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ABSTRACT

In the work Unique continuation property and control for the Benjamin—Bona—Mahony
equation on a periodic domain, Journal of Differential Equations, (254), no. 1, 2013 by
Lionel Rosier and Bing-Yu Zhang, the authors studied the Benjamin-Bona-Mahony (BBM)
equation, a fundamental model for the propagation of long waves with small amplitude
in nonlinear dispersive systems, on the one-dimensional torus T = R/(27Z). First, the
authors showed that the initial-value problem associated with the BBM equation is globally
well-posed in H*(T), for s > 0. Moreover, the mapping associating the solution to a given
initial data is smooth and the solution is analytic in time. Subsequently, they establish
a unique continuation property (UCP) for small data in H'(T) with nonnegative zero
means. This result is further extended to certain BBM-like equations, including the equal
width wave equation and the KdV-BBM equation, where, for the latter, some Carleman
estimates are derived. Applications to stabilization are developed, showing that semiglobal
exponential stabilization can be achieved in H*(T) for any s > 1 when an internal control
acting on a moving interval is applied. Furthermore, they prove that the BBM equation
with a moving control is locally exactly controllable in H*(T) for s > 0 and globally exactly
controllable in H*(T) for s > 1 over sufficiently large times, depending on the H*-norms
of the initial and terminal states. The results of this article are explored in detail in this

master’s thesis.

Keywords: Benjamin-Bona—Mahony equation; unique continuation property; exact con-

trollability; stabilization; moving point control; Korteweg—de Vries equation.



RESUMO

No trabalho Unique continuation property and control for the Benjamin—Bona—Mahony
equation on a periodic domain, Journal of Differential Equations, (254), no. 1, 2013, de
Lionel Rosier e Bing-Yu Zhang, os autores estudaram a equagao de Benjamin-Bona-Mahony
(BBM), um modelo fundamental para a propagagao de ondas longas com pequena amplitude
em sistemas dispersivos nao lineares, no toro unidimensional T = R/(27Z). Primeiramente,
os autores demonstraram que o problema de valor inicial associado a equacao BBM é
globalmente bem-posto em H*(T), para s > 0. Além disso, mostra-se que a aplica¢ao
que associa a solucao ao dado inicial é suave e que a solucao é analitica no tempo.
Subsequentemente, eles estabelecem a Propriedade de Continuacdo Unica (PCU) para
dados pequenos em H'(T) com média zero nao negativa. Esse resultado ¢ entao estendido
para certas equacoes do tipo BBM, incluindo a equacao de ondas de largura igual e a
equacao KdV-BBM, para a qual algumas estimativas de Carleman sao derivadas. Aplicagoes
a estabilizacao também sao desenvolvidas, mostrando que a estabilizacao exponencial
semiglobal pode ser alcangada em H?*(T) para qualquer s > 1, quando um controle
interno atuando em um intervalo movel é aplicado. Além disso, eles provam que a equagao
BBM com controle movel é localmente exatamente controlavel em H*(T) para s > 0 e
globalmente exatamente controlavel em H*(T) para s > 1, em tempos suficientemente
grandes, dependendo das normas H® dos estados iniciais e finais. Os resultados deste artigo

sao explorados e detalhados nesta dissertacao de mestrado.

Palavras-Chave: Equacao de Benjamin—Bona—Mahony; propriedade de continuacao tinica;
controlabilidade exata; estabilizacao; controle de ponto moével; equacao de Korteweg—de

Vries.
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1 INTRODUCTION

This work builds on the foundational results of the paper Unique continuation property
and control for the Benjamin—Bona—Mahony equation on a periodic domain, by Lionel
Rosier and Bing-Yu Zhang, published in Journal of Differential Equations in 2013. Before
embarking on the mathematical development, it is worth putting the Benjamim-Bona-
Mahony (BBM) equation into context. Thus, this introduction begins with a historical
overview highlighting the importance of the BBM equation as a mathematical model for a
variety of physical phenomena. Next, to put the contribution of the aforementioned paper
(ROSIER; ZHANG! 2013)) into focus, we set up the problems and main results addressed
in this master’s thesis, whose purpose is to provide a clear and accessible exposition of the
subject, aiming to facilitate the understanding of the underlying motivations and challenges
faced by professional mathematicians tackling such problems. Finally, the introduction
concludes with an outline of the structure of this thesis, to better guide the reader through

1ts content.

1.1 Historical Context: Why the BBM Equation?

The BBM equation
Up — Upgy + Uy + utty, = 0, (1.1)

was introduced in 1972 by T. Benjamin, J. Bona, and J. Mahony (BENJAMIN; BONA;
MAHONY]| |1972) as an alternative to the classical Korteweg—de Vries (KdV) equation

Uy + Ugay + Uy + Uty = 0, (1.2)

as a model equation governing the propagation of one-dimensional, unidirectional long
waves with small amplitude in nonlinear dispersive systems. As a classical model, the
BBM equation finds applications in a wide range of physical systems, including the long
wavelength in liquids, hydromagnetic waves in cold plasma, acoustic-gravity waves in

compressible fluids, and acoustic waves inharmonic crystals.

In the context of shallow-water waves, in the equation (1.1)), v = u(z,t) represents
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the displacement of the water surface at location = and time ¢, where we shall assume
r € T = R/(2nZ) (the one-dimensional torus). Equation (I.1)) is often obtained from
(1.2) in the derivation of the surface equation by noticing that, in the considered regime,

Uy ~ —Uyp, SO that Uy, ~ —Upps.

The authors in (BENJAMIN; BONA; MAHONY]|, 1972) argue that the assumptions
leading to equation equally well justify the equation as a model for describing
long-wave behavior. The equation is also referred to as the Regularized Long Wave
Equation (RLW), thanks to the strong smoothing effect of the dispersive term —uy,,, which
confers considerable technical advantages over , from the standpoint of existence,
uniqueness, and stabilization theory, as proved in (BENJAMIN; BONA; MAHONY/ 1972;
BONA; TZVETKOV, [2009;: ROUMEGOUX, 2010) and the references therein. On the
other hand, is not integrable and it has only three invariants of motion (OLVER,
1979).

1.2 Setting Up the Problems and Main Results

We begin our study of the BBM equation in chapter , directing our attention to
the initial value problem (IVP) for (L.I)). The existence of a solution will be established
upon the assumption that the initial data u(z,0) belongs to the Sobolev space H*(T),
for any s > 0. This result turns out to be sharp in the sense that below this value of s,
the initial-value problem cannot be solved by a Picard iteration. The IVP for the BBM
equation was proved to be globally well-posed by Bona and Tzvetkov (BONA; TZVETKOV,
2009). On the other hand, Panthee (PANTHEE] 2010) has shown that the BBM equation
is ill-posed for initial data that belong to H*(R) with s < 0. For this topic, we follow
(BONA; TZVETKOV, 2009; ROUMEGOUX, [2010; HIMONAS; PETRONILHO, 2020) in
a standard procedure: first proving a local existence and uniqueness theorem (i.e., for a
sufficiently small time-interval) by means of a fixed-point principle, then establishing the
existence of a solution over an arbitrarily large time. Moreover, the map that associates
the relevant solution to the given initial data is shown to be smooth. These well-posedness

results can be summarized as stated in (ROSIER; ZHANG]| 2013])

Theorem 1.2.1. Let s > 0,u(z,0) = ug € H*(T) and T > 0. Then there exists a unique
solution u € X5 = C ([-T,T); H*(T)) of the IVP associated with (1.1)). Furthermore, for
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any R > 0, the map ug — wu is real analytic from Br (H*(T)) into X5.

Then, some additional properties are given in the same chapter, such as the analyticity

in time for the solution and the three invariants of motion.

Next, in Chapter |4} we explore the Unique Continuation Property (UCP) of the BBM
equation and its applications to a control problem for (1.1)). The UCP is said to hold in a
given function class X if, for any nonempty open set w C T, the only solution v € X of
satisfying

u(z,t) =0 for (z,t) € w x (0,7T),

is the trivial solution u = 0. This property is fundamental in Control Theory, as it is
equivalent to the approximate controllability of linear partial differential equations (PDEs).
Moreover, the UCP plays a key role in the classical uniqueness-compactness approach
used in proving the stabilization of PDEs with localized damping. Despite its importance,
the UCP for the BBM equation remains in its early stages of development. We begin the
study of UCP by establishing the UCP for solutions of under additional assumptions
on the initial data. Specifically, the initial data must be small enough in H'(T) and have
nonnegative mean values. The proof leverages results from Chapter [3 such as the time

analyticity of solutions to the BBM equation and its invariants of motion.

Subsequently, we extend the analysis to BBM-like equations, which include the Morri-
son—Meiss—Carey equation and an intermediate equation between and , called
KdV-BBM equation. For the latter case, we employ the classical approach of Carleman
estimates to derive the UCP.

Here we gather the main results of Chapter [,

Theorem 1.2.2 (UCP for BBM Equation). Let ug € H'(T) be such that

/uo(x)dx >0,
T

and

||u0||L°°(']I') < 3.

Assume that the solution u of the IVP associated with (1.1]) satisfies

w(z,t) =0 for all (z,t) € w x (0,7T),
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where w C T is a nonempty open set and T > 0. Then ug = 0, and hence u = 0.

Theorem 1.2.3 (UCP for the KAV-BBM Equation). Let ¢ € R\{0},T7 > 2x/|c|, and
q € L>®(0,T;L>(T)). Let w C T be a nonempty open set. Let u € L*(0,T; H*(T)) U
L>=(0,T; H(T)) satisfying the KdV-BBM equation

Up — Ugggy — Clgge + qQUz = 07 YRS TJ te (OaT)v

where g € L (0,T; L>(T)) is a given potential function and ¢ # 0 is a given real constant,
and satisfying
u(z,t) =0 for a.e. (z,t) € w x (0,7T).

Thenu=01in T x (0,7).

In the final chapter of this work, the Chapter [5, we focus on the controllability of the
BBM equation, which also represents the primary goal of this endeavor. The control and
stabilization of dispersive wave equations have been the subject of extensive research over

the past decade. We begin by considering the linearized BBM equation with a control force
Up — Utzr + Uy = a(x)h(z, 1), (1.3)

where a(z) is supported in a subset of T and h(x,t) represents the control input. It was
shown in (MICU| 2001; ZHANG; ZUAZUA, 2003) that is approzimately controllable
in H'(T). However, is not exactly controllable in H'(T), as proved in (MICU]
2001)). This stands in sharp contrast with the good control properties observed in other
dispersive equations, such as the KdV equation, the nonlinear Schrédinger equation, the

Benjamin—Ono equation, the Boussinesq system, and the Camassa—Holm equation.

On the other hand, the KdV-BBM equation can be derived from ((1.1)) by working in a
moving frame x = —ct with ¢ € R\{0}. Defining

v(x,t) = u(x — ct,t), (1.4)
transforms ([1.1]) into the following KdV-BBM equation

v+ (¢ + 1) vy — CUppy — Vigw + VU, = 0. (1.5)
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The presence of the KdV term —cv,,, in suggests improved control properties com-
pared to (L.I)). We establish that the KdV-BBM equation with a forcing term a(x)k(z, ),
supported in any given subdomain, is locally exactly controllable in H*(T) for any s > 1,
provided that the control time satisfies 7" > (27)/|c|. Returning to the original variables,

this result implies that the equation
U + Uy — g + U, = a(x + ct)h(x,t), (1.6)

with a moving distributed control, is exactly controllable in H'(T) for any s > 1, given
sufficiently large time T'. The choice of T ensures that the support of the moving control,

which travels at a constant velocity ¢, can cover the entire domain T.

The concept of moving point control was originally introduced by J.L. Lions in (LIONS;
1992)) for the wave equation. An important motivation for this approach is that exact
controllability fails for the wave equation with a static pointwise control if the point
corresponds to a zero of an eigenfunction of the Dirichlet Laplacian. However, exact
controllability holds when the control point moves, provided it satisfies specific conditions

that are easy to verify.

Similarly, for the BBM equation, applying a localized damping with a moving support
leads to semiglobal exponential stabilization. This chapter demonstrates that combining
local exact controllability with semi-global exponential stabilization results in the following

theorem, which represents the main result of this master’s thesis:

Theorem 1.2.4 (Local Exact Controllability for BBM with a Moving Control). Assume
that a € C*(T) with a # 0 is given and that ¢ € R\{0}. Let s > 1 and R > 0 be given.
Then there ezists a time T' = T(s, R) > 27/|c| such that for any uo, ur € H*(T) with

uoll s < R, urllg: <R,

there exists a control h € L*(0,T; H*=%(T)) such that the solution v € C ([0, T]; H*(T)) of

Up — Upgy + Uz + vty = a(z + ct)h(z,t), x€T,te(0,T),

uw(z,0) =uo(z), zeT
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satisfies

w(z,T) =ur(x), zeT.

1.3 Thesis Outline

Each chapter begins with a brief explanation of what follows therein, providing theo-
retical or historical information related to the topic, or outlining the chapter. In turn, the

following is an outline for the entire work:

e Chapter[2] although interesting in its own right, has the primary purpose of laying the
mathematical framework for the entire work. It collects useful and remarkable facts
from various fields, such as Topology, Functional Analysis, Distributions, Sobolev

Spaces, Semigroup Theory, and Control and Stabilization concepts;

e Chapter [3] is divided into three sections. The first section discusses the well-
posedness of the BBM equation, also providing estimates that will be useful for
applying the contraction mapping principle. The following sections address the
analyticity of the solution for the BBM, in Section [3.2] and the conserved quantities

in Section [3.2

e Chapter [4] first addresses the UCP property for the BBM equation in Section 4.1l The
second section is split into two subsections, £.2.1] and [£.2.2] which treat a BBM-like

equation without a drift term and one with a nonlocal bilinear term, respectively.
Next, the third section 4.3] of the chapter addresses the KdV-BBM equation, where
the UCP is derived by means of a Carleman estimate, and due to its importance, we

have dedicated the subsection 4.3.1] to it.

e Chapter [5| focuses on the controllability and stabilizability issues, each of which
is addressed in a separate section. Section [5.1], which deals with controllability, is
divided into subsections. The first subsection, [5.1.1] covers the exact controllability
for the linearized BBM equation, while the second, [5.1.2] addresses the local aspects
of controllability for the BBM equation. In turn, the section addressing stabilizability
possesses two subsections. The first subsection, [5.2.1] deals with the well-posedness
issue for a feedback system KdV-BBM. The last subsection, [5.2.2] addresses local

and global exponential stabilization.
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2 COMPENDIUM OF PRELIMINARY RESULTS

This chapter aims to lay the groundwork for the theory developed in the following
chapters, as well as to establish the notation used throughout the work. The sections titled
"Basic theory" and "Semigroup theory" summarize the prerequisites, while the Control
and Stabilization section gives a brief summary on the specific concepts to follow the last

chapter of this master’s thesis.

2.1 Basic Theory
2.1.1 Elements of Topology and Functional Analysis

This subsection is inspired in (MARTEL, |2020; GRUBB, [2008; BREZIS, 2011} LIMA/
2020; KREYSZIG]|, [1989). Roughly speaking, a topological space is a space where one can
talk about convergence and continuity, on the other hand, Functional Analysis in, say,
Hilbert spaces has powerful tools to establish operators with good mapping properties and
invertibility properties. A combination with Distribution Theory allows showing solvability

of suitable concrete partial differential equations.

Definition 2.1.1. We say that a sequence {gi},—, of a metric space (E,d) converges to

g € B, written limy, gy = g, if limg_o0 d (gx, g) = 0.

Definition 2.1.2. Let (E,d) be a metric space, and A be a subset of E. We say that A
is dense in E if its closure A is E. Equivalently, for all f € E, there exists a sequence

{aj};il of elements of A such that lim;_, a; = f.

Let (Ey,dy) and (Es, dy) be two metric spaces. Let A be a subset of £y and F': A — Ey
be a function. Let gy € A and h € E,. We say that

lim F(g) = h,

g—9go;g€A

if for all neighborhood V5 of h in Ejs, there exists a neighborhood V; of gg in E; such that
F (V1N A) C Vs. The limit, if it exists, is unique.
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Definition 2.1.3. We say that F' : A — FE5 is continuous at gy € A if

lim_ F(g) = F (o).

g—go;9€A

We say that F is continuous on A if it is continuous at any point of A. The composition

of two continuous functions is continuous.

Theorem 2.1.1. The application F : A — FE5 is continuous at g € A if, and only if for

any sequence {gi}r, of A converging to g, the sequence {F (gi)},—, converges to F(g).

Proof. See Proposition 9, Chapter 5 in (LIMA/ 2020). [ |

Definition 2.1.4 (Compactness). We say that a metric space (E,d) is compact if any
sequence of E admits a subsequence that converges to an element of E. A subset A of a

metric space (E,d) is compact if the metric space (A,d) is compact.

Definition 2.1.5. Let (X, || - ||) and (Y,]| - ||y) be two normed spaces. Let D C X and
F:D —Y. We say that F' is uniformly continuous if the function w : [0, 00) — [0, 00)
defined by

w(0) = sup |[[F(g) — F(h)lly,

g,heD
llg—hlI<é

converges to 0 as 6 converges to 0.

Theorem 2.1.2 (Heine-Cantor). Let (E1,dy) and (E2,ds) be two metric spaces. Let

F: Ey — E5 be continuous. If E1 is compact, then F' is uniformly continuous.

Proof. See Proposition 9, Chapter 8 in (LIMA, 2020). [ |

Definition 2.1.6 (Cauchy sequence). We call a Cauchy sequence in E a sequence {gy}re,
such that

J,k—00

Theorem 2.1.3. In any metric space, a converging sequence is a Cauchy sequence.

Proof. See Theorem 1.4-5 in (KREYSZIG, |1989). [

Definition 2.1.7 (Complete metric space). We say that a metric space (E,d) is complete

if any Cauchy sequence in E is convergent.
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Definition 2.1.8 (Banach space). We say that a normed vector space (X, ||-||) is a Banach
space if any Cauchy sequence in X is convergent with respect to the metric d(z,y) = ||lx—y||,

forallz,y € X.

Theorem 2.1.4. Any finite dimensional normed vector space is a Banach space.

Proof. See Theorem 2.4-2 in (KREYSZIG, 1989). [

Proposition 2.1.1. Let A be a subset of a metric space (E,d). If A is complete, then A

1s closed in E. If E is complete and A is closed in E, then A is complete.

Proof. See Proposition 6, Chapter 7 in (LIMA, 2020). |

Proposition 2.1.2. A compact metric space is complete.

Proof. See Proposition 3 in (YOCCOZ, |1994)). [

Theorem 2.1.5 (Completion of a metric space). Let (E,d) be a metric space. There
exists a unique (up to isometries) complete metric space (E, d ), containing E as a dense
subset and such that the restriction of d to E is d. Any uniformly continuous application
f:E =Y, where (Y,dy) is a complete metric space, extends uniquely as a continuous

application f E—Y.
Proof. See Theorem 1.6-2 in (KREYSZIG, 1989). [

Let (X, |- |lx) and (Y;]| - ||y) be two normed vector spaces on R.

Definition 2.1.9. A map A: X — Y is called a linear operator if for all g,h € X, a, B €
R,
A(ag + Bh) = aAg + BA.

The range of A is R(A) = {v € Y : v = Ag for some g € X}. The null space of A is
N(A)={g € X : Ag=0}. The graph of A is the set

G(A) ={(g,v) € X xY :v = Ag}.

Theorem 2.1.6. Let A: X — Y be a linear operator. The following three properties are

equivalent.
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(i) A is continuous at 0;
(i1) A is continuous on X ;

(111) there exists a constant C' > 0 such that for all g € X, || Aglly < C||g||x-

Proof. See Proposition 8, Chapter 2, in (LIMA] 2020) or Theorem 2.7-9 in (KREYSZIG,
1989). n

We denote by L(X,Y') the vector space of linear continuous operators from X to Y

equipped with the norm

[Allzxyy = sup {1 Agllys [lgllx = 1}

Theorem 2.1.7. Let (X, || - ||) be a normed vector space, D be a dense subspace of X,
and Y a Banach space. Any linear continuous linear map T from D to'Y can be uniquely

extended to a continuous linear map T from X to'Y, with |T|| = ||T.

Proof. See Theorem 2.7-11 in (KREYSZIG, [1989)). [

Theorem 2.1.8 (Banach-Steinhaus theoremED. Let X be a Banach space, Y be a normed

vector space, and Aj,_, be a family of linear operators from X toY satisfying, for all

ge X,

sup [|4;9[l, < oo.
jed
Then, the bound is uniform on the unit ball of X, i.e.
sup ||Aj||[;(x,y) < 0.
jedJ
Proof. See Theorem 2.2 in (BREZIS| |2011]). [

A linear operator A : X — Y is called closed if its graph is closed, which means that
for any sequence {g;},—, of X such that lim g; = g in X and lim, Ag;, = v in Y, one

has Ag = v.

!This theorem is also known as Uniform Boundedness Principle.
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Theorem 2.1.9 (The Closed Graph Theorem). Let X and Y be Banach spaces and let
A: X =Y be a linear mapping. Then, A € L(X,Y) if and only if the graph of A is a
closed subspace of X X Y.

Proof. See Theorem 2.9 in (BREZIS| |2011]). [

When Y = X, we denote £(X) instead of £(X, X) the vector space of the bounded
linear operators on X. Equipped with the composition product of applications A o B,
denoted simply by AB, £(X) is a unitary algebra, with identity element /. The norm on
L(X), defined by

14l = sup [[Ag])

lgll<
will also be denoted by || - ||. It is a matter of fact that for all A, B € L(X),
|IAB]| < || Al B]|-

An element A of £(X) is said to be invertible if it admits an inverse in £(X), i.e. if
there exists B € £(X) such that AB = BA=1.

Theorem 2.1.10 (Open Mapping theorem). Let X be a Banach space. Let A € L(X) be
bijective. Then the inverse of A, denoted by A™', belongs to L(X).

We recall that if A and B are invertible, then AB is also invertible and it holds
(AB)™' = B7'A~'. We shall use the convention A° = 1.

Proof. See Theorem 2.6 in (BREZIS| |2011]). [

Lemma 2.1.1 (Neumann Series Criterion). Suppose that X is a Banach space. Let

A€ L(X) be such that A =1 — K with ||[K|| < 1. Then, A is invertible and
AT =Y "KM e £(X).
k=0

Proof. See Example 14 in (LIMA/ 2020)) or see Proposition 7.1.3 in (BOTELHO; PELLE+
GRINO; TEIXEIRA| 2015)). [

Definition 2.1.10. When Y = K, L(X,Y) is denoted by X* and called the dual or

topological dual space of X ; it is the space of continuous linear forms on X. Equipped with



2.1. Basic Theory 21

the norm

[Allzcx) = sup [Agl,
lgll<1

it is a Banach space.

Let (X, | -|) and (Y, ] - ||y) be two normed vector spaces and let & be an open set of
X.

Definition 2.1.11. For a function f:U — R, where 0 € U, we denote f(h) = o(h), if
for any € > 0, there exists 6 > 0 such that for any h € U with ||h|| < 3§, |f(R)| < e]|h]|l.

Definition 2.1.12. We say that an application F' : U — Y 1is differentiable at g € X if

there exists a continuous linear map, dF, : X —'Y such that

1E(g + 1) = F(g) = dEy(h)]ly = o(h).

If it exists, this linear map is unique and called the differential of F' at g. We say that F
is differentiable on U if it is differentiable at any point of U. We say that F is of class C*

on U if it is differentiable at any point of U and if the application

dF U — L(X,)Y), g~ dF,

is continuous. A linear combination of differentiable functions is differentiable, and the

differential is linear. A composition of differentiable functions is differentiable.

Definition 2.1.13. Let H be a linear vector space on R. A (real) scalar product on H is
a map (f,g) — (f,g) from H x H to R satisfying the following properties

(i) Bilinearity: for all fi, fo, 1,92 € H, X € R,

M1+ f2r91) = A(f1,91) + (f2, 1)
(f1, g1+ g2) = A(f1,91) + (f1,92)

(ii) Symmetry: (f,g) = (g, f), for all f,g € H;

(111) Positivity: for oll f € H,(f, f) >0 and

(f;f) =0+ f=0.
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Definition 2.1.14. Let H be a linear vector space on C. A hermitian scalar product on

H is a map (f,g9) — (f,g) from H x H to C satisfying the following properties

(i) Linearity and antilinearity: for all f1, f2, 1,92 € H,\ € C,

(Afi+ fo, 01) = A(f1..91) + (f2.91)
(flv)‘gl +92) = /\(flagl) + (fla.g?)

(i1) Hermitian symmetry: (f,q) = (g, f), for all f,g € H;

(111) Positivity: for oll f € H,(f, f) >0 and

(f;f) =0+ f=0.

A real or complex vector space equipped with a scalar product has a natural normed

space structure, by setting

Il = (£, )2
Moreover, the Cauchy-Schwarz inequality holds

[(f )l < [ £IHlgll-

Definition 2.1.15. We say that (H, (-,-)) is a Hilbert space if it is complete for the

associated norm.

Theorem 2.1.11 (Riesz Theorem). Let (H,(+,-)) be a Hilbert space. For any element

h € H, we associate the continuous linear form Ly, on H defined by, for any f € H,

Lu(f) = (h, f).

Conversely, for any continuous linear form L on H, there exists a unique h € H such that

L =1L

Proof. See Theorem 4.11 in (BREZIS| 2011]). |
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Definition 2.1.16 (Riesz Basis). The set {fx} C V is called a Riesz Basis if every element

s € V of the space can be written as

s=Y cfe
k

for some choice of scalars {cx} and if positive constants A and B ezist such that
Alls|* <) lexl* < Blls|P?,
k

Riesz basis are also known as a stable basis or unconditional basis. If the Reisz basis is an

orthogonal basis, then A= B = 1.

In infinite-dimensional Hilbert spaces, bounded sets generally do not have compact
closure. Thus, it is important to weaken the notion of convergence in such spaces. Thus,

we shall introduce some weak notions.

Definition 2.1.17. Let E be a Banach space. The weak topology o (E, E') on E is the

coarsest topology on E that makes all mappings f € E' continuous.

Let (25,),,cy be a sequence in £ that converges to « in F in the weak topology o (£, E').
We shall denote this by

T, =2 InkE.

Proposition 2.1.3. Let (x,) be a sequence in E, then

neN
(i) x, — x in E if, and only if, (f,x,) — (f,z),Vf € E';
(i1) if x, — x in E, then x, — x in E;

(iii) if x,, = x in E, then ||z,| 5 is bounded and ||z||p < liminf ||z,| 5;

() if x, = x in E and f, — [ in E', then {f,,x,) — (f, ).

Proof. See Proposition 3.5 in (BREZIS, [2011)). [ |

Let E be a Banach space and let x € E be fixed. We define J, : E' — R by

(Jo, ) = ([, 2).
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The mappings J, are linear and continuous, therefore J, € E”, Vo € E. Now, we define

J : E — E" such that J(z) = J,.

Definition 2.1.18. The weak* topology, also denoted by o (E', E), is the coarsest topology

on E' that makes all the mappings J, continuous.

Proposition 2.1.4. Let (f,)nen be a sequence in E', then, then following holds

(i) fo = fin E"if, and only if, (fn,z) — (f,x), Vo € E;
(11) if fn = f in E', then f, — f in E';
(i4) if f, — f in E', then f, = f in E'.
Proof. See Proposition 3.13 in (BREZIS, 2011)). [

Proposition 2.1.5. Let E be a reflexive Banach space and let (), .y be a bounded

sequence in I. Then, there exists a subsequence (Tn, )pcy Of (Tn),ey and x € E such that
Tp, = weakin L.

Proof. See Theorem 3.18 in (BREZIS| 2011). [ |

Proposition 2.1.6. Let E be a separable Banach space and let (fy), oy be a bounded

sequence in I, then, there exists a subsequence (fn, ) ey and f € E' such that
foo = f in E.

Proof. See Corollary 3.30 in (BREZIS| 2011)). [

Definition 2.1.19. Let {fj}]oio be a sequence of elements of a separable Hilbert space H
and let f be an element of H. The sequence {fj};io is said to weakly converge to f, which
is denoted by f; — f if

vheH, lm (b f;) = (b f).

It is easy to see that if the weak limit exists, then it is unique.

Let (H, (-,-)) be a real Hilbert space. We denote by (-, -) the pairing of H with its dual
space H*.
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2.1.1.1 An Overview of Differential Calculus in Banach Spaces

Here, following (ZEIDLER; [1986), our goal is to provide a generalization for Banach
spaces of the Implicit Function Theorem from real variables. That is, we shall generalize the
following statement: let F' be a real-valued function of two real variables with F'(zg,y9) =0
for fixed (zg,yo). The equation

F(z,y) =0

will have unique solution for y in a neighborhood of (zy, yo) if certain regularity conditions

are fulfilled, and F),(zo,yo) # 0.

First, some notation. For a map r: U(0) C X — Y, we will write:
r(z) = o||z]),x = 0 iff r(z)/||z| = 0 as z — 0.

Definition 2.1.20. Let f : U(z) € X — Y be a given map, with X and Y Banach spaces.
Here U(x) denotes a neighborhood of x.

(i) The map f is Fréchet differentiable at x if, and only if, there exists a map T € L(X,Y)
such that

flx+h)— f(x) =Th+o(|h]), h—0, (2.1)

for all h in some neighborhood of zero. If it exists, this T is called the Fréchet
derivative of f at x. We define f'(x) =T. The Fréchet differential at x is defined by
df (x;h) = f'(x)h.

(11) If the Fréchet derivatives f'(z) exist for all x € A, then the mapping
fPACX = L(X)Y) by x— f(2)
1s called the Fréchet derivative of f on A.
(11i) Higher derivatives are defined successively. Thus, f"(x) is the derivative of ' at x.

It is worth pointing out that we will consider derivatives at x only if f is defined in

some neighborhood of x. Also, by (2.1]) we see that are defined through linearization.

Proposition 2.1.7. If f'(x) exists as an Fréchet derivative at x, then f also is continuous
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at x.

Proof. See Proposition 4.8 in (ZEIDLER, |1986). [ |

Definition 2.1.21. Let there be given a map f: D(f) C X XY — Z by (z,y) — f(z,y),
where XY, and Z are Banach spaces. Let y be fixred and set g(x) = f(x,y). If g has an
Fréchet derivative at x, then we define the partial Fréchet derivative of f at (x,y) with
respect to the first variable x to be f,(x,y) = ¢ (x). The derivative f,(z,y) is defined
similarly. Instead of fy(x,y), fy(x,y) one also writes Dy f(x,y), Daf (x,y), respectively.

We shall investigate the validity of the formula

f'(@y)(h k) = fo(z, )b+ fy(,y)k (2.2)
Proposition 2.1.8 (Partial Derivatives). We have the following properties

(1) If f is Fréchet differentiable at (x,y), then the partial Fréchet derivatives f, and f,
exist at (z,y) and (2.2)) holds for allh € X and k € Y.

(ii) Conversely, if f has partial Fréchet derivatives f, and f, in a neighborhood of (z,y),

and if these are continuous at (x,y), then f'(x,y) exists as an Fréchet derivative and

holds.

(11i) The map f is continuously Fréchet differentiable in a neighborhood of (x,vy) if, and

only if, all partial Fréchet derivatives are continuous in a neighborhood of (x,y).

Proof. See Proposition 4.14 in (ZEIDLER] |1986)). [

Theorem 2.1.12 (Implicit Function Theorem). Suppose that:

(i) the mapping F : U (xo,y0) € X XY — Z is defined on an open neighborhood
U (xo,Y0), and F (xo,y0) = 0, where X, Y, and Z are Banach spaces over K =R or
K =C;

(ii) F, exists as a partial Fréchet derivative on U (xo,yo) and Fy (zo,y0) 1 Y — Z is

bijective.

(iii) F and F, are continuous at (o, yo)-



2.1. Basic Theory 27

Then the following are true

(a) Existence and uniqueness. There exist positive numbers ro and r such that, for
every x € X satisfying ||z — xo|| < 1o, there is exactly one y(x) € Y for which
ly(z) = woll <1 and F(z,y(x)) = 0.

(b) Construction of the solution. The sequence (y,(x)) of successive approzimations,

defined by yo(x) = yo, and

yn—&-l(x) = yn(x) -k, (x07 yO)_l F (z, yn<x>>

converges to the solution y(x), as n — oo, for all points x € X satisfying ||z — x¢|| <

To.

(¢) Continuity. If F' is continuous in a neighborhood of (xo,vo), then y(-) is continuous

in a neighborhood of xg.

(d) Continuous differentiability. If F is a C™-map, 1 < m < 0o, on a neighborhood of

(zo,Y0), then y(+) is also a C™-map on a neighborhood of xy.

Proof. See Theorem 4.B in (ZEIDLER] 1986). [ |

Corollary 2.1.1. If F' is analytic at (zo,yo), then the solution y(-) is analytic at xy.

Proof. See Corollary 4.23 in (ZEIDLER] 1986). [

2.1.2 Distributions and Sobolev Spaces

Throughout this subsection we are inspired in (ADAMS; |1975; MEDEIROS; MIRANDA]|
1989; BREZIS, 2011; SCHWARTZ, 1966; IORIO JUNIOR; IORIO, 2001) and in the

references therein.

We refer to a domain, denoted by €2, for a nonempty open set in n-dimensional real
space R™. We will focus on the differentiability and integrability of functions defined on the

set Q. Given n € N, if & = (o, ..., a,) is an n-tuple of nonnegative integers «;, we call a

a multi-indez and denote by ® the monomial z{" ... z%", which has degree |a| = > iy Oy

2"
Moreover, if D; = -2~ then
b ] 81‘]"

D* =Dy ... D"
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denotes a differential operator of order |a|. Notice that, D

If o and B are two multi-indices, we say that 8 < a provided 3; < o for 1 < j < n.
Then a — § is also a multi-index, and | — 5| + || = |a|. Moreover, we also denote
al=aq!.. .o, and if § <

Q al

g Blla—p)

With this, for u, v regular enough functions we state the Leibniz rule given by

D“(uv)zz “ DPu(z)D*Pu(x). (2.3)
<o \ S

Let Q C R”, we denote by Q the closure of  in R”. Let u a function defined on Q, we

describe the support of u to be the set

supp(u) = {x € Q: u(x) # 0}.

We say that u has compact support in € if supp(u) is compact.

For any m € N, let C"™(f2) denote the vector spaces
C™(Q) ={¢: D*¢, |a] < m is continuous on 2} .

We denote C°(Q) = C(Q2). Let C=(Q2) =(-_, C™ (). The subspaces Cy(£2) and C5°(Q)
consists of all those functions in C'(2) and C*°(Q2), respectively, that have compact support

in €.

Definition 2.1.22. We say that (¢n)nen C C3°(2) converges to ¢ € C§°(Q2), denoted by

On =, if
(i) There exists a compact K of Q such that supp(yp) C K and supp(p,) C K, Vn € N;
(11) D*p, — D%p uniformly in K, for all multi-index .

By D(Q) we represent the space C§°(£2), equipped with the convergence defined above

and will be called space of test functions on €.

We define a distribution over €2, as defined by Schwartz, to any linear form 7" over D(2)
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that is continuous in the sense of convergence defined above, that is, for every sequence

(¢n)n C D(Q) that converges to ¢ € D(R), then (T, ¢,)), C K converges to (T, ¢) € KP}

Remark 2.1.1. The dual space D'(Q) of D(Q2) is called the space of (Schwartz) distributions
on Q. D'(Q) is given the weak-star topology as the dual of D(R), and is a locally convex
topological vector space (TVS) with that topology.

Let a a multi-index and ¢ € D(Q), if u € C'?/(Q), then integrating by parts || times

leads to

[ 0rat@) oty de = (-0 [ ula) Do) do.
Q

Q

This motivates the definition of the derivative DT of a distribution 7" € D’'(Q2)

<DaT7 §0> = (_1>|a|<T7 Da(ﬁ)? VQO S D(Q)

It is notable that:

e Fach distribution T over €2 has derivatives of all orders.

e DT is a distribution over €2, where T" € D’(Q2). In fact, it is easily seen that DT
is linear. Now, we show that it is continuous, consider (¢, ), C D(f2) converging to

¢ € D(Q). Thus,
(DT, n) = (DT, @)| < (T, D%y — D*p)| = 0

when n — oo.

e The map D : D'(Q2) = D'(?), such that T'— D*T, is linear and continuous in the

sense of convergence defined in D'(2).

For 1 < p < oo, we denote by LP(Q) the space of (classes of) functions u: Q@ — R
measurable in €2 such that |u|P is Lebesgue integrable in €. This is a Banach space with

the norm

el = [ I o

20Observe that K =R or C and (T, ¢) is the evaluation of T in ¢, i.e. T(¢)
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When p = oo, L>®(Q2) consists of all essentially bounded functions in €2 equipped with the
norm

|u|| oo () = esssup,eq |u(z)| = inf {C: |v(z)] < C a.e. in Q}.

When p = 2 we have a Hilbert space L?*(€2) with the inner product

(u,v) 2(0) :/Qu(m)v(m) dr,

and induced norm

JulZagq = / () da.

Given an integer m > 0, by W™P(Q), 1 < p < oo, represents the Sobolev space of
order m, over  of (classes of) functions u € LP(2) such that D € LP(Q2), for every
multi-index o, with |a] < m. W™P(Q) is a vector space, whatever 1 < p < co. Considering

the following norm

T— / D*u(2)|? da

ol <m
when 1 < p < 0o and

lullwmee@) = Y suppseq [Du()]

laj<m

when p = oo, then Sobolev spaces W™P({2) is a Banach space.

When p = 2, the space W™2(Q) is denoted by H™(fQ), which equipped with the inner
product

(U, v) gm) = Z /QDO‘u(a:)DO‘U(:c) dx

o <rm
is a Hilbert space.
Let us denote by W;""(Q2) the closure of C§°(Q2) in WP (Q) relative to the norm of
the space W™P(Q2), i.e.

W ()

G (%) = Wy (Q).

Whenever € is bounded at least in one direction z; of R™, the norm of W;""(2) is given by

lulfyney = 32 [ IDu(o) de

la|=m
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We denote by W~™%(Q) the topological dual of W;"*(Q), where 1 < p < oo and ¢ is
the Holder conjugated index of ﬁf] We write H™™(2) to denote the topological dual of
Hg"($2).

Let X and Y be two normed vector spaces such that X C Y. If the inclusion map
1:x € X — x €Y is continuous for every x € X, then X is said to be continuously

embedded in Y and will be denoted X — Y.

Next, we aim to extend the definitions for the H® spaces, with s > 0. We begin
by defining the Schwartz space, which is a subspace of L' (R") that is invariant under
the Fourier transform. It consists of functions ¢ € C*° (R™), which, along with all their
derivatives, decrease rapidly at infinity. That is, they decrease to zero at infinity faster

than any power of ||z||*. More precisely:

Definition 2.1.23 (Fourier transform). Let f € L' (R"). The Fourier transform of f,
denoted by f, s a function defined on R™ by the formula

fe) = [ e fapds, = VoL
where (x,&) =Y o, x;& is the usual inner product in R™.

Since f € L'(R™), we note that f (&) is well defined for all £ € R™. Indeed

£ <

/ e’2m<x’5>f(x)dx

< [ r@lde = 1,

Definition 2.1.24 (Schwartz space). Schwartz space, or the space of rapidly decreasing
functions, denoted by S, is the vector subspace formed by functions p € C*° (R™) such that

lim _||z]|*D%(z) =0,

llz[| =00

for any k € N and o € N,

We note that C§°(R™) is a dense subset of S, and for any 1 < p < oo, we have
S — LP(R™).

3¢ is said to be the Holder conjugated index of 1 < p < oo if % + % =1
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Proposition 2.1.9 (Parseval relations). Let f,g € S. Then, the following holds

| J©9(©de = | J@)gla)da

and

[ 19=] 73
R™ R"
Proof. See Proposition 1.96 and Propositon 1.99 in (MEDEIROS; MIRANDA| 1989). W

Corollary 2.1.2. Let f € S. Then

1| 2ny = 1 f 1 £2n)-
Proof. See Corollary 1.100 in (MEDEIROS; MIRANDA| [1989). [ |
Theorem 2.1.13 (Plancherel theorem). There exists a unique isometric bijection
P:L*(R") — L*(R"),

such that
P(f)=Ff VfeS.
Proof. See Theorem 1.101 in (MEDEIROS; MIRANDA/ [1989). [ |

Proposition 2.1.10. Let g € S. Then

oa) = [ (e

Proof. See Propositon 1.97 in (MEDEIROS; MIRANDA| [1989)). [ |

Definition 2.1.25 (Tempered Distribution). A linear functional T' defined and continuous
on S is called a tempered distribution (or slowly increasing distribution). The set of all
tempered distributions, that is, the vector space of linear and continuous functionals on S,

is denoted by S'.

We note that S" C D'(R").
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Definition 2.1.26. For any s € R, s > 0, we define the H*(R"™) space by
H* (R") = {u €S (RY); (14 ||z]?)"*a € L2 (R”)} ,
endowed with the inner product
(U, V) prs(gny = /Rn (1+ ”;L‘"Z)Sﬁ(x)md(ﬂ,

which turns H*(R™) into a Hilbert space.

Follows from the definition above that H* (R") < L? (R"). Indeed, for u € H* (R"),

we have
[ullZ> gy = Nl Z2gny = . () |*dx < / (1 + [l2]1?)" (@) Pdz = Jull s -

Theorem 2.1.14 (Sobolev embeddings). We have

(i) H® — C*  fors>k+ 2 keNg

(11)) H® — LP forszg—§,2§p<oo

(1ii) LP — H*  fors<3—2,1<p<2

(w) L' — H*  fors < —%.

Proof. See Proposition 1.1.11 in (HERR) 2006). [ |

Corollary 2.1.3. Let s > 0 and assume that

(<] (<] n
s < 81, 82, SSSI+32_§~

Then, there exists ¢ > 0 such that

e < Clluallge lJuallge s ua € H up € H.

(| w1l

In particular, H® is a Banach algebra for s > %, (see Theorem .

Proof. See Corollary 1.1.12 in (HERR), 2006}). |
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We will denote by LP(0,7; X), 1 < p < oo, the space of Banach of (classes of) functions
u, defined in (0, 7") with values in X, that are strongly measurable and [|u(t)||% is Lebesgue

integrable in (0,7"), with the norm

T
] —— / lu(®)|1% d.
0

Furthermore, if p = 0o, L>(0, T'; X) represents the Banach space of (classes of) functions u,
defined in (0,7") with values in X, that are strongly measurable and ||u(t)||x has supreme

essential finite in (0,7"), with the norm

lu(®) | o= (0,7:3) = esssupre o,y [lu(?)lx-

Remark 2.1.2. When p =2 and X is a Hilbert space, the space L*(0,T; X) is a Hilbert

space, whose inner product is given by
T
(11, 0) 20:730) = / (ult), o(t))x dt.
0

Consider the space LP(0,7;X), 1 < p < oo, with X being Hilbert separable space,

then we can associate the topological dual space
[LP(0,T; X)] ~ L9(0,T; X'),
where p and ¢ are Holder conjugated index. When p = 1, we will associate

[LY(0,T; X)) ~ L>=(0,T; X").

Given a Banach space X. The vector space of linear and continuous maps of D(0,7T)
on X is called the Space of Vector Distributions on (0,7") with values in X and denoted
by D'(0,T; X).

Given S € D'(0,T; X), inspired on the previous derivative of distribution, we define

the derivative of order m as being the vector distribution over (0,7") with values in X

dms m d"e
<W’@> =(—1) <S, W> , for all ¢ € D(0,T).

given for
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Let us consider the Banach space
W™e(0,T; X) = {u € LP(0,T; X): ) € L?(0,T,X),j = 1,....,m},

where 1) represents the j—th derivative of u in the sense of distributions and the space

is endowed with the norm
m
HUHQIZVm,p(o,T;X) = Z Hu(J)Hip(o,T;X)-

When p = 2 and X is a Hilbert space, the space W™2(0,T; X) will be denoted by
H™(0,T; X), which, equipped with the inner product

(u, v) grm(o,7:x) = Z L2 (0,T;X)>
7=0
is a Hilbert space. It is denoted by H}"(0,T; X) the closure, in H™(0,7; X), of D(0,T; X)
and by H~™(0,T; X) the topological dual of HJ*(0,T; X).

2.1.2.1 Periodic Distributions

Here, we shall introduce a class of generalized functions specially suited for the study
of Fourier series and differential equations provided with periodic boundary conditions, as
well as study their basic properties. We have been guided by (IORIO JUNIOR; IORIO),
2001).

Definition 2.1.27. A function f : R — C is said to be periodic with period T # 0 if
fle+T)=f(x) VreR.

Remark 2.1.3. Note that if T is a period for f then, for any n € Z\{0},nT is also a
period for f. In particular, since =T is a period, we can assume, without loss of generality,
that T > 0. If f is constant, then f is periodic with any period. If f is continuoudl]
and nonconstant, then there exists a smallest period T > 0; in this case, T is called the

fundamental period of f.

4This condition can be weakened but some condition is necessary. For instance, the function that is
zero on the rationals and 1 elsewhere is periodic but does not have a fundamental period.
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We shall denote by & = C2. the collection of all the functions ¢ : R — C which are

per

C* and periodic with period 2. Space & is a vector subspace of C7, for all n € N. Also,

we shall denote by PC”,. ([—£,¢]) the set of all functions f € PCpe ([, {]) such that there

per

exists a partition —¢ = zy < z1 < ... < x,, = { of the interval [—¢, (] with f € C™ (x},2,41)
forall j =0,1,...,m —1 and f® € PCpe ([~£,¢]) for all k = 1,...,m. We will also use
the notation PCS. ([—¢,/]) for the set of functions that belong to PC?,. ([—¢,¢]) for all

per per
nezt.

In what follows, we introduce the Fourier transform in the context of periodic functions.
Definition 2.1.28. Let f € PC)., . The Fourier transform of f is the complex sequence
Ff =T =(F(k))ez defined by

(FN W =F) = o= 5 [ fa)e .

The numbers f(k’) = ¢, are the Fourier coefficients of f and the series

f: cpe® Z cr exp(ikx)

k=—o00 k=—o00

15 the Fourier series generated by f.
Definition 2.1.29. The space of rapidly decreasing sequences, denoted by .#(7Z), is the

set of all complez-valued sequences o = (), Such that

> k[ |ox] <00 VjEN.

k=—00

Proposition 2.1.11. a = (a)yey € P(Z) if and only if
la]lco,; = sup (Jow| k) <00 VjeN.
keZ

Proof. See Proposition 3.4 in (IORIO JUNIOR; IORIO), |2001). |

Definition 2.1.30. Let o = (o),eq € 7 (Z). The inverse Fourier transform of o is the

function
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Theorem 2.1.15. The Fourier transform » : & — Z(Z) is an isomorphism and a
homeomorphism, that is, it is linear, one to one, onto #(Z), and continuous with a

continuous 1nverse.

Proof. See Theorem 3.6 in (IORIO JUNIOR; IORIO, 2001). |

—_— ~

Proposition 2.1.12. Let f,g € Cper . Then (T, f)(k) = e~ ™* f(k) and

(Tif) g =T,(f xg9) = [ * (Trg) .

Proof. See Proposition 3.7 in (IORIO JUNIOR; IORIO, 2001)). |
Proposition 2.1.13. Let p € & and g € Cper , then
(1) t7H(T_yp — ) 2, ¢ ast—0,

(ii) pxg € P and (p*g)¥) = W) xg,j=0,1,2... Moreover, if (g,)o~, C Cpe, is such

that ||g, — gl — 0 as n — oo then lim, o Y * g, =@ xg in &, ie.,

H((p w9 —(px )@ =0 VjieN

Proof. See Proposition 3.8 in (IORIO JUNIOR; IORIO\ 2001)). |

Definition 2.1.31 (Periodic Distribution). A linear functional on 2, T : & — C, is

called a periodic distribution if there exists a sequence (Vy,),, C & such that

™

T(p) =(T,p) = lim [ T,(z)p(z)drVp € .

The set of all periodic distributions will be denoted by &2, which is a complex vector

space.

Proposition 2.1.14. Let f € C)., . Then the formula

(Ty. ) = / Cf@)elo)dr, e 2,

defines a periodic distribution Ty. The map f € Cper +— Ty € P is linear, one to
one and continuous in the sense that if (fn);—, C Cper converges uniformly to f then

(Ty,, ) = (Tt, ) forall p € 2.
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Proof. See Proposition 3.17 in (IORIO JUNIOR; IORIO, 2001). |

Before proceeding we shall introduce a notion of convergence in &’

Definition 2.1.32. We will say that a sequence (T,) C &' converges to T € &' if

(Th,0) = (T,) as n—oo Vpe P

In this case we will write T, ﬂ T.

Now we shall extend certain fundamental operations to &2’ thereby generalizing usual

calculus to our context of periodic distributions.

Proposition 2.1.15. Let f € PC’;QT and let —m =z9 <1 < --- <z, =T be a partition

of the interval [—m, 7] such that f € C (zj,2;11) for all j =0,1,...,n — 1. If we denote

by % the classical derivative of f, then its distributional derivative [’ is given by

Proof. See Proposition 3.32 in (IORIO JUNIOR; IORIO, 2001)). [ |

Theorem 2.1.16. FEvery periodic distribution is a continuous linear functional on &2.
Proof. See Theorem 3.143 in (IORIO JUNIOR; IORIO), 2001). [ |

We shall further give a precise meaning to the notion that Sobolev spaces provide a

classification of the elements of £’ in terms of their smoothness.

Definition 2.1.33. Let s € R. The Sobolev space H, = Hy. ([—m,7]) is the set of all
f e P such that

o

112 = D0 (L4 [RP) [F(R)P < o (2.4)

k=—00

That is, a periodic distribution f belongs to H?_ if and only if

per

((1 + [k[2)*? f(k))kez € 2 = (2(Z).
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We shall denote by 2 = (2(Z) the space of all sequences a = (z),, With

- 1/2
lalle = [Z (L+ k) w] .

k=—o00

Thus f € H},, if and only if (F(k))kez € 2; in this case, || f]|s = ||f||gg For all s € R, H?

er per

is a Hilbert space with respect to the inner product

o

(f9)s= D (1+kP) F(k)a(k). (2.5)

k=—o00

In the case s = 0, we obtain a Hilbert space that is isometrically isomorphic to L*([—, 7]).

In what follows, H?

per

will often be denoted by L?

per *

Proposition 2.1.16. Let s,r € R,s > r. Then H®, — H’ , thatis, H? s continuously

per per ’ per

and densely embedded in H,,, and

er

£l < FIVS € Hye, - (2.6)

In particular, if s > 0, H,, C L*([—m,7]). Moreover, (Hs ),, the topological dual of

per per

Hp., , is isometrically isomorphic to H,; for all s € R. The duality s implemented by the

per ’
paITIng

(f.9)s= > JR)G(k). [ € Hyl g € H,. (2.7)

k=—o00

Proof. This proof follows (IORIO JUNIOR; IORIO) 2001). We have

2\T
o< LHIFD)
(1+ |&[?)

whenever s > r. This implies (2.6]). Indeed,

1712 = 50 (IR 1P = 3 G (1 ) R < 12

k=—o00 k=—00

It follows that H?_ is continuously embedded in H’_ . Next, since & C H?_ for all

per per per

s € R, to show that the embedding is dense, it is enough to show that & is dense in H

per *

Given g € H’ . let g, be defined by g, (k) = g(k) if |k| < n, g.(k) = 0 otherwise. Then

per
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gn € & and

lg = gally = > (LHIEP) [GR) = GulR)* = > (1+ k)" [g(K)[* = 0,

k=—o00 |k|>n

asn — oo since g € HJ . If f € H 5, it is clear that (2.7) defines a continuous linear

per er ’

: s e ors : : : : s
functional on H, . Conversely, if ¢ : Hy,, — C is a continuous linear functional on H,, ,

by the Riesz lemma there exists a unique ¢ € H?_ such that

per

(,9) = (g.0)s =Y _ (1+ k) G(k)B(k)

keZ

= G(k) A+ k2)°3(k), Vg€ H,.

keZ

Since p € 3, , ((1 + k%) cﬁ(k)) € (2, so the periodic distribution f € &’ satisfying
keZ

Flk) = (1+ k)™ ((1 + k2)*/? @(k’)) belongs to H; S and

per

(W, 9) =D Gk F(k) = (£, 9)s, Vg € Hip,

kEZ

Proposition 2.1.17. Let m € N. Then f € H. if and only if 0f = fU) € L2, j €

{0,1,2,...,m} where the derivatives are taken in the sense of &'. Moreover, || f||m and
m 1/2
171 = [Z lssl| (2:8)
=0
are equivalent, that is, there are positive constants C,, and C! such that
Conll Il < WA < Crllfl7s Y € Hp.
Proof. See Proposition 3.194 in (IORIO JUNIOR; IORIO), [2001). |
Lemma 2.1.2 (Sobolev’s lemma). If s > %, then H3, < Cpe, and
[flle < [[fller < Cllflls VS € Hp. (2.9)

Proof. See Theorem 3.195 in (IORIO JUNIOR; IORIO), 2001). [



2.1. Basic Theory 41

Let f,g € Hyepy s > % Due to Sobolev’s lemma we may define the product
fg € Cher C &' by the formula

er ?

™

(fg,0) = | [f(x)g(x)p(x)daVy € 2. (2.10)

—T

The important point about this product is that it turns H? . , for s > %, into a Banach

per

algebra.

Definition 2.1.34 (Banach algebra). A Banach algebra is a Banach space X together
with a product (z,y) € X x X — zy € X such that, for all x,y,z € X and for all s,r € C,

(i) (zy)z = 2(y2),
(ir) r(zy) = (re)y = x(ry),
(111) (z+y)z =xz+yz and x(y + 2) = 2y + x2,

() Nlzyll < [l [yl

Lemma 2.1.3. Let a,b € [0,00) and s = 0. Then there are positive constants mg and M,

depending only on s such that
ms (a® 4+ 0°) < (a+b)° < My (a® +0°). (2.11)

Proof. See Lemma 3.197 in (IORIO JUNIOR; IORIO), [2001). [ |

Definition 2.1.35. Let a = (ag),c;, and = (Br) ey be two sequences of complex numbers.

The convolution of o and B is the sequence o * [3 defined by

(ax B = > by, (2.12)
Jj=—00

whenever the right hand side of this equality makes sense.

Proposition 2.1.18. Let a € (* = (Y(Z) and B € ¢* = (*(Z). Then a* 3 € (* and

lovx Bllee < lledler 132 (2.13)

In particular, for every fized oo € €1, the map B+ o * 3 defines a bounded linear operator

from €% into itself.
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Proof. See Proposition 3.199 in (IORIO JUNIOR; IORIO), [2001)). |

Theorem 2.1.17 (Banach algebra). If s > 1 H3

yer 18 a Banach algebra. In particular,

there exists a constant Cy > 0 depending only on s such that

Ifglls < Call fllsllglls,  Vfi9 € Hper- (2.14)

Proof. Following (IORIO JUNIOR; IORIO) |2001)), consider s > % The Fourier series of a

function in H;.. converges absolutely and uniformly over [—, «]. Therefore, if f,g € H

per er )

T = 5= [ fagtare s
-5 (Z fméﬂ) g(a)eda
Q io:—oi ™ (2.15)
=5 [ X T [ gty as
= > Fi)glk—j)

From Lemma [2.1.3] we have
(1 [8P)™" < K (U4 K1) < K (L [k — I + 14) Vh,j €Z,

where K is a nonnegative constant. Therefore,

(L+ k)] 32 Fatk - i)
S K| 30 1+ k=31 + ) )k - )
< Ko 3 {17630 = )+ 1Tk = 9Gk = D] + 570 latk = )1

Since (m*f(m)) L (m*Gm)),e; € 2 and (Fm))mez, (Gm))mez € 001 2,
Proposition [2.1.18) combined with (2.15]) shows that
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and

IFgl2 =" (1+[kP)"* [Tg(k)P
k=—0o0
=3 (RS FG)ak - )
k=—0o0 j=—00
<K [1flla i@l + 16Ol 17l + |70, 151e]
< Gl £1lglls
which finishes the proof. [ |

2.1.3 Classical Remarkable Results

Now, we shall present a series of classical results that will be used throughout this
master’s thesis. The proofs of these results will be omitted (see (ADAMS, |1975; BREZIS,

2011) and references therein).

Lemma 2.1.4 (Young’s Inequality). Let a and b be positive constants, 1 < p,q < oo, such

that p and q are Hélder conjugated index. Then

ab? b
ab < — + —.
p q

Moreover, for all e > 0,

ab < ea? 4+ C(e)b.

Proof. See proof of Theorem 4.6 in (BREZIS| 2011)) or see Appendix B, letters ¢ and d in
(EVANS, 010). n

Lemma 2.1.5 (Gronwall’s Inequality - differential form). Let u(t) be a non-negative

differentiable function on [0,T)], satisfying

u'(t) < f(t)ult) +g(t)
where f(t) and g(t) are integrable functions over [0,T]. Then,

t
u(t) < elo F()dr [u(O) +/ g(s)e” Jotmdr gs| vt € [0, 7).
0
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If f(t) and g(t) are non-negative functions, then the expression becomes
. t
u(t) < elo 77 {U(O) —i—/ g(s)ds} ,Vt €10,T).
0

Proof. See Appendix B, letter j in (EVANS; [2010). [ |

Lemma 2.1.6 (Gronwall’s Inequality - integral form). Let u(t) be a nonnegative, summable

function on [0, T] which satisfies for a.e. t the integral inequality
t
u(t) < Cl/ u(s)ds + Cy
0
for constants C7,Cy > 0. Then

u(t) < Cy (1 + Clteclt) fora.e. 0 <t <T.

In particular, if

t
u(t) < C’l/ u(s)ds
0
fora.e. 0 <t <T, then
u(t)=0 ae
Proof. See Appendix B, letter k in (EVANS, 2010). [ |

Lemma 2.1.7 (Hélder’s Inequality). Let f € LP(Q2) and g € L9(S2), consider 1 < p,q < oo
such that p and q are Hélder conjugated. Then fg € L*(Q2) and

1folliaa = / gl < I f @ gl ooy

Proof. See Theorem 4.6 in (BREZIS| |2011]). [

Lemma 2.1.8 (Generalized Hélder’s Inequality). Let f; € LP7(Q) for 0 < j < k such that
LS L <1 Then fi...fr € LP(Q) and yields that

P J=1 py
[ f1-- - felle@) < W fillees@) - - - [ fillzee@)-

Proof. See Remark 2 of Theorem 4.6 in (BREZIS, [2011]). [
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Lemma 2.1.9 (Poincaré-Friedrichs inequality). Let 2 be a bounded open subset of R",

then for every 1 < p < oo there ezists a constant C = C(2,p) > 0, such that
lullioey < ClIVullzry, V€ Wy(Q).

Proof. See Proposition 8.13 in (BREZIS| 2011)). [

Remark 2.1.4. Poincaré’s inequality remains true if 0 has a finite measure and also if

has a bounded projection on some axis.

Lemma 2.1.10 (Peetre inequality). For any s € R,
(x —y)* < Colx)* () for s € R,
with a positive constant C', where
(@) = (1+1af?)*,

and its powers (x)*, s € R.

Proof. See Lemma 6.7 in (GRUBB]|, 2008). |

Theorem 2.1.18 (Aubin-Lions). Let Xy, X and X; be Banach spaces such that X, C
X C Xy with Xy compactly embedded in X and X — X;. Suppose that 1 < p,q < oo and

W ={ue LP([0,T); Xo): us € LY[0,T]; X1)}.
(i) If p < oo then W is compactly embedded into LP([0,T], X).
(1) If p =00 and ¢ > 1 then W — C([0,T]; X) is compact.

Proof. See Theorem I1.5.16 in (BOYER; FABRIE| 2013). [

Proposition 2.1.19. IfV is a Banach space and v € LP(0,T,V), with 1 < p < +oo, then

for any h > 0 the function given by

1 t+h
o (z,t) = —/ v(x, s)ds,
h /i

satisfies
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(i) v € W0, T — h; V),
(ZZ) ||U[h}HLp(0,T—h;V) < ||U||Lp(0,T;v),
(i4i) v!M — v in LP(0,7;V), as h — 0, forp < oo and T" < T.
Proof. See Proposition 1.4.29 in (CAZENAVE; HARAUX| 1998). [

Theorem 2.1.19 (Banach’s fixed point theorem.). Let X be a complete metric space and
F: X — X be a contraction. Then F is continuous and there exists a unique point xqg € M

such that F(x¢) = xo.

Proof. See Proposition 23, Chapter 7 in (LIMA| 2020) or see Theorem 24.16 in (WILLARD,
2004). m

Fixed-point theorems, such as the one given above, are useful in proving certain
existence theorems in differential and integral equations. In our case, we shall use this

theorem for well-posedness issues.

2.1.4 Semigroup Theory

The semigroup theory provides a framework for analyzing the time evolution of systems
described by PDEs, conducting mainly existence and uniqueness issues through the
properties of operators. Consequently, some definitions and results will be presented. The
results contained here can be found in (PAZY] 1983). In the sequel, we will denote by
(X, - |lx) a Banach space.

Definition 2.1.36. A one parameter family T(t), 0 <t < 0o, of bounded linear operators

from X into X 1s a semigroup of a bounded linear operator on X if

(i) T(0) = I, where I is the identity operator on X;

(i) T(t+s) =T ()T (s), for all t,s > 0;
A semigroup of a bounded linear operator T (t) is uniformly continuous if

lim ||(T(t) — I)z||x =0, VzelX.

t—0t
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The linear operator A is defined by

t—0t

T(t)x —
D(A) = {a: € X: lim w e:m'sts}

and
_ +
e — lim T(t)r —x _d T(t)x
t—0t t dt

for x € D(A)

t=0

is the infinitesimal generator of the semigroup T(t), D(A) is the domain of A.

Corollary 2.1.4. Let T(t) be a uniformly continuous semigroup of a bounded linear

operator. Then

(1) There exists a constant w > 0 such that |T(t)]| < e**.
(ii) There exists a unique bounded linear operator A such that T(t) = e,

(11i) The operator A defined in item (b) is the infinitesimal generator of T'(t).

(iv) The application t — T(t) is differentiable in norm and

T
dr(®) = AT(t) =T(t)A.
dt
Proof. See Corollary 1.4, Chapter 1 in (PAZY], [1983)). [ |

Definition 2.1.37. A semigroup T(t), 0 <t < 0o, of bounded linear operators on X is a

strongly continuous semigroup of a bounded linear operator if

lim T'(t)r =2, VrelX.

t—0t

A strongly continuous semigroup of a bounded linear operator on X will be called a

semigroup of class Cy or simply a Cy-semigroup.

Theorem 2.1.20. Let T'(t) be a Cy semigroup. There exists constants w > 0 and M > 1
such that
1T < Me**, 0<t<oo.

Proof. See Theorem 2.2, Chapter 1 in (PAZY], [1983). [ |
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Corollary 2.1.5. If A is the infinitesimal generator of a Cy semigroup T(t) then D(A),

the domain of A, is dense in X and A is a closed linear operator.

Proof. See Corollary 2.5, Chapter 1 in (PAZY], [1983)). [ |

2.1.4.1 A Theorem That Generate Group

Definition 2.1.38. If, in Definition instead of t € [0,00) we consider t € R and,
as well, in the limits there, instead of t — 07, we consider here t — 0, T(t) is called a

group instead of semigroup.

Definition 2.1.39. We say that an operator A € L(H), where H is a Hilbert space, is

unitary if A is invertible and A* = A=,

Definition 2.1.40. We say that a group T" of bounded linear operators on a Hilbert space
H is a unitary group if, for each t >0, T(t) is a unitary operator, that is, T'(t)* = T(t)~*

forallt > 0.

Theorem 2.1.21 (Stone’s theorem). A linear operator A on a Hilbert space H is the

infinitesimal generator of a unitary Cy group if and only if A* = —A.

Proof. See Theorem 10.8, Chapter 1 in (PAZY] |1983). [ |

Remark 2.1.5. Unitary operators are isometries. Therefore, we can reformulate Stone’s
theorem as follow: A linear operator A on a Hilbert space H generates a group of isometries

if and only if A is skew-adjoint.

2.1.4.2 The Abstract Cauchy Problem

Let X be a Banach space and let A : D(A) C X — X be a linear operator. Given
x € X, the abstract Cauchy problem for A with initial data x consists of finding a solution
u(t) to the initial value problem (I.V.P.)
du(t)

—2 = Au(t), t>0,
dt ) (2.16)

u(0) = z.

Now, let us introduce a notion of a solution to the problem ({2.16)).
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Definition 2.1.41 (Classical solution). By a classical solution of (2.16) we mean a
function u : RY — X such that u(t) is continuous for all t > 0, continuously differentiable

and u(t) € D(A) for all t > 0 that satisfies (2.16)).

Remark 2.1.6. We want to empathize on two points about the classical solutions:

e Note that since u(t) € D(A) fort >0 and u is continuous at t = 0, (2.16|) cannot

have solution for x ¢ D(A).

o [t is clear that if A is the infinitesimal generator of a Cy semigroup T(t), the abstract
Cauchy problem for A has a solution, namely u(t) = T(t)x, for every x € D(A).
Moreover, it is not difficult to show that this is the only solution of (2.16)).

We turn our attention to the non-homogeneous abstract Cauchy problem

dutt) _
% Au(t) + f(t), t>0, (2.17)

u(0) = x.

where f:[0,7) — X. We suppose that A is the infinitesimal generator of a Cj semigroup
T'(t) with corresponding homogeneous equation (2.16|) has a unique solution for every
initial value x € D(A).

Definition 2.1.42 (Classical solution). A function u : [0,T7) — X is a classical solution
of (2.17) on [0,T) if u is continuous on [0,T), continuously differentiable on (0,T),
u(t) € D(A) for 0 <t <T and (2.17) is satisfied for all t € [0,T).

Suppose that u(t) is a classical solution of (2.17)). Then g(s) = T'(t — s)u(s) is differen-

tiable for 0 < s < ¢ and

dg du

9 AT — Tt — )L =7t - .

Y ATt~ S)u(s) + T~ ) e =Tt~ 5)(s)

Hence, If f € L'(0,T; X) then S(t — s)f(s) is integrable on [0,¢] and integrating from 0
to t yield{?]

u(t) =T(t)r + /0 T(t—s)f(s)ds. (2.18)

5The representation of solution (2.18) is known also Duhamel’s formula
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Corollary 2.1.6. If f € L*(0,T; X) then for every x € X the initial value problem ([2.17)
has at most one solution. If it has a solution, this is given by (2.18)

Proof. See Corollary 2.2, Chapter 4 in (PAZY), 1983). [ |

For every f € L'(0,T; X) the right-hand side of (2.18)) is a continuous function on
[0,7"). It is natural to consider it as a generalized solution of (2.17)) even if it is not
differentiable and does not strictly satisfy the equation in the classical sense. Therefore we

define,

Definition 2.1.43. Let x € X and f € L'(0,T; X). The function u € C([0,T]; X) given
by
t
u(t) = T(t)$+/ T(t—s)f(s)ds, 0<t<T,
0

is the mild solution of the non-homogeneous Cauchy problem (2.17)) on [0, T].

The definition of a mild solution of the abstract Cauchy problem (2.17)) coincides when
f = 0 with the definition of T'(¢)z as the mild solution of the corresponding homogeneous
equation. Moreover, not every mild solution of (2.17)) is indeed a (classical) solution even

in the case f = 0.

Next, let us present another notion of solution to the abstract Cauchy problem ([2.17)

Definition 2.1.44 (Strong solution). A function u which is differentiable almost everywhere

on [0,T] such that & € L'([0,T]; X) is called a strong solution of the abstract Cauchy

problem (2.17)) if u(0) = x and

almost everywhere on [0, 7.

Notice that if A =0 and f € L*([0,7T]; X), the abstract Cauchy problem (2.17)) has
usually no solution unless f € C(]0,T]; X). However, (2.17)has always a strong solution
given by

u(t) = u(0) +/0 f(s)ds.

Furthermore, if u is a strong solution of (2.17) and f € L'([0,T]; X), can be showed that

u is a mild solution as well.
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Finally, we deal with the nonlinear case. Consider the initial value problem

du(t) B "
w F Au(t) = f(t,u(t)), t>to, (2.19)
U(to) = Ug-

where — A is the infinitesimal generator of a Cy semigroup 7'(t), ¢ > 0, on a Banach space
X and f: [to,T] x X — X is a continuous in ¢ and satisfies the Lipschitz condition| on w.
By the aforementioned arguments can be established a solution u that satisfies the integral

equation

u(t) =Tt —to)up + / T(t—s)f(s,u(s))ds,

to
which means that is a mild solution. Consequently, we have the following classical result

which assures the existence and uniqueness of these mild solutions

Theorem 2.1.22. Let f: [ty,T] x X — X be continuous in t on [tg, T]| and uniformly
Lipschitz continuous (with constant L) on X. If —A is the infinitesimal generator of a Cy
semigroup T(t), t > 0, on X then for every ug € X, the abstract Cauchy problem (2.19)
has a unique mild solution u € C([ty,T]; X). Moreover, the mapping uy — wu is Lipschitz

continuous from X into C([te, T]; X).
Proof. See Theorem 1.2, Chapter 6 in (PAZY), 1983). [ |

Additionally, can be spotlighted some points

o If uy, vy € X are initial data and wu, v are its respective mild solutions of (2.19)), then

lu(t) = v(t)llx < Me " |luo — vollx.

o If ug € D(A), then u is a strong solution of (2.19)) on [ty, T, for T' > .

5We said that f: [to,T] x X — X satisfies the Lipschitz condition if there exists L > 0 such that

f(u) = f(,v)lx < Liju—v|x, Yu,v € X.
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2.2 Some Classical Concepts About Control and Stabilization

Here, we present some definitions, tools, as well as techniques that will be useful for
the core of manuscript, the final chapter. They are inspired in (LIONS] |1988; |RUSSELL/,
1978; ZUAZUA, 2006; SLOTINE; LI, 1991; |[CORON]| 2007; SLEMROD, (1974)).

2.2.1 Control for Finite-Dimensional Linear Systems

Some essential concepts of control and stabilization come from finite dimensional
systems (ODE) and after generalization in some sense to infinite dimensional systems

(PDE). Therefore, let us consider m,n € N*, T' > 0 and the finite-dimensional system

2'(t) = Az(t) + Bu(t), 0<t<T, (2.20)

2(0) = 29,

where m < n, A is a real n X n matrix, B is a real n x m matrix and 2 € R". The
function z: [0,7] — R™ represents the state and u: [0,7] — R™ are called the control.
The most desirable goal is, of course, controlling the system using a minimum number of

m of controls.

Note that, by the variations of constants formula, if u € L*(0,7;R™), (2.20) has a
unique solution z € H(0,T;R"™) given by

t
z(t) = eMa? —I—/ A= Bu(s)ds, Vte[0,T]. (2.21)
0

Definition 2.2.1. We said (2.20)) is exactly controllable in time T > 0 if given any initial
and final data z°,x' € R™ there exists u € L*(0,T;R™) such that the solution (2.21)

of ([2.20) satisfies z(T) = x'.

e The aim of the control consists in driving the solution from the initial data x° to the

final one z! in time T by acting on the system through the control .

e [t is desirable to make the number of controls m to be as small as possible. However,

this may affect the control properties of the system.

By making a variable change, can we consider z! = 0, this motivates the following
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definition

Definition 2.2.2. We said (2.20)) is null controllable in time T > 0 if given any initial
data x° € R™ there exists u € L*(0,T;R™) such that the solution (2.21)) of (2.20)) satisfies
z(T) = 0.

Remark 2.2.1. Ezact and null controllability are equivalent properties in the case of finite
dimensional linear systems. But this is not necessarily the case for nonlinear systems, or,

for strongly time-irreversible infinite dimensional systems.

2.2.2 Control as a Minimization Problem

Let us introduce the homogeneous adjoint system of (2.20))

- =A%, 0<t<T,
(2.22)

o(T) = or,

where A* denotes the adjoint matrix of A. Next, by the adjoint properties, we have a

characterization for the exact controllability property,

Lemma 2.2.1. An initial data 2° € R™ of ([2.20)) is driven to zero in time T by using a
control u € L*(0,T) if and only if

T
| B o 00) =0 (2.23)
0
for any or € R™, ¢ being the solution of the adjoint system (|2.22))
Proof. See Lemma 2.1.1 in (ZUAZUA| 2006). [

Moreover, (2.23)) is an optimality condition for the critical points of the functional
J: R" - R",

1

Her) = [ 1Bl dt+ a0, 4(0)

with ¢ the solution of the adjoint system (2.22)) with initial data @7 at time t = T". More

precisely,



2.2. Some Classical Concepts About Control and Stabilization 54

Lemma 2.2.2. Suppose that J has a minimizer o7 € R™ and let ¢ be the solution of the
adjoint system (2.22)) with initial data . Then

u= B"p
is a control of system (2.20) with initial data z°.

Proof. See Lemma 2.1.2 in (ZUAZUA| 2006). [

Lemma gives a variational method to obtain the control] as a minimum of the
functional J. Remark that J is continuous. Therefore, the existence of a minimum is

ensured if J is coercive too, that is,

lim J(¢r) = oc. (2.24)

[T |—00

The coercivity of J, (2.24]), follows from the next concept named as observability,

Definition 2.2.3. We said that (2.22)) is observable in time T > 0 if there exists C' > 0
such that
T
/ |B*¢|” dt > Cle(0)]%, Yer € R, (2.25)
0
where @ being the solution of (2.22)).

Remark 2.2.2. The observability inequality (2.25)) is equivalent to the following assertion:
there exists C' > 0 such that

T
[ 1Bl @z Clorl, ver e, (2.26)
0

where @ being the solution of (2.22)).

Finally, the next theorem ensures that the exact controllability can be reduced to the

study of observability.

Theorem 2.2.1. The system (2.20) is exactly controllable in time T if and only if
(2.22) is observable in time T.

Proof. See Theorem 2.1.1 in (ZUAZUA, 2006]). [

"This is not the unique possible functional allowing to build the control.
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2.2.3 A Feedback Stabilization Problem

In a practical context, the stabilization problem for a system can be defined as finding
a mechanism that ensures the system’s state remains close to a desired point over time.
Controllability is often a prerequisite for stabilization. If a system is not controllable, it may
be impossible to design a control input that drives the system to the desired equilibrium
state, making stabilization unattainable. Hence, heuristically, we can see stabilization as a

controllability problem when the control is exerted at any time.

Here, we suppose that A is a skew-adjoint matrix, that is A* = —A. Additionally, in
this case, (Az,z) = 0. Consider the system

2 = Az + Bu
(2.27)

z(0) = 0.

When the control is not acting, the energy of the solutions of (2.27) is conserved, that
is, is constant over the time,

lz(t)| = |2°], Vt>0.

The stabilization problem can be stated in the next way. Suppose that (2.27)) is
controllable, then we look for a solution of the system (12.27)) such that with feedback

control

u(t) = Lx(t) (2.28)

has a exponential decay, that is, there exists C' > 0 and A > 0 such that
lz(t)| < Ce a0 (2.29)

for any solution. In particular, the control u given by (2.28) acts in real-time from the
state x. More precisely, we are looking for an operator L such that the solution of the

system

¢ =(A+ BL)x

has an exponential decay rate. Observe that due to the representation of solutions, the

decay can not be faster than exponential.
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Theorem 2.2.2. If A is skew-adjoint and the system (2.27)) is controllable then L = —B*

stabilizes the system, that is, the solution of

2 = Ax — BB*x
(2.30)
2(0) = 2°

has an exponential decay.

Proof. See Theorem 2.1.3 in (ZUAZUA, [20006)). [

Remark 2.2.3. To prove the Theorem[2.2.9 a fundamental estimate is sufficient to obtain

the exponential decay, that is, there exists T' > 0 and C > 0 such that

T
/ |B*z|* dt > C7|(0))?, (2.31)
0

for any solution = of (2.30)). Note that (2.31]) is an observability type inequality and this

shows how the controllability and stabilization are related via an inequality.

2.2.4 Control and Stabilization Extended to Infinite Dimensional Systems

All of the concepts and results mentioned above can be generalized (in some sense) to
infinite dimensional systems. Let T > 0, H and V' be real Hilbert spaces and consider the

following control system

d

—U:Au—l—Bv, 0<t<T,

dt (2.32)
u(0) = uo,

where u denotes the states and v € L?(0,T; V) is the control. The operator A: D(A) — H
is a linear operator and B € L(V, D(A*)'ff| where D(A*)" denotes the dual space of
D(A*) and A* is the adjoint of the operator A. Additionally, A* is associated with the

homogeneous adjoint system

d

—¢:—A*¢, 0<t<T,

dt (2.33)
¢(T) = ¥,

8This functional setting gives the possibility to consider boundary control operators (instead of the
stronger one B € L(V, H))
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Now, we state the most classical notions of controllability for the abstract system ([2.32)),

Definition 2.2.4. The system (2.32)) is exactly controllable in time T > 0 if, for every

initial and final data ug,ur € H, there exists v € L*(0,T;V) such that the solution

of (2.32) satisfies u(T) = ur.

Definition 2.2.5. The system (2.32)) is null controllable in time T > 0 if, for every
initial data uy € H, there exists v € L*(0,T;V) such that the solution of (2.32) satisfies
uw(T) = 0.

Definition 2.2.6. The system ([2.32)) is approximately controllable in time T > 0 if, for

every initial and final data ug,up € H, and € > 0, there exists v € L*(0,T;V) such that

the solution of ([2.32)) satisfies

|u(T) —ur||m <e.

Similar to the mentioned for finite-dimensional, a control may be obtained from the
solution of the homogeneous system (2.33)) with the initial data minimizing the functional
J: H — R given by

1

He) =5 [ (Bt + (a0, 9O — arrb

Hence, the controllability is reduced to a minimization problem. To guarantee that J has

a unique minimizer, we use the next fundamental result in the calculus of variations.

Theorem 2.2.3. Let H be a reflexive Banach space, K a closed convex subset of H and
J: K — R a function with the following properties:

(i) J is convex
(11) J is lower semi-continuous

(111) If K is unbounded then J is coercive, i.e.

Then J attains its minimum in K, i. e. there exists xo € K such that

J (20) = min p(z)
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Proof. See Corollary 3.23 in (BREZIS| 2011). [

Note that J is continuous and convex. The existence of a minimum is ensured if J is

also coercive, which is obtained with the observability inequality
T
| 1Bl dt =l vel0) € . (231
0

Finally, consider the uncontrolled case, v = 0 in (2.32)). Let @ be an equilibrium solution,
that is, Au = 0, with w € D(A).

Definition 2.2.7. We said that uw is stable if for any € > 0 there exists 6 > 0 such that
for all uy € H with ||ug — ul|| <6, the unique mild solution u of (2.32) satisfies

lu(t) —@| <&, V> 0.

Definition 2.2.8. We said that w is asymptotically stable if is stable and there exists 6 > 0
such that for all ug € H with ||ug — @|| <6, the unique mild solution u of (2.32)) satisfies

lim ||u(t) — @l = 0.

t—o00

Definition 2.2.9. We said that uw is exponentially stable if is asymptotically stable and
there exists A > 0 such that for all ug € H the unique mild solution u of ([2.32)) satisfies

lu(t) =l < e™|u(t) — .

The largest constant A which may be utilized in the exponential stabilization is called

the rate of convergence.

Definition 2.2.10. System (2.32) is said to be locally uniformly exponentially stable in H
if for any r > 0 there exist two constants C' > 0 and v > 0 such that for any ug € H with
lluollr < 7 and for any solution w of (2.32)) it holds that

lu®lz < Ce™ Jluollzy, vt > 0. (2.35)

If the constant v in (2.35)) is independent of r, the system (2.32) is said to be globally

uniformly exponentially stable in H.
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We shall summarize, following (ROSIER) [2007)), some concepts about the stabilizability

of a control system

ZA,B Ut = Au + Bh, (236)

where A generates a continuous semigroup of operators {e};q = {W () }is0 C H, H is

a Hilbert space, B € L(U, H) and h is the control input.

Consider the following properties:

(i) for some constants C,y > 0 and all t > 0, |W(¢)|| < Ce™
(i) for any ug € H, W (t)up — 0 exponentially as t — 0;
(iii) for any ug € H, [," |[W (t)uol%dt < +oo;

(iv) for any ug € H, W(t)up — 0 as t — 0.

Theorem 2.2.4. We have (i) < (ii) < (i1i). On the other hand, we have (i) = (iv).

Proof. See (ROSIER, [2007). [

Definition 2.2.11. If (i) (or equivalently (ii) or (iii)) holds, then we say that the semigroup
{W(t)}1=0 is exponentially stable. When (iv) holds, we say that the semigroup {W (t)}+=0

18 strongly stable.

For any K € L(H,U), we denote by Ak the operator Axu = Au+ BKu = (A+ BK)u,
with D(Ak) = D(A), and by {5 },o = {Wk(t)}i=0 the semigroup generated by Ag.

Definition 2.2.12. The control system X4 p is said to be

- exponentially stabilizable if 3 a feedback K € L(H,U) such that the operator Ax =
A+ BK s exponentially stable; i.e., for some constants C' > 0,~v > 0,

IWr@®)|| < Ce™™ VYt >0

- completely stabilizable if it is exponentially stabilizable with an arbitrary exponential
decay rate; i.e., for arbitrary v € R, there exists a feedback K € L(H,U) and a

constant C' > 0 such that

Wr@®)|| <Ce™™ Vt >0
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Theorem 2.2.5. If the system (¥4 5) is null controllable, then it is exponentially stabiliz-
able.

Proof. See (ROSIER) [2007). [

Theorem 2.2.6. Assume that A generates a group {W(t)}er of operators. Then the

following properties are equivalent

(i) (Xa,8) is exactly controllable in some time T' > 0;
(it) (Xa,5) is null controllable in some time T' > 0;

(1i1) (Xa,p) is completely stabilizable.
Proof. See (ROSIER) [2007). [

We can apply to a skew-adjoint operator A, which generates a group of isometries
on H. Moreover, we have the "controllability via stabilizability” principle, and explicit

exponentially stabilizing feedback laws may be given.

Corollary 2.2.1 (Equivalence between controllability and stabilizability). Let A be skew-

adjoint, i.e., A* = —A. Then the following propositions are equivalent

(i) the system (X4 ) is exponentially stabilizable with an arbitrary prefived exponential

decay rate, that is, (¥4 p) ts completely stabilizable;
(i1) The system (X4.5) is exponentially stabilizable;
(1i1) The system (¥4,5) is exactly controllable in some T > 0;
(iv) The system (X4 p) is null controllable in some time T > 0;

(v) For every positive definite self-adjoint operator S € L(U), the operator A — BSB*

generates an exponentially stable semigroup on H.

Proof. See (LIU, 1997; ROSIER/ 2007). [ |
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3 WELL-POSEDNESS FOR THE BBM EQUATION

One fundamental question when facing a Partial Differential Equation (PDE) is the
solvability issue, or even more fundamental, what we mean by solving a PDE. From this
subtle question arises the concept of a well-posed equation, given by Jacques Hadamard.
Thus, by solving the BBM equation, we mean that, for a given initial data, the BBM

equation satisfies the following conditions that characterize a well-posed problem:

(i) Existence of a solution;
(ii) Uniqueness of this solution;

(iii) Stability, meaning continuous dependence on the initial data.

For items (i) and (ii), we make use of Theorem - Banach’s fixed point theorem
- applied in an appropriate abstract space of functions; (ii¢) means that the map that
associates the initial data to the function on this abstract space, called the flow map or
solution map, is continuous, which is particularly important for problems arising from
physical applications. For the BBM, we have even more: the flow map is real analytic. All

this concepts are treated in the first section of this chapter.

The remainder of the chapter, composed by two more sections, is devoted to some
properties that the solution possesses. The second section addresses the time analyticity

of the solution, whereas the third and final section discusses some conserved quantities.

3.1 Well-Posedness

To set forth our problem, we begin by establishing the objects and the spaces in which

we will be working from now on.

For any s > 0, H*(T) denotes the Sobolev space

H*(T) = {u T = R fluflf = (1+E) [a]* < oo} :

kEZ
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which is a Hilbert space with respect to the inner product

(u,v)Hs = Z (1 + k2)sﬂk@:

kEZ

Where 4, denotes the k-Fourier coefficient of «

1 2

:%0

~

Uy, u(z)e *da

where we have identified the torus T to [0, 27), by using a coordinate system.

We are interested in the Cauchy problem, that is, the Initial Value Problem (IVP),

associated with the BBM equation

Up — Upgy + Uz Fuu, =0, €T, teR
(3.1)

u(z,0) = ug(x) € H*(T).

So, in order to use the semigroup theory (see[2.1.4.2)), we put (3.1)), in its integral form

Oy — (‘iﬁiu + O,u + ud,u =0

w2
3t(u—8§u)+8m (u—f—;) =0
U

2 (3.2)
—1 u2
o= —(1— )"0, (u+§> |

That is, we have the following Cauchy abstract problem (see (2.17)))

2

utz—(l—ai)‘lé‘x<u+%)ZA(“HA(%) rehrek (3.3)

u(z,0) = ug(x) € H*(T).

Claim 3.1.1. The operator A= — (1 —92)"" 0, € L (H*(T), H*™(T)) (for any s € R) is

skew-adjoint and generates the group of isometries {W (t) }ier = {€! }icr.
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Proof. We want to show that A* = —A, that is,

(Af7 )H (T (f?Ag) (T) > vfag € HS(T)

Before performing the calculations for the inner product, we shall point out that

_— ik .

(AN ) =~z /).

Indeed, let f € H*(T), and denoting v the Fourier inverse, we have

(Af)(k) = h(k)

— (-0 "0 (k) = k)
—(1=3) " 0. f(x) =h (x)
9, f(x) = (1 - 82) h (@)

ikf(k) = — k)%) h(k

ik —

/-\
l\‘)

Thus, let f,g € H5(T), we have

(Af, g)HS(T) = (1 - 82) Owf, g) H*(T)

=3 (1) (F( = 32) 0 (k)5(R)

s (—ik) o =
=2 ) W
:ZZ< +/€2) f()(>1j_kk2
P o) (3:4)
:—kezz 1—|—/€ g(k>1+k2
S (R (1—02)"" 0,9)(k)
kEZ

= (f7 Ag)Hs(T)
= (f7 _Ag)HS(T)
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Therefore, from Stone’s Theorem [2.1.21] the operator A is the infinitesimal generator of

a strongly continuous group of unitary operators, namely, {W(t)},.p with W(t) =¢'4. R

So, from Duhamel formula (2.18)), we can put (3.1) in its integral form
t
u(t) = W(t)ug + / W(t—s)A (u?/2) (s)ds. (3.5)
0
For s > 0 and T > 0, let

X7 =C([=T,T]; H*(T)) .

As mentioned in the summary of this chapter, we shall be looking for a solution in an
abstract space of functions, which turns out to be X7. We see that for v € X7, then u
solves in D' (=T, T; H*%(T)) if, and only if, it fulfills forall t € [-T,T]. We
shall apply the standard procedure of contraction map in order to prove the well-posedness
of . To this end, we shall demonstrate the following two inequalities, presented in
form of lemmas, which will prove to be very useful for us until the end of this work. These
estimates can be found in (BONA; TZVETKOV, 2009; ROUMEGOUX|, 2010; [HIMONAS;
PETRONILHO) 2020).

Lemma 3.1.1. Let u,v € H*(T), with s > 0. Then

|- o) < Culu

s 3.6
H(T) Hs(T)» ( )

ws(m)||v]

and

[(1=a2) " o

< lul

Proof. 1t is worth introducing some notation that is very often encountered in the literature
1
(ky == (1+k*)2.

For instance, using this notation, the above definition of the H*®*-norm becomes

e = 3 (R .

keZ

|
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Estimate (3.7)) follows from the definition of the H*(T)-norm and the multiplier estimate
k| (1+k2)"" < 1. Indeed

2

_ k
1-0%) "' d,u =N+ —— a2 < S+ K2 ak))? = ||u e
[z 2 . > (LK) g O < 30+ B =l
Now, to prove estimate ({3.6)), applying the definition of the H*(T)-norm we have
1-02) Ou(wv ‘ = uo(k)|?
- o], =3 1+W (b)
) (3.8)
=) (k) > a)u(k—0)
keZ 1 + kQ) ez
Note that for s > 0 we have the following inequalityl]
(k)* <272k — 0)°(0)".
So, from (3.8) we get
1-9%) "o i
H( = 02) " Oau) H5(T)
2 ~ ~ 2 (3.9)
<2y —— > (0°u0) - (k= 00k — )
prel G o N et

Furthermore, applying Schwarz’s inequality in the /-sum, from the inequality above

(3.9), we obtain that

2

[CRA A

H?(T)

s k2 25| 2 2s
2 Zm@w W)\)(Z% 0ok - é>|>

keZ el LeZ

) 1
< Zllullie e vl Y 1

keZ
2
<o (1+%) ol

(3.10)

HS(’]I)HU’ %{S(T)

|

which completes the proof of Lemma [3.1.1| and we got that C? = 2° (1 + ”2>. [ |

1See Peetre inequality [2.1.10
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Lemma 3.1.2. Letu € H'(T) and v € H¥(T) with 0 < s <r and r > %, then

e < Cllullae o]

(1= 02) " B (uv)|

Proof. Since r > 1 and r > s > 0, the elements of H"(T) are multipliers in H*(T) (see

Theorem [2.1.17)), which is to say
Jwvl[ s S Jull e f[olla-

Hence,

(1= 82) " Op(uv) || orr = || (k) ———p

2 (3.11)
= ||{k)°

(14 k2)1/2 uv

2
Zk

< R wolle = llwollms S llellarllvllae.

, |

With these estimates, we are able to deal with the well-posedness of the IVP (3.1
associated with the BBM equation, this result is stated in (ROSIER; ZHANG] [2013).
First, we treat the local aspects and then the global one. The proof of Theorem and
Theorem will follow (BONA; TZVETKOV), 2009) and (ROUMEGOUX, 2010)).

Theorem 3.1.1 (Local Well-posedness). For a given initial data ug € H*(T),s > 0 and
for suitable T > 0 there exists a unique solution u € X5 of (3.1)) (or equivalently, (3.5)) ).

Furthermore, for any R > 0, the map uy — u is real analytic from Br(X3) into X5.

Proof. We want to show that for a given uy € H*(T), there exists solution u of the Cauchy
abstract problem (3.3)), that we put here for convenience

ou u?
a(:c,t) =Au+ A (?) ,

u(z,0) = ug(x) € H*(T),

in the space of functions C ([T, T]; H*(T)) = X& for a T > 0 that will be determined
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later. For R > 0, let
Br(X7) = {u € X7;lullx; < R},

denote the closed ball of radius R centered at the origin in Xj with uy € Br(H*(T)).
Define the map ® from Br(X?%) to X3, by

O(u)(t) = eug + / ety (“;) () dr.

0

We shall prove that:

(i) there exists R > 0 such that ® (Br(X3)) C Br (X3);

(ii) [|®(u) = &(v)]

is a contraction).

Xz < AM|u — v| xs., for some A < 1, and for all u,v € Bg (X37) (ie., @

Thus, from (7) and (i), the fixed-point theorem, also known as the contraction mapping
principle, assures us of the existence and uniqueness of a @ such that ®(a) = @. This fixed

point is our desired solution of (3.1)).

Pick u € Br(X3). From Claim [3.1.1] {e!},cg is group of isometries in H*, that is,

HemuOHHs(T) = |luo|| (1) and from Lemma [3.1.1 we have, for 0 <t < T

t 2
ol <[l + [ () 0o
r 0 2 X
T
t U,2
0 X5
1/t 1
<l 5 [ 0= 0. () 0 4
s +5 [ 0= 0. 62) @) dr
TC,
TC,R?
< ||u0| Hs(T) + 9 .

Choose R = 2||uy|

s As mentioned, we must choose a convenient 7" so that ||®(u)]

x5 S

R. Thus, we must have

TCsR?

1@ ()]

X3, < ||UO|

TC.R* < 2R — 2 |||
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1

T < .
CsR

Hence, setting T' = (2C,R)™!, we have ® (Br(X%))) C Br(X35).

For the contraction property of the map ®, pick u,v € Bg (X#), then, it follows that

[ wie=na () o [we-na() @

1@ (u) — &(v)|

X‘js" - XS
T
1 ¢ 2 2
i W(t—r)A(u —U)(T)dT
2 1.Jo Xz
1 t
:_‘/xvu_ﬂAuu—ww+wﬂvwf
211/, X
< STClu — vl flu + v]
S 5t Gs U — Vx| T Vx5
1
< 5TCllu = vllxg (lullx; + ol x;)
1
< QTCS’|U—U|X%2R
< TCOR|lu— v xz.

Then, as we have set T by T'= (2C,R)™!, we see that

1 (u) — &(v)|

1
X3 < 5”’& — ’Ul X35

Therefore, this concludes the existence and uniqueness question for Cauchy Problem (3.1]),

where the maximal existence time T' = T, for the solution has the property that

1 1

Ts P =
2C.R 40 [ug]

Hs(T) .

Now, we turn our attention to the analyticity of the flow map ®. This result is local in
the sense that if it can be established for 7" sufficiently small. Let A : H® x X7 — X7 be
defined as

A (ug,v(t)) = v(t) — W(t)up — %/ﬂ W (t —s) A(v?) (s) ds,

where the spatial variable x has been suppressed throughout. Note that, for u solution
of (3.1)), then A (ug,u(t)) = 0. We are interested in the Fréchet derivative, see Definition

2.1.20| of A with respect to the second variable, that is, we want to find the linear map
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T'(h) such that
A(ug,v + h) = A(ug,v) + T(h) +r(h), with |[r(h)]]| =0 as |h] — 0.
Then, we have

A(ug, v+ h) =v(t) + h(t) — W(t)ug — 1 / W(t—s)A((v+h)?) (s)ds

(t) t)ug — —/ W(t—s) )ds+ h( ) — /Ot W(t — s)A(vh)ds

s

uo v) T'(h)

\—5/0 Wt — S)A(h2)dsj
()
= A(ug,v) + T(h) 4+ r(h).

<

Since
t
il 3| W= 9A @) ds||
T
Ir()llx; _ TCAl; _ _
hlxs = Ml

we have that

I (h) x5

—0 as HhHXs — 0.
bl !

Hence, we obtain
t
N, (ug, u(t)) [h] = h — / W(t — s)A(uh)(s)ds.
0
From Lemma

1A (o, u(t)) [A]]] x

< |7

i+ H/Ot Wt — ) A(uh)(s)ds

X7

< [IAl

X3 th%

We see that A/, is of the form (I + K), where

—/0 W(t —s)A(uh)(s)ds.
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Then, we can take T sufficiently small so that

HK‘|B(X%7X%) <1,

where B (X%, X3.) is the Banach space of bounded linear operators on X3.. Since ' = [+ K,
by using the Neumann criterion, see Lemma [2.1.1} A’ is invertible and the inverse can be

expressed as a power series
I+K)'=I+K+K*+--

Therefore, the map ® is real-analytic by the Implicit Function Theorem [2.1.12], which
concludes the proof of Theorem |3.1.1 [ |

Theorem 3.1.2 (Global Well-posedness). In Theorem the solution u is global in

time, that is, we can take arbitrarily large value of T'.

Proof. Fix T > 0. Our aim is to show that for any initial data ug € H®, there exists a
unique solution u of that lies in X7, and that v depends continuously upon wug. From
the local well-posedness [3.1.1], we have this result for small enough data in H®. Moreover,
it is only necessary to have the existence of a solution corresponding to initial data of
arbitrary size, since continuous dependence, uniqueness and the analytic dependence on

the data of the flow map are all properties that are local in time.

Fix up € H*(T) and let N > 1 be such that

S W @b < =

[k|>N

Since (k)* |ug(k)| belongs to I2, such values of N exist. Define

vo(z) = > iy (k).

|k|>N

From the local well-posedness obtained in Theorem [3.1.1] there exists a unique v € X7
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solution of the initial value problem

Up — Upgy + Uy +uu, =0, €T

(3.12)
u(z,0) = vo(x) € H*(T).
We split the initial data ug into two pieces, namely
Uy = Vg + Wo,
and we consider the following IVP (where v is now fixed)
Wy — Wizz + Wy + ww, + (vw), =0, €T
(3.13)

w(z,0) =wo(x) € H(T).

If there exists a solution w of (3.13) in X7, then v + w will be a solution of (3.1]). Indeed,

we would have

Vp + Vg + VU — Vgt + Wi + Wy + WWy — Wy + (VW) =0

Ve + Wy + Uy + Wy + 00, + ww, + (Uw)m — VUggt — Wgat = 07

that is,
(vtw)y+ W+w),+W+w)(v+w), — (V+w) =0

(v+w)(z,0) = vo(x) + wo(x) = up(x).

Note that, as ug, vy € H*(T), with s > 0, then (up — vo) = wp is in H"(T) Vr >0.In
particular, wy € H'(T). Proceeding as in (3.2)), we obtain, for IVP (3.13))

2
8tw:—(1—8§)_18x (w—i—vw—l—%).

Recall that A = — (1 — 82)_1 0, is skew-adjoint, so that, A generates a group of isometries

W)} er = {etA}teR. So, putting (3.13) in its integral form

t 2
w(x,t) = ey +/ elt=9)4 4 <vw - %) (s)ds
0

w(z,t) = W(t)wy + %/0 W(t —s)A (2ow + w?) (s)ds =: P(w).
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By the same arguments used in the local well-posedness obtained in Theorem [3.1.1

and by Lemmam (with r = 1,5 = 0), for any w € B (X})

‘Hl

1 -
o, (2vu)||  + 551 (1-92)

1 _
@ (w(z,t)) | < Jwoll g + 55 H (1 — 85) ! Oy (2vw + w2)

-1 1

1
< lwoll s + 551|(1 - 92) 0u(w?) |
= 1 -
< lhwolln +288 (Cllolmllwln ) + 55C w|%

< lwoll g + CS (J[ollol|lwll g + wl|7) -
Since ||wol| g1, [|w|| g < R,
|P (w(z,t)) || < R+CS (HUHHoR—I— Rz) < CS||v]|goR.

Then,

sup |[|@ (w(z, 1)) [l < sup  CS|jv] o
te[—S,5] te[-5,5]

1@ (w(z, 1)) l|xy < CS[vllxy R
On the other hand, for wy,w,; € Bg (X3)
[Pw; — Pws || < CS ||A (20w + wi — 20w, — w%)”H1

= CS||A(2v (wy — wa) + (w1 — w2) (w1 + w2) || m1)

< OS (JJA (2v (wy — w2)) || ;1 + [|A (w1 — wa) (w1 + wa)|| 1)

< CS | Cllvllao [lwr — wall g1 + Cllwy — wal| g1 Jws + wal| g
————
<2R
< OS([[vllro +2R) [Jwr — wa g1 -
Hence, we have,

|®wy — duws |, < CS <||U’|zg + 2R) [wy — ws, -

Hence, @ is a contraction, so ® has a unique fixed point in X{, such a point is our solution

w in X for small time S.
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Multiplying (3.13)) by w, we have
WWy — WWagy + WW, + ww, +w(vw), = 0.

Integrating over T and performing some integrations by parts, we obtain (note that w is

periodic over the torus)

/wwtdq:—/wwmd:c—ir/wwmdx+/w2wwdx+/w(vw)m der =0

T T T T T

E iw d:c—l—/ww da;+1/(w2) dx+1/(w3) dx—/wvwda;:O
2 dt vt 2 Jp b e 3 p v e T

1
5 —w dr + = /wadx—/wwida:—()

ld
2dt

—d w? + w dr =2 [ wyow dx.
t T

(w —i—w)dx—/wwid:v:()

T

Then, we have

d
—||w(-,t 21:2/wmvwdx.
S0l =2 [

By Hoélder and Sobolev inequalities

/ wvw dx
T

< wa (Ol 2 Ml Dl ezl )] e

< CllCB)llzellw( 8-

That is,
d
EII@U(-J)II% < OlloCot)lpellw(- )1z

Now, by Gronwal’s inequality, for 0 <t < T

2 yds
w(-, )21 < [Jw(-, 0% € Jo lC)lzd

(-, £)]| e < [luwol| g €S0 W€zt

Therefore, we infer that w is bounded on the H'-norm, on the interval [T, T] so, there
exists solution w of (3.13]) on this interval, so that, (v + w) is a solution of (3.1 in X3.
This concludes the proof of Theorem [3.1.2] [ |
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3.2 Analyticity in Time

Having established the well-posedness of the initial value problem (3.1)), we now turn
our attention to studying the properties of its solution. In this section, we will follow the

reference (ROSIER; ZHANG] 2013) to show that the solution is analytic in time.

Proposition 3.2.1. For uqg € H'(T), the solution u(t) of the IVP (3.1)) satisfies u €
C¥ (R; HY(T)). It means that, for each t € R, u(t) € H'(T) such that

u(t)(x) = u(x,t) Zt”un

where (un (), C H'(T).

Proof. Since the initial data ug € H*(T), from Section [3.1 we have that u € C* (R; H(T)),
so it is sufficient to check that for any uy € H'(T) there are some numbers b > 0, M > 0,

and some sequence (uy),-, in H'(T) with

M
lanllgn < 370 720, (3.14)

such that

=> t"u,, te(-bb). (3.15)

n=0

Note that, from , the convergence ratio of the series is (—b, b), then it converges
uniformly in each compact subset within (—b,b). That is, the series in holds in
H'(T) uniformly on [—rb,rb] for each r < 1. Actually, we prove that u can be extended
as an analytic function from D, := {z € C;|z| < b} to the space H{(T) := H'(T;C),

endowed with the Euclidean norm

[NIES

§ ﬁk ezkz

keZ

- (Z (1+ [k[2) w)

H keZ

This proof is an adaptation of the classical proof of the analyticity of the flow for an
ODE with an analytic vector field to our infinite dimensional framework. For u € HA(T),

let Au=—(1—82)""8,u and f(u) = A (u+ u?). That is, our aim is to see (3.1) as the
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following ODE
uy = f(u)
u(0) = up € HY(T)

Since |k| < (k* + 1) /2 for all k € Z, we have ||A||£( < 1/2. Indeed

HA(T))

1/2
HAHE(H(}:(’]I‘)) = sup HAuHHé(T) = Sup (Z (1 + k2) \Au(k)\2>

flull<1 flull<1

keZ
1/2
(=ik) . |
= sup (14 &%) u(k)
Jull<1 ,CEZZ 1+ k2
S ar)
= sup 1+ k) ——— |a(k)|
<1 \ 5 (14 k2)?
) 1/2
= sup 1+ k) — a(k)[?
lull<1 ,CEZZ( )4
. 1/2
~ 2
-3 (G wer)
= kEZ
= 5 sup ||u||H1(1r)
2 jul<1
1
<=
2

Pick a positive constant C such that

||u2||H1 < Oyllull3n,  for all u € HA(T).

We define by induction on ¢ a sequence (u?) of analytic functions from C to H}(T)
which will converge uniformly on Dy, for 7' > 0 small enough, to a solution of the integral

equation

u(z) = up + (u(€))d¢ = ug +/0 f(u(sz))zds.

[0,2]

Let
u’(z) = vy, for z € C,

u(z) = uo + [ ]f (u?(¢))d¢,  forg>0,2€C.
0,z
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Claim 3.2.1. For each q > 0, u? is analytic

= Zz”vfb Vz e C,

n=0
with (v1) some sequence in HE(T) such that

M(q,b
V|l g < éi’ ) for all g,n € N;b > 0.

Proof. We proof Claim [3.2.1] by induction on ¢ > 0. If ¢ = 0 the result is clear, for

u? =ug, M(0,b) = |lug|lgr, v)=ug 2 =0,¥n>=>1 .. u'(z)=0y+ Zz"vo

n=1

Assume know that Claim is proved for some g > 0. Then, for any r € (0,1) and
any b > 0,
el < Mg, )" for |2] < rb

So that the series ano 2"vl converges absolutely in HE(T) uniformly for z € Dy,

since D,, is compact within its convergence disk D,. The same holds for the series

Z@Oz (ZO<l<n vivd z) It follows that

F(@(€) = A (u'(¢) +u™(¢))

fgeerzed)

n=>0 n=>0
_ n,.q n q,,9
A<E Cvn—i-é ¢ (E Ulvn_l>>,
n>0 n=0 o<i<n

converges uniformly for ¢ € D,s. Thus

[0,2] n=0 n>0 o<i<n

— gy + /[0 ] (Z C"Al)+ ) (A ( > v,%g_l>> d¢

nz0 n=0 0<iI<n

—uo—l—/[OZ];C"( vq)+A<Z vai_l>>d

o<i<n

() =uo+ [ f @WI(Q))dC = uo+ / (ZC”vq+Z<" (Z ofvr. ))
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n=0 0o<i<n

q § :
n 1 (v —+ Uz ' l)
n=0 0<i<n

n>1 o<i<n—1

_ n, q+1

= E zhu, ',

n=0
where
1
VI = g
Ittt = —A 02, + viv forn>1
n n—1 I “n—1—1
o<i<n—1

It follows that forn > 1

A b
ol < 220 (B2 oy

n bn 1

Al (Mg, b) M?(q,b)
S\ TG
< M(q;: l,b)7

with
M(q+1,6) = sup {uoll s bl AJ (M(g.b) + C:0%(q. b)) }

Claim [3.2.1] is proved.

Claim 3.2.2. Let
1

T := .
ClJA[l (1 4+ 4C [luoll 1))

Then

|ud — U||Lw(TT;Hé(T)) — 0 as ¢ = oo for some u € C (Dy; HL(T)) .

Proof. Let Zy = C (Dr; H(T)) be endowed with the norm [Jv]| = sup|,<r [v(2)[| - Let
R >0, and for v € By := {v € Zp; ||v| < R}, let

(To)(2) = uo + ﬂwm«=w+/ A(0(C) +3(Q)) dC.

[0,2] [0,2]
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Then
IToll < lluoll e + THAN (ol + Callv]?)

< lluoll g + TIA[ (R + C1 1Y)

and,
ITv; — Tvo]l < TYAJ (Jlor — vall + [Jof = v3]))

S TIAN (lor = vafl + flor + w2l flor = val)

S TIAN(L +2RCY) lor — el -

Pick R = 2||ug|;n and T = (2||A| (1 +2C,R))™". Then I' contracts in Bg. The

sequence (u?), which is given by Picard iteration scheme, has a limit v in Zr which fulfills

u(z) =uo + [ ]f(U(C))dC, 2| < T.
0,z
In particular, u € C' ([T, T]; H(T)) (the u%(z) being real-valued for z € R ) and it
satisfies uy = f(u) on [—T,T] together with u(0) = wug; that is, u solves (3.1 in the class
CY([-T,T]; HY(T)) C X}. [

Claim 3.2.3. u(z) = >, 2"v, for |z| < T, where v, = limg_, v} for each n > 0.

Proof. From Claim [3.2.1, we infer that for all n > 1

hence

lof, = vl < T Jlu” — ]

From Claim [3.2.2] we infer that (v?) is a Cauchy sequence in H:(T). Let v, denote its
limit in H(T). Note that

[on = Ufl[ g < T lu— ],

and hence the series )~ 2"v, is convergent for |z| < T Therefore, for |z| < rT" with

r <1,

<(@=r)" =,

Z 2" (v, — vi)

n=0

Hl
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and hence u?(z) = > ., 2"vd — > 02"V, in Zyp as ¢ — oo. It follows that

u(z) = Zz”vn for |z| < T,

n=0
which proves Claim [3.2.3] u
Therefore, the proof of Proposition is complete. [ |

3.3 Conservation Laws and Invariants of Motion

To conclude this chapter, we present the three conservation laws and the so-called
invariants of motion for the BBM equation. These laws were initially discovered in 1972 by
Benjamin, Bona, and Mahony (BENJAMIN:; BONA: MAHONY|, 1972)). However, it was
not until 1979 that Peter Olvner (OLVER] |1979)) proved that these three conservation laws
are the only non-trivial, independent ones that the BBM equation possesses. These laws
are the equivalents of the conservation of mass, momentum and energy in fluid mechanics
(HAMDI et al.| 2004). It is worth mentioning, given the historical linkage between the
BBM and KdV equations, that in contrast to the BBM, the KdV equation possesses an
infinite number of independent conservation laws (MIURA| 1976)). The definitions and
the theorem of this section follow (OLVER] |1979)), while the Proposition follows
(ROSIER; ZHANG 2013)).

Definition 3.3.1 (Conservation Law). Given a general partial differential equation
F(z,t,u,uy,uy) = 0 involving two independent variables x,t and one dependent vari-

able u, a conservation law is an equation of the form
T, + X, =0, (3.16)

wich is satisfied for all the solutions of the equation F' = 0. The quantity T = T'(z,t,w, Uz, u;)

is called the conserved density and the X = X (x,t,u, u,,u;) is called the conserved fluz.

The conservation law (3.16) is trivilally satisfied for some G such that T = G, and

X =—Gy. LetTy, ..., T, be densities for n different conservation laws. We call these laws
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dependent if there exist constants ci .. .c, such that
ClTl +- CnTn = Gza

for some G; otherwise, we call the laws independent.

Definition 3.3.2 (Invariants of Motion). For any conservation law (3.16)), the quantity
ffooo Tdzx, for solutions such that the integral converges, is called Invariant of motion, or

constant of motion, i.e. independent of time.

Before presenting the results of this section, we note that, if we replace u by (—u — 1)

in the BBM equation, we have

(= D (= D+ (— = 1)t — 1)y — (= Dy =0
— U — Uy + Uy + Uy + Uz = 0

Up — Uppe — UU; = 0.

That is, the conservation laws of the BBM equation are in one-to-one correspondence,

under the above transformation, with the following somewhat simpler equation
Up — Uppy = Ully. (3.17)

Theorem 3.3.1. The only non-trivial, independent conservation laws of (3.17)) in which

T (x,u, Ug, Ugy, - . .) depends smoothly on x,u and the various spatial derivatives of u are

1
Uy — (um + §u2) =0, (3.18)

1 1 1
(§u2 + §u§>t — (uum + gug)x =0, (3.19)

1 1
<—u3) + <u? —u?, — uPuy — —u4> =0. (3.20)
3 t 4 T

Proof. The proof is based on straightforward calculations. For (3.18]), assuming (3.17)), we
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have

U — Upge = Ulyg

U — (Ugzr + vuy) =0

1,
Uy — uxt+§u = 0.

For (3.19), we multiply u; — tzst — ut, = 0 by u, then we have

U (U — Uggy — Uly) = 0
2 _
U — Ulggt — U U, = 0

2
Uy + UgUgp — (umuzt + Ulggr + U ux) =0

1 1 1
(§U2 + §Ui)t — (qut + §U3)x = O

Similarly, for the third conservation law (3.20)), we multiply u; — uzs — uu, = 0 by

u? + 2uy, which gives

2
(U — Upgy — UUy) (u + 2uxt) =0
2
U (U — Uy — Uy ) + 20Uy (U — Uy — UU,) = 0
Wiy — UPggy — Uy A Ugy (2 — 2Ugey — 2un,) =0
2 2 3,
WU+ 2Uplpy — 2UpiUggt — 2UULUgp — U Uggy — U U, = 0

2 2 3
U U + 22Ul — 2UpiUgr — (2uuxuxt +u umt) — U Uy

1 1
(gu?’)t + (uf — w2, — Uty — ZU4>I =0,

and concludes the proof.

Proposition 3.3.1 (Invariants of Motion). For ug € H'(T), the solution u(t) of the IVP

(3.1)) is such that the three integral terms

/T uwdr (1) /T (v +u?)dz  (2) /1r (u® + 3u®)dz  (3)

are invariants of motion (i.e., they remain constant over time).

The invariant of motion (1) corresponds to the conservation of mass; the invariant

of motion (2) represents the conservation of energy and the H'-norm; and, hence, the
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invariant (3) represents the conservation of momentum.

Proof. For ug € H'(T), from the well-posedness result, we know that there exists u €

XL VT >0, hence
2\ 1 u? u? 2 - s s+1
=—(1-92) 0, u—i-? =A u—i-? € X7, since Ae L (H¥T),H*(T)).

So, we have that all terms in the BBM equation u; — ., + u, + uu, = 0 belongs to X%.
For the integral term (1), we take the integral of the BBM equation over T and obtain

/utd:p—/utmdm+/uxdx+/uuxdxzo
T T T T

1
d udm—/um d:p+/u$dx—|— /( M) dr = 0.
—_— —— ——

(%)=0 (¥)=0 (%)=0
The terms (*) are zero since the function u is periodic on the torus T. From this we obtain
4 [Ludx =0, that is, [, u(t,z) dz is cosntant in ¢.

For the invariant of motion (2), we multiply the BBM equation by u and proceed like
the first one, integrating over T and noting the periodicity of u, but, for this time, we do a

few manipulations, like using the chain rule and integration by parts. So we have

/uutdx—/uutmdij/uuxd:U—ir/uqudx:O
T T T T

1d 1 1

5% u d:v~|—/Tuxum d:v+§/T(u2)x dZB—|-§ /T(u?’)x dr =0
(*3,:0 (*;,:0

1d 9 2,

% (u +u)d:p—0

That is,
/uz(a:,t) +u(z,t)dz,
T
doesn’t depend on .

For the third invariant of motion, we replace u by (—u — 1) in the third conservation
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law (3.20)

Yeu= 1)+ (a2 (u= 12 = (1w 12w — Dt — ~(—u— 1)
(ate-v) +( i)
- (%(w 1)3) " ((—ut)Q o (ot 1 — 1t 1)4) ~0

T

T

<%(u " 1)3)t - (uf o (1 e — 1)4> )

T

Then, we integrate the last expression over T, we use the periodicity of u, which yields

1 1
/(g(u—l—l)?’) da:—/(uf—uit—l—(u—i—l)%xt—Z(u—i—l)‘*) dz =0
T t T T

d
- 1)3dr =
7 11‘(u+ )>dr =0

d
7 (u® + 3u® + 3u+ 1) dr = 0.
T

From the first invariant of moviment, we know that fT udx = 0, then, we obtain that

d
pr T(u?’ + 3u?)dz = 0.

Which implies the third constant integral term over time

/(u3 + 3u?)dz,
T

and concludes the proof. [ |
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4 UNIQUE CONTINUATION PROPERTY

This chaper is devoted to prove the Unique Continuation Property (UCP) for the BBM
equation, for some BBM-like equations and for an intermidiate equation between BBM
and KdV, the KAV-BBM equation. By Unique Continuation we mean that if a solution
vanishes on a subset of its domain, it is actually identically zero on the entire domain.
This is an important topic in the theory of partial differential equations, with its history
dating back to works of Carleman and Holmgren in the early twentieth century. Initially,
most results were related to local unique continuation, however, due to its applications in
control theory of PDEs, which is our main interest in this work, attention was also given

to global unique continuation.

4.1 Unique Continuation Property for BBM Equation

This section derives a UCP for the solutions of the BBM equation issuing from small
enough initial data in H'(T) with nonnegative mean values. The proof combines the
analyticity in time of solutions of BBM, according to Proposition [3.2.1} the three invariants

of motion presented in Proposition [3.3.1] and an appropriate Lyapunov function.

Theorem 4.1.1. Let ug € H'(T) be such that

/uo(x)dx >0, (4.1)

and

HuOHLOO('JI‘) <3. (4.2)

Assume that the solution u of the IVP (3.1) satisfies
u(z,t) =0 forall (x,t) € wx (0,T), (4.3)

where w C T is a nonempty open set and T > 0. Then ug = 0, and hence u = 0.

Proof. Using a system of coordinates in such a way that the one-dimensional torus T is

identifying with the interval [0, 27) and that w D [0,e) U (2m — ¢, 27) for some £ > 0. Note
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that we can do this by placing w such that it contains the origin of our coordinate system

according to Figure [4.1] below,

Figure 4.1 — Coordinate system

[ P—
[N}
)

Source: Author

We know, thanks to Proposition [3.2.1] that u € C* (R; H'(T)), then we have u(z, -) €
C“(R) for all z € T. (£3) implies thatf]

u(z,t) =0 for (z,t) € w x R. (4.4)

Introduce the function

v(z,t) = /Ox u(y, t)dy.

Since u € C¥ (R; H(T)), then v € C¥ (R; H?(0,27)) and v satisfies

2

vt—vtm—l—vx—i—%zo, x € (0,27).

(4.5)

Indeed, integrating the BBM u; — gy + uy + <"72) = 0 over (0,z), and noting that

vy = u(z,t), and that vy, = u,(z,t), we have

x d x x T u2
0 0 0 T

dt Jy
d d u?
%v(a:,t) — Eux(x,t) +u(x,t) + ?(x,t) =0

w2
Vp — Vgger + Ve (2,1) + 5 = 0.

Denote

uw:A%m@wm € C*(R).

! Analytic functions can be uniquely determined by their values on any open subset of its domain. So
we have that if u is zero in a subregion of its domain, then u is identically zero in the whole domain. Note
that it allows us to uniquely extend analytic functions. It is commonly called analytic continuation for

holomorphic functions.
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Integrating (4.5) over (0,27), we have

27 27 2T 2T u2
/ v (z, t)dx — / Vg (T, 1) dx + / v (, t)dr + / —(z,t)dx =0
0 0 0 0o 2

d 2w d 2w 1 2
— v(x, t)dx — —/ Vgz (2, t)dx + v(27,t) — v(0,t) + —/ w?(x,t)dr =0

d 1 2m
[t - % [Uz(27T7t) - vw(07t)] + U(Qﬂvt) + 5/ ’U(;L’,t)ﬁdﬂ? =0
0

2m 1 2m
Iy — i[U(QTF,t) —u(0,t)] + / u(z, t)de + = / |u(z,t)Pdz = 0
dt 0 2 Jo

2m 1 2
I = —/ u(z,t)dr — —/ lu(z,t)|*dx.
0 2 Jo

From the invariant of motion [, u(z,t)dz, assuming t = 0, the above last line can be

written as

27 1 2m
= [ wteye =3 [ ute. e (46)
0 0

Using the assumption of non-negativity of the mean value (4.1)), we obtain that the quantity

in (4.6)) is not greater than zero.

Now using the invariant of motion [, (u* 4+ u2)dx = |Ju||g we get, by setting ¢ = 0,
that ||u(t)|| g1 = [Juo|| g for all ¢ € R. Consequently, v € L= (R, H*(0,27)) and I € L=(R).

In fact, first noting that

vl < [ luto. 0l
<(/1dy) (/ lu(y,t Idy> "’

< V2r|lu(:, )| 2(0.27)
< V2r||u(, D)l ro,2n) = V2T [[to]| g1 20 -

Then, for v, we have
27 ) )
ot Ollon = [ (o OF +Jox(a, O + foas(z. OF) da
27 27
— / |v(z,t)|*dx +/ (Ju(z, t)]* + |ux(x,t)\2) dx
0 0

2
< / 27 ||uo | Zada + [[u(t) || 111 0.0m) < 00
0
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And, for [
27 27
()] < / (e, Olde < [ Ve fuoll,, de < oo
0 0

From the boundedness and monotonicity of the function I, due to (4.6)), follows that it has
a finite limit as ¢ — oo, that we denote by I. Analogously, since ||u (,)|| g1 (r) < [|tol| g1 ()
and of the reflexivity of the Hilbert spaces, we can consider a sequence (u (t,)),,cy € H'(T)

with ¢, € R,V¥n € N, such that
u(t,) — o in HY(T), (4.7)

for some 1y € H'(T).

Letting 1 be the initial data of the IVP for BBM and denoting w its solution, i.e., &

solves
Uy — Uy + Uy + Uiy, =0, x €T, teR,

w(z,0) = dg(x).

Pick any s € (1/2,1). Since H'(T) < H*(T) is a compact embedding, we have that

u (t,) — ap strongly in H*(T). From the well-posedness we obtain
u(t,++) = a inC([0,1]; H(T)). (4.8)
From and since @ belongs to C¥(R, H'(T)), follows that
w(z,t) =0 for (z,t) € w x R.

Since fo u(zx, t)dx does not depend on ¢, considering ¢t = 0, we obtain fo x,t,)dr =

f02 ug(x)dz,Vt,. And, from the weak convergence u (t,) — Uy in H'(T) we obtain, as

/O%U(x,tn)da; - /027r o(z)dr = /:W wo()d

As before, we define o(z,t) = [ a(y,t)dy and I(t) = fo%f)(:v,t)dx. Using a procedure

t, — 00,

analogous to the previous one, we obtain

5 2 1 27
I, = / up(z)dr — 5/ |ti(z,t)]2dr < 0. (4.9)
0 0
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However, considering ¢, — oo, and using that u (¢, +-) — @ in C ([0, 1]; H*(T)), we have

I(t,) =25 1(0).

Indeed, for n > ng such that, [[u(y,t.) — @o(Y)ll12(0.2m) < e/(2m)3/2, for a given € > 0, it

follows e
16~ 10| =| [ [ ulot) = ta(w)dyds
0 0
2 x
<[] utwt) = (o)l dys
0 0
2 2 1/2
<Vor / (/ |u<y,tn>—ao<y>|2dy) iz < c.
0 0
Analogously,

n—oo

I (t,+1) 2225 [(1).

On the other hand,
lim 7 (t,) = lim I (t,+1)=1.

n—oo n—0o0

So, we have that I(0) = I(1). But we know that I, < 0, that is, I(t) is a non-increasing
function from 0 to 1, with I(0) = I(1), what is only possible if I(t) = 0, for all t € [0, 1].
So, we conclude that

w(z,t) =0 (x,t) € T x[0,1].

But, @ is the solution of the IVP with initial data tg; then, %y = 0. But u (¢,) — @ = 0,

so, u (t,) — 0 what implies that
2m
/ (v’ (z,t,) 4+ 3u” (x,t,)) dv — 0 as n — oo.
0
Knowing that fo% (u® + 3u?) dz is time independent, we consider ¢ = 0 and obtain

/OW (u(z) + 362 (2)) dx = /0 " (34 up(a) |uo(@)| da = 0.

However, from the limitation (4.2)), we know that (3 + ug(z)) # 0, which yields uy = 0,

and hence we have that « =0 on T x R, which concludes the proof. [ |
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4.2 Unique Continuation Property for BBM-Like Equations

This section is devoted to the UCP property for some BBM-like equations with different
nonlinar terms. First, we deal with a generalized BBM equation without drift term, that
is, we suppress the term u, in the BBM equation and consider a general nonlinear term
satisfying certain conditions. Next, as a corollary, we incorporate a localized damping in
that generalized BBM equation. To end the section, we treat with a BBM-like equation

with drift term and with a nonlocal bilinear term given by a convolution.

4.2.1 Generalized BBM Equation Without Drift Term

Consider the following generalized BBM equation

Ut — Uty + [f(W)] =0, z€T,teR, (4.10)

u(z,0) = up(x), (4.11)

where f € CY(R), f(u) > 0 for all u(x,t) € R, and the only solution u € (—4,6) of f(u) =0

is u = 0, for some number ¢ > 0. When f(u) = u?/2, we have
Up — Ugzg + Uy =0,

which is called the Morrison-Meiss-Carey (MMC) equation (also called width wave equa-
tion). The global well-posedness for (4.10)-(4.11) in H'(T) can be derived from the
contraction mapping theorem as in Section and the conservation of the H'-norm,

according to Proposition invariant (2).

Theorem 4.2.1. Let f be as above, and let w be a nonempty open set in T. Let ug € H'(T)
be such that the solution u of (4.10)-(4.11) satisfies u(x,t) =0 for (x,t) € w x (0,T) for

some T > 0. Then uy = 0.

Proof. As was done in the proof of Theorem [4.1.1] we can assume without loss of generality
that w = [0,¢) U (27 — ¢, 2m). The prolongation of u by 0 on (R\(0,2r)) x (0,T), still
denoted by u, satisfies

U — Upee + [f(0)]. =0, xR te(0,T) (4.12)
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u(z,t) =0, xz=¢(g,2mr—¢), te(0,7T) (4.13)
ueC([0,T; H'(R)), wu €C(0,T]; H*(R)). (4.14)

Scaling (4.12)) by e* and integrating over R, yields for ¢ € (0,7T)

/ utexdm—/ utmexdx—i-/ [f(w)]e’dx =0

—/ utxe:”dx—i—/ uedr + f(u / f(u)e®dx = 0.

Given the periodicity of u and since u — 0, as © — F00, we have f(u) = 0, (which follows

from the assumptions about f, that is, f(0) = 0), then the first three terms above result

in 0. Thus,
/ f(u(z,t))e*dr = 0.

Since €* > 0 and f > 0 this yields

fu(z,t)) =0 for (z,t) € R x (0,T).

Since u is continuous and it vanishes for x ¢ (g,27 — ¢), we again infer from the

assumptions about f that u = 0. This concludes the proof of the UCP for (4.10)-(4.11). 1

Incorporating a localized damping in (4.10]), we obtain the next BBM-like equation

Ut — Ut + [f(W)]z +a(x)u=0, €T, t>0 (4.15)

u(z,0) = ug(x), (4.16)

where a € C°°(T) is a nonnegative function with w := {z € T;a(z) > 0} nonempty, and f

is as above. Then we have the following weak stabilization result.

Corollary 4.2.1. Let ug € H*(T). Then the system ([4.15)-(.16]) admits a unique solution
ue C([0,T); HY(T)) for all T > 0. Furthermore, u(t) — 0 weakly in H'(T), hence strongly

in H*(T) for s <1, ast — +00.

Proof. The local well-posedness in H*(T) for any s > 1/2 is also derived from the

contraction mapping theorem in a similar way as was done in Theorem [3.1.1} Our aim



4.2. Unique Continuation Property for BBM-Like Equations 91

now is to prove the following energy identity

T
Hwﬂﬁp—mm%+2/‘/dww@ﬁHMﬁ=& (4.17)
0 T

from which the global well-posedness in H'(T) is derived. Scaling each term in (4.15) by

u, and integrating over T, we obtain

Uty — Uy + u[f(0)], + a(z)u® = 0

/Tuutdx — /Tuutmdx+/qru[f(u)]x dx+/Ta(:p)u2da; =0
%% (/Tququ/TuidQ +/Ta(a;)u2dx+/1ru[f(u)]m dx = 0.

We note that the last term above is zero, indeed,

/Tu [f(uw)], dx = — /Tu;,;f(u)dx = F(u)I" =0, since u(0)=u(27),

where F'is a primitive of f. Then, integrating the resulting expression from 0 to 7'

/0 %(/T(u ) x) dt—i—/OT/Ta(x)quxdt:O

( (2, T) + ui(z,T)] da —/ [u(2,0) + u2(z,0)] dx) +/OT/Ta(x)u2dxdt =0
(

(T sy~ (0} s e /’/ Jududt = 0

Hwﬂﬁp—Mﬂ§+2A‘AM@wmﬁRMﬁ:m

—

1
2
1
2
1
2

which is the desired energy identity (4.17]). Therefore, we have

d
SO +2 [ a@ute, ode =0,
T

which implies
d
Sllul <o

Thus, |Ju(t)||3, is a nonincreasing function, hence, it has a nonnegative limit [ as t — cc.

On the other hand, still from the application of the contraction mapping theorem, given

any s > 1/2, any p > 0 and any ug, vg € H*(T) with |lug| ma(ry < P, there s

o) S P> [[vol
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some time T = T'(s, p) > 0 such that the solutions u and v of (4.15))-(4.16)) corresponding

to the initial data uy and vy, respectively, fulfill
[ = vlleqorymem) < 2[luo — voll s - (4.18)

Pick any initial data uo € H'(T), any s € (1/2,1), and let p = [[woll gr1(ry and
T =T(s,p). Let vy be such that, for some sequence t,, — oo we have u (t,) — vy weakly

in H'(T). Extracting a subsequence if needed, we may assume that ¢,; —t, > T for all

n. From (4.17)) we infer that

n—oo

tnt1
lim / a(2)|ulz, 8)[2dzdt = 0. (4.19)
tn T

Since u (t,) — vy (strongly) in H*(T), and [Ju (t,)| gro(p) < lu (E) |2 (r) < p, We have

from (4.18)) that

u(ty,+-)—wv inC(0,7]; H(T)) asn— oo, (4.20)

where v = v(x,t) denotes the solution of

Uy — Utzg + [f(v)]aC + CL(ZL’)U = 07 T e T,t 2 Oa

v(x,0) = vo(z).

Note that v € C ([0, T]; H*(T)) for vg € HY(T). (4.19) combined with (4.20] yields

/OT/Ta(x)|v(x,t)\2d:cdt =0,

so that av = 0. By Theorem [1.2.1], v9 = 0 and hence, as t — oo,

u(t) - 0  weakly in H'(T)
u(t) — 0 strongly in H*(T) for s < 1.
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4.2.2 A BBM-Like Equation With a Nonlocal Bilinear Term

Now, the third BBM-type equation we will consider here has the drift term, and a

nonlocal bilinear term given by a convolution, namely
Up — Ugzg + Uy + Muxu), =0, x€R, (4.21)

where \ € R is a constant and

(u*v)(z)= /_OO u(z —y)v(y)dy for z € R.

o0

A UCP can be derived without any restriction on the initial data.

Theorem 4.2.2. Assume that X # 0. Let u € C* ([0, T]; H'(R)) be a solution of (4.21))
such that
u(z,t) =0 for|z| > L,t € (0,T). (4.22)

Then u = 0.

Proof. Taking the Fourier transform of each term in (4.21)) yields

Ty + E20y + &0 + Nifua = 0
(14 &) a4y = —iga — Nica® (4.23)

(14+&)a,=—i (a+1a?), £eR, te(0,T).

Note that, for each t € (0,T),u(-,t) and u(-,t) can be extended to C as entire functions
of exponential type at most L. Furthermore, is still true for € € C and t € (0,7) by
analytic continuation. To prove that u = 0, it is sufficient to check that (see (CONWAY],
1978)), 3.7 Theorem, p. 78)

Of(i,t) =0 VkeN,vte (0,7). (4.24)

Also, we note that

Ofu(i,t) = /_00 u(x, t)(—iz)"e"dx.

[e.e]
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Indeed,
ﬂ({,t):/ u(z,t)e " dr

—00

Oet(€,t) = /OO u(z,t)(—iz)e “"dx

o0
[e.o]

dgu(é,t) :/ u(x,t)(—iz) e dx
OF (i, 1) :/ u(z,t)(—iz)"e"dx.
We will prove (4.24) by induction on k. First, from (4.23)), by setting & =i

(i, t) + Aa2(i,t) = 0

a(1+ M a*) =0,

gives that either
u(i, t) =0 Vte (0,7), (4.25)

or

a(i, t) = —\"' vt € (0,7). (4.26)
Derivating with respect to & in (4.23)) yields

260y + (14 €2) ety = —i (it + Aa?) — i€ (et + A2 ) o)
= —ii(1 + ML) — i€ (1 + 2\00). |

Note that if either (4.25)) or (4.26]) holds, we shall have
ﬁt (Z, t) = O

So, combining with (4.27)), yields

2dia(i, ) + (1 — 1)ei(i, t) = —ia(i, £)(1 + Ma(i, 1)) + detr(i, ) (1 + 2)@)
it(i, )(1 + Ni(i, 1))
1+2xa

Detu(i, t) =
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Therefore, we see that

if a(i,t) =0, then  Ogu(i,t) =0,
0

-

if a(i,t) =—-\"', then Jeu(i,t)

that is,
Oeu(i,t) =0, te(0,7).

Assume now that, for some k& > 2,

(3éﬂ(z',t) =0 forte(0,7)andany!l e {l,...,k—1}. (4.28)

Derivating k times with respect to £ in yields, from Leibniz rule ,
O [(14 &%) ] = 0F [—i€ (4 + Ai?)]
k

) (k) (0 (L&) (i) =3 (’;) (0L(=i€)) (88 (5 + na?) ).

l
1=0
We note that, for [ > 3, all the terms on the left-hand side (1.h.s) above are zero. Then, on

the Lh.s., we perform the sum up to [ = 2, which gives

. . k(E—-1 _o.
lAa(kflfl)a

k k—1
i€ (aga +AY (’;) agaag’“”a) — ik (ag’“”a +AY (k B 1) T > .
=0

=0

From induction hypothesis and from the last line above, we obtain
OFa(i, t) + 2Xa(i, t)ofa(i, t) = 0

Ofa(i,t) (1+ 2 a(i,t)) =0.

From (4.25)) and (4.26)), we obtain that

ofu(i,t) = 0.

Therefore,
Ofa(i,t) =0, Vk=>1. (4.29)



4.3. Unique Continuation Property for the Linearized KdV-BBM Equation 96

If we assume (4.26)) and (4.29), it would imply
a(é,t) = -\t Vveec,

which contradicts the fact that a(-,¢) € L*(R). Thus, (4.25) holds and combining with

(4.29)) implies
w(,t) =0 V¢eC.

Therefore, we achieve the desired result u = 0. [ |

4.3 Unique Continuation Property for the Linearized KdV-BBM
Equation

This section is concerned with the UCP for the KAV-BBM equation, which is presented
as a theorem. The proof will be provided by means of a Carleman estimate, which, in turn,
is presented as a proposition addressed in subsection [4.3.1] To achieve this, we first split the
KdV-BBM equation into a coupled system of an elliptic equation and a transport equation.
Then, we derive, for each one, a Carleman estimate, stated in the form of lemmas with
the same weights for both. Afterward, we combine these lemmas to prove the proposition.
Finally, we use a regularization process, as the theorem holds for a solution that is not

regular enough.

In order to begin presenting the results, we shall give the KAV-BBM equation
Up — Utgy — ClUggy +qu, =0, €T, t€(0,7T), (4.30)

where ¢ € L> (0,7; L*°(T)) is a given potential function and ¢ # 0 is a given real constant.

Theorem 4.3.1. Let ¢ € R\{0},T > 2n/|c|, and q € L> (0,T; L>(T)). Let w C T be a
nonempty open set. Let u € L? (0,T; H*(T)) U L*> (0,T; H'(T)) satisfying (.30 and

u(z,t) =0 for a.e. (z,t) € w x (0,7T). (4.31)

Thenu=01in T x (0,7).

Proof. We first assume that u is regular enough, v € L? (0, T; H?*(T)). Then, spliting the
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equation by setting w = u — u,, € L?(0,T; L*(T)), we have

Wy = Ut — Utgax = ClUgge — Uy

CWy = CUy — ClUgpy-

By adding these two equations we obtain: w; + cw, = (¢ — q)u,. That is, (u,w) solves the

following system

U— Ugy = W (4.32)

wy + cw, = (¢ — q)uy. (4.33)

As mentioned in the summary of this section, we shall establish some Carleman
estimates for the elliptic equation (4.32) and the transport equation (4.33) with the “same
weights”, and combine both Carleman estimates into a single one for (4.30)).

Remark 4.3.1 (The sharpness of T'). Assuming for simplicity that q(z) = c for all
x € T, where ¢ > 0 is given, and that w = (2m — &,27) for a small € > 0, then the UCP
fails in time T < (2w — 2¢)/c, which implies that there is a finite speed of propagation
for KdV-BBM, since an arbitrarily large speed would produce an arbitrarily small time.
Indeed, picking any nontrivial initial state ug € C§°(0,¢), we obtain from that
wy + cw, = 0 whose solution is w(x,t) = wo(x — ct), so, the solution (u,w) of (4.32)-(4.33)

is u(z,t) = uo(w — ct),w = wo(z — ct) where wy = (1 — 03) uo. Then, for t € (0,%7%),

we have that © — ct € w, hence, the solution u(x,t) = 0 for (z,t) € w x (0, (27 — 2¢)/c),
although u # 0, since the initial data uy was picked nontrivial suported in (0, €). Therefore,

the condition T' > 2m /|c| in Theorem is sharp.

We shall introduce some notation and auxiliary functions to present the Carleman
estimate in the following proposition. Once again we identify T with [0, 27) by choosing a
coordinate system such that w = (2r —n, 27 +n) ~ [0,1) U (2r — 7, 27) for some n € (0, )
(by choosing the origin of the coordinates inside w ). Without loss of generality, we can

assume that ¢ > 0 (the case ¢ < 0 being similar). Assume given a time 7 fulfilling

2
7> (4.34)
C
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So, from ¢T" > 27, we pick some numbers § > 0 and p € (0, 1), such that

pcl > 21w + 4, (4.35)

and a function ¢ € C*([0, 27]), such that

Y(z) = |z + 6> forz € [n/2,2m —n/2 (4.36)
dF dF

d—;f(O) - 0 on) fork=1,23 (4.37)
20 < %(m) <227 +0) for x €[0,27]. (4.38)

Introduce the function ¢ € C*°([0,27] x R) defined by
p(z,1) = P(x) — pc*t, (4.39)

Now, we present the following Carleman estimate for (4.30)).

4.3.1 Carleman Estimate for the KdV-BBM Equation

Proposition 4.3.1 (Carleman estimate for the KAV-BBM equation). Let w,c and T be
as above. Then there exists some positive numbers s, and Cy such that for all s > so and

all w € L* (0, T; HX(T)) satisfying (4.30)), we have

T
/ /[s|um|2+s|ux|2+33|u|2} e%wddes/ [l — e * 9], d
0 T T

T
< Cg/ / (8 |ues|* + 8°|ul?] €2 dadt
0 w

Note that, from the Carleman estimate (4.40)), and assuming s large enough

C
/“u_um’%%w - . d 2/ / 5 |Uga|? + $%|ul?] e**dxdt
T

inf (623“’(3”’0))/ Uu—umﬂ =0 0 < sup (e*¥) C / / |tga|” + s2|u|® + |ug] )dxdt
T

z€T TEW
t€[0,T

/T“u—uxﬂ = 0 d / / ] + |u)? + Jug|” ) dadt.

(4.40)
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Note that

/ U — Uy |*dx = / (u® +u2,) do — 2/uumdx = / (u* +u2,) dz + 2 / UpUypd.
T T T T T

Then, we have, by adjusting the constant

T
2 2
/T[uz—l—2ui+uix}t:0dx<0/o /(|uml ol fupl?) dedt

T
/[]u(-,0)|2—|—|ux(-,0)\2+|um(-,0)\2} dxgc/ /(|um\2+|u|2+|ux12)dxdt.
T 0 w

Which is the observability inequality
T
. Oy < € [t )l

For the sake of clarity, we outline more detail than in the summary as the proof of
Proposition is obtained. In the first step, we prove a Carleman estimate for the elliptic
equation with the weight e*¥. In the second step, we prove a Carleman estimate for
the transport equation with the weight e?. Note that we are concerned here with
global Carleman estimates with weights suitably chosen in the control region. Then, we

combine these two Carleman estimates into a single one to obtain the desired Carleman

(4.40) for the KAV-BBM equation (4.30)).

4.3.1.1 Step 1: Carleman Estimate for the Elliptic Equation

Lemma 4.3.1. There exist s = 1 and Cy > 0 such that for all s > sy and all u € H*(T),

the following inequality holds

/ (s g+ s’ |ul?] e*dz < Co (/ || €2V d + / s3|u|2€28¢dx> . (4.41)
T T w
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Proof. Let v = e*¥u and P = §2. Then

eswumm - 63¢Pu = eswp (6781[]1))
=S¥ [eisw(sw;z)%) + efsw(_swxx)v _ 26731/}817&%0,0 + eiswva:x]

= (S@/Jx)Q’U — $UppV — 2800, + Vg

= P,v+ P,v,
where
Psv = (S¢x)2 UV + Vgg, (442)
Pyv = —280,0, — 80,0, (4.43)

denote the (formal) self-adjoint and skew-adjoint parts of the operator eV P (e*‘”/’), re-

spectively. It follows that

HeswPuH2 = (eswPu, e“/’Pu)
= (PSU+PGU’PSU+PQU)
= (P, Pw) + (P, Pw) + 2 (P, Pov)

= || Poll® + [|Paol® + 2 (P, Pav)
Where (f,g) = [ fgdz, and || f||* = (f, f). Then, for the last term above

(PSU, Pav) - ((31/)3:)2 v+ Vi, _QSsza: - S¢zxv)
= ((Swm)Q v, _23wxvx) + ((8%)2 v, _wa:vv) + (U.'EI7 _251/}907)30) + (U:Jc:va _wa:pv>

:Ifl+[2+13+f4.

For each integral, we will do some integration by parts in z, and also use (4.37)

L :/(swx)Qv(—stmvx) dr = —2/s3wivvmd:€
T T
= —/33@/15 (02)$dx = —s3¢§v2|§ﬂ +/8331/}§¢mv2d:13
T T
=3 T 2 xx Qd )
/T(SQA) v dx
I :/(51/133)27}(—82/}30907)) dr = _/(S¢x)2 Swmv2dx,
T T
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I3 = /Um (—2st,v,) dz = —/swx (vi)xda:
T T
= —wavﬂzﬂ—l—/swmvzda: = /Swmvzdx,
T T
I4 = —S / Uz (¢xmv) dz = _va¢xxv|2ﬂ- /'Ua: (¢xacacv + ¢xmvx) dz
T
/ Vawa (V) dz + 5 / Yypvod
= 3%ans|, [ et [ stnitas
0 T T

2
02
= —/sgbmm—dx—i—/swmvzdx.
T 2 T

Gathering all together, we have

2L+ L+ I3+ 1) =2 (3/ (31%)2 $1ppv? da — / (swm)Q Sy 0% dz + / §140 02 d
T T T

2
/wazzm d$+/8¢mvi dx)
T

:4 x ? xx 2d - TTITT 2d 4 rxr id
/T(Sw)é“?ﬂvx/jrsw Ux‘f‘/TS?ﬁUﬂ?
- / [4 (52)? 8800 — SUe] VP + / (450, ) V2d2.

T

T
Therefore,

e Pul|” = | Pl + 1| Pl + / (4 (50527 0 — S V2T + / (4stby) V2 (4.44)
T

T

Since, for z € (2,2m — 1) ,¢(z) = |z + |* follows that

bo(z) = 2|z + | <|§ i g‘) = 2(z + 6)

So,

4 (s1h3)? $thne — SVpaae = 4(s2(z + 6))%s2 = 3253 (x + ) > 0
451, = 452 = 8s.



4.3. Unique Continuation Property for the Linearized KdV-BBM Equation 102

That is, we can infer the existence of some numbers sy > 1 and K > 0 such that , for all

s 2= Sy

4 (51%)2 wa:r - wazzx > K537 for (x,t) S (g, 2r — g) X (07 T)
n

4stp,, > Ks  for (z,t) € (5,277 - g) x (0,7).

On the other hand, setting wy = [O, g) U (27r -7, 27?), and, since wy C w C [0, 27|, with
Y € C°°([0,27]), we can obtain a superior bound for all derivatives of ¢ on wy, so that, we

also infer that exists a number K’ > 0 and, again for all s > sy > 1,

‘4 (512)% $1pge — 8¢mm| < K's® for (z,t) € wy x (0,7T),

|4s1,,] < K's,  for (z,t) € wy x (0,T).
Thus, from (4.44]) we obtain

||PSU||2 + / [4 (Swm)Q wax - Sw;rxzx] Ude + / (4S¢mw> 'U?cdl' < ||€S7’Z)Pu|l2
T T

1Pl + [ (8 60)? te — haa] VP [ 4500 St = ]
T\wo wo

+/ (4804, ) V2da +/ (480, ) Vidx < HeswPuHQ.
T\UJO wo

From the discussion about the estimates for (4 (s%)2 SYPpy — swmm) and for (4st,,)
in T\wp and in wy we can see that, changing (4 (Swm)2 Sy — Swmm) for Ks* in T\wy,
the inequality remains the same, while, in wy we can change for K’s and add the same
integral over wy on the right-hand side of the inequality, preserving the inequality. The

same is true for (4s1,,). Thus, we conclude that, for s > sy and some constant C' > 0

| P,vl? +/T [s .| + s* ] dz < C (He&/’PuH2 +/ [s lua|? + s°|v]?] dx) . (4.45)
wo

Next we shall show that [i.s™ |v,,|” dz is also less than the right hand side of ({.45),

that is, we must show that

/3_1 Vge|” d < C (Hesd’Pqu +/ (s |va|* + 8°|v]?] dx) :
T wo
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From P,v = (szﬂx)z U + Vg, we have v, = Pov — (wa)Q v. Then proceeding

/3_1 ]vm|2d:z: = /3_1 |Psv — (swx)2v‘2 dx
T T
< 2/51 (lPSU’2 + |5 [v]?) dx
T
< 2/5_1 |Pw|” dx + 2/33 V2| |[v]2dz
T T

< 257V ||Pol® + 20/ s*v|*dx
T

<C (s‘l | Pol|® + / 53|U|2d:v> .
T

Note that, as s > so > 1, s~ ||Pw|* < ||Psvl|?, thus

/31 |Vge|* d < C (HPSUH2 —|—/ (s°|v]* + s|vg|?) da:)
T T
<C (HeswPuH2 +/ [s ve|” + s°|v)?] dx) :
wo

As desired. Now, we combine this with (4.45)), that gives

| Povl|* + / {s7! Ve + 5 02| + s°|v|*} dx
T

< 2C (}|65¢PUHQ+/ 53\v|2dx—|—/ s]vm\de).
wo wo

Therefore

J A5 el s+ o < 0 (HewPuH2+/ S+ [ S\U:E!de),
T 5 ;
0 ° (4.46)

where C' does not depend on s and v. Now we want to drop the last term in the right

hand side of (4.46)). Let £ € C§°(w) with 0 < ¢ <1 and &(z) =1 for x € wy C w. Then

/w vl d < /f‘“xﬁdx: /w (§vr) vada = €vg],, — /w (Eas + Evis) vl
S _%/wi’v (Uz)xdx—[uﬁvxxvdx

1
< i/gmﬁdx—/fvmvdx.
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1
/ v ]? da < §/|§mv2|d9§+/\vm|\vld:v
wo w w
2/ S\UIIdeg/|§m|\v|2dx+2/s\vm|]v|dx
wo w
2 (2
sluel* dr < Weaellzwery [ shoPde+2 [ |5
wo

1
EXGCIRS ]vm| + ?’Ivl2 where € > 0 is a constant that

So that

3/2

v‘d:v

From Young inequality,

1/2

can be chosen as small as desired. Thus

1
2/ v |* d < ||€a|| oo /S\U\Qd:c—i-Qe/s1|vm|2da:'+2—/33\v\2dx.
wo w w € Ju

Then, by setting e = £, we obtain

2/ s |v,| da < HmeLoo(T)/s|v\2dx+/i/s1]vm|2dq:+f<al/33|v\2dx. (4.47)
wo w w w

For k small enough and some constant C' that does not depend on s and v, we see that

/ s |vg|? gC/s\deng/sg’\dex.
wo w w

Then, going back to (4.46)), we obtain, with a possibly increased value of s

/ {s7! Vea]® + 8 va]* + s°|v|*} de < C <||eswPu||2 + / 53\v|2d:c) : (4.48)
T w

Then
/{s|%|2 L) de < C (HewPuHQ +/53|v|2dx> | (4.49)
T w

Note that, from v = e*¥u, we have

= sy, €’ u+e LT
Vp = SU0 + eV,
vy — SUv = e*Vu,

e (Vg — SUpV) = Uy
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Using , follows that
/ (s ug|” + s3|ul?) e da = (s e (v, — swxv)}Q + s |e’s¢v}2> eV dx
T

(s v, — sihpv]” + $°|v]?) d

S— 55—

(4.50)
< C’l/ [s (Jva]? + 52020 ]?) + s*[v|?] da
T

< C’Q/ [s|va|* + s°[vf*] da
T

To conclude the proof, we come back to the variable u in (4.49) and we use (4.50)), which

gives
/ (s lug|” + s°|ul?) e¥da < Cg/ [s|va|? + s*[vf*] da
T T
<C (HeSwPqu + / 53]v|2da:>
<C (/ g |” €2V di + / 5% ul? eQSwda:> :
T w
which is the desired Carleman estimate ({4.41]). |

4.3.1.2 Step 2: Carleman Estimate for the Transport Equation

Lemma 4.3.2. There exist s; > so and C7; > 0 such that for all s > s1 and all w €
L*(T x (0,T)) with w+ cw, € L*(T x (0,T)), the following holds

T
/ /s]w[QeZS“Ddxdt—l—/s [|w]?e**#] |t:0dx+/s [|w[262s“"]‘t:de
o Jr T T

T T
<Oy (/ / |w; + cw,|? e**Pdudt +/ /s]wlgeQS“"dajdt) :
0 T 0 w

Proof. We first assume that w is regular enough, that is w € H'(T x (0,T)). For this case,

(4.51)

the proof will follow the same outline as the proof of Lemma [4.3.1} Thus, let v = e*?w

and P = 0; + ¢0,. Then,

e*? (wy + cw,) = ¥ Pw =e** P (e~*v)
= e%¢ (—sgpte_s“"v + e %Py + ¢ (—sgpme_s‘pv + e_wvx))
= (—spv + vy — €SPV + cvy)

= (=spv — cs ) + (v + cv,) =: Psv + Pyo.
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It follows that

s 2 s s
e sDPU’HL?(W(O,T)) = (e*Pw,e SOPW)L?(Tx(o,T))

— (PSU + Pav7 PSU _I_ Pa’/U)Lz(TX(O,T)) (4.52)

2 2
= |1Psollzerxory + 1Favllz2erx0.m)) T 2 (Psvs Pav) r2(r o1y -

For the last term above

(Pov, Pov) pa(rory) = (—8010 = €5020, U0 + CUa) p2nco.1))
= (=800, V) r2(px 0,1)) T (5040, CVz) 275 0,1))

+ (=C8000, V) 2o,y T (—C5020, V) pa im0,y

/ /—swtvvt dmdt+/ /—Sgotvcvx dxdt
—l—/ /—csgvavt dxdt—l—/ /—CQS%UUI dzdt
o JT o Jr

= [1+Ig+[3+[4.

We will treat each integral separately

T 1 T
/ /—sg@t d:pdt / /sgottv2dxdt— E/sgotv
0 T T 0
1 (7 ) 1 (7 , IR
== —SCpy (v )x dxdt = - sCpv drdt — = SCPv
2J)o Jr 2)o Jr 2 /o 0
T 1 T
/ /—csg@x dmdt / /csgpxtUdedt— —/csgoggv2
o Jr 2 Jr 0

dx,

™

dx,

1 /7
= —/ /—c%gpm( 2 da:dt / /c SPpzV 2dadt — —/ 2 sgpx dt.
2/ Jr 0
Then, gathering all together, we have
T
2 (Psv, Pav) [ (0.)) = / / (su + 25C01, + 2 8pyy) v2dadt
o Jr
T . (4.53)

T
dxr — / (scgot + czsgpx) V2 dt.
0 0

— /(sgot+csgox) v?
T

0

Now, since ¢(z,t) = 1(x) — pc®t?, then o, = 1, and p; = —2pc*t and, according to

(4.37), we have that ¢,(0,t) = p.(2m,t),0:(0,t) = (2, 1), as well as v(0,t) = v(2m, 1),
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since v(z,t) = e**w, with w periodic in x. Thus, the last term in (4.53) is null. From,
(4.52)) and (4.53), we have

T T T
/ /|es“"Pw\2dasdt:/ /32]@t+cg0x\2|v\2d:vdt+/ /]vt—l—cvxfdxdt
o Jr o Jr o Jr

T
+ / /s (1 + 20010 + ipyy) v2dudt — / s (py + cpy) v? + / s (py + cpy) V2
0 T T t=T T

Now, we shall make estimates for (g + 2cp¢ + ¢*pa,) and for (; + cp,). First we
note that (p; + cp,) = —2pc*t + iy, then, for z € (0,27),t =T and from (4.35))-(4.38)),

we have that

t=0

— (@t + cpr) = 2¢(pcT —2m — 6) > 0.

Analogously, for x € (0,27),t = 0, we obtain
Ot + cpp = 2¢d > 0.

So, we have

T T
/ /32|90t+090x|2}v2’d$dt+/ /|vt+cvx|2dxdt
o Jr o Jr

T
+ / / 8 (Qott + 2090151 + 6280:17&:) ’U2d$dt + / S(ZC(pCT — 21 — 5))|U|\2t:T
0 T

/ S(2e8) o]y < / /|ewa| dudt.
T

T
/ /s (1 + 2¢pt0 + Cpas) |v|° dudt + / s (Jvlizg + [vliey) da
o Jr T

T
gC’/ /|6890Pw]2 dxdt.
o Jr

Then

But

2(1- p)

T T
/ / (1 + 20015 + Cpyy) [0 dadt = / / SOtt + 2001, + Cipgy) |V dadt
0 T 0 T\WO

T
+/ / gptt + 2cp + € gpm) lv2dxdt.
0
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For z € T\wy = (2,27 — 1) ,¢t € (0,T)

29

p(o,t) = o+ s|* — pct?

0y = —2pcit
P = —2pc”
Pat = 0

Paz = Vs = 2, 901:2(x+6>‘

Then, @i + 2¢0i + e = 2(1 — p)c? > 0, for p € (0,1) and, as wy C w

T T
/ / s (aptt + 2cp4, + Cngm) \v[zdxdt < / / S (%t + 2¢cpiy + Czwm) lv|2dxdt.
0 wo 0 w

T
/ /s\vﬁdmdt + / s (|vlieg + [vli=y) do
o Jr T

T T
<C (/ /]es“’Pw|2dxdt—|—/ /s]v|2dazdt>.
0 T 0 w

To finish the proof of the lemma for w € HY(T x (0,7T)), we replace v by e*fw,
which produces (4.51)).

We now claim that Lemma is still true when w and f := w; + cw, are in
L?(0,T; L*(T)). Indeed, in that case, from Aubin-Lions Theorem [2.1.18} we have w €
C ([0, T]; L*(T)), and, from density we can consider two sequences (wj) and (f") in H'(T)
and L* (0, T; H'(T)), respectively, such that

Therefore

wf — w(0) in L*(T)
f*— fin L? (0,T; L*(T))

then the solution w™ € C ([0, T]; H'(T)) of

satisfies w" € H'(T x (0,7)) and w" — w in C ([0, T]; L*(T)), so that we can apply
(4.51)) to w™ and next pass to the limit n — oo in (4.51)). The proof of Lemma is
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complete. [

Proof. Finally, we are able to proof the Proposition [4.3.1] that is, the Carleman estimate
for the KAV-BBM equation. Let v € L? (0, T; H?(T)) satisfying u; — Uszy — Clze + qiz = 0,
and let w = u — uy, € L*(0,T, L*(T)). Then w; + cw, = (¢ — q)u, € L*(0,T; L*(T)). Our

task is to combine the following results proved so far

U — Upy = W, (14.32)

wy + cw, = (¢ — q)uy, (4.33)

T
/ /s|w|2625“"da¢dt—l—/s [Jw|?e**%] ltodm+/s [|w]?e**%] ‘t:Td:L“
o Jr T T
T T
4 (/ /|wt—|—cw$|2 625‘Pdmdt—|—/ /s|w|2628‘pdxdt) , (4.51])
0 T 0 w

and (£.41) multiplied by 2" and integrated over (0, T)

T
/ / s ug|” + s°|ul?] e**?dadt < Cy </ /|um|2628“’dxdt +/ / s*ul?e 2“"‘pdacalt)
o Jr

(4.54)

Replacing w; + cw, by (¢ — q)u, in (4.51]) and adding to (4.54]), we obtain, for s > s;

T
/ / [s|ux]2 + 83 ul? + s|lu — umﬂ ePdxdt + / s Uu — umﬂ =0 dx
0o Jr T

r T
<C (/ / UUMP +|(c— q)uxﬂ e25P dxdt +/ / [s\u _ um‘2 + sﬂuﬂ 625‘pdxdt> '
0 JT o Lo

(4.55)
Note that

T
/ /(S|um|2+8|“w‘2+53|u|2) empdt—i_/s[|U_“m|2]|t:0d$
T
/ / — Uyy) — ul* + s|ug|? + $*[ul?) 28“"dt—|—/s[\u—umﬂltzodx.
T

Then, from ([4.55)), knowing that (@ — b)* < 2(a® + 0?) and noting that s < s3, since s > 1,
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we have that

[ e b ) [ o e
/ / — Uye) — ul’ + slug)® + s°|ul?) 25‘pdt+/TsUu—um|2Lt:0da;
<O [ [l sl ) st [ ]
< (/ / etz + (¢ — g)us ] 25“”d:cdt+/ / Slusel? + 5°luf?] 25“”da:dt)
< % </ /[S|u:m:‘2+s|u:v|2:| 623‘dedt> +Cl/ /[S|um\2+s3’u‘2] e25% ddt.
o Jr 0 Juw

Increasing the values of s if necessary, so that, 1 — % > 0 we have

(1__>/ [ lital? sl + ) e+ [ s u =]y o
01/ /[s|um|2+s3|u|2} e**?dxdt,
0 w

which gives

T
/ / (8ltgal® + slug | + s°[u]?) e*%dt + / s [Ju — s |] =0 dx
o Jr T

T
<G ( ° ) / / [8|use|? + $%ul?] e*#dadt.
S — Cl 0 w

For a sufficiently large s and s; > s; and Cy > C’l large enough we obtain the desired

Carleman estimate
T
/ / (8 |uge] + 8 [ua|” + 8°|u|?] e**dzdt + 3/ [[u — s |” €] o 0T
o Jr T

T
< C’z/ / (8 |uge|? + 8% ul?] e**?dadt.
0 w

We are now in a position to prove the UCP for the KdV-BBM equation stated in
Theorem We recall that u was set to belong to L* (0, T; H*(T)) U L> (0,T; H'(T)).
For w € L*(0,T; H*(T)) fulfilling (4.30) and (4.31]), we obtain the UCP at once from the

Carleman estimate (4.40)).
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On the other hand, for u € L> (0, T; H'(T)) we have that v and w := u — u,, are not
regular enough to apply the Carleman estimates proved so far. So, we need to smooth
them by using some convolution in time. For any function v = v(z,t) and any number

h > 0, we set
1 t+h
oM (z,t) = —/ v(zx, s)ds.
h Ji

We recall that, from Proposition [2.1.19} if v € L?(0,7;V), where 1 < p < +o00 and V

<
denotes any Banach space, then vl € W2(0,T — h; V), ||v HLP(O,T%;V) < vl ero,rvy,

and for p<ocoand 7" < T
v

W v in LP(0,7;V) as h — 0.

Then, in our context, ull € W1 (0, T’; H*(T)), for any positive number h < hy := T —1T",
with 7" € (%”,T). In the sequel, ugh] denotes (u[h}) . u&h] denotes (u[h])x, etc. We assume
again ¢ > 0, the pair (p,d) satisfying (4.35) with 7" replaced by 7" and we define the

functions ¥ and ¢ as before. Thus, in that conditions, since
Up — Utgy — ClUggy + (qu:B) = 07
we have that u!" solves

ul! =g, — culll, + (qu)" =0 in D' (0,7 HTH(T)), (4.50)
ul(z,t) =0, (2,t) €wx (0,T). (4.57)

Since ull € Wb (0, 7"; H*(T)), from (4.56)), we infer that
all, = (ul = ufl, + (quo)™) € 1 (0,7 HA(T)),

hence

u € L% (0,T'; H*(T)) (4.58)
This yields, with (4.32)) and (4.33))

wihh = M — M e 1> (0,7"; L*(T)) (4.59)
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W + cwl = ((¢ = q)u,)™ € W= (0,T; L3(T)) (4.60)

x

Thus, from lemmas {4.3.1] and [4.3.2f and from (4.57)) and (4.59)), we infer that there

exists some constants s; > 0 and C > 0 such that for all s > s; and all h € (0, hg), we

have
r 2 2
/ / [s |u£3h]‘ + 3 ul)? + s |w[h]} ] e**?dxdt
o Jr
" 2 |
< Gy / / ull|” + ‘((c — q)uy) ‘ e*?dxdt
o Jr
T’ ) 12
< Gy / / !u[h] — w[h]‘ + ‘((c — Q)u,) ]‘ e*?dxdt | .
o Jr

But, from —, we infer that
T/
/ / <s |u£ch} ]2 + s° ‘u[h]|2 +s ‘w[h]f) e**?dxdt
o Jr
T 2 2 1|2
< Cl/ /<|u[h]] - }w[h]‘ - ‘((c—q)ux)[ ‘ )er‘pda:dt
o Jr
r h]|2 h) |2 h]|2
<01/ /(W]‘ + [w™ ™+ 2 |(c — g)ull|
o Jr

2
) e dxdt.

(4.61)

22((e = ) — (e — gl

Comparing the powers of s in (4.61)), we deduce that, by increasing the the constants
s; and C] in a convenient way, for s > s3 > s;,h € (0, hg) and some constant Cs > C}

(that does not depend on s, h), we have that

T/
/ / <s }ugl}!z + s° ‘u[h]|2 +s ‘w[h]f) e**?dxdt
o Jr

T’ 9
< C's/ / ‘((c — Qus)™ = (c— q)ug‘]‘ e>?dxdt.
o Jr

Fix s to the value s3, and let h — 0. We claim that

T 9
C— q)Uy W (e — )ul™| e232dazdt — 0 as h — 0.
((c = @)uz) q)ug
o Jr



4.3. Unique Continuation Property for the Linearized KdV-BBM Equation 113

Indeed, as h — 0,

((c — q)ux)[h] — (¢ —q)u, in L*(0,T;L*(T)),

(c—qul = (¢ = qu, in L*(0,7"; L*(T)),

while €2%3% € L (T x (0,7")). Therefore,
r 2 2 2
/ / <s3 ’u[xh]‘ + sg |u[h]‘ + s3 }w[h]‘ ) e?3dxdt — 0 as h — 0.
o Jr

In particular,

Tl
/ / }u[h}f e2%3%dxdt — 0 as h — 0.
0o JT

On the other hand, ul") — w in L2 (0,7"; L*(T)), hence

T’ T
/ / ’u[h]}Q e3P dxdt — / / lu|?e***?dxdt as h — 0.
o Jr o Jr

From uniqueness of limit, we conclude that

T/
/ / lu|?e***?dxdt = 0.
o Jr

Therefore, w = 0 in T x (0,7"). As 7" may be taken arbitrarily close to T, we infer
that u=01in T x (0,7, as desired. The proof of Theorem is complete. [
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5 CONTROL AND STABILIZATION OF THE KDV-BBM
EQUATION

This chapter, devoted to the controllability of the BBM equation, is the core of this work.
When dealing with PDE we have at our disposal three concepts of controllability; namely
the exact controllability (any pair of state vectors may be connected by a trajectory), the
null controllability (any state vector may be steered to 0) and the approzimate controllability
(any state vector may be steered arbitrarily close to another state vector). One of the main
concerns of control theory is the relationship between controllability and stabilizability.
We begin the chapter by treating the controllability concept, while the latter is addressed

in the second section. We refer the reader to section for more details.

We consider the following system

Up — Ugzy — ClUgyy + (¢ + Dug +uu, = a(x)h, €T, t>0 (5.1)

u(z, 0) = uo(z), (5.2)
where ¢ € R\{0} and a € C*(T) is a given nonzero function. Let

w={ e T a(x) #0} #0. (5.3)
5.1 Exact controllability

We begin with a local controllability result, in sufficiently large time, for the system

(5.1)-(5.2). However, to prove this, we first treat the linear case.

Theorem 5.1.1. Let a € C°(T) with a #0,s > 0 and T > 27 /|c|. Then there ezists a
0 > 0 such that for any ug,ur € H*(T) with

[uoll s + lJurllgs <9,

one can find a control input h € L* (0, T; H¥*(T)) such that the system (5.1))-(5.2]) admats
a unique solution u € C ([0,T], H*(T)) satisfying u(-,T) = ur.
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Proof. The result is first proved for the linearized equation, and next extended to the

nonlinear one by a fixed-point argument.

5.1.1 Exact Controllability of the Linearized System

We first consider the exact controllability of the linearized system

Up — Upgy — CUgge + (¢ + Dugy = a(x)h, (5.4)
u(z,0) = ug(x), (5.5)

in H*(T) for any s € R. Note that (5.4) can be written as

du=(1— 8§)_1 (c82 = (c+1)0,) u+ (1 - 8§)_1 la(z)h]
du = Au+ (1 - 85)_1 la(z)h],

in which A = (1 — 92)™" (¢d? — (¢ + 1)8,) is the operator with domain D(A) = H*(T)
H*(T). We claim that A is skew-adjoint, that is, A* = —A. Indeed, let f,g € H*(T),
then

(Afv g)HS+1(T) =

VRS

Hs+1 (T)

(1-02) " (eif (e +1)2.) £.0)

(1482 (1= 02) " (0 — (c+ 1)0y) F(k)5(R)

Il
(]

B

E€Z

st1 (=) (ck® + (c+ 1)k)
14 k2

(ck3 + (c+ 1)k)
1+ k2
(—2)(ck3 + (c+ 1)k)
1+ k2

(1+K) Fk)g(k)

=N 1+ f(k)g(k)i

=3 (B (= 82) (D — (c+ 1)D2) g)(h)

keZ
= - (fv (C@i - (C + 1)81’) g)Hs+1(T)
=—(/, AQ)H5+1(T)
= (f, =A9) yposr ()

Therefore, from Stone’s Theorem, the operator A generates a group of isometries
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{W(t)}ier = {€"}icr in H*(T). Note that

—1)(ck® + (¢ + 1)k)

FAnk) = To(h) = AR

so that, we have the following representation in Fourier series for any v € H*(T)

> RS+ (c+1)k )
Wt = et = Z e TR pethT (5.6)
k=—o00
o
v = tpe’®™ € H*(T)
k=—o0

The system ([5.4)-(5.5)) may be cast into the following integral form

t
u(t) = W(t)uo +/ Wit—-7)(1- (‘)3)71 [a(z)h(T)]dT.
0
Take h(x,t) in (5.4) to have the following form

r) Y figi(t)e ", (5.7)
j=—o00
where f; and g;(t) are to be determined later. Then the solution u of equation ({5.4]) can

be written as
oo

u(a,t) = Y ig(t)e™,

k=—o00

that we substitute it into ((5.4]) to obtain

(0 — 0,02 — D2 + (c+ 1)0,) ( Z ﬂk(t)eika) = a(z)a(z) Z Fia(t)el

k=—o0

j=—o00
For each k, we have

d ~ ikx . 1KT Z T
(L4 K2) (D)™ + (cik? + (e + )ik () = j;}o fia;(t)e”
dA ikx Zk?(Ck?2+C+1)A ix zz
g mnet (e = ;oo fia;(0)e”
d . Zk(Ckz‘i‘C‘i‘l)A za:
auk(t) 1152 a(t) = Z fia;(t)e”

j=—00
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1

dt

k2 Z fj‘]j(t)CLQ(Jj>€i(j—k)x‘
Jj=—00

Then wy(t) solves the following ODE

d . , . J—
() + iko (k)i (t) = { e FZOO fia;(t)m;ig, (5.8)
k2 1
with o(k) = % and
mig = L a?(x)eUP .
a 2T T

Thus, from the theory of ODE;, its solution at ¢t =T is

~ —iko ~ 1 = g —iko —T
(T) = e~ *® T, (0) + e Z fjmj’k/o e~ o BNT=T) g (1) dT

j=—00

~ —iko ~ 1 - ’ —iko -7
a(T) — e "W Tq,(0) = 1552 2. fjmj,k/ e~ MW= g;(7)dr.
j=—00 0

Or, multiplying by e**7*)T

U iko 7 1 - g iko (k)T
Uy (T)eko T _ q,.(0) = e Z fjmj’k/o ero kT (1) dr

j=—o0

It may occur that the eigenvalues
Ap = Zk?O'(k’), keZ,

are not all different. If we count only the distinct values, we obtain the sequence (\g),cp,
where I C Z has the property that A\, # \g, for any ky, ko € [ with &y # ko. For each
ki € Z set

I (k1) ={k € Z; ko (k) = kio (k1) },

and m (k1) = |I (k1)| (the number of elements in I (k1)). We note that there exists some

integer k£* such that k£ € I if |k| > k*. Thus there are only finite many integers in I, say
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kj,j=1,...,n, such that one can find another integer k # k; with A\x = Az;. Let
]Ij:{kEZ;k#kj,)\k:)\kj}> j:1727"'7n'

Then
Z=ITULu---Ul,.

Note that I; contains at most two integers, for m (k;) < 3. This is a consequence of the

fact that m (k;) is less than the number of entire roots of the equation

zxo(r) =«

() cx’+c+1
ro(x) =1r——— =«
14 22 ’

where « is an arbitrary real number. The roots of this equation are also roots of a
polynomial of degree less or equal to 3. Then, as I; = I(k;)\{k;}, we have that |I;|, the

number of elements of I;, is m(k;) — 1, that is, |I;| < 2. We write

L= {kjt, kjmu)-1}, j=12,...,n

and rewrite k; as kjo. That is, the n elements of I will be denote by k; for j =1,...,n.
Let
pr(t) == ekt — =Mt L — 0 41,42, ...

Then the set
P = {pu(t);k €T}

forms a Riesz basis (see definition [2.1.16)) for its closed span, Pr, in L?(0,T) if

Let £ := {q;(t); j € I} be the unique dual Riesz basis for P in Pr; that is, the functions

in £ are the unique elements of Pr such that

T 1, ifj=k .
(g5 (t)apk(t))L2(o,T) - / q;(O)pr(t)dt = 0kj = . Jkel
0 0, ifj #k
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In addition, we choose

Qk:CIk:j 1fk;€]IJ

From the solution (7" of the ODE (5.8)

~ iko ~ 1 - g iko (k)T

WA = 0l0) = s 3 Sy [ i
ko(k)T 1 - g

WA =0 = o 3 S | e

Then, for such choice of g;(t), we have, for any k € Z

1

G (T) e ®T 4, (0) = e femig,  ifk €\ {ki,... kn}; (5.9)
m(k;)—1
G (TR o BT _
Ukzm( )6 ukm( 1+k2 Z fkﬂlmkﬂk]q’ (510)
ifk=kj,j=1,...,n¢=0,...,m(k;) — L
It is known that for any finite set J C Z, the Gram matrix Ay = (m;,4),, . ; 1s definite

positive, hence invertible. It follows that the system (5.9)-(5.10) admits a unique solution
JF( . '7f—27f—17 f07f17f27 .- ) Since

1 . 1
Mk = 5 ] a?(x)e! =Ry = 7 - a?(z)dr =: u # 0,

we have, from (5.9)),

(1 + k2) (ak<T)eika(k)T _ ﬁk(o)) = fu

14 k2 .
f = Z (i (T)e™ BT — i (0))  for k] > k",
Note that
T 2
[— / I )t
2
DN
]7—00 Hs—2
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2
e[| o]
Jj=—00 Hs—2
s—2 |0 , .~ 2
C / Z 1+5)77 |2 quj(t)e”"”(/{)‘ dt
0 k=—o0
2
/ +k2)s—2 Z quj ’L]JJ dt
0 k——oo Jj=—00
o) o0 2
Z L+ Lo
0 k=0 j=—00
& s—2 2
O/ S (4T )P dt
(R —
<C Y 1+ d
j=—o00
<(J(Z(1+g * |4;(0) |+Z (1+52)° |a( )|2)
Jj=—00 j=—o00
< C ([lu(O) [ + [[(T)|7+) -

This analysis leads us to the following controllability result for the linear system
E9-6.3).
Proposition 5.1.1. Let s € R and T > be given. For any ug,ur € H*(T), there exists
a control h € L*(0,T; H**(T)) such that the system (5.4)-(B.5) admits a unique solution
uwe C([0,T]; H¥(T)) satisfying
u(z, T) = ur(x).

Moreover, there exists a constant C' > 0 depending only on s and T" such that
17l 20, 75m5=2(my) < C (woll e + [lurllg) -
Introduce the (bounded) operator ® : H*(T) x H*(T) — L2 (0,T; H*2(T)) defined by
® (o, ur) (t) = h(t)

where h is given by (5.7) and f is the solution of (5.9)-(5.10) with (uo), and (ur),
substituted to u(0) and (7T, respectively. Then h = ® (ug, ur) is a control driving the
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solution u of (5.4))-(5.5) from ug at t =0 to ur at t =1T.
5.1.2 Local Exact Controllability of the BBM Equation

Pick any time T' > 27/|c|, and any ug, ur € H*(T)(s > 0) satisfying

e <6,

with ¢ to be determined. For any u € C ([0, T]; H*(T)), we set
T
o\ —1
w(u) = —/ W(T—7)(1-92) (uuy) (7)dr.
0
Then, for any u,v € C ([0,T]; H*(T)), it follows that
w(u) —w(v / W(T—r7)(1- 82) (vv, — uuy) (T)dr

/w -, () dr

_ 5/0 W(T —7) (1— )" 0, [(v—w)(v + )] dr.

That is,

-1

T—7)(1-082) 0, [(v—u)(v+u)dr

lw(u) = w(v)|[ms =
HS

< CTHU + vl omims oy 1w = vl oe 0,725 ()
where we have aplied Lemma [3.1.1}
Furthermore,
t
W (t)uy + /0 Wt—r7)(1- 8%)71 [a(2)® (ug, ur —w(u)) — uu,| (7)dr

Ug lft:O,

wu) + (ur —w(u)) =ur ift="T.
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Indeed, for the case t =T we have

W(T)uo + /O ' W(T —7) (1 —8) " [a(z)® (uo, ur — w(u)) — uuy) (7)dr
— W(T)uo + /OT W(T —7) (1= 82) " [a(z)® (uo, ur — w(u))] (r)dr
- /0 ' W(T —7) (1 —8%)" (uw,)(7)dr
=W+ [ W=7 (1) (o) e — )] (7 + ()

= (ur — w(u)) + w(u)

= ur.

We are led to consider the nonlinear map
¢ -1
['(u) = W(t)ug +/ Wit—1)(1-92) [a(x)® (v, ur — w(u)) — uu,] (7)dr.
0

The proof of Theorem [5.1.1f will be complete if we can show that the map I" has a fixed
point in some closed ball of the space C ([0, T]; H*(T)). For any R > 0, let

B = {u € C((0,T]; H*(T)); [[ullco.yasm) < R}
So, for u € Bg and for t € [0, T] we have

T () (@)

s < lwollms +

/0 Wit—-7)(1- 83)_1 [a(z)® (ug, ur —w(u)) — uu,] (T)dr

Hs

dr

HS

< fuol

s + /Ot H (1 — 83)71 [a(2)® (ug, ur — w(u)) — iy (7‘)‘

(1- Gi)_l (uuy)

< luolls + 7 || (1 = 82) ™ (@)@ (o, ur — w(w)]]| +T|

s

T _
< luollas + € la(@)® (uto, vy — () go-a + 5 || (1 = 02) " 00 (u2)]|
< Nluollas + C (ol zs + uzllas) + Ca l|ull
< Cl (HUOHHS -+ HUT“HS) + CQRQ.
Therefore,
sup [[0(u)(t)||ms < Cy (Juollms + lJur|ms) + C2R?,

te[0,7
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that is

IT @)l cgo sy < Cr Ulttoll g + Iluzllge) + C2R2,

with Cy, C depending on s and 7', but not on R, ||ug|| ;s or |[ur]| -

Thus, picking R = (2C,) ™" and § = (8C1C,) ™", we obtain for ug, ur satisfying

[uollgs <0, urllys <9,

and u € Bp that

“F(U)HC([O,T];HS(T)) S R
That is, ['(Bg) C Br.

To conclude, we shall show that the map I' is a contraction map, that is, that

1T (u) — T()lleqorms () < Mllw—vlleqo,r;ms ),

for u,v € Bpg, for some A € (0,1). So, we have that

['(u) — / Wt—7)(1- 02) (vv, — uuy) (T)dT

/Wt—T ) (1-02)" 18$[(v—u)(v+u)](7')d7'.

From an analogous calculation we get that

-1

PG~ Tl < 5 (1 22)

< Clu—|

8, [(v — u)(v + u)]‘

HS

Hs

< Oy

Taking the supremum and picking R = (2C5)”" we obtain
IT(w) = T'()lle o,y my) —||U—U||C (0.7):H3(T)-

To sum it up, we have seen that, for all u,v € Bg, then

T (w)lleqo,r):m5 (1)) < R, (5.11)
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and,

1
1T (u) — T()leqo.r)ms(my) < §||u — 0| (o715 (1)) - (5.12)

From the contraction mapping theorem, it follows that I" has a unique fixed point u in Bp.
Then u satisfies (5.1)-(5.2) with h = ® (ug, ur — w(u)) and w(T) = ur, as desired. The
proof of Theorem [5.1.1] is complete. [ |

5.2 Exponential Stabilizability

We are now concerned with the stabilization of ((5.1))-(5.2]) with a feedback law h = h(u).
To guess the expression of h, we first write the linearized system (5.4)-(5.5)) in a convenient

way

Up — Ugzg — ClUgyy + (¢ + Du, = al(x)h

(1—92) u = (c02 — (c+1)d,) u+a(z)h

du=(1-0%)""(cd? — (c+1)d)u+ (1 -0 " ah
Ou=(1-32) " (cd} —(c+ 1)d)ut (1-8) "a(1-32) (1-02) 'k
A B k
Then, we have
us = Au+ Bk, (5.13)
u(0) = o, (5.14)

where A = (1—02)"" (¢8 — (¢ +1)8,) € L (H*Y; H*) as before in section (5.1)), k(t) =
(1—02) " h(t) € L2(0,T; H*(T)) is the new control input, and

B=(1-8)"a(1-8) e L(HT)). (5.15)

We already noticed that A is skew-adjoint in H*(T), and that (5.13))-(5.14]) is exactly
controllable in H*(T), with some control functions k € L? (0, T; H*(T)), for any s > 0. If

we choose the simple feedback law

k = —B**u, (5.16)
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the resulting closed-loop system

u = Au— BB**u = (A — BB"")u, (5.17)

u(0) = uy, (5.18)

is exponentially stable in H*(T) (see Corollary [2.2.1)). In (5.16), B** denotes the adjoint of
B in L (H*(T)), that is, B** is the operator in £ (H*(T)) such that for all u,v € H*(T),

we have (Bu,v) yoipy = (U, B**0) o (.-

Then, by computing B*® we obtain that

(Bu, v) gro(py = / (1+2?)"F ((1 - ai)_l a(z) (1—02) u(x)) F(v(x))dx

T

:AXL+ﬁY1ﬁﬁf@mw@—abu@»fwuﬁw

— /T (1+ xQ)Sfl F (a(z) (1 = 02) u(x)) F(v(z))dx

T

= /T (1+2°)" (1+ xQ)I_S Fu(x)F (a(z) (1 — 02)" " v(x))de

= [ ) Pl F (=3 ale) (- ) o) e
= (u, B*’SU)HS(T) )
That is
B*u=(1-8)""a(1-0)""u (5.19)
In particular

B*'u = au.

Let A = A — BB*! where (BB*Y)u = (1—92)""[a(1 — 82) (au)]. Since BB*! €
L (H*(T)) and A is skew-adjoint in H*(T), A is the infinitesimal generator of a group
{Wa(t)},cg on H*(T) (see e.g. (PAZY],[1983)), Theorem 1.1, p. 76). Our first aim is to show
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that the closed-loop system ((5.17))-(5.18)) is exponentially stable in H*(T) for all s > 1.

Lemma 5.2.1. Let a € C°(T) with a # 0. Then there exists a constant v > 0 such
that for any s > 1, one can find a constant Cs > 0 for which the following holds for all
up € H*(T)

[Wa(t)uo

s S Cye™ [|uo

e forallt > 0. (5.20)

Proof. (5.20) is well known for s = 1 (see e.g. (LIU, 1997))). Assume that it is true for
some s € N*, and pick any ug € H**1(T). Let vy = Aug € H*(T). Then

[Wa(®)voll e < Coe™™" JJvoll e -
We have
Wa(t)vo = Wa(t) Aug = AW, (t)ug = AW, (t)ug — BB**W,(t)uq,
hence

[AWa (@) uol| s < [|Wa(t)vol

e + || BB

Wbyl

| oo e < Ce [t e -

Therefore

[[Wa(t)uol

Hs+1 < Cs+167’Yt ||u0| Hs+1

as desired. The estimate (5.20]) is thus proved for any s € N*. It may be extended to any
s € [1,+00 ) by interpolation. |

Plugging the feedback law & = —B*'u = —au in the nonlinear equation gives the

following closed-loop system

Up — Upgr — CUggr + (¢ + Dug + uu, = —a (1 — 632) lau], (5.21)

u(z,0) = ug(x) (5.22)

The rest of the section is described as follow: in subsection [5.2.1] we prove the global well-

posedness for the system (5.21)-(5.22) in H*(T) for any s > 0 and, for the subsection [5.2.2)
we turn to the stabilization issue, first showing that (5.21))-(5.22)) is locally exponentially
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stable in H*(T), for s > 1, and, next, the global exponential stabilization is treated for

s =1, and, to end, for s > 1.

5.2.1 Well-Posedness of the Feedback-Controlled KAV-BBM System

Theorem 5.2.1. Let s > 0 and T > 0 be given. For any uy € H*(T), the system

(5.21))-(5.22) admits a unique solution u € C ([0,T]; H*(T)).

Before presenting the proof of Theorem [5.2.1] we recall, for the sake of completeness
and convenience, the following bilinear estimate from (ROUMEGOUX, [2010), which we
already encountered in Chapter [3| (lemma , which, once again, will prove to be very
helpful.

Lemma 5.2.2. Let w € H"(T) and v € H’"/(T) with 0 < r < 5,0 <7 < s and

O<25—r—r’<}l. Then

|- 22" o), < cmcliwlir ol
In particular, if w € H'(T) and v € H*(T) with 0 <r < s <71+ 5, then
|=e2) " ouwo)|| < ensliwlrlioln
Proof of Theorem[5.2.1 This proof is divided into three steps:

e Step 1 is the local well-posedness for the system (5.21)-(5.22) in H*(T) for s > 0,
where we will make use of the fixed-point theorem. To this end, we will prove that a

convenient map is a contraction map from a closed ball to itself;

e Step 2 is the global well-posedness for the system ((5.21))-(5.22)) in H*(T) for s > 1,
where we use a global a prior: estimate, which is proved using iteratively, the Lemma

[(.2.2] and Gronwall’s lemma;

e Step 3 is the Global Well-Posedness for the system (5.21))-(5.22)), in H*(T), but, this

time, for 0 < s < 1.

Step 1. The system is locally well-posed in the space H*(T).
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Let s > 0 and R > 0 be given. There exists a T™ depending only on s and R such that
for any uo € H*(T) with

||U’0| Hs < R7

the system ((5.21))-(5.22)) admits a unique solution u € C ([0, 7*]; H*(T)). Moreover, T* —

o as R— 0.

In order to rewrite (5.21)-([5.22) in its integral form, we proceed as follows

(1-92) us = (& — (c+1)0y) u — wu, + a(z)h
u = (1- 83)_1 (c8 = (c+1)0y)u— (1 - 8923)_1 uug + (1—02)"

1

w=Au—(1-) uu, + (1-0%) " a(1-82) (1-02)"n

(. J

1ah

v~

B k
uy = Au — (1 — 35)_1 uu, + Bk

u = Au— BB*'y — (1 — (‘3§)_1 Uy,

1

U = (A - BB*’l) u— (1 — 83)_ Ully

w; = Au — (1 — Oi)fl Uy
Thus, from Duhamel formula, its integral form, or its mild solution, becomes
i 1
u(t) = Wy (t)ug — / Wo(t—7)(1=02)  (uu,) (1)dr. (5.23)
0
For given 6 > 0, define a map I" on C ([0, 0]; H*(T)) by
! 1
['(v) = Wu(t)ug — / Wt —71)(1=02) " (vv,) (1)dr,
0
for any v € C ([0, 0]; H*(T)). Since {W,(t) }+cr is a group of isometries, we have

[Wa(t)uol

H5(T) — o] H3(T) >

then,

sup [|Wo(t)uo
te[0,0]

Ho(T) S o] H3(T)

that is,

HWa(t)UUHC([O,G];HS(T)) < [Juol He(T)
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On the other hand, from Lemma

’ _ 1/t _
/0 Wa(t — T) (1 — @z) ! (vvx) (7’)’ Hem) dr = 5/0 (1 — 83) 1 Oy (1;2) (7-)‘ e dr
t
c
T qus(T)dT
Thus,
! o\ —1 css
[ wat=m) (1= 2) o) (r)ar < 0ol ooy
0 C([0,0];H5(T))
Then, we obtain
CSS
1T () leo.on, = (my) < llwoll grory + 9||U||o(oe] He(T))-
Now, for v,w € C([0,0], H*(T))
K 1
I(v) = D(w) = / Wt —7) (1= 02) " (ww, — vv,) (r)dr,
0
hence,
IT(v) = T(w)lloo.a,memy) < 5 SUp ‘ (1-82) " 0, (w = 0%) (t)‘
0<t<0 He
<— su ‘ 1—82 1836 w—v)(w+ v)(t ‘
2 O<t£)9 ( ) ) Hs(T)
Ocs,s
S5 S (I(w = 0) () = [|(w + 0)(E) || )
0<t<
9658
< —=llw = vlleqoo, sy llw + vlleqo.o,me ).

Therefore, for given R > 0 and u, € H*(T) < R, one can choose

T = (4cS,SR)71 such that I is a contraction mapping in the ball
B:={veC([0,T7]; H*(T)); lvllcqor-1a5m) < 2R},

whose fixed point u is the desired solution.
Step 2. The system is globally well-posed in the space H*(T) for any s > 1.

To this end, it suffices to establish the following global a priori estimate for smooth
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solutions of the system (5.21))-([5.22)).

Let s > 1 and 7" > 0 be given. There exists a continuous nondecreasing function
st Rt — R™,

such that any smooth solution u of the system ([5.21))-(5.22)) satisfies

lulloqoaymsy = sup flul,t)llas < asr ([luoll ) - (5.24)

Xbx

Estimate ([5.24)) holds immediately when s = 1 because of the energy identity

t
a2 — ol = —2 / law(r)|Zedr > 0

Now we begin the iterative process mentioned earlier in the proof outline. Consider

1 <s< s :=1+ 4, applying Lemma and Lemma to the equation ((5.23) yields

that for any 0 <t < T,

Ju(- )] c

e < Cs |luol

Hs + HSdT

t
Cl,s
2 [t )l e )
0

< Ol

Hs dT

t
e+ Conr (ol ) / lu(-,7)]

By using Gronwall’s lemma [2.1.6

Hs (]. -+ CCMLT<||UO||H1)tecal‘T(”u0”H1)t) for 0 <tgT

[ul-; 1)l

sup [|u(,t)| i+ < Clluol|ze (1+ Conr([Juoll ) Ter el )T

bx

i < Cllug|

< asr ([Juollas)

which is estimate (5.24)) for 1 < s < s;. Similarly, for s; < s < sy := 1+ 2

o ||u(e, ) || gsdr

Cicer s [*
Ol < Co ol + =52 [t 7)

w) [t

< Ol

Hs —|—CCY31,T(||U0| HsdT.
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Then,

sup ||u(, t)||ms < asr (||wollms) for s; < s < s9.
0<t<T

Therefore, estimate ([5.24]) holds for 1 < s < sy. Continuing this argument, we can
show that the estimate ([5.24]) holds for 1 < s < 53 := 1+§ for any k > 1. Indeed, suppose
k > 3. We shall prove that estimate (5.24)) holds for s, < s < s, : =1+ %. It suffices to

show that s < s,_1 + % so that we can use Lemma m Hence, we must have

cspatr=tri g .
SN Sk T 8 1 "T87"y 8

As s < s, we have s < 55, + %. This concludes Step 2.

Step 3. The system ((5.21))-(5.22)) is globally well-posed in the space H*(T) for any
0<s< 1.

As in (ROUMEGOUX, 2010) and in the proof of Theorem we decompose any
up € H*(T) as

uozzmeikw: Z + Z =: Wy + Vo,

keZ |k|<ko |k|>ko

with vy € H*(T) small enough

||U0| Hs < 6a

for some small § > 0 to be chosen, and wy € H'(T). We consider the following two initial

value problems

Vi — Vtaz — CUzpe + (¢ + Dvg + vv, = —a (1 — 82) [av],
o (5.25)
v(r,0) = vo(z),
and
Wi — Wiy — CWepe + (¢ + Dw, + ww, + (vw), = —a (1 — §?) [aw]
o (5.26)

w(z,0) = wy(x).

By the local well-posedness established in Step 1, for given 7" > 0, if § is small
enough, then (5.25) admits a unique solution v € C([0,T]; H*(T)). For (5.26), with
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v e C([0,T); H(T)), by using Lemma the estimate

|(1=82) " dutww)|| < Cllwolle < Cllullmlel

Hs,

and the contraction mapping principle, one can show first that it is locally well-posed in

the space H'(T). Then, for any smooth solution w of (5.26) it holds that

5w )5 — [rv(x,t)w(x,t)wz(x,t)dx = —lla()w (- t)|Fn,

which implies that

t
o, )12 < wol% exp (c / Hv('ﬁ)\lde) |

for any ¢t > 0. The above estimate can be extended to any wy € H'(T) by a density
argument. Consequently, for wy € H'(T) and v € C ([0, T|; H*(T)), (5.26) admits a unique
solution w € C ([0, T]; H(T)). Thus, u = w+v € C ([0,T]; H*(T)) is the desired solution

of system ((5.21))-(5.22)). The proof of Theorem is complete. |

5.2.2 Local and Global Exponential Stabilization

The next proposition shows that the system (5.21))-([5.22)) is locally exponentially stable
in H*(T) for any s > 1. Whereas the global exponential stabilization results are addressed
in the theorems, first for s = 1, and then for s > 1 (see Definition [2.2.10]). In addition, an

observability inequality will be derived in order to prove the global result for s = 1.

Proposition 5.2.1. Let s > 1 be given and v > 0 be as given in Lemma[5.2.1. Then there

exist two numbers § > 0 and C" depending only on s such that for any ug € H*(T) with

||U0| Hs < 57

the corresponding solution u of the system (5.21)-(5.22) satisfies

e < Cle™ lug)

[u(- 1|

e V=0

Proof. As in the proof of Theorem [5.2.1] rewrite the system ((5.21))-(5.22)) in its integral
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form
() = Wa(t)uo — % /0 Wt —7) (1) 0, («) (r)dr,

and consider the map
e 2\ 1 2
['(v) == W (t)up — 3 Wt —7)(1=07) " 8, (v*) (1)dr.
0

For given s > 1, by Lemma and Lemma |[5.2.2] there exists a constant Cs > 0 such
that

Cscss ! —~(t—T
ot 25 [ ot )

CS 8,8 !
et S5 [ ot e
0

IT(w)(-, )]

s < Coe™ " |ugl

< Cse_’yt HUJO‘

< Coe ||u0|

CisCss T 2 [ —(t+7)
e + sup |l v(-, )5 [ € dr
2 o<t 0

C
< Coe ™ gl + =5 (1= ) sup [0 7
g

TS

for any ¢ > 0. Let us introduce the Banach space

vim sup [l )]

Y, = {v € C([0,00); H¥(T)) : ||v

<0 .
0<t<oo A }

For any v € Y;, and for any ¢ > 0

Cs S,8 — —
STl < Coe'e™™ uoll g + =55 (L= ) sup [[er'ul-, )5
g

0<t<oo
Cscs,s _
< Os HUO| Hs + 27 (1 —e 'Yt) ||U %;S.
Then,
sCs,s
IT()ly, < Cs |luoll s + 5 o]l3,.
Y
Choose
Y
4C2¢q 5’

Then, if ||ug]] < 9, for any v € Y; with ||v]y, < R,

Cscs,s

IT()]ly, < Cs0 + (2C,0) R < R.
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Moreover, for any vy, v, € Y, with [lo1][y, < R and ||va|ly, < R,

1

[T (v1) = T (v2)ly, < 3 o1 — vally, -

The map I" is a contraction whose fixed point u € Y is the desired solution satisfying
lul, )l < 2Cse™" [|uoll g«

for any t > 0. [ |

Now we turn to the issue of the global stabilization of the system ((5.21))-(5.22)). First
we show that the system ([5.21])-(5.22)) is globally exponentially stable in the space H'(T).

Theorem 5.2.2. Let a € C®(T) with a # 0, and let v > 0 be as in Lemma [5.2.1]
Then for any Ry > 0, there exists a constant C* > 0 such that for any uy € H*(T) with

luol| ;1 < Ry, the corresponding solution u of (5.21)-(5.22)) satisfies

lu(-, )l < C*e™ " lugll e for all t > 0. (5.27)

Theorem [5.2.2)is a direct consequence of the following observability inequality.

Proposition 5.2.2. Let Ry > 0 be given. Then there exist two positive numbers T" and (8

such that for any ug € H'(T) satisfying
[uoll g < Ro, (5.28)
the corresponding solution u of (5.21)-(5.22)) satisfies

T
luollZn < B / lau(t)| 2. (5.20)

First, we use Proposition to prove Theorem [5.2.2] and then, we provide a proof

of the proposition.

Proof of the Theorem [5.2.3. If (5.29)) holds, then it follows from the energy identity

t
()17 = o7 — 2/ lau(r)[Fndr ¥t >0, (5.30)
0
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that
[u(T) |7 < lluollzn — 287 luollzn
< (1=267") Jluolfs -
Applying the same argument on the interval [(m — 1)T, mT] for m = 1,2,..., we have

lu(mT) 5 < (1=287") flu((m = DT)[7n < ... < (1=287")" luoll7
which gives, for ¢ > 0, such that (m — 1)T <t <mT

—_1\m—1
lu@)llFn < (1=28"")"" uolls

(m—1)log(1-28"1) |

VAN

2
€ |u0||H1

(L log(1=2571) 1y 2,

N
o

_ i\l
ce mt log(1-281) HUOHEI

N

_ _1\—1
e (20 g 71

N

that is,
lu@)|lm < Ce ™ Jlugl;;n forall ¢ >0, (5.31)

for some positive constants C' = C'(Ry),x = K (Rp). Finally, we can replace xk by the
v given in Lemma [5.2.1] Indeed, let ' = x~!log [l + CRyd~!], where § is as given in
Proposition [5.2.1} Then for ||ug|| ;1 < Ro, ||u (#')|| g < 0, hence for all ¢t > ¢/

()l < CF llu ()| €77 < (C16/Ro) ol o e < C7e™ [luo| 1
where C* = (C10/Ry) "' u

Now we return to the proof of Proposition [5.2.2]

Proof of Proposition[5.2.3. Pick for the moment any T > 27 /|c| (its value will be specified
later on). We prove the estimate ((5.29)) by contradiction. If (5.29)) is not true, then for any

n > 1 (5.21)-(5.22) admits a solution u,, € C ([0, T]; H*(T)) satisfying

[t (0)]| ;1 < Ro, (5.32)
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and

T
1
| a0t < ol (5.39)

where ug, = u,(0). Since o, := |[ugnl/;1 < Ro, we can choose a subsequence of (ay,),

which we still denote by (ay,), such that lim,, ., @, = @. We note that a,, > 0 for all n, by
(5.33]). So we can set v,, = u,/a, for all n > 1. Then, multiplying (5.21)) by 1/a,, we get

Unt — Untzw — CUnaas + (€ + 1)U + U0, = —a (1 — 83) [avy], (5.34)
and
T 2
1 1wonllzn 1
2 2 g
nll 7 dt < —||vg .y, = ——" = — 9.39
| ol dt < S = e 2 (5.3)
Because of
[ (0)][ g1 = 1, (5.36)

we have that the sequence (v,) is bounded in L> (0,T; H*(T) ), while (v, ) is bounded in
L>(0,T; L*(T)). Since, for s < 1, H < H* and H' C H* C L* we can use Aubin-Lions’
theorem and a diagonal process, to infer that we can extract a subsequence of (v,,),
still denoted (v,,), such that

v, — v in C ([0, T]; H*(T)) Vs < 1, (5.37)
v, — v in L (0, T; H'(T)) weak *, (5.38)

for some v € L> (0,7; HY(T))NC ([0, T]; H*(T)) for all s < 1. Note that, by (5.37)-(5.38)),
we have that

QpUpUp g — QUU,  in L™ (O, T: LQ(T)) weak*. (5.39)
Furthermore, by (5.35)),
T T
/ lav||3dt < liminf/ l|av,|| 3 dt = 0. (5.40)
0 n—o0 0
Thus, v solves

Vp — Vggy — CUgaz + (¢ + 1), + v, =0  on T x (0,7, (5.41)

v=0 onwx(0,7), (5.42)
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where w is given in (5.3]). According to Theorem [4.3.1f v =0 on T x (0,7"). We claim that
(v,) is linearizable in the following sense: if (w,) denotes the sequence of solutions to the

linear KAV-BBM equation with the same initial data

Wit — W tzg — CWn gzz + (€ + D)Wy, = —a (1 — 85) [aw,) (5.43)
Wy (2,0) = vy(x,0), (5.44)
then
sup ||vn(t) — wu(t)||;n = 0 as n — oo. (5.45)
0<t<T

Indeed, by (5.34) and (5.43)), if d,, = v,, — w,, then d, solves

dn,t - dn,t:c:v - Cdn,xac:c + (C + 1)dn,:c = —a (1 - 8325) [adn] - anvnvn,xa
d,(0) = 0.

Since [|W,(t) < 1 and do,, = 0, we have, from Duhamel formula, that for ¢ € [0, T]

.

dr.

H1

I (D)1 < /OT (1= 83 (@nvavns) (7)]

Combined with (5.37)) and the fact that v = 0, this gives (5.45)). Then, returning to the
linearized equation (5.43)), by Lemma [5.2.1] we have that

|wn ()] ;0 < Cre™ " ||w,(0)]| ;1 for all ¢ > 0. (5.46)
From (5.46) and the energy identity for ([5.43)-(5.44]), namely
2 2 ! 2
[[wn (8) [ = lwn (0)l[r = —2/0 [lawn (7)[[ 32 d, (5.47)
we have for Ce T < 1

t
w0 (0) 17 = Ilwn (8) 17 +2/0 law, (7) |72 dr
T
< OFe T wa(0) 3 +2/ lawn (7)1 dr (5.48)
0

T
<2 (1 — 0126277“)—1/ Hawn(T)H?{l dr,
0
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where, Ce™” < 1 ensures us that (1 — C7e~*"") > 0. Thus, combining (5.48) with
(5-35) and (5.45)), this yields ||v,(0)|| g2 = ||wn(0)]| ;1 — 0, which contradicts (5.36[). This
completes the proof of Proposition and Theorem [

Next we show that the system ([5.21)-(5.22)) is exponentially stable in the space H*(T)

for any s > 1.

Theorem 5.2.3. Let a € C°(T) with a # 0 and v > 0 be as given in Lemma |5.2.1]
For any given s > 1 and Ry > 0, there exists a constant C' > 0 depending only on s

and Ry such that for any uy € H*(T) with ||uo|| ;. < Ro, the corresponding solution u of

(5.21)-(5.22) satisfies

lu( )l < Ce™™ lug|

s forallt > 0. (5.49)
Proof. As before, rewrite the system in its integral form
I -1
ult) =Wt — 5 [ Walt =) (1= 3™ 0, () (r)ar
0

For uy € H*(T) with [Juo|| 5« < Ro, applying Lemma [5.2.1} Lemma and Theorem
yields that, for any 1 < s <1+ %,

e < Cse™ lugl

lul-, 1)

Cscl,l,s ¢ —~(t—T
et / 1D e, ) 2
0

2
t
| e e unlf ar
0

C C*)?
< Ot o] sC1,1,s (CF)
C.epq. (CF)? t
ot ZOEL oz, [ e
0

s T 5
2

C.cr 1.4 (CH)? -
< (m“’—(’uuoufp) e o]

< Cse ™ Jul

Hs»

2y

for any ¢t > 0. Thus, the estimate (5.49) holds for 1 < s < my :=1+ 1—10. Similarly, for

my < s <my =1+ %, we have for |lug| ;. < Ry

O

s < Cse 7 ugl 9

[[u(- 1)

t
et / e (e, )|y
0

< Ose_,yt ||u0|

¢
s + C (s,my, RO)/ e V=) g2 ||uo||§1,ml dr
0

< (Cs+ C (s,ma, Ro) [[uoll g 7)€ [Juol
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Thus the estimate ((5.49) holds for 1 < s <mg =1+ %. Repeating this argument yields
that the estimate (5.49)) holds for 1 < s < myg =1+ 1—’“0 for k =1,2,..., which concludes

the proof. [ |
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