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RESUMO 

 

Com as previsões de intensificações de seca e aumento de temperatura global, esforços para prever 

como as florestas irão responder a essas novas condições têm sido incentivados, especialmente em 

ambientes tipicamente secos como a Caatinga pois estão entre os ambientes mais ameaçados diante 

desse cenário. Nesse contexto, o presente trabalho acessou informações sobre como espécies 

decíduas respondem a variação sazonal em termos de dinâmica de produção e partição dos 

carboidratos. O estudo foi realizado no Parque Nacional do Catimbau onde coletamos material 

vegetal de Commiphora leptophloeos, Peltogyne pauciflora, Cenostigma microphyllum e 

Pityrocarpa moniliformes para quantificação de carboidratos não estruturais (NSC) ao longo de 

oito meses de 2020 a 2021. A presente versão da tese está dividida em dois capítulos, onde no 

primeiro manuscrito confirmamos a existência de fotossíntese corticular para C. leptophloeos, 

estratégia que contribuiu para a manutenção do pool constante de NSC durante os períodos de seca. 

No segundo capítulo, testamos se as espécies decíduas sem a fotossíntese corticular variam 

drasticamente em relação à concentração de NSC apresentando maiores concentrações em períodos 

chuvosos e reduções nos períodos secos, devido ao uso das reservas nos períodos de limitação da 

fotossíntese. Os resultados refutam essa hipótese uma vez que para as três espécies o pool de NSC 

foi constante ao longo dos meses, não havendo reduções nem aumentos drásticos entre períodos 

secos e chuvosos. O principal aspecto observado foram respostas espécie-específica para as 

estratégias de alocação e particionamento dos NSC entre os órgãos.  

   

Palavras-chave: árvores decíduas; floresta seca; fotossíntese corticular; mudanças climáticas; 

tolerância. 

  



 
 

 

 

ABSTRACT 

 

With predictions of increased drought and global temperature rise, efforts to predict how forests 

will respond to these new conditions have been encouraged, especially in typically dry 

environments like the Caatinga, as they are among the most threatened environments in this 

scenario. In this context, the present study accessed information on how deciduous species respond 

to seasonal variations in terms of carbohydrate production and partitioning dynamics. The study 

was conducted in Catimbau National Park, where we collected plant material from Commiphora 

leptophloeos, Peltogyne pauciflora, Cenostigma microphyllum, and Pityrocarpa moniliformis for 

the quantification of non-structural carbohydrates (NSC) over eight months from 2020 to 2021.The 

current version of this thesis is divided into two chapters. In the first one, we confirmed the 

existence of corticular photosynthesis (CP) for C. leptophloeos, a strategy that contributed to the 

maintenance of a constant NSC pool during dry periods. In the second chapter, we tested whether 

deciduous species without CP vary significantly in terms of NSC concentration, showing higher 

concentrations in rainy periods and reductions in dry periods due to the use of reserves during 

photosynthesis limitations. The results refute this hypothesis, as for all three species, the NSC pool 

remained constant throughout the months, with no drastic reductions or increases between dry and 

rainy periods. The main observation was species-specific responses in the allocation and 

partitioning strategies of NSC among the organs.  

 

Keywords: climate change; corticular photosynthesis; deciduous tree; drought tolerance; dry 

forest. 
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1 INTRODUÇÃO 

 

Dentre os processos fisiológicos fundamentais para a sobrevivência das plantas está o 

armazenamento de carbono na forma de compostos transitórios, os quais sustentam, 

principalmente, o metabolismo vegetal durante o período noturno, quando a produção de 

carboidratos está temporariamente estagnada. Além dessa dinâmica diária da mobilização do 

estoque de carbono, o acúmulo de carboidratos não estruturais (NSC) também desempenha papel 

crucial na sobrevivência de plantas expostas às condições ambientais limitantes como 

disponibilidade de água e nutrientes, temperatura ou algum fator biótico (PALACIO et al., 2018).  

Os carboidratos não estruturais são conhecidos principalmente por seu envolvimento na 

tolerância de plantas sob condições de seca e salinidade, sendo importante para o ajustamento 

osmótico, sequestro de espécies reativas de oxigênio, bem como atuando como moléculas 

sinalizadoras do estresse (SANTANA-VIEIRA et al., 2016). Em espécies perenes, tais como as 

árvores, vários estudos tentam elucidar o que determina a alocação de carbono, seria um processo 

passivo ou ativo? Além disso, como se daria o uso desse pool armazenado sob condições 

ambientais limitantes? (SALA; WOODRUFF; MEINZER, 2012). 

A falta de carbono e a falha hidráulica são apontadas como as possíveis causas primordiais 

de mortalidade de árvores em consequência da seca (LANDHÄUSSER et al., 2018). Desta maneira 

a dinâmica de estoque de carbono é crucial para a sobrevivência de espécies em Florestas Tropicais 

Sazonalmente Secas (FTSS), tal como a Caatinga no semiárido brasileiro, uma vez que há limitação 

da disponibilidade hídrica nesses ambientes colocando-as em situação de vulnerabilidade. Para 

espécies caducifólias, em especial, o estoque de NSC passa então a ser uma importante fonte de 

energia disponível durante todo o período de estação seca devendo sustentar o metabolismo básico 

até a chegada da estação chuvosa. Desta maneira um possível esgotamento dessas reservas durante 

este período pode levar essas plantas à morte (MARTÍNEZ-VILALTA et al., 2016). Sobretudo sob 

condições climáticas cada vez mais limitantes, com secas mais prolongadas (MARENGO; 

BERNASCONI, 2015) 

No contexto das mudanças climáticas que alertam para a tendência de aumento de 

temperatura e da intensidade e duração dos eventos de seca é importante compreender como a 

sazonalidade regula essa dinâmica do estoque de carboidratos nas espécies lenhosas, como proxy 

de suscetibilidade ou resiliência de espécies arbóreas frente ao cenário futuro. Entretanto, 

justamente para espécies de FTSS essas informações são escassas. Estudos climatológicos 
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(MARENGO E BERNASCONI, 2015) apontam que a Caatinga, uma das maiores FTSS no mundo, 

é uma das regiões ecológicas mais suscetíveis às mudanças climáticas (LAPOLA et al., 2020). 

Nossa proposta, portanto, é compreender como se dá essa dinâmica de produção, uso e estoque de 

açúcares em árvores decíduas nativas da Caatinga em função da sazonalidade. 
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2 FUNDAMENTAÇÃO TEÓRICA 

 

2.1 ECOLOGIA E FISIOLOGIA DE ESPÉCIES DECÍDUAS LENHOSAS EM FLORESTAS 

TROPICAIS SECAS 

 

2.1.1 Florestas Secas e a deciduidade 

As florestas tropicais são ambientes extremamente diversos e complexos (WITHMORE, 

1998; HAN et al., 2022). Nesse contexto, as Florestas Tropicais Secas (FTS) representam quase 

metade de todos os tipos de florestas tropicais do mundo, abrangendo aproximadamente 40%, com 

uma presença de cerca de 20% na América do Sul (MURPHY e LUGO, 1986; MILES et al., 2006). 

Essas florestas se caracterizam por uma sazonalidade bem definida, com períodos de seca e chuvas 

abundantes, sendo influenciadas pela frequência e duração do período seco (MOONEY, 

BULLOCK, MEDINA, 1995; MILES et al., 2006; LUO et al., 2024). São, na sua maioria, 

ecossistemas decíduos, em comparação com as florestas tropicais úmidas (MURPHY e LUGO, 

1986; BRAGA et al., 2016) com relevância global, tendo em vista ocupam uma grande área nos 

trópicos e desempenham um papel importante no ciclo do carbono da Terra (ALSTRÖM et al., 

2015).  

A sazonalidade climática leva a ocorrência de variações ambientais, influenciando 

diretamente a disponibilidade de água, a irradiação, a temperatura e, consequentemente, os padrões 

fenológicos. Para as FTS a literatura clássica considera as espécies sempre verde e decíduas como 

as duas principais categorias funcionais para essa vegetação (MOONEY, BULLOCK, MEDINA, 

1995; EWEL e HIREMATH, 2005), assumido serviços ecossistêmicos distintos e complementares 

dentro da mesma assembleia (DING et al., 2020).  

Espécies sempre verde ou brevemente decíduas retém um número substancial de folhas ao 

longo de todos os períodos estacionais em FTS (LIMA et al., 2021). Devido a isso, tem grande 

importância na estabilização dos solos, devido a suas raízes profundas e duradouras (FRANCO et 

al., 2005) e no sequestro de carbono de forma contínua durante todo o ano (DING et al., 2020). 

Essas espécies podem manter uma estabilidade fotossintética mesmo sob flutuações de água no 

solo (FIGUEIREDO-LIMA et al., 2018), bem como apresentam alta eficiência na recuperação do 

potencial hidrico do xilema (PEREIRA et al., 2019). Por outro lado, durante a estação seca, 

algumas espécies arbóreas adotam a deciduidade foliar como uma estratégia para evitar danos 
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causados pela falta de água, sendo comum a perda total ou parcial de folhas (MUNNÉ- BOSCH e 

ALEGRE 2004; SANTOS et al., 2014). Devido à queda de suas folhas, essas espécies contribuem 

anualmente com o ciclo de nutrientes no solo devido ao aumento da serrapilheira (LIMA et al 2021; 

MONTANEZ, AVELLA e CAMACHO, 2023), bem como são importantes espécies enfermeiras 

durante o período seco, devido a regulação do microclima abaixo da copa (VALIENTE-BANUET 

e VERDÚ, 2008). Ambos os tipos funcionais coexistem nessas florestas e são fundamentais para 

a manutenção dos serviços ecossistêmicos como ciclagem de nutrientes, regulação hídrica e 

sequestro de carbono em FTS.  

Os modelos de alterações climáticas globais preveem significantes alterações na 

temperatura e pluviosidade nas próximas décadas para as regiões tropicais (PAINEL 

INTERGOVERNAMENTAL SOBRE ALTERAÇÕES CLIMÁTICAS, 2015). As FTS ao redor 

do globo e especialmente as que ocorrem no Nordeste da Região Brasileira são especialmente 

vulneráveis às mudanças climáticas, e os efeitos combinados de alta temperatura e menor 

precipitação projetam pra essa região uma expansão de zonas mais secas (SALAZAR et al., 2007; 

MARENGO e BERNASCONI, 2015). No entanto, ainda não está claro como as espécies destas 

regiões responderão às mudanças climáticas, especialmente as espécies decíduas que apresentam 

uma janela de oportunidade muito mais curta para ganho de carbono e perda de água do que as 

espécies sempre verdes.  

 

2.1.2 Estratégias fisiológicas e implicações de espécies decíduas em FTS 

As diferenças funcionais entre espécies decíduas e sempre verdes geralmente derivam do 

balanço entre os custos e benefícios da formação das folhas (SOBRADO, 1991; WRIGHT et al., 

2004). Embora os processos que levam a queda das folhas em espécies decíduas ainda não sejam 

totalmente conhecidos, algumas hipóteses destacam a deciduidade como resultado de diversos 

processos e respostas fisiológicas foliares (DEXTER et al., 2018), como a percepção das plantas 

às alterações na umidade do solo (ARDIEU e SIMONNEAU, 1998), processos endógenos, como 

a reidratação do caule (MOREL et al. 2015).) e fotoperíodo (WAY e MONTGOMERY, 2014).). 

No entanto, sabe-se que a sazonalidade é um importante driver na seleção de estratégias fenológicas 

distintas.  

Em espécies decíduas, o menor tempo de vida foliar pode estar associado a outros dois 

mecanismos importantes: a queda das folhas, atuando como um "fusível hidráulico" ao evitar danos 
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no xilema vulnerável durante a seca (LIMA et al., 2018; SOUZA et al., 2020), e raízes profundas, 

que permitem o acesso a fontes de água mais profundas, prolongando a duração da folhagem na 

copa das árvores durante a estação seca (HASSELQUIST et al. 2010, SOUZA et al., 2020). Estes 

mecanismos combinados à características funcionais/estruturais como maior investimento 

fotossintético, devido a menor expectativa de vida da folha e menores massas foliares (i.e menor 

utilização de energia) (SOBRADO et al., 1991; FU et al., 2012; SOUZA et al., 2020) podem 

apresentar vantagens adaptativas nesses grupos funcionais. Por exemplo, em FTS, espécies 

decíduas apresentam estratégias menos conservadoras, com maior capacidade de trocas gasosas, 

maior taxa de assimilação de carbono e maior eficiência no uso da água em comparação com 

espécies sempre-verdes (WORBES et al., 2013; FIGUEIREDO-LIMA et al., 2018; PEREIRA et 

al., 2019). Essas estratégias podem favorecer o balanço hídrico e de carbono nessas espécies. 

No entanto, espécies decíduas podem exibir variações fenológicas associadas a 

características do caule, como densidade de madeira e potencial hídrico do xilema (CHOAT et al., 

2006; WORBES et al., 2013), importantes preditores do funcionamento hidráulico das plantas em 

climas sazonais (SOUZA et al., 2020). Plantas com baixa densidade de madeira tendem a produzir 

folhas novas e entrar em fases reprodutivas durante a estação seca, enquanto aquelas com madeira 

de alta densidade geralmente perdem folhas e voltam a brotar dependendo da disponibilidade de 

água no solo. Dessa forma, os dados sugerem que para além da estratégia de deciduidade, a 

combinação de diferentes traços pode determinar subgrupos de espécies caducifólias (LIMA et al. 

2012; OLIVEIRA et al. 2015) com diferentes estratégias para enfrentar os períodos secos.  

Espécies decíduas que possuem tecidos lenhosos com capacidade fotossintética 

demonstram comportamentos distintos frente à seca devido à sua capacidade de realizar 

fotossíntese corticular. que atua como um mecanismo de regulação local. Este processo ajuda a 

mitigar o estresse hídrico ao regular a concentração de oxigênio e dióxido de carbono (CO2) no 

caule, promovendo a adaptação a ambientes áridos e semiáridos. A fotossíntese corticular está 

associada a uma menor densidade de madeira, facilitando a difusão de gases e a eficiência 

metabólica em condições adversas (ROSELL e OLSON, 2014) 

 

2.2 FOTOSSÍNTE CORTICULAR 

A capacidade de realizar fotossíntese através do tecido lenhoso é uma vantagem evolutiva 

presente em algumas espécies vegetais. É considerada uma importante fonte local de carbono para 
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o funcionamento da planta, principalmente em situações de déficit hídrico, quando a fotossíntese 

foliar é limitada após o fechamento estomático ou queda foliar (PFANZ et al., 2002; DE ROO et 

al., 2020; NATALE et al., 2023) especialmente em espécies de florestas secas. 

A fotossíntese corticular parece ser um método eficiente de (re) fixação de carbono sem 

grande perda de água, em comparação com a fotossíntese foliar. Ou seja, há uma diferença clara 

entre a fotossíntese nas folhas e no caule: para absorver o CO2, as folhas precisam abrir seus 

estômatos e ficam expostas à perda de água para o ambiente; já o tecido lenhoso, é abastecido com 

CO2 liberado pela respiração de tecidos não fotossintéticos (PFANZ et al., 2002; ÁVILA et al., 

2014). Sendo assim, a reassimilação interna de CO2 nos tecidos do caule é considerada uma 

estratégia importante na economia de carbono da planta inteira (ASCHAN e PFANZ, 2003; 

ÁVILA et al., 2014). 

Portanto, a fotossíntese corticular é capaz de promover significativamente o acúmulo de 

carboidratos, que auxiliam no reabastecimento dos vasos embolizados e na recuperação da 

condutividade hidráulica (CHEN et al., 2018; LIU et al., 2019). Nesse sentido, espécies decíduas 

com essa capacidade fotossintética podem apresentar uma maior resiliência à seca em razão dessa 

fonte adicional de carboidratos devido ao potencial de assimilação de carbono em outro tecido 

verde não foliar fornecendo fontes significativas e alternativas de fotoassimilados, essenciais para 

um rendimento ideal (SIMKIN, 2019; DE ROO et al., 2020). 

 

2.3. DINÂMICA DE CARBONO (C) NAS PLANTAS E OS CARBOIDRATOS NÃO-

ESTRUTURAIS (CNE) 

 

2.3.1 Geral 

A fração do C assimilado que será utilizado pelas plantas, depende da eficiência do uso de 

CO2, na divisão entre o incremento de biomassa (i.g crescimento primário e secundário) e a 

respiração (DANNOURA et al., 2016). A fotossíntese é o processo que reduz o carbono inorgânico 

atmosférico em compostos orgânicos e, os carboidratos são os produtos finais desse processo. Em 

algumas espécies esse processo de produção pode acontecer também em tecidos lenhosos, por meio 

da refixação do CO2 proveniente da respiração nas células clorofiladas da casca, parênquima radial 

e medula do caule (LIU et al., 2018). Essas moléculas produzidas fornecem substratos para 

construção das estruturas das plantas (carboidratos estruturais), bem como a energia necessária 
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para as reações biológicas das células e a síntese de outros compostos orgânicos (carboidratos não 

estruturais). (DANNOURA et al., 2016).  

Os carboidratos não estruturais (CNE), são os principais substratos para o metabolismo 

primário e secundário das espécies vegetais. São divididos em classes que vão de acordo com a 

natureza das moléculas. Os monossacarídeos são moléculas simples, que contém entre 3 e 5 átomos 

de carbono (i.g glicose, frutose, arabinose e galactose). Esses carboidratos, como a glicose e 

frutose, funcionam principalmente como osmólitos e substratos para respiração celular. A glicose 

é principal produto da fotossíntese, é convertida para a síntese de muitas outras moléculas. Já a 

frutose, é também um importante CNE na respiração celular e atua como molécula de reserva 

energética rápida em algumas plantas. Os dissacarídeos e oligossacarídeos (i.g sacarose, rafinose, 

estaquiose), são moléculas compostas, por três a nove açúcares simples, em média. Podem ser 

hidrolisados a moléculas menores e assim, utilizados como substratos. A sacarose é um dos 

principais açúcares de transporte nas plantas (HARTMANN; TRUMBORE, 2016). Já os 

polissacarídeos são cadeias longas de monossacarídeos, seus representantes mais comuns são a 

amilopectina e amilose, que formam o amido, os carboidratos de reserva mais comum em plantas. 

A natureza osmoticamente inativa desse carboidrato, permite que sejam armazenados em grandes 

quantidades pelas plantas (HARTMANN; TRUMBORE, 2016). 

Os CNEs estão presentes em todos os tecidos vegetativos vivos das plantas. Entretanto, a 

distribuição desses compostos ao longo da planta ocorre de maneira assincrônica entre os órgãos, 

mesmo sob condições consideradas favoráveis (STITT et al., 2012). Durante o dia, nas folhas, os 

carboidratos excedentes resultantes da fotossíntese são armazenados nos cloroplastos na forma de 

amido. Durante a noite, para a manutenção dos processos vitais, o amido é hidrolisado em glicose 

ou exportado para outros órgãos na forma de sacarose. O floema é o principal tecido de condução 

e, devido às suas propriedades anatômicas e funcionais, consegue controlar a quantidade de 

carboidratos diários alocados para os tecidos dreno (EPRON et al., 2016). As raízes recebem cerca 

de 31% da produção primária, e suas funções são fortemente dependentes dos recursos 

fotossintéticos (LITTON et al., 2007).  

  Tais moléculas são fundamentais para a sobrevivência das plantas (SALA; WOODRUFF; 

MEINZER, 2012) e, estima-se que os CNE produzidos pela fotossíntese representem metade do 

carbono assimilado pelas plantas. Portanto, uma eventual limitação de carbono proveniente da 
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fotossíntese afetaria não somente o incremento de biomassa, mas a manutenção de processos 

metabólicos básicos como a respiração.  

 

2.3.2 O papel dos CNEs na tolerância ao estresse hídrico 

Os CNE desempenham papel importante na vida das plantas expostas a condições 

ambientais estressantes, como seca (PALACIO et al., 2018), atuando como moléculas sinalizadoras 

do estresse, osmoreguladores, e no sequestro de espécies reativas de oxigênio – ROS (PIPER; 

FAJARDO; HOCH, 2017; MARTÍNEZ-VILALTA et al., 2016). Além disso, discussões 

crescentes apontam que o acúmulo de carboidratos pode visar estrategicamente a formação de uma 

reserva para tempos difíceis em termos de aquisição de carbono pelas plantas. Essa reserva seria 

utilizada quando a demanda por carbono não pudesse ser atendida pela fotossíntese (SALA; 

WOODRUFF; MEINZER, 2012; CHUSTE et al.,2020).   

Durante um estresse hídrico, a regulação da abertura estomática, que visa a manutenção do 

conteúdo de água na planta, afeta diretamente a assimilação de C (TANG et al., 2002; FLEXAS et 

al., 2006). Devido a isso, hipóteses clássicas associam a morte de plantas sob condições de déficit 

hídrico à redução da disponibilidade de carbono, seja pela diminuição na produção de CNE 

(hipótese de esgotamento de carbono) ou pela dificuldade de alocação desses compostos para os 

tecidos vegetais (hipótese de falha hidráulica) (SALA et al., 2010; MILLARD et al., 2007). No 

entanto, na última década, pesquisas têm demonstrado que os CNE desempenham um papel 

significativo na tolerância das plantas a diversos estresses abióticos (ROSA et al., 2000; RIGIER 

et al., 2009; PIPER, 2011).  

 

2.3.3 CNE e as espécies decíduas 

Dada a relevância dessas reservas como fonte de carbono, estudos indicam que 

particularmente para as espécies decíduas, o acúmulo de CNE pode ser determinante durante as 

secas sazonais (PALACIO et al., 2018). Diante da estratégia adaptativa de eliminar as folhas, essas 

espécies caducifólias obrigatoriamente precisam remobilizar os carboidratos armazenados para 

manutenção básica durante todo o período de seca (MARTÍNEZ-VILALTA et al., 2016). Os CNE 

devem ainda ser suficientes para dar início ao desenvolvimento de novas folhas com a chegada da 

estação chuvosa, e a produção dessas estruturas são um dos principais drenos de carbono 

(PALACIO et al., 2018). Desse modo, as espécies caducifólias precisam particionar de maneira 
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deliberada o uso do pool de NSC entre a manutenção metabólica básica e a rebrota da copa, visando 

a retomada da fotossíntese e crescimento no período favorável de chuvas (BLUMSTEIN et al., 

2020).  

As espécies podem, contudo, diferir quanto ao padrão da dinâmica de produção e alocação 

de carboidratos mesmo ocorrendo em ambientes semelhantes, o que pode estar ligado 

principalmente as diferenças no tipo funcional. Árvores decíduas podem ser mais dependentes de 

reservas de CNE do que espécies sempre verdes, por exemplo, devido a manutenção de área 

fotossintética nestas, o que pode levar a flutuações menos dramáticas no seu pool de CNE durante 

a seca (PALACIO et al., 2018). O mesmo vale para espécies que possuem tecidos lenhosos com 

capacidade fotossintética, as quais encontram nessa estratégia uma fonte significativa de carbono 

sob condições limitadas, configurando como uma alternativa crucial de sobrevivência durante a 

seca (ROO et al., 2020). 

Esse tipo de fotossíntese caulinar é menos afetado pela disponibilidade hídrica do que a 

fotossíntese foliar (ROO et al., 2020), inclusive, e dados recentes revelam a contribuição 

substancial dessa fotossíntese sobre o balanço de carbono em algumas espécies como o álamo 

(Populus tremula) sob déficit hídrico nas regiões temperadas (ROO; SALOMÓN; STEPPE, 2020).  

À luz disso, a presença de tal estratégia em espécies arbóreas de ambientes vulneráveis a severidade 

das secas, como a floresta seca Caatinga, pode ser o fator chave na resiliência de árvores desses 

ecossistemas. 

Entretanto, as implicações graves da seca não consistem apenas na limitação fotossintética 

e provoca também consequências hidráulicas nas plantas, como embolia dos vasos condutores, 

podendo acarretar em falhas no sistema de transporte e conduzir à mortalidade dos indivíduos 

(SAVI et al., 2019). Dentro desse contexto também, os CNE podem ser decisivos atuando na 

regulação osmótica, a fim de evitar falhas hidráulicas drásticas durante o estresse hídrico (SALA; 

WOODRUFF; MEINZER, 2012). O que traz à luz outro ponto de bastante interesse dos 

ecofisiologistas frente o cenário de mudanças climáticas: desvendar o mecanismo que dirige a 

mortalidade das árvores em condições de seca, isto é, se ela é determinada pela depleção de carbono 

ou pela falha hidráulica. Essa compreensão permanece obscura (PIPER, 2011) e dados recentes 

sugerem que as duas causas podem estar interconectadas (SAVI et al., 2019). 
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3 ARTIGO 1 - GREEN STEM WATER STORAGE AND BEHAVIOR OF NON-

STRUCTURAL CARBOHYDRATES IN A DECIDUOUS WOODY TREE IN A DRY 

TROPICAL FOREST  

 

Manuscrito a ser submetido ao periódico: Theoretical and Experimental Plant Physiology – TxPP 
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Abstract  

 

We investigate the strategy in Commiphora leptophloeos, a dry tropical forest deciduous tree that 

exhibit green stems. The main objective of this work was to understand how non-structural 

carbohydrates (NSC) vary throughout the plant during both seasons under a semi-arid climate. 

Thus, we evaluated photochemical activity in green stem and leaves, collecting leaves, twigs, and 

roots to quantify the NSC content. We also assessed the stomatal conductance (gs) in leaves and 

xylem water potential (Ψx) of plants. We found that the maximum quantum efficiency of PSII 

indicate a photochemical activity in the stems and no difference to leaves or throughout months. In 

the leafless months the concentration of soluble sugars decreased by half in the twigs and roots. 

The NSC concentration was stable during dry periods and the partitioning was consistent among 

organs throughout months, however during transition from rainy to dry season, the SS roots 

concentration increase while the starch reduced. This can indicate plants could be interconverting 

this non-soluble sugar to optimize their metabolism in response to incoming drought. Plants also 

sustained high Ψx even in dry months, which can be explained by both the water storage capacity 

due to low wood density of this species and by the consistence of NSC. However, gs values showed 

a relationship with Yx. A slight reduction in water status led to strong control of the stomatal pore. 

 

Keywords: Caatinga; drought tolerance; green stem; NSC dynamic; woody species 
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Introduction 

 

Tree mortality is an increasing problem in forests around the world for drought 

consequences (Hammond et al. 2019, Blumstein et al. 2020). The warnings show that environments 

already sensitive to dry events will be much more affected (Marengo and Bernasconi 2015, IPCC 

2022). Drought stress is a causal factor to plants survival with effects on uptake resources such as 

photosynthetic carbon and nutrients (Falcão et al. 2017). In the face of the changing scenario of the 

global climate, tree species survival could be in danger (Savi et al. 2019).  

 Under limited water soil conditions, plants could face a critical reduction in xylem water 

potential that may lead to vessel cavitation and threaten hydraulic integrity on a scale of the whole 

plant (De Baerdemaeker et al. 2017, Savi et al. 2019). It also could affect the dynamic of carbon in 

the plant, by changing process of synthesis and mobilization of Non-Structural Carbohydrates 

(NSC) impairing the homeostasis of the plant metabolism (Sala et al. 2012). Thus, trees under 

drought conditions may collapse because of either hydraulic issues or carbon starvation (Sala et al. 

2012, Hammond et al. 2019).   

Species living in dry environments show adaptations to face those limited conditions. One 

of these adaptive traits commonly found in plants of tropical dry forests (TDF) such as the Brazilian 

one named Caatinga, is the defoliation strategy during dry seasons (Santos et al. 2022). In this 

domain most species are deciduous, which helps to control the transpiration rate during periods of 

reduced water availability (Falcão et al. 2017, Barros et al. 2021). On the other hand, it implies 

adverse effects on carbon gain along months of drought since the most crucial photosynthetic tissue 

is absent (Palacio et al. 2018). To evaluate the effect of this on carbon balance, and the impact on 

tree mortality in dry environments is essential to assess how the NSC pools vary over time (Chuste 

et al. 2020).  
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To avoid carbon starvation during these times plants must produce and store NSC during 

rainy seasons. Thus, they should be able to survive accessing the store and also use it for leaf 

sprouting at the starting rains (Sala et al. 2012, Piper et al. 2017, Blumstein et al. 2020, Furze et al. 

2021). Although, little is known about how seasonality drives the regulation of this NSC dynamic, 

especially in woody plants of dry forests (Santos et al. 2021). Besides, studies are reporting species 

with a particular compensatory way to deal with the issue of carbon gain under drought. There are 

mature trees with the ability to do photosynthesis in non-leaf tissues, such as the stems (Ávila-

Lovera et al. 2017, Burrows and Connor 2020). This strategy is reported for species that have a 

layer of chlorophyll tissue under the periderm and it is named Corticular Photosynthesis (Liu et al. 

2019, De Roo, Salomón, Oleksyn, et al. 2020).  

That another path to obtaining carbohydrates is less impacted by the reduction of water than 

the conventional one by leaf (De Roo, Salomón, and Steppe 2020). Studies have shown a 

significant contribution of this path to carbon balance in species from temperate regions under 

drought stress (De Roo, Salomón, Oleksyn, et al. 2020). In light of this, a reasonable question is 

whether these plants that can take this pathway under water-limited environments, might better 

resist this emergent climate change (Simkin et al. 2019). In this context, it has been seen that in 

Caatinga dry forest, there is a deciduous species that shows a conspicuous green tissue, especially 

in drought season (Araújo, Castro, Albuquerque 2007). Nevertheless, none is known about the 

contribution of this feature to active photosynthesis, and how it impacts the dynamic of NSC over 

seasons. 

Therefore, we have been investigating this strategy in Commiphora leptophloeos, this 

species has a very low wood density, high water storage capacity throughout the year (Lima et al. 

2012) and presents changes in the phenological cycle independent of water availability in the soil 

between DTF seasons (Lima et al. 2021). It is a tree native to Caatinga Brazilian dry forest, in 
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effect one of the biggest tropical dry forests in the world (Pereira et al. 2020). Besides, one of the 

most susceptible to climate change consequences as well (Lapola et al. 2020, IPCC 2022). We 

hypothesized that: 1) the fluctuations in NSC dynamics throughout seasonal variation would not 

be pronounced in this species as it can count with the contribution of the corticular tissue activity; 

2) having wood with very low density would support the maintenance of tissue hydration 

throughout the seasons, going through the entire dry season with high xylem potential and 

consuming stored NSC from twigs and roots. 

 

Material and methods 

   

Study site and focal species 

We conducted the study in an area for conservation of Caatinga, which is a domain of 

Seasonally Dry Tropical Forest in Brazil. The site is located on Catimbau National Park, city of 

Buíque, state of Pernambuco, Northeast of the country (8°24′00″ and 8°36′35″ S; 37°0′30″ and 

37°1′40″ W). The park comprises a vast territorial extension of 607-km2. The region's climate is 

semiarid, characterized by temperature averages around 23º C and annual rainfall ranging from 

480mm to 1000mm (Pereira et al. 2020, Vanderlei et al. 2021). Our focal species for this study is 

Commiphora letophloeos (Mart.) J.B. Gillett (Burseraceae), one of the most representative species 

of Caatinga dry forest (Medeiros et al. 2022). It is a deciduous tree that belongs to family 

Burseraceae which along with Fabaceae, Euphorbiaceae and Boraginaceae are the most abundant 

families of the woody species in that area (Pereira et al. 2020). 

 

Field conditions and sample design 
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Field assessments and plant material collections were carried out over a 17-month space-

time window to cover a spectrum of varied environmental conditions experienced by trees at the 

study site over time. Eight sampling collections were performed in this study time range, starting 

in 2020, in November (Nov20), and repeating throughout 2021 in the months of April (Apr21), 

August (Aug21), October (Oct21), December (Dec21) and finally, in 2022 in January (Jan22), 

April (Apr22) and November (Nov22). These months, according to the seasonal characteristics of 

the region, include dry seasons, rain, and the transition periods between them.  

 

Rainfall (mm) and soil water balance (WB)  

Meteorological data records for the region were extracted from the databases of the 

Agronomic Institute of Pernambuco – IPA and the National Institute of Meteorology - INMET. 

We used the average monthly precipitation and temperature to calculate the soil water balance, 

drawing data from the year preceding the start of our study (November 2019) up to the study's final 

year (November 2022). This approach provided us with a more comprehensive overview of the 

water conditions that the plants might have encountered before data collection began, not only 

during the study evaluation period (Fig. 1).  

 

Xylem water potential (Ψx) and stomatal conductance (gs) 

At 4:00 AM, branches from four individuals were collected to determine the pre-dawn water 

potential of the xylem using a Scholander pressure chamber (Model 3035, Soil Moisture Equipment 

Corp., Santa Barbara, CA, USA). Stomatal conductance was assessed in five individuals of each 

species during seasonal periods when leaves were present (Apr21, Aug21, Jan22, and Apr22). 

Measurements were taken at 9:00 AM using a leaf porometer (SC – 1 Leaf Porometer, METER 

Group). 
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Chlorophyll a fluorescence and chlorophyll content 

The functionality of the photosynthetic apparatus (PSII) in both leaves (n = 3) and stems (n 

= 3) was assessed through chlorophyll fluorescence analysis, using a portable fluorometer (FP 100, 

Photon Systems Instruments, Brno, Czech Republic). Following the OJIP measurement protocol 

of the equipment and the calculations outlined by Baker (2008), key parameters such as the 

maximum quantum efficiency of PSII (Fv/Fm), operational efficiency of PSII (ΦPSII) and electron 

transport rate (ETR) were determined.  

For the measurement of minimum chlorophyll fluorescence (Fo) and maximum fluorescence 

(Fm) values, both leaves and stems underwent a dark adaptation for a minimum of 30 minutes. The 

dark adaptation for C. leptophloeos stems was achieved using self-manufactured adapted material, 

following the approach by Johnstone et al. (2012) (Fig. 2a). For the leaves, we utilized the 

specialized adapting tweezers provided with the measuring device (Fig. 2b). 

Approximately, 200 mg of fresh leaves were homogenized with 80% acetone and total 

chlorophyll was extracted according to the method described by Lichtenthaler and Wellburn (1983) 

with some changes. Chlorophylls a and b and total carotenoids were throughout spectrophotometric 

quantification by analyses of their absorbance at 664, 646 and 470 nm wavelengths, respectively. 

Each photosynthetic pigment was expressed in milligrams per gram of dry weight, transformed 

from the equivalent in fresh weight and estimated using the following equations, where A means 

absorbance: Chl a (mg l-1) = 12.21. A664—2.81. A646; Chl b (mg l-1) = 20.13. A646—5.03. A664; 

Carotenoids (mg l-1) = (1,000. A470—3.27 [Chl a] - 104 [Chl b])/227. 

 

NSC concentration  
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To determine the SS (soluble sugar) content, leaf samples (when present), stems, and roots 

of five individuals were collected according to the methodology of Quentin et al. 2015, where the 

material collected in the field is placed in a microwave oven for 180 seconds to stop the enzymatic 

activity, preserving the tissue biochemistry in the closest state to that collected until further analysis 

in the laboratory. The samples were kept in paper bags and stored in airtight containers until 

analysis. The following criteria were considered: fully expanded and healthy leaves, distal branches 

of the individuals, and roots with a diameter of up to 0.7 cm. Non-Strutuctural Carbohydrates were 

quantified following the protocols of Dubois et al. (1956) and Santana-Vieira et al. (2016). 

For starch concentration, the insoluble fraction (Pellet) of ethanolic extraction was 

incubated for 60 min with ten units of amyloglucosidase (from Aspergillus niger ammonium 

sulfate suspension, Sigma – Aldrich®), then the soluble sugar resultant of the reaction was 

determined by the same protocol mentioned to SS.  Non-structural carbohydrates (NSCs) 

concentration was calculated by adding the SS and starch values, taking into account the mass of 

the tissue samples used. 

 

Leaf Construction Cost (LCC) 

Healthy and expanded leaves were collected from four individuals during each collection 

period. The ash content (g kg-1) was obtained from 200 mg of dry matter of leaves, dried in a muffle 

at 500 ◦C for 6 h. The ash content was determined from the difference between pre and post muffle 

weighing (Li et al., 2011). The calorific measurement (ΔHC, kJ g-1) was obtained by burning 200 

mg of dry leaf matter in a calorimetric bomb (IKA C-200) according to Villar and Merino (2001). 

The calorific value (ΔHC) was calculated using: ΔHC = calories/(1-ash). The leaf construction 

costs (LCC) per unit mass (mass LCC) (g glucose g-1 DM) was determined based on the ash 

content, nitrogen concentration and ΔHC, according to Williams et al. (1987). The formula used to 
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calculate the mass LCC: mass LCC = [(ΔHC 0.06968 - 0.065) (Ash - 1) + 7.5 (kN/14.0067)], where 

k is the oxidation state of nitrogen to nitrate (+5) and ammonium (-3) (Penning De Vries et al., 

1974). 

 

Data analysis  

To analyze our data, we fitted Generalized Linear Mixed Models (GLMMs) and used the 

Akaike Information Criterion (AIC) as a guide for selecting the most appropriate model. After 

evaluating the models, we identified that the gamma family with a log-link function was the most 

suitable. To verify how the stomatal conductance, water potential, the leaf construction cost and 

the chlorophyll parameters changed over the months, we fitted a unique model for each.  The 

months sampled were used as the fixed effects, and the individuals sampled (ID) as a random effect 

(response ~ months + (1| ID)). To comprehend the dynamic of NSC regarding partitioning among 

the organs (leaves, branches and roots) and the concentration over the months, we used the two 

categories: organs and months as fixed effects (response ~ organs*months + (1| ID)). All the data 

were analyzed on RStudio software (R 4.1.0). 

 

Results 

 

Environmental conditions 

 

Rainfall (mm), soil water balance (WB) 

 The soil water balance in the studied area was most of the time negative, or the precipitation 

that occurred only recovered the system water lost to the atmosphere. Few moments of water 

accumulation throughout the experimental period (Fig. 1). Regarding the precipitation data and 



30 
 

WB in the sampled years, we can observe that 2021 was drier compared to 2020 and 2022. There 

is precipitation recorded from March to September 2021 but no water surplus until mid-

2022.  When the study sampling began in Nov20, even though there was recorded rainfall for that 

month, it did not result in a positive water balance. Furthermore, the water balance had been 

negative in the preceding months. The year 2022 had atypical rainfall for the region. It records 

rainfall from November 2021 until the same month of 2022. A positive water balance is presented 

from May to November of that year.  

 

Xylem water potential (Ψx) e Stomatal conductance (gs) 

Regarding Ψx, plants did not show drastic fluctuations over months (Fig. 3). Interestingly, 

in Oct21, which is typically the driest month, plants did not exhibit a significant reduction in their 

water potential, with values remaining high (around -0.4 MPa), like those observed during rainy 

months. Regarding the gs responses, data were collected exclusively during months with leaf 

presence (Apr21, Aug21, Jan22, Apr22, and Nov22) and they were correlated with the Yx of the 

plants (Fig. 3a). We observed that although there were all rainy periods, plants exhibit differences 

in the gs responses (Fig. 3c). Specifically, when comparing the same month between the two 

different years (2021 and 2022). For instance, plants in Apr21 exhibited higher gs values than any 

other month including Apr22.  

 

Pigments and chlorophyll a fluorescence  

The content of photosynthetic pigments between leaves and stem was measured in Apr22, 

middle of rainy season, and demonstrated that all pigments are found in greater abundance in 

leaves, except carotenoids (Table 1).  
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The chlorophyll fluorescence parameters are shown in Table 2. Similar to gs, data for 

chlorophyll a fluorescence of leaves were collected only when they were present on the trees. 

However, in two months (Apr21 and Nov22), due to technical problems with the equipment, we 

were unable to perform the measurements. No difference is observed in any of the fluorescence 

parameters measured on leaves over the months. The operational efficiency of PSII (ΦPSII) and 

the maximum quantum efficiency (Fv/Fm) data indicate functional PSII operation for the stems. 

This parameter showed no significant differences throughout the year, and modeling revealed no 

differences in photosynthetic parameters between stems and leaves.  

 

NSC concentration  

The dynamics of SS and starch among different plant organs over the months are presented 

in Figure 4. In general, plants showed a consistent pattern of partitioning among organs over the 

months. In most of the months the plant had the same concentration of SS in leaves, twigs and 

roots. We observed a difference in this pattern only in AG21 where SS twigs concentrations were 

lower than leaves and roots (- 0.75 and - 0.71 times, respectively). That means that compared to 

the other months, in August plants increase the SS concentration in roots rather than branches. 

Regarding the variation throughout the months, no difference can be found for SS leaves 

concentration. Plants exhibit different concentrations at the organs throughout months only for 

twigs and roots considering those months in which there were leaves in the trees. That is, in AG21 

when plants start to shed their leaves, we observed that the SS concentrations increase in roots and 

twigs become less concentrated. When leaves are absent on the trees (N20, OC21, and DE21), 

plants exhibit higher root SS concentration in N20 (Fig. 4a). For twigs, the SS concentration in 

N20 was higher only compared to those collected in DE21 (0.72 times). Consequently, N20 shows 

an overall higher SS concentration, even though there is no difference in the partitioning pattern 
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between these two organs over the months. In fact, twigs and roots consistently maintain similar 

concentrations regardless of the month. However, the concentration of SS in both organs decreased 

more than 50% compared to the months when there were leaves on the plants (Fig. 4a). 

Regarding starch concentration, in terms of partitioning among the three organs, we only 

noticed a change in the pattern from one year to the other (Fig.4b). While in the months from 2021, 

the starch concentration in the three organs were the same, for the second year there was a reduction 

in twigs concentration compared to leaves. However, twigs were the only organ that did not show 

any change in its concentration across months when leaves were present. In general, roots have the 

same partitioning pattern then twigs and leaves. Despite the starch concentration among twigs and 

roots being the same regardless of the month, it can be observed that in AG21 there is a reduction 

of about 53% in the root starch concentration meanwhile an increase of about 36% in root SS 

concentration.  

 

Leaf Construction Cost (LCC) 

The leaf construction cost showed only small fluctuations during the study period (Fig. 1 

Supp.). The range of values occurred within found for other deciduous woody species in the 

Caatinga. 

 

Discussion 

 

Our results suggest that: 1) the low wood density allows the species to maintain a high water 

status during both seasons in the DTF; 2) gs has a quick response to changes in Yx; 3) there is 

photochemical activity in the green tissue of the stem in the rainy and dry seasons, without sudden 

changes; 4) when the leaves are dropped, the concentration of soluble sugars in the roots increases, 
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on the other hand, the concentration of starch is reduced by half. Furthermore, in the leafless months 

the concentration of soluble sugars is reduced by around 50% in the twigs and roots. The main 

aspect occurring is adjustments in the partition between organs in strategic moments. Before 

entering the dry season, specifically in August, trees accumulate SS in roots, which appear as 

priority organs in partitioning and storing of SS, over branches. This appears to be a strategy to 

prepare for the upcoming dry months as this species begins to lose its leaves in August, 

remobilizing soluble sugars from this organ in abscission. 

Water is a transient resource in semiarid regions, which means that trees in this site must 

optimize their strategy to uptake resources while being available (Wright et al. 2021). The leaf fall 

during drought periods creates a trade-off between preserving water and carbon uptake in general 

deciduous species (Palacio et al. 2018). In the present study, C. leptophloeos, in addition to being 

deciduous, has a low wood density, with a high capacity to store water (Lima et al. 2012). However, 

these species tend to have larger diameter xylem vessels and their susceptibility to embolism is 

greater (Borchert 1994a,b). This fact may explain the high sensitivity of stomatal conductance to 

variations in xylem water potential in C. leptophloeos. 

Storing NSC is an efficient strategy as a crucial source for not impacting vital functions 

dependent on carbon during drought (Sala et al. 2012, Chuste et al. 2020, Blumstein et al. 2020). 

In addition, NSC are known for their key role in hydraulic maintenance, due to their 

osmoregulation properties, helping to prevent critical problems with embolism and xylem vessel 

refills (Secchi and Zwieniecki 2011; Sala et al. 2012). There is a prevailing hypothesis that 

deciduous species might be more susceptible to carbon (C) starvation mortality due to reduced C 

fixation during leaf fall. Consequently, effective NSC storage and a well-regulated dynamic seem 

even more crucial in those species (Santos et al., 2021). Some deciduous species, the stem plays a 

substantial role in maintaining carbon balance during drought through Corticular Photosynthesis, 
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thereby enhancing the species tolerance to arid environments and providing a carbohydrate source 

for plant survival (De Roo et al., 2019). C. leptophloeos showed strong stability for NSC 

concentration in twigs and roots through the study period, which could be supported by the 

maintenance of elevate water status and the efficient distribution of NSC between twigs and roots. 

However, these organs showed a reduction by half in the concentration of soluble sugars in those 

months when the trees are leafless. 

This study represents the first investigation into the dynamics of NSC over the months and 

years for a deciduous tree species with green stem in the Caatinga dry forest. This kind of approach 

in mature trees is still rare, despite its importance in understanding how trees respond to 

increasingly extreme environments (Hartmann et al., 2018). C. leptophloeos is the first woody 

species in the Caatinga region known to have this green stem strategy (Araújo, Castro, Albuquerque 

2007), and our study support their stem photochemical activity and discuss its potential 

contribution to the dynamics of NSC.  

Since the most significant parameters of stem fluorescence did not differ over months, it 

indicates that corticular tissue is photochemical active not only in the dry season, but all over the 

year. Although with a lower concentration of photosynthetic pigments than leaves. It may explain 

the consistency of NSC in the plants. The Fv/Fm and ΦPSII are the most predictive fluorescence 

parameters of the functionality of photosynthetic apparatus (Johnstone et al. 2012). The first one 

reveals the maximum quantum yield of photosystem II (ΦPSII) that could be achieved, and the 

second shows how much the proportion of light absorbed is being used in the photochemistry 

process (Maxwell and Johnson 2000, Kalaji et al. 2014). Therefore, the photochemical capacities 

are consistent between the leaves and stems of C. leptophloeos, contrasting with data for other 

species in temperate climates that have less activity in the stem (Johnstone et al., 2014). In effect, 

leaves face more restrictions regarding the photo-assimilate process than stems, due to limitations 



35 
 

in carbon uptake by stomata (Melo et al. 2021, Santos et al. 2022), which respond to hydraulic 

signals (Chen et al. 2020). This adds another dimension to the contributions of corticular 

photosynthesis, the stems may offset the carbon uptake losses by the leaf when stomatal 

conductance is a restriction factor. Since the process involves recycling internal CO2, and is not 

directly dependent on leaf gas exchange (Chen et al. 2018). 

C. leptophloeos has a very low wood density, which means it is vulnerable to wide 

variations in Ψx and susceptible to cavitation (Borchert 1994; Lima et al. 2012). Among dozens of 

deciduous woody species from the Brazilian TDF, C. leptophloeos, showed the lowest wood 

density and greatest capacity to store water (Lima et al. 2012), which may explain the upkeep of 

high potential water even under drought. Moreover, the consistency of an NSC pool in organs over 

the dry months plays a crucial role in improving hydraulic resistance, helping the plant detect and 

reverse embolisms (Epron et al. 2012, De Roo et al. 2019, Santos et al. 2021). Tropical species 

demonstrate this relationship; plants with higher NSC concentrations tend to maintain higher water 

potentials during the dry season (Blumstein et al. 2020). The local input of carbohydrates by 

corticular photosynthesis may help this, being used by plants for the maintenance of hydraulic 

integrity (Chen et al., 2018, De Roo et al., 2019). The stable concentration of SS and Starch 

throughout months of the dry season serves as strong evidence for the beneficial role of non-foliar 

photosynthesis in deciduous trees (Ávila-Lovera et al. 2017). That means that this species did not 

experience the drastic fluctuations in NSC pools that were expected based on the literature for 

deciduous trees under drought (Palacio et al., 2018). 

Droughts are becoming more intense and longer in many regions of the world (Piper 2011, 

Hartmann et al. 2018, IPCC 2022). Based on the information presented here, one might conclude 

that the strategy of corticular photosynthesis is a crucial trait for resilience, potentially enhancing 

the survival of this species compared to other community members in the face of changing climate 
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scenarios. Indeed, C. leptophloeos could exhibit greater resistance compared to deciduous 

counterparts that lack this specific strategy (De Roo et al. 2019). Nevertheless, it is essential to 

consider other important ecophysiological traits of this species, particularly those related to 

phenology triggers, which could become problematic with changing rainfall regimes. The need for 

this species to maintain a high water status may be a weakness under future semi-arid climate 

conditions. High hydration maintains high metabolism, which could explain the 50% drop in 

soluble sugars in stems and roots when there were no leaves, without an increase in starch 

concentration. 

It has been shown that the phenology phases of C. leptophloeos are dictated by photoperiod 

rather than soil water availability, in contrast to species with high wood density (Lima et al., 2021). 

Maintaining a high water supply in tissues can favor this behavior regardless of soil water 

availability. When considering the future climate scenario in the semi-arid region, with longer 

droughts and more irregular rainy seasons, this species may be more harmed than those that respond 

to the soil's water potential. By reducing the NSC concentration by half during the leafless period 

and regrowing its new leaves during the dry season (Lima et al. 2021), this species would use a 

large part of the immediate NSC reserve. If the next rainy season takes longer to arrive, NSC 

consumption will be kept high and production low. Further investigations in this respect would be 

very welcome to our understanding of the ability of species to survive in a plot of changing climate.  

Maintaining a high water supply in tissues can favor this behavior regardless of soil water 

availability. When considering the future climate scenario in the semi-arid region, with longer 

droughts and more irregular rainy seasons, this species may be more harmed than those that respond 

to the soil's water potential. Decreasing NSC concentration by half during the leafless period and 

regrowing its new leaves during the dry season (Lima et al. 2021), this species would use a large 

part of the immediate NSC reserve. Whether the next rainy season takes longer to arrive, NSC 
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consumption would be kept high and production low. Therefore, a scenario like this could harm 

the complete annual cycle of this species, such as the entry into flowering and fruit production.

 In summary, the present work showed that the first hypothesis was partially confirmed, the 

fluctuation in NSC concentration was accentuated, only when the plants were without leaves, at 

least in relation to the soluble sugar content; however, it confirms the second hypothesis, where 

xylem water potential was kept high throughout the study period, which favors the consumption of 

NSC stored in the twigs and roots, when the leaves are not present. This would support the regrowth 

of new leaves at the end of the dry season. 
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Figures Legends 

 

Figure 1. Soil Water Balance and Rainfall across months from one year prior to the beginning of 

the study (2019) and during the study (2021 and 2022). Region of the Catimbau National Park, 

City of Buíque, northeastern Brazil. 

 

Figure 2. Fluorescence measurement on green stem and leaves of Commiphora leptophloeos. A- 

Own-manufactured structure to dark adaptation. B- Tweezer adaptation for leaves. C- Dark adapt 

structure placed on stem and demonstration of measurements (in the right up corner picture). D- 

Green stem of Commiphora leptophloeos totally exposure during drought season. 

   

Figure 3.  Relationship between Xylem water potential (Ψx) and Stomatal conductance (gs) from 

Commiphora leptophloeos and the responses of these parameters of the over the months  

 

Figure 4. The NSC (Soluble sugars – SS, and starch) dynamics trough months among leaves (L), 

twigs (T) and roots (R) of Commiphora leptophloeos in Caatinga dry forest. 
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Table 1. Chlorophyll and carotenoids content at leaves and main stem with green tissue (corticular) 

(g kg-1DM). Mean values (n = 4±SE). Values compared between organs in the columns. 

*difference to 5%; *** to 1%. 

  

Tissue Chlorophyll a Chlorophyll b Total chlorophyll Carotenoids 

     

Leaves 0.755±0.023*** 

 

0.247±0.011* 

 

1.002±0.033*** 

 

0.266±0.008ns 

 

Stem 0.371±0.047 

 

0.174±0.018 

 

0.545±0.065 

 

0.325±0.023 
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Table 2. Chlorophyll fluorescence. Fv/Fm – Maximum quantum efficiency of the PSII 

(Photosystem II); ϕPSII – PSII Operational Efficiency, ETR – Electron Transport Rate. Mean 

values (n = 4±SE). There are no significant differences for any parameter, either throughout the 

months or among the organs.   

 

Parameters/Month Aug21 Oct21 Dec21 Jan22 Apr22 

LEAVES 

Fv/Fm 0.75±0.0ns - - 0.76±0.0  0.72±0.0  

ϕPSII 0.46±0.1ns  - - 0.33±0.0  0.32±0.1  

ETR 300±43ns  - - 233±37  242±30  

STEM 

Fv/Fm 0.76±0.0 ns 0.59±0.1  0.68±0.0  0.66±0.1  0.76±0.0  

ϕPSII 0.36±0.1ns  0.30±0.0  0.40±0.0  0.37±0.1  0.49±0.1  

ETR 238±47ns  210±24  261±51  263±58  369±58  
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4 ARTIGO 2 - XYLEM WATER POTENTIAL DOES NOT EXPLAIN THE DYNAMICS 

OF NON-STRUCTURAL CARBOHYDRATES IN WOODY SPECIES UNDER THE 

SEASONALITY OF A TROPICAL DRY FOREST 

 

Manuscrito a ser submetido ao periódico Journal of Arid Environments  
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Abstract 

 

Facing the climate changes, it becomes imperative to comprehend how seasonality regulates the 

dynamics of non-structural carbohydrates (NSC) storage in wood species because they are critical 

for plant survival strategy under drought conditions. We approach this issue by studying three 

representative deciduous woody species from the Caatinga dry forest: Peltogyne pauciflora, 

Pityrocarpa moniliformis and Cenostigma microphyllum. We tested if the NSC pool will vary 

according to the season, being higher in wet periods and lowering in dry ones independent of the 

species. During eight months we collected leaves, twigs, and roots to quantify NSC concentrations, 

along with measurements of stomatal conductance (gs), chlorophyll fluorescence, and water 

potential (Ψx). The results show that regarding gs, P. pauciflora was the only species that did not 

show differences in stomatal behavior throughout the months. Additionally, this species was the 

only one in which chlorophyll fluorescence parameters did not show significant differences 

between consecutive months. Concerning Ψx, we observed fluctuations throughout months for all 

three species, where the lowest Ψx values was found for the typical dry periods compared to the 

others. Regarding the overall NSC concentration among the three species, P. pauciflora had the 

highest concentration surpassing its counterparts. C. microphyllum and P. moniliformis did not 

exhibit differences in their NSC concentration. Furthermore, we found no significant differences 

in the dynamics of total NSC throughout the months for any of the species. This suggests that there 

was no drastic reduction in the NSC pool from rainy to dry months, nor a significant increase from 

dry to wet months. 

 

Keywords: Drought tolerance, Nonstructural carbohydrates, Seasonality, Tropical dry Forest  
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Introduction 

 

Carbohydrates are a vital currency in plant metabolism, encompassing a family of 

macromolecules primarily composed of soluble sugars and starch. These macromolecules are 

collectively referred to as Non-Structural carbohydrates (NSCs) and play a fundamental role in 

both primary and secondary plant metabolism (Hartmann and Trumbore 2016). Plants can 

accumulate these molecules daily or even decades and can use this store to support the vital process 

in unfavorable conditions when photosynthesis is impacted (Blumstein et al. 2020). The 

accumulation of NSCs strategy, therefore, emerges as a key factor in enhancing species' drought 

tolerance, particularly for perennial life forms like trees (Epron et al. 2012). Research has indicated 

that, especially for deciduous species, the NSCs can be critical during seasonal droughts (Palacio 

et al. 2018). Because these species employ the adaptive strategy of shedding leaves, they must 

inevitably mobilize stored carbohydrates for basic maintenance throughout the entire dry period. 

Consequently, a massive depletion of these reserves during this period could lead to the death of 

these plants (Martínez-Vilalta et al. 2016). 

The serious implications of drought extend beyond limitations in photosynthesis and also 

encompass hydraulic consequences in plants, such as vessel embolism, which can result in 

transport system failures and lead to individual mortality (Savi et al. 2019). Within this context, 

NSCs can also play a decisive role in osmotic regulation, aiming to prevent drastic hydraulic 

failures during water stress (Sala et al. 2012). This raises a point of great interest to eco-

physiologists in the face of climate change which is unraveling the mechanism driving tree 

mortality under dry conditions: whether it is determined by carbon depletion or hydraulic failure. 

This understanding remains unclear (Piper 2011), and recent data suggest that the two causes may 

be interconnected (Savi et al. 2019). Such interconnections underscore the complexity of tree 
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responses to changing environmental conditions. Given the preceding discussion, one might 

question whether, for example, among deciduous species, those that delay leaf shedding, thus 

maintaining photosynthesis for an extended period before losing leaves entirely, could exhibit a 

trend of stability of NSC compared to the counterparts deciduous, under water limited availability, 

such as under drought season in a dry tropical forest (DTF). 

Therefore, the dynamic of carbohydrate storage is important for DTF woody species, 

particularly in regions like the Caatinga, which face limited water availability, rendering them 

highly vulnerable. Decrease soil water availability, reduce xylem water potential and, in general 

lead to reduced stomatal conductance in these woody species under this environmental (Souza et 

al. 2010; Santos et al. 2021), avoiding excessive transpiration. Thus, when the stomata close, gas 

exchanges are limited (Chaves et al. 2002; Ferreira-Neto et al. 2022), with consequent negative 

feedback in photochemical efficiency (Baker and Rosenqvist 2004). 

Given the current climate change scenarios, including rising temperatures and extended 

drought events (Marengo and Bernasconi 2015), it becomes imperative to comprehend how 

seasonality regulates the dynamics of carbohydrate storage in wood species from these ecosystems. 

Thus, we bring this approach about how seasonality impacts NSC dynamics in three different wood 

deciduous species from Caatinga dry forest: Peltogyne pauciflora, Pityrocarpa monilifmoris and 

Cenostigma microphyllum. Considering the pivotal role of NSCs in plant survival during drought, 

we formulate the following hypotheses for our study: 1) The NSc pool will vary according to the 

season, being higher in wet periods and lowering in dry ones independent of the species, and 2) 

among the three deciduous species under investigation, Peltogyne pauciflora employing a late 

deciduous strategy may display greater stability in NSC levels during drought compared to their 

counterparts. This knowledge serves as a proxy for assessing the susceptibility or resilience of tree 
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species and could be used to improve model predictions regarding plant survival in the face of the 

climate changing challenges.  

 

Material and methods 

 

Study site and focal species  

We conducted the study in an area for conservation of Caatinga, which is a domain of 

Seasonally Dry Tropical Forest in Brazil. The site is located on Catimbau National Park, city of 

Buíque, state of Pernambuco, Northeast of the country (8°24′00″ and 8°36′35″ S; 37°0′30″ and 

37°1′40″ W). The park comprises a vast territorial extension of 607 km2. The region's climate is 

semiarid, characterized by temperature averages around 23º C and annual rainfall ranging from 

480mm to 1000mm (Pereira et al. 2020; Vanderlei et al. 2021).  Our focal species for this study are 

tree species that belong to Fabaceae, the most abundant family of woody species in that area 

(Pereira et al. 2020): Peltogyne pauciflora (Benth.), Cenostigma mycrophyllum (Mart. Ex G. Don) 

E. Gagnon & G.P. Lewis and Pityrocarpa moniliformis (Benth.) Luckow & R. W. Jobson. The 

three species have high wood density, that is, above 0.5 g cm-3 (P. pauciflora 0.8±0.04; C. 

microphyllum 0.6±0.03 and P. moniliformis 0.6±0.05 g cm-3 (Trugilho et al. 1990; Lima et al. 

2021). 

 

Field conditions and sample design 

Field assessments and plant material collections were carried out over a 17-month space-

time window to cover a spectrum of varied environmental conditions experienced by trees at the 

study site over time. Eight sampling collections were performed in this study time range, starting 

in 2020, in November (Nov20), and repeating throughout 2021 in the months of April (Apr21), 
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August (Aug21), October (Oct21), and December (Dec21) and finally, in 2022 in January (Jan22), 

April (Apr22) and November (Nov22). These months, according to the seasonal characteristics of 

the region, include dry seasons, rain, and the transition periods between them.  

 

Rainfall (mm) and soil water balance (WB) and Soil moisture (SM) 

Meteorological data records for the region were extracted from the databases of the 

Agronomic Institute of Pernambuco – IPA and the National Institute of Meteorology - INMET. 

We used the average monthly precipitation and temperature to calculate the soil water balance, 

drawing data from the year preceding the start of our study (November 2019) up to the study's final 

year (November 2022). This approach provided us with a more comprehensive overview of the 

water conditions that the plants might have encountered before data collection began, not only 

during the study evaluation period (Fig. 1).  

Soil moisture measurements were conducted throughout the months using the gravimetric 

method. Soil samples (n=2) from the vicinity of each individual will be collected at depths ranging 

from 60 to 100 cm (Costa et al. 2014). The fresh weight (FW) and dry weight (DW), after 24 hours 

of drying in an oven at 105 °C, were determined for these samples. Gravimetric moisture content 

(%) was calculated as the ratio of water mass to dry soil mass (Viana et al., 2017).  

 

Xylem water potential (Ψx) and stomatal conductance (gs) 

At 4:00 AM, branches from four individuals were collected to determine the pre-dawn water 

potential of the xylem using a Scholander pressure chamber (Model 3035, Soil Moisture Equipment 

Corp., Santa Barbara, CA, USA). Stomatal conductance was assessed in five individuals of each 

species during seasonal periods when leaves were present (Apr21, Aug21, Jan22, and Apr22). 
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Measurements were taken at 9:00 AM using a leaf porometer (SC – 1 Leaf Porometer, METER 

Group). 

 

Chlorophyll fluorescence  

The functionality of the photosynthetic apparatus (PSII) in leaves (n = 4) was assessed 

through chlorophyll fluorescence analysis, using a portable fluorometer (FP 100, Photon Systems 

Instruments, Brno, Czech Republic). Following the OJIP measurement protocol of the equipment 

and the calculations outlined by (Baker 2008), key parameters such as the maximum quantum 

efficiency of PSII (Fv/Fm), operational efficiency of PSII (ΦPSII) and electron transport rate (ETR) 

were determined. For the measurement of minimum chlorophyll fluorescence (Fo) and maximum 

fluorescence (Fm) values, leaves underwent a dark adaptation for a minimum of 30 minutes.  

 

NSC concentration  

To determine the SS (soluble sugar) content, leaf samples (when present), stems, and roots 

of five individuals were collected according to the methodology of (Quentin et al. 2015), where the 

material collected in the field is placed in a microwave oven for 30 seconds to cease the enzymatic 

activity, preserving the tissue biochemistry in the closest state to that collected until further analysis 

in the laboratory. The samples were kept in paper bags and stored in airtight containers until 

analysis. The following criteria were considered: fully expanded and healthy leaves, distal branches 

of the individuals, and roots with a diameter of up to 0.7 cm. The Soluble sugar (SS) components 

of Non-Strutuctural Carbohydrates components were analyzed following the steps:  to extract the 

SS from the dry material, the samples were ground using a mortar and pestle and suspended in 

1,200 μl of 80% ethanol (Farrar, 1995). Subsequently the samples were vortexed, ant the 

suspension was incubated for 90 minutes in a water bath at 70°C., the material was centrifuged at 
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12,500 g, and the supernatant was collected. This process was repeated using 600 μl of 80% ethanol 

for an additional 30 minutes. Soluble sugars were analyzed by the phenol-sulfuric acid method, 

adding 0.5ml 5% phenol and 2.5 ml of sulfuric acid to the extract aliquot, SS were measured at 487 

nm using a dual-beam spectrophotometer (Geneses 10S UV–Vis, Thermo Scientific), according to 

the methodology described by (Dubois et al. 1956). 

For the starch component quantification, the insoluble fraction (Pellet) of ethanolic 

extraction was resuspended in 800uL of 0.2 M KOH solution, vortexed and carried to a water bath 

at 95°C for 120 minutes. After that, to adjust the pH of the samples to 5.5 we added 200uL of acetic 

acid and samples were centrifuged at 12,500 G. Subsequently, the resultant supernatant was 

collected and was hydrolyzed with 10 units of amyloglucosidase (A1602, Sigma-Aldrich) for 60 

minutes in a thermal bath at 55°C to digest the gelatinized starch to glucose. SS and starch 

concentrations (measured as glucose equivalents) were measured at 487 nm using a dual-beam 

spectrophotometer (Dubois et al. 1956). To obtain the total NSC value, the measurements of SS 

and starch in the leaves of each species were summed. 

Prior to the analyses, a mass test was carried out for each species to determine the dry weight 

(mg) to be used in the extraction. The test consisted of measuring the SS of 10mg, 20mg and 40mg 

of dry material of three aleatory individuals per species and verifying whether the SS concentration 

value increased proportionally to the mass. This allowed us to analyze the saturation level of the 

extracts. Thus, the masses were determined and for the three species we used 20mg.  

 

Data analysis  

To analyze our data, we fitted Generalized Linear Mixed Models (GLMMs) and used the 

Akaike Information Criterion (AIC) as a guide for selecting the most appropriate model. After 

evaluating the models, we identified that the gamma family with a log-link function was the most 
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suitable. To verify how the stomatal conductance, water potential and the chlorophyll parameters 

changed over the months, we fitted a unique model for each.  The months sampled were used as 

the fixed effects, and the individuals sampled (ID) as a random effect (response ~ months + (1| 

ID)). To comprehend the dynamic of NSC regarding partitioning among the organs (leaves, 

branches and roots) and the concentration over the months, we used the two categories: organs and 

months as fixed effects (response ~ organs*months + (1| ID)). All the data were analyzed on 

RStudio software (R 4.1.0). 

 

Regression analysis 

To evaluate how tree responses were related to the environmental conditions we performed 

regression analyses between some plant parameters such as NSC, Water Potential in function of 

Water Balance parameters and Soil Moisture. We also performed Person’s correlation analysis to 

evaluate the relationship between Precipitation, Soil water balance parameters and Soil moisture.  

 

Results  

 

Environmental conditions 

 

Rainfall (mm), Soil water balance (WB) and Soil moisture (SM) 

The meteorological data accessed since 2019 (Fig. 1), the year before the study began, until 

the last month sampled, provided us with a better overview of the conditions that trees had been 

experiencing. Figure 1 illustrates the pattern of water excess and shortage in the soil over the 

months. It's evident that even when a rainfall rate is recorded, it doesn't necessarily imply a positive 

water balance in the soil. 
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Regarding the precipitation data and WB in the sampled years, we can observe that 2021 

was drier compared to 2020 and 2022. There is precipitation recorded from March to September 

2021 but no water surplus until mid-2022. When the study sampling began in Nov20, even though 

there was recorded rainfall for that month, it did not result in a positive water balance. Furthermore, 

the water balance had been negative in the preceding months. The year 2022 was a year with 

atypical rainfall for the region. It records rainfall from November 2021 to November 2022. A 

positive water balance is presented from May to November of this year. Concerning Soil moisture, 

the most interesting difference is found comparing Oct21 to Ap21 and Nov20 (- 1.5 lower than 

both). Oct21 used to be a typical dry month in the area, and Ap21 the wet one. Nov20 was supposed 

to be dry too, but it was a little rainier than Oct21. 

 

Xylem water potential (Ψx) e Stomatal conductance (gs) 

The trend for all the three species was for the water potential fluctuations throughout the 

months. The trees had especially lowest Ψx in the typical dry periods (Oc21) compared to the other 

months (Fig. 2). For Peltogyne pauciflora, plants reduced their Ψwx from Apr21 to Oct21 (- 0.97 

MPa), but in Dec21 plants increased the Ψx in about 2.2 times higher than Oct21. In Jan22 and 

Apr21 there was further reduction about 0.9 and 1.2 times, respectively. For this species, the 

highest values Ψx was found in Dec21 compared to any other month (Fig. 2a). For C. microphyllum 

the trends reduction was almost the same from Apr21 through Dec21, except that the magnitude of 

the reduction in Oc21 compared to Apr21 was higher for this species, about 2.3 times (Fig.2c). The 

values remained stable through Jan22 and Apr22, reducing again only from Apr21 to Nov22 (0.9 

times). For this species, the Ψx of Oc21 was the lowest compared to any other month (-3.75 MPa). 

In the case of Pityrocarpa moniliformis, trees exhibited a different pattern in the relationship 

between Ψx values for Oct21 and Dec21 compared to the other species (Fig.2b). In this species, the 
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plants in Dec21 had significantly lower Ψx values, approximately 1.5 times less, than in Oct21. 

From Dec21 to Jan22 plants increased their water potential 1.0 times, reducing once further in 

Apr22 (1.3 times) and in Nov22 (1.0 times).  

Concerning stomatal conductance (gs), among the three species, P. pauciflora was the only 

species that did not show differences in stomatal behavior throughout the months and neither 

between the same months through the two years of sampling (Fig.2d). The gs was consistent in the 

trees with an average of 0.3 mol m-2s-1. However, for P. moniliformis and Cenostigma. 

microphyllum, there were variations in gs over the months. For P. moniliformis (Fig.2e) it was 

observed a reduction in gs from Apr21 to Aug21(-0.6 times), from Aug21 to Oct21 (-0.8 times), 

followed by an increase in Jan22 (-0.5 times). C. mycrophyllum (Fig.2f) also exhibited a decrease 

in gs from Apr21 to Aug21 (- 0.9 times), followed by an increase in Jan22 (1.1 times), and another 

decrease in Apr22 (0.5 times).  Furthermore, when comparing the same month (April) in two 

consecutive years (2021 and 2022), there were differences in stomatal behavior observed for P. 

moniliformis and C. microphyllum. In April 2021, these trees showed higher gs compared to April 

2022 (0.7 times higher for both). Among the three species, only C. microphyllum showed gs 

responses positively correlated with the Ψx (Fig.3). 

 

Chlorophyll fluorescence  

In a chronological sequence of the sampling, out of the three parameters we use to evaluate 

the functionality of the Photosystem, such as Fv/Fm, ΦPSII and ETR, P. pauciflora was the only 

specie in which none of the parameters differed in the consecutive months (Table 1). We observed 

differences when we looked through similar periods in different years, such as Nov20 to Oct21 and 

to Nov22. Fv/Fm was higher in Nov22 than Nov20 (0.4 times), the ΦPSII had more yield in Oct21 

than in Nov20 (0.7 times) and the ETR was also higher in Oct21 (0.8 times) and in Nov22 compared 
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to Nov20 (0.7 times). For P. moniliformis and C. microphyllum, the Fv/Fm was the only parameter 

to show difference in a chronological scale, from Apr22 to Nov22 (0.5 and 0.6 times, respectively). 

For the other parameters, such as ΦPSII and ETR, P. moniliformis had the lowest yield in Oct21 

(ΦPSII = 0. 216 and ETR= 150) compared to most of the other months. Concerning C. 

microphyllum the ΦPSII and ETR do not show differences throughout months.  

When we compare the same months in the two different years Nov20 and Nov22, at least 

one parameter has a different response among months in each species (Table 1). Particularly for P. 

moniliformis and P. pauciflora the Fv/Fm and ΦPSII parameters showed lower yield comparing 

Nov20 to Nov22. The Fv/Fm and ΦPSII of P. moniliformis was 0.5 and 0.2 times lower, respectively 

and for P. pauciflora was - 0.4 for the Fv/Fm and 0.7 for the ETR parameter. For C. microphyllum 

only the Fv/Fm showed differences among Nov20 and Nov22, where the first one was 0.6 less than 

the second.  

 

NSC concentration 

 

Soluble Sugar (SS) 

Concerning Soluble Sugars (Fig. 1 Supp.), Peltogyne pauciflora exhibited a remarkably 

consistent concentration across consecutive months. Although, the partitioning aspect 

demonstrated variations between roots and leaves (Fig. 1a Supp.). From Nov20, the first month of 

sampling, to Aug21, the trend was for leaves to exhibit average concentrations of 1.1mg/g DW ± 

0.2 bigger than roots.  However, by Oct21, a shift in the partitioning occurred between roots and 

leaves leading both to have equal concentrations (~214mg/g DW on average). This pattern 

remained the same through the following months. For the partitioning between leaves/twigs and 

twigs/roots the pattern was always the same throughout the months, where leaves were higher than 
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twigs (0.9 mg/g DW ± 0.2) and twigs equal to roots.  In Dec21, when leaves were absent, roots 

exhibited higher concentration than twigs (0.8mg/g DW ± 0.2). 

Concerning Cenostigma microphyllum and Pityrocarpa moniliformis the partitioning 

pattern is equally consistent through the months between leaves and roots as it is between roots and 

twigs over months although the trends differ. For C. microphyllum, the overall trend is for the 

leaves to have concentration equal to roots, with roots being 1.0mg ± 0.1 higher in SS than twigs, 

on average (Fig. 1c Supp.). Only in Nov20 and Apr22 leaves had less concentration than roots (-

0.65 mg/g DW ± 0.2 and -0.95 mg/g DW ± 0.2, respectively). For P. moniliformis, it's the opposite, 

where leaves are often higher than roots (1.3mg/gDW ± 0.2) and roots and twigs have the same 

concentration (Fig. 1b Supp.). The only difference in this partition pattern was found on Aug21, 

where the concentration between roots and leaves were equal. In Dec21 when leaves were absent 

the two species kept the pattern shown in the other months for roots and twigs.  Looking at the 

responses among the three species, P. pauciflora was the only that changed the pattern in roots and 

twigs when leaves were absent.  

 Regarding the dynamic of concentration in the organ through the months, leaves did not 

differ for P. moniliformis, while the concentrations in twigs and roots did. Twigs concentration 

remains stable for most of the months, reducing only in the April months of the two years (2021 

and 2022) compared to those who precedes them. For roots, there is an increase from Ap21 to Ag21 

(1.3mg/g DW ±0.2), and a decrease from Ag21 to Oct21 (- 0.79 mg/g DW ±0.2). The concentration 

remains stable through Jan22, then decreases again in Apr22 (-1.0 mg/g DW ±0.2), thereafter no 

further changes are observed. For C. microphyllum, the concentration remains consistent across 

consecutive months, except for a decrease observed only in Nov22 for roots (-0.8 mg/g DW ±0.1). 

The most significant fluctuation for both species is regarding the SS partitioning among 

leaves and twigs, specifically for C. microphyllum. This species switched between being more 
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concentrated on leaves than twigs or equal in some months. In Aug21 and Oct21, C. microphyllum 

trees switched to have higher concentration on leaves than twigs (0.7 mg/gDW ±0.1 and 1.2 

mg/gDW ±0.1, respectively), differing to the previous months. Then this changed in Jan22, where 

leaves and twigs became equal again, followed by another increase in leaves on Apr22 (0.8mg/g 

DW). For P. moniliformis, plants initially had equal concentrations in leaves and twigs, then they 

increased the concentration in leaves on Apr21 (0.8mg/g DW ±0.2), equalized again with twigs 

from Aug21 throughout Jan22, and become higher in leaves once more in Apr22 (1.8 mg/g DW 

±0.2) and Nov22 (1.4mg/g DW ±0.2). 

 

Starch  

Among the three species, the starch partitioning dynamics over the months were most stable 

for the C. microphyllum species, followed by P. moniliformis (Fig. 1 Supp.). For C. microphyllum, 

a change in the overall pattern was only identified in Apr22, which was related to the leaf-to-twigs 

interaction, where leaves exhibited higher concentrations (0.4 mg/gDW ±0.1) (Fig. 1f Supp.). For 

all other months, the partitioning pattern remained consistent across the three organs. For P. 

moniliformis, the partitioning pattern differed only in Oct21 and Apr22 compared to the other 

months, concerning the root interaction with the other organs (Fig.1e Supp.). In Oct21 and Apr22, 

the roots showed lower concentrations compared to leaves (- 0.7 mg/g DW ±0.1 for both) and 

related to twigs/roots, twigs were higher 0.9 mg/g DW ±0.1 in Oct21 and 0.7 mg/g DW ±0.1 in 

Apr22.  For all other months, the partitioning was equal among the three organs.  

Regarding P. pauciflora, while the partitioning of soluble sugars (SS) remained relatively 

stable throughout all months, starch exhibited greater fluctuations in partition dynamics among the 

three species (Fig.1d Supp.). Particularly in the partition pattern among twigs and their 

counterparts. Twigs varied between having higher concentrations than both and being equal, but 
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never lower. Regarding the interaction of twigs/leaves they were equal only in Nov20 and Jan22. 

Related to the partition among twigs and roots, they are higher in Apr21 and De21. Overall, the 

partitions among leaves/roots were consistent, differing only in Nov22, with roots having higher 

concentrations (0.6 mg/g DW ± 0.1). 

In a chronological sequence, C. microphyllum was the only species that showed no variation 

in starch concentration across the months for any of the organs. That is, the concentrations in leaves, 

twigs, and roots remained consistent throughout the collections. For P. pauciflora, the starch 

concentration in leaves changed only from Oct21 to Jan22 (0.4 mg/g DW ±0.1). For twigs and 

roots, there was a decrease from Aug21 to Oct21 (-0.3mg/g DW ±0.0, and -0.4mg/g DW 

±0.0 respectively), but there was an increase again from Oct21 to Jan22 (0.4 mg/g DW ±0.1 for 

both). In the case of P. moniliformis, there was a difference in leaves, with an increase from Apr21 

to Aug21 (0.1 mg/g DW ±0.0), and again from Oct21 to Jan22 (0.5mg/g DW ±0.1). For roots, there 

was an increase from Apr21 to Aug21 (0.6 mg/gDW ±0.1), and another from Oct21 to Jan22 (1.0 

mg/gDW ±0.1).  Twigs concentrations did not differ across months. 

 

NSC Pool 

Concerning the overall total concentration of NSC among the three species, Peltogyne 

pauciflora had the highest NSC concentration than its counterparts. While C. microphyllum and P. 

moniliformis did not differ in their NSC. Considering the concentration in each organ among the 

species, the NSC in leaves was higher for P. pauciflora compared to both species. In case of NSC 

twigs P. pauciflora and P. moniliformis also have higher NSC concentration than C. microphyllum 

but P. pauciflora and P. moniliformis did not show a difference in this organ. C. microphyllum had 

a higher concentration in roots than both. 
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In terms of concentration within each species' organs (Fig. 4), P. pauciflora and P. 

moniliformis exhibited a consistent pattern in which leaves had higher concentrations compared to 

twigs and roots. For P. pauciflora, leaves were 0.95 higher than twigs and 0.65 higher than roots. 

For P. moniliformis, leaves were 0.5 and 1.02 higher than twigs and roots, respectively). 

Conversely, C. microphyllum showed an opposite trend regarding the interaction leaves and roots. 

Leaves had lower concentrations than roots (-0.4mg/g DM), while were higher than twigs (0.5 

mg/gDM). When considering the interaction between roots and twigs, each species demonstrated 

a distinct pattern. P. pauciflora maintained consistent concentrations in both organs, while P. 

moniliformis had higher concentrations in twigs compared to roots (0.4mg/g DM). In contrast, C. 

microphyllum exhibited the opposite pattern, with roots having higher concentrations than twigs 

(0.9mg/gDM). Regarding the concentration of total NSC through the months for each specie, no 

significant differences were observed, except for P. moniliformis among Ag21 and Nov22, which 

was higher in the first one (0.7 mg/g DM). But no significant reduction in the NSC pool between 

wet and dry months specifically. 

 

Regression and correlations analysis 

In the regressions analysis we performed, only the component starch itself has a 

significant relationship with environmental conditions for P. pauciflora and C. microphyllum. The 

starch concentration in twigs and roots of P. pauciflora was positively correlated with the soil water 

balance (WB) (R2 = 0.76, p = 0.099 and R2 = 0.75, p = 0.0111, respectively). For C. microphyllum 

only starch concentration in twigs was positively correlated with the WB (R2 = 0.85, p = 0.002). 

Correlations between the water potential of trees with NSC were also performed and only P. 

pauciflora (Fig. 5) did not show any relationship between these parameters. C. microphyllum 

showed significant relationship only in leaves (Fig. 6abc). Furthermore, only for this species there 
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was a positive correlation between water potential and the soil moisture (R2 = 0.81, p = 0.014), 

even though the soil moisture was not being correlated with the WB parameters. For P. 

moniliformis we observed that the SS concentration in leaves was negative correlated with Ψx while 

the starch shoed the inverse trend (Fig. 7 abc). For this specie the NSC in twigs was also positive 

correlated with Ψx (Fig. 7 df).  

 

Discussion 

 

Our results suggest that: 1) over the three years of collections, the soil water balance 

remained positive only on one collection date, and neutral at another time, which led to variations 

in xylem water potential differently among the species; 2) as for leaf behavior, stomatal 

conductance responds directly to Yx in only one species, although NSC vary according to Yx in 

more species; 3) furthermore, our data show that, in fact, there is a change in the concentration and 

partition pattern of the NSC components and not NSC pool concentration itself; 4) P. pauciflora, 

the only species with late deciduity, presents a different response under the same environment 

conditions as the other species, showing more stability for all parameters measured. 

Species may differ in the pattern of carbohydrate dynamic of production and allocation 

even when occurring in similar environments. These differences can be primarily attributed to 

variations in functional types and phenology (Tixier et al. 2020). Deciduous trees, for instance, are 

believed to be more reliant on NSC stores compared to evergreen species due to the maintenance 

of photosynthetic areas in the latter. This can result in less dramatic fluctuations in their NSC pool 

during drought (Palacio et al. 2018). In the present study, P. pauciflora, the species that loses its 

leaves later than the other deciduous ones, that is, with the dry season already started, showed 
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different behavior compared to the other two species. NSC allocation in no organ investigated 

showed correlation with the water status of the plant, which will be discussed later. 

Our data corroborate the hypothesis that P. pauciflora, being a late deciduous species, 

would have more NSC concentrations. On the other hand, it does not entirely confirm the first one, 

that the fluctuation of the NSC would follow the seasons. In fact, what is shown from our data there 

is a change in the concentration and partition pattern of the NSC components and not the NSC pool 

concentration itself. The response is also species dependent, for instance, C. microphyllum do not 

change any of their NSC component concentration throughout the months while for P. pauciflora 

the Starch concentration in roots seems to follow the seasonality. For P. moniliformis both starch 

and soluble sugar in roots showed a seasonal pattern of changes. 

In part, this study reinforces the aspect that less water availability in the soil reduces Yx, 

and the species' first line of defense against water loss is the reduction of gs (Santos et al. 2021; 

Ferreira-Neto et al. 2022). Such behavior was not observed in P. pauciflora plants, which 

maintained a strong stability of stomatal conductance throughout the study period and with the 

lowest variation in Yx among the species studied, which can be supported by the thick cuticle of 

this species, as well as high epidermal cell density, and small, high-density stomatal pores (Yule et 

al. 2023). 

The three species in the present study have a wide distribution in the DTF in the semi-arid 

region of northeastern Brazil (Yule et al. 2023). Previous studies discuss that woody species can 

be very stable in terms of their morpho-ecophysiological behavior (Yule et al. 2023), as well as in 

relation to the NSC stock in their organs (Sala et al. 2010; 2012), even under limited environmental 

resources, such as water availability (Martínez-Vilalta et al. 2019). Our data on x, chlorophyll a 

fluorescence and NSC concentration throughout the study reflect this behavior. Although the three 

species are from the Fabaceae family, they have a different allocation pattern. P. pauciflora, late 
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deciduous, during the dry season and late regrowth, with the rainy season underway, presented the 

highest NSC concentration for the three organs evaluated. On the other hand, C. microphyllum was 

the only species to present the highest NSC concentration in the roots, when compared to leaves 

and stems at same plants. Indeed, C. microphyllum had a direct relationship between gs and the 

water status of the plant. Perhaps this is one of the reasons why it is the one that is least able to 

accumulate NSC in leaves and stems, when compared to other species, demonstrating greater 

sensitivity to variations in water availability, as shown by the lowest Yx value among the three 

species. throughout the study period. 

All forecasts for the Brazilian semi-arid region point to higher average temperatures and 

reduced precipitation (Marengo and Bernasconi 2015; IPCC 2021). In addition, greater irregularity 

in precipitation during the rainy season and longer dry seasons. This scenario, with greater or lesser 

intensity of climate change, should impact the growth dynamics of perennial species, especially 

deciduous ones. Having the ability to produce and store NSC during favorable periods can be a key 

factor for the establishment of new individuals and maintenance of the complete annual cycle, with 

seed production. Our data show three woody species, close in origin, but different in terms of their 

strategy for developing in the same environment. The three presented stability in terms of their 

respective NSC pool, but with different dynamics of the main components, soluble sugars and 

starch among the three organs evaluated and in terms of response to water availability. Two of the 

three species do not respond to xylem water potential to control their stomata, on the other hand, 

decrease water status leads to starch degradation and accumulation of soluble sugars in the leaves 

of both. This behavior was not observed for any investigated organ of P. pauciflora, which remains 

stable or with minimal variation in the evaluated parameters. This could be an advantage given the 

future climate scenario in the region. 
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Figures and Tables  

 

 

Figure 1. Soil Water Balance and Rainfall across months from one year prior to the beginning of 

the study (2019) and during the study (2021 and 2022). 
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Figure 2. Xylem water potential Ψx (a-c) and stomatal conductance (gs) (d-f) of individuals (n=5) 

from Peltogyne pauciflora, Pityrocarpa moniliformis and Cenostigma microphyllum throughout 

eight months across 2020, 2021, and 2022. 
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Figure 3. Relationship between xylem water potential (Ψx) and stomatal conductance (gs) of 

individuals (n=5) from a) Pityrocarpa moniliformis, b) Peltogyne pauciflora and c) Cenostigma 

microphyllum  
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Figure 4. Total non-structural carbohydrates (NSC) (Soluble Sugar + Starch) in leaves, twigs and 

roots from individuals (n=5) of three deciduous species from Caatinga dry forest across months of 

sampling. Capital letter indicates differences among the three organs for each species individually 

and lowercase letters indicate difference among the same organ across species.  
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Figure 5. Correlation analyzes between non-structural carbohydrates (NSC) components 

concentration (SS = soluble sugars, Starch, and total NSC) and water potential (Ψx) for the specie 

Peltogyne pauciflora. 
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Figure 6. Correlation analyzes between non-structural carbohydrates (NSC) components 

concentration (SS = soluble sugars, Starch, and total NSC) and water potential (Ψx) for the specie 

Cenostigma microphyllum.  
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Figure 7. Correlation analyzes between non-structural carbohydrates (NSC) components 

concentration (SS = soluble sugars, Starch, and total NSC) and water potential (Ψx) for the specie 

Pityrocarpa moniliformis.  
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Table 1. Chlorophyll a fluorescence measurement in deciduous species from Caatinga Dry Forest 

across months over years (2020, 2021 and 2022). Different letters indicate differences across 

months for each parameter of each species.  

Parameters/

Months 
Nov20 Aug21 Oct21 Jan22 Apr22 Nov22 

P. pauciflora 

Fv/Fm 0.62±0.0b 0.63±0.1ab 0.72±0.0ab 0.77±0.0ab 0.69±0.0ab 0.97±0.1a 

ϕPSII 0.15±0.0b 0.28±0.0ab 0.33±0.0a 0.38±0.0a 0.22±0.0ab 0.28±0.0ab 

ETR 99±25b 184±27ab 234±41a 253±29a 198±29a 201±16a 

P. moniliformis 

Fv/Fm 0.75±0.0b 0.76±0.0b 0.73±0.0b 0.80±0.0b 0.76±0.0b 1.3±0.1a 

ϕPSII 0.28±0.0bc 0.32±0.0ab 0.21±0.0c 0.28±0.0ab 0.28±0.0ab 0.37±0.0a 

ETR 219±7.1ab 215±5.2ab 150±25c 189±14bc 251±27a 263±30a 

C. microphyllum 

Fv/Fm 0.77±0.0b 0.81±0.0bc 0.70±0.0d 0.77±0.0b 0.75±0.0bcd 1.43±0.0a 

ϕPSII 0.31±0.0ns 0.34±0.0 0.43±0.0 0.27±0.0 0.24±0.0 0.36±0.0 

ETR 207±13ns 223±15 299±92 204±55 158±10 255±8.4 
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5 CONSIDERAÇÕES FINAIS 

 

 Neste estudo tínhamos dois grades objetivos a serem alcançados: primeiro, entender como 

se comporta a atividade fotoquímica no caule verde da espécie Commiphora leptophloeos, e se esta 

atividade influencia na dinâmica de carboidratos não-estruturais (CNE) ao longo da variação da 

sazonalidade em uma floresta tropical seca (FTS). Como principais respostas encontramos que esta 

espécie mantem o seu potencial hídrico do xilema elevado em qualquer estação do ano, o que pode 

ser consequência de dois fatores: a baixa densidade da madeira e o forte controle da condutância 

estomática. Além disso, a atividade fotoquímica do caule verde não apresentou diferença para a 

mesma atividade mensurada nas folhas. No início da estação seca as plantas decíduas, mostraram 

redução da concentração de amido e aumento de açúcares solúveis nas raízes. O segundo grande 

objetivo, foi avançar no entendimento da dinâmica de CNE em espécies decíduas sob a variação 

da sazonalidade em uma FTS. Três espécies arbóreas foram mensuradas Peltogyne pauciflora, 

Pityrocarpa moniliformis and Cenostigma microphyllum. P. pauciflora se mostrou uma espécie 

com condutância estomática e fluorescência da clorofila a extremamente estável ao longo das 

estações do ano. Bem como foi a espécie com a maior concentração de CNE. Nas outras duas 

espécies, embora o potencial hídrico do xilema tenha variado entre as estações seca e chuvosa, a 

condutância estomática não respondeu diretamente ao status hídrico das plantas. Porém sob as 

condições do início da estação seca, houve degradação de amido e aumento da concentração de 

açúcares solúveis nas folhas de P. moniliformis e C. microphyllum, sob as nossas condições de 

estudo. Em conclusão, somente a variação do potencial hídrico não deixa claro a dinâmica dos 

CNE em espécies lenhosas decíduas sob condições de FTS em plantas adultas. 
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Figure 1 Supplementary. The Soluble Sugar (SS) and Starch dynamic in leaves, twigs and roots 

from individuals (n=5) of three deciduous species from Caatinga dry forest across months of 

sampling. Different letter indicates differences among the three organs for each month and specie 

individually. 
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