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RESUMO

O controle ótimo no mundo biológico tem uma vasta aplicação em incontáveis sistemas

os quais in�uenciam enormemente nossas vidas. Objetiva-se a aplicação desta ferramenta

em dois sistemas. O primeiro diz respeito ao controle ótimo de dosagem de drogas no

tratamento de pacientes infectados pelo vírus HIV . O modelo de Campello de Souza

(1999) é usado para estimar a dosagem de drogas onde a função objetivo é minimizada.

Esta função representa um balanço entre os benefícios do tratamento e os efeitos colaterais.

A técnica de controle ótimo usada é o Princípio do Máximo de Pontryagin, a qual é simu-

lada através do PROPT-TOMLAB � Matlab Optimal Control System Software em uma

versão de demonstração. As simulações objetivam a análise de três diferentes pacientes

em dois diferentes cenários. Estes cenários têm como objetivo forçar as variáveis de estado

a atingirem valores �normais� a �m de estabilizar a carga viral próximo a uma taxa que

seja insigni�cante e elevar o nível de CD4 do paciente. São simulados tratamentos cedos

e tardios. As simulações computacionais compararam diferentes cenários para investigar

os parâmetros de incerteza da dinâmica entre o vírus HIV e os linfócitos CD4 e CD8.

Os resultados mostram que o controle ótimo permite uma melhor administração entre os

efeitos positivos da terapia e os efeitos colaterais, ao invés de se usar dosagens constantes

de drogas como na atual prática médica. O segundo sistema descreve a aplicação do

controle ótimo, também através do Princípio Máximo de Pontryagin, para controlar o

nível de glicose em indivíduos diabéticos usando o modelo matemático desenvolvido por

Bergman (1971, 1981). Correlacionam-se dados reais da literatura com o modelo teórico

para analisar a robustez do modelo. É também estudada a minimização do funcional ob-

jetivo para diminuir os efeitos colaterais e consequentemente melhorar o estado de saúde

do paciente. Os resultados mostram os benefícios de se utilizar o controle ótimo para

regular a taxa de glicose em pacientes diabéticos.

Palavras Chaves: Engenharia Biomédica, Otimização de Sistemas, Bioestatística, Con-

trole Ótimo, Diabetes e SIDA.
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ABSTRACT

The use of optimal control in the biological world has extensive application in nume-

rous systems. This dissertation discusses the application of this tool in two main systems.

The �rst concerns the optimal control of drug dosages, the variable u, in the treatment of

patients infected with the HIV virus. The mathematical model developed by Campello

de Souza (1999) is used to estimate the drug dosage under which the objective function is

minimized. This objective function sets out to represent a balance between the bene�ts

of the treatment and its side e�ects. The optimal control technique used is Pontryagin's

Maximum Principle which is simulated by PROPT-TOMLAB�Matlab Optimal Control

Software in a demo version. The simulations are analyzed in three di�erent patients under

two di�erent scenarios. The 1st and 2nd scenarios consider, respectively the cases when

the patient undergoes treatment early and later, pushing up the variables to the �normal�

values to stabilize the virus load close to its being at an insigni�cant rate. The computer

simulation compared di�erent scenarios so as to investigate the parameters of uncertain-

ties of the dynamics of HIV and CD4 and CD8 lymphocytes. The results showed that

the optimal control led to better administration between the therapeutic e�ects and side

e�ects even for constant drug dosages. The second system describes the application of

the optimal control, also by Pontryagin's Maximum Principle, to control glucose levels

in diabetic individuals using the mathematical model developed by Bergman (1971 and

1981). Real data from the literature are correlated to the theoretical model so as to ana-

lyze the robustness of the model. A study is also conducted of minimizing the objective

function so as to diminish the side e�ects and consequentially to improve the patient's

state of health. The results showed the bene�ts of using the optimal control to regulate

the glucose rate in diabetic patients.

Keywords: Biomedical Engineering, System Optimization, Biostatistics, Optimal

Control, Diabetes and AIDS.
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Chapter 1 Introduction

1 Introduction

�When health is absent, wisdom cannot reveal itself, art cannot manifest,

strength cannot �ght, wealth becomes useless, and intelligence cannot be ap-

plied.�

Herophilus

�He who has health has hope; and he who has hope has everything.�

Arabic Proverb

The application of mathematics to the study of biological systems, and more specif-

ically of diseases, appears to have been initiated by Bernoulli (1760). He used a ma-

thematical method to evaluate the e�ectiveness of the techniques of variolation against

smallpox, with a view to in�uencing public health policy.

There are many applications of mathematical techniques, frequently used in systems

engineering, the two main ones being: control systems theory and optimal control, which

can be applied to biomedical experimentation, biological control systems, diagnosis, and

biomedical engineering.

The application of mathematical and engineering techniques to biological systems

appears, at �rst sights, to be an unwarranted leap into the unknown, until we consider

how these systems are represented or described. Biological systems are often described as a

set of ordinary di�erential equations, which are frequently the core of system engineering,

as well. Because of this underlying similarity, many traditional engineering techniques

are helping �systems researchers� gain further insight into biological systems. (Zannella,

2009).

Studying the mathematical models that describe an organism (system) can, as a con-

sequence, show how the real biological world works and this can give support, for example,

to medical decisions when the systems studied are diseases. In some cases, the models

analyzed can control a speci�c system or create a new arti�cial system, one that responds

di�erently from any natural biological system. Diseases, for example, can be manipulated

through simulations which analyze the therapeutic e�ects and side e�ects.

1



Chapter 1 Introduction

The modeling of the structures of biological process confronts the analysis with a high

order model and a complex structure. In this study, the technique of optimal control

is used to study the behavior of biological systems to give support for clinical decisions.

However, as the biological world consists of an in�nite number of systems, in this disserta-

tion only two main biological systems will be discussed. The �rst describes the behavior

of the dynamic between HIV-1 with the lymphocytes CD4 and CD8 and the second,

the dynamics of glucose and insulin. Both systems endeavor to formulate solutions for

modeling and controlling diseases.

1.1 Justi�cation

1.1.1 Reason for Studying the HIV-AIDS Control

AIDS � Acquired Immunode�ciency Syndrome � has desolated and devastated many

families, communities and also some African countries. It has stigmatized groups that are

closest to the margins of society. All these problems have, as a consequence, the fact of

HIV having become a major international epidemic, easily crossing oceans and borders

and a�ecting all sectors of society, from children to the elderly.

To date, more than 25 million people around the world have died of AIDS-related

diseases. As per Table 1.1, in 2007, around 2.0 million men, women and children lost

their lives. It is estimated 33 million people around the world are now living with and

su�ering from HIV, and most of these are likely to die over the next decade or so. The

most recent research done by UNAIDS/WHO (2009), shows that, in 2007 alone, 2.7 million

people were newly infected with HIV. It is disappointing that the global numbers of people

infected with HIV continue to rise, despite the fact that e�ective prevention strategies and

health programs to combat HIV-AIDS already exist. The survey also sounds an alarm

about children's health, as it records 270 thousand child deaths from AIDS in 2007.

Figure 1.1 shows a global estimate for adults and children living with HIV in 2007

UNAIDS/WHO (2009) in all contries. Globally, around 11% of HIV infections are among

babies who acquire the virus from their mothers; 10% result from injecting drugs;

5− 10% arise in male homosexual relationships; and 5− 10% occur in health care settings.

2



Chapter 1 Introduction

Table 1.1: Global HIV/AIDS estimates, end of 2007.

Estimate Range
People living with HIV/AIDS in 2007 33.0 million 30.3-36.1 million
Adults living with HIV/AIDS in 2007 30.8 million 28.2-34.0 million
Women living with HIV/AIDS in 2007 15.5 million 14.2-16.9 million
Children living with HIV/AIDS in 2007 2.0 million 1.9-2.3 million
People newly infected with HIV in 2007 2.7 million 2.2-3.2 million
Children newly infected with HIV/AIDS in 2007 0.37 million 0.33-0.41 million
AIDS deaths in 2007 2.0 million 1.8-2.3 million
Child AIDS deaths in 2007 0.27 million 0.25-0.29 million
Source: UNAIDS/WHO, 2009.

Heterosexual activity accounts for the remaining proportion � around two thirds of new

infections. These data show AIDS is not just a problem for a unique sector of society

(namely, it is not a problem related to homosexuality), as was thought in the 80′s, but

rather a�ects all humanity.

Figure 1.1: Estimated number of adults and children with HIV in 2007. Source UNAIDS/WHO,
2009.

In addition, UNAIDS/WHO (2009) has shown that Brazil had an adult HIV prevalence

rate of 0.6% at the end of 2007, but, because of its large overall population, it accounts

for nearly half of all people living with HIV in Latin America. It is estimated that 730,000

Brazilians are living with HIV/AIDS and approximately 15,000 people died due to AIDS

in 2007.
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Chapter 1 Introduction

The analysis of deaths in the years following 1996, for Brazil as a whole, shows a

signi�cant drop in mortality among men which has not been followed equally by women

due to drugs distribution and despite prevention campaigns. Even so, mortality among

men remains higher when compared to the female mortality rate (2005 rate: 8.06/100,000

and 3.97/100,000 respectively)(UNAIDS/WHO, 2009).

There are many alarmist facts about the research conducted by UNAIDS/WHO (2009).

Some of them are as per AVERT (2009):

� Africa has 11.6 million AIDS orphans;

� At the end of 2007, women accounted for 50% of all adults living with HIV world-

wide, and for 59% in sub-Saharan Africa;

� Young people (under 25 years old) account for half of all new HIV infections world-

wide;

� In developing countries, 9.7 million people are in immediate need of life-saving AIDS

drugs; of these, only 2.99 million (31%) are receiving the drugs;

� The number of people living with HIV has risen from around 8 million in 1990 to

33 million today, and is still growing. Around 67% of people living with HIV are in

sub-Saharan Africa

Table 1.2 shows the average AIDS incidence rate per 100,000 inhabitants from 1994

to 2005 in the 5 di�erent regions that constitute Brazil. From Table 1.2 it can be seen the

percentage variation for the North and North�East at the AIDS has risen by, respectively,

58.9% and 36.3%. On the other hand, the survey shows a promising change with in

the South and South�East when the percentage decline was −5.9% and −5.2% during

the same period (considering the variation between 1999-2003 vs 2004-2005). (UNGASS,

2008).

Since 1983, the year of the �rst recorded case in Pernambuco, until 2008, the Regional

Health Directorate (RHD) has noti�ed 14,308 cases of the disease. The study shows that

4,754 are women, that means approximately 33%. With regard to the cities with highest

rates, Recife leads the list with 5,982 cases. Jaboatão dos Guararapes and Olinda are
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Table 1.2: Average AIDS incidence rate per 100,000 inhabitants and variation per period. Brazil
and Regions, 1994 - 2005.

Regions 1994-1998 1999-2003 Variation% 2004-2005 Variation %
(99-03 vs 94-98) (04-05 vs 99-03)

Brazil 15.6 18.3 17.0 18.8 3.0
North 4.4 8.4 90.3 13.4 58.9
North-East 4.8 7.7 60.8 10.5 36.3
South-East 24.7 24.5 -0.7 23.2 -5.2
South 17.3 26.7 54.3 25.2 -5.9
Midwest 12.4 15.4 24.2 17.7 15.5
Source: UNGASS, 2008.

ranked 2nd and 3rd with 1,629 and 1,205 noti�cations, respectively. The metropolitan re-

gion of Recife concentrates nearly 78.9% of all AIDS noti�cations in Pernambuco. (SHSP,

2009).

1.1.2 Reason for Studying the Glucose Control

The epidemiological evidence demonstrates that, without e�ective prevention but also

control programmes, diabetes will probably continue to increase globally causing millions

of deaths and bringing su�ering to millions of people who su�er from it. It is estimated by

the International Diabetes Federation (IDF, 2009) that approximately 246 million people,

or 5.9%, in the age group 20-79 years, had diabetes worldwide in 2007. More than 70%

live in developing countries and in most cases, in a state of poverty without the minimum

of sanitary and food conditions. The worldwide estimate is expected to increase to around

380 million, or 7.3% of the adult population, by 2025 (Table 1.3). The largest increases

will be in the so called economically emergent nations such as Brazil.

Table 1.3: Estimates of population and number of people with diabetes by International Diabetes
Federation.

Population 2007 2025
Total world population (billions) 6.6 7.9
Adult population (age 20-79, billions) 4.1 5.2
Diabetes (20-79 age group) � �
Comparative prevalence (%) 6.0 7.3
Number of people with diabetes (millions) 246 380
Source: IDF, 2009.

5



Chapter 1 Introduction

The research done by IDF estimated the prevalence of diabetes mellitus for each coun-

try for the years 2007 and 2025, and it used data provided from 215 countries and terri-

tories, which were gathered on in di�erent geographical basis, in a total of the seven IDF

regions: Africa (AFR), Eastern Mediterranean and Middle East (EMME), Europe (EUR),

North America (NA), South and Central America (SACA), South-East Asia (SEA), and

the Western Paci�c (WP). Figure 1.2 shows one of the results of the survey: the WP

Region will have the highest number of people with diabetes, approximately 100 million,

representing approximately an increase of 50% when compared with 2007. This demon-

strates that diabetes is not a problem just for developing countries, but a health problem

for all humanity. On the other hand, AFR has the smallest number of people with dia-

betes, but the expectation is growth of slightly more than 70%. Figure 1.3 shows a best

estimate for each country in the world in 2025. (IDF, 2009).

Figure 1.2: Number of people with diabetes (20− 79 age group) by region, 2007 and 2025. IDF
2009.

In Brazil, according to VIGITEL 2007 (System of Monitoring of Risk and Protection

for Non-Transmissible Chronic Diseases), the mean occurrence of diabetes in the adult

population (over 18 years) is 5.2%, which means 6,399,187 people con�rmed as diabetic.

Prevalence increases with age: diabetes reaches 18.6% of the population over 65 years old
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Figure 1.3: Estimate of prevalence of of diabetes 20− 90 years in 2025. IDF 2009.

(MS, 2009). Figure 1.4 shows the proportion of diabetes mellitus patients by age group

in Brazil. Figure 1.5 shows the number of diabetes mellitus su�erers.

Figure 1.4: Percentage of Diabetes Mellitus. Estimate by age group. Brazil, VIGITEL, 2007. In
yellow, the mean percentage per age group, in blue, the male population and in red, the female

population.

Table 1.4 shows the Epidemiology of Diabetes in Pernambuco. It demonstrates the

predominance of diabetes in di�erent areas in Pernambuco from Jan/2002 to Aug/2009.

The Metropolitan Region of Recife is the region with most cases of type 1 and 2 diabetes
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Figure 1.5: Number of People with Diabetes Mellitus. Estimate by age group. Brazil, VIGITEL,
2007. In yellow, absolute value per age group, in blue, the male population and in red, the female

population.

and of hypertension with diabetes - 32.75%, 40.95% and 40.33% respectively. The 2nd and

3rd ranked regions with most cases are the RHD of Caruaru and Limoeiro. (DATASUS,

2009).

Table 1.4: Epidemiology of Diabetes in Pernambuco.

HSD Type 1 Diabetes Type 2 Diabetes Hypertension and Diabetes
Recife 788 3,166 25,843
Limoeiro 326 925 7,863
Palmares 266 717 5,557
Caruaru 422 1,445 11,511
Garanhuns 164 419 3,852
Arcoverde 50 219 1,864
Salgueiro 21 43 689
Petrolina 152 429 2,608
Ouricuri 53 91 807
Afogados da Ingazeira 95 144 1,582
Serra Talhada 72 123 1,901
TOTAL 2,409 7,731 64,077
Source: DATASUS, 2009.

1.2 The Alliance between Mathematics and Biology

As described in Campello de Souza et al. (2002), mathematics is a logical indispens-

able tool for scienti�c activity. Its limitations are overcome when supplanted by its huge
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potential, though this is not well exploited, and applied to all �elds of science. A mathe-

matical representation is a strong instrument that gives support to human thought as it

explains intensities such as logical relations. It is not possible to engage in science without

mathematics.

May (2004) expresses in his article the importance of relating mathematic and biol-

ogy. He shows why mathematics has become so pervasive in biology and takes di�erent

forms in its applications, such as in biostatistics, bioinformatics, modeling diseases, drug

development, etc.

Currently, mathematics is being applied to explore models of biological systems. Nor-

mally such activity consists of representing evidence-based assumptions as the starting

point for a complicated and usually nonlinear dynamic system, followed by assigning par-

ticular parameters and then letting this complicated system produce its �gures. This

represents a revolutionary change in such theoretical studies.

One important application of mathematics in biological models is associated with

ecology, such as when Lotka and Volterra explored interactions among species in their

study. Today we can use mathematics to model bioprocesses and to optimize systems and

costs. The future of bio-mathematics will be to improve the development of other �elds

such as bioinformatics, bionanotechology, genetics, population modeling, etc.

The mathematics in this dissertation is based on models reported in Phillips (1996),

Grégio (2005), Caetano & Yoneyama (2002), Hardt (2007), Campello de Souza (1999),

etc., for the case of HIV/AIDS. For the diabetes studies, other authors like Bergman &

Urquhart (1971), Bergman et al. (1981), Doyle III et al. (1995), Natal (2004), Kovacs et

al. (2008) and Dua et al. (2006) have had an important in�uence. More details are given

in sections 2.3 and 7.3.1.

1.3 Objectives

1.3.1 General Objectives

To characterize biological states in terms of parameters obtained from dynamic sys-

tems, in order to be able to optimally control them, in a diagnostic and therapy decision

support set up.
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1.3.2 Speci�c Objectives

1. To study the application of mathematical and engineering techniques to biological

systems in order to improve support to clinical decision making;

2. To model and simulate the dynamics of HIV-1 with CD4 and CD8 lymphocytes

using optimal control of drug administration by Pontryagin's Maximum Principle;

3. To model and simulate the dynamics of diabetes using the optimal control of insulin.

1.4 Basic Methodology

There are in�nite number of biological systems and some of them are of major impor-

tance in our lives. For this study two of the most important diseases were chosen that

a�ect millions of people in the world: HIV/AIDS and diabetes. Special attention is paid

in the research undertaken to understand the behavior of HIV/AIDS and glucose through

mathematical models, in particular, when the bene�ts of the therapy and the side e�ects

are analyzed together.

In the case of HIV/AIDS, the model developed by Campello de Souza (1999) was ap-

plied. This model uses three di�erential equations that represent the interaction between

CD4 and CD8 lymphocytes and the HIV-1 virus. The technique of Pontriagin's Maximum

Principle is used to minimize the objective function so as to optimize the drugs applied

to control this disease. The direct method employed is the Linear Quadratic Regulator

(LQR) because of its simplicity and robustness.

The optimization methods applied in this study require simulations with di�erent

scenarios that describe di�erent patients, in di�erent stages of the progression of the

disease. For each patient, the control is made di�erently with the objective of adjusting

the best dosage during early and late treatment. The software chosen to simulate and

solve the complex system formed by six di�erential equations was PROPT-TOMLAB due

to its good performance in this kind of problem.

In the case of diabetes, the same methodology is applied. The goal of this research was

to describe a closed-loop control system that mimics the functionality of the pancreas in
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providing regulation of the glucose rate in diabetic patients. The model chosen to analyze

the dynamic between glucose and insulin was that developed by Bergman & Urquhart

(1971) and Bergman et al. (1981) and cited in more modern studies. The representation

used was recently improved by Dua et al. (2006) using the minimum number of compart-

ments to describe it. The model is also called �Bergman's Minimal Model� and it consists

of a set of three di�erential equations, similar to the model developed by Campello de

Souza (1999) to study the case of HIV/AIDS.

More references in general will be presented throughout the text.

1.5 Organization of Work

This chapter sets out the justi�cation, the objectives and the main academic approach

that includes the discussion of methodology and a brief review of literature.

Chapter 2 presents some concepts concerning the biology of HIV and a synthesis of the

mathematical model that will be used in this study. The notion of medicines to �ght the

HIV/AIDS will be introduced and how the optimal variable will be applied subsequently.

The third chapter presents the fundamentals of optimal control theory and the formu-

lation of the HIV problem. In the �rst section there is a short introduction to Optimal

Control Theory and notions about the virus clearance procedure. Subsequently the HIV

problem applying Optimal Control Theory, in particular Pontryagin's Maximum Principle

will be introduced.

Chapter 4 shows the linearization of the model and the solution of Riccati's equation

to be applied the LQR. First, LQR control in general is studied and then applied to the

model discussed.

Chapter 5 shows the optimization problem when the functional is minimized, and

consequently when the optimal drug dosage is used to �ght HIV. The method and the

software to simulate di�erent scenarios, patients and treatments are presented.

Chapter 6 presents concepts on the biology of diabetes with a synthesis of the dynamics

between insulin and glucose. In the last section, type 1 and 2 diabetes will be described.

The seventh chapter shows �rst the importance of controlling the amount of glucose

in the bloodstream. It also discusses concepts on closed loop control using insulin pumps.
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A description is given of the groups of mathematical models in the literature focused

on Bergman's Minimal Model. Finally, the chapter formulates the optimal therapy via

Pontryagin's Maximum Principle, followed by linearization to facilitate the calculus and

simulation.

Chapters 8 present conclusions and suggestions for future studies.

The text mixes the languages of biology and engineering, but in a predominantly

hypothetical-deductive epistemology.
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2 Concepts and Mathematical Model - HIV

�The human immunode�ciency virus (HIV) epidemic has spawned a sci-

enti�c e�ort unprecedented in the history of infectious disease research. This

e�ort has merged aspects of clinical research, basic molecular biology, im-

munology, cell biology, epidemiology, and mathematical modeling in ways that

have not been seen before. The ever unfolding discoveries of novel aspects of

HIV-host interaction have been accompanied by (and often have resulted from)

novel interactions among researchers in the disparate disciplines.�

John Co�n

2.1 Introduction

This chapter presents some concepts on the biology of HIV and a synthesis of the

mathematical model that will be used in this study. The notion about medicines to

�ght the HIV/AIDS will be introduced and how the optimal variable will be applied

subsequently.

2.2 The Biology of HIV

AIDS was discovered in the late 1970s when young homosexual men fell ill and began

to die in United States from a unknown disease with the same symptoms as rare can-

cers and infectious diseases such as pneumonia. Although the causative virus, Human

Immunode�ciency Virus (HIV), was identi�ed in 1983, there is still no cure for AIDS.

Before analyzing the mathematical modeling in di�erent components of the system, it

is necessary to understand the interaction of HIV with the immunological system and also

to know about a class of lymphocytes which has the ability to adapt and to interact with

speci�c antigens. One reason why HIV is a particularly serious infection is that it attacks

and destroys cells of the immune system � called T-cells � and more speci�cally the

CD4 lymphocytes. Lymphocytes are white blood cells that secrete antibodies to speci�c

antigens. The B cells are a subclass that counteract antigens circulating in the blood
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stream, while T cells form antibodies for antigens inside or associated with normal cells.

(Haefner, 2005)

Virus activity starts once HIV penetrates these cells. It takes over their machinery (or

reprograms the cell) so that it begins to replicate itself from one cell. Another reason why

HIV is a strong infection is that it has the ability to mutate itself rapidly. This makes it

especially di�cult to �nd appropriate treatment and vaccines to �ght it.

There are two main types of HIV: HIV-1 and HIV-2. The �rst is responsible for the

vast majority of infection and cases of AIDS in the world. The second is the more common

type in West Africa and has a slower course than HIV-1. There are many variations of

HIV that are not focused on this work.

As described in Haefner (2005), AIDS, itself, is clinically de�ned to be the condition of

a patient having fewer than 200 CD4 white blood cells per milliliter of blood and testing

positive for HIV antibodies. AIDS is advanced HIV-infection, that means, it is the late

stage of infection when the immune system has been weakened. The individual at this

level becomes more susceptible to a variety of infections which are called opportunistic

infections and other conditions, e.g., cancer. Some examples of opportunistic infections

include chronic cryptosporida diarrhea, cytomegalovirus eye infection, mycobacterium

avium complex, pneumocystis pneumonia, and toxoplasmosis. Other AIDS-associated

conditions include invasive cervical cancer, Kaposi's sarcoma, and lymphoma.

One important point to be aware of is nobody dies from AIDS or HIV (a common

misapprehension); rather, a person with AIDS dies from an infection or condition that

his weakened immune system can no longer �ght o�.

Figure 2.1 represents the virus action in the CD4 lymphocyte. The phases are enu-

merated and represent each phase of infection. The HIV enters the host through the

�uids that get past the non-speci�c mechanical barriers (skin, mucous). These pathways

are well known: sexual transmission and blood transfusions or contamination (by shared

intervenous needles for example). Once inside, HIV enters the blood stream and from

there attacks the lymphocytes. HIV is a retrovirus, which means it contains only RNA,

no DNA, while in normal eukaryotic cells, segments of DNA transcribe themselves into
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single stranded forms called RNA messenger, which leaves the nucleus and interacts with

ribosomes to form proteins.

Figure 2.1: Biology of HIV - Synthesis. Source: Haefner, 2005.

During mitosis, double-stranded DNA makes two copies of itself by the process of

transcription. So, in this mode, DNA (not RNA) is required for cellular reproduction.

HIV, having only RNA, requires the host cell to provide the DNA machinery for its

replication. HIV accomplishes this by binding to the cell, injecting its RNA into the

cytoplasm, and subsequently using a viral enzyme called reverse transcriptase to form

double-stranded DNA. This viral DNA is ultimately incorporated into the DNA host cell

and is replicated along with host DNA during normal mitosis.

This process does not, itself, produce new HIV cells, only more copies of the DNA

required for new virus cells. Over time (many months to years), poorly understood events

in the infected host cells cause the viral DNA to produce viruses that bud out through

the membranes of the infected host cells and enter the blood stream where it can infect

new cells. This can happen repeatedly for each infected cell.

This continues over 1-10 years, resulting in the gradual diminution of the CD4+T cell

population from a healthy level of about 1000-1200 cells per milliliter of blood to the
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stage of clinical AIDS, that means 200 CD4+T cells per ml of blood. Once the immune

system has been degraded to this level, the host organism is susceptible to attacks from

other antigens and the patient usually dies from these extraneous attacks or opportunist

diseases already listed. (Haefner, 2005)

It has been observed that the timing of this process varies greatly from patient to

patient. Over the course of 10 years or so, most infected individuals advance to AIDS,

but some patients are diagnosed within two years of infection, and others avoid AIDS

for 15 years or more. Also, it has been reported in Campello de Souza (1999) that some

people have been exposed to HIV-1 but did not develop AIDS.

In the last 10 years, many models appeared to represent the replication of the HIV.

These models explored only the relation between the lymphocytes cells, in particular

CD4+T and the virus. In this dissertation, the relation with three variables: CD4, CD8

and the free virus will be explored. The model chosen for this work, is the one presented by

Campello de Souza (1999), with the parameters described by medical publication through

the application of the optimal control to analyze the behavior of these variables.

2.3 Dynamic Model of HIV-1

A number of mathematical models have been proposed in the �eld of immunology,

which can be found in Wick (1999), Behrens et al. (1999), Tan & Wiang (1999), Nowark

et al. (1997), Huang et al. (2003), Craig & Xia (2005), Wodarz & Hamer (2007) among

other works. There are in the literature some models proposed for a better comprehen-

sion of the evolution of AIDS in humans, attention is drawn to the models proposed by

Phillips (1996), Tan & Wu (1998) and Grégio (2005). There are works about the control

application to the models on HIV replication. These models are described by Perelson

& Nelson (1999), Caetano & Yoneyama (2002), Snedecor (2003), Perelson et al. (2004),

Wang & Li (2006) and Hardt (2007).

The model developed by Campello de Souza (1999) was applied in this work. This

model uses three di�erential equations that represent the interaction between the CD4 and

CD8 lymphocytes and the free HIV-1. The dynamic is described by the set of di�erential
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equations 2.3.1:
dx1

dt
= −ax1 − bx1x3 + ax1N

dx2

dt
= −cx2 + dx2x3 + cx2N

dx3

dt
= ex1x3 − fx2x3 − u

= (ex1 − fx2)x3 − u

(2.3.1)

Where the variables x1, x1N , x2, x2N , x3 and u represent respectively:

x1 = CD4

x1N = CD4N

x2 = CD8

x2N = CD8N

x3 = V

u = U

(2.3.2)

The interactions in this set of di�erential equation mean:

� The growth rate of CD4 diminishes when the HIV-1 population grows;

� The growth rate of HIV-1 increases with the increase in the population of HIV-1

and CD4;

� The growth rate of HIV-1 decreases with the increase in the CD8 population and

with application of drugs.

In addition, the parameters mean:

� CD4N and CD8N are the equilibrium values of the CD4 and CD8 populations,

respectively. They are produced by the normal homeostasis;

� U corresponds to the dosage of the drug or other therapies used in the treatment

of AIDS (this is the control variable) and it is considered to be any and all that

diminish the rate of HIV-1;
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� CD4, CD8, and V are state variables. The HIV-1 population (i.e., the viral load)

will be denoted by V (this will correspond to 107 times the viral load measured in

copies/ml);

� And a, b, c, d, e, and f are the parameters of the system. The value of �a� is corre-

lated with the normal rate of production and death of CD4 while �c� is correlated

with CD8. �b� represents the rate which a virus �nds a CD4 and �d� between a CD8

and the virus. �e� is linked to rate of increasing of the virus load while the �f� with

the decreasing of virus. The third equation does not have own dynamics.

2.4 Medication and the Control Variable

The control in this model is inserted in the variable u. There are basically four strate-

gies to control the virus action with medicines. The �rst control is to utilize the fusion

inhibitors which do not allow HIV to bind to CD4 cell surface molecules. One commer-

cial example is Enfuvirtide. The second kind of control is to use reverse transcriptase

inhibitors that do not permit the HIV to undergo reverse transcriptase, which means, to

transform copies of genomic RNA into DNA. Examples are: Delavirdine, Nevirapine and

Efavirenz.

The third type of control is to utilize integrase inhibitors to block the action of inte-

grase, a viral enzyme that inserts the viral genome into the DNA of the host cell. This

group includes, for example: Zidovudine, Stayudine and Abacavir. These are the protease

inhibitors which blocks viral maturation. In other words, these inhibitors do not allow

the amino acid chains to be severed by a speci�c viral protease before new viral particles

become active. Examples are: Indinavir, Ritonavir and Amprenavir.

The di�erent kinds of medicines are often used together (in combination) to reduce

the amount of HIV in the body. One of the most common treatment schemes is HAART

(Highly Active Antiretroviral Therapy) which uses an association of reverse transcriptase

inhibitors and protease inhibitors.

One of the main concerns about using chemical treatment, is that, after several months,

some patients develop side e�ects such as abdominal girth, abdominal fullness, disten-
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tion or bloating (Mittler et al. , 1998). Other patients reported adverse e�ects such as

headache, malaise, nausea, vomiting, nasal problems and musculoskeletal pain.

The e�ectiveness of a particular treatment scheme must be measured in an objective

manner. This can be done by constructing a cost function that accounts for the number

of CD4 and CD8 cells, and the rate of HIV-1 and the administered doses of drugs. The

rates of CD4 and HIV-1 indicate the e�ectiveness of the treatment. On the other hand,

the dosages of the administered drugs re�ect the intensity of the side e�ects. Currently,

specialists use the rates of CD4 and HIV-1 to evaluate the patients' health state.

The objective in this dissertation is to use a computer simulation for the application

of the optimal control to minimize the side e�ects. Analysis can be conducted using LQR

(Linear Quadratic Regulator) theory and applying the optimal control by Pontryagin's

Maximum Principle. The target is to �nd a u∗ that is correlated with the patient's state

to minimize these side e�ects, to reduce expenditure on medicines during treatment and

to reduce the amount of virus in the body and to keep the lymphocytes at a normal level.

It is important to emphasize that the focus here is not to discover what is the drug with

the best results.
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3 The Optimal Control Problem

�We have to curb an epidemic that a�ects us all, as its impact is not

restricted to the biological dimension: it goes further, placing us face to face

with social and behavioral issues, such as prejudice, stigma and abandonment�

José Gomes Temporão � Minister of Health

3.1 Introduction

This chapter presents the fundamentals of optimal control theory and the formulation

of the HIV problem. The �rst section gives a short introduction to Optimal Control The-

ory and notions on the virus clearance procedure. Subsequently the HIV problem applying

Optimal Control Theory, in special Pontryagin's Maximum Principle is introduced.

3.2 Optimal Control Theory

Optimal control has found applications in many di�erent �elds, including biomedical

engineering, production engineering, environmental issues, epidemiology, robotics, eco-

nomics, and management science, and it continues to be an active research area within

control theory.

Optimal control theory, an extension of the calculus of variations, is a mathematical

optimization method for deriving control policies. The method is largely due to the work

of Lev Pontryagin and his collaborators in the Soviet Union and Richard Bellman in the

United States.

The formulation, via optimal control, of the problem of dynamic optimization focuses

on one or more variables that serve as instruments of optimization. Unlike, however, the

calculus of variations, where the objective is to �nd the optimal temporary direction to

a variable state Y , the main goal of the theory of optimal control is to determine the

optimal direction for the variable of control u. Certainly, as soon as the direction of

optimal control, u∗(t), is found, it can also �nd the corresponding direction of optimal

state, x∗(t). In fact, the directions u∗(t) and x∗(t) are usually found in the same process.
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But the presence of a control variable as the central stage changes the basic orientation

of the problem of dynamic optimization (Chiang, 1992).

An optimal control is a set of di�erential equations describing the paths of the control

variables that minimize the cost functional. The optimal control can be derived using

Pontryagin's Maximum Principle (a necessary condition), or by solving the Hamilton-

Jacobi-Bellman equation (a su�cient condition).

In general in Santiago (2008), the technique implies choosing a trajectory of certain

variables of control from an admissible set, in order to obtain, via a set of di�erential equa-

tions (movement equations) a trajectory of the variables of state that describe the system,

thus maximizing a determined functional objective. The mathematical formulation of the

problem is:

max
{u(t)}

J = J{u(t)} =

∫ t1

t0

I(x(t), u(t), t)dt+ F (x1, t1) (3.2.1)

subject to :

ẋ(t) = f(x(t), u(t), t) (3.2.2)

t0 and x(t0) = x0 given (3.2.3)

(x(t), t) ∈ T where t = t1 (3.2.4)

{u(t)} ∈ U (3.2.5)

The most important terms are:

� State variable x(t): a continuous function of time that characterizes the state of the

system at any instant t within the speci�ed interval [t0, t1];

� Trajectory of state: {x} = [x : −∞,+∞] → Rn . geometrically can be interpreted

as a direction of points at En, starting from the initial state x(t0) = x0 and ending
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at terminal state x(t1) = x1 ;

� Control variables u(t): They are values that characterize the choices (decisions)

made at any time t during speci�ed interval;

� Control Set U : this is the set of all admissible control trajectories. Any optimal

trajectory of control must belong to this set;

� Trajectory of control : {u(t)} = {u(t) ∈ En | t0 ≤ t ≤ t1} . Geometrically

represents a direction of points at Er;

� Movement equations ẋ(t) : a set of n di�erential equations that, by supplying

the rate of change at the time of each state variable as a function of the other state

variables, control and time variables, characterizes the trajectory of the state {x(t)};

� Terminal time , t1: (x(t), t) ∈ T in t = t1 where T is a given sub-set of En+1,

deemed the terminal surface;

� Functional Objective, Equation 3.2.1: this is the map that shows the control tra-

jectories to points in the real line. The value that must be maximized, where I is

the so-called intermediate function that must characterize the dependence of the

functional at the time interval in relation to the state and control variables and the

time itself. The second function F , called the �nal function, relates the functional

to the state and the terminal time.

3.2.1 Pontryagin's Maximum Principle

Generally speaking, there are two di�erent approaches to considering dynamic op-

timization problems. The �rst approach can be seen as a generalization of the usual

maximization problem from calculus and it is inseparably connected with the work of

Pontryagin et al. (1962). In the second approach the dynamic structure is used. In this

case the theory of dynamic programming (introduced by Bellman) provides the theory

that underpins attempts to solve the optimization problem.

This approach can be seen as a generalization of the necessary conditions provided

by the calculus for maximizing functions or the calculus of variations for maximizing
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functionals. Pontryagin's Maximum Principle provides the necessary conditions that an

optimal solution has to satisfy, i.e., given that an optimal solution exists, it has to satisfy

the conditions of the Maximum Principle.

The target is to maximize (or minimize, depending on the point of view):

J(u) = ct(x(tf )) +

∫ tf

t

cc(x(τ), u(τ), τ)dτ (3.2.6)

Subject to constraints and the terminal constraints:

ẋ(t) = f(x(t), u(t), t) (3.2.7)

x(t0) = x0 (3.2.8)

x(tf ) = xf (3.2.9)

The Hamiltonian is given by

H(x, u, y, t) = Cc(x, u, t) + yTf(x, u, t) (3.2.10)

If u∗ is the optimal control by Pontryagin's Maximum Principle, then

H(x∗, u, y∗, t) ≤ H(x∗, u∗, y∗, t) ∀t, u ∈ U

where x∗(t) and y∗(t) satisfy the case with terminal constraints and y(t) is de�ned as the

adjoint variable.

dx(t)∗

dt
= Hy(x

∗, u∗, y∗, t) (3.2.11)

x∗(t0) = x0 (3.2.12)

dy(t)∗

dt
= −Hx(x

∗, u∗, y∗, t) (3.2.13)

y(tf ) = Ccx(x
∗(tf )) (3.2.14)
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3.3 The Equilibrium Points

When equation 2.3.1 is resolved, one of the equilibrium points of this dynamical system

can be found, that will be:

x1e = x1N (3.3.1)

x2e = x2N (3.3.2)

x3e = 0 (3.3.3)

If, ex1e > fx2e, then, ∀x3(0) > 0, the system will move away from the origin and will go

to the other equilibrium point: (Campello de Souza, 1999)

x1e =
ax1N

a+ bx3e

(3.3.4)

x2e =
cx2N

c− dx3e

(3.3.5)

or

x1e =
fbcx2N + eadx1N

e(ad+ bc)
(3.3.6)

x2e =
fbcx2N + eadx1N

f(ad+ bc)
(3.3.7)

x3e =
(ex1N − fx2N)ac

fbcx2N + eadx1N

(3.3.8)

In the equilibrium,
x1e

x2e

=
f

e
.

If all parameters are maintained constant all parameters and letting a→∞, one gets:

x1e → x1N (3.3.9)

x2e → x1N

(
e

f

)
(3.3.10)

x3e →
(

1− fx2N

ex1N

)( c
d

)
(3.3.11)
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Also,

c� d⇒ x3e > 0 very small; it does not vanish completely.

In order to eliminate HIV , that is, to make x3 = 0, one should have the condition:

ex1N − fx2N < 0

3.4 Virus Clearance Procedure

As was described by Ramratnam & Bonhoe�er (1999), in chronic HIV-1 infection a

dynamic equilibrium exists between viral production and clearance. In this case, the

important point is to focus on the control variable u, namely to monitor closely the e�ect

of medicines during treatment.

U = gV (3.4.1)

u = gx3 (3.4.2)

When g is a factor of proportion. Following Campello de Souza (1999), if HIV were an

avid binder, that is, if it tries to make b increase, represented by b↗, as much as possible,

one would have

x1e ≈ x2N

(
f

e

)
.

That is,

b↗⇒ x1e ≈ x2N

(
f

e

)
.

Thus, if f < e (typically f � e), the patient dies, and this would be a Pyrrhic's victory

for the virus.

If the virus were intelligent, it would try to keep b as small as possible, in order to be

able to keep the smallest possible equilibrium population.

The virus wants a large e (unless it is willing to commit suicide). One would then

have the increase represented by:

e↗⇒ x3e →
c

d
.
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Therefore the viral load is bounded by the parameters of the x2 internal dynamics.

One has

x1e + x2e =

f

e
+ 1

ad

bc
+ 1

x2N +

1 +
e

f

1 +
bc

ad

x1N

=
f + e

ad+ bc
· bc
e
x2N +

f + e

ad+ bc
· ad
f
x1N .

Then, if

ead = fbc,

one will have

x1e + x2e = x1N + x2N .

This is the condition for the system to maintain the total number of lymphocytes.

The target is to introduce a feedback control to decrease the growth rate of the virus

population by the use of drugs. When U = gV , Equation 2.3.1 becomes:

dx3

dt
= ex1x3 − fx2x3 − U

= (ex1 − fx2)x3 − gx3

= (ex1 − fx2 − g)x3

and the new equilibrium for the virus population, x3e, is given by:

x3e =
−x+

√
x2 + y

2gdb
(3.4.3)

where x = (g − ex1N)ad − (fx2N + g)bc, and y = 4abcd(fx2N + g − ex1N)g. (The

equilibrium population of V cannot be negative. Thus, only the plus sign of the square

root should be considered). In this case, x3e will be zero when fx2N + g− ex1N = 0; that
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is, when g = ex1N − fx2N . Note that if an individual has parameters e and f such that

ex1N − fx2N ≤ 0, then that person will be naturally immune to HIV-1 attack. That is,

this immunity will occur when:

e

f
≤ x2N

x1N

If a drug could be developed to increase f in such a way that this condition could be

achieved, then clearance of the HIV-1 population in the body would also occur. An

increase in the value of d would result in a decrease in x3e, but not in the extinction of

the HIV-1 population.

3.5 A Formulation of an Optimal Therapy via Pon-

tryagin's Maximum Principle

It was chosen to utilize Pontryagin's Maximum Principle in this dissertation with the

dynamic model presented in section 2.3. the case will be adopted where tf is speci�ed to

get the optimal control, that means to �nd the u∗.

The problem will be how to minimize the cost function:

Max
u

∫
−(x2

3 + αu2)dt subject to the system dynamic equations. (3.5.1)

One could also consider the objective functional:

∫ t1

t0

−
[
x2

3 + (x1 − x1N)2 + αu2
]
dt.

The Hamiltonian will be given by:

H = −(x2
3 + αu2) + y1(−ax1 − bx1x3 − ax1N) + y2(−cx2 + dx2x3 + cx2N)+

+ y3[(ex1 − fx2)x3 − u],
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where the yi's are the co-state variables.

For an interior solution:

∂H

∂u
= −2αu− y3 = 0 ∴ u = − y3

2α
.

The co-state variables dynamics will be described by:

dy1

dt
= −∂H

∂x1

= ay1 − y1bx3 − ex3y3 (3.5.2)

dy2

dt
= −∂H

∂x2

= cy2 − dx3y2 − fx3y3 (3.5.3)

dy3

dt
= −∂H

∂x3

= 2x3 + bx1y1 − dx2y2 − (ex1 − fx2)y3. (3.5.4)

By rearranging:

dy1

dt
= (a+ bx3)y1 − ex3y3 (3.5.5)

dy2

dt
= (c− dx3)y2 − fx3y3 (3.5.6)

dy3

dt
= 2x3 + bx1y1 − dx2y2 − (ex1 − fx2)y3. (3.5.7)

One will have the following system of six di�erential equations:

dx1

dt
= −(a+ bx3)x1 + ax1N (3.5.8)

dx2

dt
= (−c+ dx3)x2 + cx2N (3.5.9)

dx3

dt
= (ex1 − fx2)x3 −

y3

α
(3.5.10)

dy1

dt
= (a+ bx3)y1 − ex3y3 (3.5.11)

dy2

dt
= (c− dx3)y2 − fx3y3 (3.5.12)

dy3

dt
= 2x3 + bx1y1 − dx2y2 − (ex1 − fx2)y3. (3.5.13)

There is no easy analytical solution for this set of di�erential equations. Another way to

deal with the optimal control problem would be to linearize the system �rst.
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Optimal control problems can be solved by indirect or direct methods. In the solution

using an indirect method, one is required to solve a boundary value problem with 2n

equations corresponding to n state and n adjoint variables if Pontryagin's Maximum

Principle is invoked or to solve a partial di�erential equation if Dynamic Programming is

used Kirk (1970) and Lewis (1986). One direct method is to analyze the behavior of the

Linear Quadratic Regulator (LQR).
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4 The Linear Quadratic Regulator

�All models are wrong, but some are useful.�

George Box

4.1 Introduction

This chapter shows the linearization of the model and the solution of Riccati's equation

to be applied to the LQR. First, LQR control in general is studied and then applied to

the model discussed.

4.2 The Linearization of the Model

Data was adapted from the clinical literature which will be used as parameters for the

linearized model (Perelson et al. 1993) and (Campello de Souza, 1999). The values are

shown in Table 4.1.

Table 4.1: Parameters of the system for HIV-Lymphocytes.

Parameters Value Biological Interpretation
x1N 1000 The equilibrium value produced by natural

homeostasis of CD4
x2N 550 The equilibrium value produced by natural

homeostasis of CD8
x1(0) 1000 Initial value of CD4
x2(0) 550 Initial value of CD8
x3(0) 0.0001 Initial value of viral load
a 0.25 Natural regulation rate of CD4
b 50 Infection of CD4 by HIV rate
c 0.25 Natural regulation rate of CD8
d 10 Elimination of HIV by CD8 rate
e 0.01 Rate of replication of HIV by CD4
f 0.0045 Rate of elimination of HIV by CD8

The graph in Figure 4.1 shows the values determined by a simulation that described

the dynamics among the CD4 and CD8 lymphocytes and the HIV-1. It was plotted for

a t(0) = 0 to t(1) = 10 years and the time scale was adjusted by multiplying the rate

of virus by 1000. The graph indicates the oscillations of the CD4 and CD8 populations

and HIV nature. The HIV-1 has a pulse-like shape that indicates the virus was growing
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fast. This occurs in the �rst year when HIV disseminates itself throughout the body.

Consequently, there is a decrease of CD4 and an increase of CD8 to attack the virus. The

�rst pulse corresponds to a very high level of viral load 772.7 copies/ml and 288.6 and

710.4 cells/mm3 for the CD4 and CD8 respectively. There is a strong correlation between

CD4, CD8 and the viral load, which can sometimes be positive and sometimes negative.

More details in (Campello de Souza, 1999).

Figure 4.1: Simulation of non-linearized equations.

Figure 4.2 shows the model linearized around the second point. This �gure shows the

exponential decrease in the time with CD4.

Figure 4.2: Simulation of linearized equations.
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The critical points with the data from Table 1. are found to be:

�rst point x∗ = (1000; 550; 0)

second point x∗ = (991.66; 828.703; 0.008407)

The �rst point is the state of a patient free of HIV and the second one that of the

patient who has just been infected by the virus, which means, there is no presence of

AIDS because the value of CD4 is approximately around the normal state.

The idea of using a LQR scheme or applying the optimal control by Pontryagin's

Maximum Principle is to keep the patient's state near the second critical point by using

a feedback control, given that it is practically impossible to eliminate all the virus load

from the body.

If using linearity is used, the possibilities can be easily sorted out. The system will be

linearized around the second equilibrium point.

dx1

dt
= (−a− bx3)

∣∣
x3=x3e

x1 (4.2.1)

dx2

dt
= (−c+ dx3)

∣∣
x3=x3e

x2 (4.2.2)

dx3

dt
= (ex3)

∣∣
x3=x3e

x1 + (−fx3)
∣∣
x3=x3e

x2 + (ex1 − fx2)
∣∣
x1=x1e;x2=x2e

x3 (4.2.3)

By substituting the values, one obtains:

dx1

dt
=

[
−a− b (ex1N − fx2N)ac

fbcx2N + eadx1N

]
x1 (4.2.4)

dx2

dt
=

[
−c+ d

(ex1N − fx2N)ac

fbcx2N + eadx1N

]
x2 (4.2.5)

dx3

dt
=

[
e
(ex1N − fx2N)ac

fbcx2N + eadx1N

]
x1 +

[
−f (ex1N − fx2N)ac

fbcx2N + eadx1N

]
x2 + 0x3 (4.2.6)

Let the simpli�cation be:

λ =
(ex1N − fx2N)ac

fbcx2N + eadx1N

,
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Then one will have:

dx1

dt
= (−a− bλ)x1

dx2

dt
= (−c+ dλ)x2

dx3

dt
= eλx1 − fλx2 − u

The result will be the linearized system given by Matrix of Dynamic System 4.2:


ẋ1

ẋ2

ẋ3

 =


−a− bλ 0 0

0 −c+ dλ 0

eλ −fλ 0



x1

x2

x3

+


0

0

−1

u

x1(0) > 0, x2(0) > 0, x3(0) > 0

By using the parameters in Table 1, one derives:


ẋ1

ẋ2

ẋ3

 =


−0.6703910 0 0

0 −0.16593 0

0.00008407 −0.0000378315 0



x1

x2

x3

+


0

0

−1

u

x1(0) > 0, x2(0) > 0, x3(0) > 0

Assuming that only CD4 cells and the free virus are monitored, (in this case consideration

was only given to simpli�ng CD4 because AIDS is strongly correlated with this variable

in the literature), this becomes:


y1

y2

y3

 =


1 0 0

0 0 0

0 0 1



x1

x2

x3


4.3 The Linear Quadratic Regulator

A most e�ective and widely used technique of linear control systems design is the

optimal LQR because of its simplicity and its robust properties.
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A brief description of LQR state feedback design is given below. More details are

described by Lewis (2009).

Consider the linear time invariant system:

ẋ = Ax+Bu (4.3.1)

y = Cx+Du (4.3.2)

with state vector, x(t) ∈ Rn, input vector, u(t) ∈ Rm and output vector y(t) ∈ Rl. If

all the states are measurable, the state feedback

u = −Kx (4.3.3)

with state feedback gain matrix, K ∈ Rmxn, can be applied to obtain the desirable closed

loop (cl) dynamics

ẋ =(A−BK)x (4.3.4)

=Aclx (4.3.5)

For LQR control, the following cost function is de�ned:

J =
1

2

∫ ∞
0

[x(t)TQx(t) + u(t)TRu(t)]dt (4.3.6)

Substitution of Equation 4.3.3 into Equation 4.3.6 yields:

For LQR control the following cost function is de�ned:

J =
1

2

∫ ∞
0

x(t)T (Q+KTRK)x(t)dt (4.3.7)

The objective of the LQR control, is to �nd a state feedback gain matrix K, such that the

cost function 4.3.7 is minimized. In Equation 4.3.7 the matrices Q ∈ Rn×n and R ∈ Rm×m

are weighting matrices, which determine the closed-loop response of the system. The

matrix Q is a weighting matrix for the states and matrix R is a weighting matrix for the

input signals. A consideration between response time of the system and control e�ort can
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be made by choosing Q and R. Q should be selected to be positive semi-de�nite and R

to be positive de�nite.

To minimize the cost function, Equation 4.3.7 should be �nite. Since Equation 4.3.7

is an in�nite integral, convergence implies x(t) → 0 and u(t) → 0 as t → ∞. This in

turn guarantees stability of the closed-loop system Equation 4.3.4. To �nd the optimal

feedback, K, it is assumed that

d

dt
(xTPx) = −x(Q+KTRK)x (4.3.8)

Substituting 4.3.8 into 4.3.7 results in

J =
1

2

∫ ∞
0

d

dt
(xTPx)dt (4.3.9)

=
1

2
xT (0)Px(0) (4.3.10)

Substituting the di�erentiated form of 4.3.8 into 4.3.4 yields:

xT (AT
clP + PAcl +Q+KTRK) = 0 (4.3.11)

Substitution of 4.3.4 into 4.3.11 yields

AT
clP + PAcl +Q+KTRK −KTBTP − PBK = 0 (4.3.12)

Assuming that the following identity is selected

K = R−1BTP (4.3.13)

the following result can be obtained.

ATP + PA+Q− PBR−1BTP = 0 (4.3.14)

This result is the Algebraic Riccati Equation (ARE). It is a matrix quadratic equation,

which can be solved for P given A,B,Q and R, provided that (R,B) is controllable and
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(Q,A) is observable. In this case 4.3.14 has two solutions. There is one positive de�nite

and one negative de�nite solution. The positive de�nite solution has to be selected.

The same result can be obtained by analyzing Pontryagin's Maximum Principle:

The Hamiltonian from Equation 4.3.6 will be:

H =
1

2

(
xTDx+ uTRu

)
+ yT (Ax+Bu)

From the Pontryagin Maximum Principle, for an interior solution:

∂H

∂u
= Ru+BTy = 0 ∴ u∗ = −R−1BTy (a linear function of the co-state variables).

The solution of LQR problems is well known and can be found, for instance, in Lewis

(1986) and Kirk (1970).

The canonical equations will be:

ẋ =
∂H

∂y
= Ax+Bu = Ax−BR−1BTy, x(t0) = x0

ẏ = −∂H
∂x

= −Qx− AyT , y(t1) = F Tx1.

(4.3.15)

Assuming a linear solution of the form

y = P (t)x

where P (t) is an n× n matrix, one obtains the Riccati equation:

ẏ = Ṗ x+ Pẋ = −Qx− ATPx

∴ Ṗ x+ P
[
Ax−BR−1BTPx

]
= −Qx− ATPx

∴
[
Ṗ + PA+ ATP − PBR−1BTP +Q

]
x = 0

PA+ ATP − PBR−1BTP +Q = 0 (Riccati's equation), (4.3.16)

When the quadratic criteria is used, the selection of matrixes such as Q and R becomes

a hard process to �nd. Usually, this selection consists of verifying after some simulations
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of the project, which values in theses matrixes best satisfy certain criteria (like maximum

control, stabilization time, etc). There is not a systematic method for selecting them.

It is usual to adopt the diagonal shape to Q and R, because of this possibility that the

components of state and control are individually analyzed. For this problem were adopted

R as an identity matrix because there is no weighting for the drugs because they can be

anything that reduces HIV-1, see the section on medicines in Chapter 2, and Q as a

diagonal matrix with strong weighting to reduce the virus, which explains a value 10−3

for Q in x3.

In this case, substituting the results from Table 1, the following problem is obtained:
−0.6703910 0 0.00008407

0 −0.16593 −0.0000378315

0 0 0



P1 P2 P3

P4 P5 P6

P7 P8 P9



+


P1 P2 P3

P4 P5 P6

P7 P8 P9



−0.6703910 0 0

0 −0.16593 0

0.00008407 −0.0000378315 0



−


P1 P2 P3

P4 P5 P6

P7 P8 P9




0

0

1

[0 0 1
]

P1 P2 P3

P4 P5 P6

P7 P8 P9

+


1 0 0

0 1 0

0 0 0.001

 =


0 0 0

0 0 0

0 0 0


By resolving the Riccati equation and using Matlab, one �nds that P is a real and sym-

metric matrix:

P =


0.74583301755078 −0.00000000008864 0.00000039470179

−0.00000000008864 3.01331886956256 −0.00000070750545

0.00000039470179 −0.00000070750545 0.00316227766017


The closed loop optimal control law will then be:

u∗ = R−1BTPx, (4.3.17)

where u∗ can be obtained through the matrix R, B and P . The scheme of the system

is represented by Figure 4.3:
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u∗ =
[
0.00000039470179 −0.00000070750545 0.00316227766017

]
x1

x2

x3



Figure 4.3: Representation of a LQR System.

Computer simulations were carried out using the model described by the System Ma-

trix 4.2 and the parameters of Table 1. Numerical results were obtained for treatment

schemes of constant and optimal doses by computer simulation. These simulations can be

conducted using the lqr function on Matlab. This will give the optimal controller. The

lqr function allows two parameters, R and Q, to be chosen which balance the relative

importance of the input and state in the cost function that it is trying to optimize.

Figure 4.4: LQR applied to reestablish the CD4 state, the same can be obtained for the CD8.
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Figure 4.4 shows how to use the LQR to reestablish the parameters of CD4, namely,

feedback control is applied as shown in the controller representation. The simulations can

be used to represent the patients' state and to help to analyze the activity of the virus

load correlated with other variables, such as the lymphocytes.
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5 Results: Simulations with the Model

�System identi�cation covers a very broad area, because modeling dynam-

ical phenomena from observed data is applied in numerous �elds that are

as diverse as astronomy, microbiology, psychology, management, and so on.

However, one common characteristic is that the development of more advanced

methods goes hand in hand with the tremendous growth in computing power.

This allows the modeling of very large data sets (for instance in biology and

in �nance and marketing) and the development of more advanced (nonlinear)

models.�

Christiaan Heij

5.1 Introduction

This chapter shows the optimization problem when the functional is minimized, and

consequently when the optimal drug dosage is used to �ght HIV. The method and the

software to simulate di�erent scenarios, patients and treatments are presented.

5.2 The Optimization Problem

The goal of this dissertation is to �nd the minimum value of J(x1, x2, x3, u), to mi-

nimize the input functions u(t), i.e., using less drugs, thus minimizing the virus load to

near x3 = 0 and consequently, improving the patients' state of health.

Max
u
− 1

2

∫ t1

t0

[
(x2

1 + x2
2 + x2

3) + u2
]
dt

Using the Matrix of the Dynamic System 5.2.1:
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ẋ =


−a− bλ 0 0

0 −c+ dλ 0

eλ −fλ 0



x1

x2

x3

+


0

0

−1

u
(5.2.1)

x1(t0) = x1(0), x1(t1) = 600

x2(t0) = x2(0), x2(t1) = 700

x3(t0) = x3(0), x3(t1) = 0.001

5.3 The Method and Software

In the �rst section the optimal control for the AIDS problem was formulated. Chapter

3 showed that it had a contour problem of TPBVP (Two Points Boundary Value Problem),

when there are initial conditions for states and �nal conditions for the co-state variables

which describe the dynamic system.

There are many algorithms to solve TPBVP problems such as Steepest Descent or

Boundary Iterations and Quasi-linearization. These algorithms can be found in books

like (Kirk, 1970) and (Lewis, 1986) for example. For this problem, Program PROPT

- Matlab Optimal Control Software was used in a demo version with a special license

granted generously by Marcus M. Edvall. PROPT is an engine that combines modeling,

compilation and a solver so as to generate highly complex optimal control problems and

was chosen on account of the history of good performance this model has.

PROPT uses a pseudospectral collocation method for solving optimal control pro-

blems. This means that the solution takes the form of a polynomial, and this polynomial

satis�es Di�erential Algebraic Equations (DAE) or Ordinary Di�erential Equations and

the path constraints at the collocation points. The default choice is to use Gauss points

as collocation points, although any set of points can be speci�ed and used.

To run the actual data, the parameter estimation was adapted, in particular the �e�

value in the Matrix of Dynamic System 5.2.1, to simulate di�erent kinds of patients and
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scenarios. Computer simulations are necessary to elucidate the dynamic in biological

systems with the objective of supporting medical decisions.

5.4 Simulation of Di�erent Kinds of Patient

Some HIV medications lead to the development of drug-resistant HIV when patients

take as few as two percent of their medications. For some other medications, resistance

occurs only when patients take large dosages of drugs. These di�erences appear to be

explained by the di�erent levels of viral ��tness� of the drug-resistant HIV (Bangsberg,

2009).

Viral ��tness� refers to the inherent ability of a virus to replicate and cause disease.

When patients do not complete a course of taking pills, this can cause HIV to mutate

and become resistant to the e�ects of the medications, while the medications that were

consumed, in turn, cause the newly resistant virus to become less �t (Bangsberg, 2009).

Another aspect to be considered here is not just the ability of the virus to become

��tter�, but also the human ability to develop the virus. There are individuals who are

more susceptible than others to developing AIDS during the infection period. In this case,

more attention is given to represent how di�erent individuals should deal with the HIV

attack. For the set of simulations in this dissertation, initially the parameter �e� in the

Dynamic System Matrix 5.2.1 was adapted in a series of attempts to discover the best

behavior in this variable so as to describe the susceptibility of HIV in di�erent patients.

The parameters chosen for three di�erent patients were e = 0.005, e = 0.01 and

e = 0.02. These simulations can be visualized in Figure 5.1, Figure 5.2 and Figure 5.3 all

plotted for a period of 10 years.

Genetic studies Phair (1994), Paxton et al. (1996) and Fowke et al. (1996) have

observed that many individuals with multiple exposure to HIV-1 remain seronegative,

while some of those infected by HIV-1 progress at rates signi�cantly slower or faster than

the norm. Researchers have correlated these �ndings with some mutant genes in HIV

co-receptors. Studies have found the presence of mutant alleles such as D32 and m303

of CCR5 suggesting resistance or protection against HIV in some individuals Dean et al.

(1996), Samson et al. (1996) and Quillent et al. (1998). It seems that mutant alleles have
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somehow changed the structure of the helper T cells in such a way that it is very di�cult

for the virus's receptor to connect to it. Hence, the virus stops replicating, and individuals

show a resistance to HIV. Individuals with two mutant alleles seem to have full protection

against HIV infection. Individuals with one mutant allele seem to have partial resistance

and, if infected, progress more slowly than individuals without mutant alleles. For Hsu

Schmitz et al. , these conclusions indicated the �existence of genetic heterogeneity with

respect to susceptibility to HIV infection and to the rate of AIDS progression in general

populations�.

Figure 5.1 shows a simulation for a patient with a low replication rate for HIV.

This patient can maintain the CD4 on a stable and healthy plateau, i.e., a CD4 with

570 cells/mm3 and HIV with 50 copies/ml. The peak reaches a value of 161.7 copies/ml

for the virus load. This patient can live with the virus for a long time without developing

AIDS. This fact happens in 1 percent of Caucasians who have the variant gene that lacks

a section known as CCR5 that does not allow the virus to enter the cell (Valle et al. ,

2004).

Figure 5.1: First Patient - Simulation for a patient with strong will to �ght the HIV. This patient
can normally live for years without developing AIDS. The parameter used was e = 0.005.

Figure 5.2 describes a �normal� patient who maintains CD4 around 400 cells/mm3

and a virus load of around 82.4 copies/ml. The peak for HIV reached 770 copies/ml in

the �rst year because of dissemination of HIV throughout the body. This is the period for
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the organism to recognize the virus and to start to �ght it. This is the subject described in

Campello de Souza (1999) and chosen as the �normal� patient in this work. This patient

can remain in good health, despite having and without developing AIDS for years.

Figure 5.2: Second Patient - Simulation for a patient with the �normal� will to �ght HIV. This
patient normally can live for 5 to 12 years without developing AIDS. The parameter used was

e = 0.01.

Figure 5.3 describes a patient who is more susceptible to having a low average life-

span. In Africa, WHO (World Health Organization) reports that the average life-span, for

example, is between 3 to 7 years after infection. But this condition depends not exclusively

on the susceptibility to developing AIDS but also on the health treatment given by the

government or on sanitary conditions, for example. In this case, the simulation was of a

patient with a high pulse-like shape that indicates the virus was growing fast (reaching a

maximum of 2336 copies/ml) and which diminishes drastically the CD4 value, i.e. around

266 cells/mm3. A person can be considered to have AIDS when the CD4 count is less

than 200 cells/mm3, and consequently to have a greater chance of developing �opportunist

infections�.

To simulate di�erent HIV/AIDS behaviors with this model two kinds of scenarios for

the 3 patients described in the Figure 5.1, Figure 5.2 and Figure 5.3 were created to

compare di�erent treatments, with a constant and an optimal dosage of drugs.

The objective of the �rst and second scenarios is to force the system to reach the
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Figure 5.3: Third Patient - Simulation for a patient with a weak will to �ght HIV. This patient
normally develops AIDS rapidly, i.e., in 3 to 7 years. The parameter used was e = 0.02.

�good health� state, by pushing up the variable to a �nal condition which can give to the

patient a better ability to stabilize the virus at acceptable values. A 2 year period was

simulated. It is important to stress that a relative scale will be used to visualize both the

lymphocytes and the virus load in the same way as in the other simulations.

5.5 1st Scenario

The objective in this study is to stabilize the growing of HIV and to keep CD4 and CD8

at �healthy� levels. The target of the �rst scenario is to analyze the dynamic represented

by the Dynamic System Matrix 5.5.1, where the early treatment was applied. In early

treatment, the patient discovers in advance that he has HIV and he decides to undergo the

optimal treatment approximately 6 months after infection. The �nal condition is adjusted

to allow the patient to maintain CD4, CD8 and HIV at 600 cells/mm3, 700 cells/mm3

and 0.001 copies/ml respectively in a �healthy state�. It important to emphasize that it is

impossible to eliminate all the virus load from the body. The initial and �nal parameters

are summarized in Table 5.1.

Max
u
− 1

2

∫ t1

t0

[
(x2

1 + x2
2 + x2

3) + u2
]
dt
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ẋ =


−a− bλ 0 0

0 −c+ dλ 0

eλ −fλ 0



x1

x2

x3

+


0

0

−1

u
(5.5.1)

x1(t0) = x1(0), x1(t1) = 600

x2(t0) = x2(0), x2(t1) = 700

x3(t0) = x3(0), x3(t1) = 0.001

Table 5.1: Parameters for the 1st Scenario.

Initial Conditions Values Final Conditions Values
CD4 = x1(t0) 1000 cell/mm3 CD4 = x1(t1) 600 cell/mm3

CD8 = x2(t0) 550 cell/mm3 CD8 = x2(t1) 700 cell/mm3

HIV = x3(t0) 0.0001 copies/ml HIV = x3(t1) 0.001 copies/ml

Figure 5.4 shows the behavior when the optimal control is used on the �rst patient.

It is important to notice that there is just one peak of drug dosage (approximately 0.15

units of drug) around the �rst year to keep the viral load at the acceptable value. This

forces the system to maintain the level of CD4 and CD8 at a stable level and the value

of HIV nearly at the ideal one. Figure 5.4 also shows that a minimum quantity of drugs

is necessary to combat the virus, because the patient's organism put CD8 in charge of

eliminating the load virus by itself.

Figure 5.5 presents an important phenomenon in the second patient. Near the third

month, there is the �rst and small peak of drug dosage, approximately 0.5 units of u, when

immediately the viral load starts to grow and reaches a maximum of 552.3 copies/ml. At

this moment, the controller applies a high dose of drug (2.357 units of u) to decrease the

virus load to 0.001 copies/ml.

Figure 5.6 shows the critical patient's behavior to this scenario. It is easy to notice

that for this patient there are more doses applied (7 in total), with a high peak around

the second year (approximately 5 units of drug). The dosage needed to �ght the virus is
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higher due to his organism being more susceptible to developing AIDS.

5.6 2nd Scenario

The dynamic represented by the Matrix of Dynamic System 5.5.1 was analyzed in

the second scenario, where later treatment was applied. In later treatment, the patient

discovers belatedly that he has HIV and he decides, in this case, to undergo optimal

treatment, approximately 3-4 years after infection. The free virus reached a high level

and, on the other hand, the CD4 rate a low rate. The �nal conditions are forced to provide

a �healthy� state for the patient. The parameters are described in Table 5.2.

Table 5.2: Parameters for the 2nd Scenario.

Initial Conditions Values Final Conditions Values
CD4 = x1(t0) 500 cell/mm3 CD4 = x1(t1) 600 cell/mm3

CD8 = x2(t0) 600 cell/mm3 CD8 = x2(t1) 700 cell/mm3

HIV = x3(t0) 0.09 copies/ml HIV = x3(t1) 0.001 copies/ml

Figure 5.7 shows the behavior for the �rst patient. 6 peaks can be seen during the

optimal control of dosage. Doses of around 1 unit of drug were used at the end of the

second year, a moment when the HIV dropped drastically to the normal value.

Figure 5.8 shows the decrease in HIV due to using the optimal drug dosage for two

years for the second patient. 11 peaks were used to control HIV and to keep CD4 and

CD8 at stable parameters. The maximum of drugs used was 0.5 unit of drug.

Figure 5.9 presents the critical patient in the second scenario. Frequently dosages of

drug were administered during the period, (a total of 25 times), to reduce the growth of

HIV. The maximum was slightly more than 0.5 units of u. 4 peak were needed to reduce

drastically the rate of HIV after the �rst year.

5.7 Comparison with Real Treatment

For both scenarios, it is possible to realize control of the disease, by bringing the

patient to a stable state during treatment. However, WHO adopts a treatment with a

constant dosage during this period. Table 5.3 shows the comparison between the optimal
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treatment and a treatment using a constant dosage. Di�erent constant dosages were used

for the patients because they have di�erent ways to �ght the virus.

The criteria used were to establish a value of one third of a maximum peak (in the

optimal treatment) as a constant value. For example, in Figure 5.10 the dosage constant

was 0.047 units of u for two years that correspond to one third of the peak in the �rst sce-

nario (approximately 0.14 units of drug). This graph shows an important fact about using

the optimal or the constant dosage when compared with Figure 5.4. It can be observed

that the rate of HIV in the constant treatment reaches the maximum of 550 copies/ml

while the optimal treatment reaches a maximum of 100 copies/ml. This characteristic is

directly correlated to the progress of the virus in the body.

From Table 5.3 the better values to the optimal treatment can be seen.

Table 5.3: Optimal Dosage vs Constant Dosage in units of drug (u).

1st Scenario 2nd Scenario
Patient Optimal Dosage Constant Dosage Optimal Dosage Constant Dosage

1st Patient 7.9 10−3 94 10−3 76.9 10−3 660 10−3

2nd Patient 52.5 10−3 1334 10−3 112.3 10−3 344 10−3

3rd Patient 173.7 10−3 2668 10−3 194.3 10−3 352 10−3

5.8 Discussion

The use of therapies (that uses whatever u) has dramatically reduced the progress

of disease among patients with HIV, but the optimal moment to begin therapy is still

uncertain.

Before beginning the discussion about the results in this study, it is important to

stress the research done by Kitahata et al. (2009) in the United States and Canada from

1996 to 2005. The survey showed one analysis conducted with 9,155 patients which met

the inclusion criteria with a CD4 count of more than 500 cells per millimeter. Of these

patients, 2,220 (24%) began antiretroviral therapy within 6 months after the �rst CD4

count was within the range of interest, and 6,935 (76%) deferred therapy. The main result

of this survey has shown that among patients in the deferred-therapy group, there was an

increase in the risk of death of 94% (relative risk, 1.94; 95%CI, 1.37 to 2.79; P < 0.001)

when compared with the patients who have undergone early therapy.
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The e�ectiveness of the optimal control treatment scheme is measured in a cost func-

tion that takes into account the number of CD4 cells and the doses of drugs administered.

The CD4 cells indicate the e�ectiveness of the treatment, while the doses of the adminis-

tered drugs re�ect the intensity of the side e�ects. In these results notice the lower dosage

used to control the virus in the sense of minimizing a quadratic type performance index.

The results showed that the patients who most improved the HIV rate (and also with

a higher CD4) using lesser quantities of drugs can be attributed to multiple factors:

� Earlier treatment control;

� Viral replication;

� The patient's immunological state.

The fact of using a lesser drug dosage means having less side e�ects, but in some

cases it is correlated with the high risk of developing drug resistance. Noticed that the

optimal control allows less antiretroviral during therapy, and consequently produces less

toxic e�ects, such as peripheral neuropathy, anemia, and renal insu�ciency.

It is also important to know, that the decision to initiate or defer the therapies could

have been in�uenced by such factors, as described in Kitahata et al. (2009):

� Age;

� CD4 count and HIV RNA level;

� History of injection-drug use;

� Presence or absence of HCV (Hepatitis C Virus) infection.

In the next two chapters, the application of optimal control in the dynamics between

the glucose and insulin will be studied.
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6 Concepts about Diabetes

�The word �diabetes� is a powerful one. It is unlike any other word, unique

in its own ways and known to many languages. This word elicits numerous

emotions running the gamut of angst and hope, de�ning not only a disease but

also a deep and profound history of medical science and a�ecting individuals

in all parts of the world.�

Andrew Galmer

6.1 Introduction

This chapter presents concepts on the biology of diabetes and synthesizes the dynamics

between insulin and glucose. In the last section, type 1 and 2 diabetes will be described.

6.2 Biology of Diabetes

The �rst known historical mention of diabetes is in the Ebers Papyrus (a 110-page

scroll, which is about 20 meters long, and contains some 700 formulas and remedies), which

was written by the ancient Egyptians more than 3,500 years ago. The signs and symptoms

were discussed in depth, which led to theories on �rst treatments and to an understanding

of the prevention. Nations throughout time have been involved in a collaborative e�ort to

understand diabetes through observations and experimentation with hopes of treating the

disease. Examples of ancient diagnosis included tasting the urine of diabetics along with

using ants to analyze specimens. Although crude in their methodology, early scientists

helped to prepare a foundation on which future studies were conducted until the age of

modern medicine.(Galmer, 2008)

Scientists such as Langerhans and Banting (Nobel Prize in 1923) conducted laboratory

research that led to a better understanding of this disease. This era saw the development

of insulin, oral medications, and blood monitoring devices or insulin pumps that changed

the way the diabetes was managed.
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Galmer also described diabetes as a serious medical condition that deals with abnor-

mal control of sugars in the bloodstream that cause a variety of symptoms and serious

associated complications. It is medically described as a collection of metabolic disorders

that result in chronically elevated blood glucose levels. (Galmer, 2008)

Two main pancreatic endocrine hormones, insulin and glucagon, are responsible for

regulating the blood glucose level. They form two feedback loops in controlling the blood

sugar level that function inversely. According to (DCCT, 1993), blood glucose concentra-

tion should be controlled within the range of 60 to 120 mg/dL. If insulin is supplied in

excess, the blood glucose concentration falls below the normal value (< 60mg/dL) and

this state is known as hypoglycemia, whereas if insulin is not supplied su�ciently, the

concentration rises above the normal value (> 120mg/dL) and this state is known as

hyperglycemia. Both these situations can a�ect an individual's health, in very di�erent

ways. Hypoglycemia has short term e�ects which can lead to diabetic coma, neurological

problems and possibly death, while hyperglycemia has a long term impact.

Diabetes is characterized in many di�erent types, but in this study the focus will be

on only Type 1 and Type 2 Diabetes. Both types of diabetes unfortunately result from

morbid complications associated with hyperglycemia, leading to amputations, cardiac

failure, peripheral vascular disease, stroke, diabetic neuropathy, eye problems, and kidney

failure. Although there is no cure for diabetes as is the case with AIDS, it is possible to

control and prevent the disease through medication by monitoring the blood sugars with

portable meters, dieting, and physical exercise. This prevention has improved patients'

state of health, increased life expectancy and reduced health costs.

6.2.1 Dynamics between insulin and glucose

The interplay between insulin and glucagon maintains the Blood Glucose (BG) con-

centration in the body at normal values by distributing the energy needed by the organs

such as the brain, heart and others, to perform their functions. BG in non-diabetic hu-

mans is maintained within a precise concentration range and is the major stimulant that

secretes the hormone insulin. Many factors a�ect the circulating levels of glucose such

as phenotype, food intake, rate of digestion, excretion, exercises and psychological state
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(Hadley, 1992). These in�uences can be harmful, individually or in combination, and con-

stantly a�ect the physiological processes that regulate plasma glucose levels. The glucose

level may drop momentarily due to muscular activity and especially if food intake is lim-

ited. The diminished level of blood glucose is recognized by certain cells in the pancreatic

Islets of Langerhans called the alpha (α) cells.

Figure 6.1: Insulin has an e�ect on a number of cells, including muscles, red blood cells, and
fat cells. In response to insulin, these cells absorb glucose from the blood, having the net e�ect
of decreasing high blood glucose levels to the normal range. On the other hand, the pancreas

produces glucagon to release glucose into the bloodstream. Source: Norman, 2009.

These cells then release glucagon, a hormone that acts on the cells of the liver to

induce the release of glucose when there are decreased amounts of glucose (for example,

when a high quantity of energy is needed to do some physical exercise) in the bloodstream
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(Masharani et al. , 2004). If, on the other hand, BG is high, as occurs after ingestion of a

meal, other pancreatic islet cells, the so called beta (β) cells, release the hormone insulin.

Insulin induces the uptake of glucose from the blood into the liver and other cells (such

as muscle cells). When there is a high quantity of glucose in the blood, the insulin stocks

the excess as �fat energy�. Thus, the glucose level of the blood is lowered to the normal

circulating concentration, as can be seen in Figure 6.1. Lack of insulin, therefore, results

in a serious inability to lower BG, which results in abnormal quantities of glucose in the

bloodstream and consequentially in the disease called diabetes mellitus.

The mechanisms that occur within the pancreas should be normal biological processes

so as to produce a balanced quantity of energy controlled by feedback. The physiology of

diabetes relates to principles of chemical transport and feedback mechanisms that depend

on the presence or absence of certain hormones in the biological system. Exocrine func-

tions of the islet cells of the pancreas can be manipulated through stimulation by glucose,

direct and indirect control mechanisms. These control mechanisms can be improved by

biomedical engineering with e�cient devices which control the dynamic between glucose

and insulin. Alteration in these mechanisms leads to poor control of blood glucose and

causes secondary problems that can be associated with these defects. Pathology, or pres-

ence of disease, occurs when any of these functions are ine�ective at performing proper

physiological demands of the body. It is important to di�erentiate the types of diabetes

so as to understand the behavior and dynamics in di�erent patients.

6.3 Types of Diabetes

6.3.1 Type 1 Diabetes

As described in (Galmer, 2008), type 1 diabetes comprises 10 percent of the diabetic

population and is commonly diagnosed in children who have a genetic predisposition

to developing this autoimmunity. Although the disease can also occur in adulthood, a

greater percentage of children, nearly 1 in 500 children, are diagnosed with type 1 diabetes.

Type 1 diabetes was previously referred to describe juvenile diabetes or insulin-dependant

diabetes. Nowadays, these names are outdated because they are poor generalizations and
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do not describe the nature of the pathology. Therefore, a more accurate de�nition of type

1 diabetes represents the destruction of beta cells within the pancreas.

Destruction of these cells can be attributable to autoimmune response or idiopathic

reasons. Combinations of environmental and genetic factors determine an individual's

susceptibility to developing type 1 diabetes. It is not uncommon for beta cell destruction

to begin months to years before the development of diabetic signs and symptoms. The

complete destruction of beta cells in the pancreas makes these patients dependent on

scheduled insulin injections to control their hyperglycemia and to prevent complications

(Kahn et al. , 2004).

Studies show that there is a signi�cant correlation between an individual who has

a family history of diabetes and who develops type 1 diabetes. There is a 6 percent

increase in risk if a parent or blood relation has type 1 diabetes. Likewise, this risk

increases substantially if both groups show diabetic signs. Risk can also be accounted for

by analyzing the e�ects of ethnicity on developing type 1 diabetes. In the United States,

for example, Caucasians were found to have the highest correlation with type 1 diabetes.

From a world survey, it can be seen that individuals from Finland and Sardinia have the

highest rate of incidence. In contrast, Asians and Paci�c Islanders were found to be the

least e�ected groups. (Kahn et al. , 2004).

6.3.2 Type 2 Diabetes

Type 2 diabetes is the more prevalent type of diabetes, comprising about 90 percent

of individuals diagnosed with diabetes. Type 2 diabetes was previously known as adult-

onset diabetes and non-insulin-dependent diabetes, but these terms are also outdated.

Individuals that are diagnosed with type 2 diabetes are commonly found to be over the

age of forty with underlying obesity. Many of these diabetics are characterized as having

a sedentary lifestyle and a poor diet. Although the majority of type 2 diabetics are over

the age of forty, younger individuals are at risk because of the increased frequency of

obesity among them and their sedentary lifestyle, and because they are part of the �fast

food� generation. (Kahn et al. , 2004)
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Type 2 diabetics are fully capable of producing su�cient amounts of insulin during the

early stages of diagnosis. Although the exact mechanism has not yet been determined, it

has been shown that the main problem of type 2 diabetics lies in the peripheral insulin

receptors that have become resistant to the action of insulin. Insulin is not able to bind

to these receptors and is rendered useless in delivering su�cient amounts of glucose to the

cells, causing glucose levels to rise in the blood. In addition to binding problems, other

mechanisms can cause the same e�ects. These mechanisms include biochemical processes

that occur after insulin has bound to the receptors on the cellular membrane. (Kahn et al.

, 2004)

One major di�erence between type 1 and type 2 diabetes is that type 2 diabetes

patients are most commonly obese, with fat being distributed centrally (in midri�) while

the arms and legs are usually spared (Masharani et al. , 2004).
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7 Glucose Control

�Diabetes costs hundreds of billions of dollars to treat each year. World

treatment costs are growing more quickly than world population. However,

the larger costs of diabetes arise from disability and loss of life caused by its

preventable complications, including heart, kidney, eye and foot disease.�

International Diabetes Federation

7.1 Introduction

This chapter presents �rst the importance of controlling the quantity of glucose in the

bloodstream. It also discusses concepts about closed loop control using insulin pumps.

Groups of mathematical models found in the literature are described with the focus on

Bergman's. Finally, the chapter formulates the optimal therapy via Pontryagin's Maxi-

mum Principle, followed by linearization to facilitate the calculus and simulation.

7.2 The Importance of Control Glucose in the Blood-

stream

BG is a variable to be controlled in a patient and accordingly description in Chee &

Fernando (2007) of some important factors to be kept within the normal range are:

1. A high glucose concentration exerts an osmotic pressure on extracellular �uid, and

can cause cellular dehydration;

2. Too low a BG level carries the risk of hypoglycaemic coma. Glucose is the only source

of energy that can be used by the brain. Prolonged and profound hypoglycaemia

can produce severe brain damage;

3. Too high a glucose concentration (> 11.1 mmol/l) can a�ect the healing of wounds

and interfere with the human neutrophil function (Watts et al. , 1987);
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4. Therapy that maintains BG level at below 11.9 mmol/l has been shown to improve

the long-term health of diabetic patients who have had acute myocardial infarction;

5. Findings from Van der Berghe et al. (2001) have shown that maintaining BG at a

level that did not exceed 110 mg/dl (6.1 mmol/l) substantially reduced mortality

and morbidity in critically-ill patients in the Intensive Care Unit (ICU). In addition,

a pronounced hyperglycaemia in critically-ill patients, even those who have not

previously had diabetes, may lead to complications in such patients.

7.3 Closed Loop Control

To better understand the control function of glucose, one needs to think of the patient

as a �plant� to be controlled in the control system. This closed loop system would include

a glucose sensor that can measure blood glucose concentration. This information would

then be passed to a control system that would calculate the necessary insulin delivery rate

to keep the patient under metabolic control. Then a signal will be sent to a mechanical

pump by the controller, to deliver the desired amount of insulin. In general, using pumps

is preferable to injections since this is more reliable in maintaining the correct level of

sugar in the blood and is also closer to the normal pancreas (Kaveh & Shtessel, 2006). The

process repeats continually by feedback. Figure 7.1 shows a simpli�cation of automatic

regulation.

Figure 7.1: Closed loop control of diabetic patients using insulin pumps. Automatic regulation
of a patient's BG level requires a minimum of three components, namely, a continuous the BG
sensor, a controller that matches BG level with an appropriate insulin delivery rate, and an

infusion pump to deliver the insulin to the subject. Source: Kaveh and Shtessel, 2006.
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The controller is the component of the system that regulates the blood glucose levels in

the patient. The formulation of the control rule depends on the knowledge we have about

the sensor, the pump and the patient - and speci�cally, the BG measurement methods, the

type (or preparation) of insulin used, the route of infusion, and the patient's characteris-

tics. Various BG measurement techniques exist, and each has its unique characteristics.

Dua (2006) describes four major sites for invasive insulin delivery reported by Nalecz

et al. (1987): subcutaneous, intramuscular, intravenous and intraperitoneal. While the

subcutaneous site is the simplest and safest in the long term, the absorption of insulin

from the subcutaneous tissue is delayed. The intramuscular site is usually preferred for

people a�ected by fragile diabetes, who have a subcutaneous barrier to insulin absorption,

but this may result in muscle �brosis and disconnection of the cannula. The intravenous

site on the other hand results in faster delivery of insulin and, therefore, is ideal for

controlling the glucose concentration. The main problem with this mode comes from the

presence of the intravenous lines which may not be appropriate for some patients. The

most physiological mode of insulin delivery is achieved through the intraperitoneal site,

though the major disadvantage is its di�cult access.

Recent advances in technology have brought in noninvasive modes of insulin delivery

such as transdermal, pulmonary and oral, Kennedy (1991) and Parker et al. (2004). These

modes are not painful unlike the invasive modes, but they have problems such as low skin

permeability in the transdermal mode, the patient not inhaling the accurate amount of

insulin in the pulmonary mode and issues concerned with the oral bioavailability for the

oral mode.

A small perturbation over a long period of time can cause irreversible brain or heart

damage if glucose is not delivered appropriately. So the time required to achieve glucose

regulation is of great importance. It is obvious that physical characteristics vary from

person to person and so di�erent patients have di�erent responses to the same treatment,

which in turn can cause parameter variations in the system. What must be taken into

consideration is that a small change in some of the parameters can dramatically a�ect the

closed loop performance and even result in the patient's death. Therefore, it is vital for
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the patients that the controller used in designing the closed loop system be robust enough

to counteract any kind of perturbations and disturbances.

7.3.1 Mathematical Model of Glucose Control

The goal of a closed-loop control system is to mimic the functionality of the pancreas

in providing automatic regulation of blood glucose level in patients. To be precise, the

closed-loop control systems should really answer the question: �How much insulin should

be given such that the patient's blood glucose level is restored, as closely as possible, to

that of a healthy individual?�

As the name implies, the model-based approach involves the use of a model in the

control of the blood glucose level. This model is the human glucose-insulin interaction. If

this complex interaction can be captured and described in terms of mathematics, then the

glucose control problem becomes a mathematical problem, and a mathematical problem

can be solved using various mathematical techniques. (Chee & Fernando, 2007)

The attempts to capture the glucose-insulin mechanism have resulted in the formula-

tion of various glucose-insulin kinetic models. These models range from simple expressions

that relate glucose and insulin, to very complete mathematical models. The three general

groups of mathematical models are:

1. Linear (e.g. Bolie (1961), Gatewood et al. (1968), Ceresa et al. (1968) and

Salzsieder et al. (1985))

2. Non-linear (e.g. Bergman & Urquhart (1971), Bergman et al. 1981, To�olo et

al. (1980), Doyle III et al. (1995), Fischer et al. (1987) and De Caetano & Arino

(2000), Steil et al. (1993), Natal (2004), Kaveh & Shtessel (2006), Dua et al. (2006))

3. Comprehensive (e.g. Steil et al. (2005), Sorensen et al. (1982), Dalla Man et al.

(2006), Hovorka et al. (2004), Hernandez et al. (2001), Guyton & Hall (1996) and

Kovacs et al.(2008)).

The linear model has the disadvantage that it is a gross oversimpli�cation of the

glucose-insulin interaction in real humans (this is far more complex than the linear model).
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Campello de Souza points out that �nothing`� in nature is in fact linear, e.g., biological

system dynamics are often non-linear in nature, and low-order models can conduct errors

when describing a real process.

Non-linear model ranges from less complex ones to comprehensive ones. A compre-

hensive model attempts to expand the knowledge of metabolic regulations into a generally

large, non-linear model of a high order, with a large number of model parameters. This

includes the modeling of the distribution and metabolism of glucose and insulin, hepatic

glucose balance (i.e. glucose production and disposal), renal excretion, glucose utilization,

and insulin release and degradation, to describe the system thoroughly. Comprehensive

models, in general, cannot be easily identi�ed (Chee & Fernando, 2007).

7.3.2 Dynamic Model of Glucose/Insulin

The aim in this study is to undertake a theoretical analysis of the optimal control of

glucose levels in diabetic individuals using the mathematical model of the dynamics of

glucose and insulin interaction in the blood system developed by Bergman & Urquhart

(1971) � Bergman et al. (1981) and still cited in more recent studies.

The schematic representation of this model is shown in Fig. 7.2. This representation

also described in Dua et al. (2006) captures the glucose-insulin response of the patient

by using the minimum number of compartments.

The model applied in this study is also called �Bergman's Minimal Model�. There are

many di�erent versions and a new version will be used of Bergman's model adapted to

the objectives of this dissertation. It consists of a set of Di�erential Equations 7.3.1:

dz1

dt
= −p1z1 − z2(z1 − z1b) +D(t)

dz2

dt
= −p2z2 + p3z3

dz3

dt
= −n(z3 − z3b) +

U(t)

V1

(7.3.1)

The parameters of the system are described in Table 7.1:

The states in this model are xt = [z1 z2 z3]
T and ut = U(t) is the control variable.

Health subjects and diabetic patients have their p's values given by Table 7.2. The
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Figure 7.2: Schematic representation of Bergman's Minimal Model. Source: Dua et al, 2006.

Table 7.1: Parameters of the system.

Parameters Values Units Biological Interpretation
z1 � mg/dL Plasma glucose concentration

above basal value
z2 � min−1 �Activity� of insulin in the

interstitial tissue
z3 � mU/L Plasma insulin concentration

above the basal value
D D(t) = 0.5e−0.05t mg/dLmin−1 Meal glucose disturbance

normally t = 6min is used
U � mU/min Exogenous insulin infusion rate
z1b 81 mg/dL Basal value of glucose concentration
z3b 15 mU/L Basal value of insulin concentration
V1 12 L Volume of insulin distribution
n 5/54 min−1 Fractional disappearance rate of insulin

available clinical data indicate that for patients with diabetes the value of p1 is well below

the normal value and is di�cult to quantify; as a theoretical case p1 = 0 is adopted

(Fisher, 1991).

Table 7.2: Parameters for health and diabetic subjects.

p Health Subjects Diabetic Subjects
p1 0.028 0
p2 0.025 0.025
p3 0.000013 0.000013
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7.3.3 The Equilibrium Points

Once the set of equations in 7.3.1 are resolved the equilibrium points of the minimal

model can be found, considering u(t) = 0 and that there is no meal uptake: The �rst

equilibrium point given:

z1e = 0 (7.3.2)

z2e = 0 (7.3.3)

z3e = 0 (7.3.4)

(7.3.5)

The second equilibrium point:

z1e =
z2ez1b

(p1 + z2e)
(7.3.6)

z2e =
p3z3e

p2

(7.3.7)

z3e = z3b (7.3.8)

(7.3.9)

or

z1e =
p3z3bz1b

(p2p1 + p3z3b)
(7.3.10)

z2e =
p3z3b

p2

(7.3.11)

x3e = z3b (7.3.12)

(7.3.13)
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7.3.4 A Formulation of an Optimal Therapy via Pontryagin's Ma-

ximum Principle

Pontryagin's Maximum Principle was also chosen as an optimization techniques to cal-

culate the optimal insulin infusion for the correction of hyperglycemia based on Bergman's

theoretical model as was done for the HIV-1 problem.

Thus, the problem will be to minimize the objective function, i.e., to diminish to the

maximum the glucose level and the quantity of exogen insulin. The case where tf is

speci�ed to get the optimal control will be also adopted, i.e., to �nd the u.

Max
u

∫
−((z1 − z1b)

2 + u2)dt (7.3.14)

The Hamiltonian will be given by:

H = −((z1 − z1b)
2 + u2) + y1[−p1z1 − z2(z1 − z1b) +D] + y2(−p2z2 + p3z3)+

+ y3

[
−n(z3 − z3b) +

u(t)

V1

]
,

where the yi's are the co-state variables. For an interior solution:

∂H

∂u
= −2u+

y3

V1

= 0 ∴ u =
y3

2V1

.

The co-state variables dynamics will be described by:

dy1

dt
= −∂H

∂z1

= 2(z1 − z1b) + y1p1 + y1z2 (7.3.15)

dy2

dt
= −∂H

∂z2

= y1(z1 − z1b) + y2p2 (7.3.16)

dy3

dt
= −∂H

∂z3

= −y2p3 + ny3. (7.3.17)
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One will have the following system of six di�erential equations:

dz1

dt
= −p1z1 − z2(z1 − z1b) +D(t) (7.3.18)

dz2

dt
= −p2z2 + p3z3 (7.3.19)

dz3

dt
= −n(z3 − z3b) +

y3

2V1
2 (7.3.20)

dy1

dt
= 2(z1 − z1b) + y1p1 + y1z2 (7.3.21)

dy2

dt
= y1(z1 − z1b) + y2p2 (7.3.22)

dy3

dt
= −y2p3 + ny3. (7.3.23)

7.3.5 Linearization of Bergman's Minimal Model

For non-linear systems such as Bergman's Minimal Model (Equations 7.3.1), the mod-

els are linearized to reduce the number of parameters of being determined and they have

the advantage to be available for use mathematically as in the linear models.

Figure 7.3: Simulation of non linearized equations describing the glucose behavior for a health
subject.

Linearizing around the second equilibrium point means to �nd the followed matrix,

where f is the equation described in 7.3.1.
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∂f

∂z

∣∣∣
z=ze

=


−p1 − z2e −z1e − z1b 0

0 −p2 p3

0 0 −n


Substituting the values of the parameters for a diabetic subject:


ż1

ż2

ż3

 =


−0.0078 0 0

0 −0.025 0.000013

0 0 −0.09259



z1

z2

z3

+


1

0

0

D +


0

0

0.08333

u

z1(0) > 0, z2(0) > 0, z3(0) > 0

Assuming that only glucose and insulin are being monitored, because dz2

dt
is not a physi-

ological state variable, thus it becomes:


y1

y2

y3

 =


1 0 0

0 0 0

0 0 1



z1

z2

z3



7.3.6 Riccati's Equation

Section 4.3 shows how to get the Riccati's Equation:

PA+ ATP − PBR−1BTP +Q = 0 (Riccati's equation), (7.3.24)

As already explained, Q and R are di�cult to �nd, and usually the diagonal shape Q

and R (identity) is adopted.


P1 P2 P3

P4 P5 P6

P7 P8 P9



−0.0078 0 0

0 −0.025 0.000013

0 0 −0.09259


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+


−0.0078 0 0

0 −0.025 0

0 0.000013 −0.09259



P1 P2 P3

P4 P5 P6

P7 P8 P9



−


P1 P2 P3

P4 P5 P6

P7 P8 P9




0

0

1

[0 0 1
]

P1 P2 P3

P4 P5 P6

P7 P8 P9

+


1 0 0

0 1 0

0 0 5

 =


0 0 0

0 0 0

0 0 0


Resolving the Riccati's equation with Matlab, one �nds that P is a real and symmetric

matrix.

P =


64.1026 0 0

0 20.000 0.0001

0 0.0001 2.1454


The closed loop control law will be:

u∗ = R−1BTPz. (7.3.25)

u∗ can be obtained through the matrix R, B and P :

u∗ =
[
0 0.0001 2.1454

]
z1

z2

z3


7.3.7 Simulations

The blood sample described in Tillil et al. (1988) and more recently in Hucking et

al. (2008) shows �real� glucose and insulin data. This sample was taken from a fasting

subject during a period of time and adapted for this study. Figure 7.4 shows a typical

response from a normal subject after ingesting some food sampled discretely over time.

To summarize the behavior of Figure 7.4, notice that the glucose starts at 170 mg/dl

and reaches a peak of 175 mg/dl, dropping gradually to the basal level, around 80 mg/dl.

Insulin has a similar behavior, following the trajectory of glucose after a small time delay.
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Figure 7.4: Data from a normal subject adapted from Hucking et al., 2008.

The insulin in the plasma rapidly rises to a peak, approximately 85 µU/ml, and then

gradually drops to the basal level, around 15 µU/ml. Di�erent subjects have di�erent

responses in this kind of graph.

The objective of this part of the study is to demonstrate an implementation of Matlab

to simulate insulin and glucose levels during a real test and determines how the control

can be applied to regulate the dosages for diabetic patients when the system described

by Equation 7.3.1 is considered.

The code used with Matlab was based on the ode-solvers (ode45), and with the Euler

method for the integration. Adaptation was made from Natal (2004) to �nd the plasma

insulin concentration input by interpolation of time-insulin values (considering the sample

described in Figure 7.4). When a variable step solver is used, the interpolated input value

has to be calculated in each simulation step, given the new time sample selected by the

solver.

Figure 7.5: Simulation of the minimal model when insulin is considered as input.

Figure 7.5 represents a simulation when the input signal is the plasma insulin. It shows

the interpolated measured data test and the model simulation, in this case for the glucose.
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The model has a rough approximation with real data and the curve has an exponential

shape.

Figure 7.6: Simulation of the minimal model when glucose is considered as input.

Figure 7.6 shows an estimate of plasma glucose. The parameters were adapted from

Natal (2004) to minimize the di�erence between the measured time (Figure 7.4) of glucose

and the model described by the set of di�erential equations in 7.3.1. The routine lsqnonlin

is also used from Optimization Toolbox. Figure 7.6 shows the minimal model for insulin

kinetics. In this case, glucose, z1(t) is the input. It is also important to emphasize that the

z2(t) is considered as interstitial insulin activity, and it is not a physiological parameter,

but a representation that mimics an e�ective insulin activity (Natal, 2004).

7.4 Discussion

In this part of study, an approach was described to relate the dynamic between glucose

and insulin. The kinetics of glucose and insulin were analyzed, and how the real data can

75



Chapter 7 Glucose Control

be interpolated to give the result throughout the model. The present study also demon-

strates that the minimal model can be applied to study the behavior of the hormones that

constitute the endocrinal system, and permit the construction and formulation of consid-

erations for the clinical glycemic control problem. In particular they study the diversity

of non-linearities in the dynamics system described by Equations 7.3.1.

The simulations showed how the feedback can regulate blood glucose level in response

to glucose and insulin as input. The �rst simulation, Figure 7.5, shows a considerable

correlation between the simple model and the data on patients.

This study has been limited because the �real� data were adapted from other articles

and could therefore be conduct with a simple acquisition protocol. Chase et al. (2006)

has described some limitations of the Minimal Model: It does not account for saturation

of glucose removal by insulin, saturation of insulin transport, the dynamics of insulin

receptors and their mass. However, these characteristics were not the main objective of

this study.
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8 Conclusions

�Do not worry about your di�culties in Mathematics. I can assure you

mine are still greater.�

Albert Einstein

� Mathematical modeling can help form a better understanding of the biological world

in quantitative terms and it is becoming an increasingly important aid in the �eld of

improving the diagnosis, and prognosis of diseases and in the planning of therapy.

The models help us to understand the nonlinear dynamics of the real world by

applying software to simulate the set of dynamics equations. The complexity of

biological systems is particularly well suited to the application of models because

they facilitate identifying the natural laws of these systems;

� The major aim of this study was to create signs to improve the understanding of how

optimal control could be used in biological systems, and consequently, by modeling

and simulating functions of the subsystems, for example those which constitute a

disease, in an attempt to reduce the uncertainty present in nature. These applica-

tions can be used in clinical routines to improve physicians' decisions. It was shown

that numerical optimization methods based on mathematical models can be of value

in providing drug administration schemes that lead to a good compromise between

therapeutic and side e�ects;

� Controlling the HIV/AIDS pandemic is likely be one of the greatest challenges to

public health in the 21st century. This will lead to changes in social relationships and

global inequalities. Moreover, it will allow us to overcome the stigma that belongs

to us all;

� This study showed that the optimal treatment given by simulations, using the model

developed by Campello de Souza (1999), reaches better indices than the application

of a constant drug dosage in the case of HIV/AIDS. However, it is also understood

that these studies need to be simulated using more clinical data and need to be

biostatically controlled. When studies are conducted with human data it is also
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necessary to protect AIDS su�erers by forming an ethics council on AIDS. These

kinds of studies would be fundamental to compare di�erent forms of treatment;

� It was proved that it is important to �ght the virus earlier to diminish the side

e�ects produced by high dosages. The results showed that the patients who showed

most improvement in reducing the HIV rate used fewer quantities of drugs. This

characteristic can be attributed to multiple factors such as: starting the treatment

control earlier, to the capacity to have more or less virus replication and to the

patient's immunological state;

� It was shown that using less drug dosage by optimal control means having less side

e�ects, but in some cases in the literature this fact is correlated to the high risk of

developing drug resistance. Notice that the optimal control allows the use of fewer

drugs during therapy, and consequently produces fewer toxic e�ects;

� Diabetes has a signi�cant impact on patient mortality, outcome and the cost of

healthcare. We can say that this disease kills slowly and brings su�ering to mil-

lions of people. Tight regulation can reduce negative outcomes signi�cantly and

as in the case studied of HIV/AIDS can reduce the side e�ects. This dissertation

has examined Bergman's Minimal Model to control the hyperglycemia by apply-

ing Pontryagin's Maximum Principle. The goal of such control would be to apply

this model to automate treatment in order to achieve good outcomes with minimal

clinical e�orts for the patient;

� More simulations and tests are required to better de�ne the relationships between

measurable data and the patient's state of health to enable a better comparison of

results and to determine an optimal treatment for each patient. Other important

aspects, for using simulations, are that they allow testing of the control algorithm

to be performed without involving real patients;

� Continuous control systems for disease treatment are potentially bloodless, pain-

less and result in more precise therapies. They have a powerful application when

simulated and implemented with biomedical devices, such as insulin pumps. This
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allows microsystems with reliable sensors and with embedded control algorithms to

be created. Modeling and computer simulation assist the integration of sensing,

actuating and controlling components and the evaluation of their interaction with

the process or medical situation;

� This dissertation showed a limited application in the world of the biological systems.

This methodology should be explored in future studies that cover di�erent diseases,

ecological systems, physiologies, etc, since all of them can be modeled by di�erential

equations.

8.1 Suggestions for Future Studies

�Estudar dói; Estudar dói muito; Estudar dói muito e por muito tempo.�

Fernando Campello de Souza

Given the limitations present in this work, suggestion for future works are:

� To apply this methodology to other biological systems;

� To focus on experimental identi�cation in real patients and to conduct validation of

the model used as controller, and consequently to allow a complete clinical validation

of the results;

� To use other forms of control for the models;

� To use more variables to characterize other physiological parameters in the case of

diabetes or HIV/AIDS;

� The optimal control by Pontryagin's Maximum Principle should be applied to study

the regulation during prolonged disturbances such as physical exercise which may

require the extension of the physiological model for simulation and analysis in the

case of diabetes;

� To use other models, for example, stochastic ones, to obtain the optimal response,

by studying the phenomena of resistance to the virus HIV, for example;
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� To improve the models so that they are more objective in the way the drugs are

applied, for example, using protease or transcriptase inhibitors as control variables.
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