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ABSTRACT

This work is divided into two parts. In the first one, we studied minimal Hilbert functions
for Artinian Gorenstein algebras, we conjecture that for certain algebras the Hilbert vector is
always minimal, and prove this conjecture for a particular case. In the second part, we studied
the Lefschetz locus for Artinian Gorenstein algebras with Hilbert vector (1, 𝑁 + 1, 𝑁 + 1, 1).
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1 INTRODUCTION

The study of standard graded Artinian Gorenstein algebras has attracted the attention of
many mathematicians, and many papers have been written on the subject. These algebras
play a crucial role in commutative algebra, algebraic geometry, combinatorics, and algebraic
topology since they represent a class of algebras that possess both finiteness and symmetry
properties. In this thesis, we are interested in the study of the Hilbert function and the Lefschetz
properties for some of these algebras.

In the study of Hilbert functions of standard graded algebras, Macaulay’s and Green’s
Theorem 2.1.4 stand out as being of fundamental importance. Macaulay’s Theorem regulates
the growth of the Hilbert function from one degree to the next, and Green’s Theorem reg-
ulates the Hilbert functions of the restriction modulo a general linear form. One area where
both theorems have been applied is in the problem to classifying Hilbert functions of Artinian
Gorenstein algebras. More precisely we have the following question: Given a symmetric se-
quence 𝐻 = (1, ℎ1, . . . , ℎ𝑑 = 1), under what conditions is this sequence the Hilbert function
of an Artinian Gorenstein algebra?

Stanley (1975) conjectured that, if 𝐻 is an SI-sequence 2.1.9, then 𝐻 is the Hilbert vector
of an Artinian Gorenstein algebra. Later, he provides a counter-example for this conjecture
in Stanley (1978). He showed that the vector (1, 13, 12, 13, 1) is the Hilbert vector of an
Artinian Gorenstein algebra, and Migliore and Zanello (2017) showed that this vector is optimal,
in other words, they showed that the vectors (1, 13, 11, 13, 1) and (1, 12, 11, 12, 1) do not
come from Artinian Gorenstein algebras. Therefore, to answer the previous question, many
mathematicians started to study symmetric vectors, non-unimodal such that this vector is
the Hilbert function of an Artinian Gorenstein algebra. Recall that a sequence of integers is
unimodal if it does not increase after decreasing. Much work has been done over the years
trying to determine conditions under which a Gorenstein Hilbert vector can be non-unimodal,
see for example Ahn, Migliore and Shin (2018), Cerminara et al. (2020), Migliore, Nagel and
Zanello (2008), Zanello (2009). In particular, we know that non-unimodal Hilbert vectors for
Artinian Gorenstein algebras exist in any codimension 𝑟 ≥ 5 (i.e., 5 or more variables). The
existence of non-unimodal Hilbert vectors in codimension 4 remains an open question.

Thus we have the central question to the first part of this thesis given fixed codimension 𝑟

and socle degree 𝑑, what is the smallest possible non-unimodal Hilbert vector for an Artinian
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Gorenstein algebra with codimension 𝑟 and socle degree 𝑑? This question is connected to the
first one since all compressed Hilbert functions were understood in Iarrobino (1984), they have
maximal Hilbert vector.

In our study, the full Perazzo algebras play a crucial role. These algebras are Artinian
Gorenstein algebras whose Macaulay generator is a full Perazzo polynomial, see 3.1.3. In the
first part, in collaboration with Rodrigo Gondim, Giovanna Ilardi, and Giuseppe Zappalà, we
study the minimal Hilbert vectors of Artinian Gorenstein algebras with small codimension and
socle degree, and we conjectured that the Hilbert vector of a full Perazzo algebra is always
minimal. This paper was published, see Bezerra et al. (2024).

The study of Lefschetz properties is of great importance in algebra, combinatorics, geom-
etry, and topology; it has been crucial in the investigation of graded Artinian algebras. The
study of Lefschetz properties started with the hard Lefschetz Theorem in Lefschetz (1950) on
the cohomology of smooth projective complex varieties. A standard graded Artinian algebra 𝐴

is said to satisfy the Weak Lefschets property (WLP) if the multiplication map in each degree
by a generic linear form 𝐿 has maximal rank. 𝐴 is said to satisfy the Strong Lefschets property
(SLP) if the same holds for powers of 𝐿.

The hard Lefschtz Theorem implies that the Hilbert function of the cohomology rings of
compact Kahler manifolds are unimodal and symmetric. The cohomology rings of compact
Kahler manifolds are Poincaré duality algebras. It is well known (see for example Maeno and
Watanabe (2009)) that commutative Poincaré duality algebras are exactly Artinian Gorenstein
algebras. So it is natural to investigate their Hilbert functions and Lefschetz properties. It
is known that if an Artinian Gorenstein algebra satisfies WLP, then its Hilbert function is
unimodal, that is, the Lefschetz properties affects the behavior of the Hilbert function of
Artinian Gorenstein algebra.

It is important study all Artinian Gorenstein algebras with a fixed Hilbert function 𝐻, we
denote by Gor(𝐻) this space. In Iarrobino and Kanev (1999), the authors studied this space
deeply. In their work, they proved, for example, that there is a close relation between graded
Artinian Gorenstein algebras of codimension three and finite length Cohen-Macaulay sub-
schemes of P2. They show that whenever the Hilbert function 𝐻 is equal to 𝑠 for at least three
degrees, there is a fibration Gor(𝐻)→ H(𝐻) ⊂ Hilb𝑠(P2) which takes the form 𝑓 to the initial
part of the ideal Ann𝑄(𝑓). On the other hand, Boij (1999) gives geometric constructions of
families of graded Artinian Gorenstein algebras, some of which span a component of the space
Gor(𝐻) parametrizing Artinian Gorenstein algebras with a given Hilbert function 𝐻. This gives
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a lot of examples where Gor(𝐻) is reducible. The author also shows that the Hilbert function of
an Artinian Gorenstein algebra with codimension four can have an arbitrary long constant part
without having the weak Lefschetz property. Fassarella, Ferrer and Gondim (2021) provided a
classification of developable cubic hypersurfaces in P4, and using the Macaulay-Matlis duality
they describe the Locus in Gor(1, 5, 5, 1) corresponding to those algebras which satisfy the
Strong Lefschetz property.

The second part of the thesis, in collaboration with Rodrigo Gondim and Viviana Ferrer,
was inspired by Fassarella, Ferrer and Gondim (2021) and Gondim and Russo (2015). We use
the Macaulay-Matlis duality to describe the Lefschetz locus in Gor(1, 𝑛, 𝑛, 1). We parametrize
the space of cubics, not cones with vanishing hessian, and calculate its dimension and degree
using techniques of intersection theory. As an application, we parametrize the cubics, not cones
with vanishing hessian in P5 and P6, and we calculate its dimension and degree.
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2 FUNDAMENTAL RESULTS

In this chapter, we summarise some classical definitions and results that will be useful
throughout this thesis.

In all work, we consider K a field of characteristic zero and denote by 𝑄 = K[𝑋1, . . . , 𝑋𝑛]

the polynomial ring. We consider 𝑄 as a standard graded ring with deg(𝑋𝑖) = 1. We denote by
𝐴 the standard graded K-algebra given by the quotient 𝐴 = 𝑄/𝐼, where 𝐼 is a homogeneous
ideal of 𝑄. Each graded part of 𝐴 is 𝐴𝑖 = 𝑄𝑖/𝐼𝑖.

2.1 HILBERT FUNCTIONS

The first classical definition we will see is the definition of Hilbert Functions. This topic
concerns calculating dimensions of graded modules that are finitely generated. The definition
is the following.

Definition 2.1.1. Let 𝑀 = ⨁︀
𝑖∈Z 𝑀𝑖 be a finitely generated graded 𝑄-module. The Hilbert

function of 𝑀 is the function ℎ𝑀 : Z→ Z given by ℎ𝑀(𝑖) = dimK 𝑀𝑖. We write the Hilbert
function of 𝑀 like Hilb(𝑀) = (ℎ0, ℎ1, . . . , ℎ𝑖, . . .).

We are interested in the case where 𝑀 = 𝐴 and 𝐴 is Artinian. In this case, 𝐴 = ⨁︀𝑑
𝑖=0 𝐴𝑖

for some integer 𝑑 ≥ 0 and we can write Hilb(𝐴) as a vector

Hilb(𝐴) = (ℎ0, ℎ1, . . . , ℎ𝑑)

and we refer to the Hilbert function of an Artinian algebra as a Hilbert vector of 𝐴, or simply
ℎ-vector of 𝐴.

Example 2.1.2. Let 𝑄 = K[𝑋, 𝑌, 𝑍] be the polynomial ring and consider the ideal 𝐼 =

(𝑌 2𝑍 − 𝑋𝑍2, 𝑋𝑌 2 − 𝑋2𝑍, 𝑋3, 𝑌 4, 𝑍3). We have that 𝐴 = 𝑄/𝐼 is an Artinian K-algebra
with ℎ-vector (1, 3, 6, 6, 3, 1).

Some classical results given bounds for the growth of the Hilbert function of Artinian K-
algebras are due to Macaulay, Gotzmann, and Green. Before starting them, we need to recall
the following definition:
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Definition 2.1.3. Let 𝑘 and 𝑖 be positive integers. The 𝑖-binomial expansion of 𝑘, denoted
by 𝑘(𝑖), is

𝑘 = 𝑘(𝑖) =
(︃

𝑘𝑖

𝑖

)︃
+
(︃

𝑘𝑖−1

𝑖− 1

)︃
+ · · ·+

(︃
𝑘𝑗

𝑗

)︃
(2.1)

where 𝑘𝑖 > 𝑘𝑖 − 1 > · · · > 𝑘𝑗 ≥ 𝑗 ≥ 1.

An expansion 2.1 always exists and is unique (see, e.g., Bruns and Herzog (1998)). Fol-
lowing the notation in Bruns and Herzog (1998), we define for any integers 𝑎 and 𝑏,

(𝑘(𝑖))𝑏
𝑎 =

(︃
𝑘𝑖 + 𝑏

𝑖 + 𝑎

)︃
+
(︃

𝑘𝑖−1 + 𝑏

𝑖− 1 + 𝑎

)︃
+ · · ·+

(︃
𝑘𝑗 + 𝑏

𝑗 + 𝑎

)︃

where we set
(︁

𝑠
𝑐

)︁
= 0 whenever 𝑠 < 𝑐 or 𝑐 < 0.

Theorem 2.1.4. Let 𝐴 = 𝑄/𝐼 be a standard graded K-algebra and 𝐿 ∈ 𝐴 a general linear
form (according to the Zariski topology). Denote by ℎ𝑐 the degree 𝑐 entry of the Hilbert
function of 𝐴 and by ℎ′

𝑐 the degree 𝑐 entry of the Hilbert function of 𝐴/(𝐿). Then:

• (Macaulay) ℎ𝑐+1 ≤ ((ℎ𝑐)(𝑐))+1
+1;

• (Gotzmann) If ℎ𝑐+1 = ((ℎ𝑐)(𝑐))+1
+1 and 𝐼 is generated in degrees ≤ 𝑐, then

ℎ𝑐+𝑠 ≤ ((ℎ𝑐)(𝑐))𝑠
𝑠

for all 𝑠 ≥ 1;

• (Green) ℎ′
𝑐 ≤ ((ℎ𝑐)(𝑐))−1

0 .

Proof. For Macaulay and Gotzmann, see Bruns and Herzog (1998), Theorems 4.2.10 and
4.3.3, respectively. For Green, see Green (2006), Theorem 1.

Definition 2.1.5. We say that a sequence of non-negative integers (ℎ0, ℎ1, . . . , ℎ𝑖, . . .) is an
𝒪-sequence if it satisfies Macaulay’s Theorem.

Remark 2.1.6. An interesting fact is that if we have an 𝒪-sequence, then there is a graded
algebra such that its Hilbert function is the given sequence. For more details see Migliore
(2007).

In the next definitions, we fix 𝐴 an Artinian K-algebra and 𝐻 = Hilb(𝐴) = (1, ℎ1, . . . , ℎ𝑑)

its Hilbert vector.



13

Definition 2.1.7. We say that Hilb(𝐴) is unimodal if there is a 𝑡 such that

ℎ0 ≤ ℎ1 ≤ . . . ≤ ℎ𝑡 ≥ ℎ𝑡+1 ≥ . . . ≥ ℎ𝑑

.

Definition 2.1.8. We define the difference of Hilb(𝐴), denoted by △(𝐻), as the sequence
△𝐻 = (1, ℎ1 − 1, . . . , ℎ𝑡 − ℎ𝑡−1), where 𝑡 = min{𝑖 | ℎ𝑖 ≥ ℎ𝑖+1}.

Definition 2.1.9. A sequence of non-negative integers satisfying the definitions 2.1.5, 2.1.7
and 2.1.8 is called SI-sequence.

2.2 ARTINIAN GORENSTEIN ALGEBRAS

Definition 2.2.1. Let 𝐴 = ⨁︀𝑑
𝑖=0 𝐴𝑖 be an Artinian K-algebra. We say that 𝐴 is a Poincaré

duality algebra if dimK 𝐴𝑑 = 1 and the pairing 𝐴𝑖 × 𝐴𝑑−𝑖 → 𝐴𝑑 given by multiplication is a
perfect pairing for every 𝑖 = 0, . . . , 𝑑.

An important point is that Artinian Gorenstein algebras are characterized to be Poincaré
duality algebras.

Proposition 2.2.2. A graded Artinian K-algebra 𝐴 is Gorenstein if and only if it is a Poincaré
duality algebra.

Proof. Maeno and Watanabe (2009), Proposition 2.1.

Notice that, for an Artinian Gorenstein algebra, by Poincare duality we have the isomor-
phisms

𝐴𝑑−𝑖 ≃ HomK(𝐴𝑖, 𝐴𝑑)

therefore, its Hilbert vector is symmetric, that is, ℎ𝑖 = ℎ𝑑−𝑖, for every 𝑖 = 0, . . . , [𝑑
2 ].

When 𝐴 is Artinian, without loss of generality, we can suppose that 𝐼1 = 0. Since 𝐴 = 𝑄/𝐼

is Artinian, its Krull dimension is zero, therefore, the codimension of 𝐼 is 𝑛. By abuse of
notation, we give for 𝐴 a property of the ideal 𝐼, we say that 𝐴 has codimension 𝑛 = ℎ1.

Definition 2.2.3. For a graded algebra 𝐴 = 𝑄/𝐼, the socle of 𝐴 is Soc(𝐴) = 0 : m, where
m = (𝑋1, . . . , 𝑋𝑛) is the homogeneous maximal ideal of 𝐴. If Hilb(𝐴) = (1, ℎ1, . . . , ℎ𝑑), the
integer 𝑑 is called socle degree of 𝐴.

In particular, when 𝐴 is Gorenstein the socle of 𝐴 has dimension 1.
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2.3 MACAULAY-MATLIS DUALITY

Let 𝑅 = K[𝑥1, . . . , 𝑥𝑛] be a new polynomial ring. We make 𝑅 into a 𝑄-module, where 𝑄

acts in 𝑅 by differentiation 𝑋𝑖 ∘ 𝑥𝑗 = 𝛿𝑖𝑗. This action is sometimes called apolarity. In other
words, the polynomials of 𝑄 act as derivatives upon the polynomials of 𝑅.

Example 2.3.1. Let 𝑓 = 𝑥3 + 𝑦2𝑧 ∈ 𝑅 = K[𝑥, 𝑦, 𝑧] and 𝐺 = 𝑋2 + 𝑍2 ∈ 𝑄 = K[𝑋, 𝑌, 𝑍].
Then 𝐺 ∘ 𝑓 = 6𝑥.

For a homogeneous ideal 𝐼 ⊂ 𝑄, the inverse system of 𝐼, denoted 𝐼−1 is the 𝑄-submodule
of 𝑅 consisting of all elements of 𝑅 annihilated by 𝐼, that is

𝐼−1 = {𝑓 ∈ 𝑅; 𝑓 ∘ 𝑔 = 0, for all 𝑔 ∈ 𝐼}.

Remark 2.3.2. The following information is well-known for the inverse system:

1. In general, 𝐼−1 is not an ideal of 𝑅;

2. dimK(𝐼−1)𝑖 = dimK(𝑅𝑖/𝐼𝑖);

3. 𝐼−1 is a finitely generated 𝑄-module if and only if 𝐼 is an Artinian ideal;

4. If 𝐼 is a monomial ideal, (𝐼−1)𝑖 is generated by monomials in 𝑅𝑖 corresponding to the
monomials in 𝑄𝑖 but not in 𝐼𝑖.

Definition 2.3.3. For an ideal 𝐼 ⊂ 𝑅, we define the annihilator of 𝐼 in 𝑄 as the ideal

Ann𝑄(𝐼) = {𝛼(𝑋1, . . . , 𝑋𝑛) ∈ 𝑄; 𝛼(𝑋1, . . . , 𝑋𝑛)𝐼 = 0}.

In terms of generators, if 𝐼 = (𝑓1, . . . , 𝑓𝑟), then 𝛼(𝑋1, . . . , 𝑋𝑛) ∈ Ann𝑄(𝐼) if and only if
𝛼(𝑋1, . . . , 𝑋𝑛) ∘ 𝑓𝑖 = 0 for every 𝑖 = 0, . . . , 𝑟. If 𝐼 is generated by a single element 𝑓 ∈ 𝑅,
we may write Ann𝑄(𝑓) for Ann𝑄(𝐼).

The Macaulay-Matlis duality gives us the bijection:

{Homogeneous ideals of 𝑄} ↔ {Graded 𝑄 submodules of 𝑅}

Ann𝑄(𝑀) ← 𝑀

𝐼 → 𝐼−1

For Artinian Gorenstein algebras, the duality gives us the following Theorem, which is a
machinery to construct Artinian Gorenstein algebras.
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Theorem 2.3.4. (Maeno and Watanabe (2009)) Let 𝐴 = 𝑄/𝐼 be a graded Artinian algebra.
Then 𝐴 is Gorenstein if and only if there exists a homogeneous polynomial 𝑓 ∈ 𝑅𝑑 such that
𝐼 = Ann𝑄(𝑓).

Example 2.3.5. The Artinian algebra 𝐴 given in example 2.1.2 is Gorenstein. In that case,
we have 𝐼 = Ann𝑄(𝑓), with 𝑓 = 𝑥𝑦3𝑧 + 𝑥2𝑦𝑧2 ∈ 𝑅 = K[𝑥, 𝑦, 𝑧]5.

For simplicity, sometimes we write 𝐴𝑓 to denote the Artinian Gorenstein algebra associated
with the homogeneous polynomial 𝑓 ∈ 𝑅𝑑, i.e.,

𝐴𝑓 = 𝑄

Ann𝑄(𝑓) .

2.4 LEFSCHETZ PROPERTIES

Definition 2.4.1. Let 𝐴 = ⨁︀𝑑
𝑖=0 𝐴𝑖 be an Artinian algebra. We say that 𝐴 satisfies the weak

Lefschetz property, briefly WLP, if there exists 𝐿 ∈ 𝐴1 such that the multiplication map

×𝐿 : 𝐴𝑖 → 𝐴𝑖+1

has maximal rank for every 𝑖. In this case, 𝐿 is said to be a weak Lefschetz element of 𝐴.
We say that 𝐴 satisfies the strong Lefschetz property, briefly SLP, if there exists 𝐿 ∈ 𝐴1

such that the multiplication map
×𝐿𝑘 : 𝐴𝑖 → 𝐴𝑖+𝑘

has maximal rank for all 𝑖 and 𝑘. In this case, 𝐿 is said to be a strong Lefschetz element of
𝐴.

Lefschetz properties are an open condition in the sense that, Lefschetz elements of Artinian
algebras 𝐴 form a Zariski open subsets. Therefore, 𝐴 has WLP (SLP) if and only if a generic
linear form 𝐿 is a weak Lefschetz element (strong Lefschetz element).

It is known that all Artinian Gorenstein algebras with codimension 2 have SLP, see Propo-
sition 3.15 in Harima et al. (2013). All complete intersection algebras in codimension 3 have
WLP (Theorem 3.48, in Harima et al. (2013)), but still open when Artinian Gorenstein algebras
with codimension 3 have SLP in general.

Another interesting problem is to study when the Hilbert vector of an Artinian Gorenstein
algebra forces WLP or SLP. Many works are doing this study, for example, Abdallah et al.
(2023), Boij et al. (2014), Boij et al. (2024), among others.



16

When 𝐴 = ⨁︀𝑑
𝑖=0 is an Artinian Gorenstein algebra, to verify WLP it is sufficient to verify the

injectivity of the multiplication maps ×𝐿 : 𝐴𝑘 → 𝐴𝑘+1, if 𝑑 = 2𝑘 + 1, and ×𝐿 : 𝐴𝑘−1 → 𝐴𝑘

if 𝑑 = 2𝑘, see Migliore, Miró-Roig and Nagel (2011). For SLP it is sufficient to verify that all
multiplication maps ×𝐿𝑑−2𝑖 : 𝐴𝑖 → 𝐴𝑑−𝑖 are isomorphisms for 𝑖 ∈ {1, . . . , [𝑑

2 ]}. In this way, it
is natural to ask about the matrix of these linear maps. Ahead of this, we may define Higher
Hessian and Mixed Hessian.

Let 𝑓 ∈ 𝑅𝑑 be a homogeneous polynomial, let 𝐴 = 𝑄/ Ann𝑄(𝑓) = ⨁︀𝑑
𝑖=0 𝐴𝑖 its associated

Artinian Gorenstein algebra.

Definition 2.4.2. Let ℬ = {𝛼1, . . . , 𝛼𝑘} ⊂ 𝐴𝑘 be an ordered K-basis. The 𝑘th Hessian matrix
of 𝑓 with respect to ℬ is

Hess𝑘
𝑓 = [𝛼𝑖𝛼𝑗(𝑓)]𝑖,𝑗.

The 𝑘th Hessian of 𝑓 with respect to ℬ is

hess𝑘
𝑓 = det(Hess𝑘

𝑓 ).

Remark 2.4.3. • The Hessian of order 𝑘 = 0 it is just hess0
𝑓 = 𝑓 . For 𝑘 = 1, hess1

𝑓 is
the classical Hessian.

• The Hessian matrix depends on the choice of the K-basis of 𝐴𝑘, although its vanishing
does not depend on this choice.

Following the notation in Gondim and Zappala (2019), let 𝑡 ≤ 𝑙 be two integers, take
𝐿 ∈ 𝐴1 and let us consider the K-vector space map

𝜇𝐿 : 𝐴𝑡 → 𝐴𝑙, 𝜇𝐿(𝛼) = 𝐿𝑙−𝑡𝛼.

Let ℬ𝑡 = (𝛼1, . . . , 𝛼𝑟) be a vector basis as above and ℬ𝑙 = (𝛽1, . . . , 𝛽𝑠) be a K-linear basis of
𝐴𝑙.

Definition 2.4.4. We call the matrix

Hess(𝑡,𝑙)
𝑓 = [𝛼𝑖𝛽𝑗(𝑓)]

the mixed Hessian matrix of 𝑓 of mixed order (𝑡, 𝑙) with respect to the bases ℬ𝑡 and ℬ𝑙.
Moreover, we have Hess𝑘

𝑓 = Hess(𝑘,𝑘)
𝑓 .

With the two definitions above, we can state the Hessian criterion for an Artinian Gorenstein
algebra to satisfy the weak and strong Lefschetz properties.
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Theorem 2.4.5. Let 𝐴 = 𝑄/ Ann𝑄(𝑓) be a standard graded Artinian Gorenstein algebra
of codimension 𝑛 and socle degree 𝑑 and let 𝐿 = 𝑎1𝑋1 + · · · + 𝑎𝑛𝑋𝑛 ∈ 𝐴1, such that
𝑓(𝑎1, . . . , 𝑎𝑛) ̸= 0. The map 𝜇𝐿 : 𝐴𝑡 → 𝐴𝑙, for 𝑡 < 𝑙 ≤ 𝑑

2 , has maximal rank if and only if the
(mixed) Hessian matrix Hess(𝑡,𝑑−𝑙)

𝑓 (𝑎1, . . . , 𝑎𝑛) has maximal rank. In particular, we have the
following:

1. (Strong Lefschetz Hessian criterion, Maeno and Watanabe (2009)) 𝐿 is a stong Lefschetz
element of 𝐴 if and only if hess𝑘

𝑓 (𝑎1, . . . , 𝑎𝑛) ̸= 0 for all 𝑡 = 1, . . . , [𝑑
2 ].

2. (Weak Lefschetz Hessian criterion, Gondim and Zappala (2019)) 𝐿 ∈ 𝐴1 is a weak
Lefschetz element of 𝐴 if and only if either 𝑑 = 2𝑞 +1 is odd and hess𝑞

𝑓 (𝑎1, . . . , 𝑎𝑛) ̸= 0

or 𝑑 = 2𝑞 is even and Hess(𝑞−1,𝑞)
𝑓 (𝑎1, . . . , 𝑎𝑛) has maximal rank.

Example 2.4.6. The Artinian algebra in the example 2.1.2 has SLP. We saw in example 2.3.5
that 𝐴 = 𝑄/ Ann𝑄(𝑓), where 𝑓 = 𝑥𝑦3𝑧 + 𝑥2𝑦𝑧2, and that, 𝐴 is an Artinian Gorenstein
algebra. Let us use the Hessian criterion to verify SLP.

We have that 𝐴 has socle degree 5, so we need to check hess𝑓 and hess2
𝑓 . As before, a

linear K-basis for 𝐴1 and 𝐴2 are, respectively (𝑋, 𝑌, 𝑍) and (𝑋2, 𝑋𝑌, 𝑋𝑍, 𝑌 2, 𝑌 𝑍, 𝑍2). Then
the respective Hessian matrices are

Hess𝑓 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
2𝑦𝑧2 3𝑦2𝑧 + 2𝑥𝑧2 𝑦3 + 4𝑥𝑦𝑧

3𝑦2𝑧 + 2𝑥𝑧2 6𝑥𝑦𝑧 3𝑥𝑦2 + 2𝑥2𝑧

𝑦3 + 4𝑥𝑦𝑧 3𝑥𝑦2 + 2𝑥2𝑧 2𝑥2𝑦

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

Hess2
𝑓 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 4𝑧 4𝑦

0 0 4𝑧 6𝑧 6𝑦 4𝑥

0 4𝑧 4𝑦 6𝑦 4𝑥 0

0 6𝑧 6𝑦 0 6𝑥 0

4𝑧 6𝑦 4𝑥 6𝑥 0 0

4𝑦 4𝑥 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since hess𝑓 and hess2
𝑓 are both non null, then 𝐴 has the strong Lefschetz property.
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3 ON MINIMAL GORENSTEIN HILBERT FUNCTIONS

We deal with standard graded Artinian Gorenstein K-algebras over a field of characteristic
zero. A natural and classical problem consists in understanding their possible Hilbert function,
sometimes also called Hilbert vector. When the codimension of the algebra is less than or
equal to 3, all possible Hilbert vectors were characterized in Stanley (1978); in particular, they
are unimodal, i.e. they never strictly increase after a strict decrease. While it is known that
non unimodal Gorenstein ℎ-vectors exist in every codimension greater than or equal to 5 (see
Bernstein and Iarrobino (1992), Boij (1995), Boij and Laksov (1994)), it is open whether non
unimodal Gorenstein ℎ-vectors of codimension 4 exist. For algebras with codimension 4 having
a small initial degree the Hilbert vector is unimodal (see Seo and Srinivasan (2012), Migliore,
Nagel and Zanello (2007)).

Consider the family 𝒜𝒢K(𝑟, 𝑑) of standard graded Artinian Gorenstein K-algebras of socle
degree 𝑑 and codimension 𝑟. By Poncaré duality, the Hilbert function of 𝐴 ∈ 𝒜𝒢K(𝑟, 𝑑) is a
symmetric vector Hilb(𝐴) = (1, 𝑟, ℎ2, . . . , ℎ𝑑−2, 𝑟, 1), that is ℎ𝑘 = ℎ𝑑−𝑘. There is a natural
partial order in this family given by:

(1, 𝑟, ℎ2, . . . , ℎ𝑑−2, 𝑟, 1) ⪯ (1, 𝑟, ℎ̃2, . . . , ℎ̃𝑑−2, 𝑟, 1),

if ℎ𝑖 ≤ ℎ̃𝑖, for all 𝑖 ∈ {2, . . . , 𝑑 − 2}. The maximal Hilbert functions are associated with
compressed algebras and completely described in Iarrobino and Kanev (1999). In fact, the
Hilbert vector of a compressed Gorenstein algebra is a maximum in 𝒜𝒢K(𝑟, 𝑑). On the other
hand, classifying minimal Hilbert functions is a hard problem. We do not know in general
if there is a minimum. Moreover, given two comparable Gorenstein Hilbert functions, it is
not true that any symmetric vector between them is Gorenstein. Some partial results in this
direction were obtained in Zanello (2009) and called the interval conjecture.

The first example of a non-unimodal Gorenstein ℎ-vector was given by Stanley (see Stanley
(1978, Example 4.3)). He showed that the ℎ-vector (1, 13, 12, 13, 1) is indeed a Gorenstein
ℎ-vector. In Migliore and Zanello (2017) the authors showed that Stanley’s example is optimal,
i.e. if we consider the ℎ−vector (1, 12, 11, 12, 1), it is not Gorenstein. We say that a vector is
totally non unimodal if

ℎ1 > ℎ2 > . . . > ℎ𝑘 for 𝑘 = ⌊𝑑/2⌋.

A totally non unimodal Gorenstein Hilbert vector exists for every socle degree 𝑑 ≥ 4 when the
codimension 𝑟 is large enough. It is related to a conjecture posed by Stanley and proved in
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Migliore, Nagel and Zanello (2008), Migliore, Nagel and Zanello (2009) and also a consequence
of our Proposition 3.1.4, see Corollary 3.1.5.

From Macaulay-Matlis duality, every standard graded Artinian Gorenstein K-algebra can
be presented by a quotient of a ring of differential operators by a homogeneous ideal that
is the annihilator of a single form in the dual ring of polynomials. Full Perazzo algebras
are associated with full Perazzo polynomials, they are the family that we will study in detail.
Perazzo polynomials are related to the Gordan-Noether theory of forms with vanishing Hessian
(see Russo (2016, Chapter 7) and Gondim (2017)). In Gondim (2017) the author introduced
the terminology Perazzo algebras to denote the Artinian Gorenstein algebra associated with a
Perazzo polynomial. In Fiorindo, Mezzetti and Miró-Roig (2023) and Abdallah et al. (2022)
the authors study the Hilbert vector and the Lefschetz properties for Perazzo algebras in
codimension 5. In Cerminara et al. (2020) the authors study full Perazzo algebras focusing on
socle degree 4, showing that they have minimal Hilbert vector in some cases. In this paper,
we deal with codimension greater than 13 and we are more interested in full Perazzo algebras.
In the case of socle degree 4, we recall the known results.

We now describe the contents of the thesis in more detail. In the first section, we recall
the definition of full Perazzo algebras and we pose the full Perazzo Conjecture (see Conjec-
ture 3.1.7). A full Perazzo polynomial of type 𝑚 and degree 𝑑 is a bigraded polynomial of
bidegree (1, 𝑑 − 1) given by 𝑓 = ∑︀

𝑥𝑗𝑀𝑗 where {𝑀𝑗|𝑗 = 1, . . . ,
(︁

𝑚+𝑑−2
𝑑−1

)︁
} is a basis for

K[𝑢1, . . . , 𝑢𝑚](𝑑−1). The associated Artinian Gorenstein algebra is called full Perazzo algebra.

Conjecture. Let 𝐻 be the Hilbert vector of a full Perazzo algebra of type 𝑚 ≥ 3 and socle
degree 𝑑 ≥ 4 and let 𝑟 = 𝑟(𝑚, 𝑑) its codimension. Then 𝐻 is minimal in the family of Hilbert
vectors of Artinian Gorenstein algebras of codimension 𝑟 and socle degree 𝑑, that is, if 𝐻̂ is a
comparable Artinian Gorenstein Hilbert vector such that 𝐻̂ ⪯ 𝐻, then 𝐻̂ = 𝐻.

In the second section, we prove special cases of the Conjecture in socle degree 4 and we
try to fill the gaps in order to classify all possible Hilbert functions up to codimension 25

(see Theorem 3.2.6, Corollary 3.2.7 and Proposition 3.2.8). In socle degree 5 we prove the
Conjecture for 𝑚 ∈ {3, 4, 5, 6, 7, 8, 9, 10} (see Theorem 3.2.15) and a stronger version of the
conjecture for 𝑚 = 3 (see Corollary 3.2.16).

In the third section, we prove our main result that the full Perazzo Conjecture is true for
arbitrary socle degree 𝑑 ≥ 4 and type 𝑚 = 3.
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Theorem. Every full Perazzo algebra with socle degree 𝑑 ≥ 4 of type 𝑚 = 3 has minimal
Hilbert function.

In the last section, we give a new proof of part of a result originally proved in Migliore,
Nagel and Zanello (2009), concerning the asymptotic behavior of the minimum entry of a
Gorenstein Hilbert function (see Theorem 3.4.2).

3.1 MINIMAL GORENSTEIN HILBERT FUNCTIONS

We will deal with standard bigraded Artinian Gorenstein algebras 𝐴 = ⨁︀𝑑
𝑖=0 𝐴𝑖, 𝐴𝑑 ̸= 0,

with 𝐴𝑘 = ⨁︀𝑘
𝑖=0 𝐴(𝑖,𝑘−𝑖), 𝐴(𝑑1,𝑑2) ̸= 0 for some 𝑑1, 𝑑2 such that 𝑑1 + 𝑑2 = 𝑑, we call (𝑑1, 𝑑2)

the socle bidegree of 𝐴. Since 𝐴*
𝑘 ≃ 𝐴𝑑−𝑘 and since duality is compatible with direct sum, we

get 𝐴*
(𝑖,𝑗) ≃ 𝐴(𝑑1−𝑖,𝑑2−𝑗).

Let 𝑅 = K[𝑥1, . . . , 𝑥𝑛, 𝑢1, . . . , 𝑢𝑚] be the polynomial ring viewed as a standard bigraded ring
in the sets of variables {𝑥1, . . . , 𝑥𝑛} and {𝑢1, . . . , 𝑢𝑚} and let 𝑄 = K[𝑋1, . . . , 𝑋𝑛, 𝑈1, . . . , 𝑈𝑚]

be the associated ring of differential operators.
We want to stress that the bijection given by Macaulay-Matlis duality preserves bigrading,

that is, there is a bijection:

{Bihomogeneous ideals of 𝑄} ↔ {Bigraded 𝑄 submodules of 𝑅}

Ann𝑄(𝑀) ← 𝑀

𝐼 → 𝐼−1

If 𝑓 ∈ 𝑅(𝑑1,𝑑2) is a bihomogeneous polynomial of total degree 𝑑 = 𝑑1 + 𝑑2, then 𝐼 =

Ann𝑄(𝑓) ⊂ 𝑄 is a bihomogeneous ideal and 𝐴 = 𝑄/𝐼 is a standard bigraded Artinian
Gorenstein algebra of socle bidegree (𝑑1, 𝑑2) and codimension 𝑟 = 𝑚 + 𝑛 if we assume,
without loss of generality, that 𝐼1 = 0.

Notice that being 𝐴 the associated algebra of a bihomogeneous polynomial 𝑓 ∈ 𝑅(𝑑1,𝑑2),
for all 𝛼 ∈ 𝑄(𝑖,𝑗) with 𝑖 > 𝑑1 or 𝑗 > 𝑑2 we get 𝛼(𝑓) = 0, therefore, in these conditions
𝐼(𝑖,𝑗) = 𝑄(𝑖,𝑗). As a consequence, we have the following decomposition for all 𝐴𝑘:

𝐴𝑘 =
⨁︁

𝑖+𝑗=𝑘,𝑖≤𝑑1,𝑗≤𝑑2

𝐴(𝑖,𝑗).

Furthermore, for 𝑖 < 𝑑1 and 𝑗 < 𝑑1, the evaluation map 𝑄𝑖,𝑗 → 𝐴(𝑑1−𝑖,𝑑2−𝑗) given by 𝛼 ↦→ 𝛼(𝑓)
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provides the following short exact sequence:

0→ 𝐼(𝑖,𝑗) → 𝑄(𝑖,𝑗) → 𝐴(𝑑1−𝑖,𝑑2−𝑗) → 0.

Remark 3.1.1. With the previous notation, all bihomogeneous polynomials of bidegree (1, 𝑑−

1) can be written in the form
𝑓 = 𝑥1𝑔1 + · · ·+ 𝑥𝑛𝑔𝑛,

where 𝑔𝑖 ∈ K[𝑢1, . . . , 𝑢𝑚]𝑑−1. The associated algebra, 𝐴 = 𝑄/ Ann𝑄(𝑓), is bigraded, has
socle bidegree (1, 𝑑− 1) and we assume that 𝐼1 = 0, so codim 𝐴 = 𝑚 + 𝑛.

We recall the construction of full Perazzo algebras, introduced in Cerminara et al. (2020).

Definition 3.1.2. Let K[𝑥1, . . . , 𝑥𝑛, 𝑢1, . . . , 𝑢𝑚] be the polynomial ring in the 𝑛 variables
𝑥1, . . . , 𝑥𝑛 and in the 𝑚 variables 𝑢1, . . . , 𝑢𝑚. A Perazzo polynomial is a reduced bihomoge-
neous polynomial 𝑓 ∈ K[𝑥1, . . . , 𝑥𝑛, 𝑢1, . . . , 𝑢𝑚](1,𝑑−1), of degree 𝑑, of the form

𝑓 =
𝑛∑︁

𝑖=1
𝑥𝑖𝑔𝑖 (3.1)

with 𝑔𝑖 ∈ K[𝑢1, . . . , 𝑢𝑚]𝑑−1, for 𝑖 = 1, . . . , 𝑛, linearly independent and algebraically dependent
polynomials in the variables 𝑢1, . . . , 𝑢𝑚. The associated algebra is called a Perazzo algebra, it
has codimension 𝑚 + 𝑛 and socle degree 𝑑.

Now we fix 𝑚 ≥ 2 and we consider the 𝑚 variables 𝑢1, . . . , 𝑢𝑚. For a multi-index 𝛼 =

(𝑒1, . . . , 𝑒𝑚) with 𝑒1 + · · ·+ 𝑒𝑚 = 𝑑− 1, let

𝑀𝛼 = 𝑢𝑒1
1 · · ·𝑢𝑒𝑚

𝑚 ∈ 𝑄𝑑−1

the be a K-linear basis for 𝑄𝑑−1 and denote 𝜏𝑚 = dim 𝑄𝑑−1 =
(︁

𝑚+𝑑−2
𝑑−1

)︁
.

Definition 3.1.3. Let 𝑓 ∈ K[𝑥1, . . . , 𝑥𝜏𝑚 , 𝑢1, . . . , 𝑢𝑚](1,𝑑−1) be a Perazzo polynomial of degree
𝑑 of form:

𝑓 =
𝜏𝑚∑︁
𝑗=1

𝑥𝑗𝑀𝑗. (3.2)

In this case, 𝑓 is called full Perazzo polynomial of type 𝑚 and degree 𝑑. The associated algebra
is a full Perazzo algebra of socle degree 𝑑 and codimension 𝑚 + 𝜏𝑚.

Proposition 3.1.4. Let 𝐴 be a full Perazzo algebra of type 𝑚 ≥ 2 and socle degree 𝑑. Then
for 𝑘 = 0, . . . , ⌊𝑑

2⌋

ℎ𝑘 = dim 𝐴𝑘 =
(︃

𝑚 + 𝑘 − 1
𝑘

)︃
+
(︃

𝑚 + 𝑑− 𝑘 − 1
𝑑− 𝑘

)︃
.
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In particular, its Hilbert function is totally non-unimodal for 𝑟 >> 0.

Proof. Using the bigrading of 𝐴 and considering that the polynomial 𝑓 has degree 1 in the
variables 𝑥1, . . . , 𝑥𝜏𝑚 , fixed 𝑘 = 0, . . . , ⌊𝑑

2⌋, we have the following decomposition:

𝐴𝑘 = 𝐴(0,𝑘) ⊕ 𝐴(1,𝑘−1).

(i) It is clear that 𝐴(0,𝑘) = 𝑄(0,𝑘), hence dim 𝐴(0,𝑘) = dim 𝑄(0,𝑘) =
(︁

𝑚+𝑘−1
𝑘

)︁
.

(ii) We have 𝐴*
(1,𝑘−1) ≃ 𝐴(0,𝑑−𝑘) and 𝐴(0,𝑑−𝑘) = 𝑄(0,𝑑−𝑘), hence dim 𝐴(1,𝑘−1) = dim 𝑄(0,𝑑−𝑘) =(︁

𝑚+𝑑−𝑘−1
𝑑−𝑘

)︁
.

To verify that the Hilbert vector is asymptotically totally non unimodal it is enough to see
that as a function of 𝑚, ℎ𝑘(𝑚) ≃ 1

(𝑑−𝑘)!𝑚
𝑑−𝑘 for 𝑘 ≤ 𝑑/2.

Corollary 3.1.5. For every 𝑑 ≥ 4 there is a positive integer 𝑟0 such that for all 𝑟 ≥ 𝑟0 there
is an Artinian Gorenstein algebra with socle degree 𝑑 and codimension 𝑟 having a totally non
unimodal Hilbert vector.

Proof. Let 𝑚 be large enough in order to guarantee that the Hilbert vector of the full Perazzo
algebra 𝐴 = 𝑄/ Ann(𝑓), of type 𝑚 and socle degree 𝑑 has a totally non unimodal Hilbert
vector. For every 𝑟 > 𝑚 +

(︁
𝑚+𝑑−2

𝑑−1

)︁
, let 𝑠 = 𝑟 − [𝑚 +

(︁
𝑚+𝑑−2

𝑑−1

)︁
] and consider the algebra

𝐴′ = 𝑄′/ Ann(𝑔) where 𝑄′ = 𝑄[𝑌1, . . . , 𝑌𝑠] and 𝑔 = 𝑓 +∑︀𝑠
𝑖=1 𝑌 𝑑

𝑖 . It is easy to see that the
Hilbert vector of 𝐴′ is given by ℎ′

𝑘 = ℎ𝑘 + 𝑠 for 𝑘 ̸= 0, 𝑑, therefore, it is totally non-unimodal
and the result follows.

Let 𝑑 ≥ 4, 𝑟 ≥ 3. Consider the family 𝒜𝒢(𝑟, 𝑑) of standard graded Artinian Gorenstein
K-algebras of socle degree 𝑑 and codimension 𝑟. As always, we consider K, a fixed field of
characteristic 0. We know that the Hilbert function of 𝐴 ∈ 𝒜𝒢(𝑟, 𝑑) is a symmetric vector
Hilb(𝐴) = (1, 𝑟, ℎ2, . . . , ℎ𝑑−2, 𝑟, 1), with ℎ𝑖 = ℎ𝑑−𝑖 by Poincaré duality.

Consider the family of length 𝑑 symmetric vectors of type (1, 𝑟, ℎ2, . . . , ℎ𝑑−2, 𝑟, 1), where
ℎ𝑖 = ℎ𝑑−𝑖. There is a natural partial order in this family

(1, 𝑟, ℎ2, . . . , ℎ𝑑−2, 𝑟, 1) ⪯ (1, 𝑟, ℎ̃2, . . . , ℎ̃𝑑−2, 𝑟, 1).

If ℎ𝑖 ≤ ℎ̃𝑖, for all 𝑖 ∈ {2, . . . , 𝑑 − 2}. This order can be restricted to 𝒜𝒢(𝑟, 𝑑) which
becomes a poset.
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Definition 3.1.6. Let 𝑟, 𝑑 be fixed positive integers and let 𝐻 be a length 𝑑 + 1 symmetric
vector (1, 𝑟, ℎ2, . . . , ℎ𝑑−2, 𝑟, 1). We say that 𝐻 is a minimal Artinian Gorenstein Hilbert function
of socle degree 𝑑 and codimension 𝑟 if there is an Artinian Gorenstein algebra such that
Hilb(𝐴) = 𝐻 and 𝐻 is minimal in 𝒜𝒢(𝑟, 𝑑) with respect to ⪯. To be precise, if 𝐻̂ is a
comparable Artinian Gorenstein Hilbert vector such that 𝐻̂ ⪯ 𝐻, then 𝐻̂ = 𝐻.

We now present the full Perazzo Conjecture.

Conjecture 3.1.7. Let 𝐻 be the Hilbert vector of a full Perazzo algebra of type 𝑚 and socle
degree 𝑑. Then 𝐻 is minimal in 𝒜𝒢(𝑟, 𝑑).

3.2 MINIMAL GORENSTEIN HILBERT FUNCTIONS IN LOW SOCLE DEGREE

In this section we study Gorenstein Hilbert functions of algebras with socle degree 4 and
5. Part of the results in socle degree 4 can be found in Cerminara et al. (2020).

3.2.1 Minimal Gorenstein Hilbert functions in socle degree 4

In socle degree 4, a Gorenstein sequence is of the form

(1, 𝑟, ℎ, 𝑟, 1).

Let 𝜇(𝑟) be the integer such that (1, 𝑟, 𝜇(𝑟), 𝑟, 1) is a Gorenstein sequence, but (1, 𝑟, 𝜇(𝑟) −

1, 𝑟, 1) is not a Gorenstein sequence. Then 𝜇(𝑟) ≤ ℎ ≤
(︁

𝑟+1
2

)︁
.

It is well known that (1, 𝑟, ℎ, 𝑟, 1) is a Gorenstein sequence if and only if 𝜇(𝑟) ≤ ℎ ≤
(︁

𝑟+1
2

)︁
(see Zanello (2009)). We set 𝛿(𝑟) = 𝑟−𝜇(𝑟). This function was introduced in Migliore, Nagel
and Zanello (2008) and also studied in Cerminara et al. (2020). The function 𝛿(𝑟) is not
decreasing, so 𝛿(𝑟) ≤ 𝛿(𝑟+1), for every 𝑟 (see Migliore, Nagel and Zanello (2008, Proposition
8))

By Remark 5.4 in Cerminara et al. (2020), if 𝛿(𝑟 − 1) < 𝛿(𝑟) then 𝛿(𝑟) = 𝛿(𝑟 − 1) + 1.

Definition 3.2.1. We say that the Gorenstein sequence (1, 𝑟, 𝜇(𝑟), 𝑟, 1) is minimal. Moreover
we say that the Gorenstein sequence (1, 𝑟, 𝜇(𝑟), 𝑟, 1) is strongly minimal if 𝛿(𝑟 − 1) < 𝛿(𝑟).

By Remark 5.4 in Cerminara et al. (2020), if (1, 𝑟, 𝜇(𝑟), 𝑟, 1) is strongly minimal, then
𝛿(𝑟) = 𝛿(𝑟 − 1) + 1.
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The minimal 𝑟 such that (1, 𝑟, 𝜇(𝑟), 𝑟, 1) is not unimodal is 𝑟 = 13 (Migliore and Zanello
(2017)). So 𝛿(𝑟) = 0 for 𝑟 ≤ 12.

Proposition 3.2.2. 𝛿(𝑟) = 1 iff 13 ≤ 𝑟 ≤ 19.

Consequently the sequence (1, 13, 12, 13, 1) is strongly minimal.

Proof. The sequence (1, 13, 12, 13, 1) is a Gorenstein sequence. This was originally proved
by Stanley in Stanley (1978). This sequence is also the Hilbert Function of the full Perazzo
algebra with 𝑚 = 3. In Migliore and Zanello (2017, Proposition 3.1), it was proved that
(1, 12, 11, 12, 1) is not a Gorenstein sequence. Consequently 𝛿(12) = 0, therefore 𝛿(𝑟) = 0 for
every 𝑟 ≤ 12. In Ahn, Migliore and Shin (2018), Theorem 4.1, was shown that (1, 19, 17, 19, 1)

is not a Gorenstein sequence, so 𝛿(𝑟) = 1 for 13 ≤ 𝑟 ≤ 19. In Migliore and Zanello (2017),
Remark 3.5, was observed that (1, 20, 18, 20, 1) is a Gorenstein sequence, so for 𝑟 ≥ 20 we
have that 𝛿(𝑟) ≥ 2.

Corollary 3.2.3. 𝛿(20) = 2. Consequently the sequence (1, 20, 18, 20, 1) is strongly minimal.

Proof. In Migliore and Zanello (2017), Remark 3.5, it was observed that (1, 20, 18, 20, 1) is a
Gorenstein sequence. So, by Remark 5.4 in Cerminara et al. (2020), 𝛿(20) = 2.

Proposition 3.2.4. Let 𝑚 ≥ 3. We have that

𝛿

(︃
𝑚 +

(︃
𝑚 + 2

3

)︃)︃
≥
(︃

𝑚

3

)︃
.

Proof. For 𝑟 = 𝑚 +
(︁

𝑚+2
3

)︁
there exists the full Perazzo Algebra. It realizes the Gorenstein

sequence
(1, 𝑚 +

(︃
𝑚 + 2

3

)︃
, 𝑚(𝑚 + 1), 𝑚 +

(︃
𝑚 + 2

3

)︃
, 1).

So 𝛿
(︁
𝑚 +

(︁
𝑚+2

3

)︁)︁
≥
(︁

𝑚+2
3

)︁
+ 𝑚−𝑚(𝑚 + 1) =

(︁
𝑚+2

3

)︁
−𝑚2 =

(︁
𝑚
3

)︁
.

Lemma 3.2.5. Let (1, 𝑟, ℎ, 𝑟, 1) be a Gorenstein sequence. Let 𝑢 = 𝑟 − ℎ, with 𝑢 ≥ 0. Then

(︁(︁
(𝑟(3))−1

0 − 𝑢
)︁

(2)

)︁1

1
≥ (𝑟(3))−1

0 .

Proof. Let 𝐴 be a Gorenstein algebra with Hilbert function (1, 𝑟, ℎ, 𝑟, 1) and let 𝐿 be a general
linear form. Using the same argument as in Proposition 3.1 in Migliore and Zanello (2017),
we get that the Hilbert function of 𝐴/(𝐿) is of the type

(1, 𝑟 − 1, 𝑠− 𝑢, 𝑠).
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By the Theorems of Green and of Macaulay we have 𝑠 ≤ (𝑟(3))−1
0 and

(︁
(𝑠− 𝑢)(2)

)︁1

1
≥ 𝑠.

Consequently (︁
(𝑠 + 𝑡− 𝑢)(2)

)︁1

1
≥ 𝑠 + 𝑡, for every 𝑡 ≥ 0.

In particular, for 𝑡 = (𝑟(3))−1
0 − 𝑠 we are done.

Theorem 3.2.6. 𝛿(24) = 4 and 𝛿(40) = 10.

Proof. By Proposition 3.2.4, 𝛿(24) ≥
(︁

4
3

)︁
= 4. We have to prove that (1, 24, 19, 24, 1) is not

a Gorenstein sequence. Indeed 24(3) =
(︁

6
3

)︁
+
(︁

3
2

)︁
+
(︁

1
1

)︁
, so (24(3))−1

0 = 11. Since 𝑢 = 5 we
have that (︁

(11− 5)(2)
)︁1

1
= 10 < 11.

By Lemma 3.2.5, (1, 24, 19, 24, 1) is not a Gorenstein sequence.
By Proposition 3.2.4, 𝛿(40) ≥

(︁
5
3

)︁
= 10. We have to prove that (1, 40, 29, 40, 1) is not

a Gorenstein sequence. Indeed 40(3) =
(︁

7
3

)︁
+
(︁

3
2

)︁
+
(︁

2
1

)︁
, so (40(3))−1

0 = 22. Since 𝑢 = 11 we
have that (︁

(22− 11)(2)
)︁1

1
= 21 < 22.

By Lemma 3.2.5, (1, 40, 29, 40, 1) is not a Gorenstein sequence.

Corollary 3.2.7. 𝛿(25) = 4.

Proof. By Theorem 3.2.6 and by Theorem 2.5 in Migliore and Zanello (2017), (1, 25, 21, 25, 1)

is a Gorenstein sequence, so 𝛿(25) ≥ 4. We have to prove that (1, 25, 20, 25, 1) is not a
Gorenstein sequence. Indeed 25(3) =

(︁
6
3

)︁
+
(︁

3
2

)︁
+
(︁

2
1

)︁
, so (25(3))−1

0 = 12. Since 𝑢 = 5 we have
that (︁

(12− 5)(2)
)︁1

1
= 11 < 12.

By Lemma 3.2.5, (1, 25, 20, 25, 1) is not a Gorenstein sequence.

Proposition 3.2.8. 2 ≤ 𝛿(21) ≤ 𝛿(22) ≤ 𝛿(23) ≤ 4.

Proof. This follows trivially by the fact that 𝛿(20) = 2 and 𝛿(24) = 4.

Proposition 3.2.9. 20 ≤ 𝛿(62) ≤ 21.
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Proof. By Proposition 3.2.4, for 𝑚 = 6, we get that (1, 62, 42, 62, 1) is a Gorenstein sequence.
On the other hand, (1, 62, 40, 62, 1) is not a Gorenstein sequence by Lemma 3.2.5. Indeed

(62(3))−1
0 =

(︃
7
3

)︃
+
(︃

3
2

)︃
= 38

and (︁
(38− 22)(2)

)︁1

1
= 36 < 38.

Proposition 3.2.10. 𝛿(26) = 4 = 𝛿(27).

Proof. For 𝑟 = 26, we have to prove that (1, 26, 21, 26, 1) is not a Gorenstein sequence.
Indeed, let 𝐴 = 𝑅/𝐼 be a Gorenstein algebra with Hilbert function (1, 26, 21, 26, 1), 𝐿 be a
general linear form. We set 𝐽 = (𝐼≤3), 𝐽 = (𝐽, 𝐿)/(𝐿) and 𝑆 = 𝑅/(𝐿). By the Theorems
of Green and of Macaulay (2.1.4) and repeating the above method, 𝑅/𝐽 has Hilbert function
(1, 25, 8, 13). As 𝑅/𝐽 has maximal growth from degree 2 to degree 3 and 𝐽 has no new
generators in degree 4, by Gotzmann’s Theorem we get ℎ𝑅/𝐽(𝑡) =

(︁
𝑡+2

2

)︁
+ 𝑡. Therefore, 𝐽 is

the saturated ideal, in all degrees ≥ 2 of the union of a plane and a line in P24. It follows that,
up to saturation, 𝐽 is the ideal of a scheme 𝑇 given by the union in P25 of a 3−dimensional
linear variety, a plane and 𝑚 points (possibly embedded). Hence, 50 ≤ ℎ𝑅/𝐽(4) ≤ 45, which
is absurd.

Now, for 𝑟 = 27, following the same argument as above, we prove that the sequence
(1, 27, 22, 27, 1) is not Gorenstein. In this case we conclude 50 ≤ ℎ𝑅/𝐽(4) ≤ 46.

3.2.2 Minimal Gorenstein Hilbert functions in socle degree 5

In socle degree 5, a Gorenstein sequence is of the form

(1, 𝑟, ℎ, ℎ, 𝑟, 1).

Let 𝜇(𝑟) be the integer such that (1, 𝑟, 𝜇(𝑟), 𝜇(𝑟), 𝑟, 1) is a Gorenstein sequence, but (1, 𝑟, 𝜇(𝑟)−

1, 𝜇(𝑟)− 1, 𝑟, 1) is not a Gorenstein sequence. Then 𝜇(𝑟) ≤ ℎ ≤
(︁

𝑟+1
2

)︁
.

It is well known that (1, 𝑟, ℎ, ℎ, 𝑟, 1) is a Gorenstein sequence if and only if 𝜇(𝑟) ≤ ℎ ≤(︁
𝑟+1

2

)︁
(see Zanello (2009)). We set 𝛿(𝑟) = 𝑟 − 𝜇(𝑟).

Definition 3.2.11. We say that the Gorenstein sequence (1, 𝑟, 𝜇(𝑟), 𝜇(𝑟), 𝑟, 1) is minimal.
Moreover we say that the Gorenstein sequence (1, 𝑟, 𝜇(𝑟), 𝜇(𝑟), 𝑟, 1) is strongly minimal if
𝛿(𝑟 − 1) < 𝛿(𝑟).
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Proposition 3.2.12. In socle degree 5 we have
𝛿(𝑟) = 0 if and only if 𝑟 ≤ 16.

𝛿(𝑟) = 1 if and only if 𝑟 = 17.

For 18 ≤ 𝑟 ≤ 25, 𝛿(𝑟) = 2

Proof. For 18 ≤ 𝑟 ≤ 25, see Theorem 3.4 and Remark 3.5 in Migliore and Zanello (2017).

Lemma 3.2.13. Let (1, 𝑟, ℎ, ℎ, 𝑟, 1) be a Gorenstein sequence. Let 𝑢 = 𝑟 − ℎ. Then

(︁(︁
(𝑟(4))−1

0 − 𝑢
)︁

(2)

)︁2

2
≥ (𝑟(4))−1

0 .

Proof. Analogous to Lemma 3.2.5.

Proposition 3.2.14. Let 𝑚 ≥ 3. We have that

𝛿

(︃
𝑚 +

(︃
𝑚 + 3

4

)︃)︃
≥ 𝑚 + 5

4

(︃
𝑚

3

)︃
.

Proof. For 𝑟 = 𝑚 +
(︁

𝑚+3
4

)︁
there exists the full Perazzo Algebra. It realizes the Gorenstein

sequence(︃
1, 𝑚 +

(︃
𝑚 + 3

4

)︃
,

(︃
𝑚 + 1

2

)︃
+
(︃

𝑚 + 2
3

)︃
,

(︃
𝑚 + 1

2

)︃
+
(︃

𝑚 + 2
3

)︃
, 𝑚 +

(︃
𝑚 + 3

4

)︃
, 1
)︃

.

So
𝛿

(︃
𝑚 +

(︃
𝑚 + 3

4

)︃)︃
≥
(︃

𝑚 + 3
4

)︃
+ 𝑚−

(︃
𝑚 + 1

2

)︃
−
(︃

𝑚 + 2
3

)︃
= 𝑚 + 5

4

(︃
𝑚

3

)︃
.

Theorem 3.2.15. For 𝑚 ∈ {3, 4, 5, 6, 7, 8, 9, 10}, we have 𝛿
(︁
𝑚 +

(︁
𝑚+3

4

)︁)︁
= 𝑚+5

4

(︁
𝑚
3

)︁
. That

is, the full Perazzo conjecture is true in these cases.

Proof. By Proposition 3.2.14, we have to prove that for 𝑚 ∈ {3, 4, 5, 6, 7, 8, 9, 10}, the se-
quence(︂

1, 𝑚 +
(︂

𝑚 + 3
4

)︂
,

(︂
𝑚 + 1

2

)︂
+
(︂

𝑚 + 2
3

)︂
− 1,

(︂
𝑚 + 1

2

)︂
+
(︂

𝑚 + 2
3

)︂
− 1, 𝑚 +

(︂
𝑚 + 3

4

)︂
, 1
)︂

is not a Gorenstein sequence.
The case 𝑚 = 3 will be dealt with in general in the next section. We can assume 𝑚 ≥ 4.
For 𝑚 = 4 we have to prove that the sequence (1, 39, 29, 29, 39, 1) is not a Gorenstein

sequence. Indeed, using Lemma 3.2.13, we have:

(39(4))−1
0 = 16; 𝑢 = 10; 16− 10 = 6; (6(2))2

2 = 15 < 16.
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For 𝑚 = 5 we have to prove that the sequence (1, 75, 49, 49, 75, 1) is not a Gorenstein
sequence. Indeed, by Lemma 3.2.13, we have:

(75(4))−1
0 = 36; 𝑢 = 26; 36− 26 = 10; (10(2))2

2 = 35 < 36.

For 𝑚 = 6 we have to prove that the sequence (1, 132, 76, 76, 132, 1) is not a Gorenstein
sequence. Indeed, using Lemma 3.2.13, we have:

(132(4))−1
0 = 71; 𝑢 = 56; 71− 56 = 15; (15(2))2

2 = 70 < 71.

For 𝑚 = 7 we have to prove that the sequence (1, 217, 111, 111, 217, 1) is not a Gorenstein
sequence. Indeed, by Lemma 3.2.13, we have:

(217(4))−1
0 = 128; 𝑢 = 106; 128− 106 = 22; (22(2))2

2 = 127 < 128.

For 𝑚 = 8 we have to prove that the sequence (1, 338, 155, 155, 338, 1) is not a Gorenstein
sequence. Indeed, using Lemma 3.2.13, we have:

(338(4))−1
0 = 212; 𝑢 = 183; 212− 183 = 29; (29(2))2

2 = 211 < 212.

For 𝑚 = 9 we have to prove that the sequence (1, 504, 209, 209, 504, 1) is not a Gorenstein
sequence. Indeed, using symmetry, Green’s Theorem, and Macaulay’s Theorem, the following
diagram represents the Hilbert functions of 𝑅/𝐼, 𝑅/(𝐼 : 𝐿) and 𝑅/(𝐼, 𝐿)

1 504 209 209 504 1

1 171 54 171 1

1 503 38 155 333

By Lemma 3.2.5 the middle line is not a Gorenstein sequence.
For 𝑚 = 10 we have to prove that the sequence (1, 725, 274, 274, 725, 1) is not a Gorenstein

sequence. Indeed, using symmetry, Green’s Theorem, and Macaulay’s Theorem, the following
diagram represents the Hilbert functions of 𝑅/𝐼, 𝑅/(𝐼 : 𝐿) and 𝑅/(𝐼, 𝐿)

1 725 274 274 725 1

1 226 65 226 1

1 724 48 209 499

By Lemma 3.2.5 the middle line is not a Gorenstein sequence.
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Corollary 3.2.16. The Gorenstein vector

(1, 18, 16, 16, 18, 1)

is strongly minimal.

Proof. By the previous Theorem, we know that it is a minimal Gorenstein Hilbert vector. We
have to prove that (1, 17, 15, 15, 17, 1) is not a Gorenstein sequence. Indeed, by Proposition
3.2.12, 𝛿(17) = 1.

3.3 A FAMILY OF MINIMAL GORENSTEIN HILBERT FUNCTIONS

Consider the family of full Perazzo algebras of type 𝑚 = 3 and socle degree 𝑑 ≥ 4. Its
Hilbert function is given by ℎ𝑘 =

(︁
𝑘+2

𝑘

)︁
+
(︁

2+2𝑞−𝑘
2𝑞−𝑘

)︁
, for 𝑘 ≤ ⌊𝑑/2⌋ and by symmetry we get

ℎ𝑑−𝑘 = ℎ𝑘.

Lemma 3.3.1. Let 𝑘 ≤ ⌊𝑑/2⌋. Then we have:⎛⎝(︃(︃𝑘 + 1
2

)︃)︃
(𝑑−𝑘)

⎞⎠−1

0

≤ 𝑘 − 2.

Proof. First of all, consider 𝑑 > 2𝑘 − 1. In this case, 𝑑− 𝑘 + 1 > 𝑘, i.e. (𝑑− 𝑘 + 1) + (𝑑−

𝑘) + . . . + (𝑑− 2𝑘 + 3) > 𝑘 + (𝑘 − 1) + . . . + 2 + 1 = 𝑘(𝑘 + 1)/2 =
(︁

𝑘+1
2

)︁
.

We have: (
(︁

𝑘+1
2

)︁
)(𝑑−𝑘) <

(︁
𝑑−𝑘+1

𝑑−𝑘

)︁
+
(︁

𝑑−𝑘
𝑑−𝑘−1

)︁
+ . . .

(︁
𝑑−2𝑘+3
𝑑−2𝑘+2

)︁
. Then

⎛⎝(︃(︃𝑘 + 1
2

)︃)︃
(𝑑−𝑘)

⎞⎠−1

0

≤ 𝑘 − 2.

Now there are only two other cases to consider: 1) 𝑑 = 2𝑘 − 1, 2) 𝑑 = 2𝑘.
They are similar, we will do the details for 𝑑 = 2𝑘. In this case, we have:

⎛⎝(︃(︃𝑘 + 1
2

)︃)︃
(𝑘)

⎞⎠−1

0

≤ 𝑘 − 2.

Indeed we know that the 𝑘-binomial expansion of
(︁

𝑘+1
2

)︁
has two blocks

(
(︁

𝑘+1
2

)︁
)(𝑘) = [

(︁
𝑘+1

𝑘

)︁
+
(︁

𝑘
𝑘−1

)︁
+ . . . +

(︁
𝑗+1

𝑗

)︁
] + [

(︁
𝑗−1
𝑗−1

)︁
+ . . . +

(︁
𝑖
𝑖

)︁
]. The first block consists

of binomials of type
(︁

𝑠+1
𝑠

)︁
and the second one of type

(︁
𝑠
𝑠

)︁
.

Therefore:
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⎛⎝(︃(︃𝑘 + 1
2

)︃)︃
(𝑘)

⎞⎠−1

0

= 𝑘 − 𝑗 + 1.

If 𝑘 − 𝑗 + 1 > 𝑘 − 2, then 𝑗 ≤ 2, but the cases 𝑗 = 1 and 𝑗 = 2 are not possible. In fact,
suppose, 𝑗 = 2, since:(︃

𝑘 + 1
𝑘

)︃
+
(︃

𝑘

𝑘 − 1

)︃
+ . . . +

(︃
3
2

)︃
= (𝑘 + 4)(𝑘 − 1)/2 ≥

(︃
𝑘 + 1

2

)︃
.

It is absurd for 𝑘 > 2. The case 𝑗 = 1 is analogous, the result follows.

Theorem 3.3.2. Every full Perazzo algebra with socle degree 𝑑 ≥ 4 of type 𝑚 = 3 has
minimal Hilbert function.

Proof. We want to show that the Hilbert vector of the full Perazzo algebra

𝐻 = (1, ℎ1, ℎ2, ℎ3, . . . , ℎ𝑑−1, ℎ𝑑 = 1)

with ℎ𝑘 =
(︁

𝑚+𝑘−1
𝑘

)︁
+
(︁

𝑚+𝑑−𝑘−1
𝑑−𝑘

)︁
is a minimal Gorenstein Hilbert vector. Let

𝐻̂ = (1, ℎ̂1, ℎ̂2, ℎ̂3, . . . , ℎ̂𝑑−1, 1)

be a comparable Artinian Gorenstein Hilbert vector 𝐻̂ ⪯ 𝐻 of length 𝑑 + 1 and ℎ̂1 = ℎ1. We
will proceed in steps to show that 𝐻̂ = 𝐻. Consider, on the contrary, one of the following
situations:

1. For some 𝑘 ∈ {2, . . . , ⌊𝑑/2⌋ − 1}, ℎ̂𝑘 < ℎ𝑘;

2. For 𝑑 = 2𝑞, suppose that ℎ̂𝑡 = ℎ𝑡 for all 𝑡 < 𝑞 and ℎ̂𝑞 < ℎ𝑞;

3. For 𝑑 = 2𝑞 + 1, suppose that ℎ̂𝑡 = ℎ𝑡 for all 𝑡 < 𝑞 and ℎ̂𝑞 < ℎ𝑞.

We will show that all of these situations give rise to a contradiction.
(1). Let 𝐴 = 𝑄/𝐼 with 𝐼 = Ann(𝑓) be a standard graded Artinian Gorenstein K-

algebra such that 𝐻𝐴 = 𝐻̂ with ℎ̂𝑘 = dim 𝐴𝑘 < ℎ𝑘 =
(︁

𝑚+𝑘−1
𝑘

)︁
+
(︁

𝑚+𝑑−𝑘−1
𝑑−𝑘

)︁
for some

𝑘 ∈ {2, . . . , ⌊𝑑/2⌋ − 1}. Suppose that 𝑘 is minimal satisfying this property, that is, for 𝑡 < 𝑘

we get ℎ̂𝑡 = ℎ𝑡, by the comparability hypothesis. Let 𝐿 ∈ 𝐴1 be a generic linear form and let
𝑆 = 𝑄/(𝐿). We get the following exact sequence:

0 −−−→ 𝑄/(𝐼 : 𝐿)(−1) −−−→ 𝑄/𝐼 −−−→ 𝑆/𝐼 −−−→ 0
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with 𝐼 = (𝐼, 𝐿)
𝐿

and (𝐼 : 𝐿) = 𝐴𝑛𝑛(𝑓) and 𝑓 ′ = 𝐿(𝑓) denoting the derivative of 𝑓 with
respect to 𝐿 ∈ 𝑄. Therefore 𝑄/(𝐼 : 𝐿) is also Gorenstein. We get the following diagram:

1 ℎ̂1 . . . ℎ̂𝑘 . . . ℎ̂𝑑−𝑘 ℎ̂𝑑−𝑘+1 . . . 1

1 . . . 𝑎𝑘−1 . . . 𝑎𝑘−1 . . . 1

1 ℎ̂1 − 1 . . . ℎ′
𝑘 . . . ℎ′

𝑑−𝑘+1

We have ℎ̂𝑑−𝑘+1 = ℎ̂𝑘−1 = ℎ𝑘−1 = ℎ𝑑−𝑘+1 =
(︁

𝑘+1
𝑘−1

)︁
+
(︁

𝑑−𝑘+3
𝑑−𝑘+1

)︁
. The (𝑑− 𝑘 + 1)-binomial

decomposition of ℎ𝑑−𝑘+1 is (ℎ𝑑−𝑘+1)(𝑑−𝑘+1) =
(︁

𝑑−𝑘+3
𝑑−𝑘+1

)︁
+ (

(︁
𝑘+1
𝑘−1

)︁
)(𝑑−𝑘). By Green’s Theorem

we have

ℎ′
𝑑−𝑘+1 ≤ ((ℎ̂𝑑−𝑘+1)(𝑑−𝑘+1))−1

0 = ((ℎ𝑑−𝑘+1)(𝑑−𝑘+1))−1
0 =

(︁
𝑑−𝑘+2
𝑑−𝑘+1

)︁
+
(︂(︁(︁

𝑘+1
𝑘−1

)︁)︁
(𝑑−𝑘)

)︂−1

0
.

By Lemma 3.3.1, we have

ℎ′
𝑑−𝑘+1 ≤ 𝑑− 𝑘 + 2 + 𝑘 − 2 = 𝑑.

We consider only the case ℎ′
𝑑−𝑘+1 = 𝑑, the other cases are similar.

We have 𝑎𝑘−1 = ℎ̂𝑑−𝑘+1 − 𝑑, ℎ′
𝑘 = ℎ̂𝑘 − (ℎ̂𝑑−𝑘+1 − 𝑑). Since ℎ̂𝑘 ≤ ℎ𝑘 − 1 we have

ℎ′
𝑘 ≤ ℎ𝑘 − ℎ𝑑−𝑘+1 + 𝑑− 1.

We recall that

ℎ𝑘 =
(︁

𝑘+2
2

)︁
+
(︁

𝑑−𝑘+2
2

)︁
, ℎ𝑑−𝑘+1 =

(︁
𝑑−𝑘+3

2

)︁
+
(︁

𝑘+1
2

)︁
.

Therefore

ℎ𝑘 − ℎ𝑑−𝑘+1 =
[︃(︃

𝑘 + 2
2

)︃
−
(︃

𝑘 + 1
2

)︃]︃
−
[︃(︃

𝑑− 𝑘 + 3
2

)︃
−
(︃

𝑑− 𝑘 + 2
2

)︃]︃
= (𝑘 + 1)− (𝑑− 𝑘 + 2)

= 2𝑘 − 𝑑− 1

We obtain ℎ′
𝑘 ≤ 2𝑘 − 2. Thence ℎ′

𝑘 ≤ 2𝑘 − 2 = 𝑘 + 1 + 𝑘 − 3 which implies that
(ℎ′

𝑘)𝑘 ≤
(︁

𝑘+1
𝑘

)︁
+
(︁

𝑘−1
𝑘−1

)︁
+ · · ·+

(︁
3
3

)︁
.

By Macaulay’s Theorem applied 𝑑− 2𝑘 + 1 times we have

ℎ′
𝑑−𝑘+1 ≤ ((ℎ′

𝑘)𝑘)𝑑−2𝑘+1
𝑑−2𝑘+1 ≤

(︁
𝑘+1+𝑑−2𝑘+1

𝑘+𝑑−2𝑘+1

)︁
+ 𝑘 − 3 = 𝑘 + 1 + 𝑑− 2𝑘 + 1 + 𝑘 − 3

therefore 𝑑 ≤ 𝑑− 1,a contradiction.
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(2). Case 𝑑 = 2𝑞 is even. Suppose that ℎ̂𝑡 = ℎ𝑡 for all 𝑡 < 𝑞 and ℎ̂𝑞 < ℎ𝑞. Let 𝐿 ∈ 𝑄 be
a generic linear form and 𝑆 = 𝑄/(𝐿). We have the following exact sequence:

0 −−−→ 𝑄/(𝐼 : 𝐿)(−1) −−−→ 𝑄/𝐼 −−−→ 𝑆/𝐼 −−−→ 0

where 𝐼 = (𝐼, 𝐿)
𝐿

and (𝐼 : 𝐿) = 𝐴𝑛𝑛(𝑓), 𝑓 ′ = 𝐿(𝑓), that is, 𝑄/(𝐼 : 𝐿) is also Gorenstein. In
the middle we get the following diagram:

1 ℎ1 . . . ℎ𝑞−1 ℎ̂𝑞 ℎ𝑞+1 . . . 1

1 . . . 𝑎𝑞−2 𝑎𝑞−1 𝑎𝑞−1 . . . 1

1 ℎ1 − 1 . . . ℎ′
𝑞 ℎ′

𝑞+1

Since (ℎ𝑞+1)(𝑞+1) =
(︁

𝑞+3
𝑞+1

)︁
+ (

(︁
𝑞+1

2

)︁
)𝑞, from Green’s Theorem

ℎ′
𝑞+1 ≤ ((ℎ𝑞+1)𝑞+1)−1

0 =
(︁

𝑞+2
𝑞+1

)︁
+ ((

(︁
𝑞+1

2

)︁
)𝑞)−1

0 .

By Lemma 3.3.1 we have

((ℎ𝑞+1)𝑞+1)−1
0 =

(︁
𝑞+2
𝑞+1

)︁
+ ((

(︁
𝑞+1

2

)︁
)𝑞)−1

0 ≤ 𝑞 + 2 + 𝑞 − 2 = 2𝑞.

We study the case ℎ′
𝑞+1 = 2𝑞, the other cases are similar.

We have 𝑎′
𝑞−1 = ℎ𝑞+1 − 2𝑞, ℎ′

𝑞 = ℎ̂𝑞 − 𝑎𝑞−1 ≤ ℎ𝑞 − ℎ𝑞+1 + 2𝑞 − 1, then ℎ′
𝑞 ≤ 2𝑞 − 2 =

(𝑞 + 1) + (𝑞 − 3).
Therefore

(ℎ′
𝑞)𝑞 ≤

(︁
𝑞+1

𝑞

)︁
+
(︁

𝑞−1
𝑞−1

)︁
+
(︁

𝑞−2
𝑞−2

)︁
+ · · ·+

(︁
3
3

)︁
,

with
(︁

𝑞−1
𝑞−1

)︁
+
(︁

𝑞−2
𝑞−2

)︁
+ · · ·+

(︁
3
3

)︁
being counted 𝑞 − 3 times.

From Macaulay’s Theorem we have ℎ′
𝑞+1 ≤ ((ℎ′

𝑞)(𝑞))+1
+1, hence

2𝑞 ≤
(︃

𝑞 + 2
𝑞 + 1

)︃
+
(︃

𝑞

𝑞

)︃
+
(︃

𝑞 − 1
𝑞 − 1

)︃
+ · · ·+

(︃
4
4

)︃
≤ 𝑞 + 2 + 𝑞 − 3 = 2𝑞 − 1.

It is a contradiction.
(3). If 𝑑 = 2𝑞 + 1 is odd. Suppose that ℎ̂𝑡 = ℎ𝑡 for all 𝑡 < 𝑞 and ℎ̂𝑞 < ℎ𝑞. By the same

argument:
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1 ℎ1 . . . ℎ̂𝑞 ℎ̂𝑞+1 ℎ𝑞+2 . . . 1

1 . . . 𝑎𝑞−1 𝑎𝑞 𝑎𝑞−1 . . . 1

1 ℎ1 − 1 . . . ℎ′
𝑞 ℎ′

𝑞+1 ℎ′
𝑞+2

Since ℎ𝑞+2 =
(︁

𝑞+4
𝑞+2

)︁
+
(︁

𝑞+1
2

)︁
and (ℎ𝑞+2)𝑞+2 =

(︁
𝑞+4
𝑞+2

)︁
+ (

(︁
𝑞+1

2

)︁
)𝑞+1, by Green’s Theorem

ℎ′
𝑞+2 ≤ ((ℎ𝑞+2)(𝑞+2))−1

0 =
(︁

𝑞+3
𝑞+2

)︁
+ (

(︁
𝑞+1

2

)︁
)(𝑞+1))−1

0 ≤ 𝑞 + 3 + 𝑞 − 2 = 2𝑞 + 1.

We consider only the case ℎ′
𝑞+2 = 2𝑞 +1. We have 𝑎𝑞−1 = ℎ𝑞+2−(2𝑞 +1), ℎ′

𝑞 = ℎ̂𝑞−𝑎𝑞−1.
Then ℎ′

𝑞 ≤ ℎ𝑞 − 1− 𝑎𝑞−1, ℎ′
𝑞 ≤ ℎ𝑞 − 1− (ℎ𝑞+2 − (2𝑞 + 1)), thence ℎ′

𝑞 ≤ 2𝑞 − 2. We have

ℎ𝑞 − ℎ𝑞+2 =
(︁

𝑞+2
2

)︁
−
(︁

𝑞+1
2

)︁
+
(︁

𝑞+3
2

)︁
−
(︁

𝑞+4
2

)︁
= −2.

Therefore

ℎ′
𝑞 ≤ (𝑞 + 1) + (𝑞 − 3)

≤
(︃

𝑞 + 1
𝑞

)︃
+
(︃

𝑞 − 1
𝑞 − 1

)︃
+ · · ·+

(︃
3
3

)︃

where the terms
(︁

𝑞−1
𝑞−1

)︁
+ · · ·+

(︁
3
3

)︁
are 𝑞 − 3.

By Macaulay’s Theorem, we have

ℎ′
𝑞+1 ≤ ((ℎ′

𝑞)𝑞)+1
+1 =

(︁
𝑞+2
𝑞+1

)︁
+
(︁

𝑞
𝑞

)︁
+ · · ·+

(︁
4
4

)︁
,

the last terms are 𝑞 − 3.
By Macaulay’s Theorem, we have

ℎ′
𝑞+2 ≤

(︁
𝑞+3
𝑞+2

)︁
+
(︁

𝑞+1
𝑞+1

)︁
+ · · ·+

(︁
5
5

)︁
= 𝑞 + 3 + 𝑞 − 3 = 2𝑞,

then 2𝑞 + 1 ≤ 2𝑞.
It is a contradiction. The result follows.

3.4 ASYMPTOTIC BEHAVIOR OF THE MINIMUM

In this section, we give a new proof of part of Theorem 3.6 in Migliore, Nagel and Zanello
(2009).
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Let 𝑃𝑚 = 𝑚+
(︁

𝑚+𝑑−2
𝑑−1

)︁
be the codimension of a full Perazzo algebra of type 𝑚. Denote by

𝜇𝑑,𝑘(𝑟) the minimal entry in degree 𝑘 of a Gorenstein ℎ-vector with codimension 𝑟 and socle
degree 𝑑.

Lemma 3.4.1. 𝜇𝑑,𝑘(𝑃𝑚) ≥
(︁

𝑚+𝑑−𝑘−1
𝑑−𝑘

)︁
.

Proof. We proceed by induction on 𝑘.
For 𝑘 = 1, we have 𝜇𝑑,1(𝑃𝑚) = 𝑃𝑚 = 𝑚 +

(︁
𝑚+𝑑−2

𝑑−1

)︁
>
(︁

𝑚+𝑑−2
𝑑−1

)︁
.

Now, suppose that
𝜇𝑑,𝑘−1(𝑃𝑚) >

(︃
𝑚 + 𝑑− 𝑘

𝑑− 𝑘 + 1

)︃
.

From Theorem 2.4 in Migliore, Nagel and Zanello (2009), we get

𝜇𝑑,𝑘(𝑃𝑚) ≥
(︁
(𝜇𝑑,𝑘−1(𝑃𝑚))(𝑑−𝑘+1)

)︁−1

−1
+
(︁
(𝜇𝑑,𝑘−1(𝑃𝑚))(𝑑−𝑘+1)

)︁−𝑑+2𝑘

−𝑑+2𝑘+1
.

By inductive hypothesis, and by basic properties of binomial expansions, we have:
(︁
(𝜇𝑑,𝑘−1(𝑃𝑚))(𝑑−𝑘+1)

)︁−1

−1
>

(︃
𝑚 + 𝑑− 𝑘 − 1

𝑑− 𝑘

)︃
and

(︁
(𝜇𝑑,𝑘−1(𝑃𝑚))(𝑑−𝑘+1)

)︁−𝑑+2𝑘

−𝑑+2𝑘+1
>

(︃
𝑚 + 𝑘

𝑘 + 2

)︃
.

So,
𝜇𝑑,𝑘(𝑃𝑚) ≥

(︃
𝑚 + 𝑑− 𝑘 − 1

𝑑− 𝑘

)︃
+
(︃

𝑚 + 𝑘

𝑘 + 2

)︃
>

(︃
𝑚 + 𝑑− 𝑘 − 1

𝑑− 𝑘

)︃
.

as we wanted.

Theorem 3.4.2 (Migliore, Nagel and Zanello (2009)). Let 𝐴 be a Gorenstein algebra of
codimension 𝑟 and socle degree 𝑑. Then, for all 𝑘 < ⌊𝑑/2⌋

lim
𝑟→∞

𝜇𝑑,𝑘(𝑟)
𝑟

𝑑−𝑘
𝑑−1

= ((𝑑− 1)!)
𝑑−𝑘
𝑑−1

(𝑑− 𝑘)! .

Proof. For any integer 𝑟 >> 0 there is a unique integer 𝑃𝑚 = 𝑚 +
(︁

𝑚+𝑑−2
𝑑−1

)︁
such that

𝑃𝑚 ≤ 𝑟 ≤ 𝑃𝑚+1.

Applying the function 𝜇𝑑,𝑘 we have

𝜇𝑑,𝑘(𝑃𝑚) ≤ 𝜇𝑑,𝑘(𝑟) ≤ 𝜇𝑑,𝑘(𝑃𝑚+1).

By Lemma 3.4.1 (︃
𝑚 + 𝑑− 𝑘 − 1

𝑑− 𝑘

)︃
≤ 𝜇𝑑,𝑘(𝑟) ≤

(︃
𝑚 + 𝑑− 𝑘

𝑑− 𝑘

)︃
+
(︃

𝑚 + 𝑘

𝑘

)︃
.
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Therefore
𝑚𝑑−𝑘

(𝑑− 𝑘)! + 𝑜(𝑚𝑑−𝑘−1) ≤ 𝜇𝑑,𝑘(𝑟) ≤ 𝑚𝑑−𝑘

(𝑑− 𝑘)! + 𝑜(𝑚𝑑−𝑘−1)

where 𝑜(𝑚𝑠) denote all terms of degree less than 𝑠.
On other hand, since 𝑃𝑚 ≤ 𝑟 ≤ 𝑃𝑚+1, then

𝑚𝑑−1

(𝑑− 1)! + 𝑜(𝑚𝑑−2) ≤ 𝑟 ≤ 𝑚𝑑−1

(𝑑− 1)! + 𝑜(𝑚𝑑−2)

𝑚𝑑−𝑘

((𝑑− 1)!)
𝑑−𝑘
𝑑−1

+ 𝑜(𝑚𝑑−𝑘−1) ≤ 𝑟
𝑑−𝑘
𝑑−1 ≤ 𝑚𝑑−𝑘

((𝑑− 1)!)
𝑑−𝑘
𝑑−1

+ 𝑜(𝑚𝑑−𝑘−1)

1
𝑚𝑑−𝑘

((𝑑−1)!)
𝑑−𝑘
𝑑−1

+ 𝑜(𝑚𝑑−𝑘−1)
≤ 1

𝑟
𝑑−𝑘
𝑑−1

≤ 1
𝑚𝑑−𝑘

((𝑑−1)!)
𝑑−𝑘
𝑑−1

+ 𝑜(𝑚𝑑−𝑘−1)

Multiplying, we get

𝑚𝑑−𝑘

(𝑑−𝑘)! + 𝑜(𝑚𝑑−𝑘−1)
𝑚𝑑−𝑘

((𝑑−1)!)
𝑑−𝑘
𝑑−1

+ 𝑜(𝑚𝑑−𝑘−1)
≤ 𝜇𝑑,𝑘(𝑟)

𝑟
𝑑−𝑘
𝑑−1

≤
𝑚𝑑−𝑘

(𝑑−𝑘)! + 𝑜(𝑚𝑑−𝑘−1)
𝑚𝑑−𝑘

((𝑑−1)!)
𝑑−𝑘
𝑑−1

+ 𝑜(𝑚𝑑−𝑘−1)
.

Since on both sides the limit exists and are the same, the result follows.
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4 ON LEFSCHETZ LOCUS IN GOR(1, 𝑁 + 1, 𝑁 + 1, 1)

Given a standard graded Artinian Gorenstein K-algebra 𝐴 = ⊕𝑑
𝑖=0𝐴𝑖, its Hilbert vector is

𝐻 = Hilb(𝐴) = (1, ℎ1, . . . , ℎ𝑑), where ℎ𝑖 = dimK 𝐴𝑖. We denote by Gor(𝐻) the space which
parametrizes the Artinian Gorenstein algebras with Hilbert vector 𝐻. Iarrobino and Kanev
(1999) studied deeply this space. Later, Boij (1999) studied this space giving examples where
this space is reducible.

Fassarella, Ferrer and Gondim (2021), studied the Lefschetz locus in Gor(1, 5, 5, 1). Here,
we are interested in the study of the locus of standard graded Artinian Gorenstein algebras with
codimension 𝑁 + 1 and socle degree 3 in Gor(1, 𝑁 + 1, 𝑁 + 1, 1), which satisfy SLP. By the
Macaulay-Matlis duality, these algebras are associated with a cubic homogeneous polynomial
𝑓 , such that 𝐴 = 𝑄/ Ann𝑄(𝑓), and by 2.4.5, these algebras has SLP if and only if hess𝑓 ̸= 0.
Perazzo (1900) and Gondim and Russo (2015) studied deeply these cubics with vanishing
hessian.

Inspired in Gondim and Russo (2015), we parametrize the space of cubics, not cones with
vanishing hessian, and we calculate its dimension and degree using techniques of intersection
theory. We analyze all possible Jordan types for these cubics as an algebraic description.
To finish, we calculate the dimension and degree of the cubics with vanishing hessian in
Gor(1, 6, 6, 1) and Gor(1, 7, 7, 1).

4.1 CUBICS WITH VANISHING HESSIAN

We will work over an algebraically closed field of characteristic zero.

Definition 4.1.1. Let 𝑋 ⊂ P𝑁 be an irreducible projective variety. The vertex of 𝑋 is the
closed subset

Vert(𝑋) = {𝑝 ∈ 𝑋|⟨𝑝, 𝑞⟩ ⊂ 𝑋, ∀𝑞 ∈ 𝑋}

where if 𝑝, 𝑞 ∈ 𝑋, ⟨𝑝, 𝑞⟩ denotes the line join 𝑝, 𝑞. A projective variety 𝑋 ⊂ P𝑁 is a cone if
Vert(𝑋) ̸= ∅. In this case, Vert(𝑋) is a linear subspace of P𝑁 .

If 𝑋 is a hypersurface, we have the following well-known equivalence.

Proposition 4.1.2. Let 𝑋 = 𝑉 (𝑓) ⊂ P𝑁 be a hypersurface of degree 𝑑. Then the following
conditions are equivalent:
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(i) 𝑋 is a cone;

(ii) The partial derivatives 𝑓0, 𝑓1, ..., 𝑓𝑁 of 𝑓 are linearly dependent;

(iii) Up to a projective transformation 𝑓 depends on at most 𝑁 variables;

Cones have vanishing Hessian, but the converse is not true.

Definition 4.1.3. The polar map of a hypersurface 𝑋 = 𝑉 (𝑓) ⊂ P𝑁 is the rational map
given by the derivatives of 𝑓 .

Φ𝑓 : P𝑁 99K (P𝑁)*

Φ𝑓 (𝑝) = ( 𝜕𝑓
𝜕𝑥0

(𝑝), 𝜕𝑓
𝜕𝑥1

(𝑝), ..., 𝜕𝑓
𝜕𝑥𝑁

(𝑝)).

The polar image of 𝑋 is 𝑍 = Φ𝑓 (P𝑁).

The next proposition makes clear the difference between being a cone and the vanishing
of its Hessian.

Proposition 4.1.4. Let 𝑋 = 𝑉 (𝑓) ⊂ P𝑁 be a hypersurface, Φ𝑓 the associated Polar map
and 𝑍 = Φ𝑋(P𝑁) the Polar image.

1. 𝑋 has vanishing Hessian ⇔ 𝑍 ⊊ P𝑁* ⇔ The partial derivatives of 𝑓 are algebraically
dependent.

2. 𝑋 is a cone ⇔ 𝑍 ⊂ 𝐻 = P𝑁−1* ⊂ P𝑁 (is degenerated) ⇔ The partial derivatives of 𝑓

are Linearly dependent.

Proof. See Ciliberto, Russo and Simis (2008).

The following example appears in the work of Gordan and Noether (1876) and Perazzo
Perazzo (1900), where it is called un essempio semplicissimo.

Example 4.1.5. Let 𝑋 = 𝑉 (𝑓) ⊂ P4 be the irreducible hypersurface given by

𝑓 = 𝑥0𝑥
2
3 + 𝑥1𝑥3𝑥4 + 𝑥2𝑥

4
4

An easy calculation shows that 𝑋 is not a cone. On the other hand, 𝑓0𝑓2 = 𝑓 2
1 is a trivial

algebraic relation among the derivatives of 𝑓 , so hess𝑓 = 0, by Proposition 4.1.4.
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The next result will be useful. Its proof can be found in the original work of Perazzo, see
Perazzo (1900) in the cubic case and for a general degree in Zak (2004, pg.21).

Proposition 4.1.6. Let 𝑋 = 𝑉 (𝑓) ⊂ P𝑁 be a hypersurface with vanishing hessian, 𝑌 =

Sing(𝑋)𝑟𝑒𝑑 the singular locus and 𝑍* the dual of the Polar image of 𝑋. Then

𝑍* ⊂ 𝑌.

4.1.1 Two families of cubics with vanishing Hessian

The notion of the Perazzo map was implicitly introduced in Perazzo (1900), see also
Gondim and Russo (2015).

Definition 4.1.7. Let 𝑋 = 𝑉 (𝑓) ⊂ P𝑁 be a reduced hypersurface with vanishing hessian,
let Φ𝑋 : P𝑁 99K P𝑁 be its polar map and let 𝑍 = Φ𝑋(P𝑁) ⊊ (P𝑁)* be its polar image. The
Perazzo map of 𝑋 is the rational map:

𝒫𝑋 : P𝑁 99K G(codim(𝑍)− 1, 𝑁)

𝑝 ↦→ (𝑇Φ𝑓 (𝑝)𝑍)*

defined in the open set 𝒰 = Φ−1
𝑓 (𝑍reg), where 𝑍reg is the locus of smooth points of 𝑍.

The image of the Perazzo map will be denoted by 𝑊𝑋 = 𝒫𝑋(P𝑁) ⊂ G(codim(𝑍)−1, 𝑁),
or simply by 𝑊 , and its dimension 𝜇 = dim 𝑊 is called the Perazzo rank of 𝑋.

We are particularly interested in the codim(𝑍) = 1 case. In this case:

P𝑁 99K (P𝑁)* 99K P𝑁

𝑍 99K 𝑊 = 𝑍*

The general fiber of the Perazzo map is linear, see Gondim and Russo (2015, Theorem
2.5).

Definition 4.1.8. An irreducible cubic hypersurface 𝑋 ⊂ P𝑁 with vanishing hessian, not a
cone, will be called a Special Perazzo Cubic Hypersurface if the general fibers of its Perazzo
map determine a congruence of linear spaces passing through a fixed P𝑁−𝜇−1.

From Gondim and Russo (2015, Theorem 3.3), if 𝑋 = 𝑉 (𝑓) ⊂ P𝑁 is a special Perazzo
form with codim(𝑍) = 1 and 𝜇 = dim 𝑍* then 𝑍* ⊂ ⟨𝑍*⟩ = P𝑘 ⊂ Sing(𝑋) is a hypersurface,
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that is 𝑘 = 𝜇 + 1.

Conversely, for all cubic hypersurface 𝑋 = 𝑉 (𝑓) ⊂ P𝑁 , if P𝑘 ⊂ Sing(𝑋), then from
Gondim and Russo (2015, Proposition 4.1), we have:

𝑓 =
𝑘∑︁

𝑖=0
𝑥𝑖𝑔𝑖 + ℎ.

Here 𝑔𝑖 ∈ K[𝑥𝑁−𝑚+1, . . . , 𝑥𝑁 ]2 and ℎ ∈ K[𝑥𝑘+1, . . . , 𝑥𝑁 ]3 and 𝑘 + 𝑚 ≤ 𝑁 . Notice that
2 ≤ 𝑚 ≤ 𝑘 implies hess𝑓 = 0 since in this case the partial derivatives of 𝑓 are algebraically
dependent. We say that the form 𝑓 is minimal if 𝑚 = 𝑘 = 2 and that 𝑓 is maximal if
𝑁 = 2𝑘 = 2𝑚. From Gondim and Russo (2015, Lemma 2.9, Proposition 2.12) these two
families correspond to special Perazzo cubic forms.

4.1.1.1 The minimal family

The minimal family of special Perazzo cubics consists of 𝑓 ∈ K[𝑥0, . . . , 𝑥𝑁 ] with dim 𝑍* =

1. In this case:
𝑓 = 𝑥0𝑔0 + 𝑥1𝑔1 + 𝑥2𝑔2 + ℎ (4.1)

Here 𝑔𝑖 ∈ K[𝑥𝑁−1, 𝑥𝑁 ] and ℎ ∈ K[𝑥3, . . . , 𝑥𝑁 ]. Since 𝑋 is a special Perazzo hypersurface,
𝑍* ⊂ ⟨𝑍*⟩ = P2 ⊂ Sing(𝑋).

4.1.1.2 The maximal family

The maximal family of special Perazzo cubics consists of 𝑋 = 𝑉 (𝑓) ⊂ P2𝑘 with dim 𝑍* =

𝑘− 1. Therefore, 𝑍* ⊂ ⟨𝑍*⟩ = P𝑘 ⊂ Sing(𝑋). Putting 𝑁 = 2𝑘, we have, 𝑓 ∈ K[𝑥0, . . . , 𝑥𝑁 ]

𝑓 = 𝑥0𝑔0 + 𝑥1𝑔1 + . . . + 𝑥𝑘𝑔𝑘 + ℎ. (4.2)

Here 𝑔𝑖, ℎ ∈ K[𝑥𝑘+1, . . . , 𝑥𝑁 ].

Remark 4.1.9. Notice that there are cubics whose canonic form is of the maximal family but
belongs to the minimal family. Consider the cubic

𝑓 = 𝑥0𝑥
2
4 + 𝑥1𝑥4𝑥5 + 𝑥2𝑥

2
5 + 𝑥3𝑥

2
6 ∈ K[𝑥0, . . . , 𝑥6].

We have that 𝑓 ∈ (𝑥4, 𝑥5, 𝑥6)2, then we have P3 = 𝑉 (𝑥4, 𝑥5, 𝑥6) ⊂ Sing(𝑋), therefore
hess𝑓 = 0. On the other hand, dim 𝑍* = 1 and 𝑍* ⊂ P2 = 𝑉 (𝑥3, 𝑥4, 𝑥5, 𝑥6) ⊂ P3.



40

4.2 JORDAN TYPES

In this section, we give an algebraic description of the minimal and maximal families by
calculating the Jordan types of the Artinian Gorenstein algebra associated with the cubic
polynomial of each family. Before that, let us recall some definitions and results about the
Jordan type of Artinian algebra.

Let 𝐴 = ⨁︀𝑑
𝑖=0 𝐴𝑖 be a standard graded Artinian K-algebra. We get 𝐴 as a module over

itself. Given 𝐿 ∈ 𝐴1 consider the map ×𝐿 : 𝐴 → 𝐴 given by ×𝐿(𝑢) = 𝐿𝑢. Since 𝐴 is
Artinian, the map ×𝐿 is nilpotent and its eigenvalues are only 0. The Jordan decomposition
of such a map is given by Jordan blocks with 0 in the diagonal; therefore it induces a partition
of dimK(𝐴) that we denote 𝒥𝐴,𝐿 and we call the Jordan type of 𝐴 with respect to 𝐿. Without
loss of generality, we consider the partition in a non-increasing order.

If 𝐿 = 𝑎0𝑋0 + · · ·+ 𝑎𝑁𝑋𝑁 ∈ 𝐴1 is a generic linear form, then it is known that the Jordan
type of any standard graded Artinian Gorenstein K-algebra 𝐴 = 𝑄/ Ann𝑄(𝑓) depends only
on the rank of the mixed Hessians of 𝑓 , see Costa and Gondim (2019). If 𝐿 is not generic,
to compute the Jordan type we consider the rank of the mixed Hessian Hess(𝑖,𝑗)

𝑓 (𝐿⊥), where
𝐿⊥ = (𝑎0 : . . . : 𝑎𝑁) ∈ P𝑁 .

We are interested in the Jordan type of a standard graded Artinian Gorenstein K-algebra
with socle degree 3 and char(K) = 0. In Costa and Gondim (2019), the authors proved the
following result.

Proposition 4.2.1. Let 𝑓 ∈ 𝑆3 be a cubic form, 𝐴𝑓 its associated Artinian Gorenstein algebra,
and consider 𝐿 = 𝑎0𝑋0 + · · · + 𝑎𝑁𝑋𝑁 ∈ 𝐴1 a linear form. Consider rk(Hess𝑓 (𝐿⊥)) = 𝑟 ≤

𝑁 + 1. The Jordan type of 𝐴𝑓 with Hilbert vector (1, 𝑁 + 1, 𝑁 + 1, 1) with respect to 𝐿 is

𝒥𝐴𝑓 ,𝐿 = 41 ⊕ 2𝑟−1 ⊕ 12(𝑁+1−𝑟).

4.2.1 Jordan types for the minimal family

Let 𝑋 = 𝑉 (𝑓) ⊂ P𝑁 be a cubic hypersurface having vanishing hessian belonging to the
minimal family. Then, by 4.1 we have

𝑓 = 𝑥0𝑔0 + 𝑥1𝑔1 + 𝑥2𝑔2 + ℎ

where 𝑔𝑖 ∈ K[𝑥𝑁−1, 𝑥𝑁 ]2 and ℎ ∈ K[𝑥3, . . . , 𝑥𝑁 ]3. In this case, we have codim(𝑍) = 1,
dim(𝑍*) = 1 and being ℎ general, we have dim(𝑋*) = 𝑁 − 2.
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Since 𝑋 has vanishing hessian, the Artinian Gorenstein algebra associated with the poly-
nomial 𝑓 fails SLP. Let 𝐿 = 𝑎0𝑋0 + · · · 𝑎𝑁𝑋𝑁 ∈ 𝐴1 be a linear form and consider, 𝐿⊥ =

(𝑎0 : . . . : 𝑎𝑁) ∈ P𝑁 . We will analyze all possible Jordan types of 𝐴𝑓 with respect to 𝐿. By
Proposition 4.2.1, we need to study the rank of Hess𝑓 (𝐿⊥).

The Hessian matrix Hess𝑓 is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0
... . . . ... 𝑃

0 . . . 0

𝑃 𝑇 𝐻

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where 𝑃 is the 3× (𝑁 − 2) matrix given by⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 2𝑥𝑁−1 0

0 . . . 0 𝑥𝑁 𝑥𝑁−1

0 . . . 0 0 2𝑥𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and 𝐻 is the (𝑁 − 2)× (𝑁 − 2) matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℎ𝑖𝑗 ℎ𝑗

ℎ𝑇
𝑗 2𝑥0 + ℎ𝑁−1,𝑁−1 𝑥1 + ℎ𝑁−1,𝑁

𝑥1 + ℎ𝑁,𝑁−1 2𝑥2 + ℎ𝑁,𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with 𝑖, 𝑗 ∈ {3, . . . , 𝑁 − 2}.

Let us denote by 𝑟 the rank of the Hessian matrix. We will analyze some cases.

• If 𝐿⊥ ∈ P𝑁 is generic, then 𝑟 = 𝑁 ;

• If 𝐿⊥ ∈ 𝑋 = 𝑉 (𝑓), by Lemma 7.2.8 in Russo (2016), we have dim 𝑋* ≤ 𝑟−2 ≤ 𝑁−2.
Since ℎ is general, dim 𝑋* = 𝑁 − 2. Therefore, 𝑟 = 𝑁 ;
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• If 𝐿⊥ ∈ ⟨𝑍*⟩ = 𝑉 (𝑥3, . . . , 𝑥𝑁) = P2 ⊂ Sing 𝑋, then the rank of Hess𝑓 is the rank of
the matrix ⎡⎢⎢⎣ 2𝑥0 𝑥1

𝑥1 2𝑥2

⎤⎥⎥⎦
Therefore, if 𝐿⊥ ∈ ⟨𝑍*⟩ is generic, then 𝑟 = 2, and if 𝐿⊥ ∈ 𝑍*, 𝑟 = 1.

Therefore

𝑟 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑁, if 𝐿⊥ ∈ P𝑁 ∖𝑋

𝑁, if 𝐿⊥ ∈ 𝑋reg

2, if 𝐿⊥ ∈ 𝒰 ⊂ ⟨𝑍*⟩

1, if 𝐿⊥ ∈ 𝑍*.

So, by Proposition 4.2.1, we have the following possible Jordan types to the minimal
family: 𝒥𝐴𝑓 ,𝐿 = 41 ⊕ 2𝑁−1 ⊕ 12 if 𝐿⊥ ∈ P𝑁 ∖𝑋 (respec. in 𝑋); 𝒥𝐴𝑓 ,𝐿 = 41 ⊕ 21 ⊕ 12(𝑁−1) if
𝐿⊥ ∈ 𝒰 ⊂ ⟨𝑍*⟩; and 𝒥𝐴𝑓 ,𝐿 = 41 ⊕ 12𝑁 if 𝐿⊥ ∈ 𝑍*.

4.2.2 Jordan types for the maximal family

Let 𝑋 = 𝑉 (𝑓) ⊂ P𝑁 , 𝑁 = 2𝑘, be a cubic hypersurface having vanishing hessian, not a
cone with codim(𝑍) = 1, dim𝑍* = 𝑘−1 and such that 𝑀 = ⟨𝑍*⟩ = P𝑘 = 𝑉 (𝑥𝑘+1, . . . , 𝑥2𝑘) ⊂

𝑌 = (Sing𝑋)𝑟𝑒𝑑. Then, by (4.2), we have

𝑓 =
𝑘∑︁

𝑖=0
𝑥𝑖𝑔

𝑖 + ℎ

where ℎ, 𝑔𝑖 ∈ K[𝑥𝑘+1, . . . , 𝑥2𝑘], deg(ℎ) = 3 and deg(𝑔𝑖) = 2.
We know that its associated Artinian Gorenstein algebra 𝐴𝑓 does not have strong Lefschetz

property. Let 𝐿 = 𝑎0𝑋0 + · · · 𝑎𝑁𝑋𝑁 ∈ 𝐴1 be a linear form and consider, 𝐿⊥ = (𝑎0 : . . . :

𝑎𝑁) ∈ P𝑁 . We will analyze all possible Jordan types of 𝐴𝑓 with respect to 𝐿. By Proposition
4.2.1, we need to study the rank of Hess𝑓 (𝐿⊥).

The Hessian matrix Hess𝑓 is given by
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0
... . . . ... 𝑔𝑖

𝑗

0 . . . 0

𝑔𝑖
𝑡 𝑙𝑡𝑗(𝑥𝑖) + ℎ𝑡𝑗(𝑥𝑗)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where 𝑖 ∈ {0, . . . , 𝑘}, 𝑗, 𝑡 ∈ {𝑘 + 1, . . . , 2𝑘} and 𝑙𝑡𝑗(𝑥𝑖), ℎ𝑡𝑗(𝑥𝑗) are linear forms.

Let’s denote by 𝑟 = rk(Hess𝑓 ). Since hess𝑓 = 0, for any point 𝐿⊥ ∈ P𝑁 ∖ 𝑋, 𝑟 = 𝑁 .
If 𝐿⊥ ∈ 𝑋 is a general point, by Lemma 7.2.8 in Russo (2016), we have 𝑟 = 𝑁 . Now, if
𝐿⊥ ∈ 𝒰 ⊂𝑀 , with 𝒰 is a open subset, we have 𝑟 = 𝑘. Moreover, 𝑟 ≤ 𝑘−1 if 𝐿⊥ ∈ △ ⊂𝑀 ,
where △ denotes the zero locus of a divisor of det([𝑙𝑡𝑗(𝑥𝑖) + ℎ𝑡𝑗(𝑥𝑗)]𝑘×𝑘). Therefore

𝑟 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑁, if 𝐿⊥ ∈ P2𝑛 ∖𝑋

𝑁, if 𝐿⊥ ∈ 𝑋reg

𝑘, if 𝐿⊥ ∈ 𝒰 ⊂𝑀

≤ 𝑘 − 1, if 𝐿⊥ ∈ △ ⊂𝑀 .

So, by Proposition 4.2.1, we have the following possible Jordan types to the maximal
family: 𝒥𝐴𝑓 ,𝐿 = 41⊕2𝑁−1⊕12 if 𝐿⊥ ∈ P𝑁 ∖𝑋 (respec. in 𝑋); 𝒥𝐴𝑓 ,𝐿 = 41⊕2𝑘−1⊕12(𝑁+1−𝑘)

if 𝐿⊥ ∈ 𝒰 ⊂𝑀 ; and 𝒥𝐴𝑓 ,𝐿 = 41 ⊕ 2≤𝑘−2 ⊕ 1≤2(𝑁−𝑘+2) if 𝐿⊥ ∈ △ ⊂𝑀 .

4.3 PARAMETER SPACES

Theorem 2.4.5 states that for 𝑓 ∈ 𝑆3, 𝐴𝑓 fails to have SLP if and only if hess𝑓 = 0. Let
denote by ℋ the locus of cubics with vanishing hessian, and by 𝒞 the locus of cubics cones.
In the previous sections, we have shown two families of cubics in ℋ ∖ 𝒞 that in low dimension
(𝑛 ≤ 7) exhaust the algebras failing SLP.

In this section, we construct parameter spaces for these two families. Let denote by X each
family, the parameter space that we will construct describes X as the birational image of the
projectivization of a vector bundle. With this description, we can compute the dimension and
degree of X using techniques of Intersection Theory.
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To compute the degree of X our principal tools are the Segre and Chern classes of a vector
bundle. We refer the reader to Fulton (2013, Chapter 3) or Eisenbud and Harris (2016, §10.1
and Ch 5) for a systematic treatment of Segre and Chern classes.

In the following proposition, we give an enumerative interpretation for the degree of a
variety X of Gor(1, 𝑁 + 1, 𝑁 + 1, 1).

Proposition 4.3.1. Let X ⊂ Gor(1, 𝑁 + 1, 𝑁 + 1, 1) be a subvariety of dimension 𝑚 and
degree 𝑑. Given 𝐿1, . . . , 𝐿𝑚 generic linear forms in 𝑄1, the degree 𝑑 is the number of Algebras
in X that have 𝐿1, . . . , 𝐿𝑚 as nilpotents of index 3.

Proof. As dimX = 𝑚, the degree of X is the number of points in the intersection of X with
a generic codimension 𝑚 linear space of Gor(1, 𝑁 + 1, 𝑁 + 1, 1), and such a linear subspace
is the intersection of 𝑚 generic hyperplanes.

Using the correspondence of Gor(1, 𝑁 + 1, 𝑁 + 1, 1) with P(𝑆3) of Theorem 2.3.4, we
can describe the hyperplanes in Gor(1, 𝑁 + 1, 𝑁 + 1, 1). Recall that an hyperplane on P(𝑆3)

corresponds to a point 𝑃 = [𝑎0 : · · · : 𝑎𝑁 ] ∈ P𝑁 as follows

𝐻𝑃 = {𝑓 ∈ P(𝑆3) | 𝑓(𝑃 ) = 0}.

On the other hand, the generalized Euler formula:

if 𝐿 = 𝑎0𝑋0 + · · ·+ 𝑎𝑁𝑋𝑁 ∈ 𝑄1 then 𝐿3(𝑓) = 3!𝑓(𝑃 ),

implies that 𝑓(𝑃 ) = 0 is equivalent to 𝐿3 ∈ 𝐴𝑛𝑛(𝑓). We conclude that an hyperplane in
Gor(1, 𝑁 + 1, 𝑁 + 1, 1) is of the form

𝐻𝐿 = {𝐴𝑓 | 𝐿̄ ∈ 𝐴𝑓 is nilpotent of index 3}

So the degree of X ⊂ Gor(1, 𝑁 + 1, 𝑁 + 1, 1) has the following interpretation:
Given 𝐿1, . . . , 𝐿𝑚 generic linear forms in 𝑄1, there exists deg(X) Algebras in X that have

𝐿1, . . . , 𝐿𝑚 has nilpotents of index 3.

Recall that 𝑆𝑑 denote Sym𝑑(𝑆1).
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4.3.1 The parameter space for the Minimal family

In this section, we denote the minimal family by X. Recall that according with 4.1, a
generic element of X is, up to change of coordinates, equals to

𝑓 = 𝑥0𝑔0 + 𝑥1𝑔1 + 𝑥2𝑔2 + ℎ, (4.3)

with 𝑔𝑖 ∈ K[𝑥𝑁−1, 𝑥𝑁 ] and ℎ ∈ K[𝑥3, . . . , 𝑥𝑁 ]. So, to parametrize these cubics, we must
choose an ideal 𝐽 such that 𝑉 (𝐽) has dimension 2. Afterward, we have to construct three
quadrics in the variables in 𝐽 (i.e. three elements of Sym2(𝐽)) and a cubic in the variables of
𝐼 (i.e. an element of Sym3(𝐼)).

Observe that 𝑓 ∈ ⟨𝑥3, . . . , 𝑥𝑁⟩2, so 𝑉 (𝑓) contains a plane in its singular locus.
We describe the parameter space in the following Theorem.

Theorem 4.3.2. The minimal family in P𝑁 is a rational subvariety of P(𝑆3) of dimension
5(𝑁 − 2) +

(︁
𝑁
3

)︁
+ 4. The degree of this family is given by the top Segre class 𝑠𝑚(ℰ) of a

vector bundle over the flag variety F = F(2, 𝑁−2, 𝑁 +1) where, 𝑚 = 𝑑𝑖𝑚F = 5(𝑁 −2)−4,
and can be computed using the Script in A.1.1.

Proof. Start with the Grassmannian of 2-planes in P𝑁 : G(𝑁 − 2, 𝑁 + 1), name 𝒯1 the tauto-
logical vector bundle of rank 𝑁−2, that is, for this Grassmannian, we consider the tautological
sequence

0→ 𝒯1 → 𝒪G(𝑁−2,𝑁+1) ⊗ 𝑆1 → 𝒬1 → 0 (4.4)

where 𝒯1 is a vector bundle of rank 𝑁 − 2, whose fiber over the plane 𝑉 (𝑥3, . . . , 𝑥𝑁) is the
subspace 𝐼 = [𝑥3, . . . , 𝑥𝑁 ]K.

Now consider G(2, 𝒯1), the Grassmannian of rank 2 subundles of 𝒯1 with structure map
𝜌 : G(2, 𝒯1)→ G(𝑁 − 2, 𝑁 + 1). For this variety, we have the following tautological sequence

0→ 𝒯2 → 𝜌*𝒯1 → 𝒬2 → 0

where 𝒯2 is a vector bundle of rank 2, whose fiber over (𝐼, 𝐽) ∈ G(2, 𝒯1) is 𝐽 .
Observe that G(2, 𝒯1) is in fact the flag variety F := F(2, 𝑁 − 2, 𝑁 + 1). It has dimension

5(𝑁 − 2)− 4.
Consider the multiplication map:

𝜙 : Sym2(𝒯2)⊗ 𝑆1 → 𝑆3
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given by 𝜙 (∑︀𝑖 𝑎𝑖 ⊗ 𝑏𝑖) = ∑︀
𝑖 𝑎𝑖𝑏𝑖. It defines a map of vector bundles over F.

Let 𝑉1 be the image of 𝜙, we have an exact sequence

0→ 𝑘𝑒𝑟(𝜙)→ Sym2(𝒯2)⊗ 𝑆1
𝜙→ 𝑉1 ⊂ 𝑆3 → 0 (4.5)

where 𝑘𝑒𝑟(𝜙) = ∧2𝒯2⊗𝒯2 (c.f. Fassarella, Ferrer and Gondim (2021)). So we get an isomor-
phism

Sym2(𝒯2)⊗ 𝑆1

𝑘𝑒𝑟(𝜙)
𝜙
≃ 𝑉1.

Next, we consider the following map of vector bundles:

𝑇 : 𝑉1 ⊕ Sym3(𝒯1)→ 𝑆3

defined by 𝑇
(︁∑︀

𝑖 𝑎𝑖 ⊗ 𝑏𝑖, ℎ
)︁

= 𝜙
(︁∑︀

𝑖 𝑎𝑖 ⊗ 𝑏𝑖

)︁
+ ℎ = ∑︀

𝑖 𝑎𝑖𝑏𝑖 + ℎ. It is not difficult to see

that 𝑘𝑒𝑟(𝑇 ) = 𝜙

(︃
Sym2(𝒯2)⊗ 𝒯1

𝑘𝑒𝑟(𝜙)

)︃
.

Defining ℰ = 𝑖𝑚(𝑇 ), we obtain that ℰ parametrizes the cubics of the normal form (4.3),
and we have an exact sequence

0→ Sym2(𝒯2)⊗ 𝒯1

𝑘𝑒𝑟(𝜙) → 𝑉1 ⊕ Sym3(𝒯1)→ ℰ → 0. (4.6)

In this way, we obtain a fiber bundle ℰ over F of rank 9 +
(︁

𝑁
3

)︁
.

By considering the projectivization P(ℰ) of the vector bundle ℰ , we conclude that X is the
image by the second projection 𝑝2:

P(ℰ)

𝑝1xx

𝑝2

%%
F := G(2, 𝒯1) X ⊂ P(𝑆3)

From this, we conclude that X is irreducible. We claim that 𝑝2 is generically injective.
Indeed, for a generic 𝑓 ∈ X, the singular set of 𝑓 contains a unique plane, from which we
recover 𝐼. Consider now the differential of 𝑓 , 𝑑𝑓 ∈ 𝐻0(P𝑁 , ΩP𝑁 (3)) ⊂ 𝑆2⊗ 𝑆1. Projecting 𝑑𝑓

from 𝑆2⊗𝐼 we get 𝑓𝑥0𝑑𝑥0 +𝑓𝑥1𝑑𝑥1 +𝑓𝑥2𝑑𝑥2, and by construction, 𝑓𝑥0 , 𝑓𝑥1 , 𝑓𝑥2 ∈ 𝑆𝑦𝑚2([𝑢, 𝑣])

for some 𝑢, 𝑣 ∈ 𝐼, then we recover 𝐽 .
To compute the degree of X ⊂ P(𝑆3) first we prove that, in the present setting, degX =∫︀

𝑠𝑚(ℰ) ∩ [F], the 𝑚-Segre class of ℰ , with 𝑚 = dimF. A similar equality will be used
in the following sections, so we prove it in more generality. Indeed, by definition of push
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forward of cycles, we have 𝑝2*[P(ℰ)] = deg(𝑝2)[X]. As in our case deg(𝑝2) = 1, putting
𝜈 = dimP(ℰ) = dimX and 𝐻 = 𝑐1(𝒪P(𝑆3)(1)), we obtain

degX =
∫︁

𝐻𝜈 ∩ [X] =
∫︁

𝐻𝜈 ∩ 𝑝2*[P(ℰ)] =
∫︁

𝑝*
2𝐻

𝜈 ∩ [P(ℰ)]

where the last equality was obtained from the projection formula. Now,∫︁
𝑝*

2𝐻
𝜈 ∩ [P(ℰ)] =

∫︁ ̃︁𝐻𝜈 ∩ [P(ℰ)]

where ̃︁𝐻 = 𝑐1(𝒪ℰ(1)).
Set 𝑒 = rk(ℰ). Thus dimP(ℰ) = 𝑒− 1 + 𝑚. Hence projection onto the basis F gives∫︁ ̃︁𝐻𝜈 ∩ [P(ℰ)] =

∫︁
𝑝1*(̃︁𝐻𝜈 ∩ 𝑝*

1[F]) =
∫︁

𝑠𝑚(ℰ) ∩ [F].

Observe that for the minimal family we have dimX = dimP(ℰ) = 𝑒−1 + 𝑚 = 4 +
(︁

𝑁
3

)︁
+

5(𝑁 − 2).
To compute 𝑠𝑚(ℰ), using sequence (4.6) and Whitney formula we have:

𝑠(ℰ) = 𝑐(Sym2(𝒯2)⊗ 𝒯1

𝑘𝑒𝑟(𝜙) )𝑠(𝑉1 ⊕ Sym3(𝒯1)) (4.7)

Other applications of the Whitney formula give us:

𝑐(Sym2(𝒯2)⊗ 𝒯1

𝑘𝑒𝑟(𝜙) ) = 𝑐(Sym2(𝒯2)⊗ 𝒯1)𝑠(𝑘𝑒𝑟(𝜙))

and
𝑠(𝑉1 ⊕ Sym3(𝒯1)) = 𝑠(𝑉1)𝑠(Sym3(𝒯1))

On the other hand, by sequence (4.5) we have

𝑠(𝑉1) = 𝑐(𝑘𝑒𝑟(𝜙))𝑠(Sym2(𝒯2)⊗ 𝑆1)

Substituting the above equalities in (4.7) and using the fact that Segre and Chern classes
are inverses to each other we obtain:

𝑠(ℰ) = 𝑐(Sym2(𝒯2)⊗ 𝒯1)𝑠(Sym3(𝒯1))𝑠(Sym2(𝒯2)⊗ 𝑆1) (4.8)

To simplify (4.8) we twist equation (4.4) by Sym2(𝒯2) and use Whitney formula to obtain
𝑠(Sym2(𝒯2)⊗ 𝑆1)𝑐(Sym2(𝒯2)⊗ 𝒯1) = 𝑠(Sym2(𝒯2)⊗𝒬1). Finally, we obtain

𝑠(ℰ) = 𝑠(Sym3(𝒯1))𝑠(Sym2(𝒯2)⊗𝒬1) = 𝑠(Sym3(𝒯1)⊕ Sym2(𝒯2)⊗𝒬1).
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Next, we parametrize and compute the dimension and degree of the intersection of the
minimal family with cones: X ∩ 𝒞.

There are three types of cones in X, tha will be denoting by 𝒞𝑖; 𝑖 = 1, 2, 3. Denoting the
vertex by 𝑝 = 𝑉 (𝐼0) we have that 𝑁 − 3 ≤ dim(𝐼 ∩ 𝐼0) ≤ 𝑁 − 2 and 1 ≤ dim(𝐽 ∩ 𝐼0) ≤ 2.

1. If dim(𝐼 ∩ 𝐼0) = 𝑁 −3 and dim(𝐽 ∩ 𝐼0) = 1, we can suppose that 𝐼0 = ⟨𝑥3, . . . , 𝑥𝑁−1⟩.
In this case 𝑓 ∈ X ∩ 𝒞1 is up to change of coordinates, 𝑥0𝑥

2
𝑁−1 + ℎ(𝑥3, . . . , 𝑥𝑁−1).

2. If dim(𝐼 ∩ 𝐼0) = 𝑁 − 3 and 𝐽 ⊂ 𝐼0, we can suppose that 𝐼0 = ⟨𝑥4, . . . , 𝑥𝑁−1, 𝑥𝑁⟩,
and 𝑓 ∈ X ∩ 𝒞2 is up to change of coordinates, 𝑥0𝑥

2
𝑁−1 + 𝑥1𝑥𝑁−1𝑥𝑁 + 𝑥2𝑥

2
𝑁 +

ℎ(𝑥4, . . . , 𝑥𝑁−1, 𝑥𝑁). It is easy to see that X ∩ 𝒞1 ⊂ X ∩ 𝒞2.

3. If 𝐽 ⊂ 𝐼 ⊂ 𝐼0, then the vertex 𝑝 = 𝑉 (𝐼0) ⊂ 𝑉 (𝐼) = P2. In this case we can suppose
that 𝐼0 = ⟨𝑥1, 𝑥2, . . . , 𝑥𝑁−1, 𝑥𝑁⟩. Thus 𝑓 ∈ X ∩ 𝒞3 is up to change of coordinates, to
𝑥1𝑥𝑁−1𝑥𝑁 + 𝑥2𝑥

2
𝑁 + ℎ(𝑥3, . . . , 𝑥𝑁).

We have X ∩ 𝒞1 ⊂ X ∩ 𝒞2 ⊂ X ∩ 𝒞3.

To parametrize X∩𝒞3 consider the grassmannian G(𝑁, 𝑁 +1) with taulotogical bundle 𝒯0,
then consider the grassmannian G(𝑁−2, 𝒯0) with taulotogical bundle 𝒯1 and the grassmannian
G(2, 𝒯1) with taulotogical bundle 𝒯2. Construct the tower of fibrations

G(2, 𝒯1)→ G(𝑁 − 2, 𝒯0)→ G(𝑁, 𝑁 + 1).

We have that G(2, 𝒯1) is the flag variey F := F(2, 𝑁 − 2, 𝑁, 𝑁 + 1) and dimF =

𝑁 + 2(𝑁 − 2) + 2(𝑁 − 4) = 5(𝑁 − 2)− 2.
The construction is completely analogous to what we did above. Consider

∧2𝒯2 ⊗ 𝒯2 → Sym2(𝒯2)⊗ 𝒯0 → 𝑉1

and
Sym2(𝒯2)⊗ 𝒯1

∧2𝒯2 ⊗ 𝒯2
→ 𝑉1 ⊕ Sym3(𝒯1)→ ℱ

We obtain a fiber bundle ℱ such that rk(ℱ) = 3𝑁−2+
(︁

𝑁
3

)︁
− (3(𝑁−2)−2) =

(︁
𝑁
3

)︁
+6,

and X ∩ 𝒞3 is the projection on the second factor of P(ℱ). This projection is generically
injective, therefore

dim(X ∩ 𝒞3) = 5(𝑁 − 2)− 2 +
(︃

𝑁

3

)︃
+ 5 = 5(𝑁 − 2) +

(︃
𝑁

3

)︃
+ 3.
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Observe that X ∩ 𝒞3 is a divisor in X. From the construction of ℱ we can obtain the degree
of this divisor. We get the following result.

Proposition 4.3.3. The variety X∩𝒞3 is a divisor in X of degree given by the top Segre class
𝑠𝑚(Sym3(𝒯1)⊕ Sym2(𝒯2)⊗𝒬1), where 𝑚 = 5(𝑁 − 2)− 2, and can be computed using the
Script in A.1.2.

4.3.2 The parameter space of the Maximal family

Next we consider 𝑁 = 2𝑘 and denote by X the family such that a general element is given
by

𝑓 :=
𝑘∑︁

𝑖=0
𝑥𝑖𝑔𝑖(𝑥𝑘+1, . . . , 𝑥𝑁) + ℎ(𝑥𝑘+1, . . . , 𝑥𝑁) (4.9)

where 𝑔0, 𝑔1, . . . 𝑔𝑘 are quadratic forms and ℎ is a cubic form in 𝑥𝑘+1, . . . , 𝑥𝑁 .
Observe that the derivatives [𝑓𝑥0 , . . . , 𝑓𝑥𝑘

] = [𝑔0, . . . , 𝑔𝑘] defines a map P𝑘−1 99K P𝑘, so
they are algebrically dependent and 𝑓 has vanishing hessian.

Theorem 4.3.4. For even 𝑁 = 2𝑘, the maximal family of cubics in P𝑁 is a rational projective
irreducible variety of dimension

dimX = (𝑘 + 1)(
(︃

𝑘 + 1
2

)︃
+ 𝑘) +

(︃
𝑘 + 2

3

)︃
− 1

and the degree is given by 𝑠𝑚(ℰ𝑘), where ℰ𝑘 is a vector bundle over a variety G𝑘 of dimension
𝑚 = (𝑘 + 1)(

(︁
𝑘+1

2

)︁
−1). The degree of this family can be computed using the Script in A.1.3.

Proof. We begin by consider G(𝑘, 𝑆1), the Grassmannian of 𝑘-planes in P𝑁 with tautological
sequence

0→ 𝒯1 → G(𝑘, 𝑆1)× 𝑆1 → 𝒬1 → 0.

For the choice of 𝑘 + 1 forms 𝑔0, . . . , 𝑔𝑘 of degree two in 𝑥𝑘+1, . . . , 𝑥𝑁 , consider the grass-
mannian G(𝑘 + 1, Sym2(𝒯1)) with structure map

𝜌 : G𝑘 := G(𝑘 + 1, Sym2(𝒯1))→ G(𝑘, 𝑆1).

From this it is easy to see that dimG𝑘 = (𝑘 + 1)(
(︁

𝑘+1
2

)︁
− 1)

Over G𝑘 we have the tautological sequence

0→ 𝒯2 → 𝜌*(Sym2(𝒯1))→ 𝒬2 → 0



50

Next, we construct a map 𝑇𝑘 whose image parametrizes these cubics with normal form
(4.9).

Using the natural injective maps

𝒯2 → 𝜌*(Sym2(𝒯1))→ G𝑘 × 𝑆2,

we construct the following exact sequence of vector bundles over G𝑘:

0→ 𝑘𝑒𝑟(𝜙)→ 𝒯2 ⊗ 𝑆1
𝜙→ 𝑉1 ⊂ 𝑆3 → 0 (4.10)

where 𝜙 (∑︀𝑖 𝑎𝑖 ⊗ 𝑏𝑖) = ∑︀
𝑖 𝑎𝑖𝑏𝑖. Therefore we have 𝒯2 ⊗ 𝑆1

𝑘𝑒𝑟(𝜙)
𝜙
≃ 𝑉1 ⊂ 𝑆3.

Now define
𝑇𝑘 : 𝑉1 ⊕ Sym3(𝒯1)→ 𝑆3

by 𝑇𝑘

(︁∑︀
𝑖 𝑎𝑖 ⊗ 𝑏𝑖, ℎ

)︁
= 𝜙

(︁∑︀
𝑖 𝑎𝑖 ⊗ 𝑏𝑖

)︁
+ ℎ = ∑︀

𝑖 𝑎𝑖𝑏𝑖 + ℎ.

It is easy to see that 𝑘𝑒𝑟(𝜙) ⊂ 𝒯2 ⊗ 𝒯1, so we obtain that 𝜙

(︃
𝒯2 ⊗ 𝒯1

𝑘𝑒𝑟(𝜙)

)︃
is a subvector

bundle of both 𝑉1 and Sym3(𝒯1). This vector bundle coincides with 𝑘𝑒𝑟(𝑇𝑘).
In this way, we obtain the following exact sequence

0→ 𝜙

(︃
𝒯2 ⊗ 𝒯1

𝑘𝑒𝑟(𝜙)

)︃
→ 𝑉1 ⊕ Sym3(𝒯1)→ ℰ𝑘 → 0 (4.11)

where ℰ𝑘 = Im(𝑇𝑘) is the required vector bundle.
Following the above construction is not difficult to see that rk ℰ𝑘 =

(︁
𝑘+2

3

)︁
+ (𝑘 + 1)2.

We have the following projections

P(ℰ𝑘)

𝑝1
}}

𝑝2

%%
G X ⊂ P(𝑆3)

We claim that 𝑝2 is generically injective. So X = 𝑝2(P(ℰ𝑘)), has dimension
(︁

𝑘+2
3

)︁
+ (𝑘 +

1)[𝑘 +
(︁

𝑘+1
2

)︁
]− 1.

The proof of the claim follows the same arguments as the proof of the Theorem 4.3.2: a
generic cubic 𝑓 ∈ X has a unique 3-plane on its singular set, so we recover 𝐼. Hence, projecting
𝑑𝑓 ∈ 𝑆2 ⊗ 𝑆1 from 𝑆2 ⊗ 𝐼 we recover [𝑔0, 𝑔1, 𝑔2, 𝑔3]K.

To compute the degree we proceed exactly as in the proof of Theorem 4.3.2. By sequence
(4.11) we have

𝑠(ℰ𝑘) = 𝑠(𝑉1 ⊕ Sym3(𝒯1))𝑐(𝒯2 ⊗ 𝒯1

𝑘𝑒𝑟(𝜙) ) =
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𝑠(𝑉1)𝑠(Sym3(𝒯1))𝑐(𝒯2 ⊗ 𝒯1)𝑠(𝑘𝑒𝑟(𝜙))

On the other hand, by sequence (4.10) we have

𝑠(𝑉1) = 𝑐(𝑘𝑒𝑟(𝜙))𝑠(𝒯2 ⊗ 𝑆1).

Therefore

𝑠(ℰ𝑘) = 𝑠(𝒯2 ⊗ 𝑆1)𝑠(Sym3(𝒯1))𝑐(𝒯2 ⊗ 𝒯1) = 𝑠(𝒯2 ⊗𝒬1)𝑠(Sym3(𝒯1)).

In what follows, we construct a parameter space for the intersection of X with cubic cones
in P𝑁 .

Let denote the vertex of the cone by 𝑝 = 𝑉 (𝐼0), then dim 𝐼 ∩ 𝐼0 ≥ 𝑘 − 1. There are two
types of cones:

1. The case where dim 𝐼∩𝐼0 = 𝑘−1, i.e. 𝑝 ̸∈ 𝑉 (𝑥𝑘+1, . . . , 𝑥𝑁) = P𝑘. We can suppose that
𝐼0 = ⟨𝑥0, . . . , 𝑥𝑁−1⟩, thus 𝑓 is up to change of coordinates,∑︀𝑘

𝑖=0 𝑥𝑖𝑔𝑖(𝑥𝑘+1, . . . , 𝑥𝑁−1)+

ℎ(𝑥𝑘+1, . . . , 𝑥𝑁−1) where 𝑔𝑖, ℎ do not depend on 𝑥𝑁 . We write X ∩ 𝒞1 the intersection
with these cones.

2. The case where dim 𝐼 ∩ 𝐼0 = 𝑘, i.e 𝐼 ⊂ 𝐼0 and 𝑝 = 𝑉 (𝐼0) ∈ P𝑘. In this case we can as-
sume that 𝐼0 = ⟨𝑥1, . . . , 𝑥𝑁⟩ and 𝑓 is up to change of coordinates,∑︀𝑘

𝑖=1 𝑥𝑖𝑔𝑖(𝑥𝑘+1, . . . , 𝑥𝑁)+

ℎ(𝑥𝑘+1, . . . , 𝑥𝑁). We write X ∩ 𝒞2 the intersection with these cones. Observe that
X ∩ 𝒞1 ⊂ X ∩ 𝒞2.

Next, we parametrize X ∩ 𝒞2. Consider the grassmannian G(𝑁, 𝑁 + 1) with taulotogical
bundle 𝒯0, then consider the grassmannian G(𝑘, 𝒯0) with tautological bundle 𝒯1 and the
grassmannian G(𝑘, Sym2(𝒯1)) with tautological bundle 𝒯2. We obtain the following tower of
fibrations

G(𝑘, Sym2(𝒯1))→ G(𝑘, 𝒯0)→ G(𝑁, 𝑁 + 1).

We have that F := G(𝑘, Sym2(𝒯1)) has dimension 𝑚 := dimF = 𝑁 + 𝑘(𝑁 − 𝑘) +

𝑘(
(︁

𝑘+1
2

)︁
− 𝑘) = 𝑘(2 +

(︁
𝑘+1

2

)︁
).

With basis F, consider the following exact sequence, where the third map is the multipli-
cation map:

0→ 𝑘𝑒𝑟(𝜙)→ 𝒯2 ⊗ 𝒯0 → 𝑉1 → 0
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and
0→ 𝒯2 ⊗ 𝒯1

𝑘𝑒𝑟(𝜙) → 𝑉1 ⊕ Sym3(𝒯1)→ ℱ → 0

From the above sequences we have rk(ℱ) = 𝑘𝑁 +
(︁

𝑘+2
3

)︁
− 𝑘2 = 𝑘2 +

(︁
𝑘+2

3

)︁
.

We obtain that X ∩ 𝒞2 is the projection on the second factor of P(ℱ), and the projection
is generically injective. Therefore

dim(X ∩ 𝒞2) = 𝑘(2 +
(︃

𝑘 + 1
2

)︃
) + 𝑘2 +

(︃
𝑘 + 2

3

)︃
− 1.

From the construction of ℱ we obtain that the degree of X∩𝒞2 is the Segre class 𝑠𝑚(Sym3(𝒯1)⊕

𝒯2 ⊗𝒬1).
Therefore, we have the proposition.

Proposition 4.3.5. The variety X ∩ 𝒞2 ⊂ X has codimension
(︁

𝑘
2

)︁
and its degree is given by

the top Segre class 𝑠𝑚(Sym3(𝒯1) ⊕ 𝒯2 ⊗ 𝒬1), where 𝑚 = 𝑘(2 +
(︁

𝑘+1
2

)︁
). The degree can be

computed using the Script in A.1.4.

4.4 THE LEFSCHETZ LOCUS IN Gor(1, 𝑁 + 1, 𝑁 + 1, 1) FOR 𝑁 ≤ 6

Applying the previous section, we compute the dimension and degree to the minimal and
maximal family in P5 and P6. Gondim and Russo (2015) showed that in P5 there exists only
the minimal family while in P6 there are the minimal and maximal family. Furthermore, we
discuss the strong Lefschetz property for Artinian Gorenstein algebras of socle degree 3 and
codimension 6 and 7.

4.4.1 The Lefschetz locus in Gor(1, 6, 6, 1)

Given an Artinian Gorenstein algebra 𝐴 ∈ Gor(1, 6, 6, 1), by Macaulay-Matlis duality, there
exists a homogeneous polynomial 𝑓 ∈ 𝑆3 such that 𝐴 = 𝐴𝑓 , and Hilb(𝐴) = (1, 6, 6, 1). By
Theorem 2.4.5, we know that 𝐴𝑓 fails to have SLP if and only if hess𝑓 = 0. Let us denote by
ℋ the locus of cubics with vanishing hessian, and by 𝒞 the locus of cubics cones.

As the authors show in Gondim and Russo (2015), a cubic 𝑓 ∈ ℋ ∖ 𝒞 is protectively
equivalent to

𝑓 = 𝑥0𝑥
2
4 + 𝑥1𝑥4𝑥5 + 𝑥2𝑥

2
5 + ℎ(𝑥3, 𝑥4, 𝑥5) (4.12)
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where ℎ(𝑥3, 𝑥4, 𝑥5) is a cubic. So, by Macaulay-Matlis duality, 𝐴𝑓 ∈ Gor(1, 6, 6, 1) fails to
have SLP if and only if 𝑓 can be written as in (4.12).

Proposition 4.4.1. The locus in Gor(1, 6, 6, 1) of algebras satisfying SLP is Gor(1, 6, 6, 1) ∖

(ℋ ∖ 𝒞) where ℋ ∖ 𝒞 is the locus of cubics, not a cone, with vanishing hessian in P5.

Using the results in Theorem 4.3.2 we obtain

Theorem 4.4.2. The locus X := ℋ ∖ 𝒞 ⊂ P55 is a rational irreducible projective variety of
dimension 29 and degree 51847992.

Proof. Applying the construction done in Theorem 4.3.2 we obtain a fiber bundle ℰ of rank
19 =

(︁
5
3

)︁
+ 9 over the flag variety F = F(2, 3, 6) . From this data we obtain dim(P(ℰ)) = 29.

The degree is given by 𝑠11(ℰ), and we compute it using the Scripts in §A.1 for 𝑁 = 5:
𝑠11(ℰ) = 51847992.

Proposition 4.4.3. In P5 the intersection of the minimal family with cones X∩𝒞3 is a divisor
in X of degree 98048160.

4.4.2 The Lefschetz locus in Gor(1, 7, 7, 1)

Gondim and Russo (2015) showed that there exist exactly two families of cubics hypersur-
faces in P6 not cones with vanishing hessian: we name these families the minimal family and
the maximal family, according to the dimension of the linear space that a generic member of
each family has in its singular set.

The cubics in the minimal family are given by 𝑋 = 𝑉 (𝑓) ⊂ P6, where 𝑓 is up to change
of coordinates,

𝑓𝑚𝑖𝑛 := 𝑥0𝑥
2
5 + 𝑥1𝑥5𝑥6 + 𝑥2𝑥

2
6 + ℎ(𝑥3, 𝑥4, 𝑥5, 𝑥6) (4.13)

with ℎ(𝑥3, 𝑥4, 𝑥5, 𝑥6) a cubic form in the variables 𝑥3, 𝑥4, 𝑥5, 𝑥6.
On the other hand, if 𝑋 = 𝑉 (𝑓) ⊂ P6 is a cubic hypersurface in the maximal family, 𝑓 is

up to change of coordinates,

𝑓𝑚𝑎𝑥 :=
3∑︁

𝑖=0
𝑥𝑖𝑔𝑖(𝑥4, 𝑥5, 𝑥6) + ℎ(𝑥4, 𝑥5, 𝑥6) (4.14)

where 𝑔0, 𝑔1, 𝑔2, 𝑔3 are quadratic forms and ℎ is a cubic form in 𝑥4, 𝑥5, 𝑥6.
In our context, the results in Gondim and Russo (2015) can be stated as follows:
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Proposition 4.4.4. The Lefschetz locus in Gor(1, 7, 7, 1) is Gor(1, 7, 7, 1)∖(ℋ∖𝒞) whereℋ∖𝒞
is the locus of cubics not cone with vanishing hessian in P6. Furthermoreℋ ∖ 𝒞 = X𝑚𝑖𝑛∪X𝑚𝑎𝑥.
Where a generic cubic in X𝑚𝑖𝑛 (respectively in X𝑚𝑎𝑥) has normal form as in (4.13) (respectively
as in (4.14)).

Next, we describe parameter spaces for each family of cubics hypersurfaces in P6.

4.4.2.1 Minimal family in P6

Using the results in 4.3.2 we obtain

Theorem 4.4.5. The locus X𝑚𝑖𝑛 is a rational projective irreducible variety of P83 of dimension
44 and degree 229416381544.

Proof. From Theorem 4.3.2, we obtain the dimension of the family. The degree is computed
by the Segree class 𝑠16(ℰ) = 𝑠16(Sym3(𝒯1) ⊕ Sym2(𝒯2) ⊗ 𝒬1). We compute these Segre
classes using the Script in A.1.1) with 𝑁 = 6.

Proposition 4.4.6. In P6, the intersection of the minimal family with cones X𝑚𝑖𝑛 ∩ 𝒞3 is a
divisor in X𝑚𝑖𝑛 of degree 378294450492.

4.4.2.2 Maximal family in P6

Theorem 4.4.7. The locus X𝑚𝑎𝑥 ⊂ P83 is a rational projective irreducible variety of dimension
45 and degree 5792937080.

Proof. By Theorem 4.3.4 the degree is computed using the Script in A.1.3) with 𝑁 = 6.

From Proposition 4.3.5 we obtain:

Proposition 4.4.8. In P6, the intersection of the maximal family with cones X𝑚𝑎𝑥 ∩ 𝒞2 has
codimension 3 in X𝑚𝑎𝑥 and degree 51258091892.
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ANNEX A – SCRIPTS

A.1 SCRIPTS.

A.1.1 In P𝑁 , minimal family

loadPackage "Schubert2"

--choose your N

N= ;

-- Grassmannian of planes in N-space.

G1=flagBundle ({3,N-2});

-- names the sub and quotient bundles on G1

(Q1,Tau1)=G1.Bundles;

-- define F=grass(2,Tau1), the quotient has rank 2

F=flagBundle ({N-4,2},Tau1);

-- names the sub and quotient bundles on F

(Q2,Tau2) = F.Bundles ;

--Define E1 and E2, such that E=E1+E2

E1=(symmetricPower(2,Tau2))*Q1;

E2=symmetricPower(3,Tau1);

--compute the dimF-Segre class of the proof of the Theorem.

integral (segre (5*(N-2)-4,E1+E2))

A.1.2 In P𝑁 , minimal family intersection with cones

loadPackage "Schubert2"
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--give a value for N

N=;

--define grass(N,N+1),

--the quociente Tau0=Q0 has rk N.

G0=flagBundle ({1,N});

(S0,Q0) = G0.Bundles;

-- define grass(N-2,Tau0),

--the quocient Tau1=Q1 has rk N-2.

F1=flagBundle ({2,N-2},Q0);

(S1,Q1) = F1.Bundles;

-- define grass(2,Tau1),

--the quotient Tau2=Q2 has rk 2.

F2=flagBundle ({N-4,2},Q1);

(S2,Q2) = F2.Bundles;

E1=(symmetricPower(2,Q2))*S1;

E2=symmetricPower(3,Q1);

rank (E1+E2);

integral(segre (dim F2,E1+E2))

A.1.3 In P𝑁 , 𝑁 = 2𝑘, maximal family

loadPackage "Schubert2"

--choose your k=N/2

k=;
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-- Grassmannian of k planes in N-space.

G1=flagBundle ({k+1,k})

-- names the sub and quotient bundles on G1

(Q1,tau1) = G1.Bundles

k1=substitute((k+1)*(k-2)/2,ZZ);

k2=substitute((k+1),ZZ);

-- define F=grass(k+1,s_2(Tau1))

F=flagBundle ({k1,k2},symmetricPower(2,tau1))

-- names the sub and quotient bundles on F

(Q2,tau2) = F.Bundles

E1=tau2*Q1

E2=symmetricPower(3,tau1)

--compute the dimF-Segre class of the proof of the

integral(segre (dim(F),E1+E2))

A.1.4 In P𝑁 , maximal family intersection with cones

--intersection of maximal family with cones in PN, N=2k

--choose your k=N/2

k=;

N=substitute(2*k,ZZ);

-- Grassmannian of N planes in N+1-space.

G0=flagBundle ({1,N}); --define grass(N,N+1) with Q0=Tau0

(Q0,tau0) = G0.Bundles;
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-- Grassmannian of k planes in Q0-space.

G1=flagBundle ({k,k},tau0); --define grass(k,Q0) with Q1=Tau1

(Q1,tau1) = G1.Bundles;

k1=substitute(k*(k-1)/2,ZZ);

F=flagBundle ({k1,k},symmetricPower(2,tau1));

--define grass of quotient of rk k of S2(Tau1),Q2=Tau2

(Q2,tau2) = F.Bundles;

E1=tau2*Q1;

E2=symmetricPower(3,tau1);

integral(segre (dim(F),E1+E2))
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