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RESUMO

A irrigacéo de precisdo em ambientes controlados exige o monitoramento continuo e
remoto do solo, mas métodos tradicionais, baseados em medigdes pontuais, enfren-
tam limitagbes de abrangéncia e durabilidade dos sensores. Como alternativa, esta
dissertacdo apresenta o desenvolvimento e validacdo de um sistema inteligente de
fenotipagem, fundamentado em imagens RGB e aprendizado de maquina embarcado
em microcontroladores de baixo custo. Os experimentos demonstraram que alteragcdes
na coloracao foliar podem ser utilizadas como indicativos sensiveis do estado hidrico,
permitindo antecipar intervengdes de irrigagdo com maior precisdo. Foram avaliadas
diferentes estratégias de classificagdo de estresse hidrico: (i) analise da componente
Saturacgao, destacando-se como a solugao mais simples e eficiente para implementa-
¢ao em dispositivos com recursos limitados; (ii) modelos rasos baseados em textura,
que apresentaram desempenho promissor; e (iii) arquiteturas profundas do tipo CNN,
que exigem maior poder computacional. Os resultados confirmam a viabilidade de
descentralizar o processamento em dispositivos embarcados (Edge Computing), re-
duzindo a dependéncia de infraestrutura de nuvem, e evidenciam o potencial da visao

computacional como ferramenta para o monitoramento agricola de baixo custo.

Palavras-chaves: Visdo de maquina na agricultura; Monitoramento remoto de umi-

dade do solo; Imagens RGB; Irrigacao de precisao; Deteccao de estresse hidrico



ABSTRACT

Precision irrigation in controlled environments requires continuous and remote soil
monitoring, but traditional methods, based on point measurements, face limitations in
sensor coverage and durability. As an alternative, this dissertation presents the devel-
opment and validation of an intelligent phenotyping system, based on RGB images and
embedded machine learning on low-cost microcontrollers. The experiments demon-
strated that changes in leaf color can be used as sensitive indicators of water status,
allowing irrigation interventions to be anticipated with greater precision. Different water
stress classification strategies were evaluated: (i) analysis of the H color component,
which stood out as the simplest and most efficient solution for implementation on de-
vices with limited resources; (ii) shallow texture-based models, which showed promis-
ing performance; and (iii) deep CNN architectures, which require greater computational
power. The results confirm the feasibility of decentralizing processing on embedded de-
vices (Edge Computing), reducing dependence on cloud infrastructure, and highlight

the potential of computer vision as a tool for low-cost agricultural monitoring.

Keywords: Machine vision in agriculture; Remote soil moisture monitoring; RGB im-

ages; Precision irrigation; Water stress detection
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1 INTRODUCAO

Estufas modernas evoluiram para fabricas de plantas, permitindo a agricultura ur-
bana e aprimorando as capacidades de producéo de alimentos (SHAMSHIRI et al., 2018).
Sistemas de Suporte a Decisao baseados em dados (do inglés DSS) sao ferramentas
essenciais para atingir alta produtividade e sustentabilidade (AIELLO et al., 2018). Entre
esses sistemas, a irrigacao automatizada desempenha um papel critico. Sistemas de
irrigacdo automatizados em estufas promovem a saude das plantas, otimizam o uso
da agua e maximizam os rendimentos das colheitas. Essa abordagem garante que a
quantidade precisa de agua seja fornecida as plantas conforme necessario, evitando
assim o desperdicio e contribuindo para a sustentabilidade ambiental. Além disso, a
irrigacao precisa € um requisito essencial para estudos fenotipicos, que envolvem a
avaliagdo das caracteristicas observaveis das plantas resultantes da interagdo entre
seus fatores genéticos e ambientais, em ambientes controlados.

Nessa perspectiva, fazendas-fabricas similares a Go Green, Fig. 1, aplicam abor-
dagens inovadoras na producao agricola sustentavel. A empresa utiliza um sistema de
irrigagdo que consome 80% menos agua para cultivar alface, e produz 25 vezes mais
cabecas de alface por hectare do que os métodos tradicionais. Roboética e automacao

complementam as atividades da empresa (ARGUS, 2023).

20 Y A 7 N 2D LU e

Figura 1 — Fazenda de alface em Encinitas, CA, EUA. Fonte: Argus (2023).

A irrigacao autdbnoma fornece suprimento de agua adequado e personalizado para
cada espécie cultivada, evitando tanto a irrigacdo insuficiente quanto a excessiva, o
que pode levar ao desenvolvimento de fungos e outras doengas vegetais. O monito-

ramento adequado ajuda a manter as condicdes ideais dentro da estufa, reduzindo
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esses riscos. O objetivo de uma estufa inteligente € garantir o controle preciso da
irrigacao e criar um microambiente favoravel para as plantas, o que geralmente é im-
possivel de garantir em ambientes externos.

Os dados coletados por sensores ambientais permitem manter a estabilidade cli-
matica dentro da estufa, o que é essencial para plantas sensiveis a mudancas re-
pentinas de umidade e temperatura. A agricultura de precisdo baseada em sensores
minimiza a intervencao humana e promove o monitoramento em tempo real, permi-
tindo intervencdes imediatas com base nas condi¢cées predominantes do solo e do
ambiente. A automacéo da irrigacao e a telemetria da cultura beneficiam tanto os pro-
dutores quanto a pesquisa cientifica. A irrigacdo automatizada melhora a eficiéncia
do uso da agua (GOUMOPOQULOS et al., 2014), economiza mao de obra (CHAPPELL et
al., 2013; WHEELER et al., 2018) e permite estudos de fisiologia do estresse (NEMALI;
IERSEL, 2006).

L N

Figura 2 — Imagens do sistema de fenotipagem vegetal da Donald Danforth Plant Science Center, MO,
EUA: (a) estufa de crescimento em laboratério de fenotipagem com, esteiras, sensores, irri-
gacao e pesagem automatizada, (b) extracao de caracteristicas fenotipicas por imagem em
camara controlada. Fonte: Danforth (2025).

A fenotipagem vegetal é fundamental para compreender como as plantas reagem
ao ambiente. O laboratério de pesquisa Bellwether Foundation Phenotyping Facility,
Fig. 2, do Donald Danforth Plant Science Center, dispde de uma instalacdo pioneira
nos EUA que permite aos cientistas monitorar caracteristicas como tamanho das fo-
Ihas, estrutura das raizes e taxa de crescimento, coletando grandes volumes de dados
(DANFORTH, 2025). Essas informagdes séo utilizadas para desenvolver culturas mais
sustentaveis e resistentes a condi¢cdes adversas, como seca e calor extremo. O centro

de pesquisa oferece fenotipagem em ambiente controlado para caracterizar plantas
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em diferentes ambientes, tratamentos e genética. Os resultados incluem informacdes
relacionadas ao crescimento e desenvolvimento das plantas e as respostas das plan-
tas ao estresse.

Nesse contexto de pesquisa cientifica, propomos um sistema de monitoramento
construido com componentes de baixo custo, alinhado a proposta de Ferrarezi et al.
(2015). Esses autores desenvolveram um sistema automatizado de irrigagéo para cul-
tivos em vasos, baseado em microcontrolador, sensores capacitivos de umidade do
solo e uma bomba de agua submersa, visando reduzir custos e facilitar a adogcao em
ambientes controlados e por pequenos produtores. O estudo demonstrou que € possi-
vel realizar o manejo hidrico de forma precisa e com baixo custo, sem a necessidade
de infraestrutura complexa, representando um avango importante para o uso de tecno-
logias acessiveis na agricultura de precisao. Inspirado nesse conceito, o sistema aqui
proposto incorpora também uma camera RGB para analise fenotipica, expandindo a
abordagem original para além do monitoramento pontual da umidade, a fim de integrar

informacodes visuais no processo de decisao da irrigagao.

1.1 OBJETIVO

Desenvolver e validar um protétipo de sistema de fenotipagem inteligente, capaz
de monitorar o estresse hidrico em plantas por meio de imagens e sensores de umi-
dade, em ambiente controlado. Para atingir esse propdsito, foi concebido o SPheRe
(Smart Phenotyping Research Lab — Laborato6rio de Pesquisa em Fenotipagem Inte-
ligente), uma plataforma que integra o controle da umidade do solo, telemetria e téc-
nicas de visdo computacional sobre imagens de plantas cultivadas em uma tenda de
crescimento, destinada a estudos fenotipicos diante de variacdes hidricas do sistema
solo-planta.

Com esse propdésito, as etapas a seguir devem ser realizadas:

1. Instalar um sistema de irrigagcdo automatico em uma tenda de cultivo;
2. Projetar um sistema de captura de imagens;

3. Calibrar o sistema de sensoriamento de umidade do solo;
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4. Estabelecer comunicagdo em nuvem para fim de telemetria e armazenamento

de imagens;

5. Desenvolver software para medir indices RGB de imagens de plantas sob cultivo,

e mensurar outros fatores pertinentes;
6. Conduzir experimentos de estresse hidrico;

7. Fornecer uma prova de principio de que a descoloracao das folhas, €, ou néo,

um indicador de estresse hidrico;
8. Investigar outros fatores correlacionados com o estresse hidrico;

9. Avaliar a possibilidade de executar andlises de imagens diretamente em um mi-

crocontrolador.

1.2 JUSTIFICATIVA

A aplicacao da Internet das Coisas (do inglés IoT) na agricultura tem sido reconhe-
cida como um componente essencial para a integracdo de sensores e a coleta con-
tinua de informagdes em tempo real, permitindo decisbes mais precisas e rentaveis
(Li et al. (2016); Singh et al. (2021)). Além de possibilitar o monitoramento climatico,
da fertilidade do solo e da demanda nutricional das culturas (MOHAMED et al., 2021),
a loT tem desempenhado um papel crescente na agricultura de precisdo, com des-
taque para o controle de irrigacao e a prevencao de perdas relacionadas ao manejo
inadequado da agua (ABDELMONEIM et al., 2025).

Entretanto, mesmo com os avangos em sistemas automatizados de irrigacao, per-
siste a dificuldade em detectar precocemente o estresse hidrico, especialmente em
ambientes controlados, como estufas. A maior parte das solucdes atuais depende de
sensores de solo, que, embora eficazes em medigbes pontuais, apresentam limita-
cbes de abrangéncia espacial e deterioracdo ao longo do tempo (MILLER et al., 2025).
Nesse contexto, abordagens baseadas em visdo computacional tém se mostrado pro-
missoras, pois permitem capturar alteragdes fenotipicas sutis, como a variacdo da
coloragéo foliar, que séo indicadores indiretos, mas sensiveis, do estado hidrico das
plantas (ATANASOV, 2021). Além disso, parte-se da hipotese de que a visao com-

putacional pode revelar nuances de cor e padroes espectrais imperceptiveis ao
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olho humano, ampliando a capacidade de diagndstico precoce do estresse hidrico e
de outras condicoes fisioldgicas (AL-TAMIMI et al., 2022).

Diante desse cenario, esta dissertacao justifica-se pela necessidade de superar a
dependéncia de sensores intrusivos de solo, propondo um sistema de fenotipagem
acessivel e embarcado, instalado em uma tenda de cultivo com irrigacao automati-
zada. A solucgéo integra uma camera RGB de baixo custo para captura de imagens,
sensores de telemetria microambiental e algoritmos de aprendizado de maquina otimi-
zados para microcontroladores. A principal contribuicao esta na demonstracao de que
€ possivel monitorar o estresse hidrico de forma nao invasiva, em tempo real e com
baixo custo computacional, promovendo a descentralizagdo do processamento (Edge
Computing) e ampliando as perspectivas de adocao pratica em pequenas e médias
propriedades agricolas.

Assim, além de preencher uma lacuna identificada na literatura quanto a detecgéo
precoce do estresse hidrico por meio de visdo computacional, este trabalho contribui
para a consolidacao da agricultura digital ao oferecer uma solucao pratica, escalavel
e alinhada aos desafios globais de sustentabilidade e seguranca alimentar previstos
para 2030.

1.3 ORGANIZACAO DO DOCUMENTO

Os préximos capitulos desta dissertacdo estdao organizados da seguinte maneira:
o Capitulo 2 apresenta a fundamentacéao tedrica essencial e estudos que servem de
alicerce para a compreensdo do tema em questado, permitindo situar o estudo den-
tro do contexto académico, evidenciando sua relevancia e fundamentacao. O Capitulo
3 apresenta trabalhos relacionados na literatura que empregam ideias e conceitos
semelhantes aos utilizados neste trabalho. O Capitulo 4 descreve a metodologia ado-
tada na presente pesquisa. O Capitulo 5 explica em detalhes o desenvolvimento dos
experimentos implementados. O Capitulo 6 informa e discute os resultados obtidos. O
Capitulo 7 conclui a dissertagéo e indica trabalhos futuros. O Capitulo 8, apresentado

como apéndice, traz um aprofundamento adicional sobre a fundamentacao tedrica.
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2 FUNDAMENTAGCAO TEORICA

Neste capitulo, introduzimos alguns dos conceitos cruciais para o desenvolvimento
desta pesquisa, além de expor estudos e solugdes contemporaneas focadas na agri-
cultura de precisdo. E importante salientar que os principais conceitos aplicados neste
trabalho serdo abordados neste capitulo. Enquanto, conceitos auxiliares podem ser
consultados a partir do Anexo A. Dessa forma, a fundamentagao primaria e a revisao
da literatura serao suficientes para conferir relevancia ao presente estudo.

A Secédo 2.2 introduz o uso do processamento de imagens a fim de adequar uma
imagem para extracdo de dados ou ser entregue a proxima etapa, o Aprendizado de
Maquina (do inglés ML). Entdo, a Secao 2.3 apresenta o ML como ferramenta para a

classificagdo de imagens.

2.1 A VISAO HUMANA FRENTE A VISAO DE MAQUINA

A visdo é o mais desenvolvido dos sentidos. Por isso, ndo surpreende que as ima-
gens desempenhem um papel central na percep¢cao humana. Por outro lado, somos
limitados a faixa visual do espectro eletromagnético, enquanto as maquinas podem
cobrir quase todo o espectro eletromagnético, operando com imagens geradas por
fontes nao visiveis ao olho humano. Isso inclui ultrassom, ondas de radio, microondas,
do infravermelho até raios gama, e ainda imagens geradas por computador. Assim, o
Processamento Digital de Imagens abrange um amplo e variado campo de aplicagdes.
Porém, este trabalho esta restrito ao processamento de imagens digitais geradas no
ambito da luz visivel.

A partir de algumas observagbes sobre as limitagées da visdo humana, Jahne
(1995) destaca que, embora o sistema visual humano seja extremamente eficaz no
reconhecimento de objetos, ele apresenta deficiéncias em tarefas como a estimativa
absoluta de valores de cinza, de distancias e areas. Além das barreiras inerentes a
percepcao humana, incluindo o fato de um dos integrantes deste estudo ser daltdnico,
Deutscher (2010) traz constatacdes controversas ao apontar que a percepg¢ao das co-
res pode variar entre diferentes culturas e até mesmo entre civilizagdes separadas por

longos periodos histéricos. Fatores como esses reforgam a ideia da inclusao da viséo
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de maquina como crivo em tarefas que envolvem analise de cor, promovendo maior
objetividade, reprodutibilidade e independéncia de interpretacdes subjetivas. Jahne
(1995) ainda afirma que avangos importantes na visdo computacional foram alcanca-
dos gragas ao progresso na compreensao do sistema visual humano.

A secado seguinte retune e descreve 0s principais recursos de visdo de maquina

utilizados ao longo deste estudo.

2.2 O PROCESSAMENTO DIGITAL DE IMAGENS E A VISAO COMPUTACIONAL

Szeliski (2022) situa o Processamento Digital de Imagens (PDI) como o estagio
inicial da maioria dos algoritmos de Visdo Computacional, definindo sua funcdo como
pré-processar a imagem e converté-la para um formato adequado para obter resulta-
dos satisfatérios. Complementarmente, de Gonzalez e Woods (2008) depreende-se a

Quadro 1, que apresenta uma breve distingdo entre essas duas areas relacionadas.

Caracteristica
Principal

PDI

Visao Computacional

Objetivo Primario

Manipular, aprimorar,
restaurar e transformar
imagens.

Fazer com que
computadores interpretem o
conteldo de imagens e
videos do mundo real.

de baixo nivel da imagem.

Entrada Imagem. Imagem ou video.
Saida Imagem (melhorada, Descricao, medicao,
modificada, transformada). reconhecimento, decisao,
segmentacao, reconstrucao
3D.
Foco Pixel-a-pixel, manipulagéao Extracao de informacgdes de

alto nivel, interpretacéao
semantica do contetido da
imagem.

Exemplos de

Ajuste de brilho/contraste,

Reconhecimento facial,

Tarefas filtros (desfoque, nitidez), deteccgao de objetos,
remogao de ruido, rastreamento de movimento,
equalizacao de histograma, navegacgao de robds,
compressao JPEG. realidade aumentada,

diagnésticos médicos por
imagem.

Pergunta Como melhorar/modificar a O que ha naimagem? /0O

Principal imagem? que a imagem representa?

Entrada — Saida

Imagem — Imagem

Imagem — Descri¢éao

Quadro 1 — Distingao entre PDI e Visdo Computacional. Fonte: Prépria.

Concluimos que este trabalho envolve as duas areas. No ambito do PDI, a moti-

vacao é obter imagem a partir da imagem, enquanto no ambito da Visao Compu-
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tacional, focamos na extracdo de informacao a partir da imagem. Nossa busca é
quantificar o estresse hidrico da planta por meio de sua imagem, seja por analise
direta, utilizando o indice RGB (do inglés Red, Green e Blue) da imagem da planta,
qguanto por analise indireta, via métodos estatisticos para reconhecimento de padrdes
e pela aplicacao de técnicas de ML.

Este trabalho contempla as principais etapas de um pipeline tipico de visdo com-
putacional, incluindo aquisicdo de imagens, filtragem, conversdo de espacos de cor,
segmentacao, processamento morfolégico, analise de padrdes, compressao de ima-
gens e, por fim, aprendizado de maquina.

A combinacéao de conversao de espagos de cor, filtros de suavizagéo, segmentacéo
e operacOes morfoldgicas constitui um pipeline robusto para extragdo de regides de

interesse — aqui, a planta — e serve de base para as subsecdes a seguir.

2.2.1 Deteccao de Movimento Entre Imagens

A fim de se investigar outros fatores além da variacédo dos indices RGB com relagcéo
ao fluxo de agua no interior da planta, este estudo propde o uso de demais recursos
no ambito do PDI: a deteccdo de movimento (SINGLA, 2014) e o reconhecimento de
padrdes. A expectativa é de que o0 SPheRe seja capaz de coletar informagdes correla-
tas ao fluxo de agua no interior da planta, inclusive de suas folhas, influenciando sua
turgidez (rigidez que resulta da presséo interna das células vegetais, causada pela
agua em fluxo por osmose), conforme cita Guimaraes e Stone (2008). Tais aborda-
gens estdo descritas a seguir.

Com foco na deteccdao de movimento entre frames, a metodologia proposta por
Singla (2014) emprega a operacao de subtracao entre imagens. Essa técnica é eficaz
para identificar o movimento resultante da recuperagéo do turgor nas células da planta,
um efeito natural que ocorre durante a reidratacéao e que restaura sua postura original.
Um exemplo da aplicacdo desse procedimento de subtracdo de imagens pode ser
observado na Fig.3.

Além da deteccdo de movimento, as folhas das plantas também podem ser um
forte indicativo do teor de agua por meio de sua textura. A seguir, abordaremos este

aspecto com maior profundidade.
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Input first frame(a) Input second frame(b)

Difference between two frame showing
moving object

Binary image of difference image.

Figura 3 — Quando ha movimento nas cenas, a imagem binaria da diferenca entre os dois quadros
mostra o movimento na cor branca e, onde ndo ha mudanga, mostra a cor preta. Fonte:
Singla (2014).

2.2.2 Analise de Textura

AplGs a segmentagdo de uma imagem em regides, cada conjunto de pixels corres-
pondente pode ser representado de duas maneiras principais para o processamento

subsequente:

1. Representacgao externa: descreve a regido por seu contorno, usando caracte-
risticas como comprimento da borda, orientacdo da reta que une pontos extre-

mos e numero de concavidades.

2. Representacao interna: baseia-se nos pixels que compdem a regiao, desta-

cando propriedades como cor e textura.

Escolher o esquema de representacao é apenas o primeiro passo. Em seguida,
cada regido deve ser descrita por descritores compativeis com a abordagem esco-
Ilhida. Seja externa ou interna (ou ambas), os descritores devem ser invariantes a
variacoes de tamanho, translacéo e rotagao.

No contexto deste presente estudo foi aplicada a representacao interna baseada
na textura das folhas, supondo que essa descri¢ao regional seja relevante para indicar

o nivel de estresse hidrico da planta.
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Dentre diversas definicbes para textura, Rosenfeld e Troy (1970) definem textura
como um arranjo repetitivo de padrdes sobre uma area, e propéem sua quantizagao
por meio de fatores como dependéncia de niveis de cinza e autocorrelagédo. Para ca-
racterizar a textura de uma regiao — medida intuitiva de atributos como suavidade,
aspereza e regularidade — empregam-se trés abordagens principais em processa-

mento de imagens:

« Estatistica: quantifica propriedades como granulagcao e uniformidade por meio

de métricas derivadas de histogramas ou matrizes de coocorréncia.

 Estrutural ou Geomeétrica: modela o arranjo de elementos basicos (primitivas),

por exemplo, padrdes de linhas paralelas e espacadas regularmente.

» Espectral: analisa o espectro de Fourier para identificar periodicidades globais,

detectando picos estreitos e de alta energia.

A abordagem adotada neste trabalho é de natureza estatistica, fundamentando-
se na caracterizagdo da distribuicdo dos niveis de cinza de um conjunto de pixels
por meio de medidas como média, variancia e desvio padrdo, conforme descrito por
Pedrini e Schwartz (2008). Entre os métodos estatisticos disponiveis, empregou-se
especificamente a Matriz de Co-ocorréncia de Niveis de Cinza ou Gray-Level Co-
Occurrence Matrix (GLCM). A GLCM conta quantas vezes um certo nivel de cinza
(em um pixel) aparece ao lado de outro certo nivel de cinza (em pixel vizinho), em
uma direcao e distancia especificas.

A andlise de textura via GLCM baseia-se em extrair estatisticas (Haralick features)
que quantificam propriedades como contraste, homogeneidade e correlagdo. A cons-
trucao da GLCM sera descrita na préxima subsecao, e sua aplicagao permite capturar
texturas direcionais €, somando matrizes rotacionadas, obter invariancia a rotacées. A
normalizagédo da GLCM culmina numa distribuicdo de probabilidades, e a partir disto,
os descritores sdo calculados, formando um vetor caracteristico de textura. Essa abor-
dagem é amplamente utilizada em aplicacbes que vao de classificacao de imagens

médicas a analise remota de padrdes de superficie.
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2.2.2.1 Construgdo da GLCM

Dada uma imagem I com L niveis de cinza, segue o procedimento para construir

sua Matriz de Co-ocorréncia de Niveis de Cinza (GLCM):

1. Escolha da Direcao e Distancia (offset): Definicao do deslocamento (Az, Ay)
(ou angulo 6 e distancia d) que especifique a relacao espacial entre pares de pi-
xels. Em outras palavras, primeiramente, se decide quem séo os pixels vizinhos.
Por exemplo: a partir do pixel de referéncia, o seu vizinho é o pixel imediatamente
a direita (distancia 1, angulo 0 graus) ou o pixel na diagonal superior direita (dis-

tancia 1, angulo 45 graus)

2. Inicializacao com uma Tabela Vazia: Criada uma matriz P € NX*L com todos
os elementos zerados. Ou seja, uma matriz quadrada L x L nula. Se a imagem
tem niveis de cinza de 0 a 255 (de preto a branco), a tabela tera 256 linhas e 256

colunas. Cada célula dessa tabela comega com o valor zero.
3. Contagem de pares. Para cada pixel (z,y) naimagem I(z,y):
» Para cada pixel (pixel atual), se verifica 0 seu pixel vizinho na direcao e
distancia escolhidas no passo 1.

« Computar o nivel de cinza do pixel atual (esse sera o nimero da linha da

tabela).

» Computar o nivel de cinza do pixel vizinho (esse sera o numero da coluna

da tabela).

» Na célula correspondente da tabela é adicionado 1 a ela.

4. Normalizacao: A tabela P é convertida em distribuicao de probabilidades:

P, j)

p(i,j) = -1

de modo que

L-1 1

> pig) =1

i=0 j=0
Essa matriz GLCM mostra padrdes de textura. Se muitos numeros altos estiverem

perto da diagonal principal da tabela, significa que os pixels vizinhos tém niveis de
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cinza muito parecidos (a imagem é homogénea, com poucas mudancas, Como uma
area lisa). Se os numeros estiverem espalhados por toda a tabela, significa que ha
muitas mudangas nos niveis de cinza entre pixels vizinhos (a imagem tem mais tex-
tura ou € mais “aspera”). Uma ferramenta poderosa para descrever a textura de uma
imagem de forma numérica.

Na Fig.4, um exemplo de obtengédo da matriz GLCM normalizada a partir de uma

imagem hipotética com base em 3 niveis de cinza:

Image with numeric Right neighbor GLCM Normalized GLCM

gray levels pG.,j)
Neighbor pixel value (j) Neighbor pixel value (j)
|1 D e S ;|
1 3 2 0 0.25 | 0.17 0

0.25 0 |[0.08

2 3|/0.08 | 0.17 0

Reference pixel value (i)
w
=)

Reference pixel value (i)

Figura 4 — Operacgdes sobre uma imagem (esq.) para obtencao da matriz GLCM normalizada (dir.) com
base no pixel vizinho a direita. Fonte: Tran et al. (2020).

A partir de p(i, 7), calculam-se estatisticas de textura (HARALICK et al., 1973), por

exemplo:

Contraste: 3~ .(i — j)* p(i, j)-
- Dissimilaridade: >,  |i — j[ p(i, j).

« Homogeneidade (IDM): > _p(ig)

i.J T+(i—j)2"

Energia (ASM): 3, . p(i, j)*.

Entropia: — ", . p(i, ) log p(i, j).

Zz‘,j (i—pi) (5 —p5)p(3,3)

00

 Correlacao:

Considerar multiplos offsets e angulos (por exemplo 6 = 0°,45°,90°, 135°) resulta
em GLCMs mais robustas, invariantes a rotagdes.

A sequir, a Fig. 5 retrata o calculo de duas das caracteristicas de Haralick sobre oito
regides da imagem original, quatro no céu, uma regido bastante homogénea, e quatro

regides situadas na grama, notoriamente variando sua textura na dire¢ao vertical.
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Figura 5 — Correlacao e dissimilaridade a partir da GLCM de 256 niveis de cinza de 4 regides
no céu e 4 na grama. Fonte: Gomede (2024)

2.2.2.2 Aplicacdes

A GLCM e suas feicdes de Haralick sdo amplamente usadas em anadlise de ima-
gens médicas, sensoriamento remoto, classificagcao de terrenos e detec¢ao de defei-
tos de fabricagéo, gracas a sua capacidade de capturar padrdes de textura de forma

robusta ao ruido (NANNI et al., 2013).

2.2.2.3 Técnicas modernas de classificacao de texturas

Além das caracteristicas de Haralick, tradicionalmente empregadas na andlise de
texturas, técnicas modernas tém sido exploradas para ampliar a capacidade de dis-
criminagcao em aplicagdes de visdo computacional. Entre elas, destacam-se os Local
Binary Patterns (LBP), amplamente utilizados por sua simplicidade e robustez a va-
riacoes de iluminagéo, e os filiros de Gabor, capazes de capturar informagdes multi-
escalares e multiorientadas da textura. Mais recentemente, abordagens baseadas em
aprendizado profundo, como redes neurais convolucionais (CNNs), tém demonstrado
elevado desempenho na extracdo automatica de descritores texturais, dispensando

a necessidade de engenharia manual de atributos. Estudos de revisdo e aplicagdes
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praticas (Liu et al. (2019);Cimpoi et al. (2015)) indicam que a combinagao entre des-
critores classicos e métodos modernos pode potencializar analises em fenotipagem
de plantas, configurando-se como um caminho promissor para futuras investigacoes.

A fim de complementar os conceitos até aqui discutidos, a se¢ao seguinte expde a

ultima etapa do pipeline deste desenvolvimento, a IA para classificagcao de imagens.

2.3 APRENDIZAGEM DE MAQUINA E CLASSIFICACAO DE IMAGENS

De acordo com Sze et al. (2017), Inteligéncia Artificial (IA) € a ciéncia e a en-
genharia que desenvolvem maquinas capazes de atingir objetivos com autonomia e
desempenho semelhantes aos humanos. No ambito da IA, o ML estuda métodos que
permitem aos computadores aprender a partir de dados, sem a necessidade de pro-
gramacao explicita. Theodoridis (2015) compara esse processo a0 modo como o cé-
rebro humano aprende e faz previsées.

Atualmente, o uso do Machine Learning esta cada vez mais presente em nosso
cotidiano, com aplicagcées que vao desde sistemas de recomendacao até a analise
de grandes volumes de informacdes. Um exemplo fundamental é o reconhecimento
de objetos — um conjunto de tarefas da Visdo Computacional voltadas a identificacao
automética de itens em imagens. A Fig. 6 ilustra algumas dessas tarefas de deteccao

e classificagéo de objetos.

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

DOG, DOG, CAT DOG, DOG, CAT

w TREE, SKY L R )
Y ' R
No objects, just pixels Single Object Multiple Object

Figura 6 — Tarefas relacionadas ao reconhecimento de objetos. Fonte: Agarwal (2015).

Segundo Agarwal (2015), no campo da Visdo Computacional € possivel distinguir

trés tarefas principais:

1. Classificacdo de Imagens: Consiste em atribuir uma categoria semantica a
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uma imagem que contém, em geral, um unico objeto. O objetivo é prever a qual

classe o objeto pertence.

2. Deteccao de Objetos: Trata-se de uma generalizagcao do problema de classi-
ficacdo. Envolve tanto a identificacdo quanto a localizacao de multiplos objetos
em uma imagem, utilizando caixas delimitadoras (bounding boxes) para circun-

dar cada objeto detectado e atribuir-lhe uma classe.

3. Segmentacao de Objetos: Busca atribuir a cada pixel da imagem um rétulo de
categoria, permitindo distinguir precisamente os contornos dos objetos. A seg-
mentagdo compreende tanto o particionamento quanto a associagdo semantica

dos segmentos a classes conhecidas.

De modo geral, como destacado por Theodoridis (2015), o objetivo da classificacao
€ associar um padrao desconhecido a uma dentre vérias classes previamente estabe-
lecidas. Abraham et al. (2025) definem a classificacdo de imagens como o processo
de atribuir um rétulo a uma imagem de entrada com base em seu conteudo.

Com o avanco das pesquisas, a classificacdo de imagens passou a ser ampla-
mente aplicada em diversos dominios, como educagao, seguranga, saude, comércio
e agricultura. Alguns exemplos de aplicacao incluem: reconhecimento de caligrafia,
deteccao facial, analise de cenas, visdo computacional para veiculos auténomos, re-
conhecimento de gestos manuais e identificacdo de doencas (RAWAT; WANG, 2017).

Pardede et al. (2020) afirmam que os métodos de classificagdo podem ser organi-
zados segundo sua profundidade em duas categorias principais: arquiteturas rasas e
arquiteturas profundas. As arquiteturas rasas abrangem técnicas tradicionais de ML,

como:
» Maquinas de Vetores de Suporte (SVM) (BOSER et al., 1992);
« Classificador Bayes Naive (FRIEDMAN et al., 1997);
« K-Vizinhos Mais Proximos (k-NN) (FIx, 1985).

Esses métodos sao ilustrados por Soofi e Awan (2017) na Fig. 7. Ja as arquitetu-
ras profundas baseiam-se principalmente em redes neurais convolucionais (do inglés

CNNs), que serdo abordadas nas seg¢des seguintes.
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Figura 7 — Técnicas de classificagdo de aprendizagem supervisionada. Fonte: Soofi e Awan
(2017).

2.3.1 Redes Neurais e Aprendizagem Profunda

Inicialmente apresentamos as definicoes de IA e ML. Sze et al. (2017) aprofundam
essa discussao, identificando um subcampo inspirado no funcionamento do cérebro:
em especial, as redes neurais artificiais (RNAs). A Fig. 8 ilustra a posicao das RNAs e

do Aprendizado Profundo (do inglés DL) dentro da IA.

Artificial Intelligence

Machine Learning

Brain-Inspired

Neural
Networks

Figura 8 — Relacao entre Deep Learning e Inteligéncia Artificial. Fonte: Sze et al. (2017).

Como o préprio nome indica, as redes neurais artificiais foram inspiradas no funcio-
namento do sistema nervoso biolégico. Nos sistemas naturais, os neurénios conectam-
se por meio de ligacdes funcionais chamadas sinapses, que podem ser ativadas ou

inibidas. Essas conexdes sao responsaveis pela mediacao das informacgdes entre os
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neurdnios, organizados de maneira hierarquica, conforme descrito por Theodoridis
(2015).

Foi o trabalho de McCulloch e Pitts (1943) que primeiro desenvolveu um modelo
computacional para um neurénio. Posteriormente, Rosenblatt (1958) construiu uma
maquina de aprendizado baseada no modelo de neurdnio que aprende a partir de
um conjunto de dados de treinamento. Essa maquina € chamada de perceptron e é
o ponto de partida para redes neurais artificiais. De acordo com Theodoridis (2015),
redes neurais sao maquinas de aprendizado compostas por um grande numero de
neurdnios conectados em camadas. A Fig. 9 exemplifica um sistema de rede neural.

Neurons
(activations)

output layer
input layer
hidden layer

Synapses
(weights)

Figura 9 — Sistema de Rede Neural. Fonte: Sze et al. (2017).

Um Perceptron Multicamadas (do inglés MLP) € uma rede neural simples com-
posta por mais de uma camada de perceptrons. Os neurbnios na camada de entrada
recebem os valores de entrada e os propagam para a camada intermediaria, ou “ca-
mada oculta” da rede. Cada valor é associado a um “peso”, e a computacao de cada
neurdnio envolve uma soma ponderada dos valores de entrada. A rede propaga esses
valores ponderados pelas camadas ocultas até a camada de saida, e a camada de
saida apresentara as saidas da rede ao usuario (SZE et al., 2017).

Por muitos anos, modelos de redes neurais rasas com poucos estagios foram a
principal escolha para computacao inspirada no cérebro. No entanto, no inicio da dé-
cada de 1990, redes neurais profundas (compostas por muitas camadas) tornaram-se
um objeto de pesquisa amplamente explorado (SCHMIDHUBER, 2015). Varios estudos
definem DL como a area dentro das redes neurais onde hd mais de trés camadas
(mais de uma camada oculta). O numero de camadas em uma Rede Neural Profunda

(do inglés DNN) é geralmente entre 5 e 1000, de acordo com Sze et al. (2017). O
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processo de aprendizagem em uma DNN, também chamado de treinamento, envolve
a determinacao do valor dos pesos na rede. A inferéncia executa o modelo de rede
com fatores de peso fornecidos.

Em uma rede neural multicamadas feed-forward, cada né em uma camada se co-
necta a todos os outros nds na camada vizinha (SVOZIL et al.,, 1997). Os valores de
entrada se propagam pelas camadas e os neurbnios se conectam entre si por meio
de pesos. Cada neurdnio recebe informacdes dos neurbnios precedentes e produz
uma saida passando a soma ponderada desses sinais por meio de uma fungéo de ati-
vacao (SAzZLI, 2006). O nome rede feed-forward indica que a informagéo flui da camada
de entrada para a camada de saida (THEODORIDIS, 2015).

O processo de otimizacao usado no treinamento de redes é chamado de “gradiente
descendente”. Nesse processo, a derivada parcial da perda relacionada a cada peso
determina o valor do peso atualizado, conforme explicado por Theodoridis (2015). O
processo é repetido a cada iteracao para reduzir a perda geral. O algoritmo usa retro-
propagacao para calcular as derivadas parciais dos gradientes, ou seja, os valores de
peso sdo passados de volta pela rede para calcular a funcdo de perda dependente do
peso. A diferenca entre a saida de rede real e a desejada define a perda. Portanto, esta
ultima deve estar disponivel para o treinamento da rede, implicando em uma técnica
de aprendizado supervisionado (SAZLI, 2006). Uma série de métodos como, por exem-
plo, lote, aprendizado supervisionado, aprendizado por reforgo e ajuste fino, melhoram
o desempenho e a eficiéncia do treinamento.

De acordo com Svozil et al. (1997), uma rede neural multicamadas feed-forward
pode operar em dois modos: treinamento e predicdo. O processo de treinamento
ajusta os fatores de peso a cada iteracado para reduzir o erro (perda), partindo de
valores arbitrarios iniciais. Cada iteracao é chamada de época e, geralmente, varias
épocas sao necessarias para concluir o treinamento. Os pesos convergirdo para um
conjunto de valores considerado o 6timo local a medida que o processo iterativo con-
tinua.

Durante a predicdo, o modelo recebe uma imagem como entrada e gera um vetor
de pontuacdes, uma para cada classe. O conteudo do vetor indica a probabilidade
do objeto pertencer a essa classe. Normalmente, a pontuagdo mais alta representa
a classe mais provavel (SZE et al., 2017). Além disso, podemos descrever a perda

como a lacuna entre as pontuacgdes ideais corretas e as pontuacdes computadas pela
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DNN com base em seus pesos atuais. Portanto, o objetivo do treinamento da DNN é
determinar os fatores de peso que maximizam a pontuacao correta da classe ou que
minimizam a perda média em um conjunto de treinamento extenso. O erro resultante
€ uma estimativa da qualidade da predicao da rede treinada (SVOZIL et al., 1997).

De acordo com Voulodimos et al. (2018), na ultima década, houve uma série de
desenvolvimentos em arquiteturas profundas e algoritmos de DL. Entre os fatores que
contribuiram para essas melhorias estd o surgimento de grandes conjuntos de da-
dos disponiveis publicamente, potencializados pela computacdo de Unidade de Pro-
cessamento Grafico (do inglés GPU). Além disso, novas técnicas de regularizacao e
estruturas poderosas aceleraram a revolu¢ao do DL.

Atualmente, algumas das aplicagdes que utilizam DL incluem assisténcia médica,
processamento de dados visuais, analise de redes sociais e processamento de audio e
fala (HASAN et al., 2020). Além disso, as técnicas de DL alcangam bom desempenho em
varios problemas de visdo computacional, como deteccao de objetos, rastreamento
de movimento, reconhecimento de ac¢des, estimativa de pose humana e segmentacao
semantica, como afirmam Voulodimos et al. (2018). Um dos tipos mais relevantes de
modelos de DL para aplicagbes de visdo computacional e imagem sao as CNNs, as

quais nos voltamos na se¢ao seguinte.

2.3.2 Redes Neurais Convolucionais

As aplicacées em classificacdo de imagens e deteccdo de objetos aumentaram
com o desenvolvimento e o aprimoramento de algoritmos de DL. De acordo com
Pathak et al. (2018), métodos de deteccao de objetos usando técnicas de DL ba-
seadas em CNN tém sido extensivamente aplicados. Esse tipo de rede neural tem
bom desempenho ao processar dados que vém na forma de multiplas matrizes, como
muitas modalidades de dados de midia sdo, conforme descrito por LeCun et al. (2015).

Na década de 1980, estudos em Neurociéncia concluiram que o cérebro tem di-
ferentes regides para tarefas distintas. Portanto, o cérebro tem uma organizagéo hi-
erarquica e localizada. Fukushima (1988) publicou o primeiro modelo computacional
baseado no cérebro humano e suas conectividades locais. No entanto, o termo CNN
entrou em uso apenas na década de 1990, com a pesquisa de LeCun et al. (2015),

que envolveu o uso de uma rede neural para reconhecer caracteres em imagens.
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Uma CNN é um algoritmo de aprendizado profundo que recebe uma imagem como
entrada, atribui pesos aprendiveis a varios objetos nela e pode diferenciar um do ou-
tro. Em uma CNN, apenas a ultima camada é totalmente conectada, enquanto em uma
Rede Neural Artificial (RNA), cada neurdnio € conectado a todos os outros neurénios
(WAGH et al., 2019). As CNNs sdo compostas por multiplas camadas convolucionais.
A rede gera um mapa de caracteristicas em cada camada, consistindo em uma abs-
tracdo de nivel cada vez mais alto dos dados de entrada, que preserva informacdes
essenciais, porém unicas.

Por definicdo, uma CNN usa uma unica rede para aprender diversas caracteristi-
cas de uma determinada imagem e realizar sua classificacao, tarefas anteriormente
realizadas separadamente. A estrutura do sistema visual inspirou essa ideia. Hoje,
as CNNs alcangam resultados muito bons em reconhecimento de padrées, conforme
declarado em Voulodimos et al. (2018).

Os principais componentes de uma CNN sao a camada convolucional, a fungao
de ativagcdo, a camada de subamostragem e a camada totalmente conectada. Uma
arquitetura tipica de CNN consiste em repeticdes de sequéncias de diversas camadas
convolucionais e uma camada de agrupamento, seguidas por uma ou mais camadas
totalmente conectadas (YAMASHITA et al., 2018). Descrevemos esses componentes nas

secdes a seguir.

2.3.2.1 Camada Convolucional

Em uma CNN, cada camada convolucional é responsavel por realizar a extracéo de
caracteristicas e gerar uma abstracao sucessivamente de nivel superior dos dados de
entrada, chamada de “mapa de caracteristicas”. Essa abstracado preserva informacdes
essenciais, porém unicas, sobre a imagem de entrada (SZE et al., 2017). A extracao de
caracteristicas consiste em uma combinagdo de operacdes lineares e nao lineares,
como, por exemplo, funcdes de convolugéo e ativacao (YAMASHITA et al., 2018).

A camada convolucional em uma CNN, ao contrario das redes MLP, preserva a
estrutura espacial da imagem de entrada. De acordo com Yamashita et al. (2018), ela
recebe a entrada como uma matriz tridimensional e, em seguida, convolui um filtro
tridimensional (também chamado de kernel) com a imagem (chamado de tensor). O

filtro desliza sobre a imagem espacialmente, computando produtos por elemento. A
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operacao realizada pelo filtro em cada posi¢cdo € uma convolucdo matricial entre a
imagem de entrada e o filtro e, como saida, produz um mapa de ativacdo composto
pelas caracteristicas da imagem. A Fig. 10 mostra um exemplo ilustrativo de uma

operacao de convolugao.

o T $ 1 Feature map (5x5)

4 2

Input tensor (5x5)

Figura 10 — Uma operacgao de convolucdo. Fonte: Yamashita et al. (2018).

Cada camada convolucional de uma CNN inclui vérios filtros, e cada filtro gerara
um mapa de caracteristicas diferente, aprendendo um atributo especifico da imagem
(YAMASHITA et al., 2018). A profundidade do filtro deve ser equivalente a profundidade
de entrada corrente. Como as CNNs sdo compostas por varias camadas convolucio-
nais, e cada camada inclui varios filtros, muitos mapas de caracteristicas se combinam
para classificar uma imagem (RAWAT; WANG, 2017).

Devido ao seu comportamento, as caracteristicas aprendidas pelo filtro sdo robus-
tas a translagéo, como afirmam LeCun et al. (2015). Em outras palavras, o filtro, que
atua como um detector de padrdes, pode identificar esses padrées em qualquer local
da imagem. Um filtro aprendido se aplica a qualquer local da rede, uma vez que os
parametros sao compartilhados.

Os parametros béasicos de cada camada convolucional sdo o tamanho do filtro, o
namero de filtros, o preenchimento e o0 passo (YAMASHITA et al., 2018). O preenchimento
esta relacionado ao tamanho das bordas da imagem, e o passo é o deslocamento
que o filtro realizara cada vez que deslizar pela imagem. A convolugéo na Fig. 6, por

exemplo, tem preenchimento zero e passo igual a 1. Outro parametro possivel é a taxa
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de expansdo. Uma taxa de expansao superior a um implica um kernel dilatado, o que

faz com que o filtro perca sua caracteristica de localizagao em algum grau.

2.3.2.2 Funcgao de Ativagao

ApGs a camada de convolugao, uma funcao de ativacdo € adicionada a rede para
modular nao linearidades, de acordo com Yamashita et al. (2018). Dependendo da
funcao, ela varrera a rede e permitird que alguns valores sejam replicados. Em outras
palavras, os pixels que ndo sao necessarios serdo desativados e apenas os pixels
essenciais serdo mantidos (WAGH et al., 2019). Entre as fungbes de ativagao mais utili-
zadas, estdo: passo binario, sigmoide, tangente hiperbdlica (TanH), unidades lineares
retificadas (ReLU) e Softmax. Cada uma gerara um mapa de ativacdo de saida dife-

rente. Na Fig.11 a representacao de algumas dessas funcdes de ativacao.

(a) ReLU 10 (b) sigmoid 1.0 PU— - (c) tanh 1.00 ——

:f
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Figura 11 — Funcbes de ativacdo comumente aplicadas a redes neurais: (a) unidade linear re-
tificada (ReLU), (b) sigmdide e (c) tangente hiperbdlica (tanh). Fonte: Yamashita et
al. (2018).

2.3.2.3 Camada de Subamostragem

LeCun et al. (2015) afirma que a camada de subamostragem, também chamada
de camada de pooling ou downsampling, € responsavel por gerar representacdes me-
nores a partir dos mapas de caracteristicas produzidos nas camadas anteriores, para
criar uma representacdo com menor custo computacional e trabalhar contra o overfit-
ting. De acordo com Voulodimos et al. (2018), a camada de pooling reduz as dimen-
sbes espaciais do volume de entrada para a préxima camada convolucional. Além
disso, também diminui o numero de parametros aprendiveis (YAMASHITA et al., 2018).
Mesmo que nao afete a dimensé&o de profundidade do volume, leva a uma certa perda

de informacao (VOULODIMOS et al., 2018). No entanto, outra caracteristica desta ca-
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mada é que ela reduz a sensibilidade a pequenas distorcoes na imagem. As principais

estratégias utilizadas para subamostragem séo:

« Max Pooling: Replica o valor maximo de um grupo;

 Average Pooling: Gera o valor médio de um grupo.

A Fig. 12 mostra um exemplo de uma operagédo de agrupamento maximo com um

tamanho de filtro de 2 x 2, sem preenchimento de borda e um passo de 2.
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Figura 12 — Uma operacao de Max pooling. Fonte: Yamashita et al. (2018).

2.3.2.4 Camada Densa

A camada de saida de uma CNN é uma camada basica de rede neural totalmente
conectada, onde todos os neurénios estdo totalmente conectados a todos os neur6-
nios da camada anterior (WAGH et al., 2019). Conforme declarado por Voulodimos et al.
(2018), esse tipo de camada realiza o raciocinio de alto nivel na rede neural. A camada
de saida converte mapas de caracteristicas bidimensionais em vetores unidimensio-
nais. Esses vetores de caracteristicas constituem o resultado direto da classificacdo ou
permitem processamento posterior. A ideia principal dessa camada € a mesma usada
em um MLP. Ela compreende um classificador e uma unidade de computacéo para
calcular a fungéo de perda, atuando como uma camada de saida (Cul, 2018). Em uma
visdo geral, uma CNN combina todos esses componentes para otimizar o processa-
mento e a classificagcdo de imagens (LECUN et al., 2015). Cada camada pode aparecer
varias vezes e pode ser combinada de muitas maneiras diferentes, dependendo da
aplicacdo. Portanto, existe uma arquitetura especifica para cada tarefa, permitindo a

extracdo e a classificagdo de caracteristicas. O treinamento da CNN determina os
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pesos das camadas totalmente conectadas, os vieses das funcdes de ativagdo e os

filtros das camadas convolucionais.

2.3.3 Treinamento de uma CNN

Conforme mencionado em 2.3.2, o treinamento de uma CNN é o processo que
determina alguns valores e parametros envolvidos na rede neural, a saber, os filtros
das camadas convolucionais , os vieses (bias) da funcédo de ativacao e os pesos das
camadas totalmente conectadas. O aprendizado desses valores ocorre por meio de
um processo que envolve multiplas repeticdes de toda a sequéncia CNN e o célculo
da perda ap6s cada uma delas. A perda é propagada da ultima para a camada ini-
cial (razdo pela qual é chamada de retropropagacao), e 0s pesos e parametros sao
ajustados dependendo do valor da perda a fim de minimiza-la (YAMASHITA et al., 2018).

Atualmente, existem varios algoritmos para otimizar esse treinamento. Um dos
mais conhecidos e utilizados é o Mini-Batch Gradient Descent, descrito em Li et al.
(2014). Os valores iniciais dos parametros a serem aprendidos sao determinados ale-
atoriamente. Primeiro, ele seleciona N amostras de dados (neste caso, N imagens),
onde N corresponde ao tamanho do lote associado. Em seguida, o minilote € propa-
gado pela CNN para calcular a perda de treinamento. Os gradientes sédo calculados na
proxima etapa por meio de retropropagacao pela rede. Finalmente, os parametros sao
atualizados usando os gradientes. O processo se repete para todos os minilotes e, em
seguida, todo o processo € repetido por um determinado numero de vezes (chamados
de épocas), ou até que a perda atinja um valor minimo, indicando que a CNN atingiu
um bom desempenho.

Diferentes algoritmos de otimizagédo possiveis podem substituir o Gradiente Des-
cendente Estocastico (do inglés SGD) frequentemente usado. Alguns exemplos séo:
SGD usando também o Momentum (outro hiperparametro da CNN), RMSProp ou
Adam. A escolha do algoritmo depende da aplicacéao.

A Fig. 13 representa o fluxo completo de treinamento de uma CNN basica, con-
forme descrito em Yamashita et al. (2018). A imagem de entrada passa inicialmente
por varios blocos, cada um composto por uma sequéncia de camadas convolucionais
e fungbes de ativagdo (neste caso, representadas pela fungcdo RelLU), seguidos por

uma camada de agrupamento maximo. Em seguida, os mapas de caracteristicas ge-
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Figura 13 — Treinamento de uma CNN. Fonte: Yamashita et al. (2018).
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rados passam por uma seérie de camadas totalmente conectadas, gerando a saida da
rede, ou seja, a previsdo. Essa previsao €, por sua vez, comparada com o valor ver-
dadeiro para esse dado de entrada, e a perda calculada é retropropagada pela rede
para atualizar os pesos e os kernels de convolugéo. A ordem e o numero de camadas
variam, dependendo da arquitetura da CNN escolhida.

O primeiro passo no processo de treinamento é o pré-processamento dos dados.
Existem varias maneiras de pré-processar os dados de entrada antes do processo
de treinamento. Uma estratégia para oferecer maior flexibilidade ao modelo e torna-lo
menos sensivel a mudancgas nos pesos € normaliza-lo, conforme expresso por Patro
e Sahu (2015). Essa etapa garante que cada parametro de entrada tenha uma dis-
tribuicdo semelhante, o que permite que o algoritmo trabalhe mais na regido central
dos dados do espago N-dimensional. Aléem disso, os dados centralizados simplificam
a representacao dessas informagdes e minimizam o impacto na borda de separacao.

A préxima etapa, de posse do conjunto de dados pré-processado, o divide em sub-
conjuntos, cada um com um papel diferente no processo de treinamento da CNN. De
acordo com Yamashita et al. (2018), normalmente, os dados disponiveis sao divididos

em trés conjuntos:

* O conjunto de treinamento é necessario para treinar a rede. A propagacao direta

calcula a perda e a propagacao reversa atualiza os parametros aprendiveis;

* O conjunto de validagao é necessario para avaliar o modelo durante o processo

de treinamento e ajustar os hiperparametros;
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» O conjunto de teste permite avaliar o desempenho do modelo final apés o trei-

namento.

A inicializacdo dos pesos (inclusive bias) associados a cada neurdnio na rede,
conforme descrito em 2.3.2, segue a preparacao dos dados para treinamento. Con-
forme descrito por Narkhede et al. (2022), existem duas estratégias possiveis para
esse processo: realizar a inicializagdo com novos pesos ou, por meio da técnica de
aprendizado por transferéncia, usar os valores de peso de um modelo pré-treinado.
O primeiro tipo de inicializacdo pode gerar valores de peso aleatérios, realizar uma
inicializagao orientada a dados ou uma hibrida, que combina os dois métodos. A inici-
alizacao usando pesos pré-treinados melhora a generalizacao ao aprender caracteris-
ticas de qualidade dos dados (ERHAN et al., 2010). A ideia é que, a partir de um modelo
treinado em um banco de dados mais genérico, por exemplo, ImageNet (DENG et al.,
2009), possamos usar seus pesos de diferentes maneiras, dependendo do tamanho
do conjunto de dados. As possibilidades incluem treinar (i) o modelo inteiro (camadas
convolucionais e totalmente conectadas), (ii) algumas camadas convolucionais (dei-
xando outras congeladas) ou (iii) as camadas totalmente conectadas congelando a
base convolucional.

Em seguida, o modelo de rede neural usa o algoritmo de retropropagacao, con-
forme ja mencionado. De acordo com Yamashita et al. (2018), o principal objetivo
neste ponto € encontrar kernels nas camadas de convolugéo e pesos nas camadas
totalmente conectadas, que minimizem as diferencas entre as previsdes de saida e 0s
rotulos reais fornecidos em um conjunto de dados de treinamento. Valores especifi-
cos dos kernels, pesos e bias determinam o desempenho do modelo. A propagacgao
direta gera uma perda em um conjunto de dados de treinamento, e um algoritmo de
otimizacao atualiza os parametros aprendiveis de acordo com o valor da perda. Para
classificacdes binarias, uma das funcdes de perda mais utilizadas é a perda de en-
tropia cruzada binaria (RUBY et al., 2020), uma classe particular de perda de entropia
cruzada onde os dois alvos de predicdo sao 0 e 1. A funcédo de perda mais comum
em problemas de classificagdo multiclasse € a perda de entropia cruzada categérica
(descrita em Koidl (2013)), que mede a dissimilaridade entre a distribuicdo de rétulos
verdadeira e a prevista.

Conforme expresso por Rawat e Wang (2017), um problema comum ao realizar a
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classificacao de imagens é o overfitting (sobreajuste), o que significa que o modelo
atinge um bom desempenho no conjunto de treinamento, enquanto, um mau desem-
penho diante de um conjunto de teste. O overfitting implica que o modelo néo apren-
deu a capacidade de generalizar em dados nao vistos. Uma técnica para reconhecer
o overfitting € monitorar a perda e uma métrica de avaliagdo nos conjuntos de treina-
mento e validacao (YAMASHITA et al., 2018). Esse roteiro verificara se o0 modelo tem um
desempenho muito bom no conjunto de treinamento em comparag¢do com o conjunto
de validacao, indicando que ocorreu overfitting. Algumas estratégias ajudam a miti-
gar esse problema. Uma das mais comuns € realizar o aumento de dados, conforme
afirmado por Krizhevsky et al. (2012). Essa abordagem amplia artificialmente o con-
junto de dados usando transformagdes que preservam rétulos. Essas transformacoes
incluem translacdes de imagens e reflexdes horizontais ou alteragdes de intensidade
dos canais RGB nas imagens de treinamento. Uma outra estratégia para prevenir over-
fitting é o dropout, proposta por Srivastava et al. (2014), uma técnica que em cada uma
das épocas (e em cada lote de treinamento) seleciona aleatoriamente um percentual
de neurbnios e os desativa, para que nao participem da propagacao para frente ou
para trds durante o processo de treinamento de uma rede neural. Isso ajuda a garantir
que a rede seja robusta e redundante, genérica o suficiente para que nao dependa de

nenhuma area especifica para obter respostas.

2.3.4 CNNs e Classificacao de Imagens

Desde o inicio dos anos 2000, pesquisadores tém aplicado CNNs com sucesso
para a deteccado, segmentacao e reconhecimento de objetos e regides em imagens
(LECUN et al., 2015). Algumas das tarefas mais comuns incluem reconhecimento de
sinais de transito, segmentacéao de imagens bioldgicas e deteccdo de rostos, pedes-
tres e corpos humanos em imagens naturais. No entanto, foi a partir da competicao
ImageNet em 2012 (ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
2012) que o uso de CNNs cresceu exponencialmente. Conjunto de treinamento pa-
drdo composto por milhares de imagens que combinados com GPUs eficientes e com
o desenvolvimento de novas abordagens causaram uma revolugdo na visao compu-
tacional. Atualmente, a maioria dos trabalhos e estudos que usam CNNs para classi-

ficacdo de imagens aplicam a técnica de aprendizado por transferéncia, usando mo-
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delos pré-treinados sobre o conjunto de dados ImageNet. Entre as arquiteturas mais
famosas, podemos citar AlexNet (KRIZHEVSKY et al., 2012), GooglLeNet (SZEGEDY et
al., 2015), MobileNet (HOWARD et al., 2017), VGG-Net (SIMONYAN; ZISSERMAN, 2014) e
Inception-V3 (SZEGEDY et al., 2015). No entanto, como este trabalho utiliza a arquitetura

MobileNet, a descreveremos com mais detalhes na sec¢ao seguinte.

2.3.4.1 Arquitetura MobileNet

A arquitetura MobileNet, proposta inicialmente por Howard et al. (2017), foi proje-
tada para oferecer arquiteturas CNN leves e eficientes para aplicacdes de visdo em
dispositivos mdveis, ou seja, considerando restricbes e caracteristicas de hardware
(como laténcia, consumo de energia ou uso de memoria). A MobileNetV1 introduziu
as depthwise separable convolutions para reduzir drasticamente o nimero de para-
metros e operacdes em CNNs (HOWARD et al., 2017; MOBILENET, 2024), isso quando
comparado com outros modelos de CNN obtidos até entdo. A partir dessa primeira
versao, as demais versdes trouxeram aprimoramentos com énfase na reducao ainda
maior do numero de parametros da CNN, e na elevagao de sua acurécia. Atualmente,
em sua quarta versao, a MobileNetV4 apresentada por Qin et al. (2024), introduz ainda
mais inovagbes como o Universal Inverted Bottleneck (UIB), composto pelo Inverted
Bottleneck, ConvNeXt, Feed Forward Networks e uma variante Extra Depthwise, além
do bloco de atencao Mobile MQA otimizado para aceleradores moéveis, e um pipe-
line de NAS consciente de hardware que produz modelos quase Pareto-6timos em
CPUs, DSPs, GPUs, dentre outros. Comparado ao MobileNetV1, que emprega apenas
depthwise separable convolutions com hiperparametros « e p para ajustar o trade-off
entre precisao e eficiéncia, o MobileNetV4 logra ganhos significativos de desempenho
e reducéao de laténcia, mantendo ou diminuindo o custo computacional e o nimero de
parametros em dispositivos moveis.

A Fig. 14 exemplifica a arquitetura da MobileNet em sua primeira versao.

2.3.5 Meétricas de Avaliacao

Experimentos de classificacao incluem diversas métricas de avaliacdo para anali-

sar o desempenho da predicao do modelo. Segundo Hossin e Sulaiman (2015), a mé-
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Figura 14 — Arquitetura geral da MobileNetV1 com destaque as convolugdes separaveis em
profundidade (DS). Fonte: Phiphiphatphaisit e Surinta (2020).

trica de avaliagdo pode ser descrita como a ferramenta de mensuragédo que mede o
desempenho do classificador. Cada métrica diferente avalia uma caracteristica distinta
do classificador, mas séo calculadas com base nos elementos da matriz de confusao.

Esta segéo descreve sua definicao geral.

2.3.5.1 Matriz de Confusao

A matriz de confusao exibe o nUmero de amostras de teste previstas como cer-
tas e erradas. Em um exemplo de classificacdo binaria (duas classes), ela pode ser

representada pelo quadro 2 e é composta pelos seguintes elementos:

Verdadeiros Positivos (TP): Numero de objetos classificados positivamente e que

realmente pertencem a classe positiva.

Verdadeiros Negativos (TN): Numero de objetos classificados negativamente e que

realmente pertencem a classe negativa.
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Falsos Positivos (FP): Numero de objetos classificados positivamente, mas que na

realidade pertencem a classe negativa.

Falsos Negativos (FN): Numero de objetos classificados negativamente, mas que na

realidade pertencem a classe positiva.

Quadro 2 — Matriz de confusao para classificagéo binaria.

Actual Positive Class | Actual Negative Class
Predicted Positive Class True positive (ip) False negative (fn)
Predicted Negative Class False positive (fp) True negative (tn)

Diversas métricas sdo derivadas das componentes da matriz de confusao para
analisar o desempenho do modelo. Aqui, supondo uma hipotética feature do SPheRe,
regar apenas quando tiver certeza de que é necessario regar, e tolera deixar de regar
em ocasiées em que poderia ter regado, portanto, a énfase seria na métrica Precisao

de Classe Positiva.

2.3.5.2 Acuracia

A acuracia é uma medida de desempenho que indica a propor¢ao de classificagées
corretas em relagao ao total de exemplos avaliados. Matematicamente, define-se pela
equacéao (2.1):

TP+TN

Acuracia = 2.1
curacia = s T TN + FP 1+ FN (1)

A acuracia varia entre 0 e 1 (ou 0 % a 100 %), sendo 1 correspondente a classifi-

cacdes perfeitamente corretas.

2.3.5.3 Precisao para Classe Positiva

Esta métrica mede a proporgao de predicdes positivas corretas em relacéo ao total

de predicdes feitas como positivas. E definida pela equagéo (2.2):

TP

TP+ FP (2:2)
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A precisao variade 0 a1 (ou 0 % a 100 %), com valor mais alto indicando menor
taxa de falsos positivos. Ou seja, o termo FP no denominador de (2.2) penaliza os

resultados falso positivos do teste.

2.3.5.4 Precisao para Classe Negativa

Esta métrica mede a proporcao de predicdes negativas corretas em relacdo ao

total de predicdes feitas como negativas. E definida pela equacdo (2.3):

TN
TN+ FN

A precisdo variade 0 a 1 (ou 0 % a 100 %), com valor mais alto indicando menor

taxa de falsos negativos.

2.3.5.5 Recall

A métrica também é chamada de "Taxa de Verdadeiros Positivos (TPR)". Ela mede
qual proporcao de verdadeiros positivos é classificada corretamente. Em outras pa-
lavras, € uma meta de otimizagdo apropriada quando queremos identificar todos os
positivos possiveis. E Gtil quando ndo queremos perder nenhum elemento positivo ou
qguando o custo de falsos negativos é alto. A Equagéao (2.4) calcula o recall:

TP

= — 2.4
Recall TP L FN (2.4)

O valor de recall varia entre 0 e 1 (ou 0 % a 100 %), sendo 1 correspondente a

identificacdo de todos os exemplos positivos sem falsos negativos.

2.3.5.6 F1-Score

O F;-score compila a média harménica de Preciséo e Recall, quantificando o trade-
off mutuo. Um bom valor do F1-Score significa que o classificador identifica correta-
mente ameacas reais, mas nao € perturbado por "alarmes falsos". Ele é calculado

usando a equagao (2.5):
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Precisao x Recall
F, =2 2.
! % Precisao + Recall (2.5)

O F;-score variade 0 a 1 (ou 0 % a 100 %), atingindo 1 quando precisao e recall
sdo ambos perfeitos.
Finalizando a fundamentacao tedrica, a seguir, uma visdao geral sobre pesquisas

na area da agricultura de precisao.
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3 REVISAO DA LITERATURA: AGRICULTURA DE PRECISAO

Este capitulo descreve estudos recentes e abrangentes no campo da agricultura
de precisao, enquanto a secao 3.4 exibe solucdes, comerciais e de codigo aberto,

atualmente disponiveis.

3.1 A TELEMETRIA NA AGRICULTURA

O estudo de Suciu et al. (2019) aponta que as mudancas climaticas e o crescimento
populacional tém imposto desafios significativos a agricultura. Entre esses desafios,
0s autores destacam o racionamento hidrico na irrigacdo, tema que vem ganhando
relevancia nas pesquisas recentes devido a sua importancia para a agricultura de
precisdo. O trabalho ressalta ainda que a qualidade da irrigagdo atua como um indica-
dor de desempenho, variando conforme as necessidades especificas de cada cultura.
Além disso, o estudo sublinha que a agricultura irrigada ocupa 20% das terras cul-
tivadas globalmente, utilizando métodos como irrigagdo por gotejamento, vazamento
superficial e aspersao.

Diante desse cenario, os autores defendem a adocéo de sistemas de automacéao
e telemetria, fornecendo dados continuos relevantes que permitem otimizar o uso da
agua e dos insumos agricolas, contribuindo diretamente para praticas mais sustenta-
veis. Nesse contexto, Alhasnawi et al. (2020) reforcam que a integracdo de sensores
para coleta de dados e processamento inteligente de informagdes esta criando uma
conexao eficiente entre os ambientes cibernético e fisico, promovendo decisées mais
informadas e sustentaveis.

Além do impacto técnico e produtivo, essas tecnologias estdo alinhadas aos Obje-
tivos de Desenvolvimento Sustentavel (ODS) da ONU. Por exemplo, 0 ODS 2 — “Fome
Zero e Agricultura Sustentavel” — é apoiado ao se aumentar a produtividade agricola
de forma eficiente e sustentavel, garantindo seguranca alimentar e nutricado adequada.
O ODS 12 — “Consumo e Producao Sustentaveis” — € atendido pelo uso racional de
recursos hidricos e insumos, promovendo padrdes de produgdo mais responsaveis.
Por fim, o ODS 11 — “Cidades e Comunidades Sustentaveis” — se beneficia indireta-

mente a tornar o fornecimento de alimentos mais resiliente e sustentavel, contribuindo
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para a estabilidade das comunidades rurais e urbanas.

Essa perspectiva é ampliada por Morchid et al. (2024)), que destacam como tais
abordagens néo sé elevam a produtividade agricola, mas também promovem a segu-
ranca hidrica e alimentar em escala global, reforcando a importancia de tecnologias
inteligentes para um desenvolvimento agricola sustentavel e alinhado as metas glo-

bais.

3.2 O PROTOCOLO HTTP APLICADO NA AGRICULTURA

Christensen e Fonseca (2023) destacam o ano de 2011 como marco na introdu-
cao e popularizacao do conceito de Industria 4.0, inicialmente aplicado a manufatura.
Com o tempo, esse conceito expandiu-se para outros setores, como a agricultura, re-
sultando na Agricultura de Precisdo. Tal abordagem enfatiza que o monitoramento e
controle precisos otimizam o manejo agricola.

O estudo apresenta a Agricultura 4.0 como uma evolugdo que substitui os mé-
todos tradicionais por solugdes digitais e tecnoldégicas — como computacdo de alto
desempenho, rede de sensores, comunicacao M2M (Machine-to-Machine), conecti-
vidade movel, computacdo em nuvem e analise de grandes volumes de dados —,
apoiando decisdes de manejo e possibilitando a redugdo do consumo de agua, fertili-
zantes e pesticidas por meio de aplicagcdes mais precisas em areas especificas.

Além disso, o trabalho integra loT e Agricultura 4.0 para monitorar plantacdes de
forma eficiente e sustentavel, enviando dados relevantes para um banco de dados em
nuvem via protocolo HTTP(Hypertext Transfer Protocol).

Bayilmig et al. (2022) apresentam o HTTP como o protocolo mais utilizado em
sistemas loT, inclusive na area da agricultura. Outros estudos, Percebes et al. (2023)
e Anass et al. (2022), também utilizam o protocolo HTTP para integrar seus sistemas
a nuvem, permitindo o controle remoto de atuadores, visualizagdo, armazenamento e

download das informagdes, abordagem bastante similar a este presente trabalho.

3.3 VISAO COMPUTACIONAL APLICADA NA AGRICULTURA

A eficiéncia e a produtividade da agricultura dependem significativamente da su-

pervisdo humana continua, o que exige tempo e recursos. O avanco das tecnologias
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digitais e a crescente adocao de sistemas ciberfisicos na agricultura tém proporcio-
nado novas oportunidades para a automacéao e otimizacdo dos processos produtivos,
conforme discutido no estudo de Dutta et al. (2025).

A aplicacao da visdo computacional na agricultura possibilita a automacgao de tare-
fas repetitivas, reduzindo o tempo necessario para execug¢ao e minimizando a depen-
déncia da supervisdo humana. Dutta et al. (2025) enfatizam que a visdo computacional
tem se tornado uma ferramenta indispensavel para o monitoramento agricola, favore-
cendo a substituicdo da percepgao visual humana por sistemas automatizados mais
rapidos e precisos. Além disso, o uso de visdo de maquina na agricultura tem cres-
cido em resposta a necessidade de métodos ageis e confidveis para o rastreamento
da colheita. A adocao de visdo computacional viabiliza a andlise eficaz de grandes
volumes de dados, mesmo em cenarios de alta complexidade, permitindo a tomada
de decisdes precisas e instantaneas. Por fim, a pesquisa discute detalhadamente a
implementacao da inteligéncia artificial (IA) na producéo agricola, especialmente no
cultivo de frutas, abordando suas aplicagdes e perspectivas. A incorporacao de sis-
temas baseados em IA nos processos produtivos representa um avango significativo
para a agricultura moderna, promovendo maior eficiéncia operacional, precisao e sus-
tentabilidade no setor.

Islam et al. (2025) destacam que a precisdo na identificacdo de variedades espe-
cificas de um determinado tipo de cereal sob seu estudo, € um processo fundamental
tanto para prevenir fraudes quanto para assegurar a qualidade do produto. Nesse con-
texto, os autores também reforcam a importancia da visdo computacional na producéo,
com o objetivo de tornar o processo de identificacdo mais agil e confiavel.

No ambito da deteccao de doencgas, Hossain et al. (2025) afirmam que as técnicas
convencionais dependem significativamente da observagédo manual e da avaliagéo de
especialistas, e que sao frequentemente demoradas, trabalhosas e suscetiveis a dis-
crepancias. Os autores enfatizam que tais limitagdes tornam imprescindivel empregar
tecnologias de deteccdo de doencas que sejam automatizadas, escalaveis, confia-
veis e instantaneas. Ainda afirmam que essa abordagem sugerida facilita o diagnos-
tico precoce, auxiliando agricultores e agrénomos a executar tratamentos oportunos e
acurados, minimizando, assim, as perdas de safra.

Zamani e Baleghi (2025) também citam a aplicacdo de visdo computacional para

0 controle de ervas daninhas, além de outras possiveis aplicagdes, como reconhe-
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cimento de espécies de plantas, monitoramento continuo do estado das culturas e
colheita robaética de frutas.

Petrovic et al. (2023) expdem a respeito da aplicacdo da visdo computacional na
producdo agricola, afirmando que a industria alimenticia € a que mais contribui para
o setor agricola, e a automacao da triagem de vegetais é imperativo. O principal ob-
jetivo da classificacdo na agricultura é gerar cada vez mais renda. Portanto, a clas-
sificagdo tem um impacto significativo no agronegdécio, gerando mais lucro. Sistemas
inteligentes de classificacado e triagem de culturas desempenham um papel crucial no
aumento da eficiéncia e precisdo na industria agricola. Esses sistemas utilizam tecno-
logias avancadas para automatizar o processo de triagem e classificacdo de culturas
com base em varios parametros, como tamanho, cor, peso e qualidade. Para os agri-
cultores, a triagem e a classificagéo de culturas permite que eles separem os produtos
em categorias com mais precisao. A Fig.15 ilustra a selecao e triagem do tomate com

aplicacao de Visao Computacional.

Figura 15 — Exemplo de triagem e selecao de frutos de tomate por meio de Visdo Computacio-
nal. Fonte: Petrovic et al. (2023)

Esses estudos destacaram a visdo computacional sendo empregada para automa-
tizar tarefas manuais, identificar doencas e pragas, classificar variedades agricolas e
otimizar a producéo.

A secdo seguinte apresenta uma breve descricdo das solucdes atualmente dispo-
niveis no mercado para viabilizar, especificamente, a automagéo de estufas e tendas

de crescimento.
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3.4 SOLUCOES DISPONIVEIS NA AGRICULTURA DE PRECISAO
3.4.1 Solucoes Comerciais

O objetivo primordial da agricultura de precisao € criar um microclima ideal que
maximize a produtividade e a qualidade dos cultivos. Nesse contexto, os principais
parametros monitorados em ambientes fechados — como umidade do solo, umidade
e temperatura do ar, luminosidade e niveis de CO, — devem ser controlados de forma
precisa. Além do monitoramento por meio de sensores, € fundamental a intervengao
automatizada, realizada por atuadores que ajustam essas variaveis ambientais con-
forme a necessidade.

Como exemplo de controlador de temperatura e umidade, destaca-se o Inkbird
ITC-608T, Fig.16, da empresa Inkbird, que mede esses parametros e pode ser con-
figurado para acionar equipamentos de aquecimento, resfriamento, umidificagdo ou

desumidificagcdo do ar.

Figura 16 — InkbirdITC608T. Fonte: Inkbird (2025b).

No ambito da irrigacdo, uma das solucdes € o Inkbird 11IC-800-WIFI, Fig.17, da

mesma empresa, permitindo o agendamento de horarios especificos para a rega.

INKBIRD

Figura 17 — Inkbird 11C-800-WIFI. Fonte: Inkbird (2025a).



58

Em relagédo a ventilagao, o sistema Cloudline T4, Fig. 18, da AC Infinity, consiste
em um ventilador de duto inteligente, projetado para manter a circulagdo de ar em

ambientes fechados.

Figura 18 — CloudlineT4. Fonte: AC Infinity (2025).

Esta solucao possibilita o controle dos niveis de temperatura e umidade, além de
oferecer telemetria para acompanhamento remoto.

Para a gestao de instalacdes horticolas, a empresa Argus Controls disponibiliza o
Argus Titan System, Fig. 19, um sistema que abrange desde o controle ambiental até
fertirrigacao, permitindo o monitoramento e a automagao dos processos por meio de

um computador em rede ou dispositivos moveis.

i

Control everything.

SSS Heating * Cooling Q Lighting
& H,0 ® Fertigation ® Humidity
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(a) Controlador Argus. (b) Monitoramento de estufa.

Figura 19 — Sistema Argus Titan. Fonte: Argus Controls (2025).

Para otimizar o manejo do microclima, torna-se fundamental a inclusdo de paréa-
metros mais sofisticados, tais como a medi¢do do pH e da condutividade elétrica (EC)
do solo, o monitoramento do oxigénio dissolvido na agua, a analise da qualidade es-
pectral da iluminagéo artificial e a deteccdo de pragas e doencas. Essas variaveis
complementam os controles convencionais e possibilitam ajustes precisos que podem
elevar a produtividade e a qualidade dos cultivos.

No que se refere ao monitoramento do pH e da EC, o Bluelab OnePen, Fig.20, da
Bluelab, permite a medicao desses parametros, fornecendo informacdes essenciais

para avaliar a disponibilidade de nutrientes no solo.
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Figura 20 — Bluelab OnePen. Fonte: Bluelab (2025).

Em sistemas hidropénicos, a salude radicular e a prevencao de estresses podem
ser asseguradas com o uso do Dissolved Oxygen Kit, da empresa Atlas Scientific, que
mede o oxigénio dissolvido em solugdes.

Quanto a qualidade da iluminagéo artificial, a andlise do espectro luminoso é crucial
para ajustar a iluminacao de acordo com as necessidades especificas das culturas
em diferentes fases de crescimento. Para isso, o sensor AS7341, Fig.21, da Adafruit,
realiza a avaliacdo da qualidade espectral da luz, contribuindo para a otimizacao da

iluminagéo.
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Figura 21 — AS7341 Adafruit. Fonte: Adafruit (2025).

Por fim, para a deteccéo precoce de pragas e doengas, embora ainda nao exista
um sensor comercial especifico para essa finalidade, a utilizacdo de tecnologias de
visdo computacional se mostra crucial para este fim. Estudos, como o artigo Green
Leaf Disease Detection System for Agriculture Using Raspberry Pi de BABU et al.
(2024), por exemplo, destacam o Raspberry Pi, que, aliado a inteligéncia artificial e
camera, € eficaz na analise de imagens para identificar sinais iniciais de infestacao e
sintomas de doengas nas plantas.

Cada uma dessas solugdes comerciais ilustra a aplicagdo pratica de tecnologias
atuais na automacao de ambientes controlados, contribuindo significativamente na im-
plementacado da agricultura de precisdo em casas de vegetacéo.

Na préxima secao, condensaremos algumas das solugdes open source (também

conhecidas como cdodigo aberto) disponiveis.



60

Figura 22 — Raspberry Pi e M6dulo Camera. Fonte: loT-Store (2025).

3.4.2 Solucoes Open Source

A comunidade tem investido no desenvolvimento de sistemas open source e pro-
jetos DIY (faca-vocé-mesmo) mais acessiveis, preenchendo lacunas deixadas pelas
solucdes comerciais, permitindo uma maior personalizacdo e a integracao de tecnolo-

gias emergentes. Nesse contexto, destacam-se as seguintes iniciativas:

3.4.2.1 Sistemas Baseados em Microcontroladores

Plataformas como Arduino, Raspberry Pi e ESP32 possibilitam a integracéo de di-
versos sensores capazes de medir variaveis essenciais, tais como umidade do solo,
pH, temperatura, luminosidade e oxigénio dissolvido, além de atuadores para o con-
trole da irrigacao e ventilacdo. Essas solugdes, amplamente compartilhadas em féruns
e repositorios open source, permitem que agricultores e pesquisadores customizem os

sistemas de acordo com as necessidades especificas de cada cultivo.

3.4.2.2 FarmBot

O FarmBot, Fig.23 € uma maquina CNC agricola open source, desenvolvida para
automatizar pequenas hortas e cultivos urbanos. Ele integra sensores, atuadores e
um sistema de monitoramento remoto, possibilitando o cultivo automatizado, desde o

plantio até a colheita.
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Figura 23 — FarmBot. Fonte: FarmBot (2025).

3.4.2.3 AgOpenGPS

O projeto AgOpenGPS, Fig.24 é uma solugéo open source que busca a orientagao
autbnoma de maquinas agricolas. Por meio do uso de dados de GPS e sensores,
0 sistema mapeia e direciona opera¢gées no campo, contribuindo para a preciséo na

aplicacao de insumos e para a eficiéncia na colheita.

(b)

Figura 24 — Sistema AgOpenGPS: (a) maquina agricola autdnoma e (b) mapeamento de ope-
rac6es em campo. Fonte: AgOpen Shop (2025).

3.4.2.4 Plataformas loT Colaborativas

Diversas iniciativas desenvolvidas por universidades e comunidades online focam
na integracao de dados de sensores, imagens (através de visao computacional) e pre-
visbes meteoroldgicas utilizando algoritmos de ML. Essas plataformas possibilitam a

criacao de dashboards customizados e sistemas de alerta, que facilitam intervencdes
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rapidas e sdo adaptados as condi¢des especificas de cada cultivo. Exemplos notaveis
incluem o ThingsBoard, ThingSpeak e FarmQOS, os quais viabilizam a coleta, o proces-
samento e a visualizacao de dados essenciais para a tomada de decisao em projetos
colaborativos e académicos.

Em suma, as abordagens colaborativas demonstram o potencial das tecnologias
open source para a agricultura de precisao, permitindo a implementagéao de sistemas
adaptaveis, que atendem as demandas especificas dos produtores onde as solugdes
comerciais se mostram insuficientes.

A seguir, discute-se as pesquisas mais alinhadas com este trabalho.
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4 REVISAO DA LITERATURA: TRABALHOS RELACIONADOS

Neste capitulo, apresentamos os estudos mais relevantes para esta pesquisa, que
foram analisados ao longo do desenvolvimento do SPheRe e desta dissertacdo. Um
namero crescente de pesquisas sobre sensoriamento na agricultura tem se apoiado
em novas tecnologias e nos avangos da visdo computacional. Por fim, o capitulo en-
cerra com um resumo das principais oportunidades de contribuicdo para o avango

dessa area.

4.1 AVANCOS EM TECNOLOGIAS DE SENSORES DE UMIDADE DO SOLO

Yu et al. (2021) em “Review of research progress on soil moisture sensor techno-
logy” apresentam uma analise abrangente dos avancos nos sensores de umidade do
solo ao longo das ultimas décadas, ressaltando a importancia de realizar medicoes
precisas do teor de agua no solo, tanto para o0 manejo da irrigagdo quanto para a
garantia da produtividade das culturas. O estudo, assim como esta dissertacao, con-
textualiza a relevancia da medicdo da umidade do solo, ressaltando os desafios de-
correntes da disponibilidade limitada de agua doce e a necessidade de um uso mais
eficiente deste recurso.

Essa revisdo detalha diversos métodos empregados na medi¢cdo da umidade do
solo. Sao abordadas técnicas convencionais, como o método gravimétrico (ou método
de secagem), e métodos mais avangados, como 0s sensores baseados em tensi6-
metros, sondas de néutrons, transmissdo de raios gama, sensoriamento remoto por
infravermelho e, principalmente, os métodos dielétricos. Dentro desta ultima categoria,
o artigo descreve com énfase os principios do TDR (Time Domain Reflectometry), FDR
(Frequency Domain Reflectometry) e SWR (Standing Wave Ratio), demonstrando as
vantagens e limitacoes de cada técnica em termos de precisao, custo e aplicabilidade.

Além da analise dos métodos de medicao, o estudo discute os fatores que influen-
ciam o desempenho dos sensores de umidade. Sdo considerados fatores intrinsecos,
como o design do sensor, a instalagéo e a calibracdo, bem como fatores ambientais,
como variacoes de temperatura e salinidade do solo. Essas variaveis impactam dire-

tamente a exatiddo e a estabilidade das medicdes, exigindo a adocao de técnicas de
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calibracao especificas para diferentes tipos de solo e condi¢cdes ambientais, a fim de
garantir resultados confiaveis.

Por fim, Yu et al. (2021) apontam tendéncias futuras para o desenvolvimento dos
sensores de umidade do solo, enfatizando a necessidade de sistemas que sejam de
alta precisao, baixo custo, ndo destrutivos e integrados com tecnologias modernas,
como a loT. A integracao desses sensores em sistemas de irrigacao inteligente pode
revolucionar o manejo hidrico na agricultura, permitindo a tomada de decisdes mais
rapidas e fundamentadas. Em sintese, esse estudo estabelece uma base de conhe-
cimento que pode auxiliar tanto pesquisadores quanto profissionais do setor agricola

na selecédo e no aprimoramento de produtos para medi¢cao de umidade do solo.

4.2 ESTIMATIVA DA ABSORCAO DE AGUA DE IRRIGACAO COM RGB

Atanasov (2021) em “Methodology for irrigation water uptake time estimation based
on RGB colorimetric measurements of leaves (a visual-graphical observation)’ propde
uma metodologia peculiar para estimar o tempo de absor¢cao de agua de irrigagao por
plantas de tomate em estufa, utilizando medi¢des colorimétricas em RGB nas folhas.
A abordagem se baseia na observacao e na analise grafica das mudancas na cor das
folhas apds a irrigagéo, assumindo que o clareamento das folhas indica a chegada da
umidade numa secao da planta. Essa hip6tese, que sugere um tempo de 1 hora para
cada 1 metro de altura, é testada experimentalmente sob condicbes controladas.

A pesquisa se apoia em uma série de experimentos realizados ao longo de cinco
dias, nos quais a variedade de tomate hibrido “Amati” foi utilizada devido a sua alta
resisténcia a doencas e caracteristicas morfol6gicas favoraveis. Em cada experimento,
as medicoes RGB foram coletadas imediatamente antes e em diversos intervalos apds
a irrigacao, em diferentes alturas da planta, para mapear com precisdo o tempo de
transporte da agua até a parte superior.

As Fig. 25 e 26 exemplificam imagens de folhas e medigbes com colorimetro du-
rante o experimento dessa pesquisa.

A metodologia empregada combina observag¢des imediatas e mediadas, utilizando
um colorimetro para quantificar as mudancas na tonalidade das folhas. Atanasov
(2021) realiza andlises estatisticas, como testes T de amostras pareadas, para confir-

mar que as variagdes nos valores RGB s&o estatisticamente significativas, garantindo
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a) b) c)
Figura 25 — Exemplos de fotos de folhas examinadas ao longo do tempo: a) Antes da rega, b)

120 min apo6s a rega e ¢) 300 min apds a rega. Cada linha representa a mesma
folha. Fonte: (ATANASOV, 2021).
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Figura 26 — Alteracao dos valores RGB médios no tempo antes e depois da rega. Fonte: (ATA-
NASOV, 2021).
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que o clareamento observado nao decorre do acaso, mas sim da absorcéo efetiva de
agua.

Os resultados indicam que, sob as condi¢des experimentais descritas, a agua da
irrigacao absorvida, atinge o seu primeiro metro de altura na planta em aproximada-
mente 60 minutos, e 80 minutos para atingir 1,3 metros e 90 minutos para 1,6 metros
de altura.

Por fim, o estudo demonstra que a analise de mudancas na cor das folhas via
medicoes RGB pode ser uma ferramenta pratica, nao invasiva e eficiente para moni-
torar a absorcdo de agua em plantas dessa espécie de tomate, contribuindo para a

otimizagcado do manejo da irrigacao.

4.3 VISAO COMPUTACIONAL PARA FENOTIPAGEM DE CARACTERISTICAS DE
PLANTAS

Kolhar e Jagtap (2021) em “Plant trait estimation and classification studies in plant
phenotyping using machine vision — A review” apresentam uma revisdo abrangente
dos métodos de visdo de maquina aplicados a fenotipagem de plantas, enfatizando a
estimativa e classificacao de tragos estruturais e fisiol6gicos. Sao abordadas diversas
técnicas de imagem, incluindo a captura de imagens RGB, hiperespectrais, térmicas
e 3D, que permitem a analise ndo invasiva de caracteristicas como area foliar, conta-
gem e forma de folhas, bem como indicadores fisiolégicos, como conteudo de agua e
eficiéncia fotossintética.

Além disso, Kolhar e Jagtap (2021) destacam a aplicacdo de algoritmos de ML e
deep learning para aprimorar o0 processamento de imagens e a segmentacao de tra-
cos das plantas. Modelos CNNs, algoritmos de clustering e técnicas supervisionadas,
como maquinas de vetor de suporte (do inglés SVM), sdo empregados para extrair
caracteristicas estruturais detalhadas e lidar com desafios como folhas sobrepostas
e variacdes de iluminacédo. Essa abordagem possibilita uma quantificacao precisa e
automatica dos parametros morfolégicos, contribuindo para andlises em larga escala.

Por fim, a revisdo enfatiza que técnicas de visdo de maquina tém revolucionado a
fenotipagem de plantas e que a integracédo de processamento de imagem com algorit-
mos de inteligéncia artificial ndo sé aprimora a identificacao de tracos estruturais, mas

também facilita a avaliagéo de respostas fisioldgicas das plantas a fatores ambientais
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e de manejo, abrindo caminho para avancgos significativos em melhoramento genético

e manejo agricola.

4.4 PREVISAO FENOTIPICA DO STATUS HIDRICO DO SUBSTRATO

Chang et al. (2019) em “A Phenotype-Based Approach for the Substrate Water
Status Forecast of Greenhouse Netted Muskmelon” apresentam uma abordagem ba-
seada em fenotipagem para prever o estado hidrico do substrato em cultivos de meldo
rendilhado (Cucumis melo L. var. reticulatus Naud.) em estufa. Para isso, os autores
utilizam um sistema fenotipico comercial que captura imagens em espectros visivel e
infravermelho, conforme ilustrado na Fig.27. A figura destaca imagens de plantas no
ambito da luz visivel e no espectro do infra-vermelho préximo, permitindo a extragéo
de informagdes de morfologia, de cor e quantidade de agua das plantas em diferentes
estagios de crescimento. Esses aspectos, que incluem desde a area de projecao até
indices de cor e contagem de pixels com intensidade especifica no NIR (Near InfraRed
- Infravermelho Pr6ximo), sdo computados por meio de etapas de pré-processamento
e segmentacao para, em seguida, alimentar um modelo de classificacdo baseado em
algoritmo de random forest. Esse modelo, validado por andlises estatisticas e cruza-
das, demonstra alta acuracia na previsdo do contetdo de agua do substrato, facilitando

a tomada de decisao para irrigacao de precisao.
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Figura 27 — Etapas de processamento de imagens fenotipicas. (a) Imagens dentro do espectro
visivel; (b) Imagens no espectro infravermelho-proximo. Cores diferentes represen-
tam diferentes conteudos de agua nas plantas. Fonte: (CHANG et al., 2019)

Embora o foco principal do estudo seja a previsao do estado hidrico do substrato,
o artigo destaca a aplicacdo de técnicas de visdo de maquina para a extracao au-

tomatizada de tragos fenotipicos. O uso do sistema Scanalyzer 3D e a subsequente
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analise de imagens demonstram como métodos de segmentacéao e extracao de carac-
teristicas — tipicos da visdo computacional — podem ser empregados para determinar
caracteristicas estruturais e fisiolégicas das plantas. Essa integragdo de imagem e ML
exemplifica o potencial da fendmica baseada em visdo de maquina para monitora-
mento em tempo real e para o desenvolvimento de sistemas de irrigacao inteligentes

que respondem dinamicamente as condigdes do cultivo.

4.5 MODELOS DE IMAGENS COM SMARTPHONES PARA ESTIMATIVA DE CLO-
ROFILA

Ozregberoglu e Kahramanoglu (2020) em “Mathematical models for the estimation
of leaf chlorophyll content based on RGB colours of contact imaging with smartphones:
A pomegranate example” desenvolveram um método nao destrutivo e rapido para es-
timar o contetdo de clorofila em folhas de roma utilizando imagens capturadas por
smartphones. As imagens sao obtidas em condicbes controladas dentro de caixas
fechadas, usando fontes de luz LED (com destaque para a luz vermelha, que de-
monstrou melhores correlagdes) para iluminar as folhas. A partir dessas imagens, sao
extraidos os valores de cor RGB e calculados indices de cor (como os indices nor-
malizados e diferencas entre canais), que servem como base para a estimativa da
clorofila.

A analise dos dados envolve regressao linear para relacionar os valores de cor e
os indices de clorofila. O modelo resultou em uma equagao que combina valores dos
canais verde (G) e azul (B). Os resultados demonstram que a metodologia proposta
pode fornecer estimativas precisas de clorofila, contribuindo para 0 monitoramento da

saude das plantas e a gestao sustentavel da nutricdo vegetal.

4.6 ABORDAGENS DE APRENDIZADO PROFUNDO PARA AVALIAGCAO DE CLO-
ROFILA FOLIAR

Barman e Saikia (2024) em “Smartphone Contact Imaging and 1-D CNN for Leaf
Chlorophyll Estimation in Agriculture” apresentam uma metodologia de baixo custo
para estimar o teor de clorofila em folhas utilizando apenas imagens capturadas por

smartphones. O trabalho parte da premissa de que o teor de clorofila € um indica-
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dor importante do estado nutricional e da saude da planta, tradicionalmente medido
por sensores especificos como o SPAD e espectrémetros, que sao caros e pouco
acessiveis para pequenos agricultores. Nesse contexto, os autores propéem o uso de
dispositivos moéveis como alternativa acessivel e pratica para agricultores e pesquisa-
dores.

A pesquisa utilizou aproximadamente 15.000 imagens de folhas de cha capturadas
em contato direto com a cdmera de um smartphone, sob iluminagdo controlada e
com o uso do flash. A partir das imagens foram extraidas 12 caracteristicas de cor,
considerando estatisticas dos canais RGB e HSV. Essas variaveis foram usadas como
entrada em diferentes modelos de predigcéo, incluindo regressao linear, redes neurais
tradicionais e uma rede neural convolucional unidimensional (1-D CNN), escolhida por
sua capacidade de aprender padroes complexos a partir de dados sequenciais.

Os resultados mostraram que a abordagem baseada em 1-D CNN foi a mais efi-
caz, superando os demais métodos testados. O modelo atingiu um coeficiente de re-
gressao em torno de 0,82 e erro médio absoluto (MAE) de aproximadamente 2,96 na
estimativa do teor de clorofila, quando comparado as leituras do sensor SPAD. Os au-
tores concluem que o uso de smartphones aliado a técnicas de visdo computacional
e inteligéncia artificial representa uma alternativa promissora para o monitoramento
nutricional de plantas, democratizando o acesso a tecnologias de agricultura de preci-

sao.

4.7 IMAGENS ESPECTRAIS E RGB COM IA PARA STATUS HIDRICO DE PLANTAS

No estudo “Water status and plant traits of dry bean assessment using integrated
spectral reflectance and RGB image indices with artificial intelligence” , El-baki et al.
(2025) investigam o uso de aprendizado de maquina para monitoramento de plantas
em condi¢oes de estresse hidrico. O estudo parte da necessidade de superar limita-
cbdes de sensores de solo tradicionais, que apresentam cobertura espacial reduzida
e deterioracdo ao longo do tempo, propondo a analise de imagens digitais como al-
ternativa ndo invasiva para avaliar o estado hidrico das plantas. A pesquisa enfatiza o
potencial da visdo computacional para capturar alteragdes fenotipicas sutis e antecipar
sinais de déficit de agua.

A metodologia consistiu na aquisicao de imagens de plantas submetidas a diferen-
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tes niveis de irrigacdo, das quais foram extraidas caracteristicas de cor, forma e tex-
tura. Esses atributos serviram de entrada para modelos de aprendizado de maquina,
incluindo algoritmos de classificagdo e regressao, que foram avaliados em termos de
acuracia e robustez na predi¢cdo do estresse hidrico. Os resultados mostraram que
0s modelos conseguiram diferenciar de forma consistente plantas sob condi¢cdes nor-
mais e sob déficit hidrico, com desempenho superior as técnicas convencionais de
monitoramento baseadas apenas em sensores de solo.

Na concluséo, os autores destacam que o emprego de visdo computacional e
aprendizado de maquina representa um avanco significativo para a agricultura de pre-
cisdo, possibilitando um monitoramento mais abrangente, de baixo custo e com menor
necessidade de manutencao. O estudo sugere que, com a evolugédo de algoritmos e
dispositivos embarcados, sera viavel a implementacao de sistemas inteligentes de ir-
rigacao em tempo real, capazes de reduzir perdas e aumentar a eficiéncia no uso da

agua.

4.8 RESUMO DO CAPITULO

A cor das folhas € a caracteristica mais simples de ser extraida de imagens de
plantas e pode refletir a umidade do solo, como demonstrado para o tomateiro por
Atanasov (2023). Se essa relagao for confirmada em outras culturas, imagens RGB
poderdo atuar como sensores de umidade de baixo custo e ndo invasivos, permitindo
a visdo de maquina identificar as necessidades hidricas das plantas pela coloragao

foliar.
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5 MATERIAIS E METODOS

Este capitulo descreve os materiais e métodos empregados na composi¢cao do
SPheRe, laboratério de fenotipagem inteligente, um sistema concebido para moni-
torar periodicamente a umidade do solo, capturar imagens de plantas e enviar es-
ses dados para a nuvem, além de possibilitar a irrigacdo automatica de acordo com
pré-configuragéo definida pelo usuario-pesquisador. O sistema foi desenvolvido como
uma solucao de baixo custo e automatizada para monitoramento fenotipico, correlaci-
onando dados visuais com condi¢cdes de estresse hidrico.

A abordagem metodolégica adotada foi pratica, iterativa e baseada em prototipa-
gem de hardware com integracdo a nuvem. As etapas seguiram uma sequéncia légica
que incluiu a definicdo da arquitetura, testes e regulagdo de sensores (pseudo cali-
bracdo), montagem da estrutura fisica de cultivo e validagédo funcional dos sensores
e atuadores. Parte desses procedimentos, inicialmente apresentados como resulta-
dos — em especial aqueles relacionados a otimizacdo de parametros do sistema,
como iluminagéo, distancia da camera e uso de referéncias visuais — séo aqui trata-
dos como elementos metodoldgicos, pois dizem respeito ao processo de concepgao e
consolidagédo da abordagem.

Deve-se enfatizar que este trabalho ndo teve como objetivo a realizagdo de ex-
perimentos que permitissem analises estatisticas aprofundadas, como repeticées em
larga escala com multiplos cultivares ao longo de periodos extensivos. Embora essa
fosse a intencao inicial, diversas dificuldades surgiram durante a fase de prototipa-
gem, incluindo falhas recorrentes nos sensores de umidade e problemas na configu-
racdo das imagens capturadas. Apds etapa de otimizagcao do setup — brevemente
comentada ao final deste capitulo na Se¢édo 5.15 —, o carater experimental limitou-se
a execucao de uma prova de conceito, com analises predominantemente qualitati-
vas destinadas a demonstrar a viabilidade técnica da proposta. Assim, a metodologia
concentrou-se na descricdo da concepcao e do funcionamento do sistema, abran-
gendo desde a integracdo dos componentes até a implementacao de algoritmos de
aprendizado de maquina em microcontroladores de baixo custo.

No ambito metodoldgico, duas hipéteses distintas foram consideradas. A primeira

buscou avaliar a capacidade da visdo computacional em subsidiar decisdes de irriga-
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cao em cenarios ideais de processamento, como o0 uso de computacdo em nuvem e
imagens com resolugdo satisfatéria. A segunda concentrou-se em cenarios restritos,
nos quais a aquisicdo de imagens ocorre em baixa resolugcdo e o processamento é
realizado em dispositivos embarcados de baixo custo, com recursos computacionais
limitados. Essas duas perspectivas — uma voltada ao potencial tedrico e outra a apli-
cacao pratica — foram tratadas de forma complementar, permitindo avaliar tanto a
eficacia conceitual da abordagem quanto sua viabilidade em contextos reais de uso

agricola.

5.1 VISAO GERAL DA METODOLOGIA

A Fig. 28, a seguir, apresenta uma visdo geral do sistema desenvolvido, com seus

principais modulos fisicos e suas interagdes.

Figura 28 — O sistema de fenotipagem desenvolvido, SPheRe. Fonte: o autor.

A arquitetura SPheRe contempla os principais médulos responsaveis pela aquisi-

¢ao, transmissao e processamento de dados, além do controle do sistema de irrigacéo.
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Esses componentes estao descritos a seguir:

5.2

. Médulo de Controle: Com o microcontrolador ESP32-S3 (Espressif Systems)

e camera em sua composicao, é responsavel pelo periddico monitoramento e
controle da irrigacao, e pela captura de imagens da planta sob cultivo. Enviando
esses dados a internet via Wi-Fi. E Alimentado por uma fonte DC externade 5V,

e possui conversor de tensao que fornece 3.3 Vpp ao SoC (System-on-Chip);

Servidor na Nuvem: armazena imagem e umidade do solo enviadas pelo Mé-

dulo de Controle, possibilitando posterior analise remota;

Computador Remoto: para visualizagao e processamento dos dados disponibi-
lizados pelo Servidor na Nuvem, a fim de analisar os dados recebidos e confi-

gurar o sistema de irrigacao;

Sensor de Umidade Capacitivo: inserido no solo do vaso de cultivo, realiza a
medicao continua da umidade, dispondo o dado para o Médulo de Controle por

meio de barramento analdgico;

. Mini Bomba d’Agua: modelo JT100, instalada no interior do Reservatério de

Agua;

. Reservatério de Agua: recipiente em PVC com capacidade de armazenamento

de até 5 L. de agua para a irrigacao;

Sistema de Irrigacao por Gotejamento: duto para condugado da agua a partir

do Reservatério de Agua até o vaso de cultivo;

Barramento de Ativacao: canal de controle digital entre 0 Médulo de Controle
e a Mini Bomba d’Agua, responsavel por acionar a bomba para a irrigacdo da

planta.

ARQUITETURA GERAL DO SPHERE

A arquitetura do SPheRe é composta por modulos interconectados que integram

sensores, unidade de controle, elemento atuador e infraestrutura de comunicacgéo. O
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fluxo de dados é continuo e estruturado, permitindo o0 monitoramento da planta e da
umidade de seu solo, com a rega configurada remotamente pelo usuario-pesquisador.
A Fig. 29 apresenta o diagrama de blocos da solugédo, em seguida, 0s passos de

seu funcionamento séo descritos.

SERVIDOR Wi-Fil PC
(Nuvem) || iINTERnET [€°®
A A
Wi-Fil
INTERNET USUARIO
FONTE 5Voc RESERVATORIO
SENSOR DE D'AGUA
UMIDADE
SoC
CIRCUITO DE
) BOMBA
VASO/ _ ATIVAGAO SRR
SoLo/ CAMERA (AUX)
PLANTA
f SISTEMA DE IRRIGACE“

Figura 29 — Diagrama em Blocos SPheRe. Fonte: o autor.

1. Aquisicao de dados no ambiente de cultivo: coleta de dado de umidade atra-

vés do sensor de umidade capacitivo e captura de imagem por meio da camera
0OV5640;

2. Leitura e controle pelo SoC: os dados sdo processados e preparados para

envio;

3. Envio a nuvem: os dados sao enviados via Wi-Fi para Google Sheets (dados) e

Google Drive (imagens);

4. Analise remota: o usuario-pesquisador analisa as imagens com scripts em Python,

|é dados de umidade do solo e configura a irrigacao;

5. Acionamento da bomba: Dependendo dos limiares de histerese pré-configurados
ou do comando de rega aplicado pelo usuario, o0 SoC ativa a bomba d’agua com
o auxilio de um circuito de ativacao, liberando aproximadamente 100 mL de agua

por rega.
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5.3 COMPONENTES DE HARDWARE UTILIZADOS

O nlcleo do sistema é a placa de desenvolvimento Seeed Studio XIAO ESP32S3

Sense, representada na Fig. 30, (1).

Figura 30 — Seeed Studio XIAO ESP32S3 Sense. Fonte: Seeed Studio (2025).

Essa placa é alimentada por fonte externa de 5V e equipada com camera OV5640
de 5 megapixels, Fig. 30 (2), conectada a placa de expansédo (3). O SoC ESP32-
S3R8, (4), é dual-core, com conectividade Wi-Fi, e dispde de antena flexivel, (5), um
sistema adequado para aplicacbes embarcadas de monitoramento remoto e viavel
para implantagéo de IA.

Para a medi¢cédo da umidade do solo, foi adotado o sensor do tipo capacitivo, Fig. 31.

Figura 31 — Sensor capacitivo de umidade de solo. Fonte: o autor.
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Sensor de baixo custo, escolhido por sua durabilidade superior em comparacao

aos sensores resistivos.

5.4 CONTEXTO EXPERIMENTAL

O SPheRe consiste em um sistema de fenotipagem instalado em uma tenda de
cultivo localizada no laboratério “Estufa” do Centro de Informatica da UFPE. Seu de-
senvolvimento inicial foi apresentado no XIV Symposium on Computing Systems En-
gineering (SOUZA; BLAWID, 2024). O SPheRe se trata de um ambiente sob condi¢des
controladas de iluminacéo e irrigacao, conforme ilustrado na Fig. 32(a), contendo pra-
teleiras para acomodacdo das plantas envasadas, iluminacao artificial programavel,

exaustor e o mdédulo embarcado de sensoriamento.

(a) Tenda de cultivo (b) Irrigagéo por goté- (c) SoC com camera (d) Sensor de umi-
jamento dade

Figura 32 — Sistema de fenotipagem na tenda de crescimento (a). Sistema de irrigacao por gotejamento
(b). © mudulo posicionado acima da planta em estudo a uma distancia de 50 cm (c). Degra-
dacao do sensor capacitivo por infiltracao (d). Fonte: Souza e Blawid (2024).

A Fig. 32(b) destaca o sistema de irrigacdo por gotejamento, acionado por uma
bomba d’agua instalada externamente a tenda, enquanto o modulo (c), posicionado a
aproximadamente 50 cm acima da planta, realiza a captura de imagens e leituras de
umidade. A Fig. 32(d) mostra um sensor capacitivo danificado por infiltracdo durante
testes em solo extremamente umido, justificando sua posterior impermeabilizacdo com
verniz para circuitos eletrénicos, proporcionando maior resisténcia a umidade e dura-

bilidade.
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5.5 PSEUDO-CALIBRAGCAO DO SENSOR DE UMIDADE

Para assegurar a coeréncia nas leituras do sensor capacitivo adotado, foi realizado
um ajuste comparativo, utilizando como referéncia um sensor de umidade comercial
(modelo ST-03), conforme ilustrado na Fig. 33(a). A regulagao foi feita com dois va-
sos plasticos contendo, aproximadamente, 1kg de terra para jardinagem cada, ambos
com furos de drenagem. Um dos vasos permaneceu com solo seco, enquanto o outro
foi saturado até escorrer agua, resultando em solo altamente umido, como mostra a
Fig. 33(b).

(a) ST-03

(b) Solo seco (esq.) e umido (dir.)

Figura 33 — Itens usados na regulacdo do sensor sob estudo. Fonte: o autor.

A fim de garantir uniformidade, o solo de ambos os vasos foi homogeneizado com
auxilio de espétula. O sensor ST-03 foi inserido no vaso com solo seco, realizando-se
14 medicoes em diferentes pontos, resultando numa média de 4% de umidade relativa.
No vaso umido, o mesmo procedimento indicou 59% de umidade relativa média.

Em seguida, repetimos o mesmo processo aplicando o sensor de umidade capaci-
tivo sobre os dois vasos. Com SoC configurado para uma leitura analégica de 9 bits (0
a 511) de resolucao, correspondentes a 0 e 3.3V, respectivamente, iniciamos a leitura
analdgica no solo seco, medindo o valor 330, enquanto no solo umido, 214. Conside-
rando esses dois pontos, deduziu-se uma fungéo linear de primeiro grau para estimar
a umidade relativa do solo: se concluiu, portanto, que leituras de 338 correspondem a
0% e leituras de 128 a 100%. Feito isso, essa fungéo linear passou a mapear as lei-
turas seguintes, limitadas entre 0% e 100%. Valores intermediarios foram observados

durante os testes.
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5.6 PLANTA ALVO E ILUMINAGAO

Como planta sob estudo, foi utilizada a espécie Lactuca sativa (alface), conhecida
por sua sensibilidade a umidade do solo e necessidade de irrigagdo constante. As
plantas foram envasadas em recipientes semelhantes aos usados na regulacao e po-

sicionadas sob o campo de visdo do Médulo de Controle, conforme Fig.34.

Figura 34 — Planta sob estudo (alface estiolado). Fonte: o autor.

Apesar de dispormos de controle automatico da iluminacdo da tenda por meio do
temporizador programavel (modelo TE-30, Elcon), decidimos pelo ciclo continuo de
24 horas de luz ativada com auxilio de ldmpada LED branca (18 W, 6500 K). Essa
configuracao € similar a utilizada por Wang et al. (2024) em seus testes com coentro.
Esse setup foi mantido durante todo a fase de experimento a fim gerar mais imagens

para o dataset em menor periodo.

5.7 A PLATAFORMA DE DESENVOLVIMENTO E O FIRMWARE

Todo o firmware foi desenvolvido com base na linguagem C++, utilizando a plata-
forma PlatformlO integrada a IDE Visual Studio Code, Fig. 35.

O PlatformlO € um ecossistema de desenvolvimento open-source para sistemas
embarcados, como placas Arduino, ESP32, STM32, entre outras. Essa integracao fa-
cilita bastante o desenvolvimento em comparacéo ao Arduino IDE tradicional, especi-
almente para projetos maiores e mais complexos. A estrutura de programacao adota
o paradigma orientado a objetos, o que favorece a modularizagdo das principais fun-

cionalidades.
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Figura 35 — VSCode com PlatformlO. Fonte: o autor.
5.8 A PLATAFORMA DE PROCESSAMENTO DE IMAGENS

Para processamento das imagens geradas pelo sistema foi utilizado o Google Co-
laboratory, Fig.36, uma plataforma gratuita baseada em nuvem que permite o desen-
volvimento e a execucao de notebooks Jupyter diretamente no navegador, eliminando

a necessidade de configuragdes locais complexas.

-]

- E - .

Figura 36 — Google Colab. Fonte: o autor.

No contexto de processamento e analise de imagens, o Colab oferece uma série

de vantagens relevantes:

» Acesso a aceleradores de hardware, como GPUs e TPUs, o0 que o torna uma
ferramenta valiosa para o treinamento de modelos DL com bibliotecas como Ten-

sorFlow, PyTorch e OpenCV;

« Ambiente pré-configurado, com diversas bibliotecas amplamente utilizadas em

visdo computacional ja instaladas;

* Integracao nativa com o Google Drive, permitindo o armazenamento, organi-

zagao e compartilhamento eficientes de imagens, conjuntos de dados e modelos;
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« Execucao em células de cddigo, facilitando a experimentacéo e a depuragao

de forma interativa e incremental;

« Suporte a visualizacoes embutidas no proprio notebook, por meio de ferra-
mentas como matplotlib, seaborn e OpenCV, o que favorece a analise e interpre-

tacdo dos resultados obtidos.

Na etapa do processamento de imagens, especialmente na definicdo das masca-
ras para segmentagao de cor, utilizou-se o GIMP como ferramenta de apoio. Trata-se
de um software gratuito e de cédigo aberto amplamente utilizado para edicdo e mani-

pulacdo de imagens.

5.9 ARMAZENAMENTO DOS DADOS EM SERVIDOR EM NUVEM

A recepcdo e armazenamento tanto dos dados de umidade quanto das imagens
sado gerenciados no Google Apps Script, que € uma plataforma em nuvem baseada
em JavaScript desenvolvida pelo Google. Ela permite automatizar tarefas, integrar e
estender a funcionalidade de produtos Google como Google Sheets, Google Docs,

Google Forms, Google Drive, etc.

5.9.1 Comunicacao entre SPheRe e Google Sheets

Desenvolvemos um script, Fig.37, que permite ao SPheRe enviar dados de umi-
dade para uma planilha online, Fig. 38, e solicitar parametros de controle (como limia-
res de irrigacdo e comando de rega baseado em checkbox) oriundos da planilha. Ou
seja, o fluxo de dados diz respeito ao valor da umidade, atualizacdo de limiares de

histerese da umidade e comando de rega forgada.

5.9.2 Comunicacao entre SPheRe e Drive

Em sintese, desenvolvido esse segundo script que permite que o SPheRe envie
imagens para serem automaticamente armazenadas em uma pasta especifica do Go-
ogle Drive, Fig.39, com um nome de arquivo que inclui um dado contextual (umidade)

e um carimbo de data/hora.
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¥ Apps Script

[6) Arquivos
<>  Codigogs
O  Bibliotecas
©  Servigos

&

SmartTent

+

] b Executar

&) Depuragdo doGet

Registro de execugdo

/7 Bloco para enviar limiares de histerese e os valores das células G3 e H3
var read = e.parameter.read;

if (read !== undefined) {
// L& o valor do checkbox da célula W2
var lue = sheet H2').getvValue();

Logger . log(checkboxValue) ;

// Reseta o valor do checkbox para false
sheet .getRange( ‘H2') .setValue(false):

/1 Obtenciio dos valores das células G3 e H3
var g3Value = sheet.getRange('G3').getValue();
var h3Value = sheet.getRange( H3').getValue():

// Garante que o primeiro valor seja maior ou igual 20 segundo
if (g3value < h3value) {

var temp = g3Value;

g3value = h3Value;

h3Value = temp;
}

// Define a mensagem com base no valor do checkbox e acrescenta os valores de G3 e K3
var resposta = "
if (checkboxValue =

true) {

resposta = “wat
} else {
| resposta = “nowater*;

}

// Atualiza a célula I3 com “updated”
sheet .getRange('I3').setValue(“updated);

// Inclui os valores de G3 @ H3 no retorno
resposta += °,* + g3Value + *," + h3Value;
return ContentService.createTextOutput(resposta);

, separados por virgulas (vocé pode ajustar ¢

Figura 37 — Ambiente de desenvolvimento em nuvem do Google Apps Script. Fonte: o autor.
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Figura 38 — Planilha exibindo dados, grafico e interface de controle do SPheRe. Fonte: o autor.
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5.10 PROCESSAMENTO E ANALISE DAS IMAGENS RGB

Para investigar a relagdo entre a coloracado das folhas e a umidade do solo, foi
desenvolvido um conjunto de scripts em Python na plataforma de desenvolvimento
Google Colab, em nuvem, para andlise das imagens armazenadas em dataset no

Google Drive. O processamento envolveu as seguintes etapas:

5.10.1 Segmentacao das Folhas

A fungd@o cut_leaves_without_spark() foi projetada para realizar o recorte das
folhas presentes em uma imagem de entrada, ao mesmo tempo em que busca mitigar
variacdes luminosas indesejadas. O processo é estruturado em etapas sequenciais,

conforme detalhado a seguir.

5.10.1.1 Remogéo de Interferéncia Luminosa

A metodologia inicia-se com a definicdo de uma regiao de referéncia dentro da
imagem de entrada — localizada na prateleira e caracterizada pela cor preta (Fig. 40).
Nessa regido, sédo calculadas as médias dos valores dos componentes de cor (RGB).
Em seguida, tais médias sao subtraidas de todos os pixels da imagem, com o objetivo
de atenuar ou eliminar possiveis pulsos luminosos espurios.

Dessa forma, a regido de referéncia atua como um padrdo de calibragdo, garan-

tindo que os valores de cor analisados nao sejam interpretados de forma absoluta,
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mas relativa ao ponto de referéncia. Essa abordagem melhora a robustez da analise
diante de variagdes indesejadas de iluminagéo.

E importante destacar que, diferentemente de softwares de edicdo de imagem con-
vencionais — e mesmo da convencao usual do sistema HSV —, o Python utiliza faixas
especificas de valores para cada canal de cor. Assim, apds a normalizacdo baseada
na regido de referéncia, os novos valores atribuidos aos pixels ndo correspondem ne-
cessariamente as suas cores reais, mas a valores corrigidos para fins comparativos

dentro do processamento.

Figura 40 — Imagem com regido de referéncia em destaque. Fonte: o autor.

5.10.1.2 Suavizagdo da Imagem

Para preparar a imagem para as etapas subsequentes de segmentacao e minimi-
zar o ruido, um filtro Gaussiano de desfoque (cv2.GaussianBlur) é aplicado. Este

filtro contribui para a homogeneizagéo das regides.

5.10.1.3 Segmentacao Baseada em Cor (Verde)

A imagem é convertida do espaco de cor RGB para o espaco HSV , ja abordado
na Sec¢ao D.0.1.2. Esta faixa de valores para a matiz verde foi obtida de forma obser-
vacional, com base em experimentos em diversas imagens, demonstrando excelente
robustez em variados testes. Uma mascara binaria é entao gerada, delimitando uma

faixa especifica de tonalidades de verde. Essa mascara € utilizada para isolar e reter



84

apenas as regides da imagem que correspondem a coloracao das folhas, eliminando
as demais cores presentes no fundo. A segmentagao de cor relativa a regides de folha

seca também foi utilizada.

5.10.1.4 Segmentacao por Limiarizacéo

A porcao da imagem resultante da etapa de segmentacéao por cor, contendo predo-
minantemente as areas verdes, € convertida para tons de cinza. Apés uma nova apli-
cacao de desfoque, é empregado o método de limiarizacao de Otsu (cv2. threshold).
Este algoritmo automatico determina um valor de limiar ideal para binarizar a imagem,
distinguindo efetivamente as folhas do fundo. Posteriormente, um filtro de mediana
(cv2.medianBlur) € aplicado a mascara binaria obtida, contribuindo para a suavizagéao

de bordas e a remocao de pequenos ruidos.

5.10.1.5 Recorte Final das Folhas

Na etapa final, a mascara binaria refinada (gerada pelas etapas de segmenta-
¢cao) é aplicada a imagem oriunda da etapa 5.10.1.1(ja sem interferéncia luminosa).
O resultado € uma nova imagem que contém exclusivamente as folhas segmentadas,
com o fundo e quaisquer outros elementos n&o pertinentes removidos, ou seja, pre-
enchidos com pixels nulos, facilitando andlises posteriores focadas na folhagem.

Esse processo garante que os pixels considerados na média RGB pertencam pre-
dominantemente a area foliar da planta monitorada.

E importante ressaltar que a segmentagao apresentou um artefato indesejado, uma
pequena parte do médulo de monitoramento ambiental afastado da planta, apesar de
aparentemente insignificante, utilizamos artificio de anulacao de pixels apenas nessa
regiao.

A Fig. 41 ilustra estagios envolvidos no recorte de folhas de cada imagem.

5.10.2 Extracao de Dados Estatisticos

A funcdo image_statistics processa cada imagem de folha recortada resultante

da funcdo cut_leaves_without_spark() a fim de extrair os dados de cor “relativa”. Va-
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Figura 41 — Pipeline de Processamento de Imagens Digitais. Fonte: o autor.

riaveis do tipo cropped_leaves_mean_blue_list e cropped_leaves_sd_blue_list, cor-
respondem a valores médios e de desvio padrdo do canal de cor azul “relativo” de

cada imagem, formando séries temporais.

5.11 ANALISE DE ESPACOS DE COR EM FUNGAO DA UMIDADE

Para aprofundar a andlise entre cor e umidade, cada imagem do dataset foi seg-
mentada utilizando a funcdo implementada cut_leaves_without_spark(), que realiza
a remoc¢ao de variagdes indesejadas de luminosidade, aplica suavizagao e segmenta-
cao por cor e limiarizacao. Como resultado, a funcao retorna a imagem segmentada,
no espaco de cor RGB, que em seguida é convertida em HSV. A partir dessas ima-
gens, foram extraidas estatisticas como média e desvio padrdo de cada canal (R, G,
B, e o H, S e V), medidas relativas a regiao de referéncia, juntamente com o valor de

umidade.

5.12 CLASSIFICACAO POR MEIO DE ARQUITETURAS RASAS

Para a etapa de classificacédo, foram adotados trés algoritmos de aprendizado su-
pervisionado: Decision Tree, Random Forest e KNN (K-Nearest Neighbors.

O Decision Tree € um método baseado em uma estrutura hierarquica em forma de
arvore, semelhante a um fluxograma, no qual as decisées sdo tomadas por meio de
regras extraidas dos atributos das amostras. O Random Forest, por sua vez, consiste
em um conjunto de multiplas arvores de decisdo combinadas, o que permite aumentar

a preciséo da classificagéo e reduzir a ocorréncia de erros decorrentes do overfitting.
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Ja o KNN é um algoritmo baseado em medidas de similaridade. Para classificar
uma nova amostra, calcula-se a distancia — geralmente euclidiana — entre ela e
todas as amostras do conjunto de treinamento, selecionando-se os K vizinhos mais
proximos. A classe atribuida é a mais frequente entre esses vizinhos. Embora simples
e de facil implementacao, o KNN apresenta como desvantagens o maior custo com-
putacional durante a inferéncia e a necessidade de manter todo o conjunto de dados

armazenado em memoboria.

5.13 VISAO GERAL DOS EXPERIMENTOS

Todos os experimentos apresentados neste trabalho referem-se a analises reali-
zadas sobre um conjunto de arquivos de imagens RGB, capturadas pelo SPheRe,
formando um dataset com mais de trés mil imagens coletadas ao longo de um periodo
de 42 dias.

As analises foram organizadas em quatro etapas principais: primeiramente, uma
andlise dos dados extraidos das imagens em conjunto com a percep¢ao visual de
amostras do dataset. Na sequéncia, foi conduzida uma analise baseada em ML, utili-
zando arquiteturas rasas. E em seguida, uma analise por meio de arquiteturas pro-
fundas. Por fim, a quarta e ultima etapa, a avaliagdo da execucao de modelos obtidos
até entao diretamente no SoC.

Na primeira etapa do experimento, de carater estatistico e observacional, foram
empregadas ferramentas de PDI — conforme detalhado na Secédo 2.2 e no Anexo —
incluindo: estatisticas de cor, indicadores de movimento e caracterizacao de textura.

O fluxo desse processo € ilustrado na Fig. 42.

Dados RGB/HSV

Segmentacao/ROI —>| Processamento }—0 Dados de Movimentagao

imagem

Dados de Textura

Figura 42 — Pipeline para extracdo de dados de cor, textura e tropismo. Fonte: o autor.
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A segunda etapa corresponde a uma classificacao rasa, onde as imagens passa-
ram por pré-processamento, incluindo a segmentagao da regiao de interesse (ROI) e a
extracao de texturas, resultando em vetores de atributos utilizados como entrada para
algoritmos de aprendizado supervisionado. O fluxo metodoldgico encontra-se ilustrado
na Fig. 43.

Extracao de
imagem—+| Segmenta¢ao/ROI Mimagem—+| Caracteristicas —vetor— DT/RF/KNN
de Textura —= Nao Irriga

—2|rriga

Figura 43 — Pipeline para classificagao indireta via arquiteturas rasas e por meio de dados de textura.
Fonte: o autor.

A terceira etapa, a aplicacao de classificacao profunda, onde as imagens sao
processadas diretamente por uma rede neural convolucional do tipo MobileNetV3.
Nesse caso, a rede aprende automaticamente os descritores relevantes para diferen-
ciar plantas com e sem estresse hidrico, dispensando a etapa de extracao de atributos.

O fluxo dessa classificagéo € apresentado na Figura 44.

Depthwise separable convolution

1 x 1 pointwise convolution

77 x 960
Adaptative average
pooling

Inverted residual block
(bottlenek)

12% 12 x 16

224 x224 %3 MobileNetV3

Figura 44 — Pipeline para classificagédo direta de imagem via arquitetura profunda. Fonte: o autor.

Por fim, a Ultima etapa consistiu no experimento de implementacao de PDI e do em-
prego dos modelos avaliados — outrora, em nuvem — diretamente no SoC ESP32S3.
A Fig 45, ilustra esse cenario desafiador, cujo foco esta no potencial dos modelos
obtidos fornecerem resultados em cenarios praticos, contornando as limitagcdes do
dispositivo, seja por meio de reducdo de modelos, quanto na refatoracdo de cddigo

para processar imagens.
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Recursos Nuvem.

s PIPELINE

Recursos ESP32S3.

Figura 45 — Cenario Nuvem versus Edge-Computing. Fonte: o autor.
5.14 PREPARAGCAO DOS DADOS

A partir das imagens armazenadas em uma pasta no Google Drive, nomeadas pelo
padrao umidade-AAAAMMDD-HHMMSS. jpg, foi construido o dataset, cronologicamente or-
denado, com todas as imagens capturadas entre 1 de abril de 2025 e 12 de maio de
2025, totalizando 3966 imagens. O grafico da Fig. 46 representa os valores de umi-
dade do solo em funcéo do tempo, compreendendo ciclos de estresse hidrico, com
regas realizadas a cada 15 dias, aproximadamente.

A Fig. 47 representa uma amostra do dataset nesse periodo.
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Figura 46 — Grafico da umidade do solo e do comando de irrigagao, em fungéo do tempo. A segunda
rega separa o experimento em dois ciclos. Fonte: o autor.
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Figura 47 — Amostra do dataset do experimento. Fonte: o autor.
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5.15 DESAFIOS DE OTIMIZACAO DO SETUP
5.15.1 Sensor de umidade

Para assegurar o desempenho adequado do sensor capacitivo adotado, foi neces-
saria uma intervencéao corretiva decorrente de falha de fabricacdo: a conexao de pino
de resistor ao terminal de terra do circuito. Adicionalmente, realizou-se a impermea-
bilizacdo da borda da PCI com verniz Isotec Incolor (Implastec), de modo a reduzir o

risco de infiltragbes. Esses ajustes estdo evidenciados na Figura 48.
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Figura 48 — Sensor ajustado: conexdo do terra e impermeabilizagdo das bordas. Fonte: o autor.

5.15.2 lluminacao artificial

Durante as primeiras etapas, observou-se significativa interferéncia nas imagens
capturadas, além da ma formacao de diversas mudas de alface devido ao estiola-
mento. Esse desafio foi superado mediante a substituicdo da iluminagéo por ldmpadas

LED mais adequadas e pela ado¢ao de um ciclo continuo de 24 horas de iluminagéo.

5.15.3 Reservatorio de agua

O primeiro reservatério adotado apresentou intensa formacgao de lodo, comprome-
tendo a qualidade da agua utilizada na irrigacdo. O problema foi solucionado com a
substituicao do recipiente por um modelo em PVC, que apresentou maior resisténcia

a esse tipo de ocorréncia.



91

5.15.4 Pintura do suporte

A superficie da prateleira de apoio as mudas foi pintada na cor preta com o in-
tuito de facilitar os processos de segmentacao das imagens, reduzindo interferéncias

visuais no pré-processamento.

5.15.5 Configuracao da camera

A configuragdo da camera OV5640 constituiu um dos maiores desafios do estudo,
devido a escassa documentacao técnica disponivel. A calibracéo foi realizada a partir
de uma combinacao de pesquisa em diferentes fontes e de extensivos testes empiricos

baseados em tentativa e erro.

5.15.6 Bomba de irrigacao

Apoés longos periodos sem acionamento do sistema, foram identificadas falhas no
funcionamento da bomba de irrigacdo. A solugdo encontrada restringiu-se a ajustes
manuais e leves impactos fisicos no componente, o que evidencia uma limitacao do

modelo adotado, mesmo apds a substituicdo por bombas de diferentes fabricantes.

5.16 CONSIDERACOES METODOLOGICAS FINAIS

A camera OV5640 foi configurada para capturar imagens em resolugdo de 2560 x
1600 pixels com fator de compressao JPEG igual a 10, oferecendo qualidade satisfa-
téria com economia de espago na nuvem. Inclusive, por razédo desconhecida, testes de
transmissdo de imagens com resolucéao superior nao foram bem sucedidos. As ima-
gens sdo capturadas e enviadas a cada 15 min, € associadas aos dados de umidade
do solo, para posteriormente serem analisadas com o intuito de verificar a relagao en-
tre a imagem e o nivel de umidade, objetivo central da fenotipagem conduzida neste
estudo.

Concluidas as etapas de regulacéo e definidas as condi¢gées experimentais do cul-
tivo, procedeu-se ao desenvolvimento e a implementacéo do sistema embarcado, des-

critos no capitulo seguinte.
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6 RESULTADOS: IMPLEMENTACAO

Este capitulo apresenta a implementacéo do sistema embarcado de fenotipagem
proposto, SPheRe, detalhando sua arquitetura de software, l6gica de funcionamento,
desenvolvimento do firmware e hardware. Com base nos requisitos definidos e no am-
biente experimental descrito no capitulo anterior, o sistema foi desenvolvido com foco
em modularidade, robustez e baixo consumo energético, utilizando tecnologias aces-
siveis e amplamente documentadas. O desenvolvimento bem-sucedido do SPheRe

representa um resultado importante da presente dissertacéao.

6.1 ESTRUTURAMENTO DO FIRMWARE

A arquitetura do cédigo foi baseada na seguinte triade da Fig.49:

S

Conexao
com a Nuvem

0 -
— O
ol § Lo d
Leitura da Captura
umidade do solo de imagens

Figura 49 — Triade do SPheRe. Fonte: o autor.

Podemos traduzir essa triade nos passos a seguir, os quais compdem o nucleo do
SPheRe:

» Configuracao e leitura da umidade através do sensor capacitivo de umidade do

solo;
» Configuracdo do mddulo camera OV5640 e captura de imagens;
» Configuracao da conectividade Wi-Fi e comunicagdo com a nuvem.

O programa principal realiza a inicializagdo de registradores e periféricos, configu-

rando o conversor analégico-digital, definindo os pinos de entrada e saida, e ativando
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a comunicacgao serial para depuracao. Apds essa etapa, a comunicacao Wi-Fi é esta-
belecida, e o sistema entra no ciclo principal, baseado em Maquina de Estados Finitos
(do inglés FSM).

6.2 LOGICA DE FUNCIONAMENTO DO SISTEMA

O comportamento do SoC é regido por meio de uma FSM composta por seis esta-
dos, conforme ilustrado na Fig.50. Esses estados regem a coleta de dados, a comuni-

cagao com a nuvem, o acionamento da irrigacao e o controle energético.

system_awake

D

Reset/

/ Setup Sleep Mode
@15' v\

f

Moisture not_connected

Read Send Data

not_connected

connected connected

N

SendImage Pump

Control

Figura 50 — Diagrama de estados do SPheRe. Fonte: o autor.

1. Setup: estado de inicializacdo do microcontrolador, responsavel por configurar

pinos, sensores, conexado Wi-Fi e periféricos.

2. Leitura da Umidade (moisture_read): amostragem de 258 valores analdgicos
do sensor capacitivo, com descarte de outliers (minimo e maximo), seguida do
célculo da média. O valor médio é mapeado para uma escala percentual entre
0% e 100%.

3. Captura e Envio de Imagem (send_image): ap0s verificar se ha iluminagéo sufi-
ciente, uma imagem com resolugcao de 2560 x 1600 pixels é capturada e asso-

ciada ao valor de umidade do solo. Em seguida, é enviada via requisicao HTTP
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para um script no Google Drive, onde é rotulada com as informacbes de umi-

dade, data e horario de recebimento, e por fim, salva em pasta.

4. Controle da Rega (pump_control): A rega pode ser acionada mediante duas
circunstancias excludentes: com maior prioridade, o sistema consulta checkbox
da planilha no Google Sheets via HTTP. Caso o checkbox esteja habilitado, a
bomba d’dgua é acionada por 1 min e, em seguida, 0 comando é desabilitado
automaticamente. Caso nao haja esse comando de acionamento por parte do
usuario, o acionamento da irrigacao pode se dar por meio da comparacao do
valor de umidade atual, lido em moisture_read, com os limiares (da histerese)
salvos em memaria anteriormente - durante o estado send_data do ciclo ante-
rior. Em caso de acionamento, a bomba € ativada por 5s. A Fig. 51 ilustra parte
da planilha responsavel pela transmissao de dados a partir da nuvem para o
SPheRe.

]
o 9

Figura 51 — Pequeno painel de interagdo com o usuario, para rega forcada e definicao de limia-
res. Fonte: o autor.

5. Envio de Dados (send_data): os dados de umidade e estado da bomba séo envi-
ados via HTTP para o Google Sheets, atualizando a planilha de monitoramento.
Em seguida os valores de limiar da histerese s&o lidos da planilha e atualizados

em memoria nao volatil.

6. Modo de Suspensao (deep_sleep): apos o ciclo completo, o sistema entra em

modo de hibernagao por 15 min, reduzindo o consumo energético.

E importante frisar que na ocasido de falha de conexdo com o servidor a FSM ga-
rantira a irrigacdo da planta, por meio de sua passagem pelos estados moisture_data
e pump_control, com base nos valores de limiares previamente salvos, seja de “fa-
brica” ou oriundos da ultima comunicagdo com o servidor.

Outro recurso disponivel no cddigo é a verificagdo de falhas, tanto de comunicacao
quanto do médulo de imagem, com a capacidade de reinicializacao do sistema.

A seguir, um melhor detalhamento de algumas das funcionalidades do SPheRe.
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6.3 CONFIGURAGAO DA CAPTURA DE IMAGEM E COMPRESSAQ

O moddulo de imagem, composto pela camera OV5640, é primeiramente configu-
rado com uma baixa resolu¢do de 96 x 96 pixels em escala de cinza. Uma imagem
inicial é capturada para verificar as condi¢des de iluminacao do ambiente. Se o ambi-
ente estiver iluminado — condicao que s6 ocorre com a ativacao da iluminacéao artifi-
cial —, a camera é reconfigurada para a captura da imagem final. Esta € obtida com
uma resolugao superior (2560 x 1600 pixels), no espaco de cor RGB, e um fator de
compactacao JPEG de 10. Tal fator, situado entre 0 (maior qualidade) e 63 (menor
qualidade), foi escolhido para assegurar uma qualidade visual adequada sem sobre-

carregar o armazenamento em nuvem.

6.4 GERENCIAMENTO DE ENERGIA

Visando prevenir o sobreaquecimento e otimizar o consumo energético, 0 SPheRe
€ configurado no modo de hibernagéo, deep_sleep, ao final de cada ciclo da FSM.
Esse modo desliga os periféricos ndo essenciais e reduz drasticamente o consumo de
corrente, permitindo que o sistema opere de forma prolongada mesmo em condi¢des
de alimentagé&o limitada, a exemplo de baterias.

Adicionalmente, o mddulo camera, responsavel pela maior parte do consumo com
relacao a todo o SPheRe, é apenas ativado durante o estado send_image, promovendo
ainda maior economia de energia e protecao térmica. Ou seja, na eventualidade de

nao haver comunicagdo com o servidor, esse mddulo permanece desativado.

6.5 HARDWARE PARA ACIONAMENTO DA MINI BOMBA D’AGUA

Devido a limitag@o de corrente elétrica da placa de desenvolvimento, XIAO ESP32S3
Sense, projetamos uma placa auxiliar contendo um circuito de acionamento baseado
em transistor bipolar e resistor, conforme exibe a Fig. 52. Esse circuito permite o con-

trole da bomba d’agua, operando com a corrente adequada.
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Figura 52 — Esquema elétrico e PCI da placa auxiliar montada. Fonte: o autor.

6.6 MODULO PARA COLETA DE DADOS AMBIENTAIS

O mddulo originario do trabalho de Cardoso e Blawid (2022) foi utilizado nesta
pesquisa para coleta e monitoramento de dados como: temperatura e umidade do
ar e intensidade luminosa, Fig. 53, dentre outros fatores. A Fig. 54(a) evidencia este
méddulo equipado com ESP32 e demais médulos sensores, enquanto, a Fig. 54(b)

ilustra seu uso na tenda de crescimento.
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Figura 53 — Alguns dos fatores monitorados no interior do SPheRe. Fonte: o autor.

O firmware disponivel para uso nesse mddulo necessitou de pequena adequacao

para uso no contexto do SPheRe.



97

(a)

Figura 54 — (a) Mddulo para medi¢des de dados ambientais na tenda. Fonte: Cardoso e Blawid
(2022); (b) Posicionamento do sensor ambiental. Fonte: o autor.

6.7 REPOSITORIO DO PROJETO

O repositério Github do projeto pode ser encontrado aqui.


https://github.com/fjmsouza/SPheReLAB.git
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7 RESULTADOS: PROVAS DE CONCEITO

Neste capitulo, apresentamos os resultados obtidos na fenotipagem automética de

plantas submetidas a diferentes niveis de umidade do solo.

7.1 ANALISE DE ESPACOS DE COR EM FUNGAO DA UMIDADE

A Fig. 55 ilustra dois exemplos das imagens em RGB segmentadas, e destaca

poucas mudancgas perceptiveis na planta apds a irrigagao.

(a) Imagem original. Capturada imediata- (b) Imagem original. Capturada dez horas
mente antes da rega. apos a rega. Movimento das folhas em des-
taque.

(c) Imagem (a) segmentada. (d) Imagem (b) segmentada.

Figura 55 — Imagens capturadas e segmentadas antes e depois da irrigacéo. (Esq.) solo a 0% de umi-
dade relativa. (Dir.) a 82%.

Ao observar ambas as imagens originais na Fig.55, antes e ap6s a irrigacao, nao se
nota alteracao perceptivel na cor, exceto por pequenas movimentagées em algumas

partes das folhas.
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7.1.1 Médias dos Canais

A Fig. 56 mostra a variacao da média dos canais RGB das imagens segmenta-
das (eixo direito) em funcédo da umidade do solo (eixo esquerdo) ao longo do tempo

(nimero da imagem no eixo X).
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Figura 56 — Valores RGB médios durante dois ciclos de irrigagdo. Média R, G e B de cada uma das
3966 imagens capturadas a cada 15 minutos durante 42 dias. Com destaque de 8 instantes
relevantes durante o experimento. Fonte: o autor.

Para a analise dos valores médios dos canais de cor R, G e B das folhas ao longo
do tempo, destacamos periodos especificos no grafico da Fig. 56, enumerados em
sequéncia. Durante todo o periodo de testes, o gréafico sugere que imagens sofreram
alteragdo de cor e de intensidade luminosa. Principalmente, em torno dos instantes
3, 4 e 5 percebe-se alteragdes da taxa de variagdo do canal verde (G), o que sugere
alguma relagdo com a umidade. Porém, outros trechos apds o evento 5 apresentam
certas anomalias, como outliers, ou mudancgas bruscas.

A anélise com foco apenas no grafico se mostra desafiadora, portanto, outra abor-
dagem como a observagao direta de amostras foi aplicada. As figuras a seguir (57 e

58) trazem algumas destas amostras de cada um dos trechos apontados no grafico.
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Figura 57 — Amostras de imagens processadas durante os eventos 1,2,3 e 4: a) Inicio do evento, b) 2
horas ap6s e ¢) 10 horas apés a). Cada linha representa 0 mesmo "trecho".
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Figura 58 — Da mesma forma, amostras de imagens processadas durante os intervalos 5,6,7 e 8: a)
Inicio do evento, b) 2 horas apés, e ¢) 10 horas apos a).
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Com o objetivo de reunir as informacgdes referentes a cada trecho analisado, apresenta-
se o Quadro 3, a qual deve ser consultado em conjunto com a Fig. 56 e com as amos-

tras ilustradas nas Figuras 57 e 58.

Trecho | Descricao

1 Amostras de imagens processadas nas primeiras 10
horas do experimento.

2 Grafico sugere alteracao de cor, mas mudancga nao
perceptivel nas amostras.

3 Imagens antes e apos a primeira rega. Grafico indica

aumento dos indices antes da rega, sugerindo
provavel clareamento das folhas. Algum tempo apdés
a rega os indices param de aumentar e seguem com
leve inflexdo dos mesmos indices.

4 Amostras evidenciam o inicio de estiolamento.
Indices R e G decaem com maior evidéncia se
comparados com B.

5 Imagens antes e apo6s a segunda rega. Antes da
rega, os indices R, G e B se elevam igualmente,
provavel clareamento das imagens subsequentes.
Novamente, apds a rega, ha uma leve mudanca da
taxa de crescimento destes indices. Imagens com
estiolamento mais evidente. Inicio de secamento de
algumas folhas.

6 Ao contrario do que ocorre entre 3 e 4, indices ndo
estacionam, continuam se elevando. O que traduz o
inicio de imagens com regides de brilho intenso.

7 Observa-se uma variacao acentuada nas médias dos
canais R, G e B, acompanhada por indicios visuais
de uma movimentagao abrupta do estiolamento.
Além disso, nota-se um discreto aumento nas areas
com folhas secas.

8 As imagens registradas nas ultimas 10 horas do
experimento evidenciam a queda do estiolamento,
conforme observado nas amostras analisadas.

Quadro 3 — Descricao de cada trecho em destaque na Fig. 56. Fonte: o autor.

A partir do trecho 5, correspondente ao segundo estagio de estresse hidrico, o
experimento passou a apresentar imagens com regides excessivamente claras. No
entanto, a andlise do grafico de luminancia (Fig. 59) indica que ndo houve variagao
significativa na iluminacao ambiente durante essa fase, 0 que sugere que as alteracdes

observadas, tanto no grafico RGB quanto nas amostras, apontam para uma limitagao
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de configuracao da camera.
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Figura 59 — Grafico da luminancia durante todo o experimento. Fonte: o autor.

A segquir, os gréficos da Fig. 60 representam os indices RGB médios em fungéo da

umidade do solo para cada um dos ciclos, separadamente:
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Figura 60 — RGB médio versus umidade do solo em cada um dos ciclos. Fonte: o autor.

A busca por um um “bom” indicador de estresse hidrico ndo se mostra trivial por
meio da analise do espaco de cor RGB, ndo sob a atual condicdo do experimento.
Uma outra alternativa é analisar os indices médios do espago de cor HSV.

De forma analoga a abordagem anterior, a Fig. 61, apresenta a variacdo média
relativa dos canais H,S e V de cada imagem do dataset.

A partir do inicio de coleta dos dados até o0 momento em torno da segunda irriga-
cao, tanto a matiz (H) quanto a saturacao (S) e o valor de intensidade (V) sugerem
relacdo com a umidade. Conforme mencionado na Tab. 3, o estiolamento mais evi-

dente da alface, observado a partir do trecho 5, € provavelmente a principal causa das
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Figura 61 — Média H, S e V de cada imagem. Fonte: o autor.

discrepancias nas medicdes em relacao aos trechos anteriores — tanto nos espacgos
de cor RGB quanto HSV.
A seguir, os graficos da Fig. 62 representam os indices HSV meédios em fung&o da

umidade do solo para cada um dos ciclos, separadamente:
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Figura 62 — HSV médio versus umidade do solo em cada um dos ciclos. Fonte: o autor.

Com o objetivo de avaliar com maior precisao o comportamento do canal de satu-
racdo nas imagens do primeiro ciclo (trechos de 1 a 5), a Fig. 63 apresenta a média
movel desse canal, utilizando uma janela de dez elementos, juntamente com a umi-
dade relativa do solo — ambos plotados em funcédo do tempo de amostragem.

Nesse contexto, os dados indicam que, cerca de 105 minutos (1 hora e 45 minu-
tos) apos a irrigagédo, ocorre uma inflexdo no canal de saturagdo. No entanto, essa
alteragcéo nao é perceptivel visualmente. Considerando a hipétese de evitar que o solo

atinja 0% de umidade relativa, uma abordagem possivel seria impedir que a derivada
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Figura 63 — Média mével do canal S com janela = 10. Fonte: o autor.

da média movel da saturagcao se torne negativa apds a irrigacao, ou ainda, definir um
valor minimo para esse dado como critério de controle.

Diante disso, surge o0 seguinte questionamento: a cor poderia auxiliar na anteci-
pacao de informagdes relacionadas a umidade? Para explorar essa possibilidade, foi
calculada a média mével para uma janela de dez elementos sobre os dados H. A de-
teccao de reidratacao foliar com base na cor ocorreu 6 horas e 30 minutos apés a
irrigacao. Portanto, o canal de cor ndo é o melhor “detector” de umidade na planta,
mas sim, o canal de saturagéo. Este é capaz de antecipar essa informagédo em quase

5 horas, quando comparado a cor.

7.1.2 Desvios Padrao dos Canais

Os desvios padrao de cada imagem segmentada em RGB e HSV estao registrados
nos graficos das Fig.64 e Fig. 65.

A sequir, os graficos da Fig. 66 representam os desvios padrao RGB e HSV em
funcdo da umidade do solo para o primeiro ciclo:

Mais uma vez, o sistema de cor HSV — especialmente o canal de saturacdo —
demonstra ser um forte indicativo de estresse hidrico da planta, pelo menos durante o

primeiro ciclo do experimento.
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Figura 64 — Desvio padrao R, G e B de cada imagem. Fonte: o autor.
100 100
Hue
Saturation
—o— Value
80 -80
[
—
= 60 60 N
8- n
o
= 7
= 401 40 I
o
n
20 1 \ \ -20
0 T \—L v : . - - - ; L0
0 500 1000 1500 2000 2500 3000 3500 4000
Image Number

Figura 65 — Desvio padrao H, S e V de cada imagem. Fonte: o autor.
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Figura 66 — Desvios Padréao RGB e HSV versus umidade do solo para o primeiro ciclo do expe-
rimento. Fonte: o autor.
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7.2 INDICE DE TROPISMO

Outra abordagem de fenotipagem através do SPheRe consiste na quantificacao da
mobilidade natural da planta, ou seja, o percentual de movimento relativo entre ima-
gens consecutivas, indicando mudancas fisicas observadas na planta, como desloca-
mento de folhas, inclinacao ou recuperacao pés-rega. O indice de tropismo proposto
€ estimado a partir da imagem “diferenga” entre os pares, sendo entdo calculada a
soma dos pixels dessa imagem resultante e a soma dos pixels da imagem anterior, e
por fim, a razao entre estas somas.

Conforme gréfico da Fig. 67, periodos de baixo movimento (valores em torno de
3%) indicam estagnacao visual (planta pouco responsiva). Picos de movimento (valo-
res mais altos) indicam momentos em que a planta mudou significativamente de uma

imagem para a proxima.
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Figura 67 — Grafico da diferenca percentual entre imagens consecutivas, indicativo de movimentagao
da planta ao longo do tempo. Fonte: o autor.

A maioria das medigbes indicam pouca movimentagdo, com valores entre 2% e
3%, enquanto uma outra razoavel parcela, em torno de 13%. No entanto, a partir do
trecho 6, observou-se um aumento gradual nesse indice, 0 que sugere um tropismo
induzido pelo aumento do estiolamento. No trecho 7 esse indice ultrapassa 25%, e a
partir dele diminui gradualmente, voltando a valores acima de 2%, 0 que assinalaria o
efeito da gravidade sobre o estiolamento identificado nas imagens.

Destaca-se ainda a presenca de ténues elevagdes desse indice imediatamente
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apoés a irrigacao, nos trechos 3 e 5, 0 que poderia ser uma evidéncia do tropismo por

fluxo de agua no interior da planta.

a) b) c)

Figura 68 — Par de imagens que deu origem ao pico de 13% no trecho 3: a) Imagem 5 horas e 15
minutos apés a irrigagao, b) imagem consecutiva, e ¢) subtragdo entre a) e b). Fonte: o
autor.

7.3 ANALISE DE TEXTURA

Com foco na primeira parte do experimento, denominada Ciclo 1 — incluindo tam-
bém amostras iniciais do Ciclo 2 —, foram analisadas 2500 imagens para a extragao
das seguintes caracteristicas de textura: Contraste, Dissimilaridade, Homogeneidade,
ASM (Angular Second Moment), Energia, Correlagdo, Média, Varidncia, Desvio Pa-
drdo e Entropia, conhecidas como caracteristicas de Haralick.

Conforme descrito na Secéao 2.2.2, as imagens RGB segmentadas foram converti-
das para escala de cinza e, em seguida, analisou-se a organizagao dos pixels de cada
imagem. Para uma analise mais precisa, com foco nas folhas, utilizou-se o recorte
automatizado das regides segmentadas, conforme ilustrado na Fig.69, resultado da
remogao de pixels nulos excedentes. Enquanto, a Fig 70 destaca as correlagdes entre
as estatisticas de textura.

ApGs a extracao das caracteristicas de Haralick para cada uma das 2500 amostras,
procedeu-se a normalizacdo dos dados. Com os dados normalizados, foi possivel
verificar a existéncia de correlacao entre caracteristicas derivadas umas das outras —
como, por exemplo, entre ASM e energia, ou entre varidncia e desvio padrao —, o que

é evidenciado na matriz de correlagéo cruzada apresentada na Fig. 70.
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Figura 69 — Amostra de imagem segmenta recortada. Fonte: o autor.
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Figura 70 — Matriz de correlagao cruzada entre as caracteristicas de Haralick, incluindo o dado umidade
do solo. Fonte: o autor.
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Com base na andlise dessa matriz, removemos as seguintes caracteristicas do

conjunto de dados: ASM, energy, mean e variance, A Tabela 1 apresenta estatisticas

descritivas gerais do conjunto resultante.

Tabela 1 — Estatisticas descritivas das variaveis de textura e umidade

count
mean
std
min
25%
50%
75%
max

contrast dissimilarity homogeneity  correlation std entropy moisture
2500.000000 2500.000000 2500.000000 2500.000000 2500.000000 2500.000000 2500.000000

0.196907 0.467374 0.277164 0.497662 0.286666 0.634657 0.456725
0.086752 0.143800 0.081843 0.138450 0.113677 0.090444 0.364338
0.000000 0.206978 0.000000 0.000000 0.000000 0.370929 0.000000
0.127480 0.373631 0.247732 0.401268 0.195094 0.569082 0.094118
0.189421 0.432648 0.291766 0.521743 0.271354 0.614747 0.341176
0.249025 0.534993 0.320115 0.601810 0.357737 0.711267 0.835294
0.517463 0.967907 0.611053 0.779285 0.581058 0.848450 1.000000

E o Boxplot da Fig. 71, resume a distribui¢do dos atributos do conjunto de dados,

destacando a tendéncia central, a disperséo e a presenca de outliers.
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Figura 71 — Boxplot do conjunto de dados. Fonte: o autor.

Da analise da correlacao cruzada destacamos duas das caracteristicas mais as-

sociadas a umidade (moisture): contraste e dissimilaridade. Na sequéncia, sdo apre-

sentados os graficos dessas caracteristicas em conjunto com os valores de umidade,

ao longo do Ciclo 1.

Na Fig. 72, a métrica contraste representa a intensidade da variagao local de tons

de cinza entre um pixel e seus vizinhos. Valores elevados indicam uma textura com

transicdes bruscas, enquanto valores baixos sugerem uma textura mais uniforme. O

grafico revela uma tendéncia de o contraste ultrapassar 0,4 antes da irrigagao, quando

0 solo e a planta ja se encontram praticamente desidratados. O oposto também é
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Contrast and Soil Moisture vs. Index
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Figura 72 — Contraste e Umidade em fungéo do periodo entre os dias 2 e 27 de abril. Fonte: o autor.

observado: ap6s a hidratacao, o contraste tende a diminuir, atingindo valores inferiores
ao0,2.

Ainda na Fig. 72, os instantes a e b correspondem as amostras ilustradas na Fig.
73, ambas exibidas em escala de cinza e com distintos niveis da caracteristica con-

traste, conforme indicado no gréfico.

(a) (b)

Figura 73 — Imagens de plantas evidenciando a mudanca de contraste apos a irrigagdo. (a)
imagem da planta momentos antes da rega, com solo a 0% de umidade relativa, e
medida contraste superior a de (b), outra amostra 5 dias ap6s a rega, com solo a
70%. Fonte: o autor.

Ao analisar a média mével do contraste com uma janela de dez leituras, foi possivel

identificar indicios de reidratagao foliar cerca de 3 horas e 15 minutos apds a irrigacao.
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Outra métrica relevante é a dissimilaridade (Fig. 74), que também mede a diferenca

entre tons de cinza vizinhos. Porém, diferentemente do contraste, essa medida nado

eleva as diferencas ao quadrado, como discutido na Se¢éo 2.2.2, sendo mais sensivel

a variacgoes leves do que o contraste.

Dissimilarity and Soil Moisture vs. Index
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Figura 74 — Dissimilaridade e Umidade em funcéo do periodo entre os dias 2 e 27 de

autor.

abril. Fonte: o

Uma provavel discrepancia entre os picos da dissimilaridade nos dois momentos

da irrigacdo deve estar no desenvolvimento natural da planta, com sua morfologia

dinamica e pela formagao de novas folhas.

A sequir, a Fig. 75 representa os dados contrast e dissimilarity em fungdo da umi-

dade do solo.
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Figura 75 — Descritores de textura contrast e dissimilarity versus umidade do solo. Fonte: o

autor.

Por fim, na Fig. 76, apresentamos graficos das demais caracteristicas extraidas.
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Homogeneity and Soil Moisture vs. Index Correlation and Soil Moisture vs. Index
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Figura 76 — Algumas das demais caracteristicas de textura.

Quanto a homogeneidade, seus valores reduzidos indicam uma textura menos uni-
forme, com maior variagao entre os tons de cinza. A correlacdo mede a relacéo linear
entre tons de cinza em uma determinada direcdo — valores altos indicam repetigdes
consistentes. Ja 0 desvio padrdo quantifica a dispersédo dos tons. Por fim, a entropia
€ maior em texturas visualmente complexas, o que € 0 caso de experimentos com
plantas, indicando maior desordem na distribuigéo tonal.

Até o momento, o foco do SPheRe tem sido realizar um diagnéstico detalhado da
planta em cultivo, com o objetivo de identificar quais dados sao mais relevantes para
traduzir, de forma precisa, informagdes relacionadas ao estresse hidrico. Com vistas
a implantacao de sensores de irrigacao inteligentes, apresentam-se a seguir alguns

resultados obtidos a partir do emprego de técnicas de ML.

7.4 RUMO AOS FUTUROS SENSORES DE IRRIGAGAO INTELIGENTES

Visando expandir as funcionalidades do SPheRe, foram investigadas técnicas de

ML, com o objetivo de aplicar inteligéncia na borda (Edge Computing). Essas inves-
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tigaces foram realizadas em ambiente em nuvem, especificamente Google Colab,

dispondo dos seguintes recursos descritos na Tabela 2:

Tabela 2 — Resumo das caracteristicas do sistema utilizado para os experimentos.

Recurso Descricao
Processador x86 64
Arquitetura (64bit, ELF)
Sistema Operacional | Linux 6.1.123+
Nucleos fisicos 4
Nucleos l6gicos 8
Frequéncia da CPU 2,2 GHz
RAM 54,8 GB

7.4.1 Classificacao por meio de Arquiteturas Rasas

Dedicada a aplicacado de aprendizado de maquina, esta etapa utilizou um dataset
formado pelas caracteristicas de textura extraidas na fase anterior e pelo atributo bi-
nario Alert. Esse atributo foi definido em duas classes: Alert 1 (umidade entre 0% e
39%) e Alert 0 (umidade entre 40% e 100%). O objetivo foi investigar a correlagédo
entre os descritores de Haralick e essas classes, de modo a selecionar os mais re-
levantes para a classificacdo em modelos de arquitetura rasa por meio de algoritmos
de aprendizado supervisionado, tais como Decision Tree, Random Forest e K-Nearest
Neighbors (KNN).

Por fim, com as caracteristicas GLCM ja extraidas, o dataset foi categorizado nas
duas classes de alerta com base nos valores de umidade, substituindo o valor continuo
pelo rétulo binario. Essa transformacao permitiu a constru¢ao de uma nova matriz de
correlacdo cruzada entre os descritores de Haralick e as classes Alert, cujos resulta-
dos séo apresentados na Tab. 3. Cabe destacar, entretanto, as limitagées do conjunto
de dados: restricdo a uma unica espécie, numero reduzido de amostras (um unico
vaso e modulo) e foco exclusivo no Ciclo 1, conforme discutido anteriormente.

Por meio de avaliacdo da matriz, foram eliminadas as mesmas caracteristicas da
secao anterior, apresentando alta correlagdo entre si, priorizando-se a permanéncia
daquelas com maior correlagdo com o atributo alert. Dessa forma, as caracteristicas

ASM, energy, mean e variance foram excluidas do conjunto de dados, permanecendo
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Tabela 3 — Correlagao cruzada entre as caracteristicas de Haralick e a variavel alert

Atributo Correlacao com alert
contrast 0.57
dissimilarity 0.61
homogeneity 0.58
ASM 0.46
energy 0.47
correlation 0.68
mean 0.60
variance 0.60
std 0.61
entropy 0.56

0s seguintes atributos selecionados: contrast, dissimilarity, homogeneity, correlation,
std e entropy. Nenhum outlier foi removido do dataset.

Com o dataset reduzido em atributos, efetuamos a divisdo do conjunto em dados de
treinamento e dados de testes, 70% e 30%, correspondendo a 1750 e 750 amostras,
respectivamente.

A proporgao de 70% para treinamento e 30% para teste foi adotada visando equi-
librar a necessidade de dados suficientes para o aprendizado dos modelos e a ob-
tencdo de um conjunto de teste estatisticamente representativo. Embora a divisao
80/20 seja comumente empregada, optou-se por 70/30 devido ao tamanho limitado do
conjunto de imagens e a necessidade de assegurar uma avaliagdo mais robusta do
desempenho, evitando vieses decorrentes de um conjunto de teste reduzido (KUHN;
JOHNSON, 2013; RASCHKA; MIRJALILI, 2019).

Realizamos o treinamento com base em trés tipos de modelos. A seguir traremos
a matriz de confusao correspondente e teceremos algumas discussodes.

O primeiro modelo treinado foi baseado em Arvore de Decisdo (Decision Tree). A
partir da aplicagdo do modelo sobre os dados de teste, foi obtida a matriz de confuséo
apresentada na Fig. 77. Essa matriz resultou em uma acuracia global de 96,53%, com
uma precisao de 96,46% para a classe positiva.

Na sequéncia, foi utilizado um modelo baseado em Floresta Aleatéria (Random
Forest). Apds o treinamento, o0 modelo foi avaliado sobre 0 mesmo conjunto de dados
de teste, resultando em uma nova matriz de confusao, apresentada na Fig.78. Os re-

sultados indicaram uma acuracia de 97,87% e uma precisao de 98,71% para a classe
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Matriz de Confusao
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predicted label

Figura 77 — Matriz de Confusao da Decision Tree. Fonte: o autor.

positiva.

Matriz de Confusao

true label

0 1
predicted label

Figura 78 — Matriz de Confusdo do Random Forest. Fonte: o autor.

Por fim, foi treinado um modelo do tipo KNN. No contexto deste trabalho, con-
siderando um conjunto de 2500 amostras, com 6 atributos representados em ponto
flutuante (4 bytes por valor), o consumo de memaria apenas por parte do dataset fica
estimado em aproximadamente 60KB.

A aplicacdo do modelo sobre os dados de teste resultou na matriz de confuséo
apresentada na Fig.79, a partir da qual foi obtida uma acuracia de 97,73% e uma
precisao de 98,96% para a classe positiva.

O algoritmo baseado em KNN demonstra ser o mais robusto a falsos positivos.

Porém, mais oneroso frente ao Decision Tree quanto a demanda de meméria RAM,
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Matriz de Confusao
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Figura 79 — Matriz de Confusédo da KNN. Fonte: o autor.

pois exige que todo, ou parte do dataset, transite entre a memoria secundaria e a
principal.

Além dos métodos tradicionais de classificagédo, abordagens baseadas em arquite-
turas profundas tém ganhado destaque devido a sua capacidade de capturar padrdes
complexos em imagens. Nesse sentido, a proxima se¢ao apresenta a classificacao por
meio de redes neurais convolucionais (CNNs), utilizando estratégias de aprendizado

por transferéncia na tentativa de potencializar os resultados obtidos.

7.4.2 Classificacao por meio de Arquiteturas Profundas

Com base no mesmo dataset da subsecao anterior, utilizou-se o conjunto de ima-
gens que envolve as 2500 amostras pertencentes ao Ciclo 1 e ao inicio do Ciclo 2.
O processo de aprendizado por transferéncia foi conduzido a partir da organizacao e
pré-processamento do dataset de imagens, separadas em duas classes conforme o
valor de umidade do solo, seguindo o mesmo critério explicado anteriormente. Como
modelo, adotou-se a arquitetura MobileNetV3Small, pré-treinada no ImageNet. Mo-
delo que une excelente acuracia e ideal para implante em dispositivos com recursos
computacionais limitados. Se trata de um modelo configurado para receber imagens
no formato (224 x 224 x 3). Portanto, para inferéncia, as imagens foram submetidas
a recorte sobre a area de interesse e redimensionamento para 224 x 224 pixels e
normalizagdo dos valores dos pixels. O treinamento foi realizado em lotes (batch size)

de 32 imagens, com divisdo do conjunto de dados em 20% para validacédo e 10% para
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teste (250 imagens), mantendo o valor da seed em 42 para reprodutibilidade. O enco-
der da MobileNet foi mantido congelado, sendo acrescentadas camadas densas (com
128 unidades e ativacao RelLU), camadas de normalizacao em lote (BatchNormaliza-
tion) e camadas de Dropout (com taxas de 0.3 e 0.5) para mitigar overfitting. A Tab.4

representa o modelo final.

Tabela 4 — Resumo das camadas e parametros do modelo MobileNetV3Small customizado.

Layer (type) Output Shape Param #
input_layer_1 (InputLayer) (None, 224, 224, 3) 0
sequential (Sequential) (None, 224, 224, 3) 0
rescaling_1 (Rescaling) (None, 224, 224, 3) 0
MobileNetV3Small (Functional) | (None, 7,7,576) | 939,120
global_average pooling2d (None, 576) 0
batch_normalization (None, 576) 2,304
dropout (None, 576) 0
dense (None, 128) 73,856
batch_normalization_1 (None, 128) 512
dropout_1 (None, 128) 0
dense_1 (None, 2) 258

O otimizador utilizado foi o Adam, com funcao de perda sparse categorical cros-
sentropy. O modelo foi treinado por 50 épocas, aplicando técnicas de data augmenta-
tion (flip horizontal, rotagdao, zoom e ajuste de contraste) para aumentar a robustez do
aprendizado.

Apoés o treinamento, a avaliagdo do modelo foi conduzida utilizando os dados de
teste. Da matriz de confuséo resultante, Fig. 80, extraimos métricas como acurécia,
em torno de 80,40%, e precisdo de 73% para classe positiva.

A Tabela 5 retne a acuracia e precisado de classe positiva de cada modelo avaliado
até entao, o tempo do pipeline executado em nuvem, envolvendo captura, processa-
mento e inferéncia também esta incluso na tabela.

Tabela 5 — Acuracia, Precisao e Tempo do pipeline no Colab.

Modelo Acuracia(%) | Precisao(%) | Tempo(s)
Decision Tree 96,53 96,46 0,29
Random Forest 97,87 98,71 0,30
KNN 97,73 98,96 0,29
CNN 80,40 73 0,39
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Matriz de Confusao
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Figura 80 — Matriz de Confuséo apés testes com a MobileNetV3Small. Fonte: o autor.

Com os resultados do modelo validados em ambiente de nuvem, buscou-se a im-
plementacao do processamento e inferéncia diretamente no dispositivo embarcado. A

seguir, uma descri¢cao dos resultados desta implementacao.

7.4.3 Edge Computing

Até o momento, todos os testes dos modelos, bem como a avaliacao de suas métri-
cas de desempenho, foram realizados em ambiente de nuvem utilizando a plataforma
Google Colab. A partir desta etapa, no contexto de computacao de borda, o SPheRe
passa a ser explorado visando executar as etapas do pipeline de inferéncia no pro-
prio médulo ESP32-S3, sem a dependéncia de infraestrutura em nuvem. Antes de

avancarmos, a Tab. 6 apresenta um resumo das principais caracteristicas desse SoC.

Tabela 6 — Principais recursos de hardware da ESP32-S3

SRAM(KB) | PSRAM (MB) | Flash (MB) | Clock (MHz)
413,21 8 8 160

Nesse ambito, SRAM (Static RAM) é a memdria interna dos microcontroladores
ESP32-S3, rapida e estavel, mas de capacidade limitada. E a PSRAM (Pseudo SRAM),
uma memoria externa baseada em DRAM, acessada de forma semelhante a SRAM
pelo processador, oferecendo mais espacgo a custo e desempenho intermediarios. En-
quanto a SRAM ¢é usada para tarefas criticas e buffers pequenos, a PSRAM ¢ ideal

para processar grandes volumes de dados, como imagens e modelos de IA. A PSRAM
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permite expandir a capacidade do sistema, apesar de ser mais lenta que a SRAM.

Com base nesses recursos disponiveis, prosseguimos com o desafio de classifica-
¢éo de imagens.

O foco do experimento passa a ser a implementacao dos modelos diretamente no
microcontrolador ESP32-S3, possibilitando a andlise de sua performance em termos
de tempo de execugéo e demais restricées inerentes ao hardware embarcado.

Ressalta-se que, a énfase ndo esta na qualidade (ou coeréncia) da classificacao,
mas sim em verificar a factibilidade de execucao dessas abordagens no dispositivo.

Para viabilizar a execucao das arquiteturas tradicionais no dispositivo embarcado,
foi necessario realizar ajustes, como a reducao da resolucéo das imagens capturadas,
de 2560 x 1600 para 1024 x 768, a utilizagao de filtros menores nas convolugoes,
entre outras simplificacées. Esses ajustes permitiram a execucado total do pipeline,
embora sem avaliagdo da qualidade dos resultados.

ApGs a exploracao das arquiteturas tradicionais e das adaptacdes necessarias para
sua execucado em ambiente embarcado, destaca-se a ado¢ao de modelo baseado em
redes neurais convolucionais (CNNs).

A Tabela 7 indica que o modelo treinado resultou em um total de 1.091.574 parame-
tros do tipo ponto-flutuante, de 32 bits cada. Visando a implementacao em hardware
embarcado, esse modelo passou pelo processo de quantizagdo e conversao para o
formato TensorFlow Lite (TFLite), reduzindo cada parametro real para um valor inteiro
de 8 bits. A quantizagao possibilitou a reducédo do tamanho do modelo em 4 vezes, de
4,16MB para 1,04MB, tornando-o adequado para as restricoes de memoria e proces-
samento do microcontrolador ESP32-S3, permitindo assim a execug¢ao da inferéncia
local, sinalizando viabilidade do monitoramento inteligente através do dispositivo de
borda.

Tabela 7 — Resumo dos paradmetros do modelo MobileNetV3Small customizado.

Total params 1,091,574 (4.16 MB)
Trainable params 75,522 (295.01 KB)
Non-trainable params | 940,528 (3.59 MB)

A sequir, a Tab. 8 apresenta um resumo do consumo de memoria Flash para ar-
mazenamento do firmware, contemplando as etapas de captura e processamento de

imagens — incluindo a extracao de caracteristicas de textura apenas no caso das ar-
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quiteturas rasas —, bem como a inferéncia dos modelos implantados na ESP32-S3.

O tempo total de execugao do pipeline compde a tabela.

Tabela 8 — Consumo de memodria flash e tempo de execucao do pipeline na ESP32-S3.

Modelo Flash (MB) | Tempo execucao (s)
Decision Tree 0,303 10,06
Random Forest 0,437 10,06
KNN 0,370 9,57
CNN 1,64 17,75

Com base nos testes preliminares, o KNN, ao contrario do esperado, demonstrou
desempenho levemente superior aos demais modelos no que diz respeito ao tempo
de execucao do fluxo.

Devemos ressaltar que, por causas ainda desconhecidas nao foi possivel obter
métricas para modelo CNN reduzido por quantizacao completa de 8 bits. Para o mo-
delo CNN com quantizacao hibrida (int8 e float) foi registrada uma menor acuracia de
53%, aproximadamente, em contrapartida, seu deploy nao foi possivel, também por

razoes desconhecidas.

7.5 DISCUSSAO

Mesmo com um conjunto de dados limitado, os resultados deste trabalho demons-
tram a viabilidade do uso de imagens RGB para a deteccéo precoce de estresse hi-
drico em plantas, apoiando a hip6tese de que alteracdes de cor nas folhas refletem, de
forma mensuravel, a condi¢éo hidrica do solo. Os experimentos conduzidos confirma-
ram que, mesmo empregando dispositivos de baixo custo e capacidade computacional
limitada, € possivel realizar a aquisicdo, o processamento e a analise automatica de
imagens, assim como a integracdo de dados ambientais em tempo real.

A comparagéo entre diferentes modelos ML — desde arquiteturas rasas, como
Decision Tree, Random Forest e KNN, até arquiteturas profundas, como a Mobile-
NetV3Small — evidencia que modelos de arquitetura rasa apresentam maior acuracia
e precisao, desde que a analise de textura seja realizada com imagens de resolu¢ao
mais alta. Somado a isto, para a adequagédo aos modelos de arquiteturas profundas,

usualmente, a resolucdo da imagem de entrada é significativamente menor, o que
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pode indicar baixa capacidade de capturar nuances de textura, convergindo para uma
classificagao baseada em cor.

Observou-se, ainda, que uma melhor configuracdo de camera deve ser investi-
gada. Apesar dessa limitagcao, a abordagem proposta mostrou-se promissora para
aplicagdes reais, indicando caminhos para ajustes futuros, como o uso de técnicas de
normalizagédo de iluminacéo e o aumento do dataset. Por fim, a integracéo do sistema
de sensoriamento inteligente ao ciclo automatico de irrigacdo representa um avancgo
para solugdes autbnomas e escalaveis na agricultura de precisdo, promovendo sus-
tentabilidade e eficiéncia no uso de recursos hidricos.

O estudo demonstra viabilidade de fenotipagem automatica via métricas simples e

CNN, com potencial aplicagédo real em sistemas de irrigacdo inteligente.
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8 CONCLUSAO

Cientes do alcance dos objetivos expostos na secao 1.1, esta dissertagcao apre-
sentou o desenvolvimento e a validacdo de um sistema inteligente de fenotipagem
para monitoramento do estresse hidrico em plantas, com énfase no uso de imagens
RGB e aprendizado de maquina embarcado em microcontroladores de baixo custo.
Os resultados experimentais evidenciaram que a coloracao das folhas pode, de fato,
ser empregada como um indicativo sensivel do estado hidrico do solo, permitindo a
antecipacéao de intervencgdes de irrigacédo de forma precisa e eficiente.

Os testes realizados mostraram que é possivel implementar solugbes de analise
de imagens e classificacao de estresse hidrico em dispositivos com recursos limita-
dos, promovendo a descentralizacado do processamento (Edge Computing) e redu-
zindo a dependéncia de infraestrutura de nuvem. Os modelos de aprendizado devem
ser melhor avaliados diretamente nos dispositivos embarcados, a fim de obtencao de
métricas de desempenho em campo, exigindo ajustes para equilibrar precisao, uso de
memoria e tempo de resposta.

O sistema proposto apresentou diferentes alternativas de deploy. Dentre elas, des-
taca-se como a de mais facil implementacao a andlise da componente de cor H. Uma
segunda alternativa, que se mostrou promissora, consiste no uso de modelos de ar-
quitetura rasa baseados em dados de textura. Por fim, também foi considerada a uti-
lizacao de modelos de arquitetura profunda do tipo CNN, embora tal abordagem exija
experimentos ainda mais rigorosos.

Entre as limitacbes do estudo, destacam-se a variabilidade inerente das plantas,
a oscilacao na qualidade das imagens — possivelmente decorrente de limitacées de
configuragdo da cAmera —, a necessidade de ampliagdo do banco de dados de ima-
gens, bem como a adaptacao dos modelos para diferentes culturas e ambientes.

Como perspectivas para trabalhos futuros, destacam-se as seguintes propostas:

 Explorar modelos baseados em CNN customizados a imagens com dimensdes
de entrada maiores. Isso pode contribuir com 0 aumento da acuracia e robustez
do modelo, ponderando frente as restricbes de memoria, tempo de execucéao e

consumo energético dos microcontroladores utilizados.

» Realizar experimentos com ciclos de estresse hidrico menores.
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* Incluir o armazenamento local de dados e imagens em cartdo de memoéria, com
envio posterior quando a comunicacgao for restabelecida, garantindo maior ro-

bustez frente a falhas de conectividade.

* Investigar o impacto da variacdo da altura da camera sobre a qualidade das

analises.

» Expandir o sistema com a inclusao de multiplos sensores de umidade distribui-

dos pelo cultivo.

* Mapear o consumo energético do sistema, visando a otimizacdo da eficiéncia

operacional.
 Analisar informagdes adicionais coletadas pelo moédulo ambiental.

* Instalar cdmeras em diferentes posi¢cdes para ampliar a captagdo de movimen-
tos, identificar novas caracteristicas fenotipicas e aumentar o volume de dados

coletados.

« Extrair atributos de textura diretamente de imagens em escala de cinza, dispen-
sando a etapa de recorte das folhas, o que pode simplificar e agilizar o proces-

samento.

* Investigar abordagens de fusdo sensorial e integrar sensores multiespectrais,

incluindo cameras no infravermelho préximo.

Aplicar técnicas de normalizacao para mitigar interferéncias externas.

Em suma, o SPheRe pode contribuir para um avanco em solugdes inteligentes e
acessiveis para a agricultura de precisao, promovendo o uso sustentavel da agua e
possibilitando o desenvolvimento de sensores autbnomos e nao invasivos baseados

em visao computacional.
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ANEXO A - AQUISICAO DE IMAGENS COM SENSOR 2D

O marco na tecnologia de deteccédo de imagem foi a invencao dos arranjos de fo-
todetectores semicondutores. dentre esses sensores o do tipo CCD (Charge-Coupled
Device), bem como do tipo CMOS (Complementary Metal-Oxide Semiconductor). Tal
sensor consiste em um grande numero de elementos fotossensiveis. Durante a fase
de acumulacgao, cada elemento coleta cargas elétricas, que sdo geradas pelos fétons
absorvidos.

A Figura 81 (a) ilustra um elemento sensor sendo usado para transformar energia
luminosa em imagem digital. A forma de onda da tensédo de saida do sensor é analoga

a energia luminosa incidente na entrada (Jahne (1995)).
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Figura 81 — Composicao de sensor matricial.

Sensing material

A Figura 81 (b) mostra varios desses sensores dispostos na forma de um arranjo
bidimensional. Este arranjo é predominantemente encontrado em cameras digitais.

Uma imagem que incide na superficie do sensor bidimensional, conforme a Figura
82 ilustra, é continua no espago e em amplitude. Porém, para converter tal imagem
em formato digital, € necessario amostrar a funcao tanto em coordenadas quanto em
amplitude. A digitalizacdo dos valores das coordenadas é chamada de amostragem,
enquanto a digitalizacao dos valores de amplitude, quantizagao.

Portanto uma imagem resultante é definida como imagem digital e pode ser defi-
nida como uma funcéo bidimensional, f(x,y), onde x e y sdo coordenadas espaciais
(planares) finitas, e a amplitude de f, também finita, em qualquer par de coordenadas
(X, y), € chamada de intensidade ou nivel de cinza da imagem naquele ponto Gonza-
lez e Woods (2008). Ou seja, uma imagem digital € composta por um numero finito de

elementos, cada um com uma localizacao e valor especificos. Esses elementos sao
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Figura 82 — Processo de Aquisicao de imagem digital

chamados de elementos de imagem, pels ou pixels, o termo amplamente usado.
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ANEXO B - FUNDAMENTOS DA FILTRAGEM ESPACIAL

O dominio espacial é o plano que contém os pixels de uma imagem. Operacdes
de dominio espacial computam diretamente nos pixels de uma imagem, entretanto,
operacdes no dominio da frequéncia sao realizadas na transformada de Fourier dessa
imagem. Algumas tarefas de processamento de imagens s&do mais viaveis de imple-
mentar no dominio espacial, enquanto outras sdo mais adequadas para outras abor-
dagens. Geralmente, as técnicas de dominio espacial sao mais eficientes computacio-

nalmente requerendo menos recursos de processamento para serem implementadas.
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Figura 83 — Operacao de filtragem diretamente na imagem

Os processos do dominio espacial podem ser denotados pela expressao

g(z,y) = f(x,y) * h(x,y) (B.1)

Onde f(x,y) € aimagem de entrada, h(x,y) é o filtro operando sobre uma vizinhanca
do ponto (x, y) na imagem f(x,y), enquanto g(x,y) € a imagem resultante de saida.
h(x,y), geralmente muito menor do que a imagem f(x,y), opera sobre a mesma pixel
a pixel para um fim especifico, como reducao de ruido, por exemplo, ou mesmo erra
de transmisséao, conforme pontua Jahne (1995). A Figura 83 mostra a implementacao
basica da equacgao (B.1) sobre uma imagem. O ponto (x, y) corresponde tanto a um
ponto arbitrario da imagem quanto ao centro da filtro, e a pequena regido em destaque
€ a regido da imagem sob o filtro. Normalmente, h(x,y) € quadrado, muito menor em

tamanho do que a imagem, e de ordem impar — a fim de garantir kernel com centro a
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ordem MxN deve ser impar, ou seja, com dimensdes M e N impares, o que simplifica
a indexacao e as operacgodes.

O processo ilustrado pela Figura 83 consiste em mover o filtro h(x,y) sobre a ima-
gem f(x,y), de pixel a pixel computando seus coeficientes sobre os pixels da imagem
de entrada para gerar um unico pixel de saida. Resultando numa imagem de saida
menor do que a imagem original de entrada. Toda a operagcdo de convolucao em
(B.1), consiste num “deslizar” incremental do centro de h(x,y) sobre toda a imagem
f(x,y). Normalmente, o processo comeca no canto superior esquerdo da imagem de
entrada e prossegue pixel por pixel em uma varredura horizontal, uma linha de cada
vez. Quando o centro de h(x,y) atinge a borda da imagem, parte da vizinhanga resi-
dira fora da imagem. Um artificio é preencher a imagem com uma borda de Os ou de
outros valores de intensidade especificos. A espessura da borda preenchida depende
do tamanho de h(x,y).

A respeito dessas operagdes entre o kernel sobre toda a imagem, vale distinguir o
que a literatura designa como correlacao e convolucao.

Na correlacdao a mascara “desliza” pixel a pixel sobre a imagem, e em cada po-
sicao é computada a soma ponderada dos pixels, utilizando os valores da mascara
COmMo pesos.

A férmula da correlagao 2D é:

k k

g(x,y) =Y > flz+iy+7)- b)) (B-2)

i=—k j=—k

onde:

» f(z,y) é o pixel da imagem original,
* h(i,7) € a mascara (ou kernel),

* g(z,y) € aimagem resultante.

Nota: a mascara é aplicada como esta, sem alteragées.

Na convolucao, a operacao é semelhante a correlagdo, mas com uma diferenca
essencial: a mascara é rotacionada em 1802 (espelhada horizontal e verticalmente)
antes da aplicacao.

A férmula da convolugéo 2D é:
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k k
9@, y) = > fla+iy+4) - h(—i,—j) (B.3)

i=—k j=—k

Essa rotacao influencia a orientacdo da aplicacao do filtro, 0 que € importante em
operacdes como detecgdo de bordas. Quando a mascara é simétrica, correlagdo e
convolugéao produzem o mesmo resultado.

O termo filtro é emprestado do processamento no dominio da frequéncia, onde
“filtragem” se refere a aceitacédo (passagem) ou rejeicdo de certos componentes de
frequéncia. Por exemplo, um filtro que passa baixas frequéncias € chamado de filtro
passa-baixa. O efeito liquido produzido por um filtro passa-baixa é borrar (suavizar)
uma imagem atenuando variagbes bruscas de intensidade entre pixels vizinhos. Po-
demos realizar uma suavizagdo semelhante diretamente na prépria imagem usando
filtros espaciais (também chamados de mascaras, nicleos ou kernels). H4 uma cor-
respondéncia biunivoca entre filtros espaciais lineares e filtros no dominio da frequén-
cia. No entanto, os filtros espaciais s&do mais versateis pois podem ser usados também

para filtragem ndo linear, algo que nao é possivel fazer no dominio da frequéncia.

B.1 FILTROS ESPACIAIS PARA SUAVIZAGAO

Filtros de suavizacido sdo usados para desfoque e reducdo de ruido. O desfoque
€ usado em tarefas de pré-processamento, como a remoc¢ao de pequenos detalhes
de uma imagem antes da extracao de objetos (grandes). A reducao de ruido pode ser

obtida por desfoque com um filtro linear e também por filtragem n&o linear.

B.1.1 Filtros Lineares

A saida (resposta) de um filtro espacial linear de suavizagao € simplesmente a mé-
dia ponderada dos pixels abrangidos pela mascara do filtro, denominado como filtro
de média, filtro passa-baixa, ou mesmo, filtro box (Jahne (1995). Esse processo re-
sulta em uma imagem cujas transi¢gbes, outrora “nitidas” na imagem original, passam
a ser atenuadas em intensidade. Como o ruido aleatério normalmente onsiste em
transicdes nitidas em niveis de intensidade, a aplicacdo mais 6bvia da suavizagéao é

a reducéo desse ruido. No entanto, as bordas (que quase sempre sao caracteristicas



138

desejaveis de uma imagem) também sao caracterizadas por transicées de intensidade

nitidas, portanto, os filtros de média tém o efeito colateral de borrar tais bordas. Outra

aplicacao desse tipo de processo inclui a suaviza¢ao de falsos contornos, resultantes

de numero insuficiente de cores ou de niveis de intensidade. Portanto filtros de média

reduzem detalhes “irrelevantes” em uma imagem, ou seja, regides de pixels que sao

pequenas em relagdo ao tamanho da mascara do filtro. A Figura 84 mostra um filtro

de suavizagao e seu resultado em média padrdo da imagem - etapa que antecede

uma limiarizagao, por exemplo.

O]

(@)
Figura 84 — (a) kernel 3x3. (b) Imagem original (esq.) e imagem borrada (dir).

Além do filtro média, também conhecido como do filtro box, representado na Figura

84 (a), existem diversos outros filtros espaciais lineares aplicados a suavizagao, dentre

eles, vale salientar um bastante sofisticado também utilizado neste trabalho, o filtro

gaussiano, obtido com base na seguinte expressao gaussiana(B.4).

1 a2
Glx,y;0) = et

2w o?

A seguir, um exemplo de kernel gaussiano derivado da expresséo anterior.
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Figura 85 — Kernel Gaussiano para filtragem

(B.4)
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O filtro gaussiano preserva contornos melhor do que o filtro de média simples.

Figura 86 — Imagem original half-tone e Imagem filtrada por filtro gaussiano, respectivamente.

B.1.1.1 Filtros de Ordem Estatistica (Nao Lineares)

Filtros lineares suprimiram efetivamente o ruido gaussiano, mas tiveram um de-
sempenho muito ruim no caso de ruido binario, afirma Jahne (1995), neste caso,
recomenda o uso de filtros nao lineares. Filtros de ordem estatistica sdo operacoes
espaciais nao lineares que, em cada posi¢ao, ordenam (rankeam) os valores dos pi-
xels na vizinhanga e substituem o valor do pixel central pelo elemento correspondente
a uma determinada posi¢cao no ranking — por exemplo, a mediana, 0 maximo ou o
minimo.

O filtro de mediana, talvez o mais usado dessa classe, atribui ao pixel central o
valor da mediana das intensidades na vizinhancga (incluindo o préprio pixel). Essa es-
tratégia preserva bordas melhor do que filtros lineares de mesma dimenséo, sendo

especialmente eficaz contra ruido do tipo sal e pimenta (impulse noise).

Figura 87 — Imagem original corrompida com "sal e pimenta"e imagem filtrada com mediana
3 x 3, respectivamente.
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Definicao de Mediana

A mediana é uma medida de tendéncia central usada em estatistica representando
o valor central de um conjunto de dados organizados em ordem crescente (ou decres-

cente). Seja um conjunto de N valores ordenados:
1) SA2) S S AW

2([N/2])» se N for impar,

Z(N/2) T Z(v/2+1)
2 Y
A mediana divide o conjunto de dados em duas partes iguais — metade dos valores

se N for par.

fica abaixo dela e metade acima.

Propriedades Principais

* Reducao de ruido impulsivo: elimina agrupamentos de pixels isolados cuja
area seja menor que metade da janela, forcando-os ao valor mediano dos vizi-

nhos .

 Preservacao de bordas: evita o borramento excessivo comum em filtros linea-

res.

« Generalizacao: a mediana é apenas o 50° percentil; 0 mesmo mecanismo gera
outros filtros de ordem estatistica, como o max filter (1002 percentil) e o min filter

(0° percentil).

Jahne (1995) acrescenta que, se apenas pixels individuais estiverem distorcidos
numa imagem, um filtro mediano 3x3 é suficiente para elimina-los. No caso de aglo-

merados de pixels distorcidos, filtros medianos maiores devem ser usados.
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ANEXO C - COMPRESSAO DE IMAGENS

Imagens e videos gerados por dispositivos de hardware precisam ser armazena-
dos ou transmitidos, mas o grande volume de bytes torna esse processo oneroso.
Por isso, emprega-se a compressao de imagens — técnica que reduz o tamanho dos
arquivos ao diminuir o numero de bits necessarios para representa-los, sem com-
prometer (ou com minima perda de) qualidade visual, mantendo-a dentro de limites
aceitaveis. Dessa forma, garante-se tanto o armazenamento eficiente quanto a rapida
transmissdo dos dados em redes.

A compressao de dados consiste em reduzir o numero de bits necessério para
representar uma mesma informacéo, eliminando redundancias sem perda (/ossless)
ou descartando informagao menos perceptivel (lossy) para obter taxas maiores de
reducao.

Sejam duas representagdes da mesma informagéo com b e ¥’ bits, sendo b a infor-
macao original e v’ a informagao comprimida. Define-se a razdo de compresséo
e a redundancia relativa

1

:1——
R C

Assumindo, C' = 10 ("10:1") implica R = 0,9, ou seja, 90% dos bits originais eram
redundantes.

Em geral, as imagens apresentam trés tipos de informagao redundante:

1. Codificacao: uso ineficiente de bits por pixel (ex. valores de 8 bits usam mais

simbolos do que o necessario);

2. Espacial/Temporal: correlagdo entre pixels vizinhos em imagens estaticas ou

entre quadros em video;

3. Irrelevante: detalhes que o sistema visual humano néo percebe, removiveis sem

degradar a qualidade aparente.

Shannon, em sua teoria da informacao, estabeleceu os principios que contribuem

na quantificacdo da informacao presente em uma imagem, possibilitando, por exem-
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plo, a determinacdo do niumero minimo de bits por pixel, necessario numa imagem,
sem degrada-la.

A remocao de “informacéo visual irrelevante” implica perda de dados quantitativos
da imagem. Para quantificar essa perda, utilizam-se dois tipos de critérios de fidelidade

na compressao de imagens:

+ Fidelidade objetiva: quando a degradacao é descrita por uma expressdo mate-
matica em funcao da imagem de entrada e de saida do processo de compressao.

Um exemplo comum é o erro quadratico médio (e;ms) entre as imagens.

 Fidelidade subjetiva: baseada na percepcédo humana, avalia-se a qualidade vi-
sual por meio de ranqueamento que reflita o nivel de aceitabilidade da imagem

descomprimida.

Esses critérios permitem controlar o trade-off entre taxa de compresséo e quali-
dade visual, garantindo medi¢des objetivas e avaliacées alinhadas a experiéncia do
observador.

Dentre os padrdes de compressao de imagem mais populares, esta o JPEG —
Joint Photographic Experts Group. Um sistema de codificacdo do tipo Lossy que adota
0s seguintes métodos de compressao: Transformada Discreta do Cosseno (DCT) em
blocos de imagem 8 x 8, Huffman e Run-Length.

No processo inverso, descompressao de imagens — para exibigdo, por exemplo
—, métodos complementares aos utilizados durante a codificacao, sdo aplicados a fim
de decodificar os arquivos outrora comprimidos. Ambos 0s processos, compressao e
descompresséo, podem ser implementados tanto em software quanto em hardware, o

que eleva o desempenho.
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ANEXO D - SISTEMAS DE COR

D.0.1 Sistemas de Cor

Um sistema, modelo ou espaco de cor define um sistema de coordenadas onde
cada cor é representada por um ponto no espacgo, permitindo especificar cores de
forma padronizada e consistente. Na pratica de PDI, adotam-se modelos orientados
a hardware - RGB, por exemplo, para monitores - e modelos orientados a percepgao
humana - como o HSV (do inglés Hue, Saturation e Value), que desacopla a informa-
¢ao de cor da intensidade. Embora existam muitos outros sistemas de cores, esses

sao, de fato, utilizados durante o desenvolvimento.

D.0.1.1 O Sistema RGB

No espago RGB, cada cor é formada pela combinagdo de trés cores basicas -
vermelho, verde e azul — num sistema de coordenadas cartesiano. O espaco de cor,
Fig. 88, corresponde a um cubo unitario (valores de R, G e B normalizados em [0,1]):
seus vértices abrigam as cores primarias (vermelho, verde e azul), as secundarias
(ciano, magenta e amarelo), o preto (origem) e o branco (vértice oposto). A escala
de cinza aparece ao longo da diagonal que liga o preto ao branco, e qualquer cor é
representada por um ponto dentro desse cubo, definido pelo vetor que o une a origem.

B

Blue | (-0 D

Magenta

~White

. -‘i;l.l\ scale (0,1,0)
I, )
Black ~(

e Green

(1.0,0) .2
" Red Yellow

R*

(@) (0)

Figura 88 — (a) Cubo de cores RGB normalizado (b) Cubo de cores RGB 24 bits. Fonte: Gon-
zalez e Woods (2008).

Quando uma imagem é exibida em um monitor RGB, os seus trés componentes,

R, G e B, sdo combinados na tela para produzir uma imagem colorida.
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O numero de bits usados para representar cada pixel no espaco RGB é chamado
de profundidade de pixel. Em geral, cada um dos componentes R, G e B é codifi-
cado em 8 bits. Nessa situagao, cada pixel RGB, ou seja, cada tripla (R, G, B), possui

profundidade de:

Profundidade = 3 x 8 = 24 bits

Imagens com essa profundidade s&o frequentemente denominadas full-color. O

numero total de cores distintas em uma imagem RGB de 24 bits é:

2% — 16777216

A Fig. 88 (b) ilustra o cubo de cores RGB de 24 bits, no qual cada eixo varia de 0
a 255 e cada ponto no interior do cubo representa uma cor possivel.

Diante das limitacées do modelo RGB em representar a percepcdo humana das
cores, a préxima secdo apresenta o sistema HSV, que organiza as cores de forma

mais alinhada a forma como as pessoas as identificam e descrevem.

D.0.1.2 O Sistema HSV

Sistemas de cor como RGB e CMY (CMYK) sao eficientes para hardware — came-
ras, monitores e impressoras — e permitem conversao direta entre si. Contudo, eles
nao refletem a forma como o ser humano lida com as cores no dia a dia: nao se refere
as cores em percentuais de cores primarias, mas em matiz, saturacdo e brilho.

Observando a mesma Fig. 88 (a), centralizando o vértice “branco” do cubo RGB, é

possivel redesenha-lo como sugere a Fig. 89 (a), e sua variante(b).

Green Yellow Green Yellow

H
Red Cyan \ A / Red

Blue Magenta Blue Magenta
(@) (b)

Figura 89 — (a) Cubo de cores RGB noutra perspectiva. (b) Cubo de cores RGB com perfil
hexagonal. Fonte: Gonzalez e Woods (2008).

Cyan White '
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A partir dessa perspectiva o modelo HSV foi proposto para o desacoplamento das

trés informagdes: cor, saturagao e brilho.

”
1/
/

Green Yellow
NJ20°

Figura 90 — Espaco de cores HSV normalizado. Fonte: Rigueira et al. (2022).

» Matiz (H): O angulo corresponde a cor e varia entre 0° e 360°;

 Saturacao (S): O comprimento do vetor é a saturacao e varia de 0 a 1, indicando

o percentual de pureza da cor;

« Luminancia (V): A intensidade de todas as cores no eixo vertical, variando de 0

(preto) a 1 (branco).

Na Fig. 90, qualquer ponto nesse espaco, a posi¢ao angular determina H, o com-
primento radial determina S, e a altura determina V.

Esse desacoplamento do sistema HSV o torna particularmente adequado ao con-
texto deste trabalho, sendo especialmente util para a segmentagdo baseada na matiz
verde (relacionada a planta) e apresentando independéncia em relacédo a ilumina-
¢ao. Como ja mencionado, as imagens sao originalmente obtidas no sistema de cor
RGB; entretanto, a fim de auxiliar a etapa de segmentacéo, é comum a conversao en-
tre diferentes sistemas de cor. A seguir, apresentam-se as equagdes que regem tais

transformacoes.

« Conversao de RGB para HSV:
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R/: R !/

G

/

)

m = min(R', G, B')

A=M-—-m
)
OO
60° x (955

60° x (B2 +2)

60 x (152 +4)

« Conversao de HSV para RGB:

C=V-8, X:C-(l—’(

,se A =0
,se M =R’
S:
,se M =G’
,se M =B’
6—Iémod2

Seja (R, G', B') definido por:

(C, X,0)
(X,C,0)
(0,C, X)
(R/’ G/’ B/) —
(0, X,C)

(X,0,C)

(C,0,X)

\

se 0° < H < 60°

se 60° < H < 120°
se 120° < H < 180°
se 180° < H < 240°
se 240° < H < 300°

se 300° < H < 360°

B
— =—, B'=— (normalizaga nai
TR TR T (normalizagao dos canais)

M =max(R,G', B

0 ,seM=0
V=M

£, caso contrario.

). mevee

E, finalmente:
R= (R +m)-255
G=(G" +m)-255

B= (B +m)-255

ApGs a conversao para o sistema HSV, a segmentacao torna-se mais eficiente,

pois isola regides de interesse de maneira mais robusta frente a variagdes de ilumi-

nacao. A seguir, sdo apresentados 0s principais conceitos e métodos empregados no

processo de segmentagcdo de imagens, com destaque para a limiarizagdo e a seg-

mentacao por cor.
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ANEXO E - SEGMENTACAO

Segmentar uma imagem significa particiona-la em regiées homogéneas, de modo
a isolar um objeto ou area de interesse do fundo e de outras estruturas, facilitando
sua analise e interpretacdo. Dentre diversas técnicas de segmentacao de imagens, se
destaca a limiarizagdo. Devido a sua intuicdo simples, facilidade de implementacao e
baixo custo computacional, a limiarizagdo ocupa posi¢cao central em segmentacao de
imagens (Gonzalez e Woods (2008). Uma de suas aplicacoes é a segmentacédo de
imagens em niveis de cinza, resultando em imagens binarias - preto e branco.

Suponha o histograma da Fig. 91, dispondo de duas regides, ou modos, se deduz
que um dos modos represente o objeto de interesse, mais claro, e 0 outro modo, o

fundo escuro, e um limiar 7', em um “vale”, separando essas duas regides.

Quantity Pixels

Gray Levels

..l”l“| hlll % II|H‘II
r

Figura 91 — Histograma de imagem com um unico limiar em T. Fonte: Gonzalez e Woods (2008).

Quando um histograma, idéntico ao da Fig. 91, possui dois “modos” separados por
um vale bem definido entre os mesmos, € dito haver um valor de intensidade, 7', Unico
para toda a imagem, e 0 método para sua determinacao é chamado de /imiarizacao
global. Definido assim, a segmentagéao binaria g(x, y) é, entdo, expressa pela seguinte

equacao (E.1):

1, se f(x,y) >T,
g(r,y) = (E.1)
0, se f(z,y) <T.

Em outros casos, onde imagens apresentem mais de um limiar para a extragcao de
objetos, € dito limiarizacdo mdltipla, enquanto, imagens com iluminacao nao uniforme

ou mesmo presenca de ruido, sua técnica se denomina como limiarizacdo variavel.
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No contexto da limiarizagdao global, quando as distribuicées de intensidade dos
pixels do objeto de interesse e do fundo sdo bem distintas, pode-se empregar um
algoritmo simples e intuitivo: iterar sobre o histograma da imagem para estimar a in-
tensidade média entre os dois picos, que atua como limiar de separagao entre as duas
regides.

Entretanto, € possivel desenvolver um procedimento mais eficiente expressando
todos os célculos diretamente em termos do histograma da imagem, o qual precisa
ser computado apenas uma unica vez.

O método de Otsu (Otsu (1979)) define o limiar 6timo como aquele que maximiza a
variancia entre classes, 0%, no histograma da imagem. Em outras palavras, ele busca o
valor de T que torna as distribui¢cdes de intensidade de fundo e objeto o mais distintas
possivel. Tal método consiste em assumir duas funcdes de densidade de probabili-
dade, iterando em busca de valor de limiar T entre 0 e 255 - no caso de tons de cinza
- tal que 7" maximize a variancia entre classes.

Esse método oferece uma formulacao baseada unicamente em estatisticas do his-
tograma (variancia de cada classe), o que o torna um algoritmo eficiente, ndo reque-

rendo processamento direto dos pixels apds o calculo do histograma.

op(T) = PT)(mu(T) — mg)* + Po(T)(ma(T) — me)*
onde
« m(T) € a média acumulada até o nivel T,
* mg € a média geral dos pixels da imagem,

 para uma quantidade n; de pixels para um determinado nivel : de cinza , P;(k) é

dado pela soma cumulativa

k k
Pi(k) =) pi=)Y ni/MN (E.2)
0

1=0 1=

A maximizagdo de o%(T) sobre todos os possiveis T fornece o limiar de Otsu. As
Figs. 92 e 93 ilustram um exemplo.

A imagem a ser segmentada nem sempre esta livre de artefatos que prejudicam o
limiar. Quando o ruido ndo pode ser eliminado na fonte, uma pratica comum € suavi-

zar a imagem com um filtro passa-baixa antes de aplicar o limiar, reduzindo variagdes
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. —r
0 63 127 191

Figura 92 — Uma imagem de exemplo real e seu histograma. (Esq.) Imagem original e (dir.) seu
histograma. Fonte: Gonzalez e Woods (2008).

b _E'!’ﬁ_' ‘._- i * i& A

Figura 93 — Segmentagao de imagens baseada em dois algoritmos diferentes. (Esqg.) Segmen-
tacao usando algoritmo global basico e (dir.) segmentagédo usando método de Otsu.
Fonte: Gonzalez e Woods (2008).

indesejadas. Como alternativa, pode-se realgar o contorno da regiao de interesse fil-
trando a imagem com um filtro do tipo passa-alta para evidenciar os niveis de cinza

das bordas, e entdo usar esses valores para definir um limiar mais preciso.

Figura 94 — Exemplo de Segmentagdo em cascata: por Limiarizagao e Cor. Fonte: O autor.

Uma outra abordagem na segmentacdo de imagens € a segmentagao por cor,
conforme podemos verificar na Fig. 94, onde o plano de fundo foi retirado da imagem.

Para segmentar por cor, é mais viavel trabalhar com a imagem em espaco de cor
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desacoplada da intensidade, como o HSV, por exemplo, onde a matiz (H) oferece uma
representacao direta das cores. A partir disso é possivel isolar o intervalo de cores
desejado. As demais componentes S e V ndo carregam informagéo de cor, portanto,

dispensaveis na segmentacgao de cor.
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ANEXO F — OPERAGCOES ARITMETICAS
As operagdes aritméticas entre imagens sao operagdes de matriz, o que significa

que as operacdes aritméticas sao realizadas entre pares de pixels correspondentes
(GONZALEZ; WOODS, 2008). As quatro operacdes sao denotadas em (F.1):

s(z,y) = f(z,y) + g(z,y)
d(z,y) = f(z,y) — g(x,y) 1)
p(r,y) = f(z,y) x g(z,9)
v(z,y) = f(z,y) + g(x,y)

Entende-se que as operagdes sao realizadas entre pares de pixels corresponden-
tesem fandgforz=0,1,2,... ,M-1andy=0,1,2,..., N-1onde M e N sao
os tamanhos das linhas e colunas das imagens. Claramente, s, d, p e t também sao

imagens de tamanho M x N.
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ANEXO G - PROCESSAMENTO MORFOLOGICO

De acordo com Pedrini e Schwartz (2008), a introducédo ao estudo da morfologia
matematica se deu a partir dos estudos de Haas et al. (1967), uma area originalmente
desenvolvida para manipular imagens binarias, posteriormente estendida para tratar
imagens em niveis de cinza. Suas aplica¢cées sdo variadas e consistem em extracéo
de componentes na imagem, busca por padroes especificos, afinamento ou dilatacao
de bordas e muitas outras. Jahne (1995) a reforca como ferramenta util na analise de
formas de objetos numa imagem.

A morfologia matematica se baseia na teoria dos conjuntos para representar a
forma dos objetos em uma imagem. Em geral, compreende operagdes ldgicas da alge-
bra Booleana entre dois conjuntos, neste caso, a imagem binaria A como uma matriz
de conjunto de pixels e B, o elemento estruturante, ou seja, uma mascara de pixels
ndo-nula, comumente, B é um conjunto muito menor do que A, sendo Ae B C Z% A
fim de manter a coeréncia com a abordagem aplicada neste presente trabalho, sera
destacada a operacédo morfolégica aqui empregada, a Eroséo, e em seguida sua ope-

racdo complementar, a Dilatacdo, descritas a seguir:

» Erosao:
A@B:{peZﬂBpQA},

Com B, denotando a mascara deslocada com seu ponto de referéncia sobre o
pixel p. A erosdo do conjunto de pixels A pelo conjunto de pixels B é o conjunto
de todos os pixels p para os quais B esta completamente contido em A (Jahne
(1995)). A erosao pode ser vista como uma filtragem morfoldgica, onde detalhes
na imagem menores do que o elemento estruturante séo filtrados, removidos
da imagem. Em resumo, se trata de uma operacao que reduz objetos e remove

pixels isolados em A.
- Dilatacao:
A®B={z€7Z| B,NA+ &},
A dilatacdo de A por B é o conjunto de todos os pixels para os quais a intersecao

entre A e B, ndo é um conjunto vazio. Em sintese, uma operagéo que aumenta

objetos e preenche pequenas regides nulas.
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(a) (b)

Figura 95 — Erosao para remogao de componentes. (a) Imagem original 486 x 486. (b) Imagem
erodida por elemento estruturante 45 x 45, com todos seus elementos 1s.

Historically, certain computer Historically, certain computer
programs were written using programs were written using
oniy two digits rather than onily two digits rather than
four to define the applicable four to define the applicable
year, Accordingly, the year. Accordingly, the
company's software may company's software may
recognize a date using "00" recognize a date using "00"

as 1900 rather than the ygar as 1900 rather than the yEar

€ €a

Figura 96 — (Esq.) Texto de exemplo com caracteres quebrados. (Dir.) Imagem resultante da
dilatacdo. (Abaixo) Elemento estruturante.

Muitos outros algoritmos morfolégicos sdo derivados dessas duas operagdes pri-

mitivas.

PRINCIPAIS APLICACOES

1. Extracao de contornos (Boundary Extraction)
Obtém as bordas de um objeto pela diferenca entre o conjunto original e sua

erosao.

2. Preenchimento de regioes (Region Filling)
Preenche &reas conectadas a partir de um ponto-semente usando dilatagdes

condicionais.

3. Extracao de componentes conectados (Connected-Component Extraction)
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Identifica cada objeto isolado em uma imagem binaria por dilatacdo iterativa a

partir de pixels-semente.

. Envoltéria convexa (Convex Hull)
Gera 0 menor conjunto convexo que contém um objeto, aplicando sucessivas

erosdes e dilatagdes.

. Afinamento (Thinning)
Remove recortes de borda sem quebrar a conectividade, reduzindo objetos a

sua “linha central”.

. Espessamento (Thickening)
Operacao dual ao afinamento, que amplia estruturas finas “engrossando” obje-

tos.

. Esqueletonizacao (Skeletonization)
Extrai a representacdo medial de uma forma, produzindo seu esqueleto topolé-

gico.

. Poda (Pruning)

Remove ramificacoes indesejadas do esqueleto, refinando a estrutura extraida.
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