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ABSTRACT 

Reliability analysis is essential in high-risk industries like Oil and Gas (O&G) for 

predicting equipment lifespan, anticipating costs, planning maintenance, and 

estimating system availability. However, failure data is often limited due to proprietary 

restrictions, high acquisition costs, or challenges in data collection. Bayesian inference 

addresses this limitation by enabling the integration of generic data, which can be 

updated with new specific data to generate a posterior distribution. The Offshore & 

Onshore Reliability Data (OREDA) provides a valuable source of generic data, created 

through collaboration among O&G companies to share information on equipment 

operation and maintenance. Traditional analysis of OREDA data often assumes a 

constant failure intensity function, which is not always accurate. This work generalizes 

the analysis by incorporating a non-constant failure intensity function using the Weibull 

distribution. Given the lack of a conjugate prior to this model, posterior estimates are 

obtained via Markov Chain Monte Carlo (MCMC) sampling. The model was validated 

using simulated data, demonstrating robust performance across various test sets, 

particularly in terms of relevant performance metrics, despite some variability in the 

prior distribution estimation stage. Following this validation, the model was applied to 

a real-world industrial case involving booster pumps, extending traditional reliability 

methodologies by integrating non-constant failure intensity into the analysis. This 

model was incorporated into the Petrobayes software, which is presented in this work 

and enables streamlined execution to enhance accessibility and practical application. 

Keywords: OREDA, Bayesian inference, Weibull distribution, Population 

Variability Distribution, Markov Chain Monte Carlo. 

  



RESUMO 

A análise de confiabilidade é essencial em indústrias de alto risco, como a de Óleo e 

Gás, pois permite prever a vida útil dos equipamentos, antecipar custos, planejar 

estratégias de manutenção e estimar a disponibilidade dos sistemas. No entanto, a 

disponibilidade de dados é frequentemente limitada devido a restrições de 

propriedade, altos custos de aquisição ou dificuldades na coleta de dados. A inferência 

Bayesiana aborda essa limitação ao permitir a integração de dados genéricos, que 

podem ser atualizados com novos dados específicos para gerar uma distribuição a 

posteriori. O Offshore & Onshore Reliability Data (OREDA) fornece uma valiosa fonte 

de dados genéricos, criada através da colaboração entre empresas de Óleo e Gás 

para compartilhar informações sobre a operação e manutenção de equipamentos. A 

análise tradicional dos dados OREDA frequentemente assume uma taxa de falha 

constante, o que nem sempre é preciso. Este trabalho generaliza a análise ao 

incorporar taxas de falha não constantes usando a distribuição Weibull. Dada a 

ausência de uma priori conjugada para este modelo, as estimativas a posteriori são 

obtidas por meio de amostragem de Monte Carlo via Cadeia de Markov. O modelo foi 

validado utilizando dados simulados, demonstrando desempenho robusto em diversos 

conjuntos de testes, especialmente em termos de métricas de desempenho 

relevantes, apesar de apresentar variabilidade na etapa de estimativa da distribuição 

a priori. Após essa validação, o modelo foi aplicado a um caso industrial real 

envolvendo bombas de reforço, ampliando as metodologias tradicionais de 

confiabilidade ao integrar taxas de falha não constantes na análise. Este modelo foi 

incorporado ao software Petrobayes, apresentado neste trabalho, que permite uma 

execução simplificada para melhorar a acessibilidade e a aplicação prática. 

Palavras-chave: OREDA, Inferência Bayesiana, distribuição Weibull, 

Distribuição de Variabilidade Populacional, Monte Carlo via Cadeia de Markov. 
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1 INTRODUCTION 

Every year, the Oil & Gas (O&G) industry allocates billions of dollars to 

petroleum exploration (Ren et al., 2023), navigating a complex landscape marked by 

technological advancements, aging workforces, environmental concerns, rising energy 

demands, and the constant challenge of managing emergencies (Mahmoudi, 2021). 

Amidst these challenges, accurately estimating the probability of equipment failure has 

become crucial, especially when the economic consequences, such as downtime and 

repair costs, are significant (Sandtorv & Thompson, 1996). 

This estimation is crucial for forecasting the system's expected availability and 

optimizing the maintenance planning process, helping decision-makers in the face of 

uncertainty (Hartley & French, 2021). Given that equipment is often engineered to 

endure extreme environments and operating conditions (Macedo et al., 2023), 

quantitative models play a key role in guiding decisions about safety policies and 

operational procedures. These models help reduce both the likelihood and severity of 

failures (das Chagas Moura et al., 2016). 

Failure is defined as the loss of a component's intended functionality, while the 

failure mode refers to the specific way in which this failure occurs (Rausand & Oien, 

1996). Ensuring the accuracy of failure estimates typically requires a substantial 

amount of historical data on failure frequency (Sandtorv & Thompson, 1996), with the 

quality of the analyses highly dependent upon the quality of the data being used. 

In this context, the Offshore & Onshore Reliability Data (OREDA) project arose 

as a collaboration between several companies in the industry. It comprises a database 

of reliability data collected on Topside and Subsea equipment from offshore and 

onshore operations. The objective is to promote safer operations, increased production 

availability, and optimized maintenance (Langseth et al., 1998), by sharing information 

regarding the failure and maintenance of equipment (SINTEF & NTNU, 2015). The 

challenge lies in determining what can be inferred about reliability measures, and with 

what level of confidence, by drawing on failure data from similar machines in generic 

databases such as OREDA (“generic data”), and failure data from the specific 

machine(s) under analysis (“specific data”) (Kaplan, 1983). 

In this context, Bayesian inference allows the construction of prior knowledge 

from generic data (first stage), which can be updated, as new specific data is acquired, 
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using Bayes’ theorem (second stage). This two-stage approach enables data 

integration from various sources through a mathematically consistent procedure for 

equipment in operation that faces a shortage in historical data (Maior et al., 2022). 

Inference, as defined by Kelly & Smith (2009), is the process of drawing conclusions 

based on accumulated knowledge. Gribok et al. (2020) emphasize that the Bayesian 

approach enhances the frequentist method by incorporating prior information into the 

likelihood function. 

However, two important aspects need to be taken into consideration regarding 

the OREDA database: (i) it brings information about the performance of equipment in 

different industrial plants, produced by different suppliers, and, usually, subject to 

different operating conditions, and (ii) it contains failure count data. Considering (i), it 

may be unrealistic to consider similar systems exposed to different conditions to have 

the same behavior reliability-wise, which means that the distinct systems should be 

treated as non-homogeneous. This hypothesis entails a variability of failure intensity 

among a population of systems. A representation of this variability, in the form of a 

probability distribution, is referred to as the Population Variability Distribution (PVD) 

(Droguett et al., 2004). Hence, the assessment of PVD with generic data offers an 

alternative to incorporate relevant information for prior distribution estimation in 

Bayesian inference. 

Regarding (ii), failure count data represents the number of failures that occur 

over a period of time (Hamada et al., 2008). The current methodology for processing 

failure count non-homogeneous data proposed in SINTEF & NTNU (2015) and ISO 

14224 (ISO, 2016) considers a constant failure intensity function and will be detailed 

in Section 2.2. However, assuming that a component is subject to a constant failure 

intensity function is not always appropriate, especially due to environmental factors, 

degradation, and maintenance strategy (Kumari et al., 2022; Q. Yang et al., 2012).  

To address this issue, this work focuses on a time-dependent failure intensity 

function that follows a two-parameter (scale 𝛼 and shape 𝛽) Weibull distribution. This 

approach can model a variety of behaviors including the case of constant failure 

intensity function, when the shape parameter equals 1. The idea is develop a two-

stage Bayesian approach suitable for application to OREDA’s data. In this context, an 

appropriate Weibull counting process is required to deal with failure count data and 
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perform the estimation of the Weibull parameters' prior distributions via Empirical 

Bayes (Shultis et al., 1981). In addition, the Bayesian inference approach is 

implemented to estimate the posterior distribution, by updating prior beliefs using 

specific data in a Weibull likelihood. In this case, the posterior distribution cannot be 

obtained analytically, and Markov Chain Monte Carlo (MCMC) will be applied for a 

numerical solution (Bolstad, 2009). The MCMC method is widely used because it 

enables direct sampling from the posterior distribution, without the need to solve 

potentially high-dimensional integrals (Straub & Papaioannou, 2015). 

The proposed approach will be tested using simulated data of different sizes to 

assess the model’s ability to reproduce the original known distribution that generated 

the data. Sensitivity analyses and performance metrics such as p-value, Normalized 

Root Mean Squared Error (NRMSE), and log-likelihood were employed to assess the 

model's robustness and adaptability, providing valuable insights into its applicability 

across various scenarios. The validation is followed by an application to a real-world 

industrial case from OREDA involving booster pumps. To enhance accessibility and 

usability, the methodology was encapsulated in a web application, called Petrobayes, 

enabling users to conduct reliability analysis efficiently. 

Hence, the main contribution of this work is twofold: the use of prior information 

in the form of failure count data within a non-constant failure intensity model based on 

the Weibull distribution, and the development of a standalone module within a web 

application, providing analysts with an user-friendly interface to apply this model. 

Indeed, these contributions are particularly significant as they overcome inherent 

limitations with using the OREDA database, especially concerning the challenging use 

of non-constant failure intensity function. Therefore, this work overcomes limitations in 

risk and reliability analyses in the O&G sector and supports effective risk management 

for equipment in operation with a shortage of historical data. The proposed model has 

been published in (Sales da Cunha et al., 2024) and the web application was described 

in (Santana et al., 2023) and presented at the 32nd European Safety and Reliability 

Conference (ESREL 2022). 

1.1 Motivation 

O&G assets are complex, multi-component structures designed to operate for 

approximately 20 to 30 years under challenging environmental conditions (Maior et al., 

2022). Due to these extended lifecycles and harsh conditions, gathering 
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comprehensive and reliable failure data over time is a resource-intensive and lengthy 

process, often requiring years of observation and monitoring to gather sufficient 

information for accurate analysis and decision-making. In fact, Sandtorv & Thompson 

(1996) pointed out that pooling data collection efforts across multiple companies offers 

significant cost-benefit advantages compared to individual company initiatives. 

The OREDA database exemplifies such collaborative efforts. Initially developed 

to inform decisions during the design and engineering phases (Sandtorv & Thompson, 

1996), this cross-company database can also support decision-making during the 

operational phase, where this work is focused on. Evaluating the reliability of 

equipment under conditions of limited failure data is a common challenge in O&G 

operations. These systems operate in extreme environments and are subject to high 

costs and operational risks, making the scarcity of failure data a significant challenge 

for reliability analysis. 

To address this challenge, this work proposes a Bayesian inference model that 

integrates generic data sources like OREDA to generate updated reliability estimates 

for equipment of interest. The proposed model is specifically tailored to handle failure 

count data, which is the type of data commonly found in the OREDA database. This 

model accounts for time-varying failure intensity function and system aging, common 

assumptions in O&G environments. It also allows for iterative updates as new specific 

data becomes available, creating a dynamic learning curve that enhances prediction 

accuracy and decision-making over time. 

Hence, the model incorporates two key assumptions: (i) non-constant failure 

intensity and (ii) minimal repair conditions. Unlike current methodologies that often 

assume constant failure intensity function, (i) accounts for factors such as 

environmental degradation, maintenance practices, and repair events (Kumari et al., 

2022; Q. Yang et al., 2012). The minimal repair condition, where a system is restored 

to its state just before failure, is modeled through a non-homogeneous Poisson 

process (NHPP) (das Chagas Moura et al., 2014). In the O&G industry, maintenance 

often addresses only the immediate cause of failure, leaving the equipment's overall 

wear level unchanged, as full replacements or major repairs are costly and time-

consuming due to offshore or remote installation locations (Osheyor Gidiagba et al., 

2023). In fact, O&G assets operate under extreme conditions such as high pressure, 

corrosion, and mechanical stress. These harsh environments accelerate equipment 
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degradation, making minimal repairs more feasible and economical, balancing 

operational continuity with maintenance costs. 

This work tackles the challenge of estimating reliability in scenarios with limited 

data, leveraging the OREDA database as a foundation. By considering the nature of 

OREDA’s failure count data and adopting realistic assumptions for the Oil & Gas 

sector—such as time-varying failure intensity and minimal repair—it makes important 

methodological advances. A key contribution is the adaptation of the traditional 

constant failure intensity model to accommodate non-constant failure rates, enabling 

its practical application to real-world data. This required revising the original 

formulation and developing tailored methods to address the specific nuances of the 

dataset. The use of the Weibull distribution, known for its flexibility in modeling different 

failure behaviors, in combination with the NHPP to reflect minimal repair scenarios, 

represents a novel integration of techniques. This approach fills a gap in the literature 

and provides a more accurate and practical framework for reliability estimation in the 

O&G industry. 

Hence, the impacts of this work span economic, environmental, and financial 

dimensions. Economically, the proposed model enhances maintenance strategies 

development for equipment in operation, improving resource allocation and operational 

efficiency. By reducing unplanned downtime and extending equipment lifespan, it 

lowers overall operational costs and improves productivity. Environmentally, it 

enhances maintenance planning, which minimizes the need for emergency repairs that 

could lead to oil spills or unanticipated emissions. This fosters safer and more 

sustainable operations, reducing risks to the environment. Financially, the improved 

accuracy of failure predictions through Bayesian techniques enables better budgeting 

for maintenance expenditures. By optimizing investments in preventive maintenance 

and reducing unnecessary corrective costs, the model strengthens financial planning, 

enhances cash flow stability, and improves long-term profitability. 

In conclusion, this work addresses a critical problem in the O&G industry by 

advancing reliability analysis methodologies. It offers significant economic, 

environmental, and financial benefits, contributing to safer, more efficient, and 

sustainable operations in high-risk industrial environments. 
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1.2 Research Objectives 

1.2.1 General Objective 

The primary objective of this work is to develop a Bayesian inference model 

leveraging failure count data, which is the type of data found in OREDA, as prior 

knowledge. This model operates under the assumption that failure times follow a 

Weibull distribution with minimal repair conditions. 

1.2.2 Specific Objectives 

To successfully achieve the goal of this work, the following specific objectives 

have been identified and outlined: 

• To perform a literature review: to conduct a thorough study to review the 

current state of the art on Bayesian inference, considering both constant 

and non-constant failure intensity function hypotheses. 

• To develop a Bayesian framework: to design a Bayesian inference model 

that integrates prior knowledge in the form of failure count data, which is 

the type of data found in the OREDA database. The model should be 

adaptable to real-world scenarios, assuming failure times follow a Weibull 

distribution for accurate reliability assessment. 

• To investigate the minimal repair assumption: to investigate situations 

where systems undergo minimal repairs, where the system is restored to 

the state it was in just before the failure occurred, and develop the model 

based on this assumption. 

• To perform prior distribution analysis: to develop methods and solutions 

to estimate prior distributions using OREDA data, ensuring that the 

estimation process is effective and reliable for real-world applications. 

• To perform posterior distribution analysis: to generate and evaluate 

posterior distributions for failure data, updating prior information from 

OREDA with new equipment-specific data via MCMC. 

• To evaluate model performance: to conduct simulations and sensitivity 

analysis to validate the model's robustness, particularly in scenarios with 

limited amounts of data. 

• To apply the model to a real case study: to apply the Bayesian model to 

actual failure data from booster pumps obtained from OREDA and use 

specific data to demonstrate its practical application. 
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• To develop an easy-to-use interface for model execution: to develop a 

standalone module inside the web app called Petrobayes, for risk 

analysts to execute the model with ease and enhance reliability analysis. 

1.3 Research Methodology 

The scientific methodology adopted in this work follows a structured approach 

to ensure analytical rigor and validity. In terms of its nature, this is applied research 

aimed at solving a specific problem related to reliability analysis in the O&G industry. 

Regarding the approach to the problem, the research is quantitative, relying on 

statistical models, simulations, and numerical evaluations. From the perspective of its 

objectives, the study is explanatory, as it seeks to understand and explain the reliability 

behavior of equipment in the O&G industry. This is achieved through an innovative 

two-stage Bayesian inference model that integrates both generic and specific data 

sources. Concerning technical procedures, the work is experimental. Simulations are 

conducted to generate synthetic datasets, which are used to validate the proposed 

model. This experimental approach supports a robust evaluation of the model’s 

performance, ensuring that its applicability extends to real-world industrial contexts. 

1.4 Thesis Structure Outline 

This thesis is organized into chapters that aim to guide the reader through the 

progression of the research, from the initial concepts and methodology to the detailed 

analysis, findings, and conclusions drawn from the study. The connection between the 

chapters is presented in Figure 1. 
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Figure 1 - Thesis outline. 

 

Source: The author (2025). 

A detailed description regarding the chapters’ content is provided as follows:  

• Chapter 2 explores the foundational concepts of Bayesian inference, 

more specifically on the two-stage Bayesian approach based on prior 

estimates (first stage) and posterior estimates (second stage). It focuses 

particularly on the commonly adopted case of constant failure intensity 

function and the methods involved in adapting this formulation to the non-

constant failure intensity case. It also provides more details regarding the 

OREDA database creation, format, and application. 

• Chapter 3 outlines the Bayesian inference model for the non-constant 

failure intensity case under the assumption of minimal repair, detailing 

the methods used for estimating both prior and posterior distributions. 

• Chapter 4 presents the results for both prior and posterior estimations, 

including a detailed description of the data simulation process used for 

validation and the parameters employed for testing. It also provides an 

industrial application example, with data from booster pumps gathered 

from OREDA. 
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• Chapter 5 presents a comprehensive overview of the web application 

Petrobayes, focusing on the standalone module designed to execute the 

proposed model. It details the module’s implementation within the 

platform and its integration with other functionalities. 

• Chapter 6 summarizes the key findings and discusses potential 

directions for future research. 
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2 LITERATURE REVIEW 

Reliability analysis plays a crucial role in predicting equipment lifespan, enabling 

the anticipation of costs, the planning of maintenance strategies, and the estimation of 

system availability. Understanding the probabilistic behavior of failures is essential for 

informed decision-making throughout the equipment's entire life cycle. According to 

the International Organization for Standardization (ISO) (ISO, 2020), reliability is 

defined as “the degree to which a system, product or component performs specified 

functions under specified conditions for a specified period of time ”. The expectation 

regarding the system’s ability to perform its intended function is frequently expressed 

in terms of the failure intensity (Droguett et al., 2004). 

2.1 Bayesian Inference 

Ensuring the accuracy of failure estimates typically requires a substantial 

amount of data. However, in industries with highly reliable equipment, such as the 

O&G, data availability is often limited due to proprietary restrictions, high acquisition 

costs, or the impracticality of data collection (René Van Dorp & Mazzuchi, 2004). To 

address this challenge, in the context of Bayesian inference, Kaplan (1983) introduced 

a two-stage Bayesian procedure that leverages industry-wide, partially relevant data, 

referred to as “generic data”. Although this data may not be directly tied to the system 

of interest, it is collected from similar systems or applications, which are assumed to 

exhibit comparable reliability patterns despite differences in design and operating 

conditions (Droguett et al., 2004). 

The two-stage Bayesian procedure is a specific instance within the broader 

framework of hierarchical Bayes (Kelly & Smith, 2009). In the first stage, a prior 

distribution is built around the variability observed in the failure behavior across similar 

systems with generic data (Kodoth et al., 2020). In the second stage, the prior 

probability distribution is updated based on the likelihood of evidence specific to the 

system under analysis (“specific data”) (Lin, 2002). This updating process, based on 

Bayes' Theorem, results in a posterior distribution that reflects the revised uncertainty 

regarding the failure behavior (Sedehi et al., 2019). 

Bayes’ Theorem, shown in Equation (1) indicates that the posterior distribution 

is proportional to the product of the prior distribution and the likelihood, as these two 

components are independent (Bolstad, 2007). The posterior 𝜋1(𝜃|𝑆) represents the 
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probability distribution of the unknown parameter 𝜃 given the specific data 𝑆. The prior 

probability density function 𝜋0(𝜃) reflects the uncertainty about 𝜃, while 𝐿(𝑆|𝜃) 

represents the likelihood of the specific data 𝑆 given 𝜃. Depending on the chosen prior 

distribution 𝜋0(𝜃) and the likelihood function 𝐿(𝑆|𝜃), numerical integration may be 

required. 

𝜋1(𝜃|𝑆) =
𝐿(𝑆|𝜃)𝜋0(𝜃)

∫ 𝐿(𝑆|𝜃)𝜋0(𝜃)𝑑𝜃
 (1) 

Thus, the statistical model comprises two key components: the prior distribution 

𝜋0(𝜃) and the likelihood function 𝐿(𝑆|𝜃). The parameter 𝜃 in the likelihood function is 

treated as an unknown quantity, and the prior distribution is used to express the 

uncertainty about this parameter. The following sections provide a detailed explanation 

of these two components. 

Bayesian analysis differs from classical frequency-based analysis in its 

treatment of probability. While classical methods tie probability to the frequency of 

events, Bayesian analysis interprets probability as a subjective measure of belief or 

knowledge about model parameters (Bolstad, 2007). This does not imply that model 

parameters are random but rather that their values are uncertain, and this uncertainty 

is expressed through a probability density function (Hamada et al., 2008). 

As a direct consequence of its interpretation of subjective probability, one 

significant advantage of the Bayesian approach, as highlighted by Hamada et al. 

(2008), is its ability to incorporate information from expert opinions and domain 

expertise. Expert opinions are often used to estimate prior distributions or specific 

reliability metrics, such as failure rates, reliability, or percentile values (Guo et al., 2018; 

Siqueira et al., 2022). However, eliciting expert opinions requires expertise in 

formulating questions and managing human resources, and there is the problem of 

bias in risk estimates, which may necessitate correction (Mosleh et al., 1988; Zhou et 

al., 2019). Although expert opinion is not the focus of this work, it remains a crucial 

aspect of Bayesian inference addressed in various studies (Droguett et al., 2004; 

Hartley & French, 2021; Macedo et al., 2023; Maior et al., 2022). 

Another benefit of the Bayesian approach is its ability to reuse posterior 

probabilities as priors for new specific data sets. This reduces the need for re-analyzing 

the entire data when new information becomes available, as using the original and the 
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new data sets separately leads to the same posterior probabilities (Bolstad, 2007). By 

updating the current knowledge, the ability to predict uncertain events is improved 

(Porn, 1996). 

Bayesian inference has been applied in many disciplines, such as behavioral 

science, finance, human health, process control, and ecological risk assessment, 

especially with the advent of MCMC that made intractable problems to be solved easily 

(Kelly & Smith, 2009). According to (Gelman et al., 2013), Bayesian inference involves 

three main steps: (1) constructing a full probability model that defines the joint 

distribution for both observable and unobservable quantities based on the scientific 

problem and data collection, (2) conditioning on the observed data to calculate and 

interpret the posterior distribution, which represents the probability of unobserved 

quantities given the data, and (3) evaluating the model's fit and the implications of the 

posterior distribution to determine if adjustments are needed. This process may be 

repeated to improve the model based on its fit and sensitivity to assumptions. 

2.1.1 Prior distribution 

In Bayesian inference, prior distributions are classified as either informative or non-

informative (Hamada et al., 2008). Non-informative priors are designed to exert 

minimal influence on the likelihood, reflecting the fact that little is known about the 

parameter, allowing the specific data to drive the results. An example of a weak prior 

application is provided by Kelly & Smith (2009), using a Jeffreys prior because the goal 

was to have results driven by the specific data. The Jeffreys prior implies a state of 

ignorance about the parameter under analysis given the characteristics of 

equidistribution on a log scale (Erto & Giorgio, 2013; Frohner, 1985). 

In contrast, informative priors incorporate additional knowledge and may be 

concentrated in a particular region of the parameter space. When data is scarce, 

relying on a non-informative prior can result in significant uncertainty in the posterior 

estimation. Thus, it is crucial to incorporate as much relevant information as possible 

when constructing the prior distribution (L. Yang et al., 2019), as they improve reliability 

estimates (Gelman et al., 2017; Wilson & Fronczyk, 2016). In fact, from a classical 

frequentist point of view, inappropriate priors may introduce bias (Gribok et al., 2020). 

In the context of reliability analysis, there are six main sources of information for 

constructing informative prior distributions: physical/chemical theory, computational 
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analysis, previous engineering and qualification test results from a process 

development program, industry-wide generic reliability data (such as OREDA), past 

experience with similar devices, and expert opinion (Hamada et al., 2008). When 

dealing with industry-wide generic reliability data, or simply generic data, given that 

one can associate failure behavior with individual systems, one can also consider the 

variability of failure behavior among a population of systems, introducing non-

homogeneity. A representation of this variability, in the form of a probability distribution, 

is referred to as the PVD (Droguett et al., 2004). Hence, the assessment of PVD with 

generic data offers an alternative to incorporate relevant information for prior 

distribution estimation in Bayesian inference. Assuming PVD is given by a parametric 

distribution, if enough generic data is available, it is possible to derive the distribution 

from the dataset (das Chagas Moura et al., 2016). 

The PVD of the unknown parameter 𝜃 is denoted as 𝜌 (𝜃|𝜙), with 𝜙 as the 

hyperparameter vector. Defining the PVD involves estimating 𝜙 assuming 𝜌 (𝜃|𝜙) is 

given by a parametric distribution. 𝜙 is called a hyperparameter because it is a 

parameter that does not appear in the likelihood function (Hamada et al., 2008). In the 

Empirical Bayes approach (Siu & Kelly, 1998), PVD hyperparameters are estimated 

from the generic data 𝐸. Extending the Bayesian inference to include the treatment of 

the hyperparameters is also referred to as Bayes Empirical Bayes (Porn, 1996). 

Prior distributions that take the same functional form as the posterior distribution 

are called conjugate prior distributions (Porn, 1996). In simple problems, conjugate 

prior distributions can make posterior analysis easy because they eliminate the need 

to determine normalizing constants numerically (Hamada et al., 2008). But this should 

not be the driver for model formulation (Gelman et al., 2017). 

2.1.2 Likelihood 

The nature of the reliability measure guides the choice of the parametric 

distribution that will represent the PVD. For instance, Gamma or Lognormal 

distributions are appropriate choices if 𝜃 represents the constant failure intensity 

because they are defined only for positive real values and are suited to model a wide 

range of skewed behaviors. Conversely, if 𝜃 represents the probability of failure, the 

Beta distribution is more suitable because its support is the interval [0, 1] (Droguett et 
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al., 2004). The likelihood function, however, depends on the type of evidence available 

and the assumptions. For example, if a constant failure intensity function is assumed 

and if dealing with failure count data—representing the number of failures over a period 

of time—the Poisson distribution is typically used. On the other hand, if dealing with 

failure times, the Exponential distribution would be employed since it models the time 

between events in a Poisson process. 

In assessing the variability of the failure behavior, various formulations have 

been proposed (Frohner, 1985; Grabski & Sarhan, 1996; ISO, 2016; Kaplan, 1983; 

Langseth & Lindqvist, 2006; Porn, 1996; Vaurio, 1987), with the likelihood function 

typically based on a Poisson model, which focuses exclusively on failure count data. 

In fact, many failure data banks are built on the assumption that component failures 

follow a Poisson process, and thus, systems are often assumed to have a constant 

failure intensity function (Porn, 1996). 

Generic reliability databases, such as OREDA, primarily contain failure count 

data. The estimation of prior distributions for failure count data is based on three key 

assumptions: (i) homogeneity within each subpopulation, (ii) heterogeneity between 

subpopulations, and (iii) a constant failure intensity function (Droguett et al., 2004). The 

first two assumptions stem from the observation that systems within the same 

subpopulation operate under similar conditions and share similar design features, 

which may differ across subpopulations. 

The third assumption, a constant failure intensity function, is widely adopted due 

to its analytical simplicity when using the Poisson distribution for failure count data. 

While this assumption has been applied in OREDA (SINTEF & NTNU, 2015) and is 

recommended in ISO 14224 (ISO, 2016), it is somewhat restrictive. The following 

sections will analyze the constant failure intensity function model and explore potential 

modifications to generalize this approach. 

2.2 The constant failure intensity function case 

Assume that both generic (𝐸) and specific (𝑆) data are provided as failure count 

data, and that the systems operate under a constant failure intensity function, denoted 

by 𝜆, or simply failure rate. Under these conditions, the Bayesian procedure can be 

described by Equation (1), with 𝜃 representing 𝜆. To apply this procedure, we must 

define the prior distribution 𝜋0(𝜆) and the likelihood function 𝐿(𝑆|𝜆). Since we have 
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failure count data and assume a constant failure intensity function, the failure 

distribution follows a Homogeneous Poisson process (HPP). The likelihood function, 

𝐿(𝑆|𝜆), is therefore given by Equation (2), where the specific data 𝑆 consists of the 

number of failures 𝐾 over an observation time 𝑇. 

𝐿(𝑆|𝜆) =
(𝜆𝑇)𝐾𝑒−𝜆𝑇

Γ(𝐾 + 1)
 (2) 

Now, we need to determine the prior distribution 𝜋0(𝜆). It is common practice to 

assume a Gamma distribution for the PVD of 𝜆, as shown in Equation (3), due to its 

conjugate relationship with the Poisson likelihood. This conjugacy simplifies the 

Bayesian updating process and ensures analytical tractability. Here, 𝑎𝜆 and 𝑏𝜆 

represent the hyperparameters of the Gamma prior. 

𝜋0(𝜆) = 𝜌(𝜆|𝑎𝜆, 𝑏𝜆) =
𝑏𝜆
𝑎𝜆𝜆𝑎𝜆−1𝑒−𝑏𝜆𝜆

𝛤(𝑎𝜆)
 (3) 

Choosing a Gamma distribution for the prior allows for analytical solutions to 

Equation (1), resulting in the posterior distribution presented in Equation (4). As a result 

of this choice, the posterior also follows a Gamma distribution, maintaining the 

conjugate structure (Siu & Kelly, 1998).  

π1(𝜆|𝑆) =
(𝑏𝜆 + 𝑇)

𝑎𝜆𝜆(𝑎𝜆+𝐾)−1𝑒−(𝑏𝜆+𝑇)𝜆

𝛤(𝑎𝜆 + 𝐾)
 (4) 

Given this Bayesian model, the mean failure rate estimate and percentiles (𝑝) 

are given by Equations (5) and (6) (Siu & Kelly, 1998). A credibility interval can be 

constructed, for example, using the 5% and 95% percentiles. The interpretation of such 

an interval is that 90% of the 𝜆’s falls within the credibility interval. Since there is no 

closed-form solution for calculating the percentiles, a common approach is to use an 

approximation based on the Chi-squared distribution (a special case of the Gamma 

distribution), where 𝜒𝑝%,𝑣
2  is the percentile 𝑝 of the Chi-squared distribution with 𝑣 

degrees of freedom. The Bayesian credible intervals are analogous to confidence 

intervals and are called posterior probability intervals or posterior credible intervals 

(Bolstad, 2007; Hamada et al., 2008).  
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𝜆̂ = 𝐸[𝜆] = ∫ 𝜆 × π1(𝜆|𝑆)𝑑𝜆
∞

0

=
𝑎𝜆 + 𝐾

𝑏𝜆 + 𝑇
 (5) 

𝜆̂𝑝% =
1

2(𝑏𝜆 + 𝑇)
𝜒𝑝%,2(𝑎𝜆+𝐾)
2  (6) 

The two-stage Bayes approach for the constant failure intensity case is 

illustrated in Figure 2. As mentioned before, the second stage has an analytical solution 

due to the conjugate relationship between the Gamma prior and the Poisson likelihood. 

The problem now relies on the first stage, to determine 𝑎𝜆 and 𝑏𝜆. 

Figure 2 – Classical two-stage Bayesian approach for constant failure intensity function. 

 

Source: adapted from (Sales da Cunha et al., 2024). 

In the Empirical Bayes approach, aλ and 𝑏𝜆 estimates can be obtained from the 

Method of Moments by solving Equations (7) and (8), where 𝜇̂𝜆 and 𝜎̂𝜆
2  are the mean 

and variance of the failure rate 𝜆, obtained directly from the generic data (SINTEF & 

NTNU, 2015). 

𝑎𝜆
𝑏𝜆
= 𝜇̂𝜆 (7) 

𝑎𝜆

𝑏𝜆
2 = 𝜎̂𝜆

2 
(8) 

Assuming the data can be categorized into 𝑁𝑃 subpopulations and that for each 

subpopulation 𝑖 (𝑖 = 1,… ,𝑁𝑃) there is a record (𝑘𝑖, 𝑡𝑖), meaning 𝑘𝑖 failures within a time 

interval 𝑡𝑖, a valid estimator for 𝜆𝑖 (failure rate of subpopulation 𝑖) is 𝜆̂𝑖 = 𝑘𝑖/𝑡𝑖. So, the 

most commonly used estimators for 𝜇𝜆 and 𝜎𝜆
2 are the mean and variance sample of 

𝜆𝑖, in Equation (9) and (10),respectively. 
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𝜇̂𝜆 = 𝜆̅ =
∑ 𝜆̂𝑖
𝑁𝑃
𝑖=1

𝑁𝑃
=
∑ 𝑘𝑖/𝑡𝑖
𝑁𝑃
𝑖=1

𝑁𝑃
 (9) 

𝜎̂𝜆
2 = 𝑆𝜆

2 =∑
(𝜆̂𝑖 − 𝜇̂𝜆)

2

𝑁𝑃 − 1

𝑁𝑃

𝑖=1

=∑
(𝑘𝑖/𝑡𝑖 −

∑ 𝑘𝑖/𝑡𝑖
𝑁𝑃
𝑖=1
𝑁𝑃

)
2

𝑁𝑃 − 1

𝑁𝑃

𝑖=1

 (10) 

However, especially in cases involving identical (or very close) 𝜆̂𝑖, the sample 

variance may underestimate the true variance of the failure rate. Similarly, having 

many cases with 𝑘𝑖 = 0 may overestimate the mean (Vaurio, 1987). To prevent such 

issues, some authors have incorporated special terms in the process of estimating the 

mean and variance of 𝜆. The "special" estimation procedure for 𝜇𝜆 e 𝜎𝜆
2 used in the 

OREDA database (SINTEF & NTNU, 2015) is described below. 

1. Calculate an initial estimate for the mean (Equation (11)), by grouping the 
data. 

𝜇̂𝜆
(1)
=
∑ 𝑘𝑖
𝑁𝑃
𝑖=1

∑ 𝑡𝑖
𝑁𝑃
𝑖=1

 (11) 

2. Calculate 𝑆1 (Equation (12)), 𝑆2 (Equation (13)), 𝑉 (Equation (14)). 

 

𝑆1 =∑𝑡𝑖

𝑁𝑃

𝑖=1

 (12) 

𝑆2 =∑𝑡𝑖
2

𝑁𝑃

𝑖=1

 (13) 

𝑉 =∑
(𝑘𝑖 − 𝜇̂𝜆

(1) × 𝑡𝑖)
2

𝑡𝑖

𝑁𝑃

𝑖=1

 (14) 

3. Calculate the variance estimate (Equation (16)). 

𝑉∗ = (𝑉 − (𝑁𝑃 − 1) × 𝜇̂𝜆
(1)) ×

𝑆1

𝑆1
2 − 𝑆2

 (15) 
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𝜎̂𝜆
2 = {

𝑉∗, 𝑉∗ > 0

𝑆𝜆
2, 𝑉∗ ≤ 0

 (16) 

4. Update the mean estimate (Equation (17)). 

𝜇̂𝜆 =
1

∑
1

𝜇̂𝜆
(1)

𝑡𝑖
+ 𝜎̂𝜆

2

𝑁𝑃
𝑖=1

×∑

(

 
 1

𝜇̂𝜆
(1)

𝑡𝑖
+ 𝜎̂𝜆

2

×
𝑘𝑖
𝑡𝑖

)

 
 

𝑁𝑃

𝑖=1

 
(17) 

ISO 14224 (ISO, 2016) also refers to this procedure but proposes a different 

decision rule for the variance estimation. Kelly & Siu (1998) state that the estimators 

obtained through Method of Moments are easy to calculate, not requiring the execution 

of optimization techniques, which motivates its adoption by OREDA (SINTEF & NTNU, 

2015) and recommendation in ISO 14224 (ISO, 2016). 

While the two-stage Bayesian approach in Figure 2 is widely adopted, its 

limitation lies in the assumption of constant failure intensity function, which may not be 

true for systems exposed to degrading factors, e.g., high temperatures, pressure, 

vibration, corrosive fluids (Taofeek Popoola et al., 2013), as seen in the O&G industry. 

The next section introduces a likelihood function for a non-constant failure intensity 

hypothesis. 

2.3 The non-constant failure intensity function case 

Consider the generic data (𝐸) consisting of data from a population divided into 

𝑁𝑃 subpopulations. Systems within the same subpopulation are homogeneous, while 

systems across different subpopulations are non-homogeneous. Now, assume that the 

failure intensity of systems in each subpopulation is modeled by a two-parameter 

Weibull distribution, with scale parameter 𝛼 and shape parameter 𝛽, as shown in 

Equation (18), where 𝑡 denotes the time. The Weibull is flexible, accommodating 

various failure intensity patterns observed throughout a system's lifecycle as seen in 

the bathtub curve (Smith, 2005), including the constant rate case (𝛽 = 1). 

ℎ(𝑡) =
𝛽

𝛼
(
𝑡

𝛼
)
𝛽−1

 (18) 
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Since 𝛼 and 𝛽 may vary across the subpopulations, it is necessary to model 

their variability with a PVD. The prior distribution captures the uncertainty in 𝛼 and 𝛽 

across subpopulations. According to (Gouet et al., 2019) there are three potential 

approaches for modeling the prior distributions of the Weibull parameters:  

1. Known 𝜷 (𝜷 = 𝜷𝟎) and unknown 𝜶: 𝛼 is typically modeled by a Gamma 

distribution. In this case, the likelihood is given by the Weibull model with 𝛽 =

𝛽0 and the posterior distribution depends solely on 𝛼, resulting in an analytically 

derived posterior distribution. 

2. Discrete 𝜷 (𝝅𝟎(𝜷𝒍) = 𝒑𝒍) and 𝜶 conditioned on 𝜷: in this case, 𝛼 is modeled 

by a Gamma distribution. Making a reparameterization, with 𝜆 = 𝛼−𝛽, allows for 

the conjugation of the prior distribution with the likelihood, resulting in an 

analytically derived posterior distribution, which will be also a Gamma (Soland, 

1969). 

3. Independent 𝜶 and 𝜷 distributions: Both 𝛼 and 𝛽 are assumed to follow 

independent Gamma distributions. In this approach, the posterior distribution is 

not solved analytically, requiring numerical methods (Kundu, 2008). 

The first approach is not applicable since the shape parameter 𝛽 is frequently 

unknown. The second approach has faced criticism from Kaminskiy & Krivtsov (2005) 

due to challenges in acquiring the necessary prior information and its practical 

implementation. Therefore, the third approach proposed by Kundu (2008) is adopted 

here. While it requires more computational effort, it offers a more feasible and 

pragmatic solution (Lee et al., 2014). 

Now, we will adapt the procedure illustrated in Figure 2 to incorporate a Weibull-

based likelihood. Assume that the prior distribution for each Weibull parameter is given 

by an independent Gamma distribution, as shown in Equation (19). Here, 𝜋0(𝜃) 

denotes the Gamma prior distribution with 𝑎𝜃 and 𝑏𝜃 as the shape and scale 

parameters, respectively, hereafter referred to as hyperparameters. Note that 𝜃 can 

represent either 𝛼 or 𝛽. 

𝜋0(𝜃) = 𝜌(𝜃|𝑎𝜃, 𝑏𝜃) =
𝑏𝜃
𝑎𝜃𝜃𝑎𝜃−1𝑒−𝑏𝜃𝜃

𝛤(𝑎𝜃)
 (19) 
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The first stage involves determining the hyperparameters using generic data, 

which can be effectively achieved through the application of Empirical Bayes via the 

Maximum Likelihood Estimate (MLE) method, as outlined by Shultis et al. (1981). 

Following this, the next step is to establish the Weibull likelihood function, denoted as 

𝐿(𝑆|𝛼, 𝛽), where 𝑆 represents specific data in the form of failure times. It is defined in 

Equation (20), where 𝑡𝑚 represents the 𝑚-th failure time. 

𝐿(𝑆|𝛼, 𝛽) =∏[
𝛽

𝛼
(
𝑡𝑚

𝛼
)
𝛽−1

𝑒
−(
𝑡𝑚

𝛼
)
𝛽

]

𝑚

 (20) 

Finally, the joint posterior distribution is given by the Bayes’ theorem, as shown 

in Equation (21). The posterior distribution represents the updated knowledge about 𝛼 

and 𝛽, the parameters governing the system's failure probability model. This update 

occurs through the application of the likelihood function of the two-parameter Weibull 

model, denoted as 𝐿(𝑆|𝛼, 𝛽).  

𝜋1(𝛼, 𝛽|𝑆) =
𝐿(𝑆|𝛼, 𝛽)𝜋0(𝛼)𝜋0(𝛽)

∬𝐿(𝑆|𝛼, 𝛽)𝜋0(𝛼)𝜋0(𝛽) 𝑑𝛽 𝑑𝛼
 (21) 

If the posterior distribution was in the same family as the prior distributions, 

Equation (21) could be solved analytically using the characteristics of the conjugate 

family. Examples of works that take advantage in conjugate distributions are seen in 

(Jackson & Mosleh, 2016; Siu & Kelly, 1998; Vaurio, 1987). 

However, since this is not the case, analytical approximations and numerical 

simulations are two primary computational approaches for addressing this problem 

(Guan et al., 2012). Such approaches include the Laplace approximation (Jerez et al., 

2022), highest posterior density estimation (Wu et al., 2006), variational inference 

(Bhattacharyya, 2021; Ling et al., 2024), Importance Sampling (Jia & Guo, 2022), and 

MCMC (Erto & Giorgio, 2013; Lee et al., 2014). Among the simulation-based methods, 

MCMC stands out due to its flexibility and effectiveness in sampling from complex 

posterior distributions using various sampling strategies (Straub & Papaioannou, 

2015). Its versatility and robustness have led to its widespread application in Bayesian 

inference as seen in (Craiu & Rosenthal, 2014; Karandikar et al., 2014; Kelly & Smith, 

2009; René Van Dorp & Mazzuchi, 2004; L. Wang et al., 2017). 
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Hence, the two-stage Bayes approach for the non-constant failure intensity case 

is illustrated in Figure 3. Section 3 will detail the methods used for estimating both prior 

and posterior distributions for this case. Much of the previous research on failure 

modeling has focused on the assumption that repairs restore a component to a "same 

as new" condition, treating the process as a renewal process with independently and 

identically distributed inter-arrival times (BahooToroody et al., 2020). However, less 

attention has been given to the more realistic assumption that repairs only restore the 

component to a "same as old" condition (Kelly & Smith, 2009), which will be the focus 

of this work. 

Figure 3 –The two-stage Bayesian approach for non-constant failure intensity. 

 

Source: adapted from (Sales da Cunha et al., 2024). 

2.3.1 Markov Chain Monte Carlo (MCMC) 

MCMC methods have been used by researchers in many scientific fields, 

including biology, chemistry, computer sciences, economics, engineering, material 

sciences, physics, and statistics, particularly to solve statistical computation problems 

related to Bayesian inference (Craiu & Rosenthal, 2014; Liu, 2004). They aim to mimic 

the sampling process of a probability distribution that takes place in two stages: (i) 

generation of proposals and (ii) decision for acceptance or rejection of proposals. The 

primary goal is to ensure that accepted proposals accurately represent the target 

distribution (Betancourt, 2017). 

As the name suggests, MCMC methods possess a Markovian property, which 

is a fundamental characteristic of the proposal generation process. This begins with 

selecting an initial point, representing the chain’s starting state (Liu, 2004). From this 

state, a new proposal is generated, depending only on the current state (Robert & 

Casella, 2004). Then, a decision is made whether to accept the proposal. If accepted, 

the proposal becomes a sample and the new state of the chain. This process repeats, 
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with each new proposal generated based on the latest state and evaluated for 

acceptance. This continues until the desired number of iterations is reached. Unlike 

the traditional Monte Carlo methods, in which the samples are independent, MCMC 

samplers yield dependent draws (Craiu & Rosenthal, 2014). 

The ideal behavior of the MCMC algorithm can be divided into three phases 

(Betancourt, 2017): 

1. Search Phase (Figure 4a): Initially, the algorithm globally searches for the 

typical set — the most representative region of the target probability distribution. 

During this phase, estimators are highly biased, as the MCMC process has not 

yet found the main region of interest for sampling. 

2. Discovery Phase (Figure 4b): Once the typical set is found, the algorithm 

enters an exploration phase where it begins to gather more representative 

samples. In this phase, the bias of the initial samples decreases, and the 

accuracy of the MCMC estimators improves quickly. 

3. Permanence Phase (Figure 4c): In this final stage, the MCMC process 

thoroughly explores the typical set. At this point, the improvement in the 

precision of the estimators continues, but at a slower rate as the algorithm 

refines its sampling from the target distribution. 

These phases describe how MCMC algorithms progress from initial exploration 

to full convergence, ensuring that the typical set is adequately sampled for reliable 

parameter estimation. 
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Figure 4 – The three phases of ideal MCMC behavior, namely: (a) search, (b) discovery, and (c) 

permanence. 

 

(a) 

 

(b) 

 

(c) 

Source: (Betancourt, 2017). 

As the states generated during the initial convergence phase of a Markov chain 

are biased and can negatively affect MCMC estimators, the accuracy of these 

estimators can be significantly improved by using only samples generated once the 

chain starts exploring the typical set. This leads to the common practice of introducing 

a "burn-in" period, during which the initial samples are discarded before calculating 

MCMC estimators because they are excessively biased toward the (arbitrary) initial 

value (Craiu & Rosenthal, 2014). 
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Formally, a sufficient condition to ensure the optimal behavior of MCMC 

estimators is known as geometric ergodicity (Roberts & Rosenthal, 2004). However, 

verifying geometric ergodicity theoretically for most problems is extremely difficult. As 

a result, empirical diagnostics are necessary, the most important of which is the split-

𝑅̂ statistic (Hoffman & Gelman, 2014). This statistic measures the variation across a 

set of Markov chains initialized from different points in the parameter space. Issues 

arising from a lack of geometric ergodicity cause inconsistencies between individual 

chains, leading to large values of split-𝑅̂. Consequently, if the split-𝑅̂ deviates 

significantly from the nominal value of 1, it indicates that geometric ergodicity is not 

satisfied, and the resulting estimators are likely of poor quality. 

The 𝑅̂ statistic (Vehtari et al., 2021) is computed based on the between-sample 

variance (Equation (22)) and the within-sample variance (Equation (25)). In this 

context, 𝑀 represents the number of Markov chains, and 𝑁 is the number of samples. 

A chain 𝑚 is represented by 𝜃𝑚, containing 𝜃𝑚
(𝑛)

 samples. 

𝐵 =
𝑁

𝑀 − 1
∑(𝜃̅𝑚

(∙) − 𝜃̅∙
(∙))

2
𝑀

𝑚=1

 (22) 

𝜃̅𝑚
(∙) =

1

𝑁
∑ 𝜃̅𝑚

(𝑛)

𝑀

𝑛=1

 (23) 

𝜃̅∙
(∙) =

1

𝑀
∑ 𝜃̅𝑚

(∙)

𝑀

𝑛=1

 (24) 

𝑊 =
1

𝑀
∑ 𝑠𝑚

2

𝑀

𝑚=1

 (25) 

𝑠𝑚
2 =

1

𝑁 − 1
∑(𝜃𝑚

(𝑛) − 𝜃𝑚
(∙))

2
𝑁

𝑛=1

 (26) 

The variance of the 𝑅̂ estimator is a combination of the inter-chain and intra-

chain variances (Equation (27)). The 𝑅̂ statistic is computed through Equation (28). 

The split-𝑅̂ is estimated by calculating the 𝑅̂ statistic for each half of every chain 

separately. This process also provides information on the stationarity of the method. 

By splitting each chain and evaluating the convergence within these halves, this 
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method ensures that not only is the variation between chains minimized but that the 

chains themselves have reached a stable distribution, helping to confirm whether the 

MCMC process has truly converged. 

var ̂ +(𝜃|𝑦) =
𝑁 − 1

𝑁
𝑊 +

1

𝑁
𝐵 (27) 

𝑅̂ = √
var ̂ +(𝜃|𝑦)

𝑊
 (28) 

The result of MCMC simulations is typically a non-parametric posterior 

distribution, summarized by key statistics such as the mean, variance, and credible 

intervals (percentiles). These summary statistics capture essential aspects of the 

posterior distribution, offering insights into the parameters being estimated. For more 

comprehensive understanding, graphical representations such as density plots or 

histograms are often preferable, as they present the entire posterior distribution in a 

visual format, highlighting its shape and any potential skewness or multimodality. 

In some cases, parametric estimators for marginal posterior densities can be 

employed, based on the samples generated from MCMC (Chen et al., 2000). These 

parametric marginal posterior estimators provide a way to summarize the posterior 

distribution using a known parametric form, which can sometimes offer computational 

advantages or better interpretability in complex models. 

2.4 The OREDA database 

The OREDA project (https://oreda.com/) has been running for more than 43 

years, with about 11 O&G companies as members. It is comprised of a database of 

reliability data collected on Topside and Subsea equipment from offshore and onshore 

operations. For non-members, part of the data is available in handbooks, with the latest 

version published in 2015. OREDA database has been used by researchers, 

practitioners, scholars and other stakeholders in the O&G industry (Animah & Shafiee, 

2020), to support safety and reliability analyses during development of new oil fields 

and improving existing facility operation (Langseth et al., 1998). 

The database for any given equipment is structured into three parts: Inventory, 

Failure, and Maintenance (Mahmoudi, 2021). The Inventory part stores detailed 

descriptions of equipment units, including technical and environmental data. The 

https://oreda.com/
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Failure part logs all failure events for each unit. The Maintenance part records both 

preventive and corrective actions, with corrective maintenance linked to specific failure 

events, sometimes requiring multiple actions for a single failure (Sandtorv & 

Thompson, 1996), as exemplified in Figure 5. 

Figure 5 –The OREDA database structure. 

 

Source: (Hameed et al., 2011). 

Specifically, in the Failure part, failures are classified into four groups based on 

the number and nature of failures, namely: critical, degraded, incipient, and unknown 

failure (Mahmoudi, 2021; Rausand & Oien, 1996). Failure rates for the different 

criticality groups can be calculated, based on calendar time or operating time. These 

analyses can be applied to all systems within a specific category (e.g., all gas turbines) 

or refined to focus on specific groups (e.g., gas turbines >5 MW driving compressors). 

(Sandtorv & Thompson, 1996). It is commonly assumed that all components within a 

group share the same failure intensity. However, despite being grouped by type, size, 

and operating mode, environmental and maintenance conditions introduce variability, 

making complete homogeneity in reliability across the group unrealistic (Porn, 1996). 

The OREDA project has led to key developments, such as creating standards 

and guidelines for reliability data collection and analysis, including contributing to an 

ISO standard. They have also produced specialized software, enhanced 

understanding of reliability data needs, and developed expertise in data collection 

processes. Additionally, the project has fostered collaboration and knowledge-sharing 

between companies and countries, benefiting the broader industry (Sandtorv & 

Thompson, 1996). In fact, two oil companies reported total savings of USD 70 million 
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by opting for alternative designs over the original ones, with reliability data playing a 

key role in informing these decisions (Hameed et al., 2011). 

OREDA provides information about the intermediate failure times, the failure 

mechanism, and the maintenance activity (Langseth & Lindqvist, 2006). Traditional 

OREDA database analysis typically assumes a constant failure intensity function 

(SINTEF & NTNU, 2015), due to the nature of the data, which reflects the number of 

failures occurring over a given time period. This assumption entails the use of the 

model described in Section 2.2. This work seeks to adapt the model outlined in Section 

2.3 for non-constant failure intensity, making it suitable for application to OREDA’s 

failure count data. This required not only revising the original formulation, but also 

developing tailored methods to effectively address the specific characteristics and 

challenges of the data and the more realistic assumptions adopted here to customize 

it to the O&G context. 
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3 MATHEMATICAL MODEL DEVELOPMENT 

In the two-stage Bayesian procedure proposed by Kaplan (1983), data provided 

by generic databases (“generic data”, 𝐸) can be used as prior knowledge and updated 

by incorporating system-specific failure data (“specific data”, 𝑆), yielding a posterior 

distribution (Kaplan, 1983; Kodoth et al., 2020; Lin, 2002). This approach is crucial for 

predicting the reliability performance of systems with limited data, as it leverages the 

data from similar systems or applications, as thoroughly discussed in Section 2.1. This 

chapter is based on the article (Sales da Cunha et al., 2024). 

Consider a generic data consisting of a population divided into 𝑁𝑃 

subpopulations. Each subpopulation 𝑖, where 𝑖 = 1…𝑁𝑃, consists of 𝑁𝑆𝑖 systems that 

share the same probabilistic failure behavior. In other words, systems within the same 

subpopulation are homogeneous, while systems across different subpopulations are 

non-homogeneous. 

Generic reliability databases, such as the OREDA database (SINTEF & NTNU, 

2015), typically contains failure count data. Therefore, the evidence from each 

subpopulation, denoted by 𝐸𝑖, with 𝐸 = {𝐸1, … , 𝐸𝑁𝑃}, consists of sets of failure count 

data pairs {(𝑘𝑖𝑗, 𝑡𝑖𝑗)}, where 𝑘𝑖𝑗 is the number of failures over an observation time 𝑡𝑖𝑗, 

for system 𝑗 of subpopulation 𝑖 with 𝑗 = 1…𝑁𝑆𝑖. Figure 6 illustrates how the failure 

count data is collected, as demonstrated in the case of 1 subpopulation with 3 

individual systems, where 𝑡𝑓 represents failure times and 𝑡𝑐 are censored times. 

However, the OREDA database does not provide the information regarding the failure 

times, only the sets of failure count data pairs {(𝑘𝑖𝑗 , 𝑡𝑖𝑗)}. 

Figure 6 – A timeline illustrating the failures of 3 hypothetical systems in the same subpopulation 1, 

where 𝑡𝑖𝑗
𝑚 represents the 𝑚𝑡ℎ time of failure of system 𝑗 from subpopulation 𝑖. 

 

Source: adapted from (Sales da Cunha et al., 2024). 
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Failure time data provide a significantly richer source of information compared 

to failure count data. While failure counts indicate how many times a system failed over 

a period, they do not capture when those failures occurred. This distinction is clearly 

illustrated by comparing System 1 and System 2 in Figure 6: although both systems 

experienced the same number of failures (three), the timing of those events reveals 

distinct reliability behaviors. By preserving the temporal aspect of failure events, time-

to-failure data allows for a more accurate and nuanced understanding of system 

performance and degradation over time. 

In this context, the prior distribution estimation for failure count data, based on 

the PVD, relies on three fundamental assumptions: (i) homogeneity within each 

subpopulation, (ii) heterogeneity among subpopulations, and (iii) a constant failure 

intensity function (Droguett et al., 2004). The first two assumptions arise from the 

observation that systems within the same subpopulation operate under similar 

conditions and share similar design features, which may differ from those in other 

subpopulations. The third assumption, a constant failure intensity function, on the other 

hand, while commonly adopted due to the analytical convenience it offers with the 

Poisson distribution for failure count data, is somewhat limiting. This assumption has 

been adopted by OREDA (SINTEF & NTNU, 2015) and recommended in ISO 14224 

(ISO, 2016) for its analytical tractability, as described in Section 2.2. 

However, this study aims at generalizing the third assumption to account for 

cases with non-constant failure intensity by using the Weibull distribution, as described 

in Section 2.3 and illustrated in Figure 3. This introduces a challenge, as the data 

format differs from what a standard Weibull model typically handles—specifically, time-

to-failure data. Consequently, appropriate methods are developed to address this 

situation effectively and they will be detailed below. Section 3.1 presents the methods 

involved in estimating the prior distribution, followed by Section 3.2 where the posterior 

distributions estimation will be detailed. The entire implementation of the methodology 

was conducted in Python.  

The main contribution of this work lies in the prior distribution estimation, which 

required revising the original formulation of constant failure intensity and developing 

tailored methods to address the specific nuances of the dataset. The use of the Weibull 

distribution, known for its flexibility in modeling different failure behaviors, in 
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combination with the NHPP to reflect minimal repair scenarios, represents a novel 

integration of techniques in the context of Bayesian Inference.  

3.1 Prior Distribution Estimation 

Empirical Bayes methods can be used to estimate the hyperparameters that 

define the independent prior distributions of 𝛼 and 𝛽, given the evidence from generic 

data (𝐸). The challenge here is that the evidence of each subpopulation 𝐸𝑖 is given in 

the form of {(𝑘𝑖𝑗, 𝑡𝑖𝑗)} pairs, where 𝑘𝑖𝑗 is the number of failures over an observation 

time 𝑡𝑖𝑗, for system 𝑗 of subpopulation 𝑖 with 𝑗 = 1…𝑁𝑆𝑖. This data format deviates from 

what a typical Weibull model takes as input, i.e., time to failure. 

To apply Empirical Bayes, the maximum marginal likelihood can be 

approximated using the Maximum Likelihood Estimate (MLE) (Shultis et al., 1981). 

Assume 𝑃(𝐸𝑖|𝛼, 𝛽) represents the probability of observing 𝐸𝑖 for specific 𝛼 and 𝛽 

values. Since 𝛼 and 𝛽 are uncertain, the likelihood is obtained by integrating over all 

possible values of 𝛼 and 𝛽, making it unconditional with respect to the Weibull 

parameters. Hence, the likelihood of the evidence of each subpopulation 𝐸𝑖 given the 

hyperparameters is presented in Equation (29).  

𝐿(𝐸𝑖|𝑎𝛼, 𝑏𝛼, 𝑎𝛽 , 𝑏𝛽) = ∬𝑃(𝐸𝑖|𝛼, 𝛽)𝜋0(𝛼)𝜋0(𝛽) 𝑑𝛼 𝑑𝛽 (29) 

Equation (29) is an indefinite integral with no closed solution. However, it can 

be approximated via Importance Sampling (Barbu & Zhu, 2020). By generating 𝑛 

samples of 𝛼 and 𝛽 through 𝜋0(𝛼) and 𝜋0(𝛽), respectively, Equation (30) provides an 

approximation of 𝐿(𝐸𝑖|𝑎𝛼, 𝑏𝛼, 𝑎𝛽 , 𝑏𝛽). 

𝐿̂(𝐸𝑖|𝑎𝛼, 𝑏𝛼, 𝑎𝛽 , 𝑏𝛽) ≅
1

𝑛
∑𝑃(𝐸𝑖|𝛼𝑙, 𝛽𝑙)

𝑛

𝑙=1

↔ 𝛼𝑙~𝜌(𝛼|𝑎𝛼, 𝑏𝛼) , 𝛽𝑙~𝜌(𝛽|𝑎𝛽 , 𝑏𝛽) (30) 

To avoid variability of this estimation, Latin Hypercube Sampling (LHS) will be 

used as the sampling strategy for 𝛼 and 𝛽. LHS ensures samples cover the entire 

range of possible values for 𝛼 and 𝛽 by dividing their range into 𝑁 disjoint partitions 

and randomly generating 𝑛 𝑁⁄  samples in each of them (Sheikholeslami & Razavi, 

2017). In practice, as shown in Figure 7, LHS samples the Cumulative Distribution 

Function (CDF) of 𝜃, where 𝜃 = 𝛼 or 𝜃 = 𝛽, with a range between 0 and 1. These 

sampled CDF values can then be transformed into 𝜃 when applying the quantile 
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function of the Gamma distribution (Martinez et al., 2013). For reference, in the 

example of Figure 7 we have 𝑁 = 8 and 𝑛 = 8. 

Figure 7 – LHS sampling strategy 

 

Source: adapted from (Martinez et al., 2013). 

Figure 8 compares the sampling of the Gamma distribution with parameters 

𝑎𝜃 = 7.93 and 𝑏𝜃 = 0.0021 using LHS versus random number generation, considering 

𝑛 = 100 and 𝑁 = 50. The comparison is based on the p-value from the Kolmogorov-

Smirnov test (Corder & Foreman, 2014), which evaluates the empirical distributions 

produced by both methods against the original Gamma distribution. The sampling was 

executed 4 independent times with the same parameters. Visually, the empirical 

distributions generated by LHS more closely resemble the original Gamma distribution. 

This is further supported by the p-values consistently equal to 1 for LHS and varying 

between approximately 0.2 to 0.9 for the random samples. This result corroborates the 

implementation of LHS for consistency in the results, even with a small sample. 



45 
 

Figure 8 – LHS versus random sampling of Gamma distribution 
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Source: The author (2025). 

Looking closely at Equation (30), the term 𝑃(𝐸𝑖|𝛼𝑙, 𝛽𝑙) represents the Weibull 

counting process (McShane et al., 2008), as the evidence 𝐸𝑖 is given as failure count 

data. Since the Poisson model assumes a constant failure intensity function, it is 

unsuitable for cases where failure intensity changes over time. Therefore, estimating 

this process requires a more appropriate method. For instance, if the systems undergo 

perfect repairs after each failure, the situation can be modeled as a renewal process. 

An effective way to approximate this counting process is through Monte Carlo 

simulation, with the corresponding algorithm outlined in Figure 9. 
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Figure 9 – Weibull counting process via Monte Carlo simulation 

 

Source: The author (2025). 

The problem is that this method is extremely time-consuming, especially when 

attempting to reduce the variability inherent in the simulation process by increasing the 

number of iterations (Mundform et al., 2011). An alternative approach proposed by 

(McShane et al., 2008) involves a numerical procedure that approximates the 

accumulated conditional Weibull distribution using a power series. While this method 

addresses both the computational time and variability issues, tests revealed some 

inconsistencies in the convergence of the series. 

Although the assumption of perfect repair is widely applied, it often yields 

improper results (BahooToroody et al., 2020). For systems that are degrading or 

improving, a time-dependent model is more appropriate. If we assume that the systems 

undergo minimal repair, the process can be modeled as a NHPP (das Chagas Moura 

et al., 2014; Kelly & Smith, 2009). By considering that the times to failure follow a 

Weibull distribution, an analytical solution for this model exists (Basu & Rigdon, 2001), 

which reduces both the computational cost and the variability of the results compared 

to Monte Carlo simulation. Then, the estimation of 𝑃(𝐸𝑖|𝛼𝑙, 𝛽𝑙) via NHPP for the Weibull 

distribution is provided in Equation (31). 

𝑃(𝐸𝑖|𝛼𝑙 , 𝛽𝑙) =∏

[(
𝑡𝑖𝑗
𝛼𝑙
)
𝛽𝑙

]

𝑘𝑖𝑗

𝑒
−(
𝑡𝑖𝑗
𝛼𝑙
)
𝛽𝑙

𝑘𝑖𝑗!

𝑁𝑆𝑖

𝑗=1

 
(31) 
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Now that we have established all the methods involved in the estimation of 

Equation (29), which determines the likelihood of the evidence of each subpopulation 

𝐸𝑖, we can move on to analyzing the entire population. So, Equation (32) shows the 

likelihood of the evidence from the entire population 𝐸 obtained by multiplying Equation 

(29) across the 𝑁𝑃 subpopulations. 

𝐿(𝐸|𝑎𝛼, 𝑏𝛼, 𝑎𝛽 , 𝑏𝛽) =∏𝐿(𝐸𝑖|𝑎𝛼, 𝑏𝛼, 𝑎𝛽 , 𝑏𝛽)

𝑁𝑃

𝑖=1

 (32) 

Taking the log-likelihood is a common practice in MLE because it helps with 

numerical stability by converting the products in Equation (32) into sums (Casella & 

Berger, 2002). This transformation prevents numerical underflow, which can occur 

when multiplying very small numbers, as is often the case with probabilities. Therefore, 

the MLE procedure seeks to find the set of hyperparameters that maximizes Equation 

(33). 

𝑙𝑜𝑔 𝐿(𝐸|𝑎𝛼, 𝑏𝛼, 𝑎𝛽 , 𝑏𝛽) =∑log 𝐿(𝐸𝑖|𝑎𝛼, 𝑏𝛼 , 𝑎𝛽 , 𝑏𝛽)

𝑁𝑃

𝑖=1

 (33) 

Given the complexity of the log-likelihood in Equation (33) the Particle Swarm 

Optimization (PSO) meta-heuristic is here adopted because of its effectiveness in 

searching optimal solutions of non-linear equations in a real-valued search space 

(Bratton & Kennedy, 2007). Using Equation (33) as the objective function, PSO aims 

to find the set of hyperparameters {𝑎𝛼, 𝑏𝛼, 𝑎𝛽 , 𝑏𝛽} that maximizes this function. To 

achieve this, it is necessary to define the search space for {𝑎𝛼, 𝑏𝛼, 𝑎𝛽 , 𝑏𝛽}, i.e. lower 

and upper boundaries for the hyperparameters. However, defining the search space 

can be challenging, as the hyperparameters do not provide direct insight into the 

distribution’s scale or range. 

The Method of Moments can help overcome this challenge by changing the 

decision variable for this problem. According to the Method of Moments, one can find 

{𝑎𝜃, 𝑏𝜃} through the expected value (𝐸[. ]) and the standard deviation (𝑆[. ]) of the 

Gamma distribution, as shown in Equation (34) and Equation (35) where 𝜃 = 𝛼 or 𝜃 =

𝛽.  
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𝑎𝜃 =
𝐸[𝜃]2

𝑆[𝜃]2
 (34) 

𝑏𝜃 =
𝐸[𝜃]

𝑆[𝜃]2
 (35) 

Hence, it is more intuitive to define the search space based on the expected 

value and the standard deviation of 𝛼 and 𝛽, rather than based directly on the 

hyperparameters. Therefore, the decision variables for PSO will be the set 

{𝐸[𝛼], 𝑆[𝛼], 𝐸[𝛽], 𝑆[𝛽]}, and the necessary transformations in Equation (34) and 

Equation (35) will be applied to obtain the corresponding set of hyperparameters 

{𝑎̂𝛼, 𝑏̂𝛼, 𝑎̂𝛽 , 𝑏̂𝛽}.  

Figure 10 presents the flowchart of the implemented PSO algorithm, with gBest 

representing the global best solution obtained so far by any particle (Hamdan, 2008). 

The connections between the nomenclature of PSO and the MLE model are described 

below for clarity. 

• Particles’ positions: the values assigned to {𝐸[𝛼], 𝑆[𝛼], 𝐸[𝛽], 𝑆[𝛽]}, which 

are the decision variables. 

• Search space: lower (𝑙𝑏) and upper (𝑢𝑏) boundaries for each decision 

variable, here addressed as 

[𝑙𝑏𝐸(𝛼), 𝑢𝑏𝐸(𝛼), 𝑙𝑏𝑆(𝛼), 𝑢𝑏𝑆(𝛼), 𝑙𝑏𝐸(𝛽), 𝑢𝑏𝐸(𝛽), 𝑙𝑏𝑆(𝛽), 𝑢𝑏𝑆(𝛽)]. 

• Fitness: objective function defined by the log-likelihood in Equation (33). 

• Stop criteria: the maximum number of iterations. 
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Figure 10 – PSO algorithm 

 

Source: adapted from (Sales da Cunha et al., 2024). 

The PSO algorithm was implemented using the PySwarm Python library 

(https://pythonhosted.org/pyswarm/), with custom modifications made to the source 

code. The key differences from the traditional PSO algorithm are highlighted in orange 

in Figure 10 and described below. 

• Initialization of particles’ positions using LHS: The search space for each 

decision variable is divided into 𝑛𝑝 intervals, with one value generated 

from each interval using LHS. This method ensures comprehensive 

coverage of the search space, as addressed before. 

• Add penalty to fitness: A dynamic penalty is added to the fitness of 

particles that end up outside the search space, discouraging them from 

venturing into these regions. It is dynamic because the current iteration 

(𝑖𝑡) is factored in, as shown in Equation (36) where 𝑥 represents the 

vector of decision variables {𝐸[𝛼], 𝑆[𝛼], 𝐸[𝛽], 𝑆[𝛽]}. 

https://pythonhosted.org/pyswarm/
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𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = (𝑖𝑡 + 1) {𝐻𝑢𝑏(𝑥) ∙
|𝑥 − 𝑢𝑏𝑥|

𝑢𝑏𝑥
+ 𝐻𝑙𝑏(𝑥) ∙

|𝑥 − 𝑙𝑏𝑥|

𝑙𝑏𝑥
} (36) 

𝐻𝑙𝑏(𝑥) = {
1,   𝑥 < 𝑙𝑏𝑥
0,   𝑥 ≥ 𝑙𝑏𝑥

 (37) 

𝐻𝑢𝑏(𝑥) = {
1,   𝑥 > 𝑢𝑏𝑥
0,   𝑥 ≤ 𝑢𝑏𝑥

 (38) 

• Perform local search: If the algorithm remains stuck at the same global 

best (gBest) position for 5 iterations, a local search is performed using 

the Nelder-Mead optimization method, as suggested by (Noel, 2012). 

This helps fine-tuning the solution when the global search is stuck. 

• Preventing 𝑆[. ] > 𝐸[. ]: When 𝑎𝜃 < 1, the Gamma distribution is 

asymptotic to both the vertical and horizontal axes, as shown in Figure 

11 with 𝑎𝜃 = 0.16 and 𝑏𝜃 = 0.0001 as an example. Generating Gamma-

distributed random values with a shape parameter 𝑎𝜃 < 1 is a well-known 

challenge in the literature, with only a few methods available to address 

it (Tanizaki, 2008; Xi et al., 2013). These methods typically rely on 

majorization functions and the acceptance–rejection principle (Kundu & 

Gupta, 2007). In practice, when 𝑎𝜃 < 1, the generated random values for 

𝜃 can become very small. If this occurs with 𝛼, it implies that simulating 

the time to failure would result in an extremely short lifespan, causing the 

system to spend more time in a failure state than in operation. 

Consequently, the simulation would take an excessively long time to 

reach the time horizon and conclude, which is not a desirable or an 

expected outcome. Note that 𝑎𝜃 < 1 corresponds to situations where 

𝑆[. ] > 𝐸[. ]. Therefore, if any particle shows 𝑆[. ] > 𝐸[. ], its fitness is set 

to infinity, effectively discouraging exploration of these regions. 
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Figure 11 – Example of Gamma distribution with 𝑎𝜃 < 1. 

 

Source: The author (2025). 

The main contribution of this work lies in the prior distribution estimation. The 

use of the Weibull distribution, known for its flexibility in modeling different failure 

behaviors, in combination with the NHPP to reflect minimal repair scenarios and all the 

methods involved in estimating and optimizing the likelihood function, represents a 

novel integration of techniques. This approach fills a gap in the literature and provides 

a more accurate and practical framework for reliability estimation in the O&G industry. 

Since the model is subject to various sources of variability—such as the 

calculation of the likelihood of each subpopulation via Importance Sampling (Equation 

(30)) and the inherent variability of the PSO algorithm—conducting multiple 

independent PSO runs and comparing the results is a good strategy. To assess the 

quality of the PSO results, it is essential to use an appropriate metric. While the 

likelihood is an obvious metric, using an additional metric for further validation is 

helpful. Here, the NRMSE (das Chagas Moura et al., 2014) will be used as the metric 

to evaluate the accuracy of the prior distribution estimation across these runs (Equation 

(39)). 

𝑁𝑅𝑀𝑆𝐸 = √
∑ ∑ {𝑘𝑖𝑗 − 𝐸[𝑁(𝑡𝑖𝑗)]}

2𝑁𝑆𝑖
𝑗=1

𝑁𝑃
𝑖=1

∑ ∑ (𝑘𝑖𝑗)
2𝑁𝑆𝑖

𝑗=1
𝑁𝑃
𝑖=1

 (39) 
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The NRMSE is defined in Equation (39), where 𝑘𝑖𝑗 is the actual number of 

failures for each system 𝑗 of subpopulation 𝑖 and 𝐸[𝑁(𝑡𝑖𝑗)] is the expected number of 

failures over an observation time 𝑡𝑖𝑗 estimated via Monte Carlo simulation, following 

the steps outlined in Figure 12. 

Figure 12 – Expected number of failures via Monte Carlo simulation. 

 

Source: The author (2025). 

The drawback of this metric is its high computational cost, as it requires two 

nested Monte Carlo loops: one for sampling the parameters 𝛼 and 𝛽, and another for 

sampling the failure times. To enhance the quality of the estimates, LHS was also used 

here for generating the 𝛼 and 𝛽 samples. Each PSO run yields a potential solution for 

the Gamma prior distribution of 𝛼 and 𝛽. In addition to evaluating the log-likelihood of 

each potential solution, the minimum NRMSE will be used as the criterion to identify 

the best solution, which will then be selected as the prior distribution for the next step. 

Figure 13 illustrates how the methods discussed so far are integrated to estimate the 

prior distribution. 
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Figure 13 – Prior distribution estimation process. 

 

Source: The author (2025). 

3.2 Posterior Distribution Estimation 

Referring back to the Bayesian model for the non-constant failure intensity case 

described in Section 2.3, Equation (21) determines the posterior distribution 𝜋1(𝛼, 𝛽|𝑆), 

representing the updated knowledge about 𝛼 and 𝛽, given the specific data 𝑆. Here, 

the specific data is in the form of failure times, as illustrated in Figure 14. 

Figure 14 – A timeline illustrating a hypothetical specific data in the form of failure times, where 𝑡𝑚 

represents the 𝑚𝑡ℎ time of failure. 

 

Source: The author (2025). 

This update occurs through the application of the likelihood function of the 

Weibull model, denoted as 𝐿(𝑆|𝛼, 𝛽) (see Equation (21)), to the prior distributions of 𝛼 

and 𝛽, estimated following the methodology described in Section 3.1. Since 𝛼 and 𝛽 

follow independent continuous distributions, there is no family of conjugate 

distributions with the Weibull likelihood (Erto & Giorgio, 2013). Therefore, Equation (21) 

does not have an analytical solution and deriving the posterior distribution requires the 

use of numerical methods. MCMC algorithms can be used to derive a non-parametric 

posterior distribution (Bolstad, 2009). 

For the implementation of MCMC, the Stan platform (Carpenter et al., 2017) 

was leveraged through its Python interface, PyStan (Riddell et al., 2021). Stan employs 

advanced MCMC techniques, such as Hamiltonian Monte Carlo (HMC) (Betancourt, 

2017; Neal, 2011) and no-U-turn sampling (NUTS) (Hoffman & Gelman, 2014), which 

provide efficient approaches to Bayesian analysis. One of the key advantages of NUTS 

is its ability to automatically adjust parameters, leading to faster convergence and 
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reduced computational costs. Due to these benefits, NUTS was adopted here for 

analysis. 

Stan reports the 𝑅̂ statistic, which is the maximum value between the rank-

normalized split-𝑅̂ and the rank-normalized folded-split-𝑅̂, offering insights into 

convergence (see Section 2.3.1 for details). Although NUTS handles many parameters 

automatically, some parameters were manually set based on guidelines and practices 

from the literature (Gelman et al., 2013). The number of iterations was set to 50,000 

iterations, considering the complexity of the problem. To monitor convergence and 

assess the behavior of the chains, four separate chains were considered. The initial 

portion of each chain, known as the warmup or "burn-in" phase, was set to 25% of the 

total iterations, during which samples are discarded to help the chains reach their 

stationary distribution. 

MCMC simulations generally produce a non-parametric posterior distribution, 

summarized using key statistics such as the mean, variance, and credible intervals. In 

some instances, parametric estimators for marginal posterior densities can be applied 

to MCMC samples, offering computational benefits or improved interpretation, 

especially in complex models (Chen et al., 2000). The parametric distribution 

considered in this study were: Gamma, Weibull, and Lognormal. The goodness of fit 

was evaluated using the Kolmogorov-Smirnov (KS) test (Corder & Foreman, 2014), 

which computes the D statistic, indicating the maximum distance between the empirical 

and theoretical cumulative distribution functions. The p-value from the KS test, 

calculated based on the D statistic, will be used to determine the parametric distribution 

that better describes the posterior distributions of 𝛼 and 𝛽. 

An example of such approach is illustrated in Figure 15, where MCMC was 

applied to a hypothetical case. The prior distribution of 𝛼 and 𝛽 was set with 

hyperparameters 𝑎𝛼 = 7.4, 𝑏𝛼 = 0.002, 𝑎𝛽 = 10.42, 𝑏𝛽 = 6.446, and the following 

failure times were used as specific data 𝑆 =

(2562.3268, 3564.5464, 7919.6538, 8981.7632, 18670.2207 ) for the likelihood function 

in Equation (20). In this example, the Lognormal distribution provided the best fit for 𝛼 

and the Gamma distribution for 𝛽, according to the p-values of the KS test. The p-

values above 0.05 indicate that the hypothesis that the non-parametric distribution 
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resulting from MCMC (green histograms in Figure 15) and the fitted parametric 

distributions originate from the same distribution is not rejected. 

Figure 15 – Non-parametric posterior distributions of (a) 𝛼 and (b) 𝛽, fitted to Gamma, Weibull, and 

Lognormal distributions. 

 

(a) 

 

(b) 

Source: The author (2025). 

In summary, the application of Bayesian inference through MCMC techniques 

allowed for the estimation of non-parametric posterior distributions for the Weibull 

model parameters 𝛼 and 𝛽, overcoming the lack of conjugate priors. This is a well 

known problem in the literature and by leveraging the computational capabilities of the 
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Stan platform and its advanced sampling algorithms like NUTS, the study achieved 

efficient and accurate parameter estimation. Fitting a parametric distribution to the 

MCMC samples, validated by the Kolmogorov-Smirnov test, is an addition to traditional 

approaches as it enhances interpretability and provides the means for integration with 

further reliability analysis. 
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4 EXPERIMENTAL EVALUATION 

4.1 Prior Distribution Estimation 

This section presents the tests performed for the prior distribution estimation 

model described in Section 3.1. To evaluate the quality of the estimation, simulated 

data will be used, providing a basis for comparison. The simulation process will be 

detailed, and the parameters used will be presented. The main results will be shown 

along with a sensitivity analysis, varying the amount of available data to assess the 

model's robustness. 

4.1.1 Data Simulation Process 

To assess the model's ability to estimate prior distributions, synthetic data sets 

were generated in the form of paired entries (𝑘𝑖𝑗 , 𝑡𝑖𝑗). The synthetic data will be used 

as generic data in the prior distribution estimation model. This approach allows for 

direct comparison between the model's results and the theoretical distribution from 

which the data was generated. The simulation process begins with the specification of 

the following parameters: {𝑎𝛼
𝑇 , 𝑏𝛼

𝑇 , 𝑎𝛽
𝑇 , 𝑏𝛽

𝑇} (hyperparameters of the theoretical prior 

distribution), 𝑁𝑃 (number of subpopulations), 𝑁𝑆𝑖 (number of systems per 

subpopulation 𝑖), and 𝐺 (number of groups per subpopulation). 

Assuming that 𝛼~𝐺𝑎𝑚𝑚𝑎(𝑎𝛼
𝑇 , 𝑏𝛼

𝑇) and 𝛽~𝐺𝑎𝑚𝑚𝑎(𝑎𝛽
𝑇 , 𝑏𝛽

𝑇), 𝑁𝑃 pairs (𝛼𝑖, 𝛽𝑖 ) are 

generated, each representing a subpopulation 𝑖 (where 𝑖 = 1…𝑁𝑃). This means that 

all equipment within a subpopulation share the same failure time distribution, while 

different subpopulations exhibit non-homogeneous characteristics, as defined in 

Section 2.3. Each subpopulation is then divided into 𝐺 groups, with each group 𝑔 

containing 
𝑁𝑆𝑖

𝐺
 systems, observed over a time 𝑡𝑔 (for 𝑔 = 1…𝐺). For each system 𝑗 

(where 𝑗 = 1…𝑁𝑆𝑖) in subpopulation 𝑖, failure times are randomly generated up to 𝑡𝑔 

following a Weibull distribution with parameters (𝛼𝑖, 𝛽𝑖). This subgrouping within 

subpopulations ensures the capture of stochastic failure behavior across different 

observation periods, offering a comprehensive view of the parameters’ distributions. 

Next, the number of failures is counted to form the pairs (𝑘𝑖𝑗𝑔, 𝑡𝑔), which are 

equivalent to (𝑘𝑖𝑗, 𝑡𝑖𝑗), with the group index 𝑔 used here primarily for illustration in the 

simulation process. Figure 16 illustrates this simulation process for 𝑁𝑃 = 3, 𝑁𝑆𝑖 =

15 ∀𝑖 and 𝐺 = 3. With this simulation scheme, it is possible to compare the result of 
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the prior distribution estimation model with the theoretical prior distribution that 

generated the data, i.e., {𝑎𝛼
𝑇 , 𝑏𝛼

𝑇 , 𝑎𝛽
𝑇 , 𝑏𝛽

𝑇}. 

Figure 16 – Data simulation example, with 𝑁𝑃 = 3, 𝑁𝑆𝑖 = 15 ∀𝑖 and 𝐺 = 3. 

 

Source: The author (2025). 

It is crucial to evaluate the impact of dataset size on the results, as larger 

datasets tend to produce estimates that closely align with the theoretical prior 

distribution. However, given that data are often scarce, it is essential to assess the 

model's robustness as the sample size decreases. So, the proposed methodology was 

assessed with tests generated following the procedure described above, by varying 

the synthetic data sets size. Each test will be addressed by its size as (𝑁𝑃,𝑁𝑆𝑖). As an 

illustration, the example in Figure 16 would be addressed as (03,15). 

The estimated prior distributions will be compared with the theoretical one 

through: visual inspection of the distribution graph, the log-likelihood value and the 
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NRMSE metric discussed in Section 3.1. Beyond that, an additional comparison is 

suggested. This involves contrasting the (
∑ 𝑘𝑖𝑗𝑗

𝑁𝑆𝑖
,
∑ 𝑡𝑖𝑗𝑗

𝑁𝑆𝑖
) pairs from the generic data with 

the (
∑ 𝑘̂𝑖𝑗𝑗

𝑈
,
∑ 𝑡̂𝑖𝑗𝑗

𝑈
) pairs generated using the resulting prior distribution estimation, i.e. 

estimated parameters {𝑎̂𝛼, 𝑏̂𝛼, 𝑎̂𝛽 , 𝑏̂𝛽}. The same simulation procedure as described 

above will be used to generate the data with {𝑎̂𝛼, 𝑏̂𝛼, 𝑎̂𝛽 , 𝑏̂𝛽}, and this data will be 

addressed as "estimated data". The estimated data will consist of 100 subpopulations 

(𝑈 = 100). The Kolmogorov-Smirnov test (Corder & Foreman, 2014) will be used to 

determine whether the distribution of the mean number of failures across 

subpopulations in the generic data matches that of the estimated data. This serves as 

an additional metric to measure the quality of the prior estimation procedure. 

4.1.2 Parameters definition 

The parameters of the prior distribution model are presented in Table 1 (for 

detailed descriptions, please refer to the List of Symbols). Arbitrary values for the 

hyperparameters of the theoretical prior distribution {𝑎𝛼
𝑇 , 𝑏𝛼

𝑇 , 𝑎𝛽
𝑇 , 𝑏𝛽

𝑇} were selected to 

produce typical values for 𝛼 e 𝛽, ensuring realistic modeling. With the values for the 

theoretical prior distribution defined in Table 1, 𝛼 is defined in a range approximately 

from 1320 to 7272 and 𝛽 approximately from 0.71 to 2.68. The values for 𝑡𝑔 were based 

on expert knowledge suggesting these intervals as critical points for failure analysis 

and practical validity. Moreover, selecting evenly spaced time intervals allows for a 

clear analysis of failure trends, facilitating statistical modeling and assessments.  
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Table 1 – Parameters. 

Category Parameter Value 

Data Simulation {𝑎𝛼
𝑇 , 𝑏𝛼

𝑇 , 𝑎𝛽
𝑇 , 𝑏𝛽

𝑇} [8, 0.0022, 13, 8.5] 

Data Simulation 𝑡𝑔 [2000, 4000, 6000, 8000, 10000] 

PSO 𝑛𝑝 50 

PSO 𝑐1 2.05 

PSO 𝑐2 2.05 

PSO 𝑤 0.729843 

PSO 𝑖𝑡 100 

PSO [𝑙𝑏𝐸(𝛼), 𝑢𝑏𝐸(𝛼)] [2 ∙ 𝑧, 4 ∙ 𝑧] 

PSO [𝑙𝑏𝑆(𝛼), 𝑢𝑏𝑆(𝛼)] [𝑐𝑠𝑚𝑖𝑛 ∙ √𝑧, 𝑐𝑠𝑚𝑎𝑥 ∙ √𝑧] 

PSO [𝑙𝑏𝐸(𝛽), 𝑢𝑏𝐸(𝛽)] [0.5, 5] 

PSO [𝑙𝑏𝑆(𝛽), 𝑢𝑏𝑆(𝛽)] [0.5, 5] 

Source: The author (2025). 

The PSO parameters—such as 𝑛𝑝, 𝑐1, 𝑐2, and 𝑤 —were selected based on 

established practices in the field, as these values are commonly recognized for their 

stability. For more information on these parameters, please refer to Bratton & Kennedy 

(2007). The number of iterations was determined through preliminary experimentation 

to ensure effective convergence of the optimization process in a timely manner, and 

this analysis will be presented later on. 

Additionally, the PSO heuristic approach requires defining the search space that 

satisfies the condition in Equation (40). For the scale parameter 𝛼, a case-specific 

search space was defined, since 𝛼 is related to the characteristic life of equipment. 

The search space is defined such that 𝑆[𝛼] ∈ [𝑐𝑠𝑚𝑖𝑛 ∙ √𝑧, 𝑐𝑠𝑚𝑎𝑥 ∙ √𝑧], where 𝑧 =
∑ ∑ 𝑡𝑖𝑗𝑗𝑖

∑ ∑ 𝑘𝑖𝑗𝑗𝑖
. 

The idea is that 𝑧 serves as a rough estimate of the mean time between failures. This 

approach allows the PSO model to dynamically adjust the search intervals for each 

new data set while ensuring that the estimated distributions have suitable variance for 

use as prior distributions.  

{𝑙𝑏𝐸(𝛼), 𝑙𝑏𝑆(𝛼), 𝑙𝑏𝐸(𝛽), 𝑙𝑏𝑆(𝛽)} ≤ {𝐸[𝛼], 𝑆[𝛼], 𝐸[𝛽], 𝑆[𝛽]}

≤ {𝑢𝑏𝐸(𝛼), 𝑢𝑏𝑆(𝛼), 𝑢𝑏𝐸(𝛽), 𝑢𝑏𝑆(𝛽)} 
(40) 
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A sensitivity analysis of the search space parameters for 𝛼 will be detailed in 

Section 4.1.3. On the other hand, 𝛽 controls the failure intensity behavior, which is 

influenced by underlying physical and operational constraints. Thus, a well-defined 

range can capture the likely behavior of the system without needing a broad or 

dynamically varied search space. The value of 𝛽 usually falls within a known range, 

characterizing the following failure behaviors (Nelson, 1982): 

• 𝛽 < 1: decreasing failure intensity (infant mortality or early-life phase). 

• 𝛽 = 1: constant failure intensity, representing the Exponential distribution. 

• 𝛽 > 1: increasing failure intensity (wear-out phase). 

In practical applications, it is unlikely to observe 𝛽 values above five. Limiting 

the search space for 𝛽 improves computational efficiency without sacrificing accuracy, 

as the likely 𝛽 values can be reasonably anticipated based on prior experience or 

domain knowledge. 

4.1.3 PSO search space assessment 

The initial analysis involves evaluating the PSO's performance by varying the 

search space parameters for 𝛼. Recall that the search space for 𝑆[𝛼] is defined by the 

constants {𝑐𝑠𝑚𝑖𝑛, 𝑐𝑠𝑚𝑎𝑥}. Different values for these constants are here considered: 

{10,55}, {20,65}, {30,75}, {40,95}. The focus is on varying the constants that determine 

the bounds for the standard deviation of 𝛼, as these are more challenging to fine-tune. 

This analysis was executed with a round of test data sets, by varying the data 

set size. Each test will be addressed by its size as (𝑁𝑃,𝑁𝑆𝑖), with 𝑁𝑃 and 𝑁𝑆𝑖 varying 

between 5, 25 and 50 ∀𝑖 = 1,… ,𝑁𝑃. Thus, we set {𝑎𝛼
𝑇 , 𝑏𝛼

𝑇 , 𝑎𝛽
𝑇 , 𝑏𝛽

𝑇} as shown in Table 1 

and use these hyperparameters to generate the biggest test set following the 

procedure described in Section 4.1.1, in this case (50,50), and then sample data from 

this test to the others, so smaller tests are contained on the bigger ones. Considering 

that 𝐺 = 5, the other tests follow the same logic presented above in Figure 16, that is, 

for the test (_,25) there are 5 devices in each of the 5 groups, and for the test (_,05) 

there is 1 device in each of the 5 groups, regardless of the number of subpopulations 

considered. Testing was structured this way to assess the model's performance in 

scenarios with limited data and to evaluate its behavior as data availability increases. 
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The prior distribution estimation model was executed five times for each test 

size. The results are detailed in Appendix A. Here, results are primarily compared using 

the NRMSE to determine if the quality of the solution is influenced by the search space, 

which in turn affects the selection of the best prior distribution for subsequent steps in 

the methodology. Table 2 summarizes the results using a two-factor ANOVA test 

(Montgomery & Runger, 2013). The first factor is the bounds of the search space, and 

the second is the dataset size. The test examines three hypotheses: whether the 

means of the columns differ, whether the means of the rows differ, and whether there 

is an interaction between the factors. The p-value in Table 2 represents the outcome 

of the two-factor ANOVA test. 

Table 2 – Summary of two factor ANOVA test for varying search space bounds. 

Source of variation 𝐹𝑐𝑟𝑖𝑡 𝐹 p-value 

Bounds of the search space 2.00325 1.16659 0.32334 
Dataset size 2.66744 0.94379 0.42127 
Interaction among factors 1.59323 0.94501 0.54179 

Source: The author (2025). 

There is no evidence to reject either null hypothesis, as the 𝐹-values do not 

exceed the critical value 𝐹𝑐𝑟𝑖𝑡. Therefore, the NRMSE values remain consistent despite 

changes in the bounds of the search space, demonstrating the model's flexibility and 

robustness in identifying suitable prior distributions. Consequently, the values {20,65} 

were selected, as they produced superior visual results. 

4.1.4 Results 

The proposed methodology underwent a series of tests generated as described 

in Section 4.1.1. Each test set is identified by its size, denoted as (𝑁𝑃,𝑁𝑆𝑖). Initially, 

𝑁𝑃 was set to 5 and 𝑁𝑆𝑖 assumed the values 5, 25, or 50 ∀𝑖 = 1,… ,𝑁𝑃. These 

selections were made to focus on scenarios with limited data while also assessing the 

model's performance under conditions of increased data availability. 

For each test set, the prior distribution estimation model was executed 20 

independent times (runs) to evaluate the convergence and robustness of the model, 

given that the results are subject to variability as mentioned in Section 3.1. This number 

of runs was chosen as it provides a sufficient sample size to investigate variability in 

the results. Figure 17 displays the results for each test, comparing the distribution of 𝛼 

and 𝛽 that generated the data (“theoretical distribution”), indicated by the black dotted 

curve, with the results of all runs in terms of the log-likelihood in Equation (33) (log-L), 
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p-value, and NRMSE in Equation (39). The p-value is obtained through the 

Kolmogorov-Smirnov test, used to ascertain whether the mean number of failures 

across subpopulations in the generic data and the estimated data adhere to the same 

distribution, as described in Section 4.1.1. 

Figure 17 – Prior estimation results for (a) (05,05), (05,25), and (c) (05,50). 

 

(a) 

 

(b) 

 

(c) 

Source: The author (2025). 

There is some variability among the resulting distributions, even though they are 

very close in terms of log-likelihood. This variability may stem from the similarity in log-
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likelihood values across different sets of hyperparameters, which causes the search 

algorithm to explore various regions of the hyperparameter space, leading to nearly 

identical log-likelihood outcomes. Additionally, the nature of the data—failure count 

data, which is inherently less informative—can contribute to this variability. 

Despite this variability, the results consistently outperform the theoretical 

distribution in terms of log-likelihood, as the goal is to maximize this metric. Given the 

small sample size, it's possible that other distributions might model the data more 

effectively compared with the theoretical distribution. In particular, the available data is 

limited to failure counts over intervals, which inherently involves a loss of information. 

The proposed approach accounts for this limitation by incorporating an appropriate 

likelihood function and tailored sampling methods, which better capture the 

characteristics of the observed data. Even though the type of data and the small 

sample size introduces some variability, the mode of the posterior distributions for both 

𝛼 and 𝛽 remains stable across different runs, demonstrating consistency when 

compared to the theoretical model. 

For all tests, the hypothesis that the generic data sample and the estimated 

sample (across each PSO run) belong to the same distribution is not rejected, as 

evidenced by the p-values in Figure 17. In fact, most p-values exceed 0.3, with some 

approaching 1. This reinforces the effectiveness of the proposed methodology, which 

assumes Weibull-distributed equipment failure times subject to minimal repair with 

failure count data. 

Table 3 presents the mean and standard deviation (std) of key values and 

metrics obtained from the experiments. The std of the log-likelihood was consistently 

low across all datasets in the 20 runs. This result aligns with the nature of the algorithm 

searching for solutions in a continuous space, where different combinations of 

hyperparameter values often yield very similar log-likelihood results. Consequently, 

variations in the resulting distribution across different runs do not cause a considerable 

variation on the log-likelihood result. Additionally, it is noteworthy that for the smallest 

dataset (05,05), each run took an average of 706 seconds, with larger datasets 

requiring more time, averaging around 1124 seconds per run.  
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Table 3 – Result’s mean and standard deviation (std). 

Test metric 𝑎̂𝛼 𝑏̂𝛼 𝑎̂𝛽 𝑏̂𝛽  log-L p-value NRMSE time 

(05,05) 
mean 2.7677 0.0005 8.6163 5.3681 -32.5257 0.8083 0.8930 706.8100 

std 0.3411 0.0001 1.2807 0.9019 0.0602 0.1983 0.1696 89.2320 

(05,25) 
mean 3.2846 0.0006 4.3758 2.4971 -191.5106 0.7234 2.9224 981.7141 

std 0.8362 0.0002 1.2027 0.9138 0.2468 0.2867 3.4526 278.8055 

(05,50) 
mean 2.9733 0.0006 4.5338 2.5928 -388.7517 0.6655 1.9968 1124.1563 

std 0.5878 0.0001 1.2995 0.8472 0.4653 0.2959 1.1136 158.6732 

 Source: The author (2025). 

Figure 18 shows the evolution of the optimal log-likelihood found by the PSO 

algorithm over the course of 100 iterations. Note that although this is a maximization 

problem, the algorithm was coded for minimization; hence, the objective function is 

represented as the negative log-likelihood and the desired behavior is to see it 

decreasing over the iterations. 

Figure 18 – Negative log-likelihood evolution throughout PSO iterations for (a) (05,05), (05,25), and (c) 

(05,50). 

 

(a) 
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(b) 

 

(c) 

Source: The author (2025). 

From Figure 18, defining a stopping criterion based solely on the number of 

iterations is challenging. Significant changes occur in the initial iterations, but only 

marginal reductions are seen sporadically over subsequent iterations. These changes 

are more abrupt, with more pronounced curve adjustments in the case of the (05,50) 

configuration. However, increasing the number of iterations further extends the already 

lengthy runtime, which averages nearly 20 minutes to obtain a result for the (05,50) 

configuration with just 100 iterations. However, an additional stopping criterion could 



68 
 

be introduced: halting the search after a certain number of consecutive iterations where 

results remain unchanged. This strategy is called patience and it offers an alternative 

to simply increasing the iteration count. 

While the prior distribution estimation model was executed in 20 independent 

runs for each test, only one solution should be selected. Deciding based on log-

likelihood and p-value is challenging as they may lead to opposite conclusions. 

Additionally, in some instances (see Figure 17), more than one solution could yield the 

same p-value, complicating the use of such criterion. Thus, the NRMSE serves as the 

primary decision criterion due to its dimensionless nature, quantifying the proximity 

between empirical data (generic data) and expected values (see Section 3.1 for more 

details). Therefore, the solution with the smallest NRMSE is chosen to proceed for the 

posterior distribution estimation. 

4.1.5 Sensitivity Analysis 

In addition to the results presented above, larger data sets were also simulated, 

with 25 and 50 subpopulations and varying number of systems per subpopulation as 

before. Although this amount of data is not expected in real scenarios, the goal here is 

to evaluate the model robustness. For each test, 5 independent runs were executed to 

estimate the prior distributions and to evaluate the convergence and robustness of the 

PSO. Figure 19 displays the results for the test sets comprise of more than 5 

subpopulations, since the results with 5 subpopulations have previously been 

addressed. Here again the theoretical distribution is indicated by the black dotted 

curve, and the results are expressed in terms of the log-likelihood (log-L), p-value, and 

NRMSE. 

Figure 19 – Prior estimation results for (a) (25,05), (b) (25,25), (c) (25,50), (d) (50,05), (e) (50,25), (f) 

(50,50). 
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(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

Source: The author (2025). 

In general, there is variability in the results, both concerning the theoretical 

distribution and the results among themselves, although the latter is generally smaller. 

Despite this variability, all results exhibit close log-likelihood values. The complexity of 

this optimization problem, with multiple local minima, coupled with the fact that we 

determine the solution through the mean and standard deviation of the 

hyperparameters, means that even small variations in these values can lead to 

significant changes in the hyperparameters result.  

Another notable observation pertains to the test size. It is evident that the 

number of subpopulations has a more pronounced impact on both the reduction of 

variability and proximity to the original distribution compared to the number of units per 

subpopulation. However, with more data available, results can be biased to a specific 

region of the parameter space and with less amplitude, as demonstrated by the orange 

curve in Figure 19f for the larger test set, i.e. (50,50). Remarkably, even with just 5 

subpopulations, as exemplified by the (05,05) case, the results exhibited robust 
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performance concerning both p-values and NRMSE, as illustrated in Figure 17. These 

results validate the proposed methodology for the prior distribution estimation. 

4.2 Posterior Distribution Estimation 

This section presents the tests performed for the posterior distribution 

estimation model described in Section 3.2. The solution with the lowest NRMSE among 

all the runs obtained for each test presented before is selected to proceed with 

posterior distribution estimation. In this step, synthetic data is generated by simulating 

failure times based on a Weibull distribution with parameters 𝛼 = 3566.61 and 𝛽 = 1.34 

(“original parameters”). Using these parameters, five failure times are randomly 

generated for a hypothetical system 𝑇 =

{2562.3268, 1002.2196, 4355.1074, 1062.1094, 9688.4575}.  

Here, the non-parametric posterior distribution estimations for 𝛼 and 𝛽 will be 

presented for both the largest and smallest prior tests, specifically (05,05) and (50,50), 

in Table 4 and Table 5, respectively. From the test (05,05) the best result was from 

Run 19, with NRMSE of 0.6278, and hyperparameters {3.9657,0.0007,11.3901,6.7363}. 

From the test (50,50) the best result was from Run 1, with NRMSE of 0.7858, and 

hyperparameters {5.0402,0.0011,6.0159,3.4480}. All posterior estimations conducted 

using MCMC algorithms showed convergence, as indicated by a split-𝑅̂ value of 1. 

Table 4 – Non-parametric posterior distribution estimation from prior test (05,05). 

 Original Mean SD 5% 25% 50% 75% 95% 𝑅̂ 

𝛼 3566.61 8373 2829 4386 6362 8018 10020 13510 1 

𝛽 1.34 1.577 0.4866 0.8742 1.2255 1.5255 1.8740 2.4546 1 

Source: The author (2025). 

Table 5 – Non-parametric posterior distribution estimation from prior test (50,50). 

 Original Mean SD 5% 25% 50% 75% 95% 𝑅̂ 

𝛼 3566.61 6591 2234 3299 4997 6390 7955 10570 1 

𝛽 1.34 1.3796 0.6138 0.5712 0.9343 1.2784 1.7457 2.5282 1 

Source: The author (2025). 
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These tables demonstrate that when starting from a more informative prior, 

estimated with a larger data set and thus characterized by lower uncertainty (narrower 

amplitude), the posterior distribution aligns more closely with the original parameters. 

This is evident when comparing the mean values of 𝛼 and 𝛽 in Table 5 to the values 

used to generate the data. Additionally, Figure 20 and Figure 21 – Posterior estimation 

results for (50,50) (a) 𝛼 and (b) 𝛽. visually highlights that the posterior distributions shift 

away from the prior, becoming more skewed toward the observed data, especially for 

𝛼. Besides the non-parametric distribution results of MCMC, goodness-of-fit was 

evaluated for three distributions: Gamma, Weibull, and Lognormal.  
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Figure 20 – Posterior estimation results for (05,05) (a) 𝛼 and (b) 𝛽. 

 

(a) 

 

(b) 

Source: The author (2025). 
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Figure 21 – Posterior estimation results for (50,50) (a) 𝛼 and (b) 𝛽. 

 

(a) 

 

(b) 

Source: The author (2025). 

Although the Bayesian approach is primarily designed for scenarios with limited 

data, we also explored how the posterior distribution estimation behaves when a larger 

data set for the same equipment is available. Using the same parameters, a larger 

sample of 50 failure times was randomly generated, and the posterior estimation was 

performed. Here, it was considered the following specific data 𝑇 = [452.6755, 

3212.2231, 10339.5549, 2732.3630, 1559.4472, 978.2900, 650.6369, 1288.1594, 

3604.3077, 350.3445, 1565.8423, 457.3386, 1512.4945, 1221.3923, 450.5418, 
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5282.0135, 69.9732, 366.4941, 1188.8401, 1760.4854, 507.9755, 899.0795, 

163.8543, 139.6921, 1017.6044, 873.1068, 2001.2863, 328.9064, 673.8020, 

300.3467, 277.0293, 762.6984, 916.0977, 730.1398, 663.9674, 369.1867, 2250.9381, 

489.8128, 645.2946, 950.0629, 1181.8031, 147.0101, 2641.1091, 489.4880, 

559.1566, 53.6336, 1420.9667, 623.0107, 1119.6867, 1595.1587]. 

Table 6 – Non-parametric posterior distribution estimation from prior (50,50) with 50 failure times. 

 Original Mean SD 5% 25% 50% 75% 95% 𝑅̂ 

𝛼 3566.61 4711 1923 2130 3297 4424 5800 8285 1 

𝛽 1.34 1.8217 0.7213 0.8132 1.2988 1.7279 2.2446 3.1393 1 

Source: The author (2025). 

As anticipated, all results converged, reaffirming the impact of data quantity on 

estimation accuracy. Table 6 highlights this trend, showing that with more specific data, 

the mean estimates for 𝛼 were significantly closer to the original parameters when 

using 50 failure times, compared to the results from only 5 failure times in Table 5. 

4.3 Industrial Application Example 

The previously presented results were obtained using simulated data, with a 

reference distribution available for comparison. Now, the methodology will be applied 

to a real case study pertaining to booster pumps in an O&G company. A booster pump 

is a type of pump used to increase the pressure of fluids within a pipeline. These pumps 

are typically deployed in situations where the natural pressure in the pipeline is 

insufficient to maintain an optimal flow rate. 

The data in Table 7 was sourced from OREDA, and pertains to booster pumps 

across five different installations, encompassing a total of 25 systems. Each row 

corresponds to one system, with the first column indicating which subpopulation the 

system belongs to, and K indicates the number of failures during time horizon T. This 

data will be used to estimate the prior distribution. Each installation will be treated as 

a subpopulation, as the systems within the same installation are subject to similar 

operating conditions, which may differ across installations. The data includes both 

critical failures that result in shutdowns and degraded failures, where the equipment 

operates below nominal levels but does not cause a complete operational stoppage. 
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Table 7 – Generic data from booster pumps, sourced from OREDA. 

Subpopulation K T 

1 1 22201 

1 4 8345 

1 4 21103 

2 6 24437 

2 6 10226 

2 8 8387 

2 5 4906 

2 5 11208 

2 7 12734 

3 1 19870 

3 1 15131 

3 1 18377 

3 0 17082 

3 1 20542 

3 3 16512 

3 6 20187 

3 2 12836 

4 4 19585 

4 1 22292 

4 1 15674 

4 4 12855 

5 4 10485 

5 3 13838 

5 3 19301 

5 1 22179 

Source: The author (2025). 

Figure 22 presents the results of three prior distribution estimations for this 

industrial application example. While some variability is observed among the results, 

the modes are very close, and all NRMSE values are similarly low. Based on the 

NRMSE, the first run is selected for use in the next step. 
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Figure 22 – Prior distribution estimation for the industrial application example. 

 

Source: The author (2025). 

With the result presented above, the next step is the posterior distribution 

estimation. The specific failure data used in this stage comes from a booster pump 

operating in an Oil & Gas company, where reliability estimates are needed. The dataset 

consists of the following failure times: 𝑇 =[1728, 1781, 3533, 4901, 5237, 5789, 6341, 

7109, 7157, 7205, 8501, 9029, 9821, 12557, 16013, 17453, 23357, 26021, 30365, 

31781, 35981], which includes both critical and degraded failures.  

As illustrated in Figure 23, the time intervals between failures tend to increase, 

suggesting an improvement in the system’s condition over time. This behavior 

indicates that the Weibull shape parameter β is likely to be less than or close to 1. 

Although such values are already considered within the prior distribution, we now 

expect the posterior to be more concentrated in this region. 

Figure 23 – Specific data from a booster pump in an O&G company. 

 

Source: The author (2025). 
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Figure 24 shows the result of the posterior distribution estimation, showing a 

shift in the mode compared to the prior distribution, for both 𝛼 and 𝛽. The posterior 

distribution of β is now more skewed toward values below 1 and has reduced variance. 

According to the p-value, the posterior of 𝛼 can be modeled by a Lognormal distribution 

and 𝛽 by a Gamma distribution. 

Figure 24 – Posterior estimation results for the industrial application example for (a) 𝛼 and (b) 𝛽. 

 

(a) 

 

(b) 

Source: The author (2025). 
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These results reflect the use of the Weibull model. If the same dataset were 

analyzed under the assumption of a constant failure rate (i.e., using the Exponential 

model described in Section 2.2), the estimated mean of 𝜆 would be 0.00051325. As 

shown in Figure 25, the failure intensity function of the Weibull model is consistently 

lower than that of the Exponential model. This implies that the Weibull-based estimates 

are more optimistic and may lead to fewer maintenance actions. In contrast, assuming 

a constant failure rate could result in unnecessary maintenance activities and higher 

operational costs. 

Figure 25 – Comparison between the Failure Intensity Function for the Weibull and the Exponential 

models. 

 

Source: The author (2025). 

Mahmoudi (2021) underscored the critical need for collaboration between 

academia and industry to drive innovation and practical applications in the O&G sector. 

Building on this foundation, the current study expands traditional methodologies by 

incorporating a non-constant failure intensity into the analysis, thereby enhancing the 

applicability of reliability models to real-world scenarios. This approach not only 

addresses the limitations of assuming a constant failure intensity function but also 

offers more accurate insights when applied to complex systems in industry, bridging 

the gap between theoretical research and practical implementation. 



80 
 

5 SOFTWARE DEVELOPMENT 

Petrobayes is a user-friendly, web-based software designed to support 

decision-makers in performing Bayesian analysis and reliability estimation with ease. 

It is registered in the Instituto Nacional da Propriedade Industrial (INPI) under the 

number BR512024000005-4. The platform is organized into different modules tailored 

to specific user needs and problem domains. Currently, the only language supported 

is Portuguese. Petrobayes has been presented in the article (Santana et al., 2022). 

The software was built using Streamlit (https://streamlit.io/), an open-source 

Python framework for building web applications. Streamlit was specifically designed to 

address the growing demand among data scientists for creating user-friendly 

interfaces quickly and efficiently. Petrobayes leverages this intuitive framework to 

provide an easy-to-use interface for the Bayesian model presented in Section 3 and 

extend its analysis. An overview of the software's modules and a step-by-step usage 

guide are provided next. 

5.1 Features and Functionalities 

While Petrobayes primarily focuses on Bayesian inference, it also includes other 

supporting modules. In total, Petrobayes comprises three modules: Statistical, 

Bayesian, and Availability. Each module functions independently but becomes 

particularly powerful when used in combination. 

The Statistical module conducts fit and homogeneity tests on failure data. Fit 

tests help identify the parametric probability distribution that best represents the data, 

while homogeneity tests determine whether different data sets originate from the same 

population (i.e., are generated by the same statistical phenomenon). These capabilities 

are especially valuable for the Bayesian Modules, as they allow for testing hypotheses 

on the homogeneity of diverse data sets and grouping them into different 

subpopulations. 

The Bayesian module is dedicated to Bayesian analysis and is divided into two 

sub-modules: Bayesian Exponential and Bayesian Weibull. These modules differ in 

their assumptions regarding the distribution of failure times. The Bayesian Exponential 

module assumes that failure times follow an Exponential distribution with a constant 

failure intensity function (represented by 𝜆), implementing the model described in 

Section 2.2, while the Bayesian Weibull module is based on a Weibull distribution, 
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characterized by scale (𝛼) and shape (𝛽) parameters, implementing the model 

described in Section 3. Each module's analysis unfolds in two main stages: 

• Stage 1: Estimates the prior distribution, reflecting the PVD based on generic 

data, like OREDA. 

• Stage 2: Estimates the posterior distribution by updating the prior information 

with specific data from the system of interest, known as the likelihood 

distribution. 

The Availability module allows for analyzing the behavior of a system over time. 

This modeling is tailored to the system's characteristics and the level of detail provided 

by the user, offering the flexibility to choose from three distinct modeling approaches: 

2 states, 3 states and 4 states. The model employs discrete states of a Semi-Markov 

Process to describe the operational state of the system, ranging from perfect 

functioning to critical failure. This module has been presented in the article (Siqueira 

et al., 2023). The result from the Bayesian module can be used here to estimate the 

availability of the system under analysis. 

Figure 26 illustrates how these modules can be integrated, demonstrating how 

the output of one module can serve as input for another. While this overview highlights 

the software's overall potential, the focus here will be on the Bayesian Weibull module, 

which implements the methodology outlined in Section 3. 

Figure 26 – Petrobayes’ modules connection. 

 

Source: The author (2025). 
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5.2 Application and Usability 

This section demonstrates the step-by-step use of the Bayesian Weibull 

module, which implements the methodology outlined in Section 3. It is important to 

note that 𝜂 in the software is equivalent to 𝛼 in the developed model. As previously 

mentioned, the software only supports Portuguese. However, in here, visual cues and 

explanations will be provided to guide the reader through the content. Figure 27 shows 

the home screen of this module, where you can find a brief explanation in the "Guia 

rápido" tab and see the required file format in the "Exemplo de formatação dos dados" 

tab. 

Figure 27 – Home screen of the Bayesian Weibull Module. 

 

Source: The author (2025). 

To begin the analysis, data for Stage 1 must be uploaded via a ‘.xlsx’ file, where 

each row corresponds to one system, with the first column indicating which 

subpopulation the system belongs to, and K indicates the number of failures during 

time horizon T, as shown in Figure 28. The interface accepts data with or without 

headers, as pointed by the red arrow in Figure 28. The header corresponds to the first 

row of the ‘.xlsx’ file. Selecting "Sim" indicates that the first row should be used as the 

column title, while selecting "Não" means that the first row is treated as data. 
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Figure 28 – Data Input for Stage 1 of the Bayesian Weibull Module. 

 

Source: The author (2025). 

Table 8 shows the data that will be used as an application example. It's 

important to note that the model is compatible with various data configurations, all of 

which must consist of positive integers, except for the "T" parameter, which should be 

a positive real number. Additionally, it's possible to include information on equipment 

that did not fail. For example, the first piece of equipment in Table 8 did not experience 

any failures during the 2000-unit observation period, so its "K" value is 0. 
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Table 8 – Application example for the Stage 1 of the Bayesian Weibull Module. 

Subpopulation K T 

1 0 2000 

1 0 4000 

1 0 6000 

1 0 8000 

1 0 10000 

2 0 2000 

2 0 4000 

2 1 6000 

2 1 8000 

2 1 10000 

3 0 2000 

3 0 4000 

3 0 6000 

3 0 8000 

3 1 10000 

4 0 2000 

4 0 4000 

4 0 6000 

4 0 8000 

4 0 10000 

5 0 2000 

5 0 4000 

5 0 6000 

5 0 8000 

5 1 10000 

Source: The author (2025). 

The interface now includes additional input options under the "Configurações 

avançadas" tab (Figure 29), related to the PSO, such as the number of rounds to 

execute, the maximum number of iterations per round, and patience (the maximum 

number of iterations where consecutive results do not change after which the search 

should stop). The default values are suggestions based on the extensive testing 

provided in Section 4, but they can be adjusted according to the user needs. Once 

these settings are configured, clicking "Executar Estágio 1" in Figure 28 will initiate the 

prior distribution estimation according to Section 3.1. 
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Figure 29 – Advanced Settings for the Stage 1 of the Bayesian Weibull Module. 

 

Source: The author (2025). 

It's important to note that even when using the same input data and following 

the same steps, the randomness inherent to the method can lead to different solutions 

in different tests. However, in theory, the solutions tend to converge within a specific 

region of the search space. Since multiple rounds of PSO are conducted, different 

solutions are generated, and their graphs are displayed. 

Additionally, the solutions are evaluated based on the log-likelihood and the 

NRMSE (see Section 3.1). The values of these measures are shown alongside each 

solution. The results are presented in terms of the prior distributions of 𝜂 e 𝛽 (Figure 

30), assuming each follows a Gamma distribution with its respective hyperparameters. 

The graphs initially display only one solution: the best among all rounds (i.e., the one 

with the lowest NRMSE). However, these graphs are dynamic, allowing the user to 

view all solution curves by clicking on their names on the right side of the screen, as 

indicated by the arrow. 
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Figure 30 – Stage 1 Result: Prior Distribution of 𝜂 e β. 

 

Source: The author (2025). 

All graphs are interactive, allowing users to select and hide curves as desired. 

The graph's axis scale can also be adjusted according to the following options: 

• Linear: Uses exact values on the axes. 

• Log-x: Converts the X-axis to a logarithmic scale. 

• Log-y: Converts the Y-axis to a logarithmic scale. 

• Log-xy: Converts both the X and Y axes to logarithmic scales. 

It's important to emphasize that the solution with the lowest NRMSE will be 

passed on to Stage 2 if the option to use Stage 1 results is selected, as will be shown 

later. In addition to the information related to the prior distribution, the mean values of 

of 𝜂 e 𝛽 along with other results are presented, such as: the probability density function 

f(t) (Figure 31), the failure intensity over time h(t) (Figure 32), and the reliability R(t) 

with the confidence interval (Figure 33). All graphs show the Mean Time To Failure 
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(MTTF) with a vertical dashed line, presented in the same time unit as the data 

provided. 

Figure 31 – Stage 1 Result: Probability Density Function f(t). 

 

Source: The author (2025). 

Figure 32 – Stage 1 Result: Failure intensity h(t). 

 

Source: The author (2025). 



88 
 

Figure 33 – Stage 1 Result: Reliability R(t). 

  

Source: The author (2025). 

At the end of the execution, the prior distribution results can be saved, as 

indicated by the red arrow in Figure 33. This allows the analysis to be resumed later 

without needing to re-run Stage 1. Next, if not using the Stage 1 result, it is necessary 

to manually enter the hyperparameters of the Gamma distribution of 𝜂 and 𝛽 (Figure 

34). If the Stage 1 result is used, as shown in Figure 35, there is no need to provide 

hyperparameter values. 
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Figure 34 – Prior distribution Input for Stage 2, when not using the result of Stage 1. 

 

Source: The author (2025). 

Additionally, the specific data, given as failure times or censored times, must be 

entered via an ‘.xlsx’ file. Figure 35 provides a preview of the specific data, as 

demonstrated in this example. A PDF report summarizing the main results can be 

generated at the end by selecting "Gerar relatório de resultados" as indicated by the 

red arrow in Figure 35. 
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Figure 35 – Data Input for Stage 2. 

 

Source: The author (2025). 

The user should then click "Executar Estágio 2" to initiate the posterior 

distribution estimation following the approach of Section 3.2. The example data used 

here is shown in Table 9, where the “Type” column indicates whether that time 

corresponds to a failure (F) or a censure (C). 

Table 9 –Data for Stage 2. 

Time Type 

1500 F 

2000 F 

5200 F 

10000 F 

15200 C 

21300 C 

Source: The author (2025). 

Executing Stage 2 deploys the MCMC model, which yields non-parametric 

distributions. To make these results applicable to other analyses, we fit specific 

parametric distributions, namely Gamma, Weibull, and Lognormal. Following the 

completion of Stage 2 of the Bayesian Weibull module, a table is presented containing 

information on the tested parametric distributions, as shown in Figure 36. 
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Figure 36 – Stage 2 Result: parametric distributions. 

 

Source: The author (2025). 

The posterior distribution for 𝜂 and 𝛽 are shown in Figure 37 and Figure 38, 

respectively. These graphs are interactive, so it is possible to see all the distributions 

tested, but the best fit (based on the p-value of the Kolmogorov-Smirnov test) is 

highlighted. In this example, the best fit for 𝜂 was a Lognormal distribution and for 𝛽 a 

Gamma distribution. 

Figure 37 – Stage 2 Result: 𝜂 posterior distribution. 

 

Source: The author (2025). 
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Figure 38 – Stage 2 Result: 𝛽 posterior distribution. 

 

Source: The author (2025). 

In addition to the information related to the posterior distribution, the mean 

values of 𝜂 e 𝛽 along with other results are presented, such as: the probability density 

function f(t) (Figure 39), the failure intensity over time h(t) (Figure 40), and the reliability 

R(t) with the confidence interval (Figure 41). All graphs indicate the MTTF with a 

vertical dashed line, presented in the same time unit as the data provided. 

Figure 39 – Stage 2 Result: Probability Density Function f(t). 

 

Source: The author (2025). 
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Figure 40 – Stage 2 Result: Failure intensity h(t). 

 

Source: The author (2025). 

Figure 41 – Stage 2 Result: Reliability R(t). 

 
Source: The author (2025). 

Figure 42 shows the joint posterior distribution graph of 𝜂 e 𝛽 generated based 

on the best parametric fit. At the conclusion of this stage, the user can click on the 

option to download a report to obtain a summary of the key metrics and relevant 

information from the analysis, as indicated by the red arrow in Figure 42. 
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Figure 42 – Stage 2 Result: Joint posterior distribution of 𝜂 and 𝛽. 

 

Source: The author (2025). 

Figure 43 provides an example of the first page of the report generated at the 

end of the model's execution. This report allows the user to save the results obtained 

for future reference, instead of re-running the model when needed. 
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Figure 43 – Example from the first page of a report from the Bayesian Weibull module. 

 

Source: The author (2025). 
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6 CONCLUSIONS 

This work presents a two-stage Bayesian approach to address the challenges 

of reliability estimation for equipment in the O&G industry, under the hypothesis of non-

constant failure intensity and minimal repair. The approach brings two key 

contributions: the incorporation of prior knowledge using failure count data within a 

Weibull model and the development of an accessible web application, Petrobayes, to 

make these models readily available to the industry. Indeed, these contributions are 

particularly significant as they address limitations with the use of OREDA database, 

especially concerning the challenging of non-constant failure intensity and minimal 

repairs, developing tailored methods to address the specific nuances of the dataset 

and the assumptions. Therefore, this work overcomes limitations in risk and reliability 

analysis in the O&G sector and supports effective risk management. 

The study was structured around the two-stage Bayesian framework, divided 

into prior and posterior estimation phases. In the prior estimation phase, PSO was 

employed to solve the MLE problem and determine the optimal set of hyperparameters 

that model the PVD. The results were validated by three performance metrics: log-

likelihood, p-value, and NRMSE. The use of p-value alone as a decision metric is 

challenging, as some solutions exhibited equivalent p-values, complicating the 

decision-making process. Therefore, the NRMSE is the primary metric utilized to 

identify the optimal solution. 

The prior estimation is subjected to the following sources of variability: the 

calculation of the log-likelihood using Importance Sampling, the PSO heuristic and the 

fact that different combinations of hyperparameter values often yield very similar log-

likelihood results. The last point was corroborated by a low standard deviation on the 

log-likelihood obtained in different runs, even though the hyperparameters themselves 

varied. This can be expected of an algorithm exploring solutions in a continuous space. 

However, the results of the study showed that despite some variability, the log-

likelihood values consistently outperformed the theoretical distribution across different 

test sets. Even with small data sets, such as the (05,05) case, the model delivered 

strong performance in terms of p-value and NRMSE. 

In this context, the Petrobayes software was designed as a user-friendly tool for 

Bayesian inference. It is organized into different modules: Statistical, Bayesian, and 

Availability. Each module functions independently but becomes particularly powerful 
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when used in combination. The focus here was on the Bayesian module that 

implements the model discussed here. Petrobayes extends the results presented here 

by using the posterior distribution to estimate the reliability and failure intensity. 

So, this study built on prior research by introducing a non-constant failure 

intensity and minimal repairs, addressing limitations in traditional reliability models and 

offering more accurate insights when applied to real-world scenarios in the O&G 

industry. In scenarios where specific data is sparse or unavailable, the methodology 

demonstrated that it could effectively use more informative priors derived from generic 

data to generate posterior distributions closely aligned with real-world data. This finding 

is particularly important for industries such as O&G, where equipment is often expected 

to operate in extreme conditions for extended periods, and acquiring large amounts of 

specific data is time-consuming and expensive. The research thus offers a practical 

solution for improving reliability estimates under such conditions, allowing for better 

maintenance planning, cost estimation, and system availability predictions for the Oil 

& Gas sector. 

Despite its contributions, this work has some limitations, particularly regarding 

computational efficiency when handling large datasets. Variability in prior estimation 

also persists, indicating the need to explore alternative heuristic methods, such as 

genetic algorithms, to improve the MLE process. Future research should focus on 

enhancing computational speed, reducing prior estimation variability, and applying the 

proposed framework to other complex systems beyond the oil and gas industry. 

Future research could benefit from relaxing the assumption of minimal repair 

and adopting a Generalized Renewal Process (GRP) model (Wang & Yang, 2012) 

could further improve reliability analysis by better representing real-world maintenance 

practices. While the Gamma prior distribution was selected due to its widespread use 

in the literature, thanks to its support for positive real values and flexibility in modeling 

skewed behaviors, there is also potential to explore alternative parametric priors. 

These alternatives could be considered with appropriate adjustments. 

Another important direction would be to develop an English version of the 

PetroBayes software, making it accessible to the global scientific community and 

fostering broader collaboration and application in diverse industrial contexts. This work 
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thus lays the foundation for more accurate and comprehensive reliability assessments, 

supporting better decision-making and operational efficiency in high-risk industries. 
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APPENDIX A – PRIOR DISTRIBUTION ESTIMATION RESULTS BY VARYING 

THE PSO SEARCH SPACE 

In this section, the results of the prior distribution estimation are presented for 

different values of the constants {𝑐𝑠𝑚𝑖𝑛, 𝑐𝑠𝑚𝑎𝑥} that determine the search space for 

𝑆[𝛼]. The values considered are: {10,55}, {20,65}, {30,75}, {40,95}. For each search 

space, different test sizes are considered, and 5 independent prior estimations are 

executed. The results are presented in terms of the hyperparameters of the prior 

distribution and are analyzed in terms of the log-likelihood (log-L), p-value and 

NRMSE. 

Results for 𝒄𝒔𝒎𝒊𝒏 = 𝟏𝟎 and 𝒄𝒔𝒎𝒂𝒙 = 𝟓𝟓. 

Test 𝒂𝜶 𝒃𝜶 𝒂𝜷 𝒃𝜷 log-L p-value NRMSE 

50x50 

6.65 0.0017 11.17 6.5456 -4132.05 0.8693 1.12684 

7.08 0.0019 10.65 6.5216 -4131.84 0.7166 1.09151 

6.87 0.0018 11.24 6.645 -4131.73 0.8693 1.15553 

6.78 0.0018 9.74 5.7703 -4132.13 0.2719 1.25332 

5.96 0.0015 10.86 6.5689 -4132.18 0.7166 1.04458 

50x25 

6.54 0.0017 9.23 5.7739 -2059.33 0.0678 1.01936 

6.96 0.0019 9.96 6.2453 -2058.81 0.8693 1.09193 

8.20 0.0022 10.05 6.328 -2058.7 0.2719 0.94752 

7.07 0.0019 8.56 5.2501 -2059.5 0.5487 1.16867 

6.83 0.0018 10.03 6.288 -2058.81 0.8693 0.99731 

50x05 

8.26 0.002 8.98 5.7798 -342.515 0.7166 0.99054 

9.07 0.0022 9 5.8127 -342.612 0.9667 0.96044 
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Test 𝒂𝜶 𝒃𝜶 𝒂𝜷 𝒃𝜷 log-L p-value NRMSE 

7.83 0.0019 9.25 6.0202 -342.499 0.8693 0.9847 

6.98 0.0017 9.25 6.0662 -342.71 0.7166 1.01354 

9.58 0.0024 9.67 6.2094 -342.642 0.8693 1.0553 

25x50 

6.36 0.0017 9.21 6.041 -2088.23 0.915 0.97036 

7.08 0.0019 10.23 6.3569 -2087.99 0.7102 1.06394 

6.91 0.0017 10.7 6.4757 -2088.43 0.0779 0.91335 

6.52 0.0016 10.62 6.514 -2088.42 0.4755 0.90234 

7.11 0.0019 10.2 6.3176 -2088.08 0.915 1.0652 

25x25 

7.09 0.002 8.84 5.8279 -1054.35 0.4755 1.05274 

7.1 0.002 9.25 6.0674 -1054.36 0.9955 1.05104 

5.91 0.0017 9.41 6.0587 -1054.6 0.4755 1.28981 

6.3 0.0017 8.84 5.878 -1054.5 0.4755 0.97068 

5.87 0.0016 9.67 6.2224 -1054.51 0.7102 1.11754 

25x05 

9.24 0.0025 11.06 6.6399 -185.314 0.4755 1.14086 

7.83 0.002 10.79 6.5321 -185.468 0.9955 1.05185 

8.61 0.0023 11.03 6.5958 -185.347 0.285 1.146 

8.3 0.0021 10.55 6.3088 -185.456 0.9955 1.04 

9.78 0.0026 9.54 5.6037 -185.521 0.7102 1.17551 
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Test 𝒂𝜶 𝒃𝜶 𝒂𝜷 𝒃𝜷 log-L p-value NRMSE 

05x50 

7.09 0.0015 6.33 4.5146 -389.937 1 0.62921 

5.45 0.0011 6.78 4.9356 -389.973 0.0794 0.60621 

5.68 0.0011 5.65 4.0804 -390.114 0.873 0.57253 

4.72 0.001 4.19 2.7623 -390.101 0.873 1.08212 

4.21 0.0009 3.93 2.6603 -390.169 0.0794 1.16261 

05x25 

4.67 0.0009 7.43 5.2428 -192.123 1 0.66619 

5.48 0.0011 8.09 5.3859 -192.153 1 0.72542 

4.75 0.0009 6.53 4.6507 -192.142 0.3571 0.63942 

4.88 0.0009 6.9 4.7605 -192.124 0.873 0.62863 

5.4 0.001 6.46 4.4112 -192.148 0.873 0.61616 

05x5 

3.5 0.0007 8.93 5.8715 -32.4853 0.3571 0.97192 

3.64 0.0007 8.95 5.9831 -32.4695 0.0794 0.84332 

3.93 0.0007 8.87 5.8841 -32.5051 0.3571 0.74146 

3.69 0.0007 7.27 5.2857 -32.5512 0.3571 0.74565 

4.04 0.0008 8.9 5.9672 -32.4869 0.873 0.82401 

 

Results for 𝒄𝒔𝒎𝒊𝒏 = 𝟐𝟎 and 𝒄𝒔𝒎𝒂𝒙 = 𝟔𝟓. 

Test 𝒂𝜶 𝒃𝜶 𝒂𝜷 𝒃𝜷 log-L p-valor NRMSE 

50x50 5.1 0.0021 0.95 0.6409 -4143.66 0.1786 5698.24 
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Test 𝒂𝜶 𝒃𝜶 𝒂𝜷 𝒃𝜷 log-L p-valor NRMSE 

10.59 0.0027 4.48 2.6659 -4140.66 0.3959 1.34218 

8.61 0.0023 10.96 6.6442 -4132.52 0.5487 0.99986 

6.13 0.0016 10.61 6.4675 -4132.17 0.7166 1.11822 

6.66 0.0018 9.57 5.6952 -4132.58 0.5487 1.32317 

50x25 

8.02 0.0021 9.9 6.1589 -2059.05 0.8693 0.93136 

7.93 0.0021 9.75 6.2449 -2058.76 0.1786 0.89054 

7.65 0.002 9.95 6.2822 -2059.05 0.5487 0.90671 

8.3 0.0022 9.77 6.2017 -2058.83 0.1124 0.89768 

8.38 0.0022 9.9 6.1773 -2058.95 0.3959 0.91051 

50x05 

9.51 0.0023 8.57 5.5994 -342.643 0.5487 0.84759 

9.7 0.0024 9.71 6.2305 -342.629 0.2719 0.97845 

10.59 0.0026 7.82 5.0527 -343.037 0.9667 0.97123 

9.49 0.0023 8.33 5.4052 -342.684 0.0678 0.95148 

8.95 0.0022 9.15 6.0292 -342.635 0.1786 0.94905 

25x50 

6.29 0.0018 9.71 5.8557 -2088.94 0.9955 1.48197 

7.42 0.0019 10.12 6.2778 -2088.72 0.285 0.92184 

6.06 0.0016 10.14 6.2719 -2088.68 0.9955 1.13267 

5.51 0.0014 10.5 6.3827 -2089.04 0.4755 1.14049 
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Test 𝒂𝜶 𝒃𝜶 𝒂𝜷 𝒃𝜷 log-L p-valor NRMSE 

6.51 0.0018 9.81 6.1285 -2088.82 0.285 1.20353 

25x25 

7.41 0.002 8.65 5.5971 -1054.04 0.915 0.97835 

5.76 0.0016 8.87 5.7913 -1054.37 0.9955 1.16061 

7.14 0.0019 8.97 5.833 -1054.03 0.4755 0.93579 

7.01 0.0019 9.94 6.2954 -1054.3 0.9955 1.04483 

6.99 0.002 9.12 6.022 -1053.88 0.7102 1.08596 

25x05 

8.88 0.0023 11.34 6.6844 -185.409 0.4755 1.08997 

11.38 0.0031 10.07 6.3118 -185.197 0.4755 1.01012 

10.04 0.0026 10.69 6.5167 -185.198 0.9955 0.98756 

10.18 0.0027 10.29 6.3891 -185.186 0.4755 1.00116 

10.48 0.0028 10.58 6.5033 -185.16 0.0779 1.02318 

05x50 

4.09 0.0008 6.71 4.4985 -390.104 0.3571 0.81133 

4.13 0.0009 6.75 4.5549 -390.091 0.873 1.01428 

3.91 0.0008 6.7 4.6366 -390.086 1 0.86019 

4.89 0.001 6.86 4.3956 -390.129 0.3571 0.87709 

5.74 0.0012 4.74 3.2721 -390.117 0.3571 0.77609 

05x25 

4.9 0.0009 5.77 3.7929 -191.976 0.873 0.69579 

5.1 0.001 5.97 3.8997 -192.006 1 0.78709 
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Test 𝒂𝜶 𝒃𝜶 𝒂𝜷 𝒃𝜷 log-L p-valor NRMSE 

5.09 0.001 6.34 4.0651 -192.003 0.873 0.8158 

4.8 0.0009 5.47 3.6565 -191.984 0.873 0.71599 

4.91 0.0009 5.76 3.8496 -191.988 0.873 0.6726 

05x05 

2.89 0.0005 8.73 5.8973 -32.5589 0.873 0.84753 

2.69 0.0005 9.27 6.0708 -32.6125 0.873 1.14079 

3.47 0.0007 8.46 5.6922 -32.5769 1 0.9495 

3.14 0.0006 8.52 5.7754 -32.5613 0.873 0.92426 

3.39 0.0006 8.12 5.692 -32.536 0.873 0.74383 

 

Results for 𝒄𝒔𝒎𝒊𝒏 = 𝟑𝟎 and 𝒄𝒔𝒎𝒂𝒙 = 𝟕𝟓. 

Test 𝒂𝜶 𝒃𝜶 𝒂𝜷 𝒃𝜷 log-L p-valor NRMSE 

50x50 

6.69 0.0017 10.1 6.3058 -4131.65 0.0058 0.91611 

16.28 0.0051 325.95 191.7807 -4135.45 0.1124 1.06509 

7.05 0.0018 10.38 6.3994 -4131.22 0.7166 0.93166 

7.4 0.0019 10.42 6.4457 -4131.14 0.5487 0.91352 

7.78 0.002 11.19 6.6761 -4131.39 0.1786 0.98525 

50x25 

7.61 0.002 9.98 6.3217 -2058.58 0.1786 0.91223 

8.58 0.0023 9.65 6.2044 -2058.93 0.5487 0.8834 

7.59 0.002 9.73 6.1572 -2058.68 0.8693 0.92584 
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Test 𝒂𝜶 𝒃𝜶 𝒂𝜷 𝒃𝜷 log-L p-valor NRMSE 

7.15 0.0019 9.85 6.2739 -2058.67 0.5487 0.95411 

7.54 0.002 9.14 5.8533 -2058.88 0.5487 0.92985 

50x05 

7.87 0.0019 9.05 5.9851 -342.762 0.2719 0.94852 

6.28 0.0015 8.31 5.498 -343.457 0.8693 1.01559 

8.47 0.002 7.48 4.8923 -343.167 0.5487 0.94236 

8.57 0.0021 8.46 5.5167 -342.815 0.8693 0.9853 

8.88 0.0022 9.22 5.7203 -343.034 0.9667 1.08445 

25x50 

5.9 0.0015 9.67 6.1225 -2088.83 0.4755 0.87057 

6.11 0.0017 10.7 6.4678 -2088.8 0.7102 1.38392 

5.89 0.0016 10.7 6.5234 -2088.75 0.4755 1.2844 

6.05 0.0015 9.42 5.9188 -2088.83 0.0356 1.03369 

6.98 0.0019 10.52 6.4705 -2088.7 0.7102 1.14249 

25x25 

4.45 0.0018 25.04 16.2288 -1056.37 0.1558 2.76767 

7.56 0.0021 8.69 5.7792 -1053.98 0.4755 0.96489 

7.82 0.0021 8.99 5.8309 -1054.1 0.4755 0.92474 

7.4 0.0021 7.82 5.2866 -1054.19 0.7102 1.01239 

6.19 0.0017 8.96 5.9878 -1054.22 0.4755 1.00266 

25x5 8.72 0.0023 11.06 6.571 -185.274 0.4755 1.12795 
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Test 𝒂𝜶 𝒃𝜶 𝒂𝜷 𝒃𝜷 log-L p-valor NRMSE 

8.5 0.0023 11.1 6.6604 -185.264 0.285 1.17176 

9 0.0024 10.68 6.4678 -185.272 0.7102 1.0975 

8.35 0.0023 10.3 6.2709 -185.289 0.7102 1.20183 

8.5 0.0023 10.61 6.445 -185.267 0.7102 1.14715 

05x50 

5.77 0.0012 4.91 3.3299 -389.927 0.873 0.7841 

5.42 0.0011 5.42 3.6671 -389.987 0.873 0.7499 

5.85 0.0012 4.79 3.2341 -389.95 0.873 0.76728 

3.88 0.0008 4.46 2.886 -390.07 0.873 1.22967 

5.74 0.0012 5.18 3.5411 -390.937 0.873 0.77088 

05x25 

5.31 0.001 6.97 4.5324 -192.149 0.873 0.69513 

4.92 0.0009 6.19 4.2437 -192.043 0.873 0.63293 

4.95 0.0009 5.99 4.1004 -192.12 0.873 0.62774 

4.57 0.0009 6.69 4.7411 -192.055 0.873 0.70256 

4.87 0.0009 6.61 4.5498 -192.038 0.3571 0.63589 

05x05 

3.3 0.0006 8.23 5.7363 -32.4835 0.873 0.78156 

3.11 0.0006 8.09 5.5977 -32.5141 0.873 0.91296 

3.09 0.0006 7.75 5.5386 -32.4982 0.873 0.87192 

3.5 0.0007 7.51 5.4542 -32.5639 0.873 0.8148 
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Test 𝒂𝜶 𝒃𝜶 𝒂𝜷 𝒃𝜷 log-L p-valor NRMSE 

3.32 0.0006 7.82 5.5898 -32.5027 0.873 0.75394 

 

Results for 𝒄𝒔𝒎𝒊𝒏 = 𝟒𝟎 and 𝒄𝒔𝒎𝒂𝒙 = 𝟗𝟓. 

Test 𝒂𝜶 𝒃𝜶 𝒂𝜷 𝒃𝜷 log-L p-valor NRMSE 

50x50 

4.74 0.0012 10.26 6.3256 -4133.44 0.1786 1.20945 

553.62 0.1378 4.87 2.9383 -4140.41 0.1786 0.74433 

5.34 0.002 1.69 0.9315 -4147.08 0.0058 477.535 

5.1 0.0013 10.53 6.4207 -4133.7 0.7166 1.19745 

5.46 0.0014 10.47 6.4523 -4133.27 0.1786 1.11448 

50x25 

4.83 0.0013 9.38 6.0157 -2060.66 0.5487 1.25578 

4.96 0.0013 9.74 6.1121 -2060.49 0.2719 1.21992 

5.12 0.0013 9.23 5.6049 -2060.94 0.9667 1.23988 

4.81 0.0013 7.95 4.9995 -2061.31 0.8693 1.45527 

4.94 0.0013 9.65 6.0646 -2060.51 0.0678 1.23351 

50x05 

5.29 0.0013 8.76 5.9053 -344.01 0.0678 1.09989 

5.56 0.0013 8.35 5.6606 -344.112 0.1786 0.97846 

5.28 0.0013 8.45 5.7647 -344.137 0.0217 1.08392 

5.09 0.0012 7.43 4.9843 -344.378 0.9977 1.08205 

5.5 0.0013 7.84 5.3193 -344.253 0.1786 1.01162 
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Test 𝒂𝜶 𝒃𝜶 𝒂𝜷 𝒃𝜷 log-L p-valor NRMSE 

25x50 

7.6 0.0041 12.07 7.2701 -2091.73 0 7.001 

4.6 0.0012 10.04 6.3362 -2088.28 0.285 1.25708 

5.35 0.0014 10.51 6.314 -2088.27 0.4755 1.31539 

4.93 0.0013 10.27 6.2382 -2088.21 0.915 1.38875 

4.25 0.0012 9.03 5.7672 -2088.79 0.4755 1.64148 

25x25 

4.53 0.0013 8.19 5.5817 -1055.15 0.7102 1.32354 

4.38 0.0012 8.48 5.8042 -1055.14 0.915 1.4854 

4.41 0.0012 8.42 5.5948 -1055.13 0.4755 1.27471 

4.5 0.0012 9.16 5.9959 -1055.05 0.7102 1.22063 

4.55 0.0013 9.07 5.9062 -1054.97 0.1558 1.47929 

25x05 

6.14 0.0015 11.09 6.5617 -185.999 0.915 1.11563 

6.01 0.0015 11.13 6.4703 -186.02 0.285 1.23798 

5.91 0.0015 10.13 6.0695 -186.013 0.7102 1.2163 

5.9 0.0015 10.78 6.4772 -185.956 0.7102 1.19905 

5.99 0.0015 11.07 6.5659 -185.939 0.285 1.18538 

05x50 

5.69 0.0012 6.23 4.8094 -389.92 0.3571 0.58447 

5.64 0.0011 7.36 5.3049 -389.941 0.873 0.56265 

5.28 0.0011 4.5 3.2781 -389.998 0.873 0.71929 
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Test 𝒂𝜶 𝒃𝜶 𝒂𝜷 𝒃𝜷 log-L p-valor NRMSE 

5.63 0.0012 5.24 3.7106 -390.02 1 0.74622 

5.64 0.0012 5.79 3.8935 -389.99 0.3571 0.81648 

05x25 

5.15 0.001 5.92 4.2893 -192.003 0.3571 0.63258 

5.11 0.001 5.25 3.5488 -192.031 0.873 0.74853 

5.25 0.001 6.03 4.0791 -192.017 0.873 0.67877 

4.39 0.0008 5.04 3.4951 -192.005 0.873 0.67669 

4.86 0.0009 5.05 3.4643 -191.99 0.3571 0.67328 

05x05 

2.98 0.0006 8.34 5.7283 -32.5393 0.873 1.04689 

3.16 0.0006 8.87 5.9535 -32.5034 0.3571 0.9219 

3.02 0.0006 8.78 5.7586 -32.6015 0.873 1.13286 

3.02 0.0006 7.68 5.532 -32.5055 0.3571 0.91019 

2.83 0.0006 8.74 5.9043 -32.532 0.873 1.29858 

 


