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ABSTRACT

In the work Unique continuation property and control for the Benjamin–Bona–Mahony

equation on a periodic domain, Journal of Differential Equations, (254), no. 1, 2013 by

Lionel Rosier and Bing-Yu Zhang, the authors studied the Benjamin-Bona-Mahony (BBM)

equation, a fundamental model for the propagation of long waves with small amplitude

in nonlinear dispersive systems, on the one-dimensional torus T = R/(2πZ). First, the

authors showed that the initial-value problem associated with the BBM equation is globally

well-posed in Hs(T), for s ⩾ 0. Moreover, the mapping associating the solution to a given

initial data is smooth and the solution is analytic in time. Subsequently, they establish

a unique continuation property (UCP) for small data in H1(T) with nonnegative zero

means. This result is further extended to certain BBM-like equations, including the equal

width wave equation and the KdV-BBM equation, where, for the latter, some Carleman

estimates are derived. Applications to stabilization are developed, showing that semiglobal

exponential stabilization can be achieved in Hs(T) for any s ⩾ 1 when an internal control

acting on a moving interval is applied. Furthermore, they prove that the BBM equation

with a moving control is locally exactly controllable in Hs(T) for s ⩾ 0 and globally exactly

controllable in Hs(T) for s ⩾ 1 over sufficiently large times, depending on the Hs-norms

of the initial and terminal states. The results of this article are explored in detail in this

master’s thesis.

Keywords: Benjamin–Bona–Mahony equation; unique continuation property; exact con-

trollability; stabilization; moving point control; Korteweg–de Vries equation.



RESUMO

No trabalho Unique continuation property and control for the Benjamin–Bona–Mahony

equation on a periodic domain, Journal of Differential Equations, (254), no. 1, 2013, de

Lionel Rosier e Bing-Yu Zhang, os autores estudaram a equação de Benjamin–Bona–Mahony

(BBM), um modelo fundamental para a propagação de ondas longas com pequena amplitude

em sistemas dispersivos não lineares, no toro unidimensional T = R/(2πZ). Primeiramente,

os autores demonstraram que o problema de valor inicial associado à equação BBM é

globalmente bem-posto em Hs(T), para s ⩾ 0. Além disso, mostra-se que a aplicação

que associa a solução ao dado inicial é suave e que a solução é analítica no tempo.

Subsequentemente, eles estabelecem a Propriedade de Continuação Única (PCU) para

dados pequenos em H1(T) com média zero não negativa. Esse resultado é então estendido

para certas equações do tipo BBM, incluindo a equação de ondas de largura igual e a

equação KdV-BBM, para a qual algumas estimativas de Carleman são derivadas. Aplicações

à estabilização também são desenvolvidas, mostrando que a estabilização exponencial

semiglobal pode ser alcançada em Hs(T) para qualquer s ⩾ 1, quando um controle

interno atuando em um intervalo móvel é aplicado. Além disso, eles provam que a equação

BBM com controle móvel é localmente exatamente controlável em Hs(T) para s ⩾ 0 e

globalmente exatamente controlável em Hs(T) para s ⩾ 1, em tempos suficientemente

grandes, dependendo das normas Hs dos estados iniciais e finais. Os resultados deste artigo

são explorados e detalhados nesta dissertação de mestrado.

Palavras-Chave: Equação de Benjamin–Bona–Mahony; propriedade de continuação única;

controlabilidade exata; estabilização; controle de ponto móvel; equação de Korteweg–de

Vries.
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1 INTRODUCTION

This work builds on the foundational results of the paper Unique continuation property

and control for the Benjamin–Bona–Mahony equation on a periodic domain, by Lionel

Rosier and Bing-Yu Zhang, published in Journal of Differential Equations in 2013. Before

embarking on the mathematical development, it is worth putting the Benjamim-Bona-

Mahony (BBM) equation into context. Thus, this introduction begins with a historical

overview highlighting the importance of the BBM equation as a mathematical model for a

variety of physical phenomena. Next, to put the contribution of the aforementioned paper

(ROSIER; ZHANG, 2013) into focus, we set up the problems and main results addressed

in this master’s thesis, whose purpose is to provide a clear and accessible exposition of the

subject, aiming to facilitate the understanding of the underlying motivations and challenges

faced by professional mathematicians tackling such problems. Finally, the introduction

concludes with an outline of the structure of this thesis, to better guide the reader through

its content.

1.1 Historical Context: Why the BBM Equation?

The BBM equation

ut − utxx + ux + uux = 0, (1.1)

was introduced in 1972 by T. Benjamin, J. Bona, and J. Mahony (BENJAMIN; BONA;

MAHONY, 1972) as an alternative to the classical Korteweg–de Vries (KdV) equation

ut + uxxx + ux + uux = 0, (1.2)

as a model equation governing the propagation of one-dimensional, unidirectional long

waves with small amplitude in nonlinear dispersive systems. As a classical model, the

BBM equation finds applications in a wide range of physical systems, including the long

wavelength in liquids, hydromagnetic waves in cold plasma, acoustic-gravity waves in

compressible fluids, and acoustic waves inharmonic crystals.

In the context of shallow-water waves, in the equation (1.1), u = u(x, t) represents
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the displacement of the water surface at location x and time t, where we shall assume

x ∈ T = R/(2πZ) (the one-dimensional torus). Equation (1.1) is often obtained from

(1.2) in the derivation of the surface equation by noticing that, in the considered regime,

ux ∼ −ut, so that uxxx ∼ −utxx.

The authors in (BENJAMIN; BONA; MAHONY, 1972) argue that the assumptions

leading to equation (1.2) equally well justify the equation (1.1) as a model for describing

long-wave behavior. The equation (1.1) is also referred to as the Regularized Long Wave

Equation (RLW), thanks to the strong smoothing effect of the dispersive term −utxx, which

confers (1.1) considerable technical advantages over (1.2), from the standpoint of existence,

uniqueness, and stabilization theory, as proved in (BENJAMIN; BONA; MAHONY, 1972;

BONA; TZVETKOV, 2009; ROUMÉGOUX, 2010) and the references therein. On the

other hand, (1.1) is not integrable and it has only three invariants of motion (OLVER,

1979).

1.2 Setting Up the Problems and Main Results

We begin our study of the BBM equation (1.1) in chapter 3, directing our attention to

the initial value problem (IVP) for (1.1). The existence of a solution will be established

upon the assumption that the initial data u(x, 0) belongs to the Sobolev space Hs(T),

for any s ≥ 0. This result turns out to be sharp in the sense that below this value of s,

the initial-value problem cannot be solved by a Picard iteration. The IVP for the BBM

equation was proved to be globally well-posed by Bona and Tzvetkov (BONA; TZVETKOV,

2009). On the other hand, Panthee (PANTHEE, 2010) has shown that the BBM equation

is ill-posed for initial data that belong to Hs(R) with s < 0. For this topic, we follow

(BONA; TZVETKOV, 2009; ROUMÉGOUX, 2010; HIMONAS; PETRONILHO, 2020) in

a standard procedure: first proving a local existence and uniqueness theorem (i.e., for a

sufficiently small time-interval) by means of a fixed-point principle, then establishing the

existence of a solution over an arbitrarily large time. Moreover, the map that associates

the relevant solution to the given initial data is shown to be smooth. These well-posedness

results can be summarized as stated in (ROSIER; ZHANG, 2013)

Theorem 1.2.1. Let s ⩾ 0, u(x, 0) = u0 ∈ Hs(T) and T > 0. Then there exists a unique

solution u ∈ Xs
T = C ([−T, T ];Hs(T)) of the IVP associated with (1.1). Furthermore, for
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any R > 0, the map u0 7→ u is real analytic from BR (Hs(T)) into Xs
T .

Then, some additional properties are given in the same chapter, such as the analyticity

in time for the solution and the three invariants of motion.

Next, in Chapter 4, we explore the Unique Continuation Property (UCP) of the BBM

equation and its applications to a control problem for (1.1). The UCP is said to hold in a

given function class X if, for any nonempty open set ω ⊂ T, the only solution u ∈ X of

(1.1) satisfying

u(x, t) = 0 for (x, t) ∈ ω × (0, T ),

is the trivial solution u ≡ 0. This property is fundamental in Control Theory, as it is

equivalent to the approximate controllability of linear partial differential equations (PDEs).

Moreover, the UCP plays a key role in the classical uniqueness-compactness approach

used in proving the stabilization of PDEs with localized damping. Despite its importance,

the UCP for the BBM equation remains in its early stages of development. We begin the

study of UCP by establishing the UCP for solutions of (1.1) under additional assumptions

on the initial data. Specifically, the initial data must be small enough in H1(T) and have

nonnegative mean values. The proof leverages results from Chapter 3, such as the time

analyticity of solutions to the BBM equation and its invariants of motion.

Subsequently, we extend the analysis to BBM-like equations, which include the Morri-

son–Meiss–Carey equation and an intermediate equation between (1.1) and (1.2), called

KdV-BBM equation. For the latter case, we employ the classical approach of Carleman

estimates to derive the UCP.

Here we gather the main results of Chapter 4,

Theorem 1.2.2 (UCP for BBM Equation). Let u0 ∈ H1(T) be such that

∫
T
u0(x)dx ⩾ 0,

and

∥u0∥L∞(T) < 3.

Assume that the solution u of the IVP associated with (1.1) satisfies

u(x, t) = 0 for all (x, t) ∈ ω × (0, T ),
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where ω ⊂ T is a nonempty open set and T > 0. Then u0 = 0, and hence u ≡ 0.

Theorem 1.2.3 (UCP for the KdV-BBM Equation). Let c ∈ R\{0}, T > 2π/|c|, and

q ∈ L∞ (0, T ;L∞(T)). Let ω ⊂ T be a nonempty open set. Let u ∈ L2 (0, T ;H2(T)) ∪

L∞ (0, T ;H1(T)) satisfying the KdV-BBM equation

ut − utxx − cuxxx + qux = 0, x ∈ T, t ∈ (0, T ),

where q ∈ L∞ (0, T ;L∞(T)) is a given potential function and c ̸= 0 is a given real constant,

and satisfying

u(x, t) = 0 for a.e. (x, t) ∈ ω × (0, T ).

Then u ≡ 0 in T× (0, T ).

In the final chapter of this work, the Chapter 5, we focus on the controllability of the

BBM equation, which also represents the primary goal of this endeavor. The control and

stabilization of dispersive wave equations have been the subject of extensive research over

the past decade. We begin by considering the linearized BBM equation with a control force

ut − utxx + ux = a(x)h(x, t), (1.3)

where a(x) is supported in a subset of T and h(x, t) represents the control input. It was

shown in (MICU, 2001; ZHANG; ZUAZUA, 2003) that (1.3) is approximately controllable

in H1(T). However, (1.3) is not exactly controllable in H1(T), as proved in (MICU,

2001). This stands in sharp contrast with the good control properties observed in other

dispersive equations, such as the KdV equation, the nonlinear Schrödinger equation, the

Benjamin–Ono equation, the Boussinesq system, and the Camassa–Holm equation.

On the other hand, the KdV-BBM equation can be derived from (1.1) by working in a

moving frame x = −ct with c ∈ R\{0}. Defining

v(x, t) = u(x− ct, t), (1.4)

transforms (1.1) into the following KdV-BBM equation

vt + (c+ 1)vx − cvxxx − vtxx + vvx = 0. (1.5)
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The presence of the KdV term −cvxxx in (1.5) suggests improved control properties com-

pared to (1.1). We establish that the KdV-BBM equation with a forcing term a(x)k(x, t),

supported in any given subdomain, is locally exactly controllable in H1(T) for any s ⩾ 1,

provided that the control time satisfies T > (2π)/|c|. Returning to the original variables,

this result implies that the equation

ut + ux − utxx + uux = a(x+ ct)h(x, t), (1.6)

with a moving distributed control, is exactly controllable in H1(T) for any s ⩾ 1, given

sufficiently large time T . The choice of T ensures that the support of the moving control,

which travels at a constant velocity c, can cover the entire domain T.

The concept of moving point control was originally introduced by J.L. Lions in (LIONS,

1992) for the wave equation. An important motivation for this approach is that exact

controllability fails for the wave equation with a static pointwise control if the point

corresponds to a zero of an eigenfunction of the Dirichlet Laplacian. However, exact

controllability holds when the control point moves, provided it satisfies specific conditions

that are easy to verify.

Similarly, for the BBM equation, applying a localized damping with a moving support

leads to semiglobal exponential stabilization. This chapter demonstrates that combining

local exact controllability with semi-global exponential stabilization results in the following

theorem, which represents the main result of this master’s thesis:

Theorem 1.2.4 (Local Exact Controllability for BBM with a Moving Control). Assume

that a ∈ C∞(T) with a ̸= 0 is given and that c ∈ R\{0}. Let s ⩾ 1 and R > 0 be given.

Then there exists a time T = T (s, R) > 2π/|c| such that for any u0, uT ∈ Hs(T) with

∥u0∥Hs ⩽ R, ∥uT∥Hs ⩽ R,

there exists a control h ∈ L2 (0, T ;Hs−2(T)) such that the solution u ∈ C ([0, T ];Hs(T)) of

ut − utxx + ux + uux = a(x+ ct)h(x, t), x ∈ T, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ T
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satisfies

u(x, T ) = uT (x), x ∈ T.

1.3 Thesis Outline

Each chapter begins with a brief explanation of what follows therein, providing theo-

retical or historical information related to the topic, or outlining the chapter. In turn, the

following is an outline for the entire work:

• Chapter 2, although interesting in its own right, has the primary purpose of laying the

mathematical framework for the entire work. It collects useful and remarkable facts

from various fields, such as Topology, Functional Analysis, Distributions, Sobolev

Spaces, Semigroup Theory, and Control and Stabilization concepts;

• Chapter 3 is divided into three sections. The first section 3.1 discusses the well-

posedness of the BBM equation, also providing estimates that will be useful for

applying the contraction mapping principle. The following sections address the

analyticity of the solution for the BBM, in Section 3.2 and the conserved quantities

in Section 3.2;

• Chapter 4 first addresses the UCP property for the BBM equation in Section 4.1. The

second section is split into two subsections, 4.2.1 and 4.2.2, which treat a BBM-like

equation without a drift term and one with a nonlocal bilinear term, respectively.

Next, the third section 4.3 of the chapter addresses the KdV-BBM equation, where

the UCP is derived by means of a Carleman estimate, and due to its importance, we

have dedicated the subsection 4.3.1 to it.

• Chapter 5 focuses on the controllability and stabilizability issues, each of which

is addressed in a separate section. Section 5.1, which deals with controllability, is

divided into subsections. The first subsection, 5.1.1, covers the exact controllability

for the linearized BBM equation, while the second, 5.1.2, addresses the local aspects

of controllability for the BBM equation. In turn, the section addressing stabilizability

possesses two subsections. The first subsection, 5.2.1, deals with the well-posedness

issue for a feedback system KdV-BBM. The last subsection, 5.2.2, addresses local

and global exponential stabilization.
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2 COMPENDIUM OF PRELIMINARY RESULTS

This chapter aims to lay the groundwork for the theory developed in the following

chapters, as well as to establish the notation used throughout the work. The sections titled

"Basic theory" and "Semigroup theory" summarize the prerequisites, while the Control

and Stabilization section gives a brief summary on the specific concepts to follow the last

chapter of this master’s thesis.

2.1 Basic Theory

2.1.1 Elements of Topology and Functional Analysis

This subsection is inspired in (MARTEL, 2020; GRUBB, 2008; BREZIS, 2011; LIMA,

2020; KREYSZIG, 1989). Roughly speaking, a topological space is a space where one can

talk about convergence and continuity, on the other hand, Functional Analysis in, say,

Hilbert spaces has powerful tools to establish operators with good mapping properties and

invertibility properties. A combination with Distribution Theory allows showing solvability

of suitable concrete partial differential equations.

Definition 2.1.1. We say that a sequence {gk}∞k=1 of a metric space (E, d) converges to

g ∈ E, written limk gk = g, if limk→∞ d (gk, g) = 0.

Definition 2.1.2. Let (E, d) be a metric space, and A be a subset of E. We say that A

is dense in E if its closure Ā is E. Equivalently, for all f ∈ E, there exists a sequence

{aj}∞j=1 of elements of A such that limj→∞ aj = f .

Let (E1, d1) and (E2, d2) be two metric spaces. Let A be a subset of E1 and F : A→ E2

be a function. Let g0 ∈ Ā and h ∈ E2. We say that

lim
g→g0;g∈A

F (g) = h,

if for all neighborhood V2 of h in E2, there exists a neighborhood V1 of g0 in E1 such that

F (V1 ∩ A) ⊂ V2. The limit, if it exists, is unique.
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Definition 2.1.3. We say that F : A→ E2 is continuous at g0 ∈ A if

lim
g→g0;g∈A

F (g) = F (g0) .

We say that F is continuous on A if it is continuous at any point of A. The composition

of two continuous functions is continuous.

Theorem 2.1.1. The application F : A→ E2 is continuous at g ∈ A if, and only if for

any sequence {gk}∞k=1 of A converging to g, the sequence {F (gk)}∞k=1 converges to F (g).

Proof. See Proposition 9, Chapter 5 in (LIMA, 2020). ■

Definition 2.1.4 (Compactness). We say that a metric space (E, d) is compact if any

sequence of E admits a subsequence that converges to an element of E. A subset A of a

metric space (E, d) is compact if the metric space (A, d) is compact.

Definition 2.1.5. Let (X, ∥ · ∥) and (Y, ∥ · ∥Y ) be two normed spaces. Let D ⊂ X and

F : D → Y . We say that F is uniformly continuous if the function ω : [0,∞) → [0,∞)

defined by

ω(δ) = sup
g,h∈D

∥g−h∥≤δ

∥F (g)− F (h)∥Y ,

converges to 0 as δ converges to 0.

Theorem 2.1.2 (Heine-Cantor). Let (E1, d1) and (E2, d2) be two metric spaces. Let

F : E1 → E2 be continuous. If E1 is compact, then F is uniformly continuous.

Proof. See Proposition 9, Chapter 8 in (LIMA, 2020). ■

Definition 2.1.6 (Cauchy sequence). We call a Cauchy sequence in E a sequence {gk}∞k=1

such that

lim
j,k→∞

d (gj, gk) = 0.

Theorem 2.1.3. In any metric space, a converging sequence is a Cauchy sequence.

Proof. See Theorem 1.4-5 in (KREYSZIG, 1989). ■

Definition 2.1.7 (Complete metric space). We say that a metric space (E, d) is complete

if any Cauchy sequence in E is convergent.
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Definition 2.1.8 (Banach space). We say that a normed vector space (X, ∥·∥) is a Banach

space if any Cauchy sequence in X is convergent with respect to the metric d(x, y) = ∥x−y∥,

for all x, y ∈ X.

Theorem 2.1.4. Any finite dimensional normed vector space is a Banach space.

Proof. See Theorem 2.4-2 in (KREYSZIG, 1989). ■

Proposition 2.1.1. Let A be a subset of a metric space (E, d). If A is complete, then A

is closed in E. If E is complete and A is closed in E, then A is complete.

Proof. See Proposition 6, Chapter 7 in (LIMA, 2020). ■

Proposition 2.1.2. A compact metric space is complete.

Proof. See Proposition 3 in (YOCCOZ, 1994). ■

Theorem 2.1.5 (Completion of a metric space). Let (E, d) be a metric space. There

exists a unique (up to isometries) complete metric space ( Ẽ, d̃ ), containing E as a dense

subset and such that the restriction of d̃ to E is d. Any uniformly continuous application

f : E → Y , where (Y, dY ) is a complete metric space, extends uniquely as a continuous

application f̃ : Ẽ → Y .

Proof. See Theorem 1.6-2 in (KREYSZIG, 1989). ■

Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be two normed vector spaces on R.

Definition 2.1.9. A map A : X → Y is called a linear operator if for all g, h ∈ X,α, β ∈

R,

A(αg + βh) = αAg + βAh.

The range of A is R(A) = {v ∈ Y : v = Ag for some g ∈ X}. The null space of A is

N(A) = {g ∈ X : Ag = 0}. The graph of A is the set

G(A) = {(g, v) ∈ X × Y : v = Ag}.

Theorem 2.1.6. Let A : X → Y be a linear operator. The following three properties are

equivalent.
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(i) A is continuous at 0;

(ii) A is continuous on X;

(iii) there exists a constant C ≥ 0 such that for all g ∈ X, ∥Ag∥Y ≤ C∥g∥X .

Proof. See Proposition 8, Chapter 2, in (LIMA, 2020) or Theorem 2.7-9 in (KREYSZIG,

1989). ■

We denote by L(X, Y ) the vector space of linear continuous operators from X to Y

equipped with the norm

∥A∥L(X,Y ) = sup {∥Ag∥Y ; ∥g∥X = 1} .

Theorem 2.1.7. Let (X, ∥ · ∥) be a normed vector space, D be a dense subspace of X,

and Y a Banach space. Any linear continuous linear map T from D to Y can be uniquely

extended to a continuous linear map T̃ from X to Y , with ∥T∥ = ∥T̃∥.

Proof. See Theorem 2.7-11 in (KREYSZIG, 1989). ■

Theorem 2.1.8 (Banach-Steinhaus theorem1). Let X be a Banach space, Y be a normed

vector space, and Ajj∈J be a family of linear operators from X to Y satisfying, for all

g ∈ X,

sup
j∈J

∥Ajg∥Y <∞.

Then, the bound is uniform on the unit ball of X, i.e.

sup
j∈J

∥Aj∥L(X,Y ) <∞.

Proof. See Theorem 2.2 in (BREZIS, 2011). ■

A linear operator A : X → Y is called closed if its graph is closed, which means that

for any sequence {gk}∞k=0 of X such that lim∞ gk = g in X and lim∞Agk = v in Y , one

has Ag = v.

1This theorem is also known as Uniform Boundedness Principle.
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Theorem 2.1.9 (The Closed Graph Theorem). Let X and Y be Banach spaces and let

A : X → Y be a linear mapping. Then, A ∈ L(X, Y ) if and only if the graph of A is a

closed subspace of X × Y .

Proof. See Theorem 2.9 in (BREZIS, 2011). ■

When Y = X, we denote L(X) instead of L(X,X) the vector space of the bounded

linear operators on X. Equipped with the composition product of applications A ◦ B,

denoted simply by AB,L(X) is a unitary algebra, with identity element I. The norm on

L(X), defined by

∥A∥L(X) = sup
∥g∥≤1

∥Ag∥,

will also be denoted by ∥ · ∥. It is a matter of fact that for all A,B ∈ L(X),

∥AB∥ ≤ ∥A∥∥B∥.

An element A of L(X) is said to be invertible if it admits an inverse in L(X), i.e. if

there exists B ∈ L(X) such that AB = BA = I.

Theorem 2.1.10 (Open Mapping theorem). Let X be a Banach space. Let A ∈ L(X) be

bijective. Then the inverse of A, denoted by A−1, belongs to L(X).

We recall that if A and B are invertible, then AB is also invertible and it holds

(AB)−1 = B−1A−1. We shall use the convention A0 = I.

Proof. See Theorem 2.6 in (BREZIS, 2011). ■

Lemma 2.1.1 (Neumann Series Criterion). Suppose that X is a Banach space. Let

A ∈ L(X) be such that A = I −K with ∥K∥ < 1. Then, A is invertible and

A−1 =
∞∑
k=0

Kk ∈ L(X).

Proof. See Example 14 in (LIMA, 2020) or see Proposition 7.1.3 in (BOTELHO; PELLE-

GRINO; TEIXEIRA, 2015). ■

Definition 2.1.10. When Y = K, L(X, Y ) is denoted by X∗ and called the dual or

topological dual space of X; it is the space of continuous linear forms on X. Equipped with
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the norm

∥A∥L(X) = sup
∥g∥≤1

|Ag|,

it is a Banach space.

Let (X, ∥ · ∥) and (Y, ∥ · ∥Y ) be two normed vector spaces and let U be an open set of

X.

Definition 2.1.11. For a function f : U → R, where 0 ∈ U , we denote f(h) = o(h), if

for any ε > 0, there exists δ > 0 such that for any h ∈ U with ∥h∥ ≤ δ, |f(h)| ≤ ε∥h∥.

Definition 2.1.12. We say that an application F : U → Y is differentiable at g ∈ X if

there exists a continuous linear map, dFg : X → Y such that

∥F (g + h)− F (g)− dFg(h)∥Y = o(h).

If it exists, this linear map is unique and called the differential of F at g. We say that F

is differentiable on U if it is differentiable at any point of U . We say that F is of class C1

on U if it is differentiable at any point of U and if the application

dF : U → L(X, Y ), g 7→ dFg

is continuous. A linear combination of differentiable functions is differentiable, and the

differential is linear. A composition of differentiable functions is differentiable.

Definition 2.1.13. Let H be a linear vector space on R. A (real) scalar product on H is

a map (f, g) 7→ (f, g) from H ×H to R satisfying the following properties

(i) Bilinearity: for all f1, f2, g1, g2 ∈ H,λ ∈ R,

(λf1 + f2, g1) = λ (f1, g1) + (f2, g1)

(f1, λg1 + g2) = λ (f1, g1) + (f1, g2) ,

(ii) Symmetry: (f, g) = (g, f), for all f, g ∈ H;

(iii) Positivity: for all f ∈ H, (f, f) ≥ 0 and

(f, f) = 0 ⇐⇒ f = 0.
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Definition 2.1.14. Let H be a linear vector space on C. A hermitian scalar product on

H is a map (f, g) 7→ (f, g) from H ×H to C satisfying the following properties

(i) Linearity and antilinearity: for all f1, f2, g1, g2 ∈ H, λ ∈ C,

(λf1 + f2, g1) = λ̄ (f1, g1) + (f2, g1)

(f1, λg1 + g2) = λ (f1, g1) + (f1, g2)

(ii) Hermitian symmetry: (f, g) = (g, f), for all f, g ∈ H;

(iii) Positivity: for all f ∈ H, (f, f) ≥ 0 and

(f, f) = 0 ⇐⇒ f = 0.

A real or complex vector space equipped with a scalar product has a natural normed

space structure, by setting

∥f∥ = (f, f)1/2

Moreover, the Cauchy-Schwarz inequality holds

|(f, g)| ≤ ∥f∥∥g∥.

Definition 2.1.15. We say that (H, (·, ·)) is a Hilbert space if it is complete for the

associated norm.

Theorem 2.1.11 (Riesz Theorem). Let (H, (·, ·)) be a Hilbert space. For any element

h ∈ H, we associate the continuous linear form Lh on H defined by, for any f ∈ H,

Lh(f) = (h, f).

Conversely, for any continuous linear form L on H, there exists a unique h ∈ H such that

L = Lh.

Proof. See Theorem 4.11 in (BREZIS, 2011). ■
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Definition 2.1.16 (Riesz Basis). The set {fk} ⊂ V is called a Riesz Basis if every element

s ∈ V of the space can be written as

s =
∑
k

ckfk,

for some choice of scalars {ck} and if positive constants A and B exist such that

A∥s∥2 ≤
∑
k

|ck|2 ≤ B∥s∥2,

Riesz basis are also known as a stable basis or unconditional basis. If the Reisz basis is an

orthogonal basis, then A = B = 1.

In infinite-dimensional Hilbert spaces, bounded sets generally do not have compact

closure. Thus, it is important to weaken the notion of convergence in such spaces. Thus,

we shall introduce some weak notions.

Definition 2.1.17. Let E be a Banach space. The weak topology σ (E,E ′) on E is the

coarsest topology on E that makes all mappings f ∈ E ′ continuous.

Let (xn)n∈N be a sequence in E that converges to x in E in the weak topology σ (E,E ′).

We shall denote this by

xn ⇀ x in E.

Proposition 2.1.3. Let (xn)n∈N be a sequence in E, then

(i) xn ⇀ x in E if, and only if, ⟨f, xn⟩ → ⟨f, x⟩,∀f ∈ E ′;

(ii) if xn → x in E, then xn ⇀ x in E;

(iii) if xn ⇀ x in E, then ∥xn∥E is bounded and ∥x∥E ⩽ lim inf ∥xn∥E;

(iv) if xn ⇀ x in E and fn → f in E ′, then ⟨fn, xn⟩ → ⟨f, x⟩.

Proof. See Proposition 3.5 in (BREZIS, 2011). ■

Let E be a Banach space and let x ∈ E be fixed. We define Jx : E ′ → R by

⟨Jx, f⟩ = ⟨f, x⟩.
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The mappings Jx are linear and continuous, therefore Jx ∈ E ′′, ∀x ∈ E. Now, we define

J : E → E ′′ such that J(x) = Jx.

Definition 2.1.18. The weak* topology, also denoted by σ (E ′, E), is the coarsest topology

on E ′ that makes all the mappings Jx continuous.

Proposition 2.1.4. Let (fn)n∈N be a sequence in E ′, then, then following holds

(i) fn
∗
⇀ f in E ′ if, and only if, ⟨fn, x⟩ → ⟨f, x⟩, ∀x ∈ E;

(ii) if fn → f in E ′, then fn ⇀ f in E ′;

(iii) if fn ⇀ f in E ′, then fn
∗
⇀ f in E ′.

Proof. See Proposition 3.13 in (BREZIS, 2011). ■

Proposition 2.1.5. Let E be a reflexive Banach space and let (xn)n∈N be a bounded

sequence in E. Then, there exists a subsequence (xnk
)k∈N of (xn)n∈N and x ∈ E such that

xnk
⇀ x weak in E.

Proof. See Theorem 3.18 in (BREZIS, 2011). ■

Proposition 2.1.6. Let E be a separable Banach space and let (fn)n∈N be a bounded

sequence in E ′, then, there exists a subsequence (fnk
)k∈N and f ∈ E ′ such that

fnk

∗
⇀ f in E ′.

Proof. See Corollary 3.30 in (BREZIS, 2011). ■

Definition 2.1.19. Let {fj}∞j=0 be a sequence of elements of a separable Hilbert space H

and let f be an element of H. The sequence {fj}∞j=0 is said to weakly converge to f , which

is denoted by fj ⇀ f if

∀h ∈ H, lim
j→∞

(h, fj) = (h, f).

It is easy to see that if the weak limit exists, then it is unique.

Let (H, (·, ·)) be a real Hilbert space. We denote by ⟨·, ·⟩ the pairing of H with its dual

space H∗.
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2.1.1.1 An Overview of Differential Calculus in Banach Spaces

Here, following (ZEIDLER, 1986), our goal is to provide a generalization for Banach

spaces of the Implicit Function Theorem from real variables. That is, we shall generalize the

following statement: let F be a real-valued function of two real variables with F (x0, y0) = 0

for fixed (x0, y0). The equation

F (x, y) = 0

will have unique solution for y in a neighborhood of (x0, y0) if certain regularity conditions

are fulfilled, and Fy(x0, y0) ̸= 0.

First, some notation. For a map r : U(0) ⊆ X → Y , we will write:

r(x) = o(∥x∥), x→ 0 iff r(x)/∥x∥ → 0 as x→ 0.

Definition 2.1.20. Let f : U(x) ⊆ X → Y be a given map, with X and Y Banach spaces.

Here U(x) denotes a neighborhood of x.

(i) The map f is Fréchet differentiable at x if, and only if, there exists a map T ∈ L(X, Y )

such that

f(x+ h)− f(x) = Th+ o(∥h∥), h→ 0, (2.1)

for all h in some neighborhood of zero. If it exists, this T is called the Fréchet

derivative of f at x. We define f ′(x) = T . The Fréchet differential at x is defined by

df(x;h) = f ′(x)h.

(ii) If the Fréchet derivatives f ′(x) exist for all x ∈ A, then the mapping

f ′ : A ⊆ X → L(X, Y ) by x 7→ f ′(x)

is called the Fréchet derivative of f on A.

(iii) Higher derivatives are defined successively. Thus, f ′′(x) is the derivative of f ′ at x.

It is worth pointing out that we will consider derivatives at x only if f is defined in

some neighborhood of x. Also, by (2.1) we see that are defined through linearization.

Proposition 2.1.7. If f ′(x) exists as an Fréchet derivative at x, then f also is continuous
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at x.

Proof. See Proposition 4.8 in (ZEIDLER, 1986). ■

Definition 2.1.21. Let there be given a map f : D(f) ⊆ X × Y → Z by (x, y) 7→ f(x, y),

where X, Y , and Z are Banach spaces. Let y be fixed and set g(x) = f(x, y). If g has an

Fréchet derivative at x, then we define the partial Fréchet derivative of f at (x, y) with

respect to the first variable x to be fx(x, y) = g′(x). The derivative fy(x, y) is defined

similarly. Instead of fx(x, y), fy(x, y) one also writes D1f(x, y), D2f(x, y), respectively.

We shall investigate the validity of the formula

f ′(x, y)(h, k) = fx(x, y)h+ fy(x, y)k (2.2)

Proposition 2.1.8 (Partial Derivatives). We have the following properties

(i) If f is Fréchet differentiable at (x, y), then the partial Fréchet derivatives fx and fy

exist at (x, y) and (2.2) holds for all h ∈ X and k ∈ Y .

(ii) Conversely, if f has partial Fréchet derivatives fx and fy in a neighborhood of (x, y),

and if these are continuous at (x, y), then f ′(x, y) exists as an Fréchet derivative and

(2.2) holds.

(iii) The map f is continuously Fréchet differentiable in a neighborhood of (x, y) if, and

only if, all partial Fréchet derivatives are continuous in a neighborhood of (x, y).

Proof. See Proposition 4.14 in (ZEIDLER, 1986). ■

Theorem 2.1.12 (Implicit Function Theorem). Suppose that:

(i) the mapping F : U (x0, y0) ⊆ X × Y → Z is defined on an open neighborhood

U (x0, y0), and F (x0, y0) = 0, where X, Y , and Z are Banach spaces over K = R or

K = C;

(ii) Fy exists as a partial Fréchet derivative on U (x0, y0) and Fy (x0, y0) : Y → Z is

bijective.

(iii) F and Fy are continuous at (x0, y0).
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Then the following are true

(a) Existence and uniqueness. There exist positive numbers r0 and r such that, for

every x ∈ X satisfying ∥x− x0∥ ⩽ r0, there is exactly one y(x) ∈ Y for which

∥y(x)− y0∥ ⩽ r and F (x, y(x)) = 0.

(b) Construction of the solution. The sequence (yn(x)) of successive approximations,

defined by y0(x) ≡ y0, and

yn+1(x) = yn(x)− Fy (x0, y0)
−1 F (x, yn(x))

converges to the solution y(x), as n→ ∞, for all points x ∈ X satisfying ∥x− x0∥ ≤

r0.

(c) Continuity. If F is continuous in a neighborhood of (x0, y0), then y(·) is continuous

in a neighborhood of x0.

(d) Continuous differentiability. If F is a Cm-map, 1 ⩽ m ⩽ ∞, on a neighborhood of

(x0, y0), then y(·) is also a Cm-map on a neighborhood of x0.

Proof. See Theorem 4.B in (ZEIDLER, 1986). ■

Corollary 2.1.1. If F is analytic at (x0, y0), then the solution y(·) is analytic at x0.

Proof. See Corollary 4.23 in (ZEIDLER, 1986). ■

2.1.2 Distributions and Sobolev Spaces

Throughout this subsection we are inspired in (ADAMS, 1975; MEDEIROS; MIRANDA,

1989; BREZIS, 2011; SCHWARTZ, 1966; IORIO JÚNIOR; IORIO, 2001) and in the

references therein.

We refer to a domain, denoted by Ω, for a nonempty open set in n-dimensional real

space Rn. We will focus on the differentiability and integrability of functions defined on the

set Ω. Given n ∈ N, if α = (α1, . . . , αn) is an n-tuple of nonnegative integers αj , we call α

a multi-index and denote by xα the monomial xα1
1 . . . xα

n

n , which has degree |α| =
∑n

j=1 αj .

Moreover, if Dj =
∂
∂xj

, then

Dα = Dα1
1 . . . Dαn

n
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denotes a differential operator of order |α|. Notice that, D(0,...,0)u = u.

If α and β are two multi-indices, we say that β ≤ α provided βj ≤ αj for 1 ≤ j ≤ n.

Then α − β is also a multi-index, and |α − β| + |β| = |α|. Moreover, we also denote

α! = α1! . . . αn! and if β ≤ α, α
β

 =
α!

β!(α− β)!
.

With this, for u, v regular enough functions we state the Leibniz rule given by

Dα(uv) =
∑
β≤α

α
β

Dβu(x)Dα−βv(x). (2.3)

Let Ω ⊂ Rn, we denote by Ω the closure of Ω in Rn. Let u a function defined on Ω, we

describe the support of u to be the set

supp(u) = {x ∈ Ω: u(x) ̸= 0}.

We say that u has compact support in Ω if supp(u) is compact.

For any m ∈ N, let Cm(Ω) denote the vector spaces

Cm(Ω) = {ϕ : Dαϕ, |α| ≤ m is continuous on Ω} .

We denote C0(Ω) ≡ C(Ω). Let C∞(Ω) =
⋂∞
m=0C

m(Ω). The subspaces C0(Ω) and C∞
0 (Ω)

consists of all those functions in C(Ω) and C∞(Ω), respectively, that have compact support

in Ω.

Definition 2.1.22. We say that (φn)n∈N ⊂ C∞
0 (Ω) converges to φ ∈ C∞

0 (Ω), denoted by

φn → φ, if

(i) There exists a compact K of Ω such that supp(φ) ⊂ K and supp(φn) ⊂ K, ∀n ∈ N;

(ii) Dαφn → Dαφ uniformly in K, for all multi-index α.

By D(Ω) we represent the space C∞
0 (Ω), equipped with the convergence defined above

and will be called space of test functions on Ω.

We define a distribution over Ω, as defined by Schwartz, to any linear form T over D(Ω)
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that is continuous in the sense of convergence defined above, that is, for every sequence

(φn)n ⊂ D(Ω) that converges to φ ∈ D(Ω), then (⟨T, φn⟩)n ⊂ K converges to ⟨T, φ⟩ ∈ K2.

Remark 2.1.1. The dual space D′(Ω) of D(Ω) is called the space of (Schwartz) distributions

on Ω. D′(Ω) is given the weak-star topology as the dual of D(Ω), and is a locally convex

topological vector space (TVS) with that topology.

Let α a multi-index and φ ∈ D(Ω), if u ∈ C |α|(Ω), then integrating by parts |α| times

leads to ∫
Ω

(Dαu(x))φ(x) dx = (−1)|α|
∫
Ω

u(x)Dαφ(x) dx.

This motivates the definition of the derivative DαT of a distribution T ∈ D′(Ω)

⟨DαT, φ⟩ = (−1)|α|⟨T,Dαφ⟩, ∀φ ∈ D(Ω).

It is notable that:

• Each distribution T over Ω has derivatives of all orders.

• DαT is a distribution over Ω, where T ∈ D′(Ω). In fact, it is easily seen that DαT

is linear. Now, we show that it is continuous, consider (φn)n ⊂ D(Ω) converging to

φ ∈ D(Ω). Thus,

|⟨DαT, φn⟩ − ⟨DαT, φ⟩| ≤ |⟨T,Dαφn −Dαφ⟩| ⇒ 0

when n→ ∞.

• The map Dα : D′(Ω) ⇒ D′(Ω), such that T 7→ DαT, is linear and continuous in the

sense of convergence defined in D′(Ω).

For 1 ≤ p < ∞, we denote by Lp(Ω) the space of (classes of) functions u : Ω → R

measurable in Ω such that |u|p is Lebesgue integrable in Ω. This is a Banach space with

the norm

∥u∥pLp(Ω) =

∫
Ω

|u(x)|p dx.

2Observe that K = R or C and ⟨T, φ⟩ is the evaluation of T in φ, i.e. T (φ)
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When p = ∞, L∞(Ω) consists of all essentially bounded functions in Ω equipped with the

norm

∥u∥L∞(Ω) = ess supx∈Ω |u(x)| = inf {C : |v(x)| ≤ C a.e. in Ω} .

When p = 2 we have a Hilbert space L2(Ω) with the inner product

⟨u, v⟩L2(Ω) =

∫
Ω

u(x)v(x) dx,

and induced norm

∥u∥2L2(Ω) =

∫
Ω

|u(x)|2 dx.

Given an integer m > 0, by Wm,p(Ω), 1 ≤ p ≤ ∞, represents the Sobolev space of

order m, over Ω of (classes of) functions u ∈ Lp(Ω) such that Dαu ∈ Lp(Ω), for every

multi-index α, with |α| ≤ m. Wm,p(Ω) is a vector space, whatever 1 ≤ p <∞. Considering

the following norm

∥u∥pWm,p(Ω) =
∑
|α|≤m

∫
Ω

|Dαu(x)|p dx

when 1 ≤ p <∞ and

∥u∥Wm,∞(Ω) =
∑
|α|≤m

suppx∈Ω |Dαu(x)|

when p = ∞, then Sobolev spaces Wm,p(Ω) is a Banach space.

When p = 2, the space Wm,2(Ω) is denoted by Hm(Ω), which equipped with the inner

product

⟨u, v⟩Hm(Ω) =
∑
|α|≤m

∫
Ω

Dαu(x)Dαv(x) dx

is a Hilbert space.

Let us denote by Wm,p
0 (Ω) the closure of C∞

0 (Ω) in Wm,p(Ω) relative to the norm of

the space Wm,p(Ω), i.e.

C∞
0 (Ω)

Wm,p(Ω)
= Wm,p

0 (Ω).

Whenever Ω is bounded at least in one direction xi of Rn, the norm of Wm,p
0 (Ω) is given by

∥u∥p
Wm,p

0 (Ω)
=
∑
|α|=m

∫
Ω

|Dαu(x)|p dx.
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We denote by W−m,q(Ω) the topological dual of Wm,p
0 (Ω), where 1 ≤ p <∞ and q is

the Hölder conjugated index of p3. We write H−m(Ω) to denote the topological dual of

Hm
0 (Ω).

Let X and Y be two normed vector spaces such that X ⊆ Y . If the inclusion map

i : x ∈ X 7→ x ∈ Y is continuous for every x ∈ X, then X is said to be continuously

embedded in Y and will be denoted X ↪→ Y .

Next, we aim to extend the definitions for the Hs spaces, with s ⩾ 0. We begin

by defining the Schwartz space, which is a subspace of L1 (Rn) that is invariant under

the Fourier transform. It consists of functions φ ∈ C∞ (Rn), which, along with all their

derivatives, decrease rapidly at infinity. That is, they decrease to zero at infinity faster

than any power of ∥x∥k. More precisely:

Definition 2.1.23 (Fourier transform). Let f ∈ L1 (Rn). The Fourier transform of f ,

denoted by f̂ , is a function defined on Rn by the formula

f̂(ξ) =

∫
Rn

e−2πi⟨x,ξ⟩f(x)dx, i =
√
−1,

where ⟨x, ξ⟩ =
∑n

i=1 xiξi is the usual inner product in Rn.

Since f ∈ L1(Rn), we note that f̂(ξ) is well defined for all ξ ∈ Rn. Indeed

|f̂(ξ)| ≤
∣∣∣∣∫

Rn

e−2πi⟨x,ξ⟩f(x)dx

∣∣∣∣ ≤ ∫
Rn

|f(x)|dx = ∥f∥L1(Rn).

Definition 2.1.24 (Schwartz space). Schwartz space, or the space of rapidly decreasing

functions, denoted by S, is the vector subspace formed by functions φ ∈ C∞ (Rn) such that

lim
∥x∥→∞

∥x∥kDαφ(x) = 0,

for any k ∈ N and α ∈ Nn.

We note that C∞
0 (Rn) is a dense subset of S, and for any 1 ⩽ p ⩽ ∞, we have

S ↪→ Lp(Rn).

3q is said to be the Hölder conjugated index of 1 ≤ p ≤ ∞ if 1
p + 1

q = 1
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Proposition 2.1.9 (Parseval relations). Let f, g ∈ S. Then, the following holds

∫
Rn

f̂(ξ)g(ξ)dξ =

∫
Rn

f(x)ĝ(x)dx

and ∫
Rn

fḡ =

∫
Rn

f̂ ĝ.

Proof. See Proposition 1.96 and Propositon 1.99 in (MEDEIROS; MIRANDA, 1989). ■

Corollary 2.1.2. Let f ∈ S. Then

∥f∥L2(Rn) = ∥f̂∥L2(Rn).

Proof. See Corollary 1.100 in (MEDEIROS; MIRANDA, 1989). ■

Theorem 2.1.13 (Plancherel theorem). There exists a unique isometric bijection

P : L2 (Rn) → L2 (Rn) ,

such that

P(f) = f̂ , ∀ f ∈ S.

Proof. See Theorem 1.101 in (MEDEIROS; MIRANDA, 1989). ■

Proposition 2.1.10. Let g ∈ S. Then

g(x) =

∫
Rn

e2πi⟨x,ξ⟩ĝ(ξ)dξ.

Proof. See Propositon 1.97 in (MEDEIROS; MIRANDA, 1989). ■

Definition 2.1.25 (Tempered Distribution). A linear functional T defined and continuous

on S is called a tempered distribution (or slowly increasing distribution). The set of all

tempered distributions, that is, the vector space of linear and continuous functionals on S,

is denoted by S ′.

We note that S ′ ⊂ D′(Rn).
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Definition 2.1.26. For any s ∈ R, s ⩾ 0, we define the Hs(Rn) space by

Hs (Rn) =
{
u ∈ S ′ (Rn) ;

(
1 + ∥x∥2

)s/2
û ∈ L2 (Rn)

}
,

endowed with the inner product

(u, v)Hs(Rn) =

∫
Rn

(
1 + ∥x∥2

)s
û(x)v̂(x)dx,

which turns Hs(Rn) into a Hilbert space.

Follows from the definition above that Hs (Rn) ↪→ L2 (Rn). Indeed, for u ∈ Hs (Rn),

we have

∥u∥2L2(Rn) = ∥û∥2L2(Rn) =

∫
Rn

|û(x)|2dx ≤
∫
Rn

(
1 + ∥x∥2

)s |û(x)|2dx = ∥u∥2Hs(Rn).

Theorem 2.1.14 (Sobolev embeddings). We have

(i) Hs ↪→ Ck for s > k + n
2
, k ∈ N0

(ii) Hs ↪→ Lp for s ≥ n
2
− n

p
, 2 ≤ p <∞

(iii) Lp ↪→ Hs for s ≤ n
2
− n

p
, 1 < p ≤ 2

(iv) L1 ↪→ Hs for s < −n
2
.

Proof. See Proposition 1.1.11 in (HERR, 2006). ■

Corollary 2.1.3. Let s ≥ 0 and assume that

s
[≤]
< s1, s2, s

[<]

≤ s1 + s2 −
n

2
.

Then, there exists c > 0 such that

∥u1u2∥Hs ≤ c ∥u1∥Hs1 ∥u2∥Hs2 , u1 ∈ Hs1 , u2 ∈ Hs2 .

In particular, Hs is a Banach algebra for s > n
2
, (see Theorem 2.1.17).

Proof. See Corollary 1.1.12 in (HERR, 2006). ■
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We will denote by Lp(0, T ;X), 1 ≤ p <∞, the space of Banach of (classes of) functions

u, defined in (0, T ) with values in X, that are strongly measurable and ∥u(t)∥pX is Lebesgue

integrable in (0, T ), with the norm

∥u(t)∥pLp(0,T ;X) =

∫ T

0

∥u(t)∥pX dt.

Furthermore, if p = ∞, L∞(0, T ;X) represents the Banach space of (classes of) functions u,

defined in (0, T ) with values in X, that are strongly measurable and ∥u(t)∥X has supreme

essential finite in (0, T ), with the norm

∥u(t)∥L∞(0,T ;X) = ess supt∈(0,T ) ∥u(t)∥X .

Remark 2.1.2. When p = 2 and X is a Hilbert space, the space L2(0, T ;X) is a Hilbert

space, whose inner product is given by

⟨u, v⟩L2(0,T ;X) =

∫ T

0

⟨u(t), v(t)⟩X dt.

Consider the space Lp(0, T ;X), 1 < p < ∞, with X being Hilbert separable space,

then we can associate the topological dual space

[Lp(0, T ;X)]′ ≃ Lq(0, T ;X ′),

where p and q are Hölder conjugated index. When p = 1, we will associate

[L1(0, T ;X)]′ ≃ L∞(0, T ;X ′).

Given a Banach space X. The vector space of linear and continuous maps of D(0, T )

on X is called the Space of Vector Distributions on (0, T ) with values in X and denoted

by D′(0, T ;X).

Given S ∈ D′(0, T ;X), inspired on the previous derivative of distribution, we define

the derivative of order m as being the vector distribution over (0, T ) with values in X

given for 〈
dmS

dtn
, φ

〉
= (−1)m

〈
S,

dnφ

dtn

〉
, for all φ ∈ D(0, T ).
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Let us consider the Banach space

Wm,p(0, T ;X) =
{
u ∈ Lp(0, T ;X) : u(j) ∈ Lp(0, T,X), j = 1, . . . ,m

}
,

where u(j) represents the j−th derivative of u in the sense of distributions and the space

is endowed with the norm

∥u∥pWm,p(0,T ;X) =
m∑
j=0

∥u(j)∥pLp(0,T ;X).

When p = 2 and X is a Hilbert space, the space Wm,2(0, T ;X) will be denoted by

Hm(0, T ;X), which, equipped with the inner product

⟨u, v⟩Hm(0,T ;X) =
m∑
j=0

⟨u(j), v(j)⟩L2(0,T ;X),

is a Hilbert space. It is denoted by Hm
0 (0, T ;X) the closure, in Hm(0, T ;X), of D(0, T ;X)

and by H−m(0, T ;X) the topological dual of Hm
0 (0, T ;X).

2.1.2.1 Periodic Distributions

Here, we shall introduce a class of generalized functions specially suited for the study

of Fourier series and differential equations provided with periodic boundary conditions, as

well as study their basic properties. We have been guided by (IORIO JÚNIOR; IORIO,

2001).

Definition 2.1.27. A function f : R → C is said to be periodic with period T ̸= 0 if

f(x+ T ) = f(x) ∀x ∈ R.

Remark 2.1.3. Note that if T is a period for f then, for any n ∈ Z\{0}, nT is also a

period for f . In particular, since −T is a period, we can assume, without loss of generality,

that T > 0. If f is constant, then f is periodic with any period. If f is continuous4

and nonconstant, then there exists a smallest period T > 0; in this case, T is called the

fundamental period of f .

4This condition can be weakened but some condition is necessary. For instance, the function that is
zero on the rationals and 1 elsewhere is periodic but does not have a fundamental period.
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We shall denote by P = C∞
per the collection of all the functions φ : R → C which are

C∞ and periodic with period 2π. Space P is a vector subspace of Cn
per for all n ∈ N. Also,

we shall denote by PCn
per ([−ℓ, ℓ]) the set of all functions f ∈ PCper ([−ℓ, ℓ]) such that there

exists a partition −ℓ = x0 < x1 < . . . < xm = ℓ of the interval [−ℓ, ℓ] with f ∈ Cn (xj, xj+1)

for all j = 0, 1, . . . ,m− 1 and f (k) ∈ PCper ([−ℓ, ℓ]) for all k = 1, . . . ,m. We will also use

the notation PC∞
per ([−ℓ, ℓ]) for the set of functions that belong to PCn

per ([−ℓ, ℓ]) for all

n ∈ Z+.

In what follows, we introduce the Fourier transform in the context of periodic functions.

Definition 2.1.28. Let f ∈ PCper . The Fourier transform of f is the complex sequence

Ff = f̂ = (f̂(k))k∈Z defined by

(Ff) (k) = f̂(k) = ck =
1

2π

∫ π

−π
f(x)e−ikxdx.

The numbers f̂(k) = ck are the Fourier coefficients of f and the series

∞∑
k=−∞

cke
ikx =

∞∑
k=−∞

ck exp(ikx)

is the Fourier series generated by f .

Definition 2.1.29. The space of rapidly decreasing sequences, denoted by S (Z), is the

set of all complex-valued sequences α = (αk)k∈Z such that

∞∑
k=−∞

|k|j |αk| <∞ ∀j ∈ N.

Proposition 2.1.11. α = (αk)k∈Z ∈ P(Z) if and only if

∥α∥∞,j = sup
k∈Z

(
|αk| |k|j

)
<∞ ∀j ∈ N.

Proof. See Proposition 3.4 in (IORIO JÚNIOR; IORIO, 2001). ■

Definition 2.1.30. Let α = (αk)k∈Z ∈ S (Z). The inverse Fourier transform of α is the

function
∨
α (x) =

(
F−1α

)
(x) =

∞∑
k=−∞

αke
ikx, x ∈ R.
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Theorem 2.1.15. The Fourier transform ∧ : P → S (Z) is an isomorphism and a

homeomorphism, that is, it is linear, one to one, onto S (Z), and continuous with a

continuous inverse.

Proof. See Theorem 3.6 in (IORIO JÚNIOR; IORIO, 2001). ■

Proposition 2.1.12. Let f, g ∈ Cper . Then (̂Ttf)(k) = e−iktf̂(k) and

(Ttf) ∗ g = Tt(f ∗ g) = f ∗ (Ttg) .

Proof. See Proposition 3.7 in (IORIO JÚNIOR; IORIO, 2001). ■

Proposition 2.1.13. Let φ ∈ P and g ∈ Cper , then

(i) t−1 (T−tφ− φ)
B−→ φ′ as t→ 0,

(ii) φ ∗ g ∈ P and (φ ∗ g)(j) = φ(j) ∗ g, j = 0, 1, 2 . . . Moreover, if (gn)
∞
n=1 ⊂ Cper is such

that ∥gn − g∥∞ → 0 as n→ ∞ then limn→∞ φ ∗ gn = φ ∗ g in P, i.e.,

∥∥∥(φ ∗ gn)(j) − (φ ∗ g)(j)
∥∥∥
∞

→ 0 ∀j ∈ N.

Proof. See Proposition 3.8 in (IORIO JÚNIOR; IORIO, 2001). ■

Definition 2.1.31 (Periodic Distribution). A linear functional on P, T : P → C, is

called a periodic distribution if there exists a sequence (Ψn)n⩾1 ⊂ P such that

T (φ) = ⟨T, φ⟩ = lim
n→∞

∫ π

−π
Ψn(x)φ(x)dx∀φ ∈ P.

The set of all periodic distributions will be denoted by P ′, which is a complex vector

space.

Proposition 2.1.14. Let f ∈ Cper . Then the formula

⟨Tf , φ⟩ =
∫ π

−π
f(x)φ(x)dx, φ ∈ P,

defines a periodic distribution Tf . The map f ∈ Cper 7→ Tf ∈ P ′ is linear, one to

one and continuous in the sense that if (fn)
∞
n=1 ⊂ Cper converges uniformly to f then

⟨Tfn , φ⟩ → ⟨Tf , φ⟩ for all φ ∈ P.
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Proof. See Proposition 3.17 in (IORIO JÚNIOR; IORIO, 2001). ■

Before proceeding we shall introduce a notion of convergence in P ′.

Definition 2.1.32. We will say that a sequence (Tn) ⊂ P ′ converges to T ∈ P ′ if

⟨Tn, φ⟩ → ⟨T, φ⟩ as n→ ∞ ∀φ ∈ P.

In this case we will write Tn
P′
−→ T .

Now we shall extend certain fundamental operations to P ′, thereby generalizing usual

calculus to our context of periodic distributions.

Proposition 2.1.15. Let f ∈ PC1
per and let −π = x0 < x1 < · · · < xn = π be a partition

of the interval [−π, π] such that f ∈ C1 (xj, xj+1) for all j = 0, 1, . . . , n− 1. If we denote

by df
dx

the classical derivative of f , then its distributional derivative f ′ is given by

f ′ =
df

dx
+

n∑
j=1

[
f
(
x+j
)
− f

(
x−j
)]
δxj .

Proof. See Proposition 3.32 in (IORIO JÚNIOR; IORIO, 2001). ■

Theorem 2.1.16. Every periodic distribution is a continuous linear functional on P.

Proof. See Theorem 3.143 in (IORIO JÚNIOR; IORIO, 2001). ■

We shall further give a precise meaning to the notion that Sobolev spaces provide a

classification of the elements of P ′ in terms of their smoothness.

Definition 2.1.33. Let s ∈ R. The Sobolev space Hs
per = Hs

per ([−π, π]) is the set of all

f ∈ P ′ such that

∥f∥2s =
∞∑

k=−∞

(
1 + |k|2

)s |f̂(k)|2 <∞. (2.4)

That is, a periodic distribution f belongs to Hs
per if and only if

((
1 + |k|2

)s/2
f̂(k)

)
k∈Z

∈ ℓ2 = ℓ2(Z).
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We shall denote by ℓ2s = ℓ2s(Z) the space of all sequences α = (xk)k∈Z with

∥α∥ℓ2s =

[
∞∑

k=−∞

(
1 + |k|2

)s |αk|2]1/2 .
Thus f ∈ Hs

per if and only if (f̂(k))k∈Z ∈ ℓ2s; in this case, ∥f∥s = ∥f̂∥ℓ2s . For all s ∈ R, Hs
per

is a Hilbert space with respect to the inner product

(f, g)s =
∞∑

k=−∞

(
1 + |k|2

)s
f̂(k)ĝ(k). (2.5)

In the case s = 0, we obtain a Hilbert space that is isometrically isomorphic to L2([−π, π]).

In what follows, H0
per will often be denoted by L2

per .

Proposition 2.1.16. Let s, r ∈ R, s ⩾ r. Then Hs
per ↪→ Hr

per , that is, Hs
per is continuously

and densely embedded in Hr
per and

∥f∥r ⩽ ∥f∥s∀f ∈ Hs
per . (2.6)

In particular, if s ⩾ 0, Hs
per ⊂ L2([−π, π]). Moreover,

(
Hs

per

)′, the topological dual of

Hs
per , is isometrically isomorphic to H−s

per for all s ∈ R. The duality is implemented by the

pairing

⟨f, g⟩s =
∞∑

k=−∞

f̂(k)ĝ(k), f ∈ H−s
per, g ∈ Hs

per. (2.7)

Proof. This proof follows (IORIO JÚNIOR; IORIO, 2001). We have

0 ⩽
(1 + |k|2)r

(1 + |k|2)s
⩽ 1,

whenever s ⩾ r. This implies (2.6). Indeed,

∥f∥2r =
∞∑

k=−∞

(
1 + |k|2

)r |f̂(k)|2 = ∞∑
k=−∞

(1 + |k|2)r

(1 + |k|2)s
(
1 + |k|2

)s |f̂(k)|2 ⩽ ∥f∥2s.

It follows that Hs
per is continuously embedded in Hr

per . Next, since P ⊂ Hs
per for all

s ∈ R, to show that the embedding is dense, it is enough to show that P is dense in Hr
per .

Given g ∈ Hr
per let gn be defined by ĝn(k) = ĝ(k) if |k| ⩽ n, ĝn(k) = 0 otherwise. Then
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gn ∈ P and

∥g − gn∥2r =
∞∑

k=−∞

(
1 + |k|2

)r |ĝ(k)− ĝn(k)|2 =
∑
|k|>n

(
1 + |k|2

)r |ĝ(k)|2 → 0,

as n → ∞ since g ∈ Hr
per . If f ∈ H−s

per , it is clear that (2.7) defines a continuous linear

functional on Hs
per . Conversely, if ψ : Hs

per → C is a continuous linear functional on Hs
per ,

by the Riesz lemma there exists a unique φ ∈ Hs
per such that

⟨ψ, g⟩ = (g, φ)s =
∑
k∈Z

(
1 + k2

)s
ĝ(k)φ̂(k)

=
∑
k∈Z

ĝ(k)(1 + k2)s φ̂(k), ∀g ∈ Hs
per.

Since φ ∈ Hs
per ,

(
(1 + k2)

s/2
φ̂(k)

)
k∈Z

∈ ℓ2, so the periodic distribution f ∈ P ′ satisfying

f̂(k) = (1 + k2)
s/2
(
(1 + k2)s/2 φ̂(k)

)
belongs to H−s

per and

⟨ψ, g⟩ =
∑
k∈Z

ĝ(k)f̂(k) = ⟨f, g⟩s, ∀g ∈ Hs
per

■

Proposition 2.1.17. Let m ∈ N. Then f ∈ Hm
per if and only if ∂jf = f (j) ∈ L2

per , j ∈

{0, 1, 2, . . . ,m} where the derivatives are taken in the sense of P ′. Moreover, ∥f∥m and

|||f |||2m =

[
m∑
j=0

∥∥∂jf 2
0

∥∥]1/2 , (2.8)

are equivalent, that is, there are positive constants Cm and C ′
m such that

Cm∥f∥2m ⩽ |||f |||2m ⩽ C ′
m∥f∥2m, ∀f ∈ Hm

per.

Proof. See Proposition 3.194 in (IORIO JÚNIOR; IORIO, 2001). ■

Lemma 2.1.2 (Sobolev’s lemma). If s > 1
2
, then Hs

per ↪→ Cper and

∥f∥∞ ⩽ ∥f̂∥ℓ1 ⩽ C∥f∥s ∀f ∈ Hs
per. (2.9)

Proof. See Theorem 3.195 in (IORIO JÚNIOR; IORIO, 2001). ■
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Let f, g ∈ Hs
per , s >

1
2
. Due to Sobolev’s lemma 2.1.2 we may define the product

fg ∈ Cper ⊂ P ′ by the formula

⟨fg, φ⟩ =
∫ π

−π
f(x)g(x)φ(x)dx∀φ ∈ P. (2.10)

The important point about this product is that it turns Hs
per , for s > 1

2
, into a Banach

algebra.

Definition 2.1.34 (Banach algebra). A Banach algebra is a Banach space X together

with a product (x, y) ∈ X ×X 7→ xy ∈ X such that, for all x, y, z ∈ X and for all s, r ∈ C,

(i) (xy)z = x(yz),

(ii) r(xy) = (rx)y = x(ry),

(iii) (x+ y)z = xz + yz and x(y + z) = xy + xz,

(iv) ∥xy∥ ⩽ ∥x∥∥y∥.

Lemma 2.1.3. Let a, b ∈ [0,∞) and s ⩾ 0. Then there are positive constants ms and Ms

depending only on s such that

ms (a
s + bs) ⩽ (a+ b)s ⩽Ms (a

s + bs) . (2.11)

Proof. See Lemma 3.197 in (IORIO JÚNIOR; IORIO, 2001). ■

Definition 2.1.35. Let α = (αk)k∈Z and β = (βk)k∈Z be two sequences of complex numbers.

The convolution of α and β is the sequence α ∗ β defined by

(α ∗ β)k =
∞∑

j=−∞

αjβk−j, (2.12)

whenever the right hand side of this equality makes sense.

Proposition 2.1.18. Let α ∈ ℓ1 = ℓ1(Z) and β ∈ ℓ2 = ℓ2(Z). Then α ∗ β ∈ ℓ2 and

∥α ∗ β∥ℓ2 ⩽ ∥α∥ℓ1∥β∥ℓ2 . (2.13)

In particular, for every fixed α ∈ ℓ1, the map β 7−→ α ∗ β defines a bounded linear operator

from ℓ2 into itself.
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Proof. See Proposition 3.199 in (IORIO JÚNIOR; IORIO, 2001). ■

Theorem 2.1.17 (Banach algebra). If s > 1
2
, Hs

per is a Banach algebra. In particular,

there exists a constant Cs ⩾ 0 depending only on s such that

∥fg∥s ⩽ Cs∥f∥s∥g∥s, ∀f, g ∈ Hs
per. (2.14)

Proof. Following (IORIO JÚNIOR; IORIO, 2001), consider s > 1
2
. The Fourier series of a

function in Hs
per converges absolutely and uniformly over [−π, π]. Therefore, if f, g ∈ Hs

per ,

(̂fg)(k) =
1

2π

∫ π

−π
f(x)g(x)e−ikxdx

=
1

2π

∫ π

−π

(
∞∑

j=−∞

f̂(j)eijx

)
g(x)e−ikxdx

=
1

2π

∫ π

−π

∞∑
j=−∞

f̂(j)

∫ π

−π
g(x)e−i(k−j)xdx

=
∞∑

j=−∞

f̂(j)ĝ(k − j).

(2.15)

From Lemma 2.1.3, we have

(
1 + |k|2

)s/2
⩽ Ks (1 + |k|s) ⩽ Ks (1 + |k − j|s + |j|s) ∀k, j ∈ Z,

where Ks is a nonnegative constant. Therefore,

(
1 + |k|2

)s/2 ∣∣∣∣∣
∞∑

j=−∞

f̂(j)ĝ(k − j)

∣∣∣∣∣
⩽ Ks

∣∣∣∣∣
∞∑

j=−∞

[(1 + |k − j|s + |j|s)] f̂(j)ĝ(k − j)

∣∣∣∣∣
⩽ Ks

∞∑
j=−∞

{
|f̂(j)ĝ(k − j)|+ |f̂(j)| |(k − j)sĝ(k − j)|+

∣∣∣jsf̂(j)∣∣∣ |ĝ(k − j)|
}
.

Since
(
msf̂(m)

)
m∈Z

, (msĝ(m))m∈Z ∈ ℓ2 and (f̂(m))m∈Z, (ĝ(m))m∈Z ∈ ℓ1 ∩ ℓ2,

Proposition 2.1.18 combined with (2.15) shows that

((
1 + |k|2

)s/2 ∣∣∣∣∣
∞∑

j=−∞

f̂(j)ĝ(k − j)

∣∣∣∣∣
)
k∈Z

∈ ℓ2



2.1. Basic Theory 43

and

∥fg∥2s =
∞∑

k=−∞

(
1 + |k|2

)s/2 |f̂ g(k)|2
=

∞∑
k=−∞

(
1 + |k|2

)s/2 ∣∣∣∣∣
∞∑

j=−∞

f̂(j)ĝ(k − j)

∣∣∣∣∣
⩽ Ks

[
∥f̂∥ℓ1∥ĝ∥l2 + ∥(·)sĝ(·)∥ℓ1 ∥f̂∥l2 +

∥∥∥(·)sf̂(·)∥∥∥
l1
∥ĝ∥ℓ2

]
⩽ Cs∥f∥s∥g∥s,

which finishes the proof. ■

2.1.3 Classical Remarkable Results

Now, we shall present a series of classical results that will be used throughout this

master’s thesis. The proofs of these results will be omitted (see (ADAMS, 1975; BREZIS,

2011) and references therein).

Lemma 2.1.4 (Young’s Inequality). Let a and b be positive constants, 1 ≤ p, q ≤ ∞, such

that p and q are Hölder conjugated index. Then

ab ≤ ap

p
+
bq

q
.

Moreover, for all ε > 0,

ab ≤ εap + C(ε)bq.

Proof. See proof of Theorem 4.6 in (BREZIS, 2011) or see Appendix B, letters c and d in

(EVANS, 2010). ■

Lemma 2.1.5 (Gronwall’s Inequality - differential form). Let u(t) be a non-negative

differentiable function on [0, T ], satisfying

u′(t) ≤ f(t)u(t) + g(t)

where f(t) and g(t) are integrable functions over [0, T ]. Then,

u(t) ≤ e
∫ t
0 f(τ)dτ

[
u(0) +

∫ t

0

g(s)e−
∫ s
0 f(τ)dτ ds

]
, ∀t ∈ [0, T ].
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If f(t) and g(t) are non-negative functions, then the expression becomes

u(t) ≤ e
∫ t
0 f(τ)dτ

[
u(0) +

∫ t

0

g(s)ds

]
, ∀t ∈ [0, T ].

Proof. See Appendix B, letter j in (EVANS, 2010). ■

Lemma 2.1.6 (Gronwall’s Inequality - integral form). Let u(t) be a nonnegative, summable

function on [0, T ] which satisfies for a.e. t the integral inequality

u(t) ≤ C1

∫ t

0

u(s)ds+ C2

for constants C1, C2 ≥ 0. Then

u(t) ≤ C2

(
1 + C1te

C1t
)

for a.e. 0 ≤ t ≤ T.

In particular, if

u(t) ≤ C1

∫ t

0

u(s)ds

for a.e. 0 ≤ t ≤ T , then

u(t) = 0 a.e.

Proof. See Appendix B, letter k in (EVANS, 2010). ■

Lemma 2.1.7 (Hölder’s Inequality). Let f ∈ Lp(Ω) and g ∈ Lq(Ω), consider 1 ≤ p, q ≤ ∞

such that p and q are Hölder conjugated. Then fg ∈ L1(Ω) and

∥fg∥L1(Ω) =

∫
Ω

|fg| ≤ ∥f∥Lp(Ω)∥g∥Lq(Ω).

Proof. See Theorem 4.6 in (BREZIS, 2011). ■

Lemma 2.1.8 (Generalized Hölder’s Inequality). Let fj ∈ Lpj (Ω) for 0 ≤ j ≤ k such that
1
p
=
∑k

j=1
1
pk

≤ 1. Then f1 . . . fk ∈ Lp(Ω) and yields that

∥f1 . . . fk∥Lp(Ω) ≤ ∥f1∥Lp1 (Ω) . . . ∥fk∥Lpk (Ω).

Proof. See Remark 2 of Theorem 4.6 in (BREZIS, 2011). ■
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Lemma 2.1.9 (Poincaré-Friedrichs inequality). Let Ω be a bounded open subset of Rn,

then for every 1 ≤ p <∞ there exists a constant C = C(Ω, p) > 0, such that

∥u∥Lp(Ω) ≤ C∥∇u∥Lp(Ω), ∀u ∈ W 1,p
0 (Ω).

Proof. See Proposition 8.13 in (BREZIS, 2011). ■

Remark 2.1.4. Poincaré’s inequality remains true if Ω has a finite measure and also if Ω

has a bounded projection on some axis.

Lemma 2.1.10 (Peetre inequality). For any s ∈ R,

⟨x− y⟩s ≤ Cs⟨x⟩s⟨y⟩|s| for s ∈ R,

with a positive constant Cs, where

⟨x⟩ =
(
1 + |x|2

) 1
2 ,

and its powers ⟨x⟩s, s ∈ R.

Proof. See Lemma 6.7 in (GRUBB, 2008). ■

Theorem 2.1.18 (Aubin-Lions). Let X0, X and X1 be Banach spaces such that X0 ⊂

X ⊂ X1 with X0 compactly embedded in X and X ↪→ X1. Suppose that 1 < p, q ≤ ∞ and

W = {u ∈ Lp([0, T ];X0) : ut ∈ Lq([0, T ];X1)} .

(i) If p <∞ then W is compactly embedded into Lp([0, T ], X).

(ii) If p = ∞ and q > 1 then W ↪→ C([0, T ];X) is compact.

Proof. See Theorem II.5.16 in (BOYER; FABRIE, 2013). ■

Proposition 2.1.19. If V is a Banach space and v ∈ Lp(0, T, V ), with 1 ⩽ p ⩽ +∞, then

for any h > 0 the function given by

v[h](x, t) =
1

h

∫ t+h

t

v(x, s)ds,

satisfies
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(i) v[h] ∈ W 1,p(0, T − h;V ),

(ii)
∥∥v[h]∥∥

Lp(0,T−h;V )
⩽ ∥v∥Lp(0,T ;V ),

(iii) v[h] → v in Lp (0, T ′;V ), as h→ 0, for p <∞ and T ′ < T .

Proof. See Proposition 1.4.29 in (CAZENAVE; HARAUX, 1998). ■

Theorem 2.1.19 (Banach’s fixed point theorem.). Let X be a complete metric space and

F : X → X be a contraction. Then F is continuous and there exists a unique point x0 ∈M

such that F (x0) = x0.

Proof. See Proposition 23, Chapter 7 in (LIMA, 2020) or see Theorem 24.16 in (WILLARD,

2004). ■

Fixed-point theorems, such as the one given above, are useful in proving certain

existence theorems in differential and integral equations. In our case, we shall use this

theorem for well-posedness issues.

2.1.4 Semigroup Theory

The semigroup theory provides a framework for analyzing the time evolution of systems

described by PDEs, conducting mainly existence and uniqueness issues through the

properties of operators. Consequently, some definitions and results will be presented. The

results contained here can be found in (PAZY, 1983). In the sequel, we will denote by

(X, ∥ · ∥X) a Banach space.

Definition 2.1.36. A one parameter family T (t), 0 ≤ t <∞, of bounded linear operators

from X into X is a semigroup of a bounded linear operator on X if

(i) T (0) = I, where I is the identity operator on X;

(ii) T (t+ s) = T (t)T (s), for all t, s ≥ 0;

A semigroup of a bounded linear operator T (t) is uniformly continuous if

lim
t→0+

∥(T (t)− I)x∥X = 0, ∀x ∈ X.
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The linear operator A is defined by

D(A) =

{
x ∈ X : lim

t→0+

T (t)x− x

t
exists

}

and

Ax = lim
t→0+

T (t)x− x

t
=

d+T (t)x

dt

∣∣∣∣
t=0

for x ∈ D(A)

is the infinitesimal generator of the semigroup T (t), D(A) is the domain of A.

Corollary 2.1.4. Let T (t) be a uniformly continuous semigroup of a bounded linear

operator. Then

(i) There exists a constant ω ≥ 0 such that ∥T (t)∥ ≤ eωt.

(ii) There exists a unique bounded linear operator A such that T (t) = etA.

(iii) The operator A defined in item (b) is the infinitesimal generator of T (t).

(iv) The application t 7→ T (t) is differentiable in norm and

dT (t)

dt
= AT (t) = T (t)A.

Proof. See Corollary 1.4, Chapter 1 in (PAZY, 1983). ■

Definition 2.1.37. A semigroup T (t), 0 ≤ t <∞, of bounded linear operators on X is a

strongly continuous semigroup of a bounded linear operator if

lim
t→0+

T (t)x = x, ∀x ∈ X.

A strongly continuous semigroup of a bounded linear operator on X will be called a

semigroup of class C0 or simply a C0-semigroup.

Theorem 2.1.20. Let T (t) be a C0 semigroup. There exists constants ω ≥ 0 and M ≥ 1

such that

∥T (t)∥ ≤Meωt, 0 ≤ t <∞.

Proof. See Theorem 2.2, Chapter 1 in (PAZY, 1983). ■



2.1. Basic Theory 48

Corollary 2.1.5. If A is the infinitesimal generator of a C0 semigroup T (t) then D(A),

the domain of A, is dense in X and A is a closed linear operator.

Proof. See Corollary 2.5, Chapter 1 in (PAZY, 1983). ■

2.1.4.1 A Theorem That Generate Group

Definition 2.1.38. If, in Definition 2.1.36 instead of t ∈ [0,∞) we consider t ∈ R and,

as well, in the limits there, instead of t → 0+, we consider here t → 0, T (t) is called a

group instead of semigroup.

Definition 2.1.39. We say that an operator A ∈ L(H), where H is a Hilbert space, is

unitary if A is invertible and A∗ = A−1.

Definition 2.1.40. We say that a group T of bounded linear operators on a Hilbert space

H is a unitary group if, for each t ≥ 0, T (t) is a unitary operator, that is, T (t)∗ = T (t)−1

for all t ⩾ 0.

Theorem 2.1.21 (Stone’s theorem). A linear operator A on a Hilbert space H is the

infinitesimal generator of a unitary C0 group if and only if A∗ = −A.

Proof. See Theorem 10.8, Chapter 1 in (PAZY, 1983). ■

Remark 2.1.5. Unitary operators are isometries. Therefore, we can reformulate Stone’s

theorem as follow: A linear operator A on a Hilbert space H generates a group of isometries

if and only if A is skew-adjoint.

2.1.4.2 The Abstract Cauchy Problem

Let X be a Banach space and let A : D(A) ⊂ X → X be a linear operator. Given

x ∈ X, the abstract Cauchy problem for A with initial data x consists of finding a solution

u(t) to the initial value problem (I.V.P.)


du(t)

dt
= Au(t), t > 0,

u(0) = x.

(2.16)

Now, let us introduce a notion of a solution to the problem (2.16).
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Definition 2.1.41 (Classical solution). By a classical solution of (2.16) we mean a

function u : R+ → Xsuch that u(t) is continuous for all t ≥ 0, continuously differentiable

and u(t) ∈ D(A) for all t > 0 that satisfies (2.16).

Remark 2.1.6. We want to empathize on two points about the classical solutions:

• Note that since u(t) ∈ D(A) for t > 0 and u is continuous at t = 0, (2.16) cannot

have solution for x ̸∈ D(A).

• It is clear that if A is the infinitesimal generator of a C0 semigroup T (t), the abstract

Cauchy problem for A has a solution, namely u(t) = T (t)x, for every x ∈ D(A).

Moreover, it is not difficult to show that this is the only solution of (2.16).

We turn our attention to the non-homogeneous abstract Cauchy problem


du(t)

dt
= Au(t) + f(t), t > 0,

u(0) = x.

(2.17)

where f : [0, T ) → X. We suppose that A is the infinitesimal generator of a C0 semigroup

T (t) with corresponding homogeneous equation (2.16) has a unique solution for every

initial value x ∈ D(A).

Definition 2.1.42 (Classical solution). A function u : [0, T ) → X is a classical solution

of (2.17) on [0, T ) if u is continuous on [0, T ), continuously differentiable on (0, T ),

u(t) ∈ D(A) for 0 < t < T and (2.17) is satisfied for all t ∈ [0, T ).

Suppose that u(t) is a classical solution of (2.17). Then g(s) = T (t− s)u(s) is differen-

tiable for 0 < s < t and

dg

ds
= −AT (t− s)u(s) + T (t− s)

du

ds
= T (t− s)f(s).

Hence, If f ∈ L1(0, T ;X) then S(t− s)f(s) is integrable on [0, t] and integrating from 0

to t yields5

u(t) = T (t)x+

∫ t

0

T (t− s)f(s) ds. (2.18)

5The representation of solution (2.18) is known also Duhamel’s formula
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Corollary 2.1.6. If f ∈ L1(0, T ;X) then for every x ∈ X the initial value problem (2.17)

has at most one solution. If it has a solution, this is given by (2.18)

Proof. See Corollary 2.2, Chapter 4 in (PAZY, 1983). ■

For every f ∈ L1(0, T ;X) the right-hand side of (2.18) is a continuous function on

[0, T ). It is natural to consider it as a generalized solution of (2.17) even if it is not

differentiable and does not strictly satisfy the equation in the classical sense. Therefore we

define,

Definition 2.1.43. Let x ∈ X and f ∈ L1(0, T ;X). The function u ∈ C([0, T ];X) given

by

u(t) = T (t)x+

∫ t

0

T (t− s)f(s)ds, 0 ≤ t ≤ T,

is the mild solution of the non-homogeneous Cauchy problem (2.17) on [0, T ].

The definition of a mild solution of the abstract Cauchy problem (2.17) coincides when

f ≡ 0 with the definition of T (t)x as the mild solution of the corresponding homogeneous

equation. Moreover, not every mild solution of (2.17) is indeed a (classical) solution even

in the case f ≡ 0.

Next, let us present another notion of solution to the abstract Cauchy problem (2.17)

Definition 2.1.44 (Strong solution). A function u which is differentiable almost everywhere

on [0, T ] such that du
dt

∈ L1([0, T ];X) is called a strong solution of the abstract Cauchy

problem (2.17) if u(0) = x and

du(t)

dt
= Au(t) + f(t),

almost everywhere on [0, T ].

Notice that if A = 0 and f ∈ L1([0, T ];X), the abstract Cauchy problem (2.17) has

usually no solution unless f ∈ C([0, T ];X). However, (2.17)has always a strong solution

given by

u(t) = u(0) +

∫ t

0

f(s)ds.

Furthermore, if u is a strong solution of (2.17) and f ∈ L1([0, T ];X), can be showed that

u is a mild solution as well.
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Finally, we deal with the nonlinear case. Consider the initial value problem


du(t)

dt
+ Au(t) = f(t, u(t)), t > t0,

u(t0) = u0.

(2.19)

where −A is the infinitesimal generator of a C0 semigroup T (t), t ≥ 0, on a Banach space

X and f : [t0, T ]×X → X is a continuous in t and satisfies the Lipschitz condition6 on u.

By the aforementioned arguments can be established a solution u that satisfies the integral

equation

u(t) = T (t− t0)u0 +

∫ t

t0

T (t− s)f(s, u(s)) ds,

which means that is a mild solution. Consequently, we have the following classical result

which assures the existence and uniqueness of these mild solutions

Theorem 2.1.22. Let f : [t0, T ] × X → X be continuous in t on [t0, T ] and uniformly

Lipschitz continuous (with constant L) on X. If −A is the infinitesimal generator of a C0

semigroup T (t), t ≥ 0, on X then for every u0 ∈ X, the abstract Cauchy problem (2.19)

has a unique mild solution u ∈ C([t0, T ];X). Moreover, the mapping u0 7→ u is Lipschitz

continuous from X into C([t0, T ];X).

Proof. See Theorem 1.2, Chapter 6 in (PAZY, 1983). ■

Additionally, can be spotlighted some points

• If u0, v0 ∈ X are initial data and u, v are its respective mild solutions of (2.19), then

∥u(t)− v(t)∥X ≤MeLMt∥u0 − v0∥X .

• If u0 ∈ D(A), then u is a strong solution of (2.19) on [t0, T ], for T > t0.

6We said that f : [t0, T ]×X → X satisfies the Lipschitz condition if there exists L > 0 such that

∥f(·, u)− f(·, v)∥X ≤ L∥u− v∥X , ∀u, v ∈ X.
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2.2 Some Classical Concepts About Control and Stabilization

Here, we present some definitions, tools, as well as techniques that will be useful for

the core of manuscript, the final chapter. They are inspired in (LIONS, 1988; RUSSELL,

1978; ZUAZUA, 2006; SLOTINE; LI, 1991; CORON, 2007; SLEMROD, 1974).

2.2.1 Control for Finite-Dimensional Linear Systems

Some essential concepts of control and stabilization come from finite dimensional

systems (ODE) and after generalization in some sense to infinite dimensional systems

(PDE). Therefore, let us consider m,n ∈ N∗, T > 0 and the finite-dimensional system

x
′(t) = Ax(t) +Bu(t), 0 < t < T,

x(0) = x0,

(2.20)

where m ≤ n, A is a real n × n matrix, B is a real n × m matrix and x0 ∈ Rn. The

function x : [0, T ] → Rn represents the state and u : [0, T ] → Rm are called the control.

The most desirable goal is, of course, controlling the system using a minimum number of

m of controls.

Note that, by the variations of constants formula, if u ∈ L2(0, T ;Rm), (2.20) has a

unique solution x ∈ H1(0, T ;Rn) given by

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s) ds, ∀t ∈ [0, T ]. (2.21)

Definition 2.2.1. We said (2.20) is exactly controllable in time T > 0 if given any initial

and final data x0, x1 ∈ Rn there exists u ∈ L2(0, T ;Rm) such that the solution (2.21)

of (2.20) satisfies x(T ) = x1.

• The aim of the control consists in driving the solution from the initial data x0 to the

final one x1 in time T by acting on the system through the control u.

• It is desirable to make the number of controls m to be as small as possible. However,

this may affect the control properties of the system.

By making a variable change, can we consider x1 = 0, this motivates the following
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definition

Definition 2.2.2. We said (2.20) is null controllable in time T > 0 if given any initial

data x0 ∈ Rn there exists u ∈ L2(0, T ;Rm) such that the solution (2.21) of (2.20) satisfies

x(T ) = 0.

Remark 2.2.1. Exact and null controllability are equivalent properties in the case of finite

dimensional linear systems. But this is not necessarily the case for nonlinear systems, or,

for strongly time-irreversible infinite dimensional systems.

2.2.2 Control as a Minimization Problem

Let us introduce the homogeneous adjoint system of (2.20)

−φ′ = A∗φ, 0 < t < T,

φ(T ) = φT ,

(2.22)

where A∗ denotes the adjoint matrix of A. Next, by the adjoint properties, we have a

characterization for the exact controllability property,

Lemma 2.2.1. An initial data x0 ∈ Rn of (2.20) is driven to zero in time T by using a

control u ∈ L2(0, T ) if and only if

∫ T

0

⟨u,B∗φ⟩ dt+ ⟨x0, φ(0)⟩ = 0 (2.23)

for any φT ∈ Rn, φ being the solution of the adjoint system (2.22)

Proof. See Lemma 2.1.1 in (ZUAZUA, 2006). ■

Moreover, (2.23) is an optimality condition for the critical points of the functional

J : Rn → Rn,

J(φT ) =
1

2

∫ T

0

|B∗φ|2 dt+ ⟨x0, φ(0)⟩

with φ the solution of the adjoint system (2.22) with initial data φT at time t = T . More

precisely,
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Lemma 2.2.2. Suppose that J has a minimizer φ̂T ∈ Rn and let φ̂ be the solution of the

adjoint system (2.22) with initial data φ̂T . Then

u = B∗φ̂

is a control of system (2.20) with initial data x0.

Proof. See Lemma 2.1.2 in (ZUAZUA, 2006). ■

Lemma 2.2.2 gives a variational method to obtain the control7 as a minimum of the

functional J . Remark that J is continuous. Therefore, the existence of a minimum is

ensured if J is coercive too, that is,

lim
|φT |→∞

J(φT ) = ∞. (2.24)

The coercivity of J , (2.24), follows from the next concept named as observability,

Definition 2.2.3. We said that (2.22) is observable in time T > 0 if there exists C > 0

such that ∫ T

0

|B∗φ|2 dt ≥ C|φ(0)|2, ∀φT ∈ Rn, (2.25)

where φ being the solution of (2.22).

Remark 2.2.2. The observability inequality (2.25) is equivalent to the following assertion:

there exists C > 0 such that

∫ T

0

|B∗φ|2 dt ≥ C|φT |2, ∀φT ∈ Rn, (2.26)

where φ being the solution of (2.22).

Finally, the next theorem ensures that the exact controllability can be reduced to the

study of observability.

Theorem 2.2.1. The system (2.20) is exactly controllable in time T if and only if

(2.22) is observable in time T .

Proof. See Theorem 2.1.1 in (ZUAZUA, 2006). ■
7This is not the unique possible functional allowing to build the control.
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2.2.3 A Feedback Stabilization Problem

In a practical context, the stabilization problem for a system can be defined as finding

a mechanism that ensures the system’s state remains close to a desired point over time.

Controllability is often a prerequisite for stabilization. If a system is not controllable, it may

be impossible to design a control input that drives the system to the desired equilibrium

state, making stabilization unattainable. Hence, heuristically, we can see stabilization as a

controllability problem when the control is exerted at any time.

Here, we suppose that A is a skew-adjoint matrix, that is A∗ = −A. Additionally, in

this case, ⟨Ax, x⟩ = 0. Consider the system

x
′ = Ax+Bu

x(0) = x0.

(2.27)

When the control is not acting, the energy of the solutions of (2.27) is conserved, that

is, is constant over the time,

|x(t)| = |x0|, ∀t ≥ 0.

The stabilization problem can be stated in the next way. Suppose that (2.27) is

controllable, then we look for a solution of the system (2.27) such that with feedback

control

u(t) = Lx(t) (2.28)

has a exponential decay, that is, there exists C > 0 and λ > 0 such that

|x(t)| ≤ Ce−λt|x0| (2.29)

for any solution. In particular, the control u given by (2.28) acts in real-time from the

state x. More precisely, we are looking for an operator L such that the solution of the

system

x′ = (A+BL)x

has an exponential decay rate. Observe that due to the representation of solutions, the

decay can not be faster than exponential.
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Theorem 2.2.2. If A is skew-adjoint and the system (2.27) is controllable then L = −B∗

stabilizes the system, that is, the solution ofx
′ = Ax−BB∗x

x(0) = x0
(2.30)

has an exponential decay.

Proof. See Theorem 2.1.3 in (ZUAZUA, 2006). ■

Remark 2.2.3. To prove the Theorem 2.2.2 a fundamental estimate is sufficient to obtain

the exponential decay, that is, there exists T > 0 and C > 0 such that

∫ T

0

|B∗x|2 dt ≥ C−1|x(0)|2, (2.31)

for any solution x of (2.30). Note that (2.31) is an observability type inequality and this

shows how the controllability and stabilization are related via an inequality.

2.2.4 Control and Stabilization Extended to Infinite Dimensional Systems

All of the concepts and results mentioned above can be generalized (in some sense) to

infinite dimensional systems. Let T > 0, H and V be real Hilbert spaces and consider the

following control system 
du

dt
= Au+Bv, 0 < t < T,

u(0) = u0,

(2.32)

where u denotes the states and v ∈ L2(0, T ;V ) is the control. The operator A : D(A) → H

is a linear operator and B ∈ L(V,D(A∗)′)8, where D(A∗)′ denotes the dual space of

D(A∗) and A∗ is the adjoint of the operator A. Additionally, A∗ is associated with the

homogeneous adjoint system


dφ

dt
= −A∗φ, 0 < t < T,

φ(T ) = φT ,

(2.33)

8This functional setting gives the possibility to consider boundary control operators (instead of the
stronger one B ∈ L(V,H))
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Now, we state the most classical notions of controllability for the abstract system (2.32),

Definition 2.2.4. The system (2.32) is exactly controllable in time T > 0 if, for every

initial and final data u0, uT ∈ H, there exists v ∈ L2(0, T ;V ) such that the solution

of (2.32) satisfies u(T ) = uT .

Definition 2.2.5. The system (2.32) is null controllable in time T > 0 if, for every

initial data u0 ∈ H, there exists v ∈ L2(0, T ;V ) such that the solution of (2.32) satisfies

u(T ) = 0.

Definition 2.2.6. The system (2.32) is approximately controllable in time T > 0 if, for

every initial and final data u0, uT ∈ H, and ε > 0, there exists v ∈ L2(0, T ;V ) such that

the solution of (2.32) satisfies

∥u(T )− uT∥H ≤ ε.

Similar to the mentioned for finite-dimensional, a control may be obtained from the

solution of the homogeneous system (2.33) with the initial data minimizing the functional

J : H → R given by

J(φ) =
1

2

∫ T

0

⟨u,B∗φ⟩H dt+ ⟨u0, φ(0)⟩H − ⟨uT , φT ⟩H .

Hence, the controllability is reduced to a minimization problem. To guarantee that J has

a unique minimizer, we use the next fundamental result in the calculus of variations.

Theorem 2.2.3. Let H be a reflexive Banach space, K a closed convex subset of H and

J : K → R a function with the following properties:

(i) J is convex

(ii) J is lower semi-continuous

(iii) If K is unbounded then J is coercive, i.e.

lim
∥x∥→∞

J(x) = ∞.

Then J attains its minimum in K, i. e. there exists x0 ∈ K such that

J (x0) = min
x∈K

φ(x)
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Proof. See Corollary 3.23 in (BREZIS, 2011). ■

Note that J is continuous and convex. The existence of a minimum is ensured if J is

also coercive, which is obtained with the observability inequality

∫ T

0

∥B∗φ∥H dt ≥ C∥φ(0)∥2H , ∀φ(0) ∈ H. (2.34)

Finally, consider the uncontrolled case, v ≡ 0 in (2.32). Let u be an equilibrium solution,

that is, Au = 0, with u ∈ D(A).

Definition 2.2.7. We said that u is stable if for any ε > 0 there exists δ > 0 such that

for all u0 ∈ H with ∥u0 − u∥ ≤ δ, the unique mild solution u of (2.32) satisfies

∥u(t)− u∥ < ε, ∀t ≥ 0.

Definition 2.2.8. We said that u is asymptotically stable if is stable and there exists δ > 0

such that for all u0 ∈ H with ∥u0 − u∥ ≤ δ, the unique mild solution u of (2.32) satisfies

lim
t→∞

∥u(t)− u∥ = 0.

Definition 2.2.9. We said that u is exponentially stable if is asymptotically stable and

there exists λ > 0 such that for all u0 ∈ H the unique mild solution u of (2.32) satisfies

∥u(t)− u∥ < e−λt∥u(t)− u∥.

The largest constant λ which may be utilized in the exponential stabilization is called

the rate of convergence.

Definition 2.2.10. System (2.32) is said to be locally uniformly exponentially stable in H

if for any r > 0 there exist two constants C > 0 and γ > 0 such that for any u0 ∈ H with

∥u0∥H < r and for any solution u of (2.32) it holds that

∥u(t)∥2H ⩽ Ce−γt ∥u0∥2H , ∀t ⩾ 0. (2.35)

If the constant γ in (2.35) is independent of r, the system (2.32) is said to be globally

uniformly exponentially stable in H.
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We shall summarize, following (ROSIER, 2007), some concepts about the stabilizability

of a control system

ΣA,B ut = Au+Bh, (2.36)

where A generates a continuous semigroup of operators {etA}t⩾0 = {W (t)}t⩾0 ⊂ H, H is

a Hilbert space, B ∈ L(U,H) and h is the control input.

Consider the following properties:

(i) for some constants C, γ > 0 and all t ⩾ 0, ∥W (t)∥ ⩽ Ce−γt;

(ii) for any u0 ∈ H,W (t)u0 → 0 exponentially as t→ 0;

(iii) for any u0 ∈ H,
∫ +∞
0

∥W (t)u0∥2Hdt < +∞;

(iv) for any u0 ∈ H, W (t)u0 → 0 as t→ 0.

Theorem 2.2.4. We have (i) ⇔ (ii) ⇔ (iii). On the other hand, we have (i) ⇒ (iv).

Proof. See (ROSIER, 2007). ■

Definition 2.2.11. If (i) (or equivalently (ii) or (iii)) holds, then we say that the semigroup

{W (t)}t⩾0 is exponentially stable. When (iv) holds, we say that the semigroup {W (t)}t⩾0

is strongly stable.

For any K ∈ L(H,U), we denote by AK the operator AKu = Au+BKu = (A+BK)u,

with D(AK) = D(A), and by {etAK}t⩾0 = {WK(t)}t⩾0 the semigroup generated by AK .

Definition 2.2.12. The control system ΣA,B is said to be

- exponentially stabilizable if ∃ a feedback K ∈ L(H,U) such that the operator AK =

A+BK is exponentially stable; i.e., for some constants C > 0, γ > 0,

∥WK(t)∥ ≤ Ce−γt ∀t ⩾ 0

- completely stabilizable if it is exponentially stabilizable with an arbitrary exponential

decay rate; i.e., for arbitrary γ ∈ R, there exists a feedback K ∈ L(H,U) and a

constant C > 0 such that

∥WK(t)∥ ≤ Ce−γt ∀t ⩾ 0
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Theorem 2.2.5. If the system (ΣA,B) is null controllable, then it is exponentially stabiliz-

able.

Proof. See (ROSIER, 2007). ■

Theorem 2.2.6. Assume that A generates a group {W (t)}t∈R of operators. Then the

following properties are equivalent

(i) (ΣA,B) is exactly controllable in some time T > 0;

(ii) (ΣA,B) is null controllable in some time T > 0;

(iii) (ΣA,B) is completely stabilizable.

Proof. See (ROSIER, 2007). ■

We can apply 2.2.6 to a skew-adjoint operator A, which generates a group of isometries

on H. Moreover, we have the "controllability via stabilizability” principle, and explicit

exponentially stabilizing feedback laws may be given.

Corollary 2.2.1 (Equivalence between controllability and stabilizability). Let A be skew-

adjoint, i.e., A∗ = −A. Then the following propositions are equivalent

(i) the system (ΣA,B) is exponentially stabilizable with an arbitrary prefixed exponential

decay rate, that is, (ΣA,B) is completely stabilizable;

(ii) The system (ΣA,B) is exponentially stabilizable;

(iii) The system (ΣA,B) is exactly controllable in some T > 0;

(iv) The system (ΣA,B) is null controllable in some time T > 0;

(v) For every positive definite self-adjoint operator S ∈ L(U), the operator A−BSB∗

generates an exponentially stable semigroup on H.

Proof. See (LIU, 1997; ROSIER, 2007). ■
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3 WELL-POSEDNESS FOR THE BBM EQUATION

One fundamental question when facing a Partial Differential Equation (PDE) is the

solvability issue, or even more fundamental, what we mean by solving a PDE. From this

subtle question arises the concept of a well-posed equation, given by Jacques Hadamard.

Thus, by solving the BBM equation, we mean that, for a given initial data, the BBM

equation satisfies the following conditions that characterize a well-posed problem:

(i) Existence of a solution;

(ii) Uniqueness of this solution;

(iii) Stability, meaning continuous dependence on the initial data.

For items (i) and (ii), we make use of Theorem 2.1.19 - Banach’s fixed point theorem

- applied in an appropriate abstract space of functions; (iii) means that the map that

associates the initial data to the function on this abstract space, called the flow map or

solution map, is continuous, which is particularly important for problems arising from

physical applications. For the BBM, we have even more: the flow map is real analytic. All

this concepts are treated in the first section of this chapter.

The remainder of the chapter, composed by two more sections, is devoted to some

properties that the solution possesses. The second section addresses the time analyticity

of the solution, whereas the third and final section discusses some conserved quantities.

3.1 Well-Posedness

To set forth our problem, we begin by establishing the objects and the spaces in which

we will be working from now on.

For any s ⩾ 0, Hs(T) denotes the Sobolev space

Hs(T) =

{
u : T → R; ∥u∥2Hs :=

∑
k∈Z

(
1 + k2

)s |ûk|2 <∞

}
,
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which is a Hilbert space with respect to the inner product

(u, v)Hs =
∑
k∈Z

(
1 + k2

)s
ûkv̂k.

Where ûk denotes the k-Fourier coefficient of u

ûk =
1

2π

∫ 2π

0

u(x)e−ikxdx ,

where we have identified the torus T to [0, 2π), by using a coordinate system.

We are interested in the Cauchy problem, that is, the Initial Value Problem (IVP),

associated with the BBM equationut − utxx + ux + uux = 0, x ∈ T, t ∈ R

u(x, 0) = u0(x) ∈ Hs(T).
(3.1)

So, in order to use the semigroup theory (see 2.1.4.2), we put (3.1), in its integral form

∂tu− ∂t∂
2
xu+ ∂xu+ u∂xu = 0

∂t
(
u− ∂2xu

)
+ ∂x

(
u+

u2

2

)
= 0

(
1− ∂2x

)
∂tu = −∂x

(
u+

u2

2

)
∂tu = −

(
1− ∂2x

)−1
∂x

(
u+

u2

2

)
.

(3.2)

That is, we have the following Cauchy abstract problem (see (2.17))
ut = − (1− ∂2x)

−1
∂x

(
u+

u2

2

)
= A(u) + A

(
u2

2

)
x ∈ T, t ∈ R

u(x, 0) = u0(x) ∈ Hs(T).
(3.3)

Claim 3.1.1. The operator A = − (1− ∂2x)
−1
∂x ∈ L (Hs(T), Hs+1(T)) (for any s ∈ R) is

skew-adjoint and generates the group of isometries {W (t)}t∈R = {etA}t∈R.
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Proof. We want to show that A∗ = −A, that is,

(Af, g)Hs(T) = − (f, Ag)Hs(T) , ∀f, g ∈ Hs(T).

Before performing the calculations for the inner product, we shall point out that

(̂Af)(k) = − ik

1 + k2
f̂(k).

Indeed, let f ∈ Hs(T), and denoting ∨ the Fourier inverse, we have

(Af)
∧

(k) =: h(k)

− (1− ∂2x)
−1
∂xf

∧

(k) = h(k)

−
(
1− ∂2x

)−1
∂xf(x) =

∨
h (x)

∂xf(x) = −
(
1− ∂2x

) ∨
h (x)

ikf̂(k) = −
(
1− (ik)2

)
h(k)

− ik

1 + k2
f̂(k) = h(k) = (Af)

∧

(k).

Thus, let f, g ∈ Hs(T), we have

(Af, g)Hs(T) =
(
−
(
1− ∂2x

)−1
∂xf, g

)
Hs(T)

=
∑
k∈Z

(
1 + k2

)s
(−(1− ∂2x)

−1∂xf)
∧

(k)ĝ(k)

=
∑
k∈Z

(
1 + k2

)s (−ik)
1 + k2

f̂(k)ĝ(k)

=
∑
k∈Z

(
1 + k2

)s
f̂(k)ĝ(k)

ik

1 + k2

= −
∑
k∈Z

(
1 + k2

)s
f̂(k)ĝ(k)

(−ik)
1 + k2

= −
∑
k∈Z

(
1 + k2

)s
f̂(k)(− (1− ∂2x)

−1
∂xg)

∧

(k)

= −
(
f,−

(
1− ∂2x

)−1
∂xg
)
Hs(T)

= − (f, Ag)Hs(T)

= (f,−Ag)Hs(T) .

(3.4)
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Therefore, from Stone’s Theorem 2.1.21, the operator A is the infinitesimal generator of

a strongly continuous group of unitary operators, namely, {W (t)}t∈R with W (t) = etA. ■

So, from Duhamel formula (2.18), we can put (3.1) in its integral form

u(t) = W (t)u0 +

∫ t

0

W (t− s)A
(
u2/2

)
(s)ds. (3.5)

For s ⩾ 0 and T > 0, let

Xs
T = C ([−T, T ];Hs(T)) .

As mentioned in the summary of this chapter, we shall be looking for a solution in an

abstract space of functions, which turns out to be Xs
T . We see that for u ∈ Xs

T , then u

solves (3.1) in D′ (−T, T ;Hs−2(T)) if, and only if, it fulfills (3.5) for all t ∈ [−T, T ]. We

shall apply the standard procedure of contraction map in order to prove the well-posedness

of (3.1). To this end, we shall demonstrate the following two inequalities, presented in

form of lemmas, which will prove to be very useful for us until the end of this work. These

estimates can be found in (BONA; TZVETKOV, 2009; ROUMÉGOUX, 2010; HIMONAS;

PETRONILHO, 2020).

Lemma 3.1.1. Let u, v ∈ Hs(T), with s ⩾ 0. Then

∥∥∥(1− ∂2x
)−1

∂x(uv)
∥∥∥
Hs(T)

⩽ Cs∥u∥Hs(T)∥v∥Hs(T), (3.6)

and ∥∥∥(1− ∂2x
)−1

∂xu
∥∥∥
Hs(T)

⩽ ∥u∥Hs(T). (3.7)

Proof. It is worth introducing some notation that is very often encountered in the literature

⟨k⟩ :=
(
1 + k2

)1
2 .

For instance, using this notation, the above definition of the Hs-norm becomes

∥u∥Hs =
∑
k∈Z

⟨k⟩2s |ûk|2 .
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Estimate (3.7) follows from the definition of the Hs(T)-norm and the multiplier estimate

|k| (1 + k2)
−1 ≤ 1. Indeed

∥∥∥(1− ∂2x
)−1

∂xu
∥∥∥
Hs(T)

=
∑
k∈Z

(1 + k2)s
k2

(1 + k2)2
|û(k)|2 ⩽

∑
k∈Z

(1 + k2)s|û(k)|2 = ∥u∥Hs(T).

Now, to prove estimate (3.6), applying the definition of the Hs(T)-norm we have

∥∥∥(1− ∂2x
)−1

∂x(uv)
∥∥∥2
Hs(T)

=
∑
k∈Z

⟨k⟩2s k2

(1 + k2)2
|ûv(k)|2

=
∑
k∈Z

⟨k⟩2s k2

(1 + k2)2

∣∣∣∣∣∑
ℓ∈Z

û(ℓ)v̂(k − ℓ)

∣∣∣∣∣
2

.

(3.8)

Note that for s ⩾ 0 we have the following inequality1

⟨k⟩s ⩽ 2s/2⟨k − ℓ⟩s⟨ℓ⟩s.

So, from (3.8) we get

∥∥∥(1− ∂2x
)−1

∂x(uv)
∥∥∥2
Hs(T)

⩽ 2s
∑
k∈Z

k2

(1 + k2)2

∣∣∣∣∣∑
ℓ∈Z

⟨ℓ⟩sû(ℓ) · ⟨k − ℓ⟩sv̂(k − ℓ)

∣∣∣∣∣
2

.

(3.9)

Furthermore, applying Schwarz’s inequality in the ℓ-sum, from the inequality above

(3.9), we obtain that

∥∥∥(1− ∂2x
)−1

∂x(uv)
∥∥∥2
Hs(T)

⩽ 2s
∑
k∈Z

k2

(1 + k2)2

(∑
ℓ∈Z

⟨ℓ⟩2s|û(ℓ)|2
)(∑

ℓ∈Z

⟨k − ℓ⟩2s|v̂(k − ℓ)|2
)

⩽ 2s∥u∥2Hs(T)∥v∥2Hs(T)

∑
k∈Z

1

1 + k2

⩽ 2s
(
1 +

π2

3

)
∥u∥2Hs(T)∥v∥2Hs(T),

(3.10)

which completes the proof of Lemma 3.1.1 and we got that C2
s = 2s

(
1 + π2

3

)
. ■

1See Peetre inequality 2.1.10
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Lemma 3.1.2. Let u ∈ Hr(T) and v ∈ Hs(T) with 0 ⩽ s ⩽ r and r > 1
2
, then

∥
(
1− ∂2x

)−1
∂x(uv)∥Hs+1 ⩽ C∥u∥Hr∥v∥Hs .

Proof. Since r > 1
2

and r ≥ s ≥ 0, the elements of Hr(T) are multipliers in Hs(T) (see

Theorem 2.1.17), which is to say

∥uv∥Hs ≲ ∥u∥Hr∥v∥Hs .

Hence,

∥
(
1− ∂2x

)−1
∂x(uv)∥Hs+1 =

∥∥∥∥⟨k⟩s+1 k

1 + k2
ûv

∥∥∥∥
ℓ2k

=

∥∥∥∥⟨k⟩s+1 k

⟨k⟩2
ûv

∥∥∥∥
ℓ2k

=

∥∥∥∥⟨k⟩s k

(1 + k2)1/2
ûv

∥∥∥∥
ℓ2k

⩽ ∥⟨k⟩sûv∥ℓ2ξ = ∥uv∥Hs ≲ ∥u∥Hr∥v∥Hs .

(3.11)

, ■

With these estimates, we are able to deal with the well-posedness of the IVP (3.1)

associated with the BBM equation, this result is stated in (ROSIER; ZHANG, 2013).

First, we treat the local aspects and then the global one. The proof of Theorem 3.1.1 and

Theorem 3.1.2 will follow (BONA; TZVETKOV, 2009) and (ROUMÉGOUX, 2010).

Theorem 3.1.1 (Local Well-posedness). For a given initial data u0 ∈ Hs(T), s ⩾ 0 and

for suitable T > 0 there exists a unique solution u ∈ Xs
T of (3.1) (or equivalently, (3.5)).

Furthermore, for any R > 0, the map u0 7→ u is real analytic from BR(X
s
T ) into Xs

T .

Proof. We want to show that for a given u0 ∈ Hs(T), there exists solution u of the Cauchy

abstract problem (3.3), that we put here for convenience

∂u

∂t
(x, t) = Au+ A

(
u2

2

)
,

u(x, 0) = u0(x) ∈ Hs(T),

in the space of functions C ([−T, T ];Hs(T)) = Xs
T for a T > 0 that will be determined
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later. For R > 0, let

BR(X
s
T ) =

{
u ∈ Xs

T ; ∥u∥Xs
T
⩽ R

}
,

denote the closed ball of radius R centered at the origin in Xs
T with u0 ∈ BR(H

s(T)).

Define the map Φ from BR(X
s
T ) to Xs

T , by

Φ(u)(t) = etAu0 +

∫ t

0

e(t−τ)AA

(
u2

2

)
(τ) dτ.

We shall prove that:

(i) there exists R > 0 such that Φ (BR(X
s
T )) ⊂ BR (Xs

T );

(ii) ∥Φ(u)− Φ(v)∥Xs
T
⩽ λ∥u− v∥Xs

T
, for some λ < 1, and for all u, v ∈ BR (Xs

T ) (i.e., Φ

is a contraction).

Thus, from (i) and (ii), the fixed-point theorem, also known as the contraction mapping

principle, assures us of the existence and uniqueness of a ũ such that Φ(ũ) = ũ. This fixed

point is our desired solution of (3.1).

Pick u ∈ BR(X
s
T ). From Claim 3.1.1, {etA}t∈R is group of isometries in Hs, that is,

∥etAu0∥Hs(T) = ∥u0∥Hs(T) and from Lemma 3.1.1, we have, for 0 ⩽ t ⩽ T

∥Φ(u)∥Xs
T
⩽
∥∥etAu0∥∥Xs

T
+

∫ t

0

∥∥∥∥e(t−τ)AA(u22
)
(τ)

∥∥∥∥
Xs

T

dτ

⩽ ∥u0∥Xs
T
+

∫ t

0

∥∥∥∥A(u22
)
(τ)

∥∥∥∥
Xs

T

dτ

⩽ ∥u0∥Xs
T
+

1

2

∫ t

0

∥∥∥(1− ∂2x
)−1

∂x
(
u2
)
(τ)
∥∥∥
Xs

T

dτ

⩽ ∥u0∥Xs
T
+
TCs
2

∥u∥2Xs
T

⩽ ∥u0∥Hs(T) +
TCsR

2

2
.

Choose R = 2∥u0∥Hs . As mentioned, we must choose a convenient T so that ∥Φ(u)∥Xs
T
⩽

R. Thus, we must have

∥Φ(u)∥Xs
T
⩽ ∥u0∥Hs(T) +

TCsR
2

2
⩽ R

TCsR
2 ⩽ 2R− 2 ∥u0∥Hs(T) = 2R−R
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T ⩽
1

CsR
.

Hence, setting T = (2CsR)
−1, we have Φ (BR(X

s
T ))) ⊂ BR(X

s
T ).

For the contraction property of the map Φ, pick u, v ∈ BR (Xs
T ), then, it follows that

∥Φ(u)− Φ(v)∥Xs
T
=

∥∥∥∥∫ t

0

W (t− τ)A

(
u2

2

)
(τ) dτ −

∫ t

0

W (t− τ)A

(
v2

2

)
(τ) dτ

∥∥∥∥
Xs

T

=
1

2

∥∥∥∥∫ t

0

W (t− τ)A
(
u2 − v2

)
(τ)dτ

∥∥∥∥
Xs

T

=
1

2

∥∥∥∥∫ t

0

W (t− τ)A [(u− v)(u+ v)] (τ)dτ

∥∥∥∥
Xs

T

⩽
1

2
TCs∥u− v∥Xs

T
∥u+ v∥Xs

T

⩽
1

2
TCs∥u− v∥Xs

T

(
∥u∥Xs

T
+ ∥v∥Xs

T

)
⩽

1

2
TCs∥u− v∥Xs

T
2R

⩽ TCsR∥u− v∥Xs
T
.

Then, as we have set T by T = (2CsR)
−1, we see that

∥Φ(u)− Φ(v)∥Xs
T
⩽

1

2
∥u− v∥Xs

T
.

Therefore, this concludes the existence and uniqueness question for Cauchy Problem (3.1),

where the maximal existence time T = Ts for the solution has the property that

Ts ⩾
1

2CsR
=

1

4Cs∥u0∥Hs(T)
.

Now, we turn our attention to the analyticity of the flow map Φ. This result is local in

the sense that if it can be established for T sufficiently small. Let Λ : Hs ×Xs
T −→ Xs

T be

defined as

Λ (u0, v(t)) = v(t)−W (t)u0 −
1

2

∫ t

0

W (t− s)A(v2) (s) ds,

where the spatial variable x has been suppressed throughout. Note that, for u solution

of (3.1), then Λ (u0, u(t)) = 0. We are interested in the Fréchet derivative, see Definition

2.1.20, of Λ with respect to the second variable, that is, we want to find the linear map
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T (h) such that

Λ(u0, v + h) = Λ(u0, v) + T (h) + r(h), with ∥r(h)∥ → 0 as ∥h∥ → 0.

Then, we have

Λ(u0, v + h) = v(t) + h(t)−W (t)u0 −
1

2

∫ t

0

W (t− s)A
(
(v + h)2

)
(s)ds

= v(t)−W (t)u0 −
1

2

∫ t

0

W (t− s)A(v2)ds︸ ︷︷ ︸
Λ(u0,v)

+h(t)−
∫ t

0

W (t− s)A(vh)ds︸ ︷︷ ︸
T (h)

−1

2

∫ t

0

W (t− s)A(h2)ds︸ ︷︷ ︸
r(h)

= Λ(u0, v) + T (h) + r(h).

Since

∥r(h)∥Hs

∥h∥Xs
T

=

1
2

∥∥∥∫ t0 W (t− s)A (h2) ds
∥∥∥
Hs

∥h∥Xs
T

∥r(h)∥Xs
T

∥h∥Xs
T

⩽
TCs∥h∥2Xs

T

∥h∥Xs
T

⩽ T∥h∥Xs
T
,

we have that
∥r(h)∥Xs

T

∥h∥Xs
T

→ 0 as ∥h∥Xs
T
→ 0.

Hence, we obtain

Λ′
u (u0, u(t)) [h] = h−

∫ t

0

W (t− s)A(uh)(s)ds.

From Lemma 3.1.1

∥Λ′
u (u0, u(t)) [h]∥Xs

T
⩽ ∥h∥Xs

T
+

∥∥∥∥∫ t

0

W (t− s)A(uh)(s)ds

∥∥∥∥
Xs

T

⩽ ∥h∥Xs
T
+ CsT∥u∥Xs

T
∥h∥Xs

T
.

We see that Λ′
u is of the form (I +K), where

K = −
∫ t

0

W (t− s)A(uh)(s)ds.
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Then, we can take T sufficiently small so that

∥K∥B(Xs
T ,X

s
T )
< 1,

where B (Xs
T , X

s
T ) is the Banach space of bounded linear operators on Xs

T . Since Λ′ = I+K,

by using the Neumann criterion, see Lemma 2.1.1, Λ′ is invertible and the inverse can be

expressed as a power series

(I +K)−1 = I +K +K2 + · · ·

Therefore, the map Φ is real-analytic by the Implicit Function Theorem 2.1.12, which

concludes the proof of Theorem 3.1.1. ■

Theorem 3.1.2 (Global Well-posedness). In Theorem 3.1.1, the solution u is global in

time, that is, we can take arbitrarily large value of T .

Proof. Fix T > 0. Our aim is to show that for any initial data u0 ∈ Hs, there exists a

unique solution u of (3.1) that lies in Xs
T , and that u depends continuously upon u0. From

the local well-posedness 3.1.1, we have this result for small enough data in Hs. Moreover,

it is only necessary to have the existence of a solution corresponding to initial data of

arbitrary size, since continuous dependence, uniqueness and the analytic dependence on

the data of the flow map are all properties that are local in time.

Fix u0 ∈ Hs(T) and let N ≫ 1 be such that

∑
|k|⩾N

⟨k⟩2s |û0(k)|2 ⩽
1

T 2
.

Since ⟨k⟩s |û0(k)| belongs to l2, such values of N exist. Define

v0(x) =
∑
|k|⩾N

eixkû0(k).

From the local well-posedness obtained in Theorem 3.1.1, there exists a unique v ∈ Xs
T
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solution of the initial value problemut − utxx + ux + uux = 0, x ∈ T

u(x, 0) = v0(x) ∈ Hs(T).
(3.12)

We split the initial data u0 into two pieces, namely

u0 = v0 + w0,

and we consider the following IVP (where v is now fixed)

wt − wtxx + wx + wwx + (vw)x = 0, x ∈ T

w(x, 0) = w0(x) ∈ Hs(T).
(3.13)

If there exists a solution w of (3.13) in Xs
T , then v + w will be a solution of (3.1). Indeed,

we would have

vt + vx + vvx − vxxt + wt + wx + wwx − wxxt + (vw)x = 0

vt + wt + vx + wx + vvx + wwx + (vw)x − vxxt − wxxt = 0,

that is, (v + w)t + (v + w)x + (v + w)(v + w)x − (v + w)xxt = 0

(v + w)(x, 0) = v0(x) + w0(x) = u0(x).

Note that, as u0, v0 ∈ Hs(T), with s ⩾ 0, then (u0 − v0) = w0 is in Hr(T) ∀r > 0. In

particular, w0 ∈ H1(T). Proceeding as in (3.2), we obtain, for IVP (3.13)

∂tw = −
(
1− ∂2x

)−1
∂x

(
w + vw +

w2

2

)
.

Recall that A = − (1− ∂2x)
−1
∂x is skew-adjoint, so that, A generates a group of isometries

{W (t)}t∈R =
{
etA
}
t∈R. So, putting (3.13) in its integral form

w(x, t) = etAw0 +

∫ t

0

e(t−s)AA

(
vw +

w2

2

)
(s)ds

w(x, t) = W (t)w0 +
1

2

∫ t

0

W (t− s)A
(
2vw + w2

)
(s)ds =: Φ(w).
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By the same arguments used in the local well-posedness obtained in Theorem 3.1.1

and by Lemma 3.1.2 (with r = 1, s = 0), for any w ∈ BR (X1
S)

∥Φ (w(x, t)) ∥H1 ⩽ ∥w0∥H1 +
1

2
S
∥∥∥(1− ∂2x

)−1
∂x
(
2vw + w2

)∥∥∥
H1

⩽ ∥w0∥H1 +
1

2
S
∥∥∥(1− ∂2x

)−1
∂x(2vw)

∥∥∥
H1

+
1

2
S∥
(
1− ∂2x

)−1
∂x(w

2)∥H1

⩽ ∥w0∥H1 + 2SS
(
˜̃C∥v∥H0∥w∥H1

)
+

1

2
SC̃∥w∥2H1

⩽ ∥w0∥H1 + CS
(
∥v∥H0∥w∥H1 + ∥w∥2H1

)
.

Since ∥w0∥H1 , ∥w∥H1 ⩽ R,

∥Φ (w(x, t)) ∥H1 ⩽ R + CS
(
∥v∥H0R +R2

)
⩽ CS∥v∥H0R.

Then,
sup

t∈[−S,S]
∥Φ (w(x, t)) ∥H1 ⩽ sup

t∈[−S,S]
CS∥v∥H0

∥Φ (w(x, t)) ∥X1
S
⩽ CS∥v∥X1

S
R.

On the other hand, for w1, w2 ∈ BR (X1
S)

∥Φw1 − Φw2∥H1 ⩽ CS
∥∥A (2vw1 + w2

1 − 2vw2 − w2
2

)∥∥
H1

= CS∥A (2v (w1 − w2) + (w1 − w2) (w1 + w2) ∥H1)

⩽ CS (∥A (2v (w1 − w2))∥H1 + ∥A (w1 − w2) (w1 + w2)∥H1)

⩽ CS

C̃∥v∥H0 ∥w1 − w2∥H1 +
˜̃C ∥w1 − w2∥H1 ∥w1 + w2∥H1︸ ︷︷ ︸

⩽2R


⩽ CS (∥v∥H0 + 2R) ∥w1 − w2∥H1 .

Hence, we have,

∥Φw1 − Φw2∥x1S ⩽ CS
(
∥v∥x0S + 2R

)
∥w1 − w2∥x1S .

Hence, Φ is a contraction, so Φ has a unique fixed point in X1
S, such a point is our solution

w in X1
S for small time S.
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Multiplying (3.13) by w, we have

wwt − wwxxt + wwx + w2wx + w(vw)x = 0.

Integrating over T and performing some integrations by parts, we obtain (note that w is

periodic over the torus)

∫
T
wwtdx−

∫
T
wwxxtdx+

∫
T
wwxdx+

∫
T
w2wxdx+

∫
T
w (vw)x dx = 0

1

2

∫
T

d

dt
w2 dx+

∫
T
wxwxtdx+

1

2

∫
T

(
w2
)
x
dx+

1

3

∫
T

(
w3
)
x
dx−

∫
T
wxvw dx = 0

1

2

∫
T

d

dt
w2 dx+

1

2

∫
T

d

dt
w2
x dx−

∫
T
wxvw dx = 0

1

2

d

dt

∫
T

(
w2 + w2

x

)
dx−

∫
T
wxvw dx = 0

d

dt

∫
T

(
w2 + w2

x

)
dx = 2

∫
T
wxvw dx.

Then, we have
d

dt
∥w(·, t)∥2H1 = 2

∫
T
wxvw dx.

By Hölder and Sobolev inequalities∣∣∣∣∫
T
wxvw dx

∣∣∣∣ ⩽ ∥wx(·, t)∥L2 ∥v(·, t)∥L2∥w(·, t)∥L∞

⩽ C∥v(·, t)∥L2∥w(·, t)∥2H1 .

That is,
d

dt
∥w(·, t)∥2H1 ⩽ C∥v(·, t)∥L2∥w(·, t)∥2H1 .

Now, by Gronwal’s inequality, for 0 ⩽ t ⩽ T

∥w(·, t)∥2H1 ⩽ ∥w(·, 0)∥2H1 e
C

∫ t
0 ∥v(·,s)∥L2ds

∥w(·, t)∥H1 ⩽ ∥w0∥H1 e
C

∫ t
0 ∥v(·,s)∥L2ds.

Therefore, we infer that w is bounded on the H1-norm, on the interval [−T, T ] so, there

exists solution w of (3.13) on this interval, so that, (v + w) is a solution of (3.1) in Xs
T .

This concludes the proof of Theorem 3.1.2. ■
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3.2 Analyticity in Time

Having established the well-posedness of the initial value problem (3.1), we now turn

our attention to studying the properties of its solution. In this section, we will follow the

reference (ROSIER; ZHANG, 2013) to show that the solution is analytic in time.

Proposition 3.2.1. For u0 ∈ H1(T), the solution u(t) of the IVP (3.1) satisfies u ∈

Cω (R;H1(T)). It means that, for each t ∈ R, u(t) ∈ H1(T) such that

u(t)(x) = u(x, t) =
∞∑
n=0

tnun(x),

where (un(x))n⩾0 ⊂ H1(T).

Proof. Since the initial data u0 ∈ H1(T), from Section 3.1, we have that u ∈ C1 (R;H1(T)),

so it is sufficient to check that for any u0 ∈ H1(T) there are some numbers b > 0,M > 0,

and some sequence (un)n⩾1 in H1(T) with

∥un∥H1 ⩽
M

bn
, n ⩾ 0, (3.14)

such that

u(t) =
∑
n⩾0

tnun, t ∈ (−b, b). (3.15)

Note that, from (3.15), the convergence ratio of the series is (−b, b), then it converges

uniformly in each compact subset within (−b, b). That is, the series in (3.15) holds in

H1(T) uniformly on [−rb, rb] for each r < 1. Actually, we prove that u can be extended

as an analytic function from Db := {z ∈ C; |z| < b} to the space H1
C(T) := H1(T;C),

endowed with the Euclidean norm

∥∥∥∥∥∑
k∈Z

ûke
ikx

∥∥∥∥∥
H1

=

(∑
k∈Z

(
1 + |k|2

)
|ûk|2

) 1
2

.

This proof is an adaptation of the classical proof of the analyticity of the flow for an

ODE with an analytic vector field to our infinite dimensional framework. For u ∈ H1
C(T),

let Au = − (1− ∂2x)
−1
∂xu and f(u) = A (u+ u2). That is, our aim is to see (3.1) as the
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following ODE ut = f(u)

u(0) = u0 ∈ H1(T)

Since |k| ⩽ (k2 + 1) /2 for all k ∈ Z, we have ∥A∥L(H1
C(T))

⩽ 1/2. Indeed

∥A∥L(H1
C(T))

= sup
∥u∥⩽1

∥Au∥H1
C(T) = sup

∥u∥⩽1

(∑
k∈Z

(
1 + k2

)
|Âu(k)|2

)1/2

= sup
∥u∥⩽1

(∑
k∈Z

(
1 + k2

) ∣∣∣∣ (−ik)1 + k2
û(k)

∣∣∣∣2
)1/2

= sup
∥u∥⩽1

(∑
k∈Z

(
1 + k2

) k2

(1 + k2)2
|û(k)|2

)1/2

= sup
∥u∥⩽1

(∑
k∈Z

(
1 + k2

) 1
4
|û(k)|2

)1/2

=
1

2
sup
∥u∥⩽1

(∑
k∈Z

(
1 + k2

)
|û(k)|2

)1/2

=
1

2
sup
∥u∥⩽1

∥u∥H1(T)

⩽
1

2
.

Pick a positive constant C1 such that

∥∥u2∥∥
H1 ⩽ C1∥u∥2H1 , for all u ∈ H1

C(T).

We define by induction on q a sequence (uq) of analytic functions from C to H1
C(T)

which will converge uniformly on DT , for T > 0 small enough, to a solution of the integral

equation

u(z) = u0 +

∫
[0,z]

f(u(ζ))dζ = u0 +

∫ 1

0

f(u(sz))zds.

Let
u0(z) = u0, for z ∈ C,

uq+1(z) = u0 +

∫
[0,z]

f (uq(ζ)) dζ, for q ⩾ 0, z ∈ C.
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Claim 3.2.1. For each q ⩾ 0, uq is analytic

uq(z) =
∑
n⩾0

znvqn ∀z ∈ C,

with (vqn) some sequence in H1
C(T) such that

∥vqn∥H1 ⩽
M(q, b)

bn
for all q, n ∈ N, b > 0.

Proof. We proof Claim 3.2.1 by induction on q ⩾ 0. If q = 0 the result is clear, for

uq = u0, M(0, b) = ∥u0∥H1 , v00 = u0 v0n = 0,∀n ⩾ 1 ∴ u0(z) = v00 +
∑
n⩾1

znv0n

Assume know that Claim 3.2.1 is proved for some q ⩾ 0. Then, for any r ∈ (0, 1) and

any b > 0,

∥znvqn∥H1 ⩽M(q, b)rn for |z| ⩽ rb.

So that the series
∑

n⩾0 z
nvqn converges absolutely in H1

C(T) uniformly for z ∈ Drb,

since Drb is compact within its convergence disk Db. The same holds for the series∑
n⩾0 z

n
(∑

0⩽l⩽n v
q
l v

q
n−l
)
. It follows that

f (uq(ζ)) = A
(
uq(ζ) + u2q(ζ)

)
= A

(∑
n⩾0

ζnvqn +
∑
n⩾0

ζnv2qn

)

= A

(∑
n⩾0

ζnvqn +
∑
n⩾0

ζn

(∑
0⩽l⩽n

vql v
q
n−l

))
,

converges uniformly for ζ ∈ Drb. Thus

uq+1(z) =u0 +

∫
[0,z]

f (uq(ζ)) dζ = u0 +

∫
[0,z]

A

(∑
n⩾0

ζnvqn +
∑
n⩾0

ζn

(∑
0⩽l⩽n

vql v
q
n−l

))
dζ

= u0 +

∫
[0,z]

(∑
n⩾0

ζnA (vqn) +
∑
n⩾0

ζnA

(∑
0⩽l⩽n

vql v
q
n−l

))
dζ

= u0 +

∫
[0,z]

∑
n⩾0

ζn

(
A (vqn) + A

(∑
0⩽l⩽n

vql v
q
n−l

))
dζ
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= u0 +

∫
[0,z]

∑
n⩾0

ζnA

(
vqn +

∑
0⩽l⩽n

vql v
q
n−l

)
dζ

= u0 +
∑
n⩾0

zn+1

n+ 1
A

(
vqn +

∑
0⩽l⩽n

vql v
q
n−l

)

= u0 +
∑
n⩾1

zn

n
A

(
vqn−1 +

∑
0⩽l⩽n−1

vql v
q
n−1−l

)

=
∑
n⩾0

znvq+1
n ,

where
vq+1
0 = u0

vq+1
n =

1

n
A

(
vqn−1 +

∑
0⩽l⩽n−1

vql v
q
n−1−l

)
for n ⩾ 1.

It follows that for n ⩾ 1

∥∥vq+1
n

∥∥
H1 ⩽

∥A∥
n

(
M(q, b)

bn−1
+ nC1∥vq∥2H1

C

)
⩽

∥A∥
n

(
M(q, b)

bn−1
+ nC1

M2(q, b)

bn−1

)
⩽
M(q + 1, b)

bn
,

with

M(q + 1, b) := sup
{
∥u0∥H1 , b∥A∥

(
M(q, b) + C1M

2(q, b)
)}
.

Claim 3.2.1 is proved.

■

Claim 3.2.2. Let

T :=
1

(2∥A∥ (1 + 4C1 ∥u0∥H1))
.

Then

∥uq − u∥L∞(DT ;H1
C(T))

→ 0 as q → ∞ for some u ∈ C
(
DT ;H

1
C(T)

)
.

Proof. Let ZT = C
(
DT ;H

1
C(T)

)
be endowed with the norm |||v||| = sup|z|⩽T ∥v(z)∥H1 . Let

R > 0, and for v ∈ BR := {v ∈ ZT ; |||v||| ⩽ R}, let

(Γv)(z) = u0 +

∫
[0,z]

f(v(ζ))dζ = u0 +

∫
[0,z]

A
(
v(ζ) + v2(ζ)

)
dζ.
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Then
|||Γv||| ⩽ ∥u0∥H1 + T∥A∥

(
|||v|||+ C1|||v|||2

)
⩽ ∥u0∥H1 + T∥A∥

(
R + C1R

2
)

and,
|||Γv1 − Γv2||| ⩽ T∥A∥

(
|||v1 − v2|||+

∣∣∣∣∣∣v21 − v22
∣∣∣∣∣∣)

⩽ T∥A∥ (|||v1 − v2|||+ |||v1 + v2||| |||v1 − v2|||)

⩽ T∥A∥(1 + 2RC1) |||v1 − v2||| .

Pick R = 2 ∥u0∥H1 and T = (2∥A∥ (1 + 2C1R))
−1. Then Γ contracts in BR. The

sequence (uq), which is given by Picard iteration scheme, has a limit u in ZT which fulfills

u(z) = u0 +

∫
[0,z]

f(u(ζ))dζ, |z| ⩽ T.

In particular, u ∈ C1 ([−T, T ];H1(T)) (the uq(z) being real-valued for z ∈ R ) and it

satisfies ut = f(u) on [−T, T ] together with u(0) = u0; that is, u solves (3.1) in the class

C1 ([−T, T ];H1(T)) ⊂ X1
T . ■

Claim 3.2.3. u(z) =
∑

n⩾0 z
nvn for |z| < T , where vn = limq→∞ vqn for each n ⩾ 0.

Proof. From Claim 3.2.1, we infer that for all n ⩾ 1

vqn =
1

2πi

∫
|z|=T

z−n−1uq(z)dz,

hence

∥vpn − vqn∥H1 ⩽ T−n |||up − uq||| .

From Claim 3.2.2, we infer that (vqn) is a Cauchy sequence in H1
C(T). Let vn denote its

limit in H1
C(T). Note that

∥vn − vqn∥H1 ⩽ T−n |||u− uq||| ,

and hence the series
∑

n⩾0 z
nvn is convergent for |z| < T . Therefore, for |z| ⩽ rT with

r < 1, ∥∥∥∥∥∑
n⩾0

zn (vn − vqn)

∥∥∥∥∥
H1

⩽ (1− r)−1 |||u− uq||| ,
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and hence uq(z) =
∑

n⩾0 z
nvqn →

∑
n⩾0 z

nvn in ZrT as q → ∞. It follows that

u(z) =
∑
n⩾0

znvn for |z| < T,

which proves Claim 3.2.3. ■

Therefore, the proof of Proposition 3.2.1 is complete. ■

3.3 Conservation Laws and Invariants of Motion

To conclude this chapter, we present the three conservation laws and the so-called

invariants of motion for the BBM equation. These laws were initially discovered in 1972 by

Benjamin, Bona, and Mahony (BENJAMIN; BONA; MAHONY, 1972). However, it was

not until 1979 that Peter Olvner (OLVER, 1979) proved that these three conservation laws

are the only non-trivial, independent ones that the BBM equation possesses. These laws

are the equivalents of the conservation of mass, momentum and energy in fluid mechanics

(HAMDI et al., 2004). It is worth mentioning, given the historical linkage between the

BBM and KdV equations, that in contrast to the BBM, the KdV equation possesses an

infinite number of independent conservation laws (MIURA, 1976). The definitions and

the theorem of this section follow (OLVER, 1979), while the Proposition 3.3.1 follows

(ROSIER; ZHANG, 2013).

Definition 3.3.1 (Conservation Law). Given a general partial differential equation

F (x, t, u, ux, ut) = 0 involving two independent variables x, t and one dependent vari-

able u, a conservation law is an equation of the form

Tt +Xx = 0, (3.16)

wich is satisfied for all the solutions of the equation F = 0. The quantity T = T (x, t, u, ux, ut)

is called the conserved density and the X = X(x, t, u, ux, ut) is called the conserved flux.

The conservation law (3.16) is trivilally satisfied for some G such that T = Gx and

X = −Gt. Let T1, . . . , Tn be densities for n different conservation laws. We call these laws
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dependent if there exist constants c1 . . . cn such that

c1T1 + · · ·+ cnTn = Gx,

for some G; otherwise, we call the laws independent.

Definition 3.3.2 (Invariants of Motion). For any conservation law (3.16), the quantity∫∞
−∞ Tdx, for solutions such that the integral converges, is called Invariant of motion, or

constant of motion, i.e. independent of time.

Before presenting the results of this section, we note that, if we replace u by (−u− 1)

in the BBM equation, we have

(−u− 1)t + (−u− 1)x + (−u− 1)(−u− 1)x − (−u− 1)txx = 0

− ut − ux − (u+ 1)(−u)x + utxx = 0

− ut − ux + uux + ux + utxx = 0

ut − utxx − uux = 0.

That is, the conservation laws of the BBM equation are in one-to-one correspondence,

under the above transformation, with the following somewhat simpler equation

ut − utxx = uux. (3.17)

Theorem 3.3.1. The only non-trivial, independent conservation laws of (3.17) in which

T (x, u, ux, uxx, . . .) depends smoothly on x, u and the various spatial derivatives of u are

ut −
(
uxt +

1

2
u2
)
x

= 0, (3.18)

(
1

2
u2 +

1

2
u2x

)
t

−
(
uuxt +

1

3
u3
)
x

= 0, (3.19)

(
1

3
u3
)
t

+

(
u2t − u2xt − u2uxt −

1

4
u4
)
x

= 0. (3.20)

Proof. The proof is based on straightforward calculations. For (3.18), assuming (3.17), we
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have
ut − utxx = uux

ut − (utxx + uux) = 0

ut −
(
uxt +

1

2
u2
)
x

= 0.

For (3.19), we multiply ut − uxxt − uux = 0 by u, then we have

u (ut − uxxt − uux) = 0

uut − uuxxt − u2ux = 0

uut + uxuxt −
(
uxuxt + uuxxt + u2ux

)
= 0(

1

2
u2 +

1

2
u2x

)
t

−
(
uuxt +

1

3
u3
)
x

= 0.

Similarly, for the third conservation law (3.20), we multiply ut − uxxt − uux = 0 by

u2 + 2uxt, which gives

(ut − uxxt − uux)
(
u2 + 2uxt

)
= 0

u2 (ut − uxxt − uux) + 2uxt (ut − uxxt − uux) = 0

u2ut − u2uxxt − u3ux + uxt (2ut − 2uxxt − 2uux) = 0

u2ut + 2ututx − 2uxtuxxt − 2uuxuxt − u2uxxt − u3ux = 0

u2ut + 2ututx − 2uxtuxxt −
(
2uuxuxt + u2uxxt

)
− u3ux(

1

3
u3
)
t

+

(
u2t − u2xt − u2uxt −

1

4
u4
)
x

= 0,

and concludes the proof. ■

Proposition 3.3.1 (Invariants of Motion). For u0 ∈ H1(T), the solution u(t) of the IVP

(3.1) is such that the three integral terms

∫
T
u dx (1)

∫
T
(u2 + u2x)dx (2)

∫
T
(u3 + 3u2)dx (3)

are invariants of motion (i.e., they remain constant over time).

The invariant of motion (1) corresponds to the conservation of mass; the invariant

of motion (2) represents the conservation of energy and the H1-norm; and, hence, the
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invariant (3) represents the conservation of momentum.

Proof. For u0 ∈ H1(T), from the well-posedness result, we know that there exists u ∈

X1
T ,∀ T > 0, hence

ut = −
(
1− ∂2x

)−1
∂x

(
u+

u2

2

)
= A

(
u+

u2

2

)
∈ X2

T , since A ∈ L
(
Hs(T), Hs+1(T)

)
.

So, we have that all terms in the BBM equation ut − utxx + ux + uux = 0 belongs to X0
T .

For the integral term (1), we take the integral of the BBM equation over T and obtain∫
T
ut dx−

∫
T
utxx dx+

∫
T
ux dx+

∫
T
uux dx = 0

d

dt

∫
T
u dx−

∫
T
(utx)x dx︸ ︷︷ ︸
(∗)=0

+

∫
T
ux dx︸ ︷︷ ︸

(∗)=0

+
1

2

∫
T
(u2)x dx︸ ︷︷ ︸
(∗)=0

= 0.

The terms (*) are zero since the function u is periodic on the torus T. From this we obtain
d
dt

∫
T u dx = 0, that is,

∫
T u(t, x) dx is cosntant in t.

For the invariant of motion (2), we multiply the BBM equation by u and proceed like

the first one, integrating over T and noting the periodicity of u, but, for this time, we do a

few manipulations, like using the chain rule and integration by parts. So we have∫
T
uut dx−

∫
T
uutxx dx+

∫
T
uux dx+

∫
T
u2ux dx = 0

1

2

d

dt

∫
T
u2 dx+

∫
T
uxutx dx+

1

2

∫
T
(u2)x dx︸ ︷︷ ︸
(∗)=0

+
1

3

∫
T
(u3)x dx︸ ︷︷ ︸
(∗)=0

= 0

1

2

d

dt

∫
T
u2dx+

1

2

d

dt

∫
T
(ux)

2 dx = 0

d

dt

∫
T

(
u2 + u2x

)
dx = 0.

That is, ∫
T
u2(x, t) + u2x(x, t)dx,

doesn’t depend on t.

For the third invariant of motion, we replace u by (−u− 1) in the third conservation
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law (3.20)

(
1

3
(−u− 1)3

)
t

+

(
(−u− 1)2t − (−u− 1)2xt − (−u− 1)2(−u− 1)xt −

1

4
(−u− 1)4

)
x

−
(
1

3
(u+ 1)3

)
+

(
(−ut)2 − u2xt + (u+ 1)2uxt −

1

4
(u+ 1)4

)
x

= 0(
1

3
(u+ 1)3

)
t

−
(
u2t − u2xt + (u+ 1)2uxt −

1

4
(u+ 1)4

)
x

= 0.

Then, we integrate the last expression over T, we use the periodicity of u, which yields

∫
T

(
1

3
(u+ 1)3

)
t

dx−
∫
T

(
u2t − u2xt + (u+ 1)2uxt −

1

4
(u+ 1)4

)
x

dx = 0

d

dt

∫
T
(u+ 1)3 dx = 0

d

dt

∫
T
(u3 + 3u2 + 3u+ 1) dx = 0.

From the first invariant of moviment, we know that
∫
T u dx = 0, then, we obtain that

d

dt

∫
T
(u3 + 3u2)dx = 0.

Which implies the third constant integral term over time

∫
T
(u3 + 3u2)dx,

and concludes the proof. ■
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4 UNIQUE CONTINUATION PROPERTY

This chaper is devoted to prove the Unique Continuation Property (UCP) for the BBM

equation, for some BBM-like equations and for an intermidiate equation between BBM

and KdV, the KdV-BBM equation. By Unique Continuation we mean that if a solution

vanishes on a subset of its domain, it is actually identically zero on the entire domain.

This is an important topic in the theory of partial differential equations, with its history

dating back to works of Carleman and Holmgren in the early twentieth century. Initially,

most results were related to local unique continuation, however, due to its applications in

control theory of PDEs, which is our main interest in this work, attention was also given

to global unique continuation.

4.1 Unique Continuation Property for BBM Equation

This section derives a UCP for the solutions of the BBM equation issuing from small

enough initial data in H1(T) with nonnegative mean values. The proof combines the

analyticity in time of solutions of BBM, according to Proposition 3.2.1, the three invariants

of motion presented in Proposition 3.3.1 and an appropriate Lyapunov function.

Theorem 4.1.1. Let u0 ∈ H1(T) be such that

∫
T
u0(x)dx ⩾ 0, (4.1)

and

∥u0∥L∞(T) < 3. (4.2)

Assume that the solution u of the IVP (3.1) satisfies

u(x, t) = 0 for all (x, t) ∈ ω × (0, T ), (4.3)

where ω ⊂ T is a nonempty open set and T > 0. Then u0 = 0, and hence u ≡ 0.

Proof. Using a system of coordinates in such a way that the one-dimensional torus T is

identifying with the interval [0, 2π) and that ω ⊃ [0, ε)∪ (2π− ε, 2π) for some ε > 0. Note
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that we can do this by placing ω such that it contains the origin of our coordinate system

according to Figure 4.1 below,

Figure 4.1 – Coordinate system

0
[ )

2π

ω

ε(
)

2π − ε

] (

0

Source: Author

We know, thanks to Proposition 3.2.1, that u ∈ Cω (R;H1(T)), then we have u(x, ·) ∈

Cω(R) for all x ∈ T. (4.3) implies that1

u(x, t) = 0 for (x, t) ∈ ω × R. (4.4)

Introduce the function

v(x, t) =

∫ x

0

u(y, t)dy.

Since u ∈ Cω (R;H1(T)), then v ∈ Cω (R;H2(0, 2π)) and v satisfies

vt − vtxx + vx +
u2

2
= 0, x ∈ (0, 2π). (4.5)

Indeed, integrating the BBM ut − utxx + ux +
(
u2

2

)
x
= 0 over (0, x), and noting that

vx = u(x, t), and that vxx = ux(x, t), we have

d

dt

∫ x

0

u (y, t) dy − d

dt

∫ x

0

uxx(y, t)dy +

∫ x

0

ux(y, t)dy +

∫ x

0

(
u2

2

)
x

dy = 0

d

dt
v(x, t)− d

dt
ux(x, t) + u(x, t) +

u2

2
(x, t) = 0

vt − vtxx + vx(x, t) +
u2

2
= 0.

Denote

I(t) =

∫ 2π

0

v(x, t)dx ∈ Cω(R).

1Analytic functions can be uniquely determined by their values on any open subset of its domain. So
we have that if u is zero in a subregion of its domain, then u is identically zero in the whole domain. Note
that it allows us to uniquely extend analytic functions. It is commonly called analytic continuation for
holomorphic functions.



4.1. Unique Continuation Property for BBM Equation 86

Integrating (4.5) over (0, 2π), we have

∫ 2π

0

vt(x, t)dx−
∫ 2π

0

vtxx(x, t)dx+

∫ 2π

0

vx(x, t)dx+

∫ 2π

0

u2

2
(x, t)dx = 0

d

dt

∫ 2π

0

v(x, t)dx− d

dt

∫ 2π

0

vxx(x, t)dx+ v(2π, t)− v(0, t) +
1

2

∫ 2π

0

u2(x, t)dx = 0

It −
d

dt
[vx(2π, t)− vx(0, t)] + v(2π, t) +

1

2

∫ 2π

0

|u(x, t)|2dx = 0

It −
d

dt
[u(2π, t)− u(0, t)] +

∫ 2π

0

u(x, t)dx+
1

2

∫ 2π

0

|u(x, t)|2dx = 0

It = −
∫ 2π

0

u(x, t)dx− 1

2

∫ 2π

0

|u(x, t)|2dx.

From the invariant of motion
∫
T u(x, t)dx, assuming t = 0, the above last line can be

written as

It = −
∫ 2π

0

u0(x)dx−
1

2

∫ 2π

0

|u(x, t)|2dx. (4.6)

Using the assumption of non-negativity of the mean value (4.1), we obtain that the quantity

in (4.6) is not greater than zero.

Now using the invariant of motion
∫
T (u

2 + u2x) dx = ∥u∥H1 we get, by setting t = 0,

that ∥u(t)∥H1 = ∥u0∥H1 for all t ∈ R. Consequently, v ∈ L∞ (R, H2(0, 2π)) and I ∈ L∞(R).

In fact, first noting that

|v(x, t)| ⩽
∫ x

0

|u(y, t)|dy

⩽

(∫ x

0

12dy

)1/2(∫ x

0

|u(y, t)|2dy
)1/2

⩽
√
2π∥u(·, t)∥L2(0,2π)

⩽
√
2π∥u(·, t)∥H1(0,2π) =

√
2π ∥u0∥H1(0,2π) .

Then, for v, we have

∥v(·, t)∥H2(0,2π) =

∫ 2π

0

(
|v(x, t)|2 + |vx(x, t)|2 + |vxx(x, t)|2

)
dx

=

∫ 2π

0

|v(x, t)|2dx+
∫ 2π

0

(
|u(x, t)|2 + |ux(x, t)|2

)
dx

⩽
∫ 2π

0

2π∥u0∥2H1dx+ ∥u(t)∥H1(0,2π) <∞.
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And, for I

|I(t)| ⩽
∫ 2π

0

|v(x, t)|dx ⩽
∫ 2π

0

√
2π ∥u0∥t1 dx <∞

From the boundedness and monotonicity of the function I, due to (4.6), follows that it has

a finite limit as t→ ∞, that we denote by l. Analogously, since ∥u (tn)∥H1(T) ⩽ ∥u0∥H1(T)

and of the reflexivity of the Hilbert spaces, we can consider a sequence (u (tn))n∈N ⊂ H1(T)

with tn ∈ R,∀n ∈ N, such that

u (tn)⇀ ũ0 in H1(T), (4.7)

for some ũ0 ∈ H1(T).

Letting ũ0 be the initial data of the IVP for BBM and denoting ũ its solution, i.e., ũ

solves
ũt − ũtxx + ũx + ũũx = 0, x ∈ T, t ∈ R,

ũ(x, 0) = ũ0(x).

Pick any s ∈ (1/2, 1). Since H1(T) ↪→ Hs(T) is a compact embedding, we have that

u (tn) → ũ0 strongly in Hs(T). From the well-posedness we obtain

u (tn + ·) → ũ in C ([0, 1];Hs(T)) . (4.8)

From (4.3) and since ũ belongs to Cω(R, H1(T)), follows that

ũ(x, t) = 0 for (x, t) ∈ ω × R.

Since
∫ 2π

0
u(x, t)dx does not depend on t, considering t = 0, we obtain

∫ 2π

0
u(x, tn)dx =∫ 2π

0
u0(x)dx,∀tn. And, from the weak convergence u (tn) ⇀ ũ0 in H1(T) we obtain, as

tn → ∞, ∫ 2π

0

u (x, tn) dx =

∫ 2π

0

ũ0(x)dx =

∫ 2π

0

u0(x)dx.

As before, we define ṽ(x, t) =
∫ x
0
ũ(y, t)dy and Ĩ(t) =

∫ 2π

0
ṽ(x, t)dx. Using a procedure

analogous to the previous one, we obtain

Ĩt =

∫ 2π

0

u0(x)dx−
1

2

∫ 2π

0

|ũ(x, t)|2dx ⩽ 0. (4.9)
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However, considering tn → ∞, and using that u (tn + ·) → ũ in C ([0, 1];Hs(T)), we have

I(tn)
n→∞−−−→ Ĩ(0).

Indeed, for n ⩾ n0 such that, ∥u(y, tn)− ũ0(y)∥L2(0,2π) < ε/(2π)3/2, for a given ε > 0, it

follows ∣∣∣I(tn)− Ĩ(0)
∣∣∣ = ∣∣∣∣∫ 2π

0

∫ x

0

u(y, tn)− ũ0(y)dydx

∣∣∣∣
⩽
∫ 2π

0

∫ x

0

|u(y, tn)− ũ0(y)| dydx

⩽
√
2π

∫ 2π

0

(∫ 2π

0

|u(y, tn)− ũ0(y)|2 dy
)1/2

dx < ε.

Analogously,

I (tn + 1)
n→∞−−−→ Ĩ(1).

On the other hand,

lim
n→∞

I (tn) = lim
n→∞

I (tn + 1) = I.

So, we have that Ĩ(0) = Ĩ(1). But we know that Ĩt ⩽ 0, that is, Ĩ(t) is a non-increasing

function from 0 to 1, with Ĩ(0) = Ĩ(1), what is only possible if Ĩ(t) = 0, for all t ∈ [0, 1].

So, we conclude that

ũ(x, t) = 0 (x, t) ∈ T× [0, 1].

But, ũ is the solution of the IVP with initial data ũ0; then, ũ0 = 0. But u (tn)⇀ ũ0 = 0,

so, u (tn)⇀ 0 what implies that

∫ 2π

0

(
u3 (x, tn) + 3u2 (x, tu)

)
dx −→ 0 as n→ ∞.

Knowing that
∫ 2π

0
(u3 + 3u2) dx is time independent, we consider t = 0 and obtain

∫ 2π

0

(
u30(x) + 3u20(x)

)
dx =

∫ 2π

0

(3 + u0(x)) |u0(x)|2 dx = 0.

However, from the limitation (4.2), we know that (3 + u0(x)) ̸= 0, which yields u0 = 0,

and hence we have that u ≡ 0 on T× R, which concludes the proof. ■
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4.2 Unique Continuation Property for BBM-Like Equations

This section is devoted to the UCP property for some BBM-like equations with different

nonlinar terms. First, we deal with a generalized BBM equation without drift term, that

is, we suppress the term ux in the BBM equation and consider a general nonlinear term

satisfying certain conditions. Next, as a corollary, we incorporate a localized damping in

that generalized BBM equation. To end the section, we treat with a BBM-like equation

with drift term and with a nonlocal bilinear term given by a convolution.

4.2.1 Generalized BBM Equation Without Drift Term

Consider the following generalized BBM equation

ut − utxx + [f(u)]x = 0, x ∈ T, t ∈ R, (4.10)

u(x, 0) = u0(x), (4.11)

where f ∈ C1(R), f(u) ⩾ 0 for all u(x, t) ∈ R, and the only solution u ∈ (−δ, δ) of f(u) = 0

is u = 0, for some number δ > 0. When f(u) = u2/2, we have

ut − utxx + uux = 0 ,

which is called the Morrison-Meiss-Carey (MMC) equation (also called width wave equa-

tion). The global well-posedness for (4.10)-(4.11) in H1(T) can be derived from the

contraction mapping theorem as in Section 3.1 and the conservation of the H1-norm,

according to Proposition 3.3.1, invariant (2).

Theorem 4.2.1. Let f be as above, and let ω be a nonempty open set in T. Let u0 ∈ H1(T)

be such that the solution u of (4.10)-(4.11) satisfies u(x, t) = 0 for (x, t) ∈ ω × (0, T ) for

some T > 0. Then u0 = 0.

Proof. As was done in the proof of Theorem 4.1.1, we can assume without loss of generality

that ω = [0, ε) ∪ (2π − ε, 2π). The prolongation of u by 0 on (R\(0, 2π)) × (0, T ), still

denoted by u, satisfies

ut − utxx + [f(u)]x = 0, x ∈ R, t ∈ (0, T ) (4.12)
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u(x, t) = 0, x /∈ (ε, 2π − ε), t ∈ (0, T ) (4.13)

u ∈ C
(
[0, T ];H1(R)

)
, ut ∈ C

(
[0, T ];H2(R)

)
. (4.14)

Scaling (4.12) by ex and integrating over R, yields for t ∈ (0, T )

∫ ∞

−∞
ute

xdx−
∫ ∞

−∞
utxxe

xdx+

∫ ∞

−∞
[f(u)]xe

xdx = 0

−
∫ ∞

−∞
utxe

xdx+

∫ ∞

−∞
utxe

xdx+ f(u)ex|∞−∞ −
∫ ∞

−∞
f(u)exdx = 0.

Given the periodicity of u and since u→ 0, as x→ ±∞, we have f(u) = 0, (which follows

from the assumptions about f , that is, f(0) = 0), then the first three terms above result

in 0. Thus, ∫ ∞

−∞
f(u(x, t))exdx = 0.

Since ex > 0 and f ⩾ 0 this yields

f(u(x, t)) = 0 for (x, t) ∈ R× (0, T ).

Since u is continuous and it vanishes for x /∈ (ε, 2π − ε), we again infer from the

assumptions about f that u ≡ 0. This concludes the proof of the UCP for (4.10)-(4.11). ■

Incorporating a localized damping in (4.10), we obtain the next BBM-like equation

ut − utxx + [f(u)]x + a(x)u = 0, x ∈ T, t ⩾ 0 (4.15)

u(x, 0) = u0(x), (4.16)

where a ∈ C∞(T) is a nonnegative function with ω := {x ∈ T; a(x) > 0} nonempty, and f

is as above. Then we have the following weak stabilization result.

Corollary 4.2.1. Let u0 ∈ H1(T). Then the system (4.15)-(4.16) admits a unique solution

u ∈ C ([0, T ];H1(T)) for all T > 0. Furthermore, u(t) → 0 weakly in H1(T), hence strongly

in Hs(T) for s < 1, as t→ +∞.

Proof. The local well-posedness in Hs(T) for any s > 1/2 is also derived from the

contraction mapping theorem in a similar way as was done in Theorem 3.1.1. Our aim
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now is to prove the following energy identity

∥u(T )∥2H1 − ∥u0∥2H1 + 2

∫ T

0

∫
T
a(x)|u(x, t)|2dxdt = 0, (4.17)

from which the global well-posedness in H1(T) is derived. Scaling each term in (4.15) by

u, and integrating over T, we obtain

uut − uutxx + u [f(u)]x + a(x)u2 = 0∫
T
uutdx−

∫
T
uutxxdx+

∫
T
u [f(u)]x dx+

∫
T
a(x)u2dx = 0

1

2

d

dt

(∫
T
u2dx+

∫
T

u2xdx

)
+

∫
T
a(x)u2dx+

∫
T
u [f(u)]x dx = 0.

We note that the last term above is zero, indeed,

∫
T
u [f(u)]x dx = −

∫
T
uxf(u)dx = F (u)|2π0 = 0, since u(0) = u(2π),

where F is a primitive of f . Then, integrating the resulting expression from 0 to T

1

2

∫ T

0

d

dt

(∫
T

(
u2 + u2x

)
dx

)
dt+

∫ T

0

∫
T
a(x)u2dxdt = 0

1

2

(∫
T

[
u2(x, T ) + u2x(x, T )

]
dx−

∫
T

[
u2(x, 0) + u2x(x, 0)

]
dx

)
+

∫ T

0

∫
T
a(x)u2dxdt = 0

1

2

(
∥u(T )∥2H1(T) − ∥u(0)∥2H1(T)

)
+

∫ T

0

∫
T
a(x)u2dxdt = 0

∥u(T )∥2H1 − ∥u0∥2H1 + 2

∫ T

0

∫
T
a(x)|u(x, t)|2dxdt = 0 ,

which is the desired energy identity (4.17). Therefore, we have

d

dt
∥u(t)∥2H1 + 2

∫
T
a(x)|u(x, t)|2dx = 0 ,

which implies
d

dt
∥u(t)∥2H1 ⩽ 0.

Thus, ∥u(t)∥2H1 is a nonincreasing function, hence, it has a nonnegative limit l as t→ ∞.

On the other hand, still from the application of the contraction mapping theorem, given

any s > 1/2, any ρ > 0 and any u0, v0 ∈ Hs(T) with ∥u0∥Hs(T) ⩽ ρ, ∥v0∥Hs(T) ⩽ ρ, there is
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some time T = T (s, ρ) > 0 such that the solutions u and v of (4.15)-(4.16) corresponding

to the initial data u0 and v0, respectively, fulfill

∥u− v∥C([0,T ];Hs(T)) ⩽ 2 ∥u0 − v0∥Hs(T) . (4.18)

Pick any initial data u0 ∈ H1(T), any s ∈ (1/2, 1), and let ρ = ∥u0∥H1(T) and

T = T (s, ρ). Let v0 be such that, for some sequence tn → ∞ we have u (tn) → v0 weakly

in H1(T). Extracting a subsequence if needed, we may assume that tn+1 − tn ⩾ T for all

n. From (4.17) we infer that

lim
n→∞

∫ tn+1

tn

∫
T
a(x)|u(x, t)|2dxdt = 0. (4.19)

Since u (tn) → v0 (strongly) in Hs(T), and ∥u (tn)∥Hs(T) ⩽ ∥u (tn)∥H1(T) ⩽ ρ, we have

from (4.18) that

u (tn + ·) → v in C ([0, T ];Hs(T)) as n→ ∞, (4.20)

where v = v(x, t) denotes the solution of

vt − vtxx + [f(v)]x + a(x)v = 0, x ∈ T, t ⩾ 0,

v(x, 0) = v0(x).

Note that v ∈ C ([0, T ];H1(T)) for v0 ∈ H1(T). (4.19) combined with (4.20) yields

∫ T

0

∫
T
a(x)|v(x, t)|2dxdt = 0,

so that av ≡ 0. By Theorem 4.2.1, v0 = 0 and hence, as t→ ∞,

u(t) → 0 weakly in H1(T)

u(t) → 0 strongly in Hs(T) for s < 1.

■
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4.2.2 A BBM-Like Equation With a Nonlocal Bilinear Term

Now, the third BBM-type equation we will consider here has the drift term, and a

nonlocal bilinear term given by a convolution, namely

ut − utxx + ux + λ(u ∗ u)x = 0, x ∈ R, (4.21)

where λ ∈ R is a constant and

(u ∗ v)(x) =
∫ ∞

−∞
u(x− y)v(y)dy for x ∈ R.

A UCP can be derived without any restriction on the initial data.

Theorem 4.2.2. Assume that λ ̸= 0. Let u ∈ C1 ([0, T ];H1(R)) be a solution of (4.21)

such that

u(x, t) = 0 for |x| > L, t ∈ (0, T ). (4.22)

Then u ≡ 0.

Proof. Taking the Fourier transform of each term in (4.21) yields

ût + ξ2ût + iξû+ λiξûû = 0(
1 + ξ2

)
ût = −iξû− λiξû2(

1 + ξ2
)
ût = −iξ

(
û+ λû2

)
, ξ ∈ R, t ∈ (0, T ).

(4.23)

Note that, for each t ∈ (0, T ), û(·, t) and ût(·, t) can be extended to C as entire functions

of exponential type at most L. Furthermore, (4.23) is still true for ξ ∈ C and t ∈ (0, T ) by

analytic continuation. To prove that u ≡ 0, it is sufficient to check that (see (CONWAY,

1978), 3.7 Theorem, p. 78)

∂kξ û(i, t) = 0 ∀k ∈ N,∀t ∈ (0, T ). (4.24)

Also, we note that

∂nξ û(i, t) =

∫ ∞

−∞
u(x, t)(−ix)nexdx.
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Indeed,

û(ξ, t) =

∫ ∞

−∞
u(x, t)e−iξxdx

∂ξû(ξ, t) =

∫ ∞

−∞
u(x, t)(−ix)e−iξxdx

∂nξ û(ξ, t) =

∫ ∞

−∞
u(x, t)(−ix)ne−iξxdx

∂nξ (i, t) =

∫ ∞

−∞
u(x, t)(−ix)nexdx.

We will prove (4.24) by induction on k. First, from (4.23), by setting ξ = i

û(i, t) + λû2(i, t) = 0

û
(
1 + λû2

)
= 0,

gives that either

û(i, t) = 0 ∀t ∈ (0, T ), (4.25)

or

û(i, t) = −λ−1 ∀t ∈ (0, T ). (4.26)

Derivating with respect to ξ in (4.23) yields

2ξût +
(
1 + ξ2

)
∂ξût = −i

(
û+ λû2

)
− iξ (∂ξû+ λ2û∂ξû)

= −iû(1 + λû)− iξ∂ξû(1 + 2λû).
(4.27)

Note that if either (4.25) or (4.26) holds, we shall have

ût(i, t) = 0.

So, combining with (4.27), yields

2iût(i, t) + (1− 1)∂ξû(i, t) = −iû(i, t)(1 + λû(i, t)) + ∂ξû(i, t) (1 + 2λû)

∂ξû(i, t) =
iû(i, t)(1 + λû(i, t))

1 + 2λû
.
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Therefore, we see that

if û(i, t) = 0, then ∂ξû(i, t) = 0,

if û(i, t) = −λ−1, then ∂ξû(i, t) = 0,

that is,

∂ξû(i, t) = 0, t ∈ (0, T ).

Assume now that, for some k ⩾ 2,

∂lξû(i, t) = 0 for t ∈ (0, T ) and any l ∈ {1, . . . , k − 1}. (4.28)

Derivating k times with respect to ξ in (4.23) yields, from Leibniz rule (2.3),

∂kξ
[(
1 + ξ2

)
ût
]
= ∂kξ

[
−iξ

(
û+ λû2

)]
k∑
l=0

(
k

l

)(
∂lξ
(
1 + ξ2

)) (
∂
(k−l)
ξ ût

)
=

k∑
l=0

(
k

l

)(
∂lξ(−iξ)

) (
∂
(k−l)
ξ

(
û+ λû2

))
.

We note that, for l ⩾ 3, all the terms on the left-hand side (l.h.s) above are zero. Then, on

the l.h.s., we perform the sum up to l = 2, which gives

(
1 + ξ2

)
∂kξ ût + k2ξ∂

(k−1)
ξ ût +

k(k − 1)

2
2∂

(k−2)
ξ ût

= −iξ

(
∂kξ û+ λ

k∑
l=0

(
k

l

)
∂lξû∂

(k−l)
ξ û

)
− ik

(
∂
(k−1)
ξ û+ λ

k−1∑
l=0

(
k − 1

l

)
∂lξû∂

(k−1−l)
ξ û

)
.

From induction hypothesis and from the last line above, we obtain

∂kξ û(i, t) + 2λû(i, t)∂kξ û(i, t) = 0

∂kξ û(i, t) (1 + 2λû(i, t)) = 0.

From (4.25) and (4.26), we obtain that

∂kξ û(i, t) = 0.

Therefore,

∂kξ û(i, t) = 0, ∀ k ⩾ 1. (4.29)
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If we assume (4.26) and (4.29), it would imply

û(ξ, t) = −λ−1 ∀ξ ∈ C,

which contradicts the fact that û(·, t) ∈ L2(R). Thus, (4.25) holds and combining with

(4.29) implies

û(ξ, t) = 0 ∀ξ ∈ C.

Therefore, we achieve the desired result u ≡ 0. ■

4.3 Unique Continuation Property for the Linearized KdV-BBM
Equation

This section is concerned with the UCP for the KdV–BBM equation, which is presented

as a theorem. The proof will be provided by means of a Carleman estimate, which, in turn,

is presented as a proposition addressed in subsection 4.3.1. To achieve this, we first split the

KdV-BBM equation into a coupled system of an elliptic equation and a transport equation.

Then, we derive, for each one, a Carleman estimate, stated in the form of lemmas with

the same weights for both. Afterward, we combine these lemmas to prove the proposition.

Finally, we use a regularization process, as the theorem holds for a solution that is not

regular enough.

In order to begin presenting the results, we shall give the KdV-BBM equation

ut − utxx − cuxxx + qux = 0, x ∈ T, t ∈ (0, T ), (4.30)

where q ∈ L∞ (0, T ;L∞(T)) is a given potential function and c ̸= 0 is a given real constant.

Theorem 4.3.1. Let c ∈ R\{0}, T > 2π/|c|, and q ∈ L∞ (0, T ;L∞(T)). Let ω ⊂ T be a

nonempty open set. Let u ∈ L2 (0, T ;H2(T)) ∪ L∞ (0, T ;H1(T)) satisfying (4.30) and

u(x, t) = 0 for a.e. (x, t) ∈ ω × (0, T ). (4.31)

Then u ≡ 0 in T× (0, T ).

Proof. We first assume that u is regular enough, u ∈ L2 (0, T ;H2(T)). Then, spliting the
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equation by setting w = u− uxx ∈ L2 (0, T ;L2(T)), we have

wt = ut − utxx = cuxxx − qux

cwx = cux − cuxxx.

By adding these two equations we obtain: wt + cwx = (c− q)ux. That is, (u,w) solves the

following system

u− uxx = w (4.32)

wt + cwx = (c− q)ux. (4.33)

As mentioned in the summary of this section, we shall establish some Carleman

estimates for the elliptic equation (4.32) and the transport equation (4.33) with the “same

weights”, and combine both Carleman estimates into a single one for (4.30).

Remark 4.3.1 (The sharpness of T ). Assuming for simplicity that q(x) = c for all

x ∈ T, where c > 0 is given, and that ω = (2π − ε, 2π) for a small ϵ > 0, then the UCP

fails in time T ⩽ (2π − 2ε)/c, which implies that there is a finite speed of propagation

for KdV-BBM, since an arbitrarily large speed would produce an arbitrarily small time.

Indeed, picking any nontrivial initial state u0 ∈ C∞
0 (0, ε), we obtain from 4.33 that

wt+ cwx = 0 whose solution is w(x, t) = w0(x− ct), so, the solution (u,w) of (4.32)-(4.33)

is u(x, t) = u0(x − ct), w = w0(x − ct) where w0 = (1− ∂2x)u0. Then, for t ∈
(
0, 2π−2ϵ

c

)
,

we have that x− ct ∈ ω, hence, the solution u(x, t) = 0 for (x, t) ∈ ω × (0, (2π − 2ϵ)/c),

although u ̸≡ 0, since the initial data u0 was picked nontrivial suported in (0, ϵ). Therefore,

the condition T > 2π/|c| in Theorem 4.3.1 is sharp.

We shall introduce some notation and auxiliary functions to present the Carleman

estimate in the following proposition. Once again we identify T with [0, 2π) by choosing a

coordinate system such that ω = (2π− η, 2π+ η) ∼ [0, η)∪ (2π− η, 2π) for some η ∈ (0, π)

(by choosing the origin of the coordinates inside ω ). Without loss of generality, we can

assume that c > 0 (the case c < 0 being similar). Assume given a time T fulfilling

T >
2π

c
. (4.34)
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So, from cT > 2π, we pick some numbers δ > 0 and ρ ∈ (0, 1), such that

ρcT > 2π + δ, (4.35)

and a function ψ ∈ C∞([0, 2π]), such that

ψ(x) = |x+ δ|2 for x ∈ [η/2, 2π − η/2] (4.36)

dkψ

dxk
(0) =

dkψ

dxk
(2π) for k = 1, 2, 3 (4.37)

2δ ⩽
dψ

dx
(x) ⩽ 2(2π + δ) for x ∈ [0, 2π]. (4.38)

Introduce the function φ ∈ C∞([0, 2π]× R) defined by

φ(x, t) = ψ(x)− ρc2t2. (4.39)

Now, we present the following Carleman estimate for (4.30).

4.3.1 Carleman Estimate for the KdV-BBM Equation

Proposition 4.3.1 (Carleman estimate for the KdV-BBM equation). Let ω, c and T be

as above. Then there exists some positive numbers s2 and C2 such that for all s ⩾ s2 and

all u ∈ L2 (0, T ;H2(T)) satisfying (4.30), we have

∫ T

0

∫
T

[
s |uxx|2 + s |ux|2 + s3|u|2

]
e2sφdxdt+ s

∫
T

[
|u− uxx|2 e2sφ

]
|t=0

dx

⩽ C2

∫ T

0

∫
ω

[
s |uxx|2 + s3|u|2

]
e2sφdxdt

(4.40)

Note that, from the Carleman estimate (4.40), and assuming s large enough

∫
T

[
|u− uxx|2 e2sφ

]
|t=0

dx ⩽
C2

s

∫ T

0

∫
ω

[
s |uxx|2 + s3|u|2

]
e2sφdxdt

inf
x∈T

(
e2sφ(x,0)

) ∫
T

[
|u− uxx|2

]
|t=0

dx ⩽ sup
x∈ω
t∈[0,T ]

(
e2sφ

)
C2

∫ T

0

∫
ω

(
|uxx|2 + s2|u|2 + |ux|2

)
dxdt

∫
T

[
|u− uxx|2

]
|t=0

dx ⩽ C

∫ T

0

∫
ω

(
|uxx|2 + |u|2 + |ux|2

)
dxdt.
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Note that

∫
T
|u− uxx|2dx =

∫
T

(
u2 + u2xx

)
dx− 2

∫
T
uuxxdx =

∫
T

(
u2 + u2xx

)
dx+ 2

∫
T
uxuxdx.

Then, we have, by adjusting the constant

∫
T

[
u2 + 2u2x + u2xx

]
|t=0

dx ⩽ C

∫ T

0

∫
ω

(
|uxx|2 + |u|2 + |ux|2

)
dxdt∫

T

[
|u(·, 0)|2 + |ux(·, 0)|2 + |uxx(·, 0)|2

]
dx ⩽ C

∫ T

0

∫
ω

(
|uxx|2 + |u|2 + |ux|2

)
dxdt.

Which is the observability inequality

∥u(·, 0)∥2H2(T) ⩽ C

∫ T

0

∥u(·, t)∥2H2(ω)dt.

For the sake of clarity, we outline more detail than in the summary as the proof of

Proposition 4.3.1 is obtained. In the first step, we prove a Carleman estimate for the elliptic

equation (4.32) with the weight esψ. In the second step, we prove a Carleman estimate for

the transport equation (4.33) with the weight e5φ. Note that we are concerned here with

global Carleman estimates with weights suitably chosen in the control region. Then, we

combine these two Carleman estimates into a single one to obtain the desired Carleman

(4.40) for the KdV-BBM equation (4.30).

4.3.1.1 Step 1: Carleman Estimate for the Elliptic Equation

Lemma 4.3.1. There exist s0 ⩾ 1 and C0 > 0 such that for all s ⩾ s0 and all u ∈ H2(T),

the following inequality holds

∫
T

[
s |ux|2 + s3|u|2

]
e2sψdx ⩽ C0

(∫
T
|uxx|2 e2sψdx+

∫
ω

s3|u|2e2sψdx
)
. (4.41)
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Proof. Let v = esψu and P = ∂2x. Then

esψuxx = esψPu = esψP
(
e−sψv

)
= esψ

[
e−sψ(sψx)

2v + e−sψ(−sψxx)v − 2e−sψsψxvx + e−sψvxx
]

= (sψx)
2v − sψxxv − 2sψxvx + vxx

= Psv + Pav,

where

Psv = (sψx)
2 v + vxx, (4.42)

Pav = −2sψxvx − sψxxv, (4.43)

denote the (formal) self-adjoint and skew-adjoint parts of the operator esψP
(
e−sψ

)
, re-

spectively. It follows that

∥∥esψPu∥∥2 = (esψPu, esψPu)
= (Psv + Pav, Psv + Pav)

= (Psv, Psv) + (Pav, Pav) + 2 (Psv, Pav)

= ∥Psv∥2 + ∥Pav∥2 + 2 (Psv, Pav) .

Where (f, g) =
∫
T fgdx, and ∥f∥2 = (f, f). Then, for the last term above

(Psv, Pav) =
(
(sψx)

2 v + vxx,−2sψxvx − sψxxv
)

=
(
(sψx)

2 v,−2sψxvx
)
+
(
(sψx)

2 v,−sψxxv
)
+ (vxx,−2sψxvx) + (vxx,−sψxxv)

=: I1 + I2 + I3 + I4.

For each integral, we will do some integration by parts in x, and also use (4.37)

I1 =

∫
T
(sψx)

2 v (−2sψxvx) dx = −2

∫
T
s3ψ3

xvvxdx

= −
∫
T
s3ψ3

x

(
v2
)
x
dx = −s3ψ3

xv
2
∣∣2π
0

+

∫
T
s33ψ2

xψxxv
2dx

= 3

∫
T
(sψx)

2 sψxxv
2dx,

I2 =

∫
T
(sψx)

2 v (−sψxxv) dx = −
∫
T
(sψx)

2 sψxxv
2dx,
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I3 =

∫
T
vxx (−2sψxvx) dx = −

∫
T
sψx

(
v2x
)
x
dx

= −sψxv2x
∣∣2π
0

+

∫
T
sψxxv

2
xdx =

∫
T
sψxxv

2
xdx,

I4 = −s
∫
T
vxx (ψxxv) dx = −svxψxxv|2π0 + s

∫
T
vx (ψxxxv + ψxxvx) dx

=
s

2

∫
T
ψxxx

(
v2
)
x
dx+ s

∫
T
ψxxv

2
xdx

=
s

2
v2ψxxx

∣∣∣2π
0

−
∫
T
sψxxxx

v2

2
dx+

∫
T
sψxxv

2
xdx

= −
∫
T
sψxxxx

v2

2
dx+

∫
T
sψxxv

2
xdx.

Gathering all together, we have

2 (I1 + I2 + I3 + I4) = 2

(
3

∫
T
(sψx)

2 sψxxv
2 dx−

∫
T
(sψx)

2 sψxxv
2 dx+

∫
T
sψxxv

2
x dx

−
∫
T
sψxxxx

v2

2
dx+

∫
T
sψxxv

2
x dx

)
= 4

∫
T
(sψx)

2 sψxxv
2dx−

∫
T
sψxxxxv

2dx+ 4

∫
T
sψxxxv

2
xdx

=

∫
T

[
4 (sψx)

2 sψxx − sψxxxx
]
v2dx+

∫
T
(4sψxx) v

2
xdx.

Therefore,

∥∥esψPu∥∥2 = ∥Psv∥2+ ∥Pav∥2+
∫
T

[
4 (sψx)

2 sψxx − sψxxxx
]
v2dx+

∫
T
(4sψxx) v

2
xdx (4.44)

Since, for x ∈
(
η
2
, 2π − η

2

)
, ψ(x) = |x+ δ|2 follows that

ψx(x) = 2|x+ δ|(x+ δ)

|x+ δ|
= 2(x+ δ)

ψxx(x) = 2

ψxxxx(x) = 0.

So,

4 (sψx)
2 sψxx − sψxxxx = 4(s2(x+ δ))2s2 = 32s3(x+ δ)2 > 0

4sψxx = 4s2 = 8s.
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That is, we can infer the existence of some numbers s0 ⩾ 1 and K > 0 such that , for all

s ⩾ s0

4 (sψx)
2 sψxx − sψxxxx ⩾ Ks3, for (x, t) ∈

(η
2
, 2π − η

2

)
× (0, T )

4sψxx ⩾ Ks for (x, t) ∈
(η
2
, 2π − η

2

)
× (0, T ).

On the other hand, setting ω0 =
[
0, η

2

)
∪
(
2π − η

2
, 2π
)
, and, since ω0 ⊂ ω ⊂ [0, 2π], with

ψ ∈ C∞([0, 2π]), we can obtain a superior bound for all derivatives of ψ on ω0, so that, we

also infer that exists a number K ′ > 0 and, again for all s ⩾ s0 ⩾ 1,

∣∣4 (sψx)2 sψxx − sψxxxx
∣∣ ⩽ K ′s3 for (x, t) ∈ ω0 × (0, T ),

|4sψxx| ⩽ K ′s, for (x, t) ∈ ω0 × (0, T ).

Thus, from (4.44) we obtain

∥Psv∥2 +
∫
T

[
4 (sψx)

2 sψxx − sψxxxx
]
v2dx+

∫
T
(4sψxx) v

2
xdx ⩽ ∥esψPu∥2

∥Psv∥2 +
∫
T\ω0

[
4 (sψx)

2 sψxx − sψxxxx
]
v2dx+

∫
ω0

[
4 (sψx)

2 sψxx − sψxxxx
]
v2dx

+

∫
T\ω0

(4sψxx) v
2
xdx+

∫
ω0

(4sψxx) v
2
xdx ⩽

∥∥esψPu∥∥2 .
From the discussion about the estimates for

(
4 (sψx)

2 sψxx − sψxxxx
)

and for (4sψxx)

in T\ω0 and in ω0 we can see that, changing
(
4 (sψx)

2 sψxx − sψxxxx
)

for Ks3 in T\ω0,

the inequality remains the same, while, in ω0 we can change for K ′s and add the same

integral over ω0 on the right-hand side of the inequality, preserving the inequality. The

same is true for (4sψxx). Thus, we conclude that, for s ⩾ s0 and some constant C > 0

∥Psv∥2 +
∫
T

[
s |vx|2 + s3|v|2

]
dx ⩽ C

(∥∥esψPu∥∥2 + ∫
ω0

[
s |vx|2 + s3|v|2

]
dx

)
. (4.45)

Next we shall show that
∫
T s

−1 |vxx|2 dx is also less than the right hand side of (4.45),

that is, we must show that

∫
T
s−1 |vxx|2 dx < C

(∥∥esψPu∥∥2 + ∫
ω0

[
s |vx|2 + s3|v|2

]
dx

)
.
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From Psv = (sψx)
2 v + vxx, we have vxx = Psv − (sψx)

2 v. Then proceeding

∫
T
s−1 |vxx|2 dx =

∫
T
s−1
∣∣Psv − (sψx)

2 v
∣∣2 dx

⩽ 2

∫
T
s−1
(
|Psv|2 + |sψx|4 |v|2

)
dx

⩽ 2

∫
T
s−1 |Psv|2 dx+ 2

∫
T
s3 |ψx| |v|2dx

⩽ 2s−1 ∥Psv∥2 + 2C

∫
T
s3|v|2dx

⩽ C

(
s−1 ∥Psv∥2 +

∫
T
s3|v|2dx

)
.

Note that, as s ⩾ s0 ⩾ 1, s−1 ∥Psv∥2 ⩽ ∥Psv∥2, thus

∫
T
s−1 |vxx|2 dx ⩽ C

(
∥Psv∥2 +

∫
T

(
s3|v|2 + s|vx|2

)
dx

)
⩽ C

(∥∥esψPu∥∥2 + ∫
ω0

[
s |vx|2 + s3|v|2

]
dx

)
.

As desired. Now, we combine this with (4.45), that gives

∥Psv∥2 +
∫
T

{
s−1 |vxx|2 + s |vx|2 + s3|v|2

}
dx

⩽ 2C

(∥∥esψPu∥∥2 + ∫
ω0

s3|v|2dx+
∫
ω0

s |vx|2 dx
)
.

Therefore

∫
T

{
s−1 |vxx|2 + s |vx|2 + s3|v|2

}
dx ⩽ C

(∥∥esψPu∥∥2 + ∫
ω0

s3|v|2dx+
∫
ω0

s |vx|2 dx
)
,

(4.46)

where C does not depend on s and v. Now we want to drop the last term in the right

hand side of (4.46). Let ξ ∈ C∞
0 (ω) with 0 ⩽ ξ ⩽ 1 and ξ(x) = 1 for x ∈ ω0 ⊂ ω. Then∫

ω0

|vx|2 dx ⩽
∫
ω

ξ |vx|2 dx =

∫
ω

(ξvx) vxdx = ξvxv|∂ω −
∫
ω

(ξxvx + ξvxx) v dx

⩽ −1

2

∫
ω

ξx
(
v2
)
x
dx−

∫
ω

ξvxxvdx

⩽
1

2

∫
ω

ξxxv
2dx−

∫
ω

ξvxxvdx.
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So that ∫
ω0

|vx|2 dx ⩽
1

2

∫
ω

|ξxxv2|dx+
∫
ω

|vxx||v| dx

2

∫
ω0

s |vx|2 dx ⩽
∫
ω

|ξxx| |v|2dx+ 2

∫
ω

s |vxx| |v|dx

2

∫
ω0

s |vx|2 dx ⩽ ∥ξxx∥L∞(T)

∫
ω

s|v|2dx+ 2

∫
ω

∣∣∣ vxx
s1/2

∣∣∣ ∣∣s3/2v∣∣ dx.
From Young inequality,

∣∣∣ vxx
s1/2

∣∣∣ ∣∣s3/2v∣∣ ⩽ ε
1

s
|vxx|2+

1

4ε
s3|v|2, where ε > 0 is a constant that

can be chosen as small as desired. Thus

2

∫
ω0

s |vx|2 dx ⩽ ∥ξxx∥L∞(T)

∫
ω

s|v|2dx+ 2ε

∫
ω

s−1|vxx|2dx+
1

2ε

∫
ω

s3|v|2dx.

Then, by setting ε = κ
2
, we obtain

2

∫
ω0

s |vx|2 dx ⩽ ∥ξxx∥L∞(T)

∫
ω

s|v|2dx+ κ

∫
ω

s−1|vxx|2dx+ κ−1

∫
ω

s3|v|2dx. (4.47)

For κ small enough and some constant C that does not depend on s and v, we see that

∫
ω0

s |vx|2 ⩽ C

∫
ω

s|v|2dx ⩽ C

∫
ω

s3|v|2dx.

Then, going back to (4.46), we obtain, with a possibly increased value of s0∫
T

{
s−1 |vxx|2 + s |vx|2 + s3|v|2

}
dx ⩽ C

(∥∥esψPu∥∥2 + ∫
ω

s3|v|2dx
)
. (4.48)

Then ∫
T

{
s |vx|2 + s3|v|2

}
dx ⩽ C

(∥∥esψPu∥∥2 + ∫
ω

s3|v|2dx
)
. (4.49)

Note that, from v = esψu, we have

vx = sψxe
sψu+e

sψux

vx = sψxv + esψux

vx − sψxv = esψux

e−sψ (vx − sψxv) = ux.



4.3. Unique Continuation Property for the Linearized KdV-BBM Equation 105

Using (4.38), follows that∫
T

(
s |ux|2 + s3|u|2

)
e2sψdx =

∫
T

(
s
∣∣e−sψ (vx − sψxv)

∣∣2 + s3
∣∣e−sψv∣∣2) e2sψdx

=

∫
T

(
s |vx − sψxv|2 + s3|v|2

)
dx

⩽ C1

∫
T

[
s
(
|vx|2 + s2ψ2

x|v|2
)
+ s3|v|2

]
dx

⩽ C2

∫
T

[
s|vx|2 + s3|v|2

]
dx

(4.50)

To conclude the proof, we come back to the variable u in (4.49) and we use (4.50), which

gives ∫
T

(
s |ux|2 + s3|u|2

)
e2sψdx ⩽ C2

∫
T

[
s|vx|2 + s3|v|2

]
dx

⩽ C

(∥∥esψPu∥∥2 + ∫
ω

s3|v|2dx
)

⩽ C

(∫
T
|uxx|2 e2sψdx+

∫
ω

s3 |u|2 e2sψdx
)
,

which is the desired Carleman estimate (4.41). ■

4.3.1.2 Step 2: Carleman Estimate for the Transport Equation

Lemma 4.3.2. There exist s1 ⩾ s0 and C1 > 0 such that for all s ⩾ s1 and all w ∈

L2(T× (0, T )) with wt+ cwx ∈ L2(T× (0, T )), the following holds

∫ T

0

∫
T
s|w|2e2sφdxdt+

∫
T
s
[
|w|2e2sφ

]
|t=0

dx+

∫
T
s
[
|w|2e2sφ

]
|t=T dx

⩽ C1

(∫ T

0

∫
T
|wt + cwx|2 e2sφdxdt+

∫ T

0

∫
ω

s|w|2e2sφdxdt
)
.

(4.51)

Proof. We first assume that w is regular enough, that is w ∈ H1(T× (0, T )). For this case,

the proof will follow the same outline as the proof of Lemma 4.3.1. Thus, let v = esφw

and P = ∂t + c∂x. Then,

esφ(wt + cwx) = esφPw =esφP
(
e−sφv

)
= esφ

(
−sφte−sφv + e−sφvt + c

(
−sφxe−sφv + e−sφvx

))
= (−sφtv + vt − csφxv + cvx)

= (−sφtv − csφxv) + (vt + cvx) =: Psv + Pav.
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It follows that

∥esφPw∥2L2(T×(0,T )) = (esφPw, esφPw)L2(T×(0,T ))

= (Psv + Pav, Psv + Pav)L2(T×(0,T ))

= ∥Psv∥2L2(T×(0,T )) + ∥Pav∥2L2(T×(0,T )) + 2 (Psv, Pav)L2(T×(0,T )) .

(4.52)

For the last term above

(Psv, Pav)L2(T×(0,T )) = (−sφtv − csφxv, vt + cvx)L2(T×(0,T ))

= (−sφtv, vt)L2(T×(0,T )) + (−sφtv, cvx)L2(T×(0,T ))

+ (−csφxv, vt)L2(T×(0,T )) + (−csφxv, cvx)L2(T×(0,T ))

=

∫ T

0

∫
T
−sφtvvt dxdt+

∫ T

0

∫
T
−sφtvcvx dxdt

+

∫ T

0

∫
T
−csφxvvt dxdt+

∫ T

0

∫
T
−c2sφxvvx dxdt

=: I1 + I2 + I3 + I4.

We will treat each integral separately

I1 =
1

2

∫ T

0

∫
T
−sφt

(
v2
)
t
dxdt =

1

2

∫ T

0

∫
T
sφttv

2dxdt− 1

2

∫
T
sφtv

∣∣∣∣T
0

dx,

I2 =
1

2

∫ T

0

∫
T
−scφt

(
v2
)
x
dxdt =

1

2

∫ T

0

∫
T
scφtxv

2dxdt− 1

2

∫ T

0

scφtv
2

∣∣∣∣2π
0

,

I3 =
1

2

∫ T

0

∫
T
−csφx

(
v2
)
t
dxdt =

1

2

∫ T

0

∫
T
csφxtv

2dxdt− 1

2

∫
T
csφxv

2

∣∣∣∣T
0

dx,

I4 =
1

2

∫ T

0

∫
T
−c2sφx

(
v2
)
x
dxdt =

1

2

∫ T

0

∫
T
c2sφxxv

2dxdt− 1

2

∫ T

0

c2sφxv
2

∣∣∣∣2π
0

dt.

Then, gathering all together, we have

2 (Psv, Pav)L2(T×(0,T )) =

∫ T

0

∫
T

(
sφtt + 2scφtx + c2sφxx

)
v2dxdt

−
∫
T
(sφt + csφx) v

2

∣∣∣∣T
0

dx−
∫ T

0

(
scφt + c2sφx

)
v2
∣∣∣∣2π
0

dt.

(4.53)

Now, since φ(x, t) = ψ(x)− ρc2t2, then φx = ψx and φt = −2ρc2t and, according to

(4.37), we have that φx(0, t) = φx(2π, t), φt(0, t) = φt(2π, t), as well as v(0, t) = v(2π, t),
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since v(x, t) = esφw, with w periodic in x. Thus, the last term in (4.53) is null. From,

(4.52) and (4.53), we have

∫ T

0

∫
T
|esφPw|2 dxdt =

∫ T

0

∫
T
s2 |φt + cφx|2 |v|2dxdt+

∫ T

0

∫
T
|vt + cvx|2 dxdt

+

∫ T

0

∫
T
s
(
φtt + 2cφtx + c2φxx

)
v2dxdt−

∫
T
s (φt + cφx) v

2

∣∣∣∣
t=T

+

∫
T

s (φt + cφx) v
2

∣∣∣∣
t=0

.

Now, we shall make estimates for (φtt + 2cφxt + c2φxx) and for (φt + cφx). First we

note that (φt + cφx) = −2ρc2t+ cψx, then, for x ∈ (0, 2π), t = T and from (4.35)-(4.38),

we have that

−(φt + cφx) ⩾ 2c(ρcT − 2π − δ) > 0.

Analogously, for x ∈ (0, 2π), t = 0, we obtain

φt + cφx ⩾ 2cδ > 0.

So, we have

∫ T

0

∫
T
s2 |φt + cφx|2

∣∣v2∣∣ dxdt+ ∫ T

0

∫
T
|vt + cvx|2 dxdt

+

∫ T

0

∫
T
s
(
φtt + 2cφtx + c2φxx

)
v2dxdt+

∫
T
s(2c(ρcT − 2π − δ))|v|2|t=T

+

∫
T
s(2cδ)|v|2|t=0 ⩽

∫ T

0

∫
T
|esφPw|2dxdt.

Then ∫ T

0

∫
T
s
(
φtt + 2cφtx + c2φxx

)
|v|2 dxdt+

∫
T
s
(
|v|2t=0 + |v|2t=T

)
dx

⩽ C

∫ T

0

∫
T
|esφPw|2 dxdt.

But

∫ T

0

∫
T
s
(
φtt + 2cφtx + c2φxx

)
|v|2dxdt =

∫ T

0

∫
T\ω0

s(

2(1−ρ)c2︷ ︸︸ ︷
φtt + 2cφtx + c2φxx

)
|v|2dxdt

+

∫ T

0

∫
ω0

s
(
φtt + 2cφtx + c2φxx

)
|v|2dxdt.
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For x ∈ T\ω0 =
(
η
2
, 2π − η

2

)
, t ∈ (0, T )

φ(x, t) = |x+ s|2 − ρc2t2

φt = −2ρc2t

φtt = −2ρc2

φxt = 0

φxx = ψxs = 2, φx = 2(x+ δ).

Then, φtt + 2cφtx + c2φxx = 2(1− ρ)c2 > 0, for ρ ∈ (0, 1) and, as ω0 ⊂ ω

∫ T

0

∫
ω0

s
(
φtt + 2cφtx + c2φxx

)
|v|2dxdt ⩽

∫ T

0

∫
ω

s
(
φtt + 2cφtx + c2φxx

)
|v|2dxdt.

Therefore ∫ T

0

∫
T
s|v|2dxdt+

∫
T
s
(
|v|2t=0 + |v|2t=T

)
dx

⩽ C

(∫ T

0

∫
T
|esφPw|2 dxdt+

∫ T

0

∫
ω

s|v|2dxdt
)
.

To finish the proof of the lemma 4.3.2 for w ∈ H1(T× (0, T )), we replace v by esφw,

which produces (4.51).

We now claim that Lemma 4.3.2 is still true when w and f := wt + cwx are in

L2 (0, T ;L2(T)). Indeed, in that case, from Aubin-Lions Theorem 2.1.18, we have w ∈

C ([0, T ];L2(T)), and, from density we can consider two sequences (wn0 ) and (fn) in H1(T)

and L2 (0, T ;H1(T)), respectively, such that

wn0 → w(0) in L2(T)

fn → f in L2
(
0, T ;L2(T)

)
then the solution wn ∈ C ([0, T ];H1(T)) of

wnt + cwnx = fn,

wn(0) = wn0

satisfies wn ∈ H1(T × (0, T )) and wn → w in C ([0, T ];L2(T)), so that we can apply

(4.51) to wn and next pass to the limit n → ∞ in (4.51). The proof of Lemma 4.3.2 is
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complete. ■

Proof. Finally, we are able to proof the Proposition 4.3.1, that is, the Carleman estimate

for the KdV-BBM equation. Let u ∈ L2 (0, T ;H2(T)) satisfying ut−utxx− cuxxx+qux = 0,

and let w = u− uxx ∈ L2 (0, T, L2(T)). Then wt + cwx = (c− q)ux ∈ L2 (0, T ;L2(T)). Our

task is to combine the following results proved so far

u− uxx = w, (4.32)

wt + cwx = (c− q)ux, (4.33)

∫ T

0

∫
T
s|w|2e2sφdxdt+

∫
T
s
[
|w|2e2sφ

]
|t=0

dx+

∫
T
s
[
|w|2e2sφ

]
|t=T dx

⩽ C1

(∫ T

0

∫
T
|wt + cwx|2 e2sφdxdt+

∫ T

0

∫
ω

s|w|2e2sφdxdt
)
, (4.51)

and (4.41) multiplied by e−2sρc2t2 and integrated over (0, T )

∫ T

0

∫
T

[
s |ux|2 + s3|u|2

]
e2sφdxdt ⩽ C0

(∫ T

0

∫
T
|uxx|2 e2sφdxdt+

∫ T

0

∫
ω

s3|u|2e2sφdxdt
)
.

(4.54)

Replacing wt + cwx by (c− q)ux in (4.51) and adding to (4.54), we obtain, for s ⩾ s1

∫ T

0

∫
T

[
s|ux|2 + s3|u|2 + s|u− uxx|2

]
e2sφdxdt+

∫
T
s
[
|u− uxx|2

]
|t=0

dx

⩽ C

(∫ T

0

∫
T

[
|uxx|2 + |(c− q)ux|2

]
e2sφdxdt+

∫ T

0

∫
ω

[
s|u− uxx|2 + s3|u|2

]
e2sφdxdt

)
.

(4.55)

Note that∫ T

0

∫
T

(
s|uxx|2 + s|ux|2 + s3|u|2

)
e2sφdt+

∫
T
s
[
|u− uxx|2

]
|t=0

dx

=

∫ T

0

∫
T

(
s|(u− uxx)− u|2 + s|ux|2 + s3|u|2

)
e2sφdt+

∫
T
s
[
|u− uxx|2

]
|t=0

dx.

Then, from (4.55), knowing that (a− b)2 ⩽ 2(a2 + b2) and noting that s ⩽ s3, since s ⩾ 1,
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we have that∫ T

0

∫
T

(
s|uxx|2 + s|ux|2 + s3|u|2

)
e2sφdt+

∫
T
s
[
|u− uxx|2

]
|t=0

dx

=

∫ T

0

∫
T

(
s|(u− uxx)− u|2 + s|ux|2 + s3|u|2

)
e2sφdt+

∫
T
s
[
|u− uxx|2

]
|t=0

dx

⩽ C

∫ T

0

∫
T

[
s |u− uxx|2 + s |ux|2 + s3|u|2

]
e2sφdxdt+ s

∫
T

[
|u− uxx|2 e2sφ

]
|t=0

dx

⩽ C1

(∫ T

0

∫
T

[
|uxx|2 + |(c− q)ux|2

]
e2sφdxdt+

∫ T

0

∫
ω

[
s|uxx|2 + s3|u|2

]
e2sφdxdt

)
⩽
C̃1

s

(∫ T

0

∫
T

[
s|uxx|2 + s|ux|2

]
e2sφdxdt

)
+ C1

∫ T

0

∫
ω

[
s|uxx|2 + s3|u|2

]
e2sφdxdt.

Increasing the values of s if necessary, so that, 1− C̃1

s
> 0 we have

(
1− C̃1

s

)∫ T

0

∫
T

(
s|uxx|2 + s|ux|2 + s3|u|2

)
e2sφdt+

∫
T
s
[
|u− uxx|2

]
|t=0

dx

C1

∫ T

0

∫
ω

[
s|uxx|2 + s3|u|2

]
e2sφdxdt,

which gives

∫ T

0

∫
T

(
s|uxx|2 + s|ux|2 + s3|u|2

)
e2sφdt+

∫
T
s
[
|u− uxx|2

]
|t=0

dx

⩽ C1

(
s

s− C̃1

)∫ T

0

∫
ω

[
s|uxx|2 + s3|u|2

]
e2sφdxdt.

For a sufficiently large s and s2 ⩾ s1 and C2 > C̃1 large enough we obtain the desired

Carleman estimate∫ T

0

∫
T

[
s |uxx|2 + s |ux|2 + s3|u|2

]
e2sφdxdt+ s

∫
T

[
|u− uxx|2 e2sφ

]
|t=0

dx

⩽ C2

∫ T

0

∫
ω

[
s |uxx|2 + s3|u|2

]
e2sφdxdt.

■

We are now in a position to prove the UCP for the KdV-BBM equation stated in

Theorem 4.3.1. We recall that u was set to belong to L2 (0, T ;H2(T)) ∪ L∞ (0, T ;H1(T)).

For u ∈ L2 (0, T ;H2(T)) fulfilling (4.30) and (4.31), we obtain the UCP at once from the

Carleman estimate (4.40).
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On the other hand, for u ∈ L∞ (0, T ;H1(T)) we have that u and w := u− uxx are not

regular enough to apply the Carleman estimates proved so far. So, we need to smooth

them by using some convolution in time. For any function v = v(x, t) and any number

h > 0, we set

v[h](x, t) =
1

h

∫ t+h

t

v(x, s)ds.

We recall that, from Proposition 2.1.19, if v ∈ Lp(0, T ;V ), where 1 ⩽ p ⩽ +∞ and V

denotes any Banach space, then v[h] ∈ W 1,p(0, T − h;V ),
∥∥v[h]∥∥

Lp(0,T−h;V )
⩽ ∥v∥Lp(0,T ;V ),

and for p <∞ and T ′ < T

v[h] → v in Lp (0, T ′;V ) as h→ 0.

Then, in our context, u[h] ∈ W 1,∞ (0, T ′;H1(T)), for any positive number h < h0 := T −T ′,

with T ′ ∈
(
2π
c
, T
)
. In the sequel, u[h]t denotes

(
u[h]
)
t
, u

[h]
x denotes

(
u[h]
)
x
, etc. We assume

again c > 0, the pair (ρ, δ) satisfying (4.35) with T replaced by T ′ and we define the

functions ψ and φ as before. Thus, in that conditions, since

ut − utxx − cuxxx + (qux) = 0,

we have that u[h] solves

u
[h]
t − u

[h]
txx − cu[h]xxx + (qux)

[h] = 0 in D′ (0, T ′;H−2(T)
)
, (4.56)

u[h](x, t) = 0, (x, t) ∈ ω × (0, T ′) . (4.57)

Since u[h] ∈ W 1,∞ (0, T ′;H1(T)), from (4.56), we infer that

u[h]xxx = c−1
(
u
[h]
t − u

[h]
txx + (qux)

[h]
)
∈ L∞ (0, T ′;H−1(T)

)
,

hence

u[h] ∈ L∞ (0, T ′;H2(T)
)

(4.58)

This yields, with (4.32) and (4.33)

w[h] = u[h] − u[h]xx ∈ L∞ (0, T ′;L2(T)
)

(4.59)
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w
[h]
t + cw[h]

x = ((c− q)ux)
[h] ∈ W 1,∞ (0, T ;L2(T)

)
(4.60)

Thus, from lemmas 4.3.1 and 4.3.2 and from (4.57) and (4.59), we infer that there

exists some constants s1 > 0 and C1 > 0 such that for all s ⩾ s1 and all h ∈ (0, h0), we

have

∫ T ′

0

∫
T

[
s
∣∣u[h]x ∣∣2 + s3|u[h]|2 + s

∣∣w[h]
∣∣2] e2sφdxdt

⩽ C0

(∫ T ′

0

∫
T

∣∣u[h]xx∣∣2 + ∣∣∣((c− q)ux)
[h]
∣∣∣2 e2sφdxdt)

⩽ C0

(∫ T ′

0

∫
T

∣∣u[h] − w[h]
∣∣2 + ∣∣∣((c− q)ux)

[h]
∣∣∣2 e2sφdxdt) .

But, from (4.58)-(4.60), we infer that

∫ T ′

0

∫
T

(
s
∣∣u[h]x ∣∣2 + s3

∣∣u[h]∣∣2 + s
∣∣w[h]

∣∣2) e2sφdxdt
⩽ C1

∫ T ′

0

∫
T

(∣∣u[h]∣∣2 + ∣∣w[h]
∣∣2 + ∣∣∣((c− q)ux)

[h]
∣∣∣2) e2sφdxdt

⩽ C1

∫ T ′

0

∫
T

(∣∣u[h]∣∣2 + ∣∣w[h]
∣∣2 + 2

∣∣(c− q)u[h]x
∣∣2

+2
∣∣∣((c− q)ux)

[h] − (c− q)u[h]x

∣∣∣2) e2sφdxdt.
(4.61)

Comparing the powers of s in (4.61), we deduce that, by increasing the the constants

s1 and C1 in a convenient way, for s ⩾ s3 > s1, h ∈ (0, h0) and some constant C3 > C1

(that does not depend on s, h), we have that

∫ T ′

0

∫
T

(
s
∣∣u[h]x ∣∣2 + s3

∣∣u[h]∣∣2 + s
∣∣w[h]

∣∣2) e2sφdxdt
⩽ C3

∫ T ′

0

∫
T

∣∣∣((c− q)ux)
[h] − (c− q)u[h]x

∣∣∣2 e2sφdxdt.
Fix s to the value s3, and let h→ 0. We claim that

∫ T ′

0

∫
T

∣∣∣((c− q)ux)
[h] − (c− q)u[h]x

∣∣∣2 e2s3φdxdt→ 0 as h→ 0.
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Indeed, as h→ 0,

((c− q)ux)
[h] → (c− q)ux in L2

(
0, T ′;L2(T)

)
,

(c− q)u[h]x → (c− q)ux in L2
(
0, T ′;L2(T)

)
,

while e2s3φ ∈ L∞ (T× (0, T ′)). Therefore,

∫ T ′

0

∫
T

(
s3
∣∣u[h]x ∣∣2 + s33

∣∣u[h]∣∣2 + s3
∣∣w[h]

∣∣2) e2s3φdxdt→ 0 as h→ 0.

In particular, ∫ T ′

0

∫
T

∣∣u[h]∣∣2 e2s3φdxdt→ 0 as h→ 0.

On the other hand, u[h] → u in L2 (0, T ′;L2(T)), hence

∫ T ′

0

∫
T

∣∣u[h]∣∣2 e2s3φdxdt→ ∫ T ′

0

∫
T
|u|2e2s3φdxdt as h→ 0.

From uniqueness of limit, we conclude that

∫ T ′

0

∫
T
|u|2e2s3φdxdt = 0.

Therefore, u ≡ 0 in T × (0, T ′). As T ′ may be taken arbitrarily close to T , we infer

that u ≡ 0 in T× (0, T ), as desired. The proof of Theorem 4.3.1 is complete. ■
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5 CONTROL AND STABILIZATION OF THE KDV-BBM

EQUATION

This chapter, devoted to the controllability of the BBM equation, is the core of this work.

When dealing with PDE we have at our disposal three concepts of controllability; namely

the exact controllability (any pair of state vectors may be connected by a trajectory), the

null controllability (any state vector may be steered to 0) and the approximate controllability

(any state vector may be steered arbitrarily close to another state vector). One of the main

concerns of control theory is the relationship between controllability and stabilizability.

We begin the chapter by treating the controllability concept, while the latter is addressed

in the second section. We refer the reader to section 2.2, for more details.

We consider the following system

ut − utxx − cuxxx + (c+ 1)ux + uux = a(x)h, x ∈ T, t ⩾ 0 (5.1)

u(x, 0) = u0(x), (5.2)

where c ∈ R\{0} and a ∈ C∞(T) is a given nonzero function. Let

ω = {x ∈ T; a(x) ̸= 0} ≠ ∅. (5.3)

5.1 Exact controllability

We begin with a local controllability result, in sufficiently large time, for the system

(5.1)-(5.2). However, to prove this, we first treat the linear case.

Theorem 5.1.1. Let a ∈ C∞(T) with a ̸= 0, s ⩾ 0 and T > 2π/|c|. Then there exists a

δ > 0 such that for any u0, uT ∈ Hs(T) with

∥u0∥Hs + ∥uT∥Hs < δ,

one can find a control input h ∈ L2 (0, T ;Hs−2(T)) such that the system (5.1)-(5.2) admits

a unique solution u ∈ C ([0, T ], Hs(T)) satisfying u(·, T ) = uT .
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Proof. The result is first proved for the linearized equation, and next extended to the

nonlinear one by a fixed-point argument.

5.1.1 Exact Controllability of the Linearized System

We first consider the exact controllability of the linearized system

ut − utxx − cuxxx + (c+ 1)ux = a(x)h, (5.4)

u(x, 0) = u0(x), (5.5)

in Hs(T) for any s ∈ R. Note that (5.4) can be written as

∂tu =
(
1− ∂2x

)−1 (
c∂3x − (c+ 1)∂x

)
u+

(
1− ∂2x

)−1
[a(x)h]

∂tu = Au+
(
1− ∂2x

)−1
[a(x)h] ,

in which A = (1− ∂2x)
−1

(c∂3x − (c+ 1)∂x) is the operator with domain D(A) = Hs+1(T) ⊂

Hs(T). We claim that A is skew-adjoint, that is, A∗ = −A. Indeed, let f, g ∈ Hs+1(T),

then

(Af, g)Hs+1(T) =
((

1− ∂2x
)−1 (

c∂3x − (c+ 1)∂x
)
f, g
)
Hs+1(T)

=
∑
k∈Z

(
1 + k2

)s+1
(1− ∂2x)

−1
(c∂3x − (c+ 1)∂x) f

∧

(k)ĝ(k)

=
∑
k∈Z

(
1 + k2

)s+1 (−i)(ck3 + (c+ 1)k)

1 + k2
f̂(k)ĝ(k)

=
∑
k∈Z

(
1 + k2

)s+1
f̂(k)ĝ(k)

i(ck3 + (c+ 1)k)

1 + k2

= −
∑
k∈Z

(
1 + k2

)s+1
f̂(k)ĝ(k)

(−i)(ck3 + (c+ 1)k)

1 + k2

= −
∑
k∈Z

(
1 + k2

)s+1
f̂(k)(1− ∂2x)

−1
(c∂3x − (c+ 1)∂x) g)

∧

(k)

= −
(
f,
(
c∂3x − (c+ 1)∂x

)
g
)
Hs+1(T)

= − (f, Ag)Hs+1(T)

= (f,−Ag)Hs+1(T)

Therefore, from Stone’s Theorem, the operator A generates a group of isometries
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{W (t)}t∈R = {etA}t∈R in Hs(T). Note that

F(Av)(k) = Âv(k) =
(−i)(ck3 + (c+ 1)k)

1 + k2
f̂(k),

so that, we have the following representation in Fourier series for any v ∈ Hs(T)

W (t)v = etAv =
∞∑

k=−∞

e
−it ck

3+(c+1)k

k2+1 v̂ke
ikx, (5.6)

v =
∞∑

k=−∞

v̂ke
ikx ∈ Hs(T).

The system (5.4)-(5.5) may be cast into the following integral form

u(t) = W (t)u0 +

∫ t

0

W (t− τ)
(
1− ∂2x

)−1
[a(x)h(τ)]dτ.

Take h(x, t) in (5.4) to have the following form

h(x, t) = a(x)
∞∑

j=−∞

fjqj(t)e
ijx, (5.7)

where fj and qj(t) are to be determined later. Then the solution u of equation (5.4) can

be written as

u(x, t) =
∞∑

k=−∞

ûk(t)e
ikx,

that we substitute it into (5.4) to obtain

(
∂t − ∂t∂

2
x − c∂3x + (c+ 1)∂x

)( ∞∑
k=−∞

ûk(t)e
ikx

)
= a(x)a(x)

∞∑
j=−∞

fjqj(t)e
ijx

For each k, we have

(
1 + k2

) d
dt
ûk(t)e

ikx + (cik3 + (c+ 1)ik)ûk(t)e
ikx = a2(x)

∞∑
j=−∞

fjqj(t)e
ijx

d

dt
ûk(t)e

ikx +
ik(ck2 + c+ 1)

1 + k2
ûk(t)e

ikx =
1

1 + k2
a2(x)

∞∑
j=−∞

fjqj(t)e
ijx

d

dt
ûk(t) +

ik(ck2 + c+ 1)

1 + k2
ûk(t) =

1

1 + k2
a2(x)

∞∑
j=−∞

fjqj(t)e
ijxe−ikx
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d

dt
ûk(t) + ikσ(k)ûk(t) =

1

1 + k2

∞∑
j=−∞

fjqj(t)a
2(x)ei(j−k)x.

Then ûk(t) solves the following ODE

d

dt
ûk(t) + ikσ(k)ûk(t) =

1

1 + k2

∞∑
j=−∞

fjqj(t)mj,k, (5.8)

with σ(k) =
ck2 + c+ 1

1 + k2
, and

mj,k =
1

2π

∫
T
a2(x)ei(j−k)xdx.

Thus, from the theory of ODE, its solution at t = T is

ûk(T ) = e−ikσ(k)T ûk(0) +
1

1 + k2

∞∑
j=−∞

fjmj,k

∫ T

0

e−ikσ(k)(T−τ)qj(τ)dτ

ûk(T )− e−ikσ(k)T ûk(0) =
1

1 + k2

∞∑
j=−∞

fjmj,k

∫ T

0

e−ikσ(k)(T−τ)qj(τ)dτ.

Or, multiplying by eikσ(k)T

ûk(T )e
ikσ(k)T − ûk(0) =

1

1 + k2

∞∑
j=−∞

fjmj,k

∫ T

0

eikσ(k)τqj(τ)dτ.

It may occur that the eigenvalues

λk = ikσ(k), k ∈ Z,

are not all different. If we count only the distinct values, we obtain the sequence (λk)k∈I,

where I ⊂ Z has the property that λk1 ̸= λk2 for any k1, k2 ∈ I with k1 ̸= k2. For each

k1 ∈ Z set

I (k1) = {k ∈ Z; kσ(k) = k1σ (k1)} ,

and m (k1) = |I (k1)| (the number of elements in I (k1)). We note that there exists some

integer k∗ such that k ∈ I if |k| > k∗. Thus there are only finite many integers in I, say
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kj, j = 1, . . . , n, such that one can find another integer k ̸= kj with λk = λkj . Let

Ij =
{
k ∈ Z; k ̸= kj, λk = λkj

}
, j = 1, 2, . . . , n.

Then

Z = I ∪ I1 ∪ · · · ∪ In.

Note that Ij contains at most two integers, for m (kj) ⩽ 3. This is a consequence of the

fact that m (kj) is less than the number of entire roots of the equation

xσ(x) = α

xσ(x) = x
cx2 + c+ 1

1 + x2
= α,

where α is an arbitrary real number. The roots of this equation are also roots of a

polynomial of degree less or equal to 3. Then, as Ij = I(kj)\{kj}, we have that |Ij|, the

number of elements of Ij, is m(kj)− 1, that is, |Ij| ⩽ 2. We write

Ij =
{
kj,1, kj,m(kj)−1

}
, j = 1, 2, . . . , n

and rewrite kj as kj,0. That is, the n elements of I will be denote by kj,0 for j = 1, . . . , n.

Let

pk(t) := e−ikσ(k)t = e−λkt, k = 0,±1,±2, . . .

Then the set

P := {pk(t); k ∈ I}

forms a Riesz basis (see definition 2.1.16) for its closed span, PT , in L2(0, T ) if

T >
2π

|c|
.

Let L := {qj(t); j ∈ I} be the unique dual Riesz basis for P in PT ; that is, the functions

in L are the unique elements of PT such that

(qj(t), pk(t))L2(0,T ) =

∫ T

0

qj(t)pk(t)dt = δkj =

1, if j = k

0, if j ̸= k

, j, k ∈ I.
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In addition, we choose

qk = qkj if k ∈ Ij.

From the solution ûk(T ) of the ODE (5.8)

ûk(T )e
ikσ(k)T − ûk(0) =

1

1 + k2

∞∑
j=−∞

fjmj,k

∫ T

0

eikσ(k)τqj(τ)dτ

ûk(T )e
ikσ(k)T − ûk(0) =

1

1 + k2

∞∑
j=−∞

fjmj,k

∫ T

0

pk(τ)qj(τ)dτ.

Then, for such choice of qj(t), we have, for any k ∈ Z

ûk(T )e
ikσ(k)T − ûk(0) =

1

1 + k2
fkmk,k, if k ∈ I\ {k1, . . . , kn} ; (5.9)

ûkj,q(T )e
ikjσ(kj)T − ûkj,q(0) =

1

1 + k2j,q

m(kj)−1∑
l=0

fkj,lmkj,l,kj,q ,

if k = kj,q, j = 1, . . . , n, q = 0, . . . ,m (kj)− 1.

(5.10)

It is known that for any finite set J ⊂ Z, the Gram matrix AJ = (mp,q)p,q∈J is definite

positive, hence invertible. It follows that the system (5.9)-(5.10) admits a unique solution

f⃗ (. . . , f−2, f−1 , f0, f1, f2, . . .). Since

mk,k =
1

2π

∫
T
a2(x)ei(k−k)xdx =

1

2π

∫
T
a2(x)dx =: µ ̸= 0,

we have, from (5.9),

(
1 + k2

) (
ûk(T )e

ikσ(k)T − ûk(0)
)
= fkµ

fk =
1 + k2

µ

(
ûk(T )e

ikσ(k)T − ûk(0)
)

for |k| > k∗.

Note that

∥h∥2L2(0,T ;Hs−2(T)) =

∫ T

0

∥h(·, t)∥2Hs−2 dt

=

∫ T

0

∥∥∥∥∥a(x)
∞∑

j=−∞

fjqj(t)e
ijx

∥∥∥∥∥
2

Hs−2

dt
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≤ C

∫ T

0

∥∥∥∥∥
∞∑

j=−∞

fjqj(t)e
ijx

∥∥∥∥∥
2

Hs−2

dt

⩽ C

∫ T

0

∞∑
k=−∞

(
1 + k2

)s−2
∣∣∣∑∞

j=−∞ fjqj(t)e
ijx
∧

(k)
∣∣∣2 dt

⩽ C

∫ T

0

∞∑
k=−∞

(
1 + k2

)s−2

∣∣∣∣∣
∞∑

j=−∞

fjqj(t)e
ijx
∧

(k)

∣∣∣∣∣
2

dt

⩽ C

∫ T

0

∞∑
k=−∞

(
1 + k2

)s−2

∣∣∣∣∣
∞∑

j=−∞

fjqj(t)δjk

∣∣∣∣∣
2

dt

⩽ C

∫ T

0

∞∑
j=−∞

(
1 + j2

)s−2 |fjqj(t)|2 dt

⩽ C
∞∑

j=−∞

(
1 + j2

)s−2 |fj|2 dt

⩽ C

(
∞∑

j=−∞

(
1 + j2

)s |ûj(0)|2 + ∞∑
j=−∞

(
1 + j2

)s |ûj(T )|2)

⩽ C
(
∥u(0)∥2Hs + ∥u(T )∥2Hs

)
.

This analysis leads us to the following controllability result for the linear system

(5.4)-(5.5).

Proposition 5.1.1. Let s ∈ R and T > 2π
|c| be given. For any u0, uT ∈ Hs(T), there exists

a control h ∈ L2 (0, T ;Hs−2(T)) such that the system (5.4)-(5.5) admits a unique solution

u ∈ C ([0, T ];Hs(T)) satisfying

u(x, T ) = uT (x).

Moreover, there exists a constant C > 0 depending only on s and T such that

∥h∥L2(0,T ;Hs−2(T)) ⩽ C (∥u0∥Hs + ∥uT∥Hs) .

Introduce the (bounded) operator Φ : Hs(T)×Hs(T) → L2 (0, T ;Hs−2(T)) defined by

Φ (u0, uT ) (t) = h(t)

where h is given by (5.7) and f⃗ is the solution of (5.9)-(5.10) with (û0)k and (ûT )k

substituted to ûk(0) and ûk(T ), respectively. Then h = Φ (u0, uT ) is a control driving the
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solution u of (5.4)-(5.5) from u0 at t = 0 to uT at t = T .

5.1.2 Local Exact Controllability of the BBM Equation

Pick any time T > 2π/|c|, and any u0, uT ∈ Hs(T)(s ⩾ 0) satisfying

∥u0∥Hs ⩽ δ, ∥uT∥Hs ⩽ δ,

with δ to be determined. For any u ∈ C ([0, T ];Hs(T)), we set

ω(u) = −
∫ T

0

W (T − τ)
(
1− ∂2x

)−1
(uux) (τ)dτ.

Then, for any u, v ∈ C ([0, T ];Hs(T)), it follows that

ω(u)− ω(v) =

∫ T

0

W (T − τ)
(
1− ∂2x

)−1
(vvx − uux) (τ)dτ

=
1

2

∫ T

0

W (T − τ)
(
1− ∂2x

)−1
∂x
(
v2 − u2

)
dτ

=
1

2

∫ T

0

W (T − τ)
(
1− ∂2x

)−1
∂x [(v − u)(v + u)] dτ.

That is,

∥ω(u)− ω(v)∥Hs =
1

2

∥∥∥∥∫ T

0

W (T − τ)
(
1− ∂2x

)−1
∂x [(v − u)(v + u)] dτ

∥∥∥∥
Hs

⩽ CT∥u+ v∥L∞(0,T ;Hs(T))∥u− v∥L∞(0,T ;Hs(T))

where we have aplied Lemma 3.1.1.

Furthermore,

W (t)u0 +

∫ t

0

W (t− τ)
(
1− ∂2x

)−1
[a(x)Φ (u0, uT − ω(u))− uux] (τ)dτ

=

u0 if t = 0,

ω(u) + (uT − ω(u)) = uT if t = T.
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Indeed, for the case t = T we have

W (T )u0 +

∫ T

0

W (T − τ)
(
1− ∂2x

)−1
[a(x)Φ (u0, uT − ω(u))− uux] (τ)dτ

= W (T )u0 +

∫ T

0

W (T − τ)
(
1− ∂2x

)−1
[a(x)Φ (u0, uT − ω(u))] (τ)dτ

−
∫ T

0

W (T − τ)
(
1− ∂2x

)−1
(uux)(τ)dτ

= W (T )u0 +

∫ T

0

W (T − τ)
(
1− ∂2x

)−1
[a(x)Φ (u0, uT − ω(u))] (τ)dτ + ω(u)

= (uT − ω(u)) + ω(u)

= uT .

We are led to consider the nonlinear map

Γ(u) = W (t)u0 +

∫ t

0

W (t− τ)
(
1− ∂2x

)−1
[a(x)Φ (u0, uT − ω(u))− uux] (τ)dτ.

The proof of Theorem 5.1.1 will be complete if we can show that the map Γ has a fixed

point in some closed ball of the space C ([0, T ];Hs(T)). For any R > 0, let

BR =
{
u ∈ C ([0, T ];Hs(T)) ; ∥u∥C([0,T ];Hs(T)) ⩽ R

}
.

So, for u ∈ BR and for t ∈ [0, T ] we have

∥Γ(u)(t)∥Hs ⩽ ∥u0∥Hs +

∥∥∥∥∫ t

0

W (t− τ)
(
1− ∂2x

)−1
[a(x)Φ (u0, uT − ω(u))− uux] (τ)dτ

∥∥∥∥
Hs

⩽ ∥u0∥Hs +

∫ t

0

∥∥∥(1− ∂2x
)−1

[a(x)Φ (u0, uT − ω(u))− uux] (τ)
∥∥∥
Hs
dτ

⩽ ∥u0∥s + T
∥∥∥(1− ∂2x

)−1
[a(x)Φ (u0, uT − ω(u))]

∥∥∥
s
+ T

∥∥∥(1− ∂2x
)−1

(uux)
∥∥∥
s

⩽ ∥u0∥Hs + C ∥a(x)Φ (u0, uT − ω(u))∥Hs−2 +
T

2

∥∥∥(1− ∂2x
)−1

∂x
(
u2
)∥∥∥

Hs

⩽ ∥u0∥Hs + C (∥u0∥Hs + ∥uT∥Hs) + C2 ∥u∥2Hs

⩽ C1 (∥u0∥Hs + ∥uT∥Hs) + C2R
2.

Therefore,

sup
t∈[0,T ]

∥Γ(u)(t)∥Hs ⩽ C1 (∥u0∥Hs + ∥uT∥Hs) + C2R
2,
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that is

∥Γ(u)∥C([0,T ];Hs(T)) ⩽ C1 (∥u0∥Hs + ∥uT∥Hs) + C2R
2,

with C1, C2 depending on s and T , but not on R, ∥u0∥Hs or ∥uT∥Hs .

Thus, picking R = (2C2)
−1 and δ = (8C1C2)

−1, we obtain for u0, uT satisfying

∥u0∥Hs ⩽ δ, ∥uT∥Hs ⩽ δ,

and u ∈ BR that

∥Γ(u)∥C([0,T ];Hs(T)) ⩽ R.

That is, Γ(BR) ⊂ BT .

To conclude, we shall show that the map Γ is a contraction map, that is, that

∥Γ(u)− Γ(v)∥C([0,T ];Hs(T)) ⩽ λ∥u− v∥C([0,T ];Hs(T)),

for u, v ∈ BR, for some λ ∈ (0, 1). So, we have that

Γ(u)− Γ(v) =

∫ t

0

W (t− τ)
(
1− ∂2x

)−1
(vvx − uux) (τ)dτ

=
1

2

∫ t

0

W (t− τ)
(
1− ∂2x

)−1
∂x [(v − u)(v + u)] (τ)dτ.

From an analogous calculation we get that

∥Γ(u)− Γ(v)∥Hs ⩽
T

2

∥∥∥(1− ∂2x
)−1

∂x [(v − u)(v + u)]
∥∥∥
Hs

⩽ C ∥u− v∥Hs ∥u+ v∥Hs

⩽ C2R ∥u− v∥Hs .

Taking the supremum and picking R = (2C2)
−1 we obtain

∥Γ(u)− Γ(v)∥C([0,T ];Hs(T)) ⩽
1

2
∥u− v∥C([0,T ];Hs(T)).

To sum it up, we have seen that, for all u, v ∈ BR, then

∥Γ(u)∥C([0,T ];Hs(T)) ⩽ R, (5.11)
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and,

∥Γ(u)− Γ(v)∥C([0,T ];Hs(T)) ⩽
1

2
∥u− v∥C([0,T ];Hs(T)). (5.12)

From the contraction mapping theorem, it follows that Γ has a unique fixed point u in BR.

Then u satisfies (5.1)-(5.2) with h = Φ(u0, uT − ω(u)) and u(T ) = uT , as desired. The

proof of Theorem 5.1.1 is complete. ■

5.2 Exponential Stabilizability

We are now concerned with the stabilization of (5.1)-(5.2) with a feedback law h = h(u).

To guess the expression of h, we first write the linearized system (5.4)-(5.5) in a convenient

way

ut − utxx − cuxxx + (c+ 1)ux = a(x)h(
1− ∂2x

)
∂tu =

(
c∂3x − (c+ 1)∂x

)
u+ a(x)h

∂tu =
(
1− ∂2x

)−1 (
c∂3x − (c+ 1)∂x

)
u+

(
1− ∂2x

)−1
ah

∂tu =
(
1− ∂2x

)−1 (
c∂3x − (c+ 1)∂x

)︸ ︷︷ ︸
A

u+
(
1− ∂2x

)−1
a
(
1− ∂2x

)︸ ︷︷ ︸
B

(
1− ∂2x

)−1
h︸ ︷︷ ︸

k

.

Then, we have

ut = Au+Bk, (5.13)

u(0) = u0, (5.14)

where A = (1− ∂2x)
−1

(c∂3x − (c+ 1)∂x) ∈ L (Hs+1;Hs) as before in section (5.1), k(t) =

(1− ∂2x)
−1
h(t) ∈ L2 (0, T ;Hs(T)) is the new control input, and

B =
(
1− ∂2x

)−1
a
(
1− ∂2x

)
∈ L (Hs(T)) . (5.15)

We already noticed that A is skew-adjoint in Hs(T), and that (5.13)-(5.14) is exactly

controllable in Hs(T), with some control functions k ∈ L2 (0, T ;Hs(T)), for any s ⩾ 0. If

we choose the simple feedback law

k = −B∗,su, (5.16)
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the resulting closed-loop system

ut = Au−BB∗,su = (A−BB∗,s)u, (5.17)

u(0) = u0, (5.18)

is exponentially stable in Hs(T) (see Corollary 2.2.1). In (5.16), B∗,s denotes the adjoint of

B in L (Hs(T)), that is, B∗,s is the operator in L (Hs(T)) such that for all u, v ∈ Hs(T),

we have (Bu, v)Hs(T) = (u,B∗,sv)Hs(T).

Then, by computing B∗,s we obtain that

(Bu, v)Hs(T) =

∫
T

(
1 + x2

)sF ((1− ∂2x
)−1

a(x)
(
1− ∂2x

)
u(x)

)
F(v(x))dx

=

∫
T

(
1 + x2

)s 1

1 + x2
F
(
a(x)

(
1− ∂2x

)
u(x)

)
F(v(x))dx

=

∫
T

(
1 + x2

)s−1F
(
a(x)

(
1− ∂2x

)
u(x)

)
F(v(x))dx

=

∫
T
F
(
a(x)

(
1− ∂2x

)
u(x)

)
F (1− ∂2x)

s−1 v(x)dx

=
(
a(x)

(
1− ∂2x

)
u(x),

(
1− ∂2x

)s−1
v(x)

)
L2(T)

=
((

1− ∂2x
)
u(x), a(x)

(
1− ∂2x

)s−1
v(x)

)
L2(T)

=

∫
T
F
(
1− ∂2x

)
u(x)F

(
a(x) (1− ∂2x)

s−1 v(x)
)
dx

=

∫
T

(
1 + x2

)s (
1 + x2

)1−sFu(x)F (a(x) (1− ∂2x)
s−1 v(x)

)
dx

=

∫
T

(
1 + x2

)sF(u(x))F
(
(1− ∂2x)

1−s a(x) (1− ∂2x)
s−1 v(x)

)
dx

= (u,B∗,sv)Hs(T) .

That is

B∗,su =
(
1− ∂2x

)1−s
a
(
1− ∂2x

)s−1
u. (5.19)

In particular

B∗,1u = au.

Let Ã = A − BB∗,1, where (BB∗,1)u = (1− ∂2x)
−1

[a (1− ∂2x) (au)]. Since BB∗,1 ∈

L (Hs(T)) and A is skew-adjoint in Hs(T), Ã is the infinitesimal generator of a group

{Wa(t)}t∈R on Hs(T) (see e.g. (PAZY, 1983), Theorem 1.1, p. 76). Our first aim is to show
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that the closed-loop system (5.17)-(5.18) is exponentially stable in Hs(T) for all s ⩾ 1.

Lemma 5.2.1. Let a ∈ C∞(T) with a ̸= 0. Then there exists a constant γ > 0 such

that for any s ⩾ 1, one can find a constant Cs > 0 for which the following holds for all

u0 ∈ Hs(T)

∥Wa(t)u0∥Hs ⩽ Cse
−γt ∥u0∥Hs for all t ⩾ 0. (5.20)

Proof. (5.20) is well known for s = 1 (see e.g. (LIU, 1997)). Assume that it is true for

some s ∈ N∗, and pick any u0 ∈ Hs+1(T). Let v0 = Ãu0 ∈ Hs(T). Then

∥Wa(t)v0∥Hs ⩽ Cse
−γt ∥v0∥Hs .

We have

Wa(t)v0 = Wa(t)Ãu0 = ÃWa(t)u0 = AWa(t)u0 −BB∗,1Wa(t)u0,

hence

∥AWa(t)u0∥Hs ⩽ ∥Wa(t)v0∥Hs +
∥∥BB∗,1∥∥

L(Hs)
∥Wa(t)u0∥Hs ⩽ Ce−γt ∥u0∥Hs+1 .

Therefore

∥Wa(t)u0∥Hs+1 ⩽ Cs+1e
−γt ∥u0∥Hs+1 ,

as desired. The estimate (5.20) is thus proved for any s ∈ N∗. It may be extended to any

s ∈ [1,+∞ ) by interpolation. ■

Plugging the feedback law k = −B∗,1u = −au in the nonlinear equation gives the

following closed-loop system

ut − utxx − cuxxx + (c+ 1)ux + uux = −a
(
1− ∂2x

)
[au], (5.21)

u(x, 0) = u0(x) (5.22)

The rest of the section is described as follow: in subsection 5.2.1 we prove the global well-

posedness for the system (5.21)-(5.22) in Hs(T) for any s ⩾ 0 and, for the subsection 5.2.2

we turn to the stabilization issue, first showing that (5.21)-(5.22) is locally exponentially
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stable in Hs(T), for s ⩾ 1, and, next, the global exponential stabilization is treated for

s = 1, and, to end, for s ⩾ 1.

5.2.1 Well-Posedness of the Feedback-Controlled KdV-BBM System

Theorem 5.2.1. Let s ⩾ 0 and T > 0 be given. For any u0 ∈ Hs(T), the system

(5.21)-(5.22) admits a unique solution u ∈ C ([0, T ];Hs(T)).

Before presenting the proof of Theorem 5.2.1, we recall, for the sake of completeness

and convenience, the following bilinear estimate from (ROUMÉGOUX, 2010), which we

already encountered in Chapter 3 (lemma 3.1.2), which, once again, will prove to be very

helpful.

Lemma 5.2.2. Let w ∈ Hr(T) and v ∈ Hr′(T) with 0 ⩽ r ⩽ s, 0 ⩽ r′ ⩽ s and

0 ⩽ 2s− r − r′ < 1
4
. Then

∥∥∥(1− ∂2x
)−1

∂x(wv)
∥∥∥
Hs

⩽ cr,r′,s∥w∥Hr∥v∥Hr′ .

In particular, if w ∈ Hr(T) and v ∈ Hs(T) with 0 ⩽ r ⩽ s < r + 1
4
, then

∥∥∥(1− ∂2x
)−1

∂x(wv)
∥∥∥
Hs

⩽ cr,s∥w∥Hr∥v∥Hs

Proof of Theorem 5.2.1. This proof is divided into three steps:

• Step 1 is the local well-posedness for the system (5.21)-(5.22) in Hs(T) for s ⩾ 0,

where we will make use of the fixed-point theorem. To this end, we will prove that a

convenient map is a contraction map from a closed ball to itself;

• Step 2 is the global well-posedness for the system (5.21)-(5.22) in Hs(T) for s ⩾ 1,

where we use a global a priori estimate, which is proved using iteratively, the Lemma

5.2.2 and Gronwall’s lemma;

• Step 3 is the Global Well-Posedness for the system (5.21)-(5.22), in Hs(T), but, this

time, for 0 ⩽ s < 1.

Step 1. The system is locally well-posed in the space Hs(T).
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Let s ⩾ 0 and R > 0 be given. There exists a T ∗ depending only on s and R such that

for any u0 ∈ Hs(T) with

∥u0∥Hs ⩽ R,

the system (5.21)-(5.22) admits a unique solution u ∈ C ([0, T ∗] ;Hs(T)). Moreover, T ∗ →

∞ as R → 0.

In order to rewrite (5.21)-(5.22) in its integral form, we proceed as follows

(
1− ∂2x

)
ut =

(
c∂3x − (c+ 1)∂x

)
u− uux + a(x)h

ut =
(
1− ∂2x

)−1 (
c∂3x − (c+ 1)∂x

)
u−

(
1− ∂2x

)−1
uux +

(
1− ∂2x

)−1
ah

ut = Au−
(
1− ∂2x

)−1
uux +

(
1− ∂2x

)−1
a
(
1− ∂2x

)︸ ︷︷ ︸
B

(
1− ∂2x

)−1
h︸ ︷︷ ︸

k

ut = Au−
(
1− ∂2x

)−1
uux +Bk

ut = Au−BB∗,1u−
(
1− ∂2x

)−1
uux

ut =
(
A−BB∗,1)u− (1− ∂2x

)−1
uux

ut = Ãu−
(
1− ∂2x

)−1
uux.

Thus, from Duhamel formula, its integral form, or its mild solution, becomes

u(t) = Wa(t)u0 −
∫ t

0

Wa(t− τ)
(
1− ∂2x

)−1
(uux) (τ)dτ. (5.23)

For given θ > 0, define a map Γ on C ([0, θ];Hs(T)) by

Γ(v) = Wa(t)u0 −
∫ t

0

Wa(t− τ)
(
1− ∂2x

)−1
(vvx) (τ)dτ,

for any v ∈ C ([0, θ];Hs(T)). Since {Wa(t)}t∈R is a group of isometries, we have

∥Wa(t)u0∥Hs(T) = ∥u0∥Hs(T) ,

then,

sup
t∈[0,θ]

∥Wa(t)u0∥Hs(T) ⩽ ∥u0∥Hs(T) ,

that is,

∥Wa(t)u0∥C([0,θ];Hs(T)) ⩽ ∥u0∥Hs(T) .



5.2. Exponential Stabilizability 129

On the other hand, from Lemma 5.2.2

∫ t

0

∥∥∥Wa(t− τ)
(
1− ∂2x

)−1
(vvx) (τ)

∥∥∥
Hs(T)

dτ =
1

2

∫ t

0

∥∥∥(1− ∂2x
)−1

∂x
(
v2
)
(τ)
∥∥∥
Hs
dτ

⩽
cs,s
2

∫ t

0

∥v(τ)∥2Hs(T)dτ.

Thus, ∥∥∥∥∫ t

0

Wa(t− τ)
(
1− ∂2x

)−1
(vvx) (τ)dτ

∥∥∥∥
C([0,θ];Hs(T))

⩽
cs,s
2
θ∥v∥2C([0,θ];Hs(T)).

Then, we obtain

∥Γ(v)∥C([0,θ],Hs(T)) ⩽ ∥u0∥Hs(T) +
cs,s
2
θ∥v∥2C([0,θ],Hs(T)).

Now, for v, w ∈ C ([0, θ], Hs(T))

Γ(v)− Γ(w) =

∫ t

0

Wa(t− τ)
(
1− ∂2x

)−1
(wwx − vvx) (τ)dτ,

hence,

∥Γ(v)− Γ(w)∥C([0,θ],Hs(T)) ⩽
θ

2
sup
0⩽t⩽θ

∥∥∥(1− ∂2x
)−1

∂x
(
w2 − v2

)
(t)
∥∥∥
Hs

⩽
θ

2
sup
0⩽t⩽θ

∥∥∥(1− ∂2x
)−1

∂x(w − v)(w + v)(t)
∥∥∥
Hs(T)

⩽
θcs,s
2

sup
0⩽t⩽θ

(∥(w − v)(t)∥Hs∥(w + v)(t)∥Hs)

⩽
θcs,s
2

∥w − v∥C([0,θ],Hs(T))∥w + v∥C([0,θ],Hs(T)).

Therefore, for given R > 0 and u0 ∈ Hs(T) with ∥u0∥Hs ⩽ R, one can choose

T ∗ = (4cs,sR)
−1 such that Γ is a contraction mapping in the ball

B :=
{
v ∈ C ([0, T ∗] ;Hs(T)) ; ∥v∥C([0,T ∗];Hs(T)) ⩽ 2R

}
,

whose fixed point u is the desired solution.

Step 2. The system is globally well-posed in the space Hs(T) for any s ⩾ 1.

To this end, it suffices to establish the following global a priori estimate for smooth
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solutions of the system (5.21)-(5.22).

Let s ⩾ 1 and T > 0 be given. There exists a continuous nondecreasing function

αs,T : R+ → R+,

such that any smooth solution u of the system (5.21)-(5.22) satisfies

∥u∥C([0,T ];Hs) = sup
0⩽t⩽T

∥u(·, t)∥Hs ⩽ αs,T (∥u0∥Hs) . (5.24)

Estimate (5.24) holds immediately when s = 1 because of the energy identity

∥u(t)∥2H1 − ∥u0∥2H1 = −2

∫ t

0

∥au(τ)∥2H1dτ ∀t ⩾ 0

Now we begin the iterative process mentioned earlier in the proof outline. Consider

1 < s ⩽ s1 := 1 + 1
8
, applying Lemma 5.2.1 and Lemma 5.2.2 to the equation (5.23) yields

that for any 0 < t ⩽ T ,

∥u(·, t)∥Hs ⩽ Cs ∥u0∥Hs +
Csc1,s
2

∫ t

0

∥u(·, τ)∥H1∥u(·, τ)∥Hsdτ

⩽ C ∥u0∥Hs + Cα1,T (∥u0∥H1)

∫ t

0

∥u(·, τ)∥Hsdτ.

By using Gronwall’s lemma 2.1.6

∥u(·, t)∥Hs ⩽ C∥u0∥Hs

(
1 + Cα1,T (∥u0∥H1)teCα1,T (∥u0∥H1 )t

)
for 0 ⩽ t ⩽ T

sup
0⩽t⩽T

∥u(·, t)∥Hs ⩽ C∥u0∥Hs

(
1 + Cα1,T (∥u0∥H1)TeCα1,T (∥u0∥H1 )T

)
⩽ αs,T (∥u0∥Hs) ,

which is estimate (5.24) for 1 < s ⩽ s1. Similarly, for s1 < s ⩽ s2 := 1 + 2
8
,

∥u(·, t)∥Hs ⩽ Cs ∥u0∥Hs +
Cscs1,s

2

∫ t

0

∥u(·, τ)∥Hs1∥u(·, τ)∥Hsdτ

⩽ C ∥u0∥Hs + Cαs1,T (∥u0∥Hs1 )

∫ t

0

∥u(·, τ)∥Hsdτ.
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Then,

sup
0⩽t⩽T

∥u(·, t)∥Hs ⩽ αs,T (∥u0∥Hs) for s1 ⩽ s ⩽ s2.

Therefore, estimate (5.24) holds for 1 < s ⩽ s2. Continuing this argument, we can

show that the estimate (5.24) holds for 1 < s ⩽ sk := 1+ k
8

for any k ⩾ 1. Indeed, suppose

k ⩾ 3. We shall prove that estimate (5.24) holds for sk−1 ⩽ s ⩽ sk := 1 + k
8
. It suffices to

show that s < sk−1 +
1
4

so that we can use Lemma 5.2.2. Hence, we must have

s < sk−1 +
1

4
= 1 +

k − 1

8
+

1

4
= 1 +

k

8
+

1

8
= sk +

1

8
.

As s ⩽ sk, we have s < sk +
1
8
. This concludes Step 2.

Step 3. The system (5.21)-(5.22) is globally well-posed in the space Hs(T) for any

0 ⩽ s < 1.

As in (ROUMÉGOUX, 2010) and in the proof of Theorem 3.1.2 we decompose any

u0 ∈ Hs(T) as

u0 =
∑
k∈Z

ûke
ikx =

∑
|k|⩽k0

+
∑
|k|>k0

=: w0 + v0,

with v0 ∈ Hs(T) small enough

∥v0∥Hs ⩽ δ,

for some small δ > 0 to be chosen, and w0 ∈ H1(T). We consider the following two initial

value problemsvt − vtxx − cvxxx + (c+ 1)vx + vvx = −a (1− ∂2x) [av],

v(x, 0) = v0(x),

(5.25)

and wt − wtxx − cwxxx + (c+ 1)wx + wwx + (vw)x = −a (1− ∂2x) [aw]

w(x, 0) = w0(x).

(5.26)

By the local well-posedness established in Step 1, for given T > 0, if δ is small

enough, then (5.25) admits a unique solution v ∈ C ([0, T ];Hs(T)). For (5.26), with
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v ∈ C ([0, T ];Hs(T)), by using Lemma 5.2.1, the estimate

∥∥∥(1− ∂2x
)−1

∂x(wv)
∥∥∥
H1

⩽ C∥wv∥L2 ⩽ C∥w∥H1∥v∥Hs ,

and the contraction mapping principle, one can show first that it is locally well-posed in

the space H1(T). Then, for any smooth solution w of (5.26) it holds that

1

2

d

dt
∥w(·, t)∥2H1 −

∫
T
v(x, t)w(x, t)wx(x, t)dx = −∥a(·)w(·, t)∥2H1 ,

which implies that

∥w(·, t)∥2H1 ⩽ ∥w0∥2H1 exp

(
C

∫ t

0

∥v(·, τ)∥L2dτ

)
,

for any t ⩾ 0. The above estimate can be extended to any w0 ∈ H1(T) by a density

argument. Consequently, for w0 ∈ H1(T) and v ∈ C ([0, T ];Hs(T)), (5.26) admits a unique

solution w ∈ C ([0, T ];H1(T)). Thus, u = w + v ∈ C ([0, T ];Hs(T)) is the desired solution

of system (5.21)-(5.22). The proof of Theorem 5.2.1 is complete. ■

5.2.2 Local and Global Exponential Stabilization

The next proposition shows that the system (5.21)-(5.22) is locally exponentially stable

in Hs(T) for any s ⩾ 1. Whereas the global exponential stabilization results are addressed

in the theorems, first for s = 1, and then for s ⩾ 1 (see Definition 2.2.10). In addition, an

observability inequality will be derived in order to prove the global result for s = 1.

Proposition 5.2.1. Let s ⩾ 1 be given and γ > 0 be as given in Lemma 5.2.1. Then there

exist two numbers δ > 0 and C ′
s depending only on s such that for any u0 ∈ Hs(T) with

∥u0∥Hs ⩽ δ,

the corresponding solution u of the system (5.21)-(5.22) satisfies

∥u(·, t)∥Hs ⩽ C ′
se

−γt ∥u0∥Hs ∀t ⩾ 0.

Proof. As in the proof of Theorem 5.2.1, rewrite the system (5.21)-(5.22) in its integral
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form

u(t) = Wa(t)u0 −
1

2

∫ t

0

Wa(t− τ)
(
1− ∂2x

)−1
∂x
(
u2
)
(τ)dτ,

and consider the map

Γ(v) := Wa(t)u0 −
1

2

∫ t

0

Wa(t− τ)
(
1− ∂2x

)−1
∂x
(
v2
)
(τ)dτ.

For given s ⩾ 1, by Lemma 5.2.1 and Lemma 5.2.2, there exists a constant Cs > 0 such

that

∥Γ(v)(·, t)∥Hs ⩽ Cse
−γt ∥u0∥Hs +

Cscs,s
2

∫ t

0

e−γ(t−τ)∥v(·, τ)∥2Hsdτ

⩽ Cse
−γt ∥u0∥Hs +

Cscs,s
2

∫ t

0

e2γτ∥v(·, τ)∥2Hse−γ(t+τ)dτ

⩽ Cse
−γt ∥u0∥Hs +

Cscs,s
2

sup
0⩽τ⩽t

∥eγτv(·, τ)∥2Hs

∫ t

0

e−γ(t+τ)dτ

⩽ Cse
−γt ∥u0∥Hs +

Cscs,s
2γ

e−γt
(
1− e−γt

)
sup
0⩽τ⩽t

∥eγτv(·, τ)∥2Hs ,

for any t ⩾ 0. Let us introduce the Banach space

Ys :=

{
v ∈ C ([0,∞);Hs(T)) : ∥v∥Ys := sup

0⩽t<∞

∥∥eγtv(·, t)∥∥
Hs <∞

}
.

For any v ∈ Ys, and for any t ⩾ 0

eγt∥Γ(v)(·, t)∥Hs ⩽ Cse
γte−γt ∥u0∥Hs +

Cscs,s
2γ

eγte−γt
(
1− e−γt

)
sup

0⩽t<∞

∥∥eγtv(·, t)∥∥2
Hs

⩽ Cs ∥u0∥Hs +
Cscs,s
2γ

(
1− e−γt

)
∥v∥2Ys .

Then,

∥Γ(v)∥Ys ⩽ Cs ∥u0∥Hs +
Cscs,s
2γ

∥v∥2Ys .

Choose

δ =
γ

4C2
s cs,s

, R = 2Csδ.

Then, if ∥u0∥ ⩽ δ, for any v ∈ Ys with ∥v∥Ys ⩽ R,

∥Γ(v)∥Ys ⩽ Csδ +
Cscs,s
2γ

(2Csδ)R ⩽ R.
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Moreover, for any v1, v2 ∈ Ys with ∥v1∥Ys ⩽ R and ∥v2∥Ys ⩽ R,

∥Γ (v1)− Γ (v2)∥Ys ⩽
1

2
∥v1 − v2∥Ys .

The map Γ is a contraction whose fixed point u ∈ Ys is the desired solution satisfying

∥u(·, t)∥Hs ⩽ 2Cse
−γt ∥u0∥Hs ,

for any t ⩾ 0. ■

Now we turn to the issue of the global stabilization of the system (5.21)-(5.22). First

we show that the system (5.21)-(5.22) is globally exponentially stable in the space H1(T).

Theorem 5.2.2. Let a ∈ C∞(T) with a ̸= 0, and let γ > 0 be as in Lemma 5.2.1.

Then for any R0 > 0, there exists a constant C∗ > 0 such that for any u0 ∈ H1(T) with

∥u0∥H1 ⩽ R0, the corresponding solution u of (5.21)-(5.22) satisfies

∥u(·, t)∥H1 ⩽ C∗e−γt ∥u0∥H1 for all t ⩾ 0. (5.27)

Theorem 5.2.2 is a direct consequence of the following observability inequality.

Proposition 5.2.2. Let R0 > 0 be given. Then there exist two positive numbers T and β

such that for any u0 ∈ H1(T) satisfying

∥u0∥H1 ⩽ R0, (5.28)

the corresponding solution u of (5.21)-(5.22) satisfies

∥u0∥2H1 ⩽ β

∫ T

0

∥au(t)∥2H1dt. (5.29)

First, we use Proposition 5.2.2 to prove Theorem 5.2.2, and then, we provide a proof

of the proposition.

Proof of the Theorem 5.2.2. If (5.29) holds, then it follows from the energy identity

∥u(t)∥2H1 = ∥u0∥2H1 − 2

∫ t

0

∥au(τ)∥2H1dτ ∀t ⩾ 0, (5.30)



5.2. Exponential Stabilizability 135

that
∥u(T )∥2H1 ⩽ ∥u0∥2H1 − 2β−1∥u0∥2H1

⩽
(
1− 2β−1

)
∥u0∥2H1 .

Applying the same argument on the interval [(m− 1)T,mT ] for m = 1, 2, . . . , we have

∥u(mT )∥2H1 ⩽
(
1− 2β−1

)
∥u((m− 1)T )∥2H1 ⩽ . . . ⩽

(
1− 2β−1

)m ∥u0∥2H1 ,

which gives, for t > 0, such that (m− 1)T < t < mT

∥u(t)∥2H1 ⩽
(
1− 2β−1

)m−1 ∥u0∥2H1

⩽ e(m−1) log(1−2β−1) ∥u0∥2H1

⩽ e(1−m) log(1−2β−1)
−1

∥u0∥2H1

⩽ ee
−mt

t
log(1−2β−1)

−1

∥u0∥2H1

⩽ ee
−t
T

log(1−2β−1)
−1

∥u0∥2H1 ,

that is,

∥u(t)∥H1 ⩽ Ce−κt ∥u0∥H1 for all t ⩾ 0, (5.31)

for some positive constants C = C (R0) , κ = κ (R0). Finally, we can replace κ by the

γ given in Lemma 5.2.1. Indeed, let t′ = κ−1 log [1 + CR0δ
−1], where δ is as given in

Proposition 5.2.1. Then for ∥u0∥H1 ⩽ R0, ∥u (t′)∥H1 < δ, hence for all t ⩾ t′

∥u(t)∥H1 ⩽ C ′
1 ∥u (t′)∥H1 e

−γ(t−t′) ⩽ (C ′
1δ/R0) ∥u0∥H1 e

−γ(t−t′) ⩽ C∗e−γt ∥u0∥H1 ,

where C∗ = (C ′
1δ/R0) e

γt′ . ■

Now we return to the proof of Proposition 5.2.2.

Proof of Proposition 5.2.2. Pick for the moment any T > 2π/|c| (its value will be specified

later on). We prove the estimate (5.29) by contradiction. If (5.29) is not true, then for any

n ⩾ 1 (5.21)-(5.22) admits a solution un ∈ C ([0, T ];H1(T)) satisfying

∥un(0)∥H1 ⩽ R0, (5.32)
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and ∫ T

0

∥aun(t)∥2H1 dt <
1

n
∥u0,n∥2H1 , (5.33)

where u0,n = un(0). Since αn := ∥u0,n∥H1 ⩽ R0, we can choose a subsequence of (αn),

which we still denote by (αn), such that limn→∞ αn = α. We note that αn > 0 for all n, by

(5.33). So we can set vn = un/αn for all n ⩾ 1. Then, multiplying (5.21) by 1/αn we get

vn,t − vn,txx − cvn,xxx + (c+ 1)vn,x + αnvnvn,x = −a
(
1− ∂2x

)
[avn] , (5.34)

and ∫ T

0

∥avn∥2H1 dt <
1

n
∥v0,n∥2H1 =

1

n

∥u0,n∥2H1

α2
n

=
1

n
. (5.35)

Because of

∥vn(0)∥H1 = 1, (5.36)

we have that the sequence (vn) is bounded in L∞ (0, T ;H1(T) ), while (vn,t) is bounded in

L∞ (0, T ;L2(T)). Since, for s < 1, H1 ↪→ Hs and H1 ⊂ Hs ⊂ L2 we can use Aubin-Lions’

theorem 2.1.18 and a diagonal process, to infer that we can extract a subsequence of (vn),

still denoted (vn), such that

vn → v in C ([0, T ];Hs(T)) ∀s < 1, (5.37)

vn → v in L∞ (0, T ;H1(T)
)

weak ∗, (5.38)

for some v ∈ L∞ (0, T ;H1(T))∩C ([0, T ];Hs(T)) for all s < 1. Note that, by (5.37)-(5.38),

we have that

αnvnvn,x → αvvx in L∞ (0, T ;L2(T)
)

weak*. (5.39)

Furthermore, by (5.35),

∫ T

0

∥av∥2H1dt ⩽ lim inf
n→∞

∫ T

0

∥avn∥2H1 dt = 0. (5.40)

Thus, v solves

vt − vtxx − cvxxx + (c+ 1)vx + αvvx = 0 on T× (0, T ), (5.41)

v = 0 on ω × (0, T ), (5.42)
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where ω is given in (5.3). According to Theorem 4.3.1, v ≡ 0 on T× (0, T ). We claim that

(vn) is linearizable in the following sense: if (wn) denotes the sequence of solutions to the

linear KdV-BBM equation with the same initial data

wn,t − wn,txx − cwn,xxx + (c+ 1)wn,x = −a
(
1− ∂2x

)
[awn] (5.43)

wn(x, 0) = vn(x, 0), (5.44)

then

sup
0⩽t⩽T

∥vn(t)− wn(t)∥H1 → 0 as n→ ∞. (5.45)

Indeed, by (5.34) and (5.43), if dn = vn − wn, then dn solves

dn,t − dn,txx − cdn,xxx + (c+ 1)dn,x = −a
(
1− ∂2x

)
[adn]− αnvnvn,x,

dn(0) = 0.

Since ∥Wa(t)∥L(H1(T))
⩽ 1 and d0,n = 0, we have, from Duhamel formula, that for t ∈ [0, T ]

∥dn(t)∥H1 ⩽
∫ T

0

∥∥∥(1− ∂2x
)−1

(αnvnvn,x) (τ)
∥∥∥
H1
dτ.

Combined with (5.37) and the fact that v ≡ 0, this gives (5.45). Then, returning to the

linearized equation (5.43), by Lemma 5.2.1, we have that

∥wn(t)∥H1 ⩽ C1e
−γt ∥wn(0)∥H1 for all t ⩾ 0. (5.46)

From (5.46) and the energy identity for (5.43)-(5.44), namely

∥wn(t)∥2H1 − ∥wn(0)∥2H1 = −2

∫ t

0

∥awn(τ)∥2H1 dτ, (5.47)

we have for Ce−λT < 1

∥wn(0)∥2H1 = ∥wn(t)∥2H1 + 2

∫ t

0

∥awn(τ)∥2H1 dτ

⩽ C2
1e

−2γT ∥wn(0)∥2H1 + 2

∫ T

0

∥awn(τ)∥2H1 dτ

⩽ 2
(
1− C2

1e
−2γT

)−1
∫ T

0

∥awn(τ)∥2H1 dτ,

(5.48)
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where, Ce−λT < 1 ensures us that
(
1− C2

1e
−2γT

)
> 0. Thus, combining (5.48) with

(5.35) and (5.45), this yields ∥vn(0)∥H1 = ∥wn(0)∥H1 → 0, which contradicts (5.36). This

completes the proof of Proposition 5.2.2 and Theorem 5.2.2. ■

Next we show that the system (5.21)-(5.22) is exponentially stable in the space Hs(T)

for any s ⩾ 1.

Theorem 5.2.3. Let a ∈ C∞(T) with a ≠ 0 and γ > 0 be as given in Lemma 5.2.1.

For any given s ⩾ 1 and R0 > 0, there exists a constant C > 0 depending only on s

and R0 such that for any u0 ∈ Hs(T) with ∥u0∥Hs ⩽ R0, the corresponding solution u of

(5.21)-(5.22) satisfies

∥u(·, t)∥Hs ⩽ Ce−γt ∥u0∥Hs for all t ⩾ 0. (5.49)

Proof. As before, rewrite the system in its integral form

u(t) = Wa(t)u0 −
1

2

∫ t

0

Wa(t− τ)
(
1− ∂2x

)−1
∂x
(
u2
)
(τ)dτ.

For u0 ∈ Hs(T) with ∥u0∥Hs ⩽ R0, applying Lemma 5.2.1, Lemma 5.2.2 and Theorem

5.2.2 yields that, for any 1 ⩽ s ⩽ 1 + 1
10

,

∥u(·, t)∥Hs ⩽ Cse
−γt ∥u0∥Hs +

Csc1,1,s
2

∫ t

0

e−γ(t−τ)∥u(·, τ)∥2H1dτ

⩽ Cse
−γt ∥u0∥Hs +

Csc1,1,s (C
∗)2

2

∫ t

0

e−γ(t−τ)e−2γτ ∥u0∥2H1 dτ

⩽ Cse
−γt ∥u0∥Hs +

Csc1,1,s (C
∗)2

2
e−γt ∥u0∥2H1

∫ t

0

e−γτdτ

⩽

(
Cs +

Csc1,1,s (C
∗)2

2γ
∥u0∥H1

)
e−γt ∥u0∥Hs ,

for any t ⩾ 0. Thus, the estimate (5.49) holds for 1 ⩽ s ⩽ m1 := 1 + 1
10

. Similarly, for

m1 ⩽ s ⩽ m2 := 1 + 2
10

, we have for ∥u0∥Hs ⩽ R0

∥u(·, t)∥Hs ⩽ Cse
−γt ∥u0∥Hs +

Cscm1,m1,s

2

∫ t

0

e−γ(t−τ)∥u(·, τ)∥2Hm1dτ

⩽ Cse
−γt ∥u0∥Hs + C (s,m1, R0)

∫ t

0

e−γ(t−τ)e−2γτ ∥u0∥2Hm1 dτ

⩽
(
Cs + C (s,m1, R0) ∥u0∥Hm1 γ

−1
)
e−γt ∥u0∥Hs .
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Thus the estimate (5.49) holds for 1 ⩽ s ⩽ m2 := 1 + 2
10

. Repeating this argument yields

that the estimate (5.49) holds for 1 ⩽ s ⩽ mk := 1 + k
10

for k = 1, 2, . . ., which concludes

the proof. ■
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