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RESUMO

A tarefa de Contagem de Ações Repetitivas (Repetitive Action Counting - RAC) é
uma área de crescente interesse em pesquisas, com diversas tecnologias sendo desenvolvi-
das no campo. No entanto, os métodos existentes de ponta, treinados em datasets genéri-
cos disponíveis atualmente, não são adequados para reconhecer movimentos personalizados.
Essa capacidade tem o potencial de beneficiar áreas de aplicação como fisioterapia e fitness,
permitindo a criação de exercícios únicos e personalizados para pacientes ou clientes e seu
acompanhamento com mínimo esforço. Para abordar essa questão, introduzimos o sistema
Personalized Repetition Action Count (PersonalRAC), um método inovador capaz de contar
ações em cenários de dados escassos (ou seja, implementando uma abordagem de aprendizado
com poucos exemplos - few-shot learning).O PersonalRAC integra Aprendizado com Poucos
Exemplos (Few-shot Learning), Contagem de Ações Repetitivas e Reconhecimento de Ações
baseadas em Esqueletos. Nosso sistema opera com um número mínimo de exemplos de treina-
mento em vídeos não cortados, identificando autonomamente os pontos de início e fim das
ações, o que facilita o registro de novos exercícios de maneira prática. Para alcançar isso,
utilizamos o conceito de poses salientes, anotando um subconjunto do dataset Fit3D para
essa funcionalidade e propondo uma divisão para few-shot desse conjunto de dados. O sistema
processa vídeos de usuários realizando exercícios e extrai informações de esqueletos utilizando
o MediaPipe. Essas informações são processadas para torná-las mais confiáveis para a próxima
etapa. O modelo MotionBERT, especializado em detecção de ações, analisa as informações
processadas, e a saída é encaminhada para um módulo de contagem de repetições. Os resul-
tados experimentais demonstram a eficácia e robustez do sistema em contar repetições com
precisão em diversos tipos de exercícios. Nosso sistema atinge um desempenho de ponta nos
cenários few-shot e few-shot multi-câmera no dataset Fit3D, obtendo respectivamente um
MAE de 0,33 (melhoria de 44,07%) e um OBO de 0,64, e um MAE de 0,22 (melhoria de
53,19%) e um OBO de 0,71.

Palavras-chaves: Aprendizado de Máquina, Aprendizado Profundo, Aprendizado com Poucos
exemplos, Telerreabilitação .



ABSTRACT

The task of Repetitive Action Counting (RAC) is an area of increasing research interest,
with numerous technologies being developed in the field. However, existing state-of-the-art
methods, trained on currently available generic datasets, are not fit for recognizing personal-
ized movements. Such capability has the potential to benefit application fields like physiother-
apy and fitness by enabling the creation of unique tailored exercises for patients or clients and
tracking them with minimal effort. To address this issue, we introduce the Personalized Rep-
etition Action Count (PersonalRAC) system, a novel method capable of counting actions in
low-data scenarios (i.e., implementing a few-shot learning approach). PersonalRAC integrates
Few-shot Learning, Repetitive Action Counting, and Skeleton Action Recognition. Our system
operates with minimal training examples on untrimmed videos by autonomously identifying
start and end points, facilitating the easy registration of new exercises. To achieve this, we
leverage the concept of salient poses, annotating a subset of Fit3D dataset for this capability
and proposing a few-shot division of it. The system processes videos of users performing ex-
ercises and extracting skeleton information using MediaPipe. The information is processed to
make it more reliable for the next stage. The MotionBERT model for action detection analyzes
this processed information, and the output passes to a repetition counting module. Experi-
mental results demonstrate the system’s effectiveness and robustness in accurately counting
repetitions across various exercise types. Our system achieves state-of-the-art performance in
the few-shot and few-shot multi-cam settings on the Fit3D dataset, with respectively MAE of
0.33 (44.07% improvement) and an OBO of 0.64, and 0.22 MAE (53.19% improvement) and
0.71 OBO.

Keywords: Machine Learning, Deep Learning, Few-shot Learning, Telerehabilitation.
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1 INTRODUCTION

1.1 CONTEXTUALIZATION

Personalized Action Recognition is an approach that adapts human action recognition sys-
tems to consider the individual characteristics of each user(ZUNINO; CAVAZZA; MURINO, 2016).
Technologies for that are valuable in various contexts, such as video game controllers (YIN et

al., 2020), sport exercises (PATALAS-MALISZEWSKA et al., 2023; SORO et al., 2019), industrial
work (TABORRI et al., 2019), and rehabilitation (PRABHU; O’CONNOR; MORAN, 2020; ZHANG;

SU; HE, 2020). These systems offer advantages by tailoring action execution to individual
users rather than generalizing across subjects (ZUNINO; CAVAZZA; MURINO, 2017). In specific
application scenarios, this level of customization is not only beneficial but also essential.

In the field of physical therapy, there is an increasing demand for systems capable of
recognizing exercises accurately, assessing their correctness, providing feedback, and verifying
whether the prescribed session was actually performed. Among these features, repetition count-
ing plays a crucial role. However, counting is not merely a quantitative measure; it implicitly
verifies whether the exercise was performed correctly. A system should only count a repetition
if it meets the expected execution criteria, making recognition and correctness assessment
inseparable tasks. This capability is fundamental for healthcare professionals, as it enables
them to monitor the execution of rehabilitation sessions and ensure that patients adhere to
prescribed routines (PRABHU; O’CONNOR; MORAN, 2020).

The idea behind several existing technologies is to count actions using rules such as speed
and angle together (GAMA et al., 2015; FIERARU et al., 2021); in contrast, others use machine
learning techniques that directly process RGB images from available cameras (LEVY; WOLF,
2015; DWIBEDI et al., 2020a; HU et al., 2022; DWIBEDI et al., 2020b); or else, extract the user’s
skeleton representation for the task (SABATER et al., 2021; MEMMESHEIMER et al., 2022; ZHU

et al., 2023a; MEMMESHEIMER; THEISEN; PAULUS, 2020). Despite the diversity of approaches,
many systems fail to generalize to real-world scenarios, where exercise start and end timestamps
are not predefined and where variations in execution must be considered.

For these technologies to work, it is generally necessary to use training data. However,
collecting representative data in the field of physical therapy, for instance, poses significant
challenges due to privacy concerns, need for specialized equipment, and the diversity of pa-
tient conditions. Building comprehensive datasets requires extensive time and resources, as it
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involves capturing various exercises performed by individuals with varying capabilities and limi-
tations. Such scarcity of data hampers the development of robust models capable of effectively
recognizing personalized exercises (VARGHESE et al., 2023; TSIOURIS et al., 2020).

Furthermore, most existing algorithms struggle to perform well with smaller amounts of
training data. Methods using one-shot or few-shot learning scenarios would ease the applica-
bility, being desirable considering that data labeling is time-consuming and training on larger
datasets is computationally expensive. However, this capability is rare among the techniques
capable of learning from limited data in this domain, which may be attributed to the complex-
ity of human motion and the high variability in exercise execution among different individuals.
The lack of effective few-shot learning approaches limits the ability of professionals in the field
of physical health to personalize exercises for their patients without extensive data collection
and model retraining. At the same time, personalization is essential for these professionals,
both for providing exercises to their clients and patients at home as well as for applications in
the telerehabilitation area (which is being proven to be very effective (van Egmond et al., 2018;
PERETTI et al., 2017)).

Yet another significant limitation is the inability of current systems to accurately identify
the start and end timestamps of activity repetitions in untrimmed, real-world videos. While in
practical applications users perform exercises without predefined start and end points, many
research studies focus on previously trimmed video segments as inputs, meaning that these
timestamps are known in advance. This reliance on pre-segmented data means that models
may not generalize well to real-world scenarios where the beginning and end of exercises
are not explicitly marked. This challenge extends to commercial products (KEMTAI, 2023;
POCKETFISIO, 2024; SENCY, 2024), which often inherit the same limitations.

This research introduces the Personalized Repetition Action Count (PersonalRAC) model,
which integrates few-shot learning and skeleton-based action recognition to achieve Repeti-
tive Action Counting (RAC) in low-data scenarios. PersonalRAC is designed to function with
minimal examples for model training, enabling it to autonomously identify the exercise start
and end timestamps, thereby easing the registration process of new personalized exercises by
healthcare professionals. Additionally, by adapting action recognition techniques, the model
can accurately count repetitions of personalized exercises in untrimmed videos. Furthermore,
tailoring skeleton representations within this framework significantly enhances accuracy in few-
shot learning scenarios. We also present an updated state-of-the-art dataset with salient pose
annotations, contributing to advancing the field.
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1.2 OBJECTIVES

The objective of this research is to Develop a method for accurately counting repetitions of
exercises using minimal training data, addressing the challenges associated with limited data
availability, the need for personalized exercise creation, and real-time feedback.

1.3 CONTRIBUTIONS

The main contributions are summarized as follows:

• Salient Pose Annotations Strategy for RAC: We introduce a new approach to
annotate exercises by defining salient poses that effectively capture the key moments
of an exercise. This method enhances the accuracy of action recognition and repetition
counting, particularly in untrimmed videos.

• Few-Shot Personalized Repetition Action Counting: The PersonalRAC model is
designed to operate effectively in few-shot learning scenarios, making recognizing and
counting repetitions of personalized exercises with minimal training data possible. This
approach is particularly beneficial for tailored applications in rehabilitation and fitness,
where each user may perform exercises according to their specific demand.

• Skeleton-Based Action Recognition Modularization: The research demonstrates
how skeleton-based action recognition models, such as MotionBERT, can be adapted
for Repetitive Action Counting tasks.
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2 RELATED WORK

As we design a model that combines Skeleton Action Recognition to achieve Few-shot
Learning for Repetitive Action Counting, we must examine the core principles of RAC, its
challenges, and the methodologies proposed to overcome these issues. It is also essential to
discuss the few-shot learning paradigm, exploring its potential contributions to action recogni-
tion tasks and the limitations of these techniques when applied to repetitive action counting.
Additionally, it is crucial to find a dataset focused on repetition counting, similar to the pro-
posed physiotherapy scenario, containing diversity in angles and types of exercises.

2.1 AVAILABLE DATASETS

When analyzing datasets related to Repetitive Action Counting (RAC), we consider a set
of five mainly used in the field, developed by DWIBEDI et al. (2020a), HU et al., (2022),
ZHANG et al., (2020a), FIERARU et al., (2021), and LAFAYETTE et al., (2022), being
the first three focused on in-the-wild repetition counting and the latter two geared toward
exercise counting in more controlled scenarios. Table 1 summarizes the datasets focused on
Repetitive Action Count, comparing their main focus, number of classes, consistency, and
angle variety. The Consistency column indicates, after our analysis, whether exercises within
a class are performed uniformly. For example, in the case of the bench press, variations such
as inclined or flat, using dumbbells or barbells, are considered. If a dataset combines all these
variations into a single class, we labeled it as ’Not Consistent.’ Conversely, datasets that
distinguish these variations into separate classes or have one kind of execution are labeled as
’Consistent,’ ensuring greater standardization and reliability. We consider consistency as an
important attribute, in particular given our focus on physiotherapy, where exercises performed
differently should be treated as distinct. On the other hand, having a larger number of classes
provides a more robust assessment of RAC and different angles.

DWIBEDI et al., (2020a) introduces one of the first datasets with a large number of
videos and classes, but not necessarily being human-centric, with videos such as playing the
violin, bird wing flapping, and some cases of physical exercises. A subset of the latter could
be made for the focus of the work, as it has a wide variety of angles. However, not being
consistent between repetitions creates great difficulty for the physiotherapy scenario. ZHANG
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et al., (2020a) proposed a similar approach but focused on human actions. However, according
to HU et al., (2022), the dataset design still brings several limitations: "i) no interruption to

actions, either from internal or external; ii) only containing uniform action frequency in an

individual video; iii) the lack of long-range videos; iv) coarse-grained ground truth annotation,

etc.". Supported by these claims, HU et al., (2022) built a new dataset focused to solve these
aforementioned limitations, however with a reduced number of classes and as pointed by our
analysis, a lack of consistency.

LAFAYETTE et al., (2022) proposes a dataset that closely aligns with a physiotherapy
setting, offering a good diversity of individuals and also consistent execution standards. How-
ever, it includes a limited number of exercises and only two angle variations, both frontal.
Finally, FIERARU et al., (2021) presents a scenario more focused on fitness exercises (closely
resembling clinical physiotherapy), with a good range of different exercises, being all classes are
consistent, including a significant number of individuals (11), and four camera angles—two
frontal and two rear-facing. In most cases, it only contains uniform action frequency in an
individual video, but there are different cadences between people and between their recordings
of the same exercise.

Reference Main focus Number of Classes Consistency Angle Variety
Countix (2020a) Every kind of repetition 100 No Many
Ufcrep (2020a) Human actions repetition 101 No Many

RepCount (2022) Exercise repetition 9 No Many
Fit3D (2021) Exercise repetition 26 Yes 4

LAFAYETTE (2022) Skeleton representation 12 Yes 2

Table 1 – Comparison of datasets for Repetitive Action Counting, focusing on their primary application, num-
ber of distinct action classes, consistency in execution, and camera angle diversity.

2.2 REPETITIVE ACTION COUNTING

RAC refers to counting actions within videos (HU et al., 2022; DWIBEDI et al., 2020a), often
dealing with untrimmed footage. Since untrimmed videos capture continuous scenes without
isolating specific actions, this presents a challenge in identifying and segmenting relevant
actions within complex sequences. Consequently, techniques typically focus on detecting and
analyzing actions within the entire video context, considering multiple repetitions, different
activities, and varying conditions. Additionally, algorithms designed for this task, particularly
those using camera inputs, can be split in three categories: Rule-based methods, Generic RAC
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models, and Exercise Focused models.
Rule-based algorithms rely on methods that consider angles and velocities (GAMA et al.,

2015; FIERARU et al., 2021). For example, the approach proposed by FIERARU et al., (2021)
leverages estimated 3D poses as an intermediate representation, making it robust to variations
in motion quality and the number of repetitions. This method uses a two-stage algorithm: it
first initializes repetition intervals by assuming a fixed period, employing auto-correlation to
determine the most likely period and starting point. Then, it refines these intervals through
nonlinear constraint optimization to ensure accurate alignment of repetition segments. How-
ever, these traditional approaches often face challenges when adding new exercises to the
current model, as well as not coping well with camera angles that are different from what
they have been optimized for and often need large datasets to work, which makes limited data
scenarios quite challenging.

On the other hand, Generic RAC models (DWIBEDI et al., 2020b; ZHANG et al., 2020b;
LEVY; WOLF, 2015). For example, (LEVY; WOLF, 2015) employs a convolutional neural network
(CNN) to segment and count repetitive motions in videos by detecting periodic patterns. Its
design allows it to generalize across a wide variety of repetitive actions, leveraging entropy-
based motion analysis to identify segments corresponding to repetitions. However, while this
approach is effective for generic repetition counting, it lacks the specialization needed to handle
the nuances of human exercise recognition and personalization (Few-shot learning). and those
specifically targeting human exercises

Finally we have the Exercise Focused models (HU et al., 2022; KIM; LEE, 2021; LI; XU, 2024;
LUO et al., 2024). For example,(HU et al., 2022) (state-of-the-art) utilizes a transformer-based
architecture to process spatial and temporal information from video frames, specifically tai-
lored to exercise repetition counting. Integrating self-attention mechanisms captures complex
dependencies between video frames, enabling accurate identification and counting of exercise
repetitions. TransRAC also benefits from robustness to varying camera angles, thanks to its
training on large, diverse datasets. However, the dependence on extensive labeled data creates
a barrier to scalability, as adding new exercise classes would require a significant effort ded-
icated on data collection and retraining. Although some of the RAC methods discussed can
be trained, none of them are designed to be learned in a training set automatically, none were
designed for Few-shot learning.
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2.3 FEW-SHOT LEARNING

Although we could not find RAC methods explicitly designed for low-data scenarios, several
approaches in the field of Few-shot Skeleton Action Recognition are noteworthy (SABATER et

al., 2021; MEMMESHEIMER et al., 2022; ZHU et al., 2023a; MEMMESHEIMER; THEISEN; PAULUS,
2020). It is important to note that these methods work on trimmed videos, which makes it
impossible to use them in real-world applications for counting. The focus is on performing
action recognition effectively in low-data environments, for tasks such as one-shot or few-shot
action classification, where only a limited number of examples are available.

The approach proposed by MEMMESHEIMER, THEISEN, and PAULUS (2020) extends
deep metric learning to multi-modal inputs, further enhancing its ability to generalize across
modalities in one-shot action recognition. Despite its robust design, the framework shares
the same limitation as Skeleton-DML, being constrained to recognizing actions rather than
performing detailed temporal analysis necessary for RAC tasks.

The method introduced by SABATER et al. (2021) targets one-shot action recognition in
challenging therapy scenarios. It employs spatio-temporal feature extraction combined with a
deep neural network that learns to recognize actions from a single demonstration. While this
approach excels in scenarios with well-defined action boundaries, its reliance on trimmed clips
with predefined start and end points makes it unsuitable for RAC in untrimmed videos.

Similarly, the Skeleton-DML (MEMMESHEIMER et al., 2022) introduces a deep metric learn-
ing approach tailored for skeleton-based one-shot action recognition. Skeleton-DML achieves
remarkable generalization from minimal examples by designing an embedding space that clus-
ters similar actions while separating dissimilar ones. However, the method is designed for action
classification and does not address the temporal segmentation for counting repetitions.

MotionBERT (ZHU et al., 2023a) offers a unified perspective on learning human mo-
tion representations. It effectively integrates spatial and temporal dynamics by employing
a transformer-based architecture, achieving state-of-the-art performance in action detection
tasks. It combines its architecture with Skeleton-DML techniques in low-data scenarios for
better performance but does not treat untrimmed videos.

In summary, while these methods are effective for action detection, they are inherently
unsuitable for RAC. Their design relies on trimmed videos, where the start and end of actions
are predefined, making it impossible to partition and count repetitions accurately in untrimmed,
real-world scenarios. As such, they lack the necessary capabilities to address the challenges
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posed by repetitive action counting tasks.
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3 PRELIMINARY WORKS

We initially explored and experimented with various techniques to develop a model that
integrates Few-Shot Learning and Skeleton Action Recognition to achieve Repetitive Action
Counting (RAC) in low-data scenarios. Those early investigations are detailed in the following
subsections.

3.1 FEW-SHOT ACTION DETECTION AND DYNAMIC TIME WARPING

The initial focus was on action detection, a well-established area in the state of the art.
Several papers address the challenge of few-shot learning in the context of skeleton-based
approaches, as discussed in the previous chapter. So, the search for few-shot skeleton action
detection led us to the current state-of-the-art model, MotionBERT (ZHU et al., 2023b).

We began by conducting experiments on a physiotherapy dataset (LAFAYETTE et al., 2022),
concentrating on three upper limb exercises: Elbow Flexion, Shoulder Abduction, and Shoulder
Flexion. The dataset included both frontal and inclined views of the exercise executions. We
undertook the task of segmenting the dataset into individual repetitions for the training and
testing processes. The training dataset consisted of data from one of the six participants, using
only the frontal view, while the test dataset comprised the remaining individuals.

The results obtained are presented in Table 2. It can be observed that even in a few-shot
learning scenario, the algorithm achieved an average accuracy close to 90%.

However, the model operates only on pre-segmented videos, that is, with well-defined start
and end points. In real-world applications, it is essential to automatically identify the beginning
and end of an exercise to make predictions effectively, both in scenarios where different exercises
are performed consecutively and for repetition counting.

Table 2 – Performance of the MotionBERT model in recognizing selected upper limb exercises under different
viewing angles.

Test Frontal view Rotated view
Elbow Flexion 95.34% 97.30%
Shoulder Abduc-
tion

95.51% 85.02%

Shoulder Flexion 80% 72.29%
Mean 88.35% 85.02%
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To address this limitation, our first attempt at counting exercise repetitions was based on
the concept of Dynamic Time Warping (DTW) (MüLLER, 2007). The DTW algorithm can
align two temporal series and measure the alignment distance between those. The core idea
was to measure the similarity between two-time series of the mean angular acceleration of
the joints. The reference series was taken from the training individual and compared with the
series from the real-time individual, as illustrated in Figure 1.

Figure 1 – Real-time repetition counting pipeline using DTW and MotionBERT.

Although, in theory, the approach could solve the defined problem, the experiments in
practice revealed significant challenges in defining the windowing parameters, which rendered
the system ineffective. The main technical challenge with the windowing approach lies in the
dynamic and variable nature of exercise execution. Exercises performed by different individuals
or even by the same individual at different times could vary significantly in speed, amplitude,
and motion smoothness. Defining a fixed or adaptive window size to segment these temporal
series effectively proved to be problematic. Windows that were too small failed to capture the
complete motion pattern of an exercise repetition, while larger windows included irrelevant data
from adjacent repetitions or transitional movements. As a result, the DTW algorithm often
aligned mismatched segments, causing incorrect repetition counts or excessive computational
overhead.

Moreover, the DTW algorithm introduced additional complexity when applied in this con-
text. The alignment process focused on minimizing the overall distance between series but
lacked sensitivity to the boundaries of individual repetitions. Consequently, the DTW outputs
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were ambiguous, often merging consecutive repetitions into a single alignment or misaligning
smaller sections within a repetition. This behavior made it difficult to extract accurate start
and end points for each exercise repetition, which is crucial for real-world applications where
such precision is required. These technical challenges highlighted the limitations of DTW for
this specific task and underscored the need for more robust methods capable of handling
untrimmed video data with varying temporal dynamics.

By addressing these challenges, our research shifted towards developing a model capable of
directly recognizing the exercise start and end timestamps while counting repetitions effectively,
eliminating the need for external segmentation methods like DTW.

3.2 EXPERIMENTS ON EXISTING RAC METHODS

As a consequence of exploring temporal analysis, we identified other examples related to
Repetitive Action Counting (RAC) in the literature, as mentioned in the previous chapter.
In particular, the PoseRAC model (YAO; CHENG; ZOU, 2023) drawn special attention, as it
is designed for counting repetitions in exercises. The PoseRAC method uses the concept of
salient to define key parts of exercises and other repetitive movements. Each exercise is defined
as the transition between two salient poses. In general terms, once the user moves from one
salient pose to the other a repetition is counted. However, the method does not inherently
perform well in few-shot learning scenarios.

To address this limitation, we designed and developed a set of refinements to the tech-
nique to enhance the robustness of the skeleton representation, aiming to facilitate the learning
procedure given that a limited set of training examples were provided. We tested these refine-
ments on two subsets of the PoseRAC dataset. The first subset included three example videos
for each exercise class, captured from different execution angles, referred to as the Few-Shot
Multi-Cam setup. The second subset consisted of only one example video per exercise, re-
ferred to as Few-Shot. The results of these experiments can be seen in Table 3, the metrics
OBO(Off-By-One) and MAE (Mean Absolute Error) are explained in Chapter 5. While
analyzing the results from these experiments, we observed the potential of these modifications
in the input skeleton as eligible to improve RAC results in low-data environments. Our pro-
posed strategies for skeleton representation and metrics are carried on for further experiments
and therefore are presented in detail in the next chapter will detail.

However, upon delving into the orignal available implementation of the PoseRAC technique
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Method MAE ↓ OBO ↑
Few-Shot Multi-Cam

Default Representation (DR) 0.36 0.38
Viewpoint Invariance (VI) 0.35 0.39
Relational Vectors (RV) 0.40 0.41

Few-Shot
Default Representation (DR) 0.58 0.26
Viewpoint Invariance (VI) 0.55 0.28
Relational Vectors (RV) 0.51 0.30

Table 3 – Performance comparison of different skeleton representation techniques in few-shot learning setups
using the Poserac (YAO; CHENG; ZOU, 2023) dataset.

by the authors, we encountered inconsistencies in the metrics used to produce the results. We
noticed a particularly strange behavior during the evaluation step, where the PoseRAC model
considered, among a large set of exercise classes, the best exercise class with results closest to
the ground truth, even if it was not the actual target exercise being performed. For example,
in a squat exercise where the annotated number of repetitions was 12, consider that the model
predicted 12 repetitions for elbow flexion and 5 for squats; then the model would take the
value from elbow flexion (12) as the correct one to represent results, rather then using the
actual squat result (5); other examples can be observed in Table 4. Such inconsistency was
reviewed carefully and led to the discarding of the method.

Exercise Repetitions Video 1: Pushup Video 2: Pushup Video 3: Pushup
Ground Truth 10 17 5
Pushup 0 12 5
Bench Press 8 16 0
Squat 11 2 0

Table 4 – PoseRAC evaluation inconsistency where the model selected the closest prediction to the ground
truth, rather than the actual target exercise.

We considered this behavior as not an accurate evaluation method given it hinders real-
world application. After modifying the code to count repetitions only for the specific target
exercise, the Mean Absolute Error (MAE) and the Off-By-One (OBO) errors were approx-
imately 0.85 and 0.1 in the Original Few-Shot Multi-Cam configuration, respectively. The
obtained results showed to be unacceptably high for practical use. However, the experience
with PoseRAC triggered the idea of using salient poses and implementing them with proper
recognition methods, such as the MotionBERT (ZHU et al., 2023a).
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4 METHODOLOGY

This chapter outlines the methodology for developing a Repetitive Action Counting (RAC)
model based on skeleton action recognition and few-shot learning. By identifying key salient
poses within each exercise, our approach ensures accurate tracking of repetitions with minimal
data. We detail the process of annotating these poses, the techniques used to extract and
process skeleton data, and the few-shot learning strategy applied to handle low-data scenarios.
Additionally, we describe the integration of these skeleton representations with the action
recognition module and the design of the repetition counting module. Each component is
optimized for flexibility and accuracy across various exercises and camera viewpoints.

4.1 SALIENT POSES DATASET ANNOTATION

Our approach focuses on developing an action detector to count exercise repetitions by
dividing each exercise into two salient poses, as shown in Figure 2 with the Fit3D dataset
(FIERARU et al., 2021). This division allows for effective tracking of temporal progression.
Understanding these salient poses is essential for distinguishing between different phases of
an exercise and accurately counting repetitions. Salient poses can be understood as the key
positions that compose the exercise. For example, in a side lateral raise, salient pose 1 is
defined as when the arms are extended towards the sides of the body, almost in the anatomical
position, and salient 2 is when the arms are raised above the shoulder abduction movement.
We employed techniques to identify these distinct poses within each exercise.
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Figure 2 – Annotations of salient poses from the Fit3D dataset, in the left pose salient 1 and in the right pose
salient 2: side lateral raise (a), dumbbell high pulls (b), squat (c), and mule kick (d).
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We validate our system using the Fit3D (FIERARU et al., 2021) dataset. The adheres to
a clearly defined protocol during filming and execution. Despite variations in execution due
to individual anatomical differences and other factors, the dataset maintains a high level of
consistency. Additionally, the extensive variety of exercises included in the dataset significantly
contributes to a more comprehensive understanding of our algorithm’s performance across
different exercises.

The Fit3D dataset comprises a training set and a test set with eight subjects and three
subjects performed by instructors and trainees. The videos are recorded from four different
viewpoints, as shown in Figure 3, with a resolution of 900x900 and a frame rate of 50 fps.
The test set includes one random camera viewpoint per sequence.

Figure 3 – Illustration of the four camera viewpoints captured in the dataset: (a), (b), (c), and (d). These
views provide varied perspectives for exercise execution analysis.

The videos are categorized into Warmups, Barbell Exercises, Dumbbell Exercises, and
Equipment-Free Exercises, comprising 47 exercises. For PersonalRAC, 22 exercises were se-
lected based on the following criteria:



28

• Warmup exercises were skipped

• Sequences of salient poses should not present major complexity regarding the ordering
of repetitions, as is the case of unilateral exercises, for example (1, 2-left side, 1, 2-right
side, 1, ...)

One way of classifying the 22 exercises is to classify them as upper limb exercises, lower
limb exercises, and full body:

• Upper limb: band pull apart, barbell row, barbell shrug, diamond pushup, dumbbell
biceps curls, dumbbell hammer curls, dumbbell high pulls, dumbbell overhead shoulder
press, one arm row, overhead trap raises, pushup, side lateral raise, and w raise

• Lower limb: dumbbell reverse lunge, and squat

• Full body: barbell dead row, deadlift, mule kick, overhead extension thruster, and stand-
ing ab twists

4.2 PERSONALRAC

In this dissertation we introduce the PersonalRAC, a developed technique that uses video
from a single RGB camera as input to recognize repetitions of a desired personalized action.
The model brings a new approach integrating skeleton action recognition using a few-shot
learning method to achieve repetition counting for customized motions, gestures, and exer-
cises. As illustrated in Figure 4, the model comprises five key steps. Initially, skeleton salient
pose information is extracted using MediaPipe BlazePose (BAZAREVSKY et al., 2020). Subse-
quently, the extracted skeleton data undergoes processing in a dedicated module to explore
other representations to enhance its quality and consistency. The processed skeletons are then
analyzed by the action detection module powered by MotionBert (ZHU et al., 2023a), the cur-
rent state-of-the-art in few-shot skeleton action detection. Finally, the predictions from the
action detector are passed to the repetition counting module, which accurately counts the
repetitions performed. These steps will be detailed below.
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Figure 4 – Overview of the PersonalRAC model. The model begins with video input, where the exercise is
performed. The video is then split into segments around salient poses, with 10 frames before and
after each pose. Human pose estimation is applied to these segments to generate skeleton repre-
sentations. These representations are processed through different methods (viewpoint invariance,
relational vectors, and ISB coordinate model) before being passed to the MotionBERT model for
skeleton action detection. Finally, the detected actions are fed into the Repetition Count Module,
which tracks the number of repetitions based on the sequential triggering of the salient poses.

4.2.1 Few-shot Strategy

We implemented a few-shot division approach to evaluate our technique trained in a low-
data scenario. We randomly selected one individual from the Fit3D dataset, specifically "s08."
Consequently, the available data consists of only one person with limited repetitions per ex-
ercise. From this individual, we created two protocols: one called "Few-Shot Multi-Cam"

which includes data from all four camera angles, and another simply named "Few-Shot",
which uses only camera angle (c) from the Figure 3.

4.2.2 Skeleton Representations

After capturing the skeleton using MediaPipe, we apply processing methods to enhance
the robustness of the skeleton data. All methods process skeletons in three dimensions and
convert them to two dimensions to match the format required by MotionBERT. The skeleton
data processed for train and test is a set of 20 frames composed by the salient pose frame, the
9 frames that precedes it and the 10 frames that follow it, as seen in Figure 4. The training
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and test data consist of a window of 2 skeleton frames.

4.2.2.1 Default Representation (DR)

The extracted skeleton by the human pose estimation step (Figure 4) is represented by the
joint positions within the image coordinates. Each joint position is normalized and stores the
2D coordinates x and y, as shown in Figure 5. We consider this as the default representation
(DR) of the tracked user.

Figure 5 – Comparison of different skeleton representation strategies. The representations include Default
Representation (DR), Viewpoint Invariance (VI), and Relational Vectors (RV).

To be properly used by the RAC procedure the DR representation requires a conversion
of the MediaPipe skeleton format to the format used by the H36M that involves both direct
mappings and calculated (indirect) keypoints to ensure compatibility with the 17-joint H36M
format. Direct conversions include joints with clear correspondences in MediaPipe, such as
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the nose, shoulders, elbows, wrists, hips, knees, and ankles. For example, the right and left
shoulder in H36M are directly mapped to the respective shoulder keypoints in MediaPipe.
Indirect conversions are required for keypoints not explicitly defined in MediaPipe, such as the
mid-hip, torso, and head. The mid-hip is calculated as the midpoint between the left and right
hips, the torso as the average of the shoulders and hips, and the head as the midpoint between
the eyes. Then, by using the converted skeleton as a base, it is possible to create all other
proposed representations (Figure 5).

4.2.2.2 Relational Vectors (RV)

In this representation, the skeleton data is extracted using image coordinates, and relational
vectors are generated by connecting each keypoint to its first and second neighbors. This
approach creates a richer set of vectors that capture the spatial relationships between body
parts, providing more detailed information about the body’s movement.

For instance, the neck is connected to its first neighbors, which include the shoulders,
nose, and belly, as well as its second neighbors, the elbows and the hips, as shown in yellow
in Figure 5. This method expands the number of vectors from 17 to 36, offering a more
comprehensive view of the body’s joint interactions. By including both close and slightly
more distant relationships between keypoints, the model should better understand the overall
structure and dynamics of movement.

4.2.2.3 Viewpoint Invariance (VI)

For this representation, the skeleton is extracted using real-world coordinates. The inten-
tion is to achieve viewpoint invariance by considering that users should always have their hips
perfectly oriented to face the camera frontally. Hence, we calculate a transformation to rotate
all joints accordingly, considering the hip as the base of the new coordinate system for the
model. Using this strategy, we rotate the entire skeleton to a canonical pose to achieve view-
point invariance, as illustrated in Figure 5 where it can be perceived that the VI joints and
bones are slightly rotated if compared to the DR original skeleton.

The VI process is based on matrix rotation. We calculate a matrix that will be used to
reorient the skeleton based on a set of vectors to be considered as the new coordinate system.
The matrix is derived by establishing the primary axes of the body: the x-axis, defined by the
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vector that connects the left and right hips, and the y-axis, defined by the vector connecting
the neck to the center of the hips. The z-axis is then determined perpendicular to the x and y
axes. These vectors (used as axes) are further normalized to ensure they form an orthonormal
base.

Once the rotation matrix is established, it is applied to each skeleton joint by rotating each
joint’s coordinates relative to the center of the hips. This approach ensures the entire skeleton
is consistently oriented, with the hips facing forward. Finally, the rotated skeleton is converted
into 2D coordinates, which are stored for further analysis.

4.2.2.4 International Standard of Biomechanics (ISB)

In physiotherapy, it is usual to define the coordinates of the user’s joints and bones in
terms of the International Standard of Biomechanics (ISB). In summary, the ISB proposes to
define the user skeleton as a tree graph using the hip center as the root and the following
joints accordingly placed in the tree hierarchy.

Navigating the skeleton as a tree defines each new joint in the following level using its
parent node as a base coordinate system, as illustrated in Figure 5. Given that the ISB defines
each joint as a vector using the previous body part as the base of its coordinate system, it does
not consider global relationships (e.g., if the user’s hand is pointing upward or downward), but
local relationships (e.g., if the hand is pointing in the same direction as the elbow).

For the ISB coordinate model representation, the skeleton is extracted using real-world
coordinates. This method applies the ISB technique as described in DAGAMA2019396. The
skeleton is adjusted to have the same number of points as in the H36m format.

4.2.3 Skeleton Action Detection

We trained a model for each exercise class to allow for the easy addition of new exercises
as needed. We used the MotionBERT (ZHU et al., 2023b) action recognition module, with the
pre-trained action recognition network (x-sub, ft) along with the linear probing followed by
the fine-tuning technique proposed in (KUMAR et al., 2022). The network is trained to identify
only between the two salient poses from the training set. The evaluation metrics are carried
out in the following module.
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4.2.4 Repetitive Counting Module

The PersonalRAC model approach to Repetitive Action Counting (RAC) leverages the
adaptability of skeleton-based action detection algorithms to enhance its ability to count ex-
ercise repetitions accurately. Although MotionBERT is used in our implementation, the un-
derlying principles and architecture of PersonalRAC can be extended to other skeleton-based
action detection models.

Our enhanced method introduces an optimization process performed on the training set,
after the model is trained, uses a grid search to find counting parameters specific to each
exercise. This involves optimizing two separate certainty thresholds—thresholds1 for salient
pose 1 and thresholds for salient pose 2—and applying offsets (offset1 and offset2) to the
model’s output probabilities for these poses.

The grid search process involves optimizing the model parameters for each exercise, en-
abling it to adapt to variations in movement patterns and camera angles, thereby improving
counting accuracy. The process includes the following steps:

• Parameter Range Definition: We define reasonable ranges and step sizes for each
parameter based on prior knowledge and preliminary experiments. Offsets may range from
-0.2 to 0.2 with increments of 0.1, while thresholds may range from 0 to 0.8 with similar
increments. This creates a comprehensive grid of possible parameter combinations.

• Exhaustive Evaluation: We evaluate every possible combination of parameters within
the defined ranges for each exercise. This involves running the counting algorithm on
the training set and recording the counting performance for each parameter set.

• Parameter Selection: The optimal parameters for each exercise are those that result
in the highest OBO and, subsequently, the lowest MAE.

The videos for network evaluation are considered in a real-use context, as shown in Figure
6. After passing through a sigmoid function and applying the optimized parameters, the model
outputs are analyzed every two frames. The counting algorithm proceeds as follows:

• Initiation of Counting: The counting process begins when the adjusted probability of
salient pose 1 (after applying offset1) exceeds the threshold thresholds1.
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• Transition Detection: The model then looks for salient pose 2, requiring that its
adjusted probability (after applying offset2) exceeds the threshold thresholds2 and is
higher than the adjusted probability of salient pose 1.

• Counting a Repetition: Subsequently, salient pose 1 must be identified again with its
adjusted probability exceeding thresholds1 and higher than that of salient pose 2. When
this condition is met, one repetition count is added.

By optimizing these parameters for each exercise, PersonalRAC can more accurately detect
the subtle differences between poses in various exercises. This tailored approach enhances the
model’s robustness and accuracy in counting repetitions across different exercises and real-
world scenarios.

Figure 6 – Example of a real-time evaluation: The exercise begins in (a), progresses to (b) where the first
salient pose (Salient 1) is detected, then moves to (c) where Salient 2 is detected, and finally
returns to (d) where Salient 1 is detected again, incrementing the exercise count.
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5 EXPERIMENTS AND RESULTS

To evaluate the effectiveness of our approach, we conducted three distinct experiments
using the dataset, the Fit3D with our salient pose notation. The first experiment utilized the
Full Dataset for training, the second was the Few-Shot Multi-Cam, and the final was the Few-
Shot. Each experiment was conducted using our proposed technique and compared against
the state-of-the-art method, TransRAC (HU et al., 2022).

5.1 SETUP

The training process followed the linear probing and fine-tuning strategy outlined in (KU-

MAR et al., 2022). Initially, the model was trained for 25 epochs in the linear probing phase,
with the best result carried forward to the fine-tuning phase, which also ran for 25 epochs.

All experiments were performed on an Nvidia RTX 3080 Ti GPU. In line with Motion-
BERT’s training guidelines, we used a learning rate of 0.0001 for both the fully connected
layers and the backbone network. Additionally, a learning rate decay of 0.99 and a dropout
rate of 0.5 were applied to prevent overfitting.

5.2 METRICS

The metrics used for Repetitive Action Counting are Mean Absolute Error (MAE) and
Off-By-One (OBO).

• MAE (Mean Absolute Error) is defined as:

MAE = 1
𝑁

𝑁∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖|
𝑦𝑖

Where 𝑦𝑖 is the predicted value and 𝑦𝑖 is the true value. The metric represents the
normalized absolute error between 𝑦𝑖 and 𝑦𝑖. While it includes the term "absolute," it is
subsequently normalized by dividing by the number of misrecognized repetitions.

• OBO (Off-By-One) is a metric that counts the number of predictions that are off by
exactly one repetition, divided by the total number of predictions:

OBO = 1
𝑁

𝑁∑︁
𝑖=1

1(|𝑦𝑖 − 𝑦𝑖| ≤ 1)

Where 1 is the indicator function that returns 1 if the condition is true and 0 otherwise.
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5.3 BASELINE METHOD

When discussing Repetition Action Counting (RAC), particularly in the context of exercises,
TransRAC (HU et al., 2022) stands out as the state-of-the-art method. Therefore, it was selected
as the baseline for testing to evaluate its performance on a new dataset and in low-data
scenarios, as we could not find a RAC technique designed explicitly for few-shot learning.

To conduct the experiments, we first had to adapt our annotation method to work with
TransRAC. The annotation in TransRAC involves marking the start and end frames of each
repetition, noting any pauses that may occur between each one. Since there are no pauses in
the Fit3D dataset, the only conversion required was to use salient pose 1 as the beginning and
the next occurrence of pose 1 as the end of a repetition.

5.4 RESULTS

The results for the three scenarios (Full Dataset, Few-Shot Multi-Cam, and Few-Shot)
(Chapter 4) are presented in Table 5. TransRAC emerges as the top-performing model on
the Full Dataset, with the lowest MAE of 0.14 and an OBO score of 1.00, indicating high
consistency and robustness across the entire dataset. The PersonalRAC variants, specifically
those using Default Representation (DR) and Viewpoint Invariance (VI), show reasonable
performance, although they fall short of TransRAC. The PersonalRAC methods, such as RV
(Relational Vectors) and ISB (Individual Skeleton-Based), show a significant increase in MAE,
pointing toward potential limitations in scaling these methods when more data is available.

In the Few-Shot Multi-Cam setting, the PersonalRAC method employing Viewpoint In-
variance (VI) displays superior performance, achieving an MAE of 0.22 and an OBO of 0.71,
surpassing TransRAC and all other PersonalRAC variants. We hypothesize that this perfor-
mance highlights the applicability of viewpoint invariance techniques in scenarios with limited
data from multiple camera perspectives, where a robust skeleton representation can substan-
tially improve the model’s accuracy.

Finally, in the Few-Shot scenario with single-camera data, the PersonalRAC model using
Relational Vectors (RV) achieves the best results, with an MAE of 0.33 and an OBO score
of 0.64. We would argue that this skeleton representation method can be advantageous in
handling data scarcity, given that it creates additional relational vectors to encode relationships
between detached joints, easing the task of learning some salient poses with fewer examples.
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Method MAE ↓ OBO ↑
Full Dataset

AIFit 0.25 0.86
TransRAC 0.14 1.00
PersonalRAC (DR) 0.32 0.65
PersonalRAC (VI) 0.28 0.62
PersonalRAC (ISB) 0.39 0.58
PersonalRAC (RV) 0.35 0.64

Few-Shot Multi-Cam
TransRAC 0.47 0.00
PersonalRAC (DR) 0.29 0.68
PersonalRAC (VI) 0.22 0.71
PersonalRAC (ISB) 0.30 0.65
PersonalRAC (RV) 0.32 0.62

Few-Shot
TransRAC 0.59 0.00
PersonalRAC (DR) 0.52 0.44
PersonalRAC (VI) 0.50 0.48
PersonalRAC (ISB) 0.62 0.50
PersonalRAC (RV) 0.33 0.64

Table 5 – Performance comparison of the RAC methods for the three different dataset scenarios: Full Dataset,
Few-Shot Multi-Cam, and Few-Shot. The metrics used are Mean Absolute Error (MAE, lower is
better) and Off-By-One (OBO, higher is better).

5.4.1 Exercises Analysis

To better understand how classification occurs per exercise, we can examine in detail
the chart of the best method for MAE of the Full Dataset (VI), Figure 7, for Few-Shot
Multi-Cam (VI), Figure 8, and for Few-Shot (VI), Figure 9. In these Figures, it is possible
to observe the OBO and the MAE for each exercise. Each scenario offers unique insights
into how PersonalRAC handles different data environments, with notable performance and
method effectiveness differences. Figures for each dataset scenario’s skeleton representations
are available in the Appendix A.

Examining the performance across all three data scenarios reveals a pattern of similarity for
certain exercises, highlighting PersonalRAC’s consistency in handling specific types of move-
ments. Exercises that involve simpler, repetitive upper-body movements, such as “dumbbell
scaptions,” “side lateral raise,” and “overhead trap raises,” consistently show low MAE and
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Figure 7 – Breakdown of MAE and OBO per exercise for the best-performing method (VI) on the Full Dataset
split.

Figure 8 – Breakdown of MAE and OBO per exercise for the best-performing method (VI) on Few-shot Multi-
Cam split.

high OBO values in all scenarios. This similarity suggests that PersonalRAC is particularly
well-suited for exercises where joint movements are more predictable, isolated, and have a
clear distinction between pose salient 1 and 2, as can be seen in Figure 10. This allows it
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Figure 9 – Breakdown of MAE and OBO per exercise for the best-performing method (RV) on Few-Shot split.

to achieve high accuracy regardless of data availability or camera perspective. The model’s
ability to recognize these movements consistently across different conditions indicates that the
underlying skeletal representation techniques effectively capture the essential features of these
more straightforward exercises.

Conversely, some exercises, such as “barbell shrug," “deadlift,” and “pushup,” consistently
exhibit higher MAE and lower OBO scores. In the case of the barbell shrug, this is due to the
fact that the pose salients are very close to each other, making it challenging for the model
to learn the skeleton’s variation, as seen in Figure 10. For the deadlift, the complexity arises
from it being a compound exercise, where pose salient 2 is very similar to the start of the
exercise (before holding the bar) and the end of the exercise (after putting the bar down),
potentially leading to extra counts, as shown in Figure 10. Additionally, changes in camera
angle can lead to losses in skeleton detection, in addition to the fact that MotionBERT does
not use the skeleton’s depth coordinate. Consequently, predictions requiring depth perception
become challenging, which is particularly noticeable with the “pushup” exercise, illustrated in
Figure 10. In this row, the last frame shows low confidence in detecting a person, failing to
identify the skeleton. Even when methods are applied to enhance the robustness of skeleton
data, if the detector struggles to identify certain parts, it results in inconsistent training.

PersonalRAC performs well on simple, isolated, and repetitive exercises, particularly those
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involving predictable upper-body motions. Its design allows it to effectively capture and analyze
straightforward joint dynamics, where distinct phases in the exercise are easily recognized
and consistently reproduced across different data conditions. However, PersonalRAC struggles
with exercises involving complex, multi-joint interactions and compound movements, where
body mechanics are more intricate, and depth perception becomes crucial. Without explicit
depth information, PersonalRAC encounters challenges in accurately distinguishing phases
that appear similar from certain angles, leading to inaccuracies in exercises requiring detailed
three-dimensional tracking. Additionally, exercises with subtle or overlapping pose variations
introduce difficulty, as the model may misinterpret these as transitions or fail to capture
them consistently, highlighting potential areas for refinement in handling complex and dynamic
movements.

5.4.2 Out-of-Dataset Evaluation

To further assess the robustness and generalization capability of PersonalRAC beyond the
training dataset, we conducted an out-of-dataset evaluation. This analysis aimed to verify the
model’s ability to (i) selectively count repetitions of a specified exercise while ignoring unrelated
movements and (ii) maintain accuracy across varying camera viewpoints. Two experimental
video demonstrations illustrate these aspects:

• Exercise-Specific Counting (Video Link): This evaluation presents an individual per-
forming multiple exercises, with the system configured to recognize and count only
squats. The results confirm that PersonalRAC can isolates the target exercise, ensuring
that only correctly performed squats contribute to the final count while disregarding
unrelated actions.

• Viewpoint Robustness (Video Link): In this experiment, an individual performs a se-
lected exercise while continuously rotating. The model consistently detects the salient
pose transitions and accurately counts repetitions irrespective of camera viewpoint,
demonstrating its robustness to varying perspectives and enhancing its applicability in
unconstrained real-world settings.

These results reinforce the effectiveness of PersonalRAC in practical scenarios, highlighting
its ability to recognize and count repetitions with high precision while remaining robust to

https://drive.google.com/file/d/1VTPZxU4E9ftD5U3AhBLLOeaVZ9PD8oRG/view?usp=sharing
https://drive.google.com/file/d/1ininaSpnH-UQ8jFZSmqtzVtwPHwfz7L6/view?usp=sharing
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exercise variability and viewpoint changes.

5.4.3 Lessons Learned and Limitations

While the PersonalRAC model demonstrates advancements in personalized exercise count-
ing by allowing the registration of new exercises through few-shot learning and skeleton action
recognition, three key limitations can be pointed out.

• Limited Exercise Complexity: The system’s effectiveness varies based on exercise
complexity. It performs well on exercises with clear, isolated joint movements and distinct
phases but struggles with compound movements or exercises involving complex body
dynamics and multi-joint interactions. In particular, exercises with overlapping or subtle
pose variations pose challenges for accurate action recognition.

• Challenges with Depth Perception Another limitation is the system’s lack of depth
perception, which affects its performance on exercises where three-dimensional tracking
is essential. For instance, exercises like pushups require accurate depth information to
distinguish between similar poses and prevent miscounts. The absence of depth data
leads to difficulties in accurately capturing movements.

• Robustness to Occlusion While viewpoint invariance improves robustness across differ-
ent angles, extreme perspectives or occlusions still pose significant challenges. Overhead,
low-ground, or highly angled views can lead to skeleton detection errors and reduce ac-
tion recognition accuracy. Similarly, occlusions (e.g., body parts blocking key joints)
impact detection, especially for lower-body movements.
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Figure 10 – Example of salient poses with the skeleton drawn from individuals in the test set, focusing on
bringing variability in camera angle. Each row represents an exercise, and each column represents
a different pose or individual.
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6 CONCLUSION

According to our knowledge, PersonalRAC is the first solution to approach the problem of
Repetition Action Counting (RAC) using a few-shot strategy. Such few-shot capability allows,
for example, personal trainers, physiotherapists, and others to easily register new personalized
exercises focused on specific clients and patients. This way, the potential of the PersonalRAC
system aims to advance the technological support for applications dedicated to personalized
exercise monitoring and rehabilitation.

The PersonalRAC model offers a novel approach to exercise repetition counting, achieving
a 44.07% enhancement in MAE and a 0.64 increase in OBO in the few-shot division. Addi-
tionally, in the Few-Shot Multi-Cam setting, the model demonstrates a 53.19% improvement
in MAE and a 0.71 increase in OBO, highlighting its effectiveness in challenging low-data
environments. However, three key limitations persist: the model struggles with complex multi-
joint exercises and subtle pose variations, lacks depth perception for exercises requiring precise
three-dimensional tracking, and faces challenges with extreme camera angles and occlusions
despite improvements in viewpoint invariance. By integrating Few-Shot Learning, Repetitive
Action Counting, and Skeleton Action Recognition, our method surpasses the state-of-the-art
performance of existing approaches that use entire datasets for training while paving the way
for more personalized and accessible solutions.

Future work will involve benchmarking these various action detection models within the
PersonalRAC model and evaluating their performance in RAC tasks across different exercises
and environments. Using skeleton detection models that are more robust to occlusion is also a
possible way to improve results and test different skeleton action detection models, especially
those that can work with the depth dimension to address issues observed in exercises like
"pushups."
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APPENDIX A – DETAILEDS RESULTS

Here are the detailed result figures for all methods. For the Full Dataset, we have Figures
11, 12, 13, and 14; for Few-Shot Multi-Cam, Figures 15, 16, 17, and 18; and for Few-Shot,
Figures 19, 20, 21, and 22 representing Default Representation (DR), Relational Vectors (RV),
Viewpoint Invariance (VI), and International Standard of Biomechanics (ISB), respectively.

Figure 11 – Breakdown of MAE and OBO per exercise for DR in the Full dataset split.

Figure 12 – Breakdown of MAE and OBO per exercise for RV in the Full dataset split.
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Figure 13 – Breakdown of MAE and OBO per exercise for VI in the Full dataset split.

Figure 14 – Breakdown of MAE and OBO per exercise for ISB in the Full dataset split.
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Figure 15 – Breakdown of MAE and OBO per exercise for DR in the Few-Shot Multi-Cam dataset split.

Figure 16 – Breakdown of MAE and OBO per exercise for RV in the Few-Shot Multi-Cam dataset split.
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Figure 17 – Breakdown of MAE and OBO per exercise for VI in the Few-Shot Multi-Cam dataset split.

Figure 18 – Breakdown of MAE and OBO per exercise for ISB in the Few-Shot Multi-Cam dataset split.
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Figure 19 – Breakdown of MAE and OBO per exercise for DR in the Few-shot dataset split.

Figure 20 – Breakdown of MAE and OBO per exercise for RV in the Few-Shot dataset split.
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Figure 21 – Breakdown of MAE and OBO per exercise for VI in the Few-sho dataset split.

Figure 22 – Breakdown of MAE and OBO per exercise for ISB in the the Few-sho dataset split.
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