
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

RENAN LEANDRO FERNANDES

Connection Method for Defeasible Description Logics

Recife
2024



RENAN LEANDRO FERNANDES

Connection Method for Defeasible Description Logics

Tese apresentada ao Programa de Pós-Graduação
em Ciência da Computação da Universidade Fed-
eral de Pernambuco, como requisito parcial para
obtenção do título de doutor em Ciência da Com-
putação.

Área de Concentração: Teoria da Computação

Orientador: Fred Freitas

Coorientador: Ivan Varzinczak

Recife
2024



Fernandes, Renan Leandro.
   Connection Method for Defeasible Description Logics / Renan
Leandro Fernandes. - Recife, 2024.
   98f.: il.

   Tese (Doutorado) - Universidade Federal de Pernambuco, Centro
de Informática, Programa de Pós-Graduação em Ciências da
Computação, 2024.
   Orientação: Frederico Luiz Gonçalves de Freitas.
   Coorientação: Ivan José Varzinczak.
   Inclui referências e apêndices.

   1. Connection method; 2. Description logics; 3. Defeasible
reasoning. I. Freitas, Frederico Luiz Gonçalves de. II.
Varzinczak, Ivan José. III. Título.

UFPE-Biblioteca Central

.Catalogação de Publicação na Fonte. UFPE - Biblioteca Central



Dedico este trabalho aos que vieram antes de mim e desbravaram os caminhos para que
eu pudesse trilhá-los. Aos meus pais e meus avós.



ACKNOWLEDGEMENTS

Estes cinco anos foram sem dúvida os anos mais difíceis da minha vida. Eu agradeço
profundamente a todas as pessoas que passaram por ela neste período e contribuiram direta
ou indiretamente para a conclusão deste doutorado.

Agradeço aos meus pais, que me ensinaram o valor da educação e do esforço. Nos meus
piores momentos, me mostraram que eu nunca estive só.

Agradeço aos meus familiares pelo suporte e carinho. Em especial, ao meu irmão, por
entender as minhas ausências. Agora terei mais tempo para ficar com meus sobrinhos!

Agradeço também à minha namorada Adriana. Dri, você me mostrou que eu deveria
continuar, nos momentos em que eu achei que não conseguiria. Você abriu mão dos finais de
semana, do seu tempo de qualidade, para estar ao meu lado nesses últimos meses em que
fiquei trancado finalizando este trabalho. Muito obrigado por ter ficado ao meu lado durante
todos esses momentos. Que possamos aproveitar nossos finais de semana agora.

Agradeço aos meus orientadores Fred e Ivan. Obrigado pela paciência, pelos ensinamentos
e também pelo carinho com que me trataram durante este período. Espero que nossa parceira
continue por muitos anos. Agradeço também a Pedro por ter sido um grande apoio e um
excelente revisor deste trabalho.

Agradeço às pessoas que integram o Centro de Informática e a Universidade Federal de
Pernambuco por todo o suporte e assistência.

Por fim, agradeço aos amigos. Muito obrigado pelo apoio e por me ajudarem a não desistir
deste sonho.



RESUMO

A modelagem de exceções em ontologias, proporcionada através do uso de lógicas anuláveis,
e o raciocínio em sua presença recebeu uma significativa atenção na última década. O desen-
volvimento de métodos de prova para as Lógicas de Descrições (DLs) anuláveis, seguindo os
métodos para as DLs clássicas, é principalmente baseado em tableaux semânticos. No entanto,
a literatura apresenta sistemas de inferência alternativos igualmente viáveis para o desenvolvi-
mento de provadores de teoremas automáticos, como o método de conexões. Este método
consiste em um algoritmo de busca de prova orientado a um objetivo, buscando por conexões
(pares de literais complementares) em conjuntos de cláusulas de literais, chamada de matriz.
Esta tese apresenta um método de conexões para uma família de DLs tolerante a exceções. O
trabalho apresenta as seguintes contribuições: (i) definição de uma representação matricial de
uma base de conhecimento que estabelece condições para que um dado axioma seja provado
pela matriz; (ii) definição de uma condição de bloqueio na presença de operadores de tipicali-
dade; (iii) fornecimento de um vínculo entre as estruturas matriciais do método proposto e a
semântica de DLs anuláveis; (iv) provas de corretude, completude e terminação para o sistema
de inferência proposto, dependendo apenas da semântica das lógicas de descrições anuláveis;
e (v) uma arquitetura de provadores de métodos de conexões polimórficos, o PolyCoP, de-
senvolvido para a linguagem 𝒜ℒ𝒞ℋ∙. Tal arquitetura pode abranger possivelmente qualquer
outra lógica, com modificações sutis em seus métodos e classes.

Palavras-chaves: Método de conexões. Lógicas de descrição. Raciocínio não-monotônico.



ABSTRACT

The modelling of exceptions in ontologies, provided through defeasible logics, and the reasoning
behind their presence have received significant attention in the last decade. The development
of proof methods for defeasible Description Logics (DLs), following the methods for classi-
cal DLs, is mainly based on semantic tableaux. However, the literature offers equally viable
alternatives for developing automatic theorem provers, such as the connection method. This
method consists of a goal-oriented proof search algorithm for connections (pairs of comple-
mentary literals) in sets of literal clauses called a matrix. This thesis presents a connection
method for a family of exception-tolerant DLs. The work presents the following contributions:
(i) definition of a matrix representation of a knowledge base that establishes conditions for a
given axiom to be provable by the matrix; (ii) definition of a blocking condition in the presence
of typicality operators; (iii) providing a bond between the matrix structures of the proposed
method and the semantics of defeasible DLs; (iv) proofs of correctness, completeness and
termination for the proposed inference system, grounded only on the semantics of defeasible
description logics; and (v) an architecture of polymorphic connection method provers, Poly-
CoP, developed for the 𝒜ℒ𝒞ℋ∙language. Such an architecture can encompass any other logic,
with subtle modifications in its methods and classes.

Keywords: Connection method. Description logics. Defeasible reasoning.
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1 INTRODUCTION

Modelling exceptions in ontologies and reasoning in their presence has been an active
area over the past decade. Among the emblematic approaches put forward in the literature
feature, Giordano et al.’s description logics of typicality (GIORDANO et al., 2007; GIORDANO et al.,
2009; GIORDANO et al., 2015), Britz et al.’s defeasible subsumption relations (BRITZ; HEIDEMA;

MEYER, 2008; BRITZ et al., 2021), Bonatti et al.’s light-weight DLs of normality (BONATTI;

FAELLA; SAURO, 2011; BONATTI et al., 2015; BONATTI; SAURO, 2017), Bozzato et al.’s reduction
to Datalog (BOZZATO; EITER; SERAFINI, 2018), besides Casini and Straccia’s seminal work
on the computational counterpart of non-monotonic entailment in DLs (CASINI; STRACCIA,
2010; CASINI; STRACCIA, 2013) along with its implementation (CASINI et al., 2015). These
investigations have given rise to a whole family of defeasible description logics of varying
expressive power and with the ability to handle exceptions at both the modelling and the
reasoning levels in a number of ways (BONATTI, 2019; BRITZ; VARZINCZAK, 2017b; CASINI et

al., 2014; CASINI; STRACCIA; MEYER, 2019; PENSEL; TURHAN, 2018).
One of the interesting characteristics of some of the approaches mentioned above is the

fact that depending on the underlying DL that is assumed and given certain conditions on
how exceptionality (or typicality) is expressed, the kind of non-monotonic reasoning that is
performed can be reduced to (a polynomial number of calls to) classical entailment check.
Therefore, studying automated deduction for the various flavours of defeasible DLs and its
potential reduction to classical reasoning remains a relevant and active research topic in logic-
based artificial intelligence.

The development of proof methods for defeasible description logics has followed those for
classical DLs. As a result, semantic tableaux are the basis of the overwhelming majority of ex-
isting decision procedures for reasoning with defeasible ontologies (BRITZ; VARZINCZAK, 2017b;
BRITZ; VARZINCZAK, 2019; GIORDANO et al., 2009; GIORDANO et al., 2013; VARZINCZAK, 2018).
Despite the commonly extolled virtues of tableau systems, there are equally viable alternatives
in the literature on automated theorem proving (ATP). One example is the connection method
(CM) (BIBEL, 1987), initially defined by W. Bibel in the late ’70s, which earned a good rep-
utation in the field of ATP in the ’80s and ’90s. In particular, recent research has revived the
connection method in the context of (classical) modal and description logics (OTTEN, 2012;
OTTEN, 2022; FREITAS; OTTEN, 2016; FREITAS; VARZINCZAK, 2018).
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CM’s main internal structure is a matrix representation of the knowledge base and its
associated query. Such representation allows for a more parsimonious usage of memory dur-
ing proof search. Indeed, unlike tableaux and resolution, the connection method does not
create intermediate clauses or sentences along the way, keeping its search space confined to
the boundaries of the matrix it started. The first connection calculus for (classical) descrip-
tion logics, 𝒜ℒ𝒞 𝜃 −𝐶𝑀 (FREITAS; OTTEN, 2016), incorporates several features of most DL
proof systems, such as blocking, lack of variables and Skolem functions. Moreover, a C++
implementation of the method, Raccoon (FILHO; FREITAS; OTTEN, 2017), has been devel-
oped.1 Worthy of mention is the fact that, despite incorporating none of the optimisations
commonly embedded in DL tableaux systems, Raccoon performed competitively in rea-
soning over 𝒜ℒ𝒞 ontologies when compared to cutting-edge highly-optimised tableau-based
reasoners, which had ranked high in DL reasoners’ past competitions.2

1.1 SCOPE OF THE THESIS

As mentioned in the previous section, some efforts have been put forward to find ways to
model exceptions in DLs. Among the defeasible logics present in the literature, 𝒜ℒ𝒞ℋ∙ was
the one that glimpsed our attention the most because (i) it has greater expressiveness in the
way it represents concepts and axioms in opposition to the others - it allows, for example, the
use of a typicality operator on both sides of subsumption - and (ii) it has extensions (BRITZ;

VARZINCZAK, 2017b; BRITZ; VARZINCZAK, 2017a) already published, allowing us to advance
our proof method for greater expressiveness in the future.

In this direction, this work focuses on the defeasible DL 𝒜ℒ𝒞ℋ∙ (VARZINCZAK, 2018), an
extension of 𝒜ℒ𝒞ℋ with typicality operators on complex concepts and role names. Intuitively,
the first one denotes the most typical objects in the class, and the other represents the most
typical relationship instances. We give more detail about the language in Chapter 4.

Although most decision procedures for reasoning with ontologies rely on tableaux, this
thesis focuses instead on the connection method. To the best of our knowledge, only two
connection methods have been proposed for description logics:𝒜ℒ𝒞 𝜃−𝐶𝑀 (FREITAS; OTTEN,
2016), 𝒜ℒ𝒞ℋ𝒬= 𝜃−𝐶𝑀 (FREITAS; VARZINCZAK, 2018), and 𝒜ℒ𝒞∙ 𝜃−𝐶𝑀 (FERNANDES;

FREITAS; VARZINCZAK, 2021).
1 <https://github.com/dmfilho/raccoon>
2 See <https://goo.gl/V9Ewkv> for details on the comparison.
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𝒜ℒ𝒞 𝜃−𝐶𝑀 (FREITAS; OTTEN, 2016) works over𝒜ℒ𝒞, introducing blocking and replacing
the usage of Skolem terms and unification by 𝜃-substitutions, which prevent connections in the
same way as unification. 𝒜ℒ𝒞ℋ𝒬= 𝜃 − 𝐶𝑀 (FREITAS; VARZINCZAK, 2018) handles equality
and number restrictions for concept and role names, the connectives for 𝒜ℒ𝒞ℋ𝒬=.
𝒜ℒ𝒞 𝜃−𝐶𝑀 and 𝒜ℒ𝒞ℋ𝒬= 𝜃−𝐶𝑀 soundness and completeness proofs take advantage

of the functional equivalence between them and the connection method for first-order logic.
However, we advocate the inclusion of proofs that depend only on DL, as demonstrated by
Baader et al. for the tableau method (BAADER; NUTT, 2007). Therefore, we construct the
proofs in this thesis without using the abovementioned equivalences. Such demonstrations can
be the foundation for more expressive languages, providing more understandable theorems with
less dependency on other proof theory backgrounds as first-order logic.

Furthermore, such demonstrations, less dependent on other logics or previous knowledge,
have educational value and can provide new researchers with core information and tips for
implementing new reasoners and optimisations in the near future, promoting a sense of learning
and growth in the community. Therefore, we focus on providing soundness and completeness
proofs for our connection method based only on defeasible DL semantics.

1.2 OBJECTIVES

The main goal of this thesis is to propose a sound and complete connection method

for 𝒜ℒ𝒞ℋ∙, whose proofs are grounded on description logic proof theory. Hereafter,
we outline the specific objectives of this research:

1. Conceiving a matrix representation considering the typicality relation between individuals
and pairs of individuals of the ontology;

2. Proposing a matrix characterisation showing that a matrix is complementary iff the
ontology which generates it is valid;

3. Defining a sound and complete connection calculus for 𝒜ℒ𝒞ℋ∙;

4. Defining an algorithm based on the connection calculus for 𝒜ℒ𝒞ℋ∙ such that it is sound,
complete and terminates in all cases;

5. Proposing self-contained demonstrations of our method, grounded on the semantics of
description logic; and
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6. Implementing a prover for 𝒜ℒ𝒞ℋ∙.

1.3 RESULTS

We started our research by proposing a connection method à la Bibel for an exception-
tolerant extension of 𝒜ℒ𝒞 (FERNANDES; FREITAS; VARZINCZAK, 2021). As for the language,
we assumed a fragment of 𝒜ℒ𝒞ℋ∙, i.e. 𝒜ℒ𝒞 extended with a typicality operator for concepts.
We revisited the definition of a matrix representation of a knowledge base and established the
conditions for a given axiom to be provable. In particular, we have shown how term substitution
is dealt with and defined a suitable blocking condition in the presence of typicality operators.

Then, the main idea was to extend the proposed connection method to handle the typical
operator on role names. However, dealing with variables and relations was a complex and non-
intuitive approach for defining the method, as proposed previously for 𝒜ℒ𝒞∙. We improved the
proposed representation by including preferential relations as literals in the matrix. This differs
from the previous version for 𝒜ℒ𝒞∙, which treated the relation as an auxiliary structure to the
matrix. Our modification allowed us to demonstrate our approach’s soundness, completeness,
and termination, grounded on DL.

Finally, we developed a connection prover for 𝒜ℒ𝒞ℋ∙, called PolyCoP. Despite its primary
purpose, we went further to design PolyCoP to be user-friendly, providing a polymorphic prover
framework built on top of design patterns. This design separates the logical language-related
code from the structural connection method, allowing one to focus only on the (rather slight)
differences in literal representation, unification, and blocking strategies from each logic. This
approach is intended to help logic beginners learn the connection method straightforwardly,
making the use and the building of connection provers an intuitive experience. Furthermore,
our framework is educational. The code, as proposed, provides a way to clearly check the
difference between the connection method and the other inference methods.

One of PolyCoP’s main features is its tree representation of the proof. Following the
principles of polymorphism and reuse that guide PolyCoP, it is possible to read the proof
through this tree and to develop different outputs according to the user’s needs. We developed
a code capable of representing the proof through LaTeX systems to demonstrate this feature.
In this way, one can effectively execute, search for, and visualize the proofs.
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1.4 ROADMAP

The remaining chapters of this thesis proposal are organized as follows:

• Chapter 2 - Description logics: we introduce the main features of description logics.
We show the components, the languages, the semantics and important reasoning tasks;

• Chapter 3 - Connection methods: we show connection methods principles and they
implementation for propositional, first-order, and a family of description logics;

• Chapter 4 - Defeasible description logics: we cover the language 𝒜ℒ𝒞ℋ∙ (VARZ-

INCZAK, 2018) which we focus in this thesis. We also show related work in defeasible
description logics’ field;

• Chapter 5 - A connection method for a defeasible extension of 𝒜ℒ𝒞ℋ: we
present our connection method;

• Chapter 6 - PolyCoP: we show our implementation of connection calculus for 𝒜ℒ𝒞ℋ∙

and other logic;

• Chapter 7 - Related work: we outline the related work of our proposal.

• Chapter 8 - Conclusion: we conclude the thesis, discussing foreseen contributions and
future work.



Part I

Preliminaries
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2 DESCRIPTION LOGICS

Description logics are formalisms to describe domains of interest based on their elements
(BAADER et al., 2017). They are the core of the foundation of Semantics Web‘s Ontology
Language (BERNERS-LEE; HENDLER; LASSILA, 2001).

In DLs, the key components are the elements (individuals), sets of elements (concepts)
and sets for binary relations of elements (roles). Hereafter, we assume finite sets of concepts,
roles, and individual names, denoted resp., with C, R, and I. We denote atomic concepts with
𝐴, 𝐵, . . ., with 𝑟, 𝑠, . . . role names, and with 𝑎, 𝑏, . . . individual names.

2.1 CONCEPTS AND THEIR SEMANTICS

We have a formal language for each DL that allows us to build concepts and role descrip-
tions. One well-known Description Logic is the 𝒜ℒ𝒞 that allows representation of complex
concepts built using the constructors ¬ (complement), ⊓ (conjunction), ⊔ (disjunction), ∀
(universal restriction) and ∃ (existential restriction). Complex concepts of 𝒜ℒ𝒞 are denoted
with 𝐷, 𝐸, . . . and are built according to the following grammar:

𝐷, 𝐸 ::= C | ⊤ | ⊥ | ¬𝐷 | 𝐷 ⊓ 𝐸 | 𝐷 ⊔ 𝐸 | ∀R.𝐷 | ∃R.𝐷

Example 2.1. The following expressions are 𝒜ℒ𝒞 concepts:

• 𝐴 ⊓𝐵 ⊔ ∃𝑟.𝐶;

• 𝐵 ⊔ ¬∀𝑟.(∃𝑠(𝐷 ⊓ ¬𝐴));

△

In this chapter, we revisit the Description Logic 𝒜ℒ𝒞ℋ, an extension of 𝒜ℒ𝒞 that allows
representation for role hierarchies. The semantics of 𝒜ℒ𝒞ℋ is the Tarskian semantics and is
defined as follows.

Definition 2.1 (Semantics). An interpretation is a structure ℐ := ⟨Δℐ , ·ℐ⟩ where Δℐ is the
domain of interpretation, and ·ℐ is the interpretation function that maps:

• concept names 𝐴 to subsets 𝐴ℐ ⊆ Δℐ of the domain interpretation,

• role names 𝑟 to binary relations 𝑟ℐ ⊆ Δℐ ×Δℐ of the domain interpretation and
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• individual names 𝑎 to elements 𝑎ℐ ∈ Δℐ of the domain interpretation.

The interpretation ℐ interprets 𝒜ℒ𝒞ℋ concepts in the following way:

⊤ℐ def= Δℐ

⊥ℐ def= ∅

(𝐷 ⊓ 𝐸)ℐ def= 𝐷ℐ ∩ 𝐸ℐ

(𝐷 ⊔ 𝐸)ℐ def= 𝐷ℐ ∪ 𝐸ℐ

(¬𝐷)ℐ def= Δℐ ∖𝐷ℐ

(∀𝑟.𝐷)ℐ def= {𝑎, 𝑏 ∈ Δℐ | for every 𝑏, if (𝑎, 𝑏) ∈ 𝑟ℐ , then 𝑏 ∈ 𝐷ℐ}

(∃𝑟.𝐷)ℐ def= {𝑎, 𝑏 ∈ Δℐ | for some 𝑏, (𝑎, 𝑏) ∈ 𝑟ℐ and 𝑏 ∈ 𝐷ℐ}

■

2.2 AXIOMS

In Description Logics, the facts are expressed as axioms. Those facts are separate in TBox
(for general concept inclusions), RBox (for role inclusion axioms) and ABox (for assertions).

Definition 2.2 (General concept inclusion). Let 𝐷, 𝐸 be 𝒜ℒ𝒞ℋ concepts. An axiom 𝐷 ⊑ 𝐸

is called a general concept inclusion (GCI). ■

Definition 2.3 (Role inclusion axiom). Let 𝑟, 𝑠 be role names. An axiom of the form 𝑟 ⊑ 𝑠 is
called a role inclusion axiom (RIA). ■

Definition 2.4 (Concept assertion). Let 𝐷 be an 𝒜ℒ𝒞ℋ concept and 𝑎 be an individual
name. An axiom of the form 𝐷(𝑎) is called a concept assertion. ■

Definition 2.5 (Concept assertion). Let 𝑅 be an 𝒜ℒ𝒞ℋ role and 𝑎, 𝑏 be individual names.
An axiom of the form 𝑅(𝑎, 𝑏) is called a role assertion. ■

Definition 2.6 (TBox, RBox, ABox and knowledge base). A TBox 𝒯 is a set of GCIs. A
RBox ℛ is a set of RIAs. An ABox 𝒜 is a set of (concept and role) assertions. We denote
𝒦 = 𝒯 ∪ ℛ ∪𝒜 as a knowledge base (KB). ■

Example 2.2. Let C = {Animal, Cat, CatOwner, CatLover} be the set of concepts de-
noting animals, cats, people who own cats, and people who love cats, respectively; R =
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{hasPet, hasCat} be the set of roles denoting who has a pet and who has a cat respectively;
and I = {renan, darwin} denoting elements in this domain.

With 𝒯 , we define the following TBox:

𝒯 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∃hasCat.Cat ⊑ CatOwner,

CatLover ⊑ ∃hasCat.Animal,

CatLover ⊑ ∀hasPet.Cat

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
representing, respectively, that “who has a cat is a cat owner”, “cat lover is who has an animal
as a cat”, and “cat lover is someone who only has cats as a pet”. With ℛ, we define the
following RBox:

ℛ =
{︂

hasCat ⊑ hasPet
}︂

representing that “who has a cat is someone who has a pet”. Lastly, with 𝒜, we define the
following ABox:

𝒜 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Cat(darwin),

(Animal ⊓ ¬Cat)(renan),

hasCat(renan, darwin)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
representing, respectively, that “darwin is a cat”, “renan is an animal and is not a cat”, and
“renan has darwin as his cat”. In general, a role assertion is read assuming that the first
argument represents the subject and the last represents the object of a sentence. △

Definition 2.7 (Satisfaction). Let ℐ be an interpretation; 𝐷, 𝐸 be 𝒜ℒ𝒞ℋ concepts; 𝑟, 𝑠 be
role names; and 𝑎, 𝑏 be individual names. The satisfaction relation ⊩ is defined as follows:

• ℐ ⊩ 𝐷 ⊑ 𝐸 if 𝐷ℐ ⊆ 𝐸ℐ ;

• ℐ ⊩ 𝑟 ⊑ 𝑠 if 𝑟ℐ ⊆ 𝑠ℐ ;

• ℐ ⊩ 𝐷(𝑎) if 𝑎ℐ ∈ 𝐷ℐ ; and

• ℐ ⊩ 𝑟(𝑎, 𝑏) if (𝑎ℐ , 𝑏ℐ) ∈ 𝑟ℐ .

■

If an interpretation ℐ satisfies every GCI (RIA) in a TBox 𝒯 (RBox ℛ) we say that ℐ is a
model of 𝒯 (ℛ). Thus, if an interpretation ℐ satisfies 𝒦 we say ℐ is a model of 𝒦.
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2.3 REASONING

The main advantage of DLs as a logic-based formalism is the capability to entail new facts
from those modelled. The common reasoning tasks for DLs are checking the satisfiability of
concepts, subsumption of concepts and roles, and consistency of knowledge bases.

Definition 2.8 (Entailment). Let 𝒦ℬ be an 𝒜ℒ𝒞ℋ knowledge base and 𝛼 be an axiom (GCI,
RIA or an assertion). We say 𝒦ℬ entails 𝛼, denoted with 𝒦ℬ |= 𝛼, if ℐ ⊩ 𝒦ℬ only if ℐ ⊩ 𝛼,
for every interpretation ℐ. ■

Example 2.3. Assume 𝒦 = 𝒯 ∪ ℛ ∪ 𝒜 be a knowledge base composed by the TBox, RBox
and ABox from Example 2.2. We have that:

• 𝒦 |= Animal(renan) since renan is an animal and not a cat;

• 𝒦 |= hasPet(renan, darwin) since hasCat ⊑ hasPet ∈ ℛ and hasCat(renan, darwin) ∈

𝒜;

• 𝒦 |= CatOwner(renan) since who has a cat is a cat owner and renan has a cat (darwin);

• 𝒦 ̸|= CatLover(renan) since is not sure that every pet of renan is a cat.

△

Definition 2.9 (Basic reasoning tasks). Let 𝒦 = 𝒯 ∪ℛ∪𝒜 be a knowledge base; 𝐷 and 𝐸

be 𝒜ℒ𝒞ℋ concepts; 𝑟 and 𝑠 be role names; and 𝑎 and 𝑏 be individual names. We say that:

• 𝐷 is satisfiable with respect to 𝒯 if there exists an interpretation ℐ s.t. 𝑎ℐ ∈ 𝐷ℐ , for
some 𝑎ℐ ∈ Δℐ ;

• 𝐷 is subsumed by 𝐸 with respect to 𝒯 if 𝐷ℐ ⊆ 𝐸ℐ , for every model ℐ of 𝒯 ;

• 𝑟 is subsumed by 𝑠 with respect to ℛ if 𝑟ℐ ⊆ 𝑠ℐ , for every model ℐ of ℛ;

• 𝒦 is consistent if there exists a model of 𝒦;

• 𝒦 is valid if each interpretation ℐ is a model of 𝒦.

■

With those basic reasoning tasks, we can specify more complex reasoning tasks as classi-

fication of a TBox, instance retrieval and realisation (BAADER et al., 2017).
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2.4 CONCLUNDING REMARKS

Description logics are well-known formalisms and the core of Semantic Web (BERNERS-LEE;

HENDLER; LASSILA, 2001). They are built with elements, concepts, and roles categorised by
their power of expressiveness.

In the next chapter, we discuss a reasoning method for description logic called the con-
nection method. It is a direct proof method that can check whether a fact is entailed from a
knowledge base.
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3 A CONNECTION METHOD FOR 𝒜ℒ𝒞ℋ

In this chapter, we revisit the core definitions and theorems of a connection method for
description logics. In order to illustrate the target language 𝒜ℒ𝒞ℋ we present a simpler version
of 𝒜ℒ𝒞ℋ𝒬= 𝜃 − 𝐶𝑀 (FREITAS; VARZINCZAK, 2018), excluding cardinality restrictions and
equalities of terms.

The connection method is a direct method in the sense that it proves the validity of
formulae instead of searching for inconsistencies, as in refutation methods, such as resolution
and tableaux. To check whether {𝛼, 𝛽} |= 𝛾 in first-order logic (FOL), the validity of the
formula |= (𝛼 ∧ 𝛽) → 𝛾 must be proven, as the well-known Deduction theorem establishes.
Therefore, the formula ¬𝛼 ∨ ¬𝛽 ∨ 𝛾 (a disjuction) must be valid. Thus, the effects for the
validity procedure are: (i) the formula to be proven must be in Disjunctive Normal Form (DNF);
(ii) premises are negated (iii) free variables are existentially quantified; (iv) FOL Skolemization
applies over universally-quantified variables; and (v) the conclusion is not negated (FREITAS;

OTTEN, 2016).

3.1 NORMAL FORM

A connection method represents a formula as a matrix. However, normal forms are required
to represent those formulas on the matrix. The connection method for FOL (BIBEL, 1987) re-
quires formulas in the Disjunctive Normal Form (DNF) to represent them. The connection
method for 𝒜ℒ𝒞 requires axioms in two-lined disjunctive normal form. This form easily con-
verts axioms to matrices, avoiding complex translation and unnecessary repetition of literals.
However, the translation still exponentially increases the matrix representation.

Definition 3.1 (Pure conjunction). An 𝒜ℒ𝒞ℋ concept is a pure conjunction if it is defined
by the following grammar:

𝐸̂ ::= C | ¬C | 𝐸̂ ⊓ 𝐸̂ | ∃R.𝐸̂

■

Example 3.1 (Pure conjunction). The following examples are pure conjunctions:

• 𝐴

• ¬𝐴
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• 𝐴 ⊓𝐵 ⊓ (𝐶 ⊓ ∃𝑟.(𝐷 ⊓ 𝐸))

• ∃𝑟.(𝐴 ⊓ ∃𝑠.𝐵)

On the other hand, the following examples are not pure conjunctions:

• 𝐴 ⊔𝐵

• 𝐴 ⊓𝐵 ⊓ (𝐶 ⊓ ∀𝑟.(𝐷 ⊓ 𝐸))

• ∀𝑟.𝐴

△

Definition 3.2 (Pure disjunction). An 𝒜ℒ𝒞ℋ concept is a pure disjunction if it is defined by
the following grammar:

𝐸̌ ::= C | ¬C | 𝐸̌ ⊔ 𝐸̌ | ∀R.𝐸̌

■

Example 3.2 (Pure disjunction). The following examples are pure disjunctions:

• 𝐴

• ¬𝐴

• 𝐴 ⊔𝐵 ⊔ (𝐶 ⊔ ∀𝑟.(𝐷 ⊔ 𝐸))

• ∀𝑟.(𝐴 ⊔ ∀𝑠.𝐵)

On the other hand, the following examples are not pure disjunctions:

• 𝐴 ⊓𝐵

• 𝐴 ⊔𝐵 ⊔ (𝐶 ⊔ ∃𝑟.(𝐷 ⊔ 𝐸))

• ∃𝑟.𝐴

△

The primary reason for defining purity in conceptual expressions is to prevent operators
representing disjunctions from combining with operators representing conjunctions. The defini-
tions lead to literal concepts, such as 𝐴 or ¬𝐴, classified as pure disjunctions and conjunctions.
We allow such classification because their representation does not impact the complexity of
generating the corresponding matrices.
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Definition 3.3 (Two-lined disjunctive normal form). Let 𝐴 be a concept name or its negation;
𝐷 and 𝐸 be 𝒜ℒ𝒞ℋ concepts; and 𝑎 be an individual name. A GCI is in two-lined disjunctive

normal form (two-lined DNF) if it is in one of the following normal forms:1

• 𝐷̂ ⊑ 𝐸̌;

• 𝐴 ⊑ 𝐷̂;

• 𝐷̌ ⊑ 𝐴;

A concept assertion is in two-lined disjunctive normal form if its concept is a literal. ■

Example 3.3. Let C = {𝐴, 𝐵, 𝐶}, R = {𝑟, 𝑠} and I = {𝑎, 𝑏, 𝑐} be the set of concepts, the
set of role names and the set of individual names, respectively. We have that:

• 𝐴 is a pure conjunction and a pure disjunction;

• 𝐴 ⊓ (𝐵 ⊓ 𝐶) is a pure conjunction;

• 𝐴 ⊓ (𝐵 ⊔ 𝐶) is not a pure conjunction, i.e., is an impure conjunction;

• The GCI 𝐴 ⊑ ∃𝑟.(𝐵 ⊓ 𝐶) is in two-lined DNF;

• The assertion (𝐵 ⊔ 𝐶)(𝑎) is not in two-lined DNF.

△

Example 3.4. Let 𝒦 = 𝒯 ∪ ℛ be the following knowledge base:

𝒯 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∃hasCat.Cat ⊑ CatOwner,

CatLover ⊑ ∃hasCat.Animal,

CatLover ⊑ ∀hasPet.Cat

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
ℛ =

{︂
hasCat ⊑ hasPet

}︂

The knowledge base 𝒦 is already in two-line DNF. △
1 We omit RBox axioms since in 𝒜ℒ𝒞ℋ they are already in two-lined DNF.
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3.2 MATRIX REPRESENTATION

The matrix representation of a formula (or a set of axioms) is the clausal form of it. A
clause is a conjunction of literals, and a matrix is a disjunction of clauses. 2

Definition 3.4 (Literal). Let C be a set of concept names, R be a set of role names, and I

be a set of individual names. A literal in 𝒜ℒ𝒞ℋ is defined as follows:

𝐿 ::= C | R | C(I) | R(I, I) | ¬𝐿

■

In addition to the representation indicated by the grammar above, we can associate literals
with horizontal or vertical lines. This occurs when the literal represents restrictions of the form
∀𝑟.𝐷 or ∃𝑟.𝐷. A vertical line is added to the literals to map existential restriction and show
their relationship. Similarly, a horizontal line is added to the related literals when mapping
universal restriction. This is because universal restrictions have OR-based semantics, and since
the matrix represents the disjunctions in separate columns, these literals are also separated
into distinct clauses.

Definition 3.5 (Matrix representation). Let 𝐴 be an atomic concept or its negation; 𝐷 be
a concept (possibly complex); 𝑟 and 𝑠 be role names; 𝑎 and 𝑏 be individual names; 𝐷̂ =

𝐷1 ⊓ · · · ⊓ 𝐷𝑛 be a pure conjunction; and 𝐸̌ = 𝐸1 ⊔ · · · ⊔ 𝐸𝑚 be a pure disjunction. The
matrix and graphical representation of two-lined disjunctive normal forms are shown in Table
1. ■

The Two-lined DNF allows pure conjunctions and pure disjunctions, so a recursive matrix
representation for complex concepts is needed. Table 2 shows the sub-cases and their respective
matrix and graphical representation.

Example 3.5 (Matrix representation of 𝒜ℒ𝒞ℋ concepts). Assume 𝒦 is the knowledge base
of Example 3.4. The matrix representation of 𝒦 is {{hasCat, Cat,¬CatOwner}, {CatLover,

¬hasCat1}, {CatLover,¬Animal1}, {CatLover, hasPet,¬Cat}, {hasCat,¬hasPet}} and its
graphical representation is shown in Figure 1. △
2 As connection method is a direct method, this notion of clauses and matrix is dual to refutation methods

as resolution or tableaux where a clause is a disjunction of literals.



26

Table 1 – Normal forms and their respective matrix and graphical representation.

Normal form Matrix representation Graphical representation

𝐷̂ ⊑ 𝐸̌ {{𝐷1, · · · , 𝐷𝑛,¬𝐸1, · · · ,¬𝐸𝑚}}

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷1

...
𝐷𝑛

¬𝐸1

...
¬𝐸𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐴 ⊑ 𝐷̂
𝑛⋃︀

𝑖=1
{{𝐴,¬𝐷𝑖}}

⎡⎢⎢⎢⎢⎣
𝐴

𝐷1

· · ·
· · ·

𝐴

𝐷𝑛

⎤⎥⎥⎥⎥⎦

𝐸̌ ⊑ 𝐴
𝑚⋃︀

𝑖=1
{{𝐸𝑖,¬𝐴}}

⎡⎢⎢⎢⎢⎣
𝐸1

¬𝐴

· · ·
· · ·

𝐸𝑚

¬𝐴

⎤⎥⎥⎥⎥⎦
𝑟 ⊑ 𝑠 {{𝑟,¬𝑠}}

⎡⎢⎢⎣ 𝑟
¬𝑠

⎤⎥⎥⎦
𝐷(𝑎) {{𝐷(𝑎)}}

⎡⎢⎣ ¬𝐷(𝑎)
⎤⎥⎦

𝑟(𝑎, 𝑏) {{𝑟(𝑎, 𝑏)}}

⎡⎢⎣ ¬𝑟(𝑎, 𝑏)
⎤⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
hasCat

Cat
¬CatOwner

CatLover
¬hasCat

CatLover
¬Animal

CatLover
hasPet
¬Cat

hasCat
¬hasPet

⎤⎥⎥⎥⎥⎥⎥⎦

Figure 1 – Matrix representation of 𝒦 (Example 3.4).

As mentioned before, the connection method is a direct proof method and, as such, rep-
resents axioms of the knowledge base (the premises of the formula) negated. Hence, concept
expressions 𝐸 of subsumption axioms 𝐷 ⊑ 𝐸 are negated in the matrix representation. Fur-
thermore, role subsumptions and assertions follow the same principle of being negated.
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Table 2 – Recursive sub-cases of concepts in a two-lined DNF axiom. Let 𝐸𝑖 be a concept (possibly complex)
in a pure conjunction, pure disjunction, or a restriction as the filler of it.

Sub-case Matrix representation Graphical representation

𝐸𝑖 = 𝐴 {{· · · , 𝐴, · · · }}

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
𝐴
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐸𝑖 = ∃𝑟.𝐴 {{· · · , 𝑟, 𝐴, · · · }}

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
𝑟

𝐴
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐸𝑖 = ∀𝑟.𝐴 {{· · · , 𝑟𝑗, · · · } · · · {· · · , 𝐴𝑗, · · · }}

⎡⎢⎢⎢⎣
· · ·
𝑟

· · ·
¬𝐴

⎤⎥⎥⎥⎦

3.3 CHARACTERISATION OF VALIDITY

The goal of the connection method is to prove that a matrix is valid. The connection
method for FOL does it by looking for complementary predicates over the whole matrix. In our
case, the connection method for𝒜ℒ𝒞ℋ looks for complementary literals over the whole matrix.
To perform that search, we must change our perspective, looking at the matrix horizontally,
searching for complementary literals on its paths.

Definition 3.6 (Query). Let 𝒦ℬ be a knowledge base and 𝛼 be an 𝒜ℒ𝒞ℋ axiom. A query 𝛼

against a knowledge base 𝒦ℬ is a set for which the entailment 𝒦ℬ |= 𝛼 should be proven. ■

Example 3.6 (Matrix representation of a query). Assume that 𝒦 is the knowledge base
of Example 3.4. Let CatLover ⊑ CatOwner be a query against 𝒦. In order to prove that
𝒦 |= CatLover ⊑ CatOwner the matrix shown in Figure 2 must be proven. △

Definition 3.7 (Path). A path through a matrix is a set composed by one literal from each
clause of the matrix. ■

Definition 3.8 (Connection). A connection is a pair of literals with the same concept/role,
but different polarities. ■
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⎡⎢⎢⎢⎢⎢⎢⎢⎣
hasCat

Cat
¬CatOwner

CatLover
¬hasCat

CatLover
¬Animal

CatLover
hasPet
¬Cat

hasCat
¬hasPet

CatOwner(𝑎) ¬CatLover(𝑎)
⎤⎥⎥⎥⎥⎥⎥⎥⎦

Figure 2 – Matrix representation of 𝒦 and a query against it.

Definition 3.9 (Path, matrix and literal complementary). A path is called complementary if
it contains a connection (as a subset). A matrix is called complementary if each of its paths
is complementary. The complement 𝐿 of a literal 𝐿 is ¬𝐴(𝑎) if 𝐿 = 𝐴(𝑎), and it is 𝐴(𝑎) if
𝐿 = ¬𝐴(𝑎) ■

Definition 3.10 (𝜃-substitution). A 𝜃-substitution is a term unification that assigns each
variable to an individual or another variable. ■

Definition 3.11 (𝜃-complementary connection). A 𝜃-complementary connection is a pair of
literals {𝐴(𝑥),¬𝐴(𝑦)} or {𝑟(𝑥, 𝑧),¬𝑟(𝑦, 𝑘)}, with 𝜃(𝑥) = 𝜃(𝑦) and 𝜃(𝑧) = 𝜃(𝑘). ■

Definition 3.12 (Multiplicity). Let 𝑀 be a matrix and 𝐶 be a clause in 𝑀 . The multiplicity

is a function 𝜇 : 𝑀 −→ N that assigns to each clause in 𝑀 a natural number denoting the
number of copies of that clause in the matrix. ■

With 𝑀𝜇, we define the union of the matrix 𝑀 and its 𝜇 clause copies. With 𝑥𝜇, we define
the term 𝑥 from the 𝜇-th copy of a clause.

So, the intuition is if we find a 𝜃-complementary connection in a path, then the whole path
is valid and we do not need to use it further. If every path in a matrix has a 𝜃-complementary
connection, then we are able to establish a relation between the matrix and the axioms which
generate it with the following theorem:

Theorem 3.1 (Matrix characterization). Let 𝒦 be a knowledge base, 𝛼 be an axiom, and 𝑀

be the matrix representation of the query 𝛼 against 𝒦. We have that 𝒦 |= 𝛼 iff there exists

a multiplicity 𝜇, an admissible 𝜃-substitution and a set of connections 𝑆 such that every path

through 𝑀𝜇 contains a 𝜃-complementary connection {𝜃(𝐿1), 𝜃(𝐿2)} ∈ 𝑆.

Example 3.7. In the proof, we use the matrix 𝑀 from Example 3.6 to show that 𝒦 |= 𝛼.
We demonstrate this by establishing a connection for each path of 𝑀 as shown in Figure 3.
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We begin the proof with the sixth clause, {CatOwner(𝑎)}. We connect the literal CatOwner(𝑎)

with ¬CatOwner from the first clause. Since no individual exists in the literal, we substitute
with 𝑎. From the first clause, the remaining underlined literals are left unchanged. Therefore,
no individual is assigned when we connect Cat with ¬Cat in the fourth clause. We then
continue the proof by connecting hasPet with ¬hasPet from the fifth clause.

It is important to note that there are still some literals to be checked, such as hasCat from
the fifth clause, CatLover from the fourth clause, and hasCat from the first clause. When
we connect a literal to its complementary one in a clause, we must prove that the remaining
literals of the former clause and the connected clause also have a connection.

The proof continues as we make connections 4, 5, 6, and 7, shown in Figure 3. The matrix
is valid once there are no remaining literals; therefore, 𝒦 |= 𝛼. △

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hasCat
Cat

¬CatOwner

CatLover
¬hasCat

CatLover
¬Animal

CatLover
hasPet
¬Cat

hasCat
¬hasPet

CatOwner(𝑎) ¬CatLover(𝑎)

1. 𝑎

2. 𝑥
3. (𝑦, 𝑥)4. (𝑦, 𝑥)

5.

6.
7. (𝑎, 𝑥)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 3 – Proof in matrix-style of 𝑀 from Example (3.6).

3.4 THE CALCULUS

Even we establish the relation between connections in the matrix and the validity of ax-
ioms that generate it, the matrix characterisation does not afford a procedure that looks for
connections in a matrix.

Thus, we define a proof calculus to provide a direct proof procedure. The basic structure
(i.e., word) of the proof calculus is a triple ⟨𝐶, 𝑀, Path⟩, where (sub-)clause C is the open
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sub-goal, 𝑀 is the matrix, and Path is the active (sub-)path The rules of the calculus are
applied in an analytical, bottom-up way. The rules and axiom are shown in Figure 4.

Definition 3.13 (Set of atomic concepts). Let C be the set of concept names of a vocabulary.
The set of atomic concepts of C is AC

def= C ∪ {¬𝐴 | 𝐴 ∈ C}. ■

Definition 3.14 (Set of concepts). The set of concepts 𝜏(𝑥, Path) of a term 𝑥 in a path
Path that contains all atomic concepts instantiated by 𝑥 is defined as 𝜏(𝑥, Path) def={𝐷 ∈ AC |

𝐷(𝑥) ∈ Path}. ■

Definition 3.15 (Skolem condition). Let #{·} be the cardinality of a set and C be a set of
concept names. A path Path is ensured by the Skolem condition if at most one atomic name is
underlined for each term in graphical matrix representation. This condition is formally defined
as ∀𝑖∀𝑎#{𝐸𝑖 ∈ C | 𝐸𝑖(𝑎) ∈ Path} ≤ 1. ■

The 𝒜ℒ𝒞 fragment of DL is finite. Then, every search performed in the connection method
must terminate, even when cycles occur. The method detects cycles by analyzing the clauses
copied during the proof. Therefore, we formally define a blocking condition for the calculus.

Definition 3.16 (Blocking condition). Given a path Path, a 𝜃-substitution, a multiplicity 𝜇,
a new individual 𝜃(𝑥𝜇), and the previous individual 𝜃(𝑥𝜇−1); the blocking condition holds if
𝜏(𝜃(𝑥𝜇), Path) ⊆ 𝜏(𝜃(𝑥𝜇−1), Path). ■

Axiom (Ax)
{}, 𝑀, Path

Start Rule (St) 𝐶1, 𝑀, {}
𝜖, 𝑀, 𝜖

, with 𝐶1 ∈𝑀

Reduction Rule (Red) 𝐶, 𝑀, Path ∪ {𝐿2}
𝐶 ∪ {𝐿1}, 𝑀, Path ∪ {𝐿2}

, with 𝐿1 = 𝐿2 or 𝐿1 = ⊤(𝑎)

Extension Rule (Ext) 𝐶2 ∖ {𝐿2}, 𝑀, Path ∪ {𝐿1} ∪ {𝐶2} 𝐶, 𝑀, Path
𝐶 ∪ {𝐿1}, 𝑀, Path ,

with 𝐿1 = 𝐿2 and𝐶2 ∈𝑀

Copy Rule (Cop) 𝐶 ∪ {𝐿1}, 𝑀 ∪ {𝐶𝜇
2 }, Path

𝐶 ∪ {𝐿1}, 𝑀, Path ,

where 𝐶𝜇
2 is a copy of 𝐶1, 𝐿2 ∈ 𝐶𝜇

2 , 𝜃(𝐿1) = 𝜃(𝐿2), and the blocking condition holds

Figure 4 – The 𝒜ℒ𝒞ℋ connection calculus.
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In the proof procedure, we start without a specific goal or path (represented by 𝜀) and
apply the Start rule to some clause in 𝑀 . If this results in an empty set as the goal, we close
that branch with the Axiom rule. If a branch remains open after starting with a clause, we
backtrack and choose another clause in 𝑀 to apply the Start rule.

Different rules connect literals to the goal in different ways during the proof. The Reduction

rule is applied when a complementary literal is already on the active path. This means that the
path contains a complementary set. The Extension rule is triggered when another clause with
a complementary literal is found. The proof is then split into two parts to check the remaining
goals (without that complementary literal) and the new goal (the clause found).

A significant aspect of this method is the introduction of the Copy rule. This rule allows for
creating a new clause from another clause in the matrix, provided that the blocking condition
is satisfied. Moreover, it is essential to follow each instance of copying with an Extension or
Reduction rule to ensure the termination of the calculus.

Figure 5 shows a proof for 𝑀 from Example 3.6 in calculus-style.
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3.5 CONCLUDING REMARKS

In this chapter, we revisited a connection method for description logics. In particular, we are
interested in a fragment of 𝒜ℒ𝒞ℋ𝒬= 𝜃 − 𝐶𝑀 (FREITAS; VARZINCZAK, 2018) that coincides
with our target language 𝒜ℒ𝒞ℋ. The connection method demonstrates a knowledge base
entails a query if their matrix representation has connections for each path of the matrix.
Furthermore, we show an 𝒜ℒ𝒞ℋ connection calculus that provides a procedure to look for
connections in a matrix. It is a decision procedure and its demonstrations are available at
<https://cin.ufpe.br/~fred/RR.pdf>.
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4 DEFEASIBLE DESCRIPTION LOGICS

In this chapter, we revisit 𝒜ℒ𝒞ℋ∙, an extension of description logics for non-monotonic
reasoning. It extends the classical DL𝒜ℒ𝒞ℋ representing and reasoning for typical instances of
concepts and relations. The core of this chapter draws on the paper “A Note on a Description
Logic of Concept and Role Typicality for Defeasible Reasoning Over Ontologies”, wrote by
Ivan Varzinczak (VARZINCZAK, 2018).

The defeasible DL 𝒜ℒ𝒞ℋ∙ (VARZINCZAK, 2018) is an extension of 𝒜ℒ𝒞ℋ with typicality
operators on complex concepts and role names. Intuitively, a typical concept expression denotes
the most typical (alias normal) objects in the class, whereas a typical role expression denotes
the most typical instances of the relationship represented by it.

4.1 THE LANGUAGE OF 𝒜ℒ𝒞ℋ∙’S CONCEPTS

We assume finite sets of concept, role, and individual names, denoted, resp., with C, R,
and I. With 𝐴, 𝐵, . . . we denote atomic concepts, with 𝑟, 𝑠, . . . role names, and with 𝑎, 𝑏, . . .

individual names. Complex roles of 𝒜ℒ𝒞ℋ∙ are denoted with 𝑅, 𝑆, . . . and defined by the rule:

𝑅 ::= R | ∙𝑅

Complex concepts of 𝒜ℒ𝒞ℋ∙ are denoted with 𝐷, 𝐸, . . . and are built according to the
following grammar:

𝐷 ::= C | ⊤ | ⊥ | ¬𝐷 | 𝐷 ⊓𝐷 | 𝐷 ⊔𝐷 | ∀𝑅.𝐷 | ∃𝑅.𝐷 | ∙𝐷

Example 4.1 (Wizarding-world scenario). Assume we are interested in modeling facts about
the wizarding-world and its wonderful features. We have the atomic concepts C = {Muggle,

Wizard, PureBloodWizard} representing, respectively, the class of muggles, wizards, and pure
blood wizards. As for the set of atomic roles, we have the set R = {marriedTo, hasPartner},
representing, a marriage and a partnership between two people (wizards or muggles). The set
of individuals I is {hermione, ronWeasley}. The complex concept ∙Muggle denotes the set of
typical (normal) muggles and ∙hasPartner denotes a typical partnership relation. △

The semantics of 𝒜ℒ𝒞ℋ∙ extends that of classical 𝒜ℒ𝒞ℋ and is in terms of partially-
ordered structures called bi-ordered interpretations. Before introducing these, we recall a few
notions.
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Definition 4.1 (Strict partial order). Let < be a binary relation on a given set 𝑋. We say
that < is a strict partial order if it is irreflexive and transitive. ■

Definition 4.2 (Minimal elements). Let < be a strict partial order. If < is a strict partial
order on a given set 𝑋, with min< 𝑋 def= {𝑥 ∈ 𝑋 | there is no 𝑦 ∈ 𝑋 s.t. 𝑦 < 𝑥} we denote
the minimal elements of 𝑋 w.r.t. <. ■

Definition 4.3 (Well-founded). Let < be a strict partial order. We say < is well-founded on
a given set 𝑋 if for every ∅ ≠ 𝑋 ′ ⊆ 𝑋, we have min< 𝑋 ′ ̸= ∅. ■

Definition 4.4 (Bi-ordered interpretation). An 𝒜ℒ𝒞ℋ∙ bi-ordered interpretation is a tuple
𝒪 def= ⟨Δ𝒪, ·𝒪, <𝒪,≪𝒪⟩ such that:

• ⟨Δ𝒪, ·𝒪⟩ is a classical 𝒜ℒ𝒞ℋ interpretation;

• <𝒪⊆ Δ𝒪 ×Δ𝒪; and

• ≪𝒪⊆ (Δ𝒪 ×Δ𝒪)× (Δ𝒪 ×Δ𝒪).

where both <𝒪 and ≪𝒪 are well-founded strict partial orders. ■

Given 𝒪 = ⟨Δ𝒪, ·𝒪, <𝒪,≪𝒪⟩, the intuition of Δ𝒪 and ·𝒪 is the same as in a stan-
dard 𝒜ℒ𝒞ℋ interpretation. The intuition underlying the orderings <𝒪 and ≪𝒪 is that they
play the role of preference relations (or normality orderings): the objects (resp. pairs) that are
lower down in the ordering <𝒪 (resp. ≪𝒪) are deemed more normal (or typical) than those
higher up in <𝒪 (resp.≪𝒪). Within the context of (the interpretation of) a concept 𝐶 (resp.
role 𝑅), <𝒪 (resp. ≪𝒪) therefore allows us to single out the most normal representatives
falling under 𝐶 (resp. 𝑅), which is the intuition of the semantics of concepts (resp. roles) of
the form ∙𝐶 (resp. ∙𝑅):

Definition 4.5 (Semantics of 𝒜ℒ𝒞ℋ∙). A bi-ordered interpretation 𝒪 = ⟨Δ𝒪, ·𝒪, <𝒪,≪𝒪⟩
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interprets 𝒜ℒ𝒞ℋ∙ concepts in the following way:

⊤𝒪 def= Δ𝒪

⊥𝒪 def= ∅

(𝐷 ⊓ 𝐸)𝒪 def= 𝐷𝒪 ∩ 𝐸𝒪

(𝐷 ⊔ 𝐸)𝒪 def= 𝐷𝒪 ∪ 𝐸𝒪

(¬𝐷)𝒪 def= Δ𝒪 ∖𝐷𝒪

(∀𝑅.𝐷)𝒪 def= {𝑎 ∈ Δ𝒪 | ∀𝑏.(𝑎, 𝑏) ∈ 𝑅𝒪 −→ 𝑏 ∈ 𝐷𝒪}

(∃𝑅.𝐷)𝒪 def= {𝑎 ∈ Δ𝒪 | ∃𝑏.(𝑎, 𝑏) ∈ 𝑅𝒪 ∧ 𝑏 ∈ 𝐷𝒪}

(∙𝐶)𝒪 def= min
<𝒪

𝐶𝒪

(∙𝑅)𝒪 def= min
≪𝒪

𝑅𝒪

■

Hence, to be a typical element of a concept (resp. role) amounts to being one of the most
preferred elements in the interpretation of that concept (resp. role). It is easy to see that the
typicality operators are both idempotent.

Example 4.2 (Semantics). Let 𝒪 be a bi-ordered interpretation such that:

• 𝐴𝒪 = {𝑥2, 𝑥3};

• 𝐵𝒪 = {𝑥1, 𝑥2, 𝑥3};

• 𝑟𝒪 = {(𝑥1, 𝑥2), (𝑥1, 𝑥3)};

• <𝒪= {(𝑥1, 𝑥2), (𝑥2, 𝑥3)};

• ≪𝒪= {((𝑥1, 𝑥2), (𝑥1, 𝑥3))}.

Then, we have (∙𝐴)𝒪 = {𝑥2}, (∙𝐵)𝒪 = {𝑥1}, and (∙𝑟)𝒪 = {(𝑥1, 𝑥2)}. △

4.2 REASONING

The definitions of axiom, GCI, assertion, TBox, RBox (allowing for role subsumption axioms
of the form 𝑅 ⊑ 𝑆) and ABox are as in the classical 𝒜ℒ𝒞ℋ case. If 𝒯 , ℛ and 𝒜 are,
respectively, a TBox, an RBox and an ABox, with 𝒦 = (𝒯 ,ℛ,𝒜) we denote henceforth a
knowledge base (alias ontology), frequently abbreviated as KB.
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Definition 4.6 (Satisfaction). Let 𝒪 be an bi-ordered interpretation; 𝐷, 𝐸 be 𝒜ℒ𝒞ℋ∙ con-
cepts; 𝑅, 𝑆 be roles; and 𝑎, 𝑏 be individual names. The satisfaction relation ⊩ is defined as
follows:

• 𝒪 ⊩ 𝐷 ⊑ 𝐸 if 𝐷𝒪 ⊆ 𝐸𝒪;

• 𝒪 ⊩ 𝑅 ⊑ 𝑆 if 𝑅𝒪 ⊆ 𝑆𝒪;

• 𝒪 ⊩ 𝐷(𝑎) if 𝑎𝒪 ∈ 𝐷𝒪; and

• 𝒪 ⊩ 𝑅(𝑎, 𝑏) if (𝑎𝒪, 𝑏𝒪) ∈ 𝑅𝒪.

■

Definition 4.7 (Preferentially entailment). Let 𝒦ℬ be an 𝒜ℒ𝒞ℋ∙ knowledge base and 𝛼 be
an axiom. We say 𝒦ℬ preferentially entails 𝛼, denoted with 𝒦ℬ |= 𝛼, if 𝒪 ⊩ 𝒦ℬ only if
𝒪 ⊩ 𝛼, for every bi-ordered interpretation 𝒪. ■

Example 4.3 (Wizarding-World Scenario). Below we have an example of an 𝒜ℒ𝒞ℋ∙ knowl-
edge base 𝒦 = (𝒯 ,ℛ,𝒜) for the wizarding world scenario.

𝒯 =

⎧⎪⎪⎨⎪⎪⎩
∙Muggle ⊑ ¬Wizard,

PureBloodWizard ⊑ ∀hasPartner.Wizard

⎫⎪⎪⎬⎪⎪⎭
ℛ =

{︂
marriedTo ⊑ ∙hasPartner

}︂

𝒜 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Muggle(hermione),

PureBloodWizard(ronWeasley),

marriedTo(ronWeasley, hermione)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
△

4.3 CONCLUDING REMARKS

In this chapter we discuss 𝒜ℒ𝒞ℋ∙, a defeasible extension of 𝒜ℒ𝒞ℋ. The intuition is to
represent most typical (normal) instances and pairs of instances in a strict partial order. As
concept expression, we denote the most typical instances of a concept or a role with the
typicality operator ∙.
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In the next chapter, we present a connection method for a defeasible extension of 𝒜ℒ𝒞
(FERNANDES; FREITAS; VARZINCZAK, 2021), presented in the Proceedings of the 34th Interna-
tional Workshop on Description Logics (DL 2021)



Part II

Contributions



40

5 A CONNECTION METHOD FOR A DEFEASIBLE EXTENSION OF 𝒜ℒ𝒞ℋ∙

This chapter introduces a method for reasoning in the description logic 𝒜ℒ𝒞ℋ∙. The
method follows a clausal approach, normalizing the input into matrix form and facilitating the
search for proofs.

One of the main challenges in reasoning within 𝒜ℒ𝒞ℋ∙ comes from the presence of the
typicality operator, which applies to concepts and roles. These operators add complexity by
representing both positive and negative literals internally. The proposed method addresses this
challenge by providing a structured way to handle the typicality operator, allowing for reasoning
within the defeasible description logic.

In that regard, (i) we use the language of 𝒜ℒ𝒞ℋ extended with a typicality operator on
concepts and another one on roles; (ii) we revisit the definition of a matrix representation of a
knowledge base and establish the conditions for a given axiom to be provable from this matrix
with a new normal form; (iii) we show how to handle term unification and define an adequate
blocking condition in the presence of typicality operators; and (iv) we establish correctness,
completeness, and termination relying only on defeasible description logic semantics.

Assume we want to model facts about the wizarding world using description logic. The
following formulas represent the scenario using the logic 𝒜ℒ𝒞ℋ∙. In this example, we use the
typicality operator on concepts and roles, which adds complexity to the representation while
keeping the example simple enough for clear understanding.

We aim to model that someone married to a pure-blood wizard is considered a typical
wizard and that someone who typically loves another is married to that person. Additionally,
we want to represent that Harry Potter typically loves Ginny Weasley, a pure-blood wizard.
Below is an 𝒜ℒ𝒞ℋ∙ knowledge base that describes this scenario in DL:

Example 5.1 (Wizarding-World Scenario (2)).

𝒯 =
{︂
∃marriedTo.PureBloodWizard ⊑ ∙Wizard

}︂

ℛ =
{︂
∙loves ⊑ marriedTo

}︂

𝒜 =

⎧⎪⎪⎨⎪⎪⎩
∙loves(harryPotter, ginWeasley)

PureBloodWizard(ginWeasley)

⎫⎪⎪⎬⎪⎪⎭
△
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5.1 NORMAL FORM

The first step in our approach is to normalize the knowledge base. This step is crucial
because it simplifies the axioms and allows them to be represented as a matrix.

Similar to previous methods for 𝒜ℒ𝒞 (FREITAS; OTTEN, 2016) and 𝒜ℒ𝒞ℋ𝒬=(FREITAS;

VARZINCZAK, 2018), our normal form uses pure disjunctions and conjunctions.

Definition 5.1 (Pure disjunction and pure conjunction). A pure disjunction (𝐷̌) and a pure

conjunction (𝐸̂) are recursively defined as follows:

𝐷̌ ::= C | ¬C | 𝐷̌ ⊔ 𝐷̌ | ∀R.C 𝐸̂ ::= C | ¬C | 𝐸̂ ⊓ 𝐸̂ | ∃R.C

■

However, for 𝒜ℒ𝒞ℋ∙, we need extra attention for the typicality operators, as they intro-
duce both positive and negative literals into the same axiom’s semantics. This complexity is
addressed by transforming the knowledge base into Bi-Typicality Normal Form (BTNF), where
the typicality operator is limited to atomic concepts and roles.

The normalization process eliminates complex axioms, especially those with nested opera-
tors, making it easier to translate the axioms into a matrix representation.

Definition 5.2 (Bi-Typicality Normal Form). Let 𝐸̂ be a pure conjunction, 𝐷̌ be a pure
disjunction, 𝑟 and 𝑠 be role names, 𝐴 and 𝐵 be atomic concepts, and 𝑎 and 𝑏 be individual
names. A TBox, RBox or ABox axiom is in bi-typicality normal form (BTNF) if it is in one of
the forms shown in Table 3.

Table 3 – Axioms in Bi-Typicality Normal Form (BTNF).

TBox ABox RBox
𝐸̂ ⊑ 𝐷̌ 𝐴(𝑎) ∙𝑟 ⊑ 𝑠

𝐴 ⊑ ∃𝑟.𝐵 ¬𝐴(𝑎) 𝑟 ⊑ ∙𝑠
∀𝑟.𝐴 ⊑ 𝐵 𝑟(𝑎, 𝑏)
𝐴 ⊑ ∙𝐵 ¬𝑟(𝑎, 𝑏)

𝐴 ⊑ ¬∙𝐵
¬∙𝐴 ⊑ 𝐵

∙𝐴 ⊑ 𝐵

A knowledge base is in BTNF if all its axioms are in BTNF. ■
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The knowledge base in Example 5.1 is not in TNF once the TBox contains a non-literal
concept with a typical concept and the ABox contains a role assertion with a typical role. We
can obtain a semantically equivalent version by replacing the typical role with a new role name
and adding a role subsumption between the new role name and ∙loves.

Example 5.2 (Bi-typicality normal form). The following knowledge base 𝒦 = (𝒯 ,ℛ,𝒜) is in
BTNF:

𝒯 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∃marriedTo.PureBloodWizard ⊑ 𝑁

𝑁 ⊑ ∙Wizard

∙Wizard ⊑ 𝑁

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
ℛ =

⎧⎪⎪⎨⎪⎪⎩
∙loves ⊑ marriedTo

𝑁𝑟 ⊑ ∙loves

⎫⎪⎪⎬⎪⎪⎭

𝒜 =

⎧⎪⎪⎨⎪⎪⎩
𝑁𝑟(harryPotter, ginWeasley)

PureBloodWizard(ginWeasley)

⎫⎪⎪⎬⎪⎪⎭
△

It is important to note that not all knowledge bases are in BTNF. Converting such bases
into others in BTNF will be necessary. However, one must ensure that these entail the same
as the originals.

Theorem 5.1. Given a knowledge base 𝒦, a decision procedure exists to obtain a BTNF of

𝒦.

We provide a decision procedure in Appendix A that converts any knowledge base to a
semantically equivalent version in BTNF.

Dealing with complex axioms in the TBox presents a challenge when converting a knowl-
edge base to BTNF. The normalization process can create many new axioms as the original
expressions are simplified. This requires careful attention because an overly complex TBox
can significantly increase the number of clauses in the matrix. Despite this, the advantages of
working with a simplified, normalized base usually outweigh the challenges, especially regarding
clarity and computational feasibility.
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5.2 MATRIX CHARACTERISATION

DL reasoning methods generally do not use variables in their proof structures. Instead, such
methods build models, adopting the instantiation of individuals for TBox axioms or creating
new individuals when applying the existential quantifier, for example.

In our case, we followed the same approach for first-order logic and used variables. Similar
to Otten’s comparison in the modal case (OTTEN, 2022), approaches that do not use variables
need to guess the correct sequence of rule application and individual (constant) instantiation.
The use of variables, in this case, is helpful as it allows us to delay the choice of which individual
to instantiate until the method can fully prove a branch, thereby enhancing the effectiveness
of our method.

The vocabulary to build matrices contains a set V for variables; a set A for new individuals;
and the previously defined sets C, R, and I. With T = V ∪ A ∪ I we represent the set of
terms. Besides, we represent the relation between terms and pairs of terms with < and ≪,
respectively. They are the syntactic counterparts of the preference relations on objects and
pairs of objects in the semantics.

Definition 5.3 (Literal). A literal in 𝒜ℒ𝒞ℋ∙ is defined as follows:

𝐿 ::= C(T) | R(T, T) | T < T | (T, T)≪ (T, T) | ¬𝐿

■

Example 5.3 (Literal). Given V = {𝑥}, A = {𝑎′}, I = {ginWeasley}, R = {loves}, and
C = {Wizard, PureBloodWizard}, the following cases are literals in 𝒜ℒ𝒞ℋ∙:

• Wizard(ginWeasley)

• ¬loves(𝑥, 𝑎′)

• (ginWeasley, ginWeasley)≪ (𝑥, 𝑎′)

• ¬(ginWeasley < 𝑥)

△

As usual, we define a clause and a matrix in the 𝒜ℒ𝒞ℋ∙ case.

Definition 5.4 (Clause). A clause is a set of literals. ■
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Definition 5.5 (Matrix). A matrix is a set of clauses. ■

The matrix representation of TBox axioms in BTNF is shown in Table 4. Analogously, the
matrix representation of RBox axioms and ABox assertions in BTNF are shown in Table 5.

Table 4 – Matrix representation of TBox axioms.

Axiom (𝛼) Visual representation (𝑀(𝛼))

𝐸̂ ⊑ 𝐷̌




E1(x)

· · ·
En(x)

¬D1(x)

· · ·
¬Dm(x)




𝐴 ⊑ ∃𝑟.𝐵




A(x)

¬r(x, ax)
A(x)

¬B(ax)




∀𝑟.𝐴 ⊑ 𝐵




¬r(x, ax)
¬B(x)

A(ax)

¬B(x)




𝐴 ⊑ ¬∙𝐵




A(x)

B(x)

¬(ax < x)

A(x)

B(x)

¬B(ax)

A(x)

B(x)

B(y)

(y < ax)




∙𝐴 ⊑ 𝐵




A(x)

¬(ax < x)

¬B(x)

A(x)

¬A(ax)

¬B(x)

A(x)

A(y)

(y < ax)

¬B(x)




𝐴 ⊑ ∙𝐵




A(x)

¬B(x)

A(x)

(y < x)

B(y)




¬∙𝐴 ⊑ 𝐵




¬A(x)

¬B(x)

A(y)

¬(y < x)

¬B(x)



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Table 5 – Matrix representation for RBox and ABox axioms.

Axiom Visual representation

∙𝑟 ⊑ 𝑠




r(x, y)

¬((ax, by) ≪ (x, y))

¬s(x, y)

r(x, y)

¬r(ax, by)
¬s(x, y)

r(x, y)

r(z, k)

(z, k) ≪ (ax, by)

¬s(x, y)




𝑟 ⊑ ∙𝑠




r(x, y)

¬s(x, y)
r(x, y)

s(z, k)

(z, k) ≪ (x, y)




𝐴(𝑎)


 ¬A(a)




¬𝐴(𝑎)


 A(a)




𝑟(𝑎, 𝑏)


 ¬r(a, b)




¬𝑟(𝑎, 𝑏)


 r(a, b)




Please note that in our matrix representation, we do not use underline as in the case of the
DL 𝒜ℒ𝒞ℋ. In Chapter 3, underlines were necessary to indicate which terms of a clause should
be considered during a connection. However, such information is not required here since the
terms are explicitly presented.

Example 5.4 (Matrix representation of a TBox). Given the TBox in BTNF from Example
5.2 and following Table 4, the matrix representation1 𝑀 is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

mT(𝑥0, 𝑥1)
PBW(𝑥1)
¬𝑁(𝑥0)

𝑁(𝑥2)
¬W(𝑥2)

𝑁(𝑥3)
W(𝑥4)

(𝑥4 < 𝑥3)

¬𝑁(𝑥5)
W(𝑥5)

¬(𝑐𝑥5 < 𝑥5)

¬𝑁(𝑥6)
W(𝑥6)
¬W(𝑐𝑥6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
△

1 We abbreviate the concept and role names for clarity in the example.
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The matrix is a structural representation of the knowledge base. In that sense, there is no
relationship between the literals and the 𝒜ℒ𝒞ℋ∙ semantics.

Definition 5.6 (Path). Given a matrix 𝑀 , a path is a set containing exactly one literal from
each clause of 𝑀 . ■

We recall that the order of literals does not matter in a path because it is a set.

Definition 5.7 (Term substitution). A term substitution is a function 𝜎 : V −→ A ∪ I that
maps variables to (possibly new) individuals. We extend it to literals, clauses and matrices as
follows:

1. 𝜎(𝐴(𝑡)) = 𝐴(𝜎(𝑡)), for all 𝐴 ∈ C

2. 𝜎(𝑟(𝑡, 𝑢)) = 𝑟(𝜎(𝑡), 𝜎(𝑢)), for all 𝑟 ∈ R

3. 𝜎(𝑡 < 𝑢) = 𝜎(𝑡) < 𝜎(𝑢)

4. 𝜎((𝑡, 𝑢)≪ (𝑣, 𝑘)) = (𝜎(𝑡), 𝜎(𝑢))≪ (𝜎(𝑣), 𝜎(𝑘))

5. 𝜎(¬𝐿) = ¬(𝜎(𝐿)), for all literal 𝐿

6. 𝜎({𝐿1, · · · , 𝐿𝑛}) = {𝜎(𝐿1), · · · , 𝜎(𝐿𝑛)}, for all 1 ≤ 𝑖 ≤ 𝑛 and for all literal 𝐿𝑖

7. 𝜎({𝐶1, · · · , 𝐶𝑚}) = {𝜎(𝐶1), · · · , 𝜎(𝐶𝑚)}, for all 1 ≤ 𝑗 ≤ 𝑚 and for all clause 𝐶𝑗

■

Example 5.5. Given the set of variables V = {𝑥, 𝑦, 𝑧}, the set of individuals I = {harryPotter,
ginWeasley}, and A = {𝑐, 𝑑}. We define a substitution 𝜎 such that:

𝜎 = {𝑥 ∖ harryPotter, 𝑦 ∖ ginWeasley, 𝑧 ∖ 𝑐}

Applying 𝜎 to different elements, we have that:

• 𝜎(Wizard(𝑥)) = Wizard(𝜎(𝑥)) = Wizard(harryPotter)

• 𝜎(loves(𝑥, 𝑦)) = loves(𝜎(𝑥), 𝜎(𝑦)) = loves(harryPotter, ginWeasley)

• 𝜎(𝑥 < 𝑦) = 𝜎(𝑥) < 𝜎(𝑦) = harryPotter < ginWeasley

• 𝜎((𝑥, 𝑦) ≪ (𝑧, 𝑥)) = (𝜎(𝑥), 𝜎(𝑦)) ≪ (𝜎(𝑧), 𝜎(𝑥)) = (harryPotter, ginWeasley) ≪

(𝑐, harryPotter)
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• 𝜎(¬Wizard(𝑥)) = ¬(𝜎(Wizard(𝑥))) = ¬Wizard(harryPotter)

• 𝜎({Wizard(𝑥),¬PureBloodWizard(𝑦), loves(𝑦, 𝑧)}) =

{Wizard(harryPotter),¬PureBloodWizard(ginWeasley), loves(ginWeasley, 𝑐)}

• 𝜎({{Wizard(𝑥), PureBloodWizard(𝑦)}, {loves(𝑥, 𝑧),¬Wizard(𝑧)}}) =

{{Wizard(harryPotter), PureBloodWizard(ginWeasley)},
{loves(harryPotter, 𝑐),¬PureBloodWizard(𝑐)}}

△

We establish the bond between matrices and semantics by associating the paths of the
matrix with the bi-ordered interpretations, thus defining the notion of agreement.

Definition 5.8 (Path agreement to an interpretation). Let 𝑡, 𝑢, 𝑣, and 𝑧 be terms; ℐ be a
bi-ordered interpretation, 𝜎 be a term substitution, and 𝑝 be a path. We say that ℐ agrees

with 𝑝 w.r.t. 𝜎, denoted as ℐ ≈𝜎 𝑝, if:

1. 𝜎(𝑡)ℐ ∈ 𝐴ℐ if ¬𝐴(𝑡) ∈ 𝑝;

2. (𝜎(𝑡)ℐ , 𝜎(𝑢)ℐ) ∈ 𝑟ℐ if ¬𝑟(𝑡, 𝑢) ∈ 𝑝;

3. (𝜎(𝑡)ℐ , 𝜎(𝑢)ℐ) ∈<ℐ if ¬(𝑡 < 𝑢) ∈ 𝑝;

4. ((𝜎(𝑡)ℐ , 𝜎(𝑢)ℐ), (𝜎(𝑣)ℐ , 𝜎(𝑧)ℐ)) ∈≪ℐ if ¬((𝑡, 𝑢)≪ (𝑣, 𝑧)) ∈ 𝑝;

5. 𝜎(𝑡)ℐ ∈ (𝐴)ℐ if 𝐴(𝑡) ∈ 𝑝;

6. (𝜎(𝑡)ℐ , 𝜎(𝑢)ℐ) ∈ (𝑟)ℐ if 𝑟(𝑡, 𝑢) ∈ 𝑝;

7. (𝜎(𝑡)ℐ , 𝜎(𝑢)ℐ) ∈ (<)ℐ if (𝑡 < 𝑢) ∈ 𝑝; and

8. ((𝜎(𝑡)ℐ , 𝜎(𝑢)ℐ), (𝜎(𝑣)ℐ , 𝜎(𝑧)ℐ)) ∈ (≪)ℐ if ((𝑡, 𝑢)≪ (𝑣, 𝑧)) ∈ 𝑝.

■

Definition 5.9 (Matrix agreement to an interpretation). Given a bi-ordered interpretation ℐ
and a matrix 𝑀 . We say that ℐ agrees with 𝑀 , or just ℐ ≈𝑀 if, for each term substitution
𝜎, a path 𝑝 in 𝑀 exists, such that ℐ ≈𝜎 𝑝. ■

Now, we have a bond between matrices and 𝒜ℒ𝒞ℋ∙ semantics in the sense that
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Lemma 5.1. Given two matrices 𝑀1, 𝑀2 and a bi-ordered interpretation ℐ, then ℐ ≈ 𝑀1

and ℐ ≈𝑀2 iff ℐ ≈𝑀1 ∪𝑀2.

Proof. We prove this lemma by showing its contrapositive.
⇒. Assume that ℐ ̸≈𝑀1 ∪𝑀2. Then, exists a term substitution 𝜎 such that ℐ ̸≈𝜎 𝑝, for

all path 𝑝 in 𝑀1 ∪𝑀2. Besides, a path of 𝑀1 ∪𝑀2 is the union of a path of each matrix 𝑀1

and 𝑀2, and 𝜎 is a term substitution for 𝑀1 and 𝑀2. Hence, there exists a term substitution
𝜎 that either ℐ ̸≈𝜎 𝑀1 or ℐ ̸≈𝜎 𝑀2.
⇐. It is analogous to the other part and left to the reader.

Theorem 5.2. Given a bi-ordered interpretation ℐ and a BTNF axiom 𝛼, ℐ ⊩ 𝛼 iff ℐ ≈𝑀(𝛼).

Proof. The proof of this theorem comes from the close relationship between the paths of
𝑀(𝛼) and the semantics of 𝛼.

Example 5.6. To illustrate the result of Theorem 5.2, consider the axiom PureBloodWizard ⊑

∙Wizard. Its matrix representation is:



PureBloodWizard(x)

¬Wizard(x)

PureBloodWizard(x)

Wizard(y)

(y < x)




So, an interpretation ℐ satisfies PureBloodWizard ⊑ ∙Wizard iff PureBloodWizardℐ ⊆

𝑚𝑖𝑛<ℐ (Wizardℐ). As such, for each element 𝑎ℐ ∈ Δℐ either:

1. 𝑎ℐ is an element of (¬PureBloodWizard)ℐ ;

2. 𝑎ℐ is an element of Wizardℐ and there is no 𝑏ℐ ∈ Δℐ s.t. 𝑏ℐ ∈Wizardℐ and 𝑏ℐ <ℐ 𝑎ℐ

The paths containing PureBloodWizard(𝑥) will agree with ℐ for the first condition ele-
ments. To the other elements that hold the second condition, the paths containing ¬Wizard(𝑥)

and either 𝐵(𝑦) or (𝑦 < 𝑥) will agree with ℐ.
△

Theorem 5.2 states a correspondence between matrices and their former axioms. However,
TBox and Rbox axioms, by the semantics of 𝒜ℒ𝒞ℋ∙, can be reused for other individuals
besides the unified until this point. So, instead of using clauses once, we copy them to use
again in further connections.
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Definition 5.10 (Multiplicity). The multiplicity is a function 𝜇 that maps for each clause of
a matrix a natural number denoting the number of copies of such clause. ■

Definition 5.11 (Copy). Given two clauses 𝐶1 and 𝐶2, we say that 𝐶2 is a copy of 𝐶1 if they
have the same literals but new variables. ■

With 𝑀𝜇 we define the matrix 𝑀 and its clause copies. Variables and new individual names
are replaced by non-used variables and new individual names during the copy.

Definition 5.12 (𝑖-th copy). Given a matrix 𝑀 , a clause 𝐶 ∈𝑀 , and a multiplicity 𝜇, with
𝐶𝑖 we denote the 𝑖-th copy of 𝐶 ∈𝑀𝜇, where 1 ≤ 𝑖 ≤ 𝜇(𝐶). ■

Example 5.7 (Copy). Let 𝑥 and 𝑦 be variables, 𝑎 be an individual name, and 𝑀 be the matrix
as follows: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴(𝑥)
¬𝑟(𝑥, 𝑎)
¬𝐵(𝑎)

𝐵(𝑦)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then, the clauses {𝐴(𝑥′),¬𝑟(𝑥′, 𝑎),¬𝐵(𝑎)} and {𝐵(𝑦′)} are copies of the first and second
clause of 𝑀 , where 𝑥′ and 𝑦′ are copies of 𝑥 and 𝑦, respectively. Besides, for this example, we
have that

• 𝜇({𝐴(𝑥),¬𝑟(𝑥, 𝑎),¬𝐵(𝑎)}) def= 1; and

• 𝜇({𝐵(𝑦)}) def= 1.

Finally, {𝐵(𝑦′)} is the first copy of {𝐵(𝑦)} and 𝑀𝜇 is defined as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐴(𝑥)
¬𝑟(𝑥, 𝑎)
¬𝐵(𝑎)

𝐵(𝑦) 𝐴(𝑥′)
¬𝑟(𝑥′, 𝑎)
¬𝐵(𝑎)

𝐵(𝑦′)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

△

Lemma 5.2. Given a bi-ordered interpretation ℐ and a BTNF axiom 𝛼, then ℐ ≈ 𝑀(𝛼) iff

for each multiplicity 𝜇, ℐ ≈𝑀(𝛼)𝜇.
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Proof. We prove this lemma by showing its contrapositive.
⇒. Assume there exists a multiplicity 𝜇 such that ℐ ̸≈ 𝑀(𝛼)𝜇. Then, also exists a term

substitution 𝜎 that ℐ ̸≈𝜎 𝑝, for all path 𝑝 in 𝑀(𝛼)𝜇. By Lemma 5.1 and the fact that 𝑀(𝛼)𝜇 =
𝑖=1⋃︀
𝜇

𝑀(𝛼)𝑖, at least one copy 𝑀(𝛼)𝑗 must not agree with ℐ. Hence, a term substitution 𝜎′

that coincides with the substitutions of 𝑀(𝛼)𝑗 not agree with ℐ. Therefore, ℐ ̸≈𝑀(𝛼).
⇐. Assume a term substitution 𝜎 exists such that ℐ ̸≈𝜎 𝑝, for all path 𝑝 in 𝑀 . Hence,

a term substitution 𝜎′ that contains the substitutions of 𝜎 cannot agree with ℐ for some
multiplicity 𝜇. To illustrate this fact, consider a term substitution for a given individual 𝑎

and a variable 𝑥 that ℐ ̸≈ 𝑀(𝛼). Every term substitution that replaces 𝑥 or its copies with
𝑎 cannot agree with ℐ; otherwise, ℐ ≈ 𝑀(𝛼). Therefore, exists a multiplicity 𝜇 such that
ℐ ̸≈𝑀(𝛼)𝜇.

Definition 5.13 (𝜎-complementary). Given a literal 𝐿, a path 𝑝 and a term substitution 𝜎,
we say that 𝑝 is 𝜎-complementary if {𝜎(𝐿), 𝜎(¬𝐿)} ∈ 𝑝. ■

We say that a matrix 𝑀 is 𝜎-complementary if every path in 𝑀 is 𝜎-complementary.

Example 5.8 (𝜎-complementary path). Let 𝑀 be the matrix as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝐴(𝑥)
¬𝑟(𝑥, 𝑎)
¬𝐵(𝑎)

𝐵(𝑦)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

If we assume 𝜎 as {𝑦∖𝑎}, then the path {¬𝐵(𝑎), 𝐵(𝑦)} is 𝜎-complementary, once 𝜎(𝐵(𝑦)) =

𝐵(𝑎). Otherwise, assuming 𝜎 def={𝑦∖𝑏}, then the path {¬𝐵(𝑎), 𝐵(𝑦)} is not 𝜎-complementary,
once 𝜎(𝐵(𝑦)) = 𝐵(𝑏). △

Theorem 5.3 (Matrix characterisation). Given a knowledge base 𝒦, 𝒦 |= ⊥ iff there exists

a multiplicity 𝜇 and a term substitution 𝜎 such that 𝑀(𝒦)𝜇 is 𝜎-complementary.

Proof. We prove this theorem by showing its contrapositive.
⇒. Assume there is no multiplicity 𝜇 and term substitution 𝜎 such that 𝑀(𝒦)𝜇 is 𝜎-

complementary. Then, for all multiplicity 𝜇 and all term substitution 𝜎, a path 𝑝 exists in the
matrix with no complementary set. As such, 𝑝 must agree with some interpretation ℐ. By
Lemma 5.1, Theorem 5.2, and Lemma 5.2, ℐ ≈𝑀(𝛼), for all 𝛼 ∈ 𝒦. Hence, 𝒦 ̸|= ⊥.
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⇐. Assume 𝒦 ̸|= ⊥. Then, a bi-ordered interpretation ℐ exists, that ℐ ⊩ 𝒦. By Theorem
5.2, Lemma 5.1 and Lemma 5.2, for each multiplicity 𝜇 and each term substitution 𝜎, a path
𝑝 exists in 𝑀(𝒦)𝜇 that agrees with ℐ. Hence, no complementary set exists in 𝑝.

5.3 BLOCKING

Blocking is a mechanism that interrupts the search for proof when cycles are detected within
that proof branch. This feature helps to prevent repetitive searches and avoids unnecessary
iterations, which could otherwise result in an infinite loop.

The blocking notion is inspired by the one proposed in the 𝒜ℒ𝒞ℋ∙ tableaux (VARZINCZAK,
2018), where a term is blocked by the ABox when some conditions are met. Here, instead of
being blocked by the ABox, the term is blocked by the active path of the proof.

Definition 5.14 (𝑟-descendant). Given a path 𝑝, a term substitution 𝜎, a role name 𝑟 or its
negation, and terms 𝑡, 𝑢; 𝑡 is a r-predecessor of 𝑢, or 𝑢 is a r-successor of 𝑡 w.r.t. 𝑝 and 𝜎, if
𝑟(𝜎(𝑡), 𝜎(𝑢)) ∈ 𝑝. The transitive closure of r-predecessor and r-successor are called r-ancestor

and r-descendant, respectively. ■

Example 5.9 (𝑟-descendant). Let 𝑥 𝑦, 𝑎, 𝑏, and 𝑐 be terms; 𝜎 be defined as {𝑥∖𝑎, 𝑦∖𝑏}; 𝑟 be
a role name; and {𝑟(𝑥, 𝑦), 𝑟(𝑦, 𝑐)} be the (active) path. Then, once 𝜎(𝑥) = 𝑎 and 𝜎(𝑦) = 𝑏:

• 𝑎 is a 𝑟-ancestor of 𝑏 and 𝑐;

• 𝑏 is a 𝑟-successor of 𝑎 and is a 𝑟-predecessor of 𝑐; and

• 𝑐 is a 𝑟-descendant of 𝑏 and 𝑎.

△

Definition 5.15 (<-descendant). Given a path 𝑝, a term substitution 𝜎, < or its negation,
and terms 𝑡, 𝑢; 𝑡 is a <-predecessor of 𝑢, or 𝑢 is a <-successor of 𝑡 w.r.t. 𝑝 and 𝜎, if
< (𝜎(𝑡), 𝜎(𝑢)) ∈ 𝑝. The transitive closure of <-predecessor and <-successor are called <-

ancestor and <-descendant, respectively. ■

Example 5.10 (<-descendant). Let 𝑥 𝑦, 𝑎, 𝑏, and 𝑐 be terms; 𝜎 be defined as {𝑥 ∖ 𝑎, 𝑦 ∖ 𝑏};
and {𝑥 < 𝑦, 𝑦 < 𝑐)} be the (active) path. Then, once 𝜎(𝑥) = 𝑎 and 𝜎(𝑦) = 𝑏:

• 𝑎 is a <-ancestor of 𝑏 and 𝑐;
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• 𝑏 is a <-successor of 𝑎 and is a <-predecessor of 𝑐; and

• 𝑐 is a <-descendant of 𝑏, and 𝑎.

△

Definition 5.16 (Set of concepts). Given a term 𝑡, a path 𝑝, and a term substitution 𝜎, the
set of concepts of 𝑡 w.r.t. the path 𝑝, denoted by 𝜏𝜎

𝑝 (𝑡) is

𝜏𝜎
𝑝 (𝑡) = {𝐷 | for all 𝐷(𝜎(𝑡)) ∈ 𝜎(𝑝)}

■

Definition 5.17 (Blocked term). Given two terms 𝑡, 𝑢, a path 𝑝 and a term substitution 𝜎,
we say that 𝑡 is blocked by 𝑢 w.r.t. 𝑝 and 𝜎:

1. if 𝑢 is a 𝑟-ancestor or <-descendant of 𝑡, and

2. 𝜏𝜎
𝑝 (𝑡) ⊆ 𝜏𝜎

𝑝 (𝑢).

■

Example 5.11 (Blocked term). Let harryPotter (h), ginWeasley (g) and ronWeasley (r) be
terms; Wizard (W) and PureBloodWizard (PBW) be concept names; loves (l) be a role
name; and 𝑝 = {l(h, g), h < r, W(h), W(g), PBW(r)} be the (active) path. Then, g is blocked
by h, once h is a l-ancestor of g and

𝜏𝜎
𝑝 (ginWeasley) = {Wizard} ⊆ {Wizard} = 𝜏𝜎

𝑝 (harryPotter).

However, ronWeasley is not blocked by harryPotter, once

𝜏𝜎
𝑝 (ronWeasley) = {PureBloodWizard} ̸⊆ {Wizard} = 𝜏𝜎

𝑝 (harryPotter).

△

When blocking a term, we consider its related concepts, its position within the roles, and
its place in the typicality hierarchy. We focus on these cases because they are where the
connection method can create new individuals.

The underlying principle is that if a term is an 𝑟-descendant of another term and possesses
the same concepts (or even fewer) than its predecessor, the proof path has already confirmed
the potential connections the term could establish. In this scenario, we would be in a loop.
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This same principle applies to the typicality hierarchy. Suppose a term is a <-ancestor of
another term, and its concepts are at most the same as those of its successor. In that case,
duplicate instances already exist in that branch of the proof, and their potential connections
have already been verified.

The definition of blocking aligns with the principles proposed by Varzinczak for the tableau
method in 𝒜ℒ𝒞ℋ∙. However, the connection method incorporates additional concepts, such
as copying clauses during the search process. Hence, we introduce next the concepts of literal
and clause blocking.

Definition 5.18 (Blocked literal). Given a literal 𝐿, a path 𝑝 and a term substitution 𝜎, we
say that 𝐿 is blocked w.r.t. 𝑝 and 𝜎 if:

1. 𝜎(𝐿) ∈ 𝜎(𝑝); or

2. 𝐿 ∈ 𝐶𝑛 and there exists a copied new individual 𝑡𝑛 in 𝐿, such that either 𝑡𝑛−𝑖 is blocked
or 𝜏𝜎

𝑝∪{𝐿}(𝑡𝑛) ⊆ 𝜏𝜎
𝑝∪{𝐿}(𝑡𝑛−𝑖), for some clause 𝐶 ∈𝑀𝜇, some 2 < 𝑛 ≤ 𝜇(𝐶), and some

1 ≤ 𝑖 < 𝑛.

■

Definition 5.19 (Blocked clause). We say that a clause is blocked w.r.t. a path 𝑝 and a term
substitution 𝜎 if some literal 𝐿 ∈ 𝐶 is blocked w.r.t. 𝑝. ■

5.4 CONNECTION CALCULUS

We define the connection method using a formal calculus, as illustrated in Figure 6. The
core structure consists of a triple ⟨𝐶, 𝑀, Path⟩, where 𝐶 represents the goal (the set of
literals), 𝑀 is the matrix, and Path denotes the active path of the proof, which indicates the
current line of reasoning being sought.

The proof begins without a defined goal or path (represented by 𝜀) by applying the Start

rule to a clause in 𝑀 . If the proof arrives at an empty set for the goal, that branch is closed
using the Axiom rule. However, backtracking occurs if a branch remains open for a particular
starting clause, prompting the proof search to select another clause from 𝑀 to apply the Start

rule again.
Calculus connects literals to the goal differently depending on the rule applied during the

proof search. The first rule is called the Reduction Rule. This rule is used when a complemen-
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Axiom (Ax)
{}, 𝑀, Path

Start rule (St) 𝐶1, 𝑀, {}
𝜀, 𝑀, 𝜀

, with 𝐶1 being a blocking-free copy of some 𝐶 ∈𝑀

Reduction rule (Red) 𝐶, 𝑀, Path ∪ {𝐿2}
𝐶 ∪ {𝐿1}, 𝑀, Path ∪ {𝐿2}

, with 𝜎(𝐿1) = 𝜎(𝐿2)

Extension rule (Ext) 𝐶1 ∖ {𝐿2}, 𝑀, Path ∪ {𝐿1} 𝐶, 𝑀, Path
𝐶 ∪ {𝐿1}, 𝑀, Path , with 𝜎(𝐿1) = 𝜎(𝐿2)

and 𝐿2 ∈ 𝐶1, 𝐶1 being a blocking-free copy of some 𝐶2 ∈𝑀

Figure 6 – The calculus.

tary literal is already present on the active path, indicating that the path contains a set of
complementary literals.

The second rule is known as the Extension Rule. This rule is activated when another clause
containing a complementary literal is discovered. When this happens, the proof is divided into
two parts: one part checks the remaining goals without considering the complementary literal,
while the other part addresses the new goal from the clause that was found.

It is important to note that every calculus rule application must ensure the goal is not
blocked by its path. If the goal is blocked, then no rule application should take place.

Definition 5.20 (Proof tree). A proof tree is the tree representation of the applications of
the calculus rules to a given matrix. ■

Definition 5.21 (Connection proof). Given a derivation Proof of a triple ⟨𝐶, 𝑀, Path⟩, we
say that Proof is a connection proof for ⟨𝐶, 𝑀, Path⟩, if there exists a multiplicity 𝜇 and a
substitution 𝜎 such that every leaf of Proof ends with an Axiom. ■

Example 5.12 (Proof tree). Let 𝑀 be a matrix as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑁(𝑎) ¬𝑁(𝑥5)

W(𝑥5)
¬(𝑐𝑥5 < 𝑥5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
A proof tree of the matrix 𝑀 is shown in Figure 7. However, the proof tree of the Figure

has a non-Axiom leaf. Hence, it is not a connection proof.
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⟨{W (x5),¬(cx5
< x5)},M, {}⟩ Ax⟨{},M, {}⟩

Ext⟨{N(a)},M, {}⟩
St⟨ε,M, ε⟩

Figure 7 – Example of a proof tree that is not a connection proof

△

The next step is establishing a link between the presented calculus and the matrix’s char-
acterisation. This will allow us to demonstrate that deriving a connection proof based on the
calculus for a given matrix is equivalent to proving that the matrix is valid. However, to simplify
this demonstration, we must first introduce the concept of relative paths.

Definition 5.22 (Relative paths). Given two sets of literals 𝐶 and 𝑆, and a matrix 𝑀 , we
define the relative paths of 𝐶, 𝑆 and 𝑀 as:

𝜙(𝑀) def= {𝑝 | 𝑝 is a path of 𝑀}

𝜙(𝑀, 𝑆) def= {𝑝 ∈ 𝜙(𝑀) | 𝑆 ⊆ 𝑝}

𝜙(𝑀, 𝑆, 𝐶) def= {𝑝 ∈ 𝜙(𝑀, 𝑆) | 𝐿 ∈ 𝑝, for some 𝐿 ∈ 𝐶}

■

Lemma 5.3. Given a triple ⟨𝐶, 𝑀, Path⟩, if it has a connection proof, for some term sub-

stitution 𝜎, then there exists a multiplicity 𝜇 for all path 𝑝 ∈ 𝜙(𝑀, Path, 𝐶), s.t. 𝑝 is 𝜎-

complementary.

Proof. We prove the lemma above by structural induction over the connection proofs. Since a
connection proof can be a subtree of another connection proof, we can assume, as the Induction
Hypothesis (IH), that if there exists a connection proof of a subtree for some 𝜎, then there
exists a multiplicity 𝜇 such that every path in it is 𝜎-complementary. We demonstrate that the
lemma holds for Axiom and the rules Reduction and Extension in the calculus as follows:

• Axiom (Ax) : Assume that {}, 𝑀, Path is a connection proof for ⟨{}, 𝑀, Path⟩.
Therefore, 𝜙(𝑀, Path, ∅) = ∅, meaning that IH holds since there is no complementary
path in the empty set;

• Reduction (Red) : Assume that Proof
𝐶, 𝑀, Path ∪ {𝐿2}

is a connection proof for ⟨𝐶, 𝑀, Path∪

{𝐿2}⟩, for some term substitution 𝜎. Then, the derivation
Proof

𝐶, 𝑀, Path ∪ {𝐿2}
𝐶 ∪ {𝐿1}, 𝑀, Path ∪ {𝐿2}
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is a connection proof, where 𝜎′(𝜎(𝐿1)) = 𝜎′(𝜎(𝐿2)). By the IH, for some multiplicity 𝜇,
every path 𝑝′ ∈ 𝜙(𝑀𝜇, Path ∪ {𝐿2}, 𝐶) is 𝜎-complementary. Furthermore, every path
𝑝′′ ∈ 𝜙(𝑀𝜇, Path∪{𝐿2}, {𝐿1}) is 𝜎′-complementary, since 𝜎′(𝜎(𝐿1)) = 𝜎′(𝜎(𝐿2)). Let
𝜇′ be 𝜇 and 𝜎′′ be the composition of 𝜎 and 𝜎′. As 𝜙(𝑀𝜇′

, Path ∪ {𝐿2}, 𝐶 ∪ {𝐿1}) =

𝜙(𝑀𝜇′
, Path ∪ {𝐿2}, 𝐶) ∪ 𝜙(𝑀𝜇′

, Path ∪ {𝐿2}, {𝐿1}), we conclude that every path in
𝜙(𝑀𝜇′

, Path ∪ {𝐿2}, 𝐶 ∪ {𝐿1}) is 𝜎′′complementary;

• Extension (Ex) : Assume that Proof1
𝐶2 ∖ {𝐿2}, 𝑀, Path ∪ {𝐿1}

is a connection proof for

⟨𝐶2 ∖ {𝐿2}, 𝑀, Path∪{𝐿1}⟩, and Proof2
𝐶, 𝑀, Path

is a connection proof for ⟨𝐶, 𝑀, Path⟩,
for some substitution 𝜎. By the IH, there exists a multiplicity 𝜇1 such that every path
in 𝜙(𝑀𝜇1 , Path ∪ {𝐿1}, 𝐶2 ∖ {𝐿2}) is 𝜎-complementary, and there exists a multiplicity
𝜇2 such that every path in 𝜙(𝑀𝜇2 , Path, 𝐶) is 𝜎-complementary. Then, the derivation

Proof1
𝐶2 ∖ {𝐿2}, 𝑀, Path ∪ {𝐿1}

Proof2
𝐶, 𝑀, Path

𝐶 ∪ {𝐿1}, 𝑀, Path

with 𝜎′(𝜎(𝐿1)) = 𝜎′(𝜎(𝐿2)) and 𝐶2 as a copy of some clause 𝐶1 ∈𝑀 , is a connection
proof for ⟨𝐶 ∪ {𝐿1}, 𝑀, Path⟩. Let 𝜇′ be the combination of 𝜇1 and 𝜇2, and 𝜎′′ be the
composition of 𝜎 and 𝜎′. Hence, every path 𝑝′ ∈ 𝜙(𝑀𝜇′

, Path, 𝐶) is 𝜎′′-complementary
and every path 𝑝′′ ∈ 𝜙(𝑀𝜇′

, Path, 𝐶2 ∖ {𝐿2}) is also 𝜎′′complementary. Moreover, once
𝜎′′(𝐿1) = 𝜎′′(𝐿2), every path in 𝜙(𝑀𝜇′

, Path∪ {𝐿1}, {𝐿2}) is complementary. As 𝐶2 ∈

𝑀𝜇′ , we also have that 𝜙(𝑀𝜇′
, Path ∪ {𝐿1}, 𝐶2) = 𝜙(𝑀, Path ∪ {𝐿1}) and every

path on it is complementary. Therefore, every path in 𝜙(𝑀𝜇′
, Path, 𝐶 ∪ {𝐿1}) is 𝜎′′-

complementary since 𝜙(𝑀𝜇′
, Path, 𝐶 ∪{𝐿1}) = 𝜙(𝑀𝜇′

, Path∪{𝐿1})∪𝜙(𝑀, Path, 𝐶).

Theorem 5.4 (Soundness of the calculus). Given a matrix 𝑀 , if ⟨𝜀, 𝑀, 𝜀⟩ has a connec-

tion proof with 𝜎, then there exists a multiplicity 𝜇 such that every path in 𝜙(𝑀𝜇) is 𝜎-

complementary.

Proof. We prove this theorem by contrapositive. If we assume there is no multiplicity, then
no copies can occur, and the triple has no connection proof. Now, we assume there exists a

multiplicity 𝜇 and a path in 𝜙(𝑀𝜇) that is not 𝜎-complementary, for all 𝜎. Let
· · ·

⟨𝐶2, 𝑀, {}⟩
St⟨𝜀, 𝑀, 𝜀⟩

be the derivation for 𝑀 , with 𝐶2 being a copy of some clause 𝐶1 ∈𝑀 . Then, 𝜙(𝑀𝜇, {}, 𝐶2),
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is not 𝜎-complementary as well. By Lemma 5.3’s contrapositive, there is no connection proof
for ⟨𝐶2, 𝑀, {}⟩, therefore, there is no connection proof for ⟨𝜀, 𝑀, 𝜀⟩.

Theorem 5.5 (Completeness of the calculus). Given a matrix 𝑀 , if there exists a multiplicity

𝜇 and term substitution 𝜎 such that every path in 𝜙(𝑀𝜇) is 𝜎-complementary, then ⟨𝜀, 𝑀, 𝜀⟩

has a connection proof.

Proof. We also prove this theorem by the contrapositive. If there is no connection proof for
⟨𝜖, 𝑀, 𝜖⟩, then there exists no multiplicity 𝜇 and term substitution 𝜎 such that every path
in 𝜙(𝑀𝜇) is 𝜎-complementary. Thus, w.l.o.g. we assume there exists a saturated derivation
branch of ⟨𝜖, 𝑀, 𝜖, ⟩ containing a leaf ⟨𝐶, 𝑀, Path⟩

· · · such that there is no rule of the calculus
to be applied. The clause 𝐶 cannot be empty, or the Axiom rule would be applied. Besides,
the clause 𝐶 does not contain a blocking-free literal 𝐿 such that its complement 𝐿 ∈ Path

w.r.t. 𝜎, or the Reduction rule would be applied. Finally, there is no blocking-free copy clause
𝐶2 of 𝐶1 ∈ 𝑀𝜇 such that 𝐿 ∈ 𝐶2, for some literal 𝐿 ∈ 𝐶, or the Extension rule would be
applied. Therefore, there exists a path 𝑝 ∈ 𝜙(𝑀𝜇, Path) over the matrix 𝑀 such that 𝑝 is not
complementary for any multiplicity 𝜇.

The previous theorems state that the connection calculus is sound and complete, linking
it and the matrix characterisation. However, we require an algorithm to ensure the connection
method is a decision procedure for BTNF knowledge bases.

5.5 ALGORITHM AND IMPLEMENTATION

We present two algorithms that construct a proof within the connection calculus.
Algorithm 2, called Prove, recursively applies the rules of the calculus as outlined in Figure

6 to a given triple, verifying whether its derivations constitute connection proofs.
Algorithm 1, referred to as Entail, takes a matrix as input. It then applies the Start rule by

repeatedly invoking Prove until it either returns True for some clause in the matrix or False

if no such clause exists.
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Algorithm 1 Entail
Require: A matrix 𝑀 of an 𝒜ℒ𝒞ℋ∙ knowledge base in BTNF and a concept assertion
Ensure: True if 𝒦 |= 𝐴(𝑎) or False otherwise

1: for each clause 𝐶 ∈𝑀 do
2: if Prove(𝐶, 𝑀, {}) is True then
3: return True
4: end if
5: end for
6: return False

Algorithm 2 Prove
Require: A (sub-)clause 𝐶, a matrix 𝑀 and a (sub-)path Path
Ensure: True if there exists a connection proof for ⟨𝐶, 𝑀, Path⟩ or False otherwise

1: if 𝐶 = ∅ then
2: return True
3: end if
4: for each rule 𝑅 that is applicable to ⟨𝐶, 𝑀, Path⟩ do
5: for each triple ⟨𝐶 ′, 𝑀, Path′⟩ derived from applying 𝑅 do
6: if Prove(𝐶 ′, 𝑀, Path′) is False then
7: skip rule 𝑅
8: end if
9: end for

10: return True
11: end for
12: return False

Algorithm Prove applies the calculus rules, checking whether a connection proof exists
for the argument triple. It tries every applicable rule and, in a recursive way and verifies if its
derived triples are connection proofs. If there is no more applicable rule or the derivations are
not connection proofs, then it returns False. Otherwise, it returns True.

Theorem 5.6 (Termination). Given any 𝒜ℒ𝒞ℋ∙ knowledge base 𝒦, concept assertion 𝐴(𝑎),

and their matrix representation 𝑀 ; Entail(𝑀) terminates.

Proof. The critical component that affects the algorithm’s termination is when Extension rules
are applied to clauses that create new individuals, such as ∙𝐴 ⊑ 𝐵, 𝐴 ⊑ ¬∙𝐵, ∀𝑟.𝐴 ⊑ 𝐵 and
𝐴 ⊑ ∃𝑟.𝐵. In the other cases, once the number of concept names and individuals is finite, the
number of different literals in the path will also be finite, too. These cases terminate when the
set of distinct literals in the path are exhausted. Looking at the paths of the axioms mentioned
earlier, every new individual is related to at least a concept, a role name or the < relation for
some path. As the number of concept names and role names is finite, at some point, those
new individuals must either:
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• be blocked by an 𝑟-ancestor term when the copied literal is in the form of R(T, T) or
< (T, T) and its set of concepts is subsumed by the set of the other term, or

• be blocked by a previously copied new individual when the copied literal is in the form
of C(T) and its set of concepts is subsumed by the set of the previous term.

Therefore, the blocking will inevitably occur and the reasoning processing terminates for these
cases too.

Theorem 5.7 (Soundness). Given an 𝒜ℒ𝒞ℋ∙ knowledge base 𝒦, concept assertion 𝐴(𝑎),

and their matrix representation 𝑀 ; if Entail(𝑀) returns True, then 𝒦 |= 𝐴(𝑎).

Proof. The proof is a direct consequence of the Matrix characterisation (Theorem 5.3) and
the soundness of the calculus (Theorem 5.4).

Theorem 5.8 (Completeness). Given an 𝒜ℒ𝒞ℋ∙ knowledge base 𝒦, concept assertion 𝐴(𝑎),

and their matrix representation 𝑀 ; if 𝒦 |= 𝐴(𝑎), then Entail(𝑀) returns True

Proof. The proof is a consequence of the Matrix characterisation (Theorem 5.3) and the
completeness of the calculus (Theorem 5.5).

5.6 EXAMPLE OF PROOF

This section presents an example to illustrate how the proposal checks whether a knowledge
base entails an assertion. First, let 𝒦 = (𝒯 ,ℛ,𝒜) be the knowledge base of Example2 5.1,
where

𝒯 = {∃mT.PBW ⊑ ∙W},ℛ = {∙l ⊑ mT}, and 𝒜 = {∙l(h, g), PBW(g)}. (5.1)

We want to verify whether 𝒦 |= W(h), i.e., whether 𝒦 entails that Harry Potter is a
wizard. The first step is to transform 𝒦 into BTNF. So, we add a new concept name 𝑁 and
a new role name 𝑁𝑟 to convert 𝒦 into 𝒦′ = (𝒯 ′,ℛ′,𝒜′) such that

𝒯 ′ = {∃mT.PBW ⊑ 𝑁, 𝑁 ⊑ ∙W, ∙W ⊑ 𝑁},

ℛ′ = {∙l ⊑ mT, 𝑁𝑟 ⊑ ∙l}, and 𝒜′ = {𝑁𝑟(h, g), PBW(g)}. (5.2)

2 To improve readability, we will use abbreviations for the names mentioned.
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Now, we can represent the knowledge base as a matrix. Figure 8 shows the matrix repre-
sentation of 𝒦′, according to Tables 4 and 5. The Figure also displays W(h), the assertion
we want to deduce. It remains unchanged as the connection method checks validity instead of
refutational approaches such as Tableaux.

We may not need to use all the matrix clauses in every proof, similar to how knowledge
bases can include axioms that do not impact a query’s entailment. As a result, we will now
omit unnecessary clauses and rearrange the order of clauses and literals to provide clarity.

We perform the connection method in Figure 9. Red curves between literals represent the
application of the Extension or Reduction rules. The last clause is a copy of clause 6, necessary
because two literals require the same literals of clause 6. We illustrate that by adding the symbol
′ after the variable, i.e., 𝑥′

17 is a copy of 𝑥17. The goal is to test whether every clause associated
with a connection is fully connected; otherwise, the derivation is not a connection proof. The
reasoning starts with W(h), the possible entailed assertion, connecting it to a complementary
literal ¬W(h) in the third clause and unifying 𝜎 = {𝑥2 ∖ h}. Continuing the proof, 𝑁(𝑥2),
the other literal in the third clause, must be proven. We connect 𝑁(𝑥2) with ¬𝑁(𝑥0) in the
fourth clause, where 𝜎(𝑥0) = h. The other connections follow the same approach. The ninth
connection (9) is settled by the reduction rule, instead of the extension rule, given we already
have its 𝜎-complementary literal in the active path. Thus, as every clause associated with a
connection is fully connected, we prove that 𝒦 |= W(h).

Another useful representation of the connection method is the sequent-style derivation
tree. It shows the triples during proof search and applies the rules until no rule can be further
triggered. If every leaf is an Axiom, i.e., the subgoal is fully proven, then the proof tree is a
connection proof of 𝑀 . Figure 10 deploys the examples’s sequent-style proof.
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5.7 COMPLEXITY

In addition to the results presented in this chapter, it is important to investigate the
complexity of the proposed algorithm. To achieve this, we will base our analysis on the proof
tree that arises from applying the calculus rules illustrated in Figure 6.

In the worst-case scenario, each application of a rule (Extension) leads to the proof being
divided into two parts. As a result, with each successive application of the rule, the proof
continues to split into two. Therefore, the proof tree can be visualized as a binary tree. Figure
11 illustrates the sequence of applying the extension rules.

St

Ext

Ext

...
...

Ext

...
...

Ext

Ext

...
...

Ext

...
...

d
ep
th

Figure 11 – Proof tree expansion after (Extension) rule applications.

A key element in understanding the algorithm’s complexity is identifying the maximum
number of times a clause can copy before it gets blocked. We will classify the results based
on whether the matrix is cyclic.

Lemma 5.4 (Maximum multiplicity (acyclic case)). Given an acyclic matrix 𝑀 , the maximum

multiplicity 𝜇max of a clause in 𝑀 is (|I|+ |A|)4, where I is the set of individual names of 𝑀

and A is the set of new individuals of 𝑀 .

Proof. By Definition 5.7, the terms are substituted by individuals or new individuals only.
Besides, by Definition 5.19, there is no duplicate of a literal in the path. Hence, the number of
clause copies is bounded by the cardinality of both sets of individual names and new individuals.
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Furthermore, the literals of the form (𝑥, 𝑦) ≪ (𝑧, 𝑘) contain the clause’s maximum number
of terms (four). Therefore, the maximum multiplicity of a clause is (|I|+ |A|)4.

Lemma 5.5 (Maximum multiplicity (cyclic case)). Given a cyclic matrix 𝑀 , the maximum

multiplicity 𝜇max of a clause in 𝑀 is (|I|+ |𝑀 |2|C|)4, where I is the set of individual names of

𝑀 and C is the set of concept names 𝑀 .

Proof. By Definition 5.7, the terms are substituted by individuals or new individuals only.
Besides, by Definition 5.17, terms must be blocked if their concepts are subset or equal to their
<-descendants or 𝑟-ancestors. Once the new individual’s creation is linked to role and typicality
literals, the maximum number of new individuals is bounded by the power set of the concept
names times the size of the matrix. Furthermore, the literals of the form (𝑥, 𝑦) ≪ (𝑧, 𝑘)

contain the clause’s maximum number of terms. Therefore, the maximum multiplicity of a
clause is (|I|+ |𝑀 |2|C|)4.

After establishing 𝜇max , we can determine the maximum depth of the proof tree.

Corollary 5.1. Given a matrix 𝑀 and its maximum multiplicity 𝜇max , the maximum depth of
a proof tree of 𝑀 is 2|𝑀 |𝜇max .

Finally, when considering the maximum depth of the proof tree, we can also conduct an
asymptotic analysis regarding the number of clauses in the matrix. Since the sets of individual
names, new individual names, and concept names are proportional fractions of the size of the
matrix, we can conclude that the complexity of the algorithm is 𝑂(22𝑛4

), where 𝑛 is the size
of the matrix (input). This result aligns with the conjecture presented by Varzinczak (VARZ-

INCZAK, 2018), which states that his algorithm also exhibits double exponential complexity.
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6 POLYCOP: A POLYMORPHIC CONNECTION IMPLEMENTATION

In the previous chapter, we introduced a method for connecting the defeasible logic
𝒜ℒ𝒞ℋ∙. The next step is to create a prover based on this method.

Most - if not all - reasoning calculi (tableaux, resolution, natural deduction, etc) feature
uniformity when employed in different logics; for instance, tableaux for first-order is equal to its
propositional version, if not for the additional rules for quantification and the use of unification.

This gives rise to the idea of implementing a polymorphic reasoner, one that could work
over an array of different logics, where each logic´s specifities is dealt properly: a connection in
first-order must include unification spanning over the whole matrix, distinct forms of blocking,
according to the DL fragment being dealt, etc. In a field cramped with the needs for efficiency,
to the best of our knowledge, no polymorphic reasoner - whose main pro is being reusable and
emphasizing the subtle differences in inference among logics - has been proposed yet.

Considering these factors, we have developed PolyCoP, a polymorphic and reusable prover
capable of handling potentially any logic. We focus on maintaining a single, reusable main
algorithm responsible for proof search. Furthermore, new code related to various existing logics
can be added to PolyCoP, allowing it to function as a prover for these logics.

Our approach differs from Otten’s family of provers, as the source codes vary despite
similarities in implementations. Any improvements or changes to the family’s code would
require modifying the source code of each prover.

Thus, the objectives of this work are:

1. to build a connection prover for 𝒜ℒ𝒞ℋ∙;

2. to develop a polymorphic connection method prover capable of proving numerous logics
by reusing its core implementation and coding the slight differences locally; and

3. to implement a simple prover/framework allowing beginners to understand and operate
a connection method prover.

On the other hand, up to this point, this framework does not aim to provide an optimized
and highly competitive prover, as our goal is to show a simpler and more general version of a
connection prover.

PolyCoP isolates the code related to the proof search and general method from the code
related to the logical language, such as:
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• how literals can be complementary;

• how complementary literals connect;

• how a clause is copied; and

• when the proof must be blocked.

The logical-related specifications aforementioned are represented as strategies. Figure 12
gives a glimpse of PolyCoP ’s capabilities. The idea is that developers who want to design
a prover for a given logic implement only the strategies’ interfaces. In other words, when
implementing a specific logic connection reasoner, the code related to the proof is reused. In
Figure 12, such code is represented by the UniqueProver class.

The developer may focus only on a code fragment related to the given logical language
(for propositional logic or any other logic), such as how literals are complementary, connected,
clauses are copied and the inference is blocked.

The prover’s input is a formula that needs to be mapped to a matrix by some user-specific
code — a mapper. The matrix must be linked to strategies to connect, copy, or block the
literals of the matrix according to the developer’s specification. Those strategies establish how
the prover utilizes the literals in the matrix.

UniqueProver

+ prove(...)

«interface»
MatrixMapper

«interface»
Strategies

PropositionalMatrixMapper FOLMatrixMapper

OtherLogicMatrixMapper

PropositionalStrategies FOLStrategies

OtherLogicStrategies

Figure 12 – UML diagram of PolyCoP.

6.1 A GENERAL CONNECTION METHOD ALGORITHM

This section describes the algorithm for conducting proof search in PolyCoP. In the previous
chapter, we introduced an algorithm to determine whether a knowledge base in BTNF entails a
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query. This algorithm relies on specific rules for that logic, similar to other proving algorithms.
To create an algorithm that can be applied to a different logic, we need to separate the code
related to the logic from the one related to the proof.

We start defining a notation to illustrate our connection method’s generalisation better.
With ℒ, we define the logical language; with Σℒ, we define the set of possible literals in ℒ;
with 𝒫(Σℒ), we represent the power set of possible literals, i.e., every set of literals is an
element of 𝒫(Σℒ). With ⟨𝜎, 𝑆𝜎⟩, we represent the unification strategy , where 𝜎 : Σℒ −→ Σℒ

is a function that maps a literal of the target logical language to a term substituted literal,
and 𝑆𝜎 is the state of the unification strategy.

The representation of copy strategy is ⟨𝜑, 𝑆𝜑⟩, where 𝜑 : 𝒫(Σℒ) −→ 𝒫(Σℒ) is a function
that copies a clause, i.e., maps a set of literals to a set of literals, and 𝑆𝜑 is the state of the
copy strategy.

We represent a blocking strategy as a function 𝜐 : (𝑆𝜎)* × (𝑆𝜑)* −→ {true, false} that
maps a pair of states (unification and copy) to true if we want to block the proof and false,
otherwise.

Algorithm 3 SimpleProver
Require: A matrix 𝑀
Ensure: True if 𝑀 is spanning or False otherwise

1: creates the copy strategy ⟨𝜑, 𝑆𝜑⟩
2: 𝑆 ′

𝜑 ← 𝑆𝜑

3: for each clause 𝐶 ∈𝑀 do
4: 𝐶 ′ ← 𝜑(𝐶)
5: updates the state 𝑆𝜑

6: Proof ← Prove(𝐶 ′, 𝑀, {})
7: if Proof is a connection proof then
8: return Proof St

𝜀, 𝑀, 𝜀
9: end if

10: 𝑆𝜑 ← 𝑆 ′
𝜑

11: end for
12: return 𝜀, 𝑀, 𝜀

Algorithm 3 presents a simple general connection method. Initially, it builds a copy strategy
instance and saves its initial state. The State design pattern consists of the general CM storing
states of copy and connection strategies for recovery during backtracking and for future parallel
approaches. The loop iterates over clauses and searches for a start clause with a proof tree
that serves as a connection proof. Within the loop, the algorithm calls the Algorithm 4.
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Algorithm 4 Prove
Require: A (sub-)clause 𝐶, a matrix 𝑀 , a path Path, a copy strategy ⟨𝜑, 𝑆𝜑⟩, a unification

strategy ⟨𝜎, 𝑆𝜎⟩, and a blocking function 𝜐
Ensure: a proof for 𝐶, 𝑀, Path

1: if 𝐶 = ∅ then return Ax
𝐶, 𝑀, Path

2: end if
3: 𝑆 ′

𝜎 ← 𝑆𝜎

4: gets some 𝐿 ∈ 𝐶
5: for each literal 𝐿 ∈ Path do
6: if {𝜎(𝐿), 𝜎(𝐿)} is a valid connection then
7: update the state 𝑆𝜎

8: Proof ← Prove(𝐶 ∖ {𝐿}, 𝑀, {})
9: if Proof is a connection proof then

10: return Proof Red
𝐶, 𝑀, Path

11: end if
12: 𝑆𝜎 ← 𝑆 ′

𝜎

13: end if
14: end for
15: 𝑆 ′

𝜑 ← 𝑆𝜑

16: for each clause 𝐶2 ∈𝑀 do
17: 𝐶 ′

2 ← 𝜑(𝐶2)
18: update the state 𝑆𝜑

19: for each literal 𝐿 ∈ 𝐶 ′
2 do

20: if {𝜎(𝐿), 𝜎(𝐿)} is a valid connection then
21: update the state 𝑆𝜎

22: if 𝜐(𝑆𝜎, 𝑆𝜑) then
23: 𝑆𝜎 ← 𝑆 ′

𝜎

24: skip 𝐿 iteration
25: end if
26: LeftProof ← Prove(𝐶 ′

2 ∖ {𝐿}, 𝑀, Path ∪ {𝐿})
27: if LeftProof is a connection proof then
28: RightProof ← Prove(𝐶 ∖ {𝐿}, 𝑀, Path)
29: if RightProof is a connection proof then
30: return LeftProof RightProof Ext

𝐶, 𝑀, Path
31: end if
32: end if
33: 𝑆𝜎 ← 𝑆 ′

𝜎

34: end if
35: end for
36: 𝑆𝜑 ← 𝑆 ′

𝜑

37: end for
38: return 𝜀, 𝑀, 𝜀
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We designed the Algorithm 4 to determine whether a tuple has a valid connection proof. It
recursively applies the Axiom, Reduction, and Extension Rules. First, it checks if the subgoal
is empty to apply the Axiom Rule. If the subgoal is not empty, Prove tries to apply the
Reduction Rule, unifying the literal with complementary ones in the path. The algorithm also
stores the connection state to restore to the previous state if necessary—the remaining part of
the implementation attempts to apply the Extension Rule. In addition to the connection state,
it stores the copy state of the copy strategy. The recursive call of the Extension rule recovers
the copy state if the inner subproofs are not connection proofs. This behaviour ensures that
backtracking works appropriately. The blocking function is only applied over Extension Rules,
as it is the only rule that can lead to an infinite loop. The function looks at the state of
connections and copies and blocks (or not) the recursive calls for inner scenarios.

Due to CM’s uniformity (BIBEL, 2017), the calculi and the algorithm are quite analogous
to the ones in Chapter 5. This general implementation’s key distinction lies in this aspect:
only one algorithm is required to carry out the proof in any logic, where its specificities must
be defined in lower-level, overriding methods. Given that the language-dependent functions
operate as detailed in the definitions and demonstrations of that chapter, this general prover
also serves as a prover for 𝒜ℒ𝒞ℋ∙.

6.2 IMPLEMENTATION

PolyCoP, the general and polymorphic connection method written in Java, is available at
GitHub1. The architecture relies on Java features, such as interfaces and generics, and the
design patterns(GAMMA et al., 1994) strategy and state. The CoP implementation calls the
strategies methods to prove the formula using their interfaces. So, the PolyCoP can run its
proof search using different logic and algorithms by changing the interface implementations.

6.2.1 Strategies

There are four different strategy interfaces: LiteralHelperStrategy, ConnectionStrategy,
CopyStrategy, and BlockingStrategy.

The strategy called LiteralHelperStrategy allows developers to define complementary
literals and implement the logic behind them. This is essential for the prover to find comple-
1 <https://github.com/renanlf/polycop>
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mentary literals of a given one. The implementation takes a given literal 𝐿 and the matrix 𝑀

as input. The developer’s code must return a submatrix of clauses 𝑀 ′ where each clause has
a complementary literal of 𝐿. The meaning of complementary can change based on the logic
being implemented.

The ConnectionStrategy plays a crucial role in maintaining the correct behaviour of the
code. It returns a Boolean value indicating whether the connection is valid. The inputs are the
literals to be connected, the active path, and the current state of the strategy. The developer
must check the current state and the path and update the strategy’s current state to ensure
the correct behaviour of the code. The state update must create another object representation
of it instead of changing the properties of the current state. This allows for fast restoration of
previous states when backtracking occurs.

As the name suggests, the CopyStrategy deals with copying clauses in the matrix. Some
logic may require copying clauses to be reused in another subproof later. The input to this
strategy is the clause to be copied and the current state of the strategies. These inputs help
the developer check whether a copy occurs.

Finally, the BlockingStrategy helps the developer determine when the proof needs to
stop the search. It returns true when the proof needs to stop the search after a connection
and false otherwise. The input to this strategy is the current state of the other strategies. The
developer can use this strategy to check the soundness of the proof after a connection instead
of checking it before the connection happens.

In Figure 13, we detailed the UML class diagram of PolyCoP.

6.2.2 Implementation for propositional logic

To illustrate the PolyCoP polymorphism, we show the implementation of the well-known
propositional logic in this chapter. The main reason for using it as PolyCoP’s starter logic
is to focus the reader on the system features without requiring a background in other logic.
Nevertheless, this decision does not restrict PolyCoP to simple logic. The code repository also
contains other implementations for first-order and defeasible Description Logic.

Our implementation’s input is files in the well-known CNF format. It represents the literals
as integers, where a negative number −𝑁 denotes the negation of the literal 𝑁 . Because it
is already a clausal representation, we straightforwardly translate the values to the matrix,
multiplying them by −1, to obtain the DNF version. The intuition is that once we negate the
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<<interface>> 
LiteralHelperStrategy

+ complementaryOf(...)

<<interface>> 
CopyStrategy

+ copy(...)

+ clear()

+ getState()

+ setState(...)

<<interface>> 
ConnectionStrategy

+ connect(...)

+ clear()

+ getState()

+ setState(....)

SimpleProver

+ prove(...)

- proveClause(...)

<<interface>> 
BlockingStrategy

+ isBlocked(...) PropositionalConnectionStrategy

PropositionalCopyStrategyPropositionalLiteralHelperStrategy

PropositionalBlockingStrategy

Figure 13 – Detailed UML class diagram of PolyCoP strategies and the prover

formula in CNF (because CM is a direct method), it is the same as changing the polarity of
its literals.

Figure 14 shows a CNF file. The file’s first line denotes the unsigned max number for a
literal and the number of clauses. Each line represents a clause in the matrix from the second
line to the end of the file. The 0 (zero) at the end of these lines denotes the end of the clause.
So, once negative numbers are the negation of a literal, the line −1 2 0 represents a clause
{¬1, 2}.

Figure 14 – CNF file.

Delving deeper into the data structures of PolyCoP, we use linked nodes to store the states
through the search proof. The main reason to do so is that this approach optimizes memory
usage when the proof tree becomes deeper.
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To illustrate the memory benefits, assume the code stores a new object every time a proof
rule is applied. So, proving some literal in a 10-depth proof tree in an immutable stateful
scenario must contain states with 0 to 9 objects each. The code must store 37 references to
represent those ten states.

However, the number of references needed decreases if the code uses linked nodes to store
the states. The 10th state only needs to store one object’s reference and the previous linked
node’s reference. The previous linked node also requires two references, and so on. The proof
must store 18 references to represent the same ten states.

Furthermore, the connection proof result is a tree where each node represents a different
tuple of the connection proof search. The root is the Start Rule, and each rule’s application
appends new children to the nodes. Such an approach is helpful for human-readable search
proofs.

Our code provides an implementation that translates the connection proof tree as a LaTeX
string, allowing the developer to represent the connection proof in a sequent-style.

Ax{},M, [1, 2,−3]
Ax{},M, [1, 2]
Ext

[−3],M, [1, 2]
Ax{},M, [1]
Ext

[2],M, [1]
Ax{},M, []
Ext

[1],M, []
St

ε,M, ε

Figure 15 – Proof in sequent-style interpreted by a LaTeX system of PolyCoP generated proof.

Figure 16 shows a fragment of the code generated by PolyCoP. Utilizing PolyCoP, the
developer can export it to a file and generate the corresponding sequent-style proof.

Figure 16 – Fragment of code generated by PolyCoP of Example’s proof.
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Besides, implementing strategies for a logic turns PolyCoP into a prover of that logic. Thus,
implementing strategies for first-order logic (fol), for example, becomes PolyCoP a first-order
logic prover. The blocking strategy can be ignored due to the nature of the undecidable first-
order logic formulae. One can also implement a blocking strategy that stops when it reaches
some condition to prune the proof search. Those different strategies are possible in PolyCoP,
and developers are welcome to try any envisioned logic.

Finally, for PolyCoP to be a 𝒜ℒ𝒞(CAI; MING; LI, 2008) prover, for example, the blocking
strategy must map to true at some point once 𝒜ℒ𝒞 is a decidable fragment of description
logics.

6.2.3 𝒜ℒ𝒞ℋ∙’s implementation

The main design objective of our implementation was to establish a direct parallel be-
tween Java classes and the main concepts of the defeasible DL 𝒜ℒ𝒞ℋ∙. To achieve this,
we created a class called ALCHbTerm to represent a term, which serves as the parent class
for ALCHbVariable, ALCHbIndividual, and ALCHbUnaryIndividual. These subclasses rep-
resent variables, individuals, and new individuals, respectively. Additionally, we built a Java
interface to represent a literal, which serves as the parent class for the subclasses representing
concepts, roles, ordered literals, and bi-ordered literals. The latter represents the typicality
relation between objects and pairs of objects.

In terms of strategies, we implemented the Helper strategy to indicate when a literal
complements another. Our implementation only checks the literal type and its polarity. For
example, according to our helper strategy, 𝐴(𝑎) and ¬𝐴(𝑏) are considered complementary,
even if this is not the case. We did this to simplify the search and leave the responsibility of
preventing such a connection to the connection strategy.

The connection strategy unifies the terms of a literal. Its responsibility is to check whether
the literal types are the same and whether they can unify their terms while respecting the
order in which they appear in the literal.

The copy strategy is responsible for creating copies. It creates new clauses where new
variables replace their former counterparts. We use the symbol ’ to denote a copy. For example,
the variable 𝑥′ is the first copy of the variable 𝑥, 𝑥′′ is the second, and so on.

The connection and copy strategies assume states that help maintain relevant information
for the proof. In our case, they store substitutions and copied variables. Besides, relying on
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states allows us to use them in the blocking strategy. The blocking strategy acts similarly to
the blocking condition described in the previous chapter. Its main difference is that it does not
look for duplicated literals since the proof-related code already handles such repetitions.

6.2.3.1 Implementation of OWL fragment

The defeasible Description Logic 𝒜ℒ𝒞ℋ∙ currently lacks a specification for modelling
knowledge bases in a file format. However, its classical fragment 𝒜ℒ𝒞ℋ can be represented
using OWL files, Semantic Web specifications for ontologies (ANTONIOU et al., 2012). PolyCoP
has been enhanced as a reasoner for this fragment 𝒜ℒ𝒞ℋ, allowing for the verification of
consistency in OWL knowledge bases during execution.

We convert ontologies from OWL to literals using the OWL API (HORRIDGE; BECHHOFER,
2011). The OWL API is a Java Application Programming Interface that provides a straightfor-
ward connection between the OWL 2 specification and Java programming language objects.
While other implementations, like Raccoon, develop their parsers from scratch, we utilize the
OWL API to abstract the parsing process, allowing us to concentrate solely on the reasoner
implementation.

To illustrate our implementation, consider the following ontology in a functional style:
1 Prefix(owl:=<http://www.w3.org /2002/07/ owl#>)

Prefix (:=<http://cin.ufpe.br/~dldmf/raccoon/test_cyclic_inconsistency002.owl#>)

3 Ontology(<http://cin.ufpe.br/~dldmf/raccoon/test_cyclic_inconsistency002.owl >

SubClassOf(ObjectSomeValuesFrom (:R :A) :A)

5 SubClassOf (:B :A)

ObjectPropertyAssertion (:R :a :b)

7 ObjectPropertyAssertion (:R :b :c)

ObjectPropertyAssertion (:R :c :d)

9 ClassAssertion (:B :d)

ClassAssertion(ObjectComplementOf (:A) :a)

11 )

The OWL API parses the ontology into a Java object. Next, the ALCHbOWLAPIMapper

translates the ontology into a matrix based on the Algorithm 5 provided in the Appendix.
Figure 17 illustrates the resulting matrix after the mapping. The OWL API parses the ontology
into a Java object. Next, the ALCHbOWLAPIMapper translates the ontology into a matrix based
on the Algorithm 5 provided in the Appendix. Figure 17 illustrates the resulting matrix after
the mapping.
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


¬R(a, b) ¬R(b, c) ¬R(c, d) A(x2)

R(x1, x2)

¬A(x1)

B(x3)

¬A(x3)

¬B(d) A(a)




Figure 17 – Resulting matrix after the mapping of ALCHbOWLAPIMapper.

Finally, as demonstrated in the propositional case, our code implements the proof tree in
sequent style, using a LaTeX string. Figure 18 illustrates the proof.

Therefore, the ontology is inconsistent once the proof is a connection proof.
Currently, we do not have performance benchmark tests. However, our initial tests were

designed to evaluate the algorithm’s correctness. For this purpose, we utilized 24 ontologies
from the Raccoon repository as a reference. PolyCoP verified the consistency of all these
ontologies, providing a reliable indicator that our implementation is on the right track. We
plan to conduct experimental tests in the future.
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6.3 CONCLUDING REMARKS

This chapter presented the PolyCoP, a polymorphic connection prover for 𝒜ℒ𝒞ℋ∙ and
beyond. What started as an implementation for our connection method became a general
polymorphic CM prover that benefits from the uniformity of CMs to implement a single prover
to possibly any logical language. We could not find any other polymorphic reasoning in the
literature.

This is the first implementation of the general polymorphic connection prover. Further
optimized implementations will reuse the Java strategy interfaces without any change.2

Take the lemmata optimization (OTTEN, 2010), for instance. It reuses subproofs of literals
if they already have been proved in the proof search. We can provide such behaviour by adding
a new structure to store proofs and look for them each time PolyCoP calls the proof method.
If 𝑁 logical language strategies were implemented, the optimization would improve the proof
search for the 𝑁 logical languages. Another easy win is to extend the implementation to a
multi-thread approach once immutable states can be shared with less or no effort between the
threads during proof search.

2 We understand that, as a first version, a few changes may be necessary until a stable general connection
prover is obtained.
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7 RELATED WORK

In the previous chapters, we proposed a new connection method (CM) for 𝒜ℒ𝒞ℋ∙ and its
reasoner PolyCoP, a connection prover for any logic. PolyCoP is the first reasoner (implemen-
tation) for defeasible DLs based on a connection method. This chapter outlines other CMs
and defeasible description logic reasoners related to our proposal.

7.1 DEFEASIBLE DESCRIPTION LOGICS

The first reasoning method for the defeasible DL 𝒜ℒ𝒞ℋ∙ was a semantic tableau (VARZ-

INCZAK, 2018). It incorporates the rules from previous DL tableaux and deals with the typical
operators with novel rules. Such rules add new facts to the branch according to the 𝒜ℒ𝒞ℋ∙

semantics. Both calculi share a similar blocking condition and preferential relation representa-
tion. The main difference between the tableau and the CM proposed here is the goal orientation
of CMs. Each extension occurs through a connection between literals in CM. It is the same
as applying a tableau rule only to derivations containing a clash. While CM requires such
connections to apply for an extension, tableau may apply rules arbitrarily.
𝒜ℒ𝒞 + 𝑇 (GIORDANO et al., 2009) is another defeasible DL. It denotes typical concepts of

𝐶 as a new concept constructor 𝑇 (𝐶). Instead of as the one for 𝒜ℒ𝒞ℋ∙, the modal operators
inspire the tableau rules of this method, and labels represent the preferential relation during
the proof. The authors also proposed another semantic tableau for 𝒜ℒ𝒞 + 𝑇 𝑚𝑖𝑛, which does
reasoning decreasing “atypical” instances from the consequences. 𝒜ℒ𝒞ℋ∙ is a more expressive
defeasible DL once the typical operator can appear on the right side of axioms such as 𝐴 ⊑ ∙𝐵.

7.2 CONNECTION METHODS

The most prominent implementation of the connection method is leanCoP (OTTEN; BIBEL,
2003), proposed by J. Otten and W. Bibel in the 2000s. It is a first-order prover developed in
Prolog, a well-known logic programming language that recursively finds the proof by applying
Reduction and Extension rules in a clausal matrix. The Prolog internal structure and storage
representation benefits the leanCoP implementation, allowing it to be a seven-line program.
The only optimization in leanCoP’s first version was the positive start clause technique, which,
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as its name suggests, starts the proof search only with positive clauses. In further versions,
such as leanCoP 2.0 (OTTEN, 2008), the prover was enhanced by other features, such as

1. Regularity - a condition that blocks a literal from occurring more than once in the path
and reduces the search space;

2. Lemmata - a technique that reuses subproofs of a literal for the same one later in the
proof;

3. Restricted backtracking - a technique that also reduces the search space, blocking
clauses from being used such that a literal from them is already proven and

4. Readable proofs - an output parameter that allows users to check the resulting proof
in different formats, including a natural language proof.

PolyCoP and leanCoP are based on very similar calculi. However, leanCoP is a way more
mature prover, containing variants and a successful 20 years of research and experiments
(OTTEN, 2023).

7.2.1 MleanCoP and ileanCoP

MleanCoP (OTTEN, 2014) and ileanCoP (OTTEN, 2008) are variants of leanCoP based on
modal and intuitionistic connection calculi (OTTEN, 2012), respectively. The novelty in such
calculi is using prefixes to represent the modal and intuitionistic characteristics. They compose
the unifier with the classical term unification. Nonetheless, the prefix unification changes based
on the modal logic wanted, turning on or off the unification between a constant prefix 𝑝 and
a word prefix 𝑉 𝑢, according to the accessibility relation of such modal logic, for example.

PolyCoP and both provers are, in a sense, non-classical provers. However, mleanCoP and
ileanCoP represent the relations of modal and intuitionistic logic in prefixes with a modal/intu-
itionistic unifier. We began the same way but discovered that using prefixes to represent typical
instances should badly represent the description logics semantics. For example, to represent
that no instance is more typical than 𝑎 in concept 𝐶, we need to express it like 𝑉 : ¬𝐶(𝑎),
where 𝑉 is a prefix variable and can be unified with any other prefix. If we add the typical
relation for pairs of instances, the problem increases, and the representation of such cases
becomes non-intuitive.
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7.2.2 NanoCoP

The connection methods mentioned above rely on a clausal representation of formulae.
However, such representation modifies the original formulae, making returning a more human-
readable proof harder. NanoCoP (OTTEN, 2016a) is a non-clausal first-order connection prover
built on top of the non-clausal connection calculus (OTTEN, 2011). In addition to benefiting
from the techniques mentioned above, it avoids redundant literals created by the clausal form.
The significant difference from the previous calculi is that a matrix now comprises clauses,
literals and other matrices. The calculus of nanoCoP adds a Decomposition rule to the earlier
calculi, which deals with the submatrices and extracts the complementary literals from it.
Later, Otten also developed further versions of nanoCoP for modal and intuitionistic logic
(OTTEN, 2017; OTTEN, 2016b). PolyCoP is a clausal prover, but implementing a non-clausal
PolyCoP is part of our future work agenda.

7.2.3 Raccoon

Raccoon (FILHO; FREITAS; OTTEN, 2017) is an 𝒜ℒ𝒞 connection reasoner developed in
C++ based on 𝒜ℒ𝒞 𝜃−𝐶𝑀(FREITAS; OTTEN, 2016). The leanCoP family of provers inspires
Raccoon with competitive results against highly optimized reasoners. Besides the different
DL, the novelty of PolyCoP against Raccoon is the abstraction between the proof search code
and the logical representation of knowledge bases and their constructors. In a way, PolyCoP
continues Raccoon’s saga to implement the full description logics, as 𝒜ℒ𝒞ℋ∙ is an extension
of 𝒜ℒ𝒞ℋ, a more expressive description logic than 𝒜ℒ𝒞.

7.2.4 Machine learning and connection method

In recent years, CMs combined with machine learning (ML) techniques have given rise to
variants of leanCoP in a mixture of programming languages and approaches. rlCoP (KALISZYK

et al., 2018) uses reinforcement learning to calculate probabilities of rules/steps application and
estimate a heuristic for each proof state. Connect++ (HOLDEN, 2023), a C++ implementation
of leanCoP, has as one of its primary goals a compiled program to use with machine learning
approaches and a modifiable prover that other researchers can reuse. Connections (RØMMING;

OTTEN; HOLDEN, 2023) is a Python library that maps connection calculi to Markov Decision
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Procedures, providing a framework for ML approaches. Lastly, Bare Metal Tableaux Prover
(KALISZYK, 2015) is a reimplementation of leanCoP in the programming language C. Its
primary purpose is to be a low-level efficient connection tableau. So, the prover uses two
stacks to store the proof state instead of implementing the calculus in a recursive way like the
other provers. The left stack stores the extension rule left branch of the proof, and the right
one stores the remaining (still to be proven) extension rule right step. In a sense, such provers
aim to simplify access to parameters and proof states of connection provers such as leanCoP
to use ML techniques. PolyCoP is built on top of such premises once it provides interfaces
and allows reuse of the core proof-related implementation.

7.3 CONCLUDING REMARKS

In this chapter, we discuss the work related to our proposal. As mentioned earlier, the
calculus proposed is the first connection method for 𝒜ℒ𝒞ℋ∙. Furthermore, PolyCoP was the
first to implement a reasoner for 𝒜ℒ𝒞ℋ∙.

One challenge of being a pioneer is that no other studies exist to evaluate and compare
results. Indeed, there is no defeasible knowledge base dataset in which we can evaluate rea-
soners such as PolyCoP. Such a lack of dataset inspired us to build a polymorphic connection
prover. Thus, we could test and check the proof-related code correctness in other logic.
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8 CONCLUSIONS

In this thesis, we have outlined a connection method for 𝒜ℒ𝒞ℋ∙, which is a defeasible
description logic that is at least as expressive as most other defeasible DLs studied in the
existing literature. This calculus extends 𝒜ℒ𝒞 𝜃 − 𝐶𝑀 in two ways: (i) it aligns with the
preferential-DL semantics developed by Britz et al. and by Giordano et al., which is widely
accepted in the literature on reasoning with defeasible ontologies; and (ii) it relies on a custom
matrix translation that we introduced to handle typicality in concepts and roles.

Regarding the implementation, we created PolyCoP, a connection prover for 𝒜ℒ𝒞ℋ∙ and
other logics. It is designed to implement a polymorphic version of the connection method, which
abstracts the need to code proof-related algorithms. PolyCoP allows users to focus solely on
the differences in literal representation, unification, and blocking strategies from each logic.
This can help beginners in logic to learn the connection method easily and developers to
manipulate our framework and build novel provers.

Furthermore, PolyCoP utilizes a proof tree in its proving algorithm, which can be useful for
understanding how the proof occurred. The proof tree can also be visually represented using
a LaTeX system.

Our objective is to propose a sound and complete connection method for 𝒜ℒ𝒞ℋ∙, whose
proofs are grounded on description logic proof theory. We have successfully achieved this ob-
jective. In Chapter 5, we presented a decision procedure based on the connection method, and
demonstrations relied solely on the logic presented. Furthermore, in Chapter 6, we introduced
PolyCoP as a reasoner for 𝒜ℒ𝒞ℋ∙, which can also be used as a foundation for reasoning in
virtually any other logic.

Below, we provide this thesis’s limitations and future work.

8.1 PUBLICATIONS

The work detailed in this thesis led to the development of three new papers, which we
submitted to international journals and conferences. We list the publications as follows:

1. A connection method for a defeasible extension of 𝒜ℒ𝒞, presented in the Pro-
ceedings of the 34th International Workshop on Description Logics (DL 2021);
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2. Connection method for defeasible extension of 𝒜ℒ𝒞ℋ, publication under review
in the Journal of Automated Reasoning; and

3. PolyCoP: a connection method for (possibly) any logical language, an accepted
paper for the Rule Challenge track of the 8th International Joint Conference on Rules
and Reasoning (RuleML+RR 2024).

8.2 LIMITATIONS

• Preferential entailment: The CM in this work applies preferential reasoning, a Tarskian
notion of logical consequence, and, therefore, monotonic. However, such reasoning is
not always sufficient for defeasible reasoning with exceptions. Stronger, more venturous
forms of entailment are often called for, such as the rational entailment (BRITZ et al.,
2021; CASINI; STRACCIA, 2010; GIORDANO et al., 2015).

• Single preference ordering: We use a description logic language with only one pref-
erence ordering. Hence, it is impossible to represent scenarios where an object is more
typical for one context but less typical for another. Therefore, a more expressive language
representing a multi-preference of objects could solve this problem.

• Optimizations: PolyCoP is a polymorphic implementation designed to meet different
logics and serve as a basis for new researchers or students. Even so, optimizations already
established and used by other connection provers, such as Lemmata and Restricted
backtracking, can be added.

• Experimental results: So far, our implementation is the first reasoner for 𝒜ℒ𝒞ℋ∙.
There are few existing knowledge bases for this logic, and there is no syntactic for-
malization of ontologies, as we see with OWL for classical DL. Therefore, conducting
experiments and further analyzing PolyCoP for this logic is complex.

8.3 FUTURE WORK

• Rational entailment: The rational closure of a defeasible ontology, has been extensively
studied in the context of defeasible 𝒜ℒ𝒞. Therefore, enhancing the current CM with
rational entailment is a promising advancement in our work.
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• Multiple preference relations: Another addition to our work is conceiving multi-
preferential relations to the CM. Thus, the notions of a typical object in one context
and non-typical in others would be satisfied.

• Non-clausal connection method: Non-clausal provers, like Nano-cop (OTTEN, 2016a),
have proven to be very effective for reasoning, especially in memory optimization, con-
sidering the number of literals presented in their clausal counterpart. Additionally, De-
scription Logics (DLs) have an appeal for this representation, as their original axioms can
be directly translated into a non-clausal matrix. So, we plan to implement a non-clausal
version in PolyCoP.

• Optimizations: We have not yet incorporated several optimizations already used by
other connection provers and specific optimizations for defeasible logic. For example, we
could apply a reduction when the typicality relation in an active path infers a literal that
exists in the objective clause. We intend to include these optimizations in the method
and PolyCoP.

• PolyCoP for other logic: We intend for PolyCoP to serve as a connection method for
all kinds of logic as possible. To achieve this, we will implement various logics, verify the
patterns, and thus establish it as a universal reasoner.
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APPENDIX A – PROOF OF THEOREM 5.1

Definition A.1 (Signature). Let 𝒦 be a knowledge base. We denote the signature of 𝒦, or
𝑠𝑖𝑔(𝒦) as the list (C, R, I), where C, R, and I are the set of concepts, roles, and individuals
present in 𝒦, respectively. ■

Definition A.2 (Conservative extension). Let 𝒦 and 𝒦′ be knowledge bases. We say that 𝒦′

is a conservative extension of 𝒦 if

i. 𝑠𝑖𝑔(𝒦) ⊆ 𝑠𝑖𝑔(𝒦′),

ii. every model of 𝒦′ is a model of 𝒦, and

iii. for each model ℐ of 𝒦 there exists a model ℐ ′ of 𝒦′ such that 𝐴ℐ = 𝐴ℐ′ , 𝑟ℐ = 𝑟ℐ′ , and
𝑎ℐ = 𝑎ℐ′ , for all concept names 𝐴, role names 𝑟, and individual names 𝑎 from 𝑠𝑖𝑔(𝒦),
respectively.

■

Thus, a conservative extension 𝒦′ entails nothing but what 𝒦 already does w.r.t. 𝑠𝑖𝑔(𝒦).
Thereby, we can replace the knowledge bases with more useful conservative extensions in a
normal form.

Apply, in Table 6 is a helper function that maps non-TNF axioms in TBox to a set of
axioms closer to the BTNF. This way, a rule applications chain exists that translates 𝛼 to a
set of axioms in BTNF.

Lemma A.1. Given a TBox axiom 𝛼 that is not in TNF and a interpretation ℐ, if ℐ ⊩

apply(𝛼), then ℐ ⊩ 𝛼.

Proof. We prove this lemma by contrapositive. Assume ℐ ⊮ 𝛼. Then:

• if 𝛼 = (𝐷 ≡ 𝐸), then 𝐷ℐ ̸= 𝐸ℐ . Hence, either 𝐷ℐ ̸⊆ 𝐸ℐ , or 𝐸ℐ ̸⊆ 𝐷ℐ . Therefore,
ℐ ⊮ apply(𝐷 ≡ 𝐸);

• if 𝛼 = (𝐷 ⊑ ∙𝐸), then 𝐷ℐ ̸⊆ min<ℐ 𝐸ℐ . Hence, for every concept name 𝑁 such that
𝑁ℐ = 𝐸ℐ , 𝐷ℐ ̸⊆ min<ℐ 𝑁ℐ . Therefore, ℐ ⊮ apply(𝐷 ⊑ ∙𝐸);

• if 𝛼 = (¬∙𝐴 ⊑ 𝐷), then (¬∙𝐴)ℐ ̸⊆ 𝐷. Hence, for every concept name 𝑁 such that
𝑁ℐ = 𝐷ℐ , (¬∙𝐴)ℐ ̸⊆ 𝑁 . Therefore, ℐ ⊮ apply(¬∙𝐴 ⊑ 𝐷);
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Table 6 – Conservative transformation rules. Let D, E, and F be concepts; A be a concept name; N a new
concept name; F be a non-literal concept; 𝐷̌ be a pure disjunction; 𝐸̂ be a pure conjunction; and
⋆ ∈ {∙,¬∙}.

Rule 𝛼 𝑎𝑝𝑝𝑙𝑦(𝛼)
1 𝐷 ≡ 𝐸 {𝐷 ⊑ 𝐸, 𝐸 ⊑ 𝐷}

2 𝐷 ⊑
𝑛d

𝑖=1
𝐸𝑖 {𝐷 ⊑ 𝐸1, · · · , 𝐷 ⊑ 𝐸𝑛}

3 𝐷 ⊑
𝑛⨆︀

𝑖=1
𝐸𝑖 ⊔ ∀𝑟.𝐹 {𝐷 ⊑

𝑛⨆︀
𝑖=1

𝐸𝑖 ⊔ ∀𝑟.𝑁 , 𝑁 ⊑ 𝐹, 𝐹 ⊑ 𝑁}

4 𝐷 ⊑
𝑛⨆︀

𝑖=1
𝐹𝑖 ⊔ 𝐸̂ {𝐷 ⊑

𝑛⨆︀
𝑖=1

𝐹𝑖 ⊔𝑁 , 𝑁 ⊑ 𝐸̂, 𝐸̂ ⊑ 𝑁}

5 𝐷 ⊑ ∃𝑟.𝐹 {𝐷 ⊑ ∃𝑟.𝑁 , 𝑁 ⊑ 𝐹, 𝐹 ⊑ 𝑁}
6 𝐷 ⊑ ∃𝑟.𝐴 {𝑁 ⊑ ∃𝑟.𝐴 , 𝑁 ⊑ 𝐷, 𝐷 ⊑ 𝑁}
7 𝐷 ⊑ ⋆𝐸 {𝐷 ⊑ ⋆𝑁, 𝑁 ⊑ 𝐸, 𝐸 ⊑ 𝑁}
8 𝐷 ⊑ ⋆𝐴 {𝐵 ⊑ ⋆𝐴, 𝐵 ⊑ 𝐷, 𝐷 ⊑ 𝐵}
9

𝑛⨆︀
𝑖=1

𝐷𝑖 ⊑ 𝐸 {𝐷1 ⊑ 𝐸, · · · , 𝐷𝑛 ⊑ 𝐸}

10
𝑛d

𝑖=1
𝐹𝑖 ⊓ 𝐷̌ ⊑ 𝐸 {

𝑛d

𝑖=1
𝐹𝑖 ⊓𝑁 ⊑ 𝐸 , 𝐷̌ ⊑ 𝑁, 𝑁 ⊑ 𝐷̌}

11
𝑛d

𝑖=1
𝐷𝑖 ⊓ ∃𝑟.𝐹 ⊑ 𝐸 {

𝑛d

𝑖=1
𝐷𝑖 ⊓ ∃𝑟.𝑁 ⊑ 𝐸 , 𝐹 ⊑ 𝑁, 𝑁 ⊑ 𝐹}

12 ∀𝑟.𝐹 ⊑ 𝐸 {∀𝑟.𝑁 ⊑ 𝐸, 𝐹 ⊑ 𝑁, 𝑁 ⊑ 𝐹}
13 ∀𝑟.𝐴 ⊑ 𝐸 {∀𝑟.𝐴 ⊑ 𝑁 , 𝐸 ⊑ 𝑁, 𝑁 ⊑ 𝐸}
14 ⋆𝐷 ⊑ 𝐸 {⋆𝑁 ⊑ 𝐸, 𝑁 ⊑ 𝐷, 𝐷 ⊑ 𝑁}
15 ⋆𝐴 ⊑ 𝐷 {⋆𝐴 ⊑ 𝐵, 𝐵 ⊑ 𝐷, 𝐷 ⊑ 𝐵}

The remaining cases of Table 6 are left to the reader.

As a result of the previous lemma, we have the following corollary:

Corollary A.1. Given a TBox axiom 𝛼 not in TNF and an interpretation ℐ. If ℐ ⊩ 𝛼, then
there exists an interpretation ℐ ′ such that ℐ ′ ⊩ apply(𝛼), where 𝐴ℐ = 𝐴ℐ′ , 𝑟ℐ = 𝑟ℐ′ , and
𝑎ℐ = 𝑎ℐ′ , for all concept names 𝐴, role names 𝑟, and individual names 𝑎 from 𝑠𝑖𝑔({𝛼}),
respectively.

To illustrate that arbitrary knowledge bases can be translated to BTNF ones, Table 6
provides a set of transformation rules that translate a given axiom to a set of axioms closest
to BTNF. The Algorithm 5 shows a decision procedure btnf that translates knowledge bases
to BTNF ones.

Lemma A.2. Given a knowledge base 𝒦, btnf(𝒦) is a conservative extension of 𝒦.

Proof. We prove this proposition by contradiction. Assume btnf(𝒦) is not a conservative
extension of 𝒦. Then, it does not hold some condition of Definition A.2.
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Algorithm 5 btnf
Require: An 𝒜ℒ𝒞ℋ∙ knowledge base 𝒦 = (𝒯 ,ℛ,𝒜)
Ensure: An 𝒜ℒ𝒞ℋ∙ knowledge base 𝒦′ = (𝒯 ′,ℛ′,𝒜′) in BTNF

1: 𝒯 ′,ℛ′,𝒜′ ← ∅
2: while 𝒜 ≠ ∅ do
3: get some 𝛼 ∈ 𝒜
4: 𝒜 = 𝒜 ∖ {𝛼}
5: if 𝛼 = 𝐷(𝑎) and 𝐷 is a non-literal concept then
6: 𝒜′ ← 𝒜′ ∪ {𝑁(𝑎)}
7: 𝒯 ← 𝒯 ∪ {𝑁 ≡ 𝐷}
8: else if 𝛼 = 𝑅(𝑎, 𝑏) and 𝑅 is a non-literal role then
9: 𝒜′ ← 𝒜′ ∪ {𝑢(𝑎, 𝑏)}

10: ℛ′ ← ℛ′ ∪ {𝑢 ⊑ 𝑅}
11: else
12: 𝒜′ ← 𝒜′ ∪ {𝛼}
13: end if
14: end while
15: while ℛ ≠ ∅ do
16: get some 𝑅 ⊑ 𝑆 ∈ ℛ
17: ℛ = ℛ ∖ {𝑅 ⊑ 𝑆}
18: if 𝑅 = ∙𝑟 and 𝑆 = ∙𝑠 then
19: ℛ′ ← ℛ′ ∪ {𝑅 ⊑ 𝑁, 𝑁 ⊑ 𝑆}
20: else
21: ℛ′ ← ℛ′ ∪ {𝑅 ⊑ 𝑆}
22: end if
23: end while
24: while 𝒯 ̸= ∅ do
25: get some 𝛼 ∈ 𝒯
26: 𝒯 = 𝒯 ∖ {𝛼}
27: if 𝛼 is in BTNF then
28: 𝒯 ′ ← 𝒯 ′ ∪ {𝛼}
29: else
30: 𝒯 ← 𝒯 ∪ apply(𝛼)
31: end if
32: end while
33: return (𝒯 ′,ℛ′,𝒜′)
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(i) 𝑠𝑖𝑔(𝒦) ⊆ 𝑠𝑖𝑔(btnf(𝒦)). Once the algorithm only adds new concept names and role
names to the knowledge base without removing any, then it holds that 𝑠𝑖𝑔(𝒦) ⊆ 𝑠𝑖𝑔(btnf(𝒦)).

(ii) every model of btnf(𝒦) is a model of 𝒦. We carefully check the lines that create new
axioms to prove this condition. In the lines 6 and 7, the algorithm adds {𝑁(𝑎), 𝑁 ≡ 𝐷} when
the ABox axiom contains a non-literal concept. A model that satisfies both also satisfies 𝐷(𝑎).
In the lines 9 and 10, the algorithm adds {𝑢(𝑎), 𝑢 ⊑ 𝐷} when the ABox axiom contains a
non-literal role. If (𝑎ℐ , 𝑏ℐ) ∈ 𝑢ℐ and 𝑢ℐ ⊆ 𝑅ℐ , then (𝑎ℐ , 𝑏ℐ) ∈ 𝑅ℐ , for every interpretation ℐ.
Hence, a model that holds {𝑢(𝑎), 𝑢 ⊑ 𝐷} also holds that 𝑅(𝑎, 𝑏). In the line 12, the algorithm
adds the same assertion to the new ABox. Hence, the models trivially hold it. For the RBox, in
the line 19, the algorithm adds {𝑅 ⊑ 𝑁, 𝑁 ⊑ 𝑆} when both sides of the subsumption contain
a typical operator. By the semantics, 𝑚𝑖𝑛≪ℐ 𝑟ℐ ⊆ 𝑁ℐ and 𝑁ℐ ⊆ 𝑚𝑖𝑛≪ℐ 𝑠ℐ , for every model
ℐ. Hence, 𝑚𝑖𝑛≪ℐ 𝑟ℐ ⊆ 𝑚𝑖𝑛≪ℐ 𝑠ℐ . The algorithm adds the same assertion in the line 21. For
the TBox, in the line 28, the algorithm adds the same axiom if it is in BTNF. In the line 30,
by the Lemma A.1, we have that every model ℐ that satisfies apply(𝛼) also satisfies 𝛼.

(iii) for each model ℐ of 𝒦 there exists a model ℐ ′ of btnf(𝒦) such that 𝐴ℐ = 𝐴ℐ′ ,
𝑟ℐ = 𝑟ℐ′ , and 𝑎ℐ = 𝑎ℐ′ , for all concept names 𝐴, role names 𝑟, and individual names 𝑎 from
𝑠𝑖𝑔(𝒦), respectively. Lastly, this condition also holds once the addition of new axioms preserves
the models, if we consider sig(𝒦), only.

Therefore, all the conditions have been met, confirming that btnf(𝒦) serves as a conser-
vative extension of 𝒦.

Lemma A.3. Given a knowledge base 𝒦, btnf(𝒦) is in BTNF.

Proof. The loops for ABox (lines 2-14), RBox (lines 15-23), and TBox (lines 24-32) add to
the new ABox, RBox, and TBox, respectively, only axioms in BTNF. Therefore, the output of
btnf (𝒦) is a knowledge base in BTNF.

The next step is to prove the algorithm terminates. The point of attention here is the
transformations in the TBox. Ensure that these rules are applied consistently. Any sequence
of applying the rules in the table will lead to the knowledge base being in BTNF.

To achieve this, we will define a measure of impurity for an axiom (as well as for a concept)
below.

Definition A.3 (Number of impurities of a concept). Given a concept (possibly complex) 𝐷,
the measure 𝑚(𝐷) of 𝐷 is defined as the number of impure operators in 𝐷. ■
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Example A.1 (Number of impurities of a concept). Let 𝐴, 𝐵, 𝐶 be concept names; 𝑟 be a
role name; and 𝐷 = ∙(𝐴 ⊓ ∀𝑟.¬(𝐵 ⊓ 𝐶)) be a concept. The number of impurities 𝑚(𝐷) of
𝐷 is 3, once:

• the typicality operator is not attached to a concept name;

• the conjunction has a ∀ operator as its operand; and

• the filler of the operator ∀ is not a concept name.

△

Definition A.4 (Number of impurities of an axiom). Given two concept names 𝐷, 𝐸, and a
TBox axiom 𝛼. We define the measure 𝑚(𝛼) as:

• 𝑚(𝐷 ≡ 𝐸) def= 2 + 𝑚(𝐷) + 𝑚(𝐸);

• 𝑚(𝐷 ⊑ 𝐸) def= 1 + 𝑚(𝐷) + 𝑚(𝐸) if:

1. 𝐷 root operator is in {∀,∃, ∙,¬∙} and 𝐸 is a complex concept or

2. 𝐷 is a complex concept and 𝐸 root operator is in {∀,∃, ∙,¬∙}; and

• 𝑚(𝐷 ⊑ 𝐸) def= 𝑚(𝐷) + 𝑚(𝐸), otherwise.

■

Example A.2 (Number of impurities of an axiom). Let 𝐴1, 𝐴2, 𝐴3, be concept names; 𝑟 be a
role name; and 𝛼 = ∃𝑟.𝐴1 ⊑ ∙(𝐴2 ⊓ ∀𝑟.¬(𝐴3 ⊓ 𝐴1)) be an axiom. The number of impurities
𝑚(𝛼) of 𝛼 is 4, once:

• the typicality operator is not attached to a concept name;

• the conjunction has a ∀ operator as its operand;

• the filler of the operator ∀ is not a concept name; and

• the root operator of the left side of the axiom is a ∃, and the right side is a complex
concept.

△

Corollary A.2. Given a TBox axiom 𝛼, 𝛼 is in BTNF iff 𝑚(𝛼) = 0.
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Rule 𝑚(𝛼) 𝑚(𝛽), for all 𝛽 ∈ 𝑎𝑝𝑝𝑙𝑦(𝛼)
1 2 + 𝑚(𝐷) + 𝑚(𝐸) {1 + 𝑚(𝐷) + 𝑚(𝐸), 1 + 𝑚(𝐸) + 𝑚(𝐷)}
2 1 + 𝑚(𝐷) +

𝑛∑︀
𝑖=1

𝑚(𝐸𝑖) {𝑚(𝐷) + 𝑚(𝐸1), · · · , 𝑚(𝐷) + 𝑚(𝐸𝑛)}

3 𝑚(𝐷) +
𝑛∑︀

𝑖=1
𝑚(𝐸𝑖) + 1 + 𝑚(𝐹 ) {𝑚(𝐷) +

𝑛∑︀
𝑖=1

𝑚(𝐸𝑖), 𝑚(𝐹 ), 𝑚(𝐹 )}

4 𝑚(𝐷) +
𝑛∑︀

𝑖=1
𝑚(𝐹𝑖) + 1 + 𝑚(𝐸̂) {𝑚(𝐷) +

𝑛∑︀
𝑖=1

𝑚(𝐹𝑖), 𝑚(𝐸̂), 𝑚(𝐸̂)}

5 1 + 𝑚(𝐷) + 𝑚(𝐹 ) {1 + 𝑚(𝐷), 𝑚(𝐹 ), 𝑚(𝐹 )}
6 1 + 𝑚(𝐷) {0, 𝑚(𝐷), 𝑚(𝐷)}
7 1 + 𝑚(𝐷) + 𝑚(𝐸) {1 + 𝑚(𝐷), 𝑚(𝐸), 𝑚(𝐸)}
8 1 + 𝑚(𝐷) {0, 𝑚(𝐷), 𝑚(𝐷)}
9

𝑛∑︀
𝑖=1

𝑚(𝐷𝑖) + 𝑚(𝐸) {𝑚(𝐷1) + 𝑚(𝐸), · · · , 𝑚(𝐷𝑛) + 𝑚(𝐸)}

10
𝑛∑︀

𝑖=1
𝑚(𝐹𝑖) + 1 + 𝑚(𝐷̌) + 𝑚(𝐸) {

𝑛∑︀
𝑖=1

𝑚(𝐹𝑖) + 𝑚(𝐸), 𝑚(𝐷̌), 𝑚(𝐷̌)}

11
𝑛∑︀

𝑖=1
𝑚(𝐹𝑖) + 1 + 𝑚(𝐹 ) + 𝑚(𝐸) {

𝑛∑︀
𝑖=1

𝑚(𝐹𝑖) + 𝑚(𝐸), 𝑚(𝐹 ), 𝑚(𝐹 )}

12 1 + 𝑚(𝐹 ) + 𝑚(𝐸) {1 + 𝑚(𝐸), 𝑚(𝐹 ), 𝑚(𝐹 )}
13 1 + 𝑚(𝐸) {0, 𝑚(𝐸), 𝑚(𝐸)}
14 1 + 𝑚(𝐷) + 𝑚(𝐸) {1 + 𝑚(𝐸), 𝑚(𝐷), 𝑚(𝐷)}
15 1 + 𝑚(𝐷) {0, 𝑚(𝐷), 𝑚(𝐷)}

Table 7 – Number of impurities of each rule transformation.

Following the above definitions, we can now state that the rule set of Table 6 is terminating.

Lemma A.4 (Axiom transformation rules is terminating). The set of rules in Table 6 is

terminating.

Proof. We prove that the set of rules is terminating, showing that, for each case 𝛼 in the
table, 𝑚(𝛼) > 𝑚(𝛽), for all 𝛽 ∈ 𝑎𝑝𝑝𝑙𝑦(𝛼). The measures are shown in Table 7.

Now, we can state the termination of the algorithm.

Lemma A.5 (Termination of btnf ). Given a knowledge base 𝒦, btnf(𝒦) terminates.

Proof. Let 𝑛𝐴 and 𝑛𝑅 be the size of the ABox and RBox of 𝒦, respectively. For each iteration,
the first two loops (lines 2-14 and 15-23) remove an axiom from ABox and RBox, respectively.
So, there are 𝑛𝐴 + 𝑛𝑅 iterations to end both loops.

In the last loop (lines 24-32), 𝑎𝑝𝑝𝑙𝑦 adds new axioms to the TBox if 𝛼 is not yet in BTNF.
According to the Lemma A.4, any chain of rule applications is terminating. Therefore, the
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algorithm terminates after 𝑛𝐴 + 𝑛𝑅 + 𝑛𝑇 iterations, where 𝑛𝑇 is the number of iterations of
the last loop.

Theorem 5.1. Given a knowledge base 𝒦, The algorithm btnf is a decision procedure to
obtain a BTNF conservative extension of 𝒦.

Proof. The proof of this theorem is a consequence of Lemmas A.2, A.3 and A.5.


