibility, and recovery from errors related to schema
incompatibilities.

Data schema incompatibility is a common problem in distributed systems, and several re-
search projects have addressed it (BLANCHI; PETRONE, 2001; BAQASAH; PARDEDE; RAHAYU,
2015; FILIP et al., 2019; LITT; HARDENBERG; HENRY, 2021). DSP applications, which use APIs
extensively, also face API interface compatibility issues. In this matter, Bustamante and Gar-
cés (BUSTAMANTE; GARCÉS, 2020) addressed API incompatibility by adding an intermediary
service between IoT devices and API servers that identifies different protocol versions and
performs compatibility adjustments. Yasmin et al. (YASMIN; TIAN; YANG, 2020) proposed an
automatic verification approach to identify impacted operations by deprecated API elements,
collecting the OpenAPI Specification (OAS) format and performing a source code scan to
verify calls.

In the context of DSP, Corral-Plaza et al. (CORRAL-PLAZA et al., 2020) proposed an archi-
tecture for processing heterogeneous data sources that typically involve JSON, XML, YAML, or
unstructured raw data. To address recognizing and adapting to evolution changes, the authors
proposed five steps to transform heterogeneous data into simple events: Data Consumption,
Data Format Detection, Data Homogenization, Schema Generation, and Simple Event Gener-
ation. The architecture was evaluated in a real-world case study of IoT sensors, demonstrating
the ability to automatically process and analyze heterogeneous data. This work is also classified
as a fault tolerance approach as it provides automatic tolerance to schema changes.

105

5.5.1.4 RQ4. What are the strategies adopted by practitioners to obtain testing data?

In our GLR, we identified 65 quotes from 33 studies addressing issues on data for testing
DSP applications. Practitioners consider it essential to take test data seriously and recognize
the importance of having representative test data that closely resemble real data. Test data is
necessary at all levels of testing, and in each situation, there are different requirements. For
example, in unit testing, the data should enable finding corner cases, while in performance
testing, a considerable volume of test data is needed to stress the application. Questions
regarding data privacy and security emerged, and several strategies were listed. These strategies
typically involve using various synthetic data generators, historical or production real data,
and combinations of real and synthetic data. Table 22 summarises the key points of the
strategies for obtaining test data. The remainder of this section discusses the advantages
and disadvantages of the strategies and presents relevant works from the formal literature
associated with each strategy.
Historical Data. Practitioners consider using historical data for testing interesting because
it exposes the application to realistic scenarios and facilitates real-world bug reproduction in
a testing environment. In favour of using historical data, practitioners argue that real data
streams can be quite complex, making them difficult to reproduce manually or with automatic
generators. While there are advantages, several quotes also claim the impossibility of obtaining
real data due to privacy and security concerns. Data-related challenges were reported and
discussed in Section 5.5.1.1.

Furthermore, historical data may not provide adequate coverage for detecting bugs in the
future. Additionally, having access to historical data does not necessarily mean having a test
oracle, as they can only be inputs without corresponding expected outputs. Even when outputs
are available, the oracle is not guaranteed reliable. Also, historical data may not apply to new
features or versions of an application, rendering it incompatible. As a result, historical data
may not be sufficient for comprehensive testing, and complementary strategies for obtaining
data should be considered.

Even when there are no restrictions on the use of real data, there are technical challenges to
capturing and storing data streams because of the data’s high volume and speed. In this sense,
researchers propose solutions based on multiple services to efficiently collect and store massive
data stream (MALENSEK; PALLICKARA; PALLICKARA, 2011; ALSHAMRANI et al., 2020; LV; LIU; JIN,
2021). In the formal literature, no works explicitly address using real historical data for testing

106

Table 22 – Key Points of Strategies for Obtain Testing Data.

Strategies to obtain testing
data

Key points

Historical Data: It is real
stream data obtained from the
application in production.

• Exposes the application to realistic scenarios.
• Difficulties in obtaining historical data due to privacy and se-

curity concerns.
• May not provide coverage for detecting bugs in the future.
• Having historical data does not necessarily mean having a test

oracle.
• May not be applicable to new features or versions of an appli-

cation.

Production Data Mirror-
ing: Strategy based on redi-
recting a replica of input data
streams from the production
to the test environment. Com-
pares the outputs of two soft-
ware versions running simulta-
neously.

• The application is tested with real data.
• Test could be very time-consuming as there is no possibility of

speeding up the execution.
• Incurs costs associated with building and maintaining a replica

of the production infrastructure.
• Execution in "shadow mode" is a strategy based on an auto-

matic comparison engine to ensure that sensitive data remains
secure.

Semi-synthetic data: The
technique involves automatic
data generation methods
based on real data. Advanced
techniques are based on ex-
tracting statistical properties
from real data to establish a
data model to generate new
data.

• Suitable for customizing the data in order to contemplate more
complex test cases.

• Can be used to expand a limited amount of real data available.
• Address privacy issues, as semi-synthetic data generation tech-

niques focused on privacy preservation have been reported.

Synthetic data: Automatic
data generation. Various tech-
niques are available, ranging
from simple random data gen-
erators to sophisticated algo-
rithms for data generation.

• Take as input a formal description of the data schema to gen-
erate test data.

• Exploring information extracted from UML diagrams helps gen-
erate more representative test data.

• Generators employ various statistical methods that are config-
urable by the user. As a result, a solid understanding of statistics
is crucial to effectively utilize these tools and generate high-
quality test data.

DSP applications. However, in recent years, several works have been published proposing
techniques for anonymizing real data to bypass privacy issues while mitigating the data’s loss
of usefulness (BEGUM; NAUSHEEN, 2018; KENTHAPADI; TRAN, 2018; MADAN; GOSWAMI, 2018;
MAJEED; LEE, 2020; SHARMA; SINGH; REHMAN, 2020; HOSSAYNI; KHAN; CRESPI, 2021; SHREE

et al., 2022; VASA; THAKKAR, 2022).
Production Data Mirroring. We found descriptions of mirroring production data to a testing

107

infrastructure for evaluating new software versions. Our previous exploratory study (VIANNA;

FERREIRA; GAMA, 2019) also reported this approach. In this strategy, replicas of production
data streams are redirected to a server with the application under test. The advantage of
mirroring production data is to expose the application under test will to a real-world stream,
which is valuable for checking regressions in new application versions.

However, this approach also raises data privacy issues. In the Grey Literature, we identified
a proposed solution to maintain data privacy while mirroring production data. The [Source
89] describes an approach where an application was executed in ’shadow mode’, computing
results and automatically comparing them with the production version’s results. The result
comparison strategy should adopt specific statistical methods to compare results, as values
may vary widely due to various factors, even in accurately replicated environments.

This approach is helpful for testing without compromising data privacy, as an automatic
comparison engine ensures that sensitive data remains secure. It provided an alternative to
using real data for testing purposes while maintaining data confidentiality.

On the other hand, the tests are limited to cases where it is possible to compare results.
For instance, new features do not have comparison parameters because they are absent in the
previous version. We also observed that this type of test could be very time-consuming, as
there is no possibility of speeding up the execution. It also incurs costs associated with building
and maintaining a replica of the production infrastructure.

In the formal literature, we can relate this approach to differential testing, where the oracle
is the consistency between the outputs of executions of comparable systems (MCKEEMAN,
1998; GULZAR; ZHU; HAN, 2019). Although an older approach, it has been adapted and used
in the context of modern software. For example, the work by Godefroid et al. (GODEFROID;

LEHMANN; POLISHCHUK, 2020) employed it for regression testing of REST API services in
a cloud environment. A similar approach, known as A/B testing, has been adopted in the
industrial context. Large e-commerce companies like Netflix and Amazon apply it to evaluate
the impact of changes in business variables. This approach redirects a pool of users to a
variant version of the e-commerce site to measure the sales conversion rate caused by specific
changes (KOUKOUVIS; CUBERO; PELLICCIONE, 2016; SALEEM et al., 2019; RAHUTOMO et al.,
2020; WINGERATH et al., 2022).

In the background (Section 2.5) was described the work of Kallas et al. (KALLAS et al.,
2020), which brings the differential approach to testing DSP applications. We identified a
correspondence between the efforts of academia and industry in this regard. Although several

108

reports employ this approach for diverse testing purposes, none has mentioned its use as a
solution for performing tests with real data while maintaining data privacy, as described in the
grey literature.
Semi-synthetic data. The semi-synthetic data approach, also called hybrid data, automati-
cally generates test data based on real data. In the grey literature, it was reported to generate
a telephony data model from real data to create realistic fake data. Although we collected
only one practitioner report, there are several works in this direction in the formal literature.
Semi-synthetic data generation has been employed to target different application contexts,
such as smart grid, such as smart grid (LAHARIYA; BENOIT; DEVELDER, 2020) and health care
data (WANG et al., 2021). In general terms, this approach extracts statistical properties from
the data and establishes a model of the data pattern in order to feed automatic generators (LI

et al., 2016; POPIĆ et al., 2019; TAN; BEHJATI; ARISHOLM, 2019; BEHJATI et al., 2019; MANCO

et al., 2022).
For example, we bring the research by Tan et al. (TAN; BEHJATI; ARISHOLM, 2019), which

investigates machine learning techniques to generate synthetic, dynamic, and representative
test data. The proposed approach is based on building a statistically representative model
of a real (reference) population (TAN; BEHJATI; ARISHOLM, 2019). The work considers that
Recurrent Neural Networks (RNNs) and Generative Adversarial Networks (GANs) techniques
are suitable for synthetic data generation since these neural networks can learn the statistical
properties of data sets. The authors emphasize this approach’s ability to maintain data privacy
since the work was motivated to provide a solution for sharing test data between institutions
without compromising sensitive data. Although the technique has been pointed out as a way
to preserve data privacy, this statement is not valid in some business contexts where the data
distribution pattern is sensitive information.

Specifically promoting using semi-synthetic data to test DSP applications, Grulich et
al. (GRULICH et al., 2019) proposed an open-source out-of-order data stream generator. The
tool inputs a real data stream, including event timestamps, and simulates arbitrary fractions of
out-of-order tuples and their respective delays (GRULICH et al., 2019). The generation process
considers histograms and statistics on the temporal distribution of events. This approach is an
example of modifying real data to meet a specific testing purpose, in which case the purpose
was to test out-of-order events. Kim et al. (KIM et al., 2018) provide the method that gener-
ates data for performance testing using the frequency distribution of the real data streams.
Komorniczak et al. (KOMORNICZAK; ZYBLEWSKI; KSIENIEWICZ, 2022) also reported employing

109

semi-synthetic streams generated based on real-world data to evaluate concept drift detec-
tors. Although the focus is slightly different, the concept drift is within the scope of machine
learning applications in DSP, and the testing of detectors needs stream data. The evaluation
considered synthetic and semi-synthetic data, as the difference in effectiveness between these
data sets was a variable to be controlled.

Considering all the works cited, using semi-synthetic data seems to be a promising direction
to address privacy issues when testing DSP applications. Additionally, we emphasize that such
a technique can only be adopted when real data is accessible to generate these models.
Synthetic data. Synthetic data generation has been reported along with various tools to sup-
port this strategy. Generally, synthetic data generators take as input a formal description of the
data schema to generate test data. Although the data is random initially and only follows the
schema format specification, practitioners have also reported building more elaborate scripts
and implementing rules to generate more representative data. For example, these scripts enable
the developer to assign weights to the proportion of data generated for each field. It was also
reported that some tools, such as Kinesis Data Generator, provide specific features to con-
figure temporal aspects, thus making it possible to define data periodicity through statistical
distribution functions with user-configurable parameters.

In the formal literature, Popić et al. (POPIĆ et al., 2019) state that the primary motivation
for adopting this strategy is the unavailability of real data for privacy reasons, and on the other
hand, the author points out the low ability to generate realistic test data as the weakness of
the strategy. In this sense, researchers have directed efforts to develop techniques to improve
test data generation. As the grey literature reports, formal research also investigates using
statistical resources to improve the generated data (MANNINO; ABOUZIED, 2019). For the
same purpose, some works explore information extracted from UML diagrams (JAFFARI; YOO;

LEE, 2020; LAFI; ALRAWASHED; HAMMAD, 2021) and the application’s symbolic execution (YE;

LU, 2021).
In line with approaches based on statistical models, Mannino and Abouzied (MANNINO;

ABOUZIED, 2019) proposed the Synner, a synthetic data generator based on specifying the
statistical properties of data to generate real-looking synthetic data. With this tool, the devel-
oper specifies statistical properties through a data generation language or rich visual resources.
Data samples, histograms, and basic statistics, such as mean and standard deviation, are con-
stantly updated in a spreadsheet view as the user interacts with the interface. The tool makes
it possible to generate random data or data fitting well-known or custom statistical distribu-

110

tions. In addition, it also provides a mechanism to add noise and statistical properties to the
relationship between fields.

Another path reported in the formal literature is analysing information from UML diagrams
to complement and guide the generation of test cases. For example, the approach by Jaffari
et al. (JAFFARI; YOO; LEE, 2020) used the activity diagram to generate more representative
test data, while Lafi et al. (LAFI; ALRAWASHED; HAMMAD, 2021) employed natural language
processing to extract information from the use case description to guide data generation.
The analysis of modelling documents is an interesting method to be investigated, as such
diagrams describe aspects like time, concurrency, and state characteristics, which are relevant
for triggering user-defined events in DSP application tests.

Looking at the data stream context, Ye and Minyan proposed SPOT, a test data generator
based on symbolic execution for DSP applications. This approach generates test data by solving
path conditions obtained by mapping test inputs during execution and thus identifying the
respective execution path (YE; LU, 2021). SPOT also supports temporal issues, such as the
interval between data and the data order variation by iterative algorithms. The study evaluation
aimed to compare the SPOT symbolic execution approach with the property-based testing
approach implemented by the DiffStream (KALLAS et al., 2020) and FlinkCheck (ESPINOSA

et al., 2019) tools (both tools were discussed in the Background Section 2.5). In summary,
the evaluation showed that SPOT test data has benefits in triggering program failure more
efficiently and with better path coverage than property-based solutions. The approach proposed
by Ye and Minyan has shown promise in generating higher-quality synthetic datasets for testing
DSP applications.

Focusing on machine learning in the DSP context, Iglesias et al. (IGLESIAS et al., 2020) pro-
posed a synthetic data generator named MDCStream. The tool generates temporal-dependent
numerical datasets to stress-test stream data classification, clustering, and outlier detection al-
gorithms. MDCStream provides functionalities to create challenges related to non-stationarity,
concept drift, and algorithm adaptiveness. The tool allows the developer to configure several
cluster-specific characteristics of the generated data, such as the range of dimensions, the
number of elements, shape, orientation, statistical distributions, dependencies, feature correla-
tions in the cluster, and cluster rotations. MDCStream is a practical alternative for generating
test data for machine learning algorithms that process data streams and is also helpful for
discovering new classes, clusters, and anomalies.

Despite being considered an automatic and first-hand approach as a quick alternative to

111

generating test data, a manual effort to customize the data generation cannot be ignored.
The effort may involve configuring various generator parameters and specifying the data’s
statistical distributions. Furthermore, generating good test data depends on the professional’s
knowledge of statistical distributions and complex data patterns to exercise certain test target
functionality.

5.5.1.5 RQ5. What are the tools and under what circumstances are they used in the context

of DSP application testing?

We compiled a list of 50 tools from GLR sources mentioned by practitioners as employed
in testing activities in the context of DSP. For each cited tool, we verified its existence and
compatibility with the purpose for which it was mentioned. Appendix E contains this list. It
includes the tool’s name (Tool Name), its authorship (Author), software license type (License),
and association with testing approaches outlined in Section 5.5.1.3 (Main Testing Approaches

Support). The table also distinguishes if a tool is specifically designed for DSP (Focused

on data stream context?) and the number of grey literature citations each tool received
(Document Citations). The remainder of this section discusses relevant aspects of these tools.

We identified that 26 tools were developed for the DSP context, while the other 24 are
tools for other contexts but also used in some DSP testing activity. For each tool, we looked
in the official documentation for additional information about license, authorship, functional-
ities, and purpose of use, and then we made notes about this information. We also observed
that of the 50 tools listed, only four are proprietary, while the others are some variations of
open-source licenses. In part, the predominance of open-source software can be explained by
adopting a business model around open-source software, as reported by August et al. (AUGUST;

CHEN; ZHU, 2021) and Shahrivar et al. (SHAHRIVAR et al., 2018). In this model, companies con-
tribute to developing open-source tools with the community while commercializing software
customizations, training, certifications, consulting, support, and infrastructure services. The
companies Data Brics and Confluent are examples of this business model, as they provide ser-
vices centred on open-source DSP frameworks such as Apache Spark and Apache Kafka. Even
the case of Confluent is explicitly mentioned in the work of August et al. (AUGUST; CHEN; ZHU,
2021), and it is categorized as an open-source distributor business model by Riehle (RIEHLE,
2021). This model encourages the community to participate in developing and improving var-
ious tools around these technologies. The Embedded Kafka tool is an example of a tool with

112

hundreds of community contributions.
Another aspect observed is the participation of large companies versus individuals in devel-

oping and maintaining the tools. The work by Suhada et al. (SUHADA et al., 2021) suggests that
companies’ motivation to participate in open-source projects comes from the strategy based
on Open Innovation to capture new external ideas and solutions. At the same time, individual
contributors seek personal and career development. The selected tools with large companies
behind the creation or maintenance are JMeter (FOUNDATION, 2021b) from Apache Founda-
tion, Flink Spector (OTTOGROUP, 2019) from Ottogroup, Fluent Kafka Streams (BACKDATA,
2021) Tests from Backdata, Kinesis Data Generator (INC., 2021) from Amazon Incorporation,
and Ksql-datagen (INC., 2021d) from Confluent Incorporation. Alternatively, there are also
contributions from individuals who initially create the tools and later make them open-source
projects to be maintained by the community and supporting companies. Examples of individ-
ual contributions include Kafka for Junit (GüNTHER, 2021) by Markus Günther, Spark Testing
Base by Holden Karau (KARAU, 2021), Awaitility Library (HALEBY; COMMUNITY, 2021) by
Johan Haleby, Ansible (DEHAAN; INC., 2021) by Michael DeHaan, and Sangrenel(ALQUIZA,
2021) by Jamie Alquiza.

In order to identify the use of the tools in the context of testing DSP applications, we
analyzed the practitioners’ comments extracted from the grey literature and the official doc-
umentation regarding the features. Following, Table 23 bring the tools grouped according to
their main uses in testing DSP applications, and then we associate them with the challenges
raised by RQ1.

5.5.2 Implications for research and practice

This study benefits researchers and practitioners by summarising knowledge fragmented
in various grey sources in a single document and including related scientific papers to com-
plement or confront findings. In general, this work’s main contribution is narrowing the gap
between academia and the industry. Throughout the discussion, we have included observations
considering implications for practice and research. The following subsections summarize the
most relevant implications.

113

Table 23 – Tools, mains uses and associated challenges

Main uses of tools in testing DSP applications &
Associated challenge

Tool Reference

Testing Utilities provide various utility resources to
support testing activities, such as integration with
other testing tools, command-line interfaces, domain-
specific test specification languages, test annotations,
and scripts for testing automation in CI environments.
Test utilities help to address the challenge The complex-
ity of DSP Applications from Section 5.5.1.1, as they
bring functionality to deal with DSP characteristics.

ScalaTest(COMMUNITY, 2021b), Jack-
daw Test Machine (CIRCLE, 2021),
Ducktape (INC., 2021c), Kafka Streams
Testing Utilities (FOUNDATION, 2021c),
Spark Testing Base (KARAU, 2021),
Embedded Kafka Cluster (COMMUNITY,
2021a), Flink Spector (OTTOGROUP,
2019), Flink Test Utils (FOUNDATION,
2021a), Kcat (APACHE, 2021), and
Kafka Datagen Connector (INC., 2021d).

Infrastructure automation supports the management
of complex test infrastructures, including automation
features such as code deployment, network configura-
tion, cloud management, infrastructure as code, com-
mand line interfaces, and remote management. In the
context of DSP testing, these tools can be used to build
CI environments, enable automated test execution, and
help developers address the challenge Testing Infras-
tructure presented in Section 5.5.1.1.

Jenkins (JENKINS, 2021), Ter-
raform (HASHICORP, 2021), Ansi-
ble (DEHAAN; INC., 2021) and Confluent
CLI (INC., 2021b).

Data Generation supports generating test data and
provides features such as the generation of data based
on the schema registry, the configuration of timestamps,
shaping the fake data distribution into real data or cus-
tom distribution, and DSL for specifying data proper-
ties. These tools help practitioners to deal with the chal-
lenge Obtaining Test Data discussed in Section 5.5.1.1.

Ksql-datagen (INC., 2017), Kafka
Datagen Connector (INC., 2021d),
StreamData (LEOPARDI; VALIM, 2021),
Avro Random Generator (INC., 2021a),
Mockaroo (LLC, 2021), Ecto Stream
Factory (BARCHENKOV, 2019), Faker.js
(Java Script) (MARAK, 2021), Faker
(Python) (FARAGLIA, 2021), and Kinesis
Data Generator (INC., 2021).

Time issues provide specific functionality to deal with
time issues, such as controlling the current time of the
function under test. Such tools help practitioners to
deal with the challenge Time Issues identified in Sec-
tion 5.5.1.1.

Awaitility (HALEBY; COMMUNITY, 2021)
(library that facilitates asynchronous
testing by a DSL to express test expec-
tations), Flink Test Utils (FOUNDATION,
2021a), Kafka Streams Testing Utili-
ties (FOUNDATION, 2021c) and Spark
Testing Base (KARAU, 2021).

5.5.2.1 Implications for practice

This document provides helpful information for practitioners to guide decision-making con-
cerning designing and implementing tests in DSP applications. The critical information for
practitioners is the list of testing purposes, challenges, approaches, tools, and strategies for
obtaining test data. We have included throughout the discussion valuable notes for practition-

114

ers, such as advantages, disadvantages, and specific details regarding the techniques and tools
presented. We also associate the tools and testing approaches with the testing objectives and
challenges, which helps the practitioner consider using the presented techniques and tools.

Additionally, this document includes complementary content extracted from the academic
literature (usually not consulted by practitioners), such as new testing approaches and tools
created in the academic context. For example, regarding test data generation, the formal
literature contributes with approaches based on machine learning to improve the quality of
generated testing data and preserve data privacy. The cited formal literature also introduces
the mutation testing technique to increase the effectiveness of test suites. All of the selected
content, which is related to each other, commented on, and linked to the formal literature, has
resulted in a robust and reliable document for practitioners. In summary, practitioners have
a starting point of study covering many aspects related to DSP application testing in this
document.

5.5.2.2 Implications for research

From the research point of view, the work contributes by selecting and summarizing the
intrinsic practice content fragmented into several informal documents. Such information is now
part of the academic documentation and is available for future research works. Furthermore,
we identified research studies corroborating with practices in the industry. For example, when
discussing synthetic data generation, we reported grey literature and formal literature efforts
on using statistical resources to improve the generated data.

We have also identified research-based techniques that can be evaluated for use in the
testing of DSP. For instance, analysing modelling documents can help improve test data
generation quality since these diagrams describe aspects such as time, concurrency, and state
characteristics. On the other hand, we identified in the grey literature approaches not yet
explored in the formal literature. For example, no papers cover equivalent testing techniques
based on production data stream mirroring, as reported in Section 5.5.1.4. The approach
resembles differential testing with production data but preserves data privacy by an automatic
conferencing mechanism called shadow mode.

Finally, we highlight two promising issues for future research that lack formal literature. The
first is data privacy in testing activities since it is a topic of increasing importance these days.
Although there are several proposed solutions, the problem has several facets to be explored.

115

The second is fault tolerance testing approaches since these DSP applications should always
keep running and recover from runtime failures automatically. In particular, chaos engineering
is a testing approach that can be further explored for this purpose. We also emphasize the
need for research involving experiments to validate the effectiveness of testing approaches in
the context of DSP applications. These studies are essential for systematizing testing processes
and consolidating the testing techniques reported in this paper.

5.5.3 Threats to Validity

Although we have conducted our research based on consolidated guidelines for GLR and
followed expert recommendations, this study is still subject to validity threats typical of this
chosen method. For example, limitations in searching for grey literature and subjectivity and
inaccuracies when selecting sources, extracting data, and analysing results. Since the study
preparation, we have been concerned with these possible threats to validity, which we have
systematically identified throughout the process and promoted mitigation strategies. We or-
ganized our threats according to the classification schema proposed by Ampatzoglou and
colleagues (AMPATZOGLOU et al., 2020): Study Selection Validity, Data Validity, and Research
Validity.

Study Selection Validity.

This category includes threats to the validity of the search process and studies filtering
steps. For the search process, we adopted a general-purpose search engine, but the criteria for
selecting and ranking results from these tools are unclear and may yield biased or irrelevant
results. We seek to mitigate this issue by conducting targeted searches on domains popu-
larly known to contain technical content produced by practitioners, such as Stack Overflow,
Medium, and LinkedIn Pulse. In addition, to mitigate possible search engine inefficiencies, we
performed snowballing, which added 53 more sources to the review.

At the end of the search process, we identified some content republished in different
domains but with slight variations, updates, or increments. While it is common practice for
authors to mark them as “reposted” and include the link to the original post, not all do. To
identify similar textual content, we adopted the tool WCopyfind4, which identified 15 cases of
duplicate content.
4 <https://plagiarism.bloomfieldmedia.com/software/wcopyfind/>

https://plagiarism.bloomfieldmedia.com/software/wcopyfind/

116

In the source selection phase, threats are related to elaborating and applying inclusion and
exclusion criteria. For example, conflicting or very generic criteria can hamper the selection
process. To mitigate these issues, we built an initial set of criteria based on the field’s literature
and then held discussions among authors to refine the criteria. To minimize the chances of
participants misunderstanding the criteria, we prepared a document of guidelines and examples
and conducted a training session and a pilot study. Only after aligning the divergences did
the selection process begin. Each source from the initial set was analyzed independently by
two reviewers. In case of disagreement, a third reviewer participated in conflict resolution by
discussion or a tie-breaking vote. Furthermore, we acknowledge a potential bias in the search
string used for RQ3, as detailed in Table 2. This search string, focused on specific types
of tests, may have restricted the breadth of our results. While this limitation was identified
post-study, we report it here for transparency and completeness.

Data Validity.

This category addresses threats to the validity of the data extraction and synthesis phase.
The choice of variables to be extracted may influence the subsequent study phases. To mitigate
this threat, we built a set of categories based on terms associated with the RQs and the
categories adopted in previous studies. In addition, throughout the extraction, we promoted
the refinement and inclusion of newly emerged categories. To minimize interpretation bias
in the extraction process, we conducted a pilot study, pre-extraction meetings to align the
understanding of the categories, and discussions during extraction to resolve conflicts. Also,
the extraction process was paired, in which two authors performed the extraction and mutually
reviewed each other’s work.

Finally, the first author performed the analysis, and to minimize analysis bias, periodic
discussions were held between all authors. Besides, to support the analysis, we considered
quantitative data from the categories to identify the most relevant topics and searched the
academic literature to confront or confirm the findings.

Research Validity.

Choosing the wrong methodology is a threat to the study as a whole, so we selected ours
in consultation with experimental software engineering experts and confirmed that the method
is suitable with GLR adoption checklists from Garousi’s guidelines. Once the methodology was
chosen, we invited a specialist in Grey Literature to participate in the research by supporting
the application of the method. Inadequately formulated or non-comprehensive RQs can bias

117

the research or make it irrelevant. So, the goals of this article were based on topics identified
in a previous study we conducted (VIANNA; FERREIRA; GAMA, 2019) based on grounded theory,
which included data collected with practitioners through a survey (101 participants) and 12
interviews. In this study, we promoted discussions among authors to define the RQs. Although
we selected more than 154 sources, the results may not be generalizable as they are based on a
fraction of the existing content. To mitigate this threat, we reinforced our findings by comparing
them with the literature related to each find. Study non-repeatability is a well-known threat;
therefore, we have documented the protocol employed and described each process step in the
article. Documents and data necessary to reproduce the study are available online (VIANNA et

al., 2022).

5.6 CONCLUSIONS

This work promoted research into practitioners’ knowledge of DSP application testing by
addressing grey literature in the field. The GLR selected 154 from the initial 1667 sources, and
then the content of interest was extracted by coding technique in order to obtain answers to
the RQs.

Below, we list the main results obtained according to the RQs. RQ1 The challenges for
DSP application testing: (1) The complexity of DSP Applications, (2) Testing Infrastructure
Complexity, (3) Time issues, and (4) Obtaining Test Data. RQ2 The main testing purposes
identified (1) Functional suitability, (2) Performance efficiency, (3) Reliability, and (4) Main-
tainability. RQ3 The main test approaches reported: (1) Performance Test, (2) Regression
Test, (3) Property-based test, (4) Chaos test, and (5) Contract/Schema Testing. RQ4 The
strategies adopted by practitioners to obtain test data: (1) Historical Data, (2) Production
Data Mirroring, (3) Semi-synthetic data, and (4) Synthetic data. RQ5 We reported 50 tools
used in various testing activities, which are used for the automation of test infrastructure, test
data generation, test utilities, time issues, load generations, mocking, and others.

In the discussion, we included observations regarding the findings of the grey literature
while associating academic articles in order to complement, confirm or confront them. In
short, the review of grey literature showed that the industry has advanced in the practice of
testing DSP applications and has proposed techniques and tools to meet their demands. We
even reported approaches and tools developed by the industry but not reported in the formal
literature that could be the subject of research investigation. At the same time, we identified

118

that academia has also been promoting advances in the subject. Some academic contributions
are aligned with what has been developed by practitioners in the industry. In contrast, others
bring complementary advances that can benefit the industry.

Finally, this study is the result of applying proper research methodologies combined with the
effort to search, select and analyze content scattered in many informal documents produced
by practitioners and published on the internet. The main contribution is the summarization of
various knowledge related to the DSP applications test, which is made available in a document
organized for consultation by practitioners and researchers in the field.

5.7 SUMMARY

This chapter presented the results of the GLR, which aimed to map and synthesize industry
knowledge and experience in testing DSP applications. Searches were conducted using Google’s
regular search engine and in IT specialized websites, resulting in 154 grey sources. The key
findings include:

• Testing Challenges: the complexity of DSP applications, test infrastructure complexity,
timing, and data acquisition issues.

• Testing Objectives: functional suitability, performance efficiency, reliability, and main-
tainability.

• Testing Approaches: Performance Testing, Regression Testing, Property-Based Testing,
Chaos Testing, and Contract/Schema Testing.

• Strategies for Obtaining Testing Data: Historical Data, Production Data Mirroring, Semi-
Synthetic Data, and Synthetic Data.

• Tools: The study reported fifty tools used for automating infrastructure, generating test
data, addressing timing issues, and load generation, among others.

This study contributed to the thesis by providing a deep mapping of practical knowledge,
relating it to formal literature, and offering an information base for developing the guidelines.

119

6 TESTING GUIDELINES FOR DATA STREAM PROCESSING APPLICATIONS

This chapter presents the testing guidelines for DSP applications, constituting the main
contribution of this doctoral thesis. The guideline development process is described in Sec-
tion 3.3. Initially, we introduce the commented guidelines, which include explanations, justifi-
cations, and references pertinent to each guideline. Subsequently, we discuss the results of the
guidelines’ evaluation process.

6.1 THE GUIDELINES

As outlined in the methodology (Section 3), this section introduces the V2 version of
the guidelines, a refined iteration of the V1 version following the evaluation stage (refer to
Section 6.2). For practitioner convenience, a user-friendly version of the guidelines is accessi-
ble at <http://datastreamtesting.space>. This version is succinct, adopts an informal style,
and aligns with the language typically found in IT technical publications online. This section
presents the same guidelines and explanations that contextualize the recommendations and
related references. A brief overview of each guideline is provided in Figure 6.1, highlighting
their central elements. The guidelines are organized into seven items, and each is numbered
using the format #G[1 to 7], as follows:

Section 6.1.1 - #G1 Information Collection: This section focuses on the collection of
pertinent application and business context information to support test development.

Section 6.1.2 - #G2 Establishment of Testing Objectives: This section provides a
questionnaire and guidance for identifying and ranking testing objectives.

Section 6.1.3 - #G3, #G4, and #G5 Resource Planning: These sections address the
planning of human, financial, and time resources, respectively.

Section 6.1.4 - #G6 Development of a Test Data Strategy: This section presents
key observations regarding test data effectiveness and outlines various data acquisition
strategies.

Section 6.1.5 - #G7 Consideration of the Particular Issues of DSP: This section ad-
dresses specific issues in DSP application testing and recommends strategies.

http://datastreamtesting.space

120

Section 6.1.6 - Provides a scenario exemplifying the use of the guidelines.

Figure 15 – Guidelines steps overview

6.1.1 Colleting Information

In order to address the emerging complexities of testing DSP features preemptively, it is
advisable to incorporate test planning into the early stages of project design, a well-established
practice supported by literature, including works by Baresi and Pezze (BARESI; PEZZE, 2006),
and Taley and Pathak (TALEY; PATHAK, 2020). In this sense, #G1 emphasises the importance
of collecting pertinent information for tests, such as comprehending the project’s business
context, determining parameters needed for test preparation, anticipating adverse conditions
and fault tolerance scenarios, and generating technical documentation.

During the requirements elicitation process, it is essential to collect and analyse the most
pertinent requirements and application characteristics to support test development (EBERT;

RAY, 2020). It allows testers to clearly understand quality requirements, prepare the required
type of testing, establish testing priorities, and set the appropriate environment for testing. For
instance, the specification of functional requirements can provide input and expected output
details for creating test cases. At the same time, non-functional requirements outline desired
performance characteristics, response time, expected data volume, and other key information
for conducting performance tests (RAHMAN; REZA, 2020). Furthermore, characterising adverse

121

conditions under which the software must perform is necessary, as such information supports
developing fault tolerance tests.

Guideline #G1-D advocates for producing documentation that anticipates information
needed to facilitate testing activities, and all testing-relevant information should be docu-
mented and made accessible to testers. In this matter, we emphasise the importance of models
and technical diagrams to support test development, as they assist testers in comprehending
complex software-intensive systems (SCHIEFERDECKER; HOFFMANN, 2012; TIWARI et al., 2021).
For instance, UML diagrams such as activity, sequence, and state machine diagrams are helpful
as they can express concurrency and state characteristics of DSP applications (AHMAD et al.,
2019; SHIROLE; KUMAR, 2021; SHIROLE; KUMAR, 2023).

In some situations, planning tests from the project’s inception may not be possible, and
the application might already be deployed in production. For these cases, if the existing docu-
mentation does not provide the necessary information for test preparation, it is recommended
to collect the required information retrospectively.

#G1 - Collect information

A. Understand the application context: In the planning phase, get a solid understanding of your
project’s business context. Identify relevant characteristics that can guide your testing decisions. This
could include determining the desired testing objectives and quality characteristics. SBE (Specifica-
tion by Example) aids understanding of the application’s context by developing sample data covering
critical use cases.

B. Gather parameters needed for test preparation: Collect information needed for test preparation,
such as expected inputs and outputs, response time, and expected and maximum data throughput
rates. Test-Driven Development (ATDD) promotes a collaborative environment and helps ensure
that crucial information for testing is gathered early on, as it involves stakeholders, including devel-
opers, testers, and business representatives, in defining acceptance criteria. Section 6.1.1.1 presents
a list of suggested information to be collected.

C. Identify potential issues: Understand adverse conditions and fault tolerance scenarios. These could
include service interruptions, fluctuations in hardware resources, network fluctuations, variations in
demand, and potential failures. Identify probable factors that hinder testing, such as timing issues
and non-determinism. Scenario-based testing could support the specification of fault tolerance issues
by describing scenarios of adverse conditions and related tolerance tests. Business-targeted planning
of fault tolerance strategies is essential, as different businesses have varying tolerances for DSP
issues.

D. Document your process: Testing-relevant information should be documented and accessible to

122

testers. Produce technical documentation that anticipates information needed for testing activities,
such as UML activity, sequence, and state machine diagrams, which express the inherent char-
acteristics of DSP. Such documentation might include details about concurrency and operation
states, supporting testers in understanding complex, software-intensive systems. BPMN notation
can also be employed to describe DSP workflows, facilitating communication with business ex-
perts. The Imixs-Workflow tool integrates a BPMN workflow engine with Apache Kafka, facilitating
DSP-based workflow development.

E. Testing people should get involved: Include a test specialist, such as a quality assurance expert,
during the information-gathering phase in order to ensure the collection of test-relevant information
early on, thus minimizing potential issues arising from a lack of such information in later stages.

F. Balance agility and robust planning: The agility of the development process should not compro-
mise the depth and quality of testing in DSP projects. For example, inadequate quality requirements
testing specifications and insufficient integration testing can result in the discovery of defects at
the end of the software life cycle. Large-scale and complex DSP applications require well-mapped
requirements for testing.

6.1.1.1 Information to be collected in the initial phases of the project.

Below, we present a list of several information that can be collected in the initial phases
of the project. Clearly, the list includes much information that does not apply to all projects,
so the recommended use is to filter by the compatibility with the target project.

(1) Identifying message formats and schema structure.

(2) Mapping data stream producers and consumers.

(3) Identifying dependency of third-party services (APIs, data sources): Include details about
data source reliability, consistency, and frequency of updates.

(4) Mapping the stream data process that leads to automatic business decisions/actions and
manual decisions via dashboards.

(5) Checking whether the business model is compatible with data post-processing in down-
time scenarios: Identify alternative data processing strategies for maintaining business
continuity.

(6) Mapping response times, throughput rates, and time-out durations.

(7) Data validity: Duration of data retention in cache.

(8) Potential data loss considerations: Include strategies for data recovery and redundancy.

123

(9) Identifying transaction semantics: Atomicity, Durability, Ordering Guarantees, and Exactly-
Once Processing.

(10) Identifying data availability for test purposes (historical, synthetic, or custom example
data): Evaluate the representativeness and quality of the test data.

(11) Confidentiality and privacy features: Assess compliance with international standards like
GDPR and industry-specific regulations. What are the PII (Personally Identifiable Infor-
mation) in the data set?

(12) Error Handling and Recovery Procedures: Document how the system handles failures,
errors, and retries.

(13) State Management in Stream Processing: Identify how the state is managed, maintained,
and accessed in the system.

(14) Scalability and Load Balancing Strategies: Understand how the system should scale and
manage varying loads.

(15) Data Transformation and Processing Logic: Detail the logic and algorithms used in
processing the data streams.

(16) Version Control and Schema Evolution: How schema changes are managed and versioned
over time.

6.1.2 Establish test objectives

In order to plan the test strategy and allocate resources effectively, it is essential to estab-
lish clear testing objectives. Guideline #G2 addresses recommendations to support establish-
ing test objectives. Each application has unique characteristics that demand distinct quality
requirements. For instance, some business contexts prioritize result correctness over perfor-
mance, while others may tolerate occasional inaccuracies. We recommend first evaluating
and correlating the application’s characteristics with the desired quality categories. Establish-
ing testing objectives requires identifying the most critical quality aspects of the application,
which depends on understanding the quality from the business perspective involved (PAWLAK;

PONISZEWSKA-MARAŃDA, 2020; EVERETT; JR, 2007).
To facilitate the setting of testing objectives, we provide a set of questions associated with

the ISO/IEC 25010 model’s quality categories (ISO/IEC 25010, 2011). In the GLR study (VIANNA

et al., 2023), we identified relevant quality categories for the DSP context: Functional Suitabil-

124

ity, Performance Efficiency, Reliability, and Maintainability. These questions highlight quality
aspects typically relevant to the DSP context, enabling the identification of the most critical
elements of the target application context. Additionally, we include pertinent observations, test
recommendations, and suggested strategies. We recommend discussing these questions with
business analysts on the client side to support the assessment of potential business impacts
due to varying quality levels across different categories in the software quality model.

#G2 - Establish Test Objectives.

A. Evaluate software quality requirements concerning the application’s characteristics: Discuss
with stakeholders the Guiding questions to establish test objectives (Section 6.1.2.1) to prioritise
testing objectives according to quality categories: functional suitability, performance efficiency, re-
liability and maintainability. When establishing testing objectives, consider the trade-offs between
the different categories of the quality model. For example, by focusing on reliability, you may be
reducing performance efficiency.

B. Comprehend quality from the perspective of the business involved in the application: Ask
about the ideal behaviour expected from the application in the context. Map the types of failures
and categorize them according to the degree of impact on the business.

C. Involve stakeholders in the testing objective setting process: Business analysts, developers,
DevOps, testers, clients, and users. Discussing these issues with client-side business analysts will
help assess potential business impacts due to varying levels of quality across different categories of
the software quality model.

6.1.2.1 Questions to support establishing test objectives

The careful establishment of test objectives is paramount for test planning, as it helps
guide strategic choice and aids in prioritising the most pertinent activities. In this section, we
present questions to facilitate discussions on test objectives, focusing on various aspects of
the ISO/IEC 25010 quality model (ISO/IEC 25010, 2011). The aim is to guide practitioners
and project management teams in determining their priorities and strategies. We recommend
involving diverse stakeholders such as clients, business context experts, developers, testers,
and DSP specialists in these discussions, as outlined in #G2-C.

Functional suitability

Q-A How critical is the correctness of the results delivered by the application?

125

(1) Metrics: Define and establish metrics for assessing the correctness of the application’s

output.

(2) Prioritisation: Rank the application’s features based on the importance and criticality of

their correctness. This ranking will guide test planning and ensure that the most crucial

features receive proper attention.

(3) System-level Testing: Pay special attention to system-level tests that involve all inte-

grated modules, dependencies, and services. In DSP applications, various system-level

factors, such as concurrency, asynchrony, latency, glitches, node crashes, out-of-order,

lost, and duplicate messages, can impact the correctness of results.

Q-B How critical is the accuracy of results that the application must present?

(1) Metrics: Establish metrics and acceptable thresholds for the accuracy of results. In some

DSP application contexts, data may be subject to fluctuations (e.g., sensor data or geo-

location) and some degree of variation in result accuracy may be acceptable in others

not.

(2) Non-Determinism: Acknowledge that non-determinism in DSP can affect results accu-

racy. #G7-B brings recommendations to face this issue, such as establishing acceptable

thresholds for result variations in the test oracle, conducting multiple test executions

observed for functionalities impacted by variations in results, applying statistical analysis

techniques to determine if the variations of the results are acceptable, and others (check

details in Section 6.1.5.2).

(3) Monitoring: Use application monitoring tools, such as Grafana, to gather result accuracy

metrics and facilitate the analysis of the application’s performance.

Performance efficiency

Q-C How critical are the time requirements (e.g., delay, response time)?

(1) Parameters: Identify the relevant time parameters for the application context and specify

thresholds for these parameters based on business requirements.

(2) Clock Control: Manage the application’s clock in test environments, as specialised time

handling is required for testing purposes.

(3) Simulate real-world: Time factors are vulnerable in real-world conditions, such as network

latency, hardware overhead, and communication overhead with third-party services. Thus,

the test environment should closely simulate the production environment conditions.

126

(4) DSP Frameworks: Typically, DSP frameworks provide control functions and interfaces in

their test utilities to address time-related issues, such as clock simulation and manipu-

lation of processing time and watermarks. Consider these aspects when selecting DSP

frameworks.

(5) Detailed Recommendations: Check details recommendations regarding time issues in

Section 6.1.5.1.

Q-D What is the importance of meeting the requirements of quantities and types of resources the

application utilises when performing its functions?

(1) Resource Estimation: Estimate the available resources for running the application in

production (e.g., memory, CPU, server instances, and pay-per-use services).

(2) Network Considerations: Consider the network resources and characteristics required to

run the application, such as latency, throughput, and bandwidth.

(3) Testing: Conduct system and infrastructure-level testing using resources allocated for the

production environment. Employ monitoring tools to evaluate whether the application

operates as expected with the estimated resources.

(4) Monitoring: Utilise hardware resource monitoring tools such as Zabbix, Paessler PRTG

(network-focused), Nagios, New Relic (cloud-based monitoring), and Intel Platform Anal-

ysis Technology (dedicated hardware monitoring).

Q-E How critical is efficient resource usage?

(1) Scaling Strategy: For efficient resource utilisation, strategise dynamic hardware scaling,

which is essential in DSP infrastructures that frequently rely on elastic cloud services

with variable, demand-proportionate costs.

(2) Testing Scenarios: Establish diverse scenarios involving hardware resource usage (i.e.,

low, medium, and high demand). Conduct tests to optimise settings for each scenario.

(3) Code Optimisation: Efficient resource usage may also involve optimising application code.

Perform tests at all levels to identify resource-intensive operations and optimise them.

(4) Profiling: Use built-in DSP platform features to monitor metrics, track consumer lag,

and log requests.

Q-F How important is it for the application to meet its maximum capacity limits?

(1) Parameters: Define parameters and characterise the application’s operation at maximum

capacity. Determine the frequency and duration of maximum capacity exposure.

127

(2) Stress Test Scenarios: Create maximum stress scenarios and execute stress tests.

(3) Monitoring: Use tools to monitor application performance and hardware resource usage

during testing.

Reliability

Q-G How important is the application’s reliability during regular operation?

(1) Reliability Parameters: Establish parameters to measure application reliability during reg-

ular operation.

(2) Defining Standards: Specify what constitutes acceptable and unacceptable situations or

issues during regular operation.

(3) System-Level Testing: Conduct system-level testing that simulates regular operating con-

ditions to verify compliance with reliability parameters.

Q-H How important is the application’s operational availability of the application?

(1) Availability Metrics: Determine the required application availability rates. Specify the

acceptable frequency and maximum duration of interruptions.

(2) Fault Tolerance Tests: Perform fault tolerance tests in order to verify the application’s

availability under various scenarios.

(3) Mitigation Strategies: Identify the causes of application unavailability to propose effective

mitigation strategies. For instance, failures in third-party services can result in application

unavailability, so preparing a backup service is recommended.

Q-I How important is the application’s resilience to adverse conditions, such as hardware or software

failures, network oscillation, and sudden increase in data volume?

(1) Adverse Conditions Definition: Detail adverse conditions and clarify whether the ap-

plication can function with limited capabilities under such scenarios, specifying which

functionalities would continue or stop.

(2) Performance degradation approach: Specify if the application’s performance might dete-

riorate under adverse conditions and delineate the potential extent of this degradation.

(3) Fault Tolerance Testing: Conduct fault tolerance testing to identify scenarios of adverse

conditions where the application can still perform as required.

(4) Chaos Engineering: Employ chaos engineering in testing to assess application robustness,

using an experimental setup to simulate failures like network degradation, node crashes,

third-party service outages, and reduced computational resources.

128

Q-J How important is the application’s ability to recover affected data and restore the desired

system state in the event of an interruption or failure?

(1) Interruption Scenarios: Characterise potential service interruption scenarios. Specify the

recovery time from outages and whether data from the outage period can be discarded

or requires further processing.

(2) Recovery Plan: Establish a disaster recovery plan and processes to promptly reestablish

application services.

(3) Fault Tolerance Testing: Perform fault-tolerance tests to verify autonomous recovery

mechanisms and application and data integrity following recovery.

Maintainability

Q-K How important is it for the application to evolve without introducing defects or degrading

quality?

(1) Evolution Plans: Establish application evolution plans. This includes outlining future

functionalities, changes in performance needs, and data volume growth.

(2) Regression Testing: Before deploying new releases, perform regression testing for result

correctness and potential performance degradation. This process requires automation,

skilled personnel, time, and funding.

(3) Contracts Integrity Tests: Conduct thorough tests to confirm the integrity of message

contracts, as schema changes frequently trigger regression failures.

Q-L How important is it to minimize maintenance efforts during application evolution, considering

testing resources and the workload of developers/testers?

(1) Test Automation: Automating tests can significantly reduce the workload on developer-

s/testers while ensuring consistency and extensive coverage in testing, hence minimising

maintenance efforts.

(2) CI/CD Pipeline: Implementing a continuous integration and delivery pipeline to catch

bugs and errors early in the development process, minimising maintenance efforts.

(3) Test Case Maintenance: Consider maintaining automatic test cases, as constant changes

in application scenarios require regular refactoring. Focus on automating tests for stable

components and avoid creating excessive test cases during project maturation to prevent

unnecessary effort wastage.

129

6.1.3 Resource Planning

The associated costs of testing present a significant concern for the software industry.
In some scenarios, testing expenses can account for a significant proportion of resource us-
age (HYNNINEN et al., 2018; JONES; BONSIGNOUR, 2011; MAILEWA; HERATH; HERATH, 2015).
This is especially valid for distributed systems like DSP applications, where testing may in-
volve complex cloud infrastructures, large data processing workloads during performance tests,
specialised tools and services and a team of skilled professionals (MOUTAI et al., 2019). In a
perfect scenario, we would have access to unlimited resources for software testing, including
a dedicated team of experts, a generous timeline, and extensive funding. However, real-world
conditions typically impose limitations.

Hence, it is crucial to utilise resources as efficiently as possible to meet the project’s quality
requirements. A recommended approach involves accurately estimating test resources during
the early stages of the project. This facilitates the allocation and prioritisation of activities
following the testing objectives. The #G3, #G4 and #G5 recommend proactive planning of
the allocation of human, financial, and time resources to prevent test ineffectiveness, inflated
project costs, lack of resources for priority activities, and schedule delays.

Figure 16 – Resources overview

130

We propose three categories of resources: time, financial, and human. It is important to
note that these resource categories are interrelated. For instance, a team with limited testing
skills might need extra time allocated for learning and a larger budget to provide training
and consultancy. Conversely, a highly skilled team, when complemented by adequate funding,
can produce satisfactory outcomes even within a constrained timeline. With this in mind, we
introduce Figure 6.1.3, which illustrates the compatibility of resources combined into a single
variable with testing activities. As resources increase, we can expect more comprehensive test
coverage, increased automation in test infrastructure, the ability to develop more complex
test cases, and a more realistic test environment. In the following subsubsections, we discuss
specific aspects of each resource category.

6.1.3.1 Human Resources

Our previous studies (VIANNA; FERREIRA; GAMA, 2019; VIANNA et al., 2023) underscored
that testing DSP applications requires a broad range of competencies, such as expertise in test
environment automation techniques, a solid understanding of DSP characteristics and specifici-
ties, familiarity with DSP frameworks, knowledge of the target application context, concepts of
data science and analytics, and proficiency in cloud technologies. Automation of the test infras-
tructure is particularly crucial in the context of DSP, with Garousi et al. (GAROUSI; MÄNTYLÄ,
2016) indicating that tester skill level is a significant consideration in the automation of test
tasks. Furthermore, a qualitative study evaluating 1000 job ads in the field of software testing
underscored the recurrence of soft skills, such as strong communication, critical thinking, team
collaboration, problem-solving, and planning and organizing abilities (KASSAB et al., 2021).

Considering the relevance of professionals’ skills on test quality within the DSP context,
Guideline #G3 focuses on human resource planning. It is essential to ensure that the right
individuals are involved in testing and have the necessary skills and expertise to execute the
planned testing activities. During the planning stage, we recommend conducting a survey of
professionals and assessing the skill sets required to perform each test activity. In case the
current test team’s skills prove inadequate, team training, additional learning time, and the
inclusion of more professionals should be carried out to fill in the skills gaps. Moreover, the
available workload must also be considered, as it impacts the extensiveness of test coverage
and the execution of labour-intensive activities.

131

#G3 - Sync Team Skills with Testing Strategy

A. Skill Sets: Ensure that the testing activities align with the skills of the testing team. Typical skills for
testers in the DSP context may include fundamental DSP understanding, DSP architectures, DSP
platforms, distributed systems knowledge, real-time analytics, data modelling, performance, fault
tolerance and resiliency testing, and debugging. Additionally, it is crucial to have team members
skilled in developing and automating testing infrastructures, such as DevOps, particularly within
Continuous Integration/Continuous Deployment (CI/CD) environments.

B. Training: If necessary, consider providing training and development opportunities to enhance the
test team’s skills. Promote a culture of continuous learning within the team to stay updated with
evolving DSP technologies and methodologies to anticipate needed skill sets. Motivate participation
in DSP workshops, seminars, or conferences for hands-on learning and networking. Training data-
specialized quality assurance professionals can be a long-term plan within companies.

C. Workload: Prioritize workload allocation based on the criticality of the testing activities. To ensure
balanced task distribution, consider the available workload when determining the number and type
of test tasks that can be assigned.

D. Domain Knowledge: Ensure the team understands the nuances of the specific industry context
where the DSP application will be deployed (finance, telecommunications, marketing, social media
feeds, multiplayer games, etc). For example, in the context of finance, many rules and security
considerations play a significant role in shaping the testing strategy.

Finally, every project has unique characteristics to consider when forming the test team.
Besides skills, the team formation process should also consider test objectives and the trade-offs
among human, financial, and time resources.

6.1.3.2 Time Resources

Time pressure, as reported by studies from Deak et al. (DEAK; STÅLHANE; SINDRE, 2016)
and Kuutila et al. (KUUTILA et al., 2020), can significantly hinder testing activities. Interview-
based research conducted by Florea and Stray (FLOREA; STRAY, 2020) revealed that the primary
stress source for testers is time scarcity. This pressure can lead to teams rushing, compressing,
or even sacrificing crucial activities due to a shrinking timeframe. Therefore, the careful plan-
ning and optimisation of time resources become pivotal to prevent delays, relieve time pressure,
and avoid contractual breaking. Guideline #G4 provides recommendations for planning and
allocating time resources.

132

#G4 - Time Allocation Planning

A. Allocate time in the project schedule for critical activities, including the development of test
cases, configuration of environments, creation of test datasets, execution of tests, and analysis of
results. In summary, there are two dimensions of time resources: planning time and execution time.

B. Consider the complexity of the activity, the time required for test execution, and the number of
test cases involved when estimating the time required for each testing activity.

C. Prioritise activities based on test objectives and project characteristics, as detailed in Guideline
#G2.

D. Develop the testing schedule by considering the priority and estimated time required for
each testing activity, the available time in the schedule, and the feasible workload.

E. Employ automated test case generation techniques, such as property-based tests, to get many
basic test cases quickly.

F. Gradually initiate the automation of the testing infrastructure as the application gains stability,
prioritising the most time-consuming activities.

G. Accommodate Time-Consuming Tests in Agile Development Processes: System-level tests,
especially those involving large-scale volumes of data such as performance tests, demand more
accurate time allocation. Tests involving external dependencies (data sources or third-party services)
and teams must be carefully scheduled and coordinated with those managing these services, which
generally deviates from the flow of sprints. Therefore, adapt your agile process to accommodate
time-consuming tests, particularly in large-scale projects.

During the planning phase, detail the time for each activity and prioritise them according to
the testing objectives (supported by #G2 and questions from Section 6.1.2.1). Favour activities
with high-priority objectives. Moreover, consider the time required for different types of tests.
For instance, custom test cases for complex functionalities may require more preparation time,
while automated test case generation can be a faster alternative.

Investing in automation, both in test infrastructure operation and automated test case
generation, can optimise time. Garousi et al.’s MLR (GAROUSI; MÄNTYLÄ, 2016) highlights
that time-saving is a key factor influencing test automation decisions. Consider employing the
property-based testing technique for test case generation, which offers good coverage with
relatively low time investment.

Running DSP applications in system-level tests can be time-consuming due to the op-
erational work needed to configure different services for each test round. Despite the initial
time and effort required for infrastructure automation, it can yield substantial time savings in

133

the long run. We recommend a gradual approach to building the automation of the testing
infrastructure, initially developing scripts for the most critical activities.

6.1.3.3 Financial resources

Financial resources play a crucial role in testing DSP applications. These resources are crit-
ical for various testing activities, including hiring and training professionals, purchasing consul-
tancy services, acquiring software and tools, contracting outsourced services, hiring hardware,
and maintaining and evolving the test infrastructure.

It is crucial to consider financial resource allocation strategies early in the project planning
phase to ensure sufficient resources and pave the way for testing activities. For this reason,
we present Guideline #G5, which provides insights for planning the allocation of financial re-
sources. The financial resource allocation strategies should take into account the test objectives
priority established following Guideline #G2.

#G5 - Plan Financial Resource Allocation

A. Test Objectives Alignment: Ensure that the allocation of financial resources aligns with the testing
objectives outlined in #G2, and then prioritise investments that drive the most significant impact
on achieving these objectives.

B. Comprehensive Costing: Account for all potential costs related to the testing process, including
infrastructure (hardware, cloud services), personnel (in-house tester salaries, training fees), consul-
tancy contracts, contracting of services and tools (e.g., test frameworks and third-party services used
in tests), and the ongoing maintenance and evolution of the testing infrastructure. We highlight
that testing expenses are particularly significant in large-scale projects, especially if it is necessary
to replicate large and complex infrastructures in test environments faithfully.

C. Cost-Reduction Strategies: Implement strategies to minimise costs, consider strategies such as
infrastructure automation, optimising the use of on-demand paid hardware resources, employing
open-source tools, and utilising mock infrastructure and services. Evaluate the cost-effectiveness of
cost-reduction strategies against test efficacy.

D. Policies on the Use of Cloud Resources: Machine allocation for testing on cloud-based test-
ing environments can represent a high financial cost to the project. In this sense, we recommend
establishing internal policies to schedule and execute financially intensive tests.

E. Financial Impact of Load Testing: Usually, load testing is a financially demanding activity requiring
an infrastructure similar to the production environment. This is particularly crucial in projects with

134

very restrictive Service Level Agreements (SLAs). Be prepared to identify whether your project will
require resources for this type of testing.

F. Test to Validate the Architecture: It is essential to validate architectural decisions in the DSP
context, especially in large and complex projects where adjusting the architecture at advanced phases
can incur considerable costs.

It is worth remembering that the DSP application testing infrastructure, which typically
involves cloud-distributed infrastructures with numerous microservices, can be financially de-
manding (ASSUNCAO; VEITH et al., 2018).

Cloud testing infrastructures, which can mirror the live environment or be scaled-down
replicas temporarily employed for test runs, present an opportunity for cost savings (MOUTAI et

al., 2019). The DevOps development philosophy, which encourages the automation of testing
infrastructure (BATTINA, 2020), is a particularly effective strategy. Using automation tools
and scripts to manage hardware and software resources, conduct tests, and collect and assess
results may bring significant results in resource optimisation. However, this approach requires
skilled professionals capable of implementing test automation strategies that reduce resource
consumption without compromising test effectiveness.

6.1.4 Developing a test data strategy

Test data must effectively identify application defects, confirm feature functionality as
expected, and ensure adherence to non-functional requirements. Guideline #G6 focuses on
test data, providing relevant insights and recommendations to assist the development of test-
ing data. Following this, Section 6.1.4.1 explores data quality characteristics relevant to the
DSP application testing context. Lastly, Section 6.1.4.2 enumerates, describes, and discusses
relevant aspects of recommended strategies for test data acquisition.

#G6 Develop a test data strategy

A. Consider data quality attributes to assess your test data set: Accuracy, Credibility, Currentness,
Compliance and Confidentiality. Check Section 5.1 for detailed descriptions ISO/IEC 25012 data
quality attributes. The Great Expectations tool is recommended for evaluating the test data quality,
especially synthetically generated. Furthermore, this tool can monitor and issue data quality alerts
for the production pipeline.

B. Combine diverse test data sources and generation techniques to enhance data variety and
mitigate potential biases associated with individual techniques.

135

C. Do not over-rely on historical data, as its effectiveness might be limited due to many never
manifested defects in production. Historical data’s currentness may also be compromised, as it does
not exercise new features and could become incompatible with future application versions.

D. Improve historical data efficiency by utilizing semi-synthetic data generation strategies such
as mutation, machine learning and manual customization. Check Section 6.1.4.2 for details.

E. Maintain vigilance over the data schema by employing tools such as Apache Avro to prevent
contract breaks in your pipeline and Apache Delta to manage and minimize issues throughout the
schema’s evolution.

F. Adhere to privacy regulations, such as GDPR, during test data handling to prevent legal issues.
Utilize approaches like machine learning and shadow mode running to safeguard confidential informa-
tion when mirroring production data, as outlined in Section 6.1.4.2. Some examples of anonymization
techniques are redaction, replacement, masking, crypto-based tokenization, bucketing, date shift-
ing, and time extraction. However, we emphasize that these processes are labour-intensive and
time-consuming, as scripts and procedures must be tailored for each case.

G. The property-based data generation is a cost-effective approach, as it is fast and easy to
apply, making it suitable when time and resources for generating test data are limited.

H. High-quality documentation is a valuable asset when real data is unavailable. Natural lan-
guage processing algorithms can be employed to extract information from documentation to supply
automatic approaches with relevant parameters, generating more accurate synthetic data.

6.1.4.1 Data Quality Characteristics

ISO/IEC 25012 (ISO/IEC 2008) outlines data quality attributes in software development.
In this section, we selected the most relevant characteristics to address test data quality for
DSP application testing.

(1) Accuracy: Data accurately represents the intended attribute values of a concept or
event within the application context. DSP applications’ operations and filters can be
highly sensitive; testing such functionalities relies on the precision and relevance of values
corresponding to the variable’s concept.

(2) Credibility: This concerns the data’s authenticity or whether it is believable as real-world
data from the application’s usage context. Addressing credibility in the DSP context
is more complex due to additional factors, such as the temporal distribution of data,
frequency of variable values, and intervals between messages. Furthermore, the 4Vs of

136

Big Data (volume, velocity, variety, and veracity) introduce unique aspects to stream
data.

(3) Currentness: This relates to the data’s age validity. Data characteristics can change
over time in the DSP context, making them ineffective for testing (similar to how con-
cept drift affects ML algorithms). Furthermore, application updates may cause data to
be incompatible with newer application versions. Establishing policies for data lifecycle
management can help address these issues.

(4) Compliance: This involves data adhering to standards and conventions. DPS appli-
cations can consist of numerous entities interacting through various message patterns.
At this point, test data must be compatible with the data structures in use. Adapta-
tions may be necessary, and message schema management tools provide functionalities
to provide compatibility between different message structures. In addition to structure,
there are issues with standards and formatting not captured by schema management, like
incompatible text encodings, GPS data coordinate patterns, variations between metric
and imperial systems, and conflicts between signed and unsigned data.

(5) Confidentiality: This concerns protecting sensitive information. DSP applications often
operate in contexts involving confidential or sensitive data, such as personal, geo-location
data, and financial data. Strategies to maintain the confidentiality of real data include
anonymization, masking, using artificial intelligence techniques, and mirroring production
data in shadow mode (details in Section 6.1.4.2).

6.1.4.2 Test Data Strategies

Following, we present the primary strategies for acquiring test data applicable to the DSP
context, along with pertinent observations and recommendations for each. These strategies
were identified through the GLR. The following subsubsection summarizes the essential aspects
of each strategy.

Historical Data. Historical data are assumed to be real data extracted from the application
in production, which should also include metadata regarding temporal properties such as origin
timestamps, network delay, and processing time. Historical data provides an initial model
of data streams in the production environment; however, it does not guarantee a reliable

137

test oracle. Historical data may consist of inputs without expected outputs, and any existing
outputs could be unreliable. Thus, generating and validating outputs for building a test oracle
is necessary; this activity depends on documentation that includes data characterization and
examples of correct outputs. Even with an extensive set of historical data, it may not provide
comprehensive coverage for potential future bugs due to the application’s complexity and
the infinite possibilities of latent bugs that may still arise in production. Moreover, historical
data does not exercise new functionality and may be incompatible with new message schemas.
Conceptual characteristics of the data may also change over time, diminishing the effectiveness
of historical data in simulating real conditions (similar to concept drift in ML).

Production Data Mirroring.

In this approach, replicas of the input data stream are redirected from the production
environment to the testing environment, enabling the application to be tested with real data.
This strategy allows the detection of critical failures that could disrupt the application’s exe-
cution and facilitates the comparison of performance parameters and results accuracy across
different application versions. Additionally, this strategy can be employed while ensuring pri-
vacy and data security through mechanisms such as shadow mode, which conducts automatic
verification of parameters and execution results. Shadow mode, a finding from the GLR, is
discussed in more detail within the article. Implementing this technique requires the availability
of resources to replicate the infrastructure and skilled professionals to build the verification
mechanism.

Synthetic Data

This type of data is generated automatically without using real data in the process. Tech-
niques within this category range from simple random data generation to more sophisticated
approaches based on Artificial Intelligence. Below, we present the main techniques:

(1) Property-based Data Generation: generates data by exploiting the message contract
properties of the data stream. The technique can generate immense amounts of data,
which can be refined by a process called shrinking, where the objective is to find the
minimum data set to manifest the failure. this is a low-cost technique that requires effort
to prepare and is, therefore, quick and easy to apply. The following tools support this
technique: FlinkCheck, ScalaCheck, StreamData, and Ecto Stream Factory.

(2) Statistical Properties-Based Generation: results in more accurate data by configur-
ing the generated data’s statistical distribution and the temporal variations in the data

138

distribution. This approach requires a solid understanding of mathematics and statistics.
Custom scripts can be built using statistical libraries like Scipy in combination with fake
data generation libraries. Pay-per-use services like Mockaroo offer ready-to-use solutions
where users simply specify data generation properties.

(3) AI-Based Generation: Natural language processing algorithms can extract information
from project documentation, providing valuable input for machine learning algorithms in
generating more meaningful data.

Semi-synthetic data.

This approach combines synthetic data generation with real-world data and may also
involve customization steps. This strategy can be beneficial for increasing test coverage of
historical data and adapting data to address more complex test cases.

(1) Mutation: This process generates new data by slightly altering the values of existing
data. These minor modifications increase data diversity, reflecting the variability and
complexity of real-world data while preserving the essential characteristics of the original
data.

(2) Machine learning: This method employs machine learning algorithms to extract fea-
tures from an existing dataset and create models for generating new data. It can be
used to expand limited test datasets, produce data variants to enhance test coverage
and preserve real data privacy. Implementing this technique relies on skilled professionals
in the field of machine learning.

(3) Manual customizations: This process involves refining data to test functionalities that
depend on a specific set of conditions, which synthetic data may not be able to trigger.
Customizations can be achieved through iterative script execution processes and manual
adjustment of generation variables until the desired result is achieved. This approach
requires a professional who understands the application’s context and has access to
comprehensive documentation detailing the functionalities.

6.1.5 Particular aspects of Data Stream Processing

This section addresses the specific aspects inherent in DSP applications that must be
considered in test planning and execution. Within Guideline #G7, we highlight three particular

139

issues to testing in the DSP context: timing issues (#G7-A), the non-deterministic nature of
distributed DSP (#G7-B) and fault tolerance (#G7-C). For each element, we provide a brief
explanation followed by pertinent observations and suggested testing strategies.

#G7 Be aware of particular issues in data stream processing application testing

A. Keep in mind time-related factors during testing, such as message ordering, timeouts, delays,
and response time requirements. We recommend practices like controlling the system clock to
simulate the production environment’s timing characteristics, accelerating the clock to speed up
testing, and adjusting the processing time interval to maintain a balanced result precision and
computational load. Test the system’s ability to handle out-of-order data, a common occurrence
in DSP applications. Utilize a checkpoint system to preserve consistent snapshots of all timer
states. Consider the clock control features present in stream processing platforms and tools like the
Awaitility library to synchronize operations during testing. For a more comprehensive discussion on
time-related concerns, please refer to Section 6.1.5.1.

B. Do not neglect the non-deterministic behaviour of DSP, which can cause the application to
deliver varied results across multiple executions. Recommended approaches include the deterministic
replay to identify and manage non-deterministic variables during testing and the creation of test
oracles by setting acceptable thresholds for result variations. Cogitate adopting chaos engineering
to check the system’s robustness under non-deterministic conditions. Testers should also be aware
of common non-deterministic bugs, such as race conditions, ordering issues, state inconsistencies,
and problems related to lost, duplicate and delayed messages and timeouts. Additional information
concerning non-determinism matters can be found in Section 6.1.5.2.

C. Fault tolerance is a significant concern in DSP applications. In this sense, Chaos Engineering
is the primary strategy for testing fault tolerance and system recoverability. Identifying appropriate
fault tolerance mechanisms and testing whether they work suitably is also essential. Common fault
tolerance mechanisms in the DSP context are infrastructure redundancy, scalability of hardware and
network resources, service redundancy, operation downsizing, application version rollback, operations
rollback, and message contract compatibility. Section 6.1.5.3 provides details on fault-tolerance
mechanisms.

6.1.5.1 Time Issues

Testing time-related aspects in DSP applications presents a significant challenge due to the
importance of timing in aspects such as message ordering, late events, timeouts, response time
requirements, timed aggregation or joining operators, data lifetimes in stateful operators, con-
current processing, and network characteristics like latency. Testing DSP applications requires

140

understanding how time operates in production and testing environments. In production, the
timing characteristics of data stream messages are inherent to the business context. However,
these timings will differ in the test environment and can affect the validity of test results.
Following, we propose some recommended strategies for handling specific timing issues.

(1) Clock Simulation: Controlling the system clock in the test environment is essential to
emulate the time aspects of the production scenario as closely as possible. This feature
is particularly useful for testing temporal windows, as the number of messages in each
window can vary depending on the intervals between messages. The same applies to
testing algorithms and functions that evaluate time factors. Be aware of how the event
generation frequency in your test environment could influence test outcomes.

(2) Speeding up the clock: Speeding up the clock in the test environment is a valuable
strategy to minimize the duration of tests. Many stream processing platforms provide
functions that allow for clock manipulation, including skipping certain test cycles, gen-
erating artificial watermarks, and configuring event timestamps to match an accelerated
timeline. However, it’s necessary to balance speed with result accuracy when employing
this approach. Excessive acceleration of the clock may lead to losses in precision, which
could obscure potential issues in the application. Essentially, if the test clock runs too
fast, bugs tied to specific timing scenarios may go undetected.

(3) Adjusting the Processing Time Interval: Calibrating the processing time interval is
also crucial in testing DSP applications. Longer intervals can yield inaccurate results,
while shorter intervals result in more frequent updates and more accurate results but at
the expense of increased computational overhead.

(4) Checkpointing Mechanisms: This is a valuable mechanism that periodically stores
consistent snapshots of all states in timers and stateful operators, including connectors,
windows, and any user-defined state. Platforms like Apache Flink come with built-in
checkpointing features. This approach provides valuable state data to reproduce condi-
tions in specific testing scenarios.

(5) Testing Asynchronous Operations: Asynchronous operations are particularly tricky
to test, as firing an event may involve timeouts and manipulating states stored in state-
ful operators. Testing these operations requires special attention due to their non-linear

141

execution, and it’s crucial to ensure that your testing environment can accurately mon-
itor, manage, and validate these operations. One recommended tool for handling asyn-
chronous operations is the Awaitility library, as it supports testing asynchronous opera-
tions by synchronizing these operations during the test, enabling the test to wait until
certain pre-set conditions are met.

6.1.5.2 Non-determinism

The non-determinism of DSP applications adds a layer of complexity to the testing pro-
cess. The potential for different results to be produced in multiple runs complicates the result’s
consistency and the establishment of accurate test oracles. Non-determinism manifests at the
system level when numerous variables contributing to non-determinism are present simul-
taneously. Several characteristics intrinsic to DSP applications, such as stateful operations,
window-based operations, concurrent operations, and out-of-order messages, make applica-
tions inherently non-deterministic. DSP application functionalities often involve complex pro-
cesses, encompassing multiple sequential and concurrent transformations. They may also rely
on temporal windows and keep numerous shared states (DÁVID; RÁTH; VARRÓ, 2018). Such
functionalities tend to exhibit variation in their results when subjected to fluctuating network
delays or changes in message order from data producers, complicating the construction of
reliable test oracles.

Based on our GLR, we advocate for the deterministic replay approach. This strategy aims
to identify and manage the variables that contribute to non-determinism, allowing for greater
control during test execution (BORODAY; PETRENKO; GROZ, 2007; LEESATAPORNWONGSA et

al., 2016; DIAZ; SOUZA; SOUZA, 2021; CHEN et al., 2015; BABAEI; DINGEL, 2021). We recom-
mend conducting several system-level tests to secure consistent and accurate results over time.
These should subject the application to varying loads and delays, thus ensuring result repro-
ducibility and accuracy. The construction of test oracles initially necessitates the determination
of acceptable thresholds for result variations. Then, statistical methods should be applied to
ascertain whether the observed variations adhere to the predetermined limits. Furthermore,
adopting chaos engineering practices could help identify the system’s behaviour under non-
deterministic conditions. Lastly, automated testing tools should help to conduct repeated tests
under different conditions efficiently. These recommended practices should assist in overcom-
ing the challenges of non-determinism in DSP applications. Below, we summarized the main

142

testing recommendations related to non-determinism.

(1) Test Oracle Construction: Establish acceptable thresholds for result variations during
test oracle construction. Then, statistical methods can be used to validate whether the
observed variations align with the predetermined limits. The tool Great Expectations
provides a feature for setting data variation thresholds in order to monitor data quality.

(2) Deterministic Replay: This approach involves managing and identifying variables con-
tributing to non-determinism, thus providing better control during test execution.

(3) Chaos Engineering: In order to check results consistency, experiment repeated tests
run application tests under non-deterministic variables like out-of-order messages and
network and data volume oscillation.

(4) Consider Typical Bugs Related to Non-Determinism: Watch out for typical non-
determinism bugs, such as race conditions, ordering issues, state inconsistencies, lost,
duplicate or delayed messages, and timeout-associated bugs.

(5) DSP platforms provide features to deal with some aspects of non-determinism:

First, event time processing and watermarks manage out-of-order and late-arriving data,
allowing the treatment of issues arising from delays in messages caused by oscilla-
tions caused by non-deterministic factors. Second, state management and exactly-once-
processing semantics maintain consistency in processing.

6.1.5.3 Faul Tolerance

DSP applications run uninterruptedly 24/7 operations valuable to the company’s busi-
nesses. Therefore, this application must keep running in adverse conditions with disaster re-
covery capabilities to self-recuperate from crashes. In addition to application construction
failures, such as a bug resulting from a programming error, we should also be concerned with
failures arising from glitches and interruptions or oscillations of computational resources, net-
works and third-party services. For an application to be fault tolerant, it is necessary to build
tolerance mechanisms. Such mechanisms involve first the autonomous ability to identify fail-
ures when they occur or predict failures about to emerge and then the action to prevent or
reverse failures.

143

In this context, the testing aims to verify the fault tolerance mechanisms, ensuring they can
operate correctly under abnormal scenario conditions. Chaos Engineering plays a significant role
in testing fault tolerance and system recoverability. It involves subjecting the DSP application to
a controlled set of abnormal scenarios and verifying whether the system can restore checkpoints
and resume regular functionality. Tools like the Thundra, Chaos Monkey and WireMock allow
for injecting errors, network oscillations, randomly terminating service, and simulating a range
of possible failures to assess their impact. This process provides valuable insights for improving
fault tolerance and recovery mechanisms by identifying potential weaknesses in the system.
Below, we list and describe some examples of fault tolerance contingency that can be adopted
in the context of DSP applications:

(1) Infrastructure redundancy: This strategy involves having redundant backup servers
ready to take over in the event of primary server failure. DSP platforms often provide
easy-to-use integrated replica features. However, this strategy may be financially costly,
and budget availability must be evaluated. Furthermore, the number of replicas increases
system latency due to synchronisation overhead.

(2) Scalability of hardware or network resources: Upon detecting an increase in demand,
adjust resources to keep the service running within specified performance requirements.
Elastic scalability is a feature of cloud infrastructures that performs this task. This
mitigation action must consider the strategy for allocating financial resources. To scale
up a broker cluster horizontally, consider the scaling capabilities of other services like
APIs, consumers and producers to ensure that real-time processing is not affected.

(3) Service redundancy: This strategy involves having alternatives for backup services
that are automatically activated when a third-party service fails. For example, backup
providers can easily replace SMS, encryption, and freight calculation services if they
become unavailable.

(4) Operation downsizing: In the face of a failure that cannot be automatically circum-
vented, the impacts of different mitigation strategies must be evaluated, such as tem-
porarily interrupting the service, deactivating certain functionalities, or continuing to
operate under extraordinary conditions. The mitigation strategy depends significantly
on the application’s context and will be tied to business decisions. For example, an e-
commerce company can extraordinarily pre-authorize purchases from frequent customers

144

when a particular payment service is temporarily offline. Conversely, a bank would prefer
to turn down sensitive services when some security features are offline.

(5) Version rollback: In the face of unstable behaviour or failures after the release of a
new version, a mechanism for easy version update rollback is recommended to quickly
contain problems in the production environment.

(6) Operations rollback: when an operation has been delivering incorrect results due to
a bug for some time. First, it is necessary to identify the period when incorrect results
were delivered to reprocess them with a backup infrastructure. In addition, issues related
to legal aspects and the business context must be evaluated, as reprocessing operations
a posteriori can be useless or harmful. For example, credit card companies attend legal
procedures for reversing and correcting incorrect charges.

(7) Contracts compatibility: Large and complex DSP applications can have complex data
schema with many message contracts. Updates can cause contract incompatibilities,
especially if many modules interact and several teams promote changes in these modules
and third-party services. Mitigation involves maintaining backward compatibility with
contracts until contract updates propagate. Among the solutions in this context, we
mention Avro, which supports compatibility for evolving contracts over time.

(8) Fault Tolerance Tools: Chaos Monkey, developed by Netflix, is acknowledged for
introducing random infrastructure failures. WireMock can simulate faults in HTTP-
based services like APIs by mocking responses. Jepsen performs black box testing and
fault injection on unmodified distributed data management systems. Thundra provides
error injection capabilities, allowing for a more controlled testing environment where
specific failure modes can be simulated and analysed.

(9) Data Loss Strategy: In addition to the traditional mechanisms provided by DSP plat-
forms to prevent data loss, another solution consists of synchronizing all incoming mes-
sages in a data lake. However, this approach might not be suitable for high-volume and
intensive data scenarios.

145

6.1.6 Example scenario

To illustrate the application of the guidelines, we developed a test plan for a stream
processing context based on these guidelines. The scenario, titled “Stream Data on an Electric
Scooter Rental Application” is grounded in a real-world case derived from an interview with
participant P10 of our exploratory study (VIANNA; FERREIRA; GAMA, 2019).

6.1.6.1 Colleting Information

We started planning the testing strategy with #G1, which drives the information-gathering
phase to understand the application’s business context and identify important information for
testing efforts.

#G1-A Context: The application processes stream data from each scooter in the fleet. The
stream data includes real-time GPS coordinates, battery level status, and events related to
the scooter’s usage (e.g., ride start/end). Features related to DSP include scooter release and
blocking events (due to low battery and maintenance), geofencing areas where scooters are
permitted for use and parking, monitoring data for battery levels, and real-time location data.
The performance requirements are not stringent, as there is a certain tolerance for response
time. The volume of data does not significantly scale since there is a fixed number of scooters.
Minor inaccuracies, slight delays in data, out-of-order data, and loss of some location data
do not constitute serious issues. However, the availability of the stream processing service is
critical, as it would affect the scooter rental operation.

#G1-B Collecting Parameters for Testing: The expected response time for the stream
processing operations during regular operation is 3 seconds. The data volume refers to 10,000
scooters distributed in multiple cities, each transmitting a stream of location data and battery-
level information.

#G1-C Characterising Adverse Conditions and Fault Tolerance Scenarios: The pri-
mary concern is the intermittent nature of mobile internet, which can result in communication
delays and feature timeouts.

146

#G1-D Producing Testing Documentation: Activity, sequence, and state diagrams are
appropriate to represent relevant aspects for testing in this scenario.

6.1.6.2 Establishing test objectives

As proposed in item #G2-A, we established and prioritised the test objectives with the
support of the questions from Section 6.1.2.1.

High Priority

Question A - Correctness is critical for user experience, particularly for remote locking
and unlocking scooters.

Question H - Operational availability is critical to the operational efficiency of the
business, as outlined in the scenario context.

Question G - It is a high priority to ensure the applications’ reliability during regular
operation.

Question C - Meeting the application’s time requirements is relevant for user experi-
ence.

Given the high priority of these objectives and related recommendations, testing efforts
should primarily focus on verifying correctness, time requirements, and reliability through
system-level tests that involve all integrated modules, dependencies, and services. Concerning
operational availability, it is appropriate to conduct fault tolerance tests using chaos engineer-
ing approaches to validate the application’s ability to keep running under atypical conditions.
Building infrastructure and service redundancy mechanisms would be advisable due to the high
priority of reliability.

Medium Priority

Question B The accuracy level of the geolocation data is valuable, but it is not a critical
matter.

147

Question D Given the limited availability of resources, it is suitable to meet the quan-
tities and types of resource requirements.

Question E Efficiency in employing resources is important for cost-effectiveness due to
limited financial resources.

Question I Performing as required despite adverse conditions is relevant, primarily due
to mobile network intermittence.

Question J Quickly recovering to the desired system state in the event of failure is
valuable, as the states and data of ongoing scooter ride operations need to be recovered
following failures.

Question L Minimising costs and workload for test maintenance during project evolution
is pertinent due to the scarcity of financial resources and the demanding workload of
professionals.

Considering medium-priority objectives, system-level tests are recommended to verify real-
time location accuracy, battery status, and geofence limit. As outlined in #G7-B, when as-
sessing the accuracy of results, one must be aware of the non-determinism factor in DSP. In
this case, it would be appropriate to build test oracles with limits on result variations as well
as to adopt the deterministic replay approach (see details in Section 6.2).

Due to the need for efficient use of hardware resources and adapting the application to
meet the resource requirements, it is recommended to monitor the use of hardware resources
during testing and then promote optimisations for resource-intensive operations. Moreover,
regarding resource constraints, effort should be made to minimise test maintenance workloads
to reduce costs by gradually implementing automatic tests and CI/CD pipelines.

To ensure the applications performed as required despite adverse conditions, chaos engi-
neering practices were applied to evaluate the application’s robustness and identify scenarios in
which the application could still perform as required, even under adverse conditions. Regarding
data recovery and state restoration after an interruption, it was appropriate to establish a dis-
aster recovery plan first and then perform fault-tolerance tests to verify autonomous recovery
mechanisms and application integrity following recovery.

Low Priority

148

Question K Modifying the application without introducing defects is opportune, but it
is not a priority.

Question F The application’s performance at maximum capacity limits is not a signifi-
cant concern. The data volume is predictable because the maximum number of scooters
is constant.

Testing activities related to low-priority objectives come last. Concerning regression bugs,
it is necessary first to establish plans for application evolution and then conduct regression
testing to verify correctness, assess any degradation in performance, and confirm the schema
integrity. The regression test suite would evolve, beginning with the most critical functions,
and its progress will also depend on the maturity of the CI/CD pipelines. Since there will not
be sudden fluctuation in data volume, performance at maximum capacity is not a priority, so
stress tests should be conducted only if the scooter fleet expands.

6.1.6.3 Resource Planning

In general, resources are limited in this scenario. Comments on #G3, #G4, and #G5 re-
garding human, financial, and time resource planning will be below.

#G3 Human Resources: The team consists of five skilled developers, but their testing expe-
rience in the DSP applications is somewhat limited. Concerning the workload (#G3-C), none
of the team members is exclusively dedicated to testing; instead, developers share the work-
load between development activities and testing based on demand. As proposed in #G3-A,
when evaluating the team’s skills, it is clear that at the project’s beginning, developers are
more proficient at implementing more traditional test approaches, such as unit tests. However,
following #G3-B, it is recommended to provide learning opportunities for the team to study
and employ specific test techniques pertinent to the DSP context.

#G4 Time Resources: The deadlines are short, as a beta version is already in production. As
indicated by #G4-A-B-C-D, the time dedicated to testing must be allocated into the schedule,
estimating the duration of each activity and prioritising the most relevant ones based on test
objectives (which will be established with #G2). Particular attention should be given to test
automation and generative techniques for test data creation, as suggested by #G4-E-F; these

149

are valuable recommendations given the constraints of short deadlines and limited workload.

#G5 Financial Resources: Financial resources for contracting testing services and infras-
tructure are limited. #G5-C provides suggestions for reducing costs applicable in these scenar-
ios, such as automating test infrastructure, adopting open-source tools, and utilising mocked
infrastructure and services. #G5-B advises considering the future costs of maintaining and
evolving the test infrastructure. The recommendations are especially pertinent in this scenario
due to the limitation of financial resources.

6.1.6.4 Test Data Strategy

A small set of anonymised historical data is available for testing purposes. According to data
quality attributes from #G6-A, test data accuracy and credibility are the most relevant for this
scenario. Therefore, data must reflect credible and accurate scooter parameters like location
and battery level. The GPS data must realistically simulate the typical riding behaviour of a
scooter, while battery data should mimic various drain patterns, such as gradual and abrupt
drops.

As recommended in #G6-C, one should not overestimate the effectiveness of historical
data for testing, especially when the quantity of data is limited. Therefore, as proposed in
#G6-D, we first should focus on improving the efficiency of historical data through semi-
synthetic data generation strategies. Given the limited resources available, data mutation is
a straightforward implementation technique. At the same time, manual customisation can
occasionally be employed for test cases related to critical operations, such as locking and
unlocking scooters.

Later, we opted to generate synthetic data to diversify the test data generation technique
and thus mitigate potential bias, as pointed out in #G6-B. Property-based data generation is
an appropriate technique for this scenario because it is quick and easy to apply and provides
cost-effective coverage, as indicated in #G6-G.

150

6.2 GUIDELINES EVALUATION AND RESULTS DISCUSSIONS

When analysing the data, we considered the focus group and the survey inputs together.
Generally, there is no antagonism between the opinions expressed in the survey and those in
the focus group. The comments typically confirm or complement the information provided.
However, a difference in the tone of critical opinions was noted. Criticisms in the survey
were more direct, whereas, in the focus group, criticisms were presented more diplomatically.
Therefore, regarding the triangulation strategy established in the methodology, we can place
more confidence in the validity of the opinions given by practitioners during the evaluation.
We note that the version submitted for evaluation is version V1 in PDF format, which is in
Appendix I.

The remainder of this section is structured as follows: Section 6.2.1 offers a concise overview
of the evaluation participants’ profiles. Section 6.2.2 outlines the conduction of the focus
groups. Subsequent sections present each guideline’s feedback and a brief but relevant discus-
sion. Finally, Section 6.2.10 provides feedback and discussions related to general assessment
considerations.

6.2.1 Participants Overview

The recruitment process for focus group participants involved direct messaging on LinkedIn.
In total, 73 professionals were invited to participate, 16 accepted to participate, 12 refused, and
another 45 did not respond to the contact. However, among those who agreed to participate,
only 13 confirmed and scheduled a time to participate. During the process, 2 participants
cancelled due to personal and agenda issues, and another two did not attend the scheduled
focus group sessions, resulting in nine participants.

Table 24 summarizes the participants’ profiles. The ’ID’ column designates each partici-
pant’s identification code and their corresponding focus group. Significant variations are no-
ticeable in participants’ total IT experience, but specific experience in the DSP context showed
less variation (between 1 and 5 years). Regarding the distribution of experiences across the
focal groups, FG3 has an average IT experience of 18 years, the highest. In contrast, FG2 has
the lowest average of 5.34. Another interesting observation is that 5 out of 9 participants have
a master’s degree, indicating the high level of study of the professionals involved in the field.
However, a bias may be associated with this profile due to their academic background, as they

151

may have more empathy and willingness to collaborate in research.

Table 24 – Focus Group Participants Profile

ID Gender Working
Country

Occupation IT
Exp.

(years)

DSP
Exp.

(years)

Educational
Level

FG1-01 male Brazil Ph.D. Student 4 1 Master
FG1-02 male Brazil IT Consultant 25 3 Master
FG1-03 male Brazil Software Development

Specialist
16 3 Bachelor

FG2-01 male Brazil Software Engineer 6 2 Master
FG2-02 male Brazil Staff Data Engineer 5 4 Bachelor
FG2-03 male Brazil Data Engineer 6 3 Bachelor
FG3-01 male Brazil Director of Data

Analytics
18 5 Bachelor

FG3-02 male Brazil Cloud Data Engineer 17 3 Master
FG3-03 female Brazil Data Engineer 19 3 Master

The survey received 22 responses through an outreach campaign using LinkedIn messages,
discussion groups and dedicated DSP tool user email lists. The geographic distribution of
interviewees, represented in Figure 17, covers several countries, with a concentration of 5
participants in the USA. Figure 18 shows the formal education level of the participants, high-
lighting that, as in the focus group, the participants’ educational level is also high, with 17
out of 22 having a doctorate or master’s degree. Finally, Figure 19 presents side-by-side the
experience with IT and the specific experience in the context of DSP. It is noticeable that
most respondents (17 out of 22) possess more than ten years of experience in IT. Regarding
the DSP domain, the majority (17 out of 22) have between 2 and 10 years of experience.

6.2.2 Focus Groups Conduction

The focus group sessions were carried out on the 23rd, 29th and 31st of August 2023, using
video conferencing alongside the Miro Online Whiteboard tool, which facilitated discussions
with visual aids, as shown in Figure 20. The first section (FG1), which served as a pilot, lasted
73 minutes, while FG2 and FG3 lasted 78 and 101 minutes, respectively.

FG1’s (pilot) assembly included a doctoral student researcher engaged in DSP-related
study, an IT consultant with broad experience including DSP, and a practitioner working with
DSP in the telecommunications sector. The section proceeded normally, validating the method

152

Figure 17 – Survey Participants Working Country.

Figure 18 – Survey Participants Education Level.

Figure 19 – Survey Participants Experience.

153

Figure 20 – Focus Group Interaction in Miro Online Whiteboard.

application, improving the script and training the moderator. A key improvement was reducing
the review time per guideline item, allowing for more time for discussions. As there were
no unexpected events that would invalidate the data collection and the pilot’s results were
considered as relevant as those from subsequent groups, we decided to include FG1 data in
the final analysis.

FG2 and FG3 occurred as planned, except for a participant in each group who did not
attend. Although this reduced the variety of opinions, on the other hand, it allowed more time
for in-depth feedback. Particularly in FG3, participants were notably more engaged by providing
detailed feedback, resulting in the session’s extension. We emphasize that, throughout the
discussion, we alerted participants about the time and consulted them about extending the
section.

6.2.3 Evaluation of Guideline #G1

The evaluation of Guide #G1, conducted through focus groups and surveys, underscores
the importance of collecting testing-relevant information at the project’s outset. Several ex-
plicit comments highlighted this view. Moreover, on a scale of 1 to 5 regarding Guide #G1’s

154

relevance, the results yielded an average score of 4.18. The key findings are summarized below:

(i) DSP workflow modelling practices: Participants reported that some form of data
workflow modelling is vital for the testing team to understand the application and plan
tests. Participants reported that informal diagramming for internal use is commonly
practised in a development context. Additionally, BPMN (Business Process Model and
Notation) have been identified by participant FG2-03 to be used for describing DSP work-
flows, especially during discussions with business specialists: “In the context of industrial

IoT, we used BPMN to model the DSP architecture. It was fine because the processes

were complex and completely asynchronous; as we worked with Apache Kafka, which is

completely asynchronous, we modelled with BPMN”. Internet searches further validated
this information, revealing several informal sources (blog posts) and academic studies
reflecting similar practices (STEINDL; KASTNER, 2021). Moreover, the Imixs-Workflow
tool (GMBH, 2023), a BPMN 2.0-based workflow engine, integrates with Apache Kafka
and facilitates this approach’s applicability in DSP-based workflow modelling. Therefore,
item #G1-D in the guidelines was updated to include BPMN notation as an alterna-
tive modelling tool. This addition aims to promote improved communication between
technical and business teams.

(ii) UML usage: While the utility of UML is acknowledged, its application within indus-
trial contexts has become borderline. Participant FG3-02 briefly expressed this thought:
“UML diagrams have fallen out of fashion, and they are rarely used (except sequence

diagrams)”. This observation aligns with the findings of a qualitative study with pro-
fessionals (JÚNIOR; FARIAS; SILVA, 2021), where 74% of respondents reported not using
UML in practice. The study also shows a trend towards a preference for informal no-
tation. However, the study reveals that practitioners recognize that the effectiveness of
UML cannot be entirely dismissed. Despite the reported decline in its usage and profes-
sionals’ tendency to favour informal notation, item #G1-D in the guidelines continues to
advocate for using UML. This is due to the recognition of its benefits and the potential
of UML diagrams to express characteristics pertinent to the context of DSP.

(iii) Test specialist involvement in requirement gathering: Participant FG3-03 em-
phasised the significance of involving quality assurance experts during the requirement-
gathering phase: “Bring Quality Assurance personnel to participate in the project plan-

155

ning stages; they help in collecting test information and defining cards indicating which

tests are appropriate for each case”. The absence of such involvement often leads to a
lack of crucial information for building tests, resulting in redundant work to re-gathering
information for tests and additional costs, as exposed in the work by Pargaonkar (PAR-

GAONKAR, 2023). Thus, the item #G1-E was included in response to this feedback.
It advocates for the early inclusion of testing specialists in the information-gathering
phase. This guidance aims to ensure that test-relevant information is collected from the
beginning, minimising potential issues due to insufficient test information.

(iv) Impact of agile methodologies on DSP testing: The participant FG3-02 com-
mented: “Long-term planning is lost in agile, where code is prioritized over documenta-

tion”. Although agile methodologies are known for speeding up development and meet-
ing deadlines, they sometimes fail to fully collect requirements and crucial information
for testing. Studies focusing on agile methodologies in large-scale and critical-mission
projects reveal that agile processes face difficulties in meeting quality assurance prac-
tices (ALSAQAF; DANEVA; WIERINGA, 2019; RUSSO, 2021). For example, inadequate qual-
ity requirements testing specifications and integration testing can result in the discovery
of defects at the end of the software life cycle. Large-scale and complex DSP applica-
tions require well-mapped requirements for testing. Recognizing this gap, item #G1-F
was introduced in the guidelines. This addition underscores the necessity of striking a
balance between the speed of agile development and the need for more careful planning,
particularly in projects characterized by high complexity and significant financial risks.
This balance is crucial as meticulous attention to test steps can prevent serious issues,
ensuring that the agility of the development process does not compromise the depth and
quality of testing in DSP projects.

(v) SBE and ATDD: During the evaluation, Specification by Example (SBE) and Accep-
tance Test-Driven Development (ATDD) were identified as practical methodologies for
supporting the information collection testing phase. SBE (Specification by Example) aids
in test development by enriching the understanding of the application’s context. This is
achieved through the development of sample data covering critical use cases, as outlined
in Adzic’s work (ADZIC, 2011). SBE recommendation was incorporated into item #G1-A
of the guidelines. Similarly, ATDD was recognized for its inclusive approach that involves
stakeholders, including developers, testers, and business representatives, in the process

156

of defining acceptance criteria (GÄRTNER, 2012). This methodology promotes a collab-
orative environment and ensures that crucial information for testing is gathered early
on. Accordingly, a recommendation for adopting ATDD was included in item #G1-B of
the guidelines.

(vi) Scenario-based testing for fault tolerance: Participant FG3-03 recommended the
specification of fault tolerance issues through the scenario-based testing method: “Scenario-

based testing may be useful in describing scenarios of adverse conditions and associated

tolerance tests”. The study by Gong et al. (GONG et al., 2021) reported using this method
to specify fault tolerance scenarios regarding reliability in a smart grid context. Business-
targeted planning of fault tolerance strategies is essential, as different businesses have
varying tolerances for DSP issues. For example, tolerance to delayed data, data loss, and
downtime differs for the financial and e-commerce contexts. In response to this feedback,
scenario-based testing was recommended and included in item #G1-C of the guidelines.

(vii) Include essential information for test planning: Throughout the evaluation, we
collected relevant information for tests to be gathered, which was compiled in a list in
Section 6.1.1.1 associated with item #G1-B.

• Identifying message formats and schema structure.

• Mapping data stream producers and consumers.

• Identifying the use of third-party services (APIs, data sources): Verify SLAs (Ser-
vice Level Agreements), taking into account service availability, amount of TPS
(transactions per second), response time, and downtime policies.

• Mapping the stream data that leads to automatic business decisions/actions and
manual decisions via dashboards.

• Checking whether the business model is compatible with data post-processing in
downtime scenarios.

• Mapping response times, throughput rates, and time-out durations.

• Data validity: Duration of data retention in cache.

• Potential data loss considerations.

• Identifying transaction semantics: Atomicity, Durability, Ordering Guarantees, and
Exactly-Once Processing.

157

• Identifying data availability for test purposes (historical, synthetic, or custom ex-
ample data).

• Confidentiality and privacy features: Consider specific regulations and protections
for each data type. What are the PII (Personally Identifiable Information) in the
data set?

The evaluation of Guide #G1 underscored the role of early information collection for
effective DSP testing. Essential feedback includes adopting BPMN for workflow modelling,
emphasising test specialists’ inclusion in requirement gathering, balancing agile methodolo-
gies with detailed planning, and advocating for SBE and ATDD methodologies. Additionally,
scenario-based testing for fault tolerance was recommended. These comprehensive changes are
summarised in Table 25.

Table 25 – Summary of promoted changes regarding #G1 evaluation

Feedback Promoted Changes
(i) DSP Workflow Modelling Prac-
tices

Item #G1-D was updated to include BPMN notation as an
alternative modelling tool aimed to promote improved com-
munication between technical and business teams.

(ii) UML Usage No changes, item #G1-D continues to recommend UML.
(iii) Test Specialist Involvement in
Requirement Gathering

Item #G1-E was introduced, recommending the partici-
pation of a testing specialist in the information-gathering
phase.

(iv) Impact of Agile Methodologies
on DSP Testing

Item #G1-F was added to emphasize that, in projects with
high complexity and financial risks involved, there is a need
for a balance between agile development and more careful
planning.

(v) SBE and ATDD SBE and ATDD methodologies were incorporated into items
#G1-A and #G1-B, respectively.

(vi) Scenario-Based Testing for
Fault Tolerance

Scenario-based testing was advised in item #G1-C.

(vii) Include Essential Information
for Test Planning

Item #G1-B now features an expandable chart, including a
suggested list of testing information to collect in the early
phase of the project.

6.2.4 Evaluation of Guideline #G2

The evaluation of Guide #G2 reveals a consensus on the positive effect of aligning test-
ing objectives by considering nuances of business requirements and operational realities. The
average score for this item on the survey’s relevance scale was 3.95. Participants perceived

158

the proposed questionnaire as a valuable tool to guide early-stage discussions in establish-
ing testing objectives, essential for preempting future problems. This sentiment is reflected
by FG3-01 comment: “Sometimes this conversation does not happen, leading to unpleasant

surprises when it is too late, so this questionnaire helps map this information to guide which

tests priority”.

(i) Challenges in detailing project planning in advance: A survey comment highlighted
challenges in predicting and detailing extensive information at the beginning of a project,
especially in innovative projects with evolving requirements: “It is better to get the

important things right - the ones that are expensive to change later. But trying to

think about every little detail seems like a waste, especially if the business context

changes requirements frequently”. In response to this feedback, a text was added to
the beginning of the guidelines advising on the flexible use of the guidelines, guiding
readers on recommendations to adapt the guidelines to suit the evolving nature of their
projects, thus ensuring that the guidelines remain practical in the face of evolving business
contexts. Although this feedback specifically regards #G2, its relevance extends to #G1
as well.

(ii) Stakeholder engagement in testing objectives: The evaluation feedback corrobo-
rates with item #G2-C, underscoring the benefits of engaging a diverse group of stake-
holders, including business analysts, developers, DevOps, testers, clients, and users, in
the process of establishing testing objectives. This inclusive strategy ensures alignment
between the testing approach and both technical and business quality requirements (GRE-

GORY; CRISPIN, 2014). Participant FG1-03 illustrates this context: “When the quality

team understands the core concerns of the business and the commercial side knows

something about the nuances of data processing, communication flows better, lead-

ing to more accurate testing objectives”. Consequently, item #G2-C of the guidelines
was revised to include a wider range of stakeholder categories, thereby broadening the
diversity of perspectives and expertise contributing to the testing process.

(iii) Relevance of questionnaire items and need for a concise version: Regarding the
questionnaire items, feedback indicated no solid preferences for removing specific items.
They found all questions to be pertinent for discussions, though they noted that the
applicability of these questions could vary depending on the project size. Recognizing

159

the need for versatility, a suggestion was made for a more concise version of the guide-
lines tailored to smaller projects. In response to this feedback, the cheat sheet version
(Appendix J) would meet this need for conciseness.

(iv) Trade-off between quality categories: A participant suggested appending an obser-
vation that a trade-off often exists between functional suitability, performance efficiency,
reliability, and maintainability, and focusing on one aspect may compromise another. The
content of item #G2-A was revised to encompass considerations about the trade-offs
among different quality categories.

The evaluation validates the importance of aligning test objectives with business require-
ments and operational realities. Comments included the need for flexible project planning,
especially for innovative projects with evolving requirements. The importance of involving di-
verse stakeholders in testing discussions was also emphasized, ensuring communication between
technical and business people. These insights led to updates to item #G2, all summarized in
Table 26.

Table 26 – Summary of promoted changes regarding #G2 evaluation

Feedback Promoted Changes
(i) Challenges in Detailing Project
Planning in Advance

We included an excerpt at the beginning of the guidelines
on how to use the document, which provides advice on the
flexible use of the guidelines.

(ii) Stakeholder Engagement in
Testing Objectives

We expanded item #G2-C to detail additional stakeholder
categories that could contribute, enhancing the breadth of
perspectives and expertise.

(iii) Relevance of Questionnaire
Items and Need for a Concise Ver-
sion

In response to the recommendation for a more concise ver-
sion, we believe the cheat sheet version (Appendix J) meets
this requirement.

(iv) Trade-off Between Quality Cat-
egories

Item #G2-A was changed to include an observation regard-
ing trade-offs between quality categories.

6.2.5 Evaluation of Guideline #G3

In both the focus group and the survey, participants agreed that the qualifications of
individuals involved in the testing processes are a relevant issue and should be considered.
However, on the survey’s relevance scale of 1 to 5, the average relevance of #G3 was 3.27,
the lowest level among the seven guidelines. There were some reservations regarding the team

160

setup and the separate planning of the testing workload. In addition, the feedback brought
new topics to be included and reflections on related issues.The main topics discussed are
summarized below:

(i) Importance of DevOps skills: Participant FG1-01 discussed the significance of De-
vOps skills in automating the testing process: “Today, development has become intrinsic

to DevOps activity because of development automation, mainly regarding the testing au-

tomation in CI and CD environments”. DevOps skills are especially desirable for testing
DSP applications, as more complex tests require building many containers and config-
uring several services. This massive work needs to be automated to optimize the work,
with DevOps benefits for this purpose being consolidated (PATEL; TYAGI, 2022). We
emphasized the importance of DevOps-related skills in item #G3-A.

(ii) Understanding of stream platforms and architectures: A deep understanding of
the adopted stream platforms, the main concepts behind these tools, and the data
life cycle within the platform’s architecture were highlighted as essential for practical
testing. Participant FG2-01 cited that misconfigurations in platform features often cause
significant testing issues: “When testing, there are many infrastructure configurations,

such as those of the broker and stream processor, which drastically change the results of

the tests. The tester must know these features”. We detailed item #G3-A, considering
the need for specific knowledge about tool configurations and architecture in the DSP
context.

(iii) Data-specialized quality assurance professionals: Two focus group participants un-
derscored the importance of data-specialized QA professionals who comprehend data
flows and architecture, the following focus participant FG3-03 comment represents this
discussion: “It is desirable to have QA professionals specialized in data. They must

understand data processing workflow, data engineering fundamentals, automation archi-

tecture, and methods for testing data volume and variety. The emergence of Data QA

as a distinct specialization is already occurring, and I know some of these profession-

als”. Taking that into account, the changes to item #G3-B also included observations
regarding the importance of data-specialized QA professionals who comprehend data
flows and architecture.

161

(iv) Diverse specialists should get involved: Participants pointed out that the complexity
of DSP testing, particularly for high-volume and real-time data processing, often requires
the involvement of various specialists beyond conventional QA roles. The importance
of the infrastructure engineering team in testing the performance of large-scale DSP
applications was specifically noted by participant FG3-01: “We were only able to test

performance at the systems level, with the entire architecture and implementation team

participating to verify that everything that was done is working correctly”. We updated
item #G3-A to include more professionals’ specialities to collaborate in tests.

(v) Understanding the business domain: Feedback highlighted the critical importance
of business domain knowledge for testing. A focus group participant emphasized this,
stating: “Personnel involved in testing must have experience in the business’s specific

context. For instance, in a financial setting, numerous regulations and security concerns

significantly influence the testing process; e-commerce is another story”. Item #G3-
D was included to address recommendations regarding the importance of knowing the
business context for testing activities.

(vi) Prioritizing hands-on experience over formal training: There is a general agree-
ment that formal training in DSP testing is uncommon, with most learning occurring on
the job. The real-world expectation is for the current testers and developers to adapt and
acquire the required skills for testing demands. Respondents emphasized the necessity
of hands-on experience with streaming data systems, highlighting a lack of structured
training in this field. The feedback consistently pointed to a continuous learning ap-
proach as critical for successfully acquiring testing skills for the DSP context. These
two comments from the survey illustrates this issue: “Very rarely companies have time

to provide proper training before a test. People usually learn on the go” and ‘‘We are

all learning while doing. There is no separate training before getting to work building

tests”. Acknowledging that formal training in DSP testing is uncommon, we updated
item #G3-B to reflect the importance of hands-on experience. This change corroborates
the notion that practical experience is a primary avenue for learning in this context, re-
inforcing the need for a resource like these guidelines to consolidate industry knowledge
on DSP testing.

In summary, the evaluation provided feedback regarding the relevance of DevOps skills, a

162

deep understanding of DSP platforms and architecture, and Data-specialized QA Professionals.
Furthermore, the importance of business domain knowledge and the prioritization of practical
experience over formal training was reported. These insights guided revisions to item #G3 to
cover a wider range of skills and knowledge for testing in the DSP context. The changes are
summarized in Table 27.

Table 27 – Summary of promoted changes regarding #G3 evaluation

Feedback Promoted Changes
(i) Importance of DevOps Skills We emphasized the importance of DevOps-related skills in

item #G3-A.
(ii) Understanding of Stream Plat-
forms and Architecture

We detailed item #G3-A, considering the need for specific
knowledge about tool configurations and architecture in the
DSP context.

(iii) Data-specialized Quality As-
surance Professionals

Item #G3-B was updated to incorporate observations regard-
ing the importance of data-specialized QA professionals.

(iv) Diverse Specialists Should Get
Involved

The new version of item #G3-A covers the diversity of pro-
fessionals’ specialities involved in tests.

(v) Understanding the Business
Domain

We included item #G3-D to address the suggestion regard-
ing the importance of knowledge concerning the business
domain.

(vi) Prioritizing Hands-on Experi-
ence Over Formal Training

Item #G3-B was to reflect the importance of hands-on ex-
perience.

6.2.6 Evaluation of Guideline #G4

In the evaluation of Guideline #G4, participants’ opinions corroborate the importance of
time management in testing. This guideline received an average relevance score of 3.64 on a
1 to 5 scale in the survey. Although some feedback indicated the recommendations align more
with general testing principles than DSP-specific practices, other insights highlighted unique
time planning challenges in the DSP contexts. These include the time required for system
test configurations, executing performance and load tests, coordinating with external entities,
and planning complex use case tests. The following is a summary of key feedback and related
discussions:

(i) Understanding time dimensions in testing: Participant FG1-02 emphasized the need
to make clear the distinction between the development time required for complex tests
and the time spent executing them: “It is worth highlighting that there are two dimen-

sions of time there, the time to develop a complex test case and the time to execute tests;

163

for example, load and performance tests are particularly time-consuming”. We confirm
that understanding the dimensions of testing time would be helpful. This distinction
is especially significant in scenarios involving large data loads, a common DSP testing
circumstance where test execution times may vary greatly. In response to this insight,
we updated item #G4-A to underscore the importance of considering both planning and
execution aspects in time management for testing.

(ii) The time recommendations are general: A survey response suggested that, while this
guideline is fundamentally important, such recommendations regarding time allocation
are general, valid for different contexts, and are a project management concern: “This

guideline is significant, but it is generic and has more to do with project management

than DSP testing." Despite this, the necessity of highlighting the importance of time
planning in DSP testing will be maintained in the guidelines, as complex tests in this
field often require considerable development time, and specific test types, such as load
and performance tests, are known for their prolonged execution periods. This aspect of
time management in DSP testing is reflected in other feedback on #G4, justifying why
we choose to maintain our guide on time planning.

(iii) Automation and time wfficiency: The role of automation in enhancing testing effi-
ciency emerged during both the focus group discussions and the survey feedback. Par-
ticipants emphasised the role of automation in reducing time spent on various testing
activities. Participant FG1-03 noted: “Automating common tasks helps a lot to speed

up the testing process; having prepared containers and scripts to run the tests, that

kind of thing”. Automation could minimise the time invested in repetitive and labour-
intensive tasks, such as test case generation and infrastructure setup. However, it is
essential to assess the cost-benefit of the automation effort (GAROUSI; ELBERZHAGER,
2017). This feedback aligns with findings from other studies involving practitioners on
test automation (GAROUSI; MÄNTYLÄ, 2016). Nevertheless, this feedback did not drive
changes to the guidelines; it only reinforces the importance of items #G4-E and #G4-F
in our guidelines.

(iv) Underestimating system level testing time in agile development processes: In
agile development processes, the integration of testing into the overall development
workflow is standard practice, with testing being a continuous part of the development

164

cycle rather than a separate phase. However, a common issue identified in agile en-
vironments is the underestimation of system-level testing time, particularly for more
complex tests, as highlighted by one survey respondent: “Allocating time for system and

performance testing is crucial, yet it is often insufficiently considered in projects and

agile sprints”. To address this challenge, item #G4-G was introduced, focusing on time
planning within agile environments. This addition recognizes that basic unit and simple
integration tests typically align with sprint schedules. System-level tests, especially those
involving large-scale volumes of data such as performance tests, demand more accurate
time allocation. The challenges associated with adapting an agile process to accommo-
date time-consuming tests, particularly in large-scale projects, have been reported and
in academic literature (KASAULI et al., 2021; DINGSØYR et al., 2019).

(v) Schedule for testing with external dependencies: Conducting tests that involve ex-
ternal dependencies must be carefully planned and coordinated with the teams managing
these services, as underscored by a participant FG3-01, who emphasised the need for
advanced scheduling: “The time dedicated to testing third-party applications needs to

be planned and often scheduled and agreed with external entities”. This need becomes
evident in the context of testing with external data sources and third-party services.
In fact, in the formal literature, the work of Sablis et al. (SABLIS; SMITE; MOE, 2021)
addresses the issue of coordinating external teams in testing activities. Regarding the im-
portance of this coordination, the item #G4-G in our guidelines was updated to address
scheduling tests, which requires collaboration with multiple teams.

In summary, the discussions encompassed several key areas: considering time dimensions,
exploring the role of automation, delving into the nuances of agile methodologies, and ad-
dressing the challenges of external dependencies in testing. The feedback received from these
discussions has led to changes in the guidelines, which are summarized in Table 28.

6.2.7 Evaluation of Guideline #G5

In evaluating this guideline, participants underscored the significance of financial consider-
ations, particularly in large-scale projects with extensive infrastructures and substantial data
volumes. The guideline received an average relevance score of 3.33 on a 1 to 5 scale. Feed-

165

Table 28 – Summary of promoted changes regarding #G4 evaluation

Feedback Promoted Changes
(i) Understanding Time Dimen-
sions in Testing

We added a note to item #G4-A to consider both planning
and executing aspects of time management.

(ii) Time Recommendations are
General

No changes, but the many minor #G4 improvements rein-
force DSP-specific issues of time planning.

(iii) Automation and Time Effi-
ciency

No changes, the feedback affirms the significance of items
#G4-E and #G4-F.

(iv) Underestimating System Level
Testing Time in Agile Development
Processes

Item #G4-G was introduced to address issues on time plan-
ning in agile environments.

(v) Schedule for Testing with Ex-
ternal Dependencies

The importance of scheduling tests with multiple teams and
third-party participants is now covered in item #G4-G.

back predominantly focused on the costs related to cloud environments, strategies for reducing
expenses, and the financial implications of load testing.

(i) The significance of early financial planning and cost management: Participants
agree that proactive financial planning is crucial in the testing process to prevent budget
overruns. Participant FG1-03 shared an experience where the unregulated cloud service
usage for testing led to budgetary issues. Consequently, the company implemented strict
regulations for cloud machine allocation: “Our testing resource allocation management

was inefficient and resulted in budget overruns. As a result, we are now facing a limitation

on the number of available machines for testing until the fiscal year concludes”. The
feedback underscores the importance of financial planning in DSP testing; this affirms
the importance of #G5.

(ii) Cloud costs: The evaluation highlighted the significant cost implications of cloud-based
testing environments, particularly when handling high data volumes. Participant FG3-01
pointed out: “One of the primary expenses is linked to cloud services, which becomes

particularly significant with large data volumes”. In response to recurring feedback con-
cerning the high costs associated with cloud infrastructures, we introduced item #G5-D.
This item emphasizes the need for policies on machine allocation for testing and timing
the execution of financially intensive tests.

(iii) Costs considerations in large projects: Participants observed that building reliable
test environments for large-scale projects is costly. Participant FG3-01 remarks encapsu-
lated this: “A large test setup which resembles the production environment can get very

166

expensive”. In light of this, we revised item #G5-B to emphasise that testing expenses
are particularly significant in large-scale projects.

(iv) Employing infrastructure mocking for costs reduction: In the discussions, infras-
tructure mocking was recognized as an effective cost-reduction strategy, particularly for
correctness testing and local testing scenarios, as outlined in item #G5-C.

(v) Strategies to reduce system test costs: Participant FG3-03 emphasized the financial
challenges of frequently running system tests with large data volumes. He suggested: “It

is financially unfeasible to run large-scale system tests after every update”. Policy estab-
lishment to dictate when to conduct system tests was recommended. In cases of resource
limitations or critical service needs, testing directly in the production environment was
proposed as an alternative.

(vi) Financial impact of load testing: Participants specifically identified load testing as
a financially demanding activity requiring an infrastructure similar to the production
environment. This requirement is particularly crucial in projects where adherence to
Service Level Agreements (SLAs) is imperative. Participant FG2-01 noted: “Load testing

demands a lot of financial resources for cloud infrastructure and is thus not conducted

frequently. It is typically performed prior to deployment to ensure compliance with SLAs”.
To address load testing costs in projects with rigorous SLA requirements, we added item
#G5-E.

(vii) Financial risks of ignoring architecture validation: Participant FG3-01 shared that
inadequate architectural solutions led to extensive project restructuring: “During the

load testing phase, we discovered that the application could not handle the necessary

volume, the architecture had to be changed, and a lot of work had to be redone”.
This unforeseen rework led to substantial extra costs not accounted for in the initial
project budget. The participant suggested early testing for architectural validation as a
preventive measure against such financial setbacks. Accordingly, we consider validating
architectural decisions essential in the DSP context, especially in large and complex
projects where adjusting the architecture at advanced phases can incur considerable
costs. In response, we introduced item #G5-F, which focuses on the importance of early
architecture validation.

167

Discussions included the need for early financial planning to avoid overspending, the high
costs associated with cloud-based testing, and the expensive nature of test setups for large
projects. Strategies such as infrastructure simulation to reduce costs and the financial implica-
tions of load testing, especially in projects with strict SLAs, were also discussed. These insights
led to changes in #G5, detailed in Table 29.

Table 29 – Summary of promoted changes regarding #G5 evaluation

Feedback Promoted Changes
(i) The Significance of Early Fi-
nancial Planning and Cost Manage-
ment

No changes; the evaluation affirms the importance of #G5.

(ii) Cloud Costs We introduced item #G5-D regarding the need for policies
on machine allocation for testing and timing the execution
of financially intensive tests.

(iii) Cost Considerations in Large
Projects

We updated item #G5-B to highlight that testing costs are
particularly significant in large-scale projects.

(iv) Employing Infrastructure
Mocking for Cost Reduction

The feedback affirms the relevance of item #G5-C.

(v) Strategies to Reduce System
Test Costs

Item #G5-D also includes recommendations for establishing
protocols for conducting expensive tests, such as system-level
tests.

(vi) Financial Impact of Load Test-
ing

We added item #G5-E regarding load testing costs in
projects with strict SLA requirements.

(vii) Financial Risks of Ignoring Ar-
chitecture Validation

Item #G5-F was included to focus on the importance of early
architecture validation.

6.2.8 Evaluation of Guideline #G6

The evaluation of Guideline #G6 revealed a strong consensus among participants regarding
the importance of a comprehensive test data strategy. This guideline achieved an average
relevance score of 4.22 from 1 to 5. Feedback from practitioners and survey respondents
emphasized the necessity for diverse, high-quality test data and underscored the importance
of careful data privacy management and schema evolution.

(i) Schema management and evolution: Participants recognized the significance of item
#G6-E, which focuses on data schema management. This perspective is illustrated by
FG3-01 feedback: “Avro is mandatory. I have seen cases in projects lacking schema

management, leading to schema changes without proper communication and resulting

in a complete pipeline breakdown”. Despite this, participants pointed out that Avro

168

is unsuitable for managing schema evolution. Apache Delta was recommended for its
schema management capabilities, facilitating data compatibility checks and maintaining
schema versioning. This allows navigation across various schema versions, as expressed
by participant FG3-02: “Avro does not handle evolution; Delta Lake is the advised op-

tion, offering comprehensive maintenance and ’time travel’ on several schema versions”.
We reviewed item #G6-E, refining guidance on Avro’s use with a focus on preventing
contract breaking. We also incorporated a recommendation to employ the Apache Delta
tool for schema evolution management.

(ii) Data validity and lifecycle management: The evaluation highlighted issues related
to data validity. Over time, the utility of data for testing decreases due to changes in
concepts, data structures, and the necessity for data that tests new features. Participant
FG3-03 advised establishing policies for data lifecycle management: “It is essential to

think about the lifecycle of our test data. We must consider how long to retain this

data, recognizing that storage costs vary based on data accessibility. Frequent data

access leads to increased costs”. Item (3), addressing Currentness in the Data Quality
Characteristics board, deals with data validity issues. We updated this item to include a
data retirement policy and concept drift considerations.

(iii) Data validation challenges: Even with effective schema management, issues like in-
compatible text encodings, GPS data coordinate patterns, variations between metric
and imperial systems, and conflicts between signed and unsigned data types can still
arise. The participant FG1-03 report underscores this: “In a recent project, we encoun-

tered a data format issue. A binary number received and interpreted as a signed integer

was actually an unsigned integer from the source. Two days of reverse engineering were

needed to resolve this issue”. Item (4), focusing on Compliance in the Data Quality
Characteristics board, concerns adherence to regulations and data structure integrity.
We enhanced this item’s text with examples for better clarity.

(iv) Utilizing great expectations for data quality: Feedback highlighted the efficacy of
frameworks like Great Expectations in evaluating the quality of synthetically generated
test data. Participants in the focus group also emphasized its applicability in monitoring
production stream data quality by operating it within a parallel pipeline. This approach
generates reports and issues alerts regarding deviations in data quality. The Great Ex-

169

pectations tool, previously identified in the GLR, is now explicitly recommended in item
#G6-A.

(v) Diversity in test data: Consistent feedback from focus group discussions and sur-
vey responses underscored the importance of diversifying data sources and generation
methods. This approach, as outlined in item #G6-B, ensures data diversity and helps
minimize biases.

(vi) Limitations of historical data: Participants agree with the concerns raised in item
#G6-C about the limitations of relying exclusively on historical data. They confirm
that historical data might fail to encompass newly developed features or previously
unmanifested defects and could quickly become outdated. This perspective emphasizes
the necessity for a balanced approach in test data strategy that supplements historical
data with recent and varied datasets.

(vii) Data privacy and regulatory compliance: In discussions related to item #G6-F, par-
ticipants emphasized the practical challenges of adhering to privacy regulations while
managing test data. Participant FG3-02 outlined anonymization techniques and com-
mented about the significant effort involved: “Various techniques such as Redaction,

Replacement, Masking, Crypto-based tokenization, Bucketing, Date shifting and Time

extraction are used to maintain data privacy. Typically, these processes are labour-

intensive and time-consuming, as scripts and procedures must be customized for each

specific case”. In response to feedback affirming the relevance of item #G6-F, we in-
cluded specific scripting techniques that assist in preserving data privacy within testing
environments.

Highlights from the evaluation included the importance of managing data schemas effec-
tively, ensuring data validity and lifecycle, addressing data validation challenges, and using
frameworks like Great Expectations for quality assessment. The need for multiple test data
sources and the limitations of historical data were confirmed. Maintaining data privacy and
adhering to regulatory compliance have also emerged as crucial concerns. These insights led
to significant updates to the #G6, concisely summarized in Table 30.

170

Table 30 – Summary of promoted changes regarding #G6 evaluation

Feedback Promoted Changes
(i) Schema Management and Evo-
lution

Item #G6-E was changed to guide Avro’s use, focusing on
preventing contract breaking, and the Apache Delta tool for
schema evolution management.

(ii) Data Validity and Lifecycle
Management

We updated Item (3) in the Data Quality Characteristics
board to include a data retirement policy and concept drift
considerations.

(iii) Data Validation Challenges Item (4) in the Data Quality Characteristics board was in-
cremented with examples for better clarity.

(iv) Utilizing Great Expectations
for Data Quality

The Great Expectations tool is now explicitly recommended
in item #G6-A.

(v) Diversity in Test Data No changes. The evaluation confirms the importance of item
#G6-B.

(vi) Limitations of Historical Data No changes. The feedback validates the significance of item
#G6-C.

(vii) Data Privacy and Regulatory
Compliance

Item #G6-F was updated to suggest scripting techniques
that assist in preserving data privacy.

6.2.9 Evaluation of Guideline #G7

The overall feedback from focus groups and survey responses reinforced the significance
of Guideline #G7, addressing practical experiences related to the guideline’s items and rec-
ommending tools and strategies to handle particular DSP issues. The guideline received a
relevance score of 4.04 on a scale of 1 to 5. Below is a summary of the most pertinent
feedback.

(i) Reproducing temporal characteristics in tests: Participant FG2-01 confirmed that
accurately replicating time-related conditions in tests is challenging. A focus group par-
ticipant stated: “It is challenging to replicate production environment conditions in test-

ing, especially concerning network characteristics and latency issues”. Participant FG2-
03 emphasized the effective features of Apache Flink for clock manipulation, stating:
“With Apache Flink’s clock simulation capabilities, it is possible to accelerate, pause,

and manipulate latency, as well as advance or delay messages”. The feedback affirms the
significance of item #G7-A concerning time-related issues. In response, we added a note
item in #G7-A regarding clock control features present in stream processing platforms.

(ii) Stateful operation and non-deterministic behavior: Feedback corroborated the
statement of item #G7-B regarding the stateful operations as a recurring cause of the

171

non-deterministic behaviour, as participant FG3-01 remarked, “When creating stateful

processes, it is impossible to guarantee the same request will be executed by the same

component”. Participant FG3-01 also reported avoiding stateful processes to mitigate
non-determinism, highlighting the complexity statefulness adds to ensuring result con-
sistency: “We avoid non-determinism by minimizing stateful processes in the pipeline”.

(iii) Divergent opinions on non-determinism role in the DSP context: Differing views
were expressed regarding non-determinism. Some survey respondents argued that non-
determinism is not a major worry with modern stream processors designed to minimize it:
“Modern stream processors aim to avoid non-determinism wherever possible, achieving

determinism across a wide range of use cases and operations”. While tools do provide
functionality to minimize non-determinism, the issue remains a significant consideration
in complex applications context, as reported by other participants. Item (5) was in-
cluded in the non-determinism testing strategies, containing supplementary information
detailing how stream processing platforms help to minimise non-determinism.

(iv) Test oracle and non-determinism: Participant FG3-02 acknowledged the practical use
of test oracle strategies from item (1) regarding non-determinism: “The recommendation

on using thresholds for the test oracle is indeed applied in practice. But this term is

uncommon; here in my company, we call it statistical data control”. Participant FG3-03
emphasized that this strategy plays a key role in data validation by using the tool Great
Expectations, which includes a feature for setting data variation thresholds: “With Great

Expectations, you can set thresholds to validate the data”. The feedback reinforces the
validity of item (1) in the Non-determinism Testing Strategies board. We enhanced this
item by including information on the Great Expectations tool’s capability to set data
variation thresholds.

(v) Fault tolerance infrastructure testing: Participants confirmed the importance of
fault tolerance testing, particularly in complex applications requiring high reliability and
availability. The Netflix tool Chaos Monkey was mentioned as adopted in such type of
test. Participant FG3-01 shared his experience: “I worked at a company with a team

focused on fault tolerance testing. They had autonomy over the infrastructure and

would deliberately turn off machines, deactivate services, increase latency, and observe

the outcomes”. The feedback confirms the importance of item #G7-C. Item (8) was

172

included in the Non-determinism Testing Strategies board as a list of tools used in fault
tolerance testing.

(vi) Horizontally scaling up a broker cluster: A participant detailed a general strategy
for managing sudden increases in data volume: “Configure the broker for horizontal

autoscaling to accommodate the additional load, but check if consumers support it”.
However, it is important to note that if the consumers processing the stream cannot
match the escalated demand, messages will accumulate in the broker’s cache, leading
to a loss of real-time processing. We updated item (2) on the Fault Tolerance Rec-
ommendations board to reflect insights on the importance of preparing the broker for
scaling in response to increased data volumes. Additionally, we included observations
about aligning consumer capabilities with intensified demand to ensure that real-time
processing is not affected.

(vii) Broker replicas: Participants emphasized the robustness and reliability of data stream
brokers in maintaining service availability. These tools can be configured with multiple
replica instances that substitute the central broker, reducing the likelihood of service
interruption. However, increased latency for message confirmation and the associated
costs of maintaining additional infrastructure and network traffic are considerations. A
survey participant noted: “Downtime is a critical concern, but many tools like Spark

and Flink handle it with a replica mechanism, allowing us to trust in their ability to

manage”. This feedback underscores the relevance of item (1) on the Fault Tolerance
Recommendations board. We expanded this item to include further insights on the
impacts of latency and the financial implications of implementing replicas.

(viii) Data loss strategy: A focus group participant pointed out that synchronizing all in-
coming messages in a data lake is a strategy to prevent data loss. However, other
participants cautioned that this approach might not be suitable for high-volume data
scenarios. Therefore, we introduced the item (9) specifically to address data loss toler-
ance strategies.

Key evaluation insights included the difficulty in replicating time-related conditions in tests
and the non-determinism associated with stateful operations. Features of Great Expectations
support data variation thresholds. Strategies for horizontally scaling up a broker cluster and
maintaining service availability through broker replicas were discussed. Additionally, data loss

173

prevention strategies were suggested, such as synchronizing incoming messages in a data lake.
These changes are summarized in Table 31.

Table 31 – Summary of promoted changes regarding #G7 evaluation

Feedback Promoted Changes
(i) Reproducing Temporal Charac-
teristics in Tests

A note was included in item #G7-A regarding clock control
features present in stream processing platforms.

(ii) Stateful Operation and Non-
Deterministic Behavior

No changes. The feedback validates the role of stateful op-
erations as a cause of non-determinism in the DSP context,
as highlighted in item #G7-B.

(iii) Divergent Opinions on Non-
Determinism Role in the DSP con-
text

Item (5) was included in the non-determinism testing
strategies, containing supplementary information detailing
how stream processing platforms help to minimise non-
determinism.

(iv) Test Oracle and Non-
Determinism

Item (1) in the Non-determinism Testing Strategies board
was complemented to include information on the Great Ex-
pectations capability to set data variation thresholds.

(v) Fault Tolerance Infrastructure
Testing

Item (8) was included in the Non-determinism Testing
Strategies board as a list of tools used in fault tolerance
testing.

in the Non-determinism Testing
Strategies
(vi) Horizontally Scaling up a Bro-
ker Cluster

Item (2) of the Fault Tolerance Recommendations table has
been enhanced to encompass insights on aligning broker and
consumer capabilities with increased demands.

(vii) Broker Replicas Item (1) on the Fault Tolerance Recommendations board
was expanded to include further insights on the impacts of
latency and the financial implications of implementing repli-
cas.

(viii) Data Loss Strategy Item (9) was included to address strategies for data loss
tolerance.

6.2.10 Evaluation of General Feedbacks

After individually evaluating each guideline, we gathered general feedback. The following
subsections highlight the key points discussed.

6.2.10.1 RQ2.1 Perceived Strengths

Feedback gathered from both focus groups and surveys enclosed various aspects that were
well-received by participants. Key strengths noted include consolidating dispersed informa-
tion into a single document containing relevant content that is present in everyday testing

174

routines. Participants specifically praised the recommendations on synthetic data and fault
tolerance strategies. Additionally, the colour layout and design elements have been recognized
for improving user engagement and readability. The following comments exemplify the positive
reception of these guidelines:

• “I consider this guideline important because all this information was dispersed, and

summarizing it in a document already represents something very useful”. [FG1-01]

• “Definitely, it references a lot of content that frequently appears in testing scenarios”.[FG2-
03]

• “The section on generating synthetic data was impressive. I look forward for more details

and references”.[FG2-01]

• “The guide regarding fault tolerance is very relevant nowadays, especially in applications

in mission-critical systems”.[survey feedback]

• “Colour-coding to separate the different topics makes perfect sense. Even the dashed

and solid lines between topics contribute to that”.[FG3-03]

• “I do like these simple-to-read one/two pagers or info-graphics. They provide a quick

overview, and if the reader is interested in more details, there is enough information to

start a detailed analysis”.[survey feedback]

6.2.10.2 RQ2.2 Weaknesses and Areas for Improvement

Despite the positive feedback, practitioners also identified some negative points and sug-
gested improvements. There is a noticeable demand for practical examples, visual aids, and
references to tools. Below are some comments that evidence these needs:

• “Perhaps a detailed example demonstrating the guidelines’ application would clarify

things considerably”.[FG1-02]

• “Some items need examples, tool suggestions, and more detailed explanations. For in-

stance, which algorithms and tools are recommended for synthetic data generation? And

references?”[FG3-02]

175

• “A visual summary, like a mind map, guiding the guidelines would help quickly understand

the information.”.[FG3-03]

6.2.10.3 RQ2.3 Perceived Applicability in Industrial Context

Regarding the guidelines’ industrial applicability, practitioners generally found them helpful,
but they noted the need for adaptations based on company culture, development process and
project context. The document was considered an excellent starting point for newcomers and
valuable in training, and many recommendations in the guidelines are already standard practice
in industry testing. Here are some representative comments:

• “I would use parts of it but would need to omit things irrelevant to our development

team, like the resources planning parts”.[FG2-02]

• “I believe this document would be very helpful in guiding someone with little experience

in the field. It could also be part of training”.[FG1-02]

• “Many of these recommendations, like synthetic data generation with property-based

testing and data quality monitoring, are already practised in my company”.[FG2-03]

6.2.10.4 Additional Feedback: Suggestions on Guidelines Format

There were varied considerations regarding the format of the guidelines. Some practitioners
felt they appeared as rigid steps, comparable to a waterfall model. There were calls for a flexible
format compatible with agile methodologies, adaptable to enhance usability and applicability.
For example, information from items #G1 and #G2 might not be collectable at once but
instead iteratively across sprints.

Regarding the document’s format, participants reported that the PDF document is difficult
to access and browsing it to look for information within it is not practical. A web format with
navigable hyperlinks, interactive elements, and options to display or hide information was
suggested. This format can be used to provide different levels of detail, with examples, related
links, and in-depth explanations. Participants also wanted lighter or more detailed versions
of the guidelines, taking inspiration from resources like the “The Twelve-Factor App” 1 that
associates content with a list of principles. Some representative comments include:
1 <https://12factor.net>

https://12factor.net

176

• “The testing structure proposed here is well thought out. I work in more agile environ-

ments without many compliance issues. I can imagine a compliance-heavy environment,

like health care or financial services, would especially benefit from this structure”.[survey
feedback]

• “It would be great if the guidelines could adapt to a company’s capabilities. Startups

might consider some parts of the guidelines hard to follow”.[survey feedback]

• “Creating an entry-level version would help provide a quick introduction before delving

into more detailed versions”.[FG1-03]

• “Exploring the relationships between guideline items would be useful, as many topics

recur throughout”.[FG1-02]

6.3 SUMMARY

This chapter presents the proposed guidelines V2, which include improvements from the
evaluation stage, along with their results and discussions. These guidelines are the main con-
tribution of this doctoral thesis, resulting from extensive research that included an exploratory
study, a grey literature review, and feedback from practitioners. They are designed to tackle
the complexities and challenges inherent in DSP applications, offering structured guidance to
support testing practices in this area.

The evaluation methods comprised three focal group discussions with nine participants and
a survey involving 22 participants. Participants provided feedback, emphasizing the guidelines’
perceived relevance, areas for improvement, and applicability. The evaluation suggests that
the guidelines are both relevant and practical in an industrial context.

177

7 CONCLUSION

This chapter presents the final considerations of this thesis, including the contributions
achieved and indications for future works.

7.1 FINAL CONSIDERATIONS

This thesis’ initial research direction and motivation came from the realization that software
testing in the context of DSP is an emerging topic in the industry and little explored by research,
needing more studies and consolidated documentation. No literature reviews or comprehensive
studies encapsulating the main aspects of this field were found. The subject had received
attention in IT forums, blogs, and events, and the emergence of several tools in the DSP
context was noted. However, despite the abundance of information and technical content
available in informal sources, this content was spread across the internet and was not cohesive
or consolidated. Finally, there was a lack of unified documentation, such as guidelines or
roadmaps, to guide testing activities within the DSP context.

To delve into this research field, we employed qualitative methods that validated the in-
dustry’s interest in the topic, improved our understanding of the practical aspect of the field,
identified challenges, and mapped the state-of-practice in DSP application testing. The ex-
ploratory study gathered significant insights revealing recurring issues and testing approaches
employed by companies. It also indicated areas that deserve further exploration in future in-
vestigation phases.

The GLR study curated and synthesised intrinsic knowledge about DSP practices from
154 informal sources into a formal publication. This study revealed the industry’s progress
in testing DSP applications, spotlighting the in-house techniques to meet their demands. It
also highlighted industry-developed approaches, processes, and tools that are missing in the
academic literature. The study collected a substantial dataset that supported the development
of the guidelines in the subsequent phase.

The primary contribution of this thesis is the development of guidelines for testing DSP
applications derived from technical insights into testing practices extracted by the exploratory
study and the GLR. We evaluated the guidelines, consulting specialists with hands-on expe-
rience to assess their perceived strengths, limitations, and industrial applicability. The evalu-

178

ation employed two methods—focus groups and surveys—whose results were triangulated to
enhance the validity of our conclusions. The feedback suggests the proposed guidelines are
helpful and applicable in assisting testing activities in the industrial setting, also promoting
updates and refinements to the guidelines.

After evaluating the research conducted and the methods applied, the results substantiate
the proposed thesis hypothesis: “It is feasible to formulate valuable guidelines for the indus-
try grounded on diverse pieces of knowledge and experiences from practitioners, which have
been systematically collected, selected, and synthesised through appropriate research meth-
ods.” This confirmation of the hypothesis affirms the effectiveness of the research methods
in compiling practitioner insights. It emphasises the significance of systematic and rigorous
approaches in software engineering research, demonstrating their ability to produce outcomes
that were considered relevant by practitioners. Additionally, the results highlight the role of
academic research in addressing industry-specific challenges, potentially fostering increased
collaboration between academics and industry professionals. This collaboration could lead to
the validation and refinement of academic theories and frameworks through their practical
application, bridging the gap between theoretical research and industry needs.

7.2 SUMMARY OF MAIN CONTRIBUTIONS

Here, we pinpoint this thesis’s contributions:

• Consolidation of practical knowledge: This includes the selection and synthesis of
practical insights, some of which may not have been previously documented, obtained
through interviews and surveys in the exploratory study. Additionally, the knowledge
dispersed across various informal publications was collected through the GLR. The pub-
lications resulting from these studies serve as a significant resource for both practitioners
and researchers in the field. We highlight that, to our knowledge, no equivalent studies
exist. Therefore, our work contributes to bridging the identified knowledge gap between
academia and industry.

• Provisioning of testing guidelines for the DSP community: We have developed
comprehensive testing guidelines perceived as useful and applicable by practitioners.
These guidelines have been made accessible in a web-based format at <http://datastreamtesting.
space>, representing a tangible research contribution to the DSP community.

http://datastreamtesting.space
http://datastreamtesting.space

179

• Employing sound methodologies for investigating emerging industry topics:

This thesis also represents a case of using research methodologies to deeply investigate
practical knowledge related to emerging topics in the industrial context.

7.3 PUBLICATIONS

• VIANNA, A. S.; CRUZ, M. O.; BARBOSA, L.; GAMA, K. Análise do impacto de
chuvas na velocidade média do transporte público coletivo de ônibus em recife.
In:SBC.Anais do I Workshop Brasileiro de Cidades Inteligentes. [S.l.], 2018.

• VIANNA, A. S.; FERREIRA, W.; GAMA, K. An exploratory study of how specialists
deal with testing in data stream processing applications.
In: IEEE.2019 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM).[S.l.], p. 1–6. 2019.

• VIANNA, A. S.; KAMEI, F. K.; GAMA; K., ZIMERLE, C.; NETO, J. A. A Grey
Literature Review on Data Stream Processing Applications Testing.
In: Journal of Systems and Software, p. 111744, 2023.

7.4 FUTURE WORK

As an evolution of this research, potential research directions in future work:

• Practical case study on the guidelines application: Carry out a practical case
study using the proposed guidelines in a real industrial context. The primary objective
could be to validate whether the perceptions collected from evaluation participants will
remain in real-world settings. Additionally, this study will evaluate the effectiveness of
the guidelines in real-world projects and identify any unique challenges or considerations
that only emerge in the practical environment.

• Investigating the impact of architectural decisions on testing in DSP context:

Future studies may investigate how architectural choices within the DSP context, such
as Lambda and Kappa, influence testing strategies and planning. Recognizing that ar-
chitectural configurations inherently affect testability, research may aim to uncover the
relationship between specific architectural patterns and the ease or complexity of testing

180

processes. This connection was reported in focus group discussions regarding the need
for architectural validation.

• Privacy and security in DSP testing environments: Explore technical privacy and
data security solutions within test environments in the DSP context. Recognizing the
constraints imposed on the use of real data by regulations like GDPR and LGPD, the
investigation could study the efficacy of current industry practices and explore innovative
approaches to data handling in testing scenarios. The aim is to develop methodologies
that ensure data protection in testing environments.

• Advancements in aI-driven synthetic data creation for DSP testing: Investigate
the use of state-of-the-art artificial intelligence methods in synthetic testing data gen-
eration tools. The study may aim to develop and validate tools that emulate complex
real-world data scenarios, promoting more accurate and comprehensive testing outcomes.
This future research responds to insights from the GLR, which identified the creation of
realistic synthetic data as a challenge within the DSP domain.

181

REFERENCES

ADAMS, J.; HILLIER-BROWN, F. C.; MOORE, H. J.; LAKE, A. A.; ARAUJO-SOARES,
V.; WHITE, M.; SUMMERBELL, C. Searching and synthesising ‘grey literature’and ‘grey
information’in public health: critical reflections on three case studies. Systematic reviews,
BioMed Central, v. 5, n. 1, p. 1–11, 2016.

ADAMS, R. J.; SMART, P.; HUFF, A. S. Shades of grey: guidelines for working with the
grey literature in systematic reviews for management and organizational studies. International
Journal of Management Reviews, Wiley Online Library, v. 19, n. 4, p. 432–454, 2017.

ADZIC, G. Specification by example: how successful teams deliver the right software. [S.l.]:
Simon and Schuster, 2011.

AHMAD, T.; IQBAL, J.; ASHRAF, A.; TRUSCAN, D.; PORRES, I. Model-based testing
using uml activity diagrams: A systematic mapping study. Computer Science Review, Elsevier,
v. 33, p. 98–112, 2019.

AKBER, S. M. A.; CHEN, H.; JIN, H. Fatm: A failure-aware adaptive fault tolerance model
for distributed stream processing systems. Concurrency and Computation: Practice and
Experience, Wiley Online Library, v. 33, n. 10, p. e6167, 2021.

AKIDAU, T.; BEGOLI, E.; CHERNYAK, S.; HUESKE, F.; KNIGHT, K.; KNOWLES, K.;
MILLS, D.; SOTOLONGO, D. Watermarks in stream processing systems: Semantics and
comparative analysis of apache flink and google cloud dataflow. [S.l.], 2021.

AKIDAU, T.; BRADSHAW, R.; CHAMBERS, C.; CHERNYAK, S.; FERNÁNDEZ-
MOCTEZUMA, R. J.; LAX, R.; MCVEETY, S.; MILLS, D.; PERRY, F.; SCHMIDT, E. et
al. The dataflow model: a practical approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data processing. 2015.

ALADEV, R. How to Do Kafka Testing With JMeter. 2021. Accessed: 2022-07-19. Disponível
em: <https://www.blazemeter.com/blog/kafka-testing>.

ALQUIZA, J. Sangrenel. 2021. <https://github.com/jamiealquiza/sangrenel>.

ALSAQAF, W.; DANEVA, M.; WIERINGA, R. Quality requirements challenges in the context
of large-scale distributed agile: An empirical study. Information and software technology,
Elsevier, v. 110, p. 39–55, 2019.

ALSHAMRANI, S.; WASEEM, Q.; ALHARBI, A.; ALOSAIMI, W.; TURABIEH, H.; ALYAMI,
H. An efficient approach for storage of big data streams in distributed stream processing
systems. International Journal of Advanced Computer Science and Applications, Science and
Information (SAI) Organization Limited, v. 11, n. 5, 2020.

Amazon Kinesis. Test Your Streaming Data Solution with the New Amazon Kinesis Data Gen-
erator. 2017. [Accessed: 2021-02-20]. Disponível em: <https://aws.amazon.com/pt/blogs/
big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/>.

AMMENWERTH, E.; ILLER, C.; MANSMANN, U. Can evaluation studies benefit from
triangulation? a case study. International journal of medical informatics, Elsevier, v. 70,
n. 2-3, p. 237–248, 2003.

https://www.blazemeter.com/blog/kafka-testing
 https://github.com/jamiealquiza/sangrenel
https://aws.amazon.com/pt/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/
https://aws.amazon.com/pt/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/

182

AMPATZOGLOU, A.; BIBI, S.; AVGERIOU, P.; CHATZIGEORGIOU, A. Guidelines
for managing threats to validity of secondary studies in software engineering. In:
Contemporary Empirical Methods in Software Engineering. Springer, 2020. p. 415–441. ISBN
978-3-030-32489-6. Disponível em: <https://doi.org/10.1007/978-3-030-32489-6_15>.

ANDREWS, A.; FRANCE, R.; GHOSH, S.; CRAIG, G. Test adequacy criteria for uml design
models. Software Testing, Verification and Reliability, Wiley Online Library, v. 13, n. 2, p.
95–127, 2003.

Apache Flink. Apache Flink 1.12 Documentation: Testing. 2021. [Accessed: 2021-02-20].
Disponível em: <https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/
testing.html>.

APACHE, M. E. Kcat. 2021. <https://github.com/edenhill/kcat>.

ARORA, V.; BHATIA, R.; SINGH, M. A systematic review of approaches for testing
concurrent programs. Concurrency and Computation: Practice and Experience, Wiley Online
Library, v. 28, n. 5, p. 1572–1611, 2016.

ASSUNCAO, M. D. de; VEITH, A. da S. et al. Distributed data stream processing and edge
computing: A survey on resource elasticity and future directions. Journal of Network and
Computer Applications, Elsevier, 2018.

ASTORGA, D. del R.; DOLZ, M. F.; FERNÁNDEZ, J.; GARCÍA, J. D. Paving the way
towards high-level parallel pattern interfaces for data stream processing. Future Generation
Computer Systems, Elsevier, v. 87, p. 228–241, 2018.

AUGUST, T.; CHEN, W.; ZHU, K. Competition among proprietary and open-source software
firms: the role of licensing in strategic contribution. Management Science, INFORMS, v. 67,
n. 5, p. 3041–3066, 2021.

AUTHORJAPPS. Kafka Testing Hello World examples. 2019. Disponível em: <https:
//github.com/authorjapps/hello-kafka-stream-testing>.

BABAEI, M.; DINGEL, J. Efficient replay-based regression testing for distributed reactive
systems in the context of model-driven development. In: IEEE. 2021 ACM/IEEE 24th
International Conference on Model Driven Engineering Languages and Systems (MODELS).
[S.l.], 2021. p. 89–100.

BABCOCK, B.; BABU, S.; DATAR, M. et al. Models and issues in data stream systems. In:
ACM. Proceedings of the twenty-first SIGMOD-SIGACT-SIGART symposium on Principles
of database systems. [S.l.], 2002.

BABU, S.; WIDOM, J. Continuous queries over data streams. ACM Sigmod Record, ACM,
v. 30, n. 3, p. 109–120, 2001.

BACKDATA. Fluent Kafka Streams Tests. 2021. <https://github.com/bakdata/
fluent-kafka-streams-tests>.

BALAZINSKA, M.; HWANG, J.-H.; SHAH, M. A. Fault tolerance and high availability in
data stream management systems. Encyclopedia of Database Systems, v. 11, p. 57, 2009.

https://doi.org/10.1007/978-3-030-32489-6_15
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/testing.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/testing.html
 https://github.com/edenhill/kcat
https://github.com/authorjapps/hello-kafka-stream-testing
https://github.com/authorjapps/hello-kafka-stream-testing
 https://github.com/bakdata/fluent-kafka-streams-tests
 https://github.com/bakdata/fluent-kafka-streams-tests

183

BAQASAH, A.; PARDEDE, E.; RAHAYU, W. Maintaining schema versions compatibility
in cloud applications collaborative framework. World Wide Web, Springer, v. 18, n. 6, p.
1541–1577, 2015.

BARCHENKOV, I. Ecto Stream Factory. 2019. <https://github.com/ibarchenkov/ecto_
stream_factory>.

BARESI, L.; PEZZE, M. An introduction to software testing. Electronic Notes in Theoretical
Computer Science, Elsevier, v. 148, n. 1, p. 89–111, 2006.

BARR, E. T.; HARMAN, M.; MCMINN, P.; SHAHBAZ, M.; YOO, S. The oracle problem in
software testing: A survey. IEEE transactions on software engineering, IEEE, v. 41, n. 5, p.
507–525, 2014.

BARROS, M. D.; SHIAU, J.; SHANG, C.; GIDEWALL, K.; SHI, H.; FORSMANN, J. Web
services wind tunnel: On performance testing large-scale stateful web services. In: IEEE. 37th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’07).
[S.l.], 2007. p. 612–617.

BASIRI, A.; BEHNAM, N.; ROOIJ, R. D.; HOCHSTEIN, L.; KOSEWSKI, L.; REYNOLDS,
J.; ROSENTHAL, C. Chaos engineering. IEEE Software, IEEE, v. 33, n. 3, p. 35–41, 2016.

BATH, G. The next generation tester: Meeting the challenges of a changing it world. The
Future of Software Quality Assurance, Springer International Publishing, p. 15–26, 2020.

BATTINA, D. S. Devops, a new approach to cloud development & testing. International
Journal of Emerging Technologies and Innovative Research (www. jetir. org), ISSN, p.
2349–5162, 2020.

BEGUM, S. H.; NAUSHEEN, F. A comparative analysis of differential privacy vs other
privacy mechanisms for big data. 2018 2nd International Conference on Inventive Systems
and Control (ICISC), p. 512–516, 2018.

BEHJATI, R.; ARISHOLM, E.; BEDREGAL, M.; TAN, C. Synthetic test data generation
using recurrent neural networks: a position paper. In: IEEE. 2019 IEEE/ACM 7th International
Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE).
[S.l.], 2019. p. 22–27.

BENKHELIFA, E.; HANI, A. B.; WELSH, T.; MTHUNZI, S.; GUEGAN, C. G. Virtual
environments testing as a cloud service: a methodology for protecting and securing virtual
infrastructures. IEEE Access, IEEE, v. 7, p. 108660–108676, 2019.

BERNARDO, A.; VALLE, E. D. Vfc-smote: very fast continuous synthetic minority
oversampling for evolving data streams. Data Mining and Knowledge Discovery, Springer,
v. 35, n. 6, p. 2679–2713, 2021.

BIFET, A.; HOLMES, G.; PFAHRINGER, B.; KIRKBY, R.; GAVALDÀ, R. New ensemble
methods for evolving data streams. In: ACM. Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining. [S.l.], 2009. p. 139–148.

BISWAS, S.; MALL, R.; SATPATHY, M.; SUKUMARAN, S. Regression test selection
techniques: A survey. Informatica, v. 35, n. 3, 2011.

 https://github.com/ibarchenkov/ecto_stream_factory
 https://github.com/ibarchenkov/ecto_stream_factory

184

BLANCHI, C.; PETRONE, J. Distributed interoperable metadata registry. D-Lib Magazine,
v. 7, n. 12, p. 1082–9873, 2001.

BORODAY, S.; PETRENKO, A.; GROZ, R. Can a model checker generate tests for
non-deterministic systems? Electronic Notes in Theoretical Computer Science, Elsevier,
v. 190, n. 2, p. 3–19, 2007.

BOURQUE, P.; FAIRLEY, R. E. (Ed.). SWEBOK: Guide to the Software Engineering Body of
Knowledge. Version 3.0. IEEE Computer Society, 2014. ISBN 978-0-7695-5166-1. Disponível
em: <http://www.swebok.org/>.

BREEN, R. L. A practical guide to focus-group research. Journal of geography in higher
education, Taylor & Francis, v. 30, n. 3, p. 463–475, 2006.

BU, Y.; CHEN, L.; FU, A. W.-C.; LIU, D. Efficient anomaly monitoring over moving object
trajectory streams. In: Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. [S.l.: s.n.], 2009. p. 159–168.

BUCHGEHER, G.; FISCHER, S.; MOSER, M.; PICHLER, J. An early investigation of unit
testing practices of component-based software systems. In: IEEE. 2020 IEEE Workshop on
Validation, Analysis and Evolution of Software Tests (VST). [S.l.], 2020. p. 12–15.

BUCHMANN, A.; KOLDEHOFE, B. Complex event processing. it-Information Technology,
v. 51, n. 5, p. 241, 2009.

BUSTAMANTE, R.; GARCÉS, K. Managing evolution of api-driven iot devices through
adaptation chains. In: CIbSE. [S.l.: s.n.], 2020. p. 85–95.

CAPPELLARI, P.; CHUN, S. A.; ROANTREE, M. Ise: A high performance system for
processing data streams. In: DATA. [S.l.: s.n.], 2016. p. 13–24.

CARBONE, P.; FRAGKOULIS, M.; KALAVRI, V.; KATSIFODIMOS, A. Beyond analytics:
The evolution of stream processing systems. In: Proceedings of the 2020 ACM SIGMOD
international conference on Management of data. [S.l.: s.n.], 2020. p. 2651–2658.

CARBONE, P.; KATSIFODIMOS, A.; EWEN, S.; MARKL, V.; HARIDI, S.; TZOUMAS, K.
Apache flink: Stream and batch processing in a single engine. The Bulletin of the Technical
Committee on Data Engineering, Institute of Electrical and Electronics Engineers (IEEE),
v. 38, n. 4, 2015.

CARBONE, P.; TRAUB, J.; KATSIFODIMOS, A.; HARIDI, S.; MARKL, V. Cutty: Aggregate
sharing for user-defined windows. In: Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management. [S.l.: s.n.], 2016. p. 1201–1210.

CARDELLINI, V.; PRESTI, F. L.; NARDELLI, M.; RUSSO, G. R. Runtime adaptation of
data stream processing systems: The state of the art. ACM Computing Surveys, ACM New
York, NY, v. 54, n. 11s, p. 1–36, 2022.

CARZANIGA, A.; GOFFI, A.; GORLA, A.; MATTAVELLI, A.; PEZZÈ, M. Cross-checking
oracles from intrinsic software redundancy. In: Proceedings of the 36th International
Conference on Software Engineering. [S.l.: s.n.], 2014. p. 931–942.

http://www.swebok.org/

185

CHARAF, M. E. H.; AZZOUZI, S. Timed distributed testing rules for the distributed test
architecture. In: IEEE. 2016 4th IEEE International Colloquium on Information Science and
Technology (CiSt). [S.l.], 2016. p. 314–319.

CHARMAZ, K.; BELGRAVE, L. L. Grounded theory. The Blackwell encyclopedia of sociology,
Wiley Online Library, 2007.

CHATTERJEE, S.; MORIN, C. Experimental study on the performance and resource
utilization of data streaming frameworks. In: IEEE. 2018 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID). [S.l.], 2018. p. 143–152.

CHEN, G.; BAI, G.; ZHANG, C.; WANG, J.; NI, K.; CHEN, Z. Big data system testing
method based on chaos engineering. In: IEEE. 2022 IEEE 12th International Conference on
Electronics Information and Emergency Communication (ICEIEC). [S.l.], 2022. p. 210–215.

CHEN, T.-H.; SYER, M. D.; SHANG, W.; JIANG, Z. M.; HASSAN, A. E.; NASSER, M.;
FLORA, P. Analytics-driven load testing: An industrial experience report on load testing of
large-scale systems. In: IEEE. 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP). [S.l.], 2017. p. 243–252.

CHEN, W.; PAIK, I.; LI, Z. Cost-aware streaming workflow allocation on geo-distributed data
centers. IEEE Transactions on Computers, IEEE, v. 66, n. 2, p. 256–271, 2016.

CHEN, Y.; ZHANG, S.; GUO, Q.; LI, L.; WU, R.; CHEN, T. Deterministic replay: A survey.
ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 48, n. 2, p. 1–47, 2015.

CHEN, Y. T.; GOPINATH, R.; TADAKAMALLA, A.; ERNST, M. D.; HOLMES, R.;
FRASER, G.; AMMANN, P.; JUST, R. Revisiting the relationship between fault detection,
test adequacy criteria, and test set size. In: Proceedings of the 35th IEEE/ACM international
conference on automated software engineering. [S.l.: s.n.], 2020. p. 237–249.

CHERNIACK, M.; BALAKRISHNAN, H.; BALAZINSKA, M.; CARNEY, D.; CETINTEMEL,
U.; XING, Y.; ZDONIK, S. B. Scalable distributed stream processing. In: CIDR. [S.l.: s.n.],
2003. v. 3, p. 257–268.

CHINTAPALLI, S.; DAGIT, D.; EVANS, B.; FARIVAR, R.; GRAVES, T.; HOLDERBAUGH,
M.; LIU, Z.; NUSBAUM, K.; PATIL, K.; PENG, B. J. et al. Benchmarking streaming
computation engines: Storm, flink and spark streaming. In: IEEE. 2016 IEEE international
parallel and distributed processing symposium workshops (IPDPSW). [S.l.], 2016. p.
1789–1792.

CHOI, C.; ESPOSITO, C.; WANG, H.; LIU, Z.; CHOI, J. Intelligent power equipment
management based on distributed context-aware inference in smart cities. IEEE
Communications Magazine, IEEE, v. 56, n. 7, p. 212–217, 2018.

CIRCLE, F. Jackdaw - Test Machine. 2021. <https://github.com/FundingCircle/jackdaw>.

COMMUNITY. Embedded Kafka. 2021. <https://github.com/embeddedkafka/
embedded-kafka>.

COMMUNITY. ScalaTest. 2021. <https://github.com/scalatest/scalatest>.

CONDIE, T.; CONWAY, N.; ALVARO, P.; HELLERSTEIN, J. M.; ELMELEEGY, K.; SEARS,
R. Mapreduce online. In: Nsdi. [S.l.: s.n.], 2010. v. 10, n. 4, p. 20.

 https://github.com/FundingCircle/jackdaw
 https://github.com/embeddedkafka/embedded-kafka
 https://github.com/embeddedkafka/embedded-kafka
 https://github.com/scalatest/scalatest

186

COOPER, G. H.; KRISHNAMURTHI, S. Embedding dynamic dataflow in a call-by-value
language. In: SPRINGER. European Symposium on Programming. [S.l.], 2006.

CORRAL-PLAZA, D.; MEDINA-BULO, I.; ORTIZ, G.; BOUBETA-PUIG, J. A stream
processing architecture for heterogeneous data sources in the internet of things. Computer
Standards & Interfaces, Elsevier, v. 70, p. 103426, 2020.

CUGOLA, G.; MARGARA, A. Processing flows of information: From data stream to complex
event processing. ACM Computing Surveys (CSUR), ACM, v. 44, n. 3, p. 15, 2012.

CUGOLA, G.; MARGARA, A. Processing flows of information: From data stream to complex
event processing. ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 44, n. 3,
p. 1–62, 2012.

DÁVID, I.; RÁTH, I.; VARRÓ, D. Foundations for streaming model transformations by
complex event processing. Software & Systems Modeling, Springer, v. 17, p. 135–162, 2018.

DEAK, A.; STÅLHANE, T.; SINDRE, G. Challenges and strategies for motivating software
testing personnel. Information and software Technology, Elsevier, v. 73, p. 1–15, 2016.

DEHAAN, M.; INC., R. H. Ansible. 2021. <https://github.com/ansible/ansible>.

DEMŠAR, J.; BOSNIĆ, Z. Detecting concept drift in data streams using model explanation.
Expert Systems with Applications, Elsevier, v. 92, p. 546–559, 2018.

DENZIN, N.; BRYANT, A.; CHARMAZ, K. Grounded theory and the politics of interpretation.
The Sage Handbook of Grounded Theory (London: Sage, 2007), p. 454–471, 2007.

DIAZ, S. M.; SOUZA, P. S.; SOUZA, S. R. Structural testing for communication events into
loops of message-passing parallel programs. Concurrency and Computation: Practice and
Experience, Wiley Online Library, v. 33, n. 18, p. e6082, 2021.

DILSHAD, R. M.; LATIF, M. I. Focus group interview as a tool for qualitative research: An
analysis. Pakistan Journal of Social Sciences, v. 33, n. 1, p. 191–198, 2013.

DINGSØYR, T.; DYBÅ, T.; GJERTSEN, M.; JACOBSEN, A. O.; MATHISEN, T.-E.;
NORDFJORD, J. O.; RØE, K.; STRAND, K. Key lessons from tailoring agile methods for
large-scale software development. IT Professional, IEEE, v. 21, n. 1, p. 34–41, 2019.

DIVÁN, M. J.; REYNOSO, M. L. S. Relocating the load-shedding strategy in the data stream
processing architecture. In: IEEE. 2020 IEEE Congreso Bienal de Argentina (ARGENCON).
[S.l.], 2020. p. 1–8.

DUMITRESCU, C.; RAICU, I.; RIPEANU, M.; FOSTER, I. Diperf: An automated distributed
performance testing framework. In: IEEE. Fifth IEEE/ACM International Workshop on Grid
Computing. [S.l.], 2004. p. 289–296.

EBERT, C.; RAY, R. Test-driven requirements engineering. IEEE Software, IEEE, v. 38, n. 1,
p. 16–24, 2020.

EISMANN, S.; BEZEMER, C.-P.; SHANG, W.; OKANOVIĆ, D.; HOORN, A. van.
Microservices: A performance tester’s dream or nightmare? In: Proceedings of the
ACM/SPEC International Conference on Performance Engineering. [S.l.: s.n.], 2020. p.
138–149.

 https://github.com/ansible/ansible

187

ESPINOSA, C. V.; MARTIN-MARTIN, E.; RIESCO, A.; RODRÍGUEZ-HORTALÁ,
J. Flinkcheck: property-based testing for apache flink. IEEE Access, IEEE, v. 7, p.
150369–150382, 2019.

EVERETT, G. D.; JR, R. M. Software testing. Testing Across the Entire, 2007.

FARAGLIA, D. Faker (Python). 2021. <https://github.com/joke2k/faker>.

FAWCETT, T.; PROVOST, F. Activity monitoring: Noticing interesting changes in behavior.
In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery
and data mining. [S.l.: s.n.], 1999. p. 53–62.

FEILER, P. H. Model-based validation of safety-critical embedded systems. In: IEEE. 2010
IEEE Aerospace Conference. [S.l.], 2010. p. 1–10.

FELDERER, M.; RUSSO, B.; AUER, F. On testing data-intensive software systems. In:
Security and Quality in Cyber-Physical Systems Engineering. [S.l.]: Springer, 2019. p.
129–148.

FIGUEIRAS, P.; HERGA, Z.; GUERREIRO, G.; ROSA, A.; COSTA, R.; JARDIM-
GONÇALVES, R. Real-time monitoring of road traffic using data stream mining. In: IEEE.
2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC).
[S.l.], 2018. p. 1–8.

FILIP, I.-D.; POSTOACA, A. V.; STOCHITOIU, R.-D.; NEATU, D.-F.; NEGRU, C.; POP, F.
Data capsule: Representation of heterogeneous data in cloud-edge computing. IEEE Access,
IEEE, v. 7, p. 49558–49567, 2019.

FLOREA, R.; STRAY, V. A qualitative study of the background, skill acquisition, and
learning preferences of software testers. In: Proceedings of the 24th International Conference
on Evaluation and Assessment in Software Engineering. [S.l.: s.n.], 2020. p. 299–305.

FORBES. Forbes Top 100 Digital Companies. 2021. Accessed: 2021-02-10. Disponível em:
<https://www.forbes.com/top-digital-companies/list>.

FORTUNE. Fortune 500. 2021. Accessed: 2021-02-10. Disponível em: <http://fortune.com/
fortune500>.

FOUNDATION, A. Flink Testing Utilities - Apache Flink. 2021. <https://mvnrepository.
com/artifact/org.apache.flink/flink-test-utils>.

FOUNDATION, A. JMeter. 2021. <https://github.com/apache/jmeter>.

FOUNDATION, A. Kafka Streams Testing Utilities. 2021. <https://mvnrepository.com/
artifact/org.apache.kafka/kafka-streams-test-utils>.

FOUNDATION, A. S. Apache Flink mail archive. 2022. Accessed: 2022-07-19. Disponível em:
<https://lists.apache.org/list?dev@flink.apache.org:lte=1M:tests>.

FRAGKOULIS, M.; CARBONE, P.; KALAVRI, V.; KATSIFODIMOS, A. A survey on the
evolution of stream processing systems. The VLDB Journal, Springer, p. 1–35, 2023.

FU, H.-H.; LIN, D. K.; TSAI, H.-T. Damping factor in google page ranking. Applied
Stochastic Models in Business and Industry, Wiley Online Library, v. 22, n. 5-6, p. 431–444,
2006.

 https://github.com/joke2k/faker
https://www.forbes.com/top-digital-companies/list
http://fortune.com/fortune500
http://fortune.com/fortune500
 https://mvnrepository.com/artifact/org.apache.flink/flink-test-utils
 https://mvnrepository.com/artifact/org.apache.flink/flink-test-utils
 https://github.com/apache/jmeter
 https://mvnrepository.com/artifact/org.apache.kafka/kafka-streams-test-utils
 https://mvnrepository.com/artifact/org.apache.kafka/kafka-streams-test-utils
https://lists.apache.org/list?dev@flink.apache.org:lte=1M:tests

188

GAMOV, V. I Don’t Always Test My Streams, But When I Do, I Do it in Production.
2020. Disponível em: <https://www.confluent.io/resources/kafka-summit-2020/
i-dont-always-test-my-streams-but-when-i-do-i-do-it-in-production>.

GARCIA, A. M.; GRIEBLER, D.; SCHEPKE, C.; FERNANDES, L. G. L. Evaluating
micro-batch and data frequency for stream processing applications on multi-cores. In: IEEE.
2022 30th Euromicro International Conference on Parallel, Distributed and Network-based
Processing (PDP). [S.l.], 2022. p. 10–17.

GARCIA, A. M.; GRIEBLER, D.; SCHEPKE, C.; FERNANDES, L. G. Spbench: a framework
for creating benchmarks of stream processing applications. Computing, Springer, p. 1–23,
2022.

GAROFALAKIS, M.; GEHRKE, J.; RASTOGI, R. Data stream management: A brave new
world. In: Data Stream Management: Processing High-Speed Data Streams. [S.l.]: Springer,
2016. p. 1–9.

GAROUSI, V.; ELBERZHAGER, F. Test automation: not just for test execution. IEEE
Software, IEEE, v. 34, n. 2, p. 90–96, 2017.

GAROUSI, V.; FELDERER, M.; FERNANDES, J. M.; PFAHL, D.; MÄNTYLÄ, M. V.
Industry-academia collaborations in software engineering: An empirical analysis of challenges,
patterns and anti-patterns in research projects. In: Proceedings of the 21st International
Conference on Evaluation and Assessment in Software Engineering. [S.l.: s.n.], 2017. p.
224–229.

GAROUSI, V.; FELDERER, M.; KUHRMANN, M.; HERKILOĞLU, K.; ELDH, S. Exploring
the industry’s challenges in software testing: An empirical study. Journal of Software:
Evolution and Process, Wiley Online Library, v. 32, n. 8, p. e2251, 2020.

GAROUSI, V.; FELDERER, M.; MäNTYLä, M. V. Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering. Information and
Software Technology, v. 106, p. 101 – 121, 2019. ISSN 0950-5849. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0950584918301939>.

GAROUSI, V.; MÄNTYLÄ, M. V. When and what to automate in software testing? a
multi-vocal literature review. Information and Software Technology, Elsevier, v. 76, p. 92–117,
2016.

GÄRTNER, M. ATDD by example: a practical guide to acceptance test-driven development.
[S.l.]: Addison-Wesley, 2012.

GAZZOLA, L.; GOLDSTEIN, M.; MARIANI, L.; MOBILIO, M.; SEGALL, I.; TUNDO, A.;
USSI, L. Exvivomicrotest: Exvivo testing of microservices. Journal of Software: Evolution and
Process, Wiley Online Library, p. e2452, 2022.

GELDENHUYS, M. K.; PFISTER, B. J.; SCHEINERT, D.; KAO, O.; THAMSEN, L. Khaos:
Dynamically optimizing checkpointing for dependable distributed stream processing. arXiv
preprint arXiv:2109.02340, 2021.

GHAZI, A. N.; PETERSEN, K.; REDDY, S. S. V. R.; NEKKANTI, H. Survey research
in software engineering: Problems and mitigation strategies. IEEE Access, IEEE, v. 7, p.
24703–24718, 2018.

https://www.confluent.io/resources/kafka-summit-2020/i-dont-always-test-my-streams-but-when-i-do-i-do-it-in-production
https://www.confluent.io/resources/kafka-summit-2020/i-dont-always-test-my-streams-but-when-i-do-i-do-it-in-production
http://www.sciencedirect.com/science/article/pii/S0950584918301939

189

GLASER, B. G. Basics of grounded theory analysis: Emergence vs forcing. [S.l.]: Sociology
press, 1992.

GLASER, B. G.; STRAUSS, A. L. Discovery of grounded theory: Strategies for qualitative
research. [S.l.]: Routledge, 2017.

GMBH, I. Imixs Workflow - Open Source Workflow with BPMN 2.0. 2023. Disponível em:
<https://www.imixs.org/>. Acesso em: 20 nov. 2023.

GODEFROID, P.; LEHMANN, D.; POLISHCHUK, M. Differential regression testing for rest
apis. In: Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. [S.l.: s.n.], 2020. p. 312–323.

GODIN, K.; STAPLETON, J.; KIRKPATRICK, S. I.; HANNING, R. M.; LEATHERDALE,
S. T. Applying systematic review search methods to the grey literature: a case study
examining guidelines for school-based breakfast programs in canada. Systematic reviews,
BioMed Central, v. 4, n. 1, p. 1–10, 2015.

GOLAB, L.; ÖZSU, M. T. Issues in data stream management. ACM Sigmod Record, ACM
New York, NY, USA, v. 32, n. 2, p. 5–14, 2003.

GOLAB, L.; OZSU, M. T. Data stream management. [S.l.]: Springer Nature, 2022.

GONG, L.; LI, Y.; CHEN, H.; XU, X.; LIU, F. Scenario-based reliability testing methods for
smart grid dispatching and control system. In: IEEE. 2021 8th International Conference on
Dependable Systems and Their Applications (DSA). [S.l.], 2021. p. 656–663.

GOOGLE. Google’s Search Algorithm and Ranking System. 2021. Accessed: 2021-02-13.
Disponível em: <https://www.google.com/search/howsearchworks/algorithms/>.

GOULDING, C. Grounded theory: the missing methodology on the interpretivist agenda.
Qualitative Market Research: an international journal, MCB UP Ltd, v. 1, n. 1, p. 50–57,
1998.

GREGORY, J.; CRISPIN, L. More agile testing: learning journeys for the whole team. [S.l.]:
Addison-Wesley Professional, 2014.

GRULICH, P. M.; TRAUB, J.; BRESS, S.; KATSIFODIMOS, A.; MARKL, V.; RABL,
T. Generating reproducible out-of-order data streams. In: Proceedings of the 13th ACM
International Conference on Distributed and Event-based Systems. [S.l.: s.n.], 2019. p.
256–257.

GU, R.; ZHOU, Y.; WANG, Z.; YUAN, C.; HUANG, Y. Penguin: Efficient query-based
framework for replaying large scale historical data. IEEE Transactions on Parallel and
Distributed Systems, IEEE, v. 29, n. 10, p. 2333–2345, 2018.

GULZAR, M. A.; ZHU, Y.; HAN, X. Perception and practices of differential testing. In:
IEEE. 2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). [S.l.], 2019. p. 71–80.

GUNAWI, H. S.; HAO, M.; LEESATAPORNWONGSA, T.; PATANA-ANAKE, T.; DO, T.;
ADITYATAMA, J.; ELIAZAR, K. J.; LAKSONO, A.; LUKMAN, J. F.; MARTIN, V. et al.
What bugs live in the cloud? a study of 3000+ issues in cloud systems. In: Proceedings of
the ACM symposium on cloud computing. [S.l.: s.n.], 2014. p. 1–14.

https://www.imixs.org/
https://www.google.com/search/howsearchworks/algorithms/

190

GÜRCAN, F.; BERIGEL, M. Real-time processing of big data streams: Lifecycle, tools, tasks,
and challenges. In: IEEE. 2018 2nd International Symposium on Multidisciplinary Studies and
Innovative Technologies (ISMSIT). [S.l.], 2018. p. 1–6.

GUTIÉRREZ-MADROÑAL, L.; GARCÍA-DOMÍNGUEZ, A.; MEDINA-BULO, I. Evolutionary
mutation testing for iot with recorded and generated events. Software: Practice and
Experience, Wiley Online Library, v. 49, n. 4, p. 640–672, 2019.

GUTIÉRREZ-MADROÑAL, L.; MEDINA-BULO, I.; DOMÍNGUEZ-JIMÉNEZ, J. J. Iot–teg:
Test event generator system. Journal of Systems and Software, Elsevier, v. 137, p. 784–803,
2018.

GüNTHER, M. Kafka for Junit. 2021. <https://github.com/mguenther/kafka-junit>.

HALEBY, J.; COMMUNITY. Awaitility Library. 2021. <https://github.com/awaitility/
awaitility>.

HANAMANTHRAO, R.; THEJASWINI, S. Real-time clickstream data analytics and
visualization. In: IEEE. 2017 2nd IEEE International Conference on Recent Trends in
Electronics, Information & Communication Technology (RTEICT). [S.l.], 2017. p. 2139–2144.

HANAWA, T.; BANZAI, T.; KOIZUMI, H.; KANBAYASHI, R.; IMADA, T.; SATO, M.
Large-scale software testing environment using cloud computing technology for dependable
parallel and distributed systems. In: IEEE. 2010 Third International Conference on Software
Testing, Verification, and Validation Workshops. [S.l.], 2010. p. 428–433.

HARSH, P.; LASZKOWSKI, J. F. R.; EDMONDS, A.; THANH, T. Q.; PAULS, M.;
VLASKOVSKI, R.; AVILA-GARCÍA, O.; PAGES, E.; BELLAS, F. G.; CARRILLO, M. G.
Cloud enablers for testing large-scale distributed applications. In: Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud Computing Companion. [S.l.: s.n.],
2019. p. 35–42.

HASAN, M.; ORGUN, M. A. et al. A survey on real-time event detection from the twitter
data stream. Journal of Information Science, SAGE Publications Sage UK: London, England,
2018.

HASHICORP. Terraform. 2021. <https://github.com/hashicorp/terraform>.

HASHIMOV, E. Qualitative Data Analysis: A Methods Sourcebook and The Coding Manual
for Qualitative Researchers: Matthew B. Miles, A. Michael Huberman, and Johnny Saldaña.
Thousand Oaks, CA: SAGE, 2014. 381 pp. Johnny Saldaña. Thousand Oaks, CA: SAGE,
2013. 303 pp. [S.l.]: Taylor & Francis, 2015.

HERZIG, K.; GREILER, M.; CZERWONKA, J.; MURPHY, B. The art of testing less without
sacrificing quality. In: IEEE. 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering. [S.l.], 2015. v. 1, p. 483–493.

HIERONS, R. M.; URAL, H. Checking sequences for distributed test architectures. Distributed
Computing, Springer, v. 21, n. 3, p. 223–238, 2008.

HILL, J. H.; TURNER, H. A.; EDMONDSON, J. R.; SCHMIDT, D. C. Unit testing
non-functional concerns of component-based distributed systems. In: IEEE. 2009 International
Conference on Software Testing Verification and Validation. [S.l.], 2009. p. 406–415.

 https://github.com/mguenther/kafka-junit
 https://github.com/awaitility/awaitility
 https://github.com/awaitility/awaitility
 https://github.com/hashicorp/terraform

191

HIRZEL, M.; SOULÉ, R.; SCHNEIDER, S.; GEDIK, B.; GRIMM, R. A catalog of stream
processing optimizations. ACM Computing Surveys (CSUR), ACM New York, NY, USA,
v. 46, n. 4, p. 1–34, 2014.

HOQUE, S.; MIRANSKYY, A. Architecture for analysis of streaming data. In: IEEE. 2018
IEEE International Conference on Cloud Engineering (IC2E). [S.l.], 2018. p. 263–269.

HOSSAIN, S. B.; DWYER, M. B.; ELBAUM, S.; NGUYEN-TUONG, A. Measuring and
mitigating gaps in structural testing. In: IEEE. 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). [S.l.], 2023. p. 1712–1723.

HOSSAYNI, H.; KHAN, I.; CRESPI, N. Data anonymization for maintenance knowledge
sharing. IT Professional, IEEE, v. 23, n. 5, p. 23–30, 2021.

HUMMEL, O.; EICHELBERGER, H.; GILOJ, A.; WERLE, D.; SCHMID, K. A collection
of software engineering challenges for big data system development. In: IEEE. 2018 44th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA). [S.l.],
2018. p. 362–369.

HYNNINEN, T.; KASURINEN, J.; KNUTAS, A.; TAIPALE, O. Software testing: Survey of
the industry practices. In: IEEE. 2018 41st International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO). [S.l.], 2018. p.
1449–1454.

IGLESIAS, F.; OJDANIC, D.; HARTL, A.; ZSEBY, T. Mdcstream: Stream data generator
for testing analysis algorithms. In: Proceedings of the 13th EAI International Conference on
Performance Evaluation Methodologies and Tools. [S.l.: s.n.], 2020. p. 56–63.

IGLESIAS, G.; TALAVERA, E.; GONZÁLEZ-PRIETO, Á.; MOZO, A.; GÓMEZ-CANAVAL,
S. Data augmentation techniques in time series domain: a survey and taxonomy. Neural
Computing and Applications, Springer, v. 35, n. 14, p. 10123–10145, 2023.

IKONOMOVSKA, E.; LOSKOVSKA, S.; GJORGJEVIK, D. A survey of stream data mining.
In: Proceedings of 8th National Conference with International participation, ETAI. [S.l.: s.n.],
2007. p. 19–21.

IMTIAZ, J.; SHERIN, S.; KHAN, M. U.; IQBAL, M. Z. A systematic literature review of test
breakage prevention and repair techniques. Information and Software Technology, Elsevier,
v. 113, p. 1–19, 2019.

INC., A. Kinesis Data Generator. 2021. <https://github.com/awslabs/
amazon-kinesis-data-generator>.

INC., C. Ksql-datagen. 2017. <https://docs.confluent.io/5.4.0/ksql/docs/tutorials/
generate-custom-test-data.html>.

INC., C. Avro Random Generator. 2021. <https://github.com/confluentinc/
avro-random-generator>.

INC., C. Confluent CLI. 2021. <https://github.com/confluentinc/confluent-cli>.

INC., C. Ducktape. 2021. <https://github.com/confluentinc/ducktape>.

 https://github.com/awslabs/amazon-kinesis-data-generator
 https://github.com/awslabs/amazon-kinesis-data-generator
 https://docs.confluent.io/5.4.0/ksql/docs/tutorials/generate-custom-test-data.html
 https://docs.confluent.io/5.4.0/ksql/docs/tutorials/generate-custom-test-data.html
 https://github.com/confluentinc/avro-random-generator
 https://github.com/confluentinc/avro-random-generator
 https://github.com/confluentinc/confluent-cli
 https://github.com/confluentinc/ducktape

192

INC., C. Kafka Datagen Connector. 2021. <https://github.com/confluentinc/
kafka-connect-datagen>.

ISAH, H.; ZULKERNINE, F. A scalable and robust framework for data stream ingestion.
In: IEEE. 2018 IEEE International Conference on Big Data (Big Data). [S.l.], 2018. p.
2900–2905.

ISO/IEC 25010. ISO/IEC 25010:2011, Systems and software engineering — Sys-
tems and software Quality Requirements and Evaluation (SQuaRE) — System and
software quality models. 2011. Disponível em: <https://www.bibsonomy.org/bibtex/
25951b0998b7eaea346d826fd77110a48/bcoldewey>.

ISO/IEC 25010:2011: Systems And Software Engineering – Systems And SoftWare Quality
Requirements And Evaluation (Square) – System And Software Quality Models. 2011.
Disponível em: <https://www.iso.org/standard/35733.html>.

JAFFARI, A.; YOO, C.-J.; LEE, J. Automatic test data generation using the activity diagram
and search-based technique. Applied Sciences, Multidisciplinary Digital Publishing Institute,
v. 10, n. 10, p. 3397, 2020.

JEDLITSCHKA, A.; CIOLKOWSKI, M.; PFAHL, D. Reporting experiments in software
engineering. Guide to advanced empirical software engineering, Springer, p. 201–228, 2008.

JEDLITSCHKA, A.; PFAHL, D. Reporting guidelines for controlled experiments in software
engineering. In: IEEE. 2005 International Symposium on Empirical Software Engineering,
2005. [S.l.], 2005. p. 10–pp.

JENKINS. Jenkins. 2021. <https://github.com/jenkinsci/jenkins>.

JIANG, Z. M.; HASSAN, A. E. A survey on load testing of large-scale software systems. IEEE
Transactions on Software Engineering, IEEE, v. 41, n. 11, p. 1091–1118, 2015.

JONES, C.; BONSIGNOUR, O. The economics of software quality. [S.l.]: Addison-Wesley
Professional, 2011.

JONSEN, K.; JEHN, K. A. Using triangulation to validate themes in qualitative studies.
Qualitative Research in Organizations and Management: An International Journal, Emerald
Group Publishing Limited, v. 4, n. 2, p. 123–150, 2009.

JÚNIOR, E.; FARIAS, K.; SILVA, B. A survey on the use of uml in the brazilian industry. In:
Proceedings of the XXXV Brazilian Symposium on Software Engineering. [S.l.: s.n.], 2021. p.
275–284.

KAISLER, S.; ARMOUR, F.; ESPINOSA, J. A.; MONEY, W. Big data: Issues and challenges
moving forward. In: IEEE. 2013 46th Hawaii International Conference on System Sciences.
[S.l.], 2013. p. 995–1004.

KALLAS, K.; NIKSIC, F.; STANFORD, C.; ALUR, R. Diffstream: differential output testing
for stream processing programs. Proceedings of the ACM on Programming Languages, ACM
New York, NY, USA, v. 4, n. OOPSLA, p. 1–29, 2020.

 https://github.com/confluentinc/kafka-connect-datagen
 https://github.com/confluentinc/kafka-connect-datagen
https://www.bibsonomy.org/bibtex/25951b0998b7eaea346d826fd77110a48/bcoldewey
https://www.bibsonomy.org/bibtex/25951b0998b7eaea346d826fd77110a48/bcoldewey
https://www.iso.org/standard/35733.html
 https://github.com/jenkinsci/jenkins

193

KAMEI, F.; WIESE, I.; LIMA, C.; POLATO, I.; NEPOMUCENO, V.; FERREIRA, W.;
RIBEIRO, M.; PENA, C.; CARTAXO, B.; PINTO, G.; SOARES, S. Grey literature in
software engineering: A critical review. Information and Software Technology, p. 106609,
2021. ISSN 0950-5849. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0950584921000860>.

KAMEI, F.; WIESE, I.; PINTO, G.; RIBEIRO, M.; SOARES, S. On the use of grey literature:
A survey with the brazilian software engineering research community. In: Proceedings of the
34th Brazilian Symposium on Software Engineering. [S.l.: s.n.], 2020. p. 183–192.

KAPUR, P.; SHRIVASTAVA, A.; SINGH, O. When to release and stop testing of a software.
Journal of the Indian Society for Probability and Statistics, Springer, v. 18, p. 19–37, 2017.

KARAU, H. Spark Testing Base. 2016. Disponível em: <https://github.com/holdenk/
spark-testing-base>.

KARAU, H. Spark Testing Base. 2021. <https://github.com/holdenk/spark-testing-base>.

KARGAR, M. J.; HANIFIZADE, A. Automation of regression test in microservice architecture.
In: IEEE. 2018 4th International Conference on Web Research (ICWR). [S.l.], 2018. p.
133–137.

KARIMOV, J.; RABL, T.; KATSIFODIMOS, A.; SAMAREV, R.; HEISKANEN, H.; MARKL,
V. Benchmarking distributed stream data processing systems. In: IEEE. 2018 IEEE 34th
International Conference on Data Engineering (ICDE). [S.l.], 2018. p. 1507–1518.

KARLSSON, S.; ČAUŠEVIĆ, A.; SUNDMARK, D. Quickrest: Property-based test generation
of openapi-described restful apis. In: IEEE. 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST). [S.l.], 2020. p. 131–141.

KARLSSON, S.; ČAUŠEVIĆ, A.; SUNDMARK, D. Automatic property-based testing of
graphql apis. In: IEEE. 2021 IEEE/ACM International Conference on Automation of Software
Test (AST). [S.l.], 2021. p. 1–10.

KASAULI, R.; KNAUSS, E.; HORKOFF, J.; LIEBEL, G.; NETO, F. G. de O. Requirements
engineering challenges and practices in large-scale agile system development. Journal of
Systems and Software, Elsevier, v. 172, p. 110851, 2021.

KASSAB, M.; LAPLANTE, P.; DEFRANCO, J.; NETO, V. V. G.; DESTEFANIS, G.
Exploring the profiles of software testing jobs in the united states. IEEE Access, IEEE, v. 9,
p. 68905–68916, 2021.

KENTHAPADI, K.; TRAN, T. T. L. Pripearl: A framework for privacy-preserving analytics
and reporting at linkedin. Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, 2018.

KHAMASSI, I.; SAYED-MOUCHAWEH, M.; HAMMAMI, M.; GHÉDIRA, K. Discussion and
review on evolving data streams and concept drift adapting. Evolving systems, Springer, v. 9,
n. 1, p. 1–23, 2018.

KHANDAI, S.; ACHARYA, A. A.; MOHAPATRA, D. P. Prioritizing test cases using business
criticalitytest value. International Journal of Advanced Computer Science and Applications,
Science and Information (SAI) Organization Limited, v. 3, n. 5, 2012.

https://www.sciencedirect.com/science/article/pii/S0950584921000860
https://www.sciencedirect.com/science/article/pii/S0950584921000860
https://github.com/holdenk/spark-testing-base
https://github.com/holdenk/spark-testing-base
 https://github.com/holdenk/spark-testing-base

194

KHARE, K. A Guide for Unit Testing in Apache Flink. 2020. [Accessed: 2021-02-20]. Disponível
em: <https://flink.apache.org/news/2020/02/07/a-guide-for-unit-testing-in-apache-flink.
html>.

KHINE, A. A.; KHIN, H. W. Credit card fraud detection using online boosting with extremely
fast decision tree. In: IEEE. 2020 IEEE Conference on Computer Applications (ICCA). [S.l.],
2020. p. 1–4.

KIM, S.; PARK, J.; KIM, K. H.; SHON, J. G. A test data generation for performance testing
in massive data processing systems. In: Advanced Multimedia and Ubiquitous Engineering.
[S.l.]: Springer, 2018. p. 207–213.

KIRAN, M.; MURPHY, P.; MONGA, I.; DUGAN, J.; BAVEJA, S. S. Lambda architecture
for cost-effective batch and speed big data processing. In: IEEE. 2015 IEEE International
Conference on Big Data (Big Data). [S.l.], 2015. p. 2785–2792.

KITCHENHAM, B.; AL-KHILIDAR, H.; BABAR, M. A.; BERRY, M.; COX, K.; KEUNG, J.;
KURNIAWATI, F.; STAPLES, M.; ZHANG, H.; ZHU, L. Evaluating guidelines for reporting
empirical software engineering studies. Empirical Software Engineering, Springer, v. 13, n. 1,
p. 97–121, 2008.

KOLAJO, T.; DARAMOLA, O.; ADEBIYI, A. Big data stream analysis: a systematic
literature review. Journal of Big Data, Springer, v. 6, n. 1, p. 1–30, 2019.

KOMORNICZAK, J.; KSIENIEWICZ, P. Data stream generation through real concept’s
interpolation. In: 30th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, ESANN. [S.l.: s.n.], 2022. p. 5–7.

KOMORNICZAK, J.; ZYBLEWSKI, P.; KSIENIEWICZ, P. Statistical drift detection ensemble
for batch processing of data streams. Knowledge-Based Systems, Elsevier, v. 252, p. 109380,
2022.

KONSTANTINOU, C.; STERGIOPOULOS, G.; PARVANIA, M.; ESTEVES-VERISSIMO, P.
Chaos engineering for enhanced resilience of cyber-physical systems. In: IEEE. 2021 Resilience
Week (RWS). [S.l.], 2021. p. 1–10.

KOUKOUVIS, K.; CUBERO, R. A.; PELLICCIONE, P. A/b testing in e-commerce sales
processes. In: SPRINGER. International Workshop on Software Engineering for Resilient
Systems. [S.l.], 2016. p. 133–148.

KRÄMER, J.; SEEGER, B. A temporal foundation for continuous queries over data streams.
[S.l.]: Univ., 2004.

KRAWCZYK, B. Learning from imbalanced data: open challenges and future directions.
Progress in Artificial Intelligence, Springer, v. 5, n. 4, p. 221–232, 2016.

KREMPL, G.; ŽLIOBAITE, I.; BRZEZIŃSKI, D.; HÜLLERMEIER, E.; LAST, M.; LEMAIRE,
V.; NOACK, T.; SHAKER, A.; SIEVI, S.; SPILIOPOULOU, M. et al. Open challenges for
data stream mining research. ACM SIGKDD explorations newsletter, ACM, v. 16, n. 1, p.
1–10, 2014.

KRUGER, J.; EVANS, M. If you don’t want to be late, enumerate: Unpacking reduces the
planning fallacy. Journal of Experimental Social Psychology, Elsevier, v. 40, n. 5, p. 586–598,
2004.

https://flink.apache.org/news/2020/02/07/a-guide-for-unit-testing-in-apache-flink.html
https://flink.apache.org/news/2020/02/07/a-guide-for-unit-testing-in-apache-flink.html

195

KULESOVS, I. ios applications testing. In: ENVIRONMENT. TECHNOLOGIES.
RESOURCES. Proceedings of the International Scientific and Practical Conference. [S.l.:
s.n.], 2015. v. 3, p. 138–150.

KUUTILA, M.; MÄNTYLÄ, M.; FAROOQ, U.; CLAES, M. Time pressure in software
engineering: A systematic review. Information and Software Technology, Elsevier, v. 121, p.
106257, 2020.

LAFI, M.; ALRAWASHED, T.; HAMMAD, A. M. Automated test cases generation
from requirements specification. In: IEEE. 2021 International Conference on Information
Technology (ICIT). [S.l.], 2021. p. 852–857.

LAHARIYA, M.; BENOIT, D. F.; DEVELDER, C. Synthetic data generator for electric vehicle
charging sessions: Modeling and evaluation using real-world data. Energies, Mdpi, v. 13,
n. 16, p. 4211, 2020.

LANGHI, S.; TOMMASINI, R.; VALLE, E. D. Extending kafka streams for complex event
recognition. In: IEEE. 2020 IEEE International Conference on Big Data (Big Data). [S.l.],
2020. p. 2190–2197.

LEESATAPORNWONGSA, T.; LUKMAN, J. F.; LU, S.; GUNAWI, H. S. Taxdc: A taxonomy
of non-deterministic concurrency bugs in datacenter distributed systems. In: Proceedings
of the Twenty-First International Conference on Architectural Support for Programming
Languages and Operating Systems. [S.l.: s.n.], 2016. p. 517–530.

LEOPARDI, A. StreamData. 2017. Disponível em: <https://github.com/whatyouhide/
stream_data>.

LEOPARDI, A.; VALIM, J. StreamData. 2021. <https://github.com/whatyouhide/stream_
data>.

LI, J.; CHEN, Z.; CHENG, L.; LIU, X. Energy data generation with wasserstein deep
convolutional generative adversarial networks. Energy, Elsevier, v. 257, p. 124694, 2022.

LI, N.; LEI, Y.; KHAN, H. R.; LIU, J.; GUO, Y. Applying combinatorial test data generation
to big data applications. In: IEEE. 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE). [S.l.], 2016. p. 637–647.

LI, Y.; DONG, T.; ZHANG, X.; SONG, Y.-d.; YUAN, X. Large-scale software unit testing on
the grid. In: GrC. [S.l.: s.n.], 2006. p. 596–599.

LIMA, B. Automated scenario-based integration testing of time-constrained distributed
systems. In: IEEE. 2019 12th IEEE Conference on Software Testing, Validation and
Verification (ICST). [S.l.], 2019. p. 486–488.

LIMA, B.; FARIA, J. P.; HIERONS, R. Local observability and controllability analysis
and enforcement in distributed testing with time constraints. IEEE Access, IEEE, v. 8, p.
167172–167191, 2020.

LIMA, B. C.; FARIA, J. Conformance checking in integration testing of time-constrained
distributed systems based on uml sequence diagrams. In: Proceedings of the 12th International
Conference on Software Technologies - ICSOFT. [S.l.: s.n.], 2017. p. 459–466.

https://github.com/whatyouhide/stream_data
https://github.com/whatyouhide/stream_data
 https://github.com/whatyouhide/stream_data
 https://github.com/whatyouhide/stream_data

196

LITT, G.; HARDENBERG, P. v.; HENRY, O. Cambria: schema evolution in distributed
systems with edit lenses. In: Proceedings of the 8th Workshop on Principles and Practice of
Consistency for Distributed Data. [S.l.: s.n.], 2021. p. 1–9.

LIU, P.; XU, H.; SILVA, D. D.; WANG, Q.; AHMED, S. T.; HU, L. Fp4s: Fragment-based
parallel state recovery for stateful stream applications. In: IEEE. 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). [S.l.], 2020. p. 1102–1111.

LIU, X.; IFTIKHAR, N.; XIE, X. Survey of real-time processing systems for big data. In: ACM.
Proceedings of the 18th International Database Engineering & Applications Symposium.
[S.l.], 2014. p. 356–361.

LLC, M. Mockaroo. 2021. <https://www.mockaroo.com/>.

LUZ, W. P.; PINTO, G.; BONIFÁCIO, R. Building a collaborative culture: a grounded theory
of well succeeded devops adoption in practice. In: ACM. Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement. [S.l.], 2018.
p. 6.

LV, J.; YIN, B.-B.; CAI, K.-Y. On the asymptotic behavior of adaptive testing strategy for
software reliability assessment. IEEE transactions on Software Engineering, IEEE, v. 40, n. 4,
p. 396–412, 2014.

LV, Y.; LIU, R.; JIN, P. Water-wheel: Real-time storage with high throughput and scalability
for big data streams. In: Proceedings of the 33rd International Conference on Software
Engineering and Knowledge Engineering. KSI Research Inc., 2021. p. 634–635. Disponível
em: <https://doi.org/10.18293\%2Fseke2021-204>.

MADAN, S.; GOSWAMI, P. A privacy preserving scheme for big data publishing in the cloud
using k-anonymization and hybridized optimization algorithm. In: IEEE. 2018 international
conference on circuits and systems in digital enterprise technology (ICCSDET). [S.l.], 2018.
p. 1–7.

MAHOOD, Q.; EERD, D. V.; IRVIN, E. Searching for grey literature for systematic reviews:
challenges and benefits. Research synthesis methods, Wiley Online Library, v. 5, n. 3, p.
221–234, 2014.

MAILEWA, A.; HERATH, J.; HERATH, S. A survey of effective and efficient software testing.
In: The Midwest Instruction and Computing Symposium.(MICS), Grand Forks, ND. [S.l.:
s.n.], 2015.

MAJEED, A.; LEE, S. Anonymization techniques for privacy preserving data publishing: A
comprehensive survey. IEEE access, IEEE, v. 9, p. 8512–8545, 2020.

MALASKA, T. Mastering Spark Unit Testing. 2019. Disponível em: <https://databricks.
com/session/mastering-spark-unit-testing>.

MALENSEK, M.; PALLICKARA, S. L.; PALLICKARA, S. Galileo: A framework for distributed
storage of high-throughput data streams. In: IEEE. 2011 Fourth IEEE International
Conference on Utility and Cloud Computing. [S.l.], 2011. p. 17–24.

MANCO, G.; RITACCO, E.; RULLO, A.; SACCÀ, D.; SERRA, E. Machine learning methods
for generating high dimensional discrete datasets. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, Wiley Online Library, v. 12, n. 2, p. e1450, 2022.

 https://www.mockaroo.com/
https://doi.org/10.18293\%2Fseke2021-204
https://databricks.com/session/mastering-spark-unit-testing
https://databricks.com/session/mastering-spark-unit-testing

197

MANNINO, M.; ABOUZIED, A. Is this real? generating synthetic data that looks real.
In: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology. [S.l.: s.n.], 2019. p. 549–561.

MÄNTYLÄ, M. V.; SMOLANDER, K. Gamification of software testing-an mlr. In:
SPRINGER. International conference on product-focused software process improvement.
[S.l.], 2016. p. 611–614.

MARAK. Fake.js. 2021. <https://github.com/marak/Faker.js/>.

MCKEEMAN, W. M. Differential testing for software. Digital Technical Journal, v. 10, n. 1,
p. 100–107, 1998.

MEEHAN, J.; ASLANTAS, C.; ZDONIK, S.; TATBUL, N.; DU, J. Data ingestion for the
connected world. In: CIDR. [S.l.: s.n.], 2017.

MEHMOOD, E.; ANEES, T. Challenges and solutions for processing real-time big data
stream: a systematic literature review. IEEE Access, IEEE, v. 8, p. 119123–119143, 2020.

MISHRA, L.; VARMA, S. et al. Performance evaluation of real-time stream processing
systems for internet of things applications. Future Generation Computer Systems, Elsevier,
v. 113, p. 207–217, 2020.

Mocked Streams. Mocked Streams. 2016. [Accessed: 2021-02-20]. Disponível em:
<https://github.com/jpzk/mockedstreams>.

MOLLÉRI, J. S.; PETERSEN, K.; MENDES, E. Survey guidelines in software engineering:
An annotated review. In: Proceedings of the 10th ACM/IEEE international symposium on
empirical software engineering and measurement. [S.l.: s.n.], 2016. p. 1–6.

MONTE, B. D.; ZEUCH, S.; RABL, T.; MARKL, V. Rhino: Efficient management of very
large distributed state for stream processing engines. In: Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. [S.l.: s.n.], 2020. p. 2471–2486.

MORALES, G. D. F.; BIFET, A.; KHAN, L.; GAMA, J.; FAN, W. Iot big data stream mining.
In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining. [S.l.: s.n.], 2016. p. 2119–2120.

MORGAN, D. L.; KRUEGER, R. A.; KING, J. A. The focus group kit, Vols. 1–6. [S.l.]: Sage
Publications, Inc, 1998.

MOUTAI, F.-z.; HSAINI, S.; AZZOUZI, S.; CHARAF, M. E. H. Testing distributed
cloud: A case study. In: IEEE. 2019 International Symposium on Advanced Electrical and
Communication Technologies (ISAECT). [S.l.], 2019. p. 1–5.

NAMIOT, D. On big data stream processing. International Journal of Open Information
Technologies, v. 3, n. 8, 2015.

NARDELLI, M.; CARDELLINI, V.; GRASSI, V.; PRESTI, F. L. Efficient operator placement
for distributed data stream processing applications. IEEE Transactions on Parallel and
Distributed Systems, IEEE, v. 30, n. 8, p. 1753–1767, 2019.

NETO, J. B. de S.; MOREIRA, A. M.; VARGAS-SOLAR, G.; MUSICANTE, M. A.
Transmut-spark: Transformation mutation for apache spark. Software Testing, Verification
and Reliability, Wiley Online Library, v. 32, n. 8, p. e1809, 2022.

 https://github.com/marak/Faker.js/
https://github.com/jpzk/mockedstreams

198

NEWTON, I. Carta a Robert Hooke. 1675. Disponível em: <https://discover.hsp.org/
Record/dc-9792/Description#tabnav>. Acesso em: 7 nov. 2024.

NOKLEBY, M.; RAJA, H.; BAJWA, W. U. Scaling-up distributed processing of data streams
for machine learning. Proceedings of the IEEE, IEEE, v. 108, n. 11, p. 1984–2012, 2020.

NYUMBA, T. O.; WILSON, K.; DERRICK, C. J.; MUKHERJEE, N. The use of focus group
discussion methodology: Insights from two decades of application in conservation. Methods
in Ecology and evolution, Wiley Online Library, v. 9, n. 1, p. 20–32, 2018.

OLSTHOORN, M.; PANICHELLA, A. Multi-objective test case selection through linkage
learning-based crossover. In: SPRINGER. Search-Based Software Engineering: 13th
International Symposium, SSBSE 2021, Bari, Italy, October 11–12, 2021, Proceedings 13.
[S.l.], 2021. p. 87–102.

ORSO, A.; SHI, N.; HARROLD, M. J. Scaling regression testing to large software systems.
ACM SIGSOFT Software Engineering Notes, ACM New York, NY, USA, v. 29, n. 6, p.
241–251, 2004.

OSWILL, D. 5 Challenges to Deploying Real-Time Data Streaming Platforms. 2019.
[Accessed: 2021-02-20]. Disponível em: <https://www.computer.org/publications/
tech-news/trends/5-challenges-to-deploying-real-time-data-streaming-platforms>.

OTTOGROUP. Flink Spector. 2019. <https://github.com/ottogroup/flink-spector>.

PÄÄKKÖNEN, P. Feasibility analysis of asterixdb and spark streaming with cassandra for
stream-based processing. Journal of Big Data, Springer, v. 3, n. 1, p. 1–25, 2016.

PAGLIARI, A.; HUET, F.; URVOY-KELLER, G. Namb: A quick and flexible stream processing
application prototype generator. In: IEEE. 2020 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGRID). [S.l.], 2020. p. 61–70.

PANDEY, R.; SINGH, A.; KASHYAP, A.; ANAND, A. Comparative study on realtime data
processing system. In: IEEE. 2019 4th International Conference on Internet of Things: Smart
Innovation and Usages (IoT-SIU). [S.l.], 2019. p. 1–7.

PARGAONKAR, S. Synergizing requirements engineering and quality assurance: A
comprehensive exploration in software quality engineering. International Journal of Science
and Research (IJSR), v. 12, n. 8, p. 2003–2007, 2023.

PATEL, A. R.; TYAGI, S. The state of test automation in devops: A systematic literature
review. In: Proceedings of the 2022 Fourteenth International Conference on Contemporary
Computing. [S.l.: s.n.], 2022. p. 689–695.

PAWLAK, M.; PONISZEWSKA-MARAŃDA, A. Software testing management process for
agile approach projects. Data-Centric Business and Applications: Evolvements in Business
Information Processing and Management (Volume 2), Springer, p. 63–84, 2020.

Philip Chen, C. L.; ZHANG, C. Y. Data-intensive applications, challenges, techniques and
technologies: A survey on Big Data. Information Sciences, v. 275, p. 314–347, 2014. ISSN
00200255.

PIZONKA, S.; KEHRER, T.; WEIDLICH, M. Domain model-based data stream validation for
internet of things applications. In: MODELS Workshops. [S.l.: s.n.], 2018. p. 503–508.

https://discover.hsp.org/Record/dc-9792/Description#tabnav
https://discover.hsp.org/Record/dc-9792/Description#tabnav
https://www.computer.org/publications/tech-news/trends/5-challenges-to-deploying-real-time-data-streaming-platforms
https://www.computer.org/publications/tech-news/trends/5-challenges-to-deploying-real-time-data-streaming-platforms
 https://github.com/ottogroup/flink-spector

199

POPIĆ, S.; PAVKOVIĆ, B.; VELIKIĆ, I.; TESLIĆ, N. Data generators: a short survey of
techniques and use cases with focus on testing. In: IEEE. 2019 IEEE 9th International
Conference on Consumer Electronics (ICCE-Berlin). [S.l.], 2019. p. 189–194.

PUNN, N. S.; AGARWAL, S.; SYAFRULLAH, M.; ADIYARTA, K. Testing big data
application. In: IEEE. 2019 6th International Conference on Electrical Engineering, Computer
Science and Informatics (EECSI). [S.l.], 2019. p. 159–162.

QIN, C.; EICHELBERGER, H.; SCHMID, K. Enactment of adaptation in data stream
processing with latency implications—a systematic literature review. Information and Software
Technology, Elsevier, v. 111, p. 1–21, 2019.

RAFI, D. M.; MOSES, K. R. K.; PETERSEN, K.; MÄNTYLÄ, M. V. Benefits and limitations
of automated software testing: Systematic literature review and practitioner survey. In: IEEE.
2012 7th International Workshop on Automation of Software Test (AST). [S.l.], 2012. p.
36–42.

RAHMAN, M. S.; REZA, H. Systematic mapping study of non-functional requirements
in big data system. In: IEEE. 2020 IEEE International Conference on Electro Information
Technology (EIT). [S.l.], 2020. p. 025–031.

RAHUTOMO, R.; LIE, Y.; PERBANGSA, A. S.; PARDAMEAN, B. Improving conversion
rates for fashion e-commerce with a/b testing. In: IEEE. 2020 International Conference on
Information Management and Technology (ICIMTech). [S.l.], 2020. p. 266–270.

RAIZMAN, A.; ANANTHANARAYAN, A.; KIRILOV, A.; CHANDRAMOULI, B.; ALI, M. H.
An extensible test framework for the microsoft streaminsight query processor. In: DBTest.
[S.l.: s.n.], 2010.

REALTIMEBOARD, I. Miro online whiteboard (no version provided). 2023. [Accessed:
2023-11-14]. Disponível em: <www.miro.com>.

RICHMAN, W. L.; KIESLER, S.; WEISBAND, S.; DRASGOW, F. A meta-analytic
study of social desirability distortion in computer-administered questionnaires, traditional
questionnaires, and interviews. Journal of applied psychology, American Psychological
Association, v. 84, n. 5, p. 754, 1999.

RIEHLE, D. The open source distributor business model. Computer, IEEE, v. 54, n. 12, p.
99–103, 2021.

RIESCO, A.; RODRÍGUEZ-HORTALÁ, J. Property-based testing for spark streaming. Theory
and Practice of Logic Programming, Cambridge University Press, v. 19, n. 4, p. 574–602,
2019.

RODRÍGUEZ, P.; KUVAJA, P.; OIVO, M. Lessons learned on applying design science
for bridging the collaboration gap between industry and academia in empirical software
engineering. In: Proceedings of the 2nd International Workshop on Conducting Empirical
Studies in Industry. [S.l.: s.n.], 2014. p. 9–14.

ROMANO, S.; FUCCI, D.; SCANNIELLO, G.; BALDASSARRE, M. T.; TURHAN, B.;
JURISTO, N. On researcher bias in software engineering experiments. Journal of Systems
and Software, Elsevier, v. 182, p. 111068, 2021.

www.miro.com

200

RUSSO, D. The agile success model: a mixed-methods study of a large-scale agile
transformation. ACM Transactions on Software Engineering and Methodology (TOSEM),
ACM New York, NY, USA, v. 30, n. 4, p. 1–46, 2021.

RUTHERFORD, M. J.; CARZANIGA, A.; WOLF, A. L. Evaluating test suites and adequacy
criteria using simulation-based models of distributed systems. IEEE Transactions on Software
Engineering, IEEE, v. 34, n. 4, p. 452–470, 2008.

SABLIS, A.; SMITE, D.; MOE, N. Team-external coordination in large-scale software
development projects. Journal of Software: Evolution and Process, Wiley Online Library,
v. 33, n. 3, p. e2297, 2021.

SADRI-MOSHKENANI, Z.; BRADLEY, J.; ROTHERMEL, G. Survey on test case generation,
selection and prioritization for cyber-physical systems. Software Testing, Verification and
Reliability, Wiley Online Library, v. 32, n. 1, p. e1794, 2022.

SAHAL, R.; BRESLIN, J. G.; ALI, M. I. Big data and stream processing platforms for industry
4.0 requirements mapping for a predictive maintenance use case. Journal of manufacturing
systems, Elsevier, v. 54, p. 138–151, 2020.

SALDAÑA, J. The coding manual for qualitative researchers. [S.l.]: Sage, 2015.

SALEEM, H.; UDDIN, M. K. S.; REHMAN, S. Habib-ur; SALEEM, S.; ASLAM, A. M.
Strategic data driven approach to improve conversion rates and sales performance of
e-commerce websites. International Journal of Scientific & Engineering Research (IJSER),
2019.

SAMOSIR, J.; INDRAWAN-SANTIAGO, M.; HAGHIGHI, P. D. An evaluation of data stream
processing systems for data driven applications. Procedia Computer Science, Elsevier, v. 80,
p. 439–449, 2016.

SANTOS, I. de S.; ANDRADE, R. M. de C.; ROCHA, L. S.; MATALONGA, S.; OLIVEIRA,
K. M. de; TRAVASSOS, G. H. Test case design for context-aware applications: Are we there
yet? Information and Software Technology, Elsevier, v. 88, p. 1–16, 2017.

SAYED-MOUCHAWEH, M. Handling concept drift. In: Learning from Data Streams in
Dynamic Environments. [S.l.]: Springer, 2016. p. 33–59.

SCHIEFERDECKER, I.; HOFFMANN, A. Model-based testing. IEEE software, Institute of
Electrical and Electronics Engineers, Inc., 345 E. 47 th St. NY . . . , v. 29, n. 1, p. 14–18,
2012.

SCHLEIER-SMITH, J.; KROGEN, E. T.; HELLERSTEIN, J. M. Restream: Accelerating
backtesting and stream replay with serial-equivalent parallel processing. In: ACM. Proceedings
of the Seventh ACM Symposium on Cloud Computing. [S.l.], 2016. p. 334–347.

SEAMAN, C. B. Qualitative methods in empirical studies of software engineering. IEEE
Transactions on software engineering, IEEE, v. 25, n. 4, p. 557–572, 1999.

SEGURA, S.; BENAVIDES, D.; CORTÉS, A. R. Functional testing of feature model analysis
tools. a first step. In: SPLC (2). [S.l.: s.n.], 2008. p. 179.

201

SHAH, M. A.; HELLERSTEIN, J. M.; BREWER, E. Highly available, fault-tolerant,
parallel dataflows. In: Proceedings of the 2004 ACM SIGMOD international conference on
Management of data. [S.l.: s.n.], 2004. p. 827–838.

SHAHRIVAR, S.; ELAHI, S.; HASSANZADEH, A.; MONTAZER, G. A business model for
commercial open source software: A systematic literature review. Information and Software
Technology, Elsevier, v. 103, p. 202–214, 2018.

SHAHVERDI, E.; AWAD, A.; SAKR, S. Big stream processing systems: an experimental
evaluation. In: IEEE. 2019 IEEE 35th International Conference on Data Engineering
Workshops (ICDEW). [S.l.], 2019. p. 53–60.

SHARMA, A.; SINGH, G.; REHMAN, S. A review of big data challenges and preserving
privacy in big data. Advances in Data and Information Sciences, Springer, p. 57–65, 2020.

SHIROLE, M.; KUMAR, R. Concurrency coverage criteria for activity diagrams. IET Software,
Wiley Online Library, v. 15, n. 1, p. 43–54, 2021.

SHIROLE, M.; KUMAR, R. Concurrent behavioral coverage criteria for sequence diagrams.
Innovations in Systems and Software Engineering, Springer, p. 1–20, 2023.

SHREE, A. R.; KIRAN, P.; MOHITH, N.; KAVYA, M. Sensitivity context aware privacy
preserving disease prediction. In: Expert Clouds and Applications. [S.l.]: Springer, 2022. p.
11–20.

SILVA, P.; PAIVA, A. C.; RESTIVO, A.; GARCIA, J. E. Automatic test case generation
from usage information. In: IEEE. 2018 11Th International Conference on the Quality of
Information and Communications Technology (QUATIC). [S.l.], 2018. p. 268–271.

SIMONSSON, J.; ZHANG, L.; MORIN, B.; BAUDRY, B.; MONPERRUS, M. Observability
and chaos engineering on system calls for containerized applications in docker. Future
Generation Computer Systems, Elsevier, v. 122, p. 117–129, 2021.

Software Engineering Daily. Great Expectations: Data Pipeline Testing
with Abe Gong. 2020. [Accessed: 2021-02-20]. Disponível em: <https:
//podcasts.podinstall.com/software-engineering-daily-software-engineering-daily/
202002171000-great-expectations-data-pipeline-testing-abe-gong.html>.

SOUZA, F. R. de; VEITH, A. da S.; ASSUNÇÃO, M. Dias de; CARON, E. Scalable
joint optimization of placement and parallelism of data stream processing applications on
cloud-edge infrastructure. In: SPRINGER. Service-Oriented Computing: 18th International
Conference, ICSOC 2020, Dubai, United Arab Emirates, December 14–17, 2020, Proceedings
18. [S.l.], 2020. p. 149–164.

SRIKANTH, H.; HETTIARACHCHI, C.; DO, H. Requirements based test prioritization using
risk factors: An industrial study. Information and Software Technology, Elsevier, v. 69, p.
71–83, 2016.

Stack Exchange. Test Strategies for Stream Processing/Event Processing. 2017.
[Accessed: 2021-02-20]. Disponível em: <https://sqa.stackexchange.com/questions/25915/
test-strategies-for-stream-processing-event-processing>.

Stack Overflow. Test Kafka Streams topology. 2017. [Accessed: 2021-02-20]. Disponível em:
<https://stackoverflow.com/questions/41825753/test-kafka-streams-topology>.

https://podcasts.podinstall.com/software-engineering-daily-software-engineering-daily/202002171000-great-expectations-data-pipeline-testing-abe-gong.html
https://podcasts.podinstall.com/software-engineering-daily-software-engineering-daily/202002171000-great-expectations-data-pipeline-testing-abe-gong.html
https://podcasts.podinstall.com/software-engineering-daily-software-engineering-daily/202002171000-great-expectations-data-pipeline-testing-abe-gong.html
https://sqa.stackexchange.com/questions/25915/test-strategies-for-stream-processing-event-processing
https://sqa.stackexchange.com/questions/25915/test-strategies-for-stream-processing-event-processing
https://stackoverflow.com/questions/41825753/test-kafka-streams-topology

202

STEINDL, G.; KASTNER, W. Semantic microservice framework for digital twins. Applied
Sciences, MDPI, v. 11, n. 12, p. 5633, 2021.

STEPHENS, R. A survey of stream processing. Acta Informatica, Springer, v. 34, n. 7, p.
491–541, 1997.

STEPIEN, B.; PEYTON, L. Test coordination and dynamic test oracles for testing concurrent
systems. In: SOFTENG 2020 : The Sixth International Conference on Advances and Trends
in Software Engineering. [S.l.: s.n.], 2020. p. 22–27.

STEWART, D. W.; SHAMDASANI, P. Online focus groups. Journal of Advertising, Taylor &
Francis, v. 46, n. 1, p. 48–60, 2017.

STOL, K.-J.; RALPH, P.; FITZGERALD, B. Grounded theory in software engineering
research: a critical review and guidelines. In: IEEE. 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). [S.l.], 2016. p. 120–131.

STONEBRAKER, M.; ÇETINTEMEL, U.; ZDONIK, S. The 8 requirements of real-time
stream processing. ACM Sigmod Record, ACM, 2005.

SUHADA, T. A.; FORD, J. A.; VERREYNNE, M.-L.; INDULSKA, M. Motivating individuals
to contribute to firms’ non-pecuniary open innovation goals. Technovation, Elsevier, v. 102,
p. 102233, 2021.

SULEIMAN, D.; ALIAN, M.; HUDAIB, A. A survey on prioritization regression testing test
case. In: IEEE. 2017 8th International Conference on Information Technology (ICIT). [S.l.],
2017. p. 854–862.

SUN, D.; YAN, H.; GAO, S.; ZHOU, Z. Performance evaluation and analysis of multiple
scenarios of big data stream computing on storm platform. KSII Transactions on Internet
and Information Systems (TIIS), Korean Society for Internet Information, v. 12, n. 7, p.
2977–2997, 2018.

TALEY, D. S.; PATHAK, B. Comprehensive study of software testing techniques and
strategies: a review. Int. J. Eng. Res, v. 9, n. 08, p. 817–822, 2020.

TAN, C.; BEHJATI, R.; ARISHOLM, E. A model-based approach to generate dynamic
synthetic test data: A conceptual model. In: IEEE. 2019 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). [S.l.], 2019. p. 11–14.

TANTALAKI, N.; SOURAVLAS, S.; ROUMELIOTIS, M. A review on big data real-time
stream processing and its scheduling techniques. International Journal of Parallel, Emergent
and Distributed Systems, Taylor & Francis, v. 35, n. 5, p. 571–601, 2020.

TANTALAKI, N.; SOURAVLAS, S.; ROUMELIOTIS, M.; KATSAVOUNIS, S. Pipeline-based
linear scheduling of big data streams in the cloud. IEEE Access, IEEE, v. 8, p. 117182–117202,
2020.

THURMOND, V. A. The point of triangulation. Journal of nursing scholarship, Wiley Online
Library, v. 33, n. 3, p. 253–258, 2001.

TIWARI, R. G.; SRIVASTAVA, A. P.; BHARDWAJ, G.; KUMAR, V. Exploiting uml diagrams
for test case generation: a review. In: IEEE. 2021 2nd international conference on intelligent
engineering and management (ICIEM). [S.l.], 2021. p. 457–460.

203

TOM, E.; AURUM, A.; VIDGEN, R. An exploration of technical debt. Journal of Systems
and Software, Elsevier, v. 86, n. 6, p. 1498–1516, 2013.

TÖNJES, R.; BARNAGHI, P.; ALI, M.; MILEO, A.; HAUSWIRTH, M.; GANZ, F.; GANEA,
S.; KJÆRGAARD, B.; KUEMPER, D.; NECHIFOR, S. et al. Real time iot stream processing
and large-scale data analytics for smart city applications. In: SN. poster session, European
Conference on Networks and Communications. [S.l.], 2014.

TORKURA, K. A.; SUKMANA, M. I.; CHENG, F.; MEINEL, C. Cloudstrike: Chaos
engineering for security and resiliency in cloud infrastructure. IEEE Access, IEEE, v. 8, p.
123044–123060, 2020.

TUCKER, H.; HOCHSTEIN, L.; JONES, N.; BASIRI, A.; ROSENTHAL, C. The business
case for chaos engineering. IEEE Cloud Computing, IEEE, v. 5, n. 3, p. 45–54, 2018.

TUN, M. T.; NYAUNG, D. E.; PHYU, M. P. Performance evaluation of intrusion detection
streaming transactions using apache kafka and spark streaming. In: IEEE. 2019 international
conference on advanced information technologies (ICAIT). [S.l.], 2019. p. 25–30.

TYNDALL, J. AACODS checklist for appraising grey literature. Flinders University, 2010.
Accessed: 2021-02-13. Disponível em: <https://dspace.flinders.edu.au/xmlui/bitstream/
handle/2328/3326/AACODS_Checklist.pdf>.

VALSAMIS, A.; TSERPES, K.; ZISSIS, D.; ANAGNOSTOPOULOS, D.; VARVARIGOU, T.
Employing traditional machine learning algorithms for big data streams analysis: The case of
object trajectory prediction. Journal of Systems and Software, Elsevier, v. 127, p. 249–257,
2017.

VASA, J.; THAKKAR, A. Deep learning: Differential privacy preservation in the era of big
data. Journal of Computer Information Systems, Taylor & Francis, p. 1–24, 2022.

VEITH, A. da S.; ASSUNCAO, M. D. de; LEFEVRE, L. Latency-aware strategies for
deploying data stream processing applications on large cloud-edge infrastructure. IEEE
transactions on cloud computing, IEEE, 2021.

VIANELLO, V.; PATIÑO-MARTÍNEZ, M.; AZQUETA-ALZÚAZ, A.; JIMENEZ-PÉRIS, R.
Cost of fault-tolerance on data stream processing. In: SPRINGER. European Conference on
Parallel Processing. [S.l.], 2018. p. 17–27.

VIANNA, A.; FERREIRA, W.; GAMA, K. An exploratory study of how specialists deal with
testing in data stream processing applications. In: IEEE. 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). [S.l.], 2019.
p. 1–6.

VIANNA, A.; KAMEI, F.; GAMA, K.; ZIMMERLE, C.; NETO, J. Research Data. 2022.
<https://doi.org/10.6084/m9.figshare.22259539>. [Accessed: 2023-03-12].

VIANNA, A.; KAMEI, F. K.; GAMA, K.; ZIMMERLE, C.; NETO, J. A. A grey literature
review on data stream processing applications testing. Journal of Systems and Software,
Elsevier, p. 111744, 2023.

VILAS, M. Google search from Python. Flinders University, 2020. Accessed: 2021-02-13.
Disponível em: <https://python-googlesearch.readthedocs.io/en/latest/>.

https://dspace.flinders.edu.au/xmlui/bitstream/handle/2328/3326/AACODS_Checklist.pdf
https://dspace.flinders.edu.au/xmlui/bitstream/handle/2328/3326/AACODS_Checklist.pdf
https://doi.org/10.6084/m9.figshare.22259539
https://python-googlesearch.readthedocs.io/en/latest/

204

VOIGT, P.; BUSSCHE, A. Von dem. The eu general data protection regulation (gdpr). A
Practical Guide, 1st Ed., Cham: Springer International Publishing, Springer, 2017.

VRIES, G. K. D. D.; SOMEREN, M. V. Machine learning for vessel trajectories using
compression, alignments and domain knowledge. Expert Systems with Applications, Elsevier,
v. 39, n. 18, p. 13426–13439, 2012.

WADGE, W. W.; ASHCROFT, E. A. LUCID, the dataflow programming language. [S.l.]:
Academic Press London, 1985. v. 303.

WAEHNER, K. Testing your Apache Kafka Data with Confidence. 2022. Ac-
cessed: 2022-07-19. Disponível em: <https://www.linkedin.com/posts/kaiwaehner_
testing-your-apache-kafka-data-with-confidence-activity-6922507026493284352-C_7N?
utm_source=linkedin_share&utm_medium=member_desktop_web>.

WANG, J.; YANG, Y.; WANG, T.; SHERRATT, R. S.; ZHANG, J. Big data service
architecture: a survey. Journal of Internet Technology, v. 21, n. 2, p. 393–405, 2020.

WANG, X.; ZHANG, C.; FANG, J.; ZHANG, R.; QIAN, W.; ZHOU, A. A comprehensive
study on fault tolerance in stream processing systems. Frontiers of Computer Science,
Springer, v. 16, n. 2, p. 1–18, 2022.

WANG, Z.; MYLES, P.; JAIN, A.; KEIDEL, J. L.; LIDDI, R.; MACKILLOP, L.; VELARDO,
C.; TUCKER, A. Evaluating a longitudinal synthetic data generator using real world data.
In: IEEE. 2021 IEEE 34th International Symposium on Computer-Based Medical Systems
(CBMS). [S.l.], 2021. p. 259–264.

WASEEM, M.; LIANG, P.; SHAHIN, M.; SALLE, A. D.; MÁRQUEZ, G. Design, monitoring,
and testing of microservices systems: The practitioners’ perspective. Journal of Systems and
Software, Elsevier, v. 182, p. 111061, 2021.

WEYUKER, E. J. On testing non-testable programs. The Computer Journal, The British
Computer Society, v. 25, n. 4, p. 465–470, 1982.

WHITING, M. A.; HAACK, J. et al. Creating realistic, scenario-based synthetic data for test
and evaluation of information analytics software. In: ACM. Proceedings Workshop on BEyond
time and errors. [S.l.], 2008.

WIESMAN, S. Testing Stateful Streaming Applications. 2018. Disponível em: <https:
//sf-2018.flink-forward.org/index.html\%3Fp=4222.html>.

WINGERATH, W.; WOLLMER, B.; BESTEHORN, M.; SUCCO, S.; FERRLEIN, S.;
BüCKLERS, F.; DOMNIK, J.; PANSE, F.; WITT, E.; SENER, A.; GESSERT, F.; RITTER,
N. Beaconnect: Continuous web performance a/b testing at scale. Proc. VLDB Endow.,
VLDB Endowment, v. 15, n. 12, p. 3425–3431, sep 2022. ISSN 2150-8097. Disponível em:
<https://doi.org/10.14778/3554821.3554833>.

WOHLIN, C. Empirical software engineering research with industry: Top 10 challenges. In:
IEEE. 2013 1st international workshop on conducting empirical studies in industry (CESI).
[S.l.], 2013. p. 43–46.

WOHLIN, C. Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In: Proceedings of the 18th international conference on evaluation and
assessment in software engineering. [S.l.: s.n.], 2014. p. 1–10.

https://www.linkedin.com/posts/kaiwaehner_testing-your-apache-kafka-data-with-confidence-activity-6922507026493284352-C_7N?utm_source=linkedin_share&utm_medium=member_desktop_web
https://www.linkedin.com/posts/kaiwaehner_testing-your-apache-kafka-data-with-confidence-activity-6922507026493284352-C_7N?utm_source=linkedin_share&utm_medium=member_desktop_web
https://www.linkedin.com/posts/kaiwaehner_testing-your-apache-kafka-data-with-confidence-activity-6922507026493284352-C_7N?utm_source=linkedin_share&utm_medium=member_desktop_web
https://sf-2018.flink-forward.org/index.html\%3Fp=4222.html
https://sf-2018.flink-forward.org/index.html\%3Fp=4222.html
https://doi.org/10.14778/3554821.3554833

205

WU, S.; LIU, M.; IBRAHIM, S.; JIN, H.; GU, L.; CHEN, F.; LIU, Z. Turbostream: Towards
low-latency data stream processing. In: IEEE. 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS). [S.l.], 2018. p. 983–993.

XU, C.; WEDLUND, D.; HELGOSON, M.; RISCH, T. Model-based validation of streaming
data:(industry article). In: ACM. Proceedings of the 7th ACM international conference on
Distributed event-based systems. [S.l.], 2013. p. 107–114.

XU, H.; LIU, P.; CRUZ-DIAZ, S.; SILVA, D. D.; HU, L. Sr3: customizable recovery for
stateful stream processing systems. In: Proceedings of the 21st International Middleware
Conference. [S.l.: s.n.], 2020. p. 251–264.

YAMATO, Y. Automatic verification technology of software patches for user virtual
environments on iaas cloud. Journal of Cloud Computing, SpringerOpen, v. 4, n. 1, p. 1–14,
2015.

YANG, L.; ZHANG, H.; SHEN, H.; HUANG, X.; ZHOU, X.; RONG, G.; SHAO, D. Quality
assessment in systematic literature reviews: A software engineering perspective. Information
and Software Technology, Elsevier, v. 130, p. 106397, 2021.

YASMIN, J.; TIAN, Y.; YANG, J. A first look at the deprecation of restful apis: An empirical
study. In: IEEE. 2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME). [S.l.], 2020. p. 151–161.

YE, Q.; LU, M. Spot: Testing stream processing programs with symbolic execution and
stream synthesizing. Applied Sciences, MDPI, v. 11, n. 17, p. 8057, 2021.

YOO, S.; HARMAN, M. Regression testing minimization, selection and prioritization: a
survey. Software testing, verification and reliability, Wiley Online Library, v. 22, n. 2, p.
67–120, 2012.

YU, T.; SRISA-AN, W.; ROTHERMEL, G. An automated framework to support testing for
process-level race conditions. Software Testing, Verification and Reliability, Wiley Online
Library, v. 27, n. 4-5, p. e1634, 2017.

ZEUCH, S.; MONTE, B. D.; KARIMOV, J.; LUTZ, C.; RENZ, M.; TRAUB, J.; BRESS,
S.; RABL, T.; MARKL, V. Analyzing efficient stream processing on modern hardware.
Proceedings of the VLDB Endowment, VLDB Endowment, v. 12, n. 5, p. 516–530, 2019.

ZHANG, C.; KUPPANNAGARI, S. R.; KANNAN, R.; PRASANNA, V. K. Generative
adversarial network for synthetic time series data generation in smart grids. In: IEEE. 2018
IEEE international conference on communications, control, and computing technologies for
smart grids (SmartGridComm). [S.l.], 2018. p. 1–6.

ZHAO, X.; GARG, S.; QUEIROZ, C.; BUYYA, R. A taxonomy and survey of stream
processing systems. In: Software Architecture for Big Data and the Cloud. [S.l.]: Elsevier,
2017. p. 183–206.

ZHOU, J.; LI, S.; ZHANG, Z.; YE, Z. Position paper: Cloud-based performance testing:
Issues and challenges. In: Proceedings of the 2013 international workshop on Hot topics in
cloud services. [S.l.: s.n.], 2013. p. 55–62.

ZHU, H.; HALL, P. A.; MAY, J. H. Software unit test coverage and adequacy. Acm computing
surveys (csur), Acm New York, NY, USA, v. 29, n. 4, p. 366–427, 1997.

206

ZIMMERLE, C.; GAMA, K. A web-based approach using reactive programming for
complex event processing in internet of things applications. In: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing. New York, NY, USA: Association for
Computing Machinery, 2018. (SAC ’18), p. 2167–2174. ISBN 9781450351911. Disponível
em: <https://doi.org/10.1145/3167132.3167365>.

ZVARA, Z.; SZABÓ, P. G.; BALÁZS, B.; BENCZÚR, A. Optimizing distributed data stream
processing by tracing. Future Generation Computer Systems, Elsevier, v. 90, p. 578–591,
2019.

ZVARA, Z.; SZABÓ, P. G.; HERMANN, G.; BENCZÚR, A. Tracing distributed data stream
processing systems. In: IEEE. 2017 IEEE 2nd International Workshops on Foundations and
Applications of Self* Systems (FAS* W). [S.l.], 2017. p. 235–242.

https://doi.org/10.1145/3167132.3167365

207

APPENDIX A – QUESTIONNAIRES

1) What is your gender? (closed-ended question)

• Male

• Female

• Other

2) Nationality (open-ended)

*3) Country where you currently work? (open-ended)

*4) What is your age? (open-ended)

5) Education: What is the highest degree or level of school you have completed?

(closed-ended question)

• Less than high school degree

• High school degree or equivalent

• Some college credit, no degree

• Trade/technical/vocational training

• Associate/Bachelor/Graduate degree

• Master degree

• Doctorate degree

• 5.1) If you have an Associate/Bachelor/Graduate degree, please specify the

name of the course.

208

*6) Occupation: Which of the following category is your current occupation most

related to? (closed-ended question)

• Academy. (Professor / Student / Researcher)

• Industry (Developer/ Software Engineer / Tester Engineer ...)

• Other (specify)

*7) Experience: How many years of IT professional experience do you have? (closed-
ended question)

• at least 1 year

• 2-4 years

• 5-7 years

• 8-10 years

• 11-13 years

• 14-16 years

• 17-19 years

• 20 years or more

*8) Context Experience: How many years of work experience with data stream

processing do you have? (closed-ended question)

• at least 1 year

• 2-4 years

• 5-7 years

• 8-10 years

• 11-13 years

209

• 14-16 years

• 17-19 years

• 20 years or more

9) OPTIONAL Company’s/Institution’s Information (open-ended)

10) Could you rate how valuable data stream processing is to your company’s busi-

ness? (Likert scale question)
Likert Scale: [Extremely Valuable, Valuable, Somewhat Valuable, Slightly Valuable, Not valu-
able at all]

11) Which of the following uses of a data stream is best suited for your institution/-

company? (closed-ended question)

• Monitor business data in information systems: user access, user actions, website requests,
transactions, interest variables, e-commerce sales conversions and others.

• Monitor network infrastructure: packet monitoring, throughput, improper access, latency,
timeout and others.

• Monitor equipment: sensor networks, industrial machines, general hardware and others.

• Other (specify)

*12) Please, check which of the following business contexts your data stream work

is related to. (multiple-choice)

• Industry

• Financial Systems (credit card, financial market, stock exchange)

• E-commerce

• Urban Transportation Systems

• Road Transport Monitoring Systems (Freight)

210

• Digital marketing

• Research and Development of Software and Technologies for processing data stream.

• Business Intelligence

• Social Networking Monitoring

• Air Traffic Control Systems

• Maritime Traffic Control Systems

• Monitoring of equipment and infrastructures (oil pumps, oil pipelines, oil rigs, mining
equipment, nuclear power plants and others)

• Power Distribution Systems (monitoring of transmission networks, electric stations,
power plants and others ...)

• Telecommunications

• Other

*13) Could you provide more details on the use of data stream in your company/in-

stitution? (open-ended)

14) Does your job involve identifying patterns in data stream? Example: Monitoring

systems that trigger alerts for specific events or complex event processing? (open-
ended)

• No

• Yes. Can you exemplify a case like this?

*15) Check which of the following technologies are being used by you or your

company/institution to process data stream: (multiple-choice)

• Apache Flink

• 16.12 54

211

• Apache Storm

• Apache Kafka

• Apache Spark

• Apache Samza

• Apache SAMOA (Scalable Advanced

• Massive Online Analysis)

• Apache Beam

• Apache Ignite

• Apache Apex

• Apache NiFi

• MOA (Massive Online Analysis)

• DDS (Data Distribution Service)

• AMQP (Advanced Message Queuing

• Protocol)

• Microsoft StreamInsight

• Esper

• Amazon Kinesis

• Azure Stream

• Confluent Platform

• Other

*16) About testing and validating applications that process data stream, can you

explain details about the solution you apply to this test? For example, do you

have some testing environment, use a testing framework, simulate streams to test

212

the application, or test in the production environment? If you have designed your

solution, could you provide us with an overview? (open-ended)

*17) How do you generate test data? (replay of historical data, sampling production

data, generators, and others.) (open-ended)

*18) What are the most common bugs found in applications that process stream?

Can you give us an example that you have already experienced? (open-ended)

*19) Computational resources: processing power, storage, and memory needed to

perform data stream tests and simulation. (Likert scale question)
Likert Scale: [Extremely Important, Important, Somewhat Important, Slightly Important, Not
Important at all]

*20) The need for handling a large volume of data. (Likert scale question)
Likert Scale: [Extremely Important, Important, Somewhat Important, Slightly Important, Not
Important at all]

*21)Methodology: lack of techniques, processes, guidelines and good practices to

test software based on data streams. (Likert scale question)
Likert Scale: [Extremely Important, Important, Somewhat Important, Slightly Important, Not
Important at all]

*22) Tooling: lack of testing frameworks/tools for data stream software. (Likert scale
question)
Likert Scale: [Extremely Important, Important, Somewhat Important, Slightly Important, Not
Important at all]

*23) Do you think it would be useful to have an appropriate tool for automated

software testing targeting data stream processing? (YES/NO). Please justify your

answer below. (open-ended)

*24) Window configuration options: time-based windows, elements batches sized

213

windows, sliding windows and others. (Likert scale question)
Likert Scale: [Extremely Helpful, Helpful, Somewhat Helpful, Slightly Helpful, Not Helpful at
all]

*25) Historical Data Replay / Backtesting (Likert scale question)
Likert Scale: [Extremely Helpful, Helpful, Somewhat Helpful, Slightly Helpful, Not Helpful at
all]

*26) Generation of a random data stream which is based on historical data models

(Likert scale question)
Likert Scale: [Extremely Helpful, Helpful, Somewhat Helpful, Slightly Helpful, Not Helpful at
all]

*27) Option to replay data stream in an accelerated way. (Keeping the time sync.)

(Likert scale question)
Likert Scale: [Extremely Helpful, Helpful, Somewhat Helpful, Slightly Helpful, Not Helpful at
all]

*28) Easily integrated with other infrastructures and tools, such as database systems

and platforms for stream processing. (Likert scale question)
Likert Scale: [Extremely Helpful, Helpful, Somewhat Helpful, Slightly Helpful, Not Helpful at
all]

*29)Simulation of fault tolerance scenarios: guaranteed delivery, hardware failures,

network failures and others. (Likert scale question)
Likert Scale: [Extremely Helpful, Helpful, Somewhat Helpful, Slightly Helpful, Not Helpful at
all]

*30) Options to configure infrastructure latency (random or fixed). (Likert scale ques-
tion)
Likert Scale: [Extremely Helpful, Helpful, Somewhat Helpful, Slightly Helpful, Not Helpful at
all]

214

31) In addition to the features of the previous questions, could you provide other

features that you consider essential in a tool for testing data stream? (open-ended)

*32) Could you cite some hot spots or new challenges in the stream processing

realm that could be considered in further research? (open-ended)

33) OPTIONAL PERSONAL CONTACT Would you mind to provide your name and

email address so, in case we need some extra information pertinent to the study, we

can reach you? Providing such information is entirely optional, and your anonymity

will be assured. (open-ended)

215

APPENDIX B – INTERVIEW SCRIPT

It is a semi-structured interview, so the points in this script are to address critical issues.
The interviewer is free to focus on and explore issues that he deems most relevant.

B.1 SECTION 1: INTRODUCTION (ABOUT 3 MINUTES)

The interview begins with a brief conversation explaining the study, the anonymity of the
interviewees and elucidation about the consent term briefly.

Examples:

• First of all, I want to thank you for making some time to help us.

• We are researching data stream processing, and the primary objective is to investigate
how people develop and test data stream applications.

B.2 SECTION 2: PROFILE AND BACKGROUND OF THE INTERVIEWEE. (ABOUT

6 MINUTES)

This section aims to gather information about the interviewee’s profile: training, IT expe-
riences, data stream experience, professional career and others.

Examples:

• Maybe you could start by telling us about your background?

• Education Level? Do you have a degree? What is the name of your undergraduate
degree?

• Wich companies you’ve worked before?

• How many years of IT professional experience do you have?

216

B.3 SECTION 3: PROFESSIONAL EXPERIENCE WITH DATA STREAM DEVEL-

OPMENT (ABOUT 10 MINUTES)

This section is about the data stream interviewee experience. If data stream activity is past
experience, then we redirect questions to that previous experience.

Examples:

• How many years of work experience with data stream processing do you have?

• In which companies have you worked on data stream applications. What is your current
occupation in the company?

• How many IT professionals are there in the company? How many are working with data
stream applications?

• What is the business context of your company? (Products, services..l)

• Could you rate how valuable data stream processing is to your company’s business?

• Could you provide more details on the use of data stream in your company/institution?

• May you give an example of a use case that involves monitoring data stream? Does your
job include identifying patterns in the data stream? Standard: Monitoring systems that
trigger alerts for specific events or complex event processing?

• What tools does your company/institution use to process the data stream?

B.4 SECTION 4: DATA STREAM APPLICATIONS TESTING (ABOUT 8 MIN-

UTES)

In this section, we try to understand the data stream applications testing practices.
Examples:

• There is a test culture in your company?

• May you explain how are you testing your stream software?

• What levels of testing do you have in data stream applications? Unit tests? Integration
tests? Systems tests?

217

• Can you explain more details about the solution you apply to this test?

• Do you use any specific testing frameworks, testing tools, or testing environments?

• Are your tests embedded in a continuous integration system?

• What are your strategies for generating test data? (A replay of historical data? Sampling
production data? Use some generators?)

• What are the most common bugs found in data stream applications? Can you give us
an example that you have already experienced?

B.5 SECTION 5: ABOUT TOOLS TO TEST DATA STREAM APPLICATIONS.

(ABOUT 8 MINUTES)

This section focuses on specific questions about data stream applications testing tools
features.

• Do you think it would be useful to have an appropriate tool for automated testing data
stream software?

• Now I will present some features of a tool to test data stream applications. Could you
say if you find it useful?

– Window configuration options: like time-based windows, elements batches sized
windows, sliding windows and others.

– Historical Data Replay / Backtesting

– Generation of a random data stream based on historical data models.

– Option to replay data stream in an accelerated way. (Keeping the time sync.)

– Easily integrated with other infrastructures and tools, such as database systems
and platforms for stream processing.

– Simulation of fault tolerance scenarios: guaranteed delivery, hardware failures, net-
work failures and others.

– Options to configure infrastructure latency (random or fixed).

218

• In addition to the features of the previous questions, could you provide other features
that you consider essential in a tool for testing data stream?

• Could you cite some hot spots or new challenges in the stream processing realm that
could be considered in further research?

219

APPENDIX C – FOCUS GROUP DISCUSSION GUIDE

Below is the discussion guide prepared for the guideline evaluation focus group, which is
presented and explained in Section 3.4.

1. Introduction (5 minutes)

1.1. Welcome participants and thank them for their participation.

1.2. Introduce the facilitator and explain the purpose of the focus group.

1.3. Provide a brief overview of the script and establish ground rules for the discussion,
including respecting others’ opinions, one person speaking at a time, and confiden-
tiality.

1.4. Allow participants to ask questions and request clarification.

2. Guidelines Overview (25 minutes)

2.1. Go through each guideline, encouraging participants to give feedback.

3. Research Question 1: Perceived Effectiveness (10 minutes)

3.1. Ask participants for their overall impressions of the guidelines in supporting practi-
tioners to make decisions related to the development of testing processes for DSP
applications.

3.2. Encourage participants to share specific examples of how the guidelines would be
helpful or not in their work.

4. Research Question 1.1: Gaps and Areas for Improvement (5 minutes)

4.1. Facilitate a discussion on any gaps or areas for improvement within the guidelines.

4.2. Ask participants to suggest recommendations to address the identified gaps or areas
for improvement.

5. Research Question 1.2: Strengths and Weaknesses (5 minutes)

5.1. Invite participants to discuss the strengths and weaknesses of the guidelines.

5.2. Encourage participants to provide examples or explanations for the strengths and
weaknesses they identify.

220

6. Research Question 1.3: Applicability in Industrial Context (5 minutes)

6.1. Facilitate a conversation about the applicability of the guidelines within an industrial
context.

6.2. Encourage participants to share their experiences or thoughts on how the guidelines
would fit into their work environment or industry practices.

7. Conclusion and Next Steps (5 minutes)

7.1. Summarize the main points of the discussion, including insights on gaps, strengths,
weaknesses, and applicability.

7.2. Thank participants for their contributions and explain the next steps in the evalu-
ation process (e.g., analyzing the feedback and refining the guidelines).

221

APPENDIX D – QUESTIONNAIRES

Below we present the questions from the guidelines evaluation survey.

D.1 PARTICIPANT PROFILE

In this section, we have provided a few brief questions to help us better understand the
profile of our participants. (Only in this section do we have mandatory questions)

*1) What is your gender? (closed-ended question)

• Male

• Female

• Others (inform)

• I prefer not to inform.

*2) In which country do you currently work? (open-ended)

*3) Education: What is the highest degree or level of school you have completed?

(closed-ended question)

• Less than high school degree

• High school degree or equivalent

• Some college credit, no degree

• Trade/technical/vocational training

• Associate/Bachelor/Graduate degree

• Master degree

• Doctorate degree

222

*4) Experience: How many years of IT professional experience do you have? (closed-
ended question)

• at least 1 year

• 2-4 years

• 5-7 years

• 8-10 years

• 11-13 years

• 14-16 years

• 17-19 years

• 20 years or more

*5) Context Experience: How many years of work experience with data processing

do you have? (stream processing, micro-batch, high-performance ETL systems and

similar.) (closed-ended question)

• at least 1 year

• 2-4 years

• 5-7 years

• 8-10 years

• 11-13 years

• 14-16 years

• 17-19 years

• 20 years or more

223

D.2 #G1 COLLECT INFORMATION

6) How relevant do you find #G1 in supporting test planning in the context of data

stream processing? (Likert scale question)
Likert Scale: [Extremely Relevant, Relevant, Somewhat Relevant, Slightly Relevant, Not Rel-
evant at all]

7) Could you share the reasons for your answer regarding #G1 relevance? We

welcome opinions, suggestions, real-world examples, constructive criticism or any

noted inaccuracies. (open-ended)

D.3 #G2 ESTABLISH TEST OBJECTIVES

8) How relevant do you find #G2 in supporting test planning in the context of data

stream processing? (Likert scale question)
Likert Scale: [Extremely Relevant, Relevant, Somewhat Relevant, Slightly Relevant, Not Rel-
evant at all]

9) Could you share the reasons for your answer regarding #G2 relevance? We

welcome opinions, suggestions, real-world examples, constructive criticism or any

noted inaccuracies. (open-ended)

D.4 #G3 SYNC TEAM SKILLS WITH TESTING STRATEGY

10) How relevant do you find #G3 in supporting test planning in the context of

data stream processing? (Likert scale question)
Likert Scale: [Extremely Relevant, Relevant, Somewhat Relevant, Slightly Relevant, Not Rel-
evant at all]

11) Could you share the reasons for your answer regarding #G3 relevance? We

224

welcome opinions, suggestions, real-world examples, constructive criticism or any

noted inaccuracies. (open-ended)

D.5 #G4 PLAN TIME ALLOCATION

12) How relevant do you find #G4 in supporting test planning in the context of

data stream processing? (Likert scale question)
Likert Scale: [Extremely Relevant, Relevant, Somewhat Relevant, Slightly Relevant, Not Rel-
evant at all]

13) Could you share the reasons for your answer regarding #G4 relevance? We

welcome opinions, suggestions, real-world examples, constructive criticism or any

noted inaccuracies. (open-ended)

D.6 #G5 PLAN FINANCIAL RESOURCE ALLOCATION

14) How relevant do you find #G5 in supporting test planning in the context of

data stream processing? (Likert scale question)
Likert Scale: [Extremely Relevant, Relevant, Somewhat Relevant, Slightly Relevant, Not Rel-
evant at all]

15) Could you share the reasons for your answer regarding #G5 relevance? We

welcome opinions, suggestions, real-world examples, constructive criticism or any

noted inaccuracies. (open-ended)

D.7 #G6 DEVELOP A TEST DATA STRATEGY

16) How relevant do you find #G6 in supporting test planning in the context of

data stream processing? (Likert scale question)
Likert Scale: [Extremely Relevant, Relevant, Somewhat Relevant, Slightly Relevant, Not Rel-

225

evant at all]

17) Could you share the reasons for your answer regarding #G6 relevance? We

welcome opinions, suggestions, real-world examples, constructive criticism or any

noted inaccuracies. (open-ended)

D.8 #G7 PARTICULAR ISSUES OF DSP APPLICATIONS TESTING

18) How relevant do you find #G7 in supporting test planning in the context of

data stream processing? (Likert scale question)
Likert Scale: [Extremely Relevant, Relevant, Somewhat Relevant, Slightly Relevant, Not Rel-
evant at all]

19) Could you share the reasons for your answer regarding #G7 relevance? We

welcome opinions, suggestions, real-world examples, constructive criticism or any

noted inaccuracies. (open-ended)

D.9 FINAL CONSIDERATIONS

20) Do you have any additional comments, opinions, criticisms, or feedback to share?

(open-ended)

226

APPENDIX E – LIST OF TESTING TOOLS

Table 32 – Tools List
Tool Name Author License Main Testing Approaches Sup-

port
Features and Specific Uses Focused on

data stream
context?

Documents
Citation

Alooma Plataform Alooma Inc. Proprietary Contract/Schema Test Data Validation, Data Replay Yes 1
Ansible Michael DeHaan

and Red Hat Inc.
GNU General Public Li-
cense v3.0

System Test Test Infrastructure Automation No 2

Apache Griffin Apache Foundation Apache License 2.0 Contract/Schema Test; Regression
Test

Data Validation No 3

Artillery Artillery Software
Incorporation

Open Source MPLv2 li-
cense

Performance Test Load generator, Testing Utili-
ties

No 1

Avro Random Gen-
erator

Confluent Inc. Apache License 2.0 Unit Test; Integration Test; Per-
formance Test; Contract/Schema
Test

Data Generator Yes 2

Awaitility Library Johan Haleby and
Community

Apache License 2.0 Integration Test Asynchronous System Test,
Time Issues

No 1

AWS Deequ Amazon Inc. Apache License 2.0 Contract/Schema Test Data Validation No 3
Chaos Monkey NetFlix Apache License 2.0 Chaos Test Chaos Generation No 1
Confluent CLI Confluent Inc. Confluent Community

License Agreement
Version 1.0

System Test Test Infrastructure Automation Yes 1

Ducktape Confluent Inc. Apache License 2.0 Uni Test; Integration Test; System
Test; Performance Test

Testing Utilities Yes 1

Ecto Stream Fac-
tory

Igor Barchenkov MIT License Uni Test; Integration Test; Perfor-
mance Test; Property-based Test

Data Generator Yes 1

Embedded Kafka Community MIT License Unit Test; Integration Test Mock Stream Processing
Topologies

Yes 6

Fake.js Marak Copyright Marak
Squires

Unit Test Data Generator No 2

227

Faker (Python) Daniele Faraglia MIT License Unit Test Data Generator No 1
Flink Spector ottogroup Apache License 2.0 Unit Tests; Regression Test Framework to define unit tests

for Apache Flink
Yes 6

Flink Testing Utili-
ties

Apache Foundation Apache License 2.0 Unit Tests; Regression Test Testing Utilities, Time Issues,
Clock Control

Yes 6

Fluent Kafka
Streams Tests

Backdata MIT License Unit Tests; Regression Test Unit Testing Utilities for Kafka Yes 5

Gatling Gatling Corp. Apache License 2.0 Performance Test Load Test No 1
Grafana Grafana Labs AGPL-3.0 License Performance Test Log and Monitoring No 4
Great Expectations Superconductive Apache License 2.0 Contract/Schema Test Data Validation No 3
Intel Platform Anal-
ysis Technology

Intel Corp. Proprietary Performance Test Log and monitoring of hardware
and operation systems metrics

No 1

Jackdaw - Test Ma-
chine

Funding Circle BSD-3-Clause License Integration Tests Testing Utilities Yes 1

Jenkins Jenkins MIT License System Test Test Infrastructure Automation No 5
Jepsen Jepsen Apache License 2.0 Chaos Test Chaos Generation No 1
JMeter Apache Foundation Apache License 2.0 Performance Test Load Test No 7
Kafka Datagen Con-
nector

Confluent Inc. Apache-2.0 License System Test; Performance Test Data Generator Yes 3

Kafka for Junit Markus Günther Apache License 2.0 Unit Test; Regression Test Unit Testing Utilities, Junit
Support fo Kafka

Yes 5

Kafka Streams
Testing Utilities Apache Foundation Apache License 2.0 Unit Tests; Regression Test Testing Utilities, Time Issues Yes 8
Kafkameter Signal Apache License 2.0 Performance Test Load Generator Yes 2
Kcat Magnus Edenhill -

Apache
Copyright (c) 2014-
2021 Magnus Edenhill

Unit Test; Integration Test Testing Utilities Yes 4

Kinesis Data Gener-
ator

Amazon Inc. Apache License 2.0 System Test; Performance Test Data Generator, Load Genera-
tor

Yes 4

Ksql-datagen Confluent Inc. Confluent Community
License Agreement
Version 1.0

Performance Test; System Test Data Generator Yes 4

228

MemoryStream -
Apache Spark

Apache Foundation Apache License 2.0 Unit Test; Regression Test Replay data stream values
stored in memory

Yes 4

Mockaroo Mockaroo LLC Proprietary Unit Test; Integration Test; System
Test

Data Generator No 2

Mockedstreams Jendrik Poloczek Apache License 2.0 Unit Tests Mock Stream Processing
Topologies

Yes 3

Mockito Community MIT License Unit Test Mocking framework for unit
test

No 5

Nifi Script Tester Matt Burges Apache License 2.0 Unit Test Infrastructure Mock Yes 2
Passert - Apache
Beam

Apache Foundation Apache License 2.0 Unit Tests; Regression Test Assertion for data collections Yes 1

Pepper-Box Great Software Lab-
oratory

Apache License 2.0 Performance Test Load Generator No 5

Sangrenel Jamie Alquiza Apache License 2.0 Performance Test Load Generator Yes 2
SBT Coverage Community Apache License 2.0 Integration Test Tracking code coverage No 1
Scalacheck Typelevel.scala BSD-3-Clause license Unit Test; Property-based test Automated property-based

testing
No 2

ScalaTest Community Apache License 2.0 Unit Tests; Integration Tests Testing Utilities No 16
Spark Testing Base Holden Karau Apache License 2.0 Unit Test; Integration Test; Regres-

sion Test
Base classes to write tests for
Spark, Time Issues

Yes 8

Spring Cloud
Stream Test Sup-
port

Spring Apache License 2.0 Unit Tests; Integration Tests; Re-
gression Test

Testing Utilities Yes 3

StreamData Andrea Leopardi
and José Valim

Apache License 2.0 Property-based Test Data Generator Yes 3

Terraform HashiCorp MPL-2.0 License System Test Test Infrastructure Automation No 4
Thundra Thundra Proprietary Chaos Test Chaos Generation No 2
WireMock Tom Akehurst and

Community
Apache License 2.0 Unit Test; Integration Test Mock APIs and External Ser-

vices
No 3

ZeroCode Samurai Zerocode Apache License 2.0 Performance Test Testing Utilities, Automated
support to tests

Yes 4

229

APPENDIX F – GLR SELECTED SOURCES

S1 Alexandre Vicenzi; “Test and document your data pipeline” <https://www.alexandrevicenzi.com/

posts/test-and-document-your-data-pipeline> PDF File QA Score: 0.35

S2 Artillery; “Load Testing AWS Kinesis With Artillery” <https://artillery.io/blog/load-testing-aws-kinesis>

PDF File QA Score: 0.64

S3 Allan MacInnis, Jared Warren, Amazon; “Test Your Streaming Data Solution with the New Ama-

zon Kinesis Data Generator” <https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator>

PDF File QA Score: 0.73

S4 Apache Foundation; “Apache Flink 1.11 Documentation: Testing” <https://ci.apache.org/projects/

flink/flink-docs-stable/dev/stream/testing.html> PDF File QA Score: 0.86

S5 Amazon; “Testing Your Delivery Stream Using Sample Data” <https://docs.aws.amazon.com/

firehose/latest/dev/test-drive-firehose.html> PDF File QA Score: 0.61

S6 Cloudera; “Test and validation” <https://docs.cloudera.com/csa/1.4.0/development/topics/csa-test-validation.

html> PDF File QA Score: 0.60

S7 Microsoft Corporation; “Test an Azure Stream Analytics job with sample data” <https://docs.

microsoft.com/en-us/azure/stream-analytics/stream-analytics-test-query> PDF File QA Score:

0.66

S8 Aeldung; “Introduction to Apache Flink with Java” <https://www.baeldung.com/apache-flink>

PDF File QA Score: 0.71

S9 Confluent; “Generate Custom Test Data by Using the ksql-datagen Tool” <https://github.com/

confluentinc/kafka-connect-datagen> PDF File QA Score: 0.89

S10 Dell EMC; “Confluent Kafka Performance Characterization” <https://infohub.delltechnologies.

com/static/media/48e14554-a272-4cb0-8996-80ac6dd016b8.pdf> PDF File QA Score: 0.56

S11 Javier Ramos, ITNEXT; “Big Data Quality Assurance. Introduction” <https://medium.com/

@javier.ramos1/big-data-quality-assurance-635c368a3e28> PDF File QA Score: 0.78

S12 Wei Huang; “Build a Real-time Data Pipeline during the weekend in Go-Part 1” <https://

medium.com/@jayhuang75/build-a-real-time-data-pipeline-during-the-weekend-in-go-30f9c63e207a>

PDF File QA Score: 0.59

S13 Wei Huang; “Build a Real-time Data Pipeline during the weekend in Go-Part 3” <https://

medium.com/@jayhuang75/build-a-real-time-data-pipeline-during-the-weekend-in-go-part-3-3aa944d10caf>

PDF File QA Score: 0.58

https://drive.google.com/open?id=1HQJNBYRiHwRDlC2ddp0W478JlqZbcDL9
https://drive.google.com/open?id=16hvQZxzNcvxiwHCALdPLaAunWiJmfXsy
https://drive.google.com/open?id=1cscY7Vq7_ilyS4Mjvao_irSdUXYUZX6w
https://drive.google.com/open?id=11FNgy08OFT-pM0Gdym4Qm6XPzoVB-XVY
https://drive.google.com/open?id=1XHxSRaNcLpDeG5KQOKl9lJp4BbDWszzR
https://drive.google.com/open?id=1Mt74UrWbyKaCn4ateXAUpoHZJo3VbSrQ
https://drive.google.com/open?id=1382-tWYm7e95mw-NPFtw869BmbSZVDjX
https://drive.google.com/open?id=1fpdNU3ovJhp9nyCfZbbIZaoXx5mwbEYV
https://drive.google.com/open?id=1fQ2HNZ8-P0hOdZy863ZQ9dHesee-E74n
https://drive.google.com/open?id=1jPw_kSjAaDQp0JW-wCiW_2cooDsn6XYD
https://drive.google.com/open?id=1NlaG7ZV-GABJjx1mA67631B1g8LECbz_
https://drive.google.com/open?id=1JG5vA4miw13YK9_wHhlMH_GOzJ1xq0qg
https://drive.google.com/open?id=18mP9KnrAYAece4fDAuP09nvqNzsqLllb

230

S14 Michael Gendy; “The Power of Quality Assurance — Designing Robust QA Processes for SQL

Data Analysis Pipelines” <https://medium.com/@michaelgendy/the-power-of-quality-assurance-designing-robust-qa-processes-for-sql-data-analysis-pipelines-2b85e9a3928a>

PDF File QA Score: 0.42

S15 Ashish Mrig; “Design & Strategies for Building Big Data Pipelines” <https://medium.com/

@mrashish/design-strategies-for-building-big-data-pipelines-4c11affd47f3> PDF File QA Score:

0.67

S16 Milan Sahu; “Data Quality testing with AWS Deequ” <https://medium.com/@sahu.milan1988/

data-quality-testing-with-aws-deequ-53b6f765de08> PDF File QA Score: 0.38

S17 Vivek N; “Quality Engineering our Data Pipelines” <https://medium.com/@vivekn.19/quality-engineering-our-data-pipelines-fdcb379dc951>

PDF File QA Score: 0.50

S18 Zachary Ennenga, Airbnb Engineering & Data Science; “Scaling a Mature Data Pipeline — Man-

aging Overhead” <https://medium.com/airbnb-engineering/scaling-a-mature-data-pipeline-managing-overhead-f34835cbc866>

PDF File QA Score: 0.65

S19 Irina Pashkova, GreenM; “Data Warehouse Testing. It’s rare luck when you are given a. . . ” <https:

//medium.com/greenm/data-warehouse-testing-3c0fb955da1d> PDF File QA Score: 0.52

S20 Frank Dekervel, Kapernikov; “Writing a high quality data pipeline for master data with Apache

Spark — Part 3” <https://medium.com/kapernikov/writing-a-high-quality-data-pipeline-for-master-data-with-apache-spark-part-3-9d12dbaf0822>

PDF File QA Score: 0.50

S21 Talha Malik, The Startup; “Structuring a Robust Data Pipeline” <https://medium.com/swlh/

structuring-a-robust-data-pipeline-24ff67783782> PDF File QA Score: 0.61

S22 Nikita Zhevnitskiy; “Testing Kafka based applications.” <https://medium.com/test-kafka-based-applications/

https-medium-com-testing-kafka-based-applications-85d8951cec43> PDF File QA Score: 0.62

S23 Pavan Kumar S, TestVagrant; “Key Points To Remember While Testing Data Streams” <https://

medium.com/testvagrant/what-is-data-streaming-and-key-points-to-know-before-testing-it-7a16fe861e05>

PDF File QA Score: 0.35

S24 Anton Bakalets; “Flink Job Unit Testing. Write a unit test ensuring your Flink. . . ” <https:

//medium.com/@anton.bakalets/flink-job-unit-testing-df4f618d07a6> PDF File QA Score: 0.45

S25 Scott Haines; “Testing Spark Structured Streaming Applications:” <https://medium.com/@newfrontcreative/

testing-spark-structured-streaming-applications-like-a-boss-95a1b261cd35> PDF File QA Score:

0.69

S26 Jacobus Herman, Big Data Republic; “AWS Kinesis Data Analytics: a cautionary review” <https:

//medium.com/bigdatarepublic/kinesis-data-analytics-sql-a-cautionary-review-fb9ddd06e5d9> PDF

File QA Score: 0.66

https://drive.google.com/open?id=1JgxlOlFWcdW96B387jbSsm-xQskL77x-
https://drive.google.com/open?id=1-DUJfej97ex8ZB0VouzT7j29e0VM1opg
https://drive.google.com/open?id=12QTNbIZXKGExxuAT5XxddPsEQxCO-XxQ
https://drive.google.com/open?id=1b6_QBLgyHMO9YK43Gwe9WhbdyqMyxtki
https://drive.google.com/open?id=1Pm-BH_r5U9mZcPLDXYOCVFq-U-l-foLG
https://drive.google.com/open?id=1EjSZ5sGCCDb_oBE0sRDW-coinjJVipUx
https://drive.google.com/open?id=1ueISmlggoPNxLqdtgDyPlzXzWnZ_DEvQ
https://drive.google.com/open?id=1mIOzU3skUmNmPatwIms4QD2a-6h-M-np
https://drive.google.com/open?id=1IGrdmBdlqUCSXKs3SHL-WIfdOPkVvEqV
https://drive.google.com/open?id=14ifTIx1uYheXZBwm0k_IfOUQeLoNsKZn
https://drive.google.com/open?id=1oTP4nOfzwnk6gj5FO094-XmtACgeRc3o
https://drive.google.com/open?id=1k-I6vgpO1VBkmjwXkLzLcYws2y0nDz9t
https://drive.google.com/open?id=1Ktqgy-D4QQna-m4W1hgJfbiTxYXqv4A9
https://drive.google.com/open?id=1Ktqgy-D4QQna-m4W1hgJfbiTxYXqv4A9

231

S27 Nikita Gupta, Henrique Ribeiro Rezende, Coding Stories; “How to test Kinesis with LocalStack”

<https://medium.com/coding-stories/how-to-test-kinesis-with-localstack-356b55c69e2> PDF File

QA Score: 0.51

S28 Alibaba Cloud, DataSeries, Digoal; “Using PostgreSQL for Real-Time IoT Stream Processing Ap-

plications” <https://medium.com/dataseries/using-postgresql-for-real-time-iot-stream-processing-applications-965741c57315>

PDF File QA Score: 0.53

S29 Alibaba Tech, HackerNoon.com; “From Code Quality to Integration: Optimizing Alibaba’s Blink

Testing Framework” <https://medium.com/hackernoon/from-code-quality-to-integration-optimizing-alibabas-blink-testing-framework-dc9c357319de>

PDF File QA Score: 0.66

S30 Brandon Stanley, Slalom Data & Analytics; “Amazon Kinesis Data Streams: Auto-scaling the

number of shards” <https://medium.com/slalom-data-analytics/amazon-kinesis-data-streams-auto-scaling-the-number-of-shards-105dc967bed5>

PDF File QA Score: 0.67

S31 Shash, Andy LoPresto, daggett; “Faster way of developing and Testing new Nifi Processor”

<https://stackoverflow.com/questions/44748548/faster-way-of-developing-and-testing-new-nifi-processor>

PDF File QA Score: 0.61

S32 zavalit, Diego Reico; “apache flink - Failing to trigger StreamingMultipleProgramsTestBase Test in

Scala” <https://stackoverflow.com/questions/49155762/failing-to-trigger-streamingmultipleprogramstestbase-test-in-scala>

PDF File QA Score: 0.39

S33 Salvador Vigo, AbhishekN; “Java - Generate fake" stream data. Kafka - Flink"” <https://

stackoverflow.com/questions/51934554/generate-fake-stream-data-kafka-flink> PDF File QA Score:

0.31

S34 user3139545, David Anderson; “Java - Is there a notion of virtual time in Apache Flink tests like

there is in Reactor and RxJava” <https://stackoverflow.com/questions/54855358/is-there-a-notion-of-virtual-time-in-apache-flink-tests-like-there-is-in-reactor>

PDF File QA Score: 0.55

S35 Tilak, Oleg Zhurakousky; “Spring Cloud Stream - Integration testing” <https://stackoverflow.

com/questions/55739806/spring-cloud-stream-integration-testing> PDF File QA Score: 0.59

S36 jerrypeng, Valdon Mesh (KIC); “Java - Test apache pulsar functions in an embedded standalone

environment” <https://stackoverflow.com/questions/56515083/test-apache-pulsar-functions-in-an-embedded-standalone-environment>

PDF File QA Score: 0.34

S37 SunilS, Andy LoPresto; “How Can Apache NiFi Flow Be Tested?” <https://stackoverflow.com/

questions/57062240/how-can-apache-nifi-flow-be-tested> PDF File QA Score: 0.56

S38 Pavan, Chesnay Schepler; “Java - Unit-testing flink application with streaming data” <https://

stackoverflow.com/questions/40845683/unit-testing-flink-application-with-streaming-data> PDF

File QA Score: 0.35

https://drive.google.com/open?id=1SGeHBsvGzoEqJH0xAzbyg4YG4CQ8k0DX
https://drive.google.com/open?id=1h4VbiCgi_efxXKGa-khtVUFMHzDj3Nrb
https://drive.google.com/open?id=18tsWBxQxCpdWuRc6w1hgNYLJqd2DGXx1
https://drive.google.com/open?id=1sCJU2nE4R-1Dqr0gzcUgAbn42yac4A0h
https://drive.google.com/open?id=1F8GX8zgyMHPwXz7erQc1Q8rLo5qIrvDI
https://drive.google.com/open?id=1hWvsNmGsNMajuDssZ-V4Crb5RIVQ6bsf
https://drive.google.com/open?id=1_Kpj3sl6hS6TZsXZk4AiOXz3doA9xdfJ
https://drive.google.com/open?id=1OqLj_xruC_AcTiDe6r8eIVLlPptCaA7y
https://drive.google.com/open?id=1rgqU3nnanIfQ2gC7UHHaFNI74nJvojl6
https://drive.google.com/open?id=1p95JHpbpaffo5FuQ_UeXrU0DPvd8PDmJ
https://drive.google.com/open?id=1L4EPua3w5MRcSsclEYM5qxqQDR315Lfv
https://drive.google.com/open?id=1zEcG46M_lirfgDE-z0ZgahOtk7bYarUb
https://drive.google.com/open?id=1zEcG46M_lirfgDE-z0ZgahOtk7bYarUb

232

S39 Till Rohrmann, Mike; “Junit - How to stop a flink streaming job from program” <https://

stackoverflow.com/questions/44441153/how-to-stop-a-flink-streaming-job-from-program> PDF

File QA Score: 0.58

S40 Timo Walther, user8298342; “Scala - mock object for flinks DataStream” <https://stackoverflow.

com/questions/45067426/mock-object-for-flinks-datastream> PDF File QA Score: 0.41

S41 Diego Reiriz Cores, Yohei Kishimoto, UberHans; “Java - Why is Apache Flink droping the event

from datastream?” <https://stackoverflow.com/questions/49278579/why-is-apache-flink-droping-the-event-from-datastream>

PDF File QA Score: 0.47

S42 Piotr Nowojski, William Speirs; “Unit Testing Flink Streams with Multiple Event Streams” <https:

//stackoverflow.com/questions/50454231/unit-testing-flink-streams-with-multiple-event-streams>

PDF File QA Score: 0.53

S43 David Anderson, Richard Deurwaarder; “Apache Flink - End to End testing how to terminate input

source” <https://stackoverflow.com/questions/51242886/apache-flink-end-to-end-testing-how-to-terminate-input-source>

PDF File QA Score: 0.61

S44 Felder, David Anderson; “Testing Flink window” <https://stackoverflow.com/questions/60418113/

testing-flink-window> PDF File QA Score: 0.55

S45 Felder, David Anderson; “Testing Flink with embedded Kafka” <https://stackoverflow.com/

questions/60476733/testing-flink-with-embedded-kafka> PDF File QA Score: 0.50

S46 YRQ; “Junit - How to test a Datastream with jsonobject in Apache Flink” <https://stackoverflow.

com/questions/61866226/how-to-test-a-datastream-with-jsonobject-in-apache-flink> PDF File

QA Score: 0.34

S47 user13906258, Yeis Gallegos; “Junit - How to test keyedbroadcastprocessfunction in flink?” <https:

//stackoverflow.com/questions/62919920/how-to-test-keyedbroadcastprocessfunction-in-flink> PDF

File QA Score: 0.41

S48 Dennis Layton; “DataOps: Building Trust in Data through Automated Testing” <https://www.

linkedin.com/pulse/dataops-building-trust-data-through-automated-testing-dennis-layton> PDF

File QA Score: 0.41

S49 Gopinath Mandala; “Applications are going Serverless. How will QA respond?” <https://www.

linkedin.com/pulse/applications-going-serverless-how-qa-respond-gopinath-mandala> PDF File

QA Score: 0.28

S50 Arseniy Tashoyan; “Developing Event-Driven Applications to Prevent Accidents” <https://www.

linkedin.com/pulse/developing-event-driven-applications-prevent-arseniy-tashoyan> PDF File QA

Score: 0.63

https://drive.google.com/open?id=13s6aWczeJOEHmPYKdaf8KF9xYcS04ZpZ
https://drive.google.com/open?id=13s6aWczeJOEHmPYKdaf8KF9xYcS04ZpZ
https://drive.google.com/open?id=17k-w_chMPdniT7SQvSg0ocLT695Fu8Be
https://drive.google.com/open?id=1QuIuOyg_MQvdWUw-kbLY3UAhT2TsPdX8
https://drive.google.com/open?id=1miaagN5WLO5zMjbv0A5rnqe64cAEqCEo
https://drive.google.com/open?id=1c7Vhzch557b7hv2c7v25fGGqVYm5p49d
https://drive.google.com/open?id=1bR8ZuoFAIF_AEQoVgyfAFX5ArjBZrDCc
https://drive.google.com/open?id=1SuL4tuf75YkOaO_TIx6BbkwTBBMek4V6
https://drive.google.com/open?id=1A0WJ8LXnQQso8J6SmOHEc5bxH-MYZrLZ
https://drive.google.com/open?id=1BVpz9fjHNT-8dlD7XDJabN_PHqAFCf_-
https://drive.google.com/open?id=1BVpz9fjHNT-8dlD7XDJabN_PHqAFCf_-
https://drive.google.com/open?id=116MThvzXtQEvfouFVzPjElmKCh5mw7qd
https://drive.google.com/open?id=116MThvzXtQEvfouFVzPjElmKCh5mw7qd
https://drive.google.com/open?id=1u-qqabTvRZSnNqRYKpBVM4GmJ77bX1do
https://drive.google.com/open?id=1aY8-rw90koRP6jiNsSgXb7PRKHab8S5J

233

S51 Shachar Bar; “A million-to-one shot, Doc, million-to-one” <https://www.linkedin.com/pulse/

million-to-one-shot-doc-shachar-bar-berezniski-> PDF File QA Score: 0.37

S52 Vijayendra Yadav, Niels Basjes, Arvid Heise, David Anderson; “Apache Flink User Mailing List

archive. - [Flink Unit Tests] Unit test for Flink streaming codes” <http://apache-flink-user-mailing-list-archive.

2336050.n4.nabble.com/Flink-Unit-Tests-Unit-test-for-Flink-streaming-codes-td37119.html> PDF

File QA Score: 0.56

S53 Marcin Kuthan; “Spark and Spark Streaming Unit Testing - Passionate Developer” <http://

mkuthan.github.io/blog/2015/03/01/spark-unit-testing> PDF File QA Score: 0.73

S54 Bartosz Gajda; “Unit Testing Apache Spark Structured Streaming using MemoryStream - Bartosz

Gajda -” <https://bartoszgajda.com/2020/04/13/testing-spark-structured-streaming-using-memorystream>

PDF File QA Score: 0.43

S55 Raphael Brugier, Ippon Technologies; “Testing strategy for Spark Streaming - Part 2 of 2” <https:

//blog.ippon.tech/testing-strategy-for-spark-streaming> PDF File QA Score: 0.73

S56 Anuj Saxena, Knoldus; “Spark Streaming: Unit Testing DStreams” <https://blog.knoldus.com/

spark-streaming-unit-testing-dstreams> PDF File QA Score: 0.58

S57 Dipin Hora; “Performance testing a low-latency stream processing system” <https://blog.wallaroolabs.

com/2018/03/performance-testing-a-low-latency-stream-processing-system> PDF File QA Score:

0.78

S58 Cloudflow; “Testing a Flink Streamlet” <https://cloudflow.io/docs/dev/develop/test-flink-streamlet.

html> PDF File QA Score: 0.52

S59 Felipe Fernández, Codurance; “Testing Spark Streaming: Unit testing” <https://codurance.com/

2016/08/02/testing-spark-streaming-unit-testing> PDF File QA Score: 0.74

S60 Kartik Khare; “Apache Flink: A Guide for Unit Testing in Apache Flink” <https://flink.apache.

org/news/2020/02/07/a-guide-for-unit-testing-in-apache-flink.html> PDF File QA Score: 0.78

S61 Apache Foundation; “GitHub - Flink End to End Tests” <https://github.com/apache/flink/tree/

master/flink-end-to-end-tests> PDF File QA Score: 0.54

S62 JAppsConsultants; “GitHub - Hello Kafka Stream Testing: The most simple way to test Kafka

based applications or micro-services e.g. Read/Write during HBase/Hadoop or other Data Inges-

tion Pipe Lines” <https://github.com/authorjapps/hello-kafka-stream-testing> PDF File QA

Score: 0.56

S63 Amazon; “GitHub - Amazon Kinesis Data Generator: A UI that simplifies testing with Ama-

zon Kinesis Streams and Firehose. Create and save record templates, and easily send data to

Amazon Kinesis.” <https://github.com/awslabs/amazon-kinesis-data-generator> PDF File QA

Score: 0.68

https://drive.google.com/open?id=1uoAZC1JdEbH8okLJKtMg8a2akOkq1A2J
https://drive.google.com/open?id=1UV1KzowtaKQ01_u1-NLNi-o-qXd3YJQ6
https://drive.google.com/open?id=1UV1KzowtaKQ01_u1-NLNi-o-qXd3YJQ6
https://drive.google.com/open?id=1EKl2WIYP7ELTDK8EgJUhtk-2AhoCKkbx
https://drive.google.com/open?id=1l9m6g8SKiDHx_iGt0cckvVJKcFDOO4XJ
https://drive.google.com/open?id=1aY8PSbZfd0R0UXIHUqzgQf_9tNFE4Vp1
https://drive.google.com/open?id=1uOgFYmzI7Si5NmmlPUZtzzlQ5WmCIgbB
https://drive.google.com/open?id=1vgbWUEjxrnaPGP3WfqLV46HkL552QjQY
https://drive.google.com/open?id=1pYjHiy9htdLdgQxkjGIEtvRsEiTkmVTY
https://drive.google.com/open?id=1uq01qpBv96irp-CYXzGkMUFo3cid-GBB
https://drive.google.com/open?id=1ph5QBobsbC5DfW1O3pgSbxvtQr3pJgU8
https://drive.google.com/open?id=13GLcKO4U4fWBeacSTAmUWqIrQs6HnfY1
https://drive.google.com/open?id=1BM338aIMfLb8nBVcbpeJ0_fn73DSt1m5
https://drive.google.com/open?id=1FKFMZYK7D_StHFOmuOoq-ySh95KQg8Sk

234

S64 Igor Barchenkov; “GitHub - Ecto Stream Factory: Generate test data for regular and property-

based tests and seed your database” <https://github.com/ibarchenkov/ecto_stream_factory>

PDF File QA Score: 0.38

S65 Jendrik Poloczek; “GitHub - Mockedstreams: Scala DSL for Unit-Testing Processing Topologies

in Kafka Streams” <https://github.com/jpzk/mockedstreams> PDF File QA Score: 0.66

S66 Ottogroup; “GitHub - Flink Spector: Framework for Apache Flink unit tests” <https://github.

com/ottogroup/flink-spector> PDF File QA Score: 0.70

S67 Google Cloud Platform; “Testing the Flink Operator with Apache Kafka” <https://googlecloudplatform.

github.io/flink-on-k8s-operator/docs/kafka_test_guide.html> PDF File QA Score: 0.60

S68 Apache Foundation; “Apache Kafka” <https://kafka.apache.org/documentation/streams/developer-guide/

testing.html> PDF File QA Score: 0.65

S69 Filipe Correia, Stephan Ewen, Alexander Kolb; “Unit testing support for flink application?” <http:

//apache-flink-user-mailing-list-archive.2336050.n4.nabble.com/Unit-testing-support-for-flink-application-td4130.

html> PDF File QA Score: 0.61

S70 Anton Sitkovets; “Testing in Apache Beam Part 2: Stream” <https://medium.com/@asitkovets/

testing-in-apache-beam-part-2-stream-2a9950ba2bc7> PDF File QA Score: 0.59

S71 Eugene Lopatkin; “Apache Spark Unit Testing Part 3” <https://medium.com/@eugene_lopatkin/

apache-spark-unit-testing-part-3-streaming-79af91e5d4d1> PDF File QA Score: 0.41

S72 Ahsan Nabi Dar; “Testing Analytics Event Stream. Over the years we have made improvement. . . ”

<https://medium.com/@hsan_nabi_dar/testing-analytics-event-stream-ba1977b649c6> PDF File

QA Score: 0.41

S73 Arvid Heise, Lawrence Benson, Bakdata Data Engineering Blog; “Fluent Kafka Streams Tests. A

Java test DSL for Kafka Streams” <https://medium.com/bakdata/fluent-kafka-streams-tests-e641785171ec>

PDF File QA Score: 0.82

S74 Lawrence Benson, Arvid Heise, Bakdata Data Engineering Blog; “Schema Registry mock for Kafka

Streams Tests” <https://medium.com/bakdata/transparent-schema-registry-for-kafka-streams-6b43a3e7a15c>

PDF File QA Score: 0.73

S75 ProgrammerSought; “Flink unit test - Programmer Sought” <https://programmersought.com/

article/53161299873> PDF File QA Score: 0.49

S76 Landon Robinson, Jack Chapa, Databricks, SpotX; “Headaches and Breakthroughs in Building

Continuous Applications” <https://pt.slideshare.net/databricks/headaches-and-breakthroughs-in-building-continuous-applications>

PDF File QA Score: 0.56

https://drive.google.com/open?id=1aTEnE8LA6DKavE_i8Y4tKAipzW5TuWSK
https://drive.google.com/open?id=1LxMGZPpUH-Zbu0rgcWUgucuahyxwhh5F
https://drive.google.com/open?id=1FSaEWLkMXMklWca0GjC-ph4ASzuMeGTm
https://drive.google.com/open?id=1DDFu4R_7rgNwG_Ygx4hYbX_ZKCuo97Kn
https://drive.google.com/open?id=1wwEL3Mr78psBWD8jh2W8YEGN--4nbpww
https://drive.google.com/open?id=1sbPyZhqtKFm9RcyduYq6XarGQBwTNIp3
https://drive.google.com/open?id=1tiBghTgRtQuwJUiN4iPuHSh1131jQyK8
https://drive.google.com/open?id=1bUVxD0ZyMOBCWD48mEwbU_cQhAG7Pp5H
https://drive.google.com/open?id=1nRSx5-_gS3mGYIX_skLX5cF8MDxcunUy
https://drive.google.com/open?id=1cJkR4ReM8KV3dRd9LGVP9tdnbG9orSp7
https://drive.google.com/open?id=1tdvbxHJ4vwrKnHWA3to6dgx3mADVq4ZM
https://drive.google.com/open?id=1XDf2AJoC7DlUH3-tWTeUcVP_E0kM8lzb
https://drive.google.com/open?id=1vGL_5ipRz2EHvCUlOhoM44m8tc6TWZLk

235

S77 Seth Wiesman, MediaMath; “Flink Forward San Francisco 2018: Seth Wiesman - Testing Stateful

Streaming Applications” <https://pt.slideshare.net/FlinkForward/flink-forward-san-francisco-2018-seth-wiesman-testing-stateful-streaming-applications>

PDF File QA Score: 0.48

S78 Lars Albertsson; “Test strategies for data processing pipelines, v2.0” <https://pt.slideshare.net/

lallea/test-strategies-for-data-processing-pipelines-v20?next_slideshow=1> PDF File QA Score:

0.59

S79 Johannes Haug; “Pystreamfs” <https://pypi.org/project/pystreamfs> PDF File QA Score: 0.45

S80 Artem Bilan, Spring; “How to test Spring Cloud Stream applications (Part I)” <https://spring.

io/blog/2017/10/24/how-to-test-spring-cloud-stream-applications-part-i> PDF File QA Score:

0.85

S81 Noodle, Mutt; “Automated testing - Test Strategies for Stream Processing / Event Process-

ing - Software Quality Assurance & Testing Stack Exchange” <https://sqa.stackexchange.com/

questions/25915/test-strategies-for-stream-processing-event-processing> PDF File QA Score: 0.30

S82 Ian Jones, Ran Wasserman, Raj Saxena; “Java - Amazon Kinesis + Integration Tests” <https://

stackoverflow.com/questions/30777368/amazon-kinesis-integration-tests> PDF File QA Score:

0.46

S83 Todd McGrath; “Spark Streaming Testing with Scala Example” <https://supergloo.com/spark-streaming/

spark-streaming-testing-scala> PDF File QA Score: 0.45

S84 Roman Aladev, Blaze Meter; “Apache Kafka - How to Load Test with JMeter” <https://www.

blazemeter.com/blog/apache-kafka-how-to-load-test-with-jmeter> PDF File QA Score: 0.77

S85 Yeva Byzek, Confluent; “Stream Processing Tutorial Part 2: Testing Your Streaming Application”

<https://www.confluent.io/blog/stream-processing-part-2-testing-your-streaming-application> PDF

File QA Score: 0.92

S86 Raghunandan Gupta; “Spring Kafka Integration: Unit Testing using Embedded Kafka” <https://

www.linkedin.com/pulse/spring-kafka-integration-unit-testing-using-embedded-gupta> PDF File

QA Score: 0.47

S87 Ram Ghadiyaram; “Test data generation using Spark by using simple Json data descriptor with

Columns and DataTypes to load in dwh like Hive.” <https://www.linkedin.com/pulse/test-data-generation-using-spark-simple-json-columns-load-ghadiyaram>

PDF File QA Score: 0.46

S88 Vidhu Bhatnagar; “Load Testing Our Event Pipeline 2019” <https://klaviyo.tech/load-testing-our-event-pipeline-2019-42c984b90aae>

PDF File QA Score: 0.52

S89 Oren Raboy, Totango Engineering; “Testing Spark Data Processing In Production” <https://labs.

totango.com/testing-spark-data-processing-in-production-8436e976c43> PDF File QA Score: 0.60

https://drive.google.com/open?id=1YxkIgX6LNhlDsCJ7wQwnnw821bw92m8w
https://drive.google.com/open?id=1alhWwI-gcREQNKqeoXwhOp0DMwIxEJE8
https://drive.google.com/open?id=1a6EEiVxeiw7YROzmX3Q62lf6tWWz1JV8
https://drive.google.com/open?id=1bcFjnlIlHdSl_rVE3fdGTzsl8gSeMA64
https://drive.google.com/open?id=1BD9oZ3ZrhPhnqpSFk359BdNp6dLzexY2
https://drive.google.com/open?id=1WFC4UrhfeuGesLKJ5kXdCP10yjEkXHro
https://drive.google.com/open?id=1XfuW_CPbv-byvfPw3iQTFdSyaDbPcBXY
https://drive.google.com/open?id=1jatT24rPI_KftgJ8Y2U1nQHd3KCUEMkV
https://drive.google.com/open?id=1DtTnQy5tzVJPsmlNlJAfKo4cEEDkT_b1
https://drive.google.com/open?id=1DtTnQy5tzVJPsmlNlJAfKo4cEEDkT_b1
https://drive.google.com/open?id=148FGogG11rLqyWy2ppNhMQFJ1eo_AqoI
https://drive.google.com/open?id=19w_72YwScXXLzQZVcJ7Ym99uFsP29gy1
https://drive.google.com/open?id=1AgYbYVTSrdR6Ha2obn1BgU3-Gl7PDhpi
https://drive.google.com/open?id=1_IN7rKrvlzq7ejyjphCdeDFBwkX0PTOT

236

S90 Chip; “Mocking - How can I instantiate a Mock Kafka Topic for junit tests?” <https://stackoverflow.

com/questions/33748328/how-can-i-instantiate-a-mock-kafka-topic-for-junit-tests/34009141#34009141>

PDF File QA Score: 0.39

S91 Luciano Afranllie, CyanogenMod; “Performance - Datastream generator for Apache Kafka” <https:

//stackoverflow.com/questions/41550056/datastream-generator-for-apache-kafka> PDF File QA

Score: 0.37

S92 imehl, Dmitry Minkovsky; “Testing - Test Kafka Streams topology” <https://stackoverflow.com/

questions/41825753/test-kafka-streams-topology> PDF File QA Score: 0.55

S93 Brandon Barker, Eugene Lopatkin, Matt Powers, Shankar Koirala, Vidya Technology and Train-

ing; “Scala - How to write unit tests in Spark 2.0+?” <https://stackoverflow.com/questions/

43729262/how-to-write-unit-tests-in-spark-2-0> PDF File QA Score: 0.73

S94 Matthias J. Sax, Jaker; “Apache kafka - Testing KafkaStreams applications” <https://stackoverflow.

com/questions/48599228/testing-kafkastreams-applications> PDF File QA Score: 0.68

S95 David O, Matthias J. Sax; “Testing window aggregation with Kafka Streams” <https://stackoverflow.

com/questions/52643391/testing-window-aggregation-with-kafka-streams> PDF File QA Score:

0.64

S96 Ramon Jansen Gomez, Jordan Moore, Matthias J. Sax, Levani Kokhreidze, Vassilis; “Java - How

can do Functional tests for Kafka Streams with Avro (schemaRegistry)?” <https://stackoverflow.

com/questions/52737242/how-can-do-functional-tests-for-kafka-streams-with-avro-schemaregistry>

PDF File QA Score: 0.62

S97 Val Bonn, Vasyl Sarzhynskyi, Matthias J. Sax; “Java - How to test a Kafka Stream app without

duplicating the topology? Use of TopologyTestDriver?” <https://stackoverflow.com/questions/

52991065/how-to-test-a-kafka-stream-app-without-duplicating-the-topology-use-of-topology> PDF

File QA Score: 0.58

S98 Kambo, Michael G. Noll, Sarwar Bhuiyan; “Java - Unit testing a kafka topology that’s using

kstream joins” <https://stackoverflow.com/questions/55063686/unit-testing-a-kafka-topology-thats-using-kstream-joins>

PDF File QA Score: 0.61

S99 Jeahyun Kim, perkss; “Can I test kafka-streams suppress logic?” <https://stackoverflow.com/

questions/57686563/can-i-test-kafka-streams-suppress-logic> PDF File QA Score: 0.46

S100 Ronan Mahony, techburst; “ETL Testing Best Practices.” <https://techburst.io/etl-testing-best-practices-7594b721ca91>

PDF File QA Score: 0.52

S101 Jyoti Dhiman; “How to do load testing of a real-time pipeline?” <https://towardsdatascience.

com/load-testing-of-a-real-time-pipeline-d32475163285> PDF File QA Score: 0.43

https://drive.google.com/open?id=10sinPSDJ9a1eSzBvLXAvwmVcRZSFcAHl
https://drive.google.com/open?id=16una5YWpfuW-7s-t8-wC7CTtYda8ZEr0
https://drive.google.com/open?id=1MevDa3dV-2fgzyu4lvfzUG09qmktHUrt
https://drive.google.com/open?id=1Azmj0Z8Hp6kQFPqwuxOgakvdbvjUhKWb
https://drive.google.com/open?id=1uAguSG_hZRTCoqwSiYa-KxQ8067UbrCE
https://drive.google.com/open?id=1SnZQWIl9VasJa9BXFWJxdPSrUXgQ1v6p
https://drive.google.com/open?id=1pxlj3ElnPuDUBTIF_zLvDRJ_b7OaqsR9
https://drive.google.com/open?id=1PWc5QROJvrM8_2xXAOaZWimz19PdLzcg
https://drive.google.com/open?id=1PWc5QROJvrM8_2xXAOaZWimz19PdLzcg
https://drive.google.com/open?id=1vbWietc_liorEQQ47Nr7BPijr4Jxvb35
https://drive.google.com/open?id=1hQLrOrJH9oVYdA0-H9GokATDV2JT8Kmg
https://drive.google.com/open?id=1qIU1xxkv8utEgdV4_NXGaIJ9YyWFQ-Gk
https://drive.google.com/open?id=1Rv-t__YBvy5394UfzoG3Zpay43rmqE8v

237

S102 Holden Karau; “GitHub - Spark Testing Base: Base classes to use when writing tests with Spark”

<https://github.com/holdenk/spark-testing-base> PDF File QA Score: 0.74

S103 Raphael Brugier, Ippon Technologies; “Testing strategy for Apache Spark jobs - Part 1 of 2”

<https://blog.ippon.tech/testing-strategy-apache-spark-jobs> PDF File QA Score: 0.73

S104 Andrea Leopardi, Jose Valim; “StreamData — StreamData v0.5.0” <https://hexdocs.pm/stream_

data/StreamData.html> PDF File QA Score: 0.74

S105 Superconductive; “Welcome to Great Expectations! — great_expectations documentation” <https:

//docs.greatexpectations.io/docs/why_use_ge> PDF File QA Score: 0.75

S106 Apache Foundation; “Griffin - Streaming Use Cases” <http://griffin.apache.org/docs/usecases.

html> PDF File QA Score: 0.67

S107 Eugene Lopatkin; “Apache Spark Unit Testing Part 2 — Spark SQL” <https://medium.com/

@eugene_lopatkin/apache-spark-unit-testing-part-2-spark-sql-35c76ed592b0> PDF File QA Score:

0.44

S108 Ran Silberman; “How to Unit Test Kafka – Ran Silberman” <https://ransilberman.com/2013/

07/19/how-to-unit-test-kafka> PDF File QA Score: 0.47

S109 Stuart Perks; “The Perks of Computer Science” <https://perkss.github.io/#/DistributedSystems/

Streaming> PDF File QA Score: 0.56

S110 Apache Foundation; “TopologyTestDriver (kafka 2.8.0 API)” <https://kafka.apache.org/28/

javadoc/org/apache/kafka/streams/TopologyTestDriver.html> PDF File QA Score: 0.46

S111 Marcos Schroh, Konstantin Knauf, David Anderson, Felder; “testing - How to properly test a Flink

window function?” <https://stackoverflow.com/questions/56755349/how-to-properly-test-a-flink-window-function>

PDF File QA Score: 0.61

S112 Markus Günther; “User Guide to Kafka for JUnit” <https://mguenther.github.io/kafka-junit>

PDF File QA Score: 0.58

S113 Konstantin Knauf, Apache Foundation; “GitHub - Flink Testing Pyramid: Example of a tested

Apache Flink application.” <https://github.com/knaufk/flink-testing-pyramid> PDF File QA

Score: 0.63

S114 Yan Cui, Thundra; “Chaos test your Lambda functions with Thundra” <https://blog.thundra.

io/chaos-test-your-lambda-functions-with-thundra> PDF File QA Score: 0.78

S115 Nick Dimiduk, Rich Metzger, Stephan Ewen, Till Rohrmann, Alexander Kolb; “Apache Flink User

Mailing List archive. - Published test artifacts for flink streaming” <http://apache-flink-user-mailing-list-archive.

2336050.n4.nabble.com/Published-test-artifacts-for-flink-streaming-td3379.html#a3560> PDF File

QA Score: 0.53

https://drive.google.com/open?id=1qvMCBASuaWZbJ7tO547VrVmDPeMA-vz1
https://drive.google.com/open?id=1PcyurZ-G3Qd0K7HLqaC2ANa4GCtKWkDf
https://drive.google.com/open?id=1Yej8LzXetYiEReJPP7cOq4KPlUCXu5iV
https://drive.google.com/open?id=1iDqctUNZ-_OpaCTK1ZY0d7Ds7SMSvlrY
https://drive.google.com/open?id=1cvR7m2h3Gk8M3fjoAgk19TosWvwb-ucV
https://drive.google.com/open?id=1hshbyHR7SMS7AADqnEkYEmvcs6ol-mXc
https://drive.google.com/open?id=1NBwk6rQSwrHTOl9EPiNAV-0r99LFdPf1
https://drive.google.com/open?id=11l1HTVWVutBM25HCWQKhn5-CHguZ79Zn
https://drive.google.com/open?id=1A3bIDyMktxJoN2SBHpJ9XjSFDDDNgToE
https://drive.google.com/open?id=1z7iV-KsrRQf1dgxCdIj-SZgJl1dIZFJb
https://drive.google.com/open?id=1FhMRWsZA_yS7HuwXA_Z2KidLKUdaN2JV
https://drive.google.com/open?id=1hDMTnjWO2Yxl-jEoH6WOQ7uJjCPyOxoM
https://drive.google.com/open?id=1dBXgN4pp-eLHmkJDR-K9lheymy5nVCBo
https://drive.google.com/open?id=1Und2jjpw-Y9KajiTsGBJp7XQyykbEGwa

238

S116 Todd McGrath; “Kafka Streams Testing with Scala Part 1” <https://supergloo.com/kafka-streams/

kafka-streams-testing-scala-part-1> PDF File QA Score: 0.57

S117 Robin Moffatt; “Quick ‘n Easy Population of Realistic Test Data into Kafka” <https://rmoff.

net/2018/05/10/quick-n-easy-population-of-realistic-test-data-into-kafka> PDF File QA Score:

0.40

S118 Yeva Byzek, Confluent; “Easy Ways to Generate Test Data in Kafka” <https://www.confluent.

io/blog/easy-ways-generate-test-data-kafka> PDF File QA Score: 0.85

S119 Todd McGrath; “Kafka Test Data Generation Examples” <https://supergloo.com/kafka/kafka-test-data>

PDF File QA Score: 0.64

S120 Jukka Karbanen, Confluent; “Easy Kafka Streams Testing with TopologyTestDriver - KIP-470”

<https://www.confluent.io/blog/test-kafka-streams-with-topologytestdriver> PDF File QA Score:

0.84

S121 Matthias J. Sax; “KIP-247: Add public test utils for Kafka Streams - Apache Kafka - Apache Soft-

ware Foundation” <https://cwiki.apache.org/confluence/display/KAFKA/KIP-247%3A+Add+

public+test+utils+for+Kafka+Streams> PDF File QA Score: 0.55

S122 Bakdata Data Engineering Blog; “GitHub - Fluent Kafka Streams Tests: Fluent Kafka Streams

Test with Java” <https://github.com/bakdata/fluent-kafka-streams-tests> PDF File QA Score:

0.71

S123 Zerocode, JAppsConsultants; “GitHub - Zerocode: A community-developed, free, open source,

microservices API automation and load testing framework built using JUnit core runners for Http

REST, SOAP, Security, Database, Kafka and much more. Zerocode Open Source enables you to

create, change, orchestrate and maintain your automated test cases declaratively with absolute

ease.” <https://github.com/authorjapps/zerocode> PDF File QA Score: 0.70

S124 LocalStack; “GitHub - Localstack: A fully functional local AWS cloud stack. Develop and test

your cloud & Serverless apps offline!” <https://github.com/localstack/localstack> PDF File QA

Score: 0.69

S125 Amazon; “Kinesis Data Generator” <https://awslabs.github.io/amazon-kinesis-data-generator/

web/help.html> PDF File QA Score: 0.88

S126 Serkan Özal, Amazon; “How Thundra Decreased Data Processing Pipeline Delay By 3x on Aver-

age and 6x on P99” <https://aws.amazon.com/pt/blogs/apn/how-thundra-decreased-data-processing-pipeline-delay-by-3x-on-average-and-6x-on-p99>

PDF File QA Score: 0.77

S127 Zerocode; “Kafka Testing Introduction” <https://knowledge.zerocode.io/knowledge/kafka-testing-introduction>

PDF File QA Score: 0.74

https://drive.google.com/open?id=1J5e9OSohE5X43Xqb0t8HGetz5xefBT0c
https://drive.google.com/open?id=1GaIDgLUFQcZDNqwGI7deO9-SmZcfo3jh
https://drive.google.com/open?id=1PTQiiAolvZgtjlu6mqwcw6OYs921GfYP
https://drive.google.com/open?id=1w0i0qVbOEfBAwU8NUkE--tbAPNNELbsW
https://drive.google.com/open?id=1AS_-vusMQ2zifMoT2CTKFa54OwBAGXW6
https://drive.google.com/open?id=1hDU1tiqpGa625YUnud1Gk4Z7DNGP7cpF
https://drive.google.com/open?id=12umzRms04fL3m3I8XgNhCkANbQGaLvNn
https://drive.google.com/open?id=1kx4ZPkBQxNLIV3Vz_-1SpHqchbhVWViB
https://drive.google.com/open?id=1xCwoEGyYuhPqco-o9DHxA3qIotEi8g-N
https://drive.google.com/open?id=1gRW8I0S2KCAsP8Q_wpxWs91q5Rdtx6hZ
https://drive.google.com/open?id=1xcimuZzJ8dE1UGfvbIYkUTjqAIjmR2I6
https://drive.google.com/open?id=1s8VydaFleYrn5l9kDMvktPTOk0f3ApwP

239

S128 Markus Günther; “Using Kafka for JUnit with Spring Kafka” <https://mguenther.net/2021/03/

using_kafka_for_junit_with_spring_kafka/index.html> PDF File QA Score: 0.49

S129 Markus Günther; “Writing system tests for a Kafka-enabled microservice” <https://mguenther.

net/2021/02/writing_system_tests_for_kafka_microservices/index.html> PDF File QA Score:

0.44

S130 Markus Günther; “Writing component tests for Kafka consumers” <https://mguenther.net/

2021/02/writing_component_tests_for_kafka_consumers/index.html> PDF File QA Score: 0.44

S131 Markus Günther; “Writing component tests for Kafka producers” <https://mguenther.net/2021/

01/writing_component_tests_for_kafka_producers/index.html> PDF File QA Score: 0.45

S132 Andy Mac Giolla Fhionntog, Philipp, James; “Python - Data testing framework for data streaming

(deequ vs Great Expectations)” <https://stackoverflow.com/questions/64711388/data-testing-framework-for-data-streaming-deequ-vs-great-expectations>

PDF File QA Score: 0.37

S133 L Johnson, Dmitri T; “Apache kafka - Adding SSL parameters to pepper_box config in jmeter”

<https://stackoverflow.com/questions/62783931/adding-ssl-parameters-to-pepper-box-config-in-jmeter>

PDF File QA Score: 0.49

S134 Julian Harty; “Better Software Testing Blog - Seeking ways to improve the efficiency and effec-

tiveness of our craft” <http://blog.bettersoftwaretesting.com> PDF File QA Score: 0.86

S135 Sysco Corporation; “GitHub - Kkafka Testing: Test examples of kafka-clients: unit, integration,

end-to-end” <https://github.com/sysco-middleware/kafka-testing> PDF File QA Score: 0.68

S136 Scale Out Data; “Unit Testing Kafka Streams with Avro - Scalable Data Processing on the

JVM Stack” <https://scaleoutdata.com/unit-testing-kafka-streams-with-avro-schemas> PDF

File QA Score: 0.55

S137 JAppsConsultants; “What is Zerocode Testing” <https://github.com/authorjapps/zerocode/wiki/

What-is-Zerocode-testing> PDF File QA Score: 0.67

S138 JAppsConsultants; “Kafka Load Testing Getting Started” <https://knowledge.zerocode.io/knowledge/

kafka-load-testing-getting-started> PDF File QA Score: 0.43

S139 Satish Bhor; “Pepper-Box Kafka Load Generator” <https://dzone.com/articles/pepper-box-kafka-load-generator>

PDF File QA Score: 0.29

S140 Jay Kreps, Atlassian Corporation; “Performance testing - Apache Kafka - Apache Software Foun-

dation” <https://cwiki.apache.org/confluence/display/KAFKA/Performance+testing> PDF File

QA Score: 0.68

S141 Jamie Alquiza; “Load Testing Apache Kafka on AWS” <https://grey-boundary.io/load-testing-apache-kafka-on-aws>

PDF File QA Score: 0.58

https://drive.google.com/open?id=1F0EatlH9A8OFVTxTDt64MObf2m_l5dJ7
https://drive.google.com/open?id=1UfCGc95EYAHH27SbnXuJs65lg_bPEeG8
https://drive.google.com/open?id=1C6e0oCBKCiPQQ6tX-HsTlu99cBWol_J8
https://drive.google.com/open?id=1e7gccstJkDJLaokZ4d574eDPiklHMX0p
https://drive.google.com/open?id=1d51sUWY9pwiI-hvNw803wK-JTkSxRLQT
https://drive.google.com/open?id=1ypTuXYbVLWn1XVAGwbHAMneRenWV6owE
https://drive.google.com/open?id=1cIj0l2gEt1-90rcVmKn3XsBksONXR835
https://drive.google.com/open?id=1SckIaeHKz9Wl7WAn2tmo64xpJa06xuxP
https://drive.google.com/open?id=1ZMRAPjRgJ9742KBHjFLoqx3-U9DdgoBu
https://drive.google.com/open?id=1ZMRAPjRgJ9742KBHjFLoqx3-U9DdgoBu
https://drive.google.com/open?id=1PW7hu-e3LSZud4o8X7WdmzKhmZfFXEyE
https://drive.google.com/open?id=1_7M0CuUR16C17qfx53IQxab9YktZScCD
https://drive.google.com/open?id=1gElXAtRklX-uuzLaRrNwqyhb9OcxZOp0
https://drive.google.com/open?id=1fHkINl9yg_l9aOv1sAzDLxjeHj0fPBKj
https://drive.google.com/open?id=1_76fcYBBCbSCavt7oMW1cGN4Y1PNs9sR

240

S142 Rami Amar, Alooma; “ETL Testing: The Future is Here” <https://www.alooma.com/blog/

etl-testing-the-future-is-here> PDF File QA Score: 0.71

S143 Matthew Powers; “spark-fast-tests” <https://github.com/MrPowers/spark-fast-tests> PDF File

QA Score: 0.73

S144 Andy Chambers, Confluent; “Testing Event-Driven Systems” <https://www.confluent.io/blog/

testing-event-driven-systems> PDF File QA Score: 0.76

S145 Knoldus; “Writing Unit Test for Apache Spark using Memory Streams” <https://blog.knoldus.

com/apache-sparks-memory-streams> PDF File QA Score: 0.56

S146 Amazon; “Serverless Streaming Architectures and Best Practices” <https://d1.awsstatic.com/

whitepapers/Serverless_Streaming_Architecture_Best_Practices.pdf> PDF File QA Score: 0.75

S147 Francesco Tisiot, Aiven; “Create your own data stream for Kafka with Python and Faker” <https:

//aiven.io/blog/create-your-own-data-stream-for-kafka-with-python-and-faker> PDF File QA Score:

0.80

S148 Matthias J. Sax, Peyman, Gnos, thinktwice; “How to unit test a Kafka stream application that uses

session window” <https://stackoverflow.com/questions/57480927/how-to-unit-test-a-kafka-stream-application-that-uses-session-window>

PDF File QA Score: 0.49

S149 Andrea Leopardi; “StreamData: Property-based testing and data generation” <https://elixir-lang.

org/blog/2017/10/31/stream-data-property-based-testing-and-data-generation-for-elixir> PDF

File QA Score: 0.84

S150 Apache Foundation; “Apache Griffin” <https://github.com/apache/griffin> PDF File QA Score:

0.60

S151 Anupama Shetty, Neil Marshall; “Testing Spark: Best Practices” <https://docplayer.net/3780717-Testing-spark-best-practices.

html> PDF File QA Score: 0.42

S152 Thomas Groh, Apache Foundation; “Testing Unbounded Pipelines in Apache Beam” <https:

//beam.apache.org/blog/test-stream> PDF File QA Score: 0.59

S153 Tom Seddon, Deliveroo; “Improving Stream Data Quality With Protobuf Schema Validation”

<https://deliveroo.engineering/2019/02/05/improving-stream-data-quality-with-protobuf-schema-validation.

html> PDF File QA Score: 0.86

S154 Confluent, Jay Kreps; “Why Avro for Kafka Data?” <https://www.confluent.io/blog/avro-kafka-data>

PDF File QA Score: 0.73

https://drive.google.com/open?id=1hVeEoN1rpdqet9CgJaRtZ4hKFUMh7f0u
https://drive.google.com/open?id=1tmX_GKTXMqjNNqnjE_oucbaalQL3Xjiy
https://drive.google.com/open?id=16iM0O31WjPBF9-4Cm6BbzU6Nm5bk3w-y
https://drive.google.com/open?id=1UAdKAAWNrYAi7nY7PKhXx_qc6M610ZP2
https://drive.google.com/open?id=1r00JjlHvHGOrCI8RqYBkAYBJ3EuMm_WB
https://drive.google.com/open?id=1r2KegR_g8K2R7cFUQQ5EFWqwHubgXSSy
https://drive.google.com/open?id=1fS_PG2cw3JU18Pq7tWCjAB8JGzqBQwuF
https://drive.google.com/open?id=1dT7-0H0we-CIPSEKyzMehDcZJeMEr_b6
https://drive.google.com/open?id=1dT7-0H0we-CIPSEKyzMehDcZJeMEr_b6
https://drive.google.com/open?id=1mIw4tdlWh1bAMLbIu8LcxPoRM6Ihc4C2
https://drive.google.com/open?id=1vHhWzSi14S2eLrE9pyXQHapmRBasS8iT
https://drive.google.com/open?id=1nGw367mi5R7Sb-LhQn7NfyfGKTGN049D
https://drive.google.com/open?id=1DUF-DnbLxkbTUckWHsFx9HN8T2YQgXNd
https://drive.google.com/open?id=1ig3ZJWK4KlmHjH7peg4FPZSWEvWi9_lI

241

APPENDIX G – PYTHON SCRIPT: GOOGLE SEARCH

1 '''

2 This script facilitates a Grey Literature Review (GLR) by automating the search

process on Google. It executes predefined queries (search_strings) both in

Google's general search and within selected target websites

(target_websites),streamlining the collection of relevant literature.

→˓

→˓

→˓

3 Author: Alexandre Strapação Guedes Vianna / strapacao@gmail.com / alexandrevianna.net

4 '''

5

6 from googlesearch import search

7 import requests

8 from bs4 import BeautifulSoup as bs

9 import csv

10

11 def fetch_title(url, timeout=10):

12 try:

13 response = requests.get(url, timeout=timeout)

14 response.raise_for_status() # Raises error for bad responses (4XX, 5XX)

15 soup = bs(response.content, 'lxml')

16 return soup.select_one('title').text if soup.select_one('title') else "No

title found"→˓

17 except requests.exceptions.RequestException:

18 return "Error retrieving title"

19

20 def perform_search(search_strings, target_websites, writer):

21 """Perform searches and write results to CSV."""

22 count = 0

23 for search_string in search_strings:

24 for url in search(search_string, num=num, start=start, stop=stop, pause=pause):

25 count += 1

26 title = fetch_title(url)

27 writer.writerow([count, title, url, "Google"])

28 print(count, '\t', title, '\t', url, '\t', "Google")

29 for name, site in target_websites:

30 for url in search(search_string, num=num, start=start, stop=stop,

pause=pause, extra_params={'as_sitesearch': site}):→˓

31 count += 1

242

32 title = fetch_title(url)

33 writer.writerow([count, title, url, name])

34 print(count, '\t', title, '\t', url, '\t', name)

35

36 search_strings = [

37 '(challenges OR difficulties) AND ("data stream" OR datastream) AND (test OR

testing)',→˓

38 '(purposes OR objective OR goal) AND ("data stream" OR datastream) AND (test OR

testing)',→˓

39 '("testing approach" OR "testing strategy" OR "unit test" OR "integration test"

OR "system test" OR "acceptance test" OR "functional test" OR "load test" OR

"performance test") AND ("data stream" OR datastream) AND (test OR testing)',

→˓

→˓

40 '("testing data" OR "test data") AND ("data stream" OR datastream) AND (test OR

testing)',→˓

41 '("testing framework" OR "testing tool" OR "testing library") AND ("data stream"

OR datastream) AND (test OR testing)'→˓

42]

43

44 target_websites = [('LinkedIn', 'https://www.linkedin.com/pulse/'), ('Medium',

'https://medium.com/'), ('StackOverflow', 'https://stackoverflow.com/questions/')]→˓

45

46 # Configure the variables below to perform the pagination.

47 num = 4 # Number of results per page

48 start = 0 # First result to retrieve.

49 stop = 3 # Last result to retrieve. Use None to keep searching forever.

50

51 # Lapse to wait between HTTP requests, measured in seconds.

52 # A lapse too long will make the search slow and too short may block your IP.

53 pause = 5.0

54

55 # Open the CSV file for writing

56 with open('search_results.csv', mode='w', newline='', encoding='utf-8') as file:

57 writer = csv.writer(file, delimiter=';')

58 writer.writerow(['id', 'title', 'url', 'source_site']) # Write the header row

59 perform_search(search_strings, target_websites, writer)

243

APPENDIX H – PYTHON SCRIPT: CONVERT WEBSITE TO PDF

1 '''

2 This script opens a CSV file containing a list of URLs and for each URL it generates

PDF files of these webpages.→˓

3 Ensure you have PyQt5 installed in your Python environment.

4 You can install it using: pip install PyQt5

5 Author: Alexandre Strapação Guedes Vianna / strapacao@gmail.com / alexandrevianna.net

6 '''

7

8 import csv

9 import os

10 import sys

11 from PyQt5 import QtCore, QtWidgets, QtWebEngineWidgets

12

13 # Initialize a QApplication

14 app = QtWidgets.QApplication(sys.argv)

15

16 def html_to_pdf(html, pdf):

17

18 # Create a QWebEnginePage object, which is used to load and render web pages

19 page = QtWebEngineWidgets.QWebEnginePage()

20

21 def handle_print_finished(filename, status):

22 print("finished", filename, status)

23 # Exit the application once printing is done

24 QtWidgets.QApplication.quit()

25

26 def print_pdf():

27 # Initiates printing of the currently loaded web page to a PDF file.

28 page.printToPdf(pdf)

29

30 def handle_load_finished(status):

31 if status:

32 # If the page loaded, execute any necessary JavaScript before printing

33 execute_js()

34 else:

35 # If the page failed to load, print an error message and exit

244

36 print("Failed")

37 QtWidgets.QApplication.quit()

38

39 def handle_run_js(status):

40 print("-")

41 if status:

42 # If the JavaScript executed successfully, proceed to print the page to PDF

43 QtCore.QTimer.singleShot(1000, print_pdf)

44 else:

45 # If JavaScript execution failed, attempt to execute it again

46 QtCore.QTimer.singleShot(1000, execute_js)

47

48 def execute_js():

49 # Example JavaScript code that clicks elements with a specific class name

50 page.runJavaScript(

51 """

52 (function () {

53 var elements = document.getElementsByClassName('ClassName')

54 for (i = 0; i < elements.length; i++) {

55 elements[i].click()

56 }

57 return true;

58 })();

59 """,

60 handle_run_js,

61)

62

63 # Connect signals to their corresponding callback functions

64 page.pdfPrintingFinished.connect(handle_print_finished)

65 page.loadFinished.connect(handle_load_finished)

66 # Load the URL of the web page to convert

67 page.setUrl(QtCore.QUrl(html))

68 # Execute the application event loop

69 app.exec_()

70

71 # Main execution block

72 if __name__ == "__main__":

73 # Open the CSV file containing URLs

245

74 with open('search_results.csv') as csv_file:

75 # Create a CSV reader object to read the file

76 csv_reader = csv.reader(csv_file, delimiter=';')

77 # Iterate through each row in the CSV file

78 for row in csv_reader:

79 # Print the ID, title, and URL for each row

80 print(f'{row[0]} | {row[1]} | {row[2]}')

81 # Convert the webpage to PDF and save it with a specific filename

82 html_to_pdf(row[2], "output/"+str(row[0]) + "_" + str(row[1]) + ".pdf")

#G1 - COLLECT INFORMATION
A. Understand the application business context identifying the key
characteristics to guide your testing decisions.
B. Gather parameters needed for test preparation, such as inputs,
outputs, response times, and throughput rates needed for testing.
C. Identify potential issues like adverse conditions, fault tolerance
scenarios, and testing obstacles like time issues and non-determinism.
D. Document your process with UML diagrams and technical
documents highlighting the concurrency and operation states.

#G2 - ESTABLISH TEST OBJECTIVES.
A. Evaluate software quality requirements concerning
the application's characteristics. Discuss with
stakeholders the series of questions to prioritise testing
objectives according to quality categories.
B. Comprehend quality from the perspective of the
business involved in the application.

C. Engage in process
stakeholders—business analysts,
developers, testers, clients, and users.

 FUNCTIONAL SUITABILITY

Q-A Importance of results' correctness?
1) Define metrics for assessing output correctness.
2) Rank features based on their correctness criticality.
3) Focus on system-level tests considering factors like

concurrency, asynchrony, and latency.

Q-B Importance of results' accuracy?
1) Establish metrics and acceptable thresholds for result accuracy.
2) Understand that non-determinism in DSP can affect accuracy.

Implement measures to manage this.
3) Use monitoring tools like Grafana for performance analysis.

Testing Guidelines for Data Stream Processing Applications

Q-D Importance of meeting resource usage requirements?
1) Estimate available resources for production.
2) Consider network resources required to run the application.
3) Conduct system and infrastructure-level testing. Employ

monitoring tools to assess resource usage.

Q-E Importance of efficient resource usage?
1) Strategise dynamic hardware scaling.
2) Establish diverse scenarios involving hardware resource usage.
3) Optimise application code for efficient resource usage.
4) Use built-in DSP platform features for performance monitoring.

Q-F Importance of meeting maximum capacity limits?
1) Define parameters for the application’s operation at maximum

capacity.
2) Execute stress tests for maximum capacity scenarios.
3) Monitor application performance and hardware resource usage.

Q-K Priority for application evolution without quality
degradation?

1) Establish application evolution plans.
2) Perform regression testing before deploying new releases.
3) Test message contract integrity thoroughly.

RELIABILITY

Q-G Importance of application’s reliability?
1) Establish parameters to measure application reliability.
2) Define acceptable and unacceptable situations or issues.
3) Conduct system-level testing to verify reliability

parameters.

Q-H Priority level for application’s operational availability?
1) Determine the required application availability rates.
2) Perform fault tolerance tests.
3) Identify causes of application unavailability and propose

mitigation strategies.

Q-I Importance of application’s resilience to adverse
conditions?

1) Define adverse conditions and specify functionalities that would
continue or stop.

2) Specify potential performance degradation under adverse conditions.
3) Conduct fault tolerance testing and chaos engineering.

Q-J Priority level for data recovery and system restoration after
interruptions?

1) Characterise potential service interruption scenarios.
2) Establish a disaster recovery plan.
3) Perform fault-tolerance tests to verify recovery mechanisms.

Guiding questions to establish test objectives

This guide is designed to assist professionals in planning testing of Data Stream Processing (DSP) applications. The insights will
guide your decision-making and help shape testing strategies for your context. Discuss, adapt and apply these suggestions to
best suit your needs and encourage fruitful discussions within your team. This compact version provides a quick and user-friendly
reference to the most crucial points. For detailed information, refer to the full version.

Q-L Priority for minimising maintenance efforts?
1) Automate tests to reduce developers/testers workload.
2) Implement a CI/CD pipeline to catch bugs and errors early.
3) Maintain automatic test cases, focusing on stable components.

MAINTAINABILITY

PERFORMANCE EFFICIENCY

Q-C Importance of time requirements?
1) Identify relevant time parameters and set thresholds.
2) Manage application’s clock in test environments.
3) Simulate real-world conditions in the test environment.
4) Leverage DSP frameworks’ test utilities to address

time-related issues.

Authors: Alexandre Vianna (asgv@cin.ufpe.br) and Kiev Gama (kiev@cin.ufpe.br)

#G1 #G2

246

APPENDIX I – GUIDELINES V1 (BEFORE EVALUATION)

#G3 - SYNC TEAM SKILLS WITH TESTING STRATEGY
A. Skills: Align testing activities with the test team's abilities.
B. Training: Provide training and learning opportunities if needed to boost team skills.
C. Workload: Consider workload to decide on the volume and nature of test tasks.

#G6 - DEVELOP A TEST DATA STRATEGY

A. Evaluate your test data set with the ISO/IEC 25012 data quality
Characteristics.
B. Combine various test data sources and generation methods to
increase data diversity and reduce biases.
C. Do not over-rely on historical data, as it may not contemplate
never manifested defects, could become outdated, fail to assess new
features, and may be incompatible with future application versions.
D. Improve historical data efficiency with semi-synthetic data
generation strategies like mutation, machine learning, and manual
customization.
E. Maintain vigilance over the data schema and utilize tools such as
Avro for version management and compatibility to minimize issues
throughout the schema's evolution.
F. Adhere to privacy regulations when managing test data to prevent
legal issues. Adopt strategies to maintain confidentiality, like machine
learning and shadow mode running when using production data.
G. Use property-based data generation for quick, easy, and
resource-efficient test data creation.
H. Utilize high-quality documentation as a reference for synthetic
data generation when real data isn't available, and employ natural
language processing to quickly extract parameters from the
documentation.

(1) Accuracy: Data accurately represents attribute values
within the application context. DSP operations depend on
the values precision, corresponding accurately to the
concept of the variable.
(2) Credibility: This is about the authenticity of data and
its believability within the application's usage context.
Credibility becomes more complex in DSP due to factors
like temporal data distribution, value frequency, message
intervals, and the 4Vs of Big Data.
(3) Currentness: This refers to the data's relevancy based
on its age. Data characteristics in DSP can evolve, making
them ineffective for testing. Also, application updates might
cause incompatibility with new versions.
(4) Compliance: This means data adheres to standards
and conventions. DPS applications have multiple entities
interacting through various message patterns, so test data
must fit the used data structures.
(5) Confidentiality: This involves maintaining privacy and
safeguarding sensitive data. DSP applications often deal
with confidential data like personal, geolocation, and
financial data.

 is real data extracted from a production application, including relevant metadata like timestamps and network delay.
(1) Test Oracle Generation: Historical data may not provide a reliable test oracle as the data may lack reliable expected outputs.
Outputs need to be generated and validated, this relies on documentation detailing data characteristics and output examples.
(2) Coverage Limitations: Despite extensive historical data, it may not cover all potential future bugs due to application complexity
and unmanifested bugs that could arise in production.

(3) Outdatedness: Historical data might not test new functionalities effectively and could become incompatible with updated message schemas.
As conceptual data characteristics can change over time, their ability to simulate real-world conditions may decrease.

Resource
Planning

#G5 - PLAN FINANCIAL RESOURCE ALLOCATION

A. Align Investments: Ensure financial resource
allocation matches the testing objectives from
Guideline #G2, and prioritize high-impact
investments on achieving these objectives.

B. Comprehensive Costing: Consider all potential costs
related to the testing process, including infrastructure,
personnel, consultancy contracts, service/tool contracts, and
maintenance of the testing infrastructure.
C. Reduce Costs: Adopt strategies to cut costs, such as
infrastructure automation, optimised use of paid resources,
use of open-source tools, and using mock
infrastructure/services. Evaluate the balance between
cost-reduction and test effectiveness.

ISO/IEC 25012 Data Quality Characteristics

Historical Data:

#G3

#G4 - PLAN TIME ALLOCATION
A. Reserve time for key tasks like test case development,
environment setup, dataset creation, tests, and results analysis.
B. Consider activity complexity, test execution time, and
number of test cases to estimate time for each testing activity.
C. Rank activities based on test objectives and project
characteristics, as in Guideline #G2.
D. Create the testing schedule considering activity priority,
estimated time, available time, and manageable workload.
E. Get tests quickly with automated test case generation, e.g.,
property-based tests.

F. Start automating the testing infrastructure
gradually as the application gains stability,
prioritising the most time-consuming activities.

#G4 #G5

#G6

247

Synthetic Data Techniques: This type of data is generated
automatically without using real data in the process.
(1) Property-based Data Generation: This method generates data
based on the properties of the data stream, creating large volumes
efficiently. Tools such as FlinkCheck, ScalaCheck, StreamData, and
Ecto Stream Factory support this technique.
(2) Statistical Properties-Based Generation: This approach
creates more accurate data by tailoring the statistical distribution of
the generated data. It requires a strong understanding of math and
statistics, and custom scripts can be made using libraries like Scipy.
(3) AI-Based Generation: This technique uses Natural Language
Processing algorithms to extract information from documentation,
providing valuable input for generating data that better represent
real-world scenarios.

Semi-Synthetic Data: combines synthetic data
generation with real-world data and may also
involve customization steps.

(1) Mutation: Generates new data by subtly altering real-world
data, enhancing diversity while maintaining core characteristics.
(2) Machine Learning: Extracts features from existing data to
generate new data. It expands test datasets, creates data
variants, and preserves privacy.
(3) Manual Customizations: Refines data to trigger specific
conditions unmet by synthetic data. Achieved through iterative
processes and manual adjustments, it requires professionals
with a thorough understanding of the application business
context and its documentation.

Mirroring Production Data: involves rerouting replicas
of the input data stream from the production to the test
environment. It aids in detecting critical failures and
enables performance comparison across other versions.

Privacy and data security can be preserved through mechanisms
called 'shadow mode', which conducts automatic verification of
parameters and execution results.

#G7 PARTICULAR ISSUES OF DSP APPLICATIONS TESTING
A. Time Issues: Message ordering, delays, and response time
requirements are inherent to the business context. The
production and test environments may differ in timing
characteristics, potentially affecting test results.
B. Non-Deterministic Behavior: DSP applications may deliver
different results across multiple executions due to their
non-deterministic nature. It complicates result consistency and
the establishment of accurate test oracles. Several
characteristics, including stateful, window-based, and concurrent
operations, make applications inherently non-deterministic.
C. Fault Tolerance: Businesses must keep running critical
operations 24/7, can withstand adverse conditions and recover
from failures. The main concerns are construction failures,
glitches and interruptions of computational resources, networks,
and third-party services.

(1) Clock Simulation: Control the system clock in
the test environment to emulate production scenario
timings. This is useful for testing temporal windows
and other time-dependent functions.

(2) Speeding up the Clock: Minimize test duration by accelerating
the clock, but balance speed with accuracy to avoid missing
potential timing-related bugs.
(3) Adjusting Processing Time Interval: Longer intervals can
yield inaccuracies, while shorter intervals provide precise results
but increase computational overhead.
(4) Checkpointing Mechanisms: DSP platforms provide features
to periodically store snapshots of states and timers of stateful
operators, it would help in reproducing specific testing conditions.
(5) Testing Asynchronous Operations: It is particularly tricky to
fire asynchronous event, it involve timeouts and internal operators
states. Synchronize non-linear executions using appropriate tools
to make process wait until pre-set conditions are met.

(1) Test Oracle Construction: Set acceptable result
variation thresholds and validate observed variations
with statistical methods.

(2) Deterministic Replay: Manage non-determinism variables for
better test execution control.
(3) Chaos Engineering: To ensure result consistency, perform
repeated tests under non-deterministic conditions, like out-of-order
messages and network and data volume oscillation.
(4) Consider Non-Determinism Bugs: Watch for common bugs
like race conditions, ordering issues, state inconsistencies, and
timeout-associated problems.

Fault tolerance strategies:
(1) Infrastructure Redundancy: Have backup
servers for takeover in case of primary server
failure. This requires budget considerations.

(2) Resource Scalability: Automatic adjustment of resources to
meet increasing demand to maintain required performance. Elastic
scalability requires planning and budget allocation.
(3) Service Redundancy: Prepare backup services to be
automatically activated upon third-party service failure.
(4) Operation Downsizing: For inevitable failures, consider
service interruption or functionality deactivation.
(5) Version Rollback: In case of instability after a new release, an
easy rollback mechanism will save the day.
(6) Operations Rollback: If an operation yields incorrect results
due to a bug, reprocess with a backup infrastructure. Legal
aspects and business context must be considered.
(7) Contracts Compatibility: Maintain backward compatibility until
contract updates propagate. Avro can assist in schema
compatibility maintenance.

Mirroring Production Data: Semi-Synthetic Data:

Synthetic Data Techniques:

Strategies for specific timing issues

Fault tolerance testing strategies

Non-determinism testing strategies

#G7

248

Testing Guidelines for Data Stream
Processing Applications

 COLLECT INFORMATION
A. Understand the application business context.
B. Gather parameters needed for test preparation.
C. Identify potential testing challenges such as adverse conditions,
fault tolerance, time issues, and non-determinism.
D. Create test-relevant documentation, utilizing UML diagrams to
represent concurrency and operational states.

 ESTABLISH TEST OBJECTIVES.
A. Evaluate software quality requirements and discuss with
stakeholders the questions to establish test objectives
B. Comprehend quality from the perspective of the business.
C. Engage in process stakeholders—business analysts,
developers, testers, clients, and users.

Q-A Importance of results' correctness?
Q-B Importance of results' accuracy?
Q-C Importance of time requirements?
Q-D Importance of meeting resource usage requirements?
Q-E Importance of efficient resource usage?
Q-F Importance of meeting maximum capacity limits?
Q-G Importance of application’s reliability?
Q-H Priority level for application’s operational availability?
Q-I Importance of application’s resilience to adverse conditions?
Q-J Priority level for data recovery and system restoration after
interruptions?
Q-K Priority for application evolution without quality degradation?
Q-L Priority for minimising maintenance efforts?

RELIABILITY

Guiding questions to establish test objectives

This guide is designed to assist
professionals in planning
testing of Data Stream
Processing (DSP) applications.
The insights will guide your
decision-making and help shape
testing strategies for your
context. Discuss, adapt and
apply these suggestions to best
suit your needs and encourage
fruitful discussions within your
team. This compact version
provides a quick and
user-friendly reference to the
most crucial points. For detailed
information, refer to the full
version.

PERFORMANCE EFFICIENCY

Authors: Alexandre Vianna (asgv@cin.ufpe.br)
and Kiev Gama (kiev@cin.ufpe.br)

#G1
#G1

 FUNCTIONAL SUITABILITY

MAINTAINABILITY

RELIABILITY

#G3 - SYNC TEAM SKILLS WITH TESTING STRATEGY
A. Align testing activities with the test team's abilities.
B. Provide training and learning opportunities.
C. Consider workload when planning tests.

 PLAN FINANCIAL RESOURCE ALLOCATION

A. Ensure budget allocation matches the testing objectives prioritizing.
B. Consider all potential testing process costs, including infrastructure,
personnel, consultancy, service/tool, and maintenance.
C. Adopt cost-cutting strategies like infrastructure automation, efficient
use of paid resources, open-source tools, and mock services.

#G3

#G4 - PLAN TIME ALLOCATION
A. Reserve time for key tasks like test case development, environment
setup, dataset creation, tests execution, and results analysis.
B. Consider activity complexity, test execution time, and number of test
cases to estimate time for each testing activity.
C. Rank activities based on test objectives.
D. Create the testing schedule considering activity priority, estimated
time, available time, and manageable workload.
E. Get tests quickly with automated test case generation, e.g.,
property-based tests.
F. Automate the testing infrastructure gradually as the application gains
stability.

#G4

#G5

 DEVELOP A TEST DATA STRATEGY

A. Evaluate your test data set with the data quality characteristics.
B. Combine various test data sources and data generation methods.
C. Do not over-rely on historical data.
D. Improve historical data efficiency with semi-synthetic data.
E. Manage schema's evolution to minimize incompatibility issues.
F. Adhere to privacy regulations and adopt strategies to maintain
confidentiality.
G. Use property-based data generation for quick test data creation.
H. Utilize high-quality documentation as a reference for synthetic data
generation.

#G6

 PARTICULAR ISSUES OF DSP APPLICATIONS TESTING
A. Time Issues: Account for message order, delays, and
response time requirements, timing discrepancies between
production and test environments.
B. Non-Deterministic Behavior: DSP applications may deliver
different results across multiple executions.
C. Fault Tolerance: Ensure resilience against adverse
conditions, linke glitches, resource/network disruptions, and
third-party service failures.

#G7

ISO/IEC 25012 Data
Quality Characteristics

Time issues

Testing strategies

Non-determinism

Historical
Data

Mirroring
Production Data

Semi-Synthetic
DataSynthetic Data

Fault tolerance

Particular Issues Testing strategies
Time issues: (1) Clock Simulation; (2) Speeding up the Clock; (3)
Adjusting Processing Time Interval; (4) Checkpointing Mechanisms; (5)
Testing Asynchronous Operations

Fault tolerance: (1) Infrastructure Redundancy; (2) Resource
Scalability; (3) Service Redundancy; (4) Operation Downsizing; (5)
Version Rollback; (6) Operations Rollback; (7) Contracts Compatibility

Non-determinism: (1) Test Oracle Construction; (2) Deterministic
Replay; (3) Chaos Engineering; (4) Consider Non-Determinism Bugs

(1) Accuracy; (2) Credibility; (3)
Currentness; (4) Compliance; (5)
Confidentiality

ISO/IEC 25012 Data Quality Characteristics
(1) Accuracy; (2) Credibility; (3) Currentness;

(4) Compliance; (5) Confidentiality

Test data sources and data generation strategies
Historical: is real data extracted from a production application.

Mirroring: involves rerouting replicas of the input data stream from the
production to the test environment.

Synthetic: data is generated automatically without using real data in the
process. Strategies: (1) Property-based Data Generation; (2) Statistical
Properties-Based Generation; (3) AI-Based Generation.

Semi-Synthetic: combines synthetic data generation with real-world
data and may also involve customization steps. Strategies: (1) Mutation;
(2) Machine Learning; (3) Manual Customizations.

Guiding questions to establish test objectives
Q-A Importance of results' correctness?
Q-B Importance of results' accuracy?
Q-C Importance of time requirements?
Q-D Importance of meeting resource usage requirements?
Q-E Importance of efficient resource usage?
Q-F Importance of meeting maximum capacity limits?
Q-G Importance of application’s reliability?
Q-H Priority level for application’s operational availability?
Q-I Importance of application’s resilience to adverse conditions?
Q-J Priority level for data recovery and system restoration after
interruptions?
Q-K Priority for application evolution without quality degradation?
Q-L Priority for minimising maintenance efforts?

#G2

249

APPENDIX J – GUIDELINES CHEAT SHEET (BEFORE EVALUATION)

	Title page
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Context and Motivation
	Objective
	Research Questions
	Contributions
	Document Structure

	Fundamental Concepts
	Data Stream
	Data Stream Infrastructure
	Data Stream Analysis Approaches
	Windowing
	Sliding Window
	Tumbling Window

	Watermarks
	Complex Event Processing
	Learning from Data Streams
	Summarizing Techniques

	Software Testing
	Test Oracle
	Test Adequacy Criteria
	Test Selection Criteria

	State-of-the-Art in Data Stream Testing
	Summary

	Research Methods
	Exploratory Study
	Questionnaire
	Interview
	Data Analysis

	Grey Literature Review
	Search process
	Source Selection
	Data extraction and synthesis
	Quality Assessment
	Data Extraction
	Data Synthesis

	Guidelines Development
	Evaluation
	Planning
	Objective
	Participants Profile

	Research Design
	Focus Group
	Survey

	Data Collection
	Analysis and Synthesis
	Threats to Validity

	Summary

	Exploratory Study
	Demographics
	Survey Demographics
	Interview Demographics

	Analysis on Survey and Interview data
	The Core Category: Testing Data Stream Software
	 Category: Testing Approaches
	 Category: Levels of Testing
	Stream Simulation

	Category: Testing Tools
	Category: Test Data

	Results Synthesis and Discussion
	Approaches and techniques being adopted to test DSP applications.
	Test frameworks and tools have been adopted
	Data used to test DSP applications

	Threats to Validity
	Summary

	Grey Literature Review
	Initial Search
	Applications of Inclusion and Exclusion Criteria
	Demographic Data
	Quality Assessment Results
	Results and Discussion
	Summary of research findings
	RQ1. What are the challenges to DSP application testing?
	RQ2. What are the testing purposes?
	RQ3. What are the approaches and specific types of tests performed?
	RQ4. What are the strategies adopted by practitioners to obtain testing data?
	RQ5. What are the tools and under what circumstances are they used in the context of DSP application testing?

	Implications for research and practice
	Implications for practice
	Implications for research

	Threats to Validity

	Conclusions
	Summary

	Testing Guidelines for Data Stream Processing Applications
	The Guidelines
	Colleting Information
	Information to be collected in the initial phases of the project.

	Establish test objectives
	Questions to support establishing test objectives

	Resource Planning
	Human Resources
	Time Resources
	Financial resources

	Developing a test data strategy
	Data Quality Characteristics
	Test Data Strategies

	Particular aspects of Data Stream Processing
	Time Issues
	Non-determinism
	Faul Tolerance

	Example scenario
	Colleting Information
	Establishing test objectives
	Resource Planning
	Test Data Strategy

	Guidelines Evaluation and Results Discussions
	Participants Overview
	Focus Groups Conduction
	Evaluation of Guideline #G1
	Evaluation of Guideline #G2
	Evaluation of Guideline #G3
	Evaluation of Guideline #G4
	Evaluation of Guideline #G5
	Evaluation of Guideline #G6
	Evaluation of Guideline #G7
	Evaluation of General Feedbacks
	RQ2.1 Perceived Strengths
	RQ2.2 Weaknesses and Areas for Improvement
	RQ2.3 Perceived Applicability in Industrial Context
	Additional Feedback: Suggestions on Guidelines Format

	Summary

	Conclusion
	Final Considerations
	Summary of Main Contributions
	Publications
	Future Work

	References
	Questionnaires
	Interview Script
	 SECTION 1: INTRODUCTION (about 3 minutes)
	SECTION 2: Profile and background of the interviewee. (about 6 minutes)
	SECTION 3: Professional Experience with Data Stream Development (about 10 minutes)
	SECTION 4: Data Stream Applications Testing (about 8 minutes)
	SECTION 5: About tools to test data stream applications. (about 8 minutes)

	Focus Group Discussion Guide
	Questionnaires
	Participant Profile
	#G1 Collect Information
	#G2 ESTABLISH TEST OBJECTIVES
	#G3 SYNC TEAM SKILLS WITH TESTING STRATEGY
	#G4 PLAN TIME ALLOCATION
	#G5 PLAN FINANCIAL RESOURCE ALLOCATION
	#G6 DEVELOP A TEST DATA STRATEGY
	#G7 PARTICULAR ISSUES OF DSP APPLICATIONS TESTING
	Final Considerations

	List of Testing Tools
	GLR selected sources
	Python Script: Google Search
	Python Script: Convert Website to PDF
	Guidelines V1 (before evaluation)
	Guidelines Cheat Sheet (before evaluation)

