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RESUMO

Sistemas de detecção de intrusão baseados em aprendizado profundo são vulneráveis

a ações evasivas chamadas ataques adversários. Este é um problema crítico, pois siste-

mas com suposta alta precisão são suscetíveis a ataques que não são identificados. Neste

trabalho, apresentamos uma nova abordagem chamada TabIDS que utiliza treinamento

adversário para aumentar a robustez classificatória contra ataques adversariais capazes

de evadir sistemas de detecção de intrusão, sendo também capaz de detectar ataques não

vistos no treinamento do modelo. Para isso, foram implementados dois classificadores para

compor um sistema de detecção de intrusão em redes (Network Intrusion Detection System

(NIDS)): um para detecção de ataques de rede e outro para amostras out-of-distribution

Out-of-distribution (OOD). O método desenvolvido combina o modelo treinado adversa-

rialmente com um método por distância Mahalanobis projetado para detectar amostras

adversárias como sendo OOD. Dessa forma é preenchida uma lacuna onde ou o classifi-

cador apenas consegue lidar com um tipo de ataque adversarial, ou o detector OOD é

aplicado apenas para amostras não perturbadas adversarialmente. Foi avaliado o desem-

penho do modelo nos conjuntos de dados CIC IDS2017 e UNSW-NB15, e a abordagem

utilizando treinamento adversário com detecção de OOD se mostrou robusta contra ata-

ques adversários avançados e mesmo contra ataques de rede não vistos no treinamento. Os

resultados obtidos demonstram que o TabIDS supera modelos convencionais em Precisão,

Recall e Área sob a curva ROC (ROC-AUC), especialmente em cenários adversariais com

perturbações imperceptíveis. A detecção de OOD baseada em distância de Mahalanobis

atingiu até 99,5% de AUC em alguns ataques, destacando a eficácia do método proposto.

Os resultados mostram que a abordagem é promissora para aplicações de cibersegurança

que demandam robustez e generalização frente a ataques desconhecidos.

Palavras-chaves: Dados fora de distribuição. Robustez adversarial. Sistemas de detecção

de intrusão.



ABSTRACT

Deep learning-based intrusion detection systems are vulnerable to evasive actions

called adversarial attacks. This is a critical problem, as systems with supposedly high

accuracy are susceptible to attacks that are not identified. In this work, we present a

new approach called TabIDS that uses adversarial training to increase classification ro-

bustness against adversarial attacks capable of evading intrusion detection systems, while

also being able to detect attacks not seen during model training. To this end, two clas-

sifiers were implemented to compose a network intrusion detection system (NIDS): one

for detecting network attacks and the other for OOD samples. The developed method

combines the adversarially trained model with a Mahalanobis distance method designed

to detect adversarial samples as OOD. This fills a gap where either the classifier can only

handle one type of adversarial attack, or the OOD detector is applied only to samples

not adversarially perturbed. The model’s performance was evaluated on the CIC IDS2017

and UNSW-NB15 datasets, and the approach, using adversarial training with OOD detec-

tion, proved robust against advanced adversarial attacks and even against network attacks

not seen in the training. The results demonstrate that TabIDS outperforms conventional

models in Precision, Recall, and ROC-AUC, especially in adversarial scenarios with im-

perceptible perturbations. OOD detection based on Mahalanobis distance achieved up to

99.5% AUC in some attacks, highlighting the effectiveness of the proposed method. The

results show that the approach is promising for cybersecurity applications that require

robustness and generalization against unknown attacks.

Keywords: Out-of-distribution, Adversarial Robustness, Network Intrusion Detection

System.
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1 INTRODUÇÃO

O número de dispositivos conectados em rede tem crescido exponencialmente. A inter-

net, ao proporcionar uma comunicação ágil, tornou as redes de computadores onipresentes

no ambiente corporativo. Uma consequência direta deste cenário é o aumento anual dos

ciberataques tendo estas redes como alvo, o que exige investimentos significativamente

elevados para prevenir ou mitigar os efeitos adversos causados por esses ataques Fig. 1.

Ataques a redes de computadores estão evoluindo para formas de ataque multi estágio

e de longo prazo. Como exemplo: os ataques DDoS, que dependem da propagação de

botnets em computadores vulneráveis, para depois causarem a negação de serviço ao

sistema alvo; e as Advanced Persistent Threats (APT), que são capazes de permanecer

furtivas na rede do alvo por longos períodos de tempo, conforme a necessidade do invasor,

resultando em prejuízos substanciais tais como perdas financeiras elevadas ou vazamentos

de dados sensíveis Kim, Wang e Ullrich 2012,Kaspersky 2022.

A intrusão via redes Uma e Padmavathi 2013 é das mais sérias ameaças a sistemas

corporativos de computadores, uma vez que a partir dela o atacante pode causar danos

irrecuperáveis para as organizações, incluindo vazamento de dados financeiros, dados de

fornecedores, e interrupção no fornecimento de serviços críticos Jeba et al. 2024. Durante

essas invasões, o adversário geralmente consegue instalar malwares que facilitem o seu

acesso a outras redes, omitindo sua localização e identificação da rede/computador de

origem Jiang, Wu e Xin 2022. Em razão disso, faz-se mandatório o desenvolvimento de

novas técnicas capazes de evitar ou detectar o acesso malicioso. Isto inclui os sistemas de

detecção de intrusão Abdulganiyu, Tchakoucht e Saheed 2023.

De acordo com Masdari e Khezri 2020 a detecção de ameaças em um Intrusion De-

tection System (IDS) tem sido baseada num conjunto de técnicas que incluem a detecção

de anomalias, detecção de uso malicioso com base em assinaturas de ataques conhecidos e

métodos híbridos. No IDS baseado em detecção de anomalias, o perfil de comportamento

normal deve ser definido antecipadamente. Qualquer desvio significativo em relação a

esta norma pode ser considerado uma anomalia comportamental característica de uma

invasão Masdari e Khezri 2020.Embora os IDSs baseados em anomalias possam lidar com

novos tipos de ataques, definir e atualizar o comportamento normal pode ser um desafio

em organizações grandes e dinâmicas Farahnakian e Heikkonen 2018.
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Por outro lado, em You et al. 2022 é dito que:

• A detecção baseada em assinaturas, que compara o padrão de uma ameaça em curso

com regras pré-existentes, não é eficaz na detecção de novos tipos de ataques, muito

embora apresentem alta precisão de detecção para os ataques conhecidos.

• Além disso, elas experimentam muitos casos de falsos positivos para ameaças inédi-

tas, algo que limita suas implantações em sistemas críticos.

Os desafios encontrados ao detectar anomalias em cibersegurança :

• Anomalias geralmente são raras, levando a dificuldades na modelagem e treinamento

de algoritmos. Isso dificulta a construção de modelos supervisionados e pode levar

a vieses em favor da classe majoritária, gerando altas taxas de falsos negativos ou

falsos positivos Kohli e Chhabra 2025.

• Problemas de qualidade dos dados, como ruído, entradas ausentes ou inconsisten-

tes, podem degradar drasticamente o desempenho. Modelos avançados requerem

pre-processamento robusto para lidar com esses problemas. Algoritmos modernos,

redes neurais profundas, têm poder para capturar essas complexidades, mas exigem

recursos computacionais e ajustamentos sofisticados Kohli e Chhabra 2025.

• Robustez a ruídos e variações contextuais Dados reais são ruidosos e podem conter

outliers não representativos de anomalias verdadeiras. Além disso, anomalias podem

ser contextuais (válidas em um contexto, anômalas em outro), exigindo modelagens

sensíveis a variáveis externas e variações de escala Adhikari et al. 2024.

Para abordar essas questões, técnicas convencionais de aprendizado de máquina têm

sido amplamente utilizadas para detecção de intrusão. Os trabalhos Yang et al. 2022 e El-

sayed, Mohamed e Madkour 2024 mencionam que os modelos tradicionais de aprendizado

de máquina, tais como árvores de decisão, máquinas de vetor de suporte e random forest

falham em detectar os ataques em dados de alta volumetria, são menos robustos a ruí-

dos e outliers e têm dificuldade de extrair padrões de dados complexos. Ainda em Yang

et al. 2022 os algoritmos tradicionais de aprendizagem de máquina geralmente sofrem

com a alta dimensionalidade, uma solução comum é usar técnicas de pré-processamento

de dados que podem ajudar a reduzir a dimensionalidade, contudo os métodos de pré-

processamento (ex, redução de dimensionalidade e seleção de features) podem afetar o
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Figura 1. Prejuízo causado por ciberataques ao longos dos anos. A partir de 2024 são projeções de gastos.

Fonte: https://www.weforum.org/stories/2024/07/crowdstrike-global-it-outage-cybersecurity-news-july-
2024/.Acessado em 14-02-2025.

desempenho da detecção ao acrescentar uma camada de latência no pipeline, logo devem

ser cuidadosamente considerados no projeto de métodos de detecção de intrusão, enquanto

essas mesmas técnicas de pré-processamento não são imprescindíveis em Deep Learning

(DL). Modelos de DL são úteis para ambientes de rede complexos e de grande escala,

com o potencial para extrair padrões distintos dos dados sem que para isso seja necessário

recorrer a técnicas de feature engineering Kouliaridis, Kambourakis e Geneiatakis 2020.

Como resultado, vários pesquisadores neste campo se concentram no desenvolvimento de

IDS baseados em DL, Farhan et al. 2025,Zhang et al. 2022,Liao et al. 2024,Elsayed, Moha-

med e Madkour 2024, uma vez que conseguem detectar ameaças via processo de detecção

de anomalias nos dados, ao invés de depender de assinaturas de ameaças conhecidas Yi

et al. 2022.

Não obstante, modelos DL são vulneráveis a ataques adversariais, os quais são cons-

tituídos por pequenas perturbações adicionadas ao modelo com o objetivo de modificar

a saída Goodfellow, Shlens e Szegedy 2015. No presente trabalho a robustez de um mo-

delo é entendida como sua capacidade manter a performance classificatória em presença

das amostras adversariais Zhang et al. 2019,Tsipras et al. 2019, Madry et al. 2017. Tal

avaliação pode evitar que agentes maliciosos explorem a vulnerabilidade dos modelos e

evadam o IDS Jmila e Khedher 2022 causando danos financeiros e a reputação da empresa

atingida.

Em particular, Lin, Shi e Xue 2022, Shu et al. 2020 e Wu et al. 2019 demonstram a

aplicabilidade de ataques adversariais evasivos a dados estruturados, introduzindo uma
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vulnerabilidade significativa a aplicações de segurança cibernética.

Além disso, é pertinente enfatizar que as redes neurais profundas podem degradar

significativamente o seu desempenho preditivo em razão de mudanças na distribuição dos

dados. Isso ocorre porque uma premissa dos modelos é que os dados de teste mantenham

a distribuição dos dados de treino; no entanto, isso não é factível ao colocar o modelo

em produção Bulusu et al. 2020. Portanto, é evidente que um modelo confiável deve

conseguir não apenas reconhecer amostras In-distribution (ID) como também OOD, desse

modo evita-se que o modelo atribua erroneamente um alto nível de confiança a classes

desconhecidas ou a amostras adversariais.

Uma solução direta para contornar o problema de dados OOD é coletar alguns dados

do domínio de destino para adaptar um modelo treinado no domínio de origem Zhou et

al. 2021. Esse problema de adaptação de domínio – usualmente mencionado como Domain

Adaptation (DA) na literatura relevante – vem recebendo crescente atenção Lu et al. 2020,

Saito et al. 2017 e Long et al. 2015 ao longo dos anos. No entanto, a DA depende de uma

forte suposição de que os dados de destino são acessíveis para adaptação do modelo, o que

nem sempre se mantém na prática e faz DA ficar alinhada a um domínio em particular.

Na verdade, em muitas aplicações, os dados de destino são difíceis de obter ou mesmo

desconhecidos antes de implementar o modelo.

Por exemplo, na segmentação semântica de cenas de tráfego, é inviável coletar dados

capturando todas as cenas diferentes e sob todas as condições climáticas possíveis Yue

et al. 2019. Para superar o problema de mudança de domínio, bem como a ausência

de dados de destino, a abordagem generalização de domínio ( Domain Generalization

(DG)) foi introduzida Blanchard, Lee e Scott 2011. Especificamente, o objetivo em DG é

otimizar um modelo usando dados de um ou múltiplos domínios de origem relacionados,

mas distintos entre si, de tal forma que o modelo possa generalizar bem para qualquer

domínio de destino a partir do aprendizado de representações invariantes. Para dar um

exemplo, pode-se treinar um modelo meteorológico usando imagens diurnas com neve ou

chuva e testar em imagens com neblina, que por não serem vistas no treinamento será

detectada como OOD ao invés de o modelo errar com alta confiança.

Vários métodos lidam com o problema de generalização de OOD. Isto inclui métodos

baseados no alinhamento de distribuições de domínio de origem para DG Li et al. 2018.

Métodos que expõem o modelo à mudança de domínio durante o treinamento via meta-

aprendizagem Balaji, Sankaranarayanan e Chellappa 2018 e métodos que aumentam dados
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com síntese de domínio Zhou et al. 2020. Além disso, há também os modelos robustos a

amostras adversariais, como apontados por Lee et al. 2018 e Malinin e Gales 2019.

Deve ser dito que nos trabalhos anteriores em detecção de intrusão para redes, tais

como o trabalho de Hashemi e Keller 2020, que apesar de levar em consideração as restri-

ções em dados tabulares, os autores usam ataques adversariais white box sem adaptação

apropriada aos dados de fluxo de rede, potencialmente gerando amostras inválidas. Liang

et al. 2022 embora não utilizou as restrições de dados tabulares, porém utiliza um de-

tector OOD para amostras não vistas no treinamento. Ceccarelli e Zoppi 2023 utilizaram

ataques black box seguindo as restrições e uso de out of distribution para amostras clean,

portanto é um método que pode não ser seguro a ataques white-box ou mesmo a ataques

que evadam o detector OOD. Paya et al. 2023 usaram ataques white box baseado em um

modelo de ameaça Insider Threat e com restrições para dados tabulares, no entanto o

método dos autores detecta ataques black-box, mas não é robusto a amostras adversariais

white-box. O presente trabalho traz como diferencial: utilizar ataques white e black box

modificados para que as amostras sejam estimadas pelos métodos a partir da restrição por

máscara binária. E tanto ataques black box baseados em consultas como os de transferên-

cia. O detector OOD é usado para detectar classes não vistas no treinamento e amostras

adversariais.

1.1 OBJETIVO

No presente trabalho é proposta uma metodologia em duas etapas para robustez ad-

versarial e detecção de dados OOD em um NIDS. Na primeira etapa, é proposto um

classificador treinado adversarialmente e na segunda etapa, um detector os dados OOD.

1.2 OBJETIVOS ESPECÍFICOS

• Desenvolver um modelo deep learning para segurança de rede, porém robusto contra

ataques adversariais;

• Implementar um esquema em duas etapas, tornar o sistema de detecção de intrusão

capaz de detectar amostras OOD;

• Fazer com que o modelo proposto seja tanto robusto a amostras adversariais quanto
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capaz de detectá-las, deste modo tornando-o apropriado para detecção de uma maior

diversidade de ataques;

1.3 APRESENTAÇÃO

Este trabalho está dividido com a seguinte organização: o Capítulo 1 apresenta o pro-

blema e as motivações que levaram a esta pesquisa. O Capítulo 2 apresenta uma explica-

ção sobre detecção de ataques em redes e demonstra os principais tipos de implementação

para detecção. Também são expostos alguns conceitos básicos para o entendimento deste

trabalho e apresentar uma revisão bibliográfica para os conceitos apresentados, e por fim

apresentar o estado presente dos artigos relacionados ao tema. No Capítulo 3 é apre-

sentada a proposta deste trabalho. No Capítulo 4 são apresentados os experimentos e

resultados. O Capítulo 5 apresenta as conclusões e sugestões para trabalhos futuros.
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2 DETECÇÃO DE INTRUSÃO

2.1 ATAQUES A REDES

Redes de computadores, sejam públicas ou privadas, são vulneráveis a diversas formas

de invasão. Por exemplo, um usuário pode baixar arquivos de um site, e um desses arquivos

pode roubar e enviar informações privadas pela internet. Outra tática comum é o invasor

se passar por uma pessoa de confiança para obter dados confidenciais. Em ambos os

cenários, a interação do usuário é um fator crítico para o sucesso da invasão Bishop 2018.

Todavia, há ataques que exploram vulnerabilidades a partir do contato com os sis-

temas operacionais presentes nos dispositivos conectados. Esses ataques são realizados

diretamente via rede e parecem fluxos de tráfego de rede normais. Uma intrusão de rede

pode ser passiva (caracterizada pela obtenção de acesso de forma silenciosa e indetectá-

vel, com o objetivo principal de coletar informações) ou ativa (envolvendo a obtenção de

acesso secreto para realizar modificações nos recursos da rede, como a alteração de dados

ou configurações) Bishop 2018.

Nos ataques passivos, o invasor apenas monitora a rede da vítima, analisando o fluxo

de tráfego ou verificando portas abertas. Isso ajuda o adversário a obter informações so-

bre quais portas são muito usadas e quais estão ociosas. O principal objetivo dos ataques

passivos é coletar informações sobre o sistema alvo. Eles não pretendem prejudicar o fun-

cionamento normal dos sistemas, porque querem passar despercebidos enquanto roubam

informações. Ataques passivos podem ocasionalmente abrir o caminho para ataques ativos

na rede alvo Stallings e Brown 2018.

Durante uma intrusão do tipo ativa, o invasor interfere ativamente no fluxo de dados

em uma rede e no funcionamento de um determinado dispositivo, instalando malwares

capazes de interromper o funcionamento do sistema ou vazar informações importantes

para o atacante. Ataques do tipo Negação de Serviço Denial of Service (DoS) são exemplos

de intrusão ativa. Neste ataque, o invasor ocupa a largura de banda do sistema alvo

e o mantém ocupado para que ele não possa atender solicitações de outras máquinas

internas ou externas. Uma variação do DoS é o ataque de Negação de Serviço Distribuído

Distributed Denial of Service (DDoS), onde vários invasores têm como alvo o mesmo

sistema de diferentes endereços IP e diferentes locais Bishop 2018.

Existem também ataques que visam coletar dados confidenciais de uma só vez ou
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como parte de uma conexão parasitária de longo prazo que continuará a sugar dados até

que sejam identificados. Alguns intrusos tentarão implantar um código que irá quebrar

senhas, capturar ações de pressão de teclas ou clonar o site enquanto redireciona usuários

desavisados para seu próprio endereço malicioso. Outros irão se infiltrar na rede, desvi-

ando furtivamente dados regularmente ou alterando páginas Web públicas com mensagens

variadas Vacca 2013.

Inúmeras técnicas foram desenvolvidas e aprimoradas ao longo do tempo com o ob-

jetivo de prevenir que redes de computadores sejam alvos de ataques maliciosos. Dentre

essas abordagens, uma das mais difundidas e eficazes é o IDS. O IDS atua como uma ferra-

menta de segurança proativa, monitorando continuamente o tráfego de rede e os eventos

dos sistemas em busca de padrões ou atividades que possam indicar uma tentativa de

intrusão Yin et al. 2023. Ao identificar comportamentos suspeitos, o IDS gera alertas,

permitindo que os administradores de rede tomem medidas corretivas em tempo hábil,

como bloquear o tráfego de origem do ataque ou isolar sistemas comprometidos.

Para auxiliar na modelagem de ameaças cibernéticas um framework muito impor-

tante é o MITRE - Adversarial Tactics, Techniques and Common Knowledge (MITRE

ATT&CK).

2.2 MITRE ATT&CK

O MITRE ATT&CK MITRE Corporation 2015-2025 é um framework largamente

aplicado em indústrias associadas a saúde, finanças e infraestrutura crítica Li, Huang e

Chen 2024. De acordo com Strom et al. 2020 é uma base de conhecimento organizada para

descrever métodos empregados em ciberataques. Propõe uma taxonomia para descrever o

comportamento dos invasores ao longo do ciclo de vida de um ataque. Abrange uma ampla

gama de sistemas e estratégias, sendo amplamente utilizados no compartilhamento de

dados sobre ameaças tecnológicas. Com o MITRE ATT&CK, um sistema de classificação

está em vigor para vários comportamentos hostis, dividido em três categorias:

• Empresarial: Detalha comportamentos em sistemas de TI típicos, como Linux ou

Windows.

• Mobile: Direcionado a dispositivos móveis, por exemplo, Android e iOS.
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• ICS (Industrial Control Systems): Voltado para reguladores industriais e, em maior

extensão, a sistemas ciberfísicos.

Sua estrutura se baseia nos seguintes conceitos-chave:

• Tática: Refere-se ao que um invasor faz para atingir um objetivo (descoberta, acesso

inicial, persistência e etc.).

• Técnica: É uma maneira de realizar uma atividade, representando como um intruso

atinge um objetivo tático por meio de ações.

• Procedimento: Refere-se a uma série de etapas bem definidas, uma instância parti-

cular do uso de uma técnica específica e descreve como um adversário implementa

essa técnica. Dentro deste conceito as técnicas são vistas como ações individuais ou

discretas e as táticas são a maneira de combinar essas ações.

No trabalho de Marinho e Holanda 2023 encontra-se o seguinte exemplo: suponha que

um agente malicioso pretende roubar dados confidenciais armazenados em um servidor de

uma empresa. Para fazê-lo, o intruso precisa encontrar uma maneira de entrar no sistema

alvo, em seguida se mover de host em host até chegar ao servidor desejado, finalmente

coletar e roubar os dados. A partir deste exemplo, entrar na rede alvo seria uma Tática

do tipo "acesso inicial"e pode ser realizada pela Técnica "credenciais válidas". Portanto,

cada um dos movimentos necessários, desde entrar na rede empresarial até o roubo dos

dados, pode ser mapeado na base MITRE ATT&CK, como também Táticas, Técnicas e

Procedimentos para mitigação de ataques cibernéticos.

2.3 SISTEMAS DE DETECÇÃO DE INTRUSÃO

Uma intrusão em um sistema ou rede é uma tentativa intencional não autorizada,

com ou sem êxito de: acessar, manipular, destruir ou usar indevidamente algum recurso

computacional e onde o uso indevido pode resultar ou tornar a propriedade não confiável

ou inutilizável Kizza 2024, Yin et al. 2020. Com o aumento da dependência das pessoas

em relação à tecnologia, disparou uma nova onda de crimes relacionados a computadores.
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Figura 3 – Classificação dos Sistemas de detecção de Intrusão.

2.3.1 Detecção de intrusão pelo tipo de implamentação

A Figura 3 apresenta uma classificação dos tipos de IDS. Dependendo do tipo de

implementação, ou deploy , existem dois tipos de IDSs: o Sistema de Detecção de Intrusão

de Rede (NIDS) e o Sistema de Detecção de Intrusão de Host (Host Intrusion Detection

System (HIDS)). Nos sistemas NIDS, o tráfego malicioso é detectado utilizando todos os

metadados e conteúdos de pacotes na rede. Em contraste, os sistemas HIDS realizam a

detecção de intrusão em apenas um endpoint, sendo capazes de proteger contra ameaças

internas e externas. Além disso, os sistemas HIDS formam uma camada de proteção

adicional, já que possuem a vantagem de conseguir detectar ataques que podem não ser

identificados pelo NIDS Mahdavifar e Ghorbani 2019.

2.3.2 Detecção de intrusão pelo tipo de detecção

Conforme o método de detecão, os modelos IDS podem ser entendidos como baseados

em Assinatura ou baseados em Anomalia. A detecção baseada em assinatura funciona

melhor para identificar ameaças conhecidas, onde detecta tráfego malicioso com base

em regras predefinidas Farahnakian e Heikkonen 2018. O IDS baseado em detecção de

anomalia detecta comportamento anormal ao modelar o comportamento normal por meio

da extração de padrões. Normalmente, o IDS baseado em anomalia pode descobrir ataques

complexos e desconhecidos, portanto, tendo melhor desempenho do que o IDS baseado

em assinatura para ataques novos. Existe também o tipo híbrido, o qual combina os

baseados em assinatura com os baseados em anomalias Bishop 2018. Desse modo há uma

diminuição de falsos positivos e a possibilidade de detecção de ataques que não estão

presentes no banco de dados do módulo baseado em assinatura. Entretanto são mais

difíceis de configurar, o que pode gerar uma classificação discordante entre os detectores
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e mais caros de implementar e manter Kizza 2024.

2.3.3 Detecção de intrusão pelo tipo de resposta

Conforme discutido em Thakkar e Lohiya 2020, um IDS pode ser classificado como

ativo ou passivo, com base em seu mecanismo de resposta quando um ataque é detectado.

Um IDS ativo, também conhecido como Sistema de Prevenção de Intrusão (Intrusion Pre-

vention System (IPS)), é configurado de tal forma que, assim que um ataque é detectado,

o sistema bloqueia automaticamente esses ataques sem nem mesmo consultar o analista de

segurança. Esse IDS fornece uma resposta em tempo real disparando um alarme quando

o ataque é detectado, bloqueando o ataque, gerando um relatório, criando um backup e

registrando todas as informações. Um IDS passivo, por outro lado, é configurado para

escanear e analisar o tráfego de rede e alertar o analista de rede para tomar outras medi-

das, como bloquear endereços IP, encerrar a conexão ou processo e bloquear a conta do

usuário. Thakkar e Lohiya 2020 ainda argumentam que um IDS passivo é mais fácil de

configurar e instalar e é menos suscetível a ataques em comparação com um IDS ativo.

2.3.4 Detecção de intrusão pelo tipo de arquitetura

Com base nos requisitos de infraestrutura, um IDS pode ser classificado como centra-

lizado e distribuído Thakkar e Lohiya 2020. Um IDS centralizado fica instalado em um

dispositivo central que é responsável por analisar o tráfego de rede e gerar um alarme

se algum padrão anormal for detectado. Essas informações são enviadas ao dispositivo

central por outros dispositivos na rede. A maior desvantagem desse sistema é que, se o

dispositivo central for hackeado ou não estiver funcionando, toda a rede estará suscetível

a mais ataques. Além disso, com o aumento dos logs de rede, o dispositivo central pode

ficar sobrecarregado devido à sobrecarga excessiva. Esse IDS centralizado toma decisões

independentes sobre intrusões na rede, portanto, também pode ser conhecido como um

IDS independente.

No caso de um IDS distribuído, cada dispositivo na rede pode detectar e responder a

intrusões. Tal IDS segue uma arquitetura hierárquica semelhante a uma árvore, onde cada

nó se comunica com outros nós em uma abordagem de baixo para cima. O IDS distribuído

toma decisões colaborativas em relação a um ataque detectado na rede, portanto também
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é conhecido como IDS colaborativo. Em seu trabalho de pesquisa sobre IDS, Thakkar

e Lohiya 2020 argumenta que alguns desafios enfrentados por um IDS distribuído são

balanceamento de carga, tolerância a falhas e detecção de ameaças internas.

A próximas seções discutem os conceitos pertinentes ao desenvolvimento da presente

pesquisa. Serão explorados os conceitos de ataques adversariais, treinamento adversarial

e detecção OOD (com ou sem associação a amostras adversariais).

2.4 ATAQUES ADVERSARIAIS

As amostras,exemplos ou ataques adversariais são definidas com uma alteração mí-

nima capaz de perturbar o modelo alvo com o objetivo de modificar completamente a

saída do classificador Szegedy et al. 2014. Na prática, a ideia é expor uma nova superfí-

cie de ataque para aplicações baseadas em aprendizagem de máquina. O surgimento de

ataques adversários motivou a pesquisa e o desenvolvimento em contramedidas a ataques

adversariais, especialmente em domínios críticos de segurança He, Kim e Asghar 2023.

Deve ser dito que dentre os tipos de ataques adversariais, o presente trabalho é focado

nos ataques evasivos, que podem alterar o resultado do NIDS baseado em DL durante a

inferência.

O estudo de Aprendizagem de Máquina Adversarial (Adversarial Machine Learning

(AdvML)) é responsável por analisar as fragilidades dos sistemas baseados em modelos

de inteligência artificial. Técnicas relevantes têm sido extensivamente empregadas nos

últimos anos, especialmente na área de visão computacional Xu et al. 2019. Contudo, na

segurança cibernética, a AdvML ainda necessita de novas contribuições, dada a presença

de agentes maliciosos e a alta relevância de manter a privacidade e consistência, bem como

a disponibilidade de informações. Portanto desenvolver técnicas de AdvML para defender

sistemas empregados em cibersegurança são imprescindíveis, visto que as ameaças surgem

e se renovam periodicamente.

A criação de amostras adversariais pode ser classificada de duas maneiras: a partir do

conhecimento do atacante sobre o modelo ou com base no objetivo do atacante Jmila e

Khedher 2022. Amostras baseadas no conhecimento do atacante descrevem a extensão do

conhecimento do adversário sobre o sistema NIDS. Neste cenário, podemos caracterizar

três níveis de riscos de ataque Han et al. 2021:
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• Ataques White-Box: O atacante tem acesso a todas as informações sobre o mo-

delo. Isto inclui dados de treinamento, detalhes da arquitetura do modelo, decisão

e parâmetros como gradientes e função de custo.

• Ataques Black-Box: Este é o caso oposto, onde o atacante não tem acesso ao modelo.

Portanto, ele precisa fazer várias consultas ao modelo alvo de forma que consiga

inferir alguma característica que o torne apto a construir uma amostra evasiva.

Esses ataques podem ser baseados em score, nos quais a saída do modelo alvo,

probabilidades ou logits, será usada para realizar o ataque. Além disso, eles podem

ser baseados em decisão, no qual as consultas têm como objetivo saber qual o rótulo

de classificação dado como saída pelo modelo Wang et al. 2022. Uma outra forma de

ataque considerada black-box é o ataque de transferência Demontis et al. 2018. Neste

tipo de ataque, o agente malicioso treina um modelo, cria ataques adversariais white-

box contra esse modelo e a partir dos ataques que conseguem evadi-lo,direciona

essas amostras adversariais contra o modelo alvo. Essa amostras dependem de que

o modelo do atacante tenha alguma semelhança com o modelo alvo, ou seja DL vs

DL ou Machine Learning (ML) vs ML, e não há necessidade que os dados utilizados

pelo atacante sejam os mesmos utilizados no treino do modelo alvo Grini et al. 2025.

• Ataques Grey-Box: Este cenário assume uma abordagem mais realista Jmila e

Khedher 2022, onde o atacante tem um conhecimento parcial do modelo alvo e

pode ter acesso limitado aos dados de treinamento. Embora não tenha as informa-

ções exatas, ele possui informações suficientes para poder atacar o sistema de DL e

induzir uma falha.

Quanto aos tipos de ataques que estão condicionados ao objetivo do invasor, seja o de

confundir completamente o sistema ou induzir uma previsão específica para determinadas

entradas, podemos listar a seguinte categorização:

• Ataques direcionados, ou targeted: direcionam o algoritmo de ML para uma classe

específica, ou seja, o adversário engana o classificador para prever todos os exemplos

adversários como uma classe alvo específica.

• Ataque não direcionado, untargeted: visa classificar incorretamente a amostra de

entrada para longe de sua classe original, independentemente da nova classe de
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saída. Eles são mais fáceis de implementar porque mais alternativas estão disponíveis

para reorientar a saída. Observe que em problemas de classificação binária, ataques

direcionados e não direcionados são equivalentes.

Os ataques também podem ser compreendidos em termos do espaço das amostras Dyr-

mishi et al. 2022, sendo divididos em:

• Espaço do problema: no caso do NIDS, corresponde à dimensão do fluxo de pacotes

e demais objetos de rede;

• Espaço de atributos: é equivalente ao vetor de atributos comumente usado para

treinar/avaliar os modelos ML e DL .

2.4.1 Trabalhos anteriores em robustez adversarial via treinamento adversarial

Apesar de aumentar o custo computacional do treino e reduzir as métricas quando

comparadas a um treinamento normal Zhang et al. 2019, o treinamento adversarial, Fig 4

é uma técnica considerada eficiente para robustez dos modelos a amostras evasivas , pois ao

perturbar as amostras de entrada durante o treino, age como uma regularização, encoraja

o modelo a aprender uma superfície de decisão mais suave, reduzindo a sensibilidade a

perturbações Tsipras et al. 2019, Sinha, Namkoong e Duchi 2018, Bajaj e Vishwakarma

2023, como também induz ao aprendizado de feaures invariantes e discriminativas, o que

pode contribui para uma melhor separação intra-classe Qian et al. 2022,Costa et al. 2023.

Esse tipo de treinamento consiste basicamente na geração de amostras adversárias a

partir das amostras não perturbadas usadas como entrada no modelo Muhammad e Bae

2022 Fig 5.

Em Madry et al. 2017 é formulado como uma otimização min-max (Equação 2.1) para

encontrar os piores exemplos possíveis (dentro de limites) forçando o modelo a aprender

parâmetros que o tornem mais robusto.

min
𝜃

E(𝑥,𝑦)∼𝒟

[︂
max
𝛿∈𝒮

ℒ(𝑓𝜃(𝑥 + 𝛿), 𝑦)
]︂

(2.1)

Onde cada termo da equação 2.1 representa:

𝜃: Parâmetros do modelo.
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𝒟: Distribuição dos dados de treinamento.

(𝑥, 𝑦): Par de entrada e rótulo extraído da distribuição 𝒟.

𝛿 ∈ 𝒮: Perturbação adversarial dentro de um conjunto de restrições 𝒮 (como uma bola

ℓ𝑝).

ℒ: Função de perda (ex.: entropia cruzada).

𝑓𝜃(𝑥 + 𝛿): Saída do modelo, com parâmetros 𝜃, após aplicação da perturbação 𝛿 à entrada

𝑥.

Algorithm 1 Treinamento Convencional
1: Inicialize pesos 𝜃
2: for época = 1 até N do
3: for minibatch (𝑥, 𝑦) do
4: 𝑦pred ← 𝑓(𝑥; 𝜃)
5: ℒ ← loss(𝑦pred, 𝑦)
6: Atualize 𝜃 com ∇𝜃ℒ
7: end for
8: end for

Algorithm 2 Treinamento Adversarial
1: Inicialize pesos 𝜃
2: for época = 1 até N do
3: for minibatch (𝑥, 𝑦) do
4: 𝑔 ← ∇𝑥loss(𝑓(𝑥; 𝜃), 𝑦)
5: 𝑥adv ← 𝑥 + 𝜖 · sign(𝑔)
6: 𝑦pred ← 𝑓(𝑥adv; 𝜃)
7: ℒ ← loss(𝑦pred, 𝑦)
8: Atualize 𝜃 com ∇𝜃ℒ
9: end for

10: end for
Figura 4 – Comparação entre o treinamento convencional e treino adversarial

Um dos métodos usados para treinamento adversarial é o Fast Gradient Signed Method

(FGSM), proposto por Goodfellow, Shlens e Szegedy 2015. Essencialmente, os autores do

Figura 5 – Efeito do treino adversarial na fronteira de decisão

Adaptado de Taheri et al. 2020
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método estudaram os efeitos da geração de amostras adversárias em modelos lineares

e não lineares. Embora tenham conseguido aumentar a robustez dos modelos, testaram

contra um ataque também baseado no FGSM. Madry et al. 2017 argumentam que o uso

de ataques de passo único, tal como o FGSM, pode resultar em overfitting e propuse-

ram um ataque multi-passos baseado numa otimização min-max. Seu método tem como

vantagem gerar um modelo que é mais robusto do que um treinado em FGSM, embora

aumente consideravelmente o tempo de treinamento, problema este que é comum a outros

treinamentos adversariais.

Devido à constatação de que o erro associado à robustez pode ser causado tanto por

erro do treinamento associado às amostras usadas, quanto pelas perturbações adicionadas

que modificam as amostras, Zhang et al. 2019 desenvolveram um método que possibilita

um melhor controle do trade-off acurácia-robustez baseado no valor de um hiperparâ-

metro na função de custo por eles proposta. Os autores combinaram entropia cruzada e

divergência Kullback-Leibler e essa abordagem na função de custo se mostrou promissora

e ainda é utilizada em treinamentos adversariais Wang et al. 2019,Wang et al. 2020 e

Nandi et al. 2023.

Indo numa direção diferente, Wang et al. 2019 perceberam diferenças na robustez ao

considerar amostras não atacadas que foram classificadas erroneamente pelo modelo. Em

particular, os autores perceberam que a minimização feita no treinamento adversarial

min-max é sensível a estes erros. O tipo de treinamento que eles apresentam utiliza uma

função de custo com uma regularização que permite diferenciar amostras corretamente

classificadas das classificadas erroneamente.

De acordo com Nandi et al. 2023, os treinamentos adversários disponíveis são restritos a

perturbações muito pequenas, o que poderia gerar vulnerabilidade diante de perturbações

um pouco mais significativas. Para resolver o problema, propuseram um treinamento que

é robusto a um intervalo de perturbações baseado em uma combinação de ruído gaussiano

e ruído uniforme, o qual gera uma faixa que resulta na robustez do modelo.

2.5 DETECÇÃO DE AMOSTRAS OOD

A razão fundamental de usar métodos para detecção de OOD é diferenciar entre dados

ID, ou seja, dados da distribuição de treinamento, e os dados fora de distribuição, que po-

dem se originar de uma fonte ou contexto diferente do encontrado durante o treinamento.
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Um NIDS confiável deve produzir previsões acuradas e, ao detectar exemplos desco-

nhecidos, rejeitá-los. No entanto, a maioria dos modelos DL são treinados com premissas

"mundo fechado", ou seja, a distribuição dos dados na inferência é a mesma dos dados

de treinamento. Porém, tal fenômeno não costuma ser observado nos modelos em produ-

ção Yang et al. 2024. Na verdade, após a implantação do modelo, ocorrem as amostras

consideradas OOD, as quais degradam a performance do modelo, diminuindo assim sua

confiabilidade Zhou et al. 2021.

Conforme discutido por Yang et al. 2024, as modificações na distribuição dos dados

podem ser causadas por:

• Mudanças semânticas: onde há classes diferentes das vistas no treinamento;

• Mudanças de covariável, ou variável preditora: as quais são resultantes de

diferenças entre domínios, refletindo mudanças nas propriedades estatísticas dos

dados na inferência. Essas mudanças podem incluir mudanças na escala, estilo ou

padrões dos dados. Karunanayake et al. 2025 ainda cria uma subdivisão em três

categorias:

i) detecção de anomalia sensorial/outlier;

ii) robustez adversarial;

iii) generalização de domínio.

Embora as técnicas ii e iii relacionadas a mudanças de covariável compartilhem o objetivo

de melhorar a generalização do modelo, ao aplicar a NIDS elas variam em sua resposta à

intenção maliciosa causada por mudanças na distribuição.

2.5.1 Robustez adversarial em OOD

Sehwag et al. 2019 testaram a robustez de um modelo OOD a ataques adversários

evasivos. Os autores concluiram que o método em questão não detectava as amostras

adversárias. No entanto, apenas recentemente foram propostos modelos focados em OOD

com robustez a amostras adversariais.

A partir de distribuições gaussianas condicionadas por classe, Lee et al. 2018 criaram

um método para pontuações de confiança por distância Mahalanobis. Este método con-
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segue detectar amostras adversárias e OOD.No presente trabalho, a detecção de OOD e

amostras adversariais é feita com base neste método.

Em Malinin e Gales 2019, os autores propuseram uma função de custo para Prior

Networks (PN). Em sua pesquisa perceberam que a função divergência Kullback-Leibler

reversa é mais apropriada para lidar com as estimativas de incerteza feitas pelas PN.

Entretanto, para além da quantificação de incerteza nesse tipo de rede, a abordagem dos

autores permite OOD e detecção de amostras adversárias com norma ℓ2 e ℓ∞.

Em Arjovsky et al. 2019 é desenvolvido o método Invariant Risk Minimization (IRM)

para estimar correlações invariantes entre múltiplas distribuições durante o treino. Porém

Xin et al. 2023 afirmam que esse método não é suficiente para detecção de OOD. Uma vez

que IRM consegue detectar mudanças na distribuição, mas é inapropriado para mudanças

de diversidade na amostra, os autores [Xin et al. 2023] então propõem uma combinação

de treino adversário e IRM para detecção de ambos os tipos de mudança.

Wang et al. 2022 usaram o universal attack Moosavi-Dezfooli et al. 2016 para melhorar

detecção de amostras adversárias. Especificamente, seu método gera amostras adversárias

de baixo posto matricial numa imagem, o que resultou em detecção de OOD e robustez

exclusivamente a ataques de norma ℓ2. Particularmente, a abordagem dos autores resultou

numa melhor generalização para grandes perturbações.

Nas seções seguintes serão apresentados resumidamente os trabalhos publicados que

embasam esta dissertação. Sendo assim são abordados aqui: detecção de intrusão em redes

com e sem inclusão de robustez adversarial e intrusão em redes com uso de OOD.

2.6 DETECÇÃO DE INTRUSÃO EM REDES

Sistemas IDS representam uma camada defensiva adicional contra acessos não autori-

zados em redes e computadores. Eles complementam outras medidas de segurança, como

controle de acesso e procedimentos de autenticação, formando um sistema de proteção

integrado. No contexto de IDS com arquitetura baseada em DL, distinguem-se três abor-

dagens principais: aprendizado único, aprendizagem em comitê e aprendizado híbrido.

Geralmente, essas metodologias são aplicadas em classificadores que têm a função de

discernir entre um fluxo de dados normal e um ataque.

• Aprendizagem única: Um único algoritmo de aprendizagem de máquina é usado
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como NIDS ou HIDS.

• Aprendizagem em comitê: A combinação de vários modelos é chamada de co-

mitê. Classificadores combinados geram melhores resultados, comparados à metodo-

logia de aprendizagem única. Pode ser usado o método "voto majoritário"para obter

melhor performance na classificação, como também podem ser utilizadas outras

técnicas como bagging e boosting, onde são feitas reamostragens no treinamento.

• Classificadores híbridos: Combina métodos baseados em assinaturas e ML para

melhorar o desempenho classificatório. Há dois componentes funcionais, onde o pri-

meiro usa os dados de entrada e produz um resultado intermediário que será usado

pelo segundo componente, o qual será responsável pela classificação.

Tang et al. 2016 propuseram o uso de uma Multi-Layer Perceptron (MLP) com 5

camadas para NIDS em Sofware-Defined Networking (SDN). Utilizaram o daset NSL-

KDD [Tavallaee et al. 2009] e pré-processamento manual para redução de features. Com a

redução na quantidade de features, onde apenas 6 das 41 features originais foram utiliza-

das. Segundo os autores o modelo resultante é leve e apropriado para redes tipo SDN, em

razão da quantidade de features. Eles concluem que seus resultados mostram a viabilidade

de usos do DL para detecção de anomalias.

Potluri e Diedrich 2016 usaram um modelo DL para NIDS. Usando o dataset NSL-

KDD como benchmark, os autores agruparam as classes para um modelo binário. Em

particular, obtiveram métricas como Precisão e ROC-AUC em torno de 99%. Ao tentar

abordar o problema via classificação multiclasse, tiveram dificuldade com as classes mi-

noritárias. Deve ser dito que o problema do desbalanceamento em datasets ainda é um

desafio para muitos modelos de ML e DL Chen et al. 2024.

Kang e Kang 2016 propuseram melhorar a segurança de redes veiculares através de

um IDS baseado em DL, com um foco em Controller Area Network (CAN). Os autores

treinaram o modelo com dados a partir dos vetores de características do CAN. Para

melhorar as métricas classificatórias Acurácia, Precisão e Recall, eles utilizaram para

pré-processamento uma rede tipo Deep Belief. Usando uma MLP como algoritmo de

classificação, os autores simularam dados CAN com 200 000 pacotes. A acurácia do modelo

ficou em 97.8% e falso positivos em 1.6%. Segundo os autores, o tempo de extração
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ficou em média 8 microssegundos. Segundo os autores esta baixa latência torna o modelo

apropriado para aplicações de tempo real.

O trabalho de [Zhou et al. 2018] foca em detectar ataques em smart grids. Os autores

usaram um Stacked Denoising Autoencoder como classificador DL e compararam seu

desempenho com os métodos: Random Forest, K-Nearest Neighbors (KNN) e Regressão

Linear. O modelo proposto obteve as melhores métricas – Acurácia e F1-Score – segundo

os autores, pode ser aplicado a situações onde se exige classificação em tempo real.

Os autores em [Darem et al. 2021] usam um DL com treinamento semi-supervisionado

para detecção de malwares que se ofuscam. Levaram em consideração features de rede

e host, transformando os dados utilizados em imagens de 8 bits e usaram algumas téc-

nicas como salientar segmentos e intensidade de pixels, combinando com contagem de

caracteres dos arquivos ASM dos malwares. Em seguida, fizeram uma seleção de features

usando Random Forest. O modelo utilizado é uma combinação entre uma rede neural

convolucional e um comitê xgboost. Os autores reportaram resultados em torno de 99%

para métricas como acurácia a ROC-AUC.

[Maseer et al. 2021] realizaram um benchmark de modelos MLP, rede convolucional e

mapa auto-organizável. Entre os modelos de ML foram incluídos na comparação: árvore

de decisão, KNN, k-means e naive bayes. Os modelos foram treinados com o conjunto

de dados CIC IDS2017, utilizando 38 das 80 features presentes no dataset. Os resultados

mostram que os modelos com melhores desempenho foram árvores de decisão e KNN,

em particular, obtiveram 99% na acurácia. Já os modelos DL obtiveram performance

comparável aos modelos ML com 99% na acurácia, excetuando o mapa auto organizável,

o qual alcançou 59% de acurácia. Os autores concluem que, embora os algoritmos de ML

sejam mais rápidos no treinamento, eles pretendem pesquisar melhorias para modelos DL

em termos acurácia de detecção.

2.7 ROBUSTEZ ADVERSARIAL EM NIDS

Modelos de DL têm sido amplamente aplicados à cibersegurança devido às suas robus-

tas capacidades de generalização. No entanto, a vulnerabilidade desses modelos a ataques

adversariais representa um ponto fraco em sistemas de defesa que dependem desses al-

goritmos. Consequentemente, há um interesse crescente em desenvolver métodos para

mitigar ataques a modelos de DL em IDS.
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Usando dados do CIC-IDS 2017 para benchmark, Pawlicki, Choraś e Kozik 2020 propu-

seram um sistema com dois classificadores, sendo o primeiro voltado para o fluxo normal

ou ataques e o segundo para discriminar fluxo benigno ou amostras adversariais. A par-

tir da extração da ativação das camadas do classificador IDS, os autores rotularam um

subconjunto de dados, contendo a informação das ativações do primeiro classificador, e

treinaram o segundo classificador. O método obteve resultados acima de 95% para as

métricas Acurária e F1-Score com as amostras adversariais.

Um modelo de reconstrução por observação parcial foi proposto por Hashemi e Keller

2020. Especificamente, a abordagem foca em ataques adversariais mais realistas em ter-

mos de manipulação das features. Utilizando um denoising autoencoder para detecção de

anomalias, os autores fizeram uma replicação de amostras, por 100 vezes, com mascara-

mento de até 75%. Em seguida, foi efetuada uma seleção das amostras com menor erro

de reconstrução obtido pelo autoencoder. Por fim, os autores estimam o limiar no qual

a amostra é adversarial ou não a partir do score de reconstrução do agrupamento dos

dados.

Em [Peng et al. 2020], os autores usam uma Generative Adversarial Netork (GAN) [Go-

odfellow et al. 2021] para detecção pré-IDS a partir do erro de reconstrução. Baseado numa

arquitetura GAN bidirecional e estimativas de erros por feature matching. A proposta usa

as saídas em valores absolutos de uma função que estima o custo do encoder-gerador e

encoder-discriminador juntamente com uma função de score criada pelos autores. A de-

pender do score, o modelo seleciona quais amostras irão para o IDS ou quais seriam

descartadas. Deixam para um trabalho futuro, um método adaptativo para estabelecer

limiar.

Em Zhang, Costa-Pérez e Patras 2020 é utilizado um comitê de três classificadores com

treinamento adversarial Projected Gradient Descent (PGD), combinado com um encoder

contrastivo [Chen, Carlini e Wagner 2019] para detectar consultas associadas a ataques

black-box. Testaram com os dados CIC IDS2018 e os ataques adversariais: FGSM,PGD,

opt attack Liu, Sun e Li 2020, hopskipjump Chen e Jordan 2019 e boundary Brendel,

Rauber e Bethge 2017. Uma das vantagens desse método é que ao detectar as consultas

dos ataques black-box, isso diminuiu a capacidade de perturbação feita pelos métodos

adversariais.

Uma abordagem baseada em detecção foi proposta por Wang et al. 2022, utilizando um

sistema de decisão baseado na variedade topológica dos dados na inferência. Os autores
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notaram que amostras adversárias ocorrem próximo a variedade que as originaram, por-

tanto próximos à fronteira de decisão do modelo, assim os ataques geram as perturbações

imperceptíveis. Com o CIC-IDS 2017 e NSL–KDD para seus experimentos, utilizaram os

ataques FGSM, Basic Iterative Method (BIM) e Carlini-Wagner (CW). Uma das van-

tagens dessa abordagem é amenizar o trade-off entre acurácia-robustez mencionado em

Zhang et al. 2019 uma vez que não usa treino adversarial, contudo o trabalho não mostra

se o método detecta ataques black-box.

Chauhan e Shah-Heydari 2020 propuseram um método baseado em GAN para criar

versões adversariais do ataque DDoS a partir do CIC IDS2017. Seu método tem a vanta-

gem de criar ataques realistas no espaço de features. Para tornar o modelo IDS baseado

em DL mais robusto a este ataque, fizeram o treinamento a partir do modelo generativo

atacante, o que aumentou em até 79% a capacidade de detecção dos ataques adversariais

criados.

2.8 OOD EM NIDS

Corsini e Yang 2023 realizaram um estudo comparativo entre métodos OOD em mo-

delos DL para NIDS. Seu trabalho avaliou cinco métodos de OOD num classificador MLP

primeiro com e depois sem função de custo contrastiva. Para validar a eficácia do método,

utilizaram dados CIC IDS2017. Já para simular dados OOD, utilizaram o CIC IDS2018 1.

Segundo os autores, houve melhora na detecção para os modelos MLP testados indepen-

dentemente da função de custo. Além disso, o OOD possibilitou detectar ataques que não

foram percebidos pelo NIDS em razão da mudança de distribuição.

Os autores em [Ceccarelli e Zoppi 2023] desenvolveram um NIDS com ausência de

conhecimento prévio de ataques. Os ataques foram criados a partir das imperfeições dos

dados normais com técnicas de aumento de dados usando GANs para dados tabulares.

Os autores usaram o CIC IDS2018 e o ADFA para avaliação. Os resultados iniciais do

seu NIDS baseado em DL, que detecta anomalias, superaram os do outro modelo usado

como baseline que utiliza apenas detecção de baseada em classe única. Assim, o modelo

final foi um detector binário seguido de outro detector para OOD. De forma resumida, a

classificação binária no geral ficou entre 98% e 99%. Já para o modelo baseado em classe

única, ficou em 95%.
1 https://www.unb.ca/cic/datasets/ids-2018.html.
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Zhao et al. 2022 propuseram um NIDS voltado para uma CAN em veículos. Seu

método consegue identificar ataques conhecidos e desconhecidos. A abordagem por eles

desenvolvida tem como base uma GAN adicionando um classificador auxiliar e detecção

de OOD. Os autores testaram 4 arquiteturas baseadas em redes convolucionais, todas

elas juntamente com o detector OOD, porém três delas com uso da GAN no treino. Um

dos modelos obteve bons resultados nas métricas de avaliação (Precisão, Recall e F1-

Score) e segundo os autores foi eficiente computacionalmente com tempo de inferência

da ordem de 0.2 milissegundos. O estudo conclui que a combinação de treino com GAN,

classificador binário e OOD é eficiente na defesa para redes veiculares, podendo inclusive

ser implementado em sistemas embarcados.

Wong et al. 2023 comparam 4 modelos DL MLP com outros 4 modelos DL bayesianos,

e quantificam incerteza com o método Monte Carlo Hamiltoniano. Segundo os autores,

mesmo os modelos MLP não são confiáveis quando se trata de ataques zero-day. Ao usar

quantificação de incerteza para discriminar ID e OOD, eles conseguiram uma melhora

de aproximadamente 87% na detecção de ataques não vistos no treinamento. O trabalho

conclui que apesar do custo computacional dos modelos bayesianos, a melhora na detecção

foi considerada satisfatória para ataques zero-day em versões modificadas dos datasets

CIC IDS2017 e UNSW-NB15.

2.9 ATAQUES ADVERSARIAIS EM OOD

Liang et al. 2022 aplicaram few-shot learning para NIDS Internet of Things (IoT) em

ambientes industriais. Especificamente, os autores utilizaram os datasets NSL-KDD e CIC

IDS2017, e o modelo proposto sendo capaz de lidar com o desbalanceamento de ambos.

O método densenvolvido mostrou ser capaz de detectar comportamento malicioso com

poucos dados disponíveis. A partir de modificações feitas nos datasets, os autores ainda

simularam OOD e sua abordagem obteve métrica F1 score para ID entre 95% e 98%,

além de um ROC-AUC em 98% para OOD. Testaram, inclusive, a resiliência do modelo

a ataques adversariais baseados em transferência e concluíram que o modelo também foi

robusto a esse tipo de ataque, pois as perturbações causaddas no modelo proposto foram

inferiores a 1% (ROC-AUC) para as diferentes intensidades do ataque.
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3 METODOLOGIA

Este capítulo apresenta a metodologia utilizada no desenvolvimento, treinamento e

avaliação da solução de detecção de intrusão proposta. O desenvolvimento foca em treinar

um modelo deep learning de forma a torná-lo robusto tanto a ataques adversariais quanto

à presença de dados fora da distribuição original.

3.1 TABNET

Embora redes neurais profundas se destaquem em dados de imagem, texto e áudio,

elas não representam necessariamente o estado da arte quando se trata de dados tabulares.

Geralmente, comitês como CatBoost Dorogush, Ershov e Gulin 2018 e XGBoost Chen e

Guestrin 2016 superam as redes neurais no tratamento de dados tabulares. Por essa razão,

têm sido propostas arquiteturas de Deep Learning (DL) para preencher essa lacuna. Uma

dessas arquiteturas é a TabNet Arik e Pfister 2019, que emprega um mecanismo de atenção

para selecionar atributos relevantes (Fig 6). Tem arquitetura flexível para aprendizado

supervisionado e auto-supervisionado e possui a vantagem de ser interpretável das formas

abaixo:

• Localmente Al e Sağıroğlu 2025: Quando é possível explicar ou entender as razões

por trás de uma predição individual (ou um pequeno conjunto de predições). Isso

significa analisar como os inputs específicos (por exemplo, features de uma amostra)

influenciaram a saída do modelo para aquela instância;

• Globalmente Arreche et al. 2024: Quando conseguimos descrever o comportamento

geral do modelo em todo o espaço de inputs. Isso envolve entender padrões, regras ou

tendências aprendidas pelo modelo. No caso da TabNet essa forma de interpretação

é via importância de features no conjundo de dados;
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Figura 6 – Camadas da TabNet

Camadas: Feature Transformer: Bloco com camadas totalmente conectadas e de normalização em lote;
Attentive Transformer: Gera uma máscara de atenção que pondera os atributos a serem usados na próxima
etapa; Step 𝑛: Etapa que foca em diferentes subconjuntos de atributos, promovendo diversidade de represen-
tação e esparsidade. Fonte: Arik e Pfister 2019

3.2 CONSIDERAÇÕES SOBRE A TABNET E INTERPRETABILIDADE

Embora a TabNet seja uma arquitetura baseada em atenção e pode gerar interpreta-

bilidade de resultados em forma de importância de features, isso não é necessariamente

aplicável em caso de treinamento adversarial Noack et al. 2020, portanto após o treino

com amostras adversariais tem-se um modelo robusto a alguns ataques ou até mesmo

a um tipo de norma ℓ𝑝 Madry et al. 2017,Nandi et al. 2023 sacrificando a confiança na

interpretabilidade Noack et al. 2020.

O trabalho de Si et al. 2023 destaca limitações estruturais e funcionais do uso de aten-

ção em cenários tabulares. Segundo eles os pesos de atenção da TabNet frequentemente

resultam em distribuições densas, sensíveis a pequenas perturbações, e que não necessa-

riamente refletem a real importância causal das variáveis de entrada. Deve ser dito que

já vem sendo propostos modelos de treinamento adversarial que tornam a interpretabili-

dade baseada em atenção robusta Kitada e Iyatomi 2021, porém este método conseguiu

em geral melhoras inferiores a 4% para as métricas utilizadas nos experimentos, o que

não é apropriado para ataques fortes, ou seja, ataques adversariais os quais se mantém

imperceptíveis e enganam o modelo com alta eficácia, tais como os que foram testados na

presente dissertação.
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3.3 IMPERCEPTIBILIDADE DE ATAQUES ADVERSARIAIS EM DADOS TABULARES

A maioria dos métodos para ataque adversarial foi desenvolvida para dados de ima-

gem, sua aplicação a dados tabulares requer consideração das características únicas destes

últimos. Além dos critérios baseados na distância, é necessário levar em conta a natureza

específica dos dados tabulares ao abordar a imperceptibilidade de ataques adversários.

No trabalho de He et al. 2024, onde foram estudados ataques adversariais em dados

tabulares, são enumerados os seguintes critérios para imperceptibilidade:

• Minimização da perturbação das features: A amostra criada pelo ataque deve ser o

mais próxima possível dos dados de entrada, e também nem todas as features devem

ser modificadas.

• Preservação da distribuição de dados estatísticos: Espera-se que os ataques estejam

alinhados com a distribuição dos dados de entrada. Exemplos adversários que se

desviam significativamente das propriedades estatísticas originais têm maior chance

de serem detectados pelo modelo.

• Perturbação de características numa faixa estreita: Em dados tabulares, cada fea-

ture tipicamente exibe uma distribuição única. Quando perturbações são aplicadas

entre features, features com distribuções mais estreitas sofrem mais impacto que

as features com distribução ampla. Portanto, para o ataque ser imperceptível, as

perturbações devem evitar alterar features com distribução estreita.

• Preservação da semântica das características: Em dados tabulares, cada feature

geralmente tem uma semântica definida e valores válidos. Porém, as perturbações

introduzidas pelos ataques adversariais podem alterar a semântica das features ou

modificar os valores para além da faixa de valores válidos (por exemplo, um campo

de idade que ao invés de 25 esteja 150). Logo, para garantir a imperceptibilidade

dos ataques em dados tabulares, a semântica precisa ser preservada.

• Preservação das interdependências de características: Dados tabulares podem conter

features interdependentes e para o ataque ser imperceptível features interdependen-

tes devem ser alteradas levando em consideração suas relações.
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Ainda em He et al. 2024 também são usadas as seguintes métricas de maneira a

observar as características que indicam imperceptibilidade.

3.3.1 Abordagem baseada em Desvio

Os autores em Lee et al. 2018 sugerem que ataques adversariais são um exemplo

especial de OOD, porém com o propósito de enganar um modelo. Apesar de exemplos

adversariais não serem considerados representativos da distribuição real em modelos predi-

tivos, uma entrada perturbada deve ser o mais semelhante possível à maioria das entradas

originais, para preservar a distribuição estatística dos dados.

Na presente dissertação, a métrica utilizada para medir o Desvio será a distância

Wasserstein. De acordo com Wu, Wang e Yu 2020 tem como vantagem conseguir captu-

rar a informação geométrica no espaço dos dados , ou seja, da importância em como a

“massa” distribucional das features se modifica. Portanto é uma métrica usada aqui para

quantificar o quanto a distribuição das features atacadas foram modificadas.

3.3.2 Abordagem baseada em Proximidade

A partir do critério de minimização da perturbação de features, um bom exemplo ad-

versarial introduzirá mudanças mínimas, que podem ser quantificadas mantendo a menor

distância possível do vetor de features original. Empregamos a norma ℓ𝑝 para medir a

distância de perturbação. Para medir a proximidade, serão usadas métricas de magnitude

de um vetor em espaços 𝑛-dimesionais. No presente caso, são elas: distância em linha reta

(distância ℓ2) e diferença máxima de características (distância ℓ∞).

3.3.3 Avaliação de imperceptibilidade adversarial em dados tabulares

Neste trabalho o desempenho dos classificadores de fluxo de rede serão avaliados

com as métricas: Precisão, Recall e ROC-AUC. Para o classificador/detector de out-of-

distribution será ROC-AUC. Desse modo pode-se ter a noção da dos Falsos positivos/ne-

gativos dos modelos.

A avaliação de imperceptibilidade será feita com as métricas de distância: 𝐿2, 𝐿∞ e

Wasserstein. Sendo porém a métrica de distância 𝐿2 ou 𝐿∞ de acordo com a ℓ𝑝 do ata-
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que, conforme tabela 1, desse modo é avaliado a distorção causada pela norma que o

ataque usa para criar as amostras adversariais. Os resultados estarão presentes no Anexo

A. As métricas de distância aqui usadas refletem a preservação da distribuição. Sobre a

preservação de semântica das características, minimização da perturbação e preservação

de interdependência serão realizadas diretamente nos ataques com base na máscara bi-

nária usada no método adversarial. Deve ser dito que os trabalhos com dados tabulares

que abordam métricas de imperceptibilidade He et al. 2024 e Mathov et al. 2022, não

estabelecem um método para estimar limiar, desse modo foi usada inspeção manual com

a biblioteca Pandas (Pandas development team 2020) a partir da diferença absoluta entre

amostas clean e amostras perturbadas. Portanto foi considerado imperceptível o ataque

que a diferença absoluta seja menor que 0.5 para distância 𝐿2 e 𝐿∞, tal como ocorre nos

trabalhos citados. Pela mesma razão,o limiar usado para distância Wasserstein foi para

valores ≤ 5× 10−2.

Tabela 1 – Uso de métrica de distância com base na norma do ataque

Norma ℓ2 ℓ∞

Métrica 𝐿2 e Wasserstein 𝐿∞ e Wasserstein

3.4 MÁSCARA BINÁRIA

De forma a gerar amostras com as restrições características de dados tabulares para

segurança de redes, estre trabalho adapta os ataques utilizados e o treino adversarial a

partir de uma máscara binária. Ou seja, o treinamento adversarial utilizado e o código dos

ataques CW e SignOPT (Algoritmo 3)) foram modificados de maneira a gerar amostras

levando em consideração as features que podem ser modificadas e as que não devem ser

modificadas, desse modo podem ser geradas amostras semanticamente válidas Kuppa et

al. 2019 e Zhang, Costa-Pérez e Patras 2020 . Os ataques PGD e HopSkipJump não foram

alterados pois a biblioteca Adversarial Robustness Toolbox Nicolae et al. 2018, utilizada

para gerar as amostras adversariais, já os disponibiliza com suporte a máscaras binárias.

Nas tabelas 2 e 3 são mostradas as features dos datasets, em negrito as features que os

ataques podem alterar.

O uso da máscara binária ajudará em:

• manter a semântica das características: Ao modificar apenas features que não inter-
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ferem na validação de tráfego de rede, desse modo a semântica "benigno"ou "mali-

cioso"se mantém.

• preservação de interdependência: Ao criar a máscara, torna-se opcional atacar featu-

res interdependentes. No presente trabalho, a opção foi mantê-las sem perturbação,

pois facilita manter a semântica e remove a necessidade de filtrar amostras inválidas.

Deve ser lembrado que outra característica importante é a minimização da perturbação.

Porém a necessidade de perturbação mínima para imperceptibilidade será a partir das

características dos ataques adversariais, que de acordo com seus autores são todos otimi-

zados para perturbação mínima de features.

Tabela 2 – Features do UNSW-NB15

Tipo de feature Features

Conexões de rede state, dur, sbytes, dbytes, sttl, dttl, sloss,
Dloss, service,sload, dload, spkts, dpkts

Pacotes swin, dwin, stcpb, dtcpb, smeansz, dmeansz,
Trans_depth, res_bdy_len

Fluxo srcip, sport, dstip, dsport, proto

Temporais sjit, djit, stime, ltime, sintpkt, dintpkt, tcprtt,
Synack,ackdat

Adicionadas

is_sm_ips_ports, ct_state_ttl, ct_flw_http_mthd,
is_ftp_login, ct_ftp_cmd, ct_srv_src, ct_srv_dst,
ct_dst_ltm, ct_src_ltm, ct_src_dport_ltm,
ct_dst_sport_ltm,ct_dst_src_ltm

Tabela 3 – Features do CIC IDS2017

Tipo de feature Features

Fluxo
Source IP, Destination IP, Source Port,
Destination Port, Protocol

Temporais Flow Duration, Flow Bytes/s, Flow Packets/s
Estatística de pacotes Total Fwd/Bwd Packets, Fwd/Bwd Packet Length Mean/Min/Max/Std
Tempo entre pacotes Fwd/Bwd IAT Mean/Min/Max/Std (Inter-Arrival Time)

TCP Flags
FIN Flag Count, SYN Flag Count, PSH Flag Count,
URG Flag Count, ACK Flag Count

Janelas TCP Init_Win_bytes_forward, Init_Win_bytes_backward
Tempo Atividade/Ocioso Active Mean/Std/Max, Idle Mean/Std/Max

Razões/Proporções Down/Up Ratio, Average Packet Size, Fwd/Bwd Packets/s
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Algorithm 3 Pseudo-código para ataque adversarial com máscara binária integrada
Require: Modelo 𝑓 , exemplo original x, rótulo 𝑦, máscara m ∈ {0, 1}𝑑, hiperparâmetros do

ataque
Ensure: Exemplo adversarial x𝑎𝑑𝑣 restrito a m

1: Inicialização:
2: x𝑎𝑑𝑣 ← x
3: 𝛿 ← 0 ◁ Perturbação inicial
4: if ataque usa busca binária then
5: Defina limites 𝑙 e 𝑢
6: while 𝑢− 𝑙 > tolerância do
7: 𝑐← (𝑙 + 𝑢)/2
8: 𝛿 ← OtimizarPerturbacao(𝑓, x, 𝑦, 𝑐, m)
9: if x + 𝛿 é adversarial then

10: 𝑢← 𝑐
11: else
12: 𝑙← 𝑐
13: end if
14: end while
15: else if ataque usa gradiente then
16: for 𝑡 = 1 to iterações do
17: Calcule gradiente ∇𝛿ℒ
18: 𝛿 ← 𝛿 + 𝛼 · sign(∇𝛿ℒ)⊙m
19: Projete 𝛿 em 𝜖-bola
20: end for
21: end if
22: x𝑎𝑑𝑣 ← x + 𝛿
23: return x𝑎𝑑𝑣

Algorithm 4 OtimizarPerturbacao
1: function OtimizarPerturbacao(𝑓, x, 𝑦, 𝑐, m)
2: Minimize ℒ(𝛿) = ‖𝛿‖2 + 𝑐 · perda_cls
3: Sujeito a 𝛿 ⊙ (1−m) = 0
4: Use L-BFGS ou SGD
5: return 𝛿
6: end function
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Exemplos de Aplicação dos Algoritmos 3 e 4

• Carlini-Wagner (CW): Modifique a otimização para que o gradiente ∇𝛿 seja

multiplicado por m antes de cada atualização.

• Sign-OPT: Ao calcular a direção de busca 𝑠 (sign do gradiente), faça 𝑠← 𝑠⊙m.

Observações

• A máscara m atua como um gate binário: pixels com m𝑖 = 0 são inalterados.

• A restrição é aplicada durante a otimização, não apenas no resultado final.

Tabela 4 – Descrição das variáveis e símbolos usados no pseudocódigo.

Símbolo Tipo Descrição

𝑓 Modelo Função que representa o modelo de classifica-
ção (ex: rede neural).

x Vetor Exemplo de entrada original (ex: imagem, vetor
de features).

𝑦 Escalar Rótulo verdadeiro associado a x.
m Vetor binário Máscara que define quais elementos de x po-

dem ser perturbados (m𝑖 = 1) ou não (m𝑖 =
0).

𝛿 Vetor Perturbação adversarial, restrita a m⊙ 𝛿 = 𝛿.
x𝑎𝑑𝑣 Vetor Exemplo adversarial gerado por x + 𝛿.
𝛼 Escalar Taxa de aprendizado (passo da otimização).
𝑐 Escalar Hiperparâmetro de trade-off entre magnitude

da perturbação e sucesso do ataque (usado em
Carlini-Wagner).

ℓ𝑝 Norma Norma utilizada para medir a magnitude da
perturbação (ex: ℓ2, ℓ∞).

⊙ Operador Produto elemento a elemento
∇𝛿ℒ Vetor Gradiente da função de perda em relação a 𝛿.

NOTAS ADICIONAIS

• Restrição da máscara: A operação 𝛿 ⊙ (1 − m) = 0 garante que apenas os

elementos onde m𝑖 = 1 sejam perturbados.
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• Hiperparâmetros: Valores como 𝛼 e 𝑐 são tipicamente ajustados empiricamente.

• Implementação: Em frameworks como PyTorch, a máscara é aplicada via multi-

plicação elementar (ex: delta *= mask).

3.5 TREINO ADVERSARIAL

Como primeira defesa contra ataques adversariais será adaptado o treino descrito

em Nandi et al. 2023 (Multiple Perturbation Bounds (MPB)). Este treino adversarial

consiste em usar uma regularização de similaridade no treino através de ruído gaussiano e

uniforme, seguido de uma regularização na função de custo entropia cruzada. A máscara

binária também será usada neste treino de maneira que as perturbações mantenham as

restrições de dados tabulares.

Regularizador de Similaridade

O objetivo do regularizador é alinhar as predições do classificador sob o ruído de trei-

namento (NU) com as predições sob os ruídos usados na certificação (Normal e Uniforme).

Isso garante consistência durante o treinamento, mesmo quando os ruídos são diferentes.

ℛ𝑠 = KL(𝑓(𝑥 + m · NU) ‖ 𝑓(𝑥 + m · 𝒩 )) + KL(𝑓(𝑥 + m · NU) ‖ 𝑓(𝑥 + m · 𝒰)) (3.1)

• m: Máscara binária

• 𝑓(·): Classificador base que retorna um vetor de probabilidades de dimensão 𝐾

• NU: Ruído da distribuição Normal-Uniforme

• 𝒩 ∼ 𝒩 (0, 𝜎2): Ruído Gaussiano

• 𝒰 ∼ 𝒰(−
√

3𝜎𝑢,
√

3𝜎𝑢): Ruído Uniforme

• KL(𝑃 ‖𝑄): Divergência de Kullback-Leibler entre distribuições 𝑃 e 𝑄
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Função de Perda Total

A função de perda total combina a entropia cruzada com o regularizador de similari-

dade, desse modo essa formulação permite que o modelo aprenda a ser robusto simulta-

neamente a perturbações ℓ1,ℓ2 e ℓ∞ , algo essencial para aplicações reais onde múltiplos

tipos de ataques podem ocorrer:

ℒ := ℒCE(𝑓(𝑥 + m · NU), 𝑦) + 𝛽 · ℛ𝑠 (3.2)

• m: Máscara binária

• ℒCE: Perda de entropia cruzada entre a predição e o rótulo verdadeiro 𝑦

• 𝛽: Hiperparâmetro que controla o peso do regularizador

3.6 DETECÇÃO DE OOD

Para a segunda etapa da defesa o detector Mahalanobis proposto por Lee et al. 2018

será modificado a partir da normalização presente em Mueller e Hein 2025, uma vez que

esta alteração não altera o tempo de treino e evita que os dados de entrada durante a

inferência precisem seguir uma distribuição gaussiana.

Algorithm 5 Score de confiança para OOD utilizando distância Mahalanobis
Require: Amostra de teste 𝑥, ativações da penúltima camada 𝛼ℓ, magnitude do ruído 𝜖, e

parâmetros por classe {𝜇𝑏ℓ,𝑐, Σ𝑏ℓ
∀ℓ, 𝑐}

1: Inicialização do vetor score: 𝑀(𝑥) = [𝑀ℓ ∀ℓ]

2: Normalização das features da penúltima camada: 𝑓(𝑥) = 𝑓(𝑥)
‖𝑓(𝑥)‖2

3: for each layer ℓ ∈ {1, . . . , 𝐿} do
4: Distância Mahalanobis: 𝐷𝑐 = (𝑓ℓ(𝑥)− 𝜇𝑏ℓ,𝑐)⊤Σ−1

𝑏ℓ
(𝑓ℓ(𝑥)− 𝜇𝑏ℓ,𝑐)

5: Cálculo de classe mais próxima: 𝑐 = arg min𝑐 𝐷𝑐

6: Adição de perturbação: 𝑥𝑏 = 𝑥− 𝜖 · sign (∇𝑥𝐷𝑐)
7: Recálculo das distâncias com entrada perturbada: 𝐷′

𝑐 = (𝑓ℓ(𝑥𝑏)−𝜇𝑏ℓ,𝑐)⊤Σ−1
𝑏ℓ

(𝑓ℓ(𝑥𝑏)−
𝜇𝑏ℓ,𝑐)

8: Score de confiança: 𝑀ℓ = max𝑐 𝐷′
𝑐

9: end for
10: return Score final de confiança: ∑︀

ℓ 𝛼ℓ𝑀ℓ

Legenda:
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• 𝑥 — Amostra de teste.

• 𝑓(𝑥) — Representação normalizada da amostra via função de extração de caracte-

rísticas.

• 𝑓ℓ(𝑥) — Representação normalizada da amostra na camada ℓ.

• 𝜇𝑏ℓ,𝑐 — Vetor de média da classe 𝑐 na camada ℓ.

• Σ𝑏ℓ
— Matriz de covariância estimada na camada ℓ.

• 𝑐 — Vetor classe usado no treino

• 𝐷𝑐 — Distância de Mahalanobis entre 𝑓ℓ(𝑥) e a classe 𝑐.

• 𝑐 — Classe mais próxima de acordo com a distância de Mahalanobis.

• 𝑥𝑏 — Amostra perturbada adversarialmente.

• 𝐷′
𝑐 — Distância de Mahalanobis entre 𝑓ℓ(𝑥𝑏) e a classe 𝑐.

• 𝑀ℓ — Score de confiança na camada ℓ.

• 𝛼ℓ — Peso atribuído à camada ℓ na combinação final.

• 𝑀(𝑥) — Vetor de scores por camada.

3.7 PIPELINE DO NIDS IMPLEMENTADO

Na figura 7 é mostardo o pipeline do modelo implementado no presente trabalho. Os

dados tabulares são a entrada do modelo DL treinado adversarialmente por MPB com

máscara binária. Seguidamente os dados são analisados pelo detector OOD e inferidos se

são in-distribution ou OOD.

Figura 7 – Dados de entrada > Modelo deep learning treinado adversarialmente > detector OOD > inferência:
OOD Limpo ou OOD Adversarial
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3.8 MODELO DE AMEAÇA

Os autores em Alatwi e Morisset 2022 definem o modelo de ameaça como um processo

sistemático de identificar vulnerabilidades pelo ponto de vista de um atacante, e com

isso tomar as medidas de segurança para mitigar essas vulnerabilidades. De acordo com

Shostack 2014 esse processo deve identificar:

• Ativos: Itens de software ou hardware que atraem o atacante.

• Superfície de ataque: Diferentes pontos do sistema que são vulneráveis ao agente

malicioso

• Modelo de adversário: Características que definem o adversário como motivações

e capacidades.

• Vulnerabilidades e Ameaças: Vulnerabilidades são as fraquezas nos ativos que

o agente malicioso pode explorar. Ameaças são eventos onde o atacante explora

alguma vulnerabilidade presente nos ativos.

• Medidas mitigadoras: Medidas de segurança para prever, detectar ou reduzir o

impacto das ameaças.

No presente trabalho é identificado:

• Ativos e Superfície de ataque: A rede a ser defendida e o NIDS baseado em DL.

• Vulnerabilidades e Ameaças: Modelos DL por si só são vulneráveis a ataques adver-

sariais, portanto o atacante pode usá-los para evadir o NIDS.

• Modelo de adversário: O adversário pretende atacar a rede e evadir o NIDS uti-

lizando ataques white-box e black-box (Fig 8) ambos não direcionados, ou seja,

ataques que poderão se passar por quaisquer uma das classes presentes no dataset

de treino.

3.8.1 Ataques adversariais utilizados

Os ataques utilizados são baseados nas normas ℓ2 e ℓ∞, com os testes sendo feitos

usando a abordagem white box e black box :
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Figura 8 – Modelos de ameça por conhecimento do atacante

White-box se refere a situação onde o atacante consegue acessar o modelo diretamente; Em ataques Black-box
o atacante não tem acesso nem conhecimento do modelo alvo

3.8.1.1 White-Box

• Projected Gradient Descent (PGD) Madry et al. 2017: Esse método cria a pertur-

bação a partir do gradiente projetado da função de custo. O faz em vários passos

que devem ser ajustados pelo atacante. De acordo com seus autores, também pode

ser usado para treinamento adversarial, embora aumente consideravelmente o custo

computacional;

• Carlini-Wagner (CW)Carlini e Wagner 2017: Proposto com base na otimização da

função:

minimize ‖𝛿‖𝑝 + 𝑐 · 𝑓(𝑥 + 𝛿)

Onde:

– ‖𝛿‖𝑝 é a norma 𝐿𝑝 da perturbação 𝛿 (por exemplo, 𝐿2 ou 𝐿∞).
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– 𝑓(𝑥+𝛿) é uma função que garante que os dados perturbados sejam classificados

incorretamente. Uma das funções propostas é:

𝑓(𝑥′) = (max
𝑖̸=𝑡

𝑍(𝑥′)𝑖 − 𝑍(𝑥′)𝑡)+

onde 𝑍(𝑥′) são os logits da rede (as saídas antes da aplicação da função soft-

max), e (·)+ denota a função ReLU (ou seja, max(0, ·)).

– 𝑐 (Line Constant): é uma constante que controla o equilíbrio entre a minimi-

zação da perturbação e a garantia de classificação incorreta.

Com este método ,CW, conseguiram gerar a menor perturbação que pode ser base-

ada nas normas ℓ0 ,ℓ2 e ℓ∞ para criar a amostra evasiva.

3.8.1.2 Black-Box

• Hop Skip Jump Chen e Jordan 2019: Ao invés de usar amostragem, estabelece

direção de gradiente a partir de pesquisa binária na fronteira de decisão. Logo após,

usa uma busca geométrica para criar a amostra evasiva e por fim realiza uma busca

binária de forma que a amostra adversarial não se afaste da fronteira de decisão.

É uma versão otimizada do ataque Boundary Brendel, Rauber e Bethge 2017 em

relação a quantidade de consultas necessárias para criar uma amostra evasiva. Em

geral, consegue criar as amostras com até 10 vezes menos consultas que o ataque

Boundary.

• Sign-OPT Cheng et al. 2019 : Estima o sinal da direção do gradiente ao invés do

gradiente em si com apenas uma consulta. Em seguida, realiza uma busca para

criar a amostra e faz uma busca binária para manter a amostra adversarial próxima

a fronteira de decisão. Consegue criar amostras evasivas com 5 a 10 vezes menos

consulta se comparado aos dois ataques anteriores.

3.9 AVALIÇÃO DE PERFORMANCE DO CLASSIFICADOR

Na avaliação de modelos de aprendizagem de máquina, é comum o uso de métricas

como: Precisão, Recall,ROC-AUC, F1-Score e Acurácia. As definições abaixo foram reti-

radas da documentação do scikit-learn Pedregosa et al. 2011.
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3.9.1 ROC-AUC

Esta métrica indica a capacidade de um modelo em distinguir entre classes positivas

e negativas. A Area Under Curve (AUC) (área sob a curva Receiver Operation Characte-

ristic (ROC)) resume o desempenho do modelo em todos os limiares possíveis, variando

de 0,5 (desempenho equivalente a um classificador aleatório) a 1,0 (classificação perfeita).

Pode ser aplicada a classifcações binárias ou multiclasse do tipo One-vs-Rest e One-vs-

One. Por informar a probabilidade de um modelo atribuir pontuação mais alta a uma

amostra positiva do que uma negativa, torna a AUC particularmente útil em problemas

onde é necessário comparar modelos em diferentes contextos de sensibilidade e especifici-

dade.

Pode ser estimada por:

ROC-AUC =
∫︁ 1

0
TPR(𝐹𝑃𝑅) 𝑑𝐹𝑃𝑅

Onde:

• True Positive Rate (TPR) (True Positive Rate): taxa de verdadeiros positi-

vos, calculada como 𝑇𝑃𝑅 = 𝑇 𝑃
𝑇 𝑃 +𝐹 𝑁

• False Positive Rate (FPR) (False Positive Rate): taxa de falsos positivos,

calculada como 𝐹𝑃𝑅 = 𝐹 𝑃
𝐹 𝑃 +𝑇 𝑁

3.9.2 Precisão

É a proporção de observações positivas corretamente identificadas para todas as ob-

servações positivas previstas. Em outras palavras, a Precisão mede o número de instâncias

corretas recuperadas dividido por todas as instâncias recuperadas.

Precisão = TP
(TP + FP)

Onde:

• True Positive (TP): Total de verdadeiros positivos

• False Positive (FP): Total de falsos positivos
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Intuitivamente pode ser ententida com a capacidade do classificador de não rotular

como positiva uma amostra que é negativa.

3.9.3 Recall

É a proporção de casos positivos corretamente identificados para todos os casos ob-

servados. Em outras palavras, o Recall mede o número de instâncias corretas recuperadas

dividido por todas as instâncias corretas. Definido como:

Recall = TP
(TP + FN) .

Onde:

• TP: Total de verdadeiros positivos

• FN: Total de falsos negativos

O Recall é intuitivamente a habilidade do classificador de encontrar todas as amostras

positivas.

3.10 CONTRIBUIÇÕES

No presente trabalho o treino adversarial de Nandi et al. 2023 é adaptado com a más-

cara binária, de maneira que as perturbações geradas fiquem de acordo com as restrições

necessárias para dados tabulares. O detector OOD é adaptado de Lee et al. 2018, en-

tretanto é combinada com a normalização proposta por Müller e Hein 2025, desse modo

a combinação dos métodos citados torna possível um detector OOD robusto a amostras

adversariais e sem a necessidade que os dados sigam uma distribuição normal. Os ata-

ques adversariais também foram modificados com a máscara binária de maneira que as

amostras geradas fossem a partir da restrição causada pela máscara, dessa forma os expe-

rimentos com os ataques criam amostras otimizadas para dados tabulares ao invés de usar

projeções que tendem a filtrar as amostras evasivas. Os ataques adversários foram tanto

white-box quando black-box baseados em consulta e transferência, com isso é avaliada a

proposta para cenários onde há uma tentativa de evasão por um agente malicioso interno

ou externo.
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Deve ser dito que os resultados aqui mostrados para OOD utilizaram uma validação

cruzada 10 folds com catboost Dorogush, Ershov e Gulin 2018 e o grid search fornecido

pela implementação do catboost. O detector OOD dos autores Lee et al. 2018 usa uma

validação cruzada com regressão logística, que não se mostrou apropriada para dados des-

balanceados e não fornece probabilidades calibradas Bai et al. 2021. Desse modo, após o

catboost para score binário do detector OOD, foi realizada uma calibração por classe com

predição conforme mondrian Boström, Johansson e Löfström 2021 que é apropriado para

dados tabulares, onde a calibração não pode fornecer probabilidades com sobreposição

entre as classes. Uma vez que métodos bayesianos sem geral tem alto custo computacio-

nal no treinamento e inferência Vonk et al. 2024,Liu et al. 2022,Pape et al. 2023 além do

que predição conformal fornece garantias dos conjuntos de predição por classe Boström,

Johansson e Löfström 2021 e independem de distribuição, enquanto nos modelos baye-

sianos a cobertura dos intervalos dependem: das suposições de cada modelo bayesiano e

da distribuição a priori, as quais podem ser descalibradas na prática resultando em um

modelo DL mal calibrado Portela, Banga e Matabuena 2025, Abdullah, Hassan e Mustafa

2024, Ghosh et al. 2023.
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4 EXPERIMENTOS

Este capítulo apresenta os experimentos realizados para avaliar o desempenho da me-

todologia proposta que referenciamos como TabIDS, frente a ataques adversariais e dados

OOD. O objetivo é verificar sua robustez a amostras adversariais, capacidade de genera-

lização e eficácia em comparação à versão original da arquitetura TabNet.

As análises experimentais foram organizadas de forma a avaliar se o treinamento ad-

versarial contribui significativamente para a robustez do modelo em cenários ataque. Ou

se o uso de detecção OOD baseada em distância Mahalanobis é eficaz na identificação de

amostras anômalas ou adversariais. Investigamos ainda como o modelo se comporta sob

diferentes tipos de ataques (white-box e black-box), intensidades de perturbação e normas

de distância.

4.1 DATASETS AVALIADOS

4.1.1 UNSW-NB15

Em razão da defasagem de datasets como KDD99 e NSL-KDD, bem como da baixa

disponibilidade de conjuntos de dados com características equivalentes e mais atualizados

para a época, Moustafa e Slay 2015 criaram o dataset UNSW-NB15. O intuito foi o de

amenizar problemas com redundância de dados e representação de ataques mais moder-

nos. O conjunto de dados foi elaborado por meio da ferramenta IXIA PerfectSotorm 1,

na Universidade de South Wales (UNSW). Durante o desenvolvimento da proposta, os

autores simularam fluxo de rede normal e fluxo associado a ataques, sendo estes captura-

dos pela ferramenta tcpdump, uma poderosa ferramenta de linha de comando para análise

de pacotes usada para capturar e exibir tráfego de rede. O dataset foi disponibilizado

livremente em formato tabular, consistindo em 49 features e vários tipos de ataques: Fuz-

zers, Dos, Exploits, Backdoors, Worms, Generic, Analysis, Shellcode e Reconnaissance.

Contém ao todo 700 mil registros, embora 90% seja de tráfego normal.
1 https://www.keysight.com/us/en/products/network-test/network-test-hardware/perfectstorm.html
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4.1.2 CIC IDS2017

A exemplo do UNSW-NB15, o CIC IDS2017 também foi criado com a preocupação de

que os datasets então disponíveis não refletiam as ameaças cibernéticas mais atuais para

a sua época. O conjunto de dados foi criado por Sharafaldin et al. 2018 em um ambiente

que simula uma rede real com tráfego benigno e malicioso.

O tráfego benigno realista foi gerado com a ferramenta B-Profile 2 que simulou vários

usuários fazendo requisições em diferentes protocolos.

Os seguintes ataques foram simulados via kali linux: Brute Force, Heartbleed, Botnet,

DoS, DDoS, Web Attacks e Infiltration. A simulação resultou em um conjunto de dados

rotulado, contendo 80 features extraídos por meio do CICFlowMeter 3. De acordo com

os autores, CIC IDS2017 é superior aos datasets anteriores em termos de diversidade de

tráfego, variedade de ataques e características extraídas do fluxo de rede.

4.1.3 CIC IDS2018

Dataset criado pelo Canadian Institute for Cybersecurity 2018 para uso em projetos de

pesquisa . É semelhante ao CIC IDS2017 em termos de tipos de ataques e por também usar

processamento de arquivos pcap para csv através do CICFlowMeter. A versão csv também

é semelhante ao CIC IDS2017 nas features, as quais são compostas por 80 propriedades

estatísticas como: comprimento de pacotes, número de pacotes, número de bytes entre

outras características que foram estimadas tanto na direção de envio quanto na direção

de resposta. A simulação dos ataques se deu em 6 redes com 450 máquinas no total,

enquanto no CIC IDS2017 foi coletado em uma única rede de 14 máquinas.

4.2 SETUP EXPERIMENTAL

A arquitetura base utilizada é o TabNet. Os dados foram pré-processados da forma:

transformador em quantis com distribuição uniforme para dados contínuos, para dados
2 Encapsula os comportamentos de entidades em uma rede usando diversas técnicas de aprendizado de

máquina e análise estatística. As features encapsuladas são distribuições de tamanhos de pacotes de um
protocolo, número de pacotes por fluxo, certos padrões na carga útil, tamanho da carga útil e distribuição
do tempo de solicitação de um protocolo.

3 https://www.unb.ca/cic/research/applications.html.
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categóricos label encoder (Fig 9). O ajuste de hiperparâmetros se fez em paralelo com

uma validação cruzada e otimização com optuna. Deve ser dito que a validação cruzada

foi exclusivamente para pesquisa de hiperparâmetros.

Figura 9 – Fluxo do Pré-processamento e treino do modelo

Por decidir usar uma arquitetura que não é comumente associada a NIDS foi reali-

zado um experimento com tempo de inferência com batches = 1 e 10000 repetições para

estimar o desvio padrão. Dessa forma pode-se ter a noção da latência média do modelo

durante o tráfego de rede. Na Tabela 5 é mostrado que os tempos foram da ordem dos

microssegundos (1× 10−6), de acordo com Najar e S. 2024,Thorat, Parekh e Mangrulkar

2021 e Cil, Yildiz e Buldu 2021 é um tempo apropriado para um NIDS. Outra avaliação

realizada foi comparar os resultados em classificação de anomalia do modelo proposto

com outros já feitos na literatura, ver Tabela 6.

Tabela 5 – Tempo de inferência

Dataset Model
Inference Time (s)

Training Time (h)
Mean StD

CIC IDS2017
TabNet 2.6× 10−6 9.4× 10−6 2,5
TabIDS 8.8× 10−6 4.4× 10−6 12

UNSW-NB15
TabNet 9.9× 10−6 1.1× 10−6 1
TabIDS 3.4× 10−6 7.7× 10−6 10

Para avaliar a robustez do sistema proposto, consideramos diferentes cenários de ata-

que, abrangendo tanto abordagens white-box quanto black-box, com variações nas normas

de perturbação e na intensidade dos ataques. O modelo foi testado com e sem defesa ad-

versarial, permitindo comparações diretas entre a versão original da TabNet e sua variante

robusta.

Além disso, foi implementado um mecanismo de detecção de OOD baseado na dis-

tância de Mahalanobis, capaz de identificar amostras suspeitas fora da distribuição de
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Tabela 6 – Comparativo entre modelos estado-da-arte em NIDS e a TabNet.

CIC IDS2017
Metric LSTM MLP TabNet

Precison 100 a 99.79 b 99.84
Recall 94.44 a 99.80 b 99.83

UNSW-NB15
Precison 96.52 c 96.7 d 97.16

Recall 95.17 c 99.80 d 99.66
Referência: a [Dash et al. 2025]; b [Cherfi, Lemouari e
Boulaiche 2024]; c [Ahmed et al. 2025]; d [Awotunde,
Chakraborty e Adeniyi 2021]; Os valores são para métricas
globais.

treinamento. A incorporação de máscaras binárias permitiu adaptar os ataques às restri-

ções semânticas dos dados tabulares, garantindo a validade dos exemplos adversariais e

simulando com maior fidelidade cenários realistas de evasão.

4.2.1 Definição do modelo base

Foi realizada uma procura de hiperparâmetros (Tabela 7) por validação cruzada 10

folds, com amostras não perturbadas, ou amostras clean, para a TabNet . A divisão

dos dados utilizada para treino/validação/teste foi: 60%,20% e 20%, respectivamente. Os

dados foram pré-processados com transformador em quantis de distribuição uniforme para

mantê-los variando monotonicamente entre 0 e 1.

Após o pré-processamento e treino do modelo, as amostras adversariais foram cria-

das no conjunto de teste. Primeiro, no TabNet com treino clean, ou seja sem amostras

adversariais, e em seguida na TabNet (TabIDS) com treino adversarial.

Nos dados CIC IDS2017, as classes foram mescladas para mitigar os efeitos do des-

balanceamento. Numa primeira abordagem:As labels SQL e XSS tornam-se a label Web

Attack; As labels FTP e SSH tornam-se a label Brute Force, e as variações de DoS (slo-

wloris, hulk, goldeneye e slowhttptest) tornam-se a label DoS. No entanto, mesmo após

esta junção em superclasses (Brute Force, Web Attack e DoS), o problema de desbalance-

amento se manteve e portanto este dataset foi avaliado apenas nas classes "Benign",DoS

e DDoS, pois foram as que resultaram em melhor desempenho na TabNet. O mesmo

problema com desbalanceamento ocorreu com o UNSW-NB15, portanto foram usadas as

classes "Normal"e "Reconnaissance"("Recon.") e "Generic", as quais foram melhor reconhe-

cidas tanto no treino normal quanto no treino adversarial. Foram tentados dois métodos
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para aliviar os efeitos do desbalanceamento em treino adversarial primeiramente com o

UNSW-NB15, entretanto nenhum dos dois obteve um desempenho satisfatório (Anexo C)

e no Anexo B estão relacionados os ataques de rede avaliados com o MITRE ATT&CK.

Deve ser dito ainda que os modelos: CTGAN Xu et al. 2019, TabDDPM Kotelnikov et

al. 2022 e CoDi Lee, Kim e Park 2023, no entanto esses três modelos não geraram bons

resultados para os dados minoritários, que nos datasets em questão são os ataques de

rede, portanto os experimentos foram conduzidos sem utilizar técnicas para gerar dados

sintéticos.

Tabela 7 – Hiperparâmetros da TabNet encontrados pós validação cruzada.

Hiperparâmetro
CIC IDS2017 UNSW-NB15

Binário Multiclasse Binário Multiclasse
WDa 42 34 60 28
WAb 6 22 43 16

Gamma 1.6 3.4 3.5 1.5
Steps 10 19 7 15

Momentum 0.92 0.73 0.92 0.78
a WD: Tamanho de Decisão; b WA: Tamanho do Embedding.

É importante observar que as features dos conjuntos de dados foram manipuladas

conforme descrito em Kuppa et al. 2019, portanto não houve redução de features. Esta

abordagem garante que a distinção entre comportamentos benignos e maliciosos seja pre-

servada ao utilizar os ataques adversariais. Para conseguir isso, uma máscara binária é

utilizada, permitindo modificar features que podem caracterizar comportamento malici-

oso, enquanto protege as features que devem permanecer inalteradas.

O modelo TabNet foi treinado usando o otimizador AdamW Loshchilov e Hutter 2017,

com uma taxa de aprendizado de 0,002 e a função de perda de entropia cruzada. O

desempenho do modelo resultante nas métricas relevantes pode ser conferido nas tabelas

8, para dados clean (não perturbados com amostras adversariais) e nas tabelas 9 para o

conjunto com modelos adversariamente treinados. Nas tabelas 10 e 11 estão as métricas

resultantes para as classes utilizadas nos experimentos com classificadores multiclasse.

As redes neurais foram testadas contra ataques adversários não direcionados da bibli-

oteca Adversarial Robustness Toolbox Nicolae et al. 2018. Os valores utilizados a seguir

para os parâmetros dos ataques white-box e black-box se devem a manter o ataque im-

perceptível e preservar as restrições necessárias em dados tabulares.
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Tabela 8 – Métricas para TabNet em classificação binária e treino clean.

Dataset Label Precision Recall ROC-AUC

CIC IDS2017 Benign 99.98 99.98 99.98
Attacks 99.95 99.98 99.96

UNSW-NB15 Normal 99.97 99.97 99.78
Attacks 97.16 99.62 99.78

Tabela 9 – Métricas para TabIDS com classificação binária.

Dataset Label Precision Recall ROC-AUC

CIC IDS2017 Benign 99.98 99.98 99.98
Attacks 99.88 99.98 99.98

UNSW-NB15 Normal 99.98 99.98 99.89
Attacks 97.21 99.57 99.89

Para ataques white-box, adotamos as seguintes configurações: Ataque PGD com 100

passos e valores epsilon 𝜖 = {0.1, 0.2, 0.3}, onde 𝜖 é o valor máximo da perturbação no

vetor,portanto a pertubação adicionada nas features atacadas somarão como um todo o

𝜖 selecionado.

O ataque CW usou valores de Confidence 𝑐 = {0, 0.2, 0.5} para ambos os conjuntos de

dados anteriormente mencionados. O hiperparâmetro Confidence define o quão confiante

o modelo-alvo deve estar na classificação errada da amostra adversarial gerada. Valores

muito altos são úteis apenas em ataques direcionados. O parâmetro de busca binária é de-

finido como 10. Além disso, a importância relativa da distância e da taxa de aprendizagem

foi fixada em 0, 01 para ambos os parâmetros nos conjuntos de dados usados.

Em ataques de black-box, nenhum intervalo de valores foi usado. Para o ataque HopS-

kipJump, foi utilizado um número máximo de avaliações por gradiente igual a 2; ataque

SignOPT usado para consultas por amostra igual a 200 e um número de direções aleatórias

igual a 200.

O método usado para melhorar a robustez foi com o treinamento Adversarial Trai-

ning with Multiple Perturbation Bounds (AT-MPB) Nandi et al. 2023 com 300 épo-

cas,resultando na TabIDS.
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Tabela 10 – Métricas para os modelo multiclasse com CIC IDS2017 e as classes selecionadas.

CIC IDS2017
Modelo Métrica BENIGN DoS DDoS

TabNet
Precision 99.98 99.92 99.97

Recall 99.98 99.98 99.99
ROC-AUC 99.99 99.99 99.98

TabIDS
Precision 99.99 99.82 99.96

Recall 99.97 99.96 99.99
ROC-AUC 99.98 99.97 99.96

Tabela 11 – Métricas para os modelos multiclasse com UNSW-NB15 e as classes selecionadas.

UNSW-NB15
Modelo Métrica Normal Recon. Generic

TabNet
Precision 99.98 96.66 98.48

Recall 98.85 99.46 99.99
ROC-AUC 99.43 99.87 99.98

TabIDS
Precision 99.99 91.59 96.19

Recall 99.14 99.26 99.99
ROC-AUC 99.69 99.93 99.96

4.3 RESULTADOS

Para isso, os experimentos foram conduzidos sobre dois conjuntos de dados ampla-

mente utilizados na literatura: CIC IDS2017 e UNSW-NB15. Foram consideradas classi-

ficações binárias e multiclasse, permitindo analisar o desempenho sob diferentes granula-

ridades de labels.

A avaliação abrange ataques adversariais com diferentes estratégias e complexidades,

incluindo PGD, CW, HopSkipJump e SignOPT, com variações nos parâmetros de ataque.

Cada ataque foi aplicado tanto em modelos treinados com dados clean e em modelos

adversarialmente treinados. A performance classificatória foi quantificada por métricas

como Precisão, Recall e ROC-AUC, além de métricas específicas para imperceptibilidade

das perturbações (Anexo A). No Anexo D estão as figuras referentes a Recall e ROC-

AUC, neste capítulo foram usados os gráficos de Precisão pois foi a métrica mais sensível

aos ataques adversariais, portanto os ataques utilizados geraram mais falsos positivos que

falsos negativos.

Para os ataques PGD e CW, um máximo de 100 e 10 iterações foram usadas respecti-
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vamente. Portanto serão representados por PGD-100,CW-10. Para os ataques PGD-100

e HopSkipJump foi usada a norma ℓ∞. Para os ataques CW-10 e SignoOPT foi usada

norma ℓ2.

4.3.1 Ataque PGD-100

Nos experimentos para modelos de classificação binária utilizando o conjunto de dados

CIC IDS2017, após a aplicação do ataque PGD-100 ℓ∞ com parâmetro 𝜖 = 0, 1, não

foi observada redução excessiva na métrica de Precisão (99,36%) para TabNet no label

"Attacks", enquanto TabIDS atingiu uma Precisão de 99,94% no mesmo label Tabela 12.

Com 𝜖 = 0, 3, os valores de Precisão (87,18%), Recall (97,52%) e ROC-AUC (97,88%)

para TabNet foram menores do que aqueles para TabIDS, que relatou Precisão (92,61%),

Recall (99,98%) e ROC-AUC (100,00%) para o label "Attacks".

Em modelos multiclasse com CIC IDS2017, observou-se que tanto a Precisão quanto

a Recall foram superiores no modelo TabIDS em comparação com o TabNet em vários

valores de 𝜖. Todos os três labels demonstraram melhorias na métrica ROC-AUC, com

melhorias notáveis na Precisão e Recall para os labels “DoS” e “DDoS”, conforme ilustrado

na Fig. 10 para a Precisão.

Tabela 12 – Ataque PGD-100 contra classificadores binários com dados CIC IDS2017.

Epsilon
0.1 0.2 0.3Model Metric

Benign Attacks Benign Attacks Benign Attacks
Precision 99.96 99.36 99.88 94.04 99.17 87.18

Recall 99.79 99.95 97.96 99.63 95.37 97.52TabNet
ROC-AUC 99.99 99.95 99.69 99.69 97.88 97.88
Precision 99.98 99.94 99.98 99.93 99.97 99.93

Recall 99.98 99.97 99.97 99.98 99.98 99.97TabIDS
ROC-AUC 99.97 99.97 99.98 99.97 99.97 99.96
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Tabela 13 – Ataque PGD-100 contra TabNet e TabIDS em classificação multiclasse com dados CIC IDS2017

Epsilon
0.1 0.2 0.3Models Metrics

Benign DoS DDoS Benign DoS DDoS Benign DoS DDoS
Precision 80.50 6.45 71.41 74.00 0.16 0.07 70.85 0.04 0.04
Recall 86.12 3.13 11.70 70.30 0.16 0.03 62.02 0.05 0.02TabNet
ROC-AUC 61.13 42.01 73.11 42.75 20.69 48.66 35.41 15.63 37.19
Precision 99.98 99.82 99.97 99.98 99.82 99.98 99.97 99.81 99.96
Recall 99.98 99.97 99.98 99.98 99.97 99.98 99.97 99.96 99.97TabIDS
ROC-AUC 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.98

Figura 10 – Precisão após PGD-100 com CIC IDS2017

Esquerda: TabNet; Direita: TabIDS

Em experimentos na UNSW-NB15 com classificadores binários, para a métrica Preci-

são no TabNet, o label "Attacks"apresentou valores entre 67% e 68%, enquanto o TabIDS

atingiu 90%. Em relação à métrica Recall, o TabIDS demonstrou desempenho marginal-

mente superior ao TabNet para o label "Normal", com nenhum dos modelos apresentando

pontuação abaixo de 99% para essa métrica nos três parâmetros utilizados no ataque

PGD Tabela 14.

Os resultados para os modelos multiclasse, Precisão e Recall para o TabIDS, superaram

os do TabNet para os labels Recon e Generic para todos os parâmetros do ataque PGD.

Fig. 11.
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Tabela 14 – Ataque PGD-100 contra TabNet e TabIDS em classificação binária com dados UNSW-NB15.

Epsilon
0.1 0.2 0.3Model Metric

Benign Attacks Benign Attacks Benign Attacks
Precision 99.88 68.21 99.88 67.80 99.87 67.61

Recall 99.59 99.89 99.59 99.73 99.59 98.87TabNet
ROC-AUC 99.92 99.92 99.85 99.85 99.82 99.82
Precision 99.90 91.99 99.90 91.67 99.90 90.67

Recall 99.92 99.68 99.92 99.68 99.91 99.46TabIDS
ROC-AUC 99.94 99.94 99.94 99.94 99.94 99.94

Com o ataque PGD-100 ℓ∞ em classificadores multiclasse se manteve a tendência

esperada que as métricas para TabIDS serem maiores para TabNet. O ponto mais baixo

para TabIDS é na label Recon. para 𝜖=0.3 Fig 11. Embora indique que mesmo após

o treinamento adversarial, o desbalanceamento presente no dataset ainda influenciou na

desempenho.

Tabela 15 – Ataque PGD-100 contra TabNet e TabIDS em classificação muticlasse com dados UNSW-NB15.

Epsilon
Models

0.1 0.2 0.3Metrics
Normal Recon. Generic Normal Recon. Generic Normal Recon. Generic

Precision 99.95 18.75 46.77 99.76 7.51 7.50 99.46 1.75 2.85
Recall 98.93 10.23 42.35 98.26 5.40 5.52 97.44 1.70 2.46

TabNet

ROC-AUC 99.65 98.21 96.74 98.84 95.54 74.90 91.78 93.00 48.46
Precision 99.98 81.28 95.75 99.98 80.52 96.10 99.96 79.84 95.33
Recall 99.47 90.06 95.81 99.43 88.07 95.08 99.45 85.51 93.75TabIDS
ROC-AUC 99.83 98.47 98.89 99.79 98.37 98.62 99.76 98.34 98.34

Figura 11 – Precisão após PGD-100 com UNSW-NB15

Esquerda: TabNet; Direita: TabIDS
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4.3.2 Ataque CW-10

Ao executar ataques CW-10 no CIC IDS2017 com modelos binários, o TabNet apre-

sentou desempenho em torno de 96% a 97% para o label "Benign"e abaixo de 79% para a

label "Attacks"na métrica Precisão. Para Recall a label "Attack"ficou entre 69% e 72% .

A TabIDS obteve melhores resultados gerais,mantendo a robustez do modelo a esse tipo

de ataque para os valores de "Confidence"testados (Tabela 16).

Com modelos multiclasse, o pior desempenho da TabNet foi na label "DDoS". En-

quanto as métricas para TabIDS superaram Precision,Recall e ROC-AUC nos três labels,

conforme mostrado na Fig 12 e na Tabela 17.

Figura 12 – Ataque CW-10 contra classificadores multiclasse e dados do CIC IDS2017.

Esquerda: TabNet; Direita: TabIDS

Ao conduzir o ataque CW-10 com o conjunto de dados UNSW-NB15 usando classi-

ficadores binários, a Precisão foi notavelmente melhor para o label "Attacks"no modelo

TabIDS, com "Confidence"por volta dos 92%, enquanto o TabNet caiu para 37,62%. Não

foram observadas diferenças relevantes entre TabNet e TabIDS para Recall e ROC-AUC,

pois ambos os modelos produziram resultados em torno de 99%. Indicando que nesse caso

o método CW-10 gerou mais falsos positivos.

Nos modelos multiclasse, as métricas melhoraram no modelo TabIDS para todos os

valores de "Confidence"usados nos experimentos (Fig. 13, que mostra os resultados para

Precisão). Recall e ROC-AUC apresentam padrão idêntico.
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Tabela 16 – Ataque CW-10 contra classificadores binários e dados CIC IDS2017.

Confidence
0.0 0.2 0.5Model Metric

Benign Attacks Benign Attacks Benign Attacks
Precision 97.38 78.46 96.21 75.97 96.57 78.12

Recall 91.16 69.42 91.20 71.54 92.37 72.18TabNet
ROC-AUC 92.24 90.22 93.31 91.48 93.94 92.05
Precision 99.97 99.88 99.96 99.88 99.97 99.88

Recall 99.97 99.97 99.96 99.97 99.97 99.96TabIDS
ROC-AUC 99.97 99.97 99.96 99.97 99.96 99.96

Tabela 17 – Ataques CW-10 contra classificadores multiclasse com CIC IDS2017.

Confidence
0.0 0.2 0.5Model Metric

Benign DoS DDoS Benign DoS DDoS Benign DoS DDoS
Precision 98.39 99.49 41.59 98.41 99.50 41.35 98.43 99.50 41.59

Recall 98.80 90.03 1.98 98.82 90.12 1.96 98.87 90.25 1.98TabNet
ROC-AUC 97.91 93.23 99.63 97.91 93.21 99.62 97.89 93.18 99.61
Precision 99.97 99.96 99.95 99.96 99.96 99.95 99.96 99.95 99.95

Recall 99.97 99.96 99.96 99.97 99.96 99.95 99.96 99.96 99.95TabIDS
ROC-AUC 99.97 99.95 99.95 99.97 99.95 99.95 99.96 99.95 99.95

Figura 13 – Ataque CW-10 contra TabNet and TabIDS em classificação multiclasse e dados do UNSW-NB15.

Esquerda: TabNet; Direita: TabIDS

Ao conduzir o ataque CW-10 com o conjunto de dados UNSW-NB15 usando classi-

ficadores binários, as métricas indicaram que o modelo TabIDS melhorou em relação ao

modelo TabNet. Notavelmente, a Precisão para a label "Attacks"foi melhor no modelo

TabIDS permanecendo em torno de para 92%. Contudo, o Recall para a label "Normal"na

TabIDS foi marginalmente maior, mantendo o valor em torno de 99% contra 98% da

TabNet Tabela 18.
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O valor de ROC-AUC se manteve constante no modelo TabIDS, que atingiu 99,94%

em comparação com 99,30% para o modelo TabNet. Nos classificadores multiclasse, ROC-

AUC foi maior no modelo TabIDS sobre TabNet para todas as métricas e nos três labels:

“Normal”, “Reconnaissance” e “Generic”. Embora a Precisão na TabIDS tenha sido pouco

maior que na TabNet para a label “Normal”, Tabela 19, o desempenho da TabIDS foi

melhorado nas labels “Recon.” (82%) e "Generic"(96%), porém o modelo TabNet ficou

abaixo de 2% para essas mesmas labels. A Recall permaneceu no TabIDS 92% par Recon.

e 96% para Generic. Para ROC-AUC em todas as labels e valores de "Confidence"a TabIDS

superou a TabNet.

Tabela 18 – Ataque CW-10 contra TabNet and TabIDS em classificação binária e dados do UNSW-NB15.

Confidence
0.0 0.2 0.5Model Metric

Benign Attacks Benign Attacks Benign Attacks
Precision 99.96 37.62 99.96 37.59 99.95 37.56
Recall 98.56 99.68 98.56 99.68 98.56 99.68TabNet
ROC-AUC 99.30 99.30 99.30 99.30 99.30 99.30
Precision 99.96 92.73 99.96 92.59 99.95 92.50
Recall 99.93 99.68 99.93 99.68 99.93 99.68TabIDS
ROC-AUC 99.94 99.94 99.94 99.94 99.94 99.94

Tabela 19 – Ataque CW-10 contra TabNet and TabIDS em classificação multiclasse e dados do UNSW-NB15.

ConfidenceModels
0.0 0.2 0.5Metrics

Normal Recon. Generic Normal Recon. Generic Normal Recon. Generic
Precision 99.66 0.09 0.04 99.66 0.18 0.08 99.67 0.18 0.05

Recall 70.04 0.28 0.27 70.31 0.57 0.47 70.70 0.57 0.33
TabNet

ROC-AUC 90.09 97.58 90.39 89.94 97.60 90.21 89.72 97.59 90.04
Precision 99.97 82.65 96.85 99.97 82.86 96.85 99.97 82.86 96.85

Recall 99.52 92.05 96.01 99.52 92.05 96.01 99.52 92.05 96.01TabIDS
ROC-AUC 99.88 98.65 99.17 99.88 98.65 99.17 99.88 98.65 99.17

4.3.3 Hop Skip Jump e Sign-OPT

Os ataques black-box aos dados do CIC IDS2017 para classificadores binários, con-

forme mostrado na Tabela 20, indicam que o modelo TabIDS superou o modelo TabNet

em métricas relacionadas a label "Benign". Nos classificadores multiclasse, a Tabela 21

mostra que os valores das métricas para TabIDS são ligeiramente superiores aos do Tab-
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Net. No entanto, para SignOPT, todos os valores para TabIDS são um pouco superiores

aos do modelo TabNet.

Tabela 20 – Ataques Black-Box contra modelos de classificação binária com dados CIC IDS2017.

Model Attacks Metrics
Label

Benign Attacks

TabNet

HopSkipJump
Precision 83.02 16.82

Recall 67.81 31.93
ROC-AUC 73.71 73.92

SignOPT
Precision 85.73 22.51

Recall 69.88 42.93
ROC-AUC 80.60 81.02

TabIDS

HopSkipJump
Precision 83.10 17.07

Recall 83.80 16.36
ROC-AUC 86.37 86.38

SignOPT
Precision 86.98 40.52

Recall 89.82 34.01
ROC-AUC 93.21 93.22

Tabela 21 – Attacks Black-Box contra modelos de classificação multiclasse com dados CIC IDS2017.

Model Attacks Metrics
Label

Benign DoS DDoS

TabNet

HopSkipJump
Precision 79.79 13.37 4.71

Recall 57.59 4.67 0.02
ROC-AUC 63.25 95.63 99.87

SignOPT
Precision 81.84 18.73 21.05

Recall 60.70 11.31 1.16
ROC-AUC 70.63 93.96 99.22

TabIDS

HopSkipJump
Precision 83.17 10.56 8.27

Recall 72.13 11.66 3.82
ROC-AUC 82.96 94.62 98.68

SignOPT
Precision 86.65 23.13 34.06

Recall 74.11 19.78 17.69
ROC-AUC 88.30 96.33 98.83

Nos dados da UNSW-NB15, os classificadores binários mostrados na Tabela 22. Os

valores de Precisão e Recall para os ataques HopSkipJump e SignOPT foram ligeiramente

maiores no TabIDS dentro dos labels de Ataque.

Nos classificadores multiclasse, Tabela 23, HopSkipJump dentro do TabIDS, a Preci-

são apresentou resultados ligeiramente melhores para o label "Normal", enquanto a mé-
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trica de Recall favoreceu “Reconnaissance”. Além disso, os labels “Generics” resultaram

em valores ligeiramente maiores na métrica do que no modelo TabNet.

Tabela 22 – Ataques Black-Box contra modelos de classificação binária com dados UNSW-NB15.

Model Attacks Metrics
Label

Normal Attacks

TabNet

HopSkipJump
Precision 97.95 1.95

Recall 89.45 10.06
ROC-AUC 90.36 90.37

SignOPT
Precision 98.50 6.71

Recall 90.01 34.46
ROC-AUC 93.33 93.36

TabIDS

HopSkipJump
Precision 97.97 2.10

Recall 83.08 17.38
ROC-AUC 85.89 85.89

SignOPT
Precision 98.72 6.85

Recall 87.00 45.78
ROC-AUC 92.90 92.90

Tabela 23 – Ataques Black-Box contra modelos de classificação multiclasse com dados UNSW-NB15.

Model Attacks Metrics
Label

Normal Recon. Generic

TabNet

HopSkipJump
Precision 99.33 6.12 1.47

Recall 93.26 1.70 0.07
ROC-AUC 96.19 99.46 99.27

SignOPT
Precision 99.60 1.80 1.14

Recall 93.64 1.42 0.07
ROC-AUC 98.17 99.46 99.09

TabIDS

HopSkipJump
Precision 99.50 6.27 5.07

Recall 51.87 23.01 0.47
ROC-AUC 96.08 97.73 97.13

SignOPT
Precision 99.73 2.01 15.26

Recall 68.50 16.19 10.24
ROC-AUC 98.12 97.95 97.69
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Tabela 24 – Métricas OOD para TabIDS binária com dados CIC IDS2017.

OOD
Attacks Parameter ROC-AUC

0.1 90.5
PGD 0.2 95.8

0.3 97.2
0 93

CW 0.2 93.2
0.5 95.2

Hopskipjump – 90.7
SignOPT – 87.7

4.3.4 Detecção de Out-of-Distribution

Apresentamos os resultados relacionados ao OOD após ataques adversários contra o

modelo TabIDS, incluindo resultados de classificação binária e multiclasse.

Para os modelos de classificação binária e conjuntos de dados avaliados, o método de

detecção obteve ROC-AUC superior a 90% para os ataques PGD-100 e CW-10 Tabelas

25, 26 e Fig. 14. Padrões semelhantes são observados nos métodos multiclasse Fig. 15

nos ataques mencionados anteriormente. No entanto, para ataques de black-box, o ROC-

AUC para HopSkipJump não excedeu 90% em todos os modelos e conjuntos de dados.

Enquanto o SignOPT não ultrapassou 90% em três experimentos, exceto para o TabIDS

binário em UNSW-NB15.

Tabela 25 – Detecção de OOD em classificação binária e dados CIC IDS2017.

OOD
Attacks Parameter ROC-AUC

0.1 90.5
PGD 0.2 95.8

0.3 97.2
0 93

CW 0.2 93.2
0.5 95.2

Hopskipjump – 90.7
SignOPT – 87.7
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Tabela 26 – Detecção de OOD em classificação multiclasse e dados CIC IDS2017.

OOD
Attack Parameter ROC-AUC

PGD-100
0.1 96.5
0.2 97.5
0.3 98.2

CW-10
0 98.7

0.2 98.4
0.5 98.1

Hopskipjump – 80.5
SignOPT – 86.3

Figura 14 – Detecção OOD com modelo binário

Esquerda: UNSW-NB15; Direita: CIC IDS2017

Tabela 27 – Detecção de OOD em classificação binária e dados UNSW-NB15.

OOD
Attacks Parameters ROC-AUC

PGD-Linf
0.1 96.9
0.2 97.8
0.3 97.7

CW
0 95.5

0.2 95.4
0.5 95.2

Hopskipjump – 80
SignOPT – 82
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Tabela 28 – Detecção de OOD em classificação multiclasse e dados UNSW-NB15.

OOD
Attacks Parameters ROC-AUC

PGD
0.1 95.6
0.2 98
0.3 99.5

CW
0 94

0.2 93.1
0.5 92.6

Hopskipjump – 88.9
SignOPT – 92.9

Figura 15 – Detecção OOD com modelo multiclasse.

Esquerda: UNSW-NB15; Direita: CIC IDS2017

4.3.5 OOD para ataques de transferência

Figura 16 – Detecção OOD após transferência dos ataques PGD-100 e CW-10.

Ataques transferidos a partir de uma MLP para a TabIDS
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4.3.6 OOD para dados Clean

Também foi realizado um experimento com ataques CIC IDS 2018 Canadian Insti-

tute for Cybersecurity 2018 não observados no treinamento com CIC IDS 2017. Dessa

forma, pudemos testar o comportamento do modelo proposto contra ataques de rede não

observados no treinamento. Os resultados são mostrados na Figura. 17.

Figura 17 – OOD para dados não perturbados com CIC IDS2018

4.4 CONSIDERAÇÕES SOBRE OS RESULTADOS

Em geral, o TabIDS se manteve robusta a ataques adversariais, como evidenciado

por suas pontuações de Precisão em cenários de ataques de white-box. Deve-se observar

que os valores de Precisão e Recall para a TabIDS foram relativamente equilibrados,

sugerindo uma menor suscetibilidade a falsos positivos e falsos negativos em comparação

com o TabNet, como também uma melhor identificação dos ataques de rede. Os valores

de ROC-AUC para TabIDS evidenciam que o modelo manteve uma boa separabilidade

entre as classes. Essa tendência para as métricas não se manteve para experimentos com

ataques black-box, embora o detector OOD tenha mitigado o problema e se mostrou útil

na detecção de OOD sem perturbações adversariais para ataques de rede presentes no

CIC IDS2018, os quais não foram vistos no treino e a detecção OOD também foi útil para

detectar ataques por transferência. Deve ser feita a observação que para o ataque de rede

Infiltration do CIC IDS2018 o valor para ROC-AUC ficou em torno de 90%, apesar de

não ser um valor comparável ao estado da arte e o fato que o detector OOD utilizado no
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presente trabalho é focado em discriminar amostras adversariais, os trabalhos Hendrycks

e Gimpel 2017,Liang, Li e Srikant 2018 sobre detecção OOD permitem concluir que é

uma detecção razoável.

Na figura 18 é mostrada a importância das features após o ataque HopSkipJump con-

tra dados UNSW-NB15. O método utilizado para interpretabilidade é a partir de Lofstrom

et al. 2023 que gera interpretações contrafatuais calibradas por predição conforme Papa-

dopoulos et al. 2002. Ainda na figura 18 é possível notar que conforme os ataques fizeram

os valores das features (eixo Y) diminuirem, aumentou a chance de erro do classificador,

indicando que a combinação entre features não atacáveis e a seleção de features atacáveis

contribuiu para uma melhor exploração das vulnerabilidades do classificador TabIDS em

relação a fronteira de decisão, ver figura 19, onde é observador para o HopSkipJump,

Figura 19 a, onde o ataque explorou todo o espaço de ocorrência das amostras e na figura

19 b, onde o ataque Sign-OPT explorou melhor a sobreposição das amostras de ataque

de rede e fluxo benigno.

Figura 18 – Interpretação por Contrafatual calibrado com ataques de rede do UNSW-NB15.

Ataques de rede. Esquerda: Generic; Direita: Reconnaissance
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Figura 19 – PCA para fronteira de decisão após ataques Black-Box em dados UNSW-NB15.

a: Ataque HopSkipJump

b: Ataque Sign-OPT



79

5 CONCLUSÃO E TRABALHOS FUTUROS

A necessidade de proteção das redes em ambientes corporativos se faz urgente. No en-

tanto não é uma tarefa fácil, devido à existência de vários métodos de ataque, surgimento

de novas ameças, vulnerabilidades desconhecidas e as formas tradicionais de detecção não

conseguem fazer frente ao novos ataques. Além da dificuldade de um lado e novas vulne-

rabilidades sendo descobertas e exploradas, o quantitativo de dados a ser analisado para

confirmar o andamento de um tráfego malicioso é enorme e tende a aumentar, fazendo-se

necessárias análises rápidas e que consigam dar conta das novas ameaças.

Este trabalho se propôs a usar deep learning como técnica para detecção de intru-

sões em redes, uma vez que é uma técnica apropriada para lidar com dados complexos,

têm melhor capacidade de generalização e escalabilidade quando comparadas as técni-

cas tradicionais de ML, sendo portanto melhores na detecção de anomalias em redes de

computadores. Para este fim, foi usada a arquitetura TabNet a qual é pensada em dados

tabulares, forma de dados comumente usada na publicação dos conjuntos de dados para

redes de computadores. No entanto foi levado em consideração que redes neurais são vulne-

ráveis a ataques chamados ataques adversariais, o que para um sistema de cibersegurança

aumentaria a chance de ataques e comprometeria a rede a qual deveria defender.Para

aumentar a robustez a ataques adversariais evasivos, foi usado treinamento adversarial na

TabNet, que no presente trabalho foi chamada de TabIDS, e em seguida um detector de

OOD, para eventuais ataques que consigam evadir a TabIDS e ataques de rede não vistos

no treinamento. Nos experimentos foram utilizadas pequenas perturbações para testar

a eficiência do método TabIDS e compará-lo a uma versão do modelo com treinamento

convencional TabNet.

Os efeitos das perturbações foram comparados com base em como elas influenciaram as

métricas: Precisão, Recall e ROC-AUC. Nossos resultados mostram que o modelo proposto

(TabIDS) teve um bom desempenho no conjunto de dados CIC IDS2017 e UNSW-NB15

para os ataques fortes white-box, ou seja, ataques imperceptíveis mas altamente eficazes

em enganar o modelo.O uso de um método OOD ajudou a detectar amostras que o

modelo TabIDS não detectou, e essa abordagem foi útil com os ataques black-box. Foi

testado ainda o detector OOD em dados não perturbados do CIC IDS2018, para avaliar

sua capacidade de detecção em ataques de rede não vistos com o treinamento do CIC
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IDS2017. Esses ataques avaliados a partir do CIC IDS2018 resultaram em bons valores

com exceção para uma classe ,Infiltration que ficou em torno de 90% para ROC-AUC que

é considerado razoável pela literatura consultada para OOD.

Uma limitação que deverá ser abordada em trabalhos futuros é a classificação baseada

em metadados para fluxo criptografado. Outra limitação a ser explorada é perturbar o

fluxo e convertê-lo para pacotes pcap, desse modo observar se os pacotes evadem o mo-

delo, ou até mesmo propor ataques apropriados para dados pcap. Também devem ser

investigados ataques gerados por GANs ao invés de adaptar os baseados em visão com-

putacional e fazer a validação do fluxo a oartir da criação e transmissão de pacotes pcap,

quantificando tanto o fluxo verdadeiro quanto adversarial produzido por GANs. Além

disso,fazem-se necessárias pesquisas sobre quantificação de incertezas que sejam robustas

a amostras adversárias e não aumentem a latência do modelo. Essa abordagem aumen-

taria a confiabilidade dos resultados relacionados à detecção de amostras adversárias,

fornecendo intervalos de probabilidade para cada classe de saída do modelo.
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ANEXO A – TABELAS DAS MÉTRICAS RELACIONADAS A

IMPERCEPTIBILIDADE

Embora alguns valores de Ł2/Ł∞ perturbados sejam menores que o original, no pre-

sente caso isso pode ser causado por ataques que otimizam a procura por perturbações

mínimas, principalmente nos casos: CW , HopSkipJump e SignOPT de acordo com seus

respectivos autores [Carlini e Wagner 2017], [Chen e Jordan 2019] e [Cheng et al. 2019],

embora possa acontecer em ataques iterativos [Madry et al. 2017]. Para ter uma noção

global da imperceptibilidade da amostra, as métricas foram calculadas para a amostra e

não apenas para as features perturbadas.

A.1 CIC IDS2017

A.1.1 White-Box

Tabela 29 – Métricas para CIC IDS2017 e ataque PGD-100 contra classificadores binários

PGD Métrica
Epsilon

0.1 0.2 0.3
Original Perturbed Original Perturbed Original Perturbed

CLEAN
𝐿∞ 0,99 1,00 0,99 1,00 0,99 1,00

Wasserstein 0,00 0,01 0,00 0,02 0,00 0,03

IDS
𝐿∞ 0,99 0,99 0,99 0,99 0,99 1,00

Wasserstein 0,00 0,01 0,00 0,02 0,00 0,03

Tabela 30 – Métricas para CIC IDS2017 e ataque CW-10 contra classificadores binários

CW Métrica
Confidence

0,00 0,20 0,50
Original Perturbed Original Perturbed Original Perturbed

CLEAN
𝐿2 4,34 4,34 4,34 4,34 4,34 4,34

Wasserstein 0,00 0,00 0,00 0,00 0,00 0,00

IDS
𝐿2 4,34 4,34 4,34 4,34 4,34 4,34

Wasserstein 0,00 0,00 0,00 0,00 0,00 0,00
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Tabela 31 – Métricas para CIC IDS2017 e ataque PGD-100 contra classificadores multiclasse

PGD Métrica
Epsilon

0.1 0.2 0.3
Original Perturbed Original Perturbed Original Perturbed

CLEAN
𝐿∞ 0,99 0,99 0,99 1,00 0,99 1,00

Wasserstein 0,00 0,01 0,00 0,02 0,00 0,03

IDS
𝐿∞ 0,99 0,99 0,99 1,00 0,99 1,00

Wasserstein 0,00 0,01 0,00 0,01 0,00 0,02

Tabela 32 – Métricas para CIC IDS2017 e ataque CW-10 contra classificadores multiclasse

CW Métrica
Confidence

0,00 0,20 0,50
Original Perturbed Original Perturbed Original Perturbed

CLEAN
𝐿2 4,34 4,34 4,34 4,34 4,34 4,34

Wasserstein 0,00 0,00 0,00 0,00 0,00 0,00

IDS
𝐿2 4,34 4,34 4,34 4,34 4,34 4,34

Wasserstein 0,00 0,00 0,00 0,00 0,00 0,00

A.1.2 Black-Box

Tabela 33 – Métricas para CIC IDS2017 e ataque HopSkipJump contra classificadores binários

HopSkipJump Métricas Original Perturbed

CLEAN
𝐿∞ 0,99 0,99

Wasserstein 0,00 0,00

IDS
𝐿∞ 0,99 0,99

Wasserstein 0,00 0,00

Tabela 34 – Métricas para CIC IDS2017 e ataque SignOPT contra classificadores binários

SignOPT Métricas Original Perturbed

CLEAN
𝐿2 4,34 4,35

Wasserstein 0,00 0,02

IDS
𝐿2 4,34 4,46

Wasserstein 0,00 0,02
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Tabela 35 – Métricas para CIC IDS2017 e ataque HopSkipJump contra classificadores multiclasse

HopSkipJump Métrica Original Perturbed

CLEAN
𝐿∞ 0,99 0,99

Wasserstein 0,0 0,0

IDS
𝐿∞ 4,3 4,3

Wasserstein 0,0 0,0

Tabela 36 – Métricas para CIC IDS2017 e ataque SignOPT contra classificadores multiclasse

SignOPT Métrica Original Perturbed

CLEAN
𝐿2 4,34 4,35

Wasserstein 0,0 0,0

IDS
𝐿2 4,3 4,4

Wasserstein 0,0 0,0

A.2 UNSW-NB15

A.2.1 White-Box

Tabela 37 – Métricas para UNSW-NB15 e ataque PGD-100 contra classificadores binários

PGD Métricas
Epsilon

0.1 0.2 0.3
Original Perturbed Original Perturbed Original Perturbed

CLEAN
𝐿∞ 113,86 113,78 113,86 113,69 113,86 113,61

Wasserstein 0,00 0,02 0,00 0,04 0,00 0,05

IDS
𝐿∞ 113,86 113,88 113,86 113,90 113,86 113,92

Wasserstein 0,00 0,02 0,00 0,04 0,00 0,05

Tabela 38 – Métricas para UNSW-NB15 e ataque CW-10 contra classificadores binários

CW Métricas
Confidence

0,00 0,20 0,50
Original Perturbed Original Perturbed Original Perturbed

CLEAN
𝐿2 114,12 114,08 114,12 114,08 114,12 114,08

Wasserstein 0,00 0,03 0,00 0,03 0,00 0,03

IDS
𝐿2 114,12 114,12 114,12 114,12 114,12 114,12

Wasserstein 0,00 0,00 0,00 0,00 0,00 0,00
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Tabela 39 – Métricas para UNSW-NB15 e ataque PGD-100 contra classificadores multiclasse

PGD Métricas
Epsilon

0.1 0.2 0.3
Original Perturbed Original Perturbed Original Perturbed

CLEAN
𝐿∞ 11,24 11,24 11,24 11,23 11,24 11,21

Wasserstein 0,00 0,02 0,00 0,04 0,00 0,06

IDS
𝐿∞ 11,24 11,24 11,24 11,24 11,24 11,22

Wasserstein 0,00 0,02 0,00 0,03 0,00 0,05

Tabela 40 – Métricas para UNSW-NB15 e ataque CW-10 contra classificadores multiclasse

CW Métricas
Confidence

0,00 0,20 0,50
Original Perturbed Original Perturbed Original Perturbed

CLEAN
𝐿2 13,40 13,40 13,40 13,40 13,40 13,40

Wasserstein 0,00 0,00 0,00 0,00 0,00 0,00

IDS
𝐿2 13,40 13,40 13,40 13,40 13,40 13,40

Wasserstein 0,00 0,00 0,00 0,00 0,00 0,00

A.2.2 Black-Box

Tabela 41 – Métricas para UNSW-NB15 e ataque HopSkipJump contra classificadores binários

HopSkipJump Métrica Original Perturbed

CLEAN
𝐿∞ 10,27 10,23

Wasserstein 0,00 0,10

IDS
𝐿∞ 10,27 10,27

Wasserstein 0,00 0,09

Tabela 42 – Métricas para UNSW-NB15 e ataque SignOPT contra classificadores binários

SignOPT Métrica Original Perturbed

CLEAN
𝐿2 12,60 12,76

Wasserstein 0,00 0,07

IDS
𝐿2 12,60 12,75

Wasserstein 0,00 0,06
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Tabela 43 – Métricas para UNSW-NB15 e ataque HopSkipJump contra classificadores multiclasse

HopSkipJump Métrica Original Perturbed

CLEAN
𝐿∞ 11,24 11,14

Wasserstein 0,00 0,17

IDS
𝐿∞ 11,24 11,21

Wasserstein 0,00 0,07

Tabela 44 – Métricas para UNSW-NB15 e ataque SignOPT contra classificadores multiclasse

SignOPT Métrica Original Perturbed

CLEAN
𝐿2 13,40 13,53

Wasserstein 0,00 0,07

IDS
𝐿2 13,40 13,41

Wasserstein 0,00 0,02
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ANEXO B – ATAQUES DE REDE E MITRE ATT&CK

Tabela 45 – Resumo dos ataques Reconnaissance, Generic, DoS e DDoS com descrições em tópicos

Ataque Descrição Objetivo Exemplos Danos/Prejuízos
(MITRE ATT&CK)

Recon. • Coleta de informa-
ções sobre o alvo

• Infraestrutura,
pessoas e sistemas

• Mapear superfície
de ataque

• Identificar vulnera-
bilidades

• Preparar etapas
futuras

• Scans de rede
• Coleta de e-mails
• Pesquisa em redes

sociais
• Consulta a bancos

de dados públicos

• Exposição de infor-
mações sensíveis

• Aumento do risco de
ataques direcionados

• Preparação para ata-
ques subsequentes

Generic • Técnica aplicável a
qualquer cifra de
bloco

• Não explora deta-
lhes do algoritmo

• Quebrar criptogra-
fia por métodos
universais

• Força bruta ou co-
lisão

• Força bruta de
chaves

• Ataque de aniver-
sário (birthday at-
tack)

• Quebra de confiden-
cialidade

• Acesso não autori-
zado a informações
protegidas

• Exposição de cre-
denciais

DoS • Interrupção ou de-
gradação de ser-
viço

• Sobrecarga ou ex-
ploração de falhas

• Tornar serviço
indisponível para
usuários legítimos

• Sobrecarga de re-
cursos

• Envio de pacotes
malformados

• Crash persistente

• Indisponibilidade de
serviços

• Interrupção de ope-
rações críticas

• Dano reputacional e
financeiro

DDoS • DoS realizado por
múltiplos sistemas
distribuídos

• Usualmente via
botnets

• Esgotar largura de
banda ou recursos
do alvo

• Ataque massivo e
coordenado

• SYN flood
• UDP flood
• HTTP flood
• Tráfego volumé-

trico distribuído

• Indisponibilidade to-
tal ou parcial de ser-
viços

• Perda de receita
• Impacto em clientes
• Distração para ou-

tros ataques
OBS: As definições dos ataques usadas nesta tabela foram retiradas da documentação dos datasets. As demais
descrições foram adaptadas do MITRE ATT&CK.
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ANEXO C – RESULTADOS PARA TREINOS ADVERSARIAIS EM DADOS

DESBALANCEADOS

C.1 COMPARATIVO ENTRE OS TREINOS

A tabela 46 abaixo mostra os resultados para classificação multi-classe com o treino

adversarial usado neste trabalho com a função de custo utilizada (Entropia cruzada). Uma

vez que o treinamento adversarial mostra problemas com dados desbalanceados Li, Xu

e Zhang 2023, foi tentado as seguintes abordagens de forma obter um modelo que não

tivesse performance ruim nas classes minoritárias:

• MAIL: Wang et al. 2021 propuseram uma estratégia adaptativa de associar os pesos

de classes na função entropia cruzada. Resumidamente conforme uma certa quanti-

dade de épocas o método muda um fator que é multiplicado pelo valor do custo das

classes.

• LDAM+SCL: Em Wang et al. 2021 o qual usam duas funções de custo combina-

das: LDAM Cao et al. 2019 e contrastiva supervisionada (SCL) Khosla et al. 2020.

Segundo os autores,esta combinação de funções de custo conseguiriam ponderar de

maneira eficiente o peso das classes durante o treino.

Não foram realizados experimentos com LDAM+SCL ou MAIL para CIC IDS2017

uma vez que os resultados obtidos com o UNSW-NB15 não foram satisfatórios.
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Tabela 46 – Entropia cruzada VS MAIL VS LDAM+SCL em treino adversarial (MPB-AT)

UNSW-NB15

Label
Entropia Cruzada MAIL LDAM+SCL

Precision Recall ROC-AUC Precision Recall ROC-AUC Precision Recall ROC-AUC
Normal 100 99,52 99,88 99,38 99,83 97,69 100 42,52 93,52
Exploits 71,2 61,46 98,28 55,33 58,5 94,86 1,59 24,68 68,76
Recon. 82,86 92,05 98,65 87,16 36,65 98,58 5,83 89,49 97,27

DoS 20,53 23,18 84,37 8,4 4,72 91,35 0,21 38,2 61,6
Generic 96,85 96,01 99,17 94,34 76,53 90,36 52,6 91,36 99

Shellcode 41,76 84,44 95,91 0 0 89,25 0,99 93,33 99,18
Fuzzers 53,45 77,52 99,73 40,96 33,66 97,16 4,63 63,56 86,17
Worms 8,33 20 41 0 0 99,35 0,04 100 96,36

Backdoor 12,5 35,51 97,57 0 0 75,63 0,13 31,78 64,32
Analysis 12,82 61,9 99,83 0 0 85,36 3,51 69,52 96,52
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ANEXO D – GRÁFICOS RECALL E ROC-AUC

D.1 RECALL - CIC IDS2017 - WHITE BOX

Figura 20 – Recall após PGD-100 com CIC IDS2017 e classificadores binários

Figura 21 – Recall após CW-10 com CIC IDS2017 e classificadores binários

Figura 22 – Recall após PGD-100 com CIC IDS2017 e classificadores multiclasse
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Figura 23 – Recall após CW-10 com CIC IDS2017 e classificadores multiclasse

D.2 RECALL - CIC IDS2017 - BLACK BOX

Figura 24 – Recall após HopSkipJump com CIC IDS2017 e classificadores binários

Figura 25 – Recall após SignOPT com CIC IDS2017 e classificadores binários

Figura 26 – Recall após HopSkipJump com CIC IDS2017 e classificadores multiclasse
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Figura 27 – Recall após SignOPT com CIC IDS2017 e classificadores multiclasse

D.3 RECALL - UNSW-NB15 - WHITE BOX

Figura 28 – Recall após PGD-100 com UNSW-NB15 e classificadores binários

Figura 29 – Recall após CW-10 com UNSW-NB15 e classificadores binários
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Figura 30 – Recall após PGD-100 com UNSW-NB15 e classificadores multiclasse

Figura 31 – Recall após CW-10 com UNSW-NB15 e classificadores multiclasse

D.4 RECALL - UNSW-NB15 - BLACK BOX

Figura 32 – Recall após HopSkipJump com UNSW-NB15 e classificadores binários

Figura 33 – Recall após SignOPT com UNSW-NB15 e classificadores binários
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Figura 34 – Recall após HopSkipJump com UNSW-NB15 e classificadores multiclasse

Figura 35 – Recall após SignOPT com CIC IDS2017 e classificadores multiclasse

D.5 ROC-AUC - CIC IDS2017 - WHITE BOX

Figura 36 – ROC-AUC após PGD-100 com CIC IDS2017 e classificadores binários

Figura 37 – ROC-AUC após CW-10 com CIC IDS2017 e classificadores binários
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Figura 38 – ROC-AUC após PGD-100 com CIC IDS2017 e classificadores multiclasse

Figura 39 – ROC-AUC após CW-10 com CIC IDS2017 e classificadores multiclasse

D.6 ROC-AUC - CIC IDS2017 - BLACK BOX

Figura 40 – ROC-AUC após HopSkipJump com CIC IDS2017 e classificadores binários

Figura 41 – Recall após SignOPT com CIC IDS2017 e classificadores binários
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Figura 42 – ROC-AUC após HopSkipJump com CIC IDS2017 e classificadores multiclasse

Figura 43 – ROC-AUC após SignOPT com CIC IDS2017 e classificadores multiclasse

D.7 ROC-AUC - UNSW-NB15 - WHITE BOX

Figura 44 – ROC-AUC após PGD-100 com UNSW-NB15 e classificadores binários

Figura 45 – ROC-AUC após CW-10 com UNSW-NB15 e classificadores binários
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Figura 46 – ROC-AUC após PGD-100 com UNSW-NB15 e classificadores multiclasse

Figura 47 – ROC-AUC após CW-10 com UNSW-NB15 e classificadores binários

D.8 ROC-AUC - UNSW-NB15 - BLACK BOX

Figura 48 – ROC-AUC após HopSkipJump com UNSW-NB15 e classificadores binários

Figura 49 – Recall após SignOPT com UNSW-NB15 e classificadores binários
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Figura 50 – ROC-AUC após HopSkipJump com UNSW-NB15 e classificadores multiclasse

Figura 51 – ROC-AUC após SignOPT com UNSW-NB15 e classificadores multiclasse
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