e~
e
e

=

UFPE

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

DANIEL DA CRUZ BRANDAO

Adaptacao Dinamica de Protocolos de Transporte em Sistemas de Middleware
Baseados em RPC

2025

DANIEL DA CRUZ BRANDAO

Adaptacao Dinamica de Protocolos de Transporte em Sistemas de Middleware
Baseados em RPC

Trabalho apresentado ao Programa de Pés-
graduacao em Ciéncia da Computacdo do Centro
de Informatica da Universidade Federal de Pernam-
buco, como requisito parcial para obtencao do grau
de Mestre em Ciéncia da Computacao.

Area de Concentracdo: Sistemas Distribuidos

Orientador (a): Nelson Souto Rosa

Recife
2025

.Catalogacéo de Publicacdo na Fonte. UFPE - Biblioteca Central

Branddo, Daniel da Cruz.

Adapt acdo di nani ca de protocol os de transporte em sistemas de
m ddl ewar e baseados em RPC / Dani el da Cruz Brandao. - Recife,
2025.

88f.: il.

Di ssertacao (Mestrado)- Universi dade Federal de Pernanbuco,
Centro de Informética, Programa de Pds-Graduacao em Ci énci a da
Conput acdo, 2025.

Orientacdo: Nel son Souto Rosa.

1. Mddl eware adaptativo; 2. Franework de m ddl eware; 3.
Protocol os de transporte. |. Rosa, Nelson Souto. Il. Titulo.

UFPE- Bi bl i ot eca Central

Daniel da Cruz Brandao

“Adaptacao Dinamica de Protocolos de Transporte em Sistemas de
Middleware Baseados em RPC”

Dissertagdo de mestrado apresentada ao
Programa de Pos-Graduagdo em Ciéncia da
Computagdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtencao do titulo de Mestre em Ciéncia da
Computacio. Area de Concentragio: Redes
de Computadores e Sistemas Distribuidos.

Aprovado em: 31/07/2025.

BANCA EXAMINADORA

Prof. Dr. David Junio Mota Cavalcanti
Centro de Informatica / UFPE

Prof. Dr. Fernando Antonio Aires Lins
Departamento de Computacdo / UFRPE

Prof. Dr. Nelson Souto Rosa
Centro de Informatica/UFPE
(orientador)

Dedico este trabalho a minha familia. Aos meus pais, lone e Ramiro, pelos sacrificios que
fizeram para que eu pudesse chegar até aqui. A minha esposa, Stela, pela paciéncia, pelo apoio
e por me lembrar de sorrir nos momentos dificeis. Aos meus filhos, Miguel e Sofia, que sdo a

razdo do meu esforco e pela compreensdo em momentos de auséncia.

AGRADECIMENTOS

Primeiramente gostaria de agradecer ao meu orientador, Prof. Dr. Nelson Souto Rosa, por
sua orientacdo, sua paciéncia, sua confianca, sua disponibilidade e por tudo que me ensinou
ao longo dos anos dedicados a este trabalho. Sua orientacdo e suas criticas construtivas foram
fundamentais para conclusdo desta dissertacao.

Agradeco aos membros da banca examinadora, Prof. Dr. Fernando Antoénio Aires Lins e
Prof. Dr. David Jinio Mota Cavalcanti, por terem aceitado o convite para avaliar esta disser-
tacao e por dedicarem seu tempo e conhecimento para melhorar a qualidade deste trabalho
com suas contribuicoes.

Gostaria de agradecer a equipe da Secretaria de Pés-Graduacdo por toda atencdo e apoio
ao longo destes anos.

Agradeco aos meus colegas do Centro de Informatica que contribuiram mesmo que indire-
tamente com a minha dissertacdo.

Aos professores do Centro de Informatica, agradeco por compartilharem seu conhecimento
e experiéncia, que foram fundamentais para o meu aprendizado e desenvolvimento durante o
mestrado.

Por fim, agradeco a Universidade Federal de Pernambuco (UFPE) por proporcionar um

ambiente académico rico e desafiador, que me permitiu crescer como pesquisador e profissional.

"A frase mais perigosa em qualquer lingua é: 'Nés sempre fizemos as coisas desse jeito’." (Grace

Hopper, 1976).

RESUMO

Um sistema distribuido adaptativo é capaz de ajustar dinamicamente (em tempo de execu-
¢d0) e autonomamente (sem intervencdo humana) seu comportamento ou estrutura enquanto
executa. Sistemas de middleware tém sido particularmente desenvolvidos para apoiar a im-
plementacdo deste tipo de sistema. No entanto, middlewares existentes frequentemente ndo
permitem a adaptacdo dindmica dos protocolos de comunicacdo, fixando-os em tempo de
desenvolvimento, ndo permitindo trocas dos protocolos e, como consequéncia, engessando a

comunicacdo entre sistemas. Esta dissertacao propde um mecanismo de adaptacdo, denomi-

nado |Protocol Adaptation (pAdapt), contendo componentes de middleware que podem

ser ajustados em tempo de execucdo e permitindo a troca do protocolo de comunicacdo de
acordo com critérios implementados pelo desenvolvedor, como mudancas do contexto de exe-
cucao da aplicacdo, e.g., o aumento da vulnerabilidade de seguranca da rede leva a troca
do protocolo de transporte da aplicacao por um protocolo mais seguro. A solucdo proposta
implementa componentes de oito protocolos de comunicacdo (UDP, TCP, TCP sobre TLS,
RPC, QUIC, HTTP/1.1, HTTPS e HTTP/2) e introduz um mecanismo de adaptacdo sin-
crona. Este mecanismo, orquestrado pelo servidor e baseado no MAPE-K (Monitor, Analyser,
Planner, Executor and Knowledge), garante a troca de protocolos em tempo de execucdo
de forma coordenada entre o servidor e todos os clientes conectados, preservando o estado
da comunicacdo e sem perda de mensagens. Ao mesmo tempo, estes novos componentes
sao incorporados a um framework de desenvolvimento de middleware adaptativo ja existente,
chamado gMidArch. Uma avaliacdo experimental foi realizada para comparar o desempenho
da solucdo adaptativa proposta com middlewares comerciais como gRPC e RabbitMQ. A
avaliacdo mostra que a sobrecarga do mecanismo de adaptacao tem pouco impacto sobre o
desempenho da aplicacao. Ao mesmo tempo, os resultados indicam que o com os
novos componentes apresenta menor consumo de CPU no cliente em cenérios de baixa carga
e desempenho superior em transferéncias de arquivos grandes. Como principal contribuic3o,
este trabalho permite que desenvolvedores de middleware selecionem e reconfigurem dinami-
camente o protocolo de comunicacao mais adequado para diferentes requisitos da aplicacdo,

sem comprometer o desempenho das aplicacdes.

Palavras-chaves: Middleware Adaptativo, Framework de Middleware, Protocolos de Trans-

porte.

ABSTRACT

An adaptive distributed system is capable of dynamically (at runtime) and autonomously
(without human intervention) adjusting its behavior or structure while executing. Middleware
systems have been particularly developed to support the implementation of this type of system.
However, existing middleware often does not allow dynamic adaptation of communication pro-
tocols, fixing them at development time, not allowing protocol changes and, as a consequence,

hindering communication between systems. This dissertation proposes an adaptation mecha-

nism, named [Protocol Adaptation| (pAdapt]), containing middleware components that can

be adjusted at runtime and allowing the exchange of the communication protocol according to
criteria implemented by the developer, such as changes in the application execution context,
e.g., the increase in network security vulnerability leads to the exchange of the application
transport protocol for a more secure protocol. The proposed solution implements compo-
nents of eight communication protocols (UDP, TCP, TCP over TLS, RPC, QUIC, HTTP/1.1,
HTTPS and HTTP/2) and introduces a synchronous adaptation mechanism. This mechanism,
orchestrated by the server and based on MAPE-K (Monitor, Analyser, Planner, Executor and
Knowledge), ensures the coordinated exchange of protocols at runtime between the server
and all connected clients, preserving the communication state and without message loss. At
the same time, these new components are incorporated into an existing adaptive middleware
development framework called gMidArch. An experimental evaluation was performed to com-
pare the performance of the proposed adaptive solution with commercial middleware such as
gRPC and RabbitMQ. The evaluation shows that the overhead of the adaptation mechanism
has little impact on the application performance. At the same time, the results indicate that
pAdapt| with the new components presents lower CPU consumption on the client in low-load
scenarios and superior performance in large file transfers. As a main contribution, this work
allows middleware developers to dynamically select and reconfigure the most suitable com-
munication protocol for different application requirements, without compromising application

performance.

Keywords: Adaptive Middleware, Middleware Framework, Transport Protocols.

LISTA DE FIGURAS

[Figura 1 — |[Monitor, Analyze, Plan, Execute and Knowledge (MAPE-K) 28
[Figura 2 — Componentes do gMidArch| 29
[Figura 3 — Componentes do gMidArch| 33
[Figura 4 — Fluxo de Adaptacao de Protocolos de Comunicacao do [pAdapt} Sequéncia |
| de passos| 35
[Figura 5 — Componentes de adaptacao do|pAdapt| 37
[Figura 6 — Ambiente de Execucao dofpAdapt] 38
[Figura 7/ — Arquitetura dos Experimentos| 63
[Figura 8 — Experimento Fibonacci 2: Boxplot Protocolos vs RTT| 67
[Figura 9 — Experimento SendFile 36x36: Boxplot Protocolos vs RTT| 68
[Figura 10 — Experimento Fibonacci 2: Boxplot da CPU do Cliente x Protocolos| 69
[Figura 11 — Experimento Fibonacci 38: Boxplot Protocolos vs RT T} 71
[Figura 12 — Experimento SendFile 4k: Boxplot Protocolos vs RTT| 72

LISTA DE CODIGOS

[Codigo Fonte 1 executor.gof. 39
(Codigo Fonte 2 UNIE.EO| 40
[Codigo Fonte 3 pluginBuild.model| 0. 41
[Codigo Fonte 4 protocol.go|. 44
[Codigo Fonte 5 UNIE.EO| 45
[Codigo Fonte 6 ClientRequestHandlerUDP Send File| 48
[Codigo Fonte 7 ClientRequestHandler UDP Connection| 49
[Codigo Fonte 8 Conexao Server Request Handler do QUIC| 51
[Codigo Fonte 9 Servidor RPC| 53
[Codigo Fonte 10 HTTP Receive| 54
[Codigo Fonte 11 HITP Servel 0 0 54
[Codigo Fonte 12 HTTP Send|. 55
[Codigo Fonte 13 Fibonacci Server] 63
[Codigo Fonte 14 Fibonacci Client| 64

[Codigo Fonte 15

Modelo de configuracao do Docker Compose utilizado nos expe-

LISTA DE TABELAS

[Tabela 1 — Caracteristicas dos Protocolos de Comunicacao| 25

[Tabela 2 — Variaveis de ambiente para configuracao de certificados para utilizacao com |

| protocolos seguros| 50
Tabela 3 — Parametros do Sistemal 58
[labela 4 — Parametros da Carga de Irabalho| 59
[Mabela 5 — Fatores 61

ADL
AMQP
API
AUM
CoAP
CSv
DDS
gMidArch
Golang
gRPC
HTTP
HTTP/2
HTTP/3
HTTPS
loT
JSON
mADL
MAPE-K
MEx
MQTT
MTU
oSl
pAdapt
pADL

QoS

LISTA DE ABREVIATURAS E SIGLAS

Architecture Description Language
Advanced Message Queuing Protocol
Application Programming Interface
Adaptive Ubiquitous Middleware
Constrained Application Protocol
Comma-Separated Values

Data Distribution Service

go adaptive Middleware aid by software Architecture

Go language

gRPC Remote Procedure Calls

HyperText Transfer Protocol

HyperText Transfer Protocol version 2
HyperText Transfer Protocol version 3
Hypertext Transfer Protocol Secure

Internet of Things

JavaScript Object Notation

middleware Architecture Description Language
Monitor, Analyze, Plan, Execute and Knowledge
Middleware Extendify

Message Queuing Telemetry Transport
Maximum Transmission Unit

Open Systems Interconnection

Protocol Adaptation

Python-based Architecture Description Language

Quality of Service

QUIC Quick UDP Internet Connections

REST Representational State Transfer
RPC Remote Procedure Call

RTT Round-Trip Time

TCP Transmission Control Protocol
TLS Transport Layer Security

UDP User Datagram Protocol

SUMARIO

il INTRODUCAOQ|ottt ittt e et e e 16
1.1 CONTEXTO E MOTIVACAQ| 16
T2 PROBLEMA o oo 18
1.3 SOLUCOES EXISTENTES E LACUNAS IDENTIFICADAS| 19
T4 OBIETIVOS oo 20
1.5 SOLUCAO PROPOSTA| 21
16 FSTRUTURA DO DOCUMENTO 22
2 FUNDAMENTACAO TEORICA| o it i i 23
2.1 PROTOCOLOS DE COMUNICACAO| 23
22 MIDDLEWARE ADAPTATIVO 26
23 FEEDBACKIOOP| o oot 27
24 GMIDARCH FRAMEWORK] 28
2.5 CONSIDERACOES FINAIS|., 31
B [pAdapt| (PROTOCOL ADAPTATION)| 32
Bl VISAOGERALl 32
B.2 MECANISMO DE ADAPTACAO!|. 34
.......................... 42
3.4 CONSIDERACOES FINAIS|., 56
4 AVALIACAO EXPERIMENTALl. i 57
4.1 OBJETIVOS DA AVALIACAO| 57
4.2 METRICAS, PARAMETROS E CARGA DE TRABALHO|. 53

43 FATORES E PROJETO DOS EXPERIMENTOS

6.2 LIMITACOES| 80

6.3 TRABALHOS FUTUROS

16

1 INTRODUCAO

Este capitulo introduz o trabalho desenvolvido nesta dissertacdo, iniciando pela Secdo [1.1
que estabelece o contexto e a motivacdo da pesquisa, e analisa como as tendéncias em siste-
mas distribuidos demandam flexibilidade na comunicacdo. Passando entdo para a Secdo [1.2]
que aborda o problema da rigidez nos sistemas de middleware convencionais, seguindo para
a Secdo [I.3) que expde as solucdes existentes e as lacunas identificadas na literatura. Com
esta base, na Sec3o[I.4]sdo apresentados os objetivos desta dissertacdo, que visam abordar as

lacunas identificadas e propor uma solucdo inovadora. A secdo [1.5] é entdo dedicada a intro-

duzir a solucdo proposta, o mecanismo |Protocol Adaptation| (pAdapt)), e seus principios.

Finalmente, a Se¢do descreve a estrutura do documento, detalhando a organizacao dos

capitulos subsequentes.

1.1 CONTEXTO E MOTIVACAO

Sistemas distribuidos sdo utilizados em diversos dominios, que vao desde aplicacGes Web

(ABGAZ et al., 2023) (CHEN et al,, 2018) e microsservicos (FOWLER, 2014) (S6YLEMEZ; TE-

KINERDOGAN; KOLUKISA, [2022), até a |Internet of Things (loT)| (KHEZEMI et al., [2024) e a

computacdo de borda (edge computing) (SHI et al,, 2016) e operam em ambientes cada vez
mais heterogéneos e dinamicos. A heterogeneidade é vista na diversidade de regras de negdcio,
de dispositivos, sistemas operacionais, frameworks e principalmente nos protocolos de comu-
nicacdo. J& a dinamicidade é percebida na variacdo da carga de trabalho, na disponibilidade
de recursos computacionais e nas condicdes instaveis da rede. Sistemas adaptativos sdo temas
recorrentes e ja estabelecidos (DA; DALMAU; ROOSE, 2011) (WEYNS, 2021)), mas, independen-
temente do suporte oferecido aos desenvolvedores de sistemas, as questdes de heterogeneidade
e adaptabilidade geralmente s3o tratadas por uma camada de software intermediaria, o mid-
dleware.

Um Middleware adaptativo (ROSA et al.,, 2020) gerencia este dinamismo, reconfigurando-
se automaticamente para atender a requisitos nao funcionais, como desempenho, seguranca
e confiabilidade, ou mesmo requisitos funcionais, como uma opcao para poupar energia e
manter o dispositivo funcionando por mais tempo. Contudo, apesar dos avancos na area, uma

limitacdo critica persiste: ndo foram identificados sistemas de middleware capazes de ajustar

17

dinamicamente o protocolo de comunicacdo. Ou seja, por padrdo, o protocolo usado pelo
middleware é fixado em tempo de desenvolvimento e depois nao pode ser ajustado durante a
execucao.

O dinamismo percebido nas aplicacdes contrasta com a natureza estética das arquitetu-

ras de middleware. Em clusters de microsservicos, por exemplo, a comunicacdo entre servicos

internos pode exigir um middleware de alto desempenho, como o [gRPC Remote Procedure

(Calls (gRPC)| (GRPC, 2025)). J& a comunicagdo com clientes externos, como navegadores

Web e aplicacGes mdveis, demanda pela construcdo de uma |Application Programming Interd

face (API)| com o uso de protocolos amplamente adotados e interoperaveis, como [HyperTex

| Transfer Protocol (HTTP)| (FIELDING; NOTTINGHAM; RESCHKE, [2022) com |Representational
|State Transfer (REST)| (FIELDING, 2000) e |JavaScript Object Notation (JSON)|l Por outro

lado, para aplicacoes que toleram perdas de pacotes, como telemetria em tempo real, proto-

colos leves baseados em |User Datagram Protocol (UDP)|sdo mais adequados. Além disso, em

cenarios onde os servicos estao hospedados em nuvens pagas, também é necessario considerar
o custo de operacao, onde o uso de protocolos que exijam mais recursos computacionais, como
memoria, CPU e trafego de rede, pode impactar diretamente no valor a ser pago.

Um middleware que utiliza um Unico protocolo de transporte obriga as equipes de desen-
volvimento a fazerem concessGes de arquitetura. Ou seja, os desenvolvedores devem optar pela
adocao do protocolo pré-estabelecido, ou entdo gerenciar multiplos conjuntos de tecnologia
de comunicacdo, como diferentes middleware, diferentes protocolos de comunicacao e encap-
sulamento e diferentes formas de implementacdo para o envio de uma mesma mensagem, o
que eleva a complexidade de desenvolvimento, monitoramento e manutencao.

A proliferacdo da Internet das Coisas com a explos3o de dispositivos introduz outro
conjunto de desafios. Tais dispositivos operam sob restricGes severas de energia, poder de
processamento e largura de banda de rede. Nesses cenarios, a escolha do protocolo é critica.

Um destes cenérios de pode ser exemplificado com o uso de protocolos leves como o

UDP), ideal para o envio de pequenas leituras de sensores, onde o overhead de uma conexao

| Transmission Control Protocol (TCP)|é proibitivo. Em cenérios onde a confiabilidade e a segu-

ranca sao necessarias, € indicado o uso de protocolos que garantam a entrega das mensagens,

como [TCP} e também de um protocolo que melhore a seguranca, como o [Transport Layel]

|Security (TLS)| (RESCORLA), 2018)). Um cendrio, que se enquadra nestas condices, é o envio

de atualizagBes de firmware para dispositivos [loT}, onde a perda de pacotes pode ocasionar

falhas no dispositivo e um firmware comprometido pode ser um risco de seguranca.

18

Um outro cenério é onde um dispositivo pode precisar alternar entre um modo de baixa

energia (usando|UDP)) e um modo de alta confiabilidade (usando|T CP|sobre[TLS|), dependendo

da tarefa a ser executada ou das condicbes da rede. A auséncia de um mecanismo de adaptacao
de protocolo nesses ambientes resulta em sistemas que, ou desperdicam recursos, ou falham
em garantir a confiabilidade quando ela é mais necessaria.

Esta dissertacao é, portanto, motivada pela necessidade de evoluir o middleware para além
de sua concepcao de protocolos de comunicacdo estaticos. A proposta é tratar o protocolo de
transporte ndo como um detalhe de implementac3o fixo, mas como uma dimensao estratégica
e dinamica do sistema, que pode e deve ser adaptada em tempo de execucdo para responder
as demandas da aplicacido e do ambiente, otimizando assim, seu desempenho, seguranca,

eficiéncia e custo.

1.2 PROBLEMA

O problema central abordado nesta dissertacdo é a rigidez da camada de transporte dos
sistemas de middleware convencionais. Esta limitacdo compromete ndo somente a eficiéncia, a
flexibilidade e a capacidade de evolucdo de aplicacdes distribuidas, mas também os custos en-
volvidos na manutencao e execucdo destas aplicacdes. A pratica de implementar o middleware
com um unico protocolo de comunicacao em tempo de desenvolvimento, tornando-o imutavel
em tempo de execucdo, gera uma série de desafios técnicos e operacionais.

O primeiro destes desafios é a inflexibilidade em tempo de execucao. A escolha de um
protocolo durante a fase de projeto é baseada em suposicoes sobre o ambiente operacional e
o perfil de uso da aplicacao. Na pratica, esses fatores sao dinamicos e podem mudar ao longo
do tempo. Por exemplo, a carga de trabalho pode variar sazonalmente, as condi¢cdes da rede
podem se degradar, novos requisitos de seguranca podem ser impostos (MITRE, 2013) e novas
tecnologias de protocolo mais eficientes podem emergir (BISHOP, 2022). Um sistema com um
protocolo fixo é incapaz de reagir a essas mudancas, ficando restrito a operar em um estado
inseguro ou operando de forma ineficiente, até que um ajuste seja realizado manualmente para
atualizar o sistema.

Outro desafio é a complexidade e o custo de manutencdo. A falta de um middleware
adaptativo e multiprotocolo nativo impde uma carga de complexidade sobre as equipes de de-
senvolvimento. Para contornar esta rigidez, os desenvolvedores sio forcados a adotar solucdes

alternativas, como gerenciar multiplas pilhas de middleware distintos em paralelo ou construir

19

gateways de traducao de protocolo. Essas solucdes s3o frageis, introduzem laténcia adicional,
aumentam a superficie de ataque e tornam o sistema como um todo mais dificil de entender,
depurar e manter.

Por outro lado, para evitar a complexidade, o custo de manutencdo e os problemas mencio-
nados acima, é possivel que os desenvolvedores optem pela utilizacdo de um protocolo genérico
para todas as aplicacoes e cendrios. No entanto, a utilizacao de um protocolo inadequado para
uma determinada tarefa leva a um desperdicio de recursos. Por exemplo, forcar o uso de [TCP|
para uma aplicacdo de telemetria em tempo real, que poderia tolerar pequenas perdas de paco-
tes, introduz overhead de laténcia com handshakes e retransmissdes. Inversamente, usar [UDP]
para uma transacao financeira sem uma camada de confiabilidade robusta implementada na
aplicacdo é invidvel. Nestas situacdes, a diferenca entre o protocolo ideal e o utilizado resulta
em maior consumo de CPU, maior uso de memdria e possivelmente um aumento de custo de
operacao, especialmente em ambientes de nuvem onde o uso de recursos é cobrado.

Um outro desafio é a adocdo de um novo protocolo de transporte. A introducdo de um
novo protocolo exigiria a substituicio completa do middleware, em vez de uma atualizacao
incremental. Isso inibe a capacidade do sistema de evoluir e se beneficiar dos avancos continuos

na tecnologia de comunicacdo.

1.3 SOLUCOES EXISTENTES E LACUNAS IDENTIFICADAS

As solucdes existentes frequentemente apresentam uma ou mais limitacées. Uma primeira
limitacdo encontrada nas solucdes atuais é o escopo de dominio especifico. Muitos frameworks
adaptativos, como Cilia (Lalanda; Morand; Chollet, [2017)), AUM (PRADEEP; KRISHNAMOORTHY;
VASILAKOS, 2021)) e MEx (CAVALCANTI; ROSA, 2024)), sdo projetados com foco em dominios
especificos, como ou redes ciberfisicas. Suas arquiteturas s3o otimizadas para os requisitos
desses dominios (e.g., protocolos como MQTT e CoAP, e baixo consumo de energia), o
que limita sua aplicabilidade em cenarios de propésito geral, como aplicacoes Web de alto
desempenho.

Outra limitacdo é a adaptacdo inexistente ou limitada. Outras solucdes oferecem suporte
limitado a multiplos protocolos, mas carecem de mecanismos para adaptacdo em tempo de
execucdo entre eles. O pacote RPC nativo do Go (RPC-GO, [2025)), por exemplo, permite
escolher entre [TCP| e [HT TP} mas essa escolha é estitica. O framework Gorilla (GORILLA|
2025) também se concentra em e WebSocket sem prover meios para reconfiguracao

20

dindmica.

Portanto, fica evidente a lacuna nas solucdes existentes, a falta de um middleware adapta-
tivo de propédsito geral que suporte a adaptacdo de protocolos de comunicacao em tempo de
execucdo. Com isso, a pergunta central que esta dissertacdo busca responder: Como superar

a rigidez da camada de transporte dos sistemas de middleware convencionais?

1.4 OBJETIVOS

O objetivo geral desta dissertacio é projetar, implementar e avaliar um middleware adap-
tativo, de propdsito geral, que supere a rigidez da camada de transporte, através da adaptacao
(troca) de forma autondmica e dindmica de protocolos de comunicagdo em tempo de execug¢do,
sem a perda de informacdes e de forma sincrona entre clientes e servidores.

Para alcancar o objetivo geral, os seguintes objetivos especificos foram definidos:

1. Realizar um levantamento bibliografico e anélise comparativa dos principais frameworks
e middleware adaptativos: Realizar um estudo abrangente sobre os middleware adapta-
tivos existentes, com foco em suas capacidades de adaptacdo e nos seus protocolos de
comunicacdo, identificando lacunas e limitacdes que justificam a necessidade de uma

nova abordagem;

2. Projetar e implementar diferentes protocolos de comunicacdo: Projetar e implementar
componentes que incorporem um conjunto diversificado de protocolos de comunicac3o
(UDP}, [TCP} [TCP]sobre[TLS| (RESCORLA, [2018)), [Remote Procedure Call (RPC)| (THUR-
LOW, [2009), |Quick UDP Internet Connections (QUIC)| (IYENGAR; THOMSON, [2021)),
[HTTP)/1.1 (FIELDING; NOTTINGHAM; RESCHKE, [2022)), [Hypertext Transfer Protocol Seq

|cure (HTTPS)| (FIELDING; NOTTINGHAM; RESCHKE, 2022) e |Hyper Text Transfer Proto-

|col version 2 (HTTP/2) (THOMSON; BENFIELD, 2022)) como componentes modulares

e intercambidveis;

3. Projetar e implementar um mecanismo de adaptacdo de protocolos de comunicac3o:
Projetar e implementar um mecanismo de adaptacdo em tempo de execucdo, capaz de
orquestrar a migracao sincrona de protocolo entre o servidor e seus clientes de forma

stateful, proporcionando consisténcia ao sistema e integridade dos dados durante a tran-

21

sicao, permitindo assim que o servidor e seus clientes sejam adaptados simultaneamente;

S

4. Avaliar o desempenho e a eficacia da solucdo: Avaliar experimentalmente o desempenho
da solucdo proposta, quantificando o impacto (overhead) do mecanismo de adapta-
cdo e comparando o seu desempenho com outros middleware comerciais sob diferentes

condicoes de trabalho, a fim de validar sua viabilidade e competitividade.

1.5 SOLUCAO PROPOSTA

A solucao proposta nesta dissertacao para resolver os desafios mencionados é um me-

canismo de adaptacdo, chamado [Protocol Adaptation| (pAdapt|), capaz de realizar trocas

do protocolo de comunicacdo enquanto a aplicacdo executa e sem a parada da mesma. O
consiste de um conjunto de novos componentes em tempo de desenvolvimento, e
um novo mecanismo de adaptacdo com sincronizacdo entre clientes e servidores. Os novos
componentes em tempo de desenvolvimento adicionados encapsulam regras de comunicacao
de diversos protocolos de comunicacdo acrescentados ao middleware. J&4 o novo mecanismo de
adaptacdo, com sincronizacao entre clientes e servidores, age como um orquestrador que ge-
rencia a troca dos componentes (protocolos) dinamicamente, proporcionando uma adaptacdo
consistente e sem perda de estado ou mensagens em transito. Por fim, o é incorpo-
rado como uma extensdao a um framework de middleware adaptativo ja existente, chamado
gMidArch (ROSA et al., [2020)).
O mecanismo foi projetado considerando dois principios bésicos:

= Suporte Nativo e Extensivel a Mdltiplos Protocolos de Comunicacdo: O [pA]

implementa um conjunto diversificado de componentes de comunicacdo, cada

um encapsulando um protocolo de transporte distinto, [UDP}, [TCP] [TCP| sobre [TLS]
RPC, IQUIC, HTTP|/1.1, HTTPS|e HTTP/2| A arquitetura de componentes do gMi-

dArch permite que esses protocolos sejam tratados como "pecas" intercambiaveis e,
mais importante, que novos protocolos sejam adicionados no futuro com esforco mi-

nimo, melhorando a extensibilidade da solucao; e

» Mecanismo de Adaptacao Sincrona e Stateful: O orquestrador coordena a mu-

danca de protocolos entre o servidor e todos os seus clientes conectados. Para isso, o

22

orquestrador usa o [MAPE-K| (IBM, 2005), i.e., monitora o sistema, analisa as informa-
cOes coletadas do monitoramento, planeja e executa as adaptacdes conforme necessario.
O foco deste novo mecanismo estd em como realizar a adaptacdo, e ndo no motivo da

adaptacao.

1.6 ESTRUTURA DO DOCUMENTO

O restante da dissertacdo é organizado em mais cinco capitulos:

Capitulo 2] Este capitulo introduz os conceitos basicos necessarios para o entendimento

deste trabalho;

Capitulo 3] Este capitulo apresenta os novos componentes dos protocolos de comunica-

cdo, o novo mecanismo de adaptacdo de protocolos em tempo de execucdo, denominado

[PAdapt] e a integracdo deles com o gMidArch;

Capitulo [@} Este capitulo apresenta a avaliagdo experimental da solucdo proposta;

Capitulo [5} Este capitulo apresenta uma anélise comparativa com os trabalhos existen-

tes; e

Capitulo [6] Neste dltimo capitulo sdo apresentadas as conclusGes e os potenciais tra-

balhos futuros desta dissertacdo.

23

2 FUNDAMENTACAO TEORICA

Este capitulo apresenta os conceitos necessarios para a compreensao desta dissertacao.
Primeiramente serdo abordados os protocolos de comunicacdo na Secdo [2.1] Na sequéncia,
a Secdo [2.2] apresenta os conceitos de middleware adaptativo e responde as questdes basicas
de um sistema adaptativo. Em seguida, na Secdo [2.3] é apresentado o [MAPE-K]| A Secdo
detalha o framework de middleware gMidArch (ROSA et al., |2020)), implementado utilizando a
linguagem de programacdo Go. Por fim, a Secdo [2.5| apresenta as consideracdes finais deste

capitulo.

2.1 PROTOCOLOS DE COMUNICACAO

Os protocolos de comunicacdo de mensagens em sistemas distribuidos garantem que os
dados transmitidos entre os componentes da aplicacdo cheguem corretamente ao destino,
mesmo diante de falhas ou congestionamentos.

Entre os protocolos mais comuns utilizados em sistemas distribuidos estdo [UDP| [TCP},
TCP com [TLS| [RPC|, [QUIC|, [HTTP}, HTTPS| [HTTP /2| [gRPC| e [Advanced Message Queuing|

|Protocol (AMQP)| (GODFREY; INGHAM; SCHLOMING, 2012)). A seguir, sdo detalhadas as prin-

cipais caracteristicas destes protocolos de comunicacdo:

= UDP: O User Datagram Protocol (UDP) é um dos protocolos de comunica¢do mais
simples e de menor laténcia. Seu bom desempenho decorre da auséncia de mecanismos
de controle de confiabilidade, como verificacao de integridade, correcio de erros ou
retransmissdo de pacotes perdidos. O protocolo ndo estabelece conexdo, transmitindo
dados sem garantia de entrega ou ordenacdo. Essa caracteristica o torna particularmente
adequado para aplicacoes sensiveis ao tempo, como transmissdes multimidia e sistemas
em tempo real, nas quais a perda ocasional de pacotes é toleravel, e preferivel, a atrasos

decorrentes de retransmissoes;

= TCP: O Transmission Control Protocol (TCP) é um protocolo orientado a conexao,
que oferece comunicacdo confiavel entre duas extremidades. Ele implementa controle de
fluxo, controle de congestionamento e garantia de entrega de pacotes na ordem correta.
Por essa razdo, o protocolo [TCP| é amplamente adotado em aplicacdes que exigem

confiabilidade;

24

TCP com TLS: O Transport Layer Security (TLS) (RESCORLA, 2018) é um protocolo
criptografico que opera sobre o TCP, adicionando uma camada de seguranca a comuni-
cacdo. Ele protege contra escutas e alteracoes indevidas nos dados transmitidos, sendo
fundamental em ambientes que exigem confidencialidade e integridade. Por simplicidade,
neste trabalho, o termo TLS sera utilizado para se referir ao uso do protocolo TLS sobre

o protocolo TCP;

RPC: O Remote Procedure Call (RPC) (THURLOW, 2009)) ndo é, em si, um protocolo
de transporte, mas sim um paradigma de comunicacdo que permite a um programa
executar uma funcdo que esteja em outro de endereco, e.g., em outra maquina, como
se fosse uma chamada local. O RPC abstrai a complexidade da comunicacdo em rede,

permitindo que os desenvolvedores se concentrem na légica de negdcio do sistema;

QUIC: O Quick UDP Internet Connections (QUIC) (IYENGAR; THOMSON, [2021) é um
protocolo de transporte desenvolvido pelo Google que combina as vantagens do UDP
com mecanismos de seguranca e confiabilidade. Ele incorpora criptografia por padrao,

multiplexacao eficiente de conexdes e recuperacdo rapida de perdas;

HTTP: O HyperText Transfer Protocol (HTTP) (FIELDING; NOTTINGHAM; RESCHKE,
2022) é um protocolo de aplicacdo baseado em texto, utilizado amplamente na comu-
nicacdo Web. Ele define regras para requisicdes e respostas entre clientes e servidores.
Sua simplicidade e padronizacdo o tornam adequado para aplicacdes Representational
State Transfer (REST]) e microsservicos (FOWLER, 2014). HTTP é o principal protocolo
utilizado para a transferéncia de dados na Web, permitindo a comunicacdo entre nave-
gadores e servidores. O HTTP opera sobre o TCP, garantindo a entrega confidvel de

mensagens;

HTTPS: O Hypertext Transfer Protocol Secure (HTTPS) (FIELDING; NOTTINGHAM;
RESCHKE, [2022) é uma versdo mais segura do HTTP, sendo essencialmente HTTP
operando sobre [TLS] Ele garante a confidencialidade e autenticidade das comunicacdes,

sendo o padrdo adotado para transacdes seguras na Web;

HTTP/2: A Versdo 2 do HTTP, o Hypertext Transfer Protocol Secure version 2
(HTTP/2) (THOMSON; BENFIELD) [2022), é uma evolucdo do protocolo HTTP, introdu-
zindo melhorias como multiplexacdo de streams, compressdo de cabecalhos e uso mais

eficiente de conexdes TCP. Isso resulta em menor laténcia e melhor desempenho;

25

= gRPC: O gRPC Remote Procedure Calls (gRPC) (GRPC, 2025) é um framework de

chamadas de procedimento remoto baseado em HTTP/2 e Protocol Buffers. Ele permite

comunicacao eficiente entre servicos, com suporte a streaming, multiplas plataformas e

linguagens de programacao; e

= AMQP: O Advanced Message Queuing Protocol (AMQP) (GODFREY; INGHAM; SCH-

LOMING, 2012) é um protocolo que opera como um intermediario de mensagens entre

sistemas distribuidos, promovendo desacoplamento e escalabilidade, também é o proto-

colo utilizado como base para o RabbitMQ (RabbitMQ, 2025)).

A Tabela|l| resume as principais caracteristicas dos protocolos de comunicacdo abordados,

destacando aspectos como confiabilidade e seguranca, assim como adicionando os principais

casos de uso de cada protocolo.

Tabela 1 — Caracteristicas dos Protocolos de Comunicacdo

Protocolo Confiabilidade Seguranca Principal Caso de Uso

UDP Baixa N&o Multimidia, tempo real (baixa laténcia)

TCP Alta N3o Aplicacbes que exigem confiabilidade

TLS Alta Alta Comunicac3do segura (confidencialidade)

RPC F)ependente da F)ependente da Chamadas de funcdes remotas
implementacao implementacdo

QUIC Alta Alta Web moderna (substituto TCP+TLS)

HTTP Alta N3o Web, APIs REST, microsservicos

HTTPS Alta Alta Web segura

HTTP/2 Alta Alta Web de alto desempenho (multiplexacdo)

gRPC Alta Alta APls, comunicacao entre microsservicos

AMQP Alta N3o Mensageria, sistemas desacoplados

Fonte: Elaborado pelo autor (2025)

Como pode ser observado na Tabela [I| cada protocolo possui diferentes caracteristicas,

que os tornam mais adequados para determinados cenarios. Ou seja, uma aplicacdo pode se

beneficiar de um protocolo em determinado cenério, e.g., [UDP)| para transmissdes multimidia,

mas em outro cendrio, e.g., chamadas a [APIs, o |HT TP /2| pode ser mais apropriado.

26

2.2 MIDDLEWARE ADAPTATIVO

Para lidar com a complexidade dos sistemas distribuidos, os middlewares adaptativos sur-
gem como uma solucao eficaz. Um middleware adaptativo é uma camada de software interme-
didria que trata a heterogeneidade e adaptabilidade do sistema. Ele gerencia o dinamismo do
ambiente, reconfigurando-se automaticamente para atender a diferentes requisitos. Isso inclui
a capacidade de adaptar protocolos de comunicac3do, foco deste trabalho.

Para gerenciar a complexidade ao se desenvolver um middleware adaptativo, sao enfren-
tados os mesmos desafios de se desenvolver um sistema adaptativo (SALEHIE; TAHVILDARI,
2009). Estes desafios nos levam a questdes basicas de adaptacdo, como: o porqué de adaptar,
onde adaptar, o que adaptar, como adaptar e quando adaptar.

Considerando que um middleware é uma camada entre diferentes sistemas distribuidos, a
adaptacdo dos protocolos de comunicacao se torna ainda mais impactante, uma vez que, se
ocorrer algum problema, ambos os sistemas se comunicando podem ser afetados.

Sendo assim, respondendo as questdes levantadas, comecamos com o porqué de adaptar
protocolos de comunicacdo. A adaptacdo de protocolos de comunicacdo é necessaria, como
esclarecido na Secdo [1.2] para lidar com mudancas no ambiente, seja nas condicdes de rede,
nos requisitos de desempenho, na seguranca e ou mesmo na confiabilidade.

A segunda quest3do é onde adaptar. A adaptacdo de protocolos de comunicacdo deve ocorrer
somente nas camadas do middleware que tratam da comunicacao, i.e., onde os protocolos de
comunicacdo sao implementados e gerenciados. Isso permite que o middleware adapte os
protocolos utilizados, sem impactar as camadas superiores, nem a aplicacdo que utiliza o
middleware.

A terceira questdo é o que adaptar. Para efetuar a adaptacdo dos protocolos de comu-
nicacdo, os componentes responsaveis pela comunicacdo devem ser substituidos por outros
componentes que implementem o novo protocolo desejado. Com isso é necessario que os com-
ponentes de comunicacdo sejam desenvolvidos de forma que sejam compativeis entre si, ou
seja, que possuam a mesma interface de comunicacao.

A quarta questdo é como adaptar. Esta questdo é o foco deste trabalho, projetar e im-
plementar um middleware adaptativo que permita a adaptacao de protocolos de comunicacao
em tempo de execucdo, sem a necessidade de reiniciar o sistema ou interromper o servico
e sem perda de informacoes, ainda de forma sincrona entre clientes e servidores. Para isso,

o middleware deve seguir um fluxo de adaptacdo que permita a troca dos componentes de

27

comunicacdo de forma sincronizada.

A Ultima questdao é quando adaptar. A adaptacdo dos protocolos de comunicacdo deve
ocorrer quando houver uma mudanca nas condicGes do ambiente ou nos requisitos da aplica-
cdo que justifique a troca do protocolo utilizado. Este é um ponto onde o desenvolvedor do
middleware deve definir e implementar os critérios que serdo utilizados para disparar a adap-
tacdo. A solucao proposta neste trabalho ndo aborda a definicdo destes critérios, mas sim o
mecanismo de adaptacao em si, deixando a cargo do desenvolvedor do middleware a definicao

de quando adaptar.

2.3 FEEDBACK LOOP

Uma abordagem tradicional para estruturar sistemas adaptativos é utilizar o conceito de
feedback loop para gerenciar a adaptacdo destes sistemas (KEPHART; CHESS, 2003), especial-
mente em ambientes distribuidos e dindmicos. Trata-se de um mecanismo de gerenciamento
baseado na coleta continua de dados do sistema, analise do seu comportamento atual e tomada
de decisGes para ajustes ou reconfiguracdes em tempo de execucao.

O modelo de feedback loop [MAPE-K| (KEPHART; CHESS) [2003)) (1BM, [2005)) é comumente
utilizado (BRINKSCHULTE, 2019) (ROSA; CAMPOS; CAVALCANTI, [2019) (CAVALCANTI; ROSA,
2024). A arquitetura do pode ser vista na Figura [I] Nela é possivel observar o
Gerente Auténomo e o Elemento Gerenciado. O Elemento Gerenciado é o objeto que se
pretende adaptar, ele que é monitorado para verificar se ha necessidade de adaptacdo ou ndo.
O Gerente Autébnomo coordena todo o ciclo de adaptacdo. O Gerente Auténomo é dividido

em quatro componentes principais e unido por uma base de conhecimento:

= Monitor: coleta informacdes do ambiente e do préprio sistema, como desempenho da

rede, disponibilidade de recursos e estado dos componentes;

» Analisador: interpreta os dados monitorados para identificar padrGes, anomalias ou a

necessidade de adaptacao;

» Planejador: define acoes corretivas ou estratégias de reconfiguracao para alcancar os

objetivos definidos;

» Executor: aplica as mudancas planejadas no sistema, como trocar componentes, migrar

servicos ou ajustar parametros; e

28

Figura 1 —

Gerente Autbnomo

\ J

Elemento Gerenciado

Fonte: KEPHART; CHESS| (2003))

» Base de Conhecimento: atua como um repositério central de informacdes histéricas

e regras, que podem ser usadas por todos os componentes do [MAPE-K|

A adocio de feedback loops permite que os middleware sejam mais resilientes, eficientes e

autonomos, adaptando-se dinamicamente a mudancas nas condicdes de operacdo ou nos re-

quisitos das aplicacdes (KEPHART; CHESS) 2003). Essa abordagem é particularmente relevante

em ambientes de sistemas distribuidos, e.g., computacdo em nuvem, Internet das Coisas (loT)

e sistemas orientados a servicos.

2.4 GMIDARCH FRAMEWORK

O gMidArch (go adaptive Middleware aid by software Architecture]) (ROSA; CAMPOS; CA-|

\VALCANTI, 2019) (ROSA et al., [2020) é um framework de middleware adaptativo desenvolvido

em Go que facilita o projeto, a implementacdo e a execucdo de sistemas de middleware adap-

tativos. As secOes seguintes descrevem os principais conceitos do gMidArch.

2.4.1 Componentes de Middleware

Para facilitar o desenvolvimento de sistemas de middleware adaptativos, o gMidArch ofe-
rece um conjunto de componentes reutilizaveis para implementar funcionalidades de mid-

dleware. Esses componentes s3o organizados em trés categorias de acordo com seu papel

29

nas camadas do middleware, como pode ser observado na Figura 2l Sendo elas, Camada de

Servicos, Camada de Distribuicdo, e Camada de Infraestrutura.

Figura 2 — Componentes do gMidArch

NamingService

Camada de
Servigos

(=]
[
h=] ‘& NamingProxy FibonacciProxy
@ =
'g _g Marshaller

=
g 7 Requestor Invoker
On

CRH-TCP SRH-TCP

Camada de
Infraestrutura

Fonte: Elaborado pelo autor (2025)

A Camada de Servicos fornece servicos para as aplicacdes. Esta camada inclui tanto servicos
que podem ser reutilizados por vérias aplicacoes, e.g., o servico de nomes, quanto servicos
utilizados apenas por algumas aplicacdes, e.g., servico de sincronizacdo de edicdo.

A Camada de Distribuicdo esconde a complexidade dos sistemas distribuidos, ou seja, é a
camada responsavel pela criacdo dos pacotes, serializacdo e codificacdo dos dados enviados.

A Camada de Infraestrutura é responsavel pela comunicacao dentro do middleware, como
envio/recebimento de dados e estabelecimento de conexdes. Ela se comunica diretamente
com a [API| de comunicacdo do sistema operacional. Esta camada também pode implementar
transparéncias de concorréncia, tecnologia e falhas. A transparéncia de concorréncia permite
que multiplas operacdes sejam realizadas simultaneamente, sem interferéncia entre elas. A
transparéncia de tecnologia permite que diferentes tecnologias de comunicacao sejam utilizadas
sem que o desenvolvedor precise se preocupar com os detalhes técnicos de cada protocolo.
Ja a transparéncia de falhas garante que o sistema continue funcionando mesmo em caso de

falhas no envio de mensagens, e.g., perda de mensagens.

30

2.4.2 Adaptacao em tempo de execucao

A adaptacdo em tempo de execucao é um dos principais recursos do gMidArch e permite
que o middleware se adapte a mudancas nas condicGes de operacdao ou nos requisitos das
aplicacoes. Isso é feito através da troca de componentes, sem a necessidade de reiniciar o
sistema ou interromper o servico.

A adaptacdo em tempo de execucdo ¢ realizada através do mecanismo de adaptacdo. Esse
mecanismo é responsavel por monitorar o estado do middleware e decidir quando e como
realizar adaptacbes. O desenvolvedor pode optar por um mecanismo de adaptacdo evolutivo
ou por nao utilizar mecanismos de adaptacdo. A estratégia de adaptacao evolutiva se baseia
em monitorar novas versoes para os componentes utilizados. Sendo assim, cada vez que uma
nova vers3do é publicada, o middleware automaticamente troca o componente antigo pela nova

versao.

2.4.3 Ambiente de execucao

O gMidArch possui um ambiente de execucdo responsavel por executar os componentes e
conectores e realizar as adaptacdes. A unit é a unidade de execucao que gerencia o ciclo de
vida dos componentes. O gMidArch cria grafos, que sdo maquinas de estado, onde cada né
do grafo é uma unit que representa o seu componente.

A unit é uma abstracdo que permite que o middleware execute os componentes de forma
independente e paralela, garantindo que cada componente possa ser executado em seu préprio
contexto. Ela também é responsavel por permitir a adaptacao dos componentes em tempo de
execucao.

Quando uma adaptacdo € iniciada, a unit responsavel pelo componente a ser trocado
encerra a execucdao do componente depreciado e inicia a execucdo do novo componente.
Caso tenha alguma chamada a ser feita para o componente que estd sendo trocado, a unit
suspende a comunicacdo até que a troca tenha sido finalizada. Ao finalizar a troca para o
novo componente, a comunicacdo é reestabelecida ja para o componente atualizado. Como

sao acoes realizadas em paralelo com a execucao do sistema, o impacto da troca é reduzido.

31

2.5 CONSIDERACOES FINAIS

Este capitulo apresentou a base tedrica deste trabalho. Foram apresentados os protocolos
de comunicacao utilizados e os conceitos de middleware adaptativo e de Feedback Loop. Por
fim, foi apresentado o framework gMidArch, sua arquitetura e seus componentes e também

como ele pode ser utilizado para implementar um middleware adaptativo.

32

3 (PROTOCOL ADAPTATION)

Neste capitulo sera apresentado em detalhes a solucdo proposta, o mecanismo [Protoco

[Adaptation| (pAdapt) [[| Primeiramente ser4 apresentada na Sec3o [3.1] uma vis3o geral das

extensOes propostas. Na sequéncia, a Secdo detalha o novo mecanismo de adaptacao
adicionado. Em seguida, na Secdo [3.3| serdo apresentadas as novas extensdes de protocolos
de comunicacdo, contendo os protocolos [UDP], [TCP] [TLS] [RPC|, QUIC, HTTP, HTTPS| e
[HTTP/2 Por fim, a Secdo [3.4] traz as consideracdes finais deste capitulo.

3.1 VISAO GERAL

A proposta do consiste de duas partes. A primeira é a adicao de novos compo-
nentes de transporte, que implementam protocolos de comunicacdo amplamente utilizados em
sistemas distribuidos. A segunda é a implementacdao de mecanismos que possibilitem que o
middleware suporte a adaptacao evolutiva de protocolos de comunicacao em tempo de exe-
cucdo. A Figura |3| apresenta uma visdo geral do gMidArch com as novas extensdes (cinza
claro), em comparacdo aos componentes previamente existentes (branco). Além disso, a fi-
gura também exibe a adicdo de uma nova camada, a Camada de Transporte, que tem por
objetivo agregar as implementacdes dos protocolos através de uma interface comum a todos.
A figura apresenta somente os componentes de middleware, sem os componentes responsaveis
pela adaptacdo e execucdo, que serdo abordados na Secao [3.2]

A maior parte dos novos componentes implementados esta na Camada de Infraestrutura.
Estes componentes s3o responsaveis pelas transparéncias de concorréncia, tecnologias e fa-
lhas. A transparéncia de concorréncia ocorre, e.g., quando diferentes clientes acessam o mesmo
servico no mesmo servidor sem que isso altere o retorno esperado do servico. Quem faz esta
separacao da concorréncia é o Server Request Handler, com seu pool de conexdes. Ja a trans-
paréncia de tecnologias ocorre ao se utilizar diferentes protocolos independente de qualquer
implementacao externa ao middleware, i.e., a Unica coisa que um desenvolvedor de sistemas
utilizando o gMidArch com precisa fazer para escolher um protocolo é configurar um
arquivo para utilizar o protocolo desejado. Qualquer diferenca entre as diversas tecnologias
dos protocolos é tratada internamente pela Camada de Infraestrutura e ndo muda a imple-

mentac3o efetuada pelo desenvolvedor. A transparéncia de falhas também é implementada,

1 Cédigo Fonte disponivel em: https://github.com/gfads/midarch

33

Figura 3 — Componentes do gMidArch

[NamingService) [SendFiIeServicej

Camada de
Servicos

% [Fibonaccilnvoker]
© [Requestor j [FibonacciProxy
g SendFiIeInvokerj
= [Invoker] [NamingProxy [GobMarshalIer]
8 [SendFileProxy j

CRH-UDP (CRH-TCP CRH-TLS CRH-RPC

SRH-TCP SRH-TLS

CRH-QUIC CRH-HTTP CRH-HTTPS CRH-HTTP2

i
HH

Camada de
Infraestrutura| | Distribuigcao

i

SRH-QUIC | SRH-HTTP SRH-HTTPS SRH-HTTP2

!

~

UDP TCP TLS

Quic HTTP HTTPS HTTP2

R

!
i

Camada de
Transporte

O Componentes previamente existentes O Componentes criados

Fonte: Elaborado pelo autor (2025)

e.g, na conexao do cliente com o servidor, onde o cliente tenta reconectar automaticamente
caso ocorra algum erro na conexao.

Para permitir a adaptacao de diferentes protocolos de comunicacdo, foi criada uma nova
camada no middleware, a Camada de Transporte, onde de fato é implementado o acesso aos
protocolos de comunicaciao. Esta nova camada fornece servicos a Camada de Infraestrutura,
através da abstracdo das chamadas a[API]| do sistema operacional, e.g., para enviar mensagens
de um cliente para o servidor. A Camada de Transporte serve para padronizar o acesso aos
diferentes protocolos de comunicacdo, e consequentemente viabilizar a troca (adaptag&o) entre
eles em tempo de execucdo. Para isso, foi criada uma interface que deve ser implementada por
cada protocolo. E através desta interface que os componentes da Camada de Infraestrutura
se comunicam utilizando os protocolos de comunicacdo. Novos proxies e marshallers, foram

também adicionados a Camada de Servicos e a Camada de Distribuicgo.

34

3.2 MECANISMO DE ADAPTACAO

Um ponto importante no novo mecanismo de adaptacdo do [pAdapt], e que o diferencia da
adaptacdo evolutiva padrdo previamente existente no gMidArch, é que a adaptacao anterior
visava somente a alteragdo de componentes dnicos. Com o [pAdapt] a adaptacdo (troca de
componentes) pode ocorrer de maneira orquestrada no Cliente e no Servidor simultaneamente.
Além disso, a adaptacao deve ser realizada em todos os clientes que estiverem acessando
o servidor. Para possibilitar esta nova adaptacdo sincrona, foi criado como parte do novo
mecanismo, um fluxo de adaptacdo de protocolos de comunicacdo, que serd abordado na

sequéncia.

3.2.1 Fluxo de Adaptacao no |pAdapt

A troca (adaptagdo) de um protocolo de transporte por outro em tempo de execucdo,
como proposto no [pAdapt], sincroniza esta acdo no cliente e no servidor. A Figura [4] mostra
a sequéncia de acdes executadas pelo para realizar a troca de protocolos.

Para que a adaptacado de protocolos de comunicacao ocorra, o servidor é o responsavel por
iniciar o processo de adaptacao. Isto é necessario para evitar que um protocolo seja trocado
por conta da demanda de um dnico cliente.

Sendo assim, o Fluxo de Adaptacdo de Protocolos de Comunica¢do do [pAdapt] definido
na Figura [4} inicia com o Servidor recebendo uma mensagem comum (SendMessage) de um
Cliente. Mas antes de processar a mensagem, o Servidor identifica a necessidade de uma troca
(adaptacdo) do seu protocolo. A necessidade de adaptacdo pode ser através da inclusdo de uma
nova extensdao no middleware, i.e., colocando o cédigo fonte de um novo componente na pasta
de extensoes do middleware, ou através de uma solicitacdo de adaptacao gerada internamente,
baseada no monitoramento do middleware, e.g., pode ser criada uma implementacao para que,
quando o servidor identificar que o protocolo de transporte atual ndo é mais o adequado para
a comunicacdo com os clientes conectados, seja 33gerada uma solicitacdo de adaptacdo.

Apés identificar a necessidade de adaptacdo, o Servidor comeca a reter as mensagens
(SendMessage) recebidas, ou seja, ndo as processa mais. Isso é necessario para que o Servidor
ndo perca nenhuma mensagem durante a adaptacdo. A partir dai, como pode ser visualizado
no diagrama, o Servidor envia uma mensagem (ChangeProtocol) para cada Cliente conectado,

informando que ocorrerd uma adaptacao de protocolo e para qual protocolo deve ser adaptado.

35

Figura 4 — Fluxo de Adaptacdo de Protocolos de Comunicagdo do Sequéncia de passos

:Servidor :Cliente 1 :Cliente n
: SendMessage() '
ChangeProtocol()
ol
ChangeProtocol()
PerformAdapt()
Ok
PerformAdapt()
formAdapt()
alt | Connect() o
loop
[Erro ao conectar] ko
Connect()
[Sucesso ao conectar]
Connect()
SendResponse()

Fonte: Elaborado pelo autor (2025)

Apés receber a mensagem de adaptacdo, o Cliente deve responder com uma mensagem de Ok
para o Servidor, confirmando que esta pronto para a adaptacdo. Na sequéncia, o préprio Cliente
inicia a adaptacdo para o novo protocolo (PerformAdapt). O Servidor aguarda a confirmacdo
através da mensagem de Ok de todos os Clientes conectados, e somente apds receber essa
confirmacdo de todos os Clientes é que ele inicia a sua adaptacdo. Assim que cada Cliente
finaliza a adaptacdo, ele tenta se conectar ao Servidor novamente (Connect), ja com o novo
protocolo. Caso o Servidor ja esteja adaptado, ele aceita as novas conexdes com Sucesso ao
conectar, finalizando assim o fluxo de adaptacdo. Caso o Servidor ainda esteja se adaptando,
o Cliente recebe um Erro ao tentar conectar, e continua a tentar a conexao em um loop com
o novo protocolo até obter sucesso.

Por fim, a comunicac3o é reestabelecida e o Servidor retoma o processamento das mensa-
gens recebidas, agora com o novo protocolo de transporte, enviando o retorno das mensagens

retidas com o SendResponse.

3.2.2 Extensdes de Adaptacao

A implementacdo do gMidArch utiliza uma arquitetura de software baseada em compo-

nentes, que permite a construcdo de sistemas distribuidos de forma modular e flexivel. Essa

36

abordagem facilita a reutilizacao de componentes existentes e a adicdo de novos componen-

tes. Com a finalidade de prover estas vantagens, o gMidArch disponibiliza uma

|Description Language (ADL), ou seja, uma linguagem que descreve arquiteturas, denominada

I[middleware Architecture Description Language (mADL)| (ROSA et al., 2020), que permite a de-

finicdo da arquitetura do middleware através de um artefato. Essa arquitetura é composta por
componentes, conectores e estratégias de adaptacdo e representa a estrutura do middleware
e como os componentes interagem entre si (MEDVIDOVIC; TAYLOR, [2000).

Para indicar o tipo de adaptacdo do middleware é necessério configurar o[mADL] Na secdo
de estratégias de adaptacdo do existem trés opcdes, none para informar que n3o se
deseja realizar adaptacdes no middleware, Evolutive para o método de Adaptacdo Evolutiva
através de plugins, ou EvolutiveProtocol para o novo método de Adaptacdo Evolutiva de Pro-
tocolos. Também é possivel utilizar os dois métodos ao mesmo tempo. Ao iniciar a aplicacao
servidora marcando o middleware como utilizando a adaptacdo evolutiva de protocolos, o mid-
dleware passa a monitorar uma lista de componentes a serem adaptados. Caso seja identificada
alguma necessidade de adaptacao, em qualquer um dos métodos, o componente atual é subs-
tituido pelo desejado. Se o componente a ser substituido for um componente de comunicacao,
entdo o Fluxo de Adaptacdo de Protocolos de Comunicagdo do mostrado na Figura
é seguido.

O gMidArch utiliza o feedback loop [MAPE-K]| para realizar as adapta¢des. Os componen-
tes do foram alterados para implementacdo da nova adaptacdo de protocolos. Os
componentes do [MAPE-K] podem ser vistos na Figura [B Iniciando a sequéncia do feedback
loop esta o grupo Monitor do [MAPE-K], que monitora solicitacdes de adaptacio.

O monitoramento ja contava com o componente monoevolutive, que é a implementacdo
de monitoramento do método de adaptacdo Evolutive. Este componente é o responsavel por
detectar novas versoes de componentes ja em uso. Posteriormente nesta secdo serdo detalhadas
as alteracGes que foram feitas neste componente para também permitir a compilacdo de
cédigos fonte em tempo de execucdo.

Para o novo método de adaptacdo, EvolutiveProtocol, foi implementado um novo com-
ponente de monitoramento, onde qualquer necessidade de adaptacdo para componentes ja
existentes realiza a inclusdao do novo componente ou grupo de componentes a ser adaptado
em uma lista. O novo componente adicionado, chamado evolutiveprotocol, realiza o monito-
ramento destes componentes e encaminha a lista com os componentes ao Analisador. Além

disso, o evolutiveprotocol também é responsavel por verificar se o componente adicionado na

37

Figura 5 — Componentes de adaptagdo do

pAdapt

Mecanismo de Adaptacao

Analisador Planejador

:

Monitor Executor
\[monoevolutive |
/evolutive protocol)

N J

\ /

Componentes do
Middleware

Fonte: Elaborado pelo autor (2025)

lista esta presente no sistema. Dessa forma, utilizando o método de adaptacdo EvolutivePro-
tocol componentes do middleware podem ser trocados, mas ndo é possivel adicionar novos
componentes ao middleware.

Além do Monitor, o Executor foi também estendido para suportar a adaptacdo dindmica
dos protocolos de comunicacao. Como o foco do projeto é em como a adaptacido é realizada, e
ndo em quando a adaptacdo deve ser realizada, entdo os componentes Analisador e Planejador
ndo precisaram ser estendidos.

No gMidArch, Unit é o componente de apoio tanto a adaptacao quanto a execucao, um dos
componentes mais importantes do [pAdapt, No gMidArch, os componentes do middleware so
executados por uma Unit. A Unit é basicamente uma unidade de execucdo de componente,
i.e., € um componente que gerencia o ciclo de vida das demais extensoes em execucao do
gMidArch. Ao iniciar uma Unit, ele inicia o seu componente, e caso algum componente sofra
uma adaptacdo, a Unit finaliza a instancia anterior do componente e passa a apontar para

uma nova instancia do componente atualizado.

38

3.2.3 Implementacao do mecanismo de adaptacao do |pAdapt

A Figura [f] apresenta o Ambiente de Execucdo do gMidArch. Este ambiente é onde sdo
executados os componentes do middleware, e onde o realiza as adaptacdes de pro-
tocolos de comunicacdo. O ambiente de execucdo é dividido entre o [MAPE-K] e as Units de
execucdo do middleware. A adaptacao pode ser iniciada através de dois fluxos possiveis.

O primeiro caminho para adaptacdo é através do método de adaptacdo evolutiva, onde um
novo plugin é colocado no repositério de plugins do middleware (1), entdo o Monitor evolu-
tivo (monoevolutive) detecta sua presenca (2) e encaminha para o Analisador (3). O segundo
caminho para iniciar a adaptacao é através do novo método de adaptacao evolutiva de proto-
colos, onde o Monitor evolutivo de protocolos (evolutiveprotocol) monitora um repositério de
componentes (4). Quando o Monitor identifica uma necessidade de adaptacdo, ele encaminha

para o Analisador (5).

Figura 6 — Ambiente de Execucdo do

(‘Ambiente de Execugao N

:AMAPE—K ; " Units de Execuc¢do

A Unit Q-)Q Componente Q’Q
............... = SR FUITRRTY B . PN
®; | Flanejador) FibonacciProxy O FibonacciProxy O¥
) Unit Q.)Q _________ Componente Q;.Q
Analisador Executor 4 Requestor O~ Requestor @F

I‘ ® - Unit Q) L Componente (--»Q
®‘~---- ------------------------- | Marshaller QOL Marshaller QOL
Monitor 1
I) Unit Q20 @ Componente (-+>(
[monoevolutive) Gvolutiveprotoco} CRH e e O
5 & o Unit Q=30 @ Componente Q50
L] @ Protocol o~ Tcp O
w o e Q
Repositorio de Repositério de
Plugins Componentes
N 5 P)

Fonte: Elaborado pelo autor (2025)

A partir deste ponto, ambos os caminhos seguem o mesmo fluxo. O Analisador examina
se os componentes a serem adaptados sdo compativeis e encaminha para o Planejador (6). O
Planejador ent3o verifica o melhor momento para ser realizada a troca dos componentes, e
também é o responsavel por indicar ao Executor (7) o que deve ser feito durante a adaptacdo.

Na sequéncia, o Executor inicia os procedimentos para a troca dos componentes. Ele gera os

39

comandos para a troca, compila plugins caso seja necessario, carrega os novos componentes
e encaminha para cada Unit responsével pelo componente a ser adaptado (8).

Qualquer componente do middleware pode ser adaptado, no entanto, caso o componente
a ser adaptado seja relacionado aos protocolos de comunicacdo, entdo a Unit inicia o Fluxo
de Adaptacdo de Protocolos de Comunicacdo do [pAdapt] Vale observar que, como cada
componente (incluindo a prépria Unit) é regida por uma maquina de estados, para realizar a
troca é necessario que o componente esteja em seu estado inicial, garantindo assim que os
componentes concluirdo suas atividades e que podem ser substituidos sem afetar o sistema.
Esta funcionalidade também garante que os componentes sejam trocados somente quando
nao estiverem em execucdo, i.e., paralelizando a adaptacdo e gerando menor impacto no
desempenho. Por fim, a Unit realiza a troca do componente (9), e o novo componente passa
a ser executado no lugar do antigo, com uma nova maquina de estados e novas funcionalidades,
completando assim o ciclo de adaptacao.

Entrando mais em detalhes sobre o funcionamento do Executor, quando ele recebe uma
solicitacdo de adaptacao, ele carrega a nova extensao e entao encaminha para a Unit respon-
savel pelo componente a ser adaptado, conforme pode ser observado no fragmento de Cédigo
Fonte[I] As Linhas 2 a 4 representam a geracdo do comando para a Adaptacdo Evolutiva de
Protocolos. Neste ponto, é carregado o novo componente da lista de componentes ja existentes

dentro do middleware.

Cédigo Fonte 1 — executor.go

1 [...]
if shared.Contains(shared.Adaptability, shared.EVOLUTIVE_PROTOCOL_ADAPTATION) {
3 unitCommand.Cmd = shared.REPLACE_COMPONENT

unitCommand.Type = shared.GetComponentTypeByNameFromRAM (componentName)
5 } else if shared.Contains(shared.Adaptability, shared.EVOLUTIVE_ADAPTATION) {

if strings.Contains(pluginName, ".go") {
7 pluginUtils.GeneratePlugin(componentName, versionedPluginName)
pluginName = versionedPluginName + ".so"
9 }
plg := pluginUtils.LoadPlugin(pluginName)
11 getType, _ := plg.Lookup("GetType")
elemType := getType.(func() interface{}) ()
13 unitCommand.Cmd = shared.REPLACE_COMPONENT
unitCommand.Params = plg
15 unitCommand.Type = elemType

17 [...]

40

Fonte: Elaborado pelo autor (2025)

Em seguida, as Linhas 5 a 16 representam a geracdo do comando para a Adaptacao
Evolutiva padrdo. Entre as Linhas 6 a 9, caso a nova extensdo seja um cédigo fonte, e ndo
um plugin, entdo o middleware compila o plugin. Para isso, na Linha 7, o Executor |é o
cédigo fonte do novo componente e interpreta o tipo do componente através da modelagem
de arquitetura do gMidArch para gerar o novo plugin.

Caso nao seja um cédigo fonte, seja um plugin ja compilado previamente, entao ele sera
utilizado sem alteracdes. Na sequéncia, o plugin é carregado nas Linhas 10 a 12. Por fim, o
plugin é enviado, juntamente com seu tipo e comando, para a Unit nas Linhas 13 a 15.

A Unit ent3o utiliza o novo componente para terminar o ciclo de vida do componente
anterior e carregar a nova extensdo, completando assim a adaptacdo. No Cédigo Fonte |2 é
possivel observar o trecho exato de cédigo da Unit que realiza a adaptacdo de um componente.

A principio, todos os componentes executam infinitamente, até que o sistema se encerre.
Como o middleware se baseia na execucao de componentes através de maquinas de estado,
entdo cada componente tem sua maquina de estado, e fica em loop infinito. Sendo assim,
para o gerenciamento do ciclo de vida e a adaptacdo das extensoes, foi criado um atributo
em cada componente indicando se é para executar infinitamente ou n3o. A fim de controlar o
ciclo de vida dos componentes, a Unit faz a manipulacdo deste atributo, ativando a execucdo

infinita ao iniciar um componente, e desativando-a quando for necessaria uma adaptacao.

Cédigo Fonte 2 — unit.go

1 [...]
*elementComponent.ExecuteForever = false
3 for xelementComponent.Executing == true {

time.Sleep (200 * time.Millisecond)
5 %}
elementComponent.Type = cmd.Type
7 elementComponent.TypeName = cmdElemType
C...]

Fonte: Elaborado pelo autor (2025)

Na Linha 2, do Cédigo Fonte , o componente tem sua execucao infinita removida, i.e.,
na préxima vez que a maquina de estado atingir o estado inicial, o componente ira finalizar
automaticamente. Enquanto isso ndo ocorre, a Unit aguarda a finalizacdo das atividades do

componente a ser substituido (Linhas 3-5).

41

Na sequéncia, ou seja, apés o componente voltar ao ponto inicial da maquina de estado e
finalizar suas atividades (Linhas 6 e 7), o novo componente é carregado no lugar do anterior,
e entdo ja passa a executar no préximo ciclo de execucdo da Unit. Como os componentes tro-
cados precisam ser compativeis, i.e., ter a mesma maquina de estado, os demais componentes
que n3do participam da adaptacdo ndo sdo afetados. A adaptacdo ocorre em um momento
em que n3do ha nada a ser executado pelo componente a ser trocado. Isso é realizado desta
forma para garantir que nada se perca durante a execucao, tornando a adaptacao um processo
transparente e dinamico, aguardando o melhor momento para executar a adaptacao.

O [pAdapt| contém um artefato para a geracdo automatica do plugin, o pluginBuild.model,
que é um boilerplate, i.e., um fragmento de cédigo sem légica de aplicacao. Este modelo tem
a funcao de complementar um cédigo fonte externo, de forma que ele possa ser compilado em
um novo plugin. Este boilerplate é usado como base, e entdo modificado dinamicamente em
tempo de execucdo a partir da leitura de informacdes do cédigo fonte da nova extensao a ser
incorporada no gMidArch.

No Cédigo Fonte (3| é possivel observar o pluginBuild. model. O Executor utiliza os dados
obtidos da leitura da nova extensdo e substitui tanto o <pluginName> da Linha 4, quanto o
<pluginType> da Linha 8, gerando um novo arquivo, o pluginBuild.go, que é compilado em
um plugin e carregado no projeto em tempo de execucao.

Cédigo Fonte 3 — pluginBuild.model

package main

import (

4 "<pluginName>"

func GetType() interface{} {
8 return &<pluginType>

Fonte: Elaborado pelo autor (2025)

A geracdo de plugins, juntamente com as adequacdes no Executor, permitiram a adaptacao
para qualquer componente pré-existente no middleware e sem a necessidade de duplicacao
de cédigo. Estas melhorias na adaptacdo evolutiva padrdao foram muito importantes para a

adaptacdo de protocolos de comunicacao.

42

3.2.4 Controle de Estado dos Componentes

A Unit do gMidArch, antes do [pAdapt]| considera que os componentes s3o, stateless, i.e.,
caso haja adaptacao, o estado do componente anterior nao era repassado ao novo compo-
nente. Com o [pAdapt] os componentes Client Request Handlers e Server Request Handlers
precisam ser stateful. Isso é necessario, pois, o estado da conex3o entre clientes e servidores
precisa ser preservado, i.e., para que a comunicacao entre clientes e servidores nao seja per-
dida devido a adaptacdo. Sendo assim, quando um destes dois componentes sdo adaptados,
o componente antigo encerra seu ciclo de vida, mas suas informacdes de conexdo devem ser
salvas e atualizadas no novo componente.

Para adaptar um Client Request Handler, é necessario saber os dados de conexdo com o
servidor mesmo apds sua adaptacdo. E para adaptar um Server Request Handler, de acordo com
a Figurafd} o precisa comunicar a alteracdo a cada cliente conectado e aguardar o ok
de todos para iniciar a mudanca. Para esta implementacao, e para permitir maltiplas conexdes
clientes no mesmo servidor, foi criado um pool de conexdes, e os clientes conectados sdo
salvos no estado do Server Request Handler, em seguida repassados para o novo componente
que ird assumir seu lugar apés a adaptacao. Assim, é possivel saber para qual cliente uma
mensagem deve ser enviada, mesmo que o protocolo de transporte tenha sido alterado.

Cada Server Request Handler implementa seu préprio pool de conexdes. A fim de pa-
dronizar as diferentes implementacdes de protocolos, foi criada uma interface que deve ser
implementada por cada nova implementacdo de protocolo, seja no servidor ou no cliente.

Esta nova interface é apresentada na proxima secdo, que apresenta 0os novos componentes

adicionados pelo [pAdapt]

3.3 NOVOS COMPONENTES

Como apresentado na Secdo [3.1} o inclui um novo mecanismo de adaptacdo
ao gMidArch e um conjunto de novos componentes que implementam diversos protocolos de
comunicacdo. As secdes a seguir apresentam detalhes de como este protocolos foram definidos

e implementados.

43

3.3.1 Escolha dos protocolos

A escolha dos novos protocolos de comunicacao iniciou considerando protocolos de menor
complexidade e avancando para os mais atuais e complexos. A selecdo dos protocolos foi ba-
seada em dois critérios principais: o estilo cliente/servidor e a funcionalidade oferecida. Com
relacdo ao primeiro critério, um protocolo de transporte adequado deve suportar naturalmente
o modelo de interac3o cliente/servidor. Quanto a funcionalidade, é esperado que os novos pro-
tocolos agreguem valor ao middleware, como novas caracteristicas, e.g., seguranca, eficiéncia
e flexibilidade.

Sendo assim, foram escolhidos primeiro os protocolos mais basicos. Iniciando com [UDP]
por sua velocidade, seguindo para o [TCP| pela confiabilidade e finalizando com [TLS| para
adicionar seguranca. Na sequéncia foi adicionado o préprio [RPC|como um método cléssico de
comunicacdo cliente/servidor e no qual o gMidArch tem sua arquitetura baseada. O préximo
protocolo é o como um protocolo mais moderno e inovador, com a principal vantagem
de ser utilizado para streaming de dados.

Por fim, também foram adicionados os protocolos [HTTP| [HTTPS| e [HTTP /2| por serem

populares e flexiveis. Com estes protocolos é possivel criar aplicacées Web, e também realizar
comunicacdo com navegadores, ou seja, com a implementacao destes protocolos é possivel efe-
tuar chamadas ao gMidArch diretamente dos navegadores. O uso destes protocolos, aliado ao
componente Jsonmarshaller, que empacota mensagens com o uso de[JSON] permite que siste-
mas de middleware implementados com o gMidArch possam ser adotados no desenvolvimento
de microsservicos que usam (FOWLER), [2014)).

Os protocolos HTTP| [HTTPS| e [HTTP /2| utilizam TCP e sdo protocolos da camada de

aplicacdo, de acordo com o modelo|Open Systems Interconnection (OSI)| (1SO/IEC, [1994). No
gMidArch, os protocolos[HTTP| [HT TPS|e[HT TP /2|sd0 utilizados somente para transporte e

comunica¢do entre sistemas, da mesma forma que os demais, e.g.,[TCP| Todos os componentes
de protocolos de comunicacdo do implementam a mesma interface, e fornecem os

mesmos servicos a camada superior. Sendo assim, apesar de [HTTP| [HTTPS| e [HTTP/2

serem protocolos da camada de aplicacdo, no gMidArch eles sdo tratados como protocolos de

transporte para comunicacao.

44

3.3.2 Extensdes de Protocolos de Comunicacao

No foram implementados os protocolos de comunicacdo UDP, TCP, TLS, RPC,
QUIC, HTTP, HTTPS e HTTP/2. E possivel efetuar a adaptacdo de qualquer protocolo para
qualquer protocolo. Para que eles sejam compativeis foi criado a interface Protocol. A interface
Protocol é uma interface composta, ou seja, ela contém outra interface, a interface Client,
que define os métodos de comunicacao do servidor para o cliente. Estas interfaces devem
ser implementadas por cada novo protocolo adicionado ao middleware. Isso é necessario pois
a Unit utiliza os protocolos através das interfaces para implementar a sincronizacdo entre
clientes e servidores e garantir o fluxo apresentado na Figura [4]

O Cédigo Fonted] protocol.go, apresenta estas duas interfaces. A primeira define os méto-
dos disponiveis para o protocolo em si (Linhas 1-17), e a outra representa os clientes conectados
ao pool de conexdes do servidor (Linhas 18-29), e define as assinaturas de seus métodos.

Cédigo Fonte 4 — protocol.go

1 type Protocol interface {
StartServer (ip, port string, initialConnections int)
3 StopServer ()
AvailableConnectionFromPool () (available bool, idx int)

5 WaitForConnection(cliIdx int) (cl *Client)

7 GetClient (id int) (client Client)
GetClientFromAddr (addr string) (client Client)

9 AddClient(client Client, id int)
ResetClients ()

11 ConnectToServer (ip, port string)
CloseConnection ()

13 ReadString () string
WriteString(message string)

15 Receive () ([lbyte, error)
Send(msgToServer []byte) error

17 3}

type Client interface {

19 AdaptId() int
SetAdaptId(adaptId int)

21 Address () string
Connection() (conn interface{})

23 CloseConnection ()
Read(b [Jbyte) (n int, err error)

25 ReadString () (message string)
WriteString(message string)

27 Receive () ([lbyte, error)

GetClients() (clients []*Client)

45

Send(msgToServer [J]byte) error
29 3}

Fonte: Elaborado pelo autor (2025)

A primeira interface, Protocol, contém tanto métodos utilizados pelo servidor (Linhas
2-10), quanto métodos utilizados pelo cliente (Linhas 11-16). Os métodos utilizados pelo
servidor gerenciam tanto o ciclo de vida do protocolo, i.e., iniciar e finalizar o servidor (Linhas
2 e 3), quanto o pool de conexdes (Linhas 4-10). Para o pool de conexdes, a interface define
assinaturas para aguardar novas conexdes de clientes, obter conexdes disponiveis do pool, obter
os clientes conectados e remover clientes do pool. Por outro lado, os métodos definidos para
o lado do cliente (Linhas 11-16) sdo utilizados para conectar ao servidor, fechar a conexao,
enviar mensagens e receber mensagens.

Ja a interface Client, ela define como o servidor configura e obtém as identificacdes de
cada cliente (Linhas 19 e 20), através do Adaptld, utilizado para identificar o cliente nas
adaptacoes. Esta interface também contém os métodos utilizados pelo servidor para gerenciar
a conexdo dos clientes conectados (Linhas 21-23). Outra funcionalidade importante é a de
enviar e receber mensagens do cliente (Linhas 24-28).

O Codigo Fonte [5| executa durante a adaptacdo de componentes efetuada pela Unit, e
mostra nao s6 como a Unit trata o Fluxo de Adaptacdo de Protocolos de Comunicacdo do
pAdapt, mas também como é a utilizacdo dos protocolos através da interface Protocol. Nas
Linhas 2 a 7, a Unit percorre todos os clientes conectados ao servidor, e envia uma mensagem
de adaptacdo para cada um deles, informando o novo protocolo. Nas Linhas 9 a 12, a Unit
finaliza o ciclo de vida do componente anterior, e nas Linhas 13 e 14 a Unit inicia o novo
componente. Por fim, as Linhas 16 a 19 param o servidor, que serd iniciado novamente com

o novo protocolo de transporte quando o novo componente executar pela primeira vez.

Cédigo Fonte 5 — unit.go

1 [...]
for idx, client := range srhInfo.Protocol.GetClients() {
3 (xclient).SetAdaptId(idx)
miopPacket := miop.CreateReqPacket(”"ChangeProtocol”, [Jlinterface{}{
adaptTo, (*client).AdaptId()}, (*xclient).AdaptId())
5 msg := &messages.SAMessage{ToAddr: (xclient).Address(), Payload:

marshaller{}.Marshall (miopPacket)}
shared.MyInvoke (elementComponent.Type, elementComponent.Id, "I_Send”, msg

, &elementComponent.Info, &reset)

46

7 }
C...]
9 *elementComponent.ExecuteForever = false
for xelementComponent.Executing == true {
11 time.Sleep (200 * time.Millisecond)
3
13 elementComponent.Type = cmd.Type
elementComponent.TypeName = cmdElemType
15 [...]
srhInfo := elementComponent.Info.(*messages.SRHInfo)
17 if srhInfo.Protocol != nil {
srhInfo.Protocol.StopServer ()
19 srhInfo.Protocol = nil
}
21 [...]

Fonte: Elaborado pelo autor (2025)

As préximas secdes apresentam detalhes de cada protocolo implementado.

3.3.3 UDP

Apesar da diferenca em como funcionam, os componentes TCP e UDP tém comporta-
mentos de alto nivel semelhantes no gMidArch. O fluxo padrdo de um protocolo UDP externo
ao middleware, do lado do cliente, é: enviar uma mensagem para o servidor, aguardar que o
servidor processe a mensagem, e entdo receber uma resposta do servidor, sem a necessidade
de estabelecer uma conexado prévia. Ja no fluxo padrao de um protocolo TCP, existe uma
etapa adicional para criar uma conex&o antes de enviar a mensagem. No entanto, no [pAdapt]
ambos os protocolos sdo implementados para funcionar de forma semelhante, i.e., ambos es-
tabelecem uma conex3o antes de enviar a mensagem. Isso se faz necessario tanto para que o
componente UDP possa implementar a interface Protocol, quanto para que o possa
garantir a entrega de mensagens fracionadas em pacotes, e.g., no envio de arquivos. Além
disso, também é necessario para que o possa efetuar a adaptacdo entre diferentes
protocolos de comunicacdo, de forma que o servidor possa identificar seus clientes e efetuar
troca de mensagens durante a adaptacdo.

Como clientes e servidores precisam usar o mesmo protocolo de transporte, o suporte
ao UDP inclui trés novos componentes: Client Request Handler UDP (CRH-UDP), Server
Request Handler UDP (SRH-UDP) e a implementacdo UDP da interface Protocol.

47

Neste ponto, vale observar que Client e Server Request Handlers s3o padrdes arquiteturais
de middleware amplamente adotados (VOLTER; KIRCHER; ZDUN, 2005)), cujas responsabilidades
sao gerenciar todos os aspectos da comunicacdo em clientes e servidores, respectivamente. Eles
abrem /fecham conexdes em protocolos orientados a conex3o, funcionam como o dnico ponto
de contato com as [APls de sockets dos sistemas operacionais e isolam outros componentes
de middleware da complexidade de lidar com problemas de transporte de mensagens. Estes
padrdes arquiteturais estardo presentes em todos os protocolos de comunicacdo implementados
no gMidArch.

Apesar de a especificagdo do UDP n3o conter conexdes ativas (POSTEL, [1980), no[pAdapt]
esta conexao é implementada por software. Em outras palavras, antes de enviar uma mensa-
gem, o Client Request Handler UDP estabelece uma conexdo com o servidor. Isso é realizado
através de troca de mensagens, de forma transparente entre o CRH-UDP e o SRH-UDP. O
CRH-UDP envia uma mensagem "“Connect" para o servidor, que responde com uma mensa-
gem "Ok", caso a conexdo tenha sido estabelecida com sucesso. Caso ndo consiga conectar,
o CRH-UDP tenta novamente.

Como a adaptacao é stateful, é necessario que o servidor conheca todos os clientes conec-
tados para solicitar as adaptacoes. Isso também é necessario para efetuar a garantia de entrega
das mensagens, especialmente em mensagens grandes, e.g., no envio de arquivos. Para garantir
a entrega das mensagens, o implementa um mecanismo de confirmagdo de entrega
de mensagens, onde o cliente envia uma mensagem e aguarda a confirmacdo de entrega do
servidor. Caso o servidor nao confirme a entrega, o cliente reenvia a mensagem.

Nao é possivel enviar uma mensagem grande em um unico pacote UDP, pois o tamanho
maximo de um pacote é de 65.507 bytes. Para mensagens maiores que ultrapassam o tamanho
maximo de pacotes UDP, e.g., no envio de arquivos, o UDP também implementa o fraciona-
mento da mensagem em pacotes. Além de garantir a entrega de pacotes, é necessario também
garantir a sequéncia dos mesmos, uma vez que o protocolo UDP n3o garante nem a entrega
de pacotes, nem a ordem de entrega dos pacotes.

Para garantir a entrega da mensagem completa no UDP, mesmo em mensagens grandes,
foi implementado uma sequéncia de algoritmos: o fracionamento da mensagem de acordo com
o tamanho maximo configurado, o envio de pacotes ordenados, o reenvio de pacotes perdidos,
a confirmacao de entrega dos pacotes e a reconstrucdo da mensagem fracionada.

Para melhorar o desempenho do envio de mensagens grandes, o UDP implementa o envio

de pacotes em paralelo, onde o cliente envia varios pacotes ao mesmo tempo, juntamente com

48

um sequencial, e no fim aguarda a confirmacao. Caso o servidor ndo tenha recebido algum
pacote, ele solicita o reenvio dos pacotes faltantes. Evitando a confirmacdo em cada pacote, o
envio de pacotes em paralelo melhora o desempenho do envio de arquivos. Para que o servidor
saiba quantas mensagens esperar, a primeira mensagem trocada entre cliente e servidor é um
cabecalho que contém o tamanho total da mensagem.

Do lado do servidor, cada mensagem é esperada juntamente com o seu respectivo se-
quencial. O servidor ao final informa se recebeu todas as mensagens com sucesso, ou se faltou
alguma mensagem enviando o sequencial da mensagem faltante. O Cédigo Fontel[f]implementa
como um cliente UDP envia um arquivo.

Cédigo Fonte 6 — ClientRequestHandlerUDP Send File

1 func (st *UDP) Send(msgToServer [J]byte) error {

_, err := st.serverConnection.Write(len(msgToServer))
3 if err !'= nil {...}
bufferSize, payloadSize, packetsQuantity := calcSizes(len(msgToServer))
5
for seq := 0; seq < packetsQuantity; seq++ {
7 packet := getPacket(msgToServer, seq, payloadSize)
st.serverConnection.Write(packet)
9 time.Sleep(5 * time.Microsecond)
}
11
for {
13 st.serverConnection.SetReadDeadline(time.Now().Add(1 * time.Second))
n, err := st.serverConnection.Read(ackBuffer)
15 if err != nil {...}
17 ack := strings.TrimSpace(string(ackBuffer[:n]))
if ack == "ack"” { break }
19
seqInt64, err := strconv.ParseUint(ack, 10, 32)
21 st.serverConnection.Write(getPacket(msgToServer, int(seqlnt64), payloadSize))
}
23 return nil
}

Fonte: Elaborado pelo autor (2025)

O Cédigo [6] comeca nas Linhas 2-4 enviando o tamanho da mensagem ao servidor, e
calculando quantos pacotes serdo necessarios para enviar o arquivo completo. Na sequéncia,

nas Linhas 6-8, o cliente envia os pacotes, com um delay de 5 microssegundos na Linha 9

49

para evitar congestionamento, e consequente perda de pacotes. O cliente envia os pacotes em
paralelo, ou seja, ndo aguarda a confirmacao do servidor antes de enviar o préximo pacote.

As Linhas 12-23 enviam a confirmacdo de entrega dos pacotes, que é repetido até que a
mensagem tenha sido enviada com sucesso. Nas Linhas 13-15, o cliente aguarda uma resposta
do servidor, que pode ser um ok(Linhas 17-18), ou um ndmero de pacote. Caso receba um
nimero de pacote, o cliente reenvia o pacote correspondente, conforme Linhas 20-21.

Na Figura [}, é possivel observar que o Cliente pode finalizar sua adaptagdo antes mesmo
do servidor. Sendo assim, pode ocorrer um erro de conex3o ao tentar enviar mensagens para
um protocolo que ainda n3o estad online. Para evitar este problema e auxiliar no pool de
conexdes no lado do Server Request Handler UDP, o Cédigo Fonte [7| apresenta como o Client
Request Handler realiza uma sequéncia de tentativas de conexdes, enviando uma mensagem

com operacao “Connect”, Linhas 3 a 5, e verificando o retorno do servidor com “Ok" na Linha

10.

Cédigo Fonte 7 — ClientRequestHandler UDP Connection

for {
2 time.Sleep (200 * time.Millisecond)
pck := miop.CreateReqPacket(”"Connect”, [Jinterface{}{adaptId}, adaptId)
4 msgPayload := marshaller{}.Marshall (miopPacket)

err = c.send(size0OfMsgSize, msgPayload, crhInfo.Conns[addr])

6 if err !'= nil {...}

msgFromServer, err := c.read(crhInfo.Conns[addr], sizeOfMsgSize)
8 if err != nil {...}
if isNewConnection, miopPacket := c.isNewConnection(msgFromServer);

isNewConnection {

10 if miopPacket.Bd.ReqBody.Body[1] == "0k" {
break
12 }
3
14 }

Fonte: Elaborado pelo autor (2025)

3.34 TCP

Os componentes Server Request Handler TCP (SRH-TCP) e Client Request Handler TCP
(CRH-TCP) pertenciam ao (nico protocolo implementado na versdo anterior do gMidArch, o

TCP. No entanto, foram necessarias alteracGes para permitir a adaptacdo: a implementacao do

50

TCP foi desacoplada, i.e., foi gerado um novo componente TCP aderente a interface Protocol,
foi criado um pool de conexdes para suportar varios clientes e os componentes Server Request
Handler TCP e Client Request Handler TCP foram alterados para tratar conexdes como
stateful, ou seja, persistindo e utilizando dados de clientes conectados para identificar cada
conexao e permitir a adaptacao. Para poder utilizar o pool de conexdes, o SRH-TCP teve que
ser alterado pois anteriormente, ao aguardar uma conexao, ele ficava bloqueado até que um

cliente se conectasse.

Agora, o SRH-TCP faz uso de goroutines, um recurso da |Go language (Golang)| para

concorréncia, similar as threads, no entanto, enquanto as threads s3o gerenciadas pelo sistema
operacional e consomem mais memoria para salvar seus estados ao alternar de uma thread para
outra, as goroutines sdo gerenciadas pela prépria [Golang] e consomem menos meméria pois
ndo necessitam salvar os estados a cada mudanca de rotina. As goroutines sao utilizadas no
SRH-TCP para aceitar multiplas conexdes de clientes, e assim n3o ficar bloqueado aguardando
uma conexao. Este recurso permite que um cliente possa estar conectando enquanto outros

clientes estao enviando e recebendo mensagens simultaneamente.

3.3.5 TCP+TLS

A criacdo dos trés componentes para TCP+TLS foram baseadas nos componentes TCP.
Foram adicionados os componentes: Client Request Handler TLS (CRH-TLS) e Server Request
Handler TLS (SRH-TLS) e a implementacdo da interface Protocol TCP+TLS. A principal
diferenca do TCP+TLS para a extensdo TCP é que os componentes TLS geram a configuracao
TLS baseada no TLS 1.3, conforme especificado no RFC 8446 (RESCORLA, [2018). Sendo
assim, CRH-TLS e SRH-TLS precisam de certificados para gerar as configuracées TLS. Para
isso € necessario configurar o caminho para os certificados através das variaveis de ambiente

conforme a Tabela 21

Tabela 2 — Variaveis de ambiente para configuracdo de certificados para utilizacdo com protocolos seguros

Variavel Descricao
CA_PATH Caminho para o certificado da autoridade certificadora.
CRT_PATH Caminho para o certificado da aplicacdo/servidor.
KEY_PATH Caminho para a chave do certificado da aplicacdo/servidor.

Fonte: Elaborado pelo autor (2025)

51

3.3.6 QUIC

O QUIC (LANGLEY et al., 2017)) é um protocolo de transporte implementado sobre o UDP
e projetado pelo Google. O objetivo inicial do QUIC era melhorar o trafego na Internet.
Portanto, ele foi projetado sobre o UDP como uma camada de transporte de uso geral para
reduzir a laténcia em comparacdo ao TCP. As caracteristicas essenciais do QUIC incluem
reducao no tempo de estabelecimento de conexao, controle de congestionamento aprimorado,
multiplexacdo sem bloqueio e migracdo de conexdo. Assim, o QUIC usa a simplicidade e a

velocidade do UDP, mas implementa confiabilidade e seguranca sobre ele. O QUIC é um

protocolo amplamente utilizado, pois é a base do |Hyperlext [ransfer Protocol version 3

(HTTP/3)| (BISHOP, 2022), presente nos sites mais modernos e nas Big Techs.

Apesar de usar UDP, o QUIC é semelhante a extensdo TCP+TLS, pois eles usam a mesma
configuracdo do TLS 1.3, i.e., as mesmas varidveis de ambiente do Quadro [2] Diferentemente
do TCP+TLS, a implementacdo do QUIC precisa implementar recursos como controle de
conexdes através de stream (forma que o QUIC usa para a multiplexacdo), que funciona como
uma conex3o adicional para o mesmo cliente. Utilizando o QUIC, os clientes podem estabelecer
uma conexao e usar a mesma conexao para se comunicar em um ou mais streams. Vale notar
que essa caracteristica aumenta a velocidade das transferéncias, permitindo vérias solicitacGes
simultaneas do mesmo cliente.

Semelhante as extensdes anteriores, trés novos componentes foram implementados usando
o protocolo QUIC baseado no RFC 9000 (IYENGAR; THOMSON, 2021): o Client Request Handler
QUIC (CRH-QUIC), o Server Request Handler QUIC (SRH-QUIC) e a implementacdo da
interface Protocol para QUIC. Como o Go ndo possui uma implementac3o nativa do protocolo
QUIC, o pacote usado nos novos componentes é o quic-go (quic-go Contributors, 2024), um
pacote Go construido pela comunidade que ainda n3o esta na versdo estavel, mas é o pacote
QUIC mais funcional disponivel para Go.

O Cédigo Fonte [8| faz parte da implementacdo do Server Request Handler QUIC (SRH-
QUIC) e é necessério para aceitar uma conex3o, aceitar um stream, e receber mensagens do
cliente.

Cédigo Fonte 8 — Conexdo Server Request Handler do QUIC

func (st *QUIC) WaitForConnection(cliIdx int) (cl xgeneric.Client) {
2 conn, err := st.listener.Accept(context.Background())
if err != nil {

4 [...]

52

}
6 if len(st.clients) > clildx {
(xst.clients[clildx]).(*QUICClient).connection = conn
8 (*st.clients[cliIdx]).(*QUICClient).Ip = conn.RemoteAddr().String()
(xst.clients[clildx]).(*QUICClient).stream, err = conn.AcceptStream(
context.Background())
10 L...]

Fonte: Elaborado pelo autor (2025)

As Linhas 2 a 5 implementam os passos para aceitar uma conexdo, similar ao Server
Request Handler TCP (SRH-TCP). As Linhas 7 a 9 explicitam a diferenca entre QUIC e TCP,
pois o QUIC precisa de um controle extra sobre a comunicacdo através de streams, quase

como uma conexao adicional.

3.3.7 RPC

A implementacao do RPC foi construida sobre o Go RPC, que é uma biblioteca nativa da
linguagem Go. Os novos componentes utilizam o Go RPC como um mecanismo de transporte
de request-reply, i.e., somente para enviar e receber mensagens.

O RPC se baseia na chamada de funcdes remotas, onde a implementacdo da funcdo
remota estd associada a regra de negécio, e.g., para calcular o Fibonacci utilizando RPC,
o esperado é que a funcdo registrada no servidor RPC tenha o nome e os parametros da
funcao que faz o célculo do Fibonacci. No entanto, para criar a abstracdo da comunicacao, os
novos componentes RPC implementam a interface de Protocolos, onde o padriao para envio
e resposta de mensagens é através de arrays de bytes. Sendo assim, por mais que o usuario
do gMidArch implemente diferentes regras de negbcio, com funcoes e parametros diferentes,
o RPC sempre ira enviar e receber mensagens através de arrays de bytes. Em outras palavras,
o RPC implementado no gMidArch é um RPC genérico, onde o usuario pode implementar
qualquer regra de negdcio, mas a comunicacdo sempre sera feita através de arrays de bytes,
i.e., implementacdo da funcdo do RPC nos novos componentes registram uma funcdo chamada
Request, que é responsavel somente pelo envio da mensagem como um array de bytes. Com
isso, 0 RPC se torna um protocolo de transporte de acordo com o modelo [OS]]

Para atingir este objetivo, foram implementados os componentes Client Request Handler

RPC (CRH-RPC) e Server Request Handler RPC (SRH-RPC), além da implementacdo pro-

53

priamente dita da interface de Protocolo para RPC.

Como o servidor no Go RPC fica escutando por conexdes ativamente, e sb responde na
implementacao do objeto registrado, foi necessario adaptar seu funcionamento, de forma a
quebrar sua execucdo nas funcdes da interface de Protocolo. Para isso, foi criado um objeto
remoto que divide a execucdo do servidor em funcdes, fazendo uso dos canais do Go para
enviar e receber mensagens.

O Cédigo Fonte[9 mostra como este objeto remoto e sua funcdo remota sdo implementados
no servidor. Este objeto é responsavel por receber as mensagens do cliente, processa-las e
enviar a resposta. As Linhas 1 a 4 definem a struct do objeto remoto, que contém o canal de
mensagens recebidas e o canal de respostas. As Linhas 6 a 12 implementam a funcdo remota
que é chamada a cada requisicdo. A funcdo recebe a mensagem do cliente como parametro
na Linha 6. Em seguida, nas Linhas 7 a 9, esta funcdo coloca a mensagem em um canal para
ser processada e aguarda a resposta no canal de retorno na Linha 10. Por fim, a funcio envia
a resposta para o cliente na Linha 11.

Cédigo Fonte 9 — Servidor RPC

type RPCRequest struct {
2 msgChan chan [Jbyte
replyChan chan [J]byte

6 func (rqg RPCRequest) Request(request [J]byte, reply *[]byte) error {

go func() {
8 rg.msgChan <- request
110
10 replyMsg := <-rqg.replyChan
*reply = replyMsg
12 return nil
3

Fonte: Elaborado pelo autor (2025)

3.3.8 HTTP/1.1

Os componentes HTTP/1.1 trazem vérias novas possibilidades para o gMidArch, uma
vez que seu componente Server Request Handler HTTP (SRH-HTTP) pode atuar como um

servidor Web e interagir com clientes através de navegadores ou qualquer outro cliente HTTP.

54

Apesar de HTTP n3o ser um protocolo da camada de transporte segundo o modelo [OSI]
todos os componentes HTTP foram implementados de forma a serem compativeis com os
demais protocolos de comunicacdo. Para isso, estes componentes no gMidArch atuam somente
na Camada de Infraestrutura com o Client Request Handler HTTP e Server Request Handler
HTTP e na Camada de Transporte, com a implementacdo do protocolo HTTP/1.1, servindo
como uma forma de enviar e receber stream de bytes, e controlando o sucesso das requisicoes
com os cédigos de status HT TP, assim como é feito ao se implementar uma [API|[REST]

O componente HTTP implementa a especificacdo HTTP/1.1 (FIELDING; NOTTINGHAM;
RESCHKE, [2022), mas n3o inclui TLS. Essa extensdo foi implementada usando o pacote
net/HTTP da linguagem Go. Para que o componente HTTP seja compativel com os de-
mais protocolos de comunicacdo, a interface Protocol foi implementada. O método StartSer-
ver definido na interface Protocol e implementado no componente HT TP prepara um servidor
HTTP/1.1, que passa a aceitar conexdes no método WaitForConnection (também da interface
Protocol). O servidor HTTP ent3o fica executando em background.

Ao contrario dos demais protocolos, que devem explicitamente ler mensagens, um servidor
HTTP fica esperando ativamente por uma mensagem. Sendo assim, o que o método Receive
faz é ficar observando um canal, como visto nas Linhas 2 e 3 no Cddigo Fonte [I0]

Cédigo Fonte 10 — HTTP Receive

1 func (cl *HTTPClient) Receive() (msg [lbyte, err error) {

msg = <-cl.msgChan

Fonte: Elaborado pelo autor (2025)

Por sua vez, este canal é carregado quando o servidor HT TP recebe a mensagem, conforme
o Cédigo Fonte [I1] Esta funcdo é executada em cada recebimento de mensagem no servidor
HTTP. A Linha 1 é a assinatura padrdo de uma funcdo HTTP, onde é passado um response
writer (contendo a mensagem a ser respondida ao cliente) e um request (a mensagem que
o cliente enviou ao servidor). As Linhas 2 e 3 leem a mensagem recebida, e as Linhas 4 a
6 sdo responsaveis por enviar a mensagem para o canal observado pelo método Receive. Na
sequéncia, o gMidArch processa a mensagem recebida de forma padrao, como qualquer outro
protocolo, e aguarda a resposta na Linha 7.

Cédigo Fonte 11 — HTTP Serve

1 func (rq HTTPRequest) ServeHTTP(w http.ResponseWriter, r xhttp.Request) {

55

msg, _ := io.ReadAll(r.Body)
3 r.Body.Close ()

go func() {
5 rg.msgChan <- msg

10O
7 replyMsg := <-rq.replyChan

w.Write(replyMsg)

Fonte: Elaborado pelo autor (2025)

Ao fim do processamento da mensagem, o Server Request Handler HT TP chama a funcao
Send do componente HTTP, e assim como o Receive, se comunica com o servidor HTTP
através de canais. Conforme Cédigo Fonte [12] pode ser observado nas Linhas 2 a 4 que ele
somente coloca a mensagem de retorno no canal do servidor HT TP, que é o mesmo canal que
ficou aguardando na Linha 7 no Cdédigo Fonte [11]

Cédigo Fonte 12 — HTTP Send

1 func (cl *HTTPClient) Send(msg [lbyte) error {

go func() {

3 cl.replyChan <- msg
110

5 [...]

Fonte: Elaborado pelo autor (2025)

Como o servidor HTTP deve fornecer uma resposta para o cliente, a Linha 7 do Cédigo
Fonte [I1] Ié a mensagem de resposta do canal e a envia para o cliente na Linha 8, finalizando

o ciclo de vida da mensagem HTTP/1.1 no servidor.

3.3.9 HTTPS

Um novo protocolo de transporte foi adicionado ao gMidArch para melhorar a seguranca na
comunicacdo como um servidor Web, o HTTPS. Conforme mencionado na extensdo TCP+TLS
(Secdo [3.3.5]), o TLS 1.3 melhora tanto a confianca sobre a identidade do servidor, quanto
dificulta que alguém seja capaz de ler as mensagens trocadas entre cliente e servidores.

Trés novos componentes foram adicionados para suportar o HTTPS: CRH-HTTPS e SRH-
HTTPS, além da prépria implementacdo do protocolo. Essa nova extensdo HTTPS é seme-

lhante a do HTTP, no entanto, ela utiliza o TLS como camada de seguranca para transportar

56

mensagens. Para isso, além do pacote net/HTTP da linguagem Go, foi utilizado o pacote
crypto/tls para implementar a criptografia. Como o TLS se baseia na utilizacdo de certifica-
dos para a geracdo da criptografia, foram utilizadas as mesmas varidveis de ambiente para

configuracdo de certificados da Tabela [2]

3.3.10 HTTP/2

A implementacdo dos componentes HTTP /2 é similar a dos componentes HTTPS, dife-
renciando basicamente nos pacotes utilizados para implementacdo. O componente HTTP/2
utiliza o pacote golang.org/x/net/http2 da linguagem Go, que implementa a especificacdo
HTTP/2 (BELSHE; PEON; THOMSON, 2015). Apesar de o HTTP/2 n3o exigir criptografia,
muitas implementacdes importantes s6 suportam HTTP /2 sobre TLS, e.g., Chrome, Firefox
e Safari (NAZIRIDIS| [2018)). Portanto, os componentes HTTP/2 do também supor-
tam somente HTTP/2 sobre TLS 1.3 e consequentemente utilizam as mesmas variaveis de

ambiente da Tabela 2

3.4 CONSIDERACOES FINAIS

Este capitulo iniciou apresentando a visdo geral da solucdo proposta, o [pAdapt] Em se-
guida, foi apresentado o mecanismo de adaptacdo de protocolos de comunicacdo em tempo
de execucdo, abordando o Fluxo de Adaptacao de Protocolos de Comunicacao, as extensoes
de adaptacdo, a implementacdo do novo mecanismo e o novo controle de estado dos compo-
nentes. Finalmente, na ultima parte do capitulo, foram apresentados os novos componentes
de comunicacao, a interface Protocol, como foram escolhidos os protocolos adicionados e os

detalhes de implementacdo para cada conjunto de componentes de cada protocolo.

57

4 AVALIACAO EXPERIMENTAL

Neste capitulo sao apresentados os experimentos realizados para avaliar o desempenho
do [pAdapt] tanto com relacdo ao desempenho dos componentes de transporte do préprio
middleware, quanto em comparacdo com sistemas de middleware comerciais. A Secdo 4.1
apresenta os objetivos da avaliacdo, enquanto a Secdo descreve as métricas, parametros e
a carga de trabalho utilizados nos experimentos. A Secao descreve os fatores e o projeto
dos experimentos. Na sequéncia, a Secdo |4.4| apresenta a solucdo em acdo, detalhando como
o [pAdapt] foi implementado e utilizado nos experimentos. A Sec&o [4.5] apresenta os resultados

e a analise dos resultados. Por fim, a Secdo [4.6] apresenta as consideracdes finais.

4.1 OBJETIVOS DA AVALIACAO

A avaliacdo experimental tem cinco objetivos principais:

» Analisar o desempenho dos componentes de transporte adicionados e modificados no

» Analisar o impacto da adaptacdo no desempenho dos componentes de transporte;

= Comparar o desempenho entre os diferentes protocolos de comunicacdo do [pAdapt| (in-
clusive com adaptacdo) e sistemas de middleware comerciais (gRPC| (GO, [2025), Go
RPC (RPC-GO| 2025)) e RabbitMQ (GO-RABBITMQ, [2025));

= Analisar o impacto da demanda de processamento no e nos sistemas de mid-

dleware comerciais; e

= Analisar o impacto do tamanho do pacote no e nos sistemas de middleware

comerciais.

Para todos os objetivos, as mesmas aplicacGes cliente-servidor foram implementadas sobre
as diferentes configuracdes do [pAdapt, bem como dos sistemas de middleware comerciais,
i.e., do gRPC, do Go RPC e do RabbitMQ.

O ponto principal da avaliacdo é o protocolo de transporte e a sua adaptacdo automatica
para outros protocolos em tempo de execucdo. Foram construidas duas aplicacdes cliente-

servidor, que sdo analisadas nas préximas secdes. O estudo foca somente no servico de trans-

58

porte do middleware, ou seja na comunicacado entre o cliente e o servidor. Todas as aplicacoes
foram implementadas na linguagem Go, e os experimentos foram executados em um cluster

Docker Swarm de né Unico.

4.2 METRICAS, PARAMETROS E CARGA DE TRABALHO

Uma das métricas utilizadas ao longo dos experimentos foi o tempo de resposta, ou

[Trip Time (RTT)| que é medido no lado do cliente e se refere ao tempo decorrido do momento

em que o cliente faz uma solicitacdo e o instante em que ele recebe uma resposta. Para esta
métrica, foram medidos o [RTT| de cada requisico.

Para verificar a utilizacdo dos recursos pelo sistema para suportar os diferentes sistemas
de middleware, outras métricas utilizadas sdo a utilizacdo de CPU e a utilizacdo de memdria.
Estas métricas foram medidas a cada 1 segundo.

Os parametros do sistema estdo definidos na Tabela [3] Como pardmetros do sistema
estdo as especificacdes da maquina utilizada para a execucdo dos experimentos, bem como da

plataforma utilizada na conteinerizacdo dos servicos.

Tabela 3 — Parametros do Sistema

Parametros do sistema Valor
Processador AMD® Ryzen 7 5800H
Memodria 16,0 GiB

Wifi Off

Sistema Operacional Ubuntu 24.04
Plataforma de Conteinerizac3do Docker swarm
Memoria reservada para cada contéiner 256M

CPU reservado para cada contéiner 0.4 CPU
Limite de Memoria para cada contéiner 256M

Limite de CPU para cada contéiner 0.4 CPU
Sistema Operacional dos contéineres Debian Buster 11
Vers3o do go g01.22.2 linux/amd64
Go Modules on

Fonte: Elaborado pelo autor (2025)

O ambiente usado para a avaliacdo é um cluster Docker Swarm no qual cada componente
(cliente e servidor) é executado em um contéiner separado. Cada contéiner é executado a

partir de uma imagem Debian Buster 11 com restricdes de limites de memdria e memorias

59

reservadas pré-alocadas em 256 MB de RAM, i.e., os contéineres ja iniciam com memorias
pré-alocadas, e também iniciam com um limite de memdria igual aos valores pré-alocados,
evitando assim que sejam alocadas dinamicamente e também que ultrapassem o maximo de
RAM, o que pode impactar no desempenho e avaliacdo dos servicos. Além da memdria, os
contéineres também contam com quantidade de CPUs limitadas e pré-alocadas em 40% de
um core da CPU da maquina hospedeira, também evitando que aloquem mais recursos do que
0 necessario e impactem na avaliacao de desempenho dos servicos.

O cluster Docker foi executado em um computador com CPU AMD® Ryzen 7 5800H de
16 GB de memoéria RAM e utilizando sistema operacional Ubuntu 24.04 LTS. Além disto, a
versao da linguagem Go utilizada foi a 1.22, e com a diretiva Go Modules ativada.

Os parametros da carga de trabalho escolhidos para os experimentos estdo definidos na
Tabela [4 Foi criado um tempo entre invocacdes que obedece uma distribuicdo normal com
média de 200 ms e desvio padrdo de 20 ms (10%), isso se faz necessario, pois sem um in-
tervalo entre as invocacdes o experimento passaria a ser um experimento de carga, e n3o das
funcionalidades e do desempenho. Além disso, esta distribuicao visa simular um cenario mais
proximo do real onde as requisicoes ndo sao feitas em intervalos regulares. Warm-up requests
foram definidas em 100, isso representa o nimero de requisicoes que o cliente faz antes de
considerarmos que o sistema estd em estado estavel, i.e., um estado onde o sistema ja foi
carregado e ndo esta mais alocando recursos para a inicializacao. O niimero de invocacoes foi
definido em 10.000, para que possamos ter uma quantidade suficiente de requisicGes para ava-

liar o desempenho do sistema. O tamanho maximo do pacote foi definido em 65500 bytes, para

evitar ultrapassar o limite do|Maximum Transmission Unit (MTU)| Por fim, os Power Settings

da maquina utilizada para execucdo dos experimentos foram definidos em Performance, para

que possamos ter o maximo de desempenho.

Tabela 4 — Pardmetros da Carga de Trabalho

Parametros da Carga de Trabalho Valor

Distribuicao normal com média 200 ms

Tempo entre invocacdes . .
e desvio padrdo de 20 ms (10%)

Ndmero de invocacoes 10000
Warm-up requests 100
Tamanho méximo do pacote 65500 bytes
Power Settings Performance

Fonte: Elaborado pelo autor (2025)

60

Todos os experimentos executados seguiram os mesmos parametros de sistema e de carga

de trabalho, variando apenas nos fatores, que serdo descritos na préxima sec3o.

4.3 FATORES E PROJETO DOS EXPERIMENTOS

Duas aplicacdes foram escolhidas para a avaliacdo experimental: uma com alta variacao na
demanda de processamento mas tamanho de pacote pequeno (Fibonacci), e outra com baixa
demanda de processamento mas com grande variagdo de tamanho do pacote (SendFile).

Tendo como foco o middleware, na aplicacdo de Fibonacci, o procedimento remoto in-
vocado pelo cliente (fibonacci(N)), calcula recursivamente um nimero N da sequéncia de
Fibonacci passado como parametro pelo cliente. Na pratica, cada solicitacdo passa pelo mid-
dleware do cliente e do servidor antes de ser executada remotamente. Apesar de simples, a
aplicacdo Fibonacci é de facil implantacdo e utiliza todos os componentes de middleware (se-
melhantes a aplicacdes mais complexas), requisito fundamental na avaliacdo. Esta aplicacdo
visa avaliar o desempenho do middleware e seus componentes, sem muita interferéncia do
tamanho do pacote ou do estado da rede. A aplicacdo Fibonacci foi escolhida por ser uma
aplicacao simples, que no entanto, demanda grande utilizacdo de processamento para nime-
ros grandes, simulando uma aplicacao com alta demanda de processamento em sua légica de
negdcios.

A aplicacdo SendFile é uma aplicacdo que envia um arquivo de um cliente para um servidor,
e foi escolhida por ser uma aplicacdo que, além de utilizar todos os componentes do middleware,
envolve a transferéncia de arquivos, de diferentes tamanhos, e que pode ser utilizada para
avaliar o desempenho do middleware em relacdo ao tamanho do pacote, e o envio dos pacotes
pela rede de forma fragmentada.

Os fatores dos experimentos foram definidos de acordo com a Tabela[5] Como Camada de
Transporte foram colocados todos os protocolos de comunica¢do disponiveis no[pAdapt| (TCP]
[TLS| go|RPC}, |IQUIC, [HTTP, [HTTPS| [HTTP/2)) e também os sistemas de middleware comer-
ciais Go RPC, gRPC e RabbitMQ), identificados na tabela com o prefixo "E_" de "Externo",
para indicar que n3o fazem parte do [pAdapt]

A adaptacdo também foi definida como um fator, podendo ser ativada ou ndo. Para

os experimentos, a adaptacao é realizada sempre a cada intervalo de tempo, independente
do motivo, o foco do experimento é em como adaptar e se esta adaptacdo compromete o

desempenho do middleware, com isso, outro fator é o tempo de adaptacdo, que pode ser

61

ativado a cada 2 minutos ou 5 minutos. A combinacdo de protocolos da adaptacao é um
outro fator, podendo ser [TCPH-TLS, RPCHHTTP, TLS+HTTP2.

Por fim, o dltimo fator é o InputSet, que é a juncdo da aplicacdo executada com sua
variacdo, podendo ser F2, F11 e F38 para a aplicacao de Fibonacci, e 136, 12k, 14k para a
aplicacao SendFile.

Os ndmeros do InputSet do sistema de Fibonacci representam a sequéncia de Fibonacci
que o cliente envia para o servidor calcular. Estes nimeros podem assumir os niveis F2 com
ndmero de Fibonacci 2 (baixa demanda de processamento), F11 para o ndmero de Fibonacci
11 (uma demanda com um custo um pouco maior mas sem exigir muito dos processadores)
ou F38, representando o ndmero de Fibonacci 38 (alta demanda de processamento), em todos
0s casos com um pequeno tamanho de carga atil. Na pratica, quando N=2, o tempo de
negdcio (tempo para calcular o Fibonacci) é menor que o tempo do middleware (tempo que
a requisicdo/resposta passa dentro do middleware). No caso N=38, o tempo do middleware
torna-se menor que o tempo do negdcio.

Ja os niimeros do fator InputSet do sistema SendFile representam a resolucdo da imagem
enviada. Este fator pode assumir os valores 136, representando uma imagem de 36x36 pixels,
resolucdo tipica de pequenos icones, enviados em um (nico pacote. O valor 12k, representando
uma imagem de resolucdo 2k, i.e., 2048x1080 pixels, tipico de uma foto de boa qualidade.
E o valor 14k representando uma imagem de resolucao 4k, que possui 3840x2160 pixels e é

utilizado em imagens de 6tima resolucao.

Tabela 5 — Fatores

Fatores Niveis
UDP / TCP / TLS / Go RPC / QUIC / HTTP /
HTTPS / HTTP2 / E_RPC / E_RabbitMQ / E_gRPC

Camada de Transporte

Adaptacdo On / Off

Tempo de adaptacdo 2m / 5m

Combinacdo de Protocolos TCP+TLS / RPC+HTTP / TLS+HTTP2
InputSet F2 / F11 / F38 /136 / 12k / 14k

Fonte: Elaborado pelo autor (2025)

Para executar os experimentos foram criadas imagens Docker com o build realizado a partir
de arquivos de configuracao Dockerfile e armazenadas no Docker Hub, uma imagem para a

aplicac3do servidora e outra imagem para a aplicacdo cliente. Para garantir a integracdo correta

62

entre os contéineres, foi criado também um arquivo de docker—composzf] (Apéndice [A)), que
é um arquivo no formato YAML que define uma Stack no Docker Swarm. Uma Stack é um
conjunto de servicos que sao implantados juntos, e que compartilham configuracoes, como
redes e volumes. O arquivo de docker-compose foi utilizado para definir os servicos, as redes
e valores dos fatores que seriam utilizados nos experimentos.

Para monitorar os experimentos foram criados Scripts de Monitoramento e Profiling ba-
seadas na [AP] do Docker. Estes scripts foram executados em paralelo com os experimentos,
sem necessidade de instrumentacdo do cddigo, que poderia afetar o desempenho, e sdo os
responsaveis pela coleta das métricas de utilizacao de CPU e de meméria dos contéineres.

Todo o processo de avaliacdo experimental ocorreu sem intervencao manual, i.e., os expe-

rimentos foram executados de forma automatizada, e os resultados foram coletados e arma-

zenados em arquivos [Comma-Separated Values (CSV)| para posterior anélise. O algoritmo dos

Scripts de Automacao se baseou em um loop pelos diferentes niveis dos fatores, e para cada
combinacao de fatores foi executado um experimento, totalizando 102 experimentos.

Como parte de cada experimento, foram construidas as imagens Docker e o docker-
compose, o arquivo de configuracao da Stack, que continha os fatores a serem analisados
no experimento em especifico. Na sequéncia, as imagens foram enviadas para o Docker Hub a
fim de possibilitar a reproducdo dos experimentos. Em seguida, os contéineres foram iniciados
no cluster Docker Swarm, e os scripts de monitoramento e profiling foram executados em
paralelo. Por fim, com o término da execucdo das aplicacdes, os resultados foram coletados e
armazenados em arquivos|[CSV|em uma pasta especifica do experimento. Todas as informacdes
do experimento, como servicos, contéineres, imagens, redes e fatores sao entdo removidas do
cluster Docker Swarm para possibilitar a execucdo de novos experimentos.

A Figura [/| representa a arquitetura e o fluxo de execucao dos experimentos.

Conforme Figura [7] os experimentos inciam com a execucdo do Script de Automacdo no
passo 1. Este script é responsavel entdo por configurar o Cédigo Fonte de acordo com os
parametros, carga e fatores do experimento a ser executado no passo 2. Em seguida, no passo
3, o script efetua a compilacdo do Codigo Fonte. O passo 4 é a construcao das imagens Docker,
seguidas da publicacdo das imagens no Docker Hub no passo 5. Com as imagens publicadas,
o passo 6 é a utilizacdo destas imagens enviadas iniciar o experimento. No passo 7, o Docker
Swarm inicia os contéineres com as imagens publicadas. Com isso, o experimento comeca.

Paralelamente ao experimento, ainda no passo 7, o Script de Monitoramento e Profiling é

1 Cédigo Fonte dos experimentos disponivel em: https://github.com/gfads/midarch

63

Figura 7 — Arquitetura dos Experimentos

2@ (s | ®
' publicadas

\! Fatoras

Experimento i h
/ Publica as || / 6’ \ \
s (s (® JICE-
VBZ para cada E i Swarm :
um dos 102 : v csy
exparimentos !
—_ | app fe——>{ app
T @ ®
@ @ @ @ Cliente) [Senvidor i i
Script de Configura o Compila o Constroi as 5 = | Script de |
Automagao Cadigo Fonte Cadigo Fonte Imagens Docker | Monitoramento |
I]
A Parametros, | !
Carga \ b i

Fonte: Elaborado pelo autor (2025)

iniciado para coletar as métricas do experimento. Ao fim da execucao do experimento, no
passo 8, o Script de Monitoramento e Profiling gera planilhas em formato [CSV| com os
dados coletados. Por fim, no passo 9, o Script de Automacdo remove todos os servicos,
contéineres, imagens e redes do experimento do Docker Swarm, dando inicio ao préximo ciclo

de experimento.

4.4 SOLUCAO EM ACAO

Para os experimentos foram criadas duas aplicaces cliente-servidor: uma aplicacdo de
Fibonacci e uma aplicacdo de envio de arquivos (SendFile). Cada uma contendo dois executa-
veis, um para o cliente e outro para o servidor. Ambas as aplicacoes utilizam o como
middleware de comunicacao entre o cliente e o servidor.

O Cédigo Fonte [13] demonstra a implementacdo do servidor de Fibonacci.

Cédigo Fonte 13 — Fibonacci Server

1 func main() {

args := make(map[stringlmessages.EndPoint)
3 args[”"srh”"] = messages.EndPoint{Host: "0.0.0.0", Port: "1314"}
fe := frontend.NewFrontend()
5 fe.Deploy(frontend.DeployOptions{FileName: "FibonacciDistributedServerMid.
madl”, Args: args, Components: map[stringlinterface{}{
"FibonacciInvoker"”: &middleware.FibonacciInvoker{},

7 i3y

64

intervalBetweenInjections, _ := strconv.Atoi(shared.
EnvironmentVariableValueWithDefault ("INJECTION_INTERVAL", "45"))
9 evolutive.EvolutivelInjector{}.StartEvolutiveProtocolInjection("srhhttp2", "

srhtls”, time.Duration(intervalBetweenInjections)*time.Second)

Fonte: Elaborado pelo autor (2025)

As linhas 2 e 3 definem os parametros que sdo levados em consideracdo ao se subir o
servidor do [pAdapt] como o endereco IP, representado por "0.0.0.0" para indicar que recebe
requisicoes de qualquer endereco e a porta onde a aplicacdo ird escutar as requisicbes. As
linhas 4 a 7 inicializam o middleware do com os parametros definidos anteriormente.
A inicializacdo também indica como é o deploy do middleware, informando a configuracao
do middleware (arquivo , e adicionando um componente novo ao middleware, que nao
estd implementado no [pAdapt] o Fibonaccilnvoker. Para que o encontre o novo
componente a ser extendido no middleware, é necessario que a variavel de ambiente MI-
DARCH_BUSINESS_COMPONENTS_PATH aponte para o diretério onde o componente
esta implementado.

Por fim, as linhas 8 e 9 iniciam um injetor de adaptacdes. O objetivo deste injetor é simular
uma necessidade de adaptacdo, forcando o a adaptar os protocolos de comunicagao
a cada intervalo de tempo definido na varidvel de ambiente INJECTION_INTERVAL. Este
injetor também é quem define quais os protocolos de comunicacdo que serao utilizados na
adaptacao.

O Cédigo Fonte [14] demonstra a implementacdo do cliente de Fibonacci.

Cédigo Fonte 14 — Fibonacci Client

func main() {
2 args := make(map[string]messages.EndPoint)
args["crh”] = messages.EndPoint{Host: shared.CALCULATOR_HOST, Port: shared.
CALCULATOR_PORT}
4 fe := frontend.NewFrontend()

fe.Deploy(frontend.DeployOptions{

6 FileName: "FibonacciDistributedClientMid.madl"”,
Args: args,
8 Components: map[stringlinterface{}{

"FibonacciProxy": &fibonacciProxy.FibonacciProxy{},
10 139)
proxyConfig := generic.ProxyConfig{Host: shared.CALCULATOR_HOST, Port: shared
.CALCULATOR_PORT}

12 fibonacci := &fibonacciProxy.FibonacciProxy{}

65

fibonacci.Configure(proxyConfig)

14 for x := @; x < SAMPLE_SIZE; x++ {
ok := false
16 for !ok {
t1 := time.Now()
18 r := fibonacci.F(shared.FIBONACCI_PLACE)
t2 := time.Now()
20 duration := t2.Sub(t1)
if r 1= 0 {
22 ok = true

log.Printf (";ok;%d;%f;%d\n", x+1, duration, r)
24 } else {
log.Printf(";error;%d;%f;%d\n", x+1, duration, r)

26 3}
time.Sleep(shared.GetIntervalBetweenInvocations())
28 3
}
30 3}

Fonte: Elaborado pelo autor (2025)

As linhas 2 e 3 definem os parametros que s3o levados em consideracdo ao inicializar o
middleware com [pAdapt| como o endereco IP e a porta do servidor. As linhas 4 a 10 inici-
alizam o middleware do com os pardmetros definidos anteriormente. A inicializagdo
também indica como é o deploy do middleware, informando a configuracdo do middleware
(arquivomADL]), e adicionando um componente novo ao middleware, que n3o estd implemen-

tado no [pAdapt], o FibonacciProxy. Assim como no servidor, para que o encontre

0 novo componente a ser extendido no middleware, é necessario que a variavel de ambiente
MIDARCH_BUSINESS_COMPONENTS_PATH aponte para o diretério onde o novo com-
ponente esta implementado.

As linhas 11 a 13 iniciam o proxy de fibonacci, que é responsavel por fazer a comunicacdo
com o servidor. O proxy encapsula a légica de comunicacdo, permitindo chamadas para
o servidor através do middleware do [pAdapt]

Por fim, as linhas 14 a 29 implementam a légica do experimento no lado do cliente. O cliente
percorre um loop de acordo com nimero definido na variavel de ambiente SAMPLE_SIZE.
Para cada iteracao do loop, as linhas 17 a 20 realizam uma requisicdo ao servidor para calcular
o nimero Fibonacci, passando como parametro o nimero definido na varidvel de ambiente

FIBONACCI_PLACE, e calculando o tempo de resposta da requisicdo. Na sequéncia, as linhas

66

21 a 26 armazenam o tempo de resposta em um arquivo [CSV] Finalizando entdo na linha 27
com um sleep do tempo entre invocacoes, antes que se inicie a préxima iteracao do loop.
A aplicacdo SendFile segue a mesma estrutura da aplicacdo Fibonacci, mas com a légica

de negdcio diferente, i.e., com um proxy e um invoker especificos para o envio de arquivos.

4.5 RESULTADOS E ANALISE DOS RESULTADOS

Conforme mencionado anteriormente, o primeiro objetivo da avaliacdo experimental foi
comparar o desempenho dos diferentes componentes adicionados e modificados do [pAdapt]
Para isso, as aplicacdes cliente-servidor foram executadas sobre instancias do confi-
guradas com diferentes mecanismos de transporte, aqui classificados em protocolos seguros
(TCPHTLS, QUIC, HTTPS e HTTP/2) e ndo seguros (UDP, [TCP} RPC e HTTP).

Os dados obtidos através do profiling e monitoramento dos experimentos geraram [CSV
com os dados ao longo do tempo, e a partir destes dados foram gerados boxplots para cada
uma das diferentes métricas de desempenho, como [RTT]| utilizacio de CPU e meméria. A
partir destes boxplots foi possivel realizar a comparacdo entre os diferentes protocolos de
comunicacio do[pAdapt], e também entre os protocolos do[pAdapt]|e os middleware comerciais
gRPC, Go RPC e RabbitMQ.

Para a geracdo dos boxplots, foi utilizado a linguagem Python, a biblioteca pandas para
manipulacdo dos dados, e as bibliotecas matplotlib e seaborn para a geracdo dos graficos.
Para anélise dos resultados foram aplicados testes T-Test para verificar diferencas entre os
resultados. Nas figuras dos boxplots abaixo, os protocolos do sem adaptagdo sao
representados pelos seus nomes e na cor azul, os protocolos do com adaptacdo sao
representados pelos nomes concatenados de ambos os protocolos utilizados na adaptacao,
seguidos do tempo entre cada adaptacdo, e estao na cor verde. J4 os sistemas que utilizam
middleware comerciais sdo representados com o prefixo "E_" de "Externo", e estio represen-
tados na cor cinza.

A seguir, sdo discutidos os principais achados e suas implicacoes para o desempenho do

sistema.

67

4.5.1 Desempenho dos protocolos de comunicacao do jpAdapt

Analisando os tempos de resposta das aplicacdes Fibonacci de 2 e SendFile com arquivo
de tamanho 36x36, foi possivel observar que: quando o tempo da regra de negdcio é baixo,
a quantidade dos pacotes, a utilizacdo de CPU e a utilizacdo de meméria sao similares entre
diferentes regras de negécio. Em outras palavras, o [RTT] é influenciado pelo tamanho do
pacote, pela utilizacdo de memoria e pela utilizacio de CPU gerados em decorréncia das
necessidades e demandas das regras de negdcio.

A Figura [8) mostra o [RTT]| dos diferentes protocolos de comunicacdo para a aplicagdo
Fibonacci com nimero 2. A Figura[9 mostra o [RTT|dos diferentes protocolos de comunicacio
para a aplicacdo SendFile com arquivo de 36x36 pixels. O tamanho do pacote do envio de
imagens é ligeiramente maior que o tamanho do pacote do envio de nimeros da sequéncia de
Fibonacci. Além disso, no envio de imagens ainda ha o tempo necessario para salvar a imagem
em disco apds o recebimento da imagem e isso pode ser observado nos boxplots, onde o [RTT]
para a aplicacdo SendFile é ligeiramente maior que o [RTT] para a aplicacdo Fibonacci. No
entanto, pode ser verificado que a consisténcia dos resultados é similar, com os diferentes

protocolos se mantendo em posicoes similares nos boxplots.

Figura 8 — Experimento Fibonacci 2: Boxplot Protocolos vs RTT

Fibonacci - 2

e ——

Tempo de Resposta (ms)

Protocolos

[pAdapt sem adaptacéo I pAdapt com adaptacéo [middleware comercial

Fonte: Elaborado pelo autor (2025)

Outro ponto importante a ser destacado é a magnitude dos tempos de resposta, medida

em milisegundos. O protocolo mais lento faz o [RTT| do Experimento SendFile 36x36 com

68

Figura 9 — Experimento SendFile 36x36: Boxplot Protocolos vs RTT

Sendfile - sm

cama e +

= N
o o

£

Tempo de Resposta (ms)

§ & & & R é@ <& & & & & & & < & égg &
¢ N & & & & & & “ “ «
Pe < < Qg(/ ,\\':’Q\ /\&‘?*
Protocolos
Il pAdapt sem adaptacéo I pAdapt com adaptacdo I Middleware comercial

Fonte: Elaborado pelo autor (2025)

uma mediana de apenas 1.9 ms. Neste mesmo experimento, a diferenca entre as médias dos
tempos de resposta do protocolo mais lento para o protocolo mais rapido é de 63%, i.e, de

apenas 1.2 ms, expressa pela diferenca entre o [QUIC| e a implementacdo RPC comercial.

4.5.2 Impacto da adaptacao no pAdapt

Outro resultado que fica evidente nas Figuras[8/e[9) é que n3o ha diferenca de desempenho
entre os protocolos de comunicacgo do com e sem adaptac3o.

Analisando estatisticamente os resultados do Experimento Fibonacci 2, ndo foi encontrada
uma diferenca estatisticamente significativa entre os tempos de resposta da execucdo do TLS
sem adaptacdo e a execucdo do TLS com adaptacdo (TCPTLS-300s). A anélise do teste T
indicou que a diferenca n3o foi significativa, com um valor do p-value de 0.73 e intervalo de
confianca de 95%.

Analisando estatisticamente os resultados do Experimento SendFile 36x36, nao foi encon-
trada uma diferenca estatisticamente significativa entre os tempos de resposta da execucao do
TLS sem adaptacdo e a execucdo do TLS com adaptacdo (TCPTLS-300s). A anélise do teste
T indicou que a diferenca nao foi significativa, com um valor do p-value de 0.23 e intervalo
de confianca de 95%.

Consequentemente é possivel chegar a conclusdo de que a adaptacdo automatica de pro-

69

tocolos de comunicacdo do ndo impacta significativamente no [RTT], e os protocolos
de comunicacdo com adaptacdo mantém [RT Tk similares aos protocolos sem adaptacdo. Evi-

denciando assim que a adaptacdo automética de protocolos de comunicacdo do é

eficiente com relacdo ao impacto causado no [RTT]

4.5.3 Desempenho dos protocolos de comunicacao do |pAdapt e sistemas de mid-

dleware comerciais

Ainda com relacdo ao [RTT]| para aplicacdes com pouco uso de meméria e CPU, e pacotes
de tamanho pequeno, observados nas Figuras [§) e [9] é possivel perceber que os sistemas
de middleware comerciais (E_RPC, E_GRPC e E_RMQ) tém melhor desempenho do que
os protocolos de comunicacdo do . No entanto, esta diferenca é de, no maximo,
aproximadamente 1 ms.

Analisando por outras perspectivas, nestes mesmos experimentos, na Figura 10, é possivel
perceber que no[pAdapt]a utilizagdo de CPU para UDP, [TCP|e TLS tém um desempenho me-
lhor que os sistemas de middleware comerciais. E que mesmo com a adaptacdo do [pAdapt|em
funcionamento, o desempenho do [pAdapt| ainda supera o middleware comercial [gRPC]

Figura 10 — Experimento Fibonacci 2: Boxplot da CPU do Cliente x Protocolos

Fibonacci - Cliente - CPU - 2

i e

% CPU Utilizado

v & o 3 5
& o & o S

s <& & & & & & & P o b) 5 S & Q&
£ & £ ¢ @q & & “ “
& & & & /g} &
Protocolo
[pAdapt sem adaptacio M pAdapt com adaptagdo [Middleware comercial

Fonte: Elaborado pelo autor (2025)

Com isso podemos concluir que, tanto os protocolos implementados, quanto o [pAdapt]sio

eficientes em termos de utilizacdo de CPU no cliente, mesmo utilizando adaptacdo. Sendo

70

assim, para clientes que tenham restricio de CPU, o se mostra como uma op¢ao

interessante quando comparado aos sistemas de middleware comerciais analisados.

4.5.4 Aplicacoes com diferentes demandas de processamento

AplicacSes com alta demanda de processamento, como no experimento de Fibonacci de
posicdo 38, apresentado na Figura [I1], tém resultados de muito estaveis para diferentes
protocolos, onde o tempo gasto de execucdo da regra de negdcio é muito maior que o necessario
para envio das mensagens.

Analisando estatisticamente os resultados do Experimento Fibonacci 38, ndo foi encontrada
uma diferenca estatisticamente significativa entre os tempos de resposta da execucao do RPC
sem adaptac3o e a execucdo do RPC com adaptac3o para HTTP (RPCHTTP-120s). A anélise
do teste T indicou que a diferenca ndo foi significativa, com um valor do p-value de 0.21 e
intervalo de confianca de 95%.

Também ndo foi encontrada uma diferenca estatisticamente significativa entre os tempos
de resposta da execucdo do TLS sem adaptacdo e a execucdo do TLS com adaptacdo para
HTTP2 (TLSHTTP2-120s). A analise do teste T indicou que a diferenca n3o foi significativa,
com um valor do p-value de 0.78 e intervalo de confianca de 95%.

Neste caso, em aplicacbes com alta demanda de processamento, ndo ha diferenca sig-
nificativa no [RTT] entre os protocolos de comunicacdo sem adaptacdo e os protocolos com
adaptacdo automatica do [pAdapt]

Ja aplicacBes com baixa demanda de processamento (Figura , tém resultados de m
bem variados para os diferentes protocolos, onde o tempo de execucao da regra de negédcio é
muito menor que o necessario para envio das mensagens. Este comportamento torna evidente
o impacto do protocolo de transporte no [RTT| No entanto, apesar da variacdo, a diferenca

maxima entre a média dos dos protocolos do [pAdapt| é de apenas 0.2 ms (11%) de

diferenca por mensagem.

4.5.5 Aplicacoes com diferentes tamanhos de pacote

AplicacGes com tamanho de pacote grandes fazem uso de muitos recursos do middleware.
Isso se deve ao fato de que este tipo de aplicacdo exige que as mensagens sejam enviadas

via rede de forma fragmentada, ou através de stream de dados. O envio de mensagens desta

71

Figura 11 — Experimento Fibonacci 38: Boxplot Protocolos vs RTT

Fibonacci - 38

460

440

Tempo de Resposta (ms)

9 & o
& & &

Q & o
s <~ £ & & g Sy

& s & & o & &

<
<
& E &
& &K
~ S
& &
Protocolos

Il pAdapt sem adaptacio Il pAdapt com adaptacdo [Middleware comercial

Fonte: Elaborado pelo autor (2025)

forma implica em chamadas iterativas, o que impacta no [RTT] O experimento SendFile com
arquivo de 4k é um exemplo deste cendrio, e seus resultados de [RTT]| por protocolo podem ser
vistos na Figura [12]

Para este tipo de aplicacdo, o [pAdapt| conseguiu se mostrar eficiente, em especial para os
protocolos RPC e [TCP}, onde o [RP(| teve um desempenho similar ao [gRPC| e melhor que o
RabbitMQ), e o [TCP| conseguiu se sair melhor que o RabbitMQ.

E possivel perceber também que o protocolo nao teve um bom Round-Trip Time.
Como o é considerado um protocolo mais eficiente que o , entdo o problema
des desempenho possivelmente se deve a implementacdo efetuada para o protocolo em ques-
tdo, que ndo fez proveito da multiplexacdo provida pelo QUIC, o que poderia melhorar o
desempenho do protocolo.

Outro ponto importante a ser destacado é que o[pAdapt|se mostrou eficiente na adaptagdo
automatica de protocolos de comunicacdo, mesmo para aplicacbes com tamanho de pacote
grande. A Figura mostra que o [RTT]| dos protocolos com adaptacdo é muito préximo
dos protocolos sem adaptacao, i.e., a escolha do protocolo de transporte impacta mais no
desempenho do que a prépria adaptacao. Isso indica ndo somente que o é eficiente,
mas também que seus mecanismos de adaptacdo sao efetivos para aplicacdes que buscam
aproveitar a vantagem de cada protocolo em diferentes cenarios, e.g., um sistema pode comecar

utilizando o protocolo TCP, que tem um [RTT]|baixo, e depois por alguma necessidade adaptar

72

Figura 12 — Experimento SendFile 4k: Boxplot Protocolos vs RTT

Sendfile - Ig

@
)

Tempo de Resposta (ms)
w 5
5 8

S

o

T R

o & &

N « < ES & \66 \5\“ & & @?’Q V":&% ‘(«.\1 & qq;;» q’v@ & . & &
oM SN 5 o) & &
<& &L Q(/ q(l 62\ (’*?*
<& & <7 &
Protocolos
I pAdapt sem adaptacao [pAdapt com adaptacao [l Middleware comercial

Fonte: Elaborado pelo autor (2025)

para o protocolo TCP com TLS, que é mais seguro, mas com um [RTT| maior, sem impactar

significativamente no desempenho do sistema.

4.6 CONSIDERACOES FINAIS

Este capitulo apresentou a avaliacdo experimental da solucdo proposta, o [pAdapt] apli-
cado ao gMidArch. Inicialmente foram apresentados os objetivos da avaliacao experimental.
Em seguida, ele mostrou a metodologia utilizada para a realizacao dos experimentos, incluindo
a definicao de métricas, parametros, carga de trabalho, fatores e o projeto dos experimentos.
Foram apresentados como as aplicacoes de servidores e clientes foram implementados. E final-

mente, foram apresentados e analisados os resultados obtidos de acordo com cada objetivo.

73

5 TRABALHOS RELACIONADOS

A construcdo de frameworks de middleware é uma area consolidada, mas ainda cercada por
desafios significativos, especialmente quando se busca oferecer suporte a adaptacao dinamica
e a multiplos protocolos de comunicacdo. Implementar esse tipo de solucdo requer abstracoes
complexas, que envolvem desde funcionalidades internas do middleware até estratégias de se-
rializacdo e mecanismos de comunicacdo. Projetos pioneiros de frameworks de middleware,
como Quarterware (Singhai; Sane; Campbell, 1998), PolyORB (VERGNAUD et al., [2004) e Ar-
cademis (PEREIRA et al,, |2006]), foram trabalhos seminais, embora n3o tenham incorporado
capacidades adaptativas nem compatibilidade com miltiplos protocolos.

Outros trabalhos mais recentes buscaram evoluir estas solucdes em diferentes direcGes.
O Man4Ware (AL-JAROODI; MOHAMED; JAWHAR, [2018)), por exemplo, é um framework de
middleware baseado em uma arquitetura orientada a servicos. Ele adota uma abordagem
modular, composta por diversos servicos integrados. Assim como o gMidArch, o Man4Ware
permite que os desenvolvedores foquem na implementacdo do cédigo de negédcio, delegando as
demais funcionalidades ao préprio framework. No entanto, o Man4Ware n3o oferece suporte
a selecdo do protocolo de transporte, ao contrario do [pAdapt| que disponibiliza diversos
protocolos, adaptaveis, e facilmente configuraveis. Isso significa que os desenvolvedores nao
tém controle sobre como o middleware realiza a comunicacdo, tampouco podem modificar o
protocolo utilizado em tempo de execucao.

Ja o Cilia (Lalanda; Morand; Chollet, 2017)) é um Middleware de Media¢do Auténoma que
utiliza componentes especificos para lidar com diferentes protocolos de comunicacio e possi-
bilitar adaptacdes, de maneira semelhante ao gMidArch. Contudo, o Cilia se limita a fornecer
estruturas auxiliares, como uma base de conhecimento com informacdes em tempo de execu-
cdo e pontos de extensdo para inclusao de cédigo. Cabe aos desenvolvedores que utilizam o
middleware a implementacao dos mecanismos de adaptacao desejados. Estes mecanismos nao
estdo disponiveis previamente no Cilia, ao contrério do [pAdapt] que ja implementa o meca-
nismo de adaptacao entre diferentes protocolos. Além disso, diferentemente do gMidArch com
[pPAdapt] o Cilia ndo é um middleware de uso geral, sendo projetado com foco na integracdo
de sistemas ciber-fisicos na gestdo de inddstrias inteligentes.

Projetado para atender aos requisitos tipicos de aplicacdes cooperativas, o CoServices (Xie;

Li; Zhao| [2013) é um framework de middleware baseado em Web Service. Sua arquitetura é

74

composta por médulos padronizados que fornecem funcionalidades como gerenciamento de
sessoes e de dados compartilhados, além da possibilidade de desenvolvimento de médulos
especificos. Embora utilize Web Service como base para comunicacio, o CoServices também
permite o transporte de mensagens por meio dos protocolos UDP ou HTTP. O [pAdapt], por
sua vez, amplia esse suporte ao incluir protocolos adicionais e mecanismos de adaptacdo destes
protocolos. O CoServices também n3o conta com adaptacdo em tempo de execucao, seu foco
é disponibilizar um conjunto de servicos para o desenvolvedor utilizar.

A discussdo sobre o uso de mdltiplos protocolos de comunicacao em frameworks de mid-
dleware adaptativos também é abordada por Brinkschulte et al. (BRINKSCHULTE, [2019)), que
propGe uma arquitetura de middleware adaptativa voltada a redes ciber-fisicas. Nesse trabalho,
os autores justificam a importancia do suporte a diferentes protocolos como forma de atender
aos requisitos de qualidade de servico. Assim como o gMidArch, essa arquitetura é baseada
no modelo [MAPE-K| No entanto, o se diferencia da arquitetura de Brinkschulte,
pois Brinkschulte n3o realiza adaptacoes de protocolos de comunicacdo, mas sim disponibiliza
diferentes protocolos ao mesmo tempo. Ja no os protocolos sdo trocados conforme
necessidade, e sincronizados de forma orquestrada entre servidor e clientes.

Sangeeta et al. apresentam um middleware adaptativo voltado a integracdo de sistemas
legados em redes elétricas inteligentes (smart grids) (SANGEETA et al, 2023)). O framework
propoe a interoperabilidade entre protocolos tradicionais de automacao e novas tecnologias
de comunicacdo, com suporte a mdltiplos protocolos e adaptacdo conforme mudancas na rede
elétrica. Os autores enfatizam a integrac3o transparente ("seamless integration™). No entanto,
o middleware proposto por Sangeeta foca somente em traducdo de protocolos legados para
protocolos mais atuais, gerando um overhead da utilizacao de dois protocolos adicionada a
uma traducdo a cada envio de mensagem. Enquanto isso, o permite a utilizacao do
protocolo desejado, e a sua troca, sem necessidade de traducao, ou seja, cliente e servidor

conversando no mesmo protocolo.

O |Adaptive Ubiquitous Middleware (AUM) (PRADEEP; KRISHNAMOORTHY; VASILAKOS,

2021)) é uma proposta voltada a ambientes [loT|, com suporte explicito a mdltiplos protoco-
los de comunicacdo e foco em adaptacdo consciente de contexto. Ele atua como um ponto

de integracao entre dispositivos e aplicacoes, utilizando uma ponte de miltiplos protocolos,

e.g., [TCP|, [HTTP|e|Constrained Application Protocol (CoAP), que podem ser escolhidos di-

namicamente conforme o contexto do sistema. [AUM] adapta sua configuragdo em tempo de

execucdo, levando em consideracdo fatores como localizacao, tipo de dispositivo, restricoes de

75

rede e requisitos da aplicacdo. Embora sua aplicacdo principal esteja em ambientes ubiquos
e [loT] ele compartilha com o gMidArch a capacidade adaptativa em tempo de execucido e
a interoperabilidade com diferentes protocolos. No entanto, [AUM| ndo faz uso de métodos
formais para garantir uma integracao mais confidvel entre seus componentes.

O Hetero-Genius (ELHABBASH et al.,, |2023) é uma arquitetura de middleware voltada a
composicao automatica e mediacio entre sistemas heterogéneos. Sua proposta visa co-
nectar, em tempo de execucdo, diversos dispositivos e servicos com diferentes protocolos de
comunicacdo, oferecendo um mecanismo de composicdo baseado em contexto. A arquitetura
permite ao desenvolvedor definir fluxos abstratos de tarefas, sendo responsavel por localizar,
selecionar e integrar dinamicamente servicos concretos disponiveis na rede. Embora seu foco
principal seja em aplicacGes [loT] como veiculos conectados, seu suporte a miltiplos protoco-
los e adaptacdo dindmica de fluxos o tornam relevante para comparacdo com o gMidArch.
No entanto, o Hetero-Genius ndo mantém sistemas distribuidos se comunicando e adaptando
protocolos de comunicacdo sem paradas, ele simplesmente trabalha com fluxos pré-definidos,

que a depender do fluxo podem enviar mensagens com diferentes protocolos.

Cavalcanti e Rosa propéem o |Middleware Extendify (MEx)| (CAVALCANTI; ROSA, [2024)

como uma plataforma para constru¢do de middleware [[oT] adaptaveis. O oferece su-

porte ao protocolo de comunicacdo [Message Queuing Telemetry Transport (MQTT), além de

mecanismos para adaptacao em tempo real. Seu diferencial estd na possibilidade de ajustes
dindmicos de funcionalidades e parametros do sistema com base em condicGes contextuais,

utilizando estratégias de adaptacdo como ajustes reativos e evolutivos. O middleware também

introduz uma linguagem de descricdo prépria, denominada [Python-based Architecture Des

[cription Language (pADL), para definir seus componentes, similar ao do gMidArch.
No entanto o é limitado ao protocolo [MQTT] enquanto o habilita o suporte a

diversos protocolos de comunicacdo no gMidArch, além de permitir a adaptacdo entre eles.

O PolyglloT (CABRAL et al., [2024), é uma arquitetura de middleware que permite tradu-
cdo entre mdltiplos protocolos de comunicacdo em ambientes heterogéneos. A arquitetura
implementa um servico dindamico de traducdo entre protocolos, permitindo interacoes entre

tecnologias como MQTT]|, [AMQP}, Kafka e |Data Distribution Service (DDS), O PolyglloT

permite ativacdo e desativacao de tradutores em tempo de execucdo e garante propriedades

de|Quality of Service (QoS)|durante a tradugdo. Seu foco estd em promover interoperabilidade

em sistemas distribuidos heterogéneos, com aplicacdo especial em contextos de [loT| e auto-

mac&o. Apesar de utilizar propriedades de [QoS| para tentar melhorar o desempenho, o uso de

76

traducdes de protocolos gera um overhead da utilizacdo dos protocolos traduzidos somada ao
processamento necessario para a traduco a cada envio de mensagem. Por outro lado, o [pA
pode habilitar que qualquer sistema faca a alteracdo do protocolo de transporte utilizado
na comunicacdo apenas mudando a sua configuracdo, i.e., eliminando qualquer necessidade
de traducao e consequentemente seu overhead.

Outro exemplo de framework de middleware com mais de um protocolo de transporte é o
Gorilla (GORILLA, 2025), um framework para a linguagem Go que, apesar de oferecer suporte
somente a comunicacdo via [HTTP] e WebSocket, também permite utilizar os fundamentos
do [RP(] para o desenvolvimento de sistemas, mas trafegando os dados através do [HTTP]
Embora o Gorilla permita a escolha do protocolo de transporte, ele ndo possui mecanismos
de adaptacao em tempo de execucdo, e nem permite que os protocolos sejam alterados sem
mudancas no cédigo fonte, assim como é no [pAdapt] Isso significa que, uma vez escolhido
o protocolo, ndo ha suporte para mudancas dinamicas durante a execucdo do sistema. O
Gorilla, apesar de ter o coédigo aberto, também nao disponibiliza pontos de extensdo para que
os desenvolvedores possam implementar novos protocolos de comunicacdo ou adaptacao de
protocolos.

Por fim, embora n3o constitua um framework completo, o pacote RPC do Go (RPC-GO,
2025) permite ao programador escolher entre dois protocolos de comunicacdo (TCP e HTTP),
mas seu escopo limitado a essas duas opcdes compromete a flexibilidade para aplicacdes que
demandem protocolos adicionais ou comportamentos mais sofisticados de adaptacdo, pontos
que sdo caracteristicas do [pAdapt]

A Tabela [f] resume e compara os frameworks de middleware mencionados com base em
caracteristicas fundamentais como suporte a mdltiplos protocolos, adaptacdo em tempo de
execuc¢do, uso da arquitetura [MAPE-K] utilizacdo de métodos formais, extensibilidade e apli-

cacdo de escopo geral ou especifica.

77

(g20¢) 4o1ne ojad opeloqe|] :ajuo4

"S)4OMaWeI) SOJINO SO Wod oedesedwod wa[3depyd| wod youypiNS op sedlis|isldeled se ezilejus eyul| BWIIN eu 01FaU 9p osn () :eI0N

(z/dLLH
a[SdLiH ‘T'T/d11H

wig wis wig wig BINB D ST 24908 1depyd—+yaaypiN3
|dJ1] |dD21|{dan) uns
OEN oEN oEN OEN (dLLH ‘dDL) wis 09 0p DdY
oEN oEN oEN OEN (39420599 ‘dL1H) WIS e||LI09)
oEN e oEN e epyey .ao_\m_m%wko_\/_v wis LoliEfied
oEN wig wig wig (L1OW) oeN XJN
oeN wig oeN wig (oedisodwod ein onydwi) wig SNIU9L)-04919H
OEN wig oEN wig (dvoD ‘dL1H ‘dDL) wis NNy
e e e
OEN wig wig wig wig '|e 39 33nydsyuLg
OEN wig OEN OEN (dLLH ‘dan) wis S201MI9G0))
OEN wig oEN wig wig eIl
oEN wig oEN BN oEN dsep\pUEN
OEN wig OEN OEN oEN SIWDPEdIY
oeN wig oeN OeN oeN a40Alod
oeN wig oeN oeN oeN alemiariend)
S0|020}0.d 9p oedeldepy [9AISUdIX] MY-IAVIW 2wiiuni wa oedeldepy sojod0jo.ud sojdiynip }iomawieay

SOPBUOIDE[D4 SHIOMBWEIS & YdUyPINS O a4jus oedesedwor) — g ejage |

78

Como pode ser observado na Tabela [6] o gMidArch, aliado as novas funcionalidades do
[pPAdapt] se destaca por reunir em um dnico framework caracteristicas fundamentais que apare-
cem de forma isolada em outras propostas. Sua combinac3o de suporte a miltiplos protocolos,
adaptacdo em tempo de execucao, extensibilidade e principalmente, a adaptacao de protocolos
em tempo de execucdo, o posiciona como uma solucdo robusta e versatil frente aos trabalhos

relacionados discutidos neste capitulo.

5.1 CONSIDERACOES FINAIS

Este capitulo apresentou os trabalhos relacionados ao gMidArch com o novo mecanismo
de adaptacdo [pAdapt] Para isso foi realizada uma anélise comparativa entre cada trabalho,
identificando as diferencas entre as caracteristicas de cada um e o gMidArch com [pAdapt] O
capitulo conclui com uma tabela comparativa entre todos os trabalhos relacionados apresen-

tados, resumindo as principais caracteristicas de cada trabalho relacionado.

79

6 CONCLUSOES E TRABALHOS FUTUROS

Este capitulo apresenta as conclusdes e contribuicoes do trabalho, bem como as limitacoes

da solucdo proposta, e finaliza com sugestdes de trabalhos futuros.

6.1 CONCLUSOES

A revisao dos trabalhos relacionados mostrou que a adaptacao em middleware é um tema
amplamente discutido e atual, assim como a utilizacdo de multiplos protocolos de comunicacao.
No entanto, poucos trabalhos conseguem reunir essas caracteristicas de maneira integrada.
Este trabalho propés o como solucdo para essa lacuna.

O [pAdapt] trouxe um reforco ao gMidArch que possui uma abordagem abrangente, capaz
de preencher lacunas deixadas por middleware anteriores, tanto conceituais quanto praticos.

A implementac3o e a avaliacdo experimental indicam que o[pAdapt]|é aplicavel a diferentes
cendrios, especialmente em cenarios onde a flexibilidade de comunicacao e a adaptabilidade
em tempo de execucdo sdo requisitos criticos, como integracdo entre aplicacdes distribuidas
em ambientes heterogéneos.

O se traduz nas duas principais contribuicoes deste trabalho: a primeira sendo
apresentar e tornar disponivel um mecanismo de adaptacdo de protocolos de comunicacao e
a segunda sendo a disponibilizacdo de um framework de middleware adaptativo com varios
protocolos de comunicacao.

O mecanismo de adaptacdo criado se destaca pela capacidade de suportar a troca entre
multiplos protocolos de comunicacao em tempo de execucdo, adaptando tanto clientes quanto
servidores de maneira orquestrada e sem a perda de informacdes durante sua adaptacao.
Isso permite que desenvolvedores de middleware reconfigurem dinamicamente o protocolo
de comunicacdo mais adequado para diferentes cenarios da aplicacdo, sem comprometer o
desempenho dos sistemas.

Como uma terceira contribuicdo foi criado o Fluxo de Adaptacdo de Protocolos de Co-
municacao entre o servidor e seus clientes. Um fluxo que permite a adaptacao de protocolos
em tempo de execucdo sem a perda de mensagens, e que pode ser implementado por outros
middleware para permitir integracdo entre diferentes tecnologias e linguagens.

Outro ponto importante esta relacionado a avaliacido do desempenho do middleware, que,

80

a depender do cenario, demonstrou melhor desempenho quando comparado a sistemas de
middleware comerciais existentes.

Estas caracteristicas promovem a flexibilidade e permitem que sistemas distribuidos sejam
reconfigurados dinamicamente. A proposta combina os conceitos da arquitetura [MAPE-K]
com a extensibiliade de um framework aberto e com implementacdes de diversos protocolos
de comunicacdo, viabilizando a construcdo de sistemas distribuidos flexiveis e extensiveis.

Por fim, a dltima contribuicdo sdo os scripts de monitoramento e profilling da avaliacao
experimental, que foram desenvolvidos para avaliar o desempenho do[pAdapt|em conjunto com
o gMidArch e também compara-lo com outros sistemas de middleware amplamente utilizados.
Apesar de nao estar ligado diretamente ao objetivo do trabalho, os scripts de monitoramento
e profilling sao executados em paralelo aos experimentos, e permitem a coleta de dados de
memodria, processamento, e tempo de execucdo sem necessidade de instrumentacao do cédigo,
mesmo em ambientes distribuidos. Com os scripts ainda é possivel executar grandes sequéncias
de experimentos sem a intervencdo humana, o que poderia gerar dados inconsistentes nos
experimentos. Estes scripts podem ser utilizados em outros experimentos, sendo assim uma

contribuicdo adicional.

6.2 LIMITACOES

Apesar de o atingir seus objetivos no estado atual, algumas limitacdes foram

identificadas:

» Consumo de recursos: devido a natureza do gMidArch, que fica em constante estado
de monitoramento, o consumo de CPU e meméria do middleware pode ser elevado em
alguns cenarios, se comparado a sistemas de middleware nao adaptativos. No entanto, o
monitoramento e as adaptacdes de protocolo mostraram n3o ter um impacto significativo

no desempenho do sistema, mesmo em cendrios com multiplas adaptacdes;

= Variedade de protocolos: o suporta diversos protocolos de comunicacgo, e
também é facilmente extensivel, mas a falta de protocolos como [AMQP| [MQTT| [CoAP

e bluetooth limita a utilizacdo do [pAdaptem alguns cenérios;

= Motivo da adaptacdo: o [pAdapt] atual ndo considera o motivo da adaptacdo, ou seja,

quando e porqué uma adaptacdo sera iniciada, apenas a forma em que serd adaptado e

81

o melhor momento para que a adaptacao identificada seja executada. Isso significa que
a decisdo de adaptacdo é baseada em condicdes predefinidas, sem levar em conta fatores
contextuais ou especificos do aplicativo, e.g., memoria, consumo de energia e seguranca

na comunicacdo, o que melhoraria a efetividade da adaptacao; e

= Adaptacéo pelo cliente: o ndo permite que o cliente solicite a adaptacdo do
protocolo de transporte. A adaptacdo é iniciada somente pelo servidor, o que pode limitar
a flexibilidade em cenérios onde o cliente tem conhecimento de condicdes especificas que

exigem uma mudanca de protocolo.

6.3 TRABALHOS FUTUROS

Com a conclusao deste trabalho, surgem varias possibilidades de continuidade de pesquisa
e aprimoramento do [pAdapt]

Apesar de haver sido empregado esforco na melhoria do desempenho do middleware, e
mesmo com o desempenho satisfatério apresentado nos experimentos, ainda é possivel efetuar

melhorias no desempenho. Um dos pontos é através da otimizacdo em alguns protocolos, como

0|QUIC e o[HTTP/2, com a utilizacdo de multiplexacdo nas mensagens, o que pode melhorar

o desempenho em cenarios com miltiplas mensagens simultaneas.

Outra possibilidade de continuacdo do trabalho é a implementacido de novos protocolos,
como o [AMQP], o [MQTT] o [CoAP|e também protocolos bluetooth, o que pode ampliar ainda
mais o alcance do em diferentes dominios de aplicac3o.

Adicionar novas estratégias de adaptacdo que utilizem métricas diversas e configuraveis,
como meméria, CPU, consumo de energia, bateria e seguranca. Neste item pode-se evoluir
para a escolha de evolucdo somente para determinados protocolos, ou seja, o desenvolvedor
pode optar por uma adaptacdo evolutiva segura, onde somente protocolos seguros seriam
utilizados. Ou ainda, o desenvolvedor escolher uma evolucao que varie de acordo com o estado
atual de carga do dispositivo.

E possivel configurar os componentes do gMidArch através do , mas para novos
usuarios isso pode ser desafiador. Sendo assim uma interface grafica para configuracdo dos
componentes do gMidArch pode facilitar o uso e a adocao do middleware por desenvolvedores.

A interface grafica também pode ser utilizada para criacdo automatica de proxies para

os objetos remotos. Como parte da arquitetura RPC, objetos remotos tém a necessidade de

82

utilizarem um proxy para comunicacdo. No entanto, a geracdo dos proxies atualmente é feita
de forma manual, o que levanta um novo ponto de melhoria. Uma interface grafica que receba
o objeto e gere automaticamente o proxy para o objeto remoto pode facilitar a adocdo do
gMidArch por novos usuarios.

Outro ponto de melhoria é para que as aplicacdes clientes possam também enviar uma
solicitacdo de adaptacao ao servidor, permitindo que o cliente escolha o protocolo de transporte
a ser utilizado. Isso pode ser (til em cenarios onde o cliente tem conhecimento sobre condicGes
diferentes da do servidor, e.g., a necessidade de controle do uso de energia em dispositivos
loT] E sendo assim o cliente pode sugerir um protocolo mais adequado para a comunicacgo
baseado em suas necessidades.

Uma outra possibilidade de continuacdo do trabalho é a implementacdo de um sistema de

aprendizado de maquina para prever o melhor protocolo a ser utilizado em cada situacao.

83

REFERENCIAS

ABGAZ, Y.; MCCARREN, A.; ELGER, P.; SOLAN, D.; LAPUZ, N.; BIVOL, M.; JACKSON,
G.; YILMAZ, M.; BUCKLEY, J.; CLARKE, P. Decomposition of monolith applications into
microservices architectures: A systematic review. IEEE Transactions on Software Engineering,
v. 49, n. 8, p. 4213-4242, Aug 2023. ISSN 1939-3520.

AL-JAROODI, J.; MOHAMED, N.; JAWHAR, I. A service-oriented middleware
framework for manufacturing industry 4.0. SIGBED Rev., Association for Computing
Machinery, New York, NY, USA, v. 15, n. 5, p. 29-36, nov. 2018. Disponivel em:
<https://doi.org/10.1145/3292384.3292389>.

BELSHE, M.; PEON, R.; THOMSON, M. Hypertext Transfer Protocol Version 2 (HTTP/2).
RFC Editor, 2015. (RFC, 7540). Disponivel em: <https://www.rfc-editor.org/info/rfc7540>.

BISHOP, M. HTTP/3. RFC Editor, 2022. RFC 9114. (Request for Comments, 9114).
Disponivel em: <https://www.rfc-editor.org/info/rfc9114>|

BRINKSCHULTE, M. Self-organizing middleware for cyber-physical networks. In: Proceedings
of the 20th International Middleware Conference Doctoral Symposium. New York, NY,
USA: Association for Computing Machinery, 2019. (Middleware '19), p. 14-16. ISBN
9781450370394. Disponivel em: <https://doi.org/10.1145/3366624.3368158> .

CABRAL, B.; VENANCIO, R.; COSTA, P.; FONSECA, T.; FERREIRA, L. L.; SEVERINO,
R.; BARROS, A. Multiprotocol middleware translator for iot. In: 2024 27th Euromicro
Conference on Digital System Design (DSD). [S.l.: s.n.], 2024. p. 327-334.

CAVALCANTI, D.; ROSA, N. Customizable and adaptable middleware of things. International
Journal of Communication Systems, v. 37, n. 15, p. 5887, 2024. Disponivel em:
<https://onlinelibrary.wiley.com/doi/abs/10.1002 /dac.5887>.

CHEN, W.: YE, K.: WANG, Y.; XU, G.; XU, C.-Z. How does the workload look like in
production cloud? analysis and clustering of workloads on alibaba cluster trace. In: 2018 IEEE
24th International Conference on Parallel and Distributed Systems (ICPADS). [S.l.: s.n],
2018. p. 102-109. ISSN 1521-9097.

DA, K.; DALMAU, M.; ROOSE, P. A Survey of adaptation systems. International Journal
on Internet and Distributed Computing Systems, International journal on Internet

and distributed computing systems, v. 2, n. 1, p. 1-18, nov. 2011. Disponivel em:
<https://hal.science/hal-00689773>.

ELHABBASH, A.; ELKHATIB, Y.; BOULOUKAKIS, G.; SALAMA, M. A middleware
for automatic composition and mediation in iot systems. In: Proceedings of the 12th
International Conference on the Internet of Things. New York, NY, USA: Association for
Computing Machinery, 2023. (loT '22), p. 127-134. ISBN 9781450396653. Disponivel em:
<https://doi.org/10.1145/3567445.3567451>.

FIELDING, R.; NOTTINGHAM, M.; RESCHKE, J. HTTP Semantics. [S.l.], 2022. Disponivel
em: <https://www.rfc-editor.org/rfc/rfc9110.txt>.

FIELDING, R. T. Architectural Styles and the Design of Network-based Software
Architectures. Tese (Doutorado) — University of California, Irvine, Irvine, CA, USA, sep
2000.

https://doi.org/10.1145/3292384.3292389
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc9114
https://doi.org/10.1145/3366624.3368158
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.5887
https://hal.science/hal-00689773
https://doi.org/10.1145/3567445.3567451
https://www.rfc-editor.org/rfc/rfc9110.txt

84

FIELDING, R. T.; NOTTINGHAM, M.; RESCHKE, J. HTTP/1.1. RFC Editor, 2022. RFC
9112. (Request for Comments, 9112). Disponivel em: <https://www.rfc-editor.org/info/
rfc9112>.

FOWLER, L. Microservices: A definition of this new architectural term. 2014.
<https://martinfowler.com /articles/microservices.html>. Acesso em: 21 mai. 2025.

GO gRPC. gRPC-Go package documentation. 2025. <https://github.com/grpc/grpc-go>.
Acesso em: 21 mar. 2025.

GO-RABBITMQ. Go RabbitMQ@ package documentation. 2025. <https://www.rabbitmg.
com>| Acesso em: 21 mar. 2025.

GODFREY, R.; INGHAM, D.; SCHLOMING, R. OASIS Advanced Message Queuing Protocol
(AMQP) Version 1.0. [S.l.], 2012. Disponivel em: <http://docs.oasis-open.org/amqp/core/
v1.0/0s/amqp-core-complete-v1.0-o0s.pdf>.

GORILLA. Gorilla web toolkit documentation. 2025. |<https://gorilla.github.io/>. Acesso
em: 21 mar. 2025.

Grace Hopper. Grace hopper, cdr., u.s.n. Computerworld, IDG Enterprise, v. 10, n. 4, p. 9,
Jan 1976.

GRPC. gRPC documentation. 2025. |[<https://grpc.io/docs/>. Acesso em: 20 jun. 2025.
IBM. An Architectural Blueprint for Autonomic Computing. [S.l.], 2005.

ISO/IEC. Information technology — Open Systems Interconnection — Basic Reference Model:
The basic model. 1994.

IYENGAR, J.; THOMSON, M. QUIC: A UDP-Based Multiplexed and Secure Transport.
RFC Editor, 2021. RFC 9000. (Request for Comments, 9000). Disponivel em:
<https://rfc-editor.org/rfc/rfc9000.txt>.

KEPHART, J.; CHESS, D. The vision of autonomic computing. Computer, v. 36, p. 41 — 50,
02 2003.

KHEZEMI, N.; MINANI, J.; SABIR, F.; MOHA, N.; GUéHENEUC, Y .-G.; EL-BOUSSAIDI, G.
A systematic literature review of iot system architectural styles and their quality requirements.
IEEE Internet of Things Journal, v. 11, p. 37599-37616, 12 2024.

Lalanda, P.; Morand, D.; Chollet, S. Autonomic mediation middleware for smart
manufacturing. IEEE Internet Computing, v. 21, n. 1, p. 32-39, 2017.

LANGLEY, A.; RIDDOCH, A.; WILK, A.; VICENTE, A.; KRASIC, C.; ZHANG, D.;
YANG, F.; KOURANOV, F.; SWETT, I.; IYENGAR, J.; BAILEY, J.; DORFMAN,

J.; ROSKIND, J.; KULIK, J.; WESTIN, P.; TENNETI, R.; SHADE, R.; HAMILTON,
R.; VASILIEV, V.; CHANG, W.-T.; SHI, Z. The quic transport protocol: Design and
internet-scale deployment. In: Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. New York, NY, USA: Association for Computing
Machinery, 2017. (SIGCOMM '17), p. 183-196. ISBN 9781450346535. Disponivel em:
<https://doi.org/10.1145/3098822.3098842>.

https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9112
https://martinfowler.com/articles/microservices.html
https://github.com/grpc/grpc-go
https://www.rabbitmq.com
https://www.rabbitmq.com
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
https://gorilla.github.io/
https://grpc.io/docs/
https://rfc-editor.org/rfc/rfc9000.txt
https://doi.org/10.1145/3098822.3098842

85

MEDVIDOVIC, N.; TAYLOR, R. N. A classification and comparison framework for software
architecture description languages. IEEE Trans. Softw. Eng., |EEE Press, Piscataway, NJ,
USA, v. 26, n. 1, p. 70-93, jan. 2000. ISSN 0098-5589.

MITRE. Vulnerability Details: CVE-2013-3587 - Man-in-the-middle attack on SSL 1.2. 2013.
<https://www.cve.org/CVERecord?id=CVE-2013-3587>. Acessado em 19 de julho de 2025.

NAZIRIDIS, N. Uma introdugdo ao HTTP/2. 2018. |<https://www.ssl.com/pt/article/
an-introduction-to-http2/>. Acessado em 19 de julho de 2025.

PEREIRA, F.; VALENTE, M.; BIGONHA, R.;: BIGONHA, M. Arcademis: A framework for
object-oriented communication middleware development. Software: Practice and Experience,
v. 36, p. 495 — 512, 04 2006.

POSTEL, J. User Datagram Protocol. RFC Editor, 1980. RFC 768. (Request for Comments,
768). Disponivel em: <https://www.rfc-editor.org/info/rfc763>.

PRADEEP, P.; KRISHNAMOORTHY, S.; VASILAKOS, A. V. A holistic approach
to a context-aware iot ecosystem with adaptive ubiquitous middleware. Pervasive
and Mobile Computing, v. 72, p. 101342, 2021. ISSN 1574-1192. Disponivel em:
<https:/ /www.sciencedirect.com /science/article/pii/S1574119221000134 > .

quic-go Contributors. quic-go: A QUIC implementation in pure Go. 2024. <https:
//github.com/quic-go/quic-go/releases/tag/v0.42.0>. Acessado em 17 de julho de 2025.

RabbitMQ. RabbitMQ 4.1 Documentation - Compatibility and Conformance. 2025.
<https://www.rabbitmq.com/docs/specification>. Acesso em: 24 jun. 2025.

RESCORLA, E. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
Editor, 2018. RFC 8446. (Request for Comments, 8446). Disponivel em: <https:
/ /rfc-editor.org/rfc/rfc8446.txt>.

ROSA, N.; CAVALCANTI, D.; CAMPOS, G.; SILVA, A. Adaptive middleware in go - a
software architecture-based approach. Journal of Internet Services and Applications, 2020.

ROSA, N. S.; CAMPOS, G. M.; CAVALCANTI, D. J. Lightweight formalisation of adaptive
middleware. Journal of Systems Architecture, v. 97, p. 54-64, 2019. ISSN 1383-7621.
Disponivel em: <https://www.sciencedirect.com /science/article /pii/S1383762118300936>.

RPC-GO. Go RPC package documentation. 2025. <https://pkg.go.dev/net/rpc>. Acesso
em: 21 mar. 2025.

SALEHIE, M.; TAHVILDARI, L. Self-adaptive software: Landscape and research
challenges. ACM Trans. Auton. Adapt. Syst., Association for Computing Machinery,
New York, NY, USA, v. 4, n. 2, maio 2009. ISSN 1556-4665. Disponivel em:
<https://doi.org/10.1145/1516533.1516538>.

SANGEETA, K.; S, A. D. V.; JAIN, A;; YADAV, D. K.; TYAGI, L. K.; MOHSEN, Z. S.
Adaptive middleware solutions for seamless integration of legacy and modern ict systems in

smart grids. In: 2023 International Conference on Power Energy, Environment and Intelligent
Control (PEEIC). [S.l.: s.n.], 2023. p. 443-448.

SHI, W.; CAOQ, J.; ZHANG, Q.; LI, Y.; XU, L. Edge computing: Vision and challenges. IEEE
Internet of Things Journal, v. 3, n. 5, p. 637-646, Oct 2016. ISSN 2327-4662.

https://www.cve.org/CVERecord?id=CVE-2013-3587
https://www.ssl.com/pt/article/an-introduction-to-http2/
https://www.ssl.com/pt/article/an-introduction-to-http2/
https://www.rfc-editor.org/info/rfc768
https://www.sciencedirect.com/science/article/pii/S1574119221000134
https://github.com/quic-go/quic-go/releases/tag/v0.42.0
https://github.com/quic-go/quic-go/releases/tag/v0.42.0
https://www.rabbitmq.com/docs/specification
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://www.sciencedirect.com/science/article/pii/S1383762118300936
https://pkg.go.dev/net/rpc
https://doi.org/10.1145/1516533.1516538

86

Singhai, A.; Sane, A.; Campbell, R. H. Quarterware for middleware. In: Proceedings. 18th
International Conference on Distributed Computing Systems (Cat. No.98CB36183). [S.I.:
s.n.], 1998. p. 192-201,

SO6YLEMEZ, M.; TEKINERDOGAN, B.; KOLUKISA, A. Challenges and solution directions
of microservice architectures: A systematic literature review. Applied Sciences, v. 12, p. 5507,
05 2022.

THOMSON, M.; BENFIELD, C. RFC 9113: HTTP/2. USA: RFC Editor, 2022.

THURLOW, R. RPC: Remote Procedure Call Protocol Specification Version 2.
RFC Editor, 2009. RFC 5531. (Request for Comments, 5531). Disponivel em:
<https:/ /www.rfc-editor.org /info /rfc5531>.

VERGNAUD, T.; HUGUES, J.; PAUTET, L.; KORDON, F. Polyorb: A schizophrenic
middleware to build versatile reliable distributed applications. In: LLAMOSI, A.:
STROHMEIER, A. (Ed.). Reliable Software Technologies - Ada-Europe 2004. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004. p. 106-119. ISBN 978-3-540-24841-5.

VOLTER, M.; KIRCHER, M.; ZDUN, U. Remoting Patterns: Foundations of Enterprise,
Internet and Real Time Distributed Object Middleware. [S.l.]: John Wiley & Sons Ltd, 2005.

WEYNS, D. An Introduction to Self-Adaptive Systems: A Contemporary Software Engineering
Perspective. [S.l.: s.n.], 2021. ISBN 9781119574910.

Xie, W.; Li, Z.; Zhao, Y. Coservices: A web service based middleware framework for
interactive cooperative applications. In: 2013 Third International Conference on Intelligent
System Design and Engineering Applications. [S.l.: s.n.], 2013. p. 507-513.

https://www.rfc-editor.org/info/rfc5531

87

APENDICE A - MODELO DOCKER COMPOSE PARA EXPERIMENTOS

Foi criado um arquivo docker-compose para permitir a execucao dos experimentos realiza-
dos neste trabalho de forma autonoma, garantindo uma maior confiabilidade nos resultados.
Para isso o docker-compose foi criado como um model do [pAdapt] ou seja, um arquivo mo-
delo que permite a substituicdo de varidveis para a criacdo de diferentes cenarios de teste. O
Cédigo Fonte [15] apresenta o modelo utilizado nos experimentos, onde as variaveis sdo defi-
nidas no inicio de cada experimento executado, e substituidas no modelo do docker-compose
para a criacao do ambiente de teste.

Cédigo Fonte 15 — Modelo de configuracdo do Docker Compose utilizado nos experimentos

version: "3.3"

2 services:

server:

4 image: <image.server>
deploy:

6 replicas: 1

restart_policy:

8 condition: none
resources:
10 limits:
cpus: "0.4"
12 memory: 256M

reservations:
14 cpus: "0.4"
memory: 256M

16 environment:

CA_PATH: "/usr/src/app/examples/certs/myCA.pem”
18 CRT_PATH: "/usr/src/app/examples/certs/server.pem”

KEY_PATH: "/usr/src/app/examples/certs/server.key"
20 TIME_TO_START_SERVER: 1

INJECTION_INTERVAL: <adaptation.interval>

22
client:
24 image: <image.client>
deploy:

26 replicas: 1
restart_policy:

28 condition: none
resources:

30 limits:

cpus: "0.4"
32 memory: 256M

88

34

36

38

40

reservations:
cpus: "0.4"
memory: 256M
environment:

CA_PATH: "/usr/src/app/examples/certs/myCA.pem”
<specific.env.client>
SAMPLE_SIZE: <sample.size>
AVERAGE_WAITING_TIME: <average.waiting.time>
TIME_TO_START_CLIENT: 5

Fonte: Elaborado pelo autor (2025)

	Folha de rosto
	
	Agradecimentos
	Resumo
	Abstract
	Lista de Figuras
	Listing
	Lista de tabelas
	Sumário
	Introdução
	Contexto e Motivação
	Problema
	Soluções Existentes e Lacunas Identificadas
	Objetivos
	Solução proposta
	Estrutura do Documento

	Fundamentação Teórica
	Protocolos de comunicação
	Middleware Adaptativo
	Feedback Loop
	gMidArch Framework
	Componentes de Middleware
	Adaptação em tempo de execução
	Ambiente de execução

	Considerações Finais

	pAdapt (Protocol Adaptation)
	Visão geral
	Mecanismo de Adaptação
	Fluxo de Adaptação no pAdapt
	Extensões de Adaptação
	Implementação do mecanismo de adaptação do pAdapt
	Controle de Estado dos Componentes

	Novos Componentes
	Escolha dos protocolos
	Extensões de Protocolos de Comunicação
	UDP
	TCP
	TCP+TLS
	QUIC
	RPC
	HTTP/1.1
	HTTPS
	HTTP/2

	Considerações Finais

	Avaliação Experimental
	Objetivos da Avaliação
	Métricas, Parâmetros e Carga de Trabalho
	Fatores e Projeto dos Experimentos
	Solução em Ação
	Resultados e Análise dos Resultados
	Desempenho dos protocolos de comunicação do pAdapt
	Impacto da adaptação no pAdapt
	Desempenho dos protocolos de comunicação do pAdapt e sistemas de middleware comerciais
	Aplicações com diferentes demandas de processamento
	Aplicações com diferentes tamanhos de pacote

	Considerações Finais

	Trabalhos relacionados
	Considerações Finais

	Conclusões e trabalhos futuros
	Conclusões
	Limitações
	Trabalhos Futuros

	Referências
	Modelo Docker Compose para Experimentos

