e~
e
e

=

L

UFPE

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

Carlos Eduardo Zimmerle de Lima

Unveiling the Usability of Reactive Programming APIs: Findings, Tools, and

Recommendations

Recife
2024

Carlos Eduardo Zimmerle de Lima

Unveiling the Usability of Reactive Programming APlIs: Findings, Tools, and

Recommendations

Tese de Doutorado apresentada ao Programa de
Pés-graduacao em Ciéncia da Computacao da Uni-
versidade Federal de Pernambuco, como requisito
parcial para obtencdo do grau de Doutor em Cién-
cia da Computacdo.

Area de Concentracdo: Engenharia de Software e
Linguagens de Programacao

Orientador (a): Kiev Santos da Gama

Recife
2024

.Catalogacéo de Publicacdo na Fonte. UFPE - Biblioteca Central

Li ma, Carl os Eduardo Zi nmerl e de.

Unveiling the usability of reactive programing APIs:
findings, tools, and recomendations / Carlos Eduardo Zi mrerle
de Lima. - Recife, 2024.

170 f.: il.

Tese (Doutorado) - Universidade Federal de Pernanbuco,
Programa de Pés- G aduagdo em C énci a da Conputacdo, 2024.

Oientacdo: Kiev Santos da Gama.

Inclui referéncias e apéndice.

1. Programacgdo reativa; 2. Usabilidade de APIs; 3. M neracéo
de repositorio de softwares; 4. Avaliacdo centrada no usuario.
|. Gama, Kiev Santos da. Il. Titulo.

UFPE- Bi bl i ot eca Centr al

Carlos Eduardo Zimmerle de Lima

“Unveiling the Usability of Reactive Programming APIs: Findings, Tools, and
Recommendations”

Tese de Doutorado apresentada ao
Programa de P6s-Graduagdo em Ciéncia da
Computacdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtencao do titulo de Doutor em Ciéncia da
Computagio. Area de Concentragio:
Engenharia de Software e Linguagens de
Programagao.

Aprovada em: 18/12/2024.

Orientador: Prof. Dr. Kiev Santos da Gama

BANCA EXAMINADORA

Prof. Dr. Paulo Herique Monteiro Borba
Centro de Informéatica/UFPE

Prof. Dr. Gustavo Henrique Lima Pinto
Instituto de Ciéncias Exatas e Naturais/UFPA

Prof. Dr. Leopoldo Motta Teixeira
Centro de Informatica / UFPE

Prof. Dr. Marco Tulio de Oliveira Valente
Depto. de Ciéncia Computacao/UFMG

Profa. Dra. Fernanda Madeiral Delfim
Department of Computer Science /
Vrije Universiteit Amsterdam

| dedicate this work to my parents, friends, advisor, and all of those that helped me through

this journey.

ACKNOWLEDGEMENTS

| would first like to thank my advisor. Without his insistency and patience throughout all
those years, | probably would not have made it this far. | was one of his students who took
many of his courses, and my research journey with him started since my undergraduate thesis.
Throughout the years, | have collaborated with him in many works, and he could also observe
my ups and downs. Nevertheless, he always finds ways to convince you that it will work fine

in the end. For those and next, future endeavors, | truly thank you!

| want to express my gratitude to all the professors that had the chance to study with. In
special, | would like to include my personal thanks to professor Fernando Castor who | had

the chance to meet during the last years and share some collaborating works with.

To my parents, | thank you for all the dedication and support in my life. | would like to
thank my mother from the bottom of my heart for raising and educating me; my father, as
well, who always believed in me and made it clear that he would always be my friend, that |

could count on him whenever | needed.

| would like to extend my thanks to my long list of colleagues and friends (old and new
ones). | thank you for understanding my absence from many meetings and parties during this
journey. Moreover, | want to include a special thanks to Alexandre Vianna who | had the

chance to include in my friendship and collaborate in some researches.

Finally, | want to express my faith by thanking God for providing my existence, guiding my

path, and blessing my family.

Thank you very much to all of you.

“Any fool can write code that a computer can understand. Good programmers write code

that humans can understand.” (FOWLER, 2018, p. 10).

ABSTRACT

Reactive Programming (RP) has gained traction for its ability to simplify the development
of event-driven and asynchronous applications. Despite its growing popularity, the usability of
application programming interfaces (APls) of RP remains a significant challenge for developers,
with issues ranging from steep learning curves to inconsistent design practices (e.g., divergent
number of operators and interfaces). This thesis explores the usability of RP APIs through a
combination of approaches: mining studies, metrics, and user-centered evaluations. The first
part of the study leverages data from GitHub and Stack Overflow to analyze how developers
interact with RP APls, identifying operators’ frequency (a common design problem) and re-
curring pain points. The second part employs a mixed-method approach, combining structural,
computed metrics with qualitative user study to assess API usability, employing a refined Cog-
nitive Dimensions framework (CDN). Metrics are computed using our implemented tool, UAX
(Usability Analyzer Experience), which embodies a set of six metrics explored in other studies.
The user-centered evaluation further examines aspects like understandability, learnability, and
expressiveness through task-based experiments and user feedback. Results highlight significant
disparities between API design and usability, providing a clearer understanding of the real-world
challenges users encounter. The thesis culminates in a set of practical recommendations for the
designers, aimed at enhancing RP API usability and aligning it with users’ needs. Contributions
include a comprehensive usability analysis of RP APls, empirical findings from the open-source
community, answers for recurrent problems (i.e., excessive number of operators), the UAX
tool, the first appliance of a user-centered evaluation with CDN and RP, recommendations
for APl improvements, and a foundation for future RP usability researches. This work lays the
groundwork for enhancing the developer experience in RP interfaces and contributes to the

broader field of software engineering.

Keywords: Reactive Programming. API Usability. Mining Software Repositories. User-Centered

Evaluation.

RESUMO

Programacdo Reativa (RP) vem ganhando forca por sua habilidade de simplificar o de-
senvolvimento de aplicacGes dirigidas a eventos e assincronas. Apesar de sua crescente po-
pularidade, a usabilidade de interfaces de programacio de aplicativos (APIs) de RP continua
sendo um desafio significativo para desenvolvedores, com problemas que vdo desde curvas
de aprendizado acentuadas até préticas de design inconsistentes (por exemplo, ndmero diver-
gente de operadores e interfaces). Esta tese explora a usabilidade de APIs de RP por meio
de uma combinacdo de abordagens: estudos de mineracao, métricas e avaliacGes centradas
no usuario. A primeira parte do estudo aproveita dados do GitHub e do Stack Overflow para
analisar como os desenvolvedores interagem com APIs de RP, identificando a frequéncia dos
operadores (um problema comum de design) e pontos problematicos recorrentes. A segunda
parte emprega uma abordagem de pesquisa baseada em método misto, combinando métricas
estruturais computadas com estudo qualitativo com usudrios para avaliar a usabilidade das
APls, empregando uma estrutura refinada de Dimensées Cognitivas (CDN). As métricas sdo
computadas usando nossa ferramenta implementada, UAX (Usability Analyzer Experience),
que incorpora um conjunto de seis métricas exploradas em outros estudos. A avaliacao cen-
trada no usudrio examina adicionalmente aspectos como compreensibilidade, capacidade de
aprendizado e expressividade por meio de experimentos baseados em tarefas e feedbacks de
usuarios. Os resultados destacam disparidades significativas entre os designs das APIls e usa-
bilidade, fornecendo uma compreensao mais clara dos desafios do mundo real que os usuarios
encontram. A tese culmina em um conjunto de recomendacdes praticas para os designers, vi-
sando aprimorar a usabilidade das APls de RP e alinha-las com as necessidades dos usuarios. As
contribuicoes incluem uma andlise abrangente de usabilidade de APIs de RP, descobertas em-
piricas providas pela comunidade de c6digo aberto, respostas para problemas recorrentes (i.e.,
nimero excessivo de operadores), a ferramenta UAX, a primeira aplicacdo de uma avaliacdo
centrada no usuario com CDN e RP, recomendacdes para melhorias das APIs e uma base para
futuras pesquisas de usabilidade em RP. Este trabalho estabelece fundamentos para aprimorar
a experiéncia do desenvolvedor em interfaces de RP e contribui para o campo abrangente da

engenharia de software.

Palavras-chaves: Programacao Reativa. Usabilidade de APIs. Mineracdo de Repositério de

Softwares. Avaliacdo Centrada no Usuério.

LIST OF FIGURES

[Figure 1 Overview of the Research Methods.| 23
[Figure 2 Marble Diagram explained.| 32
[Figure 3 Percentage of operators’ utilization per Rx library,| 49
[Figure 4 I'he most and least frequently used operators of RxJava.| 49
[Figure 5 The most and least frequently used operators of RxJS.| 50
[Figure 6 The most and least frequently used operators of RxSwift.|. 50
[Figure 7 Similarity between the operators from the most relevant SO topics and the [
| ones from open source projects based on their frequency position.| 62
[Figure 8 Similarity between the 15 most frequently used operators in the most re- |
| levant SO topics and the 15 ones from open source projects regardless of [
| their frequency position.|o 62
[Figure 9 Similarity between the 15 least frequently used operators in the most re- |
| levant SO topics and the 15 ones from open source projects regardless of [
| their frequency position.| L L 63
[Figure 10 — Main page overview of the UAX dashboard.|. 76
[Figure 11 — Color scale indicating the level of usability according to scores.| 76

[Figure 12 — Snippet of the |[Application Programming Interface (API) detailing page in |

the dashboard) 77

[Figure 13 — The results of each evaluated metric according to the APIs. The last chart [

denotes the Average Metric Score (AMS) of the APIs| 91

[Figure 14 — Usage frequency of the Bacon.js and RxJS operators used during the tasks.| 103

[Figure 15 — Answers to the Likert-based question that measures the API satisfaction [

level according to the questionnaire’s participants.| 105

[Figure 16 — Average rankings on the dimensions explored in the questionnaire. Maxi- |

[Figure 18 — Answers to the Likert-based scale items of the interview.| 117

LIST OF SOURCE CODES

[Source Code 1 — HT I'P request simulation with automatic retries using the Observer |
| pattern in JavaScriptl L L 33
[Source Code 2 — HTTP request simulation with automatic retries using RxJS in [
| JavaSceript| 35
[Source Code 3 — HT TP request simulation with automatic retries using the Observer |
| patternin Javal. 165
[Source Code 4 — HT TP request simulation with automatic retries using RxJava in Java[l67
[Source Code 5 — HT I'P request simulation with automatic retries using the Observer |
| pattern in Swift| 168
[Source Code 6 — HT TP request simulation with automatic retries using RxSwift in [

LIST OF TABLES

[Table 1 — A summary of the eight structural metrics to evaluate API usability.| 39
[Table 2 — Information on the repositories using the five most used Rx libraries and the [
| mined ones along with their star information, sorted by their total.| 42

[Table 3 — Average usage of the 15 most frequently used operators per analyzed repository.| 51

[Table 4 — Topics ordered by their number of posts.| 52
(Table 5 — Topics’ Popularity.|. 59
(Table 6 — Topics' Difficulty] 60
[Table 7 — Operators most frequently used in the most relevant SO topics matching [
| the most frequently used operators in GH projects.| 61
[Table 8 — Suggestive initial set of operators to start with according to three APls |
| explored.|. 66
[Table 9 — Reactive JavaScript libraries organized according to their number of stars.| 72
[Table 10 — Interpretation of the average Likert-based scores according to equally spaced [
| intervals.. 75
[Table 11 — Description of the tasks used during the evaluation| 81
[Table 12 — Questionnaire based on five dimensions derived from the Cognitive Dimen- |
| sions Framework. (continue)| oL 83
[Table 12 — Questionnaire based on five dimensions derived from the Cognitive Dimen- |
| sions Framework. (continued)|. 84
[Table 12 — Questionnaire based on five dimensions derived from the Cognitive Dimen- [
| sions Framework. (continued)|. 85
[Table 13 — Demographic items applied to the questionnaire’s participants.| 86
[Table 14 — Post- Task Interview Guidel 87
[Table 15 — Elicited assertions discussed during the interview.| 88
[Table 16 — Intersection between |Cognitive Dimensions of Notations (CDN)| dimensions |
| and the explored metrics.| L. 90
[Table 17 — Percentage frequency of tasks' completeness.| 95
[Table 18 — Time spent pertask.| 96

[Table 19 — Experience of the participants who answered the questionnaire according to

| the explored APL| 104
[Table 20 — Results for every questionnaire assertion according to their dimension and |
| the APl explored by the participants.| 107
[Table 21 — Recommendations for AP| designers according to the points and observations [
| presented throughout the research. (continue)| 133
[Table 21 — Recommendations for API designers according to the points and observations |
| presented throughout the research. (continued) 134
[Table 21 — Recommendations for API designers according to the points and observations [
| presented throughout the research. (continued)] 135
[Table 21 — Recommendations for AP| designers according to the points and observations |
| presented throughout the research. (continued) 136
[Table 21 — Recommendations for API designers according to the points and observations [
| presented throughout the research. (continued)] 137

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface
CDN Cognitive Dimensions of Notations
FP Functional Programming

FRP Functional Reactive Programming
GH GitHub

HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol

JS JavaScript

JSON JavaScript Object Notation

LDA Latent Dirichlet Allocation

00 Object-Oriented

REST Representational State Transfer
RP Reactive Programming

Rx ReactiveX

SEDE Stack Exchange Data Explorer
SO Stack Overflow

TS TypeScript

UAX Usability Analyzer Experience

CONTENTS

1 INTRODUCTION

14 RESEARCH METHODS

15 DOCUMENT STRUCTURE

2 = FUNDAMENTAL CONCEPTS!

2.1 EVENT-DRIVEN PARADIGM AND THE OBSERVER PATTERN
22 REACTIVE PROGRAMMING

2.2.1 Important Aspects| 28
[2.2.1.1 Interfaces and Operators 28
2212 Glitches 31
[2.2.1.3 Visual Support] 31
2.2.2 Reactive Programming Examples| 32

2.3 APPLICATION PROGRAMMING [N TERFACESI

| GITHUB AND STACK OVERFLOW,

31 METHODOLOGY| 40
B.I1 GitHub Mining 41
(3.1.2 Stack Overflow Mining, 44
(3.1.2.1 Topic Modelingl 44
[3.1.2.2 Defining lopic Relevance 46
................................... 47
(3.2.1 RQ1.1: How much are the Rx operators being used in open source |
| projects?| 47
(3.2.2 RQ2.1: What problems are RP developers facing?| 50
(3.2.3 RQ2.2: How do the operators present in the most relevant Stack [

| Overflow questions and the usage frequency of Rx operators in open |

| source projects relate?|o 57

4.3.3 RQ3.2: To what extent do RP APls contribute to code cleanliness, |

| reliability, and abstraction from low-level complexities?|. 126
4.3.4 RQ3.3: To what extent do RP APls enhance code reuse and main- |
| tainability?|. 127

6 CONCLUSION|.o 145
6.1 SUMMARY! o 145

6.3.1.1 Mining Studyl 148
6.3.1.2 Mixed-methods Studyl 149
6.3.1.3 UAX Tool 150
0.3.2 Future Researchesl 152
6.3.2.1 Software Engineeringl 153

BIBLIOGRAPHY
APPENDIX A — REACTIVE PROGRAMMING CODE EXAMPLES|165

17

1 INTRODUCTION

1.1 CONTEXT AND MOTIVATION

In the area of software development, event-driven applications, also called interactive or
reactive applications (e.g., graphical user interface apps), have relied on callbacks and inver-
sion of control as means to structure their logic (DRECHSLER et al., 2014, [BAINOMUGISHA et al.,
2013). As those applications evolve, the code tends to become an “asynchronous spaghetti”
with deeply-nested dependent callbacks, a problem often called callback hell or pyramid of
doom (KAMBONA; BOIX; MEUTER, 2013). The Observer pattern, the object-oriented approach
to event-driven programming, raises the abstraction level and decouples different application
parts, but it also brings its set of complexities and readability problems (SALVANESCHI; HINTZ;
MEZINI, [2014; [SALVANESCHI; MARGARA; TAMBURRELLI, 2015 |SALVANESCHI et al., 2017). As
a result, event-based programs are known to be difficult to design, implement, and main-

tain (SALVANESCHI; MARGARA; TAMBURRELLI, 2015).

The [Reactive Programming (RP)| paradigm was conceived to facilitate the construction

of interactive applications through the use of dedicated abstractions (BAINOMUGISHA et al.,
2013; MARGARA; SALVANESCHI|, 2014} [SALVANESCHI; MARGARA; TAMBURRELLI, 2015). These
abstractions (BAINOMUGISHA et al., |2013; |SALVANESCHI, 2016)), behaviors (values that vary
continuously) and event streams (values that vary discretely), are then formulated through
three concepts (MARGARA; SALVANESCHI, 2014): (/) time-changing values, (ii) dependency
tracking and (iii) automatic propagation of changes. use allows better comprehension
compared to the Observer pattern (SALVANESCHI et al, 2017). Additional qualities are also
noted like its composability, reduction of code lines and boilerplate code, better readability,
among others (SALVANESCHI; HINTZ; MEZINI, 2014; |SALVANESCHI et al |, 2017).

Given the advantages of [RP|, many libraries and extensions have been incorporated in

varying languages (BAINOMUGISHA et al., 2013). The family of libraries called Reactive Exten-

sions (ReactiveX (Rx))) is among the most popular families of libraries nowadays, specially after

the Netflix's successful use case (SALVANESCHI et al., [2017)). As of the JVM version 9, a set of
reactive interfaces were defined under the class java.util.concurrent.Flow, all inspired by the
specification for the JVM called Reactive Streamd'} The specification details a minimal set of

interfaces with non-blocking back-pressure (a control flow mechanism) which many libraries

1 <https://www.reactive-streams.org />

https://www.reactive-streams.org/

18

currently comply to (e.g., Akka Streamﬂ Reactoﬂ and RxJav:ﬂ). Under the category of web
frameworks and technologies, popular tooIsE] like React, Angular and Vue.js, either incorporate
reactive primitives or ideas. React library, for instance, employs concepts like immutability, pure
functions, and automatic propagation of updates, and has third-party toold’[’| that explore [RX
capabilities in React. Angular, on the hand, has RxJS (RX for JavaScript) as an integral part
of its components since early versionsﬂ and, more recently, it added the Signal (behavior)
abstraction to its API

Despite the fact that the traditional domain of [RP] correspond to user interface and ani-
mations (SALVANESCHI, [2016; |MOGK; SALVANESCHI; MEZINI, 2018)), its application has been
expanding since its conception to other areas as well. In fact, we are living in a connected
world where events are coming from multiple places (e.g., clicks on a web page, updates on
a social network or stock markets, and even smart components), so offers a compelling,
declarative model to handle those interactive applications. has been explored for instance
in the realm of Internet of Things (PROENCA; BAQUERO, [2017; DIAS; FARIA; FERREIRA, [2018;
ZIMMERLE; GAMA| 2018b)) where more and more objects are connected everyday to the global
network and with an ever-growing market (15% increase only in 2021 and with projections
to continue expanding in the following yearslT_G[). Zimmerle and Gama (2018a)), based on the
ideas of Margara and Salvaneschi| (2013), created a prototype library where they showed it
was possible to express complex event processing (CUGOLA; MARGARA, [2012) with [RP]
has even made its way to tiny elements like WiFi chips/firmware (STERZ et al., 2021)) and high
performance computing (SOKOLOWSKI; MARTENS; SALVANESCHI, 2019) (important in areas
like meteorological forecasts and particle simulations) aiming to raise their abstraction level
while allowing the construction of programs more easy to create and less error-prone. Other
domain areas explored by include (BAINOMUGISHA et al., [2013} SALVANESCHI; MARGARA;
TAMBURRELLI, 2015; |SALVANESCHI et al |, 2017 MARUM; JONES; CUNNINGHAM, 2019): modeling
and simulation, robotics, computer vision, web applications, sensor networks, game engines,

embedded systems, and control and monitoring systems.

<https://akka.io/>

<https://projectreactor.io/>

<https://github.com/ReactiveX /RxJava>

https://survey.stackoverflow.co/2024 /technology

< https://react-rxjs.org/>

< https://redux-observable.js.org/>

<https://angular.io/guide/rx-library>

<https://angular.dev/guide/signals>

Available at: <https://iot-analytics.com /iot-market-size/>| Accessed in: Oct 12, 2024.

© 0 N O O ~ W N

—
o

https://akka.io/
https://projectreactor.io/
https://github.com/ReactiveX/RxJava
https://react-rxjs.org/
https://redux-observable.js.org/
https://angular.io/guide/rx-library
https://angular.dev/guide/signals
https://iot-analytics.com/iot-market-size/

19

In spite of their clear benefits, dataflow-based solutions such as [RP| have been supported
by little research and literature evidence (SALVANESCHI, 2016; MOGK; SALVANESCHI; MEZINI,
2018), leading to a scarcity of the actual programming experience (MOGK; SALVANESCHI; ME-
ZINI, [2018]). has received much more attention from programmers and practitioners than
the software engineering community (SALVANESCHI; MARGARA; TAMBURRELLI, [2015)). Some
exceptions include studies related to aspects such as high composability (SALVANESCHI; HINTZ;
MEZINI, 2014 and improved comprehension when compared to the traditional Observer pat-
tern (SALVANESCHI et al., [2014; |SALVANESCHI et al., 2017)). On the other hand, it was also noted
that the learning curve and [RP[s relation to functional programming can be challenging for
anyone interested in the paradigm (SALVANESCHI et al., 2017; [MOGK; SALVANESCHI; MEZINI,
2018)). Furthermore, there is not a consensus about the [APIg offered by the implementati-
ons, so libraries commonly adopt different interfaces (MOGK, [2015)). In fact, the excessive
number of operators is a recurring design issue discussed by researchers (SALVANESCHI, [2016;
SALVANESCHI et al., [2017)). This prompted researches to propose systematic investigation about
the designs of such solutions to better understand their impact and usability (MOGK, 2015;
ZIMMERLE et al., [2022)) and to fulfill lacking guidelines to drive better design choices for future
[RP| developers (SALVANESCHI, [2016; [MOGK, [2015).

1.2 RESEARCH GOAL

Modern software development heavily depends on the reuse promises of (MYERS; STY-
LOS, [2016; [RAUF; TROUBITSYNA; PORRES, [2019; VENIGALLA; CHIMALAKONDA, 2021). Their
ubiquity, however, also introduced many complexities as good are often hard to deve-
lop (HENNING, 2009), given the many design decisions are involved (HENNING, [2009; STYLOS;
MYERS, 2007) and bad designs can easily impact thousands of programmers (HENNING, [2009)).
Programmers often found hard to learn and use (MYERS; STYLOS, 2016; MURPHY et al.,
2018), costing productivity, code inefficiencies, bugs, and, more worrying, significant security
flaws (RAMA; KAK| 2015} [HENNING, 2009} [MYERS; STYLOS} [2016). Due to those problems, [AP]]
usability has become a fundamental attribute for the |API| success. Usable give joyness
to programmers and enhance their productivity (HENNING, 2009; PICCIONI; FURIA; MEYER,
2013). They are well-documented, easy to use and memorize, and encourage reuse (HENNING,
2009; PICCIONI; FURIA; MEYER, 2013). Still, usability is often difficult to gather and understand

(user studies are often considered expensive during design (ZHANG et al., 2020))) or simply

20

ignored by the designers (BURNS et al), 2012} [ZHANG et al, [2020).

Given the importance of [API]| usability and difficulty of gathering related information, alig-
ned with the importance throughout many areas (domains and platforms), the need for
researches and investigation to attest the quality of the dataflow-based approaches (SALVANES-
CHI, [2016)), the challenging learning process of [RP]| the disconnection between [RP| design and
user experience, and the different design choices adopted by different (e.g., divergent
number of operators), the primary objective of this thesis is to measure the level of usability
offered by those [APIs, identify aspects that need improvements, and the main problems that
are becoming an obstacle for providing better [AP]| usability to [RP]tools. Those problems, com-
bined with the already observed complexity of [RP}, may be collaborating to make the paradigm
even more challenging without the designers even be aware of them. Besides, an understanding
of the current usability level of [RP] can help offering a better perspective at the exact level
and points of improvements.

This thesis is divided in two studies. During the first study, we focus on information
provided by the open-source community. Essentially, we conduct a mining study in |GitHub

(GH)| repositories and the [Stack Overflow (SO)| platform. First, we concentrate on the [AP]|

Size of [RP] tools. The number of operators has been a source of discussion in the reactive

community (SALVANESCHI, [2016; SALVANESCHI et al., [2017)), and it is a consequence of the

strong connection with [Functional Programming (FP)|in which functions (combinators) are

used to drive the business logic. This in turn can complicate the library usage (MOGK| 2015)
and the mastering of the APl (SALVANESCHI, 2016). Second, we uncover the problems
users are facing and which of those are the most relevant (i.e., popular and difficult). Finally,
we compare the most frequent operators found in the [GH] repositories and the most relevant
[SO] topics.

The second study focuses on understanding the current level of usability offered by RP)|
, the strongest and weakest areas (e.g., understandability and learnability), and the pro-
blems observed. The study is carried by a mixed-methods research by exploring the use of
computed metrics and a user-centered study. The explored metrics are based on previous

studies (RAMA; KAK| 2015} VENIGALLA; CHIMALAKONDA, 2021) and their implementation ge-

nerated an open-source tool which we called [Usability Analyzer Experience (UAX)| The user

study was conducted by mostly following a qualitative approach to capture a detailed unders-
tanding of the developers’ accounts. All the process was approved by our university's ethics

board.

21

The studies and corresponding chapters have been published or submitted at important
Software Engineering conferences (ZIMMERLE et al., [2022; ZIMMERLE; GAMA), 2024) and Jour-
nals (ZIMMERLE; GAMA) [2025)). The explored approaches and results have also influenced other
published researches (PEREIRA et al., 2023; [FARIAS; ZIMMERLE; GAMA| 2024) and undergraduate

thesis (PEREIRA| 2022; BARROS, 2022; [FARIAS, 2023).

1.3 RESEARCH QUESTIONS

To achieve the research goals and aligned with the performed studies, the thesis aims to

answer the following research questions:

RQ1. How frequently are RP operators used in open-source projects, and what does

their usage reveal about usability and adoption?
RQ2. What challenges are RP users facing, and how they relate to API usability?

RQ3. To what extent are RP APIs usable, and what aspects are most affected?

The first two research questions are addressed by the results collected in the first study
(Chapter [3)), while RQ3 is the main focus of the second study (Chapter [4]). To support the

studies, a number of secondary research questions were defined and are explored in subsequent

chapters (3 and [4)):
RQ1.1 How much are the Rx operators being used in open source projects?
RQ2.1 What problems are RP developers facing?

RQ2.2 How do the operators present in the most relevant Stack Overflow questions

and the usage frequency of Rx operators in open source projects relate?
RQ3.1 How easily can developers learn and understand RP APIs?

RQ3.2 To what extent do RP APlIs contribute to code cleanliness, reliability, and abs-

traction from low-level complexities?

RQ3.3 To what extent do RP APIs enhance code reuse and maintainability?

In the process of answering those questions, we explore different [RP|[APIs, always looking

into [AP]| with distinct characteristics such as syntax, semantics, and the number of operators

22

for instance. Most of the work has been concentrated on [JavaScript (JS)| libraries given its

inviting environment for event-driven, reactive tools.

1.4 RESEARCH METHODS

Figure (1| depicts a comprehensive overview of the leveraged methods and the expected
outputs which ultimately comprise the thesis. The blue boxes with RQ1, RQ2, and RQ3 repre-
sent the research questions which are linked to the research methods (green boxes) described
in Chapters [3| (mining study) and (4] (mixed-methods study). The boxes in the outcomes stage
describe the results obtained from the research methods. Finally, the lowest blue box illustrates
the thesis that includes all the produced findings.

All scripts and materials used and produced during the execution of the methods are publicly
available at (<https://github.com/carloszimm/thesis>). The repository has been archived

through Software Heritage and Zenodo) to allow transparency and future reproducibility.

https://github.com/carloszimm/thesis
https://archive.softwareheritage.org/swh:1:dir:46528bb34817f45edd3df44102104b9d429fbaa3;origin=https://doi.org/10.5281/zenodo.14884110;visit=swh:1:snp:94bf54025f1f76e91d4bbabf06d1fa0088daed95;anchor=swh:1:rel:498ca3fce786dc396377f0321e67033fce07bdda;path=carloszimm-thesis-56d6e29
https://doi.org/10.5281/zenodo.14884110

23

Figure 1 — Overview of the Research Methods.

INVESTIGATION
RQ1 RQ2 RQ3
RQ1.1 RO21 ||RQ2.2 |R03.1 ||RC|3.2 | | Rt:|3.3|
Mining Study Mixed-methods Study
Preliminary study focused User-centered Study

on the API Size (operators) Automated Measurement

and problems faced by RF e T Evaluate and analyze the

Users T perceived usability from the
4 . user perspective through
E R Eiiﬁﬁ%}he At tasks, questionnaire, and
! interviews
| TIMELINE

------------------ s S
[, SR X [h A . [. A, X
\ Understanding of large ! , Quantification and i] Analysis of the i
| API size on usability | , anaysisofthe ' perceived AP usability |
] y o | measured AP usability ! i P Y
| | | Identiication of |
; Q&A topics ! : Usability tool i ; problems and !
' | : : . improvement areas |
r ll- r OUTCOMES

| Unveiling the Usability of Reactive Programming APIs: Findings,
: Tools, and Recommendations

Source: Elaborated by the author (2024)

1.5 DOCUMENT STRUCTURE

The remainder of this document is structured as follows:

= Chapter 2] exposes the fundamental areas behind the concepts explored in this thesis.

= Chapter [3| outlines the methodology and results of our mining study linked to RQ1 and
RQ2.

= Chapter [4] presents the research methods and results of the mixed-methods research

connected to RQ3.

24

= Chapter [5] highlights the related works.

= Chapter @ addresses the final remarks, including the contributions and future works.

25

2 FUNDAMENTAL CONCEPTS

This chapter lays down some concepts necessary to fully understand the ideas explored
in this thesis. Section presents the core ideas behind the event-driven paradigm and the
Observer pattern, often explored in object-oriented area. Section covers the [RP| paradigm,
presenting its definition, basic abstractions, usage domains, and state of art. Finally, Section
[2.3] overviews the [API] elucidating its definition, benefits, difficulties, and the usability topic,

central to the thesis.

2.1 EVENT-DRIVEN PARADIGM AND THE OBSERVER PATTERN

Reactive applications, also called interactive or event-driven, is mainly supported by the
event-driven paradigm which advocates a program defined as a reaction to events (TUCKER;
NOONAN, [2002)). This contrasts to the usual control sequence often found in imperative pro-
grams in which the control is defined by the sequence of statements (TUCKER; NOONAN| 2002).
Instead, in the event-driven model, data arrival is the fundamental actor that drives the execu-
tion sequence of operations (TUCKER; NOONAN|, 2002). A number of challenges accompanies
such programs given the asynchronous nature of events (TUCKER; NOONAN, 2002) and the
impossibility of controlling the order of events aligned with the manual (often complex) han-
dling of dependency on state changes (BAINOMUGISHA et al., 2013). Callbacks and inversion
of control have been the main approach to structure the event-driven logic (DRECHSLER et al.,
2014; BAINOMUGISHA et al/, 2013). Callbacks, however, can introduce a lot of complexities to
code such as low undestandability and composability, boilerplate code, and side effects (KAM-
BONA; BOIX; MEUTER, 2013). In fact, as the application scales, it is common to evolve into a
tangling, spaghetti code, a pattern called callback hell or pyramid of doom (KAMBONA; BOIX;
MEUTER, 2013; BAINOMUGISHA et al., 2013), deeming callbacks as the modern ‘goto’ (KAM-
BONA; BOIX; MEUTER, 2013). As a result, event-based programs are known to be difficult to
design, implement, and maintain (SALVANESCHI; MARGARA; TAMBURRELLI, 2015).

The object-oriented approach to event-driven programming often relies on the Observer
pattern (SALVANESCHI; HINTZ; MEZINI, |2014; SALVANESCHI; MARGARA; TAMBURRELLI, 2015).
Such pattern raises the level of abstraction by decoupling observables (producers) from ob-

servers (consumers) (SALVANESCHI; MARGARA; TAMBURRELLI, 2015} |[SALVANESCHI et al., [2017))

26

and allowing a one-to-many interaction. However, as pointed by Salvaneschi, Hintz and Mezini
(2014)), the contributions of the pattern to managing complexity are minimal, and a number of
problems have been pointed out that can even hurt the readability of code: cluttering of code,
dynamic registration, side effects within callbacks, inversion of control and logical connection
among entities, and absence of composability (SALVANESCHI; HINTZ; MEZINI, 2014; SALVA-
NESCHI; MARGARA; TAMBURRELLI, 2015} |SALVANESCHI et al, 2017). Given all the difficulties
of coding reactive applications, a need for new abstractions to both manage event handling
logic and state changes was created (BAINOMUGISHA et al.,, 2013) and a number of different

approaches have emerged in the last years, including [RP}

2.2 REACTIVE PROGRAMMING

[RP] is a paradigm which was conceived to facilitate the construction of interactive ap-
plications through the use of dedicated abstractions (BAINOMUGISHA et al., | 2013} IMARGARA;
SALVANESCHI, 2014; SALVANESCHI; MARGARA; TAMBURRELLI, 2015)); however, it is often simply
defined as programming with asynchronous data stream. Two basic abstractions are normally
included (BAINOMUGISHA et al, 2013; |SALVANESCHI, 2016; BLACKHEATH) 2016, behavior (also
called cell, property, or signal) for continuous time-changing values and event (also known as
event stream, stream, observable, or signal) for discrete time-changing values. These abstrac-
tions designed after three concepts (MARGARA; SALVANESCHI, 2014): (/) time-changing va-
lues, (ii) dependency tracking, and (iii) automatic propagation of updates. Furthermore, both
abstractions are complementary or dual and one could be used to represent or produce the
other (MEYEROVICH et al., 2009; BAINOMUGISHA et al., 2013)). Theoretically, behaviors always
have a value and acts mostly like a variable equipped with automatic propagation of changes,
while event streams represent a potently infinite source of discrete events (MEYEROVICH et al.,

2009).

The paradigm origins can be traced back to [Functional Reactive Programming (FRP)|

where it was offered through Haskell in the context of strictly functional programming and
primarily used to modeling animations (SALVANESCHI et al., | 2017; MOGK; SALVANESCHI; MEZINI,
2018). Besides, its theory is also rooted in the area of signal processing (MEYEROVICH et al.,
2009). A survey of the languages is presented by [Bainomugisha et al. (2013), classifying
the languages under three categories: The siblings, the cousins of [RP} and synchronous,

dataflow, synchronous dataflow languages. In its essence, [RP| belongs to a class of languages

27

based on the dataflow style which have permeated various areas in the last years such as Big
Data, stream processing, streams for collection, real time analytics, and itself (SALVANES-
CHI, 2016)). In fact, the implementation of corresponds to a dataflow graph (MEYEROVICH
et al., |2009; |SALVANESCHI; HINTZ; MEZINI, [2014; [BLACKHEATH, 2016).

Given the advantages of [RP] many libraries and extensions have been incorporated in
varying languages (BAINOMUGISHA et al|, 2013). The family of libraries called Reactive Ex-
tensions (ReactiveX or Rx) is among the most popular families of libraries nowadays, speci-
ally after the Netflix's successful use case (SALVANESCHI et al., |2017)). As of the JVM (Java
Virtual Machine) version 9, a set of reactive interfaces were incorporated under the class
Java.util.concurrent.Flow, all inspired by the specification for the JVM called Reactive Stre-
amdl| That specification details a minimal set of interfaces with non-blocking back-pressure
and many libraries currently comply to (e.g., Akka Streamﬂ Reactorﬂ, and RxJavﬁ). In the
realm of JavaScript, a number of different libraries can be found for and a proposaﬂ
based on the [Rx|s stream type named Observable, is slowly making its way to the language.
Furthermore, a number of tools have been inspired by the ideas of [RP| like the famous React.js
library (SALVANESCHI et al., | 2017)) and the Vue.js framework.

The classical usage domains of [RP|correspond to animation and user interfaces (SALVANES-
CHI, 2016; |MOGK; SALVANESCHI; MEZINI, 2018), but its application has been expanding since
its conception to other areas as well. For instance, Zimmerle and Gama| (2018a)), based on
the ideas of Margara and Salvaneschi (2013)), created a prototype library where they showed
that it was possible to express complex event processing (CUGOLA; MARGARA, 2012) with .
Other applications of [RP|include (BAINOMUGISHA et al/, [2013} [SALVANESCHI; MARGARA; TAM-
BURRELLI, [2015} |SALVANESCHI et al., |2017; [MARUM; JONES; CUNNINGHAM|, 2019 PROENCA,;
BAQUERO,, 2017; DIAS; FARIA; FERREIRA, 2018; |ZIMMERLE; GAMA, 2018b; |STERZ et al., |2021;
SOKOLOWSKI; MARTENS; SALVANESCHI, 2019): Internet of things, modeling and simulation,
robotics, computer vision, web applications, sensor networks, WiFi firmware, game engines,
high performance computing, embedded systems, and control and monitoring systems.

Recent efforts have focused on enabling in a distributed setting (MARGARA; SALVANES-

CHI, 2014; DRECHSLER et al., [2014; [MARGARA; SALVANESCHI, 2018) with consistency guaran-

<https://www.reactive-streams.org/>
<https://akka.io/>
<https://projectreactor.io/>

< https://github.com/ReactiveX /RxJava>
<https://github.com /tc39/proposal-observable>

o A WD =

https://www.reactive-streams.org/
https://akka.io/
https://projectreactor.io/
https://github.com/ReactiveX/RxJava
https://github.com/tc39/proposal-observable

28

tees. As noted by Bainomugisha et al. (2013), the appliance of RP in a distributed environment
with consistency guarantees was an open challenge in the area and it was only supported par-
tially (with no consistency guarantees) based on the support of the host language. Another
area of interest was the support for debugging. The unsuitability of usual debugging tools was
recognized (SALVANESCHI; MEZINI, 2016 [MOGK et al .| |2018; BANKEN; MEIJER; GOUSIOS, 2018),
driving some research efforts. Salvaneschi and Mezini| (2016]) proposed a technique and tool
(Reactive Debugging and Reactive Inspector, respectively) to help visualizing the dataflow of
the application, with extensions to provide live programming (MOGK et al., 2018).
Salvaneschi, Hintz and Mezini| (2014)) presented the REScala library and, to validate the
composability of their approach, they designed and executed an empirical assessment by con-
trasting program versions not using the library and those refactored with it. The result showed
the increase of composable code while diminishing the use of callbacks. [Salvaneschi et al.
(2014), |Salvaneschi et al.| (2017) conducted a controlled experiment to attest the enhanced
comprehension property often supported by [RP| proposers. Results demonstrated an enhance-
ment of comprehension by using [RP] compared to the Observer pattern Through a qualitative
examination of the participants’ feedback, the authors also identified some points that col-
laborated to enhanced [RP] comprehension, like less boilerplate code and shorter code, better
readability support, automated consistency of reactive state, declarative code, ease of compo-
sition and separation of concerns. Contrarily, the learning curve, the level of abstraction and

aspects were the main obstacle.

2.2.1 Important Aspects
2.2.1.1 Interfaces and Operators

To fill the gap of lack of systematization and the diversity of interfaces employed by the
many [RP] libraries, [Mogk (2015)) surveyed the most common interfaces explored. According to
the survey, there are three types of abstraction interfaces (MOGK, 2015): event combinators
(libraries based on combinators to support the event stream abstraction), signal (behaviors)
combinators (libraries based on combinators to support the signal, also called behavior, abs-
traction), and signal (behaviors) expressions (expressions that seamlessly allows the use of
signal and, at the same time, automatic propagate changes). From those, event and signal

combinators are the most adopted style; while providing great benefits (declarative pipeline

29

of operators, easier sharing of combinator syntax among languages, and extensibility through
the addition of new combinators), they also carry many challenges like the high number of
available operators, a possible obstacle for learning and understanding. Signal expression offers
a simpler choice since they better integrate with the host language and does not require a
extensive set of operators. However, this type of interface is not good to represent both event
streams and signals, and it also has challenges such as dependency discovery in dynamic scope
and implicit value access. Future libraries should support both types of interfaces (combina-
tors and expressions), while considering the implications raised in the study: keeping the set
of combinators focused, avoiding combinators with surprising behavior, and including safe and
easy points of extension (MOGK| 2015)).

Combinators are functions used in functional programming (FP) to drive the business lo-
gic; they often return a new instance of the same type as part of its immutable, composable
property. Event combinators provide the greatest variety of operators, while signal combinators
provide a few to combine signal values for instance (MOGK| 2015). In general, event streams
have access to operations for transformation, filtering, splitting, merging, selection, and grou-
ping (MOGK, [2015)). Well-known functional combinators like map, filter, and reduce are
examples of operators often available. According to Bonér and Klang| (2017)), stream-based
operators like count, triggers, or windowing are frequently supplied along combinators. Signal
combinators, on the other hand, have at their disposal operators to combining and flatte-
ning (MOGK, 2015). Flattening operators are commonly found in event combinators as well,
so it is easy to flat a stream of streams. Moreover, there are combinators that allow the
combinations and conversions between event streams and signals (behaviors) (MOGK| 2015)).

Lifting is a|FP| concept that is directly related to the last categorization of interfaces: signal
expressions. In the context of RP} it allows the signal (behavior) abstraction to use common
expression operators (bring to its context) while having the automatic propagation of changes.

There are three strategies of [RP] lifting (BAINOMUGISHA et al/, [2013):

» Explicit lifting: More common in combinator libraries, it corresponds to providing a /ift

operator to allow the combination of behaviors.

» Manual lifting: Letting the developer responsible for acquiring the current behaviors'

values and applying the desired logic.

» Implicit lifting: Commonly adopted by languages with builtin RP. It makes possible to

30

mix common variables with signals in the language expressions.

Implicit lifting is the strategy adopted by signal expression interface, and it makes the
reactive code more transparent (BAINOMUGISHA et al, 2013). Nevertheless, this transparency
can hinder the distinction between a normal variable and a behavior (MOGK|, [2015)), so some
signal expression interfaces opt for manual lifting (acquiring the current value of the behavior
manually). Event and signal combinators do not require any special support besides the library
or extension for a language. Signal expressions, on the other hand, require some compilation
(e.g., Flapjax when used as a language (MEYEROVICH et al.,[2009))) or the use of Domain-specific
languages (e.g., REScala (MOGK; SALVANESCHI; MEZINI, [2018)). Libraries like the famous [RX]
are classified under the event combinators, and this can be explained by the fact that [RX
primarily treats everything as a stream. Only two libraries were included as presenting all
interfaces in the work of Mogk (2015): REScala (SALVANESCHI; HINTZ; MEZINI, 2014) and
scala.react (MAIER; ODERSKY, 2012).

Number of operators. Operators are a recurrent, debatable aspect in the RP area (SAL-
VANESCHI|, 2016} |SALVANESCHI et al., |2017; MOGK; SALVANESCHI; MEZINI, 2018; ZIMMERLE et
al., [2022)). More specifically, researchers mostly discuss about the size of languages
based on combinators, which can overgrow and pose an obstacle to new comers and non-
experts (SALVANESCHI, 2016; [SALVANESCHI et al., 2017, IMOGK; SALVANESCHI; MEZINI, 2018).
To exemplify the situation, researchers often cite which lists, in its Websiteﬂ 70 to 80 core
operators and more than 400 (core and variant operators) in total. Meanwhile, other [APIY
like Fran and REScala (SALVANESCHI; HINTZ; MEZINI, 2014)), employ less operators. REScala,
for instance, has between 20 (SALVANESCHI et al}, 2017)) to 40 (MOGK; SALVANESCHI; MEZINI,
2018) combinators, and it focus on small, more general concepts, so programmers can compose
derived operators from basic ones and easily explain the composed semantics (MOGK; SALVA-
NESCHI; MEZINI, [2018). As result, researchers believe that the focus of future implementation
should be on identifying the small set of concepts and keep the small (SALVANESCHI

et al.,, 2017; MOGK; SALVANESCHI; MEZINI, 2018).

6

<https://reactivex.io/documentation /operators.html>.

https://reactivex.io/documentation/operators.html

31

2.2.1.2 Glitches

Glitches are an inconsistency during the updates related to the propagation of changes (BAI-
NOMUGISHA et al., [2013)). This terminology comes from signal processing (MEYEROVICH et al.|
2009), and it can only occurs in push-based systems (BAINOMUGISHA et al., [2013). The pro-
perty of not presenting glitches is called glitch avoidance or glitch freedom (MEYEROVICH et
al., 2009; BAINOMUGISHA et al., 2013). To guarantee glitch freedom, squtions often employ
a topological order of evaluation in the dataflow graph (MEYEROVICH et al., [2009; SALVANES-
CHI; HINTZ; MEZINI, 2014)). Examples of [RP| libraries that guarantee consistent results include:
Bacon.j{’| Flapjax (MEYEROVICH et al), [2009), and REScala (SALVANESCHI; HINTZ; MEZINI,
2014)). R4 in spite of its popularity, does not prevent inconsistencies ((BLACKHEATH) 2016))),
for instance; however, if this can become a problem or not to a user seems to depend on the

use of appropriate operators and abstractiorﬂ

2.2.1.3 Visual Support

In the RP] area, one of the few visual supporting tools is the well-known marbles diagrams.
Those diagrams were a graphical depiction brought by the project. They are specifically
useful to provide a visual way of envision the stream and thus helping the mental model
produced by the developer. As noted in the qualitative inquiry conducted by [Salvaneschi et
al| (2017), RP raises the level of abstraction in a way that sometimes may be hard to follow
the code flow, requiring the user to heavily rely on the runtime. Therefore, a diagram aid is a
very helpful mechanism in the world. Figure [2| explains how a marble diagram works: (/)
timelines represent event streams (called Observable in[RX); (ii) each timeline is composed by
items (marbles) representing the stream emissions; (iii) the rectangle denotes an operations
that, when applied, creates a new stream (timeline) with emissions resulted from the appliance
of the operator. An important point in this depiction is the presence of a vertical line in the
upper straight line, and an X in the bottom line. Those are used to represent the events of
completion and error. In [RX (as well some other libraries), streams can either emit a next
event or data (similar to the nomenclature of the Iterator pattern), an error event (if some

error is caught along the stream), or a completion event to signal the successful completion

< https://baconjs.github.io/>

8 | <https://staltz.com/rx-glitches-arent-actually-a-problem>.

https://baconjs.github.io/
https://staltz.com/rx-glitches-arent-actually-a-problem

32

of a stream (if the current stream in fact can complete).

Figure 2 — Marble Diagram explained.

This is the time_line of the These are items emitted This vertical line indicates
Observable. Time flows by the Observable. that the Observable has

from left to right. /// \\\ completed successfully.

' : : y " : These dotted lines and
i A4 L4 L A v r_\ this box indicate that a

transformation is being
flip ~<—applied to the Observable.
g/ The text inside the box

shows the nature of the

E. ' V i transformation.
S
/ i

This Observable is If for some reason the Observable
the result of the terminates abnormally, with an error, the
transformation. vertical line is replaced by an X.

Source: ReactiveX Documentation (2016))

2.2.2 Reactive Programming Examples

Listings [I] and [2] present examples of two equivalent programs constructed with the use of
the Observer pattern and an [RP|[API] respectively. The code is built in [J5| given its simplicity
and since it is well explored during the thesis. Nonetheless, Appendices and contain
equivalent Java and Swift versions, languages also explored in the present work (e.g., in
Chapter . All examples use the versatile library to demonstrate the reactive codes which

provides implementation for many different languages including the ones in the examples.

The codes focus on |Hypertext Transfer Protocol (HTTP)| requests similar to the tasks in

Section |4.1.3.2, and they show fictitious [HT TP| requests with automatic retries (three in
total). The differences are notorious. For example, different from the [Rx{[APIs| the Observer

pattern does not include a native, standard way to deal with errors and completion. This
ability to deal with current emissions, errors and completion signals is possible thanks to
the Observer interface provided in [RX this interface represents the consumer part in the
traditional Observer pattern, and, in , an object implementing such interface (each method
in the Observer interface normally receives a lambda expressions/arrow as detailed in lines 10
and 12 of Listing [2)) is passed to a subscribe method of the stream type Observable (i.e.,
the producer of data — line 9 of Listing. Every data type is treated as a possible producer of

data, and the M encourages the user to wrap those producers in a Observable type; thus,

https://reactivex.io/languages.html

33

reactive codes are normally constructed as a composition of reactive (stream) types with many
operators available to flat the possible nested structure and avoid problems found in the use
of callbacks (e.g., callback hell).

In general, RP][APIg| often provides factory functions that create new streams according
to the arguments provided. In line 5 of Listing [2 the code uses a helper factory function
(getJSON) provided by the library that makes the request and automatically wraps it in
an Observable (stream) type (alternatively, one could use the from factory function to wrap a
Promise returned by the JavaScript function fetch); this wrapping in an Observable object
allows the chaining or piping of functions provided by the [RX[API| to transform the emitted
values (forming the so-called pipeline) before the final consumption by the Observer objects.
In the RxJS example, we only used the retry function, but the ReactiveX project provides an
extensive number of operatorsﬂ; this in fact shows that the allows different choices which
is good (OUSTERHOUT, [2018)), but may also impact the introduction of new users (PICCIONI;
FURIA; MEYER, 2013).

The retry concept is more complex with the Observer pattern given the manual need
of implementation; that can be seen in the scope of the function fetchDataWithRetry in
Listing [I] which uses an inner function called attemptRequest to implement the requests with
the help of a closure variable to track the number of attempts. As a result, the RP] logic

becomes more succinct (less boilerplate code) and clearer.

Source Code 1 — HTTP request simulation with automatic retries using the Observer pattern in JavaScript

1 class Subject {
constructor () {

3 this.observers = [];

subscribe (observer) {

7 this.observers.push(observer);

notify(data) {

11 this.observers. forEach(observer => observer.next(data));

13
error(error) {
15 this.observers.forEach(observer => observer.error(error));

3

9 <https://reactivex.io/documentation/operators.htm|>_

https://rxjs.dev/api/index/function/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://reactivex.io/documentation/operators.html

34

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

complete() {

this.observers.forEach(observer => observer.complete());

// Create a Subject instance

const subject = new Subject();

// Function to fetch data and notify observers
function fetchDataWithRetry(url, retries) {
let attempts = 0;

function attemptRequest () {

attempts++;

console.log(Attempt ${attempts} to fetch data);

fetch(url)

.then(response => {

if (!response.ok) throw new Error (THTTP error!

${response.status});
return response. json();

»

.then(data => {
subject.notify(data);
subject.complete();

»

.catch(error => {
if (attempts < retries) {

attemptRequest(); // Retry the request
} else {

subject.error(error); // Final failure

) 8

attemptRequest () ;

// Observers that subscribe to the subject
const observerl = {

next: data => console.log("Observer 1:", data),

error: error => console.error("Observer 1 Final Error:"”

complete: () => console.log("Observer 1 Done"),

bg

const observer2 = {

’

Status:

error.message),

35

63 next: data => console.log("Observer 2 received:"”, data),
error: error => console.error(”"Observer 2 Final Error:", error.message),
65 complete: () => console.log("Observer 2 Done"),
};
67

// Multiple observers subscribing to the same subject
69 subject.subscribe(observerl);
subject.subscribe(observer2);
71
// Start the fetch process
73 fetchDataWithRetry ("https://api.example.com/data”, 3);

Source: Elaborated by the author (2024)

Source Code 2 — HTTP request simulation with automatic retries using RxJS in JavaScript

1 import { ajax } from 'rxjs/ajax';
import { retry, catchError } from 'rxjs/operators';

3 import { of } from 'rxjs';

5 ajax.getJSON('https://api.example.com/data')

.pipe(
7 retry(3)
)
9 .subscribe ({

next: data => console.log(data),
11 error: error => console.error(Final Error ${error.message}’),
complete: () => console.log("Done")

13 1D g

Source: Elaborated by the author (2024)

2.3 APPLICATION PROGRAMMING INTERFACES

correspond to the minimal information for the usage of program units or modules
(well-defined parts of codes) in which is made available to application programmers (WATT,
2004). In other words, it is the piece of information that a developer needs to know in order
to use a given module (OUSTERHOUT, 2018). They have become a key point for code reuse in
which the majority of nowadays development is based upon (HENNING, |2009; [MYERS; STYLOS,
2016). In fact, modern software design is heavily based on the modular design (OUSTERHOUT,
2018), allowing developers to better manage complexity. Also, it is through a module's interface
that abstractions are provided (OUSTERHOUT), 2018), a concept that enabled the evolution of

software by reducing complexity (HENNING, 2009). From simple functions to (web) services, lots

36

of [APIg| are created and made available every day, becoming an important asset for companies
and governments, a hundred billion dollar market (MURPHY et al., [2018).

Interfaces have two aspects: formal and informal (OUSTERHOUT| 2018)). Formal information
constitute the visible parts in code such as the signature of a method or the set of public
methods of a class. All other aspects of them (e.g., code behavior or constraints related to a
module) belong to the informal part. Among those, only the formal aspects can be validated by
the programming language (OUSTERHOUT|, 2018). On the other hand, the informal information
are the most numerous and complex part (often described by comments and documentation),
and the language cannot enforce their completeness and accuracy (OUSTERHOUT), 2018).

There are a lot of design decisions involved in the creation of [APIs| Each decision may
impact the API in different ways, and Stylos and Myers (2007) conducted a mapping of the
decisions and the corresponding recommendations in the context of object-oriented program-
ming. For instance, one dimension of design decision involves architectural (e.g, which design
pattern will be used) and language level (e.g., should the method be synchronized or not)
decisions. The other dimension structural decisions (i.e., higher-level aspects like the the defi-
nition of the API classes or interfaces) versus class decision decisions (i.e., lower-level decisions
such as the choice of class methods).

Given the many design decisions involved, it is much more easy to create bad than
good ones (HENNING, [2009). In fact, constantly [APIg are complex, requiring sometimes signifi-
cant time to learn and resulting in incorrect usages, bugs, and security flaws (MYERS; STYLOS,
2016). [APIs| are in the end a human-machine interface (HENNING, 2009; MYERS; STYLOS,
2016)), where the main user are human begins, and the level of offered usability dictates how
comprehensible and usable an is (MCLELLAN et al., 1998). As a result, built for the
same purpose but with distinct design approaches can provide a better or worse experience to

users.

2.3.1 Usability

have become an ubiquitous asset that involves many quality attributes but usability
has shown to be one of great and critical importance lately (RAUF; TROUBITSYNA; PORRES,
2019; |BURNS et al., [2012)). An is an interface geared towards human developers (MYERS;
STYLOS, |2016)), similar to graphical interfaces, so usability considerations and human-computer

interactions (HCI) principles are very valuable (MYERS; STYLOS, 2016} MURPHY et al., 2018),

37

but often neglected by designers (BURNS et al), 2012)). The interest in APl usability, in
fact, only started to gain more attention after 2000 (MYERS; STYLOS, 2016)), in which the
activities were slowly being referred to as DevX or DX (developer experience), analogously to
UX (user experience) (MYERS; STYLOS, 2016} MURPHY et al., [2018]).

The definition of usability varies among standards and researchers given its subject na-
ture (RAUF; TROUBITSYNA; PORRES, [2019; PICCIONI; FURIA; MEYER, 2013); nonetheless, in a
summarized way, an [API| usability indicates how easy it is to use, by developers in a given
context, and learn an (RAUF; TROUBITSYNA; PORRES, 2019). A number of different attri-
butes and factors are used throughout definitions and studies (RAUF; TROUBITSYNA; PORRES,
2019). Learnability, satisfaction and efficiency are the most used attributes found in definiti-
ons, whereas learnability, efficiency, and understandability are the most used factors present in
studies (RAUF; TROUBITSYNA; PORRES), 2019).

The usability of an [API| can produce different impacts: it can encourage or discourage
the use of an m (i.e., its adoption and retention), impact productivity and satisfaction
of developers, and influence the quality of the produced code (MURPHY et al| 2018; |RAUF;
TROUBITSYNA; PORRES), 2019). Bugs and security problems are examples of poor or incorrectly
usage of [APIg (MYERS; STYLOS| 2016 [MURPHY et al}, [2018) that frequently impact negatively
big organizations (WIJAYARATHNA; ARACHCHILAGE; SLAY, 2017)). |APIs| are often difficult to
use and learn (MYERS; STYLOS, 2016)), and it is much more easy to create bad than good
ones (HENNING, [2009)). A lot of causes have already been identified as reasons for difficulties,
including APl semantics, abstraction level, documentation’s quality, error handling support,
and confusing dependencies and preconditions (MURPHY et al., 2018). All of this corroborates
to the importance of the API design in the process of creating usable [APIs| (MURPHY et al
2018).

Different usability measurements methods exist, such as heuristic evaluation, thinking
aloud, and surveys, but they incur in a set of constraints (e.g., experienced evaluators, re-
presentative set of users, functional product, etc.) and their applicability to the area is
still to be researched (SCHELLER; KUHN, 2015). A very popular method in the area instead
is the use of the framework (LOPEZ-FERNANDEZ et al), [2017)). The is a tool for
designers that describe a set of vocabularies to measure the decision that most affect the
usability of a notation (DIPROSE et al., [2017). This includes all sorts of notations including
APIs| (CLARKE| 2005). Despite its usability, the original dimensions and their applicability are

often considered complex (e.g., the dimensions an their relations are hard to comprehend and

38

assess (SCHELLER; KUHN, 2015))), cost and time consuming, and very directed to the designers’
perspective (DIPROSE et al, 2017} [LOPEZ-FERNANDEZ et al, 2017} [SCHELLER; KUHN| [2015)). In
this way, researchers have proposed variations of the framework more centered in the deve-
lopers’ perspective and dimensions that important qualities of software like understandability
and learnability (PICCIONI; FURIA; MEYER, 2013; LOPEZ-FERNANDEZ et al., 2017)). For example,
Lépez-Fernandez et al.| (2017)) refined theversion proposed by Piccioni, Furia and Meyer
(2013)) and included the following reasons for the practicability of their version for qualitative
researches: (i) the questionnaire and the dimensions become more user-centered rather than
being centered at the designer's perspective, allowing a better optimization for AP users; (ii)
the understanding and evaluation of the dimensions become simpler given its fewer number
and its intimate and positive usability characteristic; this implies that the higher evaluation of
dimension, the better is the usability in respect to that dimension; (iii) the new dimensions
can be linked to developers’ activities, simplifying more the questionnaire and the evaluation of
the results; exploratory learning (i.e., understanding the API) encompasses understandability
and learning dimensions, exploratory design (i.e., exploring the API to design applications)
relates to abstraction and expressiveness, and maintenance (i.e., corrections and new features)
is linked to reusability.

In spite of its popularity, [CDN| still relies on users performing some tasks (DIPROSE et al.,
2017)), which prompted some researches to invest in usability metrics in the last years (RAUF;
TROUBITSYNA; PORRES, 2019)). |Souza and Bentolila| (2009)) defined the usability as a
function of its complexity based on three metrics and use a visualization tool, Metrix, to aid
in the identification of complex [API| areas. However, the tool has not being maintained (RAUF;
TROUBITSYNA; PORRES, [2019). Rama and Kak| (2015) define a set of eight metrics to evaluate
the usability of methods based on common beliefs and are accompanied by math formulas.
The authors show their use in seven Java by using their proprietary tool (RAUF; TROU-
BITSYNA; PORRES, 2019). That same set of metrics was latter used to analyze game engines'’
APIs| (VENIGALLA; CHIMALAKONDA|, [2021)). A summary of those metrics is displayed in Table|[T]
The work of |Scheller and Kiihn| (2015) seems to be a promise venue, in which they reused
many metrics defined by Rama and Kak| (2015) to create new metrics that consider other
characteristics beyond methods (e.g., annotations) and the code context of use. However, the

automated tool using those metrics is not available (RAUF; TROUBITSYNA; PORRES, 2019).

39

Table 1 — A summary of the eight structural metrics to evaluate API usability.

Definition

Metric
AMNOI
(API Method
Name Overloa-
ding Index)
AMNCI
(API Method

Name Confusion
Index)

AMGI
(APl Method
Grouping Index)

APLCI
(APl Parameter

List Consistency
Index)

APXI
(API
List
Index)

Parameter
Complexity

ADI (APl Docu-
mentation Index)

AESI

(API Excep-
tion Specificity
Index)

ATSI (APl Th-

read Safety In-
dex)

It quantifies the degree to which the various overload definitions of
a function vyield disparate return types. The lesser the metric score,
the greater is the number of overloads that return different types.
As an example, Java 5 provided two methods called add in the class
javax.naming.directory.Attribute that would return either void
or boolean (RAMA; KAK| 2015).

It is based on three name-abuse patterns listed by Rama and
Kak (RAMA; KAK, 2015) which prescribes how to obtain the cano-
nical forms of the functions identifiers and, from there, to generate a
list of confusing function names. The greater the number of confusing
names, the lesser tends to be the metric score. For instance, functions’
names that only differ by numbers inserted at the end of their identifi-
ers like writeByteArray and writeByteArray2 may confuse the API
users (RAMA; KAK| 2015)).

It measures the extent to which semantically similar functions are grou-
ped (e.g., in the same class) rather than dispersed. The semantic simi-
larity is defined based on keywords extracted from the function names;
for instance, functions called mergeMap, concatMap and switchMap
could all be considered semantically similar.

It assess the consistency in terms of parameter name ordering across
functions’ definitions. For example, for those API functions that share
at least two parameter identifiers, if those parameters all follow the
same order across the functions, this would result in a good score for
this metric.

It deals with the length of function parameter and the runs of parame-
ters of the same type. For example, across functions’ signatures, long
lists of parameters and sequences of parameters with the same data
type are likely to worsen the user experience and produce lower score
for the metric.

It examines the number of words contained in the functions' documen-
tation. The metric is based on a threshold, which defines a minimum
number of words for every function documentation.

It deals with the specialization and generalization of checked excepti-
ons. Specialized exceptions offer better usability than general ones for
APIs (RAMA; KAK, [2015)). So, the analyses revolve around an exami-
nation of the exception inheritance trees of exceptions declared by the
functions exposed by the API.

It measures the usability regarding thread safety by analyzing the set
of functions that have ‘thread’ or ‘safe’ in their declaration, more spe-
cifically in the documentation associated with the declaration, related
the overall set of functions made available by the API.

Source: RAMA; KAK| (2015)) and [VENIGALLA; CHIMALAKONDA| (2021))

40

3 MINING THE USAGE OF REACTIVE PROGRAMMING APIS ON GITHUB
AND STACK OVERFLOW

This Chapter presents the methods and results obtained trough the execution of the first
study pointed at Section [I.2] and depicted in the first half of Figure [T The study resulted in
a publication titled “Mining the Usage of Reactive Programming APIs"” which was presented
in the Mining Software Repositories Conference (ZIMMERLE et al., 2022)).

In this part of the thesis, we conducted a mining study on GitHub (GH) and Stack Overflow

(SO) hoping to answer the following (secondary) research questions:

= RQ1. How frequently are RP operators used in open-source projects, and what does

their usage reveal about usability and adoption?
= RQ1.1 How much are the Rx operators being used in open source projects?
» RQ2. What challenges are RP users facing, and how they relate to API usability?
= RQ2.1 What problems are RP developers facing?

» RQ2.2 How do the operators present in the most relevant Stack Overflow questions

and the usage frequency of Rx operators in open source projects relate?

To answer those questions, we explored the three Rxlibraries with the most [GH]repositories:
RxJava, RxJS, and RxSwift. Together, those libraries represent languages whose usage vary

extensively, including Ul, mobile, and web development.

3.1 METHODOLOGY

In this section, we explain how we mined [GH] repositories (Section [3.1.1]) and [SO| questions
and answers (Section [3.1.2)) to address the three, secondary research questions. In general, the

methodology applied to [GH| can be summarized as:

1. Search for [RX repositories applying the defined star filter and store the information.
2. Retrieve the repositories based on the stored information.

3. Search for [Rx operators within the download repositories (RQ1.1).

Conversely, the overall [SO] methodology follows the following stages:

41

1. Download Stack Exchange Data Explorer’s data using [R¥ libraries’ tags.
2. Remove duplicates and consolidate the result files.

3. Preprocess posts.

4. Run LDA followed by topics’ inference (RQ2.1).

5. Determine topics’ relevance (popularity and difficulty) and search for operators among the

posts (RQ2.2).

Both Sections [3.1.1] and [3.1.2] access lists of operators of the different R libraries under

analysis, and those lists were created by scraping official repositories of the distributions. The
operators of RxJava and RxJS were extracted from their repositories on [GH[}, while the ones
from RxSwift were taken from the website{f]. By the time of the last scraping (September
27, 2021), the libraries were in the versions: 3.1.1 (RxJava), 7.3.0 (RxJS), and 5.1.1 (RxSwift).

3.1.1 GitHub Mining

We used the [GH|[API, which accounts for almost 40% of the solutions used in the mi-
ning field (COSENTINO; IZQUIERDO; CABOT), [2016) and allows to acquire repository data and
metadata as well as commit messages, pull request information, etc. Researchers should take
into account that many [GH| repositories are merely used to other concerns beside software
development like storing personal data and (possibly inactive) repositories (KALLIAMVAKOU
et al., 2016). Social features like stars were used as a selection filter previously (WEN et al,,
2020; XU et al., 2020) as an indicative of a repository's popularity and a favoring factor among
developers. Thus, we used it to exclude potentially unimportant repositories. Following other
approaches (WEN et al., [2020; HENKEL et al., 2020)), we set the exclusion threshold to consider
repositories that have 10 or more stars. Table [2] column Repositories, outlines the total of
repositories using the five most used Rx libraries along with the total of projects with zero stars
and those with 10 or more stars. One can verify that repositories with 0 stars, and presumably
low popularity, account for a big share of each library’s total, supporting our choice of using

stars as a filter.

1 <https://github.com /ReactiveX /RxJava /wiki/Operator-Matrix>
2 |<https://github.com /ReactiveX /rxjs/blob/master/docs_app/content/guide/operators.md>
3 <https://reactivex.io/documentation/operators.html>

https://github.com/ReactiveX/RxJava/wiki/Operator-Matrix
https://github.com/ReactiveX/rxjs/blob/master/docs_app/content/guide/operators.md
https://reactivex.io/documentation/operators.html

42

Table 2 — Information on the repositories using the five most used Rx libraries and the mined ones along with
their star information, sorted by their total.

Library Repositories Mined Repositories
Total Stars Total Stars
=0 > 10 Min Max Median

RxJava 16,394 10,885 1,450 1,430 10 10,404 43
RxJS 16,380 12,740 818 797 10 16,835 30
RxSwift 5505 3,833 402 401 10 13,644 37
RxKotlin 626 369 78 - - - -
RxDart 493 274 73 - - - -

Note: Last updated on Jan 7, 2022.
Source: Elaborated by the author (2022)

The selection of the projects to be mined took into consideration the most used libraries. As
depicted in Table[2, column Repositories, RxJava has the highest share of projects followed by
RxJS and RxSwift. Considering the defined star filter (> 10) and aiming to obtain a significant
sample size (>100), we decided to select the first three libraries (RxJava, RxJS and RxSwift).
RxKotlin and RxDart were initially being considered to be included in the study but they would
produce a small sample (<100 projects). Furthermore, RxKotlin takes most of its operators
from RxJava, with only a small portion reserved for extension functions as delineated in its
pagtﬂ Consequently, those libraries would not truly contribute to the study’s objectives.

The actual sample size used corresponded to the de facto population of repositories with
> 10 stars for each investigated library. We selected the entire population willing not to incur
in sampling errors and not to be unfair when defining a specific sample size for the three
libraries when the population of dependent repositories has different dimensions.

The first step in our workflow was to look for [RY repositories, by using the name of the
[RA libraries, along with the defined star filter. This search was then conducted by leveraging
the ‘search repositories’ feature from the [GH|[API| Afterwards, with that information saved in

JavaScript Object Notation (JSON)| files, we executed a script to download the repositories

as tarball files. Given that it would not be feasible to store all the tarball files with our scripts
for future replications, we stored the information about the downloaded files in a [JSON] file
containing sufficient information to acquire them (e.g., a URL to download the file having
the SHAL hash of last commit already set) as well as details about the repository that file

belongs to. This script took into consideration the exclusion of repositories that belong to

* <https://github.com/ReactiveX /RxKotlin>

https://github.com/ReactiveX/RxKotlin

43

official ReactiveX users’| such as ‘ReactiveX’ or ‘Reactive-Extensions’. The information about
the retrieved and processed repositories is displayed in Table , column Mined Repositorieﬂ
Having the downloaded repositories, a final script was executed to search for the [Rx operators
among the project files. The search was conducted by using a regular expression (regex),
looking for operator invocations, either method (for method chaining pattern found in RxJava
and RxSwift, for instance) or function (for function used with RxJS pipe method) calls. Before
the actual counting for operators, a series of filters were used. First, a file extension filter to
consider only files linked to each libraries’ language. Second, we checked whether the file
had any mention to the Rx distribution considered at that moment, which would correspond
to some kind of import of the library in the file. Finally, we removed strings and comments of
every file to avoid false positives from those constructs.

Similar operators of other APIls. A few operators like map and filter are often found
in other like the ones that deal with collections. In this way, there was a chance of
introducing false positives coming from those interfaces; however, the probability of such
occurrences should be very low. Libraries like [RX can wrap any type of value available in the
target language (there are many creational methods for that purpose in the [API), so the
program works as a composition of those streams of values. In this way, it reduces the need
to invoking methods from other libraries (e.g., Java java.util.stream). In fact, we checked
Java files (the language with more mined projects — Table that imported RxJava along with
other Collection-like libraries: Java Stream:ﬂ Eclipse CoIIectionsﬂ Apache’s CollectionUtiIﬂ
and Guava's CoIIectionsZE]. Results showed only 156 files out of 14,377, i.e., 1.09%. A random
sample of 16 (~10%) of those files (i.e., 156) yielded 62% of actual Rx operators, that is the
great majority.

Forks. By including repositories with their forks or sibling forks, there was a chance of inflating
the counting for a specific operator. In this manner, we checked if there was a fork among
the investigated repositories and if either the parent was also present or there was a sibling

in the set. Fortunately, by running a script, there was no such cases; instead, there was a

5 The list of official @] users can be obtained by inspecting the URLs in |<https://reactivex.io/languag
es.html>|

We were not able to retrieve the following project due to file corruption: [<https://github.com/zwacky/ga
me-music-player>|

< https://docs.oracle.com/javase/8/docs/api/java/util /stream /Stream.html>.

<https://github.com /eclipse/eclipse-collections>.

< https://commons.apache.org/proper/commons-collections/apidocs/org /apache/commons/collections4
/CollectionUtils.html>

10 l<https://guava.dev/releases/23.0/api/docs/com /google /common /collect / Collections2.htmI>.

https://reactivex.io/languages.html
https://reactivex.io/languages.html
https://github.com/zwacky/game-music-player
https://github.com/zwacky/game-music-player
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://github.com/eclipse/eclipse-collections
https://commons.apache.org/proper/commons-collections/apidocs/org/apache/commons/collections4/CollectionUtils.html
https://commons.apache.org/proper/commons-collections/apidocs/org/apache/commons/collections4/CollectionUtils.html
https://guava.dev/releases/23.0/api/docs/com/google/common/collect/Collections2.html

44

few instances of repositories not available anymore: 28 (RxJava), 23 (RxJS), and 7 (RxSwift).
Since we cannot retrieve information of those missing repositories anymore, they could fit the
fork cases. However, even if they were in fact forks, they only account for 1.96%, 2.88%, and

1.75%, respectively; in other words, there was little or no impact in terms of fork influence.

3.1.2 Stack Overflow Mining

The mining activities on Were divided into two stages: topic modeling (Sections|3.1.2.1])
and the definition of topics’ relevance ((3.1.2.2)). Both stages use data collected via the
[Exchange Data Explorer (SEDE)}Y] one of the many tools to acquire data already used in

existing work (REBOUCAS et al., 2016} [TAHIR et al., 2020). To have as much data as possible, we

leveraged both questions and accepted answers, following|/Ahmed and Bagherzadeh| (2018)) and
Bajaj, Pattabiraman and Mesbah| (2014)). We pulled questions, and their respective accepted
answers, with the following tags: ‘rx-java’, ‘rx-java2’, ‘rx-java3’, ‘rxjs’, ‘rxjs5’, ‘rxjs6’, ‘rxjs7’,
and ‘rx-swift’; those are the tags directly related to the Rx libraries considered in this work:
RxJava, RxJS, and RxSwift. Each query was executed separately for every tag and, afterwards,
the results were combined, with the duplicated entries removed. A total of 47,404 records were

fetched, with entries ranging from February 2011 to December 2021.

3.1.2.1 Topic Modeling

Topic modeling is a Natural Language Processing method based on the words' statistics

that can be used to summarize documents through a set of topics (BAJAJ; PATTABIRAMAN;

MESBAH, 2014)). [Latent Dirichlet Allocation (LDA)| on the other hand, is one of the most

commonly-used topic-modeling techniques (CAMPBELL; HINDLE; STROULIA, 2015, TREUDE;
WAGNER, 2019). It has been employed in many previous studies targetingdata (REBOUCAS
et al, [2016; AHMED; BAGHERZADEH, 2018; |ABDELLATIF et al., 2020). It allows a more mana-
geable overview of a large corpora of documents as it may be impractical to do a manual
inspection (REBOUCAS et al., 2016)).

Posts Extraction. Data acquired through the [SEDE| comes in CSV format. It contains infor-
mation about posts, such as titles, bodies, and types. For the purpose of this work, we initially

decided to work with the posts’ bodies. Working with the bodies gives us the opportunity to

11\ <https://data.stackexchange.com />

https://data.stackexchange.com/

45

extract code snippets and help with other phases of the research (Section . Nonethe-
less, we observed that some posts, either questions or accepted answers, after going through
data preprocessing, were becoming too small to offer any intuition about the context of the
post for future analysis; examples include the question #65813454/ and the accepted answer
#41908578. Therefore, based on Han et al.[(2020)) and |Han et al.| (2017)), we mixed both title
and body of the posts. For accepted answers, the titles of their respective questions were used
to compose the effective post’s text.

Data Preprocessing. A number of filters are commonly applied to documents before feeding
them into the for processing. We removed the following elements, based on (AHMED;
BAGHERZADEH, 2018; REBOUCAS et al., [2016; [TREUDE; WAGNER), 2019 HAN et al., 2020): (1)
code snippets, i.e. content inside <code>, <pre>, and <blockquotes>, (2) HTML tags, (3)
Line breaks and sequence of whitespaces, (4) URLs, (5) one-letter words, (6) stop words, like
an and /, (7) numbers, (8) punctuation marks, (9) non-alphabetical characters. Furthermore,
we applied stemming (Snowball stemmer)(ALLAMANIS; SUTTON, 2013} CAMPBELL; HINDLE;
STROULIA, 2015) to the remaining words (i.e., mapping the words to their root form) and
removed common and uncommon words (i.e., words occurring in less than five posts or in
more than 90% of those, respectively) (CAMPBELL; HINDLE; STROULIA| 2015). After a few
executions, we also decided to drop common [SO| words such as ‘answer’, ‘question’, ‘help’,
and ‘solut’.

LDA Execution. For the |LDA| execution, we leveraged the NLPE library, which offers many
machine learning and natural language processing algorithms. One of the key points in [LDA|
usage is to find the appropriate number of topics (ABDELLATIF et al,, |2020). As noted by
Han et al|(2020), the exact quantity can impact the granularity of the result, yielding a too
specific outcome, in case of a high number, or a too generic one, otherwise (ABDELLATIF
et al, 2020). A common approach when deciding the number of topics is to vary this num-
ber (REBOUCAS et al., [2016; ABDELLATIF et al., 2020) and determine the most coherent result
either by manual inspection (REBOUCAS et al., | 2016, |AHMED; BAGHERZADEH, [2018)) or by some
metric (ABDELLATIF et al., 2020)) like coherence. Following |Reboucas et al.|(2016), we varied
the number of topics between 10 and 35 and manually inspected the results. To help in the
process, we also relied on the perplexity metric (TREUDE; WAGNER, 2019), which can be used
to get some intuition about a possible good model fit. This metric tends become smaller as

the number of topics grows (AGRAWAL; FU; MENZIES, [2018)), i.e., smaller values usually indi-

12 <https:/ /github.com /james-bowman /nlp>

https://stackoverflow.com/q/65813454
https://stackoverflow.com/a/41908578
https://github.com/james-bowman/nlp

46

cate better models. However, the correspondence of good model fit and human assessment do
not always correlate (TREUDE; WAGNER, 2019). Thus, we looked for outcomes yielding small
improvements in perplexity with a different number of topics, but ultimately used the manual
inspection to assess the results. Finally, we experimented with two combinations of values
for hyperparameters: « = 50/k, f = 0.01 (AHMED; BAGHERZADEH, [2018; ROSEN; SHIHAB,
2016)—k denotes the number of topics—and a = = 0.01 (CAMPBELL; HINDLE; STROULIA,
2015; RODRIGUEZ; WANG; KUANG, 2018). The first combination is a common one used in other
studies but, conventional standards for parameters are not fit for GH and SO texts (TREUDE;
WAGNER, 2019). After a series of try-outs, the computed result with 23 topics, 1,000 iterations
and a = 8 = 0.01 showed the most coherent outcome.

Topic Inference. Topics produced by [LDA| correspond to a set of words and their proportion,
with the name or label left to be inferred by who is applying the algorithm. To aid in this task,
we resorted to the open card sorting technique (AHMED; BAGHERZADEH, 2018; /ABDELLATIF et
al., 2020; ROSEN; SHIHAB, 2016)), which consists of analyzing the top words of a given topic
and inspecting posts chosen randomly that have the topic as their dominant one (AHMED;
BAGHERZADEH, [2018)). The researchers analyzed the top 20 words and 15 random posts; each
examiner labeled the topics individually and jointly discussed results supported by a mediator

(a third researcher) to reach agreement when needed.

3.1.2.2 Defining Topic Relevance

In this study, we consider a topic as relevant based on its popularity and difficulty. To mea-
sure it, different metrics can be used. Popularity, for instance, can be calculated by taking the
average value of three measures (ABDELLATIF et al., 2020; |AHMED; BAGHERZADEH, [2018)):
(1) View, (2) Favorites, and (3) Score. Thus, a topic with high average view, favorites, and
score is considered popular. Difficulty, conversely, has two metrics commonly employed (ABDEL-
LATIF et al}, [2020; /AHMED; BAGHERZADEH, [2018; [ROSEN; SHIHAB| 2016)): (1) the percentage
of questions with no accepted answer and (2) the median time it takes for an answer to be
considered accepted; the time is calculated based on the creation dates found in the accep-
ted answer and its respective question post (ROSEN; SHIHAB| 2016). As noted by Ahmed and
Bagherzadeh| (2018), topics showing a high rate of questions without answers and taking more
time to get accepted answers are intuitively harder. Hence, the aforementioned metrics are

also exploited in the study.

47

Additionally, aiming to find operators’ occurrences among the [SO| posts, we conducted a
search throughout the questions and accepted answers used in Section [3.1.2.1] This search is
carried out to delineate a correlation between the most relevant topics and the usage frequency
of [RX| operators (considered in Section [3.1.1)), the objective of RQ2.2. To access the code
snippets, we extracted the contents inside the tags <code> of [SO| posts. As opposed to
Section [3.1.2.1], we did not regard the <blockquote> and <pre> tags since <blockquote> is
often used to include stack traces instead (RODRIGUEZ; WANG; KUANG, 2018) and <pre> is
usually applied to add formatting to <code>. Also, like Section [3.1.1] we removed comments
and strings. The search in turn relied on a regex that either looked for the operator name
or the operator invocation. The examination of only the operator name is necessary since,
many times, text inside the <code> tag is used only to highlight a construct without actually

showing its usage (e.g., post #40811273).

3.2 RESULTS

This section is organized according to secondary research questions (RQ1.1 - RQ2.2).

3.2.1 RQ1.1: How much are the Rx operators being used in open source projects?

To elaborate the results, we relied on the usage frequency of the operators from RxJava,
RxJS, and RxSwift as detailed in Section [3.1.1] Figure [3] presents the percentage of operators’
utilization according to their library. We can observe that the majority of operators are actually
in current use. The greatest exception among the three libraries was RxJava presenting 94.1%
(223 operators) of usage but 5.9% (14) of its 237 operators not actually being used in the
GitHub projects of our sample. RxJS and RxSwift, on the other hand, presented 100% and
98.5% of employment of their 113 and 66 operators, respectively. Nonetheless, in general, the
libraries showed a good measure of utilization. This fact is even more clear when combining
the operators (merging those alike) and their frequencies from all three libraries and computing
the percentage of utilization: 95.2% of general utilization. Thus, although Rx provides a great
number of operators scattered through its different libraries, those operations showed a very
considerable rate of utilization. From the 14 non-used operators of RxJava, we could notice that

half were operators related to Java's concurrency API CompletionStageE whose support was

13 <https://docs.oracle.com/javase/8/docs/api/java/ util /concurrent/CompletionStage.htm|>

https://stackoverflow.com/q/40811273
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

48

added in RxJava 3 (released on February, 2020). This may indicate that either the developers
did not have time to use the feature yet or did not find a useful situation to apply it.
Figure[d] B, and [6] depict the most and least frequently used operators in RxJava, RxJS, and
RxSwift, respectively. For simplicity, we included only the 15 most and least utilized ones and
removed those not in use. The complete list according to their frequency is available online.
By inspecting the charts with the most used operators, one can perceive the occurrence of
subscribe as one of the most utilized operators in the three libraries. This correlates to
its importance in controlling the stream lifecycle. The stream becomes indeed active only
when subscribed, given its lazy evaluation principle. Curiously, map is the most intensively
used operator in RxSwift. Still, map is certainly an important transforming operator, and
that can be evidenced by its presence in the list of most frequently used operators of the
three libraries. Along with map, one can perceive the presence of other common functional
operators like any, filter, and reduce. Concerning the creation operators, we can note
that just and its equivalent of are one of the most present. It allows the creation of a
one-element stream and can be useful for the construction of business logic that expects the
emission of a single element in their composition. Apart from RxJava, there were few operators
related to error handling/testing. In summary, the most frequently used operator comprises all
categoried™| of operators such as creation (of, from), transforming (map, flatMap), filtering
(take, takeUntil), combining (merge, zip), among others. A pattern that we could noticed is
that the majority of the most used operations are largely composed of Rx core operators (e.g.,
concat, filter, map, etc.). The least frequently used, on the contrary, are mostly formed
by library-specific variants (e.g., concatMapSingle, concatMapMaybe, mapWithIndex, etc.)
which comprises all types of operators. An exception in the set of least utilized ones is the
presence of core operators buffer and, specially, window (and some of its variants such
as windowTime, windowToggle, and windowWhen). These correspond to an important class
of operators since some computations require the accumulation of stream elements before
execution. Table [3] presents a different perspective for the most used operators in the three
libraries. It shows the average usage per analyzed repository. Those statistics indicate that
even thought the operators have shown relative high frequencies, they are probably being used
more in some projects than others (i.e., in an irregular way). A final worth observation is the
scale of the least used RxJava operators. Its 15 least used operators did not exceed the limit

of 10 usages, which is likely linked to its extensive APl. However, when collecting operators

14 Categories based on <https://reactivex.io/documentation /operators.html>.

https://reactivex.io/documentation/operators.html

49

with <50 uses throughout the analyzed projects, we could notice that RxJS presented the

greatest percentage, corresponding to ~32% of its operators against ~22% from RxJava and

only ~7.5% from RxSwift.

Figure 3 — Percentage of operators’ utilization per Rx library.

100%
50%
0%
RxJava
[Being used

RxJs

Mot being used

RxSwift

Source: Elaborated by the author (2022)

The great majority of Rx operators are being utilized in the libraries RxJava (94.1%),
RxJS (100%), and RxSwift (98.5%). This percentage comes to 95.2% when merging the

operators and their usage frequency from all three libraries. Finding 1

Only RxJava presented more than one operator not being utilized (=6%). Finding 2

3

subscribe appears as the most frequently used operation in two Rx libraries: RxJava and

RxJS. Yet, it is the second most used in RxSwift, only behind the map operator. Finding

in all libraries. Finding 4

Functional operators, like any, filter, and map, figure among the most used operators

Figure 4 — The most and least frequently used operators of RxJava.

subscribe
create

just

test

never

map
subscribeOn
observeOn
error

range
isEmpty

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

concatMapMaybeDelayError
concatMapSingle
concatMapSingleDelayError
cacheWithinitialCapacity
toCompletionStage
concatMapMaybe

tArrayEag yError
concatMapCompletable
flatMapStream
switchMapSingleDelayError
switchMapCompletable
switchMapCompletableDelayError
switchMapMaybe
switchMapMaybeDelayError
startWithltem

0 2 4 6 8 10

(a) 15 most used

(b) 15 least used

Source: Elaborated by the author (2022)

50

Figure 5 — The most and least frequently used operators of RxJS.

subscribe
map

of

filter
concat
from
take

tap

find
switchMap
merge
reduce
mergeMap N
takeUntil
fromEvent

2000 4000 6000 8000 10000 12000 14000

mergeScan
distinctUntilKeyChanged
windowTime
windowToggle
concatMapTo
window
windowWhen

iif

exhaust
swilchAll
timelnterval
skipLast
combineLatestAll
exhaustAll
switchScan

(a) 15 most used

(b) 15 least used

Source: Elaborated by the author (2022)

Figure 6 — The most and least frequently used operators of RxSwift.

combineLatest [
em
zip —
flatMap —
filter —
observeOn
merge
distinetUntilChanged N
startWith
takeUntil
from Bl

0 5000 10000 15000 20000 25000

mapWithindex | —
elementAt IE—
generate ——
delaySubscription

repeatElement EEE—
takeWhileWithindex I
toObservable |
skipWhileWithindex I—————
failWith
sequenceOf |

1] 20 40 60 80 100

120

(a) 15 most used

(b) 15 least used

Source: Elaborated by the author (2022)

Except for RxJava, there were few operators related to error handling/testing among the

most used ones. Finding 5

The most used operators mainly comprise core operators, while the least used ones are

essentially composed of core variants. An exception to that observation was the presence

of core operators like buffer and, specially, window (and its variants like windowTime,

windowToggle, and windowWhen). Finding 6

All 15 least used operators of RxJava showed less than or equal to 10 usages. However,

RxJS presented the greatest percentage of operators with <50 usages (=32%). Finding

7

3.2.2 RQ2.1: What problems are RP developers facing?

As denoted in Section [3.1.2] we used the [LDA] topic modeling technique to uncover the

problems, in a topic format, that reactive programming developers are facing. Table [4] presents

51

Table 3 — Average usage of the 15 most frequently used operators per analyzed repository.

RxJava RxJS RxSwift

subscribe (13.0) subscribe (16.7) map (62.0)

create (8.6) map (14.7) subscribe (36.6)
just (6.5) of (5.3) create (19.9)

test (5.5) filter (5.0) just (19.2)

never (3.3) concat (3.6) combinelLatest (10.4)
map (2.8) from (2.7) empty (10.2)
subscribeOn (2.6) take (2.2) zip (8.8)

observeOn (2.5) tap (2.2) flatMap (8.5)

error (2.4) find (2.1) filter (6.9)

any (2.3) switchMap (1.6) observeOn (6.7)
compose (1.9) merge (1.5) merge (6.0)

empty (1.8) reduce (1.4) distinctUntilChanged (4.3)
flatMap (1.7) mergeMap (1.2) startWith (4.0)
range (1.6) takeUntil (0.9) takeUntil (3.2)

isEmpty (1.6)

fromEvent (0.9)

from (3.1)

Note: Average usage shown in parentheses.

Source: Elaborated by the author (2022)

the 23 generated topics with the inferred labels and sorted by their number of posts. From
the result, we can observe that the generated topics truly correspond to important matters
that reactive programmers face daily. For example, the first two topics with the most posts
are related to stream abstraction. We can also note presence of Concurrency, an important
intrinsic concept in reactive programming given that its pipeline model allows the exploration of
an asynchronous and non-blocking execution and the efficient use of threads (BONER; KLANG,
2017)), either directly (as by schedulers in RxJava) or indirectly. One can also visualize elements
revolving Ul, a field from where most of the reactive programming research came from by the
developing of the Fran language (BAINOMUGISHA et al., 2013). We grouped those topics under
nine categories and briefly discuss each one.

Stream Abstraction (6 topics, 36.4% posts). This category encompasses six topics related
to the stream abstraction (i.e., the main resource to structure the reactive logic): Stream
Manipulation, Stream Creation and Composition, Stream Lifecycle, Timing, Multicasting, and
Control Flow. Together, their posts account for 36.4% of the total of analyzed posts with the
first two topics showing the biggest share (Table . Under the topic Stream Manipulation, for

instance, there were many questions related to Observable — the main stream type in [R{ -

52

Table 4 — Topics ordered by their number of posts.

Topic # Posts % Posts Category

Stream Manipulation 6334 13.5 Stream Abstraction
Stream Creation and Composition 4872 10.3 Stream Abstraction
Array Manipulation 3146 6.6 Programming

Web Development 3049 6.4 Application Development
Data Access 2680 5.7 Persistence

Android Development 2551 5.4 Application Development
Concurrency 2251 4.7 Concurrency

HTTP Handling 2243 4.7 Networking

Stream Lifecycle 2141 4.5 Stream Abstraction
Error Handling 1825 3.8 Reliability

Timing 1813 3.8 Stream Abstraction

Ul for Web-based Systems 1791 3.8 User Interface
Dependency Management 1710 3.6 Application Development
Typing and Correctness 1578 3.3 Programming

iOS Development 1536 3.2 Application Development
Multicasting 1305 2.8 Stream Abstraction
REST API Calls 1231 2.6 Networking

Testing and Debugging 1219 2.6 Reliability

State Management and JavaScript 1183 2.5 Application Development
Input Validation 1087 2.3 User Interface

Control Flow 735 1.6 Stream Abstraction
General Programming 588 1.2 Programming
Introductory Questions 486 1.0 Basics

Note: 47,404 posts in total.
Source: Elaborated by the author (2022)

handling like converting it, accessing and passing values to it, returning it, among others. For
example, [#48601357 asks “..convert Observable<string[]> into Observable<string>" while
#56610867 deals with “A more succinct way to conditionally chain multiple observables.”
Having this topic as the one with the higher number of posts is probably due to the shift that
developers should face while structuring their code as compositions of streams. The second
topic with more posts, Stream Creation and Composition, is very related to the first one and
surprisingly showed many operators in their LDA top words, such as ‘combin’, ‘merg’, and
‘combinelatest’. | #38067532 is a typical example of questions found in this topic where the
author asks about “Combining two different observables.” The remaining topics cover other

matter intrinsic to streams, like the use of time handling/control flow operations, subscribing

https://stackoverflow.com/q/48601357
https://stackoverflow.com/q/56610867
https://stackoverflow.com/q/38067532

53

and unsubscribing (i.e., lifecycle), the different types of stream “temperature” (hot or coIdE]),
or the proper usage of Subject'q

Application Development (5 topics, 21.2% posts). This category combines problems
related to application development in general, totaling five topics. The addition of those topics’
posts yields a share of 21.2% of all study’s posts. From the posts in this category, we have
42.2% about Web development (considering Web Development and State Management and
JavaScript together) and 40.8% about mobile development (Android Development and iOS
Development). Most of the web development topics revolves around the Angular framework
which is expected given that Angular both use RxJS internally and also makes it available
to be utilized as part of its IibraryE]. Others, conversely, deal with state management, an
important matter in nowadays JavaScript frameworks. In this regard, we have many mentions
to the Redux-Observable (a Redux middleware) and, specially, NgRx (state management for
Angular based on RxJS). In the mobile development, more posts linked to Android than iOS
appeared, even though we did not include any [SOJ tags related to RxKotlin or RxAndroid
(RxJava bindings for Android). In the iOS posts, we could observe a prevalence of questions
related to patterns embracing view models like MVVM (Model-View-ViewModel). The Android
ones, on the contrary, included many questions about using RxJava with some framework or
library like Retrofit (an client). The remaining posts within this category, curiously,
related to dependency management problems like in | #45516375 where the author complains
about “Problems with .maps and import 'rxjs/add/operator/map'” or #46692177 with the
issue “RXJS Observable missing definitions.”

Programming (3 topics, 11.2% posts). Three topics are classified under this category:
Array Manipulation, Typing and Correctness, and General Programming. The three topics
represent 11.2% of the investigated posts, with Array Manipulation comprising most of the
posts (59%), as expected. Dealing with stream manipulation often requires the conversion to
or from an array (e.g., the toArray operator from RxJS) or even the accumulation of elements
in arrays (the case of buffer operator) given that streams can be seen as a sequence of events.
In #58657165, for example, the user complains “Can not get array of Observables.” Other

questions in the Array Manipulation revolved around manipulating collections of Observables

15 Cold streams are those that produce data based on each subscription. Hot ones, on the other hand, do not

depend on subscription to emit values and their values are normally produced from an outside source like
WebSockets.

An alternative to [Rx| Observable that is hot in nature (i.e., multicasting)
<https://blog.angular-university.io /functional-reactive-programming-for-angular-2-developers-rxjs-and
-observables/>

16
17

https://stackoverflow.com/q/45516375
https://stackoverflow.com/q/46692177
https://stackoverflow.com/q/58657165
https://blog.angular-university.io/functional-reactive-programming-for-angular-2-developers-rxjs-and-observables/
https://blog.angular-university.io/functional-reactive-programming-for-angular-2-developers-rxjs-and-observables/

54

(streams) or the use of common collection-like functions (e.g., filter). The posts under
Typing and Correctness entered this category since they mostly show problems of type systems
like “Property 'forEach' does not exist on type 'Object'”(#46352289) or “Type 'Observable<
| T>"is not assignable to type 'Observable<T>""(#45273084). The rest of the posts under
this category were classified as General Programming, given that they discuss primarily about
handling of common programming constructs like objects, variables, null values, etc.

Networking (2 topics, 7.33%). The two topics under this category involve networking dis-

cussion, specifically targeting the exploration of [HT TP| handling and [Representational State]
[Transfer (REST)[|API|calls. A variation of discussions can be found in the topic(HT TP|Handling

which is the one with more posts. Some of them involve how to better manage concurrent re-
quests and parallelism with the [RP] libraries (e.g., #56827462, #46047713, and #55558277).
Another important aspect regarded asynchronous handling and orchestration with [RP]. A post
(#54518039), for instance, was asking for a way to cache various HTTP responses using
RxJS to improve performance and avoid redundant network calls. Others considered ways to
cancel ongoing requests (#51620217), wait for emissions before requests (#64460331), and
coordinate asynchronous events (#34287143). An interesting observation was the presence of
error handling in network posts (e.g., #40348516 and #57084311) besides the ones included
in the Reliability category; having those types of posts is actually expected given the unreliabi-
lity of distributed systems (KLEPPMANN, 2017). Additional posts under this topic include: (1)
Observable behavior and Subscription issues (e.g., #69636272 and #43785009), (2) Cor-
rect combination of [RP| with asynchronous constructs like [JS| fetch/Promise (#34512605),
and (3) A lot of posts regarding Angular and Angular Interceptorﬂ (e.g., #64807519,
#56773770, #52947944). The posts of the topic calls are very close to the ones
observed in [HTTP] Handling, but they mostly concentrate on [API]| Calls. #59903679 tries
to discover how to ensure consistent calls and data flow, while #66418261 deals with how
to minimize redundant calls. Error handling again was present among the discussions (e.g.,
#60093320 and #56040946). We noticed the presence of posts specifically related to ope-
rators like zip (#44840882 and #33793650); many posts in both topics actually relied on
the exploration of the flatMap variations (e.g., #69618448, #64460331, #51620217, and
#42888604). That demonstrates a frequent reliance on combination and dependency between

streams in networking solutions.

18 An Angular middleware that abstracts retrying, caching, logging, and authentication from [HTTP| requests
— |<https://angular.dev/guide/http/interceptors>.

https://stackoverflow.com/q/46352289
https://stackoverflow.com/q/45273084
https://stackoverflow.com/q/56827462
https://stackoverflow.com/q/46047713
https://stackoverflow.com/q/55558277
https://stackoverflow.com/q/54518039
https://stackoverflow.com/q/51620217
https://stackoverflow.com/q/64460331
https://stackoverflow.com/q/34287143
https://stackoverflow.com/q/40348516
https://stackoverflow.com/q/57084311
https://stackoverflow.com/q/69636272
https://stackoverflow.com/q/43785009
https://stackoverflow.com/q/34512605
https://stackoverflow.com/q/64807519
https://stackoverflow.com/q/56773770
https://stackoverflow.com/q/52947944
https://stackoverflow.com/q/59903679
https://stackoverflow.com/q/66418261
https://stackoverflow.com/q/60093320
https://stackoverflow.com/q/56040946
https://stackoverflow.com/q/44840882
https://stackoverflow.com/q/33793650
https://stackoverflow.com/q/69618448
https://stackoverflow.com/q/64460331
https://stackoverflow.com/q/51620217
https://stackoverflow.com/q/42888604
https://angular.dev/guide/http/interceptors

55

Reliability (2 topics, 6.42%). The category Reliability concerns topics that make software
more trustworthy like Error Handling and Testing and Debugging. The greatest topic, Error
Handling (~60%), mainly entails error handling aspects such as general error handling posts
(e.g., #45416105 and #59946361), propagation and interception of errors (#53773926 and
#44825585), error scenarios and debugging (#45750820 and #47972229), and handling error
in Angular applications (#41911205 and #49779279). For instance, there were many ques-
tions regarding retrying on error like the post asking “RxJava How to properly Resubscribe
onError” (#33072216); at least two posts (#42623002 and #48964735) presented soluti-
ons showing how to implement a backoff strategy with retry which [RX does not seem to
include by default but it can be implemented with its [API. A great majority of the posts
under Testing and Debugging specifically target testing; for example, we saw posts dealing
with unit testing reactive streams (e.g., #33896113 and #47989747), marble testing (e.g.,
#52081332 and #52707668), mocking (e.g., #52296336 and |#63111840), and testing is-
sues (e.g., #60690184 and #68535258). An interesting detail is the presence of marble testing
among the discussed subtopics; marble testing is a feature that allows easily simulating stream
data through an ASCII text version of marble diagrams (Section[2.2.1.3)). However, that is only
natively available in some [R¥ distributions like RxJS!°] Additionally, the topic included some
posts with respect to debugging and investigation of unexpected behaviors (e.g., #66749295,
#60756850, and #42280054).

User Interface (2 topics, 6.07%). User Interface is the last category that encompasses at
least two topics: Ul for Web-based Systems (62%) and Input Validation (38%). A great part of
the posts under Ul for Web-based Systems are linked to Angular framework, specially concer-
ning Async Pipe operatorEG] in Angular templates. In a summarized way, we observed (mostly
related to Angular) themes about Observable and Async pipe usage (e.g., #48346774 and
#68762721), managing change detection (e.g., #57744502 and #53483895), handling route
and navigation (e.g., #64822356 and #57115305), and data biding and template interaction
(e.g., #47850488 and #41548035). There were, however, some posts beyond Angular like the
post asking for “How to connect RxJs to React component” (#47832845) or “Retry a call with
Retrofit 2 and RxJava2 after displaying a dialog” (#47672224). The Input Validation topic,
on the other hand, concentrate on input and form validation (e.g., #62316601, #46258130,

19 However, there are ports for RxJava and Rx.NET| for instance.
20 Angular Pipes

https://stackoverflow.com/q/45416105
https://stackoverflow.com/a/59946361
https://stackoverflow.com/q/53773926
https://stackoverflow.com/q/44825585
https://stackoverflow.com/questions/45750820
https://stackoverflow.com/a/47972229
https://stackoverflow.com/a/41911205
https://stackoverflow.com/q/49779279
https://stackoverflow.com/a/33072216
https://stackoverflow.com/questions/42623002
https://stackoverflow.com/a/48964735
https://stackoverflow.com/q/33896113
https://stackoverflow.com/a/47989747
https://stackoverflow.com/q/52081332
https://stackoverflow.com/a/52707668
https://stackoverflow.com/a/52296336
https://stackoverflow.com/questions/63111840
https://stackoverflow.com/q/60690184
https://stackoverflow.com/q/68535258
https://stackoverflow.com/q/66749295
https://stackoverflow.com/q/60756850
https://stackoverflow.com/q/42280054
https://stackoverflow.com/q/48346774
https://stackoverflow.com/q/68762721
https://stackoverflow.com/q/57744502
https://stackoverflow.com/a/53483895
https://stackoverflow.com/q/64822356
https://stackoverflow.com/q/57115305
https://stackoverflow.com/q/47850488
https://stackoverflow.com/q/41548035
https://stackoverflow.com/q/47832845
https://stackoverflow.com/q/47672224
https://stackoverflow.com/q/62316601
https://stackoverflow.com/q/46258130
https://github.com/alexvictoor/MarbleTest4J
https://github.com/alexvictoor/MarbleTest.Net
https://angular.dev/guide/templates/pipes

56

and #64778172). There were posts related to how to filter, debouncdﬂ and implement se-
arch functionality as well as stream combination and transformation (e.g., [#56593091 and
#52741334) which can be used during input validation. Two operators were used re-
currently in posts (e.g., #50739211, #53724674, and #44934279): combineLatest and
debounceTime. An interesting post was given in #49423355 which involves the difference
between skipWhile and filter operators; both functions can be used to control and filter
stream emissions. Other posts under Input Validation comprise: managing HTTP Requests
(e.g., #53432096/ and #51989484), user input handling (e.g., #37273666 and #45651125),
and some posts related with testing Observables (e.g., #48855982 and #36681078).
Persistence (1 topic, 5.65%). This category includes the Data Access topic and a total of
2680 posts. The discussions focus on efficient data fetching, simplifying database reads/wri-
tes, avoiding duplication, and ensuring data integrity in reactive applications. Overall, posts
could be further categorized into: “data access and database operations” (e.g., #56853894,
#47976737, and #48244139), “data transformation and fetching” (e.g., #40535704, #46520090,
and #51870841) and “persistence integration” (e.g., #47474605 and #38900234). Among
the posts, many of them dealt with manipulation of lists like #48671171 and #51870841.
Concurrency (1 topic, 4.75%). Concurrency posts are under this category, comprising
4.75% of all questions and answers analyzed. A great part of the posts deal with managing
asynchronous tasks (e.g., #69206970 and #46541520), thread handling including scheduling
of tasks (e.g., #29998856 and #36907451), data combination (#46888172, and interaction
with native pool of threads (#43472947), and interruption of parallel execution (#63956012)
to cite a few. There were actually themes concerned with the controlling of stream emis-
sions including backpressure and flow control (e.g., #61224069, #66543084, #63117044).
Additionally, we observed discussions regarding Blocking Observables (e.g., #31882325 and
#48648156) which is a RxJava stream type that all of its operators are blockin@. A post
(#52407096) was particularly interested in how to simulate and test blocking operations in
RxJava using TestScheduler.

Basics (1 topic, 1.03%). The Basics category is the smallest category and it only encompas-
ses the topic Introductory Questions; this topic mainly covers posts regarding basic concepts

involving [RP| and the libraries. Typical examples in this category consist of posts asking about:

21 Debouncing is a controlling technique used to improve the handling of user input.
22 More information is available at <https://reactivex.io/RxJava/javadoc/rx/observables/BlockingObserva
ble.html>|

https://stackoverflow.com/q/64778172
https://stackoverflow.com/q/56593091
https://stackoverflow.com/q/52741334
https://stackoverflow.com/q/50739211
https://stackoverflow.com/q/53724674
https://stackoverflow.com/q/44934279
https://stackoverflow.com/q/49423355
https://stackoverflow.com/q/53432096
https://stackoverflow.com/q/51989484
https://stackoverflow.com/q/37273666
https://stackoverflow.com/q/45651125
https://stackoverflow.com/q/48855982
https://stackoverflow.com/q/36681078
https://stackoverflow.com/a/56853894
https://stackoverflow.com/q/47976737
https://stackoverflow.com/a/48244139
https://stackoverflow.com/a/40535704
https://stackoverflow.com/a/46520090
https://stackoverflow.com/q/51870841
https://stackoverflow.com/q/47474605
https://stackoverflow.com/a/38900234
https://stackoverflow.com/q/48671171
https://stackoverflow.com/q/51870841
https://stackoverflow.com/q/69206970
https://stackoverflow.com/q/46541520
https://stackoverflow.com/q/29998856
https://stackoverflow.com/a/36907451
https://stackoverflow.com/q/46888172
https://stackoverflow.com/a/43472947
https://stackoverflow.com/q/63956012
https://stackoverflow.com/q/61224069
https://stackoverflow.com/a/66543084
https://stackoverflow.com/a/63117044
https://stackoverflow.com/q/31882325
https://stackoverflow.com/a/48648156
https://stackoverflow.com/q/52407096
https://developer.mozilla.org/en-US/docs/Glossary/Debounce
https://reactivex.io/RxJava/javadoc/rx/observables/BlockingObservable.html
https://reactivex.io/RxJava/javadoc/rx/observables/BlockingObservable.html

57

= What [Rdis and its uses (#55596877);
= How to introduce [RP|into existing projects (#31046584);

= Recipes for common operations like branching, filtering, and caching (e.g., #53860839,
#36535716, and #64333692);

= Comparisons between operators (e.g., #69371484, #52861884, and #4888901@, Si-
milar|APIs|like the Flow interfaces in Java 9 (#46382341), and related tools (#283834829);

= Relation with web/Ul architectures and frameworks (e.g., #38013873).

Additionally, users sought answers regarding interoperations with event-driven/async
features like Event Emitters™] (#36999129) and listeners (#44833118). Interestingly, we also
noticed the presence of error-handling and logging posts (e.g., #30975462 and #62301086).

Reactive developers ask about a multitude of topics, like Stream Manipulation, Web De-

velopment, Concurrency Networking, etc., but with higher interest in problems regarding

the stream abstraction. Finding 8

The topics with more posts concern the stream abstraction, having Stream Manipulation
(13.5%) and Stream Creation and Composition (10.3%) occupying the first and second
places. Finding 9

Developers have asked less about basic matters as can be verified by the topics with fewer

posts: General Programming (1.2%) and Introductory Questions (1%). Finding 10

3.2.3 RQ2.2: How do the operators present in the most relevant Stack Overflow
questions and the usage frequency of Rx operators in open source projects

relate?

We considered a topic as relevant based on its popularity and difficulty. Table [5| shows the
popularity of the topics according to the average views, favorites, and scores of their questions.
Table [6] exhibits the difficulty of the topics according to their percentage of questions without

an accepted answer and median time taken to receive an accepted answer. Tables [5] and [6] are

23 This discussion touches an important aspect regarding the cancellation of a stream subscription in a more
composable, reactive way versus doing it manually in an imperative-like fashion. The former way is in fact
the most indicated way, by lead developers of@

24 An implementation of the Observer pattern.

https://stackoverflow.com/a/55596877
https://stackoverflow.com/q/31046584/
https://stackoverflow.com/a/53860839
https://stackoverflow.com/q/36535716
https://stackoverflow.com/a/64333692
https://stackoverflow.com/a/69371484
https://stackoverflow.com/q/52861884
https://stackoverflow.com/q/48889016
https://stackoverflow.com/q/46382341
https://stackoverflow.com/q/28834829
https://stackoverflow.com/q/38013873
https://stackoverflow.com/a/36999129
https://stackoverflow.com/q/44833118
https://stackoverflow.com/a/30975462
https://stackoverflow.com/a/62286877
https://benlesh.medium.com/rxjs-dont-unsubscribe-6753ed4fda87

58

respectively sorted by the average views and the percentage of questions without an accepted
answer.

The observation of Table 5| reveals that Dependency Management has the highest average
number of views, while Introductory Questions shows the greatest average favorite and score.
Hence, those topics are among the most popular ones. In contrast, Data Access exhibits
low average view, favorite, and popularity, thus it is among the least popular questions. The
topics in Table |§] in turn, show Dependency Management (highest rate of questions without
accepted answer) and iOS Development (greatest median time) among the most difficult
topics to answer. Conversely, Array Manipulation and Web Development are the easiest topics,
with the least percentage of questions with no accepted answer and median time in hours,
respectively.

Given that Dependency Management is classified as both popular and difficult, there are
three most relevant topics: Dependency Management, Introductory Questions, and iOS De-
velopment. Figure [7| shows the similarities between the operators gathered through the posts
of those topics and the ones collected in projects (Section according to the order
of their frequencies. This comparison was calculated based on the complement of Hamming
Distance (HEMMATI; BRIAND, 2010)). We can observe that very few operators share similarity
when considered their position based on their frequencies. By looking at the sample of the 15
most used operators in both the most relevant topics and the [GH| projects and disregarding
their order of appearance, we can notice many more matches as shown in Figure [8] Those
matches can be observed in Table [7] We can also notice many of the most frequent ones out
of the 15 most used in Figure [4] 5, and [f] also appearing in Table[7] Unsurprisingly, subscribe
shows high frequencies as in the case of Introductory Questions, with 200 occurrences for
RxJava posts. Well-known functional operators are also present, with some exhibiting great
frequencies like map with 811 (RxJS) and 833 (RxSwift) for Dependency Management and
iOS Development, respectively. Actually, this high frequency observed for map in RxSwift cor-
roborates the findings in Section [3.2.1] giving more credibility, where map was also the most
utilized operator in RxSwift. Also, following Section findings, most of the operators are
the ones considered as core; exceptions include, for example, the creation operator fromEvent

and the utility test method.

59

Table 5 — Topics' Popularity.

Topic Average
Views Favorites Scores

Dependency Management 3453.6 0.7 3.8
Web Development 2707.6 0.6 2.2
Stream Manipulation 2641.4 0.8 3.5
Typing and Correctness 2527.6 0.3 2.3
Stream Lifecycle 2503.1 1.1 4.2
Introductory Questions 2442 5 2.2 6.5
Multicasting 2369.9 1.1 3.9
Error Handling 2250.2 0.6 2.6
Control Flow 1923.0 0.4 2.2
Array Manipulation 1803.7 0.3 1.4
Android Development 1793.0 0.8 2.7
General Programming 1722.4 0.4 2.2
Ul for Web-based Systems 1659.8 0.4 1.7
iOS Development 1634.3 0.5 1.9
Input Validation 1489.7 0.3 14
HTTP Handling 1470.8 0.5 1.7
Timing 14547 0.4 2.1
Stream Creation and Composition 1421.9 0.5 2.3
REST API Calls 13415 0.4 1.3
Concurrency 1308.9 0.7 2.6
Testing and Debugging 1237.9 0.3 1.8
State Management and JavaScript 1137.8 0.4 1.6
Data Access 1102.5 0.3 1.3

Source: Elaborated by the author (2022)

Dependency Management and Introductory Questions are among the most popular topics
with the former having the greatest number of views and the latter presenting the highest
favorites and score, on average. Problems regarding Data Access figure among the least

popular. Finding 11

Posts concerning Dependency Management are amongst the most difficult questions. iOS

Development also figure as one of the most challenging topics, whereas Array Manipulation

and Web Development appear among the easiest ones. Finding 12

60

Table 6 — Topics' Difficulty

Topic

w/o Acc. Answer(%) Median Time(hr)

Dependency Management
Testing and Debugging
Multicasting

iOS Development

Android Development
Concurrency

Data Access

Ul for Web-based Systems
HTTP Handling

Error Handling

REST API Calls

Input Validation
Introductory Questions
Stream Lifecycle

Web Development
Control Flow

State Management and JavaScript
Timing

Stream Creation and Composition
Stream Manipulation
Typing and Correctness
General Programming

Array Manipulation

50.3
49.0
48.1
47.8
47.8
47.1
46.5
46.5
46.2
46.0
44.2
43.9
43.3
43.3
43.2
42.2
41.9
41.0
38.4
37.7
37.3
37.0
35.7

1.2
3.3
2.7
5.5
2.3
35
1.9
0.9
1.2
1.6
1.0
1.2
4.8
1.5
0.5
1.4
2.2
2.2
1.8
0.8
0.8
1.2
0.8

Source: Elaborated by the author (2022)

Although the usage frequency of operators of the most relevant SO topics and the GH
projects do not share much similarity when comparing the order of appearance according
to their frequency, the most frequently used operators of both sources showed a high

percentage of similarity when considering only their matches regardless of their frequency

position. Finding 13

The majority of the most frequently used operators in SO posts which share similarities

with the most frequently used operators in GH repositories is also mostly composed of core

operators. Finding 14

The least frequently used operators in SO showed small percentage of similarity when

compared to the least utilized ones in GH projects. Finding 15

61

Table 7 — Operators most frequently used in the most relevant SO topics matching the most frequently used
operators in GH projects.

Rx Library Operators
Dependency Introductory iOS Development
Management Questions

RxJava test (66) subscribe (200) subscribe (110)
subscribe (65) map (95) error (35)
create (37) create (72) create (32)
error (27) flatMap (63) observeOn (27)
map (23) just (39) subscribeOn (26)
flatMap (18) error (35) map (17)
any (16) subscribeOn (27) flatMap (13)
observeOn (13) test (26) test (10)

observeOn (21)

RxJS from (2311) subscribe (159) subscribe (71)
map (811) map (154) map (56)
subscribe (649) from (124) from (49)
of (644) of (82) of (36)
merge (263) switchMap (45) filter (13)
mergeMap (189) filter (44) tap (9)
find (185) merge (33)
filter (159) fromEvent (31)
switchMap (116) take (29)
take (107) mergeMap (23)
tap (91) concat (15)
fromEvent (86)

RxSwift from (15) map (24) map (833)
flatMap (10) subscribe (21) subscribe (733)
map (10) create (295)

subscribe (6)

combinelLatest (3)

observeOn (2)
create (1)
empty (1)
filter (1)

create (19)
filter (16)
flatMap (12)
just (4)
empty (3)
from (3)
startWith (3)

filter (291)

flatMap (290)

just (167)

from (139)
combinelatest (114)
observeOn (95)

empty (77)
distinctUntilChanged
(71)

Note: Operator's frequency in the SO posts shown in parentheses.
Source: Elaborated by the author (2022)

62

Figure 7 — Similarity between the operators from the most relevant SO topics and the ones from open source
projects based on their frequency position.

20%

10%

0%

Introductory Questions i0S Development Dependency Management

B FJava I Rx)S I R Swift

Source: Elaborated by the author (2022)

Figure 8 — Similarity between the 15 most frequently used operators in the most relevant SO topics and the
15 ones from open source projects regardless of their frequency position.

100%

80%

60%

40%

20%

0%

Introductory Questions i0S Development Dependency Management

B RJava I R:)Ss I RSwift

Source: Elaborated by the author (2022)

63

Figure 9 — Similarity between the 15 least frequently used operators in the most relevant SO topics and the
15 ones from open source projects regardless of their frequency position.

60%

40%

20%

0%

Introductory Questions i0S Development Dependency Management

B RJava I R:)Ss I RSwift

Source: Elaborated by the author (2022)

64

3.3 IMPLICATIONS

Developers. The findings delineated in Section [3.2.1| and [3.2.3| can serve as a start point

for those novice developers that are trying [RPl As noted, the great majority of the most
used operators both in open source projects and [SO| forum are mostly comprised of common
core operators. So, concentrating their efforts in some of those operators could facilitate their
learning path, with support from both platforms.

Maintainers. API call frequencies offer the opportunity for [API| designers to comprehend the
effects of [API| deprecation and direct efforts (ZHANG et al), [2020)). Although, the [RX operators
demonstrated a great usage (Section , some actually showed low frequency. Among the
RxJava operators, for instance, there were 14 (5.9%) with no usage and, of the 15 with lowest
usage, all demonstrated <10 calls. Besides, 32% and 22% correspond to the percentage of
RxJS and RxJava operations with <50 calls, respectively. This contrasts to others operators
displaying much more than 1,000 calls amongst the most used ones (Figure , , and |§[) This
give rise to a possible consideration of [API| reduction and the suggestion provided by some
researchers of shifting focus from specialization to core concepts (SALVANESCHI et al, [2017;
MOGK; SALVANESCHI; MEZINI|, 2018).

As exposed in Section [3.2.3, Dependency Management topic was both classified as po-
pular and difficult. This prompts a possible future evaluation to investigate why a topic that
represents only 3.6% of the posts is receiving both classifications. Among the posts we could
perceive, as noted in Section [3.2.2) many problems related to the building process, dependency
handling, imports, etc. Having Introductory Questions as one of the most popular topics is
possibly a sign that newcomers are showing interested in RP but may be encountering pro-
blems in the process of understanding it. Section detailed that users are looking for
a better comprehension of the technology, how to integrate it into existing codebases, and
recipes for common operators. However, as we dive into the posts, we start to witness concer-
ning accounts. In #36535716, for instance, the user states “| read a ton of literature about
the Rx and, on the one hand, everything is clear, but on the other hand nothing is clear.”
A similar statement is provided by #55596747: “l have read some articles on the internet
about RxJava in Order to have a better understanding of what it is but i'm still finding it
pretty hard to understand.” This perception of understanding problem is also extended to users
not comprehending the situation where [RP| would be best used (#31046584): “From most of

the tutorials | could read, | do not really see where rxjs would shine most.” Those facts are

https://stackoverflow.com/q/36535716
https://stackoverflow.com/q/55596747
https://stackoverflow.com/questions/31046584

65

showing that [RP| tools may be producing a general perception of tools that are hard to learn
and use. In fact, [Salvaneschi et al|(2017) detailed three points about [RP} collected through a
qualitative analysis, that may be very linked to this phenomenon: learning curve, higher level
of abstraction (reliance on the runtime), and connection to functional programming. Giving
that [RP] slightly changes the way that most programmers are used to design their programs, it
is paramount to provide good documentation and resources in order to enhance the usability
of such tools and [APId|

Researchers. [AP]| size is a valid concern, specially when usable should be easily me-
morizable (HENNING, 2009). From a cognitive perspective, memorizing things require extra
practice and only 25% of information remains in our minds after two days (HERMANS, [2021)),
so a long APl may in fact turn the learning process hard. However, deciding between general
and specialized is an active design process (OUSTERHOUT, [2018)), and many from
diverse paradigms suffer from huge sizes like the Java and .NET platform (MYERS; STYLOS,
2016)).

The findings discovered in Section [3.2.1] show that even though [RX owns an [AP]| that is
largely extended by its libraries, i.e., by the addition of many variants, we can conclude that
developers are actually using a large portion (>90%) of those operators, and from those, the
majority of the most used ones is composed by core operators (e.g., just, map, and filter).
However, a great part of those usage present low frequencies when compared the most used
operators. RxJava, for instance, exhibited low frequencies (<10) for its least used operations
and no frequency at all for 14 operators (5.9%). Also, both RxJS and RxJava have a lot of
operators with < 50 usages (32% and 22%); which represents a great difference in usage
when compared to the most used ones. Additionally, the core operators actually present a con-
siderable API surface (~70-80 operators (MOGK; SALVANESCHI; MEZINI, |2018; |SALVANESCHI,
2016)). Hence, by visiting the question suggested by Salvaneschi (2016]) “Do data flow langua-
ges provide a ‘simple enough’ solution for the common case without excessive proliferation of
overspecialised operators?”, from the perspective of RP|[APIS| it does seem that the interfaces
are suffering from overspecialization and even the simple enough solution, without a quality
supporting material (e.g., a good, complete documentation with examples and extensive, usage
guidance), may be making it difficult the life of [RP] users. It is our belief that designers
should utilize the outcomes provided in this research and revise the offered [API| surface. In
that process, they should evaluate which interface operators could be either removed or if a

set of operators could be generalized; in practice, they should assess how much complexity

66

is in fact avoided by keeping or removing some of their functionalities (OUSTERHOUT, [2018)).
Nonetheless, the removal may not be necessary as long as the designers identify a few set
of core features (possibly less than the list of core operators) and make the users aware of
only those; in this way, the effective complexity becomes the complexity of those frequently
used operators (OUSTERHOUT, [2018)). For instance, as a starting point, the three libraries

explored could use the set of operators listed in Table [8] which were taken from Table [7]

Table 8 — Suggestive initial set of operators to start with according to three APls explored.

RxJava RxJS RxSwift

subscribe subscribe subscribe

just of just

test from from

create merge combinelLatest

error find empty

map map map

flatMap mergeMap flatMap

any filter filter

observeOn switchMap observeOn

subscribeOn take create
tap startWith
fromEvent distinctUntilChanged
concat

Source: Elaborated by the author (2024)

In the same vein, the topic Introductory Questions figured as a popular one that could,
among various reasons (e.g., documentation (PICCIONI; FURIA; MEYER, [2013)), learning curve
and relation with (SALVANESCHI et al., 2017)), or diverse design decisions), also be
related to this [AP] surface. For example, in Section [3.2.2] there are examples of posts asking
about methods for expressing common operations and comparisons among operators. Future
studies could shed more light into Introductory Questions by, for instance, understanding its
temporal trends and technical challenges (BAJAJ; PATTABIRAMAN; MESBAH, |2014; KOCHHAR,
2016)).

An important observation taken from Table[f]is the presence of the Testing and Debugging
with the second highest percentage of question without an accepted answer. Moreover, from
the mining process, there seems to be few operators in this area. This prompt us to question

if this topic is showing relevance due to a lack of dedicated facilities for testing and debugging

67

or difficulty for using the [API, and, thus, preparing testable code. In theory, testing should not
be such an issue given that there is a separation of concerns of the main entities in the stream
model (i.e., producers and consumers of data and, in-between, a pipeline of pure functions)
which could facilitate the process. Mogk, Salvaneschi and Mezini (2018), for instance, report
no specific obstacles with testing in REScala. Besides, [RX offers schedulers and textual marble
diagrams for testing purposes to give more control over time and represent more easily stream
events, respectively. However, marble diagrams to simulate stream emissions is a feature that is
not implemented in every@ library. RxJSE]and RxSwif@ have native support, while RxJava's
users need to use a port for thatF_7]. Furthermore, for an effective testable code in the stream
model, it may require a certain discipline from developers (e.g., decouple stream parts properly,
keep pipeline functions free of side effects, etc.). It is our belief that a deeper understanding
of how code is tested, including a distributed setting (SALVANESCHI; DRECHSLER; MEZINI,
2013), and how they have actually been tested in projects is an important research endeavor;
that was in fact the effort of Vianna et al.|(2023) in the related area of data stream processing
applications.

For debugging reactive programming, conversely, the unsuitability of usual tools has already
been recognized (SALVANESCHI; MEZINI, [2016; IMOGK et al., [2018; BANKEN; MEIJER; GOUSIOS,
2018). Salvaneschi and Mezini (2016]) proposed a technique and tool (Reactive Debugging
and Reactive Inspector, respectively) to help visualizing the dataflow of the application, with
extensions to provide live programming (MOGK et al., 2018)). Cycle.jﬂ, a JavaScript functional
and reactive framework, also provides a similar tool for Internet browsers that can be used to
view the dataflow graph and, as a result, help the debugging and metal model process. The
lack of integration with usual debugging tools of common IDEs and browsers was actually
a downside for adoption of some RxJS debugging tools as pointed by |Alabor and Stolze
(2020)). Consequently, we believe that the area of Testing and Debugging constitutes a rich

and prominent direction for future exploration and investigation.

25 Testing RxJS Code with Marble Diagrams.

26 RxSwift unit tests.

27 <https://github.com /alexvictoor /MarbleTest4J>.
28 | <https://cycle.js.org/>

https://rxjs.dev/guide/testing/marble-testing
https://github.com/ReactiveX/RxSwift/blob/main/Documentation/UnitTests.md
https://github.com/alexvictoor/MarbleTest4J
https://cycle.js.org/

68

3.4 THREATS TO VALIDITY

Internal Validity. Internal validity may be described as aspects that could influence our out-
comes (ABDELLATIF et al., 2020)) or possible mistakes in execution and experiments (TREUDE;
WAGNER, 2019). To search foroperators, we looked through every file identifying by specific
file extensions (according to the language of the analyzed [R¥ distribution) and relied on the use
of regular expression (regex). By using a regex, this could indicate a threat concerning some
[R¥ operators that may have the same name as well-known functional operators like filter
and map. To reduce this threat, we checked if every inspected file had any mention to the
investigated libraries (e.g., rxjava or rxjs) which would correspond to some import of library’s
package in that specific document. Besides, we examined RxJava files, the library with most
mined projects, to verify how much false positives was possibly being introduced. In that case,
the number of files that could account for false positives was very low (1.09%) in which a
10% sample showed majoritively [RX operators (62%). The verification also extended to the
number of forks considered in the operators’ count, which showed no forks identified and only
a few projects that could not be verified due to unavailability. However, it is our belief that
future replications should strive to use alternative methods that diminish false positives like
the semantic tool explored in Xu et al. (2020). Finally, we also removed both comments and
strings, so code snippets inside those constructs would not be counted.

According to |Abdellatif et al. (2020), the choice of the optimal amount of topics for the
LDA| algorithm could constitute a threat since it is recognized as a difficult task and directly
impacts the quality of the generated [LDA|topics. To mitigate that possible threat, we followed
Abdellatif et al.| (2020) and Reboucas et al.| (2016)) by experimenting with a range of topics;
besides, we resorted to the Perplexity metric to aid the manual definition of the optimal
number of topics. Still according to |Abdellatif et al.| (2020)), the inference of the resulting
[LDA topics could also represent a threat given its subjectiveness. We countered this threat
by having more than one author evaluating the topics using the open card sort technique and
trying to reach some agreement afterwards, similar to the studies (ABDELLATIF et al., 2020;
AHMED; BAGHERZADEH, 2018).

External Validity. This validity refers to the generalization of our discoveries (CAMPBELL;
HINDLE; STROULIA|, 2015} /ABDELLATIF et al, 2020} [TREUDE; WAGNER), [2019)). The present work
focused on two prominent platforms, [GH| and [SO] Their widely usage in the development

setting gives us a certain confidence about our findings, though other sources like alternative

69

forums or hosting code platforms could improve the final result. Thus, we believe that further
incorporation of other sources can complement our findings as well as the inclusion of surveys
and qualitative studies. Nonetheless, we tried to include as much data as possible, working
with all data in [GH| and [SO] regarding the chosen [Rx] libraries.
Construct Validity. Construct validity is about the fitness of the metrics used in the eva-
luation (CAMPBELL; HINDLE; STROULIA, 2015; |TREUDE; WAGNER, [2019)). [Treude and Wagner
(2019)) report that the Perplexity metric and human assessment do not oftentimes correlate.
Thus, we merely used it as an aid to identify the number of topics, and we mostly relied on
the manual inspection carried out by the first two authors, similar to Han et al.| (2020). Future
work may incorporate better metrics (e.g., coherence).

The metrics used to determine the popularity or difficulty of the [SO] topics could represent
a threat as pointed by |Abdellatif et al.| (2020). In this regard, we resorted to metrics used
in previous studies (ABDELLATIF et al., [2020; AHMED; BAGHERZADEH, [2018; ROSEN; SHIHAB,
2016) as a mean to counter the threat. Yet, the difficulty aspect, despite being explored in
other studies, could actually indicate other circumstances such as lack of popularity or interest
in the topic from the community; thus, the clarification of the different possible meanings for

difficulty may be a relevant research endeavor.

70

4 EVALUATING THE USABILITY OF REACTIVE PROGRAMMING APIS TH-
ROUGH A MIXED-METHODS STUDY

This Chapter presents the methods and results obtained trough the execution of the second
study detailed in Section [1.2] and depicted in the second half of Figure[I] The study resulted in
an article titled “On the usability of Reactive Programming APls: A Mixed Evaluation” which
was submitted to the Journal of Software: Practice and Experience (ZIMMERLE; GAMA, 2025)).

To answer the following (secondary) research questions, we recurred to a mixed approach
by combining information gathered through computed metrics and a usability study conducted

with users.

» RQ3. To what extent are RP APIs usable, and what aspects are most affected?
» RQ3.1 How easily can developers learn and understand RP APIs?

» RQ3.2 To what extent do RP APlIs contribute to code cleanliness, reliability, and abs-

traction from low-level complexities?

» RQ3.3 To what extent do RP APIls enhance code reuse and maintainability?

41 METHODOLOGY

This section describes the methodology adopted in the study. First, we present a brief
overview of the (Section 4.1.1)), along with the reasons we chose Bacon.js and RxJS
for the API usability evaluation. Next, we delineate the metrics we explored to analyze those

(Section 4.1.2)). Finally, the user-centered study (Section |4.1.3]) that complements the

metric results.

4.1.1 Reactive Programming APlIs

The interactive and asynchronous nature of [JS| created a fruitful environment for [RP| libra-
ries. Table [9) depicts some of those libraries with their [GH| repository and stats. As noted by
Mogk| (2015)), the libraries usually differ in terms of focus, custom interfaces, and adopted abs-
tractions. For instance, while RxJS and Bacon.js seem to have a more general-purpose focus,

both Most.js and Kefir.js focus on performance. xstream, on the other hand, concentrates on

71

offering a tiny library, mostly targeted to be used with the functional and reactive framework
called Cycle.js. They differ in many more aspects, and an entire section could easily be devo-
ted to expose them. However, due to the constraints of our methodology which also include
analyzing the usability of [RP|[APIs| with users, we only focus on two [RP] libraries: Bacon.js and
RxJS| (the [JS| version of the well-known Reactive Extensiond?). Both of them are possibly the
most popular libraries according to theirstar coumﬂ (Table |§[) and number of forks.
RxJS and Bacon.js have been available and maintained for over 10 years, with RxJS being
the most active project: currently, it is in its 7th stable version and going to its 8th. On the
surface, they can be used to solve the same problems with similar solutions. Nonetheless, each

library has its own peculiarities, some of them briefly summarized below:

= Abstractions. They take different approaches to the basic abstractions (BAINOMU-
GISHA et al [2013)): Behaviors and Events. Bacon.js explicitly makes clear distinction and
emphasizes the support of both Behaviors (called Property in the and Events (cal-
led EventStream) abstractions more aligned with the first ideas of delineated by
Conal Elliott (ELLIOTT; HUDAK, [1997)). RxJS, on the other hand, puts more emphasis on
the Events abstraction (named Observable); however, a close abstraction can be obtai-
ned by using either operators like startWith and reduce or a variation of Subject (i.e.,

BehaviorSubject), a secondary Rx abstraction explored only in specific circumstances.

» API Size. The libraries present distinct surface. Bacon.js presents the greatest
number of operators, 149, if considering both factory operators and the EventStream
instance operators. RxJS has constantly evolving and, in its stable 7th version, it counts
with 113 (subscribe method included) operators. In its next 8th version, this quantity

of operators will slightly decrease, from 113 to 106 (subscribe included).

= Syntactical composition. Syntactically, Bacon.js uses the method chaining pattern to
compose operators, commonly used in both functional and object-oriented programming.
RxJS, on the hand, takes a more functional approach by exploring function composition

with the help of a pipe combinator and standalone functions/operators.

We extended this evaluation to a third, tiny library called xstream in |Zimmerle and Gama| (2024)).

2 <https://reactivex.io/>.

3 A common social, selection factor in studies (WEN et al., 2020; XU et al., 2020; |ZIMMERLE et al., [2022) as it
indicates the repositories’ popularity and developers’ most probable tool choice.

https://reactivex.io/

72

= Semantics. Bacon.js defines a more precise semantic, only supporting hot streams

(multicast)ﬂ RxJS, conversely, has both cold and hot streamf] (unicast and multicast,
respectively) for the same abstraction: Observable type. Furthermore, subscriptions
on RxJS Observables may execute synchronously or asynchronously, depending on the
complexity of the stream (e.g., basic ones created with the help of the of operator are
most of the time executed synchronously); Bacon.js' subscriptions, on the other hand,

always executes asynchronously.

Error behavior. Both libraries have different strategies on the presence of errors: while a
stream in RxJS stops working when an error occurs, Bacon. s takes the opposite strategy
and does not stop emitting items in the presence of errors; that is the default behavior
of those libraries, unless provided an operator to alter that semantic in Bacon.js (e.g.,
endOnError). Besides, any error thrown inside the pipeline of operators is automatically
caught by RxJS and forwarded as an error event, while Bacon.js requires either mapping
the error with a library Error type or wrapping the potently dangerous functionally with

a helper operator (e.g., try).

Glitches. Only Bacon.js provides information about glitch avoidance, an important cha-
racteristic which guarantees consistency (BAINOMUGISHA et al., [2013)) if the application

requires dealing with changing state.

Table 9 — Reactive JavaScript libraries organized according to their number of stars.

Most.js (version 2) mostjs/core 403 36 1,115 (Mar 28, 2024

Library Repository Stars Forks Commits (last commit date)
RxJS ReactiveX/rxjs 30,743 3,003 5,460 (Jun 28, 2024)
Bacon.js baconjs/bacon.js 6,472 330 3,002 (Jul 1, 2024)
Most.js (version 1) cujojs/most 3,492 231 800 (Oct 8, 2020)
xstream staltz/xstream 2,375 136 574 (Feb 7, 2022)
Kefir.js kefirjs/kefir 1,873 o7 1,223 (Mar 12, 2023)

)

Note: Last updated on Oct 24, 2024.

Source: Elaborated by the author (2024)

An important aspect of both libraries is the fact that they are currently written in

(TS)] a superset of [JS|that mostly add static typing to the language. This was a very important

4
5

This behavior is also noted in other libraries.
Cold streams are those that generate data in response to individual subscriptions. Hot ones, in contrast,
emit values independently of subscriptions and their values are typically generated from an outside source.

73

aspect for the metrics implementation (Section . Additionally, studies indicate that static
typing systems help to find and fix errors faster (KLEINSCHMAGER et al., [2012)), enhance the
usability of unknown [API| (PETERSEN; HANENBERG; ROBBES} [2014)), and can act as an implicit
documentation (PIERCE, 2002)). In the context of augmenting[JS| with [TS| recent study results
have shown that the use of [TS] improved code quality and understandability when compared
to codes (BOGNER; MERKEL, 2022)); however, bug proneness and resolution were actually
worse in projects (BOGNER; MERKEL, [2022)). Anyhow, during the study, we did not force
any participant to use either [JS and [TS] the course and the lectures were actually presented in
plain [JS| Among the task solutions (Section[4.1.3.2)), only two solutions used [TS} nevertheless,
none of them showed many traces of type exploration, allowing a rapid conversion from [TS|
to [JS

Finally, in the metrics explored in the study (Section [4.1.2)), there are indications of a pos-
sible relation between projects with the greatest number of stars and forks (combined) and the
average metric score (i.e., the average of all computed metrics) (VENIGALLA; CHIMALAKONDA,
2021). Therefore, by choosing the most popular libraries, we can assess if this is true for
and provide more evidence to this tendency.

4.1.2 Metrics

To evaluate the with the help of metrics, we decided to use the ones proposed by
Rama and Kak| (2015) which are summarized in Section [2.3.1] Exploring those metrics is
advantageous given that the authors extensively survey well-accepted beliefs of good design,
and the metrics are very general and detailed, with mathematical rigor. Also, they have already
been applied in other studies (VENIGALLA; CHIMALAKONDA) 2021).

To implement the metrics, we took advantage that the explored (Section
are implemented in [TS] which facilitates the implementation due to the static typing system
and function overload support. In this way, we utilized the ts-morph?| tool, a wrapper to the
compiler that facilitates code manipulation, to analyze source files and implement the
computations. Not all metrics were implemented however, only the first six listed in Table [1]
In the case of exceptions (i.e., AESI), it is a little complicated in since they are not part of

the functions' and methods’ signatures yet’| Besides, the catch clause does not differentiate

<https://github.com/dsherret/ts-morph>.
" Related discussion can be found in <https://github.com/microsoft/TypeScript/issues/13219> and

https://github.com/dsherret/ts-morph
https://github.com/microsoft/TypeScript/issues/13219

74

types of custom exceptions, and it is common the use of the general Exception class on most
occasions. Thread support in [JS/[TS] conversely, is used only in specific cases like CPU-bound
tasks as most of the computations are handled within an event loop. Therefore, we decided
not to include AESI and ATSI in the present study.

The code was implemented by examining the exported, public declarations declared in files
as files would correspond to [JS| module boundary (i.e., the highest-level modular unit). One
of the main sources of difficulties stemmed from incorporating type assignability, since [TY
has not made the function for testing type assignability publicly available yeif_;]. To address
this challenge, we explored a library called type—pluﬂ that implements type checks, to insert
dynamic type verifications inside in-memory temporary files created with ts-morph. This file
manipulation proved to be a CPU-intensive task (specifically for the metrics AMNOI and
APXI), so we exploited a pool of worker threads by using the Piscinﬂ library. The metrics
APXI and ADI rely on parameters that must be set for the execution of the metric. In APXI
case, we set the threshold for the number of function parameters to four (i.e., functions with
parameter list greater or equal to four would be considered long) following the same value
defined in|Rama and Kak (2015)). For ADI, we set the threshold to 50 as specified in Venigalla
and Chimalakonda (2021)).

4.1.2.1 UAX

The implementation of the metrics resulted in a tool we called (ZIMMERLE; GAMA,
2024)), intended to resemble the term “developer experience”(DevX) which is often linked to
API| usability (MYERS; STYLOS, 2016; MURPHY et al., 2018). The tool works as a command-
line interface and generates the results for each metric as [JSON|files. Visualizations can help
offloading the cognitive load to human visual capabilities (SOUZA; BENTOLILA| [2009), which

in turn may facilitate the recognition of patterns and interpretation of results. In this way, we

in parallel created a basic user interface (Ul) in the format of a [HyperText Markup Language|

HTML dashboarc{r_fl to ease the interpretation of the tool's output. The dashboard is served

<https://github.com/microsoft/ TypeScript/issues/52145>|

8 Related discussion can be found in <https://github.com/microsoft/TypeScript/pull/9943> and
<https://github.com/dsherret/ts-morph /issues/357>.

9 |<https://github.com /unional /type-plus>.

10" <https://github.com /piscinajs/piscina>

11 '<https: //github.com /uax-analyzer/uax>.

12 <https://github.com /uax-analyzer /uax-ui>.

https://github.com/microsoft/TypeScript/issues/52145
https://github.com/microsoft/TypeScript/pull/9943
https://github.com/dsherret/ts-morph/issues/357
https://github.com/unional/type-plus
https://github.com/piscinajs/piscina
https://github.com/uax-analyzer/uax
https://github.com/uax-analyzer/uax-ui

75

and accessed through an [HTTP]server, working as a command-line program.

The main page of the dashboard shows an overview of the computed scores obtained
by every analyzed (Figure . We tried to include as much charts and visual elements
like radial and progress bars instead of simple tables, so the user can quickly perceive the
big picture expressed by the scores. The first part shows not only the average of individual,
analyzed , but also the average of all of them; this helps to visualize the individual
perspective and possibly how a category of [APIs scored together. We mainly explored the
mean statistics to be inline with the computations presented by Rama and Kak (2015); on
the other hand, the authors did not indicate how one could get a perception of the results
based on categories, serving mainly as a comparative score. In this way, we borrowed the
range of categories commonly applied to Likert-based scales (ALKHARUSI, 2022) and adapted
to our scale (which varies from 0.0 to 1.0) by means of simple linear transformation. The
interpretation of the Likert-based scores in shown in Figure [I0] Thus, we used those ranges
to map the results between very low usability and very high usability; each range of values
was also mapped to a color scale, ranging from red to (dark) green (shown in Figure[L1]). For
instance, a red color indicates a very low level of usability, while dark green specifies a very
high level of usability. Throughout the dashboard, many data points are actually colored by
using that color scale. The middle part of the main page shows not only the general result
obtained by each [API], but also depicts the metrics’ results by using a radar chart following the
suggestions of Souza and Bentolila| (2009)). It is notable that different colors are used for the
data points depending on the metric score. Finally, the last, bottom part shows the metrics’
scores of the side by side, allowing one to assess how every [API]| scored from the metric

perspective.

Table 10 — Interpretation of the average Likert-based scores according to equally spaced intervals.

Interval Interpretation
1-1.80 Very low level of usability
1.81-2.61 Low level of usability
2.62 - 3.42 Moderate level of usability
343-4.23 High level of usability
4.24 - 5.00 Very high level of usability

Source: Elaborated by the author (2024)

Additionally, we included a second page that displays, with more details and exclusiveness,

the information about one of the analyzed as shown in Figure[12] Among the information

76

Figure 10 — Main page overview of the UAX dashboard.

ngs
baconjs

0.81

Average

0.84
Very low usability [l I 1200 I Il Very high usability
bacon,js rxjs
e
|)
081 H 087

Overall score Overall score

Metrics

ADI

Figure 11 — Color scale indicating the level of usability according to scores.

Very low usability |} [l I Il Very high usability

Source: Elaborated by the author (2024)

AMGI AMNCI AMNOI APLCI APXI

Msaconjs Mngs

Source: Elaborated by the author (2024)

displayed in that page, we have the overall score of the[API| the individual scores for the metrics

(informing the highest and lowest values), along with a summary for every metric.

4.1.3 Usability Study

As part of our journey in discovering how usable [RP|[APIs| are, which areas are the most
problematic that designers should put more efforts, and what usability problems there are, we

organized a user-centered study. The study was formulated following usual steps of a usability

study which starts by inviting participants to perform programming tasks (DUALA-EKOKO; RO-|

7

Figure 12 — Snippet of the detailing page in the dashboard.

rxjs

> >
2 5]
0

AMNCI

AMNOI

very high usability

0.87

APLCI

APXI

Best Metric: AMNCI

Worst Metric: AMGI

Very low usability [l I 9% I I Very high usability

This metric examines the number of words (e.g.. 50 words) contained in the
functions' documentation.

very high usability

0.91

Source: Elaborated by the author (2024)

BILLARD) |2012; BRUNET; SEREY; FIGUEIREDO, [2011} ELLIS; STYLOS; MYERS, 2007)) and asking

them to answer a post-task questionnaire (DUALA-EKOKO; ROBILLARD) 2012} |PICCIONI; FURIA;|
MEYER, 2013). The study took place during a course of introduction to distributed applicati-
ons (Section (4.1.3.1]) where students have the opportunity to learn the basics of RP. Actually,

previous to the execution of the tasks, all participants attended to a lecture about RP, so

they could have a minimal training (common in empirical studies (PICCIONI; FURIA; MEYER,
2013; [SALVANESCHI et al., 2017))) on the subject and |APIs, The contents of the lecture mainly

included:

= The problems with event-driven programming (e.g., callback hell);
= Definition of [RP] and their main characteristics;
= Examples of available reactive tools;

= Main[RP]abstractions and their usual structure; this topic mainly focused on the structure

found in combinator-based libraries (MOGK| [2015), which are the most numerous ones
in the market, including the [APIs| used during the study (i.e., Bacon.js and RxJS);

78

= Marble diagrams, which are a visual way to represent event streams (specially in @

community);
» Examples of reactive code written in diverse like Bacon.js, RxJS, and most.js;

» Briefly talk about other concepts that libraries may adopt, such as stream multicasting
(cold and hot streams), backpressure, glitches, and scheduling. We also briefly showed

the rx-fruitd™] a game for learning [RX that could be useful in their learning.

As part of the invitation and convincing process, we had to take into account some conside-
rations: (/) As dictated by the directives of the ethics board (Section of our institution,
students should not be put into a situation at which they feel uncomfortable, stressed, or
obligated; Also, no type of reward could be offered to the participants and they could leave
the study at any time; (/i) Participants may have decided not to participate in the study, so
we had to make the process as appealing as possible. Thus, we applied the tasks in the form
of assignments, in which the participants would have three days to complete them. Moreover,
for the same reasons, we did not recurred to video recording or the thinking-aloud protocol,
which consists in making the mental process visible through speech (BOREN; RAMEY, 2000),
applied sometimes in usability studies (ELLIS; STYLOS; MYERS, 2007} PICCIONI; FURIA; MEYER,
2013). By giving up the recording session and offering more time to participant to accom-
plish the tasks might be beneficial as stressors such as time constraints and social pressure
(e.g., observing person) can have an impact on participants’ performance (JANNECK; DOGAN,
2013), which in turn could prompt participants not to cooperate and offer all, possible feed-
back. Furthermore, previous studies suggest that can be hard to master (SALVANESCHI et
al, 2017)), so an interval time can also contribute to the learning process.

The tasks were elaborated based on related content the students were seeing during the
course (Section [4.1.3.2)). Before we hand out the tasks to the participants (Section
and after the lecture, we explained to the students we were conducting a study, showing
its importance and how it would work, and we asked for their cooperation with the promise
that they could leave the study at any moment respecting the ethics protocol. For those
who accepted, we divided the number of participants equally and sent the tasks with the

instructions, which included the they should work with. For the purposes of our study,

we used the two most popular for [JS| (Section [4.1.1]), Bacon.js and RxJS, and the

13 <https:/ /www.rxjs-fruits.com/>.

https://www.rxjs-fruits.com/

79

were assigned randomly to every student. In the task instructions, we emphasized the
importance of the study, and that the work on the tasks should be their own, regardless whether
or not they were able to finish all of them. Also, we asked the participants to estimate the
time they took for each task, and requested that they send the time along with every code
solution. By requiring their solution, we aimed to examine the solutions more deeply, to see for
instance which features the participants recurred to and how they performed during the tasks.
Additionally, the speed of task execution (i.e., time to perform a task) is an important factor
to measure (SHNEIDERMAN; PLAISANT, 2010), and has been used in previous studies (ELLIS;
STYLOS; MYERS, 2007; STYLOS; MYERS, 2008). Furthermore, this offers an opportunity take
a look into the frequency of operator usage. The proliferation of combinators in [RP|[APIs| has
been a debatable source in thearea (SALVANESCHI et al, [2017; SALVANESCHI, 2016; MOGK,
2015; |ZIMMERLE et al., 2022).

The approach taken to evaluate the perceived usability and their problems corresponded to
a post-task questionnaire (Section . We explored the well-known questionnaire in
which we adapted to our needs. As part of the questionnaire, we also included a demographic
section to better understand the participants’ profile. Along with the questionnaire and de-
mographic section, we additionally added a satisfaction survey. Comprehension of satisfaction
is an important factor in usability (SHNEIDERMAN; PLAISANT), 2010) and the satisfaction level
can be used to quantify the user opinion and create a base for comparison and improvement
among (MACVEAN et al., 2016). We used the Google Forms serviceE] to create and share
the questionnaire and made available to participants right after the period of task submissions
(remaining available during three days). In the end of the questionnaire, we placed an open-
ended section that would allow the participants to insert any relevant details not covered in the
previous items of the questionnaire. The data collected from this open-ended space was further
incorporated to an interview (Section that took place after the questionnaire’s period
of response. With the interview, we aimed to complement our findings and obtain a deeper
comprehension of the matter by triangulating the data acquired from different methods (JON-
SEN; JEHN, 2009)). Interviews are useful to understand developers’ actions (ROEHM et al., 2012)),
were used in [API usability studies (PICCIONI; FURIA; MEYER, [2013; [STYLOS; MYERS), [2008)), and
have been advocated as an important tool to future studies (SALVANESCHI et al., 2017)).

The questionnaire was analyzed quantitatively, following preceding studies invoIving (PIC-

CIONI; FURIA; MEYER, |2013; IDIPROSE et al., 2017; |LOPEZ-FERNANDEZ et al., 2017). The interview

14 <https:/ /www.google.com /forms>.

https://www.google.com/forms

80

was analyzed qualitatively by transcribing the recorded audio and using the coding technique
commonly employed in Ground Theory (SALDANA), 2021; |[CORBIN; STRAUSS, 2014). We resor-
ted to an inductive approach and, to increase trustworthiness, two researchers conducted the
process. The resulting coding was then discussed, compared, and merged if needed. Afterwards,

the categories extracted from the codes are used for further discussion.

4.1.3.1 Participants

The sample of the study correspond to students who were taking the course on intro-
duction to distributed applications. The course is offered for undergraduate students during
their third and fourth year, and it includes basic concepts and technologies to build distributed
applications, such as Sockets, [HT TP|[REST] message-oriented middleware, WebSockets, etc.
[RP] was added in the last course offerings where students receive an overview of the para-
digm, highlighting its importance to dealing with event-driven, asynchronous programming.
The choice of the course was intentional given its linkage with and the experience of
class students, which ensures a good skill level including object-oriented programming and
software engineering. The study was applied throughout three semesters (i.e., 2022.2, 2023.1,
and 2023.2).

4.1.3.2 Tasks

To elaborate the tasks, we focused on the context of distributed applications, which is
an important area surrounding (MARGARA; SALVANESCHI, [2014; [DRECHSLER et al., 2014;
KAMBONA; BOIX; MEUTER, 2013). Moreover, the participants were recruited during a course
in that specific area (Section [4.1.3.1)). In total, we defined five tasks (Table [I1)) all revolving
[HTTP] requests; this topic corresponds to a type of basic distributed interaction that most
participants would probably be accustomed either inside or outside the course given its nowa-
days commonality. For every task, we tried to simulate some close-to-real scenarios, many of
them even including comments to exemplify some corresponding situations. Also, we worked
with an increasing level of difficulty along the tasks, always starting with a simpler task and
asking for evolving the same code in the next exercises; in doing so, we pursued to stimulate
the participants through a gradual learning rather than throwing a lot of difficult tasks and
ending up risking a high dropout rate (Table [17] of Section provides further details on

81

how many students managed to submit the tasks on time and how complete the solutions

were).

Table 11 — Description of the tasks used during the evaluation.

Task Description

1 Using the endpoint <https://jsonplaceholder.typicode.com /users/[id]>, where id
varies from 1 to 10, write a reactive code to consume all user data (1-10) in JSON
format; each request must be followed by a time interval (delay) of 3 seconds (that
is, there must be an interval of 3 seconds between requests). Data from all 10 users
should be shown in the console’s standard output (console.log).

2 Modify task 1 so that the code consumes the following endpoint <https://ht
tpbin.org/status/[status_code|>, where status_code must vary between 401
and 410. Note that requests will generate errors. Therefore, modify your code so
that each request is re-attempted at least 3 times. The objective is to simulate
the consumption of endpoints that are temporarily offline or not found, that are
presenting authorization/authentication problems (e.g., due to some error on the
server), or that are providing values in an unexpected/requested format (thus
generating parsing problems). For these error cases, the following should be issued
through console.error(): “An error occurred when requesting the URL [URL
consulted] (number of attempts: 3)." NOTE: The same delay (logic) between
requests, from task 1, must be maintained in the logic of this exercise as well.

3 Use the endpoint <https://dummyjson.com/products/[product_id]>, where
product_id varies between 1 and 100, to randomly consume products (simulating,
for example, a promotions feed randomly showing products). The product_id must
be generated randomly (that is, it must be a number between 1 and 100) always
within a 10-second interval (so that the user can appreciate the data for each
product/request), thus generating a stream of random ids. The data (products)
must be shown in the console’s standard output (console.log).

4 Extend task 3 so that the main logic continues to make product requests randomly
until it reaches a maximum time of 15 seconds. This time could represent, in a real
application, a user interaction, such as clicking a button (web page) or activating
a sensor (loT), which interrupts the main flow of requests. The logic must be
structured in a reactive way (through the use of some operator to control the end
of emissions) and not in an imperative way (by calling the unsubscribe() method
within a setTimeout, for example) to end the stream.

5 Modify task 3 so that, in addition to displaying product data, the average price of
the last 3 products is displayed (that is, you will have to find a way to accumulate
stream data relating to the latest requests/products in order to calculate the ave-
rage price). The average must be shown with the sentence “Average price of the
last 3 products: [average price]"”. All data must be shown in the console’s standard
output (console.log).

Source: Elaborated by the author (2024)

Both tasks 1 and 3 could be considered as the simpler ones and they serve as a base

for task 2 and tasks 4 and 5, respectively. In this way, we expected simpler and quicker

https://jsonplaceholder.typicode.com/users/[id]
https://httpbin.org/status/[status_code]
https://httpbin.org/status/[status_code]
https://dummyjson.com/products/[product_id]

82

solutions for both tasks 1 and 3 and a more challenging scenario for the remaining. Tasks
1 and 3 are in fact similar, requiring basic endpoint consumption. Task 2 extends previous
tasks by adding error scenarios and error-handling requirements. Things can easily go wrong
in distributed environments (KLEPPMANN|, [2017)) and incorrect error handling was the cause
of 90% or more fatal disasters in distributed data-intensive systems (YUAN et al., 2014); thus,
it is important to include such scenarios right away in the tasks and that encompass
usable facilities to deal with those cases. Task 4 augmented task 3 with a time interruption
(simulating for instance an external agent like user interaction, sensor reading, etc.) and we
asked the participants to do it in a reactive way; in other words, the participant should look for
an appropriate operator to break the logic without needing to invoke some method or function
in a separate, possibly imperative way afterwards. Task 5 also reuses the task 3's logic, but
it introduces some state handling to the scenario. State handling is a recurrent problem for
those who have an imperative background (MOGK; SALVANESCHI; MEZINI, 2018), often relying
on shared states and side effects. The accumulation logic required for the task offers also
an opportunity to deal with a scenario very common in data stream application (AKIDAU;
CHERNYAK; LAX| 2018) (it shares the dataflow style with , in which we tried to show that,
given the unbounded nature of streams, some operators have to operate on small sections of

data. Overall, we tried to express every task in a clear way.

4.1.3.3 Questionnaire

For the main tool for data collection, we adopted the questionnaire (Section .
Nevertheless, given that the questionnaire was applied online and unsupervised, one funda-
mental aspect should be the simplicity to obtain good answers in terms of quantity and
precision (GANASSALI, 2008). The complete set of [CDN] dimensions (questionnaire) are often
deemed as complex and time-consuming (LOPEZ-FERNANDEZ et al., |2017; DIPROSE et al., 2017)).
Besides, the dimensions were planned for independence instead of clarity and simplicity (LOPEZ-
FERNANDEZ et al., 2017)). In this way, by taking inspiration from previous studies (PICCIONI;
FURIA; MEYER, 2013} LOPEZ-FERNANDEZ et al., 2017, we formulated and utilized a modified
version of the [CDN] questionnaire. More specifically, we leveraged the structure presented by
Lopez-Fernandez et al| (2017)) which expresses every item of the as an assertion that
are answered through a 5-point Likert-based scale. The questionnaire proposed by |Lopez-

Fernandez et al| (2017) was based on the one presented by [Piccioni, Furia and Meyer (2013)

83

and groups the questionnaire items into five distinct dimensions: understandability, abstraction,
expressiveness, reusability, and learnability. Those dimensions translate into important [APl| usa-
bility aspects which are more relevant from the developers’ viewpoint (LOPEZ-FERNANDEZ et
al., 2017)). |Lépez-Fernandez et al.| (2017) provides the mapping between the new dimensions
and the original dimensions (i.e., the ones defined by Blackwell and Green| (2000)); by using
this information, we tailored the questionnaire to our needs and the final result, containing
24 assertions, can be found in Table [I2] The evaluation of the questionnaire data follows the
additive nature of the Likert-based scale. In this way, each alternative of the scale is asso-
ciated with a score, normally ranging from one to five, where one is equivalent to the least
positive attitude (i.e., strongly disagree) and five to the most positive one (i.e., strongly agree).
Some of the assertions of Table [12] are prefixed with an N to denote the ones with negative
connotation; in that case, the results for those assertions are then inverted to normalize the

evaluation.

Table 12 — Questionnaire based on five dimensions derived from the Cognitive Dimensions Framework. (con-

tinue)

Dimension ID® Assertion

Understandability Ul The API | used is, in general, easy to understand.

U2 [N]° The API proved to be confusing and laborious during use,

even for developing simple applications/programs.

U3 Objects, types, functions and primitives in general of the API
appropriately represent (or map) the domain concepts (event-
driven programming; handling HTTP requests; etc) in the way
| expected. For example, an API for handling IO that exposes a
class of type File would probably map well to a representation of

a file.

U4 [N]® | needed to track information during development that was
not clearly represented in the APl (e.g. details only present in
the documentation; class, method or function information only

available in the library implementation; etc.).

U5 The code required to solve the tasks met my expectations.

84

Table 12 — Questionnaire based on five dimensions derived from the Cognitive Dimensions Framework. (con-

tinued)
Dimension ID? Assertion
Abstraction Al | found the API abstraction level appropriate for the tasks.
A2 | found it simple to model my application as a composition of
streams.
A3 [N]® | needed to adapt the API (extend a Class, override pre-

Expressiveness

Reusability

A4

El

E2

E3

E4

E5

E6

E7

R1

defined behaviors, provide new types, add new features, etc.) to

meet my needs.

[N]® I felt like | needed to understand the implementation behind

the API in order to use it.

| was able to easily transcribe into code, using the API, what was

required in the tasks.

By reading the code produced in tasks using the API, | can easily
understand what certain parts of the code do, as well as explain

it to other people.

The API presented descriptive and unambiguous names/identi-
fiers for its various functionalities, such as functions, operators,

data types, among others.
It was relatively easy to find the right operator for a given task.

It was relatively easy to use different API operations (e.g. easy
parameter passing and consistency between different calls, pre-

dictable behavior, etc.).

| had no problems understanding similar features of the API, such

as similar operators or data types.
[N]° It's easy to make mistakes when using the API.

[N]® Developing the tasks required a lot of code (e.g. long or

verbose code).

85

Table 12 — Questionnaire based on five dimensions derived from the Cognitive Dimensions Framework. (con-

tinued)
Dimension ID? Assertion
R2 It was easy to evaluate my progress (intermediary results) as |
solved the tasks with the API.
R3 [N]® There are a lot of different ways to solve certain tasks using
the API.
R4 It becomes easy to maintain and evolve (change) the code by
structuring it using the API.
R5 | can (would) reuse the API features (e.g. operators, data types,
etc.) in a simple way.
Learnability L1 The learning/development was incremental. Once solved a given

task (or part of it), it was easy to solve either other parts of the

same task or other tasks.

L2 [N]P I felt | needed to learn many concepts (Classes, operations,

dependencies, etc.) to solve the tasks.

L3 [N]® | needed to delve into the documentation to be able to

develop my solutions (tasks).

Source: Elaborated by the author (2024)

@ The ID column indicates a unique identification to be used as reference.

b Assertions that comprise a negative meaning.

Before answering the [CDN| questionnaire, we also collected some demographic information
to help characterize the experience of participants in the research. The demographic items

applied to the participants are found in Table [13]

4.1.3.4 Post-Task Interview

After the questionnaire’s period of response, we invited some participants for an inter-

view session, believing that it could help to better understand and confirm the participants’

86

Table 13 — Demographic items applied to the questionnaire's participants.

Item Description Accepted answers

1 How long have you been programming Less than 1 year; 1-2 years; 2-5 years;
more than five years

2 Total of experience with oriented-object None; Less than 1 year; 1-2 years; 2-5
programming years; more than five years

3 Total of experience with functional pro- None; Less than 1 year; 1-2 years; 2-5
gramming years; more than five years

4 Total of experience with reactive pro- None; Less than 1 year; 1-2 years; 2-5
gramming years; more than five years

Source: Elaborated by the author (2024)

responses. To do so, we formulated a structured interview, composed mostly of open-ended
questions, which were conducted trough remote, individual, video sessions. Table [14] shows the
script used during the interview. Item 1 is a more open and general item, giving a chance to
the interviewee summarize their experience and following the interviews conducted by |Robil-
lard and DeLine (2011) and |Duala-Ekoko and Robillard| (2012)). With items 2 and 3, we tried
to explore the interviewee's experience. Following, items 4 and 5 were based on the tokens
“surprise” and “choice” leveraged in Piccioni, Furia and Meyer| (2013); since we did not re-
cord the participants’ task execution due to privacy and ethical concerns and possible impact
on participant performance (JANNECK; DOGAN, 2013), we selected those two tokens as they
could be explored without necessarily depending on participants’ video recordings. Item 6 take
a look into marble diagrams, a visual representation of a stream and operations disseminated
by [Rx| while item 7 asks about a game, called rx-fruit, presented in class to the participants
before the usability testing (Section [4.1.3)); together, both marble diagrams and games like
rx-fruits can be an important instrument for the visual learners and to aid the users in cons-
tructing mental models, so they can better reason about the presented problem (HERMANS,
2021)). Besides, one of usability attributes includes the measurement of how well the [API| mir-
rors its users’ metal models (MYERS; STYLOS, [2016)). The goal of the rx-fruit game, on the
contrary, is to learn RxJS in a didactic way by completing 16-level tasks, with each level cor-
roborating to make a mix of fruits (juice). Two observations are worth noting. First, although
marble diagrams are a compelling way of representing streams and stream transformation,
it is most leveraged by the family of libraries. Other libraries do not adopt directly this
way of visualization, but one can still find similar illustration. For example, this Bacon.js page

<https://github.com /baconjs/bacon.js/wiki/Diagrams> can only be found by going into

https://github.com/baconjs/bacon.js/wiki/Diagrams

87

Bacon.js GitHub repository; yet, it is very short. Second, the rx-fruit tool specifically targets
RxJS; nevertheless, we presented the tool as an optional source of learning that could help
elaborating the tasks regardless of the [API| used. Finally, the last items of the interview, 8 and
9, interrogates whether the participant would consider using [RP]in the future and if they still

have anything to add to the discussion.

Table 14 — Post-Task Interview Guide

Discussion item Description

1 Please, summarize your experience with the API, including facilities
and obstacles.

2 Which points did you like the most when using the API? E.g. syntax,
semantics, documentation? What are the main facilities?

3 Which points did you like the least when using the API? E.g. syntax,
semantics, documentation? What are the main difficulties?

4 Were there any moments when you felt surprised while using the API?
This includes aspects contrary to your expectations. For example, an
API class or object only accepts (or works with) objects but does not
accept primitive types in which you, according to your understanding,
would make sense to use them.

5 Were there times when you were faced with countless choices and had
to decide whether the two were equivalent or which was the more
appropriate choice?

6 How do you evaluate marbles diagrams for understanding reactive pro-
gramming? For example, did you use them or did they help you in some
way in conceptualizing your solutions? In terms of APl documentation,
do you think they are an essential mechanism or do you have another
visual model in mind?

7 How do you evaluate the didactics of the rx-fruits game for understan-
ding reactive programming and the task development? (if applicable)

8 Do you consider using reactive programming in future projects?

9 Do you have anything else to add?

Source: Elaborated by the author (2024)

In the middle of the interview, we also included additional points to be discussed, which were
collected from the open-ended space offered at the end of the questionnaire (Section .
In total, we elicited ten points to be discussed and, to balance the dynamics of the interview
(between open-ended and close-ended questions), we asked the interviewees to answer those
points in the Likert-based scale (the same they used during the questionnaire); we welcomed
any extra detail that the participant would like to share as a complement to their answer. Each

of the elicited point was then organized as assertions (presented in Table [15] and enumerated

88

as A1-A10), in first person, to be akin to the way a questionnaire with a Likert-based scale
would be formulated.

Table 15 — Elicited assertions discussed during the interview.

ID Assertion

Al | thought the number of operators was a positive point of the API.
A2 | found it easy to find the operation | wanted.

A3 | thought the functions/operations were not very explanatory.

A4 | thought there was a lack of documentation examples.

A5 | thought there was a lack of tutorials related to the tasks.

A6 | had the need to look at the source code behind the API.

A7 | felt a lack of support from the community.

A8 | think the API forced me to think differently.

A9 | think there was a lack of a good practice guide.

A10 | had difficulty visualizing what was in fact reactive.

Source: Elaborated by the author (2024)

We estimated the interviews would take from 20 to 30 minutes. In practice, it took appro-

ximately 33 minutes on average.

4.1.4 Questionnaire Dimensions and Metrics Intersection

Both the metrics (Section and the dimensions (Section [4.1.3.3)) of the fra-

mework contribute in the creation of usable and high-quality software. Although not directly
mentioning factors either measured through the metrics or detailed through the questionnaire
items, it is our belief that the metrics can also impact the different dimensions. Table {16 pre-
sents the intersection between the [CDN] dimensions and the metrics along with the supporting

reasoning.

4.1.5 Ethics

This research protocol was rigorously reviewed and approved by our university's ethics
board. This approval included validation of our informed consent process, ensuring participants
were fully aware of the study's scope and their rights. By adhering to these ethical standards, we
safeguard participant well-being and data confidentiality, reinforcing the integrity and credibility

of our research findings. The data collection only started after the full approval of the study

89

under the CAAE (Certificate of Presentation of Ethical Review) ID 67965523.0.0000.5208,
accessible through the Plataforma Brasi[*® portal maintained by CONEP, which is the highest

body for ethical evaluation in research protocols involving human beings in Brazil.

15 <https://plataformabrasil.saude.gov.br/>.

https://plataformabrasil.saude.gov.br/

90

Table 16 — Intersection between dimensions and the explored metrics.

Dimension Metric Reasoning

Understan- AMNOI When overloaded functions return different types, it can confuse users

dability and make the API harder to understand. Keeping return types con-
sistent can make APls more predictable and easier to follow.

AMNCI Logical, expected function names make it easier for users to unders-
tand what a method does, improving readability and reducing confu-
sion.

AMGI Grouping similar methods together helps users find related functiona-
lity more easily, making the APl more intuitive.

ADI Good documentation is a direct way to aid users understand what an
API does and how to use it.

Abstraction AMNOI Overloaded functions with inconsistent return types can make an API
feel messy and less abstract. Clearer, more distinct functions contri-
bute to cleaner and more specialized abstractions.

APLCI Keeping parameter names and order consistent across functions redu-
ces the mental effort needed to work with an API, letting users focus
on higher-level tasks instead of low-level details parameter particula-
rities.

Expre- AMNCI Clear, consistent naming makes an APl more expressive by allowing

ssiveness users to understand its functionality quickly.

AMGI Grouping related functions together better conveys the API's struc-
ture, making it easier for users to see how everything fits together.

ADI Good documentation makes an APl more expressive by complemen-
ting what naming conventions or code structure might not cover.

Reusability AMNOI Overloading methods with varied return types can make it harder
to reuse them effectively if users cannot anticipate their behavior in
different contexts.

AMGI When related methods are grouped logically, it becomes easier for
users to discover and reuse them.

APLCI Consistent parameter lists make it easier to reuse functions because
users can rely on the same pattern throughout different contexts.

Learnability AMNCI Clear, consistent naming directly impacts learnability, as users can
quickly understand the purpose of various functions without guessing
or extensive documentation.

ADI Detailed, well-written documentation makes it much easier for users
to understand how to use an API, especially novices.

APXI Keeping parameter lists short and avoiding sequences of similar types

helps new users pick up the API faster, reducing the chance of mis-
takes.

Source: Elaborated by the author (2024)

91

4.2 RESULTS

The following sections analyze the collected data from the metrics’ execution and the

usability study. Throughout the text, to protect the privacy of the contributors (Sections
4.1.3.1 and describe their profiles), participants who did and submitted the tasks in

time are referred as P[1-18].

4.2.1 Metrics

The evaluation of the metrics (Section [4.1.2)) for the [APIg|is presented in Figure [L3]

Figure 13 — The results of each evaluated metric according to the APIs. The last chart denotes the Average
Metric Score (AMS) of the APls.

| ||

0 APXI.
W Bacon.js 0.92 0.51
W RxJS 0.94 0.88
O Avg. Metric 0.93 0.7

M Bacon.js MRxJS [@Avg. Metric

Source: Elaborated by the author (2024)

The great majority of the scores remained above the middle point (0.5), which can be
considered a reasonable usability value; in fact, converting the metrics' results to the classifi-
cation displayed in Table [I0] used in [UAX], most of the metrics scored high usability level. The

individual results for each metric can be summarized as listed below.

= AMNOI (overloaded functions with disparate return types): Both exhibited

very good results, which is demonstrated by the average metric of 0.89 (very high

usability - 4.56 in Likert-based scale). RxJS in fact had the greatest score of 0.94,

92

followed by Bacon.js that also depicted a very high value of 0.83. The scores illustrate
good definitions of return types for function overloads of the [APIs For example, by
opening RxJS repository, we can observe few operators (functions) with overloads, and
those that have overloads like zipAll return the same type (e.g., OperatorFunction).
Bacon.js also has few overloads, but we could note few examples of function returning
different types like the method |sampleBy which returns EventStream, Property, and

Observable.

= AMNCI (name-abuse patterns): In the case of the evaluated, the lists of
confusing names were empty; i.e., both Bacon.js and RxJS scored 1. This demonstrates
an excellent result for both tools and a considerable effort applied by the [API| designers
in defining good names (i.e., names that do not only differ by: a number placed at their
end like merge and merge2, the presence of underscores like trace and _trace, and the

case of its characters like setTimezone and setTimeZone).

= AMGI (grouping of semantically similar functions): Among the metrics, AMGI was
the lowest, but it was still a high usability result (0.62 — 3.48 converted). RxJS was the
responsible for pulling down the average metric and it had the worse [API| score among
all metrics (0.46 — moderate level); Bacon.js, conversely, had a more reasonable score
(high usability). The reason is explained by the RxJS strategy of modularizing most of its
functionalities as standalone functions instead of class methods. Following this strategy,
the RxJS team, for example, preferred to defined operators in their own separate fiIesEG].
Interestingly, Bacon.js also takes the same strategy of defining operators in separate
fiIesF_7], but, it ends up populating those operator in a type Observable which is what is

in fact exported in the library (thus collaborating to a stronger score).

= APLCI (consistency among parameter name ordering across functions’ signa-
tures): The[APIs|combined and alone presented a great level of usability, meaning that a
considerably set of their functions shows consistency ordering regarding the parameters.
Nonetheless, despite Bacon.js demonstrating a high score for this metric (0.81), [UAX
reveled some case of inconsistencies like the [delay and take functions that share the
same sequence of parameter types, number and Observable, but it does not follow the

same order.

16 <https://github.com /ReactiveX /rxjs/tree /master/packages/rxjs/src/internal /operators>
17" < https://github.com/baconjs/bacon.js/tree/master/src>

https://github.com/ReactiveX/rxjs/blob/master/packages/rxjs/src/internal/operators
https://github.com/ReactiveX/rxjs/blob/master/packages/rxjs/src/internal/operators/zipAll.ts
https://github.com/baconjs/bacon.js/blob/master/src/observable.ts#L620
https://github.com/baconjs/bacon.js/blob/9c8f387c58ae3d3009e6fea0d8ff20d35979cdfc/src/delay.ts#L6
https://github.com/baconjs/bacon.js/blob/9c8f387c58ae3d3009e6fea0d8ff20d35979cdfc/src/take.ts#L8
https://github.com/ReactiveX/rxjs/tree/master/packages/rxjs/src/internal/operators
https://github.com/baconjs/bacon.js/tree/master/src

93

= APXI (length of function parameters and runs of parameters of the same
type): Both had an overall, very high level of usability (0.93 — 4.72 converted)
in this metric, and the differences among the remained very low. RxJS, in fact,
scored slightly higher (0.94), but it was closely followed by Bacon.js (0.92). Looking at
the sub-metrics Parameter Length Complexity (C;) and Parameter Sequence Complexity
(Cs) for each , C, was the one responsible for pulling down the APXI for the m
with Bacon.js and RxJS scoring 0.84 and 0.89, respectively. Yet, both (' scores could
be considered high, indicating that there were few sequences of parameters presenting
the same data type. In terms of (), the practically maximized the sub-metric,
with Bacon.js and RxJS scoring 1 and 0.99, respectively. This indicates that both
do not have lengthy parameter lists; a lengthy parameter list being one with four or
more parameter elements (RAMA; KAK| 2015). One of the few exceptions for RxJS, for
instance, was the Observable pipe method that is used to chain a set of operators; this
method has overloads exceeding five parameters of the same type. In Bacon.js, we could
not observe functions and methods exceeding three parameters for example (reason why
it scored 1 for C}); however, there were a few occurrences of parameters lists having the

same data type like the slidingWindow method or the takeUntil function.

= ADI (number of words in functions’ documentation): This metric was the second
lowest overall (0.7 — moderate), only greater than AMGI. RxJS was the least impacted by
this metric and provided a very high amount of words in the documentation (0.88 score),
greater than the quantity offered by Bacon.js. The outcome for Bacon.js, which was the
lowest among its metrics’ results, shows that the @] has a moderate level of usability,
indicating it is an area that possibly need improvement (more AP| documentation in
that case). In fact, it is not difficult to find elements of Bacon.js documentation with

very few or no wordsF_g].

According to Figure , the highest Bacon.js metric was AMNCI (relative good names),
followed APXI (parameter length and sequence of the same type) and AMNOI (good overload
return types). AMNCI was also the strongest metric score for RxJS, showing that both
have function names that do not make usage of abuse patterns and are less likely to confuse
the user. Along with AMNCI, RxJS also scored great APLCI (consistency of parameter

18 e.g., |<https://github.com/baconjs/bacon.js/blob/4ab1b7d3/src/observable.ts#L477> or <https:
//github.com /baconjs/bacon.js/blob/4ab1b7d3/src/observable.ts#L1338>.

https://github.com/ReactiveX/rxjs/blob/4a2d0d29a7b17607e74afcb6fb8037fe58ef9021/src/internal/Observable.ts#L337
https://github.com/baconjs/bacon.js/blob/9c8f387c58ae3d3009e6fea0d8ff20d35979cdfc/src/observable.ts#L715
https://github.com/baconjs/bacon.js/blob/9c8f387c58ae3d3009e6fea0d8ff20d35979cdfc/src/takeuntil.ts#L16
https://github.com/baconjs/bacon.js/blob/4ab1b7d3/src/observable.ts#L477
https://github.com/baconjs/bacon.js/blob/4ab1b7d3/src/observable.ts#L1338
https://github.com/baconjs/bacon.js/blob/4ab1b7d3/src/observable.ts#L1338

94

label ordering), followed equally by AMNOI and APXI with the same score. Therefore, with
the exception of APLCI, the metrics AMNCI, AMNOI, and APXI were the most predominant
among the [APIs| The result was relatively close to the one pointed by Venigalla and Chimala-
konda| (2021)), in which the highest metrics for game engines were AMNCI, APLCI, and APXI.
Conversely, the [APIs|did not have metrics with such a low score that could be considered either
low or very low level of usability (Table . The lowest score of Bacon.js , ADI (words in
functions’ documentation), presents moderate level of usability, revealing that there are spaces
for improvements in terms of documentation. This tendency of problems with documentation
also seem to affect game engines (VENIGALLA; CHIMALAKONDA), 2021)). The lowest RxJS score,
on the other hand, regarded the AMGI (grouping of semantically similar functions). As already
pointed, the RxJS designers separate most of the [API| implementation scattered in different
files/modules. It is our believe, however, that such a repository structure would not have a
great impact on the |API| users as related concepts are actually grouped at the folder level.
Interestingly, AMGI was one of the metrics directly cited as the least satisfied usability metric
for the game engines by Venigalla and Chimalakonda| (2021) as well. We believe that, for
future evaluations, a configuration parameter could be made available for the implementation
(Section , so the evaluator can decide if the analysis should proceed at the file level, i.e.
the [J§ module scope, or at the folder level, closer to configuration used by Rama and Kak

(2015) which used Java package scope.

4.2.2 User Study
4.2.2.1 Task Completeness

Table[17] presents the percentage of task completeness according to the [APIs] together and
individually. We classified the tasks in complete, incomplete and not dond™|?°, The complete
tasks were those that delivered a complete solution for what was asked. The incomplete ones
were those that were either incomplete, had some error, or deviated from what was required.
Finally, not done denote solutions not turned in by the participants. Only participants who had
at least delivered two solutions (1/3 of the five tasks) on time were considered.

Overall, the participants showed a positive completion rate of more than 60% on average.

19 The thesis [repository includes links to the study materials which encompasses the the source codes of the
tasks as well as a spreadsheet used during the tasks’ evaluation.
20 All the process of tasks' analysis was done manually by code inspection and execution.

https://github.com/carloszimm/thesis

95

Table 17 — Percentage frequency of tasks' completeness.

API Task Turned in Complete Incomplete Not Done
All #1 18 (100%) 15 (83.33%) 3 (16.67%) 0
#2 17 (94.44%) 5(27.78%) 12 (66.67%) 1 (5.56%)
#3 18 (100%) 14 (77.78%) 4 (22.22%) 0
#4 16 (88.89%) 11 (61.11%) 5(27.78%) 2 (11.11%)
#5 14 (77.78%) 10 (55.57%) 4 (22.22%) 4 (22.22%)
Avg. 16.6 (92.22%) 11 (61.11%) 5.6 (31.11%) 1.4 (7.78%)
Bacon.js #1 5 (100%) 5 (100%) 0 0
#2 5 (100%) 3 (60%) 2 (40%) 0
#3 5 (100%) 4 (80%) 1 (20%) 0
#4 4 (80%) 4 (80%) 0 1 (20%)
#5 4 (80%) 4 (80%) 0 1 (20%)
Avg. 4.6 (92%) 4 (80%) 0.6 (12%) 0.4 (8%)
RxJS #1 13 (100%) 10 (76.92%) 3 (23.08%) 0
#2 12 (92.31%) 2 (15.39%) 10 (76.92%) 1 (7.69%)
#3 13 (100%) 10 (76.92%) 3 (23.08%) 0
#4 12 (92.31%) 7 (53.85%) 5 (38.46%) 1 (7.69%)
#5 10 (76.92%) 6 (46.15%) 4 (30.77%) 3 (23.08%)
Avg. 12 (92.31%) 7 (53.85%) 5 (38.46%) 1 (7.69%)

Note 1: The last line of every section has the calculated average for the statistics.
Note 2: Bold numbers indicate the highest value/percentage among the tasks’ classification (i.e.,
complete, incomplete, and not done).

Source: Elaborated by the author (2024)

The incompletion rate unfortunately was higher than we expected, showing a value of ~30%.
The not done percentage fortunately was very low, only getting around 8%. RxJS participants
depicted the worst completion rate, ~50% on average, while Bacon.js users, the least nume-
rous, had a greater rate (80%). As expected, both tasks 1 and 3 had the best rate scores,
given their basic level of difficult. A surprise and a common point between the [APIs| was
task 2 (error-handling scenario), which showed a drop in completion rate, specially for RxJS.

Participants also demonstrated struggling with task 5, which involved stateful operations.

96

Table 18 — Time spent per task.

API Task Count Time (minutes)
Median Min. Max.
All #1 16 56 15 210
#2 15 40 19 230
#3 16 17.5 5.53 60
#4 15 30 5 120
#5 13 23 10 90
Avg. - 333 10.91 142
Bacon.js #1 4 33.5 20.98 52
#2 4 40 19 41.2
#3 4 11.48 10 27
#4 4 30.51 20 114
#5 4 13.5 10 16.5
Avg. - 25.8 16 50.14
RxJS #1 12 68.5 15 210
#2 11 50 20.27 230
#3 12 22.5 5.53 60
#4 11 30 5 120
#5 9 28 15 90
Avg. - 39.8 12.16 142

Note 1: Column Count indicates the total of records considered for the statistics calculation.
Note 2: The last line of every section has the calculated average for the statistics.
Note 3: Bold numbers indicate the highest, median and maximum time.

Source: Elaborated by the author (2024)

4.2.2.2 Time of Task Execution

Table presents the time spent during the tasks in terms of median, minimum, and
maximum statistics. We preferred not to report the average timeE-] given the accentuate
variation of the measures; instead, we mostly based our analysis on the median statistic due
to its resistance to outliers (ROUSSEEUW, |1990; DAS; IMON| |2014])), especially considering that
the time was actually informed by the participants and it could be susceptible to some level
of variation from the de facto spent time.

On average, the participants spent a total of 33.3 minutes during the elaboration of the

solutions. RxJS users took the most time (=40 min.) on average with the tasks, while Bacon.js

2L The remaining statistics are rather informed through the supplementary material in the thesis repository.

https://github.com/carloszimm/thesis

97

spent only ~25 minutes. It was notable and somewhat expected that the volunteers spent
more time in the first two tasks; afterwards, the participant took relatively less time (with
some variations). RxJS was the [AP[| that registered the shortest (task 4) and the longest (task
2) times. Task 2 showing long time is in line with the observation of Section which
pointed that participants had trouble with that task. Task 5 also depicted a long time for
RxJS, which had more problems in completing the task (Section .

4.2.2.3 Code Observations

This section describes important observations we noticed while manually inspecting and
executing the source codes of the tasks produced by the participants.
Different paths, the same outcome. We notice within the tasks (e.g., tasks 1, 3, 4, and 5)
that participants were capable of combined different operators to get to the same logic. This
was more evident with Bacon.js users, and it is was largely anticipated given its extensive range
of operators (Section . Bacon.js P8 user, for instance, provided two versions for tasks 3
and 5. There were also a few RxJS codes that presented this characteristic. P13 (RxJS), for
example, created a solution for task 4 that diverged from the others and was still correct.
Problematic operators. We identified two Bacon.js operators with uncataloged behavior:
fromPromise and fromPoll. fromPromise is used to wrap any JavaScript Promise as a
Bacon.js EventStream, and it was used a lot as many of the tasks required HTTP requests.
At least two solutions (i.e., P1 and P8) used the (Bacon.js) flatMapError operator to map
the cases of errors that could happen inside the fromPromise function. However, other two
codes did not use the flatMapError and still succeed. By taking a look at the fromPromise
implementation H one can find out that the operator actually automatically wraps any error
case in a Bacon.js ErrorFE] instance, but it is not described in the documentation. A great
majority of the solutions also exploited the factory operator fromPoll, which allows repeatedly
invoking a function according to a given delay. The repetition is controlled by returning two
different types of Bacon.js objects: Next?”] representing the next emissions, and Bacon.js
En(F_E] to halt the repetition. Surprisingly, the operator automatically wraps any return as a

Next object (e.g., P1, P8-v2), making the code more compact and less verbose, but the

22 <https://github.com/baconjs/bacon.js/blob/master/src/frompromise.ts#L25>.

2 A class that represents a event of error in Bacon.js: <https://baconjs.github.io/apP8/classes/error.htm|>.
24 |<https://baconjs.github.io/apP8 /classes/next.html>.

25 <https://baconjs.github.io/apP8/classes/end.htm|>_

https://github.com/carloszimm/reactiveusability24/tree/main/task-codes/baconjs/task%203
https://github.com/carloszimm/reactiveusability24/tree/main/task-codes/baconjs/task%205
https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/rxjs/task%204/P13.js
https://github.com/carloszimm/reactiveusability24/tree/main/task-codes/rxjs/task%204
https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/baconjs/task%202/P1.js
https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/baconjs/task%202/P8.js
https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/baconjs/task%203/P1.js
https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/baconjs/task%203/P8%20-%20v2.js
https://github.com/baconjs/bacon.js/blob/master/src/frompromise.ts#L25
https://baconjs.github.io/apP8/classes/error.html
https://baconjs.github.io/apP8/classes/next.html
https://baconjs.github.io/apP8/classes/end.html

98

behavior is also not covered in the documentation.

We also found that factory operators that rely on return statements like Bacon.js fromPoll
and repeat can stimulate the production of more imperative code as the user is forced to
introduce some branch logic to control their behavior. The code ended up being more verbose
and complicated (e.g., it could be observed in many P5 codes). The return values are also
inconsistent. While fromPoll depends on Next and End, which are subclasses of EventEGI, to
control the iteration, repeat relies on a EventStream return or a falsy value (like null or
undefined). Without care, a developer may assume that the repeat iteration can be break
with the never streanﬂ, which would be more consistent. Overall, we believe that solutions
that relied on interval (both found in Bacon.js and RxJS) for example produced clearer
reactive codes and have better mapping with the language constructs like the JavaScript
global function setInterval, that would probably be used in the codes without the [RP|[APIs]

We observed the use of two Bacon.js operators that could be problematic as the user
can be either misled based on the name or have trouble to find it; yet, there were no com-
plaints from the participants. bufferingThrottle throttles the emissions without discar-
ding by buffering the values for future emissions. The problem is that it can be name mis-
leading, as some [API| users can think that the operator produces Arrays just like Bacon.js
bufferWithCount/bufferWithTime/bufferWithTimeOrCount (they are even displayed clo-
sely in the library documentation) or RxJS bufferCount/bufferTime/bufferToggle, when
in fact it does not. The slidingWindow was used by at least two solutions (P1/ and P8)
and it works akin to the sliding window concept found in data stream applications (AKIDAU;
CHERNYAK; LAX, 2018). slidingWindow is actually interesting as thedoes not make any
distinction between the buffer class of operator and the window operators. For instance, in
RxJS, buffers are utilized to produce results as array of elements, while the window class of ope-
rators is reserved for those that return the result as (sub)streams of data; moreover, RxJS keeps
a corresponding version for each one of those classes. Hence, if there is a RxJS bufferCount,
equivalent to a fixed window or Bacon.js bufferWithCount, there is also a RxJS windowCount.
In Bacon.js, there is a full class of buffer operators like bufferWithCount, bufferWithTime,
and bufferWithTimeOrCount, but only slidingWindow has a window nomenclature.

Error-handling. We observed a lot of problems with RxJS error-handling required for task 2.

26 | <https://github.com /baconjs/bacon.js/blob/4ab1b7d36cdfe49dc5474099d1ff4c959064b56a /src/event.ts
410>
4! |<https://baconjs.github.io/api3/globals.html#never>.

https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/baconjs/task%205/P1.js
https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/baconjs/task%205/P8%20-%20v2.js
https://github.com/baconjs/bacon.js/blob/4ab1b7d36cdfe49dc5474099d1ff4c959064b56a/src/event.ts#L9
https://github.com/baconjs/bacon.js/blob/4ab1b7d36cdfe49dc5474099d1ff4c959064b56a/src/event.ts#L9
https://baconjs.github.io/api3/globals.html#never

99

RxJS codes in task 2 were in general less readable and longer than Bacon.js solutions. RxJS
offers a good arsenal of error-handling operators. Some of the codes were actually in the right
path, but missed or misplaced essential operators (e.g., catchError and retry) either to retry
the stream or prevent the stream from stopping work on the presence of error (e.g., P3, P14,
and P15). Others (e.g., P2, P3, and P11) used operators in a wrong way (i.e., retryWhen
and onErrorResumeNext), while some developed their own implementation (e.g., P17). We
think that Bacon.js semantics regarding errors (i.e., not killing the stream in the presence of
errors) may have helped Bacon.js participants; yet there was a Bacon.js participant (i.e., P18)
who preferred to create his own implementation. Anyhow, it is important to emphasize that
neither [AP]| provide a dedicated space to guide the users to correctly deal with error handling;
better guidance could probably had rendered better RxJS solutions.

RxJS Subject. Subjects were barely talked about during the course class (training), and, still,
P4 used it in task 4. By combining a Subject instance with a takeUntil, P4 explored the
Subject to create a imperative mechanism that was used to control the takeUntil with the
help of a global JavaScript setTimeout. In fact, Subjects (Bus in Bacon.js) can lead to a
more imperative code and they are a debatable concept in the Rx world®®?%] reserved only for
special occasions. The should strive to clarify when better use such concept in code.
Lack of best Practices. During code inspection, we observed some instances of code poorly
designed which we denoted as lack of best practices. While some of them helped a few students
to produce the asked outcomes, the final product resulted in code hard to understand and often
nested that would probably not scale well and offer the wrong perception about the m (a
tool to fight the complexities of event-driven programs). In what follows, we condensed some

of the design issues we could perceive:

= Side effects: Some participants resorted to side effects inside pipelines, either to log
intermediate emissions or store data for logic control or further access. A few even
recurred to the concept of hot streams (multicast consumer), barely touched in class, to

attach two consumers, one for logging and another for carrying out the task demands.

= Global variables. A couple of students relied on global variables, aligned with side ef-
fects, to control their logic or store data. Task 5, for instance, had some implementations

using external variables (numbers and arrays) to serve as a temporary buffer.

2 | <https://stackoverflow.com /questions /9299813 /rx-subjects-are-they-to-be-avoided>.
29 <https://stackoverflow.com/a/31467377>.

https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/rxjs/task%202/P3.js
https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/rxjs/task%202/P14.js
https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/rxjs/task%202/P15.mjs
https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/rxjs/task%202/P2.js
https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/rxjs/task%202/P3.js
https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/rxjs/task%202/P11.js
https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/rxjs/task%202/P17.js
https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/baconjs/task%202/P18.js
https://github.com/carloszimm/reactiveusability24/blob/main/task-codes/rxjs/task%204/P4.js
https://stackoverflow.com/questions/9299813/rx-subjects-are-they-to-be-avoided
https://stackoverflow.com/a/31467377

100

» Mix of Async. APlIs: There were some solutions that specifically used the Promise
[API| facilities to bundle a lot of the logic instead of relying on the [RP][API] operators.
Some of those mixtures ended up producing nesting, hard-to-understand codes with long
callbacks and uses of side effects and global variables. This is specially dangerous, given

the peculiarities of asynchronous programming.

» Long callbacks: Among the problems observed, this one undermines the readability of
RP code. We could observe many instances of long callbacks, concentrating a lot of

concerns.

» Nesting subscription: This was more noticed in one of the participants’ code. Rather
than using an operation to deal with stream of streams and flattening, the student
recurred to create streams inside the consumer part or subscription, creating a pattern

of nesting, indented code.

= Unnecessary use of operators: A student repeatedly overused RxJS pipe combinator,
by calling it every step of the pipeline. In fact, the participant use it to pass only one
parameter or operator, not taking advantage of its variadic property. Strangely, there was
also excessive use of creation function to wrap intermediate results along the pipeline
course. As a result, this forced the participant to many times recur to the concatMap

operator to streamline the logic (i.e., to flatten the intermediate streams).

4.2.2.4 Operators

Figure depict the frequency of the operators used during the solutions using both
[APIs| Bacon.js has an extensive catalog of operators, 149 as detailed in Section [4.1.1] and
considering the operators utilized during the tasks, approximately 19% (29 operators) of the
Bacon.js operators were used for the tasks. RxJS, on the contrary, has undergone some interface
changes (Section [4.1.1]), and its version 7 counted with 113 operators (subscribe included),
while the next version, 8, has 106 (subscribe included). Considering the operators used
throughout the tasks are in both RxJS versions, the participants required ~28% and ~30%
(32 operators) of the operators of the versions 7 and 8, respectively.

By examining the operators and their frequencies, a series of patterns can be uncovered.

For instance, the most utilized Bacon.js operator was fromPromise, while the most explored

101

for RxJS was subscribe. Given the nature of the task, it was expected that operations like
fromPromise or similar ones were at the top of the most requested functions. In RxJS, the
function used for wrapping Promises is the from operator and it appears as the 4th most
utilized one, only behind subscribe, interval, and map. Having those operations as the
most used for RxJS instead of from is not strange as demonstrated by Zimmerle et al. (2022)
in which showed subscribe and functional combinators like map as the most requested RxJS
operators in open-source projects. However, taking into account the big difference between
Bacon.js fromPromise and RxJS from frequencies and considering there were more RxJS
delivered tasks, we took a look into RxJS solutions. A close inspection revealed that many
source codes (e.g., P7 in all tasks and P9 in tasks 3 and 4) utilized the concatMap operator
to map stream emissions to Promises but without wrapping the Promise object with the
appropriate RxJS operator as one would expect. This behavior is actually not cataloged in
the official documentation (<https://rxjs.dev/api/index/function/concatMap>), but, in
fact, revealed through other non-official resourcesEG]. The same situation can be observed with
mergeMap (P10 in tasks 4 and 5) and switchMap (P3 in task 4). Although apparently not
so important for small tasks, this behavior and interaction with the Promise@] should have
been detailed clearly in the documentation, so all users are aware of this possibility.

The second most exploited RxJS operator was interval, which matches the majority
of the task requirements that asked for some type of interval or repetition interaction. As
already commented, some participants recurred to alternative ways, in special with Bacon.js.
Figure 14| exhibits that Bacon.js users preferred to use the fromPoll operator to create the
interval behavior. However, Section[4.2.2.3| observed that in some situations, fromPoll did not
collaborate to create some clean code and it has behavior not described in the documentation.

The majority of the Bacon.js task implementations picked the onValue to consume the
elements of the streams, while RxJS users greatly depended upon the subscribe operation;
RxJS only counts on the subscribe to consume the stream, with the variation of either
informing an Observer object implementing at least a next method or a callback equivalent
to the next method. Bacon.js, on the contrary, has different ways of subscribing to the stream
(e.g., onValue, log, and subscribe). Bacon.js version of the subscribe, however, receives
only one parameter, an EventSinkEf], and the user has to introduce branch test to identify

the type of current emission (a value, an error, or an end signal); this may explain why no

30 E.g., <https://www.learnrxjs.io/learn-rxjs/operators/transformation/concatmap>
31 <https://baconjs.github.io/api3/globals.html#teventsink>.

https://rxjs.dev/api/index/function/concatMap
https://www.learnrxjs.io/learn-rxjs/operators/transformation/concatmap
https://baconjs.github.io/api3/globals.html#eventsink

102

Bacon.js participant explored the subscribe method, aligned with the lack of examples [
and EventSink description.

RxJS of and Bacon.js once are among the most basic factory operator to wrap single
values. Still, RxJS of stood out as a very requested operator, even though there were not much
space for its use in the tasks. Participant P3, for example, many times used it unnecessarily.

Given the more strict requirement for error handling, it was expected that operator fre-
quencies showed some considerable utilization of error handling operators for RxJS, specially
considering the demands of task 2. However, as Figure reveals and complemented by the
data displayed in Table (task 2), the exploration of such operators was way below the
expected. Two Bacon.js functions had some usages, onError and flatMapError, but the
APIs default approach to error handling (Section aligned with non-described behavior
of fromPromise (Section may have helped Bacon.js participants. An interesting point
in the RxJS code was the presence of the onErrorResumeNext, which is not properly indicated
in the documentation section of operators (<https://rxjs.dev/guide/operators>); one can
only find it by searching for it in the search bar of the web documentation.

Debugging, as well as testing, was pointed as a concerning area in RP by Zimmerle et al.
(2022)), and, by inspecting Figure , one can notice the low frequency of the doAction and
tap operators. In fact, the solutions not necessarily had to include those functions as most of
the side effects could be concentrated at the consumer/subscription part of the applications.
Nonetheless, a lot of participants wrongly mixed side effects inside the pipeline of operators,
not realizing the implications of introducing side effects (e.g., difficult testing or memoizing of
the functions). Unless one already had a basic functional background (i.e., understanding the
advantages of side-effect free functions and the use of tap combinator), the do not make
clear efforts to clarify the importance of fitting those debugging functions inside the pipeline

in the presence of side effects.

4.2.3 Questionnaire

This section examines the answers for the questionnaire applied after the conclusion of
the tasks. In total, 12 participants (Section |4.2.3.1| describes their profile), who did the tasks,
made themselves available to answer the questionnaire. From those, four experimented with

Bacon.js, whereas eight explored RxJS. The following sections explore the results in accordance

32 |<https://baconjs.github.io/api3/classes/eventstream.html#subscribe>.

https://rxjs.dev/guide/operators
https://baconjs.github.io/api3/classes/eventstream.html#subscribe

103

Figure 14 — Usage frequency of the Bacon.js and RxJS operators used during the tasks.

Bacon.js RxJS
70
60
50
40

30

10 B BRI BE

o
of

takeUntil

switchMap
tap

log
flatMapConcat

flatMapLatest
scan

take

map
bufferCount
once
onError
share
fromArray
filter

flatMapError

later
slidingWindow

retry
onErrorResumeNext

concatAll
skip
range

map
from
bufferingThrottle

concatMap

fromPromise
onEnd

subscribe
interval
flatMap
delay
onValue
fromPoll
mergeMap
timer
catchError
timeout
sequentially
repeat
mergeAll
publish
doAction
retryWhen
throwError
fromEvent
takeWhile
windowTime
distinct
takelast
skipWhile
bufferWithCount

Note 1: A total of 29 and 32 operators were utilized from Bacon.js and RxJS, respectively.
Note 2: Operators sharing the same name that were placed in the same bar also share the same
semantics.

Source: Elaborated by the author (2024)

with the main parts of the questionnaire.

4.2.3.1 Demographics

To characterize the participants, we ask them to provide some information about their
experience in the field. Table[I9)depicts the profile of the questionnaire respondents. Regarding
experience, we asked about their general experience with programming, as well as, with the
paradigms: [Object-Oriented (OO)| programming, [FP| and, finally, RP] in case they had any

previous exposure to the area. Half of the volunteers declared having more than five years of

programming experience, while the other half answered having from two to five years. The set
of more-than-five programming experience includes all of the Bacon.js participants, while the
RxJS ones are divided between more than five and two to five years. Regarding [OQ| paradigm,
at least four had been exposed to it for more than five years, whereas other four had between 2
and 5 years of [OO] experience; the remaining three feel into the 1-2 years category. As expected
and given its popularity, the respondents claimed to possess more knowledge than [FP|
In this way, only one participant answered having more than five years of exposure with [FP}
four of them had two to five years of experience, while the great majority (five) showed one
to years of practice. Surprisingly, two students had less than one year of [FP] Regarding [RP}

a positive aspect is that half of the participants had some contact with the paradigm before,

104

albeit six declared had no exposure. Four acknowledged having one to two years of experience
with [RP} on the other hand, other two only had less than one year of [RP| contact. In general,
it was a very diverse group, with varying levels of experience among the [AP]| users. Bacon.js
participants presented the most experienced group, albeit, in terms of paradigm experience,
the scenario was a little mixed.

Table 19 — Experience of the participants who answered the questionnaire according to the explored API.

API Participant Interview Experience (years)
ID Participation? Programming OOP FP RP

Bacon js P1 yes > b >5 12 12
P5 yes >5 >5 12 1-2
P8 yes > b 2-5 25 12
P12 - >5 >5 >5 0

RxJS P3 yes >5 -2 12 0
P4 - > 5 >5 <1 <1
P6 - 2-5 25 25 0
P9 - 2-5 2-5 25 1-2
P10 yes 2-5 25 12 0
P11 - 2-5 -2 12 <1
P13 yes 2-5 <1l <1 O
P14 - 2-5 1-2 25 0

Note 1: OOP stands for object-oriented programming.
Note 2: FP stands for functional programming.
Note 3: RP stands for reactive programming.

Source: Elaborated by the author (2024)

4.2.3.2 General Satisfaction

One of the first items of the questionnaire (Section corresponded to collect the
general level of satisfaction from the participants. Figure[15summarizes the respondent answers
according to the [API| explored. The results show half of the four, Bacon.js users reported
having an unsatisfying experience with the [API; only one (25%) user considered having a
satisfying experience while the other one (25%) neither considered satisfying or unsatisfying
(neutral). RxJS, on the other hand, had four participants (50%) of the eight respondents
who declared having a satisfying experience. Interestingly, other three (37.5%) were neutral,

neither considering an unsatisfying or satisfying moment. Unlike Bacon.js, only one (12.5%)

105

participant stated having a disappointing experience.

Figure 15 — Answers to the Likert-based question that measures the API satisfaction level according to the
questionnaire’s participants.

Bacon.js 50.0% 25.0% 25.0%

RxJS 12.5% 37.5% 50.0%

0% 20% 40% 60% 80% 100%

B Very unsatisfying Unsatisfying Neutral Satisfying M Very satisfying

Source: Elaborated by the author (2024)

4.2.3.3 Cognitive Dimensions Questionnaire

The result for every assertion, grouped according to their associated dimension and [APIs|
of our cognitive dimensions questionnaire (Table is displayed in Table . The calcula-
tion followed the usual procedure applied to Likert-based scale (ALKHARUSI, 2022), consisting
in mapping every response to a predefined weight, ranging from 1 (strongly disagree) to 5
(strongly agree), and calculating the average of those values. For the assertions with negative
connotation like U2 and U4, we inverted the values of weights; so, the results are expressed in
a positive direction and higher values indicate better usability for the assertion. We also calcu-
lated the average values for every dimension with results from both (Table and the
average obtained by each (i.e., the average of the dimension values obtained individually
by each , which are displayed in Figure . Considering the interpretation of Table (also
used in , the majority of the dimensions scored very closely (Figure , both in terms
of [API| or general average dimension, and most of them could be interpreted as presenting a
moderate level of usability. The only exception was reusability in which scored high (3.75),
and it was the highest dimension for both [APIs Actually, the also shared the lowest
dimension as well, expressiveness, having RxJS exhibiting the lowest average score among all

computed scores. According to Table [I0] RxJS expressiveness is actually at the upper limit of

106

the low level interpretation. If we draw a line at the middle point (2.5) of the scale and we
face the interpretation from that angle, we can actually interpret the results more toward a
positive attitude but still far from the highest value and very near the middle, neutral point.
The mean of the average dimension, displayed in Figure [I6, summarizes our observations by
showing that both in general scored moderate; Bacon.js had a value slightly greater than

RxJS, but, still, both scores are within the moderate level.

Figure 16 — Average rankings on the dimensions explored in the questionnaire. Maximum scale reduced from
5 to 4 to aid visualization.

4 3.75

35
3.05 3.06313 3.1 3.083,043.06 2.993:07
2.9 T)

3 2.75
25

2
1.5

1

Understandability Abstraction Expressiveness Reusability Learnability Average dimension
M Bacon.js MRxJS [@Average

Source: Elaborated by the author (2024)

4.2.4 Interview

Based on their inclination and collaboration during previous stages, a total of eight people
were invited to be interviewed after the questionnaire. To be fair, we balanced the groups, so
four were from Bacon.js, and the others from RxJS. From the eight, six accepted the invitation,
three from each group. According to Table [19} participants P1, P5, and P8 were the Bacon.js
participants interviewed; conversely, P3, P10, and P13 were the RxJS interviewees. As detailed
in Table |'1§| the interviewees from Bacon.js presented a close profile, with all of them having
more than five years of programming experience along with a great level of experience.

The RxJS group was most varied, but still presenting an elevated experience.

107

Table 20 — Results for every questionnaire assertion according to their dimension and the API explored by the
participants.

Dimension ID APIs
Bacon.js RxJS Avg.
(n=4) (n=28)

Understandability Ul 2.5 2.75 2.63 (moderate)

U2 2.5 1.88 2.19 (;o0)

U3 35 3.13 3.32 (moderate)

U4 3.25 2.75 3 (moderate)

U5 35 3.25 3.38 (moderate)
Abstraction Al 2.75 3.38 3.07 (moderate)

A2 2 2.63 2.32 (j0w)

A3 4.5 3.38 3.94 (hign)

A4 3 3.13 S (et
Expressiveness El 2.5 2.63 2.57 (j0u)

E2 4 4 4 (high)

E3 3 2.63 2 i)

E4 2.25 1.75 2 (0w

E5 3.25 3.38 8.8 (et

E6 2.5 2.5 2.5 (j0u)

E7 2 1.38 RGE——
Reusability R1 45 4.13 G)

R2 4.25 3.75 4 (high)

R3 2.25 2 2.13 (o0

R4 3.5 3.63 3.57 (hign)

R5 4.25 3.63 3.94 (high)
Learnability L1 3.5 4.13 S (i)

L2 35 2.5 3 (moderate)

L3 2.25 205 2.38 (jow)

Note 1: n is the number of questionnaire respondents.
Note 2: Bold numbers indicate the most concerning assertion, either low or very low level, for the
dimension.

Source: Elaborated by the author (2024)

4.2.4.1 Categories

Documentation. Documentation was the category most cited by the participants. The ma-

jority of the discussion concentrated on bad aspects of the [APIs| documentations. Both in-

108

terviewees P1 and P5 considered Bacon.js poor documented. P1 argued the [AP]| could have
been better documented, considering one of the main sources of difficulty during the tasks.
P5 also complained and felt limited by the documentation, arguing the documentation was
too simplistic and messy in a way it was not able to truly expose the [API. P5 insisted there
was a chance that the library indeed offers a really good set of tools and does not need to
be enhanced, but, since he could not understand it and situate himself while using the [API|
many of his complaints could possibly be due to the quality of the documentation.

Numerous documentation problems revolved around the poor resource description descri-
bed specifically in the Bacon.js docs. Both P1 and P5 participants pointed to the fact many
resources like major objects, constants, and functions do not include either good descriptions
or any description whatsoever. P1 provided as an example the retryf|function, which, besides
presenting a strange syntax, was not good documented. P5 also suggested a few examples
of bad documented resources, such as Spy, takeWhileT, and toDelayFunctiorE[]. As stated
by P5, for someone who is experienced in the area, having short descriptions or none may be
enough, but, for someone just starting, it is not and leads to a lot of guessing. In the below
passage, P5 recognized some names could be somewhat obvious and the work in open-source
project may not be easy, but, to attract people, the usability is key: “I even understand that
there are some names that are a bit obvious, but man ... [...] | normally understand that there
are few people, | understand that it’s not easy to do this work, really. But, if you set out to do
this, if you want us to use it, you will only get people using this thing if it has good usability,
you know? And if it's easy for you to learn. Easy...relatively easy.” (P5)

Another major pain point brought by the interviewees was the insufficient and often low-
quality examples. P10 (RxJS) felt the documentation examples were not enough, mainly in
specific cases like when he was dealing with error-handling scenarios (task 2). Two Bacon.js
users complained about the quality and lack of examples as well. P5 repeatedly called attention
to the fact that many resources do not present an example in Bacon.js docs. For instance,
P5 commented about the interval[’f] operator that had at least a description but totally
missed the usage example; also, Bacon.js retryEG], needed during the task 2, includes a poorly
formatted example. For P8, the lack of examples was his biggest criticism toward Bacon.js;

according to him, RxJS has more examples than Bacon.js, and, although not all of them are

33 |<https://baconjs.github.io/api3/globals.html#retry>.

All of three resources are available at |<https://baconjs.github.io/api3/globals.html|>|
35 |<https://baconjs.github.io/api3/globals.html#interval >

36 |<https://baconjs.github.io/api3/globals.html#retry>.

https://baconjs.github.io/api3/globals.html#retry
https://baconjs.github.io/api3/globals.html
https://baconjs.github.io/api3/globals.html#interval
https://baconjs.github.io/api3/globals.html#retry

109

good, they are still there. P8's comments pinpoint the importance of introducing examples
during the learning process: “I think it's a point they could work on more; especially if you feel
like "ah, | want to learn how to use this library, I'm not here only to do the tasks", which was
the case with us there. Having examples makes it much easier.” (P8)

In the same direction, Bacon.js participants were discontent about the quality of the [AP]|
tutorial. P1 suggested the introduction of a kick-start tutorial for Bacon.js, as he considered
the documentation tutorial bad. P5 considered Bacon.js tutorial bad, extensive, and very
specific, recommending a more segmented tutorial with diverse cases like HTTP requests,
error-handling scenarios, etc. P10 (RxJS) missed more cases as well, regarding more specific
error-handling scenarios specially like when things go wrong.

The tasks' solutions left some Bacon.js participants unsure if they have followed the best
practices. P8, who had a great performance during the tasks (Section , stated there
were many ways to accomplish the tasks and, during the process, he was not certain he was
following the good practices of the [APIl P5 was more emphatic about his solutions’ problems,
explaining he likes to doing things the best way possible, but his codes with Bacon.js seemed
to be workarounds. In this way, P5 admitted it was even hard to affirm there are [API usability
problems since he did not even know if his work was done following good practices.

Not every commentary relating to the documentation was pessimistic. P1 acknowledged
that there were methods relatively well documented with examples. P3 also stated the RxJS
introduction pages were simple, and P8 (Bacon.js) said once the required operations were
found in the documentation, the explanation was clear about what they do.

Operators. Along with documentation, operators was a recurrent source of discussion during
the interview. A considerable part of the discussion concerned the usage of some operators,
which we tagged as confusing ones. Interviewees reported a few operators’ names were not
so clear and needed more information or naming enhancement, specially the class of flatMap
operations (i.e., to deal with stream of streams). This type of nomenclature confusion regarded
the flatMap operators was observed in both groups of [APIs| P1 reported feeling confused about
the difference between Bacon.js flatMap and flatMapConcat at the beginning, but he ended
up using both during his solutions (all of them considered complete in the analysis). However,
P1 also mentioned, by the time of the interview, he did not remember the difference anymore,
and, based on the nomenclature, he would expect that flatMapConcat concatenates the results
in some form but it did not seem to be the case. P10 also confirmed the confusion with the

flatMap operators in RxJS. While understanding their need, P10 described moments of either

110

constantly visiting the documentation to ensure the right operator or wrongly using one instead
of the other; so, P10 thought the nomenclature for those types of operators could be different
to help a little more. Even P8, who had previous experiences with RxJS, also considered the
nomenclature for RP flatMap operators not good for both [APIs; yet, P8 thought the other
Bacon.js operators had good naming and matching description.

During P1's interview, the participant often demonstrated dissatisfaction with the Bacon.js
retry (task 2) calling it confusing and obscure, completely different from Apple Combine
one-parameter versiorE] (very similar to RxJS); P8 also reported trouble with that Bacon.js
operator. Based on the task description, P8 agreed he needed the retry function to do the
task, but it was hard to make the operator work correctly. Contrarily, P5 did like Bacon.js
retry, arguing it was well-defined and covers all use cases; P5's solutions, however, were
always accompanied by problems and mostly resembled an imperative code, and he, during
interview, doubted the quality of his produced codes. P5 actually did not praise all operations,
specially taking into account the nomenclature used in which he deemed confusing or possibly
having RP jargon. In syntactic terms, for instance, P5 thought it was strange the way he
managed to stop Bacon.js fromPoll loop, and it would be more intuitive to have some
function to control the life cycle of fromPoll instead of a return statement with a Bacon.js
End instance.

There were indecisive situations concerning the choice of the correct operators. P1, for
instance, took at least three different approaches to get to his final version of task 4 (i.e., cre-
ating a timer to break the main logic). P3 felt operators like RxJS takeWhile and takeUntil
were too close, so depending how one organize the logic and the experience level, both opera-
tors could apparently produce the same outcome. Closely, P3 also reported feeling unsure of
the best way of initialize a stream giving the many creation operators that were available; P3
argued the problem should actually be due to his experience with the [API], but he missed a step
by step guidance of best operator choice. The following P3's analogy illustrate his dilemma:

“For me, many paths led to Rome, but | didn’t know if the paths that led to Rome really
led to Rome or if they only seemed to lead to Rome, but | was going to Palestine, | don’t
know.” (P3)

Besides reporting problems about choosing the correct flatMap variation, P10 demonstra-
ted insecurity whether the RxJS interval was the correct decision to create both an interval

and a counter during the tasks as he personally felt there were probably clearer ways of expres-

37 < https://developer.apple.com/documentation/combine/publisher/retry(_:)>.

https://developer.apple.com/documentation/combine/publisher/retry(_:)

111

sing those two different things. In terms of clarity, P13 did not understand how to properly mix
RxJS Observable with Promises; in this sense, P13 complained about the constant usage of
operators like concatAll or mergeAll every time there was a Promise, but, according to his
understanding, it did not make sense as those functions seemed to be more linked with win-
dowing. Moreover, P13 described moments where he considered to create his own operators
as he did not find the proper one, but it was not so straight forward.

A very praise aspect was the composition of operators. Interviewees emphasized the ea-

siness, legibility, readability, and linearity of the codes. P1, in particular, commented the way
the operators are structured (i.e., in terms of a pipeline) makes the code easier to understand
and read as one can visualize each step on the way; however, one has to first understand how
each needed operator works as warned by P1. Still, there were debatable opinions regarding
the pipeline syntax. P8, who had previous experience with RxJS, preferred the way Bacon.js
allows function composition through method chaining, arguing the code becomes more usable
and is one less syntactical element polluting his code (i.e., the RxJS .pipe method); yet, P8
understood the reason why RxJS decided to adopt the current pipeline syntax a few years
ago. P13, contrarily, liked RxJS way of passing standalone functions, praising the components
isolation and less chaining.
Learning and Understanding Aspects. Some participants provided insightful accounts
about their progress and initial learning and understanding. P1 described he started disli-
king Bacon.js and felt upset for having to do the tasks with the [API| However, as detailed
by P1, the introduction was reasonable by taking a look at the documentation and the [AP]]
turned out to be similar to Rx, which he had previous contact, and other RP libraries (e.g.,
Apple Combine); by the end, after acquiring more knowledge about how the worked, he
described the [API| use as amusing. The same gap until a better understanding of the [AP]| usage
was recorded by P10, who recounted taking longer time during the first tasks, but starting
making better progress after changing his way of thinking by putting the datastream concept
upfront. Another key factor, for P10, to get a better understanding of the |API| was to make
some parallel (i.e., function composition, syntax, operators, etc.) with another library he knew
called Ramda®®

P13's account considered the learning of the first concepts as the greatest obstacle, which
he managed to understand in a little more than one hour by doing the rx-fruits game (discussed

below) and reading the overview provided in the RxJS documentation pages; however, as also

38 3 functional programming, JavaScript library which is available at <https://ramdajs.com/>.

https://ramdajs.com/

112

pointed by him, the overall use was simple. For P8, the experience with RxJS became an
obstacle for using Bacon.js during the task 1; as stated by P8, he knew how to approach the
problem from a RxJS point of view, but his bias toward RxJS function nomenclature made him
taking a while to find the right functionalities in Bacon.js. Participant P8, in fact, stated, after
taking a good look at Bacon.js' documentation, he felt that the [AP] offered a more complete
and practical set of tools compared to RxJS.

Among RxJS users, P3 seemed not to have grasped the basic concepts as well as the
reactive terminology. In fact, P3 ensured to emphasize he spent five hours during the tasks
and did not have many facilities with RxJS. To exacerbate his frustration, P3 did not like
the Stack Overflow restriction during the tasks. According to him, he understood more or
less the concepts, but he did not understand why using an of operator for instance or the
structure of the RxJS Observable. Thereby, P3 described many situations of copying and
pasting examples, trying to escape to its comfort zone by inserting raw JavaScript in the
middle of the pipelines, and even forcing to fit a new Observable instance within the logic
as workarounds. Another source of confusion for P3 was the reactive term as he was not sure
he was reacting to anything. Delving into P3's narration, the source of all confusion seemed
to be the fact a great majority of RxJS initial examples focus on Ul reactions{ig], while most
of the tasks asked for reactions to number sequences, HT TP requests, etc. In this sense, P3
naively considered the task context as a simulation of real reaction.

P5 experience with Bacon.js did not convince him of the advantages of using a tool like
Bacon.js. As put by P5, although describing some nice situations with the [API| he kept asking
why he would use the library as he did not feel the need for it. P5, indeed, detailed he was
able to code with [API], but the problem lied in situating himself while coding.

Visual Diagrams. Within this section, we approached the Marble Diagrams, highly promoted
in the ReactiveX community, aiming to understand, from the participants’ point of view, their
practical usability. All participants agreed marble diagrams are a reasonably helpful mechanism
to understand RP. Some praised for their existence, affirming they were essential to learn a few
operators. P1, for instance, emphasized he is a visual learner and the diagrams are very practical
when he does not know or have not used an operator. P3 praised the RxJS documentation for
providing the diagrams: “..this was a really cool thing of the documentation. In all documented

operators there was a marble diagram that explained more or less, abstractly, how it worked,

39 This can be seen by taking a look at the overview page: |[<https://rxjs.dev/guide/overview>. Last visited
at Oct. 10, 2024.

https://rxjs.dev/guide/overview

113

and that | liked.” (P3)

Despite the recognition of the diagram’s helpfulness, two Bacon.js participants reported
there is no such a visual aid in the Bacon.js documentation indeed, but it would make an
important addition. When asked about if marble diagrams were essential for RP understanding,
five disagreed arguing they help a lot and it is something that works; nonetheless, they do not
replace textual documentation like function descriptions or usage examples. In fact, according
to P1, the diagrams only offer an initial understanding and intuition. P10 followed the same
reasoning of P1 explaining they are good to get an initial sense and change the way of thinking,
but it is difficult to utilize them as the application become more complex: “Well, | think that
in the beginning they help, especially in changing the way of thinking [...] But | felt that
when | was going to things that were a little more complex, and really more situational, like,
doing the fetch [operation], taking the result of that fetch and to do the pipe of operations. |
had difficulty taking this diagram and placing it in these moments. So, | think that for basic
examples it helped a lot, but for more complex examples | couldn't visualize it.” (P10)

P3 emphasized the quality of the diagram, affirming all depends on whether it is well done
as they are often oversimplified. To prove his point, he presented the flatMap, also known
as mergeMap, diagram retrieved from the ReactiveX website (<https://reactivex.io/docum
entation/operators/flatmap.html>) and also reproduced here in Figure [17] in fact, without
the textual support from the documentation, it is hard to tell that the operation depicted
in the diagram is doing two things: mapping the stream emission into streams (rectangle in
the diagram), followed by flattening the streams into a final stream (last part/timeline of the
marble). Alternatively, P3 pointed to a diagram he came upon awhile ago while reading about
JavaScript Array flatMap in an online article (<https://dev.to/charlottebrf_99/visualising
-documentation-javascript-array-flatmap-1pcj>)). According to him, the diagram is clearer as
it dissect the two operations happening in a flatMap: a map followed by a flat.

When questioned about alternative ways of visually representing [RP| most the participants
did not provide much feedback. P10 commented an animated diagram like a GIF (Graphic
Interchange Format) could perhaps be more useful, but it should be accompanied by more
concrete and specific examples. Finally, when asked about the stream representation as a
conveyor belt, sometimes used by diverse sources, as an alternative to be included in the @]
documentation, P8 replied the representation is a ludic, nice tool, but it should not directly
be included in the [APIl documentations.

Learning game. At the end of the training class, we rapidly presented the rx-fruits game, and,

https://reactivex.io/documentation/operators/flatmap.html
https://reactivex.io/documentation/operators/flatmap.html
https://dev.to/charlottebrf_99/visualising-documentation-javascript-array-flatmap-1pcj
https://dev.to/charlottebrf_99/visualising-documentation-javascript-array-flatmap-1pcj

114

Figure 17 — Marble diagram for the FlatMap operator taken from the ReactiveX official website.

Source: REACTIVEX| (2024)

despite not being a required task, we suggested as an optional homework, so they could have
one more (possibly amusing) source of learning. In this way, we asked the users if they had
finished or at least tried the tool and how they evaluate it for the [RP| understanding. From the
six interviewees, three said they completed the game, two played partially, and one admitted his
only contact was what was shown in the end of the course. One of the participants (P5) who
did not complete the game said since it did not targeted Bacon.js and there was no certainty
that the game could actually help during the tasks, he decided not to spend too much time
on it. Another participant (P10) only completed to the 10th level, considering it was probably
enough to do the tasks; in reality, he was able to really complete 60% of the tasks.

All participants confirmed the game is a very nice and helpful tool for [RP| understanding.
P1 agreed it helps to make clearer how the operators work, while P13 commented it helps to
remember the library. P8 praised its ludic aspect, arguing if he had to encourage someone to
learn about [RP] and RxJS, he would probably recommend the game. P5, despite having few
moments with the game, enjoyed the game more than the Flexbox Froggy™]

In terms of game experience, the participants provided some insightful accounts. At least
three participants reported a not so pleasant start, in special at the first two exercises. Accor-
ding to P3, the first two exercises were a little difficult as he did not know exactly what was
happening. Particularly, this seems to be caused by many already done parts (P10), demanding

little initial efforts, and some not clear instructions (P5). However, as pointed by P3 and P10,

40 3 game to learn CSS flexbox which is available at <https://flexboxfroggy.com/>.

https://flexboxfroggy.com/

115

as the game progresses, it becomes more dynamic and interesting, with helpful feedback in
error cases. For those with some level of experience, it is important to consider if it is in fact
beneficial, as it can offer a too simple practice as observed by P1; nonetheless, P1 generally
liked the game and recommended. Overall, it is our vision that, in spite of the previous points,
the general experience of the game can be summarized as detailed by P13: “..it is very easy
to follow. It's a good introduction, although there isn't so much complex [advanced] things,
but it's good to remember the library.” (P13)

A valuable feedback was given by P8 regarding possible improvements of the game. Ac-

cording to P8, bringing more real context, like consuming an (RESTful) |API| instead of fruits,
would make a better connection between the ludic and real cases: “What would be cool is
to have some parallel of some code a little more, let’s say, real ... more useful with that |[...]
Here we are doing it with fruit, but if | have an [RESTful] API here that serves a given thing,
you can use a similar structure to achieve such a [learning] goal and then you can make a
connection between what you saw in the game with something more real.” (P8)
RP Future Usage. As one the final interview sections, we interrogated the participants
whether they consider to use [RP]in future projects. With the exception of P3, all interviewees
either confirmed they intend to use[RP]in future projects or said they already somewhat used
it, even if it is not the [RP] library they have explored during the study. P1 is starting to use
[RP]in his daily work; besides, P1 had recent experience with SwiftUl, which utilizes the Apple
reactive framework Combine, and had very basic experience with RxSwift. P8 has already done
projects utilizing RxJS in his work, and, from time to time, P8 has to do some maintenance
or improvements on those codes. P5, in addition to working with functional programming
concepts daily, has recently worked with Vue.js, a front-end framework that includes reactive
ideas, and had previous experiences with Spark streaming, a streaming tool built on top of
Apache Spark. P10 felt stimulated to continue to use [RP] in professional projects, specially
in the context of data stream processing (AKIDAU; CHERNYAK; LAX, 2018). P3, unfortunately,
did not show signs of a great experience, arguing that he felt very tied in the style and it
was very different from that he was used to; in this sense, P3 disregarded the chances of
using [RP]in bigger projects and affirmed he would probably forget he used this at some point.
In fact, by inspecting more closely, all P3's solutions presented some errors or aspects that
prevented them to be considered complete (Section ; it is also an interesting case as P3
fully completed the rx-fruits game.

In support of their idea of using [RP]in future projects, the majority of the interviewees

116

recognized the value of using the and [RP)] style. P5, for example, declared that [RP]|
is a powerful concept and it is basically essential for nowadays front-end development. P10
sees more value in the [RP] production and thinking at the moment, specially now that he
understands more about it and how to use it rather than only having heard of. Surprisingly,
even P3 admitted that if one day he becomes very good at RxJS, it would be a very interesting
tool. However, possibly the best account came from P8 who has been working with RxJS for
a while. According to P8, he was introduced to RxJS due to his job, and his first impression
was of a complicate and horrible tool. It was only after some time that P8 started to recognize
the value added to the projects, affirming that in fact, the tool helped a lot, and, after getting
used the [API| the codes became more simple and cohesive; as he stated: “There are things
that are much easier to do with this [RP]. | have faced callback hell in the past [...] this is
much more practical to do.” (P8)

Given the recurrent experience with RxJS and, in the study, Bacon.js, we also questioned P8
about touching a code after some while. By asking that, we aimed to analyze P8's perception
of knowledge retention, an important aspect of usability (NIELSEN, 1994), provided by the
code produced with the [APIl As stated by P8, a code produced with a tool like RxJS still
makes sense after some while, specially knowing it is going to have mostly code produced
with that type of style or tool; in this way, the code is more consistent and easier to carry
out maintenance. P8 also held his opinion for Bacon.js code, confirming that his codes, open

during the interview, was still clear.

4.2.4.2 Interview Assertions

We complemented the interview (Section with close-ended questions organized as
assertions, which were answered trough a 5-point Likert-based scale. Figure (18] summarizes
the answers of the interview participants according to the [AP]| used; labels A1-A10 refer to
the assertions of Section [4.1.3.4] The answers were diverse amongst the [APIs; A4, A6, and A8
were the ones that seemed closest. Interestingly, there was almost no case we can say it was
completely opposite (i.e. with contrary tendencies). The closest exception was the assertion
A2, in which two Bacon.js users either disagree or strongly disagree and only one agreed;
on the contrary, two RxJS agreed on the same assertion, whereas one of them disagreed. In
spite their close profile (Section , the Bacon.js interviewees did not show a complete

agreement for the majority of the assertions. The RxJS participants, on the contrary, offered

117

Figure 18 — Answers to the Likert-based scale items of the interview.

A4

0% 10%

33.3%

20%

m Strongly disagree

66.7%

40% 50%

Disagree = Neutral

70% 80% 90% 100%

Agree mStrongly agree

Al 33.3% 33.3% 33.3% Al 100.0%
A2 EEET 33.3% 33.3% A2 33.3% 66.7%
A3 33.3% 33.3% 33.3% A3 100.0%

100.0%

AS 333% AS 333% 33.3%
A6 A6 33.3%

A7 100.0% A7 333% 33.3% 33.3%

A8 33.3% 66.7% A8 66.7%
A9 333% A9 33.3% 66.7%

A10 A10 66.7%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

m Strongly disagree Disagree Neutral Agree W Strongly agree

(a) Bacon.js

(b) RxJS

Source: Elaborated by the author (2024)

very close answers, with only minor disagreements.
Al. The positive aspect of the number of operators offered by the used [API had all three
Bacon.js participants given different answers. P1 (neutral) insisted that it is hard to evaluate
that due to the total of tasks and only a few were sufficient to accomplish the tasks, a possible

positive aspect according to him. In reality, P1 believes:

- A1 Neutral)

\..quantity doesn't mean much.” (P1

Closely, P5 agreed (but tending to Neutral) and commented that the number of operators
was adequate for the tasks, but the real issue was how they were being taught in the docu-
mentation. P8 (strongly agree), in turn, affirmed that the quantity of operators offered by the
M was enough and not inflated, otherwise, it could be difficult to find them.

RxJS users showed a full agreement for Al. The following quotation summarizes why
interviewee P10 only agreed with the assertion which is probably the same view held by the
other RxJS interviewees: “I agree. | don't completely [strongly] agree, because | think that
when you have such a large number of operators, sometimes you end up losing effectiveness
and end up having those naming problems |[...] | agree that there are many options, but | think
that sometimes these options can have problems as well.” (P10 - Al Agree)

A2. A2 (the facility to find the proper operator) had most of the Bacon.js answers in the
disagreement direction. P1 (disagree), for instance, resorted to a lot of “Ctrl + F” mto carry
manual searches and that proved to be very time consuming; to make matters worse, P1 had
to trust their own naming guess instinct which was not always right. Similarly, P5 (strongly

disagree) also found the operator searching problematic, blaming the documentation to be

41 A keyboard shortcut for textual search.

118

unhelpful, not only to find the proper operator but also how to use it. P8 (agree) was in the
opposite direction, probably due to previous experience with RxJS; however, P8 recognized
that it would depend on the user level, and one-page documentation can be helpful but also
disorganized: “RxJS [documentation] is everything... one little thing inside another but that
makes it difficult if you don’t know what you're looking for. In the case of Bacon, you have a
whole page and you scroll through it and you end up finding what you want there. So | think
that if you are already an APl user and want to find a specific thing that you already have a
good idea of what it is, documentation like RxJS where things are more hierarchical is easier
for you to find. But if you fell into the APl and never used it and you want to learn something
that you don’t even know what it is yet, the way bacon shows things makes things easier but
then it makes it difficult in the other case because one page is just kinda messy.” (P8 - A2
Agree)

The majority of the RxJS users agreed with A2. P3 (agree) declared the operators were
actually well-named, and it was easy to find the proper one for the task; in terms of usability,
however, P3 considered them confusing. P10 (disagree), conversely, went into the opposite
direction, arguing that it was difficult to locate the proper operation based on the expected
name, requiring a lot of manual search in the documentation: “..because | knew what | wanted
to do [...] but | didn’t know exactly the name, and the documentation didn’t help me much
in that sense. | had to go to each of the methods and read its description and see if it was
really what | wanted to do, because | felt like | wasn't able to, either through the name of the
method or through the documentation, quickly find the method that | wanted.” (P10 - A2
Disagree)

A3. Most Bacon.js agreed with A3 and considered the functionalities not very explanatory.
P1 (agree) testified that some function names were actually clear (e.g., fromPoll), but, in
general, other names were not so clear, mostly due to the documentation and its lack of
examples. P5 (strongly agree) declared that the names were actually fair, and, despite some
of operators have lead to errors in some cases, it was due to his inexperience and, especially,
the poor documentation: “..the names are quite plausible. The documentation should tell me
which is which, right? That was the problem, like, | thought the documentation was terrible.
So | would say | completely agree because of the documentation and | only agree because
of the names [...] If | open some random function, there is a real chance that it won't have
any description [...] isRawPattern, description none, parameters Pattern<any> [...] With a

documentation like that, | wouldn't need it. | could have written nothing there, and that would

119

have done the same thing.” (P5 - A3 Strongly agree)

P8 (disagree) praised the code legibility, arguing that the code makes sense even not
consulting the documentation, but all depends on the viewer's experience as the code for the
inexperienced ones can be a bit strange. Contrary to P1 and P5 argument, P8 considered the
operators well covered by the documentation, but they could have more examples (reason why
he did not strongly disagreed).

All three RxJS participants agreed with A3. Interestingly, everyone's feedback targeted the

lack of examples. As pointed by P3 and P10, there was some examples, but they wanted more
in the documentation.
A4. There was a complete agreement among Bacon.js interviewees towards the lack of exam-
ples. P1 (Strongly agree) reported that there was some basic examples, but it could be better
if there was both more complex examples and examples for every operator (with perhaps some
visual diagrams). P8 was the only one that did not fully agree, contending that it could be
worse.

Regarding the answers for RxJS, everyone strongly agreed. P13 observed that the docu-

mentation use a lot of marble diagrams and, sometimes, some simple examples, but it could
have more use cases.
A5. Given its proximity, A5 (lack of tutorials) had a close result to A4 among Bacon.js users.
While P1 (strongly agree) reported that the text provided in the documentation is too initial,
P5 (strongly agree) stated that he was not satisfied by the provided tutorial. Instead, a better
alternative would be to provide more concrete examples with context and varying situations
(P1).

In the same vein, RxJS interviewees mostly agreed with A5 with only one user disagreeing.
P3 (agree) detailed that there is a basic tutorial in RxJS, but one cannot go far with it. P10,
the only one who disagreed, stated the tasks were not complex and what was offered by the
documentation, along with reading class material and examples (external resources), should
be enough. Also, both P3 and P13 asked if rx-fruits (Section [4.1.3.4)) could be considered in
this assertion, i.e., an outside material not present in the RxJS documentation as well.

AG6. Most of the Bacon.js interviewees did not need to look at the source code implementation,
presenting mainly a complete disagreement. The only exception was the participant P5 (stron-
gly agree), who emphasized that the source code was more helpful than the documentation.
While the documentation offered summaries, they were not enough, forcing P5 to look into

the source code many times.

120

The results for RxJS were not different, showing almost a complete disagreement as well.
P3 (disagree) expressed a slight desire to look at the implementation in moments of errors,
but this desire was accompanied by hesitation as P3 recognized that if there was an error in
code, there is a great chance it was due to something done wrongly or misunderstood: “..there
were times when errors would occur, and | wanted to go into the source code to understand
what the error was, but... Then at the same time something appeared saying "Ah, if you're
having to go into the source code it's because you got a wrong thing". So go there, come
back and see what you're doing.” (P3 - A6 Disagree)

P3 concluded that the desire of going to the source code would probably be circumvented
by gaining more experience with the . P10 (strongly disagree) stated that, in spite of the
lack of examples, the concepts were clear, thus there was no need to going to the source code.
A7. All Bacon.js interviewees were neutral concerning A7 (lack of support from community).
Most of them (P1 and P8) commented that they did not go after the community, considering
that they were restricted to the code and documentation and not to look into the Stack
Overflow (or ChatGPTE] usage). Even after insisting if they have seen any alternative channel
displayed in the web documentation like DiscorcfE] or mailing list, they did not notice or go
after it. P5, however, raised an interesting point, saying that the quality of the documentation
did not seem to indicate a good support of the community. Nonetheless, P5 was not sure
about the level of openness concerning community participation: “/ would say, just in case,
neutral. If the community has the freedom to get there and make a request on GitHub to
improve something, then | thought it was somewhat insufficient. But it’s difficult for me, you
know, in that sense. So it would be like a neutral [tending] to agree, right? | agree because
maybe the community, as | said, the community could enrich it [documentation] better.” (P5
- A7 Neutral)

RxJS users, conversely, all expressed different answers. P3, for instance, was neutral since
they were not allowed to using Stack Overflow (i.e., the main source of community contribution
according to P3's viewpoint). Likewise, P13 did not go after it (disagree). P10 (agree) offered
a different answer, declaring that there could have other channels, apparently not present in
the web documentation: “/ agree because although there was the documentation, | said before
that perhaps there was a lack of a forum, perhaps a discussion part of the community itself

there in the documentation that would be a little more active and effective as well. [...] I'm

42 <https://chatgpt.com>.
43 <https://discord.com/>.

https://chatgpt.com
https://discord.com/

121

not going to completely agree because | think there is a level of discussion about this [in some
place], but | agree that there should be more.” (P10 - A7 Agree)

A8. A8 (different way of thinking) displayed an inclination toward the positive side for Ba-
con.js, demonstrating the mparadigm forced the participant to think a little differently.
All three interviewees reported previous experience with functional programming and P8 had
previous experience with RxJS, factor that seems to have helped their production. P1 previous
experience with functional programming influenced the disagreement with A8; in fact, P1 liked
that way of structuring the code, with more succinct and manageable steps (readable code): “/
think it forces you to think in a more compositional way, right, but | was already relatively used
to it, so I didn't work as much, but | had already worked. Regardless, even if I'm working in a
more imperative way, | try to divide things very small, like this, to ensure readability. So, for
me, | think it didn't affect me that much. [...] even if you're not using reactive programming,
I think I'm very used to, instead of a for, using a map, or using functional programming, like,
methods linked to functional programming, like a filter and such, which is very related. So,
for me, | would say | disagree.” (P1 - A8 Disagree)

P5 (agree) and P8 (agree), despite their experience, recognized that, indeed, the m
forced them to think in a different way; both of them cited it was like to program in Haskell.
It changed the way P5 thinks naturally as it was not a common way of structuring code,
but that did not actually represent something bad: “[...] because of the habit with functional
programming [...] seeing some things as a certain chain of events is OK for me but, in any
case, nevertheless, it still broke the ways in which | think naturally. And this matter of looking
at things like stream composition is not that common. [...] Overall, like, it forced me to think
differently, but, [...] all of that isn't necessarily a bad thing.” (A8 - Agree, P5)

Most RxJS answers were focused on the agreement side as well. P3 (agree) believed that
the use of the pipe operator was an enhanced version for the “then” method of the “Promise”
object; in this sense, P3 felt trapped with syntactical constraints, although somewhat familiar,
forcing to rethink somethings: “I partially agree. Because, as | said, what | used most was
pipe, and pipe improved just a little the use of several .then [...] on the one hand | had to
stick to a syntax, so | had to rethink my things. And for another, they were a little familiar.”
(A8 - Agree - P3)

P10 (strongly agree) end up being more effect in solving the tasks after starting thinking
differently. Contrarily, P13 only agreed with the assertion, but remarked that it was differently

from day-to-day practice; by questioning about previous functional experience to investigate if

122

it could have any influence with the answer, P13 took a functional programming course with
Haskell, which probably was recently (Table [19).

A9. Bacon.js respondents were almost unanimous regarding the lack of good practices; P8
(strongly agree) detailed there is not anything related to it offered by the , but it is not
something so severe (possibly due to his previous experience with RxJS). Nevertheless, this
contradicts a little with P5 (agree) account, who worryingly claimed: “/ agree, because |
couldn't say what the best practice was. | don’t know to this day, you know? | don’t know if |
made reasonably clean code or not. [...] The code is reasonably clean because it is small. But
| don’t know how it would scale.” (P5 - A9 Agree)

A9 only had one neutral answer for RxJS, with two respondents agreeing. P3 (neutral) con-

fidently answered that this thought did not occur. Following closely, P13 (agree) considered
not having missed so much good practices, but it certainly could help, especially by providing
some examples of standardization. P10 (agree) did not feel comfortable with the tasks’ solu-
tions, with perhaps some instances of probable workarounds. P10 confidently completed: “/
wouldn't feel comfortable, for example, putting these codes | made into production, because
I don't know if there would be any case, any exception that could break them or that could
generate a problem in the future.” (P10 - A9 Agree)
A10. The majority of the answers indicate that Bacon.js interviewees had no problem distin-
guishing what was in fact reactive. P5 (strongly agree) was the only one who disagreed with
the assertion. According to P5 feedback, though, the uncertainty was very close to the way
the code was being organized, without necessarily being sure that was the correct way or was
following the best approach.

A10 had mainly disagree votes in RxJS, with both P10 and P13 disagreeing with the
assertion. P10 (disagree) considered the beginning difficult; nonetheless, after expending some
time with the tasks and changing the way of thinking about the solutions, P10 reported starting
to understanding (reactive code) in a better way. P3, however, was not sure if the built solution
was in fact reactive, arguing: “Is what I'm doing here really reactive? Just using RxJS am |

already reactive?” (P3 - A10 Strongly agree)

123

4.3 DISCUSSION

4.3.1 RQ3: To what extent are RP APIs usable, and what aspects are most affec-
ted?

By combining the appliance of metrics along with a usability study with users, we could
obtain results from different perspectives. From the metrics’ point of view (Section [4.2.1)),
which mostly evaluate structurally the [APIs, both [APIg had a very high usability level, either

individually or combined. That means that in fact there were areas where API designers have
direct good efforts to deliver very usable [APIs| Those results also collaborate with the obser-
vations pointed by Venigalla and Chimalakondal (2021), in which those repositories with the
higher number of stars and forks tend to have a higher AMS score. In this case, RxJS scored
higher and had the greatest number of stars (>30,000) and forks (~3,000). However, this
does not mean that there is no places where the [API]| could not be improved. The ADI metric,
the only one less linked with the syntactical aspect, demonstrates an area that the [APIs should
improve, specially Bacon.js.; in fact, popular are expected to have better and extensive
documentation with lots of code comments (LIMA; HORA, 2020).

Other factors can also impact usability beyond structure (ROBILLARD), 2009), and the re-
sults were complemented with a usability study involving users. According to the data detailed
in Section [4.2.3] the majority of the dimensions indicate that the [APIs| present a moderate level
of usability. That is in fact what is shown by the average of the average dimension (depicted
in Figure [16]), displaying a value of 3.07. While reusability (high-level) and abstraction (mode-
rate) were the highest dimensions, understandability (moderate) and, specially, expressiveness
(moderate), were the ones with the lowest scores (i.e., most affected ones) and should be
focus of [RP][API| designers to increase the overall usability.

The individual questionnaire results (Figure for the demonstrated a very close,
moderate usability, with Bacon.js (3.15) scoring slightly higher than RxJS (2.99). The same
pattern was also observed for task completeness (Table and time spent in the tasks
(Table . Nonetheless, RxJS participants seemed more satisfied than Bacon.js ones (Sec-
tion . We hypothesize that this discrepancy of results and perceptions was due to
the differences in size of [API| users among the groups and level of experience; the Bacon.js
participants who decided to participate and continue in the study (Table demonstrated

an elevated level of programming and experience. We believe the results would have been

124

more balanced among the if the study had counted on more willing volunteers, specially
for Bacon.js (in which case, it would be more aligned with the metrics’ results). Therefore, it
is hard to point which one is better, and it is outside the scope of the study.

In summary, by reviewing RQ3, we can come to the conclusion that [RPJ[APIs| present a very
high level of usability from a structural viewpoint. However, in practice, this usability level did
not translate into the same perceived level from the users’ point of view: a moderate one. A
good aspect that the metrics revealed, which matched many observations we complemented
through code inspection and interviews for instance, was the documentation problem. Bad
documentation are an obstacle for effectiveness (PICCIONI; FURIA; MEYER, [2013)), and good
ones should contain code snippets and tutorials (ROBILLARD, 2009). It was recurrent the
problems with documentation (most cited category during the interviews) involving supporting
materials, descriptions, lack of examples, and bad tutorials. It is paramount that designers
direct more efforts in those areas, not only with more words (mostly considered by the metric
ADI), but with quality materials in the documentation, which could not be verified only by the
application of the metrics. This is particularly important, given that the [RP|[APIs| approach a
different style which is probably difficult to be self-documenting by itself and is in fact hard
to learn and master (SALVANESCHI et al., [2017). We could synthesize some of the observed

findings and relationships noted throughout the sections:

» Flexibility versus Complexity: While diverse operator sets enable multiple solutions
to a problem, they also intensify the learning curve and create inconsistency, especially

with undocumented behaviors.

» Documentation gaps: Poorly documented operators exacerbate the cognitive load,
making less accessible and reliable. These issues repeat across interview themes

and participant code evaluations.

» Confidence and Maintainability: Both the observed code patterns and participant
feedback highlight a lack of confidence in long-term code maintainability due to incom-
plete guidance (e.g., when things does not work properly which is particularly related to

error handling, a topic that users demonstrated problems).

= API maturity: Bacon.js and RxJS present contrasting strengths and weaknesses, with
RxJS displaying more signs of “maturing” through its usability and documentation im-

provements.

125

4.3.2 RQ3.1: How easily can developers learn and understand RP APIs?

Understandability. At least, four metrics impact that dimension: AMNOI, AMNCI, AMGlI,
ADI. An average of their value suggest a high level of usability. However, that contrast with
the user perception. Indeed, understandability was the second lowest score (2.9) in the ques-
tionnaire, only above expressiveness, representing a moderate perception of usability. The low
score was even more accentuated for RxJS (2.75), presenting a percentage difference of 10%
when compared to Bacon.js. In interpretation terms, however, both scored under the
moderate range (Table , demonstrating that the difference was in reality minimal.

In general, participants felt a moderate feeling (2.63) about the easiness of understanding

the API (U1); Bacon.js was actually a bit worse, presenting a low sentiment (2.5). U5 was the
assertion that must contributed positively toward understandability; it is related to the parti-
cipants’ expectation regarding their produced solution and the participants were, on average,
neutral (3.38) about their solution. Still, the score was almost high, demonstrating that there
is a possibility that some developers may have agreed with the assertion. The perception for
confusion and difficulty while using the [APIs| (U2), on the other hand, scored the lowest for
both (2.19), specially RxJS (1.88). Even though the mapping of domain context by the
primitives (U3) had a moderate perception (3.32), we considered a positive result as it
scored higher than other items and it was the first time that many developers were experi-
menting with RP. U4 deals with the need for going after information that it was not clearly
represented by the [API| and the result indicates a moderate feeling (3) about this assertion.
This expresses that the participants had possibly to go sometimes to the documentation to
reason about their code or to find certain concepts or operators that they could not identify
or understand only based on their naming or behavior description, for instance.
Learnability. Learnability is an important quality attribute of usability (MYERS; STYLOS, 2016)
and, along with understandability, it is linked to the learning of an m (LOPEZ-FERNANDEZ
et al., [2017)). Three metrics are linked to this dimension: AMNCI, ADI, APXI. Together, those
metrics showed an an excellent level of usability, with AMNCI and APXI presenting the grea-
test values. From those, the most problematic was ADI, particularly Bacon.js' score showing a
moderate result. This result of Bacon.js was very close with the general perception of learna-
bility expressed in the questionnaire. The learnability score (3.06), close to understandability
(2.9), denoted a moderate perception of usability. The [APIs scored individually almost the
same, differing only by 0.04.

126

L1 was the assertion with the greatest score in both [APIs| showing a general high-level per-
ception (3.82) of usability regarding incremental learning. In terms of L2, the participants were
more moderate concerning the need for learning a lot of concepts. L3 attracted our attention
as a great majority of the respondents agreed they had to go deeper into the documentation
to do the tasks, demonstrating a low level of usability. Overall, this implies that the learning
process was incremental and involved reasonable amount of resources, but it was at the same

time difficult, forcing participants to deeply inspect the documentation.

4.3.3 RQ3.2: To what extent do RP APIs contribute to code cleanliness, reliability,

and abstraction from low-level complexities?

Abstraction. This is a very important dimension as it abstracts the handling of low-level
complexity while helping to create clean and bug-free code (LOPEZ-FERNANDEZ et al., 2017)).
The two metrics, AMNOI and APLCI, that most impact this dimension reveals a very high
level of usability (0.9 on average or 4.6 converted to Likert-based scale), close to the maximum
level. From the user point of view, abstraction was actually the second largest dimension (3.1).
The difference was minimal (~2%) between the [APIs| with RxJS showing a better abstraction
support (3.13). Nevertheless, those (questionnaire) scores support a moderate perception.
The answers were very close among the m with A3 (no need for modifying the
being the best evaluated; this means that developers basically did not have to change the
[APIs| The lowest answer was given to A2 (2.32), which also hold for both and specially
Bacon.js (2). This possibly shows that the participants found difficult to modeling their pro-
grams as composition of streams. Al exhibited a moderate, neutral feeling (3.07) regarding the
abstraction level for the tasks; the results comes unsurprisingly as most students were experi-
encing their first contact with the [API and paradigm. However, Bacon.js was more impacted
by Al (2.75) than RxJS (3.38), depicting a difference of ~20%. A4 also revealed a moderate
perception (3.07) about not needing to understand implementation details, but with a lower
[AP] difference. This possibly indicates that some participants may have encountered a few
situations where things were not so clear, and they may have considered sometimes going into
the implementation. This could be seen as very liked with the result of A1, which some students
may have believed that the abstraction level was neither appropriate nor inappropriate.
Expressiveness. According to the related metrics (i.e., AMNCI, AMGI, ADI), theﬂshould

present a high level of usability on average in spite of some problems observed in AMGI and

127

ADI. Nonetheless, expressiveness was the lowest dimension among the based on the
questionnaire result, expressing a moderate level of usability like most of other dimensions.
The results for Bacon.js were in the same line of moderate feeling while RxJS, on the other
hand, was evaluated at the upper limit of the low level of usability.

Looking into the assertions, E7 was the one that most cooperate for pulling the results
down. The average for the dimension reported the very low value of 1.69, the lowest value in
all dimensions' assertions. Both [APIS users showed unsatisfactory toward E7, specially RxJS
(1.69), denoting a high probability of committing mistakes with the [APIs| E4 (2) was another
concerning assertion as it pointed that it was actually hard to find the proper, required operator;
this affected much more RxJS participants with a very low evaluation (1.75). This situation
could be linked with the proliferation of operators (common in those libraries (MOGK, 2015}
SALVANESCHI et al., [2017)), naming conventions (e.g., the use of jargon), or the intermediate
scores of AMGI and ADI. E2 top ranked the assertions of expressiveness with a high level
of usability, illustrating the readable quality of codes. The results for E1 (2.51) indicated
that some respondents found difficult to translate the tasks' requirements into code using
the [API] specially in the Bacon.js case (2.5). Regarding E3, the participants were undecided
about the quality of naming exposed by the [APIs| The participants exhibited a more positive
point of view about E5 (ease of using operators), yet it was still within the neutral range.
Apparently, a problematic area for both was the distinction of similar features, in which
both scored the same, low value (i.e., 2.5).

4.3.4 RQ3.3: To what extent do RP APIs enhance code reuse and maintainability?

Reuse is one of reasons for the existence of [APIg (STYLOS; MYERS| 2007; [MYERS; STYLOS,
2016), and usable m stimulate code reuse (PICCIONI; FURIA; MEYER, 2013). In this way,
we were expecting an elevated value for this dimension, specially given the high number of
operations offered by the (Section . Marvelously, the score for this dimension was
the highest among all, including individually for the [APIs], and the result is classified within the
range of high-level usability. The average value of the metrics (AMNOI, AMGlI, and APLCI) in
that dimension demonstrates that same level of high usability, scoring, on average, 0.8 (i.e.,
4.2 converted to a Likert-based scale).

In the questionnaire, there were five assertions under this dimension, and the first one

(R1) scored the highest value (4.32) in the dimension and among the other dimensions’

128

assertions. R1 deals with code length and the respondents gave a very high positive indication,
agreeing that the codes produced by the were tiny. This was specially true for tasks
1 and 3 according to the observations provided in Section [4.2.2.3] The R3 was also in line
with the code observations, resulting in a weak level of usability (2.13). R3 relates to the
capability offered by the [AP]| to solve the same problem by different paths, and it can become
a liability if the alternatives are not actually complementary (experts tend to like choice more
than novices) (PICCIONI; FURIA; MEYER, 2013). The remaining assertions, nonetheless, showed
high-level results. R2 (4) concerns intermediary evaluation of progress, and it is close to the
learnability assertion L1, which also scored high. The usability provided by R2 was even more
apparent in Bacon.js, showing 0.50 points higher than RxJS (i.e., a difference of 12.5%) and
receiving the classification of very high. R4 deals with the maintainability and evolvability
of code, and the participants, from both , evaluated positively this aspect (which they
exercised during the solutions of the tasks). R5 (3.94) was even evaluated better than R4 and
concerns the simple reuse of [AP] features; this characteristic was well evaluated in both [APIs]

but Bacon.js respondents emphasized the aspect by considering very high.

4.4 IMPLICATIONS

This section presents the implications considering the findings of the Discussion section
(4.3). We use this section structure to delineate a series of recommendations (Section
which take into account not only data presented in this chapter, but also data detailed in
Chapter [3
Most Concerning Issues. The evaluation of all dimensions revealed that [RP|[APIs currently
offer moderate usability in terms of understandability, learnability, abstraction, and expressive-
ness. The only exception was reusability, showing high usability. In other words, both have
a lot of space for improvements regarding four different dimensions. Within those dimensions,
there were more concerning aspects as they demonstrated lower levels of usability; this was
more visible in the expressiveness spectrum, which scored lowest for both [APIs| From lowest
to highest, the most concerning points were presented by: E7 (1.69), E4 (2), R3 (2.13), U2
(2.19), A2 (2.32), L3 (2.38), E6 (2.5), and E1 (2.57). From those, we believe that E4, E6, and
R3 are very related to the offered operators by the [APIs, so we dedicated an exclusive topic
to this matter. The remaining, based on the data collected in the study, seems to be related

to the learning and understanding process and the available resources provided to support the

129

process.

All participants detailed taking some initial time to better understand the [APIs| which was
expected given it is not only an but a different style (MOGK; SALVANESCHI; MEZINI, 2018));
it also matched the observations from previous studies (SALVANESCHI et al., |2017)) depicting
that [RP| may take a time for some users, specially coming from other paradigms like [O0]
Experience with and other [RP}based libraries as well as contact with other libraries
helped many participants to get a better grasp of the ideas. Unfortunately, both seem
to assume equal level of [FP| background from the users, exploring concepts easily found in
(e.g., purity, function composition, side-effects) but not dedicating simple sections or links
to minimally explain those basic ideas. [FP] was actually pointed as a possible obstacle for
(SALVANESCHI et al}, [2017)). The [R{ team in fact recognized this need and created a mini
series of exercises arguing that “it turns out that the key to learning Rx is training
yourself to use functional programming to manipulate collections.” However, it is only cited at
the main page of the projec and not in the RxJS website/documentation. We believe that
a better approach to basic concepts, including [FP| and the problems [RP] tries to solve, could
have produced better impact for U2, A2 and even E1; after all, [K_ljf] learners like to understand
some high-level details about the rationale and intents of the [AP]|in order to make better use
of it (ROBILLARD), [2009).

Documentation is one of the most used resources during [API| learning (ROBILLARD), [2009))
and its completeness and preciseness is fundamental (HENNING, 2009; PARNAS, 2010). Many
of the participants reported accessing the documentation and reading the overviews. For some
participants, the initial understanding was difficult but became simpler in the process. Many,
however, did not had an enjoyable experience, considering themselves lost within the code
and discouraged to use the [API| in the near future. A concerning point was that many had
to delve into the documentation (L3) while facing poor resource description and presentation,
specially for Bacon.js. Some Bacon.js users in fact considered that the documentation was
too simplistic and messy, not really exposing the [APIl. A common aspect among the APls
was the few or lack of examples. It should be unsurprising the importance of examples as a
key learning asset (ROBILLARD) 2009; [NASEHI et al., 2012): through examples, developers can
better understand the libraries purposes and its usage protocols and context (MCLELLAN et al.,
1998)). Thus, it is no surprise the developers have found confusing and laborious to use the

API| (U2) and difficult to turn the tasks into code with the [API[(E1). In general, participants

4 |<https://reactivex.io/tutorials.html>.

https://reactivex.io/tutorials.html

130

classified many examples, including tutorials (e.g., in Bacon.js), as presenting low quality and
very specific. RxJS users actually declared the [API| have both good and bad examples, but
there is a lack of scenario variations. Many scenarios seemed to focus in Ul, a factor that even
confused a user about the reactive terminology (i.e., considering reactive only when there
was Ul interactions). Programmers tend to consider [APIs| easier when tasks follow the [API
examples (MCLELLAN et al., [1998]), so diverse scenarios can impact their perception.

A complete documentation should not only include scenarios with the right behavior,

but also when things go wrong (HENNING, [2009)); this was also a vision shared by one the
participants, and, as demonstrated by E7, the general consensus was that it was easy to
make mistakes with the [API This fact indeed prompted many participants to doubt about
the quality of their solution and declare not feeling comfortable to put them intro production.
Two prominent areas were more susceptible to problems: error-handling (task 2) and state
management (task 5). Those two areas were in reality shown previously as topics discussed
in Q&A forums (Chapter . Aligned with that, we observed many problems within code that
we named as a lack of best practices (Section [4.2.2.3). In task 5, for instance, we observed
the used of global variables which could be avoided by better guidance on the topic and basic
understand of [FP| state-handling. The interviews revealed that the participants missed good
practices in the [APIs|and it could be very helpful, showing, for instance, how to better approach
certain situations.
Operators. From what was observed in Section [4.2.2.3] both presented a close profile
in terms of operators required. However, the difference of [API| usage shows that Bacon.js
provides a lot of functions. In fact, only 19% of operators were required from its extensive
API. Contrarily, users explored ~30% of RxJS [API} The observations of Section and
the answers for the R3 item of the questionnaire indicate that users felt they could approach
the problems by using different paths, and this was very explicit in many Bacon.js codes.
Moreover, Bacon.js extensive set of operators also showed more signs of problematic operators
(Section [4.2.2.3).

According to the participants’ feedback, the numbers of operators from both libraries did
not seem to be an issue for them. While some argued that the quantity was sufficient for
the tasks and it was hard to evaluate this matter given the quantity used, others considered
more problematic how the operators were being taught in the documentation. In terms of
nomenclature, the participants were a bit divided, showing some instances of naming and

searching problems with operators. Still, we had participants complaining about the class of

131

flatMap operators from both APIs, judging their distinction often difficult in the short and
long term, and finding hard sometimes to discern between similar types of operators like
the different variations of take (e.g., take, takeWhile, takeUntil, etc.). It was not clear
for some users why using factory function like of rather than instantiating an Observable.
Furthermore, the great majority of the participants (from both agreed about the presence
of non-explanatory functions; most reported problems with documentation like poor and lack
of descriptions and absence of good, more complex examples.

Despite the participants’ belief that the [AP]| size was not an impediment, we collected
reports that the many choices causing difficulties to fully understand the concepts and causing
insecurities regarding the qualities of the solutions, specially among Bacon.js users. As also
observed, there were accounts of many features with no description or examples, leading to
a lot of guessing. RxJS, on the other hand, depicted more signs of maturing, although with
complaints about lack of examples, specially when things does not work well. Additionally,
the has been constantly updating (specially since its version 4), which shows more efforts
from the maintainers. For instance, operators like average, still displayed in the official [RX
website as implemented by RxJS, is not part of RxJS @] since version 5. Instead, users are
encouraged to use either reduce or scan, a variation of the general [FP| combinator fold,
to express the functionality. Unfortunately, we do not envision easy ways of expressing some
operations (e.g., RxJS bufferTime or bufferToggle) using more general operators like fold,
unless the designers supplied recipes for such implementations. Therefore, it is our belief that
Bacon.js should reevaluate its [AP] size, and better organize its features, in order to become
more approachable to newcomers. RxJS, on the other hand, seems to be actually offering a
more stable number of operators when compared to Bacon.js. However, it should include more
examples and add more support for similar operators (e.g., flatMap class of operator) in order
to avoid confusion. Both [APIs|should strive to find better ways to minimize the problem pointed
by R3 item of questionnaire which deals with different ways to solve certain tasks. As noted
by (PICCIONI; FURIA; MEYER, [2013)), choice is preferable only for experienced users. In this way,
[RPJ[APIs|should evaluate how much complexity is avoided by keeping or removing some of their
functionalities (OUSTERHOUT], [2018). Also, they could identify [API usage patterns (ZHONG et
al., 2009; [SAIED et al., 2015)), so users can be aware of operators that usually come together.
Finally, removing operators may not be necessary as long as the [AP]| designers identify a few
set of core features and make the users aware of only those; in this way, the effective complexity

becomes the complexity of those frequently used operators (OUSTERHOUT, [2018)).

132

An aspect that we missed from the participants’ feedback was the RxJS operator deci-

sion treelz_g], which none reported or apparently did not use it. The decision tree offers some
precompiled options that the developer can select to help find the better operator for the
task. This can be a helpful tool for [RP]|[APIs| specially those with an elevated number
of combinators. Besides, the tree also demonstrates that more tools could be used to aid in
the operator choice and alleviate the user cognitive load. For instance, large language models
(LLM) integrated with IDEs like Visual Studio (VS) Code seems to be a prominent venue (NAM
et al., 2024).
Additional resources. Additional resources can become a valuable learning asset, and many
API resort to diagrams and games. Diagrams can help users conceptualize structures and their
code, forming mental models. Accurate mental models can help to use systems more effecti-
vely (KULESZA et al., [2012)). Games, in turn, can enhance the understanding (LEUTENEGGER;
EDGINGTON, [2007)). During the study, more specifically in the interviews, we tried to collect the
participants’ opinions regarding the practical usability of visual diagrams like marble diagrams
in RP and the rx-fruits, a game we have rapidly shown and pointed as a possible additional
source of learning. There was a unanimous sentiment that marble diagrams are a helpful and
practical tool, specially to learn operators. Bacon.js participants also agreed with usefulness
view of the diagram, but they were disappointed that their [API|did not include much visual aid.
The diagrams, however, were not considered an essential tool, but a complementary one. They
indeed offer a good initial understanding but are limited to small parts, not helping so much
as the program scale. The quality of the diagrams are also an essential aspect, and complex
operations should not be oversimplified in a small, compact diagram. Another possibility for
enhancement includes changing the diagrams to become more dynamic and animated, with
more concrete and specific examples.

There was an agreement about the benefits for learning and understanding [RP] through
the rx-fruits. According to participants’ feedback, the tool eases the learning of operations
and helps to memorize the [API However, the game seem to become more interesting and
dynamic only after the initial lessons. For newcomers, the game can be a good resource, but,
people with more experience, may find the game not so helpful as it involves simple practices.
The game developers should incorporate more real contexts (e.g., web requests instead

of fruits) to make a better connection between the ludic and real.

4 |<https://rxjs.dev/operator-decision-tree>.

https://rxjs.dev/operator-decision-tree

133

45 RECOMMENDATIONS

Based on what was discussed in this chapter and also considering the outcomes of Chap-

ter [3) we elaborated a set of practical, suggestive recommendations (Table [21]) that

should consider to possibly improve their overall usability. To facilitate, they are grouped ac-

cording to the implications of Section [4.4]

Table 21 — Recommendations for AP designers according to the points and observations presented throughout

the research. (continue)

Topic Recommendation

Most concerning issues - Consider the differences in user background and dedicate some
sections for basic concepts like the problems that RP can prevent

and FP topics.

- Pay attention to resource descriptions, and make sure they are
complete and clear. Only describe features that are actually part

of the API, otherwise they are only adding more complexity.

- The API should ideally try to add all types of examples in ad-
dition to code snippets, like tutorials and complete applications.
Users' suggestions indicate the inclusion of kick-start tutorials
and different scenarios and applications for the examples. The
quality (formatting) and up-to-date content should also be con-
sidered. The Learn RxJS portaf*®| counts with a lot of examples

that could easily be adapted for the APIs’ documentations.

- Include key sections to better guide developers to deal with
difficult topics like error-handling and state management. Chap-
ter 3| details a list of most discussed topics in Stack Overflow

that could as well be considered by the APls.

4 < https://www.learnrxjs.io/ >

https://www.learnrxjs.io/

134

Table 21 — Recommendations for API designers according to the points and observations presented throughout

the research. (continued)

Topic Recommendation

- Provide a “best practices” section showing possible situations
in which code can be structured wrongly or can lead to error
conditions; the section should also include clear instructions and

explanation about how to overcome those situations.

Operators - ldentify the most used operators and list them as the primary
focus for a newcomer; this way, the APIs can minimize the ef-
fective complexity (the users will need to be aware of only a
few core features/operators) and any discouragements from le-
arners, specially considering that the RP is hard to learn and
master (SALVANESCHI et al} 2017; MOGK; SALVANESCHI; MEZINI,
2018). Alternatively, API designers could also consider providing
only the most general operators, and let the community supply

the most specialized ones (an approach taken by Most.js v.ﬂ.

- API designers should also think about the use of recipes for some
operators; this is in fact an approach taken by the Most.js API
in its v.]F_g]. For instance, topics about implementation of missing
or removed featured”’| could also be included in such recipes, so

a user can easily found them.

47 ' <https://github.com /mostjs-community>.

8 <https://github.com/cujojs/most /wiki/Recipes>.

49 E.g., |<https://github.com /ReactiveX /rxjs /issues/1295> and |<https://github.com /ReactiveX /rxjs /issu
es/1542>

https://github.com/mostjs-community
https://github.com/cujojs/most/wiki/Recipes
https://github.com/ReactiveX/rxjs/issues/1295
https://github.com/ReactiveX/rxjs/issues/1542
https://github.com/ReactiveX/rxjs/issues/1542

135

Table 21 — Recommendations for API designers according to the points and observations presented throughout

the research. (continued)

Topic Recommendation

- Review all features exposed in the APl and documentation. We
observed many features listed in both APlIs, specially in the on-
line web documentation, that had obscure role (i.e., the reason
it is in the public API) and description. For example, many Ba-
con.js features were listed in the AP| without a proper description,
discouraging and infuriating some users. Other features presen-
ted surprising, uncataloged behaviors like Bacon.js fromPromise

(Section |4.2.2.3)) or RxJS concatMap (Section [4.2.2.4)), for ins-

tance.

- Explain clearer about the heavy reliance on factory functions and
how much complexity would take not to use them; in other words,
describe the instantiation of the main abstractions. This fact
was actually previously studied, showing that constructors were
the primary technique programmers try to use to create objects
and factories are more difficult than constructors (ELLIS; STYLOS;
MYERS, 2007)). Ben Lesh, the RxJS technical lead, holds a series
of posts and one of them specifically targets this subject ' We
believe that such resource could easily be integrated to the RxJS
API documentation or, at least, links to the posts. A similar asset

could also be included for Bacon.js.

50 < https://benlesh.com/posts/learning-observable-by-building-observable/>.

https://benlesh.com/posts/learning-observable-by-building-observable/

136

Table 21 — Recommendations for API designers according to the points and observations presented throughout

the research. (continued)

Topic Recommendation

- Offer more helpful information about the distinction of simi-
lar operators (e.g., variations of take), specially for the case of
flatMap. One trouble factor is the lack of consistency among RP
APIs. For instance, both Bacon.js and Kotlin Flow["use the same
prefix for flatMap operators, while RxJS include different prefixes
like mergeMap, concatMap, and switchMap; thus, we particularly
find the naming used by Bacon.js for flattening clearer since it
can better identify operators belonging to this type. Moreover,
an account we presented reported problems to adapt to Bacon.js
nomenclature conventions having previous experience with RxJS.
We think that the APIs should strive to standardize the termi-
nologies, after all transference is fundamental both within and

across APIs (HENNING, [2009).

- Include better and more complex operator examples. AP| de-
signers should not only add small code snippets, but also links
for more complete, step-by-step tutorials and applications that
include the given operators. The Learn RxJS portal specifically
adopts this strategy by including related recipes and additional

resources.

- Encourage more the use of decision tools like the operator de-
cision tree. Also, RP APlIs could look for alternative ways the
exploration of LLM aligned with IDEs like VS Code. In RxJS
community, there is already a VS Code extensio that could be

used as a base project to construct such a decision tool.

51 <https://kotlinlang.org/docs/flow.html#flattening-flows>.
52 |<https://github.com /dzhavat/rxjs-cheatsheet>.

https://kotlinlang.org/docs/flow.html#flattening-flows
https://github.com/dzhavat/rxjs-cheatsheet

137

Table 21 — Recommendations for API designers according to the points and observations presented throughout

the research. (continued)

Topic

Recommendation

Additional resources

- Demonstrate why operators like tap and doAction exist in
the APl and when to properly use them (e.g., avoid side-effects

scattered throughout the pipeline).

- Invest more in diagrams, preferably with more dynamic con-
tent and concrete examples. APIs should also pay attention to
the quality, splitting diagrams for complex operations. There a
number of online tools could either be recommended by the APls

or used for creating better tools: ThinkRx, Rx Visualizer, and Rx

ASCII Visualizeﬁ.

- ASCII marble diagrams could be better explored as a mecha-
nism to express code logic reasoning as shown in many parts of
the Most.js v2 documentatiorﬂ and the Egghead course RxJS
Beyond the Basics: Operators in Deptlﬁ.

Games have been shown as a good learning resource, so the APIs
could either recommend or explore the ideas of rx-fruits. Desira-
bly, the game should strive to go beyond the ludic, adding more

concrete situations (e.g., interaction with real RESTful APlIs).

Source: Elaborated by the author (2024)

4.6 THREATS TO VALIDITY

Internal Validity. The participants of the study were students, and to make sure that they

had a considerable level of programming experience, the study was conducted in a course

where students are in their 3th or 4th semester. In fact, a great portion of the questionnaire

53

54
55

Available at |<https://thinkrx.io/>, |<https://rxviz.com/>| and <https://ascii-marble-diagrams.surge.

sh/>| respectively.

< https://mostcore.readthedocs.io/en /latest /notation.html#timeline-notation>.
<https://egghead.io/lessons/ rxjs-resubscribe-to-an-observable-on-error-with-rxjs-retry>.

https://thinkrx.io/
https://rxviz.com/
https://ascii-marble-diagrams.surge.sh/
https://ascii-marble-diagrams.surge.sh/
https://mostcore.readthedocs.io/en/latest/notation.html#timeline-notation
https://egghead.io/lessons/rxjs-resubscribe-to-an-observable-on-error-with-rxjs-retry

138

participants (Table reported either having two to five years or more than five years of
general experience; a close observation can be seen for [OO] experience as well. Some of those
students were actually already working for companies, ensuring a level of experience outside
the academic context. However, it is important to note that previous study (SALMAN; MISIRLI;
JURISTO), 2015) observed no significant difference between professional and student developers.
Besides, usability is a problem that affects both novices and experts (STYLOS; MYERS,
2007). In any case, future studies should try applying similar studies with a broader range of
professionals.

There was a chance of bias in the participants’ selection given the closeness of many of them
with the second author (students enrolled in his course). To minimize it, the conduction of the
usability testing was carried out by the first author. All participants showed enough background
to undertake the tasks (Section [4.2.3.1), both in terms of general and experience. The
users also had heterogeneous background regarding [FP] diminishing the impact of previous
experience due to the connection with the paradigm (SALVANESCHI et al., 2017)).

The number of group participants in usability studies is a very debatable matter, raging
from three or five (TURNER; LEWIS; NIELSEN, [2006; VIRZI, [1992) until 25 (MACEFIELD, 2009).
The used number can impact the discovery of some usability problems (ALROOBAEA; MAYHEW,
2014), but it also depends on other factors like the purpose of the study and expertise of the
participants. Our final number of the participants unfortunately was unbalanced (Sectionsm
and , and, due to ethics constraints, we could not force user participation; the number
of participants even decreased during the course of the study. However, RxJS questionnaire
participants were within a quantity enough to uncover minor and major problems (ALROO-
BAEA; MAYHEW, 2014)), while the Bacon.js participants showed great experience (Table .
In any case, there is a chance that some usability problems went unnoticed. We, therefore,
recommend future replications of the current study with more users aiming to uncovering more
usability problems. Additionally, other contexts, besides distributed applications, may as well
be beneficial.

By not administering the tasks with every participant in person, we deliberately minimized
the possible interaction effect that can happen in usability sessions between the participant and
the facilitator (also called proctor) (PICCIONI; FURIA; MEYER, [2013). The same effect can also
happen during interviews (PICCIONI; FURIA; MEYER, 2013). To minimize it, during the tasks’
assignment, we informed the users we would only be available to answer questions related to the

interpretation of the tasks. For the interviews, we also tried to stick as much as possible to the

139

interview script, while providing a relaxed environment. The absence of an observing facilitator
during the tasks may also have indirectly relieved any psychological stress like the presence of
a person observing or time pressure that could impact the participant performance (JANNECK;
DOGAN, 2013). Nonetheless, choosing not to observe the participants came at the cost of
allowing plagiarism and exchange of information. To reduce the threat, we constantly reminded
the participants of the study’s importance and how important it was to deliver their own work
(including no involvement of LLMs like ChatGPT), even if they were incomplete within the
given time. In any case, we measured the level of plagiarism with the help of the online tool
Dolos (MAERTENS et al., 2022)), a plagiarism detection tool. Solutions for both presented
low level of plagiarism, with Bacon.js and RxJS having a mean average similarity of only 24.6%
and 19.8%, respectively. Bacon.js actually presented instances of strong plagiarism in tasks
3 and 5, but it was due to the fact that the participant P8 offered two different solutions
for both tasks (so, we reconsidered only one of the P8 solutions to measure plagiarism). An
inspection revealed that the plagiarism mostly corresponds to packages' importation or the
use of the common functions like [IS] fetch.
External Validity. The choice of the using [GH] stars and forks was motivated by the
belief that they possibly offer the best usability among (VENIGALLA; CHIMALAKONDA,
2021). However, it is important to emphasize that the results may or may not generalize to
other [APIs| Other studies should be conducted to test if the level of usability observed can
actually be generalized to other |APls| as well. Moreover, we do not try to make a generalizable
comparison between the [APIs, as it is not in the scope of the present study and the sample of
participants does not allow a significant, statistical decision. Consequently, we always try to
present an aggregated view of the[APIs, and the comparisons are only to describe the observed
strong and weak points of each.
Construct Validity. We recurred to triangulation (JONSEN; JEHN, [2009)) to reduce the subjec-
tivity in our results and increase confidence. More specifically, we utilized both questionnaire
(Section and interviews (Section {4.1.3.4)), intending to acquire a more profound unders-
tanding of the problem. Moreover, our questionnaire was based on the well-known cognitive
dimensions, successfully applied in numerous usability studies (PICCIONI; FURIA; MEYER, 2013;
LOPEZ-FERNANDEZ et al., 2017)). Furthermore, the categorization of the interviews was analyzed
by both authors; any disagreement were solved trough discussion and agreement.

The time spent displayed in Section relied on the participants informing that infor-

mation which may be susceptible to a certain degree of deviation from the de facto spent time.

140

To minimize that problem, we insisted, previous to the start of the tasks, that the participants
considered the tracking of that information as an important factor for their task submission.
Furthermore, predicting some possible variations, we relied on the median statistic for the
result analysis due to its resistance to outliers (ROUSSEEUW, 1990; DAS; IMON, 2014).
Finally, any qualitative study may be subjected to research bias. In other words, different
researches may produce diverse interpretation and conclusions with the same set of data, or
even within different contexts (DENZIN, 2019). We, consequently, made publicly available any
generated materiam to mitigate the threat. In this way, researchers can replicate and examine

our analysis and data.

56 | <https://github.com /carloszimm /thesis>.

https://github.com/carloszimm/thesis

141

5 RELATED WORK

5.1 REACTIVE PROGRAMMING

Empirical Studies. [Salvaneschi et al.| (2017)) executed an experiment to verify if improves
software comprehension when compared to the traditional approach: the Observer pattern.
The experiment was an extension of a previous study (SALVANESCHI et al., 2014)) and involved
a total of 127 participants. The study, composed of 10 tasks, focused on three factors: cor-
rectness of comprehension, time for program comprehension, and skill level dependence. The
answers demonstrated that [RP| increases the correctness of comprehension while not impac-
ting comprehension time. Regarding skill level, the results suggest that [RP] lowers the barrier
for understanding reactive (event-driven) applications, even for less experienced developers.
A quantitative analysis drew the following observations from developers’ perspective: (i) de-
velopers with minimal exposure found easier to comprehend, (ii) following data and
control flow is simpler in [RP] (i) conciseness improves comprehension, and (iv) conver-
sion functions (signals and events) increases comprehension. Aspects perceived supporting
included: reduced boilerplate and shorter code, better readability, automatic consistency of re-
active values, declarative nature, ease of composition, and separation of concerns. Conversely,
the learning curve (i.e., it is harder to master) along with its (increased) level of abstraction
(i.e., it takes time to understand and codeflow is abstracted), and relation to functional pro-
gramming (e.g., excessive number of operators) can be challenging. The authors highlighted
the need for enhanced debugging tools to improve codeflow visualization (e.g., they cite their
related work (SALVANESCHI; MEZINI, [2016))) and the simplification of [RP][APIS, especially by
limiting the proliferation of specialized operators. In our work, we witnessed users struggling
with basic understanding both though user-centered study and Q&A topics. Also, our mining
study shows that in fact many [RP|[APIs| are providing many specialized operators and could in
fact consider reshaping their interfaces.

Data Flow Languages. [Salvaneschi (2016)) examines data flow programming languages, wi-
dely used in areas like reactive programming, Big Data analytics, and real-time systems. These
languages prioritize data dependencies over control flow, offering declarative, functional-style
abstractions to simplify complex systems. Despite their popularity, evidence on the usability
and effectiveness of data flow languages remains limited. Challenges include mastering subtle

semantic variations (e.g., lazy vs. eager evaluation) and managing a vast number of speciali-

142

zed operators. The paper proposes research questions around comprehension, maintainability,
and the cognitive impact of data flow paradigms, urging systematic investigation into their
usability and design. In Chapter |3| we based part of our analysis in one of the research ques-
tions proposed in the paper: “Do data flow languages provide a ‘simple enough’ solution for
the common case without excessive proliferation of overspecialised operators?” Our results
have demonstrated that some reactive interfaces are in fact providing an excessive number of

operators, many of them with little or no usage.

5.2 MINING SOFTWARE REPOSITORIES

The work by |Reboucas et al.| (2016) investigates early adoption of the Swift language
which was developed as a replacement for Objective-C by Apple. Particularly, the authors
were interested in uncovering the most common problems faced by Swift developers, if the
developers were encountering problems with the optional type and error-handling. Like our
work, they used the LDA algorithm to analyze 59,156 Swift-related questions from Stack
Overflow, and complemented their study with semi-structured interviews. The paper highlights
the need for improvements in Swift's tools, clearer error messages, and better guidance for
new developers.

In the paper “What Do Concurrency Developers Ask About? A Large-scale Study Using
Stack Overflow”, /Ahmed and Bagherzadeh| (2018) analyze over 245,000 posts from Stack
Overflow. The study identifies 27 concurrency topics grouped into eight categories, including
concurrency models, programming paradigms, and debugging. Some findings in the study re-
vealed that developers ask most about basic concepts, concurrency correctness, and multithre-
ading; besides, thread safety is a popular topic but relatively easy, while database management
systems are both challenging and less popular. Similar to our work, the paper uses LDA along
with questions (title and body) and accepted answers. We also explore metrics to classify topics
according to their popularity and difficulty, showing Dependency Management, Introductory

Questions, and iOS Development as relevant topics.

5.3 API USABILITY

User-centered Studies with CDN. Variations of the [CDNI framework have become com-

monplace in usability studies. The work of Piccioni, Furia and Meyer (2013) introduces a

143

design of a empirical study to evaluate [API]| usability. The study combines two methodologies:
a set of interview questions based on [CDN] and systematic observations based on usability
tokens (e.g., “surprise” or “unexpected”) to analyze participants’ behavior. The research ques-
tions and the [CDN] questionnaire are based on four dimensions: understandability, abstraction
level, reusability, and learnability. The study was used to analyze the [AP]| usability of the Eiffel
library (a persistence library), and it involved 25 participants performing five tasks. The tasks
sessions were recorded and the participants followed the “thinking aloud” protocol, allowing
the researchers to capture real-time feedback; that feedback was then categorized using five
tokens: “Surprise,” "“Choice,” “Missed,” “Incorrect,” and “Unexpected.” Afterwards, structu-
red post-task interviews were conducted. The results evidenced close outcomes reported in
similar studies like the problematic task of finding descriptive, non-ambiguous names for [AP]|
components and creating relations between types that are easily discoverable. Additionally,
the findings unveiled the need for accurate and complete documentation and consideration for
the user expertise during the design, balancing flexibility with simplicity (i.e., experienced
users tend to like choice more than novice ones). In our study, we could perceive many of
the reported problems presented in the paper like documentation and the problem of providing
too much choice. Also, we reused the tokens “surprise” and “choice” for the interview, aiming
to obtain a more profound understanding of their experience since we decided not to apply
the thinking aloud method.

Lépez-Fernandez et al.| (2017) presented a new targeting multimedia technologies
like Real-Time multimedia Communications (RTC). The authors organized a usability study
by adapting the framework from Piccioni, Furia and Meyer| (2013)), organized as a 28-
assertion questionnaire targeting five dimensions (i.e., understandability, abstraction, expressi-
veness, reusability, and learnability) which was answered through a 5-point Likert-based scale.
Results showed the proposed [API| can be helpful in the learning process, and the creation and
maintenance of applications. The study also revealed some weaknesses: (/) the need for
better documentation to support initial learning and (i) understanding of real applications’
requirements to include missing characteristics. Our study reused and adapt a great part of
those questionnaire items, taking into consideration the [RP| context. Also, we opted to use the
Likert-based scale to create a more inviting environment for the respondents. This is especially
important given the voluntary nature of the study, so participant would possibly not take a
long time to answer the questions and not feel overwhelmed as pointed in the work of Diprose

et al.| (2017)).

144

Metrics. The study of Rama and Kak| (2015) elaborated a set of structural metrics based on
commonly held beliefs about [AP]| design structure that provide the best usability. Based on
those beliefs, the authors build a set of nine usability issues corresponding to structural defects
that difficult [APIs|may present. Examples of such issues include inconsistent parameter ordering
(e.g., it can lead to programmer errors), overloaded methods returning different types of values
(i.e., it can confuse users), and thedocumentation quality. A total of eight metrics were
then defined, with mathematical formulations, based on the structural issues. The metrics
were validated by analyzing seven, popular Java projects. The proposed metrics can be used
to guide [API| design, highlighting areas for improvement and providing a comparative factor
among[API]| versions. An actual implementation for the metrics are not supplied; however, given
the detailed presentation of the metrics, it becomes easier to implement and adapt the metrics.
In our study, therefore, we could easily translate most of the metrics to actual implementation.
That implementation was made publicly available (only for [TS|so far), so it can be reused in
other studies and enhanced with the help of the open-source community.

Venigalla and Chimalakonda| (2021 evaluates the usability of [APIs| in game engines by
analyzing 95 publicly available repositories on GitHub written in C4++. Using the eight struc-
tural API usability metrics of (RAMA; KAK| 2015)), the study finds that 25% of the the game
engines present minimal usability, while only 3% shows good usability; the [APIls| most
struggled in two areas: method grouping (AMGI) and thread-safety documentation (ATSI).
The analysis highlights the importance of consistent naming, clear documentation, and better
semantic grouping to enhance usability. The authors propose future directions, including deve-
loping game engine-specific usability metrics and conducting surveys with developers to refine
[API| design. The findings in our study showed common points with the paper like the share
predominance of the metrics AMNCI and APXI. Another shared fact was the problems with
documentation (ADI) and grouping of sematically similar function (AMGI). Finally, we also
observed the tendency of repositories with more stars and forks providing the best usability

level.

145

6 CONCLUSION

In this thesis, we conducted an exploratory research to unveil the usability of RP][APIg
hoping to understand their current usability level and reveal the main problems and areas of
improvements. This chapter summarizes our work (Section and the contributions (Sec-
tion . Furthermore, we suggest future directions (Section that could enhance and

extend the present work.

6.1 SUMMARY

offers clear benefits like high composability and improved comprehension (Observer
pattern), but its adoption is possibly being obstructed by its steep learning curve, ties to
functional programming, and inconsistent [APIs| Researchers emphasized the need for syste-
matic studies to address these challenges and guide its development and usability. The work
contained in thesis aims to measure and reveal the usability of RP][APIs| detailing findings
(e.g., main problems and areas of improvements), tools, methods, and recommendations. To
accomplish it, we conducted two major studies guided by three research questions: RQ1. How
frequently are RP operators used in open-source projects, and what does their usage reveal
about usability and adoption?, RQ2. What challenges are RP users facing, and how they relate
to API usability?, and RQ3. To what extent are RP APIs usable, and what aspects are most
affected?

The answers for first two research questions is the main focus of Chapter [3| The chapter
conducts a mining study in both [GH| and [SO] The operator data obtained through [GH]| repo-
sitories showed that [RP][APIs| are presenting bloated interfaces, with many instances of low
frequencies of specialized operators. The [SO| mining, conversely, revealed a set of 23 topics
grouped into nine categories by exploring the [LDA| algorithm. The largest category among
[RP] posts is Stream Abstraction, which shows users struggling with stream manipulation and
common operations. Among the relevant topics, we observed the presence of Introductory
Questions and passages indicating [RP] developers finding it difficult to grasp basic [RP] unders-
tanding including operators.

Our second study focus on RQ3 and the results are shown in Chapter [4] The chapter

detailed a mixed-methods research that combines the use of metrics (applied with the use of

146

an implemented tool called [UAX]), and a user-centered study (using the [CDN|framework). The
great majority of the metrics’ results indicate a high level of usability of [APIs; nonetheless, that
did not translate directly into users’ perception, demonstrating a moderate level. Users, for
instance, pointed that it was easy to make mistakes with the [APIs| as well as following different
resolution paths, ultimately expressing low confidence regarding produced code. Nonetheless,
users were not completely unsatisfied by their experience, and the majority recognized the im-
portance of [RP] including considerations of future usages. To enhance usability, RP] designers
should focus especially in the lowest, concerning areas: understandability and expressiveness.
Among the recommendations, the designers should consider interface reformulation (e.g., num-
ber of operators, nomenclature, and behavior description), inclusion of better examples showing
diverse scenarios, addition of key sections like error-handling and state management, detailing
of a best practices section, and investment in visual and alternative resources like learning
games.

Software engineering approaches software development by exploring challenges and soluti-
ons that support quality and productivity (VALENTE, 2020). In that sense, tools should only
be incorporated or explored in the software process when they cooperate to the efficiency of
the development team, otherwise they likely add unnecessary cost. [RP] has the potential to
improve event-driven and asynchronous software, especially those that explore the Observer
pattern (SALVANESCHI et al., 2017). However, they also add risky factors, as demonstrated
through the results of our thesis, that can directly impact the quality of the product under de-
velopment. Therefore, the enhancement of [RP] usability will be a paramount goal for designers
and researchers in the following years to make those interfaces more easy to use and learn and

less costly from a software cycle perspective.

6.2 CONTRIBUTIONS

» Comprehensive Usability Analysis of RP APIs: This thesis evaluates the usability
of [RP|[APIs| through multiple, mixed research methods such as mining researches, user-

centered studies, and evaluation through metrics.

= Empirical Findings from GitHub and Stack Overflow Mining: The research le-
verages mining techniques to extract and analyze data from [GH] repositories and [SO|

discussions. The analysis uncovered users' preferences regarding the available ope-

147

rators and those less or not used that could be taken into account by the [AP]| designers
to simplify the interfaces. The work also identifies common challenges faced by deve-
lopers, and classifies those problems according to their popularity and difficulty to help

[AP]| designers better direct their efforts.

Answer to Open Research Question from Literature: Results of Chapter 3| targeted
a recurrent problem pointed in previous researches about the excessive number of ope-
rators in (SALVANESCHI, [2016}, [SALVANESCHI et al/}, 2017; [MOGK| [2015)). More
precisely, we answered, from the [RP[s perspective, the following research question, “Do
data flow languages provide a ‘simple enough’ solution for the common case without

excessive proliferation of overspecialised operators?” (SALVANESCHI, 2016)).

User-Centered Evaluation with Cognitive Dimensions: We apply a refined version
of the[CDN|framework to capture the developers’ experience with the[APIs} that provided

a better perspective into important aspects like expressiveness and understandability that

should be addressed by [RP|[APIs designers.

Usability Tool: The thesis introduces an open-source tool called [UAX]| designed to
measure usability through structural metrics, contributing as a practical asset for [AP]]
evaluation. This becomes especially important given that most of the current tools are

either not maintained or not available (RAUF; TROUBITSYNA; PORRES| 2019)).

Recommendations for Improved APl Usability: Based on the thesis’ findings, we
proposed suggestions (Section for possibly improving ’ usability, which
include enhancements in documentation quality, addition of code examples, and the
development of best practices. All those recommendations are practical and address

both the structural and informal usability aspects that participants found challenging.

Foundation for Future Usability Research in Reactive Programming: The study
introduce a mixed-method approach to evaluating usability that could be reused
for future studies in the [RP] area. In fact, the methods and findings of Chapter [3| served

as a basis for the works of Pereira et al.| (2023) and |Farias, Zimmerle and Gama| (2024)).

148

6.3 FUTURE WORK

There are many ways in which the work conducted throughout the thesis could be enhanced
or extended. Moreover, we envision ideas that could be further explored to improve the state
of the art in the [RP] field. Section lists enhancements to the work of this thesis, while

Section [6.3.2] presents some ideas for future researches.

6.3.1 Thesis’ Refinements
6.3.1.1 Mining Study

Operator mining. To mine the operators, we explored the use of regular expressions (regex)
since it would be a convenient mean throughout the different languages explored. However,
this is not the optimal approach since regex are designed for regular languages (WATT; BROWN,
2000) and lack context (e.g., a given method belongs to that class/object). We in fact de-
monstrated (Section that noise in the counting was low when compared with actual @
operators. Still, the use of a parser would increase the validity of our findings. For instance,
the paper of Xu et al.| (2020) used the Scala SemanticDBE] tool to parse and extract Scala
higher-order functions’ information. For counting the operators in Chapter [4, we utilized the
esquery?] to query the AST generated by Esprima®| Nonetheless, a prominent approach is pre-
sented by the tool called Tree-sitter (BRUNSFELD et al., 2024 which is a parser generator tool
that has many bindings, including Java, JavaScript, and Swift explored in our mining study.

Temporal trends and technical challenges. A missing aspect of our research was possibly
not considering the understanding of time distribution among the topics reveled in Table [4]
Future works, for instance, could try to divide the dataset of @ posts into time intervals,
recategorize the posts based on the already identified topics and categories, and plot that
information (BAJAJ; PATTABIRAMAN; MESBAH, 2014; [KOCHHAR, [2016]). This can be helpful
to comprehend how the topics have been prevalent throughout a timeline. In addition to
popularity and difficulty metrics (Section , a supplementary metric could be used to
identify the technical challenges faced by the developers (BAJAJ; PATTABIRAMAN; MESBAH,

2014} [KOCHHAR, [2016)). This metric is computed based on statistics like upvotes, down-

<https://scalameta.org/docs/semanticdb/guide.html>.
<https://www.npmjs.com /package/esquery>.
3 A parser for ECMAScript: <https://esprima.org/>.

2

https://scalameta.org/docs/semanticdb/guide.html
https://www.npmjs.com/package/esquery
https://esprima.org/

149

votes, comments, answers, and favorite coumﬂ

6.3.1.2 Mixed-methods Study

Number of participants. Keeping a good quantity of willing participants was difficult during
the study, especially considering the followed ethical principles (e.g., not offering rewards in
exchange of users’ participation). As a result, we could not generalize, for instance, which
provided the best usability from a users’ perspective. In the future, it could be helpful
to increase that number to collect more data, particularly if the research presents a more
quantitative focus.

Additional [APIs, We based the work in two popular [J§] tools. Nonetheless, it would be good
to test if some of the findings are also present in other interfaces and how they would score
in terms of metrics. As a result, we could build a better overview from the field. For example,
in addition to Bacon.js and RxJS, we included the library xstreanﬂ in the paper (ZIMMERLE;
GAMA, [2024)); related to the other m xstream showed a lower mean score of 0.73 (high
level of usability). The library presented two, low and very-low scores: ADI (number of words
contained in the functions’ documentation) and APLCI (consistency among parameter name
ordering across functions’ definitions), respectively; the first result could be explained by some
elements in its interface with short or no documentation, while the second may be related to
the its few operators that is inline with the library design (in this case, it may not be a usability
problem for the , but consistency can alleviate the users’ cognitive load (HERMANS, 2021}
OUSTERHOUT), 2018) and it is often considered in usability test methods (BLACKWELL; GREEN,
2000)).

Additionally, it would be interesting to replicate the work with other interfaces beyond
US| For example, [Pereira et al| (2023) explored the Swift Combinef| framework, which is a
declarative interface for processing asynchronous events over time and the base for SwiftUIE].
The application and comparison of the results between RxSwift (explored in Chapter [3]) and
Combine could draw important research outcomes, especially considering their popularity and

direct and indirect impact (e.g., there are possibly millions of app:ﬂ using those technologies).

4 However, the favorite count was replaced twice: first by bookmarks and then by saves which is private. A

full discussion can be found in |#383706 and |#383382.

It is a small [@] library specifically built for the framework Cycle.js: |<https://github.com/staltz/xstream>.
<https://developer.apple.com /documentation /combine>.

<https://developer.apple.com /xcode/swiftui/>.

<https://www.apple.com/app-store/>

0 N o O

https://meta.stackexchange.com/questions/383706/what-happened-to-favoritecount
https://meta.stackexchange.com/questions/383382/what-does-replacing-bookmarks-with-saves-mean-for-sede
https://github.com/staltz/xstream
https://developer.apple.com/documentation/combine
https://developer.apple.com/xcode/swiftui/
https://www.apple.com/app-store/

150

In the same way, Kotlin, the Java alternative to Android development, figures as one of the most
popular technologies’] and includes its own version of a library called Flowf'®] Therefore, a
similar comparison between Flow and RxKotlin would greatly cooperate in understanding the
usability of [RP|interfaces and which points should be improved.

Validation of recommendations. As an outcome of the thesis, Section presents some
recommendations based on our findings. In the future, it would be important to validate those

recommendations from the viewpoints of:

= [RP] users: to ensure that they agree with the proposed recommendations and there are

no missing details.

. designers: to capture their opinion regarding the recommendations (if all or
part of them would in fact be helpful or not) and whether they would incorporate those

into their tools.

6.3.1.3 UAX Tool

Improvements of implemented metrics. Some implemented metrics rely on specific op-
tions like the maximum number of parameters or the threshold used during documentation
evaluation. While we have used values used in other studies and some of them are general
preferences of developers or have a psychological explanation (RAMA; KAK| 2015} VENIGALLA;
CHIMALAKONDA, 2021)), there is still a lack of broad understanding of those values (VENIGALLA;
CHIMALAKONDA, 2021)). In this way, we plain to make those values configurable, so different
scenarios will be possible to be tested. Furthermore, our tool only checks exported functions
and classes (i.e., public methods of the class, either static or instance ones). Slowly, we plan
to incorporate and investigate the addition of other exportable, languages constructs such as
interfaces or objects.

New metrics. We did not implement all metrics defined by Rama and Kak (2015), but it
is our belief that their contribution (AESI and ATSI) in the context of [JS would be minimal
(considering the arguments presented in Section . Nonetheless, in future releases, we will
pursue the feasibility of not only those metrics, but additional metrics. The new for new metrics

became more evident particularly considering the contrasting results shown in Section [4.3

9 |<https://survey.stackoverflow.co/2024 /technology#most-popular-technologies>.

10" <https://kotlinlang.org/docs/flow.html>.

https://survey.stackoverflow.co/2024/technology#most-popular-technologies
https://kotlinlang.org/docs/flow.html

151

that demonstrated, in most cases, that metrics linked to a dimension did not match the
users’ experience. As an example, the work of Scheller and Kihn| (2015) presents additional,
interesting aspects (e.g., fluent interfaces, which are commonly known as function composition
in functional libraries) that could be adapted to our tool. Also, there are aspects pointed in
other studies that could be used to drive new metrics. For instance, the well-known factory
pattern was considered less usable and impacted programmer performance when compared to
the direct usage of class constructors (ELLIS; STYLOS; MYERS, [2007)); we could adapt this fact
to create a metric that limits the number of factory functions allowed in a given interface.
This, in turn, would impact [RP][APIg like [RX that often rely on factories. The majority of
the implemented metrics deal with structural aspects, but there are more aspects that can
also affect the user experience (ROBILLARD) 2009). This was in fact recognized by Scheller and
Kiihn| (2015)), giving as an example both naming (very dependent on many factors like the [AP]]
purpose and language domain) and abstraction level. In fact, both Rama and Kak (2015) and
Rauf, Troubitsyna and Porres| (2019)) express that metrics could be enhanced by techniques
from machine learning and natural language processing, which is becoming more achievable in
the present era of artificial intelligence. The ADI metric, for instance, is computed only based
on the number of words related to a function documentation, not considering the quality of
the text.

Dashboard. Other types of visualization are intended to be included in the dashboard such as
the TreeMap chart (SOUZA; BENTOLILA, 2009) which may enable a better overview of grouping
elements like results of all interface’s functions, modules (i.e., the average score of the m
within the module), and classes. In fact, we are currently enhancing the tool to include the
results (in the generated files) according to different language units/perspectives like
modules (packages) and classes.

Linters. Static analysis tools like linters can help find opportunities for code improvement and
refactorings, allowing an early, cost-effective modification of code (TOMASDOTTIR; ANICHE;
DEURSEN, 2018)). This is especially important for |APIs| since, when they are defined, it is
hard to modify them without impacting dependent codes (RAMA; KAK, 2015). With minor
modifications or adaptations, we believe that the tool could be used as a linter, guiding [AP]]
designers in the construction of more usable interfaces during the development process.

New languages. [UAX| has only being implemented to analyze [TS| projects. In the future,

we intend to extend the implementation either for other [JS| type tools like Flow'l] or other

1 It is a type static checker that allows type inference or annotation in <https://flow.org/>.

https://flow.org/

152

statically typed programming languages. As long as all implementation agree on a common

output, the same dashboard will be able to display a consistent visualization of the results.

6.3.2 Future Researches

API usage patterns. Given the extensive number of operators in [RP|[APIs| it can be chal-
lenging for the user to choose the right operators for the given task. The |RX documentation
usually group operators by categoriesFE] which helps the users to understand their intent. Howe-
ver, unveiling which of those operators are usually used together is still a missing fact. In this
way, we believe that it could be an important research endeavor to understand [API| usage pat-
terns ((ZHONG et al., 2009; SAIED et al., |2015)). Such a perspective would not only help users that
could be aware of related set of operators that are mostly used together in a given context,
but also the [RP| designers by better understanding the operators’ usages and plan possible
ways to simplify the [APIs|

Recommendations in practice. The set of recommendations presented in Section [4.5 offers
a practical opportunity to validate whether they can effectively impact the usability of [RP]
[APIs| To that end, future works could apply those recommendations to forks of [RP] tools and
capture that phenomenon through both a quantitative and qualitative lens by leveraging user-
centered studies. For example, those works could try to answer whether the recommendations,
or a small set of them, can produce a statistically significant impact in the usability of [RP|[APIs|
and which recommendation was the most impactful; in that sense, the qualitative perspective
could complement the reasons behind those conclusions and possibly ways of improvements.
Outcomes from those works could then be triangulated with the results from the validations
pointed at Section (Validation of recommendations) collected from both users and
designers.

Learning game impact. In the present work, we approached the area of learning game which
is still an area little explored in[RP] As detailed in Section [4.2.4.7] there was an agreement that
the explored game offered a good, basic introduction to the library and its [APIl The results
presented only a first step of understanding its impact in the learning process. For example,
future works could try to comprehend that learning mechanism in a larger scale. Moreover,
according to a valuable feedback provided by one of the study participants, the game could

be enhanced by bringing more real elements and context like the interaction of the game with

12 <https:/ /reactivex.io/documentation /operators.html#categorized >

https://reactivex.io/documentation/operators.html#categorized

153

available, RESTful [APIs} in this way, it would become easier to make the transition between
the game (ludic context) and code (real context). Hence, in the future, we plan to expand
this line of investigation and possibly apply some of the suggestions to better understand their

impact.

6.3.2.1 Software Engineering

Further understanding of RP testing. Section observed the presence of the topic
Testing and Debugging as the second highest percentage of questions without an accepted
answer and few operators related with this area. Debugging is an important aspect under
researching (SALVANESCHI; MEZINI, 2016; MOGK et al .}, [2018; [BANKEN; MEIJER; GOUSIOS, 2018),
but, as far as we know, there are no works specific targeting the understanding of reactive
testing. Tests are an invaluable aspect in the modern software development (VALENTE, 2020),
and even within the same family of[?_lj] libraries, it seems there is no consensus what method
is the most indicated (e.g., there is only bindings of unit testing with marble text in RxJavﬂ
while RxJS brings that idea nativel. From the related area of data stream processing
(DSP) applications, Vianna et al.| (2023)) examine challenges and practices for testing DSP
applications, focusing on findings from 154 grey literature sources (e.g., blogs, forums, and
documentation); the study outlined the testing challenges, purposes, approaches, strategies,
and tools. The results of that study culminated in a series of testing guidelines for DSP
applicationsE]. Therefore, it is our belief that a deeper understanding of how RP code is
tested, including a distributed setting (SALVANESCHI; DRECHSLER; MEZINI, 2013; [DRECHSLER
et al, 2014), and how they have actually been tested in projects is an important research
endeavor.

Code maintenance and knowledge retention. Code maintenance is an inevitable part
in the software lifecycle, and good software should promote maintainability (SOMMERVILLE,
2015). On the other hand, reuse can improve maintainability by allowing code reuse, modularity,
consistency, among others. Section [4.3.4] examined the reusability dimension included in the
questionnaire and covered by some metrics. The results indicated that the [APls excelled at the
reuse aspect, displaying the highest value among all results. [RP|maintenance actually comprises

an open research question: “Expressing computations with data flows involves mixing the right

13 <https://github.com /alexvictoor /MarbleTest4J>
14 <https://rxjs.dev/guide/testing /marble-testing > .
15 Testing Guidelines for Data Stream Processing Applications.

https://github.com/alexvictoor/MarbleTest4J
https://rxjs.dev/guide/testing/marble-testing
https://alexandresgv.github.io

154

operators in a combination that is specific for the problem at hand. Are such highly specialised
pipelines more difficult to modify correctly than imperative code? What is the effect of the
data flow style on maintainability?” (SALVANESCHI, 2016). The data presented in the thesis
offers a first, positive glimpse towards that aspect, but further studies (e.g., mining studies)
must be carry out for the complete understanding and response to that open question.
Knowledge retention is an important element in usability (NIELSEN, 1994) that may impact
future maintenance of code. Usable should thus allow easy comprehension of code, even
after a long period since it was written. The account of an experienced participant during the
interviews of Chapter 4 (Section showed that he still considered his code clear.
In the future, we intend to further explore if that point of view is the same for more users, or
it actually depends on other factors like the user experience which may impact the quality of
the produced code.
Code smells. The results of Chapter [4] revealed that the participants felt it was easy to make
mistakes by using the [APIg| In fact, we witnessed many instances of problems during the code
observations (Section [4.2.2.3), and the interviews (Section [4.2.4)) reinforced the need for best
practices. Therefore, the identification of code smells and possible solutions could strongly
benefit the area. Code smell is a term for design problems that are often mitigated by means
of refactoring (FOWLER, 2018); by cataloguing those, it would possibly help improving the
construction of programs built with those and also serve as an important learning tool.
Furthermore, it is known that code with smells is more prone to errors (LLI; SHATNAWI, [2007;
CAIRO; CARNEIRO; MONTEIRO) [2018)) and is also more likely to undergo future modifications

compared to code without smells (KHOMH; PENTA; GUEHENEUC, 2009).

155

BIBLIOGRAPHY

ABDELLATIF, A.; COSTA, D.; BADRAN, K.; ABDALKAREEM, R.; SHIHAB, E. Challenges
in chatbot development: A study of stack overflow posts. In: Proceedings of the 17th
International Conference on Mining Software Repositories. [S.l.: s.n.], 2020. p. 174-185.

AGRAWAL, A.; FU, W.; MENZIES, T. What is wrong with topic modeling? and how to fix
it using search-based software engineering. Information and Software Technology, Elsevier,
v. 98, p. 74-88, 2018.

AHMED, S.; BAGHERZADEH, M. What do concurrency developers ask about? a large-scale
study using stack overflow. In: Proceedings of the 12th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. [S.l.: s.n.], 2018. p. 1-10.

AKIDAU, T.; CHERNYAK, S.; LAX, R. Streaming systems: the what, where, when, and how
of large-scale data processing. [S.l.]: "O'Reilly Media, Inc.", 2018.

ALABOR, M.; STOLZE, M. Debugging of rxjs-based applications. In: Proceedings of the
7th ACM SIGPLAN International Workshop on Reactive and Event-Based Languages and
Systems. [S.l.: s.n.], 2020. p. 15-24.

ALKHARUSI, H. A descriptive analysis and interpretation of data from likert scales in
educational and psychological research. Indian Journal of Psychology and Education, v. 12,
n. 2, p. 13-16, 2022.

ALLAMANIS, M.; SUTTON, C. Why, when, and what: analyzing stack overflow questions
by topic, type, and code. In: IEEE. 2013 10th Working Conference on Mining Software
Repositories (MSR). [S.l.], 2013. p. 53-56.

ALROOBAEA, R.; MAYHEW, P. J. How many participants are really enough for usability
studies? In: IEEE. 2014 Science and Information Conference. [S.1.], 2014. p. 48-56.

BAINOMUGISHA, E.; CARRETON, A. L.; CUTSEM, T. v.; MOSTINCKX, S.; MEUTER,
W. d. A survey on reactive programming. ACM Computing Surveys (CSUR), ACM New York,
NY, USA, v. 45, n. 4, p. 1-34, 2013.

BAJAJ, K.; PATTABIRAMAN, K.; MESBAH, A. Mining questions asked by web developers.
In: Proceedings of the 11th Working Conference on Mining Software Repositories. [S.|.: s.n.],
2014. p. 112-121.

BANKEN, H.; MEIJER, E.; GOUSIOS, G. Debugging data flows in reactive programs. In:
IEEE. 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). [S.1],
2018. p. 752-763.

BARRQOS, M. O. de. Um Estudo do Uso da framework Combine em Projetos de Cédigo Aberto
em Swift. Bachelor Thesis — Centro de Informatica - Universidade Federal de Pernambuco
(UFPE), 2022. Available at: |[<https://www.cin.ufpe.br/~tg/2022-1/tg_CC/tg_mob.pdf>.

BLACKHEATH, S. Functional reactive programming. [S.l.]: Simon and Schuster, 2016.

BLACKWELL, A. F.; GREEN, T. R. A cognitive dimensions questionnaire optimised for
users. In: EDIZIONI MEMORIA. 12th Workshop of the Psychology of Programming Interest
Group (PPIG 2000). [S..], 2000. p. 137-154.

https://www.cin.ufpe.br/~tg/2022-1/tg_CC/tg_mob.pdf

156

BOGNER, J.; MERKEL, M. To type or not to type? a systematic comparison of the software
quality of javascript and typescript applications on github. In: ACM. Proceedings of the 19th
International Conference on Mining Software Repositories. [S.1.], 2022. p. 658-669.

BONER, J.; KLANG, V. Reactive programming versus reactive systems. Dosegljivo:
https://www. lightbend. com/reactiveprogramming-versus-reactive-systems.[Dostopano: 23.
08. 2017], 2017.

BOREN, T.; RAMEY, J. Thinking aloud: Reconciling theory and practice. IEEE transactions
on professional communication, IEEE, v. 43, n. 3, p. 261-278, 2000.

BRUNET, J.; SEREY, D.; FIGUEIREDO, J. Structural conformance checking with design
tests: An evaluation of usability and scalability. In: IEEE. 2011 27th IEEE International
Conference on Software Maintenance (ICSM). [S.1.], 2011. p. 143-152.

BRUNSFELD, M.; QURESHI, A.; HLYNSKYI, A.; THOMSON, P.; OBSERVEROFTIME;
VERA, J.; DUNDARGOC; TURNBULL, P.; CLEM, T.; CREAGER, D.; HELWER, A.; RIX,
R.; KAVOLIS, D.; ANTWERPEN, H. van; DAVIS, M.; LILLIS, W.; IKA; YAHYAABADI,
A.; EN, T.-A. N.: KOLJA. tree-sitter/tree-sitter: v0.24.4. Zenodo, 2024. Available at:
<https://doi.org/10.5281/zenodo.14061403>.

BURNS, C.; FERREIRA, J.; HELLMANN, T. D.; MAURER, F. Usable results from the field
of api usability: A systematic mapping and further analysis. In: IEEE. 2012 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). [S.l.], 2012. p. 179-182.

CAIRO, A. S.; CARNEIRO, G. d. F.; MONTEIRO, M. P. The impact of code smells on
software bugs: A systematic literature review. Information, MDPI, v. 9, n. 11, p. 273, 2018.

CAMPBELL, J. C.; HINDLE, A.; STROULIA, E. Latent dirichlet allocation: extracting topics
from software engineering data. In: The art and science of analyzing software data. [S.l.]:
Elsevier, 2015. p. 139-159.

CLARKE, S. Describing and measuring api usability with the cognitive dimensions. In:
CITESEER. Cognitive Dimensions of Notations 10th Anniversary Workshop. [S.1.], 2005.
v. 16.

CORBIN, J.; STRAUSS, A. Basics of qualitative research: Techniques and procedures for
developing grounded theory. [S.l.]: Sage publications, 2014.

COSENTINO, V.; IZQUIERDQ, J. L. C.; CABOT, J. Findings from github: methods, datasets
and limitations. In: IEEE. 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR). [S.1.], 2016. p. 137-141.

CUGOLA, G.; MARGARA, A. Processing flows of information: From data stream to complex
event processing. ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 44, n. 3,
p. 1-62, 2012.

DAS, K. R.; IMON, A. R. Geometric median and its application in the identification of
multiple outliers. Journal of Applied Statistics, Taylor & Francis, v. 41, n. 4, p. 817-831,
2014.

DENZIN, N. K. Grounded theory and the politics of interpretation, redux. The SAGE
handbook of current developments in grounded theory, Sage Publications, p. 449-469, 2019.

https://doi.org/10.5281/zenodo.14061403

157

DIAS, J. P; FARIA, J. P.; FERREIRA, H. S. A reactive and model-based approach for
developing internet-of-things systems. In: |EEE. 2018 11th International Conference on the
Quality of Information and Communications Technology (QUATIC). [S.l.], 2018. p. 276-281.

DIPROSE, J.; MACDONALD, B.; HOSKING, J.; PLIMMER, B. Designing an api at an
appropriate abstraction level for programming social robot applications. Journal of Visual
Languages & Computing, Elsevier, v. 39, p. 22-40, 2017.

DRECHSLER, J.; SALVANESCHI, G.; MOGK, R.; MEZINI, M. Distributed rescala: An
update algorithm for distributed reactive programming. ACM SIGPLAN Notices, ACM New
York, NY, USA, v. 49, n. 10, p. 361-376, 2014.

DUALA-EKOKO, E.; ROBILLARD, M. P. Asking and answering questions about unfamiliar
apis: An exploratory study. In: IEEE. 2012 34th International Conference on Software
Engineering (ICSE). [S.1.], 2012. p. 266-276.

ELLIOTT, C.: HUDAK, P. Functional reactive animation. In: ACM. International Conference
on Functional Programming. 1997. Available at: |<http://conal.net/papers/icfp97/>.

ELLIS, B.; STYLOS, J.; MYERS, B. The factory pattern in api design: A usability evaluation.
In: IEEE. 29th International Conference on Software Engineering (ICSE'07). [S.l.], 2007. p.
302-312.

FARIAS, E.; ZIMMERLE, C.; GAMA, K. Perspectives and challenges of ios developers in using
reactive programming with rxswift. In: Proceedings of the XXXVIII Brazilian Symposium on
Software Engineering. Porto Alegre, RS, Brazil: SBC, 2024. p. 609-615. ISSN 0000-0000.
Available at: |<https://doi.org/10.5753/sbes.2024.3569>.

FARIAS, E. C. Uma anélise das perspectivas e desafios de desenvolvedores iOS ao
incorporarem a programacdo reativa através do RxSwift. Bachelor Thesis — Centro
de Informética - Universidade Federal de Pernambuco (UFPE), 2023. Available at:
<https:/ /www.cin.ufpe.br/~tg/2023-2/TGs_CC/tg_ecf2.pdf>.

FOWLER, M. Refactoring: improving the design of existing code. [S.l.]: Addison-Wesley
Professional, 2018.

GANASSALI, S. The influence of the design of web survey questionnaires on the quality of
responses. Survey research methods, v. 2, n. 1, p. 21-32, 2008.

HAN, J.; SHIHAB, E.; WAN, Z.; DENG, S.; XIA, X. What do programmers discuss
about deep learning frameworks. Empirical Software Engineering, Springer, v. 25, n. 4, p.
2694-2747, 2020.

HAN, Z.; LI, X.; XING, Z.; LIU, H.; FENG, Z. Learning to predict severity of software
vulnerability using only vulnerability description. In: IEEE. 2017 IEEE International conference
on software maintenance and evolution (ICSME). [S.1.], 2017. p. 125-136.

HEMMATI, H.; BRIAND, L. An industrial investigation of similarity measures for model-based
test case selection. In: IEEE. 2010 IEEE 21st International Symposium on Software Reliability
Engineering. [S.l.], 2010. p. 141-150.

HENKEL, J.; BIRD, C.; LAHIRI, S. K.; REPS, T. Learning from, understanding, and
supporting devops artifacts for docker. In: IEEE. 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). [S.l.], 2020. p. 38-49.

http://conal.net/papers/icfp97/
https://doi.org/10.5753/sbes.2024.3569
https://www.cin.ufpe.br/~tg/2023-2/TGs_CC/tg_ecf2.pdf

158

HENNING, M. Api design matters. Communications of the ACM, ACM New York, NY, USA,
v. 52, n. 5, p. 4656, 2009.

HERMANS, F. The Programmer's Brain: What every programmer needs to know about
cognition. [S.l.]: Simon and Schuster, 2021.

JANNECK, M.; DOGAN, M. The influence of stressors on usability tests-an experimental
study. In: SCITEPRESS. Special Session on Socio-technical Dynamics in Information Systems.
[S.1.], 2013. v. 2, p. 581-590.

JONSEN, K.; JEHN, K. A. Using triangulation to validate themes in qualitative studies.
Qualitative research in organizations and management: an international journal, Emerald
Group Publishing Limited, v. 4, n. 2, p. 123-150, 2009.

KALLIAMVAKOU, E.; GOUSIOS, G.; BLINCOE, K.; SINGER, L.; GERMAN, D. M;
DAMIAN, D. An in-depth study of the promises and perils of mining github. Empirical
Software Engineering, Springer, v. 21, n. 5, p. 2035-2071, 2016.

KAMBONA, K.; BOIX, E. G.; MEUTER, W. D. An evaluation of reactive programming and
promises for structuring collaborative web applications. In: ACM. Proceedings of the 7th
Workshop on Dynamic Languages and Applications. [S.l.], 2013. p. 1-9.

KHOMH, F.; PENTA, M. D.; GUEHENEUC, Y.-G. An exploratory study of the impact of
code smells on software change-proneness. In: IEEE. 2009 16th Working Conference on
Reverse Engineering. [S.l.], 2009. p. 75-84.

KLEINSCHMAGER, S.; ROBBES, R.; STEFIK, A.; HANENBERG, S.; TANTER, E. Do
static type systems improve the maintainability of software systems? an empirical study. In:
IEEE. 2012 20th IEEE International Conference on Program Comprehension (ICPC). [S.1],
2012. p. 153-162.

KLEPPMANN, M. Designing data-intensive applications: The big ideas behind reliable,
scalable, and maintainable systems. [S.l.]: "O'Reilly Media, Inc.", 2017.

KOCHHAR, P. S. Mining testing questions on stack overflow. In: Proceedings of the 5th
International Workshop on Software Mining. [S.l.: s.n.], 2016. p. 32-38.

KULESZA, T.; STUMPF, S.; BURNETT, M.: KWAN, I. Tell me more? the effects of mental
model soundness on personalizing an intelligent agent. In: ACM. Proceedings of the sigchi
conference on human factors in computing systems. [S.l.], 2012. p. 1-10.

LEUTENEGGER, S.; EDGINGTON, J. A games first approach to teaching introductory
programming. In: ACM. Proceedings of the 38th SIGCSE technical symposium on Computer
science education. [S.l.], 2007. p. 115-118.

LI, W.; SHATNAWI, R. An empirical study of the bad smells and class error probability in
the post-release object-oriented system evolution. Journal of systems and software, Elsevier,
v. 80, n. 7, p. 1120-1128, 2007.

LIMA, C.; HORA, A. What are the characteristics of popular apis? a large-scale study on
java, android, and 165 libraries. Software Quality Journal, Springer, v. 28, n. 2, p. 425-458,
2020.

159

LOPEZ-FERNANDEZ, L.; GARCIA, B.; GALLEGO, M.; GORTAZAR, F. Designing and
evaluating the usability of an api for real-time multimedia services in the internet. Multimedia
Tools and Applications, Springer, v. 76, n. 12, p. 14247-14304, 2017.

MACEFIELD, R. How to specify the participant group size for usability studies: a practitioner’s
guide. Journal of usability studies, Usability Professionals’ Association Bloomingdale, IL, v. 5,
n. 1, p. 34-45, 2009.

MACVEAN, A.; CHURCH, L.; DAUGHTRY, J.; CITRO, C. Api usability at scale. In: PPIG.
[S.l.: s.n.], 2016. p. 26.

MAERTENS, R.; PETEGEM, C. V.; STRIJBOL, N.; BAEYENS, T.; JACOBS, A. C;
DAWYNDT, P.; MESUERE, B. Dolos: Language-agnostic plagiarism detection in source
code. Journal of Computer Assisted Learning, Wiley Online Library, v. 38, n. 4, p. 1046-1061,
2022.

MAIER, I.; ODERSKY, M. Deprecating the observer pattern with scala. react. 2012.

MARGARA, A.; SALVANESCHI, G. Ways to react: Comparing reactive languages and
complex event processing. REM, v. 14, 2013.

MARGARA, A.; SALVANESCHI, G. We have a dream: Distributed reactive programming
with consistency guarantees. In: ACM. Proceedings of the 8th ACM International Conference
on Distributed Event-Based Systems. [S.|.], 2014. p. 142-153.

MARGARA, A.; SALVANESCHI, G. On the semantics of distributed reactive programming:
the cost of consistency. IEEE Transactions on Software Engineering, |IEEE, v. 44, n. 7, p.
689-711, 2018.

MARUM, J. P. O.; JONES, J. A.; CUNNINGHAM, H. C. Towards a reactive game engine.
In: IEEE. 2019 SoutheastCon. [S.l.], 2019. p. 1-8.

MCLELLAN, S. G.; ROESLER, A. W.; TEMPEST, J. T.; SPINUZZI, C. I. Building more
usable apis. IEEE software, IEEE, v. 15, n. 3, p. 78-86, 1998.

MEYEROVICH, L. A.; GUHA, A.; BASKIN, J.; COOPER, G. H.; GREENBERG, M
BROMFIELD, A.; KRISHNAMURTHI, S. Flapjax: a programming language for ajax
applications. In: ACM. Proceedings of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications. [S.1.], 2009. p. 1-20.

MOGK, R. Reactive interfaces: Combining events and expressing signals. In: ACM. Workshop
on Reactive and Event-based Languages & Systems (REBLS). [S.1.], 2015.

MOGK, R.; SALVANESCHI, G.; MEZINI, M. Reactive programming experience with rescala.
In: ACM. Companion Proceedings of the 2nd International Conference on the Art, Science,
and Engineering of Programming. [S.l.], 2018. p. 105-112.

MOGK, R.; WEISENBURGER, P.; HAAS, J.; RICHTER, D.; SALVANESCHI, G.; MEZINI,
M. From debugging towards live tuning of reactive applications. In: 2018 LIVE Programming
Workshop. LIVE. [S.l.: s.n.], 2018. v. 18.

MURPHY, L.; KERY, M. B.; ALLIYU, O.; MACVEAN, A.; MYERS, B. A. Api designers
in the field: Design practices and challenges for creating usable apis. In: IEEE. 2018 ieee
symposium on visual languages and human-centric computing (vl/hcc). [S.1.], 2018. p.
249-258.

160

MYERS, B. A.; STYLOS, J. Improving api usability. Communications of the ACM, ACM
New York, NY, USA, v. 59, n. 6, p. 62-69, 2016.

NAM, D.; MACVEAN, A.; HELLENDOORN, V.; VASILESCU, B.; MYERS, B. Using an Illm
to help with code understanding. In: ACM. Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering. [S.l.], 2024. p. 1-13.

NASEHI, S. M.; SILLITO, J.; MAURER, F.; BURNS, C. What makes a good code example?:
A study of programming q&a in stackoverflow. In: IEEE. 2012 28th IEEE International
Conference on Software Maintenance (ICSM). [S.1.], 2012. p. 25-34.

NIELSEN, J. Usability engineering. [S.l.]: Morgan Kaufmann, 1994.

OUSTERHOUT, J. K. A philosophy of software design. [S.l.]: Yaknyam Press Palo Alto, CA,
USA, 2018.

PARNAS, D. L. Precise documentation: The key to better software. In: The future of software
engineering. [S.l.]: Springer, 2010. p. 125-148.

PEREIRA, A.; GAMA, K.; ZIMMERLE, C.; CASTOR, F. Reactive programming with swift
combine: An analysis of problems faced by developers on stack overflow. In: Proceedings of
the XXXVII Brazilian Symposium on Software Engineering. [S.l.: s.n.], 2023. p. 109-115.

PEREIRA, A. L. N. UM ESTUDO SOBRE O USO DO FRAMEWORK COMBINE ATRAVES
DA MINERACAO DE PUBLICACOES DO STACK OVERFLOW. Bachelor Thesis —
Centro de Informatica - Universidade Federal de Pernambuco (UFPE), 2022. Available at:
<https://www.cin.ufpe.br/~tg/2022-1/tg_SI/TG_alnp.pdf>.

PETERSEN, P.; HANENBERG, S.; ROBBES, R. An empirical comparison of static and
dynamic type systems on api usage in the presence of an ide: Java vs. groovy with eclipse. In:
ACM. Proceedings of the 22nd International Conference on Program Comprehension. [S.1],
2014. p. 212-222.

PICCIONI, M.; FURIA, C. A.; MEYER, B. An empirical study of api usability. In: IEEE. 2013
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement.
[S.1.], 2013. p. 5-14.

PIERCE, B. C. Types and programming languages. [S.l.]: MIT press, 2002.

PROENCA, J.; BAQUERO, C. Quality-aware reactive programming for the internet of things.
In: SPRINGER. International Conference on Fundamentals of Software Engineering. [S.l.],
2017. p. 180-195.

RAMA, G. M.; KAK, A. Some structural measures of api usability. Software: Practice and
Experience, Wiley Online Library, v. 45, n. 1, p. 75-110, 2015.

RAUF, |.; TROUBITSYNA, E.; PORRES, I. A systematic mapping study of api usability
evaluation methods. Computer Science Review, Elsevier, v. 33, p. 49-68, 2019.

REACTIVEX. ReactiveX Documentation. 2016. <https://reactivex.io/documentation/>.
Accessed: 2022-10-01.

REACTIVEX. FlatMap Documentation. 2024. <https:/ /reactivex.io/documentation /operato
rs/flatmap.html>. Accessed: 2024-09-12.

https://www.cin.ufpe.br/~tg/2022-1/tg_SI/TG_alnp.pdf
https://reactivex.io/documentation/
https://reactivex.io/documentation/operators/flatmap.html
https://reactivex.io/documentation/operators/flatmap.html

161

REBOUCAS, M.; PINTO, G.; EBERT, F.; TORRES, W.; SEREBRENIK, A.; CASTOR, F.
An empirical study on the usage of the swift programming language. In: IEEE. 2016 IEEE
23rd international conference on software analysis, evolution, and reengineering (SANER).
[S.l.], 2016. v. 1, p. 634-638.

ROBILLARD, M. P. What makes apis hard to learn? answers from developers. IEEE software,
IEEE, v. 26, n. 6, p. 27-34, 2009.

ROBILLARD, M. P.; DELINE, R. A field study of api learning obstacles. Empirical Software
Engineering, Springer, v. 16, p. 703-732, 2011.

RODRIGUEZ, L. J.; WANG, X.; KUANG, J. Insights on apache spark usage by mining
stack overflow questions. In: IEEE. 2018 IEEE International Congress on Big Data (BigData
Congress). [S.1.], 2018. p. 219-223.

ROEHM, T.; TIARKS, R.; KOSCHKE, R.; MAALEJ, W. How do professional developers
comprehend software? In: IEEE. 2012 34th International Conference on Software Engineering
(ICSE). [S.1.], 2012. p. 255-265.

ROSEN, C.; SHIHAB, E. What are mobile developers asking about? a large scale study using
stack overflow. Empirical Software Engineering, Springer, v. 21, n. 3, p. 1192-1223, 2016.

ROUSSEEUW, P. J. Robust estimation and identifying outliers. Handbook of statistical
methods for engineers and scientists, McGraw-Hill, New York, v. 16, p. 16-11, 1990.

SAIED, M. A.; BENOMAR, O.; ABDEEN, H.; SAHRAOQUI, H. Mining multi-level api usage
patterns. In: IEEE. 2015 IEEE 22nd international conference on software analysis, evolution,
and reengineering (SANER). [S.l.], 2015. p. 23-32.

SALDANA, J. The coding manual for qualitative researchers. [S.l.]: SAGE publications Ltd,
2021.

SALMAN, |.; MISIRLI, A. T.; JURISTO, N. Are students representatives of professionals
in software engineering experiments? In: IEEE. 2015 IEEE/ACM 37th IEEE international
conference on software engineering. [S.l.], 2015. v. 1, p. 666-676.

SALVANESCHI, G. What do we really know about data flow languages? In: ACM. Proceedings
of the 7th International Workshop on Evaluation and Usability of Programming Languages
and Tools. [S.l.], 2016. p. 30-31.

SALVANESCHI, G.; AMANN, S.; PROKSCH, S.; MEZINI, M. An empirical study on program
comprehension with reactive programming. In: ACM. Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. [S..], 2014. p. 564-575.

SALVANESCHI, G.; DRECHSLER, J.; MEZINI, M. Towards distributed reactive
programming. In: SPRINGER. Coordination Models and Languages: 15th International
Conference, COORDINATION 2013, Held as Part of the 8th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2013, Florence, Italy, June 3-5,
2013. Proceedings 15. [S.l.], 2013. p. 226-235.

SALVANESCHI, G.; HINTZ, G.; MEZINI, M. Rescala: Bridging between object-oriented and
functional style in reactive applications. In: ACM. Proceedings of the 13th international
conference on Modularity. [S.l.], 2014. p. 25-36.

162

SALVANESCHI, G.; MARGARA, A.; TAMBURRELLI, G. Reactive programming: A
walkthrough. In: IEEE. 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering. [S.l.], 2015. v. 2, p. 953-954.

SALVANESCHI, G.; MEZINI, M. Debugging for reactive programming. In: IEEE. 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE). [S.l.], 2016. p.
796-807.

SALVANESCHI, G.; PROKSCH, S.; AMANN, S.; NADI, S.; MEZINI, M. On the positive
effect of reactive programming on software comprehension: An empirical study. /EEE
Transactions on Software Engineering, |IEEE, v. 43, n. 12, p. 1125-1143, 2017.

SCHELLER, T.; KUHN, E. Automated measurement of api usability: The api concepts
framework. Information and Software Technology, Elsevier, v. 61, p. 145-162, 2015.

SHNEIDERMAN, B.; PLAISANT, C. Designing the user interface: strategies for effective
human-computer interaction. [S..]: Pearson Education India, 2010.

SOKOLOWSKI, D.; MARTENS, P.; SALVANESCHI, G. Multitier reactive programming
in high performance computing. In: ACM. 6th Workshop on Reactive and Event-based
Languages & Systems. [S.1.], 2019.

SOMMERVILLE, |. Software Engineering. 10th. ed. [S.l.]: Pearson, 2015. ISBN
978-0-13-394303-0.

SOUZA, C. R. D.; BENTOLILA, D. L. Automatic evaluation of api usability using complexity
metrics and visualizations. In: |IEEE. 2009 31st International Conference on Software
Engineering-Companion Volume. [S.1.], 2009. p. 299-302.

STERZ, A.; EICHHOLZ, M.; MOGK, R.; BAUMGARTNER, L.; GRAUBNER, P.; HOLLICK,
M.; MEZINI, M.; FREISLEBEN, B. Reactifi: Reactive programming of wi-fi firmware on
mobile devices. Art Sci. Eng. Program., v. 5, n. 2, p. 4, 2021.

STYLOS, J.; MYERS, B. Mapping the space of api design decisions. In: IEEE. IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2007). [S.1],
2007. p. 50-60.

STYLOS, J.; MYERS, B. A. The implications of method placement on api learnability. In:
ACM. Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering. [S.l.], 2008. p. 105-112.

TAHIR, A.; DIETRICH, J.; COUNSELL, S.; LICORISH, S.; YAMASHITA, A. A large scale
study on how developers discuss code smells and anti-pattern in stack exchange sites.

Information and Software Technology, Elsevier, v. 125, p. 106333, 2020.

TOMASDOTTIR, K. F.; ANICHE, M.; DEURSEN, A. V. The adoption of javascript linters
in practice: A case study on eslint. /EEE Transactions on Software Engineering, IEEE, v. 46,
n. 8, p. 863-891, 2018.

TREUDE, C.; WAGNER, M. Predicting good configurations for github and stack overflow
topic models. In: IEEE. 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). [S.1.], 2019. p. 84-95.

163

TUCKER, A. B.; NOONAN, R. Programming languages: principles and paradigms. [S.l.]:
McGraw-Hill, 2002.

TURNER, C. W.; LEWIS, J. R.; NIELSEN, J. Determining usability test sample size.
International encyclopedia of ergonomics and human factors, CRC Press Boca Raton, FL,
v. 3, n. 2, p. 3084-3088, 2006.

VALENTE, M. T. Engenharia de Software Moderna: Principios e Préticas para
Desenvolvimento de Software com Produtividade. [S.|.]: Editora: Independente, 2020.

VENIGALLA, A. S. M.; CHIMALAKONDA, S. On the comprehension of application
programming interface usability in game engines. Software: Practice and Experience, Wiley
Online Library, v. 51, n. 8, p. 1728-1744, 2021.

VIANNA, A.; KAMEI, F. K.; GAMA, K.; ZIMMERLE, C.; NETO, J. A. A grey literature
review on data stream processing applications testing. Journal of Systems and Software,
Elsevier, v. 203, p. 111744, 2023.

VIRZI, R. A. Refining the test phase of usability evaluation: How many subjects is enough?
Human factors, SAGE Publications Sage CA: Los Angeles, CA, v. 34, n. 4, p. 457-468, 1992.

WATT, D. A. Programming language design concepts. [S.l.]: John Wiley & Sons, 2004.

WATT, D. A.; BROWN, D. F. Programming language processors in Java: compilers and
interpreters. [S.l.]: Pearson Education, 2000.

WEN, F.; NAGY, C.; LANZA, M.; BAVOTA, G. An empirical study of quick remedy commits.
In: ACM. Proceedings of the 28th International Conference on Program Comprehension.
[S.1.], 2020. p. 60-71.

WIJAYARATHNA, C.; ARACHCHILAGE, N. A.; SLAY, J. A generic cognitive dimensions
questionnaire to evaluate the usability of security apis. In: SPRINGER. International

Conference on Human Aspects of Information Security, Privacy, and Trust. [S.l.], 2017. p.
160-173.

XU, Y.; WU, F; JIA, X;; LI, L.; XUAN, J. Mining the use of higher-order functions: An
exploratory study on scala programs. Empirical Software Engineering, Springer, v. 25, p.
4547-4584, 2020.

YUAN, D.; LUO, Y.; ZHUANG, X;; RODRIGUES, G. R.; ZHAO, X.; ZHANG, Y.; JAIN,

P. U.; STUMM, M. Simple testing can prevent most critical failures: An analysis of production
failures in distributed {Data-Intensive} systems. In: ACM. 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14). [S.l.], 2014. p. 249-265.

ZHANG, T.; HARTMANN, B.; KIM, M.; GLASSMAN, E. L. Enabling data-driven api design
with community usage data: A need-finding study. In: ACM. Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems. [S.l.], 2020. p. 1-13.

ZHONG, H.; XIE, T.; ZHANG, L.; PEl, J.; MEI, H. Mapo: Mining and recommending api
usage patterns. In: SPRINGER. ECOOP 2009-Object-Oriented Programming: 23rd European
Conference, Genoa, lItaly, July 6-10, 2009. Proceedings 23. [S.l.], 2009. p. 318-343.

164

ZIMMERLE, C.; GAMA, K. Reactive cep: Integrating complex event processing into web
reactive languages. In: ACM. Proceedings of the 24th Brazilian Symposium on Multimedia
and the Web. [S.l.], 2018. p. 69-72.

ZIMMERLE, C.; GAMA, K. A web-based approach using reactive programming for complex
event processing in internet of things applications. In: ACM. Proceedings of the 33rd Annual
ACM Symposium on Applied Computing. [S.l.], 2018. p. 2167-2174.

ZIMMERLE, C.; GAMA, K. Uax: Measuring the usability of typescript apis. In: Proceedings
of the XXXVIII Brazilian Symposium on Software Engineering. Porto Alegre, RS, Brazil: SBC,
2024. p. 803-809. ISSN 0000-0000. Available at:|<https://doi.org/10.5753 /sbes.2024.3658> .

ZIMMERLE, C.; GAMA, K. On the usability of reactive programming apis: A combined
approach. Under evaluation. 2025.

ZIMMERLE, C.; GAMA, K.; CASTOR, F.; FILHO, J. M. M. Mining the usage of reactive
programming apis: a study on github and stack overflow. In: ACM. Proceedings of the 19th
International Conference on Mining Software Repositories. [S.1.], 2022. p. 203-214.

https://doi.org/10.5753/sbes.2024.3658

APPENDIX A - REACTIVE PROGRAMMING CODE EXAMPLES

165

This Appendix shows the Java and Swift versions of the programs presented in the Sec-

tion of Chapter 2

A.1 JAVA EXAMPLE

11

13

15

17

19

21

23

25

27

29

31

33

Source Code 3 — HTTP request simulation with automatic retries using the Observer pattern in Java

import
import
import
import
import

import

java.
java.
java.
java.
java.

java.

io.IOException;
net.URI;
net.http.HttpClient;
net.http.HttpRequest;
net.http.HttpResponse;

time.Duration;

// Observable (Subject)

class ApiRequest {

private final String url;
private ApiObserver observer;

private int retryCount = 3; // Maximum retries

public ApiRequest(String url) {

this.url = url;

public void subscribe(ApiObserver observer) {
this.observer = observer;

makeRequest (0) ;

private void makeRequest(int attempt) {
new Thread(() -> {

try {
HttpClient client = HttpClient.newBuilder ()

.connectTimeout (Duration.ofSeconds (10))

build();

HttpRequest request = HttpRequest.newBuilder ()

.uri(URI.create(url))
.GET()
.build();

166

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

HttpResponse<String> response = client.send(request,

HttpResponse.BodyHandlers.ofString());

if (response.statusCode() >= 400) {

throw new IOException("HTTP error:

response.statusCode());

observer.onNext (response.body());

observer.onComplete();

L

} catch (IOException | InterruptedException e) {

if (attempt < retryCount) {
System.out.println("Retrying.
makeRequest (attempt + 1);

} else {

observer.onkError(e);

3
}).start();

// Observer (Listener)
interface ApiObserver {
void onNext(String data);
void onError(Throwable error);

void onComplete();

// Main class
public class ObserverPatternExample {

public static void main(String[] args) {

Attempt " + (attempt + 1));

ApiRequest apiRequest = new ApiRequest("https://api.example.com/data");

apiRequest.subscribe (new ApiObserver () {
@Override

public void onNext(String data) {

System.out.println("Data: " + data);

@Override

public void onError(Throwable error) {

System.err.println("Final Error:

@Override

public void onComplete() {

n

+ error.getMessage());

167

81

83

10

12

14

16

18

20

22

24

26

28

30

32

34

36

Source Code 4 — HTTP request simulation with automatic retries using RxJava in Java

import
import
import
import

import

import
import
import
import
import

import

System.out.println("Done");

DN

io

io.
io.
io.

io.

java.

.reactivex.
reactivex
reactivex.
reactivex.

reactivex.

rxjava3s.

.rxjavas.

rxjavas

rxjava3s.

rxjavas.

io.IOException;

Source: Elaborated by the author (2024)

core.Single;

.core.Observable;

core.Maybe;

java.net.http.HttpClient;

java.net.http.HttpRequest;

java.net.http.HttpResponse;

java.net.URI;

java.

time.Duration;

public class RxJavaRetryExample {

public static void main(String[] args) {

schedulers.Schedulers;

plugins.RxJavaPlugins;

fetchJson("https://api.example.com/data")

.retry(3) // Retries up to 3 times if an error occurs

.subscribe(

data

error

-> System.out.println("Data: " + data),

-> System.err.println("Final Error:

error.getMessage()),

"oy

() -> System.out.println("Done")

)8

private static Single<String> fetchJson(String url) {
return Single.fromCallable(() -> {
HttpClient client = HttpClient.newBuilder ()

.connectTimeout (Duration.ofSeconds (10))
.build();

HttpRequest request = HttpRequest.newBuilder ()
.uri(URI.create(url))
.GET ()
.build();

HttpResponse<String> response =

client.send(request,

HttpResponse.BodyHandlers.ofString());

168

38

40

42

44

if (response.statusCode() >= 400) {

n

throw new IOException("HTTP error: + response.statusCode());

return response.body();

}) .subscribeOn(Schedulers.io()); // Perform network calls on IO scheduler

Source: Elaborated by the author (2024)

A2 SWIFT EXAMPLE

11

13

15

17

19

21

23

25

27

29

31

33

35

37

Source Code 5 — HTTP request simulation with automatic retries using the Observer pattern in Swift

/**x protocol defintion x*x*/
protocol Observer {

func onNext(_ value: String)
func onError(_ error: Error)
func onCompleted()

}

/**%x Observable/Subject implementation x*%*/
import Foundation

class NetworkObservable {
private var observers: [Observer] = []

// Add an observer
func addObserver (_ observer: Observer) {
observers.append(observer)

}

// Remove an observer
func removeObserver (_ observer: Observer) {
observers.removeAll { $0 as AnyObject === observer as AnyObject }

}

// Simulate an API request
func fetchData(url: String, retries: Int = 3) {
var attempt = 0

func attemptRequest () {
attempt += 1
guard let requestURL = URL(string: url) else {
notifyError (NSError (domain: "Invalid URL", code: -1,
userInfo: nil))
return

3

let task = URLSession.shared.dataTask(with: requestURL) {
data, response, error in
if let error = error {

169

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

if attempt < retries {

print("Retrying... (\(attempt))")
attemptRequest() // Retry on failure
} else {

self.notifyError(error) // Notify observers
about the error
3
return

3

if let data = data, let jsonString = String(data: data,
encoding: .utf8) {
self.notifyNext(jsonString) // Notify observers
about the successful data
self.notifyCompleted() // Notify that the operation

is done
} else {
self.notifyError (NSError (domain: "Invalid Data”,
code: -2, userInfo: nil))

3

task.resume ()

3

attemptRequest ()
3

// Notify observers about new data
private func notifyNext(_ value: String) {
observers.forEach { $0.onNext(value) }

b

// Notify observers about an error
private func notifyError(_ error: Error) {
observers.forkEach { $0.onError(error) }

3

// Notify observers that operation is completed

private func notifyCompleted() {
observers.forEach { $0.onCompleted() }

b

/**x* Observer implementation =*#*x*/

class NetworkObserver: Observer {

private let name: String

init(name: String) {
self.name = name

3

func onNext(_ value: String) {
print(”"\(name) received data: \(value)")

b

func onError(_ error: Error) {
print(”"\(name) encountered an error:

170

93

95

97

99

101

103

105

107

10

12

14

16

18

20

22

24

26

28

\(error

3

.localizedDescription)")

func onCompleted() {
print("\(name) operation completed.")

b

/**x Instatiating the objects and triggering the request **x/

let networkObservable = NetworkObservable ()
let observerl = NetworkObserver(name: "Observer 1")

networkObservable.addObserver (observer1)

// Fetch data (simulating an API call with 3 retries)

networkObservable.

fetchData(url: "https://api.example.com/data")

Source: Elaborated by the author (2024)

Source Code 6 — HTTP request simulation with automatic retries using RxSwift in Swift

import RxSwift
import RxAlamofire
import Alamofire

/*

* This code uses an Rx wrapper around the elegant HTTP networking in

Swift Alamofire

* https://github.com/RxSwiftCommunity/RxAlamofire

*/

let disposeBag = D

isposeBag ()

RxAlamofire.requestData(.get, "https://api.example.com/data")

.map { _, data
guard let
throw

nil

3

return jso

b

-> String in
jsonString = String(data: data, encoding: .utf8) else {
NSError (domain: "Invalid Data”, code: -1, userInfo:

)

nString

.retry(3) // Retry up to 3 times

.subscribe(

onNext: {
print(
}, onError
print(

response 1in

response)

: { error in

"Final Error: \(error.localizedDescription)")

}, onCompleted: {

print(
3

)
.disposed(by:

”Done”)

disposeBag)

Source: Elaborated by the author (2024)

	Title page
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	Listing
	List of Tables
	Contents
	Introduction
	Context and Motivation
	Research Goal
	Research Questions
	Research Methods
	Document Structure

	Fundamental Concepts
	Event-driven Paradigm and the Observer Pattern
	Reactive Programming
	Important Aspects
	Interfaces and Operators
	Glitches
	Visual Support

	Reactive Programming Examples

	Application Programming Interfaces
	Usability

	Mining the Usage of Reactive Programming APIs on GitHub and Stack Overflow
	Methodology
	GitHub Mining
	Stack Overflow Mining
	Topic Modeling
	Defining Topic Relevance

	Results
	RQ1.1: How much are the Rx operators being used in open source projects?
	RQ2.1: What problems are RP developers facing?
	RQ2.2: How do the operators present in the most relevant Stack Overflow questions and the usage frequency of Rx operators in open source projects relate?

	Implications
	Threats to Validity

	Evaluating the Usability of Reactive Programming APIS through a Mixed-methods Study
	Methodology
	Reactive Programming APIs
	Metrics
	UAX

	Usability Study
	Participants
	Tasks
	Questionnaire
	Post-Task Interview

	Questionnaire Dimensions and Metrics Intersection
	Ethics

	Results
	Metrics
	User Study
	Task Completeness
	Time of Task Execution
	Code Observations
	Operators

	Questionnaire
	Demographics
	General Satisfaction
	Cognitive Dimensions Questionnaire

	Interview
	Categories
	Interview Assertions

	Discussion
	RQ3: To what extent are RP APIs usable, and what aspects are most affected?
	RQ3.1: How easily can developers learn and understand RP APIs?
	RQ3.2: To what extent do RP APIs contribute to code cleanliness, reliability, and abstraction from low-level complexities?
	RQ3.3: To what extent do RP APIs enhance code reuse and maintainability?

	Implications
	Recommendations
	Threats to Validity

	Related Work
	Reactive Programming
	Mining Software Repositories
	API Usability

	Conclusion
	Summary
	Contributions
	Future Work
	Thesis' Refinements
	Mining Study
	Mixed-methods Study
	UAX Tool

	Future Researches
	Software Engineering

	Bibliography
	Reactive Programming Code examples
	Java Example
	Swift Example

