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ABSTRACT

Active matter systems consist of self-propelled particles that continuously convert energy

into motion, maintaining a state of constant non-equilibrium. In many cases, the orientation of

a particle’s propulsion becomes misaligned with its actual velocity, creating an angle between

the two vectors. This can happen during interactions with external confining potentials or

collisions with other particles. By incorporating self-alignment dynamics, a torque emerges to

align the particle’s orientation with its velocity. This phenomenon is observed in both biological

and synthetic systems, and significantly alters the dynamics both in the individual particle level

and in the collective behaviors of the system. For a single particle, it can lead to orbital motion

in confining potentials, while at the collective level, it leads to phenomena such as flocking

transitions and self-organization, depending on the system’s geometry. This work begins with

a review of existing results for individual particle systems and progresses to explore the impact

of self-alignment torque on collective dynamics. First, flocking behavior is investigated in

systems without confinement, identifying a critical torque threshold for the onset of flocking.

Introducing obstacles leads to spontaneous lane formation along the symmetry directions of

the substrate. By adding a harmonic confinement to the system, several new phases emerge,

including: a magnetized state where all particles align in the same direction and orbit the

potential center; a compact vortex state where particles share the same angular velocity,

resulting in a collective rotation around the potential; a hollow vortex state displaying shear

banding between the inner and outer layers; and a state in which the system splits into several

small clusters. To support these findings, a rigid-body model was developed to complement

numerical results and a phase diagram was constructed to characterize the emergence of these

phases.

Keywords: active matter; self alignment; interacting systems.



RESUMO

Sistemas de matéria ativa consistem em partículas auto-propelidas que continuamente

convertem energia em movimento, mantendo um estado de constante não-equilíbrio. Em mui-

tos casos, a orientação de propulsão de uma partícula fica desalinhada com a direção de

movimento, criando um ângulo entre os dois vetores. Isso pode ocorrer durante a interação

com potenciais confinadores externos ou por colisão entre partículas. Ao incorporar dinâmi-

cas de auto-alinhamento entre partículas, um torque surge para alinhar a orientação com a

velocidade. Esse fenômeno ocorre tanto em sistemas biológicos quanto sintéticos, e altera de

maneira significativa as dinâmicas tanto em nível individual quanto coletivo. Para uma partí-

cula, tal torque pode levar a movimento orbital na presença de um potencial confinador, já

para dinâmicas coletivas, isso leva a fenômenos como transições de comportamento coletivo

e auto-organização, a depender da geometria do sistema. Esse trabalho começa com uma re-

visão de resultados existentes para sistemas de uma partícula, e parte para explorar o impacto

do torque de auto-alinhamento em dinâmicas coletivas. Para começar, o comportamento de

alinhamento é investigado em sistemas sem confinamento, identificando um torque crítico para

que haja alinhamento coletivo. Com a introdução de obstáculos, observa-se uma formação es-

pontânea de faixas ao longo das direções de simetria do substrato. Ao incluir um confinamento

harmônico ao sistema, várias novas fases aparecem, incluindo: um estado magnetizado onde

todas as partículas alinham na mesma direção e orbitam o centro do potencial; um estado de

vórtice compacto onde todas as partículas têm a mesma velocidade angular, resultando numa

rotação coletiva ao redor do potencial; um estado de vórtice oco, com cisalhamento entre

camadas internas e externas; e um estado onde o sistema separa em vários grupos menores.

Para apoiar essas descobertas, um modelo de corpo rígido foi desenvolvido para complementar

os resultados numéricos e um diagrama de fases foi construído para localizar e caracterizar o

aparecimento dessas fases.

Palavras-chaves: matéria ativa; auto alinhamento; sistemas interagentes.
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1 INTRODUCTION

The title of this thesis, “Dynamics of Self-Aligning Polar Active Matter”, can be broken

down into parts and examined

• Dynamics refers to the study of dynamical phases and time-dependent behavior of the

system.

• Self-aligning indicates the internal property that particles possess to adjust their own

orientation vector.

• Polar refers to particles that exhibit a well-defined directionality, characterized by a head-

tail distinction, in contrast to nematic systems, which lack this directional asymmetry.

• Active matter refers to the rich class of systems that consist of self-propelled agents,

constantly converting energy into motion.

Bringing these topics together, this thesis investigates the temporal evolution and emergent

collective behavior observed in polar active matter systems, particularly when self-aligning

interactions are included. By focusing on how local alignment mechanisms influence large-

scale dynamics, this work contributes to a broader understanding of how different phases

spontaneously arise in systems with these properties.

This introductory chapter outlines some key features that make active matter systems a

rich and compelling area of research. The thesis begins with a brief historical overview and the

motivations that led to the development of active matter systems. It then explores the various

environments in which these systems can be found and introduces some of the key models

used to describe their dynamics.

1.1 ACTIVE MATTER SYSTEMS

Broadly speaking, active matter refers to systems composed of individual units that are able

to convert local energy into directed motion. This phenomenon is observed in nature across

several length scales, from the collective motion of animal groups to the movement of individual

bacteria. In addition to natural systems, artificial active matter has been designed, including

microswimmers and robotic swarms, that mimic some of the behaviors of living systems. As

energy is supplied at the individual level, the system is kept out of equilibrium, leading to
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the breakdown of time-reversal symmetry and a departure from common results in equilibrium

statistical physics. Due to this, a wide range of non-equilibrium effects can be observed in

active matter systems, such as collective motion and cluster formation (RAMASWAMY, 2017;

CHATÉ, 2020).

Figure 1 provides a comprehensive overview of various phenomena in the realm of ac-

tive matter, highlighting the diversity of systems and phenomena associated with this field.

Panel (a) presents examples of both natural and artificial systems of varying sizes that can be

classified as active, based on their ability to consume energy in order to generate systematic

movement. By supplying energy directly at the individual level, active matter differentiates

itself from, for example, passive matter with global, external drives. This distinction enables

active systems to interact with their environment in complex ways, such as developing for-

aging strategies and navigating chemical gradients, as shown in panel (b). As collections of

active components interact, new and more intricate behaviors can emerge. One example is

the formation of swarms, where individual units synchronize their motion, forming cohesive

groups that move collectively in response to local interactions. Another notable behavior is the

appearance of clusters, in which active components aggregate into localized groups. These,

along with some other complex patterns, are illustrated in panel (c), highlighting the rich

variety of self-organizing phenomena that active matter systems can exhibit (CICHOS et al.,

2020).
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Figure 1 – (a) Examples of systems that can be considered active across several length scales. (b) Different
ways in which active particles can interact with the environment. (c) Some types of collective
behavior that can emerge due to interactions between active particles.

Source: (CICHOS et al., 2020)

1.2 PHYSICAL MODELS OF ACTIVE MATTER

The systematic study of active matter systems in physics, as a subfield of soft matter, is

relatively recent. The model that popularized this area of research originated from the seminal

work by Vicsek et al. (1995), which was published only 30 years prior to the writing of this

thesis. Aiming to reproduce biological swarming phenomena, such as bird flocks and school fish,

the well known and widely studied Vicsek model relies on few, simple rules and exhibits a rich

phenomenology associated with it. Notably, the model consists on point-like particles propelling

themselves along a given direction and at each timestep the orientation takes the value of the

average orientation of its neighbors, along with a random noise. By doing this, a first order

transition from disordered, gas-like behavior to ordered motion was found for critical values

of noise1. A continuum model associated with the Vicsek model was developed shortly after
1 Interestingly, a model with similar rules had already been introduced about a decade before Vicsek’s work

was published by Reynolds (1987), who introduced boids (bird-oids) particles that possess similar alignment
rules to Vicsek’s model. However this was done in the context of generating computer animations of flocks,
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and various critical exponents associated with the flocking transition were calculated (TONER;

TU, 1995; TONER; TU, 1998). The emergence of collective motion remains a topic of research

in active matter systems, as it displays a deep insight into the mechanisms of active systems,

which include both living beings and synthetic materials, and the presence of universal behaviors

found in non-equilibrium systems (LAM; SCHINDLER; DAUCHOT, 2015; MARTÍN-GÓMEZ et al.,

2018; FEHLINGER; LIEBCHEN, 2023; VICSEK; ZAFEIRIS, 2012). Although governed by relatively

simple rules, the system exhibits surprisingly complex dynamics, including the presence of

chaos, as seen in recent studies (MIRANDA-FILHO et al., 2022; GONZÁLEZ-ALBALADEJO; CARPIO;

BONILLA, 2023).

As the field evolved, more sophisticated models were developed to explore different types

of active systems. Some of the main classifications seen in active matter models are: dry vs.

wet systems, regarding whether hydrodynamics play an important role or not (MARCHETTI et

al., 2013), and polar vs. nematic, which differentiates according to the presence of head-tail

symmetry (DOOSTMOHAMMADI et al., 2018; VENKATESH; SOUSA; DOOSTMOHAMMADI, 2025).

The shape of the particle also plays an important role in the system dynamics (WENSINK et

al., 2014), as symmetry, which can be for example spherical or rod-like (SAINTILLAN; SHELLEY,

2013; SPELLINGS et al., 2015), susceptibility to deformations (ARROYO et al., 2012) and the

presence of appendages such as flagella or cillia (GILPIN; BULL; PRAKASH, 2020) can modify the

behavior of the system in a nontrivial manner. Some complex models might even feature many-

body interactions to optimize certain local conditions (ZAMPETAKI et al., 2021). While this vast

range of different properties might make active systems appear to be intractable, they share

several properties among them, such as (but not limited to): broken time-reversal symmetry2,

lack of equation of state and being far from equilibrium (ELGETI; WINKLER; GOMPPER, 2015).

This makes even minimal models exhibit a wealth of unique behaviors, such as the formation

of bands and clusters even in the absence of attractive interactions (ROMANCZUK et al., 2012;

BOWICK et al., 2022; RAMASWAMY, 2010).

In Figure 2, a range of both biological and artificial swimmers are exhibited, highlighting

the scales at which these systems can be built and operate in. Of course, the principles of active

matter extend beyond the micro-scale and can also be applied to macroscopic systems, such

as birds (BALLERINI et al., 2008; CAVAGNA et al., 2010), fish (WARD et al., 2008; MAKRIS et al.,
and not phase transitions.

2 Which is a necessary condition for directed motion in viscous fluids, as a consequence of Purcell’s famous
scallop theorem (PURCELL, 1977)
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Figure 2 – Order of magnitude for the size and speed for several classes of biological and synthetic swimmers,
demonstrating the vast range of sizes in which self-propelled particles can exist, from nano to micro
scales. The insets show examples of the most popular biological and artificial systems. The letters
represent different types of artificial swimmers that have been created and a detailed table of those
can be found on (BECHINGER et al., 2016).

Source: (BECHINGER et al., 2016)

2009) and mammals (SUMPTER, 2006), including humans (MOUSSAÏD; HELBING; THERAULAZ,

2011).

Given that active matter spans a wide range of scales and exhibits numerous mechanisms

of self-propulsion, it is unsurprising that multiple models have been developed to describe

the dynamics of these systems. Figure 3 illustrates the principal computational models used

to study active systems, highlighting key distinctions between different approaches. These

include: dry models, where momentum is not conserved; wet models, which couples the system

to a momentum-conserving fluid; microscopic models, focused on the dynamics of individual

components; and continuum models, which describe the system using continuous variables

such as velocity and density fields. The choice of model depends on the type of system being
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Figure 3 – Different types of active matter models in micro-macro and dry-wet classifications. (a) Bubbly phase
separation is shown for a continuum dry model, with boiling liquid in yellow and vapor in blue. (b)
Vorticity field for a turbulent active fluid model. (c) Vibrated polar disks in confinement, with the
colors indicating local alignment, ranging from red (parallel) to blue (anti-parallel) (d) Dipolar force
flow field generated from a swimming bacteria (e) Schematic of the main computational models
for active matter, with arrows indicating the direction of increased generalization, from microscopic
dynamics to continuum and from dry system to those coupled with a solvent.

Source: (SHAEBANI et al., 2020)

studied and the specific characteristics of interest, as each model has its own unique strengths.

As such, there is no universally superior model, only those that are more appropriate for a given
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case.

This thesis focuses on the study of microscopic dry active matter systems, where each

component of the system is treated individually and explicit hydrodynamic interactions are

neglected, meaning that momentum conservation does not apply. In such cases, the particle-

fluid interactions are effectively modeled as a linear (i. e. Stokes) viscous friction force acting

opposite to the direction of motion. This simplification is justified when fluid-mediated effects

are less significant than thermal fluctuations and interparticle interactions, which is a common

scenario when modeling the dynamics of dense flocks (CHATÉ, 2020). Within this context,

there are also several other subcategories, mostly regarding how the particle reorients itself.

A widely used approach, and the one employed here, is the active Brownian particle (ABP)

model, in which the particle’s orientation undergoes a rotational Brownian diffusion and is

used to describe systems such as Janus particles (HOWSE et al., 2007; BUTTINONI et al., 2012).

Other notable models include the run-and-tumble model, that features particles traveling along

a single direction for a certain time before abruptly switching directions, which is a behavior

observed in certain bacteria such as E. coli (TAILLEUR; CATES, 2008). Another prominent model

is the Active Ornstein-Uhlenbeck model, where the velocity of a particle is no longer constant

but follows a Ornstein–Uhlenbeck process, providing itself useful to model motion in viscous

fluids (BONILLA, 2019; MARTIN et al., 2021). However, the general dynamics of the system are

relatively indifferent to the model used, as the models have been shown to be largely equivalent

in many cases (TAILLEUR; CATES, 2008; CATES; TAILLEUR, 2013), suggesting that the results

derived in one model are applicable to others instead of being restricted to a single model.

1.3 SELF-ALIGNMENT

In systems where particles interact with one another or are subject to external potentials,

the directions of a particle’s heading and velocity can become decoupled when forces act

upon it, such as during collisions. This separation in directions was explored as far back

as (SHIMOYAMA et al., 1996), who, inspired by the gliding behavior of large birds, proposed

that the heading and velocity vectors gradually relax to become parallel again over time. This

process, later denoted self-alignment, offers a mechanism for integrating orientation dynamics

into granular systems without the need for external control parameters like in the Vicsek model,

which includes a certain neighborhood radius for each particle.

The self-alignment mechanism has since been extended and applied to various systems,
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including the study of tissue cell migration (SZABÓ et al., 2006), polar disks (DESEIGNE; DAU-

CHOT; CHATÉ, 2010; DESEIGNE et al., 2012; WEBER et al., 2013), and active solids (FERRANTE et

al., 2013; GIOMI; HAWLEY-WELD; MAHADEVAN, 2013). In these contexts, the coupling between

heading and velocity plays a crucial role in understanding collective phenomena, offering in-

sights into a wide range of natural and synthetic systems. In experimental setups, the strength

of this self-alignment effect can be estimated, for example, by finding the alignment length of

individual components, and one way to control this is by adjusting the self-propulsion velocity

of the particles. (BACONNIER et al., 2022)

Figure 4 – Illustration of the aligning mechanism for a system with self-alignment torque. From left to right,
two particles with different orientations are in a collision course. As the particles start to interact,
the directors become misaligned to the velocity. A self-aligning torque proportional to n̂ × F𝑖𝑗

arises and aligns those vectors, leaving the particles with equal orientations after the collision. This
illustrates how an internal mechanism can induce global order in a system.

Source: (CANAVELLO et al., 2025) (adapted)

Figure 4 illustrates an example of how a self-alignment mechanism works. When two

particles with initially parallel velocity v and orientation n̂ collide, represented by the overlap

of their effective interaction ranges (shaded region), a repulsive force F𝑖𝑗 arises. This force

induces a misalignment between each particle’s velocity and orientation vectors. In response,

a self-alignment torque, described by 𝜃 ∼ n̂ × F𝑖𝑗, acts to restore alignment by rotating the

orientation vector towards the velocity. As a result, the particles tend to leave the collision

more aligned with each other than they were initially, demonstrating how collective alignment

can emerge for a system without explicit alignment rules.

The realignment process that occurs during collisions competes with thermal diffusion,

which acts to disrupt the alignment between particles over time. This interplay between both

mechanisms plays a critical role in shaping the overall dynamics of the system. When align-

ment dominates, particles tend to organize into coherent, collectively moving structures, while

stronger diffusion leads to disordered, random motion. Such a spectrum of behaviors is observed
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in numerous natural and synthetic systems, highlighting the relevance of these competing pro-

cesses (BACONNIER et al., 2025).

1.4 STRUCTURE AND ORGANIZATION OF THIS WORK

This thesis explores the impact of self-alignment dynamics on both individual and collective

behaviors in active matter systems, with a focus on the active Brownian particle model.

Chapter 1, the introduction, provides an overview of the history of active matter and

outlines key models and phenomena that are characteristic of these systems.

Chapter 2 offers a brief description of the methods and tools employed to obtain the results

presented in this work.

In Chapter 3, a review and derivation of established results for self-aligning particles in

both free and confined systems is provided.

Chapter 4 presents new findings on the collective behavior of active matter systems under

periodic boundary conditions. This chapter begins with a free system and then explores the

effects of periodic obstacles, considering both isotropic and anisotropic configurations.

Chapter 5 introduces new results concerning the collective dynamics of active particles

in harmonic confinement, including the construction of a phase diagram that categorizes the

various emergent phases.

The final chapter, Chapter 6, offers a discussion of the results, as well as future research

directions.

There are also two appendices: Appendix A, which provides detailed mathematical deriva-

tions used in Chapter 5, and Appendix B, that outlines some of the computational techniques

used throughout this work.
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2 MODEL AND METHODS

This chapter will include an overview of the mathematical and computational tools that

were used. The active Brownian particle (ABP) model will be presented, along with details for

the numerical integration of the Langevin equations of motion.

2.1 MODELING ACTIVE BROWNIAN PARTICLES

A two-dimensional system consisting of 𝑁 identical spherical active Brownian particles is

considered. The position and orientation of the 𝑖-th particle are denoted by r𝑖 = (𝑥𝑖, 𝑦𝑖) and

n̂𝑖 = (cos 𝜃𝑖, sin 𝜃𝑖), respectively. An overdamped approximation is employed, which is valid

in the regime where viscous forces dominate over inertial effects. This condition is commonly

satisfied for micrometer-sized particles that self-propel in a fluid, where the particle mass is

negligible relative to the viscous damping imposed by the surrounding medium (LÖWEN, 2020).

Under these assumptions, the equations of motion in the 𝑥𝑦-plane are given by:

ṙ𝑖 = 𝑣0n̂𝑖 + 𝜇Ftot
𝑖 +

√︁
2𝐷𝑇 𝜉𝑖(𝑡), (2.1a)

𝜃𝑖 = 𝛽(n̂𝑖 × Ftot
𝑖 ) · ẑ +

√︁
2𝐷𝑅𝜁𝑖(𝑡), (2.1b)

where the dot denotes the derivative with respect to time.

The parameter 𝑣0 represents the self-propulsion speed, which is assumed to be constant

and identical for all particles. This approximation is well justified for systems immersed in a

viscous medium, as they quickly reach a fixed terminal velocity. Examples include biological

microswimmers such as E. coli (BERG, 2004) and T. tubifex worms (SINAASAPPEL et al., 2025),

as well as synthetic active particles such as catalytic Janus colloids (EBBENS et al., 2012). The

translational and angular mobilities are denoted by 𝜇 and 𝛽, respectively, while the total force

acting on a given particle is represented by Ftot. The unit vector ẑ is defined as perpendicular

to the plane of motion.

Stochastic contributions to the particle dynamics are modeled as additive Gaussian white

noise. The translational and rotational noise terms, 𝜉𝑖(𝑡) and 𝜁𝑖(𝑡), have zero mean and are

characterized by ⟨𝜉𝛼
𝑖 (𝑡)𝜉𝛽

𝑗 (𝑡′)⟩ = 2𝐷𝑇 𝛿𝑖𝑗𝛿𝛼𝛽𝛿(𝑡− 𝑡′) and ⟨𝜁𝑖(𝑡)𝜁𝑗(𝑡′)⟩ = 2𝐷𝑅𝛿𝑖𝑗𝛿(𝑡− 𝑡′), where

𝐷𝑇 and 𝐷𝑅 are the translational and rotational diffusion coefficients, and 𝛼, 𝛽 ∈ {𝑥, 𝑦} stand

for the Cartesian components.
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The total force acting on particle 𝑖 consists of contributions from external and interparticle

interactions. It is given by

Ftot
𝑖 = −∇𝑉 (r𝑖) −

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

∇𝑈(|r𝑖 − r𝑗|), (2.2)

where 𝑉 (r𝑖) denotes a position-dependent external potential, and 𝑈(|r𝑖 − r𝑗|) is the pairwise

interaction potential between particles 𝑖 and 𝑗. The first term represents forces due to external

fields or confinement, while the second term accounts for interactions between particles.

The Weeks–Chandler–Andersen (WCA) potential is used to model interparticle interac-

tions (WEEKS; CHANDLER; ANDERSEN, 1971). Derived from the Lennard-Jones potential, the

WCA potential is obtained by truncating the Lennard-Jones interaction at its minimum, re-

sulting in a purely repulsive potential. This formulation effectively captures excluded volume

effects and is widely used in simulations of active matter systems where attractive interac-

tions are negligible—for example, in dilute suspensions of microswimmers such as bacteria

or synthetic colloidal particles (BIALKÉ; SPECK; LÖWEN, 2015; MARCHETTI et al., 2016). An

additional advantage of the WCA potential is its continuity and differentiability, which make it

well-suited for numerical simulations, unlike discontinuous potentials such as the hard-sphere

model. The WCA potential is defined as

𝑈WCA(𝑟) =

⎧⎪⎪⎨⎪⎪⎩
4𝜀 [(𝜎/𝑟)12 − (𝜎/𝑟)6] + 𝜀 for 𝑟 ≤ 21/6𝜎,

0 for 𝑟 > 21/6𝜎,

(2.3)

where 𝜀 determines the strength of the repulsion, 𝜎 is the characteristic particle diameter, and

the cutoff at 𝑟 = 21/6𝜎 corresponds to the minimum of the original Lennard-Jones potential.

The term 𝛽 controls the self-aligning strength, or restoring torque, of the particles, or how

fast its orientation will change to match the force acting upon it, denoted by the cross product

of n̂ and Ftot. This term models a phenomena in which the heading and movement direction

of a particle may not match, which can happen, for example, during collisions.

At low Reynolds numbers (corresponding to the laminar, non-turbulent regime) the trans-

lational and rotational diffusion constants 𝐷𝑇 and 𝐷𝑅 are related by the expression 𝐷𝑅 =

3𝐷𝑇/𝜎
2, which is directly derived from the Stokes-Einstein and Stokes-Einstein-Debye rela-

tions (KOENDERINK et al., 2003; KÖDDERMANN; LUDWIG; PASCHEK, 2008). This relation in-

dicates that when the particles are small, which is the case in this study, then 𝐷𝑇 will be

considerably smaller than 𝐷𝑅. For instance, if 𝜎 is one fifth of a typical length scale of the sys-

tem, such as the mean free path, then 𝐷𝑅 will be about 75 times larger than 𝐷𝑇 . Under these
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conditions, the translational diffusivity becomes negligible when compared to its rotational

counterpart, which is supported by experimental observations that display this dominance of

the rotational diffusivity (CATES; TAILLEUR, 2013). Based on these results, the translation dif-

fusivity 𝐷𝑇 will not be included in the analysis of collective dynamics analyzed in the following

chapters, while the rotational diffusivity 𝐷𝑅 will be referred to as simply 𝐷 in that case.

2.2 NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION

For the simulations realized in this work, a second order stochastic Runge-Kutta method

(also known as Heun’s method) (GREINER; STRITTMATTER; HONERKAMP, 1988; BRAŃKA;

HEYES, 1999) was implemented in C++ (STALLMAN; ROTHWELL, 2022) with a time step

Δ𝑡 = 10−4. Cell linked lists were implemented to speed up the simulations (MATTSON; RICE,

1999), with details on the implementation described in Appendix B.

The Runge-Kutta algorithm can be described as follows for two dimensions

𝑥𝑖(𝑡+ Δ𝑡) = 𝑥𝑖(𝑡) + 1
2(𝐹 𝑎

𝑖,𝑥 + 𝐹 𝑏
𝑖,𝑥)Δ𝑡+ 𝑢𝑖(𝑡)

√︁
2𝐷𝑇 Δ𝑡, (2.4a)

𝑦𝑖(𝑡+ Δ𝑡) = 𝑦𝑖(𝑡) + 1
2(𝐹 𝑎

𝑖,𝑦 + 𝐹 𝑏
𝑖,𝑦)Δ𝑡+ 𝑣𝑖(𝑡)

√︁
2𝐷𝑇 Δ𝑡, (2.4b)

𝜃𝑖(𝑡+ Δ𝑡) = 𝜃𝑖(𝑡) + 1
2(𝑇 𝑎

𝑖 + 𝑇 𝑏
𝑖 )Δ𝑡+ 𝑤𝑖(𝑡)

√︁
2𝐷𝑅Δ𝑡, (2.4c)

in which 𝑎 and 𝑏 denotes the state of the system at two different stages: 𝑎 being the state

at 𝑡 and 𝑏 being the state at 𝑡 + Δ𝑡. The 𝐹 and 𝑇 terms are the force and torque that

act in a particle at each time, which in this system are given by the deterministic parts of

Eqs. 2.1, those being 𝐹𝑖 = 𝑣0n̂𝑖 +𝜇Ftot
𝑖 and 𝑇𝑖 = 𝛽(n̂𝑖 ×Ftot

𝑖 ) · ẑ, while the 𝑥 and 𝑦 subscripts

indicate their projection along the Cartesian coordinates. The stochastic terms 𝑢𝑖, 𝑣𝑖 and 𝑤𝑖

are normally distributed random numbers with zero mean and unit variance.

The quantities at the intermediate step 𝑏 can be found by performing a “virtual” step

with the regular Euler-Maruyama method, which can be derived by first assuming a stochastic

differential equation (HIGHAM, 2001)

𝑑𝑋𝑡 = 𝑃 (𝑋𝑡, 𝑡)𝑑𝑡+𝑄(𝑋𝑡, 𝑡)𝑑𝑊𝑡,

in which 𝑃 and 𝑄 are, respectively, the deterministic drift and diffusion terms, while 𝑊𝑡 denotes

a Wiener process. Integrating over a time step [𝑡𝑛, 𝑡𝑛+1] results in

𝑋𝑡𝑛+1 = 𝑋𝑡𝑛 +
∫︁ 𝑡𝑛+1

𝑡𝑛

𝑃 (𝑋𝑠, 𝑠)𝑑𝑠+
∫︁ 𝑡𝑛+1

𝑡𝑛

𝑄(𝑋𝑠, 𝑠)𝑑𝑊𝑠.
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Approximating the integrands as constant over each time step, that is, 𝑃 (𝑋𝑠, 𝑠) ≈ 𝑃 (𝑋𝑡𝑛 , 𝑡𝑛)

and 𝑄(𝑋𝑠, 𝑠) ≈ 𝑄(𝑋𝑡𝑛 , 𝑡𝑛), yields

𝑋𝑡𝑛+1 = 𝑋𝑡𝑛 + 𝑃 (𝑋𝑡𝑛 , 𝑡𝑛)Δ𝑡+𝑄(𝑋𝑡𝑛 , 𝑡𝑛)Δ𝑊𝑡𝑛 ,

for a time step Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛.

Since 𝑊𝑡𝑛+1 −𝑊𝑡𝑛 = Δ𝑊𝑡𝑛 is also a Wiener process, it has a mean of zero and a variance

of 2𝐷Δ𝑡, where 𝐷 denotes the diffusion coefficient. This allows the expression to be rewritten

as Δ𝑊𝑡𝑛 ≡
√

2𝐷Δ𝑡 𝑢(𝑡𝑛), with 𝑢(𝑡𝑛) once again representing a random Gaussian variable

with zero mean and unit variance, i.e. 𝑢(𝑡𝑛) ∼ 𝒩 (0, 1).

With this formulation, it becomes straightforward to generate the stochastic term Δ𝑊𝑡𝑛

computationally. This approach can be applied to the Langevin equation by identifying 𝑃

as the sum of deterministic forces acting on a particle. These forces include self-propulsion,

external potentials and interparticle interactions. Meanwhile 𝑄 can be set to unity since the

particle’s diffusivity is constant over time and space, and is already incorporated into the 𝑊𝑡𝑛

term. While the first terms are the same as in the regular Euler method, the dependence on
√

Δ𝑡 is a characteristic of stochastic terms (MILSTEIN, 1995; SILVER, 2012).

2.3 SIMULATION PARAMETERS VALUES AND UNITS

Table 1 summarizes the numerical values of the system parameters used in the simulations

conducted for this thesis, along with their corresponding units. The quantities 𝛽 and 𝐷 re-

main constant during each individual simulation and serve as the primary variables that were

systematically varied across different simulations to explore the diverse behaviors exhibited by

the system. Specifically, 𝛽 was varied within the range [0, 60], while D ranged from [0, 10],

depending on the phenomenon of interest for a given system.

The parameter 𝐿 is used for the system studied in Chapter 4, where square boxes of size

𝐿×𝐿 with periodic boundary conditions are employed. Meanwhile, the parameter 𝜅 refers to

the width of the confining harmonic potential, defined by 𝑉 (𝑟) = 1
2𝜅𝑟

2, which characterizes

the system explored in Chapter 5.

The base units of time, length, and mass are frequently expressed in terms of ratios relative

to fixed reference quantities which include, among others, 𝑣0, 𝜇, and 𝜅. This approach allows

for a more intuitive comparison across different systems and facilitates the interpretation of

results within the context of the model parameters.
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Table 1 – Summary of all key quantities in the system along with their typical numerical values as used in the
simulations, unless otherwise specified. The parameter 𝐿 applies to systems using periodic boundary
conditions (Chapter 4), while 𝜅 is used for systems under harmonic confinement (Chapter 5). While
the units of both 𝛽 and 𝐷𝑅 can include radians, it was not included as radians are not a physical
unit.

System parameters and corresponding values used in simulations

Quantity Symbol Numerical value Unit

Self-propulsion velocity 𝑣0 1 length/time

Self-propulsion direction n̂𝑖 Varies over time Dimensionless vector

Total forces acting on a particle Ftot
𝑖 Varies over time mass · length/time2

Translational mobility 𝜇 1 time/mass

Translational diffusion constant 𝐷𝑇 0 length2/time

Angular mobility 𝛽 Simulation parameter time/mass · length

Rotational diffusion constant 𝐷𝑅 Simulation parameter 1/time

Particle size 𝜎 0.1, 0.2 length

Interaction potential well depth 𝜀 0.1/4 mass · length2/time2

Time step Δ𝑡 10−4 time

Periodic boundary size 𝐿 5, 10 length

Harmonic well width 𝜅 1 mass/time2

Source: The author (2025)
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3 DYNAMICS OF A SINGLE ACTIVE PARTICLE WITH SELF-ALIGNMENT

In this chapter, a review of known results regarding a system consisting of a single active

particle with self-alignment is conducted. This provides several exact results that are used to

better understand the collective behavior presented in the following chapters.

3.1 FREE PARTICLE

If the system lacks any external potential or interactions, then Ftot = 0 and the equations

of motion, given by Equations (2.1), reduce to

ṙ = 𝑣0n̂ +
√︁

2𝐷𝑇 𝜉(𝑡), (3.1a)

𝜃 =
√︁

2𝐷𝑅𝜁(𝑡). (3.1b)

In this case, the alignment torque is not present. However, this system still shows interesting

properties that are characteristic to ABPs. One of the peculiarities arises when calculating the

mean square displacement of a particle. This can be done by starting with

n̂ = cos 𝜃𝑖̂+ sin 𝜃𝑗̂ (3.2)

the autocorrelation matrix ⟨n̂(𝑡)n̂(𝑡′)⟩ can then be calculated by using the statistical prop-

erties of 𝜃(𝑡), which include E[𝜃(𝑡)] = 𝜃(0) and Cov(𝜃(𝑡), 𝜃(𝑡′)) = 2𝐷𝑅 min(𝑡, 𝑡′) (implying

Var(𝜃(𝑡)) = 2𝐷𝑅𝑡). This follows directly from the characteristics of a Wiener process with an

arbitrary start point 𝜃(0).

The first component of the matrix, ⟨cos 𝜃(𝑡) cos 𝜃(𝑡′)⟩, can be simplified making use of the

trigonometric identity

cos 𝜃𝑡 cos 𝜃𝑡′ = 1
2 (cos(𝜃𝑡 + 𝜃𝑡′) + cos(𝜃𝑡 − 𝜃𝑡′)) , (3.3)

in which 𝜃𝑡 ≡ 𝜃(𝑡) is used to avoid confusion caused by nested parentheses.

To find ⟨cos(𝜃𝑡 ± 𝜃𝑡′)⟩, it is convenient to treat the cosine as the real part of a complex

exponential function, i.e. cos(𝜃𝑡 ±𝜃𝑡′) = ℜ exp {𝑖(𝜃𝑡 ± 𝜃𝑡′)}. This approach simplifies the com-

putation by making it essentially about finding the Fourier transform of a Gaussian function,

which is itself another Gaussian:

E[exp(𝑖𝑘𝑋)] = 1√
2𝜋𝜎2

∫︁
R
𝑒𝑖𝑘𝑥𝑒− (𝑥−𝜇)2

2𝜎2 𝑑𝑥 = exp
(︃
𝑖𝜇𝑘 − 𝜎2𝑘2

2

)︃
,
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in which 𝑋 is a normal distribution with mean 𝜇 and variance 𝜎2, that is 𝑋 ∼ 𝒩 (𝜇, 𝜎2)1. By

setting 𝑘 = 1, it follows that E[cos𝑋] = cos𝜇 exp(−𝜎2/2) and E[sin𝑋] = sin𝜇 exp(−𝜎2/2).

All that remains is to find the mean and variance of 𝜃𝑡 + 𝜃𝑡′ and 𝜃𝑡 − 𝜃𝑡′ . For the first

case, linearity of expectation gives E[𝜃𝑡 + 𝜃𝑡′ ] = 2𝜃0 and propagation of variance results in

Var(𝜃𝑡 + 𝜃𝑡′) = Var(𝜃𝑡) + Var(𝜃′
𝑡) + 2 Cov(𝜃𝑡, 𝜃𝑡′) = 2𝐷𝑅(𝑡+ 𝑡′ + 2 min(𝑡, 𝑡′)). Doing a similar

procedure for the second case yields E[𝜃𝑡−𝜃𝑡′ ] = 0 and Var(𝜃𝑡−𝜃𝑡′) = 2𝐷𝑅(𝑡+𝑡′−2 min(𝑡, 𝑡′)).

Applying these results to the expression above leads to

⟨cos 𝜃𝑡 cos 𝜃𝑡′⟩ = 1
2 {cos(0) exp [−𝐷𝑅(𝑡+ 𝑡′ − 2 min(𝑡, 𝑡′))]

+ cos 2𝜃0 exp [−𝐷𝑅(𝑡+ 𝑡′ + 2 min(𝑡, 𝑡′))]} . (3.4)

Doing a similar procedure for all components leads to

⟨n̂(𝑡)n̂(𝑡′)⟩ = 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑎11 𝑎12

𝑎21 𝑎22

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3.5)

with

𝑎11 = exp [−𝐷𝑅(𝑡+ 𝑡′ − 2 min(𝑡, 𝑡′))] + cos 2𝜃0 exp [−𝐷𝑅(𝑡+ 𝑡′ + 2 min(𝑡, 𝑡′))] ,

𝑎22 = exp [−𝐷𝑅(𝑡+ 𝑡′ − 2 min(𝑡, 𝑡′))] − cos 2𝜃0 exp [−𝐷𝑅(𝑡+ 𝑡′ + 2 min(𝑡, 𝑡′))] ,

𝑎12 = 𝑎21 = sin 2𝜃0 exp [−𝐷𝑅(𝑡+ 𝑡′ + 2 min(𝑡, 𝑡′))] .

Finding ⟨𝑟𝛼(𝑡)𝑟𝛽(𝑡′)⟩ requires integrating the equations of motion

⟨𝑟𝛼(𝑡)𝑟𝛽(𝑡′)⟩ =
∫︁ 𝑡

0
d𝑠1

∫︁ 𝑡′

0
d𝑠2⟨(𝑣0𝑛̂𝛼(𝑠1) +

√︁
2𝐷𝑇 𝜉𝛼(𝑠1))(𝑣0𝑛̂𝛽(𝑠2) +

√︁
2𝐷𝑇 𝜉𝛽(𝑠2))⟩. (3.6)

For the sake of simplicity, and without loss of generality, the initial orientation is taken to

be aligned with the 𝑥-axis, such that 𝜃0 = 0. This is justified since the system is invariant under

rotation and will simplify the analysis by causing the off diagonal elements in Equation (3.5)

to vanish. Taking 𝑡 = 𝑡′ to find the second moments provides

⟨𝑟2
𝛼(𝑡)⟩ =

∫︁ 𝑡

0
d𝑠1

∫︁ 𝑡

0
d𝑠2

[︁
𝑣2

0⟨𝑛̂𝛼(𝑠1)𝑛̂𝛼(𝑠2)⟩ + 2𝐷𝑇 ⟨𝜉𝛼(𝑠1)𝜉𝛼(𝑠2)⟩
]︁
, (3.7)

with the cross terms going to 0 since 𝜉𝛼 has zero mean.
1 This process is known in statistics as finding the characteristic function of a given probability density

function, in this case the normal distribution.



34

Evaluating the integrals gives

⟨𝑥2(𝑡)⟩ = 𝑣2
0

[︃
𝑡

𝐷𝑅

+ 1
12𝐷2

𝑅

(︁
𝑒−4𝐷𝑅𝑡 + 8𝑒−𝐷𝑅𝑡 − 9

)︁]︃
+ 2𝐷𝑇 𝑡, (3.8a)

⟨𝑦2(𝑡)⟩ = 𝑣2
0

[︃
𝑡

𝐷𝑅

− 1
12𝐷2

𝑅

(︁
𝑒−4𝐷𝑅𝑡 − 16𝑒−𝐷𝑅𝑡 + 15

)︁]︃
+ 2𝐷𝑇 𝑡, (3.8b)

which is the mean-square displacement (MSD) in each direction. The radial MSD is given by

⟨𝑟2(𝑡)⟩ = ⟨𝑥2(𝑡)⟩ + ⟨𝑦2(𝑡)⟩, resulting in

⟨𝑟2(𝑡)⟩ = 4𝐷𝑇 𝑡+ 2𝑣2
0

𝐷𝑅

𝑡+ 2𝑣2
0

𝐷2
𝑅

(︁
𝑒−𝐷𝑅𝑡 − 1

)︁
, (3.9)

which is a well known result (BECHINGER et al., 2016; BREONI; SCHMIEDEBERG; LÖWEN, 2020).

Notably, setting 𝑣0 = 0 recovers the result for a passive particle, as expected. At large times,

i.e. 𝑡 ≫ 𝐷−1
𝑅 , the linear terms dominate and ⟨𝑟2(𝑡)⟩ ≃ 4

(︁
𝐷𝑇 + 𝑣2

0
2𝐷𝑅

)︁
𝑡 = 4𝐷eff𝑡, indicating

that the activity provides a correction to the particle’s diffusivity2. Meanwhile for sufficiently

short times, the MSD can be approximated by the expansion

⟨𝑟2(𝑡)⟩ = 4𝐷𝑇 𝑡+ 𝑣2
0𝑡

2 − 1
3𝑣

2
0𝐷𝑅𝑡

3 + 1
12𝑣

2
0𝐷

2
𝑅𝑡

4 + 𝒪(𝑡5), (3.10)

showing diffusive behavior for the𝐷𝑇 term, while the activity terms, given by the self-propulsion

velocity 𝑣0, show ballistic motion.

If the MSDs are computed individually for each direction instead, a similar regime for

𝑡 ≫ 𝐷−1
𝑅 is seen, with

⟨𝑥2(𝑡)⟩ = ⟨𝑦2(𝑡)⟩ ≃
(︃

2𝐷𝑇 + 𝑣2
0

𝐷𝑅

)︃
𝑡 = 2𝐷eff𝑡, (3.11)

which is half of the radial MSD as expected. At short times, the expansion is

⟨𝑥2(𝑡)⟩ ≈ 2𝐷𝑇 𝑡+ 𝑣2
0𝑡

2 − 𝑣2
0𝐷𝑅𝑡

3 + 11
12𝑣

2
0𝐷

2
𝑅𝑡

4 + 𝒪(𝑡5), (3.12a)

⟨𝑦2(𝑡)⟩ ≈ 2𝐷𝑇 𝑡+ 2
3𝑣

2
0𝐷𝑅𝑡

3 − 5
6𝑣

2
0𝐷

2
𝑅𝑡

4 + 𝒪(𝑡5), (3.12b)

showing a strong anisotropy between the directions at low 𝑡. Since it was assumed that the

particle was initially aligned with the 𝑥 direction at 𝑡 = 0 (𝜃(0) = 0), it has terms of order 𝑡2

for 𝑥 while the 𝑦 direction only has terms of order 𝑡3, besides the passive noise. Note that for

𝜃(0) = 𝜋 the results obtained are the same, as the system only depends on 2𝜃(0). Meanwhile

setting 𝜃(0) = ±𝜋/2 is equivalent to swapping the values of 𝑎11 and 𝑎22 in matrix (3.5),

indicating that the anisotropy will be in the 𝑦 direction instead of 𝑥.
2 This correction can be generalized for higher dimensions as 𝐷 = 𝑣2

0/𝑑(𝑑− 1)𝐷𝑅 (CATES; TAILLEUR, 2013)
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This result demonstrates that, at early times, the particle predominantly moves in the

direction of its initial alignment, with significantly less motion in the perpendicular direction.

Over time, however, the particle eventually decorrelates and begins to diffuse in a manner

similar to that of a passive particle. In this sense, the particle’s activity is most pronounced at

short timescales, as it behaves like a passive particle at longer timescales.

Another quantity that can be evaluated is the variance along each axis, 𝜎2
𝛼 = ⟨𝛼2⟩ − ⟨𝛼⟩2.

This require knowing the average displacements, which are readily found with

⟨r(𝑡)⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∫︀ 𝑡

0 d𝑠⟨𝑣0𝑛̂𝑥(𝑠) +
√

2𝐷𝑇 𝜉𝑥(𝑠)⟩

∫︀ 𝑡
0 d𝑠⟨𝑣0𝑛̂𝑦(𝑠) +

√
2𝐷𝑇 𝜉𝑦(𝑠)⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∫︀ 𝑡

0 d𝑠
[︁
𝑣0⟨cos 𝜃(𝑠)⟩ +

√
2𝐷𝑇 ⟨𝜉𝑥(𝑠)⟩

]︁
∫︀ 𝑡

0 d𝑠
[︁
𝑣0⟨sin 𝜃(𝑠)⟩ +

√
2𝐷𝑇 ⟨𝜉𝑦(𝑠)⟩

]︁

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3.13)

The integrals over noise evaluate to 0, and using the results of E[cos𝑋] and E[sin𝑋] to

evaluate the integrands gives

⟨cos 𝜃⟩ = 𝑒−𝐷𝑅𝑡, (3.14a)

⟨sin 𝜃⟩ = 0. (3.14b)

Substituting it back and performing the integral

⟨r(𝑡)⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑣0

𝐷𝑅

(︁
1 − 𝑒−𝐷𝑅𝑡

)︁

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3.15)

In this case 𝜎2
𝑦 = ⟨𝑦2⟩ which was already found, while

⟨𝜎2
𝑥⟩ = 𝑣2

0

[︃
𝑡

𝐷𝑅

+ 1
12𝐷2

𝑅

(︁
𝑒−4𝐷𝑅𝑡 − 12𝑒−2𝐷𝑅𝑡 + 32𝑒−𝐷𝑅𝑡 − 21

)︁]︃
+ 2𝐷𝑇 𝑡.

Interestingly, the expansion yields

𝜎2
𝑥 ≈ 1

3𝑣
2
0𝐷

2
𝑅𝑡

4 − 7
15𝑣

2
0𝐷

3
𝑅𝑡

5 + 𝒪(𝑡6), (3.16)

once again demonstrating a significant anisotropy with far more variance on 𝑦 at early times,

since 𝜎2
𝑦 ∼ 𝑡3 while 𝜎2

𝑥 ∼ 𝑡4, not taking into account the 𝐷𝑇 term. This type of anisotropy

related to the activity has been studied before in (BASU et al., 2018).
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3.2 PARTICLE UNDER HARMONIC CONFINEMENT

The behavior of confined active matter is a topic of considerable interest since many

real world systems are subject to some form of confinement. By investigating the complex

behaviors that arise from the coupling between inherently non-equilibrium properties and con-

finement, valuable insights of realistic systems can be obtained. Even under seemingly simple

cases such as harmonic confinement, a wide range of phenomena has been studied, such as

non-Boltzmann distributions in the steady state and re-entrant transitions back to passive-

like states (POTOTSKY; STARK, 2012; HENNES; WOLFF; STARK, 2014; MALAKAR et al., 2020;

WEXLER et al., 2020; CHAUDHURI; DHAR, 2021). Experimental realizations have been also car-

ried out with acoustic (TAKATORI et al., 2016) and optical (SCHMIDT et al., 2021) confinements,

which corroborate theoretical results and demonstrate interest in these types of systems.

When including self-alignment torque to the system dynamics, the behavior changes even

at single particle level. This can be seen when adding a harmonic confining potential of the

form 𝑉 (𝑟) = 1
2𝜅𝑟

2 (so that Ftot = −∇𝑉 = −𝜅r) to Equations (2.1) and rewriting them as

ṙ = 𝑣0n̂ − 𝜇𝜅𝑟r̂ +
√︁

2𝐷𝑇 𝜉𝑖(𝑡), (3.17a)

𝜃 = 𝛽𝑟𝜅 sin(𝜃 − 𝜙) +
√︁

2𝐷𝑅𝜁𝑖(𝑡), (3.17b)

in which 𝜙 is the polar angle of the particle measured from the 𝑥 axis.

In the absence of noise, that is when 𝐷𝑇 = 𝐷𝑅 = 0, an analytical solution be obtained by

projecting the equation onto polar coordinates and introducing a tilt angle 𝜒 ≡ 𝜃 − 𝜙

𝑟̇ = 𝑣0 cos𝜒− 𝜇𝜅𝑟, (3.18a)

𝑟𝜙̇ = 𝑣0 sin𝜒, (3.18b)

𝜃 = 𝛽𝑟𝜅 sin𝜒. (3.18c)

These equations admit a trivial steady state solution given by 𝑟̇ = 𝜙̇ = 𝜃 = 0, defining the

climbing state. In this phase, the particle simply ascends the potential until the local gradient

matches its own self-propulsion force, after which it remains in a stationary position defined

by a radius 𝑟 = 𝑣0/(𝜇𝜅) = 𝑅CI. This radius defines a critical isoforce line, or critical isocline,

denoting a boundary for which particles in the noiseless regime cannot cross from the inside

out.
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Another distinct regime comes from the solution given by 𝑟̇ = 0 and 𝜒̇ = 0. These

conditions imply 𝜙̇ = 𝜃 = 𝜔, a constant, and the particle satisfies

𝑅∘ =
√︃
𝑣0

𝛽𝜅
, (3.19a)

𝜔 = 𝛽𝜅𝑅∘

√︃
1 −

(︂
𝜇𝜅

𝑣0

)︂2
𝑅2

∘ =
√︁
𝑣0𝛽𝜅− (𝜇𝜅)2, (3.19b)

𝜒 = arccos
(︂
𝜇𝜅𝑅∘

𝑣0

)︂
= arccos

(︃
𝜇

√︃
𝜅

𝑣0𝛽

)︃
, (3.19c)

which defines a circular motion with constant radius 𝑅∘ and angular speed 𝜔, dubbed the

orbiting phase.

For the particle to enter the orbiting phase, it is necessary for 𝜔 to be real, which requires

that 𝛽 ≥ 𝛽* = (𝜇𝜅)2/𝑣0. Once this condition is true, all fixed points, which define the

critical isocline, become unstable at once, and the system transitions into the orbiting state.

At 𝛽 = 𝛽*, the orbit will have the same radius as the critical isocline, that is 𝑅∘ = 𝑅CI. This

is consistent with a physical interpretation of the system, as the orbit radius cannot be larger

than the isocline since the particle is unable to enter that region (DAMASCENA; CABRAL; SILVA,

2022).

Experimental realizations of this system have also been conducted with robotic agents

confined in harmonic traps, as done by Dauchot and Démery (2019). In this study, a HexBug

robot of about 5cm displays both climbing and orbiting states, with transitions between those

regimes occurring when the robot’s battery drops below a certain level (which can be under-

stood as a drop in 𝑣0). The stochastic components inherent to real life experiments introduce

some changes in the system, including the diffusion along the azimuthal direction on the climb-

ing regime and spontaneous inversions of direction for the orbiting regime. This can be seen in

Figure 5, which presents the experimental results for the system. Panels (b) and (c) display the

azimuthal velocity for each state. In the climbing state, the velocity shows a noisy distribution

around 0, indicating azimuthal diffusion. In the orbiting state, the velocity switches between

negative to positive values, reflecting the spontaneous inversions in direction.

These findings have been extended to other confinement geometries by Damascena, Cabral

and Silva (2022), including anisotropic harmonic and anharmonic potentials. In this case, the

critical isocline stops being a circle and the fixed points no longer become unstable at the same

value of 𝛽, in general. This might result in, for example, particles accumulating along the major

axis in an elliptical potential. The orbital regimes also change into more complex shapes, such

as ovals and lemniscates. Figure 6 illustrates several orbits for increasingly elliptical potentials.
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Figure 5 – Experimental results for a hexbug trapped in harmonic confinement. (a-c) Climbing regime showing
the robots pointing outwards the potential and diffusing laterally. (d-f) Orbiting regime, showing
rotation around the potential minimum and inversions in direction. (a, d) Trajectories of the robots
(b, e) Azimuthal velocity (c, f) Probability distribution function of the azimuthal velocity.

Source: (DAUCHOT; DÉMERY, 2019)

In these systems, it was reported that for an even number of crossings, n̂ completes

full rotations in a period, hence the 𝑅 label. In contrast for an odd amount of crossings, n̂

will oscillate in librational motion without completing a full rotation, and thus the 𝐿 label.

Another thing of note is that the clockwise and anti-clockwise orbits are distinct from each

other, instead of overlapping like in the circular case. Additionally noise effects can induce

transition between coexisting orbits (DAMASCENA; SILVA, 2023).
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Figure 6 – (a-d) Representative orbits for different elliptical potentials, of the form 𝑉 (𝑥, 𝑦) ∼ (1 + 𝜖)𝑥2 + 𝑦2.
(e) Phase diagram in the 𝛽 − 𝜖 plane, with the (a-d) panels indicated. Background colors indicate
the topological state of the orbit, with light peach being used for rotation (R) and coral for libration
(L). The subscript indicates the number of crossings. The full and dashed lines indicate transitions
when sweeping 𝜖 at fixed 𝛽.

Source: (DAMASCENA; CABRAL; SILVA, 2022)
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4 INTERACTING ACTIVE MATTER UNDER PERIODIC BOUNDARY CONDI-

TIONS

This chapter will explore a system of active matter with steric interactions without a

confining potential. By looking at a system with no obstacles and finite noise, a polarization

condition is established and a critical value for the torque 𝛽 to achieve it is defined, which

depends on both the thermal noise and density of the system. Next, by introducing an isotropic

periodic substrate to the system, the flock shows a locking along the substrate symmetry

directions, which becomes more pronounced as the obstacle density grows larger, however

the polarization conditions remain largely unchanged. By making the substrate anisotropic, a

transition from two-dimensional motion to one-dimensional is seen, as the system separates

into lanes that only move along one direction.

The results presented in this chapter were originally published in the article (CANAVELLO

et al., 2025).

4.1 COLLECTIVE BEHAVIOR OF SELF-ALIGNING ACTIVE SYSTEMS

A fundamental question that arises when introducing a self-aligning torque into active mat-

ter systems is how the dynamics of interacting particles will be altered by this additional feature.

Active matter systems, even in their simplest forms, exhibit a rich and diverse phenomenology,

making this an intriguing area of study. For instance, motility-induced phase separation (MIPS)

serves as an example of non-trivial behavior in minimal models (FILY; MARCHETTI, 2012; RED-

NER; HAGAN; BASKARAN, 2013; CATES; TAILLEUR, 2015; GEYER et al., 2019). In such systems,

the interplay of active motion and repulsive interactions leads to the spontaneous formation of

dense and dilute phases, even without attractive or aligning interactions, and can even show

emergent velocity alignment (CAPRINI; MARCONI; PUGLISI, 2020). These observations suggest

that the introduction of self-aligning torques may add yet another layer of complexity to the

already intricate behavior of active matter systems.

When a self-aligning torque is present the system, that is 𝛽 > 0, particles will change their

orientation during collisions, with the speed of said change being directly proportional to 𝛽.

It is anticipated that after the particles have undergone a sufficient number of collisions with

one another, the system will become polarized, with all particles pointing in a single direction,

similar to the behavior observed in Vicsek systems. An example of both the unpolarized and
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polarized states for a system can be seen in Figure 7 for a system with 𝑁 = 480 particles

and 𝐷 = 0.01𝑣0/𝜎. It is useful to define a filling fraction as 𝑓 = 𝑁𝐴part/𝐿
2, in which

𝐴part = 𝜋(2 1
6𝜎/2)2 is the area occupied by a particle with the Weeks-Chandler-Anderson

potential and 𝐿2 is the total available area for the particles, which is a 𝐿 × 𝐿 square with

periodic boundary conditions. This definition gives a filling fraction of 𝑓 ≃ 0.19 for the system

in Figure 7, which has 𝜎 = 0.1 and 𝐿 = 5.0 = 50𝜎.

Figure 7(a) shows a system with 𝛽 = 0.1 in the unpolarized state, so each particle has a

different color indicating their distinct headings 1. In Figure 7(b), 𝛽 = 0.6 and the system is

fully polarized, so each particle has the same color indicating the entire system is moving in

the same direction, giving the center of mass of the system a finite speed. In what follows, a

calculation of the critical value of 𝛽𝑐 will be demonstrated, and the value found for this system

is about 𝛽𝑐 ≃ 0.14.

This order is broken by the random noise 𝐷, creating a competition between the time it

takes to achieve polarization, 𝜏𝑃 (which is proportional to 𝛽−1) and the persistence time of

the system 𝜏𝐷 which measures how long it takes for the thermal noise to significantly alter

the particle’s trajectory. A condition for full polarization can then be established as 𝜏𝑃 < 𝜏𝐷.

Figure 7 – Snapshots of particles for two different values of 𝛽 for a system with 𝑓 = 0.19 and 𝐷 = 0.01
with (a) showing an unpolarized state with 𝛽 = 0.1 < 𝛽𝑐 (b) showing a polarized state with
𝛽 = 0.6 > 𝛽𝑐. The colorhweel indicates the internal orientation 𝜃 of the particles.

Source: (CANAVELLO et al., 2025) (adapted)

For ABPs, the timescale over which thermal noise decorrelates the particle’s orientation is

inversely proportional to 𝐷, that is 𝜏𝐷 ∼ 𝐷−1 (BASU et al., 2018). To find an estimate for 𝜏𝑃 ,
1 For simplicity, 𝛽 and 𝐷 will be expressed in units of 𝜇/𝜎 and 𝑣0/𝜎 from here on.
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it helps to first express it as a product of the number of collisions required for full polarization,

𝑁col with the average collision time 𝜏col. The latter is defined as the mean free path divided

by the particle speed i.e. 𝜏col = (𝜎𝑓𝑣0)−1 with 𝑛 ≡ 𝑁/𝐿2 being the system density. To find an

estimate for 𝑁col it is useful to look at the angular deflection a single collision will have, denoted

by 𝛿𝜃, then assuming that a particle starts out misaligned, the number of collisions required

to align it will be of the order 𝑁col ∼ 𝛿𝜃−1. Looking at Eq. (2.1b) to find an estimate for 𝛿𝜃

it can be noted that 𝛿𝜃 ∼ 𝛽𝐹𝛿𝑡 and from Eq. (2.1a), 𝐹 ∼ 𝑣0/𝜇. Combining these results,

𝛿𝜃 ∼ 𝛽(𝑣0/𝜇)𝛿𝑡 ∼ 𝛽𝜎/𝜇. With these results in mind, the polarization condition becomes

𝜏𝑃 < 𝜏𝐷, (4.1a)

𝑁col𝜏col < 𝐷−1, (4.1b)

(𝜇/𝛽𝜎)(𝐿2/𝑁𝜎𝑣0) < 𝐷−1, (4.1c)

𝜇𝐿2/(𝛽𝑁𝜎2𝑣0) < 𝐷−1, (4.1d)

to find a critical value of 𝛽, denoted by 𝛽𝑐 the inequality turns into an equality

𝛽𝑐 ∼ 𝜇𝐷/(𝑣0𝑓), (4.2)

with 𝑓 being the filling fraction. This means that, up to a constant factor, it is possible to

see how variations of the parameters will affect 𝛽𝑐. Similar scaling arguments have also been

made for Vicsek systems (GINELLI, 2016, Section 3.1).

To validate this simple scaling estimate of 𝛽𝑐, direct simulations of the equations of motion

in Equations (2.1) were carried out, using uniformly distributed random initial conditions for

the position and orientation. In Figure 8 the average velocity of the center-of-mass, defined

as v̄ = 1
𝑁

Σ𝑖v𝑖, is plotted against scaled datasets of (a) 𝛽/𝐷 at constant 𝑓 and (b) 𝛽𝑓 at

constant 𝐷. A collapse of the curves is seen on both cases, indicating that the behavior of 𝛽𝑐

depending on 𝐷/𝑓 is indeed correct. An universal numerical estimate for the scaled value of

𝛽𝑐 was determined by locating the inflection point of each curve, defined as the point where

the (numerical) derivative of the curve reaches its maximum value, and either multiplying it by

𝑓 for the curves on panel (a) or dividing it by 𝐷 for the curves on panel (b). By averaging the

value found across all curves, the result found was 𝛽𝑐 ≃ 2.7𝜇𝐷/(𝑣0𝑓), which is represented

as a dashed vertical line in both panels.
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Figure 8 – System polarization ⟨𝑣⟩ versus: (a) 𝛽/𝐷 for various 𝐷 at fixed filling fraction 𝑓 = 0.10, and (b)
𝛽𝑓 for different filling fractions at fixed 𝐷 = 0.01. Each point represents the average polarization
after 100𝜎/𝑣0 time units for 100 realizations of random noise, with error bars showing the standard
deviations from the mean. Closed symbols correspond to a system with size 𝐿 = 50𝜎, while open
symbols represent a system four times larger in area (𝐿 = 100𝜎). The dashed vertical line marks
the numerical estimate for 𝛽𝑐.

Source: (CANAVELLO et al., 2025)

4.2 COLLECTIVE MOTION IN A SQUARE ARRAY OF OBSTACLES

An important feature when modeling realistic systems is the influence of a substrate on

system dynamics, as most natural and experimental environments will exhibit some degree of

non-homogeneity (VOLPE et al., 2011). The introduction of periodic obstacles has been shown

to, for example, screen the interaction between fish, disturbing the formation of schools above

a certain obstacle density (VENTÉJOU et al., 2024). Moreover, in the presence of asymmetric

substrates, ratchet effects can emerge, leading to direct transport even in the absence of

external drives (REICHHARDT; REICHHARDT, 2017).

By introducing obstacles to the system, which are treated as immobile particles (thus

possessing the same interaction properties), it can then be determined if, and how, the addition

of obstacles to the system will affect the polarization condition established before. The number

of obstacles, or posts, is denoted by 𝑁𝑝, while 𝑁 will represent only the number of motile

particles. Figure 9(a)-(c) presents three different systems with varying obstacle densities with

𝑁 = 240, 𝐷 = 0.01 and 𝛽 = 1.0. This value of 𝛽 guarantees that the system will polarize,

according to the critical polarization condition found above. A finite value of noise is also

desirable to avoid possible jammed states in the system.
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The post densities (depicted as black dots) are, respectively, 4 × 4, 8 × 8 and 16 × 16,

equally uniformly distributed in a square array for a system with 𝐿 = 50𝜎. The system can

still achieve total polarization but particles will suffer more collisions with posts which impacts

their terminal velocity. In Figure 9(d) the polarization is plotted against 𝛽 for various densities

and the inflection point occurs at roughly the same point (note that using the calculations

detailed in the previous section the value of 𝛽𝑐 ≃ 0.28, which matches well with the data) but

the final velocity for systems with obstacles is lower than the free case due to the increasingly

frequent collisions with obstacles.

Figure 9 – (a) - (c) Square arrays of obstacles for different obstacle densities, in order, 𝑁𝑝 = 4 × 4, 8 × 8
and 16 × 16 for a system with 𝐷 = 0.01, 𝛽 = 1.0, 𝐿 = 50𝜎 and 240 mobile particles. The colors
indicate the particles orientations, with black indicating posts. (d) System polarization for different
post array densities. The value of 𝛽 in which the transition occurs remains unchanged as the
density varies, however the velocity drops. Error bars indicate standard deviations obtained from 50
realizations of random noise.

Source: (CANAVELLO et al., 2025) (adapted)
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Figure 10 shows a histogram of the directions for a system with 𝑁 = 240, 𝛽 = 1.0 and

𝐷 = 0.01 (thus satisfying the polarization condition) over 360 realizations of random noise.

The left column shows the directions of individual particles, while the right one has the direc-

tion of the total polarization vector, defined as M = 1
𝑁

Σ𝑖n̂𝑖. By increasing the post density, a

locking along the symmetry directions becomes more pronounced, and similar directional lock-

ing effects have been studied in run-and-tumble particles in a periodic substrate (REICHHARDT;

REICHHARDT, 2020). In Figure 10(g, h), showing the 16×16 array, the system as a whole only

moves in multiples of 90∘, while individual particles still have small peaks around multiples

of 45∘, which indicate transitions into neighboring lanes. The direction locking comes from a

combination of the particle collisions causing all particles to assume the same direction and

the obstacle substrate filtering the particles to only move along its symmetry directions. It is

noteworthy that by replacing posts with dissenters, defined as ABPs without alignment interac-

tions, even a small fraction of those can disrupt the flocking behavior of the system (YLLANES;

LEONI; MARCHETTI, 2017).
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Figure 10 – Normalized histograms of (a, c, e, g) probability distribution of individual particles directions 𝜃𝑖 (b,
d, f, h) probability distribution of the mean direction of motion of the system 𝜃𝑀 . (a, b) Isotropic
case with no obstacles (c, d) 4 × 4 obstacle array, which shows a weak directional locking (e, f)
8 × 8 obstacle array showing a stronger direction lock (g, h) 16 × 16 obstacle array showing a
system that can only move along the symmetry directions. Computed over 360 realizations for a
system with 𝐷 = 0.01, 𝛽 = 1.0, 𝐿 = 50𝜎 and 240 mobile particles. The dashed lines indicate
multiples of 90∘.

Source: (CANAVELLO et al., 2025)

4.3 ANISOTROPIC ARRAYS OF OBSTACLES

By keeping the amount of obstacles in the 𝑦 direction, denoted by 𝑁𝑝,𝑦, constant while

varying the number of obstacles in the 𝑥 direction, denoted by 𝑁𝑝,𝑥, rectangular arrays of vary-

ing ratios can be constructed. In Figure 11 snapshots of each phase, along with a schematic

phase diagram, are shown for a system with fixed 𝑁𝑝,𝑦 = 8. The quasi-isotropic case, repre-
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sented by Figure 11(a), displays a system with some anisotropy at 𝑁𝑝,𝑥 = 14, but the global

polarization 𝜃𝑀 can still assume any of the four symmetry directions of the array, demonstrated

by the system being able to move upwards.

By increasing the anisotropy ratio further, the system transitions into a quasi-1D state,

in which particles segregate into “lanes” that move along the 𝑥 axis. Although each lane

(of which there are 8, the same number as 𝑁𝑝,𝑦) only moves into one direction, individual

particles can still hop between them vertically, which is why the lanes stay coupled and may

have different densities between each other. This creates a behavior in which neighboring

lanes tend to move in the same direction, but distant neighboring lanes might have opposite

directions. Figure 11(b) demonstrates one such system at 𝑁𝑝,𝑥 = 22, with two densely packed

lanes followed by sparsely populated lanes and a moderately packed lane moving in the opposite

direction.

When the spacing between obstacles is smaller than the particle size 𝜎, particles can no

longer jump to different lanes, effectively making it so each lane will be isolated. As the initial

positions are uniformly distributed, each lane will have an equal and constant density over time.

The lanes then polarize in either the −𝑥 or +𝑥 direction, which is seen in Figure 11(c) for a

system with 𝑁𝑝,𝑥 = 26. This phase is also marked by an increase in relaxation time required

for the system to reach a steady flow, since lanes can form transient jammed, or clogged,

states. This phenomenon is seen on Figure 12, where the relaxation time 𝜏 is plotted against

the number of posts in the system. A sharp rise at 𝑁𝑝,𝑥 = 25 is observed, due to particles no

longer being able to move between lanes. To measure 𝜏 , the time series of the 𝑥 velocity, ⟨𝑣𝑥⟩,

for each lane was taken and exponential fit of the form |1 − exp(−𝑡/𝜏)| was realized and then

averaged over all samples. This was done since ⟨𝑣𝑥⟩ in each lane starts at 0, due to random

initial conditions, and move to ±1, corresponding to the right or left direction. Increasing 𝛽

and 𝑁 reduces the relaxation time 𝜏 since the system will, respectively, align faster in collisions

and realize more collisions. Increasing 𝑁𝑝,𝑥 also has that effect as the boundary between lanes

becomes “smoother” and harder for particles to get stuck in.

The same phases were observed in a system with four times the area, while keeping the same

filling fraction, as can be seen on Figure 13. This result, in conjunction with the polarization

curve for a larger system overlapping with the one for a smaller system in Figure 8, suggests

that the behaviors analyzed are consistent across scales.

The values of 𝑁𝑝,𝑥 for each transition does not change when varying 𝑁 , and two parameters

were observed to define the points at which each transition happens: the velocities (along



48

Figure 11 – (a, b, c) Examples of the system in each of the phases found (d) schematic phase diagram of
the system for varying anisotropy, with the number of obstacles in the 𝑥 directions indicated by
𝑁𝑝,𝑥 and the number of particles by 𝑁 . The number of obstacles in the 𝑦 direction is fixed at
𝑁𝑝,𝑦 = 8 and 𝐿 = 50𝜎. For the snapshots 𝐷 = 0.01, 𝛽 = 5.0 and 𝑁 = 576 with the particles
orientations being indicated by the color wheel and black representing the obstacles. (a) Quasi-
isotropic system moving upwards with 𝑁𝑝,𝑥 = 14. While there is a preference in moving along
the horizontal axis, collective movement along the vertical one is still possible. (b) A coupled lane
system with 𝑁𝑝,𝑥 = 22, while the polarization is restricted to the 𝑥 axis, different lanes can still
take different directions. Since particles can still move vertically, some lanes will have different
densities than others. (c) Uncoupled lanes with 𝑁𝑝,𝑥 = 26, particles can no longer move between
lanes and some of those get “stuck” in the ridges formed by posts. Neighboring lanes no longer
influence each other.

Source: (CANAVELLO et al., 2025)

both axes) and the interface probability between lanes, that is, the chance that two lanes have

opposing directions. The first transition, between quasi-isotropic and coupled lanes phases

was characterized as when ⟨𝑣2
𝑦⟩ goes to 0, indicating that the system no longer has vertical

movement in the bulk, while the coupled to uncoupled lane transition was defined as the point

at which the interface probability reaches 0.5, which happens when each lane is effectively its

own subsystem that picks a direction at random. In Figure 14(a) the velocities are plotted

against 𝑁𝑝,𝑥 going from the isotropic case, at 𝑁𝑝,𝑥 = 8 up to 𝑁𝑝,𝑥 = 32. As expected, both

values start at 0.5, since there is an equal probability of the system moving in any of the four

symmetry directions, and as the anisotropy increases, ⟨𝑣2
𝑦⟩ goes to 0 since the bulk will no

longer move vertically. The interface probability, in Figure 14(b) goes from 0, which indicates

the system moving as a whole in a single direction to 0.5, meaning that each lane assumes a

direction randomly and independently from other lanes.
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Figure 12 – Transient time 𝜏 required for lanes to reach a steady velocity versus the number of posts in the
𝑥 direction at 𝐷 = 0.01 and (a) 𝛽 = 5.0 and (b) 𝑁 = 528. At 𝑁𝑝,𝑥 = 25 particles can no
longer move between lanes and become stuck in the ridges formed by the posts, as the spacing
becomes equal to the particle size. This induces the formation of clogs or jams inside lanes, which
are broken apart with noise. By increasing 𝑁𝑝,𝑥 = 25 further, it becomes harder for particles to
get stuck as the ridges become smaller, reducing 𝜏 . When 𝛽 is increased, particles are quicker to
align themselves and reach a steady flow, which is why 𝜏 decreases. Similarly, increasing 𝑁 results
in more collisions which also helps the system reach a steady state faster. Error bars indicate the
standard deviations obtained from 50 realizations of random noise.

Source: (CANAVELLO et al., 2025)

Figure 13 – Equivalent phases to Figure 11 for a system with 𝐿 = 100𝜎 and 𝑁 = 4 × 576 = 2304, preserving
the same filling fraction. (a) Quasi-isotropic system, (b) Coupled lane state (c) Uncoupled lanes.

Source: (CANAVELLO et al., 2025)
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Figure 14 – (a) Mean square velocities ⟨𝑣2
𝑥⟩ and ⟨𝑣2

𝑦⟩ versus 𝑁𝑝,𝑥 for a system with 𝐷 = 0.01, 𝛽 = 5.0, 𝐿 =
50𝜎 and 𝑁 = 576. The squared velocities guarantee that particles moving along both the positive
direction and negative directions are counted equally. (b) Interface probability, which is the chance
that neighboring lanes have opposing directions. At 𝑁𝑝,𝑥 = 25 the spacing between obstacles is
exactly 𝜎, indicated by a sharp increase in the probability. The error bands are standard deviations
obtained from 100 realizations of random noise.

Source: (CANAVELLO et al., 2025)
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4.4 TAKEAWAYS

This chapter investigated the dynamics of an interacting active matter system, focusing

on the emergence of polarized states in the absence of a confining potential. By varying the

alignment torque parameter 𝛽, a critical value 𝛽𝑐 at which polarization happens is identified.

This threshold is derived analytically and confirmed through numerical simulations of the

Langevin equations of motion.

When a square array of obstacles is introduced, the flocking conditions remain unchanged,

but the system becomes locked to the symmetry directions of the array. Adding a small

anisotropy to the distribution of obstacles reveals that having more posts in one direction (the

𝑥 one in this case) initially leads to a quasi-isotropic phase, where the system retains collective

motion with a preference for the 𝑥-direction, while still allowing for bulk movement in the

perpendicular 𝑦-direction.

As anisotropy increases, the system transitions to coupled lane phases, where collective mo-

tion is restricted to lanes that can still interact and vary in density. At high enough anisotropy,

the system enters the uncoupled lanes phase, where the lanes become isolated and each

polarizes independently of the others. These findings highlight how changes in obstacles con-

figurations can lead to distinct phases in active matter systems, offering insights into how

collective behavior changes when disorder is included.
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5 DYNAMICS OF ACTIVE MATTER IN A CONFINING POTENTIAL

This chapter concerns a system of interacting active matter in a confining harmonic po-

tential, and how the addition of a aligning torque modifies the dynamics compared to both the

confined single particle case and the free interacting system case. Several distinct phases are

observed, with notable ones being: a close-packed vortex phase in which particles collectively

rotate around the potential’s minimum; a vortex phase with concentric bands around an empty

center; and an orbiting polar state in which each particle has the same orientation, similar to

a ferromagnetic system.

The results presented this chapter were published in the article (CANAVELLO et al., 2024).

5.1 HARMONIC CONFINEMENT

As demonstrated in Section 3.2, the introduction of a torque 𝛽 modifies the dynamics of

a trapped particle, allowing a new trajectory in which the particle orbits the potential. Addi-

tionally, Chapter 4 studied the behavior of an interacting system, with emphasis on collective

flocking dynamics. This raises the question of how both the inclusion of both elements would

influence the system’s dynamics.

By adding a harmonic potential of the form 𝑉 (𝑟) = 1
2𝜅𝑟

2 to the system (e.g. by putting

all particles on the same parabolic dish), two limiting cases can be considered initially, those

being one with 𝐷 → ∞ in which case the system behaves as composed of classic Brownian

particles, following a Boltzmann distribution peaked around the minimum of the potential. This

is expected since a high enough noise will destroy the activity in the system (TAKATORI et al.,

2016; MALAKAR et al., 2020). This will be denoted as the paramagnetic (PM) or unpolarized

phase. The second case is 𝛽 = 0, meaning particles have no alignment torque, in which

cases each particle simply tries to climb the potential independently, only to be stopped when

the steepness of the potential and the repulsion from neighboring particles is equal to their

propulsion. That is, each particle is individually in the climbing state and all particles point

outwards. Since the alignment of each particle is parallel to their radial position, this is called

the radially polarized (RP) phase.

Representative snapshots for the dynamic phases found can be seen in Figure 15 for systems

without thermal noise i.e. 𝐷 = 0𝑣0/𝜎. In panel (a), an example of the RP phase is shown
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for 𝛽 = 0.5𝜇/𝜎, with particles having no net movement the potential minimum remaining

unoccupied, since each particle climbs according to their orientation and have no collective

dynamics. By increasing 𝛽, the alignment during collisions will be stronger, so new phases can

emerge. The (b) panel shows a vortex state for 𝛽 = 1.85𝜇/𝜎, with the particles outside the

orange line (denoting the shear band boundary) rotating with the same angular speed. Inside

the orange line, the particles try to climb into the vortex, but do not rotate together with it,

thus giving this phase the name shear-banded vortex, or SBV1.

When increasing 𝛽 further, the shear band boundary shrinks (as it will be proved later, it

scales with 𝛽−1). Once it’s small enough that there is no empty area available for particles to

be in, all particles in the system will rotate together. However, the ones inside the shear band

boundary will not have an orientation that matches with the particles outside. This indicates

that while the angular velocity of particles above the 𝛽−1 boundary matches the orientation

change, 𝜃, this does not hold for the particles inside. This state is seen on panel (c) for 𝛽 = 5.0

and is called the uniform vortex (UV) phase.

It is also possible for all particles to assume the same orientation, in which case 𝜃𝑖 = 𝜃

for all 𝑖, denoted the ferromagnetic phase (FM) due to a resemblance of the system with a

polarized magnet. This makes the system into a single big cluster possessing one orientation,

and the system behaves in a way analogous to the one-particle system. In this case, the center

of mass performs a circular trajectory with finite radius. An example of this system is seen

on panel (d) of Figure 15 for 𝛽 = 5.0, with all particles having the same color (indicating

their equal orientations) and arrows of same direction and magnitude (indicating their equal

velocities). The red circle indicates the center of mass trajectory. Although the values of the

system parameters are the same for panels (c) and (d), the final state is different due to the

random initial condition of the particles that can make the system go into either the vortex or

ferromagnetic states after relaxing.

If the filling fraction of the system is small, a separation of particles into multiple clusters

can happen. It works as a combination of both the ferromagnetic and vortex states, in which

particles group together into polarized clusters, each acting as a single particle orbiting the

potential, similar to a vortex state. In Figure 15(e) this phase is shown for a state with 4

clusters for a system with 𝑁 = 93 and 𝛽 = 5.0. In the absence of thermal noise, the cluster

composition and size remain static in time. By changing the initial conditions of the system,
1 As with the previous chapter, the units for 𝛽 and 𝐷, respectively 𝜇/𝜎 and 𝑣0/𝜎, will be omitted for clarity

from here on.
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the same set of configurations may lead to different cluster arrangements.

Figure 15 – Snapshots of particle configurations for the different phases found in a confined system. (a) Radially
polarized (RP); (b) Shear-banded vortex (SBV); (c) Uniform vortex (UV); (d) Ferromagnetic (FM)
orbiting cluster; (e) Multi-cluster state with four clusters. In all cases, 𝐷 = 0 and 𝜎 = 0.1. For
(a)-(d), 𝑁 = 350 and 𝛽 = 0.5, 1.85, 5.0 and 5.0 respectively. For (e), 𝑁 = 93 and 𝛽 = 5.0.
Note that panels (c) and (d) share identical system parameters, with the only difference being the
initial conditions, illustrating the coexistence of the UV and FM phases. The colors indicate the
internal orientation 𝜃 of the particles, while the velocities are indicated by arrows. The center of
mass trajectory is marked with a red line and blue dashed line shows the critical isocline. For the
vortex states in (b) and (c), the orange dashed line represents the predicted boundary between
bands (see Section 5.2).

Source: (CANAVELLO et al., 2024) (adapted)

5.1.1 Observables

Since the potential is radially symmetric, it is useful to introduce some new quantities to

help with calculations. Define 𝜙𝑖 as the radial angle of the 𝑖-th particle in the potential, such

that its position will be given by r𝑖 = (𝑟𝑖 cos𝜙𝑖, 𝑟𝑖 sin𝜙𝑖). Then a tilt angle can be defined as

the difference between the internal orientation and radial angle: 𝜒𝑖 = 𝜃𝑖 − 𝜙𝑖.

Since the area which particles can exist in is boundless, the filling fraction 𝑓 is now defined

as the ratio of area occupied by the particles over the area the enclosed by the critical isocline,

𝑓 = 𝑁
𝐴part

𝐴CI
= 𝑁2 1

3𝜎2

4𝑅CI
,
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where 𝑅CI = 𝑣0/(𝜇𝜅) is the critical isocline radius, which is defined in the same way as in

Section 3.2. Specifically, it represents the radius at which the confining force equals the self-

propulsion force of a single particle. Consequently, isolated particles in the noiseless regime

cannot cross this radius from the inside out. However, interparticle interactions can push

particles to a larger radius. It is important to note that, under this definition, the filling

fraction can be greater 1. This indicates that particles will necessarily be found outside the

critical isocline boundary.

Quantities for the bulk can also be defined, and the ones that will be used are the total,

radial and azimuthal polarizations for the system

P = 1
𝑁

𝑁∑︁
𝑖

n𝑖, (5.1a)

𝑃𝑟 = 1
𝑁

𝑁∑︁
𝑖

n𝑖 · r̂𝑖, (5.1b)

𝑃𝜑 = 1
𝑁

𝑁∑︁
𝑖

|n𝑖 · 𝜑𝑖|, (5.1c)

in which r̂𝑖 = r𝑖/|r𝑖| and 𝜑𝑖 = ẑ𝑖 × r̂𝑖 are the radial and azimuthal unit vectors. This way, P

will measure how aligned particles are with each other, having magnitude 0 for a completely

misaligned system and 1 for one where every particle points in the same direction and 𝑃𝑟 will

measure how aligned the particles are to the radial direction, while 𝑃𝜑 quantifies azimuthal

alignment. It is important to note that since the directions of rotation are equivalent, the

absolute value of 𝑃𝜑 must be considered to account for this symmetry. Specifically, clockwise

motion will correspond to a negative n𝑖 · 𝜑𝑖 while counter-clockwise motion corresponds to

a positive value. By taking the absolute value both directions will count equally instead of

canceling each other. These quantities are used, in order, to classify a phase as FM, RP and

either of the vortex states.

The hexatic order parameter, defined as

𝜓𝐺
6 =

⃒⃒⃒⃒
⃒⃒ 1
𝑁

𝑁∑︁
𝑖=1

⎡⎣ 1
𝒩𝑖

𝒩𝑖∑︁
𝑗=1

𝑒𝑖6𝜃𝑖𝑗

⎤⎦⃒⃒⃒⃒⃒⃒ , (5.2)

with 𝒩𝑖 being the number of nearest neighbors for particle 𝑖 and 𝜃𝑖𝑗 being the angle that

particle 𝑖 forms with its neighbor 𝑗, will measure how crystalline the system is, being 1 when

every particle has 6 neighbors, i.e. the system forms a triangular lattice. Neighbors are defined

as particles located within a distance of 1.5𝜎 of each other, and nearest-neighbor searches

were performed using 𝑘 − 𝑑 trees (CHEN et al., 2019). Because the analysis depends solely on
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the relative angles between neighboring particles, no special classification of boundary regions

is required, this can be understood since a particle with only two or three neighbors can still

be identified as part of a crystalline structure, provided that the neighbors are arranged at 60∘

angles.

5.2 ANALYTICAL FRAMEWORK AND DETERMINISTIC SOLUTIONS

Analytical calculations based on rigid body theory can be employed to predict the sys-

tem’s behavior in its close-packed states, specifically the ferromagnetic (FM) and uniform

vortex (UV) phases. The mathematical details for this analysis are provided in Appendix A for

reference.

To begin, consider the dimensionless equations of motion for a system without thermal

noise (i.e., when 𝐷 = 0). This is achieved by setting the units of length, time, and energy as

𝑣0/(𝜇𝜅), 1/(𝜇𝜅), and 𝑣2
0/(𝜇2𝜅), respectively.

ṙ𝑖 + r𝑖 − Fint
𝑖 = n̂𝑖, (5.3a)

𝜃𝑖 = 𝛽(n̂𝑖 × ṙ𝑖) · ẑ, (5.3b)

in which Fint
𝑖 is the total force acting on the 𝑖th particle due to interparticle interactions2. By

summing Eq. (5.3a) across all particles, the pairwise interactions will cancel each other and

an equation for the centroid, defined as R = ∑︀𝑁
𝑖=1 r𝑖/𝑁 , is found

Ṙ + R = P (5.4)

If n̂𝑖 = P for all 𝑖, the cluster moves as a single particle. In this case, the system can be

considered a single particle in confinement, a scenario with a well-known solution, which was

derived in Section 3.2. For 𝛽 > 1, the system exhibits orbital motion with radius 𝑅, angular

velocity Ω and orientation angle 𝜃𝑐.

𝑅 = 𝛽−1/2, (5.5a)

Ω = ±
√︁
𝛽 − 1, (5.5b)

𝜃𝑐(𝑡) = ±
√︁
𝛽 − 1𝑡+ arccos(𝛽−1/2) + 𝜃𝑐(0), (5.5c)

2 Note that in the absence of noise, the alignment torque can be expressed as either n̂𝑖 × ṙ𝑖 or n̂𝑖 × Fint
𝑖 , as

these vectors will only differ by a vector proportional to n̂𝑖.
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note that 𝜃𝑐 = Ω, which is expected.

If all particles are rotating around the origin, then R = P = 0. A helpful quantity can be

obtained by performing the cross product between r and Equation (5.3a). Since all particles

are performing a circular motion, then ṙ𝑖 will be perpendicular to r𝑖 and have magnitude r𝑖𝜙̇𝑖.

Once again summing over all particles, the following is found

∑︁
𝑖

r2
𝑖 𝜙̇𝑖 =

∑︁
𝑖

r𝑖 sin𝜒𝑖, (5.6)

the tilt angle naturally appears when doing the cross product between the radial position and

the orientation.

In the model considered so far, the condition 𝜃𝑖 = 𝜙̇𝑖, equivalent to 𝜒̇𝑖 = 0, was implied,

i.e. a rigid body condition. As will be proven later, this is only satisfied for 𝑟𝑖 > 𝛽−1. This

requirement can be relaxed while still assuming that particles have the same angular velocity

(𝜙̇𝑖 = 𝜔 for all particles) and are in a constant radius (𝑟̇𝑖 = 0 for all particles), making this, in

fact, a quasi-rigid body model. In this case, Equation (5.3b) can be written as

𝜒̇𝑖 = (𝛽𝑟𝑖 cos𝜒𝑖 − 1)𝜔, (5.7)

note that cos𝜒𝑖 appears instead of sin𝜒𝑖 since ṙ𝑖 ⊥ r𝑖 as mentioned above. This equation

has a known solution, with two distinct regimes depending on whether 𝑟𝑖 > 1/𝛽 or not (see

Equation (A.22) in Appendix A).

For 𝑟𝑖 > 1/𝛽, the solution is

𝜒𝑖 = 2 arctan
[︃(︃
𝐶+ + 𝐶−𝑒

−𝑡/𝜏𝜔

𝐶+ − 𝐶−𝑒−𝑡/𝜏𝜔

)︃√︃
𝛽𝑟𝑖 − 1
𝛽𝑟𝑖 + 1

]︃
, (5.8)

where 𝐶± = tan (𝜒𝑖(0)/2) ±
√︁

(𝛽𝑟𝑖 − 1) / (𝛽𝑟𝑖 + 1), 𝜒𝑖(0) is the initial value of 𝜒𝑖 at 𝑡 = 0

and 𝜏𝜔 = 1/𝜔
√︁
𝛽2𝑟2

𝑖 − 1. This regime is monotonic on time, and for 𝑡 ≫ 𝜏𝜔, the equation

takes a value of 𝜒𝑖 = 2 arctan
√︁

(𝛽𝑟𝑖 − 1)/(𝛽𝑟𝑖 + 1). It can be verified that cos𝜒𝑖 = 1/𝛽𝑟𝑖 ,

which is the same result found when taking 𝜒̇𝑖 = 0 in Equation (5.7)3.

Meanwhile for 𝑟𝑖 < 1/𝛽, the solution is

𝜒𝑖 = −2 arctan
[︃√︃

1 − 𝛽𝑟𝑖

1 + 𝛽𝑟𝑖

tan (𝜈𝑡/2 − 𝐶0)
]︃
, (5.9)

where 𝜈 =
√︁

1 − 𝛽2𝑟2
𝑖𝜔 is the angular frequency of 𝜒𝑖 and

𝐶0 = arctan
[︂√︁

(1 − 𝛽𝑟𝑖) / (1 + 𝛽𝑟𝑖) tan (𝜒𝑖(0)/2)
]︂
.

3 Due to the trigonometric identity cos(2 arctan(𝑥)) = (1 − 𝑥2)/(1 + 𝑥2)
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Contrasting with the previous regime, this solution is oscillatory.

To find the projections of 𝜒𝑖 on the radial and azimuthal directions, and thus the com-

ponents of n𝑖, it is enough to find cos𝜒𝑖 (corresponding to the radial projection) and sin𝜒𝑖

(corresponding to the azimuthal projection). For the 𝑟𝑖 > 1/𝛽 regime, this is taken as the

asymptotic values at large 𝑡, while for 𝑟𝑖 < 1/𝛽 a time average over one period, 𝑇 = 2𝜋/𝜈, is

taken. This gives

⟨sin𝜒𝑖⟩ =

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑟𝑖 < 1/𝛽,√︁

1 − 1
𝛽2𝑟2

𝑖
if 𝑟𝑖 > 1/𝛽,

(5.10)

⟨cos𝜒𝑖⟩ =

⎧⎪⎪⎨⎪⎪⎩
1−

√
1−𝛽2𝑟2

𝑖

𝛽𝑟𝑖
if 𝑟𝑖 < 1/𝛽,

1
𝛽𝑟𝑖

if 𝑟𝑖 > 1/𝛽.
(5.11)

With this in mind, the average angular speed of the entire system can be found by looking

at Equation (5.6) and the values of sin𝜒𝑖. By taking 𝜙̇𝑖 = 𝜔 once more

⟨𝜔⟩ =
∑︀′

𝑖

√︁
𝑟2

𝑖 − 𝛽−2∑︀
𝑖 𝑟

2
𝑖

, (5.12)

where ∑︀′

𝑖 indicates the sum is only performed for particles with 𝑟𝑖 > 1/𝛽. Performing a similar

operation to Equation (5.7) results in

⟨𝜃𝑖⟩ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⟨𝜔⟩

(︂
1 −

√︁
1 − 𝛽2𝑟2

𝑖

)︂
if 𝑟𝑖 < 1/𝛽,

⟨𝜔⟩ if 𝑟𝑖 > 1/𝛽.
(5.13)

A perceptive reader will notice that since 𝜒̇𝑖 ̸= 0 for 𝑟𝑖 < 1/𝛽, then Equation (5.3a)

says that ṙ𝑖 ̸= 0, implying a time dependence on 𝑟̇𝑖 or 𝜙̇𝑖. In this model, an approximation of

constant angular velocities and small radial distance variations, represented by 𝛿𝑟𝑖 are assumed.

In the simulations, this manifests as a jelly-like jiggling of the system, and the model is expected

to hold as long as 𝛿𝑟𝑖 ≪ 𝑟𝑖.

5.3 NUMERICAL RESULTS

By numerically integrating the equations of motion in Equations (2.1) and measuring the

polarizations, the ranges in which the phases, as shown in Fig 15, exist can be determined.

A uniform random distribution was used to select the initial position and orientation of the
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particles. This is important since some phases coexist, and the variability in initial conditions

can lead the same system to evolve into different phases. This way, the radially polarized (RP)

phase is characterized by a large 𝑃𝑟, since all orientations are aligned with the radial position.

The vortex states have two different behaviors: at 𝛽 ≳ 1, 𝑃𝑟 is large but 𝑃𝜑 is non-zero, and this

azimuthal alignment is enough for the system to rotate while still pointing mostly outwards;

while at 𝛽 ≫ 1, 𝑃𝜑 dominates and the particles rotate with internal orientation perpendicular

to their radial position. For the uniform vortex (UV) phase, the hexatic parameter 𝜓𝐺
6 is

also large since the particles are close packed, in contrast of the shear-banded vortex (SBV)

hollow center. When the system is in the ferromagnetic (FM) state, the |P| dominates since

all particles point in the same direction. Since the system is close packed, the 𝜓𝐺
6 parameter

is also high. This is the phase that dominates for high 𝛽 and is the most resilient to noise,

provided a high enough 𝛽. When P, 𝑃𝑟 and 𝑃𝜑 are all close to zero, the system lacks any kind

of order and is in the paramagnetic (PM), or unpolarized, state. This phase dominates at high

𝐷 and low 𝛽.

Figure 16 showcases the four observables in the 𝐷 − 𝛽 space, with the colors being an

average of each observable over 50 realizations of random noise and 100 units of time. The

solid lines indicate the stability boundaries for each phase, obtained by initializing the system

in a phase, then gradually changing 𝛽 and 𝐷 until the polar order observable for that phase

falls below a threshold equal to 0.5, which is then considered to be a different phase.

The criteria for transition were validated by analyzing the time evolution of the system near

the predicted boundaries. The transition from the RP to vortex states presents a unique case,

as the system is particularly sensitive to changes in this regime. To classify the system as being

in the vortex state, a threshold of 𝑃𝜑 > 0.1 was adopted, since any azimuthal polarization

that appears signals the onset of rotation. This criterion is marked by the dashed blue line.

Additionally, the SBV phase exhibits a higher 𝑃𝑟 than the UV phase, as the particles at the

center of the system do not rotate with the bulk. Based on this distinction, a value of 𝑃𝑟 = 0.5

was chosen as a rough estimate to represent the transition between these two phases.
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Figure 16 – Heatmaps of the four observables measured in the 𝐷 − 𝛽 plane at fixed 𝑁 = 93 and 𝜎 =
0.2 (𝑓 ≃ 1.17). Double brackets indicate averages over time and random noise realizations. (a)
Radial polarization ⟨⟨𝑃𝑟⟩⟩; (b) Azimuthal polarization ⟨⟨𝑃𝜑⟩⟩; (c) Modulus of the total polarization
⟨⟨|P|⟩⟩; and (d) hexatic order parameter ⟨⟨𝜓𝐺

6 ⟩⟩. The red, blue and white lines indicate, in order,
the boundaries in which the ferromagnetic (FM), uniform vortex (UV) and radially polarized (RP)
phases become unstable. The dashed blue line separates the shear-banded vortex (SBV) and the
RP phases.

Source: (CANAVELLO et al., 2024)

5.4 PHASES

5.4.1 Radially polarized phase

The radially polarized (RP) phase is a simple static phase, in which, similar to the climbing

phase for one confined particle and (DAMASCENA; CABRAL; SILVA, 2022), particles simply ac-
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cumulate on the edges of the potential and stay there. At 𝐷 ≪ 1 and 𝛽 ≲ 1, the particles will

be closely packed and the system shows crystalline order, which is indicated by a high ⟨⟨𝜓𝐺
6 ⟩⟩.

When the noise 𝐷 is increased, order decays and the system exhibits a more fluid behavior,

but still keeps radial order. By further increasing D, and keeping 𝛽 low, all order is lost and

the system enters the paramagnetic phase. However, by increasing 𝛽 at a fixed and low 𝐷,

the system will transition into either the vortex or ferromagnetic phases, as will be described

below.

5.4.2 Coexistence properties of the ferromagnetic and uniform vortex phases

Both the ferromagnetic (FM) and uniform vortex (UV) states are characterized by the

particles being closely packed and having quasi-crystalline order, which (at low noise) indicate

that both of these phases can be well described by the model presented in Section 5.2.

In the FM phase, all particles possess the same orientation 𝜃 and the system behaves like a

single particle revolving around the potential center with constant radius 𝑅 and angular speed

Ω. In Figure 17(a), the analytical calculations in Equation (5.5) are compared against the

numerical simulation results for a system with 𝑁 = 93 and 𝜎 = 0.2 for several noise values.

Both results coincide even at higher noise levels, indicating that the FM is resilient to thermal

fluctuations. This can be inferred from Figure 16, in which the FM phase boundary (in red) is

seen to grow with 𝛽, indicating a high noise tolerance as long as 𝛽 is large enough.

For the UV phase, all particles have the same angular speed 𝜙̇𝑖 = 𝜔 and the system rotates

around its own axis, which is in the potential minimum. Once again comparing the numerical

simulations with the analytical results obtained from Equation (5.12) in Figure 17(b), the

results align very well in the noiseless regime 𝐷 = 0, but worsen significantly when the noise

level is increased. According to the blue line in Figure 16, at 𝐷 = 0.5 the system should be

well in the stability range for the UV phase, however the mean angular velocity of the system

falls far below the expect value from the rigid-body model, suggesting that the UV phase is

far more sensitive to noise than the FM phase.

In Figure 16 it is easy to see that there is a large coexistence range between the UV and FM

phases, denoted by the area enclosed by the red and blue lines. Having the same parameters,

the system will fall into one of these phases depending solely on its initial configuration, with

the FM being more likely for higher 𝛽 (and conversely UV being more probable for lower 𝛽).

This suggests that by varying 𝛽 or 𝐷, the system can transition between these phases, and
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Figure 17 – Comparison between the analytical predictions and numerical simulation results when varying the
self-alignment torque 𝛽 at different noise levels 𝐷 for a system with 𝑁 = 93 and 𝜎 = 0.2. The
dashed lines indicate analytical results. (a) Angular velocity of the ferromagnetic phase cluster
Ω and (inset) orbit radius 𝑅. (b) Angular velocity of the uniform vortex phase 𝜔. It should be
remembered that in (a) phase the cluster revolves around the potential center with a finite radius
while in (b) the cluster rotates around its own axis.

Source: (CANAVELLO et al., 2024)
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hysteresis is observed when doing so.

Figure 18 – Averages over time and random noise realizations for (top) ⟨⟨P⟩⟩ and (bottom) ⟨⟨𝑃𝑟⟩⟩ and ⟨⟨𝑃𝜑⟩⟩
at (a) Fixed 𝛽 = 25 and sweeping 𝐷 from 0 to 10 (solid line) and back (dashed). (b) Fixed 𝐷 = 2.5
and sweeping 𝛽 from 0 to 60 (solid) and back (dashed). Shadows indicate standard deviations
from the mean, and simulations were realized for a system with 𝑁 = 93 and 𝜎 = 0.2. Insets
indicate representative states of the system in each place following the same color scheme as
Figure 15.

Source: (CANAVELLO et al., 2024)

This hysteretic behavior can be confirmed in Figure 18. For the (a) panels, on the left

side, the system is initialized in a UV state at 𝛽 = 25, which is relatively high. This state is

characterized by high 𝑃𝜑, and by increasing the noise 𝐷, the system transitions to the FM

phase, indicated by the drop in 𝑃𝜑 and simultaneous rise in P and by increasing the noise

even further, the FM phase smoothly decays into a disordered paramagnetic (PM) phase, in

which all 3 measured observables are low. By decreasing the noise from the PM phase, the

system closely follows the forward path during the PM to FM transition, but at 𝐷 ∼ 4 it

starts following a different path, staying on the FM phase, and the system never returns to

the vortex phase.

When doing a similar simulation at constant noise 𝐷 and varying 𝛽 instead, on the (b)
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panels, a similar hysteresis is seen. The system starts in the PM phase, which is the only state

possible at 𝛽 = 0 and 𝐷 = 2.5 and when 𝛽 is increased it transitions into the UV phase at

𝛽 ≃ 20 and into the FM phase at 𝛽 ≃ 40. When going back, the system only transitions from

FM to UV at 𝛽 ≃ 15, demonstrating a strong hysteretic effect in the system until it goes to

the PM phase at low 𝛽.

To look at noise-inducted transitions between the coexisting distinct phases, specific fixed

𝛽 and 𝐷 points were chosen in the parameter space and a time series of the P and 𝑃𝜑

observables were calculated over a long time window (𝑡 = 104𝑡0). The results for these kind

of transitions are presented in Figure 19. In panel (a), for a system in the coexistence zone

(𝛽 = 25, 𝐷 = 2.85), a transition from the UV to the FM phase is observed. This transition

is associated with a sharp drop in 𝑃𝜑 and a simultaneous rise in P around 𝑡 ≃ 2700. Panel

(b) provides a zoomed-in view of the transition. Notably, if the system is initialized in the FM

phase, a transition to the UV is not observed, indicating that the system is more stable in the

FM phase for given parameters. Meanwhile panel (c) shows a system within the region where

only the UV phase is stable, with 𝛽 = 9.2 and 𝐷 = 2.5. Here, the system exhibits multiple

switches between clockwise (negative 𝑃𝜑) and counter-clockwise (positive 𝑃𝜑) motion. The

system stays in both states for roughly similar amounts of time, which reflects the symmetry

between both directions.

It should be noted that these noise-induced transitions are facilitated by the low number

of particles 𝑁 . When increasing 𝑁 at constant filling fraction 𝑓 (achieved by decreasing the

particle size 𝜎), larger noise levels are needed for the UV to FM transition to take place, until

it disappears completely and the system goes straight into the PM phase.

5.4.3 In-depth analysis of the uniform vortex phase

The previous section focused on the coexistence properties between the FM and UV phases.

By now turning the focus solely on the UV phase, more characteristics, such as radial depen-

dencies, can be studied. This phase is characterized by a constant and equal angular velocity

𝜙̇𝑖 = 𝜔 for all particles, but the orientation 𝜃𝑖 varies considerably with the radial position 𝑟𝑖 of

the particle. To better look at this phase, it is useful to consider smaller particle sizes, 𝜎 = 0.1,

which improves local statistics while keeping the filling fraction constant.

This behavior is depicted in Figure 20(a, b), which shows the time-averaged radial distri-

butions of 𝑃𝑟, 𝑃𝜑, 𝜃, and 𝜙̇ for a system with 𝑁 = 500, 𝛽 = 1.85, and 𝐷 = 0. It is particularly
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Figure 19 – Time series for P and 𝑃𝜑 for a system starting on the UV phase with (a, b) 𝛽 = 25 and 𝐷 = 2.85
and (c) 𝛽 = 9.2 and 𝐷 = 2.5. (a, b) shows a system going from UV to the FM phase [(b) shows
a zoomed in window of the transition] (c) system in the UV phase performing multiple switches
between clockwise to counter-clockwise motion

Source: (CANAVELLO et al., 2024)

notable that the angular velocity 𝜙̇ remains constant across all radial positions. This finding

provides strong support for the initial assumption of uniform rotational motion, which was a

necessary result for the calculations in Section 5.2.

In contrast, the observables 𝑃𝑟, 𝑃𝜑 and 𝜃 display marked differences between the inner re-

gion (𝑟 < 1/𝛽) and the outer region (𝑟 > 1/𝛽). Despite these variations, the distributions re-

main in excellent agreement with the theoretical predictions. In the outer region, the system be-

haves in accordance with the rigid body condition, where 𝜙̇ = 𝜃 and the projected components

conform to the analytical predictions: 𝑃𝑟 = cos𝜒 = 1/(𝛽𝑟) and 𝑃𝜑 = sin𝜒 =
√︁

1 − 1/(𝛽𝑟)2.

Within the inner region, the rigid body approximation breaks down as 𝜃 is no longer constant.

Nevertheless, because 𝜙̇ does remain constant with respect to 𝑟, the theoretical expressions
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Figure 20 – Time averages for 𝑃𝑟, 𝑃𝜑, 𝜃 and 𝜙̇ for simulations (shaded areas) and analytical results (dashed
lines). Simulations use 𝜎 = 0.1, 𝛽 = 1.85 and 𝐷 = 0, while having 𝑁 = 500 for (a, b) and
𝑁 = 350 for (c, d). The red and blue dashed lines are plots of the Equations (5.10) and (5.11),
whereas the purple and green lines indicate Equations (5.12) and (5.13). In (a, b) the simulation
matches the predictions remarkably well, while for lower densities in (c, d) it fails in the 𝑟 < 1/𝛽
region, which is unoccupied since the system is in the shear-banded vortex phase. The numerical
results fall to 0 due to the finite size of the sample.

Source: (CANAVELLO et al., 2024)

for 𝑃𝑟 and 𝑃𝜑 continue to provide a valid description of the system over all 𝑟.

By looking at the behavior of individual particles in each region, a deeper insight of the

system can be obtained. Figure 21 shows the radial position 𝑟 and tilt angle 𝜒 of 4 particles

over time, with two of them being in the outer region and two in the inner region for a system

with 𝑁 = 500, 𝛽 = 1.85 and 𝐷 = 0. The radial distances display small oscillations of order

𝛿𝑟 ∼ 𝜎/2 (even though there is no thermal noise) and these oscillations are strongly correlated

between all four particles, indicating an excitation of a collective mode. This phenomenon
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Figure 21 – Temporal evolution of (a) radial distance 𝑟 (b, c) tilt angle 𝜒 = 𝜃−𝜙 for four different particles in a
system with 𝑁 = 500, 𝜎 = 0.1, 𝛽 = 1.85 and 𝐷 = 0. Dashed lines indicate analytical predictions
from Equations (5.8) and (5.9). For particles in the outside region, in panel (b), 𝜒 fluctuates
around a constant value at large 𝑡. Meanwhile 𝜒 performs full revolutions for the particles in the
inside region.

Source: (CANAVELLO et al., 2024)

manifests as a slight “wobble” of the inner region in regard to the outer region. This result

undermines the assumptions of a rigid body system, but as the oscillations are small the results

from Section 5.2 still hold remarkably well.

Figure 21 presents a system in the uniform vortex state, with the left panel using colors to

display the orientation 𝜃 and the right panel showing the tilt angle 𝜒. Above the shear band
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Figure 22 – Snapshot of a system in the uniform vortex (UV) state with parameters 𝑁 = 500, 𝜎 = 0.1, 𝛽 =
1.85 and 𝐷 = 0.0. On the left, colors indicate the internal orientation angle 𝜃 of each particle,
while on the right panel the colors encode the tilt angle 𝜒 instead. Above the shear band boundary,
the color is uniform for all particles with the same radius and constant over time, while in the
inner region, the colors are varied and cycle periodically over time, corroborating the results shown
in Figure 21.

Source: (CANAVELLO et al., 2024) (supplementary material, adapted)

boundary (denoted by the dashed orange line), all particles appear to share the same color,

indicating that the tilt angle 𝜒 is equal for all of them, and also constant over time. In a

rigorous manner, only the particles with equal radius will have equal 𝜒 (and color), however

the difference is small enough that it can’t be easily discerned.

In contrast, within the inner region of the system, the colors are distributed seemingly at

random, and they evolve periodically over time. This dynamic behavior is governed by the

relation expressed in Equation (5.9). Although particles with the same radius exhibit identical

tilt angle frequency 𝜒̇, the initial conditions encoded within each particle lead to variations in

𝜒 even for particles of the same radius, explaining the difference in colors.

Figure 23(c, d) illustrates the system configuration for a small value of 𝛽, corresponding

to a large inner region of the system, particularly when compared to the configuration seen

in Figure 15(c). The seemingly random orientations for particles within the orange dashed

boundary are a consequence of 𝜒̇ ̸= 0 and can be described by Equation (5.9) and can also

be seen in Figure 21(c).

Looking at the system from the laboratory frame of reference, the position of each color in

the outer region of the system remain static over time, while all particles rotate uniformly at a

constant angular velocity. Conversely, in a rotating frame of reference with the same angular
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Figure 23 – Snapshots of particles positions and orientations at 𝛽 = 1.85 and 𝐷 = 0. All systems are rotating
clockwise in this case. The blue line and orange line indicate, respectively, the critical isocline at
𝑟 = 1 and the shear band limit 𝑟 = 1/𝛽. Orientations are indicated by colors in the same way as
Figure 15.

Source: (CANAVELLO et al., 2024)

speed 𝜔 of the system, and using colors to represent 𝜒 instead of 𝜃, all particles appear static

in time (since all of them have the same 𝜔). The particles in the outer region then assume a

single static color, while the particles within the inner region undergo continuous color changes,

reflecting the results shown in Figure 21 and 22. This rotating frame view also facilitates the

observation of intrinsic elastic deformations in the system, which are what allows the system

to violate the condition 𝜒̇ = 0 for the inner region, while still maintaining a quasi-rigid-body

structure and stabilize the UV phase.
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5.4.4 Shear-banded vortex

Under low 𝛽 (meaning a large inner region) and low filling fraction, the system might not

be in a fully compact state. This happens because the particles with 𝑟 < 1/𝛽 will try to climb

the potential towards 𝑟 = 1/𝛽, and since there aren’t enough particles to “push” them down,

this creates an area in the center without any particles. Examples of the shear-banded vortex

(SBV) phase can be seen in Figures 15 and 23. The images also show the two mechanisms in

which the SBV may transition into the uniform vortex (UV) phase, with the panels (b) and (c)

of Figure 15 showing a transition induced by an increase in 𝛽, thus reducing the inner region,

and panels (b) and (c) of Figure 23 showing a transition induced by an increase in the filling

fraction, which compacts the cluster and the empty region can no longer sustain itself.

The transition between SBV and UV can also be visualized in Figure 24, which plots the

internal (𝑅int) and external (𝑅int) radii, defined as the time-averaged radial position of the

inner- and outermost particles, as a function of 𝛽 for a system with 𝑁 = 93, 𝜎 = 0.2 and

𝐷 = 0. For 𝛽 ≲ 1 there is no vortex phase, as the system is in the climbing state with a

distinct ring shape, which is characterized by large 𝑅int and 𝜔 = 0. Increasing 𝛽 allows the

system to start rotating, however there is a markedly distinct behavior in each region, as the

particles inside the inner region have a significantly lower angular velocity. As 𝛽 increases, 𝑅int

decreases and the inner angular velocity becomes closer to the outer one. At 𝛽 ≳ 3 the inner

radius reaches its lowest value, of order 𝜎, and the angular velocity for the system becomes

uniform. The simultaneous cluster compaction and uniformity of the angular velocities marks

the transition from the SBV to UV phase.

As the regions have different angular velocities, the analytical results obtained for the UV

phase in Section 5.2 are no longer valid, which is shown in Figure 20(c, d). While the predictions

for 𝑟 > 1/𝛽 still hold since the particles are closely packed and have the same angular velocity

there. In contrast, the inner region shows a completely different behavior, with 𝜙̇ and 𝜃 even

taking on the opposite sign of the outer region. Another noteworthy characteristic of this phase

is the considerable value of 𝑃𝑟 observed in the inner region, indicating that the particles are

trying to migrate towards the outer region of the system.

To better understand what happens in this phase, it helps to think of particles in the inner

region as being in the climbing state, and are kept in there due to the steepness of the potential

combined with forces exerted from particles in the outer region. When climbing the potential,

these frustrated particles will trend either clockwise or counter-clockwise and, if it matches the
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Figure 24 – Example of a transition between shear-banded vortex and uniform vortex phases by increasing 𝛽
for a system with 𝑁 = 93, 𝜎 = 0.2 and 𝐷 = 0. (a) External (𝑅ext) and internal (𝑅int) radii of
the cluster as a function of 𝛽. The dashed black line indicates the 1/𝛽 boundary which marks
a difference in behavior of the system. (b) Angular speed 𝜔 for particles in the outside region
(black line) and inner region (blue line) as a function of 𝛽. The regions are separated by the 1/𝛽
boundary. At 𝛽 ≃ 3 (vertical dashed line), the system fully transitions into the UV phase, with
the internal radius becoming the order of 𝜎 and the angular speed being constant across both
regions.

Source: (CANAVELLO et al., 2024)

orientation of the outer band, those particles will have a higher chance of being assimilated

due to sliding events that can rearrange the system. When a frustrated particle gets lucky

and is absorbed into the outer region, one of the particles from the outer falls back into the

inner region, becoming frustrated, which repeats the process. This continued cycle makes it

so all particles rotating in the same direction as the outer band are eventually assimilated into

the outer region, while the particles left inside are the ones running contrary to it, essentially

acting like a filter. Which explains why the particles that in the inner region tend to rotate on

the opposite direction of the outer region.
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5.4.5 Multi-cluster phase

At low filling fractions, it is possible for the system to not assume a compact form and

instead split into different clusters, seen in Figure 15(e). In this case, characteristics of both

vortex and ferromagnetic states are seen. Particles are polarized inside each cluster, which acts

as a single particle, like in the ferromagnetic state and obeying Equations (5.5). Each cluster,

however, rotates around the potential with the same angular velocity, thus obeying the vortex

phase requirements.

Figure 25 – Heatmaps for the average number of clusters ⟨𝑁c⟩ in the 𝜎 − 𝑁 space (thus changing 𝑓) at
different values of 𝛽 with 𝐷 = 0. The white dashed line indicates the 𝑓 = 1 condition, at which
point the system would be completely filled from the origin to the isocline. As this is an average
over time and noise, values might be non-integers, but each individual configuration has an integer
amount of clusters.

Source: (CANAVELLO et al., 2024)

In Figure 25, the average number of clusters, denoted by ⟨𝑁c⟩, for configurations on
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the 𝜎 − 𝑁 space are measured. The algorithm DBSCAN (SCHUBERT et al., 2017) was used

to calculate the number of clusters in the systems, with a particle being considered part of a

cluster if it has at least 3 particles within a 1.5𝜎 radius (core point), or if it is directly reachable

by a core point. Particles that do not belong to any cluster are treated as outliers rather than as

individual one-particle clusters. This choice ensures that systems without any aggregation are

characterized as having zero clusters, rather than being interpreted as containing 𝑁 separate

clusters.

As the same configuration can evolve into different amount of clusters, the resulting ⟨𝑁c⟩

may be non-integer, and a complex relationship between 𝜎 and 𝑁 is observed. In very dilute

systems (low 𝑁 and 𝜎), particles are too far apart to feel each other and may not form

clusters, leading to configurations with zero clusters and ⟨𝑁c⟩ < 1. A limiting condition of

𝑓 = 1 was established, as it is the point in which particles completely occupy the system up to

the critical isocline, making it very hard for particles to have sufficient space between them to

form multiple clusters. Since the radial position of each cluster is given by 𝑅 = 𝛽−1/2, when 𝛽

increases the trajectory of the clusters become tighter, which leads to all particles eventually

merging together into a single cluster, which is exactly what is seen on Panel (c) for 𝛽 = 10.

The system will then evolve into one of the other collective phases described before.

5.5 TAKEAWAYS

An analytical and numerical investigation was done to investigate an interacting system

that couples self-aligning torque with an external harmonic potential. Multiple new phases

were observed, some reminiscent of those in single particle system, but new phases are also

present, some with surprising results. The angular mobility 𝛽 plays a key role in the vast

wealth of the system’s phases. At low 𝛽, the system does not display orientational dynamics

and settles into a phase that is similar to the climbing phase for one-particle systems. However,

increasing 𝛽 above a critical value will break the rotational symmetry of the system and it’ll

start rotating. This rotation can manifest in different ways depending on the values of not

only 𝛽, but also the filling fraction 𝑓 and the thermal noise 𝐷. The ones studied in this

chapter were: a ferromagnetic state, where the orientations of all particles are the same and

the system acts like a singular particle; a uniform vortex state, in which all particles have the

same angular velocity; a shear-banded vortex, that separates the system into two an external

region with constant angular velocity and a climbing phase in the inner region; and a multi
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cluster phase, where the system separates into several small clusters that rotate around the

potential, combining elements of both the ferromagnetic and vortex states.

A rigid body analytical model was developed for the close packed phases, those being

the ferromagnetic and uniform vortex ones. However, a peculiarity emerges in the latter case:

although all particles share the same angular velocity, their polarization vectors rotate at

a different frequency for particles with 𝑟 < 1/𝛽. This behavior appears to contradict the

conditions expected of rigid body motion. In fact, the system exhibits slight deformations

over time, which facilitate a decoupling between its translational and polarization dynamics.

Despite these deformations, the analytical formulas found were in great agreement with the

numerical simulation results. Another intriguing phenomenon is the appearance of a shear-

banded phase, which features two regions rotating in opposite directions and at different

angular velocities. This behavior arises from a filtering mechanism: particles aligning with the

rotation of the outer band are absorbed into it, while those remaining in the inner region rotate

in the opposite direction. As a result, the system self-organizes into a state where the inner and

outer bands exhibit counter-rotating motion. These results demonstrate how a combination of

self-alignment torque, confining potential and interparticle interactions can give rise to a rich

and complex phase space.
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6 DISCUSSION AND FUTURE PERSPECTIVES

In this work, the collective behavior of active matter systems with self-aligning torques was

systematically investigated under two distinct configurations: periodic boundary conditions and

harmonic confinement, and these scenarios were compared with the dynamics of a single par-

ticle to elucidate the role of collective effects. Under periodic boundaries, seen in Chapter 4, a

flocking transition was identified at a critical self-alignment strength, which remained robust

even with the introduction of periodic obstacles. However, the inclusion of anisotropic obsta-

cles led to a notable transition from two-dimensional to one-dimensional collective motion,

demonstrating how a substrate can modify emergent behavior. In the harmonically confined

case, studied in Chapter 5, a rich phase space was uncovered, revealing novel states such

as a ferromagnetic phase, where particles share a common orientation, and a vortex phase,

characterized by uniform angular motion among particles.

A key insight from these results is the central role played by the self-alignment torque, which

acts as a fundamental control parameter in determining the system’s macroscopic behavior.

Despite its relevance to numerous natural and artificial systems such as bacterial colonies and

robotic swarms, this type of system remains underexplored. The findings presented here high-

light its importance, suggesting that self-alignment can be leveraged as a design principle for

tuning collective dynamics. These results could aid the development of smart active materials

and methods to control polarization direction in populations (WOODHOUSE; RONELLENFITSCH;

DUNKEL, 2018; ZHENG et al., 2023; LAZZARI; DAUCHOT; BRITO, 2024; DJELLOULI et al., 2024).

A promising direction for future research lies in extending these studies to strongly dis-

ordered or heterogeneous environments. This includes complex substrates such as porous or

patchy media, where spatial disorder can significantly affect the long-range order, mobility, and

clustering behavior of active particles (CHEPIZHKO; ALTMANN; PERUANI, 2013; CHEPIZHKO;

PERUANI, 2013; MORIN et al., 2017; CHEN et al., 2022; MODICA; XI; TAKATORI, 2022; MODICA;

OMAR; TAKATORI, 2023; SINAASAPPEL et al., 2025; SHINDE; VOITURIEZ; CALLAN-JONES, 2025).

Investigating how a self-aligning component would interacts with such complex geometries

could yield insights into real-world systems where disorder is intrinsic, such as cellular tis-

sues, biofilms, or geological porous structures. The interplay between local alignment rules

and substrate-induced randomness presents a rich field for both theoretical modeling and ex-

perimental validation.
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Another avenue of research involves boundary interactions, particularly in systems where

the torque is influenced by the walls or interfaces (OSTAPENKO et al., 2018). Recent exper-

imental studies suggest that the trajectories (CODUTTI et al., 2022) and accumulation near

surfaces (PÉREZ-ESTAY et al., 2024) are some of the mechanisms that are mediated by bound-

ary interactions. Understanding how self-alignment modifies these effects could provide new

strategies for controlling active flows, enhancing transport in confined geometries, or optimiz-

ing particle sorting and filtering.

While these results concern an homogeneous population, the question of how heteroge-

neous mixtures with distinct sizes and torque strengths is still open and relevant, which can

also be investigated further. Overall, the results of this thesis open several avenues for advanc-

ing both the theoretical understanding and practical applications of active matter in structured

environments.
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APPENDIX A – CALCULATIONS FOR STEADY-STATE SOLUTIONS IN

CONFINED CLOSE-PACKED CLUSTERS

This appendix has the details for the calculations done in Section 5.21.

Starting with the equations of motion for the system

𝑟̇𝑘 + 𝑟𝑘 −
𝑁∑︁

𝑙=1
𝑙 ̸=𝑘

𝑓𝑘𝑙 = 𝑛𝑘, (A.1)

𝜃𝑘 = 𝛽

⎡⎢⎢⎣𝑛𝑘 ×

⎛⎜⎜⎝ 𝑁∑︁
𝑙=1
𝑙 ̸=𝑘

𝑓𝑘𝑙 − 𝑟𝑘

⎞⎟⎟⎠
⎤⎥⎥⎦ · 𝑧 = 𝛽(𝑛𝑘 × 𝑟̇𝑘) · 𝑧, (A.2)

for parabolic confinement and arbitrary pairwise interparticle forces given by

𝑓𝑘𝑙 = 𝑓(𝑟𝑘𝑙)
𝑟𝑘𝑙

𝑟𝑘𝑙

, (A.3)

where 𝑘, 𝑙 = 1, 2, . . . 𝑁 are the particles indexes, 𝑟𝑘 = (𝑟𝑘 cos𝜙𝑘, 𝑟𝑘 sin𝜙𝑘), 𝑛𝑘 = (cos 𝜃𝑘, sin 𝜃𝑘)

are, respectively, the position and orientation of the 𝑘-th particle and 𝑟𝑘𝑙 = 𝑟𝑘 − 𝑟𝑙, and

𝑟𝑘𝑙 = |𝑟𝑘 − 𝑟𝑙| are the interparticle distance vector and magnitude.

It is well known that for general rigid body motion, the system motion consists of a

translation plus a rotation of the entire system (ARNOLD, 1989; TONG, 2025). Therefore, the

position of the 𝑘-th particle of the system can be described by

𝑟𝑘 = 𝑅 + S (𝜙) 𝑠𝑘, (A.4)

where 𝑅 = ∑︀𝑁
𝑘=1 𝑟𝑘/𝑁 is the position of the system centroid, and

S (𝜑) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
cos𝜑 − sin𝜑

sin𝜑 cos𝜑

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (A.5)

is the rotation matrix, 𝜑 is a rotation angle in a frame whose origin is at the centroid position,

and 𝑠𝑘 is the particle position in the moving frame. Substituting this equation in Equation (A.1)

gives

𝑅̇ + 𝑅 + S(𝜑)

⎡⎢⎢⎣𝑠̇𝑘 + 𝜔𝑧 × 𝑠𝑘 −
𝑁∑︁

𝑙=1
𝑙 ̸=𝑘

𝑓(𝑠𝑘𝑙)
𝑠𝑘𝑙

𝑠𝑘𝑙

⎤⎥⎥⎦ = 𝑛𝑘, (A.6)

1 Thanks to Prof. Leonardo Cabral for helping with these results.
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where 𝜔 = 𝑑𝜑
𝑑𝑡

, 𝑠𝑘𝑙 = 𝑠𝑘 −𝑠𝑙, and 𝑠𝑘𝑙 = |𝑠𝑘 −𝑠𝑙|. By summing the contributions of all particles

to Equation (A.6), the internal forces cancel out and gives

𝑅̇ + 𝑅 = 1
𝑁

𝑁∑︁
𝑘=1

𝑛𝑘 = ⟨𝑛⟩ . (A.7)

As a consequence the centroid motion is governed by the average of the orientation forces of

the system. Substituting back this equation in Eqs. (A.6) and (A.2) results in

𝑠̇𝑘 + 𝜔𝑧 × 𝑠𝑘 −
𝑁∑︁

𝑙=1
𝑙 ̸=𝑘

𝑓(𝑠𝑘𝑙)
𝑠𝑘𝑙

𝑠𝑘𝑙 = S(−𝜑) (𝑛𝑘 − ⟨𝑛⟩) , (A.8)

𝜃𝑘 = 𝛽
[︁(︁

𝑛𝑘 × 𝑅̇
)︁

· 𝑧 + (𝜂𝑘 × 𝑠̇𝑘) · 𝑧 + 𝜔 (𝜂𝑘 · 𝑠𝑘)
]︁
. (A.9)

For 𝑠̇𝑘 = 0 in the moving frame, the first equation is time independent if either (i) 𝑛𝑘 = ⟨𝑛⟩

for all particles or (ii) 𝜂𝑘 = S(−𝜑)𝑛𝑘 is time independent (all orientations rotate at the same

angular velocity 𝜔 together with the whole configuration). In the first case, all the particles

have the same orientation angle, that is 𝜃𝑖 = 𝜃c for 𝑖 = 1, 2, . . . 𝑁 , while in the latter the

time derivative of the particles orientations are the same, i.e., 𝜃𝑘 = 𝜃𝑙 = 𝜔 for any pair of

particles in the system rotating as a rigid body with angular velocity 𝜔. Hence, any of these

conditions are sufficient to warrant a rigid body motion (with no deformations) of the system.

The two particular cases above result in Equation (A.9) to be rewritten as

• For 𝑛𝑘 = ⟨𝑛⟩ = 𝑛c (which is equivalent to 𝜃𝑖 = 𝜃c)(︁
𝑛c × 𝑅̇

)︁
· 𝑧 + 𝜔𝜂c · 𝑠𝑘 = 𝛽−1𝜃c; (A.10)

• For 𝜃𝑘 = 𝜃𝑙 = 𝜔

(︁
𝑛𝑘 × 𝑅̇

)︁
· 𝑧 + 𝜔

(︁
𝜂𝑘 · 𝑠𝑘 − 𝛽−1

)︁
= 0. (A.11)

Therefore, for those conditions above if both the centroid motion and the rigid body rotation

are present, they are intertwined in a way given by either Eq (A.10) or Equation (A.11).

In the following sections two particular cases of interest related to the above conditions

associated with rigid body motion are explored.

A.1 POLARIZED PHASE

In the case where 𝑛𝑘 = ⟨𝑛⟩ = 𝑛c for all particles (i.e., 𝜃𝑘 = 𝜃c for all 𝑘), the system

is referred to as being in the polarized state. To explore this in more detail, consider the
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particular scenario where 𝜔 = 0. In this situation, the cluster does not rotate around the

centroid position, 𝑅. As a result, the system behaves as a single particle and Equation(A.10)

becomes

−𝑅̇ sin𝜒c +𝑅𝜙̇c cos𝜒c = 𝛽−1𝜃c, (A.12)

where 𝜒c = 𝜃c − 𝜙c is the tilt angle and 𝜙c is the angle 𝑅 makes with the horizontal axis.

Meanwhile, Equation (A.7) projected along and orthogonal to 𝑅 gives,

𝑅̇ +𝑅 = cos𝜒c, (A.13)

𝑅 𝜙̇c = sin𝜒c. (A.14)

Substituting these equations in Equation (A.12)

𝑅2𝜙̇c = 𝛽−1𝜃c. (A.15)

This equation also shows that the areolar speed covered by the centroid is equal to the time

derivative of the its orientation, 𝜃c, divided by 𝛽.

The above equations are the same as the ones for one active particle in a harmonic circular

confinement, which have the solutions derived in Section 3.2. Therefore, for 𝛽 > 1 a time

independent periodic solution is given by 𝑅̇ = 0 and 𝜙̇c = 𝜃c, that is the centroid performs a

periodic circular motion with angular velocity, Ω = 𝑑𝜙c
𝑑𝑡

. Such a case gives

𝑅 = 𝛽−1/2, (A.16)

Ω = ±
√︁
𝛽 − 1, (A.17)

𝜒c = 𝜃c − 𝜙c = arccos
(︁
𝛽−1/2

)︁
⇒ 𝜃c = arccos

(︁
𝛽−1/2

)︁
±
√︁
𝛽 − 1𝑡+ 𝜃c (0) . (A.18)

A.2 VORTEX PHASE

Consider the case in which 𝜃𝑘 = 𝜔 for all 𝑘 and assume that the particles rotate around

the origin (that is 𝑅 = 0 and 𝑟𝑘 = 𝑠𝑘). In this case, Equation (A.7) provides ⟨𝑛⟩ = 0.

The angular velocity for this situation of rigid body motion can be found by taking the vector

product between 𝑟𝑘 and Equation (A.1) and summing over the contributions of all particles,

the internal torques cancel out and gives

∑︁
𝑘

𝑠2
𝑘𝜙̇𝑘 = 𝜔

∑︁
𝑘

𝑠2
𝑘 =

∑︁
𝑘

𝑠𝑘 sin𝜒𝑘, (A.19)
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where 𝜒𝑘 = 𝜃𝑘 − 𝜙𝑘. From Equation (A.11), 𝜂𝑘 · 𝑠𝑘 = 𝑠𝑘 cos𝜒𝑘 = 1/𝛽. Therefore,

𝜔 =

∑︁
𝑘

√︃
𝑠2

𝑘 − 1
𝛽2∑︁

𝑘

𝑠2
𝑘

. (A.20)

This result shows that a strict rigid body motion is possible in the vortex phase only for

particles at 𝑟 > 1/𝛽.

To get around this, relax the condition 𝜃𝑘 = 𝜔, which means the system is not in strict rigid

body motion, while still assuming that the particles rotate around the origin with approximate

fixed radial positions (i.e., 𝑟𝑘 = 𝑠𝑘 with 𝑠̇𝑘 ≈ 0) and constant angular velocity 𝜙̇𝑘 ≈ 𝜔. Thus,

Equation (A.9) becomes,

𝜒̇𝑘 = (𝛽𝑠𝑘 cos𝜒𝑘 − 1)𝜔, (A.21)

whose solution is given by (ABRAMOWITZ; STEGUN, 1964, Eqs. 4.3.133 and 4.3.135),

−𝜔 𝑡 =
∫︁ 𝜒𝑘(𝑡)

𝜒𝑘(0)

𝑑𝜒

1 − 𝛽𝑠𝑘 cos𝜒 = [𝐺(𝑡) −𝐺(0)]√︁
|𝛽2𝑠2

𝑘 − 1|
(A.22)

where 𝜒𝑘(0) is the value of 𝜒𝑘 at some initial time 𝑡 = 0 and,

𝐺(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 arctan

[︂
(1+𝛽𝑠𝑘) tan(𝜒/2)√

|𝛽2𝑠2
𝑘

−1|

]︂
for 𝛽𝑠𝑘 < 1,

ln
[︂√

|𝛽2𝑠2
𝑘

−1|−(1+𝛽𝑠𝑘) tan(𝜒/2)√
|𝛽2𝑠2

𝑘
−1|+(1+𝛽𝑠𝑘) tan(𝜒/2)

]︂
for 𝛽𝑠𝑘 > 1.

(A.23)

The above solution gives rise to two distinct time dependencies of 𝜒𝑘. For 𝑠𝑘 > 1/𝛽 there is

a monotonic dependence of 𝜒𝑘 on time,

𝜒𝑘 = 2 arctan
[︃(︃
𝐶+ + 𝐶−𝑒

−𝑡/𝜏𝜔

𝐶+ − 𝐶−𝑒−𝑡/𝜏𝜔

)︃√︃
𝛽𝑠𝑘 − 1
𝛽𝑠𝑘 + 1

]︃
, (A.24)

where 𝐶± = tan (𝜒𝑘(0)/2) ±
√︁

(𝛽𝑠𝑘 − 1) / (𝛽𝑠𝑘 + 1) and 𝜏𝜔 = 1/𝜔
√︁
𝛽2𝑠2

𝑘 − 1. In this case,

for 𝑡 ≫ 𝜏𝜔 there is an asymptotic value 𝜒𝑘 = 2 arctan
√︁

(𝛽𝑠𝑘 − 1) / (𝛽𝑠𝑘 + 1), which gives

cos𝜒𝑘 = 1/𝛽𝑠𝑘. This is exactly the result expected by assuming 𝜔 = 𝜃𝑘.

On the other hand, 𝜒𝑘 has oscillatory response for 𝑟𝑘 < 1/𝛽, given by

𝜒𝑘 = −2 arctan
[︃√︃

1 − 𝛽𝑠𝑘

1 + 𝛽𝑠𝑘

tan
(︂√︁

1 − 𝛽2𝑠2
𝑘

𝜔𝑡

2 − 𝐶0

)︂]︃
, (A.25)

where 𝐶0 = arctan
[︁√︁

(1 − 𝛽𝑠𝑘) / (1 + 𝛽𝑠𝑘) tan (𝜒𝑘(0)/2)
]︁
.

These above expressions for 𝜒𝑘 makes it possible to obtain the time averages of 𝑛𝑘 · 𝑟𝑘 =

𝑠𝑘 cos𝜒 and (𝑟𝑘 × 𝑛𝑘) · 𝑧 = 𝑠𝑘 sin𝜒. For that it is necessary to compute the asymptotic limit
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of cos𝜒𝑘 and sin𝜒𝑘 for 𝑟𝑘 = 𝑠𝑘 > 1/𝛽 and their time averages for 𝑟𝑘 = 𝑠𝑘 < 1/𝛽. As

previously mentioned, for 𝑠𝑘 > 1/𝛽 and 𝑡 ≫ 1/𝜔
√︁
𝛽2𝑠2

𝑘 − 1, then cos𝜒𝑘 = 1/𝛽𝑠𝑘, which

gives

𝑛𝑘 · 𝑟𝑘 = 𝑠𝑘 cos𝜒𝑘 = 1
𝛽

and (𝑟𝑘 × 𝑛𝑘) · 𝑧 = 𝑠𝑘 sin𝜒𝑘 =
√︃
𝑠2

𝑘 − 1
𝛽2 . (A.26)

For 𝑠𝑘 < 1/𝛽, after some straightforward calculations, Equation (A.25) gives

sin𝜒𝑘 = −

√︁
1 − 𝛽2𝑠2

𝑘 sin
(︁√︁

1 − 𝛽2𝑠2
𝑘𝜔𝑡− 2𝐶0

)︁
1 + 𝛽𝑠𝑘 cos

(︁√︁
1 − 𝛽2𝑠2

𝑘𝜔𝑡− 2𝐶0
)︁ , (A.27)

cos𝜒𝑘 =
𝛽𝑠𝑘 + cos

(︁√︁
1 − 𝛽2𝑠2

𝑘𝜔𝑡− 2𝐶0
)︁

1 + 𝛽𝑠𝑘 cos
(︁√︁

1 − 𝛽2𝑠2
𝑘𝜔𝑡− 2𝐶0

)︁ . (A.28)

The time average of sin𝜒𝑘 over one period of time 𝑇 = 2𝜋/𝜔
√︁

1 − 𝛽2𝑠2
𝑘 is zero since it is an

odd function. On the other hand, the time average of cos𝜒𝑘 is nonzero and can be computed

with a standard table of integrals (GRADSHTEYN; RYZHIK, 2014). Therefore,

⟨sin𝜒𝑘⟩𝑇 = 0 and ⟨cos𝜒𝑘⟩𝑇 =
1 −

√︁
1 − 𝛽2𝑠2

𝑘

𝛽𝑠𝑘

. (A.29)

Consequently, for 𝑠𝑘 < 1/𝛽,

⟨𝑛𝑘 · 𝑟𝑘⟩𝑇 =
1 −

√︁
1 − 𝛽2𝑠2

𝑘

𝛽
and ⟨(𝑟𝑘 × 𝑛𝑘) · 𝑧⟩𝑇 = 0. (A.30)

Now, to calculate the average angular velocity with the above results in mind. Again, by

taking the vector product between 𝑟𝑘 and Equation (A.1), summing over the contributions of

all the particles, and canceling out the internal torques

∑︁
𝑘

𝑠2
𝑘𝜙̇𝑘 =

∑︁
𝑘

𝑠𝑘 sin𝜒𝑘. (A.31)

By using 𝜙̇𝑘 ≈ 𝜔 and taking the time average of this equation, ⟨𝜔⟩ can be obtained. Since

⟨(𝑟𝑘 × 𝑛𝑘) · 𝑧⟩𝑇 = 𝑠𝑘 ⟨sin𝜒𝑘⟩𝑇 = 0 for 𝑟𝑘 = 𝑠𝑘 < 1/𝛽, Equation (A.31) results in

⟨𝜔⟩𝑇 =

∑︁
𝑘

′ 𝑠𝑘 ⟨sin𝜒𝑘⟩𝑇∑︁
𝑘

𝑠2
𝑘

=

∑︁
𝑘

′
√︃
𝑠2

𝑘 − 1
𝛽2∑︁

𝑘

𝑠2
𝑘

, (A.32)

where
∑︁

𝑘

′ means sum over only the particles outside of 𝑟 = 1/𝛽, while
∑︁

𝑘

is the sum over

all the particles. This expression is similar (but not equal) to Equation (A.20).
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Finally, returning to Equation (A.21) and taking its time average will provide the time

average of the particles orientation angle

⟨
𝜃𝑘

⟩
𝑇

= 𝛽𝑠𝑘 ⟨cos𝜒𝑘⟩𝑇 ⟨𝜔⟩𝑇 =

⎧⎪⎪⎨⎪⎪⎩
⟨𝜔⟩𝑇 , for 𝑠𝑘 > 𝛽−1

[︁
1 −

√︁
1 − 𝛽2𝑠2

𝑘

]︁
⟨𝜔⟩𝑇 , for 𝑠𝑘 < 𝛽−1

(A.33)

These obtained time dependencies of 𝜒𝑘 show that, although for 𝑠𝑘 > 1/𝛽 the conditions

for a strict rigid body motion can be realized, that is not the case for particles inside 𝑠 < 1/𝛽.

This conclusion can be seen by noticing that a time dependent 𝜒𝑘 implies in a time dependence

of 𝑛𝑘, which also implies that both 𝑟̇𝑘 and 𝜙̇𝑘 in Equation (A.1) do depend on time. Therefore,

the above results for the vortex phase are to be taken as an approximate model for the dynamics

of particles moving together with the same angular velocities and with small variations of their

radial distances to the origin.
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APPENDIX B – CELL LINKED LISTS FOR MOLECULAR DYNAMICS

When dealing with simulations of large particle numbers, naively calculating the distance

between every pair to find interparticle forces quickly becomes impractical since the number

of pairs grows as 𝑂(𝑁2). There are many ways to mitigate this, such as Verlet lists and cell

linked lists, of which the latter will be described here. This describes a method that greatly

speeds up simulations when dealing with short-range potentials, such as the WCA potential.

While the method is described here for 2D system, it can easily be extended for 3D simulations

as well.

B.1 SPACE PARTITIONING

The first step is to divide the simulation space into cells with size of at least the interaction

cutoff radius 𝑟𝑐. This has to be done to guarantee that every particle inside the cutoff radius

will be either in the same cell or in (first) neighboring cells. There are several ways to do this,

with one of them being

1 // The floor function guarantees an integer number of cells

numcell_x = floor(boxlength_x / r_cutoff);

3 numcell_y = floor(boxlength_y / r_cutoff);

// The cell size is always equal or greater than r_cutoff

5 cellsize_x = boxlength_x / numcell_x , cellsize_y = boxlength_y / numcell_y;

this will partition the simulation box into an integer number with size of at least 𝑟cutoff. Note

that the amount of cells in each direction will differ if the simulation box isn’t a square.

B.2 CREATING THE LINKED LIST

Now it is necessary to assign each particle to a cell in space. To do this, first create two

lists

• head With size numcell_x × numcell_y;

• linkedlist With size N.

In this algorithm, head will store the highest particle index in each cell, while linkedlist

will point the next highest index inside the cell. For example, if the cell number 3 has the
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particles 1, 5, 6 inside, then head[3] = 6 and linkedlist[6] = 5, linkedlist[5] =

1, linkedlist[1] = -1 (-1 will indicate there is no other particle in a cell). This means

every particle in a cell can be quickly accessed, and assigning the particles to cells is a very

fast procedure computationally. One of the ways to do is:
1 // Start by initializing the head array with -1 values

head[numcell_x * numcell_y] = {-1};

3 for(i = 0; i < N; i++){

// Flatten the 2D array , each cell will now have an unique value assigned

to it

5 currentCell = numcell_x * floor(particle_y / cellsize_y) + floor(

particle_x / cellsize_x);

// Make linkedlist[i] point to the currently highest particle index in

its cell

7 linkedlist[i] = head[currentCell ];

// The i-th particle will now be the head of its cell , since it is the

highest particle index inside it

9 head[currentCell] = i;

}

B.3 INTERACTING WITH NEIGHBORING CELLS

With the cell list now constructed, the next step involves ensuring that each particle

interacts with the particles located within its own cell as well as those in the eight surrounding

neighboring cells. Special attention must be given to correctly handling interactions across

periodic boundary conditions to maintain the physical consistency of the simulation.
// This is the outermost loop , going through all particles

2 for(i = 0; i < N; i++){

//Get the indices for the i-th particle 's cell

4 partcell_x = floor(particle_x/cellsize_x), partcell_y = floor(particle_y/

cellsize_y);

//Now to look at all 9 cells around the i-th particle

6 for(neighcell_x = partcell_x - 1; neighcell_x <= partcell_x + 1;

neighcell_x ++){

for(neighcell_y = partcell_y - 1; neighcell_y <= partcell_y + 1;

neighcell_y ++){

8 //Note that some languages define the modulo operator differently

for negative numbers.

//This assumes that -1 % k = k-1 for k > 1, instead of -1

10 neighcell_scalar = numcell_x * (neighcell_y % numcell_y) + (

neighcell_x % numcell_x);

}

12 }
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}

With the cell index for all cells around a particle, the only thing left is to use the linked

lists to find all particles inside them.

1 // Use the head of the neighboring cell to find the highest particle index

inside it

j = head[neighcell_scalar ];

3 // If j is -1 that means a cell is empty

while(j != -1){

5 // Due to Newton 's third law , only cases for i < j need to be considered ,

since the force of i on j is the opposite of the force of j on i

if(i < j){

7 // Caution must be taken for the distance to be measured correctly

along the edges of the system with periodic boundaries

distance(i, j);

9 if(distance < r_cutoff){

/* The forces of i to j and j to i go in here */

11 }

}

13 // Moves to the next element in the linked list , this happens until j is

-1, which indicates the final element and ends the while loop

j = linkedList[j];

15 }

note that the square root of the distance for the final step only needs to be taken if 𝑟2
𝑖𝑗 < 𝑟2

cutoff,

which can increase efficiency as the square root is a computationally slow operation.

Another effective optimization involves the use of a lookup table (LUT) to store precom-

puted force values. This method discretizes the interval [0, 𝑟cutoff] into segments of length 𝜄,

computes the force at each discretized point, and stores the resulting values in an array. Dur-

ing the simulation, the force between a pair of particles separated by a distance 𝑟𝑖𝑗 can then

be efficiently retrieved by accessing the LUT at the index ⌊𝑟𝑖𝑗/𝜄⌋. This significantly reduces

computational overhead, especially when evaluating a complex interparticle potential, such

as ones involving transcendental functions (ABELSON; SUSSMAN, 1996; GOULD; TOBOCHNIK;

CHRISTIAN, 2007; PRESS et al., 2007).
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