
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DANIEL DA CRUZ BRANDÃO

Adaptação Dinâmica de Protocolos de Transporte em Sistemas de Middleware
Baseados em RPC

2025

DANIEL DA CRUZ BRANDÃO

Adaptação Dinâmica de Protocolos de Transporte em Sistemas de Middleware
Baseados em RPC

Trabalho apresentado ao Programa de Pós-
graduação em Ciência da Computação do Centro
de Informática da Universidade Federal de Pernam-
buco, como requisito parcial para obtenção do grau
de Mestre em Ciência da Computação.

Área de Concentração: Sistemas Distribuídos

Orientador (a): Nelson Souto Rosa

Recife
2025

Brandão, Daniel da Cruz.
 Adaptação dinâmica de protocolos de transporte em sistemas de
middleware baseados em RPC / Daniel da Cruz Brandão. - Recife,
2025.
 88f.: il.

 Dissertação (Mestrado)- Universidade Federal de Pernambuco,
Centro de Informática, Programa de Pós-Graduação em Ciência da
Computação, 2025.
 Orientação: Nelson Souto Rosa.

 1. Middleware adaptativo; 2. Framework de middleware; 3.
Protocolos de transporte. I. Rosa, Nelson Souto. II. Título.

UFPE-Biblioteca Central

.Catalogação de Publicação na Fonte. UFPE - Biblioteca Central

Daniel da Cruz Brandão

 “Adaptação Dinâmica de Protocolos de Transporte em Sistemas de
Middleware Baseados em RPC”

​ Dissertação de mestrado apresentada ao
Programa de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Mestre em Ciência da
Computação. Área de Concentração: Redes
de Computadores e Sistemas Distribuídos.

Aprovado em: 31/07/2025.

BANCA EXAMINADORA

Prof. Dr. David Júnio Mota Cavalcanti

Centro de Informática / UFPE

Prof. Dr. Fernando Antonio Aires Lins

Departamento de Computação / UFRPE

Prof. Dr. Nelson Souto Rosa
Centro de Informática/UFPE

(orientador)

Dedico este trabalho à minha família. Aos meus pais, Ione e Ramiro, pelos sacrifícios que
fizeram para que eu pudesse chegar até aqui. À minha esposa, Stela, pela paciência, pelo apoio
e por me lembrar de sorrir nos momentos difíceis. Aos meus filhos, Miguel e Sofia, que são a
razão do meu esforço e pela compreensão em momentos de ausência.

AGRADECIMENTOS

Primeiramente gostaria de agradecer ao meu orientador, Prof. Dr. Nelson Souto Rosa, por
sua orientação, sua paciência, sua confiança, sua disponibilidade e por tudo que me ensinou
ao longo dos anos dedicados a este trabalho. Sua orientação e suas críticas construtivas foram
fundamentais para conclusão desta dissertação.

Agradeço aos membros da banca examinadora, Prof. Dr. Fernando Antônio Aires Lins e
Prof. Dr. David Júnio Mota Cavalcanti, por terem aceitado o convite para avaliar esta disser-
tação e por dedicarem seu tempo e conhecimento para melhorar a qualidade deste trabalho
com suas contribuições.

Gostaria de agradecer à equipe da Secretaria de Pós-Graduação por toda atenção e apoio
ao longo destes anos.

Agradeço aos meus colegas do Centro de Informática que contribuíram mesmo que indire-
tamente com a minha dissertação.

Aos professores do Centro de Informática, agradeço por compartilharem seu conhecimento
e experiência, que foram fundamentais para o meu aprendizado e desenvolvimento durante o
mestrado.

Por fim, agradeço à Universidade Federal de Pernambuco (UFPE) por proporcionar um
ambiente acadêmico rico e desafiador, que me permitiu crescer como pesquisador e profissional.

"A frase mais perigosa em qualquer língua é: ’Nós sempre fizemos as coisas desse jeito’." (Grace

Hopper, 1976).

RESUMO

Um sistema distribuído adaptativo é capaz de ajustar dinamicamente (em tempo de execu-
ção) e autonomamente (sem intervenção humana) seu comportamento ou estrutura enquanto
executa. Sistemas de middleware têm sido particularmente desenvolvidos para apoiar a im-
plementação deste tipo de sistema. No entanto, middlewares existentes frequentemente não
permitem a adaptação dinâmica dos protocolos de comunicação, fixando-os em tempo de
desenvolvimento, não permitindo trocas dos protocolos e, como consequência, engessando a
comunicação entre sistemas. Esta dissertação propõe um mecanismo de adaptação, denomi-
nado Protocol Adaptation (pAdapt), contendo componentes de middleware que podem
ser ajustados em tempo de execução e permitindo a troca do protocolo de comunicação de
acordo com critérios implementados pelo desenvolvedor, como mudanças do contexto de exe-
cução da aplicação, e.g., o aumento da vulnerabilidade de segurança da rede leva à troca
do protocolo de transporte da aplicação por um protocolo mais seguro. A solução proposta
implementa componentes de oito protocolos de comunicação (UDP, TCP, TCP sobre TLS,
RPC, QUIC, HTTP/1.1, HTTPS e HTTP/2) e introduz um mecanismo de adaptação sín-
crona. Este mecanismo, orquestrado pelo servidor e baseado no MAPE-K (Monitor, Analyser,
Planner, Executor and Knowledge), garante a troca de protocolos em tempo de execução
de forma coordenada entre o servidor e todos os clientes conectados, preservando o estado
da comunicação e sem perda de mensagens. Ao mesmo tempo, estes novos componentes
são incorporados a um framework de desenvolvimento de middleware adaptativo já existente,
chamado gMidArch. Uma avaliação experimental foi realizada para comparar o desempenho
da solução adaptativa proposta com middlewares comerciais como gRPC e RabbitMQ. A
avaliação mostra que a sobrecarga do mecanismo de adaptação tem pouco impacto sobre o
desempenho da aplicação. Ao mesmo tempo, os resultados indicam que o pAdapt com os
novos componentes apresenta menor consumo de CPU no cliente em cenários de baixa carga
e desempenho superior em transferências de arquivos grandes. Como principal contribuição,
este trabalho permite que desenvolvedores de middleware selecionem e reconfigurem dinami-
camente o protocolo de comunicação mais adequado para diferentes requisitos da aplicação,
sem comprometer o desempenho das aplicações.

Palavras-chaves: Middleware Adaptativo, Framework de Middleware, Protocolos de Trans-
porte.

ABSTRACT

An adaptive distributed system is capable of dynamically (at runtime) and autonomously
(without human intervention) adjusting its behavior or structure while executing. Middleware
systems have been particularly developed to support the implementation of this type of system.
However, existing middleware often does not allow dynamic adaptation of communication pro-
tocols, fixing them at development time, not allowing protocol changes and, as a consequence,
hindering communication between systems. This dissertation proposes an adaptation mecha-
nism, named Protocol Adaptation (pAdapt), containing middleware components that can
be adjusted at runtime and allowing the exchange of the communication protocol according to
criteria implemented by the developer, such as changes in the application execution context,
e.g., the increase in network security vulnerability leads to the exchange of the application
transport protocol for a more secure protocol. The proposed solution implements compo-
nents of eight communication protocols (UDP, TCP, TCP over TLS, RPC, QUIC, HTTP/1.1,
HTTPS and HTTP/2) and introduces a synchronous adaptation mechanism. This mechanism,
orchestrated by the server and based on MAPE-K (Monitor, Analyser, Planner, Executor and

Knowledge), ensures the coordinated exchange of protocols at runtime between the server
and all connected clients, preserving the communication state and without message loss. At
the same time, these new components are incorporated into an existing adaptive middleware
development framework called gMidArch. An experimental evaluation was performed to com-
pare the performance of the proposed adaptive solution with commercial middleware such as
gRPC and RabbitMQ. The evaluation shows that the overhead of the adaptation mechanism
has little impact on the application performance. At the same time, the results indicate that
pAdapt with the new components presents lower CPU consumption on the client in low-load
scenarios and superior performance in large file transfers. As a main contribution, this work
allows middleware developers to dynamically select and reconfigure the most suitable com-
munication protocol for different application requirements, without compromising application
performance.

Keywords: Adaptive Middleware, Middleware Framework, Transport Protocols.

LISTA DE FIGURAS

Figura 1 – Monitor, Analyze, Plan, Execute and Knowledge (MAPE-K) 28
Figura 2 – Componentes do gMidArch . 29
Figura 3 – Componentes do gMidArch . 33
Figura 4 – Fluxo de Adaptação de Protocolos de Comunicação do pAdapt: Sequência

de passos . 35
Figura 5 – Componentes de adaptação do pAdapt 37
Figura 6 – Ambiente de Execução do pAdapt . 38
Figura 7 – Arquitetura dos Experimentos . 63
Figura 8 – Experimento Fibonacci 2: Boxplot Protocolos vs RTT 67
Figura 9 – Experimento SendFile 36x36: Boxplot Protocolos vs RTT 68
Figura 10 – Experimento Fibonacci 2: Boxplot da CPU do Cliente x Protocolos 69
Figura 11 – Experimento Fibonacci 38: Boxplot Protocolos vs RTT 71
Figura 12 – Experimento SendFile 4k: Boxplot Protocolos vs RTT 72

LISTA DE CÓDIGOS

Código Fonte 1 – executor.go . 39
Código Fonte 2 – unit.go . 40
Código Fonte 3 – pluginBuild.model . 41
Código Fonte 4 – protocol.go . 44
Código Fonte 5 – unit.go . 45
Código Fonte 6 – ClientRequestHandlerUDP Send File 48
Código Fonte 7 – ClientRequestHandler UDP Connection 49
Código Fonte 8 – Conexão Server Request Handler do QUIC 51
Código Fonte 9 – Servidor RPC . 53
Código Fonte 10 – HTTP Receive . 54
Código Fonte 11 – HTTP Serve . 54
Código Fonte 12 – HTTP Send . 55
Código Fonte 13 – Fibonacci Server . 63
Código Fonte 14 – Fibonacci Client . 64
Código Fonte 15 – Modelo de configuração do Docker Compose utilizado nos expe-

rimentos . 87

LISTA DE TABELAS

Tabela 1 – Características dos Protocolos de Comunicação 25
Tabela 2 – Variáveis de ambiente para configuração de certificados para utilização com

protocolos seguros . 50
Tabela 3 – Parâmetros do Sistema . 58
Tabela 4 – Parâmetros da Carga de Trabalho . 59
Tabela 5 – Fatores . 61
Tabela 6 – Comparação entre o gMidArch e frameworks relacionados 77

LISTA DE ABREVIATURAS E SIGLAS

ADL Architecture Description Language

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

AUM Adaptive Ubiquitous Middleware

CoAP Constrained Application Protocol

CSV Comma-Separated Values

DDS Data Distribution Service

gMidArch go adaptive Middleware aid by software Architecture

Golang Go language

gRPC gRPC Remote Procedure Calls

HTTP HyperText Transfer Protocol

HTTP/2 HyperText Transfer Protocol version 2

HTTP/3 HyperText Transfer Protocol version 3

HTTPS Hypertext Transfer Protocol Secure

IoT Internet of Things

JSON JavaScript Object Notation

mADL middleware Architecture Description Language

MAPE-K Monitor, Analyze, Plan, Execute and Knowledge

MEx Middleware Extendify

MQTT Message Queuing Telemetry Transport

MTU Maximum Transmission Unit

OSI Open Systems Interconnection

pAdapt Protocol Adaptation

pADL Python-based Architecture Description Language

QoS Quality of Service

QUIC Quick UDP Internet Connections

REST Representational State Transfer

RPC Remote Procedure Call

RTT Round-Trip Time

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

SUMÁRIO

1 INTRODUÇÃO . 16

1.1 CONTEXTO E MOTIVAÇÃO . 16
1.2 PROBLEMA . 18
1.3 SOLUÇÕES EXISTENTES E LACUNAS IDENTIFICADAS 19
1.4 OBJETIVOS . 20
1.5 SOLUÇÃO PROPOSTA . 21
1.6 ESTRUTURA DO DOCUMENTO . 22
2 FUNDAMENTAÇÃO TEÓRICA . 23

2.1 PROTOCOLOS DE COMUNICAÇÃO . 23
2.2 MIDDLEWARE ADAPTATIVO . 26
2.3 FEEDBACK LOOP . 27
2.4 GMIDARCH FRAMEWORK . 28
2.5 CONSIDERAÇÕES FINAIS . 31
3 pAdapt (PROTOCOL ADAPTATION) 32

3.1 VISÃO GERAL . 32
3.2 MECANISMO DE ADAPTAÇÃO . 34
3.3 NOVOS COMPONENTES . 42
3.4 CONSIDERAÇÕES FINAIS . 56
4 AVALIAÇÃO EXPERIMENTAL . 57

4.1 OBJETIVOS DA AVALIAÇÃO . 57
4.2 MÉTRICAS, PARÂMETROS E CARGA DE TRABALHO 58
4.3 FATORES E PROJETO DOS EXPERIMENTOS 60
4.4 SOLUÇÃO EM AÇÃO . 63
4.5 RESULTADOS E ANÁLISE DOS RESULTADOS 66
4.6 CONSIDERAÇÕES FINAIS . 72
5 TRABALHOS RELACIONADOS . 73

5.1 CONSIDERAÇÕES FINAIS . 78
6 CONCLUSÕES E TRABALHOS FUTUROS 79

6.1 CONCLUSÕES . 79
6.2 LIMITAÇÕES . 80

6.3 TRABALHOS FUTUROS . 81
REFERÊNCIAS . 83

APÊNDICE A – MODELO DOCKER COMPOSE PARA EXPERI-

MENTOS . 87

16

1 INTRODUÇÃO

Este capítulo introduz o trabalho desenvolvido nesta dissertação, iniciando pela Seção 1.1
que estabelece o contexto e a motivação da pesquisa, e analisa como as tendências em siste-
mas distribuídos demandam flexibilidade na comunicação. Passando então para a Seção 1.2,
que aborda o problema da rigidez nos sistemas de middleware convencionais, seguindo para
a Seção 1.3, que expõe as soluções existentes e as lacunas identificadas na literatura. Com
esta base, na Seção 1.4 são apresentados os objetivos desta dissertação, que visam abordar as
lacunas identificadas e propor uma solução inovadora. A seção 1.5 é então dedicada a intro-
duzir a solução proposta, o mecanismo Protocol Adaptation (pAdapt), e seus princípios.
Finalmente, a Seção 1.6 descreve a estrutura do documento, detalhando a organização dos
capítulos subsequentes.

1.1 CONTEXTO E MOTIVAÇÃO

Sistemas distribuídos são utilizados em diversos domínios, que vão desde aplicações Web
(ABGAZ et al., 2023) (CHEN et al., 2018) e microsserviços (FOWLER, 2014) (SöYLEMEZ; TE-

KINERDOGAN; KOLUKıSA, 2022), até a Internet of Things (IoT) (KHEZEMI et al., 2024) e a
computação de borda (edge computing) (SHI et al., 2016) e operam em ambientes cada vez
mais heterogêneos e dinâmicos. A heterogeneidade é vista na diversidade de regras de negócio,
de dispositivos, sistemas operacionais, frameworks e principalmente nos protocolos de comu-
nicação. Já a dinamicidade é percebida na variação da carga de trabalho, na disponibilidade
de recursos computacionais e nas condições instáveis da rede. Sistemas adaptativos são temas
recorrentes e já estabelecidos (DA; DALMAU; ROOSE, 2011) (WEYNS, 2021), mas, independen-
temente do suporte oferecido aos desenvolvedores de sistemas, as questões de heterogeneidade
e adaptabilidade geralmente são tratadas por uma camada de software intermediária, o mid-
dleware.

Um Middleware adaptativo (ROSA et al., 2020) gerencia este dinamismo, reconfigurando-
se automaticamente para atender a requisitos não funcionais, como desempenho, segurança
e confiabilidade, ou mesmo requisitos funcionais, como uma opção para poupar energia e
manter o dispositivo funcionando por mais tempo. Contudo, apesar dos avanços na área, uma
limitação crítica persiste: não foram identificados sistemas de middleware capazes de ajustar

17

dinamicamente o protocolo de comunicação. Ou seja, por padrão, o protocolo usado pelo
middleware é fixado em tempo de desenvolvimento e depois não pode ser ajustado durante a
execução.

O dinamismo percebido nas aplicações contrasta com a natureza estática das arquitetu-
ras de middleware. Em clusters de microsserviços, por exemplo, a comunicação entre serviços
internos pode exigir um middleware de alto desempenho, como o gRPC Remote Procedure

Calls (gRPC) (GRPC, 2025). Já a comunicação com clientes externos, como navegadores
Web e aplicações móveis, demanda pela construção de uma Application Programming Inter-

face (API) com o uso de protocolos amplamente adotados e interoperáveis, como HyperText

Transfer Protocol (HTTP) (FIELDING; NOTTINGHAM; RESCHKE, 2022) com Representational

State Transfer (REST) (FIELDING, 2000) e JavaScript Object Notation (JSON). Por outro
lado, para aplicações que toleram perdas de pacotes, como telemetria em tempo real, proto-
colos leves baseados em User Datagram Protocol (UDP) são mais adequados. Além disso, em
cenários onde os serviços estão hospedados em nuvens pagas, também é necessário considerar
o custo de operação, onde o uso de protocolos que exijam mais recursos computacionais, como
memória, CPU e tráfego de rede, pode impactar diretamente no valor a ser pago.

Um middleware que utiliza um único protocolo de transporte obriga as equipes de desen-
volvimento a fazerem concessões de arquitetura. Ou seja, os desenvolvedores devem optar pela
adoção do protocolo pré-estabelecido, ou então gerenciar múltiplos conjuntos de tecnologia
de comunicação, como diferentes middleware, diferentes protocolos de comunicação e encap-
sulamento e diferentes formas de implementação para o envio de uma mesma mensagem, o
que eleva a complexidade de desenvolvimento, monitoramento e manutenção.

A proliferação da Internet das Coisas com a explosão de dispositivos IoT introduz outro
conjunto de desafios. Tais dispositivos operam sob restrições severas de energia, poder de
processamento e largura de banda de rede. Nesses cenários, a escolha do protocolo é crítica.

Um destes cenários de IoT pode ser exemplificado com o uso de protocolos leves como o
UDP, ideal para o envio de pequenas leituras de sensores, onde o overhead de uma conexão
Transmission Control Protocol (TCP) é proibitivo. Em cenários onde a confiabilidade e a segu-
rança são necessárias, é indicado o uso de protocolos que garantam a entrega das mensagens,
como TCP, e também de um protocolo que melhore a segurança, como o Transport Layer

Security (TLS) (RESCORLA, 2018). Um cenário, que se enquadra nestas condições, é o envio
de atualizações de firmware para dispositivos IoT, onde a perda de pacotes pode ocasionar
falhas no dispositivo e um firmware comprometido pode ser um risco de segurança.

18

Um outro cenário é onde um dispositivo pode precisar alternar entre um modo de baixa
energia (usando UDP) e um modo de alta confiabilidade (usando TCP sobre TLS), dependendo
da tarefa a ser executada ou das condições da rede. A ausência de um mecanismo de adaptação
de protocolo nesses ambientes resulta em sistemas que, ou desperdiçam recursos, ou falham
em garantir a confiabilidade quando ela é mais necessária.

Esta dissertação é, portanto, motivada pela necessidade de evoluir o middleware para além
de sua concepção de protocolos de comunicação estáticos. A proposta é tratar o protocolo de
transporte não como um detalhe de implementação fixo, mas como uma dimensão estratégica
e dinâmica do sistema, que pode e deve ser adaptada em tempo de execução para responder
às demandas da aplicação e do ambiente, otimizando assim, seu desempenho, segurança,
eficiência e custo.

1.2 PROBLEMA

O problema central abordado nesta dissertação é a rigidez da camada de transporte dos
sistemas de middleware convencionais. Esta limitação compromete não somente a eficiência, a
flexibilidade e a capacidade de evolução de aplicações distribuídas, mas também os custos en-
volvidos na manutenção e execução destas aplicações. A prática de implementar o middleware
com um único protocolo de comunicação em tempo de desenvolvimento, tornando-o imutável
em tempo de execução, gera uma série de desafios técnicos e operacionais.

O primeiro destes desafios é a inflexibilidade em tempo de execução. A escolha de um
protocolo durante a fase de projeto é baseada em suposições sobre o ambiente operacional e
o perfil de uso da aplicação. Na prática, esses fatores são dinâmicos e podem mudar ao longo
do tempo. Por exemplo, a carga de trabalho pode variar sazonalmente, as condições da rede
podem se degradar, novos requisitos de segurança podem ser impostos (MITRE, 2013) e novas
tecnologias de protocolo mais eficientes podem emergir (BISHOP, 2022). Um sistema com um
protocolo fixo é incapaz de reagir a essas mudanças, ficando restrito a operar em um estado
inseguro ou operando de forma ineficiente, até que um ajuste seja realizado manualmente para
atualizar o sistema.

Outro desafio é a complexidade e o custo de manutenção. A falta de um middleware
adaptativo e multiprotocolo nativo impõe uma carga de complexidade sobre as equipes de de-
senvolvimento. Para contornar esta rigidez, os desenvolvedores são forçados a adotar soluções
alternativas, como gerenciar múltiplas pilhas de middleware distintos em paralelo ou construir

19

gateways de tradução de protocolo. Essas soluções são frágeis, introduzem latência adicional,
aumentam a superfície de ataque e tornam o sistema como um todo mais difícil de entender,
depurar e manter.

Por outro lado, para evitar a complexidade, o custo de manutenção e os problemas mencio-
nados acima, é possível que os desenvolvedores optem pela utilização de um protocolo genérico
para todas as aplicações e cenários. No entanto, a utilização de um protocolo inadequado para
uma determinada tarefa leva a um desperdício de recursos. Por exemplo, forçar o uso de TCP
para uma aplicação de telemetria em tempo real, que poderia tolerar pequenas perdas de paco-
tes, introduz overhead de latência com handshakes e retransmissões. Inversamente, usar UDP
para uma transação financeira sem uma camada de confiabilidade robusta implementada na
aplicação é inviável. Nestas situações, a diferença entre o protocolo ideal e o utilizado resulta
em maior consumo de CPU, maior uso de memória e possivelmente um aumento de custo de
operação, especialmente em ambientes de nuvem onde o uso de recursos é cobrado.

Um outro desafio é a adoção de um novo protocolo de transporte. A introdução de um
novo protocolo exigiria a substituição completa do middleware, em vez de uma atualização
incremental. Isso inibe a capacidade do sistema de evoluir e se beneficiar dos avanços contínuos
na tecnologia de comunicação.

1.3 SOLUÇÕES EXISTENTES E LACUNAS IDENTIFICADAS

As soluções existentes frequentemente apresentam uma ou mais limitações. Uma primeira
limitação encontrada nas soluções atuais é o escopo de domínio específico. Muitos frameworks
adaptativos, como Cilia (Lalanda; Morand; Chollet, 2017), AUM (PRADEEP; KRISHNAMOORTHY;

VASILAKOS, 2021) e MEx (CAVALCANTI; ROSA, 2024), são projetados com foco em domínios
específicos, como IoT ou redes ciberfísicas. Suas arquiteturas são otimizadas para os requisitos
desses domínios (e.g., protocolos como MQTT e CoAP, e baixo consumo de energia), o
que limita sua aplicabilidade em cenários de propósito geral, como aplicações Web de alto
desempenho.

Outra limitação é a adaptação inexistente ou limitada. Outras soluções oferecem suporte
limitado a múltiplos protocolos, mas carecem de mecanismos para adaptação em tempo de
execução entre eles. O pacote RPC nativo do Go (RPC-GO, 2025), por exemplo, permite
escolher entre TCP e HTTP, mas essa escolha é estática. O framework Gorilla (GORILLA,
2025) também se concentra em HTTP e WebSocket sem prover meios para reconfiguração

20

dinâmica.
Portanto, fica evidente a lacuna nas soluções existentes, a falta de um middleware adapta-

tivo de propósito geral que suporte a adaptação de protocolos de comunicação em tempo de
execução. Com isso, a pergunta central que esta dissertação busca responder: Como superar

a rigidez da camada de transporte dos sistemas de middleware convencionais?

1.4 OBJETIVOS

O objetivo geral desta dissertação é projetar, implementar e avaliar um middleware adap-
tativo, de propósito geral, que supere a rigidez da camada de transporte, através da adaptação
(troca) de forma autonômica e dinâmica de protocolos de comunicação em tempo de execução,
sem a perda de informações e de forma síncrona entre clientes e servidores.

Para alcançar o objetivo geral, os seguintes objetivos específicos foram definidos:

1. Realizar um levantamento bibliográfico e análise comparativa dos principais frameworks
e middleware adaptativos: Realizar um estudo abrangente sobre os middleware adapta-
tivos existentes, com foco em suas capacidades de adaptação e nos seus protocolos de
comunicação, identificando lacunas e limitações que justificam a necessidade de uma
nova abordagem;

2. Projetar e implementar diferentes protocolos de comunicação: Projetar e implementar
componentes que incorporem um conjunto diversificado de protocolos de comunicação
(UDP, TCP, TCP sobre TLS (RESCORLA, 2018), Remote Procedure Call (RPC) (THUR-

LOW, 2009), Quick UDP Internet Connections (QUIC) (IYENGAR; THOMSON, 2021),
HTTP/1.1 (FIELDING; NOTTINGHAM; RESCHKE, 2022), Hypertext Transfer Protocol Se-

cure (HTTPS) (FIELDING; NOTTINGHAM; RESCHKE, 2022) e HyperText Transfer Proto-

col version 2 (HTTP/2) (THOMSON; BENFIELD, 2022)) como componentes modulares
e intercambiáveis;

3. Projetar e implementar um mecanismo de adaptação de protocolos de comunicação:
Projetar e implementar um mecanismo de adaptação em tempo de execução, capaz de
orquestrar a migração síncrona de protocolo entre o servidor e seus clientes de forma
stateful, proporcionando consistência ao sistema e integridade dos dados durante a tran-

21

sição, permitindo assim que o servidor e seus clientes sejam adaptados simultaneamente;
e

4. Avaliar o desempenho e a eficácia da solução: Avaliar experimentalmente o desempenho
da solução proposta, quantificando o impacto (overhead) do mecanismo de adapta-
ção e comparando o seu desempenho com outros middleware comerciais sob diferentes
condições de trabalho, a fim de validar sua viabilidade e competitividade.

1.5 SOLUÇÃO PROPOSTA

A solução proposta nesta dissertação para resolver os desafios mencionados é um me-
canismo de adaptação, chamado Protocol Adaptation (pAdapt), capaz de realizar trocas
do protocolo de comunicação enquanto a aplicação executa e sem a parada da mesma. O
pAdapt consiste de um conjunto de novos componentes em tempo de desenvolvimento, e
um novo mecanismo de adaptação com sincronização entre clientes e servidores. Os novos
componentes em tempo de desenvolvimento adicionados encapsulam regras de comunicação
de diversos protocolos de comunicação acrescentados ao middleware. Já o novo mecanismo de
adaptação, com sincronização entre clientes e servidores, age como um orquestrador que ge-
rencia a troca dos componentes (protocolos) dinamicamente, proporcionando uma adaptação
consistente e sem perda de estado ou mensagens em trânsito. Por fim, o pAdapt é incorpo-
rado como uma extensão a um framework de middleware adaptativo já existente, chamado
gMidArch (ROSA et al., 2020).

O mecanismo pAdapt foi projetado considerando dois princípios básicos:

• Suporte Nativo e Extensível a Múltiplos Protocolos de Comunicação: O pA-

dapt implementa um conjunto diversificado de componentes de comunicação, cada
um encapsulando um protocolo de transporte distinto, UDP, TCP, TCP sobre TLS,
RPC, QUIC, HTTP/1.1, HTTPS e HTTP/2. A arquitetura de componentes do gMi-
dArch permite que esses protocolos sejam tratados como "peças" intercambiáveis e,
mais importante, que novos protocolos sejam adicionados no futuro com esforço mí-
nimo, melhorando a extensibilidade da solução; e

• Mecanismo de Adaptação Síncrona e Stateful: O orquestrador coordena a mu-
dança de protocolos entre o servidor e todos os seus clientes conectados. Para isso, o

22

orquestrador usa o MAPE-K (IBM, 2005), i.e., monitora o sistema, analisa as informa-
ções coletadas do monitoramento, planeja e executa as adaptações conforme necessário.
O foco deste novo mecanismo está em como realizar a adaptação, e não no motivo da
adaptação.

1.6 ESTRUTURA DO DOCUMENTO

O restante da dissertação é organizado em mais cinco capítulos:

• Capítulo 2: Este capítulo introduz os conceitos básicos necessários para o entendimento
deste trabalho;

• Capítulo 3: Este capítulo apresenta os novos componentes dos protocolos de comunica-
ção, o novo mecanismo de adaptação de protocolos em tempo de execução, denominado
pAdapt, e a integração deles com o gMidArch;

• Capítulo 4: Este capítulo apresenta a avaliação experimental da solução proposta;

• Capítulo 5: Este capítulo apresenta uma análise comparativa com os trabalhos existen-
tes; e

• Capítulo 6: Neste último capítulo são apresentadas as conclusões e os potenciais tra-
balhos futuros desta dissertação.

23

2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo apresenta os conceitos necessários para a compreensão desta dissertação.
Primeiramente serão abordados os protocolos de comunicação na Seção 2.1. Na sequência,
a Seção 2.2 apresenta os conceitos de middleware adaptativo e responde as questões básicas
de um sistema adaptativo. Em seguida, na Seção 2.3 é apresentado o MAPE-K. A Seção 2.4
detalha o framework de middleware gMidArch (ROSA et al., 2020), implementado utilizando a
linguagem de programação Go. Por fim, a Seção 2.5 apresenta as considerações finais deste
capítulo.

2.1 PROTOCOLOS DE COMUNICAÇÃO

Os protocolos de comunicação de mensagens em sistemas distribuídos garantem que os
dados transmitidos entre os componentes da aplicação cheguem corretamente ao destino,
mesmo diante de falhas ou congestionamentos.

Entre os protocolos mais comuns utilizados em sistemas distribuídos estão UDP, TCP,
TCP com TLS, RPC, QUIC, HTTP, HTTPS, HTTP/2, gRPC e Advanced Message Queuing

Protocol (AMQP) (GODFREY; INGHAM; SCHLOMING, 2012). A seguir, são detalhadas as prin-
cipais características destes protocolos de comunicação:

• UDP: O User Datagram Protocol (UDP) é um dos protocolos de comunicação mais
simples e de menor latência. Seu bom desempenho decorre da ausência de mecanismos
de controle de confiabilidade, como verificação de integridade, correção de erros ou
retransmissão de pacotes perdidos. O protocolo não estabelece conexão, transmitindo
dados sem garantia de entrega ou ordenação. Essa característica o torna particularmente
adequado para aplicações sensíveis ao tempo, como transmissões multimídia e sistemas
em tempo real, nas quais a perda ocasional de pacotes é tolerável, e preferível, a atrasos
decorrentes de retransmissões;

• TCP: O Transmission Control Protocol (TCP) é um protocolo orientado à conexão,
que oferece comunicação confiável entre duas extremidades. Ele implementa controle de
fluxo, controle de congestionamento e garantia de entrega de pacotes na ordem correta.
Por essa razão, o protocolo TCP é amplamente adotado em aplicações que exigem
confiabilidade;

24

• TCP com TLS: O Transport Layer Security (TLS) (RESCORLA, 2018) é um protocolo
criptográfico que opera sobre o TCP, adicionando uma camada de segurança à comuni-
cação. Ele protege contra escutas e alterações indevidas nos dados transmitidos, sendo
fundamental em ambientes que exigem confidencialidade e integridade. Por simplicidade,
neste trabalho, o termo TLS será utilizado para se referir ao uso do protocolo TLS sobre
o protocolo TCP;

• RPC: O Remote Procedure Call (RPC) (THURLOW, 2009) não é, em si, um protocolo
de transporte, mas sim um paradigma de comunicação que permite a um programa
executar uma função que esteja em outro de endereço, e.g., em outra máquina, como
se fosse uma chamada local. O RPC abstrai a complexidade da comunicação em rede,
permitindo que os desenvolvedores se concentrem na lógica de negócio do sistema;

• QUIC: O Quick UDP Internet Connections (QUIC) (IYENGAR; THOMSON, 2021) é um
protocolo de transporte desenvolvido pelo Google que combina as vantagens do UDP
com mecanismos de segurança e confiabilidade. Ele incorpora criptografia por padrão,
multiplexação eficiente de conexões e recuperação rápida de perdas;

• HTTP: O HyperText Transfer Protocol (HTTP) (FIELDING; NOTTINGHAM; RESCHKE,
2022) é um protocolo de aplicação baseado em texto, utilizado amplamente na comu-
nicação Web. Ele define regras para requisições e respostas entre clientes e servidores.
Sua simplicidade e padronização o tornam adequado para aplicações Representational

State Transfer (REST) e microsserviços (FOWLER, 2014). HTTP é o principal protocolo
utilizado para a transferência de dados na Web, permitindo a comunicação entre nave-
gadores e servidores. O HTTP opera sobre o TCP, garantindo a entrega confiável de
mensagens;

• HTTPS: O Hypertext Transfer Protocol Secure (HTTPS) (FIELDING; NOTTINGHAM;

RESCHKE, 2022) é uma versão mais segura do HTTP, sendo essencialmente HTTP
operando sobre TLS. Ele garante a confidencialidade e autenticidade das comunicações,
sendo o padrão adotado para transações seguras na Web;

• HTTP/2: A Versão 2 do HTTP, o Hypertext Transfer Protocol Secure version 2

(HTTP/2) (THOMSON; BENFIELD, 2022), é uma evolução do protocolo HTTP, introdu-
zindo melhorias como multiplexação de streams, compressão de cabeçalhos e uso mais
eficiente de conexões TCP. Isso resulta em menor latência e melhor desempenho;

25

• gRPC: O gRPC Remote Procedure Calls (gRPC) (GRPC, 2025) é um framework de
chamadas de procedimento remoto baseado em HTTP/2 e Protocol Buffers. Ele permite
comunicação eficiente entre serviços, com suporte a streaming, múltiplas plataformas e
linguagens de programação; e

• AMQP: O Advanced Message Queuing Protocol (AMQP) (GODFREY; INGHAM; SCH-

LOMING, 2012) é um protocolo que opera como um intermediário de mensagens entre
sistemas distribuídos, promovendo desacoplamento e escalabilidade, também é o proto-
colo utilizado como base para o RabbitMQ (RabbitMQ, 2025).

A Tabela 1 resume as principais características dos protocolos de comunicação abordados,
destacando aspectos como confiabilidade e segurança, assim como adicionando os principais
casos de uso de cada protocolo.

Tabela 1 – Características dos Protocolos de Comunicação

Protocolo Confiabilidade Segurança Principal Caso de Uso
UDP Baixa Não Multimídia, tempo real (baixa latência)
TCP Alta Não Aplicações que exigem confiabilidade
TLS Alta Alta Comunicação segura (confidencialidade)

RPC Dependente da
implementação

Dependente da
implementação

Chamadas de funções remotas

QUIC Alta Alta Web moderna (substituto TCP+TLS)
HTTP Alta Não Web, APIs REST, microsserviços
HTTPS Alta Alta Web segura
HTTP/2 Alta Alta Web de alto desempenho (multiplexação)
gRPC Alta Alta APIs, comunicação entre microsserviços
AMQP Alta Não Mensageria, sistemas desacoplados

Fonte: Elaborado pelo autor (2025)

Como pode ser observado na Tabela 1, cada protocolo possui diferentes características,
que os tornam mais adequados para determinados cenários. Ou seja, uma aplicação pode se
beneficiar de um protocolo em determinado cenário, e.g., UDP para transmissões multimídia,
mas em outro cenário, e.g., chamadas à APIs, o HTTP/2 pode ser mais apropriado.

26

2.2 MIDDLEWARE ADAPTATIVO

Para lidar com a complexidade dos sistemas distribuídos, os middlewares adaptativos sur-
gem como uma solução eficaz. Um middleware adaptativo é uma camada de software interme-
diária que trata a heterogeneidade e adaptabilidade do sistema. Ele gerencia o dinamismo do
ambiente, reconfigurando-se automaticamente para atender a diferentes requisitos. Isso inclui
a capacidade de adaptar protocolos de comunicação, foco deste trabalho.

Para gerenciar a complexidade ao se desenvolver um middleware adaptativo, são enfren-
tados os mesmos desafios de se desenvolver um sistema adaptativo (SALEHIE; TAHVILDARI,
2009). Estes desafios nos levam a questões básicas de adaptação, como: o porquê de adaptar,
onde adaptar, o que adaptar, como adaptar e quando adaptar.

Considerando que um middleware é uma camada entre diferentes sistemas distribuídos, a
adaptação dos protocolos de comunicação se torna ainda mais impactante, uma vez que, se
ocorrer algum problema, ambos os sistemas se comunicando podem ser afetados.

Sendo assim, respondendo as questões levantadas, começamos com o porquê de adaptar
protocolos de comunicação. A adaptação de protocolos de comunicação é necessária, como
esclarecido na Seção 1.2, para lidar com mudanças no ambiente, seja nas condições de rede,
nos requisitos de desempenho, na segurança e ou mesmo na confiabilidade.

A segunda questão é onde adaptar. A adaptação de protocolos de comunicação deve ocorrer
somente nas camadas do middleware que tratam da comunicação, i.e., onde os protocolos de
comunicação são implementados e gerenciados. Isso permite que o middleware adapte os
protocolos utilizados, sem impactar as camadas superiores, nem a aplicação que utiliza o
middleware.

A terceira questão é o que adaptar. Para efetuar a adaptação dos protocolos de comu-
nicação, os componentes responsáveis pela comunicação devem ser substituídos por outros
componentes que implementem o novo protocolo desejado. Com isso é necessário que os com-
ponentes de comunicação sejam desenvolvidos de forma que sejam compatíveis entre si, ou
seja, que possuam a mesma interface de comunicação.

A quarta questão é como adaptar. Esta questão é o foco deste trabalho, projetar e im-
plementar um middleware adaptativo que permita a adaptação de protocolos de comunicação
em tempo de execução, sem a necessidade de reiniciar o sistema ou interromper o serviço
e sem perda de informações, ainda de forma síncrona entre clientes e servidores. Para isso,
o middleware deve seguir um fluxo de adaptação que permita a troca dos componentes de

27

comunicação de forma sincronizada.
A última questão é quando adaptar. A adaptação dos protocolos de comunicação deve

ocorrer quando houver uma mudança nas condições do ambiente ou nos requisitos da aplica-
ção que justifique a troca do protocolo utilizado. Este é um ponto onde o desenvolvedor do
middleware deve definir e implementar os critérios que serão utilizados para disparar a adap-
tação. A solução proposta neste trabalho não aborda a definição destes critérios, mas sim o
mecanismo de adaptação em si, deixando a cargo do desenvolvedor do middleware a definição
de quando adaptar.

2.3 FEEDBACK LOOP

Uma abordagem tradicional para estruturar sistemas adaptativos é utilizar o conceito de
feedback loop para gerenciar a adaptação destes sistemas (KEPHART; CHESS, 2003), especial-
mente em ambientes distribuídos e dinâmicos. Trata-se de um mecanismo de gerenciamento
baseado na coleta contínua de dados do sistema, análise do seu comportamento atual e tomada
de decisões para ajustes ou reconfigurações em tempo de execução.

O modelo de feedback loop MAPE-K (KEPHART; CHESS, 2003) (IBM, 2005) é comumente
utilizado (BRINKSCHULTE, 2019) (ROSA; CAMPOS; CAVALCANTI, 2019) (CAVALCANTI; ROSA,
2024). A arquitetura do MAPE-K pode ser vista na Figura 1. Nela é possível observar o
Gerente Autônomo e o Elemento Gerenciado. O Elemento Gerenciado é o objeto que se
pretende adaptar, ele que é monitorado para verificar se há necessidade de adaptação ou não.
O Gerente Autônomo coordena todo o ciclo de adaptação. O Gerente Autônomo é dividido
em quatro componentes principais e unido por uma base de conhecimento:

• Monitor: coleta informações do ambiente e do próprio sistema, como desempenho da
rede, disponibilidade de recursos e estado dos componentes;

• Analisador: interpreta os dados monitorados para identificar padrões, anomalias ou a
necessidade de adaptação;

• Planejador: define ações corretivas ou estratégias de reconfiguração para alcançar os
objetivos definidos;

• Executor: aplica as mudanças planejadas no sistema, como trocar componentes, migrar
serviços ou ajustar parâmetros; e

28

Figura 1 – MAPE-K

Fonte: KEPHART; CHESS (2003)

• Base de Conhecimento: atua como um repositório central de informações históricas
e regras, que podem ser usadas por todos os componentes do MAPE-K.

A adoção de feedback loops permite que os middleware sejam mais resilientes, eficientes e
autônomos, adaptando-se dinamicamente a mudanças nas condições de operação ou nos re-
quisitos das aplicações (KEPHART; CHESS, 2003). Essa abordagem é particularmente relevante
em ambientes de sistemas distribuídos, e.g., computação em nuvem, Internet das Coisas (IoT)
e sistemas orientados a serviços.

2.4 GMIDARCH FRAMEWORK

O gMidArch (go adaptive Middleware aid by software Architecture) (ROSA; CAMPOS; CA-

VALCANTI, 2019) (ROSA et al., 2020) é um framework de middleware adaptativo desenvolvido
em Go que facilita o projeto, a implementação e a execução de sistemas de middleware adap-
tativos. As seções seguintes descrevem os principais conceitos do gMidArch.

2.4.1 Componentes de Middleware

Para facilitar o desenvolvimento de sistemas de middleware adaptativos, o gMidArch ofe-
rece um conjunto de componentes reutilizáveis para implementar funcionalidades de mid-
dleware. Esses componentes são organizados em três categorias de acordo com seu papel

29

nas camadas do middleware, como pode ser observado na Figura 2. Sendo elas, Camada de

Serviços, Camada de Distribuição, e Camada de Infraestrutura.

Figura 2 – Componentes do gMidArch

Fonte: Elaborado pelo autor (2025)

A Camada de Serviços fornece serviços para as aplicações. Esta camada inclui tanto serviços
que podem ser reutilizados por várias aplicações, e.g., o serviço de nomes, quanto serviços
utilizados apenas por algumas aplicações, e.g., serviço de sincronização de edição.

A Camada de Distribuição esconde a complexidade dos sistemas distribuídos, ou seja, é a
camada responsável pela criação dos pacotes, serialização e codificação dos dados enviados.

A Camada de Infraestrutura é responsável pela comunicação dentro do middleware, como
envio/recebimento de dados e estabelecimento de conexões. Ela se comunica diretamente
com a API de comunicação do sistema operacional. Esta camada também pode implementar
transparências de concorrência, tecnologia e falhas. A transparência de concorrência permite
que múltiplas operações sejam realizadas simultaneamente, sem interferência entre elas. A
transparência de tecnologia permite que diferentes tecnologias de comunicação sejam utilizadas
sem que o desenvolvedor precise se preocupar com os detalhes técnicos de cada protocolo.
Já a transparência de falhas garante que o sistema continue funcionando mesmo em caso de
falhas no envio de mensagens, e.g., perda de mensagens.

30

2.4.2 Adaptação em tempo de execução

A adaptação em tempo de execução é um dos principais recursos do gMidArch e permite
que o middleware se adapte a mudanças nas condições de operação ou nos requisitos das
aplicações. Isso é feito através da troca de componentes, sem a necessidade de reiniciar o
sistema ou interromper o serviço.

A adaptação em tempo de execução é realizada através do mecanismo de adaptação. Esse
mecanismo é responsável por monitorar o estado do middleware e decidir quando e como
realizar adaptações. O desenvolvedor pode optar por um mecanismo de adaptação evolutivo
ou por não utilizar mecanismos de adaptação. A estratégia de adaptação evolutiva se baseia
em monitorar novas versões para os componentes utilizados. Sendo assim, cada vez que uma
nova versão é publicada, o middleware automaticamente troca o componente antigo pela nova
versão.

2.4.3 Ambiente de execução

O gMidArch possui um ambiente de execução responsável por executar os componentes e
conectores e realizar as adaptações. A unit é a unidade de execução que gerencia o ciclo de
vida dos componentes. O gMidArch cria grafos, que são máquinas de estado, onde cada nó
do grafo é uma unit que representa o seu componente.

A unit é uma abstração que permite que o middleware execute os componentes de forma
independente e paralela, garantindo que cada componente possa ser executado em seu próprio
contexto. Ela também é responsável por permitir a adaptação dos componentes em tempo de
execução.

Quando uma adaptação é iniciada, a unit responsável pelo componente a ser trocado
encerra a execução do componente depreciado e inicia a execução do novo componente.
Caso tenha alguma chamada a ser feita para o componente que está sendo trocado, a unit

suspende a comunicação até que a troca tenha sido finalizada. Ao finalizar a troca para o
novo componente, a comunicação é reestabelecida já para o componente atualizado. Como
são ações realizadas em paralelo com a execução do sistema, o impacto da troca é reduzido.

31

2.5 CONSIDERAÇÕES FINAIS

Este capítulo apresentou a base teórica deste trabalho. Foram apresentados os protocolos
de comunicação utilizados e os conceitos de middleware adaptativo e de Feedback Loop. Por
fim, foi apresentado o framework gMidArch, sua arquitetura e seus componentes e também
como ele pode ser utilizado para implementar um middleware adaptativo.

32

3 pAdapt (PROTOCOL ADAPTATION)

Neste capítulo será apresentado em detalhes a solução proposta, o mecanismo Protocol

Adaptation (pAdapt) 1. Primeiramente será apresentada na Seção 3.1 uma visão geral das
extensões propostas. Na sequência, a Seção 3.2 detalha o novo mecanismo de adaptação
adicionado. Em seguida, na Seção 3.3 serão apresentadas as novas extensões de protocolos
de comunicação, contendo os protocolos UDP, TCP, TLS, RPC, QUIC, HTTP, HTTPS e
HTTP/2. Por fim, a Seção 3.4 traz as considerações finais deste capítulo.

3.1 VISÃO GERAL

A proposta do pAdapt consiste de duas partes. A primeira é a adição de novos compo-
nentes de transporte, que implementam protocolos de comunicação amplamente utilizados em
sistemas distribuídos. A segunda é a implementação de mecanismos que possibilitem que o
middleware suporte a adaptação evolutiva de protocolos de comunicação em tempo de exe-
cução. A Figura 3 apresenta uma visão geral do gMidArch com as novas extensões (cinza
claro), em comparação aos componentes previamente existentes (branco). Além disso, a fi-
gura também exibe a adição de uma nova camada, a Camada de Transporte, que tem por
objetivo agregar as implementações dos protocolos através de uma interface comum a todos.
A figura apresenta somente os componentes de middleware, sem os componentes responsáveis
pela adaptação e execução, que serão abordados na Seção 3.2.

A maior parte dos novos componentes implementados está na Camada de Infraestrutura.
Estes componentes são responsáveis pelas transparências de concorrência, tecnologias e fa-
lhas. A transparência de concorrência ocorre, e.g., quando diferentes clientes acessam o mesmo
serviço no mesmo servidor sem que isso altere o retorno esperado do serviço. Quem faz esta
separação da concorrência é o Server Request Handler, com seu pool de conexões. Já a trans-
parência de tecnologias ocorre ao se utilizar diferentes protocolos independente de qualquer
implementação externa ao middleware, i.e., a única coisa que um desenvolvedor de sistemas
utilizando o gMidArch com pAdapt precisa fazer para escolher um protocolo é configurar um
arquivo para utilizar o protocolo desejado. Qualquer diferença entre as diversas tecnologias
dos protocolos é tratada internamente pela Camada de Infraestrutura e não muda a imple-
mentação efetuada pelo desenvolvedor. A transparência de falhas também é implementada,
1 Código Fonte disponível em: https://github.com/gfads/midarch

33

Figura 3 – Componentes do gMidArch

Fonte: Elaborado pelo autor (2025)

e.g, na conexão do cliente com o servidor, onde o cliente tenta reconectar automaticamente
caso ocorra algum erro na conexão.

Para permitir a adaptação de diferentes protocolos de comunicação, foi criada uma nova
camada no middleware, a Camada de Transporte, onde de fato é implementado o acesso aos
protocolos de comunicação. Esta nova camada fornece serviços à Camada de Infraestrutura,
através da abstração das chamadas à API do sistema operacional, e.g., para enviar mensagens
de um cliente para o servidor. A Camada de Transporte serve para padronizar o acesso aos
diferentes protocolos de comunicação, e consequentemente viabilizar a troca (adaptação) entre
eles em tempo de execução. Para isso, foi criada uma interface que deve ser implementada por
cada protocolo. É através desta interface que os componentes da Camada de Infraestrutura

se comunicam utilizando os protocolos de comunicação. Novos proxies e marshallers, foram
também adicionados à Camada de Serviços e à Camada de Distribuição.

34

3.2 MECANISMO DE ADAPTAÇÃO

Um ponto importante no novo mecanismo de adaptação do pAdapt, e que o diferencia da
adaptação evolutiva padrão previamente existente no gMidArch, é que a adaptação anterior
visava somente a alteração de componentes únicos. Com o pAdapt, a adaptação (troca de
componentes) pode ocorrer de maneira orquestrada no Cliente e no Servidor simultaneamente.
Além disso, a adaptação deve ser realizada em todos os clientes que estiverem acessando
o servidor. Para possibilitar esta nova adaptação síncrona, foi criado como parte do novo
mecanismo, um fluxo de adaptação de protocolos de comunicação, que será abordado na
sequência.

3.2.1 Fluxo de Adaptação no pAdapt

A troca (adaptação) de um protocolo de transporte por outro em tempo de execução,
como proposto no pAdapt, sincroniza esta ação no cliente e no servidor. A Figura 4 mostra
a sequência de ações executadas pelo pAdapt para realizar a troca de protocolos.

Para que a adaptação de protocolos de comunicação ocorra, o servidor é o responsável por
iniciar o processo de adaptação. Isto é necessário para evitar que um protocolo seja trocado
por conta da demanda de um único cliente.

Sendo assim, o Fluxo de Adaptação de Protocolos de Comunicação do pAdapt, definido
na Figura 4, inicia com o Servidor recebendo uma mensagem comum (SendMessage) de um
Cliente. Mas antes de processar a mensagem, o Servidor identifica a necessidade de uma troca
(adaptação) do seu protocolo. A necessidade de adaptação pode ser através da inclusão de uma
nova extensão no middleware, i.e., colocando o código fonte de um novo componente na pasta
de extensões do middleware, ou através de uma solicitação de adaptação gerada internamente,
baseada no monitoramento do middleware, e.g., pode ser criada uma implementação para que,
quando o servidor identificar que o protocolo de transporte atual não é mais o adequado para
a comunicação com os clientes conectados, seja 33gerada uma solicitação de adaptação.

Após identificar a necessidade de adaptação, o Servidor começa a reter as mensagens
(SendMessage) recebidas, ou seja, não as processa mais. Isso é necessário para que o Servidor

não perca nenhuma mensagem durante a adaptação. A partir daí, como pode ser visualizado
no diagrama, o Servidor envia uma mensagem (ChangeProtocol) para cada Cliente conectado,
informando que ocorrerá uma adaptação de protocolo e para qual protocolo deve ser adaptado.

35

Figura 4 – Fluxo de Adaptação de Protocolos de Comunicação do pAdapt: Sequência de passos

Fonte: Elaborado pelo autor (2025)

Após receber a mensagem de adaptação, o Cliente deve responder com uma mensagem de Ok

para o Servidor, confirmando que está pronto para a adaptação. Na sequência, o próprio Cliente

inicia a adaptação para o novo protocolo (PerformAdapt). O Servidor aguarda a confirmação
através da mensagem de Ok de todos os Clientes conectados, e somente após receber essa
confirmação de todos os Clientes é que ele inicia a sua adaptação. Assim que cada Cliente

finaliza a adaptação, ele tenta se conectar ao Servidor novamente (Connect), já com o novo
protocolo. Caso o Servidor já esteja adaptado, ele aceita as novas conexões com Sucesso ao

conectar, finalizando assim o fluxo de adaptação. Caso o Servidor ainda esteja se adaptando,
o Cliente recebe um Erro ao tentar conectar, e continua a tentar a conexão em um loop com
o novo protocolo até obter sucesso.

Por fim, a comunicação é reestabelecida e o Servidor retoma o processamento das mensa-
gens recebidas, agora com o novo protocolo de transporte, enviando o retorno das mensagens
retidas com o SendResponse.

3.2.2 Extensões de Adaptação

A implementação do gMidArch utiliza uma arquitetura de software baseada em compo-
nentes, que permite a construção de sistemas distribuídos de forma modular e flexível. Essa

36

abordagem facilita a reutilização de componentes existentes e a adição de novos componen-
tes. Com a finalidade de prover estas vantagens, o gMidArch disponibiliza uma Architecture

Description Language (ADL), ou seja, uma linguagem que descreve arquiteturas, denominada
middleware Architecture Description Language (mADL) (ROSA et al., 2020), que permite a de-
finição da arquitetura do middleware através de um artefato. Essa arquitetura é composta por
componentes, conectores e estratégias de adaptação e representa a estrutura do middleware
e como os componentes interagem entre si (MEDVIDOVIC; TAYLOR, 2000).

Para indicar o tipo de adaptação do middleware é necessário configurar o mADL. Na seção
de estratégias de adaptação do mADL existem três opções, none para informar que não se
deseja realizar adaptações no middleware, Evolutive para o método de Adaptação Evolutiva
através de plugins, ou EvolutiveProtocol para o novo método de Adaptação Evolutiva de Pro-
tocolos. Também é possível utilizar os dois métodos ao mesmo tempo. Ao iniciar a aplicação
servidora marcando o middleware como utilizando a adaptação evolutiva de protocolos, o mid-
dleware passa a monitorar uma lista de componentes a serem adaptados. Caso seja identificada
alguma necessidade de adaptação, em qualquer um dos métodos, o componente atual é subs-
tituído pelo desejado. Se o componente a ser substituído for um componente de comunicação,
então o Fluxo de Adaptação de Protocolos de Comunicação do pAdapt mostrado na Figura
4 é seguido.

O gMidArch utiliza o feedback loop MAPE-K para realizar as adaptações. Os componen-
tes do MAPE-K foram alterados para implementação da nova adaptação de protocolos. Os
componentes do MAPE-K podem ser vistos na Figura 5. Iniciando a sequência do feedback

loop está o grupo Monitor do MAPE-K, que monitora solicitações de adaptação.
O monitoramento já contava com o componente monoevolutive, que é a implementação

de monitoramento do método de adaptação Evolutive. Este componente é o responsável por
detectar novas versões de componentes já em uso. Posteriormente nesta seção serão detalhadas
as alterações que foram feitas neste componente para também permitir a compilação de
códigos fonte em tempo de execução.

Para o novo método de adaptação, EvolutiveProtocol, foi implementado um novo com-
ponente de monitoramento, onde qualquer necessidade de adaptação para componentes já
existentes realiza a inclusão do novo componente ou grupo de componentes a ser adaptado
em uma lista. O novo componente adicionado, chamado evolutiveprotocol, realiza o monito-
ramento destes componentes e encaminha a lista com os componentes ao Analisador. Além
disso, o evolutiveprotocol também é responsável por verificar se o componente adicionado na

37

Figura 5 – Componentes de adaptação do pAdapt

Fonte: Elaborado pelo autor (2025)

lista está presente no sistema. Dessa forma, utilizando o método de adaptação EvolutivePro-

tocol componentes do middleware podem ser trocados, mas não é possível adicionar novos
componentes ao middleware.

Além do Monitor, o Executor foi também estendido para suportar a adaptação dinâmica
dos protocolos de comunicação. Como o foco do projeto é em como a adaptação é realizada, e
não em quando a adaptação deve ser realizada, então os componentes Analisador e Planejador

não precisaram ser estendidos.
No gMidArch, Unit é o componente de apoio tanto à adaptação quanto à execução, um dos

componentes mais importantes do pAdapt. No gMidArch, os componentes do middleware são
executados por uma Unit. A Unit é basicamente uma unidade de execução de componente,
i.e., é um componente que gerencia o ciclo de vida das demais extensões em execução do
gMidArch. Ao iniciar uma Unit, ele inicia o seu componente, e caso algum componente sofra
uma adaptação, a Unit finaliza a instância anterior do componente e passa a apontar para
uma nova instância do componente atualizado.

38

3.2.3 Implementação do mecanismo de adaptação do pAdapt

A Figura 6 apresenta o Ambiente de Execução do gMidArch. Este ambiente é onde são
executados os componentes do middleware, e onde o pAdapt realiza as adaptações de pro-
tocolos de comunicação. O ambiente de execução é dividido entre o MAPE-K e as Units de
execução do middleware. A adaptação pode ser iniciada através de dois fluxos possíveis.

O primeiro caminho para adaptação é através do método de adaptação evolutiva, onde um
novo plugin é colocado no repositório de plugins do middleware (1), então o Monitor evolu-
tivo (monoevolutive) detecta sua presença (2) e encaminha para o Analisador (3). O segundo
caminho para iniciar a adaptação é através do novo método de adaptação evolutiva de proto-
colos, onde o Monitor evolutivo de protocolos (evolutiveprotocol) monitora um repositório de
componentes (4). Quando o Monitor identifica uma necessidade de adaptação, ele encaminha
para o Analisador (5).

Figura 6 – Ambiente de Execução do pAdapt

Fonte: Elaborado pelo autor (2025)

A partir deste ponto, ambos os caminhos seguem o mesmo fluxo. O Analisador examina
se os componentes a serem adaptados são compatíveis e encaminha para o Planejador (6). O
Planejador então verifica o melhor momento para ser realizada a troca dos componentes, e
também é o responsável por indicar ao Executor (7) o que deve ser feito durante a adaptação.
Na sequência, o Executor inicia os procedimentos para a troca dos componentes. Ele gera os

39

comandos para a troca, compila plugins caso seja necessário, carrega os novos componentes
e encaminha para cada Unit responsável pelo componente a ser adaptado (8).

Qualquer componente do middleware pode ser adaptado, no entanto, caso o componente
a ser adaptado seja relacionado aos protocolos de comunicação, então a Unit inicia o Fluxo
de Adaptação de Protocolos de Comunicação do pAdapt. Vale observar que, como cada
componente (incluindo a própria Unit) é regida por uma máquina de estados, para realizar a
troca é necessário que o componente esteja em seu estado inicial, garantindo assim que os
componentes concluirão suas atividades e que podem ser substituídos sem afetar o sistema.
Esta funcionalidade também garante que os componentes sejam trocados somente quando
não estiverem em execução, i.e., paralelizando a adaptação e gerando menor impacto no
desempenho. Por fim, a Unit realiza a troca do componente (9), e o novo componente passa
a ser executado no lugar do antigo, com uma nova máquina de estados e novas funcionalidades,
completando assim o ciclo de adaptação.

Entrando mais em detalhes sobre o funcionamento do Executor, quando ele recebe uma
solicitação de adaptação, ele carrega a nova extensão e então encaminha para a Unit respon-
sável pelo componente a ser adaptado, conforme pode ser observado no fragmento de Código
Fonte 1. As Linhas 2 a 4 representam a geração do comando para a Adaptação Evolutiva de
Protocolos. Neste ponto, é carregado o novo componente da lista de componentes já existentes
dentro do middleware.

Código Fonte 1 – executor.go

1 [...]

if shared.Contains(shared.Adaptability , shared.EVOLUTIVE_PROTOCOL_ADAPTATION) {

3 unitCommand.Cmd = shared.REPLACE_COMPONENT

unitCommand.Type = shared.GetComponentTypeByNameFromRAM(componentName)

5 } else if shared.Contains(shared.Adaptability , shared.EVOLUTIVE_ADAPTATION) {

if strings.Contains(pluginName , ".go") {

7 pluginUtils.GeneratePlugin(componentName , versionedPluginName)

pluginName = versionedPluginName + ".so"

9 }

plg := pluginUtils.LoadPlugin(pluginName)

11 getType , _ := plg.Lookup("GetType")

elemType := getType .(func() interface {})()

13 unitCommand.Cmd = shared.REPLACE_COMPONENT

unitCommand.Params = plg

15 unitCommand.Type = elemType

}

17 [...]

40

Fonte: Elaborado pelo autor (2025)

Em seguida, as Linhas 5 a 16 representam a geração do comando para a Adaptação
Evolutiva padrão. Entre as Linhas 6 a 9, caso a nova extensão seja um código fonte, e não
um plugin, então o middleware compila o plugin. Para isso, na Linha 7, o Executor lê o
código fonte do novo componente e interpreta o tipo do componente através da modelagem
de arquitetura do gMidArch para gerar o novo plugin.

Caso não seja um código fonte, seja um plugin já compilado previamente, então ele será
utilizado sem alterações. Na sequência, o plugin é carregado nas Linhas 10 a 12. Por fim, o
plugin é enviado, juntamente com seu tipo e comando, para a Unit nas Linhas 13 a 15.

A Unit então utiliza o novo componente para terminar o ciclo de vida do componente
anterior e carregar a nova extensão, completando assim a adaptação. No Código Fonte 2 é
possível observar o trecho exato de código da Unit que realiza a adaptação de um componente.

A princípio, todos os componentes executam infinitamente, até que o sistema se encerre.
Como o middleware se baseia na execução de componentes através de máquinas de estado,
então cada componente tem sua máquina de estado, e fica em loop infinito. Sendo assim,
para o gerenciamento do ciclo de vida e a adaptação das extensões, foi criado um atributo
em cada componente indicando se é para executar infinitamente ou não. A fim de controlar o
ciclo de vida dos componentes, a Unit faz a manipulação deste atributo, ativando a execução
infinita ao iniciar um componente, e desativando-a quando for necessária uma adaptação.

Código Fonte 2 – unit.go

1 [...]

*elementComponent.ExecuteForever = false

3 for *elementComponent.Executing == true {

time.Sleep (200 * time.Millisecond)

5 }

elementComponent.Type = cmd.Type

7 elementComponent.TypeName = cmdElemType

[...]

Fonte: Elaborado pelo autor (2025)

Na Linha 2, do Código Fonte 2, o componente tem sua execução infinita removida, i.e.,
na próxima vez que a máquina de estado atingir o estado inicial, o componente irá finalizar
automaticamente. Enquanto isso não ocorre, a Unit aguarda a finalização das atividades do
componente a ser substituído (Linhas 3-5).

41

Na sequência, ou seja, após o componente voltar ao ponto inicial da máquina de estado e
finalizar suas atividades (Linhas 6 e 7), o novo componente é carregado no lugar do anterior,
e então já passa a executar no próximo ciclo de execução da Unit. Como os componentes tro-
cados precisam ser compatíveis, i.e., ter a mesma máquina de estado, os demais componentes
que não participam da adaptação não são afetados. A adaptação ocorre em um momento
em que não há nada a ser executado pelo componente a ser trocado. Isso é realizado desta
forma para garantir que nada se perca durante a execução, tornando a adaptação um processo
transparente e dinâmico, aguardando o melhor momento para executar a adaptação.

O pAdapt contém um artefato para a geração automática do plugin, o pluginBuild.model,
que é um boilerplate, i.e., um fragmento de código sem lógica de aplicação. Este modelo tem
a função de complementar um código fonte externo, de forma que ele possa ser compilado em
um novo plugin. Este boilerplate é usado como base, e então modificado dinamicamente em
tempo de execução a partir da leitura de informações do código fonte da nova extensão a ser
incorporada no gMidArch.

No Código Fonte 3 é possível observar o pluginBuild.model. O Executor utiliza os dados
obtidos da leitura da nova extensão e substitui tanto o <pluginName> da Linha 4, quanto o
<pluginType> da Linha 8, gerando um novo arquivo, o pluginBuild.go, que é compilado em
um plugin e carregado no projeto em tempo de execução.

Código Fonte 3 – pluginBuild.model

package main

2

import (

4 "<pluginName >"

)

6

func GetType () interface {} {

8 return &<pluginType >

}

Fonte: Elaborado pelo autor (2025)

A geração de plugins, juntamente com as adequações no Executor, permitiram a adaptação
para qualquer componente pré-existente no middleware e sem a necessidade de duplicação
de código. Estas melhorias na adaptação evolutiva padrão foram muito importantes para a
adaptação de protocolos de comunicação.

42

3.2.4 Controle de Estado dos Componentes

A Unit do gMidArch, antes do pAdapt, considera que os componentes são, stateless, i.e.,
caso haja adaptação, o estado do componente anterior não era repassado ao novo compo-
nente. Com o pAdapt, os componentes Client Request Handlers e Server Request Handlers

precisam ser stateful. Isso é necessário, pois, o estado da conexão entre clientes e servidores
precisa ser preservado, i.e., para que a comunicação entre clientes e servidores não seja per-
dida devido à adaptação. Sendo assim, quando um destes dois componentes são adaptados,
o componente antigo encerra seu ciclo de vida, mas suas informações de conexão devem ser
salvas e atualizadas no novo componente.

Para adaptar um Client Request Handler, é necessário saber os dados de conexão com o
servidor mesmo após sua adaptação. E para adaptar um Server Request Handler, de acordo com
a Figura 4, o pAdapt precisa comunicar a alteração a cada cliente conectado e aguardar o ok

de todos para iniciar a mudança. Para esta implementação, e para permitir múltiplas conexões
clientes no mesmo servidor, foi criado um pool de conexões, e os clientes conectados são
salvos no estado do Server Request Handler, em seguida repassados para o novo componente
que irá assumir seu lugar após a adaptação. Assim, é possível saber para qual cliente uma
mensagem deve ser enviada, mesmo que o protocolo de transporte tenha sido alterado.

Cada Server Request Handler implementa seu próprio pool de conexões. A fim de pa-
dronizar as diferentes implementações de protocolos, foi criada uma interface que deve ser
implementada por cada nova implementação de protocolo, seja no servidor ou no cliente.
Esta nova interface é apresentada na próxima seção, que apresenta os novos componentes
adicionados pelo pAdapt.

3.3 NOVOS COMPONENTES

Como apresentado na Seção 3.1, o pAdapt inclui um novo mecanismo de adaptação
ao gMidArch e um conjunto de novos componentes que implementam diversos protocolos de
comunicação. As seções a seguir apresentam detalhes de como este protocolos foram definidos
e implementados.

43

3.3.1 Escolha dos protocolos

A escolha dos novos protocolos de comunicação iniciou considerando protocolos de menor
complexidade e avançando para os mais atuais e complexos. A seleção dos protocolos foi ba-
seada em dois critérios principais: o estilo cliente/servidor e a funcionalidade oferecida. Com
relação ao primeiro critério, um protocolo de transporte adequado deve suportar naturalmente
o modelo de interação cliente/servidor. Quanto à funcionalidade, é esperado que os novos pro-
tocolos agreguem valor ao middleware, como novas características, e.g., segurança, eficiência
e flexibilidade.

Sendo assim, foram escolhidos primeiro os protocolos mais básicos. Iniciando com UDP,
por sua velocidade, seguindo para o TCP, pela confiabilidade e finalizando com TLS para
adicionar segurança. Na sequência foi adicionado o próprio RPC como um método clássico de
comunicação cliente/servidor e no qual o gMidArch tem sua arquitetura baseada. O próximo
protocolo é o QUIC como um protocolo mais moderno e inovador, com a principal vantagem
de ser utilizado para streaming de dados.

Por fim, também foram adicionados os protocolos HTTP, HTTPS e HTTP/2 por serem
populares e flexíveis. Com estes protocolos é possível criar aplicações Web, e também realizar
comunicação com navegadores, ou seja, com a implementação destes protocolos é possível efe-
tuar chamadas ao gMidArch diretamente dos navegadores. O uso destes protocolos, aliado ao
componente Jsonmarshaller, que empacota mensagens com o uso de JSON, permite que siste-
mas de middleware implementados com o gMidArch possam ser adotados no desenvolvimento
de microsserviços que usam REST (FOWLER, 2014).

Os protocolos HTTP, HTTPS e HTTP/2 utilizam TCP e são protocolos da camada de
aplicação, de acordo com o modelo Open Systems Interconnection (OSI) (ISO/IEC, 1994). No
gMidArch, os protocolos HTTP, HTTPS e HTTP/2 são utilizados somente para transporte e
comunicação entre sistemas, da mesma forma que os demais, e.g., TCP. Todos os componentes
de protocolos de comunicação do pAdapt implementam a mesma interface, e fornecem os
mesmos serviços à camada superior. Sendo assim, apesar de HTTP, HTTPS e HTTP/2
serem protocolos da camada de aplicação, no gMidArch eles são tratados como protocolos de
transporte para comunicação.

44

3.3.2 Extensões de Protocolos de Comunicação

No pAdapt foram implementados os protocolos de comunicação UDP, TCP, TLS, RPC,
QUIC, HTTP, HTTPS e HTTP/2. É possível efetuar a adaptação de qualquer protocolo para
qualquer protocolo. Para que eles sejam compatíveis foi criado a interface Protocol. A interface
Protocol é uma interface composta, ou seja, ela contém outra interface, a interface Client,
que define os métodos de comunicação do servidor para o cliente. Estas interfaces devem
ser implementadas por cada novo protocolo adicionado ao middleware. Isso é necessário pois
a Unit utiliza os protocolos através das interfaces para implementar a sincronização entre
clientes e servidores e garantir o fluxo apresentado na Figura 4.

O Código Fonte 4, protocol.go, apresenta estas duas interfaces. A primeira define os méto-
dos disponíveis para o protocolo em si (Linhas 1-17), e a outra representa os clientes conectados
ao pool de conexões do servidor (Linhas 18-29), e define as assinaturas de seus métodos.

Código Fonte 4 – protocol.go

1 type Protocol interface {

StartServer(ip, port string , initialConnections int)

3 StopServer ()

AvailableConnectionFromPool () (available bool , idx int)

5 WaitForConnection(cliIdx int) (cl *Client)

GetClients () (clients []* Client)

7 GetClient(id int) (client Client)

GetClientFromAddr(addr string) (client Client)

9 AddClient(client Client , id int)

ResetClients ()

11 ConnectToServer(ip, port string)

CloseConnection ()

13 ReadString () string

WriteString(message string)

15 Receive () ([]byte , error)

Send(msgToServer []byte) error

17 }

type Client interface {

19 AdaptId () int

SetAdaptId(adaptId int)

21 Address () string

Connection () (conn interface {})

23 CloseConnection ()

Read(b []byte) (n int , err error)

25 ReadString () (message string)

WriteString(message string)

27 Receive () ([]byte , error)

45

Send(msgToServer []byte) error

29 }

Fonte: Elaborado pelo autor (2025)

A primeira interface, Protocol, contém tanto métodos utilizados pelo servidor (Linhas
2-10), quanto métodos utilizados pelo cliente (Linhas 11-16). Os métodos utilizados pelo
servidor gerenciam tanto o ciclo de vida do protocolo, i.e., iniciar e finalizar o servidor (Linhas
2 e 3), quanto o pool de conexões (Linhas 4-10). Para o pool de conexões, a interface define
assinaturas para aguardar novas conexões de clientes, obter conexões disponíveis do pool, obter
os clientes conectados e remover clientes do pool. Por outro lado, os métodos definidos para
o lado do cliente (Linhas 11-16) são utilizados para conectar ao servidor, fechar a conexão,
enviar mensagens e receber mensagens.

Já a interface Client, ela define como o servidor configura e obtém as identificações de
cada cliente (Linhas 19 e 20), através do AdaptId, utilizado para identificar o cliente nas
adaptações. Esta interface também contém os métodos utilizados pelo servidor para gerenciar
a conexão dos clientes conectados (Linhas 21-23). Outra funcionalidade importante é a de
enviar e receber mensagens do cliente (Linhas 24-28).

O Código Fonte 5 executa durante a adaptação de componentes efetuada pela Unit, e
mostra não só como a Unit trata o Fluxo de Adaptação de Protocolos de Comunicação do
pAdapt, mas também como é a utilização dos protocolos através da interface Protocol. Nas
Linhas 2 a 7, a Unit percorre todos os clientes conectados ao servidor, e envia uma mensagem
de adaptação para cada um deles, informando o novo protocolo. Nas Linhas 9 a 12, a Unit

finaliza o ciclo de vida do componente anterior, e nas Linhas 13 e 14 a Unit inicia o novo
componente. Por fim, as Linhas 16 a 19 param o servidor, que será iniciado novamente com
o novo protocolo de transporte quando o novo componente executar pela primeira vez.

Código Fonte 5 – unit.go

1 [...]

for idx , client := range srhInfo.Protocol.GetClients () {

3 (* client).SetAdaptId(idx)

miopPacket := miop.CreateReqPacket("ChangeProtocol", [] interface {}{

adaptTo , (* client).AdaptId ()}, (* client).AdaptId ())

5 msg := &messages.SAMessage{ToAddr: (* client).Address (), Payload:

marshaller {}. Marshall(miopPacket)}

shared.MyInvoke(elementComponent.Type , elementComponent.Id, "I_Send", msg

, &elementComponent.Info , &reset)

46

7 }

[...]

9 *elementComponent.ExecuteForever = false

for *elementComponent.Executing == true {

11 time.Sleep (200 * time.Millisecond)

}

13 elementComponent.Type = cmd.Type

elementComponent.TypeName = cmdElemType

15 [...]

srhInfo := elementComponent.Info .(* messages.SRHInfo)

17 if srhInfo.Protocol != nil {

srhInfo.Protocol.StopServer ()

19 srhInfo.Protocol = nil

}

21 [...]

Fonte: Elaborado pelo autor (2025)

As próximas seções apresentam detalhes de cada protocolo implementado.

3.3.3 UDP

Apesar da diferença em como funcionam, os componentes TCP e UDP têm comporta-
mentos de alto nível semelhantes no gMidArch. O fluxo padrão de um protocolo UDP externo
ao middleware, do lado do cliente, é: enviar uma mensagem para o servidor, aguardar que o
servidor processe a mensagem, e então receber uma resposta do servidor, sem a necessidade
de estabelecer uma conexão prévia. Já no fluxo padrão de um protocolo TCP, existe uma
etapa adicional para criar uma conexão antes de enviar a mensagem. No entanto, no pAdapt,
ambos os protocolos são implementados para funcionar de forma semelhante, i.e., ambos es-
tabelecem uma conexão antes de enviar a mensagem. Isso se faz necessário tanto para que o
componente UDP possa implementar a interface Protocol, quanto para que o pAdapt possa
garantir a entrega de mensagens fracionadas em pacotes, e.g., no envio de arquivos. Além
disso, também é necessário para que o pAdapt possa efetuar a adaptação entre diferentes
protocolos de comunicação, de forma que o servidor possa identificar seus clientes e efetuar
troca de mensagens durante a adaptação.

Como clientes e servidores precisam usar o mesmo protocolo de transporte, o suporte
ao UDP inclui três novos componentes: Client Request Handler UDP (CRH-UDP), Server

Request Handler UDP (SRH-UDP) e a implementação UDP da interface Protocol.

47

Neste ponto, vale observar que Client e Server Request Handlers são padrões arquiteturais
de middleware amplamente adotados (VOLTER; KIRCHER; ZDUN, 2005), cujas responsabilidades
são gerenciar todos os aspectos da comunicação em clientes e servidores, respectivamente. Eles
abrem/fecham conexões em protocolos orientados a conexão, funcionam como o único ponto
de contato com as APIs de sockets dos sistemas operacionais e isolam outros componentes
de middleware da complexidade de lidar com problemas de transporte de mensagens. Estes
padrões arquiteturais estarão presentes em todos os protocolos de comunicação implementados
no gMidArch.

Apesar de a especificação do UDP não conter conexões ativas (POSTEL, 1980), no pAdapt,
esta conexão é implementada por software. Em outras palavras, antes de enviar uma mensa-
gem, o Client Request Handler UDP estabelece uma conexão com o servidor. Isso é realizado
através de troca de mensagens, de forma transparente entre o CRH-UDP e o SRH-UDP. O
CRH-UDP envia uma mensagem "Connect" para o servidor, que responde com uma mensa-
gem "Ok", caso a conexão tenha sido estabelecida com sucesso. Caso não consiga conectar,
o CRH-UDP tenta novamente.

Como a adaptação é stateful, é necessário que o servidor conheça todos os clientes conec-
tados para solicitar as adaptações. Isso também é necessário para efetuar a garantia de entrega
das mensagens, especialmente em mensagens grandes, e.g., no envio de arquivos. Para garantir
a entrega das mensagens, o pAdapt implementa um mecanismo de confirmação de entrega
de mensagens, onde o cliente envia uma mensagem e aguarda a confirmação de entrega do
servidor. Caso o servidor não confirme a entrega, o cliente reenvia a mensagem.

Não é possível enviar uma mensagem grande em um único pacote UDP, pois o tamanho
máximo de um pacote é de 65.507 bytes. Para mensagens maiores que ultrapassam o tamanho
máximo de pacotes UDP, e.g., no envio de arquivos, o UDP também implementa o fraciona-
mento da mensagem em pacotes. Além de garantir a entrega de pacotes, é necessário também
garantir a sequência dos mesmos, uma vez que o protocolo UDP não garante nem a entrega
de pacotes, nem a ordem de entrega dos pacotes.

Para garantir a entrega da mensagem completa no UDP, mesmo em mensagens grandes,
foi implementado uma sequência de algorítmos: o fracionamento da mensagem de acordo com
o tamanho máximo configurado, o envio de pacotes ordenados, o reenvio de pacotes perdidos,
a confirmação de entrega dos pacotes e a reconstrução da mensagem fracionada.

Para melhorar o desempenho do envio de mensagens grandes, o UDP implementa o envio
de pacotes em paralelo, onde o cliente envia vários pacotes ao mesmo tempo, juntamente com

48

um sequencial, e no fim aguarda a confirmação. Caso o servidor não tenha recebido algum
pacote, ele solicita o reenvio dos pacotes faltantes. Evitando a confirmação em cada pacote, o
envio de pacotes em paralelo melhora o desempenho do envio de arquivos. Para que o servidor
saiba quantas mensagens esperar, a primeira mensagem trocada entre cliente e servidor é um
cabeçalho que contém o tamanho total da mensagem.

Do lado do servidor, cada mensagem é esperada juntamente com o seu respectivo se-
quencial. O servidor ao final informa se recebeu todas as mensagens com sucesso, ou se faltou
alguma mensagem enviando o sequencial da mensagem faltante. O Código Fonte 6 implementa
como um cliente UDP envia um arquivo.

Código Fonte 6 – ClientRequestHandlerUDP Send File

1 func (st *UDP) Send(msgToServer []byte) error {

_, err := st.serverConnection.Write(len(msgToServer))

3 if err != nil {...}

bufferSize , payloadSize , packetsQuantity := calcSizes(len(msgToServer))

5

for seq := 0; seq < packetsQuantity; seq++ {

7 packet := getPacket(msgToServer , seq , payloadSize)

st.serverConnection.Write(packet)

9 time.Sleep(5 * time.Microsecond)

}

11

for {

13 st.serverConnection.SetReadDeadline(time.Now().Add(1 * time.Second))

n, err := st.serverConnection.Read(ackBuffer)

15 if err != nil {...}

17 ack := strings.TrimSpace(string(ackBuffer [:n]))

if ack == "ack" { break }

19

seqInt64 , err := strconv.ParseUint(ack , 10, 32)

21 st.serverConnection.Write(getPacket(msgToServer , int(seqInt64), payloadSize))

}

23 return nil

}

Fonte: Elaborado pelo autor (2025)

O Código 6 começa nas Linhas 2-4 enviando o tamanho da mensagem ao servidor, e
calculando quantos pacotes serão necessários para enviar o arquivo completo. Na sequência,
nas Linhas 6-8, o cliente envia os pacotes, com um delay de 5 microssegundos na Linha 9

49

para evitar congestionamento, e consequente perda de pacotes. O cliente envia os pacotes em
paralelo, ou seja, não aguarda a confirmação do servidor antes de enviar o próximo pacote.

As Linhas 12-23 enviam a confirmação de entrega dos pacotes, que é repetido até que a
mensagem tenha sido enviada com sucesso. Nas Linhas 13-15, o cliente aguarda uma resposta
do servidor, que pode ser um ok(Linhas 17-18), ou um número de pacote. Caso receba um
número de pacote, o cliente reenvia o pacote correspondente, conforme Linhas 20-21.

Na Figura 4, é possível observar que o Cliente pode finalizar sua adaptação antes mesmo
do servidor. Sendo assim, pode ocorrer um erro de conexão ao tentar enviar mensagens para
um protocolo que ainda não está online. Para evitar este problema e auxiliar no pool de
conexões no lado do Server Request Handler UDP, o Código Fonte 7 apresenta como o Client

Request Handler realiza uma sequência de tentativas de conexões, enviando uma mensagem
com operação "Connect", Linhas 3 a 5, e verificando o retorno do servidor com "Ok" na Linha
10.

Código Fonte 7 – ClientRequestHandler UDP Connection

for {

2 time.Sleep (200 * time.Millisecond)

pck := miop.CreateReqPacket("Connect", [] interface {}{ adaptId}, adaptId)

4 msgPayload := marshaller {}. Marshall(miopPacket)

err = c.send(sizeOfMsgSize , msgPayload , crhInfo.Conns[addr])

6 if err != nil {...}

msgFromServer , err := c.read(crhInfo.Conns[addr], sizeOfMsgSize)

8 if err != nil {...}

if isNewConnection , miopPacket := c.isNewConnection(msgFromServer);

isNewConnection {

10 if miopPacket.Bd.ReqBody.Body [1] == "Ok" {

break

12 }

}

14 }

Fonte: Elaborado pelo autor (2025)

3.3.4 TCP

Os componentes Server Request Handler TCP (SRH-TCP) e Client Request Handler TCP

(CRH-TCP) pertenciam ao único protocolo implementado na versão anterior do gMidArch, o
TCP. No entanto, foram necessárias alterações para permitir a adaptação: a implementação do

50

TCP foi desacoplada, i.e., foi gerado um novo componente TCP aderente à interface Protocol,
foi criado um pool de conexões para suportar vários clientes e os componentes Server Request

Handler TCP e Client Request Handler TCP foram alterados para tratar conexões como
stateful, ou seja, persistindo e utilizando dados de clientes conectados para identificar cada
conexão e permitir a adaptação. Para poder utilizar o pool de conexões, o SRH-TCP teve que
ser alterado pois anteriormente, ao aguardar uma conexão, ele ficava bloqueado até que um
cliente se conectasse.

Agora, o SRH-TCP faz uso de goroutines, um recurso da Go language (Golang) para
concorrência, similar às threads, no entanto, enquanto as threads são gerenciadas pelo sistema
operacional e consomem mais memória para salvar seus estados ao alternar de uma thread para
outra, as goroutines são gerenciadas pela própria Golang, e consomem menos memória pois
não necessitam salvar os estados a cada mudança de rotina. As goroutines são utilizadas no
SRH-TCP para aceitar múltiplas conexões de clientes, e assim não ficar bloqueado aguardando
uma conexão. Este recurso permite que um cliente possa estar conectando enquanto outros
clientes estão enviando e recebendo mensagens simultaneamente.

3.3.5 TCP+TLS

A criação dos três componentes para TCP+TLS foram baseadas nos componentes TCP.
Foram adicionados os componentes: Client Request Handler TLS (CRH-TLS) e Server Request

Handler TLS (SRH-TLS) e a implementação da interface Protocol TCP+TLS. A principal
diferença do TCP+TLS para a extensão TCP é que os componentes TLS geram a configuração
TLS baseada no TLS 1.3, conforme especificado no RFC 8446 (RESCORLA, 2018). Sendo
assim, CRH-TLS e SRH-TLS precisam de certificados para gerar as configurações TLS. Para
isso é necessário configurar o caminho para os certificados através das variáveis de ambiente
conforme a Tabela 2.

Tabela 2 – Variáveis de ambiente para configuração de certificados para utilização com protocolos seguros

Variável Descrição
CA_PATH Caminho para o certificado da autoridade certificadora.
CRT_PATH Caminho para o certificado da aplicação/servidor.
KEY_PATH Caminho para a chave do certificado da aplicação/servidor.

Fonte: Elaborado pelo autor (2025)

51

3.3.6 QUIC

O QUIC (LANGLEY et al., 2017) é um protocolo de transporte implementado sobre o UDP
e projetado pelo Google. O objetivo inicial do QUIC era melhorar o tráfego na Internet.
Portanto, ele foi projetado sobre o UDP como uma camada de transporte de uso geral para
reduzir a latência em comparação ao TCP. As características essenciais do QUIC incluem
redução no tempo de estabelecimento de conexão, controle de congestionamento aprimorado,
multiplexação sem bloqueio e migração de conexão. Assim, o QUIC usa a simplicidade e a
velocidade do UDP, mas implementa confiabilidade e segurança sobre ele. O QUIC é um
protocolo amplamente utilizado, pois é a base do HyperText Transfer Protocol version 3

(HTTP/3) (BISHOP, 2022), presente nos sites mais modernos e nas Big Techs.
Apesar de usar UDP, o QUIC é semelhante à extensão TCP+TLS, pois eles usam a mesma

configuração do TLS 1.3, i.e., as mesmas variáveis de ambiente do Quadro 2. Diferentemente
do TCP+TLS, a implementação do QUIC precisa implementar recursos como controle de
conexões através de stream (forma que o QUIC usa para a multiplexação), que funciona como
uma conexão adicional para o mesmo cliente. Utilizando o QUIC, os clientes podem estabelecer
uma conexão e usar a mesma conexão para se comunicar em um ou mais streams. Vale notar
que essa característica aumenta a velocidade das transferências, permitindo várias solicitações
simultâneas do mesmo cliente.

Semelhante às extensões anteriores, três novos componentes foram implementados usando
o protocolo QUIC baseado no RFC 9000 (IYENGAR; THOMSON, 2021): o Client Request Handler

QUIC (CRH-QUIC), o Server Request Handler QUIC (SRH-QUIC) e a implementação da
interface Protocol para QUIC. Como o Go não possui uma implementação nativa do protocolo
QUIC, o pacote usado nos novos componentes é o quic-go (quic-go Contributors, 2024), um
pacote Go construído pela comunidade que ainda não está na versão estável, mas é o pacote
QUIC mais funcional disponível para Go.

O Código Fonte 8 faz parte da implementação do Server Request Handler QUIC (SRH-

QUIC) e é necessário para aceitar uma conexão, aceitar um stream, e receber mensagens do
cliente.

Código Fonte 8 – Conexão Server Request Handler do QUIC
func (st *QUIC) WaitForConnection(cliIdx int) (cl *generic.Client) {

2 conn , err := st.listener.Accept(context.Background ())

if err != nil {

4 [...]

52

}

6 if len(st.clients) > cliIdx {

(*st.clients[cliIdx]).(* QUICClient).connection = conn

8 (*st.clients[cliIdx]).(* QUICClient).Ip = conn.RemoteAddr ().String ()

(*st.clients[cliIdx]).(* QUICClient).stream , err = conn.AcceptStream(

context.Background ())

10 [...]

Fonte: Elaborado pelo autor (2025)

As Linhas 2 a 5 implementam os passos para aceitar uma conexão, similar ao Server

Request Handler TCP (SRH-TCP). As Linhas 7 a 9 explicitam a diferença entre QUIC e TCP,
pois o QUIC precisa de um controle extra sobre a comunicação através de streams, quase
como uma conexão adicional.

3.3.7 RPC

A implementação do RPC foi construída sobre o Go RPC, que é uma biblioteca nativa da
linguagem Go. Os novos componentes utilizam o Go RPC como um mecanismo de transporte
de request-reply, i.e., somente para enviar e receber mensagens.

O RPC se baseia na chamada de funções remotas, onde a implementação da função
remota está associada à regra de negócio, e.g., para calcular o Fibonacci utilizando RPC,
o esperado é que a função registrada no servidor RPC tenha o nome e os parâmetros da
função que faz o cálculo do Fibonacci. No entanto, para criar a abstração da comunicação, os
novos componentes RPC implementam a interface de Protocolos, onde o padrão para envio
e resposta de mensagens é através de arrays de bytes. Sendo assim, por mais que o usuário
do gMidArch implemente diferentes regras de negócio, com funções e parâmetros diferentes,
o RPC sempre irá enviar e receber mensagens através de arrays de bytes. Em outras palavras,
o RPC implementado no gMidArch é um RPC genérico, onde o usuário pode implementar
qualquer regra de negócio, mas a comunicação sempre será feita através de arrays de bytes,
i.e., implementação da função do RPC nos novos componentes registram uma função chamada
Request, que é responsável somente pelo envio da mensagem como um array de bytes. Com
isso, o RPC se torna um protocolo de transporte de acordo com o modelo OSI.

Para atingir este objetivo, foram implementados os componentes Client Request Handler

RPC (CRH-RPC) e Server Request Handler RPC (SRH-RPC), além da implementação pro-

53

priamente dita da interface de Protocolo para RPC.
Como o servidor no Go RPC fica escutando por conexões ativamente, e só responde na

implementação do objeto registrado, foi necessário adaptar seu funcionamento, de forma a
quebrar sua execução nas funções da interface de Protocolo. Para isso, foi criado um objeto
remoto que divide a execução do servidor em funções, fazendo uso dos canais do Go para
enviar e receber mensagens.

O Código Fonte 9 mostra como este objeto remoto e sua função remota são implementados
no servidor. Este objeto é responsável por receber as mensagens do cliente, processá-las e
enviar a resposta. As Linhas 1 a 4 definem a struct do objeto remoto, que contém o canal de
mensagens recebidas e o canal de respostas. As Linhas 6 a 12 implementam a função remota
que é chamada a cada requisição. A função recebe a mensagem do cliente como parâmetro
na Linha 6. Em seguida, nas Linhas 7 a 9, esta função coloca a mensagem em um canal para
ser processada e aguarda a resposta no canal de retorno na Linha 10. Por fim, a função envia
a resposta para o cliente na Linha 11.

Código Fonte 9 – Servidor RPC

type RPCRequest struct {

2 msgChan chan []byte

replyChan chan []byte

4 }

6 func (rq RPCRequest) Request(request []byte , reply *[] byte) error {

go func() {

8 rq.msgChan <- request

}()

10 replyMsg := <-rq.replyChan

*reply = replyMsg

12 return nil

}

Fonte: Elaborado pelo autor (2025)

3.3.8 HTTP/1.1

Os componentes HTTP/1.1 trazem várias novas possibilidades para o gMidArch, uma
vez que seu componente Server Request Handler HTTP (SRH-HTTP) pode atuar como um
servidor Web e interagir com clientes através de navegadores ou qualquer outro cliente HTTP.

54

Apesar de HTTP não ser um protocolo da camada de transporte segundo o modelo OSI,
todos os componentes HTTP foram implementados de forma a serem compatíveis com os
demais protocolos de comunicação. Para isso, estes componentes no gMidArch atuam somente
na Camada de Infraestrutura com o Client Request Handler HTTP e Server Request Handler

HTTP e na Camada de Transporte, com a implementação do protocolo HTTP/1.1, servindo
como uma forma de enviar e receber stream de bytes, e controlando o sucesso das requisições
com os códigos de status HTTP, assim como é feito ao se implementar uma API REST.

O componente HTTP implementa a especificação HTTP/1.1 (FIELDING; NOTTINGHAM;

RESCHKE, 2022), mas não inclui TLS. Essa extensão foi implementada usando o pacote
net/HTTP da linguagem Go. Para que o componente HTTP seja compatível com os de-
mais protocolos de comunicação, a interface Protocol foi implementada. O método StartSer-

ver definido na interface Protocol e implementado no componente HTTP prepara um servidor
HTTP/1.1, que passa a aceitar conexões no método WaitForConnection (também da interface
Protocol). O servidor HTTP então fica executando em background.

Ao contrário dos demais protocolos, que devem explicitamente ler mensagens, um servidor
HTTP fica esperando ativamente por uma mensagem. Sendo assim, o que o método Receive

faz é ficar observando um canal, como visto nas Linhas 2 e 3 no Código Fonte 10.

Código Fonte 10 – HTTP Receive

1 func (cl *HTTPClient) Receive () (msg []byte , err error) {

msg = <-cl.msgChan

3 }

Fonte: Elaborado pelo autor (2025)

Por sua vez, este canal é carregado quando o servidor HTTP recebe a mensagem, conforme
o Código Fonte 11. Esta função é executada em cada recebimento de mensagem no servidor
HTTP. A Linha 1 é a assinatura padrão de uma função HTTP, onde é passado um response

writer (contendo a mensagem a ser respondida ao cliente) e um request (a mensagem que
o cliente enviou ao servidor). As Linhas 2 e 3 leem a mensagem recebida, e as Linhas 4 a
6 são responsáveis por enviar a mensagem para o canal observado pelo método Receive. Na
sequência, o gMidArch processa a mensagem recebida de forma padrão, como qualquer outro
protocolo, e aguarda a resposta na Linha 7.

Código Fonte 11 – HTTP Serve

1 func (rq HTTPRequest) ServeHTTP(w http.ResponseWriter , r *http.Request) {

55

msg , _ := io.ReadAll(r.Body)

3 r.Body.Close()

go func() {

5 rq.msgChan <- msg

}()

7 replyMsg := <-rq.replyChan

w.Write(replyMsg)

9 }

Fonte: Elaborado pelo autor (2025)

Ao fim do processamento da mensagem, o Server Request Handler HTTP chama a função
Send do componente HTTP, e assim como o Receive, se comunica com o servidor HTTP
através de canais. Conforme Código Fonte 12, pode ser observado nas Linhas 2 a 4 que ele
somente coloca a mensagem de retorno no canal do servidor HTTP, que é o mesmo canal que
ficou aguardando na Linha 7 no Código Fonte 11.

Código Fonte 12 – HTTP Send

1 func (cl *HTTPClient) Send(msg []byte) error {

go func() {

3 cl.replyChan <- msg

}()

5 [...]

Fonte: Elaborado pelo autor (2025)

Como o servidor HTTP deve fornecer uma resposta para o cliente, a Linha 7 do Código
Fonte 11 lê a mensagem de resposta do canal e a envia para o cliente na Linha 8, finalizando
o ciclo de vida da mensagem HTTP/1.1 no servidor.

3.3.9 HTTPS

Um novo protocolo de transporte foi adicionado ao gMidArch para melhorar a segurança na
comunicação como um servidor Web, o HTTPS. Conforme mencionado na extensão TCP+TLS
(Seção 3.3.5), o TLS 1.3 melhora tanto a confiança sobre a identidade do servidor, quanto
dificulta que alguém seja capaz de ler as mensagens trocadas entre cliente e servidores.

Três novos componentes foram adicionados para suportar o HTTPS: CRH-HTTPS e SRH-

HTTPS, além da própria implementação do protocolo. Essa nova extensão HTTPS é seme-
lhante à do HTTP, no entanto, ela utiliza o TLS como camada de segurança para transportar

56

mensagens. Para isso, além do pacote net/HTTP da linguagem Go, foi utilizado o pacote
crypto/tls para implementar a criptografia. Como o TLS se baseia na utilização de certifica-
dos para a geração da criptografia, foram utilizadas as mesmas variáveis de ambiente para
configuração de certificados da Tabela 2.

3.3.10 HTTP/2

A implementação dos componentes HTTP/2 é similar à dos componentes HTTPS, dife-
renciando basicamente nos pacotes utilizados para implementação. O componente HTTP/2
utiliza o pacote golang.org/x/net/http2 da linguagem Go, que implementa a especificação
HTTP/2 (BELSHE; PEON; THOMSON, 2015). Apesar de o HTTP/2 não exigir criptografia,
muitas implementações importantes só suportam HTTP/2 sobre TLS, e.g., Chrome, Firefox
e Safari (NAZIRIDIS, 2018). Portanto, os componentes HTTP/2 do pAdapt também supor-
tam somente HTTP/2 sobre TLS 1.3 e consequentemente utilizam as mesmas variáveis de
ambiente da Tabela 2.

3.4 CONSIDERAÇÕES FINAIS

Este capítulo iniciou apresentando a visão geral da solução proposta, o pAdapt. Em se-
guida, foi apresentado o mecanismo de adaptação de protocolos de comunicação em tempo
de execução, abordando o Fluxo de Adaptação de Protocolos de Comunicação, as extensões
de adaptação, a implementação do novo mecanismo e o novo controle de estado dos compo-
nentes. Finalmente, na última parte do capítulo, foram apresentados os novos componentes
de comunicação, a interface Protocol, como foram escolhidos os protocolos adicionados e os
detalhes de implementação para cada conjunto de componentes de cada protocolo.

57

4 AVALIAÇÃO EXPERIMENTAL

Neste capítulo são apresentados os experimentos realizados para avaliar o desempenho
do pAdapt, tanto com relação ao desempenho dos componentes de transporte do próprio
middleware, quanto em comparação com sistemas de middleware comerciais. A Seção 4.1
apresenta os objetivos da avaliação, enquanto a Seção 4.2 descreve as métricas, parâmetros e
a carga de trabalho utilizados nos experimentos. A Seção 4.3 descreve os fatores e o projeto
dos experimentos. Na sequência, a Seção 4.4 apresenta a solução em ação, detalhando como
o pAdapt foi implementado e utilizado nos experimentos. A Seção 4.5 apresenta os resultados
e a análise dos resultados. Por fim, a Seção 4.6 apresenta as considerações finais.

4.1 OBJETIVOS DA AVALIAÇÃO

A avaliação experimental tem cinco objetivos principais:

• Analisar o desempenho dos componentes de transporte adicionados e modificados no
pAdapt;

• Analisar o impacto da adaptação no desempenho dos componentes de transporte;

• Comparar o desempenho entre os diferentes protocolos de comunicação do pAdapt (in-
clusive com adaptação) e sistemas de middleware comerciais (gRPC (GO, 2025), Go
RPC (RPC-GO, 2025) e RabbitMQ (GO-RABBITMQ, 2025));

• Analisar o impacto da demanda de processamento no pAdapt e nos sistemas de mid-
dleware comerciais; e

• Analisar o impacto do tamanho do pacote no pAdapt e nos sistemas de middleware
comerciais.

Para todos os objetivos, as mesmas aplicações cliente-servidor foram implementadas sobre
as diferentes configurações do pAdapt, bem como dos sistemas de middleware comerciais,
i.e., do gRPC, do Go RPC e do RabbitMQ.

O ponto principal da avaliação é o protocolo de transporte e a sua adaptação automática
para outros protocolos em tempo de execução. Foram construídas duas aplicações cliente-
servidor, que são analisadas nas próximas seções. O estudo foca somente no serviço de trans-

58

porte do middleware, ou seja na comunicação entre o cliente e o servidor. Todas as aplicações
foram implementadas na linguagem Go, e os experimentos foram executados em um cluster

Docker Swarm de nó único.

4.2 MÉTRICAS, PARÂMETROS E CARGA DE TRABALHO

Uma das métricas utilizadas ao longo dos experimentos foi o tempo de resposta, ou Round-

Trip Time (RTT), que é medido no lado do cliente e se refere ao tempo decorrido do momento
em que o cliente faz uma solicitação e o instante em que ele recebe uma resposta. Para esta
métrica, foram medidos o RTT de cada requisição.

Para verificar a utilização dos recursos pelo sistema para suportar os diferentes sistemas
de middleware, outras métricas utilizadas são a utilização de CPU e a utilização de memória.
Estas métricas foram medidas a cada 1 segundo.

Os parâmetros do sistema estão definidos na Tabela 3. Como parâmetros do sistema
estão as especificações da máquina utilizada para a execução dos experimentos, bem como da
plataforma utilizada na conteinerização dos serviços.

Tabela 3 – Parâmetros do Sistema

Parâmetros do sistema Valor
Processador AMD® Ryzen 7 5800H
Memória 16,0 GiB
Wifi Off
Sistema Operacional Ubuntu 24.04
Plataforma de Conteinerização Docker swarm
Memória reservada para cada contêiner 256M
CPU reservado para cada contêiner 0.4 CPU
Limite de Memória para cada contêiner 256M
Limite de CPU para cada contêiner 0.4 CPU
Sistema Operacional dos contêineres Debian Buster 11
Versão do go go1.22.2 linux/amd64
Go Modules on

Fonte: Elaborado pelo autor (2025)

O ambiente usado para a avaliação é um cluster Docker Swarm no qual cada componente
(cliente e servidor) é executado em um contêiner separado. Cada contêiner é executado a
partir de uma imagem Debian Buster 11 com restrições de limites de memória e memórias

59

reservadas pré-alocadas em 256 MB de RAM, i.e., os contêineres já iniciam com memórias
pré-alocadas, e também iniciam com um limite de memória igual aos valores pré-alocados,
evitando assim que sejam alocadas dinamicamente e também que ultrapassem o máximo de
RAM, o que pode impactar no desempenho e avaliação dos serviços. Além da memória, os
contêineres também contam com quantidade de CPUs limitadas e pré-alocadas em 40% de
um core da CPU da máquina hospedeira, também evitando que aloquem mais recursos do que
o necessário e impactem na avaliação de desempenho dos serviços.

O cluster Docker foi executado em um computador com CPU AMD® Ryzen 7 5800H de
16 GB de memória RAM e utilizando sistema operacional Ubuntu 24.04 LTS. Além disto, a
versão da linguagem Go utilizada foi a 1.22, e com a diretiva Go Modules ativada.

Os parâmetros da carga de trabalho escolhidos para os experimentos estão definidos na
Tabela 4. Foi criado um tempo entre invocações que obedece uma distribuição normal com
média de 200 ms e desvio padrão de 20 ms (10%), isso se faz necessário, pois sem um in-
tervalo entre as invocações o experimento passaria a ser um experimento de carga, e não das
funcionalidades e do desempenho. Além disso, esta distribuição visa simular um cenário mais
próximo do real onde as requisições não são feitas em intervalos regulares. Warm-up requests

foram definidas em 100, isso representa o número de requisições que o cliente faz antes de
considerarmos que o sistema está em estado estável, i.e., um estado onde o sistema já foi
carregado e não está mais alocando recursos para a inicialização. O número de invocações foi
definido em 10.000, para que possamos ter uma quantidade suficiente de requisições para ava-
liar o desempenho do sistema. O tamanho máximo do pacote foi definido em 65500 bytes, para
evitar ultrapassar o limite do Maximum Transmission Unit (MTU). Por fim, os Power Settings

da máquina utilizada para execução dos experimentos foram definidos em Performance, para
que possamos ter o máximo de desempenho.

Tabela 4 – Parâmetros da Carga de Trabalho

Parâmetros da Carga de Trabalho Valor

Tempo entre invocações Distribuição normal com média 200 ms
e desvio padrão de 20 ms (10%)

Número de invocações 10000
Warm-up requests 100
Tamanho máximo do pacote 65500 bytes
Power Settings Performance

Fonte: Elaborado pelo autor (2025)

60

Todos os experimentos executados seguiram os mesmos parâmetros de sistema e de carga
de trabalho, variando apenas nos fatores, que serão descritos na próxima seção.

4.3 FATORES E PROJETO DOS EXPERIMENTOS

Duas aplicações foram escolhidas para a avaliação experimental: uma com alta variação na
demanda de processamento mas tamanho de pacote pequeno (Fibonacci), e outra com baixa
demanda de processamento mas com grande variação de tamanho do pacote (SendFile).

Tendo como foco o middleware, na aplicação de Fibonacci, o procedimento remoto in-
vocado pelo cliente (𝑓𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖(𝑁)), calcula recursivamente um número N da sequência de
Fibonacci passado como parâmetro pelo cliente. Na prática, cada solicitação passa pelo mid-
dleware do cliente e do servidor antes de ser executada remotamente. Apesar de simples, a
aplicação Fibonacci é de fácil implantação e utiliza todos os componentes de middleware (se-
melhantes a aplicações mais complexas), requisito fundamental na avaliação. Esta aplicação
visa avaliar o desempenho do middleware e seus componentes, sem muita interferência do
tamanho do pacote ou do estado da rede. A aplicação Fibonacci foi escolhida por ser uma
aplicação simples, que no entanto, demanda grande utilização de processamento para núme-
ros grandes, simulando uma aplicação com alta demanda de processamento em sua lógica de
negócios.

A aplicação SendFile é uma aplicação que envia um arquivo de um cliente para um servidor,
e foi escolhida por ser uma aplicação que, além de utilizar todos os componentes do middleware,
envolve a transferência de arquivos, de diferentes tamanhos, e que pode ser utilizada para
avaliar o desempenho do middleware em relação ao tamanho do pacote, e o envio dos pacotes
pela rede de forma fragmentada.

Os fatores dos experimentos foram definidos de acordo com a Tabela 5. Como Camada de
Transporte foram colocados todos os protocolos de comunicação disponíveis no pAdapt (TCP,
TLS, go RPC, QUIC, HTTP, HTTPS, HTTP/2) e também os sistemas de middleware comer-
ciais Go RPC, gRPC e RabbitMQ, identificados na tabela com o prefixo "E_" de "Externo",
para indicar que não fazem parte do pAdapt.

A adaptação também foi definida como um fator, podendo ser ativada ou não. Para
os experimentos, a adaptação é realizada sempre a cada intervalo de tempo, independente
do motivo, o foco do experimento é em como adaptar e se esta adaptação compromete o
desempenho do middleware, com isso, outro fator é o tempo de adaptação, que pode ser

61

ativado a cada 2 minutos ou 5 minutos. A combinação de protocolos da adaptação é um
outro fator, podendo ser TCP+TLS, RPC+HTTP, TLS+HTTP2.

Por fim, o último fator é o InputSet, que é a junção da aplicação executada com sua
variação, podendo ser F2, F11 e F38 para a aplicação de Fibonacci, e I36, I2k, I4k para a
aplicação SendFile.

Os números do InputSet do sistema de Fibonacci representam a sequência de Fibonacci
que o cliente envia para o servidor calcular. Estes números podem assumir os níveis F2 com
número de Fibonacci 2 (baixa demanda de processamento), F11 para o número de Fibonacci
11 (uma demanda com um custo um pouco maior mas sem exigir muito dos processadores)
ou F38, representando o número de Fibonacci 38 (alta demanda de processamento), em todos
os casos com um pequeno tamanho de carga útil. Na prática, quando N=2, o tempo de
negócio (tempo para calcular o Fibonacci) é menor que o tempo do middleware (tempo que
a requisição/resposta passa dentro do middleware). No caso N=38, o tempo do middleware
torna-se menor que o tempo do negócio.

Já os números do fator InputSet do sistema SendFile representam a resolução da imagem
enviada. Este fator pode assumir os valores I36, representando uma imagem de 36x36 pixels,
resolução típica de pequenos ícones, enviados em um único pacote. O valor I2k, representando
uma imagem de resolução 2k, i.e., 2048x1080 pixels, típico de uma foto de boa qualidade.
E o valor I4k representando uma imagem de resolução 4k, que possui 3840x2160 pixels e é
utilizado em imagens de ótima resolução.

Tabela 5 – Fatores

Fatores Níveis

Camada de Transporte UDP / TCP / TLS / Go RPC / QUIC / HTTP /
HTTPS / HTTP2 / E_RPC / E_RabbitMQ / E_gRPC

Adaptação On / Off
Tempo de adaptação 2m / 5m
Combinação de Protocolos TCP+TLS / RPC+HTTP / TLS+HTTP2
InputSet F2 / F11 / F38 / I36 / I2k / I4k

Fonte: Elaborado pelo autor (2025)

Para executar os experimentos foram criadas imagens Docker com o build realizado a partir
de arquivos de configuração Dockerfile e armazenadas no Docker Hub, uma imagem para a
aplicação servidora e outra imagem para a aplicação cliente. Para garantir a integração correta

62

entre os contêineres, foi criado também um arquivo de docker-compose1 (Apêndice A), que
é um arquivo no formato YAML que define uma Stack no Docker Swarm. Uma Stack é um
conjunto de serviços que são implantados juntos, e que compartilham configurações, como
redes e volumes. O arquivo de docker-compose foi utilizado para definir os serviços, as redes
e valores dos fatores que seriam utilizados nos experimentos.

Para monitorar os experimentos foram criados Scripts de Monitoramento e Profiling ba-
seadas na API do Docker. Estes scripts foram executados em paralelo com os experimentos,
sem necessidade de instrumentação do código, que poderia afetar o desempenho, e são os
responsáveis pela coleta das métricas de utilização de CPU e de memória dos contêineres.

Todo o processo de avaliação experimental ocorreu sem intervenção manual, i.e., os expe-
rimentos foram executados de forma automatizada, e os resultados foram coletados e arma-
zenados em arquivos Comma-Separated Values (CSV) para posterior análise. O algoritmo dos
Scripts de Automação se baseou em um loop pelos diferentes níveis dos fatores, e para cada
combinação de fatores foi executado um experimento, totalizando 102 experimentos.

Como parte de cada experimento, foram construídas as imagens Docker e o docker-

compose, o arquivo de configuração da Stack, que continha os fatores a serem analisados
no experimento em específico. Na sequência, as imagens foram enviadas para o Docker Hub a
fim de possibilitar a reprodução dos experimentos. Em seguida, os contêineres foram iniciados
no cluster Docker Swarm, e os scripts de monitoramento e profiling foram executados em
paralelo. Por fim, com o término da execução das aplicações, os resultados foram coletados e
armazenados em arquivos CSV em uma pasta específica do experimento. Todas as informações
do experimento, como serviços, contêineres, imagens, redes e fatores são então removidas do
cluster Docker Swarm para possibilitar a execução de novos experimentos.

A Figura 7 representa a arquitetura e o fluxo de execução dos experimentos.
Conforme Figura 7, os experimentos inciam com a execução do Script de Automação no

passo 1. Este script é responsável então por configurar o Código Fonte de acordo com os
parâmetros, carga e fatores do experimento a ser executado no passo 2. Em seguida, no passo
3, o script efetua a compilação do Código Fonte. O passo 4 é a construção das imagens Docker,
seguidas da publicação das imagens no Docker Hub no passo 5. Com as imagens publicadas,
o passo 6 é a utilização destas imagens enviadas iniciar o experimento. No passo 7, o Docker

Swarm inicia os contêineres com as imagens publicadas. Com isso, o experimento começa.
Paralelamente ao experimento, ainda no passo 7, o Script de Monitoramento e Profiling é
1 Código Fonte dos experimentos disponível em: https://github.com/gfads/midarch

63

Figura 7 – Arquitetura dos Experimentos

Fonte: Elaborado pelo autor (2025)

iniciado para coletar as métricas do experimento. Ao fim da execução do experimento, no
passo 8, o Script de Monitoramento e Profiling gera planilhas em formato CSV com os
dados coletados. Por fim, no passo 9, o Script de Automação remove todos os serviços,
contêineres, imagens e redes do experimento do Docker Swarm, dando início ao próximo ciclo
de experimento.

4.4 SOLUÇÃO EM AÇÃO

Para os experimentos foram criadas duas aplicações cliente-servidor: uma aplicação de
Fibonacci e uma aplicação de envio de arquivos (SendFile). Cada uma contendo dois executá-
veis, um para o cliente e outro para o servidor. Ambas as aplicações utilizam o pAdapt como
middleware de comunicação entre o cliente e o servidor.

O Código Fonte 13 demonstra a implementação do servidor de Fibonacci.

Código Fonte 13 – Fibonacci Server

1 func main() {

args := make(map[string]messages.EndPoint)

3 args["srh"] = messages.EndPoint{Host: "0.0.0.0", Port: "1314"}

fe := frontend.NewFrontend ()

5 fe.Deploy(frontend.DeployOptions{FileName: "FibonacciDistributedServerMid.

madl", Args: args , Components: map[string]interface {}{

"FibonacciInvoker": &middleware.FibonacciInvoker {},

7 }})

64

intervalBetweenInjections , _ := strconv.Atoi(shared.

EnvironmentVariableValueWithDefault("INJECTION_INTERVAL", "45"))

9 evolutive.EvolutiveInjector {}. StartEvolutiveProtocolInjection("srhhttp2", "

srhtls", time.Duration(intervalBetweenInjections)*time.Second)

}

Fonte: Elaborado pelo autor (2025)

As linhas 2 e 3 definem os parâmetros que são levados em consideração ao se subir o
servidor do pAdapt, como o endereço IP, representado por "0.0.0.0" para indicar que recebe
requisições de qualquer endereço e a porta onde a aplicação irá escutar as requisições. As
linhas 4 a 7 inicializam o middleware do pAdapt com os parâmetros definidos anteriormente.
A inicialização também indica como é o deploy do middleware, informando a configuração
do middleware (arquivo mADL), e adicionando um componente novo ao middleware, que não
está implementado no pAdapt, o FibonacciInvoker. Para que o pAdapt encontre o novo
componente a ser extendido no middleware, é necessário que a variável de ambiente MI-
DARCH_BUSINESS_COMPONENTS_PATH aponte para o diretório onde o componente
está implementado.

Por fim, as linhas 8 e 9 iniciam um injetor de adaptações. O objetivo deste injetor é simular
uma necessidade de adaptação, forçando o pAdapt a adaptar os protocolos de comunicação
a cada intervalo de tempo definido na variável de ambiente INJECTION_INTERVAL. Este
injetor também é quem define quais os protocolos de comunicação que serão utilizados na
adaptação.

O Código Fonte 14 demonstra a implementação do cliente de Fibonacci.

Código Fonte 14 – Fibonacci Client

func main() {

2 args := make(map[string]messages.EndPoint)

args["crh"] = messages.EndPoint{Host: shared.CALCULATOR_HOST , Port: shared.

CALCULATOR_PORT}

4 fe := frontend.NewFrontend ()

fe.Deploy(frontend.DeployOptions{

6 FileName: "FibonacciDistributedClientMid.madl",

Args: args ,

8 Components: map[string]interface {}{

"FibonacciProxy": &fibonacciProxy.FibonacciProxy {},

10 }})

proxyConfig := generic.ProxyConfig{Host: shared.CALCULATOR_HOST , Port: shared

.CALCULATOR_PORT}

12 fibonacci := &fibonacciProxy.FibonacciProxy {}

65

fibonacci.Configure(proxyConfig)

14 for x := 0; x < SAMPLE_SIZE; x++ {

ok := false

16 for !ok {

t1 := time.Now()

18 r := fibonacci.F(shared.FIBONACCI_PLACE)

t2 := time.Now()

20 duration := t2.Sub(t1)

if r != 0 {

22 ok = true

log.Printf(";ok;%d;%f;%d\n", x+1, duration , r)

24 } else {

log.Printf(";error;%d;%f;%d\n", x+1, duration , r)

26 }

time.Sleep(shared.GetIntervalBetweenInvocations ())

28 }

}

30 }

Fonte: Elaborado pelo autor (2025)

As linhas 2 e 3 definem os parâmetros que são levados em consideração ao inicializar o
middleware com pAdapt, como o endereço IP e a porta do servidor. As linhas 4 a 10 inici-
alizam o middleware do pAdapt com os parâmetros definidos anteriormente. A inicialização
também indica como é o deploy do middleware, informando a configuração do middleware
(arquivo mADL), e adicionando um componente novo ao middleware, que não está implemen-
tado no pAdapt, o FibonacciProxy. Assim como no servidor, para que o pAdapt encontre
o novo componente a ser extendido no middleware, é necessário que a variável de ambiente
MIDARCH_BUSINESS_COMPONENTS_PATH aponte para o diretório onde o novo com-
ponente está implementado.

As linhas 11 a 13 iniciam o proxy de fibonacci, que é responsável por fazer a comunicação
com o servidor. O proxy encapsula a lógica de comunicação, permitindo chamadas RPC para
o servidor através do middleware do pAdapt.

Por fim, as linhas 14 a 29 implementam a lógica do experimento no lado do cliente. O cliente
percorre um loop de acordo com número definido na variável de ambiente SAMPLE_SIZE.
Para cada iteração do loop, as linhas 17 a 20 realizam uma requisição ao servidor para calcular
o número Fibonacci, passando como parâmetro o número definido na variável de ambiente
FIBONACCI_PLACE, e calculando o tempo de resposta da requisição. Na sequência, as linhas

66

21 a 26 armazenam o tempo de resposta em um arquivo CSV. Finalizando então na linha 27
com um sleep do tempo entre invocações, antes que se inicie a próxima iteração do loop.

A aplicação SendFile segue a mesma estrutura da aplicação Fibonacci, mas com a lógica
de negócio diferente, i.e., com um proxy e um invoker específicos para o envio de arquivos.

4.5 RESULTADOS E ANÁLISE DOS RESULTADOS

Conforme mencionado anteriormente, o primeiro objetivo da avaliação experimental foi
comparar o desempenho dos diferentes componentes adicionados e modificados do pAdapt.
Para isso, as aplicações cliente-servidor foram executadas sobre instâncias do pAdapt confi-
guradas com diferentes mecanismos de transporte, aqui classificados em protocolos seguros
(TCP+TLS, QUIC, HTTPS e HTTP/2) e não seguros (UDP, TCP, RPC e HTTP).

Os dados obtidos através do profiling e monitoramento dos experimentos geraram CSVs
com os dados ao longo do tempo, e a partir destes dados foram gerados boxplots para cada
uma das diferentes métricas de desempenho, como RTT, utilização de CPU e memória. A
partir destes boxplots foi possível realizar a comparação entre os diferentes protocolos de
comunicação do pAdapt, e também entre os protocolos do pAdapt e os middleware comerciais
gRPC, Go RPC e RabbitMQ.

Para a geração dos boxplots, foi utilizado a linguagem Python, a biblioteca pandas para
manipulação dos dados, e as bibliotecas matplotlib e seaborn para a geração dos gráficos.
Para análise dos resultados foram aplicados testes T-Test para verificar diferenças entre os
resultados. Nas figuras dos boxplots abaixo, os protocolos do pAdapt sem adaptação são
representados pelos seus nomes e na cor azul, os protocolos do pAdapt com adaptação são
representados pelos nomes concatenados de ambos os protocolos utilizados na adaptação,
seguidos do tempo entre cada adaptação, e estão na cor verde. Já os sistemas que utilizam
middleware comerciais são representados com o prefixo "E_" de "Externo", e estão represen-
tados na cor cinza.

A seguir, são discutidos os principais achados e suas implicações para o desempenho do
sistema.

67

4.5.1 Desempenho dos protocolos de comunicação do pAdapt

Analisando os tempos de resposta das aplicações Fibonacci de 2 e SendFile com arquivo
de tamanho 36x36, foi possível observar que: quando o tempo da regra de negócio é baixo,
a quantidade dos pacotes, a utilização de CPU e a utilização de memória são similares entre
diferentes regras de negócio. Em outras palavras, o RTT é influenciado pelo tamanho do
pacote, pela utilização de memória e pela utilização de CPU gerados em decorrência das
necessidades e demandas das regras de negócio.

A Figura 8 mostra o RTT dos diferentes protocolos de comunicação para a aplicação
Fibonacci com número 2. A Figura 9 mostra o RTT dos diferentes protocolos de comunicação
para a aplicação SendFile com arquivo de 36x36 pixels. O tamanho do pacote do envio de
imagens é ligeiramente maior que o tamanho do pacote do envio de números da sequência de
Fibonacci. Além disso, no envio de imagens ainda há o tempo necessário para salvar a imagem
em disco após o recebimento da imagem e isso pode ser observado nos boxplots, onde o RTT
para a aplicação SendFile é ligeiramente maior que o RTT para a aplicação Fibonacci. No
entanto, pode ser verificado que a consistência dos resultados é similar, com os diferentes
protocolos se mantendo em posições similares nos boxplots.

Figura 8 – Experimento Fibonacci 2: Boxplot Protocolos vs RTT

Fonte: Elaborado pelo autor (2025)

Outro ponto importante a ser destacado é a magnitude dos tempos de resposta, medida
em milisegundos. O protocolo mais lento faz o RTT do Experimento SendFile 36x36 com

68

Figura 9 – Experimento SendFile 36x36: Boxplot Protocolos vs RTT

Fonte: Elaborado pelo autor (2025)

uma mediana de apenas 1.9 ms. Neste mesmo experimento, a diferença entre as médias dos
tempos de resposta do protocolo mais lento para o protocolo mais rápido é de 63%, i.e, de
apenas 1.2 ms, expressa pela diferença entre o QUIC e a implementação RPC comercial.

4.5.2 Impacto da adaptação no pAdapt

Outro resultado que fica evidente nas Figuras 8 e 9, é que não há diferença de desempenho
entre os protocolos de comunicação do pAdapt com e sem adaptação.

Analisando estatisticamente os resultados do Experimento Fibonacci 2, não foi encontrada
uma diferença estatisticamente significativa entre os tempos de resposta da execução do TLS
sem adaptação e a execução do TLS com adaptação (TCPTLS-300s). A análise do teste T
indicou que a diferença não foi significativa, com um valor do p-value de 0.73 e intervalo de
confiança de 95%.

Analisando estatisticamente os resultados do Experimento SendFile 36x36, não foi encon-
trada uma diferença estatisticamente significativa entre os tempos de resposta da execução do
TLS sem adaptação e a execução do TLS com adaptação (TCPTLS-300s). A análise do teste
T indicou que a diferença não foi significativa, com um valor do p-value de 0.23 e intervalo
de confiança de 95%.

Consequentemente é possível chegar a conclusão de que a adaptação automática de pro-

69

tocolos de comunicação do pAdapt não impacta significativamente no RTT, e os protocolos
de comunicação com adaptação mantém RTTs similares aos protocolos sem adaptação. Evi-
denciando assim que a adaptação automática de protocolos de comunicação do pAdapt é
eficiente com relação ao impacto causado no RTT.

4.5.3 Desempenho dos protocolos de comunicação do pAdapt e sistemas de mid-

dleware comerciais

Ainda com relação ao RTT para aplicações com pouco uso de memória e CPU, e pacotes
de tamanho pequeno, observados nas Figuras 8 e 9, é possível perceber que os sistemas
de middleware comerciais (E_RPC, E_GRPC e E_RMQ) têm melhor desempenho do que
os protocolos de comunicação do pAdapt. No entanto, esta diferença é de, no máximo,
aproximadamente 1 ms.

Analisando por outras perspectivas, nestes mesmos experimentos, na Figura 10, é possível
perceber que no pAdapt a utilização de CPU para UDP, TCP e TLS têm um desempenho me-
lhor que os sistemas de middleware comerciais. E que mesmo com a adaptação do pAdapt em
funcionamento, o desempenho do pAdapt ainda supera o middleware comercial gRPC.

Figura 10 – Experimento Fibonacci 2: Boxplot da CPU do Cliente x Protocolos

Fonte: Elaborado pelo autor (2025)

Com isso podemos concluir que, tanto os protocolos implementados, quanto o pAdapt são
eficientes em termos de utilização de CPU no cliente, mesmo utilizando adaptação. Sendo

70

assim, para clientes que tenham restrição de CPU, o pAdapt se mostra como uma opção
interessante quando comparado aos sistemas de middleware comerciais analisados.

4.5.4 Aplicações com diferentes demandas de processamento

Aplicações com alta demanda de processamento, como no experimento de Fibonacci de
posição 38, apresentado na Figura 11, têm resultados de RTT muito estáveis para diferentes
protocolos, onde o tempo gasto de execução da regra de negócio é muito maior que o necessário
para envio das mensagens.

Analisando estatisticamente os resultados do Experimento Fibonacci 38, não foi encontrada
uma diferença estatisticamente significativa entre os tempos de resposta da execução do RPC
sem adaptação e a execução do RPC com adaptação para HTTP (RPCHTTP-120s). A análise
do teste T indicou que a diferença não foi significativa, com um valor do p-value de 0.21 e
intervalo de confiança de 95%.

Também não foi encontrada uma diferença estatisticamente significativa entre os tempos
de resposta da execução do TLS sem adaptação e a execução do TLS com adaptação para
HTTP2 (TLSHTTP2-120s). A análise do teste T indicou que a diferença não foi significativa,
com um valor do p-value de 0.78 e intervalo de confiança de 95%.

Neste caso, em aplicações com alta demanda de processamento, não há diferença sig-
nificativa no RTT entre os protocolos de comunicação sem adaptação e os protocolos com
adaptação automática do pAdapt.

Já aplicações com baixa demanda de processamento (Figura 8), têm resultados de RTT
bem variados para os diferentes protocolos, onde o tempo de execução da regra de negócio é
muito menor que o necessário para envio das mensagens. Este comportamento torna evidente
o impacto do protocolo de transporte no RTT. No entanto, apesar da variação, a diferença
máxima entre a média dos RTT dos protocolos do pAdapt é de apenas 0.2 ms (11%) de
diferença por mensagem.

4.5.5 Aplicações com diferentes tamanhos de pacote

Aplicações com tamanho de pacote grandes fazem uso de muitos recursos do middleware.
Isso se deve ao fato de que este tipo de aplicação exige que as mensagens sejam enviadas
via rede de forma fragmentada, ou através de stream de dados. O envio de mensagens desta

71

Figura 11 – Experimento Fibonacci 38: Boxplot Protocolos vs RTT

Fonte: Elaborado pelo autor (2025)

forma implica em chamadas iterativas, o que impacta no RTT. O experimento SendFile com
arquivo de 4k é um exemplo deste cenário, e seus resultados de RTT por protocolo podem ser
vistos na Figura 12.

Para este tipo de aplicação, o pAdapt conseguiu se mostrar eficiente, em especial para os
protocolos RPC e TCP, onde o RPC teve um desempenho similar ao gRPC e melhor que o
RabbitMQ, e o TCP conseguiu se sair melhor que o RabbitMQ.

É possível perceber também que o protocolo QUIC não teve um bom Round-Trip Time.
Como o QUIC é considerado um protocolo mais eficiente que o HTTP/2, então o problema
des desempenho possivelmente se deve à implementação efetuada para o protocolo em ques-
tão, que não fez proveito da multiplexação provida pelo QUIC, o que poderia melhorar o
desempenho do protocolo.

Outro ponto importante a ser destacado é que o pAdapt se mostrou eficiente na adaptação
automática de protocolos de comunicação, mesmo para aplicações com tamanho de pacote
grande. A Figura 12 mostra que o RTT dos protocolos com adaptação é muito próximo
dos protocolos sem adaptação, i.e., a escolha do protocolo de transporte impacta mais no
desempenho do que a própria adaptação. Isso indica não somente que o pAdapt é eficiente,
mas também que seus mecanismos de adaptação são efetivos para aplicações que buscam
aproveitar a vantagem de cada protocolo em diferentes cenários, e.g., um sistema pode começar
utilizando o protocolo TCP, que tem um RTT baixo, e depois por alguma necessidade adaptar

72

Figura 12 – Experimento SendFile 4k: Boxplot Protocolos vs RTT

Fonte: Elaborado pelo autor (2025)

para o protocolo TCP com TLS, que é mais seguro, mas com um RTT maior, sem impactar
significativamente no desempenho do sistema.

4.6 CONSIDERAÇÕES FINAIS

Este capítulo apresentou a avaliação experimental da solução proposta, o pAdapt, apli-
cado ao gMidArch. Inicialmente foram apresentados os objetivos da avaliação experimental.
Em seguida, ele mostrou a metodologia utilizada para a realização dos experimentos, incluindo
a definição de métricas, parâmetros, carga de trabalho, fatores e o projeto dos experimentos.
Foram apresentados como as aplicações de servidores e clientes foram implementados. E final-
mente, foram apresentados e analisados os resultados obtidos de acordo com cada objetivo.

73

5 TRABALHOS RELACIONADOS

A construção de frameworks de middleware é uma área consolidada, mas ainda cercada por
desafios significativos, especialmente quando se busca oferecer suporte à adaptação dinâmica
e a múltiplos protocolos de comunicação. Implementar esse tipo de solução requer abstrações
complexas, que envolvem desde funcionalidades internas do middleware até estratégias de se-
rialização e mecanismos de comunicação. Projetos pioneiros de frameworks de middleware,
como Quarterware (Singhai; Sane; Campbell, 1998), PolyORB (VERGNAUD et al., 2004) e Ar-
cademis (PEREIRA et al., 2006), foram trabalhos seminais, embora não tenham incorporado
capacidades adaptativas nem compatibilidade com múltiplos protocolos.

Outros trabalhos mais recentes buscaram evoluir estas soluções em diferentes direções.
O Man4Ware (AL-JAROODI; MOHAMED; JAWHAR, 2018), por exemplo, é um framework de
middleware baseado em uma arquitetura orientada a serviços. Ele adota uma abordagem
modular, composta por diversos serviços integrados. Assim como o gMidArch, o Man4Ware
permite que os desenvolvedores foquem na implementação do código de negócio, delegando as
demais funcionalidades ao próprio framework. No entanto, o Man4Ware não oferece suporte
à seleção do protocolo de transporte, ao contrário do pAdapt, que disponibiliza diversos
protocolos, adaptáveis, e facilmente configuráveis. Isso significa que os desenvolvedores não
têm controle sobre como o middleware realiza a comunicação, tampouco podem modificar o
protocolo utilizado em tempo de execução.

Já o Cilia (Lalanda; Morand; Chollet, 2017) é um Middleware de Mediação Autônoma que
utiliza componentes específicos para lidar com diferentes protocolos de comunicação e possi-
bilitar adaptações, de maneira semelhante ao gMidArch. Contudo, o Cilia se limita a fornecer
estruturas auxiliares, como uma base de conhecimento com informações em tempo de execu-
ção e pontos de extensão para inclusão de código. Cabe aos desenvolvedores que utilizam o
middleware a implementação dos mecanismos de adaptação desejados. Estes mecanismos não
estão disponíveis previamente no Cilia, ao contrário do pAdapt, que já implementa o meca-
nismo de adaptação entre diferentes protocolos. Além disso, diferentemente do gMidArch com
pAdapt, o Cilia não é um middleware de uso geral, sendo projetado com foco na integração
de sistemas ciber-físicos na gestão de indústrias inteligentes.

Projetado para atender aos requisitos típicos de aplicações cooperativas, o CoServices (Xie;

Li; Zhao, 2013) é um framework de middleware baseado em Web Service. Sua arquitetura é

74

composta por módulos padronizados que fornecem funcionalidades como gerenciamento de
sessões e de dados compartilhados, além da possibilidade de desenvolvimento de módulos
específicos. Embora utilize Web Service como base para comunicação, o CoServices também
permite o transporte de mensagens por meio dos protocolos UDP ou HTTP. O pAdapt, por
sua vez, amplia esse suporte ao incluir protocolos adicionais e mecanismos de adaptação destes
protocolos. O CoServices também não conta com adaptação em tempo de execução, seu foco
é disponibilizar um conjunto de serviços para o desenvolvedor utilizar.

A discussão sobre o uso de múltiplos protocolos de comunicação em frameworks de mid-
dleware adaptativos também é abordada por Brinkschulte et al. (BRINKSCHULTE, 2019), que
propõe uma arquitetura de middleware adaptativa voltada a redes ciber-físicas. Nesse trabalho,
os autores justificam a importância do suporte a diferentes protocolos como forma de atender
aos requisitos de qualidade de serviço. Assim como o gMidArch, essa arquitetura é baseada
no modelo MAPE-K. No entanto, o pAdapt se diferencia da arquitetura de Brinkschulte,
pois Brinkschulte não realiza adaptações de protocolos de comunicação, mas sim disponibiliza
diferentes protocolos ao mesmo tempo. Já no pAdapt os protocolos são trocados conforme
necessidade, e sincronizados de forma orquestrada entre servidor e clientes.

Sangeeta et al. apresentam um middleware adaptativo voltado à integração de sistemas
legados em redes elétricas inteligentes (smart grids) (SANGEETA et al., 2023). O framework
propõe a interoperabilidade entre protocolos tradicionais de automação e novas tecnologias
de comunicação, com suporte a múltiplos protocolos e adaptação conforme mudanças na rede
elétrica. Os autores enfatizam a integração transparente ("seamless integration"). No entanto,
o middleware proposto por Sangeeta foca somente em tradução de protocolos legados para
protocolos mais atuais, gerando um overhead da utilização de dois protocolos adicionada a
uma tradução a cada envio de mensagem. Enquanto isso, o pAdapt permite a utilização do
protocolo desejado, e a sua troca, sem necessidade de tradução, ou seja, cliente e servidor
conversando no mesmo protocolo.

O Adaptive Ubiquitous Middleware (AUM) (PRADEEP; KRISHNAMOORTHY; VASILAKOS,
2021) é uma proposta voltada a ambientes IoT, com suporte explícito a múltiplos protoco-
los de comunicação e foco em adaptação consciente de contexto. Ele atua como um ponto
de integração entre dispositivos e aplicações, utilizando uma ponte de múltiplos protocolos,
e.g., TCP, HTTP e Constrained Application Protocol (CoAP), que podem ser escolhidos di-
namicamente conforme o contexto do sistema. AUM adapta sua configuração em tempo de
execução, levando em consideração fatores como localização, tipo de dispositivo, restrições de

75

rede e requisitos da aplicação. Embora sua aplicação principal esteja em ambientes ubíquos
e IoT, ele compartilha com o gMidArch a capacidade adaptativa em tempo de execução e
a interoperabilidade com diferentes protocolos. No entanto, AUM não faz uso de métodos
formais para garantir uma integração mais confiável entre seus componentes.

O Hetero-Genius (ELHABBASH et al., 2023) é uma arquitetura de middleware voltada à
composição automática e mediação entre sistemas IoT heterogêneos. Sua proposta visa co-
nectar, em tempo de execução, diversos dispositivos e serviços com diferentes protocolos de
comunicação, oferecendo um mecanismo de composição baseado em contexto. A arquitetura
permite ao desenvolvedor definir fluxos abstratos de tarefas, sendo responsável por localizar,
selecionar e integrar dinamicamente serviços concretos disponíveis na rede. Embora seu foco
principal seja em aplicações IoT, como veículos conectados, seu suporte a múltiplos protoco-
los e adaptação dinâmica de fluxos o tornam relevante para comparação com o gMidArch.
No entanto, o Hetero-Genius não mantêm sistemas distribuídos se comunicando e adaptando
protocolos de comunicação sem paradas, ele simplesmente trabalha com fluxos pré-definidos,
que a depender do fluxo podem enviar mensagens com diferentes protocolos.

Cavalcanti e Rosa propõem o Middleware Extendify (MEx) (CAVALCANTI; ROSA, 2024)
como uma plataforma para construção de middleware IoT adaptáveis. O MEx oferece su-
porte ao protocolo de comunicação Message Queuing Telemetry Transport (MQTT), além de
mecanismos para adaptação em tempo real. Seu diferencial está na possibilidade de ajustes
dinâmicos de funcionalidades e parâmetros do sistema com base em condições contextuais,
utilizando estratégias de adaptação como ajustes reativos e evolutivos. O middleware também
introduz uma linguagem de descrição própria, denominada Python-based Architecture Des-

cription Language (pADL), para definir seus componentes, similar ao mADL do gMidArch.
No entanto o MEx é limitado ao protocolo MQTT, enquanto o pAdapt habilita o suporte a
diversos protocolos de comunicação no gMidArch, além de permitir a adaptação entre eles.

O PolyglIoT (CABRAL et al., 2024), é uma arquitetura de middleware que permite tradu-
ção entre múltiplos protocolos de comunicação em ambientes heterogêneos. A arquitetura
implementa um serviço dinâmico de tradução entre protocolos, permitindo interações entre
tecnologias como MQTT, AMQP, Kafka e Data Distribution Service (DDS). O PolyglIoT
permite ativação e desativação de tradutores em tempo de execução e garante propriedades
de Quality of Service (QoS) durante a tradução. Seu foco está em promover interoperabilidade
em sistemas distribuídos heterogêneos, com aplicação especial em contextos de IoT e auto-
mação. Apesar de utilizar propriedades de QoS para tentar melhorar o desempenho, o uso de

76

traduções de protocolos gera um overhead da utilização dos protocolos traduzidos somada ao
processamento necessário para a tradução a cada envio de mensagem. Por outro lado, o pA-

dapt pode habilitar que qualquer sistema faça a alteração do protocolo de transporte utilizado
na comunicação apenas mudando a sua configuração, i.e., eliminando qualquer necessidade
de tradução e consequentemente seu overhead.

Outro exemplo de framework de middleware com mais de um protocolo de transporte é o
Gorilla (GORILLA, 2025), um framework para a linguagem Go que, apesar de oferecer suporte
somente a comunicação via HTTP e WebSocket, também permite utilizar os fundamentos
do RPC para o desenvolvimento de sistemas, mas trafegando os dados através do HTTP.
Embora o Gorilla permita a escolha do protocolo de transporte, ele não possui mecanismos
de adaptação em tempo de execução, e nem permite que os protocolos sejam alterados sem
mudanças no código fonte, assim como é no pAdapt. Isso significa que, uma vez escolhido
o protocolo, não há suporte para mudanças dinâmicas durante a execução do sistema. O
Gorilla, apesar de ter o código aberto, também não disponibiliza pontos de extensão para que
os desenvolvedores possam implementar novos protocolos de comunicação ou adaptação de
protocolos.

Por fim, embora não constitua um framework completo, o pacote RPC do Go (RPC-GO,
2025) permite ao programador escolher entre dois protocolos de comunicação (TCP e HTTP),
mas seu escopo limitado a essas duas opções compromete a flexibilidade para aplicações que
demandem protocolos adicionais ou comportamentos mais sofisticados de adaptação, pontos
que são características do pAdapt.

A Tabela 6 resume e compara os frameworks de middleware mencionados com base em
características fundamentais como suporte a múltiplos protocolos, adaptação em tempo de
execução, uso da arquitetura MAPE-K, utilização de métodos formais, extensibilidade e apli-
cação de escopo geral ou específica.

77

Ta
be

la
6

–
Co

m
pa

ra
çã

o
en

tr
e

o
gM

id
Ar

ch
e

fra
m

ew
or

ks
re

la
cio

na
do

s

Fr
am

ew
or

k
M

úl
tip

lo
s

pr
ot

oc
ol

os
A

da
pt

aç
ão

em
ru

nt
im

e
M

A
P

E-
K

Ex
te

ns
ív

el
A

da
pt

aç
ão

de
P

ro
to

co
lo

s
Qu

ar
te

rw
ar

e
Nã

o
Nã

o
Nã

o
Si

m
Nã

o
Po

lyO
RB

Nã
o

Nã
o

Nã
o

Si
m

Nã
o

Ar
ca

de
m

is
Nã

o
Nã

o
Nã

o
Si

m
Nã

o
M

an
4W

ar
e

Nã
o

Nã
o

Nã
o

Si
m

Nã
o

Ci
lia

Si
m

Si
m

Nã
o

Si
m

Nã
o

Co
Se

rv
ice

s
Si

m
(U

DP
,H

TT
P)

Nã
o

Nã
o

Si
m

Nã
o

Br
in

ks
ch

ul
te

et
al.

Si
m

Si
m

Si
m

Si
m

Nã
o

Sa
ng

ee
ta

et
al.

Si
m

(p
ro

to
co

los
leg

ad
os

/m
od

er
no

s)
Si

m
Nã

o
Si

m
Nã

o

AU
M

Si
m

(T
CP

,H
TT

P,
Co

AP
)

Si
m

Nã
o

Si
m

Nã
o

He
te

ro
-G

en
iu

s
Si

m
(im

pl
íci

to
via

co
m

po
siç

ão
)

Si
m

Nã
o

Si
m

Nã
o

M
Ex

Nã
o

(M
QT

T)
Si

m
Si

m
Si

m
Nã

o

Po
lyg

lIo
T

Si
m

(M
QT

T,
AM

QP
,K

af
ka

,
DD

S)
Si

m
Nã

o
Si

m
Nã

o

Go
ril

la
Si

m
(H

TT
P,

W
eb

So
ck

et
)

Nã
o

Nã
o

Nã
o

Nã
o

RP
C

do
Go

Si
m

(T
CP

,H
TT

P)
Nã

o
Nã

o
Nã

o
Nã

o

gM
id

A
rc

h+
pA

da
pt

Si
m

(U
D

P
,T

C
P

,T
C

P
so

br
e

T
LS

,R
P

C
,Q

U
IC

,
H

T
T

P
/1

.1
,H

T
T

P
S

e
H

T
T

P
/2

)

Si
m

Si
m

Si
m

Si
m

N
ot

a:
O

us
o

de
ne

gr
ito

na
úl

tim
a

lin
ha

en
fa

tiz
a

as
ca

ra
ct

er
íst

ica
s

do
gM

id
Ar

ch
co

m
pA

da
pt

em
co

m
pa

ra
çã

o
co

m
os

ou
tr

os
fra

m
ew

or
ks

.
Fo

nt
e:

El
ab

or
ad

o
pe

lo
au

to
r(

20
25

)

78

Como pode ser observado na Tabela 6, o gMidArch, aliado às novas funcionalidades do
pAdapt, se destaca por reunir em um único framework características fundamentais que apare-
cem de forma isolada em outras propostas. Sua combinação de suporte a múltiplos protocolos,
adaptação em tempo de execução, extensibilidade e principalmente, a adaptação de protocolos
em tempo de execução, o posiciona como uma solução robusta e versátil frente aos trabalhos
relacionados discutidos neste capítulo.

5.1 CONSIDERAÇÕES FINAIS

Este capítulo apresentou os trabalhos relacionados ao gMidArch com o novo mecanismo
de adaptação pAdapt. Para isso foi realizada uma análise comparativa entre cada trabalho,
identificando as diferenças entre as características de cada um e o gMidArch com pAdapt. O
capítulo conclui com uma tabela comparativa entre todos os trabalhos relacionados apresen-
tados, resumindo as principais características de cada trabalho relacionado.

79

6 CONCLUSÕES E TRABALHOS FUTUROS

Este capítulo apresenta as conclusões e contribuições do trabalho, bem como as limitações
da solução proposta, e finaliza com sugestões de trabalhos futuros.

6.1 CONCLUSÕES

A revisão dos trabalhos relacionados mostrou que a adaptação em middleware é um tema
amplamente discutido e atual, assim como a utilização de múltiplos protocolos de comunicação.
No entanto, poucos trabalhos conseguem reunir essas características de maneira integrada.
Este trabalho propôs o pAdapt como solução para essa lacuna.

O pAdapt trouxe um reforço ao gMidArch que possui uma abordagem abrangente, capaz
de preencher lacunas deixadas por middleware anteriores, tanto conceituais quanto práticos.

A implementação e a avaliação experimental indicam que o pAdapt é aplicável a diferentes
cenários, especialmente em cenários onde a flexibilidade de comunicação e a adaptabilidade
em tempo de execução são requisitos críticos, como integração entre aplicações distribuídas
em ambientes heterogêneos.

O pAdapt se traduz nas duas principais contribuições deste trabalho: a primeira sendo
apresentar e tornar disponível um mecanismo de adaptação de protocolos de comunicação e
a segunda sendo a disponibilização de um framework de middleware adaptativo com vários
protocolos de comunicação.

O mecanismo de adaptação criado se destaca pela capacidade de suportar a troca entre
múltiplos protocolos de comunicação em tempo de execução, adaptando tanto clientes quanto
servidores de maneira orquestrada e sem a perda de informações durante sua adaptação.
Isso permite que desenvolvedores de middleware reconfigurem dinamicamente o protocolo
de comunicação mais adequado para diferentes cenários da aplicação, sem comprometer o
desempenho dos sistemas.

Como uma terceira contribuição foi criado o Fluxo de Adaptação de Protocolos de Co-
municação entre o servidor e seus clientes. Um fluxo que permite a adaptação de protocolos
em tempo de execução sem a perda de mensagens, e que pode ser implementado por outros
middleware para permitir integração entre diferentes tecnologias e linguagens.

Outro ponto importante está relacionado à avaliação do desempenho do middleware, que,

80

a depender do cenário, demonstrou melhor desempenho quando comparado a sistemas de
middleware comerciais existentes.

Estas características promovem a flexibilidade e permitem que sistemas distribuídos sejam
reconfigurados dinamicamente. A proposta combina os conceitos da arquitetura MAPE-K
com a extensibiliade de um framework aberto e com implementações de diversos protocolos
de comunicação, viabilizando a construção de sistemas distribuídos flexíveis e extensíveis.

Por fim, a última contribuição são os scripts de monitoramento e profilling da avaliação
experimental, que foram desenvolvidos para avaliar o desempenho do pAdapt em conjunto com
o gMidArch e também compará-lo com outros sistemas de middleware amplamente utilizados.
Apesar de não estar ligado diretamente ao objetivo do trabalho, os scripts de monitoramento
e profilling são executados em paralelo aos experimentos, e permitem a coleta de dados de
memória, processamento, e tempo de execução sem necessidade de instrumentação do código,
mesmo em ambientes distribuídos. Com os scripts ainda é possível executar grandes sequências
de experimentos sem a intervenção humana, o que poderia gerar dados inconsistentes nos
experimentos. Estes scripts podem ser utilizados em outros experimentos, sendo assim uma
contribuição adicional.

6.2 LIMITAÇÕES

Apesar de o pAdapt atingir seus objetivos no estado atual, algumas limitações foram
identificadas:

• Consumo de recursos: devido a natureza do gMidArch, que fica em constante estado
de monitoramento, o consumo de CPU e memória do middleware pode ser elevado em
alguns cenários, se comparado a sistemas de middleware não adaptativos. No entanto, o
monitoramento e as adaptações de protocolo mostraram não ter um impacto significativo
no desempenho do sistema, mesmo em cenários com múltiplas adaptações;

• Variedade de protocolos: o pAdapt suporta diversos protocolos de comunicação, e
também é facilmente extensível, mas a falta de protocolos como AMQP, MQTT, CoAP
e bluetooth limita a utilização do pAdaptem alguns cenários;

• Motivo da adaptação: o pAdapt atual não considera o motivo da adaptação, ou seja,
quando e porquê uma adaptação será iniciada, apenas a forma em que será adaptado e

81

o melhor momento para que a adaptação identificada seja executada. Isso significa que
a decisão de adaptação é baseada em condições predefinidas, sem levar em conta fatores
contextuais ou específicos do aplicativo, e.g., memória, consumo de energia e segurança
na comunicação, o que melhoraria a efetividade da adaptação; e

• Adaptação pelo cliente: o pAdapt não permite que o cliente solicite a adaptação do
protocolo de transporte. A adaptação é iniciada somente pelo servidor, o que pode limitar
a flexibilidade em cenários onde o cliente tem conhecimento de condições específicas que
exigem uma mudança de protocolo.

6.3 TRABALHOS FUTUROS

Com a conclusão deste trabalho, surgem várias possibilidades de continuidade de pesquisa
e aprimoramento do pAdapt.

Apesar de haver sido empregado esforço na melhoria do desempenho do middleware, e
mesmo com o desempenho satisfatório apresentado nos experimentos, ainda é possível efetuar
melhorias no desempenho. Um dos pontos é através da otimização em alguns protocolos, como
o QUIC e o HTTP/2, com a utilização de multiplexação nas mensagens, o que pode melhorar
o desempenho em cenários com múltiplas mensagens simultâneas.

Outra possibilidade de continuação do trabalho é a implementação de novos protocolos,
como o AMQP, o MQTT, o CoAP e também protocolos bluetooth, o que pode ampliar ainda
mais o alcance do pAdapt em diferentes domínios de aplicação.

Adicionar novas estratégias de adaptação que utilizem métricas diversas e configuráveis,
como memória, CPU, consumo de energia, bateria e segurança. Neste item pode-se evoluir
para a escolha de evolução somente para determinados protocolos, ou seja, o desenvolvedor
pode optar por uma adaptação evolutiva segura, onde somente protocolos seguros seriam
utilizados. Ou ainda, o desenvolvedor escolher uma evolução que varie de acordo com o estado
atual de carga do dispositivo.

É possível configurar os componentes do gMidArch através do mADL, mas para novos
usuários isso pode ser desafiador. Sendo assim uma interface gráfica para configuração dos
componentes do gMidArch pode facilitar o uso e a adoção do middleware por desenvolvedores.

A interface gráfica também pode ser utilizada para criação automática de proxies para
os objetos remotos. Como parte da arquitetura RPC, objetos remotos têm a necessidade de

82

utilizarem um proxy para comunicação. No entanto, a geração dos proxies atualmente é feita
de forma manual, o que levanta um novo ponto de melhoria. Uma interface gráfica que receba
o objeto e gere automaticamente o proxy para o objeto remoto pode facilitar a adoção do
gMidArch por novos usuários.

Outro ponto de melhoria é para que as aplicações clientes possam também enviar uma
solicitação de adaptação ao servidor, permitindo que o cliente escolha o protocolo de transporte
a ser utilizado. Isso pode ser útil em cenários onde o cliente tem conhecimento sobre condições
diferentes da do servidor, e.g., a necessidade de controle do uso de energia em dispositivos
IoT. E sendo assim o cliente pode sugerir um protocolo mais adequado para a comunicação
baseado em suas necessidades.

Uma outra possibilidade de continuação do trabalho é a implementação de um sistema de
aprendizado de máquina para prever o melhor protocolo a ser utilizado em cada situação.

83

REFERÊNCIAS

ABGAZ, Y.; MCCARREN, A.; ELGER, P.; SOLAN, D.; LAPUZ, N.; BIVOL, M.; JACKSON,
G.; YILMAZ, M.; BUCKLEY, J.; CLARKE, P. Decomposition of monolith applications into
microservices architectures: A systematic review. IEEE Transactions on Software Engineering,
v. 49, n. 8, p. 4213–4242, Aug 2023. ISSN 1939-3520.

AL-JAROODI, J.; MOHAMED, N.; JAWHAR, I. A service-oriented middleware
framework for manufacturing industry 4.0. SIGBED Rev., Association for Computing
Machinery, New York, NY, USA, v. 15, n. 5, p. 29–36, nov. 2018. Disponível em:
<https://doi.org/10.1145/3292384.3292389>.

BELSHE, M.; PEON, R.; THOMSON, M. Hypertext Transfer Protocol Version 2 (HTTP/2).
RFC Editor, 2015. (RFC, 7540). Disponível em: <https://www.rfc-editor.org/info/rfc7540>.

BISHOP, M. HTTP/3. RFC Editor, 2022. RFC 9114. (Request for Comments, 9114).
Disponível em: <https://www.rfc-editor.org/info/rfc9114>.

BRINKSCHULTE, M. Self-organizing middleware for cyber-physical networks. In: Proceedings
of the 20th International Middleware Conference Doctoral Symposium. New York, NY,
USA: Association for Computing Machinery, 2019. (Middleware ’19), p. 14–16. ISBN
9781450370394. Disponível em: <https://doi.org/10.1145/3366624.3368158>.

CABRAL, B.; VENâNCIO, R.; COSTA, P.; FONSECA, T.; FERREIRA, L. L.; SEVERINO,
R.; BARROS, A. Multiprotocol middleware translator for iot. In: 2024 27th Euromicro
Conference on Digital System Design (DSD). [S.l.: s.n.], 2024. p. 327–334.

CAVALCANTI, D.; ROSA, N. Customizable and adaptable middleware of things. International
Journal of Communication Systems, v. 37, n. 15, p. e5887, 2024. Disponível em:
<https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.5887>.

CHEN, W.; YE, K.; WANG, Y.; XU, G.; XU, C.-Z. How does the workload look like in
production cloud? analysis and clustering of workloads on alibaba cluster trace. In: 2018 IEEE
24th International Conference on Parallel and Distributed Systems (ICPADS). [S.l.: s.n.],
2018. p. 102–109. ISSN 1521-9097.

DA, K.; DALMAU, M.; ROOSE, P. A Survey of adaptation systems. International Journal
on Internet and Distributed Computing Systems, International journal on Internet
and distributed computing systems, v. 2, n. 1, p. 1–18, nov. 2011. Disponível em:
<https://hal.science/hal-00689773>.

ELHABBASH, A.; ELKHATIB, Y.; BOULOUKAKIS, G.; SALAMA, M. A middleware
for automatic composition and mediation in iot systems. In: Proceedings of the 12th
International Conference on the Internet of Things. New York, NY, USA: Association for
Computing Machinery, 2023. (IoT ’22), p. 127–134. ISBN 9781450396653. Disponível em:
<https://doi.org/10.1145/3567445.3567451>.

FIELDING, R.; NOTTINGHAM, M.; RESCHKE, J. HTTP Semantics. [S.l.], 2022. Disponível
em: <https://www.rfc-editor.org/rfc/rfc9110.txt>.

FIELDING, R. T. Architectural Styles and the Design of Network-based Software
Architectures. Tese (Doutorado) — University of California, Irvine, Irvine, CA, USA, sep
2000.

https://doi.org/10.1145/3292384.3292389
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc9114
https://doi.org/10.1145/3366624.3368158
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.5887
https://hal.science/hal-00689773
https://doi.org/10.1145/3567445.3567451
https://www.rfc-editor.org/rfc/rfc9110.txt

84

FIELDING, R. T.; NOTTINGHAM, M.; RESCHKE, J. HTTP/1.1. RFC Editor, 2022. RFC
9112. (Request for Comments, 9112). Disponível em: <https://www.rfc-editor.org/info/
rfc9112>.

FOWLER, L. Microservices: A definition of this new architectural term. 2014.
<https://martinfowler.com/articles/microservices.html>. Acesso em: 21 mai. 2025.

GO gRPC. gRPC-Go package documentation. 2025. <https://github.com/grpc/grpc-go>.
Acesso em: 21 mar. 2025.

GO-RABBITMQ. Go RabbitMQ package documentation. 2025. <https://www.rabbitmq.
com>. Acesso em: 21 mar. 2025.

GODFREY, R.; INGHAM, D.; SCHLOMING, R. OASIS Advanced Message Queuing Protocol
(AMQP) Version 1.0. [S.l.], 2012. Disponível em: <http://docs.oasis-open.org/amqp/core/
v1.0/os/amqp-core-complete-v1.0-os.pdf>.

GORILLA. Gorilla web toolkit documentation. 2025. <https://gorilla.github.io/>. Acesso
em: 21 mar. 2025.

Grace Hopper. Grace hopper, cdr., u.s.n. Computerworld, IDG Enterprise, v. 10, n. 4, p. 9,
Jan 1976.

GRPC. gRPC documentation. 2025. <https://grpc.io/docs/>. Acesso em: 20 jun. 2025.

IBM. An Architectural Blueprint for Autonomic Computing. [S.l.], 2005.

ISO/IEC. Information technology – Open Systems Interconnection – Basic Reference Model:
The basic model. 1994.

IYENGAR, J.; THOMSON, M. QUIC: A UDP-Based Multiplexed and Secure Transport.
RFC Editor, 2021. RFC 9000. (Request for Comments, 9000). Disponível em:
<https://rfc-editor.org/rfc/rfc9000.txt>.

KEPHART, J.; CHESS, D. The vision of autonomic computing. Computer, v. 36, p. 41 – 50,
02 2003.

KHEZEMI, N.; MINANI, J.; SABIR, F.; MOHA, N.; GUéHéNEUC, Y.-G.; EL-BOUSSAIDI, G.
A systematic literature review of iot system architectural styles and their quality requirements.
IEEE Internet of Things Journal, v. 11, p. 37599–37616, 12 2024.

Lalanda, P.; Morand, D.; Chollet, S. Autonomic mediation middleware for smart
manufacturing. IEEE Internet Computing, v. 21, n. 1, p. 32–39, 2017.

LANGLEY, A.; RIDDOCH, A.; WILK, A.; VICENTE, A.; KRASIC, C.; ZHANG, D.;
YANG, F.; KOURANOV, F.; SWETT, I.; IYENGAR, J.; BAILEY, J.; DORFMAN,
J.; ROSKIND, J.; KULIK, J.; WESTIN, P.; TENNETI, R.; SHADE, R.; HAMILTON,
R.; VASILIEV, V.; CHANG, W.-T.; SHI, Z. The quic transport protocol: Design and
internet-scale deployment. In: Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. New York, NY, USA: Association for Computing
Machinery, 2017. (SIGCOMM ’17), p. 183–196. ISBN 9781450346535. Disponível em:
<https://doi.org/10.1145/3098822.3098842>.

https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9112
https://martinfowler.com/articles/microservices.html
https://github.com/grpc/grpc-go
https://www.rabbitmq.com
https://www.rabbitmq.com
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
https://gorilla.github.io/
https://grpc.io/docs/
https://rfc-editor.org/rfc/rfc9000.txt
https://doi.org/10.1145/3098822.3098842

85

MEDVIDOVIC, N.; TAYLOR, R. N. A classification and comparison framework for software
architecture description languages. IEEE Trans. Softw. Eng., IEEE Press, Piscataway, NJ,
USA, v. 26, n. 1, p. 70–93, jan. 2000. ISSN 0098-5589.

MITRE. Vulnerability Details: CVE-2013-3587 - Man-in-the-middle attack on SSL 1.2. 2013.
<https://www.cve.org/CVERecord?id=CVE-2013-3587>. Acessado em 19 de julho de 2025.

NAZIRIDIS, N. Uma introdução ao HTTP/2. 2018. <https://www.ssl.com/pt/article/
an-introduction-to-http2/>. Acessado em 19 de julho de 2025.

PEREIRA, F.; VALENTE, M.; BIGONHA, R.; BIGONHA, M. Arcademis: A framework for
object-oriented communication middleware development. Software: Practice and Experience,
v. 36, p. 495 – 512, 04 2006.

POSTEL, J. User Datagram Protocol. RFC Editor, 1980. RFC 768. (Request for Comments,
768). Disponível em: <https://www.rfc-editor.org/info/rfc768>.

PRADEEP, P.; KRISHNAMOORTHY, S.; VASILAKOS, A. V. A holistic approach
to a context-aware iot ecosystem with adaptive ubiquitous middleware. Pervasive
and Mobile Computing, v. 72, p. 101342, 2021. ISSN 1574-1192. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S1574119221000134>.

quic-go Contributors. quic-go: A QUIC implementation in pure Go. 2024. <https:
//github.com/quic-go/quic-go/releases/tag/v0.42.0>. Acessado em 17 de julho de 2025.

RabbitMQ. RabbitMQ 4.1 Documentation - Compatibility and Conformance. 2025.
<https://www.rabbitmq.com/docs/specification>. Acesso em: 24 jun. 2025.

RESCORLA, E. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
Editor, 2018. RFC 8446. (Request for Comments, 8446). Disponível em: <https:
//rfc-editor.org/rfc/rfc8446.txt>.

ROSA, N.; CAVALCANTI, D.; CAMPOS, G.; SILVA, A. Adaptive middleware in go - a
software architecture-based approach. Journal of Internet Services and Applications, 2020.

ROSA, N. S.; CAMPOS, G. M.; CAVALCANTI, D. J. Lightweight formalisation of adaptive
middleware. Journal of Systems Architecture, v. 97, p. 54–64, 2019. ISSN 1383-7621.
Disponível em: <https://www.sciencedirect.com/science/article/pii/S1383762118300936>.

RPC-GO. Go RPC package documentation. 2025. <https://pkg.go.dev/net/rpc>. Acesso
em: 21 mar. 2025.

SALEHIE, M.; TAHVILDARI, L. Self-adaptive software: Landscape and research
challenges. ACM Trans. Auton. Adapt. Syst., Association for Computing Machinery,
New York, NY, USA, v. 4, n. 2, maio 2009. ISSN 1556-4665. Disponível em:
<https://doi.org/10.1145/1516533.1516538>.

SANGEETA, K.; S, A. D. V.; JAIN, A.; YADAV, D. K.; TYAGI, L. K.; MOHSEN, Z. S.
Adaptive middleware solutions for seamless integration of legacy and modern ict systems in
smart grids. In: 2023 International Conference on Power Energy, Environment and Intelligent
Control (PEEIC). [S.l.: s.n.], 2023. p. 443–448.

SHI, W.; CAO, J.; ZHANG, Q.; LI, Y.; XU, L. Edge computing: Vision and challenges. IEEE
Internet of Things Journal, v. 3, n. 5, p. 637–646, Oct 2016. ISSN 2327-4662.

https://www.cve.org/CVERecord?id=CVE-2013-3587
https://www.ssl.com/pt/article/an-introduction-to-http2/
https://www.ssl.com/pt/article/an-introduction-to-http2/
https://www.rfc-editor.org/info/rfc768
https://www.sciencedirect.com/science/article/pii/S1574119221000134
https://github.com/quic-go/quic-go/releases/tag/v0.42.0
https://github.com/quic-go/quic-go/releases/tag/v0.42.0
https://www.rabbitmq.com/docs/specification
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://www.sciencedirect.com/science/article/pii/S1383762118300936
https://pkg.go.dev/net/rpc
https://doi.org/10.1145/1516533.1516538

86

Singhai, A.; Sane, A.; Campbell, R. H. Quarterware for middleware. In: Proceedings. 18th
International Conference on Distributed Computing Systems (Cat. No.98CB36183). [S.l.:
s.n.], 1998. p. 192–201.

SöYLEMEZ, M.; TEKINERDOGAN, B.; KOLUKıSA, A. Challenges and solution directions
of microservice architectures: A systematic literature review. Applied Sciences, v. 12, p. 5507,
05 2022.

THOMSON, M.; BENFIELD, C. RFC 9113: HTTP/2. USA: RFC Editor, 2022.

THURLOW, R. RPC: Remote Procedure Call Protocol Specification Version 2.
RFC Editor, 2009. RFC 5531. (Request for Comments, 5531). Disponível em:
<https://www.rfc-editor.org/info/rfc5531>.

VERGNAUD, T.; HUGUES, J.; PAUTET, L.; KORDON, F. Polyorb: A schizophrenic
middleware to build versatile reliable distributed applications. In: LLAMOSÍ, A.;
STROHMEIER, A. (Ed.). Reliable Software Technologies - Ada-Europe 2004. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004. p. 106–119. ISBN 978-3-540-24841-5.

VOLTER, M.; KIRCHER, M.; ZDUN, U. Remoting Patterns: Foundations of Enterprise,
Internet and Real Time Distributed Object Middleware. [S.l.]: John Wiley & Sons Ltd, 2005.

WEYNS, D. An Introduction to Self-Adaptive Systems: A Contemporary Software Engineering
Perspective. [S.l.: s.n.], 2021. ISBN 9781119574910.

Xie, W.; Li, Z.; Zhao, Y. Coservices: A web service based middleware framework for
interactive cooperative applications. In: 2013 Third International Conference on Intelligent
System Design and Engineering Applications. [S.l.: s.n.], 2013. p. 507–513.

https://www.rfc-editor.org/info/rfc5531

87

APÊNDICE A – MODELO DOCKER COMPOSE PARA EXPERIMENTOS

Foi criado um arquivo docker-compose para permitir a execução dos experimentos realiza-
dos neste trabalho de forma autônoma, garantindo uma maior confiabilidade nos resultados.
Para isso o docker-compose foi criado como um model do pAdapt, ou seja, um arquivo mo-
delo que permite a substituição de variáveis para a criação de diferentes cenários de teste. O
Código Fonte 15 apresenta o modelo utilizado nos experimentos, onde as variáveis são defi-
nidas no início de cada experimento executado, e substituídas no modelo do docker-compose

para a criação do ambiente de teste.

Código Fonte 15 – Modelo de configuração do Docker Compose utilizado nos experimentos

version: "3.3"

2 services:

server:

4 image: <image.server >

deploy:

6 replicas: 1

restart_policy:

8 condition: none

resources:

10 limits:

cpus: "0.4"

12 memory: 256M

reservations:

14 cpus: "0.4"

memory: 256M

16 environment:

CA_PATH: "/usr/src/app/examples/certs/myCA.pem"

18 CRT_PATH: "/usr/src/app/examples/certs/server.pem"

KEY_PATH: "/usr/src/app/examples/certs/server.key"

20 TIME_TO_START_SERVER: 1

INJECTION_INTERVAL: <adaptation.interval >

22

client:

24 image: <image.client >

deploy:

26 replicas: 1

restart_policy:

28 condition: none

resources:

30 limits:

cpus: "0.4"

32 memory: 256M

88

reservations:

34 cpus: "0.4"

memory: 256M

36 environment:

CA_PATH: "/usr/src/app/examples/certs/myCA.pem"

38 <specific.env.client >

SAMPLE_SIZE: <sample.size >

40 AVERAGE_WAITING_TIME: <average.waiting.time >

TIME_TO_START_CLIENT: 5

Fonte: Elaborado pelo autor (2025)

	Folha de rosto
	
	Agradecimentos
	Resumo
	Abstract
	Lista de Figuras
	Listing
	Lista de tabelas
	Sumário
	Introdução
	Contexto e Motivação
	Problema
	Soluções Existentes e Lacunas Identificadas
	Objetivos
	Solução proposta
	Estrutura do Documento

	Fundamentação Teórica
	Protocolos de comunicação
	Middleware Adaptativo
	Feedback Loop
	gMidArch Framework
	Componentes de Middleware
	Adaptação em tempo de execução
	Ambiente de execução

	Considerações Finais

	pAdapt (Protocol Adaptation)
	Visão geral
	Mecanismo de Adaptação
	Fluxo de Adaptação no pAdapt
	Extensões de Adaptação
	Implementação do mecanismo de adaptação do pAdapt
	Controle de Estado dos Componentes

	Novos Componentes
	Escolha dos protocolos
	Extensões de Protocolos de Comunicação
	UDP
	TCP
	TCP+TLS
	QUIC
	RPC
	HTTP/1.1
	HTTPS
	HTTP/2

	Considerações Finais

	Avaliação Experimental
	Objetivos da Avaliação
	Métricas, Parâmetros e Carga de Trabalho
	Fatores e Projeto dos Experimentos
	Solução em Ação
	Resultados e Análise dos Resultados
	Desempenho dos protocolos de comunicação do pAdapt
	Impacto da adaptação no pAdapt
	Desempenho dos protocolos de comunicação do pAdapt e sistemas de middleware comerciais
	Aplicações com diferentes demandas de processamento
	Aplicações com diferentes tamanhos de pacote

	Considerações Finais

	Trabalhos relacionados
	Considerações Finais

	Conclusões e trabalhos futuros
	Conclusões
	Limitações
	Trabalhos Futuros

	Referências
	Modelo Docker Compose para Experimentos

