

Universidade Federal de Pernambuco

Centro de Tecnologia e Geociências Programa de Pós-Graduação em Geociências

Mickaelon Belchior Vasconcelos

ANÁLISE INTEGRADA DOS EFEITOS DA EXPANSÃO URBANA NAS ÁGUAS SUBTERRÂNEAS COMO SUPORTE A GESTÃO DOS RECURSOS HÍDRICOS DA ZONA NORTE DE NATAL - RN

Tese de Doutorado 2010

Av. Acadêmico Hélio Ramos, s/n Cidade Universitária CEP 50740-530 - Recife - PE - Brasil Fone/Fax: (081) 2126.8242

MICKAELON BELCHIOR VASCONCELOS

Geólogo, Universidade Federal do Ceará, 2004 Mestre em Geociências, Universidade Federal do Rio Grande do Norte, 2006

ANÁLISE INTEGRADA DOS EFEITOS DA EXPANSÃO URBANA NAS ÁGUAS SUBTERRÂNEAS COMO SUPORTE A GESTÃO DOS RECURSOS HÍDRICOS DA ZONA NORTE DE NATAL - RN

Tese que apresentou ao Programa de Pós-Graduação em Geociências do Centro de Tecnologia e Geociências da Universidade Federal de Pernambuco, orientada pelo Professor Doutor José Geilson Alves Demétrio (UFPE) e co-orientada pelo Professor Doutor José Geraldo de Melo (UFRN), em preenchimento parcial para obter o grau de Doutor em Geociências, área de concentração em Hidrogeologia, defendida e aprovada em 28/05/2010.

RECIFE, PE

Catalogação na fonte Bibliotecária Joselly de Barros Gonçalves, CRB4-1748

V331a Vasconcelos, Mickaelon Belchior.

Análise integrada dos efeitos da expansão urbana nas águas subterrâneas como suporte a gestão dos recursos hídricos da zona norte de Natal – RN / Mickaelon Belchior Vasconcelos. – Recife: O autor, 2010. 150 p.

Orientadores: José Geilson Alves Demétrio, José Geraldo de Melo. Tese (doutorado) – Universidade Federal de Pernambuco, CTG. Geociências, Recife, 2010.

Inclui bibliografia e anexos.

1. Geociências. 2. Recursos hídricos. 3. Águas subterrâneas – Natal. 4. Expansão urbana. I. Demétrio, José Geilson Alves. (orient.). II. Melo, José Geraldo de. (coorient.). III. Titulo.

551 CDD (22.ed.)

UFPE (BC2010-155)

APRESENTAÇÃO

Este trabalho constitui a "Tese de Doutorado" do Geólogo (UFC, 2004) e Mestre em Geociências (UFRN, 2006), Mickaelon Belchior Vasconcelos, elaborada em conformidade com as normas estabelecidas pelo Programa de Pós-Graduação em Geociências da Universidade Federal de Pernambuco.

A tese foi produzida com base no projeto "Avaliação das condições hidroambientais e definição de estratégias de manejo dos recursos hídricos nos domínios urbanos e periurbanos da zona norte da cidade de Natal - RN" (500125/2006-6) financiado pelo CNPQ, e executado pela Universidade Federal do Rio Grande do Norte, com colaboração da Universidade Federal de Pernambuco.

"ANÁLISE INTEGRADA DOS EFEITOS DA EXPANSÃO URBANA NAS ÁGUAS SUBTERRÂNEAS COMO SUPORTE A GESTÃO DOS RECURSOS HÍDRICOS DA ZONA NORTE DE NATAL - RN".

Mickaelon Belchior Vasconcelos

Aprovado:

Prof. Dr. José Geilson Alves Demetrio 28/05/2010

Prof. Dr. João Manoel Filho 28/05/2010

Prof. Dr. Jose Geraldo de Melo 28/05/2010

Prof. Dr. Jaime Joaquim da Silva Pereira Cabral 28/05/2010

Prof. Dr. Itabaraci Nazareno Cavalcante 28/05/2010

Já ancorado na Antártica, ouvi ruídos que pareciam de fritura.
Pensei: será que até aqui existem chineses fritando pastéis?
Eram cristais de água doce congelada que faziam aquele som quando entravam em contato com a água salgada. O efeito visual era belíssimo.
Pensei em fotografar, mas falei para mim mesmo:
"Calma, você terá muito tempo para isso..."
Nos 367 dias que se seguiram, o fenômeno não se repetiu.
Algumas oportunidades são únicas.
Amyr klink

Programa de Pós-Graduação em Geociências - UFPE			loutorade
Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a	a Gestão	dos	Recursos
Hídricos da Zona Norte de Natal - RN			

Dedicatória

Aos meus pais, Belchior e Socorro, e ao meu irmão, Andreazza.

Agradecimentos

A realização desta tese reflete uma jornada de atividades de no mínimo 4 anos, que para concretizá-la, contou com a participação e contribuição direta ou indireta de diversas pessoas, neste pequeno espaço eu expresso meus sinceros agradecimentos...

ao meu co-orientador, prof. José Geraldo de Melo, pela infra-estrutura ofertada para o desenvolvimento deste trabalho no "Grupo de Pesquisas em Águas Subterrâneas-GPAS da UFRN"; ao orientador, José Geilson Alves Demétrio pelas discussões, apoio quando solicitado e a confiança depositada em meu trabalho;

ao prof. Beltrão Sabadia (Depto de Geologia da UFC) pela amizade incentivo e discussões;

às professoras Carla Vidal e Marlúcia Santiago (coordenadora do Laboratório de Carbono-14, Depto de Física da UFC);

a minha família, meus pais, meu irmão e a minha cunhada, Márcia Cavalcante;

à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa de doutoramento concedida no âmbito do desenvolvimento desta atividade;

ao CNPQ, pelo financiamento ao projeto;

ao Programa de Pós-Graduação em Geociências da Universidade Federal de Pernambuco, profa. Lúcia Mafra e prof. Almany Costa;

à Universidade Federal do Rio Grande do Norte, Departamento de Geologia; coordenador prof. Heitor Neves, ao chefe do Departamento prof. Vanildo e prof. Oliveira

ao geólogo de grande sabedoria Dr. Franklin de Morais (CPRM/Recife);

pela ajuda no momento necessário;

ao LABHID, D^{na} Teresa, prof. João Manoel, prof. Edilton Feitosa;

ao revisor no processo de qualificação, prof. Jaime Cabral - UFPE;

ao prof. Itabaraci Cavalcante (Depto de Geologia da UFC), que sempre atendeu com presteza ao ser solicitado;

aos professores do Departamento de Geologia da UFRN, José Braz e Germano Melo;

à família Reyes, Yoe Alain, Ana Torquato, Sarinha e Alan, pelo grande carinho, amizade e preocupação;

às amigas Paula Stein e Valberlândia;

ao Paulo Eduardo, da UFRN pela presteza e amizade; e convívio no decorrer do trabalho;

à secretária do Programa de Pós-Graduação em Geociências da UFPE, Elizabeth;

aos secretários do depto de Geologia da UFRN Clodoaldo e Marconi;

às alunas da Graduação de Geologia da UFRN, pela agilidade na colaboração quando solicitadas, Samara Danielle e Flora Silva;

aos amigos na cidade de Natal que por algum momento participaram no convívio durante a elaboração deste trabalho; Ivan Medeiros, Fábio Roque, Rafaela Silva, Lúcia de Fátima, Jeane Oliveira;

e aos que indiretamente apoiaram, Lys Brasil e Patrícia Amorim;

às instituições CPRM- Serviço Geológico do Brasil, EMPARN, IDEMA, SEMARH, FUNCERN;

Rosalvo Tenório (Instituto de Defesa do Meio Ambiente do estado do Rio Grande do Norte-IDEMA) e Wagna Dantas (FUNCERN);

à Fátima Moura, pelas correções e sugestões gramaticais;

em Recife-PE, aos companheiros(as) da Pós-Graduação Valberlandia, Luciano Citrão, William, Reginaldo Lima Verde, Antônio Vicente, Leonardo Hislei e Ediu Lemos;

em Teresina-PI, aos companheiros de trabalho da CPRM - Serviço Geológico do Brasil, geólogos Carlos Antônio da Luz, Francisco Lages e ao chefe da Residência de Teresina, Reinaldo Soares...

..eu agradeço por tudo.

RESUMO

A área de estudo está localizada na zona norte de Natal, totalizando 66 km², onde 19% está favorável para ocorrência de infiltração direta de águas pluviais. Possui uma população de 300.000 habitantes, no qual o volume captado de águas subterrâneas representa 46% da demanda hídrica da população. Este trabalho tem o objetivo de verificar os efeitos da expansão urbana e realizar uma análise integrada de dados dando suporte para a gestão dos Recursos Hídricos. Com a expansão ocorrida a partir do final da década de 1970, a zona norte de Natal passou de uma zona predominantemente com vegetação nativa e agrícola para uma zona urbanizada, com algumas áreas periurbunas. A formação de centros urbanos na maioria das vezes geram impactos nas águas subterrâneas, e na cidade de Natal, isso não é diferente, onde parte da área ainda ocorre o lançamento de resíduos domésticos em fossas e sumidouros. Com isso, é gerado um aumento do processo de contaminação das águas subterrâneas, pois a geologia da área formada por sedimentos do Grupo Barreiras (cobertura residual e sedimentos eólicos) proporciona o deslocamento de contaminantes. Com pluviosidade média anual de aproximadamente 1735 mm, os dados do balanço hídrico mostram um excedente de 522,1 mm, com deficiência de 586 e uma ETP de 1799 mm. Estão inseridos na área 577 pontos d'água, onde 301 são poços escavados, 06 fontes naturais e 270 são poços tubulares. Na área de estudo ocorrem aquíferos livres a semi-confinados e o fluxo subterrâneo é divergente a partir do setor central da área seguindo em direção aos rios Potengi e Doce. O balanço hidrológico mostra que ocorre uma entrada de água de 74,2×10⁶ m³/ano e uma saída de 64×10⁶ m³/ano, o que corresponde a um saldo positivo de 9,95×10⁶ m³/ano. Este saldo positivo, tem que ser verificado com atenção, pois diante dos valores, existem agregados muitas incertezas hidrogeológicas que variam sazonalmente. A classificação hidroquímica possui uma diferenciação entre as águas superficiais e as águas subterrâneas. Nas águas subterrâneas, predominam amostras cloretadas, enquato nas águas superficiais apresentam-se cloretadas com uma tendência para bicarbonatada. No que refere-se aos cátions, as águas superficiais são predominantemente sódicas, enquanto que as águas subterrâneas estão amplamente divididas em sódicas e mistas, possuindo também uma amostra cálcica. Baseado em trabalhos anteriores a área possui uma transmissividade variando de 6,1×10⁻⁴ m²/s à 1,8×10⁻³ m²/s e a condutividade hidráulica 2,2×10⁻⁶ m/s à 6,3×10⁻⁵ m/s. A utilização da metodologia GOD na determinação da vulnerabilidade das águas subterrâneas integrada com os dados de fontes potenciais de contaminação, mostrou-se útil para a determinação do índice de risco a contaminação da águas subterrâneas. Ocorre uma predominância de risco moderado na parte central da área, com as zonas de risco forte estando localizadas as margens do rio Doce e zona do mangue. O potencial de risco baixo está isolado principalmente em decorrência da elevada profundidade do nível das águas subterrâneas. A área de estudo, em termos gerais, possui um sistema hidrogeológico em equilíbrio, pois nos últimos 10 anos não apresentou mudanças significativas na direção do fluxo das águas subterrâneas. O saldo positivo no balanço hidrológico deve ser analisado com atenção, visto que associado a estes valores, existem muitas estimativas que estão agregados as incertezas hidrogeológicas, que com a expansão urbana na área de estudo, tende a modificar a configuração da área. O adensamento populacional deve ocorrer com medidas que mantenham a sustentabilidade hídrica, evitando problemas associados. A implantação de um Plano de Gestão dos Recursos Hídricos Subterrâneos, representa uma forma de promover o desenvolvimento sustentável na área de estudo.

Palavras-chave: Águas subterrâneas; Hidrogeologia urbana; Aquífero Barreiras.

ABSTRACT

The study area is located in the north zone of Natal city, having 66 km², where 19% are favorable for pluvial water infiltration. It posses a 300,000 inhabitants, in which groundwater represent 46% of hydric demand. This work has the objective to verify the effect of the urban expansion and to carry through an integrated analysis of data giving support for a Management of the Water Resources. With the occurred expansion from the end of the of 1970, the north zone of Natal city after 30 years of a zone predominantly with native vegetation and agricultural to a urban zone, with some areas periurban. The formation of urban centers most of the time generates impacts in groundwaters, and in the city of Natal, this is not different, where part of the area still occurs the launching of domestic wastes in site, whithout treatment. With this, an increase of the process of contamination of groundwaters is generated, therefore the geologic of the area formed for sediments of the Group Barreiras (residual covering and eolian sediments) provides the displacement of contaminants. With annual average rainfall of approximately 1,735 mm, the data of the water balance show an excess of 522.1 mm, with deficiency of 586 and a ETP of 1,799 mm. Is inserted in the area 577 water points, where 301 is dug wells, 06 springs and 270 are tubular wells. In the study area groundwater flow is divergent from the central sector of the area in direction to the rivers Potengi and Doce. The water budget sample that occurs a water entrance of 74,2×10⁶ m³/ year and a exit of 64×10⁶ m³/year, what it corresponds to a surplus of 9.95×10⁶m³/ year. This surplus, has that to be verified with attention, therefore ahead of the values, many hydrogeologics uncertainties exist aggregate that vary seazonality. The hydrochemistry classification posses a differentiation between superficial waters and groundwaters. In groundwater, samples are Cl⁻, and in superficial waters predominate are presented Cl⁻ with a trend for HCO₃. In what cations is mentioned to it, the superficial waters are predominantly Na⁺, whereas the groundwaters widely are divided in Na and mixing, also possessing a Ca^{2+} sample. The transmissivity of the aquifer varies of 6.1×10^{-4} m²/s to 1.1×10^{-3} m^2/s , and the hydraulic condutivity, of 2.2×10^{-6} to 2.62×10^{-5} m/s. The use of methodology GOD in the determination of the vulnerability of groundwaters integrated with the data of potential sources of contamination, revealed useful for the determination of the risk index the contamination of groundwaters. A predominance of moderate risk in the central part of the area occurs, with the zones of strong risk being located the edges of the river Doce, zone of the mangrove. The potential low risk is isolated in the sites being generated mainly in result of the raised depth of the groundwater level. The process of urban expansion must be analyzed considering that the modify of the configuration natural of the area. The population concentration must occur with measures that keep the sustainability hydric. The implantation of a Plan Management of the Groundwater is reflected in a form to promote the sustainable development in the study area.

Keywords: Groundwater; Urban hydrogeology; Barreiras aquifer.

LISTA DE FIGURAS

Figura 1.1 - Imagem de satélite, ano de 2006 com a delimitação da área de estudo. Fonte
com modificações, IDEMA 2008
Figura 1.2 - Pluviométrias médias mensais na cidade de Natal entre o ano de 1992 e 2008
(Fonte: EMPARN)
Figura 1.3 - Temperaturas médias (°C) mensais entre 1996 e 2006 (Fonte: EMPARN)
Figura 1.4 - Balanço hidroclimatológico na região da cidade de Natal
Figura 1.5 - Balanço hidroclimatológico, com distinção de cores para as condições hídricas
do solo como deficiência, excedente, retirada e reposição, referente a região da cidade de
Natal
Figura 1.6 - Mapa de classes geomorfológicas inseridas na zona norte de Natal
Figura 1.7 - Delimitação das bacias hidrográficas inseridas na área de estudo
Figura 2.1 - Mapa com unidades litoestratigráficas de parte do litoral leste do Estado do Rio
Grande do Norte. Fonte com modificações: Angelin et al. 2006
Figura 2.2 - Composição RGB 7, 4 e 2 Landsat 7 fusão com a pancromática ano de 2001,
com alterações no histograma (GLCF, 2007), utilizado para a identificação de lineamentos
geológicos
Figura 2.3 - Realce para a visualização de lineamentos a partir da sombra de relevo "Hill
Shade 20°; 0°, inclinação luminosa de 20° no azimute zero, realizada a partir dos dados de
RADAR
Figura 2.4 - Diagrama de Rosetas com os 123 lineamentos identificados nas imagens de satélite
Figura 2.5 - Compilação de lineamentos contidos no litoral leste do Rio Grande do
Norte
Figura 2.6 - Direção das seções geológicas elaboradas com simplificação da geologia da
área
Figura 2.7 - Seções geológicas nas imediações da lagoa de Extremoz, porção norte da área de
estudo (Fonte com modificações Melo, 2004)
Figura 2.8 - Mapa de unidades litoestratigráficas da zona norte da cidade de Natal, com
direção das seções geológicas e poços utilizados
Figura 2.9 - Seções geológicas na zona norte de Natal.
Figura 3.1 - Localização das Zonas de Proteção Ambiental (ZPA) inseridas na zona norte de
Natal (Fonte com modificações. Natal, 2007)

Figura 5.11 - Histograma com dados de 415 amostras de condutividade elétrica	118
Figura 5.12 - Mapa de isolinhas de condutividade elétrica (μS/cm) nas águas subterrâneas no	
ano de 1998	119
Figura 5.13 - Mapa de isovalores de condutividade elétrica (μS/cm) nas águas subterrâneas	
do ano 2006, elaborado com 181 poços tubulares, com profundidade igual ou superior a 15	
m	120
Figura 5.14 - Mapa de condutividade elétrica (μS/cm) nas águas subterrâneas do ano 2006, a	
partir dos 24 poços com análises físico-químicas dos íons maiores	120
Figura 5.15 - Histograma de distribuição dos valores de pH (415 amostras) e Eh (413	
amostras)	121
Figura 5.16 - Diagrama de ambientes naturais em função do Eh e pH, com localização dos	
principais intervalos de classes das amostras analisadas na zona norte de Natal. (Fonte com	
modificações: SATO, 1960 in CARVALHO, 1995)	122
Figura 5.17 - Coeficiente de correlação: (A) nitrato versus condutividade elétrica; (B) cloreto	
versus condutividade elétrica	123
Figura 5.18 - Coeficiente de correlação do nitrato versus cloreto (A) poços com	
profundidade até 30 m; (B) poços com profundidade entre 30 e 60 m	124
Figura 5.19 - Coeficiente de correlação do íon versus cloreto (A) poços com profundidade	
superior a 60 m; (B) poços com todas as informações	124
Figura 5.20 - Mapa de razões iônicas (23 amostras) em meq/L de (NO ₃ -/somatório de	
ânions), nas águas subterrâneas	126
Figura 6.1 - Diagrama esquemático do mecanismo de funcionamento de uma rede de	
monitoramento de águas subterrâneas. Fonte com modificações Uil et al. (1999) in Auge-2	
(2006)	132
Figura 6.2 - Localização dos poços que formam a rede de monitoramento das águas	
subterrâneas na zona norte de Natal	134

LISTA DE TABELAS

Tabela 1.1 - Conjuntos (conj.) e loteamentos (lot.) inseridos nos bairros da zona norte
de Natal
Tabela 1.2 - Registros pluviométricos (mm) na cidade de Natal entre o ano de 1992 e
2008 (Fonte: EMPARN)
Tabela 1.3 - Temperaturas médias (°C) mensais entre 1996 e 2006 (Fonte: EMPARN).
Tabela 1.4 - Médias de Umidade relativa do ar (%) entre 1996 e 2006 (Fonte:
EMPARN)
Tabela 1.5 - Médias de evaporação (mm) entre 1996 e 2006 (Fonte: EMPARN)
Tabela 1.6 - Médias de insolação (horas) entre 1996 e 2006 (Fonte: EMPARN)
Tabela 1.7 - Tipos climáticos baseados no índice de umidade (Iu) gerado a partir dos
parâmetros do Balanço Hídrico Climatológico de Thornthwaite & Mather (1955)
Tabela 2.1 - Coluna litoestratigráfica da região do litoral leste do Rio Grande do
Norte. (Fonte com modificações Angelim 2006)
Tabela 3.3 - Agroquímicos utilizados na área agrícola da zona norte de Natal
Tabela 3.4 - Tipo de esgotamento sanitário dos domicílios individualizados por bairros
(IBGE, 2001)
Tabela 4.1 - Sumarização das informações dos poços localizados no Sistema
Dunas/Barreiras como: espessura penetrada, espessura total, espessura saturada e
espessura saturada efetiva obtidas a partir dos perfis de poços
Tabela 4.2 - Parâmetros hidrodinâmicos do Sistema Aquífero Dunas Barreiras na zona
norte de Natal (MELO, 1998)
Tabela 4.3 - Sumarização dos dados obtidos a partir da aplicação do <i>slug test</i>
Tabela 4.4 - Unidades de captação de águas subterrâneas por bairros da zona norte de
Natal
Tabela 4.5 - Captações do sistema público de abastecimento e volumes de água
explotados no ano de 2006. (Fonte: CAERN 2006)
Tabela 4.6 - Valores da vazão de fluxo do curso do rio Doce obtidos em fevereiro de
2008
Tabela 4.7 - Volume captado para o abastecimento de água da zona norte, com cálculo
de perdas. Fonte com modificações: FUNCERN (2006), CAERN (2008)

Tabela 4.8 - Balanço de entradas e saídas de água no sistema hidrológico da zona	
norte de Natal	91
Tabela 4.9 - Classes das fontes potenciais de contaminação existentes na zona norte de	
Natal segundo o potencial de contaminação	100
Tabela 5.1 - Resultado das análises físico-químicas das águas subterrâneas (meq/L)	104
Tabela 5.2 - Resultado das análises físico-químicas das águas superficiais (meq/L)	105
Tabela 5.3 - Resumo dos tipos de águas presentes segundo o manancial de origem	106
Tabela 5.4 - Coeficiente de correlação entre os íons analisados das amostras de águas	
subterrâneas em meq/L e condutividade elétrica (μS/cm) que apresentam erro da	
análise inferior a 10%	125
Tabela 5.5 - Coeficiente de correlação entre os íons analisados das amostras de águas	
superficiais em meq/L e condutividade elétrica (μS/cm) que apresentam erro da	
análise inferior a 10%	125
Tabela 5.6 - Valores mínimos, máximos e médios das razões iônicas em meq/L de	
(NO ₃ /somatório de ânions), em 31 amostras de águas superficiais e subterrâneas	126
Tabela 6.1 - Localização dos poços propostos para compor a rede de monitoramento	
das águas subterrâneas na zona norte de Natal	133

SUMÁRIO

I INTRODUÇÃO	01
1.1 Objetivos	03
1.1.1 Objetivos Específicos	03
1.2 Localização da Área de estudo	03
1.3 Estrutura Metodológica	06
1.4 Aspectos Climáticos e Fisiográficos	06
1.4.1 Condicionantes climáticos.	07
1.4.2 Balanço Hídrico e Classificação Climática	09
1.4.3 Geomorfologia	12
1.4.4 Solos	13
1.4.5 Vegetação	14
1.4.6 Hidrografia	14
II GEOLOGIA	15
2.1 Contexto Geológico Regional	15
2.1.1 Unidades Litoestratigráficas	15
2.1.1.1 Sedimentos Cretáceos (sequência infra-Barreiras)	15
2.1.1.2 Grupo Barreiras (sedimentos Tércio-Quaternários)	15
2.1.1.3 Sedimentos Quaternários	18
2.1.2 Análise das condições geológicas com o uso de dados de satélites	19
2.1.3 Integração de dados da estruturação geológica	21
2.1.4. Estruturação Geológica na Região da Lagoa de Extremoz	23
2.2 Contexto geológico local	25
2.2.1 Unidade Infra-Barreiras	26
2.2.2 Cobertura de sedimentos arenosos do Grupo Barreiras	26
2.2.3 Depósitos de Mangue	28
2.2.4 Sedimentos eólicos	28
2.2.5 Sedimentos aluvionares	28
2.3 Definição da estruturação geológica da área de estudo	28
III ASPECTOS AMBIENTAIS	32
3.1 Zoneamento ambiental e a evolução do uso e ocupação do solo	32
3.1.1 Unidades de uso e ocupação do solo (1978)	34

3.1.2 Unidades de uso e ocupação do solo (2006)	
3.1.3 Análise da evolução do uso e ocupação do solo (1978-2006)	í
3.2 Fontes potenciais de contaminação	
3.2.1 Cemitérios	4
3.2.2 Postos de armazenamento de combustíveis	4
3.2.3 Disposição de resíduos sólidos	4
3.2.4 Estação de tratamento de esgotos, lagoas de infiltração e lagoas de efluentes	4
3.2.5 Zonas com atividades agrícolas	4
3.2.6 Confinamento de rebanho	4
3.2.7 Poços mal construídos e poços abandonados	4
3.2.8 Pontos de lavagem de veículos automotores	4
3.2.9 Esgotamento sanitário doméstico	
3.2.10 Indústrias	
IV HIDROGEOLOGIA	
4.1 Configuração do Sistema Hidrogeológico	
4.1.1 Síntese de trabalhos anteriores	
4.1.2 Estrutura hidrogeológica	
4.1.3 Avaliação dos parâmetros hidrodinâmicos do Sistema Aquífero na zona Norte de	
Natal	
4.1.3.1 Poço produtor e piezômetro do tipo multinível	
4.1.4 Determinação pontual dos parâmetros hidrodinâmicos do aquífero através do método s <i>lug test</i> 4.1.5 Procedimento Prático para a Execução	(
4.1.6 Análise dos Dados obtidos	(
4.2 Infra-estrutura hídrica e Abastecimento de água	,
4.2.1 Águas subterrâneas	,
4.2.1.1 Sistema público de abastecimento de água (CAERN)	,
4.2.1.2 Uso privado das águas subterrâneas	
4.2.2 Águas superficiais	
4.2.2.1 Lagoa de Extremoz.	
4.2.2.2 Rio Doce	
4.2.3 Avaliação das demandas no abastecimento hídrico da zona Norte de Natal	
4.3 Mecanismos de Recarga e Fluxo das Águas Subterrâneas	

4.3.1 Fluxo das Águas Subterrâneas	
4.3.2 Recarga das Águas Subterrâneas na zona norte de Natal	
4.3.3 Balanço hidrogeológico	
4.3.4 Reservas Hídricas e Disponibilidade do Sistema Aquífero Dunas/Barreiras	
4.4 Vulnerabilidade ambiental natural e risco à contaminação das águas subterrâneas	•••
4.4.1 Considerações gerais sobre vulnerabilidade das águas subterrâneas	· • •
4.4.2 Metodologia GOD e sua aplicação	
4.4.3 Profundidade das águas subterrâneas	
4.4.4 Vulnerabilidade natural das águas subterrâneas	••
4.4.5 Avaliação de risco à contaminação das águas subterrâneas	
V ASPECTOS DA QUALIDADE DAS ÁGUAS	•••
5.1 Análises físico-químicas dos íons maiores nas águas subterrâneas e superficiais	•••
5.1.1 Balanço Iônico.	
5.1.2 Caracterização hidroquímica através do diagrama de Piper	
5.1.3 Características hidroquímicas a partir do diagrama de colunas	
5.2 Análises químicas simplificada nas águas subterrâneas	
5.2.1 Concentração do íon cloreto nas águas subterrâneas	••
5.2.2 Concentração do íon nitrato e amônia nas águas subterrâneas	
5.2.3 Condutividade elétrica nas águas subterrâneas	,
5.2.4 Distribuição dos valores de potencial hidrogeniônico (pH) e potencial de oxi-redução	ão
(Eh)	
5.3 Avaliação das relações hidroquímicas	
5.4 Razões iônicas	
VI PROPOSTA DE GESTÃO DOS RECURSOS HÍDRICOS SUBTERRÂNEOS NA ZONA NORTE DE NATAL	•••
6.1 Considerações sobre a Política de Recursos Hídricos	
6.2 A implementação da Gestão dos Recursos Hídricos Subterrâneos	
6.2.1 Identificação e Controle das Fontes Potenciais de Contaminação	
6.2.2 Programa de Educação Ambiental	
6.2.3 Monitoramento da qualidade e quantidade das águas subterrâneas	
6.2.4 Definição de perímetros de proteção de captação de águas	· • •
6.2.5 Fiscalização e incentivo de unidades de captação de água a serem outorgadas	
6.2.6 Incentivo a reutilização de águas nos estabelecimentos de maior consumo	

6.2.7 Criação de um banco de dados de empresas de perfuração de poços	136
6.2.8 Identificação de novas áreas para captação de águas subterrâneas	137
6.3 Perspectivas de mudanças para a área de estudo	137
VII CONCLUSÕES E RECOMENDAÇÕES	138
REFERÊNCIAS BIBLIOGRÁFICAS	142
ANEXOS	150
ANEXO A - Perfis litológicos e construtivos de poços inseridos na área de estudo	
ANEXO B - Cadastro das Fontes Potenciais de Contaminação	
ANEXO C - Dados do ensaio de slug test	
ANEXO D - Cadastro dos poços inseridos na área de estudo	

I INTRODUÇÃO

A formação dos centros urbanos não planejados geram transtornos em toda uma cadeia de serviços, como abastecimento de água, transporte, saúde, habitação, distribuição de eletricidade, entre outros.

A gestão dos recursos hídricos em termos gerais, trata-se de um mecanismo orientativo para a tomada de decisões, ocorrendo uma tendência de diminuição dos agravos nos centros urbanos, promovendo a sustentabilidade hídrica.

Este trabalho dará ênfase aos fatores relacionados aos recursos hídricos subterrâneos na zona norte da cidade de Natal, que no final da década de 1970, possuía uma população de 10.000 habitantes, e atualmente, conta com aproximadamente 300.000 habitantes. É caracterizada por ser basicamente urbana, apresentando algumas áreas periurbanas, agrícolas e industriais, diferenciando-se, assim, da zona sul, leste e oeste da cidade de Natal, que encontram-se totalmente urbanizadas e sem concentrações de áreas agrícolas ou periurbanas.

Um dos primeiros trabalhos que tratam das águas subterrâneas realizado na cidade de Natal é do ano de 1970 (Costa, 1970), restrigindo-se a verificar as condições das águas subterrâneas na zona sul da cidade. Na zona norte de Natal, um dos estudos pioneiros foi desenvolvido por Melo (1998) no qual abordou os riscos de contaminação das águas subterrâneas.

A expansão acentuada que ocorreu na zona norte de Natal, foi gerada principalmente pela instalação de indústrias em suas proximidades e expansão dos serviços nas zonas leste, oeste e sul da cidade de Natal. Existem também na zona norte, áreas com características de ambientes rurais, em meio a um processo de expansão urbana. Estas áreas localizadas nas zonas periféricas, são conhecidas como zonas periurbanas, que representam também áreas que ocorrem agravos aos recursos ambientais. Com características rurais, possuem zonas de lançamentos de cargas contaminantes geradas pela concentração de rebanho confinado, uso de defensivos agrícolas e fertilizantes.

A integração dos dados é uma forma de considerar, em uma mesma análise, fatores como os aspectos ambientais de evolução da ocupação do solo, fontes potenciais de contaminação, informações de parâmetros físicos dos aquíferos, qualidade, vulnerabilidade e risco de contaminação das águas subterrâneas. A partir da integração pretende-se obter conclusões e sugestões, promovendo planejamento e gestão das águas subterrâneas.

Panorama das águas subterrâneas em centros urbanos no Nordeste Brasileiro

Para uma melhor compreensão das condições das águas subterrâneas no Nordeste Brasileiro, será comentada a situação das águas subterrâneas em alguns centros urbanos que tem as águas subterrâneas como um manancial hídrico de grande utilidade.

No estado do Maranhão, as cidades que compõem a região metropolitana de São Luis possuíam, no ano de 1994, aproximadamente 281 pontos d'água, destes, 221 eram somente na capital São Luis (CPRM, 1994). A água subterrânea representa total ou parcialmente o abastecimento das cidades inseridas na ilha de São Luis, tendo como os fatores limitantes a salinização na borda noroeste e a contaminação decorrente das áreas urbanizadas (Sousa, 2000).

Com uma população de aproximadamente 69 mil habitantes, diversos poços tubulares exploram o aquífero Serra Grande, sendo verificado um rebaixamento do nível estático com o passar dos anos (Vidal, 2003). A cidade de Picos, no estado do Piauí, possui boa parte de seu abastecimento realizado com águas subterrâneas.

Aproximadamente 70% do estado do Ceará está inserido no contexto de rochas do embasamento cristalino, fazendo com que ocorra uma disponibilidade e qualidade reduzida das águas subterrâneas, principalmente em decorrência das baixas vazões de poços e salinização das águas subterrâneas. Estudos desenvolvidos pela CPRM (1999) revelam a existência de aproximadamente 11.800 poços, excluindo a rede metropolitana de Fortaleza, dando uma densidade de 0,068 poços/km² (Mobus & Leite, 2000). A Rede Metropolitana de Fortaleza possui 7.281 poços (CEARÁ/SRH, 2002), estando inserida em um cenário de contaminação decorrênte da infiltração de efluentes domésticos de fossas e sumidouros.

Em Recife-PE, os problemas com as águas subterrâneas estão ligados à superexplotação e a intensa urbanização, gerando uma exaustão e contaminação do aquífero explotado.

No estado da Alagoas, a cidade de Maceió possui 75% do seu abastecimento realizado com águas subterrâneas (Rocha, 2005), onde aproximadamente 200 poços são operados pela Companhia de Abastecimento d'Água e Saneamento (CASAL), e aproximadamente outros 800 são operados por usuários particulares. Os problemas associados à cidade estão ligados a superexplotação, salinização e contaminação dos aquíferos.

Na região de Mossoró, estado do Rio Grande do Norte, ocorrem pocessos referentes a superexplotação do aquífero Açu, decorrente do uso urbano e agrícola. No município de

Baraúna, vizinho ao município de Mossoró, os problemas estão associados à superexplotação decorrente do uso agrícola em uma região cárstica. Na cidade de Natal, as águas subterrâneas representam uma grande contribuição no abastecimento, porém ocorrem problemas como a contaminação dos aquíferos em decorrência da falta de saneamento. De acordo com os dados do cadastro de poços da cidade de Natal (FUNCERN, 2006) existem cadastrados 1.508 pontos d'água, entre fontes naturais, poços tubulares e poços escavados.

A partir desta síntese sobre os problemas relacionados à qualidade e quantidade das águas subterrâneas, em alguns centros urbanos do nordeste, verifica-se que o crescimento populacional induz a uma redução na oferta de água com qualidade satisfatória para o uso humano.

1.1 OBJETIVOS

Este trabalho tem o objetivo de avaliar os impactos da expansão urbana sobre as águas subterrâneas na zona norte da cidade de Natal a partir de uma análise integrada de fatores ambientais, geológicos, hidrogeológicos, hidroquímicos e de demandas de água, proporcionando subsídios para a definição de estratégias de manejo dos recursos hídricos.

1.1.1 Objetivos Específicos

- Diagnosticar a infra-estrutura hídrica;
- Caracterização geológica e hidrogeológica;
- Avaliar a dinâmica de evolução do uso e ocupação do solo;
- Apresentar um panorama de riscos de contaminação das águas subterrâneas;
- Elaboração do balanço hidrogeológico;
- Diagnosticar a situação da qualidade das águas frente às atividades antrópicas;
- Subsidiar informações para o manejo sustentável dos recursos hídricos.

1.2 LOCALIZAÇÃO DA ÁREA DE ESTUDO

Situada no setor norte da cidade de Natal (Figura 1.1), estado do Rio Grande do Norte, a área de estudo compreende uma superfície total de aproximadamente 66 km². Está restrita entre os quadrantes 9.369.700 m N, 244.500 m E; 9.359.700 m N, 257.750 m E; da zona UTM 25 M, na Unidade Transversal de Mercator (UTM) hemisfério sul com meridiano

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

central -33°. As coordenadas mencionadas nesse trabalho são referenciadas ao DATUM *South American Datun* 1969 (SAD-69).

A área de estudo é formada por sete (07) bairros pertencentes a zona norte da cidade de Natal (Pajuçara, Nossa Senhora da Apresentação, Igapó, Lagoa Azul, Salinas, Potengi e Redinha) e parte do município de São Gonçalo do Amarante (setor oeste) totalizando uma população de aproximadamente 300.000 habitantes (Natal, 2006).

Possui os seguintes limites: norte, lagoa de Extremoz; leste, rio Doce, representando um canal de médio porte; oeste, riacho Olho d'água, com pequena representatividade em termos de lâmina d'água; sul, rio Potengi, apresentando um canal navegável por embarcações cargueiras (calado elevado) e apresentando uma lâmina d'água superior a 200 metros.

Na tabela 1.1, são apresentadas os loteamentos e conjuntos habitacionais divididos por bairros que estão inseridos na área de estudo totalizando 22 loteamentos e 25 conjuntos habitacionais.

Tabela 1.1 - Conjuntos (conj.) e loteamentos (lot.) inseridos nos bairros da zona norte de Natal.

Bairro	Conjuntos e loteamentos
Nossa Senhora da	Lot. Jardim Progresso, Lot. Paraíso, Lot. Vale Dourado, Conj. Alvorada
Apresentação	III, Conj. Alvorada IV, Conj. Parque dos Coqueiros.
Igapó	Lot. Vila do Paraíso, Conj. Cidade do Sol, Conj. Igapó.
	Lot. Bom Jesus, Lot. Nordelândia, Lot. Boa Esperança, Lot. Câmara
Lagge Armi	Cascudo, Lot. José Sarney, Lot. Gramorezinho, Lot. Sta. Cecília, Conj.
Lagoa Azul	Cidade Praia, Conj. Nova Jerusalém, Conj. Eldorado, Conj. Nova Natal,
	Conj. Gramoré.
	Lot. Nova República, Lot. Novo Horizonte, Lot. Ki-Panorama, Lot.
	Brasil Novo, Lot. Jardim Brasil, Lot. Asa Norte, Lot. Rio Norte, Lot.
Pajuçara	Algimar, Lot. Village das Dunas, Conj. Parque das Dunas, Conj. Vista
rajuçara	Verde I, Conj. Vista Verde II, Conj. Alvorada I e II, Conj. Além
	Potengi, Conj. Pajuçara I, Conj. Pajuçara II, Conj. Brasil Novo, Conj.
	Novo Horizonte, Conj. Vila Verde.
Redinha	Conj. Residencial Redinha, Conj. Niterói, Conj.Guari.
*São Gonçalo do	Lot. Nova Zelândia, Conj. Amarante, Jardim Lola, Golandin.
Amarante	Lot. Nova Zetandia, Conj. Amaranie, Jardini Lota, Gotandin.

^{*}município de São Gonçalo do Amarante

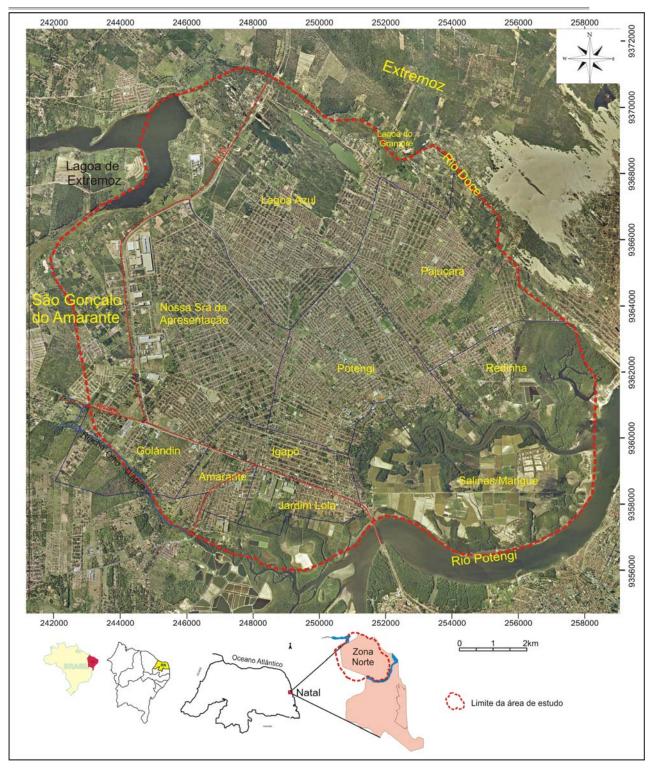


Figura 1.1 - Imagem de satélite, ano de 2006 com a delimitação da área de estudo. Fonte com modificações, IDEMA 2008.

1.3 ESTRUTURA METODOLÓGICA

Nas avaliações das condições das águas subterrâneas em ambientes urbanos é necessário basicamente dois estágios (Vázquez-Suñé, 2005 com modificações):

- Identificação dos fatores significantes no ciclo hidrogeológico urbano;
- Desenvolvimento e aplicação de metodologias para quantificar e controlar esses fatores.

Para o desenvolvimento das atividades deste trabalho foi utilizado a seguinte metodologia:

I - Levantamento de Dados e Análises de Trabalhos Anteriores

Foi realizado a compilação de dados referentes a geologia, qualidade de água, volume captado de águas superficiais e subterrâneas, infra-estrutura hídrica, aquisição dados climáticos dentre outros dados. Nesta etapa foram adquiridos imagens digitais e fotografías aéreas para a identificação de atributos utilizados na definição do uso e ocupação do solo.

II - Etapas de Campo

As etapas de campo foram realizadas para a aquisição de dados como o cadastramento das fontes potenciais de contaminação, estrutura geológica local, realização de ensaio de *slug test*, medições de nível estático, cálculo da descarga do rio Doce e seleção da rede de monitoramento de águas subterrâneas.

III - Interpretação dos Dados

Trata-se da etapa de interação dos dados, elaboração de mapas de isovalores, mapa geológico, tratamento de dados de RADAR e elaboração do balanço hidroclimatológico para a região de Natal. Estas informações são correlacionadas obtendo-se uma configuração geral dos processos que ocorrem no meio hidrogeológico da zona norte de Natal.

1.4 ASPECTOS CLIMÁTICOS E FISIOGRÁFICOS

Dentro do contexto do ciclo hidrológico da área de estudo são apresentados alguns fatores que contribuem com as variações de disponibilidade e reservas dos recursos hídricos subterrâneos e superficiais.

1.4.1 Condicionantes Climáticos

O clima na região da cidade de Natal é quente e úmido com estação seca em janeiro, setembro até dezembro, e os meses de chuva ocorrendo de fevereiro a agosto.

As chuvas na cidade de Natal possuem uma média anual de 1.727,8 (intervalo observado de 1992 até 2008). Ocorrem em menor quantidade no mês de outubro, com média de 21,6 mm, e em maior quantidade no mês de junho com média de 384,7 mm mensais (Tabela 1.1 e Figura 1.1). A temperatura média (Tabela 1.2) em Natal é de 27,25 °C variando entre 25,6 °C (julho) e 28,3 °C (fevereiro) com uma amplitude térmica de 2,0 °C. A taxa de evaporação média varia de 3,6 mm/dia (junho) a 7,5 mm/dia (novembro).

Tabela 1.2 - Registros pluviométricos (mm) na cidade de Natal entre o ano de 1992 e 2008 (Fonte: EMPARN).

Ano/Mês	Jan	Fev	Mar	Abr	Maio	Jun	Jul	Ago	Set	Out	Nov	Dez	Total
1992	52,6	184,4	288,7	315,0	130,8	343,4	80,5	157,7	32,1	4,0	26,2	6,4	1713,8
1993	21,6	29,4	84,8	227,8	39,9	164,9	129,6	35,8	10,9	61,9	15,5	36,9	859,0
1994	94,5	86,2	237,0	275,7	279,7	624,9	399,6	84,6	57,3	4,5	20,4	19,9	2184,3
1995	24,6	60,6	278,0	237,4	392,3	254,4	408,3	34,8	21,6	4,2	41,3	0,4	1757,9
1996	37,0	69,7	216,2	359,5	154,6	251,4	145,8	125,4	86,7	78,4	45,1	17,2	1587,0
1997	13,3	72,8	159,6	256,2	340,0	77,7	79,8	121,3	5,1	3,0	2,7	55,8	1187,3
1998	49,2	78,3	81,4	74,7	161,7	210,0	789,0	138,7	19,0	13,7	8,5	17,0	1641,2
1999	12,6	143,8	139,2	175,8	289,5	131,5	31,1	49,8	51,1	14,5	5,4	66,9	1111,2
2000	40,0	79,9	114,9	177,4	230,0	577,2	482,3	288,8	205,1	8,7	12,1	23,0	2239,4
2001	30,1	6,8	133,8	360,2	-	373,4	145,2	103,2	28,4	13,7	17,1	50,2	1262,1
2002	108,9	82,3	483,1	137,7	122,9	405,6	225,2	312,9	1,0	29,4	98,9	18,8	2026,7
2003	84,1	184,0	312,0	133,4	230,8	244,3	183,5	49,6	41,6	21,7	16,1	22,5	1523,6
2004	383,9	283,0	252,0	167,8	160,7	642,9	393,4	90,1	44,4	13,0	10,1	4,8	2446,1
2005	2,0	36,4	186,3	144,0	548,2	761,3	126,9	134,4	43,9	31,6	1,2	10,4	2026,6
2006	4,2	87,2	157,4	427,9	115,3	375,1	133,3	90,3	45,2	13,4	83,5	49,8	1582,6
2007	86,3	67,6	260,9	236,8	115,7	560,4	191,4	95,8	46,2	19,6	45,2	16,0	1741,9
2008	68,2	22,4	279,8	417,0	198,3	542,0	473,1	401,1	37,8	32,0	9,5	0,4	2481,6
Média	65,5	92,6	215,6	242,6	219,4	384,7	259,9	136,1	45,7	21,6	27,0	24,5	1735,2

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

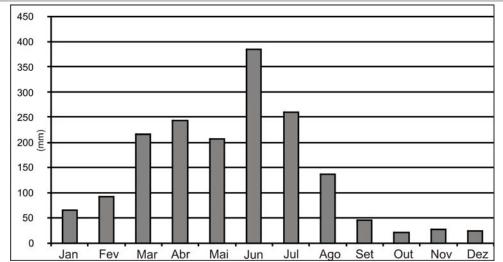


Figura 1.2 - Pluviométrias médias mensais na cidade de Natal entre o ano de 1992 e 2008 (Fonte: EMPARN).

Tabela 1.3 - Temperaturas médias (°C) mensais entre 1996 e 2006 (Fonte: EMPARN).

Mês	Jan	Fev	Mar	Abr	Maio	Jun	Jul	Ago	Set	Out	Nov	Dez
Temperatura	28,1	28,3	28,2	27,8	27,4	26,0	25,6	25,8	26,7	27,3	27,7	28,1

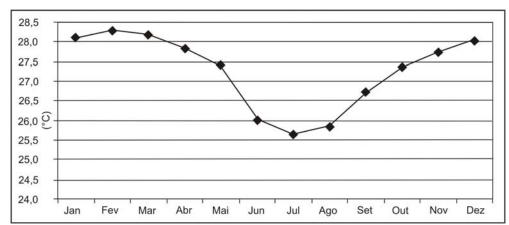


Figura 1.3 - Temperaturas médias (°C) mensais entre 1996 e 2006 (Fonte: EMPARN).

Os dados climáticos históricos são apresentados nas tabelas 2.3, 2.4 e 2.5. A umidade relativa do ar histórica varia de 73,1% no mês de outubro a 82,3% nos meses de maio e junho. A evaporação histórica média varia entre 3,6 mm em junho a 7,5 mm no mês de novembro. A insolação histórica média varia de 189,9 h em abril a 288,2 h em outubro.

Tabela 1.4 - Médias de Umidade relativa do ar (%) entre 1996 e 2006 (Fonte: EMPARN).

Mês	Jan	Fev	Mar	Abr	Maio	Jun	Jun	Ago	Set	Out	Nov	Dez
Umidade	75,6	77,9	79,1	81,7	82,3	82,3	80,6	78	74,6	73,1	76,8	75,6

Tabela 1.5 - Médias de evaporação (mm) entre 1996 e 2006 (Fonte: EMPARN).

Mês	Jan	Fev	Mar	Abr	Maio	Jun	Jun	Ago	Set	Out	Nov	Dez
Evaporação	6,9	6,8	5,7	4,7	4,5	3,6	4,2	5,5	6,6	7,3	7,5	7,0

Tabela 1.6 - Médias de insolação (horas) entre 1996 e 2006 (Fonte: EMPARN).

Mês	Jan	Fev	Mar	Abr	Maio	Jun	Jun	Ago	Set	Out	Nov	Dez
Insolação	226,5	212,9	205,7	189,9	211,2	215,3	206,6	242,5	259	288,2	275,2	259,3

1.4.2 Balanço Hídrico e Classificação Climática

O balanço hídrico, em termos gerais, trata da contabilidade das quantidades de água que entram e saem de uma "camada" de solo que alcança uma profundidade L (Reichardt, 1990). A partir das informações do balanço hídrico pode se ter uma noção das condições hídricas de drenagem do solo em determinada região. Reichard (1990), distingue dois tipos de Balanço Hídrico:

- Balanço Hídrico Real; é o resultado de todas as entradas e saídas de uma área, mostrando as condições locais, principalmente para serem adotadas medidas de controle da situação da drenagem do solo em áreas agrícolas.
- Balanço Hídrico Climatológico ou Balanço Hidroclimatológico; representa uma estimativa das condições hídricas do solo baseado em séries de dados climáticos, caracterizando uma região em termos hidrológicos.

Neste trabalho, a elaboração do balanço hidroclimatológico foi baseada no método de Thornthwaite & Matter (1955), que considera dados de chuva, evapotranspiração e uma capacidade de armazenamento de água no solo de 100 mm, sendo este um valor médio para os solos, para uma profundidade de 1 m. Os dados de chuva apresentados refletem somente o volume precipitado mensalmente, não sendo considerado a intesidade da chuva.

Os dados necessários para a elaboração do balanço hídroclimatológico foram analisados em uma planilha desenvolvida por Rolim *et al.* (1998), a partir do qual foi possível gerar os gráficos apresentados na figura 1.4, e na figura 1.5.

A partir da análise dos dados obtidos, o estudo mostra que ocorre uma deficiência de água no solo de 586 mm, entre os meses de setembro e fevereiro. O excedente hídrico é de 522,1 mm entre os meses de abril e agosto, ou seja, nesse período o solo atinge a capacidade máxima de armazenamento que é de 100 mm, favorecendo a recarga dos aquíferos, e

ocorrência de enxurradas. O valor do excedente pode ser considerado como uma estimativa do volume que irá contribuir com parte da recarga das águas subterrâneas, desde que a área conserve as suas condições naturais.

A evapotranspiração potencial é de 1.799,09 mm, com um armazenamento médio de 594 mm.

A taxa de infiltração de água no terreno em potencial, corresponde a relação entre o excedente 522,1 mm e a precipitação de 1.735,2, ou seja, nesse caso, é de 30%. Para que este valor tenha validade, o escoamento superficial deve ser nulo. A função das lagoas de infiltração de águas pluviais promovem uma indução na recarga do aquífero local, reduzindo as perdas pelo escoamento superficial, sendo este percentual coerente para as condições da zona norte.

Figura 1.4 - Balanço hidroclimatológico na região da cidade de Natal.

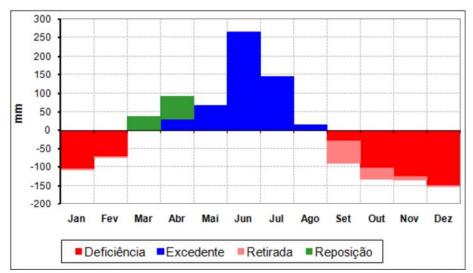


Figura 1.5 - Balanço hidroclimatológico, com distinção de cores para as condições hídricas do solo como deficiência, excedente, retirada e reposição, referente a região da cidade de Natal.

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

A determinação da classe climática é baseada no índice de umidade de Thorthwaite (Iu) juntamente com dados de ETP obtidos anteriormente no balanço hídrico da área. São utilizados as seguintes equações:

Índice hídrico (Ih)

$$Ih=100 \left(\frac{Exc}{ETP}\right)$$

equação 1.2

Índice de aridez (Ia)

equação 1.3

Utilizando as equações 1.1, 1.2 e 1.3, foi obtido um índice hídrico de 29% e índice de aridez de 32%. A partir dos dois índices apresentados obtem-se um índice de umidade no valor de -3%. A classificação dos tipos climáticos foi realizada com base na tabela 1.7. O índice de umidade para a cidade de Natal é do tipo climátio C1, subúmido seco.

Tabela 1.7 - Tipos climáticos baseados no índice de umidade (Iu) gerado a partir dos parâmetros do Balanço Hídrico Climatológico de Thornthwaite & Mather (1955).

Tip	o de Clima	lu					
A	Superúmido	Iu≥100					
B4	Úmido	80 ≤Iu<100					
В3	Úmido	60≤Iu<80					
B2	Úmido	40≤Iu<60					
B1	Úmido	20≤Iu<40					
C2	Subúmido	0≤Iu<20					
C1	Subúmido seco	-33,3≤Iu<0					
D	Semi-árido	-66,7≤Iu<-33,3					
Е	Árido	-100≤Iu<-66,7					

1.4.3 Geomorfologia

A configuração geomorfológica da zona norte de Natal é decorrente principalmente dos processos eólicos e ação da erosão pluvial. As formas de relevo presentes foram analisadas a partir do mapa que apresenta curvas de nível com equidistância de 10 metros.

A partir da análise do relevo, foi possível caracterizar a área em cinco classes geomofológica diferenciadas segundo o seu percentual de declividade (Figura 1.6):

- a) Planície de influência de marés; zona inundável.
- b) Plano; declividade até 3%.
- c) Suave ondulado; declividade entre 3% e 8%.
- d) Ondulado; declividade entre 8% e 12%.
- e) Declinoso; declividade entre 12% e 25%.

Planície de influência de marés: por ser uma zona de estuário encontra-se restrita à zona de inundação periódica das marés, e também no período mais chuvoso em decorrência de um aumento da vazão do rio Potengi, deixando a maior parte inundada. Suas cotas são inferiores a 10 metros e não possuem uma amplitude topográfica significativa, ou seja, trata-se de um relevo nivelado pela ação direta e constante das águas.

Relevo Plano: ocorre em todo o setor central e oeste da área, apresentando declividades de até 3%, sendo caracterizado por uma área relativamente plana, com cotas de 40 metros em toda a extensão dessa área.

Relevo Suave Ondulado: ocorre na faixa leste da área apresentando declividades entre 3% e 8%, com cotas que variam de 30 a 60 metros no bairro Redinha. Essa área possui elevações do relevo alinhadas na direção do vento, evidenciando a influência direta dos processos eólicos na morfologia do relevo da área.

Relevo Ondulado: estão restritos na faixa norte da área nas proximidades do leito do rio Doce, possuindo declividades entre 8% e 12%, sendo as mesmas geradas em decorrência de feições eólicas (dunas) ainda preservadas, com cotas variando entre 10 e 30 metros.

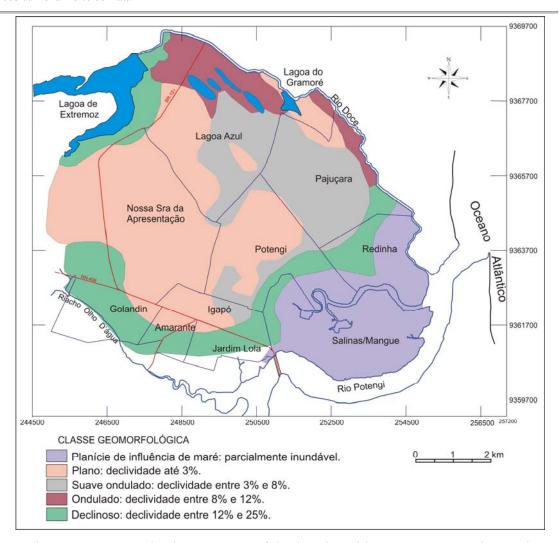


Figura 1.6 - Mapa de classes geomorfológicas inseridas na zona norte de Natal.

Relevo Declinoso: com declividades máxima de 25%, os mesmos são caracterizados por compor a zona relativamente uniforme que precede os cursos d'água. As curvas de nível nessa zona são paralelas aos cursos d'água de superfície. Ocorrem em uma grande faixa no setor sul da área, nas margens do rio Potengi, ao norte nas margens da lagoa de Extremoz e na faixa leste, com menor expressão, nas margens do rio Doce. Suas cotas variam de 10 m a 40 m.

1.4.4 Solos

Os solos, na zona norte de Natal, são representados basicamente por areias quartzosas, decorrente do retrabalhamento de sedimentos eólicos e do manto de alteração do Grupo Barreiras. Na zona da calha do rio Potengi, ocorrem solos indiscriminados de mangue (MA/EMBRAPA/SUDENE, 1971).

1.4.5 Vegetação

A vegetação nativa da área foi quase que totalmente substituída por construções urbanas, ou seja, grande parte da área foi antropizada por processos da urbanização ou agrícolas. Este item será abordado com maior detalhamento no capítulo referente aos aspectos ambientais.

1.4.6 Hidrografia

Aproximadamente 60% da zona norte de Natal encontra-se na Bacia Hidrográfica do rio Doce, e 40% no baixo curso na bacia do rio Potengi (Figura 1.7). No domínio da bacia do rio Doce não existem cursos d'água representativos, estando inseridos somente algumas lagoas na faixa norte da área. Na bacia hidrográfica do rio Potengi ocorre o riacho Olho d'água, localizado na extremidade oeste da área, sendo este,çç o limite físico da área de estudo.

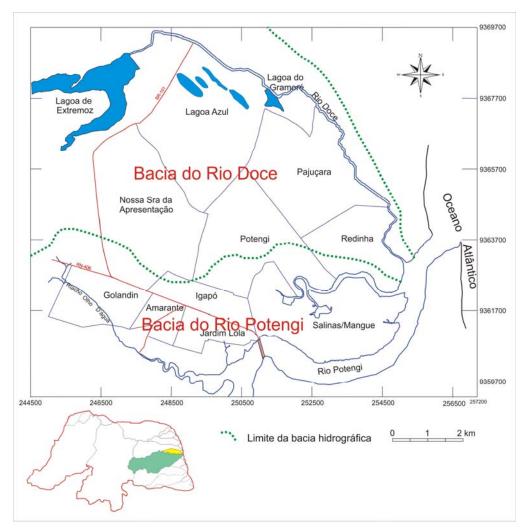


Figura 1.7 - Delimitação das bacias hidrográficas inseridas na área de estudo.

A configuração geológica do litoral leste do Estado do Rio Grande do Norte é formada basicamente por sedimentos areno-argilosos, associados aos altos e baixos estruturais que ocorrem desde a cidade de Touros (ao norte) até a cidade de Mamanguape (ao sul), já no estado da Paraíba.

A seguir, será apresentada uma sumarização das unidades litoestratigráficas que ocorrem nas imediações da cidade de Natal, e posteriormente, detalhado a configuração geológica local da área de estudo (Figura 2.1).

2.1 CONTEXTO GEOLÓGICO REGIONAL

Será dada ênfase à Geologia Regional compreendida entre o rio Maxaranguape, ao norte, e no limite sul, a lagoa de Guaraíras, no município de Tibau do Sul. As unidades litoestratigráficas, que ocorrem nas imediações da área de estudo, serão sumarizadas de acordo com estudos já elaborados.

2.1.1 Unidades Litoestratigráficas

2.1.1.1 Sedimentos Cretáceos (sequência Infra-Barreiras)

Posiciona-se discordantemente sobre o embasamento cristalino do Pré-Cambriano. É composto na sua porção inferior por arenitos mal selecionados, finos a grossos, às vezes, silissificados a esbranquiçados e por carbonáticos constituídos por calcário e arenito calcífero em sua porção superior (Costa & Salim, 1972).

2.1.1.2 Grupo Barreiras (sedimentos Tércio-Quaternários)

Consiste em uma unidade geológica de ambiente continental, formada por sedimentos clásticos de cores variadas, mal consolidados, maciços ou apresentando estratificações pouco frequentes, tendo sua granulação que varia de argilas a conglomerados, que ocorrem na costa Brasileira desde o vale Amazônico até o estado do Espírito Santo.

O Grupo Barreiras no estado do Rio Grande do Norte é constituído por três unidades litoestratigráficas (Mabessone et al., 1977), sendo estas representadas pelas unidades litoestratigráficas; Formação Serra do Martins, seguida da Formação Guararapes e finalmente a Formação Macaíba, da base para o topo (Tabela 2.1). As tentativas de identificação e de caracterização do Grupo Barreiras tem sido baseadas em evoluções paleoclimáticas.

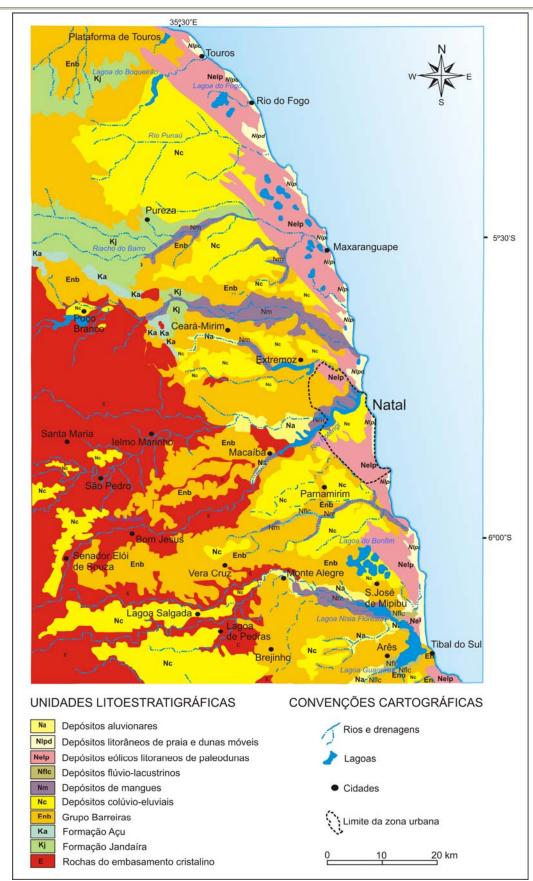


Figura 2.1 - Mapa com unidades litoestratigráficas de parte do litoral leste do Estado do Rio Grande do Norte. Fonte com modificações: Angelin et al. 2006.

Formação Serra do Martins

É composta por sedimentos arenosos a conglomeráticos, com concreções ferruginosas que afloram no topo de algumas chapadas interioranas da Borborema (Mabessone & Campos e Silva, 1972).

Na porção superior das chapadas, a Formação caracteriza-se predominantemente por uma composição arcosiana com ausência de estratificação, presença de níveis argilosos variados, às vezes cauliniticos. Os sedimentos com espessura e extensão muito variada afloram apenas como restos que foram preservados de uma intensa lixiviação. Predominam rochas areno-argilosas, esbranquiçadas a avermelhadas. Na porção basal encontram-se arenitos caulinizados, facilmente confundíveis com a capa de intemperismo das rochas mais antigas. É comum a ocorrência de níveis conglomeráticos com seixos subangulosos. Também podem ser identificadas zonas silissificadas nos arenitos grossos do topo das chapadas e bancos de cores variadas, que vão de creme a marrom escuro podendo ser silissificados ou não, com intercalações de folhelhos e conglomerados. Segundo Mabessone op. cit., estes sedimentos foram depositados em ambiente fluvial, não ocorrendo afloramentos na região do município de Natal.

Formação Guararapes

Trata-se da unidade intermediária do Grupo Barreiras, sendo o mesmo constituído por sedimentos areno-argilosos, em camadas horizontais ou em lentes, com importante variação lateral. As cores são variegadas e a granulação dos sedimentos variam de finos a grossos. A estratificação é irregular, marcada por leitos de seixos de quartzo. Apresenta um manto formado por um nível arenoso e síltico-argiloso, denominado "intemperismo riacho do Morno". Segundo Melo (1995; 1998), esta Formação aflora nos setores leste e norte da zona sul de Natal, e em todo o setor sul e leste da zona norte da cidade, tendo nos setores norte e leste, sedimentos recobertos pelos depósitos recentes de areias de dunas e colúvios. Os sedimentos dessa Formação encontram-se muitas vezes cobertos por depósitos recentes de dunas, aluviões e manguezais estando sobrepostos aos depósitos carbonáticos de idade cretácea.

Formação Macaíba

Unidade superior do Grupo Barreiras caracterizada por sua coloração esbranquiçada, é constituída por sedimentos areno-argilosos e argilo-arenosos pouco consolidados e de um

grau diagenético relativamente fraco, com seixos na base. Estes sedimentos foram originados em ambiente com registros de correntes de lama e areia, em decorrência das variações climáticas, são marcados pelos horizontes conglomeráticos. Segundo Salin et al. (1974) estes sedimentos são observados na região de Natal, ocorrendo nas zonas de depressão dos grabens de Natal e Parnamirim, podendo ocorrer na costa formados a partir da reativação tectônica ocorrida no Pleistoceno Médio. Após sua deposição, ocorreu um intemperismo denominado "intemperismo Potengi", gerando concreções de óxidos de ferro na superfície, sem formar crostas inteiras.

Tabela 2.1 - Coluna litoestratigráfica da região do litoral leste do Rio Grande do Norte. (Fonte com modificações Angelim 2006).

CRONOESTRATIGRAFIA			GRUPO	FORMAÇÃO	SIGLA	DESCRIÇÃO LITOLÓGICA
Mesozóico Cenozóico	Terciário Quaternário	Holoceno		Depósitos aluviais	Qa	Areias quartzosas de fina a grossa transportadas por ação fluvial.
				Depósitos eólicos litorâneos	Qm	Areias quartzosas homogêneas de dunas.
				Depósitos colúvio-eluviais	QI	Sedimentos retrabalhados pela destruição de relevo associado ao manto de alteração do Grupo Barreiras.
			Barreiras	Macaiba	ENma	Sedimentos areno-argilosos a argilo-arenosos com seixos na base, apresenta cores esbranquiçadas.
				Guararapes	ENgu	Sedimentos Areno-argilosos, em camadas horizontais ou Intes com variação lateral, apresentando cores variegadas
				Serra do Martins	ENsm	Arenitos médio a conglomerático, avermelhado ou amarelado, com níveis pelíticos locais.
	Cretáceo	Campaniano Santoniano	Apodi	Jandaira	Kj	Calcários microsparitos e esparitos dolomíticos Arenitos friáveis com leitos conglomeráticos na base e intercalações siltico-argilosas no topo.
	Cre			Açu	Ka	Arenitos com granulação média e intercalações de folhelhos e argilitos.
Arqueano/alonquiano				Complexo Granítico-Migmatítico	PP- Agm	Granitos, gnaisses e migmatitos diversos.

2.1.1.3 Sedimentos Quaternários

Compreendem as unidades geológicas representadas por depósitos de arenitos de praia (beach rocks), dunas (fixas ou móveis), depósitos aluvionares, depósitos praiais, terraços fluviais e mangues. São datadas do Holoceno e podem recobrir os sedimentos do Grupo Barreiras.

Depósitos colúvio-eluviais

São sedimentos arenosos, inconsolidados a pouco consolidados principalmente nas encostas de vales, depositados sob ação gravitacional, associados ao manto de alteração "in situ" (eluvião) dos sedimentos Barreiras, resultado da ação de intemperismo químico. Coberturas eluviais são também comuns na região de Tabuleiros.

VASCONCELOS, M. B. Capítulo II - Geologia

Depósitos eólicos litorâneos

Representados por sedimentos friáveis provenientes do Grupo Barreiras e sedimentos transportados da Plataforma, originados em decorrência principalmente do processo de erosão eólica, apresentam uma granulação homogênea. São depósitos arenosos bem selecionados, que se acumulam ao longo da faixa costeira do Estado, ocorrendo sobre o Grupo Barreiras ou sobre sedimentos recentes, sendo formados basicamente por grãos de quartzo. Costa (1970) e Nogueira (1981) caracterizam as dunas que ocorrem na cidade de Natal em quatro gerações: Dunas antigas, Dunas Intermediárias, Dunas recentes e Dunas atuais.

Sedimentos aluvionares

Ocorrem na calha dos principais rios da região, sendo formados por areias finas a grossas, transportadas essencialmente pela ação fluvial. Podem ocorrer também, com menor frequência, depósitos de argila associados a essas calhas de drenagens. Especificamente na área da zona norte da cidade de Natal, estes sedimentos ocorrem principalmente nas margens do rio Potengi e rio Doce.

2.1.2 Análise das Condições Geológicas com o Uso de Imagens de Satélites

Para auxiliar na definição da configuração geológica da área de estudo, foram utilizadas dados de sensores remotos como imagens de satélite Landsat 7 (GLCF, 2007) com resolução espacial de 30 m, banda pancromática de 15 m e dados de RADAR (SRTM, 2003) com resolução de 90 m.

O Processamento Digital de Imagens (PDI) tem o objetivo principal de identificar feições que possam auxiliar na elaboração de mapas geológicos, uso e ocupação do solo, recursos hídricos de superfície dentre outros mapas temáticos que podem ser gerados com estas informações.

Na figura 2.2 é apresentada uma composição RGB (Red, Green, Blue) bandas 7, 4 e 2, fusão com a banda pancromática. Através desta composição podem ser identificados alguns lineamentos geológicos através do padrão do sistema de drenagem. Aspectos do uso e ocupação do solo também são realçados como a zona urbana, que se destaca por possuir uma cor rósea, as áreas de dunas móveis na extremidade leste da área, fora da área de efeteiva de trabalho, apresentam-se com uma cor branca e as zonas cobertas por vegetação apresentam-se na cor verde. Os corpos hídricos de superfície apresentam-se na cor preta, sendo esta cor

VASCONCELOS, M. B. Capítulo II - Geologia

também uma representação do sombreamento de núvens. A calha do rio Potengi, Ceará-Mirim, rio Doce e rio do Mudo apresentam-se na cor verde escura.

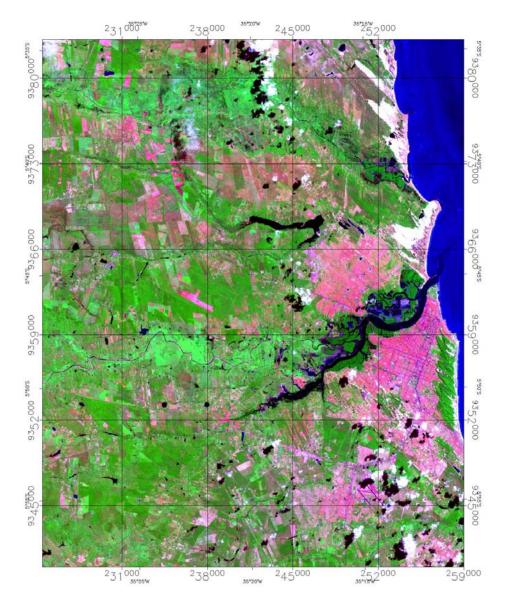


Figura 2.2 - Composição RGB 7, 4 e 2 Landsat 7 fusão com a pancromática ano de 2001, com alterações no histograma (GLCF, 2007), utilizado para a identificação de lineamentos geológicos.

Para ocorrer um realce dos lineamentos a partir dos dados de RADAR foi elaborado a ferramenta sombra de relevo "hill shade", no software ENVI® 4.0 na qual foi adicionada uma coloração avermelhada com uma elevação da iluminação de 20° no azimute zero (Figura 2.3). Os lineamentos geológicos identificados foram utilizados na elaboração da estruturação geológica regional e na elaboração do diagrama de rosetas. Através desta imagem, ficam definidas as calhas dos rios Ceará-Mirim e Potengi, sendo também identificados os que

ocorrem a norte do rio Guajiru e rio do Mudo, e na porção sul da imagem são identificados lineamentos de direção E-W e NW-SE.

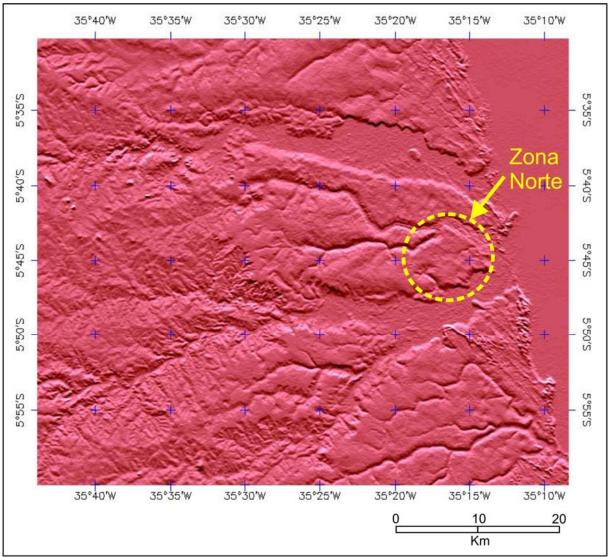


Figura 2.3 - Realce para a visualização de lineamentos a partir da sombra de relevo "Hill Shade 20°; 0", inclinação luminosa de 20° no azimute zero, realizada a partir dos dados de RADAR.

2.1.3 Integração de Dados da Estruturação Geológica

Estudos geofísicos desenvolvidos no setor norte da cidade de Natal revelam uma orientação principal dos lineamentos geológicos de NE-SW e NW-SE (Duarte, 1995). Na figura 2.4 é apresentado o diagrama de rosetas gerado a partir da identificação de 123 lineamentos, no qual ocorre uma predominância de lineamentos E-W ou bem próximos a esta direção.

Para a identificação dos lineamentos geológicos, foram utilizadas imagens de satélite, dados de RADAR e informações de trabalhos anteriores (Figura 2.5).

Feitosa (2002) discutindo as relações estratigráficas e estruturais da Bacia Potiguar cita como as principais feições estruturais no litoral leste do estado do Rio Grande do Norte e Paraíba, os Altos de Touros, Pititinga/Maxaranguape, Ceará-Mirim (no extremo norte), e Mamanguape (no extremo sul). O alto de Mamanguape provavelmente representa a estrutura mais antiga da região, que teria servido como uma barreira ao avanço da sedimentação clástica continental procedente do sul, sendo considerado provavelmente como o limite norte do Aquífero Beberibe.

A definição da estrutura geológica poderá adicionar informações do comportamento das águas subterrâneas, bem como sugerir a origem dos cursos de água de superfície e a existência de determinadas lagoas, ou seja, determinar a interação entre águas superficiais e águas subterrâneas. A costa leste do estado do Rio Grande do Norte é controlada por alguns falhamentos com direções NE-SW e NW-SE, caracterizadas por movimentos transcorrentes e normais (Bezerra & Vita-Finzi, 2000) in Nogueira et al. (2006). Os vales dos rios Jacu, Trairi, Potengí e Jundiaí são controlados por estruturas do tipo Graben (Nogueira, 2006; Salin, 1974). Lucena et al. (2002) e Pereira (2003) apresentam o fator estrutural responsável pela conexão hidráulica na lagoa do Bonfim (litoral leste do Estado do Rio Grande do Norte) com as águas subterrâneas e também é responsável pelo aumento brusco do aquífero Barreiras. Diniz Filho & Barroso (2002) identificaram na Bacia hidrográfica do rio Ceará-Mirim, que fica na extremidade norte da área, a ocorrência de diversos falhamentos gerando baixos e altos das Formações geológicas.

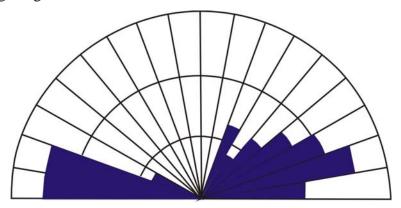


Figura 2.4 - Diagrama de Rosetas com os 123 lineamentos identificados nas imagens de satélite.

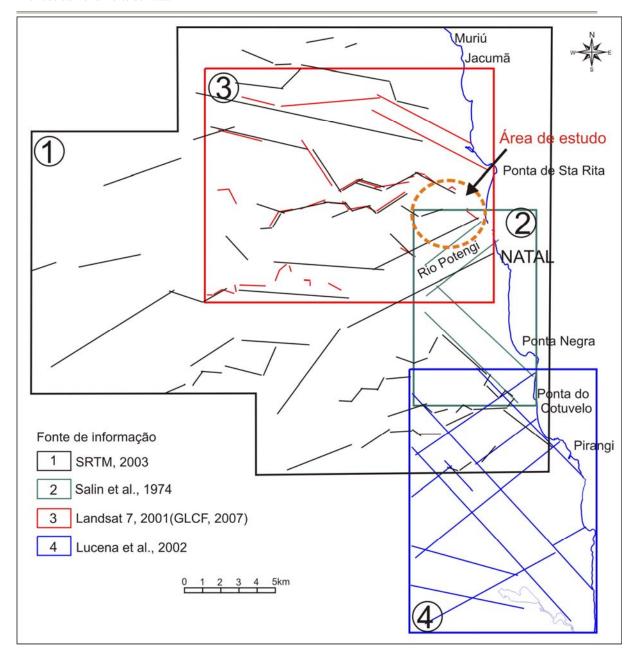


Figura 2.5 - Compilação de lineamentos contidos no litoral leste do Rio Grande do Norte.

2.1.4 Estruturação Geológica na Região da Lagoa de Extremoz

Os corpos d'água que ocorrem nas proximidades da cidade de Natal, como as lagoas de Pium, Extremoz, Jiqui e Bonfim, tem sua origem ligada à interseção de falhamentos geológicos com direções variáveis. Neste trabalho será detalhada somente a estruturação geológica atuante nas imediações da lagoa de Extremoz, que encontra-se localizada na extremidade norte da área de estudo.

A lagoa de Extremoz possui um contexto geológico constituído em sua maior parte por sedimentos Tércio-quaternários do Grupo Barreiras e coberturas recentes associadas, que incluem aluviões, dunas, elúvios e colúvios. Todo este pacote está sobrejacente na maior parte da área sobre rochas carbonáticas provavelmente correlatas aos calcários da Formação Jandaíra. No setor oeste da área, no alto curso dos rios Guajirú e do Mudo, afloram as rochas do embasamento cristalino, o que limita consideravelmente a ocorrência do aquífero Barreiras neste setor (Figura 2.6).

A partir da obtenção de perfis de poços com descrição litológica, foram elaboradas duas seções geológicas de direção aproximada leste para oeste. Na figura 2.6 é apresentada a localização das seções realizadas e os poços que apresentam perfil litológico utilizados. Os poços foram nivelados com GPS (Global Position Systen) de precisão, e a configuração do relevo foi baseada em dados de RADAR (SRTM, 2003).

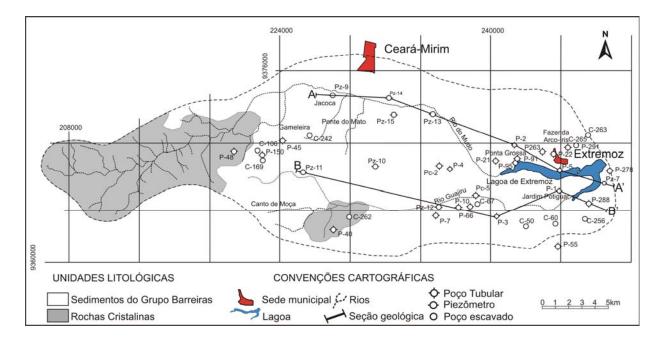


Figura 2.6 - Direção das seções geológicas elaboradas com simplificação da geologia da área.

Na seção A-A' pode ser observado a ocorrência de dois falhamentos que proporcionam a formação de um Graben no qual o bloco central rebaixou em relação aos outros. A litologia é basicamente composta por arenitos, apresentando argilas na porção superior, com espessuras que variam de 20 a 160 m. A parte basal das seções geológicas é constituída por arenitos calcíferos.

Na seção B-B' localizada na parte sul da área, verifica-se que ocorre um falhamento no qual o bloco situado a leste sofreu um rebaixamento em relação ao bloco oeste. Este falhamento é coincidente com o curso do rio Guajiru, mostrando que o mesmo tem sua direção controlada por uma falha geológica. A litologia do Grupo Barreiras, nessa área, pode variar de um arenito argiloso para um arenito sem intercalações argilosas.

A espessura saturada do aquífero Barreiras varia de 11,0 a 14,0 m nas localidades de Poço Comprido e Massaranduba. Já no bairro de Nossa S^{ra} da Apresentação que está inserido na área efetiva da zona norte de Natal, a espessura do aquífero Barreiras varia de 83,0 e 96,0 metros (Figura 2.7).

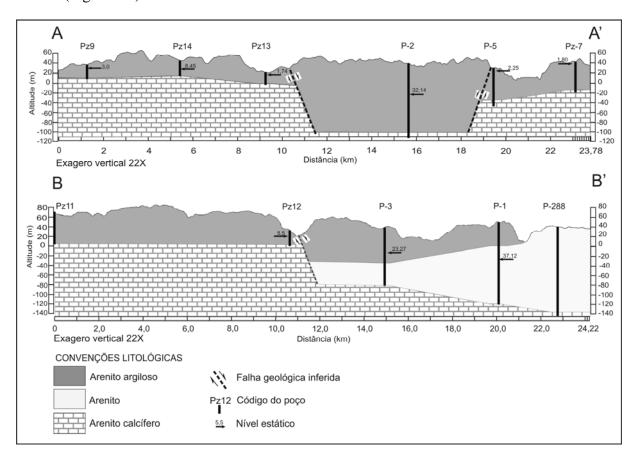


Figura 2.7 - Seções geológicas nas imediações da lagoa de Extremoz, porção norte da área de estudo (Fonte com modificações Melo, 2004).

2.2 CONTEXTO GEOLÓGICO LOCAL

Um dos trabalhos mais recentes da constituição litológica da zona norte foi desenvolvido por Melo (1998), que considerou a existência de três litroestratigráficas: a) Grupo Barreiras; b) Paleodunas e Cobertura coluvionar; c) Mangues e

Hídricos da Zona Norte de Natal - RN

Baixas planícies atuais. Duarte (1995) realizou estudos gravimétricos e geológicos de campo para definir a geologia da zona norte da cidade de Natal e quando caracterizou a área, basicamente, em três unidades geológicas: Dunas Fixas, Sedimentos aluvionares e Sedimentos de mangue.

Neste trabalho, a definição das unidades litoestratigráficas da área da zona norte da cidade de Natal foi baseada em trabalhos de campo e interpretação de perfis litológicos de poços.

A área de estudo é representada, de um modo geral, por sedimentos arenosos capeando o Grupo Barreiras, caracterizados e diferenciados de acordo com a presença de lentes argilosas em profundidade. O mapa com as unidades litoestratigráficas é apresentado na figura 2.8, juntamente com a direção das seções geológicas realizadas com base na descrição de perfis de poços.

2.2.1 Unidade Infra-Barreiras

Ocorre somente em subsuperfície, sendo identificada em campo somente através das amostras de calha durante a perfuração de poços. É uma unidade representada por sedimentos areno-argilosos com a presença de carbonatos, caracterizada pelos construtores de poços como "arenito calcífero", representando a unidade basal do Grupo Barreiras. Na área de estudo, a maioria dos poços tubulares, com fins de captação de água, são perfurados somente até o topo desta unidade litoestratigráfica, ou seja, a contribuição como um aquífero, é praticamente inexistente.

2.2.2 Cobertura de Sedimentos Arenosos do Grupo Barreiras

Trata-se de uma camada com espessura de até 10 m, resultante do intemperismo dos sedimentos do Grupo Barreiras associado ao transporte de sedimentos eólicos. A partir da análise da descrição dos perfis de poços (ANEXO A) foi possível identificar duas unidades que se diferenciam em decorrência da presença de argilas.

(I) Cobertura arenosa do Grupo Barreiras com ausência de intercalações de argila

Ocorre em superfície na forma de areias, e a medida que aumenta a profundidade apresenta um maior grau de compactação dos sedimentos. Os mesmos são representados

basicamente por arenitos finos a grossos, encontrados nas proximidades da lagoa de Extremoz (faixa sul da lagoa) e na faixa leste da área, nas proximidades do rio Doce.

(II) Cobertura arenosa com intercalações de argila em profundidade

É representada em profundidade por arenitos com intercalações argilosas de até 12 m de espessura. Esta unidade está em contato com todas as demais da área de estudo, possuindo a maior representatividade espacial.

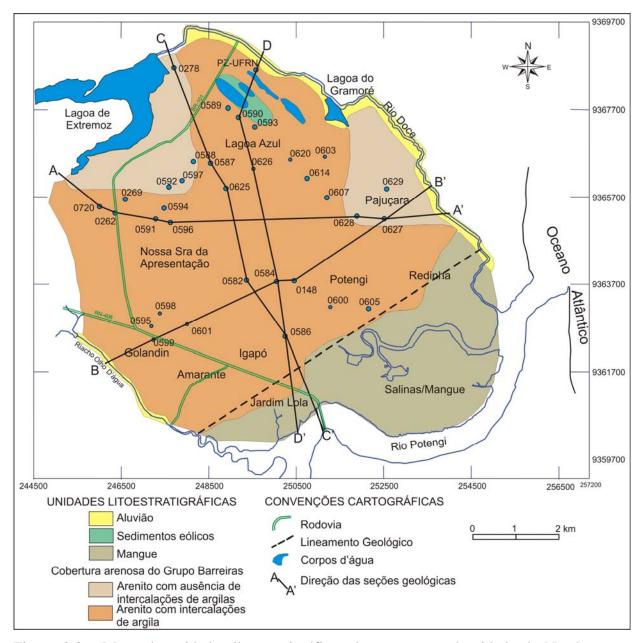


Figura 2.8 - Mapa de unidades litoestratigráficas da zona norte da cidade de Natal, com direção das seções geológicas e poços utilizados.

2.2.3 Depósitos de Mangue

Estão restritos a área de influência direta das variações de nível das marés oceânicas. Trata-se de uma área onde ocorre uma mistura de sedimentos transportados pelo rio Potengi em maior quantidade e pelo rio Doce, associado à influência das oscilações de marés. Nesta zona ocorre um aporte de matéria orgânica em decomposição, caracterizando um sedimento síltico-arenoso de cor escura.

2.2.4 Sedimentos Eólicos

Possuem expressão topográfica no relevo da área com cotas de até 20 m, podendo ser caracterizados como paleodunas. Encontra-se na faixa leste da área, possuindo uma forma alongada de direção NW (sentido do vento), ocorrendo associado a formação de lagoas. Os sedimentos são homogêneos e bem selecionados, podendo ter uma variação na coloração em subsuperfície em decorrência da presença de níveis com matéria orgânica.

2.2.5 Sedimentos Aluvionares

Com pequena expressão espacial, ocorrem na calha do rio Doce em uma faixa de aproximadamente 60 metros de largura. Tratam de sedimentos transportados pelas águas fluviais durante, principalmente, o período de enxurradas. Na porção sudoeste da área, onde escoa o riacho Olho d'água, os sedimentos aluvioares possuem uma expressividade reduzida em uma estreita calha fluvial.

2.3 DEFINIÇÃO DA ESTRUTURAÇÃO GEOLÓGICA

A definição da estruturação geológica foi realizada com a elaboração das seções geológicas, baseada na descrição litológica de 32 perfis de poços associado aos dados de RADAR (STRM, 2003). A partir destes dados, foram elaborados quatro seções geológicas (Figura 2.9) em diferentes direções com o objetivo de apresentar o condicionamento estrutural. As informações de nível estático foram baseadas no mapa de profundidade de águas subterrâneas elaborado para o mês de abril do ano de 2008.

De um modo geral, o contexto estrutural do litoral leste do estado do rio Grande do Norte é marcado por lineamentos geológicos sugerindo sistemas de falhamentos. Nas seções apresentadas da área de estudo, não foram evidenciados processos de falhamentos geológicos,

a não ser o que está situado nas imediações do rio Potengi, compondo o Grabem de mesmo nome.

Seção Geológica A-A'

Com direção W-E, possui uma extensão de 9,4 km onde estão inseridos 6 poços (0720, 0262, 0591, 0596, 0628 e 0627), dos quais, 3 não são perfurados até a base do Grupo Barreiras. Esta seção apresenta uma elevação do arenito calcífero a medida que se desloca para oeste, sendo marcado como um provável falhamento, situado na linha do curso do rio Guajiru. São observados a ocorrência de lentes argilosas com espessuras próximas a 20 m na parte central e oeste. O poço 0262 não é totalmente penetrante, podendo o rebaixamento do arenito calcífero ser interpretado como uma variação no paleorelevo.

Seção Geológica B-B'

Possui direção SW-NE e uma extensão de 8,7 km, estão inseridos nesta seção 5 poços (0599, 0601, 0584, 0148 e 0627), que possibilitam configurar uma geologia marcada pela presença de lentes argilosas. Nas imediações da extremidade NE ocorre um rebaixamento do nível do arenito calcífero, nas proximidades do limite do contato entre as intercalações argilosas dos sedimentos arenosos, com os arenitos com ausência de níveis argilosos. A profundidade do arenito calcífero, nesta seção, varia de 69 m na parte central, até 90 m na extremidade NE.

Seção Geológica C-C'

Apresenta uma extensão de aproximadamente 9,6 km com direção N-S, composta por 5 poços (278, 0587, 0625, 0582 e 0586), que definem uma configuração no setor oeste de sedimentos areníticos, sem intercalações de argila e a medida que se desloca para sul ocorrem um aumento dos níveis argilosos com espessuras de até 15 m.

O arenito calcífero está situado a profundidades que variam entre 55 e 67 m. Nas proximidades do poço 0582 ocorre um rebaixamento do arenito calcífero, que posteriormente em direção ao sul eleva-se novamente, podendo esta diferença de cota ter relação com as variações no paleorelevo da área.

Seção Geológica D-D'

Com extensão de aproximadamente 9,2 km e direção N-S apresenta uma elevação do arenito calcífero nas imediações do poço 0590 e, posteriormente, em direção ao sul, apresenta-se com o nível do arenito calcífero relativamente homogêneo, sem muitas variações. A seção geológica é baseada em 5 poços (0586, 0584, 0626, 0590 e PZ-UFRN). No setor norte entre os poços 0590 e PZ-UFRN, ocorre um rebaixamento do arenito calcífero, interpretado na seção como uma variação decorrente do paleorelevo.

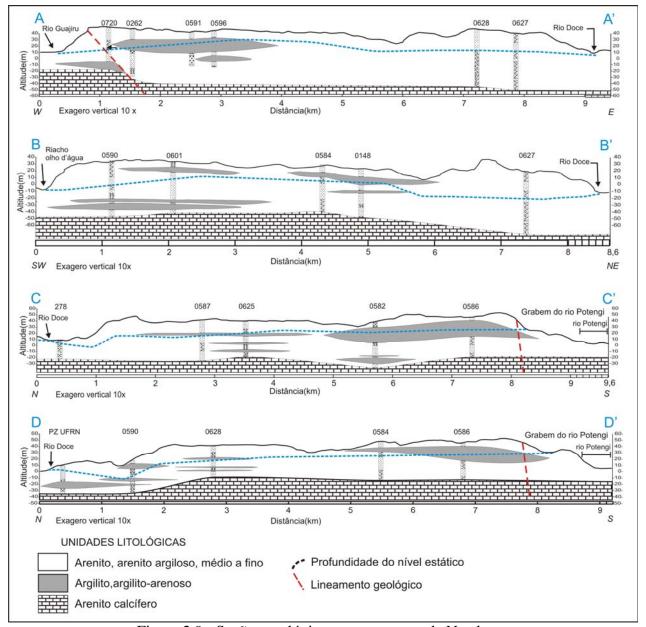



Figura 2.9 - Seções geológicas na zona norte de Natal.

Integração dos dados

A partir da integração das unidades litoestratigráficas com a estruturação geológica local e regional, verifica-se que na zona norte de Natal não existem evidências de ocorrências de falhamentos, a não ser os que ocorrem na periferia da área de estudo, como na borda sul, representados pelo grabem do rio Potengi, e na borda norte, com os falhamentos que ocorrem próximos a lagoa de Extremoz.

A homogeneidade litológica faz com que ocorra uma diferenciação das unidades litoestratigráficas segundo a presença de lentes argilosas em profundidade. A área apresenta somente os setores noroeste e leste que ocorrem arenitos sem intercalações de argilas. Os demais setores apresentam-se com tais intercalações propiciando provavelmente isolamentos hidráulicos parciais dos aquíferos em decorrência da espessura destas lentes argilosas. As variações de paleorelevo e o sistema deposicional podem influenciar em alguns setores uma conexão de aquíferos em decorrência das descontinuidades existentes.

As condições ambientais da área de estudo foram analisadas segundo aspectos históricos de uso e ocupação do solo e condicionamento atual de elementos que possam interferir e gerar danos à qualidade dos recursos hídricos.

Neste capítulo será apresentado uma análise histórica da evolução da ocupação do solo na zona norte de Natal, bem como a identificação das fontes pontenciais de contaminação instaladas atualmente.

3.1 ZONEAMENTO AMBIENTAL E EVOLUÇÃO DO USO E OCUPAÇÃO DO SOLO

O Zoneamento Ambiental (ZA) é uma forma de compartimentar determinada área de acordo com suas características ambientais particulares, como: vegetação, geologia e ocupação urbana, entre outros fatores. O termo "Zoneamento Ambiental (ZA)" foi considerado no Brasil apenas como o resultado da setorização realizada em Unidades de Conservação, Parques Nacionais, Estações Ecológicas, entre outros, com o objetivo de apoiar seus planos de manejo.

O ZA foi declarado instrumento de planejamento e gestão (Inciso II, art. 9°, Lei 6.938/81) ao tempo em que se criou o Sistema Nacional de Meio Ambiente (SISNAMA), juntamente com os Estudos e Relatórios de Impacto Ambiental (EIA/RIMA) e Gerenciamento de Bacias Hidrográficas.

Resoluções do Conselho Nacional de Meio Ambiente (CONAMA) mencionam o "Zoneamento Ambiental", citando alguns tipos: urbano, industrial, agro-ecológico, macrozoneamento geoambiental, macrozoneamento costeiro, ecológico-econômico, entre outros.

A Constituição de 1988 delegou à União a competência de elaborar e executar planos de ordenação do território e desenvolvimento econômico e social, consoante a regulação e promoção de usos sustentados dos pontos de vista ecológico, social e econômico.

O diagnóstico ambiental, assim concebido, fornece os subsídios para um prognóstico dos usos adequados às especificidades de cada unidade identificada.

Os impactos negativos do desenvolvimento urbano sobre a população e o meio ambiente, tem sido gerados principalmente em decorrência da falta de uma gestão integrada do uso do solo e da infra-estrutura (Montenegro & Tucci, 2005). Phelps (2004) desenvolveu um estudo da química das águas subterrâneas com ênfase ao nitrato e utilizou o zoneamento de ocupação do solo na Florida (EUA), em dois períodos: 1977 e 1995. Foi verificado um aumento nas unidades de ocupação do solo que está ligado a diversidade e expansão das atividades associadas ao processo de expansão populacional.

Estão inseridas, na área de estudo, duas Zonas de Proteção Ambiental (ZPA) (Figura 3.1):

- ZPA-9; que representa o Complexo de Lagoas e Dunas ao longo do rio Doce, apresentando uma largura máxima de aproximadamente 1000 m, estando inserida nos bairros de Pajuçara e Lagoa Azul.
- ZPA-8; que está localizada na porção sul da área, no bairro Salinas, representada pelo mangue do rio Potengi.

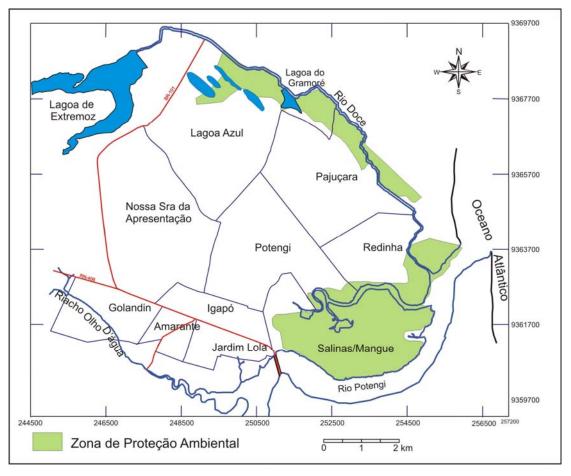


Figura 3.1 - Localização das Zonas de Proteção Ambiental (ZPA) inseridas na zona norte de Natal (Fonte com modificações. Natal, 2007).

A compartimentação da zona norte foi feita, segundo suas formas de uso e ocupação do solo, sendo a mesma, uma base para a elaboração do zoneamento ambiental.

Qualquer atividade antrópica poderá afetar o ambiente natural, com sua magnitude variando de acordo com o tipo da interferência, dimensão da mesma, e fragilidade do ecossistema.

As análises e discussões da evolução da ocupação da área de estudo foram realizadas com base em informações do ano de 1978 e 2006. Foi considerada uma área total de 66 km², na qual os percentuais de cada unidade serão apresentados nos itens a seguir.

3.1.1 Unidades de Uso e Ocupação do Solo (1978)

A elaboração do mapa de uso e ocupação do solo foi baseada em fotografias aéreas fornecidas pelo Instituto de Defesa do Meio Ambiente do Estado do Rio Grande do Norte (IDEMA), referentes ao ano de 1977 (novembro e dezembro) e 1978 (janeiro e fevereiro). As fotografias foram obtidas em meio analógico, sendo posteriormente digitalizadas. A partir das interpretações, foi possível identificar sete (07) unidades de uso e ocupação do solo.

As unidades de uso e ocupação do solo com o seu percentual de ocorrência são (Figura 3.2): Zona Urbana com 6,1%, Zona Periurbana com 5,2%, Zona Agrícola 22%, Área de Vegetação 38,8%, Corpos d'Água 4,9%, Salinas 10% e Mangue com 13%.

As áreas urbanizadas foram caracterizadas por dois níveis de desenvolvimento, no que se refere à densidade de habitações instaladas e estrutura física:

- (I) Zona urbana; apresentam áreas com arruamentos e unidades habitacionais próximas uma das outras. Esta área está restrita a porção sul, nos bairro Potengi e Igapó representando aproximadamente 6,0 % da área de estudo.
- (II) Zona periurbana; são as áreas que possuíam uma estrutura para a expansão habitacional, ou seja, apresentavam arruamento, delimitação de lotes habitacionais e já pode ser verificada a fixação de algumas habitações. São identificados 06 núcleos de expansão habitacional, nesse período, no bairro Nossa Senhora da Apresentação na faixa oeste, e Lagoa Azul na parte Central. Pequenos núcleos nos bairros de Igapó, Pajuçara, Gramoré (na margem do rio Doce), e margem sul da lagoa de Extremoz.

As Zonas Periurbanas, estão localizadas isoladamente uma das outras possuindo dois grandes núcleos de expansão. A área de vegetação predomina em no norte da área, e no sul estão situados as áreas agrícolas, mostrando uma maior uso do solo nessa região, juntamente com as salinas e áreas urbanas.

3.1.2 Unidades de Uso e Ocupação do Solo (2006)

Na análise das unidades de uso e ocupação do solo, foram utilizadas imagens do ano de 2006 (IDEMA, 2008). A partir da interpretação, foi identificado oito (8) unidades de uso e ocupação do solo. As unidades de uso e ocupação identificadas, com seus respectivos percentuais de ocorrência são: Zona Industrial (4,0%), Carcinicultura (6,8%), Vegetação (6,0%), Zona Agrícola (0,6%), Corpos d'Água (4,6%), Mangue (10,8%), Zona Periurbana (5,2%), Zona Urbana (62,0%).

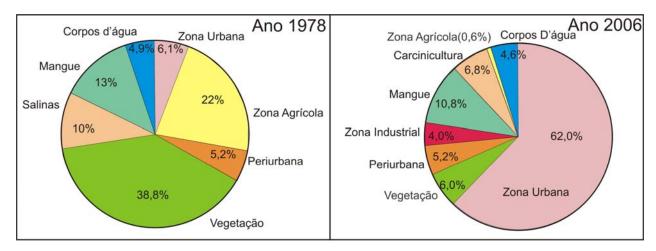


Figura 3.2 - Percentual das unidades de uso e ocupação do solo nos anos de 1978 e ano de 2006.

As zonas periurbanas possuem características intermediárias entre zona rural e zona urbana, ou seja, não possuem toda a estrutura de uma área urbana, e nem são totalmente rurais. Esta unidade está restrita à porção norte da área, no bairro Lagoa Azul, e a localização da mesma é apresentada na figura 3.3.

As áreas com vegetação estão localizadas em zonas periféricas na faixa norte da área, no bairro Lagoa Azul, e em menor quantidade, nas proximidades do rio Doce e zona próxima ao mangue. A vegetação de mangue está restrita à faixa sul da área nas margens do rio Potengi.

A única prática agrícola identificada na área foi o cultivo de hortaliças restrito às margens do rio Doce.

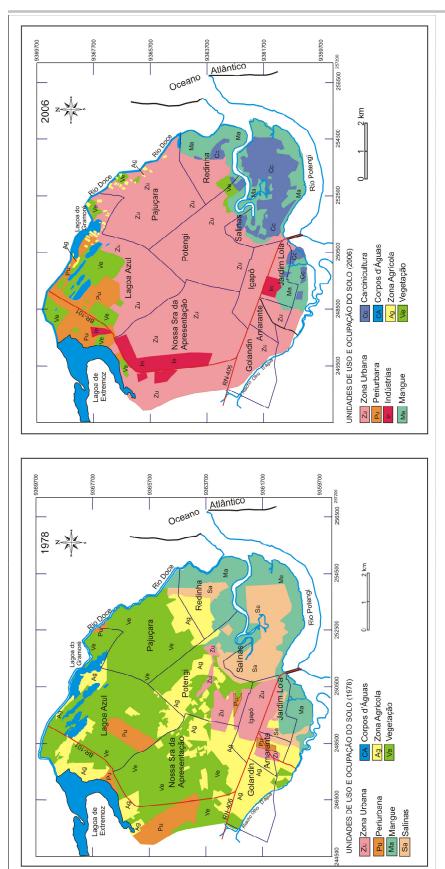


Figura 3.3 - Mapa de uso e ocupação do solo na zona norte de Natal nos anos de 1978 e 2006.

3.1.3 Análise da Evolução do Uso e Ocupação do Solo (1978-2006)

Em decorrência da expansão da ocupação do espaço geográfico, principalmente nas áreas de vegetação nativa e mangue e do detalhamento da zona industrial. A zona industrial evoluiu de tal forma que foi zoneada como uma unidade de ocupação do solo, estando restrita às margens da rodovia BR-101.

A área ocupada anteriormente por vegetação e zonas agrícolas, atualmente, trata-se de uma zona predominantemente urbanizada. A zona periurbana identificada no mapa do ano de 1978 apresentou o mesmo percentual no mapa do ano de 2006, ocorrendo somente um deslocamento geográfico desta unidade.

Na zona ocupada pelo mangue, verifica-se que ocorreu uma modificação do uso do solo, nos locais que anteriormente possuíam salinas e atualmente, são ocupados por áreas de cultivo de crustáceos (camarões).

O processo de impermeabilização do terreno está evidenciado na área em decorrência da estrutura urbana instalada, ou seja, as unidades de ocupação do solo como zona industrial e zona urbana atuam como agentes modificadores da recarga das águas subterrâneas.

Com a construção da ponte Milton Navarro (final do ano de 2007) que interliga o bairro Santos Reis (região leste de Natal), com o bairro Redinha (zona norte de Natal), provavelmente, deverá ocorrer um maior desenvolvimento imobiliário do bairro de Pajuçara e Redinha.

Para uma comparação espacial de algumas unidades de uso e ocupação do solo, foram escolhidas três áreas para a distinção das mesmas, apresentadas na figura 3.4.

Na figura 3.5 (F-1) é apresentada uma cena da região localizada nas imediações do centro comercial "Norte Shopping", setor leste do bairro Potengi. Na comparação das imagens, verifica-se que no ano de 1977 já possuía um desenvolvimento na área apresentando uma zona urbana instalada, e no setor norte da imagem, existe a presença de zonas agrícolas.

Localizada na divisa dos bairros Lagoa Azul e Nossa S^{ra} da Apresentação a figura 3.6 (F2), expõe a evolução de uma área com vegetação e implantação de arruamentos para uma área urbanizada. Atualmente são identificados poucas áreas de solo exposto, e tendo a maior parte de sua área, ocupada por unidades habitacionais.

A evolução de uma área agrícola e com vegetação, para uma área urbanizada, com arruamentos e unidades habitacionais pode ser verificada no enquadramento F-3 (Figura 3.7) que está localizado na divisa dos bairros de Lagoa Azul, Potengi e Pajuçara.

O aumento da ocupação na zona norte de Natal está evidenciado a partir das figuras apresentadas e também com o mapa de uso e ocupação do solo.

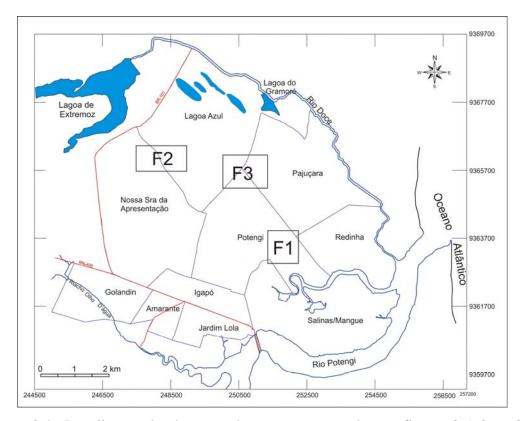


Figura 3.4 - Localização das áreas em destaque apresentadas nas figuras 3.5, 3.6 e 3.7.

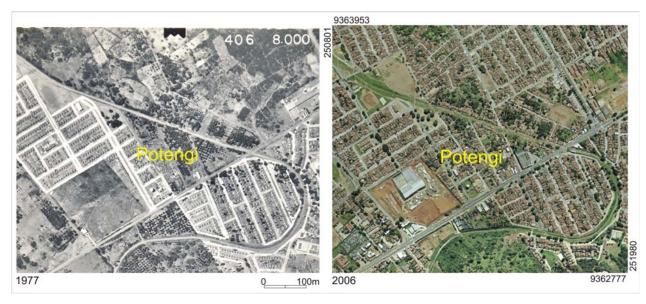


Figura 3.5 - Enquadramento da área F-1, bairro Potengi, mostrando a evolução da ocupação no ano de 1977 e 2006.

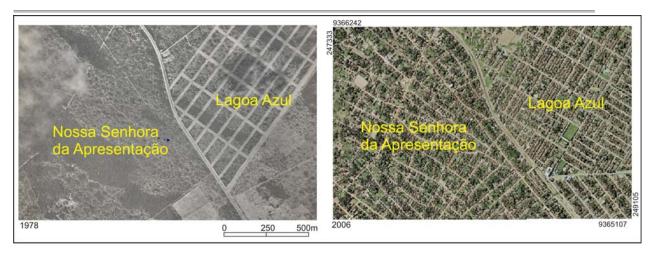


Figura 3.6 - Enquadramento da área F-2, entre os bairros Nossa Senhora da Apresentação e Lagoa Azul, expondo a evolução da ocupação no ano de 1977 e 2006.

Figura 3.7 - Enquadramento da área F-3, entre os bairros de Lagoa Azul, Pajuçara e Potengi, apresentando a evolução da ocupação no ano de 1977 e 2006.

3.2 FONTES POTENCIAIS DE CONTAMINAÇÃO

Diante dos agravos ambientais que uma área urbana pode sofrer pelos mais diversos fatores, foi realizado um cadastramento das fontes potenciais de contaminação inseridas na zona norte de Natal.

Segundo Vázquez-Suñe (2005), os ambientes urbanos se diferem dos ambientes rurais em decorrência, principalmente, de fatores como:

Ciclo das águas subterrâneas está ligado diretamente a história da urbanização.

- Flutuações do nível das águas subterrâneas estão relacionadas as atividades antrópicas.
- Poluição das águas subterrâneas causada pelas atividades humanas.
- Presença de estruturas subterrâneas.

Branco (1965) refere-se à contaminação como uma simples transmissão, pela água, de elementos, compostos ou microorganismos que possam prejudicar a saúde do homem ou de animais que a bebem. Já a poluição se caracteriza muito mais por seus efeitos ecológicos, que produzem transformações do meio ambiente, de forma a este tornar-se impróprio ao desenvolvimento normal das populações aquáticas.

O risco potencial de contaminação das águas subterrâneas, em sua conceituação básica, é atribuído à interação entre dois fatores fundamentais:

- Carga contaminante
- Vulnerabilidade natural do aquífero de ser afetado pela carga contaminante (Foster et al.,1987; Foster et al., 1988).

A carga contaminante pode ser caracterizada em função de sua classe, intensidade, modo de disposição no terreno e duração, enquanto que a vulnerabilidade do sistema aquífero depende da estrutura hidrogeológica do terreno.

No que se refere às águas subterrâneas, as mesmas estão susceptíveis a diversas alterações na qualidade e quantidade, principalmente em decorrência dos fatores antrópicos.

Uma área após ser contaminada, trará problemas de saúde para a população nas imediações e também mudanças na dinâmica do ecossistema local. Para investigar uma área contaminada, além de ter que conhecer as características da carga contaminante, é preciso compreender a magnitude da contaminação existente e a configuração do meio-físico, como geologia e hidrogeologia (Hassuda, 2003).

O despejo de contaminantes pode gerar outros danos, além da contaminação do solo ou das águas subterrâneas (CETESB, 2001 in Hassuda, 2003):

- Riscos à segurança das pessoas e propriedades;
- Riscos à saúde pública e dos ecossistemas;
- Restrições ao desenvolvimento urbano;
- Redução do valor imobiliário.

É considerada Fonte Potencial de Contaminação (FPC) qualquer obra ou estrutura antrópica não móvel, que possa acarretar mudanças na qualidade natural dos recursos hídricos de uma área considerada.

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

Estão inseridas na área de estudo as seguintes FPC: cemitérios, lagoas de infiltração de águas pluviais, estação de tratamento de esgotos, postos de combustíveis, resíduos sólidos (lixões), pontos de lavagem de veículos, áreas industriais, zonas agrícolas, rebanho confinado e poços abandonados. Os dados correspondentes das fontes potenciais de contaminação foram obtidos com visitas in loco e complementados com dados de trabalhos anteriores.

Na figura 3.10 é apresentada o mapa das fontes potenciais de contaminação com a delimitação das áreas saneadas, e no ANEXO B é apresentada a localização com as coordenadas geográficas.

3.2.1 Cemitérios

Os cemitérios representam uma fonte potencial de contaminação em decorrência da decomposição dos cadáveres que geram um produto lixiviado denominado "necrochorume" que poderá, dependendo das condições locais, chegar até a zona saturada. O necrochorume é uma solução mais viscosa do que a água, com cor castanho acinzentada, forte odor com elevado grau de toxidade e rica em sais minerais. Os danos ambientais às águas subterrâneas estão associados aos micro-organismos, que proliferam durante a decomposição dos corpos, e elementos químicos diversos (Pacheco et al., 1992; Migliorini, 1994). Os principais fatores que contribuem com a dissipação da contaminação de necrochorume são: tipo de solo, microorganismos, temperatura do solo e regime de chuvas.

Os cemitérios constituem um risco potencial para as águas subterrâneas em decorrência de sua localização, que nem sempre, obedece a projetos fundamentados nos estudos geológicos e hidrogeológicos (Pacheco et al., 1988). As áreas destinadas a novos cemitérios são cada vez mais difíceis de serem encontradas nas grandes cidades (WHO, 1998).

Algumas doenças estão associadas a existência de necrochorume em contato com as águas subterrâneas (Pacheco op. cit., 1988), sendo elas: Clostridium (tétano, gangrena gasosa, toxi-infecção alimentar), Mycobacterium (tuberculose), as enterobactérias salmonela typhi (febre tifóide), Salmonella paratyphi (febre paratifóide), Shigella (disenteria bacilar) e o vírus da hepatite A.

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

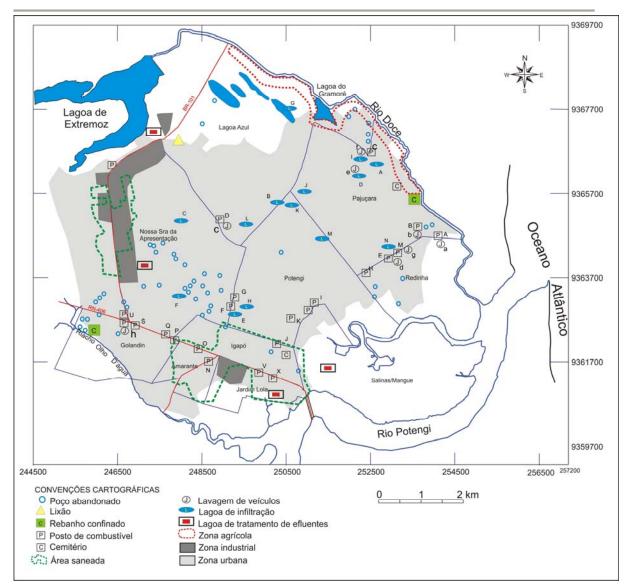


Figura 3.10 - Mapa com localização das Fontes Potenciais de Contaminação da zona norte de Natal.

Matos & Pacheco (2002) desenvolveram estudos em cemitérios para a detecção de contaminantes, e analisaram as bactérias heterotróficas, coliformes totais e fecais, bactérias proteolíticas, clostridium perfringes e enterovírus. Costa et al. (2002) verificaram a presença de valores elevados de íons metálicos como Al³⁺, Ba²⁺, Cd²⁺, Cr³⁺, Pb²⁺, Fe²⁺, Mn²⁺ e Zn²⁺, em cemitérios da cidade de Belo Horizonte.

Os fenômenos de decomposição dos cadáveres podem ser destrutivos ou conservativos (Braz, 2000). Os destrutivos estão ligados ao processo de putrefação caracterizado pela ação de microorganismos, principalmente as enterobactérias, que são as iniciadoras do processo. Os fenômenos conservativos são a mumificação e a saponização, que estão diretamente ligados ao tipo de ambiente em que são sepultados os corpos, como temperatura e umidade. Segundo Pacheco, 1986 in (Braz, 2000) as temperaturas mais altas influem na evaporação da água contida nos corpos e no desenvolvimento das fermentações favorecendo a mumificação, enquanto o excesso de umidade gera a saponificação.

Um corpo humano de aproximadamente 70 kg (adulto masculino) contém aproximadamente 16.000 g de carbono, 1.800 g de nitrogênio, 1.100 g de cálcio, 500 g de fósforo, 140 g de enxofre 140 g de potássio, 100 g de sódio, 95 g de cloreto, 19 g de magnésio, 4,2 de ferro e 70-74% do peso por água. A composição dos elementos nos cadáveres femininos representam 2/3 a 3/4 dos masculinos (Dent & Kinight, 1998, In WHO, 1998).

Estão inseridos na área de estudo dois cemitérios:

- Cemitéro de Igapó com aproximadamente 7.620 m², ocupados com jazigos.
- Cemitério de Pajuçara com aproximadamente 884 m², ocupados com jazigos.

3.2.2 Postos de Armazenamento de Combustíveis

Os postos de armazenamento de combustíveis, de um modo geral, representam uma fonte potencial de contaminação em decorrência de vazamentos acidentais na manipulação e/ou em decorrência de vazamentos de tanques subterrâneos de armazenamento. Os Sistemas de Armazenamento de Combustíveis (SASC) são o conjunto das instalações que armazenam e distribuem os combustíveis em um posto revendedor, incluindo tanques, tubulações das linhas de distribuição e bombas de abastecimento. Em decorrência do tráfego de veículos pesados existe a possibilidade de rompimento da tubulação que conecta o tanque de armazenamento a bomba de abastecimento, gerando um derramamento em subsuperfície. A caracterização da carga contaminante é essencial para um diagnóstico da magnitude da mesma (Costa, 2003). Alguns trabalhos abordam o controle de vazamentos em postos de combustíveis, licenciamento ambiental e avaliação dos Riscos Potenciais de Contaminação (Oliveira et al., 2002; Rodriguez et al., 2003.; Salgueiro et al., 2003).

Na composição típica de gasolina pura estão presentes cerca de 39% em peso de aromáticos da série BTEX (benzeno, tolueno, etilbenzeno, xileno): 0,8% benzeno, 3,9% tolueno; 1,3% etilbenzeno; 3,82% m-xileno; 1,3% p-xileno e 2,2% de o-xileno (Barros et al., 2003).

Em termos de agressividade a saúde humana, a série dos compostos BTEX causa os seguintes danos:

- Benzeno; dentre os demais da série, este é o mais tóxico por ser, comprovadamente, cancerígeno se ingerido em baixas concentrações durante a manipulação. Um total de 20 ppb inalado pode causar a morte de uma pessoa em poucos minutos. As moléculas de benzeno não são facilmente assimiladas pelo organismo humano, o que dificulta sua eliminação do organismo, facilitando sua acumulação em tecidos adiposos (Cole, 1994 in Costa, 2003).
- Tolueno; prejudica principalmente o sistema nervoso central, causando dores de cabeça, fadiga, sonolência e perda de coordenação, podendo ser fatal em alguns casos de exposição por inalação, pois impede a respiração adequada (Guiguer, 1996 in Costa, 2003).
- Xileno; causa náuseas, vômitos, irritação do nariz e da garganta, quando inalado; irritação e escamação da pele quando em contato com a pele.
- Etilbenzeno; pode causar irritação nos olhos e garganta (ATSDR, 1989 in Costa, 2003).

Em termos ambientais, são também os aromáticos leves que provocam maiores impactos, pois suas características de solubilidade, viscosidade e volatilidade conferem a esses compostos uma elevada mobilidade, facilitando o acesso a zona saturada (Costa, 2003).

Na área de estudo, foram cadastrados 23 postos de abastecimento de combustíveis, que comercializam álcool, gasolina aditivada, gasolina comum, diesel e, em alguns, gás natural veicular. Foi verificada a ocorrência de um atual processo de substituição (troca) dos tanques de armazenamento (Figura 3.11).

Figura 3.11 - Tanques subterrâneos para armazenamento de líquidos combustíveis, prontos para substituição, localizado nas proximidades da ponte do rio Doce na estrada da Redinha, bairro Pajuçara.

3.2.3 Disposição de Resíduos Sólidos

A disposição dos resíduos sólidos representa um problema resultante do desenvolvimento populacional desordenado. Problemas decorrentes dos resíduos sólidos são verificados em diversas cidades. Na cidade de Fortaleza, estado do Ceará, Sabadia *et al.* (2000) relata uma problemática da destinação final dos resíduos sólidos. Dependendo da forma em que estes resíduos são depositados, recebem uma definição distinta:

Aterro sanitário; são áreas em que ocorre uma disposição de resíduos sólidos dentro de normas técnicas estabelecidas.

Lixão; trata-se da disposição de resíduos sólidos sem que ocorra nenhum controle dos mesmos em determinada área.

Os lixões, em processo de decomposição, geram o chorume, que quando lixiviado é carreado, para os mananciais hídricos, seja de superfície ou de subsuperfície. Um resíduo sólido pode ser definido como qualquer substância indesejável que não tenha consistência suficiente para fluir por si mesma, não sendo útil em sua forma original para o processo em que foi gerado (Foster, 1993). Os resíduos sólidos podem ser de várias origens (doméstico, industrial, hospitalar, agrícola e outras) e podem afetar o equilíbrio ambiental pela introdução de material ou substâncias ao meio.

A NBR 10004, da Associação Brasileira de Normas Técnicas (ABNT), caracteriza esses resíduos como resíduos nos estados sólido e semi-sólido, que resultam de atividades da comunidade de origem: industrial, doméstica, hospitalar, comercial, agrícola, de serviços e de varrição (ABNT, 1987 *in* Morais, 2004).

Segundo o CEMPRE (2000) *in* Morais (2004), o lixão é uma forma inadequada de disposição final de resíduos sólidos municipais, que se caracteriza pela simples descarga sobre o solo, sem medidas de proteção ao meio ambiente ou à saúde pública.

Alguns estudos recentes estão voltados para a identificação de contaminação gerada pelos resíduos sólidos (Monteiro *et al.*, 2005; Zavoudakis *et al.*, 2006; Santos *et al.*, 2003).

É comum nos bairros, a existência de terrenos abandonados, transformados em receptores provisórios de lixo, ficando evidente que a deficiência no armazenamento do lixo, para a coleta, é decorrência também da ação dos moradores.

A disposição errônea dos resíduos sólidos causa uma carga de problemas associados, principalmente, ao período chuvoso, quando ocorre a percolação de água nesses resíduos dispostos de forma incorreta, propiciando a proliferação de doenças de veiculação hídrica.

Foi identificado somente um local de despejo de resíduos sólidos. Instalado na porção norte do bairro Lagoa Azul, o local abrange uma área de superior a 10.000 m², onde são despejados os mais diversos tipos de resíduos sólidos, sem que ocorra um controle na forma de despejo de tais rejeitos.

3.2.4 Estação de Tratamento de Esgotos, Lagoas de Infiltração e Lagoas de Efluentes

Uma estação de tratamento de esgotos ou lagoa de efluentes pode ser considerada uma fonte potencial de contaminação, quando não recebe uma manutenção regular, podendo gerar despejos de esgoto nas imediações ou então percolação de sua carga diretamente para o aquífero. Segundo Miller & Scalf, 1974 in (Foster, 1993), a grande maioria das lagoas de uma base constituída de materiais naturais, possui impermeabilizados, resultado da compactação do solo e da sedimentação. Com o passar do tempo, a impermeabilização vai ficando frágil, seja em decorrência das limpezas, ou mesmo por falhas estruturais naturais que surgem em qualquer construção.

São identificadas, na área de estudo duas lagoas de estabilização de efluentes e 14 de infiltração. As lagoas de efluentes recebem a carga líquida oriunda de indústrias existentes no setor norte e sul da área; e nos bairros Jardim Lola e Salinas, os efluentes são oriundos do uso doméstico. As lagoas de tratamento de efluentes na porção sul da área, estão próximas ao estuário do rio Potengi, podendo as mesmas, quando apresentarem problemas no seu funcionamento, prejudicar diretamente a qualidade da água do rio.

As lagoas de infiltração tem como objetivo facilitar a infiltração das águas pluviais, evitando formação de áreas alagadas durante as enxurradas do período chuvoso. Um dos riscos associados a essas lagoas está relacionado ao uso das mesmas como unidade de despejo de efluentes domésticos, através de ligações clandestinas de esgotos.

Na figura 3.12 é apresentada a lagoa de infiltração localizada no bairro Pajuçara em um período seco, porém mas, em consequência dos despejos de esgotos domésticos, encontrase com carga líquida. Outro risco em potencial, decorre do fato dessas lagoas estarem situadas em porções de relevo rebaixado, onde há maior proximidade da superfície freática com a superfície do terreno. Esta proximidade, associada a infiltração de águas que lixiviam a área urbanizada, possibilita o contato das águas de baixa qualidade com as águas subterrâneas.

Figura 3.12 - Lagoa de infiltração de águas pluviais localizada no bairro Pajuçara apresentando carga líquida em um período de estiagem (13/02/2008).

3.2.5 Zonas com Atividades Agrícolas

A agricultura intensiva, geralmente baseada no uso de fertilizantes e produtos químicos para proteger a cultura, é uma das causas principais de contaminação das águas subterrâneas por nitrato e pesticidas (Rebouças, 1992).

As zonas agrícolas representam fontes potenciais de contaminação pelo uso dos produtos químicos ou de origem animal. A lixiviação dos produtos químicos lançados no solo poderá atingir os aquíferos, contribuindo assim, para a mudança na qualidade natural das águas subterrâneas.

A região onde ocorre uma concentração de loteamentos agrícolas está restrita às margens do rio Doce, setor leste da área (Figura 3.13), onde são cultivados, na sua maioria, hortaliças, fornecidas aos pontos comerciais da zona sul de Natal. Este tipo de contaminação, na escala de trabalho, pode ser considerada difusa, pelo fato das horticulturas estarem dispostas de forma irregular.

Os agroquímicos utilizados no loteamento Gramorezinho, bairro de Pajuçara e Lagoa Azul, são apresentados na tabela 3.3.

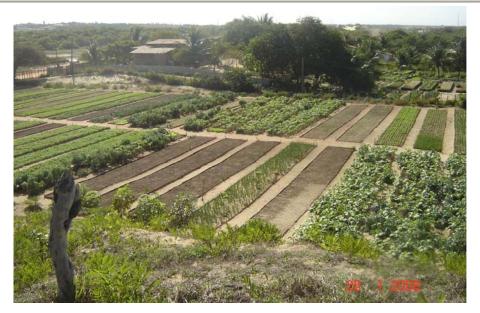


Figura 3.13 - Vista panorâmica de um cultivo de hortaliças, na zona agrícola na localidade Gramorezinho, margem do rio Doce, bairro Lagoa Azul.

Tabela 3.3 - Agroquímicos utilizados na área agrícola da zona norte de Natal.

Produto Comercial	Pesticida	Grupo Químico	Substância química básica	Classe Toxicológica
Barrage	Inseticida	Piretróide	Cipermetrina	III-Mediamente tóxico
Decis 25C	Inseticida	Piretróide	Deltametrina	III-Mediamente tóxico
Malation	Inseticida	Organofosforado	Carbofos	III-Mediamente tóxico
Tamaron	Inseticida	Organofosforado	Metamidofos	II-altamente tóxico
Vertimeque	Inseticida	Avermectina	Abamectina	III-Mediamente tóxico
Dipel	Inseticida	Biológico	Bacillus thuringiensis	IV-pouco tóxico
-	Carrapaticida	-	-	-
Dithane	Fungicida	Ditiocarbamato	Mancozeb	III-Mediamente tóxico
-	Formicida	-	-	-

3.2.6 Confinamento de Rebanho

A criação de rebanhos de animais em sistema de confinamento (Figura 3.14) gera uma grande concentração de excrementos que são lançados ao meio ambiente sem tratamento prévio.

Na área de estudo, foi identificado um local de criação de rebanho bovino, localizado no bairro Pajuçara, nas proximidades do rio Doce; no bairro de Golandin, nas proximidades do riacho Olho d'água.

Figura 3.14 - Criação de rebanho bovino em sistema de confinamento, bairro Pajuçara.

3.2.7 Poços Mal Construídos ou Abandonados

A construção de poços sem uma proteção sanitária capaz de impedir a percolação de contaminantes para o aquífero explotado, é um dos fatores que contribuem para redução da qualidade dos aquíferos. A identificação de erro na construção do poço torna-se difícil pela ausência de perfis. Desta forma, não é possível conferir o isolamento sanitário.

Na área de estudo foram identificados 56 poços abandonados (que podem ou não estarem obstruídos), sendo a maioria deles localizados no bairro Nossa S^{ra} da Apresentação. O risco atribuido a estes poços está na possibilidade deles injetarem efluentes diretamente no aquífero, reduzindo a qualidade das águas subterrâneas.

3.2.8 Pontos de Lavagem de Veículos Automotores

As áreas de lavagem de veículos produzem quantidades consideráveis de produtos como óleos, graxas, e produtos químicos utilizados para a remoção de sujeiras na pintura ou motor de veículos. Estes estabelecimentos possuem um consumo elevado de água, e geralmente, são abastecidos por águas subterrâneas. Não se tem registro dos efeitos destes estabelecimentos, mas foi verificado, na área, mudanças no odor da água em um poço escavado próximo. Na área de estudo foram identificados 08 pontos de lavagem de veículos, a maioria está localizado em postos de abastecimento de combustíveis.

Com as construções de unidades habitacionais existe uma produção de efluentes domésticos que deve possuir um destino ambientalmente satisfatório. Muitas vezes, a forma mais rápida e econômica, em uma área sem planejamento de ocupação, é a construção de fossas ou fossas sépticas. A disposição na forma de fossas poderá, em decorrência das elevações do nível das águas subterrâneas, torná-la uma fossa negra, ou seja, o efluente doméstico é lançado diretamente no mesmo nível do lençol freático. As definições básicas para a disposição de efluentes domésticos são as seguintes:

- Fossa séptica; trata-se de uma forma de descarte de efluentes domésticos no qual o efluente sofre um tratamento prévio em uma caixa subterrânea impermeabilizada, antes que ocorra a infiltração no terreno considerado, no chamado "sumidouro". Os sistemas sépticos possuem um tanque de decantação, com a finalidade de reter o efluente bruto por um período, gerando um tratamento primário deste efluente através da biodegradação de sólidos orgânicos e redução da população bacteriana (Duarte & Kanehisa, 1986).
- Fossa negra; tanque subterrâneo de disposição de efluentes domésticos, onde o nível de água subterrânea supera o seu, fazendo com que ocorra um lançamento direto dos efluentes nas águas subterrâneas.
- Fossa; trata-se de um tanque subterrâneo para efluentes domésticos, no qual pelas condições de impermeabilização, não ocorre infiltração no terreno. Neste tipo de descarte de efluentes, se faz necessário o esgotamento contínuo sempre que o tanque se encontra totalmente saturado.
- Sumidouros; são também conhecidos como fossas absorventes, tratam-se de escavações na qual o efluente é destinado e, posteriormente, tem sua infiltração realizada através da parede do mesmo.

Na zona norte de Natal, a área com rede de esgoto está restrita ao bairro Igapó e a zona Industrial no bairro de Nossa Senhora da Apresentação. Os demais bairros possuem seus sistemas de disposição de efluentes na forma de fossas e sumidouros.

Na tabela 3.4 é apresentado o tipo de esgotamento sanitário por domicílios inseridos na zona norte de Natal no ano de 2000 (IBGE, 2001). O bairro que apresenta maior número de domicílios com ligação de esgoto é Igapó, com 1.624 ligações; o que apresenta menor quantidade de ligações, é Redinha, com 26. O maior número de fossas sépticas é encontrado no bairro Potengi com 10.631, o que apresenta menor quantidade é Salinas com 66. O bairro Salinas possui maior parte de seu esgotamento lançado no rio Potengi, os demais bairros apresentam no máximo 2 unidades, como o bairro de Igapó.

A carga de efluentes gerados pela disposição de urina é de aproximadamente 0,967 L/ habitante (Dacach, 1979) totalizando 105.886 m³/ano.

Em relação ao nitrato (Foster & Hirata, 1988) estima que cada habitante produza anualmente 4 kg, o que para a área de estudo totaliza anualmente 1,2×10⁶ kg lançados no solo.

Tabela 3.4 - Tipo de esgotamento sanitário dos domicílios individualizados por bairros (IBGE, 2001).

Bairro	Rede geral esgoto	Fossa séptica	Fossa rudimentar	Vala	Rio, lago ou mar	Outro escoadouro
Lagoa Azul	124	8.103	3.666	50	1	21
Pajuçara	124	8.308	1.820	37	-	16
Potengi	219	10.631	2.572	6	-	7
Nossa Sra da Apresentação	175	4.558	8.939	55	1	17
Redinha	26	1.367	1.003	2	-	17
Igapó	1.624	1.987	3.137	10	2	8
Salinas	-	66	2	-	123	-

3.2.10 Indústrias

As indústrias representam uma fonte potencial de contaminação dos recursos hídricos causada principalmente pelos efluentes gerados na manufatura de seus produtos finais.

A produção de efluentes e resíduos do processamento de bens em geral, quando não recebe um tratamento específico, ou uma destinação final adequada, torna-se um risco em potencial aos recursos hídricos de um modo geral.

Na zona norte de Natal, a maior parte das indústrias estão situadas na faixa oeste da área entre o município de Natal (bairro Nossa S^{ra} da Apresentação) e o município de São Gonçalo do Amarante. Os efluentes gerados por essas indústrias são tratados em lagoas de estabilização da Companhia de Águas e Esgotos ou nas próprias indústrias.

IV HIDROGEOLOGIA

A definição do contexto hidrogeológico é essencial em um estudo que visa integrar dados de águas subterrâneas para dar suporte a gestão dos recursos hídricos. A análise da configuração hidrogeológica da área de estudo foi realizada com informações de trabalhos anteriores, perfis de poços, volume captado e distribuído no abastecimento de água, atividades de campo dentre outras. A partir destas informações associadas às condições de recarga e fluxo das águas subterrâneas, foi possível estimar os volumes de entradas e saídas de água no sistema hidrogeológico, identificar as áreas vulneráveis a contaminação das águas subterrâneas e o potencial de risco das mesmas.

4.1 CONFIGURAÇÃO DO SISTEMA HIDROGEOLÓGICO

A configuração do sistema hidrogeológico será apresentada em quatro itens separadamente.

4.1.1 Síntese de Trabalhos Anteriores

Um dos primeiros estudos desenvolvidos sobre a hidrogeologia da cidade de Natal foi o elaborado pela CONTEGE/CAERN no ano de 1970 (Costa, 1970). A área estudada foi de aproximadamente 100 km² e corresponde praticamente toda a zona sul da cidade de Natal. O trabalho admite a existência de duas unidades aquíferas: uma superior, do tipo livre, representada pelas dunas; e uma inferior, semi-confinada, correspondente aos arenitos do Grupo Barreiras. De acordo com o estudo, as águas subterrâneas da cidade de Natal, captadas do aquífero "Barreiras", foram utilizadas para o consumo humano por varias décadas, sem apresentar nenhuma contra indicação sobre a potabilidade.

Na bacia hidrográfica do rio Ceará-Mirim, no limite norte da área, Diniz Filho & Barroso (2002) verificaram a ocorrência de diversos falhamentos geológicos gerando baixos e altos estruturais. Foram identificadas lentes e/ou intercalações argilosas que favorecem a ocorrência de semi-confinamentos e confinamentos localizados. Também foi verificado um aumento na espessura do aquífero à medida que se desloca de oeste para leste, ocorrendo profundidades de até 110 m. A maioria dos poços são revestidos em 6", com profundidades média de 55 m e vazões de até 31 m³/h. As águas possuem baixa salinidade e sólidos totais dissolvidos de 120 mg/L. Os parâmetros hidrodinâmicos médios para o aquífero Barreiras

são: transmissividade (T) de 2,42×10⁻³ m²/s; condutividade hidráulica (K) de 1,1×10⁻⁴ m/s; e porosidade efetiva de 10%.

Melo (2004) desenvolveu estudos dos parâmetros hidrodinâmicos do aquífero Barreiras nas imediações da lagoa de Extremoz, onde foram realizados cinco (05) ensaios de bombeamento. A transmissividade variou de 6,1×10⁻⁴ m²/s à 1,8×10⁻³ m²/s, a condutividade hidráulica variou de 2,2×10⁻⁶ m/s à 6,3×10⁻⁵ m/s e o armazenamento específico variou de 1.0×10^{-3} a 3.2×10^{-3} .

Na Bacia Hidrográfica do rio Jacu (Melo, 2006) localizada na porção sul do estado do Rio Grande do Norte, na faixa costeira, foi realizado um levantamento dos parâmetros hidrodinâmicos do aquífero Barreiras obtidos pela Companhia de Águas do Rio Grande do Norte (CAERN), onde a transmissividade (T) média obtida foi de 1,6×10⁻³ m²/s; a condutividade hidráulica (K) média é de 6,4×10⁻⁵ m/s, com uma espessura saturada média de 25,0 metros.

4.1.2 Estrutura Hidrogeológica

A determinação da configuração do Sistema Hidrogeológico da área foi iniciada com a análise de perfis construtivos e litológicos de poços. Para esta análise foram utilizados dados de 34 perfis construtivos e litológicos (ANEXO A).

Na área de estudo os poços possuem diâmetros que variam de 8 a 14 polegadas, sendo comuns os com 12 polegadas, com profundidade de 53 a 99 m, e média de 70 m. A seção filtrante nos poços está localizada, em sua maioria, a partir de 45 m de profundidade, possuindo uma espessura de cimentação variando entre 12 e 20 m, a partir da superfície do terreno do poço.

Em decorrência da não identificação do contato do topo do Grupo Barreiras com a base dos sedimentos de dunas, foi adotado a nomenclatura "Sistema Dunas/Barreiras", que consequentemente irá ter um aquífero homônimo.

A partir dos perfis de poços totalmente penetrantes no aquífero Dunas/Barreiras foram elaborados mapas de Espessura do aquífero (EBa), Espessura Saturada (ESa) e Espessura Saturada Efetiva (ESe). Para a interpolação dos dados foi utilizado o método de "krigging", sendo efetuadas algumas edições nas isolinhas resultantes. Na tabela 4.1 são apresentados os dados que foram base para a elaboração dos mapas de espessuras.

Espessura do Sistema Dunas/Barreiras (EBa)

A espessura do Sistema Dunas/Barreiras (Figura 4.1) varia de 52 a 99 m, sendo encontrado as maiores valores no setor SE, com espessura superior a 95 m. O Sistema Dunas/Barreiras possui uma tendência de aumento da espessura no sentido de NW para SE, onde as mesmas variam de 28 m, nas margens da lagoa de Extremoz a 99 m no setor SE, bairro da Redinha. Nas proximidades das lagoas naturais, a espessura do Sistema Dunas/Barreiras, entre 55 e 60 m, diminuindo a medida que se desloca em direção a lagoa de Extremoz.

Espessura Saturada do Sistema Aquífero Dunas/Barreiras (ESa)

Os isovalores de espessura saturada na área de estudo (Figura 4.2) variam de 22,1 a 60 m, sendo o setor SE o que apresenta os valores mais elevados com 63,4 m e o setor centronorte com a menor espessura saturada, com 22 m. O setor sul apresenta ESa entre 45 e 50 m, e à medida que se desloca em direção à lagoa de Extremoz, a espessura saturada do Sistema aquífero Dunas/Barreiras torna-se menor. No setor sudeste as espessuras são relativamente homogêneas, com variação gradual. No setor norte, ocorre uma heterogeneidade entre as espessuras, aprsentando variações de 22 a 60 m. Na região das lagoas naturais, as isolinhas de espessura variam de 40 a 50 m.

• Espessura Saturada Efetiva do Sistema Aquífero Dunas/Barreiras (ESe)

A espessura saturada efetiva mais elevada está localizada na porção SE da área (Figura 4.3), apresentando isolinhas com valores de até 45 m. As menores espessuras saturadas efetiva estão restritas à região central da área com 14,6 m. Como a espessura saturada efetiva é inversamente proporcional à ocorrência das argilas, esta região é provavelmente a que possui uma maior quantidade de lentes argilosas. Os setores sudoeste e oeste possuem espessura saturada efetiva variando entre 22 e 25 m, podendo em alguns locais, apresentar anomalias com 34 m. No setor norte da área a ESe tende a ser maior, apresentando valor superior a 30 metros.

A partir da integração dos dados, verifica-se que o setor localizado na extremidade SE, no bairro de Redinha, apresenta as maiores espessuras do Sistema Dunas/Barreiras, com as áreas de espessura saturada e espessura saturada efetiva do Sistema aquífero Dunas/Barreiras. Dentre os três mapas analisados verifica-se que a espessura do Sistema Dunas/Barreiras é a que apresenta uma maior uniformidade, ou seja, não apresenta diferenças anômalas nos valores das espessuras.

A diferença da configuração nas espessuras dos mapas apresentados evidencia a heterogeneidade do Sistema Dunas/Barreiras, proporcionando uma variação nos dados apresentados principalmente pela presença de lentes argilosas.

Tabela 4.1 - Sumarização das informações dos poços localizados no Sistema Dunas/Barreiras como: espessura penetrada, espessura total, espessura saturada e espessura saturada efetiva obtidas a partir dos perfis de poços.

Poço	UTM-N (m)	UTM-E (m)	Espessura Penetrada (m)	Espessura total do Sistema Dunas/Barreiras (m)	Espessura Saturada (m)	Espessura Sat. Efetiva (m)
POT0586	9362458	250307	67,0	64,0	43,0	22,0
POT0600	9363140	251318	90,0	84,0	54,35	31,0
SGA0720	9365444	246094	66,0	53,0	22,1	19,0
POT0584	9363700	250101	69,0	67,5	57,46	41,46
POT0148	9363726	250501	72,0	70,0	56,0	38,0
NSA0597	9366022	247951	60,0	59,0	36,0	32,0
NSA0598	9362980	247442	78,0	-	47,0	34,0
NSA0599	9362378	247295	82,0	81,0	44,83	24,83
NSA0601	9362726	248052	78,0	76,0	47,0	25,0
PAJ0603	9366580	251203	52,0	52,0	42,5	29,5
PAJ0607	9365640	251257	64,0	58,0	52,5	40,5
PAJ0627	9365140	252574	91,0	91,0	63,6	49,6
PAJ0628	9365214	251922	94,0	91,0	52,75	37,0
PAJ0629	9365839	252630	85,0	-	59,37	43,37
NSA0596	9365056	247695	56,66	-	39,84	14,66
NSA0595	9362696	247266	78,0	77,0	43,5	25,5
NSA0594	9365388	247545	60,0	59,0	43,28	23,78
NSA0592	9365881	247647	58,5	58,0	38,5	32,0
NSA0591	9365152	247344	53,0	-	40,2	23,7
NSA0582	9363750	249420	75,0	74,0	58,72	23,72
NSA0269	9365594	246644	90,0	-	60,0	27,0
NSA0262	9365286	246428	75,0	-	53,0	30,0
LAZ0626	9366294	249569	54,0	54,0	22,6	14,6
LAZ0625	9365846	248948	57,0	57,0	38,0	22,0
LAZ0620	9366500	250403	61,29	60,0	33,23	21,23
LAZ0614	9366085	250798	74,0	73,0	41,0	22,0
LAZ0593	9367242	249613	62,0	61,0	43,0	27,0
LAZ0590	9367462	249243	58,0	57,0	42,0	35,0
LAZ0589	9367696	249002	56,0	55,0	40,77	33,77
LAZ0588	9366464	248206	65,0	64,0	40,0	21,0
LAZ0587	9366428	248605	66,0	65,0	37,0	25,0
POT0605	9363095	252202	99,55	99,0	63,46	49,46
41GRM	9368520	249747	52,0	-	44,22	41,22
PZ-UFRN	9368304	250065	56,0	55,0	51,26	39,26
P-278	9368439	247661	100	57,0	34,0	19,0
PZ-7	9368439	247661	30,0	28,0	26,18	22,0

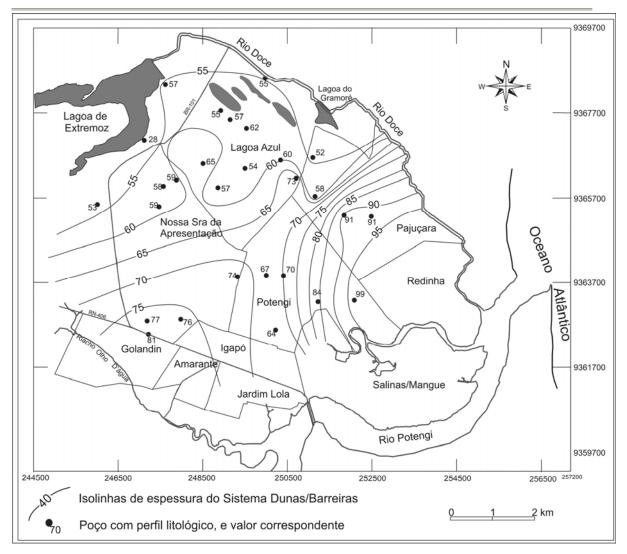


Figura 4.1 - Mapa de espessura do Sistema Dunas/Barreiras na zona norte de Natal.

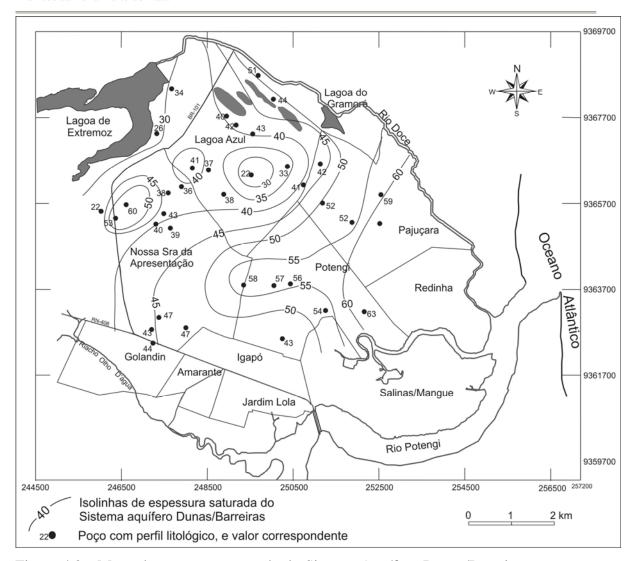


Figura 4.2 - Mapa de espessura saturada do Sistema Aquífero Dunas/Barreiras na zona norte de Natal.

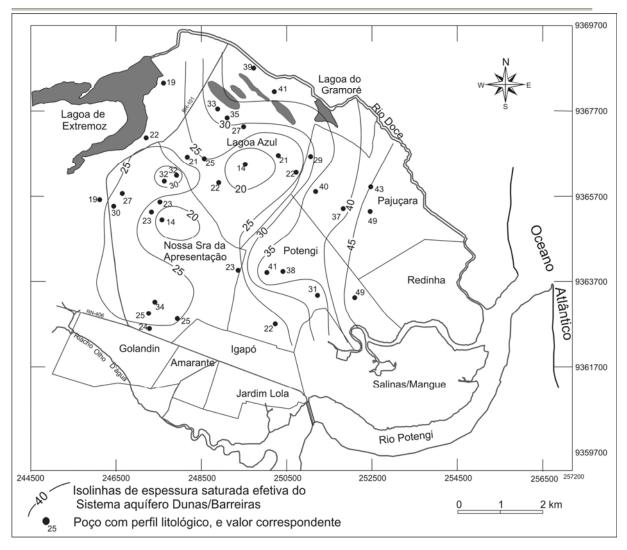


Figura 4.3 - Mapa de espessura saturada efetiva do Sistema Aquífero Dunas/Barreiras na zona norte de Natal.

4.1.3 Avaliação dos Parâmetros Hidrodinâmicos do Sistema Aquífero Dunas/Barreiras na Zona Norte de Natal

Para realizar a análise dos parâmetros hidrodinâmicos, foi utilizado dados de trabalhos anteriores e da construção de um poço produtor e um poço multinível, situados na extremidade nordeste da área, nas proximidades do rio Doce. A determinação dos parâmetros hidrodinâmicos, foi feita de forma pontual, através do método "slug test", sendo o mesmo detalhado posteriormente.

O estudo desenvolvido por Melo (1998) sumarizou dados históricos da determinação dos parâmetros hidrodinâmicos da zona norte de Natal (Tabela 4.2).

Tabela 4.2 - Parâmetros hidrodinâmicos do Sistema Aquífero/Dunas Barreiras na zona norte de Natal (Melo, 1998).

Poço	Bateria de Poços	Local	Parâmetros Hidrodinâmicos			
			$T (m^2/s)$	K (m/s)	b (m)	Sy
21*	Redinha	Pajuçara	1,05×10 ⁻³	1,90×10 ⁻⁵	55,0	-
23	Parque dos Coqueiros	Extremoz	3,70×10 ⁻³	1,00×10 ⁻⁴	36,00	-
37*	Nova Natal	Cj. M. Leop.	$1,31\times10^{-3}$	$4,60\times10^{-5}$	28,00	-
11*	Pajuçara/Gramoré	Pajuçara	$3,00\times10^{-2}$	$6,80\times10^{-4}$	44,00	0,10
61	Guararapes Têxtil	Pólo Industrial	$5,17\times10^{-3}$	$2,25\times10^{-4}$	23,00	-
63	Guararapes Têxtil	Pólo Industrial	$4,17\times10^{-3}$	$1,60\times10^{-4}$	26,00	-
64	Guararapes Têxtil	Pólo Industrial	$4,10\times10^{-3}$	$1,80\times10^{-4}$	23,00	-
65	Guararapes Têxtil	Pólo Industrial	$8,50\times10^{-3}$	$2,10\times10^{-4}$	37,00	-
72	Vicunha	Pólo Industrial	$5,30\times10^{-3}$	$9,60\times10^{-5}$	55,90	-
73	Vicunha	Pólo Industrial	$6,40\times10^{-3}$	$1,27\times10^{-4}$	50,40	-
74	Vicunha	Pólo Industrial	$8,20\times10^{-3}$	$1,57 \times 10^{-4}$	52,70	-
75	Vicunha	Pólo Industrial	$6,80\times10^{-3}$	$1,30\times10^{-4}$	52,90	-
76	Vicunha	Pólo Industrial	$7,50\times10^{-3}$	$1,30\times10^{-4}$	57,50	-
77	Vicunha	Pólo Industrial	$1,20\times10^{-3}$	$2,10\times10^{-4}$	59,50	-
94*	Nova Natal	Nova Natal	$3,50\times10^{-2}$	$1,40\times10^{-3}$	24,70	0,10
	MÉDIA GERA	L	$8,56 \times 10^{-3}$	1,74×10 ⁻⁴	41,7	0,10

^{*}poços localizados na frente de escoamento norte.

Obs.: T: transmissividade; K: condutividade hidráulica; b: espessura saturada; Sy: porosidade efetiva

4.1.3.1 Poço produtor e Piezômetro do Tipo Multinível

A construção do poço produtor e piezômetro foi feita na localidade de Gramorezinho, extremidade nordeste da área, que foi selecionada por apresentar características geológicas satisfatórias para análise do condicionamento do Sistema Aquífero Dunas/Barreiras. Na figura 4.4 é apresentado a localização detalhada do poço produtor e piezômetro. Na figura 4.5 é apresentado o perfil litológico e construtivo dos mesmos.

• Poço Produtor

O poço produtor foi construído em 10" com profundidade de 56 m, com seção filtrante localizada entre as profundidades de 45 a 53 m. Foi revestido com tubo geomecânico de 6 polegadas. A cimentação do espaço anular encontra-se nos primeiros cinco metros e, em seguida é preenchido com uma argila isolante até a profundidade de 30 m. Após este isolamento ocorre novamente uma cimentação entre a profundidade de 30 e 38 metros, e posteriormente o mesmo é preenchido com pré-filtro até a base do poço.

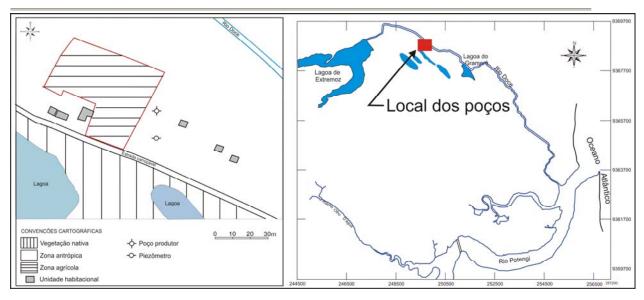


Figura 4.4 - Localização do poço produtor e piezômetro.

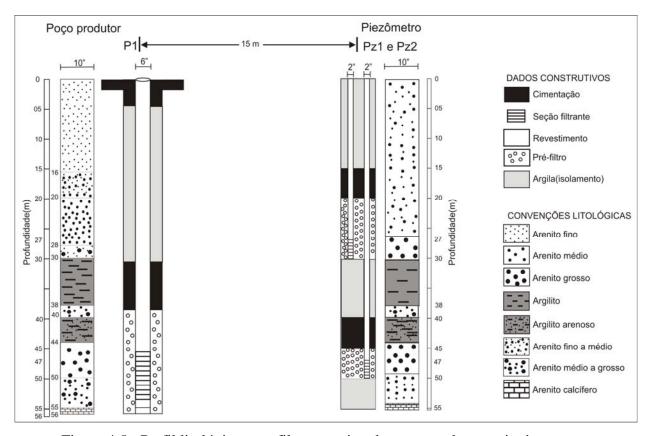


Figura 4.5 - Perfil litológico e perfil construtivo do poço produtor e piezômetro.

A parte superior do perfil do poço é representada por sedimentos homogêneos até a profundidade entre 12 e 16 m, provavelmente de origem eólica. Após a profundidade de 16 a 30 m, existe uma heterogeneidade na granulação dos sedimentos. Entre as profundidades de 30 e 38 m existe uma camada formada por um argilito compacto de coloração escura, para posteriormente apresentar uma camada de 2 m de arenito médio a grosso, de cor branca. Da profundidade, de 40 a 44 m, é composta por um argilito arenoso de coloração marrom, e de 44 a 55 m é composto por um arenito de médio a grosso de coloração creme, sendo a base do sistema Dunas/Barreiras.

• Piezômetro Multinível

O sistema de amostragem por multiníveis é utilizado para caracterizar mais de um aquífero através de múltiplos tubos que podem ser agrupados em apenas uma perfuração (aninhados) ou em várias perfurações com profundidades diferentes (agrupados).

A perfuração do piezômetro foi realizada em 10", sendo posteriormente introduzido dois tubos de 2", para que cada um desses, fosse interligado independentemente em apenas um nível aquífero, separado pela camada de argilito. O perfil litológico do piezômetro multinível apresentado na figura 4.5, mostra que existe, na área, uma camada de 30 metros de argilito que provavelmente exerça a função local de isolamento entre as águas subterrâneas.

Do topo para a base do poço, a litologia inicia com areias finas homogêneas, provavelmente de origem eólica, e posteriormente inicia-se uma gradação para arenitos finos a médio de coloração branca, até 27 m de profundidade. Após esta profundidade, inicia-se um arenito grosso com coloração creme, até a profundidade de 30 metros.

A partir de 30 m de profundidade, predomina um argilito compacto de cor preta com espessura de 8 metros, que posteriormente passa para um arenito de cor branca e granulação média entre as profundidades de 38 e 40 m.

Entre a profundidade de 40 e 44 m ocorre um argilito, pouco arenoso de cor marrom. A partir da profundidade 44 m, inicia-se um arenito médio a grosso, com cascalhos e coloração creme, sendo esta a base da Formação Barreiras nessa área. Posteriormente na profundidade de 55 m predomina o arenito calcífero. A profundidade de investigação prolongou-se por mais 1 metro dentro da unidade litológica dos arenitos calcíferos.

Por apresentar uma camada de argilito entre as profundidades 30 e 44 m, convencionou-se para que no local ocorram quatro unidades hidrogeológicas.

- a) Aquífero superior: profundidade máxima de 30 m (denominado Sistema Dunas/Barreiras).
- b) Aquitard: profundidade entre 30 e 38 metros.
- c) Aquífero inferior: profundidade entre 38 a 53 metros (caracterizando o aquífero Barreiras).

d) Aquífero Infra-Barreiras: profundidade superior a 53 metros (não existindo maiores informações).

Foi instalada a seção filtrante (tela) para o aquífero superior entre a profundidade de 27 e 30 m, para o aquífero inferior, a seção filtrante foi instalada entre a profundidade de 47 e 50 metros. Após a seção filtrante, no aquífero superior, foi inserido 10 m de cascalho (granulação heterogênea), e 5 metros de cimentação para realizar o isolamento entre as unidades aquíferas identificadas. No aquífero inferior, foi completado com 5 metros de cascalho (pré-filtro). Na base da seção filtrante, foi completada com pré-filtro (granulação heterogênea).

4.1.4 Determinação Pontual dos Parâmetros Hidrodinâmicos do Aquífero Através do Slug <u>Test</u>

Para a aquisição dos parâmetros hidrodinâmicos, transmissividade (T) e condutividade hidráulica (K), foi executado no Piezômetro multinível o método do "slug test".

Os parâmetros hidrodinâmicos de um aquífero, como transmissividade, condutividade hidráulica e coeficiente de armazenamento, podem variar de um local para outro, em função da variação de espessura, heterogeneidade e anisotropia do sistema aquíferos. Diante disso, os dados apresentados caracterizam localmente o Sistema aquífero considerado.

O slug test é um dos métodos utilizados para determinar a condutividade hidráulica pontual do meio aquífero. Dependendo do método adotado para interpretação dos dados, poderá ser também determinado o armazenamento específico.

Este método foi primeiramente desenvolvido durante a década de 1950 por Hvorslev (1951), sendo posteriormente realizado por Cooper, Bredehoeft, e Papadopulos (Cooper et al., 1967) e Bouwer & Rice (1976). Este método é reportado em diversos estudos hidrogeológicos (Chakrabarty & Enachescu, 1997; Mas-Pla et al., 1997; Butler Jr. & Healey, 1998; Blinkhorst & Robbins, 1998), e consiste basicamente na injeção e retirada instantânea de um volume dentro do poço, geralmente com um diâmetro relativamente pequeno (2 pol). A entrada ou retirada do volume é acompanhada de medições da elevação ou rebaixamento do nível de água (variação de carga do aquífero considerado). Para uma melhor exatidão nos dados, é preferível a utilização de um sensor de pressão (data logger). Este dispositivo tem como

objetivo registrar a variação do nível da coluna d'água dentro do poço a partir da pressão da coluna d'água.

Através do slug test, pode se ter algumas vantagens em relação a outros métodos de determinação dos parâmetros hidrodinâmicos de aquíferos:

- Pode ser estimadado as propriedades do aquífero in situ, ou seja, não é necessário o transporte de amostras para laboratório para a realização de testes.
- O teste pode ser realizado em um tempo relativamente curto, evitando a coleta de dados (medições de nível) durante horas.
- Não é necessário existir poço de observação.
- Os equipamentos utilizados neste método são de fácil transporte. Não é necessário deslocamento de dispositivos para bombeamento do poço.
- Não ocorre retirada de água do aquífero.

As principais limitações relativas a aplicação do método slug test são:

- Somente a condutividade hidráulica das imediações do poço pode ser determinada, mas não pode ser levada em consideração como uma média para todo o aquífero considerado.
- A qualidade dos dados pode sofrer influência do material (cascalho) utilizado na construção do poço.

4.1.5 Procedimento Prático para a Execução

Para a execução do *slug test* é necessária a adoção dos seguintes procedimentos:

- O volume a ser inserido no poço deverá ser representativo, ou seja, o diâmetro do volume deve ser próximo em relação ao diâmetro de revestimento do poço.
- A instalação de um sensor de pressão (data logger) é essencial para o sucesso do método, pois o aumento do nível de água é instantâneo, e dependendo das condições geológicas o rebaixamento do mesmo também pode ser bastante rápido.

Dados referentes a construção do poço são essenciais como: diâmetro do revestimento, diâmetro da perfuração e espessura da seção filtrante (telas). Também são relevantes as condições de pressão do aquífero (parcialmente ou totalmente penetrante no aquífero considerado). O sensor de pressão possui uma diferenciação nos modelos dependendo da espessura da coluna d'água que irá ficar submerso, quando inserido no poço. Na figura 4.6 são apresentados três tipos de sensores de pressão, de acordo com a sua necessidade.

Figura 4.6 - Diferentes tipos de sensor de pressão (data logger). Da esquerda para direita, medidor de variação de pressão atmosférica, medidor para coluna d'água máxima de 50 m e medidor para coluna d'água máxima de 20 m.

No caso do slug test, não existe necessidade de correção dos dados através da coleta de variações da pressão atmosférica, pelo fato do tempo útil ser bastante curto: de 10 segundos a poucos minutos. Para uma maior precisão dos dados é necessário o uso de sensores de pressão (data loggers) que suportem colunas d'água de 5 a 20 m. Recomenda-se a utilização de sensores de pressão que suportem menores colunas d'água pela garantia de uma maior exatidão das informações.

O procedimento de execução do slug test pode ser dividido em três etapas que são simplificadas no esquema da figura 4.7:

• <u>Primeira etapa</u>: Medições iniciais e instalação do sensor de pressão

Medição do nível estático e ajustagem do comprimento dos cabos do sensor de pressão e do slug a ser inserido. A programação do sensor de pressão, para um intervalo de aquisição de dados é preferencialmente, a cada 0,5 segundos ou no máximo 1,0 segundo (este procedimento deve ter sido realizado anteriormente com o data logger conectado a um computador utilizando um software específico). A instalação do sensor de pressão no interior do poço, deve ser realizada minutos antes do início efetivo do teste (Figura 4.8 A). Antes de iniciar a instalação do equipamento, deve-se conferir possíveis interferências nas vizinhanças, como a ocorrência de algum bombeamento de água subterrânea.

O slug utilizado para a execução deste trabalho possui um diâmetro de 1,5 pol. e comprimento de 115 cm, totalizando um volume de 0,000924 m³ (Figura 4.8 B).

Segunda etapa: injeção do slug e aumento da carga hidráulica

Após a instalação do sensor de pressão, deve ser introduzido o slug dentro do poço. Este procedimento deve ser realizado através da descida do slug até uma distância de aproximadamente 20 cm do topo do nível de água no poço. Após esta distância, o slug é injetado instantaneamente no interior da coluna d'água do poço até que o mesmo seja totalmente submerso. Deve ser observado se o slug possui uma fixação segura por um cabo e que não exista presença de falhas na estrutura que comprometa a realização do procedimento.

• Terceira etapa: retirada do slug e redução da carga hidráulica

Após inserir o volume no poço, deve-se aguardar alguns minutos (aproximadamente 5 min.). Após este tempo, o slug que se encontra submerso na coluna d'água, será retirado de forma instantânea, e após sua retirada, deve-se aguardar que o nível de água recupere-se até o nível (carga hidráulica) inicial, ou o mais próximo (aproximadamente 5 min.).

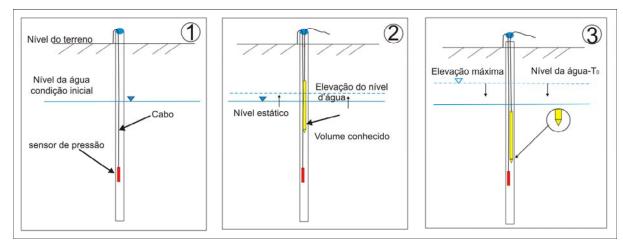


Figura 4.7 - Etapas de execução do "slug test": (1) Medições iniciais e instalação do sensor de pressão; (2) Injeção do slug no poço gerando um aumento da carga hidráulica; (3) Retirada do slug do poço gerando uma redução da carga hidráulica.

Figura 4.8 - Detalhe da instalação do sensor de pressão (A); e momento de introdução do slug no poço piezômetro (B).

Após a execução das três etapas em campo o próximo procedimento é a transferência de dados do sensor de pressão para um computador. Este procedimento é realizado com o uso de um cabo USB conectado a uma base onde o sensor de pressão é acoplado (Figura 4.9). Após estas etapas, as subsequentes tratarão de uma análise dos dados coletados através do sensor de pressão.

Figura 4.9 - Mecanismo de conexão entre o sensor de pressão (data logger) e computador, via cabo USB.

4.1.6 Análise dos Dados Obtidos

Os métodos mais usuais para a interpretação do Slug Test são; método de Hvorslev (1951), método de Cooper et al. (1967) e o método de Bouwer e Rice (Bouwer & Rice, 1989). A partir da análise bibliográfica desses métodos, foi escolhido para a definição dos parâmetros hidrodinâmicos o método de Bouwer & Rice. A metodologia e aplicação destes métodos serão apresentados a seguir, e os dados obtidos para a análise encontram-se no ANEXO C.

Método de Bouwer & Rice (1989)

O método de Bower & Rice (1989) é aplicado para aquíferos livres e confinado para o qual deve ser considerado os seguintes critérios:

- A água é removida do poço ou adicionada instantaneamente.
- O aquífero é homogêneo e isotrópico.
- A lei de Darcy é válida.
- O aquífero possui extensão infinita em todas as direções.
- A posição do nível freático não muda com o tempo.
- O fluxo acima do lençol freático pode ser ignorado.
- O aquífero é uniforme com a profundidade.
- As perdas de cargas na entrada do poço são desprezíveis.
- O armazenamento específico da formação é negligível.
- A formação é isotrópica respectivamente com a condutividade hidráulica.
- Não existe zona de turbulência no entorno do poço.
- O fluxo na zona do filtro é horizontal.

Na figura 4.10 é apresentado o esquema com a descrição dos respectivos dados a serem utilizados nas equações para a determinação dos parâmetros.

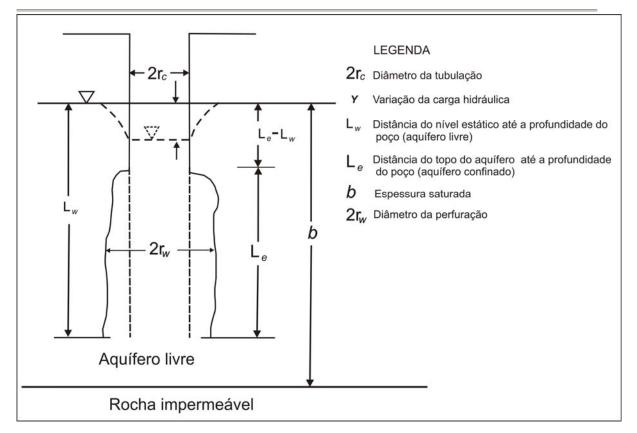


Figura 4.10 - Corte esquemático de um poço e um aquífero com as suas respectivas nomenclaturas utilizadas nas equações para determinação de parâmetros hidrodinâmicos (Bouwer & Rice, 1976).

Para a interpretação dos dados relativo aos testes são utilizados as seguintes equações; Na determinação da condutividade hidráulica (kr):

$$Kr = \frac{r^2c}{2Le} \quad Ln\left(\frac{Re}{r_w}\right) \frac{1}{t} Ln\left(\frac{y_o}{yt}\right)$$
 (equação 4.1)

Onde; yo e yt correspondem respectivamente o nível(em metros) no tempo zero(inicial) e no tempo final do teste.

Avaliando o Re (raio efetivo do poço)

Utilizando um modelo análogo elétrico, Bouwer & Rice (1976) correlacionaram a distância do raio efetivo (Re) com outras dimensões do poço. O Re corresponde ao raio de alcance efetivo do poço (zona de influência na variação de nível).

Valores de *Re* expressos com Ln (Re/rw) são determinados com diferentes valores de rw e Le, utilizando a equação de Thiem. Para poços parcialmente penetrante temos (Lw<b). Bower & Rice obtiveram a equação 19, onde A e B são coeficientes adimensionáveis com a função de Le/rw.

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

$$\operatorname{Ln}\left(\frac{\operatorname{Re}}{r_{w}}\right) = \left\{\begin{array}{c} \frac{1,1}{r_{w}} + \frac{A+B \operatorname{Ln}\left[\frac{b-L_{w}}{r_{w}}\right]}{\frac{Le}{r_{w}}} \end{array}\right\}$$
(equação 4.2)

Quando o poço for parcialmente penetrante o valor de Re poderá ser igual ao valor de Lw e ao de Le, que serão menores do que a espessura do aquífero: Re=Lw=Le < b.

Para um poço totalmente penetrante (Lw=b), equação 20, onde "c" é adimensionável obtido no gráfico com a função Le/rw.

$$\operatorname{Ln}\left(\frac{\operatorname{Re}}{\operatorname{r}_{w}}\right) = \left[\begin{array}{c} \frac{1.1}{\operatorname{Le}} + \frac{C}{\operatorname{r}_{w}} \end{array}\right]^{-1}$$
(equação 4.3)

Para a determinação dos valores de **A e B** é utilizado o gráfico da figura 4.11.

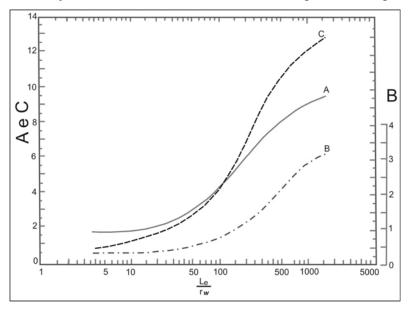


Figura 4.11 - Gráfico para a obtenção dos valores de A, B e C (Fonte: Bower & Rice, 1976).

Aplicação prática do método de Bower & Rice (1976)

Para a realização deste método, foi utilizado os dados de redução da carga hidráulica no piezômetro totalmente penetrante no aquífero livre. Estes dados estão reunidos e são apresentados no ANEXO C, como os valores correspondentes aos atributos obtidos no piezômetro, o gráfico para obtenção dos valores de A, B e C, e o gráfico para obtenção do valor de yt e yo. Na figura 4.12, são apresentados os dados obtidos no slug test plotados no gráfico juntamente com a reta de ajuste para determinação dos atributos utilizados nas equações de cálculo da condutividade hidráulica. Para a determinação dos parâmetros, o piezômetro PZ-1 foi considerado como totalmente penetrante.

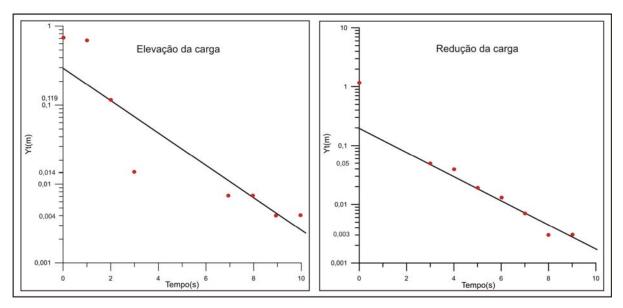


Figura 4.12 - Dados de elevação e redução de carga do slug test realizado no Pz-1 (aquífero livre), com retas ajustadas aos pontos correspondentes.

Os valores de condutividade hidráulica (K) e trasmissividade (T) do aquífero livre obtido através do *slug test* foi de: K= 1,83×10⁻⁴ m/s; T= 4,85×10⁻³ m²/s (Elevação da carga hidráulica) e K= 3.02×10^{-4} m/s; T= 8.0×10^{-3} m²/s (Redução da carga hidráulica).

No slug test realizado no piezômetro (Pz-2) do aquífero confinado, somente foi satisfatório os dados referentes à elevação da carga hidráulica. Os dados utilizados para a interpretação são apresentados no ANEXO C. O gráfico com os dados plotados e a reta de ajuste são apresentados na figura 4.13. Para a determinação dos parâmetros, o PZ-2 foi considerado como sendo parcialmente penetrante. A partir da análise, foi obtida uma condutividade hidráulica (K) de 9,29×10⁻⁶ m/s e a transmissividade (T) de 3,02×10⁻⁴ m²/s.

A aplicação do método de Bouwer & Rice (1989) para a determinação de parâmetros hidrodinâmicos, através do *slug test*, foi satisfatória com os dados apresentados.

Os valores referentes a redução da carga no aquífero não foram satisfatórios para a análise, portanto foram desconsiderados. A ausência de informações para redução da carga no piezômetro do aquífero confinado, deixou a avaliação do método limitada em relação a essa condição hidráulica.

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

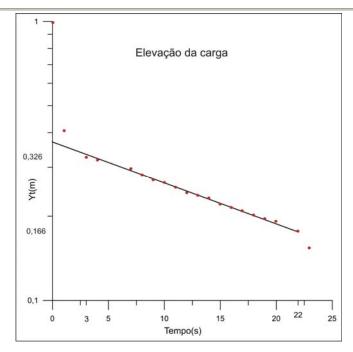


Figura 4.13 - Dados de elevação de carga do *slug test* realizado no Pz-2 (aquífero confinado), com reta ajustada aos pontos correspondentes.

Na tabela 4.3 é apresentada uma sumarização dos dados obtidos através do slug test, na qual, o aquífero livre apresenta uma condutividade hidráulica com diferentes ordens de grandeza em relação ao aquífero confinado.

Tabela 4.3 - Sumarização dos dados obtidos a partir da aplicação do *slug test*.

Método	Carga	Aquifero Livre Pz-1		Aquífero Confinado Pz-2	
Metodo	hidráulica	K (m/s)	$T (m^2/s)$	K (m/s)	$\frac{T (m^2/s)}{}$
Bower & Rice	Elevação	1,83×10 ⁻⁴	$2,6\times10^{-3}$	9,29×10 ⁻⁶	9,29×10 ⁻⁵
Dowel & Rice	Redução	3,02×10 ⁻⁴	5,3×10 ⁻³		

Os dados de "slug test" comparados aos dados de ensaio de bombeamento dos poços localizados na zona norte, mostram-se diferenciados. A média dos parâmetros hidrodinâmicos obtidos a partir do levantamento de trabalhos anteriores são: transmissividade (T) de $8,56\times10^{-3}$ m²/s, e condutividade hidráulica (K) de $1,74\times10^{-4}$ m/s. Comparando aos dados de slug test, os valores possuem a ordem de grandeza diferenciada no que se trata dos dados obtidos no aquífero confinado. Quanto ao aquífero livre, os dados do slug test são compatíveis com os parâmetros hidrodinâmicos obtidos nos trabalhos anteriores.

4.2 INFRA-ESTRUTURA HÍDRICA E ABASTECIMENTO DE ÁGUA

O levantamento da infra-estrutura hídrica e do abastecimento da zona norte da cidade de Natal foi realizado com base nas informações do cadastramento de poços no aquífero Barreiras (FUNCERN, 2006), atividades de campo e dados fornecido pela CAERN. Os atributos que compõem a estrutura hídrica ou que representam um potencial no abastecimento podem ser divididos em dois grupos de acordo com o manancial de origem:

(I) Águas subterrâneas

- Sistema de abastecimento público de água; distribui água tratada na rede pública.
- Captação de água através de poços particulares; representa o abastecimento com finalidades de uso industrial, agrícola, complemento do abastecimento doméstico ou, às vezes, como única forma de abastecimento.

(II) Águas superficiais

- Lagoa de Extremoz; captação de água pela CAERN sendo destinada para a demanda do sistema público.
- Rio Doce; seu suprimento hídrico está restrito a utilização na irrigação de pequenas áreas agrícolas em suas margens.

4.2.1 Águas subterrâneas

De acordo com o cadastramento de poços realizado pela FUNCERN (2006), estão inseridas na área de estudo, 577 unidades de captação de águas subterrânea. Desse total, 219 são poços tubulares pertencentes a particulares; 51 são poços tubulares públicos; 301 são poços escavados e 06 são fontes naturais (Tabela 4.4 e Figura 4.14). O cadastro dos poços é apresentado no ANEXO D, com modificações.

As fontes naturais (surgências) identificadas no cadastro de poços (FUNCERN, 2006) têm sua ocorrência restrita às margens do rio Potengi, nos domínios do mangue. Estas surgências de água subterrâneas possuem uma representatividade incipiente no abastecimento da área.

Tabela 4.4 - Unidades de captação de águas subterrâneas por bairros da zona norte de Natal.

	Unidade de Captação					
Bairro	Escavado	Fonte	Tubu	Tubular		
		natural	Particular	CAERN		
Igapó	19	0	12	0		
Lagoa Azul	31	0	34	23		
N.S. da Apresentação	84	0	60	12		
Pajuçara	17	0	33	09		
Potengi	07	02	21	05		
Redinha	11	01	14	01		
Salinas	33	0	05	0		
*São Gonçalo Amarante	99	03	40	01		
Total	301	6	219	51		

^{*}Não inserido no município de Natal.

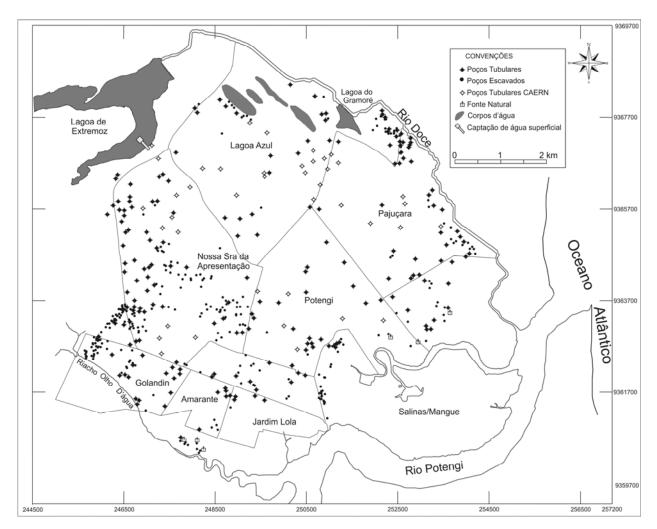


Figura 4.14 - Mapa de unidades de captação de água na zona norte de Natal (FUNCERN, 2006 com modificações).

4.2.1.1 Sistema Público de Abastecimento de Água (CAERN)

Os poços que contribuem com o abastecimento público estão localizados em todos os bairros da zona norte de Natal. Segundo o cadastramento de poços (FUNCERN, 2006) existem 51 poços tubulares pertencentes ao Sistema Público de Abastecimento, com 34 poços em operação. O volume captado diáriamente é de 36.550,32 m³, totalizando 13.340.867 m³/ano, dados referentes ao ano de 2006 (Tabela 4.5). Alguns poços tem sua água injetada diretamente na rede, e outros possuem suas águas misturadas em reservatórios e, posteriormente, distribuídas na rede geral de água.

Tabela 4.5 - Captações do sistema público de abastecimento e volumes de água explotados no ano de 2006. (Fonte: CAERN 2006)

Cantação	N° de poços	Vo	olume explot	ado
Captação	em operação	m ³ /h	m³/dia	m ³ /ano
Gramoré/ Pajuçara/ zona 16	12	798,50	1.916	6.994.860
Eldorado/ zona16	01	30,00	720	262.800
Jardim Progresso/ zona 16	04	130,00	3120	1.138.800
Brasil Novo/ zona 16	03	65,00	1560	569.400
Redinha-zona 8	02	95,43	2.290	835.966,8
Parque dos Coqueiros - zona 14	01	35,00	840	306.600
Santa Catarina zona 14	01	20,00	480	175.200
Panatis zona 14	01	40,00	960	350.400
Amarante	01	42,00	1008	367.920
Alvorada IV zona14	01	40,00	960	350.400
Lagoa Azul zona 15	01	80,00	1920	700.800
Nova Natal	04	147,00	3528	1.287.720
TOTAL	32	1.522,93	36.550,32	13.340.867

4.2.1.2 Uso Privado das Águas Subterrâneas

O uso final da água dos poços particulares é bastante variado, com diversas finalidades nos ambitos: industrial, agrícola, complementação do abastecimento doméstico. As vezes, é a única forma de abastecimento. As indústrias localizadas no setor oeste da área possuem abastecimento realizado praticamente somente com poços tubulares.

O setor NW da área, no município de São Gonçalo do Amarante, conta com uma maior concentração de poços escavados, provavelmente para suprir a deficiência do abastecimento público da rede de distribuição. Nas zonas periurbanas, próximas ao rio Doce, é comum a prática de captação de água subterrânea através de poços tubulares ou poços escavados. Em decorrência da facilidade de construção, e custo reduzido, os poços escavados são encontrados nos locais em que o abastecimento de água em rede é deficiente ou que o mesmo só foi implantado após um período avançado de ocupação das unidades habitacionais.

O volume captado através de poços privados (escavados e tubulares) é de aproximadamente 4,5×10⁶ m³/ano (FUNCERN, 2006, com modificações). Provavelmente, não ocorrem oscilações neste valor, pois na maioria dos casos, a água subterrânea representa um complemento no abastecimento.

4.2.2 Águas Superficiais

Os recursos hídricos de superfície da área de estudo são representados no setor norte pela lagoa de Extremoz, a leste pelo rio Doce, ao sul pelo rio Potengi e a oeste pelo riacho Olho d'Água. Dentre estes, o rio Doce e a lagoa de Extremoz são os que possuem contribuição no suprimento de água. A lagoa de Extremoz supre parte do abastecimento público. A seguir, será realizada uma avaliação sintetizada destes dois mananciais de superfície.

4.2.2.1 Lagoa de Extremoz

A lagoa de Extremoz, situada na extremidade norte da área de estudo, contribui, em parte, com o suprimento de água da zona norte da cidade de Natal. Inserida na bacia hidrográfica do rio Doce, possui uma área de aproximadamente 4,2 km², formada pelos rios do Mudo, no braço norte, e Guajiru, no braço sul da lagoa.

Segundo Castro (2000), as descargas média no rio do Mudo é de 0,28 m³/s e no rio Guajiru de 0,26 m³/s. O rio Doce, a jusante da lagoa de Extremoz, possui uma descarga média de 0,39 m³/s, podendo ocorrer em algumas épocas do ano, fluxo nulo em alguns trechos.

De acordo com estudos batimétricos realizados por Melo (2005) a capacidade de acumulação máxima da lagoa de Extremoz é de 14,6×10⁶ m³. Segundo informações do Relatório interno da CAERN, a lagoa de Extremoz contribui com 20,6×10⁶ m³/ano.

Estudos desenvolvidos por Melo (2005), revelaram que a lagoa de Extremoz recebe contribições, no seu volume, das águas subterrâneas do aquífero Barreiras. Possui duas frentes principais de escoamento: uma de direção aproximada SE-NW compartilhada, principalmente com a bacia do rio Guajiru e outra de direção E-W associada, à bacia do rio Mudo. No mapa potenciométrico (julho de 2004) apresentado (Figura 4.15), as linhas de escoamento estão dirigidas à lagoa de Extremoz, não sendo verificado fluxo subterrâneo em outra direção.

As águas captadas na lagoa de Extremoz são bombeadas para uma estação de tratamento de água (Figura 4.16) e posteriormente, distribuídas através da rede pública de abastecimento de água.

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

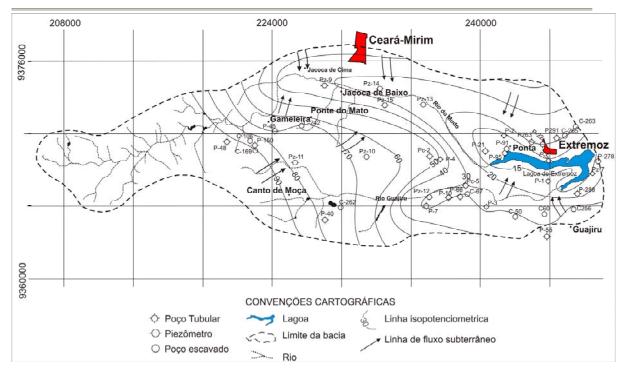


Figura 4.15 - Equipotenciais e direção do fluxo das águas subterrâneas nas proximidades da lagoa de Extremoz (Julho de 2004), Fonte Melo (2005).

Figura 4.16 - Estação de tratamento de água, localizada nas proximidades da lagoa de Extremoz.

4.2.2.2 Rio Doce

O rio Doce possui um comprimento de aproximadamente 12,0 km, que vai desde o sangradouro da lagoa de Extremoz (Figura 4.17) até a foz com o rio Potengi. A conexão da lagoa de Extremoz com o rio Doce ocorre somente nos períodos em que a mesma se encontra com volumes elevados e, consequentemente, a descarga do rio Doce está diretamente ligada ao transbordamento da lagoa. Verifica-se a ocorrência de um fluxo de base das águas

subterrâneas em direção ao rio Doce, motivo pelo qual existe escoamento na porção mais a jusante, em períodos de estiagem. A contribuição do rio Doce voltada principalmente a agricultura, se comprova na prática do cultivo de hortaliças às suas margens. Nas áreas de horticultura, a água é bombeada diretamente do rio sendo destinada ao uso na irrigação.

Figura 4.17 - Sangradouro da lagoa de Extremoz, que contribui com a vazão do rio Doce (novembro de 2008).

Para a determinação do volume de água escoada pelo rio Doce foram realizadas medidas de vazão em três pontos diferentes (Figura 4.18). O primeiro ponto (P-1), localizado no sangradouro da lagoa de Extremoz; o segundo (P-2), localizado na ponte da estrada de Genipabu e o terceiro (P-3), localizado na ponte da estrada da Redinha, ponto mais a jusante do rio. As medidas foram realizadas no mês de fevereiro de 2008, e os dados obtidos são apresentados na tabela 4.6. O equipamento utilizado foi um micromolinete com haste de 1,66 m, com uma hélice em sua base interconectada a um visor digital para a leitura da velocidade. Na figura 4.19 são apresentados, em detalhe, os componentes do micromolinete e a utilização deste equipamento em campo e na figura 4.20 o procedimento de medição da vazão em campo.

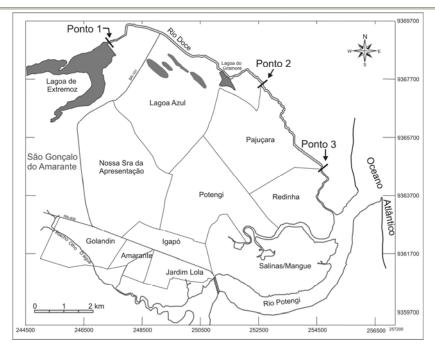


Figura 4.18 - Localização dos pontos de medida de vazão do rio Doce.



Figura 4.19 - Detalhe dos componentes do micromolinete: a) visão geral do equipamento, b) visor com informações de velocidade, que fica localizado na parte superior; c) hélice com a seta indicando o sentido de fluxo da água, localizado na parte inferior.

Não foi identificada contribuição da lagoa de Extremoz para o curso do rio Doce. A vazão medida no ponto P-2 foi de 585,36 m³/h (0,16 m³/s) e no ponto mais a jusante, a vazão foi de 4.116,24 m³/h (1,14 m³/s). Como nesse trecho do rio não existem contribuições de outras fontes (como descarte de águas residuárias e esgotos), a diferença entre a vazão dos dois pontos corresponde à contribuição das águas subterrâneas. O volume de água subterrânea que aflora para compor o rio Doce no trecho entre as pontes da estrada de Genipabu e estrada da Redinha, é de 3.530,88 m³/h (0,98 m³/s). Este volume drenado pelo rio Doce, representa aproximadamente 36×10^6 m³/ano. A medição foi feita no período que antecede ao início das chuvas, não existindo, no momento da medição, o transbordamento da lagoa de Extremoz.

Tabela 4.6 - Valores da vazão de fluxo do curso do rio Doce obtidos em fevereiro de 2008.

Unidade de medida	de Lagoa de Extremoz		Redinha
m^3/s	0	0,162	1,143
m ³ /h	0	585,36	4.116,24

Figura 4.20 - Procedimento de medição do volume de descarga do rio Doce.

4.2.3 Avaliação das Demandas no Abastecimento Hídrico da Zona Norte de Natal

No que se refere às áreas com cobertura do abastecimento público de água, o sistema de distribuição abrange quase que totalmente a zona norte, com exceção das áreas periurbanas, que possuem uma deficiência no abastecimento.

A cidade de Natal possui um "Índice de Perda de Faturamento" no sistema de abastecimento público de aproximadamente 46,6% (Carvalho et al., 2004), isso não corresponde diretamente o percentual de perdas na rede de distribuição, mas pode ser um indicador do valor mais provável, sendo considerado nas avaliações deste trabalho o valor de 45%. Castro (2000) considera que o desperdício na distribuição de água na Bacia do rio Doce é de 46,6% para as águas subterrâneas, e 21% para as águas superficiais. Esta água é desperdiçada em decorrência de vazamentos nas tubulações subterrâneas.

Para uma população estimada em aproximadamente 300.000 habitantes, no ano de 2006, a zona norte de Natal e parte do município de São Gonçalo do Amarante necessitam de 27,37×10⁶ m³/ano de água para atender a demanda, considerando um consumo médio per capta de 250 L/dia. Os poços do Sistema Público de Abastecimento contribuem com aproximadamente 13,34×10⁶ m³/ ano, e 4,5×10⁶ m³/ ano fornecidos através de poços particulares. O volume bombeado da lagoa de Extremoz é de 20,6×10⁶ m³/ano, sendo efetivamente distribuídos 17,13×10⁶ m³/ano. Nesse primeiro estágio do tratamento de água ocorre uma perda de 16,8% do volume captado para o volume de água tratada e distribuída. O volume total distribuído pelo Sistema Público de Abastecimento é de 30,47×10⁶ m³/ano, excedendo em 11,32% a estimativa da demanda para o ano de 2006. A complementação do abastecimento de água feito por poços particulares, corresponde a um volume aproximado de 4,5×10⁶ m³/ano, ou seja, 16,4% da demanda de água na zona norte. Com o excedente de água fornecido pela Companhia de Águas, somado à contribuição dos poços particulares, existe um volume superior a demanda de 27,72%, aproximadamente 7,53 m³/ano. Na tabela 4.7 é apresentado o somatório das estimativas de perda de água no sistema público de abastecimento, no qual é de aproximadamente 15,00×10⁶ m³/ano, sendo utilizado em todo o processo de suprimento hídrico 38,44×10⁶ m³/ano.

A partir dos volumes apresentados, verifica-se que as águas superficiais contribuem com 54% do suprimento hídrico da zona norte de Natal, e as águas subterrâneas representam 46%.

Tabela 4.7 - Volume captado para o abastecimento de água da zona norte, com cálculo de perdas. Fonte com modificações: FUNCERN (2006), CAERN (2008).

Origem da captação	Captadas (10 ⁶ m ³ /ano)	Perdas (%)	Perdas (10 ⁶ m ³ /ano)
Demanda estimada para 300.000 habitantes.	27,37	-	-
Poços CAERN	13,34	45,0	6,00
Lagoa de Extremoz (bruta)	20,6	45,0	9,00
Poços Particulares	4,5	-	-
Total captado	38,44	-	-
Perda total estimada	-	-	15,00

modificar suas condições naturais.

Avaliar as condições de recarga das águas subterrâneas é indispensável, em um estudo associado à hidrogeologia e gestão dos recursos hídricos. Quantificar o volume de água que atinge os aquíferos torna-se fundamental para aumentar a eficiência na gestão sustentável dos recursos hídricos (De Vries, 2002 com modificações). No contexto da hidrologia subterrânea, de um modo geral, a recarga representa a quantidade de água que alcança o aquífero, podendo

O processo de recarga dos aquíferos pode ser realizado de duas formas segundo fatores antrópicos e naturais:

- Recarga Natural: processo de infiltração de águas superficiais capazes de alcançar os aquíferos, sem ocorrer interferência antrópica.
- Recarga artificial: processo de infiltração promovido através de mecanismos artificiais, representando um conjunto de técnicas cujo principal objetivo é permitir uma melhor explotação dos aquíferos pelo aumento de seus recursos e reservas, mediante uma intervenção direta ou indireta no ciclo hidrológico (Custódio & Lamas, 1985).

De um modo geral, é considerada recarga, a água que infiltra em um terreno e alcança um aquífero. Estudos desenvolvidos por Lerner (1990, 1997), Scanlon et al. (2002), definem os termos referentes à recarga de aquíferos. A partir dessas definições com algumas modificações, considera-se que a recarga pode ser definida também segundo a forma em que é conduzida. As definições básicas dos tipos de recarga são:

- Recarga Direta: a água é direcionada ao aquífero através da zona vadosa. Trata-se da forma básica de recarga, podendo ser artificial ou natural.
- Recarga Indireta: percolação de água para o aquífero ocorre através de cursos d'água de superfície, sem que ocorra uma percolação na zona vadosa.

A recarga direta também pode ser considerada "difusa", quando decorrente de precipitações pluviométricas e mecanismos de irrigação.

Estimar a recarga urbana torna-se uma ação complexa em uma área que possui um terreno totalmente modificado por conta da distribuição do sistema de abastecimento da rede pública de água (Lerner, 2002 com modificações).

Na análise das condições hidrogeológicas da área de estudo, será apresentada a variação temporal da profundidade das águas subterrâneas, realizada com dados dos anos de 1998, 2006 e 2008.

4.3.1 Fluxo das Águas Subterrâneas

A análise do fluxo das águas subterrâneas foi realizada a partir de mapas potenciométricos dos anos de 1998, 2006 e 2008. Os mesmos serão apresentados e discutidos a seguir:

Mapa potenciométrico do ano 1998

No mapa elaborado por Melo (1998), verifica-se a existência de uma divergência do fluxo de águas subterrâneas a partir do bairro de Nossa Senhora da Apresentação, no qual as curvas potenciométricas alongam-se no sentido oeste para leste. Considera-se este local como o provável divisor de fluxo subterrâneo (Figura 4.21). As cargas hidráulicas variam de 30 m (na parte central da área) até 5 m (nas imediações do rio Doce). Na região, entre o bairro Lagoa Azul e Pajuçara, ocorre uma convergência de fluxo de águas subterrâneas provavelmente decorrente da explotação de águas subterrâneas por poços.

Os menores gradientes estão situados na parte central dos bairros Lagoa Azul e Pajuçara com valores de 0,28% e os maiores gradientes de cargas hidráulicas ocorrem na zona de convergência de fluxo, entre os bairros Lagoa Azul e Pajuçara com gradiente de 3,5%.

A parte central do bairro Nossa Sra da Apresentação representa um divisor hídrico subterrâneo.

Mapa potenciométrico do ano 2006

Possui a configuração geral semelhante ao mapa potenciométrico do ano 1998. As curvas equipotenciais variam de 30 m (na parte central do bairro Nossa Sra da Apresentação) a 5 m (em todo o perímetro da área da zona norte), ou seja, imediações do rio Doce, rio Guajiru, riacho Olho d'água e a zona do mangue do rio Potengi (Figura 4.22). O divisor de águas subterrâneas foi definido como uma linha aproximadamente reta com direção E-W, similar ao traçado do divisor de águas superficiais entre a bacia hidrográfica do rio Doce e rio Potengi. Os gradientes menores ocorrem no bairro Lagoa Azul, próximo as lagoas naturais, apresentando valor de 0,33%. Os maiores gradientes estão restritos ao bairro Golandin, com valor de 4,5 %, sendo similar aos que ocorrem na zona situada próxima ao mangue.

Mapa Potenciométrico do ano 2008

Com gradientes que variam de 0,0034 (0,34%) no setor norte, bairro Lagoa Azul até 0,0187 (1,8%) no setor sul, no bairro Igapó (Figura 4.23). As equipotenciais variam de 30 m na parte Central, até 10 m, na periferia da área. As cargas hidráulicas inferiores a 10 m são encontradas nas proximidades dos cursos d'água de superfície. A definição do divisor de águas subterrâneas é semelhante ao apresentado no mapa potenciométrico do ano 2006. O traçado da linha divisória das frentes de escoamento ocorre de leste até a parte Central no bairro Nossa S^{ra} da Apresentação de forma retilínea. Após este trecho central a linha divisória apresenta uma pequena curvatura para norte, fator que diferencia do limite anteriormente definido no ano de 2006.

A partir de uma análise comparativa entre os três mapas potenciométricos gerados, verifica-se de um modo geral que não ocorrem diferenças significativas na direção do fluxo das águas subterrâneas, expondo um sistema hidrogeológico em equilíbrio o que se refere às condições de carga hidráulica, mesmo com todos os processos antrópicos atuantes.

A zona com baixa carga hidráulica, apresentada no mapa do ano de 1998, não é identificada nos demais mapas. Sua identificação está relacionada a uma maior densidade de informações.

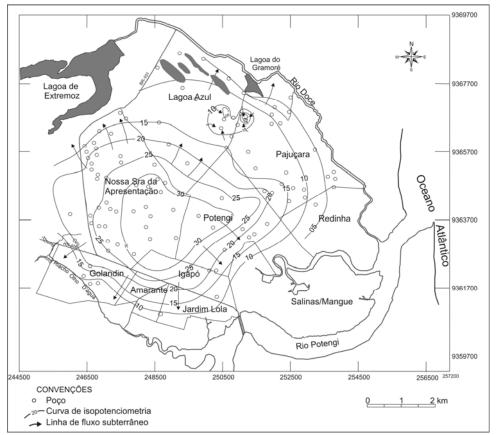


Figura 4.21 - Mapa potenciométrico da zona norte na cidade de Natal no ano de 1998.

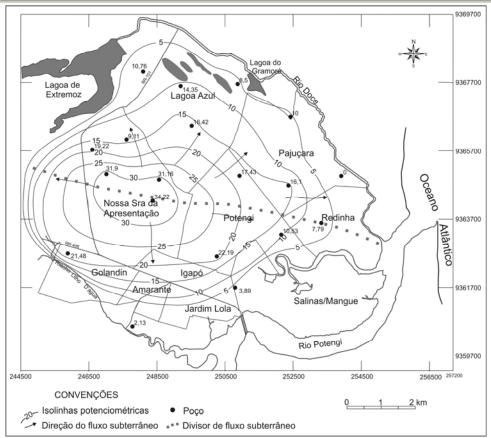


Figura 4.22 - Mapa potenciométrico da zona norte de Natal, em outubro de 2006.

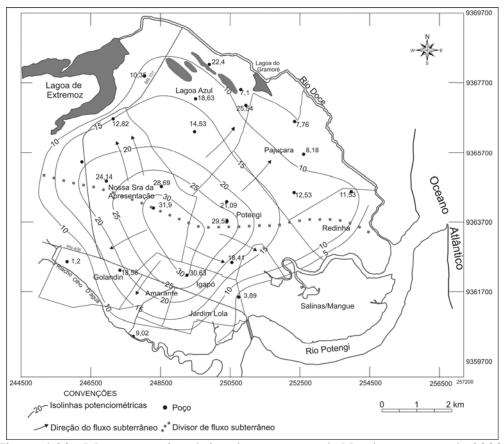


Figura 4.23 - Mapa potenciométrico da zona norte de Natal, em março de 2008.

Avaliação da vazão de escoamento natural

A vazão de escoamento natural (VEN) ou frente de escoamento subterrâneo representa o volume drenado de água subterrânea em função de uma ano hidrológico, numa determinada data.

Para o cálculo da VEN é necessário ter como base o mapa potenciométrico da área e valores dos parâmetros hidrodinâmicos como, condutividade hidráulica, espessura do aquífero, gradiente hidráulico e comprimento da frente de escoamento considerada. O cálculo da VEN, pode ser obtido a partir da equação 4.23:

VEN=TxixL equação 4.4

Onde: T; transmisssividade(L^2T^1), i; gradiente hidráulico(adimensional) e L; comprimento da frente de escoamento(L).

A área de estudo possui duas frentes de escoamento subterrâneo, sendo os cálculos realizados, independentemente, uma da outra. A vazão de escoamento natural (VEN) foi calculada considerando o mapa potenciométrico do ano 2008 sendo apresentada na figura 4.24:

- Frente de escoamento norte: as águas subterrâneas se direcionam para o rio Guajiru, lagoa de Extremoz e rio Doce, com parâmetros médios de transmissividade (T) igual a 1,68×10⁻² m²/s, e condutividade hidráulica (K) de 5,34×10⁻⁴ m/s. Foi escolhido o intervalo entre as equipotenciais de 20 e 25 no qual o gradiente varia de 0,0058 (0,58 %) a 0,011 (1,1%), com média de 0,0084 (0,84 %). A frente de escoamento possui um comprimento de 4.373 m. No cálculo da vazão de escoamento natural, é utilizado a equação 4.1, sendo obtido o valor total de 19.4×10⁶ m³/ano. Este valor apresenta-se inferior a vazão do rio Doce, calculada em 36×10⁶ m³/ano. A diferença dos valores pode ser justificada através de três fatores: (a) ocorrência de fluxo de base da lagoa de Extremoz; (b) pela contribuição da águas subterrâneas no domínio da margem norte do rio; (c) registro de vazão pontual em relação ao ciclo hidrológico da área.
- Frente de escoamento sul: as águas subterrâneas alimentam o riacho Olho d'água e o rio Potengi com parâmetros médios de transmissividade (T) de 5,54×10⁻³ m²/s, e condutividade hidráulica (K) de 1,72×10⁴ m/s. Foi escolhido o intervalo entre as equipotenciais de 20 e 25, no qual, o gradiente varia de 0,0092 (0,92%) a 0,016

(1,6%), tendo uma média de 0,0252 (2,52%). O comprimento da frente de escoamento é de 6.136 m, sendo obtida uma vazão de 27,01×10⁶ m³/ano.

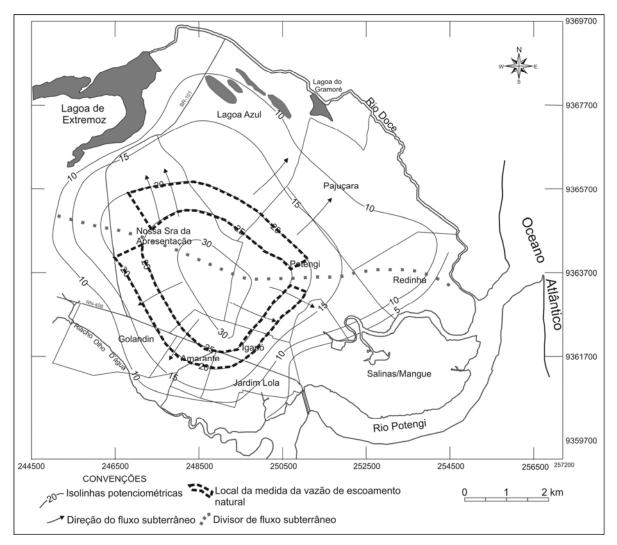


Figura 4.24 - Mapa potenciométrico da zona norte de Natal, em março de 2008, com destaque para o local utilizado no cálculo da vazão de escoamento natural.

4.3.2 Recarga das Águas Subterrâneas na Zona Norte de Natal

A recarga das águas subterrâneas na área de estudo encontra-se condicionada principalmente por fatores como: geologia, ocupação urbana, presença de lagoas de infiltração de águas pluviais, regime pluviométrico e rede de drenagem.

Com 62% de sua área inserida no contexto urbano, a zona norte de Natal possui construções habitacionais, comerciais, industriais e parte das vias pavimentadas, condicionando um sistema modificado, tornando limitado a infiltração natural de águas pluviais.

A quantificação da recarga urbana torna-se complexa, pois envolve considerações da impermeabilização do terreno por construções, infiltração de efluentes originados das fossas sépticas, sumidouros, vazamentos na tubulação do sistema de distribuição de água potável e pela convergência de águas pluviais nas lagoas de infiltração de águas pluviais.

O valor das perdas no sistema de abastecimento público, considerado nas avaliações deste trabalho, será de 45%, perfazendo um volume de 15,00×10⁶ m³/ano.

Na determinação da recarga pelas chuvas, foi considerado o mapa de uso e ocupação do solo, sendo excluídos as áreas com carcinicultura e zonas de mangue, por serem áreas que sofrem diariamente influência das marés. A partir desta consideração, a área disponível para infiltração é de 54,39 km².

Com uma pluviosidade média de 1.735 mm/ano (série histórica de 1992 a 2008), o volume infiltrado de águas subterrâneas pode variar de acordo com duas relações:

- Considerando a relação entre o excedente hídrico de 522,1 mm e a precipitação de 1.735,2, é obtido um valor de 30%. Para que este valor tenha validade, o escoamento superficial deve ser nulo. Considerando uma taxa de infiltração de 30%, o volume total estimado de contribuição para o aquífero é de 28,31×10⁶ m^3/ano .
- Utilizando a relação da Vazão de Escoamento Natural (VEN) de 46,41×10⁶ m³/ano e o volume precipitado de 94,36×10⁶ m³/ano, através da equação 4.5, foi obtido um valor infiltrado de 49%, correspondendo a 46,23×10⁶ m³/ano.

 $R=VEN/P \times A$ equação 4.5

O excedente hídrico obtido através do balanço hidroclimatológico, não existe uma consideração a respeito da constituição litológica da área, bem como da estrutura urbana instalada. A validade deste método independe da estrutura urbana instalada na área.

Na VEN obtida, estão inseridos todos os fatores antrópicos que interferem no sistema, como as contribuições referentes à perda no sistema de distribuição de águas, infiltração de efluentes domésticos e das lagoas de captação de águas pluviais.

Verifica-se que nos dois métodos utilizados para estimar a taxa de recarga, não existe considerações a respeito das condições geológicas, cujos resultados podem ser considerados valores aproximativos das condições reais da área. A complexidade para a determinação da recarga urbana é evidenciada através das estimativas apresentadas com diferentes volumes infiltrados. As incertezas hidrogeológicas agregadas no contexto urbano configuram toda a complexidade para a determinação do valor real da recarga urbana.

Neste trabalho será considerado para fins de avaliação, a média entre os percentuais obtidos; uma taxa de recarga de 39,5% do volume precipitado, totalizando um volume infiltrado de $37,27\times10^6$ m³/ano.

A demanda para o abastecimento de água por habitante foi estimada em 250 L/dia, o que totaliza 27,37×10⁶ m³/ano. A contribuição na recarga das águas subterrâneas realizada pelo processo de infiltração de águas residuais, oriundas de fossas e sumidouros, foi estimada em 80,9% da demanda do abastecimento hídrico, o que corresponde a um volume de 21,93×10⁶ m³/ano. Esse percentual baseado segundo informações de Costa (2008), que no Projeto ARIDAS efetuado no nordeste brasileiro, foi calculado um uso consuntivo de 19,08%. Para a estimativa deste percentual, estão inseridos tanto o volume distribuído na rede de água como o volume captado por poços particulares, não sendo, efetivamente utilizados os valores correspondentes distribuídos no ano de 2006.

4.3.3 Balanço Hidrogeológico

O balanço hidrológico subterrâneo trata-se de uma representação generalizada das condições naturais do meio, considerando os valores de entrada e saída (retirada) de água. Na determinação do balanço hidrológico da zona norte foram considerados os seguintes atributos:

(I) Entrada de água

- a) Perdas no sistema de distribuição de água;
- b) Lançamento e infiltração de efluentes através de fossas;
- c) Infiltrações de águas de chuva.

(II)Saída de água

- a) Vazão de escoamento natural;
- b) Captação de águas subterrâneas;

(I) Entrada de água

a) Perdas no sistema de distribuição de água: este fator de entrada d'água é estimado em relação a uma média geral de perdas durante a adução e distribuição final para o usuário de água. Estão inseridos neste percentual, os vazamentos de tubulações e ligações clandestinas, resultando uma perda de aproximadamente 15,00×10⁶ m³/ano.

- b) Infiltração de efluentes através de fossas e sumidouros: como a área não possui um sistema de saneamento completo, ocorrendo somente em parte do bairro de Igapó e Industrial, a recarga das águas subterrâneas provenientes das fossas domésticas foi estipulada em 80,9% do consumo total da população. Nessas condições, o volume estimado que contribui para a recarga do aquífero é de $21.93 \times 10^6 \text{ m}^3/\text{ano}$.
- c) Infiltrações de águas de chuva: a taxa de infiltração considerada, resulta da média entre os valores obtidos de duas formas; através da relação excedente hídrico e precipitação (tem-se 30%); e utilizando a vazão de escoamento natural, (infiltração de 49%). A partir destas considerações, a média entre as taxas de infiltração é de 39,5%, totalizando um volume de contribuição na recarga do aquífero de 37,27×10⁶ m^3/ano .

(II) Saída de água

- a) Vazão de escoamento natural; corresponde ao volume drenado pelas águas subterrâneas. A área de estudo apresenta duas frentes de escoamento que drenam um volume total de 46.41×10^6 m³/ano.
- b) Captação de águas subterrâneas; a estimativa do volume retirado pelas captações de águas subterrâneas é baseada nas informações dos poços particulares e do sistema público, que é de 21×10^6 m³/ano.

4.3.4 Reservas e Disponibilidades Hídricas do Sistema Aquífero Dunas/Barreiras

A avaliação das reservas hídricas subterrâneas representa uma tarefa que considera diversos parâmetros numéricos do aquífero, estando associado a um tempo, pois considera a variação dos níveis potenciométricos. Na zona norte de Natal, ocorrem dois aquíferos diferenciados, interconectados hidraulicamente. No caso, o aquífero Dunas e o aquífero Barreiras, configurando assim, o Sistema Dunas/Barreiras.

Para a estimativa efetiva do volume de água armazenado no Sistema Aquífero é necessário a obtenção de parâmetros básicos como flutuação máxima do NE, geometria do aquífero, e porosidade efetiva do sistema.

A porosidade efetiva do Sistema Aquífero Dunas/Barreiras na região de Natal foi considerada por Melo (1995) em 10%. Estudos desenvolvidos no aquífero Barreiras na Região Metropolitana de Fortaleza (Ceará) por Bianch et al. (1984) adotam um valor de 10%. Cavalcante (1992), em estudos na Bacia do Jaguaribe no Ceará, considera um valor de 5%.

Neste trabalho não foi realizado o monitoramento do sistema aquífero Dunas/Barreiras, portanto, não foi gerada nenhuma informação da variação potenciométrica no decorrer de mais de um ano hidrológico. Diante da ausência de informações, não foi possível realizar a avaliação das reservas reguladoras, bem como as reservas totais e potencialidades hídricas da área.

A disponibilidade efetiva, corresponde a descarga anual efetivamente bombeada em um tempo considerado. Este valor geralmente é estimado através de uma visita in loco nas captações de águas subterrâneas e a verificação do volume atual explotado. Para as condições da zona norte de Natal, têm uma disponibilidade efetiva de 21×10⁶ m³/ano, considerando os valores estimados para o ano de 2006.

Integração dos dados

A construção do poço mostrou em detalhe a configuração hidrogeológica da área, possuindo aquíferos independentes que em alguns setores da área possuem uma conexão hidráulica. A comparação entre os mapas de fluxo subterrâneo revela um sistema de fluxo homogêneo, ou seja, não existe diferenças significativas da direção do fluxo nos últimos 10 anos.

Os dados das reservas reguladoras, reservas permanentes e consequentemente a determinação das potencialidades hídricas subterrãneas, poderiam ser melhores avaliadas a partir de uma rede de monitoramento de poços para a quantificação das variações das cargas hidráulicas na área de estudo.

As entradas de água no sistema aquífero (infiltrações) da zona norte correspondem a um total de 74.2×10^6 m³/ano, e as saídas representam 64.25×10^6 m³/ano. A diferença entre as entradas e saídas de água totalizam um volume de 9,95×10⁶ m³/ano, o que corresponde aproximadamente, a 7,18% da média do volume de água envolvido entre as entradas e saídas.

O valor do excedente hídrico deve ser visualizado como resultado aproximado dentro das estimativas envolvidas, agregando as incertezas das varíaveis hidrogeológicas da área que podem variar também com a época de coleta dos dados. Dentro desta perspectiva, os dados do

balanço de entradas e saídas pode m ser considerados satisfatórios, no contexto do sistema hidrogeológico da zona norte.

Tabela 4.8 - Balanço de entradas e saídas de água no sistema hidrológico da zona norte de Natal.

ENTRADAS	$\times 10^6 \mathrm{m}^3/\mathrm{ano}$
Perdas no sistema público de abastecimento.	15,00
Infiltração de efluentes.	21,93
Infiltração de águas pluviais e lagoas artificiais.	37,27
Total	74,2
SAÍDAS	
Vazão de escoamento natural.	46,41
Captação de águas subterrâneas (poços).	17,84
Total	64,25

Em termos hidrogeológicos, constata-se que a área encontra-se equilíbrio, pois não apresentou alterações significativas na direção de fluxo subterrâneo nos últimos 10 anos. O aparente equilíbrio atual no sistema hídrico, está susceptível a alterações negativas, em decorrência da ampliação da estrutura habitacional1h e da instalação de um sistema de saneamento na área. Estes processos modificadores, geram um aumento na demanda de consumo de água, bem como alterações significativas no processo de infiltração de águas.

4.4 VULNERABILIDADE AMBIENTAL NATURAL E RISCO À CONTAMINAÇÃO DAS ÁGUAS SUBTERRÂNEAS

Para avaliar as condições ambientais que envolvem os recursos hídricos subterrâneos, será realizada uma análise da vulnerabilidade natural das águas subterrâneas. Estas informações de vulnerabilidade obtidas serão integradas às de fontes potenciais de contaminação, visando determinar o grau do potencial de risco de contaminação das águas subterrâneas.

4.4.1 Considerações Gerais Sobre Vulnerabilidade das Águas Subterrâneas

Segundo Voigt (2003), o primeiro mapa de vulnerabilidade foi elaborado na França, na escala de 1:1.000.000, desenvolvido por Margat (1968), introduzindo o termo "vulnerabilidade da água subterrânea a contaminação".

A vulnerabilidade de uma unidade hidrogeológica em termos gerais, está relacionada a sua capacidade de propiciar mudanças na qualidade das águas.

O termo vulnerabilidade à contaminação do aquífero é utilizado para representar as características intrínsecas que determinam a susceptibilidade de um aquífero de ser adversamente afetado por uma carga contaminante (Foster, 1987).

A vulnerabilidade das águas subterrâneas pode ser definida como a probabilidade de certa proporção de um poluente poder alcançar o aquífero em um determinado tempo (Voigt, 2003). Vrba & Zaporozec (1994 in Voigt, 2003), foram os primeiros a distinguir vulnerabilidade em dois tipos: vulnerabilidade intríseca e vulnerabilidade específica.

A vulnerabilidade intrínseca faz uma caracterização relativa, não mensurável, com propriedade adimensional das coberturas das águas subterrâneas, determinada pelas espessuras do material geológico (zona insaturada) e propriedades de recarga do aquífero. O termo "vulnerabilidade intrínseca à contaminação da água subterrânea" leva em consideração as características geológicas, hidrológicas e hidrogeológicas da área, independente da natureza do contaminante e do cenário da contaminação (Goldscheider, 2002).

A vulnerabilidade específica leva em consideração as propriedades particulares do contaminante ou grupo de contaminante como um complemento da vulnerabilidade intrínseca da área. A vulnerabilidade está condicionada ao risco de exposição da carga contaminante. Os atributos considerados são: uso do solo e densidade populacional (Vrba In Zektser & Everett, 2004), e a mesma considera parâmetros naturais, como solo e rocha.

A agência reguladora Norte-Americana ASTM (Americam Society for Testing Materials) define vulnerabilidade das águas subterrâneas como "a facilidade com a qual um dado contaminante pode migrar para um aquífero de interesse em determinadas situações de uso do solo, características do contaminante e condições da área" (ASTM, 1996 In Guiguer, 2002).

A maioria dos métodos de avaliação de vulnerabilidade de aquíferos considera-os, como meios homogêneos e isotrópicos, ou de características geológicas, meteorológicas e hidrodinâmicas de relativa fácil interpretação e extrapolação (Rodriguez, 2003).

Dentre as diversas metodologias empregadas para se determinar a vulnerabilidade natural das águas subterrâneas, as mais utilizadas na América do Sul são DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone, Condutivity of the aquifer), AVI (Aquifer Vulnerability Index), e GOD (Groundwater occurrence, Overall lithology of the unsaturated zone, Depth to the water table). Neste trabalho, será dada ênfase ao método GOD, pois foi o que melhor se adequou às condições e disponibilidades de dados da área em estudo.

4.4.2 Metodologia GOD e sua Aplicação

Os mapas de vulnerabilidade são instrumentos preventivos e orientativos que auxiliam no planejamento do uso e ocupação do solo, na medida em que neles são definidas áreas de maior e/ou menor susceptibilidade à poluição, causadas por atividades humanas (Meaulo, 2004).

No zoneamento da vulnerabilidade de determinada área, os aquíferos que são considerados de menor vulnerabilidade a contaminação, em termos gerais, tendem a ser os mais difíceis de serem reabilitados, uma vez contaminados (Foster, 1993).

A metodologia GOD foi desenvolvida por Foster & Hirata (1988) onde considera as informações como: tipo de pressão atuante no aquífero (livre, confinado, semi-confinado), litologia da zona insaturada e profundidade do aquífero. Por existir apenas três parâmetros para a obtenção do índice de vulnerabilidade, este método torna-se mais acessível, sendo posteriormente, modificado por Foster *et al.* (2002).

Para cada parâmetro, é atribuído um valor. Após a determinação de cada um, serão multiplicados entre-si para a obtenção do índice de vulnerabilidade da área. A figura 4.25 apresenta o diagrama esquemático para a determinação do índice de vulnerabilidade natural à poluição do aquífero, com os fatores considerados (pressão, litologia e profundidade do aquífero) e sua respectiva ponderação.

Os métodos utilizados para cálculo de vulnerabilidade como DRASTIC, AVI e GOD, generalizam as condições do aquífero, sendo satisfatórios para aplicação em estudos regionais. Algumas adaptações devem ser adotadas quando se deseja detalhar áreas e considerar parâmetros como conexões com corpos de água superficial, variações do nível estático, características específicas dos contaminantes, capacidade específica do solo, taxas de precipitação e modificações na estrutura ambiental da área considerada. A avaliação da vulnerabilidade de pequenas áreas, de forma localizada, deve ser efetuada integrando dados e características detalhadas do terreno e da carga contaminante (Guiguer, 2002).

Em termos gerais, com uma maior quantidade de parâmetros e dados hidrogeológicos, aplicando os métodos para cálculo da vulnerabilidade existentes, seja na integra ou com adaptações, irá resultar em uma configuração da vulnerabilidade natural do aquífero mais próxima das condições reais.

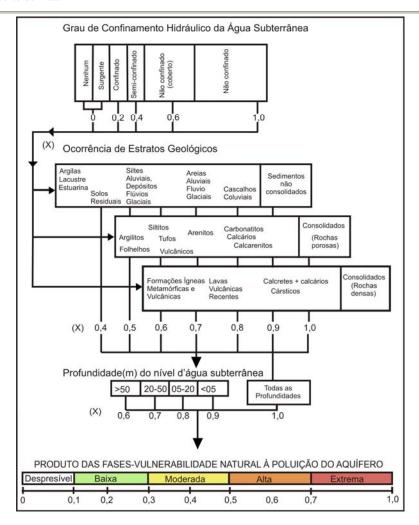


Figura 4.25 - Sistema de avaliação do índice de vulnerabilidade natural à poluição do aquífero. Fonte com modificações: Foster et al. (2002).

4.4.3 Profundidade das Águas Subterrâneas

A elaboração de um mapa de profundidade das águas subterrâneas é essencial para o uso nas mais diversas finalidades, seja na área da construção civil, na definição das obras de captação de águas ou na determinação dos fatores que interferem na vulnerabilidade a contaminação do manancial subterrâneo.

Os dados de nível estático utilizados para a elaboração do mapa de profundidade das águas subterrâneas foram obtidos durante o mês de outubro de 2006 (Figura 4.26), período de estiagem. A configuração do mapa mostra que a profundidade máxima das águas subterrâneas na área é de 37 m na região sul do bairro Potengi. As menores profundidades ocorrem nas proximidades da zona do mangue do rio Potengi. Na parte Central da área da zona norte as profundidades das águas subterrâneas são de aproximadamente 1,2 m.

No setor oeste, verifica-se que ocorre um aumento da profundidade das águas subterrâneas à medida que se desloca de sul para norte da área, apresentando profundidades de até 30 m.

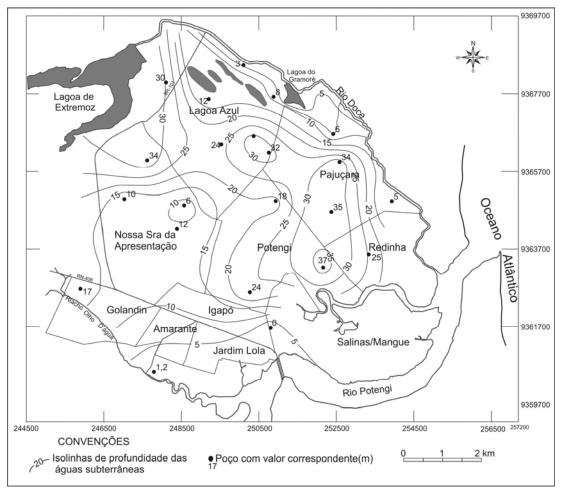


Figura 4.26 - Mapa de profundidade das águas subterrâneas na zona norte de Natal, em outubro de 2006 (FUNCERN, 2006 com modificações).

Na faixa leste, ocorre uma diminuição gradual da profundidade das águas subterrâneas de acordo com a proximidade do rio Doce. Na área próxima as lagoas interdunares, a profundidade varia entre 10 e 15 m.

Os dados para a elaboração do mapa de profundidade das águas subterrâneas do 2008 (Figura 4.27), foram coletados no mês de março, início da estação chuvosa. De um modo geral, o mapa apresenta profundidades mais reduzidas, comparando aos dados do ano de 2006. A maior profundidade encontrada foi 39 m, na região sul do bairro Pajuçara; as menores profundidades são encontradas na zona do mangue do rio Potengi, ocorrendo surgências naturais de águas subterrâneas.

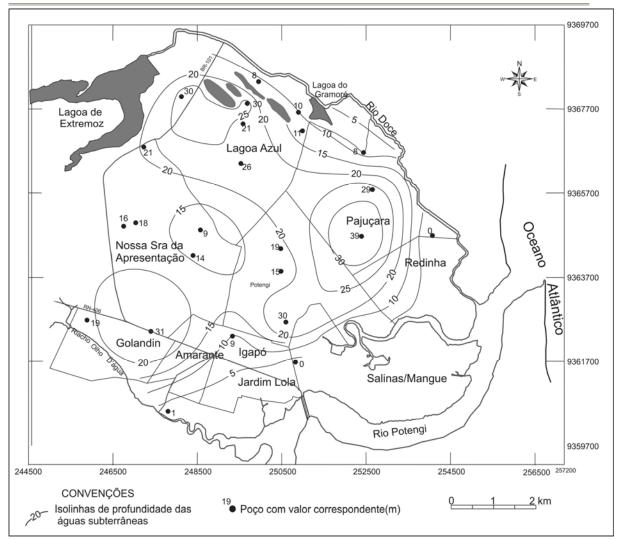


Figura 4.27 - Mapa de profundidade das águas subterrâneas na zona norte de Natal, em março de 2008.

A configuração geral do mapa indica uma diminuição das águas subterrâneas à medida que se aproxima dos curso d'água de superfície, como os rios Doce e Potengi. Na parte central do mapa, não existe uma tendência gradual de aumento ou redução de níveis, sendo o comportamento das isolinhas heterogêneo.

Comparando os mapas eleborados, do ano 2006 e 2008, verifica-se que no ano de 2008, ocorrem profundiades mais elevadas no bairro Golandin, com profundidade de 31 metros, sendo apresentadas em 2006 profundidades de 5 a 15 m.

Uma diferença marcante entre os mapas é que em 2006 apresenta valores elevados de profundidade no bairro Lagoa Azul, com 32 m e Potengi com 37 m, não identificados no ano de 2008.

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

Na área circunvizinha as lagoas naturais, o mapa referente ao ano de 2008 apresenta valores mais elevados, com profundidade de até 30 m, enquanto no mapa do ano de 2006 a profundidade das águas subterrâneas estão em torno de 10 a 15 m.

4.4.4 Vulnerabilidade Natural das Águas Subterrâneas

Para a determinação da vulnerabilidade natural das águas subterrâneas, foram utilizadas informações de 33 poços tubulares que apresentam medidas de nível estático e descrição de perfil litológico.

A área referente ao domínio de mangue e salinas, não foi considerada para a elaboração do mapa de vulnerabilidade, por se tratar de uma zona de descarga de água subterrânea sob influência direta e diária da ação das variações das marés.

Vulnerabilidade Baixa: aproximadamente 21,6% da área encontra-se na classe de vulnerabilidade baixa (Figura 4.28). A zona localizada nos bairros de Pajuçara, Potengi e Lagoa Azul, possui uma extensão de 4,7 km de norte a sul, com uma largura de aproximadamente 1,3 km de leste para oeste, tornando-se mais alargada nas proximidades da zona de mangue do rio Potengi. A outra zona, na faixa oeste, que engloba parte dos bairros de Nossa S^{ra} da Apresentação, Golandin e São Gonçalo do Amarante, possui uma extensão de 3,1 km de Norte a sul, e 1,6 km de leste para oeste.

Vulnerabilidade Moderada: classe de vulnerabilidade com maior representatividade espacial, abrangendo um total de 46,1% da área de estudo. Sua disposição espacial abrange toda a área, de norte a sul, e de leste a oeste, sendo a mesma, limitada pelas demais classes de vulnerabilidade.

Vulnerabilidade Alta: está restrita a proximidade dos corpos d'água, ocupando aproximadamente 9,2 % da área. Ocorre margendo o rio Doce, lagoa de Extremoz, as lagoas interdunares e o riacho Olho d'água.

Vulnerabilidade Extrema: os corpos d'água existentes na área de estudo são surgências de águas subterrâneas, portanto considerados como unidades de vulnerabilidade natural extrema. A zona saturada está próxima a superfície, proporcionando afloramentos de águas subterrâneas representando 12,5% da área, contornando os rios existentes, a lagoa de Extremoz e as lagoas na área do bairro de Lagoa Azul.

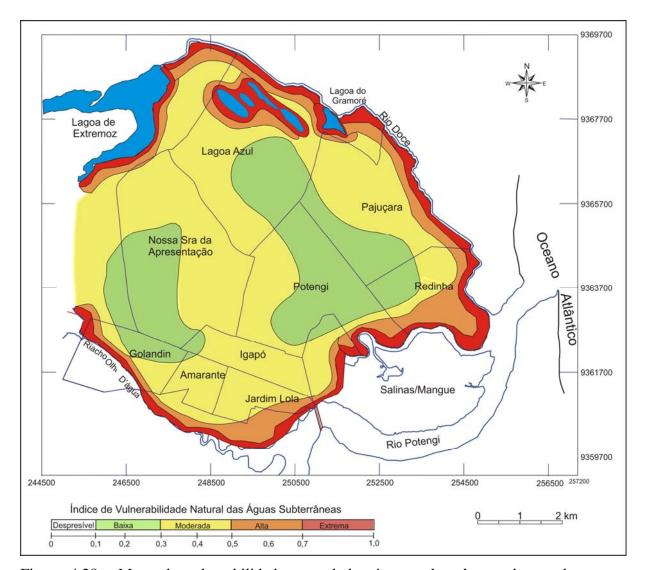


Figura 4.28 - Mapa de vulnerabilidade natural das águas subterrâneas, de acordo com o método GOD.

4.4.5 Avaliação de Risco à Contaminação das Águas Subterrâneas

Para a avaliação de risco de determinada área devem ser considerados dois fatores: a vulnerabilidade natural das águas subterrâneas, e a estrutura da carga potencialmente contaminante que possa gerar danos às águas subterrâneas.

Na avaliação de risco de contaminação das águas subterrâneas da zona norte de Natal, foi utilizado o esquema proposto por Foster & Hirata (1993), que considera a interação entre a

vulnerabilidade dos aquíferos e a carga contaminante, sendo realizado adaptações para a área de estudo.

O termo "risco" trata-se da possibilidade de um fato ocorrer e prejudicar um determinado elemento ou meio considerado, gerando uma situação danosa. Para efetuar a análise de risco na área de estudo, as fontes potenciais de contaminação foram classificadas segundo a "potencialidade da carga contaminante". Na obtenção do potencial de risco à contaminação das águas subterrâneas, foi utilizado o mapa de vulnerabilidade ambiental natural das águas subterrâneas desenvolvido a partir da método GOD.

As fontes potenciais de contaminação (FPC) foram ponderadas de acordo com o seu potencial de gerar mudanças na qualidade das águas subterrâneas e acarretar prejuízos à saúde humana, sendo classificadas em quatro níveis, segundo as suas potencialidades de contaminação (Tabela 4.9).

O Potencial de risco foi calculado a partir de um diagrama (Figura 4.29) que relaciona a classificação da vulnerabilidade (baixa, moderada, alta e extrema) com o potencial da carga contaminante (baixo, moderado, alto e extremo). A partir da interação destes parâmetros, foi obtido o Potencial de risco das águas subterrâneas, que é caracterizado como: baixo, moderado ou forte.

Na elaboração do mapa de riscos de contaminação das águas subterrâneas, foi gerado uma malha que se adequasse à escala de apresentação, sendo adotado quadrantes de 500 m de largura por 500 m de comprimento. A partir desta malha, foram generalizadas as informações que continham em cada quadrante e determinou-se o potencial de risco em que o mesmo se enquadra, baseado na figura 4.29.

A configuração do mapa de potencial de risco de contaminação das águas subterrâneas é apresentado na figura 4.30. Ocorre uma predominância de risco moderado na parte central da área, com as zonas de risco forte localizadas às margens do rio Doce, zona do mangue, e parte do bairro de Nossa S^{ra} da Apresentação. Também são encontrados níveis de potencial de risco baixo isolados, nos bairros da Redinha e Pajuçara, decorrência, principalmente, da elevada profundidade do nível das águas subterrâneas.

Tabela 4.9 - Classes das fontes potenciais de contaminação existentes na zona norte de Natal segundo o potencial de contaminação.

CLASSE	CARACTERÍSTICAS
	Estão compreendidas nessa categoria as fontes potenciais de contaminação que
Baixo	possuem uma reduzida atuação, ou que geram carga de contaminantes, somente
Daixo	quando ocorrem falhas ou adensamento das fontes. Foram inseridos, nesta classe,
	a zona industrial e os pontos de lavagem de veículos.
	São as fontes potenciais que possuem uma menor carga de efluentes, ou que
Moderada	dependem da lixiviação para percolar até as águas subterrâneas. Estão inseridas
Moderada	nesta categoria as áreas com rebanho confinado, lagoa de tratamento de
	efluentes, cemitérios e zona urbana.
	Tratam das fontes potenciais de contaminação que possuem uma maior
	facilidade de vazamentos ou gerar efluentes capazes de alcançar o aquífero, com
Alta	maior facilidade, por conta do volume de contaminante disponível. Estão
	inseridos nesta categoria, zonas agrícolas, lixões, postos de combustíveis e lagoas
	de tratamento de efluentes.
	Recebem a ponderação máxima pela proximidade em relação à zona saturada e/
Extrema	ou possui uma ação direta nas águas subterrâneas. Estão inseridas nesta classe as
	lagoas de infiltração e poços abandonados.

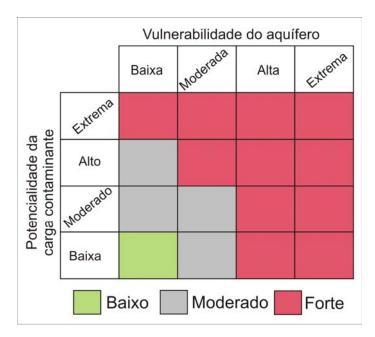


Figura 4.29 - Diagrama de classificação do Potencial de risco à contaminação das águas subterrâneas.

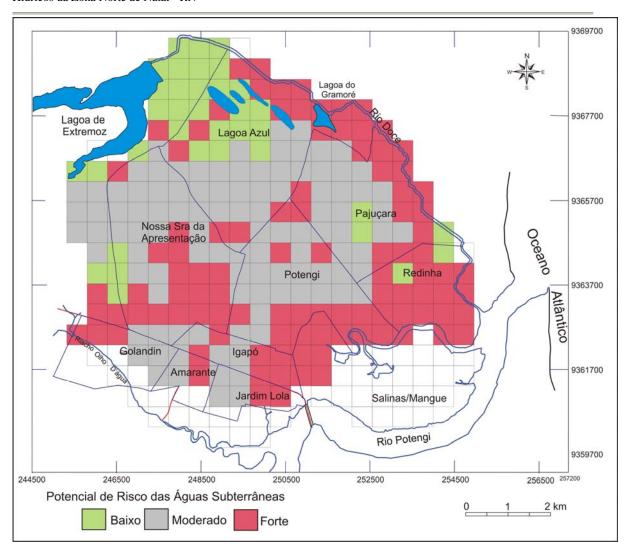


Figura 4.30 - Mapa de Potencial de risco das águas subterrâneas na zona norte de Natal para o ano de 2008.

V ASPECTOS DA QUALIDADE DAS ÁGUAS

A avaliação hidroquímica dos mananciais torna-se essencial para caracterizá-los e associá-los com aos mais diversos fatores que condicionam as variações na sua qualidade. Neste trabalho, foi realizada uma avaliação hidroquímica das águas subterrâneas e superficiais que ocorrem na zona norte de Natal, com o intuito de diagnosticá-las e verificar a interação entre as mesmas, diante da estrutura urbana instalada.

A determinação dos fatores condicionantes da qualidade das águas subterrâneas foi realizada através de análises físico-químicas dos íons maiores, análises químicas simplificadas dos íons cloreto, nitrato, amônia e parâmetros como condutividade elétrica, pH e Eh.

O principal objetivo de um estudo hidroquímico, na investigação de aquíferos, é contribuir principalmente para:

- Qualificar e quantificar a recarga;
- Estabelecer inter-relações ou separações entre subsistemas, dentro de um sistema aquífero;
- Explicar a composição química atual da água subterrânea;
- Predizer as mudanças na composição química da água subterrânea sob determinadas ações.

FÍSICO-OUÍMICAS 5 1 ANÁLISES DOS ÍONS MAIORES ÁGUAS NAS SUBTERRÂNEAS E SUPERFICIAIS

A análise de dados de hidroquímica foi realizada com 33 amostras, sendo, 25 amostras de águas subterrâneas (24 do ano 2006 e uma do ano 2008), e oito (08) de águas superficiais (abril/2008). Foram realizadas análises dos íons maiores como Ca²⁺, Mg²⁺, Na⁺, K⁺, SO₄²⁻, HCO₃-, CO₃²-, Cl⁻, e íons menores como NO₃-, NH₃+, obtendo-se também parâmetros físicos de condutividade elétrica (CE), potencial hidrogênio-iônico (pH) e potencial de oxi-redução (Eh). A partir dos resultados, foi realizado o cálculo do erro da análise, e posteriormente, foram elaborados diagramas para a classificação e caracterização hidroquímica.

5.1.1 Balanço Iônico

A qualidade dos resultados das análises químicas foi avaliada mediante o cálculo do erro da análise através no balanço iônico. Em um balanço iônico ideal, a concentração total dos íons positivos (cátions) deve ser igual a concentração total dos íons negativos (ânions).

Na prática, existe uma diferença nessas concentrações em decorrência dos erros acumulados de cada uma das determinações individuais. O erro prático da análise (e%), definido por Logan (1965) in Santos (1997) pode ser obtido pela aplicação da equação 5.1 e o mesmo é apresentado na tabela 5.2:

$$e\% = \left| \frac{r \sum p - r \sum n}{r \sum p + r \sum n} \right| x100$$
 (equação 5.1)

Onde; $r\Sigma p$ é o Valor absoluto do somatório dos cátions (meg/L) e $r\Sigma n$ é o valor absoluto do somatório dos ânions (meg/L).

O erro admissível depende da concentração dos íons e da classificação iônica, haja vista que uma água com baixa concentração de sais é muito mais difícil ser avaliada com precisão. Para a verificação da qualidade da análise de água, alguns autores consideram a condutividade elétrica e outros a concentração dos íons em miliequivalente por litro. Para os resultados das análises obtidas, neste estudo, foi considerado um erro admissível de 10%.

A partir do balanço iônico realizado, foi excluído das interpretações hidroquímicas as amostras que apresentaram um erro da análise superior a 10%. Nas tabelas 5.1 e 5.2 são apresentados os resultados das análises químicas com os respectivos erros. Somente as amostras de águas subterrâneas apresentaram um erro superior a 10%, sendo eliminadas oito amostras analisadas.

5.1.2 Caracterização Hidroquímica Através do Diagrama de Piper

Na caracterização hidroquímica utilizando o diagrama de Piper (Figura 5.1) verifica-se a ocorrência de uma diferenciação entre os tipos de águas superficiais e subterrâneas.

No que se refere aos ânions, nas águas subterrâneas ocorre uma predominância de amostras cloretadas, enquanto nas águas superficiais, as amostras são cloretadas com uma tendência para bicarbonatada. O bicarbonato ocorre em consequência das interações das águas que percolam o solo com a atividade biogênica que produz CO₂, elevando o teor de HCO₃⁻ e CO_3^{2-} .

No campo dos cátions, as amostras são diferenciadas da seguinte forma: as águas superficiais são predominantemente sódicas, enquanto que as águas subterrâneas estão amplamente, divididas em sódicas e mistas, possuindo também uma amostra cálcica.

Tabela 5.1 - Resultado das análises físico-químicas das águas subterrâneas (meq/L).

N°	Amostra	Ca ²⁺	Mg^{2+}	Na ⁺	\mathbf{K}^{+}	Fe ²⁻	NO ₃	Сľ	SO ₄ ² -	HCO ₃ -	CE (μS/cm)	pН	Eh (mV)	NH ₃ ⁺	Classe iônica	Captação	Prof. (m)	Erro (%)
1	LAZ0160	0,564	0,299	0,3741	0,0256	0,0113	0,2729	0,512	0,1181	0,3609	157	6,22	254	0,66	Mista-Cl	Tubular	36	0,4
2	LAZ0614	0,256	0,749	0,9613	0,0000669	0,0064	0,8084	1,3108	0,0033	0,1799	257	5,0	315,1	11,14	Mista-Cl	Tubular	72	-7,7
3	LAZ0620	0,128	0,985	1,1353	0,1714	0,0032	1,1444	1,3615	0,0115	0,13	355	4,71	273	0,11	Na-Cl	Tubular	58	-4,4
4	LAZ0626	0,667	0,499	0,6438	0,1049	0,0059	0,4942	0,8584	0,06	0,6837	235	6,5	235	0,67	Mista-Cl	Tubular	55	-4,4
5	EXT0725	0,102	0,149	0,348	0,028	0,0231	0,0036	0,4735	0,0679	0,2089	63	5,18	255	0,6	Na-Cl	Escavado	35	-7,3
6	NSA0269	0,205	0,224	0,7308	0,1151	0,0086	0,1887	0,9473	0,1001	0,1899	162	4,61	291	0,35	Na-Cl	Tubular	90	-5,2
7*	NSA0592	0,101	0,455	1,1266	0,000125	0,0064	0,5922	1,339	0,0002	0,14	207	4,44	337,5	8,16	Na-Cl	Tubular	58	-10,1
8	NSA0878	0,244	0,411	1,1266	0,000117	0,0097	0,7075	1,3531	0,0196	0,12	246	4,36	345,3	9,75	Na-Cl	Escavado	31	-10,2
9	NSA1016	0,769	0,174	0,4567	0,0256	0,0038	0,283	0,6808	0,0227	0,5888	187	6,64	348	0,15	Ca-Cl	Tubular	-	-4,8
10	NSA1208	0,615	1,024	0,6568	0,1535	0,0016	0,2576	1,8057	0,1647	0,4938	369	5,69	240	3,55	Mista-Cl	Escavado	50	-5,2
11*	POT0148	0,153	0,699	0,8569	0,1279	0,0064	1,3803	1,0361	0,147	0,1824	435	4,64	279,1	19,02	Na-Cl	Tubular	72	-19,7
12*	POT0192	0,230	0,274	1,2179	0,000172	0,0064	0,484	1,3672	0,026	0,3199	261	6,17	233	6,67	Na-Cl	Tubular	58	-11,9
13	POT0586	0,142	1,546	1,7225	0,000159	0,0011	1,5871	2,1568	0,1697	0,1	527	4,57	317	21,9	Na-Cl	Tubular	67	-8,1
14*	POT0605	0,205	1,373	1,3702	0,1969	0,0134	0,0254	2,1314	0,0872	0,0836	337	7,2	319,2	0,35	Mista-Cl	Tubular	99,5	15,2
15	RED0212	0,384	0,814	1,0352	0,1765	0,0043	0,5341	1,7761	0,1001	0,228	334	5,53	241	7,36	Mista-Cl	Escavado	35	-4,4
16*	SAL0233	0,203	1,110	2,0792	0,000253	0,0118	1,1183	2,7064	0,2842	1,572417	472	4,1	305,1	15,41	Na-Cl	Escavado	26	-25,1
17*	SGA0875	0,617	0,574	1,5007	0,2225	0,0118	1,1183	3,0192	0,0841	0,019	422	4,25	352	0,38	Na-Cl	Escavado	25	-18,3
18	SGA1308	0,949	0,7533	1,5268	0,000187	0,0107	1,172	1,5364	0,2099	0,892648	387	5,81	299,4	16,5	Mista-Cl	Escavado	-	-8,1
19	PAJ0180	0,307	0,824	1,3832	0,2276	0,0054	1,2358	1,5096	0	0,1329	332	5,16	291	17,0	Na-Cl	Tubular	36	-2,3
20	PAJ0187	0,230	0,649	0,8438	0,0000837	0,1279	0,4753	1,2826	0,097	0,1999	219	5,33	264,9	6,55	Na-Cl	Escavado	50	-5,2
21*	PAJ0201	0,529	0,535	1,2484	0,000104	0,0059	1,2736	1,3393	0,2777	0,0	486	4,21	249	17,6	Na-Cl	Tubular	42	-11,0
22	PAJ0629	0,162	0,614	1,0265	0,000122	0,0086	0,7663	1,1277	0,0	0,2999	235	5,65	247,6	10,56	Na-Cl	Tubular	85	-9,5
31	P-UFRN	0,3	0,71	0,54	0,05	0,0	0,1	0,93	0,17	0,22	193,3	6,4	-	0,1	Mista-Cl	Tubular	56	5,96
32	IGA0651	1,4107	4,5197	2,4054	0,3836	0,0032	1,3505	6,66	0,5763	0,2660	1077	5,32	272	18,6	Mista-Cl	Escavado	20	0,74

A - análise físico-química realizada pela FUNCERN (FUNCERN, 2006); B - amostra não utilizada nas interpretações hidroquímicas.

Tabela 5.2 - Resultado das análises físico-químicas das águas superficiais (meq/L).

N°	Amostra	Ca ²⁺	Mg ²⁺	Na ⁺	K ⁺	Fe ²⁻	NO ₃	СГ	SO ₄ ²⁻	HCO ₃	CE (μS/cm)	pН	Eh (mV)	NH ₃ ⁺	Tipo de água	Captação	Prof. (m)	Erro (%)
23	EX-3	0,672153	0,788682	1,63125	0,081856	0,171858	0,007741	1,869477	0	1,482803	287	7,9	-	0,02	Na-Cl	Lagoa	-	-0,2
24	EX-5	0,477543	0,49673	1,0875	0,071624	0,150376	0,006773	1,215005	0	1,010935	218	7,3	-	0,46	Na-Cl	Lagoa	-	1,1
25	MU-5	1,071852	1,149715	3,17985	0,151945	0,319012	0,014368	4,299768	0,099311	1,437895	588	7,5	-	0,06	Na-Cl	Rio	-	0,2
26	GU-7	0,30439	0,775523	2,204145	0,131993	0,277121	0,012482	2,527616	0,008953	0,700181	361	7,2	-	0,54	Na-Cl	Rio	-	6,4
27	DO-1	0,224051	0,203955	0,67338	0,049369	0,103652	0,004669	0,841222	0	0,381887	118	6,6	-	0,33	Na-Cl	Rio	-	1,1
28	DO-2	0,243512	0,360211	0,95265	0,123807	0,259936	0,011708	1,028255	0,024984	0,718865	156	6,7	-	0,27	Na-Cl	Rio	-	4,2
29	DO-3	0,360278	0,398864	1,07706	0,156805	0,329216	0,014828	0,934597	0,003539	1,03339	208	7,1	-	0,28	Na-HCO ₃	Rio	-	7,8
30^{B}	DO-4	0,360278	0,535382	1,574265	0,164991	0,346402	0,015602	1,495412	0,019571	0,876209	276	7,0	-	0,2	Na-Cl	Rio	-	10,7

B - amostra não utilizada nas interpretações hidroquímicas.

Esta diferenciação ocorre provavelmente, pelo fato das águas superficiais possuirem uma influência do intemperismo dos minerais, presentes nas rochas do embasamento cristalino, onde é originada parte das águas desse manancial.

Parte das águas superficiais representam surgências de águas subterrâneas, observadas no mapa de fluxo, no qual as águas subterrêneas são drenadas para a lagoa de Extremoz e para o rio Doce. Esses mananciais superficiais representam uma mistura de águas, o que torna complexa a caracterização hidroquímica nos triângulos dos cátions e ânios. O caráter iônico que diferencia as águas superficiais das águas subterrâneas, possui uma nítida distinção a partir da observação dos dados no losango, no qual as águas superficiais estão concentradas na parte inferior, e as águas subterrâneas, na superior. Na tabela 5.3 estão sumarizadas o tipo de água por manancial.

Tabela 5.3 - Resumo dos tipos de águas presentes segundo o manancial de origem.

Manancial/ Tipo de água	Na ⁺ - Cl ⁻	Ca ²⁺ - Cl ⁻	Mista - Cl	Na ⁺ - HCO ₃ ⁻	Total
Subterrâneo	08	01	08	-	17
Superficial	07	-	-	01	8

5.1.3 Características Hidroquímicas a Partir do Diagrama de Colunas

Originalmente criada por Collins (1923) in Hem (1992), a representação gráfica realizada através de colunas, possibilita uma visualização rápida dos elementos que estão se combinando, ou seja, quais íons possuem uma maior concentração na amostra e a identificação das ligações (combinação) entre cátions e ânions. Outra função nesses gráficos é o reconhecimento imediato do erro no balanço iônico da análise de água, por isso, são apresentados também, neste trabalho, amostras que apresentaram um erro analítico superior a 10%, sendo estas, desconsideradas nas avaliações hidroquímicas.

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

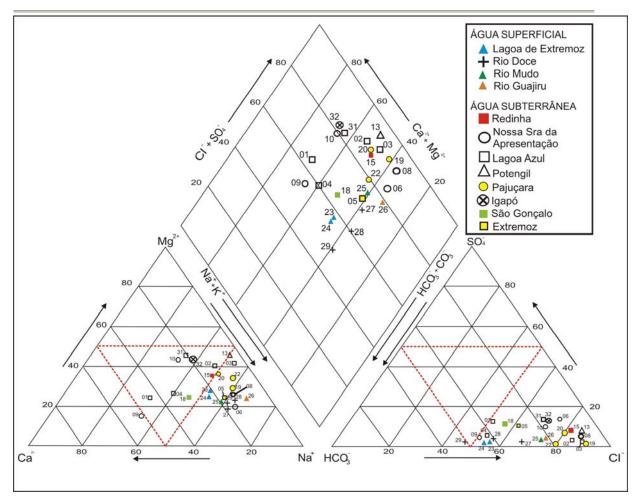


Figura 5.1 - Diagrama de Piper com as 25 análises químicas; águas superficiais e subterrâneas.

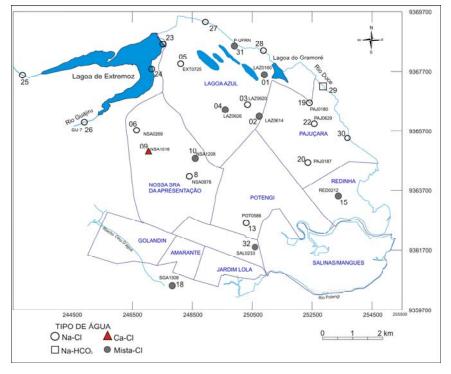


Figura 5.2 - Pontos de coleta de água com a classificação do tipo de água.

Os dados são expressos na forma de duas colunas paralelas, nos quais, uma corresponde aos valores de cátions, e a outra, os valores dos ânions; ambos expressos em miliequivalente por litro (meg/L).

Desta forma, é possível uma identificação direta do erro da amostra, ou seja, a diferença entre as colunas de cátions e ânions, corresponde ao erro das análises.

Na figura 5.3 são apresentados os diagramas colunares correspondentes às amostras de águas subterrâneas e superficiais. A amostra que apresenta maior concentração dos elementos analisados, corresponde à amostra IGA-0961, e à que possui uma menor concentração, corresponde à amostra EXT-0725. Nas águas subterrâneas, o cloreto possui uma ligação maior com o sódio, e em menor quantidade, o cloreto se liga ao magnésio. O sulfato, em algumas amostras, não possui uma concentração significante, sendo às vezes não detectado.

Nas águas subterrâneas a amostra que possui uma maior concentração de íons corresponde a amostra IGA-0961 com aproximadamente 9,0 meg/L de cátions, e nas águas superficiais, trata-se da amostra originada do rio Mudo (MU-5), com valor próximo a 6,0 meq/L para os ânions.

5.2 ANÁLISES QUÍMICAS SIMPLIFICADAS NAS ÁGUAS SUBTERRÂNEAS

Após uma caracterização hidroquímica com análises físico-químicas dos íons maiores foi realizada também uma avaliação a partir de 415 análises simplificadas (FUNCERN, 2006) dos íons nitrato, amônia, cloreto e de parâmetros como condutividade elétrica, pH e Eh. Essas informações serão apresentadas, a seguir, na forma de mapas de isovalores e correlações estatísticas, com suas respectivas discussões.

5.2.1 Concentração do Íon Cloreto nas Águas Subterrâneas

O elemento cloreto (Cl⁻) possui alta solubilidade, com o lento movimento das águas subterrâneas, promove aumentos gradativos e constantes nos seus teores na direção do fluxo subterrâneo. São os íons mais móveis e estáveis das águas subterrâneas (Auge et al. 2004), por não serem retidos e nem sofrerem reações com a fase sólida dos corpos armazenadores de águas subterrâneas. Estes também não interferem nos processos de intercâmbio iônico como oxidação e redução. Praticamente, não são afetados por trocas de pH e em decorrência da sua elevada solubilidade, precipita somente em concentrações superiores a 300 g/L, superiores aos valores das águas dos oceanos, que é de aproximadamente 30 g/L.

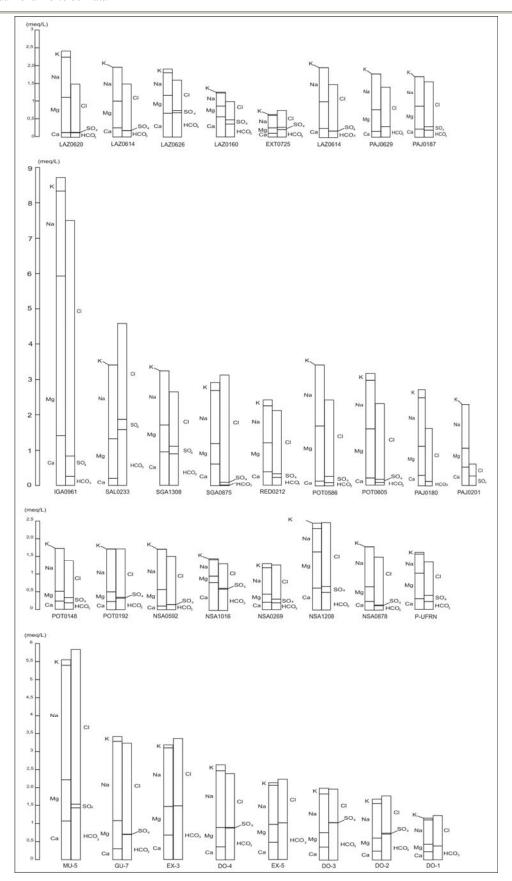


Figura 5.3 - Diagramas de colunas das análises químicas de águas superficiais e subterrâneas.

Dispondo destas propriedades é possível utilizá-los como traçadores naturais ou artificiais, para quantificar a dinâmica de fluxo, o índice de infiltração, e o intercâmbio iônico.

As fontes mais comuns de aporte de cloretos nas águas subterrâneas são: água da chuva, sedimentos de origem marinha, dissolução de evaporitos, lixiviados de lixões, resíduos urbanos e industriais.

O tratamento estatístico de amostras analisadas, revela que os valores obtidos na área da zona norte de Natal, em relação a concentração de cloretos, apresentam uma variação de 4,5 à 289,91 mg/L, com média de 60,24 mg/L. Foram utilizadas 415 análises de cloreto, e a partir do histograma (Figura 5.4) verifica-se a existência de uma maior quantidade de amostras no intervalo de 40 à 80 mg/L, com 41%, seguido do intervalo de zero a 40 mg/L, com 36% das amostras. As classes de concentração de cloreto mais elevadas estão entre 40 e 80 mg/L, representando 41% e as classes com valores inferiores a 120 mg/L representam menos de 7 %.

De acordo com o mapa elaborado no ano de 1996 (Figura 5.5), verifica-se que o aumento na concentração de cloreto ocorre com a proximidade da zona do mangue do rio Potengi, provavelmente por influência da salinidade das águas superficiais nesta área, por se tratar de um estuário, possuindo águas salobras. A área que possui uma menor concentração de cloretos está localizada na região próxima a lagoa de Extremoz, no bairro Lagoa Azul. Redução esta que pode ser explicada pela influência de águas superficiais e por uma menor ocupação urbana na área, consequêntemente, ocorrem lançamentos menores de efluentes.

As isolinhas de cloreto, no mapa elaborado com dados do ano de 2006 (Figura 5.6), possuem uma variação de 20 à 120 mg/L. Assim como nas análises do ano de 1996, verificase que os valores mais elevados estão nas proximidades da zona de mangue do rio Potengi, no bairro Igapó, com concentrações superiores a 120 mg/L. À medida que se desloca de sul para norte da área, ocorre uma redução na concentração de cloreto.

Foi realizado o mapa de isovalores com dados de poços tubulares, com profundidade igual ou superior a 15 m, no qual totalizaram 181 poços (figura 5.7). Os valores mais elevados de cloreto estão situados nos bairros de Igapó e Jardim Lola, faixa sul da área e no bairro Lagoa Azul, apresentando isolinhas com valor de 120 mg/L.

Os menores valores estão situados nas proximidades da lagoa de Extremoz, com valores inferiores a 20 mg/L. No setor leste e oeste os valores são inferiores à 60 mg/L. Comparando os dados obtidos no mesmo período, mas com quantidade de poços diferenciados, é verificado que o mapa, elaborado com dados de 17, poços reproduz uma

situação generalizada, visto que no mapa com 181 poços apresentam agrupamentos com concentração de cloreto elevada.

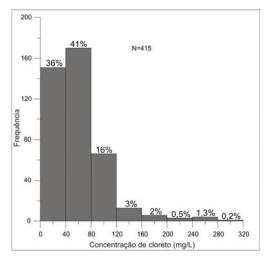


Figura 5.4 - Histograma das 415 amostras de cloreto.

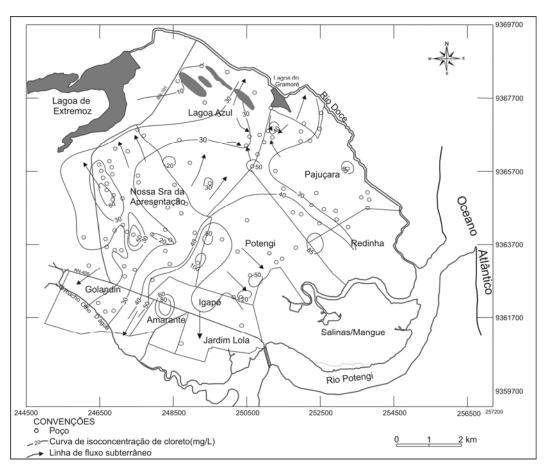


Figura 5.5 - Mapa de isoconcentração de cloreto nas águas subterrâneas no ano de 1996 (Melo, 1998).

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

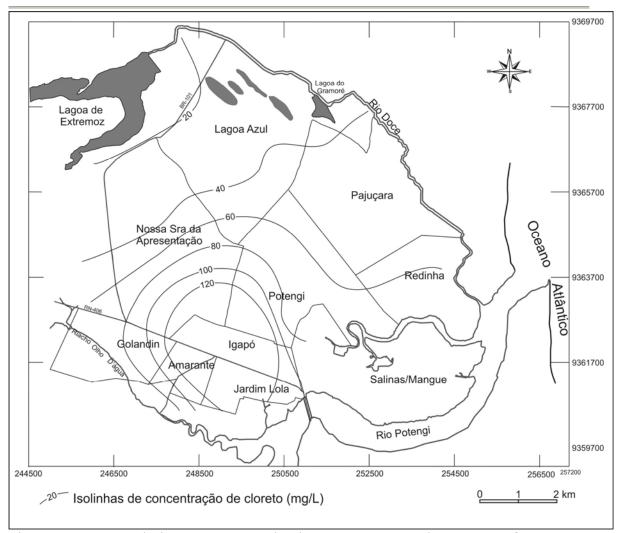


Figura 5.6 - Mapa de isoconcentração de cloreto nas águas subterrâneas referentes ao ano 2006, a partir dos 17 poços com análises físico-químicas.

No mapa elaborado com os 181 poços, verifica-se que são realçadas áreas com concentrações elevadas de cloreto, que não são identificadas no mapa realizado com 17 poços, fato justificado pela quantidade de informações. As áreas com concentrações elevadas estão restritas a zona do bairro Lagoa Azul, limite com o bairro de Pajuçara, e na faixa sul da área, nos bairros Jardim Lola, Igapó e Potengi. Essas concentrações de cloreto refletem um lançamentos de efluentes que modificam a qualidade da água nessas áreas, fato que não é identificado com a análise do mapa realizado com os 17 poços.

Em termos gerais, para fins de elaboração do mapa de isovalores, utilizando dados de 17 poços, o método de *Kriggen* não foi satisfatório, pois retrata uma configuração homogênea da distribuição espacial do íon cloreto na área.

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

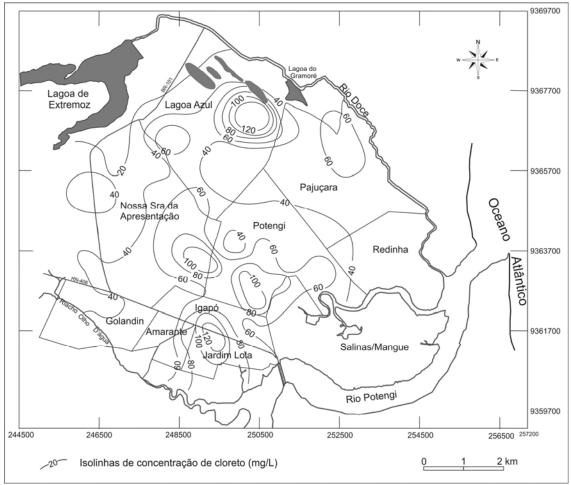


Figura 5.7 - Mapa de isoconcentração de cloreto nas águas subterrâneas, referentes ao ano 2006, elaborado com 181 poços tubulares, com profundidade igual ou superior a 15 m.

O mapa de cloreto nas águas subterrâneas elaborado para o ano de 2006 verifica-se que ocorrem concentrações elevadas localizadas em alguns setores, não visualizadas nos demais mapas, As áreas com maior concentração estão localizadas no bairro de Lagoa Azul e entre o Jardim Lola e Igapó.

5.2.2 Concentração do Íon Nitrato e Amônia nas Águas Subterrâneas

Os compostos nitrogenados como nitrito, nitrato, amônio e amônia (NO₂-, NO₃-, NH₄-, NH₃-) são indicadores de contaminação por fezes de origem animal ou humana, bem como decomposição de matéria orgânica. Esta série nitrogenada permite estudar, muitas vezes, o processo de nitrificação que envolve a transformação do nitrogênio amoniacal (NH₃, NH₄⁺) em nitrato, através de duas reações sob a ação de bactérias amonificadoras (Esteves, 1998):

$$NH_4^+ + 1/2 O_2 \rightarrow NO_2^- + 2H^+ + H_2O$$

 $NO_2^- + 1/2 O_2^- \rightarrow NO_3^-$

Pela ação de bactérias autótrofas dos gêneros Nitrosomonas e Nitrosococcus, a amônia se transforma em nitrito. Pela ação de bactérias dos gêneros Nitrobacter e Nitrococcus, o nitrito se transforma em nitrato.

No decorrer da mineralização (estabilização) da matéria orgânica do solo, em geral, os compostos nitrogenados sofrem três transformações sucessivas (Boyer, 1985 In Carvalho 1995):

- 1- Amonificação, pela reação N do húmus → NH₄⁺
- 2- Nitritação, pela reação NH₄⁻ → NO₂⁻, e
- 3- Nitratação, pela reação NO₂ → NO₃ -

Os limites de potabilidade permitidos pelo Ministério da Saúde (BRASIL-MS, 2004) para os compostos nitrogenados nas águas são: $NH_4^+ = 1.5 \text{ mg/L}$, $NO_2^- = 1.0 \text{ mg/L}$ e $NO_3^- - N^-$ = 10 mg/L.

Em alguns estudos, as concentrações de nitrato são expresssas em mg/L de NO₃. Para realizar a conversão de dados de nitrato (NO₃-) para a unidade de nitrogênio, deve-se realizar a divisão do valor correspondente em mg/L pelo fator 4,426. A partir desta conversão, a unidade de medida se enquadra na Portaria nº518 (BRASIL-MS, 2004) recomendada pelo Ministério da Saúde do Governo Brasileiro.

O pH da água determina o equilíbrio entre o amônio (NH₄⁺) e o amoníaco (NH₃⁺). Se o pH diminui, ocorre uma reação que produz (NH₄⁺); caso contrário, ocorre a produção de NH₃⁺ (Fenzl, 1986). Na série dos compostos nitrogenados, existe também o processo de transformação de nitrato em amônia (NH₃⁺) ou gás nitrogênio (N₂). Este processo ocorre em solos com muito calcário, em solos encharcados, deficientes em aeração e com baixo grau de oxigenação (Carvalho, 1995).

O histograma (Figura 5.8), com as 413 amostras de nitrato analisadas, apresenta uma variação de zero a 60 mg/L-N, sendo que 57,5% das amostras estão entre a classe de zero a 10,0 mg/L-N. Em menor quantidade, está a classe de 10 a 20 mg/L-N, com 27,5% e de 20 a 30 mg/L, com 10,8%. As amostras que apresentaram concentração de nitrato superior a 30 mg/L representam 4,2%.

A concentração de amônia varia de zero a 10 mg/L-N, sendo que 84,8% das amostras possuem concentrações de até 1,0 mg/L-N; e entre 1,0 e 2,0 mg/L-N, com 9,8%. Os valores de concentração superiores á 2,0 mg/L-N representam 5,4%.

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

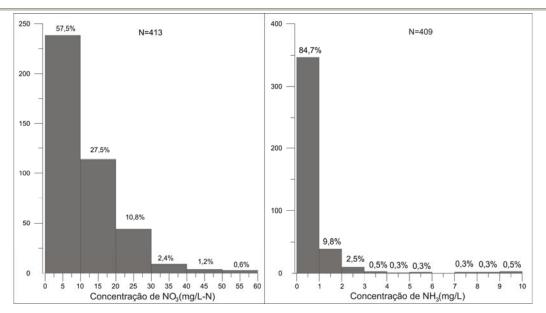


Figura 5.8 - Histograma de distribuição das amostras de nitrato (413 amostras) e amônia (409 amostras).

No mapa de isoconcentração de nitrato (Figura 5.9) do ano de 1996 (Melo, 1998), pode ser verificada a existência de uma concentração elevada nas imediações da extremidade norte do bairro Pajuçara, e no centro do bairro Nossa Senhora da Apresentação, com isovalores de até 100 mg/L-NO₃. Para este mapa do ano de 1996, a unidade de 45 mg/L-NO₃ está compatível ao valor limite estabelecido pelo Ministério da Saúde (Portaria n° 518/2004) que é de 10 mg/L-N. Os menores valores estão restritos as regiões periféricas, apresentando concentrações iguais ou inferiores a 10 mg/L-NO₃.

Foi comprovado em análise, que a utilização dos dados de nitratos, referentes a todas as amostras, não gerava um produto satisfatório para elaboração de um mapa de isolinhas.

Foi feito uma filtragem das 415 amostras. Foram considerados somente poços que apresentavam profundidade igual ou superior a 15 metros, para a elaboração do mapa de isovalores de nitrato. Após a filtragem resultou em um total de 181 poços que se enquadravam nessas condições.

De acordo com o mapa gerado (Figura 5.9) as maiores concentrações de nitrato nas águas subterrâneas estão localizadas na região do bairro Potengi e Igapó, apresentando valores de até 60 mg/L-NO₃. Os menores valores de nitrato estão situados nas proximidades da lagoa de Extremoz, e na parte central da área, com valores iguais ou inferiores a 5 mg/L.

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

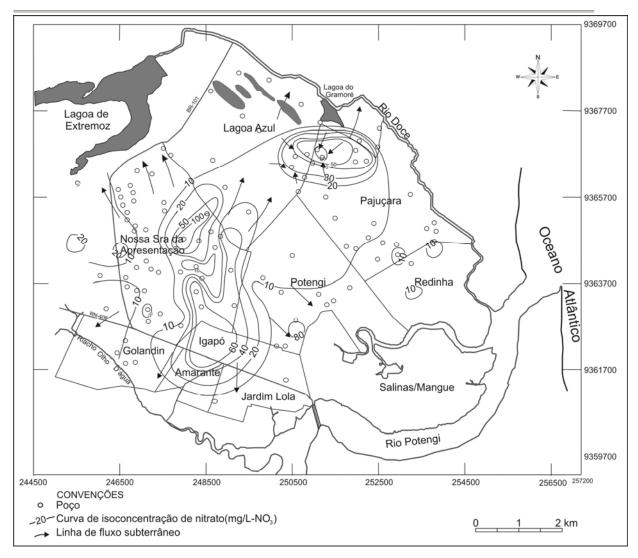


Figura 5.9 - Isoconcentração de nitrato em mg/L-NO₃ nas águas subterrâneas no ano de 1996 (Fonte com modificações Melo, 1998).

O mapa apresentado por Melo (1998) para o ano de 1996, apresenta valores de nitrato elevados, com isovalores de até 100 mg/L-NO₃, na região do bairro de Nossa S^{ra} da Apresentação. Já para as regiões da extremidade norte, nas proximidades da lagoa de Extremoz e no bairro de Redinha, o mapa não apresenta muitas informações. No mapa de isovalores de nitrato do ano de 2006 (Figura 5.10), as elevadas concentrações de nitrato estão localizadas na região de Igapó e as menores, restritas a região próxima a lagoa de Extremoz, com concentrações inferiores a 5 mg/L-N. Os valores elevados de nitrato são encontradas no setor que possui um desenvolvimento urbano antigo, isso evidencia os problemas associados às águas subterrâneas, decorrência da ocupação urbana. Elevadas concentrações também são encontradas na região leste da área, ocorrendo, provavelmente, em por conta de uma maior

facilidade de deslocamento dos contaminantes, pois esta área possui sedimentos com ausência de argilitos.

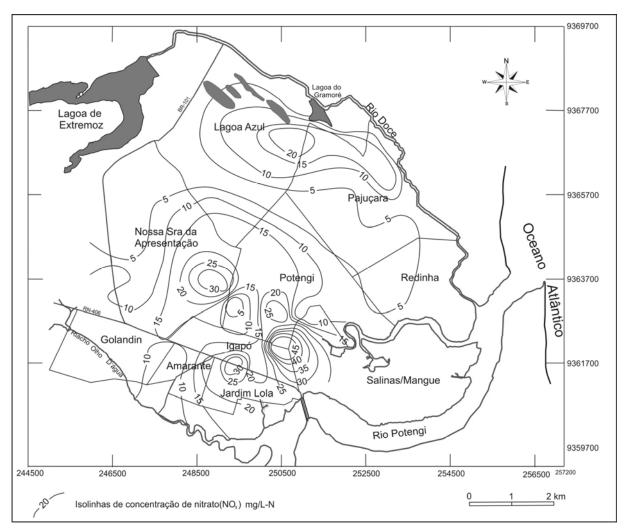


Figura 5.10 - Mapa de isoconcentração de nitrato em mg/L-N nas águas subterrâneas no ano de 2006, elaborado com 181 poços tubulares com profundidade igual ou superior a 15 m.

5.2.3 Condutividade Elétrica nas Águas Subterrâneas

A condutividade elétrica (CE), de um modo geral, reflete a capacidade da água conduzir corrente elétrica. Esta propriedade pode ser um parâmetro relativo para compará-la a quantidade de sais presentes. Águas subterrâneas com condutividade elétrica elevada possuem também maiores quantidade de sais (cátions e ânios). A unidade usual para expressar este parâmetro é o microSiemes por centímetro (μS/cm). De acordo com o histograma apresentado na figura 5.11, o valor de condutividade elétrica atinge o máximo 1200 μS/cm, com a maioria dos valores situados até 400 μS/cm. Do total de 415 amostras com informação de condutividade elétrica, 37% estão no intervalo de 200 à 400 μS/cm, seguido de 33% no intervalo de zero a 200 μS/cm, e 21%, no intervalo de 400 a 600 μS/cm. Os outros intervalos

de classes representam 9% das amostras analisadas. Na figura 5.12 é apresentado o mapa de isovalores de condutividade elétrica para o ano de 1998.

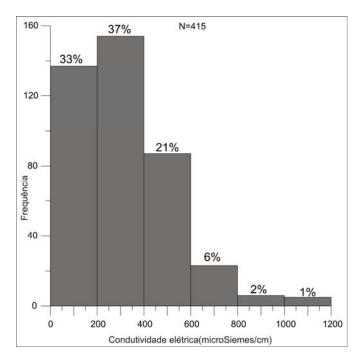


Figura 5.11 - Histograma com dados de 415 amostras de condutividade elétrica.

De acordo com o mapa de condutividade elétrica (Figura 5.12), elaborado em 1996 (Melo, 1998), observa-se que as áreas situadas entre os bairros de Igapó, Potengi e Redinha, setor sul da área, possuem condutividade elétrica variando entre 200 e 300 μS/cm. Os setores nordeste, na parte central dos bairros Pajuçara e Lagoa Azul, estão inseridos nas isolinhas de condutividade elétrica inferior a 100 μS/cm.

Na figura 5.13, é apresentado o mapa de condutividade elétrica do ano de 2006, e verifica-se que as isolinhas de condutividade elétrica variam de 120 μS/cm, nas proximidades da lagoa de Extremoz, até 460 μS/cm, nas imediações do bairro Igapó, extremo sul da área.

No bairro Pajuçara, existe um distanciamento das isolinhas que se destacam, dentre as demais áreas, provavelmente, em decorrência de uma menor influência das águas salinizadas do estuário do rio Potengi.

O mapa de condutividade elétrica (CE) realizado com 181 poços tubulares, possuindo profundidade igual ou superior a 15 m (Figura 5.13), mostrou que os menores valores estão restritos à área da lagoa de Extremoz, com CE inferior a 100 μ S/cm. Os maiores valores estão localizados nos bairros Jardim Lola, Igapó, no setor sul, e Lagoa Azul, no setor nordeste da área, com 600 μ S/cm.

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

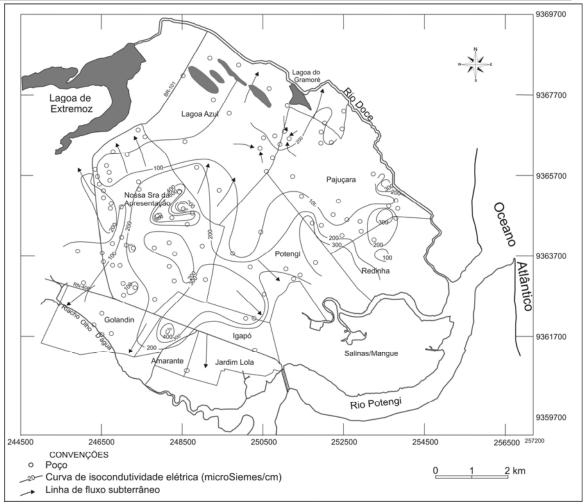


Figura 5.12 - Mapa de isolinhas de condutividade elétrica (μS/cm) nas águas subterrâneas no ano de 1998.

A diferença básica entre os mapas realizados com 24 poços da rede de monitoramento e os 181, com profundidade superior ou igual a 15 m, é similar a dos mapas anteriores de cloretos e nitrato, ou seja, com maior quantidade de informações são identificadas áreas com condutividade elétrica elevada. O principal fator, que contribui para as modificações de condutividade elétrica na área, parece estar relacionado aos processos antrópicos, sendo evidenciado que os locais com maiores concentrações urbanas possuem condutividade elétrica mais elevada. A área próxima a zona de mangue, não é evidenciada como uma área que contribua consideravelmente com aumento da condutividade elétrica, isto pode ser observado principalmente no mapa realizado com os 181 poços (Figura 5.13).

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

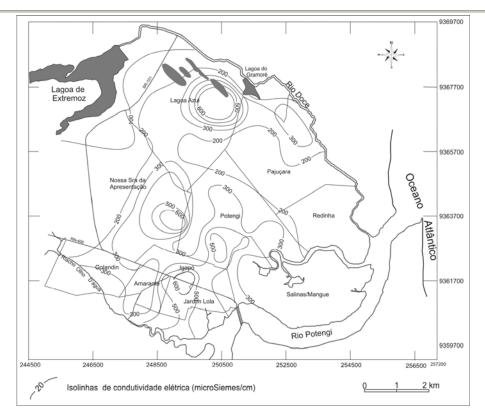


Figura 5.13 - Mapa de isovalores de condutividade elétrica (μ S/cm) nas águas subterrâneas do ano 2006, elaborado com 181 poços tubulares, com profundidade igual ou superior a 15 m.

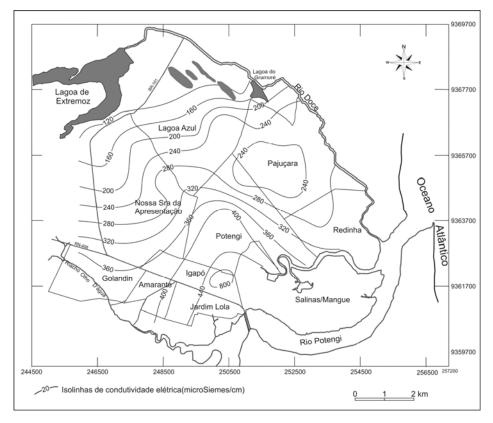


Figura 5.14 - Mapa de condutividade elétrica (μ S/cm) nas águas subterrâneas do ano 2006, a partir dos 24 poços com análises físico-químicas dos íons maiores.

5.2.4 Distribuição dos Valores de Potencial Hidrogeniônico (pH) e Potencial de Oxi-Redução (Eh)

Os parâmetros de oxidação e redução determinam a velocidade das reações químicas nos meios aquosos, bem como a solubilidade. A presença de absorventes de oxigênio como as substâncias orgânicas, ou certos íons de Fe²⁺, Mn²⁺, S₂, NO₂-, NH₄+, H+, OH- entre outros, pode reduzir a quantidade de oxigênio nas águas subterrâneas e gerar condições redutoras (Fenzl,1988).

Quando ocorre uma grande deposição de material orgânico, podem ser gerados ambientes redutores (concentração de O₂ inferior a 1,4 mg O₂/L) nas águas subterrâneas (Gerb, 1953 *in* Fenzl, 1988).

O potencial de oxi-redução ou potencial Redox (Eh) é utilizado como um parâmetro de medição para verificar se o meio aquoso é redutor ou oxidante. Esse parâmetro corresponde a uma medida de transferencia de elétrons, bem como, permite avaliar a maior ou menor capacidade de perda de elétrons por determinado(s) elemento(s) em uma reação.

Os parâmetros físicos de pH e Eh são apresentados divididos em intervalos de classes na fígura 5.15. Foi analisado o pH de 415 amostras e este parâmetro variou de 3,0 a 9,0. A maior concentração das amostras está entre 4,0 e 5,0 com 38%. Com 35% está o intervalo de classe entre 5,0 e 6,0, seguido do intervalo de 6,0 a 7,0 com 19%. Os intervalos de classe de 3,0 a 4,0 e 7,0 até 9,0 representam juntos 8 % das amostras analisadas. A partir dos dados verifica-se que aproximadamente 80% das amostras são ácidas, e parte são neutras.

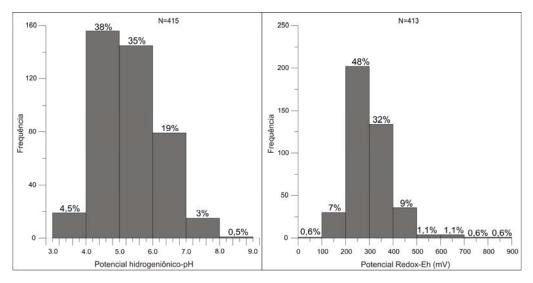


Figura 5.15 - Histograma de distribuição dos valores de pH (415 amostras) e Eh (413 amostras).

O potencial Redox (Eh) das amostras analisadas (413) apresenta somente valores positivos, variando de zero a 900 mV, refletindo um ambiente predominantemente oxidante. A maioria das amostras estão concentradas no intervalo de classe entre 200 e 300 mV. Em seguida em menor proporção, com 32%, estão as amostras situadas no intervalo de classe de 300 a 400 mV. As amostras com valores entre zero e 100 representam apenas 0,6% e as com valores superiores a 500 mV representam 3,4% das amostras.

O diagrama proposto por Sato (1960) apresentado na figura 5.16 utiliza-se dos valores de Eh e pH para caracterizar o ambiente natural de ocorrência das amostras. Verifica-se que as amostras estão concentradas no intervalo de Eh entre 0,2 V e 0,3 V e de pH entre 4 e 5. De acordo com o diagrama as amostras estão situadas no campo de ambientes transicionais, ou seja, são de ambientes com tendência a ácidos oxidantes. Outros dois intervalos de classes estão em menor quantidade, estando inseridos na parte superior do diagrama, classificados como ambientes ácidos com tendência a neutros, mas predominantemente oxidantes.

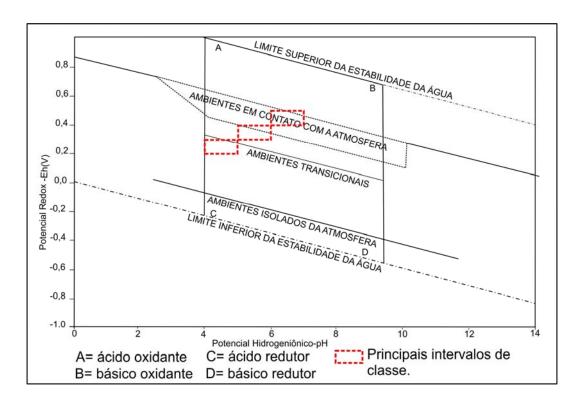


Figura 5.16 - Diagrama de ambientes naturais em função do Eh e pH, com localização dos principais intervalos de classes das amostras analisadas na zona norte de Natal. (Fonte com modificações: Sato, 1960 *in* Carvalho, 1995).

5.3 AVALIAÇÃO DAS RELAÇÕES HIDROQUÍMICAS

A avaliação das relações hidroquímicas foi baseada em gráficos de dispersão para a obtenção do coeficiente de correlação.

O coeficiente de correlação "r" deve ser usado como uma medida de força da relação de duas variáveis, pois mede o grau de dependência entre elas. Os valores ficam situados no intervalo de $[-1 \le r \le 1]$. A análise de correlação permite obter o grau de dependência entre dois conjuntos de dados. Se os maiores valores de um conjunto estão associados com os maiores valores de outro conjunto, tem-se uma correlação positiva (+1); ou se menores valores de um conjunto estão associados com maiores valores do outro, tem-se uma correlação negativa (-1). Se os valores nos dois conjuntos não se relacionam, tem-se uma correlação igual ou próxima de zero.

As correlações hidroquímicas realizadas referem-se a determinação físico-química simplificada de 414 amostras de poços, sendo 379 com dados de profundidade, quando foram obtidos dados de condutividade elétrica, cloreto e nitrato. Na análise do íon nitrato versus condutividade elétrica e do íon cloreto (mg/L) versus condutividade elétrica (Figura 5.17), obteve-se, respectivamente, um coeficiente de correlação de 0,54 e 0,79. A partir deste dados, observa-se que a condutividade elétrica possui uma relação maior com o elemento cloreto.

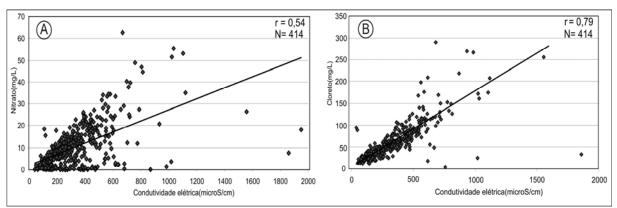


Figura 5.17 - Coeficiente de correlação: (A) nitrato versus condutividade elétrica; (B) cloreto versus condutividade elétrica.

Para as correlações do íon nitrato versus cloreto, os valores considerados foram classificados de acordo com a profundidade do poço investigado:

- Poços com profundidade de até 30 m; coeficiente de correlação de 0,22.
- Poços com profundidade entre 30 e 60 m; coeficiente de correlação de 0,48.
- Poços com profundidade superior a 60 m; coeficiente de correlação de 0,6.

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

Considerando poços com todas as informações (379 poços com informações de profundidade e 35 poços sem informações de profundidade); coeficiente de correlação de 0,31.

Com as análises físico-químicas dos íons maiores foi realizada a determinação do coeficiente de correlação (Tabela 5.4 e 5.5). Nas águas subterrâneas o íon Cl⁻ com o íon Mg²⁺ apresentou o maior coeficiente de correlação com 0,98, enquanto que os menores coeficientes de correlação são apresentados com o íon HCO₃.

Nas águas superficiais, os íons que tiveram um maior coeficiente de correlação foi o K⁺ com o NO₃, obtendo-se um valor de 1,0, e o menor coeficiente foi de 0,29 entre os íons K⁺ e NO₃ com o íon Ca²⁺.

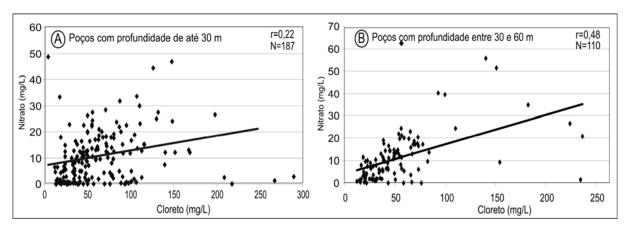


Figura 5.18 - Coeficiente de correlação do nitrato versus cloreto (A) poços com profundidade até 30 m; (B) poços com profundidade entre 30 e 60 m.

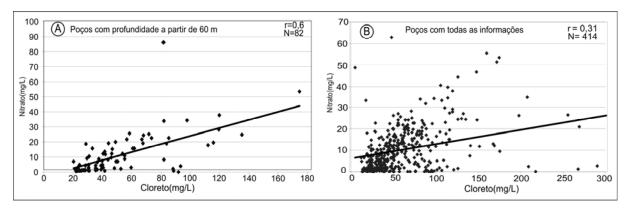


Figura 5.19 - Coeficiente de correlação do íon versus cloreto (A) poços com profundidade superior a 60 m; (B) poços com todas as informações.

Tabela 5.4 - Coeficiente de correlação entre os íons analisados das amostras de águas subterrâneas em meg/L e condutividade elétrica (µS/cm) que apresetam erro da análise inferior a 10%.

	Na ⁺	Ca ²⁺	Mg ²⁺	Cl ⁻	SO ₄ ² -	Condutividade elétrica	K ⁺	HCO ₃ -	NO ₃ -
Na ⁺	1,0	0,43	0,83	0,84	0,63	0,89	0,53	0,11	0,89
Ca ²⁺		1,0	0,61	0,65	0,74	0,65	0,48	0,60	0,20
Mg^{2+}			1,0	0,98	0,86	0,97	0,70	0,14	0,58
Cl ⁻				1,0	0,87	0,97	0,73	0,11	0,55
SO ₄ ²⁻					1,0	0,83	0,55	0,09	0,29
Condutividade									
elétrica						1,0	0,69	0,04	0,69
K^{+}							1,0	-0,18	0,30
HCO ₃		·						1,0	0,11
NO ₃		·							1,0

Tabela 5.5 - Coeficiente de correlação entre os íons analisados das amostras de águas superficiais em meg/L e condutividade elétrica (µS/cm) que apresentam erro da análise inferior a 10%.

	Na ⁺	Ca ²⁺	Mg^{2+}	Cl ⁻	SO ₄ ²⁻	Condutividade elétrica	K^{+}	HCO ₃	NO ₃
Na ⁺	1,0	0,8	0,96	0,98	0,79	0,99	0,54	0,58	0,54
Ca ²⁺		1,0	0,86	0,83	0,77	0,85	0,29	0,85	0,29
Mg^{2+}			1,0	0,94	0,70	0,96	0,45	0,74	0,45
Cl ⁻				1,0	0,84	0,98	0,47	0,55	0,47
SO_4^{2-}					1,0	0,81	0,53	0,43	0,53
Condutividade elétrica						1,0	0,53	0,63	0,53
K^{+}							1,0	0,32	1,0
HCO ₃							·	1,0	0,32
NO ₃									1,0

5.4 RAZÕES IÔNICAS

As razões iônicas são realizadas com a finalidade de se compreender a representatividade de determinado elemento, diante das modificações hidrogeoguímicas do meio, podendo também identificar os processos geoquímicos ou influências de determinados ambientes, sendo útil para caracterizar as amostras de água.

Para a mensuração da influência na contaminação das águas subterrâneas, por nitrato, foi realizado a razão iônica NO₃⁻/(somatório dos ânions), conforme apresentado por Griffoen (2004), sendo os dados químicos expressos em unidade de miliequivalente por litro (meg/L). Dentre as amostras de águas superficiais e subterrâneas, os maiores valores são encontrados nas águas subterrâneas (Tabela 5.6) os quais varia de 0,0047 a 0,44 com média de 0,25.

As águas superficiais apresentam valores mais reduzidos, comparados com às águas subterrâneas. A variação da razão foi de 0,0023 a 0,0074 com média de 0,0044, mostrando um manancial pouco afetado, pelos compostos nitrogenados na forma de nitrato. De acordo com o mapa de isovalores (Figura 5.20), observa-se que ocorre uma maior razão de nitrato, na região leste da área, apresentando isolinhas com razões de 0,4. As outras áreas possuem razões inferiores, sendo as menores encontradas no extremo norte da área, com uma razão de 0,1.

A justificativa para elevadas razões no setor sudoeste (bairro Igapó e Potengi) reside na constatação desta área ser a que possui um desenvolvimento urbano mais antigo, ou seja, os fatores antrópicos possuem um histórico relativamente acentuado nas demais áreas. As elevadas razões no setor leste são justificadas pela urbanização presente e facilitação do deslocamento dos contaminantes em decorrência das unidades geológicas presentes, compostas por arenitos com ausência de argilas.

As razões inferiores a 0,1 são aquelas que apresentam densidade reduzida de urbanização, estando restritas a extremidade norte da área, no bairro Lagoa Azul e próximas às lagoas interdunares.

Tabela 5.6 - Valores mínimos, máximos e médios das razões iônicas em meg/L de (NO₃/somatório de ânions), em 31amostras de águas superficiais e subterrâneas.

	Subterrânea	Superficial
Mínimo	0,0047	0,0023
Máximo	0,5026	0,0074
Média	0,2554	0,0044

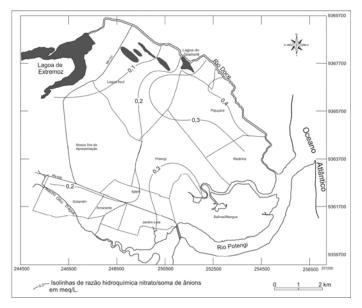
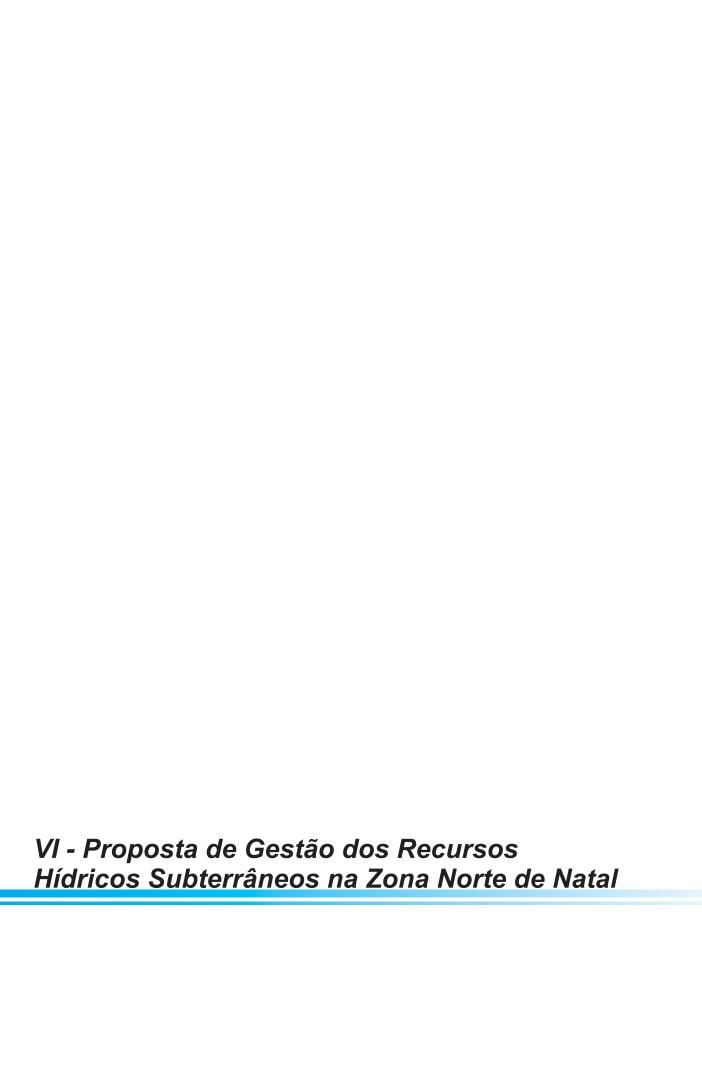



Figura 5.20 - Mapa de razões iônicas (23 amostras) em meq/L de (NO₃-/somatório de ânions), nas águas subterrâneas.

A utilização sustentável dos Recursos Hídricos está vinculada a fatores legislativos, integração de órgãos governamentais, capacitação de recursos humanos, dentre outros que influem nas decisões e direcionamento das atividades a serem seguidas.

Neste capítulo, será feita uma abordagem das definições básicas e propostas relacionadas a sustentabilidade dos Recursos Hídricos e os aspectos gerais da Política de Recursos Hídricos. Posteriormente, serão apresentadas algumas propostas práticas aplicadas às condições da área de estudo.

Para garantir o uso sustentável dos sistemas de abastecimento de água, é necessário que ocorra uma Gestão Integrada dos Recursos Hídricos (GIRH). A GIRH é uma das opções para a mitigação das problemáticas associadas ao abastecimento de água, apresentando a seguinte definição:

"um processo que promove o desenvolvimento coordenado da água, solo e recursos relacionados com a finalidade de maximizar o bem estar social e econômico resultante de maneira equitativa sem comprometer a sustentabilidade dos ecossistemas vitais. (GWP, 2005)".

A Gestão Integrada dos Recursos Hídricos está embasada em três fatores:

- Eficiência econômica; em decorrência dos custos envolvidos desde a captação até o usuário. A água deve ser utilizada com a máxima eficiência possível.
- Equidade social; ser reconhecido o direito básico do acesso a água para as populações, com qualidade e quantidade satisfatórias.
- Sustentabilidade ambiental; o uso do recurso deve ser orientado para não comprometer as gerações futuras.

O conceito de desenvolvimento sustentável é obtido com maior eficiência a partir da aplicação da Gestão Integrada dos Recursos Hídricos, pois envolve diversos fatores de tal forma que amplia a abrangência da definição. Existe uma distinção entre as atribuições da Gestão e as do Gerenciamento de Recursos Hídricos, sendo definida como:

Gestão; trata-se de uma atividade analítica e criativa, voltada para a formulação de princípios e diretrizes ao preparo de documentos orientadores e normativos à estruturação de sistemas gerenciais, e à tomada de decisões. Seu objetivo final é promover o inventário, uso, controle e proteção dos recursos hídricos (Tucci, 1993 in Brasil, 2000b apud Hager, 2000).

Gerenciamento; representa o conjunto de ações governamentais destinadas a regular o uso e o controle das águas, e a avaliar a conformidade da situação corrente com os princípios doutrinários estabelecidos pela Política das Águas (Lanna, 1997 apud Hager, 2000).

Diante das definições apresentadas, verifica-se que o desenvolvimento deste trabalho está voltado para a integração de dados que proponham o avanço das informações, proporcionando uma Gestão Integrada.

Para uma melhor compreensão das questões relacionadas a Gestão dos Recursos Hídricos serão apresentadas, a seguir, algumas considerações sobre a Política de Recursos Hídricos no Brasil.

6.1 CONSIDERAÇÕES SOBRE A POLÍTICA DE RECURSOS HÍDRICOS

Os aspectos da legislação serão comentados tendo como base os trabalhos de Caetano & Pereira (2003), Senra & Hager (2003), Ramos & Paixão (2003) e Oliveira (2003).

No início de 1997, foi instituída a Política Nacional de Recursos Hídricos (PNRH) e criado o Sistema Nacional de Gerenciamento de Recursos Hídricos (PNRH), através da lei nº 9.433, de 08 de janeiro de 1997, publicada no Diário Oficial da União (DOU) de 09/01/97.

A lei determina como objetivos (artigo 2°) principais do PNRH: assegurar a atual e as futuras gerações a necessária disponibilidade de águas e prevenir e defender contra eventos hidrológicos críticos de qualquer origem, seja natural ou provocado pelo homem.

A união já promulgou vários diplomas legais relacionados diretamente aos Recursos Hídricos (Hager et al., 2002):

- Código de Águas Decreto Federal nº 24.643, de 1934.
- Constituição Federal de 1988.
- Lei das Águas Lei Federal nº 9.433, de 1997.
- Código de Mineração Decreto Federal nº 227, de 1967.
- Código de Águas Minerais Decreto Federal nº 7.841, de 1.945.
- Portarias DNPM Departamento Nacional de Produção Mineral.
- Portarias e resoluções ANVISA Agência Nacional de Vigilância Sanitária.
- Resoluções CONAMA Conselho Nacional de Meio Ambiente.
- Resoluções do CNRH Conselho Nacional de Recursos Hídricos.

O gerenciamento dos Recursos Hídricos é feito com base nos seguintes instrumentos (artigo 5° da lei 9.433/97):

- 1. Planos de Recursos Hídricos; Planos diretores de cada Bacia hidrográfica, sendo sua elaboração de responsabilidade da Secretaria de Recursos Hídricos (SRH), do Ministério do Meio Ambiente.
- 2. Enquadramento dos corpos d'águas em classes; mecanismo necessário a manutenção de um sistema de vigilância sobre a qualidade da água. A classificação será feita com base na legislação ambiental.
- 3. Outorga dos direitos de uso dos Recursos Hídricos; instrumento pelo qual o usuário recebe uma autorização, concessão ou permissão para fazer uso da água.
- 4. Cobrança pelo uso; instrumento necessário para o equilíbrio entre a oferta e a demanda.
- 5. Sistema de Informação sobre Recursos Hídricos; compreende a coleta, a organização e a difusão da base de dados, seus usos e o balanço hídrico de cada bacia, para prover os usuários e gestores com informações a serem utilizadas no planejamento e gestão.

A lei Federal 1.984 do ano 2000, cria a Agência Nacional de Águas (ANA), vinculada ao Ministério do Meio Ambiente e dotada de autonomia administrativa e financeira, estabilidade e agilidade na implantação do Sistema de Gerenciamento de Recursos Hídricos.

O Sistema Nacional de Gerenciamento de Recursos Hídricos é formado pelas seguintes instituições que se inter-relacionam:

- Conselho Nacional de Recursos Hídricos.
- Conselhos de Recursos Hídricos dos Estados e do Distrito Federal.
- Comitês de Bacia Hidrográfica.
- Agência de Água.
- Agência Nacional de Águas.
- Órgãos dos poderes público Federal, Estadual e Municipal, cujas competências se relacionam com a Gestão de Recursos Hídricos.

6.2 A IMPLEMENTAÇÃO DA GESTÃO DOS RECURSOS HÍDRICOS SUBTERRÂNEOS

A sumarização apresentada sobre a Política de Recursos Hídricos, torna evidente que os corpos hídricos possuem o suporte na legislatura nacional. A aplicação das leis depende diretamente da ação dos órgãos governamentais.

A gestão dos Recursos Hídricos Subterrâneos na verdade está inserida na "gestão integrada" dos Recursos Hídricos, que envolve diversos fatores ambientais, portanto, para serem colocadas em execução, se faz necessária a efetivação de algumas ações. A seguir, serão apresentadas algumas propostas básicas para que ocorra uma gestão integrada dos Recursos Hídricos, voltado às condições da zona norte de Natal.

6.2.1 Identificação e Controle das Fontes Potenciais de Contaminação

As Fontes Potencias de Contaminação (FPC) representam elementos que causam a degradação dos recursos naturais. Como este trabalho enfatiza os recursos hídricos, a identificação destas FPC deverá estar relacionada às mudanças na qualidade das águas.

O critério para a execução deste controle é iniciado com o cadastro das FPC existentes na área, e posteriormente, uma análise independente de cada FPC cadastrada, considerando as características particulares da carga contaminante e volume produzido. Os aspectos históricos da FPC, estado da estrutura implantada e se já ocorre um processo de degradação do meio ambiente devem ser considerados no momento da implementação de medidas mitigadoras de proteção dos recursos naturais.

6.2.2 Programa de Educação Ambiental

A idade escolar envolve basicamente crianças e adolescentes, e neste aspecto, os alunos quando bem informados tornam-se agentes multiplicadores de informações ou pessoas com uma consciência ambiental suficiente para compreender os processos de degradação dos recursos naturais.

Um Programa de Educação Ambiental deve estar voltado para escolas públicas e particulares envolvendo crianças e jovens, e em centros comunitários, para envolver a faixa etária dos adultos. O repasse de informações relevantes, sobre as questões que envolvam a preservação do meio ambiente, deve ter como base, as condições locais e situações do cotidiano da comunidade da zona norte de Natal, tornando a compreensão do tema mais facil.

A educação ambiental trata-se de um procedimento contínuo, que deve ser adaptado de acordo com o nível de escolaridade e faixa etária do público alvo, sendo aprimorado, constantemente com o passar do tempo.

6.2.3 Monitoramento da Qualidade e Quantidade das Águas Subterrâneas

Para a identificação de possíveis processos de alteração do meio natural, é necessário que ocorra um acompanhamento temporal das condições locais. O acompanhamento dos processos naturais, durante uma escala de tempo, é conhecido em termos gerais, como monitoramento.

Nos estudos direcionados as águas subterrâneas, o monitoramento trata-se de uma ferramenta essencial para a compreensão dos sistemas aquíferos, podendo ser qualitativo e/ou quantitativo. Um conjunto de poços, onde se realizam medições periódicas, pode ser definido como uma rede de monitoramento de águas subterrâneas.

A implementação de programas de monitoramento contribuem para um melhoramento no planejamento, desenvolvimento, proteção e manejo das águas subterrâneas (López-Vera, 2006). Vrba (2006) define rede de monitoramento como um "programa padronizado de metodologias e técnicas de medições, procedimentos de amostragens no campo e em análise laboratoriais de variáveis químicas, biológicas e físicas das águas subterrâneas".

O monitoramento é um processo de avaliação contínuo com o intuito constante de otimização das ações realizadas. A periodicidade (intervalo de coleta de dados) do monitoramento depende de fatores como (Auge-1, 2006 com modificações):

- Regime de fluxo (natural ou artificial-extração);
- Fontes reconhecidas ou potencial de contaminação;
- Carga, mobilidade, persistência e toxicidade dos contaminantes;
- Tamanho do aquífero;
- Comportamento hidráulico (livre, semi-confinado ou confinado);
- Espessura da zona saturada;
- Local da zona de recarga.

No cadastramento de poços realizado na cidade de Natal (FUNCERN, 2006) foi definida uma rede de monitoramento. Para os 1.508 poços cadastrados, foram selecionados 53 poços para compor a rede de monitoramento. Dos poços que compreendem a referida rede, 33 são encontrados na zona sul, e, 24 na zona norte de Natal.

Funcionamento e definição de uma rede de monitoramento de águas subterrâneas

O desenvolvimento e o funcionamento de uma rede de monitoramento é um processo cíclico com o intuito de sempre estar buscando uma maior eficiência, em qualquer etapa do processo. Na figura 6.1 é apresentado um diagrama esquemático com os mecanismos de funcionamento de uma RMAS, baseado em Uil et al. (1999) in Auge-2 (2006).

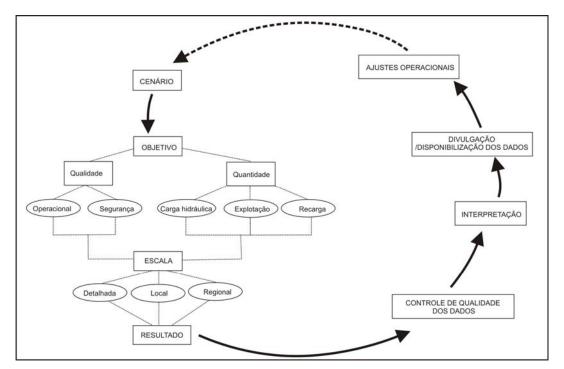


Figura 6.1 - Diagrama esquemático do mecanismo de funcionamento de uma rede de monitoramento de águas subterrâneas. Fonte com modificações Uil et al. (1999) in Auge-2 (2006).

Para a definição da rede de monitoramento da zona norte de Natal, foi utilizada como base, a rede de monitoramento definida anteriormente no cadastro de poços de Natal (FUNCERN, 2006). Foram visitados todos os poços da rede de monitoramento proposta no cadastro de Natal, quando verificada a impossibilidade das medições em alguns desses poços selecionados. Para solucionar tal problema buscou-se escolher novos poços para cobrir uma área satisfatória, necessária para a elaboração dos mapas temáticos, e conhecimento sazonal das condições hidrogeológicas. A partir desta nova escolha de poços, pode-se implementar a rede de monitoramento de águas subterrâneas e promover a elaboração de mapas temáticos. Na tabela 6.1 e figura 6.2 é apresentada a rede de monitoramento proposta para a zona norte de Natal.

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

Tabela 6.1 - Localização dos poços propostos para compor a rede de monitoramento das águas subterrâneas na zona norte de Natal.

N°	Poço	UTM-E	UTM-N	Tipo de captação	Profundidade (m)	Situação	Proprietário
1	IGA0961	249346	9362168	Escavado	20	ativo	Particular
2	LAZ0160	250923	9367521	Tubular	36	ativo	Particular
3	LAZ0626	249569	9366294	Tubular	55	ativo	CAERN
4	EXT0725	248135	9367886	Escavado	35	ativo	Particular
5	NSA0878	248421	9364096	Escavado	31	ativo	Particular
6	NSA1016	247055	9364878	Tubular	sem info.	ativo	Particular
7	NSA1208	248603	9364711	Escavado	50	ativo	Particular
8	PAJ0180	252466	9366553	Tubular	36	ativo	Particular
9	PAJ0187	252415	9364542	Escavado	50	ativo	Particular
10	SAL0233	250842	9361544	Escavado	2,67	ativo	Particular
11	SGA0875	245920	9362544	Escavado	25	ativo	Particular
12	SGA1308	247824	9360400	Escavado	sem info.	ativo	Particular
13	POT0148	250501	9363726	Tubular	72	ativo	Público
14	LAZ0153	249709	9367726	Tubular	16	ativo	Particular
15	LAZ0157	251023	9367070	Tubular	25	ativo	Particular
16	LAZ0593	249613	9367242	Tubular	58	ativo	CAERN
17	NSA1306	247241	9366676	Tubular	sem info.	ativo	CAERN
18	PAJ0196	254101	9364574	Tubular	54	ativo	Particular
19	PAJ0630	252679	9365668	Tubular	83,25	desativado	Público
20	POT0146	250514	9364276	Tubular	65	ativo	Público
21	POT1495	250636	9362520	Tubular	60	ativo	Público
22	IGA001B	247404	9362314	Escavado	-	ativo	CAERN
23	LAZ002B	250006	9368256	Tubular	-		CAERN
24	NSA003B	246771	9364788	Piezômetro	sem info.	observação	CAERN
25	UFRN2	249793	9368493	PZ multinível	28,5/50	observação	UFRN

sem info.: sem informação

Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como Suporte a Gestão dos Recursos Hídricos da Zona Norte de Natal - RN

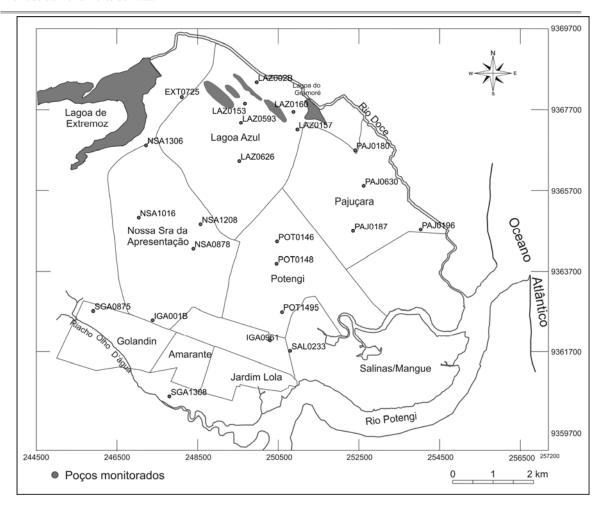


Figura 6.2 - Localização dos poços que formam a rede de monitoramento das águas subterrâneas na zona norte de Natal.

6.2.4 Definição de Perímetros de Proteção de Captação de Águas

Para as captações de águas subterrâneas ou superficiais, são necessárias algumas restrições em relação às obras instaladas em suas proximidades, pois algumas podem interferir no volume explotado e representar uma fonte de redução da qualidade do manancial hídrico.

A abordagem de perímetros de proteção para águas subterrâneas e superficiais é diferenciada, mas sempre com o mesmo objetivo: uso sustentável dos recursos naturais.

Águas superficiais

Os recursos de águas superficiais, na zona norte, estão situados em um processo de ampla expansão urbana, sendo as medidas de proteção diferenciadas segundo as características particulares de cada manancial existente:

Lagoa de Extremoz: parte do abastecimento da zona norte é realizado com águas oriundas deste manancial, ocorrendo um posterior processo de tratamento da água Rio Doce e riacho Olho d'água: a proteção deste manancial deve estar voltada a limitações quanto à expansão habitacional em suas proximidades, bem como à identificação de locais de despejo de esgotos e resíduos sólidos em sua calha.

Águas subterrâneas

O suprimento hídrico da zona norte de Natal é realizado com águas subterrâneas fornecidas pelo sistema público de água em rede, ou através da captação independente através de poços particulares, representando cerca de 46% do abstecimento. Estas unidades de captação merecem um distanciamento mínimo em relação às obras que possam alterar a qualidade deste recurso. Deve ser implementado um disciplinamento do uso do recurso e o adensamento de poços.

A definição de perímetros de proteção voltados para poços de águas subterrâneas deve ser implementado considerando as características hidrodinâmicas do aquífero, direção de fluxo das águas subterrâneas, proximidade entre poços e a presença de fontes potenciais de contaminação.

Pelo fato dos poços instalados estarem inseridos no perímetro urbano, a realização do procedimento de delimitação de perímetro de proteção pode tornar-se inviável em alguns casos.

Deve ser buscado novas áreas como alternativa de captação de águas subterrâneas, levando em consideração um maior distanciamento da zona urbanizada.

6.2.5 Fiscalização e Incentivo para Outorga de Unidades de Captação de Água

A outorga trata-se de um mecanismo de autorização, e no caso abordado, representa a cobrança pela utilização de um recurso natural. De uma forma prática, esta outorga está direcionada as seguintes atividades (lei 9.433/97):

- I Captação de parcela da água existente em um corpo de água para consumo final, inclusive abastecimento público ou insumo de processo produtivo;
- II Extração de água de aquífero subterrâneo para consumo final ou insumo de processo produtivo;

Hídricos da Zona Norte de Natal - RN

- III Lançamento em corpo de água de esgotos e demais resíduos líquidos ou gasosos, tratados ou não, com o fim de sua diluição, transporte ou disposição final;
 - IV Aproveitamento dos potenciais hidroelétricos;
- V Outros usos que alterem o regime, a quantidade ou a qualidade da água existente em um corpo d'água.

Estão dispensados de outorgas, os pequenos núcleos populacionais em zonas rurais, captações, lançamentos ou acumulações de volumes de água considerados insignificantes.

Esta cobrança tem o objetivo de reconhecer a água como um bem econômico, promover o uso racional da água e uma forma de obtenção de recursos financeiros para o financiamento de intervenções, contemplado nos planos de recursos hídricos

Com a atuação dos órgãos governamentais identificando as unidades de captação de água passíveis de outorga, espera-se que os objetivos citados anteriormente sejam alcançados. Problemas relacionados à qualidade das águas superficiais e subterrâneas podem ser minimizados ou até mesmo evitados, a partir desta outorga.

6.2.6 Incentivo a Reutilização das Águas nos Estabelecimentos de Maior Consumo

Diante de uma classificação dos usuários com um maior consumo de água, sugere-se que ocorra, na área, um estímulo a instalação de recursos para a reutilização de águas, criando finalidades alternativas. Com isso pretende-se reduzir o consumo per capta promovendo um uso racional dos recursos hídricos.

Nos pequenos e médios consumidores, evidenciar a necessidade de uso racional dos recursos hídricos.

6.2.7 Criação de um Banco de Dados de Empresas de Perfuração de Poços

As informações referentes às perfurações de poços para captação de águas ou sondagens para investigação, tornam-se úteis para o entendimento das condições hidrogeológicas, na área de estudo. Dados de qualidade de água, estratos geológicos e parâmetros hidrodinâmicos podem ser agrupados em um banco de dados, promovendo a ampliação dos conhecimentos da zona norte de Natal.

6.2.8 Identificação de Novas Áreas para Captação de Águas Subterrâneas

Diante das condições atuais de contaminação por nitrato e da estrutura habitacional instalada na zona norte de Natal, a identificação de novas áreas para captação de águas tornase uma alternativa essencial para suprir a deficiência em relação à qualidade de água.

6.3 PERSPECTIVAS DE MUDANÇAS PARA A ÁREA DE ESTUDO

Com o início das obras de saneamento e pavimentação em alguns bairros da zona norte, a configuração da recarga das águas subterrâneas será modificada, seja na redução da infiltração de efluentes domésticos, ou na redução da infiltração das águas de chuva.

O processo de contaminação poderá ser reduzido em algumas áreas e aumentado em outras, assim como a recarga dos aquíferos. Com a implantação da ponte Milton Navarro a partir do ano de 2008, que liga o bairro de Santos Reis (zona oeste de Natal) ao bairro de Redinha (zona norte de Natal), o processo de expansão urbana, tende a ser ampliado, gerando uma aumento no consumo de água e de cargas contaminantes decorrente de águas residuais, podendo iterferir na qualidade ambiental da área.

A adoção de medidas mitigatórias e implantação de um Plano de Manejo Sustentável, são procedimentos que promovem o desenvolvimento e a melhoria da qualidade de vida da população.

VII CONCLUSÕES E RECOMENDAÇÕES

Importância e contribuição das águas subterrâneas para o suprimento hídrico são evidenciadas nos diversos seguimentos de uso, seja para finalidades domésticas, industrial, comercial ou agrícola. As águas subterrâneas quando não representam totalmente o abastecimento de alguns usuários, surgem como uma opção de complemento no abastecimento. Em termos de volume distribuído pelo sistema público e consumido através de poços particulares, as águas subterrâneas representam 46% do suprimento hídrico na zona norte de Natal.

A expansão habitacional, ocorrida no final da década de 1970, proporcionou uma mudança na configuração do ambiente, passando de uma zona com vegetação nativa e agrícola a uma zona urbanizada, após 30 anos de ocupação. Parte da área da zona norte encontra-se impermeabilizada em decorrência da expansão urbana, com aproximadamente 19% favorável à infiltração direta das águas das chuvas. A área com rede de coleta de esgotos está restrita à zona do bairro de Igapó e à zona Industrial. Por conta da ausência de um sistema de coleta de esgotos no restante da área, a recarga das águas subterrâneas, através da infiltração dos efluentes domésticos (recarga urbana) tem uma maior representatividade em relação à infiltração natural.

De acordo com o balanço hídrico realizado, a área possui uma deficiência de 586 mm, entre setembro e março, e o excedente hídrico é de 522,1 mm, entre os meses de abril e agosto, ou seja, período favorável à recarga das águas subterrâneas e à ocorrência de enxurradas.

A geologia da área é formada por sedimentos do Grupo Barreiras com recobrimento de sedimentos eólicos. Em subsuperfície, ocorrem níveis interdigitados de argilito, que provavelmente predominam na área de estudo, com exceção da área próxima à lagoa de Extremoz e da região leste do bairro Pajuçara.

Com a construção do poço multinível (Pz-1 e Pz-2) e do poço produtor, foi verificado que, localmente, ocorrem dois aquíferos não conectados. Esta configuração dos aquíferos foi primeiramente evidenciada a partir das diferenças de cargas hidráulicas no poço multinível, e reforçada posteriormente a partir do ensaio de bombeamento realizado no poço produtor. O poço multinível foi utilizado como um ponto para observação das variações de carga.

A determinação dos parâmetros hidrodinâmicos com a utilização do slug test mostrouse bastante satisfatória na obtenção de informações pontuais do aquífero, sendo recomendado o método de Bower e Rice para a interpretação dos dados.

Na área de estudo foram identificadas duas frentes de escoamento de águas subterrâneas. De acordo com a média dos valores hidrodinâmicos das mesmas é provável que a frente de escoamento norte ocorra uma maior favorabilidade para a ocorrência de poços com vazão de produção maior do que ocorre na frente de escoamento sul.

As águas subterrâneas na zona norte estão representadas basicamente por aquíferos intergranulares representando o Sistema Dunas/Barreiras. Este Sistema pode apresentar uma conexão variável causada pelas heterogeneidades deposicionais decorrentes da presença de argiltos, que são caracterizadas como aquicludes. A camada de sedimentos argilosos é suficiente para gerar em algumas situações um processo de confinamento hidráulico, isolando a conexão entre os aquíferos.

O balanço de entradas de água no sistema aquífero da zona norte correspondem a uma saída de água de 64,25×10⁶ m³/ano e uma entrada de 74,2×10⁶ m³/ano. A diferença entre os volumes corresponde a 7,18% da média do volume de água envolvido entre as entradas e saídas. Esses valores devem ser considerandos como aproximados dentro das estimativas envolvidas, agregando as incertezas hidrogeológicas da área como as diferenças (flutuações) sazonais dos dados envolvidos.

Dentro desta perspectiva, podemos considerar satisfatórios os dados do balanço de entradas e saídas, no contexto do sistema hidrogeológico da zona norte. A configuração hidrogeológica das direções de fluxo denota um sistema em equilíbrio, pois não apresentou alterações significativas na direção de fluxo subterrâneo, nos últimos 10 anos de investigação.

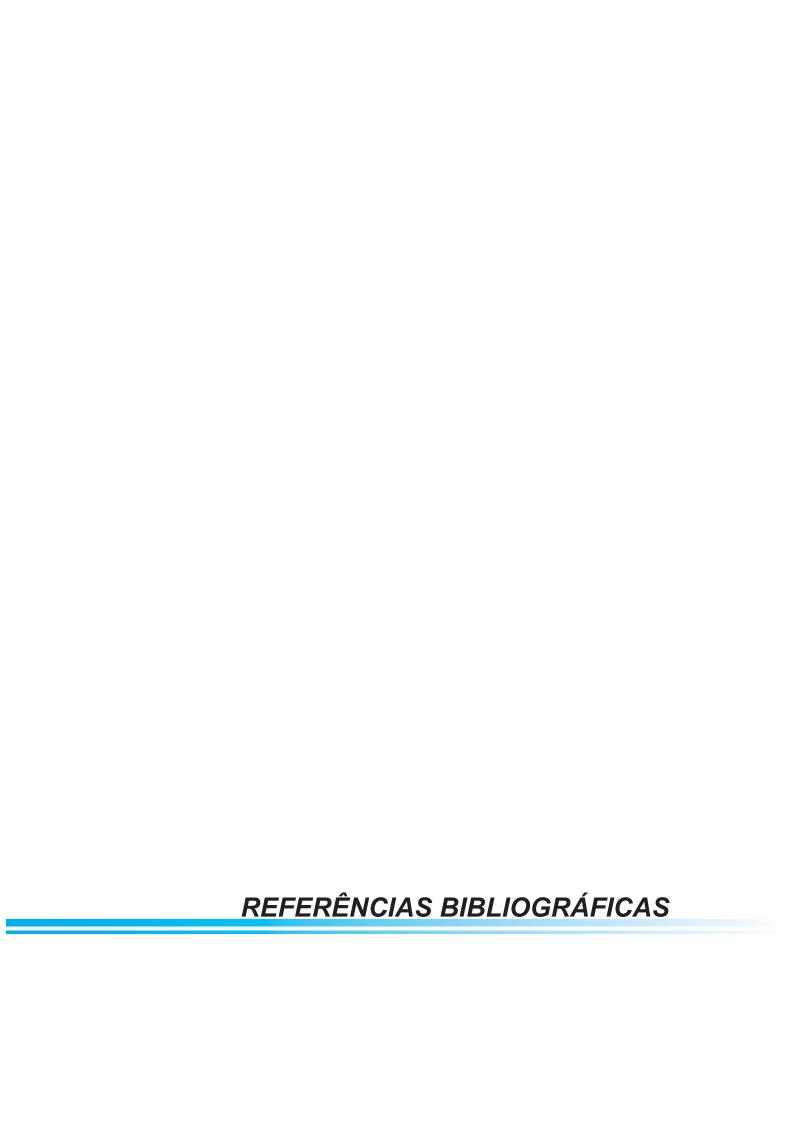
O adensamento populacional deve ocorrer com medidas que mantenham a sustentabilidade hídrica evitando problemas associados, como redução dos níveis de água subterrânea e qualidade das águas. Mesmo com o sistema de fluxo subterrâneo não apresentando nenhuma modificação significativa, a ocupação urbana na área deve ser monitorada, principalmente, por causa do aumento da demanda hídrica.

A lagoa de Extremoz contribui com aproximadamente 54% do abastecimento hídrico do sistema público da população da zona norte Em decorrência disso, esse volume tem contribuído com a geração de um processo contínuo de recarga das águas subterrâneas decorrente da perda no sistema de distribuição.

A determinação da vulnerabilidade a partir da metodologia GOD, mostrou-se satisfatória para as condições locais, onde aproximadamente 46,1% da área de estudo estão inseridos na classe de vulnerabilidade moderada, 21,6% com vulnerabilidade baixa, 12,5 com vulnerabilidade extrema e 9,2 com vulnerabilidade alta.

O mapa de vulnerabilidade integrado ao mapa de Fontes Potenciais de Contaminação proporcionou a determinação do potencial de risco das águas subterrâneas. No mapa de potencial de risco, ocorre uma predominância de risco moderado na parte central da área, zonas de risco forte às margens do rio Doce, zona do mangue e parte do bairro de Nossa Senhora da Apresentação. Também são encontrados níveis de potencial de risco baixo isolados no bairro da Redinha e Pajuçara. Estes são gerados, principalmente, pela elevada profundidade do nível das águas subterrâneas.

As lagoas de infiltrações, construídas para facilitar a drenagem das águas superficiais, em alguns casos, são utilizadas como locais para despejo de esgotos domésticos. A destinação de esgotos domésticos, nestas lagoas, contribui com a proliferação de insetos e possível contaminação direta das águas subterrâneas.


Aproximadamente 58% das unidades de captações apresentam concentrações de nitrato inferiores a 10 mg/L-N, ou seja, estão dentro dos limites de potabilidade de acordo com a Portaria n°518/2004 do Ministério da Saúde. As áreas que apresentam maiores valores de concentração de nitrato estão localizadas nas áreas que foram primeiramente ocupadas como os bairros de Igapó, Jardim Lola, Potengi e Nossa Senhora da Apresentação. Isto ocorre provavelmente pela existência de falhas no sistema de esgoto, como rompimentos de tubulações e pelo tempo de ocupação desta área.

As águas subterrâneas e superficiais possuem uma diferenciação dos íons presentes. Nas águas subterrâneas predominam amostras cloretadas, enquanto que as águas superficiais apresentam-se cloretadas com uma tendência para bicarbonatada. O bicarbonato ocorre em consequência das interações das águas que percolam o solo com a atividade biogênica que produz CO₂, elevando o teor de HCO₃⁻ e CO₃²-. Com relação aos cátions, as amostras são diferenciadas da seguinte forma: as águas superficiais são predominantemente sódicas, enquanto que as águas subterrâneas estão amplamente divididas em sódicas e mistas, possuindo também uma amostra cálcica. Esta diferenciação ocorre pelo fato das águas superficiais possuírem uma maior influência do intemperismo das rochas do embasamento cristalino, de onde é originado parte das águas desse manancial.

O processo de instalação, operação e funcionamento de uma rede de monitoramento de águas subterrâneas, trata-se de uma forma de se obter dados dentro de um padrão préestabelecido, no qual, podem ser obtidas as condições do aquífero considerado. É através do monitoramento que se obtém dados para identificar a evolução de possíveis degradações ou recuperação dos mananciais.

Diante do que foi aqui apresentado, verifica-se que a integração de dados deste trabalho para avaliar os efeitos da expansão urbana foi satisfatória para dar suporte a mecanismos que contribuam com a gestão dos recursos hídricos da área, sendo recomendado a adoção ou realização das seguintes atividades:

- Adoção de procedimentos metodológicos para padronização abandonamento de poços e obstrução dos poços como receptores diretos de efluentes domésticos.
- Instalação e funcionamento contínuo de uma rede de monitoramento de águas subterrâneas.
- Ampliação dos conhecimentos no que se refere à zona insaturada, ao mecanismos de recarga artificial e ao e conhecimento hidrogeológico da margem esquerda do rio Doce, município de Extremoz.
- Elaboração de furos estratigráficos para aferição de dados da estruturação geológica e espessuras das unidades aquíferas.
- Promover reuniões orientativas com os responsáveis pelas fontes potenciais de contaminação, com intuito de reduzir o risco associado a tal atividade.
- Adoção de mecanismos de proteção dos cursos d'água de superfície e corpos d'água como: rio Doce, riacho Olho d'Água e as lagoas naturais, principalmente no que se refere a despejos de esgotos e lixo em suas margens.
- Com a ampliação da rede de esgoto ocorrida a partir do ano de 2008 a configuração do sistema hidrogeológico da área de estudo passará por modificações, sendo necessário uma atualização das estimativas do sistema hídrico.

REFERÊNCIAS BIBLIOGRÁFICAS

Angelim, L.A.A.; Medeiros, V.C.; Nesi, J.R., 2006. Programa Geologia do Brasil – PGB. Projeto Mapa Geológico e de Recursos Minerais do Estado do Rio Grande do Norte. Mapa geológico do Estado do Rio Grande do Norte. Escala. 1:500.000. Recife: CPRM/FAPERN, mapa color.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 1987. Resíduos Sólidos Classificação; NBR 10004. São Paulo.

ASTM DM 6030, 1996, Standard Guide for Selection of Methods for Assessing Ground Water or Aquifer Sensitivity and Vulnerability, 8 pg. West Conshohocken, PA, EUA.

ATSDR - Agency for Toxic Substances and Disease Registry, 1989; Public Helth Statement.

Auge, M. (1) 2006. Métodos y Técnicas para el Monitoreo - Estado del Arte en América Latina. In: I Simpósio Latino-Americano de Monitoramento das Águas Subterrâneas, 2006.

Auge, M. (2) 2006. Monitoreo de Aquiferos. In: VIII Congreso Latinoamericano de Hidrologia Subterranea. ALHSUD.

Auge, M.; Hirata, R.; Vera, F.P., 2004. Vulnerabilidad a la Contaminación por Nitratos del Acuífero Puelche en La Plata-Argentina; Informe Científico - FINAL; Centro de Estudos de América Latina(CEAL).

Barros, R.M.; Porto, R.M., 2003. Estudo do Risco de Poluição das Águas Subterrâneas Causada Por Vazamentos em Postos de Abastecimentos de Combustível no Município de Ribeirão Preto-SP. In: I Simpósio de Hidrogeologia do Sudeste.

Bezerra, F.H.R.; Vita-Finzi, C., 2000. How Active is a passive margin? Paleoseismicity in northeastern Brazil. Geology, v.28, n.7, p.591-594.

Blinkhorst, G.K.; Robbins, G.A., 1998. Conducting and Interpreting Slug Tests in Monitoring Wells with Partially Submerged Screens, Ground Water, vol. 36 n°.2.

Bouwer, H.; Rice, R. C., 1976. A Slug Test for Determining Hydraulic Condutivity of Unconfined Aquifers with Completely or Partially Penetrating Wells" Water Resources Research, vol 12, n° 3 pp. 423-438.

Bouwer. H., 1989. The Bouwer and Rice Slug Test - An Update Ground Water, vol. 27 N° 3, pp.304-309.

Boyer, J.L., 1985. Dinâmica dos elementos químicos e fertilidade dos solos. I.G. Carvalho, Ed., Gráfica da EPABA, Séc. Agric. Bahia, 328 p.

Bianch, L.; Pafilha, M.W.M.; Teixeira, J.E.M., 1984. Recursos de água subterrânea na RMF. Fatores Condicionantes. In: Plano de aproveitamento dos Recursos Hídricos na RMF – Fase I. Fortaleza. SEPLAN – AUMEF, V. 1.

Branco, S.M., 1965. Poluição e Contaminação; Revista DAE, 26 (57) 41-45; In: Porto, R.L.L., Hidrogeologia Ambiental, São Paulo, ABRH, 1991.

Brasil, Ministério das Cidades; Diagnóstico dos Serviços de Água e Esgotos 2004. Sistema Nacional de Informações sobre Saneamento SNIS. Secretaria Nacional de Saneamento Ambiental. Programa de Modernização do Setor Saneamento PMSS (2006).

Brasil, MS - Ministério da Saúde, Portaria n°518 de 25 de março de 2004 - Estabelece os procedimentos e responsabilidades relativos ao controle e vigilância da qualidade da água para consumo humano e seu padrão de potabilidade e dá outras providências.

Braz, V.; Beck, L.; Costa E Silva, L., 2000. Integração de Resultados Bacteriológicos e Geofísicos na Investigação da Contaminação de Águas por Cemitérios – In: I Congresso Mundial Integrado de Águas Subterrâneas.

Butler JR., J.J.; Healey, J.M., 1998. Relationship Between Pumping-Test and Slug-Test Parameters: Scale Effect or Artifact? Ground Water, vol. 36 n°.2.

Caetano, Lucio Carramillo; Pereira, Sueli Yoshinaga., 2003. Águas Minerais e Águas Subterrâneas: Conceitos e Legislação Brasileira (Estudo de Caso no Estado do Rio de Janeiro) In: I Simpósio de Hidrogeologia do Sudeste, Petrópolis - RJ.

Carvalho, F.S., 2004. Estudos sobre perdas no sistema de abastecimento de água da cidade de Maceió. In: Simpósio de Recursos Hídricos do Nordeste, São Luis, Anais... São Luis: ABRH, CD-ROM.

Carvalho, I.G., 1995. Fundamentos da Geoquímica dos Processos Exógenos, Bureau Gráfica e Editora Ltda, Salvador, Bahia, 239 p.

Castro, V.L.L., 2000. Águas Subterrâneas no Curso Inferior da Bacia do Rio Doce/RN-Subsídios para um Gerenciamento Integrado. Tese de Doutorado, Programa de Pós-Graduação em Recursos Minerais e Hidrogeologia, Instituto de Geociências - USP.

Cavalcante, I. N., 1998. Fundamentos Hidrogeológicos para a Gestão Integrada de Recursos Hídricos na região Metropolitana de Fortaleza, Estado do Ceará. Tese de Doutorado, USP/ Instituto de Geociências.

CEARA/SRH. 2002. Projeto de monitoramento/gestão de água subterrânea de microareas estratégicas da Região Metropolitana de Fortaleza, Ceará. Cadastramento de Poços. Relatório de Atividade II. Fortaleza - CE. 33p.

CEMPRE - Compromisso Empresarial para Reciclagem., 2000. LIXO MUNICIPAL -Manual de gerenciamento integrado. São Paulo: IPT 2^a. Edição. ISBN: 85-09-00113-8.

Chakrabarty, C.; Enachescu, C., 1997. Using the Deconvolution Aproach for Slug Test Analysis: Theory and Application, Ground Water, vol. 35 n°.5.

Cole, G.M., 1994. Assessment and Remediation of Petroleum Contaminad Sites - Boca Raton, FL-USA - Lewis Publishers, 360 p.

Collins, W.D., 1923. Graphic representation of analyses: Industrial and Engineering Chemistry. v. 15, p. 394.

Cooper, H.H.; Bredehoeft J.D., Papadopoulos, I.S., 1967. Response of a finite diameter well to an instantaneous charge of water. Water Res. Research, 3: 263-269.

Costa, W.D.; Estudo Hidrogeológico de Natal/RN., 1970. Consultoria Técnica de Geologia e Engenharia (CONTEGE)/ Companhia de Águas e Esgotos do Rio Grande do Norte (CAERN).

Costa W.D. & Salim, J., 1972. Aspectos estruturais da faixa sedimentar costeira da região de Natal - RN, Revista Estudos Sedimentológicos, V2: 133-144, Natal, RN.

Costa, W.D., 2002. Caracterização das Condições de Uso e Preservação das Águas Subterrâneas do Município de Belo Horizonte-MG. Tese de Doutorado, USP/Instituto de Geociências.

Costa, W. D., 2003. Risco de Contaminação de Água Subterrânea: Conceitos e Prática. In: I Simpósio de Hidrogeologia do Sudeste.

Costa, W. D., 1998. Avaliação de Reservas, Potencialidade e Disponibilidade de Aqüíferos. In: X Congresso Brasileiro de Águas Subterrâneas, São Paulo.

Costa, W.D., 2008. Uso e Gestão das Águas Subterrâneas. In: Hidrogeologia: Conceitos e Aplicações. Feitosa, F.A.C.; Manoel Filho, J.; Feitosa, E.C.; Demetrio, J.G.A.

CPRM - Companhia de Pesquisas de Recursos Minerais., 1994. Programa Levantamentos Geológicos Básicos do Brasil, São Luís Folha SA.23-Z-A. Cururupu . Folha SA.23-X-C Escala 1:250.000 Estado do Maranhão Brasília: CPRM, 181 p.

CPRM - Companhia de Pesquisas de Recursos Minerais. 1999. Atlas dos recursos hídricos subterrâneos do Ceará, Fortaleza.

Custodio, E. & Llamas, M.R., 1996. Hidrologia Subterránea. Ediciones Omega, S.A. Segunda Edición Corregida. Tomo I e Tomo II; 2350 p.. Barcelona, Espana.

Custódio, E., 1985. Notas sobre hidroquímica. Comisaría de águas Públicas. Barcelona. 103 p.

Dacach, N. G., 1979. Sistemas Urbanos de Água. 2 ed., Rio de Janeiro. Livros Técnicos Científicos.

De Vries, J.J.; Simmers, I., 2002. Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal.

Dent, B.B.; Kinight, M.J., 1998. Cementeries: A Special Kind of Landfill- Proceedings of IAH Sustainable Solutions Conference, Melborne, February.

Diniz Filho, J.B.; Barroso, T.T., 2002. Controle Geológico mo Potencial do Aqüífero Barreiras- Baixo Curso do Ceara Mirim-RN. In: XII Congresso Brasileiro de Águas Subterrâneas.

Duarte, U. & Kanehisa, M.S., 1986. Captações Rasas em Zonas Urbanas. In: 4° Congresso Brasileiro de Águas Subterrâneas.

Duarte, M.I.M., 1995. Mapeamento Geológico e Geofísico do Litoral Leste do RN: Grande Natal (Área I), UFRN, CCET, Depto de Geologia - Relatório de Graduação.

Esteves, F.A., 1998. Fundamentos de Limnologia. Ed. Interciência.

Feitosa, E.C.; Feitosa F.A.C.; Lira, H.M.P., 2002. Relações Estratigráficas e Estruturais Entre a Bacia Potiguar e a Bacia Costeira PE/PB/RN - Uma Hipótese de Trabalho. In: XII Congresso Brasileiro de Águas Subterrâneas.

Fenzl, N., 1986. Introdução a Hidrogeoquímica, UFPA, 189 p.

Foster, S., 1987. Fundamental concepts in aquifer vulnerability pollution risk and protection strategy. Proc Intl. Conf "Vulnerability of Soil and Groundwater to Pollutants" (Noordwijk, The Netherlands/April)

Foster, S.; Hirata, R.C. & Rocha, G.A., 1988. Riscos de poluição de águas subterrâneas: uma proposta metodológica de avaliação regional. In: V Congresso Brasileiro de Águas Subterrâneas, São Paulo, p. 175-185.

Foster, S.S.D.; HIDRATA, R.C.A., 1993. Determinação do Risco de Contaminação das Águas Subterrâneas: um método baseado em dados existentes. IG. Bol. N. 10, 92 p. São Paulo.

Foster; S.; Hirata; Gomes, D.; D'elia; M.; Paris; M., 2002. Protección de la Calidad del Agua Subterráea-Guia para empresas de agua, autoridades municipales y agencias ambientales. Banco Mundial,115p.

FUNCERN., 2006. (VOLUME I) Cadastramento e Nivelamento de Poços no Aqüífero Barreiras no Município do Natal, RN. Secretaria de Recursos Hídricos do Rio Grande do Norte SERHID, CEFET-RN, IGARN, Volume I, disponível em: http://www.igarn.rn.gov.br/conteudo/principal/Cadastro/Invent%C3%A1rio%20dos%20po% C3% A7os% 20Cadastrados.pdf. Acesso em: 17/01/2008.

FUNCERN., 2006. (VOLUME II) Cadastramento e Nivelamento de Poços no Aqüífero Barreiras no Município do Natal, RN. Secretaria de Recursos Hídricos do Rio Grande do SERHID, CEFET-RN, IGARN, Volume disponível II, http://www.igarn.rn.gov.br/conteudo/principal/Cadastro/Relat%C3%B3rio%20Final%20do% 20Cadastro%20Volume%2001.pdf. Acesso em: 17/01/2008.

Gerb, L., 1953. Reduzierte Wasser. Gás-u. Wasserf. Munchen, 94: 87-92; 157-61, 1953.

GLCF - Global Land Cover Facility, Earth Science Data Interface., 2007. University of ponto Maryland, Imagens Landsat órbita 214/64, disponível em: http://glcfapp.umiacs.umd.edu:8080/esdi/index.jsp. Acesso em: 16/10/2007.

Goldscheider, N., 2002. Hydogeology and Vulnerability of Karst Systems- Examples fron the Northern Alps and the Swabian Alb.- Schr. Angew, Geol., 68, 236p., Karlsruhe.

Guiguer, N., 1996. Poluição das Águas Subterrâneas e do Solo Causada por Vazamentos em Postos de Abastecimento- Waterloo Hydrogeologic Inc.

Guiguer, N, Kohnke, M.W., 2002. Métodos para Determinação da Vulnerabilidade de Aquíferos. In: Anais do XII Congresso Brasileiro de Águas Subterrâneas, Florianópolis, SC.

Hager, F.P.V.; Silva, J. de R. da C.; Almeida, W.M. de; Oliveira, W. de A., 2002. A problemática da Gestão das Águas Subterrâneas no Brasil. In: XIII Congresso Brasileiro de Águas Subterrâneas, Florianópolis-SC, ABAS.

Hassuda, S., 2003. Procedimentos de caracterização de Áreas Contaminadas. In: I Simpósio de Hidrogeologia do Sudeste.

Hem, J.D., 1992. Study and Interpretation of the Chemical Characteristics of Natural Water-U.S. Geological Survey Water-Supply Paper 2254.

Hvorslev, M.J., 1951. Time lag and soil permeability in ground-water observations: Vicksburg, Miss., U.S. Army Corps of Engineers, Waterways Experiment Station, Bulletin 36, 50 p.

IBGE, Instituto Brasileiro de Geografia e Estatística - IBGE, Censo Demográfico 2000: características da população e domicílios. Rio de Janeiro, 2001.

IDEMA, Instituto de Defesa do Meio Ambiente do Estado do Rio Grande do Norte, 2008. Liberação de Imagens de Satélite via solicitação através de ofício Departamento de Geologia da UFRN, 2008.

ICRISAT – International Crops Research Institute for the Semi-Arid Tropics., 1980. Climatic Classification: A Consultants' Meeting, 14-16, April, 1980, ICRISAT Center, Patancheru, A.P. 502324, Índia, 153 p.

Lanna, A.E., 1997. Modelos de Gerenciamento das Águas. In: Água em Revista, Belo Horizonte, ano V, n° 8, p. 24-33.

Mobus, G.; Leite, C.E.S., 2000. Análise da Densidade de Poços Tubulares no Estado do Ceará (1991-1998) In: 1° Congresso Integrado de Águas Subterrâneas.

Lerner D.N. ISSAR, A.S.; SIMMERS., 1990. In: Groundwater recharge, a guide to understanding and estimating natural recharge. International Association of Hydrogeologists, Kenilworth, Rep. 8, 345 pp.

Lerner, D.N., 1997. Groundwater recharge. In: Saether OM, de Caritat P (eds) Geochemical processe, weathering and groundwater recharge in catchments. AA Balkema, Rotterdam, pp 109-150.

Lerner, D.N., 2002. Identifying and quantifying urban recharge: a review, Hydrogeology Journal, p.143-152.

Logan, J., 1965. Interpretação de análises químicas de água. Recife:U.S. Agency for International Development. 67 p.

Lucena, L.R.F. O; Rosa Filho, E.F.; Hindi, E.C., 2002. Fator Estrutural Atuante na Conexão Hidráulica Subterrânea entre o Sistema Lacustre do Bonfim e a Bacia do Rio Pirangi, Litoral Leste do Rio Grande do Norte Revista Águas Subterrâneas, n°16-maio.

MA/EMBRAPA/SUDENE., 1971. Levantamento Exploratório-Reconhecimento de solos do Estado do Rio Grande do Norte, EMBRAPA solos UEP, Recife.

Mabesoone J.M, Rolim, J.L. Castro., 1977. Late Cretaceons and Cenozoic History of Northeastern, Brasil. Geologie, p.56-129-139.

Mabesoone J.M. & Campos E Silva., 1972. Estratigrafia e origem do Grupo Barreiras, Pernambuco, Paraíba e Rio Grande do Norte. Revista Brasileira de Geociências, v 2: 173-189.

Magliorini, R.B., 1994. Cemitérios como fonte de poluição em aquíferos. Estudo do Cemitério Vila Formosa na bacia sedimentar de São Paulo, São Paulo, 74 p. (Dissertação Metrado), Instituto de Geociências, Universidade de São Paulo.

Margat, J., 1968. Vulnérabilité dês nappes d'eau souterraine la pollution (Ground water vulnerability to contamination). Bases de la cartographie, (Doc.) BRGM, 68 SGL, HYD, Orléans, France.

Mas-Pla, J.; Williams, T.M.; Mccarthy, J.F., 1997. Analyses of Slug Tests and Hydraulic Condutivity Variatios In the Near Field of a Two-Well Tracer Experiment Site, Ground Water, vol. 35 n°.3.

Matos, B.; Pacheco, A., 2002. Avaliação da Ocorrência do Transporte de Microorganismos no Agüífero Freático do Cemitério de Vila Nova Cachoeirinha, Município de São Paulo. In: XII Congresso Brasileiro de Águas Subterrâneas.

Meaulo, F.J., 2004. O Mapeamento da Vulnerabilidade Natural dos Recursos Hídricos Subterrâneos: O Exemplo de Araraquara-SP. In: XII Congresso Brasileiro de Águas Subterrâneas, Cuiabá.

Melo, J.G., 1995. Impactos do Desenvolvimento Urbano nas Águas subterrâneas de Natal/RN - Zona Sul; Tese de doutorado em Geociências, USP.

Melo, J.G., 1998. Avaliação dos Riscos de Contaminação e Proteção das Águas Subterrâneas de Natal, Zona Norte, CAERN, Gerência de Operação e Manutenção, Divisão de Hidrogeologia. Relatório Interno.

Melo, J.G., 2004. Quantificação da oferta hídrica da Região da Lagoa de Extremoz, RN. Relatório. ENGESOFT.

Melo, J.G., 2006. Quantificação da Oferta Hídrica no Rio Jacú, RN. Relatório. ENGESOFT.

Monteiro, L.W.S.; Costa, T.B.; Menezes, L.B. C., 2005. Estudo Preliminar da Contaminação das Águas Subterrâneas no Entorno do Lixão na Cidade de Cametá-PA. In: Montenegro, M.H.; Tucci, C.E.M.; Saneamento Ambiental e Águas Pluviais Brasil, Secretaria Nacional de Saneamento Ambiental- Gestão do território e manejo integrado das águas urbanas-Brasília: Ministério das Cidades.

Morais, G.L., 2004. Estudo das Restrições à Implantação de Aterros Sanitários no Cone Leste Paulista: Uma Análise das Áreas de Recarga de Aqüíferos. In: XIII Congresso Brasileiro de Águas Subterrâneas.

NATAL, Prefeitura Municipal do Natal. Secretaria Municipal de Meio Ambiente e Urbanismo., 2006. Anuário Natal; Secretaria Municipal de Meio Ambiente e Urbanismo-Natal (RN): Departamento de Informação, Pesquisa e Estatística.

Nogueira, F.C.C.; Bezerra, F.H.R.; Castro., 2006. Deformação Rúptil em Depósitos da Formação Barreiras na Porção Leste da Bacia Potiguar. Revista do Instituto de Geociências-USP v.6, n.2, p.51-59.

Oliveira, Claudio Pereira de., 2003. O mercado da Água e a Gestão dos Recursos Hídricos. In: I Simpósio de Hidrogeologia do Sudeste.

Oliveira, W.; Tagliarini, E.M.; Tancredi, A.C.F.S., 2002. Estudo Hidrogeológico para a Implantação do Cemitério Max Domini II - Região de Belém-Pará. In: XII Congresso Brasileiro de Águas Subterrâneas.

Pacheco, A.; Mendes, J.M.B.; Hassuda, S., 1988. O Problema Geo-Ambiental da Localização de Cemitérios em Meio Urbano. In: V Congresso Brasileiro de Águas Subterrâneas.

Pacheco, A., 1992. Os Cemitérios como Risco Potencial para as Águas de Abastecimento. SPAM (Agosto): 25-37.

Pereira, R., 2003. Sistema Lacustre Costeiro e Interação de Águas Superficiais e Subterrâneas. Teoria e Aplicações a Implantação de uma Adutora.

Phelps, G.G., 2004. Chemistry of Ground Water in the Silver Springs Basin, Florida, with Emphasis on Nitrate: U.S. Geological Survey Scientific Investigations Report n° 2004-5144, 54p.

Ramos, Maria Luiza Silva; Paixão, Maricene Menezes de Oliveira Matos., 2003. Gestão de Águas Subterrâneas: Experiencia do Estado de Minas Gerais. In: I Simpósio de Hidrogeologia do Sudeste, Petrópolis-RJ.

Rebouças, A.C., 1992. Impactos Ambientais nas Águas Subterrâneas. In: VII Congresso Brasileiro de Águas Subterrâneas, Belo Horizonte, MG.

Reichardt, K., 1990. A Água em Sistemas Agrícolas. São Paulo: Manole. 188p.

Rocha, W.J.S., 2005. Estudo da Salinização das Águas Subterrâneas na região de Maceió a Partir da Integração de Dados Hidrogeológicos, Hidrogeoquímicos e Geoelétricos, Tese de Doutorado, Instituto de Geociências, UnB.

Rodriguez, C.R., 2003. The Role of Urban Áreas in Aquifer Vulnerability Assessments. The Salamanca DRASTIC and AVI maps. In: Aquifer Vulnerability and Risc. Proceedings of the First International Workshop on Aquifer Vulnerability and Risk, Salamanca Guanajuato, Mexico,p. 266-277.

Rolim, G.S.; Sentelhas, P.C.; Barbieri, V., 1998. Planilhas no ambiente EXCEL para os cálculos de balanços hídricos: normal, sequencial, de cultura e de produtividade real e potencial. Revista Brasileira de Agrometeorologia, Santa Maria, v.6, p.133-137.

Sabadia, J.A.B; Casas, A.; Santiago, M.M.F.; Mendes Filho, J., 2000. A Problemática da Destinação Final de Resíduos Sólidos Urbanos: O Aterro do Jangurussu e os Recursos Hídricos Subterrâneos da Cidade de Fortaleza-Ceará. In: I Congresso Mundial Integrado de Águas Subterrâneas.

Salgueiro, R.S.; Ribeiro, R.L.; Bampa Sauerbronn, J.L. Gomes, O.V.O., 2003. Avaliação de Metodologias Para Análise de Contaminações em Superfície em Áreas de Armazenamento, Transporte e Aterros por Resíduos derivados de Petróleo no Brasil. In: I Simpósio de Hidrogeologia do Sudeste.

Salin, J.; Lima, M.S. Mabesoone, J.M., 1974. Vales estruturais no Litoral leste do Rio Grande do Norte. Bol. Núcleo Nordeste. Soc. Bras. Geologia, 4 - Atas VI Simpósio Geologia do Nordeste, Maceió (Al), p.13-28.

Santos, A.C., 1997. Noções de Hidroquímica. In: FEITOSA, F.A.C. MANOEL FILHO, J. Hidrogeologia: Conceitos e Aplicações.

Santos, M.M.; Celligoi, A., 2003. Avaliação Hidrogeológica nas Adjacências do Antigo Lixão de Rolândia-PR. In: I Simpósio de Hidrogeologia do Sudeste.

SÃO PAULO, Instituto Geológico. 1997. Mapeamento da vulnerabilidade e risco de poluição das águas subterrâneas no estado de São Paulo/ Instituto Geológico, CETESB, DAEE, Secretaria de Estado e Meio Ambiente; coordenado por Ricardo César Aoki Hirata, Caraí Ribeiro Bastos, Gerôncio Albuquerque Rocha, São Paulo, Instituto Geológico.

Sato, M., 1960. Oxidation of sulphide ore bodies. In: I. Geochemical Environments in terms of Eh and pH. Econ. Geol., 55:928-961.

Scalon, B.R; Healy, R.W.; Cook, P. G., 2002. Choosing appropriate techniques for quantifying groundwater recharger. Hydrogeology Journal, 18-39.

Senra, João Bosco; Hager, Francis Priscilla Vargas., 2003. Águas Subterrâneas e a Legislação de Recursos Hídricos. In: I Simpósio de Hidrogeologia do Sudeste.

Sousa, S.B., 2000. Sistema Aqüífero da Ilha do Maranhão (MA). In: 1° Congresso Integrado de Águas Subterrâneas.

SRTM. Radar Topography Mission., 2003. disponível Shuttle em: http://www2.jpl.nasa.gov/srtm/ Courtesy NASA/JPL - Caltech. Acesso em 20/01/2006.

GWP - Global Water Partnership., 2000. Integrated Water Resources Management; Asociación Mundial para el Agua. Comité de Consejo Técnico (TAC).

Thornthwaite, C.W.; MATHER, J.R., 1955. The water balance. Publications in Climatology, New Jersey, Drexel, Institute of Technology, 104 p.

Tucci, C.E.M; (organizador)., 1993. Hidrologia: ciência e aplicação. Editora UFRGS e EDUSP, ABRH. 952 p.

Uil, H; Vangeer,F; Gehrels,J; Kloosterman.F., 1999. State of the art on monitoring and Assessment of Groundwaters. UN/ECE Task Force on Monitoring and Assessment. Vol. 4:1-84 Deift, Holanda.

Vázquez-Suñé, E; Sánchez-Vila, X.; Carrera, J., 2005. Introductory review of specific factors influencing urban groundwater, na emerging branch of hydrogeology, with reference to Barcelona, Spain. Hidrogeology Journal V.13 N 3.

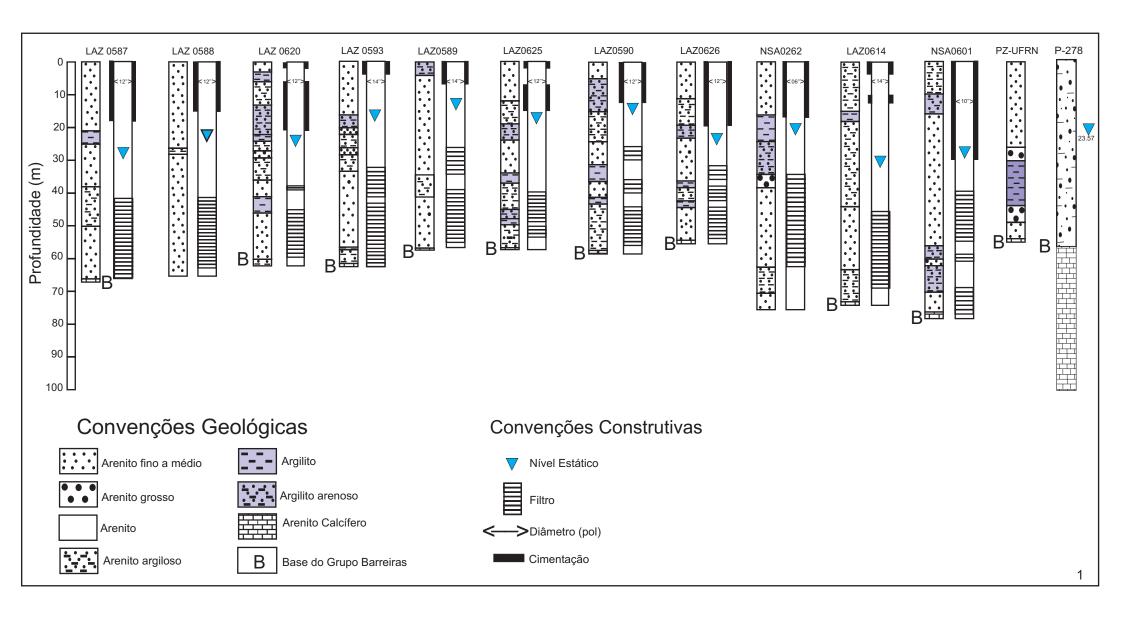
Vidal, Claudio Luiz Rebello., 2003. Disponibilidade e Gerenciamento Sustentável do Aquífero Serra Grande no Município de Picos-Piauí. Tese de doutorado. Universidade de São Paulo, Instituto de Geociências, Programa de Pós-Graduação em Recursos Minerais e Hidrogeologia, São Paulo.

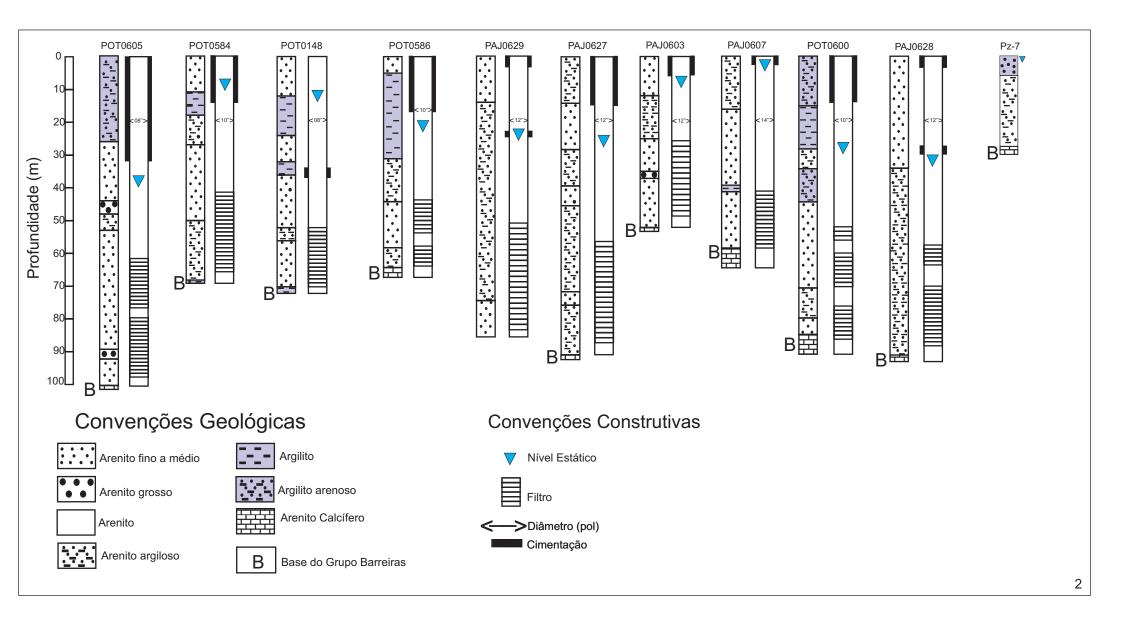
Voigt, H.J.; Heinkele, T.; Jahnke, C.; Wolter, R., 2003. Characterization of Groundwater Vulnerability In Aquifer Vulnerability and Risc. Proceedings of the First International Workshop on Aquifer Vulnerability and Risk, Salamanca Guanajuato, Mexico, p. 266-277.

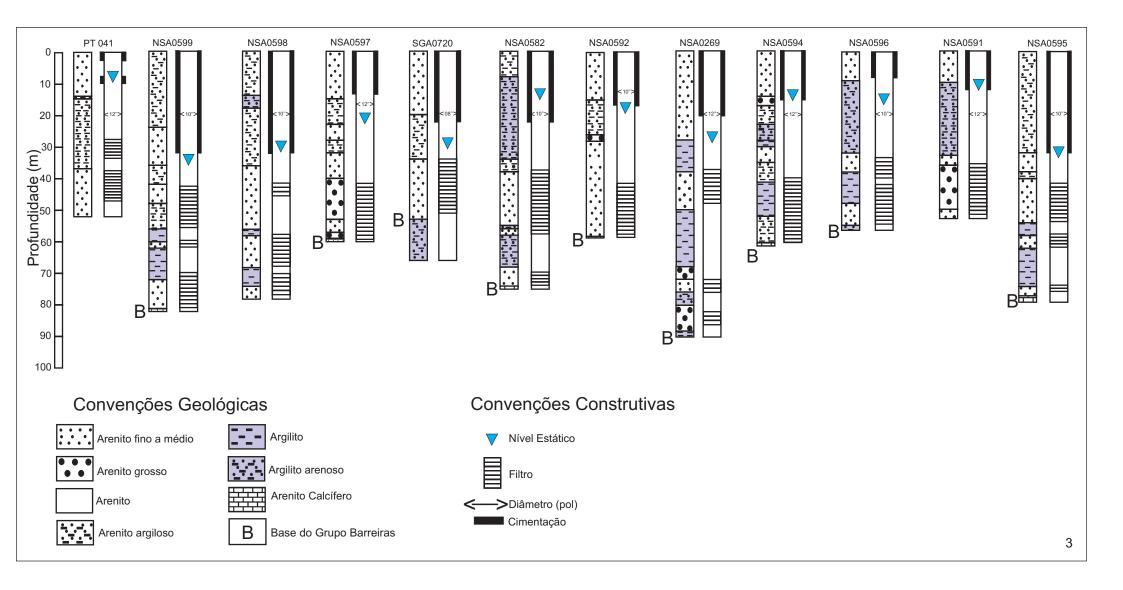
Vrba, J, & Zaporozec, A., 1994. Guidebook on Mapping Groundwater Vulnerability - IAH International Contributions to Hydrogeology, vol. 16, 131p.; Hannover/FRG (Heise Publ.).

Vrba, J., 2004. Groundwater Vulnerability Assessment and mapping (cap 4.4 p 97-104) In Zektser, I.S.; Everett, L.G. Groundwater Resources of the World and their use. IHP-VI. Series on Groundwater, n° 6, UNESCO.

WHO - World Helth Organization., 1998. The Impact of Cementeries on the Environment and Public Health- An Introductory Briefing. Ahmet S. Uçisik & Philip Rusbrook.


Zavoudakis, E.; Lyrio C; Pereira, J.R.P.; Siqueira, L.; Fogos, W.F.; Addad, J.E., 2006. Caracterização da Água Freática em Áreas de Antigos Lixões Aterrados e Urbanizados para Fins Residenciais, Vitória, ES. In: XIV Congresso Brasileiro de Águas Subterrâneas.




	ANEXO A
Perfis litológicos	s e construtivos de poços inseridos na área de estudo

Programa de Pós-Graduação em Geociências - UFPE

Tese de doutorado

Programa de Pós-Graduação em Geociências - UFPE	Tese de doutorado
Análise Integrada dos Efeitos da Expansão Urbana nas Águas Subterrâneas como S	Suporte a Gestão dos Recursos
Hídricos da Zona Norte de Natal - RN	

ANEXO B

Cadastro das Fontes Potenciais de Contaminação

POSTO DE ABASTECIMENTO DE COMBUSTÍVEL

UTM-E	UTM-N	Descrição
254120	9364552	Posto de gasolina Godeirão (3 tanques) Lava jato
253606	9364770	Posto de gasolina União Águia Dourada (3 tanques) Lava jato
252473	9366520	Posto de gasolina Luana III
248978	9364906	Posto de gasolina Cidade Praia (3 tanques) Lava jato
253086	9364092	Posto de gasolina Redinha (3 tanques) Lava jato
249213	9362896	Posto de gasolina Vale Dourado (3 tanques)
249271	9363062	NSA Rua das Fronteiras, Posto de Gasolina (4 Bombas)
252390	9363646	Posto de Combustível 6 tanques/ Posto BR_ em frente ao Posto Policial
251120	9362920	Posto de Gasolina Posto Shell (5 tanques) Carrefour
250290	9361978	Posto de Gasolina BR (2 tanques) ao lado do Atacadão
250601	9362528	Posto de Gasolina 7 tanques Posto BR_Nordestão
251036	9362818	Posto de Gasolina Ipiranga 5 tanques (prox ao Carrefour)
253042	9364044	Posto de Gasolina SAT 4 tanques_Posto Redinha
248664	9361530	Posto de gasolina BR (Próximo ao Nordestão), 5 tanques
248445	9361860	Posto de gasolina SAT (Posto Miranda), 3 tanques
247815	9362064	Posto de gasolina RB (Posto Sirne), 4 tanques
247653	9362148	Posto de gasolina IPIRANGA (Posto Jotaflor), 8 tanques
246651	9362506	Posto de gasolina (Posto Novo Horizonte II), OBS- Poço a uns 50 m
246910	9362378	Posto de gasolina, 4 tanques
246368	9366190	Posto de gasolina (Posto São José), 3 tanques
246609	9362706	Posto de gasolina, 3 tanques
249837	9361288	Posto de gasolina SAT
250210	9361152	Posto de gasolina BR, 3 tanques

LAGOA DE INFILTRAÇÃO

UTM-E	UTM-N	Descrição
252468	9366392	Captação de drenagem urbana
250394	9365332	Captação de drenagem urbana
248002	9364882	Captação de drenagem urbana
252277	9366060	Captação de drenagem urbana
249374	9362740	Captação de drenagem urbana
247946	9363084	Captação de drenagem urbana
250557	9367626	Captação de drenagem urbana
249473	9362822	Captação de drenagem urbana
252510	9366343	Captação de drenagem urbana
250912	9365582	Captação de drenagem urbana
250557	9365328	Captação de drenagem urbana
249582	9364789	Captação de drenagem urbana
251328	9364477	Captação de drenagem urbana
253135	9364047	Captação de drenagem urbana

POÇO ABANDONADO

RG	UTM-N	UTM-E	Bairro	Tipo da captação
971	9361828	250124	Igapó	Poço escavado
883	9363418	247468	NS Apresentação	Poço escavado
899	9362998	246677	NS Apresentação	Poço escavado
900	9363372	247099	NS Apresentação	Poço escavado
1185	9362970	246630	NS Apresentação	Poço escavado
1259	9362740	248641	NS Apresentação	Poço escavado
1260	9362680	248523	NS Apresentação	Poço escavado
1282	9363360	248534	NS Apresentação	Poço escavado
1288	9363312	248611	NS Apresentação	Poço escavado
1289	9363204	248166	NS Apresentação	Poço escavado
1295	9363568	248895	NS Apresentação	Poço escavado
1297	9363480	248298	NS Apresentação	Poço escavado
1177	9362144	245634	São Gonçalo do Amarante	Poço escavado
963	9362362	249176	Igapó	Poço escavado
172	9367860	248941	Lagoa Azul	Poço escavado
634	9366968	252574	Lagoa Azul	Poço escavado
636	9367200	252576	Lagoa Azul	Poço escavado
939	9367410	252078	Lagoa Azul	Poço escavado
939	9367410	252078	Lagoa Azul	Poço escavado
942	9367562	252276	Lagoa Azul	Poço escavado
1275	9367242	248650	Lagoa Azul	Poço escavado
639	9362852	246807	Nsa Sra da Apresentação	Poço escavado
882	9363864	248189	Nsa Sra da Apresentação	Poço escavado
1027	9364324	247408	Nsa Sra da Apresentação	Poço escavado
1028	9364342	247376	Nsa Sra da Apresentação	Poço escavado
1090	9364050	247962	Nsa Sra da Apresentação	Poço escavado
1091	9364020	247966	Nsa Sra da Apresentação	Poço escavado
1120	9364176	247511	Nsa Sra da Apresentação	Poço escavado
1120	9364176	247511	Nsa Sra da Apresentação	Poço escavado
1126	9364387	247670	Nsa Sra da Apresentação	Poço escavado
1263	9362866	248820	Nsa Sra da Apresentação	Poço escavado
1264	9363252	249070	Nsa Sra da Apresentação	Poço escavado
1267	9363192	248727	Nsa Sra da Apresentação	Poço escavado
1270	9363038	248473	Nsa Sra da Apresentação	Poço tubular
1281	9363350	248620	Nsa Sra da Apresentação	Poço escavado
1291	9363276	248200	Nsa Sra da Apresentação	Poço escavado
1292	9363362	248320	Nsa Sra da Apresentação	Poço escavado
1296	9363634	248667	Nsa Sra da Apresentação	Poço escavado
182	9366805	252586	Pajuçara	Poço escavado
200	9364780	253962	Pajuçara	Poço escavado
202	9364830	254085	Pajuçara	Poço escavado
147	9364176	250491	Potengi	Poço tubular
215	9362926	253276	Redinha	Poço escavado
1101	9363522	253414	Redinha	Poço escavado
1103	9363328	252734	Redinha	Poço tubular
1104	9363092	252758	Redinha	Poço escavado
223	9361320	250920	Salinas	Poço escavado
864	9362662	246124	São Gonçalo do Amarante	Poço escavado

POÇO ABANDONADO

RG	UTM-N	UTM-E	Bairro	Tipo da captação
890	9363148	246274	São Gonçalo do Amarante	Poço escavado
1057	9362550	245871	São Gonçalo do Amarante	Poço escavado
1112	9362210	246598	São Gonçalo do Amarante	Poço escavado
1192	9362344	245651	São Gonçalo do Amarante	Poço escavado
876	9362970	246084	São Gonçalo do Amarante	Poço escavado

CEMITÉRIO

UTM-E	UTM-N	Descrição
253275	9365710	Cemitério Pajuçara
250612	9361279	Cemitério de Igapó

CONFINAMENTO DE REBANHOS

UTM-E	UTM-N	Bairro	Descrição
253461	9365340	Pajuçara	Confinamento de rebanho (área aprox.100x100m²)
245814	9362238	Golandim	Confinamento de rebanho (área aprox. 50x50 m²)

LAVA JATO

UTM-E	UTM-N	Descrição	
254120	9364552	Lava jato do Posto de gasolina Godeirão (3 tanques)	
253606	9364770	Lava jato do Posto de gasolina União Águia Dourada (3 tanques)	
248978	9364906	Lava jato do Posto de gasolina Cidade Praia (3 tanques)	
253086	9364092	Lava jato do Posto de gasolina Redinha (3 tanques)	
252136	9366162	Lava jato	
252363	9366626	Lava jato	
253390	9364252	Lavajato	
246708	9362446	Lava Jato próximo ao Poço com odor de combustível	

LIXÃO

UTM-E	UTM-N	Descrição
248035	9366810	Despejo de resíduos aleatório

ANEXO C

Dados do ensaio de slug test

BOWER & RICE AQUÍFERO LIVRE (piezômetro PZ-1) REDUÇÃO DA CARGA HIDRÁULICA

Y0=0,354 Yt=0,003 t=6s

(m)
1,95
0,254
26,55
26,55
3,0
29.5
28,5
23,6
0,127
2,1
0,9
1,7

t(s)	y(s)
0	1,156
3	0,049
4	0,039
5	0,019
6	0,013
7	0,007
8	0,003
9	0,003

BOWER & RICE AQUÍFERO LIVRE (piezômetro PZ-1) ELEVAÇÃO DA CARGA HIDRÁULICA

Y0=0,119 Yt=0,004 t=7s

Parâmetro	(m)
NE	1,95
2rw	0,254
Lw	26,55
b	26,55
Le	3,0
Profundidade	28,5
do poço	20,5
Le/rw	23,6
rw	0,127
A	2,1
В	0,9
С	1,7

t(s)	y(m)
0	0,72
1	0,668
2	0,117
3	0,014
7	0,007
8	0,007
9	0,004
10	0,004

BOWER & RICE AQUÍFERO CONFINADO (piezômetro Pz-2) Considerado parcialmente penetrante

Y0=0,326 Yt=0,166 t=19

Parâmetro	(m)
	` ′
NE	2,67
2rw	0,254
Lw	5
b	10
Le	3
Profundidade	50
do poço	30
Le/rw	23,6
rw	0,127
A	2,1
В	0,4
C	1,6

T1(TTO)
y(m)
0,991
0,405
0,325
0,318
0,296
0,281
0,269
0,263
0,253
0,242
0,237
0,231
0,22
0,214
0,208
0,201
0,195
0,191
0,176
0,153

Programa de Pós-Graduação em Geociências - UFPE	Tese de doutorado
Análise Integrada dos Efeitos da Expansão Urbana nas A	Águas Subterrâneas como Suporte a Gestão dos Recursos
Hídricos da Zona Norte de Natal - RN	

ANEXO D

Cadastro dos poços inseridos na área de estudo

N°	Poço	UTM-N (m)	UTM-E (m)	Captação	Prof.Inf (m)	Prof. Reg.	Vazão (m3/dia)	NE (m)	ND (m)	CE (µS/cm)	pН	Cloreto (mg/L)	Nitrato (mg/L-N)	Amônia (mg/L)
1 2	EXT0602 EXT0725	9366578 9367886	251208 248135	Tubular Escavado	35	50	0,8	9,36 29,76	22	143,4 188,5	5,37 6,01	19,19 57,58	8,23 1,4	0,06
3	EXT0950	9367032	252796	Tubular	12		0,5	1,5	2	168,4	6,11	39,98	0,39	1,37
4	EXT1307	9366976	247087	Tubular				2,5						
5	IGA0216	9361388	250820	Escavado	2		1,5	0,15		454	4,28	72,7	14,6	0,18
6	IGA0225	9361286	250909	Escavado	2,3		1,5	0,35		596	4,8	100,97	16,5	13,85
7	IGA0227	9361410	250793	Escavado	3,7		2	0,05	1,8	812	3,9	126,21	44,44	1,78
8	IGA0255	9360960	250975	Escavado	3		0,8	0,13		189,9	5,75	40,39	0,21	0,84
9	IGA0275	9361412	248934	Tubular	50		20		28	450	5,18	77,75	17,1	0,45
10	IGA0276	9361356	249582	Tubular	90		16		17	453	4,83	83,8	18,8	0,19
11	IGA0645	9361574	249387	Tubular	60		8			1103	3,76	174,77	53,32	1,7
12	IGA0646	9361880	248955	Tubular			5			678	4,5	119,6	29,21	0,46
13	IGA0647	9361928	248448	Tubular			6			293	7,3	74,7	6,58	0,1
14	IGA0961	9362168	249346	Escavado	20		2			775	5,31	151,75	11,9	0,31
15	IGA0962	9362126	249292	Escavado	35									
16	IGA0963	9362362	249176	Escavado										
17	IGA0964	9362172	249686	Tubular	63		3		35	297	4,77	54,98	10,7	0,31
18	IGA0970	9361894	250465	Tubular										
19	IGA0971	9361828	250124	Escavado										
20	IGA0972	9362020	249482	Escavado	35									
21	IGA1067	9361400	250075	Escavado						501	5,44	82,92	15,58	0,35
22	IGA1068	9361446	250126	Escavado	33		1		22	361	4,73	55,98	14,66	0,57
23	IGA1070	9361700	249348	Escavado	35		0,8	30		1033	3,77	159,95	55,5	7,46
24	IGA1155	9361446	250126	Escavado	33		1			346	5,14	62,46	11,93	0,28
25	IGA1156	9361684	249375	Escavado	35					488	4,59	67,7	20,27	0,84
26	IGA1157	9361700	249348	Escavado	35		0,8	30		1023	3,97	171,88	51,5	1,93
27	IGA1158	9361736	249074	Escavado	32									
28	IGA1166	9361980	248174	Escavado	40									
29	IGA1216	9361758	249277	Tubular	60		4		35	591	4,35	115,96	19,57	0,26
30	IGA1217	9362122	249052	Escavado						392	6,34	64,03	6,65	0,09
31	IGA1218	9361890	248970	Tubular			8		25	656	4,5	115,96	27,46	1,37
32	IGA1219	9361974	249009	Escavado	35									
33	IGA1220	9361746	250178	Tubular	50		1,5		20	356	6,04	48,98	9,06	0,07
34	IGA1427	9361890	248422	Tubular	60		4,2	22,3	24,22	212	4,34	49,39	6,91	0,11
35	IGA1496	9361944	250323	Tubular	60		3,7	37,865	38,38	406	4,02	66,65	85,84	0,25
36	LAZ0149	9364956	248985	Tubular	40		16	0		435	4,11	78,76	18,8	0,34
37	LAZ0150	9365344	249032	Tubular	42		2,2	0	18	292	4,48	60,58	14,7	0
38	LAZ0151	9365420	249314	Tubular	54		6	12	13	154,7	5,28	26,24	7,4	0,1
39	LAZ0152	9366348	249683	Tubular	39		3	21	23					
40	LAZ0153	9366726	249709	Tubular	16		3	4,5	6					
41	LAZ0154	9365610	250579	Tubular	65		7	0		127,6	6,05	28,27	4,16	0,69
42	LAZ0157	9367070	251023	Tubular	25		5	0		397	4,24	55,53	22,7	0,42
43	LAZ0158	9367580	250994	Escavado	0,85		4			336	5,1	45,44	10,7	0,31
44	LAZ0159	9367638	250835	Tubular	47		6	0		172	6,33	35,34	0,9	0,5
45	LAZ0160	9367521	250923	Tubular	36			10		316	7,34	40,39	2,1	0,28
46	LAZ0161	9367660	250929	Tubular	16		1	4	5					
47 48	LAZ0162 LAZ0163	9368048 9368066	250898 250676	Escavado Tubular	2,66 48		0,8 5	0		268 167,5	5,79 5,7	50,48 32,31	10,7 1,7	1,54 0,56
49	LAZ0164	9368082	250662	Tubular	17		1,7	0		176,8	6,37	34,33	0,8	1,98
50	LAZ0165	9368300	250143	Tubular	18		3	0		143,1	5,18	35,34	3,4	0,33
51	LAZ0166	9365362	248707	Tubular	42		3	0		266	4,62	43,41	11,4	0,33

N°	Poço	UTM-N (m)	UTM-E (m)	Captação	Prof.Inf (m)	Prof. Reg.	Vazão (m3/dia)	NE (m)	ND (m)	CE (µS/cm)	pН	Cloreto (mg/L)	Nitrato (mg/L-N)	Amônia (mg/L)
52	LAZ0167	9367680	248098	Tubular	18		5			196,9	8,52	19,41	0,61	0
53	LAZ0168	9368130	248723	Tubular	4		3			111,6	6,11	23,09	0,49	0,42
54	LAZ0169	9367956	248800	Tubular			2			1858,8	5,51	32,53	7,44	0
55	LAZ0170	9367900	248931	Escavado	6		1	3	4	103,3	6,34	17,84	0,38	0,75
56	LAZ0171	9367952	248907	Escavado	16		1,2			172,6	6,11	24,14	0,52	0,07
57	LAZ0172	9367860	248941	Escavado				0						
58	LAZ0173	9367600	249087	Escavado	18		1,5	12	13					
59	LAZ0174	9367668	249192	Escavado	14,7		1			216	5,11	35,68	0,76	0,3
60	LAZ0175	9367632	249127	Escavado	13		1	6	7					
61	LAZ0176	9367550	249289	Escavado	20		0,8			227	5,92	41,46	12,21	0
62	LAZ0177	9367568	252052	Escavado	4		0,8	1,8		173,5	6,57	30,29	0,44	1,27
63	LAZ0178	9367318	251984	Escavado										
64	LAZ0179	9366958	252352	Tubular			2	0						
65	LAZ0189	9364992	249408	Tubular			2	0		385	4,45	68,66	12,8	0,28
66	LAZ0190	9365610	249515	Escavado	15		5	0		681	7,09	97,94	0,2	15,25
67	LAZ0274	9366792	247620	Tubular	72		10	0		76	5,16	28,27	1,4	0,43
68	LAZ0587	9366428	248605	Tubular		66		28,28	38					
69	LAZ0588	9366464	248206	Tubular		65		23,88	34	355	7,37	93,47	4	0,76
70	LAZ0589	9367696	249002	Tubular		56		14,23	25					
71	LAZ0590	9367462	249243	Tubular		58		18	31	184,2	4,85	35,19	10,25	0,4
72	LAZ0593	9367242	249613	Tubular		58		14,69	20					
73	LAZ0608	9366332	249565	Tubular		60		27	40					
74	LAZ0609	9366450	248208	Tubular		66		20,85	36	416	7,18	91,88	0	0,89
75	LAZ0610	9365772	250649	Tubular		66		20,8	36					
76	LAZ0611	9365770	250658	Tubular		60		20	35	261	5,38	41,4	13,38	0,2
77	LAZ0612	9366428	250967	Tubular		66		22,58	36					
78	LAZ0613	9366436	250966	Tubular		66		22,58	36					
79	LAZ0614	9366085	250798	Tubular		72		30,7	46	126,9	5,14	20,39	7,08	0,04
80	LAZ0615	9366756	251057	Tubular		60		15,71	32	404	4,7	67,87	24,23	0,09
81	LAZ0616	9366350	250471	Tubular		62,86		28,64	37	361	4,52	60,58	15,54	0,33
82	LAZ0617	9366608	250648	Tubular		64,8		26	39					
83	LAZ0618	9366670	250886	Tubular		57	28,78	13,65	28	444	4,44	61,59	21,82	0,34
84	LAZ0619	9366850	250656	Tubular				14,2	26,3	374	6,36	54,73	21,42	0,09
85	LAZ0620	9366500	250403	Tubular		57,8		15,19	23	304	5,14	46,44	14,42	0,28
86	LAZ0621	9367062	250533	Tubular		55		13	36	1556	7,92	255,42	26,49	0,46
87	LAZ0625	9365846	248948	Tubular		57,5		19,233	36					
88	LAZ0626	9366294	249569	Tubular		55		25,27	28	214,1	6,5	30,47	7,19	0,42
89	LAZ0631	9367200	252585	Tubular	22		2	10	11	225	5,64	46,71	2,51	0,35
90	LAZ0632	9366956	252592	Escavado	8		0,9	1,7	6	682	4,66	289,91	2,66	0,26
91	LAZ0633	9366962	252566	Tubular	12		1		8	196,6	4,8	35,98	9,12	0,09
92	LAZ0634	9366968	252574	Escavado						449	6,69	57,2	1,23	0
93	LAZ0636	9367200	252576	Escavado	10		1	4	5					
94	LAZ0637	9367198	252578	Tubular	16		1		14	292	6,94	51,58	1,4	0,26
95	LAZ0650	9367310	252506	Tubular	50		0,5		38	162,5	5,22	19,19	7,9	0,31
96	LAZ0651	9367356	252509	Escavado	2,8		1	2	2,5	168,7	7,4	19,94	0,42	0,58
97	LAZ0652	9367272	252451	Escavado										
98	LAZ0658	9367242	252448	Escavado	2,73		2,42	0		188,9	6,78	18,69	1,53	0,46
99	LAZ0659	9367286	252484	Tubular	15		1,5		12	183,6	6,14	48,38	1,53	0,61
100	LAZ0660	9367306	252454	Escavado	15		1		10	227	6,41	40,69	2,38	0,61

N°	Poço	UTM-N (m)	UTM-E (m)	Captação	Prof.Inf (m)	Prof. Reg.	Vazão (m3/dia)	NE (m)	ND (m)	CE (μS/cm)	pН	Cloreto (mg/L)	Nitrato (mg/L-N)	Amônia (mg/L)
101	LAZ0661	9367240	252379	Escavado	3,5		0,2	1,9						
102	LAZ0724	9367776	248043	Tubular	70		20	29						
103	LAZ0750	9367326	252325	Tubular	12		2	1,26		616	5,42	208,93	2,38	7,53
104	LAZ0751	9367264	252293	Tubular	12		2	0						
105	LAZ0752	9367238	252329	Escavado	12		2		8	317	5,12	59,38	17,05	0,24
106	LAZ0939	9367410	252078	Escavado				0						
107	LAZ0940	9367282	252265	Escavado	30		2	0,7	0,8	138,5	6,78	14,17	0	0,56
108	LAZ0941	9367352	252255	Escavado	13		1	1,1		105	5,47	27,81	0,59	0,25
109	LAZ0942	9367562	252276	Escavado	3					117,2	5,44	26,24	0	0,6
110	LAZ0943	9367556	252248	Escavado	12		1			98,5	6,82	14,69	0,23	0
111	LAZ0944	9367568	252248	Escavado	6		1	2,13		71,8	5,73	13,99	1,32	0,25
112	LAZ0945	9367580	252241	Tubular	47		1,8	2,13		101,6	6,06	22,56	0,48	0,35
113	LAZ0946	9367624	252162	Escavado				0		107,6	5,75	22,04	0,47	0,33
114	LAZ0947	9367640	252176	Escavado	3			2,47		139,7	6,15	26,76	0,57	0,19
115	LAZ0948	9367628	252188	Tubular	12		1		10	104,1	5,6	22,99	0,37	0,25
116	LAZ0949	9367734	252179	Tubular	60		0,3	0		100,9	5,26	21,99	2,02	0,22
117	LAZ1275	9367242	248650	Escavado				0						
118	LAZ1322	9367154	252496	Tubular	16		30							
119	LAZ1418	9367154	252496	Tubular	16		30			280	6,78	48,28	3,92	0,88
120	NSA0256	9363390	246711	Tubular	76		16	0	20	112,9	5,59	24,23	1,5	0,69
121	NSA0258	9363354	246840	Tubular	22		8	11	16	161,9	5,04	33,06	4,49	0
122	NSA0259	9364364	246505	Tubular	72		8	0	25	110,2	5,25	24,23	4,6	0
123	NSA0260	9364426	246708	Tubular				0						
124	NSA0261	9364748	246464	Tubular	82			0	25	159,5	6,26	25,24	0,7	0,71
125	NSA0262	9365286	246428	Tubular	79		21	22	23,5	127,1	4,89	35,34	2,6	0
126	NSA0263	9365408	246488	Tubular	66		20		25	127	4,94	40,39	3,17	0
127	NSA0264	9365838	246615	Tubular	60		40	0	25	95,7	5,13	27,26	1,3	0
128	NSA0265	9365838	246612	Tubular	62		30		26	254	4,92	59,57	3,2	0
129	NSA0266	9365714	246335	Tubular	65		30		26	150,6	6,13	35,33	1,5	0
130	NSA0267	9365540	246387	Tubular	70		30	0	26	150,4	4,93	52,5	2,3	0
131	NSA0268	9365532	246474	Tubular	70		40		25	106,6	5,49	30,99	0,7	0
132	NSA0269	9365594	246644	Tubular	90		3			86,7	5,06	30,29	1,3	0
133	NSA0270	9366108	246615	Tubular	79		18		22	88	5,96	26,25	1,2	0
134	NSA0271	9365708	246618	Tubular	72		30	0	25	153,1	7,01	23,22	0,8	0,74
135	NSA0272	9364328	247075	Tubular	66		4		30	80,8	4,96	23,22	1,7	0,19
136	NSA0273	9365106	246568	Tubular	20		3			703	5,14	168,99	12,06	0
137	NSA0582	9363750	249420	Tubular		75		15,28	28	388	5,71	58,56	25,56	0,54
138	NSA0591	9365152	247344	Tubular		53		12,38	31	1018	5,11	24,23	3,57	0,22
139	NSA0592	9365881	247647	Tubular		58,5		19,58	35	80,8	5,31	28,27	1,84	0,17
140	NSA0594	9365388	247545	Tubular		60		15,72	34	163	4,94	36,35	6,38	0,32
141	NSA0595	9362696	247266	Tubular		78		33,61	40					
142	NSA0596	9365056	247695	Tubular		56,66		16,82	28	218	4,57	44,43	10,35	0,32
143	NSA0597	9366022	247951	Tubular		60		23	38	71,2	5,6	21,2	1,67	0,23
144	NSA0598	9362980	247442	Tubular		78		31	41					
145	NSA0599	9362378	247295	Tubular		82		36,2	42					
146	NSA0601	9362726	248052	Tubular		79		29,2	38					
147	NSA0606	9365574	246916	Tubular		59		21,56	35	65	5,23	19,18	1,84	0,22
148	NSA0638	9362656	246817	Tubular	75		10	12	16					
149	NSA0639	9362852	246807	Escavado	35			0			<u> </u>			

N°	Poço	UTM-N (m)	UTM-E (m)	Captação	Prof.Inf (m)	Prof. Reg.	Vazão (m3/dia)	NE (m)	ND (m)	CE (µS/cm)	pН	Cloreto (mg/L)	Nitrato (mg/L-N)	Amônia (mg/L)
150	NSA0640	9362888	246810	Escavado	36		2		30	425	5,46	83,57	20,62	0,25
151	NSA0641	9362966	246794	Escavado	30			0						
152	NSA0642	9362950	246695	Escavado	30			0						
153	NSA0643	9362984	246898	Escavado	48									
154	NSA0644	9363134	246938	Escavado	20		1		16	211	4,8	34,09	12,51	0,25
155	NSA0648	9362196	247638	Tubular	70		3		42	470	3,92	43,98	19,1	0,23
156	NSA0655	9362892	246970	Escavado	38		8	12	32	336	4,42	56,98	12,87	0,07
157	NSA0735	9363220	246719	Escavado	35		1	32		274	7,08	64,88	6,48	0,45
158	NSA0736	9363260	246669	Escavado	22		1	17		148,5	5,87	34,09	1,85	0,23
159	NSA0737	9363282	246714	Escavado	27		1	20		80,4	5,28	15,39	6,4	0,45
160	NSA0738	9363366	246631	Escavado	26		0,8		25	66,8	5,7	15,39	1,85	0,23
161	NSA0742	9363334	246537	Escavado	22			0						
162	NSA0784	9363238	249305	Tubular	37		4		28	1118	4,07	207,93	34,92	0,48
163	NSA0790	9363034	249113	Escavado	27		0,02	10,34		432	4,88	68,97	4,42	0,04
164	NSA0865	9362166	247825	Escavado	40			26,76		482	5,97	82,92	17,69	0,69
165	NSA0866	9362140	247869	Escavado				0						
166	NSA0877	9364054	248405	Escavado	25			13,5						
167	NSA0878	9364096	248421	Escavado	31		1,4	19		232	4,47	45,98	9,76	0
168	NSA0879	9364138	248170	Escavado	35		3	10,3	15	159,3	5,89	36,98	1,85	0,32
169	NSA0880	9364018	248220	Escavado	50		20	17	16	355	4,33	76,97	12,9	0,36
170	NSA0881	9364054	248250	Escavado	36		5	11		307	4,32	55,53	10,79	0,68
171	NSA0882	9363864	248189	Escavado	35			0						
172	NSA0883	9363418	247468	Escavado	54									
173	NSA0884	9363410	247339	Tubular	60			0						
174	NSA0898	9363048	246670	Escavado	26		2	24		540	4,49	167,95	12,99	0,31
175	NSA0899	9362998	246677	Escavado	30			0						
176	NSA0900	9363372	247099	Escavado										
177	NSA1016	9364878	247055	Tubular						172,5	6,64	24,86	5,2	0,06
178	NSA1017	9365054	246993	Tubular	47		30		29	95,9	4,83	23,99	2,65	0
179	NSA1018	9365124	247383	Tubular	52		3		29	106,5	4,74	21,99	5,17	0
180	NSA1019	9365050	247653	Tubular	50			0						
181	NSA1020	9364806	247480	Escavado	15		3	8,9	12	389	4,5	49,98	26,23	0,68
182	NSA1021	9364648	247325	Escavado	15		0,5							
183	NSA1022	9364626	247359	Escavado	15			8,32						
184	NSA1023	9364820	247342	Tubular	50		4,2		29	77,5	5,27	16,99	0,96	0
185	NSA1024	9364744	247298	Escavado				10,31						
186	NSA1025	9364694	247198	Tubular	52		8	11,2						
187	NSA1026	9364656	247237	Escavado				10,21						
188	NSA1027	9364324	247408	Escavado				0						
189	NSA1028	9364342	247376	Escavado										
190	NSA1089	9364134	247690	Escavado	30			0						
191	NSA1090	9364050	247962	Escavado				0						
192	NSA1091	9364020	247966	Escavado				0						
193	NSA1092	9364132	247839	Escavado	28									
194	NSA1093	9364034	247778	Escavado						287	4,9	54,06	7,85	0,22
195	NSA1116	9363706	247289	Escavado	28			0						
196	NSA1117	9363872	247330	Escavado	50			0		322	5,81	74,97	3,66	0,87
197	NSA1118	9363926	247200	Escavado	12			0						
198	NSA1119	9364230	247411	Escavado	17		1,5		15	379	5,52	103,96	1,91	0,16

N°	Poço	UTM-N (m)	UTM-E (m)	Captação	Prof.Inf (m)	Prof. Reg.	Vazão (m3/dia)	NE (m)	ND (m)	CE (µS/cm)	pН	Cloreto (mg/L)	Nitrato (mg/L-N)	Amônia (mg/L)
199	NSA1120	9364176	247511	Escavado				0						
200	NSA1121	9363844	247737	Escavado	33		1	16	25	434	4,59	95,97	13,51	0,85
201	NSA1122	9364126	248082	Escavado	25		5	12,37	16	805	4,42	147,95	46,8	9,2
202	NSA1123	9364270	247862	Tubular	44		24		30	302	4,39	55,98	13,27	0,37
203	NSA1124	9364410	247527	Escavado	20			0						
204	NSA1125	9364302	247511	Tubular	50		5	27		134,4	4,32	24,99	4,37	0,84
205	NSA1126	9364387	247670	Escavado				0						
206	NSA1163	9362834	249085	Tubular	50		2		30	290	4,53	49,98	11,23	0,03
207	NSA1185	9362970	246630	Escavado				0						
208	NSA1205	9363138	246597	Escavado	25		1	16,5		88,7	5,44	17,99	1,17	0,06
209	NSA1206	9364056	249193	Tubular	47		3		27	330	4,2	58,98	13,62	0,2
210	NSA1207	9366180	247451	Tubular	16		5	12	16					
211	NSA1208	9364711	248603	Escavado	50			8		337	6,15	64,97	6,41	0,42
212	NSA1209	9366314	247327	Tubular	60		1,5	35		76,4	4,53	21,99	0,81	0,04
213	NSA1210	9366258	247267	Tubular	56		1,8		27	59,3	4,78	17,99	0,44	0
214	NSA1211	9365460	247592	Tubular	50		2		30	128,4	4,89	31,99	1,45	0,02
215	NSA1212	9365726	247121	Tubular				0						
216	NSA1214	9363012	249162	Escavado	24			0						
217	NSA1222	9365475	247568	Tubular	50		8	11,5	18	137	4,58	35,68	1,02	0
218	NSA1256	9363420	249218	Escavado	22		0,04	13,32		475	4,4	99,66	11,8	0,32
219	NSA1257	9362914	249221	Tubular	47		5	27		384	6,85	86,97	0	0,43
220	NSA1258	9362832	248973	Tubular	18		3	11	16					
221	NSA1259	9362740	248641	Escavado				0						
222	NSA1260	9362680	248523	Escavado				0						
223	NSA1261	9363024	249048	Escavado				9,75		127,4	5,15	27,29	0,4	0,33
224	NSA1262	9362102	246536	Escavado			8			540	4,09	92,37	4,82	0,3
225	NSA1263	9362866	248820	Escavado				0						
226	NSA1264	9363252	249070	Escavado				0						
227	NSA1265	9363232	248962	Escavado	30			8,68		192,6	5,29	35,68	8,33	0,45
228	NSA1266	9363256	248963	Escavado	23			1,15		237	6,71	38,84	0	2,88
229	NSA1267	9363192	248727	Escavado	29			0						
230	NSA1268	9363156	248705	Escavado						473	4,69	120,91	0,92	0,33
231	NSA1269	9363148	248668	Tubular	35		5		35	444	4,85	72,97	19,74	3,4
232	NSA1270	9363038	248473	Tubular				0						
233	NSA1271	9363080	248487	Tubular	64		8		20	461	4,01	66,97	21,74	0,09
234	NSA1272	9362838	248562	Escavado	36					611	5,38	125,96	24,47	0,73
235	NSA1273	9363420	249050	Escavado				0						
236	NSA1274	9363416	248979	Escavado	30		3		17	332	3,94	54,98	13,56	0,07
237	NSA1276	9363644	249111	Escavado	33		5	13,15	12,55	456	5,33	83,97	16,38	0,12
238	NSA1277	9363520	248984	Escavado	20		3	10,74	15	548	4,8	139,96	7,29	0,44
239	NSA1278	9363342	248712	Escavado				0						
240	NSA1279	9363408	248660	Escavado				0						
241	NSA1280	9363306	248597	Escavado	22			8,24		409	4,4	101,29	5,05	2,53
242	NSA1281	9363350	248620	Escavado				0						
243	NSA1282	9363360	248534	Escavado	22			0						
244	NSA1283	9363362	247613	Escavado	18			10,18		299	4,29	24,99	5,64	0,36
245	NSA1284	9363478	248750	Escavado	19		2	9,2	12	392	5,24	64,97	9,59	0,2
246	NSA1285	9363500	248782	Tubular	45		2,5		28	722	4,07	113,96	39,56	2,46
247	NSA1286	9365742	247213	Tubular	50		3		27	111,4	6,14	22,99	3,73	0

N°	Poço	UTM-N (m)	UTM-E (m)	Captação	Prof.Inf (m)	Prof. Reg.	Vazão (m3/dia)	NE (m)	ND (m)	CE (µS/cm)	pН	Cloreto (mg/L)	Nitrato (mg/L-N)	Amônia (mg/L)
248	NSA1287	9365662	247169	Escavado	50		1	22,83		50,2	5,14	13,99	0,86	0
249	NSA1288	9363312	248611	Escavado	23			0						
250	NSA1289	9363204	248166	Escavado	22			0						
251	NSA1290	9365456	246912	Escavado	28		1							
252	NSA1291	9363276	248200	Escavado	28			11,54						
253	NSA1292	9363362	248320	Escavado				0						
254	NSA1293	9363425	248400	Escavado	37			10,4		290	5,24	76,26	0,21	0,17
255	NSA1294	9363560	248739	Escavado	38			0						
256	NSA1295	9363568	248895	Escavado	30			0						
257	NSA1296	9363634	248667	Escavado				0						
258	NSA1297	9363480	248298	Escavado										
259	NSA1306	9366676	247241	Tubular				19,2						
260	NSA1357	9363344	246687	Tubular	85		10	15	18	109,3	5,07	30,49	3,18	0,4
261	NSA1358	9363286	246931	Tubular	85		10	15	18	145,2	4,64	40,25	4,69	0,08
262	NSA1374	9363310	246812	Tubular	45,87		6	21,9	26	392	6,64	67,08	0	0,44
263	NSA1428	9364758	246424	Tubular						158,3	6,17	23,78	0,44	0,07
264	NSA1429	9365052	246505	Tubular	45		6	20,93	30	587	4,64	175,63	9,42	0,19
265	NSA1431	9364176	246490	Tubular	82		58,2	20,66	24,01	158,4	5,44	48,18	2,65	0,07
266	NSA1432	9364232	246929	Tubular	33,07		8	17,34	20	116,4	5,59	30,49	1,88	0,26
267	NSA1434	9364062	247004	Tubular	74		42	15,35	25,37	175,9	4,7	39,64	7,43	0,22
268	NSA1435	9363764	246992	Tubular	74		45	23,4	29,18	163,7	5,72	39,03	4,24	0,26
269	NSA1436	9363878	247146	Tubular	75		79,5	17,62	22,65	158,8	6,04	39,03	1,57	0,08
270	NSA1437	9363442	247112	Tubular			63	24,9	32,07	162,1	6,2	29,88	1,54	0,08
271	NSA1438	9363546	246708	Tubular	78		33,2	20,25	40,32	106,5	6,09	28,66	18,65	0,26
272	NSA1439	9363724	246542	Tubular	75		49,5	24,32	28,74	115,8	5,58	32,93	15,59	0,09
273	NSA1440	9363980	246764	Tubular	74		17,8	18,65	24,97	140,5	4,55	30,49	4,95	0,28
274	NSA1441	9364288	247041	Tubular	68					84,7	4,63	23,17	3,11	0,11
275	PAJ0155	9366522	251124	Tubular	33		1,5	18	19	485	5,18	64,03	24,26	0,16
276	PAJ0156	9367030	251201	Tubular	25		3	0		399	4,8	55,53	22,2	0,43
277	PAJ0180	9366553	252466	Tubular	36		4			309,5	5,16	50,26	16,55	0,11
278	PAJ0181	9366804	252585	Tubular	40		0,7	0		318	5,69	51,49	14,4	0,56
279	PAJ0182	9366805	252586	Escavado										
280	PAJ0183	9366838	252574	Tubular			3	0	3,36	318	5,69	51,49	17,29	0,56
281	PAJ0184	9366946	252602	Escavado	4,5		1,5	1	2					
282	PAJ0186	9364510	252372	Escavado	56									
283	PAJ0187	9364542	252415	Escavado	50					258	5,26	47,14	6,29	0,03
284	PAJ0188	9364636	252424	Tubular	56		7	0		218	5,25	39,39	4,8	0,27
285	PAJ0191	9365592	250789	Tubular	32		6							
286	PAJ0196	9364574	254101	Tubular	54		3	0,7		299	5,29	56,54	4,3	0,36
287	PAJ0197	9364742	254179	Escavado	4		1	0,87		329	5,75	78,76	3,5	0,72
288	PAJ0198	9364694	254214	Escavado	4		2	1		260	5,63	50,48	0,03	1,19
289	PAJ0199	9364698	254126	Escavado				0,55		319	7,11	46,44	0,2	2,49
290	PAJ0200	9364780	253962	Escavado										
291	PAJ0201	9364820	253984	Tubular	42		4			365	4,3	64,62	11,4	1,4
292	PAJ0202	9364830	254085	Escavado			1,7							
293	PAJ0203	9365068	253844	Tubular	50		2			176,2	5,12	29,28	8,9	0,83
294	PAJ0204	9364960	253887	Tubular	14		2	0		254	5,24	24,23	12,4	0,29
295	PAJ0205	9364766	253593	Tubular	55		10	0		147,7	5,19	21,2	3,1	0,2
296	PAJ0603	9366580	251203	Tubular		50		9,36	22					

N°	Poço	UTM-N (m)	UTM-E (m)	Captação	Prof.Inf (m)	Prof. Reg.	Vazão (m3/dia)	NE (m)	ND (m)	CE (µS/cm)	pН	Cloreto (mg/L)	Nitrato (mg/L-N)	Amônia (mg/L)
297	PAJ0604	9366584	251208	Tubular		50		9,36	22					
298	PAJ0607	9365640	251257	Tubular		64		5,78	17,89					
299	PAJ0624	9365160	253466	Tubular		72		13,08	38					
300	PAJ0627	9365140	252574	Tubular		87,8		27,42	35	212	5,47	43,79	8,17	0,06
301	PAJ0628	9365214	251922	Tubular		94		38,25	57	157,5	5,69	35,34	4,56	0,2
302	PAJ0629	9365839	252630	Tubular		85		25,63	47	240	5,6	37,36	8,89	0,31
303	PAJ0630	9365668	252679	Tubular		83,25		27,53	49	287	5,78	46,19	12,34	0,09
304	PAJ0635	9367026	252614	Tubular	12		1		8	279	5,91	59,98	13,06	0,26
305	PAJ0951	9365778	253205	Escavado										
306	PAJ0952	9367118	252878	Tubular	12		2		7	247	5,22	35,98	16,35	0,32
307	PAJ0953	9366910	252770	Tubular	16		2		8	244	6,02	43,98	8,02	0,22
308	PAJ0954	9366968	252775	Tubular	12		2	0		286	6,21	43,98	11,6	0,25
309	PAJ1319	9364586	254245	Escavado	4		0,5	1,12		257	6,69	27,26	0,08	3,16
310	PAJ1320	9365160	253466	Tubular		72		13,08	38	123,5	5,74	24,23	0,98	0,21
311	PAJ1323	9367030	252568	Tubular	23		0,9	3		391	4,7	55,63	24,18	0
312	PAJ1348	9365648	252166	Tubular	80		13,89	19,46	<u> </u>	99	5,57	28,05	1,25	0,06
313	PAJ1360	9364106	253010	Tubular	50		2			130,3	5,45	36,12	1,72	0,06
314	PAJ1361	9364032	252317	Tubular	48		3	25,94	27,46	152,7	5,24	42,69	1,81	0,06
315	PAJ1364	9365638	253317	Tubular	65			20,09	20,54	229	5,62	40,26	12,01	1,98
316	PAJ1365	9365876	253204	Tubular	36		2	21,26	24,42	336	5,44	62,81	19,85	0,26
317	PAJ1366	9365968	253272	Tubular	36		1,5	10,67	12	386	6,61	64,64	21,08	0,08
318	PAJ1367	9364460	252909	Tubular	4,83		1	1,66	3,13	154,4	5,61	34,76	5,19	0,21
319	PAJ1368	9364456	252887	Tubular	12,26		2	1,58	2,59	193,1	5,36	38,42	10,58	0,12
320	PAJ1369	9365624	253219	Escavado	38		3	11,6	12	226	4,72	41,47	12,88	0,11
321	PAJ1371	9365034	253469	Tubular	40		4	12	16	130,9	5,13	32,84	3,56	0,13
322	PAJ1372	9364088	252842	Tubular	60		6	15	16	203	4,92	50,35	7,14	0,06
323	PAJ1373	9364032	252815	Tubular	32		2	18	20	202	4,85	49,26	6,75	0,06
324	PAJ1379	9366674	252636	Tubular	12		2,06	1,62		351	5,18	63,42	18,38	0,61
325	PAJ1406	9366572	252483	Tubular	22		1,5	8,5		564	4,72	71,37	28,45	0,26
326	PAJ1407	9366566	252539	Tubular	35		120			523	4,88	74,52	22,8	1,11
327	PAJ1426	9365544	253502	Tubular	27		23	20,5		227	5,63	45,13	13,7	0,09
328	PAJ1433	9365258	253556	Escavado	18		1	12,45		217	4,99	43,3	11,67	0,09
329	PAJ1444	9366608	252803	Tubular	12		3	1,82	3,33	363	5,61	63,42	20,82	0,13
330	PAJ1475	9364912	253710	Escavado	9		1	8,34	8,8	236	5,68	49,26	8,62	0,35
331	PAJ1476	9364864	253822	Escavado	5,83			5,53		257	6,18	38,31	15,12	0,49
332	PAJ1477	9364828	253767	Escavado	9,1			8,76	<u> </u>	618	6,37	90,86	2,85	0,82
333	PAJ1506	9365170	253706	Escavado	12,84				<u> </u>					
334	POT0146	9364276	250514	Tubular	65		5	0	<u> </u>	408	6,91	56,54	21,9	2,25
335	POT0147	9364176	250491	Tubular	69				<u> </u>					
336	POT0148	9363726	250501	Tubular	72			14	32	383	5,04	67,65	19,2	0
337	POT0185	9364380	251340	Tubular	38		3	0	<u> </u>	218	4,75	40,39	5,5	0,45
338	POT0192	9364827	250974	Tubular	58		2,3		<u> </u>	236,4	6,17	43,5	5,45	0,38
339	POT0193	9363858	251550	Tubular	60		7			273	6,26	55,11	8,57	8,57
340	POT0194	9363486	251812	Tubular			5	0		284	5,16	50,48	7,9	0,27
341	POT0252	9362790	252111	Escavado	0,78		0,6	-0,06		225	4,42	51,49	6,98	1,51
342	POT0253	9362812	252328	Fonte natural			2			475	4,26	90,87	0,18	1,83
343	POT0254	9362815	252330	Escavado	0,73		0,7	0		131,7	4,97	36,35	0,18	0,8
344	POT0584	9363700	250101	Tubular		69		10,54	36	187,5	4,53	29,28	8,92	0,32
345	POT0585	9362996	249992	Tubular		66		23	42					

N°	Poço	UTM-N (m)	UTM-E (m)	Captação	Prof.Inf (m)	Prof. Reg.	Vazão (m3/dia)	NE (m)	ND (m)	CE (µS/cm)	pН	Cloreto (mg/L)	Nitrato (mg/L-N)	Amônia (mg/L)
346	POT0586	9362458	250307	Tubular		67		22	43	440	4,75	71,69	25,19	0,92
347	POT0600	9363140	251318	Tubular		90		29,65	52	245	4,83	41,99	11,68	0,19
348	POT0605	9363095	252202	Tubular		99,55		35,54	56	396,5	5,5	82,13	8,06	0,36
349	POT0649	9363280	252506	Escavado	2,7		0,03	1,5		234	5,21	23,99	14,68	0,11
350	POT0936	9362692	250569	Tubular	80		0,15		35	528	4,22	81,97	33,87	0,23
351	POT0960	9362146	250209	Escavado	54		12		35	455	4,11	80,28	17,2	0,27
352	POT0973	9362858	249644	Escavado										
353	POT1346	9362926	250206	Tubular	72		14,07	23,68		527	4,12	119,52	28,2	0,1
354	POT1349	9363514	249476	Tubular	80		50			272	4,5	46,71	15,03	0,2
355	POT1350	9362108	250175	Tubular	70		1			446	4,04	85,37	22,78	2,12
356	POT1376	9363560	252141	Tubular			1,8			229	4,39	42,08	13,21	0,13
357	POT1380	9362632	252976	Fonte natural	0		0,3			256	6,25	56,92	0	0,2
358	POT1381	9362688	250825	Tubular	51		2	24,04	26,43	225	6,02	32,84	7,51	0,06
359	POT1382	9362556	252820	Escavado	1,54			0,08		353	5,59	88,67	0,34	1,47
360	POT1383	9362458	250494	Tubular			2,8	22,83		1951	3,68	656,8	18	2,07
361	POT1398	9362596	250522	Tubular			1,2			577	4,5	113,84	34,43	0,24
362	POT1405	9364794	250945	Tubular	69		50			135,6	5,78	41,47	0,73	0,06
363	POT1448	9362468	250464	Tubular	45		3,3	25,8		934	4,03	269,29	20,91	1,28
364	POT1449	9362376	250544	Escavado	45			23,02		273	6,53	49,81	0	5,97
365	POT1470	9363158	249338	Tubular	75		5,5	13,69	24,3	47,9	3,94	88,12	1,98	
366	POT1495	9362520	250636	Tubular	60		4	27,892	32,55	439	4,09	73,47	22,82	0,19
367	POT1504	9362590	250615	Tubular	75			27,2	47,7					
368	POT1505	9363498	249896	Tubular	120									
369	RED0206	9363914	253629	Tubular	18		8			226	5,51	31,49	9,9	0,7
370	RED0207	9363380	253623	Tubular							,	,	,	
371	RED0208	9363381	253624	Tubular										
372	RED0209	9363408	253567	Escavado	17		2	17,25	18	39,3	6,06	93,42	0	0,65
373	RED0210	9363240	253548	Escavado	26		1	6	7	273	5,06	69,8	0	1,5
374	RED0211	9363110	253564	Escavado				24,85						,-
375	RED0212	9363440	253386	Escavado	35		0,3	25,8		300	5,74	63,61	8,3	1,2
376	RED0213	9363110	253323	Tubular	93		5	0		128,9	6,51	23,22	1,7	0,2
377	RED0214	9362924	253259	Tubular	80			42			0,02		-,,	
378	RED0215	9362926	253276	Escavado										
379	RED0622	9364420	253462	Tubular		75,43		12,23	36	152,8	5,59	30,65	2,37	0,06
380	RED1077	9362916	253159	Tubular	40		2			128,9	6,51	23,22	1,7	0,21
381	RED1078	9362966	253136	Tubular							0,02		-,,	3,22
382	RED1098	9363992	253235	Escavado	20		5	11,8		186,2	5,46	48,98	1,14	0,1
383	RED1099	9363936	253277	Escavado	18		1	11,3		224	5,32	41,46	0,87	0,55
384	RED1100	9363836	253238	Escavado	10		•	11,5			5,52	11,10	0,07	0,03
385	RED1101	9363522	253414	Escavado										
386	RED1101	9363192	253654	Fonte natural						257	5,24	50,9	5,35	0,09
387	RED1102	9363328	252734	Tubular						231	5,24	50,7	5,55	0,07
388	RED1103	9363092	252758	Escavado										
389	RED1104	9364518	254023	Tubular	17		1,1			58,1	5,97	13,64	0	0,98
390	RED1324	9363622	252400		80					221				0,98
	RED13/5	9366086		Tubular			3,2	12	5		4,65	45,98	9,6	1,09
391			253579	Tubular	12			4,3		95,3	7.08	20,12	0,85	
392	RED1443	9366130	253509	Tubular	30		5	5	8	154,3	7,08	19,51	0	1,26
393	RED1446 RED1473	9362668 9363978	253159 253101	Escavado Tubular	1,96		2,3	0,83	0,9	255 144,5	6,37 4,9	44,88 38,31	3,37	0,37

N°	Poço	UTM-N (m)	UTM-E (m)	Captação	Prof.Inf (m)	Prof. Reg.	Vazão (m3/dia)	NE (m)	ND (m)	CE (µS/cm)	pН	Cloreto (mg/L)	Nitrato (mg/L-N)	Amônia (mg/L)
395	RED1474	9364390	253710	Tubular	27,1		6	12,67	13	315	5,78	62,4	13,34	0,96
396	SAL0217	9361384	250848	Escavado	2,7		2	0		599	4,7	111,07	23,09	1,14
397	SAL0218	9361350	250897	Escavado	2		2	-0,25		413	4,6	67,65	17,8	8,2
398	SAL0219	9361350	250896	Escavado	2,18		1,8	-0,04		346	4,7	52,5	16,4	1,2
399	SAL0220	9361312	250911	Escavado	2,1		2	0,44		470	6,36	73,71	11,7	64
400	SAL0221	9361316	250919	Escavado	0,75		0	0		485	4,5	77,74	17,7	1,6
401	SAL0222	9361326	250904	Escavado	1,46		0	0		548	6,4	80,77	17,5	0,91
402	SAL0223	9361320	250920	Escavado	1			0,35						
403	SAL0224	9361322	250904	Escavado	1,8		0	0,16		469	4,6	71,69	18,2	18,2
404	SAL0228	9361442	250849	Escavado	0,44		0	0		505	3,96	83,8	23,8	1,61
405	SAL0229	9361498	250925	Escavado	1,7		1	0,01		460	4,81	86,8	21,88	1,21
406	SAL0230	9361456	250859	Escavado	0,77		1	0,04		353	4,42	61,59	14,3	0,56
407	SAL0231	9361504	250842	Escavado	0,75		0	0,14	0,5	787	3,9	132,2	27,3	2,99
408	SAL0232	9361514	250798	Escavado	2,15		1	1	2	566	4,06	116,51	15,19	0,87
409	SAL0233	9361544,01	250842	Escavado	2,67			0		471	4,09	49,54	11,19	1,89
410	SAL0234	9361532	250845	Escavado	2,1			0,01		430	4,55	80,77	18,94	0,86
411	SAL0235	9361558	250846	Escavado	1,64		1	0,01		482	6,5	73,71	10,12	0,76
412	SAL0236	9361572	250870	Escavado	1,9		1	0,04		378	5,06	59,57	9,82	0,45
413	SAL0237	9361664	250832	Escavado										
414	SAL0238	9361930	250796	Escavado						623	4,22	94,47	28,22	0,63
415	SAL0239	9361868	250911	Escavado	0,57		0,7	-0,25		543	4,26	90,87	15,16	0,62
416	SAL0240	9361862	250923	Escavado	0,63		0,9	-0,2		521	4,6	87,8	31,8	0,48
417	SAL0241	9361866	250923	Escavado	0,38		0,9	-0,1		327	6,7	47,46	6,64	0,33
418	SAL0242	9362156	251060	Escavado	2,15		0,5	0,59		984	6,7	267,56	1,28	0,38
419	SAL0243	9362588	251013	Tubular	40		3	0		984	6,77	267,56	1,28	0,38
420	SAL0244	9362592	251133	Escavado	13		1	10,25		517	4,09	88,85	20,01	0,68
421	SAL0245	9362588	251330	Escavado	13		0,4	0	11	639	6,29	113,08	2,34	1,77
422	SAL0246	9362706	251279	Escavado										
423	SAL0247	9362638	251233	Tubular	36									
424	SAL0248	9362604	251162	Escavado	13		0,8	0	11,2	632	5,76	55,53	2,34	2,42
425	SAL0249	9362576	251165	Tubular	30		1,5		12	543	6,31	86,83	5,02	1,72
426	SAL0250	9362552	251090	Escavado	25									
427	SAL0251	9362434	251210	Escavado	2,65		0,7	0,03		197,8	4,72	41,4	5,04	1,33
428	SAL1359	9362552	251099	Escavado	11,88		1,5	10,77	11	721	5,85	148,87	24,11	0,33
429	SAL1460	9362566	251124	Escavado	13		1	9,58	10	556	5,88	107,28	33,42	0,48
430	SAL1464	9362598	251199	Escavado	18,75			6,72		401	6,5	101,26	0,89	1,25
431	SAL1469	9362544	250997	Tubular	20		0,8			543	4,11	110,56	29,82	0,27
432	SAL1471	9362100	251045	Escavado	2,3		0,6	0,73		466	4,87	112,75	12,69	0,37
433	SAL1472	9362532	251136	Tubular	40		1,8	8	9	224	4,19	49,81	6,01	0,65
434	SGA0257	9363344	246450	Tubular	80		18	0	20	260	4,55	53,51	12,1	1,81
435	SGA0277	9361438	249375	Tubular				28		565	4,32	109,17	5,3	0,24
436	SGA0408	9359714	247894	Tubular	43				13	604	6,56	83,97	6,05	0,15
437	SGA0504	9359994	247651	Tubular	40		3		14	373	5,9	42,98	5,99	1,07
438	SGA0583	9361528	248543	Tubular		100		35	51	341	5,71	61,59	15,53	0,49
439	SGA0656	9362694	245964	Escavado	22			13,2		422	7,1	94,47	0,32	0,3
440	SGA0718	9363294	246448	Escavado	25		0,7	19,31		255	7,7	62,68	1,73	0,21
441	SGA0719	9365450	246063	Tubular	60		4		28	176	4,63	39,6	4,55	0,21
442	SGA0720	9365444	246094	Tubular	66		3	30,9	33	380	4,85	88,7	0,92	0,26
443	SGA0721	9365642	246227	Tubular	16	<u> </u>	2		14	99,1	5,52	25,29	2,62	0,16

N°	Poço	UTM-N (m)	UTM-E (m)	Captação	Prof.Inf (m)	Prof. Reg.	Vazão (m3/dia)	NE (m)	ND (m)	CE (µS/cm)	pН	Cloreto (mg/L)	Nitrato (mg/L-N)	Amônia (mg/L)
444	SGA0722	9366218	246298	Tubular	60		5		38	115,6	4,31	36,29	1,85	0,19
445	SGA0723	9366316	246327	Tubular	80		20		35	56,1	5,73	21,99	0,42	0,18
446	SGA0726	9363230	246418	Escavado	12		1	5,14		127,9	5,32	35,19	4,88	0,26
447	SGA0727	9363184	246390	Escavado	16		1	6,2		559	4,3	197,94	26,4	1,9
448	SGA0728	9363186	246389	Escavado	10		1	1,5		159,7	6,35	39,6	0,01	0,36
449	SGA0729	9363224	246340	Escavado	10		1,2	1,32		146,6	5,42	35,19	3,64	0,21
450	SGA0730	9363224	246340	Escavado	18		1	1,33		334	6,06	80,27	2,29	0,3
451	SGA0731	9363220	246334	Escavado	13,26		1	2,35		325	5,54	71,48	12,3	1,22
452	SGA0732	9363264	246378	Escavado	13		1		10	89,8	5,57	27,49	0,5	0,27
453	SGA0733	9363244	246310	Escavado	14			4,78		509	6,05	91,32	11,55	0,74
454	SGA0734	9363368	246370	Escavado	20		1		8	274	4,31	42,89	16,2	0,27
455	SGA0739	9363474	246508	Escavado	24		1	16		222	4,62	43,99	9,4	0,34
456	SGA0740	9363444	246513	Escavado	30		0,5	24		314	4,48	50,38	12,5	0,31
457	SGA0741	9363394	246533	Tubular	48		8		25	116,3	5,37	34,09	1,12	0,43
458	SGA0743	9363318	246468	Escavado	22		1,8	19	21	445	7,28	95	0,5	0,16
459	SGA0744	9363358	246500	Escavado				0						
460	SGA0745	9363350	246439	Escavado	21		1,5	17	18,5	117,1	4,49	22,04	5,13	0,11
461	SGA0746	9363388	246462	Escavado	15		0,8	13		108,1	5,1	21,99	4,78	0,51
462	SGA0747	9363366	246405	Escavado	23		0,3		18	126,7	5,38	23,09	6,72	0,49
463	SGA0748	9363456	246446	Escavado	25		0,5		15	615	6,9	17,59	33,32	0,48
464	SGA0749	9363426	246444	Escavado	25		0,3		8	443	4,38	107,77	13,59	0,34
465	SGA0863	9362612	245998	Escavado	21		1	15,5		87,9	6,31	18,99	4,46	0,16
466	SGA0864	9362662	246124	Escavado				0						
467	SGA0867	9362704	245910	Escavado				0						
468	SGA0868	9362672	245912	Escavado						491	4,54	125,96	1,48	0,32
469	SGA0869	9362684	245932	Escavado	30		4	4,5	6					
470	SGA0870	9362714	245913	Tubular	48		2	11,4	16	170,2	4,51	24,14	9,64	1,56
471	SGA0871	9362720	245874	Escavado				0						
472	SGA0872	9362748	245822	Escavado	29		1	19,6	22	577	4,5	140,66	11,97	0,11
473	SGA0873	9362684	245874	Escavado	32		10	12	13					
474	SGA0874	9362616	245852	Escavado	26		2	14,34	15	419	6,02	66,97	20,01	0,37
475	SGA0875	9362544	245920	Escavado	25			16,76		365	4,34	106,96	0,49	0,45
476	SGA0876	9362970	246084	Escavado	30			0						
477	SGA0885	9362960	246169	Escavado	17		0,2	9		77,6	5,25	21,99	2,46	1,41
478	SGA0886	9363052	246162	Escavado	3			0						
479	SGA0887	9363048	246118	Escavado	35		0,8	0						
480	SGA0888	9363094	246227	Escavado	12		1,5	7,46		758	4,75	4,75	48,72	0,25
481	SGA0889	9363044	246267	Tubular	12		1	9	10					
482	SGA0890	9363148	246274	Escavado	5			1,05						
483	SGA0891	9363212	246236	Escavado	6		0,5	3,58		196,6	5,31	39,98	8,62	0,31
484	SGA0892	9363114	246267	Escavado	15		0,3	6		136,8	5,94	23,99	7,76	0,25
485	SGA0893	9363090	246261	Escavado	8		0,8	7,5	5	550	4,48	95,52	22,59	3,4
486	SGA0894	9363114	246212	Escavado	6		2	3,46						
487	SGA0895	9363146	246290	Escavado	6		0,5	0,95	2,5	253	4,63	48,81	8,89	0,66
488	SGA0896	9363128	246313	Escavado	10		3	3,15		157,3	4,72	34,98	8,19	0,31
489	SGA0897	9363060	246299	Escavado	16		1	7		182,6	5,89	32,98	8,4	0,42
490	SGA0937	9361618	248720	Tubular	96		0,4		25	566	4,01	97,97	34,33	0,2
491	SGA0974	9359890	247584	Tubular	34		4			221	6,24	25,29	0	2,14
492	SGA1042	9362458	245620	Escavado	10		1	7		161,5	5,73	23,99	10,5	0,19

N°	Poço	UTM-N (m)	UTM-E (m)	Captação	Prof.Inf (m)	Prof. Reg.	Vazão (m3/dia)	NE (m)	ND (m)	CE (µS/cm)	pН	Cloreto (mg/L)	Nitrato (mg/L-N)	Amônia (mg/L)
493	SGA1043	9362332	245658	Escavado	10		2	7	7,5	348	5,73	79,97	9,67	0,59
494	SGA1044	9362420	245650	Escavado	11		0,9	8	9	266	4,73	55,98	10,38	0,44
495	SGA1045	9362442	245654	Escavado	12		2	7	8	247	4,67	47,98	12,25	0,9
496	SGA1046	9362536	245969	Escavado	30		3		18	210	6,06	42,98	4,81	0
497	SGA1047	9362342	245767	Escavado	18		2	8	10	570	3,86	115,46	15,12	0,9
498	SGA1048	9362280	245804	Escavado	15		1	3	6	185	5,07	32,98	7,26	0,38
499	SGA1049	9362332	245813	Escavado	20		0,9	11	12	396	3,9	49,98	19,75	9,05
500	SGA1050	9362364	245822	Escavado	20		1	13		435	3,41	49,98	20,1	9,6
501	SGA1051	9362384	245824	Escavado	17		1,2	13		90,1	4,19	12,99	4,65	0,31
502	SGA1052	9362470	245858	Escavado	40		0,8	5	6	491	4,63	88,69	17,09	0,72
503	SGA1053	9362454	245813	Escavado	22		0	17,5		374	4,63	77,97	13,85	0,87
504	SGA1054	9362534	245767	Escavado				0						
505	SGA1055	9362616	245796	Escavado	28		2	14						
506	SGA1056	9362596	245800	Escavado	10		2	5	6	192,9	4,9	18,99	17,98	0,26
507	SGA1057	9362550	245871	Escavado				0						
508	SGA1058	9362526	245905	Escavado	32		2,5	12	16	375	4,05	74,97	15,74	0,13
509	SGA1059	9362496	246109	Escavado	58					113,1	5,64	24,14	0,67	0,31
510	SGA1094	9362860	245981	Escavado			1			364	4,75	95,52	0	0,22
511	SGA1095	9362462	246666	Escavado	32			25,74		196,5	6,07	29,99	6,34	0,07
512	SGA1096	9362574	246607	Tubular	100		10		20	319	4,06	48,98	20,01	0,21
513	SGA1097	9362644	246745	Tubular			3	0						
514	SGA1105	9362122	246671	Tubular	32					189,2	4,73	20,99	11,54	0,53
515	SGA1106	9362076	246550	Escavado	50		1		25	501	6,15	93,97	9,77	0,15
516	SGA1107	9361868	246574	Tubular	43		2		20	327	4,43	50,98	14,41	0,08
517	SGA1108	9361900	246382	Tubular	50		2		20	445	5,99	55,98	11,98	0,07
518	SGA1109	9361970	246433	Escavado						289	4,29	28,34	18,99	0,13
519	SGA1110	9361912	246498	Tubular				0						
520	SGA1111	9362102	246536	Escavado				0						
521	SGA1112	9362210	246598	Escavado				0						
522	SGA1113	9362244	246622	Escavado	38		0,9	25		371	5,08	60,98	13,27	1,48
523	SGA1114	9362474	246423	Escavado	40		3	18	25	312	6,21	44,88	17,51	0,21
524	SGA1115	9362352	246211	Tubular	40		6	15	18	172	4,13	26,27	10,19	0,22
525	SGA1127	9360528	247718	Tubular	1		2		26	267	6,42	33,98	0,44	0,12
526	SGA1128	9360462	248074	Fonte natural	0		1,2	0						
527	SGA1129	9360414	248094	Escavado	4		0,9		3	870	7,18	217,93	0,04	0,67
528	SGA1130	9360292	248098	Escavado	12		1	6,6		438	5,66	80,97	12,43	0,42
529	SGA1131	9360206	248141	Escavado	9		2	1,1		215	6,36	29,99	0,23	0,12
530	SGA1132	9360254	248168	Escavado	14			0						
531	SGA1133	9360234	248254	Fonte natural	0,5		0,7		0,2	220	6,16	44,98	0,11	0,62
532	SGA1134	9360710	248139	Tubular	60		5		32	237	5,11	30,99	10,38	0,06
533	SGA1135	9360930	248482	Escavado	35			0						
534	SGA1136	9360762	248425	Escavado	25		2		18	474	6,24	75,97	0	0,54
535	SGA1137	9360816	248530	Escavado	15					548	4,22	104,96	18,66	5,74
536	SGA1138	9360714	248555	Escavado	1		1,4	0		430	5,77	62,98	16,83	0,37
537	SGA1139	9361200	248839	Escavado				0						
538	SGA1140	9361456	248812	Tubular	62		5		28	606	3,73	111,96	17,85	0
539	SGA1141	9361450	248776	Tubular	60		2		28	710	3,89	119,97	37,72	0,06
540	SGA1145	9360442	247823	Fonte natural				0		187,3	4,29	32,98	5,48	0,24
541	SGA1146	9360408	247827	Escavado	2	<u> </u>	1,2	0,77		333	3,77	28,99	22,81	1,07

N°	Poço	UTM-N (m)	UTM-E (m)	Captação	Prof.Inf (m)	Prof. Reg.	Vazão (m3/dia)	NE (m)	ND (m)	CE (µS/cm)	pН	Cloreto (mg/L)	Nitrato (mg/L-N)	Amônia (mg/L)
542	SGA1147	9360438	247846	Escavado	6		0,5	1,41		259	4,95	43,98	10,16	0
543	SGA1148	9360378	247896	Escavado	1,3		0,5	0,54		343	4,15	77,97	7,96	0
544	SGA1149	9361562	248732	Tubular	45		1		20	699	3,71	105,97	40,34	0,39
545	SGA1153	9360466	247732	Escavado				0						
546	SGA1167	9362064	247546	Tubular	48		0,3		30	287	4,26	43,98	9,88	0,2
547	SGA1168	9361384	246741	Tubular	32		2	1,7	2,5	470	3,92	43,98	19,1	0,23
548	SGA1169	9361506	247505	Tubular				0						
549	SGA1170	9361134	246964	Escavado				0						
550	SGA1171	9361262	246774	Tubular	12		3		10	465	3,76	55,98	27,24	0,04
551	SGA1172	9361346	246808	Tubular	17		3	6	7	382	4,08	45,98	22,59	0,06
552	SGA1177	9362144	245634	Escavado						208	5,25	39,88	5,12	0,46
553	SGA1178	9362180	246680	Escavado	50		1		25	669	4,29	47,98	62,8	0,37
554	SGA1179	9362130	246735	Escavado	45			0						
555	SGA1180	9362330	246893	Tubular	40		2,5		25	249	6,33	35,98	7,74	0,05
556	SGA1181	9363324	246541	Escavado			0			101,4	5,28	20,99	2,85	0,91
557	SGA1182	9362998	246481	Tubular	42		6	0						
558	SGA1183	9363092	246502	Escavado	26		1,3		1,5	714	5,47	129,96	24,95	0,12
559	SGA1184	9363070	246603	Tubular	40		2		30	220	4,19	38,98	5,96	0,03
560	SGA1186	9362936	246610	Escavado	26		1,3	16		296	4,08	44,98	12,01	0,04
561	SGA1187	9362404	245901	Escavado	20		1	15		334	5,08	75,97	4,38	0,18
562	SGA1188	9362244	245428	Escavado	4,5		1	2		146,5	5,26	11,99	6,58	0
563	SGA1189	9362254	245140	Escavado				0						
564	SGA1190	9362224	245561	Escavado	10		1	3		195,2	5,07	34,98	5,76	0,05
565	SGA1191	9362386	245633	Escavado	8		1	4		430	4,11	71,97	15,4	4,3
566	SGA1192	9362344	245651	Escavado				0						
567	SGA1193	9362322	245647	Escavado	7			4,3		308	5,33	59,98	9,22	0,13
568	SGA1194	9362296	245646	Escavado	2			1,8		537	6,81	77,97	3,11	0,74
569	SGA1195	9361212	247375	Tubular	40		5			321	4,08	67,7	5,39	0,33
570	SGA1196	9361474	247136	Escavado	36			0						
571	SGA1198	9361936	247401	Tubular	40		2,6	0						
572	SGA1199	9361830	247580	Tubular				0						
573	SGA1200	9361930	247707	Tubular						433	4,33	64,03	19,65	0,13
574	SGA1201	9362024	247717	Tubular	48		3							
575	SGA1308	9360400	247824	Escavado				1		400,3	5,87	52,67	15,94	0,09
576	SGA1447	9361336	249579	Tubular	90		6	34,71	45,41	584	4,01	135,38	24,57	1,97
577	UFRN	9368516	249789	Tubular	50									