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RESUMO

Câmeras digitais convencionais não são capazes de capturar completamente o alcance
de iluminação das cenas (expressa por uma grandeza conhecida por luminância). Conse-
quentemente, as imagens produzidas por estes dispositivos geralmente apresentam regiões
com saturação e, portanto, informações da cena são perdidas. Métodos tradicionais para
reconstrução desse intervalo perdido pela captura não são capazes de reconstruir as tex-
turas e detalhes das cenas, produzindo resultados com artefatos nas regiões saturadas. No
presente trabalho, foram investigados métodos baseados em redes neurais convolucionais
para reconstrução de imagens com alto alcance dinâmico (HDR) a partir de apenas uma
imagem capturada com câmeras convencionais (LDR). Essas imagens HDR são capazes de
expressar com fidelidade os detalhes das cenas e se aproximam do que o sistema visual hu-
mano é capaz de capturar. O método proposto é capaz de reconstruir as regiões saturadas
das imagens de entrada com um alto grau realismo. Para alcançarmos este resultado,
diversas contribuições foram realizadas. Primeiramente, os métodos baseados em redes
convolucionais em geral aplicam o mesmo conjunto de filtros convolucionais nas regiões
saturadas e não saturadas das imagens. No entanto, as regiões saturadas não contém infor-
mação válida, o que causa ambiguidade durante o treinamento causando diversos artefatos
no resultado final. Para resolver este problema, foi proposto um mecanismo (apelidado
feature masking) para reduzir a contribuição das regiões saturadas no cálculo das con-
voluções. Além disso as funções de erro perceptual (comumente utilizadas em problemas
de síntese de imagens) para o treinamento da rede foram revisitadas e adaptadas para o
problema de reconstrução de imagens HDR. Como resultado, o método proposto é capaz
de produzir texturas realísticas e com um alto grau de fidelidade a cena original. Além
disso, como as bases de dados de treinamento para o presente problema ainda são limi-
tadas, foi proposto realizar o treinamento do método em duas etapas. Especificamente, o
método é inicialmente treinado em um número grande de imagens em uma tarefa auxiliar
(image inpainting, neste caso) e então refinado para a tarefa de reconstrução de ima-
gens HDR. Por fim, como a maioria das imagens de treinamento contém regiões simples
de serem reconstruídas, foi proposto uma estratégia para selecionar regiões difíceis para
serem utilizadas durante a etapa de refinamento da rede neural. Essa estratégia simples
é capaz de aumentar a robustez e reduzir o tempo de treinamento do método. Diversos
experimentos foram conduzidos em uma grande variedade de cenários para demonstrar
visualmente e numericamente que o método proposto é capaz de produzir imagens HDR
com alto grau de realismo e melhor que os métodos estado-da-arte. Um artigo decorrente
do presente trabalho foi aceito na conferência ACM SIGGRAPH 2020.

Palavras-chaves: Alto alcance dinâmico, Redes Neurais Convolucionais, Função de Perda
Perceptual.



ABSTRACT

Digital cameras can only capture a limited range of real-world scenes’ luminance, pro-
ducing images with saturated pixels. Existing single image high dynamic range (HDR)
reconstruction methods attempt to expand the range of luminance, but are not able to
hallucinate plausible textures, producing results with artifacts in the saturated areas. In
this thesis, we present a novel learning-based approach to reconstruct an HDR image by
recovering the saturated pixels of an input LDR image in a visually pleasing way. Pre-
vious deep learning-based methods apply the same convolutional filters on well-exposed
and saturated pixels, creating ambiguity during training and leading to checkerboard and
halo artifacts. To overcome this problem, we propose a feature masking mechanism that
reduces the contribution of the features from the saturated areas. Moreover, we adapt the
VGG-based perceptual loss function to our application to be able to synthesize visually
pleasing textures. Since the number of HDR images for training is limited, we propose to
train our system in two stages. Specifically, we first train our system on a large number of
images for image inpainting task and then fine-tune it on HDR reconstruction. Since most
of the HDR examples contain smooth regions that are simple to reconstruct, we propose
a sampling strategy to select challenging training patches during the HDR fine-tuning
stage. We demonstrate through experimental results that our approach can reconstruct
visually pleasing HDR results, better than the current state of the art on a wide range of
scenes.

Key-words: High dynamic range imaging, convolutional neural network, feature masking,
perceptual loss
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Chapter 1

INTRODUCTION

The illumination of real-world scenes is high dynamic range, however standard digital
cameras sensors can only capture a limited range of luminance. Therefore, these cameras
typically produce images with under/over-exposed areas. As an example, when attempt-
ing to capture an object in a dark indoor environment in front a bright windows, one has
to choose between properly expose the bright background or the object in the foreground.
Properly expose the background causes the information to be lost in the dark (underex-
posed) areas of the foreground (see Figure 1 left), while choosing to properly expose the
object in the foreground will cause the loss of information of the saturated (overexposed)
background (see Figure 1 right). On the other hand, it is usually not a problem for the
human eye to simultaneously register both background and foreground due to the wider
dynamic range of the human visual system (HVS) when compared to the conventional
cameras, as shown in Figure 2. This di!erence in the dynamic range of the standard cam-
eras compared to the HVS motivates several techniques that can produce high dynamic
range (HDR) images.

A large number of approaches propose to generate a HDR image by combining a
set of low dynamic range images (LDR) of the scene at di!erent exposures (DEBEVEC;
MALIK, 1997). For long exposures images, the details in dark areas are captured while
information in bright areas vanishes due to sensor saturation. For short exposures images,

Figure 1 – Standard cameras often cannot capture the high dynamic range of the scene.
The user has to choose between properly expose the background, which causes
the information to be lost in the foreground areas (left), or the foreground that
leads the information to be lost in the background (right).
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Figure 2 – Comparison of the dynamic ranges of human visual system and typical cameras
sensors. The simultaneous dynamic range can be defined as the range which
the visual system can detect objects while being in a state of full adaptation.
This sensitivity is much lower than the total working range to which the visual
system can adapt for several reasons.

the bright areas are properly registered while darker parts are lost in quantization and
noise. Combining these di!erent exposures means that both dark and bright image regions,
which are outside the range of a conventional sensor, will be represented and therefore
more information will be captured. However, these methods either have to handle the
scene motion (KALANTARI; RAMAMOORTHI, 2017; WU et al., 2018; KANG et al., 2003; SEN
et al., 2012; HU et al., 2013; OH et al., 2014) or require specialized bulky and expensive
optical systems (MCGUIRE et al., 2007; TOCCI et al., 2011). Single image dynamic range
expansion approaches avoid these limitations by reconstructing an HDR image using one
image. These approaches can work with images captured with any standard camera or
even recover the full dynamic range of legacy LDR content. As a result, they have attracted
considerable attention in recent years.

Several existing methods for single image dynamic range expansion extrapolate the
light intensity using hand-crafted features and rules (BANTERLE et al., 2006; REMPEL
et al., 2007; BIST et al., 2017), but are not able to properly recover the brightness of
saturated areas as they do not utilize context. On the other hand, recent deep learning
approaches (ENDO; KANAMORI; MITANI, 2017; LEE; AN; KANG, 2018a; EILERTSEN et al.,
2017) systematically utilize contextual information using convolutional neural networks
(CNNs) with large receptive fields. However, these methods usually produce results with
blurriness, checkerboard, and halo artifacts in saturated areas.
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In this dissertation, we present a novel learning-based technique to reconstruct an
HDR image by recovering the missing information in the saturated areas of an LDR
image. We design our approach based on two main observations. First, applying the same
convolutional filters on well-exposed and saturated pixels, as done in previous approaches,
results in ambiguity during training and leads to checkerboard and halo artifacts. Second,
using simple pixel-wise loss functions, utilized by most existing approaches, the network is
unable to hallucinate details in the saturated areas, producing blurry results. To address
these limitations, we propose a feature masking mechanism that reduces the contribution
of features generated from the saturated content by multiplying them to a soft mask.
With this simple strategy, we are able to avoid checkerboard and halo artifacts as the
network only relies on the valid information of the input image to produce the HDR
image. Moreover, inspired by image inpainting approaches, we leverage the VGG-based
perceptual loss function, introduced by Gatys, Ecker e Bethge (2016), and adapt it to the
HDR reconstruction task. By minimizing our proposed perceptual loss function during
training, the network can synthesize visually realistic textures in the saturated areas.

Since a large number of HDR images, required for training a deep neural network,
are currently not available, we perform the training in two stages. In the first stage, we
train our system on a large set of images for the inpainting task. During this process, the
network leverages a large number of training samples to learn an internal representation
that is suitable for synthesizing visually realistic texture in the incomplete regions. In
the next step, we fine-tune this network on the HDR reconstruction task using a set of
simulated LDR and their corresponding ground truth HDR images. Since most of the
HDR examples contain smooth and textureless regions that are simple to reconstruct, we
propose a simple method to identify the textured patches and only use them for fine-
tuning.

Our approach can reconstruct regions with high luminance and hallucinate textures
in the saturated areas, as shown in Figure 3. We also demonstrate trough several exam-
ples that our approach can produce better results and is faster than the state-of-the-art
methods both on simulated images and on images taken with real-world cameras.

1.1 OVERVIEW OF THIS DISSERTATION

1.1.1 Objective

The main goal of this dissertation is to develop a method for single-image HDR recon-
struction using convolutional neural networks. Given a single overexposed LDR image,
our method must be able to reconstruct an HDR image by synthesizing visually realistic
textures and details in the saturated areas.
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Figure 3 – We propose a novel deep learning system for single image HDR reconstruction
by synthesizing visually pleasing details in the saturated areas. We introduce
a new feature masking approach that reduces the contribution of the features
computed on the saturated areas, to mitigate halo and checkerboard artifacts.
To synthesize visually pleasing textures in the saturated regions, we adapt the
VGG-based perceptual loss function to the HDR reconstruction application.
Furthermore, to e!ectively train our network on limited HDR training data,
we propose to pre-train the network on inpainting task. Our method can re-
construct regions with high luminance, such as the bright highlights of the
windows (red inset), and generate visually pleasing textures (green insert).
The images have been gamma corrected for display purposes.

The specific objectives of this research are:

• To purpose an approach to mitigate halo and checkerboard artifacts present in the
current state-of-the-art methods.

• To purpose a loss function capable of synthesizing visually pleasing textures in the
saturated regions.

• To be able to e!ectively train our network on limited HDR training data.

• To be able to generalize to a wide range of scenarios such as indoor, outdoor, day
and night.

• To be able to generalize to several real-world cameras.

1.1.2 Contributions

To achieve the previously stated objectives, we made the following contributions:

1. We propose a feature masking mechanism to avoid relying on the invalid information
in the saturated regions. This masking approach significantly reduces the artifacts
and improves the quality of the final results (Figure 16).
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2. We adapt the VGG-based perceptual loss function to the HDR reconstruction task.
Compared to pixel-wise loss functions, our loss can better reconstruct sharp textures
in the saturated regions (Figure 18).

3. We propose to pre-train the network on inpainting before fine-tuning it on HDR
generation. We demonstrate that the pre-training stage is essential for synthesizing
visually pleasing textures in the saturated areas (Figure 17).

4. We propose a simple strategy for identifying the textured HDR areas to improve the
performance of training. This strategy improves the network ability to reconstruct
sharp details (Figure 17).

The supplementary materials and source code are available at the project website:
<https://marcelsan.github.io/SIGGRAPH2020/>.

1.1.3 Publications

The work presented in this dissertation in built on the following publication:

Marcel Santana Santos, Tsang Ing Ren and Nima Khademi Kalantari. Single Image
HDR Reconstruction Using a CNN with Masked Features and Perceptual Loss. ACM
Transactions on Graphics, 39, 4, Article 80 (July 2020).

1.1.4 Organization of the document

The present document is organized as follows:

Chapter 2 discusses the basic concepts of High Dynamic Range imaging and meth-
ods for HDR image synthesis. It also discusses the key terminology that will be used
throughout the dissertation.

Chapter 3 discusses the proposed approach for single image HDR Reconstruction,
including the feature masking strategy, our loss function and the two-stage training.

Chapter 4 discuss some implementation details, shows the result of our method and
compares them to other state-of-the-art methods. Also, we discuss several ablations we
performed to our system and show some failure cases of our method.

Chapter 5 finally presents our conclusions and list some potential directions for future
work that we think are promising.

https://marcelsan.github.io/SIGGRAPH2020/
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Chapter 2

BACKGROUND AND RELATED WORK

High dynamic range imaging enables to capture a wide range of the illumination of a
scene and therefore produces images that closely resemble what humans can see. There-
fore, HDR imaging is useful for improving the viewing experience on HDR displays or by
means of tone-mapping (OU et al., 2020). Furthermore, an HDR image represents a photo-
metric measurement of the physical lighting incident on the camera sensor. As such, HDR
panoramas can be used as a light source for synthesizing photo realistic images by using
image-based lighting (IBL) techniques (DEBEVEC, 2008). These techniques can also be
useful in the visual e!ects (VFX) movies industry to insert computer graphics generated
content in a filmed shot (DEBEVEC et al., 2000). Finally, other fields such as medical imag-
ing, simulations, virtual reality and surveillance, to name a few, can also benefit from
the more accurate lighting measurement from HDR images. Given the aforementioned
applications of HDR imaging, methods for capturing high dynamic range images have
been subject of extensive research for decades. In particular, most recently, the success of
deep learning on various image processing and synthesizes tasks (e.g. image inpainting,
style transfer, image colorization) has prompted research in developing learning-based
approaches for HDR image synthesis.

In this chapter, we introduce the relevant literature on high dynamic range image
synthesis as well as the key terminology that will be used throughout this dissertation.
We start by briefly discussing the methods that require multiple exposures (Section 2.1)
and special hardware (Section 2.2) for producing high dynamic range images. We then
focus on single-image methods in Section 2.3, which we categorize in non-learning and
learning-based methods.

2.1 MULTI-EXPOSURE METHODS

The most common method for HDR image synthesis is merging multiple low dynamic
range (LDR) images taken from the same scene at di!erent exposures (DEBEVEC; MALIK,
1997; MADDEN, 1993). This process is generally composed of two distinct steps. First,
the camera response function (CRF) needs to be estimated and inverted to obtain pixel
values that linearly corresponds to the captured luminances (DEBEVEC; MALIK, 1997;
GROSSBERG; NAYAR, 2003a). Notice that, in modern cameras systems, it is possible to
easily access these linear measurements stored in an increased precision (usually, 12-14
bits) in a RAW format. Secondly, the set of images with di!erent exposures in the linear
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domain needs to be merged to produce the final HDR image. Straightforward methods for
HDR fusion include picking one single exposure for each pixel (MADDEN, 1993) or using
a simple triangular filter (DEBEVEC; MALIK, 1997). Other more robust methods consider
noise models (MITSUNAGA; NAYAR, 1999; TSIN; RAMESH; KANADE, 2001) or even the
camera pipeline (HAJSHARIF; KRONANDER; UNGER, 2014; HEIDE et al., 2014; KRONANDER
et al., 2013) when fusing the multi-exposure images. In general, these methods produce
high quality results for tripod mounted cameras and static scenes, however dynamic scenes
or hand-held camera poses a challenging to them as robust alignment is needed to avoid
ghosting artifacts.

To account for small amounts of camera shake or motion, the LDR sources may be
globally registered (WARD, 2003; TOMASZEWSKA; MANTIUK, 2007). The static pixels will
have the same color across the multi-exposure images stack and then can be merged into
an HDR image as usual. If a pixel is moving, these methods detect it and reject it. Existing
approaches have di!erent ways of rejecting the ghosting regions. While several methods
propose specific formulations for detecting these regions (JACOBS; LOSCOS; WARD, 2008;
JINNO; OKUDA, 2008; GALLO et al., 2009; MIN; PARK; CHANG, 2009; WU et al., 2010), other
algorithms do not require the explicit identification of the ghosted pixels at all (KHAN;
AKYUZ; REINHARD, 2006; EDEN; UYTTENDAELE; SZELISKI, 2006; HEO et al., 2010).

On the other hand, for dynamic scenes with large motions, the problem is more chal-
lenging demanding registration on the local level. These approaches try to align the dif-
ferent exposures before merging them into the final HDR image. Although the problem of
image alignment has been subject of extensive study in the computer vision community
for decades, its application for the HDR imaging is far from trivial. Here, the input images
have di!erent exposures and therefore violate the color constancy assumption. Even if we
use the inverse of camera response function to map the pixels to the linear domain, these
pixels will have regions that are too dark or bright and should therefore not be consid-
ered for alignment. The simpler approaches to align the LDR images solve for a simple
transformation (such as translation or homography) that accounts for camera motion be-
tween exposures (LI et al., 2017; AKYÜZ, 2011; YAO, 2011). More sophisticated alignment
methods are based on optical flow (HAFNER; DEMETZ; WEICKERT, 2014; ZIMMER; BRUHN;
WEICKERT, 2011) or patch-based (SEN et al., 2012; HU et al., 2013) approaches.

It is also important to mention, a few recent methods have shown considerable im-
provements in dynamic scenes by using learning-based methods. These methods are in
essence extensions of the optical flow algorithm which use learned-based approaches to
improve their results. For instance, Kalantari and Ramamoorthi (2017) address the multi-
exposure fusion by using a convolutional neural network. This CNN-based fusion method
improves their results as it can correct the misalignment caused by the optical flow. Yan
et al. (2019) replace the optical flow by an attention neural network that excludes mis-
aligned regions of the LDR sources. These images are then merged by using a fusion
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neural network. Chaudhari et al. (2019) also purpose to use a CNN for fusing the di!er-
ent exposures. However, they take as input RAW measurements to avoid common error
propagation e!ects such as demosaicing artifacts, color distortions, or image alignment er-
rors that are commonly amplified by the HDR merging step. While these methods present
high-quality HDR results, they are still highly dependent on the number of exposures.

For a complete discussion, survey and categorization on multi-exposure fusion meth-
ods, we refer to the state-of-the-art report by Tursun et al. (2015).

2.2 SPECIFIC CAMERA HARDWARE

Another class of techniques for HDR image synthesis leverage specific optical systems or
sensors for capturing HDR images in a single shot. For example, a few methods propose
cameras with multiple sensors (MCGUIRE et al., 2007; TOCCI et al., 2011). The beam-
splitter is placed behind the lens in the camera body and splits the light onto each
sensor. This enables capturing a wider dynamic range than conventional cameras as each
sensor will capture di!erent exposures by restricting the light in each of them using
di!erent ND filters. Several approaches propose to reconstruct HDR images from coded
per-pixel exposure (SERRANO et al., 2016; HEIDE et al., 2014; HAJISHARIF; KRONANDER;
UNGER, 2015) or modulus images (ZHAO et al., 2015). These approaches can produce high-
quality results even on dynamic scenes as they capture the entire image in a single shot.
Unfortunately, they demand cameras with specific hardware that are often bulky and
expensive and, therefore, are not available to the general public.

2.3 SINGLE IMAGE METHODS

Single image methods aim to reconstruct HDR images without requiring any special
equipment or capturing techniques, nor multiple exposures. Therefore, the methods in
this category can be easily applied to images or videos obtained from various sources such
as standard cameras or the Internet. This flexibility makes the single-image methods more
compelling as they enable the LDR content to be used in HDR applications such as the
ones we mentioned at the beginning of this chapter (image-based lighting, HDR displays,
tone-mapping etc.), see Figure 4 for a reference.

The problem of single image HDR reconstruction, also known as inverse tone-mapping
(BANTERLE et al., 2006), has been extensively studied in the last couple of decades. How-
ever, this problem remains a major challenge as it requires recovering the details from
regions with missing content. In this section, we discuss the existing techniques of single
image HDR reconstruction by classifying them into two categories of non-learning and
learning methods.
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Figure 4 – Single image HDR reconstruction methods allow the LDR content to be en-
hanced to be used in HDR applications such as HDR displays and image-based
lighting.

2.3.1 Non-learning Methods

Several approaches propose to perform inverse tone-mapping using global operators. Lan-
dis (2002) applies a linear or exponential function to the pixels of the LDR image above
a certain threshold. Bist et al. (2017) approximates tone expansion by a gamma function.
They use the characteristics of the human visual system to design the gamma curve.
Luzardo et al. (2018) improve the brightness of the result by utilizing an operator based
on the mid-level mapping.

A number of techniques propose to handle this application through local heuristics.
Banterle et al. (2006) use median-cut (DEBEVEC, 2005) to find areas with high luminance.
They then generate an expand-map to extend the range of luminance in these areas, using
an inverse operator. Rempel et al. (2007) also utilize an expand-map but use a Gaussian
filter followed by an edge-stopping function to enhance the brightness of saturated areas.
Kovaleski and Oliveira (2014) extend the approach by Rempel et al. (2007) using a cross
bilateral filter. These approaches simply extrapolate the light intensity by using heuristics
and, thus, often fail to recover saturated highlights, introducing unnatural artifacts.

A few approaches propose to handle this application by incorporating user interactions
in their system. For instance, Didyk et al. (2008) enhance bright luminous objects in video
sequences by using a semi-automatic classifier to classify saturated regions as lights, re-
flections, or di!use surfaces. Wang et al. (2007) recover the textures in the saturated areas
by transferring details from the user-selected regions. Their approach demands user inter-
actions that take several minutes, even for an expert user. In contrast to these methods,
we propose a learning-based approach to systematically reconstruct HDR images from a
wide range of di!erent scenes, instead of relying on heuristics strategies and user inputs.
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2.3.2 Learning-based Methods

In recent years, Convolutional Neural Networks (CNNs) (LECUN; BENGIO; HINTON, 2015)
have been successful in several applications, achieving state of the art performance in a
broad range of tasks including image classification (KRIZHEVSKY; SUTSKEVER; HINTON,
2012), speech processing (OORD et al., 2016), text processing (DEVLIN et al., 2018; RAD-
FORD et al., 2019) and many others. A CNN learns the weights of several filter kernels
in each layer of a deep neural network. Each represent a di!erent abstraction level. This
means that the firsts layers learn local patterns while the next layers combine these lo-
cal representations into local objects which are finally combined into high-level concepts
(such as cat, dog, car etc.) by the last convolutional layers. By convolving the image with
the learned filters, features can be extracted at di!erent spatial locations using the same
kernel. This makes neural networks for image processing and synthesis more tractable by
making the connectivity of neurons between two adjacent layers sparse reducing therefore
the number of parameters of the neural network.

Motivated by the recent development of CNNs in several image processing tasks such
as image inpainting (LIU et al., 2018; YU et al., 2019), colorization (IIZUKA; SIMO-SERRA;
ISHIKAWA, 2016; ZHANG; ISOLA; EFROS, 2016), super-resolution (TIAN et al., 2020; DONG
et al., 2014) style transfer (JOHNSON; ALAHI; FEI-FEI, 2016) and image synthesis (CHEN;
KOLTUN, 2017), several approaches have proposed to tackle the single image HDR re-
construction problem using deep convolutional neural networks. Zhang e Lalonde (2017)
pioneered introducing CNNs to predict HDR panoramas from a LDR image with the pur-
pose of using these panoramas to Image-based lighting (IBL). Endo, Kanamori e Mitani
(2017) use an auto-encoder (HINTON; SALAKHUTDINOV, 2006) to generate a set of LDR
images with di!erent exposures, from a single input LDR image. These multi-exposure
images are then combined to reconstruct the final HDR image. Lee, An e Kang (2018a)
chain a set of CNNs to sequentially generate the bracketed LDR images. Later, they
propose (LEE; AN; KANG, 2018b) to handle this application through a recursive condi-
tional generative adversarial network (GAN) (GOODFELLOW et al., 2014) combined with
a pixel-wise l1 loss.

In contrast to these approaches, a few methods (EILERTSEN et al., 2017; YANG et al.,
2018; MARNERIDES et al., 2018) directly reconstruct the HDR image without generating
bracketed images. Eilertsen et al. (2017) use a network with U-Net architecture to predict
the values of the saturated areas, whereas linear non-saturated areas are obtained from
the input. Marnerides et al. (2018) present a novel dedicated architecture for end-to-
end image expansion. Yang et al. (2018) reconstruct HDR image for image correction
application. They train a network for HDR reconstruction to recover the missing details
from the input LDR image, and then a second network transfers these details back to the
LDR domain.

While these approaches produce state-of-the-art results, their synthesized images often
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contains halo and checkerboard artifacts and lacks textures in the saturated areas. This is
mainly because of using standard convolutional layers and pixel-wise loss functions. Note
that, several recent methods (LEE; AN; KANG, 2018b; XU et al., 2019; NING et al., 2018; KIM;
OH; KIM, 2019) use adversarial loss instead of pixel-wise loss functions, but they still do not
demonstrate results with high-quality hallucinated textures. This is potentially because
the problem of HDR reconstruction is constrained in the sense that the synthesized content
should properly fit the input image using a soft mask. Unfortunately, GANs are known to
have di"culty handling these scenarios and manipulating existing images with GANs is
challenging as the synthesized content does not usually fit the original image (BAU et al.,
2019). In contrast, we propose a feature masking strategy and a more constrained VGG-
based perceptual loss to e!ectively train our network and produce results with visually
pleasing textures.
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Chapter 3

PROPOSED APPROACH

3.1 INTRODUCTION

Our goal is to reconstruct an HDR image from a single LDR image by recovering the
missing information in the saturated highlights. We achieve this using a convolutional
neural network (CNN) that takes an LDR image as the input and estimates the missing
HDR information in the saturated regions.

!"

Figure 5 – Components of Equation 3.1 to compute the reconstructed HDR image Ĥ.
Here, T 𝜔 is the input image in the linear domain, Ŷ is the network output in
the logarithmic domain and M is a soft mask that defines how well-exposed
each pixel is.

To compute the final HDR image, we combine the well-exposed content of the input
image and the output of the network in the saturated areas. Formally, we reconstruct the
final HDR image Ĥ, using the blending equation (see Figure 5) as follows:

Ĥ = M → T 𝜔 + (1 ↑ M) → [exp(Ŷ ) ↑ 1], (3.1)

where the 𝜗 = 2.0 is used to transform the input image to the linear domain, and →
denotes element-wise multiplication. Here, T is the input LDR image in the range [0, 1],
Ŷ is the network output in the logarithmic domain (Section 3.3), and M is a soft mask
with values in the range [0, 1] that defines how well-exposed each pixel is. We obtain this
mask by applying the function 𝜛(·) (see Figure 6) to the input image, i.e., M = 𝜛(T ).

In the following sections, we discuss our proposed feature masking approach, loss
function, as well as the training process.
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Figure 6 – We use this function to measure how well-exposed a pixel is. The value 1
indicates that the pixel is well-exposed, while 0 is assigned to the pixels that
are fully saturated. In our implementation, we set the threshold 𝜔 = 0.96.

3.2 FEATURE MASKING

Standard convolutional layers apply the same filter to the entire image to extract a set
of features. This is reasonable for a wide range of applications, such as image super-
resolution (DONG et al., 2015), style transfer (GATYS; ECKER; BETHGE, 2016), and image
colorization (ZHANG; ISOLA; EFROS, 2016), where the entire image contains valid infor-
mation. However, in our problem, the input LDR image contains invalid information in
the saturated areas. Since meaningful features cannot be extracted from the saturated
contents, naïve application of standard convolution introduces ambiguity during training
and leads to visible artifacts (Figure 16).

We address this problem by proposing a feature masking mechanism (Figure 7) that
reduces the magnitude of the features generated from the invalid content (saturated areas).
We do this by multiplying the feature maps in each layer by a soft mask, as follows:

Zl = Xl → Ml, (3.2)

where Xl ↓ RH→W →C is the feature map of layer l with height H, width W , and C

channels. Ml ↓ [0, 1]H→W →C is the mask for layer l and has values in the range [0, 1]. The
value of one indicates that the features are computed from valid input pixels, while zero
is assigned to the features that are computed from invalid pixels. Here, l = 1 refers to the
input layer and, thus, Xl=1 is the input LDR image. Similarly, Ml=1 is the input mask
M = 𝜛(T ). Note that, since our masks are soft, weak signals in the saturated areas are
not discarded using this strategy. In fact, by suppressing the invalid pixels, these weak
signals can propagate through the network more e!ectively.

Once the features of the current layer l are masked, the features in the next layer Xl+1

are computed as usual:

Xl+1 = 𝜀l(Wl ↔ Zl + bl), (3.3)
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Figure 7 – Illustration of the proposed feature masking mechanism. The features at each
layer are multiplied with the corresponding mask before going through the
convolution process. The masks at each layer are obtained by updating the
masks at the previous layer using Equation 3.4.

where Wl and bl refer to the weight and bias of the current layer, respectively. Moreover,
𝜀l is the activation function and * is the standard convolution operation.

We compute the masks at each layer by applying the convolutional filter to the masks
at the previous layer (See Figure 8 for visualization of some of the masks). The basic
idea is that since the features are computed by applying a series of convolutions, the same
filters can be used to compute the contribution of the valid pixels in the features. However,
since the masks are in the range [0, 1] and measure the percentage of the contributions,
the magnitude of the filters is irrelevant. Therefore, we normalize the filter weights before
convolving them with the masks as follows:

Ml+1 =
)︃

|Wl|
↗Wl↗1 + 𝜚

[︃

↔ Ml, (3.4)

where ↗ · ↗1 is the l1 function and | · | is the absolute operator. Here, |Wl| is a RH→W →C

tensor and ↗Wl↗1 is a R1→1→C tensor. To perform the division, we replicate the values of
↗Wl↗1 to obtain a tensor with the same size as |Wl|. The constant 𝜚 is a small value to
avoid division by 0 (𝜚 = 10↑6 in our implementation).

It is important to mention that a couple of recent approaches have proposed strategies
to overcome similar issues in image inpainting task (YU et al., 2019; LIU et al., 2018).
Specifically, Liu et al. (2018) propose to modify the convolution process to only apply
the filter to the pixels with valid information. Unfortunately, this approach is specially
designed for cases with binary masks. However, the masks in our application are soft and,
thus, this method is not applicable. Yu et al. (2019) propose to multiply the features at
each layer with a soft mask, similar to our feature masking strategy. The key di!erence is
that their mask at each layer is learnable, and it is estimated using a small network from
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Figure 8 – On the left, we show the input image and the corresponding mask. On the
right, we visualize a few masks at di!erent layers of the network. Note that,
as we move deeper through the network, the masks become blurrier and more
uniform. This is expected since the receptive field of the features become larger
in the deeper layers.

the features in the previous layer. Because of the additional parameters and complexity,
training this approach on limited HDR images is di"cult. Therefore, this approach is not
able to produce high-quality HDR images (see Section 4.5).

3.3 LOSS FUNCTION

The choice of the loss function is critical in each learning system. Our goal is to reconstruct
an HDR image by synthesizing plausible textures in the saturated areas. Unfortunately,
using only pixel-wise loss functions, as utilized by most previous approaches, the network
tends to produce blurry images (Figure 18). Inspired by the recent image inpainting
approaches (YANG et al., 2017; LIU et al., 2018; HAN et al., 2019), we train our network using
a VGG-based perceptual loss function. Specifically, our loss function is a combination of
an HDR reconstruction loss Lr and a perceptual loss Lp, as follows:

L = 𝜍1Lr + 𝜍2Lp (3.5)

where 𝜍1 = 6.0 and 𝜍2 = 1.0 in our implementation. We define these terms using an infor-
mal hyper-parameter search on 103 validation images. We did not perform a systematic
grid search due to the high computational cost.
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3.3.1 Reconstruction Loss

The HDR reconstruction loss is a simple pixel-wise l1 distance between the output and
ground truth images in the saturated areas. Since the HDR images could potentially
have large values, we define the loss in the logarithmic domain. Otherwise, the network
would focus heavily in the high luminance values, leading to underestimation of important
di!erences in the lower range of luminaces. This formulation for the reconstruction loss
function is motivated by the Weber-Fechner law (FECHNER, 1860). This law states that
the response of the human visual system (HVS) is close to the logarithmic in large areas of
the luminance range, which implies a logarithmic relationship between physical luminance
and the perceived brightness.

Given the estimated HDR image Ŷ (in the log domain) and the linear ground truth
image H, the reconstruction loss is defined as:

Lr = ↗(1 ↑ M) → (Ŷ ↑ log(H + 1))↗1. (3.6)

Here, the multiplication by (1↑M) ensures that the loss is computed only in the saturated
areas. This avoids the network to unnecessarily learn the non-saturated regions since we
take the information for these areas from the linear input image (as defined in Equation
3.1).

3.3.2 Perceptual Loss

Our perceptual term is a combination of the VGG and style loss functions (JOHNSON;
ALAHI; FEI-FEI, 2016) as follows:

Lp = 𝜍3Lv + 𝜍4Ls. (3.7)

In our implementation, we set 𝜍3 = 1.0 and 𝜍4 = 120.0. These terms were also de-
termined by performing a hyper-parameter search on a validation set. The VGG loss
function Lv evaluates how well the features of the reconstructed image match with the
features extracted from the ground truth. This allows the model to produce textures that
are perceptually similar to the ground truth. This loss term is defined as follows:

Lv =
]︃

l

↗𝜀l(T (H̃)) ↑ 𝜀l(T (H))↗1 (3.8)

where 𝜀l is the feature map extracted from the lth layer of the VGG network. Moreover,
the image H̃ is obtained by combining the information of the ground truth H in the
well-exposed regions and the content of the network’s output Ŷ in the saturated areas
using the mask M , as follows:

H̃ = M → H + (1 ↑ M) → Ŷ . (3.9)
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We use H̃ in our loss functions to ensure that the supervision is only provided in the
saturated areas. Finally, T (·) in Equation 3.8 is a function that compresses the range
to [0, 1]. Specifically, we use the µ-law function, a commonly-used range compressor in
audio processing, which is di!erentiable and therefore suitable for our learning system.
This function is defined as:

T (H) = log(1 + µH)
log(1 + µ) , (3.10)

where µ is a parameter defining the amount of compression. In our implementation, we
set µ = 500, which produces good results in our experiments. Since VGG is trained with
LDR images from the ImageNet dataset (DENG et al., 2009), this process is performed
in order to ensure that the input to the network is similar to the ones that it has been
trained on.

The style loss in Equation 3.7 (Ls) captures style and texture by comparing global
statistics with a Gram matrix (GATYS; ECKER; BETHGE, 2015) collected over the entire
image. Specifically, the style loss is defined as:

Ls =
]︃

l

↗Gl(T (H̃)) ↑ Gl(T (H))↗1, (3.11)

where Gl(X) is the Gram matrix of the features in layer l and is defined as follows:

Gl(X) = 1
Kl

𝜀l(X)T 𝜀l(X). (3.12)

Here, Kl is a normalization factor computed as ClHlWl. Note that, the feature 𝜀l is a
matrix of shape (HlWl) ↘ Cl and, thus, the Gram matrix has a size of Cl ↘ Cl. In our
implementation, we use the VGG-19 (SIMONYAN; ZISSERMAN, 2015) network and extract
features from layers pool1, pool2 and pool3.

As we show in Figure 18, the proposed perceptual loss function is essential for hallu-
cinating details and synthesizing realistic texture in the saturated areas, as opposed to a
simple pixel-wise l1 loss function.

3.4 INPAINTING PRE-TRAINING

Deep learning methods usually require large-scale training datasets, however large-scale
HDR image datasets are currently not available, which makes training our system a
di"cult task. Existing techniques (EILERTSEN et al., 2017) overcome this limitation by pre-
training their network on simulated HDR images that are created from standard image
datasets like the MIT Places (ZHOU et al., 2014). They then fine-tune their network on
real HDR images. Unfortunately, our network is not able to learn to synthesize plausible
textures with this training strategy (see Figure 17), as the saturated areas are typically in
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Figure 9 – The saturated areas are typically in textureless regions, such as sky, clouds
and water. As a result, the network is not able to hallucinate plausible textures
using solely the HDR images for training. We propose to pre-train our network
in an auxiliary task to encourage the network to synthesize textures.

the bright and smooth regions, such as sky, clouds and water (see Figure 9) and therefore
do not provide enough supervision for texture synthesis.

To address this problem, we propose to pre-train our network on image inpainting
tasks. Intuitively, during inpainting, the masks are obtained randomly and therefore the
missing areas are diverse. As a result, our network leverages a large number of training
data to learn an appropriate internal representation that is capable of synthesizing vi-
sually pleasing textures. In the HDR fine-tuning stage, the network adapts the learned
representation to the HDR domain to be able to synthesize HDR textures. We follow Liu
et al.’s approach 2018 and use their loss function and mask generation strategy during
pre-training. Note that we still use our feature masking mechanism for pre-training, but
the input masks are binary. We fine-tune the network on real HDR images using the loss
function, discussed in Section 3.3.

One major problem is that the majority of the bright areas in the HDR examples are
smooth and textureless and the patches containing textures are scarce. Therefore, during
fine-tuning, the network adapts to these types of patches and, as a result, has di"culty
producing textured results (see Figure 17). In the next section, we discuss our strategy
to select textured and challenging patches.

3.5 PATCH SAMPLING

Our goal is to select the patches that contain texture in the saturated areas. We perform
this by first computing a score for each patch and then choosing the patches with a high
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Figure 10 – A few example patches selected by our patch sampling approach. These are
challenging examples as the HDR images corresponding to these patches con-
tain complex textures in the saturated areas.

score. The main challenge here is finding a good metric that properly detects the textured
patches. One way to do this is to compute the average of the gradient magnitude in the
saturated regions. However, since our images are in HDR and can have large values, this
approach can detect a smooth region with bright highlights as textured.

To avoid this issue, we propose to first decompose the HDR image into base and
detail layers using a bilateral filter (DURAND; DORSEY, 2002). We use the average of the
gradients (using the Sobel operator) of the detail layer in the saturated areas as our metric
to detect the textured patches. We consider all the patches with a mean gradient above a
certain threshold (0.85 in our implementation) as textured, and the rest are classified as
smooth. Since the detail layer only contains variations around the base layer, this metric
can e!ectively measure the amount of textures in an HDR patch. Figure 10 shows example
of patches selected using this metric. As shown in Figure 17, this simple patch sampling
approach is essential for synthesizing HDR images with sharp and artifact-free details in
the saturated areas. The summary of our patch selection strategy is listed in Algorithm 1.
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Algorithm 1 Patch Sampling
procedure PatchMetric(H, M)

H: HDR image, M : Mask
𝜙c = 100.0 ↼ Bilateral filter color sigma
𝜙s = 10.0 ↼ Bilateral filter space sigma
I = RgbToGray(H)
L = log(I + 1)
B = bilateralFilter(L, 𝜙c, 𝜙s) ↼ Base Layer
D = L - B ↼ Detail Layer
Gx = getGradX(D)
Gy = getGradY(D)
G = abs(Gx) + abs(Gy)
N = G → (1 ↑ M) ↼ Computes the metric only in the saturated areas
return mean(N)

end procedure

3.6 SUMMARY

In this chapter we discuss each of the building blocks of our system. Specifically, we
discuss the feature masking mechanism and the automatic mask updating process. This
mechanism alleviates the artifacts caused by conditioning the convolutional layers on the
saturated pixels. Moreover, we discuss the changes we made to the VGG-based perceptual
loss function in order to adapt it to the HDR reconstruction task. We propose to train
the system in two stages where we pre-train the network on inpainting before fine-tuning
it on HDR generation. To encourage the network to synthesize textures, we propose a
sampling strategy to select challenging patches in the HDR examples.



34

Chapter 4

EXPERIMENTS AND RESULTS

In this chapter we present several examples verifying the quality of the HDR reconstruc-
tions on both synthetic (Section 4.2) and real camera LDR images (Section 4.3). We
then present a study of performance of our system (Section 4.4). Here, we only compare
our method to other state of the art learning-based approaches. This is because Eilert-
sen et al. (2017) demonstrated that this class of methods outperform the non-learning-
based approaches by a wide margin in several scenarios. Specifically, we compare our ap-
proach against three existing learning-based single image HDR reconstruction approaches
of Endo, Kanamori e Mitani (2017), Eilertsen et al. (2017), and Marnerides et al. (2018).
We use the source code provided by the authors to generate the results for each of these
approaches. We then show the result of several ablations we performed to show the ef-
fectiveness of each component of our system (Section 4.5). Finally, we show some failure
cases of our approach (Section 4.6) to motivate future explorations. All images that we
show in this section have been tone-mapped (exposure reduction following by a gamma
correction) for display purposes.

4.1 IMPLEMENTATION

We start by discussing some implementations details. We implement our network in Py-
Torch (PASZKE et al., 2019), but write the data pre-processing, data augmentation, and
patch sampling code in C++ for performance. We implement the feature masking mech-
anism using the existing standard convolutional layer in PyTorch, however it can be
improved both in time and space using custom layers. Nevertheless, the entire network
inference on a 512 ↘ 512 image takes 300ms on a single NVIDIA GTX 1080Ti GPU with
11GB of video memory and has competitive performance to the existing learning-based
single image HDR reconstruction approaches (see Section 4.4).

4.1.1 Architecture

We use a network with U-Net architecture (RONNEBERGER; FISCHER; BROX, 2015) similar
to the one used in Isola et al. (2017), as shown in Figure 11. We use the feature masking
strategy in all the convolutional layers and up-sample the features in each layer in the
decoder using nearest neighbor method. All the encoder layers use Leaky ReLU activation
function (MAAS; HANNUN; NG, 2013). On the other hand, we use ReLU (NAIR; HINTON,
2010) in all the decoder layers, with the exception of the last one, which has a linear
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activation function. We use skip connections between all the encoder layers and their
corresponding decoder layers to concatenate the corresponding feature maps. The Table 1
contains a more detailed specification of our network architecture.

Table 1 – Our network architecture. k is the kernel size, s the stride, p the padding,
chns is the number of input and output channels for each layer, input denotes
the input of each layer with + meaning the features concatenation, and layers
starting with "nnup" perform 2x nearest neighbor upsampling. All convolutional
layers (conv_x) refer to the proposed feature masking mechanism.

Layer k s p chns input
conv_1 7 2 3 3/64 LDR image
conv_2 5 2 2 64/128 conv_1
conv_3 5 2 1 128/256 conv_2
conv_4 3 2 1 256/512 conv_3
conv_5 3 2 1 512/512 conv_4
conv_6 3 2 1 512/512 conv_5
conv_7 3 2 1 512/512 conv_6
nnup1 512/512 conv_7
conv_8 3 1 1 1024/512 nnup1 + conv_6
nnup2 512/512 conv_8
conv_9 3 1 1 1024/512 nnup2 + conv_5
nnup3 512/512 conv_9
conv_10 3 1 1 1024/512 nnup3 + conv_4
nnup4 512/512 conv_10
conv_11 3 1 1 768/256 nnup4 + conv_3
nnup5 256/256 conv_11
conv_12 3 1 1 384/128 nnup5 + conv_2
nnup6 128/128 conv_12
conv_13 3 1 1 192/64 nnup6 + conv_1
nnup7 64/64 conv_13
conv_14 3 1 1 67/3 nnup7+input

4.1.2 Dataset

We use di!erent datasets for each training step (pre-training and fine-tuning) of our
method. We summarize each of them and the pre-processing methods (when necessary)
in the following sections.

4.1.2.1 Inpainting pre-training

For the image inpainting step, we use the MIT Places (ZHOU et al., 2014) dataset with
the original train, test, and validation splits. We choose Places for this step because it
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Figure 11 – The proposed network architecture. The model takes as input the RGB LDR
image and outputs an HDR image. We use a feature masking mechanism in
all the convolutional layers.

contains a large number of scenes (≃ 2.5M images) with diverse textures. We use the
method of Liu et al. 2018 to generate masks of random streaks and holes of arbitrary
shapes and sizes.

4.1.2.2 HDR fine-tuning

For the HDR fine-tuning step, we collect approximately 2,000 HDR images from 735 HDR
images and 34 HDR videos collected from various sources. We generate the input LDR
images for our system following the approach by Eilertsen et al. 2017.

Specifically, for each HDR image in the dataset, Eilertsen et al. 2017 setup a virtual
camera that simulates several cameras attributes such as exposure (selected so that 5-
15% of the total number of pixels are saturated), camera curve, white balance and noise.
The di!erent camera curves are approximated using a parametric function in form of a
sigmoid,

f(H) = (1 + 𝜙) Hn

Hn + 𝜙
(4.1)

The parameters n and 𝜙 are selected to fit the mean of the database of camera curves
collected by Grossberg e Nayar (2003b), where n = 0.9 and 𝜙 = 0.6 gives a good fit as
shown by Eilertsen et al. 2017. For randomly selecting the camera curves in the training
data synthesis, these parameters are drawn from normal distributions around the fitted
values, n ≃ N (0.9, 0.1) and 𝜙 ≃ N (0.6, 0.1). Moreover, the noise in the virtual camera
is simulated by injecting an additive Gaussian noise with variance sampled in the range
[0, 0.01]. The virtual camera shots with several randomly selected attributes to obtain the
images used as input for the network.

Along with the aforementioned virtual camera augmentation we also employ other
standard augmentation strategies. Specifically, augmentation in terms of colors is accom-
plished in the HSV color space. Here, we modify the hue and saturation channels by
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Table 2 – Numerical comparison in terms of mean square error (MSE) and HDR-VDP-
2 (MANTIUK et al., 2011) against existing learning-based single image HDR
reconstruction approaches.

Method MSE HDR-VDP-2
Endo, Kanamori e Mitani (2017) 0.0390 55.67
Eilertsen et al. (2017) 0.0387 59.11
Marnerides et al. (2018) 0.0474 54.31
Ours 0.0356 63.18

adding a random perturbation h̃ ≃ N (0, 7) and s̃ ≃ N (0, 0.1) respectively. We also apply
random flipping with a probability of 0.5 and extract 250 random patches of size 512↘512
for each image. The processed linear images represent the ground truth data, while the
inputs for training are clipped at 1. Finally, we select a subset of these patches using
our patch selection strategy (Section 3.5). We also discard patches with no saturated
content, since they do not provide any source of learning to the network. Each of the
remaining pairs are the training instances for our method. All the data pre-processing,
data augmentation, and patch sampling were done o#ine in C++.

Our final training dataset is a set of 100K input and corresponding ground truth
patches. This data augmentation approach is responsible for a training model that gen-
eralizes well to a wide range of cameras (see Section 4.3).

4.1.3 Training

We initialize our network using the Xavier approach (GLOROT; BENGIO, 2010) and train
it on image inpainting task until convergence. We then fine-tune the network on HDR
reconstruction. We train the network with a learning rate of 2 ↘ 10↑4 in both stages.
However, during the second stage, we reduce the learning rate by a factor of 2.0 when the
optimization plateaus. The training process is performed until convergence. Both inpaint-
ing and HDR fine-tuning stages are optimized using gradient descent with momentum,
employing the ADAM (adaptive moment estimation) optimizer (KINGMA; BA, 2015) with
the default parameters 𝜛1 = 0.9 and 𝜛2 = 0.999 and mini-batch size of 4. The entire train-
ing takes approximately 11 days on a machine with an Intel Core i7, 16GB of memory,
and an Nvidia GTX 1080 Ti GPU with 11GB of video memory.

4.2 RESULTS FOR SYNTHETIC IMAGES

We begin by quantitatively comparing our approach against the other methods in terms
of mean squared error (MSE) and HDR-VDP-2 (MANTIUK et al., 2011) in Table 2. The
errors are computed on a test set of 75 randomly selected HDR images, with resolutions
ranging from 1024↘768 to 2084↘2844. We generate the input LDR images using various
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Figure 12 – Histogram of the test set images of the resulting high dynamic range images
of our approach compared to the range of input LDR images. Notice that
our method is able to reconstruct and therefore expand the range of the LDR
images (clipped at relative luminance = 1 due to sensor saturation).

camera curves and exposures, similar to the approach by Eilertsen et al. (2017). We
compute the MSE values on the gamma corrected images and HDR-VDP-2 scores are
obtained on the linear HDR images. As seen, our method produces significantly better
results, which demonstrate the ability of our network to accurately recover the full range
of luminance. To further demonstrate the ability of our network to reconstruct the range
of luminance, we show in Figure 12 the resulting dynamic range of our approach on the
test set LDR images. As can be seen, our method reconstructs the missing luminance of
the LDR images (clipped at relative luminance = 1 due to sensor saturation).

Next, we compare our approach against the other methods on five challenging scenes in
Figure 13. Overall other approaches are not able to synthesize texture and produce results
with blurriness, discoloration, and checkerboard artifacts. However, our approach can
e!ectively utilize the information in the non-saturated color channels and the contextual
information to synthesize visually pleasing textures. It is worth noting that although our
approach has been trained using a perceptual loss, it can still properly recover the bright
highlights. For example, our results in Figure 13 (fifth row) are similar to Eilertsen et al.
(2017) and better than Endo, Kanamori e Mitani (2017) and Marnerides et al. (2018).

We also demonstrate that our approach can consistently generate high-quality results
on images with di!erent amount of saturated areas in Figure 14. As can be seen, the
results of all the other approaches degrade quickly by increasing the percentage of the
saturated pixels in the input LDR image. On the other hand, our approach is able to
produce high-quality results with sharp details and bright highlights in all the cases.
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Ours Input Endo Eilertsen Ours Ground truthMarneridesInput

Figure 13 – We compare our method against state-of-the-art approaches of Endo,
Kanamori e Mitani (2017), Eilertsen et al. (2017), and Marnerides et al.
(2018) on a diverse set of synthetic scenes. Our method is able to synthesize
textures in the saturated areas better than the other approaches (rows one
to four), while producing results with similar or better quality in the bright
highlights (fifth row).
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Figure 14 – We compare the performance of the proposed method against previous meth-
ods for various amounts of saturated areas. The numbers indicate the percent-
age of the total number of pixels that are saturated in the input. Although our
method slightly degrades as the saturation increases, we consistently present
better results than the previous methods.
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4.3 RESULTS FOR REAL IMAGES

We show the generality of our approach by producing results on a set of real images
taken in a variety of situations, captured with various standard cameras, in Figure 15.
Specifically, the first three images in the left are from Google HDR+ dataset (HASINOFF
et al., 2016), captured with a variety of Google’s smartphones, such as Nexus 5/6/5X/6P,
Pixel, and Pixel XL. The image in the last column is captured using a DSLR camera
Canon 5D Mark IV. These cameras provide more realistic scenarios than the synthetic
images we discussed in Section 4.2.

As we can see, all the other approaches are not able to properly reconstruct the satu-
rated regions, producing results with discoloration, blurriness and color shift, as indicated
by the red arrows. On the other hand, our method is able to properly increase the dynamic
range by synthesizing realistic textures in the saturated areas. The examples demonstrate
that our method is able to generalize to di!erent cameras and also to produce textures
that match the context in a wide range of situations and objects, such as walls, stones
and sand.

Eilertsen

Endo

Ours

Input

Marnerides

Figure 15 – Comparison against state-of-the-art approaches on images captured by stan-
dard cameras. Plausible reconstructions of textured areas can be made of
walls, stones and sand. Zoom in to the electronic version to see the di!er-
ences across the images.
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Table 3 – We evaluate the e!ectiveness of our masking and pre-training strategies by com-
paring against other alternatives in terms of MSE and HDR-VDP-2 (MANTIUK
et al., 2011). Here, SConv, GConv, IMask, and FMask refer to standard convo-
lution, gated convolution (YU et al., 2019), only masking the input image, and
our full feature masking approach, respectively. Moreover, Inp. pre-training and
HDR pre-training correspond to our proposed pre-training on inpainting and
HDR reconstruction tasks, respectively.

Method (Masking + Pre-training) MSE HDR-VDP-2
SConv + HDR pre-training 0.0402 58.43
SConv + Inp. pre-training 0.0374 60.03
GConv + HDR pre-training 0.0398 53.32
GConv + Inp. pre-training 0.1017 43.13
IMask + HDR pre-training 0.0398 58.39
IMask + Inp. pre-training 0.0369 61.27
FMask + HDR pre-training 0.0393 58.81
FMask + Inp. pre-training (Ours) 0.0356 63.18

4.4 PERFORMANCE COMPARISON

We now provide a timing comparison of our approach against the other methods. We
obtain the numbers reported in Table 4 by running each model on a CPU Intel Core
i5-6500 CPU @ 3.20GHz x 4. On average, our approach produces a single frame with
resolution of 1024 in 5.6 seconds. As we can see, our method is faster than all previous
methods. Comparing to the method of Endo, Kanamori e Mitani (2017), Eilertsen et
al. (2017), and Marnerides et al. (2018), our approach is 30, 1.5, and 3 times faster,
respectively. Our approach is also significantly faster than the three other methods for
images with resolutions of 512 ↘ 512. Notice that we implement the Feature Masking
using the existing standard convolutional layer in PyTorch. Therefore, we could achieve
even higher speed up using custom layers implemented using native PyTorch modules. We
leave for future work to explore methods for speeding up our approach to enable real-time
inference (see Section 5.1).

Table 4 – Timing comparison on CPU with the methods of Endo, Kanamori e Mitani
(2017), Eilertsen et al. (2017), and Marnerides et al. (2018) on inputs with
di!erent resolutions.

Method 512 ↘ 512 1024 ↘ 512
Endo, Kanamori e Mitani (2017) 62.8s 154.5s
Eilertsen et al. (2017) 4.1s 7.9s
Marnerides et al. (2018) 7.9s 16.9s
Ours 2.3s 5.6s
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4.5 ABLATION STUDIES

4.5.1 Feature Masking

We begin comparing our feature masking strategy against several other approaches in
Table 3. Specifically, we compare our method against standard convolution (SConv), gated
convolution (YU et al., 2019) (GConv), and the simpler version of our masking strategy
where the mask is only applied to the input (IMask). For completeness, we include the
result of each method with both inpainting and HDR pre-training. As seen, our masking
strategy is considerably better than the other methods. It is worth noting that unlike other
methods, the performance of gated convolution with inpainting pre-training is worse than
HDR pre-training. This is mainly because gated convolution estimates the masks at each
layer using a separate set of networks which become unstable after transitioning from
inpainting pre-training to HDR fine-tuning.

We also visually compare our feature masking method against standard convolution
in Figure 16. Standard convolution produces results with checkerboard artifacts (top) and
halo and blurriness (bottom), while our network with feature masking produces consid-
erably better results. These artifacts happen because standard convolutional layers treat
all input pixels as valid ones and apply the same filter to the entire image. However, our
input LDR image contains invalid information in the saturated areas. Since meaningful
features cannot be extracted from the saturated contents, naïve application of standard
convolution introduces ambiguity during training and leads to visible artifacts, as we dis-
cussed in Section 3.2. Moreover, we visually compare our approach against other masking
strategies in Figure 17. Note that, for each masking strategy, we only show the combi-
nation of masking and pre-training that produces the best numerical results in Table 3,
i.e., gated convolution (GConv) with HDR pre-training and input masking (IMask) with
inpainting pre-training. Gated convolution is not able to produce high frequency textures
in the saturated areas. Input masking performs reasonably well, but still introduces no-
ticeable artifacts. Our feature masking method, however, is able to synthesize visually
pleasing textures. This is helpful since it removes the response from completely saturated
contents and the weak signals can propagate through the network more e"ciently. Figure
13 shows an example of this case where the outside area in the green inset is completely
saturated. However, using the weak signals, our approach is able to recover the sky, grass,
and concrete floor properly.

4.5.2 Inpainting Pre-training

Here, we study the e!ect of the proposed inpainting pre-training step by comparing it
against the commonly-used synthetic HDR pre-training in Table 3 and Figure 17. As
seen, our pre-training (“FMask + Inp. pre-training (Ours)”) performs better than HDR
pre-training (“FMask + HDR pre-training”) both numerically and visually. Specifically,
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Feature
Masking (Ours) 

Standard
Convolution

Ground truthFeature Masking (Ours) 

Figure 16 – In regions with both saturated and well-exposed content (boundaries of sky
and mountain and bright building lights), the response of the invalid satu-
rated areas in standard convolution dominates the feature maps. Therefore,
the network cannot properly utilize the content of the valid regions, introduc-
ing high frequency checkerboard artifacts (top row) and blurriness and halo
(bottom row). Our approach suppresses the features from the saturated con-
tent and allows the network to synthesize the image using the well-exposed
information.

as shown in Figure 17, our network using inpainting pre-training is able to learn better
features and synthesizes sharp textures in the saturated areas.

4.5.3 Patch Sampling

We show our result without patch sampling (Section 3.5) to demonstrate its e!ectiveness
in Figure 17. As seen, by training on the textured patches (ours), the network is able to
synthesize textures with more details and fewer objectionable artifacts.

4.5.4 Loss Function

Finally, we compare the proposed perceptual loss function against a simple pixel-wise (l1)
loss. Specifically, we train our network with only a simple pixel-wise (l1) loss and with
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OursPre-training Patch Sampling

Ground truthGConv +
HDR pre-training

FMask +
HDR pre-training

FMask +
Inp. pre-training

Ours without
patch sampling

IMask +
Inp. pre-training

Masking

Figure 17 – From left to right, we compare our method against two other masking strate-
gies as well as a pre-training method, and evaluate the e!ect of patch sam-
pling. Here, GConv, IMask, and FMask refer to gated convolution (YU et al.,
2019), only masking the input image, and our full feature masking method,
respectively. Moreover, Inp. pre-training refers to our proposed pre-training
on inpainting task.

the purposed perceptual loss function. As seen in Figure 18, using only the pixel-wise loss
function our network tends to produce blurry images, while the network trained using the
proposed perceptual loss function can produce visually realistic textures in the saturated
regions. Notice that the pixel-wise (l1) loss is fundamental for the network reconstructing
the dynamic range in the output image. Since the perceptual loss is computed to the range-
compressed images, this term is responsible for forcing the neural network to synthesize
textures and details while the pixel-wise loss for increasing the range of luminance in the
final image. For this reason, in our experiments, we did not evaluate the result of training
our method using only perceptual loss function.
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Input Only pixel-wise loss Perceptual loss (ours) Ground truth

Figure 18 – We compare the results of our network trained with only a pixel-wise loss
(l1) and the proposed perceptual loss. Using the perceptual loss function, our
network can synthesize visually realistic textures, while the network trained
with only a pixel-wise loss produces blurry results.

4.6 FAILURE CASES

Single image HDR reconstruction is a notoriously challenging problem. Although our
method can recover the luminance and hallucinate textures, it is not always able to
reconstruct all the details. One of such cases is shown in Figure 19, where our approach
fails to reconstruct the wrinkles on the curtain. Nevertheless, our result is still better
than the other approaches as they overestimate the brightness of the window and produce
blurry results. Moreover, as shown in Figure 20, when the input lacks su"cient information
about the underlying texture, our method could potentially introduce patterns that do
not exist in the ground truth image. Despite that, our result is still comparable to or
better than the other approaches. Additionally, in some cases, our method reconstructs
the saturated areas with an incorrect color, as shown in Figure 21. It is worth noting
that the network reconstruct the building in blue since trees and skies are usually next to
each other in the training data. As seen, other approaches also reconstruct parts of the
building in blue color.
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Figure 19 – Our method fails to reconstruct the wrinkles on the curtain, but it is still
better than the other approaches.

Figure 20 – Our method introduces textures that are not in the ground truth, however,
our result is still comparable to or better than previous methods.

Figure 21 – In this case, our method incorrectly reconstructs the building with sky color.
However, other approaches su!er from the same issue and reconstruct the
building with blue color. Note that, the previous two examples are synthetic,
but this one is real for which we do not have access to the ground truth image.
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Chapter 5

CONCLUSIONS

In this dissertation, we presented a novel learning-based system for single image HDR
reconstruction using a convolutional neural network. To alleviate the artifacts caused by
conditioning the convolutional layer on the saturated pixels, we proposed a feature mask-
ing mechanism with an automatic mask updating process. We showed that this strategy
reduces halo and checkerboard artifacts caused by standard convolutions. Moreover, we
proposed a perceptual loss function that is designed specifically for the HDR reconstruc-
tion application. By minimizing this loss function during training, the network is able to
synthesize visually realistic textures in the saturated areas. We further proposed to train
the system in two stages where we pre-train the network on inpainting before fine-tuning
it on HDR generation. To encourage the network to synthesize textures, we proposed a
sampling strategy to select challenging patches in the HDR examples. Our model can
robustly handle saturated areas and can reconstruct high-frequency details in a realis-
tic manner. We showed quantitatively and qualitatively comparisons that our method
outperforms previous methods on both synthetic and real-world images.

5.1 FUTURE WORK

We believe that learning-based approaches to HDR reconstruction have great potential
for future exploration. Therefore, in this section, we list some directions for future work
that we think are promising.

Temporal Coherence Although our network can be used to reconstruct an HDR video
from an LDR video, our result is not temporally stable. This is mainly because we syn-
thesize the content of every frame independently. In the future, it would be interesting
to address this problem through temporal regularization (EILERTSEN; MANTIUK; UNGER,
2019; CHEN et al., 2019).

Performance We also would like to experiment with the architecture of the network
to increase the e"ciency of our approach and reduce the memory footprint. These opti-
mizations could be performed by using, for instance, specific architectural building blocks
(SANDLER et al., 2018; IANDOLA et al., 2016), quantization (WU et al., 2016; JACOB et
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al., 2018; LIN; TALATHI; ANNAPUREDDY, 2016), or network pruning (HAN et al., 2015;
MOLCHANOV et al., 2016; SRINIVAS; BABU, 2015), to name a few methods.

Loss Function In this work, we did not consider generative adversarial networks (GANs)
as a loss function for training our approach due to stability issues in the results and dif-
ficulty posed for training GANs. Image inpainting methods based on such generative
models attempt to address these issues by proposing several changes to the generator and
discriminator and with a specific formulation of the loss. However, the quality of textures
produced by these approaches is still far from looking realistic. Our application is even
more constrained than image inpainting (soft mask, per channel saturation, as opposed
to binary mask) and, thus, using GAN is a greater challenge. Of course, this is an in-
teresting problem to solve, but the solution is not straightforward. Based on the recent
advances in both unconditional (KARRAS et al., 2020; KARRAS; LAINE; AILA, 2019) and
conditional (PARK et al., 2019) image synthesizes using GANs, we believe it is worthwhile
to investigate the interplay between these ideas and the HDR reconstruction.

Dataset Finally, in this work, we argue that a fundamental limitation of the HDR imaging
datasets is the lack of diversity and the limited number of images available. To overcome
this limitation, we train our method in two stages. In the first stage, we train our sys-
tem on a large-scale set of images for the inpainting task. In the next step, we fine-tune
this network on the HDR reconstruction task using a set of simulated LDR and their
corresponding ground truth HDR images. We also utilize several data augmentation tech-
niques, as purposed in previous work (EILERTSEN et al., 2017), to further regularize our
model. Nevertheless, we believe that it would be beneficial for the community to pur-
pose a large-scale HDR imaging dataset, which we leave for future work. This dataset
could be employed for both benchmarking HDR image synthesis methods and training
learning-based approaches.
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