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| dedicate this work to Time, the only one capable of transforming the words herein written

into lies.



"Science knows no country, because knowledge belongs to humanity, and is the torch which

illuminates the world.” Louis Pasteur (DUBOS, (1950, p. 85) .



ABSTRACT

In this work, we investigate the quasi mode-locked (QML) regime in a Yb-doped mode-locked
fiber laser, a new and largely unexplored operating phase where intensity fluctuations reveal
complex collective behavior. Although this regime may be familiar to experimentalists working
with mode-locked lasers, the QML has not been systematically studied in a fiber laser, and
only recently has its importance begun to emerge. QML typically appears in the intermediate
region between continuous-wave (CW) operation and the standard mode-locking (SLM). To
characterize this regime, we turn to statistical analysis, which offers us powerful ways to
uncover the underlying dynamics and emergent properties of the laser. By collecting realizations
(replicas) of the laser output and examining their correlations, we identify signatures of glassy
dynamics, including replica symmetry breaking (RSB). This situates the QML phase as a
new optical platform — complementary to random lasers (RLs) — for connecting concepts
from disordered magnetic systems to photonics. Beyond its glassy features, the QML regime
also displays turbulence-like behavior. By employing a dynamical stochastic model (H-theory),
we characterize Gaussian and non-Gaussian distributions on the intensity increments of the
spectra, which reveal the presence of intermittent fluctuations and scaling behavior typical
of turbulence-like dynamics. Principal component analysis (PCA) is also used to reduce the
dimensionality of the data, allowing us to find hidden structures in the data and enabling a
more robust identification of scaling regimes. The results presented in this dissertation provide
experimental evidence of turbulence in a optical phase of a fiber laser supporting mode-locking
operation. Understanding QML is not only important in itself, but also helps us to better
comprehend the fully mode-locked regime, which is of central relevance for ultra-fast laser
applications. Insights gained from studying QML can shed light on how pulses form, what
determines their stability, and so on. Overall, this dissertation establishes the QML regime as
a distinct and valuable optical phase for exploring complex collective phenomena in light. By
bridging ideas from statistical physics, nonlinear dynamics, and photonics, we highlight the
role of interaction in shaping laser dynamics, and we open new directions for understanding

complexity in optical systems.

Keywords: Quasi Mode-Locking (QML). Replica Symmetry Breaking (RSB). Turbulence.
Principal Component Analysis (PCA).



RESUMO

Neste trabalho, investigamos o regime Quasi Modos-travados (QMT) em lasers de fibra dopa-
dos com Yb. O QMT ¢é uma fase operacional ainda pouco explorada, marcada por flutuacdes
de intensidade que revelam comportamentos coletivos complexos. Embora ja conhecida por
experimentalistas que trabalham com lasers de modos-travados, essa fase ndo foi estudada
sistematicamente em um laser de fibra, com sua relevancia s6 comecando a ganhar destaque
recentemente. O QML surge tipicamente na regido intermediaria entre a operacao em onda
continua (OC) e o modo-travado padrdo (MTP). Para caracterizar esse regime, utilizamos
ferramentas estatisticas capazes de revelar dinamicas subjacentes e propriedades emergentes
do laser. A partir da andlise da emiss3o e de suas correlacdes, identificamos assinaturas tipi-
cas de sistemas vitreos, incluindo a quebra de simetria de réplica (QSR). Assim, o QML se
estabelece como uma nova plataforma — complementar aos lasers aleatérios (LAs) — para
aproximar conceitos da fisica de sistemas desordenados a fotdnica. Além das caracteristicas
vitreas, o QML também apresenta dindmicas semelhantes a turbuléncia em fluidos. Por meio de
um modelo estocastico dindmico (Teoria-H), caracterizamos distribuicdes Gaussianas e n3o-
Gaussianas nos incrementos de intensidade espectral, evidenciando flutuacdes intermitentes
e leis de escala tipicas de sistemas turbulentos. A anélise de componentes principais (ACP)
também foi aplicada para reduzir a dimensionalidade dos dados, revelando estruturas ocultas
e permitindo identificar com maior robustez os diferentes regimes. Os resultados apresentados
aqui constituem uma evidéncia experimental de turbuléncia na fase 6ptica de um laser de
fibra que suporta o travamento de modos. O estudo do QML contribui para uma compreensao
mais profunda do regime modo-travado, fundamental em aplicacdes de lasers ultrarrapidos.
As informacGes obtidas elucidam como os pulsos se formam, quais fatores determinam sua
estabilidade e outros aspectos criticos da dinamica laser. Em sintese, este trabalho consolida o
regime QML como uma fase éptica distinta e promissora para investigar fendmenos coletivos
da luz. Ao integrar conceitos da fisica estatistica, da dindmica n3o linear e da fotdnica, eviden-
ciamos o papel das interaces na evolucao da dindmica de lasers, abrindo novas perspectivas

para o estudo da complexidade em sistemas épticos.

Palavras-chaves: Quasi modo-travado (QMT). Quebra de simetria de réplica (QSR). Tur-

buléncia. Anélise de componentes principais (ACP).
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1 INTRODUCTION

The study of complex physical systems occupies a special position in modern physics, not
only because of the intrinsic intellectual challenge they pose, but also because of the unexpected
bridges that appear between seemingly distant areas of research. Although identifying features
shared by all complex systems is a challenging task, a useful — though perhaps not sufficient —
approach is to view them in terms of their interactions (ESTRADA, [2023)). In a complex system,
the whole influences the parts, the parts shape the nature of the whole, and these influences
flow both ways in a deep and inseparable manner. Therefore, fully understanding these systems
requires a conceptual toolkit that transcends the boundaries of individual disciplines, as well
as experimental platforms capable of capturing their subtleties.

Spin glasses are among the many categories of complex systems. They are magnetic materi-
als in which the internal atomic moments interact via random couplings arranged in a spatially
disordered fashion. The combined effects of disorder and frustration give rise to a remarkable
low-temperature phase: the spins “freeze” into disordered configurations, producing a state
that lacks conventional long-range magnetic order but remains highly correlated. The formal

study of these materials in the latter half of the twentieth century led to profound theoretical

advances, most notably the Replica Symmetry Breaking] (RSB)) theory introduced by the Italian

physicist Giorgio Parisi. This purely statistical framework posits that the free-energy landscape
of spin glasses is organized into a hierarchy of metastable states separated by energy barriers
of many scales. The significance of this insight, which by the end of the century was shown
to extend well beyond magnetism, was recognized in 2021 when Parisi was awarded the Nobel
Prize in Physics (PHYSICS| 2021} INOBELPRIZE.ORG, [2021b).

For many years, the evidence supporting [RSB| came entirely from theory and numerical
simulations (BARAHONA, 1982; lYOUNG, |1983; KATZGRABER; PALASSINI; YOUNG, 2001), as di-
rect experiments in magnetic systems were impractical—or even impossible. Verifying [RSB]|
requires knowledge of the distribution of overlaps between different equilibrium states of the
same disorder realization. Experimentally, this is unfeasible because it is impossible to prepare
two identical spin glasses and measure their full spin configurations. Also, macroscopic ele-
ments like magnetization or susceptibility only provide averaged information. In addition, the
extremely slow dynamics of spin glasses prevent them from reaching true equilibrium, so any

apparent [RSB]| signature could be masked by non-equilibrium effects.
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A turning point occurred when analogies were drawn between spin glasses and disordered
photonic systems, particularly in the context of random lasers (RLs) (ANGELANI et al), 2006a)).
In these lasers, the feedback is not provided by a traditional mirror-based cavity. Instead, it
comes from multiple scattering processes within a disordered gain medium, creating a situation
in which the electromagnetic field experiences a complex interference landscape akin to the spin
configurations in a glassy magnet. The influential work of Angelani et al.| (2006a)) demonstrated
that, under certain approximations, the dynamics of the optical modes in a[RL] could be mapped
onto a disordered Hamiltonian with the same structure as that of a spin glass. This mapping was
not merely an analogy; it predicted that a true thermodynamic glass transition, accompanied
by [RSB] should occur in such systems. This prediction was later confirmed experimentally
(GHOFRANIHA et al., 2015} GOMES et al., 2016b)).

Since that first observation, [RSB| has been identified in an expanding range of optical

platforms, most recently in a [Mode-locked Fiber Laser| (MLFL) (ALVES et al) 2024). This

system is of particular relevance to this dissertation, since it is the one we will base our
work. In the mode-locked regime, the longitudinal modes of the laser cavity become phase-
synchronized, generating ultrashort pulses whose formation and stability depend sensitively on

the balance of dispersion, nonlinearity, gain, and loss (CAMPOS, 2020). A remarkable aspect

of this work is the identification of a phase preceding |Standard Mode-Locked| (SML]J), known

as the |Quasi-Mode-Locking| (QML]) regime, which can be characterized as a glassy transition

from basic |Continuous-Wave| (CW)) operation to the and is described by [RSB| Thus, this

system provides a new platform to verify [RSB]| theory, while also uncovering insights into pulse
dynamics.

In parallel with these developments, a second conceptual connection has begun to attract
attention: the link between photonics and turbulence. Turbulence, long considered one of the
most difficult challenges in classical physics, is characterized by multiscale energy cascades,
intermittency, and strongly non-Gaussian statistics. Remarkably, these features have been ob-
served in the intensity fluctuations of random lasers (GONZALEZ et al., |2017)) and have appeared
as indicators in the [QML] regime. This suggests that the tools of turbulence theory can be prof-
itably applied to optical data. Furthermore, models such as the H-theory (GONZALEZ, 2017)
provide a natural language for systems whose dynamics are governed by a hierarchy of coupled
processes occurring on well-separated time scales, a situation that arises in both hydrodynamic
turbulence and complex laser dynamics.

This work has three intertwined goals. First, it focuses on offering a comprehensive and
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in-depth study of the [QML] region, a regime familiar to experimentalists in daily laboratory
practice. Second, and the most straightforward, is to present original experimental results and

analysis on the subjects of [RSB| and turbulence-like statistics occurring in a single optical

platform — namely, a Yb-doped [Mode-locked Fiber Laser| (MLFL)) operating via

[Polarization Rotation| (NPR)). Third, but by no means least, is to consolidate, in a unified

text, the theoretical and experimental background needed to undertake such studies, thereby
producing a resource for researchers entering the field.

This dissertation represents a compilation of my studies during my master’s program. The
text is structured as introductory material that leads the reader from the theory of magnetic
spin glasses, through its translation into the optical domain, to a detailed description of our
experimental system, and concludes with an introduction to statistical approaches to turbu-
lence, analysis techniques, and their manifestation in our system. Despite being extensive, this
dissertation does not delve into complex mathematical details—a point consistently reaffirmed
throughout the text. Instead, it is rich in references that can be used to explore each topic in
greater depth. Together, these references and the dissertation itself form a powerful theoret-
ical archive for the study of disordered optical systems and their connections. Although the
chapters are interconnected, each can be read independently, allowing readers to grasp the
essential ideas of a section without reading the entire work.

The dissertation is organized into six main chapters:

» Chapter 2 provides a thorough introduction to the physics of spin glasses. It discusses
the key ingredients of disorder, mixed interactions, and frustration, and reviews the
canonical models along with the replica method and Parisi's hierarchical [RSB] solution.
This chapter’s goal is to ensure that readers are equipped with the theoretical constructs

originally devised for magnetic systems.

» Chapter 3 develops the analogy between spin glasses and disordered photonic systems. It
reviews the physics of conventional and [RLE, the role of multiple scattering as a feedback
mechanism, and the mapping of multimode phase dynamics onto spin-glass. The chapter
also surveys the key experimental demonstrations of [RSB]| in optical media, setting the

stage for the specific system studied here.

» Chapter 4 deals with the elements regarding the experiment. It describes in detail the

core elements of the Yb-doped [MLFL] the mode-locking process via [NPR] and the
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identification of the [QML] glassy phase preceding stable mode locking operation. The

statistical analysis of fluctuations is presented, with a focus on the overlap parameter as

a diagnostic for [RSB|

» Chapter 5 is devoted to the theoretical background of turbulence. It introduces the
essential concepts of turbulence, presented from a simplified historical perspective, and
establishes the statistical framework used in the analysis. Particular emphasis is given to
the H-theory and to multivariate tools such as [PCA] which serve as the methodological

basis for the following chapter.

» Chapter 6 applies these concepts to our experimental system. We begin with a descrip-
tion of the experimental apparatus and numerical procedures, followed by the statistical
analysis of the data. While the main focus is on the [QML] regime, for completeness we
also show results for the [CW] and phases. This chapter consolidates the interpre-
tation of the findings and establishes the presence of turbulent signatures in the QML

phase.

= Chapter 7 offers conclusions and perspectives. It synthesizes the main findings, discusses
their implications for the understanding of complex optical systems, and suggests possible

avenues for future research.

Together, these elements position the dissertation as both a scientific contribution and a
guide for researchers, highlighting the [QML] regime and its impact and connection with several

topics of interest in the scientific literature.
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2 PRINCIPLES OF MAGNETIC SPIN GLASSES

In 2021, the Royal Swedish Academy of Sciences awarded the Nobel Prize in Physics for
groundbreaking contributions that have profoundly advanced our understanding of complex
physical systems. Half of the prize was awarded to Giorgio Parisi “for the discovery of the
interplay of disorder and fluctuations in physical systems from atomic to planetary scales”
(NOBELPRIZE.ORG, [2021b). Parisi's research centered on unraveling the intricate behavior of
disordered systems, particularly on spin glasses, a unique class of materials where magnetic in-
teractions create complex, frozen states. His development of the theory not only demonstrated
how disorder and randomness can give rise to hidden order and structure in spin glasses, but also
established a universal framework for analyzing complexity across different physical systems.
As the Nobel Committee for Physics stated, “Giorgio Parisi has been involved in uncovering
the scaffolding of, and developing the tendrils between, a stunning range of physical systems”
(PHYSICS, 2021)). To unravel these connections, we must first contextualize the physics of spin
glasses and some kind of theoretical approach. Although spin glasses originated in condensed
matter physics, their mathematical structure and emergent behavior is closely connected to
photonic systems. In this chapter, we present the general concept of magnetic spin glasses,

focusing on their random coupling interactions and the resulting frustration. We introduce

the [Edwards-Anderson| lattice model and the infinite-range [Sherrington-Kirkpatrick| model as

foundational theoretical approaches to the spin glass phase, describe the replica method, and

discuss its implications. We also outline Parisi's hierarchical [Replica Symmetry Breaking| (RSB))

ansatz as a solution to the limitations of the infinite-range model, while avoiding a deep for-

malism.

2.1 MAGNETIC SPIN GLASSES

To understand spin glasses, one must first ask the following: What is glass? In condensed
matter physics, most solids studied are crystals. In this state, the equilibrium configuration of
atoms forms a translationally periodic array with long-range order. In contrast, an amorphous
solid lacks long-range atomic order; its equilibrium atomic positions form a disordered array.
Glass falls into the category of an amorphous solid (ZALLEN) 1998). Fig. [1|illustrates the lattice

configurations of these two structural states.
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Figure 1 — Schematic drawings of the atomic arrangement in (a) a crystalline solid and (b) an amorphous solid
(glass).

(a) Crystal (b) Glass

Source: Adapted from |ZALLEN| (1998)

In Fig. [1p, the atoms are arranged in a neat, periodic, hexagonal structure, with uniform
near-neighbor distances and bond lengths. In Fig.[lp, distances and bonds vary, and there is no
well-defined periodicityﬂ. The glass state of a substance forms when a liquid is rapidly cooled,
causing the atoms to freeze into well-defined equilibrium positions around where they oscillate.
Spin glasses represent the magnetic analogue of this state. They occur in materials where the
atomic lattice can retain a crystal-like structure, but their spins (magnetic moments) adopt a
frozen disordered configuration.

To better understand this concept, we shall play a spin 'coupling game' in a regular two-

dimensional triangular lattice, where the lattice sites are represented by blue dots in Fig. [2]

Figure 2 — lllustration of a two-dimensional triangular lattice with (a) non-interacting spins, (b) spins coupled
exclusively via interactions, and (c) a single interaction introducing frustration into the
lattice.

(a) (b) (c)

Source: The Author (2025)

L Although the atomic arrangement in a glass state seems random, there is significant local correlation. Both
glass and crystals exhibit a high level of short-range order, but differ in terms of long-range order, with glass
lacking it and becoming essentially random (ZALLEN] |1998]).
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First, for simplicity, let us assume, for now, that we are dealing with Ising spins, which
can only adopt an 'up’ (1) or 'down’ (|) configuration. Second, each spin interacts with its
neighbors through ferromagnetic (FM)) or antiferromagnetic (AF|) coupling: In ferromagnetic
interactions, spins tend to align in a parallel configuration (17), while antiferromagnetic inter-
actions result in an antiparallel alignment (7]).

In the absence of magnetic interactions among moments (dashed lines in Fig. ) each
site randomly adopts an | or | orientation. This state can be achieved by introducing ther-
mal energy, where thermal fluctuations overpower interactions, causing the spins to randomly
reorient over time (STEIN, 1989). In this configuration, the lattice exhibits, on average, equal
proportions of T and | spins. This corresponds to a paramagnetic phase, characterized by
non-cooperative behavior in spin coupling (HURD) |1982). Let us "turn on' the magnetic inter-
action by reducing the temperature until the thermal effects become negligible. When only [FM|
interactions are present (depicted by solid green lines in Fig. ) the spins will tend to align
in a uniform direction. Below a certain critical temperature T, the configuration of the atoms
changes abruptly, aligning the majority of the moments in a unified direction. This minimizes
the system'’s energy, yielding a unique ground state at zero temperature where all spins are
completely parallel. At T, the lattice has experienced a phase transition from paramagnetic
to ferromagnetic (STEIN, 1989).

Complexity arises when we randomly replace a single bond with an one (zigzag
orange line in Fig. ) Evidently, the spin at the square pink site cannot satisfy all bonds
simultaneously. An upward orientation violates the coupling (J_) with the left neighbor;
a downward orientation disrupts the bonds (/) with the others. When the bonds are of
equal strength, there is a tendency for the spin to align upward, since this configuration results
in the fewest unsatisfied connections and has the lower energy. However, if |J_| = 5|J|,
where the factor 5 corresponds to the number of ferromagnetic bonds associated with the
site in question, the spin cannot align in a way that simultaneously satisfies all interactions
or lowers the energy. That is, there is no longer a clear tendency toward a minimum-energy
configuration, since any choice the site makes results in the same total energy. From this
perspective, it does not matter if the spin is oriented T or LE] A system whose interaction

cannot be satisfied simultaneously is considered frustrated. By progressively replacing more

2It is worthwhile mentioning that spin will eventually adopt an orientation, but the absence of a preferred
direction creates degenerate ground states of equal energy (neglecting any kind of anysotropy). However, a
degenerate ground state does not imply the existence of frustration
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[FM] bonds, we introduce an increasing frustration into the lattice. The same effect could be
achieved with all interactions being solely [AF| Once a direction has been chosen for one spin,
the following spins cannot establish a preferred direction, resulting in a 'frozen frustrated’ state
(MYDOSH, [1993).
This coupling game illustrates the fundamental behavior of spin glasses. Just as atoms in
a glass are frozen in random positions, the spins in a spin glass become frozen in disordered,
frustrated arrangements. A concise working definition describes spin glass
[...] as a random, mixed-interacting, magnetic system characterized by a
random, yet co-operative, freezing of spins at a well-defined temperature T
below which a highly irreversible, metastable frozen state occurs without
the usual long-range spatial magnetic order. [...] the term spin glass is

used to generically represent the class of material exhibiting the frozen-state
transition (MYDOSH, [1993] p. 3).

To clarify key terms in this definition: The term cooperative denotes systematic behavior
that arises due to interactions among spins. Basically, magnetism can be categorized into two
types based on coupling: non-cooperative systems, where spins act independently and remain
unaffected by neighboring moments, and cooperative systems, where interactions between spins
govern collective order (HURD)| |1982)). Finally, the phrase highly irreversible and metastable
state describes that, below the critical temperature 7., the spins become trapped in one
of many possible configurations for extended periods. These configurations resist returning
to prior states because of the energy barriers that separate them (this topic will be further
examined in Section [2.4)).

Building on these concepts, we have the essential ingredients for spin glasses: disorder
(randomness), mixed interactions, and frustration. Without introducing a interaction in
the triangular lattice, the system would adopt a purely ferromagnetic configuration. Introducing
randomness in the bonds and their competitive nature induces frustration, a defining feature
of the spin-glass ground state. This frustration prevents the system from settling into a simple
ordered state, leading to a highly degenerate energy landscape with many nearly equivalent
configurations.

Before diving deeper into the unique physics of spin glasses, let us briefly revisit some
classical magnetic phases that arise in a homogeneous, disorder-free lattice. When all bonds
are identical and either thermal agitation or uniform interaction dominates, the system can

manifest, but not limited to, three canonical magnetic phases: paramagnetism, ferromagnetism,
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or antiferromagnetism, each characterized by a distinct form of spin alignment and collective

excitations. In the following subsection, we try to provide a concise definition of these concepts.

2.1.1 Paramagnetism, Ferro- and Antiferromagnetism

Before the pursuit of spin glasses, some magnetic phases were already well known. Some of
the most common are the paramagnetism, ferromagnetism, and antiferromagnetism phases.
We shall give a brief description of them, but before that, it is important to define two key
properties of magnetic systems: magnetization M and magnetic susceptibility y. Magnetiza-
tion measures the extent to which a material becomes magnetized when exposed to an external
magnetic field H, reflecting the collective alignment of microscopic magnetic moments within
the material. Magnetic susceptibility quantifies this response, indicating how easily the inter-
nal moments of a material realign under an applied field, typically expressed as x = OM/0H

(GUIMARAES, |1998)). These two properties enable us to characterize different magnetic phases.

Figure 3 — lllustration of a one-dimensional spin chain in (a) a paramagnetic phase, (b) a ferromagnetic phase,
and (c) an antiferromagnetic phase.

(a)

-
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Source: The Author (2025)
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Paramagnetism: As already mentioned, the paramagnetic state is a non-cooperative form of
magnetism. This phenomenon emerges from individual magnetic moments that, under
perfect conditions, are identical and exist in an isotropic environment sufficiently isolated
to behave independently. The orientation of each spin is randomized by its thermal

energy, resulting in no magnetic order in the system (HURD, 1982). However, when an
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external magnetic field H is applied, the spins align partially with the field direction, the
degree of alignment depending on the field strength. Paramagnetism is characterized
by x > 0, where susceptibility varies inversely with temperature (x o 1/7). While
increasing the magnetic field enhances spin alignment, raising the temperature disrupts
it. Consequently, magnetization depends on the ratio H/7" (BLUNDELL, [2001). The
idealized paramagnetism posits that the spins are entirely independent. In reality, a
weak exchange coupling between spins is often present. Below a critical temperature,
cooperative magnetism emerges as these interactions overcome thermal energy. This

behavior is captured by the Curie-Weiss law (HURD, |1982)

where C' is the Currie constant and 6 marks the onset of interaction dominance over
thermal fluctuations, i.e., the temperature where occurs a phase transition. For practical

purposes, we consider 6 as a discrete temperature (0 = Tgitical)-

Ferromagnetism : Ferromagnetism is a cooperative form of magnetism characterized by
long-range collinear alignment of spins. It exhibits spontaneous magnetization even in
the absence of an external field. This alignment arises from uniformly positive exchange
interactions throughout the system (J > 0) (HURD)| |1982)). In ferromagnetic materi-
als, the system divides into domains, each with uniform magnetization along a specific
anisotropy axis. However, neighboring domains orient their magnetization in different
directions. When an external field H is applied, the domains aligned favorably between
H and the axial vector D (preferred spin-lattice direction) expand at the expense of
others, although the magnitude of intrinsic magnetization within each domain remains
largely unchanged. The field thus makes evident on a macroscopic scale the ordering
that exists microscopically but does not alter the inherent magnetization strength within
domains. Ferromagnetism is also characterized by y > 0. As the temperature increases,
thermal energy disrupts the cooperative alignment. At Curie temperature T, sponta-
neous magnetization vanishes, and the system transitions to paramagnetism, obeying

Eq. [2.1] for T¢sitical = T (BLUNDELL, [2001)).

Antiferromagnetism : Like ferromagnetism, antiferromagnetism is a cooperative form of

magnetism characterized by long-range order among aligned moments. The key distinc-
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tion lies in the negative exchange interaction (J < 0), which causes neighboring spins to
orient in exactly opposite directions. This results in no net spontaneous magnetization.
The antiferromagnetic state can be visualized as two interpenetrating ferromagnetic
sublattices: one with magnetic moments aligned in one direction and the other in the
opposite direction (BLUNDELL| [2001). The temperature at which thermal energy over-
comes the exchange interaction is termed the Néel temperature (7). Above Ty, the

system transitions to paramagnetism and obeys the Curie-Weiss law (Eq. [2.1).

Fig. [3 is a representation of a one-dimensional spin chain in one of these three classical
magnetic phases. Having reviewed these foundational magnetic phases, we now return to spin

glasses and examine how randomness plays a role in their behavior.

2.1.2 Disorder and Frustration

Disorder in spin glasses arises from the introduction of randomness into the system. This
randomness can manifest itself as impurities or even topological defects. A prime example is
found in magnetic alloys, which consist of magnetic impurities with localized spins randomly
distributed within a non-magnetic host metal (MYDOSH, 1993). In fact, spin glasses were first
discovered in such materials, for instance, in non-magnetic Au doped with Fe atoms (CAN-
NELLA; MYDOSH, [1972). Canonical spin glass systems include alloys of the type Au, iFe, or
Cuz_1Mn,, where x represents the impurity concentration. Although magnetic alloys were the
first systems observed to exhibit a spin glass transition, the phenomenon is not exclusive to
them. It is also manifested in insulating hosts (MALETTA; FELSCH, 1979) and in amorphous ma-
terials formed by disrupting the crystalline lattice of intermetallic compounds (ZHOU; BAKKER,
1994)). The examples cited above are classified as site disorder. However, merely introducing
impurities into a system does not guarantee spin-glass behavior; the manner in which the
disorder is introduced is vital. Systems generally exhibit two classes of disorder regarding the
site: annealed and quenched. A way to differentiate them is to consider mixing impurities into
a liquefied solid and gradually cooling it. An annealed disorder arises if the impurities and the
host material maintain thermal equilibrium throughout cooling. In contrast, quenched disorder
occurs when impurities remain static in random positions, never equilibrating with the host or
the environment (CUGLIANDOLO), 2022). Spin glasses belong to the quenched disorder category

(GROSS; MEZARD) |1984; WEISSMAN, [1993; [DOTSENKO, 1995), where the randomness remains
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perpetually fixed or unchanged.

It is important to emphasize that site disorder is not the only mechanism for generating
spin glasses. A different mechanism was discussed in Section through the coupling game,
where the idea of bond disorder was introduced, although it was not properly named. In this
scenario, magnetic interactions .J alternate randomly between +.J and —.J (ferro- and anti-
ferromagnetically) couplings across a geometrically ordered lattice. A good example of this is
the compound RbyCu;_,Co,F, (DEKKER; ARTS; WIJN, (1988)), where Co and Cu atoms possess
[FM] and [AF| interactions distributed arbitrarily across a 2D lattice. In addition, the triangular
lattice symmetry in Fig. [2| prevents interactions from being mutually satisfied. Because of
the triangle connectivity, starting at one corner and aligning each spin antiferromagnetically
with its neighbor leads, upon returning to the initial site, to a spin orientation opposite to
the starting one. Thus, a consistent [AF]| alignment is impossible. Although this geometric con-
straint could subjectively be termed as a 'geometric disorder’, it is insufficient to produce a
spin glass state by itself. Fig. [4] illustrates the two essential types of disorder (site and bond)

required to introduce the critical randomness characteristic of a spin glass.

Figure 4 — lllustrative representation of disorder in spin glasses via: (a) site disorder, where, for example, iron
atoms (red dots) are randomly embedded in a copper lattice (green dots), each carrying a localized
magnetic moment (spin) that interacts with neighboring iron spins but has its orientation frozen;
(b) bond disorder, characterized by a roughly equal distribution of [FM] bonds (solid lines) and
bonds (zigzag lines) randomly scattered across the lattice.

(@) (b)
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Source: Adapted from |NOBELPRIZE.ORG/ (2021a)) and MYDOSH] (1993)

Disorder generates frustration: simultaneously fulfilling all the couplings is not possible.
Analyzing an isolated triangle with interactions in Fig. [2, we identify some possible spin
configurations. Frustration is an essential ingredient to establish how the ground state behaves.

Now consider a square lattice (cut from Fig. ) with spins at its corners: for the left panel

(Fig. PR), two +.J and two —J bonds are present. Determining the initial spin configuration
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Figure 5 — A square lattice with mixed (+J) and (—JJ) interactions exhibits distinct configurations:
(a) unfrustrated, and (b) frustrated.

Source: Adapted from MYDOSH| (1993)

at any corner fixes all other orientations, yielding a two-fold degenerate ground state. This
configuration is unfrustrated. In contrast, the right panel (Fig. bb) features three +.J and one
—J bonds, where no spin arrangement satisfies all interactions, resulting in frustration. The
concept is very similar to the triangular lattice, but now without the geometric constraint.
This analysis is formalized by assigning to each bond J;; (interaction between spins i and j)

a value £1. The system will be frustrated if (MEZARD; PARISI; VIRASORO) 1986])

1 Jon = —1. (2.2)

For the case in Fig. 5] it is easy to see that the configuration assumes the value of +1
in the unfrustrated configuration and —1 in the frustrated case. In an extended lattice, there
may be numerous frustrated bonds. Determining the optimal spin orientation to minimize
energy is non-trivial, as frustration creates a multidegenerate, metastable, frozen ground state.
Identifying the global minimum reduces to an optimization problem where the location of local
minima becomes significant (PAL, 1996, BOUNDS, (1987)). Furthermore, frustration is not a
tool to create spin glasses, but rather a consequence of disorder and competing interactions.
Although frustration is a necessary condition for spin glass behavior, it is insufficient on its

own (MYDOSH, [1993)).

2.2 ONE LAST LOOK ON INTERACTIONS

We now briefly examine how interactions manifest in spin glass systems. The goal is not
to provide an exhaustive description, but to list key interactions. A Hamiltonian formulation

can describe the behavior of the spin glass. Disorder, as discussed in subsection [2.1.2] typi-
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cally appears in the Hamiltonian as random couplings J among spins S. The first theoretical
framework for the spin glass phase was proposed by Edwards and Anderson| (1975), where they

defined the spin glass Hamiltonian H as

)

In their model, the Heisenberg Hamiltonian was modified by replacing the constant coupling
J with a variable J;;, representing the interaction between spins S at the lattice sites 7 and
7. Note that the spin can now assume any direction, rather than being limited to only the
up or down configurations. The notation (i, j) under the summation restricts interactions to
the nearest neighbors. First-neighbor coupling may arise via direct exchange, involving wave
function overlap between sites and Coulomb electrostatic repulsion (EISBERG; RESNICK, 1985)).
This exchange effect originates from the Pauli exclusion principle, as detailed by Hurd| (1982).
However, due to the exponential decrease in the wave function with increasing distance from
the nucleus, the resulting J;; is too small to achieve the required next-neighbor coupling.
Alternatively, indirect exchange mediates interactions over longer distances. In metallic alloys,

conduction electrons propagate spin information between sites. This mechanism is typically

modeled by the [Ruderman—Kittel-Kasuya—Yosida| (RKKY)) interaction, which for sites i and j

separated by distance r;;, takes the form (JENSEN; MACKINTOSH, 1991)

12 . 2 ~
J(rij) = mv|jol*"N (Er) [sin (2kpr;;) — 2kpr;; cos (2kprij)], (2.4)
(2]{’};‘7“1‘]')4

where v is the number of conduction electrons per atom, j, is the exchange constant, N(gp)
is the average energy density of states at the Fermi energy level ¢, and kg is the Fermi mo-
mentum. Eq. [2.4] displays an oscillatory behavior of J(r), where the interaction sign alternates
with distance. Notice that for large 7, J(r) o< 773, which remains sufficiently long-range to
influence multiple near neighbors. The interaction generates nearly symmetric numbers
of + and — bonds across the lattice. This competition between the exchanges of [FM] and [AF|
is a critical element for the behavior of the spin glass, as discussed in Section [2.1] Directly
modeling the[@] interaction is often a complex task. As an alternative, J;; can be treated
as a random variable governed by a probability distribution P(.J), typically Gaussian, which is

identical for all spin pairs (MYDOSH, 1993; |CASTELLANI; CAVAGNA, 2005)).
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P(J”) = \/2711_T6Xp l_(JgA_QJO) 1 ) (25)

where A is the variance and J; is the mean.
Another mechanism that causes spin interaction is the dipolar energy. Although generally
weak, it can play an important role in causing spin glass behavior (VILLAIN, 1979; RANCOURT et

al., 11990} |CUERVO-REYES, 2016)). It typically presents itself as (VUGMEISTER; GLINCHUK| |1990)

1
Haip = Z ﬁ[“z M — 3(m; - "ij)(ﬂj -], (2.6)
ij g

in which p is the magnetic dipole and m;; is the vector pointing from the site ¢ to the
site j, n;; = 7;;/||7;]|. In several aspects, dipole interactions bear a similarity to
interactions; competition between and interactions, and a (1/r;;)® factor. If the spins
are oriented along r;;, they align parallelly. However, if they are perpendicular to 7;;, they
align antiparallelly (VILLAIN, (1979; MYDOSH, 1993). It can be seen from Eq. that the
lowest energy configuration is obtained when g || n;;. Interactions without dipolar coupling
depends solely on distance r. Dipolar couplings introduce an angular dependence, linking to
the final topic of this section: anisotropy.

By defining spins as Ising-type at the beginning of the chapter for the coupling game,
we introduced one of the simplest forms of anisotropy in magnetic systems. The discrete
spin orientations (T or |) arise from strong uniaxial anisotropy along a preferred axis (usually
named the z-axis). It is important to note that the Heisenberg model (Eq. is isotropic,
enabling spins to orient in any 3D direction without restriction, which includes non-collinear
arrangements. Anisotropy plays a significant role in governing the frozen-in properties of spin
glasses (MYDOSH, |1993)). A preferred direction can emerge through multiple mechanisms. One
is the dipolar interaction discussed earlier. Another source is single-ion anisotropy, produced by
the local crystalline electrostatic field acting on magnetic ions. This field imposes preferential
alignment directions for magnetic moments, typically aligned with the principal axes of the
crystal lattice, resulting in magnetocrystalline anisotropy. The associated energy is expressed

in spin-only Hamiltonian form as (HURD) |1982)

He == D(S.)}. (2.7)
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This expression is valid for uniaxial symmetry. Here, D is the axial crystal field constant, and
S, represents the total spin of the ion along the local z-axis. In amorphous materials, D — D;,
where the local anisotropy D; varies in magnitude and direction for every site i. Therefore, in
these amorphous solids, there can be a random anisotropy characterized by a locally variable

preferred axis (MYDOSH, 1993). Finally, we briefly address another anisotropy type in metallic

spin glasses: the |Dzyaloshinskii-Moriya interaction| (DMI)). This exchange interaction arises

from spin-orbit coupling. The mechanism involves a conduction electron scattering off a spin
S, interacting with a nonmagnetic scatterer that exhibits strong spin-orbit coupling and
subsequently scattering off another spin S;. This intermediate spin-orbit-mediated process

underpins anisotropy. The Hamiltonian is given by (MORIYA, [1960)

Hom = Z Dij : (Si X Sj), (2-8)

i<
where D;; is the Dzyaloshinskii-Moriya (DM) vector, determined by the crystal's symmetry
and spin-orbit coupling strength. Eq. is definitely antisymmetric. The sign of the cross
product is reversed when S; and S; are interchanged. [DMI|favors the formation of a chiral spin
structure, i.e., a configuration in which the spins have a preferred direction of rotation. Camley
and Livesey| (2023) provides a comprehensive explanation of how [DMI|influences magnetic and
multiferroic materials.

In summary, the complex interactions coupled with inherent anisotropies in spin glass
systems are key to understanding their unique, frustrated behavior, and rich dynamical phe-

nomena.

2.3 DEALING WITH THE SPIN-GLASS PHASE

Now that the fundamental elements of the spin glass are well-established, we aim to
solve its thermodynamic phase. Here, solve refers to computing the Helmholtz free energy F,
from which all thermodynamic properties of the system can be derived. Statistical mechanics
provides the essential tools: once the Hamiltonian H is defined, we try to calculate the partition

function Z, defined as (KARDAR, [2007)

Z =3 e Hu (2.9)
{u}
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where 3 = (kgT)™!, kp is the Boltzmann constant, T is temperature, and the summation runs
through all configurations of the system {u}. The free energy is then obtained via (KARDAR,
2007)

Fo-lunz (2.10)

s

At this stage, it is important to clarify that our goal is not to pursue exhaustive mathe-
matical derivations of spin-glass theory. Instead, we aim to elucidate its foundational ideas,
conceptual tricks, and methodological approaches, prioritizing qualitative understanding over
quantitative rigor. A more detailed mathematical treatment can be found in the references
cited throughout this section. One might construct a spin-glass Hamiltonian by synthesizing
the elements established earlier: mixed interactions, spin-orbit coupling, etc. For example, com-
bining the interactions discussed in Section [2.2] we can arrive at a slightly generalized spin-glass

Hamiltonian:

(i) i (i)

———
; Single-ion External
Exchange Interaction anisgotropy DMI Magnetic Field

In Eq. 2.1T)we set D;; = K% and include an external magnetic field interaction, where g is
the g-factor, 11 is the vacuum magnetic permeability and 5 is the Bohr magneton. Although
this Hamiltonian is highly complex and contains many of the elements necessary discussed for
a spin glass, it is not the only formulation capable of generating this phase. An example of a
different Hamiltonian is the p-spin spherical spin glass model, which, for N continuous spins

Si, is defined as (CRISANTI; SOMMERS, (1992):

Hpsc = — > Jivig...ipSir Siy - - - Si s (2.12)

1<y <ig...<ip<N
where p > 3, and the couplings J; follow a Gaussian distribution. Unlike Ising spins (S; = +1),
this model incorporates spins as continuous real variables and constrains them by > | S? = N.
Although this system is less frustrated, it enables a more thorough analytical examination while
the model continues to exhibit fascinating behavior (BARRAT, |1997)). It is worth noting that
spin-glass phases can emerge from a diverse class of Hamiltonian models. Regardless of the
specific model, the presence of frustration and quenched disorder in these Hamiltonians con-

sistently leads to a metastable energy landscape. The absence of a single ground state may
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be related to a critical question: Is spin glass a distinct phase of matter, or is it simply a
lethargic form of paramagnetism? To handle this, we can try to find evidence of a thermody-
namic phase transition: an abrupt change in the magnetic and thermodynamic properties of
the system. (Cannella and Mydosh| (1972), studying iron-gold alloys, observed, among other
things, a sharp change in magnetic susceptibility x below a certain critical temperature TSGﬂ,
suggesting a phase transition. We also would expect discontinuities in thermodynamic re-
sponse functions (e.g., specific heat) for second-order transitions. However, experiments on
spin glasses (MARTIN, 1979; |GALAZKA; NAGATA; KEESOM, |1980]; [NAGATA et all, 1980) reveal
no abrupt changes; instead, the specific heat exhibits a broad, continuous temperature depen-

dence. Despite this discrepancy, theorists initially explored disordered systems using simplified,

analytically tractable models to unravel spin glass thermodynamics. The [Edwards-Anderson|

(EA) model (Eq. , as previously discussed, was among the first and simplest to describe
spin glass behaviof?| (EDWARDS; ANDERSON| [1975)). They used a Gaussian distribution (Eq.

with zero mean and unitary variance for the coupling parameter.

2.3.1 Order parameter and the replica trick

In order to characterize a phase transition, it is necessary to define an order parameter,
which is a variable that quantifies the degree of order within a system phase. This order
parameter assumes a nonzero value when below a critical temperature, while it becomes zero
when above this temperature. In the context of a ferromagnetic system, the order parameter
typically corresponds to the net average magnetization per spin, essentially representing the

average spin value (NISHIMORI, 2001).

(M) = ]1V§: (2.13)

While magnetization serves as the order parameter for ferromagnetism, antiferromagnetism
lacks net magnetization due to equal populations of spins aligned in opposite directions. In-
stead, we use a sublattice magnetization (M), as antiferromagnetism comprises two inter-
penetrating sublattices, as mentioned in subsection 2.1.1] Here, M, # 0 below the Néel

temperature 1. However, in spin glass systems, both M and Mg, vanish above and below

3Tsq : Spin glass critical temperature.

#This same Hamiltonian (with a slight modification in the coupling parameter .J) can also capture conventional
magnetic phases such as paramagnetism, ferromagnetism, and antiferromagnetism. It is usually refereed as
the Ising Model, in honor of the german physicist Ernst Ising.
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the critical temperature Ts, which has no difference to the paramagnetic state. Due to the
absence of long-range order, traditional parameters that emphasize spatial correlation are not
applicable. Therefore, it is necessary to introduce a new order parameter. The [EA] model ad-
dresses this by focusing on temporal order. If a spin at a site ¢ is frozen into a certain direction,
there is a nonvanishing probability that it will point in the same direction a long time later

(EDWARDS; ANDERSON, (1975)). Therefore, we can define a correlation parameter as

s = Jim 3" (S.00)- Silho 1 ). 214

The angular brackets (- - -) denote a thermal (ensemble) averaging, while the overline ==
represents a configurational average over all spins. A way to visualize qg 4 is to imagine taking
snapshots of the spin glass at widely separated times. If spins retain their orientations across
snapshots (frozen disorder), gga # 0. If orientations fluctuate randomly (paramagnetic-like
dynamics), gga = 0. Of course, gg4 = 1 at T'=0 and gga — 0 as T' — Tsg (MYDOSH,
1993).

Now that we have a way to determine whether the system is in the spin glass phase, we must
address the Hamiltonian. The challenge is that, in principle, the system's free energy depends
on the coupling constants J. This is problematic, as it implies that the physical properties of
spin glasses vary for each distinct realization of the quenched disorder J. However, thermody-
namics dictates that for sufficiently large systems, physical properties no longer depend on J.
Quantities exhibiting this behavior are defined as self-averaging, with the free energy serving

as a example (MEZARD; PARISI; VIRASORO, 1986). That is (CASTELLANI; CAVAGNA), 2005)

lim Fy(8,J) = F(5). (2.15)

This is advantageous, as it allows us to analytically average over J, yielding results con-
sistent with the observable’s physical value. To perform this averaging for the free energy, we

must compute

To= [ (D) = 7. (2.16)

where f is free energy density (f = F/N) and p(J) the coupling probability distribution.
Utilizing Eq. and [2.10] we obtain
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F=— / dJp(J)In / dse=FHET) (2.17)

Computing Eq. is not a simple task. Nevertheless, rather than computing the integral
directly, we can calculate the average of the partition function raised to the power n, where n

is an integer (MYDOSH, 1993)

InZ = limZ _1.
n—0 n

(2.18)

This mathematical tool is known as the replica method (trick). What we do is prepare
n replicas (snapshots) of the original system, evaluate the configurational average of the
product of their partition functions, Z”, and then take the limit n — 0 . This technique is
useful because it is much easier to evaluate Z" than In Z. Utilizing the tools provided, the
[EA| model has accounted for numerous aspects of the spin glass phenomena. The use of a
temporal correlation parameter emerges as one of the most important factors, causing the
freezing process to be trackable from a statistical mechanics perspective. However, the model
does not account for everything. For example, the specific heat of 1/2 spin systems disagrees
with experimental results, except for the low-temperature linear dependence (FISCHER, 1975;

MYDOSH, [1993)), indicating that an improvement is necessary.

2.4 THE LONG-RANGE MODEL AND ITS APPROACHES

As an improvement to the [EA| model, David Sherrington and Scott Kirkpatrick proposed,

in the same year, that a proper |Mean Field Theory| (MTF|) for spin glasses should be an
exact solution of an infinite-range [EA| model (SHERRINGTON; KIRKPATRICK| [1975)). is an

approximation method used to simplify complex systems with many interacting components
by replacing detailed interactions with an average (mean) effect. Instead of tracking how every
part of the system influences every other part, each component is assumed to interact with

an average field generated by all the others. This reduces a many-body problem to a more

manageable single-body problem. The[Sherrington-Kirkpatrick| (SK]) model proposes that every

spin couples equally with every other spin, removing the nearest-neighbor approximation of the
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[EA|model. This means that the probability distribution of .J;; is assumed, although unphysically,
to be the same for all pairs (i, ), regardless of the distance between the spins (MYDOSH,
1993)). They also included a mean Jy # 0 to account for the possibility of ferromagnetism
in the Gaussian function. The infinite-range interaction also needs the scaling of the variance
and the mean by 1/v/N and 1/N respectively, so that these are now intensive quantities
(SHERRINGTON; KIRKPATRICK| 1975)).

In their work, applying the same replica trick and after extensive mathematics, they arrive
at a rather complicated expression for the partition function. Although we will not show it
here, this expression depends on dummy variables 2 and y*? associated with each distinct
pair of replicas v and 3 (where o, 5 = 1,2,...,n and n is the number of replicas). The SK
model treats all replicas as indistinguishable; a choice known as the replica-symmetric solution.

The order parameter in Eq. can now be written as

s = S ASESTY = XS =0 (219)

A 7

with the addition of a ferromagnetic parameter

mo= ¥ S = L ST =m (220)

If ¢ # 0, this indicates that there is magnetic order; if, in addition, m # 0, the magnetic
order is ferromagnetic. Therefore, the spin-glass state is characterized by ¢ # 0 and m = 0
(SHERRINGTON; KIRKPATRICK|, [1975)). The [SK| model can construct a phase diagram that real
spin-glass materials closely mimic and accurately describes certain susceptibility behaviors.
Although it yields an exact solution, the model has a fundamental flaw: the entropy as T" —
0 approaches a negative value, clearly violating the third law of thermodynamics. |Almeida
and Thouless (1978) performed, a few years later, a detailed analysis of the model and
demonstrated that the solution is unstable at low temperatures in both the spin-glass and
paramagnetic phases. This instability comes from treating all replicas as indistinguishable
(o = f), an assumption that leads to invalid solutions of the mean-field model. The

theoretical remedy is to seek a solution that breaks this replica symmetry.



41

2.4.1 Parisi’'s Replica Symmetry Breaking

Some attempts to break replica symmetry were made (BLANDIN, (1978; BRAY; MOORE,

1978)), but the precise mechanism remained uncertain. The breakthrough came in 1979 with

Giorgio Parisi (PARISI, [1979a; PARISI, |1979b)), who solved the problem by proposing a hierarchi-

cal scheme of [Replica Symmetry Breaking| (RSB)) , in which replicas are grouped into clusters,

and these clusters are further subdivided in a recursive manner (PARISI, [1980; MEZARD et al.,

1984). In the glassy phase there is no unique locally stable thermodynamic state, but many
states, where each replica corresponds to different solutions to the mean field equations. These
solutions are in the N-dimensional configuration space of the N spins. This construction re-
flects the existence of a highly nontrivial energy landscape, characterized by a multitude of
metastable states and a complex organization of pure states. Let us now turn to a more

detailed, though not overly specific, treatment of the subject.

Figure 6 — Schematic representation of the spin glass multi-valley energy landscape acording to@

Free Energy r

Source: The Author (2025)
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During the freezing of a spin glass, the various spins can align their direction in many
ways, such that it can settle into many configurations with nearly the same free energy. For
T < Tse and in the thermodynamic limit N — oo, ergodicity of the configuration space can
be broken. Although the system is in equilibrium, it no longer explores the entire phase space
but is confined to particular sub-regions. Configurations that have the lowest free energy
are pure equilibrium states, while those of higher free energy are metastable. Fig. [ shows
a qualitative representation of a two-dimensional slice of the multidimensional free-energy
landscape, where the lowest-lying minima correspond to the pure states. How can we even
characterize this ensemble of states? We can write the expectation of any observable s as a

weighted probability sum over pure states (MEZARD; PARISI; VIRASORO), 1986)

(5) = 2_ wa(s)as (2.21)

where

Za
= e_(/B}—a_ﬁJr)

wa:Z ;

(2.22)

and Z, (F,) is the partition function (free energy) of the state a. A defining element of pure
states is the clustering property. This expresses the idea that the statistical correlation between

two distant points vanishes as their separation tends to infinity.

(sisj) — (si)(sj) for [|i— j| — oo. (2.23)

In other words, this reflects a form of physical locality: at large separations, the joint
expectation value factorizes into the product of individual expectation values, indicating that
distant regions no longer influence each other. Having established this, we turn our attention
to another significant point. In finite-dimensional systems (without taking the thermodynamic
limit), free-energy barriers around metastable states remain finite. Hence, the system cannot
stay indefinitely in a metastable state; it will eventually escape and settle into a minimum. In
Fig.[6] this corresponds to the system moving along high-energy paths until it falls into a valley
and becomes confined there. Thus, if the system is initially located in a metastable state, it
will inevitably transition to the stable state characterized by a lower free energy density. In

contrast, in a mean-field (infinite-dimensional) model, these barriers can become infinite as
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we apply N — oo, so that metastable configurations behave as pure states with well-defined
weights w,.

Now that we have our equilibrium states, we need a way to tell one state a from another
3. To achieve this, we introduce a “distance” d7; between them as the difference of their

average spin square (MEZARD; PARISI; VIRASORO, 1986)

By = T ((Sa— (89" (224)

By expanding this expression, we arrive at the overlap parameter, which measures similarity

between states, and is defined as

o5 = (Sl (225)

This overlap is not the same as in Eq. 2.19] Here the parameter (qp4) is only the

overlap state with itself, i.e., ¢gg4 = ¢ua = gps, Which does not depend on the state. Hence

diﬂ = 2(qra — Gop) (2.26)

We now have a distance measure in state space and can tell how different two states are.
Since at low temperatures, many nonequivalent pure states exist, we need to characterize its
distribution. Let us define the probability distribution of overlaps between all pairs of pure

states (MEZARD; PARISI; VIRASORO), [1986)

P(q) = Ps(q) = >_wlwjd(das — ), (2.27)
af
where the overbar denotes an average over realizations of the coupling J. The function P(q)
above captures the full landscape of pure states in the spin glass. Let us explain this.

The function P(q) is not simply a statistical curiosity; it is the central order parameter
of the spin glass phase in mean-field theory. As mentioned before, the defining trait of spin
glass is the system becoming trapped in one of many pure states, each with its own micro-
scopic configuration and macroscopic observables. However, since these pure states are not
individually accessible experimentally, we must ask: What measurable or computable quan-

tities can meaningfully capture this complex structure? Here, the overlap distribution P(q)

provides a complete description; it gives the probability of finding two states with overlap g,
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weighting each pair by its probability of appearing in the ensemble (w,wg). Only states for
which the free-energy differences remain finite retain w, > 0, consequently contributing in
Eq. [2.27] In the thermodynamic limit, all relevant states share the same free-energy density
and therefore occur with equal probabilityﬂ (MEZARD; PARISI; VIRASORO, (1986)). We illustrate
this concept with the simplest case: the ferromagnetic Ising model at zero field. For T" > T,
there is only one pure state (all spins uncorrelated), so every configuration is identical and

P(q) =0(q — qra) = 6(0). For T' < T, we have four possible overlaps:

1 1
QTT:NZ:(SD?:NZ:?"?:”@Q,
ATl e Jp 2.28

G =qn = fV; (Si); (Si), = —]1[ ;mimi = —m?.

There are two pure states, so the function P(q) has two delta functions, one at ¢ = m2,
the other at ¢ = —m?. Note that the number of peaks in P(q) is the number of distinct
overlap values, not the number of states. For a spin glass, when the temperature is above the
critical one, the probability distribution remains a single delta at ¢ = 0 (paramagnetic phase).
However, as T is lowered below Tsg, P(q) acquires a non-trivial structure, often continuous
with weight across an interval [¢min, Gmax) (typically, this range is [0, 1]). Fig. [7]illustrates these
three different behaviors of P(q).

P(q) indicates this complex landscape with infinitely many pure states. Each value of ¢
represents the similarity between two such states. The organization of pure states represented
in the probability distribution has a profound hierarchical structure. This was one of Parisi’s
most striking insights: in the full solution, pure states are not just numerous; they are

organized in a nested, tree-like way. This means that for any three states «, 3, and 7, their

mutual overlaps satisfy the ultrametrid?| inequality (MYDOSH| [1993):

5In the thermodynamic limit, metastable states become irrelevant because their free-energy density is higher
than that of equilibrium states, so they contribute negligibly to the partition function. Moreover, the free-
energy barriers separating them scale with system size and diverge, making transitions between states effec-
tively impossible.

6The concept of ultrametricity refers to a specific geometric structure in which, for any three points A, B,
and C, their pairwise distances d(z,y) satisfy the inequality

d(A, C) < max{d(A, B),d(B,C)}.

This condition implies that the largest two distances among the three are always equal, forming isosceles (or
equilateral) triangles in the space of states.
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Figure 7 — The P(q) function in (a) a ferromagnetic above Currie temperature; (b) at a temperature T' < T¢;
and (c) for a spin glass at way below the critical temperature. All cases have no magnetic field

applied.
(a) (b) (c)
A P A P A P
0 Tq —m?2 m2  q qmax ¢

Source: Adapted from [MEZARD; PARISI; VIRASORO] ((1986])

dary > min{Qaﬁ» Qﬁ'y}- (229)

A way of visualizing is depicted in Fig. [§] End points represent states, while branches

(circles) along with all their descendants signify clusters.

Figure 8 — Tree representation of the configuration clustering

(N—-1) N

Source: The Author (2025)

To determine the overleap value g,3 between any two replicas (say a = 1 and 3 = 5), we
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backtrack them to their convergence point at the level L = 1, where the value is denoted as
¢q1. All the overlaps that lie in the same horizontal line are equal. For example, in Fig.[8] ¢12 and
q34 have equal overlap with value ¢,. However, replicas 1 and 3 have a different ¢ value since
they only join at a distinct level. Heating up the system would correspond to cutting the tree
branches. The clusters of a low temperature regime now correspond to states of the system at
high temperatures. There is an infinite number of ramifications at any temperature (keep in
mind that we are considering the limit as N — o0), below the spin-glass transition (MEZARD
et al, |1984)), depicted as dotted lines in Fig. . This means that at least the initial point of
the tree has an infinite number of descendants. The overlap ¢ values go towards one, which
represents the replica overlap with itself. Another way to visualize the ultrametric structure
is via the partition of the configurational space in Fig. [0 appearing as multiple valleys in the
energy landscape. Each valley may split into smaller sub-valleys at lower energy scales, and
this branching continues recursively.

To summarize, the overlap distribution P(q) is the true order parameter of spin glasses,
capturing the number, similarity, organization of pure states, etc. It connects abstract theory
with measurable physical behavior in disordered systems. Crucially, [RSB| provides a consistent
mean-field solution that fully solves the spin-glass phase and has proven broadly powerful,
finding applications in fields as diverse as optimization, neural networks, and information the-
ory (NOBELPRIZE.ORG, [2021a]). With this, | believe we have covered the principal elements

surrounding the spin glass phase and its theoretical foundations.

2.5 COMMENTS ON OTHER SPIN GLASS FRAMEWORKS

The [RSB| became by far the established framework for the infinite-range [SK| model, but

alternative approaches exist for the spin glass problem. The |Thouless-Anderson-Palmer| (TAP])

method provides an alternative route by directly constructing a free-energy functional (func-
tion of functions) of the local magnetizations {m;} (THOULESS; ANDERSON; PALMER, 1977)),
without relying on the replica trick. The solutions m,, derived from the [TAP| equations, when
properly weighted, correspond to the fundamental pure states described by RSB theory, and
they reveal a rich landscape of metastable states (MEZARD; PARISI; VIRASORO, |1986)). Another
approach is the cavity method. It revolves around a recursive procedure, where we analyze the
properties of a system with N spins by examining how these properties change upon the addi-

tion or removal of a single spin, thus creating a ‘cavity' This perturbative scheme reproduces



47

[TAP}like equations and highlights the same multiplicity of states.

For the short-range model, droplet theory (FISHER; HUSE, (1986) provides a scaling
picture of low-temperature behavior based on ground-state excitations. Its central idea is
that spin-glass properties are determined by their ground states. At low temperatures, low-
energy excitations in a spin glass involve the flipping of one or more contiguous spins, forming
connected domains known as “droplets” with length scale L and around a particular point x;
(MYDOSH, 1993). A fundamental prediction is that, in the thermodynamic limit and with zero
external field, a spin glass has exactly two ground states (similar to Fig. ) related by global
spin reversal: if {S;} is a ground state, then {—S;} is a ground state with the same energy.

This contrasts sharply with [RSB] theory, which implies infinitely many distinct ground states.
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3 FROM MAGNETIC DISORDER TO OPTICAL COMPLEXITY

Although numerous models have been proposed to describe the complex behavior of spin
glasses, the [RSB| framework ultimately emerged as the central theoretical approach. For a
long time, validation for [RSB] relied primarily on numerical methods, such as Monte Carlo
simulations (BAR/—\HON/—\, 1982; YOUNG| [1983; [KATZGRABER; PALASSINI; YOUNG, 2001), which,
while supportive, could not provide direct experimental confirmation. This changed with the
advent of studies in the field of optics, particularly through investigations of random lasers
and other disordered photonic media. These optical systems offered tangible, experimentally
accessible platforms where the predictions of [RSB| theory could be directly tested.

To understand why optical systems were employed, let us use the following reasoning.
Long before spin glasses emerged, it was well understood that conventional lasers admit a
Hamiltonian formulation. Certain lasers incorporate structural disorder, named
. So, this raises the question: Can we construct a disordered Hamiltonian for such systems?
However, as noted in the previous sections, disorder by itself does not guarantee spin glass
behavior. Thus, a sharper question is: Can photonic systems exhibit a counterpart to magnetic
spin glasses? An affirmative answer came with Angelani et al.| (2006a), which proposed a
profound analogy between light propagation in disordered nonlinear media and glassy systems.
Their work demonstrated that under a one-step replica-symmetry-breaking ( formalisnﬂ,
a solution with a nonzero overlap ¢ emerges, and the system undergoes a true thermodynamic
glass transition below a critical temperature. In this chapter, we will begin by reviewing the
basic principles of [RLs. Next, we will introduce the magnetic—photonic analogy and derive the
key theoretical results that link multimode laser dynamics to spin-glass models. We then turn
to the first experimental demonstration of replica symmetry breaking in a photonic system,
showing how pulse-to-pulse intensity fluctuations serve as real replicas. Finally, we will define
and discuss the order parameters that allow us to identify and characterize glassy phases in

optical media.

11IRSB| involves dividing the n replicas into clusters of size m. Consequently, there are only two overlap
parameters, go and ¢ .



49

3.1 CONVENTIONAL LASER VS. RANDOM LASER

Before describing a[RL], we first define a laser. [LASER]is an acronym for [Light Amplification]

[by Stimulated Emission of Radiation| which concisely captures its operating principle. Lasers

generate or amplify a narrow, coherent beam of Iighiﬂ with a well-defined wavelength in

the electromagnetic spectrum (THOMAS; ISAACS| 2011)). In laser action, atoms in the gain

medium are excited by a pumping source, creating a population inversion that enables optical
amplificatiorﬂ. The lasing process described above involves three essential components: the
gain (lasing) medium, the pump (excitation) source, and the optical resonator, which are

depicted in Fig. [0} Let us now give a simple description of them.

Figure 9 — Illustration of the essential elements of a laser, which mimics the original device developed by

Theodore Maiman in 1960 (MAIMAN| [1960).

Pumping Source Gain Medium
(Eletronic Flash Tube) (Ruby rod)

Optical Resonator
(Mirrors)

Source: Adapted from |[CARVALHO et al|(2024)

Gain medium : This is the material in which light amplification takes place, which may be a
solid (glasses, crystals, or semiconductors), a liquid (typically dyes) or a gas (including
mixtures). The medium has excitations that transition between energy levels when the
atom absorbs or emits light. It is in the lasing medium that the principal processes of
light emission can occur; absorption, spontaneous emission, and stimulated emission.

Absorption happens when a ground-state system of energy level F; absorbs a photon

2Although “light” strictly refers only to the visible part of the electromagnetic spectrum, here we use it to
mean all wavelengths indiscriminately.

3Amplification alone is insufficient for lasing; oscillation is also required, a condition fulfilled by the optical
cavity (GOMES et al., [2021)
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and transitions to a higher energy level E5. The excited system tends to decay back to
the ground state. If the energy difference of the levels is released as an electromagnetic

wave spontaneously, it is emitted a photon of energy

hV:AE:EQ—El, (31)

where h is the Planck constant and v is the frequency of the emitted light. Stimulated
emission arises when an excited state system is struck by a photon matching the energy

in [3.1] This induces a transition 2 — 1, amplifying the incident optical wave.

All three processes coexist: an incident photon may be absorbed by a ground state
electron or duplicated via stimulated emission. Absorption and stimulated emission are
reciprocal processes with equal probabilities (THOMAS; ISAACS, [2011)). For lasing, con-
ditions must favor stimulated emission over absorption and spontaneous emission. This
requires a population inversion, where more elements occupy excited states than ground
states. Although outside the scope of this work, a complete description of these processes

can be found in Svelto and Hanna| (2013).

Pumping source : The pumping source delivers the energy needed to invert the population of
the gain medium, alloying the amplification of the light. Pumping systems may be divided
into three categories: optical (e.g., flashlamps, continuous-arc lamps, tungsten-filament
lamps or other lasers), electrical (e.g., gas-discharge tubes or electric currents in semi-

conductors) and chemical (THOMAS; ISAACS, [2011)).

Optical resonator (cavity) : In its basic form, it is composed of two mirrors positioned on
opposite sides of the gain medium to form a resonant optical cavityﬂ One mirror is highly
reflective, while the other, the output coupler, is partially transmissive. This arrangement
results in optical feedback, where part of the coherent emission is reflected back into the
cavity, enhancing stimulated emission. The optical cavity is designed to support specific
resonant frequencies, also known as modes, which correspond to wavelengths of light
that constructively interfere within the cavity. Only light that matches these resonant
conditions is significantly amplified and is transmitted through the output coupler as an

intense, coherent beam.

*This type of cavity is usually known as Fabry-Pérot resonator (FOX; LI, [1961))
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Having reviewed the basics of a traditional laser, now we may ask: what distinguishes a
[RL from the conventional one? A [RL] is an optical device that achieves both amplification
and feedback through multiple scattering within a disordered gain medium, rather than relying
on a mirror-based cavity (WIERSMA, 2008). The concept was initially proposed by |Letokhov
(1967), yet the first evidence emerged years afterward (MARKUSHEV; ZOLIN; BRISKINA, 1986)).
Nonetheless, a significant advancement and definitive validation of the scheme were achieved
in 1994 through the work of [Lawandy et al.| (1994), in which they documented laser emission
in a highly scattering medium (TiO5 nanoparticles on an organic dye suspension). The distin-
guishing feature of a R[] from the conventional laser is the presence of scattering particles or
inhomogeneities within the gain medium. As photons propagate through this medium, they
undergo many random scattering events, which greatly extend their path length. This extended
path length enhances the probability of photons interacting with excited atoms, leading to ad-
ditional stimulated emission and amplification of light. Furthermore, some of the scattered light
may eventually return to regions it has previously traversed, effectively providing feedback for
the amplification process (NI et al., 2022). Figure [10|illustrates these random scattering paths
occurring as light traverses the medium.

Figure 10 — Depiction of scattering in asystem. Light penetrates a colloidal medium consisting of scattering

particles embedded in a gain material. Multiple scattering events extend optical paths, raising the
probability of stimulated emission.

p1ojI00

Source: Adapted from |WIERSMA)| (2000))

Let us analyze the lasing process in more detail. An external pump (e.g., second harmonic
of a Q-switched Nd:YAG laser) excites the gain medium, analogous to a traditional laser.
The excited emitters decay spontaneously, emitting broadband fluorescence photons whose
wavelengths reflect the energy-level structure of the gain material. These photons undergo

repeated elastic scattering within the disordered matrix, effectively increasing their path length
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in the gain region (ZIMNYAKOV et al., 2024). Though initially incoherent (with random phases
and directions), these photons serve as a “seed” population for stimulated emission. When
a seed photon interacts with an excited emitter of matching transition energy, it triggers
the emission of an identical photon, causing exponential intensity growth. Modes within the
random medium compete for the optical gain provided by the excited material. If spatially
overlapping modes share the same region of the gain medium, lasing in one mode saturates
the gain in that area, thereby reducing the available gain for competing modes (JIANG et
al., [2004)). This phenomenon, known as cross-saturation, leads to suppression or diminished
intensity of certain modes, favoring those with higher effective gain or modes that achieve
the lasing threshold more efficiently (WIERSMA), 2008). As pump intensity increases, both the
number and output of modes rise, though modes with the longest lifetimes (lowest lasing
thresholds) dominate in intensity. Lasing occurs when net optical gain exceeds intrinsic losses.
At the threshold, the output intensity abruptly rises, and the emission spectrum narrows,
producing either a single broad peak or sharp spectral spikes, depending on the feedback
mechanism (SAPIENZA, [2022).

Optical feedback in a [RL] comes from the multiple scattering within the gain medium.
Depending on the scattering strength, the is classified as incoherent or coherent (GOMES
et al, 2021). In the weak scattering regime, incoherent feedback produces a single, broad
emission peak. Alternatively, in the strong scattering regime, coherent feedback creates closed-
loop photon trajectories through recurrent scattering, yielding resonant modes at discrete
frequencies and multiple narrow spectral peaks (GOMES et al,, |2021). The regimes can also
be distinguished by the transport mean free path ¢*, which is the average distance before a
photon’s direction randomizes. For ¢* > A\ (wavelength of the mode), the system operates
in the non-resonant regime, where diffusive photon transport dominates, and interference
effects are negligible. Conversely, £* < X characterizes the resonant regime, where scattering
is sufficiently strong to allow photons to retrace closed-loop paths, forming effective “cavities”
where interference critically shapes lasing modes. [RL] typically exhibit low spatial coherence and
broad angular emission. Their versatility stems from compatibility with diverse materials (e.g.,
powders, liquids, polymers, biological tissues, etc.), enabling simpler, cost-effective designs
compared to conventional lasers. For an in-depth exploration of the theory and structure of

the [RLE, refer to the review articles by Wiersma (2008) and [Gomes et al.| (2021)).
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3.2 THE PHOTONIC SPIN GLASS

Now that we have a clearer picture of RLs, we can turn our attention to the phenomenon of
RSB in optical systems. As discussed at the beginning of this section, |Angelani et al. (2006a))
demonstrated that light propagation in a random, nonlinear medium can exhibit glass-like
behavior, analogous to that of magnetic spin glasses. Under rather general assumptions, they
showed that the dynamics of a multimode can be mapped onto a disordered Hamiltonian
for the phases of the modes. In their framework, the pumping rate P plays the role of the
inverse of the temperature (P 1/T)E], establishing a thermodynamic link. The complex
amplitudes of the modes are assumed to vary slowly, allowing them to be treated as quenched
variables (effectively fixed over the timescales of interest). Therefore, the relevant dynamical
degrees of freedom are in the phases of the modes, which behave similarly to spins in a
disordered magnetic system (ANGELANI et al.,, [2006a)). This hypothesis is referred to as the
quenched-amplitude approximation. Starting from coupled-mode equations that describe the
evolution of these complex amplitudes in a disordered cavity, they were able to derive an

effective “phase-only” ¢ Hamiltonian

%(90) = HO + Z qup’r COS (908 + Sop - (Pq - SOT) ; (32)
5,0,q,T
where
and
G = Gopar A AL AL A, (3.4)

Let us succinctly analyze the equations mentioned above. In Eq.[3.3] 7, and &, represent
the linear gain and loss coefficients for mode m, which possesses a fixed amplitude denoted
as A,,. The amplitude relaxation time 74 is much greater than the phase relaxation time 7,
(T4 > 7,), i.e., the amplitudes change so slowly relative to the much faster phase dynamics;

this is known as the slow-amplitude approximation. This lets us separate the dynamics into

Sfuture investigations will, in fact, connect to the reciprocal square root of the temperature (P? x 1/T)
(LEUZZI et al| [2009; ANTENUCCI et al., [2015])
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“fast” phases and “slow" amplitudes and write each mode's complex amplitude as (ANGELANI

et al., 2006al)

ak(t) = Ak(t)ei@k(t). (35)

Under the quenched-amplitude approximation, we now put Ag(t) ~ A, so it can be
treated as (quenched) constants. In this limit, H, is just an overall constant offset that does
not influence the phase dynamics directly (ANGELANI et al., 2006a). The subindices s, p, ¢,
and 7 represent the lasing modes with a respective phase ¢. The cos (¢s + ¢, — @ — ¢r)
term couples their phases in a four-body manner. The term g, referenced in Eq. serves
as a coupling parameter. It is multiplied by the mode amplitudes A;, thereby transferring the
energy contained within each mode into the coupling process. Because the cavity is random
and varies with each realization for a given pumping rate, these G, are quenched random
variables. For this reason, is convenient to take G, as random Gaussian variables (Eq.
with zero mean value ((G) = 0).

Applying the replica trick to compute the disorder-averaged free energy, they uncovered
a 1 (one-step) transition as the pump power increases. This approach revealed that,
much like in traditional spin glasses, the phase space of the system fragments into many
metastable states beyond a critical threshold, signaling the emergence of glassy behavior.
Their results not only unveil the complex and rich dynamics of light in active disordered
media, but also highlight the potential of such systems as experimental platforms for probing
the transitions (ANGELANI et al.,, 2006a). This study initiated a series of works by the
Photonics Research Group at Universita di Roma “La Sapienza” that extended theory to
disordered, nonlinear multimode optical systems (ANGELANI et al., [2006bj LEUZZI et al., 2009;
ANTENUCCI et al|, [2015; ANTENUCCI; CRISANTI; LEUZZI|, [2015af ANTENUCCI; CRISANTI; LEUZZI,
2015b; ANTENUCCI, 2016; ANTENUCCI et al., 2016).

Although the magnetic—optics analogy was established in mid-2000, significant progress
remained minimal at first. A key obstacle was that mode phases are not directly measurable, so
no viable experiment could be performed. Significant progress only came with the first exper-
imental observation of in the pulse-to-pulse mode fluctuations of a (GHOFRANIHA et
al,[2015) (more on Sec. 3.3)). This breakthrough spurred a new theoretical framework that lifts
the quenched-amplitude approximation by explicitly including mode amplitudes (ANTENUCCI

et al}, 2015). This advancement allowed the theory to describe regimes in multimodal lasers
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across varying levels of pumping, disorder, and cavity leakage. Crucially, mode intensities could
now fluctuate, saturate, and interact non-linearly, placing them on equal footing with phase
dynamics. Consequently, the effective Hamiltonian transitioned from a purely “phase-only”

cosine model to a complex-amplitude formulation:

1 2 * 1 4 * *
H= 9 > Jj(k)ajak 4l > J;kgmajakalam7 (3.6)
jk

* jklm

where the amplitudes are subject to a spherical constraint (fixed total optical power)

S al* = € = cte. (3.7)

k

The terms J](,? and J;é?m represent quadratic and quartic coupling terms, respectively.
The quadratic component describes linear interactions between modes, whereas the quartic
component governs all-to-all nonlinear interactionsﬂ This bears a direct analogy to the p-spin
spherical model as expressed in Eq [2.12] with p = 2 + 4. Consequently, this is referred to as
the spherical 2 + 4 spin glass model (ANTENUCCI; CRISANTI; LEUZZI, [2015a). Egs. [3.2] and
are equivalent. By substituting[3.5]into [3.6] relabeling indices, and appropriately redefining the
coupling coefficients, one recovers the form of Eq.[3.2]

A significant achievement of this approach is the construction of a phase diagram based
on the pumping rate and level of disorder for these photonic systems, as displayed in Fig. [I1]

The phase diagram is inherently three-dimensional (Fig. being a cut from this space),
parameterized by degrees of nonlinearity oy and « (associated with the quartic coupling term),
which span the interval [0, 1]. These parameters quantify the interplay between ordered and
disordered parts of the Hamiltonian, effectively measuring how “closed” versus “open” the
laser cavity behaves (ANTENUCCI; CRISANTI; LEUZZI, 2015a)). In other words, « usually refers
to how strongly the cavity dynamics are governed by nonlinear optical effects when compared
to the linear response. When oy = a = 1, all mode-mode couplings are purely Hermitian
(energy-conserving), corresponding to an ideal, lossless resonator. Conversely, at oy = o = 0,
couplings become entirely dissipative (non-Hermitian), resembling a maximally open cavity
where light escapes rapidly. Intermediate values smoothly interpolate between these extremes,
governing the balance between coherent feedback and radiative loss.

The phase diagram’s remaining parameters include the squared pump rate P? and the

disorder parameter R;. As noted earlier, P? serves as the inverse temperature. The disorder

%The Js remain characterized by random Gaussian distributions (ANTENUCCI et al., [2015).
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Figure 11 — Phase diagram for a closed cavity (a« = ap = 1), plotted versus disorder strength R; (vertical
axis) and effective pump parameter P? (horizontal axis), showing four regimes (Continuous-
Wave| (CW)), [Phase Locking Wave| (PLW]), [Random Laser] (RL)), [Standard Mode-Locked] (SML)))
separated by threshold lines: dotted lines denote discontinuous transitions, while solid lines are
continuous transition.
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Source: Adapted from ANTENUCCI et al,| (2015])

parameter R ;, which quantifies the relative strength of randomness in the quartic mode-mode

couplings, is defined as the ratio of the standard deviation to the mean of these couplings,

Ry="—. (3.8)

When R; = 0, the system exhibits no disorder: all four-mode interactions share identical
coupling strengths, resulting in a closed, perfectly periodic cavity. For R; > 0, we introduce
increasing amounts of quenched randomness in how different mode-quartets couple via Kerr
nonlinearity. This increases the ruggedness of the energy landscape, fostering a glassy regime.
One can change R; by controlling the structural disorder of the gain medium or cavity. For
instance, we can vary the scatterer concentration in a random laser, introduce deliberate
refractive-index inhomogeneities, or adjust roughness in a photonic-crystal device. Greater
disorder amplifies fluctuations J) relative to the mean coupling J(§4), yielding a higher R ;.

Under the replica method, the phase behavior is characterized by three order parameters.

The first is the global coherence

\/§ [e%
m= zk: Re[ag], (3.9)

with Re denoting the real part, since ay, is a complex amplitude of the mode k. This is analogous

to magnetization in spin models (Eq.[2.20]). The other two are the generalized overlap matrices
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RS 6" LS~ a8
Qop = z kz::lak (ak> R.s = 5 kz::lakak, (3.10)

These overlap matrices mirror the spin-glass overlaps of Eq.[2.25. When replica symmetry
breaks, the elements of (), and R,s are no longer uniform and are instead described by
probability distributions, indicating a complex, non-ergodic structure in the phase space. This
signifies that identical copies of the system, subject to the same macroscopic conditions, can
settle into distinct equilibrium amplitude configurations (ANTENUCCI et al/, 2016). Varying P,

a, agp, and R leads to four distinct photonic regimes in the resulting phase diagram:

= [Continuous-Wave| (CW)): In this regime, the laser modes oscillate incoherently, resulting

in the emission of a continuous, spatially unstructured wave. The energy is uniformly
distributed across all passive modes, with no preferential direction or phase alignment.
At low pump intensities, this is the sole solution. Regardless of the values of the disorder
strength of R; and nonlinearity «, the system settles into a replica-symmetric solution
characterized by vanishing order parameters (m = Q.3 = R,s = 0). This photonic

phase is directly analogous to the paramagnetic phase in magnetic spin systems.

= [Standard Mode-Locked| (SML]): This regime is characterized by a non-zero global coher-

ence parameter (m # 0) and intensity sharing among activated modes, indicating that
the modes oscillate coherently with a shared phase. The output light is emitted in the
form of short, intense optical pulses, typical of mode-locking behavior. [SML] solutions
can occur with or without replica symmetry breaking. This regime is the sole solution for
high pumping rates (P?) in the absence of disorder (R; = 0). Even with weak disorder,
it persists at high pumping intensities. It is the photonic analog of the ferromagnetic

phase in spin systems.

. (RL): In this regime, modes lack intensity coherence (m = 0) but exhibit

phase coherence (R,s # 0), with overlap matrices displaying nontrivial structure. It is
the only phase for high pumping and large disorder. It corresponds to the spin-glass

phase in spin models with disordered interactions.

» [Phase Locking Wave| (PLW)): In this phase, the laser modes spontaneously lock their

phases, so that R, are the only nonzero terms (m = Q. = 0). The intensities are

uncondensed, i.e., the total optical energy in the cavity is still evenly spread across many
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modes. Physically, this means you get a globally phase-coherent field but no net stimu-
lated emission or pulsed mode-locking. In magnetic terms, the PLW]| phase corresponds to
spins whose orientations are uniformly aligned while their magnitudes fluctuate. However,
this does not represent any counterpart in spin models. [PLW| emerges as an intermediate

regime between the and [RL] (or SML)) phases. Moreover, increasing the nonlinearity
parameter « shifts the onset of to progressively lower pump intensities.

In summary, across these works, the authors achieved a full theoretical framework showing
that multimode random lasers behave as optical analogs of mean-field spin glasses and, by

progressively relaxing approximations, uncovered a hierarchy of novel photonic phases.

3.3 EXPERIMENTAL EVIDENCE OF RSB AND THE OVERLAP PARAMETER

Although Parisi solved the SK model in 1979 (PARISI, [1979b)), more than thirty years
elapsed before |Ghofraniha et al.| (2015) performed pulse-to-pulse measurements in an organic
@ﬂ, providing the first direct experimental evidence of replica symmetry breaking in light;
this milestone arrived nearly a decade after the magnetic—photonic analogy was first proposed
(ANGELANI et al., 2006al).

In multimode [RL, no single frequency dominates; shot-to-shot emission spectra fluctuate
wildly, and their correlations are highly nontrivial (MOLEN; MOSK; LAGENDIJK, 2006, MUJUM-
DAR et al., [2007)). These fluctuations reflect the presence of many degenerate lasing states,
each defined by a specific set of activated modes with its own wavelengths, phases, and inten-
sities. As the pump power crosses a critical threshold, this complex, glassy landscape emerges.
Ghofraniha et al.| (2015) measured the replica-overlap distribution P(q) in a system and
observed exactly the transition predicted by spin-glass theory. In their experiment, disorder
remains fixed while increasing pump energy increases the effective nonlinearity. At low en-
ergy (high temperature), gain competition is negligible, so modes oscillate independently in a
continuous-wave, paramagnetic regime. At high energy (low temperature), gain competition
and disorder-induced frustration combine to produce a glassy regime. In this regime, numer-
ous electromagnetic modes are simultaneously activated and interact; their configuration set
changes from pulse to pulse, allowing each pulse’s mode configuration to be treated as a

distinct state. The observation of many different states under identical conditions provides ev-

"More specifically, a two-dimensional T5OC, amorphous solid-state
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idence for a thermodynamic phase characterized by multiple valleys separated by free-energy
barriers. Each emission event thus serves as a physical realization of a replica. To characterize
the phase transition experimentally, it is necessary to introduce a new order parameter, which
is defined by the overlap of intensity fluctuations between different replicas.

First, let us compute the average intensity (I/(k)) of each mode (frequency) k over all

replicas

() = - O Tulk), (3.11)

where N; is the total number of replicas. The intensity variation at a specific frequency

represents a coarse-grained description of the behavior of individual modes,

Aalk) = L,(k) = (I(k)). (3.12)

Finally, we define the overlap between two replicas a and 5 (pulse-to-pulse intensity fluc-

tuations) as

i1 Do (k) A (k)

Gag = .
Vno A2(k)\ /0, A (k)

The sum over k runs to the N* frequency, determined by the spectral resolution. This

(3.13)

overlap of intensity fluctuations, originally called the [Intensity Fluctuation Overlap| (IFO]) (AN-

TENUCCI; CRISANTI; LEUZZI, 2015b)), is defined on fluctuations rather than raw intensities in
order to remove the effects of amplified spontaneous emission. The values of g, form a
N, x Ng symmetric matrix. Its diagonal entries q,, represent overlaps of each replica with
itself. Since g,3 = g and self-overlaps are not counted, there are Cévf’ = Ny(Ng —1)/2
independent overlaps for each pump energy. Their distribution P(q) provides a direct probe
of the glassy phase. Ghofraniha et al.| (2015]) showed six such distributions, four of which are
shown in Fig. [12

At low pumping energies, the overlap distribution P(q) exhibits a sharply defined peak at
q = 0, as illustrated in Fig.[12h. This behavior indicates that the intensity fluctuations of each
emission shot around the average spectrum are largely independent. This is analogous to how
spins in a paramagnetic material fluctuate independently without interacting with each other.
However, as the pump energy increases, mode intensities start to compete for gain and interact

through nonlinear dynamics. This phenomenon is seen through the broadening of P(q) (see
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Figure 12 — Overlap distribution P(q) illustrating replica-symmetry breaking as pump energy increases
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Source: Adapted from |GHOFRANIHA et al.| (2015)

Fig. ) with an increasing distribution moving away from zero overlap. In this intermediate
regime, secondary peaks emerge, indicating the initiation of correlated fluctuations among
certain mode subsets.

In the high-energy “glassy” phase, evident above the threshold (see Fig.[12t-d), the system
exhibits strong nonlinear coupling and the disorder obstructs global coherence. Consequently,
P(q) transforms into a wide-ranging, continuous function over the interval [—1,1]. Here, an
overlap ¢ = 1 indicates that the fluctuation patterns of two shots are very similar across all
wavelengths, regardless of their absolute amplitudes. In contrast, ¢ ~ —1 signifies that the
fluctuations are of the same magnitude but have opposite signs, with peaks in one shot aligning
with decreases in another. The emergence of substantial positive and negative overlaps only
after crossing the threshold is a significant indication of the numerous metastable lasing states;
each pulse corresponds to one such state. The complete form of P(q) reveals the intricate
free-energy landscape of the system.

To monitor the evolution of P(q) as a function of pump energy, one often plots the mag-

nitude of its peak overlap, |gmax|, versus the input energy (Fig. . In the terminology of spin
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glasses, |qmax| corresponds to the [EA| order parameter qpa (Eq.[2.14) (PARISI, [1979a)). As the
energy input increases, the value of |gmax| stays close to zero within the prelasing, paramag-
netic phase, but then it sharply increases at the lasing threshold, indicating the transition to

the glassy [RL] state.

Figure 13 — Absolute value of |gmax| (the position of the peak of P (|g|)) plotted as a function of pumping
energy. The paramagnetic-glass transition occurs between 2 and 3 mJ
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Source: [GHOFRANIHA et al| (2015)

One might naturally ask: why not use the order parameters from Eq. and Eq.
to determine the spin glass transition instead of introducing a new overlap? The reason is
that parameters such as Q.3 and R,s3 depend on the complex amplitudes af, specifically
their phases ¢, = arg(ay). In disordered systems, the magnitudes |ay| are easily accessible
experimentally, whereas extracting the corresponding phase information is considerably more
challenging. As a result, reconstructing the distributions in Egs. and is impractical.

After the first experimental indications of , Antenucci, Crisanti and Leuzzi| (2015b)
provided an analytical basis for the intensity-based order parameter in the [RSB| context. They
considered shot-to-shot intensity spectra from each shot as real replicas, with intensity fluctu-
ations being the only observable variables. By omitting the normalization factor />, A2 (k)
relative to the fluctuations A, (k), they formulated the within the framework of the 2 +

4 complex-amplitude spin-glass model as

s = Con = gz 3 [{laz i) = (i) (")) (314)

Equatio reproduces the [FO] up to an overall sign. In fact, the form given in the above

equation, originally defined for C € [0,1], remains valid if one interprets P(q,p = C) «—
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P(Cap = |C|). To match experiments, they worked with the symmetrized overlap distribution
P(C) for C € [—1, 1], which retains all relevant information without loss of generality.
It is also possible to relate the IFO to the standard overlap parameters (ANTENUCCI;

CRISANTI; LEUZZI, 2015b):

m4

Cop = iﬁ—z, Vo oa#p. (3.15)

This equation offers a rigorous experimental probe of RSB} whenever )5 exhibits replica
breaking, the [[FO] follows the same pattern. The theory further predicts that, as the system
crosses the lasing threshold, the photonic overlap distribution will show a discontinuous jump in
closed cavities but will evolve continuously in open cavities. A construction of a phase diagram
and numerical simulation confirms these contrasting behaviors, demonstrating quantitative
agreement between theory and experiment.

Before wrapping up the chapter, let us examine one important point. It can be asserted that
the[[FO] primarily acts as a correlation parameter. The [[FO] measures the normalized correlation
between the intensity-fluctuation vectors of two distinct replicas (shots), o and 3, effectively
assessing how similar their overall spectra are. From this viewpoint, it is natural to imagine an
alternative perspective: instead of focusing on the similarity between replicas, one could analyze
the similarity among different mode frequencies within the intensity spectrum. Given a series

of N measurements (replicas) of the intensity pairs {I(i),I(j)}, where i,5 € [1,2,..., N]

(with N being total number of sampled points in the spectrum)ﬁ, the [Pearson Correlation|

|Coefficient| (PCC)) p;; is defined as (CORONEL et al., 2021)

s SN L) — ()] [La(G) — T(G))]
VEN L (i) = TP SN [1a() — TG

The [PCC| measures the extent of normalized linear correlation amongst the intensity vari-

: (3.16)

ations between two distinct frequencies, ¢ and j across multiple shots. A value close to 1
indicates a strong positive correlation of fluctuations for modes ¢ and j, whereas a value
near —1 signifies considerable anticorrelation. Conversely, a value approaching 0 implies that

the two frequencies are statistically independent. Thus, when spatially overlapped coupled

8the indices i and j label two distinct spectral positions (i.e., frequencies). In practice, each index corresponds
to one point of the measured spectrum, and the spacing between consecutive indices is set by the optical
resolution of the apparatus. Thus, the pair (i,j) refers to the intensities recorded simultaneously at two
different frequencies within the same spectrum.
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modes occur, they can either share gain, compete for it, or operate independently along the
measurements, contingent upon the specific value of p;;.

Both the[[FQ] and the [PCC are Pearson-style measures: g,3 sums over frequencies for each
pair of shots, while p;; sums over shots for each pair of frequencies. Coronel et al.| (2021)
proposed a unified parameter that captures both shot-to-shot and mode-to-mode correlations
simultaneously. To develop this measurement, it is essential to consider the various potential
frequencies and indices of summation within Eq.[3.13] Let I,; be the intensity at the frequency
w; in the spectrum . Let us also define (I;) as averaged intensity at the frequency w; over all
the spectra. Consequently, we can express a revised relative difference average (Eq. as

Ao———Sv A

" \V ZK (A'yi)2’ h

Here, Greek indices label replicas (e.g., 7, ), lowercase Latin indices label frequencies

—L;—(I). (3.17)

(e.g.,i, 7). and uppercase Latin letters can denote either a replica or a frequency (e.g., K = v
or K =1). Note that K does not appear as a label or parameter on the left-hand side of the
equation, because it will ultimately assume one of the indices already present in the expression.

Observe that in Egs. [3.11] and Egs. [3.12] the frequencies are now denoted as subscripts. The

unified parameter, called the |Photonic Overlap Parameter| (POP)) in this work, is then defined

as

PMN:ZAMKANIO (318)
K

The advantage of the lies in its unification of both and [PCC| By assigning
spectrum indices M = «, N = (3, and frequency K = 4, we recover Eq. [3.13] Conversely,

setting frequency indices M =i, N = j, and spectrum index K = «, we obtain Eq. [3.16

In summary, pulse-to-pulse overlap measurements in [RL] have confirmed that light can
undergo a genuine [RSB] transition, evolving from an uncorrelated, paramagnetic regime to a
complex, glassy phase with a broad overlap distribution. The unified [POP| offers us a direct
link between spin-glass theory and photonic experiments, providing a readily accessible test of

glassy properties in continuous media without fixed-magnitude constraints.
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4 ANALYSIS ON A MODE-LOCKED FIBER LASER

Over the following decade, experimental studies of [RSB] proliferated across a wide range
of optical platforms. was observed in random lasers (GOMES et al., |2016b; [PINCHEIRA et
al., 2016} BASAK; BLANCO; LOPEZ|, 2016; |[CORONEL et al., 2022b; |CAMARA et al} 2022; INIDEESH
et al), 2024), in random fiber lasers (GOMES et al,, [2016a; LIMA et al.,, 2017; CORONEL et al.,
2021} |Ql et al., 2024)), and in Q-switching lasers (MOURA et al., 2017; CORONEL et al., 2022a)).
Other demonstrations came from waveguide systems (PIERANGELI et al., 2017)), mode-locked
fiber lasers (ALVES et al, 2024), and numerical simulations of random lasers (PALACIOS et al.,
2023). More recently, analogues of quantum spin glasses have been investigated (MARSH et
al., 2024), and glassy behavior was reported in multifilamentation (SIQUEIRA et al., 2025) and
soliton-fission dynamics (PALACIOS et al., 2025).

In this chapter (and the subsequent ones), our primary focus will be the [Mode-locked
[Fiber Laser| (MLFL])) described in (ALVES et al., [2024), which represents a first result of this

dissertation. Here, we introduce the SML] regime and its core principles. We then delve into
the emergence of a glassy phase that precedes[SML] and is defined by [RSB] Finally, we analyze
the statistical properties of the intensity fluctuations within this glassy phase and elaborate on

their physical significance.

41 THE MODE-LOCKED FIBER LASER

Describing the full phenomenology of a [MLFL] would require extensive chapters and sec-
tions. A more effective strategy involves focusing specifically on our experiment, allowing us
to elaborate on its principles without diverting into unrelated subjects. Our setup is a unidi-
rectional ring fiber laser that includes Ytterbium-doped fiber pumped at 976 nm, polarization
controllers, an optical isolator, fiber Bragg gratings, and an output coupler (see experimental
desciption on Section . This section aims to present the essential principles associated
with this specific type of laser and to provide a succinct description of it. Similar to the earlier
chapters, the intention is not to be comprehensive, but rather to communicate the central

concepts pertinent to the topic.
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4.1.1 The Ytterbium Fiber Laser

Within the broader family of laser technologies, fiber lasers constitute a significant category.
Their defining feature is the use of an optical fiber as the active gain medium, a concept first
proposed in the 1960s (SNITZER, (1961). Typically, the fiber is doped with rare earth ions such
as erbium (Er*"), neodymium (Nd**), or ytterbium (Yb®'). Yb*" ions in silica matrices offer
an ideal gain medium for fiber lasers, as they present a simplified spectroscopic system with
only two main levels (*F'7/; and F5 ) (PASCHOTTA et al., 1997)), each subdivided into multiple
sublevels; this minimizes excited-state absorption losses and enables high population inversion
rates. Ytterbium-doped fibers commonly emit around 1 um (PASK et al., |1995)), and are widely
used in various fields, including metrology, spectroscopy, and quantum optics.

When pumped at a specific wavelength, rare-earth ions absorb energy and emit light at
a longer wavelength via stimulated emission, achieving optical amplification. The pumping
source is usually a semiconductor laser diode tuned to a wavelength efficiently absorbed by
the ion. For Yb*" in germanosilicate fibers, absorption peaks near 975 nm and emission
centers around 1030 nm, allowing narrow-linewidth 976 nm pumping to populate up to 50%
of the metastable level (PASCHOTTA et al., (1997). Pumping light is coupled into the fiber via
a dichroic fiber coupler, which transmits the pumping wavelength into the active fiber while
enabling laser light at the emission wavelength to circulate within the cavity. In a fiber laser,
the resonator can adopt either a linear or ring configuration. A linear cavity employs two
reflective elements, such as optical mirrors or fiber Bragg gratings, positioned at each end
of the active fiber. Amplified light reflects between, for example, mirrors, traversing the gain
medium on each round trip. Conversely, a ring cavity (which is our case) forms a closed loop
by “connecting”E] the fiber ends, enabling continuous light circulation through the active fiber
and other cavity components.

Fiber lasers are particularly good at producing ultrashort pulses, such as those on the
picosecond or femtosecond scale, owing to their extensive gain bandwidth, high efficiency,
and affordability (FERMANN; HARTL, 2013). Nevertheless, their efficacy within this domain is
frequently limited by significant fiber nonlinearities, which can affect aspects like pulse energy,

peak power, and overall pulse quality (ZERVAS; CODEMARD, 2014).

1This choice depends on the ions’ absorption cross-sections (PASCHOTTA et all, [1997).

%In this context, “Connect” signifies that the light emitted from the fiber re-enters the fiber without ne-
cessitating a physical junction. The light is capable of traveling through free space before it re-enters the
fiber.
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4.1.2 The mode-locking process

In a[SML] laser, ultrashort light pulses are produced by synchronizing the phase relationships
of the longitudinal cavity modes, compelling them to oscillate in unisorﬂ , . This
differs significantly from conventional lasers, in which modes generally oscillate independently
with phases that are random and uncorrelated. Achieving phase-synchronized oscillation of
longitudinal modes results in the superposition of modes, creating a short pulse within the res-
onator. Each time this pulse interacts with the output coupler, it results in a pulse exiting the
laser, producing a consistent sequence of ultrashort pulses. Although “mode locking” refers to
the frequency domain, its underlying mechanism is more intuitive in the time domain. Fig.
provides a depiction of this process. When resonator modes (left panel) share a fixed phase
relationship, their superposed fields interfere constructively at specific instants, producing a
high-intensity light pulse (top-right plot). Between pulses, out-of-phase modes interfere de-
structively, yielding periods of zero intensity. In the presence of arbitrary relative phases, the

evolution of the intracavity field becomes indeterminate (bottom-right plot).

Figure 14 — Comparison of phase-matched and random-phase mode oscillations for a different frequencies set.
In the left panel, each mode is vertically displaced by a constant amount for clarity. In the top-right
panel, all modes share a common phase, so their constructive interference produces well-defined
pulses at a fixed rate. In the bottom-right panel, the mode phases are random, so interference is
irregular and no distinct pulses emerge.
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3The concept of mode locking was introduced in the 1960s 1LAMB[, 1964: , with the first active mode-locking
demonstration following just weeks after (HARGROVE; FORK; POLLACK, (1964).
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A crucial relationship links pulse duration to the number of phase-locked longitudinal
modes: achieving shorter pulses requires synchronizing a broader range of resonant frequencies.
If N modes separated by Av are phase-locked, the total bandwidth is NAv, and a
broader bandwidth produces a shorter pulse. In reality, the pulse duration also depends on the
exact amplitude and phase relationships among the modes, i.e., the shape of the pulse. For a

Gaussian-shaped pulse, the time-bandwidth product is (WEINER, [2011))

2In2
AtAv = 22~ 0.441, (4.1)
v
S0, the minimum pulse duration is
0.441
At = . 4.2
NAv (4.2)

Here, At denotes the intensity [Full Width at Half Maximum| (FWHM)), and the bandwidth

Av is measured as the FWHM] of the positive-frequency portion of the power spectrum. Both
elements focus only on the central part of the pulse or its spectrum, respectively.

The fundamental principle of all lasers is that the gain must exceed cavity losses. However,
generating ultrashort pulses requires an additional element: a mode locker. This component
enforces the regime (WEINER, [2011)). [SML|can be implemented via two main techniques:
passive mode locking and active mode locking. Active mode locking involves the use of an
external driving signal to periodically alter the characteristics of the light inside the laser cavity,
typically affecting the amplitude or phase. In fiber lasers, the main active mode lockers are
acoustic-optic modulators and electro-optic modulators. These devices are situated within the
cavity of the laser and are activated by an electrical signal with a frequency that is exactly tuned
to either the longitudinal mode spacing of the cavity or one of its harmonics (PASCHOTTA,

2006). Passive mode lockers, on the other hand, use intra-cavity elements whose transmission

or reflection depends on the instantaneous light intensity. A [Saturable Absorber| (SA]) is the

most common example: its absorption decreases as incident intensity rises (WEINER, [2011)).
At low intensity the [SA] introduces loss, but when a pulse peak passes through, the absorber
saturates and becomes more transparent. This preferential transmission of high-intensity fluc-
tuations initiates and shortens pulses. Passive mode-locking is capable of generating shorter
pulses by synchronizing loss modulation with the laser pulses (IPPEN; SHANK; DIENES, [1972)).

Semiconductor saturable-absorber mirrors (SESAMs) are an example of passive mode-locking

*In the case of a sech? pulse, the time-bandwidth product is approximately 0.315.
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devices (KELLER et al} [1996)). Other include thin films of carbon nanotubes (SET et al
2004) or nonlinear crystals (MALYAREVICH et al., [1998).

Alternatively, one can reproduce the same effect using nonlinear phase-modulation (GOR-

DON; FISCHER), [2003), i.e., artificial [SA.

Nonlinear Polarization Rotation| (NPR)) is a common

passive mode-locking method that simulates a saturable absorber by using intensity-dependent
changes in poIarizatiorﬂ provides the mode-locking mechanism in our fiber-laser system.

When an intense optical pulse propagates through a non—polarization-maintaining fiber,
the medium’s nonlinear response induces an intensity-dependent change in the polarization
state. This is usually not exactly a rotation of a linear polarization direction, but rather the

change to some elliptical polarization state.

Figure 15 — Depiction of the effect. As the pulse propagates along the fiber's z-axis, its elliptical po-
larization state rotates by an amount that grows with intensity. In the illustration, line thickness
increases with z, so thin lines indicates light at the start of the fiber. In the left panel, a high-
intensity signal undergoes a large rotation; in the right panel, a low-intensity signal rotates only
slightly. The = and y axes correspond to the fiber's principal axes. For each position z, the lo-
cal polarization ellipse is drawn, and a magnified vector indicating the combined semi-major and
semi-minor axes shows the net rotation. A color map encodes the cumulative rotation relative to
the initial alignment at z = 0.
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Fig. [15]illustrates this phenomenon. At low intensities, the fiber preserves polarization and
losses remain linear; at high intensities, the pulse acquires additional phase shifts inside the

fiber. By placing polarizers at appropriate orientations, high-intensity pulses suffer lower loss

5The initial successful experiment demonstrating this was conducted using a fiber laser, as reported by|Fermann
et al. (1993)).
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and are preferentially amplified. Mode locking begins with random intensity fluctuations in
the continuous-wave regime, where all modes propagate with low intensity and the system'’s
transmission remains linear. Occasionally, a fluctuation produces a peak intense enough to
trigger NPR} its polarization state rotates more strongly and, after the polarizer, experiences
lower loss than the background. This preferential amplification allows the peak to grow on
each round trip. As the pulse intensity increases, its center (acquiring the largest polarization
rotation) suffers the least loss, while its wings incur higher loss. After many cavity round trips,
these dynamics sculpt a stable ultrashort pulse whose shape and duration are set by the cavity

parameters. Fig. [16] shows the essential elements for locking the modes via [NPR|

Figure 16 — Schematic of the basic optical components used to achieve a mode-locked state in a fiber laser

through [NPR]|
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For our setup, we control intra-cavity polarization with three waveplates. Before the fiber, a
quarter waveplate (\/4) sets the input ellipticity, determining how much the pulse’s polarization
will rotate during propagation. After the beam exits the fiber, a second \/4 and a half waveplate
(A\/2) undo part of that rotation to adjust the output coupling. Because the polarizer transmits
only one polarization direction, transmission depends on the instantaneous intensity: stronger
pulses align better with the polarizer and experience lower loss, thus emulating a saturable

absorber.
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4.1.3 Key nonlinear responses in the mode-locking process

The phenomenon underpinning [NPR]in mode-locked lasers is the optical Kerr effect, where
the material's refractive index is altered by the electric field of the light wave only. The self-

induced change in refractive index An is given by

An = nyl(t). (4.3)

Here, ny denotes the nonlinear refractive index, while I(¢) indicates the time-dependent
intensity of the pulse®] The parameter n, is associated with the medium’s third-order suscep-

tibility x®, and the pulse intensity is given by

1) = Jat)l” (4.4)

where a(t) represents the amplitude of the electromagnetic field, and A is the effective beam
area in the medium. Because ns is typically very smalﬂ, the Kerr effect becomes appreciable

only for the high intensities provided by laser pulses. The intensity-dependent refractive index

from the optical Kerr effect gives rise to two key nonlinear phenomena: |Self-Phase Modula-|

ition| (SPM)) and |Cross-Phase Modulation| (XPM]). In [SPM| a pulse’s own intensity induces a

time-varying phase shift, broadening its spectrum. Meanwhile, in [XPM] the intensity of one
polarization component imposes a phase shift on the orthogonal component. The combination
of [SPM] and [XPM| produces an intensity-dependent change in the pulse's polarization state,
which underlies NPRL

As a pulse propagates, the Kerr effect makes its refractive index, and hence its phase shift,
depend on local intensity. The pulse peak, being most intense, acquires the largest phase shift,
while its wings are subject to smaller shifts. This uneven phase accumulation across the pulse
generates a time-dependent frequency modulation, known as chir[ﬂ the leading edge and
trailing edge pick up different instantaneous frequencies. Essentially, it means that different

frequency components within the pulse arrive at different times. As a result, new frequency

Eq. can alternatively be formulated as n = ng + nol, with ng referring to the linear refractive index
(WEINER|, [2011]).

"For silica glass the value is around 2.22 - 10716 em? /W (SCHIEK, [2023).

8The extent of chirp can be quantified through the time-bandwidth product as expressed in Eq. where
the specified values may correspond to chirp-free pulse profiles. A higher AvAt value sometimes signifies the
presence of chirp, although it is not always the case (WEINER), [2011]).
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components are created and the pulse spectrum broadens. This phenomenon is referred to as
SPMI
The propagation of a pulse through the medium along z can be written in terms of the
normalized envelope U(z, 7) as (AGRAWAL, 2007)
ou

2 iy Poe ™% U U, (4.5)

where F, is the peak power, o accounts for fiber losses, and v is a nonlinear coefficient related

to the refractive index ns, expressed as

WoT2
- 9
cAefr

(4.6)

with ¢ is the speed of light and wy is the carrier frequency. The amplitude U(z, 7) of the pulse
envelope depends on a dimensionless retarded time 7, i.e., is associated with a reference frame
traveling with the pulse at the group velocity v,, with normalization provided by the input

pulse duration Tj. Therefore,

_t—z/vg

T TO

(4.7)

Since ]U|2 remains unchanged during the propagation, Eq. can be easily integratecﬂ

to give
YPy U0, 7)? (1 —e L
U(L,7) = U(0,7) exp |i 0 IU( >L ( ) . (4.8)
The resulting nonlinear phase shift ¢y is
2 Leff
o (L) = (U0, (7). (+9)
where
1— —al
Lt = (7P and Lo = L= oPEAL)] (4.10)
«
9We use the relations L
d;x =In(z)+C and /ae‘bxdx = _aeb +C,

and set the integration limits [0, L], where L is the total propagation path.
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Ly and L are the nonlinear length and effective length, respectively. The maximum
phase shift ¢max occurs at the center of the pulse at 7 = 0. If we normalize U such that

|U(0,0)| = 1, we obtain

Less
Ly

¢max = (411)

Spectral changes induced by [SPM| arise because the nonlinear phase shift ¢y varies in
time. A temporally changing phase indicates that the instantaneous optical frequency deviates
from the central frequency wy throughout the pulse (AGRAWAL, 2007). The instantaneous
frequency wins: is essentially minus the derivative with respect to time of the overall phase

(WEINER, 2011))

d d d
Winst(T) = —df =-= [woT + OnL(T)] = —wo — jSL (4.12)
Hence, the frequency deviation from the carrier dw(7) = winst(T) — wp is
doni (Leff) d 2
0 = — = — —|U(0 . 4.13
lr) = =5 —— (71} L U(0,7) (413)

Figure 17 — Simulation ofthefor a Gaussian input exp[—t2/Tp]. The propagation distance z is normalized
to zo = (w/2) L4, where Ly is the total distance.
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New frequency components emerge around the pulse’s central frequency. The chirp effect

caused by SPM| magnifies as it travels further. Thus, as the pulse progresses through the
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fiber, additional frequency components are persistently produced. Using a Python script, we
are able to simulate the@]on a Gaussian pulse, as illustrated in Fig. . Each plotted line
represents a distinct position along the propagation path. In this scenario, the parameters are
set as 7Py = 5w /km, a = 2-1073 /km, with a Ty = 5 ps pulse spanning a distance of 0.5 km.
The approximation for the maximum number of peaks M observed in the spectrum broadened

by is represented by the relation

Omax ~ (M — ;) . (4.14)

When multiple optical fields at different wavelengths propagate together in a fiber, they
interact via the Kerr nonlinearity. This interaction manifests both as phase modulation, where
the fields influence each other's phase without direct energy exchange, and as four-wave

mixing, where energy can be redistributed among different frequency components.

[Phase Modulation| (XPM]) is the process by which the intensity of one field (or one polarization
component) induces a phase shift on another. In [NPR] causes an intensity-dependent

phase shift of a given polarization by its orthogonal partner, driving the evolution of the overall
polarization state. Considering the field envelope as A(z,t) = A;(z,t)+ Ax(z,t), Eq.[4.5]leads

to the derived set of coupled equations (AGRAWAL, 2007

94 — iy (1AL ]P 4 2| A45)7) Ay
o (1428 + 2142 A (4.15)

o2 = iy (2| A1 + | A/*) Ao

Solving these coupled equations, a task beyond the scope of this study, shows that the
nonlinear relative phase is (CAMPOS, |2020)
2vL

Mg = =5~ (14 — 42?) (4.16)

The above expression shows that only elliptically polarized light undergoes[NPR], as detailed
by (CAMPOS, [2020)). always accompanieswhen two or more optical fields propagate
together in a fiber. Physically, [XPM| arises because the refractive index experienced by one
beam in a nonlinear medium depends not only on its own intensity but also on the intensities

of other copropagating beams (AGRAWAL, [2007)).
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4.1.4 Dispersion and Balancing

Another key effect for pulses in nonlinear media is dispersion, which describes how the

phase velocity of light depends on frequency. A pulse consists of many frequency components,

so its envelope travels at the group velocity v,. |Group Velocity Dispersion| (GVD]|) measures

how v, varies with frequency: when [GVD]is nonzero, different frequencies complete the cavity
round trip in slightly different times, causing spectral broadening. After traversing a dispersive

segment of length L, the pulse acquires an additional spectral phase

¢(w) = —Bw)L, (4.17)

Blw) = . (4.18)

Expanding 3(w) around the carrier frequency wy to second order gives

2
o) = = [l + 57 (o5 5| -]
o) = - (3 + 80+ 2a7) L (4.10)

with 3, = 0"3/0w™ and & = w — wy. Here we identify 3, as (v,)~" and [y is the m
parameter. The dependence of 3; and

B2

on w is crucial because it governs how different frequency components of a broadband pulse
accumulate phase at different rates. If 5(w) were constant, then both ; and (5 would vanish,
implying that all spectral components acquire the same phase delay. In this case, the pulse
envelope experiences only a global phase shift without any change in its temporal shape. The
resulting frequency-dependent delay of the pulse envelope is

§(w) = —diﬁj) = 1L + B, (4.20)

showing that different spectral components arrive at different times, which stretches or

compresses the pulse depending on the sign of 5. For 85 > 0, normal dispersion occurs,
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whereby higher frequencies (or shorter wavelengths) propagate more slowly, shifting toward the
back of the pulse and resulting in an up-chirp, i.e., frequency increases over time. Conversely,
when 35 < 0, we encounter anomalous dispersion, where higher frequencies travel more rapidly,
tending toward the front of the pulse, thus causing a down-chirp with a frequency reduction
over time.

As we have seen, either or normal acting alone on an ultrashort pulse leads

to a frequency up-chirp. However, new qualitative features emerge when [GVD] and [SPM] act

together. When a high-peak-power pulse enters a dispersive medium, [SPM]initially imprints a
positive (up-chirp) leading edge and a negative (down-chirp) trailing edge on the pulse. If the
dispersion is normal, the red-shifted trailing edge slows down relative to the blue-shifted leading
edge, causing additional temporal broadening of the pulse. Conversely, in anomalous dispersion,
the blue-shifted frequencies advance, and the red-shifted ones lag, effectively compensating

for the chirp induced by [SPM] This interplay can lead to pulse compression, or even to the

formation of fundamental solitons (CAMPOS, 2020)) when [SPM| and |GVD| exactly balance one

another. Optical components capable of inducing angular dispersion, such as grating pairs
in our context or prism arrangements, are used to manage [GVD] The relationship between
angular and temporal dispersion can be found in Weiner| (2011)).

The combined action of [GVD|and [SPM]is described by the [Nonlinear Schrodinger Equation|
(NLSE). Its detailed derivation can be found in (AGRAWAL, 2007; WEINER, 2011; |CAMPOS,
2020). For the slowly varying pulse envelope A(z,7), the expression takes the form of

DA By Ao

This expression is the lossless limit of the full propagation equation, i.e., & = 0. One
can include cavity losses by adding a linear attenuation term («/2)A to the left-hand side of
Eq.[4.2]]

In summary, the central mechanism of passive mode-locking through [NPR]involves a com-

plex interaction between nonlinearity and dispersion. Ultrashort pulses perpetually alter their

spectral and temporal characteristics by incorporating [SPM| and [XPM| Concurrently, the po-

larizing components select higher intensity peaks, thus ensuring a stable sequence of pulses.
At the same time, [GVD] adjusts or sometimes enhances the nonlinear phase shift. The intri-
cate equilibrium of nonlinear phase shifts, polarization-induced loss, and chromatic dispersion

ultimately shapes the pulse’s duration, energy, and stability within the laser.
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4.2 THE QUASI MODE-LOCKED PHASE

A statistical formulation of the passive mode-locking regime was introduced in the early
2000s, where an effective “Hamiltonian” was proposed. |Gordon and Fischer| (2002)) rigorously
demonstrated that passive mode locking can be viewed as a thermodynamic first-order phase
transition within the space of mode amplitudes, with noise acting as temperature and saturable
absorption as the ordering interaction. However, their work did not include the nonlinear effects
discussed in Subsection [4.1.3] This neglected feature was later addressed when they extended
their model to include[GVD] and Kerr nonlinearity within the same statistical mechanics frame-
work (GORDON; FISCHER, 2003). Their objective was to demonstrate that, despite these key
physical influences, the development of stable pulses still aligns with a discrete transition in
an effective “temperature” (characterized by noise intensity). Through both analytical (soli-
ton regime) and numerical (general case) analyses, they illustrated that pulse generation is
sustained as a first-order transition, influenced by the interaction between noise and saturable
absorption.

A different approach within the context of [RSB| was later explored by |Leuzzi et al|(2009),
and has since been extended in several works (ANTENUCCI et al., 2015; ANTENUCCI et al, [2016;
ANTENUCCI, 2016). As discussed in Chapter , the phase, in this framework, is analo-
gous to the ferromagnetic phase in spin models. This phase emerges at low disorder R; and
high pumping power. Antenucci, Berganza and Leuzzi (2015)) provided the first statistical-
mechanical treatment of real multimode, ultrashort, mode-locked lasers in closed cavities,
explicitly accounting for topological disorder. While Gordon and Fischer’'s model relies on mean-
field theory using Fokker—Planck and Langevin equations, the work of Antenucci, Berganza
and Leuzzi (2015)) adopts a Hamiltonian-based formulation with interactions. This approach
offers new insights into laser dynamics by considering nonlinear interactions among modes and
by moving beyond mean-field approximations. Specifically, it accounts for frequency-dependent
couplings and topological disorder, such as incomplete mode overlap due to cavity imperfec-
tions.

Earlier studies assumed a fully connected (narrowband) mean-field approximation in which

all mode pairs interact equally. In contrast, /Antenucci, Berganza and Leuzzi (2015]) now explic-

itly enforce a|Frequency Matching Condition| (FMC)) for any quadruplet of modes {k1, k2, k3, k4},

i.e.,
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|Vk1 — Vi, + Vi — Vk4| < Y, (4.22)

where 7 is the gain bandwidth. Since the first approaches (GORDON; FISCHER, 2002), sta-
tistical mechanical treatments have mostly relied on, as already mentioned, the narrowband
approximations, where the mode spacing dv is smaller than ~, where modes fall within a
narrow frequency band Awv. In contrast, the newer approach introduces frequency-dependent
mode populations governed by a gain profile g(/) and incorporates nontrivial constraints.
The results reveal that, depending on system properties, cavity geometry, and the balance be-
tween gain and nonlinearity, the laser can exhibit different thermodynamic-like phases. The

Hamiltonian is expressed as (ANTENUCCI, [2016])

N

r

H=— Z T \ak|2 - — Z Qg Ay, Oy O, (4.23)
k=1 {k1,k2,k3,ks}

where g, = g(v,) is the net gain profile, and I' is the [Self-Amplitude Modulation] (SAM) g

and I are selected as real numbers, with the dispersion and Kerr-lens effeclErl being disregarded.
The model also includes a global power constraint, such as Eq.[3.7] This results in a stochastic
competition for gain among the coupled optical modes, and consequently introduces disorder
in the system. Thus, even in a perfectly ordered mode-locked laser (no material disorder), the
intrinsic frustration from enforcing both a fixed total power and a nonlinear four-wave coupling
among many modes engenders a glassy phase-locked regime.

Our group (ALVES et al., 2024) reported the first experimental evidence of a glassy phase

in a Yb-doped [MLFL], appearing before the onset of the [SML] This phase, called
[Locking| (QML]), emerges between the replica-symmetric and regimes and is fully

characterized by the [POP] (see Section[3.3). It is worth noting that the Hamiltonian in Eq[4.23]

does not capture the full dynamics of the [QML] regime. A more complete description follows

by mixing the with Eq[3.6] and writing the Hamiltonian as

_ (2) * (4) * *
H=- Z Ikey koo Ver Ay + Z k1 kg kg kg Ver Uy ez A - (4'24)
k1,k2 {k1,k2,k3,k4}

0t is important to note that, even though not explicitly stated earlier, refers to the intensity-dependent
loss within the laser cavity. This functions similarly to a fast saturable absorber, meaning that higher in-
stantaneous pulse intensities result in reduced losses. This phenomenon arises as a direct effect of [SPM] in
which the phase shift is transformed by the cavity's intracavity optics into a rapid amplitude modulation.
This modulation effectively facilitates the transmission of the pulse peak while discriminating against its
wings (WEINER) [2011)).

1 This phenomenon is not the optical Kerr effect as described in m
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Here 91(31@2 = g(v,, Vk,) encodes the linear gain and loss between modes k; and ko, while

g,&?kzk&k‘l arises from the Kerr nonlinearity and is proportional to the third-order susceptibility
x®). Although first-principles calculation of these quadratic and quartic couplings is imprac-
tical, they are usually modeled as Gaussian random variables, as in earlier magnetic—photonic
analogies (ANGELANI et al., 2006a; LEUZZI et al., |2009; ANTENUCCI et al., 2015)). [FMC|is enforced
in to ensure nontrivial, competing mode interactions. This full Hamiltonian thus embraces both
gain competition and nonlinear mixing, providing a somewhat foundation for[RSB| phenomenon
in the [QML] phase.

Before achieving [SML] operation, competition for gain among modes strengthens as the
variance of their coupling distribution increases. This enhancement produces frustrated, par-
tially synchronized oscillations of nontrivially correlated modes. For each initial configuration
(replica) in this phase, the mode couplings converge to one of infinitely many metastable
states. This coexistence of a vast ensemble of coupling arrangements is captured by the Parisi
overlap parameter ¢ (or experimentally, by the . Fig. presents three examples of the
overlap distribution P(q) for a total of 3000 replicas. In the phase, P(q) is bimodal,
indicating two preferred values of the Parisi overlap. This behavior closely parallels the overlap

distribution observed in the [RL phase above threshold (see Fig. [12). In both and

regimes, P(q) takes a Gaussian form centered at ¢ = 0, as expected for these phases.

Figure 18 — Overlap distribution P(gq) across three distinct regimes within a Yb-doped |MLFL} (a) , (b)
QML and (c) The sequence of graphs from left to right corresponds to an upward pumping

rate.
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Source: Adapted from |ALVES et al.| (2024])

We may also examine the transitions between photonic phases by looking at the value

|gmax|. As shown in Fig. [L9] the transition from to appears as a sudden jump
iN |gmax|. In the glassy regime, the laser does not emit ultrashort pulses and fails to

achieve phase coherence. Instead, many longitudinal modes engage in a randomly frustrated
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race for gain, leading to a nontrivial structure in the overlap matrix Qo3. Once the [SMI]
regime is reached, energy concentrates into a stable pulse that spans many modes oscillating
coherently. Their intensities equalize, gain competition vanishes, and (),s = 0. By contrast,
the [CWHQML] transition produces a "smoothly" increasing curve of |gmax| versus P (or current,
in our case). As the pump rises, nonlinear effects activate more modes. Because the total gain
is finite, each additional mode must compete/cooperate with the existing ones. This growing
interaction drives up |gmax| continuously until enough energy accumulates in a developing pulse
to overcome the competition. At that point, as already mentioned, a stable pulse forms and

the system undergoes the abrupt transition into the [SML] regime.

Figure 19 — Absolute value of |gmax| as a function of the input current (equivalent as pumping power. plotted
against input current (proportional to pump power). The sharp increase near 400 mA marks the
transition from the [QML] regime to the [SML] regime.
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To fully understand the mode interactions in the M phase, we now turn our attention
to the @ which quantifies the correlations across the modes in the spectrum. Here, we
focus exclusively on the [QML] regime. For a more complete analysis of the system across all
regimes, see the letter published on the subject (ALVES et al., [2024)) and the master's thesis of
Alves| (2023)).

Fig. [20] shows the [PCC| heatmap for a point in the [QML] regime. The striking feature is
the coexistence of positive and negative correlation strips among a set of modes. Due to the
symmetry of the [PCC| analysis can focus solely on the upper (or lower) portion limited by
the main diagonal, which represents mode self-correlations. From Fig. , we observe that the

spectrum is organized into two main mode bands. Within each band, modes are positively
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Figure 20 — Pearson correlation matrix p in the regime. The Mforms an N x N symmetric matrix,
where N is the number of spectral bins. Diagonal entries are unity (self-correlation); off-diagonals
show pairwise correlations between wavelengths.
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correlated with their nearest neighbors. However, these bands are negatively correlated with
one another. For example, the modes near 1023 nm exhibits strong positive correlation with
nearby modes, but shifts to negative correlation with modes around 1025 nm. This indicates
that when one group of modes gains energy (increases in intensity), the other loses.

Since the frustrated gain competition induces the modes to be split into two anticorrelated
groups, the resulting spectrum naturally exhibits two intensity peaks separated by a valley.

Fig. [21] represents a plot of the spectrum in the [QML] region.

Figure 21 — Typical spectra for the regime. The peaks in the plot correspond to competing sets of modes
around \; = 1024.4 nm and Ay = 1025.6 nm.
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It is worth noting that the number of peaks is not necessarily always two. Different cavity
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configurations and pumping powers can yield a varying numbers of peaks. In this work, most
spectra exhibited only two peakd™?]

While collecting replicas at a fixed current, the intensity peaks fluctuate competitively
around their mean values. This type of dynamics, beyond what the [POP]|shows, helps identify
the [QML] regime.

A natural question that arises from this is: what kind of distribution do these peak fluctu-
ations have? In disordered media, a power-law Lévy distribution has been widely used. A Lévy
distribution is a continuous probability distribution characterized by heavy right skewed tails
and infinite variance. It is often used to model random processes, such as Brownian motion
(KLAFTER; SHLESINGER; ZUMOFEN, 1996) and animal foraging (EDWARDS et al., [2007)). Lévy
statistics also found applications in optics (BARTHELEMY; BERTOLOTTI; WIERSMA), 2008), more
specifically, in (GOMES et al., 2021} |GOMES et al., [2023)). They serve as indicators of the
lasing threshold (UPPU; MUJUMDAR, 2014; RAPOSO; GOMES| [2015)), characterize fluctuation
correlations (MERRILL; CAO; DUFRESNE, [2016)), and have been applied to the study of random
fiber-laser dynamics (LI et al., [2019). More importantly, Lévy behavior has also been found
alongside the [RSB| phenomena in (GOMES et al, [2016b} |ARAUJO; GOMES; RAPOSO), [2017}
LIMA et al, 2017, linking them with the photonic glassy regime. Thus, we might expect the
fluctuations of the peaks in Fig[21] to follow a Lévy-type distribution. However, this criterion
is not entirely met. Fig[22 shows the histograms of these peak intensities. The histograms are
constructed by fixing a wavelength and recording its intensity value for every replica taken
in the system at a fixed current. For the experiment under consideration, we obtained 3000
intensity values. The intensity array is then normalized as

I — Iin

Inorm = 7T 7 4.25
Imax - Imin ( )

where [ is the measured intensity, and I, and [, are the minimum and maximum intensity
values of the array at that current. This normalization rescales the intensity to the interval
[0, 1], where 0.5 corresponds to the mean intensity for the given wavelength.

Although the second peak displays characteristics typically associated with a Lévy distribu-
tion, the presence of a mirrored distribution from the first peak changes the overall interpreta-
tion. Both histograms fall into the category of L-shaped distributions, a broader classification

for these distributions with a steep rise followed by a long decay, or vice versa (BRADLEY| 1982).

12The number of peaks also depends on the optical spectrometer resolution. Closely spaced modes may appear
as a single peak, so each observed “peak” actually represents a set of unresolved modes.
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Figure 22 — Normalized intensity histograms for A\; = 1024.4 nm and Ay = 1025.6 nm, centered around their
respective mean intensities for a current value inside the [QML] phase.
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One could argue that a left L-shaped distribution could be termed a left-tailed Lévy distri-
bution, but given the lack of information in the literature and for consistency with historical
terminology associated with Lévy distributions, we adopt the L-shaped label here[T_?]. Regard-
less of what we call these distributions, they encode two key phenomena. The first, which we
will examine later, is the presence of rare events. In Fig. [22] despite the peak selected, most
replicas cluster around a particular extreme of intensity relative to their mean, indicating that
the system spends the majority of its time near that value. However, it occasionally visits other
intensity levels, spending far less time there. These flights are rare, but not negligible. Similar
behavior is observed, for example, in optical rogue waves (ONORATO et al., 2013), where rare
events emerge from otherwise stable dynamics.

Second, the mirrored shape of the two peak distributions provides complementary evidence
of the frustrated mode competition. When the first peak spends most of its time at high
intensities, the second one remains low; as soon as the first goes into its low-intensity regions,
the second rises. This pattern persists across the entire [QML] regime and contrasts with the
[CW] and phases, where the same modes display uncorrelated Gaussian fluctuations. This
overall behavior is illustrated by the heatmap in Fig. 23| Each column in the heatmap of
Fig 23] corresponds to a top view of a histogram constructed in the same way as those shown
in Fig[22]

Because in the[QML] phase the intensity histograms exhibit sharp peaks—i.e., the counts are

130ne could also classify these distributions as J-shaped (CHOSH, [1978), which are characterized by a subtle
concavity in the probability profile.
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Figure 23 — Heatmap of the intensity distribution as a function of input current. Red dashed lines indicate
regime boundaries: the left line marks the CWHQMT] transition, and the right line marks the QML+
[SML] transition. The top plot is for A\; = 1024.4 nm and the bottom for Ay = 1025.6 nm
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concentrated in a very narrow intensity region—the colormap tends to obscure the more evenly
distributed features. In practice, this makes visualization difficult due to the large discrepancy
between the maximum count value of some histograms and the rest. To address this issue, we
apply the same normalization procedure used for the intensity (Eq. , but now to the bin
counts, rescaling them into the unit interval.

The [QML] region corresponds to the central portion of the heatmap, which is delimited by
the red dashed lines. As the system crosses into the regime (right side), the intensity
distribution changes abruptly from an L-shaped profile to a Gaussian distribution. By contrast,
in the CWHQML] boundary (left side), the histograms often exhibit a mixture of L-shaped and
Gaussian distributions. This is because, in this lower-current regime, as already mentioned,
optical nonlinearities are weak, and mode competition is only beginning to emerge, so the
fluctuation statistics reflect both linear and upcoming nonlinear dynamics.

One final important concept to address is the idea of a replica in our system. As introduced
in chapter [2, a replica corresponds to a single configuration of the system. In photonics,

this translates to a single pulse of light. To be more precise, we must consider both the
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repetition rate of the laser (fp) and the integration time of the optical spectrometer (tacq).
In , the typical condition is that frep, < 1/tacqm. For instance, the experiments reported by
Ghofraniha et al.| (2015) and |Gomes et al.| (2016b)) used a Q-switched Nd:YAG laser operating
at frep = 10 Hz, while the spectrometers had integration times of 100 ms, effectively capturing
single pulses per replica. However, in our case, the situation is quite different. Our Yb [MLFL]
operates with a repetition rate of approximately 120 MHz, while the spectrometer’s integration
time is 9 ms (with 3.8 ms being the minimum allowed by the device). This implies that each
data array corresponds to an average over roughly 10° pulses. Despite this, still appears
clearly in our system. Fig.[24]shows how the distribution P(q) behaves with different integration
times for the QML] region. The figure clearly shows that varying the integration time does not
affect the result: the bimodal shape of P(g) remains unchanged, indicating the robustness of

the result.

Figure 24 — Distribution of P(q) for three different integration times. All plots correspond to the same current
value and were constructed using the same number of data acquisitions (3000).
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As a matter of fact, one could argue that increasing the integration time should conceal
the [RSB]| phenomenon. The premise is that averaging over too many pulses tends to wash out
the subtle, correlated fluctuations between modes, which are needed for [RSBJ to emerge. It
is worth noting that the [POP] is highly sensitive. Indeed, recent studies have examined the
stability of the pumping source itself to ensure that the [RSB| does not originate from intrinsic
noise in the input (MOURA et al.,, 2017; ALVES et al., [ 2024)). Therefore, it is logical to expect
that averaging over a large number of pulses would suppress the delicate fluctuation patterns.
From a statistical point of view, increasing the integration time by a significant factor invokes

the Central Limit Theorem on the distributions shown in Fig. 22| In this limit, both peaks

4The number of pulses captured per measurement N, is given by N, = freptacq-
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would tend toward Gaussian distributions centered around the mean intensity (e.g., near 0.5),
and the energy fluctuations would be averaged out. As a result, the overlap parameter ¢ would
vanish, and no [RSB] signature would be detected. However, no systematic study has deeply
explored this effect so far, and these are, of course, just some ideas and interpretations.
Despite these theoretical considerations, the experimental data presented in Fig. sup-
ports the conclusion that, once the [RSB| phenomenon is present, changing the integration time

within reasonable limits does not alter its signature.
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5 TURBULENT DYNAMICS

As mentioned at the end of the previous chapter, the fact that [RSBJis intrinsically linked
to intensity fluctuations in lasers has motivated several studies to focus on the statistical
properties of these fluctuations. In particular, the presence of a turbulent behavior has been
identified, giving rise to a novel area of research where [RLk are used to observe statistical
signatures of turbulence (GONZALEZ et al., 2017)). Further studies have explored intermittency
(MACEDO et al., [2019), as well as the coexistence and interplay between turbulence and
in (GONZALEZ et al., | 2018; GOMES et al., 2021 |GOMES et al., [2022; CORONEL et al., [2022b)).
Given that the intensity fluctuations in the Yb [MLFL] also exhibit nontrivial characteristics,
it is natural to explore whether similar turbulent effects are present in our system, especially
since several indicators point in that direction.

In this chapter, we presented a theoretical overview of turbulence and its statistical sig-
natures in nonlinear photonic systems. We also introduced the statistical tools employed in
our analysis, with particular emphasis on [PCA| which provides a complementary perspective to
more traditional approaches. Although these studies were originally motivated by results in [RL]
we did not focus on reproducing those derivations here. Instead, the aim was to consolidate
the theoretical and methodological background necessary for the analysis of our own system.
For readers interested in further details on turbulence in random lasers, the references cited

at throughout this chapter provide comprehensive coverage.

5.1 BACKGROUND ON TURBULENCE

Turbulence is one of the most intriguing phenomena, not only in physics, but in nature as
a whole. It manifests as chaotic, unpredictable fluid motion, appearing in countless contexts:
from cigarette smoke and gusty winds to airplanes, river flows, and much more. It affects a
wide range of systems, from vehicle aerodynamics and sediment transport to weather patterns.
Turbulence is also found in planetary atmospheres, the solar corona, Earth’s outer core, and
even in the large-scale structure of galaxies (LESIEUR, |2008)). However, despite its universality,
turbulence is one of the most complex subjects to describe. As Horace Lamb, one of the most

influential physicists of the 20th century in the field of hydrodynamics, once said:

I am an old man now, and when | die and go to Heaven there are two matters
on which | hope for enlightenment. One is quantum electrodynamics, and
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the other is the turbulent motion of fluids. And about the former | am really
rather optimistic. (GOLDSTEIN} {1969, p. 23).

Indeed, the complexity of turbulent behavior has fascinated humanity for centuries. Ev-
idence of this can be found in the studies of Leonardo da Vinci and in paintings, such as
Vincent van Gogh's Starry Night, whose swirling patterns have recently been shown to exhibit
remarkable statistical accuracy in representing turbulence (MA et al., 2024).

Let us consider a simplified historical approach to the subject. We begin with Leonhard
Euler, who in the 1750s attempted to describe the motion of fluids while designing water
fountains (L'VOV; PROCACCIA, [1998). He wrote Newton's equation of motion for a fluid of
density p as (here we are neglecting external forces, such as gravity)

Du  Ou

1
Dt 8t+u ! p b (5.1)

where u = u(r, t) and p = p(r,t) are the velocity and pressure fields, and D /Dt is the material
derivativ{]. However, Euler's equation produces unrealistic velocity predictions for certain gra-
dients of pressure. The crucial element missing in his equation is the viscous dissipation, which
accounts for the internal friction between adjacent fluid elements. This was addressed during
the first half of the 19th century, where the works of Claude-Louis Navier (NAVIER; PROVIN-

CIALE; TOPOGRAFICO, (1839) and George Gabriel Stokes (STOKES| 1842) properly introduced

this viscous term, yielding the well-known [Navier-Stokes Equation| (NSE))

Du 1 9
S . 2
for pr—l—VV u (5.2)

Here, v is the kinematic viscosity. Eq. [5.2] describes essentially a Newtonian fluid, meaning
that the internal stress of the fluid is proportional to the shear rate. The [NSE|thus serves as the
foundational model for incompressible Newtonian fluids. It successfully captures the behavior of
common fluids such as water and air under normal conditions (BENZI; TOSCHI, 2023)). Despite
this, direct attempts to evaluate the solutions of this equation for natural flows can lead to
discrepancies between predictions and experiments. This problem was addressed by Osborne

Reynolds, who expressed the importance of non-dimensionalization of the [NSE| (REYNOLDS,

1The material derivative describes how a physical quantity, such as velocity, changes for a particle moving
along with the fluid's flow (BIRD; STEWART; LIGHTFOOT] [2006)
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1894)). For this end, we consider the initial velocity Uy of the fluid and a characteristic length

scald’] L. We then perform the following substitutions

., " s X o W p o p
u —)FO, \Y —>LV, X ﬁz, t —>T, ;_)TUE (53)

After some (arguably tedious) manipulations, one arrives at the dimensionless form of the

NSE|

ou* v
+ u* . V*u* _ _V*p* 4

ot A (5:4)

In the above equation, the only nonlinear contribution comes from the convective term
u*-V*u*. The pressure gradient, viscous Laplacian, and time derivative are all linear operators.
The nonlinear term scales as UZ/L, while the viscous term scales as vUy/L?. Taking their
ratio, we define the Reynolds number (Re) as

UsL
Re = == (5.5)

v

Eq. quantifies how dominant the nonlinear effects are compared to viscous dissipation
in a given fluid flow. A key consequence of this is that the qualitative behavior of the flow
can be described by Re and it changes drastically when varying it. For Re < 1, viscous
effects dominate, and the nonlinear terms can be neglected. In such regimes, [NSE| can often
be solved analytically, and the flow is typically smooth and laminar (ordered flow in parallel
layers with no disruption). However, in many natural and practical situations, Re > 1. In these
cases, nonlinearities dominate, and no stable, stationary solutions exist for the equations of
motion. Moreover, for this case, the linear regime cannot be used as a basis for any perturbative
expansion (BENZI; TOSCHI, [2023). In other words, there is no small-parameter expansion around
a known solution that can yield a significant analytical result. In this regime, the flow is highly
sensitive to initial conditions, and the velocity field develops intricate, time-dependent vortices,
eddies, and chaotic patterns (L'VOV; PROCACCIA, |1998)). This regime is what we call turbulence.
Another of Reynolds’ insights was the fact that, regardless of the specific values of Uy, L, or
v, flows with the same Reynolds number exhibit similar dynamical behavior.

Modern ideas on turbulence are expressed in Lewis Fry Richardson's poem on turbulence:

°For example, consider a cylinder of radius L and height H and analyze the behavior of fluid flow around it,
L represents this relevant scale (BENZI; TOSCHI, [2023).
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Big whirls have little whirls / That feed on their velocity, / And little whirls
have lesser whirls / And so on to viscosity. (RICHARDSON| |1922])

These verses encapsulate the essential idea of turbulence: large-scale forcing injects energy
into the system, which is then transferred through a cascade to successively smaller scales
via the nonlinear dynamics of the fluid. Eventually, this energy reaches a sufficiently small
scale where the energy is dissipated by viscosity and converted into heat. This idea of energy
cascading from large to small scales became the foundation for many theoretical models of
turbulence, often called cascade models, which aim to describe how this energy transfer works
(L'VOV; PROCACCIA, (1998)).

Because turbulent flows are so complex and random, it is not practical to track every
fractional motion of the fluid. Consequently, it is more efficient to focus on the statistical
properties of turbulence. However, even the velocity field statistics are often strongly affected
by the specific boundary conditions of the system. A more universal characterization emerges
when analyzing the statistics of velocity differences between two points r; and ry in the flow,

Viz

du(R) = u(ry) —u(ry). (5.6)

where we set R = ry — ry. Usually, instead of analyzing full 3D turbulence, researchers often
just look at 1D slices, i.e., we project the velocity difference onto the direction of the separation

vector R

Su(R) = 6u(R) - —. (5.7)

With this set of speed increments at hand, we examine the probability distribution of these
variations and compute their statistical moments (i.e., the averages of various powers), which

are known as structure functions. That is,

Su(R) = (5u(R)"), n €N (5.8)

Here, (...) denotes an ensemble average. These moments give us insight into the shape
and behavior of the distribution in the increments of velocities. For example, the first moment
(n = 1) is the mean, the second (n = 2) is related to the variance (spread), the third (n = 3)

describes skewness (asymmetry), and the fourth (n = 4) captures kurtosis (how heavy the
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tails are). For a Gaussian distribution, everything about the statistics is determined up to
the second moment, Sy. Higher-order moments do not carry any relevant information to the
distribution (L'VOV; PROCACCIA| 1998). However, systems with highly non-Gaussian statistics
cannot be solely described by the variance. This means that the higher-order moments, such as
Ss and Sy, carry essential information about the shape of the distribution. Theoretical efforts
to understand the universal small-scale structure of turbulence can be broadly categorized
into two approaches (L'VOV; PROCACCIA, [1998). The first is based on the . Usually, one
recognizes that fluid dynamics is a classical field theory; thus, we need to employ field theoretic
techniques to compute statistical properties, although this is significantly difficult and rarely
successful. The second approach consists of a wide range of phenomenological models. Despite
not being directly derived from the [NSEk, these models have provided valuable insights by
matching more closely with experimental observations. In the following, we will focus on this
second category.

One of the most insightful contributions to the concept of turbulence came from Andrei
Kolmogorov in 1941 (KOLMOGOROV, [1941)). He proposed that certain statistical proper-
ties of turbulence could be universal, meaning that they are independent of the specific details
of the fluid or the flow, as long as Re is significantly large. This idea of universality relies on
the concept of an inertial range. The inertial range is a scale region | between the large scale
of energy injection L, and the small scale 7 at which viscosity is significant (often called the
Kolmogorov scale). In turbulent flows, where Re >> 1, there exists a wide separation between

these two scales, such that (L'VOV; PROCACCIA| 1998))

n< R<L. (5.9)

In this intermediate regime, the energy cascades without being affected by either the
energy input mechanism or the dissipation. Once the fluid is in the stationary state, that is,
the statistical elements of the flow do not change in time, the rate of energy injected at the
large scale is identical to the rate of energy dissipated at the smallest scale (L'VOV; PROCACCIA,
1998)). This constant energy flux ¢ must be the same across all scales in the inertial range.

Kolmogorov's universality assumptions can be stated as (GONZALEZ, [2017))

3This region is also known as the Taylor microscale (GONZALEZ, [2017), named in honor of Geoffrey Taylor,
whose earlier work (TAYLOR|, [1935) laid important groundwork for the statistical approach to turbulence.
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1. At very high, but finite Re, all small-scale statistical properties are uniquely determined by

the viscosity v, the energy dissipation rate per unit mass €, and the scale R

2. In the limit as Re — oo, all small-scale statistical properties are uniquely determined by €

and R.

Since ¢ has dimensions of [L?T3] and R is the only available length scale according to the
above assumptions, one can combine them to predict how various statistical quantities behave
in the inertial range. For example, to estimate the structure functions of Eq. 5.8 dimensional

arguments lead to

S.(R) = C(eR)"3, (5.10)

where C' is a universal constant (SREENIVASAN, 1995)). In particular, for n = 2, we recover

what is known as the Kolmogorov 2/3 lawff| (KOLMOGOROV, [1941))

Sy(R) = C(eR)*3, (5.11)

A rather non-trivial issue in the study of turbulence is determining which statistical quan-
tities, beyond the structure functions, are also relevant for characterizing the flow (BENZI;
TOSCHI, 2023). The main idea is that we are dealing with a random, time-evolving velocity
field. So, much like the approach taken in spin glass theory, it is natural to examine correla-
tion functions. In particular, we are interested in correlations of the fluctuations in the energy

dissipation rate €(r,t) relative to its mean value. We can define the deviation as

de(r,t) = e(r,t) — (e), (5.12)

and study how these fluctuations correlate over space using the correlation function KGE(R)EE

Ko (R) = (de(r + R, 1)de(r, 1)) . (5.13)

*We can also examine a Fourier representation of the energy spectrum, which leads to the well-known —5/3
power law (see (GONZALEZ, 2017)))

5Note the similarity to

SStrictly speaking, Eq. defines a covariance function, since it is the ensemble average of the product
of fluctuations without normalization. However, in turbulence literature, it is commonly referred to as a
correlation function. The normalized version, bounded between —1 and 1, is obtained by dividing by (5¢?(r, t)).
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If the energy dissipation is uncorrelated between different points, Eq. vanishes for all

R # 0. Using Kolmogorov's dimensional reasoning, we obtain that (L'VOV; PROCACCIA| 1998)

K. (R) ~ V2 43 R8/3 (5.14)

meaning that the correlation decays as a power law in R proportional to R~8/3. Indeed,
experiments have demonstrated that many statistical quantities of turbulent flows exhibit a
power-law dependence on R. Specifically, both the correlation functions and structure functions

follow the scaling

K.(R)~R" and S, ~ R, (5.15)

However, there is a significant discrepancy between the exponents predicted by and
those observed in experiments. For instance, we have i ~ 0.2 (SREENIVASAN; KAILASNATH,
1993)) and (,, deviating from n/3 as n increases (BENZI et al., [1993). One reason for this
inconsistency lies in the assumption that only R and € are relevant within the inertial range. In
reality, both the large-scale length L and the small-scale 1 continue to influence the statistics
even in this intermediate range. As a result, structure functions take a corrected form (L'VOV;
PROCACCIA, 1998)

L>n/3—cn
)

S.(R) = C(eR)™? (

= (5.16)

This deviation from simple dimensional analysis is known as anomalous scaling. The other
reason why is unable to fully describe turbulence is the presence of intermittency, an
irregular and violent behavior of energy dissipation at small scales. assumes (based on
Taylor's work (TAYLOR, [1935))) that turbulence in the inertial range is statistically homoge-
neous, isotropic, and self-similar, i.e., turbulence is the same at every point in space, identical
in all directions, and follows the same scaling laws across every scale. However, experiments
and numerical simulations reveal that energy dissipation is not uniform but is concentrated in
intense, localized structures. These include regions exhibiting sharp velocity gradients (shear
layers) or zones of high fluid vorticity (vorticity filaments).

The existence of intermittency breaks the assumption of self-similarity and leads to non-
Gaussian statistics (heavy tails) at small scales. To address this, Kolmogorov introduced a

refined theory in 1962 (K62) (KOLMOGOROV, |1962) that assumes that the local dissipation rate
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€, is not a constant, but a log-normally distributed function. This means that (BALAKRISHNAN;
CHEN|, [1999)

{ne =) “)2] : (5.17)

202
with 1 and o as the mean and standard deviation, respectively. leads to a prediction for

the variance o of In(e,) as (KOLMOGOROV, |1962)

L
T, (X, 1) = A(x, 1) + k' In (R> , (5.18)

where A(x,t) is a function related to the macroscopic statistics of the flow, and k' is a
universal constant known as the intermittency exponent (GONZALEZ, [2017)). Eq. directly

2 increases as the scale

controls how variable the dissipation is at scale R. We can see that o
R decreases, meaning that dissipation becomes more intermittent at such smaller scales.
also corrects the R dependence exponents with

n K

Cp = 3~ En(n —3), (5.19)

which introduces a nonlinear dependence in (,, capturing the observed anomalous scaling
of the structure functions. However, as n — oo, the quadratic term dominates, leading to
negative (unphysical) exponents. This problem was observed, for example, in experiments
by Anselmet et al. (1984). Moreover, the assumption of a log-normal distribution fails to
accurately represent the tails of the probability distribution of the velocity increments, which
are heavier than predicted, meaning that extreme events occur more frequently than the model
allows.

Despite all of this, Kolmogorov's theory was influential enough to inspire more refined
approaches. As a notable example, we have the multifractal model proposed by Parisi and
Frisch| (1985), which replaces the log-normal assumption with a spectrum D(h) of fractal
dimensiond’}] Among other remarkable theoretical frameworks, there is the dynamical model
proposed by Salazar and Vasconcelos (2010), which describes energy transfer between con-

tiguous scales using a set of coupled stochastic differential equations. Building upon this,

"Benoit Mandelbrot was the first to formally challenge the log-normal hypothesis (MANDELBROT, [1974). He
introduced the multifractal idea, arguing that turbulence involves a continuous spectrum of singularities rather
than a single Gaussian process.
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the H-theory developed by Macédo et al.| (2017 generalizes the model and addresses several

unresolved issues. In our analysis, we adopted and implemented this latter framework.

5.1.1 The H-theory dynamical model

The H-theory is a dynamical stochastic model based on Langevin equations with hierarchi-
cally separated time scales. It generalizes the Salazar—Vasconcelos model (SALAZAR; VASCON-
CELOS, 2010) and establishes a connection between the field of superstatistics — a branch
of statistical physics dedicated to the study of non-linear and non-equilibrium systems — and
stochastic processes (GONZALEZ, 2017)). The main idea in the model is that even if a signal
x (like wind speed or the intensity of a laser) may appear to be random and unpredictable, it
can follow simple local rules influenced by slower, hidden processes. Instead of modeling the

signal as a single complex entity, we can decompose it into mainly two components:

= A fast process: The observable signal = fluctuates rapidly, which can resembles a Gaussian

noise over short timescales.

» A slow background process: The variance of these fluctuations is governed by a hidden

variable €, which evolves on a slower timescale.

In superstatistics, € is just assumed to follow some distribution, but in H-Theory, we assume
that € itself is the result of multiple slower hidden processes, each influencing the next, like
a chain of effects. The theory in fact determines the number N of relevant time scales. N
basically tells us how many layers of hidden random processes affect the observed signal x. For
example, in the previous section on turbulence, we said that large eddies break into smaller
ones, which is a process naturally described by these multiple timescales. When N = 0,
the system behaves like a simple Gaussian noise. For N = 1, there is only one background
fluctuation, resulting in a distribution with heavier tails. When N > 1, multiple hierarchical
layers produce increasingly complex, heavy-tailed, non-Gaussian statistics. Distributions with
heavy tails often emerge from a composition of well-separated stochastic processes, each
reaching local equilibrium at its own timescale. Solving the model in its stationary state yields
the overall probability distribution that governs the long-term behavior of the signal.

Let us try to paint a simple picture of the theory. As commented before, on short timescales,

x behaves like a Gaussian process with fixed variance ¢, i.e., P(z|e). However, € fluctuates,
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following some unknown probability distribution f(¢€). So the full distribution of x is a weighted

average over all possible variances (GONZALEZ, 2017

P(z) = / deP(z|e) f(e). (5.20)

This type of description matters because a single Gaussian cannot capture extreme events.
However, if one combines many Gaussian curves with different variances, one can get heavy
tails distribution. This is the starting point of superstatistics, and H-Theory takes it further by
deriving f(€) from dynamical equations, rather than just fitting it from some data (GONZALEZ,

2017)). To this end, we start with a Langevin equation that describes how z evolves over time

dr = —Cxdt + \/2(endV, (5.21)

where ( is a positive constant, dV is a Wiener process (also called Brownian motion or white
noise), which represents random fluctuations, and eNﬁ is a random variable that, by the time we
observe the system, has settled into a local equilibrium and no longer changes significantly over
time. The first term on the right-hand side of the Langevin equation (Egq. corresponds
to the dissipation (or drift). This term removes energy from the system and pulls the variable
x back toward equilibrium over time. The second term is the stochastic component (noise),
determining the strength and influence of random fluctuations.

We can also describe how each background variable ¢; evolves over time by a Langevin

equation, which takes the general form of (GONZALEZ, |2017))

dEi = E(Eo, ... EN, t)dt + Gi(607 ..., EN, t)dVVZ (522)

Here, ¢; is the i-th background variable in the hierarchy that is influenced by even slower
processes €;_; (with well-separated time scales). dW; a Wiener process that is independent
for each i (a single layer has its own randomness). F; and G; are general functions that could
depend on time ¢ and on all background variables.

To determine the specific form of F; and G;, H-theory employs the following constraints,

motivated by the cascade model of classical turbulence:

8¢, is the last background variable in the hierarchy of €, €1,...,€ex
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1. Temporal Translation Symmetry: The rules governing the system are time-invariant, i.e.,

the dynamics are assumed to be stationary and do not depend on time. Mathematically

OF,  9G;
ot ot

0. (5.23)

2. Local Interactions: Each variable ¢; is only influenced by its immediate neighbor in the
hierarchy. This reflects the idea of locality in turbulence, i.e., the energy is transferred

between adjacent scales, not across distant ones. So,
E(607 s JEN) - E(Ei—la 6i)7
Gi(EU, C ,EN) = Gi(Eifl, 6@')- (524)

3. Scale Invariance: The dynamics of the system has no preferred scale. If all energies are

multiplied by a factor A, the form of the equations remains unchanged. Then
Fi(Neio1, Aei) = AF(€im1, €),
Gi(Nei_1, Ne;) = AGi(€;-1, €). (5.25)
4. Stationary Condition: If two consecutive layers in the hierarchy are equal, then there's
no net change — the system is in equilibrium at that scale. This ensures that the system

can relax into a steady state, where the average flow of energy (or variance) between

scales becomes zero when the levels match. In mathematical terms

de;
L= R g 5.2
€ = €1 = < dt> 0 (5.26)

5. Unidirectional Flux: This ensures that each ¢; remains positive over time. This is obvious

since the variance cannot be negative. Therefore,

If e;(t = 0) > 0 = Prob(¢; < 0) = 0. (5.27)

The most general forms of F; and G; that fulfill all the above conditions were derived by

Gonzalez| (2017)) and are given by

Gi(eo, ..., en,t) = riele 1, (5.28)
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where 7;, k;, and « are positive constants. Inserting Eq. into Eq. leads to

de; = —vi(e; — €i-1)dt + rief'e; [ dW;. (5.29)

The exponent « plays an important role in determining the statistical behavior of ¢;. Only
two values (o = 1 or & = 1/2) lead to physically meaningful and solvable analytic expressions
for the corresponding Fokker-Planck equation (GONZALEZ, 2017). When « = 1, the stationary
distribution of ¢; has the form of an Inverse Gamma distribution, often observed in systems with
heavier tails. On the other hand, when a = 1/2, the solution becomes a Gamma distribution,

which describes systems with lighter, stretched exponential tails.

5.1.2 Solving the model and numerical approach

Naturally, the next step here would be to solve the full multiscale stochastic model
(Egs/5.21] and and derive a closed-form expression for the stationary distribution P(x)
(Eq.[5.20)). In H-theory, both P(z) and the background variance distribution f(€) admit exact
solutions in terms of Meijer G—functionsﬂ (or, in more complex situations, Fox H—functionsF_GD.
These special functions emerge naturally from the nested integrations over each Langevin
equation. However, in our system, analysis showed that only a single background scale is rele-
vant (V = 1), and that the distribution f(e) fits well in an Inverse Gamma distribution. This
result simplifies the hierarchy to the first level, so the solutions of our problem ease to a much
simpler form. It is worth noting that we also observe regimes without turbulence, corresponding
to N = 0 (no multiscale cascade with purely Gaussian statistics). In light of this, we present
here only the N = 1 and o = 1 results of the multiscale approach. For a full derivation of
the multiscale model and its Meijer G or Fox H solutions, the reader is referred to Gonzélez's
thesis (GONZALEZ, 2017 and to the original work on turbulence in random lasers (GONZALEZ
et al., 2017).

One should bear in mind that determining the correct value of N is not a trivial task. The
standard procedure involves fitting the general N-dependent Meijer G-function to the data
and systematically varying N (and other relevant parameters). The optimal number of scales

is then selected based on which value yields the best agreement to the data. This agreement

9A very general class of function designed to embrace most known special functions, such as Gamma and
Bessel functions, as a specific case.
10Generalization of the Meijer G-function.
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is typically confirmed by minimizing the error via the least squares method. A similar fitting
procedure is applied to f(€), testing whether a gamma or inverse-gamma distribution provides
a better description of the data.

Setting the dynamics at a single scale (e = €; = €) leads the stochastic equations to take

the form

dr = —Cadt + \/2¢edV, (5.30)

de = —y(e — co)dt + rg(€)dW;  g(e) = ey, (5.31)

By solving the associated Fokker-Planck equations in the stationary limit (t — oo) and

setting v = 1, we obtain the conditional probability distribution P(zx|e)

1 x?
P(xzle) = \/ﬁexp (—26> : (5.32)
and the background distribution
_ (BEO)ﬁJrl —B—2 Beo .
fle) = R 1)6 exp — ) e> 0. (5.33)

Here, T is the gamma function, and 3 = 2v/x?, which is always greater than zero. The
parameter [ is adjusted to fit the data and determines the shape of the distribution. With
these expressions, we can derive the full probability distribution P(z). Using Eq. and the

equations above

1 z? (Beo)™™ 5., Beo
P(z) = /de [\/ﬁ exp <_2€>] LWG A2 exp (—Eﬂ :

_ (Be)tt e 02 z?  Pe
P(x) = VT (3 1 1) /0 de 7 exp <_2e — e) :

P(z) = \/2(_51?();111)/000 dee(3+3) exp [—1 (%)] . (5.34)

Let us simplify the integration process by defining the constants:

(Beo)? _[2* + 2P
L (frase) -
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With these, Eq. becomes

o0 B
P(x) = A/ dec(P+3) exp <—> . (5.36)
0 €
This integral is easily solved using the substitution
B B
€= — = de = ——du, (5.37)
u u

with the limits changing accordingly

e—0=u—

e—o0o0o=>u—0

Substituting into the integral, we obtain

—u

€

P(z) = —A/O duE <B>_(B+g)

00 U2 u

P(z) = AB~(3+3) / dunP e, (5.38)
0
We now identify the integral as the Gamma function

P(z+n+1)= /OOO dit*+e, (5.39)

so that

P(r) = AB-(Hr (5 4 2) | (5.40)

Substituting back the original expressions for A and B and reorganizing the constants, we

get

. (ﬁE())ﬁ—H $2+26€0 _(B+%) 3
Po= e () T(eg)

_ 1 I'(8+3/2) B+1 —p-3 x2 ~(5+%)
P(x) = V2r T(B+1) (Beo)™" (Beo)™ (2560 + 1) :
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P(z) (5.41)

_ 1 T(B+3/2) <1+_ 2? >(5+3)
V2rBe T(B+1) 2[€o .

This final expression gives the analytical form of the probability distribution P(z) for our
signal, under the use of an inverse-gamma background with a single scale (N = 1). When
working with experimental data series, the parameter ¢, is chosen such that the background
distribution has a fixed mean (¢) = ¢y = 1, so that ¢ is not a free parameter and [ is the
only value to be fit. Alternatively, P(z) can be written in terms of the so-called g-Gaussian
distribution, which is a generalization of the Gaussian distribution. The g-Gaussian has the

form (VASCONCELOS et al., 2024

_ q—1 r(-4) 2
P(x) = B30T qij — %> exp, [—(5_3@60] ) (5.42)
where
=14 5.43
1= Tty (5.43)
and
exp,(x) = [14 (1 = q)a] ™7 . (5.44)

To verify the compound hypothesis in Eq. [5.20, |Gonzélez (2017)) introduced a numerical
method to extract the background distribution directly from the signal’s time seriesE]. The idea
is very straightforward: if we can reconstruct fy(ex) from data, we can test the validity of the
theory by comparing the reconstructed distribution with the one predicted by the model. So,
the goal is to identify the background fluctuation series €(¢) which, when mixed with Gaussian
noise, reproduces the observed P(x). But how exactly can we determine this background
series?

As already mentioned, the moments are the statistical identifiers of a distribution. If the
data appears non-Gaussian, it is because the variance is fluctuating. While we do not di-
rectly observe the background variance distribution f(€), we can measure the moments of the
signal x, which — fortunately — are mathematically related to the moments of the hidden

background ¢ via

1 This is the method chosen for our analysis.
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(z?) = (&) ﬁ (2p —1). (5.45)

k=1

From this relation, we see that the first and second moments of € are

p=1= ()= (a?), (5.46)
p=2= ()= <x;> (5.47)

We also can define the central moment (moment about the mean) of the signal as

pin) = {(& = (2))?) . (5.48)

We are particularly interested in the variance and kurtosis of the signal, which correspond
to the first two moments of the background series. These are related to the central moments

by

o?(z) = pa(), (5.49)
k(z) = [24((;))]2. (5.50)

To simplify, we set the signal = to have zero mean ({x) = 0), which causes p,(z) = (™).
Additionally, we also set the signal to have unit variance, so 0%(z) = po(x) = (x?) = 1. The
kurtosis simply becomes r(z) = (z*). With these simplifications, and using Egs. to [5.50]

we can derive the variance of the background series ¢ as

o*(e) = ((e— 1)),
o?(e) = <62> -1,

2y H@) =3 ()
o°(e) = 3 =5

(5.51)

Eql5.51| shows that we can use the kurtosis of the signal to detect signs of turbulence. If

k = 3, then o%(¢) = 0, implying no background fluctuation and purely Gaussian statistics.
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However, if k > 3, then o%(¢) > 0, indicating that the variance fluctuates, which leads to
heavy-tailed distributions composed of Gaussian curves with different variances. Conversely, if
k < 3, the variance fluctuations are suppressed relative to a Gaussian, leading to light-tailed,
platykurtic distributions with a flatter peak than a standard Gaussian. With this in mind, we
aim to construct a background series whose variance matches the theoretical value given by

Eql5.51]

The method for constructing €(t) is described as follows:

1. Construct the fluctuations series: We construct the fluctuation series (similar to Eq. 5.6))
by calculating the difference between points separated by an interval 7. In general, the

signal is defined as

x(t) =u(t+7)—u(t); 7eN. (5.52)

Since the time ¢ is a discrete variable here, it refers to the ordered sequence of data
acquisition {to,ts} (S being the total number of samples). Thus, 7 represents the
number of steps between consecutive samples: 7 = 1 corresponds to the first neighbor,
T = 2 to the second, and so on. We will restrict our analysis to 7 = 1, as it has been
shown that for larger values of 7, the system tends to return to a Gaussian distribution

(GONZALEZ, 2017; GONZALEZ et al., 2018).

2. Normalize the signal: We apply the same simplification used earlier (zero mean and unit

varianceIT_ZD. This is done by computing

7ty = A= 4D (553)

3. Compute local variance: We subdivide the signal into intervals of size M and compute

the variance within each interval

M-

Z (t - jbt) — (er (D) (5.54)

where t = 1,2,...,5 and (x)(t)) is the local mean over M elements of the data series
M-

(T Z (t — jot). (5.55)

This process generates a new time series using a technique known as the running average.

The initial value of M is chosen based on the result from Eq. [5.51]
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Figure 25 — Flowchart of the numerical procedure used to reconstruct the background variable €); and compute
the probability distribution P(z) from empirical data. Alternatively, one can also use a loop to
iterate over different values of M to determine which value provides the best result, rather than
applying the variance as a criterion.
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In hold of this background series, we now numerically compound it with the Gaussian kernel

(EqJ5.32)), as suggested by EqJ5.20} for various values of M. In other words, we use

1 z?

to generate a curve of P(z|ey) for each value of €),. We then take the average of all these
curves. The resulting distribution is P(x), which is than compared with the empirical one
using the least squares method. Since the initial value of M comes from an ideal mathematical
relation, we adjust M (increasing or decreasing it from the initial guess) to minimize the fitting
error. We can also guide this adjustment using 0%(ey): if 02(eps) is smaller than the theoretical
value from Eq. , we increase M if it is greater, we decrease M.

This gives us a reliable method to compute P(x) and compare it with the theoretical fit
given by Eq. 5.41] Fig. presents a flowchart outlining all the numerical steps described
above. It is also important to emphasize that, once the reconstructed background series €,
is obtained, its distribution should match well with Eq. [5.33] using the parameters previously

determined.

5.2 MULTIVARIATE ANALYSIS FOR THE SIGNAL

Now that we have established a solid theoretical framework to describe the turbulent
dynamics of our system, a practical question arises: how can we determine the signal series
x(t) for our analysis?

In the previous chapter, we investigated the dynamics of the peaks in the spectrum to
identify the L-shaped distributions, which were indicative of unusual dynamics. Therefore, it is
natural to consider if those same peaks can reveal signatures of turbulent dynamics. However,
we are faced with a critical limitation: turbulence analysis requires significantly more data (at
least two orders of magnitude more) than what was used in the study (GONZALEZ et al.
2017). Consequently, we cannot reuse the previously available dataset and we must obtain
new data within the [QML] region. With the acquisition of new data, we find that the positions
of the peaks are not constant, as they initially appeared to be. Instead, peaks fluctuate within
a narrow window of wavelengths (or frequencies). This window is constrained by the spectral

width of the [SML] regime. Since the [SML] spectrum is broader than the [QML] spectrum, and

12Note that normalizing the standard deviation o also normalizes the variance, since o(z) = /Var(z).
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the frequencies present in the [QML] regime are precisely those that compose the mode-locking
(see Sec. , the possible peak positions in are effectively a subset of thespectrum
bandwidth.

The heatmap in Fig. [26] illustrates the average spectrum at different pump powers in the
[QML] region. We can clearly see that the peaks 'wiggle' across wavelengths as the pumping
is varied. It is also clear that the number of peaks is not constant, and it differs from two for
different pumping powers.

Figure 26 — Heatmap of the averaged spectrum in the region. Each row represents a top-view projection

of the averaged spectrum, obtained by averaging over 150,000 individual spectra for each pumping
value.
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This variability can be attributed to the cavity configuration, particularly the angles of the
polarization waveplates, which are mainly the variable elements in our setup. Since multiple
waveplate configurations can still achieve mode-locking operation (CAMPOS, 2020), different
realizations of the regime are possible, each exhibiting its own peak structure.

We could consider identifying the most frequently occurring peaks across the entire re-
gion and fixing to those, or perhaps simply choosing the global maximum of each spectrum.
However, this approach presents a new complication.

As shown in Fig. 27} the moments of the signal (variance and kurtosis) indicate that the

peak dynamics fluctuate between Gaussian and non-Gaussian behavior throughout the region.
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Figure 27 — Variance (o) and kurtosis excess (72 = k — 3) of the intensity difference time series for the two
most frequent peaks and for the global maximum, across different values of the pumping current.
The region spawns approximately from 180 mV to 477 mV, with the [CW] and regimes
lying before and after this range, respectively. The wavelengths of the two most frequent peaks
are \;y = 1022.9 nm and Ay = 1024.4 nm.
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That is, since the number of peaks is not constant, the two most frequent peaks may not
correspond to competing modes at a given pumping value. Thus, selecting the most frequent
peaks does not necessarily capture the competing dynamics as done in previous analyses.
Similarly, selecting only the maximum peak consistently excludes the dynamics of the other
modes. At different parts, the maximum may follow one peak, the other, or neither of them.

The key to constructing the signal lies in recognizing that the system’s dynamics are not
confined to a single peak — or even just a set of peaks. The spectrum is composed of multiple
points, each contributing to the overall behavior of the system. Selecting only one of them
fails to capture the full picture, revealing only a partial and possibly misleading view of the
dynamics.

A simple analogy to illustrate this situation can be done with the help of Fig.[28] Consider
you have an apple, an ink stamp pad, and a piece of paper. If you press the bottom of the
apple against the ink pad and then onto the paper, you obtain the image shown in Fig. [28a.
Next, suppose you slice the apple horizontally, press the exposed surface into the pad, and
stamp again. The result would be Fig. 28b. Finally, instead of a horizontal cut, suppose you
make a vertical cut and repeat the stamping process, producing Fig. [28c. Now, you present
these three stamped images in sequence to a random person (who did not see what you did)

and ask them to identify the object from the images. They would most likely only recognize
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Figure 28 — Representation of apple stamps on paper with (a) the bottom of the apple, (b) a horizontal cross-
section, and (c) a vertical cross-section.

(a) (b) (c)
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Source: The Author (2025)

the object as an apple upon seeing the third image. Despite all three stamps originating from
the same object, the third picture is the one that has the most familiar shape.

This analogy encapsulates our challenge. By selecting a single mode, we are effectively
looking at a poor imprint of the full system, one that lacks the features needed to reveal
its complete structure. As a result, we cannot properly interpret the statistical signatures
observed in Fig. [27] Therefore, what we need is the equivalent of the "best cut" of the apple,
a representation that carries the richest information about the full turbulent dynamics. In other
words, we must perform a multivariate analysis to extract a representative signal x(t).

Multivariate analysis involves the statistical treatment of datasets in which each obser-
vation consists of multiple variables or features — in our case, a spectrum with many sets
of modes. This approach is important when the dynamics come from the interplay between
these variables. The primary goal is to understand the relationships between these variables

and how they interact with each other. Among the available techniques, the most suitable for

our system is |Principal Component Analysis| (PCA]). [PCA| reduces the dimensionality of the

dataset by transforming it into a new set of orthogonal variables (principal components) that

capture most of the information in the data.

5.2.1 Principal Component Analysis (PCA)

Suppose we are performing an experiment, such as analyzing the flow of a fluid in a pipe.
We divide the pipe into sections 9;, and for each section, we measure the velocity squared
and the pressure of the fluid - since we have learned a bit of fluid dynamics, we know that

there can be a quadratic dependence of the velocity on the pressure. We then organize all the
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collected data into a table like the one below.

Table 1 — Fictional data collected from an experiment analyzing the flow of a fluid in a pipe.

Pipe section o1 09 . On
v?(m?/s2) 329.16 16185 ... 3.9
Pressure (PSI) 39.13 40.99 ... 59.69

Source: The Author (2025)

To analyze this data, the most straightforward approach is to create a plot where the axes
represent velocity squared and pressure. Each point on the graph corresponds to a different
section of the pipe. We may obtain something similar to what is represented in Fig. [29] where
we are able to identify some patterns, allowing us to identify regions of the pipe with similar

properties or even possibly deduce empirical relationships between the variables.

Figure 29 — Graphical representation of velocity squared versus pressure plane of fictional data from an exper-
iment analyzing fluid flow in a pipe. The heatmap indicate the section of the pipe.
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However, being meticulous experimentalists, we decide to expand the scope of our measure-
ments. Now, for each section of the pipe, we also record temperature, density, cross-sectional
area, flow rate, and so on. Our experimental table now contains m rows, each one correspond-

ing to a different type of measurement. With just two variables, it was simple to visualize
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the data in a two-dimensional plot, but now, a graphical representation would require an m-
dimensional space, which is impossible to visualize. Moreover, since we do not know the correct
path to take, it is not clear which of the measured variables are the most relevant, making it
difficult to discard any of them.

This type of challenge is common in experiments across all fields, and it is precisely here
that [PCA| becomes useful. constructs a new coordinate system (new axes) that allows us
to re-express the data. The goal is to project the original dataset onto a new basis that filters
out the noise and highlights hidden patterns and structure (SHLENS, 2014). In other words, we
want to reduce the variables without losing information. We will now give an intuitive overview

of [PCA] followed later by a more formal mathematical description.

Figure 30 — lllustration of the basic steps of (1) normalize the data to have zero mean; (2) fit a line
through the data points; (3) project each point onto the line and maximize the projected distances
from the origin; (4) define the first principal component and its eigenvector; (5) find the second
principal component orthogonal to the first; (6) project data onto the new axes to reveal patterns
and effectuate analysis.
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Fig.[30] provides a visual representation of the basic steps involved in[PCA| Let us begin with
the simplest case, involving only two variables, just like in the introduction of this subsection.
In this case, a single measurement ¢ of our data matrix X can be represented as a column

vector
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X1

X; = _ (5.57)
T2

This allows us to plot the data in a two-dimensional plane where the axes correspond to
measurement types z; and x5 (Fig. .

We now present a step-by-step explanation of how [PCA| works, using Fig. as a visual
guide. The first step in (#1 in Fig. is to normalize the data so that it has zero mean.
This is done by calculating the average of each row (i.e., each variable) and subtracting it
from the dataset. As a result, the cloud of points becomes centered around the origin. Once
the data is centered, the next step (#2 in Fig. is to fit a line that passes through the
points and the origin. Naturally, we may ask: how do we determine the best line? In [PCA] this
is done by projecting each data point onto a random candidate line and selecting by rotation
the one for which the sum of the squared projection lengths is maximized.

To better understand this, consider a data point at a fixed distance a from the origin (#3
in Fig. . If we project this point onto a line, the projection forms a right triangle with the
origin. In this triangle, the perpendicular distance from the point to the line is b, and the length
of the projection along the line is c. From the Pythagorean theorem, we have ¢ = va? — b2.
Since a is constant for each point, maximizing the projection is finding the maximum value of
¢, which is equivalent to minimizing b. Thus, the best-fitting line is the one that maximizes

the total projected distances

arg max (Z c§> : (5.58)

In other words, we are maximizing the total projected variance. This direction of maximum

variance corresponds to what we call the first [Principal Component] (PC)), or P [PC]L is,

in fact, a linear combination of the original variables z; and x3, and its slope s indicates the

relative contribution of each variable. We can express this direction as a vector

V= ) (5.59)

which, upon normalization, we obtain

13Determining the principal component is like choosing the best angle to slice the apple in our stamp analogy.
[PCL shows the direction that captures the most information — just as the vertical cut gives the clearest
representation of the apple's shape.
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= . (5.60)

This normalized vector is known as the singular vector or eigenvector associated with [PC]L
(#4 in Fig. 30). Its components are often referred to as the loadings. These loadings quantify
how much each original variable contributes to the [PCl Once identified [PC]L, we proceed to
determine the second [PC| (PCR) (#5 in Fig. 30). We determine [PCR in a way that it must be
orthogonal to [PCL. This orthogonality condition ensures that [PCR captures a different aspect
of the data, independent of the first. Also, no further optimization is required to find this
second axis, since its direction is uniquely determined once [PCJL is known. Just like the first
component, [PCPR also has an associated singular vector with its own loadings. Together, these
two vectors form a new basis for the data space.

At this point, we can now re-express our data by projecting it onto the new basis formed
by and (#6 in Fig. 30). The coordinates of the data points in this rotated basis
are known as the scores. These scores represent the same observations, but now described
in terms of their alignment with the principal components rather than the original variables.
Projecting the data in this way allows us to identify structures that may have been hidden
in the original coordinate system, such as clusters, trends, or outliers. In particular, clusters
of points in this space suggest that these observations share similar characteristics across the
original variables.

For the case when we have more than two variables (e.g., m variables) the procedure gen-
eralizes. We find [PCL with the hyperplane which maximizes the variance, and then determine
(m — 1) |PCk, all hyperplanes orthogonal to each other, and each associated with a singular
vector and a corresponding eigenvalue. However, we said earlier that [PCA]is a dimensional
reduction technique, so how can we start with m variables and finish with the same amount?
The key insight of [PCA]is that not all components are equally important. The [PCs are ranked
by the amount of variance they explain in the data. [PCL explains the most variance, followed
by [PCR, then [PCB, and so on. This ranking allows us to reduce the dimension effectively.
Although we end up with m components, in practice we often retain only the first few ones
because they capture most of the variance (and hence most of the information) in the data.
This makes [PCA| particularly valuable for visualization and noise reduction.

To evaluate how many components we have to keep, we use a scree plot, where the x-

axis shows the component index (PCJL, [PCR, etc.), and the y-axis displays the amount of
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variance explained. We can also look at the cumulative variance plot, which shows the total
variance explained by the first k& components. A common rule of selection is to retain enough
components to explain at least 70% of the total variance (JOLLIFFE; CADIMA, 2016)). Let us
apply [PCA]in our toy experiment of the flow of a fluid in a pipe. We represent the pressure

and the velocity squared as p and v?, respectively. The first and second singular vectors are

vi| _ |—0.0588 0.9983| |p | (5.61)
Vs 0.9983 0.0588| |v?

1 is almost entirely aligned with the velocity (or velocity squared, to be more precise),
with a loading of 0.9983, while the pressure contributes very little (-0.0588). This means[PC]L
captures the majority of the variation in the velocity. As for [PCR, it captures the remaining
variation, mostly from the pressure (loading 0.9983). |PCA| effectively rotates the coordinate
system to align with directions of maximum variance. In this case, since the velocity dominates
the variation, [PCL aligns with it.

We can confirm this by looking at the bar graph and score plot in Fig. 31} The bar graph
(Fig. Bh) shows that accounts for over 99.9% of the total variance, meaning the dataset
can be basically represented one-dimensionally. The scores (Fig. ) are spread almost entirely

along the [PC]L axis, indicating that the velocity is the dominant factor.

Figure 31 - for the fictional fluid flow experiment, where (a) shows the scree plot of the variance explained
by each [PC| and (b) displays the [PCA|scores, colored by pipe section indicator.
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Source: The Author (2025)

Physically, this suggests the system is governed by changes in kinetic energy (related to v?)

rather than by independent pressure fluctuations. This is consistent with Bernoulli’s principle,
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where an increase in velocity corresponds to a pressure drop ¥} The alignment of scores

along [Principal Component| (PC))1 confirms that pressure adds little new information beyond

what velocity already captures.
In summary, [PCA] transforms the original dataset into a new coordinate system where the
axes are uncorrelated and ordered by how much they capture the variability of the data. This

transformation simplifies the analysis and allows us to retrieve the dynamics of a system.

5.2.2 Mathematical Formulation and Implementation of PCA

We now take a more technical approach, as [PCA| relies on straightforward linear algebra
concepts. Any experiment X involving m different measured quantities can be expressed as

an m-dimensional column vector (SHLENS, [2014)

X

2 (5.62)

Tm

If we repeat the experiment n times, we obtain a matrix X € R™*", where the element
x;; is the value of the i-th measurement type in the j-th trial. From linear algebra, we know
that each column vector of X lies in a vector space that is spanned by an orthonormal basis.
Thus, each sample can be written as a linear combination of this set of unit-length, mutually

orthogonal basis vectors. We represent our base as a m X m matrix

I | (5.63)

00 ... 1

- - mXxXm

However, this base is often based on convenience, and might not reflect the true structure

or dynamics of the system. What [PCA| does is to find a better basis — new directions — that

14Bernoulli's principle for incompressible flow is given by

’1)2
—p(K-—
P p( 2>,

where p is the fluid density and K is a constant.
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align with the true dynamics of the system.
Let P € R™*™ be a linear transformation matrix such that, when applied to the data

matrix X € R™*" it produces the transformed data matrix Y € R"*". So,

Y = PX. (5.64)

The rows of P are a set of new basis vectors for expressing the columns of X (SHLENS,
2014). We can verify this by making p; to be the row vector of P and x; the column vector
of X. So, Eq. can be written as

pl
Y=p, X1 X; Xp |
_pm_
_p1:x1 pl:xj pl:xn_
Y=1|p, X1 - p;-X; - PiXn|- (5.65)
P X o P X Py X

We can see each element in the column vector y; is composed of the dot product of x;
with a corresponding row in P (y; = Px;). In other words, we are projecting the elements
onto the rows of P.Therefore, as already stated, the rows of P, {p,,...,p,,} form the new
basis vectord™| The key question that remains is: how do we construct P?

In real-world data, noise is unavoidable and typically arises from imperfect measurements,
external disturbances, or even as an unavoidable consequence of the fundamental laws of

natrue, such as in quantum mechanics. When analyzing such systems, we often refer to the

lsignal-to-noise ratio| (SNR)), which quantifies how good the signal is relative to the background.

We define the as the ratio of the variance of the signal to the variance of the noisd™|

0.2

SNR = —Senal, (5.66)

g

noise

15We can also interpret P as a rotation and stretch operation that transforms X into Y.
16This definition applies to random variables. However, in physics and chemistry, the is typically defined
as the ratio of signal power to noise power (INFANTE et al., [2021)).
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A high[SNRJindicates an efficient measurement, while a low [SNR]indicates a very noisy one.
[PCA| assumes that the directions of highest variance in the data correspond to the directions
containing the most meaningful structure, which is the signal. Noise, in contrast, is typically
random, lower in variance, and tends to spread equally in all directions (Gaussian distribution)
(SHLENS, [2014)). In essence, PCA identifies a new basis that maximizes the by aligning
the new axes with the directions of greatest variance.

Another thing we need to have in mind is that we need to deal with redundancy in the data.
Often, multiple variables end up capturing the same underlying information. For example, if
two sensors are recording the same physical quantity, their outputs will be strongly correlated.
In these situations, knowing one variable provides nearly the same information as knowing the
other. This redundancy increases the dimensionality of the dataset and makes the structure
harder to interpret. [PCA| helps reduce this dimensionality by identifying and removing these
redundant directions, leaving only the axes that capture the essential variance in the data. But
how do we mathematically measure variance and redundancy? This is where the covariance
matrix comes in. The covariance matrix not only quantifies how much each variable varies
individually (its variance), but also how much two variables change together (their covariance).

Let a and b be two zero-mean row vectors of size n, such that

a= {al as ... an] ) (5.67)

bz[b1 by ... bn] (5.68)

Then, the covariance between them is given by (SHLENS, [2014)

Cov(a,b) = 02, = —ab”, (5.69)

where T represents the transpose of the vectom. We can generalize this for our data matrix

X and generate the covariance matrix Cx (SHLENS, 2014).

17For vectors x and y with non-zero mean, the covariance is defined as

Cov(x,y) = %Z (s — (x)) (yi — (v)) -

i=1

18f we are working with a sample rather than the full group, the factor 1/n is replaced by 1/(n — 1), which
corrects for bias in the estimation of the group covariance.
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2 2 2
X1X1 0-X1X2 cte lexm
1 1 |o2 02 . :
Cx = —XXT = = | Tex Txx : (5.70)
n n : : L :
2 2
X X1 e Xom Xom

where Cx € R™ ™. The main diagonal of Cx contains the variances of the measurement
types, and the off-diagonal terms are the covariances between them. Similarly, we can define
a covariance matrix for Y, denoted Cy. Our goal is to find a transformation matrix P such
that Cy is diagonal, meaning all off-diagonal elements vanish, and the diagonal elements are
ordered in descending variance.

Because Cy is symmetric, the matrix P can be chosen to have orthonormal columns. Once
p, is found, all remaining basis vectors are orthogonal to it and to each other. The resulting
ordered set of vectors {py,...,p,,} are the [PC| described in subsection [5.2.1]

We can summarize the aspects of [PCA| as follows:

1. Linearity: Let p, € R™ be the weight vector for the k-th [PC] in the m-dimensional
variable space. Each [PC]score yj;) is a linear combination of the original variables row
vector X(;):

Uk) = Pk XG), Vi=12....n; k=12...,m. (5.71)

2. Large-variance: Principal components are ordered so that the first captures the greatest

variance. The first weight vector p; is obtained by solving

p1 = arg max {Zn: (% - p)Q} : (5.72)

[lpll=1 i=1

The constraint ||p|| = 1 enforces unit length.

3. Orthogonality: Different principal components are uncorrelated and their weight vectors

are orthonormal:

pi - Pj = 0ij. (5.73)

We can solve [PCA| using eigenvector decomposition. Before proceeding, let us recall two
useful matrix properties: (1) For two matrices A and B, (AB)" = B”AT; (2) The inverse of

an orthogonal matrix equals its transpose, A~* = AT,

Starting from Egs. and |5.70, we have (SHLENS| 2014)
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Cy = lYYT,
n
1 T
Cy = — (PX) (PX)",
n
1 TpT
Cy = —PXXTPT,
n
1 T T
Cy—P (xx ) pT
n
Cy = PCxP”. (5.74)

From linear algebra, any symmetric matrix A can be diagonalized by an orthogonal matrix

of its eigenvectors. Therefore, there exists an orthogonal matrix V such that

A = VDV, (5.75)

where D is a diagonal matrix whose entries are the eigenvalues Ai, Ao, ..., A\, of A, and V is
an orthogonal matrix whose columns are the orthonormal eigenvectors of A. Each eigenvalue is
sorted in decreasing order, A\ > Ao, - > \,, > 0, and represents the variance captured along

its corresponding eigenvector. The final step is to define each row p; of P as an eigenvector

of Cx. Thatis, V = P” — V" = (P")" = P. From Eq.[5.74

Cy =P (P"DP) P,
Cy = (PP") D (PPT),
Cy= (PP )D(PP),

Cy = D. (5.76)

It is no surprise that choosing P as the matrix of eigenvectors of Cx diagonalizes Cy, since

this is precisely the goal of [PCA|l From this, we conclude:

» The[PCk of X (rows of P) are the eigenvectors of the covariance matrix Cx.

» The k-th diagonal element of the covariance matrix Cy contains the variance of X along

de eigenvector p,.
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Thus, the basic steps of [PCA are:

1. Subtract the mean of each measurement type from the dataset X, centering the data.

2. Calculate the eigenvectors and eigenvalues of the covariance matrix Cx, constructing

the transformation matrix P from the eigenvectors.

3. Apply P to X to obtain the transformed data (scores) Y.

PCA|is quite easy to implement in Python using libraries such as scikit-learn (PEDREGOSA

et al), 2011]). A typical example code snippet is shown below:

Listing 1 — Typical structure of a PCA implementation in Python using the scikit-learn library.
1 import numpy as np
import pandas as pd
3 from sklearn.decomposition import PCA

import matplotlib.pyplot as plt

def perform_pca_from_csv(csv_path, n_components=None):

7 won
Perform PCA on data from a CSV file using scikit-learn.
9
Parameters:
11 - csv_path (str): Path to the CSV file (rows = n samples, columns = m
variables).
- n_components k (int or None): Number of principal components to keep.
13 Returns:
- singular_vectors (ndarray): Principal axes (m x k).
15 - explained_variance (ndarray): Variance explained by each component.
- scores (ndarray): PCA scores (n x m).
17 e
19 # Load CSV and keep numeric columns only (remove text columns)
df = pd.read_csv(csv_path)
21 X = df.select_dtypes(include=[np.number]).to_numpy()
23 # PCA (mean-centers data)
pca = PCA(n_components=n_components)
25 scores = pca.fit_transform(X)
27 # Return singular vectors, explained variances, and scores
return pca.components_.T, pca.explained_variance_, scores
29

"

31 if __name__ == _main_

",
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33 csv_file = "data.csv” # Load the data
35 singular_vectors, variances, scores = perform_pca_from_csv(csv_file)
37 # Function to plot/print the results

plot_results(singular_vectors, variances, scores)

Source: The Author (2025)

Despite [PCA| being a widely used and powerful tool for dimensionality reduction and data
analysis, it has some limitations. First, [PCA| assumes that the relationships among variables
are linear. Nonetheless, many complex systems often exhibit nonlinear dependencies that
cannot adequately capture (SHLENS, 2014). For example, in our pipe flow experiment, if we
were to use velocity v instead of velocity squared v?, might fail to capture the important
patterns. Second, [PCA|does not handle well with missing data. Incomplete measurements can
distort the covariance matrix, leading to inaccurate eigenvectors. This problem is common in
large datasets, such as those from meteorological or population studies, where data gaps are
frequent. Third, maximizing the variance does not always lead to the formation of clusters or
pattern identification (LEVER; KRZYWINSKI; ALTMAN| [2017)). Finally, [PCA| is sensitive to the
scale of the variables. Variables with larger variances tend to [PCk, which can lead to mis-
leading results. However, in turbulence analysis, this sensitivity can be advantageous since the
directions of largest variance often correspond to the most physically significant fluctuations,
which we want to identify.

Despite these limitations, [PCA] remains the cornerstone of multivariate statistical analysis
due to its simplicity, computational efficiency, and ability to reveal the dominant patterns in
complex datasets. For our purposes, provides a foundational method to extract the signal

x(t) and compute its statistical properties.
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6 FROM EXPERIMENTATION TO ANALYSIS

In this chapter, we describe in detail the experimental apparatus used in our study and apply
the previously introduced statistical methods to the analysis of our data. The main focus is on
the statistical properties of intensity distributions observed within the [QML] phase. However,
for completeness and comparison, we also present results for the [CW] and [SML] regimes. This
broader perspective highlights the unique features of the QML phase while situating it within
the overall operational landscape of the laser. The discussion consolidates the experimental

evidence and connects it directly to the theoretical framework outlined in the previous chapter.

6.1 EXPERIMENTAL APPARATUS

We now take a break from the theoretical discussion and proceed to the more technical
part of this work: the description of the experimental setup. In Chapter [4 we presented the
physics behind the Yb [MLFL} here, we focus on its components and operation, as well as the
methods used for data acquisition.

As stated in Section [4.1] our setup consists of a Yb [MLFL] assembled as a unidirectional
ring cavityE]. The specific system used was originally constructed by a former master's studemﬂ
All construction details, including encountered challenges and their respective solutions, are
documented in his dissertation (MELO, [2017)). The schematic of our setup is shown in Fig. 32
and the following description will make reference to the labeled components in that figure.
The reader is advised to return to the image often throughout the experimental description to
better visualize and understand the process.

We know that the laser can be understood as comprising three main elements (see sec-
tion : the pumping source, the gain medium, and the optical feedback mechanism. In
addition, two other components are of critical importance for the laser operation: the po-
larization control system and the intracavity dispersion management. Pumping is provided
by a fiber-coupled diode laser (JDSU S30-7602-720), nominally centered at 976 nm
with a linewidth ~ 2.0 nm and a manufacturer-rated maximum output on the order of 720
to 740 mW. The diode is mounted on a Thorlabs LM1452 base and is both current- and

temperature-stabilized using a Thorlabs LDC 240C current controller (Al) and a Thorlabs

1The first designs of such systems date back to the late 1990s (CAUTAERTS et al., [1997).
2The apparatus is based on the work made by [llday, Chen and Kartner| (2005)



121

Figure 32 — Experimental apparatus of the Yb mode-locked fiber laser (MLFL). Intracavity elements: diode
laser (DL) with current controller (A1) and temperature controller (A2), wavelength-division mul-
tiplexer (WDM), ytterbium-doped fiber (YDF) gain medium, a pair of GRIN collimators (COLL.),
quarter-wave plate (QWP), half-wave plate (HWP), a pair of diffraction gratings (DG), reflective
mirrors (M1), D-shaped mirror (M2), polarizing beam splitter (PBS), and optical isolator (Ol).
External components: beamsplitter (BS), photodetector (FD), spectrometer (A3), RF analyzer
(A4), oscilloscope (A5), and computer (PC).

HWP QWP
COLL.

Source: The Author (2025)
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TED 200C temperature controller (A2), respectively. During the system construction (MELO,
2017)) and subsequent investigations of the phenomenon (ALVES), 2023; |ALVES et al., [2024)),
the pump source was characterized in detail. These analyses show a linear dependence of the

output power on the diode drive current, which is expected, and can be expressed as

W
Prump = <0.68”r;A> Loump — 9.2 mW. (6.1)

A fiber Bragg grating in the pumping fiber output provides wavelength-selective feedback,

and the pump light is injected into the cavity through an Opinet Wavelength Division Mul|
ftiplexing| (WDMIF¥| (FWDM-980T /1064R-250-4-1-NE). The has three ports: Common,

Pass, and Reflect. The Pass port, connected to the pump diode, transmits light in the 900-990

nm range with an isolation of about 25 to 26 d. The Common is a broadband port and

connects to the [Yb-Doped Fiber| (YDF]), while the Reflect port, used for re-injecting light into

the cavity, operates in the 1025 to 1100 nm band, with an isolation reported between 13 and
17 dBP| The measured coupling efficiency from the pump diode through the into the
YDF|is approximately 89% (CAMPOS, [2020)).

The gain medium is a highly doped single-mode CorActive Yb214 fiber with nominal
absorption of 1348 dB/m at 976 nm and a total length of L ~ 22 cm. Light is collimated into
the free-space section by a Thorlabs GRIN 50-1064 collimator . In our configuration,
two equal collimators are employed: one to couple the light from the fiber into the free-
space medium, and another to couple it back from free space into the fiber. The separation
between these two collimators is set to approximately 35 cm, which it was determined a
re-coupling efficiency of ~ 35%, i.e., the cavity experiences a linear loss of about 65% per
round trip. After the beam enters the free-space via the [COLL] it passes through polarization
elements used for achieving mode-locking by (see subsection . The polarization
elements are a quarter-wave plate (QWP)) (Casix WPZ1225-1064-L /4) together with a half-
wave plate (HWP)°| (WPZ1225-1064-L/2) located before a polarizing beamsplitter

(Thorlabs PBS102). Another quarter-wave plate (same model) is placed on the input side of

\WDM|is a technique that transmits multiple optical signals over a single fiber by using different wavelengths
of light for each channel (ISHIO; MINOWA; NOSU, (1984]).

*For a isolation refers to how well the component prevents light from on channel to leak to another
channel

5The connection order of the is reversed from what the manual dictates to prevent unabsorbed pump
and cavity light from reaching and potentially damaging the diode laser, as noted by [Mélo| (2017]).

6Although we adopt a different notation for the waveplates than the one used in Chapter it is important to
note that they refer to the same components.
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the free-space section (before re-entering the gain fiber). As already mentioned in the mode-
locked section, the M}s change the polarization of the light between linear and circular
(and vice versa), while the rotates the direction of the linear polarization to the right
angle for the to work effectively. The exerts the dual role of a polarizer (providing
the nonlinear, intensity-dependent loss that emulates a and as the output coupler. Linear
transmission and reflection losses of the [PBY are negligible when compared to other round-trip
losses. We have that transmission loss is around 1%, while reflection is less than 0.5%. The
extinction ratio of the transmitted beam is greater than 1000 : 1, i.e., the [PBS] allows more
than 1000 times as much light with a specific polarization to pass through compared to its
perpendicular polarization counterpart.

In subsection [4.1.4] we discussed the necessity of balancing [GVD] and [SPM] which is

essential to achieving pulse compression, consequently, mode-locking operation. Dispersion
inside the cavity is managed with a diffraction-grating pair (Thorlabs GR25-0610, 600
lines/mm) mounted on a translator to vary the separation between the gratings. This trans-
lator enables control of the net intracavity [GVD]| The [DG produce an effective second-order
dispersion 35 (see Eq. which depends on the grating geometry given by (MELO, 2017)

ff N’
2 T T re2AZcos? 0’ (6-2)
where
A
0 = arcsin [A — sin 01»1 : (6.3)

Here, A is the grating period (the inverse of the grooves per millimeter), and 6; is the
angle of incidence. Usually, achieving the required dispersion compensation demands two [DG|
pairs arranged in what is known as a Treacy compressor setup (TREACY, |1969). However,
in our experiment, the same effect is realized with a single [DG pair combined with a high-
reflectivity broadband flat mirror (M1) (Thorlabs BB1-E03-10, R > 99% in 750-1100 nm). For
our configuration, we obtain a effective dispersion of 35T ~ —1400 fs?/mny| The translator
allows us to easily reach the zero-dispersion point, which corresponds to a grating separation
of around 2.9 cm. Higher separations make the net dispersion more negative, which strongly

affects the operating regime (CAMPOS, [2020)).

’Side note: the pair account for 35% of the linear losses at each roundtrip (CAMPOS| 2020).



124

Note that M1 may be slightly tilted so that the reflected light is a bit offset and can be
easily separated from the incident beam. If this is not the case, a D-shaped mirror (Thorlabs
PFD10-03-P01, R ~ 97% at 1 um) can be used to direct the light back into the fiber. The
final main component of our intracavity is an optical isolator (Thorlabs 10-5-1030-VLP),
which ensures unidirectional operation by preventing competition between counterpropagating
signals in the gain medium. In the configuration shown in Fig.[32] the light travels in a clockwise
direction. It is worth noting that the [O]] rotates the polarization of the signal by 45°. This is
one of the reasons we insert a [QWP] in the optical path. After passing through the [O]) and
the [QWP] the beam enters the [COLL] is coupled into the Reflect port of the [WDM] and

completes a round trip in the cavity.

6.1.1 Procedures and data acquisition

Having detailed the internal elements that make the laser operational, we now concentrate
on the components regarding the analysis of the system. Our attention is now on the beam
coming out from the . The first step is to split the light using a non-polarizing 90/10
beamsplitter . This type of is used so that only a small fraction of the light is sent to
the most sensitive equipment. The weaker beam is guided to an Ocean Optics HR4000 spec-
trometer (integration time set at 6 ms, with optical resolution of around 0.24 nm) to record
the optical spectra. This is the most relevant instrument for the turbulent dynamics experi-
ment. The remaining light is sent to homemade photodetectors (FDk) based on Fermionics
FD150 photodiodes (1 GHz bandwidth). Part of the photodetector signal goes to a Keysight
N9340B spectrum analyzer (A4), while the rest is directed to a Keysight/Agilent DSO7104B
oscilloscope (A5) (1 GHz bandwidth). It is important to note that, since our focus is on the
[QML] regime, the oscilloscope and spectrum analyzer serve only to confirm that the system is
operating in the [SML] regime; their data are not used in the analysis. This is because, since
there is no pulse formation in the phase (see Section [4.2)), the oscilloscope and analyzer
record no useful information (only noise) in this regime. For a systematic control of the ex-
periment, the pumping current controller is driven by a Keysight 33500B function generator.
All acquisition and control equipment are connected to a computer (PC), where a Python
script ensures full automation of the experiment. Although the pump is driven via a current
controller, the automation through the function generator is implemented by sending a DC

voltage signal to the controller. A linear relation links the voltage send to the current controler
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to the corresponding pump current, expressed by the equation

mA

Before analyzing the QML] regime, we must first reach the [SML] regime. In our experiment,
we aim to vary only the pumping current, without changing any other cavity parameters.
To this end, the system is preferably operated in a self-starting mode-locking configuration.
In such a setup, the laser automatically begins a pulsed operation after a certain pumping
threshold, without the need for external interventions, such as tapping optical components or
adjusting polarization (as is the case here). There is no definitive recipe for achieving self-
starting mode-locking; success often depends on intimate familiarity with the experimental
system. Nevertheless, certain techniques can help systematize the process, thereby increasing
the likelihood of success. In this work, we adopt the procedure used in our laboratory and
implemented in previous studies Mélo| (2017)), |Campos| (2020)), |Alves (2023).

Only a few combinations of waveplates orientations, together with the [PBS| produce an
intensity-dependent transmission, which is an underlying feature for[NPR| A practical procedure

to obtain a stable mode-locked state is as follows:

1. Set the laser to a low pumping current (e.g., ~ 100 mA).

2. Rotate the waveplates so that approximately half of the maximum possible output from
the cavity is directed out through the|PBS| Verify this by placing a power meter (Thorlabs
PM100D) in an output branch from the [PBS| This 50% level ensures a sufficiently strong

measurement signal while keeping enough intracavity power for a stable operation.

3. (Optional) Perform a fine alignment. Carefully adjust the collimators (both vertically
and horizontally) to ensure precise beam alignment between all optical components.

This reduces losses and improving efficiency.

4. Increase the pumping power to a high level (= 700 mW) to strongly invert the gain
medium. This enhances the nonlinear effects (Eq. and enables potential pulses to

overcome intracavity losses and grow to stable mode-locked operation.

5. Adjust the output waveplates (HWP| and [QWP)) to minimize the detected power on

the power meter. Annotate the [HWP] angle at this minimum, which defines the “zero”

reference point. This step maximizes intracavity transmission.
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6. From the zero reference point, slowly scan the HWP)| angle away from the minimum.
Perform the scan gradually (small and slow angular steps) so that the laser response
can be monitored on the oscilloscope. Due to symmetry, only a 180° range needs to be

explored. Stop if a mode-locked operation is achieved.

7. If no stable pulse formation is detected, return the [ HWP]to its zero position and slightly

rotate the input (located after the by 1 or 2 degrees. This controls the
input light's ellipticity and can optimize the [NPR] effect.

8. Determine the new minimum output position for the output waveplates, which should

be close to the previously minimum.

9. Repeat the scanning process (step 6), searching for a stable pulse regime. Continue

iterating steps 6—8 until mode-locking is achieved.

This procedure reliably finds a mode-locking operating point even if there are any twists or
thermal dilatation in the fiber. Mechanical variations modify birefringence and nonlinear phase
accumulation, but actively re-optimizing waveplate settings compensates for such effects. Any
modification simply requires identifying a new combination of waveplate angles.

For the turbulence analysis, the experimental procedure is relatively simple: we need to
collect 150,000 spectra at each current we want to analyze. However, some care must be taken.
Our laser can exhibit a variety of complex dynamical behaviors, such as chaotic dynamics and
solitonic pair formation, which have been previously studied in our group (MELO et al, 2018;
CAMPOS et al, 2020; ICAMPOS et al, 2020; |ICAMPQOS; ACIOLI; MIRANDA, 2021). It is also known
that our system presents hysteresis, meaning that increasing the pumping current lead to a
different optical dynamical phases than the process of decreasing it.

At high pumping levels, exotic dynamical behavior can occur, but our interest lies in the
regime preceding mode-locking, rather than preceding any arbitrary phase. Because we cannot
control the exact pulsed phase in which the system will operate when performing at this
high excitation levels, experiments done by increasing the pumping may depend on chance.
Fortunately for us, once a pulsed regime is achieved, hysteresis allows us to decrease the
pumping below the mode-locking threshold and still maintain pulsed operation. Furthermore,
if we reduce the pumping sufficiently, the last pulsed regime to appear is always the [SML]
regime (MELO et al., 2018; [CAMPOS et al., [2020; |ALVES et al., [2024)). This behavior defines a

threshold to lose mode-locking Py, giving us two relevant current values for our system:
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a high pumping threshold Py, at which the system self-starts in a mode-locking regime,
and a low pumping threshold P (,), at which mode-locking is lost. Finally, it is worth noting
that, once optimized and finely tuned, the system becomes sensitive to external fluctuations
at the thresholds. Abrupt changes in the pumping or external vibrations can trigger or suppress
mode-locking when operating near these threshold values.

Therefore, the experiment for turbulence analysis in the regime can be performed in

two possible ways:

Backward mapping: We follow the standard procedure to achieve pulsed operation. Once
the laser enters this regime, we decrease the current to obtain the threshold to lose mode-
locking Pjj,(,). Having this value, we increase the current again until pulsed operation
resumes at FPih(). In this configuration, the laser should self-start into mode-locking
simply by increasing the current. Then, lower the current again to reach the[SML] regime,
which is just above the P, point but below a level where other regimes might occur.
This is typically set to 15-30% above P(,). We begin data collection from this point,
gradually lowering the current at a fixed current step rate. This method essentially maps

the system in a backwards manner. This method is the easiest and more reliable.

Bottom-up with external stimulation: For this second approach, we begin as in the first
method and find P,,(,). Then, instead of increasing the pumping, we reduce the current
further and start data collection from low to high pumping. When we are just above
Pyp,(u), we introduce an external stimulus, for example, a mechanical vibration or a short
“pump scare” (a sudden jump to high current followed by a rapid drop). This can force
the system into the [SML] regime. Although this method is not always effective, it yields
the same type of [QMLHSML] transition data as the first approach.

We performed both methods; however, we present here only the results of the first one.
This choice is mainly because the first method involved a larger number of steps, resulting
in a larger dataset for analysis. Future works could further explore the second method and
investigate whether differences could arise from the methods chosen.

It is also important to note that, although the peak power increases when the laser enters
the regime — since the total energy is compressed into shorter pulses — the average
power decreases significantly. Therefore, when analyzing the [QML] regime, it is important to

place absorptive neutral density filters (e.g., Thorlabs NEO5A, NE30A, etc.) between the
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and the spectrometer to avoid saturating the equipment. Data collection is briefly paused at
key current values to change filters as necessary.

For systematic data collection performance (and also for convenience) the acquisition
process is fully automated using a Python script, which heavily relies on libraries such as
PyVISA (GRECCO et al., 2023)) and SeaBreeze (AP, 2019)). We directly access the instruments to
retrieve data without relying on their proprietary software, which makes the process significantly
faster. As mentioned earlier, a function generator is used to control the pump current. The
implemented Python code for data acquisition is shown in Appendix [Al

Basically, our procedure is as follows: we set a specific pumping current, collect 150,000
consecutive spectra, and store them as a DataFrame in an .npy fileﬂ The spectrometer range
is configured from 980 to 1065 nm, yielding 351 wavelength points. This results in an array of
size 351 x 150,000, which is later transposed for [PCA| processing.

For each current value, collection takes approximately 16 minutes. In some cases, we collect
multiple datasets at the same current as a precaution against potential saturation, which can
occur even with filters due to the presence of abrupt spikes in the[QML] regime. Once a dataset
is recorded, we slowly increase the current to the next measurement point (~ 30 mA higher)
in small increments of 1 mA/s. This slow change avoids introducing abrupt perturbations to
the system, which could influence its dynamics. Ultimately, we obtain about 35 measurements,
which are later filtered down to 16 points: 6 in the [CW| regime, 3 in the [SML] regime, and
the rest in the QML regime. From these, we present results for only 2 points in [CW] and
each, and 4 in [QML] to avoid redundancy since the system's behavior is qualitatively similar
at each region. The selected points are: one in [CW] one just before the [CWHQMTL] transition,
one just after the [CWHQML] transition, two in the middle of the QML regime, one just before

the [QMLHSML] transition, one immediately after the [QMLHSML] transition, and one deep in
the SML] regime.

6.2 RESULTS AND DISCUSSION

We now present our results. First, after performing the experiment, we identified the
threshold to lose mode-locking at P,y = 477.3 mA. For the data presented in the results, we

specify the region in terms of P/ Py rather than the input current values. In this context, the

8An .npy file is a binary file format used to store NumPy arrays. These files are generated using the NumPy
library (HARRIS et al, [2020]) in Python and are significantly faster to access compared to text-based formats
(e.g., .txt or .csv).
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regime spans 0 < P/ Py < 0.35, the regime extends from 0.35 < P/ P < 1.0,
and the regime corresponds to P/ Py > 1.0.

Figure 33 — Graph of the loadings versus wavelength for the first principal component (left panels) and rep-
resentative spectra (right panels) in three regimes: (a,b) the regime (P/ Py ) = 0.30); (c.d)
the regime (P/ Py = 0.70); and (e,f) the regime (P/ Py () = 1.01).
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For each pumping value, we obtain a data matrix X € R331x150.000 "\yhere the 351 rows
correspond to the wavelength points (variables) and the 150,000 columns of spectrum (real-
izations). The first step of our analysis is to apply to these matrices.

Fig. [33 shows the loadings of [PCJL (left panels) together with representative spectra (right
panels) for the three regimes studied. In a 1 loading plot, each peak or valley corresponds
to a wavelength that responds to the dominant experimental variations. Peaks indicate wave-
lengths whose intensities increase when the main effect in the system — such as gain variation
— becomes stronger, while valleys correspond to wavelengths whose intensities decrease under
the same conditions. In Fig. , resembles the average spectrum (Fig. ) This occurs
because the largest differences between spectra arise from an overall increase or decrease in

intensity across all wavelengths, rather than changes in the spectral profile. This indicates that
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many wavelengths are strongly correlated, which makes them vary together across measure-
ments. [PCL captures this collective variation. For Fig. [33p, [PCL exhibits one positive and one
negative peak, indicating that the dominant variation is an intensity redistribution between
two wavelength regions rather than a uniform change across the spectrum. An increase in
one region is accompanied by a decrease in the other (Fig. ) consistent with the mode
competition expected from our prior analysis. The horizontal asymmetry of the plot indicates
that only one of the wavelength modes captures most of the dynamics. In contrast to Fig. [33b,
Fig. B3k contains multiple peaks and valleys, meaning that the primary variation arises from
simultaneous intensity changes across several distinct wavelength regions. In a laser spectrum,
this often reflects gain redistribution among different longitudinal modes. [PCL does not only
capture the changes in intensity, but now a more complex variation among the modes.
Remember that each [PC| is a weighted sum of the original variables, so the loadings
directly identify which spectral regions contribute most to the captured variation. Thus, Fig.
effectively highlights the wavelengths most relevant to describing the largest trends in our
spectra. [PCJL provides an indication of the correlation structure in the data, but a more direct
way to visualize these relationships is by plotting the correlation matrix. Fig. shows the

correlation matrix computed from the first 50,000 spectrﬂ.

Figure 34 — Correlation matrices for the first 50,000 spectra are shown for three regimes: (a) the regime
(P/ Py = 0.30); (b) the regime (P/ Py () = 0.70); and (c) the regime (P/ Py =
1.01).
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In the regime (Fig. [34c), the correlation matrix reveals multiple regions of both

correlation and anticorrelation, indicating that the wavelength variables are interconnected

90nly the first 50,000 spectra are used due to computational memory limitations. The full correlation matrix
would contain on the order of 10'° points.
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and share the intracavity energy. Unlike the regime, the phase (Fig.[33b) exhibits a

thin strip of correlation and anticorrelation, suggesting that the whole energy is interchanged
in two sets of modes. [PCJl gives us indices of the overall dynamics. However, it is important
to note that correlations among wavelengths do not necessarily imply complex fluctuation
dynamics; the matrix primarily illustrates how the modes are linked to one another.

After performing [PCA] it is important to assess how much information each principal com-
ponent captures. This is done by examining the singular values of each [PC|and the cumulative

explained variance across components.

Figure 35 — Plot of: (a) Singular values of PCA components. (b) Cumulative variance explained. The analysis
is shown for P/ Py = 0.70, corresponding to the [QML] region. For the [SML] and regions,
the plots have the same overall aspect, so we show only the [QML| case (which is the region of
interest) to illustrate the shape of the [PCA|
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Fig. [35/ shows that the first alone accounts for more than 90% of the total variation
in the data. Consequently, selecting the first three [PCk is more than sufficient to describe the
dynamics of the system in [QML] regime.

A plot of the variance explained by the first three as a function of current (Fig.
confirms this: for nearly all data matrices X (each corresponding to an experiment at a single
current), the first three components capture over 90% of the variance. The only exception
occurs at the lowest point (P/Pi) ~ 0.25), where the is very low, reducing the
effectiveness of PCA. Even in this case, however, the first three PCs still account for more
than 55% of the variance. Increasing the [SNR]slightly above this lowest CW point restores the
explained variance above 90%, demonstrating the robustness and effectiveness of [PCA]
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Figure 36 — Plot of variance explained by the first three PCs as a function of current.
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Now, we can safely construct the signal used for the turbulence analysis: we project each

data X onto the first three [PCs and sum the resulting scores to form a one-dimensional series

ult) = ipk X, (6.5)

Basically, we are taking the sum term by term of the first three rows of Eq. [5.65] With
u(t) in hand, we can now construct the normalized signal series as defined by Eqs}5.52] and
. Fig. shows three examples of Z(t), one from each regime. Remember that the index ¢
is discrete and enumerates consecutive spectra. A physical time axis can be assigned by using
the average acquisition time per spectrum of ~ 6.3 ms (6.0 ms of integration time in the
spectrometer plus 0.3 ms for memory storing), although the absolute scale is not essential for
the subsequent statistical analysis.

One motivation for the multivariate analysis was the odd behavior of the excess of kurtosis
72 seen when analyzing isolated wavelengths (Fig. . When we fixed a single peak along
the region, the kurtosis initially rises above 3 and then falls back to 3 (or vice versa),
indicating that the dominant dynamics were shifting to (or from) another part of the spectrum.
By performing and constructing Z(t) from Eq. for all current values (Fig. , we
remove this ambiguity: the alternation between Gaussian and non-Gaussian statistics vanishes
(which is indicated by the kurtosis), and 7, exhibits a stable, positive elevation consistent

with intermittent, heavy-tailed fluctuations. We also plot the variance for completeness, but
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Figure 37 — temporal series, which is a result of the sum of the projected data of the first three for

three different regimes: (a) (P/ Py = 0.30); (b) (P/ Py = 0.70); and (c) [SML
(P/ Py = 1.01).
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Figure 38 — Variance (02) and kurtosis excess (72 = k — 3) of Z(t) across different values of the pumping
current, capturing all three regimes: the first two points correspond to the [CW] phase, while the
last three correspond to the [SML] phase. Middle points are in the [QML] phase.
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recall that the analysis signal #(t) is normalized (¢ = 1) by construction (Eq[5.53). Thus, the
variance trend is not very significant on its own; it is primarily informative when accompanied
by 72 ~ 0, which flags the [CW] and [SML] phases.

We now turn our attention to analyzing the probability distributions P(x) of the increment
series Z(t), which is the main step for characterizing the statistical nature of the fluctuations

in our system. Our main goal is to investigate the presence of heavy-tailed distributions, which
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indicate turbulent dynamics. We also want to solidify the Yb [MLFL] as an additional experi-
mental platform where the H-theory can be applied. As already mentioned in subsection [5.1.2]
our analysis suggested that, in the QML] regime, we were able to fit the compound probability
distribution (Eq. for the number of scales corresponded to N = 1. Here, we present
these results and a more thorough examination of the distributions across different dynamical
regimes. To the best of our knowledge, this represents the first observation of a turbulent-like

behavior in a laser system of this type.

6.2.1 Non-turbulent CW and SML regimes

We begin showing the results for parameters where turbulence is not expected: the [CW|
and [SML] phases. The results shown in Fig. 39 indicate that the fluctuations are well described

by a simple Gaussian distribution, consistent with linear, uncorrelated dynamics.
Figure 39 — Semi-log plot of the distribution P(z) of the normalized experimental intensity increments Z(t)
in the non-turbulent regime for (a) [CW]and (b) phases. The markers represent experimental

data, while the solid line is the fitting. The curves in the same plot have an offset of 0.05 for
distinguishability
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Across all points in the and regime (near and far transition), the semi-
log plots display the expected parabolic behavior characteristic of Gaussian statistics, with no
deviations in the tails. This indicates that in these regions, the system does not exhibit the
intermittent, large-amplitude excursions typical of turbulent dynamics. The increments remain
symmetrically distributed around the mean, with a well-defined variance.

Within the framework of the H-theory, these results correspond to N = 0, which implies
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Figure 40 — Background variance series €(t) and their respective distributions f(e) are shown for (a,b) CW at
P/Pyhwy = 0.31 and (c,d) SML at P/Py,,) = 1.01. The series €(t) were constructed using the
method described in subsection [5.1.2] with a window size of M = 564. The choice of window size
affects only the skewness of plots (b) and (d); this value of M corresponds to zero skewness. Red
circles in (b) and (d) represent experimental data, while the dashed vertical lines at € = 1 are the
theoretical curves 6(e) = 1.
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the absence of hidden background fluctuations and a fixed Gaussian variance. In terms of
Eq. [5.20} this is equivalent to setting f(e) = d(e), leading to P(x) being a simple Gaussian.
Since we are working with a normalized series, the expected variance is ideally ¢ = 1.

To verify this directly from the data, we construct a background series €(t) by estimating
the local variance of z(¢) within a sliding window of size M. This procedure, illustrated in
Fig. , enables us to monitor how the instantaneous variance fluctuates around the normalized
value. The window size M sets the time resolution of the estimation: small windows capture
faster variations but introduce more statistical noise, whereas larger windows suppress noise
but may conceal short-lived fluctuations. Although the normalization procedure enforces a
global variance close to unity, in practice the value is not exactly one. The small deviations
observed do not arise from experimental fluctuations but rather from numerical effects of the
normalization and local variance estimation. To mitigate this, a window size of M = 564
was chosen, which minimizes skewness while preserving resolution. As shown in Figs. and
d, the resulting distribution of ¢(t) remains sharply peaked around one, even if it does not
form a perfect delta function (dotted line). This confirms that, in these regimes, the effective

background fluctuations are constant, consistent with purely Gaussian dynamics.
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6.2.2 Turbulent-like QML phase

Now we can ask: how does the background series look like for an arbitrary point in the
[QML] region? Unlike the previous cases, we cannot simply choose an arbitrary window size.
Instead, we must carefully follow the procedure outlined in Fig. [25] By doing so, we obtain

the background series and its distribution, which are shown in Fig. 41]

Figure 41 — Plot of (a) the background variance series €(¢) and (b) a log-log plot of its corresponding distri-
bution f(e) for a point in the [QML] at P/ Py, = 0.71. Here, the window size is shown without
the fitting curve; the usual procedure is first to find the fitting and then determine the appropriate
window size.
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From Fig. , it is evident that f(e) exhibits a non-trivial structure, which suggests that
P(x) is expected to display heavy tails. Two main observations can be drawn from this back-
ground density. First, as discussed in previous sections, the inverse gamma distribution given
by Eq/5.33] provides the best fit to the experimental background variance data. Second, the
internal structure of f(€) suggests the presence of clusters of statistically independent samples.
This indicates that the background density can be effectively decomposed as a discrete sta-
tistical mixture of distributions, reflecting different local fluctuation regimes within the [QML]

dynamics. The mixture is given by (GONZALEZ et al., 2017

10 = S wsfile), (65)

where w; are the statistical weights, which satisfy >>%_, w; = 1, and fj(¢) is a curve obtained

from Eq. [5.33] Since f(¢) is a mixture, the resulting probability distribution P(x) is also a
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statistical mixture, retaining the same structure as in Eq.[6.6] but now modeled using Eq.[5.41]
Through visual inspection and with the aid of computational tools and machine learning tech-
niques, such as scikit-learn (PEDREGOSA et al, [2011)) and UMAP (MCINNES; HEALY; MELVILLE,
2018), we identify three distinct mixture components. Consequently, we can express Eq.

explicitly as

f(e) = wlf(ﬁ? €0, 6) + w2f(6/7 667 6) + (1 I w2>f<6”7 Egv 6)? (67)

P(x) = wi P(B, €0, ) + weP(B', €, ) + (1 — wy — wa) P(B”, €5, ). (6.8)

Fig. [42| shows the distributions P(z) alongside f(e) with their three fitted components.
Each of these three components corresponds to one of the statistical mixtures identified in the
analysis. Importantly, the fitting parameters for each component are the same for both P(z)
and f(e), and are reported in Table [2]

Table 2 — Inverse-gamma fitting parameters for the mixture components of the probability densities P(z) and

f(€) in a deep [QML] regime (P/Prn() = 0.71).
Curve w (%) 54 €0
P(2)|file) 427 10 029
Py(x)|f2(e) 42.7 2.7 1.42
Ps(z)|f3(€) 14.6 8.14  0.80

Source: The Author (2025)

The most significant result in Fig. , besides the presence of a mixture structure, is the
appearance of a heavy tail in P(x), which indicates the existence of turbulent dynamics in
the system. Upon closer inspection, it becomes clear that the components P»(x) and Ps(z)
contribute most to the tail enlargement. These components are characterized by a larger value
of 3, which corresponds to a broader variance distribution in the background series €. The
larger the value of (3, the more "open" the curve becomes. The presence of these extreme
events highlights the intermittent nature of the dynamics, where periods of relatively calm
fluctuations are punctuated by bursts of higher intensity.

The parameters are fitted for each identified cluster using Egs. and and are
optimized via[Root Mean Square Error] (RMSE). The RMSE| measures the differences between

values predicted by a model and the values actually observed. It is calculated as



138

Figure 42 — Plot of (a) the semi-log distribution P(x) and (b) the log-log distribution f(e) for a point in the
QML| regime at P/Py) = 0.71. The sum of the three fitted distributions is shown later.
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i=1
where n is the number of samples, x; is the observed value for sample 7, and p; is the
value predicted by the model for sample 7. provides a single number summarizing the
magnitude of prediction errors, with larger values indicating greater discrepancies. Because
the errors are squared before averaging, RMSE]| penalizes larger errors more heavily, making it
more sensitive to outliers. The optimal parameter values are found by minimizing Eq. [6.9

All that remains is to verify whether this heavy-tail pattern also appears in other regions of
the [QML] regime and whether the presence of a statistical mixture is a recurring feature. We
focus the following discussion on three particular pumping powers: one near the transition from
[QMUICW] P/ Py = 0.42, near the transition QMLISML, P/ Py = 0.95, and P/ Py =
0.77, well inside the [QML] region.

Fig. 43 shows P(z) and f(e) for these pumping powers, along with the previously studied
one for completeness. Remarkably, we observe not only the presence of heavy tails in all
selected cases, but also the same three-component statistical mixture identified in Fig. ,
demonstrating that this behavior is robust and not an isolated occurrence. For clarity, Fig.
presents only the resulting compound probability distributions, omitting the individual mixture

components to avoid overcrowding the figure. This observation constitutes a major result of
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the present work, providing direct evidence of turbulent dynamics within the [QML] phase—a
phase recently associated with @]—and, to our knowledge, demonstrating for the first time
that it also exhibits turbulent behavior.

Regarding the possible origin of these mixtures, previous studies regarding similar turbulent
mixtures have associated each component with an active mode (the dominant element that
concentrates most of the energy) and quiet modes, corresponding to background modes that
are normally weak but can be intermittently excited through nonlinear coupling (YAMAZAKI;
LUECK; OSBORN,, [1990; |GONZALEZ et al., [2017)). Although in this work we did not separate the
data based on specific physical parameters, it is reasonable to infer that the mixtures may arise
from stimulated and spontaneous turbulent emissions occurring under strong nonlinearity and
mode competition. Based on fundamental considerations and the evidence presented here, we
may propose that during [QML] a dominant mode governs the system's dynamics, but due to
random phase coupling (e.g., polarization interactions of traveling waves inside the fiber), this
mode can temporarily transfer a lot of energy to quiescent background modes. This energy
exchange is then reflected in the statistical mixture. It is important to emphasize that to verify
the validity of the proposed mechanism lies beyond the scope of the present work and will be

addressed in future investigations.
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Figure 43 — Distribution P(z) of the laser intensity increment series x(¢) and the background variance dis-
tribution f(€) within the phase for: (a,b) P/Pw) = 0.42; (c,d) P/Pywy = 0.71; (e,f)
P/Phwy = 0.77; (g,h) P/Pupwy = 0.95. The blue circles correspond to the experimental
data, while the red lines represent the fits obtained using the dynamical hierarchical model for
N = a = 1. Both f(e) and, consequently, P(x) exhibit a mixture of three statistically independent
components, as indicated by the presence of three prominent hills in f(e).
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7 CONCLUSION AND FUTURE PERSPECTIVES

In this dissertation, we investigated in detail the |Quasi-Mode-Locking (QML]) phase, focus-

ing on its statistical properties. We first reviewed the theoretical basis of spin glasses and their

mapping to random lasers, where |Replica Symmetry Breaking| (RSB|) was initially predicted

and experimentally observed (ANGELANI et al, [2006a; GHOFRANIHA et al., 2015)). Building upon
this analogy, we provided novel experimental evidence of a glassy phase preceding self-mode-
locking in a mode-locked fiber laser (ALVES et al., 2024)), which we termed , and which was
first characterized by [RSB]in the intensity fluctuations. Furthermore, we extended the analysis
to turbulence, employing statistical frameworks such as H-theory (GONZALEZ, 2017, MACEDO

et al., 2017)), and demonstrated that heavy-tailed statistics and intermittency naturally emerge

in our system. Finally, we introduced and applied [Principal Component Analysis| (PCA) as a

statistical tool to uncover hidden structures in the laser dynamics, providing a complementary
perspective to traditional correlation-based methods.

Future work should expand these results to other nonlinear regimes known in fiber lasers
(MELO et al., [2018; |CAMPOS et al., [2020)), including soliton turbulence and rogue waves (ONO-
RATO et al|, 2013), where connections between and turbulent behavior can be fur-
ther explored. A particularly promising direction is to establish, for our system, the same
turbulence—spin-glass correspondence already demonstrated in random lasers (GONZALEZ et
al., 2018)). Additionally, mapping the polarization dynamics may provide new insights into the
mechanisms underlying mode-locking and its relation to glassy phases. Together, these per-
spectives aim to consolidate fiber lasers as versatile platforms for investigating the interplay

between disorder, turbulence, and complexity in photonic systems.
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ANNEX A

Listing 2 — Acquisition code for the automation of the experiment.

import time
import pyvisa
GPIB)
import numpy as np
import pandas as pd
removed)

import pyautogui as ag

import pygetwindow as gw

from pathlib import Path

— DATA AUTOMATION VIA PYTHON

# Time-related functions
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sSEssssssgsssssssg=sss3=23 I PORT LIBRARIES Sos=sssssssasassas8as3s23

# Instrument communication (e.g., via USB,

Numerical operations, arrays

E=3

# GUI automation (clicks,
# Window management
#

File path management

from datetime import date # Date handling

from seabreeze.spectrometers import Spectrometer

Data handling (not used here,

could be

typing)

# Spectrometer

inte

rface

# ========================= DEFINE FUNCTIONS =========================

def spec_collection(spectrometer, samples, c, r):

nnon

Collect spectral data from the spectrometer.

Parameters:

- spectrometer: Spectrometer object

- samples: Number of spectral measurements to take

- c: Current collection index (for display)

- r: Current round

Returns:

- data: List containing wavelengths and

nnn

index (for display)

# Get the full range of wavelengths from the spectrometer

wavelengths = spectrometer.wavelengths ()

# Keep only wavelengths within the desired range

wavelengths_column

+ 1]

# Initialize data a

= [i for i in wavelengths if low_limit

rray with the wavelengths as the first

data = [wavelengths_column]

# Loop through the

requested number of samples

for i in range (0, samples):

# Acquire intensity measurement from the spectrometer

intensity = spectrometer.intensities()

<=

row

intensity measurements

i <=

high_limit
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42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

# Filter intensities to match wavelength range

intensity) if low_limit <=

integration time (microseconds)

increment per collection (mV)

# Spectrometer data folder

# Optical Power Monitor data

temp_data = [q for (p, gq) in zip(wavelengths,
p <= high_limit + 1]
# Append filtered intensities to data (tuple for faster appending)
data += temp_data,
return data
# ========================= GLOBAL VARIABLES ===========
low_limit = 980 # Minimum wavelength (nm)
high_limit = 1065 # Maximum wavelength (nm)
total_replicas = 150000 # Number of spectra per collection
n_collection = 10 # Number of voltage points to collect
rounds = 2 # Number of repeats per voltage
start = 690 # Initial voltage (mV)
integration_time = 6000 # Spectrometer
step = -35 # Voltage
. ea3msa=sassssesa=s=s==23s223 SET UP FLLE PATHS =S=s======S
in_path = r'D:\LaserYb\Medidas Espectrometro’
in_path_2 = r'D:\LaserYb\Optical Power Data'
folder
# Get current date and time

today = date.today().strftime('%d_%m_%Y")

hour = time.strftime("%H_%M", time.localtime())

# Record start time for total program
t_time = time.time()

# Create folders to save the data if they don't exist

Path(rf'{in_path}\{today}\{hour}\Information').mkdir (parents=True,
Path(rf'{in_path}\{today}\{hour}\binary_data').mkdir(parents=True,

exist_ok=True)

exist_ok=True)

Path(rf'{in_path_23}\{today}\{hour}').mkdir (parents=True,

wave_generator
Connect to

wave_generator.
output

wave_generator
V)

wave_generator.

pyvisa.ResourceManager ()

exist_ok=True)

SET UP WAVEFORM GENERATOR

# Initialize VISA resource manager

= rm.open_resource('USBO::0x0957::0x2C07::MY52812459::INSTR"') #

generator

write('FUNCtion DC'")

.write(f'VOLTage:0FFS +{start / 10003}"')

write('OUTPutl

# Set generator to DC

# Set initial voltage

1) # Turn output ON

(



160

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

# ========================= SET UP SPECTROMETER =========================

spec = Spectrometer.from_first_available() # Connect to first
available spectrometer

spec.integration_time_micros(integration_time) # Set integration time

print('Start program')

opm = gw.getWindowsWithTitle('Optical Power Monitor')[@] # Get OPM window
path_opm = rf'{in_path_23}\{today}\{hour}'

# Make sure the OPM window is maximized and active
while opm.isMaximized == False:
opm.maximize ()

opm.activate ()

# Set file path in OPM software using pyautogui
ag.click(1214, 200) # Click file path input
ag.hotkey('ctrl', 'a')

ag.press('delete')

ag.write(path_opm)

# Countdown before starting
for countdown in range(5):
print (f'Begin program in {5 - countdown} s')

time.sleep (1)

i e==3m=s=s=ssss=sssssss==2== [{JALN DATA COLLECTICN Lo sso=s=ss==s=s=s=m==s=s=2=s

for i in range(n_collection):

# Target voltage for this collection (mV)

target_voltage = start + step * i

# Get current voltage from generator (assume we track it in a variable)
try:
current_voltage = float(wave_generator.query('VOLTage:0FFS?')) * 1000
Convert V to mV
except:

current_voltage = start # fallback if query fails

# Ramp voltage 1 mV per second until it reaches target
while current_voltage < target_voltage:
current_voltage += 1 # increase by 1 mV
if current_voltage >= target_voltage:
current_voltage = target_voltage # do not overshoot
wave_generator.write(f'VOLTage:0FFS +{current_voltage / 1000}') #

convert mV to V
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130

132

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

wave_generator.write('OUTPutl 1') # ensure output is ON

time.sleep(1) # wait 1 second per 1 mV

# Repeat collection for number of rounds

for j in range(rounds):

# Define file path to save spectrometer data

path_spec = rf'{in_path}\{today}\{hour}\binary_data\b_data_{(start + step

* 1)y {3}

# Control OPM software GUI to set file name and start logging

ag.click (1080, 81) # Open settings tab
ag.click (1199, 256) # Click file name input
ag.hotkey('ctrl', 'a')

ag.press('delete')
ag.write(f'opm_data_{(start + step * i)}_{j}') # Insert filename
ag.click (1200, 666) # Start logging

# Record start time for this collection
start_time = time.time()

c_time = time.ctime()

# Collect spectral data

dados = spec_collection(spec, total_replicas, (i) + 1, j + 1)

# Convert data to numpy array and save
final_data = np.array(np.transpose(dados))

np.save(rf'{path_spec}.npy', final_data)

# Calculate elapsed time

end_time = (time.time() - start_time)

# Stop OPM logging
ag.click (1200, 666)

print('\n')

print("Time taken: --- %s seconds ---" % (end_time))

# Save collection info in a text file
with open(rf'{in_path}\{today}\{hour}\Information\info_{i+13}_{j}.txt'
') as f:

.write('Important information:\n'")

.write('Collection number %s\n' % (i+1))
.write('Begin: %s \n' % (c_time))

.write('End: %s \n' % (time.ctime()))

.write('Range: %s to %s \n' % (low_limit, high_limit))
.write('Voltage (mV): %s \n' % (start + step * i))

- h h —h —h —h

.write('Samples: %s \n' % total_replicas)
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f.write('Time taken: --- %s seconds ---\n' % end_time)
172
print('\n")
174
# Print total program runtime
176 print("Total time --- %s seconds ---" % (time.time() - t_time))

Source: The Author (2025)
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