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RESUMO

A irrigação de precisão em ambientes controlados exige o monitoramento contínuo e

remoto do solo, mas métodos tradicionais, baseados em medições pontuais, enfren-

tam limitações de abrangência e durabilidade dos sensores. Como alternativa, esta

dissertação apresenta o desenvolvimento e validação de um sistema inteligente de

fenotipagem, fundamentado em imagens RGB e aprendizado de máquina embarcado

em microcontroladores de baixo custo. Os experimentos demonstraram que alterações

na coloração foliar podem ser utilizadas como indicativos sensíveis do estado hídrico,

permitindo antecipar intervenções de irrigação com maior precisão. Foram avaliadas

diferentes estratégias de classificação de estresse hídrico: (i) análise da componente

Saturação, destacando-se como a solução mais simples e eficiente para implementa-

ção em dispositivos com recursos limitados; (ii) modelos rasos baseados em textura,

que apresentaram desempenho promissor; e (iii) arquiteturas profundas do tipo CNN,

que exigem maior poder computacional. Os resultados confirmam a viabilidade de

descentralizar o processamento em dispositivos embarcados (Edge Computing), re-

duzindo a dependência de infraestrutura de nuvem, e evidenciam o potencial da visão

computacional como ferramenta para o monitoramento agrícola de baixo custo.

Palavras-chaves: Visão de máquina na agricultura; Monitoramento remoto de umi-

dade do solo; Imagens RGB; Irrigação de precisão; Detecção de estresse hídrico



ABSTRACT

Precision irrigation in controlled environments requires continuous and remote soil

monitoring, but traditional methods, based on point measurements, face limitations in

sensor coverage and durability. As an alternative, this dissertation presents the devel-

opment and validation of an intelligent phenotyping system, based on RGB images and

embedded machine learning on low-cost microcontrollers. The experiments demon-

strated that changes in leaf color can be used as sensitive indicators of water status,

allowing irrigation interventions to be anticipated with greater precision. Different water

stress classification strategies were evaluated: (i) analysis of the H color component,

which stood out as the simplest and most efficient solution for implementation on de-

vices with limited resources; (ii) shallow texture-based models, which showed promis-

ing performance; and (iii) deep CNN architectures, which require greater computational

power. The results confirm the feasibility of decentralizing processing on embedded de-

vices (Edge Computing), reducing dependence on cloud infrastructure, and highlight

the potential of computer vision as a tool for low-cost agricultural monitoring.

Keywords: Machine vision in agriculture; Remote soil moisture monitoring; RGB im-

ages; Precision irrigation; Water stress detection
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1 INTRODUÇÃO

Estufas modernas evoluíram para fábricas de plantas, permitindo a agricultura ur-

bana e aprimorando as capacidades de produção de alimentos (SHAMSHIRI et al., 2018).

Sistemas de Suporte à Decisão baseados em dados (do inglês DSS) são ferramentas

essenciais para atingir alta produtividade e sustentabilidade (AIELLO et al., 2018). Entre

esses sistemas, a irrigação automatizada desempenha um papel crítico. Sistemas de

irrigação automatizados em estufas promovem a saúde das plantas, otimizam o uso

da água e maximizam os rendimentos das colheitas. Essa abordagem garante que a

quantidade precisa de água seja fornecida às plantas conforme necessário, evitando

assim o desperdício e contribuindo para a sustentabilidade ambiental. Além disso, a

irrigação precisa é um requisito essencial para estudos fenotípicos, que envolvem a

avaliação das características observáveis das plantas resultantes da interação entre

seus fatores genéticos e ambientais, em ambientes controlados.

Nessa perspectiva, fazendas-fábricas similares à Go Green, Fig. 1, aplicam abor-

dagens inovadoras na produção agrícola sustentável. A empresa utiliza um sistema de

irrigação que consome 80% menos água para cultivar alface, e produz 25 vezes mais

cabeças de alface por hectare do que os métodos tradicionais. Robótica e automação

complementam as atividades da empresa (ARGUS, 2023).

Figura 1 – Fazenda de alface em Encinitas, CA, EUA. Fonte: Argus (2023).

A irrigação autônoma fornece suprimento de água adequado e personalizado para

cada espécie cultivada, evitando tanto a irrigação insuficiente quanto a excessiva, o

que pode levar ao desenvolvimento de fungos e outras doenças vegetais. O monito-

ramento adequado ajuda a manter as condições ideais dentro da estufa, reduzindo
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esses riscos. O objetivo de uma estufa inteligente é garantir o controle preciso da

irrigação e criar um microambiente favorável para as plantas, o que geralmente é im-

possível de garantir em ambientes externos.

Os dados coletados por sensores ambientais permitem manter a estabilidade cli-

mática dentro da estufa, o que é essencial para plantas sensíveis a mudanças re-

pentinas de umidade e temperatura. A agricultura de precisão baseada em sensores

minimiza a intervenção humana e promove o monitoramento em tempo real, permi-

tindo intervenções imediatas com base nas condições predominantes do solo e do

ambiente. A automação da irrigação e a telemetria da cultura beneficiam tanto os pro-

dutores quanto a pesquisa científica. A irrigação automatizada melhora a eficiência

do uso da água (GOUMOPOULOS et al., 2014), economiza mão de obra (CHAPPELL et

al., 2013; WHEELER et al., 2018) e permite estudos de fisiologia do estresse (NEMALI;

IERSEL, 2006).

(a) (b)

Figura 2 – Imagens do sistema de fenotipagem vegetal da Donald Danforth Plant Science Center, MO,
EUA: (a) estufa de crescimento em laboratório de fenotipagem com, esteiras, sensores, irri-
gação e pesagem automatizada, (b) extração de características fenotípicas por imagem em
câmara controlada. Fonte: Danforth (2025).

A fenotipagem vegetal é fundamental para compreender como as plantas reagem

ao ambiente. O laboratório de pesquisa Bellwether Foundation Phenotyping Facility,

Fig. 2, do Donald Danforth Plant Science Center, dispõe de uma instalação pioneira

nos EUA que permite aos cientistas monitorar características como tamanho das fo-

lhas, estrutura das raízes e taxa de crescimento, coletando grandes volumes de dados

(DANFORTH, 2025). Essas informações são utilizadas para desenvolver culturas mais

sustentáveis e resistentes a condições adversas, como seca e calor extremo. O centro

de pesquisa oferece fenotipagem em ambiente controlado para caracterizar plantas
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em diferentes ambientes, tratamentos e genética. Os resultados incluem informações

relacionadas ao crescimento e desenvolvimento das plantas e às respostas das plan-

tas ao estresse.

Nesse contexto de pesquisa científica, propomos um sistema de monitoramento

construído com componentes de baixo custo, alinhado à proposta de Ferrarezi et al.

(2015). Esses autores desenvolveram um sistema automatizado de irrigação para cul-

tivos em vasos, baseado em microcontrolador, sensores capacitivos de umidade do

solo e uma bomba de água submersa, visando reduzir custos e facilitar a adoção em

ambientes controlados e por pequenos produtores. O estudo demonstrou que é possí-

vel realizar o manejo hídrico de forma precisa e com baixo custo, sem a necessidade

de infraestrutura complexa, representando um avanço importante para o uso de tecno-

logias acessíveis na agricultura de precisão. Inspirado nesse conceito, o sistema aqui

proposto incorpora também uma câmera RGB para análise fenotípica, expandindo a

abordagem original para além do monitoramento pontual da umidade, a fim de integrar

informações visuais no processo de decisão da irrigação.

1.1 OBJETIVO

Desenvolver e validar um protótipo de sistema de fenotipagem inteligente, capaz

de monitorar o estresse hídrico em plantas por meio de imagens e sensores de umi-

dade, em ambiente controlado. Para atingir esse propósito, foi concebido o SPheRe

(Smart Phenotyping Research Lab – Laboratório de Pesquisa em Fenotipagem Inte-

ligente), uma plataforma que integra o controle da umidade do solo, telemetria e téc-

nicas de visão computacional sobre imagens de plantas cultivadas em uma tenda de

crescimento, destinada a estudos fenotípicos diante de variações hídricas do sistema

solo-planta.

Com esse propósito, as etapas a seguir devem ser realizadas:

1. Instalar um sistema de irrigação automático em uma tenda de cultivo;

2. Projetar um sistema de captura de imagens;

3. Calibrar o sistema de sensoriamento de umidade do solo;
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4. Estabelecer comunicação em nuvem para fim de telemetria e armazenamento

de imagens;

5. Desenvolver software para medir índices RGB de imagens de plantas sob cultivo,

e mensurar outros fatores pertinentes;

6. Conduzir experimentos de estresse hídrico;

7. Fornecer uma prova de princípio de que a descoloração das folhas, é, ou não,

um indicador de estresse hídrico;

8. Investigar outros fatores correlacionados com o estresse hídrico;

9. Avaliar a possibilidade de executar análises de imagens diretamente em um mi-

crocontrolador.

1.2 JUSTIFICATIVA

A aplicação da Internet das Coisas (do inglês IoT) na agricultura tem sido reconhe-

cida como um componente essencial para a integração de sensores e a coleta con-

tínua de informações em tempo real, permitindo decisões mais precisas e rentáveis

(Li et al. (2016); Singh et al. (2021)). Além de possibilitar o monitoramento climático,

da fertilidade do solo e da demanda nutricional das culturas (MOHAMED et al., 2021),

a IoT tem desempenhado um papel crescente na agricultura de precisão, com des-

taque para o controle de irrigação e a prevenção de perdas relacionadas ao manejo

inadequado da água (ABDELMONEIM et al., 2025).

Entretanto, mesmo com os avanços em sistemas automatizados de irrigação, per-

siste a dificuldade em detectar precocemente o estresse hídrico, especialmente em

ambientes controlados, como estufas. A maior parte das soluções atuais depende de

sensores de solo, que, embora eficazes em medições pontuais, apresentam limita-

ções de abrangência espacial e deterioração ao longo do tempo (MILLER et al., 2025).

Nesse contexto, abordagens baseadas em visão computacional têm se mostrado pro-

missoras, pois permitem capturar alterações fenotípicas sutis, como a variação da

coloração foliar, que são indicadores indiretos, mas sensíveis, do estado hídrico das

plantas (ATANASOV, 2021). Além disso, parte-se da hipótese de que a visão com-

putacional pode revelar nuances de cor e padrões espectrais imperceptíveis ao
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olho humano, ampliando a capacidade de diagnóstico precoce do estresse hídrico e

de outras condições fisiológicas (AL-TAMIMI et al., 2022).

Diante desse cenário, esta dissertação justifica-se pela necessidade de superar a

dependência de sensores intrusivos de solo, propondo um sistema de fenotipagem

acessível e embarcado, instalado em uma tenda de cultivo com irrigação automati-

zada. A solução integra uma câmera RGB de baixo custo para captura de imagens,

sensores de telemetria microambiental e algoritmos de aprendizado de máquina otimi-

zados para microcontroladores. A principal contribuição está na demonstração de que

é possível monitorar o estresse hídrico de forma não invasiva, em tempo real e com

baixo custo computacional, promovendo a descentralização do processamento (Edge

Computing) e ampliando as perspectivas de adoção prática em pequenas e médias

propriedades agrícolas.

Assim, além de preencher uma lacuna identificada na literatura quanto à detecção

precoce do estresse hídrico por meio de visão computacional, este trabalho contribui

para a consolidação da agricultura digital ao oferecer uma solução prática, escalável

e alinhada aos desafios globais de sustentabilidade e segurança alimentar previstos

para 2030.

1.3 ORGANIZAÇÃO DO DOCUMENTO

Os próximos capítulos desta dissertação estão organizados da seguinte maneira:

o Capítulo 2 apresenta a fundamentação teórica essencial e estudos que servem de

alicerce para a compreensão do tema em questão, permitindo situar o estudo den-

tro do contexto acadêmico, evidenciando sua relevância e fundamentação. O Capítulo

3 apresenta trabalhos relacionados na literatura que empregam ideias e conceitos

semelhantes aos utilizados neste trabalho. O Capítulo 4 descreve a metodologia ado-

tada na presente pesquisa. O Capítulo 5 explica em detalhes o desenvolvimento dos

experimentos implementados. O Capítulo 6 informa e discute os resultados obtidos. O

Capítulo 7 conclui a dissertação e indica trabalhos futuros. O Capítulo 8, apresentado

como apêndice, traz um aprofundamento adicional sobre a fundamentação teórica.
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2 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo, introduzimos alguns dos conceitos cruciais para o desenvolvimento

desta pesquisa, além de expor estudos e soluções contemporâneas focadas na agri-

cultura de precisão. É importante salientar que os principais conceitos aplicados neste

trabalho serão abordados neste capítulo. Enquanto, conceitos auxiliares podem ser

consultados a partir do Anexo A. Dessa forma, a fundamentação primária e a revisão

da literatura serão suficientes para conferir relevância ao presente estudo.

A Seção 2.2 introduz o uso do processamento de imagens a fim de adequar uma

imagem para extração de dados ou ser entregue à próxima etapa, o Aprendizado de

Máquina (do inglês ML). Então, a Seção 2.3 apresenta o ML como ferramenta para a

classificação de imagens.

2.1 A VISÃO HUMANA FRENTE A VISÃO DE MÁQUINA

A visão é o mais desenvolvido dos sentidos. Por isso, não surpreende que as ima-

gens desempenhem um papel central na percepção humana. Por outro lado, somos

limitados à faixa visual do espectro eletromagnético, enquanto as máquinas podem

cobrir quase todo o espectro eletromagnético, operando com imagens geradas por

fontes não visíveis ao olho humano. Isso inclui ultrassom, ondas de rádio, microondas,

do infravermelho até raios gama, e ainda imagens geradas por computador. Assim, o

Processamento Digital de Imagens abrange um amplo e variado campo de aplicações.

Porém, este trabalho está restrito ao processamento de imagens digitais geradas no

âmbito da luz visível.

A partir de algumas observações sobre as limitações da visão humana, Jähne

(1995) destaca que, embora o sistema visual humano seja extremamente eficaz no

reconhecimento de objetos, ele apresenta deficiências em tarefas como a estimativa

absoluta de valores de cinza, de distâncias e áreas. Além das barreiras inerentes à

percepção humana, incluindo o fato de um dos integrantes deste estudo ser daltônico,

Deutscher (2010) traz constatações controversas ao apontar que a percepção das co-

res pode variar entre diferentes culturas e até mesmo entre civilizações separadas por

longos períodos históricos. Fatores como esses reforçam a ideia da inclusão da visão
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de máquina como crivo em tarefas que envolvem análise de cor, promovendo maior

objetividade, reprodutibilidade e independência de interpretações subjetivas. Jähne

(1995) ainda afirma que avanços importantes na visão computacional foram alcança-

dos graças ao progresso na compreensão do sistema visual humano.

A seção seguinte reúne e descreve os principais recursos de visão de máquina

utilizados ao longo deste estudo.

2.2 O PROCESSAMENTO DIGITAL DE IMAGENS E A VISÃO COMPUTACIONAL

Szeliski (2022) situa o Processamento Digital de Imagens (PDI) como o estágio

inicial da maioria dos algoritmos de Visão Computacional, definindo sua função como

pré-processar a imagem e convertê-la para um formato adequado para obter resulta-

dos satisfatórios. Complementarmente, de Gonzalez e Woods (2008) depreende-se a

Quadro 1, que apresenta uma breve distinção entre essas duas áreas relacionadas.

Característica
Principal

PDI Visão Computacional

Objetivo Primário Manipular, aprimorar,
restaurar e transformar
imagens.

Fazer com que
computadores interpretem o
conteúdo de imagens e
vídeos do mundo real.

Entrada Imagem. Imagem ou vídeo.
Saída Imagem (melhorada,

modificada, transformada).
Descrição, medição,
reconhecimento, decisão,
segmentação, reconstrução
3D.

Foco Pixel-a-pixel, manipulação
de baixo nível da imagem.

Extração de informações de
alto nível, interpretação
semântica do conteúdo da
imagem.

Exemplos de
Tarefas

Ajuste de brilho/contraste,
filtros (desfoque, nitidez),
remoção de ruído,
equalização de histograma,
compressão JPEG.

Reconhecimento facial,
detecção de objetos,
rastreamento de movimento,
navegação de robôs,
realidade aumentada,
diagnósticos médicos por
imagem.

Pergunta
Principal

Como melhorar/modificar a
imagem?

O que há na imagem? / O
que a imagem representa?

Entrada → Saída Imagem → Imagem Imagem → Descrição

Quadro 1 – Distinção entre PDI e Visão Computacional. Fonte: Própria.

Concluímos que este trabalho envolve as duas áreas. No âmbito do PDI, a moti-

vação é obter imagem a partir da imagem, enquanto no âmbito da Visão Compu-
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tacional, focamos na extração de informação a partir da imagem. Nossa busca é

quantificar o estresse hídrico da planta por meio de sua imagem, seja por análise

direta, utilizando o índice RGB (do inglês Red, Green e Blue) da imagem da planta,

quanto por análise indireta, via métodos estatísticos para reconhecimento de padrões

e pela aplicação de técnicas de ML.

Este trabalho contempla as principais etapas de um pipeline típico de visão com-

putacional, incluindo aquisição de imagens, filtragem, conversão de espaços de cor,

segmentação, processamento morfológico, análise de padrões, compressão de ima-

gens e, por fim, aprendizado de máquina.

A combinação de conversão de espaços de cor, filtros de suavização, segmentação

e operações morfológicas constitui um pipeline robusto para extração de regiões de

interesse — aqui, a planta — e serve de base para as subseções a seguir.

2.2.1 Detecção de Movimento Entre Imagens

A fim de se investigar outros fatores além da variação dos índices RGB com relação

ao fluxo de água no interior da planta, este estudo propõe o uso de demais recursos

no âmbito do PDI: a detecção de movimento (SINGLA, 2014) e o reconhecimento de

padrões. A expectativa é de que o SPheRe seja capaz de coletar informações correla-

tas ao fluxo de água no interior da planta, inclusive de suas folhas, influenciando sua

turgidez (rigidez que resulta da pressão interna das células vegetais, causada pela

água em fluxo por osmose), conforme cita Guimarães e Stone (2008). Tais aborda-

gens estão descritas a seguir.

Com foco na detecção de movimento entre frames, a metodologia proposta por

Singla (2014) emprega a operação de subtração entre imagens. Essa técnica é eficaz

para identificar o movimento resultante da recuperação do turgor nas células da planta,

um efeito natural que ocorre durante a reidratação e que restaura sua postura original.

Um exemplo da aplicação desse procedimento de subtração de imagens pode ser

observado na Fig.3.

Além da detecção de movimento, as folhas das plantas também podem ser um

forte indicativo do teor de água por meio de sua textura. A seguir, abordaremos este

aspecto com maior profundidade.
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Figura 3 – Quando há movimento nas cenas, a imagem binária da diferença entre os dois quadros
mostra o movimento na cor branca e, onde não há mudança, mostra a cor preta. Fonte:
Singla (2014).

2.2.2 Análise de Textura

Após a segmentação de uma imagem em regiões, cada conjunto de pixels corres-

pondente pode ser representado de duas maneiras principais para o processamento

subsequente:

1. Representação externa: descreve a região por seu contorno, usando caracte-

rísticas como comprimento da borda, orientação da reta que une pontos extre-

mos e número de concavidades.

2. Representação interna: baseia-se nos pixels que compõem a região, desta-

cando propriedades como cor e textura.

Escolher o esquema de representação é apenas o primeiro passo. Em seguida,

cada região deve ser descrita por descritores compatíveis com a abordagem esco-

lhida. Seja externa ou interna (ou ambas), os descritores devem ser invariantes a

variações de tamanho, translação e rotação.

No contexto deste presente estudo foi aplicada a representação interna baseada

na textura das folhas, supondo que essa descrição regional seja relevante para indicar

o nível de estresse hídrico da planta.
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Dentre diversas definições para textura, Rosenfeld e Troy (1970) definem textura

como um arranjo repetitivo de padrões sobre uma área, e propõem sua quantização

por meio de fatores como dependência de níveis de cinza e autocorrelação. Para ca-

racterizar a textura de uma região — medida intuitiva de atributos como suavidade,

aspereza e regularidade — empregam-se três abordagens principais em processa-

mento de imagens:

• Estatística: quantifica propriedades como granulação e uniformidade por meio

de métricas derivadas de histogramas ou matrizes de coocorrência.

• Estrutural ou Geométrica: modela o arranjo de elementos básicos (primitivas),

por exemplo, padrões de linhas paralelas e espaçadas regularmente.

• Espectral: analisa o espectro de Fourier para identificar periodicidades globais,

detectando picos estreitos e de alta energia.

A abordagem adotada neste trabalho é de natureza estatística, fundamentando-

se na caracterização da distribuição dos níveis de cinza de um conjunto de pixels

por meio de medidas como média, variância e desvio padrão, conforme descrito por

Pedrini e Schwartz (2008). Entre os métodos estatísticos disponíveis, empregou-se

especificamente a Matriz de Co-ocorrência de Níveis de Cinza ou Gray-Level Co-

Occurrence Matrix (GLCM). A GLCM conta quantas vezes um certo nível de cinza

(em um pixel) aparece ao lado de outro certo nível de cinza (em pixel vizinho), em

uma direção e distância específicas.

A análise de textura via GLCM baseia-se em extrair estatísticas (Haralick features)

que quantificam propriedades como contraste, homogeneidade e correlação. A cons-

trução da GLCM será descrita na próxima subseção, e sua aplicação permite capturar

texturas direcionais e, somando matrizes rotacionadas, obter invariância a rotações. A

normalização da GLCM culmina numa distribuição de probabilidades, e a partir disto,

os descritores são calculados, formando um vetor característico de textura. Essa abor-

dagem é amplamente utilizada em aplicações que vão de classificação de imagens

médicas a análise remota de padrões de superfície.
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2.2.2.1 Construção da GLCM

Dada uma imagem I com L níveis de cinza, segue o procedimento para construir

sua Matriz de Co-ocorrência de Níveis de Cinza (GLCM):

1. Escolha da Direção e Distância (offset): Definição do deslocamento (!x,!y)

(ou ângulo 𝜔 e distância d) que especifique a relação espacial entre pares de pi-

xels. Em outras palavras, primeiramente, se decide quem são os pixels vizinhos.

Por exemplo: a partir do pixel de referência, o seu vizinho é o pixel imediatamente

à direita (distância 1, ângulo 0 graus) ou o pixel na diagonal superior direita (dis-

tância 1, ângulo 45 graus)

2. Inicialização com uma Tabela Vazia: Criada uma matriz P ↑ NL→L com todos

os elementos zerados. Ou seja, uma matriz quadrada L ↓ L nula. Se a imagem

tem níveis de cinza de 0 a 255 (de preto a branco), a tabela terá 256 linhas e 256

colunas. Cada célula dessa tabela começa com o valor zero.

3. Contagem de pares. Para cada pixel (x, y) na imagem I(x, y):

• Para cada pixel (pixel atual), se verifica o seu pixel vizinho na direção e

distância escolhidas no passo 1.

• Computar o nível de cinza do pixel atual (esse será o número da linha da

tabela).

• Computar o nível de cinza do pixel vizinho (esse será o número da coluna

da tabela).

• Na célula correspondente da tabela é adicionado 1 a ela.

4. Normalização: A tabela P é convertida em distribuição de probabilidades:

p(i, j) =
P (i, j)

)︃L↑1
i=0

)︃L↑1
j=0 P (i, j)

de modo que
L↑1[︃

i=0

L↑1[︃

j=0

p(i, j) = 1.

Essa matriz GLCM mostra padrões de textura. Se muitos números altos estiverem

perto da diagonal principal da tabela, significa que os pixels vizinhos têm níveis de
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cinza muito parecidos (a imagem é homogênea, com poucas mudanças, como uma

área lisa). Se os números estiverem espalhados por toda a tabela, significa que há

muitas mudanças nos níveis de cinza entre pixels vizinhos (a imagem tem mais tex-

tura ou é mais “áspera”). Uma ferramenta poderosa para descrever a textura de uma

imagem de forma numérica.

Na Fig.4, um exemplo de obtenção da matriz GLCM normalizada a partir de uma

imagem hipotética com base em 3 níveis de cinza:

Figura 4 – Operações sobre uma imagem (esq.) para obtenção da matriz GLCM normalizada (dir.) com
base no pixel vizinho à direita. Fonte: Tran et al. (2020).

A partir de p(i, j), calculam-se estatísticas de textura (HARALICK et al., 1973), por

exemplo:

• Contraste:
)︃

i,j(i↔ j)2 p(i, j).

• Dissimilaridade:
)︃

i,j |i↔ j| p(i, j).

• Homogeneidade (IDM):
)︃

i,j
p(i,j)

1+(i↑j)2 .

• Energia (ASM):
)︃

i,j p(i, j)
2.

• Entropia: ↔
)︃

i,j p(i, j) log p(i, j).

• Correlação:
)︃

i,j(i↑µi)(j↑µj)p(i,j)

𝜔i 𝜔j
.

Considerar múltiplos offsets e ângulos (por exemplo 𝜔 = 0↓, 45↓, 90↓, 135↓) resulta

em GLCMs mais robustas, invariantes a rotações.

A seguir, a Fig. 5 retrata o cálculo de duas das características de Haralick sobre oito

regiões da imagem original, quatro no céu, uma região bastante homogênea, e quatro

regiões situadas na grama, notoriamente variando sua textura na direção vertical.
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Figura 5 – Correlação e dissimilaridade a partir da GLCM de 256 níveis de cinza de 4 regiões
no céu e 4 na grama. Fonte: Gomede (2024)

2.2.2.2 Aplicações

A GLCM e suas feições de Haralick são amplamente usadas em análise de ima-

gens médicas, sensoriamento remoto, classificação de terrenos e detecção de defei-

tos de fabricação, graças à sua capacidade de capturar padrões de textura de forma

robusta ao ruído (NANNI et al., 2013).

2.2.2.3 Técnicas modernas de classificação de texturas

Além das características de Haralick, tradicionalmente empregadas na análise de

texturas, técnicas modernas têm sido exploradas para ampliar a capacidade de dis-

criminação em aplicações de visão computacional. Entre elas, destacam-se os Local

Binary Patterns (LBP), amplamente utilizados por sua simplicidade e robustez a va-

riações de iluminação, e os filtros de Gabor, capazes de capturar informações multi-

escalares e multiorientadas da textura. Mais recentemente, abordagens baseadas em

aprendizado profundo, como redes neurais convolucionais (CNNs), têm demonstrado

elevado desempenho na extração automática de descritores texturais, dispensando

a necessidade de engenharia manual de atributos. Estudos de revisão e aplicações
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práticas (Liu et al. (2019);Cimpoi et al. (2015)) indicam que a combinação entre des-

critores clássicos e métodos modernos pode potencializar análises em fenotipagem

de plantas, configurando-se como um caminho promissor para futuras investigações.

A fim de complementar os conceitos até aqui discutidos, a seção seguinte expõe a

última etapa do pipeline deste desenvolvimento, a IA para classificação de imagens.

2.3 APRENDIZAGEM DE MÁQUINA E CLASSIFICAÇÃO DE IMAGENS

De acordo com Sze et al. (2017), Inteligência Artificial (IA) é a ciência e a en-

genharia que desenvolvem máquinas capazes de atingir objetivos com autonomia e

desempenho semelhantes aos humanos. No âmbito da IA, o ML estuda métodos que

permitem aos computadores aprender a partir de dados, sem a necessidade de pro-

gramação explícita. Theodoridis (2015) compara esse processo ao modo como o cé-

rebro humano aprende e faz previsões.

Atualmente, o uso do Machine Learning está cada vez mais presente em nosso

cotidiano, com aplicações que vão desde sistemas de recomendação até a análise

de grandes volumes de informações. Um exemplo fundamental é o reconhecimento

de objetos — um conjunto de tarefas da Visão Computacional voltadas à identificação

automática de itens em imagens. A Fig. 6 ilustra algumas dessas tarefas de detecção

e classificação de objetos.

Figura 6 – Tarefas relacionadas ao reconhecimento de objetos. Fonte: Agarwal (2015).

Segundo Agarwal (2015), no campo da Visão Computacional é possível distinguir

três tarefas principais:

1. Classificação de Imagens: Consiste em atribuir uma categoria semântica a
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uma imagem que contém, em geral, um único objeto. O objetivo é prever a qual

classe o objeto pertence.

2. Detecção de Objetos: Trata-se de uma generalização do problema de classi-

ficação. Envolve tanto a identificação quanto a localização de múltiplos objetos

em uma imagem, utilizando caixas delimitadoras (bounding boxes) para circun-

dar cada objeto detectado e atribuir-lhe uma classe.

3. Segmentação de Objetos: Busca atribuir a cada pixel da imagem um rótulo de

categoria, permitindo distinguir precisamente os contornos dos objetos. A seg-

mentação compreende tanto o particionamento quanto a associação semântica

dos segmentos a classes conhecidas.

De modo geral, como destacado por Theodoridis (2015), o objetivo da classificação

é associar um padrão desconhecido a uma dentre várias classes previamente estabe-

lecidas. Abraham et al. (2025) definem a classificação de imagens como o processo

de atribuir um rótulo a uma imagem de entrada com base em seu conteúdo.

Com o avanço das pesquisas, a classificação de imagens passou a ser ampla-

mente aplicada em diversos domínios, como educação, segurança, saúde, comércio

e agricultura. Alguns exemplos de aplicação incluem: reconhecimento de caligrafia,

detecção facial, análise de cenas, visão computacional para veículos autônomos, re-

conhecimento de gestos manuais e identificação de doenças (RAWAT; WANG, 2017).

Pardede et al. (2020) afirmam que os métodos de classificação podem ser organi-

zados segundo sua profundidade em duas categorias principais: arquiteturas rasas e

arquiteturas profundas. As arquiteturas rasas abrangem técnicas tradicionais de ML,

como:

• Máquinas de Vetores de Suporte (SVM) (BOSER et al., 1992);

• Classificador Bayes Naïve (FRIEDMAN et al., 1997);

• K-Vizinhos Mais Próximos (k-NN) (FIX, 1985).

Esses métodos são ilustrados por Soofi e Awan (2017) na Fig. 7. Já as arquitetu-

ras profundas baseiam-se principalmente em redes neurais convolucionais (do inglês

CNNs), que serão abordadas nas seções seguintes.



36

Figura 7 – Técnicas de classificação de aprendizagem supervisionada. Fonte: Soofi e Awan
(2017).

2.3.1 Redes Neurais e Aprendizagem Profunda

Inicialmente apresentamos as definições de IA e ML. Sze et al. (2017) aprofundam

essa discussão, identificando um subcampo inspirado no funcionamento do cérebro:

em especial, as redes neurais artificiais (RNAs). A Fig. 8 ilustra a posição das RNAs e

do Aprendizado Profundo (do inglês DL) dentro da IA.

Figura 8 – Relação entre Deep Learning e Inteligência Artificial. Fonte: Sze et al. (2017).

Como o próprio nome indica, as redes neurais artificiais foram inspiradas no funcio-

namento do sistema nervoso biológico. Nos sistemas naturais, os neurônios conectam-

se por meio de ligações funcionais chamadas sinapses, que podem ser ativadas ou

inibidas. Essas conexões são responsáveis pela mediação das informações entre os
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neurônios, organizados de maneira hierárquica, conforme descrito por Theodoridis

(2015).

Foi o trabalho de McCulloch e Pitts (1943) que primeiro desenvolveu um modelo

computacional para um neurônio. Posteriormente, Rosenblatt (1958) construiu uma

máquina de aprendizado baseada no modelo de neurônio que aprende a partir de

um conjunto de dados de treinamento. Essa máquina é chamada de perceptron e é

o ponto de partida para redes neurais artificiais. De acordo com Theodoridis (2015),

redes neurais são máquinas de aprendizado compostas por um grande número de

neurônios conectados em camadas. A Fig. 9 exemplifica um sistema de rede neural.

Figura 9 – Sistema de Rede Neural. Fonte: Sze et al. (2017).

Um Perceptron Multicamadas (do inglês MLP) é uma rede neural simples com-

posta por mais de uma camada de perceptrons. Os neurônios na camada de entrada

recebem os valores de entrada e os propagam para a camada intermediária, ou “ca-

mada oculta” da rede. Cada valor é associado a um “peso”, e a computação de cada

neurônio envolve uma soma ponderada dos valores de entrada. A rede propaga esses

valores ponderados pelas camadas ocultas até a camada de saída, e a camada de

saída apresentará as saídas da rede ao usuário (SZE et al., 2017).

Por muitos anos, modelos de redes neurais rasas com poucos estágios foram a

principal escolha para computação inspirada no cérebro. No entanto, no início da dé-

cada de 1990, redes neurais profundas (compostas por muitas camadas) tornaram-se

um objeto de pesquisa amplamente explorado (SCHMIDHUBER, 2015). Vários estudos

definem DL como a área dentro das redes neurais onde há mais de três camadas

(mais de uma camada oculta). O número de camadas em uma Rede Neural Profunda

(do inglês DNN) é geralmente entre 5 e 1000, de acordo com Sze et al. (2017). O
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processo de aprendizagem em uma DNN, também chamado de treinamento, envolve

a determinação do valor dos pesos na rede. A inferência executa o modelo de rede

com fatores de peso fornecidos.

Em uma rede neural multicamadas feed-forward, cada nó em uma camada se co-

necta a todos os outros nós na camada vizinha (SVOZIL et al., 1997). Os valores de

entrada se propagam pelas camadas e os neurônios se conectam entre si por meio

de pesos. Cada neurônio recebe informações dos neurônios precedentes e produz

uma saída passando a soma ponderada desses sinais por meio de uma função de ati-

vação (SAZLI, 2006). O nome rede feed-forward indica que a informação flui da camada

de entrada para a camada de saída (THEODORIDIS, 2015).

O processo de otimização usado no treinamento de redes é chamado de “gradiente

descendente”. Nesse processo, a derivada parcial da perda relacionada a cada peso

determina o valor do peso atualizado, conforme explicado por Theodoridis (2015). O

processo é repetido a cada iteração para reduzir a perda geral. O algoritmo usa retro-

propagação para calcular as derivadas parciais dos gradientes, ou seja, os valores de

peso são passados de volta pela rede para calcular a função de perda dependente do

peso. A diferença entre a saída de rede real e a desejada define a perda. Portanto, esta

última deve estar disponível para o treinamento da rede, implicando em uma técnica

de aprendizado supervisionado (SAZLI, 2006). Uma série de métodos como, por exem-

plo, lote, aprendizado supervisionado, aprendizado por reforço e ajuste fino, melhoram

o desempenho e a eficiência do treinamento.

De acordo com Svozil et al. (1997), uma rede neural multicamadas feed-forward

pode operar em dois modos: treinamento e predição. O processo de treinamento

ajusta os fatores de peso a cada iteração para reduzir o erro (perda), partindo de

valores arbitrários iniciais. Cada iteração é chamada de época e, geralmente, várias

épocas são necessárias para concluir o treinamento. Os pesos convergirão para um

conjunto de valores considerado o ótimo local à medida que o processo iterativo con-

tinua.

Durante a predição, o modelo recebe uma imagem como entrada e gera um vetor

de pontuações, uma para cada classe. O conteúdo do vetor indica a probabilidade

do objeto pertencer a essa classe. Normalmente, a pontuação mais alta representa

a classe mais provável (SZE et al., 2017). Além disso, podemos descrever a perda

como a lacuna entre as pontuações ideais corretas e as pontuações computadas pela
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DNN com base em seus pesos atuais. Portanto, o objetivo do treinamento da DNN é

determinar os fatores de peso que maximizam a pontuação correta da classe ou que

minimizam a perda média em um conjunto de treinamento extenso. O erro resultante

é uma estimativa da qualidade da predição da rede treinada (SVOZIL et al., 1997).

De acordo com Voulodimos et al. (2018), na última década, houve uma série de

desenvolvimentos em arquiteturas profundas e algoritmos de DL. Entre os fatores que

contribuíram para essas melhorias está o surgimento de grandes conjuntos de da-

dos disponíveis publicamente, potencializados pela computação de Unidade de Pro-

cessamento Gráfico (do inglês GPU). Além disso, novas técnicas de regularização e

estruturas poderosas aceleraram a revolução do DL.

Atualmente, algumas das aplicações que utilizam DL incluem assistência médica,

processamento de dados visuais, análise de redes sociais e processamento de áudio e

fala (HASAN et al., 2020). Além disso, as técnicas de DL alcançam bom desempenho em

vários problemas de visão computacional, como detecção de objetos, rastreamento

de movimento, reconhecimento de ações, estimativa de pose humana e segmentação

semântica, como afirmam Voulodimos et al. (2018). Um dos tipos mais relevantes de

modelos de DL para aplicações de visão computacional e imagem são as CNNs, às

quais nos voltamos na seção seguinte.

2.3.2 Redes Neurais Convolucionais

As aplicações em classificação de imagens e detecção de objetos aumentaram

com o desenvolvimento e o aprimoramento de algoritmos de DL. De acordo com

Pathak et al. (2018), métodos de detecção de objetos usando técnicas de DL ba-

seadas em CNN têm sido extensivamente aplicados. Esse tipo de rede neural tem

bom desempenho ao processar dados que vêm na forma de múltiplas matrizes, como

muitas modalidades de dados de mídia são, conforme descrito por LeCun et al. (2015).

Na década de 1980, estudos em Neurociência concluíram que o cérebro tem di-

ferentes regiões para tarefas distintas. Portanto, o cérebro tem uma organização hi-

erárquica e localizada. Fukushima (1988) publicou o primeiro modelo computacional

baseado no cérebro humano e suas conectividades locais. No entanto, o termo CNN

entrou em uso apenas na década de 1990, com a pesquisa de LeCun et al. (2015),

que envolveu o uso de uma rede neural para reconhecer caracteres em imagens.
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Uma CNN é um algoritmo de aprendizado profundo que recebe uma imagem como

entrada, atribui pesos aprendíveis a vários objetos nela e pode diferenciar um do ou-

tro. Em uma CNN, apenas a última camada é totalmente conectada, enquanto em uma

Rede Neural Artificial (RNA), cada neurônio é conectado a todos os outros neurônios

(WAGH et al., 2019). As CNNs são compostas por múltiplas camadas convolucionais.

A rede gera um mapa de características em cada camada, consistindo em uma abs-

tração de nível cada vez mais alto dos dados de entrada, que preserva informações

essenciais, porém únicas.

Por definição, uma CNN usa uma única rede para aprender diversas característi-

cas de uma determinada imagem e realizar sua classificação, tarefas anteriormente

realizadas separadamente. A estrutura do sistema visual inspirou essa ideia. Hoje,

as CNNs alcançam resultados muito bons em reconhecimento de padrões, conforme

declarado em Voulodimos et al. (2018).

Os principais componentes de uma CNN são a camada convolucional, a função

de ativação, a camada de subamostragem e a camada totalmente conectada. Uma

arquitetura típica de CNN consiste em repetições de sequências de diversas camadas

convolucionais e uma camada de agrupamento, seguidas por uma ou mais camadas

totalmente conectadas (YAMASHITA et al., 2018). Descrevemos esses componentes nas

seções a seguir.

2.3.2.1 Camada Convolucional

Em uma CNN, cada camada convolucional é responsável por realizar a extração de

características e gerar uma abstração sucessivamente de nível superior dos dados de

entrada, chamada de “mapa de características”. Essa abstração preserva informações

essenciais, porém únicas, sobre a imagem de entrada (SZE et al., 2017). A extração de

características consiste em uma combinação de operações lineares e não lineares,

como, por exemplo, funções de convolução e ativação (YAMASHITA et al., 2018).

A camada convolucional em uma CNN, ao contrário das redes MLP, preserva a

estrutura espacial da imagem de entrada. De acordo com Yamashita et al. (2018), ela

recebe a entrada como uma matriz tridimensional e, em seguida, convolui um filtro

tridimensional (também chamado de kernel) com a imagem (chamado de tensor). O

filtro desliza sobre a imagem espacialmente, computando produtos por elemento. A
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operação realizada pelo filtro em cada posição é uma convolução matricial entre a

imagem de entrada e o filtro e, como saída, produz um mapa de ativação composto

pelas características da imagem. A Fig. 10 mostra um exemplo ilustrativo de uma

operação de convolução.

Figura 10 – Uma operação de convolução. Fonte: Yamashita et al. (2018).

Cada camada convolucional de uma CNN inclui vários filtros, e cada filtro gerará

um mapa de características diferente, aprendendo um atributo específico da imagem

(YAMASHITA et al., 2018). A profundidade do filtro deve ser equivalente à profundidade

de entrada corrente. Como as CNNs são compostas por várias camadas convolucio-

nais, e cada camada inclui vários filtros, muitos mapas de características se combinam

para classificar uma imagem (RAWAT; WANG, 2017).

Devido ao seu comportamento, as características aprendidas pelo filtro são robus-

tas à translação, como afirmam LeCun et al. (2015). Em outras palavras, o filtro, que

atua como um detector de padrões, pode identificar esses padrões em qualquer local

da imagem. Um filtro aprendido se aplica a qualquer local da rede, uma vez que os

parâmetros são compartilhados.

Os parâmetros básicos de cada camada convolucional são o tamanho do filtro, o

número de filtros, o preenchimento e o passo (YAMASHITA et al., 2018). O preenchimento

está relacionado ao tamanho das bordas da imagem, e o passo é o deslocamento

que o filtro realizará cada vez que deslizar pela imagem. A convolução na Fig. 6, por

exemplo, tem preenchimento zero e passo igual a 1. Outro parâmetro possível é a taxa
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de expansão. Uma taxa de expansão superior a um implica um kernel dilatado, o que

faz com que o filtro perca sua característica de localização em algum grau.

2.3.2.2 Função de Ativação

Após a camada de convolução, uma função de ativação é adicionada à rede para

modular não linearidades, de acordo com Yamashita et al. (2018). Dependendo da

função, ela varrerá a rede e permitirá que alguns valores sejam replicados. Em outras

palavras, os pixels que não são necessários serão desativados e apenas os pixels

essenciais serão mantidos (WAGH et al., 2019). Entre as funções de ativação mais utili-

zadas, estão: passo binário, sigmoide, tangente hiperbólica (TanH), unidades lineares

retificadas (ReLU) e Softmax. Cada uma gerará um mapa de ativação de saída dife-

rente. Na Fig.11 a representação de algumas dessas funções de ativação.

Figura 11 – Funções de ativação comumente aplicadas a redes neurais: (a) unidade linear re-
tificada (ReLU), (b) sigmóide e (c) tangente hiperbólica (tanh). Fonte: Yamashita et
al. (2018).

2.3.2.3 Camada de Subamostragem

LeCun et al. (2015) afirma que a camada de subamostragem, também chamada

de camada de pooling ou downsampling, é responsável por gerar representações me-

nores a partir dos mapas de características produzidos nas camadas anteriores, para

criar uma representação com menor custo computacional e trabalhar contra o overfit-

ting. De acordo com Voulodimos et al. (2018), a camada de pooling reduz as dimen-

sões espaciais do volume de entrada para a próxima camada convolucional. Além

disso, também diminui o número de parâmetros aprendíveis (YAMASHITA et al., 2018).

Mesmo que não afete a dimensão de profundidade do volume, leva a uma certa perda

de informação (VOULODIMOS et al., 2018). No entanto, outra característica desta ca-
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mada é que ela reduz a sensibilidade a pequenas distorções na imagem. As principais

estratégias utilizadas para subamostragem são:

• Max Pooling: Replica o valor máximo de um grupo;

• Average Pooling: Gera o valor médio de um grupo.

A Fig. 12 mostra um exemplo de uma operação de agrupamento máximo com um

tamanho de filtro de 2 ↓ 2, sem preenchimento de borda e um passo de 2.

Figura 12 – Uma operação de Max pooling. Fonte: Yamashita et al. (2018).

2.3.2.4 Camada Densa

A camada de saída de uma CNN é uma camada básica de rede neural totalmente

conectada, onde todos os neurônios estão totalmente conectados a todos os neurô-

nios da camada anterior (WAGH et al., 2019). Conforme declarado por Voulodimos et al.

(2018), esse tipo de camada realiza o raciocínio de alto nível na rede neural. A camada

de saída converte mapas de características bidimensionais em vetores unidimensio-

nais. Esses vetores de características constituem o resultado direto da classificação ou

permitem processamento posterior. A ideia principal dessa camada é a mesma usada

em um MLP. Ela compreende um classificador e uma unidade de computação para

calcular a função de perda, atuando como uma camada de saída (CUI, 2018). Em uma

visão geral, uma CNN combina todos esses componentes para otimizar o processa-

mento e a classificação de imagens (LECUN et al., 2015). Cada camada pode aparecer

várias vezes e pode ser combinada de muitas maneiras diferentes, dependendo da

aplicação. Portanto, existe uma arquitetura específica para cada tarefa, permitindo a

extração e a classificação de características. O treinamento da CNN determina os
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pesos das camadas totalmente conectadas, os vieses das funções de ativação e os

filtros das camadas convolucionais.

2.3.3 Treinamento de uma CNN

Conforme mencionado em 2.3.2, o treinamento de uma CNN é o processo que

determina alguns valores e parâmetros envolvidos na rede neural, a saber, os filtros

das camadas convolucionais , os vieses (bias) da função de ativação e os pesos das

camadas totalmente conectadas. O aprendizado desses valores ocorre por meio de

um processo que envolve múltiplas repetições de toda a sequência CNN e o cálculo

da perda após cada uma delas. A perda é propagada da última para a camada ini-

cial (razão pela qual é chamada de retropropagação), e os pesos e parâmetros são

ajustados dependendo do valor da perda a fim de minimizá-la (YAMASHITA et al., 2018).

Atualmente, existem vários algoritmos para otimizar esse treinamento. Um dos

mais conhecidos e utilizados é o Mini-Batch Gradient Descent, descrito em Li et al.

(2014). Os valores iniciais dos parâmetros a serem aprendidos são determinados ale-

atoriamente. Primeiro, ele seleciona N amostras de dados (neste caso, N imagens),

onde N corresponde ao tamanho do lote associado. Em seguida, o minilote é propa-

gado pela CNN para calcular a perda de treinamento. Os gradientes são calculados na

próxima etapa por meio de retropropagação pela rede. Finalmente, os parâmetros são

atualizados usando os gradientes. O processo se repete para todos os minilotes e, em

seguida, todo o processo é repetido por um determinado número de vezes (chamados

de épocas), ou até que a perda atinja um valor mínimo, indicando que a CNN atingiu

um bom desempenho.

Diferentes algoritmos de otimização possíveis podem substituir o Gradiente Des-

cendente Estocástico (do inglês SGD) frequentemente usado. Alguns exemplos são:

SGD usando também o Momentum (outro hiperparâmetro da CNN), RMSProp ou

Adam. A escolha do algoritmo depende da aplicação.

A Fig. 13 representa o fluxo completo de treinamento de uma CNN básica, con-

forme descrito em Yamashita et al. (2018). A imagem de entrada passa inicialmente

por vários blocos, cada um composto por uma sequência de camadas convolucionais

e funções de ativação (neste caso, representadas pela função ReLU), seguidos por

uma camada de agrupamento máximo. Em seguida, os mapas de características ge-
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Figura 13 – Treinamento de uma CNN. Fonte: Yamashita et al. (2018).

rados passam por uma série de camadas totalmente conectadas, gerando a saída da

rede, ou seja, a previsão. Essa previsão é, por sua vez, comparada com o valor ver-

dadeiro para esse dado de entrada, e a perda calculada é retropropagada pela rede

para atualizar os pesos e os kernels de convolução. A ordem e o número de camadas

variam, dependendo da arquitetura da CNN escolhida.

O primeiro passo no processo de treinamento é o pré-processamento dos dados.

Existem várias maneiras de pré-processar os dados de entrada antes do processo

de treinamento. Uma estratégia para oferecer maior flexibilidade ao modelo e torná-lo

menos sensível a mudanças nos pesos é normalizá-lo, conforme expresso por Patro

e Sahu (2015). Essa etapa garante que cada parâmetro de entrada tenha uma dis-

tribuição semelhante, o que permite que o algoritmo trabalhe mais na região central

dos dados do espaço N-dimensional. Além disso, os dados centralizados simplificam

a representação dessas informações e minimizam o impacto na borda de separação.

A próxima etapa, de posse do conjunto de dados pré-processado, o divide em sub-

conjuntos, cada um com um papel diferente no processo de treinamento da CNN. De

acordo com Yamashita et al. (2018), normalmente, os dados disponíveis são divididos

em três conjuntos:

• O conjunto de treinamento é necessário para treinar a rede. A propagação direta

calcula a perda e a propagação reversa atualiza os parâmetros aprendíveis;

• O conjunto de validação é necessário para avaliar o modelo durante o processo

de treinamento e ajustar os hiperparâmetros;



46

• O conjunto de teste permite avaliar o desempenho do modelo final após o trei-

namento.

A inicialização dos pesos (inclusive bias) associados a cada neurônio na rede,

conforme descrito em 2.3.2, segue a preparação dos dados para treinamento. Con-

forme descrito por Narkhede et al. (2022), existem duas estratégias possíveis para

esse processo: realizar a inicialização com novos pesos ou, por meio da técnica de

aprendizado por transferência, usar os valores de peso de um modelo pré-treinado.

O primeiro tipo de inicialização pode gerar valores de peso aleatórios, realizar uma

inicialização orientada a dados ou uma híbrida, que combina os dois métodos. A inici-

alização usando pesos pré-treinados melhora a generalização ao aprender caracterís-

ticas de qualidade dos dados (ERHAN et al., 2010). A ideia é que, a partir de um modelo

treinado em um banco de dados mais genérico, por exemplo, ImageNet (DENG et al.,

2009), possamos usar seus pesos de diferentes maneiras, dependendo do tamanho

do conjunto de dados. As possibilidades incluem treinar (i) o modelo inteiro (camadas

convolucionais e totalmente conectadas), (ii) algumas camadas convolucionais (dei-

xando outras congeladas) ou (iii) as camadas totalmente conectadas congelando a

base convolucional.

Em seguida, o modelo de rede neural usa o algoritmo de retropropagação, con-

forme já mencionado. De acordo com Yamashita et al. (2018), o principal objetivo

neste ponto é encontrar kernels nas camadas de convolução e pesos nas camadas

totalmente conectadas, que minimizem as diferenças entre as previsões de saída e os

rótulos reais fornecidos em um conjunto de dados de treinamento. Valores específi-

cos dos kernels, pesos e bias determinam o desempenho do modelo. A propagação

direta gera uma perda em um conjunto de dados de treinamento, e um algoritmo de

otimização atualiza os parâmetros aprendíveis de acordo com o valor da perda. Para

classificações binárias, uma das funções de perda mais utilizadas é a perda de en-

tropia cruzada binária (RUBY et al., 2020), uma classe particular de perda de entropia

cruzada onde os dois alvos de predição são 0 e 1. A função de perda mais comum

em problemas de classificação multiclasse é a perda de entropia cruzada categórica

(descrita em Koidl (2013)), que mede a dissimilaridade entre a distribuição de rótulos

verdadeira e a prevista.

Conforme expresso por Rawat e Wang (2017), um problema comum ao realizar a
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classificação de imagens é o overfitting (sobreajuste), o que significa que o modelo

atinge um bom desempenho no conjunto de treinamento, enquanto, um mau desem-

penho diante de um conjunto de teste. O overfitting implica que o modelo não apren-

deu a capacidade de generalizar em dados não vistos. Uma técnica para reconhecer

o overfitting é monitorar a perda e uma métrica de avaliação nos conjuntos de treina-

mento e validação (YAMASHITA et al., 2018). Esse roteiro verificará se o modelo tem um

desempenho muito bom no conjunto de treinamento em comparação com o conjunto

de validação, indicando que ocorreu overfitting. Algumas estratégias ajudam a miti-

gar esse problema. Uma das mais comuns é realizar o aumento de dados, conforme

afirmado por Krizhevsky et al. (2012). Essa abordagem amplia artificialmente o con-

junto de dados usando transformações que preservam rótulos. Essas transformações

incluem translações de imagens e reflexões horizontais ou alterações de intensidade

dos canais RGB nas imagens de treinamento. Uma outra estratégia para prevenir over-

fitting é o dropout, proposta por Srivastava et al. (2014), uma técnica que em cada uma

das épocas (e em cada lote de treinamento) seleciona aleatoriamente um percentual

de neurônios e os desativa, para que não participem da propagação para frente ou

para trás durante o processo de treinamento de uma rede neural. Isso ajuda a garantir

que a rede seja robusta e redundante, genérica o suficiente para que não dependa de

nenhuma área específica para obter respostas.

2.3.4 CNNs e Classificação de Imagens

Desde o início dos anos 2000, pesquisadores têm aplicado CNNs com sucesso

para a detecção, segmentação e reconhecimento de objetos e regiões em imagens

(LECUN et al., 2015). Algumas das tarefas mais comuns incluem reconhecimento de

sinais de trânsito, segmentação de imagens biológicas e detecção de rostos, pedes-

tres e corpos humanos em imagens naturais. No entanto, foi a partir da competição

ImageNet em 2012 (ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

2012) que o uso de CNNs cresceu exponencialmente. Conjunto de treinamento pa-

drão composto por milhares de imagens que combinados com GPUs eficientes e com

o desenvolvimento de novas abordagens causaram uma revolução na visão compu-

tacional. Atualmente, a maioria dos trabalhos e estudos que usam CNNs para classi-

ficação de imagens aplicam a técnica de aprendizado por transferência, usando mo-
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delos pré-treinados sobre o conjunto de dados ImageNet. Entre as arquiteturas mais

famosas, podemos citar AlexNet (KRIZHEVSKY et al., 2012), GoogLeNet (SZEGEDY et

al., 2015), MobileNet (HOWARD et al., 2017), VGG-Net (SIMONYAN; ZISSERMAN, 2014) e

Inception-V3 (SZEGEDY et al., 2015). No entanto, como este trabalho utiliza a arquitetura

MobileNet, a descreveremos com mais detalhes na seção seguinte.

2.3.4.1 Arquitetura MobileNet

A arquitetura MobileNet, proposta inicialmente por Howard et al. (2017), foi proje-

tada para oferecer arquiteturas CNN leves e eficientes para aplicações de visão em

dispositivos móveis, ou seja, considerando restrições e características de hardware

(como latência, consumo de energia ou uso de memória). A MobileNetV1 introduziu

as depthwise separable convolutions para reduzir drasticamente o número de parâ-

metros e operações em CNNs (HOWARD et al., 2017; MOBILENET, 2024), isso quando

comparado com outros modelos de CNN obtidos até então. A partir dessa primeira

versão, as demais versões trouxeram aprimoramentos com ênfase na redução ainda

maior do número de parâmetros da CNN, e na elevação de sua acurácia. Atualmente,

em sua quarta versão, a MobileNetV4 apresentada por Qin et al. (2024), introduz ainda

mais inovações como o Universal Inverted Bottleneck (UIB), composto pelo Inverted

Bottleneck, ConvNeXt, Feed Forward Networks e uma variante Extra Depthwise, além

do bloco de atenção Mobile MQA otimizado para aceleradores móveis, e um pipe-

line de NAS consciente de hardware que produz modelos quase Pareto-ótimos em

CPUs, DSPs, GPUs, dentre outros. Comparado ao MobileNetV1, que emprega apenas

depthwise separable convolutions com hiperparâmetros 𝜀 e 𝜗 para ajustar o trade-off

entre precisão e eficiência, o MobileNetV4 logra ganhos significativos de desempenho

e redução de latência, mantendo ou diminuindo o custo computacional e o número de

parâmetros em dispositivos móveis.

A Fig. 14 exemplifica a arquitetura da MobileNet em sua primeira versão.

2.3.5 Métricas de Avaliação

Experimentos de classificação incluem diversas métricas de avaliação para anali-

sar o desempenho da predição do modelo. Segundo Hossin e Sulaiman (2015), a mé-
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Figura 14 – Arquitetura geral da MobileNetV1 com destaque às convoluções separáveis em
profundidade (DS). Fonte: Phiphiphatphaisit e Surinta (2020).

trica de avaliação pode ser descrita como a ferramenta de mensuração que mede o

desempenho do classificador. Cada métrica diferente avalia uma característica distinta

do classificador, mas são calculadas com base nos elementos da matriz de confusão.

Esta seção descreve sua definição geral.

2.3.5.1 Matriz de Confusão

A matriz de confusão exibe o número de amostras de teste previstas como cer-

tas e erradas. Em um exemplo de classificação binária (duas classes), ela pode ser

representada pelo quadro 2 e é composta pelos seguintes elementos:

Verdadeiros Positivos (TP): Número de objetos classificados positivamente e que

realmente pertencem à classe positiva.

Verdadeiros Negativos (TN): Número de objetos classificados negativamente e que

realmente pertencem à classe negativa.
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Falsos Positivos (FP): Número de objetos classificados positivamente, mas que na

realidade pertencem à classe negativa.

Falsos Negativos (FN): Número de objetos classificados negativamente, mas que na

realidade pertencem à classe positiva.

Quadro 2 – Matriz de confusão para classificação binária.

Actual Positive Class Actual Negative Class
Predicted Positive Class True positive (tp) False negative (fn)
Predicted Negative Class False positive (fp) True negative (tn)

Diversas métricas são derivadas das componentes da matriz de confusão para

analisar o desempenho do modelo. Aqui, supondo uma hipotética feature do SPheRe,

regar apenas quando tiver certeza de que é necessário regar, e tolera deixar de regar

em ocasiões em que poderia ter regado, portanto, a ênfase seria na métrica Precisão

de Classe Positiva.

2.3.5.2 Acurácia

A acurácia é uma medida de desempenho que indica a proporção de classificações

corretas em relação ao total de exemplos avaliados. Matematicamente, define-se pela

equação (2.1):

Acurácia =
TP + TN

TP + TN + FP + FN
(2.1)

A acurácia varia entre 0 e 1 (ou 0 % a 100 %), sendo 1 correspondente a classifi-

cações perfeitamente corretas.

2.3.5.3 Precisão para Classe Positiva

Esta métrica mede a proporção de predições positivas corretas em relação ao total

de predições feitas como positivas. É definida pela equação (2.2):

Precisãopos =
TP

TP + FP
(2.2)
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A precisão varia de 0 a 1 (ou 0 % a 100 %), com valor mais alto indicando menor

taxa de falsos positivos. Ou seja, o termo FP no denominador de (2.2) penaliza os

resultados falso positivos do teste.

2.3.5.4 Precisão para Classe Negativa

Esta métrica mede a proporção de predições negativas corretas em relação ao

total de predições feitas como negativas. É definida pela equação (2.3):

Precisãoneg =
TN

TN + FN
(2.3)

A precisão varia de 0 a 1 (ou 0 % a 100 %), com valor mais alto indicando menor

taxa de falsos negativos.

2.3.5.5 Recall

A métrica também é chamada de "Taxa de Verdadeiros Positivos (TPR)". Ela mede

qual proporção de verdadeiros positivos é classificada corretamente. Em outras pa-

lavras, é uma meta de otimização apropriada quando queremos identificar todos os

positivos possíveis. É útil quando não queremos perder nenhum elemento positivo ou

quando o custo de falsos negativos é alto. A Equação (2.4) calcula o recall:

Recall =
TP

TP + FN
(2.4)

O valor de recall varia entre 0 e 1 (ou 0 % a 100 %), sendo 1 correspondente à

identificação de todos os exemplos positivos sem falsos negativos.

2.3.5.6 F1-Score

O F1-score compila a média harmônica de Precisão e Recall, quantificando o trade-

off mútuo. Um bom valor do F1-Score significa que o classificador identifica correta-

mente ameaças reais, mas não é perturbado por "alarmes falsos". Ele é calculado

usando a equação (2.5):
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F1 = 2↓ Precisao↓Recall

Precisao+Recall
(2.5)

O F1-score varia de 0 a 1 (ou 0 % a 100 %), atingindo 1 quando precisão e recall

são ambos perfeitos.

Finalizando a fundamentação teórica, a seguir, uma visão geral sobre pesquisas

na área da agricultura de precisão.
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3 REVISÃO DA LITERATURA: AGRICULTURA DE PRECISÃO

Este capítulo descreve estudos recentes e abrangentes no campo da agricultura

de precisão, enquanto a seção 3.4 exibe soluções, comerciais e de código aberto,

atualmente disponíveis.

3.1 A TELEMETRIA NA AGRICULTURA

O estudo de Suciu et al. (2019) aponta que as mudanças climáticas e o crescimento

populacional têm imposto desafios significativos à agricultura. Entre esses desafios,

os autores destacam o racionamento hídrico na irrigação, tema que vem ganhando

relevância nas pesquisas recentes devido à sua importância para a agricultura de

precisão. O trabalho ressalta ainda que a qualidade da irrigação atua como um indica-

dor de desempenho, variando conforme as necessidades específicas de cada cultura.

Além disso, o estudo sublinha que a agricultura irrigada ocupa 20% das terras cul-

tivadas globalmente, utilizando métodos como irrigação por gotejamento, vazamento

superficial e aspersão.

Diante desse cenário, os autores defendem a adoção de sistemas de automação

e telemetria, fornecendo dados contínuos relevantes que permitem otimizar o uso da

água e dos insumos agrícolas, contribuindo diretamente para práticas mais sustentá-

veis. Nesse contexto, Alhasnawi et al. (2020) reforçam que a integração de sensores

para coleta de dados e processamento inteligente de informações está criando uma

conexão eficiente entre os ambientes cibernético e físico, promovendo decisões mais

informadas e sustentáveis.

Além do impacto técnico e produtivo, essas tecnologias estão alinhadas aos Obje-

tivos de Desenvolvimento Sustentável (ODS) da ONU. Por exemplo, o ODS 2 – “Fome

Zero e Agricultura Sustentável” – é apoiado ao se aumentar a produtividade agrícola

de forma eficiente e sustentável, garantindo segurança alimentar e nutrição adequada.

O ODS 12 – “Consumo e Produção Sustentáveis” – é atendido pelo uso racional de

recursos hídricos e insumos, promovendo padrões de produção mais responsáveis.

Por fim, o ODS 11 – “Cidades e Comunidades Sustentáveis” – se beneficia indireta-

mente à tornar o fornecimento de alimentos mais resiliente e sustentável, contribuindo
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para a estabilidade das comunidades rurais e urbanas.

Essa perspectiva é ampliada por Morchid et al. (2024)), que destacam como tais

abordagens não só elevam a produtividade agrícola, mas também promovem a segu-

rança hídrica e alimentar em escala global, reforçando a importância de tecnologias

inteligentes para um desenvolvimento agrícola sustentável e alinhado às metas glo-

bais.

3.2 O PROTOCOLO HTTP APLICADO NA AGRICULTURA

Christensen e Fonseca (2023) destacam o ano de 2011 como marco na introdu-

ção e popularização do conceito de Indústria 4.0, inicialmente aplicado à manufatura.

Com o tempo, esse conceito expandiu-se para outros setores, como a agricultura, re-

sultando na Agricultura de Precisão. Tal abordagem enfatiza que o monitoramento e

controle precisos otimizam o manejo agrícola.

O estudo apresenta a Agricultura 4.0 como uma evolução que substitui os mé-

todos tradicionais por soluções digitais e tecnológicas — como computação de alto

desempenho, rede de sensores, comunicação M2M (Machine-to-Machine), conecti-

vidade móvel, computação em nuvem e análise de grandes volumes de dados —,

apoiando decisões de manejo e possibilitando a redução do consumo de água, fertili-

zantes e pesticidas por meio de aplicações mais precisas em áreas específicas.

Além disso, o trabalho integra IoT e Agricultura 4.0 para monitorar plantações de

forma eficiente e sustentável, enviando dados relevantes para um banco de dados em

nuvem via protocolo HTTP(Hypertext Transfer Protocol).

Bayılmış et al. (2022) apresentam o HTTP como o protocolo mais utilizado em

sistemas IoT, inclusive na área da agricultura. Outros estudos, Percebes et al. (2023)

e Anass et al. (2022), também utilizam o protocolo HTTP para integrar seus sistemas

à nuvem, permitindo o controle remoto de atuadores, visualização, armazenamento e

download das informações, abordagem bastante similar a este presente trabalho.

3.3 VISÃO COMPUTACIONAL APLICADA NA AGRICULTURA

A eficiência e a produtividade da agricultura dependem significativamente da su-

pervisão humana contínua, o que exige tempo e recursos. O avanço das tecnologias
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digitais e a crescente adoção de sistemas ciberfísicos na agricultura têm proporcio-

nado novas oportunidades para a automação e otimização dos processos produtivos,

conforme discutido no estudo de Dutta et al. (2025).

A aplicação da visão computacional na agricultura possibilita a automação de tare-

fas repetitivas, reduzindo o tempo necessário para execução e minimizando a depen-

dência da supervisão humana. Dutta et al. (2025) enfatizam que a visão computacional

tem se tornado uma ferramenta indispensável para o monitoramento agrícola, favore-

cendo a substituição da percepção visual humana por sistemas automatizados mais

rápidos e precisos. Além disso, o uso de visão de máquina na agricultura tem cres-

cido em resposta à necessidade de métodos ágeis e confiáveis para o rastreamento

da colheita. A adoção de visão computacional viabiliza a análise eficaz de grandes

volumes de dados, mesmo em cenários de alta complexidade, permitindo a tomada

de decisões precisas e instantâneas. Por fim, a pesquisa discute detalhadamente a

implementação da inteligência artificial (IA) na produção agrícola, especialmente no

cultivo de frutas, abordando suas aplicações e perspectivas. A incorporação de sis-

temas baseados em IA nos processos produtivos representa um avanço significativo

para a agricultura moderna, promovendo maior eficiência operacional, precisão e sus-

tentabilidade no setor.

Islam et al. (2025) destacam que a precisão na identificação de variedades espe-

cíficas de um determinado tipo de cereal sob seu estudo, é um processo fundamental

tanto para prevenir fraudes quanto para assegurar a qualidade do produto. Nesse con-

texto, os autores também reforçam a importância da visão computacional na produção,

com o objetivo de tornar o processo de identificação mais ágil e confiável.

No âmbito da detecção de doenças, Hossain et al. (2025) afirmam que as técnicas

convencionais dependem significativamente da observação manual e da avaliação de

especialistas, e que são frequentemente demoradas, trabalhosas e suscetíveis a dis-

crepâncias. Os autores enfatizam que tais limitações tornam imprescindível empregar

tecnologias de detecção de doenças que sejam automatizadas, escaláveis, confiá-

veis e instantâneas. Ainda afirmam que essa abordagem sugerida facilita o diagnós-

tico precoce, auxiliando agricultores e agrônomos a executar tratamentos oportunos e

acurados, minimizando, assim, as perdas de safra.

Zamani e Baleghi (2025) também citam a aplicação de visão computacional para

o controle de ervas daninhas, além de outras possíveis aplicações, como reconhe-
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cimento de espécies de plantas, monitoramento contínuo do estado das culturas e

colheita robótica de frutas.

Petrovic et al. (2023) expõem a respeito da aplicação da visão computacional na

produção agrícola, afirmando que a indústria alimentícia é a que mais contribui para

o setor agrícola, e a automação da triagem de vegetais é imperativo. O principal ob-

jetivo da classificação na agricultura é gerar cada vez mais renda. Portanto, a clas-

sificação tem um impacto significativo no agronegócio, gerando mais lucro. Sistemas

inteligentes de classificação e triagem de culturas desempenham um papel crucial no

aumento da eficiência e precisão na indústria agrícola. Esses sistemas utilizam tecno-

logias avançadas para automatizar o processo de triagem e classificação de culturas

com base em vários parâmetros, como tamanho, cor, peso e qualidade. Para os agri-

cultores, a triagem e a classificação de culturas permite que eles separem os produtos

em categorias com mais precisão. A Fig.15 ilustra a seleção e triagem do tomate com

aplicação de Visão Computacional.

Figura 15 – Exemplo de triagem e seleção de frutos de tomate por meio de Visão Computacio-
nal. Fonte: Petrovic et al. (2023)

Esses estudos destacaram a visão computacional sendo empregada para automa-

tizar tarefas manuais, identificar doenças e pragas, classificar variedades agrícolas e

otimizar a produção.

A seção seguinte apresenta uma breve descrição das soluções atualmente dispo-

níveis no mercado para viabilizar, especificamente, a automação de estufas e tendas

de crescimento.
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3.4 SOLUÇÕES DISPONÍVEIS NA AGRICULTURA DE PRECISÃO

3.4.1 Soluções Comerciais

O objetivo primordial da agricultura de precisão é criar um microclima ideal que

maximize a produtividade e a qualidade dos cultivos. Nesse contexto, os principais

parâmetros monitorados em ambientes fechados – como umidade do solo, umidade

e temperatura do ar, luminosidade e níveis de CO2 – devem ser controlados de forma

precisa. Além do monitoramento por meio de sensores, é fundamental a intervenção

automatizada, realizada por atuadores que ajustam essas variáveis ambientais con-

forme a necessidade.

Como exemplo de controlador de temperatura e umidade, destaca-se o Inkbird

ITC-608T, Fig.16, da empresa Inkbird, que mede esses parâmetros e pode ser con-

figurado para acionar equipamentos de aquecimento, resfriamento, umidificação ou

desumidificação do ar.

Figura 16 – InkbirdITC608T. Fonte: Inkbird (2025b).

No âmbito da irrigação, uma das soluções é o Inkbird IIC-800-WIFI, Fig.17, da

mesma empresa, permitindo o agendamento de horários específicos para a rega.

Figura 17 – Inkbird IIC-800-WIFI. Fonte: Inkbird (2025a).
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Em relação à ventilação, o sistema Cloudline T4, Fig. 18, da AC Infinity, consiste

em um ventilador de duto inteligente, projetado para manter a circulação de ar em

ambientes fechados.

Figura 18 – CloudlineT4. Fonte: AC Infinity (2025).

Esta solução possibilita o controle dos níveis de temperatura e umidade, além de

oferecer telemetria para acompanhamento remoto.

Para a gestão de instalações hortícolas, a empresa Argus Controls disponibiliza o

Argus Titan System, Fig. 19, um sistema que abrange desde o controle ambiental até

fertirrigação, permitindo o monitoramento e a automação dos processos por meio de

um computador em rede ou dispositivos móveis.

(a) Controlador Argus. (b) Monitoramento de estufa.

Figura 19 – Sistema Argus Titan. Fonte: Argus Controls (2025).

Para otimizar o manejo do microclima, torna-se fundamental a inclusão de parâ-

metros mais sofisticados, tais como a medição do pH e da condutividade elétrica (EC)

do solo, o monitoramento do oxigênio dissolvido na água, a análise da qualidade es-

pectral da iluminação artificial e a detecção de pragas e doenças. Essas variáveis

complementam os controles convencionais e possibilitam ajustes precisos que podem

elevar a produtividade e a qualidade dos cultivos.

No que se refere ao monitoramento do pH e da EC, o Bluelab OnePen, Fig.20, da

Bluelab, permite a medição desses parâmetros, fornecendo informações essenciais

para avaliar a disponibilidade de nutrientes no solo.
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Figura 20 – Bluelab OnePen. Fonte: Bluelab (2025).

Em sistemas hidropônicos, a saúde radicular e a prevenção de estresses podem

ser asseguradas com o uso do Dissolved Oxygen Kit, da empresa Atlas Scientific, que

mede o oxigênio dissolvido em soluções.

Quanto à qualidade da iluminação artificial, a análise do espectro luminoso é crucial

para ajustar a iluminação de acordo com as necessidades específicas das culturas

em diferentes fases de crescimento. Para isso, o sensor AS7341, Fig.21, da Adafruit,

realiza a avaliação da qualidade espectral da luz, contribuindo para a otimização da

iluminação.

Figura 21 – AS7341 Adafruit. Fonte: Adafruit (2025).

Por fim, para a detecção precoce de pragas e doenças, embora ainda não exista

um sensor comercial específico para essa finalidade, a utilização de tecnologias de

visão computacional se mostra crucial para este fim. Estudos, como o artigo Green

Leaf Disease Detection System for Agriculture Using Raspberry Pi de BABU et al.

(2024), por exemplo, destacam o Raspberry Pi, que, aliado à inteligência artificial e

câmera, é eficaz na análise de imagens para identificar sinais iniciais de infestação e

sintomas de doenças nas plantas.

Cada uma dessas soluções comerciais ilustra a aplicação prática de tecnologias

atuais na automação de ambientes controlados, contribuindo significativamente na im-

plementação da agricultura de precisão em casas de vegetação.

Na próxima seção, condensaremos algumas das soluções open source (também

conhecidas como código aberto) disponíveis.
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Figura 22 – Raspberry Pi e Módulo Câmera. Fonte: IoT-Store (2025).

3.4.2 Soluções Open Source

A comunidade tem investido no desenvolvimento de sistemas open source e pro-

jetos DIY (faça-você-mesmo) mais acessíveis, preenchendo lacunas deixadas pelas

soluções comerciais, permitindo uma maior personalização e a integração de tecnolo-

gias emergentes. Nesse contexto, destacam-se as seguintes iniciativas:

3.4.2.1 Sistemas Baseados em Microcontroladores

Plataformas como Arduino, Raspberry Pi e ESP32 possibilitam a integração de di-

versos sensores capazes de medir variáveis essenciais, tais como umidade do solo,

pH, temperatura, luminosidade e oxigênio dissolvido, além de atuadores para o con-

trole da irrigação e ventilação. Essas soluções, amplamente compartilhadas em fóruns

e repositórios open source, permitem que agricultores e pesquisadores customizem os

sistemas de acordo com as necessidades específicas de cada cultivo.

3.4.2.2 FarmBot

O FarmBot, Fig.23 é uma máquina CNC agrícola open source, desenvolvida para

automatizar pequenas hortas e cultivos urbanos. Ele integra sensores, atuadores e

um sistema de monitoramento remoto, possibilitando o cultivo automatizado, desde o

plantio até a colheita.
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Figura 23 – FarmBot. Fonte: FarmBot (2025).

3.4.2.3 AgOpenGPS

O projeto AgOpenGPS, Fig.24 é uma solução open source que busca a orientação

autônoma de máquinas agrícolas. Por meio do uso de dados de GPS e sensores,

o sistema mapeia e direciona operações no campo, contribuindo para a precisão na

aplicação de insumos e para a eficiência na colheita.

(a) (b)

Figura 24 – Sistema AgOpenGPS: (a) máquina agrícola autônoma e (b) mapeamento de ope-
rações em campo. Fonte: AgOpen Shop (2025).

3.4.2.4 Plataformas IoT Colaborativas

Diversas iniciativas desenvolvidas por universidades e comunidades online focam

na integração de dados de sensores, imagens (através de visão computacional) e pre-

visões meteorológicas utilizando algoritmos de ML. Essas plataformas possibilitam a

criação de dashboards customizados e sistemas de alerta, que facilitam intervenções
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rápidas e são adaptados às condições específicas de cada cultivo. Exemplos notáveis

incluem o ThingsBoard, ThingSpeak e FarmOS, os quais viabilizam a coleta, o proces-

samento e a visualização de dados essenciais para a tomada de decisão em projetos

colaborativos e acadêmicos.

Em suma, as abordagens colaborativas demonstram o potencial das tecnologias

open source para a agricultura de precisão, permitindo a implementação de sistemas

adaptáveis, que atendem às demandas específicas dos produtores onde as soluções

comerciais se mostram insuficientes.

A seguir, discute-se as pesquisas mais alinhadas com este trabalho.
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4 REVISÃO DA LITERATURA: TRABALHOS RELACIONADOS

Neste capítulo, apresentamos os estudos mais relevantes para esta pesquisa, que

foram analisados ao longo do desenvolvimento do SPheRe e desta dissertação. Um

número crescente de pesquisas sobre sensoriamento na agricultura tem se apoiado

em novas tecnologias e nos avanços da visão computacional. Por fim, o capítulo en-

cerra com um resumo das principais oportunidades de contribuição para o avanço

dessa área.

4.1 AVANÇOS EM TECNOLOGIAS DE SENSORES DE UMIDADE DO SOLO

Yu et al. (2021) em “Review of research progress on soil moisture sensor techno-

logy ” apresentam uma análise abrangente dos avanços nos sensores de umidade do

solo ao longo das últimas décadas, ressaltando a importância de realizar medições

precisas do teor de água no solo, tanto para o manejo da irrigação quanto para a

garantia da produtividade das culturas. O estudo, assim como esta dissertação, con-

textualiza a relevância da medição da umidade do solo, ressaltando os desafios de-

correntes da disponibilidade limitada de água doce e a necessidade de um uso mais

eficiente deste recurso.

Essa revisão detalha diversos métodos empregados na medição da umidade do

solo. São abordadas técnicas convencionais, como o método gravimétrico (ou método

de secagem), e métodos mais avançados, como os sensores baseados em tensiô-

metros, sondas de nêutrons, transmissão de raios gama, sensoriamento remoto por

infravermelho e, principalmente, os métodos dielétricos. Dentro desta última categoria,

o artigo descreve com ênfase os princípios do TDR (Time Domain Reflectometry), FDR

(Frequency Domain Reflectometry) e SWR (Standing Wave Ratio), demonstrando as

vantagens e limitações de cada técnica em termos de precisão, custo e aplicabilidade.

Além da análise dos métodos de medição, o estudo discute os fatores que influen-

ciam o desempenho dos sensores de umidade. São considerados fatores intrínsecos,

como o design do sensor, a instalação e a calibração, bem como fatores ambientais,

como variações de temperatura e salinidade do solo. Essas variáveis impactam dire-

tamente a exatidão e a estabilidade das medições, exigindo a adoção de técnicas de
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calibração específicas para diferentes tipos de solo e condições ambientais, a fim de

garantir resultados confiáveis.

Por fim, Yu et al. (2021) apontam tendências futuras para o desenvolvimento dos

sensores de umidade do solo, enfatizando a necessidade de sistemas que sejam de

alta precisão, baixo custo, não destrutivos e integrados com tecnologias modernas,

como a IoT. A integração desses sensores em sistemas de irrigação inteligente pode

revolucionar o manejo hídrico na agricultura, permitindo a tomada de decisões mais

rápidas e fundamentadas. Em síntese, esse estudo estabelece uma base de conhe-

cimento que pode auxiliar tanto pesquisadores quanto profissionais do setor agrícola

na seleção e no aprimoramento de produtos para medição de umidade do solo.

4.2 ESTIMATIVA DA ABSORÇÃO DE ÁGUA DE IRRIGAÇÃO COM RGB

Atanasov (2021) em “’Methodology for irrigation water uptake time estimation based

on RGB colorimetric measurements of leaves (a visual-graphical observation)” propõe

uma metodologia peculiar para estimar o tempo de absorção de água de irrigação por

plantas de tomate em estufa, utilizando medições colorimétricas em RGB nas folhas.

A abordagem se baseia na observação e na análise gráfica das mudanças na cor das

folhas após a irrigação, assumindo que o clareamento das folhas indica a chegada da

umidade numa seção da planta. Essa hipótese, que sugere um tempo de 1 hora para

cada 1 metro de altura, é testada experimentalmente sob condições controladas.

A pesquisa se apoia em uma série de experimentos realizados ao longo de cinco

dias, nos quais a variedade de tomate híbrido “Amati” foi utilizada devido à sua alta

resistência a doenças e características morfológicas favoráveis. Em cada experimento,

as medições RGB foram coletadas imediatamente antes e em diversos intervalos após

a irrigação, em diferentes alturas da planta, para mapear com precisão o tempo de

transporte da água até a parte superior.

As Fig. 25 e 26 exemplificam imagens de folhas e medições com colorímetro du-

rante o experimento dessa pesquisa.

A metodologia empregada combina observações imediatas e mediadas, utilizando

um colorímetro para quantificar as mudanças na tonalidade das folhas. Atanasov

(2021) realiza análises estatísticas, como testes T de amostras pareadas, para confir-

mar que as variações nos valores RGB são estatisticamente significativas, garantindo
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Figura 25 – Exemplos de fotos de folhas examinadas ao longo do tempo: a) Antes da rega, b)
120 min após a rega e c) 300 min após a rega. Cada linha representa a mesma
folha. Fonte: (ATANASOV, 2021).

Figura 26 – Alteração dos valores RGB médios no tempo antes e depois da rega. Fonte: (ATA-
NASOV, 2021).
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que o clareamento observado não decorre do acaso, mas sim da absorção efetiva de

água.

Os resultados indicam que, sob as condições experimentais descritas, a água da

irrigação absorvida, atinge o seu primeiro metro de altura na planta em aproximada-

mente 60 minutos, e 80 minutos para atingir 1,3 metros e 90 minutos para 1,6 metros

de altura.

Por fim, o estudo demonstra que a análise de mudanças na cor das folhas via

medições RGB pode ser uma ferramenta prática, não invasiva e eficiente para moni-

torar a absorção de água em plantas dessa espécie de tomate, contribuindo para a

otimização do manejo da irrigação.

4.3 VISÃO COMPUTACIONAL PARA FENOTIPAGEM DE CARACTERÍSTICAS DE

PLANTAS

Kolhar e Jagtap (2021) em “Plant trait estimation and classification studies in plant

phenotyping using machine vision – A review” apresentam uma revisão abrangente

dos métodos de visão de máquina aplicados à fenotipagem de plantas, enfatizando a

estimativa e classificação de traços estruturais e fisiológicos. São abordadas diversas

técnicas de imagem, incluindo a captura de imagens RGB, hiperespectrais, térmicas

e 3D, que permitem a análise não invasiva de características como área foliar, conta-

gem e forma de folhas, bem como indicadores fisiológicos, como conteúdo de água e

eficiência fotossintética.

Além disso, Kolhar e Jagtap (2021) destacam a aplicação de algoritmos de ML e

deep learning para aprimorar o processamento de imagens e a segmentação de tra-

ços das plantas. Modelos CNNs, algoritmos de clustering e técnicas supervisionadas,

como máquinas de vetor de suporte (do inglês SVM), são empregados para extrair

características estruturais detalhadas e lidar com desafios como folhas sobrepostas

e variações de iluminação. Essa abordagem possibilita uma quantificação precisa e

automática dos parâmetros morfológicos, contribuindo para análises em larga escala.

Por fim, a revisão enfatiza que técnicas de visão de máquina têm revolucionado a

fenotipagem de plantas e que a integração de processamento de imagem com algorit-

mos de inteligência artificial não só aprimora a identificação de traços estruturais, mas

também facilita a avaliação de respostas fisiológicas das plantas a fatores ambientais
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e de manejo, abrindo caminho para avanços significativos em melhoramento genético

e manejo agrícola.

4.4 PREVISÃO FENOTÍPICA DO STATUS HÍDRICO DO SUBSTRATO

Chang et al. (2019) em “A Phenotype-Based Approach for the Substrate Water

Status Forecast of Greenhouse Netted Muskmelon” apresentam uma abordagem ba-

seada em fenotipagem para prever o estado hídrico do substrato em cultivos de melão

rendilhado (Cucumis melo L. var. reticulatus Naud.) em estufa. Para isso, os autores

utilizam um sistema fenotípico comercial que captura imagens em espectros visível e

infravermelho, conforme ilustrado na Fig.27. A figura destaca imagens de plantas no

âmbito da luz visível e no espectro do infra-vermelho próximo, permitindo a extração

de informações de morfologia, de cor e quantidade de água das plantas em diferentes

estágios de crescimento. Esses aspectos, que incluem desde a área de projeção até

índices de cor e contagem de pixels com intensidade específica no NIR (Near InfraRed

- Infravermelho Próximo), são computados por meio de etapas de pré-processamento

e segmentação para, em seguida, alimentar um modelo de classificação baseado em

algoritmo de random forest. Esse modelo, validado por análises estatísticas e cruza-

das, demonstra alta acurácia na previsão do conteúdo de água do substrato, facilitando

a tomada de decisão para irrigação de precisão.

Figura 27 – Etapas de processamento de imagens fenotípicas. (a) Imagens dentro do espectro
visível; (b) Imagens no espectro infravermelho-próximo. Cores diferentes represen-
tam diferentes conteúdos de água nas plantas. Fonte: (CHANG et al., 2019)

Embora o foco principal do estudo seja a previsão do estado hídrico do substrato,

o artigo destaca a aplicação de técnicas de visão de máquina para a extração au-

tomatizada de traços fenotípicos. O uso do sistema Scanalyzer 3D e a subsequente



68

análise de imagens demonstram como métodos de segmentação e extração de carac-

terísticas – típicos da visão computacional – podem ser empregados para determinar

características estruturais e fisiológicas das plantas. Essa integração de imagem e ML

exemplifica o potencial da fenômica baseada em visão de máquina para monitora-

mento em tempo real e para o desenvolvimento de sistemas de irrigação inteligentes

que respondem dinamicamente às condições do cultivo.

4.5 MODELOS DE IMAGENS COM SMARTPHONES PARA ESTIMATIVA DE CLO-

ROFILA

Özreçberoğlu e Kahramanoğlu (2020) em “Mathematical models for the estimation

of leaf chlorophyll content based on RGB colours of contact imaging with smartphones:

A pomegranate example” desenvolveram um método não destrutivo e rápido para es-

timar o conteúdo de clorofila em folhas de romã utilizando imagens capturadas por

smartphones. As imagens são obtidas em condições controladas dentro de caixas

fechadas, usando fontes de luz LED (com destaque para a luz vermelha, que de-

monstrou melhores correlações) para iluminar as folhas. A partir dessas imagens, são

extraídos os valores de cor RGB e calculados índices de cor (como os índices nor-

malizados e diferenças entre canais), que servem como base para a estimativa da

clorofila.

A análise dos dados envolve regressão linear para relacionar os valores de cor e

os índices de clorofila. O modelo resultou em uma equação que combina valores dos

canais verde (G) e azul (B). Os resultados demonstram que a metodologia proposta

pode fornecer estimativas precisas de clorofila, contribuindo para o monitoramento da

saúde das plantas e a gestão sustentável da nutrição vegetal.

4.6 ABORDAGENS DE APRENDIZADO PROFUNDO PARA AVALIAÇÃO DE CLO-

ROFILA FOLIAR

Barman e Saikia (2024) em “Smartphone Contact Imaging and 1-D CNN for Leaf

Chlorophyll Estimation in Agriculture” apresentam uma metodologia de baixo custo

para estimar o teor de clorofila em folhas utilizando apenas imagens capturadas por

smartphones. O trabalho parte da premissa de que o teor de clorofila é um indica-
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dor importante do estado nutricional e da saúde da planta, tradicionalmente medido

por sensores específicos como o SPAD e espectrômetros, que são caros e pouco

acessíveis para pequenos agricultores. Nesse contexto, os autores propõem o uso de

dispositivos móveis como alternativa acessível e prática para agricultores e pesquisa-

dores.

A pesquisa utilizou aproximadamente 15.000 imagens de folhas de chá capturadas

em contato direto com a câmera de um smartphone, sob iluminação controlada e

com o uso do flash. A partir das imagens foram extraídas 12 características de cor,

considerando estatísticas dos canais RGB e HSV. Essas variáveis foram usadas como

entrada em diferentes modelos de predição, incluindo regressão linear, redes neurais

tradicionais e uma rede neural convolucional unidimensional (1-D CNN), escolhida por

sua capacidade de aprender padrões complexos a partir de dados sequenciais.

Os resultados mostraram que a abordagem baseada em 1-D CNN foi a mais efi-

caz, superando os demais métodos testados. O modelo atingiu um coeficiente de re-

gressão em torno de 0,82 e erro médio absoluto (MAE) de aproximadamente 2,96 na

estimativa do teor de clorofila, quando comparado às leituras do sensor SPAD. Os au-

tores concluem que o uso de smartphones aliado a técnicas de visão computacional

e inteligência artificial representa uma alternativa promissora para o monitoramento

nutricional de plantas, democratizando o acesso a tecnologias de agricultura de preci-

são.

4.7 IMAGENS ESPECTRAIS E RGB COM IA PARA STATUS HÍDRICO DE PLANTAS

No estudo “Water status and plant traits of dry bean assessment using integrated

spectral reflectance and RGB image indices with artificial intelligence” , El-baki et al.

(2025) investigam o uso de aprendizado de máquina para monitoramento de plantas

em condições de estresse hídrico. O estudo parte da necessidade de superar limita-

ções de sensores de solo tradicionais, que apresentam cobertura espacial reduzida

e deterioração ao longo do tempo, propondo a análise de imagens digitais como al-

ternativa não invasiva para avaliar o estado hídrico das plantas. A pesquisa enfatiza o

potencial da visão computacional para capturar alterações fenotípicas sutis e antecipar

sinais de déficit de água.

A metodologia consistiu na aquisição de imagens de plantas submetidas a diferen-
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tes níveis de irrigação, das quais foram extraídas características de cor, forma e tex-

tura. Esses atributos serviram de entrada para modelos de aprendizado de máquina,

incluindo algoritmos de classificação e regressão, que foram avaliados em termos de

acurácia e robustez na predição do estresse hídrico. Os resultados mostraram que

os modelos conseguiram diferenciar de forma consistente plantas sob condições nor-

mais e sob déficit hídrico, com desempenho superior às técnicas convencionais de

monitoramento baseadas apenas em sensores de solo.

Na conclusão, os autores destacam que o emprego de visão computacional e

aprendizado de máquina representa um avanço significativo para a agricultura de pre-

cisão, possibilitando um monitoramento mais abrangente, de baixo custo e com menor

necessidade de manutenção. O estudo sugere que, com a evolução de algoritmos e

dispositivos embarcados, será viável a implementação de sistemas inteligentes de ir-

rigação em tempo real, capazes de reduzir perdas e aumentar a eficiência no uso da

água.

4.8 RESUMO DO CAPÍTULO

A cor das folhas é a característica mais simples de ser extraída de imagens de

plantas e pode refletir a umidade do solo, como demonstrado para o tomateiro por

Atanasov (2023). Se essa relação for confirmada em outras culturas, imagens RGB

poderão atuar como sensores de umidade de baixo custo e não invasivos, permitindo

à visão de máquina identificar as necessidades hídricas das plantas pela coloração

foliar.
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5 MATERIAIS E MÉTODOS

Este capítulo descreve os materiais e métodos empregados na composição do

SPheRe, laboratório de fenotipagem inteligente, um sistema concebido para moni-

torar periodicamente a umidade do solo, capturar imagens de plantas e enviar es-

ses dados para a nuvem, além de possibilitar a irrigação automática de acordo com

pré-configuração definida pelo usuário-pesquisador. O sistema foi desenvolvido como

uma solução de baixo custo e automatizada para monitoramento fenotípico, correlaci-

onando dados visuais com condições de estresse hídrico.

A abordagem metodológica adotada foi prática, iterativa e baseada em prototipa-

gem de hardware com integração à nuvem. As etapas seguiram uma sequência lógica

que incluiu a definição da arquitetura, testes e regulação de sensores (pseudo cali-

bração), montagem da estrutura física de cultivo e validação funcional dos sensores

e atuadores. Parte desses procedimentos, inicialmente apresentados como resulta-

dos — em especial aqueles relacionados à otimização de parâmetros do sistema,

como iluminação, distância da câmera e uso de referências visuais — são aqui trata-

dos como elementos metodológicos, pois dizem respeito ao processo de concepção e

consolidação da abordagem.

Deve-se enfatizar que este trabalho não teve como objetivo a realização de ex-

perimentos que permitissem análises estatísticas aprofundadas, como repetições em

larga escala com múltiplos cultivares ao longo de períodos extensivos. Embora essa

fosse a intenção inicial, diversas dificuldades surgiram durante a fase de prototipa-

gem, incluindo falhas recorrentes nos sensores de umidade e problemas na configu-

ração das imagens capturadas. Após etapa de otimização do setup — brevemente

comentada ao final deste capítulo na Seção 5.15 —, o caráter experimental limitou-se

à execução de uma prova de conceito, com análises predominantemente qualitati-

vas destinadas a demonstrar a viabilidade técnica da proposta. Assim, a metodologia

concentrou-se na descrição da concepção e do funcionamento do sistema, abran-

gendo desde a integração dos componentes até a implementação de algoritmos de

aprendizado de máquina em microcontroladores de baixo custo.

No âmbito metodológico, duas hipóteses distintas foram consideradas. A primeira

buscou avaliar a capacidade da visão computacional em subsidiar decisões de irriga-
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ção em cenários ideais de processamento, como o uso de computação em nuvem e

imagens com resolução satisfatória. A segunda concentrou-se em cenários restritos,

nos quais a aquisição de imagens ocorre em baixa resolução e o processamento é

realizado em dispositivos embarcados de baixo custo, com recursos computacionais

limitados. Essas duas perspectivas — uma voltada ao potencial teórico e outra à apli-

cação prática — foram tratadas de forma complementar, permitindo avaliar tanto a

eficácia conceitual da abordagem quanto sua viabilidade em contextos reais de uso

agrícola.

5.1 VISÃO GERAL DA METODOLOGIA

A Fig. 28, a seguir, apresenta uma visão geral do sistema desenvolvido, com seus

principais módulos físicos e suas interações.

Figura 28 – O sistema de fenotipagem desenvolvido, SPheRe. Fonte: o autor.

A arquitetura SPheRe contempla os principais módulos responsáveis pela aquisi-

ção, transmissão e processamento de dados, além do controle do sistema de irrigação.
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Esses componentes estão descritos a seguir:

1. Módulo de Controle: Com o microcontrolador ESP32-S3 (Espressif Systems)

e câmera em sua composição, é responsável pelo periódico monitoramento e

controle da irrigação, e pela captura de imagens da planta sob cultivo. Enviando

esses dados à internet via Wi-Fi. É Alimentado por uma fonte DC externa de 5V,

e possui conversor de tensão que fornece 3.3VDD ao SoC (System-on-Chip);

2. Servidor na Nuvem: armazena imagem e umidade do solo enviadas pelo Mó-

dulo de Controle, possibilitando posterior análise remota;

3. Computador Remoto: para visualização e processamento dos dados disponibi-

lizados pelo Servidor na Nuvem, a fim de analisar os dados recebidos e confi-

gurar o sistema de irrigação;

4. Sensor de Umidade Capacitivo: inserido no solo do vaso de cultivo, realiza a

medição contínua da umidade, dispondo o dado para o Módulo de Controle por

meio de barramento analógico;

5. Mini Bomba d’Água: modelo JT100, instalada no interior do Reservatório de

Água;

6. Reservatório de Água: recipiente em PVC com capacidade de armazenamento

de até 5 L de água para a irrigação;

7. Sistema de Irrigação por Gotejamento: duto para condução da água a partir

do Reservatório de Água até o vaso de cultivo;

8. Barramento de Ativação: canal de controle digital entre o Módulo de Controle

e a Mini Bomba d’Água, responsável por acionar a bomba para a irrigação da

planta.

5.2 ARQUITETURA GERAL DO SPHERE

A arquitetura do SPheRe é composta por módulos interconectados que integram

sensores, unidade de controle, elemento atuador e infraestrutura de comunicação. O
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fluxo de dados é contínuo e estruturado, permitindo o monitoramento da planta e da

umidade de seu solo, com a rega configurada remotamente pelo usuário-pesquisador.

A Fig. 29 apresenta o diagrama de blocos da solução, em seguida, os passos de

seu funcionamento são descritos.

Figura 29 – Diagrama em Blocos SPheRe. Fonte: o autor.

1. Aquisição de dados no ambiente de cultivo: coleta de dado de umidade atra-

vés do sensor de umidade capacitivo e captura de imagem por meio da câmera

OV5640;

2. Leitura e controle pelo SoC: os dados são processados e preparados para

envio;

3. Envio à nuvem: os dados são enviados via Wi-Fi para Google Sheets (dados) e

Google Drive (imagens);

4. Análise remota: o usuário-pesquisador analisa as imagens com scripts em Python,

lê dados de umidade do solo e configura a irrigação;

5. Acionamento da bomba: Dependendo dos limiares de histerese pré-configurados

ou do comando de rega aplicado pelo usuário, o SoC ativa a bomba d’água com

o auxílio de um circuito de ativação, liberando aproximadamente 100mL de água

por rega.
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5.3 COMPONENTES DE HARDWARE UTILIZADOS

O núcleo do sistema é a placa de desenvolvimento Seeed Studio XIAO ESP32S3

Sense, representada na Fig. 30, (1).

Figura 30 – Seeed Studio XIAO ESP32S3 Sense. Fonte: Seeed Studio (2025).

Essa placa é alimentada por fonte externa de 5V e equipada com câmera OV5640

de 5 megapixels, Fig. 30 (2), conectada à placa de expansão (3). O SoC ESP32-

S3R8, (4), é dual-core, com conectividade Wi-Fi, e dispõe de antena flexível, (5), um

sistema adequado para aplicações embarcadas de monitoramento remoto e viável

para implantação de IA.

Para a medição da umidade do solo, foi adotado o sensor do tipo capacitivo, Fig. 31.

Figura 31 – Sensor capacitivo de umidade de solo. Fonte: o autor.
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Sensor de baixo custo, escolhido por sua durabilidade superior em comparação

aos sensores resistivos.

5.4 CONTEXTO EXPERIMENTAL

O SPheRe consiste em um sistema de fenotipagem instalado em uma tenda de

cultivo localizada no laboratório “Estufa” do Centro de Informática da UFPE. Seu de-

senvolvimento inicial foi apresentado no XIV Symposium on Computing Systems En-

gineering (SOUZA; BLAWID, 2024). O SPheRe se trata de um ambiente sob condições

controladas de iluminação e irrigação, conforme ilustrado na Fig. 32(a), contendo pra-

teleiras para acomodação das plantas envasadas, iluminação artificial programável,

exaustor e o módulo embarcado de sensoriamento.

(a) Tenda de cultivo (b) Irrigação por gote-
jamento

(c) SoC com câmera (d) Sensor de umi-
dade

Figura 32 – Sistema de fenotipagem na tenda de crescimento (a). Sistema de irrigação por gotejamento
(b). O múdulo posicionado acima da planta em estudo a uma distância de 50 cm (c). Degra-
dação do sensor capacitivo por infiltração (d). Fonte: Souza e Blawid (2024).

A Fig. 32(b) destaca o sistema de irrigação por gotejamento, acionado por uma

bomba d’água instalada externamente à tenda, enquanto o módulo (c), posicionado a

aproximadamente 50 cm acima da planta, realiza a captura de imagens e leituras de

umidade. A Fig. 32(d) mostra um sensor capacitivo danificado por infiltração durante

testes em solo extremamente úmido, justificando sua posterior impermeabilização com

verniz para circuitos eletrônicos, proporcionando maior resistência à umidade e dura-

bilidade.
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5.5 PSEUDO-CALIBRAÇÃO DO SENSOR DE UMIDADE

Para assegurar a coerência nas leituras do sensor capacitivo adotado, foi realizado

um ajuste comparativo, utilizando como referência um sensor de umidade comercial

(modelo ST-03), conforme ilustrado na Fig. 33(a). A regulação foi feita com dois va-

sos plásticos contendo, aproximadamente, 1 kg de terra para jardinagem cada, ambos

com furos de drenagem. Um dos vasos permaneceu com solo seco, enquanto o outro

foi saturado até escorrer água, resultando em solo altamente úmido, como mostra a

Fig. 33(b).

(a) ST-03
(b) Solo seco (esq.) e úmido (dir.)

Figura 33 – Itens usados na regulação do sensor sob estudo. Fonte: o autor.

A fim de garantir uniformidade, o solo de ambos os vasos foi homogeneizado com

auxílio de espátula. O sensor ST-03 foi inserido no vaso com solo seco, realizando-se

14 medições em diferentes pontos, resultando numa média de 4% de umidade relativa.

No vaso úmido, o mesmo procedimento indicou 59% de umidade relativa média.

Em seguida, repetimos o mesmo processo aplicando o sensor de umidade capaci-

tivo sobre os dois vasos. Com SoC configurado para uma leitura analógica de 9 bits (0

a 511) de resolução, correspondentes a 0 e 3.3V, respectivamente, iniciamos a leitura

analógica no solo seco, medindo o valor 330, enquanto no solo úmido, 214. Conside-

rando esses dois pontos, deduziu-se uma função linear de primeiro grau para estimar

a umidade relativa do solo: se concluiu, portanto, que leituras de 338 correspondem a

0% e leituras de 128 a 100%. Feito isso, essa função linear passou a mapear as lei-

turas seguintes, limitadas entre 0% e 100%. Valores intermediários foram observados

durante os testes.
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5.6 PLANTA ALVO E ILUMINAÇÃO

Como planta sob estudo, foi utilizada a espécie Lactuca sativa (alface), conhecida

por sua sensibilidade à umidade do solo e necessidade de irrigação constante. As

plantas foram envasadas em recipientes semelhantes aos usados na regulação e po-

sicionadas sob o campo de visão do Módulo de Controle, conforme Fig.34.

Figura 34 – Planta sob estudo (alface estiolado). Fonte: o autor.

Apesar de dispormos de controle automático da iluminação da tenda por meio do

temporizador programável (modelo TE-30, Elcon), decidimos pelo ciclo contínuo de

24 horas de luz ativada com auxílio de lâmpada LED branca (18W, 6500K). Essa

configuração é similar à utilizada por Wang et al. (2024) em seus testes com coentro.

Esse setup foi mantido durante todo a fase de experimento a fim gerar mais imagens

para o dataset em menor período.

5.7 A PLATAFORMA DE DESENVOLVIMENTO E O FIRMWARE

Todo o firmware foi desenvolvido com base na linguagem C++, utilizando a plata-

forma PlatformIO integrada à IDE Visual Studio Code, Fig. 35.

O PlatformIO é um ecossistema de desenvolvimento open-source para sistemas

embarcados, como placas Arduino, ESP32, STM32, entre outras. Essa integração fa-

cilita bastante o desenvolvimento em comparação ao Arduino IDE tradicional, especi-

almente para projetos maiores e mais complexos. A estrutura de programação adota

o paradigma orientado a objetos, o que favorece a modularização das principais fun-

cionalidades.
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Figura 35 – VSCode com PlatformIO. Fonte: o autor.

5.8 A PLATAFORMA DE PROCESSAMENTO DE IMAGENS

Para processamento das imagens geradas pelo sistema foi utilizado o Google Co-

laboratory, Fig.36, uma plataforma gratuita baseada em nuvem que permite o desen-

volvimento e a execução de notebooks Jupyter diretamente no navegador, eliminando

a necessidade de configurações locais complexas.

Figura 36 – Google Colab. Fonte: o autor.

No contexto de processamento e análise de imagens, o Colab oferece uma série

de vantagens relevantes:

• Acesso a aceleradores de hardware, como GPUs e TPUs, o que o torna uma

ferramenta valiosa para o treinamento de modelos DL com bibliotecas como Ten-

sorFlow, PyTorch e OpenCV;

• Ambiente pré-configurado, com diversas bibliotecas amplamente utilizadas em

visão computacional já instaladas;

• Integração nativa com o Google Drive, permitindo o armazenamento, organi-

zação e compartilhamento eficientes de imagens, conjuntos de dados e modelos;
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• Execução em células de código, facilitando a experimentação e a depuração

de forma interativa e incremental;

• Suporte a visualizações embutidas no próprio notebook, por meio de ferra-

mentas como matplotlib, seaborn e OpenCV, o que favorece a análise e interpre-

tação dos resultados obtidos.

Na etapa do processamento de imagens, especialmente na definição das másca-

ras para segmentação de cor, utilizou-se o GIMP como ferramenta de apoio. Trata-se

de um software gratuito e de código aberto amplamente utilizado para edição e mani-

pulação de imagens.

5.9 ARMAZENAMENTO DOS DADOS EM SERVIDOR EM NUVEM

A recepção e armazenamento tanto dos dados de umidade quanto das imagens

são gerenciados no Google Apps Script, que é uma plataforma em nuvem baseada

em JavaScript desenvolvida pelo Google. Ela permite automatizar tarefas, integrar e

estender a funcionalidade de produtos Google como Google Sheets, Google Docs,

Google Forms, Google Drive, etc.

5.9.1 Comunicação entre SPheRe e Google Sheets

Desenvolvemos um script, Fig.37, que permite ao SPheRe enviar dados de umi-

dade para uma planilha online, Fig. 38, e solicitar parâmetros de controle (como limia-

res de irrigação e comando de rega baseado em checkbox) oriundos da planilha. Ou

seja, o fluxo de dados diz respeito ao valor da umidade, atualização de limiares de

histerese da umidade e comando de rega forçada.

5.9.2 Comunicação entre SPheRe e Drive

Em síntese, desenvolvido esse segundo script que permite que o SPheRe envie

imagens para serem automaticamente armazenadas em uma pasta específica do Go-

ogle Drive, Fig.39, com um nome de arquivo que inclui um dado contextual (umidade)

e um carimbo de data/hora.
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Figura 37 – Ambiente de desenvolvimento em nuvem do Google Apps Script. Fonte: o autor.

Figura 38 – Planilha exibindo dados, gráfico e interface de controle do SPheRe. Fonte: o autor.
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Figura 39 – Dataset de imagens em nuvem - Google Drive. Fonte: o autor.

5.10 PROCESSAMENTO E ANÁLISE DAS IMAGENS RGB

Para investigar a relação entre a coloração das folhas e a umidade do solo, foi

desenvolvido um conjunto de scripts em Python na plataforma de desenvolvimento

Google Colab, em nuvem, para análise das imagens armazenadas em dataset no

Google Drive. O processamento envolveu as seguintes etapas:

5.10.1 Segmentação das Folhas

A função cut_leaves_without_spark() foi projetada para realizar o recorte das

folhas presentes em uma imagem de entrada, ao mesmo tempo em que busca mitigar

variações luminosas indesejadas. O processo é estruturado em etapas sequenciais,

conforme detalhado a seguir.

5.10.1.1 Remoção de Interferência Luminosa

A metodologia inicia-se com a definição de uma região de referência dentro da

imagem de entrada — localizada na prateleira e caracterizada pela cor preta (Fig. 40).

Nessa região, são calculadas as médias dos valores dos componentes de cor (RGB).

Em seguida, tais médias são subtraídas de todos os pixels da imagem, com o objetivo

de atenuar ou eliminar possíveis pulsos luminosos espúrios.

Dessa forma, a região de referência atua como um padrão de calibração, garan-

tindo que os valores de cor analisados não sejam interpretados de forma absoluta,
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mas relativa ao ponto de referência. Essa abordagem melhora a robustez da análise

diante de variações indesejadas de iluminação.

É importante destacar que, diferentemente de softwares de edição de imagem con-

vencionais — e mesmo da convenção usual do sistema HSV —, o Python utiliza faixas

específicas de valores para cada canal de cor. Assim, após a normalização baseada

na região de referência, os novos valores atribuídos aos pixels não correspondem ne-

cessariamente às suas cores reais, mas a valores corrigidos para fins comparativos

dentro do processamento.

Figura 40 – Imagem com região de referência em destaque. Fonte: o autor.

5.10.1.2 Suavização da Imagem

Para preparar a imagem para as etapas subsequentes de segmentação e minimi-

zar o ruído, um filtro Gaussiano de desfoque (cv2.GaussianBlur) é aplicado. Este

filtro contribui para a homogeneização das regiões.

5.10.1.3 Segmentação Baseada em Cor (Verde)

A imagem é convertida do espaço de cor RGB para o espaço HSV , já abordado

na Seção D.0.1.2. Esta faixa de valores para a matiz verde foi obtida de forma obser-

vacional, com base em experimentos em diversas imagens, demonstrando excelente

robustez em variados testes. Uma máscara binária é então gerada, delimitando uma

faixa específica de tonalidades de verde. Essa máscara é utilizada para isolar e reter
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apenas as regiões da imagem que correspondem à coloração das folhas, eliminando

as demais cores presentes no fundo. A segmentação de cor relativa a regiões de folha

seca também foi utilizada.

5.10.1.4 Segmentação por Limiarização

A porção da imagem resultante da etapa de segmentação por cor, contendo predo-

minantemente as áreas verdes, é convertida para tons de cinza. Após uma nova apli-

cação de desfoque, é empregado o método de limiarização de Otsu (cv2.threshold).

Este algoritmo automático determina um valor de limiar ideal para binarizar a imagem,

distinguindo efetivamente as folhas do fundo. Posteriormente, um filtro de mediana

(cv2.medianBlur) é aplicado à máscara binária obtida, contribuindo para a suavização

de bordas e a remoção de pequenos ruídos.

5.10.1.5 Recorte Final das Folhas

Na etapa final, a máscara binária refinada (gerada pelas etapas de segmenta-

ção) é aplicada à imagem oriunda da etapa 5.10.1.1(já sem interferência luminosa).

O resultado é uma nova imagem que contém exclusivamente as folhas segmentadas,

com o fundo e quaisquer outros elementos não pertinentes removidos, ou seja, pre-

enchidos com pixels nulos, facilitando análises posteriores focadas na folhagem.

Esse processo garante que os pixels considerados na média RGB pertençam pre-

dominantemente à área foliar da planta monitorada.

É importante ressaltar que a segmentação apresentou um artefato indesejado, uma

pequena parte do módulo de monitoramento ambiental afastado da planta, apesar de

aparentemente insignificante, utilizamos artifício de anulação de pixels apenas nessa

região.

A Fig. 41 ilustra estágios envolvidos no recorte de folhas de cada imagem.

5.10.2 Extração de Dados Estatísticos

A função image_statistics processa cada imagem de folha recortada resultante

da função cut_leaves_without_spark() a fim de extrair os dados de cor “relativa”. Va-
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Figura 41 – Pipeline de Processamento de Imagens Digitais. Fonte: o autor.

riáveis do tipo cropped_leaves_mean_blue_list e cropped_leaves_sd_blue_list, cor-

respondem a valores médios e de desvio padrão do canal de cor azul “relativo” de

cada imagem, formando séries temporais.

5.11 ANÁLISE DE ESPAÇOS DE COR EM FUNÇÃO DA UMIDADE

Para aprofundar a análise entre cor e umidade, cada imagem do dataset foi seg-

mentada utilizando a função implementada cut_leaves_without_spark(), que realiza

a remoção de variações indesejadas de luminosidade, aplica suavização e segmenta-

ção por cor e limiarização. Como resultado, a função retorna a imagem segmentada,

no espaço de cor RGB, que em seguida é convertida em HSV. A partir dessas ima-

gens, foram extraídas estatísticas como média e desvio padrão de cada canal (R, G,

B, e o H, S e V), medidas relativas à região de referência, juntamente com o valor de

umidade.

5.12 CLASSIFICAÇÃO POR MEIO DE ARQUITETURAS RASAS

Para a etapa de classificação, foram adotados três algoritmos de aprendizado su-

pervisionado: Decision Tree, Random Forest eKNN (K-Nearest Neighbors.

O Decision Tree é um método baseado em uma estrutura hierárquica em forma de

árvore, semelhante a um fluxograma, no qual as decisões são tomadas por meio de

regras extraídas dos atributos das amostras. O Random Forest, por sua vez, consiste

em um conjunto de múltiplas árvores de decisão combinadas, o que permite aumentar

a precisão da classificação e reduzir a ocorrência de erros decorrentes do overfitting.
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Já o KNN é um algoritmo baseado em medidas de similaridade. Para classificar

uma nova amostra, calcula-se a distância — geralmente euclidiana — entre ela e

todas as amostras do conjunto de treinamento, selecionando-se os K vizinhos mais

próximos. A classe atribuída é a mais frequente entre esses vizinhos. Embora simples

e de fácil implementação, o KNN apresenta como desvantagens o maior custo com-

putacional durante a inferência e a necessidade de manter todo o conjunto de dados

armazenado em memória.

5.13 VISÃO GERAL DOS EXPERIMENTOS

Todos os experimentos apresentados neste trabalho referem-se a análises reali-

zadas sobre um conjunto de arquivos de imagens RGB, capturadas pelo SPheRe,

formando um dataset com mais de três mil imagens coletadas ao longo de um período

de 42 dias.

As análises foram organizadas em quatro etapas principais: primeiramente, uma

análise dos dados extraídos das imagens em conjunto com a percepção visual de

amostras do dataset. Na sequência, foi conduzida uma análise baseada em ML, utili-

zando arquiteturas rasas. E em seguida, uma análise por meio de arquiteturas pro-

fundas. Por fim, a quarta e última etapa, a avaliação da execução de modelos obtidos

até então diretamente no SoC.

Na primeira etapa do experimento, de caráter estatístico e observacional, foram

empregadas ferramentas de PDI — conforme detalhado na Seção 2.2 e no Anexo —

incluindo: estatísticas de cor, indicadores de movimento e caracterização de textura.

O fluxo desse processo é ilustrado na Fig. 42.

Figura 42 – Pipeline para extração de dados de cor, textura e tropismo. Fonte: o autor.
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A segunda etapa corresponde a uma classificação rasa, onde as imagens passa-

ram por pré-processamento, incluindo a segmentação da região de interesse (ROI) e a

extração de texturas, resultando em vetores de atributos utilizados como entrada para

algoritmos de aprendizado supervisionado. O fluxo metodológico encontra-se ilustrado

na Fig. 43.

Figura 43 – Pipeline para classificação indireta via arquiteturas rasas e por meio de dados de textura.
Fonte: o autor.

A terceira etapa, a aplicação de classificação profunda, onde as imagens são

processadas diretamente por uma rede neural convolucional do tipo MobileNetV3.

Nesse caso, a rede aprende automaticamente os descritores relevantes para diferen-

ciar plantas com e sem estresse hídrico, dispensando a etapa de extração de atributos.

O fluxo dessa classificação é apresentado na Figura 44.

Figura 44 – Pipeline para classificação direta de imagem via arquitetura profunda. Fonte: o autor.

Por fim, a última etapa consistiu no experimento de implementação de PDI e do em-

prego dos modelos avaliados — outrora, em nuvem — diretamente no SoC ESP32S3.

A Fig 45, ilustra esse cenário desafiador, cujo foco está no potencial dos modelos

obtidos fornecerem resultados em cenários práticos, contornando as limitações do

dispositivo, seja por meio de redução de modelos, quanto na refatoração de código

para processar imagens.
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Figura 45 – Cenário Nuvem versus Edge-Computing. Fonte: o autor.

5.14 PREPARAÇÃO DOS DADOS

A partir das imagens armazenadas em uma pasta no Google Drive, nomeadas pelo

padrão umidade-AAAAMMDD-HHMMSS.jpg, foi construído o dataset, cronologicamente or-

denado, com todas as imagens capturadas entre 1 de abril de 2025 e 12 de maio de

2025, totalizando 3966 imagens. O gráfico da Fig. 46 representa os valores de umi-

dade do solo em função do tempo, compreendendo ciclos de estresse hídrico, com

regas realizadas a cada 15 dias, aproximadamente.

A Fig. 47 representa uma amostra do dataset nesse período.
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Figura 46 – Gráfico da umidade do solo e do comando de irrigação, em função do tempo. A segunda
rega separa o experimento em dois ciclos. Fonte: o autor.

Figura 47 – Amostra do dataset do experimento. Fonte: o autor.
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5.15 DESAFIOS DE OTIMIZAÇÃO DO SETUP

5.15.1 Sensor de umidade

Para assegurar o desempenho adequado do sensor capacitivo adotado, foi neces-

sária uma intervenção corretiva decorrente de falha de fabricação: a conexão de pino

de resistor ao terminal de terra do circuito. Adicionalmente, realizou-se a impermea-

bilização da borda da PCI com verniz Isotec Incolor (Implastec), de modo a reduzir o

risco de infiltrações. Esses ajustes estão evidenciados na Figura 48.

Figura 48 – Sensor ajustado: conexão do terra e impermeabilização das bordas. Fonte: o autor.

5.15.2 Iluminação artificial

Durante as primeiras etapas, observou-se significativa interferência nas imagens

capturadas, além da má formação de diversas mudas de alface devido ao estiola-

mento. Esse desafio foi superado mediante a substituição da iluminação por lâmpadas

LED mais adequadas e pela adoção de um ciclo contínuo de 24 horas de iluminação.

5.15.3 Reservatório de água

O primeiro reservatório adotado apresentou intensa formação de lodo, comprome-

tendo a qualidade da água utilizada na irrigação. O problema foi solucionado com a

substituição do recipiente por um modelo em PVC, que apresentou maior resistência

a esse tipo de ocorrência.
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5.15.4 Pintura do suporte

A superfície da prateleira de apoio às mudas foi pintada na cor preta com o in-

tuito de facilitar os processos de segmentação das imagens, reduzindo interferências

visuais no pré-processamento.

5.15.5 Configuração da câmera

A configuração da câmera OV5640 constituiu um dos maiores desafios do estudo,

devido à escassa documentação técnica disponível. A calibração foi realizada a partir

de uma combinação de pesquisa em diferentes fontes e de extensivos testes empíricos

baseados em tentativa e erro.

5.15.6 Bomba de irrigação

Após longos períodos sem acionamento do sistema, foram identificadas falhas no

funcionamento da bomba de irrigação. A solução encontrada restringiu-se a ajustes

manuais e leves impactos físicos no componente, o que evidencia uma limitação do

modelo adotado, mesmo após a substituição por bombas de diferentes fabricantes.

5.16 CONSIDERAÇÕES METODOLÓGICAS FINAIS

A câmera OV5640 foi configurada para capturar imagens em resolução de 2560 ↓

1600 pixels com fator de compressão JPEG igual a 10, oferecendo qualidade satisfa-

tória com economia de espaço na nuvem. Inclusive, por razão desconhecida, testes de

transmissão de imagens com resolução superior não foram bem sucedidos. As ima-

gens são capturadas e enviadas a cada 15min, e associadas aos dados de umidade

do solo, para posteriormente serem analisadas com o intuito de verificar a relação en-

tre a imagem e o nível de umidade, objetivo central da fenotipagem conduzida neste

estudo.

Concluídas as etapas de regulação e definidas as condições experimentais do cul-

tivo, procedeu-se ao desenvolvimento e à implementação do sistema embarcado, des-

critos no capítulo seguinte.
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6 RESULTADOS: IMPLEMENTAÇÃO

Este capítulo apresenta a implementação do sistema embarcado de fenotipagem

proposto, SPheRe, detalhando sua arquitetura de software, lógica de funcionamento,

desenvolvimento do firmware e hardware. Com base nos requisitos definidos e no am-

biente experimental descrito no capítulo anterior, o sistema foi desenvolvido com foco

em modularidade, robustez e baixo consumo energético, utilizando tecnologias aces-

síveis e amplamente documentadas. O desenvolvimento bem-sucedido do SPheRe

representa um resultado importante da presente dissertação.

6.1 ESTRUTURAMENTO DO FIRMWARE

A arquitetura do código foi baseada na seguinte tríade da Fig.49:

Figura 49 – Tríade do SPheRe. Fonte: o autor.

Podemos traduzir essa tríade nos passos a seguir, os quais compõem o núcleo do

SPheRe:

• Configuração e leitura da umidade através do sensor capacitivo de umidade do

solo;

• Configuração do módulo câmera OV5640 e captura de imagens;

• Configuração da conectividade Wi-Fi e comunicação com a nuvem.

O programa principal realiza a inicialização de registradores e periféricos, configu-

rando o conversor analógico-digital, definindo os pinos de entrada e saída, e ativando
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a comunicação serial para depuração. Após essa etapa, a comunicação Wi-Fi é esta-

belecida, e o sistema entra no ciclo principal, baseado em Máquina de Estados Finitos

(do inglês FSM).

6.2 LÓGICA DE FUNCIONAMENTO DO SISTEMA

O comportamento do SoC é regido por meio de uma FSM composta por seis esta-

dos, conforme ilustrado na Fig.50. Esses estados regem a coleta de dados, a comuni-

cação com a nuvem, o acionamento da irrigação e o controle energético.

Figura 50 – Diagrama de estados do SPheRe. Fonte: o autor.

1. Setup: estado de inicialização do microcontrolador, responsável por configurar

pinos, sensores, conexão Wi-Fi e periféricos.

2. Leitura da Umidade (moisture_read): amostragem de 258 valores analógicos

do sensor capacitivo, com descarte de outliers (mínimo e máximo), seguida do

cálculo da média. O valor médio é mapeado para uma escala percentual entre

0% e 100%.

3. Captura e Envio de Imagem (send_image): após verificar se há iluminação sufi-

ciente, uma imagem com resolução de 2560 ↓ 1600 pixels é capturada e asso-

ciada ao valor de umidade do solo. Em seguida, é enviada via requisição HTTP
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para um script no Google Drive, onde é rotulada com as informações de umi-

dade, data e horário de recebimento, e por fim, salva em pasta.

4. Controle da Rega (pump_control): A rega pode ser acionada mediante duas

circunstâncias excludentes: com maior prioridade, o sistema consulta checkbox

da planilha no Google Sheets via HTTP. Caso o checkbox esteja habilitado, a

bomba d’água é acionada por 1min e, em seguida, o comando é desabilitado

automaticamente. Caso não haja esse comando de acionamento por parte do

usuário, o acionamento da irrigação pode se dar por meio da comparação do

valor de umidade atual, lido em moisture_read, com os limiares (da histerese)

salvos em memória anteriormente - durante o estado send_data do ciclo ante-

rior. Em caso de acionamento, a bomba é ativada por 5 s. A Fig. 51 ilustra parte

da planilha responsável pela transmissão de dados a partir da nuvem para o

SPheRe.

Figura 51 – Pequeno painel de interação com o usuário, para rega forçada e definição de limia-
res. Fonte: o autor.

5. Envio de Dados (send_data): os dados de umidade e estado da bomba são envi-

ados via HTTP para o Google Sheets, atualizando a planilha de monitoramento.

Em seguida os valores de limiar da histerese são lidos da planilha e atualizados

em memória não volátil.

6. Modo de Suspensão (deep_sleep): após o ciclo completo, o sistema entra em

modo de hibernação por 15min, reduzindo o consumo energético.

É importante frisar que na ocasião de falha de conexão com o servidor a FSM ga-

rantirá a irrigação da planta, por meio de sua passagem pelos estados moisture_data

e pump_control, com base nos valores de limiares previamente salvos, seja de “fá-

brica” ou oriundos da última comunicação com o servidor.

Outro recurso disponível no código é a verificação de falhas, tanto de comunicação

quanto do módulo de imagem, com a capacidade de reinicialização do sistema.

A seguir, um melhor detalhamento de algumas das funcionalidades do SPheRe.



95

6.3 CONFIGURAÇÃO DA CAPTURA DE IMAGEM E COMPRESSÃO

O módulo de imagem, composto pela câmera OV5640, é primeiramente configu-

rado com uma baixa resolução de 96 ↓ 96 pixels em escala de cinza. Uma imagem

inicial é capturada para verificar as condições de iluminação do ambiente. Se o ambi-

ente estiver iluminado — condição que só ocorre com a ativação da iluminação artifi-

cial —, a câmera é reconfigurada para a captura da imagem final. Esta é obtida com

uma resolução superior (2560 ↓ 1600 pixels), no espaço de cor RGB, e um fator de

compactação JPEG de 10. Tal fator, situado entre 0 (maior qualidade) e 63 (menor

qualidade), foi escolhido para assegurar uma qualidade visual adequada sem sobre-

carregar o armazenamento em nuvem.

6.4 GERENCIAMENTO DE ENERGIA

Visando prevenir o sobreaquecimento e otimizar o consumo energético, o SPheRe

é configurado no modo de hibernação, deep_sleep, ao final de cada ciclo da FSM.

Esse modo desliga os periféricos não essenciais e reduz drasticamente o consumo de

corrente, permitindo que o sistema opere de forma prolongada mesmo em condições

de alimentação limitada, a exemplo de baterias.

Adicionalmente, o módulo câmera, responsável pela maior parte do consumo com

relação a todo o SPheRe, é apenas ativado durante o estado send_image, promovendo

ainda maior economia de energia e proteção térmica. Ou seja, na eventualidade de

não haver comunicação com o servidor, esse módulo permanece desativado.

6.5 HARDWARE PARA ACIONAMENTO DA MINI BOMBA D’ÁGUA

Devido à limitação de corrente elétrica da placa de desenvolvimento, XIAO ESP32S3

Sense, projetamos uma placa auxiliar contendo um circuito de acionamento baseado

em transistor bipolar e resistor, conforme exibe a Fig. 52. Esse circuito permite o con-

trole da bomba d’água, operando com a corrente adequada.
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Figura 52 – Esquema elétrico e PCI da placa auxiliar montada. Fonte: o autor.

6.6 MÓDULO PARA COLETA DE DADOS AMBIENTAIS

O módulo originário do trabalho de Cardoso e Blawid (2022) foi utilizado nesta

pesquisa para coleta e monitoramento de dados como: temperatura e umidade do

ar e intensidade luminosa, Fig. 53, dentre outros fatores. A Fig. 54(a) evidencia este

módulo equipado com ESP32 e demais módulos sensores, enquanto, a Fig. 54(b)

ilustra seu uso na tenda de crescimento.

Figura 53 – Alguns dos fatores monitorados no interior do SPheRe. Fonte: o autor.

O firmware disponível para uso nesse módulo necessitou de pequena adequação

para uso no contexto do SPheRe.
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(a) (b)

Figura 54 – (a) Módulo para medições de dados ambientais na tenda. Fonte: Cardoso e Blawid
(2022); (b) Posicionamento do sensor ambiental. Fonte: o autor.

6.7 REPOSITÓRIO DO PROJETO

O repositório Github do projeto pode ser encontrado aqui.

https://github.com/fjmsouza/SPheReLAB.git


98

7 RESULTADOS: PROVAS DE CONCEITO

Neste capítulo, apresentamos os resultados obtidos na fenotipagem automática de

plantas submetidas a diferentes níveis de umidade do solo.

7.1 ANÁLISE DE ESPAÇOS DE COR EM FUNÇÃO DA UMIDADE

A Fig. 55 ilustra dois exemplos das imagens em RGB segmentadas, e destaca

poucas mudanças perceptíveis na planta após a irrigação.

(a) Imagem original. Capturada imediata-
mente antes da rega.

(b) Imagem original. Capturada dez horas
após a rega. Movimento das folhas em des-
taque.

(c) Imagem (a) segmentada. (d) Imagem (b) segmentada.

Figura 55 – Imagens capturadas e segmentadas antes e depois da irrigação. (Esq.) solo a 0% de umi-
dade relativa. (Dir.) a 82%.

Ao observar ambas as imagens originais na Fig.55, antes e após a irrigação, não se

nota alteração perceptível na cor, exceto por pequenas movimentações em algumas

partes das folhas.
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7.1.1 Médias dos Canais

A Fig. 56 mostra a variação da média dos canais RGB das imagens segmenta-

das (eixo direito) em função da umidade do solo (eixo esquerdo) ao longo do tempo

(número da imagem no eixo x).

Figura 56 – Valores RGB médios durante dois ciclos de irrigação. Média R, G e B de cada uma das
3966 imagens capturadas a cada 15 minutos durante 42 dias. Com destaque de 8 instantes
relevantes durante o experimento. Fonte: o autor.

Para a análise dos valores médios dos canais de cor R, G e B das folhas ao longo

do tempo, destacamos períodos específicos no gráfico da Fig. 56, enumerados em

sequência. Durante todo o período de testes, o gráfico sugere que imagens sofreram

alteração de cor e de intensidade luminosa. Principalmente, em torno dos instantes

3, 4 e 5 percebe-se alterações da taxa de variação do canal verde (G), o que sugere

alguma relação com a umidade. Porém, outros trechos após o evento 5 apresentam

certas anomalias, como outliers, ou mudanças bruscas.

A análise com foco apenas no gráfico se mostra desafiadora, portanto, outra abor-

dagem como a observação direta de amostras foi aplicada. As figuras a seguir (57 e

58) trazem algumas destas amostras de cada um dos trechos apontados no gráfico.
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1

2

3

4

a) b) c)

Figura 57 – Amostras de imagens processadas durante os eventos 1,2,3 e 4: a) Início do evento, b) 2
horas após e c) 10 horas após a). Cada linha representa o mesmo "trecho".
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5

6

7

8

a) b) c)

Figura 58 – Da mesma forma, amostras de imagens processadas durante os intervalos 5,6,7 e 8: a)
Início do evento, b) 2 horas após, e c) 10 horas após a).
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Com o objetivo de reunir as informações referentes a cada trecho analisado, apresenta-

se o Quadro 3, a qual deve ser consultado em conjunto com a Fig. 56 e com as amos-

tras ilustradas nas Figuras 57 e 58.

Trecho Descrição
1 Amostras de imagens processadas nas primeiras 10

horas do experimento.
2 Gráfico sugere alteração de cor, mas mudança não

perceptível nas amostras.
3 Imagens antes e após a primeira rega. Gráfico indica

aumento dos índices antes da rega, sugerindo
provável clareamento das folhas. Algum tempo após
a rega os índices param de aumentar e seguem com
leve inflexão dos mesmos índices.

4 Amostras evidenciam o início de estiolamento.
Índices R e G decaem com maior evidência se
comparados com B.

5 Imagens antes e após a segunda rega. Antes da
rega, os índices R, G e B se elevam igualmente,
provável clareamento das imagens subsequentes.
Novamente, após a rega, há uma leve mudança da
taxa de crescimento destes índices. Imagens com
estiolamento mais evidente. Início de secamento de
algumas folhas.

6 Ao contrário do que ocorre entre 3 e 4, Índices não
estacionam, continuam se elevando. O que traduz o
início de imagens com regiões de brilho intenso.

7 Observa-se uma variação acentuada nas médias dos
canais R, G e B, acompanhada por indícios visuais
de uma movimentação abrupta do estiolamento.
Além disso, nota-se um discreto aumento nas áreas
com folhas secas.

8 As imagens registradas nas últimas 10 horas do
experimento evidenciam a queda do estiolamento,
conforme observado nas amostras analisadas.

Quadro 3 – Descrição de cada trecho em destaque na Fig. 56. Fonte: o autor.

A partir do trecho 5, correspondente ao segundo estágio de estresse hídrico, o

experimento passou a apresentar imagens com regiões excessivamente claras. No

entanto, a análise do gráfico de luminância (Fig. 59) indica que não houve variação

significativa na iluminação ambiente durante essa fase, o que sugere que as alterações

observadas, tanto no gráfico RGB quanto nas amostras, apontam para uma limitação
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de configuração da câmera.

Figura 59 – Gráfico da luminância durante todo o experimento. Fonte: o autor.

A seguir, os gráficos da Fig. 60 representam os índices RGB médios em função da

umidade do solo para cada um dos ciclos, separadamente:

(a) Ciclo 1 (b) Ciclo 2

Figura 60 – RGB médio versus umidade do solo em cada um dos ciclos. Fonte: o autor.

A busca por um um “bom” indicador de estresse hídrico não se mostra trivial por

meio da análise do espaço de cor RGB, não sob a atual condição do experimento.

Uma outra alternativa é analisar os índices médios do espaço de cor HSV.

De forma análoga à abordagem anterior, a Fig. 61, apresenta a variação média

relativa dos canais H,S e V de cada imagem do dataset.

A partir do início de coleta dos dados até o momento em torno da segunda irriga-

ção, tanto a matiz (H) quanto a saturação (S) e o valor de intensidade (V) sugerem

relação com a umidade. Conforme mencionado na Tab. 3, o estiolamento mais evi-

dente da alface, observado a partir do trecho 5, é provavelmente a principal causa das
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Figura 61 – Média H, S e V de cada imagem. Fonte: o autor.

discrepâncias nas medições em relação aos trechos anteriores — tanto nos espaços

de cor RGB quanto HSV.

A seguir, os gráficos da Fig. 62 representam os índices HSV médios em função da

umidade do solo para cada um dos ciclos, separadamente:

(a) Ciclo 1 (b) Ciclo 2

Figura 62 – HSV médio versus umidade do solo em cada um dos ciclos. Fonte: o autor.

Com o objetivo de avaliar com maior precisão o comportamento do canal de satu-

ração nas imagens do primeiro ciclo (trechos de 1 a 5), a Fig. 63 apresenta a média

móvel desse canal, utilizando uma janela de dez elementos, juntamente com a umi-

dade relativa do solo — ambos plotados em função do tempo de amostragem.

Nesse contexto, os dados indicam que, cerca de 105 minutos (1 hora e 45 minu-

tos) após a irrigação, ocorre uma inflexão no canal de saturação. No entanto, essa

alteração não é perceptível visualmente. Considerando a hipótese de evitar que o solo

atinja 0% de umidade relativa, uma abordagem possível seria impedir que a derivada
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Figura 63 – Média móvel do canal S com janela = 10. Fonte: o autor.

da média móvel da saturação se torne negativa após a irrigação, ou ainda, definir um

valor mínimo para esse dado como critério de controle.

Diante disso, surge o seguinte questionamento: a cor poderia auxiliar na anteci-

pação de informações relacionadas à umidade? Para explorar essa possibilidade, foi

calculada a média móvel para uma janela de dez elementos sobre os dados H. A de-

tecção de reidratação foliar com base na cor ocorreu 6 horas e 30 minutos após a

irrigação. Portanto, o canal de cor não é o melhor “detector” de umidade na planta,

mas sim, o canal de saturação. Este é capaz de antecipar essa informação em quase

5 horas, quando comparado à cor.

7.1.2 Desvios Padrão dos Canais

Os desvios padrão de cada imagem segmentada em RGB e HSV estão registrados

nos gráficos das Fig.64 e Fig. 65.

A seguir, os gráficos da Fig. 66 representam os desvios padrão RGB e HSV em

função da umidade do solo para o primeiro ciclo:

Mais uma vez, o sistema de cor HSV — especialmente o canal de saturação —

demonstra ser um forte indicativo de estresse hídrico da planta, pelo menos durante o

primeiro ciclo do experimento.
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Figura 64 – Desvio padrão R, G e B de cada imagem. Fonte: o autor.

Figura 65 – Desvio padrão H, S e V de cada imagem. Fonte: o autor.

(a) Desvio Padrão RGB (b) Desvio Padrão HSV

Figura 66 – Desvios Padrão RGB e HSV versus umidade do solo para o primeiro ciclo do expe-
rimento. Fonte: o autor.
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7.2 ÍNDICE DE TROPISMO

Outra abordagem de fenotipagem através do SPheRe consiste na quantificação da

mobilidade natural da planta, ou seja, o percentual de movimento relativo entre ima-

gens consecutivas, indicando mudanças físicas observadas na planta, como desloca-

mento de folhas, inclinação ou recuperação pós-rega. O índice de tropismo proposto

é estimado a partir da imagem “diferença” entre os pares, sendo então calculada a

soma dos pixels dessa imagem resultante e a soma dos pixels da imagem anterior, e

por fim, a razão entre estas somas.

Conforme gráfico da Fig. 67, períodos de baixo movimento (valores em torno de

3%) indicam estagnação visual (planta pouco responsiva). Picos de movimento (valo-

res mais altos) indicam momentos em que a planta mudou significativamente de uma

imagem para a próxima.

Figura 67 – Gráfico da diferença percentual entre imagens consecutivas, indicativo de movimentação
da planta ao longo do tempo. Fonte: o autor.

A maioria das medições indicam pouca movimentação, com valores entre 2% e

3%, enquanto uma outra razoável parcela, em torno de 13%. No entanto, a partir do

trecho 6, observou-se um aumento gradual nesse índice, o que sugere um tropismo

induzido pelo aumento do estiolamento. No trecho 7 esse índice ultrapassa 25%, e a

partir dele diminui gradualmente, voltando a valores acima de 2%, o que assinalaria o

efeito da gravidade sobre o estiolamento identificado nas imagens.

Destaca-se ainda a presença de tênues elevações desse índice imediatamente
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após a irrigação, nos trechos 3 e 5, o que poderia ser uma evidência do tropismo por

fluxo de água no interior da planta.

a) b) c)

Figura 68 – Par de imagens que deu origem ao pico de 13% no trecho 3: a) Imagem 5 horas e 15
minutos após a irrigação, b) imagem consecutiva, e c) subtração entre a) e b). Fonte: o
autor.

7.3 ANÁLISE DE TEXTURA

Com foco na primeira parte do experimento, denominada Ciclo 1 – incluindo tam-

bém amostras iniciais do Ciclo 2 –, foram analisadas 2500 imagens para a extração

das seguintes características de textura: Contraste, Dissimilaridade, Homogeneidade,

ASM (Angular Second Moment), Energia, Correlação, Média, Variância, Desvio Pa-

drão e Entropia, conhecidas como características de Haralick.

Conforme descrito na Seção 2.2.2, as imagens RGB segmentadas foram converti-

das para escala de cinza e, em seguida, analisou-se a organização dos pixels de cada

imagem. Para uma análise mais precisa, com foco nas folhas, utilizou-se o recorte

automatizado das regiões segmentadas, conforme ilustrado na Fig.69, resultado da

remoção de pixels nulos excedentes. Enquanto, a Fig 70 destaca as correlações entre

as estatísticas de textura.

Após a extração das características de Haralick para cada uma das 2500 amostras,

procedeu-se à normalização dos dados. Com os dados normalizados, foi possível

verificar a existência de correlação entre características derivadas umas das outras —

como, por exemplo, entre ASM e energia, ou entre variância e desvio padrão —, o que

é evidenciado na matriz de correlação cruzada apresentada na Fig. 70.



109

Figura 69 – Amostra de imagem segmenta recortada. Fonte: o autor.

Figura 70 – Matriz de correlação cruzada entre as características de Haralick, incluindo o dado umidade
do solo. Fonte: o autor.
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Com base na análise dessa matriz, removemos as seguintes características do

conjunto de dados: ASM, energy, mean e variance, A Tabela 1 apresenta estatísticas

descritivas gerais do conjunto resultante.

Tabela 1 – Estatísticas descritivas das variáveis de textura e umidade

contrast dissimilarity homogeneity correlation std entropy moisture
count 2500.000000 2500.000000 2500.000000 2500.000000 2500.000000 2500.000000 2500.000000
mean 0.196907 0.467374 0.277164 0.497662 0.286666 0.634657 0.456725
std 0.086752 0.143800 0.081843 0.138450 0.113677 0.090444 0.364338
min 0.000000 0.206978 0.000000 0.000000 0.000000 0.370929 0.000000
25% 0.127480 0.373631 0.247732 0.401268 0.195094 0.569082 0.094118
50% 0.189421 0.432648 0.291766 0.521743 0.271354 0.614747 0.341176
75% 0.249025 0.534993 0.320115 0.601810 0.357737 0.711267 0.835294
max 0.517463 0.967907 0.611053 0.779285 0.581058 0.848450 1.000000

E o Boxplot da Fig. 71, resume a distribuição dos atributos do conjunto de dados,

destacando a tendência central, a dispersão e a presença de outliers.

Figura 71 – Boxplot do conjunto de dados. Fonte: o autor.

Da análise da correlação cruzada destacamos duas das características mais as-

sociadas à umidade (moisture): contraste e dissimilaridade. Na sequência, são apre-

sentados os gráficos dessas características em conjunto com os valores de umidade,

ao longo do Ciclo 1.

Na Fig. 72, a métrica contraste representa a intensidade da variação local de tons

de cinza entre um pixel e seus vizinhos. Valores elevados indicam uma textura com

transições bruscas, enquanto valores baixos sugerem uma textura mais uniforme. O

gráfico revela uma tendência de o contraste ultrapassar 0,4 antes da irrigação, quando

o solo e a planta já se encontram praticamente desidratados. O oposto também é
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Figura 72 – Contraste e Umidade em função do período entre os dias 2 e 27 de abril. Fonte: o autor.

observado: após a hidratação, o contraste tende a diminuir, atingindo valores inferiores

a 0,2.

Ainda na Fig. 72, os instantes a e b correspondem às amostras ilustradas na Fig.

73, ambas exibidas em escala de cinza e com distintos níveis da característica con-

traste, conforme indicado no gráfico.

(a) (b)

Figura 73 – Imagens de plantas evidenciando a mudança de contraste após a irrigação. (a)
imagem da planta momentos antes da rega, com solo a 0% de umidade relativa, e
medida contraste superior a de (b), outra amostra 5 dias após a rega, com solo a
70%. Fonte: o autor.

Ao analisar a média móvel do contraste com uma janela de dez leituras, foi possível

identificar indícios de reidratação foliar cerca de 3 horas e 15 minutos após a irrigação.
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Outra métrica relevante é a dissimilaridade (Fig. 74), que também mede a diferença

entre tons de cinza vizinhos. Porém, diferentemente do contraste, essa medida não

eleva as diferenças ao quadrado, como discutido na Seção 2.2.2, sendo mais sensível

a variações leves do que o contraste.

Figura 74 – Dissimilaridade e Umidade em função do período entre os dias 2 e 27 de abril. Fonte: o
autor.

Uma provável discrepância entre os picos da dissimilaridade nos dois momentos

da irrigação deve estar no desenvolvimento natural da planta, com sua morfologia

dinâmica e pela formação de novas folhas.

A seguir, a Fig. 75 representa os dados contrast e dissimilarity em função da umi-

dade do solo.

(a) contrast versus umidade do solo (b) dissimilarity versus umidade do solo

Figura 75 – Descritores de textura contrast e dissimilarity versus umidade do solo. Fonte: o
autor.

Por fim, na Fig. 76, apresentamos gráficos das demais características extraídas.
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(a) Homogeneidade. (b) Correlação.

(c) Desvio Padrão. (d) Entropia.

Figura 76 – Algumas das demais características de textura.

Quanto à homogeneidade, seus valores reduzidos indicam uma textura menos uni-

forme, com maior variação entre os tons de cinza. A correlação mede a relação linear

entre tons de cinza em uma determinada direção — valores altos indicam repetições

consistentes. Já o desvio padrão quantifica a dispersão dos tons. Por fim, a entropia

é maior em texturas visualmente complexas, o que é o caso de experimentos com

plantas, indicando maior desordem na distribuição tonal.

Até o momento, o foco do SPheRe tem sido realizar um diagnóstico detalhado da

planta em cultivo, com o objetivo de identificar quais dados são mais relevantes para

traduzir, de forma precisa, informações relacionadas ao estresse hídrico. Com vistas

à implantação de sensores de irrigação inteligentes, apresentam-se a seguir alguns

resultados obtidos a partir do emprego de técnicas de ML.

7.4 RUMO AOS FUTUROS SENSORES DE IRRIGAÇÃO INTELIGENTES

Visando expandir as funcionalidades do SPheRe, foram investigadas técnicas de

ML, com o objetivo de aplicar inteligência na borda (Edge Computing). Essas inves-
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tigações foram realizadas em ambiente em nuvem, especificamente Google Colab,

dispondo dos seguintes recursos descritos na Tabela 2:

Tabela 2 – Resumo das características do sistema utilizado para os experimentos.

Recurso Descrição
Processador x86_64
Arquitetura (64bit, ELF)
Sistema Operacional Linux 6.1.123+
Núcleos físicos 4
Núcleos lógicos 8
Frequência da CPU 2,2 GHz
RAM 54,8 GB

7.4.1 Classificação por meio de Arquiteturas Rasas

Dedicada à aplicação de aprendizado de máquina, esta etapa utilizou um dataset

formado pelas características de textura extraídas na fase anterior e pelo atributo bi-

nário Alert. Esse atributo foi definido em duas classes: Alert 1 (umidade entre 0% e

39%) e Alert 0 (umidade entre 40% e 100%). O objetivo foi investigar a correlação

entre os descritores de Haralick e essas classes, de modo a selecionar os mais re-

levantes para a classificação em modelos de arquitetura rasa por meio de algoritmos

de aprendizado supervisionado, tais como Decision Tree, Random Forest e K-Nearest

Neighbors (KNN).

Por fim, com as características GLCM já extraídas, o dataset foi categorizado nas

duas classes de alerta com base nos valores de umidade, substituindo o valor contínuo

pelo rótulo binário. Essa transformação permitiu a construção de uma nova matriz de

correlação cruzada entre os descritores de Haralick e as classes Alert, cujos resulta-

dos são apresentados na Tab. 3. Cabe destacar, entretanto, as limitações do conjunto

de dados: restrição a uma única espécie, número reduzido de amostras (um único

vaso e módulo) e foco exclusivo no Ciclo 1, conforme discutido anteriormente.

Por meio de avaliação da matriz, foram eliminadas as mesmas características da

seção anterior, apresentando alta correlação entre si, priorizando-se a permanência

daquelas com maior correlação com o atributo alert. Dessa forma, as características

ASM, energy, mean e variance foram excluídas do conjunto de dados, permanecendo
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Tabela 3 – Correlação cruzada entre as características de Haralick e a variável alert

Atributo Correlação com alert
contrast 0.57
dissimilarity 0.61
homogeneity 0.58
ASM 0.46
energy 0.47
correlation 0.68
mean 0.60
variance 0.60
std 0.61
entropy 0.56

os seguintes atributos selecionados: contrast, dissimilarity, homogeneity, correlation,

std e entropy. Nenhum outlier foi removido do dataset.

Com o dataset reduzido em atributos, efetuamos a divisão do conjunto em dados de

treinamento e dados de testes, 70% e 30%, correspondendo a 1750 e 750 amostras,

respectivamente.

A proporção de 70% para treinamento e 30% para teste foi adotada visando equi-

librar a necessidade de dados suficientes para o aprendizado dos modelos e a ob-

tenção de um conjunto de teste estatisticamente representativo. Embora a divisão

80/20 seja comumente empregada, optou-se por 70/30 devido ao tamanho limitado do

conjunto de imagens e à necessidade de assegurar uma avaliação mais robusta do

desempenho, evitando vieses decorrentes de um conjunto de teste reduzido (KUHN;

JOHNSON, 2013; RASCHKA; MIRJALILI, 2019).

Realizamos o treinamento com base em três tipos de modelos. A seguir traremos

a matriz de confusão correspondente e teceremos algumas discussões.

O primeiro modelo treinado foi baseado em Árvore de Decisão (Decision Tree). A

partir da aplicação do modelo sobre os dados de teste, foi obtida a matriz de confusão

apresentada na Fig. 77. Essa matriz resultou em uma acurácia global de 96,53%, com

uma precisão de 96,46% para a classe positiva.

Na sequência, foi utilizado um modelo baseado em Floresta Aleatória (Random

Forest). Após o treinamento, o modelo foi avaliado sobre o mesmo conjunto de dados

de teste, resultando em uma nova matriz de confusão, apresentada na Fig.78. Os re-

sultados indicaram uma acurácia de 97,87% e uma precisão de 98,71% para a classe
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Figura 77 – Matriz de Confusão da Decision Tree. Fonte: o autor.

positiva.

Figura 78 – Matriz de Confusão do Random Forest. Fonte: o autor.

Por fim, foi treinado um modelo do tipo KNN. No contexto deste trabalho, con-

siderando um conjunto de 2500 amostras, com 6 atributos representados em ponto

flutuante (4 bytes por valor), o consumo de memória apenas por parte do dataset fica

estimado em aproximadamente 60KB.

A aplicação do modelo sobre os dados de teste resultou na matriz de confusão

apresentada na Fig.79, a partir da qual foi obtida uma acurácia de 97,73% e uma

precisão de 98,96% para a classe positiva.

O algorítmo baseado em KNN demonstra ser o mais robusto a falsos positivos.

Porém, mais oneroso frente ao Decision Tree quanto à demanda de memória RAM,



117

Figura 79 – Matriz de Confusão da KNN. Fonte: o autor.

pois exige que todo, ou parte do dataset, transite entre a memória secundária e a

principal.

Além dos métodos tradicionais de classificação, abordagens baseadas em arquite-

turas profundas têm ganhado destaque devido à sua capacidade de capturar padrões

complexos em imagens. Nesse sentido, a próxima seção apresenta a classificação por

meio de redes neurais convolucionais (CNNs), utilizando estratégias de aprendizado

por transferência na tentativa de potencializar os resultados obtidos.

7.4.2 Classificação por meio de Arquiteturas Profundas

Com base no mesmo dataset da subseção anterior, utilizou-se o conjunto de ima-

gens que envolve as 2500 amostras pertencentes ao Ciclo 1 e ao início do Ciclo 2.

O processo de aprendizado por transferência foi conduzido a partir da organização e

pré-processamento do dataset de imagens, separadas em duas classes conforme o

valor de umidade do solo, seguindo o mesmo critério explicado anteriormente. Como

modelo, adotou-se a arquitetura MobileNetV3Small, pré-treinada no ImageNet. Mo-

delo que une excelente acurácia e ideal para implante em dispositivos com recursos

computacionais limitados. Se trata de um modelo configurado para receber imagens

no formato (224 ↓ 224 ↓ 3). Portanto, para inferência, as imagens foram submetidas

a recorte sobre a área de interesse e redimensionamento para 224 ↓ 224 pixels e

normalização dos valores dos pixels. O treinamento foi realizado em lotes (batch size)

de 32 imagens, com divisão do conjunto de dados em 20% para validação e 10% para
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teste (250 imagens), mantendo o valor da seed em 42 para reprodutibilidade. O enco-

der da MobileNet foi mantido congelado, sendo acrescentadas camadas densas (com

128 unidades e ativação ReLU), camadas de normalização em lote (BatchNormaliza-

tion) e camadas de Dropout (com taxas de 0.3 e 0.5) para mitigar overfitting. A Tab.4

representa o modelo final.

Tabela 4 – Resumo das camadas e parâmetros do modelo MobileNetV3Small customizado.

Layer (type) Output Shape Param #
input_layer_1 (InputLayer) (None, 224, 224, 3) 0
sequential (Sequential) (None, 224, 224, 3) 0
rescaling_1 (Rescaling) (None, 224, 224, 3) 0
MobileNetV3Small (Functional) (None, 7, 7, 576) 939,120
global_average_pooling2d (None, 576) 0
batch_normalization (None, 576) 2,304
dropout (None, 576) 0
dense (None, 128) 73,856
batch_normalization_1 (None, 128) 512
dropout_1 (None, 128) 0
dense_1 (None, 2) 258

O otimizador utilizado foi o Adam, com função de perda sparse categorical cros-

sentropy. O modelo foi treinado por 50 épocas, aplicando técnicas de data augmenta-

tion (flip horizontal, rotação, zoom e ajuste de contraste) para aumentar a robustez do

aprendizado.

Após o treinamento, a avaliação do modelo foi conduzida utilizando os dados de

teste. Da matriz de confusão resultante, Fig. 80, extraímos métricas como acurácia,

em torno de 80,40%, e precisão de 73% para classe positiva.

A Tabela 5 reúne a acurácia e precisão de classe positiva de cada modelo avaliado

até então, o tempo do pipeline executado em nuvem, envolvendo captura, processa-

mento e inferência também está incluso na tabela.

Tabela 5 – Acurácia, Precisão e Tempo do pipeline no Colab.

Modelo Acurácia(%) Precisão(%) Tempo(s)
Decision Tree 96,53 96,46 0,29
Random Forest 97,87 98,71 0,30
KNN 97,73 98,96 0,29
CNN 80,40 73 0,39
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Figura 80 – Matriz de Confusão após testes com a MobileNetV3Small. Fonte: o autor.

Com os resultados do modelo validados em ambiente de nuvem, buscou-se a im-

plementação do processamento e inferência diretamente no dispositivo embarcado. A

seguir, uma descrição dos resultados desta implementação.

7.4.3 Edge Computing

Até o momento, todos os testes dos modelos, bem como a avaliação de suas métri-

cas de desempenho, foram realizados em ambiente de nuvem utilizando a plataforma

Google Colab. A partir desta etapa, no contexto de computação de borda, o SPheRe

passa a ser explorado visando executar as etapas do pipeline de inferência no pró-

prio módulo ESP32-S3, sem a dependência de infraestrutura em nuvem. Antes de

avançarmos, a Tab. 6 apresenta um resumo das principais características desse SoC.

Tabela 6 – Principais recursos de hardware da ESP32-S3

SRAM(KB) PSRAM (MB) Flash (MB) Clock (MHz)
413,21 8 8 160

Nesse âmbito, SRAM (Static RAM) é a memória interna dos microcontroladores

ESP32-S3, rápida e estável, mas de capacidade limitada. E a PSRAM (Pseudo SRAM),

uma memória externa baseada em DRAM, acessada de forma semelhante à SRAM

pelo processador, oferecendo mais espaço a custo e desempenho intermediários. En-

quanto a SRAM é usada para tarefas críticas e buffers pequenos, a PSRAM é ideal

para processar grandes volumes de dados, como imagens e modelos de IA. A PSRAM
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permite expandir a capacidade do sistema, apesar de ser mais lenta que a SRAM.

Com base nesses recursos disponíveis, prosseguimos com o desafio de classifica-

ção de imagens.

O foco do experimento passa a ser a implementação dos modelos diretamente no

microcontrolador ESP32-S3, possibilitando a análise de sua performance em termos

de tempo de execução e demais restrições inerentes ao hardware embarcado.

Ressalta-se que, a ênfase não está na qualidade (ou coerência) da classificação,

mas sim em verificar a factibilidade de execução dessas abordagens no dispositivo.

Para viabilizar a execução das arquiteturas tradicionais no dispositivo embarcado,

foi necessário realizar ajustes, como a redução da resolução das imagens capturadas,

de 2560 ↓ 1600 para 1024 ↓ 768, a utilização de filtros menores nas convoluções,

entre outras simplificações. Esses ajustes permitiram a execução total do pipeline,

embora sem avaliação da qualidade dos resultados.

Após a exploração das arquiteturas tradicionais e das adaptações necessárias para

sua execução em ambiente embarcado, destaca-se a adoção de modelo baseado em

redes neurais convolucionais (CNNs).

A Tabela 7 indica que o modelo treinado resultou em um total de 1.091.574 parâme-

tros do tipo ponto-flutuante, de 32 bits cada. Visando a implementação em hardware

embarcado, esse modelo passou pelo processo de quantização e conversão para o

formato TensorFlow Lite (TFLite), reduzindo cada parâmetro real para um valor inteiro

de 8 bits. A quantização possibilitou a redução do tamanho do modelo em 4 vezes, de

4,16MB para 1,04MB, tornando-o adequado para as restrições de memória e proces-

samento do microcontrolador ESP32-S3, permitindo assim a execução da inferência

local, sinalizando viabilidade do monitoramento inteligente através do dispositivo de

borda.

Tabela 7 – Resumo dos parâmetros do modelo MobileNetV3Small customizado.

Total params 1,091,574 (4.16 MB)
Trainable params 75,522 (295.01 KB)
Non-trainable params 940,528 (3.59 MB)

A seguir, a Tab. 8 apresenta um resumo do consumo de memória Flash para ar-

mazenamento do firmware, contemplando as etapas de captura e processamento de

imagens — incluindo a extração de características de textura apenas no caso das ar-
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quiteturas rasas —, bem como a inferência dos modelos implantados na ESP32-S3.

O tempo total de execução do pipeline compõe a tabela.

Tabela 8 – Consumo de memória flash e tempo de execução do pipeline na ESP32-S3.

Modelo Flash (MB) Tempo execução (s)
Decision Tree 0,303 10,06
Random Forest 0,437 10,06
KNN 0,370 9,57
CNN 1,64 17,75

Com base nos testes preliminares, o KNN, ao contrário do esperado, demonstrou

desempenho levemente superior aos demais modelos no que diz respeito ao tempo

de execução do fluxo.

Devemos ressaltar que, por causas ainda desconhecidas não foi possível obter

métricas para modelo CNN reduzido por quantização completa de 8 bits. Para o mo-

delo CNN com quantização híbrida (int8 e float) foi registrada uma menor acurácia de

53%, aproximadamente, em contrapartida, seu deploy não foi possível, também por

razões desconhecidas.

7.5 DISCUSSÃO

Mesmo com um conjunto de dados limitado, os resultados deste trabalho demons-

tram a viabilidade do uso de imagens RGB para a detecção precoce de estresse hí-

drico em plantas, apoiando a hipótese de que alterações de cor nas folhas refletem, de

forma mensurável, a condição hídrica do solo. Os experimentos conduzidos confirma-

ram que, mesmo empregando dispositivos de baixo custo e capacidade computacional

limitada, é possível realizar a aquisição, o processamento e a análise automática de

imagens, assim como a integração de dados ambientais em tempo real.

A comparação entre diferentes modelos ML — desde arquiteturas rasas, como

Decision Tree, Random Forest e KNN, até arquiteturas profundas, como a Mobile-

NetV3Small — evidencia que modelos de arquitetura rasa apresentam maior acurácia

e precisão, desde que a análise de textura seja realizada com imagens de resolução

mais alta. Somado a isto, para a adequação aos modelos de arquiteturas profundas,

usualmente, a resolução da imagem de entrada é significativamente menor, o que
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pode indicar baixa capacidade de capturar nuances de textura, convergindo para uma

classificação baseada em cor.

Observou-se, ainda, que uma melhor configuração de câmera deve ser investi-

gada. Apesar dessa limitação, a abordagem proposta mostrou-se promissora para

aplicações reais, indicando caminhos para ajustes futuros, como o uso de técnicas de

normalização de iluminação e o aumento do dataset. Por fim, a integração do sistema

de sensoriamento inteligente ao ciclo automático de irrigação representa um avanço

para soluções autônomas e escaláveis na agricultura de precisão, promovendo sus-

tentabilidade e eficiência no uso de recursos hídricos.

O estudo demonstra viabilidade de fenotipagem automática via métricas simples e

CNN, com potencial aplicação real em sistemas de irrigação inteligente.
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8 CONCLUSÃO

Cientes do alcance dos objetivos expostos na seção 1.1, esta dissertação apre-

sentou o desenvolvimento e a validação de um sistema inteligente de fenotipagem

para monitoramento do estresse hídrico em plantas, com ênfase no uso de imagens

RGB e aprendizado de máquina embarcado em microcontroladores de baixo custo.

Os resultados experimentais evidenciaram que a coloração das folhas pode, de fato,

ser empregada como um indicativo sensível do estado hídrico do solo, permitindo a

antecipação de intervenções de irrigação de forma precisa e eficiente.

Os testes realizados mostraram que é possível implementar soluções de análise

de imagens e classificação de estresse hídrico em dispositivos com recursos limita-

dos, promovendo a descentralização do processamento (Edge Computing) e redu-

zindo a dependência de infraestrutura de nuvem. Os modelos de aprendizado devem

ser melhor avaliados diretamente nos dispositivos embarcados, a fim de obtenção de

métricas de desempenho em campo, exigindo ajustes para equilibrar precisão, uso de

memória e tempo de resposta.

O sistema proposto apresentou diferentes alternativas de deploy. Dentre elas, des-

taca-se como a de mais fácil implementação a análise da componente de cor H. Uma

segunda alternativa, que se mostrou promissora, consiste no uso de modelos de ar-

quitetura rasa baseados em dados de textura. Por fim, também foi considerada a uti-

lização de modelos de arquitetura profunda do tipo CNN, embora tal abordagem exija

experimentos ainda mais rigorosos.

Entre as limitações do estudo, destacam-se a variabilidade inerente das plantas,

a oscilação na qualidade das imagens — possivelmente decorrente de limitações de

configuração da câmera —, a necessidade de ampliação do banco de dados de ima-

gens, bem como a adaptação dos modelos para diferentes culturas e ambientes.

Como perspectivas para trabalhos futuros, destacam-se as seguintes propostas:

• Explorar modelos baseados em CNN customizados a imagens com dimensões

de entrada maiores. Isso pode contribuir com o aumento da acurácia e robustez

do modelo, ponderando frente às restrições de memória, tempo de execução e

consumo energético dos microcontroladores utilizados.

• Realizar experimentos com ciclos de estresse hídrico menores.
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• Incluir o armazenamento local de dados e imagens em cartão de memória, com

envio posterior quando a comunicação for restabelecida, garantindo maior ro-

bustez frente a falhas de conectividade.

• Investigar o impacto da variação da altura da câmera sobre a qualidade das

análises.

• Expandir o sistema com a inclusão de múltiplos sensores de umidade distribuí-

dos pelo cultivo.

• Mapear o consumo energético do sistema, visando a otimização da eficiência

operacional.

• Analisar informações adicionais coletadas pelo módulo ambiental.

• Instalar câmeras em diferentes posições para ampliar a captação de movimen-

tos, identificar novas características fenotípicas e aumentar o volume de dados

coletados.

• Extrair atributos de textura diretamente de imagens em escala de cinza, dispen-

sando a etapa de recorte das folhas, o que pode simplificar e agilizar o proces-

samento.

• Investigar abordagens de fusão sensorial e integrar sensores multiespectrais,

incluindo câmeras no infravermelho próximo.

• Aplicar técnicas de normalização para mitigar interferências externas.

Em suma, o SPheRe pode contribuir para um avanço em soluções inteligentes e

acessíveis para a agricultura de precisão, promovendo o uso sustentável da água e

possibilitando o desenvolvimento de sensores autônomos e não invasivos baseados

em visão computacional.
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ANEXO A – AQUISIÇÃO DE IMAGENS COM SENSOR 2D

O marco na tecnologia de detecção de imagem foi a invenção dos arranjos de fo-

todetectores semicondutores. dentre esses sensores o do tipo CCD (Charge-Coupled

Device), bem como do tipo CMOS (Complementary Metal-Oxide Semiconductor ). Tal

sensor consiste em um grande número de elementos fotossensíveis. Durante a fase

de acumulação, cada elemento coleta cargas elétricas, que são geradas pelos fótons

absorvidos.

A Figura 81 (a) ilustra um elemento sensor sendo usado para transformar energia

luminosa em imagem digital. A forma de onda da tensão de saída do sensor é análoga

à energia luminosa incidente na entrada (Jähne (1995)).

(a) (b)

Figura 81 – Composição de sensor matricial.

A Figura 81 (b) mostra vários desses sensores dispostos na forma de um arranjo

bidimensional. Este arranjo é predominantemente encontrado em câmeras digitais.

Uma imagem que incide na superfície do sensor bidimensional, conforme a Figura

82 ilustra, é contínua no espaço e em amplitude. Porém, para converter tal imagem

em formato digital, é necessário amostrar a função tanto em coordenadas quanto em

amplitude. A digitalização dos valores das coordenadas é chamada de amostragem,

enquanto a digitalização dos valores de amplitude, quantização.

Portanto uma imagem resultante é definida como imagem digital e pode ser defi-

nida como uma função bidimensional, f(x,y), onde x e y são coordenadas espaciais

(planares) finitas, e a amplitude de f, também finita, em qualquer par de coordenadas

(x, y), é chamada de intensidade ou nível de cinza da imagem naquele ponto Gonza-

lez e Woods (2008). Ou seja, uma imagem digital é composta por um número finito de

elementos, cada um com uma localização e valor específicos. Esses elementos são
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Figura 82 – Processo de Aquisição de imagem digital

chamados de elementos de imagem, pels ou pixels, o termo amplamente usado.
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ANEXO B – FUNDAMENTOS DA FILTRAGEM ESPACIAL

O domínio espacial é o plano que contém os pixels de uma imagem. Operações

de domínio espacial computam diretamente nos pixels de uma imagem, entretanto,

operações no domínio da frequência são realizadas na transformada de Fourier dessa

imagem. Algumas tarefas de processamento de imagens são mais viáveis de imple-

mentar no domínio espacial, enquanto outras são mais adequadas para outras abor-

dagens. Geralmente, as técnicas de domínio espacial são mais eficientes computacio-

nalmente requerendo menos recursos de processamento para serem implementadas.

Figura 83 – Operação de filtragem diretamente na imagem

Os processos do domínio espacial podem ser denotados pela expressão

g(x, y) = f(x, y) ↗ h(x, y) (B.1)

Onde f(x,y) é a imagem de entrada, h(x,y) é o filtro operando sobre uma vizinhança

do ponto (x, y) na imagem f(x,y), enquanto g(x,y) é a imagem resultante de saída.

h(x,y), geralmente muito menor do que a imagem f(x,y), opera sobre a mesma pixel

a pixel para um fim específico, como redução de ruído, por exemplo, ou mesmo erra

de transmissão, conforme pontua Jähne (1995). A Figura 83 mostra a implementação

básica da equação (B.1) sobre uma imagem. O ponto (x, y) corresponde tanto a um

ponto arbitrário da imagem quanto ao centro da filtro, e a pequena região em destaque

é a região da imagem sob o filtro. Normalmente, h(x,y) é quadrado, muito menor em

tamanho do que a imagem, e de ordem ímpar – a fim de garantir kernel com centro a
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ordem MxN deve ser ímpar, ou seja, com dimensões M e N ímpares, o que simplifica

a indexação e as operações.

O processo ilustrado pela Figura 83 consiste em mover o filtro h(x,y) sobre a ima-

gem f(x,y), de pixel a pixel computando seus coeficientes sobre os pixels da imagem

de entrada para gerar um único pixel de saída. Resultando numa imagem de saída

menor do que a imagem original de entrada. Toda a operação de convolução em

(B.1), consiste num “deslizar” incremental do centro de h(x,y) sobre toda a imagem

f(x,y). Normalmente, o processo começa no canto superior esquerdo da imagem de

entrada e prossegue pixel por pixel em uma varredura horizontal, uma linha de cada

vez. Quando o centro de h(x,y) atinge a borda da imagem, parte da vizinhança resi-

dirá fora da imagem. Um artifício é preencher a imagem com uma borda de 0s ou de

outros valores de intensidade específicos. A espessura da borda preenchida depende

do tamanho de h(x,y).

A respeito dessas operações entre o kernel sobre toda a imagem, vale distinguir o

que a literatura designa como correlação e convolução.

Na correlação a máscara “desliza” pixel a pixel sobre a imagem, e em cada po-

sição é computada a soma ponderada dos pixels, utilizando os valores da máscara

como pesos.

A fórmula da correlação 2D é:

g(x, y) =
k[︃

i=↑k

k[︃

j=↑k

f(x+ i, y + j) · h(i, j) (B.2)

onde:

• f(x, y) é o pixel da imagem original,

• h(i, j) é a máscara (ou kernel),

• g(x, y) é a imagem resultante.

Nota: a máscara é aplicada como está, sem alterações.

Na convolução, a operação é semelhante à correlação, mas com uma diferença

essencial: a máscara é rotacionada em 180º (espelhada horizontal e verticalmente)

antes da aplicação.

A fórmula da convolução 2D é:
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g(x, y) =
k[︃

i=↑k

k[︃

j=↑k

f(x+ i, y + j) · h(↔i,↔j) (B.3)

Essa rotação influencia a orientação da aplicação do filtro, o que é importante em

operações como detecção de bordas. Quando a máscara é simétrica, correlação e

convolução produzem o mesmo resultado.

O termo filtro é emprestado do processamento no domínio da frequência, onde

“filtragem” se refere à aceitação (passagem) ou rejeição de certos componentes de

frequência. Por exemplo, um filtro que passa baixas frequências é chamado de filtro

passa-baixa. O efeito líquido produzido por um filtro passa-baixa é borrar (suavizar)

uma imagem atenuando variações bruscas de intensidade entre pixels vizinhos. Po-

demos realizar uma suavização semelhante diretamente na própria imagem usando

filtros espaciais (também chamados de máscaras, núcleos ou kernels). Há uma cor-

respondência biunívoca entre filtros espaciais lineares e filtros no domínio da frequên-

cia. No entanto, os filtros espaciais são mais versáteis pois podem ser usados também

para filtragem não linear, algo que não é possível fazer no domínio da frequência.

B.1 FILTROS ESPACIAIS PARA SUAVIZAÇÃO

Filtros de suavização são usados para desfoque e redução de ruído. O desfoque

é usado em tarefas de pré-processamento, como a remoção de pequenos detalhes

de uma imagem antes da extração de objetos (grandes). A redução de ruído pode ser

obtida por desfoque com um filtro linear e também por filtragem não linear.

B.1.1 Filtros Lineares

A saída (resposta) de um filtro espacial linear de suavização é simplesmente a mé-

dia ponderada dos pixels abrangidos pela máscara do filtro, denominado como filtro

de média, filtro passa-baixa, ou mesmo, filtro box (Jähne (1995). Esse processo re-

sulta em uma imagem cujas transições, outrora “nítidas” na imagem original, passam

a ser atenuadas em intensidade. Como o ruído aleatório normalmente onsiste em

transições nítidas em níveis de intensidade, a aplicação mais óbvia da suavização é

a redução desse ruído. No entanto, as bordas (que quase sempre são características
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desejáveis de uma imagem) também são caracterizadas por transições de intensidade

nítidas, portanto, os filtros de média têm o efeito colateral de borrar tais bordas. Outra

aplicação desse tipo de processo inclui a suavização de falsos contornos, resultantes

de número insuficiente de cores ou de níveis de intensidade. Portanto filtros de média

reduzem detalhes “irrelevantes” em uma imagem, ou seja, regiões de pixels que são

pequenas em relação ao tamanho da máscara do filtro. A Figura 84 mostra um filtro

de suavização e seu resultado em média padrão da imagem - etapa que antecede

uma limiarização, por exemplo.

(a) (b)

Figura 84 – (a) kernel 3↓3. (b) Imagem original (esq.) e imagem borrada (dir).

Além do filtro média, também conhecido como do filtro box, representado na Figura

84 (a), existem diversos outros filtros espaciais lineares aplicados à suavização, dentre

eles, vale salientar um bastante sofisticado também utilizado neste trabalho, o filtro

gaussiano, obtido com base na seguinte expressão gaussiana(B.4).

G(x, y; 𝜛) =
1

2𝜚𝜛2
e
↑x2+y2

2𝜔2 (B.4)

A seguir, um exemplo de kernel gaussiano derivado da expressão anterior.

Figura 85 – Kernel Gaussiano para filtragem
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O filtro gaussiano preserva contornos melhor do que o filtro de média simples.

Figura 86 – Imagem original half-tone e Imagem filtrada por filtro gaussiano, respectivamente.

B.1.1.1 Filtros de Ordem Estatística (Não Lineares)

Filtros lineares suprimiram efetivamente o ruído gaussiano, mas tiveram um de-

sempenho muito ruim no caso de ruído binário, afirma Jähne (1995), neste caso,

recomenda o uso de filtros não lineares. Filtros de ordem estatística são operações

espaciais não lineares que, em cada posição, ordenam (rankeam) os valores dos pi-

xels na vizinhança e substituem o valor do pixel central pelo elemento correspondente

a uma determinada posição no ranking — por exemplo, a mediana, o máximo ou o

mínimo.

O filtro de mediana, talvez o mais usado dessa classe, atribui ao pixel central o

valor da mediana das intensidades na vizinhança (incluindo o próprio pixel). Essa es-

tratégia preserva bordas melhor do que filtros lineares de mesma dimensão, sendo

especialmente eficaz contra ruído do tipo sal e pimenta (impulse noise).

Figura 87 – Imagem original corrompida com "sal e pimenta"e imagem filtrada com mediana
3↓ 3, respectivamente.
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Definição de Mediana

A mediana é uma medida de tendência central usada em estatística representando

o valor central de um conjunto de dados organizados em ordem crescente (ou decres-

cente). Seja um conjunto de N valores ordenados:

z(1) ↘ z(2) ↘ · · · ↘ z(N).

z̃ =

]︃
⌊︃⌊︃⌋︃

⌊︃⌊︃⌈︃

z(↔N/2↗), se N for ímpar,

z(N/2) + z(N/2+1)

2
, se N for par.

A mediana divide o conjunto de dados em duas partes iguais — metade dos valores

fica abaixo dela e metade acima.

Propriedades Principais

• Redução de ruído impulsivo: elimina agrupamentos de pixels isolados cuja

área seja menor que metade da janela, forçando-os ao valor mediano dos vizi-

nhos .

• Preservação de bordas: evita o borramento excessivo comum em filtros linea-

res.

• Generalização: a mediana é apenas o 50º percentil; o mesmo mecanismo gera

outros filtros de ordem estatística, como o max filter (100º percentil) e o min filter

(0º percentil).

Jähne (1995) acrescenta que, se apenas pixels individuais estiverem distorcidos

numa imagem, um filtro mediano 3x3 é suficiente para eliminá-los. No caso de aglo-

merados de pixels distorcidos, filtros medianos maiores devem ser usados.
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ANEXO C – COMPRESSÃO DE IMAGENS

Imagens e vídeos gerados por dispositivos de hardware precisam ser armazena-

dos ou transmitidos, mas o grande volume de bytes torna esse processo oneroso.

Por isso, emprega-se a compressão de imagens — técnica que reduz o tamanho dos

arquivos ao diminuir o número de bits necessários para representá-los, sem com-

prometer (ou com mínima perda de) qualidade visual, mantendo-a dentro de limites

aceitáveis. Dessa forma, garante-se tanto o armazenamento eficiente quanto a rápida

transmissão dos dados em redes.

A compressão de dados consiste em reduzir o número de bits necessário para

representar uma mesma informação, eliminando redundâncias sem perda (lossless)

ou descartando informação menos perceptível (lossy ) para obter taxas maiores de

redução.

Sejam duas representações da mesma informação com b e b
↘ bits, sendo b a infor-

mação original e b
↘ a informação comprimida. Define-se a razão de compressão

C =
b

b↘

e a redundância relativa

R = 1↔ 1

C

Assumindo, C = 10 ("10:1") implica R = 0,9, ou seja, 90% dos bits originais eram

redundantes.

Em geral, as imagens apresentam três tipos de informação redundante:

1. Codificação: uso ineficiente de bits por pixel (ex. valores de 8 bits usam mais

símbolos do que o necessário);

2. Espacial/Temporal: correlação entre pixels vizinhos em imagens estáticas ou

entre quadros em vídeo;

3. Irrelevante: detalhes que o sistema visual humano não percebe, removíveis sem

degradar a qualidade aparente.

Shannon, em sua teoria da informação, estabeleceu os princípios que contribuem

na quantificação da informação presente em uma imagem, possibilitando, por exem-
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plo, a determinação do número mínimo de bits por pixel, necessário numa imagem,

sem degradá-la.

A remoção de “informação visual irrelevante” implica perda de dados quantitativos

da imagem. Para quantificar essa perda, utilizam-se dois tipos de critérios de fidelidade

na compressão de imagens:

• Fidelidade objetiva: quando a degradação é descrita por uma expressão mate-

mática em função da imagem de entrada e de saída do processo de compressão.

Um exemplo comum é o erro quadrático médio (erms) entre as imagens.

• Fidelidade subjetiva: baseada na percepção humana, avalia-se a qualidade vi-

sual por meio de ranqueamento que reflita o nível de aceitabilidade da imagem

descomprimida.

Esses critérios permitem controlar o trade-off entre taxa de compressão e quali-

dade visual, garantindo medições objetivas e avaliações alinhadas à experiência do

observador.

Dentre os padrões de compressão de imagem mais populares, está o JPEG ↔

Joint Photographic Experts Group. Um sistema de codificação do tipo Lossy que adota

os seguintes métodos de compressão: Transformada Discreta do Cosseno (DCT) em

blocos de imagem 8↓ 8, Huffman e Run-Length.

No processo inverso, descompressão de imagens ↔ para exibição, por exemplo

↔, métodos complementares aos utilizados durante a codificação, são aplicados a fim

de decodificar os arquivos outrora comprimidos. Ambos os processos, compressão e

descompressão, podem ser implementados tanto em software quanto em hardware, o

que eleva o desempenho.
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ANEXO D – SISTEMAS DE COR

D.0.1 Sistemas de Cor

Um sistema, modelo ou espaço de cor define um sistema de coordenadas onde

cada cor é representada por um ponto no espaço, permitindo especificar cores de

forma padronizada e consistente. Na prática de PDI, adotam-se modelos orientados

a hardware - RGB, por exemplo, para monitores - e modelos orientados à percepção

humana - como o HSV (do inglês Hue, Saturation e Value), que desacopla a informa-

ção de cor da intensidade. Embora existam muitos outros sistemas de cores, esses

são, de fato, utilizados durante o desenvolvimento.

D.0.1.1 O Sistema RGB

No espaço RGB, cada cor é formada pela combinação de três cores básicas -

vermelho, verde e azul — num sistema de coordenadas cartesiano. O espaço de cor,

Fig. 88, corresponde a um cubo unitário (valores de R, G e B normalizados em [0,1]):

seus vértices abrigam as cores primárias (vermelho, verde e azul), as secundárias

(ciano, magenta e amarelo), o preto (origem) e o branco (vértice oposto). A escala

de cinza aparece ao longo da diagonal que liga o preto ao branco, e qualquer cor é

representada por um ponto dentro desse cubo, definido pelo vetor que o une à origem.

(a) (b)

Figura 88 – (a) Cubo de cores RGB normalizado (b) Cubo de cores RGB 24 bits. Fonte: Gon-
zalez e Woods (2008).

Quando uma imagem é exibida em um monitor RGB, os seus três componentes,

R, G e B, são combinados na tela para produzir uma imagem colorida.
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O número de bits usados para representar cada pixel no espaço RGB é chamado

de profundidade de pixel. Em geral, cada um dos componentes R, G e B é codifi-

cado em 8 bits. Nessa situação, cada pixel RGB, ou seja, cada tripla (R,G,B), possui

profundidade de:

Profundidade = 3↓ 8 = 24 bits

Imagens com essa profundidade são frequentemente denominadas full-color. O

número total de cores distintas em uma imagem RGB de 24 bits é:

224 = 16 777 216

A Fig. 88 (b) ilustra o cubo de cores RGB de 24 bits, no qual cada eixo varia de 0

a 255 e cada ponto no interior do cubo representa uma cor possível.

Diante das limitações do modelo RGB em representar a percepção humana das

cores, a próxima seção apresenta o sistema HSV, que organiza as cores de forma

mais alinhada à forma como as pessoas as identificam e descrevem.

D.0.1.2 O Sistema HSV

Sistemas de cor como RGB e CMY (CMYK) são eficientes para hardware — câme-

ras, monitores e impressoras — e permitem conversão direta entre si. Contudo, eles

não refletem a forma como o ser humano lida com as cores no dia a dia: não se refere

às cores em percentuais de cores primárias, mas em matiz, saturação e brilho.

Observando a mesma Fig. 88 (a), centralizando o vértice “branco” do cubo RGB, é

possível redesenhá-lo como sugere a Fig. 89 (a), e sua variante(b).

(a) (b)

Figura 89 – (a) Cubo de cores RGB noutra perspectiva. (b) Cubo de cores RGB com perfil
hexagonal. Fonte: Gonzalez e Woods (2008).



145

A partir dessa perspectiva o modelo HSV foi proposto para o desacoplamento das

três informações: cor, saturação e brilho.

Figura 90 – Espaço de cores HSV normalizado. Fonte: Rigueira et al. (2022).

• Matiz (H): O ângulo corresponde à cor e varia entre 0↓ e 360↓;

• Saturação (S): O comprimento do vetor é a saturação e varia de 0 a 1, indicando

o percentual de pureza da cor;

• Luminância (V): A intensidade de todas as cores no eixo vertical, variando de 0

(preto) a 1 (branco).

Na Fig. 90, qualquer ponto nesse espaço, a posição angular determina H, o com-

primento radial determina S, e a altura determina V .

Esse desacoplamento do sistema HSV o torna particularmente adequado ao con-

texto deste trabalho, sendo especialmente útil para a segmentação baseada na matiz

verde (relacionada à planta) e apresentando independência em relação à ilumina-

ção. Como já mencionado, as imagens são originalmente obtidas no sistema de cor

RGB; entretanto, a fim de auxiliar a etapa de segmentação, é comum a conversão en-

tre diferentes sistemas de cor. A seguir, apresentam-se as equações que regem tais

transformações.

• Conversão de RGB para HSV:
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R
↘ =

R

255
, G

↘ =
G

255
, B

↘ =
B

255
(normalização dos canais)

M = max(R↘
, G

↘
, B

↘)

m = min(R↘
, G

↘
, B

↘)

! = M ↔m

H =

]︃
⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌋︃

⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌈︃

0↓ , se ! = 0

60↓ ↓
⌉︃
G→↑B→

!

{︃
, se M = R

↘

60↓ ↓
⌉︃
B→↑R→

! + 2
{︃

, se M = G
↘

60↓ ↓
⌉︃
R→↑G→

! + 4
{︃

, se M = B
↘

S =

]︃
⌊︃⌋︃

⌊︃⌈︃

0 , se M = 0

!
M , caso contrário.

V = M

• Conversão de HSV para RGB:

C = V · S, X = C ·
}︃
1↔

⟨⟨⟨⟨

}︃
H

60↓
mod 2

⟩
↔ 1

⟨⟨⟨⟨

⟩
, m = V ↔ C

Seja (R↘
, G

↘
, B

↘) definido por:

(R↘
, G

↘
, B

↘) =

]︃
⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌋︃

⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌊︃⌈︃

(C,X, 0) se 0↓ ↘ H < 60↓

(X,C, 0) se 60↓ ↘ H < 120↓

(0, C,X) se 120↓ ↘ H < 180↓

(0, X, C) se 180↓ ↘ H < 240↓

(X, 0, C) se 240↓ ↘ H < 300↓

(C, 0, X) se 300↓ ↘ H < 360↓

E, finalmente:

R = (R↘ +m) · 255

G = (G↘ +m) · 255

B = (B↘ +m) · 255

Após a conversão para o sistema HSV, a segmentação torna-se mais eficiente,

pois isola regiões de interesse de maneira mais robusta frente a variações de ilumi-

nação. A seguir, são apresentados os principais conceitos e métodos empregados no

processo de segmentação de imagens, com destaque para a limiarização e a seg-

mentação por cor.
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ANEXO E – SEGMENTAÇÃO

Segmentar uma imagem significa particioná-la em regiões homogêneas, de modo

a isolar um objeto ou área de interesse do fundo e de outras estruturas, facilitando

sua análise e interpretação. Dentre diversas técnicas de segmentação de imagens, se

destaca a limiarização. Devido à sua intuição simples, facilidade de implementação e

baixo custo computacional, a limiarização ocupa posição central em segmentação de

imagens (Gonzalez e Woods (2008). Uma de suas aplicações é a segmentação de

imagens em níveis de cinza, resultando em imagens binárias - preto e branco.

Suponha o histograma da Fig. 91, dispondo de duas regiões, ou modos, se deduz

que um dos modos represente o objeto de interesse, mais claro, e o outro modo, o

fundo escuro, e um limiar T , em um “vale”, separando essas duas regiões.

Figura 91 – Histograma de imagem com um único limiar em T. Fonte: Gonzalez e Woods (2008).

Quando um histograma, idêntico ao da Fig. 91, possui dois “modos” separados por

um vale bem definido entre os mesmos, é dito haver um valor de intensidade, T , único

para toda a imagem, e o método para sua determinação é chamado de limiarização

global. Definido assim, a segmentação binária g(x, y) é, então, expressa pela seguinte

equação (E.1):

g(x, y) =

]︃
⌊︃⌋︃

⌊︃⌈︃

1, se f(x, y) > T,

0, se f(x, y) ↘ T.

(E.1)

Em outros casos, onde imagens apresentem mais de um limiar para a extração de

objetos, é dito limiarização múltipla, enquanto, imagens com iluminação não uniforme

ou mesmo presença de ruído, sua técnica se denomina como limiarização variável.
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No contexto da limiarização global, quando as distribuições de intensidade dos

pixels do objeto de interesse e do fundo são bem distintas, pode-se empregar um

algoritmo simples e intuitivo: iterar sobre o histograma da imagem para estimar a in-

tensidade média entre os dois picos, que atua como limiar de separação entre as duas

regiões.

Entretanto, é possível desenvolver um procedimento mais eficiente expressando

todos os cálculos diretamente em termos do histograma da imagem, o qual precisa

ser computado apenas uma única vez.

O método de Otsu (Otsu (1979)) define o limiar ótimo como aquele que maximiza a

variância entre classes, 𝜛2
B, no histograma da imagem. Em outras palavras, ele busca o

valor de T que torna as distribuições de intensidade de fundo e objeto o mais distintas

possível. Tal método consiste em assumir duas funções de densidade de probabili-

dade, iterando em busca de valor de limiar T entre 0 e 255 - no caso de tons de cinza

- tal que T maximize a variância entre classes.

Esse método oferece uma formulação baseada unicamente em estatísticas do his-

tograma (variância de cada classe), o que o torna um algoritmo eficiente, não reque-

rendo processamento direto dos pixels após o cálculo do histograma.

𝜛
2
B(T ) = P1(T )(m1(T )↔mG)

2 + P2(T )(m2(T )↔mG)
2

onde

• m(T ) é a média acumulada até o nível T,

• mG é a média geral dos pixels da imagem,

• para uma quantidade ni de pixels para um determinado nível i de cinza , P1(k) é

dado pela soma cumulativa

P1(k) =
k[︃

i=0

pi =
k[︃

i=0

ni/MN (E.2)

A maximização de 𝜛
2
B(T ) sobre todos os possíveis T fornece o limiar de Otsu. As

Figs. 92 e 93 ilustram um exemplo.

A imagem a ser segmentada nem sempre está livre de artefatos que prejudicam o

limiar. Quando o ruído não pode ser eliminado na fonte, uma prática comum é suavi-

zar a imagem com um filtro passa-baixa antes de aplicar o limiar, reduzindo variações
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Figura 92 – Uma imagem de exemplo real e seu histograma. (Esq.) Imagem original e (dir.) seu
histograma. Fonte: Gonzalez e Woods (2008).

Figura 93 – Segmentação de imagens baseada em dois algoritmos diferentes. (Esq.) Segmen-
tação usando algoritmo global básico e (dir.) segmentação usando método de Otsu.
Fonte: Gonzalez e Woods (2008).

indesejadas. Como alternativa, pode-se realçar o contorno da região de interesse fil-

trando a imagem com um filtro do tipo passa-alta para evidenciar os níveis de cinza

das bordas, e então usar esses valores para definir um limiar mais preciso.

Figura 94 – Exemplo de Segmentação em cascata: por Limiarização e Cor. Fonte: O autor.

Uma outra abordagem na segmentação de imagens é a segmentação por cor,

conforme podemos verificar na Fig. 94, onde o plano de fundo foi retirado da imagem.

Para segmentar por cor, é mais viável trabalhar com a imagem em espaço de cor
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desacoplada da intensidade, como o HSV, por exemplo, onde a matiz (H) oferece uma

representação direta das cores. A partir disso é possível isolar o intervalo de cores

desejado. As demais componentes S e V não carregam informação de cor, portanto,

dispensáveis na segmentação de cor.
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ANEXO F – OPERAÇÕES ARITMÉTICAS

As operações aritméticas entre imagens são operações de matriz, o que significa

que as operações aritméticas são realizadas entre pares de pixels correspondentes

(GONZALEZ; WOODS, 2008). As quatro operações são denotadas em (F.1):

s(x, y) = f(x, y) + g(x, y)

d(x, y) = f(x, y)↔ g(x, y)

p(x, y) = f(x, y)↓ g(x, y)

v(x, y) = f(x, y)÷ g(x, y)

(F.1)

Entende-se que as operações são realizadas entre pares de pixels corresponden-

tes em f and g for x = 0, 1, 2, ... ,M - 1 and y = 0, 1, 2, ... , N - 1 onde M e N são

os tamanhos das linhas e colunas das imagens. Claramente, s, d, p e t também são

imagens de tamanho M ↓N .
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ANEXO G – PROCESSAMENTO MORFOLÓGICO

De acordo com Pedrini e Schwartz (2008), a introdução ao estudo da morfologia

matemática se deu a partir dos estudos de Haas et al. (1967), uma área originalmente

desenvolvida para manipular imagens binárias, posteriormente estendida para tratar

imagens em níveis de cinza. Suas aplicações são variadas e consistem em extração

de componentes na imagem, busca por padrões específicos, afinamento ou dilatação

de bordas e muitas outras. Jähne (1995) a reforça como ferramenta útil na análise de

formas de objetos numa imagem.

A morfologia matemática se baseia na teoria dos conjuntos para representar a

forma dos objetos em uma imagem. Em geral, compreende operações lógicas da álge-

bra Booleana entre dois conjuntos, neste caso, a imagem binária A como uma matriz

de conjunto de pixels e B, o elemento estruturante, ou seja, uma máscara de pixels

não-nula, comumente, B é um conjunto muito menor do que A, sendo A e B ≃ Z2. A

fim de manter a coerência com a abordagem aplicada neste presente trabalho, será

destacada a operação morfológica aqui empregada, a Erosão, e em seguida sua ope-

ração complementar, a Dilatação, descritas a seguir:

• Erosão:

A⇐ B = {p ↑ Z2 | Bp ⇒ A},

Com Bp denotando a máscara deslocada com seu ponto de referência sobre o

pixel p. A erosão do conjunto de pixels A pelo conjunto de pixels B é o conjunto

de todos os pixels p para os quais B está completamente contido em A (Jähne

(1995)). A erosão pode ser vista como uma filtragem morfológica, onde detalhes

na imagem menores do que o elemento estruturante são filtrados, removidos

da imagem. Em resumo, se trata de uma operação que reduz objetos e remove

pixels isolados em A.

• Dilatação:

A⇑ B = {z ↑ Z2 | Bp ⇓ A ⇔= ⊋},

A dilatação de A por B é o conjunto de todos os pixels para os quais a interseção

entre A e Bp não é um conjunto vazio. Em síntese, uma operação que aumenta

objetos e preenche pequenas regiões nulas.
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(a) (b)

Figura 95 – Erosão para remoção de componentes. (a) Imagem original 486↓ 486. (b) Imagem
erodida por elemento estruturante 45↓ 45, com todos seus elementos 1s.

Figura 96 – (Esq.) Texto de exemplo com caracteres quebrados. (Dir.) Imagem resultante da
dilatação. (Abaixo) Elemento estruturante.

Muitos outros algoritmos morfológicos são derivados dessas duas operações pri-

mitivas.

PRINCIPAIS APLICAÇÕES

1. Extração de contornos (Boundary Extraction)

Obtém as bordas de um objeto pela diferença entre o conjunto original e sua

erosão.

2. Preenchimento de regiões (Region Filling)

Preenche áreas conectadas a partir de um ponto-semente usando dilatações

condicionais.

3. Extração de componentes conectados (Connected-Component Extraction)
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Identifica cada objeto isolado em uma imagem binária por dilatação iterativa a

partir de pixels-semente.

4. Envoltória convexa (Convex Hull)

Gera o menor conjunto convexo que contém um objeto, aplicando sucessivas

erosões e dilatações.

5. Afinamento (Thinning)

Remove recortes de borda sem quebrar a conectividade, reduzindo objetos à

sua “linha central”.

6. Espessamento (Thickening)

Operação dual ao afinamento, que amplia estruturas finas “engrossando” obje-

tos.

7. Esqueletonização (Skeletonization)

Extrai a representação medial de uma forma, produzindo seu esqueleto topoló-

gico.

8. Poda (Pruning)

Remove ramificações indesejadas do esqueleto, refinando a estrutura extraída.
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