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RESUMO

Muitos geradores de face sdo baseados em técnicas como GANs ( Generative Adversarial
Networks) ou modelos de difusdo, que podem criar artificialmente rostos humanos realistas e
de aparéncia natural. Estas técnicas tém um grande potencial para a privacidade, pois podem
substituir os identificadores biométricos de alguém. No entanto, ao substituir o rosto, grande
parte da utilidade da imagem, como estimar a direcdao do olhar, também pode ser perdida.
Embora a estimativa do olhar seja crucial em algumas aplicacoes, como no monitoramento do
motorista ou de pedestres em cendrios automotivos, a literatura sobre geradores de faces nao
possui métricas ou benchmarks relacionados a esse assunto. Desenvolvemos o MetaGaze, um
conjunto de dados anotado com quase 70.000 imagens de 30 rostos sintéticos de modelos de
pessoas disponiveis no MetaHuman, na plataforma Unreal. Analisamos duas técnicas populares
de geracao de rosto, DeepPrivacy2 e GANonymization, usando nosso conjunto de dados,
MetaGaze, e um conjunto de dados de direcdo de olhar no contexto veicular, DMD, junto com
um estimador de olhar , L2CS, para medir a preservacdo do olhar. Aplicamos duas estratégias
para melhorar a preservacao do olhar: modificamos a entrada condicional da técnica base
e fizemos fine-tuning no modelo do GANonimizac3o, adicionando nosso conjunto de dados
ao treinamento para aumentar a diversidade de dngulos de olhar disponiveis no conjunto de
treinamento. Nossos experimentos demonstraram que o fine-tuning com MetaGaze reduziu o
erro absoluto médio na preservacao do olhar de 10.8° graus para 7.9° graus em pitch e de 6.4°
graus para 5.9° graus em yaw em comparacdo com o modelo original de GANonymizac3o.
Além disso, indicamos que os cenarios mais desafiadores para a preservacao do olhar sdo
angulos de camera acima de 10° graus, direcoes do olhar acima de 30° graus, FOV de 60°
graus e olhos semicerrados. O conjunto de dados, MetaGaze, esta disponivel de forma publica

em <www.zenodo.org/records/13345194>|

Palavras-chaves: Anonimizacao facial. Privacidade. GANs. Estimativa de olhar.
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ABSTRACT

Many face generators are based on techniques such as GANs (Generative Adversarial
Networks) or diffusion models, which can artificially create realistic and natural-looking hu-
man faces. These techniques have great potential for privacy, as they can replace someone's
biometrical identifiers. However, by substituting the face, most of the image utility, like esti-
mating the gaze direction, could also be lost. Even though gaze estimation is crucial in some
applications, like monitoring the driver or pedestrians in automotive scenarios, the literature
on face generators does not have metrics or benchmarks related to this matter. We developed
MetaGaze, an annotated dataset with almost 70,000 images from 30 synthetic faces from
premade person models, available on MetaHuman inside the Unreal engine. We analyzed two
popular face generator techniques, DeepPrivacy2 and GANonymization, using our MetaGaze
dataset and a vehicular gaze dataset, DMD, along with a gaze estimator, L2CS, to measure
gaze preservation. We applied two strategies to improve gaze preservation: modified the con-
ditional input from the base technique and fine-tuned the GANonymization model, adding our
dataset to the training to enhance the diversity of gaze angles available on the training set.
Our experiments demonstrated that fine-tuning with MetaGaze reduced the mean absolute
error in gaze preservation from 10.8° degrees to 7.9° degrees in pitch and 6.4° degrees to 5.9°
degrees in yaw compared to the original GANonymization model. Besides, we indicate that
the most challenging scenarios for gaze preservation are camera angles above 10° degrees,
gaze directions above 30° degrees, FOV of 60° degrees, and eyes semi-closed. The dataset,

MetaGaze, is publicly available at <www.zenodo.org/records/13345194> |

Keywords: Face anonymization. Privacy. GANs. Gaze estimation.
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1 INTRODUCTION

In this Chapter, we start by motivating the dissertation (Section , explaining the cur-
rent anonymization solutions (Section to solve our selected problem, "Does training face
generators with synthetic datasets improve their utility for preserving gaze direction during
face anonymization?", our contributions (Section , some basic GANs and how the
dissertation is structured (Section . We are particularly interested in the automotive sce-
nario, but the dataset we developed and the models trained on this work can be applied to

any application concerned with gaze direction preservation in anonymization.

1.1 MOTIVATION

Computer vision approaches toward privacy have become an increasing topic of interest
over the last few years (XIANG, 2022a)). There are several concerns regarding the misleading
usage of captured images that would benefit from vision-based solutions. Cases include leaked
sensitive images from home security cameras of wrongfully accused and convicted people due
to the poor accuracy of some face detection and recognition algorithms, which, in addition,
more than often present a racial bias (YANG et al., 2022]).

In particular, considering the autonomous vehicle sector, there are leakage cases where Tesla
workers share sensitive images recorded by customers' cars (KOLODNY, 2023). In Germany,
Volkswagen was fined $1.1M euros due to violations of the GDPR regarding unauthorized
camera data collection (Compliance Week| [2023). A report from Mozilla Foundation - Privacy
not Included 2023 - reviewed over 25 brands of cars and states that they do not present
valuable privacy strategies. The report concludes that all brands "collect too much personal
data" and "84% share or sell your data" (Mozilla Foundation, [2023)).

By applying computer vision techniques, users can be protected from malicious usage of
captured images. A set of techniques anonymizes users by applying noise and blur to sensitive
parts of the image (ADEBOYE et al| 2022} BRKI¢; HRKA¢; KALAFATIE, 2017 |CONINCK et al.,
2024; |BERA; KHANDEPARKAR, 2023)). However, the utility of those images is deprecated, and
information about what behavior occurred in those scenes is lost in the process. For example,
data such as whether the users were happy or afraid, attentive or distracted, and so on can

be lost.
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As an alternative, several methods utilize Generative Adversarial Networks (GANs) to
anonymize users. These techniques replace representative portions of the image with gen-
erated places, cars, or users, effectively hiding users’ identities while preserving the observable
behaviors. This approach allows for further image analysis and maintains the utility of the
images, offering an optimistic outlook on the future of image anonymization.

In this work, we are particularly interested in the autonomous vehicular sector and how
to effectively prevent those leakages and privacy violations. We focus on a study that aims
to maintain the utility of anonymized faces by preserving the direction of drivers' gaze. The
direction of a driver’s gaze is a crucial factor in the automotive context, as it can indicate where
their attention is focused on the road, rearview mirrors, infotainment systems, or passengers.
This research underscores the significance of understanding and preserving the direction of
drivers’ gaze.

This way, we leverage features such as the direction of the eyes in our study and different
degrees of eyelid opening, camera positions, and camera opening angles, representing ordinary
and fisheye cameras (commonly used in the vehicle interior (GEYER et al., 2020; BAEK et al.,
2021)).

For this purpose, we created an annotated synthetic dataset with proportional distribu-
tions of gaze directions and eyelid openness to support the evaluation of state-of-the-art gaze
estimation techniques applied on top of anonymized faces. Our dataset is entitled MetaGaze.
Furthermore, we evaluated state-of-the-art anonymization techniques on the proposed dataset
to assess the resulting performance regarding its gaze preservation capabilities. Finally, we
propose fine-tuning procedures and two tailoring methods for the input mesh to attain better

accuracy regarding the estimated gaze of the anonymized face.

1.2 ANONYMIZATION TECHNIQUES

There are different ways to achieve user anonymity. We delimit four core strategies, elicit
the pros and cons, and use the associated threat model to determine which approach would
best preserve the gaze direction from the non-anonymized faces in our context. Figure [I] shows
the steps where Anti-Facial Recognition technology (AFR) can occur. Alternative sensors avoid
the first step by avoiding collecting all the information, while GANs, Noise, and Blur techniques
are used in step 2 as they anonymize the image collected in step 1. Lastly, Differential Privacy

is used to avoid step 5, which aims to protect the dataset from query attacks. Categories 3
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Figure 1 — Anti-Facial Recognition technology (AFR) focuses on disturbing the face recognizer capabilities.
To this end, the disturbance can occur in any of the five face recognition steps. From the image
collection or processing (1 and 2) to poisoning the dataset already gathered (3 and 4) (WENGER et al.,
2023)) or even in database query base attacks (5). Image reused from "Sok: Anti-facial recognition
technology" (2023)).

and 4 were not considered in this dissertation as they assume access to the training dataset
of the target model.
Considering the vehicular context, we grouped the anonymization solutions into four cat-

egories of solutions, their respective threat models, and pros and cons:

1.2.1 Alternative Sensors

The use of alternative sensors to detect pedestrians by LiDAR (point cloud) (OHNO et
al., |2024), thermal sensors (MY et al., [2019), or even by its skeleton (NEFF et al., 2020) are
the possible solutions. The concept is not to capture information that could be useful for
identification models, such as facial traits; instead, only information that can distinguish people
from objects is used.

Threat Model Three scenarios are considered: first, unintended access of images; sec-
ond, authorized access; third, someone physically accessing the edge device and collecting
identifiable material from recorded data.

Pros and Cons Even though being a relatively simple method, it discards potentially
useful information from the source image/video, and there is also no guarantee that the re-ID
is entirely avoidable. The attacker can use gait, posture, or height techniques to differentiate

and identify an individual.

1.2.2 GANs for Image Modification

This group of networks receives the untreated photo or video as input containing locations

(XIONG et al., [2019), cars or people (LI et al., 2023)) or faces (CAIl et al,, 2024)) and outputs a
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new image that can no longer be used by another application to retrieve the original subject.
Our work is based on GANs and uses (HELLMANN et al., 2024) as a base technique, so we are
inherently included in this strategy.

Threat Model Any external party potentially receiving or intercepting the image/video
after transformation is considered untrusted. The adversary is assumed to have access to the
training set and the model’s architecture but not the random number generator (RNG).

Pros and Cons It is considered the best solution for edge applications as it provides
complete anonymization while potentially preserving another attribute. However, it is the most
computationally expensive solution and thus is unsuitable for running on some edge hardware.

We have selected GANs as a technique to solve privacy issues mainly because they are
suitably effective in removing identifiers while maintaining image utility. We also consider their

versatility and opportunities for deeper exploration in the image generator field of research.

1.2.3 Noise and Blur

Simple image processing techniques that can protect information like location (ADEBOYE et
al., [2022)), people (BRKI¢; HRKA¢E; KALAFATIE, [2017} [CONINCK et al., 2024) or vehicles and other
subjects (BERA; KHANDEPARKAR, [2023)). More advanced techniques can use style transfer to
preserve some useful data.

Threat Model As in "GANs for Image Modification," any external party potentially re-
ceiving or intercepting the image/video after transformation is considered untrusted.

Pros and Cons This is the opposite of GANs because image processing usually has a
low computational cost. Still, the process can potentially remove valuable data from the input
image. Besides, in some cases, the anonymization can be reversible (the adversary can restore

the original image).

1.2.4 Federated Learning, Differential Privacy, and Cryptography

The collected data should be transmitted to a server for processing, which can leak sensitive
data during transmission or even on the server. Federated learning acts distributing the image
processing to do part of it locally rather than on a server. This idea prevents the risk of
centralized data breaches. Cryptography applications are based on mathematical techniques

for guaranteeing data confidentiality, integrity, and authentication (ZHOU et al., [2022b} BAI
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Figure 2 — B-PETs (Biometric Privacy Enhancing Techniques) can be classified using this taxonomy. This
taxonomy is useful to delimit our techniques’ targets (highlighted) and limitations. Image reused
from "Privacy—Enhancing Face Biometrics: A Comprehensive Survey" (2021)).

et al} 2023; [BAI; FU; YANG, 2022)). In addition, Differential Privacy can be defined as "the
increased risk to one's privacy incurred by participating in a database" (DWORK) [2006), which

means that the very fact that someone’s data is in a dataset makes them vulnerable to data

leaked. These techniques can also be applied independently from the previous methods (as a
complementary or standalone privacy method ).

Threat Model It considers honest-but-curious applications, which operate legitimately
and can access public data but attempt to extract as much sensitive information as possible.
These applications may eavesdrop on transmissions and potentially gather sensitive information
from edge applications.

Pros and Cons Cryptography or differential privacy techniques guarantee the non-reversibility
of the data mathematically; however, those two techniques, along with the federated learning
process, are usually difficult to implement on a full application pipeline. The computational
cost and its complexity can be too high for some applications.

Considering Figure [2 the use of GANs has the following features: we have empirically
validated guarantee, as opposed to Federated Learning, Differential Privacy, and Cryp-
tography that is mathematically proved. Our mapping is irreversible, which is a good privacy
trait. In our case, we work with still image data. The attribute we want to protect is the

identity. Concerning utility, we want to reduce instead of retention, as in Noise and Blur.
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Finally, our main target is to avoid machine face recognition. However, face swaps also avoid

human identification.

1.3 BASIC GANS CONCEPTS

This work uses GANs to generate images; this section will explain the main concepts to
understand this process and some peculiarities of the chosen architecture.

GAN architecture: Figure [3| exemplifies how a general GAN works. Two networks work
as "adversaries. The first is the generator, which is responsible for taking input, like random
noise, and then trying to replicate a given distribution from another set of images (for example,
faces or cats). The discriminator will receive an image from the real dataset or the generator.
It works as a classifier to determine which images are fake and real (this step can be clearer,
as seen in Figure [4)).

U-Net: Figure [5 shows the original U-Net architecture. Its name comes from the "u" like
form of the network. The network was designed for biomedical image segmentation (RON-
NEBERGER; FISCHER; BROX, 2015)) but was also adopted as a generator in some GANs ar-
chitectures, as in pix2pix (ISOLA et al., 2017). The U-Net works as follows: the image from
the input is reduced in dimension by convolutional and max pooling layers until it becomes a
feature vector. Upsampling layers and skip connections (copies of some high-frequency details
from the image to make the image reconstruction fast) are used to reconstruct an image from
the feature vector as output.

PatchGAN: Figure 6| shows the PatchGAN (DEMIR; UNAL, [2018) differential as a discrim-
inator in GANs, especially in pix2pix, where it was first applied. The main difference from a
traditional discriminator, as in Figure [4] is that instead of the output from the image is 0 or
1 for how close to the real dataset it looks, the output is a matrix of Os and 1s. Each value
in this matrix represents the evaluation of a patch from the image (preserving its spatial con-
sistency). This change makes it easier to determine which parts or patches of the images are
more "real." It is beneficial in pix2pix architecture once the spatiality of the image is essential,

and the generator can focus its adjustments on patches that are not so real.



21

Hl Forward propagation (generation and classification) Il Backward propagation (adversarial training)
o © o ©
© 5 o ° ° 5 0 °
00 g o © 0 o _ °
= w20 > = o %o I°-
GENERATIVE o @ ° 2 9 o0 DISCRIMINATIVE - @ ° 270 g0 ~.
NETWORK - o% ° - NETWORK - 6 °
°%® 9@
Input random The generative network The generated distribution The discriminative network The classification error
variables. is trained to maximise the and the true distribution are is trained to minimise the is the basis metric for the
final classification error. not compared directly. final classification error. training of both networks.
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Figure 4 — Fluxogram of a general GAN improving the generation of a number handwrite. Image from "A
Short Introduction to Generative Adversarial Networks" 2017
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Figure 6 — Patchgan discriminator. Image from "Patch-Based Image Inpainting with Generative Adversarial
Networks"
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1.4 CONTRIBUTIONS

To answer our research question, "Does training face generators with synthetic datasets
improve their utility for preserving gaze direction during face anonymization?", our main con-

tributions are as follows:

= We design a annotated synthetic dataset to validate gaze preservation on anonymized
faces. With almost 70000 faces, we achieve high variability by combining 30 characters
that contain 3 Fields of Views (FOVs), 25 camera angle variations, 15 gaze directions,
and 5 eyelid openness variations. The dataset is available at <www.zenodo.org/records/

13345194>|

= We compare the main face anonymization techniques (DeepPrivacy2 and GANonymiza-

tion) regarding our gaze preservation benchmark and Driver Monitoring Dataset (DMD);

» We leverage the results on the benchmark by training the GANonymization technique

along with fine-tuning or input modifying strategies;

= We point out the scenarios attributes where the evaluated methods have more difficulty

preserving gaze.

1.5 DISSERTATION STRUCTURE

After the introduction, this dissertation is arranged into five more chapters to facilitate
the reader's flow. The chapters are as follows: On Related Work (Section , we gathered
relevant papers on Generative Face Anonymizers (Section [2.1]), solutions for Privacy in Au-
tomotive Camera Systems (Section [2.2)). In addition, we split data set references into three
categories: Gaze Datasets (Section[2.3)), Face Generation Training Sets (Section and Syn-
thetic Datasets (Section . For Preliminary Works (Section , we start by detailing Problem
Statement (Section , where we developed Priface (Section , a pipeline to enhance and
measure face quality. To this end, we also display our Experiments (Section and Findings
(Section [3.4)). Lastly, Exploring GANonymization (Section explains why we shifted the
original research problem and technology. In Methodology (Section [4]), we describe our pro-
posed dataset MetaGaze (Section [4.1)). We also detail the base technique, GANonymization
(Section , and our two improvement approaches: Fine-Tuning Variations (Section and


www.zenodo.org/records/13345194
www.zenodo.org/records/13345194
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Mesh Variations (Section [4.4). In addition, in the Experiments (Section [4.5]), we detail the
choices on datasets, methods, metrics, and implementation details. In Results (Section , we
have done a Quantitative Analysis Section , along with Further Quantitative Analysis
to dig deeper into the results by comparing the variations by each of the dataset attributes. We
also did a Qualitative Analysis (Section to evaluate the outputs visually. Finally, the main
points are summarized in Section . Our Conclusion (Chapter@ summarizes the dissertation,

along with a list of limitations and future work identified.
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2 RELATED WORK

In this Chapter, we gathered relevant papers on Generative Face Anonymizers (Section
2.1)), solutions for Privacy in Automotive Camera Systems (Section [2.2)). Besides, we collected
datasets that are divided into three categories: Gaze Datasets (Section [2.3)), Synthetic Datasets
(Section [2.4)), and Face Generation Training Sets (Section [2.5).

2.1 GENERATIVE FACE ANONYMIZATION

Regarding architecture and capacity, GANs have demonstrated impressive capabilities in
generating realistic, high-resolution images (GOODFELLOW et al., 2014a; KARRAS; LAINE; AILA,
2019). Diverse methods (REN; LEE; RYOO, 2018; |LI; LIN, 2019; WU et al,, [2019; WEN et al.,
2022; |SUN et al., 2018) have utilized GANs for face anonymization, leveraging their ability to
learn and replicate the distribution of training data. The use of GAN architectures such as
DCGANSs (SUN et al, 2018)), StarGAN (LI; LIN, [2019), and StyleGAN (SHAMSHAD; NASEER;
NANDAKUMAR, 2023 JIANG et al., [2023; [ZHAO et al., 2020), as well as StyleGAN2 (KARRAS et
al., 2020; [KARRAS et al., |2020; [SKOROKHODOV; TULYAKOV; ELHOSEINY/, 2022) and StyleGAN3
(KARRAS et al., 2021; [BODDETI; SREEKUMAR; ROSS|, [2023; |QIU et al., 2022 [FARD et al., [2023;
HELLMANN et al., 2024), has significantly advanced face anonymization techniques. These de-
velopments have enhanced visual quality, preserving the realism of generated images while
effectively obfuscating identity information. However, as the technologies advance in resolu-
tion and generation capacity, so is the network size. Therefore, depending on the application
limitation, like onboarding processing, the engineer responsible should select techniques less
powerful but more practical should be used instead.

Another reference to face generation is the techniques based on diffusion models (HO; JAIN;
ABBEEL, 2020). Those models are newer and more robust than GANs based once they can
generate more variation between images and with better resolution (HE et al., 2024; MORVAY
et al, [2023; KLEMP et al., [2023a). However, diffusion models require immense computational
resources and time for training and inference compared to GANSs; therefore, we did not inves-

tigate further techniques.



26

2.2 PRIVACY IN AUTOMOTIVE CAMERA SYSTEMS

There are also works focused on anonymization for the vehicular field of application. For
instance, the LFDA method (KLEMP et al., 2023b) is applied to anonymize pedestrians’ faces
using a latent diffusion method. On INSPIRE (LI et al| 2023)), the authors propose a tech-
nique to synthesize humans and cars, generating full-body synthetic versions of pedestrians.
Another framework introduces a privacy-preserving pedestrian analysis in which a wireframe
representation takes place over the original user body in the image, preserving the body shape
and posture (but not the gaze particularly) (KUNCHALA; BOUROCHE; SCHOEN-PHELAN, [2023)).
DeepPrivacy2's authors have conducted a study focused on pedestrian datasets to understand
if there is any impact regarding training models on anonymized data for the instance segmen-
tation and key points detection tasks (HUKKELAS; LINDSETH, [2023b)). The authors concluded
that the performance drop (preserving behavioral characteristics) is significantly reduced if the
anonymization is realistic. Despite the results and findings in these works towards optimizing
the utility of the generated images, gaze preservation has not been tackled in any of the cited

papers.

2.3 GAZE DATASETS

In the automotive scenario, it is crucial to check if the pedestrians (external camera)
and the driver (internal camera) are aware of each other, which can be checked by gaze
estimation. For external datasets, Gaze360 (KELLNHOFER et al., [2019)) covers a wide range of
head poses, distances, illumination, occlusion, and other conditions in the wild. P-DESTRE
(KUMAR et al,, 2020) is a pioneer pedestrian re-id and tracking dataset that collects images
using Unmanned Aerial Vehicles (UAVs). For internal environments, many datasets used videos
(real and simulated) that were recorded with drivers (GHOSH et al., 2021; ORTEGA et al., 2020;
VORA; RANGESH; TRIVEDI, 2018).

Synthetic datasets related to gaze have been developed as well. Some datasets use synthetic
eye images to evaluate deep networks for driver gaze estimation (FAHMY et al., [2021)). The aim
is to discover underrepresented scenarios and retrain the dataset to fix and prevent critical
failure cases. In FEXGAN-META (SIDDIQUI, [2022)), a synthetic facial expression dataset using
MetaHuman (Epic Games, 2023a)) was developed because of the scenario’s lack of good-quality

images. Synthetic data is more reliable and controllable in generating high-quality data that
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can evenly represent even classes often underrepresented in real data. However, the datasets
available did not explicitly consider variations on FOV (Field of view) in the camera and did

not have a good dataset distribution concerning eyelid closeness.

2.4 SYNTHETIC DATASETS

Many deep learning models are performing fine-tuned on synthetic datasets or even doing
synthetic training when the model is training exclusively on synthetic data (JOSHI et al., 2024)).
Some results show that it can be even better than using real data (TREMBLAY et al., [2018).
The main advantages come from the performance boost, built by a dataset that has complete
controllability and scalability of the datasets along with mitigating privacy concerns as there
are no real people in the images.

Synbody (YANG et al., 2023) is a synthetic dataset with 1.2M images of people in a wide
range of poses and backgrounds; their annotations can be used even by Neural Radiance Fields
(NeRF) models. EmoFace (LIU et al., 2024)) is an Audio-driven emotional 3D face animation
dataset that can control the rigs for emotion and lipsync in MetaHuman to generate anima-
tions. FEXGAN-META (SIDDIQUI, 2022) is a facial expression dataset with 162K images that
also uses MetaHuman developed to expand the quantity of good quality facial expression im-
ages. Another synthetic dataset that uses MetaHuman (HERASHCHENKO; FARKAS, 2023) has
57k images and was used to extend the training set of a gaze estimator and managed to re-
duce the error in the estimation. In Heatmapbased Unsupervised Debugging of DNNs (HUDD)
(FAHMY et al, 2021)), using UnityEyes simulator, the authors were able to not only fine-tune
the gaze estimator model but also identify the group of images that does not have a good
performance and thus, leverage the security and accuracy of the whole model. Those datasets
did not explicitly take into account the FOV camera variations, which could be fundamental

in certain scenarios, like onboarding car cameras;

2.5 FACE GENERATION TRAINING SETS

Often, GANs and training datasets are developed together. GANonymization (HELLMANN
et al,, 2024) and CIAGAN (MAXIMOV; ELEZI; LEAL-TAIXE, |2020) used CelebA (LIU et al., |2015)
for training their models. CelebaHQ (KARRAS et al., 2017)) was a similar dataset with higher

resolution that was released with Progressive GAN, as it generated high-resolution images.
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CelebV-HQ (ZHU et al,, 2022) is similar, but for videos. Flickr-Faces-HQ (FFHQ) dataset
also has HD quality and was developed along with StyleGAN (KARRAS; LAINE; AILA| [2019)).
Multi-purpose ExtremePose-Face-HQ dataset (EFHQ) (DAO et al) 2024) was an alternative
created to make the models more robust to a wider range of face poses, as extreme poses
are not enough represented in their predecessor. DeepPrivacy? (HUKKELAS; LINDSETH| [2023al)
also developed Flickr Diverse Humans(FDH) and Flickr Diverse Faces 256 (FDF256) datasets
because the previous datasets did not cover enough poses for faces or bodies in their training.
Those training sets tackle specific gaps from the predecessors or some limitations from their
network architecture. However, many of them are not labeled, which may make it difficult to
analyze where the models trained are not satisfactory. These datasets also did not consider
gaze direction explicitly as an attribute that should be well distributed in their data, which may
cause class representation problems (for example, faces looking up not being well generated)

and bias in training.
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3 PRELIMINARY WORKS

During the development of this master's, we conducted a set of preliminary works that led
to our early findings regarding core gaps in image anonymization. We found that no studies
have specifically investigated Face Quality Assessment in the context of privacy-preserving
images. Therefore, in this Chapter, we detail our first approach to setting the research problem
in Problem Statement (Section [3.1)), where we developed Priface (Section [3.2), a pipeline
to enhance and assess face image quality. To this end, we also displayed our Experiments
(Section and Findings (Section [3.4]). We exhibited the PRIFACE paper on the ICCV 2023
(International Convention on Computer Vision) as an extended abstract at the LXCV (LatinX
in Computer Vision) workshop. Lastly, Exploring GANonymization (Section explains why

we shifted the original research problem and technology.

3.1 BROADER PROBLEM STATEMENT

One of the biggest concerns about privacy violations is the deployment of camera-based
monitoring systems in industries and smart cities, coupled with advancements in computer vi-
sion (DUFRESNE-CAMARO; CHEVALIER; AHMED), 2020; XIANG) [2022b)). Acquired images contain
sensitive data that can reveal people’s identities and behaviors, leading to issues like unde-
sired advertising, behavior monitoring, and biased arrests. New data protection laws impose
obligations on data controllers and empower individuals to control their data (LYNSKEY, 2015;
PURTOVA, [2018)). Storing anonymized images is a solution to comply with these laws, but
traditional privacy techniques like blurring hinder image analysis. Effective protection methods
could balance privacy and utility, like fabricating replacement identities using "deep fake" tech-
niques or Generative Adversarial Networks (GANs) for anonymization. However, even though
current GANs can generate credible faces in high-resolution frontal face datasets (KARRAS;
LAINE; AILA| [2019; |LIU et al., 2015), in the early stages of our research we observed a set of
gaps for in the wild applications’ image quality and, especially, in how to evaluate its qual-
ity effectively. Hence, we dedicated our preliminary efforts to delve deeper into two topics to
understand how to measure and enhance generated face image quality.

Face Image Restoration. Aiming to improve the quality of the generated anonymous

faces, we investigated restoration techniques. A series of face image restoration methods have
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been proposed to address various types of facial image degradation (HONG; RYU, 2020; YU;
PORIKLI, [2016} ZHANG et al., [2021} ZHU et al., 2016)), including low-resolution, noise, and blur
(CHEN et al| 2021). However, when dealing with real-world images, they often exhibit poor
performance. Several blind face restoration (BFR) approaches have been developed to restore
faces without prior knowledge about the type of degradation. (YANG et al., [2021a)). Another
strategy involves using Transformers (ZHAO et al|, 2023; [LI et al., 2022, WANG et al., 2022),
first capturing the superpixel-wise global dependency and then transferring it into each pixel.
Recently, GAN inversion approaches can invert the latent space representation of StyleGAN
(WANG et al., 2022; YANG; QUAN; ZHANG, 2021; PAN et al., [2020) and generate high-quality
facial images by learning to map a degraded image to its corresponding latent code. Their
effectiveness has been demonstrated in various studies (CHEN et al., 2021; YANG et al., 2021a]
POIRIER-GINTER; LALONDE| 2023).

Image Quality Assessment. Another related topic of interest is to automatically assess
the quality of the generated image. Properly defining if the new anonymous face is well formed
is crucial to attribute a utility score to each technique. Image Quality Assessment (IQA) can
be categorized into two classes: (1) full-reference IQA (FR-IQA) evaluates the statistical or
perceptual similarity between restored and reference images, often relying on handcrafted
features and statistical analysis such as mean squared error (MSE), peak signal-to-noise ratio
(PSNR), structural similarity index (SSIM), or perceptual quality index (PQI) (SHAO et al.|
2015} |SHEIKH; BOVIK; VECIANA, 2005; WANG et al.,, 2004). (2) No-Reference IQA (NR-IQA)
uses Convolutional Neural Networks (CNNs) and other deep architectures to capture complex
image features and incorporate perceptual aspects of image quality. These models are typically
trained on extensive datasets that may include human ratings (LIU; WEIJER; BAGDANOV, 2017
ZHANG et al, [2023). Although previous works have explored the utility of face images (FU et
al., [2022)), no studies have specifically investigated Face Quality Assessment in the context of
privacy-preserving images.

In sum, in our initial endeavors, we explore the effects of applying face enhancement meth-
ods and evaluating the generated faces using facial metrics. The main contributions of this
work are as follows: (1) A plug-and-play pipeline resulting in an anonymization method to
improve the overall quality of GANs-generated images. (2) One of the first evaluations of en-
hancement face methods and face quality assessment on artificially generated faces (evaluated

in the wild scenario on the dataset WIDER (YANG et al., [2016))).
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3.2 PRIFACE
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Figure 7 — A detailed view of the PRIFACE pipeline. The first step is Anonymization, in which we use DeepPri-
vacy?2 (HUKKELAS; LINDSETH), 2023a) to generate an anonymized face. This face is then fed to the
Image Enhancement step, where we employ CodeFormer (ZHOU et al., [2022a)), an Encoder-Decoder
model that improves the overall quality of the image. Finally, we assess the image quality on Quality
Assessment by applying the IFQA as a metric that will also output a heatmap highlighting more
realistic regions .

As we show in [Figure 7] given an input image, we (1) apply DeepPrivacy2 (HUKKELAS;
LINDSETH| 2023a)) in the Anonymization step, generating a new set of data (which can be
one or multiple images) with anonymized faces. We then use this output to the (2) Image
Enhancement module to improve the quality of the image. Finally, we (3) assess the image
quality in the Quality Assessment stage.

Face Anonymization Module. We chose DeepPrivacy2 (HUKKELAS; LINDSETH, 2023al)
to integrate our pipeline for two reasons: (1) instead of facial landmarks (often tricky to get on
'in the wild' scenarios), face surroundings and sparse pose information condition the generator;
(2) it is capable of full-body anonymization, facilitating a forthcoming expansion on future
works. DeepPrivacy2 generator architecture is based on U-Net (RONNEBERGER; FISCHER; BROX,
2015), and the face module is capable of receiving and generating faces up to 256 x 256 of
resolutions (previously 128 x 128 on DeepPrivacy (HUKKELAS; MESTER; LINDSETH, [2019))).
ProGAN (KARRAS et al, [2017)) inspired the growing GAN and upsample a generated face from
4 x 4 until the final resolution. DeepPrivacy? has made significant additions, for instance,
it concatenates each decoder layer with pose and surrounding information and transforms
the previous network on conditional GANs. The network was trained on the FDF dataset
(HUKKELAS; LINDSETH, [2023a)) proposed by the same authors. This dataset has 1.5M faces
with challenging positions, illuminations, and occlusion factors, expanding the generated face
range of action in diverse conditions.

Face Enhancement Module. CodeFormer (ZHOU et al., 2022a) was developed to solve
the blind face restoration problem as an encoder-decoder method. They use a Transform-

based prediction network capable of identifying facial regions. They restored face regions from
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different degradation levels with a learned expressive codebook space. The applications go from
noisy images to uncanny or low-resolution generated faces. CodeFormer has a hyperparameter
'w' in the range 0-1 that can prioritize either fidelity or quality. As the enhancement is applied
to the generated faces, we have no objective of preserving any specific face trace. So, 'w’ was
set to 0 on all experiments, prioritizing quality over fidelity.

Face Quality Assessment Module. Interpretable face quality assessment (IFQA) (JO
et al), 2023) is a face-centric metric (considers the face's primary regions, such as the eyes,
nose, and mouth.) for assessing the perceptual quality of computationally generated faces.
The authors show in their experiments that IFQA is highly correlated with human judgment
regarding face naturality and quality.

The IFQA framework is based on adversarial learning. The generator consists of an encoder-
decoder architecture. The discriminator outputs per-pixel score using a U-Net architecture
(SCHSNFELD; SCHIELE; KHOREVA, [2020). This structure allows us to classify each pixel as real
or fake. An image-level score or quality score (QS) (see Equation can be obtained by

aggregating pixel-level scores as follows:

1 H W U
05 = g L2 D) 1)

where [ is an input image, H and W its height and width, and DZU](Z) is a U-Net-based

pixel-level discriminator.

3.3 EXPERIMENTS

Dataset. The WIDER FACE dataset (YANG et al, 2016) has images containing faces
with small scale, oblique poses, and occlusion. These challenges represent potential real-world
application scenarios. We evaluate our pipeline on the validation subset (10% randomly selected
of the dataset), also used by DeepPrivacy (HUKKELAS; MESTER; LINDSETH, 2019) to measure
the impact of the anonymization. The full dataset contains 32203 images and 393703 labeled
faces. Even with approximately 3200 images, the WIDER FACE validation subset is comparable
with other face detection complete datasets like MALF (YANG et al,, 2015) or FDDB (JAIN;
LEARNED-MILLER), 2010) with 5250 and 2845 images, respectively.

Configurations and comparisons. We applied our pipeline on the WIDER FACE dataset

to generate five dataset variations as outputs that will be referenced as: Original: WIDER FACE
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set without any modifications, used as baseline; DP2: "Original" anonymized with DeepPri-
vacy2; PRIFACE: our proposed pipeline, "DP2" enhanced with CodeFormer; CF: "Original" en-
hanced with CodeFormer; CF+DP2: inverted pipeline, "Original" enhanced with CodeFormer
and anonymized with DeepPrivacy?2.

Validation Metrics. We evaluate the generated dataset variations using two metrics: (1)
Fréchet Inception Distance (FID), a metric from the latest layer of an inception neural network
that compares the distribution from the generated images with the real set used as ground
truth. FID is used for GANs, including as the loss function of DeepPrivacy2. (2) Interpretable
Face Quality Assessment (IFQA) was chosen as our Face Quality Assessment Model (see
chapter 4)) and is used to compare the impact of each module on the dataset. Both IFQA
and CodeFormer studies compare themselves with comparative quality metrics, namely PSNR
(HUYNH-THU; GHANBARI, 2008), SSIM (WANG et al., 2004), and LPIPS (ZHANG et al., [2018]).
In our analysis, we specifically use IFQA to evaluate the impact of CodeFormer, given that
this metric is closer to human judgment by the authors(JO et al., [2023)).

Implementation Details. We used the pre-trained available models and implementations
for DeepPrivacyﬂ,CodeFormerﬂ, IFQA E] and FID (SEITZER, [2020)) score for PyTorcl’E]. We
conducted our experiments on a desktop computer running Ubuntu 20.04 LTS with an Intel

Xeon E-2226gp with 32 GB of RAM and a Quadro p1000 with 4GB of VRAM.

3.4 FINDINGS

Quantitative Evaluation. Table [1] displays the FID metric between each dataset and its
configurations. FID can be understood as the distance between the features from a set (gen-
erated images) and the features from a second set (real); therefore, the smaller the distance,
the better (at the beginning of the training, the FID is about 500 and should be minimized).
The FID from Original and DP2 is 8.68. This value means that even with the anonymized
faces, the dataset still represents similar objects, i.e., faces. DeepPrivacy? registered an FID
of 1.84 when comparing a validation set of 50,000 images from the FDF dataset and their
own anonymized faces output. The second FID is 126.91, between Original and PRIFACE.

The result expresses that the PRIFACE generates images more distinct from the Original than

1 https://github.com /hukkelas/deep_privacy?
2 |https://github.com /sczhou/CodeFormer

3 https://github.com/VCLLab/IFQA

4 https://github.com /mseitzer/pytorch-fid


https://github.com/hukkelas/deep_privacy2
https://github.com/sczhou/CodeFormer
https://github.com/VCLLab/IFQA
https://github.com/mseitzer/pytorch-fid
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Configuration Original ({) DP2 () PRIFACE (])

Original 0.00 — —
DP2 8.68 0.00 —
PRIFACE 126.91 123.27 0.00

Table 1 — FID scores by each pair of datasets. The distance between a dataset and itself should be zero as
they are equal.

Configuration Mean (1) Std Deviation

Original 0.096 0.157
DP2 0.096 0.159
PRIFACE 0.437 0.157
CF 0.419 0.159
CF+DP2 0.094 0.153

Table 2 — Mean and standard deviation of the IFQA score for each of the configurations.

just the DP2 configuration. We obtained a similar FID of 123.27 between DP2 and PRIFACE.
A similar score with the last case, Original and PRIFACE, suggests that the CodeFormer
impacted original and generated faces on a similar intensity.

In Table[2, we applied the IFQA score to quantify quality and resolution. Its values should
be closer to one, as the image gets better resolution and seems more realistic and closer
to zero otherwise. PRIFACE and CF got the best IFQA average scores of 0.437 and 0.419,
respectively. DP2 and CF+DP2 both had low scores (close to 0.0095), similar to the Original.
Those three modules do not end with our Enhancer module. The low IFQA score is probably
due to the WIDER FACE dataset having 50% of its faces with a resolution of less than 50 pixels
high. The standard deviation on the images is high (0.15) due to the nature of the WIDER
dataset ((YANG et al, [2016)): the variety of challenging scenarios such as face resolution.

We present distributions for each configuration (Table [2) in Figure [8| The first row repre-
sents the proposed pipeline: the Original distribution has two-thirds of its images on a quality
below 0.1 in IFQA score. Followed by a similar distribution of the artificial faces generated
on (DP2), both IFQA mean scores 0.096 (Table [2). In the last stage, (PRIFACE) IFQA dis-
tribution is more evenly dispersed around 0.5 and 0.6. The quality mean improved by 353%
(0.0966 to 0.4379 from Table [2) by enhancing the faces with CodeFormer. The main con-
tribution of this preliminary work is the use of the PRIFACE pipeline to align the

protection offered by DeepPrivacy2 with the quality improvement on artificial faces
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Figure 8 — Impact study on the distribution of IFQA score over the WIDER FACE dataset variations. The first
row shows modules in the proposed order: Original, CF, and PRIFACE (CF+DP2). The second line
shows applying the enhanced module before the anonymization module.

from CodeFormer.

The second line studies applying the modules in the opposite order: Original, CF, and
CF+DP2. In CF, the mean IFQA score improved by 335% (from 0.0963 to 0.4193 from Table
. However, in CF+DP2, the distribution produced an analogous to Original (0.094 in Table
. The trade-off was that the enhanced input of CF allowed DeepPrivacy2 to anonymize
almost 61% more faces (the distribution has more elements than the others). The detector
was able to find more faces in each image. So, even if the generated quality were the same,
more people were protected. Higher input quality results in higher face detection rate,
reducing one of the main limitations of the anonymization methods: only faces detected by
the models can be anonymized.

Qualitative Evaluation. We sort sample results of PRIFACE from worse to best final
IFQA score (third column) in Figure @ This Figure illustrates images from a lower to a higher
spectrum score of IFQA. As discussed in quantity results, there is no real gain between the first
and second images on the anonymization module. However, a notable IFQA score improvement
occurs on the face enhancer module (right column).

In the first line, the Original face (left) has low resolution and a lateral pose. It initially
scored 0.0065; after the anonymization (middle image), the score had no significant change,
going to 0.0071. On the enhancer module, the resolution improved, but the face did not look
natural. Thus, the final score only increased to 0.1432. The second line had a frontal face with
0.0097 of IFQA; the anonymized face(middle) got 0.0077. The anonymization module did not
preserve attributes like gender, ethnicity, or age. Those results suggest that our models could

be biased toward specific patterns, and further studies could be done to this extent. In the
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Figure 9 — Qualitative analysis for a sample of images from the WIDER FACE dataset through PRIFACE. From
left to right, we have the original image from the dataset, the results from anonymization using
DeepPrivacy2, and our improved result with PRIFACE. Each face image is coupled with a heatmap,
in which the higher scores (in yellow) are regions that the metric classifies as "more natural," while
the lower scores (in blue) are low-quality fake components. The IFQA score is also placed under
each pair of images.

last line, the IFQA scores during each module were 0.0041, 0.005 and 0.6253. This evolution
represents the most common growth of the PRIFACE IFQA score distribution (see the two

most common columns IFQA are between 0.5 and 0.7 Figure .

3.5 FURTHER VISUAL QUALITY QUALITATIVE ANALYSIS

After the development of PRIFACE, as previously explained, we perceived several quality-

related patterns in the generated images. Pursuing this direction, we updated the baseline

technique for anonymization, using the GANonymization (HELLMANN et al.,, 2024) mode, pro-

ceeding with the training by using the specifications detailed by the authors. We trained the
model on the CelebA dataset for 25 epochs (same as the authors). Then, we conducted an
in-depth visual analysis of the generated images to better identify the core issues regarding
the visual quality. Considering the results, we have grouped them into six groups (Figure [10)),

namely:
(A) Dark Eye Region;

(B) Misaligned Irises;
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Figure 10 — Initial quality issues in our GANonymization training using the CelebA dataset. Each group rep-
resents an identified issue:(A) Dark Eye Region, (B) Misaligned Irises, (C, D) Low-quality Faces,
(E) Residual Artifacts in the hair, and (F) Faces not identified by Mediapipe.

(C) Strange looking Faces for the unusual head pose inputs;
(D) Low-quality Faces for uncommon facial expression inputs;
(E) Residual Artifacts in the hair;

(F) Faces not identified by Mediapipe.

Considering those 6 groups of issues, we initiated an investigation for solutions within the
scope of this dissertation. We first tackle group (A). We noticed that the issue relies on the
training set, where some faces have sunglasses, and thus, the models associated the region with
dark colors. We solved the problem by filtering the images in the training set with the glasses
label. Issue (E) is likely related to the network architecture, as the skip connections from the
U-Net carry some of the high-frequency details from the images, so we decided to focus on
other issues. We also skip issue (F) related to face identification, which is one limitation in
many face recognition or face anonymization pipelines.

We suspect that problems (C) and (D) are caused by the training set's lack of diversity in
head poses and facial expressions. As pointed out by ISOLA et al the pix2pix does generate a
subset of the training set and, thus, does not have that much variety. To overcome this variety

limitation, we explored a solution in this dissertation: complementing the training with another
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dataset. Finally, we considered problem (B) vital according to our vehicular problem scenario,
and it was the issue to which we dedicated following efforts of this master's scope, therefore
investigating "Does training face generators with synthetic datasets improve their utility for

preserving gaze direction during face anonymization?"
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4 METHODOLOGY

Focusing on answering the question, "Does training face generators with synthetic datasets
improve their utility for preserving gaze direction during face anonymization?" we expand
our investigation strategy towards improvements using a base anonymization technique. This
Chapter explains our proposed annotated dataset MetaGaze (Section . We detail the
base technique, GANonymization (Section , and our improvement approaches Fine-Tuning
Variations (Section and Mesh Variations (Section |4.4).

4.1 METAGAZE

Study Participants Head Poses  On-screen Gaze Targets Eyelid Openness FOVs Images

UTA Heracleia dataset (2012) 20 1 16 1 1 videos
BiolD database (2013) 103 1 12 1 1 1,236
Ulm Gaze Dataset (2007) 20 19 2-9 1 1 2,220
Gaze locking (2013) 56 5 21 1 1 5,880
Eyediap (2014) 16 continuous continuous 1 1 videos
Multi-view Gaze Dataset (2014) 50 8 + synthesised 160 1 1 64,000
MPIIGaze (2017) 15 continuous continuous 1 1 213,659
MetaGaze (Ours) 30 25% 15 5 3 71,610

Table 3 — Comparison of Gaze Tracking Datasets. *Instead of head poses, we explored camera angles. Based
on the MPIIGaze table (2017).

In addition to modifying the GANonymization technique, we address the need for a spe-
cialized annotated dataset to assess gaze preservation in face anonymization techniques quan-
titatively. To this end, we first thoroughly investigated existing gaze datasets to identify gaps
and unmet needs, particularly in explicit variations in the field of view (FOV) and eyelid open-
ness. This analysis revealed that no current dataset adequately addresses these dimensions,
underscoring the necessity for creating the MetaGaze dataset. Table [3| compares our proposed
MetaGaze dataset and other existing gaze datasets. The unique contribution of MetaGaze
lies in its explicit consideration of five eyelid openness variations and three FOV variations, as
detailed in Table[d] Additionally, MetaGaze offers greater diversity in head poses and on-screen
gaze targets compared to earlier datasets such as "UTA Heracleia," "BiolD," "Ulm Gaze," and
"Gaze Locking" (MCMURROUGH et al, 2012} VILLANUEVA et al), 2013} WEIDENBACHER et al
2007; |SMITH et al., [2013). By leveraging synthetic data, MetaGaze allows complete control over
scene conditions and facilitates rapid expansion by adding new attributes, such as light direc-

tion or facial expressions. This adaptability further strengthens its utility as a training set and
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benchmark for gaze preservation in anonymized faces. Excluding video datasets such as "UTA
Heracleia" and "Eyediap" (MCMURROUGH et al., |2012; MORA; MONAY; ODOBEZ, 2014), as well
as the "Multi-view Gaze Dataset" (SUGANO; MATSUSHITA; SATO, 2014), MetaGaze includes
a substantial volume of images (69,840), enabling its effective use in fine-tuning training, a

topic discussed further in Section [4.5]

Attribute Variations Values
Eyelid Openness 5 Wide Open, Open, Semi-closed, Half-closed, Closed
FOV 3 60°, 90°, 120°
Gaze (pitch) 5 -60°, -30°, 0°, 30°, 60°,
Gaze (yaw) 3 -30°, 0°, 30°
Camera (pitch) 5 -20°, -10°, 0°, 10°, 20°,
Camera (yaw) 5 -20°, -10°, 0°, 10°, 20°,
Resolution 1 512x512px
Subjects 30 -
Images 69,840 -

Table 4 — MetaGaze attribute variations, including Eyelid Openness, FOV, Gaze, and Camera angle variations.
Other specifications, like resolution, total number of images, and subjects, are also displayed.

We introduce MetaGaze, an annotated synthetic dataset with almost 70,000 images, each
with a resolution of 512x512 px. Its face images cover a variety of gaze angles and camera
conditions. It uses 30 prefab human models available on the Meta Humans (Epic Games, 2023a)),
inside the Unreal engine (Epic Games, [ 2023b)). A sum of all the attribute configurations applied
on the Humans prefab models to record the images from the MetaGaze dataset can be seen
in Table [4] We have five Eyelid Openness variations, from wide open to closed. Regarding the
camera, we have used 25 combinations of pitch and yaw, along with 3 FOVs configs. Finally,
we have 15 gaze direction combinations, 3 in yaw and 5 in pitch.

Some of the variations presented in Table [4] can be seen in Figure[11] In 'Gaze,” we display
all the 15 gaze directions available in the dataset, corresponding to the combinations in Gaze
(pitch) and Gaze (yaw) from Table 4] In 'Camera,” we show 10 out of 25 positions, specifically
20° and 20° degrees in yaw combined with -20°, -10°, 0°, 10°, and 20° in pitch. Eyelid Openness
shows the five variations present in our dataset. For last, in 2 FOVs 60°, and 120° degrees are
in the image. All the other images have FOV of 90° degrees, wide-open eyes, and gaze direction
of 0° pitch and 0° yaw for comparison purposes. The variation covers different camera specs
available in vehicles or other environments as in A2D2, Audi dataset (GEYER et al., [2020)) or
in other autonomous driver sources (BAEK et al., [2021).

Figure [12| shows how to adjust the face parameters of the human model of MetaHuman
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Figure 11 — Samples from MetaGaze show diversification in Human Models, Gaze, Camera, Eyelid Openness
and FOV.

in the Unreal Engine. The attributes of gaze direction (pitch, yaw) and eyelid openness are
directed, controlled on the control rig, and annotated. The camera parameters, such as distance
and angle from the face and FOV, are also annotated, directed, and controlled on Unreal.
The camera was positioned 30 units from the center of the head. For the iris or gaze
variations, we considered five configs on MetaHumans "CTRL_C_eye" (-1.0, -0.5, 0, 0.5, 1.0)
in the pitch and 3 in the yaw (-1.0, 0, 1.0), totalizing 15 gaze configurations. We also got 5
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Figure 12 — Interface of the Unreal engine with the MetaHuman model. In the right, the control rig capable
of adjusting the face parameters of the 3D human model

eyelid openness values(-1, 0, 0.3, 0.5, and 1) by modifying "CTRL_C_eye_blink" on Unreal.
-1 being wide open and 1 entirely closed. A total of 2328 images per human model. We split
the dataset using the proportion 80% 10% 10%, so 24 synthetic human models were used for

the training set and 3 synthetic human models for each validation and test set.

4.2 GANONYMIZATION

Reference Application Input Model Data Privacy
Ours Gaze Estimation Face Images pix2pix Identity
GANonymization (2024) Expression Recognition Face Images pix2pix Identity

Deepprivacy (2019) Face Images

DeepPrivacy? (20233) Face Image Synthesis Full Body Images Stylegan2 Identity
Disguise (2024) EXP(EZSZS:ESE;C:EE:IM Face Images VED Identity
Face Images
CIAGAN (2020) Face Image Synthesis Full Body Images CGAN Identity
Videos
PPRL-VGAN (2018) Expression Recognition Face Images VGAN Identity
TIP-IM (2021b) Face Image Synthesis Face Images TIP-IM Identity
AD-GAN (2019) 3D Face Image Synthesis Face Images AD-GAN Identity
CAE (2018) Face Recognition Face Images ACGAN Gender, Age or Race
Privac;;\:Z:ZSc?:efé(fNo )(2019’ Face Recognition Face Images PIE-AG,\AN Soft-Biometric Attributes
Privacy Preserving Action Detection (2018) Action Detection Video DCGAN Face

Table 5 — Literature sum in private Face-related applications. Adapted from "Generative adversarial networks:
A survey toward private and secure applications" (2021))

We compare the current face anonymization techniques to determine the best base tech-
nique to improve the gaze preservation trait. Table 5| gathered the comparison and was adapted

from a survey of privacy applications (CAI et al., 2021). We have chosen to enhance the
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anonymization technique (HELLMANN et al., [2024)), as it is a pix2pix architecture, a relatively
simple architecture that generates its output based on the input image (see Section for
more details). Those two traits gave us conditions to modify its properties better to achieve
our goal. However, unlike his work, which evaluates facial emotion expression preservation, our
goal application is gaze estimation, and we want to preserve the values between the input face
image and the anonymized face output.

The work entitled "Disguise without disruption" ((CAI et al., 2024) shares the goal of gaze
preservation on anonymized faces; the authors propose a Variational Encoder-Decoder (VED)
architecture that aims to transform the ID of the desired face. Instead of directly using the face
mesh as input (as in GANonymization and Ours), his idea is to change only the identity and
not the direction of the head and gaze. We did not directly compare them in the experiments
because the authors did not provide the disguise’'s code in their paper. We also argue that
their experiments in gaze validation using CelebA (LIU et al} [2015) and LFW (HUANG et al.
2008) datasets were not ideal, as neither dataset was designed for gaze evaluation as they do
not have gaze labels and a proper distribution of gaze direction.

Other techniques do not have specific utility preservation and focus on face image syn-
thesis as in DeepPrivacy? and CIAGAN (YANG et al., 2021b; [HUKKELAS; LINDSETH, [2023a;
MAXIMOV; ELEZI; LEAL-TAIXE, 2020). Most techniques use face images as input, but DeepPri-
vacy2, CIAGAN, and "Privacy Preserving Action Detection" (HUKKELAS; LINDSETH, 20233;
MAXIMOV; ELEZI; LEAL-TAIXE, 2020; |REN; LEE; RYOO, 2018). Diverse variants of GANs and
a VED (Variational Encoder-Decoder) (CAI et al., 2024) are used as models. All but the last
three aim to protect people’s identity.

We explored different approaches to improve the GANonymization (HELLMANN et al., 2024)
technique regarding its original results and also compared it to other impactful face anonymizer,
DeepPrivacy2 (HUKKELAS; LINDSETH, 2023al).

The GANonymization technique was selected, as previously mentioned, for two main rea-
sons: first, it is a cGAN (conditional Generative Adversarial Network) (MIRZA; OSINDERO), 2014;
GOODFELLOW et al., [2014b)), which means an external parameter can guide the network to gen-
erate the face (see Figure. In this case, an image based on the mesh created by Media Pipe
Face Mesh (KARTYNNIK et al., 2019) retains the geometrical traits of the face without carrying
many identifiable traces. Second, the GANonymization is based on pix2pix (ISOLA et al., 2017)
architecture. This relatively small network enables us to train many model configurations in a

reasonable time (around one or two days in an RTX3090).
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Figure 13 — GANonymization architecture, inspired by pix2pix. From left to right, the first step is to preprocess
the data (1) input for training; it is done in three stages: (2) face crop and padding, (3) head
segmentation, and (4) mesh estimation (an image of the landmarks). The second step is to input
the head segmented along with the mesh to a generator based on U-Net, which will output a face
conditioned by the input. Based on PatchGAN, the discriminator will receive the tuple input and
output and will return a matrix of values from 0 to 1, determining whether each patch region
looks like the real data.

Two main factors of pix2pix are responsible for its time efficiency: first, the U-Net generator
is an encoder-decoder with skip connections, and these connections enable some high-frequency
features from the input image to be used in the reconstruction, accelerating the loss function
convergence. Second, the PatchGAN discriminator outputs a matrix where each image region
(patch) receives a score from 0 to 1. 0 is fake (generated on the generator), and 1 is real data.
It helps determine which regions need more adjustments in the backpropagation (see Section
for more details). Our efforts to improve the gaze preservation utility were based on two
directions: fine-tuning and mesh input modification. In all variations, we have maintained the
hyperparameters of the authors: learning rate of 0.0002 and decay of first-order momentum

of gradient (adam) b1l of 0.5 and b2 of 0.999.

4.3 FINE-TUNING VARIATIONS

A representative training set is crucial for any model training, especially on a pix2pix (ISOLA
et al., 2017)) network that usually suffers from overfitting and needs dropout or other strategies
to avoid it. Using fine-tuning instead of just merging the two datasets is specially indicated
where the domain of the original training task and the final are similar, which is the case of

generating human faces (LI et al., 2020)). Besides, CelebA and MetaGaze have different image
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resolutions, which would not be ideal for training together. We have trained four models
from the GANonymization (pix2pix-based) versions. First, we call GANonymization as we
reproduce the parameters and use the CelebA dataset like the GANonymization paper. The
second version is named MetaGaze_model, and we evaluate how well our dataset performs
as a training set once MetaGaze covers a larger range of gaze (see . We also have applied
fine-tuning on those two models for more than 25 epochs to create the MetaGaze+CelebA
and CelebA+MetaGaze configurations. We opt not to freeze any layer for the fine-tuning, as
it would be out of scope to determine the best configuration. We have lowered the learning
rate by 4 times, from 0.0002 to 0.00005. Usually, a reduction factor of 10 is used, but since
the tasks are pretty much the same and the learning rate change is related to the similarity

(LI et al., 2020), we have opted to use a factor of 4 instead (LI et al., 2020).

4.4 MESH VARIATIONS

As Figuredescribes, the conditional GAN receives a non-random input (image containing
the landmarks mesh) to guide the generator. We have modified the preprocessing step by
modifying the input mesh image. In Figure [14] the first on the left corresponds to the original
Media Pipe Face Mesh image used by GANonymization. The one in the middle was an effort
to highlight the iris region to the network during training; this variation was called Iris. We
also modified the mesh to be formed by a Tesselation instead of just the dots; the intention

was to accentuate the geometrical aspects of the face to be "learned" by the network.

A B C

Figure 14 — Images A, B, and C are three Media Pipe Face Mesh variations. Being A, the original, B, our Iris
variation, and C, Iris-+Tesselation.
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45 EXPERIMENTS

In this Section, we detail the choices of metrics, datasets, methods, and implementation
details of our experiments. We develop experiments to compare our variations to the baselines
on MetaGaze and DMD datasets. First, we compare the gaze direction estimation by L2CS of
the generated faces using the annotated ground truth of our MetaGaze to reference the gaze
direction angles. Next, we did the same but compared the L2CS estimator before anonymization
and after, both on MetaGaze and DMD datasets. This was because DMD has no annotated
values, and we applied the L2CS estimator on both initial and anonymized faces to avoid
L2CS bias. As our dataset is annotated, we have filtered the results considering some image
attributes. Finally, we compare the results qualitatively on each variation, considering arbitrary

inputs first and after, compiling the worst result on each technique.

4.5.1 Metrics

To evaluate the gaze preservation of the selected anonymization techniques, we used Mean
Absolute Error (MAE) to calculate the difference between the original face and the anonymized
face gaze estimation in degrees. Similarly to the Disguise technique (CAI et al., [2024)), we opt
to perform the gaze estimation on L2CS-Net (ABDELRAHMAN et al., |2023) and the overall
head orientation on Retinaface (DENG et al} 2020). The L2CS technique receives an image
with faces ( in all of our scenarios, only one face per image) and outputs its gaze estimation
direction by returning a value in degrees for PITCH and YAW. The Retinaface finds 5 3D key
points in the face, one for each eye, one for the nose, and two for the mouth.

We first compare the L2CS estimation and Retinaface on our dataset, MetaGaze, to val-
idate its performance on synthetic faces. We have compared the L2CS gaze estimation with
the ground truth from MetaGaze, which we calculated using the Unreal engine parameters.
We do not calculate a ground truth. Instead, we used the face's key points positions before
anonymization for comparison. From these results, we use it as a baseline to compare the
subsequent experiments: anonymize our test set with each of the seven techniques used in this
work and then estimate the gaze direction MAE by calculating its difference from the ground

truth.
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Figure 15 — Sample images from the DMD dataset. In this work, we selected only frontal camera images (first
row) to estimate the gaze direction from the driver better.

4.5.2 Datasets

The datasets used in our experiments for gaze preservation on anonymized faces were:
Our proposed dataset, MetaGaze, and the Driving Monitoring Dataset (DMD) (ORTEGA et al.,
2020). The criteria we employed were to get a nonsynthetic vehicular-focused dataset. DMD
has frontal cameras near the car panel to capture the driver from a frontal angle (see Figure
. We extract 10 frames per second from 15 different person videos of 3 minutes each. The
total number of images collected was almost 30,000.

As intended by our proposed dataset, Figure |16 shows that the MetaGaze could (both in
the ground truth and L2CS gaze estimation) cover a more evenly represented gaze direction
than the CelebA dataset. Thus, we do not use the CelebA dataset in our evaluation, even
though it was used in the Disguise (CAl et al., [2024)) experiments. The main reason is that the
CelebA was not developed for this intent of gaze estimation and does not cover a reasonable
amount of gaze pitch and yaw angle. We also show that even though the CelebA (LIU et
al., |2015)) dataset is used to train several GAN-related methods for anonymization; it lacks
representation on some gaze directions classes. Besides, adding a variety of FOVs and Eye
openness is beneficial as both a benchmark and a training dataset for face synthesis, making

the model more robust for these conditions.
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Figure 16 — Distribution of gaze estimation in degrees of two face datasets. In the blue is the CelebA dataset,
gaze estimation using L2CS; in orange is our proposed dataset, MetaGaze, gaze estimation using
L2CS; in purple MetaGaze ground truth.

4.5.3 Selected Techniques.

We compare a total of 7 models. The first two were used as baselines: the DeepPrivacy2
pretrained model, given by the authors, and the GANonymization model, trained by us, but
with the same parameters and seed (to reproduce the random number generator) as the
one used by the authors. The other 5 techniques (MetaGaze_model, CelebA+MetaGaze,
MetaGaze+CelebA, Iris, Iris+Tesselation) were variations of the GANonymization we trained.
We trained all models for 25 epochs.

Figure [17] synthesizes our variations used in the experiments. We have used the models
trained by the authors of DeepPrivacy2 and GANonymization as a baseline. From GANonymiza-
tion, we have derived our mesh variations: Iris and lris+Tesselation. From the MetaGaze
dataset, we trained a model, MetaGaze_model, along with two fine-tunings: CelebA+MetaGaze

and MetaGaze+CelebA.
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Figure 17 — Fluxogram of the 7 models used in experiments. We divided them into 3 groups: Baseline for
the original techniques used as a comparison. We created mesh variations by modifying the input
mesh image and training it on MetaGaze, either by fine-tuning or directly training.

4.5.4 Implementation Details.

We conducted our experiments on a desktop computer running Ubuntu 22.04 LTS, which
has a 13th-generation Intel Core i9-13900 with 32 GB of RAM and a GeForce RTX 3090 with
24GB of VRAM. The models have taken approximately 48 hours to train for 25 epochs. The
base models used during the experiments were from the following repositories: DeepPrivacyﬂ,

L2CS-NetP, and GANonymization|

https://github.com /hukkelas/deep_privacy?2
https://github.com/Ahmednull /L2CS-Net
3 |https://github.com /hcmlab/GANonymization


https://github.com/hukkelas/deep_privacy2
https://github.com/Ahmednull/L2CS-Net
https://github.com/hcmlab/GANonymization
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5 RESULTS AND DISCUSSION

In this Chapter, we have done a Quantitative Analysis (Section of our proposed dataset,
MetaGaze, and DMD dataset, comparing 7 different methods regarding gaze preservation using
L2CS-NET as a gaze estimator. Table [6] displays the results relative to the annotated ground
truth annotated by us, while Table [7| does the preservation estimation by subtracting the
gaze direction after anonymization from their original value (pre-anonymization). In addition,
along with Further Quantitative Analysis to dig deeper into the results by comparing the
variations by each dataset attribute. Finally, we perform a Qualitative Analysis (Section

to compare the faces generated visually. Finally, the main points are summarized in Section

5.4

5.1 QUANTITATIVE ANALYSIS

Gaze (MAE on L2CS°])

Methods Absolute Relative
Pitch Yaw Pitch Yaw
Non-anonymized 265 128 0.0 0.0
DeepPrivacy2 417 275 152 147
GANonymization 373 192 108 64
MetaGaze__model 406 203 141 75
CelebA+MetaGaze 34.4 187 7.9 5.9
MetaGaze+CelebA 423 199 158 7.1
Iris 36.0 21.1 95 8.3

Iris+ Tesselation 402 203 137 75

Table 6 — Results of methods on MetaGaze considering the ground truth. The first two columns show the
absolute value and the last two are the relative values (the method minus the non-anonymized
value) regarding ground truth.

In Table [6, we compare the methods on MetaGaze by using the ground truth of the
developed dataset. We added a non-anonymized line to evaluate the L2CS estimator on the
original images and avoid the noise caused by the estimator’'s error in our evaluation. The
absolute error is the direct comparison with the ground truth, and the last two are the relative
subtraction of the non-anonymized value in the effort to annulate L2CS error.

With these relative values, the fine-tuning CelebA+MetaGaze improved the error from 10.8
to 7.9 in pitch and 6.4 to 5.9 in yaw compared to the GANonymization relative results. Not

only that, but it was the only method to improve GANonymization yaw values. In contrast,



51

the Deepprivacy2 yaw's relative result of 14.7 % is far above the other ones; this may be due

to its difficulty in estimating the gaze yaw direction by only seeing the head pose, as discussed

earlier.
Methods Gaze (MAE on L2CS°)) | Retinaface (L2 px distance))
Pitch Yaw All Eyes Nose Mouth
DeepPrivacy? 47.94 30.63 734 437 487 2.93
@ | GANonymization | 35.25 18.96 6.94 393 446 3.21
{g: MetaGaze_model | 32.76 17.31 965 547 597 482
® | CelebA+MetaGaze | 34.44 19.64 6.01 3.43 3.87 2.67
2 MetaGaze+CelebA | 31.08 15.76 994 551 6.25 5.00
Iris 32.05 19.62 7.02 393 450 3.32
Iris+Tesselation 35.46 18.61 726 409 4061 3.45
DeepPrivacy?2 19.24 15.93 17.65 1035 1241 5.66
GANonymization | 11.68 13.21 16.25 7.10 1185 8.43
MetaGaze_model | 13.88 13.80 16.64 721 11.94 8.92
g CelebA+MetaGaze | 12.33 13.16 16.29 7.02 1190 851
O | MetaGaze+CelebA | 15.37 13.54 16.89 7.27 1211  9.10
Iris 11.20 12.63 16.14 6.99 11.75 8.46
Iris+Tesselation 11.58 13.26 16.36 7.10 11.88 8.60

Table 7 — Mean absolute error (MAE) in degrees values for gaze preservation between MetaGaze and DMD
datasets and their anonymized versions. The "Retinaface" technique locates 5 key points on the
face; the column displays four categories: All, Eyes, Nose, and Mouth.

MetaGaze. The first comparison results evaluate the face orientation in two aspects:
how the gaze direction estimation is preserved (metrified by L2CS) and how the overall face
orientation is maintained (calculated by RetinaFace). We anonymized the test set on each
method. We calculate the MAE of the difference in L2CS estimation of the non-anonymized
face minus the face anonymized by each method (in degrees). We also calculate the Retinaface
keypoints difference in pixels and displayed in Table [7]

Considering the MetaGaze experiment (first vertical half of table), the best result configu-
ration on gaze estimation is MetaGaze+CelebA, with an MAE of 31.08 for pitch and 15.76 for
yaw. Curiously, the best configuration regarding head pose (Retinaface) is CelebA+MetaGaze
with a pixel error of 6.01, 3.43, 3.87, and 2.67 in all eyes, nose, and mouth, respectively,
improving the baseline, GANonymization, at 13.4%. CelebA+MetaGaze was the same as in
Table [f] as well, which shows that the eye position and gaze direction are directly related. Both
best methods resulted from fine-tuning, demonstrating that this strategy is efficient and that

the order of training (which dataset to use as base training and which to use in fine-tuning is
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relevant). In Section [5.3] we demonstrate that the dataset used before fine-tuning is visually
dominant (for example, the MetaGaze+CelebA faces are more similar to the MetaGaze dataset
than the CelebA dataset); this is due to our strategy of fine-tuning learning rate parameter to
be a quarter of the initial training. Following this hypothesis, the MetaGaze-+CelebA exceeds in
gaze estimation by using the base of MetaGaze, which covers more gaze directions, along with
some adjustments from the CelebA fine-tuning. While CelebA-+MetaGaze exceeds head pose
preservation (Retinaface), this is observed in the second and third-best head pose estimations:
Iris and Iris+Tesselations trained only on the CelebA dataset.

Following the best result in gaze estimation, we have the Iris method, with 32.05 pitch and
19.62 yaw, and MetaGaze_model, with 32.76 pitch and 17.31 yaw. The results suggest that
both directions we aborded (fine-tuning and mesh variations) are valid. Our MetaGaze+CelebA
variation, compared to the GANonymization baseline, improved the MAE in degrees in the pitch
from 35.25 to 31.08 and the yaw from 18.96 to 15.76. DeepPrivacy2 got the worst result:
47.94 pitch 30.63 yaw. The DeepPrivacy2 performance is probably caused by its strategy of
filling the face gap on the image; even though it is more robust, as it can be used even when no
key points are found, the face generation lacks orientation information. All 5 of our variations
reduce the MAE on either pitch or yaw. The pitch error is almost always near double the yaw
error compared to GANonymization. The pitch amplitude is also the double of yaw (see Table
M), so its MAE is naturally greater.

Regarding Retinaface, after the best case, CelebA+MetaGaze, we have GANonymization
and a slightly worse result in Iris and Iris+Tesselation. The results show that the Iris variations
need refinement to improve the Retinaface evaluation. DeepPrivacy?2, different from the gaze
estimation, maintained a relatively low pixel error of 7.34, 4.37, 4.87, and 2.93 in all eyes, nose,
and mouth, respectively. The worst results are from the two variations trained on MetaGaze:
MetaGaze_model and MetaGaze+CelebA, with an error above 9.5 pixels. One hypothesis is
that the nature of the pix2pix architecture (used as the base for GANonymization and all
variations but DeepPrivacy2) of overfitting some head poses could overwrite some head pose
variations. The overfitting makes the error bigger as it could been as some poses are 'deleted’
during the training to improve the accuracy.

DMD. To complement our analysis, we have also displayed the non-synthetic and vehicular
gaze DMD dataset results in Table[7] In this scenario, the best configuration is Iris, with 11.20
and 12.63 in pitch and yaw. Followed by Iris+Tesselation and GAnonymization, the 3 methods

we trained exclusively on the CelebA dataset. Unlike in the MetaGaze dataset experiment, the
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gaze direction values have been kept up with the head pose estimation. The overall errors on
DMD were nearly three times smaller than in MetaGaze dataset. As in MetaGaze experiments,
the worst case was also DeepPrivacy2, 19.24 pitch, and 15.93 yaw. But, unlike in MetaGaze
experiment, in this case, only the mesh Iris variation surpasses the GANonymization baseline,
which was by a slight amount. DMD dataset has videos instead of images (we extracted 10
frames per second) and covers the car’s interior and the drivers instead of the close-on face, like
on MetaGaze dataset. The DMD images have the faces not so close to the cameras (see Figure
for some samples), and, as we got 10 frames per second, we had a lot of similar images.
Those factors could explain the difference in error between DMD and MetaGaze experiments.

Considering Retinaface, we behaved similarly to that in gaze evaluation. Iris was the only
one to improve the results of GANonymization by a slight margin of 16.25 to 16.14. Additional
data on DMD or even more real driver datasets would be beneficial for further analysis of this

behavior.

5.2 FURTHER QUANTITATIVE ANALYSIS

Pitch and Yaw Mean Errors by Gaze
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Figure 18 — Comparison of MAE in degrees between the ground truth gaze direction and the evaluation on

L2CS gaze estimator for faces generated by each model on MetaGaze test set input. In purple,
pitch errors; in pink, yaw errors. The lighter the color, the bigger the gaze angle.

Gaze. In Figure [18, we display the MAE between the prediction and the ground truth of
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each pitch method (purple) and yaw (pink). The lighter color represents gaze angles above the
absolute value of 30° degrees in either pitch or yaw (see Figurefor samples in gaze variation).
A pattern occurs in all the cases: more extreme angles lead to higher errors. The difference in
yaw is less discerning, as the range is smaller, but in pitch, this contrast goes from less than
10% in Non-anonymized to more than 40% in Iris+Tesselation. Regarding the methods, apart
from the baseline Non-anonymized and the DeepPrivacy2 variation, the methods got similar
results. DeepPrivacy2 got the worst results considering either of the categories from the gaze
angles analyzed.

Two hypotheses to explain this expected behavior considering the two angle groups are:
(1) more extreme gaze directions are less represented in training sets, and thus, the models
have some difficulty generating them properly. (2) There is an inherent difficulty in generating

and even recognizing faces that are not frontal for both models and people.

Pitch and Yaw Mean Errors by Camera

Pitch camera < 10
Pitch camera > 10
Yaw camera < 10
Yaw camera > 10

Mean Ermror

Camera

Figure 19 — Comparison of MAE in degrees between the ground truth gaze direction and the evaluation on
L2CS gaze estimator for faces generated by each model on MetaGaze test set input. In purple,
pitch errors; in pink, yaw errors. The lighter the color, the bigger the camera angle.

Camera. Figure |19 represents the MAE errors separated by camera angles (see Figure
for samples in camera angle variations). If any angle in the camera is above 10° degrees, it is in
the lighter colors. Like Figure[18] we have noticed a similar pattern: more extreme angles lead
to higher errors. In some methods, the angle camera causes the MAE almost to double; for

example, in GANonymization, we see that small camera angles have an MAE of 25, while above
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10° degree, the error goes to 44. DeepPrivacy2 and the baseline non-anonymized do not follow
this pattern in yaw; they have better yaw results on higher camera angles. In DeepPrivacy?2,
the errors in smaller camera angles are higher than in any other method, so much so that there
is no significant difference between small and high camera angles in DeepPrivacy2 anonymized
results.

As in gaze, the hypothesis from this behavior is that higher camera angles are underrepre-
sented in the training set, or even those faces on higher angles are less recognizable and thus
more challenging to generate.
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Figure 20 — Comparison of MAE in degrees between the ground truth gaze direction and the evaluation on
L2CS gaze estimator for faces generated by each model on MetaGaze test set input. In purple,
pitch errors; in pink, yaw errors. The lighter the color, the bigger the FOV angle.

FOV. Figureshows the method’s error by camera FOV angle (see Figurefor samples
in FOV variations). The higher the angle, the lighter the color. Considering the baseline case,
Non-anonymized, there is an increase in error for angles 60° and 120° of FOV, even though
the distance in yaw for 90° and 120° is less expressive, the pattern persists. We point out that
this pattern remains in all the other cases. All methods had more difficulty preserving the gaze
direction when the camera FOVs 60° and 120° degrees. However, deepPrivacy2 does not differ
in performance regarding 90° and 120° for pitch. Interestingly, the error is more significant in
60° degrees., even though the FOV of 120° degrees is more unusual for us than 60° degrees.

The possible explanation is that the camera FOV 90° is more usual and does not distort the

face as much as the other two FOVs. This distortion explains geometrically why the meshes
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seem weirder and less natural. In some cases, the distortion even harms the media pipe face
mesh and the face generated upon that mesh (see Figure in FOV label, cases of 60°, first

row, and 120°, second row).

Pitch and Yaw Mean Errors by eyelid openness
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Figure 21 — Comparison of MAE in degrees between the ground truth gaze direction and the evaluation on
L2CS gaze estimator for faces generated by each model on MetaGaze test set input. In purple,
pitch errors; in pink, yaw errors. The lighter the color, the wider the eyelid openness.

Eyelid Openness. Figure [21] displays four variations of eyelid openness: semi-closed, half-
closed, opened, and wide-opened (see Figure [L1| for samples in eyelid openness variations).
The pattern here is not as straightforward as in Figures [18] [19) and [20] Nonetheless, we notice
that, in pitch, the order from greater error to smaller goes as follows: semi-opened, half-closed,
wide-open, and open. This behavior is not true in the last three cases, MetaGaze-+Celeba,
MetaGaze_model, and Non-anonymized. Regarding yaw, we have the opposite direction. The
error seems to increase from wide-opened to semi-closed, to half-closed, and to open. The
DeepPrivacy2 was no exception in either pitch or yaw in this scenario.

Some hypotheses are: in our data, semi-closed and half-closed were not combined with all
the gaze and camera angles, as some occluded the iris by the eyelid, and the estimation would
not be viable; this is also why closed eyes are not evaluated in this graphic. Removing the
worst-case scenarios may explain why the most natural behavior, higher errors on smaller eyelid
openness, was unclear in the graphics. Another interesting note is that wide-opening usually

performed worse than opening-in-pitch (maybe because of its naturality) but performed better
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in yaw, as the eyelid occlusions were minor. Also, the methods that trained the majority on
MetaGaze (MetaGaze+Celeba and MetaGaze_model) reduced the error in semi-closed eyes
compared to the other methods, probably because of the presence of a more significant amount

of images with semi-closed eyes on training.

5.3 QUALITATIVE ANALYSIS

- . _— CelebA+ . Iris+ MetaGaze+
Original Deepprivacy2 GANonymization MetaGaze Iris Tesselation MetaGaze_model

CelebA

Figure 22 — A matrix containing the input faces (on the left) from MetaGaze (A-D) and DMD (E-F), the
output from the two baselines (DeepPrivacy2 and GANonymization) evaluated on experiments,
and the output from each of the five GANonymization variations we trained.

Considering Figure , we display faces generated from MetaGaze inputs (rows A to D) and
DMD (rows E and F) from each of the seven configs evaluated in this dissertation. Considering
the MetaGaze inputs, visually, the DeepPrivacy2 outputs were the most unique once all the
others shared the same architecture model from GANonymization. Notably, the resolution in
DeepPrivacy?2 is higher, but the face seems biased to be frontal and smiling despite the input

not sharing these features (all but E case ). DeepPrivacy?2 tackles the face generation problem
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as an inpainting problem, so they do not need a face mesh to generate the output. Instead,
the original face is removed, and the network should be able to fill this gap with a new face.
However, some potential traits (gaze or facial expression) from the input face could be lost in
the process.

The following four configs (GANonymization, CelebA+MetaGaze, Iris, and Iris+ Tesselation),
all but the fine-tuning (CelebA+MetaGaze), were trained exclusively on CelebA. The differ-
ences between the four are slight, and the most notable feature is a discrete color tone variation.
The last two configurations (MetaGaze_model and MetaGaze+CelebA) were primarily trained
on MetaGaze dataset and and output similar faces. However, the hair in the A and D rows
had a hair "failure" on MetaGaze_model, which was fixed on MetaGaze+CelebA output. One
relevant aspect of training in MetaGaze dataset is that the outputs look like the identity of
one of the 24 synthetic human models used in training and, thus, are seen as a little more
artificial and repetitive.

Now, considering rows E and F from DMD, we see that DeepPrivacy2 could preserve the
man's glasses but not the woman's closed eyes. All GANonymization did not preserve the
glasses but preserved the eyelid closed and the neutral mouth expression.

Besides gathering arbitrary images for the qualitative analysis, we displayed the highest
gaze error for each method in Figure 23] The matrix contains the input faces (on the left) and
the method’s label from MetaGaze's worst scenarios. The main diagonal represents that class's
worst case (highlighted) and the results from the other techniques for comparison reasons.

Corroborating with our Further Quantitative Analysis in the Section [5.2] the worst cases
are usually generated by an input face with extreme camera angles or FOVs. The first row,
DeepPrivacy?2 (FOV of 120° degrees and extreme gaze direction), did not generate a preserved
gaze; the eye is semi-closed and pointing down instead of up; even though the image resolu-
tion is high, it does not fit the head pose properly. Considering the other methods from the
DeepPrivacy? input, the gaze direction correctly points right and up. However, the methods
not primary training on MetaGaze dataset, which are GANonymization, CelebA+MetaGaze,
Iris, and Iris+Tesselation, have generated faces with much noise, while MetaGaze_model and
MetaGaze+CelebA are more clean.

The second line has an input with extreme gaze direction, camera angle, and FOV of 60°
degrees; this combination occluded one of the eyes and almost occluded the iris. DeepPrivacy?2
generated a frontal and smiling face that did not fit the head pose, while the other methods,

including GANonymization, were not able to generate a reasonable definition. All the observa-
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CelebA+ Iris+ MetaGaze+
CelebA

Original Deepprivacy2 GANonymization MetaGaze Iris Tesselation MetaGaze_model

Figure 23 — A matrix containing the input faces (on the left) from MetaGaze worst scenarios. Each line
represents the input that causes the highest MAE gaze error for highlighted technique (first line,
Deepprivacy2, second line GANonymization and so on), along with the results from the other
methods for comparison.

tions of GANonymization can be done to the third row, Celeba+MetaGaze, with the difference
that DeepPrivacy?2 fits the head pose accordingly, but not the gaze direction.

The most challenging case for the Iris, the lris+Tesselation, and the MetaGaze_model
inputs have similar characteristics: the camera angle is extreme, and the FOV is 120° degrees.
This case is challenging as the FOV and camera angle distort the face, and the eyelid, the nose,
or the hair occludes the iris. However, all methods generated the eyes semi-closed correctly in
the Iris input. On Iris+Tesselation, all GANonymization methods generated very incomplete
faces.

On MetaGaze_model input, the faces generated are even more primitive, with no traits

of face aspects; in Iris and the lris+Tesselation methods, the outputs were blank. Lastly,



60

MetaGaze+CelebA input had a FOV of 90° degrees, eyes half closed, and extreme camera and
gaze angles. DeepPrivacy? outputs a frontal smiling face with a frontal gaze, while the other

methods generated faces with much noise, even considering the MetaGaze training methods.

5.4 KEY FINDINGS

In sum, considering the quantitative and qualitative analysis of the results from this work,
we conclude that most methods have more difficulty preserving gaze direction in the following

scenarios:

» Camera angles above 10° degrees;

» Gaze directions above 30° degrees;

FOV of 60°, followed by FOV of 120°;

= Eyes semi-closed, followed by half-closed and wide-open;

To conclude, we summarize the pitfalls of gaze preservation in anonymized faces for ve-
hicular scenarios. We validate that fine-tuning and refining the mesh input to highlight the
iris region are both valid for reducing the gaze direction preservation error in the anonymized
generated faces. We achieve the best result with the fine-tuning of CelebA+MetaGaze for the

MetaGaze dataset and the lris modification for the DMD dataset.
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6 CONCLUSION

While anonymizing users in images, gaze preservation is a key capability for several appli-
cation fields, such as the automotive sector. Our proposed annotated synthetic gaze dataset,
MetaGaze, provides a benchmark for gaze preservation among face anonymization techniques.
In addition to existing competitor datasets, MetaGaze covers various camera conditions and
gaze angles, FOV, and eyelid openness variations in a well-balanced distribution, configur-
ing a platform for investigating and potentially fine-tuning face generator models. In our
experiments, we uncovered the scenarios where existing state-of-the-art methods show more
difficulty in preserving gaze after anonymization, being: camera angles above 10° degrees,
gaze directions above 30° degrees, FOV of 60° degrees, followed by 120° degrees, and eyes
semi-closed, half-closed or even wide-opened. We also conducted additional experiments using
a baseline anonymization method. We achieved improvements in reducing the error from 10.8°
to 7.9° degrees in pitch and 6.4° to 5.9° degrees in yaw compared to the relative results of
GANonymization regarding the preservation of the mean absolute error of gaze estimation,
demonstrating the potential of MetaGaze in improving the performance of face generator
models.

Limitations. The constraints of the GANonymization improvement suggestions still lie in
their dependency on face mesh detection. The detection accuracy drops considerably as the
pith and yaw get higher than 45 degrees. Although we trained the model using synthetic data
from MetaGaze, results suggest it could surpass real training sets. However, we also include
the DMD dataset (footage of drivers in real conditions) to evaluate beyond our benchmark.
Regarding fairness, during the development of the MetaGaze, we selected 30 synthetic human
models. The main criteria were to represent gender, ethnicity, and age group diversity. Further
studies should be done to reduce the impact of lack of representation.

Future Work. Future work will involve expanding the benchmark validation by including
a broader range of face anonymization methods. Additionally, there are plans to expand the
number of attributes explored by MetaHumans (for example, light conditions or face expres-
sions) and evaluate their impact on each face anonymization method. Another key area of
exploration will be modifying the GANonymization loss function to consider the face geometry
and make the GAN model training converge earlier and with more precision results, making

the training more accessible for other researchers and developers.
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