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RESUMO

Este estudo aborda o desafio de desenvolver modelos de aprendizado de máquina para estima-
tiva de idade a partir de radiografias panorâmicas de pacientes de diferentes regiões do Brasil.
Utilizando dois conjuntos de dados geograficamente diversos — um da UFPE (Nordeste) e
outro da Unicamp (Sudeste) — investigamos as limitações dos modelos de inteligência artifi-
cial quanto à predição de idade em contextos regionais distintos. Construímos um protocolo
experimental para avaliar o comportamento dos modelos de aprendizagem de máquina em
diferentes cenários. No primeiro experimento, o modelo treinado exclusivamente com dados
do UFPE apresentou limitações ao ser testado em pacientes do Unicamp, resultando em um
erro absoluto médio (MAE) de 3,10 anos no dataset UFPE e 4,97 anos no dataset Unicamp,
evidenciando desafios de generalização. No segundo experimento, foram exploradas aborda-
gens de fine-tuning, que, embora tenham melhorado o desempenho do modelo em dados
regionais, não eliminaram totalmente os vieses. O terceiro experimento, treinando o modelo
do zero em um conjunto de dados misto, alcançou o melhor equilíbrio entre precisão e gen-
eralização, com um MAE de 3,25 anos para o UFPE e 3,69 anos para o Unicamp, indicando
maior robustez em relação às abordagens anteriores. O quarto experimento introduziu técnicas
de aumento de dados para aprimorar a robustez do modelo contra outliers e casos extremos.
Apesar de melhorias marginais, erros de alta magnitude persistiram, sugerindo a necessidade
de estratégias adicionais, como técnicas mais avançadas de aumento de dados e arquiteturas
mais complexas. Os resultados deste estudo reforçam a importância de conjuntos de dados
diversificados e protocolos experimentais rigorosos para lidar com variabilidades regionais e
características demográficas distintas. O modelo treinado em um conjunto de dados misto
demonstrou ser a abordagem mais eficaz, destacando que a integração de populações diversas
é crucial para aumentar a generalização dos modelos. Assim, o estudo contribui com evidências
concretas para o desenvolvimento de sistemas mais robustos, capazes de serem aplicados de
forma confiável em cenários clínicos e forenses.

Palavras-chave: Ciências Forenses, Estimativa de Idade, Rede Neural Profunda, Métodos
Radiológicos.



ABSTRACT

This study addresses the challenge of developing machine learning models for age estima-
tion based on panoramic radiographs of patients from different regions of Brazil. Using two
geographically diverse datasets — one from UFPE (Northeast) and another from Unicamp
(Southeast) — we investigated the limitations of artificial intelligence models in predicting
age across distinct regional contexts. We designed an experimental protocol to evaluate the
behavior of machine learning models in various scenarios. In the first experiment, the model
trained exclusively on UFPE data showed limitations when tested on Unicamp patients, re-
sulting in a mean absolute error (MAE) of 3.10 years on the UFPE dataset and 4.97 years on
the Unicamp dataset, highlighting challenges in generalization.In the second experiment, fine-
tuning approaches were explored, which, while improving the model’s performance on regional
data, did not completely eliminate biases. In the third experiment, training the model from
scratch on a mixed dataset achieved the best balance between accuracy and generalization,
with an MAE of 3.25 years for UFPE and 3.69 years for Unicamp, indicating greater robust-
ness compared to previous approaches. The fourth experiment introduced data augmentation
techniques to enhance the model’s robustness against outliers and extreme cases. Despite
marginal improvements, high-magnitude errors persisted, suggesting the need for additional
strategies, such as more advanced data augmentation techniques and more complex archi-
tectures. The results of this study reinforce the importance of diverse datasets and rigorous
experimental protocols to address regional variability and distinct demographic characteristics.
The model trained on a mixed dataset proved to be the most effective approach, emphasizing
that integrating diverse populations is crucial to improving model generalization. Thus, the
study provides concrete evidence for the development of more robust systems capable of being
reliably applied in clinical and forensic scenarios.

Keywords: Forensic Sciences, Age Estimation, Deep Neural Network, Radiological Methods.
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1 INTRODUCTION

Accurate age estimation plays a vital role in forensic science and civil investigations, con-
tributing significantly to the reconstruction of biological profiles in missing-person cases, veri-
fication of the age of juvenile offenders, and situations where official identification documents
are lacking. Conventional methods for age estimation often involve morphological, biochemi-
cal, and radiological analyses, with panoramic radiography standing out as the preferred ap-
proach due to its non-invasive nature, simplicity, and affordability. This technique allows for the
comprehensive evaluation of dental development stages across all teeth simultaneously, thus
establishing itself as an essential tool for age estimation (DALITZ, 1962; MOORREES; FANNING;

JR, 1963; BANG; RAMM, 1970; DEMIRJIAN; GOLDSTEIN; TANNER, 1973; CAMERIERE; CINGOLANI;

FERRANTE, 2004; SPALDING et al., 2005; ALKASS et al., 2010; RAJKUMARI et al., 2013; ELFAWAL;

ALQATTAN; GHALLAB, 2015; BEKAERT et al., 2015; PURANIK; PRIYADARSHINI; UMA, 2015; CHEN

et al., 2016; BENJAVONGKULCHAI; PITTAYAPAT, 2018; MÁRQUEZ-RUIZ et al., 2020; NOLLA et al.,
1952).

Despite advances in radiological techniques, age estimation poses significant challenges,
particularly in older individuals. Once dental development is completed, typically by the age
of 24 with the closure of the third molar’s apex, traditional manual and visual assessment
methods become less effective, creating a gap in accurately determining age in later stages
of life (MOORREES; FANNING; JR, 1963; DEMIRJIAN; GOLDSTEIN; TANNER, 1973). Methods like
the pulp/tooth area ratio calculation have been explored to address aging in older individuals,
focusing on the deposition of secondary dentin (CAMERIERE et al., 2006; CAMERIERE; FERRANTE;

CINGOLANI, 2006; CAMERIERE et al., 2012). However, these methods also face limitations,
including introducing bias from examiner subjectivity and decreased effectiveness after age 24
(MORSE et al., 1991; FERNANDES et al., 2011).

Additionally, the formation of reparative (tertiary) dentin, produced by odontoblasts as a
defense mechanism against caries progression, further complicates age assessment. This pro-
cess can appear radiographically similar to normal dental aging, leading to potential confusion.
Such similarities are especially problematic when rehabilitated teeth are included in the sample,
as they can obscure accurate age determination and introduce additional subjectivity (FARGES

et al., 2015; RICUCCI et al., 2014).
Recent research has shown that Artificial Intelligence (AI) technologies, particularly Deep
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Neural Networks (DNNs), present a promising approach to overcoming these limitations. By
utilizing AI models to analyze panoramic radiographs, it is possible to achieve faster, more ob-
jective age estimates, minimizing dependence on manual evaluations and enhancing accuracy,
particularly for older individuals (KIM et al., 2021; SHEN et al., 2021; GALIBOURG et al., 2021;
SANTOSH et al., 2022; ZABOROWICZ et al., 2022; TOBEL et al., 2017; ŠTEPANOVSKỲ et al., 2017;
AVUÇLU; BAŞÇIFTÇI, 2018; BANAR et al., 2020; BOEDI et al., 2020; VILA-BLANCO et al., 2020;
HOU et al., 2021).

This dissertation addresses a relevant problem in Forensic Sciences by integrating radi-
ological techniques with advanced AI methodologies to create a non-invasive, efficient, and
less examiner-dependent approach to age estimation. However, when applying age estimation
methods, including those based on AI, it is crucial to consider the specific geographical, socio-
nutritional, and hormonal characteristics of the population being studied in order to reduce
individual variability in dental development (GALIBOURG et al., 2021). This regional perspective
is vital for improving the effectiveness of age estimations using dental radiographs.

Thus, the primary focus of this dissertation is to assess the geographic limitations of AI-
based age estimation models by expanding our analysis across multiple regions of Brazil. In this
context, we trained a machine learning model on patient data from one region and evaluated its
performance on a dataset of patients from a different region to assess its robustness and ability
to generalize across different regional populations. Additionally, we develop new approaches
to create more efficient models that accommodate diverse regional characteristics, aiming to
mitigate geographic biases and enhance performance.

The central hypothesis guiding this work is that when trained with regional data and
adapted to different populations, AI models can effectively mitigate geographic biases and
improve the accuracy of age estimation in various contexts. Our objectives include:

• Expanding the generalization capability of AI models for populations from different re-
gions of Brazil.

• Establishing a multi-regional benchmark with Brazilian data to foster the development
of robust models capable of handling diverse regional characteristics.

• Improving the adaptability of models to different regional characteristics by mitigating
geographic biases.
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This dissertation is organized as follows: Chapter 2 reviews the related work, providing
an overview of the primary AI-based methods for age estimation, highlighting their contribu-
tions to different populations, and examining the challenges in achieving generalizable models.
Chapter 3 presents the proposed approach of this study, detailing the motivations and improve-
ments targeted by the research. Chapter 4 describes the methodologies used, including the
data processing pipeline, the machine learning techniques, and the experiments conducted to
validate the models’ generalizability and robustness. It also presents a comprehensive analysis
of each experiment conducted and observed biases. Chapter 5 discusses the results obtained
from the experiments, analyzing the contributions and implications of the findings in the
context of forensic age estimation. Finally, Chapter 6 concludes the study, summarizing the
key findings, addressing the identified limitations, and proposing future research directions to
further enhance the accuracy and generalizability of age estimation across diverse regional
populations.
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2 RELATED WORK

The current research aims to validate whether the methodologies and models developed us-
ing data from a single region can generalize effectively when applied to different regions within
Brazil. By expanding the scope to encompass diverse Brazilian populations, this work assesses
if the approaches developed for the northeast region of Brazil can maintain accuracy across
the southeast region or if specific adaptations are required. If discrepancies are found, modi-
fications to the model or the development of more generalizable neural network architectures
will be investigated to address regional variations within a unified research framework.

This work is informed by a broader landscape of studies that explored age and biological
sex estimation using orthopantomograms (OPGs). These works established critical benchmarks
and highlighted challenges that remain to be addressed. A summary of these related experi-
ments is presented in Table 1, showcasing the evolution of techniques that this project builds
upon and evaluates in a Brazilian context.

Table 1 – Overview of Main Related Works for Age Estimation with AI-Based Solutions

Related Work Nationality # Samples Age Range ROI
(TOBEL et al., 2017) Belgian 400 7 - 24 3rd Molars
(ŠTEPANOVSKỲ et al., 2017) Czech 976 2.7 - 20.2 Full PR
(AVUÇLU; BAŞÇIFTÇI, 2018) Turkish 1313 4 - 63 All Molars
(BANAR et al., 2020) Belgian 400 7 - 24 3rd Molars
(VILA-BLANCO et al., 2020) Spanish 2289 4.5 - 89.2 Full PR
(KIM et al., 2021) Korean 1586 0 - 60 All Molars
(SHEN et al., 2021) Chinese 748 5 - 13 41-46
(HOU et al., 2021) Chinese 27957 1 - 93 Full PR
(SANTOSH et al., 2022) Indian 1142 1 - 70 Full PR

Source: The Author (2024). The table provides an overview of key studies on age estimation using artificial
intelligence, highlighting the dataset’s nationality, number of samples, age range of participants, and the region
of interest (ROI) analyzed in each research.

(TOBEL et al., 2017) conducted a study on the mineralization stages of the lower left third
molar to estimate age in a Belgian population. They used 400 panoramic radiographs of indi-
viduals aged 7 to 24, the research applied a modified Demirjian classification system to label
10 developmental stages. The preprocessing involved manual region-of-interest adjustments
and bounding box creation via Photoshop. Transfer learning with a fine-tuned AlexNet model,
initialized with ImageNet weights, achieved the best results among tested approaches. The



15

method demonstrated an accuracy of 51%, a mean absolute difference of 0.6 stages, and a
weighted Kappa of 0.82. While promising, the study highlighted the need for further refine-
ments, such as automating preprocessing, increasing dataset size, and extending the approach
to include direct age estimation. This work marked a significant step toward reliable, automated
dental age estimation methods in forensic odontology.

(ŠTEPANOVSKỲ et al., 2017) extended the exploration of age estimation methods by ana-
lyzing the mineralization stages of multiple teeth in a Czech population of 976 individuals aged
2.7 to 20.5 years. Using a comparative framework, they evaluated 22 methods, ranging from
simple regression to advanced data mining approaches, highlighting the balance between ac-
curacy and usability. Their findings emphasized that tabular multiple linear regression achieved
strong performance (MAE < 0.7 years) while remaining user-friendly, unlike more computa-
tionally demanding methods such as neural networks. Notably, Štepanovský’s work introduced
a KDD-style approach, integrating data from multiple teeth to enhance age estimation, and
underscored the importance of selecting practical, interpretable models for forensic applica-
tions. These insights set the stage for further method refinement, particularly in handling
missing data and generalizing across diverse populations.

(AVUÇLU; BAŞÇIFTÇI, 2018) proposed a novel approach leveraging image processing and
machine learning for simultaneous age and gender estimation in a Turkish population. The
authors used 1,313 panoramic radiographs spanning an age range of 4 to 63 years. Their study
applied rigorous preprocessing steps, including deskewing, gray filtering, and segmentation into
nine quadrants to isolate features. These features were then processed through a multilayer
perceptron (MLP) neural network, achieving classification accuracies exceeding 99%. Their
method dynamically adjusted inputs to optimize performance and demonstrated the effective-
ness of segment-based feature extraction for robust predictions. This study emphasizes the
potential for automated forensic age and gender estimation while setting a benchmark for
integrating preprocessing techniques with machine learning frameworks.

Building on prior works, (TOBEL et al., 2017), (BANAR et al., 2020) further advanced the
automation of third molar staging with a fully automated three-step deep learning workflow.
The authors used a dataset of 400 panoramic radiographs from Belgian individuals aged 7
to 24. This study employed pre-trained AlexNet and DenseNet201 architectures for molar
localization, segmentation, and classification. With preprocessing steps such as rotation-based
augmentation, the proposed pipeline demonstrated high accuracy (>99%) and competitive
MAE values, highlighting the efficiency and speed of automated staging compared to manual
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efforts. However, the reliance on a limited, pre-selected dataset may limit generalizability,
a challenge acknowledged by the authors for future exploration. This study underscores the
growing potential of deep learning for forensic applications, with further refinements required
to address variability and expand usability across diverse populations.

Extending the exploration of automated age estimation, (VILA-BLANCO et al., 2020) in-
troduced a multi-task deep learning framework using two novel architectures, DANet and
DASNet, for chronological age prediction from OPG images. The authors used a dataset of
2,289 Spanish individuals aged 4.5 to 89.2 years. Their approach incorporated sex-specific
features to improve age prediction accuracy. DASNet, in particular, demonstrated superior
performance across all metrics, achieving a mean absolute error of 2.84 ± 3.75 years and
classification accuracy of 85.4% for sex prediction. The study emphasized the robustness of
DASNet in handling diverse radiological qualities and conditioning dental characteristics while
leveraging Grad-CAM to visualize regions that contribute most to inference. This work high-
lighted the advantages of integrating multi-task learning with attention mechanisms, setting
a new benchmark in forensic age estimation research.

(KIM et al., 2021) introduced a CNN-based system for age-group classification using panoramic
radiographs of the first molars (#16, #26, #36, and #46) from 1,586 Korean individuals aged
0 to 60 years. Their model, trained using ImageNet-based transfer learning, achieved classi-
fication accuracies between 94% and 98% across three and five age groupings, with Grad-
CAM visualizations confirming the focus on relevant anatomical features such as pulp size,
alveolar bone levels, and interdental spaces. By integrating augmentation and majority vot-
ing techniques, the system improved patient-wise predictions, emphasizing the robustness of
ensemble learning. This work demonstrated significant advancements in applying AI to foren-
sic age estimation, leveraging CNNs for both automated feature extraction and interpretable
decision-making.

(SHEN et al., 2021) explored the application of machine learning models for dental age esti-
mation in a dataset of 748 panoramic radiographs from Chinese children aged 5 to 13. Building
on the Cameriere method, which uses apical measurements of the seven lower left permanent
teeth, the study trained random forest, support vector machine, and linear regression models.
The ML models outperformed the traditional Cameriere formula in all metrics, achieving mean
errors close to zero and a mean absolute error of 0.489 years for the SVM model. By leveraging
manually extracted features such as apex distance and tooth length, the models demonstrated
significant improvements in prediction accuracy while maintaining interpretability. Although
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the sample range was relatively narrow, the study highlighted the potential of integrating ML
algorithms with established forensic methodologies to enhance precision and reliability.

(HOU et al., 2021) significantly contributed to age estimation research by introducing a
dataset of 27,957 panoramic radiographs from Chinese individuals aged 1 to 93, with extensive
age coverage and high label accuracy. The authors used advanced neural architecture search
techniques. The study compared various deep neural network architectures, including ResNet,
DenseNet, and NASNet, with NASNet achieving the best performance (MAE of 1.64 years).
Key innovations included optimizing model depth, employing multi-branch architectures, and
exploring convolutional kernel asymmetry to tailor networks to the unique characteristics of
dental radiographs. The insights gained from this work, particularly regarding lightweight mod-
els and kernel design, demonstrated the value of NAS-based approaches in forensic dentistry.

(SANTOSH et al., 2022) proposed a machine learning-based framework for age and gender
determination using a dataset of 1,142 panoramic radiographs from Indian individuals aged
1 to 70+ years. The study employed a preprocessing pipeline that included Gaussian filtering
for noise reduction and edge detection for manual feature extraction, such as inter canine
distance and incisor width. Multiclass SVM was utilized for age estimation across 11 age
groups, while LIBSVM was employed for gender classification, achieving accuracies of 97% and
95%, respectively. The methodology emphasized the robustness of SVM models in handling
multidimensional odontometric features while maintaining simplicity and interpretability. This
work underscores the importance of leveraging feature engineering alongside classical machine
learning for reliable forensic identification.

Research in computer vision has been pivotal in constructing the robust pipeline utilized
in this study for training and validating machine learning models. An essential foundation was
the adoption of Kaiming He initialization (HE et al., 2015), which ensures stable convergence in
deep networks by addressing challenges associated with rectifier activations. This method was
critical for training models efficiently and reliably on diverse dental datasets. Additionally, the
use of combined asymmetric kernels, as introduced in the Inception-v4 architecture (SZEGEDY

et al., 2017), significantly improved feature extraction by enabling efficient multi-scale analysis.
This design closely aligns with the multi-kernel approaches explored by (HOU et al., 2021), al-
lowing for a pipeline optimized for complex and heterogeneous radiographic features. Together,
these advancements ensured scalability, stability, and high performance, which are critical for
addressing the challenges inherent to dental image analysis.

Another critical contribution is exploring attribution techniques, as detailed by (SUN-
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DARARAJAN; TALY; YAN, 2017). The Integrated Gradients (IG) method quantifies the con-
tribution of each input feature to a model’s prediction by calculating the integral of gradients
along a linear path from a baseline input to the actual input. The baseline, often a neutral
input like a completely black image, represents the absence of features. IG interpolates be-
tween the baseline and the actual input in small steps, computing gradients at each step, and
accumulates these gradients to produce an importance score for each feature. This approach
ensures that the attributions reflect the sensitivity of the model to changes in the input fea-
tures. Guided by axiomatic principles such as Sensitivity, which ensures non-zero attribution for
impactful features, and Implementation Invariance, which guarantees consistent attributions
for functionally equivalent models, Integrated Gradients provides a principled and theoretically
rigorous approach to interpreting model predictions.

A visualization of this process, such as heatmaps generated by IG, highlights the most
influential regions of the input that contributed to the model’s decision. This aligns with the
use of Grad-CAM in dental radiography models, where attention maps validate the model’s
focus on clinically relevant regions and provide insights into its decision-making processes. For
instance, in dental radiographs, IG heatmaps can emphasize regions like the first molars or
jawbone areas critical for age estimation, enabling both interpretability and trustworthiness in
model predictions. Figure 1 illustrates an example of Integrated Gradients applied to a dental
radiograph, showing how specific regions are highlighted based on their contribution to the
model’s prediction.

Figure 1 – Integrated Gradients Exemple

INPUT IMAGE   BASELINE  INTEGRATED GRADIENTS HEATMAP HEATMAP OVERLAP

Source: The Author (2024). Example of Integrated Gradients applied to a dental radiograph to the task of
Age Estimation. The highlighted regions indicate features that contributed most to the model’s prediction.

These attribution techniques bridge the gap between model performance and interpretabil-
ity, enhancing their applicability in real-world medical contexts.

Additionally, the comprehensive survey by (MUMUNI; MUMUNI, 2022) on modern data aug-
mentation techniques underscores the pivotal role of synthetic data and advanced transforma-
tions in addressing the limitations of small or imbalanced datasets. Strategies such as geometric
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transformations and neural style transfer, highlighted in the survey, contribute to increasing
diversity in training data, reducing overfitting, and improving model generalization. These aug-
mentation methods are particularly relevant for dental datasets, where sample diversity often
poses a challenge. By incorporating such augmentation strategies into the training pipeline,
this study ensures a more robust model capable of generalizing across varied demographic and
anatomical features.

The increasing interest in dental age assessment and the development of advanced meth-
ods combining dental radiology and neural networks has underscored the potential for localized
studies to yield distinct results. Brazil’s unique genetic diversity, shaped by centuries of migra-
tion from Asia, Africa, and Europe (MOURA et al., 2015), provides an opportunity to develop
a well-balanced and representative sample, enhancing the generalizability of findings.

This study leverages this diversity to create a more balanced and inclusive benchmark
compared to other studies. By utilizing a dataset that reflects such genetic variation, the
research aims to validate the model’s performance across different regions and establish a
benchmark to assess models built for diverse populations.
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3 PROPOSED APPROACH

This dissertation is part of a broader project involving the development of a dataset and
models for age estimation using panoramic radiographs, which has been approved by the Ethics
Committee of the Universidade Federal de Pernambuco and the Center for Medical Sciences
under the Certificate of Ethical Appreciation Presentation (CAAE) N.º 42878921.6.0000.5208.
The datasets used in this research include radiographs from two distinct sources: one from
the Universidade Federal de Pernambuco (UFPE), representing the northeastern region, and
another from the Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNI-
CAMP), representing the southeastern region. These datasets are further described in Section
4.1, titled "Dataset Description and Distribution".

This study leverages these datasets to address the challenge of developing machine learning
models capable of age estimation across geographically distinct populations. The methodology
focuses on evaluating the limitations of models trained in one regional context when applied
to data from another region and exploring strategies to enhance model generalization and
robustness.

The proposed approach involves constructing a comprehensive experimental pipeline de-
signed to systematically manage data processing, model training, and evaluation. This pipeline
ensures that all experimental steps are consistent and reproducible, facilitating the validation
of results. It integrates key components such as data augmentation, transfer learning, and
region-aware model fine-tuning to address the identified challenges. Additionally, the pipeline
supports experiments with training models from scratch on mixed datasets, aiming to balance
predictive accuracy and generalization.

To ensure reliable input data for training, the radiographs underwent a quality review
by experienced dentists specializing in radiology and forensic dentistry. Only images meeting
clinical standards were included in the study.

The subsequent sections of this chapter describe the design and implementation of the
experimental pipeline, detailing the specific methodologies and configurations employed in this
research.
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3.1 STUDY PIPELINE

The proposed pipeline, shown in Figure 2, encompasses several key stages, each metic-
ulously designed to enhance the accuracy and robustness of our predictive models. These
stages, outlined below, ensure a systematic approach, balancing the depth of data exploration
and the precision of modeling techniques. This rigorous structure not only aids us in pre-
dicting chronological age but also sets the foundation for future project explorations, such as
predicting biological sex.

Figure 2 – Proposed Pipeline
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Source: The Author (2024). Schematic of the Data Processing and Model Development Pipeline. This pipeline
demonstrates the six main steps of our process to perform the model training. In this example, the output of
our solution is: (A) Original Image Age: 46.58 years; (B) Integrated Gradient Heatmap; (C) Model Predicted
Age: 47.48 years

• Data Collection: Our research involved carefully collecting 21,722 panoramic radio-
graph images and corresponding patient information from the biobase of the UFPE
and FOP/UNICAMP. A custom-built web scraping tool was employed to automate and
streamline this data acquisition, ensuring both efficiency and the preservation of data
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quality throughout the process. This meticulous approach was crucial for guaranteeing
the reliability and validity of our dataset, which forms the foundation of the study.

• Data Quality Analysis: After acquiring the data, we conducted a thorough quality analysis
to ensure that all files met the required criteria for this study. Since the data acquisition
process was performed via web scraping, a manual evaluation was necessary to validate
that all retrieved files were indeed panoramic radiographs and that the metadata was
correctly paired with their respective users. During this process, we eliminated corrupted
images, cropped radiographs (e.g., evaluations showing only one quadrant of the jaw),
duplicate exams, and patients with multiple examinations. Duplicate exams were identi-
fied by comparing the hash values of each image, ensuring precise matching of identical
files. For patients with multiple examinations, the most recent exam was retained based
on the metadata provided by the biobank, which included information such as patient
ID and examination date. This approach ensured consistency in the dataset and reduced
potential biases arising from repeated examinations. Additionally, images were hashed
to ensure data tracing, facilitating reproducibility and auditability throughout our exper-
imental pipeline.

• DataLoader Structuring: We created custom DataLoaders to standardize the image sizes
to 299x299 pixels, normalize pixel values to the range [0, 1], and apply data augmentation
techniques on the training set. The DataLoaders were also configured to batch the images
into sets of 32 for efficient feeding into our machine learning models. Further details
about the preprocessing steps are provided in the Data Preprocessing Section.

• Model Construction: We trained multiple versions of a modified InceptionV4 model,
leveraging state-of-the-art techniques from computer vision. These models were devel-
oped using automated pipelines incorporating best practices such as weight initialization,
dynamic learning rate adjustments, and early stopping to mitigate overfitting.

• Structured Experimentation and Tunings: Structured experimentation was conducted
using the Weights and Biases platform to optimize model performance. This included
exploring various data augmentation strategies and fine-tuning hyperparameters within a
controlled environment, allowing for systematic comparison and improvement of model
versions.
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• Model Evaluation: The pipeline’s final stage involved evaluating our models’ robustness
and generalizability. This evaluation considered image degradation commonly present in
panoramic radiographs and accounted for the specific characteristics of the Brazilian
population. Collaboration with domain experts ensured that our models’ performance
was not only accurate but also interpretable and relevant across a wide variety of radio-
graphs.

All experiments used Python 3.10.11 and PyTorch 2.0 to ensure consistency and repro-
ducibility. To achieve deterministic results across experiments, persistent random seed settings
(seed value of 0) were used. Additionally, all experiments were run on identical hardware—an
Nvidia RTX 3060 GPU with 12GB VRAM—to maintain comparability.

Our experimental configuration involved several hyperparameters to fine-tune the model.
We used an input size of 299x299 pixels for the InceptionV4 model, with a batch size of 32,
and various data augmentation techniques, including horizontal flips, random brightness and
contrast adjustments, rotations, translations, zoom, and pixel erasing. These transformations
were applied with specific probabilities and factors to enhance the diversity of the training
data. The model was trained for 100 epochs using the Adam optimizer with an initial learning
rate of 0.001, adjusted via a ReduceLROnPlateau scheduler. Regularization methods such as
Batch Normalization, Dropout (rate of 0.7), and Early Stopping (patience of 20 epochs) were
employed to prevent overfitting. We used Mean Absolute Error (MAE) as the loss function,
and the model was trained as a single task to predict age in years.
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4 EXPERIMENTS

This chapter presents the dataset description, data pre-processing steps, model selection
process, and a comprehensive overview of the experiments conducted to evaluate the ge-
ographic limitations of AI-based age estimation models. Each experiment was designed to
progressively assess the model’s adaptability to regional data variations and identify necessary
adjustments to improve generalization across diverse Brazilian populations. The chapter is
organized to first provide a detailed understanding of the data and methodologies, followed by
the experimental setups and their results.

4.1 DATASET DESCRIPTION AND DISTRIBUTION

When developing methods for age estimation, particularly those based on Machine Learn-
ing, it is crucial to consider the target population’s unique characteristics. These characteristics
include geographical, socio-nutritional, and hormonal factors, significantly influencing dental
development and introducing individual variability (GALIBOURG et al., 2021). Adopting a re-
gional approach allows for a more precise and context-specific age estimation process using
dental radiographs and is essential for reducing biases and enhancing model performance.

To further investigate the influence of regional differences on age estimation models, this
study aims to evaluate whether models trained on data from the north-east region of Brazil,
comprising 10,036 panoramic radiographs, can be effectively generalized to another dataset
from Campinas, which consists of 11,686 panoramic radiographs collected under similar condi-
tions. By analyzing the similarities and differences in model performance across these datasets,
we seek to understand the degree of generalization achievable and identify potential adapta-
tions or training strategies that could lead to more robust and generalizable models.

Both datasets include a diverse range of patients regarding age, sex, and dental develop-
ment stages. Each image is labeled with a unique identifier (𝑖𝑚𝑎𝑔𝑒_𝑖𝑑), and the XML file
links this identifier to the corresponding age and sex information, verified using patients’ iden-
tification records. This XML file provides a structured overview of the dataset’s composition,
enabling precise matching and easy retrieval of patient information during the training and
validation procedures. To better illustrate the differences and similarities between the datasets
from Unicamp and UFPE, we present a comparative analysis in Table 2:
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Table 2 – Comparative Analysis of Datasets from Unicamp and UFPE with Age Statistics

Category Unicamp Dataset UFPE Dataset

Total Exams
Total 11,686 (100%) 10,036 (100%)
Male 5,020 (42.9%) 4,259 (42.4%)

Female 6,666 (57.1%) 5,777 (57.6%)

Exams by Age Group
0-22 years 3,291 (28.2%) 2,505 (25.0%)
22-65 years 7,364 (63.0%) 6,364 (63.4%)
65+ years 1,031 (8.8%) 1,167 (11.6%)

Age Statistics

Mean Age 35.6 ± 20.0 38.2 ± 20.3
Median Age 33.6 36.5

IQR 32.4 32.3
Minimum Age 2.1 2.25
Maximum Age 89.1 96.5

Source: The Author (2024).

This table is instrumental in understanding the distribution of exams by sex and age group,
highlighting key differences in representation between the datasets. Both datasets maintain a
similar male-to-female ratio; however, there are notable discrepancies in age group represen-
tation, particularly at the extremes of the age range. Such insights are crucial for developing
models that can generalize effectively across diverse populations and may suggest the need for
specific model adjustments or weighting to address under-represented groups.

The comparative analysis of the datasets from Unicamp and UFPE provides valuable in-
sights into their demographic structures and differences. The UFPE dataset has a slightly
older population compared to Unicamp, with a mean age of 38.2 years versus 35.6 years and
a median age of 36.5 years versus 33.6 years. This suggests that the UFPE dataset might
include a relatively older cohort, which could impact the performance of age estimation mod-
els trained on this data. Additionally, the interquartile range (IQR) is very similar between
the two datasets, indicating a comparable distribution for the middle 50% of ages. However,
the maximum ages differ significantly, with the UFPE dataset ranging up to 96.5 years, while
the Unicamp dataset has a maximum age of 89.1 years. The broader range in the UFPE
dataset could pose challenges for model accuracy, particularly at the extreme age values due
to increased variability.

Gender distribution is consistent across both datasets, with females comprising slightly
more than half of the sample—57.1% in the Unicamp dataset and 57.6% in the UFPE dataset.
This minor imbalance is unlikely to significantly affect model training, given the overall bal-
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anced gender representation in both datasets. Age group analysis reveals that the majority of
individuals in both datasets fall within the 22-65 age range, representing 63.0% in Unicamp
and 63.4% in UFPE. Conversely, the 0-22 and 65+ age groups are underrepresented, which
is an expected outcome due to the characteristics of dental clinics, where middle-aged pa-
tients are more likely to seek treatment, and this pattern aligns with the general population’s
healthcare-seeking behavior.

The high standard deviations (20.0 for Unicamp and 20.3 for UFPE) further underscore
the considerable age variability within both datasets. This variability, combined with the under-
representation of specific age groups, suggests that age-specific adjustments in model design
could be beneficial to manage these challenges effectively. These demographic characteris-
tics underscore the importance of tailored modeling approaches to ensure that age estimation
models are accurate, equitable, and capable of generalizing across different age groups and
both sexes.

Figure 3 – Sample from UFPE Dataset
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Source: The Author (2024).

The UFPE dataset (Figure 3) offers high-quality images with consistent contrast and clarity,
making it particularly suitable for detailed analysis of bone structures. The images’ sharpness
and homogeneity clearly highlight dental and bony landmarks, which is crucial for AI models
aiming to detect and evaluate these features accurately.

On the other hand, while also of high quality, the Unicamp dataset (Figure 4) presents
images with softer contrast and a higher proportion of edentulous patients. This characteristic
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Figure 4 – Sample from Unicamp Dataset
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Source: The Author (2024).

introduces an additional challenge for AI models, as many of the features commonly used for
age estimation rely on the presence of teeth. In many cases, the absence of these dental land-
marks may affect the model’s ability to accurately interpret age-related bone structures. These
differences in imaging parameters and patient populations suggest that AI models trained on
one dataset might not achieve the same level of accuracy when applied to the other.

Additionally, the imaging equipment used in the datasets are different. The Unicamp
dataset was acquired using the OP100 and OP300 X-ray machines from Instrumentarium,
while the UFPE dataset utilized the Planmeca ProMax. These devices have distinct technical
specifications, which likely contribute to the variations in image contrast and quality. Fur-
thermore, the protocol settings and radiation exposure configurations in both datasets varied
depending on the patient and the operator, making it impossible to establish a uniform imaging
standard across the datasets.

The subtle differences between the UFPE and Unicamp datasets—such as variations in
contrast, patient positioning, and the proportion of edentulous cases—could pose challenges for
developing AI models that generalize well across both populations. These variations may impact
the model’s ability to consistently interpret bone structures and dental conditions in diverse
imaging contexts.It is worth noting that the decision not to implement an automated image
standardization process (e.g., contrast or brightness correction) was intentional. This approach
aimed to encourage the model to adapt to varying imaging conditions, as standardization itself
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would be equally complex and potentially non-adaptable to the diverse protocols and imaging
setups encountered in new regions.

Figure 5 – Histogram of Patient Age Distribution by Sex Across Both Datasets
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To provide a comprehensive visual overview of the demographic distribution within the final
dataset, which contains images from both UFPE and Unicamp, a histogram is presented to
illustrate the age distribution by sex (see Figure 5). This visualization is particularly valuable
for understanding how different age groups are represented and detecting potential biases or
gaps in the dataset.

The histogram highlights the imbalance in the dataset, especially at the edges of the
age spectrum—namely, the younger and older age groups. This imbalance is particularly pro-
nounced in the older age range, where the steep decline in representation indicates a significant
disparity.

Such distribution may hinder the model’s ability to accurately predict these under-represented
groups, especially older adults. Moreover, this imbalance suggests that the trained models
might struggle to handle advanced-age cases effectively, even with adjustments like weighting
strategies. Therefore, these insights reinforce the need to carefully consider model design to
enhance robustness and ensure fair generalization across all age groups. If adjustments are not
successful in addressing the challenges with advanced ages, it may be advisable to limit the
model’s usage to a specific age range where its performance is more reliable.
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4.2 DATA PRE-PROCESSING

The preprocessing pipeline starts with creating a custom DataLoader, designed to stan-
dardize the dimensions of all images to 299x299 pixels and scale pixel values between 0 and
1. This normalization process is essential for ensuring that the input data is consistent, which
is a critical factor in optimizing model performance and accuracy in image analysis.

The dataset is divided into 17,376 (80%) images for training, 2,173 (10%) for validation,
and 2,173 (10%) as a holdout test set. The results presented in this study are always calculated
based on this holdout test set, ensuring that the performance metrics reflect how the model
performs on completely unseen data.

Extensive data augmentation techniques have been implemented to enhance the training
dataset. These include image flipping, rotations, and modifications to brightness and contrast
levels. By incorporating these transformations, it is possible to simulate a range of imaging
conditions, which helps the model become more robust and capable of generalizing across
different scenarios. More detailed information about the augmentation methods is provided in
the subsection 4.2.1 on data augmentation. Pixel normalization is also maintained throughout
the preprocessing pipeline to ensure uniformity across all images, which is vital for precise
image processing.

The approach relies on Python scripts that manage these preprocessing steps using libraries
such as Torchvision and PIL. These scripts handle image loading, applying augmentations,
and saving the processed versions. Each image is resized to 299x299 pixels and normalized to
align with the rigorous data processing requirements, ensuring consistent input quality for the
models.

4.2.1 Augmentation Tuning

Drawing insights from the studies developed in (AVUÇLU; BAŞÇIFTÇI, 2018; BANAR et al.,
2020; VILA-BLANCO et al., 2020; SANTOSH et al., 2022; MUMUNI; MUMUNI, 2022), and start-
ing with our base model without augmentation as a foundation, we embarked on over 30
experimental trials. The objective was to discern the augmentation strategies that were most
effective and could be seamlessly integrated into our DataLoader function. The configuration
that resulted in the most promising outcomes is outlined in Table 3.

It’s worth noting that the factor values for augmentation were intentionally configured to
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Table 3 – Data Augmentation Configuration

Transformation Name Probability Factors
Horizontal Flip 50% -
Random Brightness 80% 0.15
Random Contrast 80% 0.15
Random Rotation 80% 3
Random Translation 80% (0.1, 0.05)
Random Zoom 80% (0.95, 1.05)
Random Erasing 15% Scale: (0.05, 0.10)

Ratio: (0.3, 3.3)
Random Noise: 50% Intensity: (0.05, 0.2)

Types:
Gaussian

Salt_Pepper
Stationary
Periodic

Source: The Author (2024).

effect minor alterations, aligning with findings in related literature, especially as recommended
in (TOBEL et al., 2017; VILA-BLANCO et al., 2020). This decision was taken to strike a balance
between introducing variability through augmentation and preserving the essential features
inherent in the original images, given that obtaining OPGs is usually consistent and does not
typically exhibit significant variability in patient positioning. These alterations can be observed
in Figure 6, which demonstrates the impact of each augmentation strategy employed. It is im-
portant to highlight that a single image may undergo multiple transformations simultaneously,
further enhancing the diversity within the dataset.
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Figure 6 – Examples of Data Augmentation Strategies Applied to Panoramic Radiographs

Source: The Author (2024).

4.3 MODEL SELECTION

In (HOU et al., 2021), the researchers employed a Neural Architecture Search (NAS) ap-
proach to evaluate the impact of different architectural components, such as kernel configura-
tions, multi-branch structures, architecture depth, and the utilization of pre-trained weights for
transfer learning. Their findings showed that smaller architectures with multi-branch designs,
asymmetric kernels, and no pre-trained weights generally perform better while reducing the
risk of overfitting.

Various deep learning architectures are suitable for our age estimation tasks, including
ResNet (HE et al., 2016), VGG (SIMONYAN; ZISSERMAN, 2014), and EfficientNet (TAN; LE,
2019).

ResNet, with its residual connections, enables the training of very deep networks by miti-
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gating the vanishing gradient problem, which is crucial for learning complex features effectively.
These connections act as shortcuts, allowing gradients to flow through the network more easily
during training. However, this increased depth comes at the cost of computational resources,
requiring substantial memory and time to train. Additionally, ResNet’s depth can lead to over-
fitting for medical imaging datasets, which are typically smaller, making it less ideal without
extensive data augmentation or regularization.

Following the analysis of ResNet, another architecture that has been considered for age
estimation tasks is VGG. Although simpler, it does not utilize asymmetric kernels and follows
a straightforward large architecture. This contrasts with the findings of Hou’s NASNet, which
demonstrated that smaller architectures with asymmetric kernels tend to perform better and
reduce the risk of overfitting. For these reasons, we decided not to pursue the VGG architecture
for our task.

EfficientNet uses a scaling approach that balances network depth, width, and resolution,
providing a good trade-off between accuracy and computational efficiency. This makes Effi-
cientNet suitable for many vision tasks, particularly when resources are constrained. However,
it also lacks the multi-branch design that was found to be effective in Hou’s study. Multi-
branch architectures are better at capturing multi-scale features, which is especially important
in age estimation from OPGs due to the mix of fine and coarse anatomical details present in
the images. Thus, while EfficientNet offers strong performance overall, it may not provide the
specialized feature extraction capabilities required for this task.

While modern architectures such as Swin Transformers (LIU et al., 2021) and Vision Trans-
formers (ViT) (DOSOVITSKIY, 2020) have shown exceptional performance in various computer
vision tasks, they were not selected for this study due to specific constraints related to the
dataset size and computational resources. Transformers-based models typically require large-
scale datasets to effectively learn the relationships between different image patches, which
helps capture the global context. Moreover, the nature of OPGs often includes significant vari-
ability in image quality and anatomical features, making it challenging for transformer-based
models to learn effectively without a substantial dataset size that provides diverse examples for
generalization. Given the limited number of training images, applying such models would likely
lead to overfitting, as they do not inherently possess the inductive biases present in Convolu-
tional Neural Networks (CNNs), which make CNNs more efficient in generalizing from fewer
samples. Additionally, the computational demands of training Transformer-based architectures
are significantly higher, which makes them less practical for this particular study, where we are
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resource-constrained.
In summary, while ResNet, VGG, EfficientNet, and Transformer-based models each offer

unique strengths, their limitations—such as high computational demands, risk of overfitting
with small datasets, lack of suitable kernel configurations, and architectural complexity—make
them less ideal for our specific task. Instead, we chose the InceptionV4 (SZEGEDY et al., 2017)
architecture for its effective balance between complexity, feature extraction capability, and
computational efficiency. This architecture’s multi-branch and asymmetric kernel design allows
it to capture fine details and broader anatomical structures, which is crucial for analyzing
OPGs and providing accurate age estimation. These capabilities help mitigate data scarcity
and overfitting issues, aligning well with our study’s requirements.

Guided by these findings, the initial approach for estimating chronological age from OPGs
involved using the InceptionV4 architecture described in (SZEGEDY et al., 2017). The model
was applied as an encoder without fine-tuning, followed by a dropout layer and two Fully
Connected (FC) for feature decoding and the regression task. Despite its size, InceptionV4’s
use of multi-branch and asymmetric kernel configurations aligns with the recommendations
from Hou et al.’s study, making it a suitable choice for this task by effectively balancing feature
extraction and computational feasibility.

The detailed structure of the proposed network is depicted in Figure 7. The majority of
layers employ the Rectified Linear Unit (ReLU) activation function, chosen for its ability to
effectively mitigate the vanishing gradient problem, thus enabling efficient training (HU; ZHANG;

GE, 2021). For the second FC layer responsible for the regression output, no activation function
is used to allow for a direct linear transformation of inputs, ensuring a continuous output.

Figure 7 shows that the network starts with a ’Stem’ module that performs initial convo-
lutions to prepare the input image for multi-scale feature extraction. This module sets up a
robust foundation for the subsequent stages of the architecture.

Following the ’Stem’, the architecture incorporates the Inception-A module, which applies
parallel convolutions of different types to capture a wide variety of features. This is succeeded
by the Reduction-A module, which reduces the dimensions of the feature maps using pooling
and stride-2 convolutions, enhancing computational efficiency.

The architecture then deploys the Inception-B module, which is similar in concept to
Inception-A but uses different convolution configurations to capture more complex image
features. This is followed by the Reduction-B module, which further reduces the dimensionality
of the feature maps. Next, the Inception-C module refines these features, extracting more
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Figure 7 – Schematic of the proposed network architecture

Source: The Author (2024). The Inception modules and their reduction mechanisms follow the structure
outlined in (SZEGEDY et al., 2017). For more detailed information on the InceptionV4 components, please refer
to the original publication.

detailed information crucial for the final task.
After this, an Adaptive Average Pooling layer condenses the spatial dimensions of the

feature maps into a single vector, retaining key spatial information. A Dropout layer with
a rate of 0.7 is applied post-pooling to prevent overfitting. By randomly deactivating some
neurons during training, the model promotes a more balanced distribution of neuron weights.

The final part of the network includes two FC layers, FC1 and FC2, which decode the
feature vector obtained from the preceding layers. FC1 interprets the features and identifies
important patterns, while FC2 generates the final age prediction output based on the refined
information from FC1.

To optimize the network’s performance, the Kaiming Normal Method (HE et al., 2015), also
known as He Initialization is used for weight initialization. This method is particularly effective
with ReLU activation functions, ensuring that the variance of inputs remains consistent across
layers and preventing issues such as vanishing or exploding gradients during backpropagation.

4.4 EXPERIMENTS OVERVIEW

Experiment 1: In this initial experiment, several models were trained using a regionally
limited dataset (UFPE). The best-performing model was then tested on a distinct dataset
(Unicamp) without any additional fine-tuning. This experiment establishes a baseline to assess
the model’s ability to generalize to geographically distinct populations without adaptations.

Experiment 2: Fine-Tuning with RMSprop on Limited Epochs Fine-tuning was conducted
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using the RMSprop optimizer over a limited number of epochs to refine the model further.
Two variations were tested: (1) fine-tuning the model using only the Unicamp dataset and (2)
fine-tuning it with a combined dataset that includes images from both regions. This experiment
aimed to examine whether minimal adjustments could improve performance in region-specific
data or if a broader fine-tuning approach was more effective.

Experiment 3: Retraining on Combined Datasets In this experiment, the model was fully
retrained on both datasets to examine its ability to generalize without relying on weights from
the previous model. By retraining from scratch, this experiment provides insights into how a
unified dataset affects the model’s overall performance across different populations.

Experiment 4: Retraining with Augmentation on Combined Datasets The final experiment
involved retraining the model on both datasets with data augmentation applied. Augmentation
techniques were used to simulate various imaging conditions and further diversify the training
data, enhancing the model’s robustness. This experiment aimed to evaluate whether aug-
mentation could improve the model’s adaptability and performance on geographically diverse
datasets.

Each of these experiments provides insights into how well the model performs across
different regional data and identifies potential strategies for improving its generalizability.

4.5 EXPERIMENT 1: TESTING REGIONAL BIASES

4.5.1 Objective

This experiment aimed to establish a baseline by evaluating the performance of the best
model trained on the UFPE dataset when applied to a new dataset from a different Brazilian
region. The goal was to determine how well the model generalizes to geographically diverse
data without any adaptations or fine-tuning.

4.5.2 Specific Methodology

For this initial test, the model was trained using the UFPE dataset, which comprised 10,036
panoramic radiographs representing a wide age range from 2.25 to 96.5 years. The training
process involved the InceptionV4 architecture, chosen for its ability to effectively handle diverse
anatomical structures using its multi-branch and asymmetric kernel design.
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Throughout the experimentation phase, we executed over 30 variations of training config-
urations to optimize the model’s performance. These variations included modifications to the
data augmentation parameters, such as rotation angles, brightness levels, horizontal flips, as
well as different augmentation multipliers. The objective was to determine the optimal con-
figuration that would enhance the model’s generalizability and robustness to variations in the
imaging conditions present in panoramic radiographs.

The final model was trained for 100 epochs using the Adam optimizer with an initial
learning rate of 10−3, halving the learning rate at plateaus of 5 epochs to achieve gradual
convergence. The Mean Absolute Error was used as the loss function, which is well-suited for
continuous output like age estimation. Data augmentation was a crucial component of this
process, incorporating random modifications to increase the diversity of the training dataset
and reduce overfitting.

After extensive experimentation, the final model configuration was selected based on its
superior performance in terms of accuracy and robustness on the validation set. This model
was then applied directly to the new dataset from Unicamp without any further fine-tuning,
allowing us to evaluate its generalizability to a geographically distinct population.

The general overview of the methodology for both training and testing phases is highlighted
in Table 4:

Table 4 – Experiment 1 Methodology Overview - Training and Testing

Component Description

Training (UFPE Dataset)

Model Architecture InceptionV4
Dataset UFPE

Optimizer Adam
Learning Rate 10−3

Epochs 100
Data Augmentation Depicted in Table 3

Testing (Unicamp Dataset)

Dataset Unicamp (Unseen data)
Weights Pre-trained from UFPE

Optimizer None
Learning Rate None
Observation No additional training applied

Source: The Author (2024).
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4.5.3 Results

The model’s performance on the new dataset, shown in Table 5, revealed a decline in
accuracy compared to its performance on the original UFPE dataset. MAE increased to 4.97
years, while the MSE rose to 43.89 years2, indicating reduced precision. Additionally, the 𝑅2

score dropped to 0.888, with an explained variance of 0.915, reflecting the model’s limitations
in predicting age accurately for this new region. It is important to note that the metrics
presented consider only the test subsets of both datasets, ensuring that the comparison is
based solely on unseen data.

Table 5 – Experiment 1 results

Metric UFPE Dataset Unicamp Dataset
MAE 3.10 ± 0.18 years 4.97 ± 0.25 years
MSE 18.46 ± 0.27 years2 43.89 ± 0.33 years2
Median Absolute Error 2.16 years 3.88 years
IQR of Absolute Error 3.55 years 5.71 years
𝑅2 0.955 0.888
Explained Variance 0.965 0.915
T-statistic 1.88 -19.31
P-value 0.06 2.63 × 10−72

Source: The Author (2024). Comparison of Performance Metrics for the best model trained on UFPE dataset
versus Unicamp Dataset

The Bland-Altman plot in Figure 8 visually demonstrates the agreement between real and
predicted ages for both datasets.

For the Unicamp dataset, the mean difference of -3.26 years indicates a general tendency
of the model to overestimate age. The limits of agreement, calculated at ± 1.96 standard
deviations, span from -14.57 to 8.05 years, highlighting considerable variability in predictions.
This variability is particularly pronounced in patients over 18 years, where deviations increase
markedly.

While for the UFPE dataset we can observe a minor systematic bias in the prediction error
distribution. This bias is indicated by the predominant clustering of values around 0.25 on the
y-axis, and our confidence intervals exhibit a slight skew toward positive errors. This suggests
that our model slightly underestimates the patients’ age. However, based on the results from
the t-test (p-value = 0.06), there is no solid statistical evidence to suggest that the predictions
from our augmented model are significantly different from the actual ages.
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The predictions on both datasets exhibited a cone-beam spread pattern, suggesting that
the discrepancy between actual and predicted values widens as age increases. This observation
implies that the model’s predictive accuracy decreases with advancing age, likely due to the
broad variability of odontological treatments, diseases, and other age-related changes. These
factors contribute to increased complexity in accurately estimating age in older individuals.

Figure 8 – Bland-Altman Plot for Experiment 1
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Source: The Author (2024).

A paired t-test was also conducted to evaluate the statistical significance of the differences
between real and predicted ages. For the UFPE dataset, the resulting t-statistic and p-value
indicated a value greater than 0.05, suggesting that there is no statistical evidence to support
that the predicted ages are significantly different from the actual ages. In contrast, for the
Unicamp dataset, the resulting t-statistic of -19.31 and p-value of 2.64 × 10−72 indicate a
significant statistical discrepancy, confirming that the predicted ages differ considerably from
the actual ages. With the results summarized above, we proceed to analyze the model’s
performance in detail, focusing on strengths, limitations, and specific failure cases.

4.5.4 Analysis and Discussion

The analysis of this baseline experiment highlights the model’s strengths and limitations
when applied to data from a new geographic region. Notably, the model tends to overestimate
the ages of patients in the Unicamp dataset, a pattern supported by the Bland-Altman plot and
further validated by the significant p-value from the t-test. This suggests that the predicted
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and actual ages do not share the same distribution, revealing a clear discrepancy in prediction
accuracy.

When compared to the original model’s performance on the UFPE dataset, prediction
quality on the Unicamp data considerably declines. This reduction in accuracy indicates possible
regional biases in the model’s learned features, underscoring the need for further adaptation
or fine-tuning to improve its generalizability across different Brazilian populations. Specifically,
the significant drop in performance suggests that socio-environmental differences, such as
nutrition and access to dental care, could impact dental development in ways not captured by
the original training dataset.

Despite these challenges, the model demonstrated relatively strong performance in pre-
dicting ages for individuals up to 18 years, where growth patterns tend to be more consistent
across regions. This indicates that some developmental features remain well-represented and
generalizable, particularly in younger patients with lower variability.

To further understand the model’s limitations, Figure 9 shows specific examples of failed
predictions. These cases help illustrate typical scenarios where the model struggles:

Figure 9 – Examples of Model Failures in Age Prediction

REAL: 60.02 | PRED: 72.28 REAL: 29.09| PRED: 47.17 REAL: 8.05 | PRED: 36.62

(B)

(A)

Source: The Author (2024). Examples of cases where the model’s predictions failed, highlighting common
issues such as bone loss (Cases 1 and 2), and image overexposure (Case 3), shown from left to right.
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• Case 1: This image represents a case of severe bone loss, likely due to early tooth loss
or extraction, which exacerbated the condition, resulting in an overestimation of the
patient’s age.

• Case 2: In this case, the patient exhibits significant bone and tooth loss, which is not
consistent with the typical characteristics expected for the patient’s actual age, leading
to a substantial prediction error.

• Case 3: The low exposure level of this image caused it to fall outside the distribution of
images used during model training, even in the augmented dataset, which did not apply
such severe augmentation in terms of brightness.

In conclusion, this experiment demonstrates that while the pre-trained model has specific
strengths—particularly for younger patients—its limitations in terms of generalizability are
evident when applied to data from new regions. Moving forward, steps such as fine-tuning the
model with more regionally diverse data and employing advanced augmentation techniques
will be crucial to improving its robustness and reducing geographic biases.

4.6 EXPERIMENT 2: FINE-TUNING PRE-TRAINED MODEL

4.6.1 Objective

This experiment aimed to explore the impact of fine-tuning the UFPE model in two different
ways: (A) using only the Unicamp dataset and (B) using the combined UFPE and Unicamp
datasets. The purpose was to determine if region-specific fine-tuning improves model per-
formance for Unicamp without significant loss on the previous data and to assess whether
including the UFPE dataset preserves generalizability across both datasets.

4.6.2 Specific Methodology

In this experiment, the model was fine-tuned over 20 epochs for each test, using both the
Unicamp-only and combined datasets (UFPE and Unicamp). The goal was to evaluate the im-
pact of different fine-tuning strategies on model performance across diverse data distributions.
For both tests, we employed the InceptionV4 architecture with weights pre-trained from the
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previous experiment to leverage the original model’s learned features while adapting to new
data.

The RMSprop optimizer was selected for fine-tuning, with a learning rate set at 3 × 10−5

to allow for gradual adjustments to the pre-trained model without risking abrupt changes.
Additionally, a data augmentation strategy with a multiplier of 3 was applied to enhance
the dataset’s diversity, introducing brightness, contrast, and rotation variations, among other
transformations. This augmentation was intended to improve model generalization across dif-
ferent patient demographics and imaging conditions. Table 6 summarizes the key components
and parameters used in this experiment:

Table 6 – Experiment 2 Methodology Overview

Component Description
Model Architecture InceptionV4
Dataset Both Datasets
Weights Pre-trained from UFPE Experiments
Optimizer RMSprop
Learning Rate 3 × 10−5

Observation Data Augmentation with a multiplier equal to 3
Source: The Author (2024).

4.6.3 Results

Table 7 summarizes the main performance metrics for both fine-tuning approaches applied
across the UFPE and Unicamp datasets. When fine-tuned exclusively on the Unicamp dataset,
the model achieved an MAE of 3.55 ± 0.20 years and an MSE of 24.13 ± 0.28 years2 on
Unicamp data, with an 𝑅2 of 0.939. For the UFPE dataset under the same setup, the MAE
increased to 3.61 ± 0.22 years, and the MSE rose to 25.36 ± 0.29 years2, with an 𝑅2 of 0.938.

In contrast, when fine-tuned on the combined dataset, the model achieved an MAE of 3.25
± 0.20 years and an MSE of 20.47 ± 0.28 years2 on the UFPE dataset, with an 𝑅2 of 0.950.
For the Unicamp dataset, the combined fine-tuning approach yielded an MAE of 3.69 ± 0.20
years and an MSE of 25.94 ± 0.29 years2, with an 𝑅2 of 0.934.

The Bland-Altman plots for the fine-tuned model using only Unicamp data (Figure 10)
demonstrate the model’s predictive accuracy and bias across the Unicamp and UFPE datasets.
For the Unicamp dataset, the mean difference between real and predicted ages is close to zero
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Table 7 – Experiment 2 Results

UFPE Dataset
Unicamp Only Full Dataset

MAE 3.61 ± 0.22 years 3.25 ± 0.20 years
MSE 25.36 ± 0.29 years2 20.47 ± 0.28 years2
Median Absolute Error 2.51 years 2.21 years
IQR of Absolute Error 4.01 years 3.89 years
𝑅2 0.938 0.950
Explained Variance 0.945 0.950
T-statistic 11.18 0.34
P-value 2.00 × 10−27 0.73

Unicamp Dataset
Unicamp Only Full Dataset

MAE 3.55 ± 0.20 years 3.69 ± 0.20 years
MSE 24.13 ± 0.28 years2 25.94 ± 0.29 years2
Median Absolute Error 2.44 years 2.62 years
IQR of Absolute Error 4.09 years 4.36 years
𝑅2 0.939 0.934
Explained Variance 0.939 0.936
T-statistic -4.09 -6.89
P-value 4.67 × 10−5 9.16 × 10−12

Source: The Author (2024). Results from Experiment 2 compare two fine-tuning strategies: one using only
Unicamp data and the other using the combined training set (UFPE and Unicamp). The table highlights key
performance metrics for each approach across the two datasets.

at -0.58 years, with limits of agreement ranging from -10.15 to 8.98 years, indicating tighter
error dispersion around the mean. In contrast, for the UFPE dataset, the mean difference is
slightly higher at 1.68 years, with limits of agreement from -7.64 to 10.99 years. This suggests
a minor tendency to overestimate age for the UFPE dataset compared to the Unicamp dataset.

The Bland-Altman plots for the model fine-tuned using the complete training set (Figure
11) illustrate the model’s predictive performance across both the Unicamp and UFPE datasets.
For the Unicamp dataset, the mean difference between real and predicted ages is -1.01 years,
with limits of agreement from -10.80 to 8.78 years, suggesting a slight underestimation bias.
For the UFPE dataset, the mean difference is minimal at 0.05 years, with limits of agreement
ranging from -8.82 to 8.92 years, indicating a balanced prediction with minimal bias.
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Figure 10 – Bland-Altman Plot for Experiment 2 (A)
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Source: The Author (2024). Comparison of results for the model fine-tuned with only Unicamp data across
the Unicamp and UFPE datasets.

Figure 11 – Bland-Altman Plot for Experiment 2 (B)

UFPEUNICAMP

Average between real age and predicted age

Di
ff
er
en
ce
 b
et
we
en
 r
ea
l 
ag
e 
an
d 
pr
ed
ic
te
d 
ag
e

Source: The Author (2024). Comparison of results for the model fine-tuned with the complete training set
across the Unicamp and UFPE datasets.

4.6.4 Analysis and Discussion

The results from Experiment 2 show that fine-tuning the model, either with Unicamp-only
data or the combined dataset, improved predictive accuracy compared to the baseline model
used in Experiment 1. However, statistical testing using a Paired T-test indicates that, despite
these improvements, the predicted ages are still statistically different from the actual ages,
as evidenced by the p-values being significantly below 0.05 in most cases. This suggests that
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while fine-tuning enhances model performance, it does not entirely eliminate the systematic
differences in age prediction across regions.

When fine-tuning was performed exclusively on the Unicamp data, there was a marked
improvement in the model’s performance for the Unicamp dataset, with a reduction in both
MAE and MSE. However, this region-specific tuning came at a cost: the model’s accuracy
declined considerably on the UFPE dataset, with increases in MAE and MSE and a noticeable
deviation in the Bland-Altman plot. This indicates that the model has adapted to the Unicamp-
specific characteristics, potentially losing its generalizability when applied to a different dataset
like UFPE.

Conversely, fine-tuning on the combined dataset (both Unicamp and UFPE) achieved a
more balanced performance across the two datasets. This approach yielded slightly higher MAE
and MSE values for Unicamp than the Unicamp-only fine-tuning, but it maintained competitive
performance on the UFPE dataset. The Bland-Altman plot for this combined approach showed
a near-zero mean difference for the UFPE data, indicating minimal bias and a narrow range
of limits of agreement, suggesting improved consistency across diverse data. However, the
T-Test results still point to statistically significant differences between predicted and actual
ages, underscoring persistent challenges in achieving true geographic generalizability.

The following figures show selected examples of prediction failures, along with their analysis
by domain experts, to further illustrate the specific challenges the model encountered during
Experiments 2 A and B.

Figures 12 and 13 show examples of failed predictions for both fine-tuning approaches,
highlighting common scenarios where the model still struggles.

• Experiment 2 (A):

– Case 1: The patient shows good overall dental condition, with minimal bone loss
and wide dental pulp. This corresponds to a younger dental age than the actual
chronological age, leading to an underestimation by the model.

– Case 2: Similar to Experiment 1, the patient exhibits significant bone and tooth
loss, which is not consistent with the typical characteristics expected for the pa-
tient’s actual age, leading to a substantial prediction error.

– Case 3: The image suggests that this acquisition was made using an adult protocol
on a child. However, it is notable that the model focused on the correct region (first
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Figure 12 – Examples of Model Failures in Age Prediction for Experiment 2 (A)

REAL: 63.11 | PRED:46.92 REAL: 29.09| PRED: 46.99 REAL: 9.08 | PRED: 6.25

(B)

(A)

Source: The Author (2024). Examples of cases where the model’s predictions failed in Experiments 2 (A),
highlighting issues such as dental condition (Cases 1 and 2), and image quality (Case 3), shown from left to
right.

molars), demonstrating its ability to identify relevant features despite the quality
issues.

• Experiment 2 (B):

– Case 1: The presence of crowns on all upper teeth indicates older dental treat-
ments, which are no longer commonly used in younger patients. Additionally, highly
calcified canals suggest a dental age older than the actual chronological age, leading
to an overestimation by the model.

– Case 2: Once again, the patient exhibits significant bone and tooth loss, which
is not consistent with the typical characteristics expected for the patient’s actual
age, leading to a substantial prediction error.

– Case 3: Despite the low density image, the model focused on the correct region,
identifying the eruption of the first molar and the upward movement of the second
molar, which are indicative of the 8-9 year age range.
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Figure 13 – Examples of Model Failures in Age Prediction for Experiment 2 (B)

REAL: 62.08 | PRED: 78.96 REAL: 29.09| PRED: 46.33 REAL: 7.11 | PRED: 9.41

(B)

(A)

Source: The Author (2024). Examples of cases where the model’s predictions failed in Experiments 2 (B),
highlighting issues such as dental restoration procedures (Case 1), bone loss (Case 2), and image quality (Case
3), shown from left to right.

These failure cases provide insight into the specific situations where the model’s predictions
diverged from actual ages. Factors such as patient positioning, dental restoration procedures,
and image quality significantly contributed to errors.

In summary, while both fine-tuning strategies improved model accuracy relative to the
baseline, they also introduced trade-offs. Fine-tuning on Unicamp data alone enhances local
accuracy but sacrifices performance on external datasets. The combined fine-tuning approach
offers more balanced performance across datasets. However, statistically significant prediction
errors remain, indicating the need for further adjustments or alternative approaches to achieve
robust, geographically generalizable age estimation models.
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4.7 EXPERIMENT 3: FULL RETRAINING ON BOTH DATASETS

4.7.1 Objective

The objective of Experiment 3 was to assess the impact of retraining the model from scratch
using both the UFPE and Unicamp datasets. By eliminating any pre-trained weights and
starting with a fresh model, this experiment aimed to evaluate whether a complete retraining
approach could improve the model’s ability to generalize across both datasets without inheriting
any potential biases from prior training on a single region.

4.7.2 Specific Methodology

For this experiment, the model architecture remained the same-InceptionV4-, but it was
initialized without any pre-trained weights. The dataset included both Unicamp and UFPE
images to encourage balanced learning across different regions. Table 8 outlines the specific
parameters used in this retraining approach:

Table 8 – Experiment 3 Methodology Overview

Component Description
Model Architecture InceptionV4
Dataset Combined Dataset (UFPE and Unicamp)
Weights Kaiming Initialization (HE et al., 2015)
Optimizer Adam
Learning Rate 1 × 10−3

Observation Base model, no augmentation applied
Source: The Author (2024).

4.7.3 Results

Table 9 summarizes the main performance metrics for the retrained model on both the
Unicamp and UFPE datasets. We achieved balanced performance across the two datasets
by training the model from scratch on a combined dataset, suggesting that this approach
effectively reduced regional biases.

For the Unicamp dataset, the retrained model obtained an MAE of 3.48 ± 0.19 years and
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an MSE of 23.53 ± 0.28 years2, with an 𝑅2 score of 0.940 and an explained variance of 0.940.
The median absolute error was 2.46 years, with an IQR of 4.10 years, indicating a consistent
error distribution across age predictions.

The model performed similarly on the UFPE dataset, achieving an MAE of 3.36 ± 0.20
years and an MSE of 21.19 ± 0.28 years2, with an 𝑅2 of 0.948 and an explained variance at
0.948. The median absolute error for this dataset was 2.48 years, with an IQR of 3.82 years,
reflecting an equally stable error distribution.

Table 9 – Experiment 3 Results: Retraining Model on Combined Datasets)

Performance Metrics for Retrained Model
Unicamp Dataset UFPE Dataset

MAE 3.48 ± 0.19 years 3.36 ± 0.20 years
MSE 23.53 ± 0.28 years2 21.19 ± 0.28 years2
Median Absolute Error 2.46 years 2.48 years
IQR of Absolute Error 4.10 years 3.82 years
𝑅2 0.940 0.948
Explained Variance 0.940 0.948
T-statistic 0.64 1.64
P-value 0.525 0.101

Source: The Author (2024). Summary of key performance metrics for Experiment 3, where the model was
trained from scratch using a combined dataset.

Figure 14 – Bland-Altman Plot for Experiment 3
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Source: The Author (2024). Comparison of results for the re-trained model across the Unicamp and UFPE
datasets.

Additionally, the Bland-Altman plot, presented in Figure 14, shows a mean difference close
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to zero for both datasets, with limits of agreement ranging from -9.42 to 9.60 years for Unicamp
and -8.78 to 9.25 years for UFPE. This indicates minimal prediction bias, confirming that the
model produces consistent age estimations across diverse regional data.

4.7.4 Analysis and Discussion

The results from Experiment 3 demonstrate that training the model from scratch on a
combined dataset significantly enhanced its generalizability across both regions. The balanced
performance on the Unicamp and UFPE datasets, reflected in the low MAE and high 𝑅2

scores, suggests that incorporating data from both regions allowed the model to capture a
broader representation of age-related features, reducing overfitting to any single population.

The Bland-Altman plots further support this improvement, showing minimal bias in predic-
tions across both datasets. This outcome contrasts with Experiments 1 and 2, where models
fine-tuned on individual datasets showed higher levels of regional bias. By training from scratch
on a mixed dataset, the model appears to have successfully mitigated regional discrepancies,
achieving reliable predictions across diverse Brazilian demographics.

Additionally, the T-Test results offer further insight into prediction alignment, with p-values
(0.5251 for Unicamp and 0.1011 for UFPE) above the 0.05 threshold, suggesting no evidence
to reject the null hypothesis. Unlike previous experiments, where fine-tuning on a single dataset
led to statistically significant differences, this retrained model shows no detectable discrepancy
between predicted and actual age distributions in either dataset.

In summary, full retraining on the combined dataset resulted in a well-balanced model that
generalizes effectively across both the UFPE and Unicamp datasets. This approach minimized
regional bias, supporting the benefits of using a diverse dataset to enhance model robustness
and consistency in age estimation across varied populations.

Significant outliers continue to appear despite these improvements, with some predictions
deviating by over 20 years from the actual ages. While retraining reduced the frequency of
these high-magnitude errors, they persist, particularly in cases involving elderly individuals,
edentulous young patients, and instances where image quality issues affected the results.

These examples are further analyzed through the insights provided by a dental specialist,
highlighting how specific artifacts and dental conditions impacted the model’s predictions, as
visually indicated by the integrated gradient heatmaps.

Figure 15 illustrates examples of these persistent outliers, highlighting how specific fac-
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Figure 15 – Outlier Prediction Examples

(A)

(B)

(B)

Source: The Author (2024). Examples of prediction outliers highlight typical cases where the model’s age
estimations deviate significantly from the actual age. (A) Elderly patient with an actual age of 81.09 years
but a predicted age of 48.80 years, illustrating the model’s challenges with image artifacts, including a central
white blur which obscures critical features. (B) Edentulous middle-aged patient, aged 58.83 years, predicted as
73.82 years, where the absence of teeth and dental markers contributes to the discrepancy. (C) Young adult,
aged 31.17 years, with a predicted age of 51.14 years, demonstrating the influence of edentulous areas as a
significant feature for the model in this specific case; this characteristic is atypical for young patients and may
have misled the model’s prediction. Each row displays the original image, the integrated gradient heatmap,
and the overlaid prediction heatmap, which reveal regions the model focused on during prediction.

tors, such as extreme patient age, dental conditions, and image quality, contribute to notable
prediction inaccuracies.

The insights from a dental specialist provided additional context regarding the specific
factors influencing the errors in these outlier predictions:

For Case (A), the central artifact observed may be attributed to the lower implants, which
affected the model’s ability to extract relevant features accurately.
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In Case (B), the use of double protocol prosthesis is typically seen in elderly patients,
reinforcing why the model predicted a higher age for this middle-aged individual. The lack of
dental markers, coupled with the presence of such prosthetics, likely contributed to the model’s
overestimation.

As for Case (C), the patient’s oral condition appears older due to dental protection re-
sponses, such as the formation of tertiary dentin, possibly resulting from multiple cavities
during childhood. This accumulation of calcified canals misled the model in predicting a sig-
nificantly older age than the actual age, reflecting the challenge in distinguishing between
dental evolution from age versus that from other factors like past dental caries.

These observations highlight the need for more sophisticated strategies, such as specific
data augmentation targeting these conditions or the use of additional features to better capture
such edge cases. These strategies would ensure that the model can reliably estimate age even
in challenging scenarios.

Building on these findings, the following experiment was developed to investigate whether
data augmentation techniques can further improve model robustness and reduce significant
outliers. By introducing controlled variations in imaging conditions—such as brightness ad-
justments, noise injection, and random erasing—this experiment aims to expand the diversity
of the training dataset.

4.8 EXPERIMENT 4: RETRAINING WITH DATA AUGMENTATION

4.8.1 Objective

The goal of Experiment 4 was to evaluate the impact of data augmentation on model
performance, particularly in reducing high-magnitude prediction errors observed in Experiment
3. Given the persistent outliers, especially among extreme cases like elderly patients, young
edentulous individuals, and images with artifacts, this experiment artificially introduced more
variability in training data to enhance the model’s resilience. We sought to diversify the training
conditions by applying various augmentation techniques and improve the model’s generalization
capability across unusual patient profiles and imaging inconsistencies.
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4.8.2 Specific Methodology

In this experiment, the InceptionV4 architecture was again trained from scratch using a
combined dataset of UFPE and Unicamp images. Data augmentation techniques were applied
extensively to increase image diversity, simulating various real-world imaging scenarios. Table
10 provides an overview of the model training parameters.

Table 10 – Experiment 4 Methodology Overview

Component Description
Model Architecture InceptionV4
Dataset Combined Dataset (UFPE and Unicamp)
Weights Kaiming Initialization (HE et al., 2015)
Optimizer Adam
Learning Rate 1 × 10−3

Observation Data Augmentation with a multiplier equal to 3
following the strategy outlined on subsection 4.2.1.

Source: The Author (2024).

In this training, the dataset was expanded by a factor of 3, resulting in 52,128 training
images. This increase aimed to enhance the model’s exposure to a broader variety of cases,
including potential edge cases.

4.8.3 Results

Table 11 summarizes the key performance metrics for the model retrained with data aug-
mentation, evaluated on both the Unicamp and UFPE datasets. The augmented training set,
which expanded the data volume by a factor of 3 to a total of 52,128 images, aimed to improve
model resilience to challenging cases and diverse imaging conditions.

For the Unicamp dataset, the augmented model achieved an MAE of 3.24 ± 0.18 years
and an MSE of 20.61 ± 0.26 years2, with an 𝑅2 score of 0.947 and an explained variance of
0.948. The median absolute error for this dataset was 2.16 years, with an IQR of 3.86 years,
indicating a consistent distribution of errors.

On the UFPE dataset, the model achieved an MAE of 3.28 ± 0.20 years and an MSE of
21.39 ± 0.28 years2, with an 𝑅2 of 0.948 and an explained variance of 0.949. The median
absolute error for this dataset was 2.10 years, with an IQR of 4.16 years, suggesting that the
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Table 11 – Experiment 4 Results: Retraining Model with Data Augmentation

Performance Metrics for Augmented Retrained Model
Unicamp Dataset UFPE Dataset

MAE 3.241 ± 0.182 years 3.284 ± 0.202 years
MSE 20.614 ± 0.259 years2 21.395 ± 0.283 years2
Median Absolute Error 2.16 years 2.10 years
IQR of Absolute Error 3.86 years 4.16 years
𝑅2 0.947 0.948
Explained Variance 0.948 0.949
T-statistic 3.16 4.76
P-value 0.0016 2.17 × 10−6

Source: The Author (2024). Summary of key performance metrics for Experiment 4, where the model was
trained with data augmentation on a combined dataset.

model maintained strong performance across different age ranges and patient conditions.
Although most metrics presented a slight improvement, the P-value indicates that there is

statistical evidence that the predictions and the actual ages do not follow the same distribution.
This suggests that the model’s enhancement to marginally address outliers introduced a greater
degree of prediction bias.

Figure 16 – Bland-Altman Plot for Experiment 4
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Source: The Author (2024). Comparison of results for the re-trained augmented model across the Unicamp
and UFPE datasets.

The Bland-Altman analysis depicted in Figure 16 reveals that, while the augmented model
was trained to reduce outliers, this approach did not yield the expected improvement. Al-
though there was a slight reduction in the frequency of extreme errors, the persistence of
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high-magnitude outliers suggests that data augmentation alone was insufficient to fully ad-
dress these cases. Consequently, this trade-off, evident from the P-value analysis, indicates
that the augmentation strategy did not significantly enhance the model’s ability to generalize
across the diverse sample populations in Unicamp and UFPE datasets.

4.8.4 Analysis and Discussion

The results from Experiment 4, where the model was trained with data augmentation,
show that while the approach marginally improved some metrics, it did not fully address the
presence of high-magnitude outliers. The augmentation increased the data diversity by simu-
lating variations in imaging conditions and patient profiles, resulting in an expanded training
set of 52,128 images. This expansion aimed to enhance the model’s ability to handle edge
cases and challenging inputs.

For both datasets, the MAE and MSE values were slightly reduced compared to prior
experiments, and the model maintained high 𝑅2 and explained variance values, suggesting a
solid overall performance. However, the Bland-Altman plots (Figure 16) indicate that although
augmentation helped reduce some extreme errors, it did not eliminate them, nor did it lead
to the intended reduction in outlier impact. The T-statistic and P-values further underscore
this outcome, showing statistical evidence that the predictions and real ages do not follow the
same distribution.

It is important to highlight that the augmentation process, applied uniformly to all images
without any targeted filtering, exacerbated the bias related to the imbalance of age groups in
the dataset. The dataset itself is predominantly composed of younger and middle-aged adults,
while older adults and children are slightly underrepresented. This augmentation inadvertently
amplified the over-representation of the majority age groups, leading to improved performance
for these groups but increased errors for the minority groups.

As shown in Figure 17, the model consistently underestimates the age of elderly pa-
tients—those clearly within an advanced age range, representing a much smaller dataset vol-
ume. This tendency to underestimate, particularly evident in high-age patients, points to a
significant limitation of the augmentation approach when applied without a stratified strategy
to balance the dataset across different age ranges.

On the positive side, the augmentation process did improve the accuracy of predictions for
the majority group—namely, young adults and adults—by enhancing the model’s robustness
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Figure 17 – Experiment 4 - Model Failures for Advanced Age Patients
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Source: The Author (2024). Examples of model failures in Experiment 4, focusing on elderly patients where
the model significantly underestimates their age. All three cases illustrate the consistent underestimation across
different elderly individuals, showing the impact of an unbalanced dataset. Each column presents the original
image and integrated gradient visualizations to indicate the regions of focus for the model during prediction.

to variations commonly observed in these populations. However, this improvement came at
a cost: the augmentation increased the prediction errors for the minority groups, specifically
children and elderly patients, highlighting an inherent trade-off in the approach taken.

These findings indicate that, while data augmentation can be a powerful tool to improve
model robustness, it must be carefully tailored to account for the inherent biases within the
dataset. In this case, augmentation without specific attention to age group balance led to
an unintentional reinforcement of the dataset’s original imbalance. Future work should focus
on implementing a more targeted augmentation strategy, ensuring balanced representation
across all age groups to mitigate these effects and improve generalizability for underrepresented
populations.
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5 DISCUSSION

The series of experiments conducted in this work provided crucial insights into the perfor-
mance and generalizability of the age estimation model when exposed to different datasets,
training approaches, and augmentation strategies. Each experiment aimed to progressively en-
hance model performance while addressing regional biases and age-related variabilities. This
subsection presents a consolidated discussion of the main findings from Experiments 1 to 4,
highlighting the evolution in model capability and its implications for future research.

In Experiment 1, the baseline model, trained on the UFPE dataset, was directly applied to
the Unicamp dataset without any modifications or fine-tuning. This approach highlighted the
initial generalizability limitations, with the model displaying a marked drop in accuracy on the
new dataset. The significant decline in metrics such as MAE and 𝑅2 exposed regional biases,
indicating that the model’s learned features did not adequately represent diverse populations.
The Bland-Altman plots confirmed an evident overestimation tendency, particularly for patients
above 18 years of age. This experiment served as a critical reference point for understanding
the magnitude of regional discrepancies that the subsequent experiments sought to address.

Experiment 2 introduced fine-tuning strategies using two different datasets: Unicamp-only
and a combined dataset (UFPE + Unicamp). Fine-tuning using the Unicamp dataset improved
the accuracy for this specific region but led to a loss of generalizability, as observed by the
poorer performance on the UFPE dataset. Conversely, fine-tuning with the combined dataset
yielded a more balanced outcome, maintaining acceptable performance across both datasets.
However, even with improved metrics, statistical tests indicated that discrepancies persisted,
and the model struggled to generalize perfectly across distinct regions. This experiment em-
phasized the trade-off between local optimization and broader generalizability.

In Experiment 3, the model was trained from scratch using a combined dataset from both
regions. This approach yielded the best overall results in terms of generalizability, with high
𝑅2 scores and minimal bias observed in the Bland-Altman plots. Training from scratch allowed
the model to capture diverse age-related features without being constrained by biases present
in a pre-trained model. The improvement in statistical alignment between real and predicted
ages suggested that a more comprehensive training dataset could effectively address regional
biases. However, notable outliers persisted despite significant improvements, highlighting edge
cases that remained challenging for the model to predict accurately.
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Experiment 4 incorporated data augmentation techniques aimed at further enhancing the
model’s robustness. Expanding the training dataset with augmented images aimed to introduce
more variability and thus improve performance on underrepresented cases. The results showed
marginal improvements in MAE and MSE values and helped reduce some of the more extreme
errors observed previously. However, the unfiltered augmentation strategy inadvertently exac-
erbated the dataset’s inherent imbalance, leading to worsened predictions for minority groups
such as the elderly and young children. Although the approach succeeded in enhancing accu-
racy for the majority age groups (young adults and adults), it also amplified the errors for the
minority populations, revealing a critical limitation of applying augmentation without careful
consideration of demographic balance.

Figure 18 – Annotated Regions Evaluated by Model and Specialists

Tooth

Temporal Bone

Zygomatic Arch

Oblique Line

Mandible Base

Mandible

Source: The Author (2024). Visualization highlights the specific dental regions the models and experts eval-
uated, including the mandible, mandible base, oblique line, zygomatic arch, temporal bone, and teeth. These
regions are important markers commonly used in age estimation by dental specialists.

A team of specialists in dental radiology evaluated the model’s prediction heatmaps. It con-
firmed that the regions assessed by the model correspond to key anatomical markers typically
used by experts for age estimation, as illustrated in Figure 18. The annotated regions include
critical dental structures such as the mandible, mandible base, oblique line, zygomatic arch,
temporal bone, and teeth and their pulp chambers. These regions are known to provide essen-
tial age-related information, including the degree of dental pulp calcification and the eruption
stage of molars, which are commonly used indicators in human evaluations. The model’s fo-
cus on these markers suggests that it has successfully learned to target biologically relevant
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features that align with established practices in dental radiology, enhancing the reliability of
its predictions. From these experiments, several key insights emerge:

Generalizability vs. Specificity: The experiments consistently demonstrated a trade-off
between optimizing the model for a specific region versus generalizing across diverse datasets.
Fine-tuning approaches were beneficial for local adaptation but reduced the model’s perfor-
mance elsewhere. In contrast, retraining from scratch with a diverse dataset enhanced gener-
alizability.

Importance of Regionally Balanced Training Data: The success of the model trained
from scratch with a mixed dataset underscores the importance of having a well-balanced
training set to capture a broad range of features. This balance helps mitigate regional biases
and improve the consistency of predictions across different populations.

Impact of Data Augmentation: The augmentation approach highlighted the risks as-
sociated with unfiltered data expansion. While augmentation can introduce helpful variability,
it can also unintentionally reinforce biases present in the original dataset, mainly if the aug-
mentation process is not stratified or filtered based on demographic representation.

While each approach explored in these experiments brought distinct advantages, the need
for a more refined and balanced training process is evident. Future efforts should focus on
developing a targeted augmentation strategy to improve the representation of underrepresented
groups, particularly children and elderly patients while ensuring a robust balance between
training data diversity and consistency. These findings contribute to building more reliable,
generalizable models for age estimation that are applicable across different demographics and
regional contexts.

The insights gained from these experiments form a foundation for our conclusions. Each
step of this research journey, from the baseline application of pre-trained models to fine-
tuning, full retraining, and the incorporation of data augmentation, has provided a deeper
understanding of the challenges and opportunities in developing AI models for age estimation
that are both accurate and generalizable. Moving forward to the conclusion, we synthesize
the overall findings and discuss their broader implications for future research and clinical
applications.
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6 CONCLUSION

This study evaluated the potential of deep learning models for age estimation using dental
radiographs, focusing on datasets from two distinct Brazilian regions, Unicamp and UFPE. To
understand the model’s generalizability across varied populations within the same country, we
employed a series of experiments to explore different training strategies: applying a pre-trained
model on new data, fine-tuning with regional and combined datasets, retraining from scratch,
and incorporating data augmentation to improve robustness against challenging imaging con-
ditions. These experiments provided valuable insights into how specific training approaches
can influence model adaptability and generalizability.

The primary objectives of this study were threefold: first, to assess the model’s capacity
to generalize across distinct regional populations; second, to improve the generalization of the
model by incorporating diverse datasets during training; and third, to investigate the effect of
fine-tuning and data augmentation strategies to handle challenging cases effectively.

The first objective was addressed in Experiment 1, which involved applying the baseline
model, trained on the UFPE dataset, directly to the Unicamp dataset without any adapta-
tions. This experiment revealed significant limitations in the model’s generalization ability, as
evidenced by reduced accuracy and noticeable regional biases. These findings highlighted the
necessity of regional fine-tuning to enhance model performance in different populations.

The second objective was effectively achieved in Experiment 3, where the model was trained
from scratch using a combined dataset from both the UFPE and Unicamp regions. By incor-
porating diverse datasets during training, the model demonstrated substantial improvements
in generalizability, achieving balanced performance across both datasets. This approach was
the most effective in minimizing regional biases and ensuring consistent results across distinct
Brazilian populations.

The third objective was explored through Experiments 2 and 4, where we implemented fine-
tuning and data augmentation strategies. Fine-tuning with regional and combined datasets
(Experiment 2) helped improve the model’s performance for specific populations, although
it presented challenges in maintaining generalizability. Experiment 4 introduced data aug-
mentation techniques to address challenging cases and expand the training set. The results
highlighted both the benefits and limitations of these approaches—fine-tuning showed promise
in enhancing local accuracy. At the same time, data augmentation improved general robust-
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ness but also introduced new biases, particularly affecting minority groups such as children
and elderly patients. These experiments collectively contributed to a deeper understanding of
the model’s adaptability across diverse scenarios.

Quantitative evaluations were supplemented with qualitative assessments using heatmaps,
which were reviewed by experts in dental radiology. The experts confirmed that the model
focused on clinically relevant features, aligning with established age estimation methods, such
as the Cameriere, Demirjian, and Moorrees Methods. This alignment with expert analysis
provides confidence in the interpretability of the models trained in this study. This indicates
that they learned to rely on similar anatomical markers as human experts, such as pulp chamber
dimensions, molar eruption stages, and skeletal structures.

Despite notable advancements, some challenges remain. High-magnitude outliers persisted
across all experiments, particularly in cases involving unique dental conditions or subopti-
mal image quality. These challenging cases highlight the need for more specialized training
approaches to improve performance. Additionally, while this study used datasets from two
Brazilian regions, a broader demographic representation would enhance the model’s ability to
generalize across more diverse populations.

Future research could build upon these findings by incorporating broader datasets from
Brazil and internationally, establishing a more comprehensive benchmark for model generaliz-
ability. This study is a potential foundation for developing such a benchmark, contributing to
a dataset aimed at training models for age estimation tasks across varied global populations.

A promising evolution direction might involve advanced data augmentation and dataset
balancing techniques, such as adversarial augmentation paired with stratified sampling. These
methods could enhance the model’s ability to handle underrepresented groups more effectively
and reduce prediction bias for minority age categories.

Further investigation could also focus on leveraging more modern network architectures
like Vision Transformers or Swin Transformers. With an expanding dataset volume, these
architectures, known for their enhanced capability to handle complex feature representations,
might prove more effective in addressing variability across patient profiles.

Exploring advanced approaches like anomaly detection, specialized loss functions, or do-
main adaptation could also significantly enhance model robustness in challenging cases. By
addressing the unique characteristics found in certain dental or skeletal features, these methods
offer the potential to refine age prediction consistency across diverse populations further.

While this study achieved significant advancements in understanding the challenges and
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opportunities of age estimation using panoramic radiographs, certain evaluations could not
be performed due to time and resource constraints. These evaluations are nonetheless crucial
for further improving the robustness, accuracy, and applicability of AI models in this domain.
Future research should also prioritize these directions to address key gaps and refine existing
methodologies.

One such direction involves evaluating the impact of using higher-resolution images, which
could significantly enhance model accuracy by capturing finer details of dental and skeletal
structures. Higher-resolution images would allow the model to better identify subtle anatomical
features, such as micro-fractures or minor variations in bone density, which are often critical
for precise age estimation. However, this would also require addressing the computational
trade-offs involved, such as increased memory usage and training times. Researchers should
consider benchmarking models trained with standard and high-resolution images to quantify
these impacts.

Another promising approach could involve partitioning the dataset into three or four distinct
regions and training an initial classifier to segment images based on their region of origin. This
regional segmentation would enable the development of more specialized models tailored to
the unique demographic, anatomical, and imaging characteristics of each region, potentially
reducing the biases introduced by training on aggregated data.

Studying the latent representations or feature vectors generated by the network could
provide deeper insights into the features the model learns to associate with age estimation. This
analysis could help identify whether the model relies on clinically relevant attributes or artifacts,
guiding further refinement of the network’s architecture or training process. Techniques such
as t-SNE or UMAP could be employed to visualize the latent space and assess clustering
patterns related to age or other demographic factors.

Furthermore, systematically evaluating how the size of the training dataset influences model
performance could provide critical insights into data scalability. By incrementally increasing the
training set size and observing corresponding improvements in accuracy, it would be possible
to estimate the marginal utility of additional data and predict the saturation point beyond
which adding more images yields diminishing returns. This analysis would also inform resource
allocation for future data collection efforts.

Finally, conducting a direct comparison between the model‘s performance and human ex-
perts analyzing the dataset could offer a valuable benchmark. This comparison would highlight
the areas where the model matches or exceeds human performance, as well as cases where it
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struggles. Such evaluations could also identify scenarios where combining AI predictions with
expert oversight could yield better outcomes than either approach alone.

In conclusion, this study demonstrated the feasibility and promise of using deep learning
models for age estimation with dental radiographs, highlighting key considerations for achiev-
ing generalizability across diverse populations. Our findings underscore the importance of a
diverse, well-structured training dataset and specialized training approaches to handle unique
challenges. Leveraging these insights in future research can lead to more robust and generaliz-
able models, enhancing the accuracy and applicability of AI-driven age estimation in real-world
clinical settings.
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