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RESUMO

Sistemas de deteccao de intrusao baseados em aprendizado profundo sdo vulneraveis
a acoes evasivas chamadas ataques adversarios. Este é um problema critico, pois siste-
mas com suposta alta precisao sao suscetiveis a ataques que nao sao identificados. Neste
trabalho, apresentamos uma nova abordagem chamada TabIDS que utiliza treinamento
adversario para aumentar a robustez classificatoria contra ataques adversariais capazes
de evadir sistemas de deteccao de intrusao, sendo também capaz de detectar ataques nao

vistos no treinamento do modelo. Para isso, foram implementados dois classificadores para

compor um sistema de detec¢ao de intrusao em redes (Network Intrusion Detection System|

(NIDS))): um para detecgao de ataques de rede e outro para amostras out-of-distribution

[Out-of-distribution (OOD)l O método desenvolvido combina o modelo treinado adversa-

rialmente com um método por distancia Mahalanobis projetado para detectar amostras
adversarias como sendo [DOD] Dessa forma é preenchida uma lacuna onde ou o classifi-
cador apenas consegue lidar com um tipo de ataque adversarial, ou o detector [OOD) é
aplicado apenas para amostras nao perturbadas adversarialmente. Foi avaliado o desem-
penho do modelo nos conjuntos de dados CIC IDS2017 e UNSW-NB15, e a abordagem
utilizando treinamento adversario com deteccao de se mostrou robusta contra ata-
ques adversarios avancados e mesmo contra ataques de rede nao vistos no treinamento. Os
resultados obtidos demonstram que o TabIDS supera modelos convencionais em Precisao,
Recall e Area sob a curva ROC (ROC-AUC), especialmente em cendrios adversariais com
perturbagoes imperceptiveis. A deteccao de baseada em distancia de Mahalanobis
atingiu até 99,5% de AUC em alguns ataques, destacando a eficdcia do método proposto.
Os resultados mostram que a abordagem é promissora para aplicagoes de ciberseguranga

que demandam robustez e generalizacao frente a ataques desconhecidos.

Palavras-chaves: Dados fora de distribui¢cdo. Robustez adversarial. Sistemas de deteccao

de intrusio.



ABSTRACT

Deep learning-based intrusion detection systems are vulnerable to evasive actions
called adversarial attacks. This is a critical problem, as systems with supposedly high
accuracy are susceptible to attacks that are not identified. In this work, we present a
new approach called TabIDS that uses adversarial training to increase classification ro-
bustness against adversarial attacks capable of evading intrusion detection systems, while
also being able to detect attacks not seen during model training. To this end, two clas-
sifiers were implemented to compose a network intrusion detection system (NIDS): one
for detecting network attacks and the other for OOD samples. The developed method
combines the adversarially trained model with a Mahalanobis distance method designed
to detect adversarial samples as OOD. This fills a gap where either the classifier can only
handle one type of adversarial attack, or the OOD detector is applied only to samples
not adversarially perturbed. The model’s performance was evaluated on the CIC IDS2017
and UNSW-NB15 datasets, and the approach, using adversarial training with OOD detec-
tion, proved robust against advanced adversarial attacks and even against network attacks
not seen in the training. The results demonstrate that TabIDS outperforms conventional
models in Precision, Recall, and ROC-AUC, especially in adversarial scenarios with im-
perceptible perturbations. OOD detection based on Mahalanobis distance achieved up to
99.5% AUC in some attacks, highlighting the effectiveness of the proposed method. The
results show that the approach is promising for cybersecurity applications that require

robustness and generalization against unknown attacks.

Keywords: Out-of-distribution, Adversarial Robustness, Network Intrusion Detection

System.
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1 INTRODUCAO

O ntmero de dispositivos conectados em rede tem crescido exponencialmente. A inter-
net, ao proporcionar uma comunicacao agil, tornou as redes de computadores onipresentes
no ambiente corporativo. Uma consequéncia direta deste cenédrio é o aumento anual dos
ciberataques tendo estas redes como alvo, o que exige investimentos significativamente
elevados para prevenir ou mitigar os efeitos adversos causados por esses ataques Fig. [I]

Ataques a redes de computadores estao evoluindo para formas de ataque multi estagio
e de longo prazo. Como exemplo: os ataques DDoS, que dependem da propagacao de

botnets em computadores vulneraveis, para depois causarem a negacao de servico ao

sistema alvo; e as [Advanced Persistent Threats (APT), que sdo capazes de permanecer

furtivas na rede do alvo por longos periodos de tempo, conforme a necessidade do invasor,
resultando em prejuizos substanciais tais como perdas financeiras elevadas ou vazamentos
de dados sensiveis Kim, Wang e Ullrich 2012, |Kaspersky 2022.

A intrusao via redes Uma e Padmavathi 2013/ é das mais sérias ameacas a sistemas
corporativos de computadores, uma vez que a partir dela o atacante pode causar danos
irrecuperaveis para as organizagoes, incluindo vazamento de dados financeiros, dados de
fornecedores, e interrupcao no fornecimento de servigos criticos |Jeba et al. 2024, Durante
essas invasoes, o adversario geralmente consegue instalar malwares que facilitem o seu
acesso a outras redes, omitindo sua localizacao e identificacdo da rede/computador de
origem |Jiang, Wu e Xin 2022 Em razao disso, faz-se mandatério o desenvolvimento de
novas técnicas capazes de evitar ou detectar o acesso malicioso. Isto inclui os sistemas de
deteccao de intrusao |Abdulganiyu, Tchakoucht e Saheed 2023

De acordo com [Masdari e Khezri 2020| a deteccao de ameacas em um

ftection System (IDS)|tem sido baseada num conjunto de técnicas que incluem a detecgao

de anomalias, deteccao de uso malicioso com base em assinaturas de ataques conhecidos e
métodos hibridos. No IDS baseado em deteccao de anomalias, o perfil de comportamento
normal deve ser definido antecipadamente. Qualquer desvio significativo em relagao a
esta norma pode ser considerado uma anomalia comportamental caracteristica de uma
invasao [Masdari e Khezri 2020.Embora os IDSs baseados em anomalias possam lidar com
novos tipos de ataques, definir e atualizar o comportamento normal pode ser um desafio

em organizacoes grandes e dinamicas [Farahnakian e Heikkonen 2018
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Por outro lado, em [You et al. 2022/ é dito que:

o A detecgao baseada em assinaturas, que compara o padrao de uma ameaga em curso
com regras pré-existentes, nao é eficaz na deteccao de novos tipos de ataques, muito

embora apresentem alta precisao de deteccao para os ataques conhecidos.

o Além disso, elas experimentam muitos casos de falsos positivos para ameacas inédi-

tas, algo que limita suas implantacoes em sistemas criticos.

Os desafios encontrados ao detectar anomalias em ciberseguranca :

« Anomalias geralmente sao raras, levando a dificuldades na modelagem e treinamento
de algoritmos. Isso dificulta a construgao de modelos supervisionados e pode levar

a vieses em favor da classe majoritaria, gerando altas taxas de falsos negativos ou

falsos positivos [Kohli e Chhabra 2025

o Problemas de qualidade dos dados, como ruido, entradas ausentes ou inconsisten-
tes, podem degradar drasticamente o desempenho. Modelos avangados requerem
pre-processamento robusto para lidar com esses problemas. Algoritmos modernos,
redes neurais profundas, tém poder para capturar essas complexidades, mas exigem

recursos computacionais e ajustamentos sofisticados [Kohli e Chhabra 2025

« Robustez a ruidos e variacoes contextuais Dados reais sao ruidosos e podem conter
outliers nao representativos de anomalias verdadeiras. Além disso, anomalias podem
ser contextuais (validas em um contexto, anémalas em outro), exigindo modelagens

sensiveis a variaveis externas e variacoes de escala |Adhikari et al. 2024.

Para abordar essas questoes, técnicas convencionais de aprendizado de maquina tém
sido amplamente utilizadas para detec¢ao de intrusao. Os trabalhos |Yang et al. 2022|e |El-
sayed, Mohamed e Madkour 2024/ mencionam que os modelos tradicionais de aprendizado
de maquina, tais como arvores de decisdao, maquinas de vetor de suporte e random forest
falham em detectar os ataques em dados de alta volumetria, sdio menos robustos a rui-
dos e outliers e tém dificuldade de extrair padroes de dados complexos. Ainda em |[Yang
et al. 2022 os algoritmos tradicionais de aprendizagem de maquina geralmente sofrem
com a alta dimensionalidade, uma solucao comum ¢ usar técnicas de pré-processamento
de dados que podem ajudar a reduzir a dimensionalidade, contudo os métodos de pré-

processamento (ex, redu¢ao de dimensionalidade e selegdo de features) podem afetar o
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Figura 1. Prejuizo causado por ciberataques ao longos dos anos. A partir de 2024 s3o projecbes de gastos.
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Fonte: https://www.weforum.org/stories/2024 /07 /crowdstrike-global-it-outage-cybersecurity-news-july-
2024 /.Acessado em 14-02-2025.

desempenho da deteccao ao acrescentar uma camada de laténcia no pipeline, logo devem

ser cuidadosamente considerados no projeto de métodos de deteccao de intrusao, enquanto

essas mesmas técnicas de pré-processamento nao sao imprescindiveis em [Deep Learning

Modelos de sao uteis para ambientes de rede complexos e de grande escala,

com o potencial para extrair padroes distintos dos dados sem que para isso seja necessario

recorrer a técnicas de feature engineering Kouliaridis, Kambourakis e Geneiatakis 2020L

Como resultado, varios pesquisadores neste campo se concentram no desenvolvimento de

IDS baseados em [DI] [Farhan et al. 2025/Zhang et al. 2022||Liao et al. 2024l[Elsayed, Moha-|

med e Madkour 2024, uma vez que conseguem detectar ameagas via processo de detecgao

de anomalias nos dados, ao invés de depender de assinaturas de ameacgas conhecidas
et al. 2022
Nao obstante, modelos [DI] sdo vulnerdveis a ataques adversariais, os quais sdo cons-

tituidos por pequenas perturbagoes adicionadas ao modelo com o objetivo de modificar

a saida |Goodfellow, Shlens e Szegedy 2015, No presente trabalho a robustez de um mo-

delo é entendida como sua capacidade manter a performance classificatéria em presenca

das amostras adversariais [Zhang et al. 2019, Tsipras et al. 2019, Madry et al. 2017. Tal

avaliacao pode evitar que agentes maliciosos explorem a vulnerabilidade dos modelos e

evadam o [[DS|[Jmila e Khedher 2022| causando danos financeiros e a reputacao da empresa

atingida.

Em particular, Lin, Shi e Xue 2022, [Shu et al. 2020 e Wu et al. 2019| demonstram a

aplicabilidade de ataques adversariais evasivos a dados estruturados, introduzindo uma
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vulnerabilidade significativa a aplica¢oes de seguranca cibernética.

Além disso, é pertinente enfatizar que as redes neurais profundas podem degradar
significativamente o seu desempenho preditivo em razao de mudancas na distribuicao dos
dados. Isso ocorre porque uma premissa dos modelos é que os dados de teste mantenham
a distribuicao dos dados de treino; no entanto, isso nao é factivel ao colocar o modelo

em producao Bulusu et al. 2020. Portanto, é evidente que um modelo confidvel deve

conseguir nio apenas reconhecer amostras [n-distribution (ID)|como também [OOD] desse

modo evita-se que o modelo atribua erroneamente um alto nivel de confianca a classes
desconhecidas ou a amostras adversariais.

Uma solugao direta para contornar o problema de dados ¢ coletar alguns dados
do dominio de destino para adaptar um modelo treinado no dominio de origem Zhou et

al. 2021, Esse problema de adaptacao de dominio — usualmente mencionado como [Domain|

|Adaptation (DA )| na literatura relevante — vem recebendo crescente atengao |Lu et al. 2020,

Saito et al. 2017 e [Long et al. 2015 ao longo dos anos. No entanto, a[DA] depende de uma
forte suposicao de que os dados de destino sao acessiveis para adaptacao do modelo, o que
nem sempre se mantém na pratica e faz DA ficar alinhada a um dominio em particular.
Na verdade, em muitas aplicagoes, os dados de destino sao dificeis de obter ou mesmo
desconhecidos antes de implementar o modelo.

Por exemplo, na segmentacao seméntica de cenas de trafego, é inviavel coletar dados
capturando todas as cenas diferentes e sob todas as condigoes climaticas possiveis |Yue

et al. 2019, Para superar o problema de mudanca de dominio, bem como a auséncia

de dados de destino, a abordagem generalizacdo de dominio ( [Domain Generalization|

(DG)) foi introduzida Blanchard, Lee e Scott 2011, Especificamente, o objetivo em DG é

otimizar um modelo usando dados de um ou multiplos dominios de origem relacionados,
mas distintos entre si, de tal forma que o modelo possa generalizar bem para qualquer
dominio de destino a partir do aprendizado de representagoes invariantes. Para dar um
exemplo, pode-se treinar um modelo meteorologico usando imagens diurnas com neve ou
chuva e testar em imagens com neblina, que por nao serem vistas no treinamento sera
detectada como OOD ao invés de o modelo errar com alta confianca.

Vérios métodos lidam com o problema de generalizacao de Isto inclui métodos
baseados no alinhamento de distribui¢oes de dominio de origem para [DG|[Li et al. 2018|
Métodos que expoem o modelo a mudanca de dominio durante o treinamento via meta-

aprendizagem [Balaji, Sankaranarayanan e Chellappa 2018/ e métodos que aumentam dados
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com sintese de dominio [Zhou et al. 2020 Além disso, ha também os modelos robustos a
amostras adversariais, como apontados por |Lee et al. 2018 e [Malinin e Gales 2019.

Deve ser dito que nos trabalhos anteriores em deteccao de intrusao para redes, tais
como o trabalho de [Hashemi e Keller 2020, que apesar de levar em consideragao as restri-
¢oes em dados tabulares, os autores usam ataques adversariais white box sem adaptacao
apropriada aos dados de fluxo de rede, potencialmente gerando amostras invalidas. [Liang
et al. 2022 embora nao utilizou as restricoes de dados tabulares, porém utiliza um de-
tector para amostras nao vistas no treinamento. |Ceccarelli e Zoppi 2023 utilizaram
ataques black box seguindo as restri¢oes e uso de out of distribution para amostras clean,
portanto ¢ um método que pode nao ser seguro a ataques white-box ou mesmo a ataques
que evadam o detector |[OOD| Paya et al. 2023| usaram ataques white box baseado em um
modelo de ameaga Insider Threat e com restricoes para dados tabulares, no entanto o
método dos autores detecta ataques black-box, mas nao é robusto a amostras adversariais
white-box. O presente trabalho traz como diferencial: utilizar ataques white e black box
modificados para que as amostras sejam estimadas pelos métodos a partir da restri¢cao por
mascara binaria. E tanto ataques black box baseados em consultas como os de transferén-
cia. O detector [OOD| é usado para detectar classes nao vistas no treinamento e amostras

adversariais.

1.1 OBJETIVO

No presente trabalho ¢ proposta uma metodologia em duas etapas para robustez ad-
versarial e detecgao de dados em um [NIDS| Na primeira etapa, é proposto um
classificador treinado adversarialmente e na segunda etapa, um detector os dados [OOD|

1.2 OBJETIVOS ESPECIFICOS

e Desenvolver um modelo deep learning para seguranca de rede, porém robusto contra

ataques adversariais;

o Implementar um esquema em duas etapas, tornar o sistema de deteccao de intrusao

capaz de detectar amostras [OODj

o Fazer com que o modelo proposto seja tanto robusto a amostras adversariais quanto
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capaz de detecta-las, deste modo tornando-o apropriado para deteccao de uma maior

diversidade de ataques;

1.3 APRESENTACAO

Este trabalho esta dividido com a seguinte organizagao: o Capitulo 1 apresenta o pro-
blema e as motivagoes que levaram a esta pesquisa. O Capitulo 2 apresenta uma explica-
¢ao sobre deteccao de ataques em redes e demonstra os principais tipos de implementacao
para deteccao. Também sao expostos alguns conceitos bésicos para o entendimento deste
trabalho e apresentar uma revisao bibliografica para os conceitos apresentados, e por fim
apresentar o estado presente dos artigos relacionados ao tema. No Capitulo 3 é apre-
sentada a proposta deste trabalho. No Capitulo 4 sdo apresentados os experimentos e

resultados. O Capitulo 5 apresenta as conclusoes e sugestoes para trabalhos futuros.
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2 DETECCAO DE INTRUSAO

2.1 ATAQUES A REDES

Redes de computadores, sejam publicas ou privadas, sao vulneraveis a diversas formas
de invasao. Por exemplo, um usudario pode baixar arquivos de um site, e um desses arquivos
pode roubar e enviar informacoes privadas pela internet. Outra tatica comum é o invasor
se passar por uma pessoa de confianca para obter dados confidenciais. Em ambos os
cenarios, a interacao do usuério é um fator critico para o sucesso da invasao [Bishop 2018|

Todavia, ha ataques que exploram vulnerabilidades a partir do contato com os sis-
temas operacionais presentes nos dispositivos conectados. Esses ataques sao realizados
diretamente via rede e parecem fluxos de trafego de rede normais. Uma intrusao de rede
pode ser passiva (caracterizada pela obtencao de acesso de forma silenciosa e indetecta-
vel, com o objetivo principal de coletar informagoes) ou ativa (envolvendo a obtencao de
acesso secreto para realizar modificagdes nos recursos da rede, como a alteracao de dados
ou configurages) Bishop 2018|

Nos ataques passivos, o invasor apenas monitora a rede da vitima, analisando o fluxo
de trafego ou verificando portas abertas. Isso ajuda o adversario a obter informagcdes so-
bre quais portas sao muito usadas e quais estao ociosas. O principal objetivo dos ataques
passivos ¢é coletar informagoes sobre o sistema alvo. Eles nao pretendem prejudicar o fun-
cionamento normal dos sistemas, porque querem passar despercebidos enquanto roubam
informagoes. Ataques passivos podem ocasionalmente abrir o caminho para ataques ativos
na rede alvo [Stallings e Brown 2018

Durante uma intrusao do tipo ativa, o invasor interfere ativamente no fluxo de dados
em uma rede e no funcionamento de um determinado dispositivo, instalando malwares

capazes de interromper o funcionamento do sistema ou vazar informagoes importantes

para o atacante. Ataques do tipo Negagao de Servigo|Denial of Service (DoS)[sdo exemplos

de intrusao ativa. Neste ataque, o invasor ocupa a largura de banda do sistema alvo
e o mantém ocupado para que ele nao possa atender solicitagoes de outras maquinas

internas ou externas. Uma variagao do [DoS|é o ataque de Negagao de Servigo Distribuido

[Distributed Denial of Service (DDoS), onde vérios invasores tém como alvo o mesmo

sistema de diferentes enderecos IP e diferentes locais [Bishop 2018

Existem também ataques que visam coletar dados confidenciais de uma sé vez ou
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como parte de uma conexao parasitaria de longo prazo que continuara a sugar dados até
que sejam identificados. Alguns intrusos tentarao implantar um codigo que ird quebrar
senhas, capturar agoes de pressao de teclas ou clonar o site enquanto redireciona usuarios
desavisados para seu proprio endereco malicioso. Outros irdo se infiltrar na rede, desvi-
ando furtivamente dados regularmente ou alterando paginas Web piiblicas com mensagens
variadas [Vacca 2013l

Intimeras técnicas foram desenvolvidas e aprimoradas ao longo do tempo com o ob-
jetivo de prevenir que redes de computadores sejam alvos de ataques maliciosos. Dentre
essas abordagens, uma das mais difundidas e eficazes é o[[DS] O IDS atua como uma ferra-
menta de seguranga proativa, monitorando continuamente o trafego de rede e os eventos
dos sistemas em busca de padroes ou atividades que possam indicar uma tentativa de
intrusao Yin et al. 2023 Ao identificar comportamentos suspeitos, o IDS gera alertas,
permitindo que os administradores de rede tomem medidas corretivas em tempo habil,
como bloquear o trafego de origem do ataque ou isolar sistemas comprometidos.

Para auxiliar na modelagem de ameacgas cibernéticas um framework muito impor-

tante é o [MITRE - Adversarial Tactics, Techniques and Common Knowledge (MITRE]
ATT&CK)

2.2 MITRE ATT&CK

O MITRE ATT&CK| MITRE Corporation 2015-2025 é um framework largamente

aplicado em industrias associadas a satide, finangas e infraestrutura critica [Li, Huang e
Chen 2024. De acordo com Strom et al. 2020/ é uma base de conhecimento organizada para
descrever métodos empregados em ciberataques. Propoe uma taxonomia para descrever o
comportamento dos invasores ao longo do ciclo de vida de um ataque. Abrange uma ampla
gama de sistemas e estratégias, sendo amplamente utilizados no compartilhamento de
dados sobre ameagas tecnologicas. Com o MITRE ATT&CK, um sistema de classificagao

estda em vigor para varios comportamentos hostis, dividido em trés categorias:

o Empresarial: Detalha comportamentos em sistemas de TI tipicos, como Linux ou

Windows.

e Mobile: Direcionado a dispositivos moveis, por exemplo, Android e iOS.
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 ICS (Industrial Control Systems): Voltado para reguladores industriais e, em maior

extensao, a sistemas ciberfisicos.

Sua estrutura se baseia nos seguintes conceitos-chave:

 Tatica: Refere-se ao que um invasor faz para atingir um objetivo (descoberta, acesso

inicial, persisténcia e etc.).

o Técnica: E uma maneira de realizar uma atividade, representando como um intruso

atinge um objetivo tatico por meio de agoes.

o Procedimento: Refere-se a uma série de etapas bem definidas, uma instancia parti-
cular do uso de uma técnica especifica e descreve como um adversario implementa
essa técnica. Dentro deste conceito as técnicas sao vistas como agoes individuais ou

discretas e as taticas sao a maneira de combinar essas agoes.

No trabalho de Marinho e Holanda 2023 encontra-se o seguinte exemplo: suponha que
um agente malicioso pretende roubar dados confidenciais armazenados em um servidor de
uma empresa. Para fazé-lo, o intruso precisa encontrar uma maneira de entrar no sistema
alvo, em seguida se mover de host em host até chegar ao servidor desejado, finalmente
coletar e roubar os dados. A partir deste exemplo, entrar na rede alvo seria uma Tdtica
do tipo "acesso inicial'e pode ser realizada pela Técnica "credenciais validas'. Portanto,
cada um dos movimentos necessarios, desde entrar na rede empresarial até o roubo dos
dados, pode ser mapeado na base MITRE ATT&CK, como também Taticas, Técnicas e

Procedimentos para mitigacao de ataques cibernéticos.

2.3 SISTEMAS DE DETECCAO DE INTRUSAO

Uma intrusdo em um sistema ou rede é uma tentativa intencional nao autorizada,
com ou sem éxito de: acessar, manipular, destruir ou usar indevidamente algum recurso
computacional e onde o uso indevido pode resultar ou tornar a propriedade nao confiavel
ou inutilizavel Kizza 2024}|Yin et al. 2020, Com o aumento da dependéncia das pessoas

em relacao a tecnologia, disparou uma nova onda de crimes relacionados a computadores.
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Figura 3 — Classificacdo dos Sistemas de deteccdo de Intrusido.
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2.3.1 Deteccao de intrusdo pelo tipo de implamentacao

A Figura [ apresenta uma classificacio dos tipos de [DS] Dependendo do tipo de
implementacao, ou deploy , existem dois tipos de IDSs: o Sistema de Detecgao de Intrusao

de Rede (NIDS)) e o Sistema de Deteccao de Intrusao de Host (Host Intrusion Detection]

[System (HIDS)|). Nos sistemas NIDS, o trafego malicioso é detectado utilizando todos os

metadados e contetidos de pacotes na rede. Em contraste, os sistemas [HIDS] realizam a
detecgao de intrusao em apenas um endpoint, sendo capazes de proteger contra ameacas
internas e externas. Além disso, os sistemas HIDS formam uma camada de protecao
adicional, ja que possuem a vantagem de conseguir detectar ataques que podem nao ser

identificados pelo NIDS Mahdavifar e Ghorbani 2019,

2.3.2 Deteccao de intrusao pelo tipo de deteccao

Conforme o método de detecao, os modelos IDS podem ser entendidos como baseados
em Assinatura ou baseados em Anomalia. A deteccao baseada em assinatura funciona
melhor para identificar ameacas conhecidas, onde detecta trafego malicioso com base
em regras predefinidas |Farahnakian e Heikkonen 2018. O IDS baseado em deteccao de
anomalia detecta comportamento anormal ao modelar o comportamento normal por meio
da extragao de padroes. Normalmente, o IDS baseado em anomalia pode descobrir ataques
complexos e desconhecidos, portanto, tendo melhor desempenho do que o IDS baseado
em assinatura para ataques novos. Existe também o tipo hibrido, o qual combina os
baseados em assinatura com os baseados em anomalias Bishop 2018. Desse modo ha uma
diminuicdo de falsos positivos e a possibilidade de deteccao de ataques que nao estao
presentes no banco de dados do moédulo baseado em assinatura. Entretanto sao mais

dificeis de configurar, o que pode gerar uma classificacdo discordante entre os detectores
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e mais caros de implementar e manter |Kizza 2024,

2.3.3 Deteccao de intrusado pelo tipo de resposta

Conforme discutido em [Thakkar e Lohiya 2020, um IDS pode ser classificado como

ativo ou passivo, com base em seu mecanismo de resposta quando um ataque é detectado.

Um IDS ativo, também conhecido como Sistema de Prevencao de Intrusao (Intrusion Pre-|

fvention System (IPS))), é configurado de tal forma que, assim que um ataque é detectado,

o sistema bloqueia automaticamente esses ataques sem nem mesmo consultar o analista de
seguranca. Esse IDS fornece uma resposta em tempo real disparando um alarme quando
o ataque ¢é detectado, bloqueando o ataque, gerando um relatério, criando um backup e
registrando todas as informagoes. Um IDS passivo, por outro lado, é configurado para
escanear e analisar o trafego de rede e alertar o analista de rede para tomar outras medi-
das, como bloquear enderecos IP, encerrar a conexao ou processo e bloquear a conta do
usuario. [Thakkar e Lohiya 2020 ainda argumentam que um IDS passivo é mais facil de

configurar e instalar e é menos suscetivel a ataques em comparacao com um IDS ativo.

2.3.4 Deteccao de intrusao pelo tipo de arquitetura

Com base nos requisitos de infraestrutura, um IDS pode ser classificado como centra-
lizado e distribuido [Thakkar e Lohiya 2020 Um IDS centralizado fica instalado em um
dispositivo central que é responsavel por analisar o trafego de rede e gerar um alarme
se algum padrao anormal for detectado. Essas informacoes sdao enviadas ao dispositivo
central por outros dispositivos na rede. A maior desvantagem desse sistema é que, se o
dispositivo central for hackeado ou nao estiver funcionando, toda a rede estara suscetivel
a mais ataques. Além disso, com o aumento dos logs de rede, o dispositivo central pode
ficar sobrecarregado devido a sobrecarga excessiva. Esse IDS centralizado toma decisoes
independentes sobre intrusées na rede, portanto, também pode ser conhecido como um
IDS independente.

No caso de um IDS distribuido, cada dispositivo na rede pode detectar e responder a
intrusoes. Tal IDS segue uma arquitetura hierarquica semelhante a uma arvore, onde cada
n6 se comunica com outros nés em uma abordagem de baixo para cima. O IDS distribuido

toma decisoes colaborativas em relagao a um ataque detectado na rede, portanto também
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é conhecido como IDS colaborativo. Em seu trabalho de pesquisa sobre [[DS] [Thakkar
e Lohiya 2020 argumenta que alguns desafios enfrentados por um IDS distribuido sao
balanceamento de carga, tolerancia a falhas e deteccao de ameacas internas.

A préximas segoes discutem os conceitos pertinentes ao desenvolvimento da presente
pesquisa. Serao explorados os conceitos de ataques adversariais, treinamento adversarial

e deteccao (com ou sem associagdo a amostras adversariais).

2.4 ATAQUES ADVERSARIAIS

As amostras,exemplos ou ataques adversariais sdo definidas com uma alteracao mi-
nima capaz de perturbar o modelo alvo com o objetivo de modificar completamente a
saida do classificador Szegedy et al. 2014. Na pratica, a ideia é expor uma nova superfi-
cie de ataque para aplica¢oes baseadas em aprendizagem de maquina. O surgimento de
ataques adversarios motivou a pesquisa e o desenvolvimento em contramedidas a ataques
adversariais, especialmente em dominios criticos de seguranca [He, Kim e Asghar 2023|
Deve ser dito que dentre os tipos de ataques adversariais, o presente trabalho é focado
nos ataques evasivos, que podem alterar o resultado do [NIDS] baseado em [DI] durante a

inferéncia.

O estudo de Aprendizagem de Méaquina Adversarial (Adversarial Machine Learning]

(AdvML))) é responséavel por analisar as fragilidades dos sistemas baseados em modelos
de inteligéncia artificial. Técnicas relevantes tém sido extensivamente empregadas nos
ultimos anos, especialmente na area de visao computacional [Xu et al. 2019. Contudo, na
seguranga cibernética, a AdvML ainda necessita de novas contribuicoes, dada a presenca
de agentes maliciosos e a alta relevancia de manter a privacidade e consisténcia, bem como
a disponibilidade de informacoes. Portanto desenvolver técnicas de para defender
sistemas empregados em ciberseguranca sao imprescindiveis, visto que as ameacgas surgem
e se renovam periodicamente.

A criacao de amostras adversariais pode ser classificada de duas maneiras: a partir do
conhecimento do atacante sobre o modelo ou com base no objetivo do atacante [Jmila e
Khedher 2022. Amostras baseadas no conhecimento do atacante descrevem a extensao do
conhecimento do adversario sobre o sistema NIDS. Neste cenério, podemos caracterizar

trés niveis de riscos de ataque Han et al. 2021
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o Ataques White-Box: O atacante tem acesso a todas as informagoes sobre o mo-
delo. Isto inclui dados de treinamento, detalhes da arquitetura do modelo, decisao

e parametros como gradientes e fun¢ao de custo.

» Ataques Black-Box: Este é o caso oposto, onde o atacante nao tem acesso ao modelo.
Portanto, ele precisa fazer varias consultas ao modelo alvo de forma que consiga
inferir alguma caracteristica que o torne apto a construir uma amostra evasiva.
Esses ataques podem ser baseados em score, nos quais a saida do modelo alvo,
probabilidades ou logits, serd usada para realizar o ataque. Além disso, eles podem
ser baseados em decisao, no qual as consultas tém como objetivo saber qual o rétulo
de classificacao dado como saida pelo modelo |Wang et al. 2022, Uma outra forma de
ataque considerada black-box é o ataque de transferéncia Demontis et al. 2018| Neste
tipo de ataque, o agente malicioso treina um modelo, cria ataques adversariais white-
box contra esse modelo e a partir dos ataques que conseguem evadi-lo,direciona
essas amostras adversariais contra o modelo alvo. Essa amostras dependem de que
o modelo do atacante tenha alguma semelhanca com o modelo alvo, ou seja [DI] vs

[DI] ou [Machine Learning (ML)| vs ML}, e ndo h4 necessidade que os dados utilizados

pelo atacante sejam os mesmos utilizados no treino do modelo alvo|Grini et al. 2025

o Ataques Grey-Box: Este cendrio assume uma abordagem mais realista [Jmila e
Khedher 2022, onde o atacante tem um conhecimento parcial do modelo alvo e
pode ter acesso limitado aos dados de treinamento. Embora nao tenha as informa-
¢oOes exatas, ele possui informagoes suficientes para poder atacar o sistema de DL e

induzir uma falha.

Quanto aos tipos de ataques que estao condicionados ao objetivo do invasor, seja o de
confundir completamente o sistema ou induzir uma previsao especifica para determinadas

entradas, podemos listar a seguinte categorizacao:

» Ataques direcionados, ou targeted: direcionam o algoritmo de ML para uma classe
especifica, ou seja, o adversario engana o classificador para prever todos os exemplos

adversarios como uma classe alvo especifica.

o Ataque nao direcionado, untargeted: visa classificar incorretamente a amostra de

entrada para longe de sua classe original, independentemente da nova classe de
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saida. Eles sao mais faceis de implementar porque mais alternativas estao disponiveis
para reorientar a saida. Observe que em problemas de classificagao binaria, ataques

direcionados e nao direcionados sao equivalentes.

Os ataques também podem ser compreendidos em termos do espaco das amostras |Dyr-

mishi et al. 2022], sendo divididos em:

« Espaco do problema: no caso do NIDS, corresponde a dimensao do fluxo de pacotes

e demais objetos de rede;

o Espacgo de atributos: é equivalente ao vetor de atributos comumente usado para

treinar/avaliar os modelos e DL .

2.4.1 Trabalhos anteriores em robustez adversarial via treinamento adversarial

Apesar de aumentar o custo computacional do treino e reduzir as métricas quando
comparadas a um treinamento normal [Zhang et al. 2019] o treinamento adversarial, Fig
¢ uma técnica considerada eficiente para robustez dos modelos a amostras evasivas , pois ao
perturbar as amostras de entrada durante o treino, age como uma regularizagao, encoraja
o modelo a aprender uma superficie de decisdo mais suave, reduzindo a sensibilidade a
perturbacoes [Isipras et al. 2019, Sinha, Namkoong e Duchi 2018||Bajaj e Vishwakarma
2023, como também induz ao aprendizado de feaures invariantes e discriminativas, o que
pode contribui para uma melhor separacao intra-classe (Qian et al. 2022,|Costa et al. 2023.

Esse tipo de treinamento consiste basicamente na geracao de amostras adversarias a
partir das amostras nao perturbadas usadas como entrada no modelo Muhammad e Bae
2022 Fig 5]

Em Madry et al. 2017/é formulado como uma otimiza¢ao min-max (Equagao para
encontrar os piores exemplos possiveis (dentro de limites) forgando o modelo a aprender

parametros que o tornem mais robusto.

II19111 E(z,y)ND Iglé?: ﬁ(fg(l’ + 5)7y> (21)

Onde cada termo da equagcao [2.1] representa:

0: Parametros do modelo.
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D: Distribuicao dos dados de treinamento.
(x,y): Par de entrada e rétulo extraido da distribuigao D.

9 € 8t Perturbagao adversarial dentro de um conjunto de restrigoes S (como uma bola
).

L: Funcao de perda (ex.: entropia cruzada).

fo(x + 0): Saida do modelo, com pardmetros 6, apds aplicacao da perturbacao 0 a entrada

T.
Algorithm 1 Treinamento Convencional Algorithm 2 Treinamento Adversarial
1: Inicialize pesos 6 1: Inicialize pesos 6
2: for época =1 até N do 2: for época =1 até N do
3 for minibatch (z,y) do 3: for minibatch (z,y) do
4 Ypred < f(2:6) 4: g < Vloss(f(z;6),y)
5: L < loss(Ypred; ) 5: Tady < & + € - sign(g)
6 Atualize 6 com VL 6: Ypred < f(Tadv; 0)
7 end for 7: L < loss(Ypred; ¥)
8: end for 8: Atualize 6 com VoL
0: end for
10: end for

Figura 4 — Comparacdo entre o treinamento convencional e treino adversarial

Um dos métodos usados para treinamento adversarial é o|Fast Gradient Signed Method|

(FGSM)|, proposto por |(Goodfellow, Shlens e Szegedy 2015, Essencialmente, os autores do

Figura 5 — Efeito do treino adversarial na fronteira de decisdo
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método estudaram os efeitos da geragao de amostras adversarias em modelos lineares
e nao lineares. Embora tenham conseguido aumentar a robustez dos modelos, testaram
contra um ataque também baseado no FGSM. Madry et al. 2017 argumentam que o uso
de ataques de passo tnico, tal como o FGSM, pode resultar em overfitting e propuse-
ram um ataque multi-passos baseado numa otimiza¢ao min-max. Seu método tem como
vantagem gerar um modelo que é mais robusto do que um treinado em FGSM, embora
aumente consideravelmente o tempo de treinamento, problema este que é comum a outros
treinamentos adversariais.

Devido a constatacao de que o erro associado a robustez pode ser causado tanto por
erro do treinamento associado as amostras usadas, quanto pelas perturbacoes adicionadas
que modificam as amostras, Zhang et al. 2019 desenvolveram um método que possibilita
um melhor controle do trade-off acuracia-robustez baseado no valor de um hiperpara-
metro na funcdo de custo por eles proposta. Os autores combinaram entropia cruzada e
divergéncia Kullback-Leibler e essa abordagem na func¢ao de custo se mostrou promissora
e ainda ¢ utilizada em treinamentos adversariais [Wang et al. 2019, Wang et al. 2020/ e
Nandi et al. 2023.

Indo numa diregao diferente, Wang et al. 2019 perceberam diferencas na robustez ao
considerar amostras nao atacadas que foram classificadas erroneamente pelo modelo. Em
particular, os autores perceberam que a minimizacao feita no treinamento adversarial
min-max é sensivel a estes erros. O tipo de treinamento que eles apresentam utiliza uma
funcao de custo com uma regularizacao que permite diferenciar amostras corretamente
classificadas das classificadas erroneamente.

De acordo com Nandi et al. 2023, os treinamentos adversarios disponiveis sao restritos a
perturbagoes muito pequenas, o que poderia gerar vulnerabilidade diante de perturbagoes
um pouco mais significativas. Para resolver o problema, propuseram um treinamento que
¢é robusto a um intervalo de perturbagoes baseado em uma combinagao de ruido gaussiano

e ruido uniforme, o qual gera uma faixa que resulta na robustez do modelo.

2.5 DETECCAO DE AMOSTRAS |00OD

A razao fundamental de usar métodos para detecgao de[OOD]é diferenciar entre dados
D] ou seja, dados da distribuigao de treinamento, e os dados fora de distribuigao, que po-

dem se originar de uma fonte ou contexto diferente do encontrado durante o treinamento.
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Um confiavel deve produzir previsdes acuradas e, ao detectar exemplos desco-
nhecidos, rejeita-los. No entanto, a maioria dos modelos DL sao treinados com premissas
"mundo fechado', ou seja, a distribuicao dos dados na inferéncia ¢ a mesma dos dados
de treinamento. Porém, tal fendmeno nao costuma ser observado nos modelos em produ-
¢ao Yang et al. 2024, Na verdade, apds a implantagdo do modelo, ocorrem as amostras
consideradas [OOD| as quais degradam a performance do modelo, diminuindo assim sua
confiabilidade [Zhou et al. 2021.

Conforme discutido por |[Yang et al. 2024, as modificagoes na distribuicao dos dados

podem ser causadas por:
« Mudancgas semanticas: onde ha classes diferentes das vistas no treinamento;

e Mudancas de covariavel, ou variavel preditora: as quais sdo resultantes de
diferengas entre dominios, refletindo mudancas nas propriedades estatisticas dos
dados na inferéncia. Essas mudancas podem incluir mudancas na escala, estilo ou
padroes dos dados. Karunanayake et al. 2025 ainda cria uma subdivisao em trés

categorias:
i) detecgdo de anomalia sensorial /outlier;
ii) robustez adversarial;
iii) generalizagdo de dominio.

Embora as técnicas ii e iii relacionadas a mudancas de covariavel compartilhem o objetivo
de melhorar a generalizagao do modelo, ao aplicar a NIDS elas variam em sua resposta a

intencao maliciosa causada por mudancas na distribuicao.

2.5.1 Robustez adversarial em OOD

Sehwag et al. 2019 testaram a robustez de um modelo [DOD| a ataques adversérios
evasivos. Os autores concluiram que o método em questdo nao detectava as amostras
adversarias. No entanto, apenas recentemente foram propostos modelos focados em
com robustez a amostras adversariais.

A partir de distribui¢oes gaussianas condicionadas por classe, |[Lee et al. 2018| criaram

um método para pontuagoes de confianca por distancia Mahalanobis. Este método con-
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segue detectar amostras adversarias e (OOD|No presente trabalho, a deteccao de OOD e
amostras adversariais é feita com base neste método.

Em [Malinin e Gales 2019, os autores propuseram uma funcao de custo para

[Networks (PN). Em sua pesquisa perceberam que a fungao divergéncia Kullback-Leibler

reversa é mais apropriada para lidar com as estimativas de incerteza feitas pelas PN.
Entretanto, para além da quantificacao de incerteza nesse tipo de rede, a abordagem dos

autores permite OOD e deteccao de amostras adversarias com norma /s e .

Em |Arjovsky et al. 2019/ é desenvolvido o método [Invariant Risk Minimization (IRM)|

para estimar correlagoes invariantes entre multiplas distribui¢coes durante o treino. Porém
Xin et al. 2023 afirmam que esse método nao é suficiente para deteccao de OOD. Uma vez
que IRM consegue detectar mudancas na distribuicdo, mas é inapropriado para mudancas
de diversidade na amostra, os autores [Xin et al. 2023| entao propéem uma combinagao
de treino adversario e IRM para deteccao de ambos os tipos de mudanga.

Wang et al. 2022 usaram o universal attack Moosavi-Deztooli et al. 2016 para melhorar
deteccao de amostras adversarias. Especificamente, seu método gera amostras adversarias
de baixo posto matricial numa imagem, o que resultou em deteccao de OOD e robustez
exclusivamente a ataques de norma /5. Particularmente, a abordagem dos autores resultou
numa melhor generalizagao para grandes perturbacgoes.

Nas secoes seguintes serao apresentados resumidamente os trabalhos publicados que
embasam esta dissertacao. Sendo assim sao abordados aqui: detecgao de intrusao em redes

com e sem inclusdo de robustez adversarial e intrusdo em redes com uso de [OODI

2.6 DETECCAO DE INTRUSAO EM REDES

Sistemas [[DS] representam uma camada defensiva adicional contra acessos nao autori-
zados em redes e computadores. Eles complementam outras medidas de seguranca, como
controle de acesso e procedimentos de autenticacao, formando um sistema de protecao
integrado. No contexto de IDS com arquitetura baseada em [DI] distinguem-se trés abor-
dagens principais: aprendizado Unico, aprendizagem em comité e aprendizado hibrido.
Geralmente, essas metodologias sdo aplicadas em classificadores que tém a funcao de

discernir entre um fluxo de dados normal e um ataque.

e Aprendizagem tnica: Um unico algoritmo de aprendizagem de maquina é usado
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como [NIDS| ou [HIDS|

o Aprendizagem em comité: A combinacao de varios modelos é chamada de co-
mité. Classificadores combinados geram melhores resultados, comparados a metodo-
logia de aprendizagem tnica. Pode ser usado o método "voto majoritario"para obter
melhor performance na classificacdo, como também podem ser utilizadas outras

técnicas como bagging e boosting, onde sao feitas reamostragens no treinamento.

« Classificadores hibridos: Combina métodos baseados em assinaturas e [ML] para
melhorar o desempenho classificatorio. Ha dois componentes funcionais, onde o pri-
meiro usa os dados de entrada e produz um resultado intermediario que sera usado

pelo segundo componente, o qual sera responsavel pela classificacao.

Tang et al. 2016 propuseram o uso de uma [Multi-Layer Perceptron (MLP)| com 5
camadas para [NIDS| em [Sofware-Defined Networking (SDN)| Utilizaram o daset NSL-

KDD [Tavallaee et al. 2009] e pré-processamento manual para reducao de features. Com a
reducao na quantidade de features, onde apenas 6 das 41 features originais foram utiliza-
das. Segundo os autores o modelo resultante é leve e apropriado para redes tipo SDN, em
razao da quantidade de features. Eles concluem que seus resultados mostram a viabilidade
de usos do [DI] para detec¢ao de anomalias.

Potluri e Diedrich 2016 usaram um modelo [DI] para [NIDS| Usando o dataset NSL-

KDD como benchmark, os autores agruparam as classes para um modelo binario. Em
particular, obtiveram métricas como Precisao e ROC-AUC em torno de 99%. Ao tentar
abordar o problema via classificagdo multiclasse, tiveram dificuldade com as classes mi-
noritarias. Deve ser dito que o problema do desbalanceamento em datasets ainda é um
desafio para muitos modelos de [MI] e [DL][Chen et al. 2024,

Kang e Kang 2016, propuseram melhorar a seguranca de redes veiculares através de

um baseado em [DL] com um foco em [Controller Area Network (CAN)| Os autores

treinaram o modelo com dados a partir dos vetores de caracteristicas do CAN. Para
melhorar as meétricas classificatérias Acuracia, Precisao e Recall, eles utilizaram para
pré-processamento uma rede tipo Deep Belief. Usando uma como algoritmo de
classificacao, os autores simularam dados CAN com 200 000 pacotes. A acuracia do modelo

ficou em 97.8% e falso positivos em 1.6%. Segundo os autores, o tempo de extracao
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ficou em média 8 microssegundos. Segundo os autores esta baixa laténcia torna o modelo
apropriado para aplicagoes de tempo real.
O trabalho de [Zhou et al. 2018] foca em detectar ataques em smart grids. Os autores

usaram um Stacked Denoising Autoencoder como classificador [DI] e compararam seu

desempenho com os métodos: Random Forest, [K-Nearest Neighbors (KNN)[e Regressao

Linear. O modelo proposto obteve as melhores métricas — Acuracia e F1-Score — segundo
os autores, pode ser aplicado a situacoes onde se exige classificacao em tempo real.

Os autores em [Darem et al. 2021 usam um com treinamento semi-supervisionado
para deteccao de malwares que se ofuscam. Levaram em consideracao features de rede
e host, transformando os dados utilizados em imagens de 8 bits e usaram algumas téc-
nicas como salientar segmentos e intensidade de pixels, combinando com contagem de
caracteres dos arquivos ASM dos malwares. Em seguida, fizeram uma sele¢ao de features
usando Random Forest. O modelo utilizado ¢ uma combinagdo entre uma rede neural
convolucional e um comité xgboost. Os autores reportaram resultados em torno de 99%
para métricas como acuracia a ROC-AUC.

[Maseer et al. 2021] realizaram um benchmark de modelos [MLP} rede convolucional e
mapa auto-organizdvel. Entre os modelos de [ML] foram incluidos na comparagao: arvore
de decisdo, [KNN] k-means e naive bayes. Os modelos foram treinados com o conjunto
de dados CIC IDS2017, utilizando 38 das 80 features presentes no dataset. Os resultados
mostram que os modelos com melhores desempenho foram arvores de decisao e
em particular, obtiveram 99% na acurdcia. J& os modelos DL obtiveram performance
comparavel aos modelos com 99% na acuracia, excetuando o mapa auto organizavel,
o qual alcangou 59% de acuracia. Os autores concluem que, embora os algoritmos de ML
sejam mais rapidos no treinamento, eles pretendem pesquisar melhorias para modelos DL

em termos acuracia de deteccao.

2.7 ROBUSTEZ ADVERSARIAL EM NIDS

Modelos de [DI] tém sido amplamente aplicados & ciberseguranca devido as suas robus-
tas capacidades de generalizagdo. No entanto, a vulnerabilidade desses modelos a ataques
adversariais representa um ponto fraco em sistemas de defesa que dependem desses al-
goritmos. Consequentemente, hd um interesse crescente em desenvolver métodos para

mitigar ataques a modelos de [DI] em IDS.
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Usando dados do CIC-IDS 2017 para benchmark, Pawlicki, Choras e Kozik 2020| propu-
seram um sistema com dois classificadores, sendo o primeiro voltado para o fluxo normal
ou ataques e o segundo para discriminar fluxo benigno ou amostras adversariais. A par-
tir da extracdo da ativacao das camadas do classificador IDS, os autores rotularam um
subconjunto de dados, contendo a informagcao das ativagoes do primeiro classificador, e
treinaram o segundo classificador. O método obteve resultados acima de 95% para as
métricas Acuraria e F1-Score com as amostras adversariais.

Um modelo de reconstrugao por observagao parcial foi proposto por Hashemi e Keller
2020l Especificamente, a abordagem foca em ataques adversariais mais realistas em ter-
mos de manipulagdo das features. Utilizando um denoising autoencoder para deteccao de
anomalias, os autores fizeram uma replicacdo de amostras, por 100 vezes, com mascara-
mento de até 75%. Em seguida, foi efetuada uma sele¢do das amostras com menor erro
de reconstrucao obtido pelo autoencoder. Por fim, os autores estimam o limiar no qual

a amostra ¢ adversarial ou nao a partir do score de reconstrucdo do agrupamento dos

dados.

Em [Peng et al. 2020], os autores usam uma|Generative Adversarial Netork (GAN)| [Go-

odfellow et al. 2021] para detec¢ao pré-IDS a partir do erro de reconstrucgao. Baseado numa
arquitetura GAN bidirecional e estimativas de erros por feature matching. A proposta usa
as saldas em valores absolutos de uma fungao que estima o custo do encoder-gerador e
encoder-discriminador juntamente com uma funcgao de score criada pelos autores. A de-
pender do score, o modelo seleciona quais amostras irdao para o IDS ou quais seriam
descartadas. Deixam para um trabalho futuro, um método adaptativo para estabelecer
limiar.

Em Zhang, Costa-Pérez e Patras 2020 é utilizado um comité de trés classificadores com

treinamento adversarial [Projected Gradient Descent (PGD)|, combinado com um encoder

contrastivo [Chen, Carlini e Wagner 2019] para detectar consultas associadas a ataques
black-box. Testaram com os dados CIC IDS2018 e os ataques adversariais: [FGSM|[PGD]
opt attack |Liu, Sun e Li 2020, hopskipjump Chen e Jordan 2019 e boundary Brendel,
Rauber e Bethge 2017, Uma das vantagens desse método é que ao detectar as consultas
dos ataques black-box, isso diminuiu a capacidade de perturbacio feita pelos métodos
adversariais.

Uma abordagem baseada em detecgao foi proposta por Wang et al. 2022, utilizando um

sistema de decisao baseado na variedade topoldgica dos dados na inferéncia. Os autores
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notaram que amostras adversarias ocorrem préximo a variedade que as originaram, por-
tanto proximos a fronteira de decisao do modelo, assim os ataques geram as perturbagoes
imperceptiveis. Com o CIC-IDS 2017 e NSL-KDD para seus experimentos, utilizaram os
ataques FGSM, |Basic Iterative Method (BIM)| e [Carlini-Wagner (CW), Uma das van-

tagens dessa abordagem é amenizar o trade-off entre acuracia-robustez mencionado em
Zhang et al. 2019, uma vez que nao usa treino adversarial, contudo o trabalho nao mostra
se o método detecta ataques black-box.

Chauhan e Shah-Heydari 2020, propuseram um método baseado em [GAN] para criar
versoes adversariais do ataque DDoS a partir do CIC IDS2017. Seu método tem a vanta-
gem de criar ataques realistas no espaco de features. Para tornar o modelo IDS baseado
em DL mais robusto a este ataque, fizeram o treinamento a partir do modelo generativo
atacante, o que aumentou em até 79% a capacidade de deteccao dos ataques adversariais

criados.

2.8 OOD EM NIDS

Corsini e Yang 2023 realizaram um estudo comparativo entre métodos em mo-
delos DL para NIDS. Seu trabalho avaliou cinco métodos de OOD num classificador [MLP)]
primeiro com e depois sem func¢ao de custo contrastiva. Para validar a eficacia do método,
utilizaram dados CIC IDS2017. J& para simular dados utilizaram o CIC IDS2018 H
Segundo os autores, houve melhora na deteccao para os modelos testados indepen-
dentemente da funcao de custo. Além disso, o OOD possibilitou detectar ataques que nao
foram percebidos pelo [NIDS| em razao da mudanga de distribuigao.

Os autores em [Ceccarelli e Zoppi 2023| desenvolveram um NIDS com auséncia de
conhecimento prévio de ataques. Os ataques foram criados a partir das imperfeicoes dos
dados normais com técnicas de aumento de dados usando [GANE para dados tabulares.
Os autores usaram o CIC IDS2018 e o ADFA para avaliacao. Os resultados iniciais do
seu NIDS baseado em DL, que detecta anomalias, superaram os do outro modelo usado
como baseline que utiliza apenas deteccao de baseada em classe tinica. Assim, o modelo
final foi um detector binéario seguido de outro detector para OOD. De forma resumida, a
classificacao bindria no geral ficou entre 98% e 99%. Ja para o modelo baseado em classe

lnica, ficou em 95%.

1 https://www.unb.ca/cic/datasets/ids-2018.html.
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Zhao et al. 2022 propuseram um NIDS voltado para uma em veiculos. Seu
método consegue identificar ataques conhecidos e desconhecidos. A abordagem por eles
desenvolvida tem como base uma GAN adicionando um classificador auxiliar e deteccao
de OOD. Os autores testaram 4 arquiteturas baseadas em redes convolucionais, todas
elas juntamente com o detector OOD, porém trés delas com uso da GAN no treino. Um
dos modelos obteve bons resultados nas métricas de avaliagdo (Precisdo, Recall e F1-
Score) e segundo os autores foi eficiente computacionalmente com tempo de inferéncia
da ordem de 0.2 milissegundos. O estudo conclui que a combinacao de treino com GAN,
classificador binario e OOD ¢ eficiente na defesa para redes veiculares, podendo inclusive
ser implementado em sistemas embarcados.

Wong et al. 2023 comparam 4 modelos DL [MLP|com outros 4 modelos DL bayesianos,
e quantificam incerteza com o método Monte Carlo Hamiltoniano. Segundo os autores,
mesmo os modelos MLP nao sao confiaveis quando se trata de ataques zero-day. Ao usar
quantificagdo de incerteza para discriminar [[D] e [OOD] eles conseguiram uma melhora
de aproximadamente 87% na deteccao de ataques nao vistos no treinamento. O trabalho
conclui que apesar do custo computacional dos modelos bayesianos, a melhora na deteccao

foi considerada satisfatéria para ataques zero-day em versoes modificadas dos datasets

CIC IDS2017 e UNSW-NB15.

2.9 ATAQUES ADVERSARIAIS EM OOD

Liang et al. 2022| aplicaram few-shot learning para NIDS [Internet of Things (IoT)| em

ambientes industriais. Especificamente, os autores utilizaram os datasets NSL-KDD e CIC
IDS2017, e o modelo proposto sendo capaz de lidar com o desbalanceamento de ambos.
O método densenvolvido mostrou ser capaz de detectar comportamento malicioso com
poucos dados disponiveis. A partir de modificagoes feitas nos datasets, os autores ainda
simularam e sua abordagem obteve métrica F1 score para entre 95% e 98%,
além de um ROC-AUC em 98% para [OOD| Testaram, inclusive, a resiliéncia do modelo
a ataques adversariais baseados em transferéncia e concluiram que o modelo também foi
robusto a esse tipo de ataque, pois as perturbagoes causaddas no modelo proposto foram

inferiores a 1% (ROC-AUC) para as diferentes intensidades do ataque.
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3 METODOLOGIA

Este capitulo apresenta a metodologia utilizada no desenvolvimento, treinamento e
avaliacao da solucao de deteccao de intrusao proposta. O desenvolvimento foca em treinar
um modelo deep learning de forma a torna-lo robusto tanto a ataques adversariais quanto

a presenca de dados fora da distribuicao original.

3.1 TABNET

Embora redes neurais profundas se destaquem em dados de imagem, texto e dudio,
elas nao representam necessariamente o estado da arte quando se trata de dados tabulares.
Geralmente, comités como CatBoost Dorogush, Ershov e Gulin 2018/ e XGBoost |Chen e
Guestrin 2016|superam as redes neurais no tratamento de dados tabulares. Por essa razao,
tém sido propostas arquiteturas de Deep Learning (DL) para preencher essa lacuna. Uma
dessas arquiteturas é a TabNet |Arik e Pfister 2019} que emprega um mecanismo de atengao
para selecionar atributos relevantes (Fig @ Tem arquitetura flexivel para aprendizado
supervisionado e auto-supervisionado e possui a vantagem de ser interpretavel das formas

abaixo:

o Localmente Al e Sagiroglu 2025: Quando é possivel explicar ou entender as razoes
por tras de uma predi¢ao individual (ou um pequeno conjunto de predigoes). Isso
significa analisar como os inputs especificos (por exemplo, features de uma amostra)

influenciaram a saida do modelo para aquela instancia;

« Globalmente Arreche et al. 2024; Quando conseguimos descrever o comportamento
geral do modelo em todo o espacgo de inputs. Isso envolve entender padroes, regras ou
tendéncias aprendidas pelo modelo. No caso da TabNet essa forma de interpretagao

¢é via importancia de features no conjundo de dados;
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Figura 6 — Camadas da TabNet

ces —|:|—o Output

Feature
transformer

Attentive
transformer

Attentive
transformer

Features

Camadas: Feature Transformer: Bloco com camadas totalmente conectadas e de normalizacdo em lote;
Attentive Transformer: Gera uma mascara de atencido que pondera os atributos a serem usados na préxima
etapa; Step n: Etapa que foca em diferentes subconjuntos de atributos, promovendo diversidade de represen-
tacdo e esparsidade. Fonte: |Arik e Pfister 2019

3.2 CONSIDERACOES SOBRE A TABNET E INTERPRETABILIDADE

Embora a TabNet seja uma arquitetura baseada em atencao e pode gerar interpreta-
bilidade de resultados em forma de importancia de features, isso nao é necessariamente
aplicavel em caso de treinamento adversarial Noack et al. 2020, portanto apds o treino
com amostras adversariais tem-se um modelo robusto a alguns ataques ou até mesmo
a um tipo de norma ¢, Madry et al. 2017 Nandi et al. 2023| sacrificando a confianca na
interpretabilidade Noack et al. 2020.

O trabalho de |Si et al. 2023 destaca limitagoes estruturais e funcionais do uso de aten-
¢do em cenarios tabulares. Segundo eles os pesos de atencao da TabNet frequentemente
resultam em distribui¢oes densas, sensiveis a pequenas perturbagoes, e que nao necessa-
riamente refletem a real importancia causal das varidveis de entrada. Deve ser dito que
ja vem sendo propostos modelos de treinamento adversarial que tornam a interpretabili-
dade baseada em atencao robusta Kitada e Iyatomi 2021, porém este método conseguiu
em geral melhoras inferiores a 4% para as métricas utilizadas nos experimentos, o que
nao é apropriado para ataques fortes, ou seja, ataques adversariais os quais se mantém
imperceptiveis e enganam o modelo com alta eficacia, tais como os que foram testados na

presente dissertacao.
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3.3 IMPERCEPTIBILIDADE DE ATAQUES ADVERSARIAIS EM DADOS TABULARES

A maioria dos métodos para ataque adversarial foi desenvolvida para dados de ima-
gem, sua aplicagao a dados tabulares requer consideracao das caracteristicas tinicas destes
ultimos. Além dos critérios baseados na distancia, é necessario levar em conta a natureza
especifica dos dados tabulares ao abordar a imperceptibilidade de ataques adversarios.

No trabalho de [He et al. 2024/ onde foram estudados ataques adversariais em dados

tabulares, sao enumerados os seguintes critérios para imperceptibilidade:

« Minimizacao da perturbagao das features: A amostra criada pelo ataque deve ser o
mais proxima possivel dos dados de entrada, e também nem todas as features devem

ser modificadas.

o Preservacao da distribuicao de dados estatisticos: Espera-se que os ataques estejam
alinhados com a distribuicao dos dados de entrada. Exemplos adversarios que se
desviam significativamente das propriedades estatisticas originais tém maior chance

de serem detectados pelo modelo.

o Perturbacao de caracteristicas numa faixa estreita: Em dados tabulares, cada fea-
ture tipicamente exibe uma distribuicao tinica. Quando perturbagoes sao aplicadas
entre features, features com distribu¢des mais estreitas sofrem mais impacto que
as features com distribucdo ampla. Portanto, para o ataque ser imperceptivel, as

perturbagoes devem evitar alterar features com distribucao estreita.

o Preservacao da semantica das caracteristicas: Em dados tabulares, cada feature
geralmente tem uma semantica definida e valores validos. Porém, as perturbagoes
introduzidas pelos ataques adversariais podem alterar a semantica das features ou
modificar os valores para além da faixa de valores validos (por exemplo, um campo
de idade que ao invés de 25 esteja 150). Logo, para garantir a imperceptibilidade

dos ataques em dados tabulares, a semantica precisa ser preservada.

» Preservacao das interdependéncias de caracteristicas: Dados tabulares podem conter
features interdependentes e para o ataque ser imperceptivel features interdependen-

tes devem ser alteradas levando em consideragao suas relagoes.
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Ainda em He et al. 2024] também sao usadas as seguintes métricas de maneira a

observar as caracteristicas que indicam imperceptibilidade.

3.3.1 Abordagem baseada em Desvio

Os autores em |Lee et al. 2018 sugerem que ataques adversariais sdo um exemplo
especial de [OOD] porém com o propésito de enganar um modelo. Apesar de exemplos
adversariais nao serem considerados representativos da distribuigao real em modelos predi-
tivos, uma entrada perturbada deve ser o mais semelhante possivel a maioria das entradas
originais, para preservar a distribuicao estatistica dos dados.

Na presente dissertagao, a métrica utilizada para medir o Desvio serd a distancia
Wasserstein. De acordo com Wu, Wang e Yu 2020 tem como vantagem conseguir captu-
rar a informacao geométrica no espaco dos dados , ou seja, da importancia em como a
“massa’” distribucional das features se modifica. Portanto é uma métrica usada aqui para

quantificar o quanto a distribuicao das features atacadas foram modificadas.

3.3.2 Abordagem baseada em Proximidade

A partir do critério de minimizacao da perturbagao de features, um bom exemplo ad-
versarial introduzird mudancas minimas, que podem ser quantificadas mantendo a menor
distancia possivel do vetor de features original. Empregamos a norma ¢, para medir a
distancia de perturbacao. Para medir a proximidade, serao usadas métricas de magnitude
de um vetor em espacos n-dimesionais. No presente caso, sao elas: distancia em linha reta

(distancia f5) e diferenga méxima de caracteristicas (distancia £..).

3.3.3 Avaliacao de imperceptibilidade adversarial em dados tabulares

Neste trabalho o desempenho dos classificadores de fluxo de rede serao avaliados
com as métricas: Precisdo, Recall e ROC-AUC. Para o classificador/detector de out-of-
distribution serd ROC-AUC. Desse modo pode-se ter a nogao da dos Falsos positivos/ne-
gativos dos modelos.

A avaliagdo de imperceptibilidade sera feita com as métricas de distancia: Lo, Lo, €

Wasserstein. Sendo porém a métrica de distancia Ly ou Lo, de acordo com a ¢, do ata-
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que, conforme tabela [ desse modo é avaliado a distor¢ao causada pela norma que o
ataque usa para criar as amostras adversariais. Os resultados estardao presentes no Anexo
A. As métricas de distancia aqui usadas refletem a preservagao da distribuicao. Sobre a
preservacao de semantica das caracteristicas, minimizacao da perturbacgao e preservacao
de interdependéncia serao realizadas diretamente nos ataques com base na mascara bi-
naria usada no método adversarial. Deve ser dito que os trabalhos com dados tabulares
que abordam métricas de imperceptibilidade He et al. 2024] e Mathov et al. 2022, nao
estabelecem um método para estimar limiar, desse modo foi usada inspe¢do manual com
a biblioteca Pandas (Pandas development team 2020) a partir da diferenga absoluta entre
amostas clean e amostras perturbadas. Portanto foi considerado imperceptivel o ataque
que a diferenca absoluta seja menor que 0.5 para distancia L, e L., tal como ocorre nos
trabalhos citados. Pela mesma razao,o limiar usado para distancia Wasserstein foi para

valores < 5 x 1072.

Tabela 1 — Uso de métrica de distancia com base na norma do ataque

Norma Uy f

Métrica | L, e Wasserstein | Lo, e Wasserstein

3.4 MASCARA BINARIA

De forma a gerar amostras com as restri¢des caracteristicas de dados tabulares para
seguranca de redes, estre trabalho adapta os ataques utilizados e o treino adversarial a
partir de uma mascara binaria. Ou seja, o treinamento adversarial utilizado e o c6digo dos
ataques CW e SignOPT (Algoritmo ) foram modificados de maneira a gerar amostras
levando em consideracao as features que podem ser modificadas e as que nao devem ser
modificadas, desse modo podem ser geradas amostras semanticamente validas [Kuppa et
al. 2019/e Zhang, Costa-Pérez e Patras 2020 . Os ataques PGD e HopSkipJump nao foram
alterados pois a biblioteca Adversarial Robustness Toolbox [Nicolae et al. 2018, utilizada
para gerar as amostras adversariais, ja os disponibiliza com suporte a méscaras binarias.
Nas tabelas [2/e [3|sao mostradas as features dos datasets, em negrito as features que os
ataques podem alterar.

O uso da méascara bindria ajudara em:

o manter a semantica das caracteristicas: Ao modificar apenas features que nao inter-
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ferem na validagao de trafego de rede, desse modo a semantica "benigno'ou "mali-

cioso'"se mantém.

o preservacao de interdependéncia: Ao criar a mascara, torna-se opcional atacar featu-

res interdependentes. No presente trabalho, a opc¢ao foi manté-las sem perturbagao,

pois facilita manter a semantica e remove a necessidade de filtrar amostras invalidas.

Deve ser lembrado que outra caracteristica importante é a minimizagao da perturbacao.

Porém a necessidade de perturbacao minima para imperceptibilidade serd a partir das

caracteristicas dos ataques adversariais, que de acordo com seus autores sao todos otimi-

zados para perturbagao minima de features.

Tabela 2 — Features do UNSW-NB15

Tipo de feature Features

Conexdes de rede

state, dur, sbytes, dbytes, sttl, dttl, sloss,
Dloss, service,sload, dload, spkts, dpkts

swin, dwin, stcpb, dtcpb, smeansz, dmeansz,

Pacotes
Trans_depth, res_bdy_len
Fluxo srcip, sport, dstip, dsport, proto
) sjit, djit, stime, Itime, sintpkt, dintpkt, tcprtt,
Temporais
Synack,ackdat
is__sm_ips_ports, ct_state_ttl, ct_flw__http__mthd,
- is__ftp_login, ct_ftp_cmd, ct_srv_src, ct_srv_dst,
Adicionadas

ct_dst_Itm, ct_src_Itm, ct_src_dport_Itm,

ct__dst_sport_Itm,ct_dst_src_Itm

Tabela 3 — Features do CIC IDS2017

Tipo de feature

Features

Fluxo

Source IP, Destination IP, Source Port,

Destination Port, Protocol

Temporais

Flow Duration, Flow Bytes/s, Flow Packets/s

Estatistica de pacotes

Total Fwd/Bwd Packets, Fwd/Bwd Packet Length Mean/Min/Max/Std

Tempo entre pacotes

Fwd/Bwd IAT Mean/Min/Max/Std (Inter-Arrival Time)

TCP Flags

FIN Flag Count, SYN Flag Count, PSH Flag Count,
URG Flag Count, ACK Flag Count

Janelas TCP

Init_Win_bytes_forward, Init_Win_bytes_backward

Tempo Atividade/Ocioso

Active Mean/Std/Max, Idle Mean/Std/Max

Razbes/Proporcdes

Down/Up Ratio, Average Packet Size, Fwd/Bwd Packets/s
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Algorithm 3 Pseudo-cédigo para ataque adversarial com mascara binaria integrada

Require: Modelo f, exemplo original x, rétulo y, méscara m € {0, 1}¢, hiperpardmetros do
ataque
Ensure: Exemplo adversarial x4, restrito a m

1: Inicializacao:

2: Xgdp < X

3:0+0 > Perturbacdo inicial
4. if ataque usa busca binaria then
5: Defina limites [ e u

6 while u — [ > tolerancia do

7 c (I+u)/2

8 0 < OtimizarPerturbacao( f, x, y, ¢, m)
9 if x + 0 é adversarial then
10: U< C

11 else

12: I+ ¢

13: end if

14: end while

15: else if ataque usa gradiente then
16: for t =1 to iteracdes do

17: Calcule gradiente V5L

18: 0+ a-sign(Vsl) ©m
19: Projete 6 em e-bola
20: end for
21: end if

22: Xydy < X+ 0
23: return X,q,

Algorithm 4 OtimizarPerturbacao

1: function OTIMIZARPERTURBACAO( f, X, y, ¢, m)
2; Minimize £(5) = ||d]|2 + ¢ - perda_cls

3: Sujeitoa d® (1 —m) =0

4: Use L-BFGS ou SGD

5: return 0

6: end function
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Exemplos de Aplicacao dos Algoritmos e@

o Carlini-Wagner (CW): Modifique a otimizacdo para que o gradiente V; seja

multiplicado por m antes de cada atualizacao.

e Sign-OPT: Ao calcular a diregao de busca s (sign do gradiente), faga s + s © m.

Observacoes

e A mascara m atua como um gate binario: pixels com m; = 0 sdo inalterados.

o A restricdo é aplicada durante a otimizagao, nao apenas no resultado final.

Tabela 4 — Descricao das varidveis e simbolos usados no pseudocédigo.

Simbolo Tipo Descricao

f Modelo Funcdo que representa o modelo de classifica-
¢do (ex: rede neural).

X Vetor Exemplo de entrada original (ex: imagem, vetor
de features).

Y Escalar Rétulo verdadeiro associado a x.

m Vetor bindrio Mascara que define quais elementos de x po-

dem ser perturbados (m; = 1) ou ndo (m; =
0).

1) Vetor Perturbacdo adversarial, restrita a m ® § = 4.

Xadv Vetor Exemplo adversarial gerado por x + 4.

Q@ Escalar Taxa de aprendizado (passo da otimizac3o).

c Escalar Hiperparametro de trade-off entre magnitude
da perturbac3o e sucesso do ataque (usado em
Carlini-Wagner).

¢, Norma Norma utilizada para medir a magnitude da
perturbacdo (ex: {3, {y).

® Operador Produto elemento a elemento

VL Vetor Gradiente da funcdo de perda em relacdo a d.

NOTAS ADICIONAIS

« Restricdo da madscara: A operacao ¢ ® (1 — m) = 0 garante que apenas o0s

elementos onde m; = 1 sejam perturbados.
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« Hiperparametros: Valores como « e ¢ sao tipicamente ajustados empiricamente.

o Implementacao: Em frameworks como PyTorch, a méascara é aplicada via multi-

plicagao elementar (ex: delta *= mask).

3.5 TREINO ADVERSARIAL

Como primeira defesa contra ataques adversariais sera adaptado o treino descrito

em Nandi et al. 2023 (Multiple Perturbation Bounds (MPB)). Este treino adversarial

consiste em usar uma regularizacao de similaridade no treino através de ruido gaussiano e
uniforme, seguido de uma regularizacdo na funcao de custo entropia cruzada. A méascara
binaria também serd usada neste treino de maneira que as perturbacoes mantenham as

restrigoes de dados tabulares.

Regularizador de Similaridade

O objetivo do regularizador é alinhar as predigdes do classificador sob o ruido de trei-
namento (NU) com as predigoes sob os ruidos usados na certificacdo (Normal e Uniforme).

Isso garante consisténcia durante o treinamento, mesmo quando os ruidos sao diferentes.

R =KL(f(z+m-NU)[| f(z+m-N)) +KL(f(z + m-NU) | f(z + m-U)) (3.1)
« m: Mdscara binaria

« f(-): Classificador base que retorna um vetor de probabilidades de dimensao K

e NU: Ruido da distribuicado Normal-Uniforme

o N ~ N(0,0?): Ruido Gaussiano

o U ~U(—/30,,V/30,): Ruido Uniforme

o KL(P || Q): Divergéncia de Kullback-Leibler entre distribuigdes P e Q)
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Funcao de Perda Total

A fungao de perda total combina a entropia cruzada com o regularizador de similari-
dade, desse modo essa formulacao permite que o modelo aprenda a ser robusto simulta-
neamente a perturbagoes ¢1,05 e (., , algo essencial para aplicagoes reais onde miltiplos

tipos de ataques podem ocorrer:

L:=Lce(f(x+m-NU),y)+ 5 R, (32)
o m: Mascara binéria
e Lcg: Perda de entropia cruzada entre a predigao e o rétulo verdadeiro y

« [: Hiperparametro que controla o peso do regularizador

3.6 DETECCAO DE|OOD

Para a segunda etapa da defesa o detector Mahalanobis proposto por Lee et al. 2018
sera modificado a partir da normalizacao presente em Mueller e Hein 2025, uma vez que
esta alteracao nao altera o tempo de treino e evita que os dados de entrada durante a

inferéncia precisem seguir uma distribuicao gaussiana.

Algorithm 5 Score de confianca para [OOD)] utilizando distancia Mahalanobis

Require: Amostra de teste x, ativacbes da penultima camada a,, magnitude do ruido ¢, e
parametros por classe {u, ., X, V¢, c}
1: Inicializagdo do vetor score: M(x) = [M, V/]

2: Normalizacio das features da pendltima camada: f(x) = ||ff(<5:)>||2

3: for each layer £ € {1,...,L} do

4: Distancia Mahalanobis: D, = (fy(z) — ubl,c)TZZ;zl(ﬁ(x) — lby.c)

5: Calculo de classe mais préxima: ¢ = arg min. D,

6: Adicdo de perturbacdo: x, = = — € - sign (VD)

7 Recélculo das distancias com entrada perturbada: D!, = (fg(xb) — ubg,c)TEEZZl(ﬂ(wb) —
Mg )

8: Score de confianca: M, = max, D,

9: end for
10: return Score final de confianca: Y-, a,M,

Legenda:
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e 1 — Amostra de teste.

. f (x) — Representacao normalizada da amostra via fungao de extragao de caracte-

risticas.

A

o fi(x) — Representagao normalizada da amostra na camada /.

e [, — Vetor de média da classe ¢ na camada /.

e Y, — Matriz de covariancia estimada na camada /.

e ¢ — Vetor classe usado no treino

« D.— Distancia de Mahalanobis entre fy(z) ¢ a classe c.

o ¢ — Classe mais préxima de acordo com a distancia de Mahalanobis.

e 1, — Amostra perturbada adversarialmente.

« D! — Distancia de Mahalanobis entre fy(z) e a classe c.

e M, — Score de confianca na camada /.

o ay — Peso atribuido a camada ¢ na combinacao final.

e M(x) — Vetor de scores por camada.

3.7 PIPELINE DO |NIDS

IMPLEMENTADO

Na figura [7] é mostardo o pipeline do modelo implementado no presente trabalho. Os

dados tabulares sdo a entrada do modelo [DI] treinado adversarialmente por [MPB| com

mascara binaria. Seguidamente os dados sao analisados pelo detector (OOD)] e inferidos se

sao in-distribution ou [OODI

Dados de entrada Modelo robusto  Detector OOD Inferéncia:

Normal/00D

Figura 7 — Dados de entrada > Modelo deep learning treinado adversarialmente > detector[0OD] > inferéncia:
OOD Limpo ou OOD Adversarial
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3.8 MODELO DE AMEACA

Os autores em [Alatwi e Morisset 2022| definem o modelo de ameaga como um processo
sistematico de identificar vulnerabilidades pelo ponto de vista de um atacante, e com
isso tomar as medidas de seguranca para mitigar essas vulnerabilidades. De acordo com

Shostack 2014 esse processo deve identificar:
o Ativos: Itens de software ou hardware que atraem o atacante.

» Superficie de ataque: Diferentes pontos do sistema que sdo vulneraveis ao agente

malicioso

« Modelo de adversario: Caracteristicas que definem o adversario como motivacoes

e capacidades.

o Vulnerabilidades e Ameacgas: Vulnerabilidades sao as fraquezas nos ativos que
o agente malicioso pode explorar. Ameacas sdo eventos onde o atacante explora

alguma vulnerabilidade presente nos ativos.

o Medidas mitigadoras: Medidas de seguranca para prever, detectar ou reduzir o

impacto das ameagas.
No presente trabalho é identificado:
« Ativos e Superficie de ataque: A rede a ser defendida e o [NIDS| baseado em [DI]

 Vulnerabilidades e Ameagas: Modelos [DL] por si s6 sao vulneraveis a ataques adver-

sariais, portanto o atacante pode usa-los para evadir o [NIDS|

« Modelo de adversario: O adversario pretende atacar a rede e evadir o [NIDS] uti-
lizando ataques white-box e black-box (Fig ambos nao direcionados, ou seja,
ataques que poderao se passar por quaisquer uma das classes presentes no dataset

de treino.

3.8.1 Ataques adversariais utilizados

Os ataques utilizados sao baseados nas normas /5 e £, com os testes sendo feitos

usando a abordagem white box e black box:
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Figura 8 — Modelos de ameca por conhecimento do atacante

White-box Black-box

White-box se refere a situacdo onde o atacante consegue acessar o modelo diretamente; Em ataques Black-box
o atacante n3o tem acesso nem conhecimento do modelo alvo

3.8.1.1 White-Box

» Projected Gradient Descent (PGD) Madry et al. 2017: Esse método cria a pertur-
bacao a partir do gradiente projetado da fungdo de custo. O faz em vérios passos
que devem ser ajustados pelo atacante. De acordo com seus autores, também pode
ser usado para treinamento adversarial, embora aumente consideravelmente o custo

computacional;

 Carlini-Wagner (CW)Carlini e Wagner 2017: Proposto com base na otimizagao da
funcao:
minimize ||0]|, + ¢ f(z + )
Onde:

— ||9]l, é a norma L,, da perturbagao ¢ (por exemplo, Ly ou Le,).
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— f(x+0) é uma fungao que garante que os dados perturbados sejam classificados

incorretamente. Uma das func¢des propostas é:

J(a') = (max Z(2); — Z(a")e)*

onde Z(z') sao os logits da rede (as saidas antes da aplicagdo da fungao soft-
max), e (-)* denota a fun¢do ReLU (ou seja, max(0, -)).
— ¢ (Line Constant): é uma constante que controla o equilibrio entre a minimi-

zacao da perturbacao e a garantia de classificacao incorreta.

Com este método [CW] conseguiram gerar a menor perturbacao que pode ser base-

ada nas normas £y ,¢5 e {, para criar a amostra evasiva.

3.8.1.2 Black-Box

o Hop Skip Jump [Chen e Jordan 2019: Ao invés de usar amostragem, estabelece
direcao de gradiente a partir de pesquisa binaria na fronteira de decisao. Logo apos,
usa uma busca geométrica para criar a amostra evasiva e por fim realiza uma busca
binaria de forma que a amostra adversarial nao se afaste da fronteira de decisdo.
E uma versio otimizada do ataque Boundary Brendel, Rauber e Bethge 2017 em
relacdo a quantidade de consultas necessarias para criar uma amostra evasiva. Em
geral, consegue criar as amostras com até 10 vezes menos consultas que o ataque

Boundary.

o Sign-OPT |Cheng et al. 2019 : Estima o sinal da direcao do gradiente ao invés do
gradiente em si com apenas uma consulta. Em seguida, realiza uma busca para
criar a amostra e faz uma busca bindaria para manter a amostra adversarial proxima
a fronteira de decisdo. Consegue criar amostras evasivas com 5 a 10 vezes menos

consulta se comparado aos dois ataques anteriores.

3.9 AVALICAO DE PERFORMANCE DO CLASSIFICADOR

Na avaliacdo de modelos de aprendizagem de maquina, ¢ comum o uso de métricas
como: Precisao, Recall ROC-AUC, F1-Score e Acuréacia. As defini¢bes abaixo foram reti-

radas da documentacao do scikit-learn Pedregosa et al. 2011}
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3.9.1 ROC-AUC

Esta métrica indica a capacidade de um modelo em distinguir entre classes positivas

e negativas. A |Area Under Curve (AUC)| (drea sob a curva|Receiver Operation Characte-|

ristic (ROC))) resume o desempenho do modelo em todos os limiares possiveis, variando
de 0,5 (desempenho equivalente a um classificador aleatério) a 1,0 (classificacao perfeita).
Pode ser aplicada a classifcagoes bindrias ou multiclasse do tipo One-vs-Rest e One-vs-
One. Por informar a probabilidade de um modelo atribuir pontuacao mais alta a uma
amostra positiva do que uma negativa, torna a AUC particularmente 1til em problemas
onde é necessario comparar modelos em diferentes contextos de sensibilidade e especifici-
dade.

Pode ser estimada por:

1
ROC-AUC = / TPR(FPR)dFPR
0

Onde:

« [True Positive Rate (TPR)| (True Positive Rate): taxa de verdadeiros positi-

TP

vos, calculada como TPR = 7555

 |[False Positive Rate (FPR)| (False Positive Rate): taxa de falsos positivos,

FpP
FP+TN

calculada como FFPR =

3.9.2 Precisao

E a proporcao de observacoes positivas corretamente identificadas para todas as ob-
servagoes positivas previstas. Em outras palavras, a Precisao mede o niimero de instancias

corretas recuperadas dividido por todas as instancias recuperadas.

TP

Precisdo = m

Onde:

 [True Positive (TP)[ Total de verdadeiros positivos

o |[False Positive (FP); Total de falsos positivos
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Intuitivamente pode ser ententida com a capacidade do classificador de nao rotular

como positiva uma amostra que é negativa.

3.9.3 Re«call

E a proporcao de casos positivos corretamente identificados para todos os casos ob-
servados. Em outras palavras, o Recall mede o nimero de instancias corretas recuperadas

dividido por todas as instancias corretas. Definido como:

TP

Recall = ————— .
T TP 1 PN

Onde:

o TP: Total de verdadeiros positivos

o FN: Total de falsos negativos

O Recall é intuitivamente a habilidade do classificador de encontrar todas as amostras

positivas.

3.10 CONTRIBUICOES

No presente trabalho o treino adversarial de |[Nandi et al. 2023| é adaptado com a mas-
cara binaria, de maneira que as perturbacoes geradas fiquem de acordo com as restri¢oes
necessérias para dados tabulares. O detector [OOD] é adaptado de [Lee et al. 2018 en-
tretanto é combinada com a normalizagao proposta por [Miller e Hein 2025| desse modo
a combinacao dos métodos citados torna possivel um detector robusto a amostras
adversariais e sem a necessidade que os dados sigam uma distribuicao normal. Os ata-
ques adversariais também foram modificados com a mascara binaria de maneira que as
amostras geradas fossem a partir da restricao causada pela méscara, dessa forma os expe-
rimentos com os ataques criam amostras otimizadas para dados tabulares ao invés de usar
projecoes que tendem a filtrar as amostras evasivas. Os ataques adversarios foram tanto
white-box quando black-box baseados em consulta e transferéncia, com isso é avaliada a
proposta para cendarios onde ha uma tentativa de evasao por um agente malicioso interno

ou externo.
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Deve ser dito que os resultados aqui mostrados para (OOD) utilizaram uma validacao

cruzada 10 folds com catboost [Dorogush, Ershov e Gulin 2018| e o grid search fornecido

pela implementacao do catboost. O detector (OOD| dos autores [Lee et al. 2018 usa uma

validacao cruzada com regressao logistica, que nao se mostrou apropriada para dados des-

balanceados e nao fornece probabilidades calibradas [Bai et al. 2021]. Desse modo, apos o

catboost para score binario do detector [OOD] foi realizada uma calibragao por classe com

predi¢do conforme mondrian Bostrom, Johansson e Lofstrom 2021| que é apropriado para

dados tabulares, onde a calibracdo nao pode fornecer probabilidades com sobreposicao

entre as classes. Uma vez que métodos bayesianos sem geral tem alto custo computacio-

nal no treinamento e inferéncia [Vonk et al. 2024 Liu et al. 2022/|Pape et al. 2023/ além do

que predicao conformal fornece garantias dos conjuntos de predicao por classe

|Johansson e Lofstrom 2021 e independem de distribuigdo, enquanto nos modelos baye-

sianos a cobertura dos intervalos dependem: das suposi¢oes de cada modelo bayesiano e
da distribuicao a priori, as quais podem ser descalibradas na pratica resultando em um
modelo[DI] mal calibrado [Portela, Banga e Matabuena 2025 [Abdullah, Hassan e Mustafal
2024, |Ghosh et al. 2023/
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4 EXPERIMENTOS

Este capitulo apresenta os experimentos realizados para avaliar o desempenho da me-
todologia proposta que referenciamos como TabIDS, frente a ataques adversariais e dados
O objetivo é verificar sua robustez a amostras adversariais, capacidade de genera-
lizacao e eficacia em comparagao a versao original da arquitetura TabNet.

As andlises experimentais foram organizadas de forma a avaliar se o treinamento ad-
versarial contribui significativamente para a robustez do modelo em cenarios ataque. Ou
se 0 uso de detecgao OOD baseada em distancia Mahalanobis é eficaz na identificacao de
amostras andémalas ou adversariais. Investigamos ainda como o modelo se comporta sob
diferentes tipos de ataques (white-box e black-box), intensidades de perturbagao e normas

de distancia.

4.1 DATASETS AVALIADOS
4.1.1 UNSW-NB15

Em razao da defasagem de datasets como KDD99 e NSL-KDD, bem como da baixa
disponibilidade de conjuntos de dados com caracteristicas equivalentes e mais atualizados
para a época, Moustafa e Slay 2015 criaram o dataset UNSW-NB15. O intuito foi o de
amenizar problemas com redundancia de dados e representacao de ataques mais moder-
nos. O conjunto de dados foi elaborado por meio da ferramenta IXIA PerfectSotorm [f
na Universidade de South Wales (UNSW). Durante o desenvolvimento da proposta, os
autores simularam fluxo de rede normal e fluxo associado a ataques, sendo estes captura-
dos pela ferramenta tepdump, uma poderosa ferramenta de linha de comando para analise
de pacotes usada para capturar e exibir trafego de rede. O dataset foi disponibilizado
livremente em formato tabular, consistindo em 49 features e varios tipos de ataques: Fuz-
zers, Dos, Exploits, Backdoors, Worms, Generic, Analysis, Shellcode e Reconnaissance.

Contém ao todo 700 mil registros, embora 90% seja de trafego normal.

1 https://www.keysight.com/us/en/products/network-test /network-test-hardware /perfectstorm.html
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4.1.2 CIC IDS2017

A exemplo do UNSW-NB15, o CIC IDS2017 também foi criado com a preocupacao de
que os datasets entao disponiveis nao refletiam as ameacas cibernéticas mais atuais para
a sua época. O conjunto de dados foi criado por Sharafaldin et al. 2018 em um ambiente
que simula uma rede real com trafego benigno e malicioso.

O trafego benigno realista foi gerado com a ferramenta B-Profile | que simulou vérios
usuarios fazendo requisi¢coes em diferentes protocolos.

Os seguintes ataques foram simulados via kali linux: Brute Force, Heartbleed, Botnet,
DoS, DDoS, Web Attacks e Infiltration. A simulagao resultou em um conjunto de dados
rotulado, contendo 80 features extraidos por meio do CICFlowMeter ﬂ De acordo com
os autores, CIC IDS2017 é superior aos datasets anteriores em termos de diversidade de

trafego, variedade de ataques e caracteristicas extraidas do fluxo de rede.

4.1.3 CICIDS2018

Dataset criado pelo|Canadian Institute for Cybersecurity 2018 para uso em projetos de
pesquisa . E semelhante ao CIC IDS2017 em termos de tipos de ataques e por também usar
processamento de arquivos pcap para csv através do CICFlowMeter. A versao csv também
¢ semelhante ao CIC IDS2017 nas features, as quais sao compostas por 80 propriedades
estatisticas como: comprimento de pacotes, nimero de pacotes, nimero de bytes entre
outras caracteristicas que foram estimadas tanto na direcdo de envio quanto na direcao
de resposta. A simulagao dos ataques se deu em 6 redes com 450 maquinas no total,

enquanto no CIC IDS2017 foi coletado em uma tnica rede de 14 maquinas.

4.2 SETUP EXPERIMENTAL

A arquitetura base utilizada é o TabNet. Os dados foram pré-processados da forma:

transformador em quantis com distribuicao uniforme para dados continuos, para dados

2 Encapsula os comportamentos de entidades em uma rede usando diversas técnicas de aprendizado de

maquina e andlise estatistica. As features encapsuladas sdo distribuicdes de tamanhos de pacotes de um
protocolo, nimero de pacotes por fluxo, certos padrdes na carga util, tamanho da carga (til e distribuicdo
do tempo de solicitacdo de um protocolo.

3 https://www.unb.ca/cic/research /applications.html.
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categoéricos label encoder (Fig E[) O ajuste de hiperparametros se fez em paralelo com
uma validacao cruzada e otimizagao com optuna. Deve ser dito que a validacao cruzada

foi exclusivamente para pesquisa de hiperparametros.

Figura 9 — Fluxo do Pré-processamento e treino do modelo

Treino do
Modelo

” Dados nume’n’cos:' TabNet/TabIDS
Remogdo de: Transformador em Quantis com

* NaN Divisdo em distribuigao Unifarme;

Dados Tabulares Duplicados : et
: cgﬁ;:ms com Treino/Validacdo/Teste Dados categéricos: Label

valor unico encoder

Treino do
detector 00D

Por decidir usar uma arquitetura que nao é comumente associada a NIDS foi reali-
zado um experimento com tempo de inferéncia com batches = 1 e 10000 repeticoes para
estimar o desvio padrao. Dessa forma pode-se ter a no¢ao da laténcia média do modelo

durante o trafego de rede. Na Tabela [5| é mostrado que os tempos foram da ordem dos

microssegundos (1 x 107%), de acordo com Najar e S. 2024|Thorat, Parekh e Mangrulkar|

2021| e |Cil, Yildiz e Buldu 2021 é um tempo apropriado para um NIDS. Outra avaliagao

realizada foi comparar os resultados em classificacdo de anomalia do modelo proposto

com outros ja feitos na literatura, ver Tabela [6]

Tabela 5 — Tempo de inferéncia

Inf Ti
Dataset Model |—orence Jime (s) Training Time (h)
Mean StD
—6 —6
CIC 1DS2017 TabNet | 2.6 x 10 9.4 x 10 2,5
TablDS |8.8 x 1076 |4.4 x 1076 12
—6 —6
UNSW-NB15 TabNet |9.9 x 10 1.1 x 10 1
TabIDS 3.4 x 1076 |7.7 x 106 10

Para avaliar a robustez do sistema proposto, consideramos diferentes cenarios de ata-
que, abrangendo tanto abordagens white-box quanto black-box, com variagoes nas normas
de perturbacao e na intensidade dos ataques. O modelo foi testado com e sem defesa ad-
versarial, permitindo comparacoes diretas entre a versao original da TabNet e sua variante
robusta.

Além disso, foi implementado um mecanismo de deteccao de baseado na dis-

tancia de Mahalanobis, capaz de identificar amostras suspeitas fora da distribuicao de
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Tabela 6 — Comparativo entre modelos estado-da-arte em |NIDS|e a TabNet.

Metric | [LSTM|| MLP | TabNet
CIC IDS2017 | Precison | 1002 | 99.79 ®| 99.84
Recall | 94.442|99.80° 99.83
Precison | 96.52 | 96.7 | 97.16
Recall | 95.17 | 99.80 ¢/ 99.66
Referéncia: 2 [Dash et al. 2025|; b [Cherfi, Lemouari e
Boulaiche 2024]; ¢ [Ahmed et al. 2025]; ¢ [Awotunde,

Chakraborty e Adeniyi 2021]; Os valores sdo para métricas
globais.

UNSW-NB15

treinamento. A incorporacio de mascaras bindrias permitiu adaptar os ataques as restri-
¢oes semanticas dos dados tabulares, garantindo a validade dos exemplos adversariais e

simulando com maior fidelidade cenérios realistas de evasao.

4.2.1 Definicao do modelo base

Foi realizada uma procura de hiperpardmetros (Tabela [7)) por validagao cruzada 10
folds, com amostras nao perturbadas, ou amostras clean, para a TabNet . A divisao
dos dados utilizada para treino/validagao/teste foi: 60%,20% e 20%, respectivamente. Os
dados foram pré-processados com transformador em quantis de distribui¢cao uniforme para
manté-los variando monotonicamente entre 0 e 1.

Apbs o pré-processamento e treino do modelo, as amostras adversariais foram cria-
das no conjunto de teste. Primeiro, no TabNet com treino clean, ou seja sem amostras
adversariais, e em seguida na TabNet (TabIDS) com treino adversarial.

Nos dados CIC IDS2017, as classes foram mescladas para mitigar os efeitos do des-
balanceamento. Numa primeira abordagem:As labels SQL e XSS tornam-se a label Web
Attack; As labels FTP e SSH tornam-se a label Brute Force, e as variagoes de DoS (slo-
wloris, hulk, goldeneye e slowhttptest) tornam-se a label DoS. No entanto, mesmo apos
esta jungdo em superclasses (Brute Force, Web Attack e DoS), o problema de desbalance-
amento se manteve e portanto este dataset foi avaliado apenas nas classes "Benign"[DoS|
e [DDofS| pois foram as que resultaram em melhor desempenho na TabNet. O mesmo
problema com desbalanceamento ocorreu com o UNSW-NB15, portanto foram usadas as
classes "Normal'e "Reconnaissance"("Recon.") e "Generic', as quais foram melhor reconhe-

cidas tanto no treino normal quanto no treino adversarial. Foram tentados dois métodos
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para aliviar os efeitos do desbalanceamento em treino adversarial primeiramente com o
UNSW-NB15, entretanto nenhum dos dois obteve um desempenho satisfatério (Anexo (Cl)
e no Anexo [B]estao relacionados os ataques de rede avaliados com o [MIT 1T

Deve ser dito ainda que os modelos: CTGAN Xu et al. 2019, TabDDPM [Kotelnikov et

al. 2022 e CoDi |[Lee, Kim e Park 2023|, no entanto esses trés modelos nao geraram bons
resultados para os dados minoritarios, que nos datasets em questao sao os ataques de
rede, portanto os experimentos foram conduzidos sem utilizar técnicas para gerar dados
sintéticos.

Tabela 7 — Hiperparametros da TabNet encontrados pds validacdo cruzada.

. . CIC IDS2017 UNSW-NB15
Hiperparametro
Binario | Multiclasse | Binario | Multiclasse
WwD?2 42 34 60 28
WAP 6 22 43 16
Gamma 1.6 3.4 3.5 1.5
Steps 10 19 7 15
Momentum 0.92 0.73 0.92 0.78

2WD: Tamanho de Decisdo; ©WA: Tamanho do Embedding.

E importante observar que as features dos conjuntos de dados foram manipuladas
conforme descrito em [Kuppa et al. 2019, portanto ndo houve redugao de features. Esta
abordagem garante que a distin¢ao entre comportamentos benignos e maliciosos seja pre-
servada ao utilizar os ataques adversariais. Para conseguir isso, uma mascara binaria ¢é
utilizada, permitindo modificar features que podem caracterizar comportamento malici-
0so, enquanto protege as features que devem permanecer inalteradas.

O modelo TabNet foi treinado usando o otimizador AdamW |Loshchilov e Hutter 2017,
com uma taxa de aprendizado de 0,002 e a funcao de perda de entropia cruzada. O
desempenho do modelo resultante nas métricas relevantes pode ser conferido nas tabelas
B para dados clean (ndo perturbados com amostras adversariais) e nas tabelas [J para o
conjunto com modelos adversariamente treinados. Nas tabelas e estao as métricas
resultantes para as classes utilizadas nos experimentos com classificadores multiclasse.

As redes neurais foram testadas contra ataques adversarios nao direcionados da bibli-
oteca Adversarial Robustness Toolbox [Nicolae et al. 2018. Os valores utilizados a seguir
para os parametros dos ataques white-box e black-box se devem a manter o ataque im-

perceptivel e preservar as restrigoes necessarias em dados tabulares.
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Tabela 8 — Métricas para TabNet em classificacdo binéria e treino clean.

Dataset Label | Precision | Recall| ROC-AUC
Benign 09.98 990.98 00.98
Attacks| 99.95 99.98 09.96

CIC IDS2017

Normal | 99.97 | 99.97 99.78
Attacks| 97.16 | 99.62 99.78

UNSW-NB15

Tabela 9 — Métricas para TablDS com classificacdo binéria.

Dataset Label | Precision|Recall ROC-AUC
Benign 09.98 99.98 00.98
Attacks| 99.88 99.98 99.98

CIC IDS2017

Normal | 99.98 | 99.98 99.89
Attacks| 97.21 | 99.57 99.89

UNSW-NB15

Para ataques white-box, adotamos as seguintes configuragoes: Ataque PGD com 100
passos e valores epsilon € = {0.1,0.2,0.3}, onde € é o valor mdximo da perturbacao no
vetor,portanto a pertubacao adicionada nas features atacadas somarao como um todo o
€ selecionado.

O ataque CW usou valores de Confidence ¢ = {0,0.2,0.5} para ambos os conjuntos de
dados anteriormente mencionados. O hiperparametro Confidence define o quao confiante
o modelo-alvo deve estar na classificacdo errada da amostra adversarial gerada. Valores
muito altos sdo tteis apenas em ataques direcionados. O parametro de busca binéria é de-
finido como 10. Além disso, a importancia relativa da distancia e da taxa de aprendizagem
foi fixada em 0,01 para ambos os parametros nos conjuntos de dados usados.

Em ataques de black-box, nenhum intervalo de valores foi usado. Para o ataque HopS-
kipJump, foi utilizado um nimero maximo de avaliagoes por gradiente igual a 2; ataque
SignOPT usado para consultas por amostra igual a 200 e um nimero de direcoes aleatérias

igual a 200.

O método usado para melhorar a robustez foi com o treinamento [Adversarial Trai-|

ning with Multiple Perturbation Bounds (AT-MPB)||Nandi et al. 2023 com 300 épo-

cas,resultando na TabIDS.
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Tabela 10 — Métricas para os modelo multiclasse com CIC IDS2017 e as classes selecionadas.

CIC IDS2017

Modelo| Métrica |BENIGN | DoS |DDoS
Precision | 99.98 [99.92| 99.97
TabNet| Recall 09.98 [99.98| 99.99
ROC-AUC| 99.99 [99.99| 99.98

Precision | 99.99 [99.82| 99.96
TabIDS| Recall 99.97 [99.96| 99.99
ROC-AUC| 99.98 [99.97| 99.96

Tabela 11 — Métricas para os modelos multiclasse com UNSW-NB15 e as classes selecionadas.

UNSW-NB15
Modelo| Métrica | Normal|Recon. | Generic
Precision | 99.98 | 96.66 | 98.48
TabNet| Recall 98.85 | 99.46 | 99.99
ROC-AUC| 99.43 | 99.87 | 99.98
Precision | 99.99 | 91.59 | 96.19
TabIlDS| Recall 99.14 | 99.26 | 99.99
ROC-AUC| 99.69 | 99.93 | 99.96

4.3 RESULTADOS

Para isso, os experimentos foram conduzidos sobre dois conjuntos de dados ampla-
mente utilizados na literatura: CIC IDS2017 e UNSW-NB15. Foram consideradas classi-
ficagoes binarias e multiclasse, permitindo analisar o desempenho sob diferentes granula-
ridades de labels.

A avaliacao abrange ataques adversariais com diferentes estratégias e complexidades,
incluindo PGD, CW, HopSkipJump e SignOPT, com variagdes nos parametros de ataque.
Cada ataque foi aplicado tanto em modelos treinados com dados clean e em modelos
adversarialmente treinados. A performance classificatéria foi quantificada por métricas
como Precisao, Recall e ROC-AUC, além de métricas especificas para imperceptibilidade
das perturbagoes (Anexo . No Anexo @ estao as figuras referentes a Recall e ROC-
AUC, neste capitulo foram usados os gréaficos de Precisao pois foi a métrica mais sensivel
aos ataques adversariais, portanto os ataques utilizados geraram mais falsos positivos que
falsos negativos.

Para os ataques PGD e CW, um maximo de 100 e 10 iteragoes foram usadas respecti-
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vamente. Portanto serdo representados por PGD-100,CW-10. Para os ataques PGD-100
e HopSkipJump foi usada a norma /... Para os ataques CW-10 e SignoOPT foi usada

norma /5.

4.3.1 Ataque PGD-100

Nos experimentos para modelos de classificacao binéaria utilizando o conjunto de dados
CIC IDS2017, apés a aplicacao do ataque PGD-100 /., com parametro ¢ = 0,1, nao
foi observada redugdo excessiva na métrica de Precisao (99,36%) para TabNet no label
"Attacks', enquanto TabIDS atingiu uma Precisao de 99,94% no mesmo label Tabela
Com e = 0,3, os valores de Precisdo (87,18%), Recall (97,52%) e ROC-AUC (97,88%)
para TabNet foram menores do que aqueles para TabIDS, que relatou Precisao (92,61%),
Recall (99,98%) e ROC-AUC (100,00%) para o label "Attacks".

Em modelos multiclasse com CIC IDS2017, observou-se que tanto a Precisdo quanto
a Recall foram superiores no modelo TabIDS em comparacao com o TabNet em varios
valores de €. Todos os trés labels demonstraram melhorias na métrica ROC-AUC, com
melhorias notaveis na Precisao e Recall para os labels “DoS” e “DDoS”, conforme ilustrado

na Fig. para a Precisao.

Tabela 12 — Ataque PGD-100 contra classificadores binarios com dados CIC IDS2017.

Epsilon

Model | Metric 0.1 0.2 0.3
Benign Attacks | Benign Attacks | Benign Attacks
Precision | 99.96 99.36 | 99.88 94.04 | 99.17 87.18
TabNet | Recall 99.79 9995 | 9796 99.63 | 95.37 97.52
ROC-AUC| 99.99 99.95 | 99.69 99.69 | 97.88 97.88
Precision | 99.98 99.94 | 99.98 99.93 | 99.97 99.93
TabIDS | Recall 99.98 99.97 99.97 99.98 | 99.98 99.97
ROC-AUC| 99.97 99.97 | 99.98 99.97 | 99.97 99.96
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Tabela 13 — Ataque PGD-100 contra TabNet e TablDS em classificacdo multiclasse com dados CIC IDS2017

Models | Metrics

Epsilon

0.1 0.2 0.3

Benign DoS DDoS | Benign DoS DDoS | Benign DoS DDoS

Precision
TabNet | Recall
ROC-AUC

80.50 6.45 7141 74.00 0.16 0.07 70.85  0.04 0.04
86.12 3.13 11.70 7030 0.16 0.03 62.02  0.05 0.02
61.13 4201 73.11 4275 20.69 48.66 3541 1563 37.19

Precision
TabIDS | Recall

ROC-AUC

99.98 99.82 99.97 | 99.98 99.82 99.98 | 99.97 99.81 99.96
99.98 99.97 99.98 | 99.98 99.97 99.98 | 99.97 99.96 99.97
99.98 99.98 9998 | 99.98 99.98 99.98 | 99.98 99.98 99.98

100
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Esquerda: TabNet; Direita: TabIDS

Em experimentos na UNSW-NB15 com classificadores binarios, para a métrica Preci-

sao no TabNet, o label "Attacks"apresentou valores entre 67% e 68%, enquanto o TabIDS

atingiu 90%. Em relacao a métrica Recall, o TabIDS demonstrou desempenho marginal-

mente superior ao TabNet para o label "Normal", com nenhum dos modelos apresentando

pontuacao abaixo de 99% para essa métrica nos trés parametros utilizados no ataque

PGD Tabela [14l

Os resultados para os modelos multiclasse, Precisao e Recall para o TabIDS, superaram

os do TabNet para os labels Recon e Generic para todos os parametros do ataque PGD.

Fig. [11}
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Tabela 14 — Ataque PGD-100 contra TabNet e TablDS em classificacdo bindria com dados UNSW-NB15.

Epsilon
Model Metric 0.1 0.2 0.3
Benign  Attacks | Benign Attacks | Benign Attacks

Precision | 99.88 68.21 99.88 67.80 99.87 67.61

TabNet Recall 99.59 99.89 99.59 99.73 99.59 08.87
ROC-AUC | 99.92 99.92 99.85 99.85 99.82 99.82

Precision | 99.90 91.99 99.90 91.67 99.90 90.67

TabIDS Recall 99.92 99.68 99.92 99.68 99.91 99.46
ROC-AUC | 99.94 99.94 99.94 99.94 99.94 99.94

Com o ataque PGD-100 /., em classificadores multiclasse se manteve a tendéncia

esperada que as métricas para TabIDS serem maiores para TabNet. O ponto mais baixo

para TabIDS é na label Recon. para e=0.3 Fig [[I] Embora indique que mesmo apds

o treinamento adversarial, o desbalanceamento presente no dataset ainda influenciou na

desempenho.

Tabela 15 — Ataque PGD-100 contra TabNet e TablDS em classificacdo muticlasse com dados UNSW-NB15.

Models ! Epsilon
Metrics 0.1 0.2 0.3
Normal Recon. Generic|Normal Recon. Generic|Normal Recon. Generic
TabNet Precision | 99.95 18.75 46.77 | 99.76  7.51 750 | 99.46 1.75 2.85
Recall 98.93 10.23 4235 | 98.26 5.40 5.52 9744 1.70 2.46
ROC-AUC| 99.65 98.21 96.74 | 98.84 0554 7490 | 91.78 93.00 48.46
Precision | 99.98 81.28 95.75 | 99.98 80.52 96.10 | 99.96 79.84 95.33
TabIDS |Recall 99.47 90.06 95.81 | 99.43 88.07 95.08 | 99.45 85.51 93.75
ROC-AUC| 99.83 98.47 98.89 | 99.79 98.37 98.62 | 99.76 98.34 98.34

Precision (%)

99.95

Figura 11 — Precisdo ap6s PGD-100 com UNSW-NB15
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4.3.2 Ataque CW-10

Ao executar ataques CW-10 no CIC IDS2017 com modelos binérios, o TabNet apre-
sentou desempenho em torno de 96% a 97% para o label "Benign'e abaixo de 79% para a
label "Attacks'na métrica Precisdo. Para Recall a label "Attack'ficou entre 69% e 72% .
A TabIDS obteve melhores resultados gerais,mantendo a robustez do modelo a esse tipo
de ataque para os valores de "Confidence"testados (Tabela .

Com modelos multiclasse, o pior desempenho da TabNet foi na label "DDoS". En-
quanto as métricas para TabIDS superaram Precision,Recall e ROC-AUC nos trés labels,

conforme mostrado na Fig [12]e na Tabela [I7]

Figura 12 — Ataque CW-10 contra classificadores multiclasse e dados do CIC IDS2017.
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Ao conduzir o ataque CW-10 com o conjunto de dados UNSW-NB15 usando classi-
ficadores binarios, a Precisao foi notavelmente melhor para o label "Attacks'no modelo
TabIDS, com "Confidence"por volta dos 92%, enquanto o TabNet caiu para 37,62%. Nao
foram observadas diferencas relevantes entre TabNet e TabIDS para Recall e ROC-AUC,
pois ambos os modelos produziram resultados em torno de 99%. Indicando que nesse caso
o método CW-10 gerou mais falsos positivos.

Nos modelos multiclasse, as métricas melhoraram no modelo TabIDS para todos os
valores de "Confidence"usados nos experimentos (Fig. que mostra os resultados para

Precisao). Recall e ROC-AUC apresentam padrao idéntico.
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Tabela 16 — Ataque CW-10 contra classificadores binarios e dados CIC IDS2017.

Confidence

Model | Metric 0.0 0.2 0.5
Benign Attacks | Benign Attacks | Benign Attacks
Precision | 97.38 78.46 | 96.21  75.97 | 96.57 78.12
TabNet | Recall 91.16 69.42 | 91.20 7154 | 9237 72.18
ROC-AUC| 92.24 90.22 | 9331 9148 | 93.94 92.05
Precision | 99.97 99.88 | 99.96 99.88 | 99.97 99.88
TabIDS | Recall 99.97 99.97 | 99.96 99.97 | 99.97 99.96
ROC-AUC| 99.97 99.97 | 99.96 99.97 | 99.96 99.96

Tabela 17 — Ataques CW-10 contra classificadores multiclasse com CIC IDS2017.

Confidence

Model | Metric 0.0 0.2 0.5
Benign DoS DDoS|Benign DoS DDoS|Benign DoS DDoS
Precision | 98.39 99.49 41.59| 98.41 99.50 41.35| 98.43 99.50 41.59
TabNet| Recall | 98.80 90.03 1.98 | 98.82 90.12 1.96 | 98.87 90.25 1.98
ROC-AUC| 97.91 93.23 99.63| 97.91 93.21 99.62| 97.89 93.18 99.61
Precision | 99.97 99.96 99.95| 99.96 99.96 99.95| 99.96 99.95 99.95
TablDS| Recall | 99.97 99.96 99.96 | 99.97 99.96 99.95| 99.96 99.96 99.95
ROC-AUC| 99.97 99.95 99.95| 99.97 99.95 99.95| 99.96 99.95 99.95

Figura 13 — Ataque CW-10 contra TabNet and TabIDS em classificacdo multiclasse e dados do UNSW-NB15.
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Ao conduzir o ataque CW-10 com o conjunto de dados UNSW-NB15 usando classi-
ficadores binarios, as métricas indicaram que o modelo TabIDS melhorou em relacao ao
modelo TabNet. Notavelmente, a Precisao para a label "Attacks'foi melhor no modelo
TabIDS permanecendo em torno de para 92%. Contudo, o Recall para a label "Normal'na

TabIDS foi marginalmente maior, mantendo o valor em torno de 99% contra 98% da

TabNet Tabela
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O valor de ROC-AUC se manteve constante no modelo TabIDS, que atingiu 99,94%
em comparacao com 99,30% para o modelo TabNet. Nos classificadores multiclasse, ROC-
AUC foi maior no modelo TabIDS sobre TabNet para todas as métricas e nos trés labels:
“Normal”, “Reconnaissance” e “Generic”. Embora a Precisao na TabIDS tenha sido pouco
maior que na TabNet para a label “Normal”, Tabela [19] o desempenho da TabIDS foi
melhorado nas labels “Recon.” (82%) e "Generic'(96%), porém o modelo TabNet ficou
abaixo de 2% para essas mesmas labels. A Recall permaneceu no TabIDS 92% par Recon.
e 96% para Generic. Para ROC-AUC em todas as labels e valores de "Confidence'a TabIDS

superou a TabNet.

Tabela 18 — Ataque CW-10 contra TabNet and TablDS em classificacdo binaria e dados do UNSW-NB15.

Confidence

Model Metric 0.0 0.2 0.5
Benign Attacks | Benign | Attacks | Benign Attacks
Precision | 99.96 37.62 99.96 37.59 99.95 37.56
TabNet | Recall 98.56 99.68 98.56 99.68 98.56 99.68
ROC-AUC | 99.30 99.30 99.30 99.30 99.30 99.30
Precision | 99.96 92.73 99.96 92.59 99.95 92.50
TabIDS | Recall 99.93 99.68 99.93 99.68 99.93 99.68
ROC-AUC | 99.94 99.94 99.94 99.94 99.94 99.94

Tabela 19 — Ataque CW-10 contra TabNet and TabIDS em classificacdo multiclasse e dados do UNSW-NB15.

Models - Confidence
Metrics 0.0 0.2 0.5
Normal | Recon. | Generic | Normal | Recon. | Generic | Normal | Recon. | Generic
Precision | 99.66 0.09 0.04 99.66 0.18 0.08 99.67 0.18 |0.05
TabNet

Recall 70.04 0.28 0.27 70.31 0.57 0.47 70.70 0.57 |0.33
ROC-AUC| 90.09 | 97.58 | 90.39 | 89.94 | 97.60 | 90.21 | 89.72 | 97.59 |90.04
Precision | 99.97 | 82.65 | 96.85 | 99.97 | 82.86 | 96.85 | 99.97 | 82.86 |96.85
TabIDS | Recall 99.52 | 92.05 | 96.01 | 99.52 | 92.05 | 96.01 | 99.52 | 92.05 |96.01
ROC-AUC| 99.88 | 98.65 | 99.17 | 99.88 | 98.65 | 99.17 | 99.88 | 98.65 [99.17

4.3.3 Hop Skip Jump e Sign-OPT

Os ataques black-box aos dados do CIC IDS2017 para classificadores bindrios, con-
forme mostrado na Tabela [20] indicam que o modelo TabIDS superou o modelo TabNet
em meétricas relacionadas a label "Benign". Nos classificadores multiclasse, a Tabela

mostra que os valores das métricas para TabIDS sao ligeiramente superiores aos do Tab-
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Net. No entanto, para SignOPT, todos os valores para TabIDS sao um pouco superiores

aos do modelo TabNet.

Tabela 20 — Ataques Black-Box contra modelos de classificacdo bindria com dados CIC IDS2017.

Label

Model Attacks Metrics abe
Benign | Attacks
Precision | 83.02 16.82
HopSkipJump| Recall 67.81 | 31.93
ROC-AUC| 73.71 73.92

TabNet

Precision | 85.73 22.51
SignOPT Recall 69.88 | 42.93
ROC-AUC| 80.60 | 81.02
Precision | 83.10 17.07
HopSkipJump| Recall 83.80 | 16.36
TabIDS ROC-AUC| 86.37 | 86.38
Precision | 86.98 40.52
SignOPT Recall 89.82 | 34.01
ROC-AUC| 93.21 03.22

Tabela 21 — Attacks Black-Box contra modelos de classificacdo multiclasse com dados CIC IDS2017.

Model Attacks Metrics Label

Benign | DoS | DDoS

Precision | 79.79 |13.37| 4.71

HopSkipJump| Recall 57.59 | 4.67 | 0.02

TabNet ROC-AUC| 63.25 |95.63| 99.87
Precision | 81.84 |18.73| 21.05

SignOPT Recall 60.70 |11.31| 1.16

ROC-AUC| 70.63 |93.96| 99.22

Precision | 83.17 [10.56| 8.27

HopSkipJump| Recall 72.13 |11.66| 3.82

TabIDS ROC-AUC| 82.96 |94.62| 98.68
Precision | 86.65 [23.13| 34.06

SignOPT Recall 74.11 |19.78| 17.69

ROC-AUC| 88.30 |96.33| 98.83

Nos dados da UNSW-NBL15, os classificadores bindrios mostrados na Tabela [22] Os

valores de Precisao e Recall para os ataques HopSkipJump e SignOPT foram ligeiramente

maiores no TabIDS dentro dos labels de Ataque.
Nos classificadores multiclasse, Tabela [23] HopSkipJump dentro do TabIDS, a Preci-

sao apresentou resultados ligeiramente melhores para o label "Normal", enquanto a mé-
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trica de Recall favoreceu “Reconnaissance”. Além disso, os labels “Generics” resultaram

em valores ligeiramente maiores na métrica do que no modelo TabNet.

Tabela 22 — Ataques Black-Box contra modelos de classificacdo binaria com dados UNSW-NB15.

Model Attacks Metrics Label
Normal | Attacks
Precision | 97.95 1.95
HopSkipJump| Recall 89.45 10.06
TabNet ROC-AUC| 90.36 | 90.37
Precision | 98.50 6.71
SignOPT Recall 90.01 34.46
ROC-AUC| 93.33 | 93.36
Precision | 97.97 2.10
HopSkipJump | Recall 83.08 17.38
TabIDS ROC-AUC| 85.89 | 85.89
Precision | 98.72 6.85
SignOPT Recall 87.00 | 45.78
ROC-AUC| 92.90 | 92.90

Tabela 23 — Ataques Black-Box contra modelos de classificagdo multiclasse com dados UNSW-NB15.

Model Attacks Metrics Label

Normal | Recon. | Generic

Precision | 99.33 6.12 1.47

HopSkipJump| Recall 93.26 1.70 0.07
TabNet ROC-AUC| 96.19 | 99.46 | 99.27
Precision | 99.60 1.80 1.14

SignOPT Recall 93.64 1.42 0.07
ROC-AUC| 98.17 | 99.46 | 99.09

Precision | 99.50 6.27 5.07

HopSkipJump| Recall 51.87 | 23.01 0.47
TablDS ROC-AUC| 96.08 | 97.73 | 97.13
Precision | 99.73 2.01 15.26

SignOPT Recall 68.50 | 16.19 | 10.24
ROC-AUC| 98.12 | 97.95 | 97.69
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Tabela 24 — Métricas OOD para TabIDS binaria com dados CIC IDS2017.

0o0D
Attacks Parameter | ROC-AUC
0.1 90.5
PGD 0.2 95.8
0.3 97.2
0 93
cw 0.2 93.2
0.5 95.2
Hopskipjump - 90.7
SignOPT - 87.7

4.3.4 Deteccao de Out-of-Distribution

Apresentamos os resultados relacionados ao apos ataques adversarios contra o
modelo TabIDS, incluindo resultados de classificacao binaria e multiclasse.

Para os modelos de classificacao binaria e conjuntos de dados avaliados, o método de
deteccao obteve ROC-AUC superior a 90% para os ataques PGD-100 e CW-10 Tabelas
[25] e Fig. [14] Padroes semelhantes sdo observados nos métodos multiclasse Fig.
nos ataques mencionados anteriormente. No entanto, para ataques de black-box, o ROC-
AUC para HopSkipJump nao excedeu 90% em todos os modelos e conjuntos de dados.
Enquanto o SignOPT nao ultrapassou 90% em trés experimentos, exceto para o TabIDS

binario em UNSW-NB15.

Tabela 25 — Deteccdo de OOD em classificacdo binaria e dados CIC IDS2017.

0o0D
Attacks Parameter | ROC-AUC
0.1 90.5
PGD 0.2 95.8
0.3 97.2
0 93
cw 0.2 93.2
0.5 95.2
Hopskipjump - 90.7
SignOPT - 87.7
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Tabela 26 — Deteccdo de OOD em classificacdo multiclasse e dados CIC IDS2017.

00D

Attack Parameter | ROC-AUC
0.1 96.5
PGD-100 0.2 97.5
0.3 98.2
0 98.7
CW-10 0.2 98.4
0.5 98.1
Hopskipjump - 80.5
SignOPT - 86.3

Figura 14 — Deteccdo OOD com modelo binario
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Tabela 27 — Deteccdo de OOD em classificacdo binaria e dados UNSW-NB15.

O0D
Attacks Parameters | ROC-AUC
0.1 96.9
PGD-Linf 0.2 97.8
0.3 97.7
0 95.5
cw 0.2 95.4
0.5 95.2
Hopskipjump - 80
SignOPT - 82
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Tabela 28 — Deteccdo de OOD em classificacdo multiclasse e dados UNSW-NB15.

00D
Attacks Parameters | ROC-AUC
0.1 95.6
PGD 0.2 98
0.3 99.5
0 94
cw 0.2 93.1
0.5 92.6
Hopskipjump - 88.9
SignOPT - 92.9

Figura 15 — Deteccdo OOD com modelo multiclasse.
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4.3.5 O0OOD para ataques de transferéncia
Figura 16 — Deteccdo OOD apés transferéncia dos ataques PGD-100 e CW-10.
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4.3.6 OOD para dados Clean

Também foi realizado um experimento com ataques CIC IDS 2018 [Canadian Insti-|

tute for Cybersecurity 2018 nao observados no treinamento com CIC IDS 2017. Dessa

forma, pudemos testar o comportamento do modelo proposto contra ataques de rede nao
observados no treinamento. Os resultados sdo mostrados na Figura. [I7]

Figura 17 — OOD para dados n3o perturbados com CIC 1DS2018
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4.4 CONSIDERACOES SOBRE OS RESULTADOS

Em geral, o TabIDS se manteve robusta a ataques adversariais, como evidenciado
por suas pontuagoes de Precisao em cenarios de ataques de white-box. Deve-se observar
que os valores de Precisao e Recall para a TabIDS foram relativamente equilibrados,
sugerindo uma menor suscetibilidade a falsos positivos e falsos negativos em comparacao
com o TabNet, como também uma melhor identificacdo dos ataques de rede. Os valores
de ROC-AUC para TabIDS evidenciam que o modelo manteve uma boa separabilidade
entre as classes. Essa tendéncia para as métricas nao se manteve para experimentos com
ataques black-box, embora o detector OOD tenha mitigado o problema e se mostrou ttil
na deteccao de OOD sem perturbagoes adversariais para ataques de rede presentes no
CIC IDS2018, os quais nao foram vistos no treino e a deteccao OOD também foi util para
detectar ataques por transferéncia. Deve ser feita a observagao que para o ataque de rede
Infiltration do CIC IDS2018 o valor para ROC-AUC ficou em torno de 90%, apesar de

nao ser um valor comparavel ao estado da arte e o fato que o detector OOD utilizado no



77

presente trabalho é focado em discriminar amostras adversariais, os trabalhos [Hendrycks
e Gimpel 2017|Liang, Li e Srikant 2018 sobre deteccao OOD permitem concluir que é
uma deteccao razoavel.

Na figura [18| é mostrada a importancia das features apds o ataque HopSkipJump con-
tra dados UNSW-NB15. O método utilizado para interpretabilidade é a partir de |Lofstrom
et al. 2023| que gera interpretacoes contrafatuais calibradas por predi¢ao conforme [Papa-
dopoulos et al. 2002. Ainda na figura[18| é possivel notar que conforme os ataques fizeram
os valores das features (eixo Y) diminuirem, aumentou a chance de erro do classificador,
indicando que a combinacao entre features nao atacaveis e a selecao de features atacaveis
contribuiu para uma melhor exploracao das vulnerabilidades do classificador TabIDS em
relagdo a fronteira de decisdo, ver figura [19] onde é observador para o HopSkipJump,
Figura 19 a, onde o ataque explorou todo o espago de ocorréncia das amostras e na figura
[19 b, onde o ataque Sign-OPT explorou melhor a sobreposigdo das amostras de ataque

de rede e fluxo benigno.

Figura 18 — Interpretacdo por Contrafatual calibrado com ataques de rede do UNSW-NB15.
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Figura 19 — PCA para fronteira de decisdo apds ataques Black-Box em dados UNSW-NB15.
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5 CONCLUSAO E TRABALHOS FUTUROS

A necessidade de protecao das redes em ambientes corporativos se faz urgente. No en-
tanto nao é uma tarefa facil, devido a existéncia de varios métodos de ataque, surgimento
de novas amegas, vulnerabilidades desconhecidas e as formas tradicionais de detecgdo nao
conseguem fazer frente ao novos ataques. Além da dificuldade de um lado e novas vulne-
rabilidades sendo descobertas e exploradas, o quantitativo de dados a ser analisado para
confirmar o andamento de um trafego malicioso é enorme e tende a aumentar, fazendo-se
necessarias analises rapidas e que consigam dar conta das novas ameacas.

Este trabalho se propos a usar deep learning como técnica para deteccao de intru-
soes em redes, uma vez que é uma técnica apropriada para lidar com dados complexos,
tém melhor capacidade de generalizacao e escalabilidade quando comparadas as técni-
cas tradicionais de [MILJ] sendo portanto melhores na detecgdo de anomalias em redes de
computadores. Para este fim, foi usada a arquitetura TabNet a qual é pensada em dados
tabulares, forma de dados comumente usada na publicagdo dos conjuntos de dados para
redes de computadores. No entanto foi levado em consideracao que redes neurais sao vulne-
raveis a ataques chamados ataques adversariais, o que para um sistema de ciberseguranca
aumentaria a chance de ataques e comprometeria a rede a qual deveria defender.Para
aumentar a robustez a ataques adversariais evasivos, foi usado treinamento adversarial na
TabNet, que no presente trabalho foi chamada de TabIDS, e em seguida um detector de
OOD| para eventuais ataques que consigam evadir a TabIDS e ataques de rede nao vistos
no treinamento. Nos experimentos foram utilizadas pequenas perturbacoes para testar
a eficiéncia do método TabIDS e compara-lo a uma versao do modelo com treinamento
convencional TabNet.

Os efeitos das perturbagoes foram comparados com base em como elas influenciaram as
métricas: Precisdo, Recall e ROC-AUC. Nossos resultados mostram que o modelo proposto
(TabIDS) teve um bom desempenho no conjunto de dados CIC IDS2017 e UNSW-NB15
para os ataques fortes white-box, ou seja, ataques imperceptiveis mas altamente eficazes
em enganar o modelo.O uso de um método [OOD)] ajudou a detectar amostras que o
modelo TabIDS nao detectou, e essa abordagem foi ttil com os ataques black-box. Foi
testado ainda o detector [OOD|em dados nao perturbados do CIC IDS2018, para avaliar

sua capacidade de deteccdo em ataques de rede nao vistos com o treinamento do CIC
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IDS2017. Esses ataques avaliados a partir do CIC IDS2018 resultaram em bons valores
com excecio para uma classe ,Infiltration que ficou em torno de 90% para ROC-AUC que
é considerado razoavel pela literatura consultada para [OOD|

Uma limitagdo que devera ser abordada em trabalhos futuros é a classificacao baseada
em metadados para fluxo criptografado. Outra limitagao a ser explorada é perturbar o
fluxo e converté-lo para pacotes pcap, desse modo observar se os pacotes evadem o mo-
delo, ou até mesmo propor ataques apropriados para dados pcap. Também devem ser
investigados ataques gerados por GANs ao invés de adaptar os baseados em visao com-
putacional e fazer a validagao do fluxo a oartir da criacdo e transmissao de pacotes pcap,
quantificando tanto o fluxo verdadeiro quanto adversarial produzido por GANs. Além
disso,fazem-se necesséarias pesquisas sobre quantificagdo de incertezas que sejam robustas
a amostras adversarias e nao aumentem a laténcia do modelo. Essa abordagem aumen-
taria a confiabilidade dos resultados relacionados a detecgdo de amostras adversérias,

fornecendo intervalos de probabilidade para cada classe de saida do modelo.
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— TABELAS DAS METRICAS RELACIONADAS A

94

Embora alguns valores de Y./t perturbados sejam menores que o original, no pre-

sente caso isso pode ser causado por ataques que otimizam a procura por perturbacoes

minimas, principalmente nos casos: CW , HopSkipJump e SignOPT de acordo com seus

respectivos autores [Carlini e Wagner 2017], [Chen e Jordan 2019] e [Cheng et al. 2019],

embora possa acontecer em ataques iterativos [Madry et al. 2017]. Para ter uma nogao

global da imperceptibilidade da amostra, as métricas foram calculadas para a amostra e

nao apenas para as features perturbadas.

A.1 CIC IDS2017

A.1.1 White-Box

Tabela 29 — Métricas para CIC IDS2017 e ataque PGD-100 contra classificadores bindrios

Epsilon
PGD Métrica 0.1 0.2 0.3
Original|Perturbed|Original|Perturbed|Original|Perturbed
Lo 0,99 1,00 0,99 1,00 0,99 1,00
CLEAN|Wasserstein| 0,00 0,01 0,00 0,02 0,00 0,03
Lo 0,99 0,99 0,99 0,99 0,99 1,00
IDS |Wasserstein| 0,00 0,01 0,00 0,02 0,00 0,03

Tabela 30 — Métricas para CIC IDS2017 e ataque CW-10 contra classificadores binarios

Confidence
Ccw Métrica 0,00 0,20 0,50
Original|Perturbed|Original|Perturbed|Original|Perturbed
Lo 4,34 4,34 4,34 4,34 4,34 4,34
CLEAN|Wasserstein| 0,00 0,00 0,00 0,00 0,00 0,00
Lo 4,34 4,34 4,34 4,34 4,34 4,34
IDS |Wasserstein| 0,00 0,00 0,00 0,00 0,00 0,00
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Tabela 31 — Métricas para CIC IDS2017 e ataque PGD-100 contra classificadores multiclasse

Epsilon
PGD Métrica 0.1 0.2 0.3
Original|Perturbed|Original|Perturbed|Original|Perturbed
Lo 0,99 0,99 0,99 1,00 0,99 1,00
CLEAN|Wasserstein| 0,00 0,01 0,00 0,02 0,00 0,03
Lo 0,99 0,99 0,99 1,00 0,99 1,00
IDS |Wasserstein| 0,00 0,01 0,00 0,01 0,00 0,02

Tabela 32 — Métricas para CIC IDS2017 e ataque CW-10 contra classificadores multiclasse

Confidence
Ccw Métrica 0,00 0,20 0,50
Original|Perturbed|Original|Perturbed|Original|Perturbed
Lo 4,34 4,34 4,34 4,34 4,34 4,34
CLEAN|Wasserstein| 0,00 0,00 0,00 0,00 0,00 0,00
Lo 4,34 4,34 4,34 4,34 4,34 4,34
IDS |Wasserstein| 0,00 0,00 0,00 0,00 0,00 0,00

A.1.2 Black-Box

Tabela 33 — Métricas para CIC IDS2017 e ataque HopSkipJump contra classificadores binarios

HopSkipJump| Meétricas |Original/Perturbed

L 0,99 0,99
CLEAN Wasserstein| 0,00 0,00
L 0,99 0,99

IDS Wasserstein| 0,00 0,00

Tabela 34 — Métricas para CIC IDS2017 e ataque SignOPT contra classificadores binéarios

SignOPT| Meétricas |Original/Perturbed

Lo 4,34 4,35
CLEAN |Wasserstein| 0,00 0,02
Lo 4,34 4,46

IDS |Wasserstein| 0,00 0,02
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Tabela 35 — Métricas para CIC IDS2017 e ataque HopSkipJump contra classificadores multiclasse

HopSkipJump| Meétrica |Original/Perturbed
L 0,99 0,99
CLEAN |Wasserstein| 0,0 0,0
L 4,3 4,3
IDS Wasserstein| 0,0 0,0

Tabela 36 — Métricas para CIC IDS2017 e ataque SignOPT contra classificadores multiclasse

SignOPT| Meétrica |Original/Perturbed
Lo 4,34 4,35
CLEAN |Wasserstein| 0,0 0,0
Lo 4,3 4,4
IDS |Wasserstein| 0,0 0,0

A.2  UNSW-NB15

A.2.1 White-Box

Tabela 37 — Métricas para UNSW-NB15 e ataque PGD-100 contra classificadores binarios

Epsilon

PGD | Métricas 0.1 0.2 0.3
Original|Perturbed|Original|Perturbed|Original|Perturbed
Lo 113,86 | 113,78 | 113,86 | 113,69 | 113,86 | 113,61
CLEAN|Wasserstein| 0,00 0,02 0,00 0,04 0,00 0,05
Lo 113,86 | 113,88 | 113,86 | 113,90 | 113,86 | 113,92
IDS |Wasserstein| 0,00 0,02 0,00 0,04 0,00 0,05

Tabela 38 — Métricas para UNSW-NB15 e ataque CW-10 contra classificadores binarios

Confidence
Cw Métricas 0,00 0,20 0,50
Original|Perturbed|Original|Perturbed|Original|Perturbed
Ly 114,12 | 114,08 | 114,12 | 114,08 | 114,12 | 114,08
CLEAN|Wasserstein| 0,00 0,03 0,00 0,03 0,00 0,03
Loy 114,12 | 114,12 | 114,12 | 114,12 | 114,12 | 114,12
IDS |Wasserstein| 0,00 0,00 0,00 0,00 0,00 0,00
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Tabela 39 — Métricas para UNSW-NB15 e ataque PGD-100 contra classificadores multiclasse

Epsilon
PGD | Métricas 0.1 0.2 0.3
Original|Perturbed|Original|Perturbed|Original|Perturbed
Lo 11,24 11,24 11,24 11,23 11,24 11,21
CLEAN|Wasserstein| 0,00 0,02 0,00 0,04 0,00 0,06
L 11,24 11,24 11,24 11,24 11,24 11,22
IDS |Wasserstein| 0,00 0,02 0,00 0,03 0,00 0,05

Tabela 40 — Métricas para UNSW-NB15 e ataque CW-10 contra classificadores multiclasse

Confidence
Cw Métricas 0,00 0,20 0,50
Original|Perturbed|Original|Perturbed|Original|Perturbed
Lo 13,40 13,40 13,40 13,40 13,40 13,40
CLEAN|Wasserstein| 0,00 0,00 0,00 0,00 0,00 0,00
Lo 13,40 13,40 13,40 13,40 13,40 13,40
IDS |Wasserstein| 0,00 0,00 0,00 0,00 0,00 0,00

A.2.2 Black-Box

Tabela 41 — Métricas para UNSW-NB15 e ataque HopSkipJump contra classificadores binarios

HopSkipJump| Meétrica |Original/Perturbed

Lo 10,27 10,23
CLEAN Wasserstein| 0,00 0,10
L 10,27 10,27

IDS Wasserstein| 0,00 0,09

Tabela 42 — Métricas para UNSW-NB15 e ataque SignOPT contra classificadores binarios

SignOPT| Meétrica |Original/Perturbed

Lo 12,60 12,76
CLEAN |Wasserstein| 0,00 0,07
Lo 12,60 12,75

IDS |Wasserstein| 0,00 0,06
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Tabela 43 — Métricas para UNSW-NB15 e ataque HopSkipJump contra classificadores multiclasse

HopSkipJump| Meétrica |Original/Perturbed
L 11,24 11,14
CLEAN |Wasserstein| 0,00 0,17
L 11,24 11,21
IDS Wasserstein| 0,00 0,07

Tabela 44 — Métricas para UNSW-NB15 e ataque SignOPT contra classificadores multiclasse

SignOPT| Meétrica |Original/Perturbed
Lo 13,40 13,53
CLEAN |Wasserstein| 0,00 0,07
Lo 13,40 13,41
IDS |Wasserstein| 0,00 0,02
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Tabela 45 — Resumo dos ataques Reconnaissance, Generic, DoS e DDoS com descricées em tdpicos

Ataque | Descricao Objetivo Exemplos Danos/Prejuizos
(MITRE ATT&CK)
Recon. = Coleta de informa- | = Mapear superficie | = Scans de rede = Exposicdo de infor-
cdes sobre o alvo de ataque . Coleta de e-mails macdes sensiveis
e = Aumento do risco de
. Infraestrutu.ra, . Ic%ejntlflcar vulnera- | Pesquisa em redes ataques direcionados
pessoas e sistemas bilidades sociais N
= Preparacio para ata-
= Preparar  etapas | , Consulta a bancos ques subsequentes
futuras de dados publicos
Generic | = Técnica aplicivel a | = Quebrar criptogra- | = Forca bruta de | = Quebra de confiden-
qualquer cifra de fia por métodos chaves cialidade
bloco universais « Ataque de aniver- | " Acesso n3o aut?ri—
» N3o explora deta- | = Forca bruta ou co- séario (birthday at- Zadf Z.ad informagGes
Ihes do algoritmo lisdo tack) pre eg,l Nas
= Exposicdo de cre-
denciais
DoS » Interrupcao ou de- | = Tornar servico | = Sobrecarga de re- | = Indisponibilidade de
gradacdo de ser- indisponivel para Cursos servicos
vico usudrios legitimos | | Envio de pacotes | InteNrrupgléo de ope-
» Sobrecarga ou ex- malformados rDa(’:OGS c”tlcas_ I
ploracdo de falhas = Crash persistente ﬁ,?::cerﬁzmaaona )
DDoS » DoS realizado por | = Esgotar largura de | = SYN flood = Indisponibilidade to-
mdltiplos sistemas banda ou recursos | . DP flood tal ou parcial de ser-
distribuidos do alvo VvIgOs
= HTTP flood = Perda de receita

= Usualmente via
botnets

= Ataque massivo e
coordenado

= Trafego volumé-
trico distribuido

= Impacto em clientes

= Distracdo para ou-
tros ataques

OBS: As defini¢ces dos ataques usadas nesta tabela foram retiradas da documentacdo dos datasets. As demais

descricdes foram adaptadas do [MITRE ATTZZCKl
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ANEXO C - RESULTADOS PARA TREINOS ADVERSARIAIS EM DADOS
DESBALANCEADOS

C.1 COMPARATIVO ENTRE OS TREINOS

A tabela abaixo mostra os resultados para classificacdo multi-classe com o treino
adversarial usado neste trabalho com a funcao de custo utilizada (Entropia cruzada). Uma
vez que o treinamento adversarial mostra problemas com dados desbalanceados |Li, Xul
e Zhang 2023, foi tentado as seguintes abordagens de forma obter um modelo que nao

tivesse performance ruim nas classes minoritarias:

o MAIL: [Wang et al. 2021| propuseram uma estratégia adaptativa de associar os pesos
de classes na funcao entropia cruzada. Resumidamente conforme uma certa quanti-
dade de épocas o método muda um fator que é multiplicado pelo valor do custo das

classes.

o LDAM+SCL: Em [Wang et al. 2021] o qual usam duas fungoes de custo combina-
das: LDAM (Cao et al. 2019 e contrastiva supervisionada (SCL) |[Khosla et al. 2020\

Segundo os autores,esta combinacao de fungoes de custo conseguiriam ponderar de

maneira eficiente o peso das classes durante o treino.

Nao foram realizados experimentos com LDAM+SCL ou MAIL para CIC IDS2017

uma vez que os resultados obtidos com o UNSW-NB15 nao foram satisfatorios.
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Tabela 46 — Entropia cruzada VS MAIL VS LDAM+SCL em treino adversarial (MPB-AT)

UNSW-NB15
Label Entropia Cruzada MAIL LDAM+SCL
Precision|Recall ROC-AUC | Precision|Recall ROC-AUC |Precision|Recall| ROC-AUC
Normal 100 99,52 | 99,88 99,38 |99,83| 97,69 100 42,52 | 93,52
Exploits | 71,2 |61,46| 98,28 55,33 | 58,5 94,86 1,59 |24,68| 68,76
Recon. 82,86 |92,06| 98,65 87,16 |36,65| 98,58 583 89,49 | 97,27
DoS 20,53 |23,18| 84,37 8,4 4,72 91,35 0,21 38,2 61,6
Generic | 96,85 |96,01 99,17 9434 |76,53| 90,36 52,6 |91,36 99
Shellcode| 41,76 |84,44| 95,91 0 0 89,25 0,99 |93,33| 99,18
Fuzzers | 53,45 |77,52| 99,73 40,96 [3366| 97,16 4,63 |63,56| 86,17
Worms 8,33 20 41 99,35 0,04 100 96,36
Backdoor| 12,5 |35,51 97,57 75,63 0,13 [31,78| 64,32
Analysis | 12,82 | 61,9 99,83 85,36 3,61 |69,52| 96,52




ANEXO D - GRAFICOS RECALL E ROC-AUC
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Figura 20 — Recall apés PGD-100 com CIC IDS2017 e classificadores binarios
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Figura 23 — Recall apés CW-10 com CIC IDS2017 e classificadores multiclasse
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Figura 24 — Recall apés HopSkipJump com CIC IDS2017 e classificadores binéarios
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Figura 27 — Recall apés SignOPT com CIC IDS2017 e classificadores multiclasse

SignOPT
60.70
= Benign
msm DoS
msm DDOS
Tl il

RECALL - UNSW-NB15 - WHITE BOX

Recall (%)

Figura 28 — Recall ap6s PGD-100 com UNSW.

PGD Linf
99.50  99.89 9959 99.73 99.50  9g.g7
= Benign
W Attacks
bl a) bl
(=} (=} =}
Epsilon

Recall (%)

~
o

o
=)

u
o

40

30

SignOPT
74.11

== Benign
msm DoS
=== DDOS

1978 1769

-NB15 e classificadores binarios

100

©
o

-}
o

N
o

N
o

0

PGD Linf

99.91 _ 99.46

== Benign
W Attacks

Figura 29 — Recall apés CW-10 com UNSW-NB15 e classificadores binarios

cw
og.56 _ 99.68 9856 _ 99.68 9856 _ 99.68
= Benign
W Attacks
e N Sl
o o o
Confidence

Recall (%)

100

©
S

-}
o

N
o

N
o

0

90.03 _ 99.68

<
=)

99.93 _ 99.68

1
o

s Benign
mmm Attacks

~

o
Confidence



105

100

80

60

Recall (%)

100

80

60

Recall (%)

40

20

D.4

80

=
o

Recall (%)
B
o

20

80

-}
o

Recall (%)
B
o

20

Figura 30 — Recall apés PGD-100 com UNSW-NBL15 e classificadores multiclasse

PGD Linf
== 38.26 97.44 100
80
== Normal R 60
mmm Reconnaissance =
— == Generic o
& 40
20
wn
540 552
—— 170 246 .
s m
S
Epsllon

99.43 99.45
95.08 9375
)

PGD Linf

Epsllon

Figura 31 — Recall apés CW-10 com UNSW-NB15 e classificadores multiclasse

cw
100
80
7000 7031 70.70
== Normal R 60
W Reconnaissance =
m=m Generic ]
& 40
20
028 027 0.57 047 057 033 0
\n
=)
Conﬂdence

RECALL - UNSW-NB15 - BLACK BOX

99.52

01 96.01

| I’2 ns | I’2 us |
n

9. sz

Conﬂdence

Figura 32 — Recall apés HopSkipJump com UNSW-NB15 e classificadores binarios
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Figura 34 — Recall apés HopSkipJump com UNSW-NB15 e classificadores multiclasse
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Figura 36 — ROC-AUC apés PGD-100 com CIC IDS2017 e classificadores binarios
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Figura 38 — ROC-AUC apés PGD-100 com CIC IDS2017 e classificadores multiclasse
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Figura 42 — ROC-AUC ap6s HopSkipJump com CIC IDS2017 e classificadores multiclasse
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Figura 46 — ROC-AUC apés PGD-100 com UNSW-NBL15 e classificadores multiclasse
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Figura 47 — ROC-AUC apés CW-10 com UNSW-NB15 e classificadores binérios
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Figura 48 — ROC-AUC apés HopSkipJump com UNSW-NB15 e classificadores binarios
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Figura 50 — ROC-AUC apés HopSkipJump com UNSW-NB15 e classificadores multiclasse
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Figura 51 — ROC-AUC apés SignOPT com UNSW-NBL15 e classificadores multiclasse
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