

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

EDINILSON DE CASTRO FERREIRA

MODELAGEM DE APOIO À DECISÃO PARA SOLUÇÕES DE INUNDAÇÕES URBANAS: UMA ABORDAGEM DE OTIMIZAÇÃO MULTIOBJETIVO

Recife

EDINILSON DE CASTRO FERREIRA

MODELAGEM DE APOIO À DECISÃO PARA SOLUÇÕES DE INUNDAÇÕES URBANAS: UMA ABORDAGEM DE OTIMIZAÇÃO MULTIOBJETIVO

Tese apresentada ao Programa de Pósgraduação em Engenharia Civil da Universidade Federal de Pernambuco, como requisito parcial para obtenção do título de doutor em Engenharia Civil. Área de concentração: Recursos Hídricos.

Orientador: Prof. Dr. Jaime Joaquim da Silva Pereira Cabral

Coorientadora: Prof. Dra. Marcia M. G. Alcoforado de Moraes

Recife

Ferreira, Edinilson de Castro.

Modelagem de apoio à decisão para soluções de inundações urbanas: uma abordagem de otimização multiobjetivo / Edinilson de Castro Ferreira. - Recife, 2025.

92f.: il.

Tese (Doutorado) - Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, Programa de Pós-Graduação em Engenharia Civil, 2024.

Orientação: Jaime Joaquim da Silva Pereira Cabral. Coorientação: Márcia Maria Guedes Alcoforado de Moraes. Inclui referências.

1. Inundações urbanas; 2. Modelagem hidrológica; 3. Otimização multiobjetivo. I. Cabral, Jaime Joaquim da Silva Pereira. II. Moraes, Márcia Maria Guedes Alcoforado de. III. Título.

UFPE-Biblioteca Central

EDINILSON DE CASTRO FERREIRA

MODELAGEM DE APOIO À DECISÃO PARA SOLUÇÕES DE INUNDAÇÕES URBANAS: UMA ABORDAGEM DE OTIMIZAÇÃO MULTIOBJETIVO

Tese apresentada ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, como requisito parcial para obtenção do título de Doutor em Engenharia Civil, Área de Tecnologia Ambiental e Recursos Hídricos.

Aprovada em 03/12/2024

Orientador: Prof. Dr. Jaime Joaquim da Silva Pereira Cabral – UFPE

Coorientadora: Prof.ª Dr.ª Márcia Maria Guedes Alcoforado de Moraes - UFPE

BANCA EXAMINADORA

Prof. Dr. Anderson Luiz Ribeiro de Paiva (examinador interno)
Universidade Federal de Pernambuco

participação por videoconferência Prof.ª Dr.ª Priscilla Macedo Moura (examinadora externa) Universidade Federal de Minas Gerais

participação por videoconferência Prof. Dr. Marllus Gustavo Ferreira Passos das Neves (examinador externo) Universidade Federal de Alagoas

> participação por videoconferência Prof. Dr. Adriano Rolim da Paz (examinador externo) Universidade Federal da Paraíba

participação por videoconferência Prof. Dr. Saulo de Tarso Marques Bezerra (examinador externo) Universidade Federal de Pernambuco "Este trabalho é dedicado à minha mãe, Edijane de Castro Ferreira. Seu legado vive em mim. Esta tese é para você."

AGRADECIMENTOS

Primeiramente, agradeço a Deus Pai e ao Filho Jesus Cristo, por iluminarem meus caminhos e me derem força e perseverança para chegar até aqui. Aos meus pais, Anilson de Melo Ferreira e Edjane de Castro Ferreira (in memoriam), que me inspiraram com seus exemplos de vida e valores que carrego comigo. À minha companheira, Letícia Regina Soares, pelo amor e apoio incondicional ao longo desta jornada. Aos meus filhos, Gabriel, Miguel, Eduardo e Leonardo, e à minha sobrinha Catarina que são a minha maior fonte de inspiração, motivação e alegria.

Sou imensamente grato as minhas irmãs e a toda a minha família, que sempre estiveram ao meu lado nos momentos mais desafiadores. Agradeço, de forma especial, às minhas queridas tias Fátima, Geni e Elicelba, e à minha avó Ana Maria Ferreira (todas in memoriam), que contribuíram para minha educação e formação pessoal com amor e dedicação desde a infância.

Registro aqui meu profundo agradecimento ao meu orientador, professor Jaime Cabral, e à minha coorientadora, professora Márcia Maria Alcoforado, pelo suporte e orientação técnica e acadêmica, fundamentais para a realização deste trabalho. Agradeço à Universidade Federal de Pernambuco (UFPE) e ao Programa de Pós-Graduação em Engenharia Civil, que proporcionaram um ambiente propício para o desenvolvimento deste projeto. Estendo minha gratidão à dedicada equipe da secretária da pós-graduação, que sempre esteve pronta para auxiliar com questões administrativas e burocráticas, facilitando o andamento das atividades ao longo do curso.

Não poderia deixar de agradecer ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela bolsa de estudos, que foi essencial para viabilizar esta etapa da minha formação acadêmica. Sou também grato à EMLURB, na pessoa do engenheiro Pedro Oliveira, pelo fornecimento dos dados e informações necessários para a pesquisa, cuja colaboração foi fundamental para os resultados obtidos.

Por fim, agradeço aos amigos da pós-graduação, do trabalho e da vida, cujo companheirismo e apoio tornaram essa jornada mais leve, e aos professores membros da banca, pela generosidade de tempo e pelas valiosas contribuições que enriqueceram este trabalho. A todos que, de alguma forma, participaram desta trajetória, deixo meu sincero agradecimento.

Muito obrigado!

RESUMO

A urbanização desordenada, combinada com as mudanças climáticas, tem intensificado a ocorrência de inundações em áreas urbanas, resultando em graves impactos econômicos e sociais. A cidade do Recife, por suas características geográficas e alta densidade urbana, é particularmente vulnerável a esses eventos extremos. Dentro desse contexto, a presente pesquisa propõe o desenvolvimento de uma estrutura de apoio à decisão para o planejamento e gestão das águas pluviais urbanas, integrando simulações hidrológicas e hidráulicas com um modelo de otimização multiobjetivo utilizando indicadores socioeconômicos. A metodologia empregada envolve a utilização dos modelos computacionais PCSWMM e HEC-RAS para simular o comportamento hidrológico e hidráulico de uma bacia urbana sob diferentes cenários de precipitação, considerando tempos de retorno de 10, 25 e 50 anos. O modelo de otimização foi desenvolvido no software GAMS, com dois objetivos conflitantes separadamente: 1) o de minimizar os custos de implantação de bacias de detenção e 2) o de minimizar os danos socioeconômicos anuais esperados decorrentes das inundações. As variáveis de decisão dos dois problemas são as mesmas, e consideram as características geométricas dos reservatórios, que condicionam seu volume de armazenamento, assim como as restrições, que incluem a capacidade de escoamento das estruturas a jusante para um cenário de pré-urbanização e limites orçamentários. A análise das soluções segundo os dois objetivos foi conduzida através da construção de uma Fronteira de Pareto (FP). O cenário com o tempo de retorno de 25 anos, a diferença de custos entre solo sem rochas e com 50% de rochas foi de R\$6.106.797,10 (aumento de 146%), enquanto a bacia fechada apresentou um aumento de R\$19.836.630,10 (475%). A taxa de variação (ΔCusto/ΔDano), para esse mesmo tempo de retorno, indicou que para solo sem rochas, os primeiros esforços de mitigação de danos foram mais eficientes, até uma taxa de R\$7.340,06 por unidade de dano reduzido. No cenário com 50% de rochas, essa taxa subiu para R\$16.602,13, e na bacia fechada, para R\$39.310,07. Esses valores estão associados a um volume total de armazenamento de cerca de 4,82 milhões de m³. Esses pontos de inflexão indicam que, após esses valores, os custos para reduzir danos adicionais aumentam de maneira significativa, sugerindo que o investimento adicional se torna menos eficiente. As variáveis de decisão ao longo da Fronteira de Pareto mostraram que a altura dos reservatórios foi mantida constante em relação as condições de implantação, variando entre 1 m e 10 m, enquanto o diâmetro dos tubos de saída ficou entre 0,15 m e 0,50 m. A área dos reservatórios foi a principal variável de ajuste, aumentando conforme necessário para maximizar o volume de armazenamento e reduzir os danos. Assim, a abordagem de otimização multiobjetivo, aliada à modelagem hidrológica e hidráulica, oferece uma ferramenta útil para o apoio à tomada de decisão na definição de especificações técnicas de projetos de drenagem urbana, possibilitando a visualização de soluções ótimas com diferentes custos associados à mitigação de danos em cenários de inundações urbanas.

Palavras-chave: Inundações urbanas, Modelagem Hidrológica, Otimização Multiobjetivo, Fronteira de Pareto

ABSTRACT

Uncontrolled urbanization, combined with climate change, has intensified the occurrence of floods in urban areas, resulting in severe economic and social impacts. The city of Recife, due to its geographical characteristics and high urban density, is particularly vulnerable to these extreme events. Within this context, the present research proposes the development of a decision-support framework for urban stormwater planning and management, integrating hydrological and hydraulic simulations with a multi-objective optimization model using socioeconomic indicators. The methodology employed involves the use of the computational models PCSWMM and HEC-RAS to simulate the hydrological and hydraulic behavior of an urban watershed under different precipitation scenarios, considering return periods of 10, 25, and 50 years. The optimization model was developed in the GAMS software, with two conflicting objectives considered separately: (1) minimizing the implementation costs of detention basins and (2) minimizing the expected annual socioeconomic damages caused by floods. The decision variables for both problems are the same and take into account the geometric characteristics of the reservoirs, which determine their storage volume, as well as constraints that include the flow capacity of downstream structures for a pre-urbanization scenario and budgetary limits. The analysis of solutions according to the two objectives was conducted through the construction of a Pareto Frontier (PF). For the scenario with a 25-year return period, the cost difference between soil without rocks and soil with 50% rock content was R\$6,106,797.10 (a 146% increase), while the closed basin showed an increase of R\$19,836,630.10 (475%). The cost variation rate ($\Delta \text{Cost}/\Delta \text{Damage}$) for the same return period indicated that, for soil without rocks, the initial damage mitigation efforts were more efficient, up to a rate of R\$7,340.06 per unit of damage reduced. In the scenario with 50% rock content, this rate increased to R\$16,602.13, and in the closed basin, to R\$39,310.07. These values are associated with a total storage volume of approximately 4.82 million m³. These inflection points indicate that, beyond these values, the costs to further reduce damages increase significantly, suggesting that additional investment becomes less efficient. The decision variables along the Pareto Frontier showed that the height of the reservoirs remained constant within the implementation conditions, varying between 1 m and 10 m, while the outlet pipe diameter ranged from 0.15 m to 0.50 m. The reservoir area was the primary adjustment variable, increasing as needed to maximize storage volume and reduce damages. Thus, the multiobjective optimization approach, combined with hydrological and hydraulic modeling, provides a useful tool for decision-making support in defining technical specifications for urban drainage projects, allowing the visualization of optimal solutions with different cost levels associated with flood damage mitigation in urban scenarios.

Keywords: Urban flooding, Hydrological Modeling, Multi-objective Optimization, Pareto Frontier

LISTA DE FIGURAS

Figura 1 – Curvas de profundidade x danos para casas de um e dois pavimentos	15
Figura 2 - Concepção do SLIDRS	19
Figura 3 - a) Bacia de detenção on-line. b) Bacia de detenção off-line	21
Figura 4 – Seção típica de uma bacia de detenção	22
Figura 5 - (a) Representação idealizada da sub-bacia; (b) Modelo de Reservatório Não-Line	ar
para a sub-bacia	36
Figura 6 - Representação de um controle LID no SWMM	36
Figura 7 – Fluxograma das etapas do estudo e algoritmo do modelo de otimização	40
Figura 8 – Representação da bacia e demais estruturas no modelo PCSWMM	43
Figura 9 – Modelo Digital do Terreno (MDT) utilizado com o perímetro de simulação no cur	so
principal e nas margens	44
Figura $10- ext{Área}$ de estudo incluindo a localização da bacia hidrográfica, os cursos d'água	ιe
altimetria	52
Figura 11 – Uso e ocupação do solo da bacia e as sub-bacias	52
Figura 12 – Hietograma de projeto e Hidrograma de cheia do rio Moxotó a montante do trecl	ho
a ser mapeada as manchas de inundação.	54
Figura 13 – Mapas de inundação para cheia com tempo de retorno de 10, 25 e 50 anos	55
Figura 14 – Relação entre as probabilidades de ocorrência das cheias e os danos econômic	os
provenientes das inundações.	55
Figura 15 – Bacia hidrográfica com a localização proposta para os reservatórios de detenção	e
as sub-bacias controladas	57
Figura 16 – Relação entre a capacidade volumétrica dos reservatórios de detenção e os Dan	os
Econômicos Esperados residuais.	58
Figura 17 – Fronteiras de Pareto considerando no modelo de otimização chuvas com tempo	de
recorrência de 10, 25 e 50 anos.	64
Figura $18 - Trade$ -offs ($\Delta Custo/\Delta Dano$) para TR = 25 anos	66
Figura 19 – $Trade$ -offs ($\Delta Dano/\Delta Custo$) para TR = 25 anos	68
Figura 20 - Relação entre os pontos da Fronteira de Pareto e os volumes totais	de
armazenamento dos reservatórios de detenção	70
Figura 21 – Fronteira de Pareto considerando a bacia de detenção fechada e o tempo de retor	no
de 25 anos.	70

Figura 22 - Variáveis de decisão ao longo da Fronteira de Pareto (FI	P) para a condição sem
incidência de rocha	72
Figura 23 – Variáveis de decisão ao longo da Fronteira de Pareto (FF	P) para a condição com
50% incidência de rochas	74
Figura 24 – Variáveis de decisão ao longo da Fronteira de Pareto (FP)	para bacia de detenção
fechada	75

LISTA DE TABELAS

Tabela 1 – Modelação nas diferentes fases do ciclo de vida de um empreendimento (Fonte:
CÂNDIDO, 2013)31
Tabela 2 – Modelos Hidrológicos Aplicados à Drenagem Urbana (Fonte: VIESSMAN E
LEWIS, 2002 apud COLLODEL, 2009 – Modificado pelo autor)
Tabela 3 – Vazão máximas afluentes aos reservatórios de detenção
Tabela 4 – Resultado das variáveis de decisão do modelo de otimização a partir da minimização
dos custos61
Tabela 5 – Resultado dos custos totais minimizados e os Danos Anual Esperado aferidos 62
Tabela 6 – Resultado das variáveis de decisão do modelo de otimização a partir da minimização
dos prejuízos63

LISTA DE ABREVIATURAS E SIGLA

CNM Confederação Nacional de Municípios

CODECIPE Coordenadoria de Defesa Civil do Estado de Pernambuco

CGE Centro de Gerenciamento de Emergência

DAE Dano Anual Esperado

EMLURB Autarquia de Manutenção e Limpeza Urbana do Recife

FIA Federal Insurance Administration

GAMS General Algebraic Modeling System

GRG Gradiente Reduzido Generalizado

HEC-RAS Hydrologic Engineering Center's River Analysis System

INMET Instituto Nacional de Meteorologia

LID Low Impact Development

MDT Modelo Digital do Terreno

NLP Programação Não Linear

PCSWMM Personal Computer Storm Water Management Model

RMR Região Metropolitana do Recife

SCS Soil Conservation Service

SuDS Sustainable Drainage Systems

USACE United States Army Corps of Engineers

VME Valor Monetário Esperado

WSUD Water Sensitive Urban Design

SUMÁRIO

1	INTRODUÇÃO	4
2	HIPÓTESE	7
3	OBJETIVOS	
4	INUNDAÇÕES EM GRANDES CIDADES	
4.1	Estimativa dos danos causados pelas inundações	14
5	O USO DE TÉCNICAS NÃO CONVENCIONAIS NO CONTROLE INUNDAÇÕES	
5.1	Bacias de Detenção - Contenção a jusante	20
5.2	Custo das alternativas de controle das inundações	23
6	MODELOS DE APOIO A DECISÃO	27
6.1	A plataforma de modelagem de otimização - GAMS	32
6.2	Modelo de Simulação hidrológica e hidráulica - PCSWMM e HEC-RAS	35
7	ESTRATÉGIA METODOLÓGICA	39
7.1	Elaboração da modelagem hidrológica/hidráulica e avaliação dos danos	41
7.2	Construção do modelo de otimização no GAMS	45
7.3	Otimização multiobjetivo e desenvolvimento da Fronteira de Pareto	47
8	RESULTADOS E DISCUSSÃO	51
8.1	Caracterização física e hidrológica de uma bacia hidrográfica e estimativa	dos
	danos decorrente das inundações	51
8.2	Minimização dos custos e dos Danos Anual Esperado	60
8.3	Fronteira de Soluções Pareto-Ótimas	64
8.3.1	Taxas de variação e pontos de inflexão	66
8.3.2	Soluções não-dominantes e inviáveis	70
8.3.3	As variáveis de decisão ao longo da Fronteira de Pareto	72
9	CONCLUSÕES	77
	REFERÊNCIAS	

1 INTRODUÇÃO

A ocupação territorial urbana, sem o devido planejamento integrado das diversas infraestruturas necessárias ao desenvolvimento harmônico da cidade, desencadeou o surgimento de problemas de drenagem por ocasião dos eventos hidrológicos de alta intensidade. Com a expansão territorial, sem uma legislação e uma fiscalização que garanta o disciplinamento adequado do uso e ocupação do solo, os problemas de alagamentos e inundações tendem a se intensificar.

Durante muito tempo o objetivo principal de um sistema de drenagem era o afastamento rápido e eficiente das águas pluviais, de forma a evitar transtorno, prejuízos e riscos de inundações. Com esse enfoque, as ações concentravam-se principalmente na execução de projetos e obras de canalização e na análise de viabilidade econômica dessas medidas, ditas estruturais. Entretanto, as experiências nacionais e internacionais têm mostrado que tais medidas, além de onerosas, não representam uma solução eficaz e sustentável dos problemas mais complexos das águas urbanas. Assim, é preciso um entendimento dos problemas de forma mais abrangente e integrada do ambiente urbano e das relações entre os sistemas que o compõem (Tucci; Silveira, 2020).

A urbanização resulta no aumento de áreas edificadas e na consequente impermeabilização do solo, alterando as condições hidrológicas e climáticas locais, entre outros aspectos. Essas mudanças nos padrões de uso do solo geralmente agravam as enchentes urbanas, devido à maior disponibilidade de escoamento superficial. A supressão de áreas verdes, a impermeabilização extensiva sem o devido controle, a redução de áreas naturais de retenção e a ocupação de áreas marginais aos rios são algumas das ações que impactam negativamente a drenagem em bacias urbanas. Essas modificações resultam no aumento e na antecipação dos picos de cheia, já que há mais água disponível para escoar e essa água se desloca mais rapidamente devido à redução das áreas de retenção superficial e da vegetação, causadas pela impermeabilização da bacia (Miguez; Veról; Rezende, 2016).

O Brasil enfrenta desafios significativos decorrentes de inundações frequentes, que geram impactos sociais e econômicos expressivos. Conforme relatado pelo Banco Mundial *et al.* (2020), desastres hidrológicos, como enchentes, enxurradas e alagamentos, foram os eventos

naturais mais recorrentes no país entre 1995 e 2019, resultando em perdas financeiras superiores a R\$ 114 bilhões. Em 2022, as chuvas intensas causaram prejuízos estimados em R\$ 931,4 milhões, afetando mais de 525 mil pessoas nos estados de Minas Gerais, Bahia e Santa Catarina (CNM, 2023). Ainda nesse ano, o município de Petrópolis/RJ sofreu perdas materiais e econômicas significativas, estimadas em cerca de R\$ 665 milhões, equivalente a 2% do PIB municipal, atingindo tanto o setor privado quanto a infraestrutura urbana (Blaudt; Alvarenga; Garin, 2023). Em Recife/PE, eventos climáticos severos em 2022, incluindo inundações e deslizamentos, danificaram aproximadamente 68 mil casas e destruíram outras 3 mil completamente (Greenpeace Brasil, 2023). Já em 2024, as inundações em Porto Alegre e outras áreas do Rio Grande do Sul agravaram os prejuízos, com perdas econômicas superiores a R\$ 10 bilhões, além de severos impactos na infraestrutura, como interdições de pontes e interrupção de serviços essenciais (Brasil, 2024).

As inundações afetam mais pessoas do que qualquer outro tipo de desastre natural, impactando cerca de 1,65 bilhão de pessoas globalmente entre 2000 e 2019, o que representa 41% do total de indivíduos atingidos por desastres, superando tempestades e secas (UNDRR; CRED, 2020). Segundo a Munich Re (2024), as inundações de 2023 geraram perdas econômicas significativas em várias partes do mundo. Na Europa, uma combinação de enchentes e tempestades severas causou prejuízos de US\$ 10 bilhões em países como Itália, Croácia e Áustria. Na Ásia, o Tufão Doksuri resultou em inundações devastadoras na China, Filipinas, Taiwan e Vietnã, causando danos estimados em US\$ 25 bilhões e 108 mortes. Nos Estados Unidos, tempestades e inundações geraram perdas de US\$ 6 bilhões. Na África, a Líbia enfrentou inundações catastróficas, com 4.300 mortes e prejuízos de US\$ 4 bilhões.

Diante desse cenário, soluções modernas de drenagem urbana devem integrar os impactos socioeconômicos às análises hidrológicas e financeiras das intervenções para controle de águas pluviais. A quantificação dos benefícios econômicos da redução de danos e a relação custo-benefício das infraestruturas são essenciais para justificar investimentos na área. Modelos de otimização multiobjetivo são ferramentas promissoras nesse contexto, permitindo a análise simultânea de custos e benefícios, considerando objetivos conflitantes, como a redução de danos e a minimização dos custos de implementação (Loucks; Van Beek, 2017).

Estudos recentes destacam a aplicação desses modelos no gerenciamento de inundações urbanas. Yang *et al.* (2023) usaram o NSGA-II acoplado ao SWMM para reduzir o coeficiente

de escoamento superficial, o tempo de sobrecarga do sistema e os custos de investimento, alcançando uma diminuição de 0,7 para 0,5 no coeficiente de escoamento e custos entre ¥395.000 e ¥872.000. Alves *et al.* (2020) avaliaram infraestruturas verde-azul-cinza com NSGA-II e modelos hidrodinâmicos, explorando trade-offs entre mitigação de enchentes e cobenefícios. Cioffi *et al.* (2022) aplicaram o NSGA-II em áreas costeiras, otimizando custos de infraestrutura e riscos hidráulicos diante de incertezas climáticas. Hosseinzadeh *et al.* (2023) combinaram SWMM, GIS e otimização evolutiva para identificar projetos ideais de reservatórios, reduzindo danos em até 90% com custos entre US\$ 50.000 e US\$ 160.000. Zhang *et al.* (2024) propuseram um modelo de otimização estrutural para sistemas de drenagem, considerando capacidades de tubulações e respostas a eventos extremos. Chen *et al.* (2024) desenvolveram um sistema integrado de infraestrutura verde-cinza-azul com o método TOPSIS, demonstrando a eficácia na redução de picos de vazão e no armazenamento de águas pluviais.

Neste contexto, o presente estudo propõe uma estrutura de apoio à decisão integrada, combinando simulação hidrológica e otimização multiobjetivo para desenvolver soluções eficientes no controle de inundações urbanas. O modelo visa otimizar dois objetivos conflitantes: (i) minimizar os custos de implementação de sistemas de multi-reservatórios de detenção e (ii) minimizar os danos econômicos decorrentes de eventos extremos de precipitação. As variáveis de decisão incluem área ocupada, profundidade dos reservatórios e diâmetro das estruturas de saída, considerando restrições hidrológicas, geotécnicas e orçamentárias.

O estudo foi aplicado em uma bacia densamente urbanizada de Recife/PE, cidade situada em uma planície costeira, cuja topografia plana e baixa altitude tornam desafiador o gerenciamento de águas pluviais, especialmente sob chuvas intensas e marés altas (Cabral; Alencar, 2005). As soluções foram analisadas por meio da construção de uma Fronteira de Pareto (FP), que identifica os pontos de ótimo em que não há possibilidade de melhora em um objetivo sem comprometer o outro. Assim, os trade-offs entre custos e benefícios das soluções foram detalhados, permitindo uma análise robusta para apoio à decisão em drenagem urbana.

2 HIPÓTESE

A pesquisa desenvolvida parte da seguinte problemática:

As obras de controle de inundações urbanas, especialmente as de natureza estrutural, envolvem custos elevados de implantação e operação. Essas soluções geralmente dependem de investimentos públicos, devido ao longo prazo necessário para o retorno do capital investido, o que limita a atratividade para o investimento privado. Além disso, a ociosidade intermitente dessas obras, em função do comportamento estocástico dos eventos hidrológicos, as torna ainda menos atraentes em termos de financiamento.

Nesse contexto, é fundamental considerar também a valoração de prejuízos ambientais e de perdas de vidas humanas. Esse campo, reconhecido como parte da Economia Ambiental, se dedica à atribuição de valores econômicos a bens e serviços que não possuem preço de mercado, como recursos naturais, biodiversidade e vidas humanas. A valoração de intangíveis, como danos ambientais e prejuízos à saúde ou à vida, pode ser feita por meio de métodos como o custo de oportunidade e a disposição a pagar, permitindo que esses fatores sejam integrados na análise de viabilidade das obras.

Do exposto, é pertinente discutir a aplicação de modelos de otimização com objetivos conflitantes em termos de custos econômicos e sociais combinados com simulações hidrológicas e hidráulicas que possam apoiar o planejamento de estruturas de controle em bacias hidrográficas urbanas, que minimizem os impactos das inundações e tenham viabilidade econômica.

Com base nisso, o estudo proposto busca responder à seguinte hipótese:

Considerando uma bacia hidrográfica urbana, com suas restrições de volumes e vazões máximas permitidas no sistema de drenagem pluvial, assim como pontos críticos de alagamento já existentes, é possível, por meio de um modelo de otimização associado a simulações hidrológicas, auxiliar o processo de tomada de decisão de especificações técnicas de infraestrutura a ser construída que sejam minimizadoras de custos e ao mesmo tempo de prejuízos ambientais e socioeconômicos para os problemas de drenagem em áreas densamente urbanizadas.

3 OBJETIVOS

O objetivo deste estudo é avaliar a aplicabilidade de uma estrutura de apoio à decisão no gerenciamento das águas urbanas, integrando modelagem hidráulica e hidrológica a um modelo de otimização multiobjetivo para diagnosticar danos econômicos de eventos extremos e identificar soluções ótimas que conciliem custos e redução de prejuízos por inundações.

Objetivos específicos:

- Analisar uma bacia urbana experimental, avaliando a capacidade dos sistemas de macrodrenagem existentes, a fim de quantificar os volumes excedentes de alagamentos, considerando precipitações com tempos de retorno de 10, 25 e 50 anos.
- Identificar os potenciais danos e valorar economicamente os prejuízos causados por enchentes urbanas, por meio da avaliação de mapas de risco de inundações desenvolvidos no âmbito desta pesquisa.
- iii. Desenvolver um modelo de otimização multiobjetivo cujas variáveis de decisão são especificações técnicas relativas à implantação de reservatórios de detenção nas sub-bacias, com dois objetivos, um de minimização dos custos de implantação e outro dos danos decorrentes das inundações.
- iv. Discutir as soluções Pareto-ótimas em uma Fronteira de Pareto que apresentam as soluções dominantes com relação aos dois objetivos conflitantes.

4 INUNDAÇÕES EM GRANDES CIDADES

As inundações ganharam crescente importância global no passado recente devido à sua natureza devastadora e seu potencial de causar perdas econômicas e humanas significativas (Saharia *et al.*, 2017). O rápido processo de urbanização, a disseminação do uso não planejado do solo e os consequentes efeitos das mudanças no clima estão entre as principais causas de desastres naturais causados pelo homem (Salami; Von Meding; Giggins, 2017). As inundações urbanas relacionadas aos eventos extremos de chuvas normalmente são divididas em inundações em larga escala devido às altas descargas de rios e córregos, também chamada de inundações fluviais, e alagamentos ou inundações locais e urbanas que ocorrem devido ao excesso de chuva que sobrecarrega as capacidades dos sistemas de drenagem local, também chamada de inundações pluviais (Bouwer, 2012).

Esses eventos, portanto, podem ocorrer devido ao comportamento natural dos rios ou são ampliados pelo efeito de alteração produzida pelo homem na urbanização. Os problemas resultantes da inundação dependem do grau de ocupação da área de várzea pela população, da impermeabilização e canalização da rede de drenagem, bem como da vulnerabilidade e resiliência das edificações. O desenvolvimento urbano altera os componentes do ciclo hidrológico natural através das alterações na superfície do solo. Com a impermeabilização através de telhados, ruas, calçadas e pátios, a água que antes infiltrava, passa a escoar pelos condutos, aumentando o escoamento superficial, ou seja, o volume que antes escoava lentamente pela superfície do solo e ficava retido na vegetação, com a urbanização, passa a escoar pelos canais, exigindo maior capacidade de escoamento das seções (Tucci; Silveira, 2020).

As inundações frequentemente causam prejuízos significativos devido à ocupação humana e à construção de estruturas em áreas destinadas ao armazenamento natural de grandes volumes de água (Loucks; Van Beek, 2005). A alta densidade populacional e a concentração de propriedades tornam as cidades mais vulneráveis, resultando em perdas econômicas absolutas mais elevadas ao longo dos anos. Diversas grandes cidades do mundo enfrentam impactos financeiros expressivos anualmente. No Japão, por exemplo, as inundações pluviais geram aproximadamente 1 bilhão de dólares em perdas por ano (Bhattarai *et al.*, 2016). Estudos

na Holanda preveem um aumento médio de 47% nas perdas econômicas associadas às chuvas intensas até 2040 (Bouwer, 2012). Na Alemanha e em outras regiões da Europa Central, as inundações de 2013 causaram prejuízos estimados em 16 bilhões de dólares. No mesmo ano, em Uttarakhand, norte da Índia, desastres relacionados às inundações resultaram em cerca de 6.000 mortes (Wake, 2013).

Alfieri *et al.* (2015) realizaram uma estimativa da população afetada e danos diretos das inundações dos países da Europa, considerando cenários de mudanças climática do *EURO-CORDEX Climate Projection RCP 8.5*, o qual indicam que, até o final do século, o impacto socioeconômico das inundações no continente deverá aumentar em média 220%, indicando que população anualmente afetada pelas inundações pode variar de 500.000 a 640.000 habitantes em 2050 e de 540.000 a 950.000 habitantes em 2080. Já os prejuízos monetários podem chegar a valores de aproximadamente 20 a 40 milhões de dólares em 2050 e de 30 a 100 milhões de dólares anualmente.

Na China, estudos realizados por Chen, Lou e Pan (2013) sobre desastres provocados pela natureza, durante os anos de 1900 e 2011, revelaram que as inundações são consideradas o desastre natural mais letal quando comparado com outros desastres, com mais de 6 milhões de pessoas afetadas durante o período estudado e uma média de mais de 160 milhões de dólares por ano de danos. Somente no ano de 2010 na China, os danos provocados pelas inundações chegaram a um valor de 374,5 bilhões de Yaun (moeda chinesa) o que corresponde a 9,33% do seu PIB (Duan *et al.*, 2016).

Tsuda e Tebakari (2023) examinaram a relação entre as inundações e a distribuição da população na Tailândia entre os anos de 2005 e 2019. Os resultados sugerem que as cheias de 2011 e 2017, que inundaram 9,5% e 5,3% da área total da Tailândia, respetivamente, provocaram a migração temporária de pessoas para áreas que não foram inundadas ou para a área metropolitana de Banguecoque. O estudo também sugere que a resposta das pessoas às cheias mudou depois das cheias de 2011, indicando, nos últimos anos, que o povo tailandês está a mudar de um estilo de vida que incluía viver em harmonia com as cheias para evitar as inundações, migrando principalmente para as zonas urbanas, onde as medidas de controle das cheias são mais rigorosas.

Minervino e Duarte (2016) realizaram um estudo descritivo que analisa as perdas e danos causados por desastres hidrometeorológicos no Brasil entre 2010 e 2014 que contrasta os resultados de dois bancos de dados de desastres: *Emergency Events Database* - EM-DAT (global) e Sistema Integrado de Informações sobre Desastres - S2iD (nacional). Os resultados mostram diferenças tanto no número total de ocorrências de desastres (EM-DAT = 36; S2iD = 4.070), quanto nos danos materiais resultantes (EM-DAT = R\$ 9,2 bilhões; S2iD = R\$ 331,4 bilhões). A análise da distribuição de eventos permite concluir que os cinco estados mais afetados por tais eventos (SC, RS, MG, SP e PR) estão nas regiões sul e sudeste. As edificações que tiverem maiores prejuízos materiais foram, nesta ordem: unidades habitacionais, obras de infraestrutura pública, instalações públicas de uso comunitário, instalações públicas prestadoras de outros serviços, instalações públicas de ensino e instalações públicas de saúde.

Ainda no Brasil, a Confederação Nacional de Municípios (CNM) realizou um levantamento dos danos e prejuízos ocasionados pelas chuvas em todo o Brasil no mês de dezembro de 2022. Neste mês, o prejuízo total foi estimado em R\$ 931,4 milhões, uma média de R\$ 30 milhões por dia. O levantamento revelou também que neste período ocorreram 245 decretações de Situação de Emergência, sendo 91 no Estado da Bahia, 43 em Santa Catarina e Minas Gerais e 20 no Espírito Santo. As informações divulgadas pelas defesas civis municipais, revelaram que mais de 525 mil pessoas foram de alguma forma afetadas pelos excessos de chuvas. Em todo Brasil, 33 pessoas perderam a vida, e o Estado de Minas Gerais foi o mais impactado, somando 14 mortes decorrentes de deslizamentos, inundações e enxurradas, entre outros (CNM, 2023).

O estado de Minas Gerais, em janeiro de 2020, enfrentou o maior volume de chuva dos últimos 110 anos, segundo o Instituto Nacional de Meteorologia (INMET, 2020). Segundo a Defesa Civil, 101 cidades do Estado decretaram Situação de Emergência devido as inundações, 55 pessoas morreram e aproximadamente 45 mil pessoas tiveram que sair de suas casas por causa das inundações. A prefeitura de Belo Horizonte estimou que a reconstrução dos danos causados pelas inundações custará entre 300 e 400 milhões de reais. Em fevereiro de 2020, a cidade de São Paulo registrou no intervalo de 24 horas a maior chuva em 37 anos, segundo o INMET (2020). O Centro de Gerenciamento de Emergência (CGE) da Prefeitura registrou 161 pontos de alagamentos em toda a cidade. Os rios Tietê e Pinheiros transbordaram e vários pontos de suas vias marginais ficaram intransitáveis.

Em Pernambuco, no ano de 2019, o balanço divulgado pela Coordenadoria de Defesa Civil do Estado (CODECIPE), aponta que aproximadamente 1.640 pessoas ficaram desalojadas temporariamente e mais de 440 ficaram desabrigadas em áreas atingidas pelas chuvas ou inundações fluviais na Região Metropolitana do Recife e na Zona da Mata do Estado. Uma das principais questões em Recife é a ocupação urbana, em especial, ocupações irregulares nas margens dos corpos hídricos, ficando suscetíveis a alagamentos. Além disso, os rios Beberibe e Tejipió sofrem com cheias anuais, devido à localização em planície e com grande influência das marés. Em diversos pontos do município, principalmente aqueles localizados na região de planície, ocorrem alagamentos mesmo sem chuva, também em razão da maré alta (Cabral; Alencar, 2005)

Os fortes eventos de precipitação que ocorreram em 2022 provam o quão vulneráveis são Recife e os demais municípios da Região Metropolitana do Recife (RMR) aos extremos da variabilidade climática. No dia 28 de maio de 2022, quase 17% de toda a área urbana do Recife foi atingida por inundações. Água com aproximadamente 5 m de profundidade cobriu 0,01% da cidade (de acordo com o modelo digital de elevação). A perda de vidas e os impactos econômicos substanciais na cidade do Recife causados pelas fortes precipitações em maio de 2022 e pelos desastres por ela induzidos mostram que esta cidade, como muitas outras em todo o mundo, tem capacidade limitada para lidar com eventos extremos (Marengo *et al.*, 2023).

Existem diferentes causas contribuintes para cada um desses eventos, dificultando a vinculação de eventos extremos de precipitação individual às mudanças climáticas, mas os episódios como estes estão tornando-se cada vez mais frequentes (Wake, 2013). Os danos causados pelas inundações são influenciados não apenas pela variabilidade climática, mas também por fatores não climáticos que moldam a exposição regional e a vulnerabilidade a extremos climáticos em várias escalas espaciais (Zhou; Leng; Feng, 2017).

Há estudos que indicam que o aumento da exposição da população e dos ativos, e não as mudanças climáticas, foi a principal responsável pelo aumento das perdas causadas pelas inundações. Porém, as projeções de perdas e baixas futuras de inundações indicam que, quando nenhuma adaptação for realizada, as mudanças climáticas antropogênicas futuras provavelmente levarão a um aumento das perdas por inundação, juntamente com o aumento da exposição ligada ao desenvolvimento econômico em curso (Kundzewicz *et al.*, 2013).

Salami, Von Meding e Giggins (2017) estudaram a exposição de assentamentos urbanos, em Ibadan na África, aos riscos desastres e relataram que as condições estruturais e de localização desses assentamentos frente aos perigos de inundações acabam por intensificar a pobreza, a falta de resiliência da sociedade e a sua vulnerabilidade.

Wei, Hu e Hu (2018) analisaram a correlação entre as ocorrências de chuvas, de 2000 a 2015, e os danos causados pelas inundações na China, os resultados sugerem que as condições socioeconômicas podem ter uma influência maior sobre os danos das inundações do que os fatores climáticos. O estudo mostra que o número de mortes devido a inundações está mais fortemente relacionado ao colapso estrutural de edificações em condições precárias e sua vulnerabilidade quanto à localização.

Nesse cenário, cada governo local passa a atentar para as estratégias de prevenção de desastres, estabelecendo medidas estruturais e não estruturais para reduzir os danos causados pelas inundações (Shin *et al.*, 2019). As medidas estruturais correspondem às obras que podem ser implantadas visando à correção ou a prevenção dos problemas decorrentes das enchentes. E as medidas não estruturais abrangem a operação aprimorada de sistemas de prevenção de desastres, plano de seguro contra inundações e mapeamento das áreas de riscos de inundações.

As cidades compreendem múltiplos componentes, formando sistemas estáticos e dinâmicos que são interconectados direta e indiretamente em vários níveis. Reunir muitas pessoas em um sistema complexo pode levar à vulnerabilidade de uma ampla gama de perigos, ameaças e tendências. A chave para reduzir essa vulnerabilidade é a identificação de sistemas críticos e a determinação das implicações de sua falha e de suas interconectividades com outros sistemas. Uma abordagem emergente para esses desafios concentra-se na construção da resiliência - definida aqui como o grau em que um sistema pode continuar a funcionar efetivamente em um ambiente em mudança (Collier *et al.*, 2014).

Nesse sentido, é importante que as políticas de planejamento urbano devem ser integradas às estratégias de gestão de inundações, a fim de reduzir os riscos das inundações repentinas (Horn; Elagib, 2018). Limitar os impactos das inundações à medida que se expandem ou crescem economicamente, torna-se um desafio emergencial. A grande maioria das cidades brasileiras, hoje não estão equipadas com esquemas de governança adequados para lidar com mudanças que são provavelmente associadas às mudanças climáticas e à urbanização.

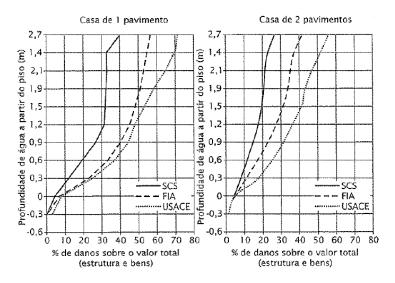
No futuro, os governos precisarão adotar juntamente com as medidas de controle tradicionais de drenagem urbana, meios proativos de integrá-las com técnicas de desenvolvimento de baixo impacto (*Low Impact Development – LID*) e medidas de adaptações ao clima nas políticas de planejamento do espaço urbano. O gerenciamento descentralizado da água da chuva, incluindo estratégias de retenção, armazenamento e reutilização integradas ao planejamento espacial e ao design urbano, pode reduzir os riscos de inundação e, simultaneamente, melhorar a disponibilidade de água. Maior resiliência, melhores condições ecológicas e habitabilidade podem ser alcançadas pela reorganização de infraestruturas urbanas, espaços públicos e estruturas específicas de gestão da água (Schuetze; Chelleri, 2013).

4.1 Estimativa dos danos causados pelas inundações

Os danos decorrentes das inundações normalmente são classificados em diretos e indiretos. Os danos diretos são aqueles provenientes dos prejuízos a bens e serviços devido ao contato direto com a inundação. Esses prejuízos são quantificados pelo levantamento dos custos de reposição, reparo e recuperação das áreas atingidas. Os danos indiretos são decorrentes da influência da inundação na paralisação de atividades econômicas ou serviços públicos, mas sem o contato direto com a inundação. Há também os prejuízos decorrentes das perdas de horas de trabalho daqueles que residem na área e nos gastos com atendimento de emergência a desabrigados. Normalmente sua estimativa é por meio de uma fração dos danos diretos da mesma natureza (Canholi, 2005).

A tipologia dos danos também pode ser classificada em tangíveis e intangíveis. A distinção encontra-se relacionada ao grau de dificuldade em estabelecer um procedimento para a sua avaliação monetária. Os danos físicos causados pelas inundações às construções, por exemplo, são quantificados ou estimados pelo levantamento dos custos de sua restauração. Aqui trata-se de um dano tangível, embora a sua avaliação exija esforços consideráveis na coleta de dados e elaboração de cenários e estimativas de custos. Por outro lado, estados de estresse ou ansiedade causados por inundações, ou pela expectativa de sua ocorrência, são exemplos de

danos de difícil valoração monetária, usualmente classificados como intangíveis (Nascimento *et al.*, 2007).


Machado *et al.* (2005) ressaltam três procedimentos metodológicos distintos, que são os métodos conceituais, métodos deterministas ou de avaliação direta e a análise de vulnerabilidade.

Para o caso dos métodos conceituais, pressupõe-se a incorporação pelo mercado imobiliário dos custos infligidos a imóveis localizados em áreas inundáveis, como os custos de manutenção, recuperação e reposição do espaço construído e de seu conteúdo. A diferença entre os valores de imóveis de características semelhantes, porém localizados em regiões distintas quanto ao risco de inundações, revelaria o custo da inundação.

Em relação aos métodos de avaliação direta dos danos, procura-se estabelecer relações funcionais entre os danos de inundações e variáveis hidráulicas associadas, como profundidade, duração e velocidade de fluxo em áreas inundadas. A avaliação visa à elaboração detalhada e precisa dos impactos causados pelas inundações, levando em consideração o inventário de danos em áreas destruídas ou a construção de cenários de danos com base em uma definição detalhada das patologias causadas pelas inundações.

Entidades americanas como o *Soil Conservation Service – SCS*, o *U.S. Army Corps of Engineers – USACE* e a *Federal Insurance Administration – FIA* relacionaram, para alguns tipos de construção, a porcentagem de dano em relação ao valor total da edificação, para diferentes profundidades de inundações (Figura 1).

Figura 1 – Curvas de profundidade x danos para casas de um e dois pavimentos

Fonte: Canholi (2005).

A abordagem tradicional de avaliação da vulnerabilidade às inundações utiliza como indicador os danos potenciais decorrentes das inundações traduzidos em termos financeiros, partindo da hipótese de que os maiores custos induzidos pelas inundações estão associados à maior vulnerabilidade da área propensa a inundações.

Canholi (2005) aborda dois métodos para a obtenção das curvas nível x prejuízo, o método da curva de prejuízo histórico e o método da equação do prejuízo agregado.

O método da curva de prejuízo histórico tem como objetivo fazer uma avaliação a priori para a obtenção das curvas nível x prejuízo por meio da determinação dos danos ocorridos em inundações históricas. Ou seja, a construção da curva nível x prejuízo é realizada contabilizando-se prejuízos já registrados. Tucci (2020) aponta algumas limitações deste procedimento, são elas: a) admitir que nos últimos anos não houve crescimento na região inundada e que não houve relocação; b) admitir que houve reposição dos prejuízos provocados pelas inundações; c) que os valores dos prejuízos devem estar uniformizados, ou seja, deve considerar a inflação dos períodos; e d) que o procedimento de avaliação dos prejuízos deve ser o mesmo nas diferentes enchentes, para que não haja tendenciosidade de avaliação.

O segundo método, da equação do prejuízo agregado, baseia-se no crescimento linear do dano com o nível médio da inundação. A equação é a seguinte (Canholi, 2005):

$$C_D = K_D. h. M. U. A \tag{1}$$

Onde C_D é o dano total provocado pela inundação; K_D é um índice de dano de enchente, em unidades monetárias por unidade de profundidade de inundação; h é a profundidade média de inundação (m); M é o valor de mercado das edificações por unidade de área (\$/m²); U é a proporção de ocupação, ou seja, proporção de inundação em áreas desenvolvidas pela área total inundada; e A é a área total inundada. Tucci (2020) aponta estudos que estimaram o $K_D = 0.052$ para inundações com profundidade até 1,50 m, e outros estudos que apresentaram um valor médio de 0,044.

Sabendo-se que os eventos hidrológicos são variáveis aleatórias, e, portanto, possuem incertezas associadas, a quantificação econômica dos danos provenientes de precipitações extremas pode ser realizada a partir da determinação do valor monetário esperado. O valor esperado, ou Dano Anual Esperado (DAE), é definido como o produto da probabilidade de excedência de uma determinada precipitação ou vazão de projeto pelos prejuízos monetários quantificados, conforme apresentado na equação (2) (Loucks; Van beek, 2017).

$$VME = P \cdot V \tag{2}$$

Onde, *VME* é o valor monetário esperado, *P* é a probabilidade da precipitação ou vazão de projeto, podendo ser expressa pelo inverso do tempo de retorno (TR) do evento hidrológico, e *V* o valor monetário do dano previamente quantificado.

5 O USO DE TÉCNICAS NÃO CONVENCIONAIS NO CONTROLE DE INUNDAÇÕES

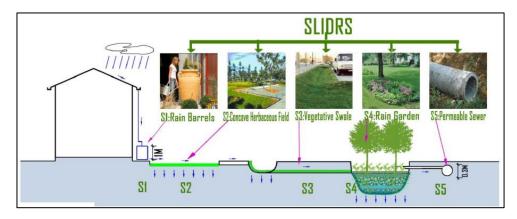
Conforme contextualizado, as inundações têm um impacto bastante significativo na vida das pessoas, na economia e no meio ambiente. Esses impactos são potencializados por mudanças climáticas e socioeconômicas que aumentam a condição de vulnerabilidade das edificações frente aos eventos extremos. Faz-se necessário pois, o desenvolvimento de respostas emergentes para tratar e prevenir os riscos das inundações de maneira confiável.

Com o aumento da urbanização contribuindo para o escoamento excessivo das águas pluviais, é necessário incorporar novos sistemas, como o desenvolvimento de soluções de baixo impacto, nos sistemas de gerenciamento das águas pluviais (Eckart; Mcphee; Bolisetti, 2018).

Atualmente, vários cientistas vêm desenvolvendo pesquisas sobre o desempenho de sistemas naturais de drenagem (solo e vegetação) no controle quali-quantitativo de águas pluviais, ao promover a infiltração, o armazenamento, a evapotranspiração e o contato da água com a flora e microfauna. Os sistemas que mais avançaram nesse sentido foram as abordagens americanas de *Low Impact Development* (LID, denominado no Brasil por Desenvolvimento Urbano de Baixo Impacto), a abordagem australiana de *Water Sensitive Urban Design* (WSUD, Projeto Urbano Sensível à Água) e a abordagem britânica de *Sustainable Drainage Systems* (SuDS, Sistema de Drenagem Sustentável) (Souza; Cruz; Tucci, 2012).

O planejamento do controle do escoamento pluvial, baseado na implantação de técnicas LIDs, visa à manutenção ou a recuperação de funções hidrológicas, de um cenário considerado pré-urbanização, que foram perdidas com o crescimento urbano ainda alicerçado na impermeabilização de áreas e canalizações artificiais. O LID consiste em medidas distribuídas de gerenciamento de escoamentos, como telhados verdes, pavimentos permeáveis, cursos de água cobertos por vegetação e trilhas de filtro, entre outros, que buscam controlar a água da chuva na origem, reduzindo a impermeabilidade urbana (Matos *et al.*, 2019).

Silva *et al.* (2018) argumentam que o desempenho de projetos, com a implantação de estruturas LIDs, pode e será afetado por condições climáticas desfavoráveis, como a ocorrência de chuvas antes de grandes eventos de precipitações ou chuvas consecutivas. Assim, a avaliação


de técnicas LID, quando analisadas sob condições climáticas críticas, melhorarão o processo de seleção de projetos com relação à adaptação às mudanças climáticas.

As mudanças climáticas em curso dificultam a previsão de inundações e desafia o gerenciamento eficaz das águas pluviais. Sohn *et al.* (2019) sugerem que os dispositivos de desenvolvimento de baixo impacto sejam analisados com diferentes características climáticas, como duração de tempestades curtas e longas e condições antecedentes de secas e chuvas as quais fornecerão evidências importantes para sintetizar os impactos climáticos no gerenciamento de águas pluviais e atender de maneira eficiente às necessidades de resposta à variabilidade climática local.

Hu *et al.* (2019) avaliaram a eficácia hidrológica de estruturas LID na mitigação de inundações para uma série de chuvas com diferentes durações e intensidades. O desempenho da mitigação de inundação diminuiu obviamente com o aumento da quantidade de chuvas. As taxas de redução do escoamento superficial diminuíram acentuadamente de 32,7-59,2% para 18,6-20,8%. E as reduções no fluxo de pico caíram de 11,9-12,8 mm para 3,5-8,9 mm (de 71,4-72% para 8-20,2%).

Estudo desenvolvido na China por Miao, Han e Hashemi (2019), avaliou o desempenho hidrológico de um Sistema Sucessivo de Águas Pluviais de Desenvolvimento de Baixo Impacto (Successive Low Impact Development Rainwater Systems - SLIDRS) (Figura 2) em áreas residenciais. Três cenários foram comparados: condição de pré-desenvolvimento, desenvolvimento residencial com uso de sistema convencional de drenagem e o desenvolvimento residencial com o uso do SLIDRS. O novo sistema mostrou resultados particularmente bons para eventos de chuva menores, como aqueles com períodos de retorno de 1 ano e 2 anos; no entanto, com eventos de período de retorno mais altas (por exemplo, 5 anos e 10 anos) e maiores intensidades de precipitação, o desempenho diminuiu um pouco devido à tendência à saturação.

Figura 2 - Concepção do SLIDRS

Fonte: Miao, Han e Hashemi, 2019

Simpson e Roesner (2018) compararam os custos de implantação de projetos com LID e os sistemas de drenagem tradicionais com tempo de retorno de 100 anos, os resultados indicaram a implantação das estruturas LID podem ser mais caras em cerca de 40 a 65% que as estruturas convencionais, mas em compensação, observa-se uma valorização de edificações equipadas com alguma estrutura LID.

5.1 Bacias de Detenção - Contenção a jusante

As bacias de detenção são consideradas obras para reservação dos deflúvios a jusante, as quais objetivam controlar os escoamentos provenientes de partes significativa da bacia hidrográfica (Canholi, 2005). O princípio de uma bacia de detenção de controle a jusante é o de amortecer, ou não transferir para jusante, o aumento das vazões máximas provocado pela urbanização devido a impermeabilização do solo e as obras de canalização.

Entre as vantagens e desvantagens desse tipo de controle, estão: os custos podem ser reduzidos, quando comparados a muitos controles distribuídos na bacia; menores custos de operação e manutenção; facilidades de administrar a construção; entretanto, há dificuldades para achar locais adequados; custo de aquisição da área; e, reservatórios maiores têm oposição por parte da população (Tucci; Porto; Bastos, 2015).

Os reservatórios de detenção são classificados de acordo com o seu posicionamento na rede de drenagem, em *on-line*, quando estão na mesma linha principal do sistema ou a ele

conectado em série, ou *off-line*, quando estão em paralelo a rede principal de drenagem. A Figura 3 apresenta de forma esquemática os dois tipos de bacias de detenção.

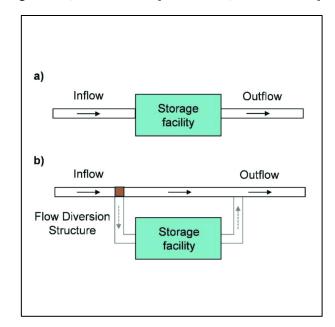


Figura 3 - a) Bacia de detenção on-line. b) Bacia de detenção off-line.

Fonte: BRASIL et al. (2021)

O critério que comumente é utilizado para implantação de uma bacia de detenção é que a vazão máxima da área urbanizada deva ser menor ou igual à vazão máxima das condições preexistentes para um determinado risco escolhido. Ou seja, a bacia detenção deverá controlar o escoamento de sua área de drenagem de forma que sua vazão de saída esteja restrita as condições de restrição (Tucci; Porto; Bastos, 2015).

A detenção dos deflúvios é importante tanto para o controle da quantidade como da qualidade das águas drenadas nas vias urbanas. Em países desenvolvidos, o gerenciamento dos sistemas de drenagem pluvial, incluem obrigatoriamente o controle da qualidade das águas coletadas. Além disso, os aspectos paisagísticos possuem fundamental importância na viabilidade social desse tipo de obra. Nesse sentido, os reservatórios de detenção passam a ter um conceito multidisciplinar, sendo a aceitação pelas comunidades para tal tipo de obra estar associada com o sucesso da implantação, nesses locais, de áreas verdes e de lazer (Canholi, 2005).

Do ponto de vista construtivo, as bacias de detenção podem ser concebidas a partir de um barramento de um rio ou canal, ou escavando uma bacia no solo existente, ou por uma combinação de escavação e barramento. É necessário, que além do dispositivo de saída, as

bacias devam dispor de um vertedor, cujo propósito é garantir a passagem de uma onda de cheia excepcional, garantindo a segurança do barramento. A Figura 4, apresenta o esquema típico de uma bacia de detenção, onde são mostrados os elementos que compõem a sua estrutura (Miguez; Veról; Rezende, 2016).

Storage Basin (Normally Dry) and outlets

Natural Surface Water surface before spill Spillway

Inlet pipe Outlet pipe

Figura 4 – Seção típica de uma bacia de detenção

Fonte: Coombes; Roso (2019)

Bragança, Fonseca e Hora (2016) avaliaram a implantação de um reservatório de detenção *off-line* aberto, com área total de 16.000 m² e profundidade de 3m, para controle de escoamento na bacia hidrográfica do rio Jacaré no Rio de Janeiro. Os resultados indicaram que a precipitação com tempo de recorrência de 25 anos a sua vazão máxima pode ser amortecida em até 54% com a implantação do reservatório. A bacia de detenção proposta no estudo propõe que além dos benefícios do ponto de vista hidrológico a área do reservatório pode ser vinculada a áreas de esporte e lazer.

Em Minas Gerais, o Plano Municipal de Saneamento de Belo Horizonte prevê obras de reservatórios de detenção, já que são recorrentes os danos causados por inundações na cidade. Assim, foi realizada a Avaliação dos Impactos Ambientais (AIA) das obras e da operação da bacia de detenção do Córrego São Francisco/Assis das Chagas, nordeste da bacia hidrográfica do Córrego do Engenho Nogueira, na regional Pampulha, em Belo Horizonte. O estudo foi desenvolvido para elaboração da AIA, considerando uma abordagem conciliada, qualitativa e quantitativa e baseada em estudos ambientais, trabalhos de campo e cartográficos. Constatouse a eficácia e as fragilidades do instrumento, foram apontadas discussões das relações entre ele e as políticas integradas (Araujo *et al.*, 2022).

Em Recife, Silva e Cabral (2014) analisaram o desempenho hidrológico do uso de reservatórios de detenção em vários níveis, desde a implantação de detenções do escoamento

da área de vários lotes, de ruas e de um reservatório controlando do escoamento da bacia. Os resultados mostraram que o uso de um único reservatório a nível da bacia foi a mais eficiente em todos os aspectos: reduzindo as vazões máximas em mais de 80%, e ainda apresentando um investimento aproximadamente igual ao da solução convencional de elevação do greide do trecho da rua impactada com a inundação.

Baptista e Paz (2018) realizaram uma análise custo-eficiência para seleção de um reservatório de detenção para controlar o escoamento captado por uma cobertura de 4.657 m². O estudo observou que embora, idealmente, a função de um reservatório de detenção seja o retorno à condição anterior à impermeabilização do solo, o controle do escoamento neste nível de eficiência hidrológica pode resultar em projetos com custos muito elevados inviabilizado ou desestimulando a sua implantação. Os resultados obtidos indicam que a redução em torno de 3% na eficiência teoricamente ideal (100%) do reservatório proporcionou uma queda de cerca de 36% no custo.

O estudo de Alencar, Pellegrino e Martins (2024) propõe a conversão de reservatórios de detenção em unidades multifuncionais, incorporando Soluções Baseadas na Natureza (SBN) para melhorar tanto a qualidade da água quanto a integração urbana dessas estruturas. A análise do Piscinão da Avenida Eliseu de Almeida, na Bacia do Córrego Pirajussara-SP, demonstrou que a implementação de sistemas como *wetlands* construídos, bacias de sedimentação e canais de tratamento pode permitir que os reservatórios operem durante todo o ano, tratando a vazão de base e reduzindo a carga difusa de poluentes trazidos pelas chuvas. Os autores concluíram que essa abordagem melhora a resiliência urbana diante das mudanças climáticas, reduzindo impactos das inundações e promovendo benefícios ambientais e sociais.

5.2 Custo das alternativas de controle das inundações

Normalmente, os custos dos projetos de drenagem urbana, para controle de inundações ou mesmo dispositivos mitigações dos efeitos das enchentes, envolvem três parcelas principais: investimento inicial, desembolsos com manutenção e operação e o risco do projeto.

O Investimento é representado pelo desembolso inicial para implementação da obra, e envolve os custos com os estudos e o projeto executivo, custos de desapropriação e os custos de construção. Os custos de manutenção e operação incluem as despesas necessárias para funcionamento adequado do projeto ao longo de sua vida útil. Essas despesas envolvem os custos de mão-de-obra e equipamentos para a execução de reparos, limpezas e inspeções a serem feitas periodicamente.

Os valores correspondentes aos danos não evitados, ou seja, os danos residuais relativos a cada período de retorno atendido, representa o custo do risco do projeto. Pode ser medido tanto pela estimativa dos danos, como pelos custos de recuperação da área afetada.

Presume-se que os investimentos para a construção da obra de controle sejam realizados no ano "0", enquanto os custos de manutenção e operação ocorram, por exemplo, do ano "1" ao ano "30", caso o ciclo de vida do projeto seja de 30 anos. Nesse caso, para realizar estudos de viabilidade, é necessária uma estimativa do Valor Presente (*VP*) dos custos de manutenção e operação do projeto (Chui; Liu; Zhan, 2016).

Normalmente, para obras de pequeno porte, como por exemplo as estruturas LID, os custos de manutenção e operação, portanto, são calculados da seguinte forma, como Valor Presente (VP_{LID}).

$$VP_{LID} = C_{canital} + VP_{OM} \tag{3}$$

$$VP_{OM} = \sum_{t=0}^{n} \frac{FC_t}{(1+i)^t}$$
 (4)

Onde:

 VP_{LID} é o valor presente para a vida útil de um projeto LID;

 $C_{capital}$ é o investimento inicial para a construção da estrutura LID;

 VP_{OM} é o valor presente dos desembolsos com manutenção e operação;

 FC_t é o fluxo de caixa no período t;

n é o número de períodos, vida útil do projeto;

i é a taxa de juros, ou taxa de desconto.

Para obras de maior porte é necessário se fazer uma análise mais detalhada dos custos associados a cada alternativa, considerando então os custos diretos e indiretos para a concretização do projeto. A sua quantificação envolve os aspectos a seguir apresentados (Canholi, 2005):

- Custos diretos: estão diretamente ligados a obra, sua quantificação é realizada com base
 no projeto executivo detalhado de construção. Envolvem as obras civis, movimentação
 de terra, desapropriações, equipamentos e aluguel de máquinas, relocação de
 interferências, manutenção e operação. A estimativa dos custos de manutenção e
 operação podem ser realizados, também, através do Valor Presente.
- Custos indiretos: envolve as interferências que a obra poderá ocasionar durante o
 período de sua construção ao sistema viário e ao trânsito, aos prejuízos ao comércio e
 aos danos não evitados ao sistema de drenagem a jusante. A sua avaliação é importante
 para ressaltar os benefícios de alternativas que envolvam menos interferências a outros
 sistemas urbanos e menores prazos de construção.

Tucci e Cruz (2007) esclarecem que um item importante na determinação dos custos uma obra de drenagem é a incidência de rocha no local de implantação. Para sua estimativa são necessários furos de sondagem ou a consulta a mapas de classificação do solo disponíveis pelos órgãos responsáveis. Esses, desenvolveram funções de custo unitário (R\$/m³) das obras de implantação de bacias de detenção abertas ou fechadas. Para as bacias de amortecimento abertas, foram levados em conta os custos com escavações, áreas gramadas, superfícies em concreto e taludes em grama e em pedra argamassada, além de estruturas de entrada e saída. Já os reservatórios fechados ou subterrâneos os custos principais são com o volume escavado, volume de concreto armado e estruturas de entrada e saída. Assim, a estimativa de custos unitários para reservatórios de amortecimento abertos e fechados, podem ser obtidos, respectivamente por:

$$C_{unit} = 35,68 \cdot (1+R)^{0,254} \tag{5}$$

$$C_{unit} = 256,45 \cdot (1+R)^{0,064} \tag{6}$$

Onde, C_{unit} é um custo unitário de implantação da bacia de detenção em R\$/m³ e R é a incidência de rocha no solo em porcentagem (%).

Os custos totais de implantação, função do volume do reservatório, devem ser acrescidos dos custos de desapropriação necessárias, os quais, dependem de vários fatores, tais como localização da área no contexto urbano, incidência ou não de inundações frequentes na região, existência ou não de construções etc.

As avaliações realizadas por Tucci e Cruz (2007), indicaram que os custo por m³ têm grande variação entre reservatórios abertos e fechados, dependendo da incidência de rocha, sendo as bacias enterradas cerca de 2,6 a 6,2 vezes mais caras que as abertas.

6 MODELOS DE APOIO A DECISÃO

A identificação das melhores alternativas para solucionar problemas relacionados aos recursos hídricos é frequentemente realizada com o suporte de modelos de otimização ou simulação. Durante a fase de planejamento e desenvolvimento de projetos voltados para a gestão de recursos hídricos, é fundamental realizar uma análise crítica dos custos econômicos reais, dos benefícios e das consequências ambientais das soluções propostas. A ausência dessas análises pode resultar em projetos de qualidade inferior, prejudicando a eficiência na utilização dos recursos econômicos e naturais, que muitas vezes são escassos.

A análise de sistemas, também conhecida como análise sistêmica, é uma ferramenta valiosa para identificar cenários em que um investimento mínimo de recursos e energia pode gerar ganhos máximos em termos de alocação de recursos, desenvolvimento econômico e bemestar ambiental. A análise sistêmica combina arte e ciência ao decompor fenômenos complexos em subsistemas menores e mais facilmente compreensíveis, permitindo uma análise detalhada das interações entre esses subsistemas e o ambiente mais amplo (Mckinney; Savitsky, 2003).

Os modelos para apoiar análises sistêmicas são geralmente divididos em duas categorias principais: modelos de simulação e modelos de otimização.

Os modelos de simulação são utilizados para prever a resposta de um sistema sob uma determinada configuração, fornecendo uma análise detalhada dos custos, benefícios e impactos de uma solução proposta. Esses modelos oferecem informações detalhadas sobre como o sistema responde a uma alternativa específica, permitindo a avaliação das consequências de cada opção (Loucks; Van beek, 2005).

Inicialmente, engenheiros e planejadores ambientais identificam uma série de alternativas com base em projetos de engenharia, considerações econômicas e informações preliminares obtidas durante a calibração e validação de um modelo matemático. Cada alternativa é simulada no modelo matemático, fornecendo uma descrição detalhada de como o sistema ambiental responde à solução proposta. Ao examinar várias alternativas, é possível identificar uma solução viável no contexto dos custos e benefícios quantificáveis. No entanto,

uma limitação significativa da modelagem de simulação é que ela geralmente examina apenas um número finito de alternativas (Willis; Finney, 2004).

Os modelos de otimização, por outro lado, identificam a solução ótima dentro do espaço de possíveis saídas de um projeto ou política de gestão, considerando um objetivo ou restrição específicos. Esses objetivos podem ser associados a custos e benefícios, e são determinados pelas chamadas variáveis de decisão. São frequentemente utilizados para avaliação preliminar ou triagem de alternativas, ajudando a identificar necessidades críticas de dados antes de se proceder com a coleta extensiva de dados e modelagem de simulação. Após a identificação das alternativas preferidas através de um modelo de otimização, cada uma delas pode ser avaliada em maior detalhe com o auxílio de modelos de simulação (Willis; Finney, 2004).

Diferentemente dos modelos de simulação, as soluções dos modelos de otimização baseiam-se em funções-objetivo que devem ser maximizadas ou minimizadas. A função objetivo e as restrições de um modelo de otimização contêm variáveis de decisão desconhecidas e parâmetros conhecidos. As restrições são expressas como equações e desigualdades, e a solução do modelo atribui valores as variáveis de decisão que satisfazem todas as restrições, maximizando ou minimizando a função objetivo (Loucks; Van beek, 2005).

A otimização restrita envolve encontrar os valores ótimos das variáveis de decisão dentro das limitações especificadas. Esta abordagem, inclui tanto técnicas de otimização clássica, como a dos multiplicadores de Lagrange, como as chamadas técnicas numéricas voltadas a classes de problemas específicos como a Programação Linear, programação dinâmica, programação quadrática, programação fracionária e programação geométrica (Loucks; Van beek, 2017).

Um problema de otimização, na sua forma geral, pode ser estabelecido como segue:

Encontrar

$$X = (x_1, x_2, ..., x_n) \tag{7}$$

Tal que minimize (ou maximize) f(X) sujeito às restrições:

$$l_i(X) = 0; i = 1, 2, ..., m$$
 (8)

$$g_j(X) \le 0; j = m + 1, m + 2, ..., p$$
 (9)

Onde:

X é o vetor n-dimensional chamado de vetor de escolha ou vetor de decisão;

f(X) é a função-objetivo;

 $l_i(X)$ são restrições de igualdade;

 $g_i(X)$ são restrições de desigualdade.

Em alguns problemas, o valor de p pode ser zero, o que significa que o problema não tem restrições, sendo um problema de Otimização Irrestrita. E, p=m, trata-se de um problema de otimização condicionada com restrições de igualdade apenas. As variáveis de escolha ou variáveis de decisão são coletivamente representadas por um vetor de escolha, pertencente ao espaço euclidiano n-dimensional \mathbb{R}^n :

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_n \end{pmatrix} \tag{10}$$

Os modelos de otimização vêm sendo utilizados como ferramenta de apoio nas análises de soluções de dispositivos de controle de inundações, sejam para minimizarem os custos e maximizarem benefícios ou sejam para determinar as melhores políticas de operação.

Eckart, Mcphee e Bolisetti (2018) utilizaram o algoritmo de otimização evolutivo multiobjetivo *Borg (Borg MOEA)* que foi acoplado ao modelo de simulação de drenagem urbana SWMM (*Storm Water Management Model*). A ferramenta de otimização-simulação foi usada para avaliar os controles de águas pluviais de Desenvolvimento de Baixo Impacto (LID). As estratégias de implementação da LID foram otimizadas usando o algoritmo de otimização para cinco cenários de implementação diferentes, com o objetivo de minimizar a vazão de pico nas chuvas máximas, reduzir o escoamento total e minimizar o custo. As variáveis de decisão utilizadas foram as dimensões dos dispositivos LID e sua localização na bacia hidrográfica.

Huang *et al.* (2018) estabeleceram um modelo de otimização com a função-objetivo de maximizar a relação benefício/custo (B/C) para a implantação de vários dispositivos LID em

uma bacia altamente urbanizada a fim de mitigar os efeitos das inundações pluviais. As variáveis de decisão correspondem as áreas e as quantidades dos dispositivos LIDs, incluindo pavimento permeável, células de biorretenção, valas e trincheira de infiltração, barris de chuva, telhados verdes e caixas de árvores (dispositivo recém desenvolvido). Foi utilizado o algoritmo de otimização *Simulated Annealing (SA)* também acoplado ao SWMM.

Baek *et al.* (2015) propuseram uma metodologia para otimizar as dimensões para diferentes tipos de LIDs com os objetivos de minimizar o primeiro efeito de descarga (*First Flush Effect - FFE*), que implica em uma maior taxa de descarga de massa de poluente na parte inicial da precipitação, e diminuir o escoamento superficial. As práticas de desenvolvimento de baixo impacto são dimensionadas, então, para controlar o escoamento pluvial urbano e a poluição no ecossistema urbano. O modelo de otimização utilizado foi construído no MATLAB e acoplado a um modelo de simulação hidrológica.

Martínez *et al.* (2018) desenvolveram uma estrutura para avaliar a capacidade de um sistema de drenagem, a fim de compreender as interações de três medidas de reabilitação do sistema: atualização das tubulações (*Upgrading of Pipes – UP*), armazenamento distribuído (*Distributed Storage – DS*) e a combinação de ambas (*UP + DS*). Um modelo de otimização multiobjetivo foi desenvolvido, com os objetivos de minimizar os custos de reabilitação da rede de drenagem e os danos causados pelas inundações. O algoritmo NSGA-II, desenvolvido por Deb *et al.* (2002), foi usado na abordagem proposta para procurar um conjunto de soluções ótimas de Pareto e para quantificar *trade-offs* entre custos de danos causados por inundações, custo de reabilitação da rede de drenagem.

As infraestruturas de Desenvolvimento de Baixo Impacto (LID) quando implementadas no ambiente complexo das áreas urbanas, frequentemente se entrelaçam com um número grande de restrições hidroambientais e socioeconômicas. Portanto, precisam ser cuidadosamente selecionadas, projetadas e alocadas dentro de uma área urbana. Tanto o planejamento quanto a otimização podem levar a abordagens mais sistemáticas e estratégicas para resolver problemas de alocação das práticas LIDs e seus parâmetros (Zhang; Chui, 2018).

Estudos com aplicação de modelos de simulação, como suporte a análise de soluções de controle de inundações em áreas urbanas, são aplicados quase que em todas as pesquisas dessa natureza. Os componentes básicos desses modelos de águas pluviais urbanas são: (i)

modelagem chuva-vazão (geração de escoamento superficial e subsuperficial do excesso de precipitação, perda e acúmulo de poluentes de superfícies impermeáveis) e (ii) modelagem de transporte (encaminhamento do fluxo de água e poluentes através das infraestruturas de águas pluviais, como canais abertos, redes de tubos e armazenamento) (Zoppou, 2001).

Os modelos computacionais de simulação de sistemas de drenagem urbana consistem, de forma simplificada, em representar um sistema de drenagem real em um computador, e que este último, por meio de um algoritmo que lhe são intrínsecos, permite simular o comportamento do escoamento ao longo das diferentes infraestruturas que compõem o sistema. O recurso à utilização deste tipo de modelos, permite, assim, responder a importantes questões no decorrer das diferentes fases do ciclo de vida de um sistema, nomeadamente, na sua fase embrionária (concepção e projeto), na fase de exploração, ou, quando ocorre, na fase de reabilitação. A Tabela 1, apresenta-se a relevância que constitui a modelação para diferentes fases do ciclo de vida de um empreendimento (Cândido, 2013).

Tabela 1 - Modelação nas diferentes fases do ciclo de vida de um empreendimento.

Fase	Utilidade do recurso modelação
Planejamento, projeto e construção	Estudo e comparação de soluções alternativas
Operação e manutenção	Avaliação de desempenho
Reabilitação	Previsão do comportamento para diferentes estratégias de reabilitação

Fonte: Cândido (2013)

A maioria dos modelos hidrológicos disponíveis atualmente está ligada ou fortemente acoplada a um Sistema de Informações Geográfica (SIG). A disseminação das ferramentas SIG certamente foi um dos principais impulsionadores do desenvolvimento de modelos hidrológicos espacialmente distribuídos. Atualmente, quase todos os tipos de modelos se beneficiam do gerenciamento de dados espaciais para obter, por exemplo, valores médios de parâmetros (Salvadore; Bronders; Batelaan, 2015).

Existem atualmente muitos modelos hidrológicos à disposição dos profissionais da área de recursos hídricos. Na Tabela 2 é apresentado alguns deles, e suas respectivas origens, mais aplicados à drenagem urbana.

Tabela 2 - Modelos hidrológicos aplicados à drenagem urbana

Código	Nome	Agência criadora	Ano
MOUSE	Modelling of Urban Sewer	DHI	1985
CHM	Chicago Hydrograph Method	City of Chicago	1959
ILLUDAS	Illinois Urban Drainage Area Simulator	ois Urban Drainage Area Simulator III. Water Survey	
STORM	Storage, treatment, Overflow Runoff Model	Corps of Engineers	1974
TR-55	SCS Technical Release 55	SCS	1975
DR3M	Distributed Routing Rainfall-Runoff Model	USGS	1978
IPH-2	Instituto de Pesquisas Hidráulicas	IPH-UFRGS	1981
SWMM	Storm Water Management Model	EPA	1971
SOBEK	SOBEK Suite: for integral water solutions	Deltares – Holanda	2013
CAWM	Campus Agreste Watershed Model	UFPE	2018

Fonte: Viessman, Lewis, 2002 apud Collodel (2009) – Modificado pelo autor.

6.1 A plataforma de modelagem de otimização - GAMS

O modelo de otimização desenvolvido nesta pesquisa foi implementado utilizando a plataforma de modelagem GAMS (*General Algebraic Modeling System*), uma linguagem de alto nível projetada especificamente para o estabelecimento e a resolução de problemas complexos de programação matemática.

O GAMS é uma poderosa plataforma de software voltada para a formulação, resolução e análise de problemas matemáticos de programação, especialmente nos campos de otimização linear, não-linear, inteira mista, estocástica, entre outros. Desenvolvido inicialmente na década de 1980, o GAMS se tornou uma ferramenta amplamente utilizada em diversas áreas, como economia, engenharia, logística, energia, finanças e ciências ambientais (Rosenthal, 2011).

O GAMS é composto por três componentes principais (Rosenthal, 2023):

1. **Linguagem Algébrica**: Permite a modelagem de sistemas complexos, oferecendo uma ferramenta poderosa para representar as relações e restrições do problema.

- Compilador: Traduz o modelo algébrico para um formato que pode ser processado pelos solvers, garantindo que as instruções sejam interpretadas de maneira precisa e eficiente.
- 3. **Solvers**: São pacotes comerciais especializados que resolvem os problemas de programação linear ou não linear, fornecendo os resultados de forma eficaz.

Sua estrutura e componentes agrega um ambiente de modelagem e um resolvedor. O ambiente de modelagem é onde os modelos matemáticos são formulados usando uma linguagem algébrica de alto nível. Essa linguagem permite que o usuário defina conjuntos, parâmetros, variáveis, equações e restrições de forma intuitiva e com grande flexibilidade. A interface do GAMS é baseada em texto, mas pode ser integrada com outros softwares, como planilhas, bancos de dados e linguagens de programação, para facilitar a entrada e saída de dados. Em sua interface a formulação do modelo é, em geral, estruturada da seguinte forma:

- Conjuntos (Sets): Definem os índices para variáveis e parâmetros, permitindo a modelagem de problemas com múltiplas dimensões.
- Parâmetros (*Parameters*): São os dados de entrada que alimentam o modelo,
 podendo ser constantes ou valores dinâmicos importados de outras fontes.
- Variáveis (Variables): Representam as decisões que o modelo deve otimizar, podendo ser contínuas, discretas ou binárias.
- Equações (*Equations*): Correspondem às restrições e à função objetivo do modelo, sendo definidas de forma algébrica.

Uma vez que o modelo é formulado, o GAMS permite a escolha de diferentes resolvedores otimizados para tipos específicos de problemas. Alguns dos resolvedores mais comuns incluem CPLEX, Gurobi, e CONOPT, cada um especializado em diferentes classes de problemas, como programação linear (PL), programação não-linear (PNL), programação inteira mista (PIM), entre outros.

As aplicações do GAMS são vastas e variadas, abrangendo desde a otimização de cadeias de suprimento até a alocação de recursos hídricos em bacias hidrográficas. Em finanças, o GAMS pode ser usado para otimizar carteiras de investimentos, avaliar riscos e maximizar retornos. No contexto de planejamento energético, o GAMS é uma ferramenta valiosa para

modelar e otimizar o despacho de usinas, o planejamento da expansão de redes elétricas, e a gestão de recursos renováveis e não-renováveis. Sua capacidade de lidar com problemas complexos e de grande escala torna-o indispensável para análises detalhadas e para a tomada de decisões estratégicas (Mckinney; Savitsky, 2006).

A flexibilidade do GAMS torna-o particularmente adequado para uma ampla gama de aplicações, incluindo aquelas formuladas neste estudo.

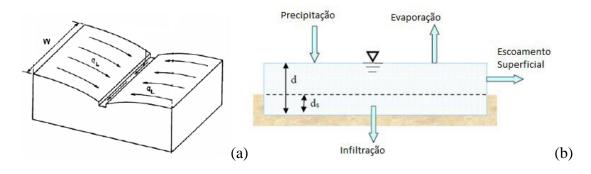
Destaca-se aqui alguns estudos desenvolvidos recentemente com o uso do GAMS, priorizando os estudos relacionados a gestão de recursos hídricos. Zareian (2021) desenvolveu um modelo de alocação otimizada de água utilizando o GAMS, considerando múltiplos cenários de mudanças climáticas com o objetivo de minimizar a escassez hídrica em regiões áridas de uma bacia no Irã. Mounir *et al.* (2019) aplicaram o GAMS para criar um modelo de operação de reservatórios, visando à sustentabilidade hídrica da bacia do rio Yaqui, no noroeste do México. He *et al.* (2019) desenvolveram um modelo no GAMS para a alocação otimizada de recursos hídricos, utilizando a "Teoria do Prospecto" na bacia do rio Wuyur, na China. Zareian e Eslamian (2019) empregaram o GAMS para resolver um modelo de otimização que incorpora estratégias para mitigar a escassez de água frente às mudanças climáticas na bacia do rio Zayandeh-Rud, também no Irã.

Cembrano *et al.* (2004) aplicaram técnicas de controle ótimo para a gestão de sistemas de drenagem urbana, com foco na redução de inundações e descargas poluentes. O modelo de otimização desenvolvido utilizou a biblioteca GAMS para resolver problemas não lineares por meio do método de busca por gradiente reduzido, possibilitando a definição de estratégias de controle eficientes para um sistema de drenagem urbana na cidade de Barcelona.

Sun et al. (2021) desenvolveram um modelo de otimização multiobjetivo para o gerenciamento da distribuição de vazões em um sistema de drenagem urbana, considerando a minimização de custos operacionais e a melhoria da qualidade da água superficial. O problema foi formulado como um modelo de programação não linear de números inteiros mistos e resolvido utilizando o solver SBB no GAMS, permitindo a identificação de estratégias ótimas de operação do sistema.

6.2 Modelo de Simulação hidrológica e hidráulica - PCSWMM e HEC-RAS

O modelo PCSWMM (*Personal Computer Storm Water Management Model*), disponível comercialmente, foi desenvolvido em 1984 pelo CHI (*Computational Hydraulics International*), Canadá. O PCSWMM é capaz de combinar um Sistema de Informações Geográficas (SIG) e o modelo de simulação hidrodinâmico EPA SWMM 5. É possível integrar por completo, todos os mecanismos do tradicional SWMM (*Storm Water Management Model*), em sua versão 5, com um ambiente SIG para modelagem de águas pluviais, águas residuais e bacias hidrográficas em áreas urbanas e rurais (CHI, 2020).

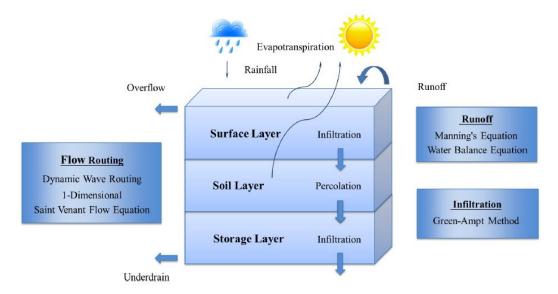

O SWMM foi criado em 1971 nos EUA pela Agência de Proteção Ambiental (*Environmental Protection Agency - EPA*) e desde então foi sendo atualizado continuamente. A versão mais recente é o SWMM 5 - que inclui uma interface gráfica - é amplamente utilizada em todo o mundo para modelagem dinâmica de escoamento para um único evento pluviométrico ou modelagem contínua de quantidade e qualidade para bacias hidrográficas urbanas (ROSSMAN, 2010). O SWMM tem sido utilizado por vários pesquisadores na área de drenagem urbana no Brasil, inclusive com algumas aplicações na cidade do Recife/PE (Silva; Cabral, 2014; Silva Jr *et al.*, 2017).

O modelo avançado PCSWMM possui ferramentas para modelagem de rios, análise de controle em tempo real, gerenciamento de séries temporais, suporte a Modelos Digital de Elevação (MDE), visualização do Google Earth, além de executar as ferramentas hidrológica e hidráulica do SWMM (CHI, 2020). No modelo é possível representar a variabilidade espacial das propriedades das sub-bacias hidrográfica, onde cada uma delas recebe entradas de chuva e gera escoamento com base nos parâmetros atribuídos (área, declividade média, largura superficial de escoamento, taxas de impermeabilização e outros parâmetros).

No PCSWMM também é possível realizar o acoplamento de simulação 1D e 2D, além de modelar as tecnologias de Desenvolvimento de Baixo Impacto (LID) para gerenciamento da quantidade e qualidade das águas pluviais. O módulo de controle LID fornecido pelo PCSWMM pode simular com precisão diferentes tipos de controle LID, como dispositivos de retenção, infiltração e evaporação (James *et al.*, 2010).

O SWMM integra as simulações hidrológica chuva-vazão com a simulação hidráulica da rede de drenagem da bacia hidrográfica. Para tal, a sub-bacia funciona como uma superfície retangular que tem uma inclinação uniforme S e uma largura W que faz convergir todo o escoamento superficial para um único canal de saída. O escoamento superficial é gerado modelando a sub-bacia como um reservatório não- linear (Figura 5) (Rossman; Huber, 2016).

Figura 5 - (a) Representação idealizada da sub-bacia; (b) Modelo de Reservatório Não-Linear para a sub-bacia



Fonte: Rossman; Huber (2016)

Nesta representação a sub-bacia recebe a precipitação e as perdas são representadas pela evaporação e a infiltração. A água acima da superfície da sub-bacia é representada por d. A água acima da profundidade de armazenamento das depressões d_s poderá se tornar escoamento q. O armazenamento das depressões é responsável por acumulações de precipitações iniciais, como os acúmulos nas superfícies e interceptações nos telhados e vegetações, conhecido também como perdas iniciais ou abstração inicial.

A incorporação dos controles LID são representados como combinações de camadas verticais, cujas propriedades são definidas por unidades de área. O SWMM realiza o balanço hídrico, determinando o fluxo de água entre as camadas e o volume armazenado em cada uma delas. Por exemplo, as camadas utilizadas para modelar uma bacia de infiltração e o percurso da água entre essas camadas são ilustrados na Figura 6 (Rossman, 2010).

Figura 6 - Representação de um controle LID no SWMM

Fonte: Chui; Liu; Zhan (2016)

Já a simulação hidráulica é realizada por meio da propagação das vazões pelos rios e canais e se baseia no método da onda cinemática ou dinâmica que resolve as equações de *Saint Venant*. Nesse caso, os dados de entrada são as características físicas da rede de rios e canais e a rugosidade de suas superfícies. As expressões base da conservação da massa e da quantidade de movimento para o fluxo permanente de superfície livre através de um canal ou tubo, conhecida como equações de *Saint Venant*, são apresentadas nas Equações 11 e 12, respectivamente.

Equação da conservação de massa
$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0$$
 (11)

Equação da conservação da quantidade de movimento
$$\frac{\partial Q}{\partial t} + \frac{\partial \left(\frac{Q^2}{A}\right)}{\partial x} + gA.\frac{\partial H}{\partial x} + gAS_f = 0$$
 (12)

Onde, x é a distância (m); t é o tempo (s); A é a área molhada da seção transversal do conduto (m²); Q é a vazão (m³/s); H é a carga hidráulica (m); S_f é a declividade da linha de energia (m/m); e g é a aceleração da gravidade (m/s²).

O modelo hidráulico HEC-RAS (*Hydrologic Engineering Center's River Analysis System*) é uma ferramenta robusta e amplamente utilizada para a simulação de fluxos em rios, canais e outros sistemas hidráulicos. Desenvolvido pelo *U.S. Army Corps of Engineers*, o HEC-RAS é capaz de realizar análises detalhadas de escoamentos unidimensionais (1D) e

bidimensionais (2D), permitindo a avaliação de comportamentos complexos de fluxos em diferentes condições hidráulicas.

Este modelo é especialmente útil para a modelagem de inundações, pois permite a geração de mapas de inundação detalhados, identificando áreas potencialmente afetadas por eventos extremos. Além disso, o HEC-RAS pode ser utilizado para calcular a propagação de cheias, analisar o impacto de estruturas hidráulicas, como barragens e pontes, e avaliar alternativas de projetos para mitigação de inundações.

O HEC-RAS oferece uma interface intuitiva e uma ampla gama de funcionalidades, incluindo a simulação de escoamentos permanentes e não permanentes, o cálculo de perfis longitudinais de água, e a análise de transporte de sedimentos e qualidade da água. Sua integração com Sistemas de Informações Geográficas (SIG) aprimora a entrada e análise de dados espaciais, tornando-o uma ferramenta indispensável para engenheiros hidráulicos e gestores de recursos hídricos.

Desenvolvido para realizar simulações hidráulicas unidimensionais (1D), bidimensionais (2D) ou combinadas (1D e 2D) em redes de canais naturais ou artificiais, o HEC-RAS é capaz de resolver equações complexas de escoamento. Na simulação 2D, o software resolve as equações de *Saint Venant* em sua forma completa (Equação 13), além das equações de Ondas de Difusão (Equações 14 e 15), proporcionando uma análise detalhada e precisa dos processos hidráulicos (Brunner, 2020).

$$\frac{\partial \zeta}{\partial t} + \frac{\partial p}{\partial x} + \frac{\partial q}{\partial y} = 0 \tag{13}$$

$$\frac{\partial p}{\partial t} + \frac{\partial}{\partial x} \left(\frac{p^2}{h} \right) + \frac{\partial}{\partial y} \left(\frac{pq}{h} \right) = -\frac{\eta^2 pg \sqrt{p^2 + q^2}}{h^2} - gh \frac{\partial \zeta}{\partial x} + pf \frac{\partial}{\rho \partial x} (h\tau_{xx}) + \frac{\partial}{\rho \partial y} (h\tau_{xy})$$
(14)

$$\frac{\partial p}{\partial t} + \frac{\partial}{\partial y} \left(\frac{p^2}{h} \right) + \frac{\partial}{\partial x} \left(\frac{pq}{h} \right) = -\frac{\eta^2 q g \sqrt{p^2 + q^2}}{h^2} - g h \frac{\partial \zeta}{\partial y} + p f \frac{\partial}{\rho \partial y} \left(h \tau_{yy} \right) + \frac{\partial}{\rho \partial y} \left(h \tau_{xy} \right)$$
(15)

Onde h é a profundidade da água, p e q são vazões por unidade de comprimento na direção x e y (m^2/s), ζ é a elevação da superfície (m), g é a aceleração da gravidade (m/s^2), η é o coeficiente de Manning, ρ é densidade da água (kg/m^3), τ_{xx} , τ_{yy} e τ_{xy} são as componentes da tensão de cisalhamento efetiva; e f é o Coriolis (s^{-1}).

7 ESTRATÉGIA METODOLÓGICA

O presente estudo está organizado em quatro etapas principais, descritas a seguir:

i. <u>Estabelecimento de uma Estrutura Hidrológica no Modelo de Simulação</u> Hidrodinâmica PCSWMM.

Nesta etapa, busca-se avaliar a resposta hidrológica da bacia hidrográfica em relação a eventos extremos de precipitação, considerando tempos de retorno de 10, 25 e 50 anos. Para isso, realiza-se a caracterização física e hidrológica da bacia utilizando um Modelo Digital de Terreno (MDT), imagens de satélite e informações detalhadas sobre a rede de canais. Esses dados permitem a construção de um modelo robusto no PCSWMM, capaz de simular com precisão os processos hidrológicos da bacia.

ii. <u>Elaboração e Avaliação dos Mapas de Inundação com o Modelo Hidráulico 2D</u>
 HEC-RAS

A partir das vazões geradas na modelagem hidrológica, são elaborados mapas de inundação utilizando o modelo de simulação hidráulica 2D HEC-RAS. Esses mapas permitem a visualização das áreas afetadas e a profundidade média das manchas de inundação. Com base nessas informações, é estimado o impacto financeiro das inundações, calculando-se os custos em termos de Danos Anuais Esperados (DAE), que refletem os prejuízos financeiros projetados.

iii. <u>Desenvolvimento de um Modelo de Otimização Multiobjetivo na Plataforma</u>
GAMS

Nesta etapa, é desenvolvido um modelo de otimização multiobjetivo utilizando a plataforma GAMS (*General Algebraic Modeling System*). O modelo inclui duas funções objetivo: a primeira visa minimizar os custos de implantação de um sistema com múltiplos reservatórios de detenção situados a jusante das subbacias, enquanto a segunda busca minimizar os prejuízos resultantes das inundações. Este modelo de otimização permite identificar soluções ótimas diante dos dois critérios os mínimos custos de investimento com as maiores reduções de danos causados pelas inundações.

iv. Avaliação dos Resultados da Otimização utilizando a Fronteira de Pareto (FP)

Os resultados da otimização segundo os dois critérios são avaliados com base na Fronteira de Pareto, que representa graficamente as soluções ótimas em relação aos dois critérios conflitantes: a minimização dos custos de investimento e a minimização dos Danos Anuais Esperados. As soluções na Fronteira de Pareto são consideradas dominantes, pois representam o ótimo de um critério diante de cada valor do outro critério. Além disso, a Fronteira de Pareto permite quantificar os *trade-offs* entre as diferentes soluções dominantes, facilitando a escolha de alternativas diante dos dois critérios conflitantes.

A Figura 7 ilustra o fluxograma das etapas do estudo e o algoritmo utilizado na otimização multiobjetivo. Nos próximos tópicos, serão detalhadas as estratégias de desenvolvimento de cada uma das etapas descritas acima.

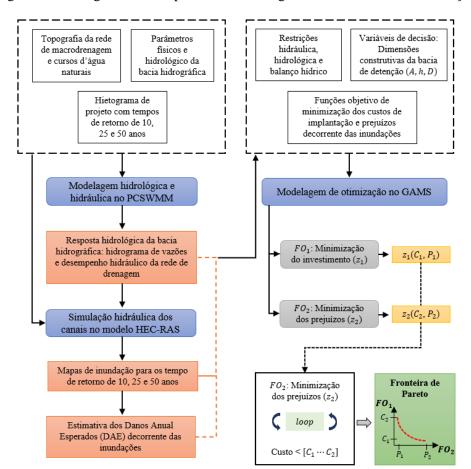


Figura 7 – Fluxograma das etapas do estudo e algoritmo do modelo de otimização

7.1 Elaboração da modelagem hidrológica/hidráulica e avaliação dos danos

Conforme descrito, o modelo PCSWMM foi utilizado para avaliar a resposta hidrológica da bacia hidrográfica frente a eventos de precipitação com diferentes tempos de retorno. Os hidrogramas gerados a partir dessas simulações foram então aplicados como condições de contorno a montante no modelo de simulação hidráulica 2D do HEC-RAS, enquanto a declividade da superfície d'água foi utilizada como condição de contorno a jusante.

O cálculo do volume total escoado, a estimativa das vazões máximas e a geração dos hidrogramas a partir das chuvas de projeto foram realizados utilizando o método SCS *Curve Number* (originalmente desenvolvido pelo *Soil Conservation Service*, atualmente conhecido como *Natural Resources Conservation Service*). Este método é amplamente utilizado para calcular o escoamento superficial gerado por tempestades de evento único.

Para calcular o volume total escoado, o método SCS-CN emprega as seguintes equações:

$$Q = \frac{(P - Ia)^2}{P - Ia - S} \tag{16}$$

$$S = \frac{25400}{CN} - 254\tag{17}$$

Onde, Q_{ef} é o volume total escoado acumulado, ou chuva efetiva acumulada, em mm; P é a precipitação total acumulada, em mm; Ia é a abstração inicial; S é a máxima infiltração potencial, em mm; e CN é o número da curva, parâmetro representativo do uso e ocupação do solo da bacia.

O CN foi estimado com base em tabelas de uso e ocupação do solo conforme Tucci e Silveira (2020), considerando um solo do tipo B e os usos e ocupações do solo da bacia, resultando em um valor fixado em 80.

No entanto, segundo Rossman e Huber (2016), essas estimativas não são totalmente compatíveis com a abordagem do SWMM para a geração de hidrogramas de escoamento. Mesmo assim, o SWMM pode aproximar a estimativa do volume total de escoamento do método *Curve Number* ao seguir os seguintes passos, que foram incorporados nesta pesquisa:

1. Definir a área impermeável da sub-bacia como zero.

- 2. Selecionar o método *Curve Number* para calcular a infiltração, utilizando o mesmo número de curva que seria usado no método SCS.
- 3. Ajustar o armazenamento de depressão da área permeável para ser igual à abstração inicial (*Ia*) usada no método SCS, estimada em 20% da Máxima Infiltração Potencial (*S*).
- 4. Definir o coeficiente de rugosidade da área permeável como 0 para evitar qualquer atraso no fluxo de escoamento.

Essas adaptações permitiram que o SWMM aproximasse os resultados esperados pelo método SCS-CN para a estimativa do volume de escoamento, mesmo com as diferenças metodológicas entre os dois modelos.

A simulação de bacias de detenção no PCSWMM envolve a especificação da forma, volume e dimensões da estrutura, incluindo a elevação de fundo, as áreas associadas a diferentes níveis de armazenamento, representado na sua curva cota-volume. Sendo o foco das modelagens de otimização apontar diretrizes a nível de planejamento, as bacias foram definidas com uma estrutura que possui a sua seção transversal retangular. Para as estruturas de saída foi definido um vertedor emergencial retangular e um orifício circular como tubulação de fundo.

A bacia hidrográfica com a localização das bacias de detenção e os cursos d'água considerados, dentro do PCSWMM, é mostrada na Figura 8. É importante observar que esta figura serve apenas para demonstrar a aplicação dos recursos do modelo; uma descrição detalhada da caracterização física da bacia e sua representação em planta será apresentada em detalhes no item 8.1.

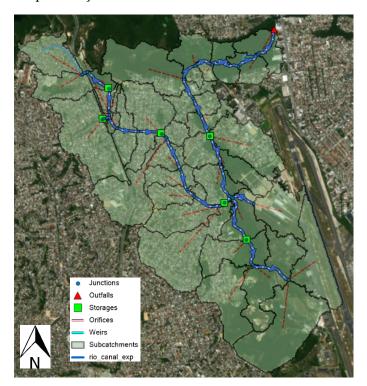


Figura 8 – Representação da bacia e demais estruturas no modelo PCSWMM.

A definição dos elementos hidráulicos do modelo, referentes ao canal de macrodrenagem da bacia do Ibura e ao riacho Moxotó, foi baseada em seções transversais fornecidas pela EMLURB (Autarquia de Manutenção e Limpeza Urbana do Recife), que realizou o levantamento topográfico com seções transversais a cada 100 metros, em média, nos dois cursos d'água. O coeficiente de rugosidade de Manning foi estabelecido em 0,015 para os trechos revestidos em concreto e em 0,020 para os trechos em solo natural, conforme Canholi (2005).

As simulações hidráulicas para a identificação das manchas de inundação no HEC-RAS foram realizadas com base no Modelo Digital do Terreno (MDT), que possui resolução espacial de 1 metro, obtido através do programa Pernambuco Tridimensional, responsável pelo perfilamento a laser de todo o território do Estado (disponível em: http://www.pe3d.pe.gov.br/). No perímetro da simulação, foi definida uma poligonal na calha principal do riacho, com células de 0,50 metro, e outra nas margens, com células de 10 metros, conforme apresentado na Figura 9. O coeficiente de Manning foi estabelecido em 0,06, com base em outros modelos previamente calibrados para áreas urbanas na cidade do Recife (Silva, 2019). A estrutura geométrica do modelo também considerou a presença do bueiro existente no cruzamento do riacho Moxotó com a Avenida Dois Rios.

Figura 9 – Modelo Digital do Terreno (MDT) utilizado com o perímetro de simulação no curso principal e nas margens

A escolha dos modelos computacionais PCSWMM e HEC-RAS se deu por sua capacidade de fornecer soluções numéricas robustas e modelar com precisão sistemas de drenagem urbana, incluindo bacias de detenção. Esses modelos permitem a representação detalhada das variações espaciais e temporais das profundidades de inundação ao longo do trecho estudado.

Além das simulações para diferentes cenários de precipitações extremas, foram realizadas modelagens adicionais que consideraram diversas condições de armazenamento a jusante das sub-bacias, que compõem o sistema de multi-reservatórios distribuídos na área de estudo. Essas simulações tiveram como objetivo estabelecer uma relação matemática entre diferentes níveis de armazenamento na bacia, proporcionados pelos reservatórios de detenção, e os prejuízos residuais causados pelas inundações.

Os prejuízos decorrentes das inundações foram estimados utilizando o método do prejuízo agregado, conforme a Equação 18, a qual assume um crescimento linear dos danos econômicos à medida que aumenta o nível médio da inundação (Canholi, 2005).

$$C_D = k_D. h. M. U. A \tag{18}$$

Onde, C_D é o dano total provocado pela inundação; K_D é um índice de dano de enchente, em unidades monetárias por unidade de profundidade de inundação, estimado em 0,052 (Tucci, 2020); h é a profundidade média de inundação (m); M é o valor de mercado das edificações por

unidade de área ($\$/m^2$); U é a proporção de ocupação, ou seja, proporção de inundação em áreas desenvolvida pela área total inundada; e A é a área total inundada.

7.2 Construção do modelo de otimização no GAMS

O modelo de otimização desenvolvido nesta pesquisa foi projetado para identificar soluções ótimas para as variáveis de decisão relacionadas às características geométricas, como profundidade, área e diâmetro de saída das bacias de detenção para controle de cheias. Esse modelo aborda um problema de programação não-linear, que envolve duas funções objetivo conflitantes. A primeira função objetivo (FO_1) visa minimizar os custos de implantação de um sistema com múltiplos reservatórios distribuídos em uma bacia urbana, enquanto a segunda função objetivo (FO_2) busca minimizar a estimativa de prejuízos resultantes das inundações.

As formulações matemáticas das funções objetivo de cada cenário j e suas respectivas restrições são apresentadas a seguir:

$$z_{1} = \sum_{i=1}^{n} \left(C_{unit_{i}} V_{arm_{i,j}} + C_{desp} A_{i,j} \right), para \ cada \ j$$
 (19)

$$z_{2} = \sum_{j=1}^{n} \left(-a_{j} \ln \left(V_{arm_{i,j}} \right) + b_{j} \right), para \ cada \ j$$
 (20)

Sujeito a:

$$V_{arm_{i,j}} = A_{i,j} h_{i,j} \tag{21}$$

$$V_{arm_{i,j}} > \left(Q_{af_{i,j}} - Q_{ef_{i,j}}\right)t_i \tag{22}$$

$$Q_{ef_{i,j}} = C_o \left(\frac{\pi D_{i,j}^2}{4} \right) \sqrt{2gh_{i,j}}$$
 (23)

$$h_{i,j} > 3D_{i,j} \tag{24}$$

$$Q_{ef_{i,j}} \le Q_{rest_i} \tag{25}$$

Bacia de detenção aberta:
$$C_{unit_i} = 35,68 \cdot (1 + R_i)^{0,254}$$
 (26)

Onde,

- i varia de 1 a n, representando o número de locais com potencial para a implantação de um reservatório de detenção;
- j corresponde ao tempo de retorno avaliado ($j = 10, 25 e 50 \ anos$);
- C_{unit_i} é o custo unitário da bacia de detenção (R\$/m³), função da incidência de rocha no solo (R_i) no local i, e se a bacia é aberta ou é fechada com laje em concreto armado, conforme as Equações 26 e 27 (Tucci; Cruz, 2007);
- $V_{arm_{i,j}}$ é o volume de armazenamento do reservatório de detenção (m³) no local i para o tempo de retorno j;
- C_{desp} é o custo unitário de desapropriação estimado para a região (R\$/m²);
- $A_{i,j}$, $h_{i,j}$ e $D_{i,j}$ são a área (m²), a profundidade (m) e o diâmetro (m) da estrutura de saída do reservatório no local i para o tempo de retorno j;
- $Q_{af_{i,j}}$ e $Q_{ef_{i,j}}$ são as vazões máximas afluente e efluente (m³/s) do reservatório no local i para o tempo de retorno j;
- a_j e b_j são coeficientes da equação do prejuízo econômico decorrente da inundação com período de retorno j;
- t_i é o tempo de concentração da bacia de contribuição do local i;
- Q_{rest_i} é a vazão restrição (m³/s), definida como a vazão correspondente às condições de pré-urbanização no local i.
- C_o é o coeficiente de descarga da vazão pelo orifício de saída do reservatório, estabelecido em 0,65 (Netto; Fernandez, 2015).

As variáveis de decisão do modelo de otimização, determinadas separadamente para cada tempo de retorno j, são o volume de armazenamento das bacias de detenção $(V_{arm_1} \dots V_{arm_n})$, que depende da área em planta $(A_1 \dots A_n)$ e da profundidade $(H_1 \dots H_n)$, conforme expresso na Equação 21. A vazão efluente máxima $(Q_{ef_1} \dots Q_{ef_n})$ é função do diâmetro $(D_1 \dots D_n)$ do conduto de saída e de sua carga hidráulica (H), conforme as Equações 23 e 24, que representa a equação do orifício sob carga.

A Equação 22 expressa o Método do Hidrograma da Fórmula Racional, apresentado por Canholi (2005), para o dimensionamento de bacias de detenção, estabelecendo o volume mínimo necessário para reservação com base nas vazões máximas afluente e efluente, e restrita à condição de pré-urbanização da bacia (Equação 25). A vazão de restrição foi estimada a partir de simulações hidrológicas, considerando uma condição de uso e ocupação do solo sem o impacto das construções.

O modelo de otimização descrito foi estruturado na plataforma de programação GAMS (General Algebraic Modeling System). A plataforma possui três componentes principais: (i) Linguagem Algébrica, que permite a modelagem de sistemas complexos; (ii) Compilador, que traduz as informações para o formato aceito pelo solver; e (ii) Solvers, selecionável pelo usuário, resolvem as equações e disponibilizam os resultados (Rosenthal, 2023). Esse estudo utilizou o solver CONOPT, desenvolvido pela ARKI Consulting and Development, que é um algoritmo baseado em GRG (Gradiente Reduzido Generalizado) projetado especificamente para grandes problemas de programação não linear (NLP).

Os modelos de otimização desenvolvidos no GAMS tradicionalmente seguem o conceito de otimização monoobjetiva e estática. No entanto, é possível expandir essa estrutura para criar modelos multiobjetivo e dinâmicos, incorporando funções-objetivo adicionais como restrições e definindo variáveis de decisão para diferentes períodos de retorno. Nesta tese, o GAMS foi utilizado para explorar soluções ótimas que consideram múltiplos critérios de otimização, adotando uma abordagem multiobjetivo, conforme descrito na próxima seção.

7.3 Otimização multiobjetivo e desenvolvimento da Fronteira de Pareto

É esperado que haja um *trade-off* entre os objetivos de minimizar os custos de implantação de um sistema com múltiplos reservatórios de detenção e, simultaneamente, minimizar os prejuízos decorrentes das inundações. À medida que os custos do sistema de detenção aumentam (z₁), os prejuízos tendem a diminuir (z₂), e o inverso também ocorre. Ambos os objetivos dependem dos valores das mesmas variáveis de decisão, que neste modelo

estão associadas a decisões estruturais de engenharia, como a área ocupada pelos reservatórios de detenção, sua profundidade e o diâmetro do conduto de saída.

A relação entre as duas funções objetivos pode ser expressa em um plano cartesiano $(z_1 \times z_2)$, formando um gráfico conhecido como Fronteira de Pareto (FP), o qual se constituem dos chamados ótimos de Pareto. Os ótimos de Pareto são soluções dominantes, ou não dominadas, em que um ponto \boldsymbol{x}^* no espaço de projeto viável S é chamado de ótimo de Pareto se não houver outro ponto \boldsymbol{x} que melhore uma função objetivo sem prejudicar a outra. Mais precisamente isso pode ser definido da seguinte forma: Um ponto \boldsymbol{x}^* no espaço de projeto viável S é ótimo de Pareto se e somente se não existir outro ponto \boldsymbol{x} no conjunto S tal que $f(\boldsymbol{x}) \leq f(\boldsymbol{x}^*)$ com pelo menos um $f_i(\boldsymbol{x}) < f_i(\boldsymbol{x}^*)$ (Arora, 2012). Nesse caso, i representa cada uma das funções objetivo envolvidas no problema, que podem ter valores e unidades diferentes (por exemplo, custo e dano ambiental). Essa definição aplica-se ao caso em que se deseja minimizar todas as funções objetivo, ou seja, o ponto \boldsymbol{x}^* é ótimo de Pareto quando não é possível melhorar o valor de uma função objetivo sem piorar outra.

Para obter tais pontos e por conseguinte, a fronteira de Pareto, otimiza-se cada uma das funções objetivo (z1 e z2) individualmente, e apenas calcula-se o valor obtido pela outra, representativa do objetivo conflitante. Este último valor então considera-se como sendo um limite inferior, e são obtidos vários resultados aumentando-se tal limite e acompanhando-se então os novos valores da FO otimizada. As soluções assim obtidas formarão um conjunto de soluções dominantes, de acordo com os dois critérios, pois serão soluções ótimas. Tal resolução pode ser representada matematicamente como:

$$Max - FO1 (28)$$

Sujeito a
$$FO2 \ge FO2^* + \emptyset$$
 (29)

Aqui, enquanto FO1 está sendo otimizada, impõe-se uma restrição à segunda função objetivo FO2. Onde além dessa restrição todas as demais do modelo, já descritas, são introduzidas. O valor $FO2^*$ é o resultado da otimização de FO2 isoladamente (quando o foco está em minimizar exclusivamente FO2). O termo \in representa um pequeno incremento, o que permite obter soluções diferentes ao ajustar a prioridade dada a FO2.

Na prática, a FP foi obtida no GAMS através de uma Programação Não-linear paramétrica, onde foram realizados os seguintes procedimentos:

- i. Minimiza-se um dos objetivos sem restringir o outro, apenas se calcula, ou seja, minimiza-se z_1 (custo de implantação) e verifica-se o valor dos prejuízos (P). Em seguida, minimiza-se z_2 (prejuízo decorrente das inundações) e verifica-se o valor dos custos de implantação (C), dessa forma obtêm-se os seguintes pontos:
 - a. Com a minimização de z_1 obtêm-se C_1 (custo de implantação minimizado) e P_1 (prejuízo verificado)
 - b. Com a minimização de z_2 obtém-se P_2 (prejuízo minimizado) e C_2 (custo de implantação verificado)
- ii. Escolhe-se uma das FO (FO1) usando a outra (FO2) como restrição entre os limites encontrados (FO2*). Por exemplo, minimiza-se z_2 (prejuízos) restringindo-se os valores de z1 (custos de implantação) entre C_1 e C_2 . A outra opção seria minimizar z1 (custos) e usar restrições para os valores de z2 entre P1 e P2.

Dessa forma, será obtida a FP constituída por pontos ótimos de Pareto, com as seguintes características:

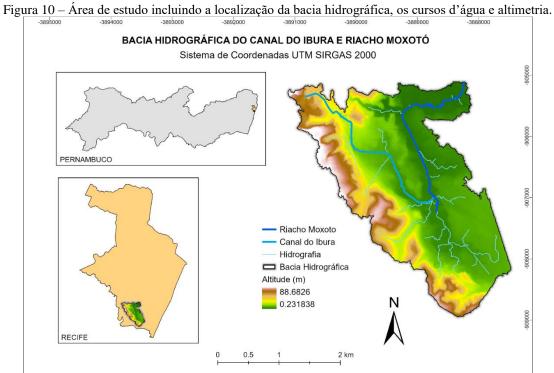
- Cada ponto (z₁, z₂) obtido é uma solução dominante dado que fixado um z,
 o outro será o melhor possível.
- Diferentes soluções ótimas de Pareto representam diferentes trade off entre os dois objetivos se um objetivo for melhorado através da mudança para outra solução de Pareto, o outro objetivo piora. Assim, um deslocamento entre dois pontos sobre essa curva, implicará na melhora de um dos FO e a piora do outro. Isto implica que haverá trade-off entre as duas soluções ótimas, ou seja, entre dois pontos localizados na FP. Esses trades-offs poderão assim ser mensurados.
- Uma solução dominada será inferior ao limite da curva, pois nesses pontos será possível melhorar um dos objetivos sem piorar o outro, ou seja, melhorar ambos.
- Acima da linha de Pareto as soluções são inviáveis, ou seja, não se consegue melhorar um objetivo, dado um outro, além do ótimo.

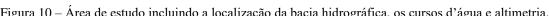
A metodologia apresentada foi aplicada a uma bacia hidrográfica urbana na cidade do Recife/PE como estudo de caso. A seguir, são detalhadas a caracterização física e hidrológica da bacia, bem como os mapas de inundação gerados.

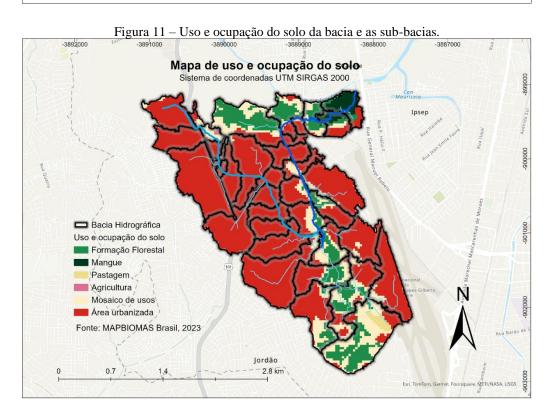
8 RESULTADOS E DISCUSSÃO

Os resultados desta pesquisa estão organizados em três blocos principais de análise e discussão: a modelagem hidrológica e hidráulica da bacia, incluindo o mapeamento das áreas suscetíveis a inundações; a estimativa dos danos econômicos; e a modelagem de otimização multiobjetivo, juntamente com as análises de *trade-offs* associadas com a Fronteira de Pareto.

8.1 Caracterização física e hidrológica de uma bacia hidrográfica e estimativa dos danos decorrente das inundações


O presente estudo foi conduzido em uma bacia hidrográfica urbana localizada na cidade do Recife, Estado de Pernambuco, Brasil, abrangendo a bacia do canal do Ibura e do riacho Moxotó. A área total da bacia é de aproximadamente 6,86 km², constituindo uma das sub-bacias do rio Tejipió, um dos principais rios da cidade do Recife.

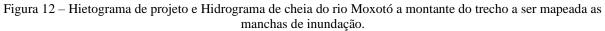

O canal do Ibura, com uma extensão total de 3,27 km, tem a maior parte de sua calha revestida em concreto. Por outro lado, o riacho Moxotó, que possui uma extensão de cerca de 3,71 km, não é revestido. O riacho Moxotó recebe as águas do canal do Ibura e deságua no rio Tejipió. Ao longo desses cursos d'água, é possível observar, em alguns trechos, um cenário de ocupação irregular, com margens ocupadas por construções ou vias marginais.

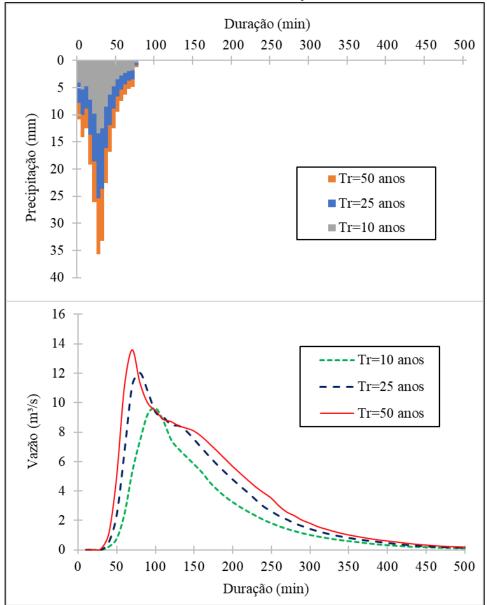

A bacia hidrográfica apresenta uma amplitude altimétrica de aproximadamente 88,47 metros. As regiões a montante possuem declividades acentuadas, o que contribui para o aumento das velocidades de escoamento na área, onde cerca de 69,17% da superfície é ocupada por construções. O tempo de concentração da bacia, calculado pela equação de Kirpich, é estimado em aproximadamente 1 hora e 36 minutos.

Na Figura 10 ilustra-se o mapa da bacia, destacando sua localização geográfica, os cursos d'água e a altimetria. A delimitação da bacia foi realizada utilizando técnicas de geoprocessamento em ambiente SIG, resultando na identificação de sub-bacias com exutórios

nos principais cursos d'água. Figura 11 apresenta os usos e ocupações do solo, bem como a divisão das sub-bacias.

Na parte mais baixa da bacia, o riacho Moxotó atravessa a Avenida Dois Rios, uma via importante da cidade, que frequentemente sofre com inundações. Essas enchentes causam prejuízos significativos, transtornos à população local e inviabilizam o tráfego na avenida. Os danos econômicos são agravados pela vulnerabilidade social da população residente na área.


Como parte da metodologia proposta neste estudo, realizou-se o mapeamento das manchas de inundação, considerando precipitações com tempos de retorno de 10, 25 e 50 anos. A montante da área mapeada, as vazões máximas estimadas foram de 9,62 m³/s, 12,04 m³/s e 13,60 m³/s para os respectivos tempos de retorno. A precipitação de projeto foi calculada utilizando a equação da chuva proposta no Manual de Drenagem e Manejo das Águas Pluviais do Recife (Alencar *et al.*, 2016), apresentada na Equação 30. A duração da precipitação foi definida como equivalente ao tempo de concentração naquele ponto da bacia, sendo sua distribuição temporal dividida em blocos de chuva, conforme a metodologia de Huff (1967), utilizando o padrão de distribuição do 2º quartil. As precipitações totais para os tempos de retorno de 10, 25 e 50 anos foram de 68,64 mm, 80,00 mm e 89,82 mm, respectivamente.


$$i = \frac{611,3425 \times Tr^{0,1671}}{(t+7,3069)^{0,6348}}$$
 (30)

Onde, i é a intensidade da precipitação, em mm/h; Tr é o tempo de retorno, em anos; e t é a duração da chuva de projeto, em minutos.

Na Figura 12 observa-se os hietogramas de projeto e os hidrogramas de cheia gerados a partir das simulações. Com base nessas vazões, elaborou-se os mapas de inundação, mostrados na Figura 13. Esta figura exibe três mapas de inundação, cada um correspondente a cenários com tempos de retorno de 10, 25 e 50 anos. Os mapas destacam as áreas suscetíveis a inundações na região a jusante da bacia hidrográfica, com a profundidade das inundações indicada pela escala de cores.

Embora as áreas afetadas sejam aproximadamente semelhantes nos três cenários, observa-se uma diferença notória nas profundidades máximas alcançadas. No cenário de 50 anos de tempo de retorno, a profundidade máxima da inundação atinge 1,914 metros, indicando maior severidade em comparação com os cenários de menor tempo de retorno.

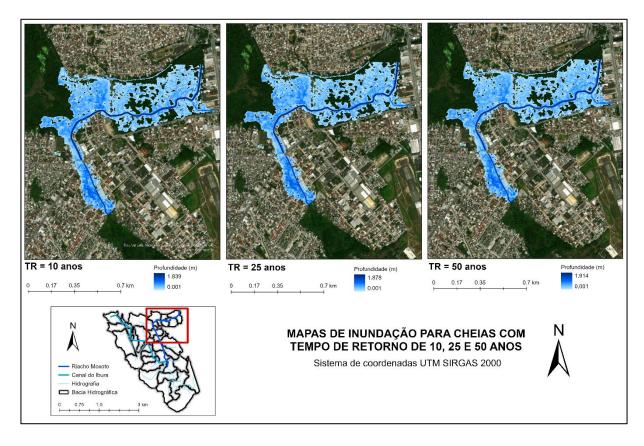
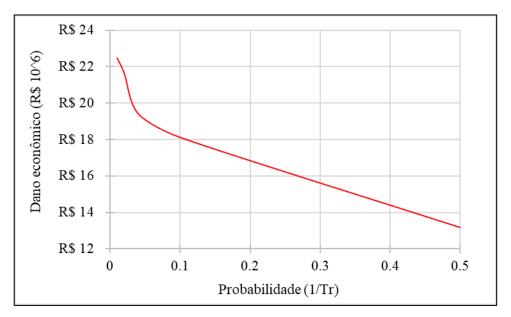



Figura 13 – Mapas de inundação para cheia com tempo de retorno de 10, 25 e 50 anos.

A relação entre os danos econômicos provenientes das inundações, conforme o método descrito no item 7, e as probabilidades de ocorrência de cheia na região é apresentada graficamente na Figura 14. O eixo vertical mostra os danos econômicos estimados, expressos em milhões de reais (R\$ 10⁶). Observa-se que os danos econômicos variam de aproximadamente R\$ 12 milhões a R\$ 22 milhões. O eixo horizontal exibe a probabilidade de ocorrência de uma cheia, representada como o inverso do tempo de retorno (1/Tr).

Figura 14 – Relação entre as probabilidades de ocorrência das cheias e os danos econômicos provenientes das inundações.

O gráfico (Figura 14) revela uma tendência decrescente nos danos econômicos à medida que a probabilidade de ocorrência (1/Tr) aumenta. Isso sugere que os eventos de inundação menos frequentes (com menor probabilidade) resultam em danos econômicos mais elevados, o que é esperado, já que cheias raras tendem a ser mais intensas e, portanto, mais destrutivas.

Com base em limitações geográficas, incluindo espaço disponível e características topográficas, foram sugeridos seis locais para a implantação de reservatórios de detenção. A função desses reservatórios é amortecer as vazões afluentes das sub-bacias em direção ao canal do Ibura e ao riacho Moxotó, contribuindo para a mitigação das inundações nas áreas mais críticas a jusante da bacia.

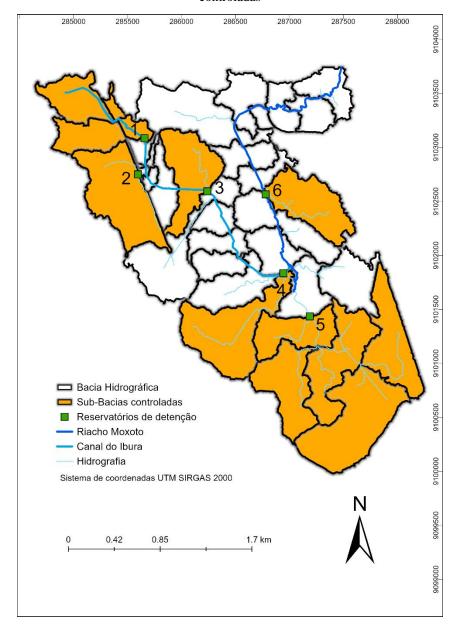
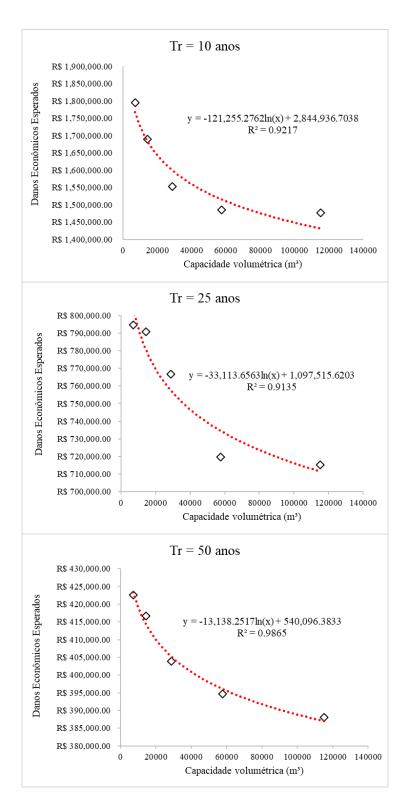

Na Tabela 3 tem-se as vazões máximas que devem ser amortecidas pelos reservatórios de detenção para tempos de retorno de 10, 25 e 50 anos, assim como as vazões de préurbanização das sub-bacias que serão controladas pelos reservatórios. Essas vazões foram obtidas por simulações no PCSWMM considerando um cenário sem as edificações atualmente existentes na bacia. Já na Figura 15 ilustra-se a localização proposta desses reservatórios, bem como as sub-bacias que serão controladas por cada um deles.

Tabela 3 – Vazão máximas afluentes aos reservatórios de detenção.

	Vazões máximas (m³/s)			
Reservatórios	Tr = 10 anos	anos $Tr = 25$ anos	Tr = 50 anos	Pré-
	11 – 10 anos		11 = 50 anos	urbanização
1	1,63	2,49	3,36	0,11
2	1,04	1,67	2,28	0,06
3	2,10	3,15	4,29	0,30

4	4,27	6,91	9,15	0,53
5	1,91	3,69	5,67	0,10
6	1,75	3,44	5,28	0,49

Figura 15 – Bacia hidrográfica com a localização proposta para os reservatórios de detenção e as sub-bacias controladas



Após a identificação dos locais mais adequados para a implantação das bacias de detenção, foram realizadas simulações, onde as capacidades volumétricas dessas bacias foram ajustadas de diferentes maneiras. Em cada simulação, foram avaliados os Danos Econômicos Esperados residuais resultantes das inundações no ponto crítico estudado. O Dano Econômico

Esperado foi calculado multiplicando-se os prejuízos estimados (conforme a Equação 1) pela probabilidade de ocorrência do evento chuvoso (1/Tr).

O objetivo dessas simulações foi estabelecer a relação entre os danos econômicos causados pelas inundações e as variáveis de decisão do modelo de otimização, especificamente a capacidade volumétrica dos reservatórios de detenção. As relações identificadas foram utilizadas para formular as equações de danos no modelo de otimização, e os resultados estão apresentados de forma gráfica e analítica na Figura 16.

Figura 16 – Relação entre a capacidade volumétrica dos reservatórios de detenção e os Danos Econômicos Esperados residuais.

De imediato, observa-se que os altos valores do coeficiente de determinação R^2 nos três cenários apresentados na Figura 16 indicam que o modelo logarítmico se ajusta bem aos dados observados. Isso sugere que a relação entre a capacidade volumétrica dos reservatórios e os danos econômicos é representada de forma adequada pelas equações indicadas.

Análises numéricas das relações entre a capacidade volumétrica dos reservatórios de detenção, conforme mostrado na Figura 16, revelam observações importantes. Por exemplo, no cenário com tempo de retorno de 10 anos, um aumento na capacidade volumétrica de 20.000 m³ para 60.000 m³ resulta em uma redução de R\$ 250.000,00 nos danos econômicos, representando uma queda significativa de 14,3%. No cenário com tempo de retorno de 25 anos, o mesmo aumento de capacidade resulta em uma redução de R\$ 35.000,00 nos danos, equivalente a uma diminuição de 4,5%. No caso de chuvas com tempo de retorno de 50 anos, o aumento da capacidade de 20.000 m³ para 60.000 m³ gera uma redução de R\$ 15.000,00 nos danos, ou seja, uma queda de 3,6%.

Contudo, ao dobrar a capacidade de 60.000 m³ para 120.000 m³ no cenário de 10 anos, a redução adicional nos danos é de R\$ 100.000,00, ou 6,7%, indicando uma redução de danos proporcional menor nessa faixa de aumentos maiores de capacidade de detenção.

Por fim, observa-se que os maiores ganhos em termos de redução de danos são obtidos nas faixas de aumento na capacidade inicial do reservatório. Após atingir uma capacidade volumétrica de cerca de 60.000 m³, a taxa de redução dos danos se estabiliza em todos os tempos de retorno analisados. Os números sugerem que investimentos em aumentos de capacidade acima de 60.000 m³ podem ser menos eficientes, pois a redução adicional nos danos torna-se menor. Portanto, é crucial reconhecer que existe um ponto em que as ampliações na infraestrutura começam a ter menores impactos na redução dos danos.

8.2 Minimização dos custos e dos Danos Anual Esperado

Aqui, serão apresentados os resultados das variáveis de decisão para cada uma das funções objetivos de forma isolada, ou seja, os valores das variáveis obtidos a partir da minimização dos custos e, posteriormente, a partir da minimização dos prejuízos.

Considerando apenas a minimização dos custos, na Tabela 4 apresentam-se os resultados das variáveis de decisão (H, A e D), além do volume total de armazenamento e dos custos de implantação para cada reservatório, em cada um dos cenários de precipitação (10, 25 e 50 anos).

Tabela 4 – Resultado das variáveis de decisão do modelo de otimização a partir da minimização dos custos

Tempo de retorno	Reservatório	H(m)	A(m²)	D(m)	Volume (m³)	Cı	usto (R\$)
	1	4,68	249,8	0,150	1168,6	R\$	54.185,00
	2	1,39	369,1	0,150	513,9	R\$	36.790,24
10 anos	3	10,00	109,4	0,205	1093,7	R\$	44.492,37
10 anos	4	10,00	166,2	0,272	1662,4	R\$	67.624,61
	5	3,87	1006,6	0,150	3892,3	R\$	189.210,00
	6	8,33	100,0	0,274	833,3	R\$	34.733,53
	1	4,68	391,1	0,150	1829,8	R\$	84.842,30
	2	1,39	606,4	0,150	844,2	R\$	60.441,11
25 anos	3	10,00	173,2	0,205	1731,7	R\$	70.446,25
23 anos	4	10,00	283,6	0,272	2835,8	R\$	115.360,00
	5	3,87	1996,4	0,150	7720,2	R\$	375.280,00
	6	10,00	195,1	0,262	1951,1	R\$	79.369,57
	1	4,68	534,0	0,150	2498,7	R\$	115.860,00
	2	1,39	836,2	0,150	1164,0	R\$	83.341,16
50 amas	3	10,00	242,4	0,205	2424,4	R\$	98.624,75
50 anos	4	10,00	383,1	0,272	3831,4	R\$	155.860,00
	5	3,87	3097,5	0,150	11978,1	R\$	582.250,00
	6	10,00	316,8	0,262	3168,0	R\$	128.870,00

Reservatórios que necessitam armazenar volumes maiores, como o Reservatório 5, apresentam os maiores custos em todos os tempos de retorno. No caso de um tempo de retorno de 50 anos, o Reservatório 5 possui o maior volume de armazenamento (11.978,10 m³) e o maior custo associado (R\$ 582.250,00). Esse comportamento se mantém consistente em todos os cenários analisados.

Os Reservatórios 1 e 2, por sua vez, possuem volumes relativamente menores, resultando em custos mais baixos. No entanto, observa-se que os custos aumentam significativamente com a elevação do tempo de retorno, devido à necessidade de maiores áreas para acomodar o aumento do volume de armazenamento.

Os Reservatórios 3 e 4 mantêm uma altura constante de 10 metros em todos os tempos de retorno, o que sugere uma estratégia de design que prioriza a maximização da altura para minimizar a área ocupada. Apesar dessa estratégia, ainda é necessário lidar com volumes substanciais de armazenamento.

Quanto ao Reservatório 6, ele apresenta uma combinação de altura e área que varia significativamente entre os tempos de retorno, sugerindo uma estratégia otimizada para minimizar custos, ao mesmo tempo em que atende às restrições hidráulicas.

A Tabela 5 mostra os resultados da função objetivo (minimização do custo total) para cada cenário de tempo de recorrência e os prejuízos residuais observados.

Tabela 5 – Resultado dos custos totais minimizados e os Danos Anual Esperado aferidos

Tempo de retorno	Investimento total ($\times 10^6$)	Dano Anual Esperado (× 10 ⁶)
10	R\$ 0,43	R\$ 1,74
25	R\$ 0,79	R\$ 0,78
50	R\$ 1,16	R\$ 0,41

O cenário que considera chuvas associadas a um tempo de retorno de 10 anos apresenta o menor custo de implantação, aproximadamente R\$ 427 mil. No entanto, esse cenário resulta em um dano anual esperado de cerca de R\$ 1,7 milhão. Isso sugere que, com um investimento inicial mais baixo, a infraestrutura é menos capaz de mitigar os danos causados por eventos de maior magnitude, refletindo uma vulnerabilidade maior a eventos extremos.

Ao aumentar o investimento para aproximadamente R\$ 785 mil, no cenário associado a chuvas com tempo de retorno de 25 anos, o dano anual esperado é significativamente reduzido em relação ao cenário de 10 anos, com uma diminuição de aproximadamente 54%. Este ponto no gráfico representa um equilíbrio mais favorável entre o custo e a eficiência na mitigação de danos, o que pode indicar como uma opção mais eficiente em termos de custo-benefício.

Por outro lado, o cenário com tempo de retorno de 50 anos, embora apresente o maior custo de implantação, cerca de R\$ 1,2 milhão, também resulta no menor dano anual esperado, em torno de R\$ 407 mil. Isso indica que a infraestrutura projetada para esse cenário é substancialmente mais robusta, sendo capaz de mitigar de forma mais eficaz os danos causados por eventos mais raros e intensos. Este cenário reflete uma estratégia de investimento que prioriza a segurança e a resiliência a longo prazo, minimizando os danos potenciais mesmo em eventos de maior magnitude.

Considerando agora apenas a minimização dos danos, a Tabela 4 apresenta também os resultados das variáveis de decisão (H, A e D), além do volume total de armazenamento e dos custos de implantação para cada reservatório, em cada um dos cenários de precipitação (10, 25

e 50 anos). A Tabela mostra os resultados da função objetivo (Dano Total) para cada recorrência e os investimentos que teriam que ser empregados.

Tabela 6 – Resultado das variáveis de decisão do modelo de otimização a partir da minimização dos prejuízos

Tempo de retorno	Reservatório	H(m)	A(m²)	D(m)	Volume(m ³)		Custo (R\$)
10 anos	1	4,68	88.346,80	0,150	413.380,00	R\$	19.167.000,00
	2	1,39	90.721,20	0,150	126.290,00	R\$	9.042.200,00
	3	10,00	61.645,40	0,150	616.450,00	R\$	25.077.000,00
	4	10,00	135.260,00	0,272	1.352.600,00	R\$	55.023.000,00
	5	3,87	351.690,00	0,150	1.360.000,00	R\$	66.108.000,00
	6	10,00	112.400,00	0,150	1.124.000,00	R\$	45.726.000,00
25 anos	1	4,68	88.346,80	0,150	413.380,00	R\$	19.167.000,00
	2	1,39	90.721,20	0,150	126.290,00	R\$	9.042.200,00
	3	10,00	61.645,40	0,205	616.450,00	R\$	25.077.000,00
	4	10,00	135.260,00	0,272	1.352.600,00	R\$	55.023.000,00
	5	3,87	351.690,00	0,150	1.360.000,00	R\$	66.108.000,00
	6	10,00	112.400,00	0,262	1.124.000,00	R\$	45.726.000,00
50 anos	1	4,68	88.346,80	0,150	413.380,00	R\$	19.167.000,00
	2	1,39	90.721,20	0,150	126.290,00	R\$	9.042.200,00
	3	10,00	61.645,40	0,150	616.450,00	R\$	25.077.000,00
	4	10,00	135.260,00	0,204	1.352.600,00	R\$	55.023.000,00
	5	3,87	351.690,00	0,150	1.360.000,00	R\$	66.108.000,00
	6	10,00	112.400,00	0,150	1.124.000,00	R\$	45.726.000,00

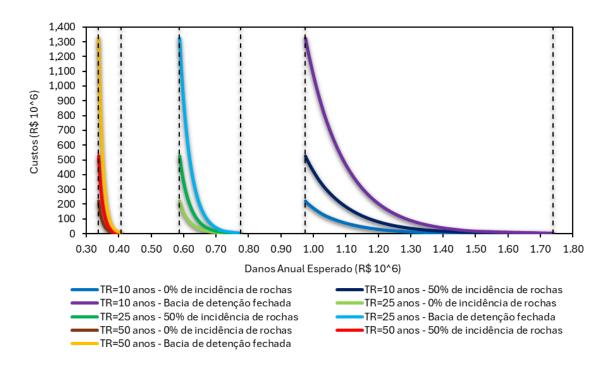
Os custos associados à minimização dos prejuízos são significativamente mais altos em comparação com os custos da solução que minimiza o custo de construção. Por exemplo, o custo do Reservatório 1 para um tempo de retorno de 10 anos é de R\$ 19.167.000,00 na minimização dos prejuízos, contra aproximadamente R\$ 54.185,00 na minimização dos custos.

O volume armazenado nos reservatórios é drasticamente maior na solução de minimização dos prejuízos. Isso sugere que o modelo está alocando um grande volume de armazenamento para reduzir os potenciais danos causados por inundações, especialmente em eventos com tempo de retorno maiores (25 e 50 anos). Por exemplo, o Reservatório 5 armazena 1.360.000 m³ de água em comparação com 3.892,3 m³ na minimização dos custos.

A altura *H* da água é mantida em níveis elevados para alguns reservatórios (ex. Reservatórios 3, 4 e 6 com 10 metros), maximizando a capacidade de armazenamento vertical para evitar grandes áreas e, consequentemente, minimizar o prejuízo potencial. O diâmetro *D*

do conduto de saída é geralmente mantido em 0,150 m, sugerindo que o foco está em maximizar a área e a altura ao invés de alterar o diâmetro para controlar a vazão. Isso pode ser uma tentativa de controlar o fluxo de saída para evitar inundações a jusante, enquanto armazena o máximo possível de água.

A estratégia de minimizar os prejuízos está claramente focada em preparar os reservatórios para eventos extremos com tempos de retorno de 10, 25 e 50 anos. O custo elevado é justificado pela necessidade de proteger as áreas urbanas e infraestruturas críticas contra danos catastróficos que poderiam ocorrer se os volumes de água não fossem adequadamente gerenciados.


A minimização dos prejuízos requer uma infraestrutura muito mais robusta e cara, mas que pode ser crucial para evitar perdas maiores em situações de eventos extremos. As variáveis de decisão são mantidas mais uniformes entre os diferentes tempos de retorno, o que pode indicar uma abordagem de segurança máxima para todos os cenários de chuva intensa.

8.3 Fronteira de Soluções Pareto-Ótimas

A análise dos gráficos de Fronteira de Pareto para diferentes tempos de retorno (10, 25 e 50 anos) será apresentada sob três condições distintas: solo sem incidência de rocha, solo com 50% de incidência de rocha, e bacia de detenção fechada. O objetivo é proporcionar uma compreensão aprofundada dos *trade-offs* entre a minimização dos custos e a redução dos danos anuais esperados nos projetos, considerando as variáveis geotécnicas e as incertezas associadas ao local e assim avaliar o impacto dessas condições nos resultados das variáveis de decisão.

A Figura 17 apresenta as Fronteiras de Pareto para as condições citadas acima, considerando cenários de precipitação com tempo de retorno de 10, 25 e 50 anos, respectivamente.

Figura 17 – Fronteiras de Pareto considerando no modelo de otimização chuvas com tempo de recorrência de 10, 25 e 50 anos.

Para um tempo de retorno de 10 anos, os custos variam consideravelmente entre os cenários de 0% de rocha, 50% de rocha e bacia fechada, mesmo quando os níveis de danos anuais esperados são semelhantes. O cenário com 50% de rocha no solo apresenta um custo adicional de R\$3.609.649,90 para alcançar um dano semelhante, indicando um aumento de 137% nos custos devido à presença de rocha. A bacia fechada resulta em um custo adicional de R\$13.025.345,00, representando um aumento de aproximadamente 497% para o mesmo nível de dano.

Na análise com TR = 25 anos, a diferença entre os cenários de 0% e 50% de rocha tornase mais acentuada, sugerindo que a presença de rocha no solo começa a impactar de forma mais significativa os custos de mitigação. Aqui, os custos é R\$6.106.797,10 mais elevado para o cenário com 50% de rocha, ou seja, um aumento de cerca de 146% para manter danos similares. Já o custo adicional da bacia fechada é de R\$19.836.630,10, o que representa um aumento de 475% considerando o mesmo nível de dano.

No cenário com TR = 50 anos, que reflete os eventos mais severos, os custos para alcançar uma mitigação significativa dos danos são os mais elevados em todos os cenários. O custo adicional é de R\$10.651.226,00 na comparação dos solos sem incidência de rocha com o de 50%, representando um aumento de aproximadamente 138%. E o custo adicional da bacia fechada é de R\$38.434.716,00, representando um aumento de cerca de 497%.

8.3.1 Taxas de variação e pontos de inflexão

Para avaliar os trade-offs entre a redução de custos e o aumento de danos (e vice-versa) em cada cenário, podemos calcular a taxa de variação ($\Delta Custo/\Delta Dano$) entre os pontos ao longo da Fronteira de Pareto. Esse cálculo nos permitirá compreender o custo incremental necessário para reduzir os danos e, de forma inversa, o aumento nos danos resultante de uma redução de custos.

As análises da taxa de variação foram realizadas para o cenário de chuvas com período de retorno de 25 anos. Na Figura 18 ilustra-se as taxas de variação em cada ponto da Fronteira de Pareto, considerando as diferentes condições geotécnicas do local de implantação das bacias de detenção (0% e 50% de incidência de rocha) e para a possibilidade de bacias de detenção ser fechada.

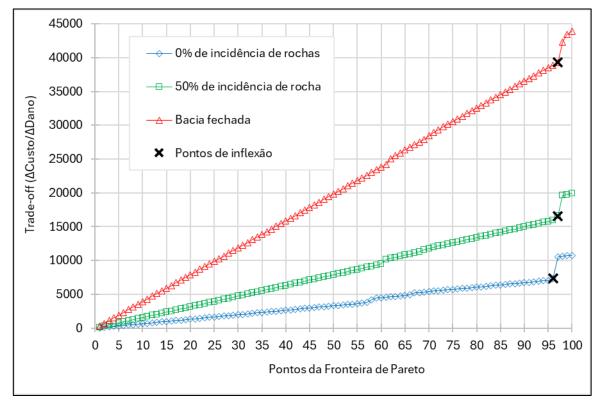


Figura 18 - Trade-offs ($\Delta Custo/\Delta Dano$) para TR = 25 anos

A curva de *trade-off* para o cenário de 0% de rocha começa com uma inclinação relativamente baixa, sugerindo que os primeiros esforços de mitigação de danos são relativamente eficientes em termos de custo. À medida que a curva avança, a inclinação aumenta, o que indica que a redução adicional de danos se torna progressivamente mais cara.

Comparada à curva de 0% de rocha, a curva para 50% de rocha apresenta uma inclinação inicial maior, o que significa que os custos de mitigação são mais elevados desde o início. Evidentemente, isso pode ser atribuído à maior dificuldade de escavação para implantação da obra. A curva também mostra uma elevação constante, refletindo que os custos aumentam de forma mais acentuada para cada unidade adicional de redução de danos.

Já a curva para bacias de detenção fechada tem a maior inclinação de todas, indicando que, desde o início, os custos para mitigar danos são significativamente maiores do que nos outros cenários.

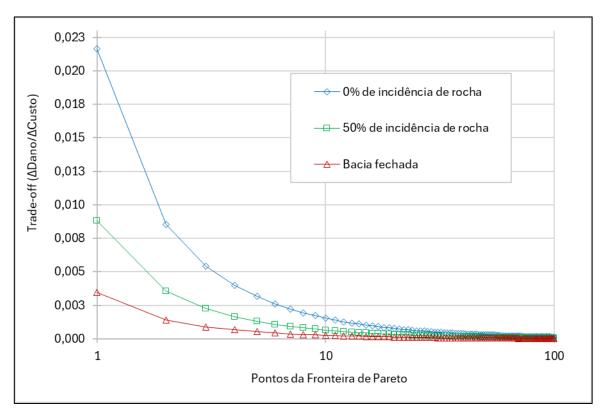
Em todos os cenários, à medida que buscamos reduções adicionais de danos, os custos aumentam de forma não linear. Este fenômeno é mais pronunciado na bacia fechada, onde cada unidade adicional de mitigação de danos se torna gradativamente mais caro.

Outra análise importante a ser realizada é a identificação dos pontos de inflexão, que em um gráfico de *trade-offs* (ΔCusto/ΔDano) indicam mudanças significativas na relação entre custos e danos. Esses pontos sinalizam momentos em que o comportamento da curva se altera de maneira notável, sendo cruciais para compreender como investimentos adicionais em mitigação de danos podem se tornar menos (ou mais) eficientes em termos de custo.

O ponto de inflexão para o cenário de 0% de rocha (7.340,06 R\$/R\$) ocorre em um valor de *trade-off* mais baixo que os outros cenários. Isso indica que, até este ponto, a mitigação dos danos tem sido realizada de forma relativamente eficiente, com cada unidade de redução de danos custando menos. Após este ponto, os custos para reduzir danos adicionais começam a aumentar de maneira mais acentuada, sugerindo que o investimento adicional para mitigar danos começa a oferecer retornos decrescentes, mostrando que a obra proposta tem limites para mitigar os prejuízos econômicos.

No cenário de 50% de rocha, o ponto de inflexão (16.602,13 R\$/R\$) ocorre a um nível de *trade-off* acima do dobro do cenário de 0% de rocha. Após este ponto, cada Real investido na infraestrutura para mitigação de danos resulta em menor redução de danos do que antes, tornando a estratégia progressivamente menos eficaz em termos de custo.

A bacia fechada apresenta o maior valor de *trade-off* no ponto de inflexão (39.310,07 R\$ investido/para cada real de redução de danos R\$), indicando que, desde o início, o custo para mitigar danos neste cenário é substancialmente mais alto. Este ponto de inflexão reflete o


momento em que os custos começam a escalar de maneira ainda mais pronunciada, tornando cada unidade adicional de redução de danos extremamente cara. Este comportamento é típico de estratégias de mitigação altamente robustas, onde o custo de obtenção de segurança adicional é muito elevado, refletindo uma eficiência decrescente a partir desse ponto.

Todos os cenários mostram que, após o ponto de inflexão, a relação custo-benefício da mitigação de danos começa a piorar. No entanto, o impacto é mais severo na bacia fechada, onde os custos já são altos antes mesmo do ponto de inflexão e se tornam ainda mais elevados depois.

Para os planejadores, os pontos de inflexão indicam limites além dos quais a relação benefício-custo das intervenções diminui significativamente. No cenário de 0% de rocha, por exemplo, é possível justificar investimentos até o ponto de inflexão. Para a bacia fechada, os pontos de inflexão sugerem que essa estratégia deve ser reservada para situações em que a mitigação máxima de danos é necessária, independentemente do custo.

A avaliação inversa (ΔDano/ΔCusto), que representa quanto o dano é reduzido para cada unidade adicional de custo, em relação aos pontos da FP, é apresentado no gráfico da Figura 19, com eixo horizontal em escala logarítmica.

Figura 19 - Trade-offs ($\Delta Dano/\Delta Custo$) para TR = 25 anos

Em relação ao cenário com 0% de incidência de rochas os primeiros pontos da Fronteira de Pareto, a relação ΔDano/ΔCusto é relativamente alta, o que indica que cada unidade de custo resulta em uma redução significativa de danos. No entanto, conforme se avança na Fronteira de Pareto, essa relação diminui, atingindo valores muito próximos de zero nos pontos finais, indicando que volumes maiores trazem cada vez menos redução de danos por unidade de custo.

Para a condição considerando 50% de incidência de rochas segue um padrão semelhante ao cenário sem rocha, porém com valores menores em toda a extensão da Fronteira. Isso sugere que a presença de rochas torna os volumes mais ineficazes na redução dos danos por custo investido. A curva também atinge valores mínimos, onde o ganho marginal na redução de danos é praticamente insignificante.

Por fim, para bacias fechadas é onde tem-se a menor relação ΔDano/ΔCusto entre todos os cenários. Para os primeiros pontos da Fronteira, a curva já está em níveis muito baixos, o que indica que mesmo para volumes menores o ganho marginal na redução de danos é baixo.

Para auxiliar o entendimento da relação dos pontos da FP associados aos volumes totais dos reservatórios, é apresentado o gráfico da Figura 20.

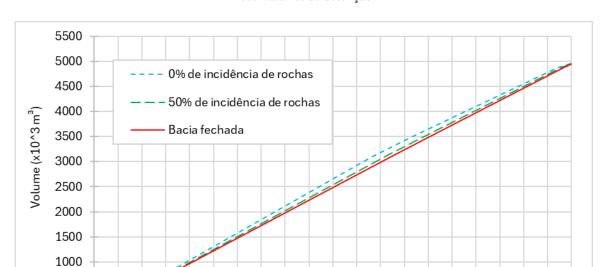
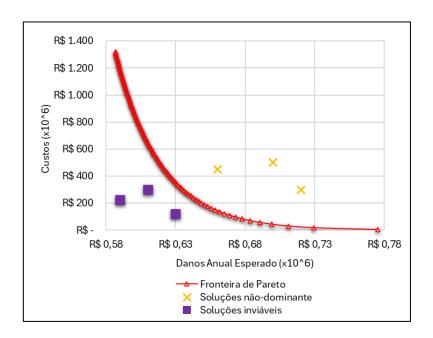


Figura 20 – Relação entre os pontos da Fronteira de Pareto e os volumes totais de armazenamento dos reservatórios de detenção

8.3.2 Soluções não-dominantes e inviáveis


500

O gráfico apresentado na Figura 21 exibe a Fronteira de Pareto para o cenário da bacia fechada e tempo de retorno de 25 anos, destacando soluções hipotéticas que representam opções não dominantes e inviáveis. Essas soluções nos ajudam a entender melhor as escolhas possíveis dentro do contexto de otimização entre custos e danos anuais esperados.

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Pontos da Fronteira de Pareto

Figura 21 – Fronteira de Pareto considerando a bacia de detenção fechada e o tempo de retorno de 25 anos.

Os pontos laranja marcados com "X" representam soluções que são não-dominantes, dominadas ou "subótimas", localizadas acima da Fronteira de Pareto. Essas soluções têm custos e danos superiores às soluções ótimas que estão na curva de Pareto. Ou seja, indicam que, em um determinado custo, a redução de danos poderia ser menor, bem como para uma mesma redução de danos os custos poderiam ser menores.

Na prática, essas soluções seriam evitadas, pois há alternativas disponíveis na Fronteira de Pareto que oferecem uma melhor relação entre custo e redução de danos.

Já os pontos roxos marcados com quadrados representam soluções inviáveis. Estes teriam os mesmos custos dos pontos de Fronteira, com menores reduções de danos, o que é inviável dado que o menor valor (ótimo) foi alcançado na FP. Da mesma forma teriam as mesmas reduções de danos com menores custos, o que também seria inviável dado que na fronteira está a solução de mínimo custo. Essas soluções podem surgir devido a restrições técnicas, limites econômicos ou até impossibilidades físicas.

Tais pontos são úteis para ilustrar os limites da viabilidade em projetos de mitigação de danos, demonstrando que não basta focar apenas na redução de custos se o resultado final não garantir níveis adequados de segurança e eficácia. As soluções fora da Fronteira de Pareto podem apresentar custos mais baixos, mas se não forem viáveis ou não garantirem a redução esperada dos danos, tornam-se inadequadas para aplicação prática.

8.3.3 As variáveis de decisão ao longo da Fronteira de Pareto

De forma geral, verifica-se que a estratégia do modelo foi manter a altura e o diâmetro constantes, utilizando a área dos reservatórios como a principal variável de controle para ajustar o volume de armazenamento. Assim o foco principal foi ajustar a área para controlar o volume e a retenção de água, preservando a vazão de saída conforme os limites estabelecidos para a condição de pré-urbanização.

Na Figura 22, Figura 23 e Figura 24 apresentam-se graficamente as variáveis de decisão ao longo da Fronteira de Pareto, para o cenário de um solo sem incidências de rochas, com 50% de incidência e para a bacias de detenção fechada, respectivamente. As variáveis são apresentadas relacionando-as com os custos de implantação, sendo esses os mesmos pontos da FP.

Figura 22 - Variáveis de decisão ao longo da Fronteira de Pareto (FP) para a condição sem incidência de rocha

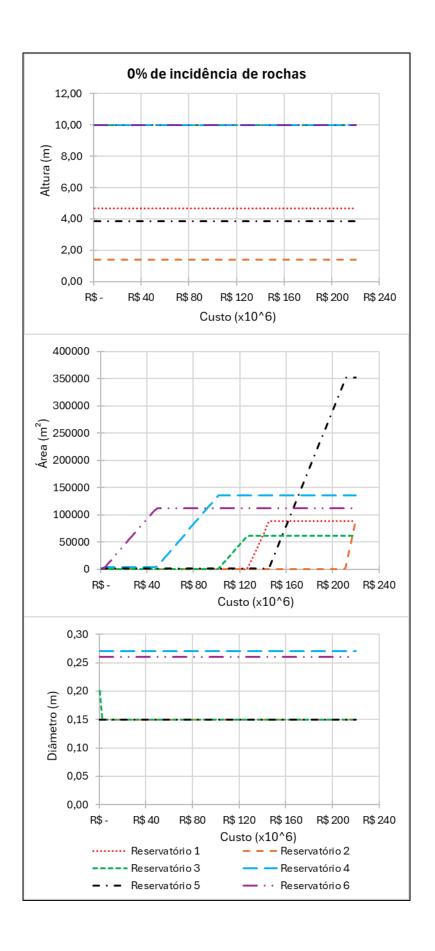
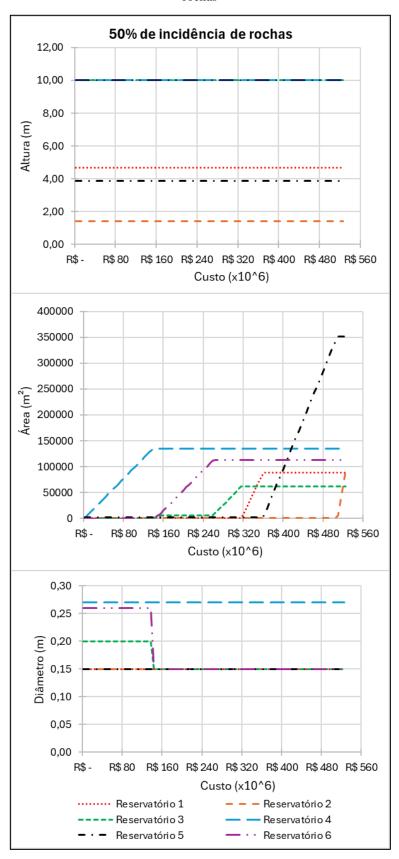
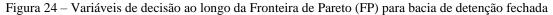
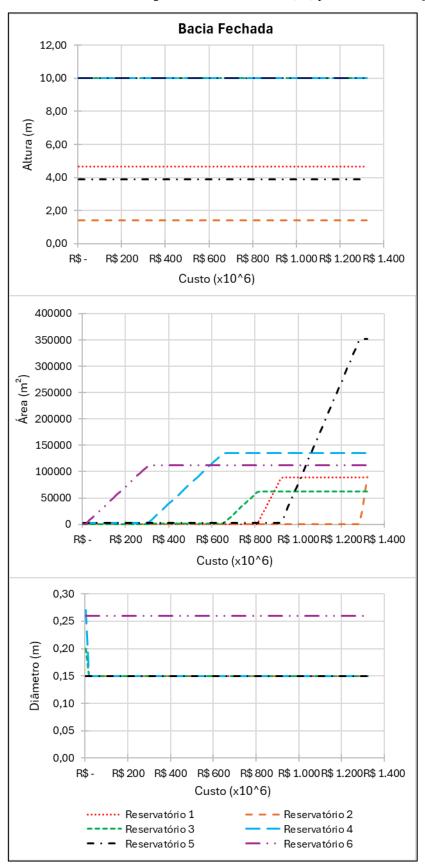





Figura 23 – Variáveis de decisão ao longo da Fronteira de Pareto (FP) para a condição com 50% incidência de rochas

As alturas (H) dos reservatórios se mantiveram constantes ao longo da Fronteira de Pareto, para os três cenários. Isso indica que o modelo optou por não ajustar a altura como uma variável de controle. Em vez disso, outros parâmetros, como a área e o diâmetro, foram utilizados para ajustar o volume de armazenamento e os custos.

A área (A) dos reservatórios foi o principal parâmetro ajustado ao longo da Fronteira de Pareto. O modelo aumentou as áreas dos reservatórios para compensar a constância da altura e, assim, otimizar o volume de armazenamento necessário para reduzir os danos e as inundações. Esse comportamento pode ser visto claramente nas variações de áreas para os diferentes cenários de incidência de rocha e para as bacias fechadas.

O diâmetro (D) dos tubos de saída também se manteve relativamente constante, com pequenos ajustes em alguns reservatórios. Isso sugere que o controle da vazão efluente foi projetado para manter a vazão dentro de limites aceitáveis de pré-urbanização, sem grandes variações no diâmetro dos tubos de saída.

A altura foi limitada no intervalo de 1 m a 10 m, entendendo-se como um limite adequado considerando a execução e a estabilidade estrutural. O modelo utilizou essa limitação ao manter a altura de alguns reservatórios no valor máximo de 10 m. Isso é observado para os reservatórios 3, 4, e 6, onde a altura foi fixada em 10 m, indicando que o modelo atingiu o limite superior dessa variável. Ao atingir o limite superior da altura (10 m), o modelo não podia mais usar essa variável para aumentar o volume de armazenamento e, portanto, ajustou a área dos reservatórios para compensar e maximizar o volume de retenção de água. O reservatório 2, com uma altura de 1,39 m, não chegou ao limite inferior de 1 m, mas ainda assim teve uma altura relativamente baixa, sendo realizado o ajuste na área.

Já diâmetro foi limitado entre 0,15 m e 0,50 m. O modelo utilizou principalmente o valor inferior de 0,15 m para os reservatórios 1, 2, e 5, a fim de manter a vazão de saída baixa para controlar a água liberada. O diâmetro em alguns reservatórios, como 4 e 6, atingiu 0,27 m e 0,26 m, respectivamente, mas ainda distante do limite superior de 0,50 m. Isso indica que o modelo não considerou necessário ampliar significativamente o diâmetro para manter a vazão dentro do limite considerado de pré-urbanização.

9 CONCLUSÕES

O presente estudo identificou as áreas mais suscetíveis a inundações ao longo do riacho Moxotó, na cidade do Recife-PE, encontrando profundidades significativas de até 1,914 metros para eventos com tempo de retorno de 50 anos. Essas inundações são particularmente graves devido à alta vulnerabilidade social da população local.

Como medida mitigadora, propôs-se a instalação de reservatórios de detenção ao longo da bacia. As simulações hidrológicas iniciais, ainda sem a otimização, já indicaram que o aumento da capacidade volumétrica dos reservatórios pode reduzir de forma substancial os danos econômicos, especialmente em eventos de menor magnitude, com tempo de retorno de 10 anos. Contudo, observa-se que as reduções de danos incrementais diminuem à medida que a capacidade dos reservatórios excede 60.000 m³, sugerindo necessidade de uma análise otimizada para direcionar futuros investimentos.

Após estas simulações iniciais, o estudo demonstrou uma relação logarítmica entre a capacidade volumétrica dos reservatórios de detenção e a redução dos danos econômicos esperados. Os maiores ganhos em termos de redução de danos ocorrem com aumentos iniciais na capacidade dos reservatórios, mas além de um certo ponto, os benefícios adicionais se tornam menos expressivos.

O modelo GAMS, utilizado nas modelagens de otimização, demonstra que há um claro compromisso entre minimizar os custos de implantação dos reservatórios de detenção e minimizar os danos anuais esperados devido a inundações. Quando o foco é apenas na minimização dos custos, os reservatórios projetados têm volumes menores e custos significativamente mais baixos. No entanto, essa abordagem resulta em maiores danos residuais, especialmente em cenários de eventos de precipitação intensa.

Para um tempo de retorno de 10 anos, o menor investimento (aproximadamente R\$ 427 mil) resulta em altos danos anuais esperados (cerca de R\$ 1,7 milhão), indicando uma infraestrutura menos eficaz em mitigar eventos mais frequentes, mas menos severos. No cenário de 25 anos, um investimento maior (aproximadamente R\$ 785 mil) reduz significativamente os danos esperados em cerca de 54%. Já no cenário de 50 anos, o maior investimento (cerca de R\$

1,2 milhão) minimiza ainda mais os danos anuais esperados (R\$ 407 mil), refletindo uma estratégia robusta que prioriza a resiliência a longo prazo, mesmo que a um custo elevado.

Quando o objetivo é minimizar os prejuízos, os custos de implantação dos reservatórios aumentam drasticamente. Indicando a necessidade de uma infraestrutura muito mais robusta para mitigar danos significativos em eventos extremos. Ou seja, a abordagem de minimizar os prejuízos reflete uma estratégia de segurança máxima, especialmente relevante para eventos extremos. O investimento elevado em infraestrutura robusta é justificado pelo potencial de evitar perdas catastróficas, mesmo que isso implique em custos de construção substancialmente mais altos.

Em todos os cenários analisados, há uma observação clara de que os benefícios marginais de aumentar a capacidade dos reservatórios diminuem conforme a capacidade cresce. Isso é particularmente importante para decisões de investimento, onde se deve considerar o ponto de equilíbrio entre o custo de aumentar a capacidade de armazenamento e a redução efetiva dos danos.

As conclusões relacionadas à análise da Fronteira de Pareto para a otimização dos projetos de bacias de detenção, considerando diferentes condições geotécnicas e tempos de retorno, são as seguintes:

De forma geral, as análises das fronteiras de Pareto para os diferentes cenários de tempo de retorno indicam que, enquanto maiores investimentos podem reduzir significativamente os danos anuais esperados, o tipo de solo e a estrutura da bacia influenciam fortemente o custo necessário para atingir esses benefícios.

A presença de rocha no solo afeta significativamente os custos de mitigação de danos. Nos cenários com 50% de incidência de rocha, os custos iniciais para reduzir os danos são maiores do que em solos sem rocha, refletindo as dificuldades adicionais de construção. A bacia fechada apresenta o cenário mais oneroso, independentemente do tempo de retorno analisado, devido à complexidade e aos custos elevados associados à sua implantação.

Em todos os cenários, a relação entre a redução dos danos e o aumento dos custos é não linear. À medida que se busca mitigar danos adicionais, os custos aumentam de maneira mais acentuada, especialmente nos casos de bacias de detenção fechadas, onde cada incremento na

redução de danos se torna mais caro. Isso demonstra a importância de avaliar cuidadosamente até que ponto é economicamente viável continuar investindo em medidas de mitigação.

Uma estratégia de decisão eficaz poderia se concentrar na identificação de pontos de inflexão nas curvas de Pareto, onde o *trade-off* entre custo e danos se mostre mais vantajoso. Soluções que se situam antes desse ponto de inflexão tendem a ser mais eficientes.

Os pontos de inflexão identificados nas curvas de trade-off ($\Delta Custo/\Delta Dano$) indicam os momentos em que a eficiência econômica das intervenções começa a diminuir. No cenário de 0% de rocha, o ponto de inflexão ocorre em um nível de trade-off relativamente baixo, sugerindo que até esse ponto, a mitigação dos danos é realizada de forma eficiente. Já no cenário de 50% de rocha e na bacia fechada, os pontos de inflexão ocorrem em níveis muito mais altos, indicando que os custos se tornam substancialmente mais elevados após esses pontos.

À medida que o tempo de retorno aumenta (de 10 para 50 anos), tanto os custos quanto os danos anuais esperados aumentam em todos os cenários. Este efeito é amplificado pela presença de rocha no solo, que agrava ainda mais os custos em eventos de precipitação mais intensos. Isso ressalta a importância de considerar as características geotécnicas locais na fase de planejamento, especialmente para eventos extremos.

As soluções ao longo da Fronteira de Pareto representam as opções mais eficientes em termos de custo-benefício, onde cada ponto da curva oferece o melhor equilíbrio possível entre os custos e a redução dos danos. As soluções fora da Fronteira de Pareto (não-dominantes) indicam escolhas subótimas que não deveriam ser consideradas, pois há alternativas mais eficazes disponíveis na curva.

Para os planejadores, compreender os *trade-offs* e identificar os pontos de inflexão é essencial para determinar a viabilidade dos investimentos em medidas de mitigação de danos. No caso de bacias fechadas, os altos custos indicam que essa solução deve ser considerada apenas em situações em que, devido a restrições de espaço, a implementação de bacias abertas não seja viável. Por outro lado, em áreas com menor presença de rochas, os investimentos podem ser otimizados para alcançar uma mitigação eficaz sem incorrer em custos excessivamente elevados.

Essas análises confirmam que os pontos de inflexão são momentos críticos para a tomada de decisão. Após esses pontos, o investimento adicional na mitigação de danos se torna

significativamente menos eficiente, especialmente em cenários de maior tempo de retorno. Para otimizar recursos, seria recomendável focar os investimentos até os pontos de inflexão identificados, onde a relação custo-benefício é mais favorável.

Em relação as variáveis de decisão o modelo de otimização indicou que a altura e diâmetro foram mantidos praticamente constantes como forma de manter a estabilidade estrutural e o controle da vazão de saída.

A área dos reservatórios foi a principal variável de ajuste ao longo da Fronteira de Pareto. Isso permitiu que o modelo maximizasse o volume de armazenamento sem comprometer a altura ou a capacidade de controle da vazão de saída.

Sendo assim, o modelo priorizou um aumento de área para ajustar o volume armazenado, mantendo a altura e o diâmetro constantes, o que resultou em uma otimização eficiente dos custos e da mitigação de prejuízos, respeitando as limitações estruturais e de fluxo de água.

Por fim, como recomendações para futuros estudos, pode incluir:

- Desenvolvimento de modelos de otimização que integrem, além dos custos e danos econômicos, outras variáveis de interesse, como impactos ambientais. A inclusão de múltiplos critérios visando incorporar soluções sustentáveis para o controle de inundações, abordando os desafios relacionados à gestão de recursos hídricos.
- A investigação de técnicas não convencionais de controle de inundações, como o
 Desenvolvimento de Baixo Impacto (LID), e sua integração com os modelos de
 otimização já utilizados. Estudos futuros poderiam focar na eficácia dessas práticas em
 combinação com bacias de detenção para maximizar a resiliência urbana.
- Fortalecer a robustez dos modelos, realizando análises de sensibilidade mais detalhadas, considerando a variabilidade nas condições climáticas e as incertezas associadas aos dados de entrada. Isso ajudaria a compreender melhor como as soluções de controle respondem a diferentes cenários e quais seriam os melhores ajustes em situações de incerteza.
- Adaptar a metodologia desenvolvida para ser aplicada a outras cidades ou regiões com características hidrológicas, geotécnicas e socioeconômicas diferentes. Isso permitiria

validar a aplicabilidade e a eficácia da abordagem em diversos contextos, contribuindo para o aprimoramento contínuo das soluções de controle de inundações

REFERÊNCIAS

- ALENCAR, Antonio Valdo de; LAFAYETTE, Fernandha Batista; BATISTA FILHO, Gerson; SILVA, Pedro Oliveira da; VASCONCELOS, Ronald Fernando Albuquerque (org.). **Manual de Drenagem e Manejo das Águas Pluviais do Recife**. Recife/PE: Empresa de Manutenção e Limpeza Urbana Emlurb, 2016.
- ALENCAR, J. C., PELLEGRINO, P. R. M., MARTINS, J. R. S. (2024). Reservatórios multifuncionais através de soluções baseadas na natureza: uma nova geração de reservatórios como estratégia de enfrentamento às mudanças climáticas. Estudo de caso da Bacia do Pirajussara-SP. Revista de Gestão de Água da América Latina, 21, e14. https://doi.org/10.21168/rega.v21e14
- ALFIERI, Lorenzo; FEYEN, Luc; DOTTORI, Francesco; BIANCHI, Alessandra. **Ensemble flood risk assessment in Europe under high end climate scenarios**. Global Environmental Change, [S.L.], v. 35, p. 199-212, nov. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.gloenvcha.2015.09.004.
- ALVES, A.; VOJINOVIC, Z.; KAPELAN, Z.; SANCHEZ, A.; GERSONIUS, B. Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Science of the Total Environment, v. 703, p. 134980, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2019.134980.
- APAC. Agência Pernambucana de Águas e Clima. Disponível em: https://www.apac.pe.gov.br/. Acesso em: 10 abr. 2024.
- ARAUJO, Bárbara Janine Reis Silva; CASTILHO, Luís Otávio Rocha; LOPES, Frederico Wagner de Azevedo; ROCHA, Deborah Cristina da. **BACIAS DE DETENÇÃO E IMPACTOS AMBIENTAIS: uma análise da intervenção sobre o córrego São Francisco/Assis das Chagas, Belo Horizonte-MG**. Caminhos de Geografia, [S.L.], v. 23, n. 87, p. 19-35, 1 jun. 2022. EDUFU Editora da Universidade Federal de Uberlândia. Disponível em: http://dx.doi.org/10.14393/rcg238758797.
- ARORA, Jasbir S.. **Multi-objective Optimum Design Concepts and Methods**. Introduction To Optimum Design, [S.L.], p. 657-679, 2012. Elsevier. http://dx.doi.org/10.1016/b978-0-12-381375-6.00017-6.

BAEK, Sang-Soo; CHOI, Dong-Ho; JUNG, Jae-Woon; LEE, Hyung-Jin; LEE, Hyuk; YOON, Kwang-Sik; CHO, Kyung Hwa. **Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: experimental and modeling approach**. Water Research, [S.L.], v. 86, p. 122-131, dez. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.watres.2015.08.038.

BANCO MUNDIAL; GLOBAL FACILITY FOR DISASTER REDUCTION AND RECOVERY; FUNDAÇÃO DE AMPARO À PESQUISA E EXTENSÃO UNIVERSITÁRIA; UNIVERSIDADE FEDERAL DE SANTA CATARINA; CENTRO DE ESTUDOS E PESQUISAS EM ENGENHARIA E DEFESA CIVIL. Relatório de danos materiais e prejuízos decorrentes de desastres naturais no Brasil: 1995–2019. 2. ed. FAPEU, 2020.

BAPTISTA, Victor Santos Galvão; PAZ, Adriano Rolim da. **Cost-efficiency analysis of a runoff detention reservoir with integrated hydraulic and structural design**. Rbrh, [S.L.], v. 23, n. 36, p. 1-13, 11 out. 2018. Fap UNIFESP (SciELO). http://dx.doi.org/10.1590/2318-0331.231820170168.

BHATTACHARJEE, Kasturi; BEHERA, Bhagirath. **Does forest cover help prevent flood damage? Empirical evidence from India**. Global Environmental Change, [s.l.], v. 53, p.78-89, nov. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.gloenvcha.2018.09.004.

BHATTARAI, Rajan; YOSHIMURA, Kei; SETO, Shinta; NAKAMURA, Shinichiro; OKI, Taikan. **Statistical model for economic damage from pluvial floods in Japan using rainfall data and socioeconomic parameters**. Natural Hazards And Earth System Sciences, [S.L.], v. 16, n. 5, p. 1063-1077, 10 maio 2016. Copernicus GmbH. http://dx.doi.org/10.5194/nhess-16-1063-2016.

BLAUDT, L. M.; ALVARENGA, T. W.; GARIN, Y. **Desastre ocorrido em Petrópolis no verão de 2022: aspectos gerais e dados da Defesa Civil. Geociências (UNESP)**, v. 41, n. 4, p. 59-71, 2023.

BOUWER, Laurens M.. **Projections of Future Extreme Weather Losses Under Changes in Climate and Exposure**. Risk Analysis, [s.l.], v. 33, n. 5, p.915-930, 7 set. 2012. Wiley. http://dx.doi.org/10.1111/j.1539-6924.2012.01880.x.

BRAGANÇA, Luana de Souza; FONSECA, Paulo Luiz da; HORA, Mônica de Aquino Galeano Massera da. **Integração entre medidas de controle de enchentes e o aproveitamento social do espaço urbano na bacia do rio Jacaré – município do Rio de Janeiro**. Labor e Engenho, [S.L.], v. 10, n. 4, p. 357, 31 dez. 2016. Universidade Estadual de Campinas. http://dx.doi.org/10.20396/labore.v10i4.8647197.

- BRASIL, José; MACEDO, Marina; LAGO, César; OLIVEIRA, Thalita; MARCUS JÚNIOR; OLIVEIRA, Tassiana; MENDIONDO, Eduardo. **Nature-Based Solutions and Real-Time Control: challenges and opportunities**. Water, [S.L.], v. 13, n. 5, p. 651, 28 fev. 2021. MDPI AG. http://dx.doi.org/10.3390/w13050651.
- BRASIL. SECRETARIA DE COMUNICAÇÃO SOCIAL. Sala de Situação atualiza relatório da operação de socorro e assistência no Rio Grande do Sul. Governo Federal, 2024. Disponível em: https://www.gov.br/situa_rio2024. Acesso em: 29 set. 2024.
- BRUNNER, Gary W.. **HEC-RAS: river analysis system hydraulic reference manual**. Davis, California, US: U.S. Army Corps Of Engineers Institute For Water Resources Hydrologic Engineering Center, 2020.
- CABRAL, J. J. S. P.; ALENCAR, A. V.. **Recife e a Convivência com as Águas**. Brasília (Ministério das Cidades): Hydroaid (Itália), PMSS/ Ministério das Cidades. (Org.). Gestão do Território e Manejo Integrado das Águas, 2005.
- CÂNDIDO, João Ricardo Souteiro. **Modelação Dinâmica de Sistemas de Drenagem em Meio Urbano**. 2013. 125 f. Dissertação (Mestrado) Curso de Engenharia Civil, Universidade Nova de Lisboa, Lisboa, 2013.
- CANHOLI, Aluísio Pardo. **Drenagem Urbana e Controle de Enchentes**. São Paulo: Oficina de Textos, 2005. 295 p.
- CEMBRANO, G., QUEVEDO, J., SALAMERO, M., PUIG, V., FIGUERAS, J., MARTÍ, J. (2004). **Optimal control of urban drainage systems. A case study**. Control Engineering Practice, 12(1), 1-9. https://doi.org/10.1016/S0967-0661(02)00280-0
- CHAN, F.K.s.; CHUAH, C. Joon; ZIEGLER, A.D.; DąBROWSKI, M.; VARIS, O.. **Towards resilient flood risk management for Asian coastal cities: lessons learned from hong kong and singapore**. Journal Of Cleaner Production, [S.L.], v. 187, p. 576-589, jun. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.jclepro.2018.03.217.
- CHEN, Sha; LUO, Zhongkui; PAN, Xubin. **Natural disasters in China: 1900–2011**. Natural Hazards, [s.l.], v. 69, n. 3, p.1597-1605, 7 jul. 2013. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11069-013-0765-0.

- CHEN, J.; WANG, S.; WU, R. Optimization of the integrated green gray-blue system to deal with urban flood under multi-objective decision-making. Water Science & Technology, v. 89, n. 2, p. 434-450, 2024. DOI: https://doi.org/10.2166/wst.2023.411.
- CHUI, Ting Fong May; LIU, Xin; ZHAN, Wenting. **Assessing cost-effectiveness of specific LID practice designs in response to large storm events.** Journal Of Hydrology, [s.l.], v. 533, p.353-364, fev. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.jhydrol.2015.12.011.
- CHUNG, Hau Ching Phyllis; ADEYEYE, Kemi. **Structural flood damage and the efficacy of property-level flood protection**. International Journal Of Building Pathology And Adaptation, [s.l.], v. 36, n. 5, p.471-499, 12 nov. 2018. Emerald. http://dx.doi.org/10.1108/ijbpa-09-2017-0040.
- CIOFFI, F.; DE BONIS TRAPELLA, A.; GIANNINI, M.; LALL, U. A flood risk management model to identify optimal defence policies in coastal areas considering uncertainties in climate projections. Water, v. 14, p. 1481, 2022. DOI: https://doi.org/10.3390/w14091481.
- COLLODEL, Milena Gardai. **Aplicação do modelo hidrológico SWMM na avaliação de diferentes níveis de detalhamento da bacia hidrográfica**. 2009. 225 f. Dissertação (Mestrado) Curso de Engenharia Civil, Escola de Engenharia de São Carlos da Universidade de São Paulo, São Carlos, 2009.
- COOMBES, P.; ROSO, S. (ed.). Runoff in Urban Areas, Book 9 in Australian Rainfall and Runoff: a guide to flood estimation. Australia: Commonwealth Of Australia (Geoscience Australia), 2019.
- DEB, K.; PRATAP, A.; AGARWAL, S.; MEYARIVAN, T.. **A fast and elitist multiobjective genetic algorithm: nsga-ii**. Ieee Transactions On Evolutionary Computation, [S.L.], v. 6, n. 2, p. 182-197, abr. 2002. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/4235.996017.
- DUAN, Weili; HE, Bin; NOVER, Daniel; FAN, Jingli; YANG, Guishan; CHEN, Wen; MENG, Huifang; LIU, Chuanming. **Floods and associated socioeconomic damages in China over the last century**. Natural Hazards, [S.L.], v. 82, n. 1, p. 401-413, 12 fev. 2016. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11069-016-2207-2.

ECKART, Kyle; MCPHEE, Zach; BOLISETTI, Tirupati. **Multiobjective optimization of low impact development stormwater controls**. Journal Of Hydrology, [s.l.], v. 562, p.564-576, jul. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.jhydrol.2018.04.068.

EEM, Seung-hyun; YANG, Beom-joo; JEON, Haemin. **Simplified Methodology for Urban Flood Damage Assessment at Building Scale using Open Data**. Journal Of Coastal Research, [s.l.], v. 85, p.1396-1400, maio 2018. Coastal Education and Research Foundation. http://dx.doi.org/10.2112/si85-280.1.

GREENPEACE BRASIL. **Um ano das chuvas em Recife: Tragédia pode voltar a ocorrer se não houver ação do poder público**. 29 maio 2023. Disponível em: https://www.greenpeace.org/brasil/imprensa/um-ano-das-chuvas-em-recife-tragedia-pode-voltar-a-ocorrer-se-nao-houver-acao-do-poder-publico/. Acesso em: 16 nov. 2024.

HE, Huaxiang; CHEN, Aiqi; YIN, Mingwan; MA, Zhenzhen; YOU, Jinjun; XIE, Xinmin; WANG, Zhizhang; AN, Qiang. **Optimal Allocation Model of Water Resources Based on the Prospect Theory.** Water, [S.L.], v. 11, n. 6, p. 1289, 20 jun. 2019. MDPI AG. http://dx.doi.org/10.3390/w11061289.

HORN, Finlay; ELAGIB, Nadir Ahmed. **Building socio-hydrological resilient cities against flash floods: Key challenges and a practical plan for arid regions**. Journal Of Hydrology, [s.l.], v. 564, p.125-132, set. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.jhydrol.2018.07.001.

HOSSEINZADEH, A.; BEHZADIAN, K.; ROSSI, P.; KARAMI, M.; ARDESHIR, A.; HAGHIGHI, A. T. **A new multi-criteria framework to identify optimal detention ponds in urban drainage systems**. Journal of Flood Risk Management, v. 16, n. 2, e12890, 2023. DOI: https://doi.org/10.1111/jfr3.12890.

HU, Maochuan; SAYAMA, Takahiro; ZHANG, Xingqi; TANAKA, Kenji; TAKARA, Kaoru; YANG, Hong. **Evaluation of low impact development approach for mitigating flood inundation at a watershed scale in China**. Journal Of Environmental Management, [S.L.], v. 193, p. 430-438, Maio 2017. Elsevier BV. http://dx.doi.org/10.1016/j.jenvman.2017.02.020.

HU, Maochuan; ZHANG, Xingqi; LI, Yu; YANG, Hong; TANAKA, Kenji. Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area. Journal Of Cleaner Production, [S.L.], v. 222, p. 373-380, jun. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.jclepro.2019.03.044.

HUANG, Chien-Lin; HSU, Nien-Sheng; LIU, Hung-Jen; HUANG, Yao-Hsien. **Optimization of low impact development layout designs for megacity flood mitigation.** Journal Of Hydrology, [S.L.], v. 564, p. 542-558, set. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.jhydrol.2018.07.044.

KUNDZEWICZ, Zbigniew W.; KANAE, Shinjiro; SENEVIRATNE, Sonia I.; HANDMER, John; NICHOLLS, Neville; PEDUZZI, Pascal; MECHLER, Reinhard; BOUWER, Laurens M.; ARNELL, Nigel; MACH, Katharine. **Flood risk and climate change: global and regional perspectives**. Hydrological Sciences Journal, [S.L.], v. 59, n. 1, p. 1-28, 20 dez. 2013. Informa UK Limited. http://dx.doi.org/10.1080/02626667.2013.857411.

LOUCKS, Daniel P.; VAN BEEK, Eelco. Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications. Paris: Unesco, 2005.

LOUCKS, Daniel P.; VAN BEEK, Eelco. **Water Resource Systems Planning and Management**. Jointly Published With Deltares And Unesco-ihe, [s.l.], p.1-635, 2017. Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-44234-1.

MARENGO, J.A.; ALCANTARA, E.; CUNHA, A.P.; SELUCHI, M.; NOBRE, C.A.; DOLIF, G.; GONCALVES, D.; DIAS, M. Assis; CUARTAS, L.A.; BENDER, F.. Flash floods and landslides in the city of Recife, Northeast Brazil after heavy rain on May 25–28, 2022: causes, impacts, and disaster preparedness. Weather And Climate Extremes, [S.L.], v. 39, p. 1-17, mar. 2023. Elsevier BV. http://dx.doi.org/10.1016/j.wace.2022.100545.

MARTÍNEZ, Carlos; SANCHEZ, Arlex; TOLOH, Beheshtah; VOJINOVIC, Zoran. **Multi-objective Evaluation of Urban Drainage Networks Using a 1D/2D Flood Inundation Model**. Water Resources Management, [S.L.], v. 32, n. 13, p. 4329-4343, 19 jul. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11269-018-2054-x.

MATOS, C.; SÁ, A. Briga; BENTES, I.; PEREIRA, S.; BENTO, R.. An approach to the implementation of Low Impact Development measures towards an EcoCampus classification. Journal Of Environmental Management, [S.L.], v. 232, p. 654-659, fev. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.jenvman.2018.11.085.

MCKINNEY, Daene C.; SAVITSKY, Andre G. BASIC OPTIMIZATION MODELS FOR WATER AND ENERGY MANAGEMENT. Tashkent, Uzbequistão: Environmental Policies And Institutions For Central Asia (Epic), 2006.

MIAO, Zhan-tang; HAN, Mooyoung; HASHEMI, Shervin. **The effect of successive low-impact development rainwater systems on peak flow reduction in residential areas of Shizhuang**, China. Environmental Earth Sciences, [s.l.], v. 78, n. 2, p.1-12, jan. 2019. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s12665-018-8016-z.

MIGUEZ, Marcelo Gomes; VERÓL, Aline Pires; REZENDE, Osvaldo Moura. **Drenagem Urbana: do projeto tradicional à sustentabilidade**. Rio de Janeiro: Elsevier, 2016.

MINERVINO, Aline Costa; DUARTE, Elisabeth Carmen. **Danos materiais causados à Saúde Pública e à sociedade decorrentes de inundações e enxurradas no Brasil, 2010-2014: dados originados dos sistemas de informação global e nacional**. Ciência & Saúde Coletiva, [s.l.], v. 21, n. 3, p.685-694, mar. 2016. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/1413-81232015213.19922015.

MOUNIR, Adil; CHE, Daniel; GONZALEZ-PARRA, Cesar; ROBLES-MORUA, Agustin. **Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin**. Journal Of Water Resources Planning And Management, [S.L.], v. 145, n. 9, p. 1-9, set. 2019. American Society of Civil Engineers (ASCE). http://dx.doi.org/10.1061/(asce)wr.1943-5452.0001098.

MUNICH RE. Natural disasters in 2023: Munich Re NatCatSERVICE Full Year Factsheet. Munich Reinsurance Company, 2024.

NASCIMENTO, Maria Odete Teixeira do; FILGUEIRA, Hamilcar José Almeida; SILVA, Tarciso Cabral da. **Metodologia para priorização de ações em aglomerados subnormais considerando os riscos de deslizamentos e inundações e as condições de moradia**. Engenharia Sanitária e Ambiental, [s.l.], v. 18, n. 1, p.39-46, mar. 2013. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1413-41522013000100005.

NASCIMENTO, N.; MACHADO, M. Léa; BAPTISTA, M.; SILVA, A. de Paula e. **The assessment of damage caused by floods in the Brazilian context**. Urban Water Journal, [s.l.], v. 4, n. 3, p.195-210, set. 2007. Informa UK Limited. http://dx.doi.org/10.1080/15730620701466591.

NETTO, José Martiniano de Azevedo; FERNANDEZ, Miguel Fernandez y. **Manual de hidráulica.** 9. ed. São Paulo: Edgard Blucher, 2015.

ROSENTHAL, Richard E. **GAMS: A User's Guide**. Washington, DC: GAMS Development Corporation, 2023.

ROSSMAN, Lewis A.; HUBER, Wayne C.. **Storm Water Management Model Reference Manual Volume I – Hydrology (Revised)**. Cincinnati: National Risk Management Laboratory Office Of Research And Development U.s. Environmental Protection Agency, 2016. 233 p.

SAHARIA, Manabendra; KIRSTETTER, Pierre-Emmanuel; VERGARA, Humberto; GOURLEY, Jonathan J.; HONG, Yang. **Characterization of floods in the United States**. Journal Of Hydrology, [S.L.], v. 548, p. 524-535, maio 2017. Elsevier BV. http://dx.doi.org/10.1016/j.jhydrol.2017.03.010.

SALAMI, Rafiu O.; VON MEDING, Jason K.; GIGGINS, Helen. **Urban settlements' vulnerability to flood risks in African cities: A conceptual framework**. Jàmbá: Journal of Disaster Risk Studies, [s.l.], v. 9, n. 1, p.1-9, 27 fev. 2017. AOSIS. http://dx.doi.org/10.4102/jamba.v9i1.370.

SALVADORE, Elga; BRONDERS, Jan; BATELAAN, Okke. **Hydrological modelling of urbanized catchments: a review and future directions.** Journal Of Hydrology, [S.L.], v. 529, p. 62-81, out. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.jhydrol.2015.06.028.

SCHUETZE, Thorsten; CHELLERI, Lorenzo. Integrating Decentralized Rainwater Management in Urban Planning and Design: Flood Resilient and Sustainable Water Management Using the Example of Coastal Cities in The Netherlands and Taiwan. Water, [s.l.], v. 5, n. 2, p.593-616, 10 maio 2013. MDPI AG. http://dx.doi.org/10.3390/w5020593.

SHIN, Eun Taek; SHIN, Jaehyun; RHEE, Dong Sop; KIM, Hyung-Jun; SONG, Chang Geun. **Integrated Inundation Modeling of Flooded Water in Coastal Cities**. Applied Sciences, [S.L.], v. 9, n. 7, p. 1313, 29 mar. 2019. MDPI AG. http://dx.doi.org/10.3390/app9071313.

SILVA, Carla da; SCHARDONG, Andre; GARCIA, Joaquin; OLIVEIRA, Cristiano. Climate Change Impacts and Flood Control Measures for Highly Developed Urban Watersheds. Water, [S.L.], v. 10, n. 7, p. 829, 23 jun. 2018. MDPI AG. http://dx.doi.org/10.3390/w10070829.

SILVA, Pedro; CABRAL, Jaime. **Atenuação de Picos de Vazão em Área Problema: estudo comparativo de reservatórios de detenção em lote, em logradouros e em grande área da bacia**. Revista Brasileira de Recursos Hídricos, [S.L.], v. 19, n. 2, p. 7-18, 2014. FapUNIFESP (SciELO). http://dx.doi.org/10.21168/rbrh.v19n2.p7-18.

- SILVA, Pedro Oliveira. **Modelagem hidrológica do rio Tejipió por ocasião de chuvas intensas levando em conta o efeito de marés.** 232 folhas. Tese (Doutorado) Universidade Federal de Pernambuco. CTG. Programa de Pós-Graduação em Engenharia Civil, 2019.
- SIMPSON, Matthew G.; ROESNER, Larry A.. **Hydrologic Modeling and Capital Cost Analysis of Low-Impact Development. Journal Of Sustainable Water In The Built Environment**, [s.l.], v. 4, n. 2, p.1-17, maio 2018. American Society of Civil Engineers (ASCE). http://dx.doi.org/10.1061/jswbay.0000843.
- SOHN, Wonmin; KIM, Jun-Hyun; LI, Ming-Han; BROWN, Robert. **The influence of climate on the effectiveness of low impact development: a systematic review**. Journal Of Environmental Management, [S.L.], v. 236, p. 365-379, abr. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.jenvman.2018.11.041.
- SOUZA, Christopher; CRUZ, Marcus; TUCCI, Carlos. **Desenvolvimento Urbano de Baixo Impacto: Planejamento e Tecnologias Verdes para a Sustentabilidade das Águas Urbanas**. Revista Brasileira de Recursos Hídricos, [s.l.], v. 17, n. 2, p.9-18, 2012. FapUNIFESP (SciELO). http://dx.doi.org/10.21168/rbrh.v17n2.p9-18.
- SUN, Y., HU, X., LI, Y., PENG, Y., & YU, Y. (2021). **A framework for deriving dispatching rules of integrated urban drainage systems.** Journal of Environmental Management, 298, 113401. https://doi.org/10.1016/j.jenvman.2021.113401
- TSUDA, Hinako; TEBAKARI, Taichi. **A macroscopic analysis of the demographic impacts of flood inundation in Thailand (2005–2019)**. Progress In Earth And Planetary Science, [S.L.], v. 10, n. 1, p. 1-13, 13 jul. 2023. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s40645-023-00569-9.
- TUCCI, Carlos E. M.; PORTO, Rubem La Laina; BASTOS, Mario T. de (org.). **Drenagem Urbana**. Porto Alegre/RS: ABRH, 2015.
- TUCCI, Carlos E. M.; SILVEIRA, André L. L. da (org.). **Hidrologia: ciência e aplicação**. 4. ed. Porto Alegre: ABRH, 2020. 4 v.
- TUCCI, Carlos; CRUZ, Marcus. **Otimização das Obras de Controle de Cheias em uma Bacia Urbana. Revista Brasileira de Recursos Hídricos**, [S.L.], v. 12, n. 2, p. 63-80, 2007. FapUNIFESP (SciELO). http://dx.doi.org/10.21168/rbrh.v12n2.p63-80.

- UNDRR; CRED. The human cost of disasters: An overview of the last 20 years (2000-2019). United Nations Office for Disaster Risk Reduction, 2020.
- WAHL, Thomas; JAIN, Shaleen; BENDER, Jens; MEYERS, Steven D.; LUTHER, Mark E.. **Increasing risk of compound flooding from storm surge and rainfall for major US cities**. Nature Climate Change, [S.L.], v. 5, n. 12, p. 1093-1097, 27 jul. 2015. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/nclimate2736.
- WAKE, Bronwyn. **Flooding costs**. Nature Climate Change, [s.l.], v. 3, n. 9, p.778-778, 28 ago. 2013. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/nclimate1997.
- WEI, Li; HU, Kai-heng; HU, Xu-dong. **Rainfall occurrence and its relation to flood damage in China from 2000 to 2015**. Journal Of Mountain Science, [s.l.], v. 15, n. 11, p.2492-2504, nov. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11629-018-4931-4.
- WILLIS, Robert; FINNEY, Brad A.. **Environmental Systems Engineering and Economics**. Department Of Environmental Resources Engineering Humboldt State University Arcata, California: Springer Science Business Media, 2004.
- WURBS, Ralph A.. **Modeling river/reservoir system management, water allocation, and supply reliability**. Journal Of Hydrology, [s.l.], v. 300, n. 1-4, p.100-113, jan. 2005. Elsevier BV. http://dx.doi.org/10.1016/j.jhydrol.2004.06.003.
- YANG, B.; ZHANG, T.; LI, J.; FENG, P.; MIAO, Y. **Optimal designs of LID based on LID experiments and SWMM for a small-scale community in Tianjin, north China**. Journal of Environmental Management, v. 334, p. 117442, 2023. DOI: https://doi.org/10.1016/j.jenvman.2023.117442.
- ZAREIAN, Mohammad Javad. **Optimal water allocation at different levels of climate change to minimize water shortage in arid regions (Case Study: Zayandeh-rud River Basin, Iran)**. Journal Of Hydro-Environment Research, [S.L.], v. 35, p. 13-30, mar. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.jher.2021.01.004.
- ZAREIAN, Mohammad Javad; ESLAMIAN, Saeid. Using of Optimization Strategy for Reducing Water Scarcity in the Face of Climate Change. Climate Change Management,

[S.L.], p. 317-331, 2019. Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-75004-0_18.

ZHANG, Kun; CHUI, Ting Fong May. **A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools**. Science Of The Total Environment, [s.l.], v. 621, p.915-929, abr. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.scitotenv.2017.11.281.

ZHANG, Y.; WANG, E.; GONG, Y. A structural optimization of urban drainage systems: An optimization approach for mitigating urban floods. Water, v. 16, p. 1696, 2024. DOI: https://doi.org/10.3390/w16121696.

ZHOU, Qianqian; LENG, Guoyong; FENG, Leyang. **Predictability of state-level flood damage in the conterminous United States: the role of hazard, exposure and vulnerability**. Scientific Reports, [s.l.], v. 7, n. 1, p.1-11, 13 jul. 2017. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41598-017-05773-4.

ZOPPOU, Christopher. **Review of urban storm water models**. Environmental Modelling & Software, [S.L.], v. 16, n. 3, p. 195-231, abr. 2001. Elsevier BV. Disponível em: http://dx.doi.org/10.1016/s1364-8152(00)00084-0.