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ABSTRACT

The demand for antennas that combine structural integration, high performance, and
versatility drives research into innovative configurations. In this context, this dissertation presents
the theoretical formulation, numerical implementation, and validation of a computational method
for the analysis of embedded hybrid cylindrical antennas using the Method of Moments (MoM).
These antennas combine the structural advantages of cylindrical conformal antennas with the
performance enhancements of hybrid microstrip antennas, standing out for their ability to offer
reduced cross-polarization and compensation of inductive reactance, crucial characteristics for
optimizing performance in various applications.

Through the application of the equivalence principle, the interface between the dielectric
cavity and the external environment is replaced by a surface of magnetic currents, allowing for
the independent analysis of the cavity and free space. The dielectric cavity is thus modeled as a
structure enclosed by perfect electric conductors, enabling the calculation of electromagnetic
fields via resonant cavity methods and Green’s functions in the Fourier domain. The surface
magnetic current introduced in this transformation is discretized with sinusoidal basis functions
in the angular and axial directions. The feeding probe is modeled as a conducting strip and
incorporated into the MoM formulation, resulting in a linear system from which the input
impedance and radiation patterns are obtained.

An original software, implemented in Matlab, was developed to automate the proposed
analysis. The validation of this tool is performed through comparisons with HFSS simulations,
showing excellent agreement in impedance results and radiation patterns. Additionally, a
parametric study was conducted to analyze the impact of critical parameters on accuracy and
execution time, demonstrating the robustness and computational efficiency of the proposed
method.

Keywords: Embedded antennas, Hybrid cylindrical antennas, Method of Moments, Computati-
onal electromagnetics, Matlab.



RESUMO

A demanda por antenas que combinem integração estrutural, alto desempenho e versa-
tilidade impulsiona a pesquisa em configurações inovadoras. Neste contexto, esta dissertação
apresenta a formulação teórica, implementação numérica e validação de um método computacio-
nal para a análise de antenas cilíndricas híbridas embutidas utilizando o Método dos Momentos
(MoM). Essas antenas combinam as vantagens estruturais das antenas conformadas cilíndricas
com os aprimoramentos de desempenho das antenas de microfita híbridas, destacando-se pela
capacidade de oferecer redução da polarização cruzada e compensação da reatância indutiva,
características cruciais para a otimização do desempenho em diversas aplicações.

Por meio da utilização do princípio da equivalência, a interface entre a cavidade dielétrica
e o ambiente externo é substituída por uma superfície de correntes magnéticas, permitindo a
análise independente da cavidade e do espaço livre. A cavidade dielétrica é, assim, modelada
como uma estrutura fechada por condutores elétricos perfeitos, permitindo o cálculo dos campos
eletromagnéticos via métodos de cavidade ressonante e funções de Green no domínio de Fourier.
A corrente magnética superficial introduzida nessa transformação é discretizada com funções
de base senoidais nas direções angular e axial. A ponta de prova de alimentação é modelada
como uma fita condutora e incorporada à formulação do MoM, resultando em um sistema linear
a partir do qual se obtêm a impedância de entrada e os diagramas de radiação.

Um software original, implementado em Matlab, foi desenvolvido para automatizar
a análise proposta. A validação dessa ferramenta é realizada por meio de comparações com
simulações no HFSS, apresentando excelente concordância nos resultados de impedância e
diagramas de radiação. Adicionalmente, um estudo paramétrico foi conduzido para analisar o
impacto de parâmetros críticos na acurácia e no tempo de execução, evidenciando a robustez e a
eficiência computacional do método proposto.

Palavras-chave: Antenas embutidas, Antenas cilíndricas híbridas, Método dos Momentos,
Eletromagnetismo computacional, Matlab.
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1
INTRODUÇÃO

As antenas de microfita conformadas constituem uma classe de antenas projetadas para
se adaptar à superfície do dispositivo, sendo bastante utilizadas em aplicações aeroespaciais, em
que o baixo arrasto dessas antenas é particularmente desejado [1]. Existem estudos desse tipo de
antena nos mais diversos formatos, entretanto, os mais comuns são cilindros [2, 3, 4, 5] e esferas
[6, 7, 8, 9]. Na indústria aeroespacial, por exemplo, as antenas cilíndricas podem ser incluídas
no corpo de foguetes e aviões [10, 11, 12]. Destacam-se duas categorias de antena nas quais as
antenas de microfita conformadas podem se encaixar: antenas flush-mounted (embutidas) [13],
nas quais a antena é instalada rente ao dispositivo, minimizando o arrasto e o impacto visual; e
antenas cavity-backed [3], nas quais a antena é instalada sobre uma cavidade, melhorando alguns
aspectos das antenas de microfita tradicionais, como banda e diretividade. A Figura 1 mostra
algumas geometrias de antenas conformes.

Figura 1: Diferentes geometrias de antenas conformes. Fonte: Conformal Array Antenna Theory
and Design

Antenas de microfita híbridas de patch retangular [14] possuem duas de suas bordas
aterradas, em contraste com o projeto tradicional, na qual nenhuma das bordas está aterrada.
Esse tipo de antena foi desenvolvido para superar limitações das antenas de microfita tradicionais
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quando um substrato mais espesso é utilizado, i.e., alta polarização cruzada e alta reatância
indutiva [15].

Polarização cruzada refere-se à componente ortogonal à polarização principal de uma
antena. Por exemplo, se a antena for projetada para ter polarização horizontal, a polarização
cruzada será a vertical. Uma antena com baixa polarização cruzada oferece várias vantagens,
como uma melhor qualidade de sinal, maior isolamento entre canais (possibilitando a utilização
de multiplexação por divisão de polarização) e maior eficiência.

A impedância de entrada refere-se à relação entre a tensão e a corrente na porta de
alimentação da antena. Este parâmetro é fundamental, pois o ideal é que a impedância de entrada
esteja ajustada (casada) com a impedância da linha de transmissão para garantir a máxima
eficiência.

Ao aterrar as bordas opostas do patch, a antena ganha a propriedade de baixa polarização
cruzada, e o problema de alta reatância indutiva é solucionado [16]. Esses comportamentos
são observados nas simulações apresentadas no capítulo Resultados. A Figura 2 mostra duas
configurações de antenas híbridas conformes cilíndricas.

Figura 2: Antenas híbridas conformes cilíndricas

Antenas cilíndricas híbridas embutidas [17] são uma combinação de antenas de microfita
conformadas cilíndricas e antenas de microfita híbridas, oferecendo os benefícios das duas
técnicas. Dada a relevância desse tipo de antena, este trabalho tem como objetivo desenvolver
um software para calcular as características de impedância de entrada e diagrama de radiação,
dadas as propriedades eletromagnéticas e geométricas de uma antena desse tipo. A vantagem
de criar um solucionador novo específico para um tipo de antena é que se espera um tempo de
execução menor do que um solucionador geral, como discutido na Sessão 4.4. Além disso, o
solucionador fica livre de restrições de exportação, desde que uma linguagem de código livre seja
utilizada na implementação, que um software comercial tem dado o uso óbvio para desenvolver
armas [18]. Por fim, mesmo que nenhum desses pontos fosse relevante, a documentação em
si do processo de criação de um solucionador personalizado e a associação de várias técnicas
analíticas do eletromagnetismo têm grande valor didático.

No capítulo Formulação Teórica, é feita uma análise da antena utilizando diversas
técnicas analíticas e o método numérico do Método dos Momentos (MoM) [19]. Na Seção
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2.3, é aplicado o princípio da equivalência [20] para fechar a cavidade dielétrica da antena com
um condutor perfeito, o que é compensado pela adição de uma corrente magnética na região
fechada. Na Seção 2.3, é utilizado o método da cavidade ressonante [21] para calcular o campo
eletromagnético no domínio de Fourier dentro da cavidade, dadas as condições de contorno nas
paredes da cavidade. Em seguida, as funções de Green na cavidade são calculadas, um requisito
para utilizar o modelo da corrente superficial na presença de um dielétrico [22]. A interpretação
física da função de Green é que, com ela, é possível calcular o campo elétrico a partir de um
impulso unitário de corrente na superfície. Na Seção 2.5, o campo eletromagnético externo é
obtido impondo a condição de radiação e, então, as funções de Green na região externa são
calculadas. Na Seção 2.6, é introduzida a função de base escolhida para ser utilizada com o
MoM e a corrente magnética, introduzida na Seção 2.3 ao aplicar o princípio da equivalência, é
discretizada. Na Seção 2.7, a corrente volumétrica na ponta de prova de alimentação é definida.
Para modelar a ponta de prova coaxial, foi utilizado o modelo de fita condutora [23]. Na Seção
2.8, as condições de contorno da componente φ do campo H são utilizadas em conjunto com
o produto simétrico com a função de teste, que, por conveniência, é a mesma função utilizada
como função de base, para originar uma equação no formato de sistema linear, na qual a matriz
Z tem seus termos oriundos dos campos excitados pela corrente magnética, enquanto a matriz
V tem seus termos oriundos da excitação da antena, proveniente da corrente volumétrica na
fita condutora. Ao resolver esse sistema, os pesos da matriz d são determinados, e a partir
deles a corrente superficial, e então o diagrama de radiação e impedância de entrada podem
ser calculados. As equações para os elementos das matrizes Z e V são apresentadas na Seção
2.9 e Seção 2.10, respectivamente. Na Seção 2.11, as equações para a impedância de entrada
são apresentadas. A impedância é separada em duas partes, uma oriunda da corrente magnética
superficial, e a outra da corrente elétrica na fita condutora. Na Seção 2.12, as equações para os
diagramas de radiação são apresentadas.

O capítulo Implementação descreve a implementação do software escrito em Matlab,
que, utilizando a formulação do capítulo 2, computa a impedância de entrada e diagrama de
radiação da antena.

O capítulo Resultados apresenta os resultados obtidos comparando-os com dois modelos
no HFSS [24], um com excitação feita com fita de corrente, e outro com um cabo coaxial.
As dimensões e características eletromagnéticas utilizadas na antena são as de Ribeiro Filho.
[14]. Um estudo sobre a influência dos parâmetros de precisão utilizados no software é feito,
mostrando o impacto que eles têm na impedância de entrada e no tempo de execução.
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2
FORMULAÇÃO TEÓRICA

2.1 Geometria e propriedades elétricas

Uma antena cilíndrica embutida é construída posicionando uma superfície condutiva
em uma cavidade setorial cilíndrica, que por sua vez é preenchida com um material dielétrico.
A cavidade está inserida em um cilindro condutor elétrico perfeito de raio b e altura infinita,
e é definida pelos limites angulares φ1 e φ2, radiais a a b e axiais z1 a z2. O dielétrico possui
permissividade elétrica relativa εr e tangente de perdas tanδ . A permeabilidade magnética do
material é considerada igual à permeabilidade do vácuo µ0. A figura 3 contém uma representação
da cavidade.

y

z

x

z2

z1

φ2φ1

a b

Figura 3: Cavidade setorial cilíndrica.

O patch é então impressa na superfície da cavidade, no raio b. O escopo deste trabalho são
as antenas híbridas, que, no caso de um patch retangular, possuem duas bordas opostas aterradas,
i.e, em contato com o corpo condutor do cilindro. Existem duas configurações possíveis de
aterramento: bordas superior e inferior, ou bordas laterais. Dependendo dessa escolha, ao
aplicar o princípio da equivalência, a direção da corrente magnética na superfície será diferente.



151515

Denominamos então a antena do tipo Mz como possuindo bordas superior e inferior aterradas e,
portanto, corrente magnética na direção z, enquanto a antena do tipo Mφ possui as bordas laterais
aterradas e corrente magnética na direção φ . O estudo das antenas do tipo Mz foi feito em [25].
O foco deste trabalho são as antenas do tipo Mφ , porém uma formulação geral para correntes em
uma direção arbitrária é apresentada. Em ambos os casos, a corrente é aproximada como estando
somente em uma direção, quando na realidade isso não acontece, especialmente conforme o
tamanho da abertura da cavidade aumenta.

Formalmente, a antena tipo Mz está localizada entre z1 e z2 na direção z e entre os ângulos
φ1a e φ2a, enquanto a antena Mφ está localizada entre z1a e z2a na direção z e entre os ângulos φ1

e φ2.
As figuras 4 e 5 representam as antenas do tipo Mz e Mφ , respectivamente.

y

z

x

z2

z1

φ2φ1

a b

φ2aφ1a

Figura 4: Antena híbrida do tipo Mz

y

z

x

z2

z1

φ2φ1

a b

z1a

z2a

Figura 5: Antena híbrida do tipo Mφ

Formalmente, a geometria da cavidade é definida através das seguintes equações:
a ≤ ρ ≤ b

φ1 ≤ φ ≤ φ2

z1 ≤ z ≤ z2

(2.1)

Já a antena do tipo Mφ é definida por:
ρ = b

φ1 ≤ φ ≤ φ2

z1a ≤ z ≤ z2a

(2.2)
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A partir das equações anteriores, definimos: L = z2 − z1

∆φ = φ2 −φ1
(2.3)

2.2 Visão Geral

As próximas seções deste capítulo detalham a formulação teórica para a análise da antena
descrita na seção anterior.

Na Seção 2.3, abordaremos o princípio da equivalência [20], que transforma o problema
original em um problema equivalente ao fechar a cavidade dielétrica com um condutor perfeito e
separar a antena em uma região interna (cavidade) e uma região externa (espaço livre). Com
essa modificação, faz-se necessário acrescentar correntes magnéticas na região fechada, a fim de
manter o campo externo igual ao problema original.

Na Seção 2.4, utilizaremos a cavidade fechada na seção anterior para aplicar o método
da cavidade ressonante [21] e calcular o campo eletromagnético dentro da cavidade e, então,
calcular as funções de Green. Esse último passo é um requisito para aplicar o método da corrente
superficial [22] e é análogo a aplicar um impulso unitário de corrente magnética na superfície
para calcular os campos resultantes.

Na Seção 2.5, o campo eletromagnético externo é calculado impondo a condição de
radiação e as funções de Green externas são calculadas.

Na Seção 2.6 o Método dos Momentos (MoM) [19] é apresentado. A corrente magnética
introduzida na Seção 2.3 é discretizada, o que é um requisito do MoM, e a função de base é
definida.

Na Seção 2.7, a alimentação da antena é definida. A antena é alimentada por uma
ponta de prova coaxial modelada como uma fita condutora perfeita [23] portando uma corrente
volumétrica.

Na Seção 2.8, aplicam-se as condições de contorno na interface da cavidade com o
espaço livre para obter uma relação entre o campo magnético interno e externo. Então, aplicando
o produto simétrico do campo com a função de teste (a mesma que a função de base), chegamos
a uma formulação em formato de sistema linear com 3 matrizes: a matriz de impedância Z,
matriz de coeficientes d e matriz de tensões V . Os elementos das matrizes Z e V são calculados,
respectivamente, na Seção 2.9 e Seção 2.10, e ao resolver o sistema, obtêm-se os elementos da
matriz d, a partir da qual se calcula a corrente na antena, e a impedância de entrada e o diagrama
de radiação são derivados.

Por fim, na Seção 2.11, a impedância de entrada é calculada somando as contribuições
da corrente magnética na superfície com a corrente na fita condutora utilizada na alimentação da
antena; e na Seção 2.12, o diagrama de radiação é calculado.
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2.3 Princípio da equivalência

O princípio da equivalência [20] (3-5) afirma que fontes que produzem o mesmo campo
em uma certa região são equivalentes nessa região. Portanto, é possível criar uma estrutura
equivalente alterando as propriedades da interface antena-exterior de forma que o campo externo
permaneça o mesmo, mas, do ponto de vista matemático, o problema se torna mais fácil de ser
resolvido.

É com esse intuito que o princípio da equivalência é utilizado aqui. A superfície da
cavidade (ρ = b) é substituída por uma superfície condutora elétrica perfeita. Dessa forma, a
cavidade passa a possuir todas as 6 interfaces com condutores elétricos perfeitos, o que será
aproveitado nas Seções 2.4.1 e 2.4.2. Para manter o campo externo igual ao da configuração
original, é necessário introduzir uma corrente magnética na superfície da cavidade conforme
[20] (3-15):

M⃗ = E⃗ × n̂nn (2.4)

Onde E⃗ é o campo elétrico e n̂nn é o versor normal.

2.3.1 Corrente magnética na região interna

Internamente, o vetor normal da superfície está na direção radial negativa (−ρ) e o
campo elétrico é tangencial à superfície numa direção arbitrária, i.e. possui componentes axial
(z) e angular (φ ), conforme ilustrado na Figura 6:

n̂

E⃗

Figura 6: Versor normal e campo elétrico na região interna.

Portanto, pela equação (2.4):

M⃗i = E⃗(b,φ ,z)× (−âρ) = âρ × E⃗(b,φ ,z) = M⃗ (2.5)

2.3.2 Corrente magnética na região externa

Analogamente à região interna, o vetor normal agora está na direção radial positiva e o
campo elétrico continua o mesmo, como ilustrado na Figura 7:
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n̂E⃗

Figura 7: Campo elétrico e versor normal na região externa.

Novamente pela equação (2.4):

M⃗e = E⃗(b,φ ,z)× âρ = (−âρ)× E⃗(b,φ ,z) =−M⃗ (2.6)

Nota-se que as correntes magnéticas no interior e no exterior são de mesma magnitude,
porém em sentidos opostos.

2.4 Campo eletromagnético na cavidade

Ao construir o problema equivalente, como demonstrado na seção anterior, a possibili-
dade de calcular os campos eletromagnéticos no interior da cavidade se abre. Isso é alcançado
utilizando as equações [20] (5-18, 5-19) para os campos T Mz (transversal magnético na direção
z) e T Ez (transversal elétrico na direção z) respectivamente. Os modos transversais ocorrem
quando o campo eletromagnético está confinado em um guia ou cavidade, e são caracterizados
por uma componente do campo estando num plano perpendicular, i.e. transversal, à direção de
propagação. A direção arbitrária da corrente magnética faz com que ambos os modos possam
aparecer, dependendo da geometria da antena. Por exemplo, a antena híbrida do tipo Mz possui
corrente magnética apenas na direção z [25] (3.2, 3.3) e, com isso, produz apenas campo T Ez. Já
a antena do tipo Mφ possui corrente na direção φ , que, por não ser uma direção cartesiana, gera
ambos os campos T Ez e T Mz.

As subseções 2.4.1 e 2.4.2 a seguir mostram o procedimento para calcular os campos.

2.4.1 Componentes de Campo T Ez

A componente T Ez dos campos, gerados através de potenciais vetores F⃗ = Fzd(ρ,φ ,z)âz,
estará presente em ambos os campos excitados por correntes magnéticas Mz e Mφ . Nota-se que o
subscrito "d"indica que uma equação está relacionada à região interna; inclusive, a permissividade
elétrica do dielétrico preenchendo a cavidade é definida como εd = εrε0. A partir disso, é possível
calcular todas as componentes do campo eletromagnético através das equações [20] (5-19):
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

Eρ =− 1
ρ

∂Fzd
∂φ

Hρ = 1
jωµ

∂ 2Fzd
∂ρ∂ z

Eφ =
∂Fzd
∂ρ

Hφ = 1
jωµ

∂ 2Fzd
∂φ∂ z

Ez = 0 Hz =
1

jωµ

(
∂ 2

∂ z2 + kd
2
)

Fzd

kd = ω
√

µεd

(2.7)

No interior da cavidade, o potencial vetor elétrico satisfaz a equação de onda em coorde-
nadas cilíndricas:

∇
2Fzd + kd

2Fzd = 0 (2.8)

E pode ser solucionado por separação de variáveis [20] (5-9):

Fzd(ρ,φ ,z) = BT E
ν (kρd ρ)h(νφ)h(kzd z) (2.9)

Onde h(νφ) e h(kzd z) são funções harmônicas, BT E
ν (kρd ρ) é uma combinação de funções de

Bessel e kd
2 = kzd

2 + kρd
2. O sobrescrito TE indica que essa função é relativa ao campo TE.

2.4.1.1 Condições de contorno nas paredes φ = φ1 e φ = φ2

φ2
φ1

Figura 8: Paredes φ = φ1 e φ = φ2.

As paredes φ = φ1 e φ = φ2 são condutoras elétricas perfeitas, portanto, os campos
tangenciais Ez e Eρ são nulos nessas regiões. Sendo assim:

Ez = Eρ = 0
∣∣
φ1,φ2

(2.10)

Pelas equações (2.7) e (2.9), isso implica:

dh(νφ)

dφ
= 0
∣∣∣∣
φ1,φ2

(2.11)

Lembrando que as funções h são harmônicas, então devem conter uma combinação de
senos e cossenos. Tendo isso em mente, chegamos à seguinte equação:
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h(νφ) = cos
(

nπ

∆φ
(φ −φ1)

)
(2.12)

Onde n ∈ N e ν = nπ

∆φ
. Nota-se que a solução deveria incluir um coeficiente, porém ele foi

omitido, pois ao juntar as 3 partes da solução de Fz, todos os coeficientes serão reunidos em
apenas um.

2.4.1.2 Condições de contorno nas paredes z = z1 e z = z2

z1

z2

Figura 9: Paredes z = z1 e z = z2.

Nestas paredes, os campos tangenciais Eφ e Eρ são nulos. Pelas equações (2.7) e (2.9):

Eρ =− 1
ρ

∂Fz
∂φ

=− 1
ρ

BT E
ν (kρd ρ) d

dφ
h(νφ)h(kzd z) = 0

∣∣∣
z1,z2

Eφ = ∂Fz
∂ρ

= d
dρ

BT E
ν (kρd ρ)h(νφ)h(kzd z) = 0

∣∣∣
z1,z2

(2.13)

Isso implica:

h(kzd z) = 0
∣∣
z1,z2

(2.14)

Assim como no caso anterior, hz é uma função harmônica, logo:

h(kzd z) = sin
(

qπ

L
(z− z1)

)
(2.15)

Onde q ∈ N∗, o conjunto dos números naturais não nulos, e kzd =
qπ

L .
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2.4.1.3 Condições de contorno na parede ρ = a

a

Figura 10: Parede ρ = a.

Nesta parede, os campos tangenciais Eφ e Ez são nulos. Logo, pelas equações (2.7) e
(2.9):

Eφ = ∂Fz
∂ρ

= d
dρ

BT E
ν (kρd ρ)h(νφ)h(kzd z) = 0

∣∣∣
ρ=a

(2.16)

O que implica:

d
dρ

BT E
ν (kρd ρ) = 0

∣∣∣∣
ρ=a

(2.17)

A função Bν é uma combinação de funções de Bessel. Com isso, chegamos à seguinte
equação:

BT E
ν (kρd ρ) = dnq

(
Jν(kρd ρ)H(2)

ν

′
(kρd a)− J′ν(kρd a)H(2)

ν (kρd ρ)

)
(2.18)

Onde dnq é um coeficiente que engloba os coeficientes omitidos de h e hz. O valor de dnq é
determinado pela fonte, como será visto na seção 2.4.4 equação (2.63). Jν é a função de Bessel
do primeiro tipo e H(2)

ν é a função de Hankel do segundo tipo. A função de Hankel do segundo
tipo é uma combinação das funções de Bessel do primeiro tipo Jν e do segundo tipo Yν , expressa
como H(2)

ν = Jν − iYν . A função de Hankel é utilizada ao longo da formulação para deixar as
equações mais compactas.

2.4.1.4 Transformada do potencial vetor elétrico

Substituindo (2.12), (2.15) e (2.18) em (2.9):

Fzd(ρ,φ ,z) = BT E
ν (kρd ρ)cos

(
nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

)
(2.19)

Onde ν = nπ

∆φ
e kρd

2 = kd
2 −
(qπ

L

)2

Incluindo todos os possíveis valores de n e q, obtemos a solução geral da equação de
onda (2.8) no interior da cavidade:
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Fzd(ρ,φ ,z) =

∞

∑
n=0

∞

∑
q=1

BT E
ν (kρd ρ)cos

(
nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

)
(2.20)

Definimos então as transformadas cosseno-seno da equação (2.20):

F(ρ,φ ,z) =
∞

∑
n=0

∞

∑
q=1

F̂cs(ρ,n,q)cos
(

nπ

∆φ
(φ −φ1)

)
sin
(qπ

L (z− z1)
)

F̂cs(ρ,n,q) =
∈n

∆φ

2
L

ˆ
φ2

φ1

ˆ z2

z1

F(ρ,φ ,z)cos
(

nπ

∆φ
(φ −φ1)

)
sin
(qπ

L (z− z1)
)

dzdφ

(2.21)

Onde ∈n=

1 n = 0
2 n ̸= 0

Comparando (2.20) (2.21), concluímos que:

F̂cs
zd

(ρ,n,q) = BT E
ν (kρd ρ)

= dnq

[
Jν(kρd ρ)H(2)

ν

′
(kρd a)− J′ν(kρd a)H(2)

ν (kρd ρ)

] (2.22)

2.4.2 Componentes de Campo T Mz

A componente φ da corrente magnética também gera um potencial vetor magnético na
direção z (A⃗ = Azd(ρ,φ ,z)âz), além do potencial vetor elétrico na direção z que leva ao campo
T Ez. O procedimento para o campo T Mz é análogo ao do campo T Ez, porém utilizando a
equação [20] (5-18): 

Eρ = 1
jωεd

∂ 2Azd
∂ρ∂ z Hρ = 1

ρ

∂Azd
∂φ

Eφ = 1
jωεdρ

∂ 2Azd
∂φ∂ z Hφ =−∂Azd

∂ρ

Ez =
1

jωεd

(
∂ 2

∂ z2 + k2
d

)
Azd Hz = 0

kd = ω
√

µεd

(2.23)

Analogamente à equação (2.9), temos que:

Azd(ρ,φ ,z) = BT M
ν (kρd ρ)h(νφ)h(kzd z) (2.24)

Onde o sobrescrito TM indica que a equação é relativa ao campo TM.
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2.4.2.1 Condições de contorno nas paredes φ = φ1 e φ = φ2

Os campos Ez e Eρ são nulos nessas paredes. Sendo assim, pelas equações (2.23) e
(2.24):

h(νφ) = 0
∣∣
φ1,φ2

(2.25)

Resolvendo a equação, chegamos a:

h(νφ) = sin
(

nπ

∆φ
(φ −φ1)

)
(2.26)

Onde n ∈ N∗ e ν = nπ

∆φ
.

2.4.2.2 Condições de contorno nas paredes z = z1 e z = z2

Nestas paredes, os campos tangenciais Eφ e Eρ são nulos. Pelas equações (2.23) e (2.24):

d
dz

h(kzdz) = 0
∣∣∣∣
z1,z2

(2.27)

Portanto:

h(kzd z) = cos
(

qπ

L
(z− z1)

)
(2.28)

Onde q ∈ N e kzd =
qπ

L .

2.4.2.3 Condições de contorno na parede ρ = a

Nesta parede, os campos tangenciais Eφ e Ez são nulos. Logo, pelas equações (2.23) e
(2.24):

BT M
ν (kρd ρ) = 0

∣∣∣
ρ=a

(2.29)

Logo:

BT M
ν (kρd ρ) = fnq

(
Jν(kρd ρ)H(2)

ν (kρd a)− Jν(kρd a)H(2)
ν (kρd ρ)

)
(2.30)

Onde fnq é análogo a dnq e é definido pela equação (2.56).

2.4.2.4 Transformada do potencial vetor magnético

Substituindo (2.26), (2.28) e (2.30) em (2.24):

Azd(ρ,φ ,z) = BT M
ν (kρd ρ)sin

(
nπ

∆φ
(φ −φ1)

)
cos
(

qπ

L
(z− z1)

)
(2.31)
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Onde ν = nπ

∆φ
e kρd

2 = kd
2 −
(qπ

L

)2

A solução geral é:

Azd(ρ,φ ,z) =

∞

∑
n=1

∞

∑
q=0

BT M
ν (kρd ρ)sin

(
nπ

∆φ
(φ −φ1)

)
cos
(

qπ

L
(z− z1)

)
(2.32)

Definimos então as transformadas seno-cosseno da equação (2.32):

A(ρ,φ ,z) =
∞

∑
n=1

∞

∑
q=0

Âsc(ρ,n,q)sin
(

nπ

∆φ
(φ −φ1)

)
cos
(qπ

L (z− z1)
)

Âsc(ρ,n,q) =
∈q

∆φ

2
L

ˆ
φ2

φ1

ˆ z2

z1

A(ρ,φ ,z)sin
(

nπ

∆φ
(φ −φ1)

)
cos
(qπ

L (z− z1)
)

dzdφ

(2.33)

Onde ∈q=

1 q = 0
2 q ̸= 0

De forma geral, a notação utilizada para nomear as transformadas segue a convenção de
utilizar o nome do núcleo sobre φ seguido do nome do núcleo sobre z, abreviando para a primeira
letra do nome ao lado do símbolo de chapéu. Nesse caso, seguindo a ordem dos núcleos sobre φ

e z, temos seno seguido de cosseno, o que dá à transformada o nome seno-cosseno, abreviado
para sc e anotado na equação como □̂sc.

Comparando (2.32) (2.33), concluímos que:

Âsc
zd
(ρ,n,q) = BT M

ν (kρd ρ)

= fnq

[
Jν(kρd ρ)H(2)

ν (kρd a)− Jν(kρd a)H(2)
ν (kρd ρ)

] (2.34)

2.4.3 Expansão do campo na cavidade

Agora que os vetores potenciais magnético e elétrico foram definidos, é possível determi-
nar todas as 6 componentes do campo eletromagnético na cavidade através das equações (2.7),
(2.20), (2.22), (2.23), (2.32) e (2.34). A seguir é apresentado o cálculo completo para o campo
Eρ . Para os demais campos, o processo é análogo, portanto as contas são apresentadas de forma
simplificada.
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2.4.3.1 Campo Eρ

Das equações (2.7) e (2.23) temos que:

Eρd =
1

jωεd

∂ 2Azd

∂ρ∂ z
− 1

ρ

∂Fzd

∂φ
(2.35)

Substituindo as equações (2.20), (2.22), (2.32) e (2.34):

Eρd =

∞

∑
n=1

∞

∑
q=1

[
− 1

jωεd

∂

∂ρ
Âsc

zd
(ρ,n,q)

qπ

L
+

nπ

ρ∆φ
F̂cs

zd
(ρ,n,q)

]
·

· sin
(

nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

) (2.36)

Nota-se que a equação (2.36) é uma transformada seno-seno:

Eρd(ρ,φ ,z) =

∞

∑
n=1

∞

∑
q=1

Êss
ρd

(ρ,n,q)sin
(

nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

)

Êss
ρd

(ρ,n,q) =
2

∆φ

2
L

ˆ
φ2

φ1

ˆ z2

z1

Eρd(ρ,φ ,z)sin
(

nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

)
dzdφ

(2.37)
Comparando as equações (2.36) e (2.37):

Êss
ρd

(ρ,n,q) =− 1
jωεd

qπ

L
∂

∂ρ
Âsc

zd
(ρ,n,q)+

nπ

ρ∆φ
F̂cs

zd
(ρ,n,q) (2.38)

2.4.3.2 Campo Eφ

Eφ d =
1

jωεdρ

∂ 2Azd

∂φ∂ z
+

∂Fzd

∂ρ
⇒

Eφ d =

∞

∑
n=0

∞

∑
q=1

[
−1

jωεdρ
Âsc

zd
(ρ,n,q)

nπ

∆φ

qπ

L
+

∂

∂ρ
F̂cs

zd
(ρ,n,q)

]
·

· cos
(

nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

)
(2.39)

Identificando a transformada cosseno-seno:

Êcs
φd

(ρ,n,q) =
−1

jωεd

nπ

ρ∆φ

qπ

L
Âsc

zd
(ρ,n,q)+

∂

∂ρ
F̂cs

zd
(ρ,n,q) (2.40)
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2.4.3.3 Campo Ez

Ezd =
1

jωεd

(
∂ 2

∂ z2 + k2
d

)
Azd ⇒

Ezd =

∞

∑
n=1

∞

∑
q=0

k2
ρd

jωεd
Âsc

zd
(ρ,n,q)sin

(
nπ

∆φ
(φ −φ1)

)
cos
(

qπ

L
(z− z1)

) (2.41)

Identificando a transformada seno-cosseno:

Êsc
zd
(ρ,n,q) =

k2
ρd

jωεd
Âsc

zd
(ρ,n,q) (2.42)

2.4.3.4 Campo Hρ

Hρ d =
1
ρ

∂Azd

∂φ
+

1
jωµ

∂ 2Fzd

∂ρ∂ z
⇒

Hρ d =

∞

∑
n=0

∞

∑
q=0

[
nπ

ρ∆φ
Âcs

zd
+

1
jωµ

∂

∂ρ
F̂cs

zd
(ρ,n,q)

qπ

L

]
·

· cos
(

nπ

∆φ
(φ −φ1)

)
cos
(

qπ

L
(z− z1)

)
(2.43)

Identificando a transformada cosseno-cosseno:

Ĥcc
ρd

(ρ,n,q) =
nπ

ρ∆φ
Âcs

zd
(ρ,n,q)+

1
jωµ

qπ

L
∂

∂ρ
F̂cs

zd
(ρ,n,q) (2.44)

2.4.3.5 Campo Hφ

Hφ d =−
∂Azd

∂ρ
+

1
jωµρ

∂ 2Fzd

∂φ∂ z
⇒

Hφ d =

∞

∑
n=1

∞

∑
q=0

[
− ∂

∂ρ
Âsc

zd
(ρ,n,q)− 1

jωµ

nπ

ρ∆φ

qπ

L
F̂cs

zd
(ρ,n,q)

]
·

· sin
(

nπ

∆φ
(φ −φ1)

)
cos
(

qπ

L
(z− z1)

)
(2.45)

Identificando a transformada seno-cosseno:



272727

Ĥsc
φd

(ρ,n,q) =− ∂

∂ρ
Âsc

zd
(ρ,n,q)− 1

jωµ

nπ

ρ∆φ

qπ

L
F̂cs

zd
(ρ,n,q) (2.46)

2.4.3.6 Campo Hz

Hzd =
1

jωµ

(
∂ 2

∂ z2 + k2

)
Fzd ⇒

Hzd =

∞

∑
n=0

∞

∑
q=1

k2
ρd

jωµ
F̂cs

zd
(ρ,n,q)cos

(
nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

) (2.47)

Identificando a transformada cosseno-seno:

Ĥcs
zd

(ρ,n,q) =
k2

ρd

jωµ
F̂cs

zd
(ρ,n,q) (2.48)

2.4.4 Funções de Green no interior da cavidade

Agora que temos todos os campos na cavidade, podemos utilizar a condição de contorno
na superfície ρ = b para calcular as funções de Green na cavidade. Uma função de Green
representa a resposta ao impulso de um operador diferencial linear e é particularmente útil para
resolver equações diferenciais lineares. Se temos um operador linear L, uma função de Green G
é solução de LG = δ , onde δ é a função delta de Dirac.

b

Figura 11: Parede ρ = b

Da equação (2.5), temos:

M⃗i =−n̂× E⃗d = âρ ×
[
Eφd âφ +Ezd âz

]
= Eφd âz −Ezd âφ

∣∣
ρ=b (2.49)

Assim como o campo elétrico, a corrente magnética M⃗i também tem componentes na
direção φ e z:

M⃗i = Mzâz +Mφ âφ (2.50)
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Comparando as últimas duas equações, concluímos que:Mz = +Eφd

∣∣
ρ=b

Mφ = −Ezd

∣∣
ρ=b

(2.51)

Aplicando a transformada cosseno-seno na equação de Mz e utilizando a equação (2.40),
temos que:

M̂cs
z (n,q) = Êcs

φd
(b,n,q)

=− 1
jωεd

nπ

b∆φ

qπ

L
Âsc

zd
(b,n,q)+

∂

∂ρ
F̂cs

zd
(b,n,q)

(2.52)

Agora, aplicando a transformada seno-cosseno na equação de Mφ e utilizando a equação
(2.42), temos que:

M̂sc
φ (n,q) =−Êsc

zd
(b,n,q)

=−
k2

ρd

jωεd
Âsc

zd
(b,n,q)

(2.53)

2.4.4.1 Função de Green para Ad

A partir das equações (2.34) e (2.53):

M̂sc
φ (n,q) =−

k2
ρd

jωεd
BT M

ν (kρd b)

=−
k2

ρd

jωεd
fnq

[
Jν(kρd b)H(2)

ν (kρd a)− Jν(kρd a)H(2)
ν (kρd b)

] (2.54)

Definimos Θ5 como:

Θ5(n,q) = Jν(kρd b)H(2)
ν (kρd a)− Jν(kρd a)H(2)

ν (kρd b) (2.55)

Reformulando a equação (2.54), isolamos fnq:

fnq =− jωεd

k2
ρd

Θ5(n,q)
M̂sc

φ (n,q) (2.56)

Substituindo fnq na equação (2.34):

Âsc
zd
(ρ,n,q) =− jωεd

k2
ρd

Θ5(n,q)
M̂sc

φ (n,q)
[
Jν(kρd ρ)H(2)

ν (kρd a)− Jν(kρd a)H(2)
ν (kρd ρ)

]
= ĜAd

Mφ
(ρ,n,q)M̂sc

φ (n,q)
(2.57)
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Onde a transformada da função de Green é:

ĜAd
Mφ

(ρ,n,q) =− jωεd

k2
ρd

Θ5(n,q)

[
Jν(kρd ρ)H(2)

ν (kρd a)− Jν(kρd a)H(2)
ν (kρd ρ)

]
(2.58)

2.4.4.2 Função de Green para Fd

Utilizando as equações (2.22), (2.34) e (2.52):

M̂cs
z (n,q) =− 1

jωεd

nπ

b∆φ

qπ

L
fnq

[
Jν(kρd b)H(2)

ν (kρd a)− Jν(kρd a)H(2)
ν (kρd b)

]
+dnq kρd

[
J′ν(kρd b)H(2)

ν

′
(kρd a)− J′ν(kρd a)H(2)

ν

′
(kρd b)

] (2.59)

Definimos Θ1 como:

Θ1(n,q) = J′ν(kρd b)H(2)
ν

′
(kρd a)− J′ν(kρd a)H(2)

ν

′
(kρd b) (2.60)

Substituindo Θ1 e Θ5 na equação (2.59):

M̂cs
z (n,q) =− 1

jωεd

nπ

b∆φ

qπ

L
fnqΘ5(n,q)+dnq kρd Θ1(n,q) (2.61)

Nota-se que:

fnq Θ5(n,q) =− jωεd

k2
ρd

M̂sc
φ (n,q) (2.62)

Substituindo em (2.61) e isolando dnq:

dnq =
M̂cs

z (n,q)
kρd Θ1(n,q)

− nπ

b∆φ

qπ

L

M̂sc
φ (n,q)

k3
ρd Θ1(n,q)

(2.63)

Substituindo na equação (2.22):

F̂cs
zd

(ρ,n,q) =

 M̂cs
z (n,q)

kρd Θ1(n,q)
− nπ

b∆φ

qπ

L

M̂sc
φ (n,q)

k3
ρd Θ1(n,q)

 ·
·
[

Jν(kρd ρ)H(2)
ν

′
(kρd a)− J′ν(kρd a)H(2)

ν (kρd ρ)

]
= ĜFd

Mφ
(ρ,n,q)M̂sc

φ (n,q)+ĜFd
Mz

(ρ,n,q)M̂cs
z (n,q)

(2.64)

Onde as transformadas das funções de Green são:
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ĜFd
Mφ

(ρ,n,q) =− nπ

b∆φ

qπ

L
1

k3
ρd Θ1(n,q)

[
Jν(kρd ρ)H(2)

ν

′
(kρd a)− J′ν(kρd a)H(2)

ν (kρd ρ)

]
(2.65)

ĜFd
Mz

(ρ,n,q) =
1

kρd Θ1(n,q)

[
Jν(kρd ρ)H(2)

ν

′
(kρd a)− J′ν(kρd a)H(2)

ν (kρd ρ)

]
(2.66)

2.5 Campo eletromagnético externo

O campo eletromagnético externo, assim como o interno, pode possuir modos T Ez e T Mz

por conta da direção arbitrária da corrente magnética na superfície. Sendo assim, é necessário
expandir ambos os modos, como será mostrado nesta seção. Nota-se que o subscrito 0 denota
entidades externas à cavidade.

2.5.1 Componentes de Campo T Ez

Para o campo T Ez temos um potencial vetor elétrico F⃗ = Fz0 âz que satisfaz a equação de
onda em coordenadas cilíndricas:

∇
2Fz0 + k2

0Fz0 = 0 k0 = ω
√

µ0ε0 (2.67)

A solução de Fz0 por separação de variáveis é dada por [20] (5-14):

Fz0(ρ,φ ,z) = H(2)
n (kρ0 ρ)e− jnφ e− jkzz (2.68)

Onde n ∈ Z, kz ∈R e kρ0 =
√

k2
0 − k2

z . A função de Hankel do segundo tipo foi escolhida por ser
a única função de Bessel que satisfaz a condição de radiação. Para a função harmônica em φ , n

tem de ser inteiro para garantir a continuidade do campo angularmente. Para a função harmônica
em z, não há restrição, portanto, o número pode ser real.

Somando todos os possíveis valores de n e integrando sobre kz chegamos à solução geral
de F⃗ :

Fz0(ρ,φ ,z) =

∞

∑
n=−∞

ˆ
∞

−∞

fnkz H(2)
n (kρ0 ρ)e− jnφ e− jkzz dkz (2.69)

Definindo o par de transformadas exponencial-Fourier:
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Fz0(ρ,φ ,z) =
∞

∑
n=−∞

ˆ
∞

−∞

F̂e f
z0

(ρ,n,kz)e− jnφ e− jkzz dkz

F̂e f
z0

(ρ,n,kz) =
1

(2π)2

ˆ
∞

−∞

ˆ
π

−π

Fz0(ρ,φ ,z)e
jnφ e jkzz dφ dkz

(2.70)

Comparando (2.69) e (2.70):

F̂e f
z0

(ρ,n,kz) = fnkz H(2)
n (kρ0 ρ) (2.71)

O Sobrescrito e f antecedido do símbolo de chapéu denota a transformada exponencial-
Fourier.

2.5.2 Componentes de Campo T Mz

Para o campo T Mz, os cálculos são análogos ao do campo T Ez, porém utilizando o
potencial vetor magnético A⃗ = Az0 âz.

A solução por separação de variáveis é:

Az0(ρ,φ ,z) = H(2)
n (kρ0 ρ)e− jnφ e− jkzz (2.72)

A solução geral é:

Az0(ρ,φ ,z) =

∞

∑
n=−∞

ˆ
∞

−∞

gnkz H(2)
n (kρ0 ρ)e− jnφ e− jkzz dkz (2.73)

Definindo o par de transformadas exponencial-Fourier:

Az0(ρ,φ ,z) =
∞

∑
n=−∞

ˆ
∞

−∞

Âe f
z0
(ρ,n,kz)e− jnφ e− jkzz dkz

Âe f
z0
(ρ,n,kz) =

1
(2π)2

ˆ
∞

−∞

ˆ
π

−π

Az0(ρ,φ ,z)e
jnφ e jkzz dφ dkz

(2.74)

Comparando (2.73) e (2.74):

Âe f
z0

(ρ,n,kz) = gnkz H(2)
n (kρ0 ρ) (2.75)

2.5.3 Expansão do campo externo

O cálculo para o campo externo é análogo ao do campo interno, com a ressalva de que,
no domínio da transformada exponencial-Fourier, as derivadas ∂/∂φ e ∂/∂ z são substituídas,
respectivamente, por − jn e − jkz. Portanto, as 6 componentes do campo exterior são:



323232

Êe f
ρ0

(ρ,n,kz) =− kz

ωε0

∂

∂ρ
Âe f

z0
(ρ,n,kz)+

jn
ρ

F̂e f
z0

(ρ,n,kz) (2.76)

Êe f
φ0

(ρ,n,kz) =− nkz

jωε0ρ
Âe f

z0
(ρ,n,kz)+

∂

∂ρ
F̂e f

z0
(ρ,n,kz) (2.77)

Êe f
z0

(ρ,n,kz) =
k2

ρ0

jωε0
Âe f

z0
(ρ,n,kz) (2.78)

Ĥe f
ρ0

(ρ,n,kz) =− jn
ρ

Âe f
z0

(ρ,n,kz)−
kz

ωµ0

∂

∂ρ
F̂e f

z0
(ρ,n,kz) (2.79)

Ĥe f
φ0

(ρ,n,kz) =− ∂

∂ρ
Âe f

z0
(ρ,n,kz)−

nkz

jωµ0ρ
F̂e f

z0
(ρ,n,kz) (2.80)

Ĥe f
z0

(ρ,n,kz) =
k2

ρ0

jωµ0
F̂e f

z0
(ρ,n,kz) (2.81)

2.5.4 Funções de Green na região externa

A partir dos campos calculados na seção anterior, aplicamos a condição de contorno na
superfície ρ = b para calcular as funções de Green para a região externa.

Da equação (2.6), lembramos que a corrente magnética externa M⃗e tem sentido oposto à
corrente magnética interna M⃗i. Portanto, das equações (2.49) e (2.50), temos que:

M⃗e =−Mzâz −Mφ âφ = −Eφ âz +Ezâφ

∣∣
ρ=b (2.82)

Isolando as componentes em z e φ :Mz = +Eφ0

∣∣
ρ=b

Mφ = −Ez0

∣∣
ρ=b

(2.83)

Aplicando a transformada exponencial-Fourier a ambas as equações:M̂e f
z (n,kz) = +Êe f

φ0
(b,n,kz)

M̂e f
φ

(n,kz) =−Êe f
z0

(b,n,kz)
(2.84)

Utilizando as equações (2.77) e (2.78) em (2.84):

M̂e f
z (n,kz) =− nkz

jωε0b
Âe f

z0
(b,n,kz)+

∂

∂ρ
F̂e f

z0
(b,n,kz) (2.85)
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M̂e f
φ

(n,kz) =−
k2

ρ0

jωε0
Âe f

z0
(b,n,kz) (2.86)

2.5.4.1 Função de Green para A0

Da equação (2.75) e (2.85):

M̂e f
φ

(n,kz) =−
k2

ρ0

jωε0
gnkz H(2)

n (kρ0 b) (2.87)

Isolando gnkz:

gnkz =− jωε0

k2
ρ0

H(2)
n (kρ0 b)

M̂e f
φ

(n,kz) (2.88)

Substituindo gnkz de volta na equação (2.75):

Âe f
z0

(ρ,n,kz) =− jωε0

k2
ρ0

H(2)
n (kρ0 b)

M̂e f
φ

(n,kz)H
(2)
n (kρ0 ρ)

= ĜA0
Mφ

(ρ,n,kz)M̂e f
φ

(n,kz)

(2.89)

Onde:

ĜA0
Mφ

(ρ,n,kz) =− jωε0

k2
ρ0

H(2)
n (kρ0 ρ)

H(2)
n (kρ0 b)

(2.90)

2.5.4.2 Função de Green para F0

Substituindo as equações (2.71) e (2.86) em (2.85), temos:

M̂e f
z (n,kz) =− nkz

bk2
ρ0

M̂e f
φ

(n,kz)+ fnkzkρ0 H(2)
n

′
(kρ0 b) (2.91)

Isolando fnkz:

fnkz =− nkz

bk3
ρ0

M̂e f
φ

(n,kz)

H(2)
n

′
(kρ0 b)

+
M̂e f

z (n,kz)

kρ0H(2)
n

′
(kρ0 b)

(2.92)

Substituindo de volta na equação (2.71):
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F̂e f
z0

(ρ,n,kz) =

− nkz

bk3
ρ0

M̂e f
φ

(n,kz)

H(2)
n

′
(kρ0 b)

+
M̂e f

z (n,kz)

kρ0H(2)
n

′
(kρ0 b)

H(2)
n (kρ0 ρ)

=ĜF0
Mφ

(ρ,n,kz)M̂e f
φ

(n,kz)+ĜF0
Mz

(ρ,n,kz)M̂e f
z (n,kz)

(2.93)

Onde as transformadas das funções de Green são:

ĜF0
Mφ

(ρ,n,kz) =− nkz

bk3
ρ0

H(2)
n (kρ0 ρ)

H(2)
n

′
(kρ0 b)

ĜF0
Mz

(ρ,n,kz) =
1

kρ0

H(2)
n (kρ0 ρ)

H(2)
n

′
(kρ0 b)

(2.94a)

(2.94b)

Na presença de corrente magnética apenas na direção φ , a equação se resume a:

F̂e f
z0

(ρ,n,kz) = ĜF0
Mφ

(ρ,n,kz)M̂e f
φ

(n,kz) (2.95)

2.6 Funções de base Mφ(φ ,z) senoidais

As funções de base são a essência do Método dos Momentos. Segundo Harrington [19],
o Método dos Momentos permite solucionar uma equação linear no formato L( f ) = g, onde L é
um operador integral, f é uma função desconhecida e g é um termo de excitação (e.g, tensão
elétrica) [19] (1-1). A função f é aproximada por uma combinação linear de coeficientes a serem
determinados e uma função de base fk arbitrária. Matematicamente, isso é dado pelas equações
[19] (1-21, 1-22):

f =
K

∑
k=1

αk fk ⇒
K

∑
k=1

αkL( fk) = g (2.96)

Existem diversas possibilidades de funções de base (e.g. pulso, triangular, senoidal, etc.).
Já que os campos internos são senoidais, escolheu-se utilizar funções de base senoidais [26], o
que acaba simplificando as equações dos campos internos excitados por cada função de base.

Como indicado pelo somatório na equação (2.96), para aplicar o Método dos Momentos,
é necessário realizar uma discretização em N partes. Neste caso, o que é discretizado é a corrente
magnética, de forma que ela seja constante por partes, ou seja, ao longo da direção que ela é
discretizada, em cada parte ela é constante nessa direção (vide a Figura 14 abaixo para uma
representação visual).

Agora se faz necessário definir a geometria do patch da antena. Como explicado, o foco
desse trabalho é nas antenas do tipo Mφ . Nessa geometria observa-se a presença de corrente
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magnética apenas na direção φ , visto que o campo elétrico está na direção z, como ilustrado na
Figura 12 para o lado externo (para o lado interno o versor normal n̂ está na direção −âρ ). Logo,
aplicando as equações 2.5 e 2.6 do princípio da equivalência, fica evidente a direção da corrente
magnética. Sendo assim, a corrente é discretizada de forma que ela seja constante na direção z e
tenha variação senoidal em φ .

n̂
E⃗

E⃗

Figura 12: Campo elétrico e versor normal na região externa para a antena do tipo Mφ .

Nota-se que a parte condutora elétrica na superfície não entra nessa discretização, visto
que não há corrente magnética nessa região. As linhas pontilhadas na Figura 13 ilustram a
discretização, onde cada segmento vai de z = z1p a z = z2p, para p ∈ [1,N].

z1

z2

z1a

z2a

z2pz1p

φ1

φ2

Figura 13: Discretização da corrente para m = 1 e p arbitrário

Visto que o campo elétrico é nulo em φ1 e φ2, a função de base senoidal tem de ser nula
tanto em φ1 quanto em φ2. Tendo essa restrição em mente, chegamos à seguinte equação:

Mφmp(φ ,z) = sin
[

mπ

∆φ
(φ −φ1)

]
z1p ≤ z ≤ z2p (2.97)

Onde φ1 ≤ φ ≤ φ2, z1p ≤ z ≤ z2p e m ∈ N∗. A variável m representa os diferentes harmônicos
que a função de base pode assumir, conforme ilustrado na Figura 14.
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φ

Mφ mp(φ ,z)

z

z1p
z2p

φ1 φ2

Função de base em m = 1

φ

Mφ mp(φ ,z)

z

z1p
z2p

φ1 φ2

Função de base em m = 2

Figura 14: Função de base em diferentes valores de m.

Portanto, da equação (2.96) com todos os valores possíveis de m e p, temos que a corrente
magnética na direção φ é aproximada por:

Mφ (φ ,z) =

M

∑
m=1

P

∑
p=1

dmpMφmp(φ ,z) (2.98)

Onde M é a quantidade de harmônicas e P a quantidade de segmentos. O Capítulo 4 explora
como a impedância de entrada e o diagrama de radiação se comportam para diferentes valores de
M e P.

2.6.1 Transformada seno-cosseno na cavidade

Adiante, será necessário ter a transformada seno-cosseno da função de base em relação
ao interior da cavidade. A partir da equação (2.33), temos:

M̂sc
φmp(n,q) =

∈q

∆φ

2
L

ˆ
φ2

φ1

ˆ z2

z1

Mφmp(φ ,z)sin
(

nπ

∆φ
(φ −φ1)

)
cos
(

qπ

L
(z− z1)

)
dzdφ

=
∈q

∆φ

2
L

ˆ
φ2

φ1

sin
(

mπ

∆φ
(φ −φ1)

)
sin
(

nπ

∆φ
(φ −φ1)

)
dφ ·

·

ˆ z2p

z1p

cos
(

qπ

L
(z− z1)

)
dz

(2.99)
A integral em φ pode ser facilmente calculada utilizando a ortogonalidade entre as

funções seno [27], ou seja, a integral será diferente de 0 apenas quando m = n. A integral em z,
que denominaremos de I3p(q), pode ser resolvida por substituição de variáveis. Nota-se que para
q = 0 teríamos uma divisão por 0, porém o integrando se torna 1 e a solução da integral é trivial.
Resolvendo a equação (2.99):
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M̂sc
φmp(n,q) =

∈q

∆φ

2
L

∆φ

2
δmn I3p(q) =

∈q

L
δmn I3p(q) (2.100)

Onde:

δmn =

1 m = n

0 m ̸= n
(2.101)

I3p(q) =

(z2p − z1p) q = 0
L

qπ

[
sin
(qπ

L (z2p − z1)
)
− sin

(qπ

L (z1p − z1)
)]

q ̸= 0
(2.102)

2.6.2 Transformada exponencial-Fourier no exterior

A transformada exponencial-Fourier da função de base também será necessária posterior-
mente. Da equação (2.70), temos:

M̂e f
φmp(n,kz) =

1
(2π)2

ˆ
∞

−∞

ˆ
π

−π

Mφmp(φ ,z)e
jnφ e jkzz dφ dkz

=
1

(2π)2

ˆ
φ2

φ1

sin
(

mπ

∆φ
(φ −φ1)

)
e jnφ dφ

ˆ z2p

z1p

e jkzzdkz

(2.103)

A solução da integral em z é trivial e a denominaremos de I4p(kz):

I4p(kz) =
e jkzz2p − e jkzz1p

jkz
(2.104)

Já a integral em φ é calculada com substituição de variável e utilizando a equação
(14.518) do Manual de Fórmulas e Tabelas Matemáticas [28]:

ˆ
eax sinbx dx =

eax(asinbx−bcosbx)
a2 +b2 (2.105)

ˆ
φ2

φ1

sin
(

mπ

∆φ
(φ −φ1)

)
e jnφ dφ =

e jnφ1(
mπ

∆φ

)2
−n2

mπ

∆φ

[
1− (−1)me jn∆φ

]
(2.106)

Substituindo as equações (2.104) e (2.106) na equação (2.103), temos:
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M̂e f
φmp(n,kz) =

1
(2π)2

e jnφ1(
mπ

∆φ

)2
−n2

mπ

∆φ

[
1− (−1)me jn∆φ

]
I4p(kz) (2.107)

2.7 Excitação

A excitação da superfície condutora da antena é assumida como sendo feita por um probe

interno. O probe é modelado como uma fita condutora [23], ou seja, a altura ao longo de z é
infinitesimalmente pequena. A fita se estende de ρ = a até ρ = b, possui largura angular ∆φ f e
está centrada em z f e φ f . A Figura 15 ilustra a fita de alimentação.

z2

z1

z f

a b

∆φ f

Figura 15: Geometria da fita de alimentação da antena.

Dada a largura angular e o centro da antena, podemos calcular os ângulos iniciais e finais
da fita: φ1 f = φ f −

∆φ f
2

φ2 f = φ f +
∆φ f

2

(2.108)

A partir da largura angular, também podemos calcular a largura média da fita:

Wf =
a+b

2
∆φ f (2.109)

As correntes superficiais e volumétricas na fita, ambas na direção ρ , são, respectivamente,
definidas como:

Js f (ρ,φ) =
I0

ρ∆φ f
(2.110)

Jv f (ρ,φ ,z) =
I0

ρ∆φ f
δ (z− z f ) (2.111)

Nas Seções 2.10 e 2.11, é necessário ter a transformada seno-seno da densidade volumé-
trica de corrente. Portanto, a partir da equação (2.37) temos:
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Ĵss
v f (ρ,n,q) =

2
∆φ

2
L

ˆ
φ2

φ1

ˆ z2

z1

Jv f (ρ,φ ,z)sin
(

nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

)
dzdφ

(2.112)
Resolvendo a integral, chegamos a:

Ĵss
v f (ρ,n,q) =

4I0

nπLρ∆φ f

cos

(
nπ

∆φ f
(φ1 f −φ1)

)
− cos

(
nπ

∆φ f
(φ2 f −φ1)

)sin
(

qπ

L
(z f − z1)

)
(2.113)

2.8 Condições de contorno do campo Hφ

Das equações de Maxwell, sabemos que na ausência de corrente elétrica superficial, o campo

magnético tangencial na interface é contínuo. Isso implica:

<
Hφ (Mφ )+

<
Hφ (Jv f ) =

>
Hφ (Mφ ) (2.114)

Nota-se que isso só é válido em z1 < z < z1a e z2a < z < z2 que é a região da interface com

dielétrico. Na região metálica, há correntes superficiais e a equação acima estaria incompleta. O

sobrescrito < denota campo dentro da cavidade, enquanto > denota campo externo. Ou seja, o campo

interno devido às correntes Mφ e Jv f é igual ao campo externo devido a Mφ .

Substituindo a equação (2.98) na equação (2.114), temos:

M

∑
m=1

P

∑
p=1

dmp
<
Hφ (Mφmp)+

<
Hφ (Jv f ) =

M

∑
m=1

P

∑
p=1

dmp
>
Hφ (Mφmp)

⇒
M

∑
m=1

P

∑
p=1

dmp

[
<
Hφ (Mφmp)−

>
Hφ (Mφmp)

]
=−

<
Hφ (Jv f )

(2.115)

A equação acima é análoga à equação (2.96). Segundo Harrington [19], é necessário determinar

um produto simétrico ⟨ f ,g⟩ adequado para o problema seguindo as restrições impostas em [19](1-2, 1-3,

1-4). Podemos utilizar a equação [19](1-11) como base e ajustar o intervalo de integração para o domínio

das funções na equação (2.114):

⟨ f ,g⟩=
ˆ 2π

0

ˆ
∞

−∞

f (φ ,z)g(φ ,z)b dzdφ (2.116)

Visto que estamos avaliando o produto simétrico em ρ = b, o termo b é adicionado à equação.

Agora precisamos definir uma função de peso para ser utilizada no produto simétrico, como mostra a

equação [19](1-23). Por conveniência, é utilizada a mesma função que a função de base (2.97):
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Mφst(φ ,z) = sin
[

sπ

∆φ
(φ −φ1)

]
z1t ≤ z ≤ z2t (2.117)

Onde s e t são análogos a m e p e aplicam-se as mesmas restrições aos intervalos de φ , z, s e t.

Aplicando o produto simétrico (2.116) em (2.115) e (2.117), temos:

M

∑
m=1

P

∑
p=1

dmp

[〈
<
Hφ (Mφmp),Mφst

〉
−
〈

>
Hφ (Mφmp),Mφst

〉]
=−

〈
<
Hφ (Jv f ),Mφst

〉
(2.118)

Podemos representar a equação acima em uma forma matricial:

[Z][d] = [V ] (2.119)

Onde:

Zst,mp =

〈
<
Hφ (Mφmp),Mφst

〉
−
〈

>
Hφ (Mφmp),Mφst

〉
(2.120)

Vst =−
〈

<
Hφ (Jv f ),Mφst

〉
(2.121)

Denominamos a matriz Z como matriz de impedâncias e V como matriz de tensões (não confundir

com as propriedades físicas impedância e tensão). Os subscritos st,mp e st indicam as coordenadas nas

matrizes, sendo Z e d matrizes quadradas de dimensões (M ·P)x(M ·P) e V uma matriz coluna com M ·P
linhas. Para converter os valores de s, t, m e p para o número da linha e da coluna, respectivamente,

utilizam-se as seguintes equações:

linha = (s−1)∗P+ t

coluna = (m−1)∗P+ p
(2.122)

O próximo passo é determinar os elementos das matrizes V e Z, para então encontrar a matriz d

ao resolver o sistema linear da equação (2.119). Por fim, com a matriz d calculada, é possível determinar

a impedância de entrada e o diagrama de radiação da antena.

2.9 Elementos da matriz [Z]

A equação da matriz de impedâncias (2.120) tem uma componente referente ao campo
<

Hφ interno

e outra referente ao campo
>

Hφ externo. Já que os termos são independentes entre si, podemos calculá-los

individualmente.

2.9.1 Campo interno

Da equação (2.46)
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Ĥsc
φd

(ρ,n,q) =− ∂

∂ρ
Âsc

zd
(ρ,n,q)− 1

jωµ

nπ

ρ∆φ

qπ

L
F̂cs

zd
(ρ,n,q)

calculamos a transformada inversa pela equação (2.33):

Hφd(ρ,φ ,z)=
∞

∑
n=1

∞

∑
q=0

[
− ∂

∂ρ
Âsc

zd
(ρ,n,q)− 1

jωµ

nπ

ρ∆φ

qπ

L
F̂cs

zd
(ρ,n,q)

]
·

· sin
(

nπ

∆φ
(φ −φ1)

)
cos
(

qπ

L
(z− z1)

) (2.123)

As transformadas de Azd e Fzd são dadas pelas equações (2.57) e (2.64). No caso de Fzd , estamos

apenas interessados na parte referente a Mφ . Substituindo na equação acima:

<
Hφ (Mφ mp)=

∞

∑
n=1

∞

∑
q=0

[
− ∂

∂ρ
ĜAd

Mφ
(ρ,n,q)− 1

jωµ

nπ

ρ∆φ

qπ

L
ĜFd

Mφ
(ρ,n,q)

]
·

·M̂sc
φmp

(n,q)sin
(

nπ

∆φ
(φ −φ1)

)
cos
(

qπ

L
(z− z1)

) (2.124)

Calculando o produto simétrico (2.116) com ρ = b:

〈
<
Hφ (Mφmp),Mφst

〉
=

ˆ 2π

0

ˆ z2

z1

<
Hφ (Mφmp)Mφst(φ ,z)b dzdφ

=

∞

∑
n=1

∞

∑
q=0

[
− ∂

∂ρ
ĜAd

Mφ
(b,n,q)− 1

jωµ

nπ

b∆φ

qπ

L
ĜFd

Mφ
(b,n,q)

]
·

·M̂sc
φmp

(n,q) ·b ·
ˆ 2π

0

ˆ z2

z1

Mφst(φ ,z)sin
(

nπ

∆φ
(φ −φ1)

)
cos
(

qπ

L
(z− z1)

)
dzdφ

(2.125)

Nota-se que a integral tem o mesmo formato da equação (2.33). Com isso:

〈
<
Hφ (Mφmp),Mφst

〉
=

∞

∑
n=1

∞

∑
q=0

b∆φ

2
L
∈q

[
− ∂

∂ρ
ĜAd

Mφ
(b,n,q)− 1

jωµ

nπ

b∆φ

qπ

L
ĜFd

Mφ
(b,n,q)

]
·

·M̂sc
φmp

(n,q) ·M̂sc
φst

(n,q)
(2.126)

A transformada seno-cosseno de Mφ é dada pela equação (2.100). A transformada em mn possui

a função δmn enquanto a transformada em st possui a função δsn, o que significa que os somatórios só terão

valores não nulos quando m = s = n . Por conta disso, podemos remover o somatório em n já que dado

um par m,s qualquer, apenas um valor de n resultará em um valor não nulo no somatório. Analogamente,

podemos substituir n na equação por m ou s, no caso foi escolhido substituir n por m.
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〈
<
Hφ (Mφmp),Mφst

〉
=

∞

∑
q=0

b∆φ

2
∈q

L
δms

[
− ∂

∂ρ
ĜAd

Mφ
(b,m,q)− 1

jωµ

mπ

b∆φ

qπ

L
ĜFd

Mφ
(b,m,q)

]
·

· I3p(q)I3t(q)

(2.127)

A transformada da função de Green GMφ
para Ad é dada pela equação (2.58), a partir da qual

calculamos a derivada em ρ:

∂

∂ρ
ĜAd

Mφ
(b,n,q) =− jωεd

k2
ρd

Θ5(n,q)

[
J′ν(kρd b)H(2)

ν (kρd a)− Jν(kρd a)H(2)
ν

′
(kρd b)

]
(2.128)

Definindo Θ7(n,q) como:

Θ7(n,q)= J′ν(kρd b)H(2)
ν (kρd a)− Jν(kρd a)H(2)

ν

′
(kρd b) (2.129)

Chegamos a:

∂

∂ρ
ĜAd

Mφ
(b,n,q) =− jωεd

k2
ρd

Θ7(n,q)
Θ5(n,q)

(2.130)

Definindo Θ3(n,q) como:

Θ3(n,q)= Jν(kρd b)H(2)
ν

′
(kρd a)− J′ν(kρd a)H(2)

ν (kρd b) (2.131)

E substituindo na equação (2.65):

ĜFd
Mφ

(b,n,q) =− nπ

b∆φ

qπ

L
1

k3
ρd

Θ3(n,q)
Θ1(n,q)

(2.132)

2.9.2 Campo externo

Da equação (2.80):

Ĥe f
φ0

(ρ,n,kz) =− ∂

∂ρ
Âe f

z0
(ρ,n,kz)−

nkz

jωµ0ρ
F̂e f

z0
(ρ,n,kz)

calculamos a transformada inversa através da equação (2.70):

Hφ0(ρ,φ ,z) =

∞

∑
n=−∞

ˆ
∞

−∞

[
− ∂

∂ρ
Âe f

z0
(ρ,n,kz)−

nkz

jωµ0ρ
F̂e f

z0
(ρ,n,kz)

]
e− jnφ e− jkzz dkz (2.133)

Substituindo as equações (2.89) e (2.95):
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>
Hφ (Mφ mp) =

∞

∑
n=−∞

ˆ
∞

−∞

[
− ∂

∂ρ
ĜA0

Mφ
(ρ,n,kz)−

nkz

jωµ0ρ
ĜF0

Mφ
(ρ,n,kz)

]
·

·M̂e f
φmp

(n,kz)e− jnφ e− jkzz dkz

(2.134)

Tomando o produto simétrico (2.116) em ρ = b:

〈
>
Hφ (Mφ mp),Mφst

〉
=

∞

∑
n=−∞

ˆ
∞

−∞

b
[
− ∂

∂ρ
ĜA0

Mφ
(b,n,kz)−

nkz

jωµ0b
ĜF0

Mφ
(b,n,kz)

]
·

·M̂e f
φmp(n,kz)

ˆ φ2

φ1

ˆ z2

z1

Mφst(φ ,z)e− jnφ e− jkzz dφdz

dkz

(2.135)

A integral dupla em φ e z é dada pela equação (2.103). Substituindo na equação anterior, temos:

〈
>
Hφ (Mφ mp),Mφst

〉
=

∞

∑
n=−∞

ˆ
∞

−∞

(2π)2b
[
− ∂

∂ρ
ĜA0

Mφ
(b,n,kz)−

nkz

jωµ0b
ĜF0

Mφ
(b,n,kz)

]
·

·M̂e f
φmp

(n,kz)M̂
e f
φst

(−n,−kz)dkz

(2.136)

Lembrando que a transformada exponencial-Fourier de Mφ é dada pela equação (2.107).

A partir da equação (2.90), calculamos a derivada da função de Green para A0 em relação a ρ:

∂

∂ρ
ĜA0

Mφ
(ρ,n,kz) =

− jωε0

kρ0

H(2)
n

′
(kρ0 ρ)

H(2)
n (kρ0 b)

(2.137)

Nota-se que a equação (2.137) é uma função par em relação a n e kz, enquanto a equação (2.94a)

da função de Green para F0 é ímpar em relação a n e kz. Portanto, a combinação de funções de Green na

equação (2.136) é par, visto que o termo

nkz

jωµ0b

é ímpar em n e kz. Lembre-se que a multiplicação de funções ímpares resulta em uma função par e que a

soma de funções de mesma paridade mantém a paridade. Podemos explorar a paridade das funções para

mudar os limites inferiores do somatório e integral na equação (2.136) para 1 e 0, respectivamente. O

termo do somatório referente a n = 0 é separado da equação, já que não faz sentido pensar na paridade em

n, nesse caso. Levando esses pontos em consideração, temos que:
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〈
>
Hφ (Mφ mp),Mφst

〉
=

ˆ
∞

0
(2π)2b

[
− ∂

∂ρ
ĜA0

Mφ
(b,0,kz)

]
·

·
[
M̂e f

φmp
(0,kz)M̂

e f
φst

(0,−kz)+M̂e f
φmp

(0,−kz)M̂
e f
φst

(0,kz)

]
dkz+

+

∞

∑
n=1

ˆ
∞

0
(2π)2b

[
− ∂

∂ρ
ĜA0

Mφ
(b,n,kz)−

nkz

jωµ0b
ĜF0

Mφ
(b,n,kz)

]
·

·
[
M̂e f

φmp
(n,kz)M̂

e f
φst

(−n,−kz)+M̂e f
φmp

(n,−kz)M̂
e f
φst

(−n,kz)+

+ M̂e f
φmp

(−n,kz)M̂
e f
φst

(n,−kz)+M̂e f
φmp

(−n,−kz)M̂
e f
φst

(n,kz)

]
dkz

(2.138)

Embora a equação tenha ficado mais extensa, o somatório da integral é uma operação bem custosa

computacionalmente, então diminuir o intervalo de integração pela metade 1 compensa na implementação

da equação.

2.10 Elementos da matriz [V]

Calculando o produto simétrico (2.116) da equação (2.121):

Vst =−
〈

<
Hφ (Jv f ),Mφst

〉
=−
ˆ 2π

0

ˆ
∞

−∞

<
Hφ (Jv f )(b,φ ,z)Mφst(φ ,z)bdzdφ (2.139)

Podemos utilizar o teorema da reciprocidade de Harrington [20](3-8) para mudar os termos

na equação. O teorema da reciprocidade afirma que é possível trocar a excitação (corrente elétrica e

magnética) de lugar com os campos eletromagnéticos gerados por tal excitação sem alterar a resposta

no sistema. Ou seja, se temos correntes Ja e Ma gerando campos Ea e Ha, e correntes Jb e Mb gerando

campos Eb e Hb, podemos trocar os termos de posição sem alterar o resultado. Formalmente, isso é

descrito pela equação (3-36) de Harrington [20]:

˚

v

(
EaJb −HaMb

)
dτ =

˚

v

(
EbJa −HbMa

)
dτ (2.140)

O teorema da reciprocidade nos permite alterar o tipo de excitação e campo a depender das

condições do problema. No nosso caso, podemos trocar o campo magnético por um campo elétrico

e também trocar a corrente Jv f de posição com a corrente Mφst . Para isso, distribuímos as entidades

eletromagnéticas da seguinte forma:

1Matematicamente, os intervalos (−∞,∞) e [0,∞) possuem o mesmo comprimento, porém na implementação o
limite superior é limitado por um parâmetro finito, então na prática o intervalo da equação (2.138) é a metade do
que seria na equação (2.136)
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con junto ”a” con junto ”b”
Ja = Jv f âρ

Ma = 0

Ha =
<

Hφ (Jv f )


Jb = 0

Mb = Mφst(φ ,z)δ (ρ −b)âφ

Eb =
<

Eρ(Mφst)

(2.141)

O teorema da reciprocidade pede por correntes volumétricas, então criamos uma a partir da

densidade superficial Mφst adicionando o impulso unitário. Substituindo os valores acima na equação

(2.140) chegamos a:

˚

v

(
0−

<
Hφ (Jv f )Mφst(φ ,z)δ (ρ −b)

)
dτ =

˚

v

(
<

Eρ(Mφst)Jv f −0
)

dτ (2.142)

Observa-se que o lado esquerdo da equação anterior é igual à equação (2.139). Sendo assim,

concluímos que:

Vst =

˚

v

<
Eρ(Mφst)Jv f dτ (2.143)

Da equação (2.38):

Êss
ρd

(ρ,n,q) =− 1
jωεd

qπ

L
∂

∂ρ
Âsc

zd
(ρ,n,q)+

nπ

ρ∆φ
F̂cs

zd
(ρ,n,q)

Substituindo as transformadas dos potenciais vetores magnético e elétrico pelas equações (2.57)

e (2.64) respectivamente:

Êss
ρd

(ρ,n,q) =
[
− 1

jωεd

qπ

L
∂

∂ρ
ĜAd

Mφ
(ρ,n,q)+

nπ

ρ∆φ
ĜFd

Mφ
(ρ,n,q)

]
M̂sc

φst (n,q) (2.144)

Tomando a transformada inversa pela equação (2.37), temos:

<
Eρ(Mφst) =

∞

∑
n=1

∞

∑
q=1

[
− 1

jωεd

qπ

L
∂

∂ρ
ĜAd

Mφ
(ρ,n,q)+

nπ

ρ∆φ
ĜFd

Mφ
(ρ,n,q)

]
M̂sc

φst (n,q)·

· sin
(

nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

) (2.145)

Substituindo na equação (2.143):

Vst =

ˆ z2

z1

ˆ
φ2

φ1

ˆ b

a

∞

∑
n=1

∞

∑
q=1

[
− 1

jωεd

qπ

L
∂

∂ρ
ĜAd

Mφ
(ρ,n,q)+

nπ

ρ∆φ
ĜFd

Mφ
(ρ,n,q)

]
M̂sc

φst (n,q)·

· sin
(

nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

)
Jv f (ρ,φ ,z)ρdρdφdz

(2.146)

Isolando os termos em φ e z, podemos utilizar a equação (2.112) para substituir a integral:



464646

Vst =
∆φ

2
L
2

ˆ b

a

∞

∑
n=1

∞

∑
q=1

[
− 1

jωεd

qπ

L
∂

∂ρ
ĜAd

Mφ
(ρ,n,q)+

nπ

ρ∆φ
ĜFd

Mφ
(ρ,n,q)

]
·

·M̂sc
φst (n,q)Ĵ

ss
v f (ρ,n,q)ρdρ

(2.147)

Substituindo a equação (2.100), onde mp é trocado por st, na equação (2.147) chegamos a:

Vst =
∆φ

2
L
2

ˆ b

a

∞

∑
q=1

[
− 1

jωεd

qπ

L
∂

∂ρ
ĜAd

Mφ
(ρ,s,q)+

sπ

ρ∆φ
ĜFd

Mφ
(ρ,s,q)

]
·

·
∈q

L
I3t(q)Ĵss

v f (ρ,s,q)ρdρ

(2.148)

Lembrando que a função δ da equação (2.100) faz com que seja possível eliminar o somatório

duplo, visto que o valor da expressão só é diferente de 0 quando n = q.

Podemos calcular a derivada da função de Green a partir da equação (2.58):

∂

∂ρ
ĜAd

Mφ
(ρ,n,q) =− jωεd

kρd Θ5(n,q)

[
J′ν(kρd ρ)H(2)

ν (kρd a)− Jν(kρd a)H(2)
ν

′
(kρd ρ)

]
(2.149)

Nota-se a semelhança da expressão entre colchetes com Θ7 (2.129), porém com b trocado por ρ .

Chamemos então essa expressão de Θ7ρ :

Θ7ρ(ρ,n,q) = J′ν(kρd ρ)H(2)
ν (kρd a)− Jν(kρd a)H(2)

ν

′
(kρd ρ) (2.150)

Chegamos à forma final da derivada:

∂

∂ρ
ĜAd

Mφ
(ρ,n,q) =− jωεd

kρd

Θ7ρ(ρ,n,q)
Θ5(n,q)

(2.151)

Analogamente para Θ3 (2.131), definimos Θ3ρ como:

Θ3ρ(ρ,n,q) = Jν(kρd ρ)H(2)
ν

′
(kρd a)− J′ν(kρd a)H(2)

ν (kρd ρ) (2.152)

E substituindo na equação (2.65):

ĜFd
Mφ

(ρ,n,q) =− nπ

b∆φ

qπ

L
1

k3
ρd

Θ3ρ(ρ,n,q)
Θ1(n,q)

(2.153)

2.11 Impedância de Entrada

A impedância de entrada da antena pode ser calculada utilizando a equação (7-90) de Harrington

[20]:

Zin =− 1
|I|2

‹
E⃗ · J⃗∗s ds (2.154)
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Para nosso caso, o campo elétrico tem duas partes: uma gerada pela corrente magnética na

superfície e outra gerada pela corrente no probe. Essa corrente é volumétrica, e não superficial como a da

equação do Harrington, por isso, a integral é modificada para uma integral tripla:

Zin =− 1
I2
0

˚

v

[
E⃗(M⃗s)+ E⃗(J⃗v f )

]
· J⃗v f dv (2.155)

Podemos separar a impedância entre as contribuições devido à corrente magnética e devido à

corrente no probe:

Zin = ZM
in +Z f

in (2.156)

Onde cada componente é definida como:
ZM

in =− 1
I2
0

˚

v

E⃗(M⃗s)J⃗v f dv

Z f
in =− 1

I2
0

˚

v

E⃗(J⃗v f )J⃗v f dv

(2.157a)

(2.157b)

Para determinar a componente proveniente da corrente magnética, substituímos a equação (2.98)

na equação (2.157a):

ZM
in =− 1

I2
0

M

∑
m=1

P

∑
p=1

dmp

˚

v

E⃗(Mφmp)J⃗v f dv

=− 1
I2
0

M

∑
m=1

P

∑
p=1

dmp

˚

v

Eρ(Mφmp)Jv f dv

(2.158)

Comparando com a equação dos elementos da matriz V (2.143), vemos que a integral tripla é a

própria equação (2.143), portanto:

ZM
in =− 1

I2
0

M

∑
m=1

P

∑
p=1

dmpVmp (2.159)

A componente da impedância proveniente da corrente elétrica é chamada de auto-impedância

do probe e podemos calculá-la de forma aproximada como a impedância da cavidade fechada. Esta

técnica é utilizada, pois oferece um bom balanço entre simplicidade e precisão. Ela desconsidera vários

mecanismos, porém para substratos finos e frequência de operação próxima da frequência de ressonância

da cavidade, a precisão é boa o suficiente. A cavidade possui material dielétrico de permissividade

ε = ε0εr e paredes condutoras perfeitas. Radialmente, a cavidade é muito pequena em comparação às

outras dimensões, então aproximamos o campo como constante em ρ [21]. Portanto, como os campos

tangenciais Eφ e Ez têm de ser 0 nas superfícies ρ = a e ρ = b, mas o campo não varia com ρ , isso

implica que Eφ e Ez são 0 em toda a cavidade. Além disso, como a derivada do campo em relação a ρ é 0,

a equação de onda homogênea perde uma das componentes e se torna:
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(
1
ρ

∂ 2

∂φ 2 +
∂ 2

∂ z2 + k2

)
Eρ(φ ,z) = 0 (2.160)

As soluções para a equação de onda homogênea são os campos modais dentro da cavidade, e

podemos resolver por separação de variáveis:

Eρ(φ ,z) = h(νφ)h(kzd z) (2.161)

A condição de contorno em z = z1, z = z2 é Eρ(φ ,z) = 0, assim como em φ = φ1 e φ = φ2. Sendo

assim, os modos nq do campo na cavidade são dados por:

Eρ nq(φ ,z) = Anq sin
(

nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

)
(2.162)

Onde n ∈ N∗ e q ∈ N∗. Substituindo na equação de onda, temos:(
1
ρ0

∂ 2

∂φ 2 +
∂ 2

∂ z2 + k2
nq

)
Eρ nq = 0 (2.163)

Onde ρ0 = (a+b)/2 e knq são dados por:

knq =

√(
nπ

ρ0∆φ

)2

+

(
qπ

L

)2

(2.164)

No interior da cavidade, o campo também deve satisfazer a equação de onda com fontes:(
1
ρ0

∂ 2

∂φ 2 +
∂ 2

∂ z2 + k2
d

)
Eρ = jωµJv f (2.165)

Sendo que Eρ é obtido expandindo o campo nos modos nq:

Eρ(φ ,z) =
∞

∑
n=1

∞

∑
q=1

Eρnq(φ ,z)

=

∞

∑
n=1

∞

∑
q=1

Anq sin
(

nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

) (2.166)

Substituindo a equação (2.166) em (2.165) e usando a equação (2.163) para substituir as derivadas,

temos:

∞

∑
n=1

∞

∑
q=1

(k2
d − k2

nq)Anq sin
(

nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

)
= jωµJv f (2.167)

Agora, multiplicando ambos os lados pelas funções seno com variáveis trocadas por n′ e q′ e

integrando em φ e z, temos:
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∞

∑
n=1

∞

∑
q=1

(k2
d − k2

nq)Anq

ˆ
φ2

φ1

sin
(

nπ

∆φ
(φ −φ1)

)
sin
(

n′π
∆φ

(φ −φ1)

)
dφ

ˆ z2

z1

sin
(

qπ

L
(z− z1)

)
sin
(

q′π
L

(z− z1)

)
dz

= jωµ

ˆ
φ2

φ1

ˆ z2

z1

Jv f sin
(

n′π
∆φ

(φ −φ1)

)
sin
(

q′π
L

(z− z1)

)
dzφ

(2.168)

As integrais na esquerda podem ser solucionadas com a ortogonalidade entre as funções seno,

enquanto a integral da direita é dada pela equação (2.112):

An′q′(k2
d − k2

n′q′) = jωµĴss
v f (ρ0,n′,q′) (2.169)

Substituindo n′ e q′ por n e q, temos:

Anq =
jωµ

(k2
d − k2

nq)
Ĵss

v f (ρ0,n,q) (2.170)

Substituindo na equação (2.166):

Eρ(φ ,z) =
∞

∑
n=1

∞

∑
q=1

jωµ

(k2
d − k2

nq)
Ĵss

v f (ρ0,n,q)sin
(

nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

)
(2.171)

Substituindo na equação (2.157b):

Z f
in =− 1

I2
0

˚

v

Eρ(φ ,z)Jv f dv

=− 1
I2
0

∞

∑
n=1

∞

∑
q=1

jωµ

(k2
d − k2

nq)
Ĵss

v f (ρ0,n,q)·

·
ˆ b

a

ˆ
φ2

φ1

ˆ z2

z1

Jv f (ρ0,φ ,z)sin
(

nπ

∆φ
(φ −φ1)

)
sin
(

qπ

L
(z− z1)

)
ρ0dzdφdρ

(2.172)

Como foi assumido que não há variação do campo elétrico em ρ , a integral nessa variável se

torna (b−a). A integral dupla restante é dada pela equação (2.112). Portanto:

Z f
in =− 1

I2
0

jωµ∆φL
4

(b−a)ρ0

∞

∑
n=1

∞

∑
q=1

(
Ĵss

v f (ρ0,n,q)
)2

k2
d − k2

nq
(2.173)

Lembrando que a transformada seno-seno da densidade de corrente volumétrica devido ao probe

é dada pela equação (2.113).



505050

2.12 Diagramas de radiação

Para obter o diagrama de radiação é necessário calcular as componentes θ e φ do campo elétrico

distante. Essas equações são dadas por Harrington [20] (3-97):Eθ =− jωµAθ − jk0Fφ

Eφ =− jωµAφ + jk0Fθ

(2.174)

Da seção 2.5 Campo eletromagnético externo, vemos que os vetores potenciais magnético e

elétrico só têm componente na direção z, ou seja, em coordenadas esféricas possuem apenas componentes

na direção θ :

A⃗ = Az0 âz ⇒ Aθ =−Az0 sinθ

F⃗ = Fz0 âz ⇒ Fθ =−Fz0 sinθ
(2.175)

Substituindo na equação (2.174):Eθ = jωµAz0 sinθ

Eφ =− jk0Fz0 sinθ

(2.176)

As componentes z dos vetores A e F são dadas pelas equações (2.70) e (2.74):

Fz0(ρ,φ ,z) =

∞

∑
n=−∞

ˆ
∞

−∞

F̂e f
z0

(ρ,n,kz)e− jnφ e− jkzz dkz

Az0(ρ,φ ,z) =

∞

∑
n=−∞

ˆ
∞

−∞

Âe f
z0

(ρ,n,kz)e− jnφ e− jkzz dkz

A transformada exponencial-Fourier de Az é dada pela equação (2.89):

Âe f
z0

(ρ,n,kz) =− jωε0

k2
ρ0

H(2)
n (kρ0 ρ)

H(2)
n (kρ0 b)

M̂e f
φ

(n,kz)

Já para Fz, a equação é a (2.95):

F̂e f
z0

(ρ,n,kz) =− nkz

bk3
ρ0

H(2)
n (kρ0 ρ)

H(2)
n

′
(kρ0 b)

M̂e f
φ

(n,kz) (2.177)

2.12.1 Campo Eθ

Substituindo as equações (2.74) e (2.89) referentes ao potencial vetor magnético na equação

(2.176) para a componente θ , temos:

Eθ (ρ,θ ,φ) = k2
0 sinθ

∞

∑
n=−∞

e− jnφ

ˆ
∞

−∞

M̂e f
φ

(n,kz)

k2
ρ0

H(2)
n (kρ0 b)

H(2)
n (kρ0 ρ)e− jkzz dkz (2.178)
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Podemos aproximar essa integral assintoticamente para ρ → ∞ pelo método do ponto-de-sela

dado por Harrington [20] (5-143), com a ressalva de que essa equação só é válida para θ ̸= 0 ou π:

ˆ
∞

−∞

I(w)H(2)
n

(
ρ

√
k2 −w2

)
e jwzdw −→

r→∞
2

e− jk0r

r
jn+1I(−k0 cosθ) (2.179)

Fazendo as seguintes substituições, chegamos a:
w →−kz

dw →−dkz√
k2 −w2 →

√
k2

0 − k2
z = kρ0

ˆ
∞

−∞

I(−kz)H
(2)
n
(
ρkρ0

)
e− jkzzdkz −→

r→∞
2

e− jkr

r
jn+1I(−k cosθ) (2.180)

Comparando com a equação (2.179) vemos que a função I é dada por:

I(−kz) =
M̂e f

φ
(n,kz)

k2
ρ0

H(2)
n (kρ0 b)

(2.181)

Portanto, aproximamos a equação (2.178) para:

Eθ (r,θ ,φ)−→
r→∞

k2
0 sinθ

∞

∑
n=−∞

e− jnφ

2
e− jk0r

r
jn+1

M̂e f
φ

(n,k0 cosθ)

k2
ρ0

H(2)
n (kρ0 b)

 (2.182)

kz e kρ0 são dados pelas seguintes equações:
kz = k0 cosθ

kρ0 =
√

k2
0 − k2

z =
√

k2
0 sin2

θ = k0 sinθ

Nota-se que para kρ0 a equação é válida em 0 ≤ θ ≤ π . Substituindo na equação anterior,

chegamos a:

Eθ (r,θ ,φ)−→
r→∞

2e− jk0r

r sinθ

∞

∑
n=−∞

e− jnφ jn+1
M̂e f

φ
(n,k0 cosθ)

H(2)
n (kρ0 b)

(2.183)

Para n < 0, utilizando a equação (10.4.2) de Olver et al. The Handbook of Mathematical

Functions[29]

H(2)
−n (z) = (−1)nH(2)

n (z)

chegamos à seguinte relação:

j−n+1

H(2)
−n (kρ0 b)

=
j−n+1

(−1)nH(2)
n (kρ0 b)

=
jn+1

H(2)
n (kρ0 b)

(2.184)

Com isso, é possível reescrever o somatório com intervalo de n = 1 a n = ∞ e parcela referente à
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n = 0 a parte:

Eθ (r,θ ,φ)−→
r→∞

2e− jk0r

r sinθ

 j
M̂e f

φ
(0,k0 cosθ)

H(2)
n (kρ0 b)

+

∞

∑
n=1

jn+1

H(2)
n (kρ0 b)

(
e− jnφM̂e f

φ
(n,k0 cosθ)+

+ e jnφM̂e f
φ

(−n,k0 cosθ)

)] (2.185)

2.12.2 Campo Eφ

Substituindo as equações (2.70) e (2.177) referentes ao potencial vetor elétrico na equação (2.176)

para a componente φ :

Eφ (ρ,θ ,φ) =
jk0 sinθ

b

∞

∑
n=−∞

ne− jnφ

ˆ
∞

−∞

kz

k3
ρ0

M̂e f
φ

(n,kz)

H(2)
n

′
(kρ0 b)

H(2)
n (kρ0 ρ)e− jkzz dkz (2.186)

Definindo I(−kz) como:

I(−kz) =
kz

k3
ρ0

M̂e f
φ

(n,kz)

H(2)
n

′
(kρ0 b)

(2.187)

E utilizando a equação (2.180):

Eφ (r,θ ,φ)−→
r→∞

jk0 sinθ

b

∞

∑
n=−∞

ne− jnφ 2
e− jk0r

r
jn+1 k0 cosθ

k3
ρ0

M̂e f
φ

(n,k0 cosθ)

H(2)
n

′
(kρ0 b)

(2.188)

Utilizando kz = k0 cosθ e kρ0 = k0 sinθ :

Eφ (r,θ ,φ)−→
r→∞

j
2
b

e− jk0r

k0r
cosθ

sin2
θ

∞

∑
n=−∞

ne− jnφ jn+1
M̂e f

φ
(n,k0 cosθ)

H(2)
n

′
(kρ0 b)

(2.189)

Utilizando a relação (2.184), que também é válida para a derivada da função de Hankel, visto que

a derivada de uma função de Bessel trivial pode ser escrita como uma combinação linear de funções de

Bessel [29]:

Eφ (r,θ ,φ)−→
r→∞

2 j
b

e− jk0r

k0r
cosθ

sin2
θ

∞

∑
n=1

jn+1n

H(2)
n

′
(kρ0 b)

[
e− jnφM̂e f

φ
(n,k0 cosθ)− e jnφM̂e f

φ
(−n,k0 cosθ)

]
(2.190)
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3
IMPLEMENTAÇÃO

Neste capítulo é apresentada a implementação em Matlab do método proposto para calcular as

propriedades de uma antena cilíndrica híbrida embutida.

Para manter uma correlação entre as equações e a implementação, o código foi separado em

diversos arquivos com funções para cada uma das equações relevantes. No geral, as funções são imple-

mentações bem diretas das equações, porém, em alguns casos, é necessário abordar a equação de outra

maneira para não enfrentar problemas computacionais (e.g. singularidades, precisão, overflow).

Nota-se a utilização de algumas técnicas para aumentar o desempenho da aplicação:

■ Vetorização: É uma técnica onde os dados são processados utilizando as funcionalidades

de SIMD (Single Instruction, Multiple Data - Instrução Única, Múltiplos Dados), onde uma

única instrução a nível de CPU processa um conjunto de dados simultaneamente. Ao escrever

o código com certos padrões e operadores, o Matlab (e outras linguagens, no geral, por

exemplo, python com a biblioteca numpy) automaticamente utiliza as instruções SIMD do

processador. Por exemplo, em vez de escrever um loop para somar os valores em uma array,

podemos utilizar a função sum fornecida pelo Matlab que faz uso de instruções SIMD [30].

■ Paralelismo: Consiste em rodar cálculos em paralelo. Essa técnica é bastante eficaz e trivial

de ser utilizada quando há cálculos que podem ser realizados de forma independente, já

que, nesse caso, não é necessário lidar com acesso concorrente a recursos, comunicação

entre processos e sincronização. Neste trabalho, escolheu-se paralelizar o cálculo de cada

frequência do gráfico de impedância de entrada, visto que cada frequência é independente da

outra. Outra possibilidade seria calcular os elementos das matrizes V e Z em paralelo, já que

esses também são independentes. O Matlab fornece algumas conveniências para paralelizar o

código, como o loop paralelo utilizando parfor ou a criação e gerenciamento automático de

uma pool de processos utilizando a funcão gcp [31].

Outro ponto notável é a utilização da função quadgk do Matlab [32] que implementa integração

por quadratura adaptativa de Gauss-Kronrod.

A integração adaptativa Gauss-Kronrod é um método numérico para o cálculo de integrais de

forma precisa e eficiente. Diferente da abordagem não adaptativa com um número fixo de pontos, este

método se destaca por sua capacidade de adaptação. Ele ajusta a alocação de pontos de amostragem

de acordo com o comportamento da função, concentrando o esforço computacional nas regiões onde a
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variação é mais acentuada. No geral, esse método oferece bom tempo computacional e precisão para

funções oscilatórias como as que estamos interessados em integrar neste trabalho.

O código completo está disponível em:

https://github.com/rma6/embedded-cylindrical-antenna-mom.

3.1 mom.m - Função main

O arquivo mom.m funciona como função main da implementação. No início, os objetos relaci-

onados ao logging da execução do código, os objetos necessários para realizar a computação de forma

paralela e o espaço de frequências para o qual a impedância de entrada vai ser calculada são iniciados.

Em seguida, as matrizes Z e V para cada frequência são computadas. Nota-se que o cálculo das

matrizes em cada frequência é independente, assim como o cálculo de cada tipo de matriz. Dessa forma,

é possível calcular cada uma das matrizes Z e V em paralelo sem necessitar de comunicação entre os

processos. Isso é feito através do módulo de computação paralela do Matlab: Parallel Computing Toolbox

[31]. A função gcp inicializa e retorna uma pool de processos para computação paralela e, através da

função par f eval, é possível submeter trabalhos para serem executados pela pool.

Após todas as matrizes Z e V serem calculadas, as matrizes d são calculadas e, em seguida, a

impedância de entrada para cada frequência é calculada, também em paralelo, porém dessa vez utilizando

o comando parfor, uma versão paralela de for, mas que também utiliza a pool criada anteriormente de

forma implícita.

Com os dados de impedância de entrada em mãos, é utilizada a função findpeaks para encontrar o

pico na resistência. O diagrama de radiação é calculado para a frequência detectada por essa função, e o

valor da resistência no pico é utilizado para calcular a potência, através da relação R · |I0|2/2, que será

utilizada para calcular o ganho.

Por fim, o gráfico da impedância de entrada é gerado, os dados gerados pela execução do programa

são salvos e o processo chega ao fim.

A seguir, é apresentado o código de mom.m:

Código 3.1: mom.m

close 'all'

%sets up logging and output folders

tstamp = datetime(now,'ConvertFrom','datenum');

tstamp = strrep(string(tstamp),':','-');

tfolder = sprintf("data/%s", tstamp);

mkdir(tfolder)

diary(fullfile(tfolder, "log.txt"))

%; was omited for logging purposes

P=params(2.4*10^9)

https://github.com/rma6/embedded-cylindrical-antenna-mom
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%sets up multithreading

pool = gcp();

queue = parallel.pool.DataQueue();

afterEach(queue, @disp);

%frequency space

freqs = linspace(2.2,2.6,401)*10^9;

freqs_ghz = freqs/10^9;

%starts jobs

fprintf("Total number of jobs: %i\n", size(freqs, 2)*2)

for it = 1:size(freqs, 2)

Zjobs(it) = parfeval(pool, @buildZMat, 1, params(freqs(it)), queue)

;

Vjobs(it) = parfeval(pool, @buildVMat, 1, params(freqs(it)), queue)

;

end

%colects jobs results

Zs = fetchOutputs(Zjobs);

Vs = fetchOutputs(Vjobs);

%calculates D matrix and input impedance

Ds = cell(size(Zs));

zinf = zeros(1, size(Zs, 1));

zinm = zeros(1, size(Zs, 1));

zin = zeros(1, size(Zs, 1));

parfor it = 1:size(Zs, 1)

Ds{it} = Zs{it}\Vs{it};

zinf(it) = z_in_f(params(freqs(it)));

zinm(it) = z_in_m(Ds{it}, Vs{it}, params(freqs(it)));

zin(it) = zinf(it) + zinm(it);

end

%finds peak in resistance then calculates and plots radiation pattern

[~, freq_index] = findpeaks(real(zin));

peak_freq = freqs(freq_index);

if size(peak_freq, 2) > 1

peak_freq = interp1(peak_freq,peak_freq,2.4e9,'nearest');

freq_index = find(freqs == peak_freq);

end
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peak_dMat = Ds{freq_index};

peak_power = 0.5*real(zin(freq_index))*abs(P.I0)^2;

[gain_phi0, gain_theta90] = radpat(peak_dMat, peak_power, params(

peak_freq));

%plots zin results

figure("Name", "zin")

plot(freqs_ghz, real(zin), 'color', '#0072BD')

hold on

plot(freqs_ghz, imag(zin), 'color', "#D95319")

hold on

title("Z_{in}")

legend("Re", "Im")

xlabel('GHz')

ylabel('\Omega')

xlim([freqs_ghz(1) freqs_ghz(end)])

ylim([-40 70])

grid on

%saves data

save(fullfile(tfolder, "workspace.mat"))

FigList = findobj(allchild(0), 'flat', 'Type', 'figure');

for iFig = 1:length(FigList)

FigHandle = FigList(iFig);

FigName = get(FigHandle, 'Name');

savefig(FigHandle, fullfile(sprintf("data/%s/%s.fig", tstamp,

FigName)));

end

%finishes logging

sprintf("finished MoM at %s", string(datetime))

diary off

beep

3.2 params.m - Estrutura com constantes físicas e parâmetros

Esse arquivo contém todos os parâmetros e constantes utilizados pelo programa organizados em

uma única estrutura. A função params aceita como argumento a frequência em Hz do sinal utilizado

para excitar a antena e retorna uma estrutura contendo as constantes e parâmetros. As demais funções

da implementação aceitam como argumento uma instância de params (sempre com nome P) para que
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possam acessar de forma conveniente os parâmetros necessários. As instâncias são iniciadas em mom.m

para cada uma das frequências e passadas para as funções buildVMat e buildZMat que chamam todas as

outras funções na implementação. params não é instanciado diretamente pelas funções para não acarretar

custos desnecessários de iniciar a estrutura várias vezes seguidas 1.

A seguinte tabela mostra a correspondência entre os nomes das variáveis e símbolos utilizados na

formulação:

1As primeiras versões do código faziam exatamente isso e o tempo de execução era péssimo. Com a ajuda do
profiler do Matlab, foi possível descobrir que isso era um problema e o código foi alterado para que params fosse
inicializado apenas uma vez para cada frequência
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Variável Símbolo Grandeza Física Unidade

P.mu µ0 Permeabilidade do vácuo H/m

P.epsilon_0 ε0 Permissividade do vácuo F/m

P.tanp tanδ Tangente de perdas -

P.epsilon_d εd Permissividade do dielétrico F/m

P.eta_0 η0 Impedância intrínseca do vácuo Ω

P.a a Raio interno da cavidade m

P.b b Raio externo da cavidade/raio do cilindro condutor m

P.z1 z1 Primeira posição axial da cavidade m

P.z2 z2 Segunda posição axial da cavidade m

P.phi1 φ1 Primeira posição angular da cavidade rad

P.phi2 φ2 Segunda posição radial da cavidade rad

P.z_1a z1a Primeira posição axial da superfície da antena m

P.z_2a z2a Segunda posição axial da superfície da antena m

P.z_f z f Posição axial da prova de alimentação da antena m

P.phif φ f Posição radial da prova de alimentação da antena rad

P.W_f Wf Largura angular média da fita de alimentação m

P.phi_1f φ1 f Primeira posição angular da fita de alimentação rad

P.phi_2f φ2 f Primeira posição angular da fita de alimentação rad

P.omega ω Frequência angular do sinal de alimentação rad/s

P.I0 I Corrente complexa do sinal de alimentação A

P.L L Altura da cavidade m

P.delta_phi ∆φ Extensão angular da cavidade rad

P.delta_phi_f ∆φ f Extensão angular da fita de alimentação rad

P.kd kd Número de onda na cavidade dielétrica 1/m

P.k0 k0 Número de onda no vácuo 1/m

P.argmax - Limite superior para aproximações assintóticas -

P.expmin - Expoente do limite inferior para aproximações assintóticas -

P.gamma γ Logaritmo natural da constante de Euler -

P.Mmax M Quantidade de harmônicos da função de base/teste -

P.Pmax P Quantidade de segmentos em que a corrente é discretizada -

P.nMax - Limite superior dos somatórios em n -

P.qMax - Limite superior dos somatórios em q -

P.Nkz - Multiplicador do limite da integral do campo externo -

Tabela 1: Correspondência entre os nomes das variáveis no código e os símbolos utilizados na
formulação

O código de params.m é apresentado a seguir:
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Código 3.2: params.m

function P = params(freq)

%constants

P.mu = 4*pi*10.^-7;

P.epsilon_0 = 8.854e-12;

P.tanp = 2.2e-3;

P.epsilon_d = 2.55*P.epsilon_0*(1-1j*P.tanp);

P.eta_0 = sqrt(P.mu/P.epsilon_0);

%geometric parameters

P.a = 250e-3;

P.b = 253.048e-3;

P.z1 = -36.59e-3;

P.z2 = 36.59e-3;

P.phi1 = -6.8182 * pi/180;

P.phi2 = 6.8182 * pi/180;

P.z_1a = -23.68e-3;

P.z_2a = 23.68e-3;

P.phi_1a = 0 * pi/180;

P.phi_2a = 10.9435 * pi/180;

P.z_f = 6.05e-3;

P.phif = 0;

P.W_f = 4.e-3;%rLphif

P.dphif = 2*P.W_f/(P.a+P.b);

P.phi_1f = P.phif - P.dphif/2;

P.phi_2f = P.phif + P.dphif/2;

%source parameters

P.omega = freq*2*pi;

P.I0 = 1;

%aliases

P.L = P.z2 - P.z1;

P.delta_phi = P.phi2 - P.phi1;

P.delta_phia = P.phi_2a - P.phi_1a;

P.delta_phi_f = P.phi_2f - P.phi_1f;

P.kd = P.omega*sqrt(P.mu*P.epsilon_d);

P.k0 = P.omega*sqrt(P.mu*P.epsilon_0);
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%other parameters

P.argmax = 400;

P.expmin = 200;

P.gamma = 1.781072418;

P.alpha = 0.5;

%precision parameters

P.Mmax = 1;

P.Pmax = 18;

P.nMax = 50;

P.qMax = 50;

P.Nkz = 50;

3.3 buildVMat.m - Construção da matriz V

Essa função é responsável por construir a matriz V . Ela é chamada diretamente pela função

parfeval em mom.m e por isso executa em outro processo. Por conta disso, buildVMat não pode escrever

diretamente no terminal e se faz necessário utilizar uma técnica de comunicação entre processos para que

o processo principal executando mom.m possa fazer isso em seu lugar. No caso, foi utilizado um objeto

do tipo DataQueue, criado em mom.m e passado à buildVMat pelo argumento queue, que permite trocar

dados entre os processos através da função send.

Tirando esses detalhes, a função é bem simples, tudo o que ela faz é iniciar uma matriz coluna

com M ·P linhas e depois calcular os valores de cada elemento através da função V .

O código de buildVMat é apresentado a seguir:

Código 3.3: buildVMat.m

function r = buildVMat(P, queue) %builds V matrix

send(queue, sprintf("started buildVMat@%f at %s", P.omega/(2*pi),

string(datetime)));

r = cell(1);

Vmatrix = zeros(P.Mmax*P.Pmax, 1);

for s = 1:P.Mmax

for t = 1:P.Pmax

Vmatrix((s-1)*P.Pmax+t, 1) = V(s, t, P);

end

end

send(queue, sprintf("finished buildVMat@%f at %s", P.omega/(2*pi),

string(datetime)));
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r{1} = Vmatrix;

end

3.4 buildZMat.m - Construção da matriz Z

Essa função é responsável por construir a matriz Z. Ela funciona de forma análoga à função

buildVMat descrita na seção anterior, com a diferença de a matriz ser quadrada de dimensões (M ·
P)x(M ·P) e, em vez de uma única função ser utilizada para calcular o valor dos elementos, aqui temos

duas funções: Hphi_in_proj e Hphi_out_proj, responsáveis, respectivamente, pela projeção do campo

magnético na parte interna da antena e na parte externa.

O código de buildZMat é apresentado a seguir:

Código 3.4: buildZMat.m

function r = buildZMat(P, queue) %builds Z matrix

send(queue, sprintf("started buildZMat@%f at %s", P.omega/(2*pi),

string(datetime)));

r = cell(1);

Zmatrix = zeros(P.Mmax*P.Pmax, P.Mmax*P.Pmax);

in = zeros(P.Mmax*P.Pmax, P.Mmax*P.Pmax);

out = zeros(P.Mmax*P.Pmax, P.Mmax*P.Pmax);

for m = 1:P.Mmax

for p = 1:P.Pmax

for s = 1:P.Mmax

for t = 1:P.Pmax

in((s-1)*P.Pmax+t, (m-1)*P.Pmax+p) = Hphi_in_proj(m, p, s,

t, P);

out((s-1)*P.Pmax+t, (m-1)*P.Pmax+p) = Hphi_out_proj(m, p, s

, t, P);

Zmatrix((s-1)*P.Pmax+t, (m-1)*P.Pmax+p) = in((s-1)*P.Pmax+t

, (m-1)*P.Pmax+p) - out((s-1)*P.Pmax+t, (m-1)*P.Pmax+p);

end

end

end

end

send(queue, sprintf("finished buildZMat@%f at %s", P.omega/(2*pi),

string(datetime)));
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r{1} = Zmatrix;

end

3.5 V.m - Elementos da matriz V

Essa função calcula um elemento da matriz V através da equação (2.148), dados os valores de s e

t como argumentos.

Vst =
∆φ

2
L
2

ˆ b

a

∞

∑
q=1

[
− 1

jωεd

qπ

L
∂

∂ρ
ĜAd

Mφ
(ρ,s,q)+

sπ

ρ∆φ
ĜFd

Mφ
(ρ,s,q)

]
·

·
∈q

L
I3t(q)Ĵss

v f (ρ,s,q)ρdρ

Na implementação, a integral e o somatório são trocados de posição em relação à equação, de

forma que o código efetivamente calcula o somatório das integrais. O somatório tem seu limite superior

limitado pelo parâmetro P.qmax, visto que é impossível computar exatamente um somatório com intervalo

infinito. A integral é resolvida pela função integral do Matlab já que é esperado que a função seja bem

comportada, portanto, não é necessária nenhuma técnica especial. Uma característica dessa função é a

vetorização da variável sendo integrada, portanto, a variável rho, referente a ρ na equação, é um vetor.

Isso foi levado em conta ao implementar V.m e suas subfunções para garantir a corretude do código e

melhor eficiência ao tirar proveito da vetorização.

O código de V.m é apresentado a seguir:

Código 3.5: V.m

function r = V(s, t, P) %eq 101

r = P.delta_phi*P.L/4*summation();

function acc = summation()

acc = 0;

for q = 1:P.qMax

fun = @(rho) ((-q*pi/(1j*P.omega*P.epsilon_d*P.L)*

drho_G_Mphi_TAd(rho, s, q, P) + s*pi./(rho*P.delta_phi).*

G_Mphi_TFd(rho, s, q, P)).*E(q)/P.L*I3_p(q, t, P).*J_vf_Tss(

rho, s, q, P).*rho);

acc = acc + integral(fun, P.a, P.b);

end

end

end
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3.6 Hphi_in_proj.m - Projeção interna do campo magnético

Essa função calcula a componente phi da projeção interna do campo magnético através da

equação (2.127), dados os argumentos m, p, s e t.

〈
<
Hφ (Mφmp),Mφst

〉
=

∞

∑
q=0

b∆φ

2
∈q

L
δms

[
− ∂

∂ρ
ĜAd

Mφ
(b,m,q)− 1

jωµ

mπ

b∆φ

qπ

L
ĜFd

Mφ
(b,m,q)

]
·

· I3p(q)I3t(q)

Por conta da função δms na equação, sabemos que o resultado só vai ser diferente de zero quando

m = s, o que é aproveitado no código para reduzir o tempo de execução.

O intervalo do somatório infinito é limitado pelo parâmetro P.qmax, visto que não é possível

computar exatamente um somatório infinito.

Além disso, uma parte dos termos que antecedem a transformada em Fd da função de Green são

independentes da variável do somatório q. Sendo assim, para evitar recalcular esses termos desnecessaria-

mente, eles são calculados apenas uma vez e guardados na variável temp.

O código de Hphi_in_proj.m é apresentado a seguir:

Código 3.6: Hphi_in_proj.m

function r = Hphi_in_proj(m, p, s, t, P) %eq 89

%note that m==n==s or the results is 0

if m == s

r = P.b*P.delta_phi/(2*P.L)*summation();

else

r = 0;

end

function acc = summation()

acc = 0;

temp = m*pi^2/(1j*P.omega*P.mu*P.b*P.delta_phi*P.L);

for q = 0:P.qMax

acc = acc + E(q)*(-drho_G_Mphi_TAd(P.b, m, q, P)-temp*q*

G_Mphi_TFd(P.b, m, q, P))*I3_p(q, p, P)*I3_p(q, t, P);

end

end

end
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3.7 Hphi_out_proj.m - Projeção externa do campo magnético

Essa função calcula a componente phi da projeção externa do campo magnético através da

equação (2.136), dados os argumentos m, p, s e t.
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O somatório infinito é limitado pelo parâmetro nMax e a integral infinita é limitada pelo parâmetro

NKz. O Código é apresentado a seguir:

Código 3.7: Hphi_out_proj.m

function r = Hphi_out_proj(m, p, s, t, P) %eq 97

r = (2*pi)^2*P.b*summation();

function acc = summation()

acc = 0;

for n = 0:P.nMax

if n == 0

fun = @(kz) Green_Mphi(P.b, 0, kz, P).*(M_phi_mp_Tef(0, kz,

m, p, P).*M_phi_mp_Tef(0, -kz, s, t, P) ...

+ M_phi_mp_Tef(0, -kz, m, p, P).*M_phi_mp_Tef(0, kz, s, t,

P));

else

fun = @(kz) Green_Mphi(P.b, n, kz, P).*(M_phi_mp_Tef(n, kz,

m, p, P).*M_phi_mp_Tef(-n, -kz, s, t, P) ...

+ M_phi_mp_Tef(-n, -kz, m, p, P).*M_phi_mp_Tef(n, kz, s, t,

P));

+ M_phi_mp_Tef(n, -kz, m, p, P).*M_phi_mp_Tef(-n, kz, s, t,

P) ...

+ M_phi_mp_Tef(-n, kz, m, p, P).*M_phi_mp_Tef(n, -kz, s, t,

P) ...

end
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acc = acc + quadgk(@(Akz) fun(Akz), 0, P.Nkz*P.k0);

end

end

end

3.8 E.m

Essa função é a implementação do símbolo ∈q apresentado na equação (2.33) e definido como:

∈q=

1 q = 0

2 q ̸= 0

A implementação de ∈q é trivial e o código de E.m é apresentado a seguir:

Código 3.8: E.m

function r = E(n)

if n == 0

r = 1;

else

r = 2;

end

end

3.9 I3_p.m

Essa função calcula a equação (2.102), dados os valores de p e q:

I3p(q) =

(z2p − z1p) q = 0
L

qπ

[
sin
(qπ

L (z2p − z1)
)
− sin

(qπ

L (z1p − z1)
)]

q ̸= 0

Lembrando que p é o índice da função de base que divide a superfície dielétrico-ar em faixas ao

longo da direção z, portanto, existem regiões abaixo do patch e acima do patch. A depender da região, a

forma de calcular as coordenadas z1p e z2p e a altura da faixa Lp muda.

Para faixas abaixo do patch utilizam-se as seguintes equações:
Lp =

z1a − z1

P/2

z1p = z1 +(p−1) ·Lp

z2p = z1 + p ·Lp

Para faixas acima do patch utilizam-se as seguintes equações:
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
Lp =

z2 − z2a

P/2

z1p = z2a +(p−1−P/2) ·Lp

z2p = z2a +(p−P/2) ·Lp

O código de I3_p.m é apresentado a seguir:

Código 3.9: I3_p.m

function r = I3_p(q, p, P) %eq 62

if p <= (P.Pmax/2)

Lp = (P.z_1a - P.z1)/(P.Pmax/2);

z_1p = P.z1 + (p-1)*Lp;

z_2p = P.z1 + p*Lp;

else

Lp = (P.z2 - P.z_2a)/(P.Pmax/2);

z_1p = P.z_2a + (p-P.Pmax/2-1)*Lp;

z_2p = P.z_2a + (p-P.Pmax/2)*Lp;

end

if q == 0

r = z_2p-z_1p;

else

r = P.L/(q*pi)*(sin(q*pi/P.L*(z_2p-P.z1))-sin(q*pi/P.L*(z_1p-P.z1

)));

end

end

3.10 J_vf_Tss.m - Transformada seno-seno da corrente volu-
métrica na fita de alimentação

Essa função calcula a transformada seno-seno da corrente volumétrica na fita de alimentação

através da equação (2.113) dados os parâmetros ρ , n e q:

Ĵss
v f (ρ,n,q) =

4I0

nπLρ∆φ f

cos

(
nπ

∆φ f
(φ1 f −φ1)

)
− cos

(
nπ

∆φ f
(φ2 f −φ1)

)sin
(

qπ

L
(z f − z1)

)

Percebe=se que n aparece no denominador, porém nessa equação isso não é um problema, visto

que n = 0 nunca será passado como argumento para essa funçãoA implementação é trivial e o código é

apresentado a seguir:
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Código 3.10: J_vf_Tss.m

function r = J_vf_Tss(rho, n, q, P) %eq 81

r = 4*P.I0./(n*pi*P.L*rho*P.delta_phi_f)*(cos(n*pi/P.delta_phi*(P.

phi_1f-P.phi1))-cos(n*pi/P.delta_phi*(P.phi_2f-P.phi1)))*sin(q*

pi/P.L*(P.z_f-P.z1));

end

3.11 drho_G_Mphi_TAd.m - Derivada em relação a ρ da
transformada Ad da função de Green em Mφ

Essa função calcula a derivada em relação a ρ da transformada Ad da função de Green em Mφ

através da equação (2.151) dados os valores de ρ , n e q:

∂

∂ρ
ĜAd

Mφ
(ρ,n,q) =− jωεd

kρd

Θ7ρ(ρ,n,q)
Θ5(n,q)

Lembrando que kρd é definido em 2.4.1.4 como:

kρd
2 = kd

2 −
(

qπ

L

)2

A parte imaginária de kρd , se existir, pode ser matematicamente tanto positiva quanto negativa,

porém, como escolhemos a variação temporal na forma e jωt , a onda na direção positiva de ρ deve ter

variação de fase na forma e− jkρd ρ , que só decresce exponencialmente caso a parte imaginária de kρd , se

existir, for negativa. Por conta disso, é empregado o uso da função cinv que inverte a parte imaginária

caso esta seja positiva. Tirando esse detalhe, a implementação é trivial e o código é apresentado a seguir:

Código 3.11: drho_G_Mphi_TAd.m

function r = drho_G_Mphi_TAd(rho, n, q, P) %eq 103: rho and q might

be arrays

k_rho = sqrt(P.kd.^2 - (q*pi/P.L).^2);

k_rho = cinv(k_rho);

r = -1j*P.omega*P.epsilon_d./k_rho.*theta_7_rho(n, q, P.kd, rho, P)

./(theta_5(n, q, P.kd, P));

end
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3.12 G_Mphi_TFd.m - Transformada Fd da função de Green
em Mφ

Essa função calcula a transformada Fd da função de Green em Mφ através da equação (2.153)

dados os valores de ρ , n e q:

ĜFd
Mφ

(ρ,n,q) =− nπ

b∆φ

qπ

L
1

k3
ρd

Θ3ρ(ρ,n,q)
Θ1(n,q)

Assim como em drho_G_Mphi_TAd.m, aplica-se a função cinv a kρd para garantir que a parte

imaginária não seja positiva. kρd é dado pela equação:

kρd
2 = kd

2 −
(

qπ

L

)2

O resto da implementação é trivial e o código é apresentado a seguir:

Código 3.12: G_Mphi_TFd.m

function r = G_Mphi_TFd(rho, n, q, P) %eq 105: rho and q might be

arrays

k_rho = sqrt(P.kd.^2 - (q*pi/P.L).^2);

k_rho = cinv(k_rho);

r = -n*pi*q*pi./(P.b*P.delta_phi*P.L*k_rho.^3).*theta_3_rho(n, q, P

.kd, rho, P)./(theta_1(n, q, P.kd, P));

end

3.13 cinv.m

Essa função recebe um vetor de números complexos e inverte a parte imaginária, caso essa

seja positiva. Efetivamente, ela força todos os números passados a terem parte imaginária negativa. A

implementação utiliza um loop for, embora uma implementação vetorizada seja mais eficiente, a diferença

no tempo de execução seria imperceptível, visto que quase todo o tempo de execução do programa está

concentrado no cálculo da integral em 3.7. O código é apresentado a seguir:

Código 3.13: cinv.m

function r = cinv(arr) %inverts complex number if imaginary part is

positive

for i = 1:size(arr, 2)

if imag(arr(i)) > 0

arr(i) = -arr(i);

end

end
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r = arr;

end

3.14 dH2.m - Derivada da função de Hankel do segundo tipo

Essa função calcula a derivada da função de Hankel do segundo tipo através da equação (10.6.2)

de Olver et al.[29]:

B′
ν(z) =

ν

z
Bν(z)−Bν+1(z)

Onde B é uma função de Bessel trivial qualquer, nesse caso, a função de Hankel do segundo tipo. O

código, portanto, é trivial e é apresentado a seguir:

Código 3.14: dH2.m

function r = dH2(ni, x) %derivative of hankel function of the second

kind

r = (ni.*besselh(ni, 2, x))./x - besselh(ni + 1, 2, x);

end

3.15 dJ.m - Derivada da função de Bessel do primeiro tipo

Essa função calcula a derivada da função de Bessel do primeiro tipo através da equação (10.6.2)

de Olver et al.[29]:

B′
ν(z) =

ν

z
Bν(z)−Bν+1(z)

Onde B é uma função de Bessel trivial qualquer, nesse caso, a função de Bessel do primeiro tipo. O código

é apresentado a seguir:

Código 3.15: dJ.m

function r = dJ(ni, x) %derivative of bessel function of the first

kind

r = (ni*besselj(ni, x))/x - besselj(ni + 1, x);

end

3.16 I4_p.m

Essa função calcula a equação (2.104), dados os valores de kz e q:

I4p(kz) =
e jkzz2p − e jkzz1p

jkz
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Assim como em I3_p.m, existem faixas, indexadas por p, abaixo e acima do patch, para as quais

o cálculo de z1p p e z2p muda.

Para faixas abaixo do patch utilizam-se as seguintes equações:
Lp =

z1a − z1

P/2

z1p = z1 +(p−1) ·Lp

z2p = z1 + p ·Lp

Para faixas acima do patch utilizam-se as seguintes equações:
Lp =

z2 − z2a

P/2

z1p = z2a +(p−1−P/2) ·Lp

z2p = z2a +(p−P/2) ·Lp

Nota-se a presença de Kz no denominador. Essa função é utilizada na equação a ser integrada

pela função quadgk do Matlab. Esse algoritmo consegue lidar com singularidades, e no geral, o algoritmo

de quadradura não passa os limites da integral para o integrando, de forma que Kz = 0 nunca será passado

como argumento para essa função.

O código é apresentado a seguir:

Código 3.16: I4_p.m

function r = I4_p(kz, p, P) %eq 73: kz might be array

if p <= (P.Pmax/2)

Lp = (P.z_1a - P.z1)/(P.Pmax/2);

z_1p = P.z1 + (p-1)*Lp;

z_2p = P.z1 + p*Lp;

else

Lp = (P.z2 - P.z_2a)/(P.Pmax/2);

z_1p = P.z_2a + (p-P.Pmax/2-1)*Lp;

z_2p = P.z_2a + (p-P.Pmax/2)*Lp;

end

r = (exp(1j*kz*z_2p)-exp(1j.*kz.*z_1p))./(1j*kz);

end

3.17 M_phi_mp_Tef.m

Essa função é responsável por calcular a transformada exponencial-Fourier da função de base

através da equação (2.107), dados os valores de m, p, n e kz:
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M̂e f
φmp(n,kz) =

1
(2π)2

e jnφ1(
mπ

∆φ

)2
−n2

mπ

∆φ

[
1− (−1)me jn∆φ

]
I4p(kz)

A implementação é trivial e o código é apresentado a seguir:

Código 3.17: M_phi_mp_Tef.m

function r = M_phi_Tef(n, kz, m, p, P) %eq 75; kz might be array

r = 1/(2*pi)^2*exp(1j*n*P.phi1)/((m*pi/P.delta_phi)^2-n^2)*m*pi/P.

delta_phi*(1-(-1)^m*exp(1j*n*P.delta_phi)).*I4_p(kz, p, P);

end

3.18 Green_Mphi.m

Essa função calcula a soma das funções de Green na equação (2.138) através das equações (2.94a)

e (2.137), dados os valores de ρ , n e kz:

Green_Mphi =− ∂

∂ρ
ĜA0

Mφ
(b,n,kz)−

nkz

jωµ0b
ĜF0

Mφ
(b,n,kz)

ĜF0
Mφ

(ρ,n,kz) =− nkz

bk3
ρ0

H(2)
n (kρ0 ρ)

H(2)
n

′
(kρ0 b)

∂

∂ρ
ĜA0

Mφ
(ρ,n,kz) =

− jωε0

kρ0

H(2)
n

′
(kρ0 ρ)

H(2)
n (kρ0 b)

Por conta da divisão entre funções de Bessel, as funções de Green não podem ser calculadas dire-

tamente para argumentos pequenos nem grandes. Nesses casos, são utilizadas aproximações assintóticas

descritas no Apêndice A.

Para argumentos com parte imaginária igual a 0 e parte real pequena, utilizam-se as seguintes

equações: 
jωε0

kρ

1
j π

2 kρb+ kρb ln
(

γ

2 kρb
) n = 0

n
jωµb

n ̸= 0

Para argumentos com parte real igual a 0 e parte imaginária pequena, utilizam-se as seguintes

equações: 
jωε0

k2
ρb ln

(
− γ

2 kρb
) n = 0

n
jωµb

n ̸= 0

Para argumentos com parte real igual a 0 e parte imaginária grande, utiliza-se a seguinte equação:
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ωε0

kρ

+
(nkz)

2

ωµkρ(kρb)2

Para os demais casos, utiliza-se a equação diretamente.

A implementação trata kz como uma array, por isso calcula um valor de kρ para cada valor em kz

e um valor para as funções de Green para cada kz. A implementação é apresentada a seguir:

Código 3.18: Green_Mphi.m

function r = Green_Mphi(rho, n, kz, P) %eqs 94-96: kz might be array

A_k_rho = sqrt(P.k0.^2 - kz.^2);

A_k_rho = cinv(A_k_rho);

if n == 0

argmin = 2*10^(-P.expmin);

else

argmin = 2*10^((c_log(n)-P.expmin)/(1+n));

end

r = zeros(size(A_k_rho));

for it = 1:size(A_k_rho, 2)

k_rho = A_k_rho(it);

if imag(k_rho*P.b) == 0 && abs(real(k_rho*P.b)) <= argmin

if n == 0

r(it) = 1j*P.omega*P.epsilon_0/k_rho*1/(1j*pi/2*k_rho*P.b +

k_rho*P.b*log(P.gamma*real(k_rho*P.b)/2));

else

r(it) = n/(1j*P.omega*P.mu*P.b);

end

elseif real(k_rho*P.b) == 0 && abs(imag(k_rho*P.b)) <= argmin

if n == 0

r(it) = 1j*P.omega*P.epsilon_0/(k_rho*k_rho*P.b*log(P.gamma*

imag(-k_rho*P.b)/2));

else

r(it) = n/(1j*P.omega*P.mu*P.b);

end

elseif real(k_rho*P.b) == 0 && abs(imag(k_rho*P.b)) >= P.argmax

r(it) = P.omega*P.epsilon_0/k_rho + (n*kz(it))^2/(P.omega*P.mu*

k_rho*(k_rho*P.b)^2);

else

dH2_besselh = dH2(n, k_rho*P.b)/besselh(n, 2, k_rho*rho);

r(it) = 1j*P.omega*P.epsilon_0/k_rho*dH2_besselh + (n*kz(it))
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^2/(1j*P.omega*P.mu*P.b^2*k_rho^3*dH2_besselh);

end

end

function r = c_log(ni)

r = sum(log10(2:ceil(ni)))-log10(2*pi);

end

end

3.19 theta_1.m

Essa função calcula a combinação de funções de Bessel Θ1 de acordo com a equação (2.60),

dados os valores de n, q e um argumento adicional k, cujo propósito é diferenciar entre a região interna e

externa da antena:

Θ1(n,q) = J′ν(kρb)H(2)
ν

′
(kρa)− J′ν(kρa)H(2)

ν

′
(kρb)

Para a região externa, utiliza-se k = k0, enquanto na região interna utiliza-se k = kd . Para calcular

kρ utiliza-se a equação (2.19) ou (2.68):

kρ
2 = k2 −

(
qπ

L

)2

ν é dado pela equação (2.19):

ν =
nπ

∆φ

As funções de Bessel são notórias por apresentarem problemas computacionais para argumentos

muito grandes ou muito pequenos [29]. Tendo isso em mente, foram utilizadas aproximações assintóticas

para lidar com esses casos. O Apêndice A detalha as aproximações feitas.

Para argumentos pequenos, ou seja, kρ pequeno, e n = ν = 0, utiliza-se a seguinte aproximação:

Θ1(0,q)−−−→
kρ→0

j
1
π

[
b
a
− a

b

]
Para argumentos pequenos e n ̸= 0, que implica ν ̸= 0, utiliza-se a seguinte aproximação:

Θ1(n,q)−−−→
kρ→0

j
ν

π

1
k2

ρ

[
− 1

a2

(
b
a

)ν+1

+
1
b2

(
a
b

)ν−1
]

Para argumentos grandes, utiliza-se a seguinte aproximação:

Θ1(n,q)−−−→
kρ→∞

2 j
πkρ

√
ab

(1+
1

4k2
ρab

)
sin(kρ(b−a))+

(
1

2kρb
− 1

2kρa

)
cos(kρ(b−a))


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Para os demais casos, utiliza-se a equação (2.60) diretamente. Detalhes sobre os argumentos

mínimo e máximo que chaveiam entre as aproximações e a equação exata se encontram no Apêndice A

Já que q pode ser uma array, é necessário calcular os valores de kρ para cada valor de q, e, então,

calcular o valor de Θ1 para cada valor de kρ .

A função c_log é utilizada para calcular o logaritmo de um fatorial, como explicado em A.26.

O código é apresentado a seguir:

Código 3.19: theta_1.m

function r = theta_1(n, q, k, P) %eq 43: adição de K aos parâmetros

para diferenciar região interna de externa (kd | k0); q might be

array

ni = n*pi/P.delta_phi;

A_k_rho = sqrt(k.^2 - (q*pi/P.L).^2);

A_k_rho = cinv(A_k_rho);

if ni == 0

argmin = 2*10^(-P.expmin);

else

argmin = 2*10^((c_log(ni)-P.expmin)/(1+ni));

end

r = zeros(size(A_k_rho));

for it = 1:size(A_k_rho, 2)

k_rho = A_k_rho(it);

if abs(k_rho*P.a) > P.argmax

r(it) = 2j/(pi*k_rho*sqrt(P.a*P.b))*((1+1/(4*k_rho^2*P.a*P.b))*

sin(k_rho*(P.b-P.a))+(1/(2*k_rho*P.b)-1/(2*k_rho*P.a))*cos(

k_rho*(P.b-P.a)));

elseif abs(k_rho*P.a) < argmin && ni == 0

r(it) = 1j/pi*(P.b/P.a-P.a/P.b);

elseif abs(k_rho*P.a) < argmin && ni ~= 0

r(it) = 1j*ni/(pi*k_rho^2)*((P.a/P.b)^(ni-1)/P.b^2 - (P.b/P.a)

^(ni-1)/P.a^2);

else

r(it) = dJ(ni, k_rho*P.b)*dH2(ni, k_rho*P.a) - dJ(ni, k_rho*P.a

)*dH2(ni, k_rho*P.b);

end

end

function r = c_log(ni)
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r = sum(log10(2:ceil(ni)))-log10(2*pi);

end

end

3.20 theta_3_rho.m

Essa função calcula a combinação de funções de Bessel Θ3ρ de acordo com a equação (2.152),

dados os valores de ρ , n, q e um argumento adicional k, cujo propósito é diferenciar entre a região interna

e externa da antena:

Θ3ρ(ρ,n,q) = Jν(kρd ρ)H(2)
ν

′
(kρd a)− J′ν(kρd a)H(2)

ν (kρd ρ)

kρ e ν são definidos na equação (2.19):

kρ
2 = k2 −

(
qπ

L

)2

ν =
nπ

∆φ

As funções de Bessel não podem ser computadas diretamente para argumentos pequenos ou

grandes [29]. Nesse caso, foram utilizadas aproximações assintóticas descritas no Apêndice A.

Para argumentos pequenos, ou seja, kρ pequeno, e n = ν = 0, utiliza-se a seguinte aproximação:

Θ3ρ(ρ,0,q)−−−→
kρ→0

− j
2
π

[
1

kρa
+

kρa
2

ln
(

γ

2
kρρ

)]
Para argumentos pequenos e n ̸= 0, que implica ν ̸= 0, utiliza-se a seguinte aproximação:

Θ3ρ(ρ,n,q)−−−→
kρ→0

− j
1

πkρ

[
1
a

(
ρ

a

)ν

+
1
ρ

(
a
ρ

)ν−1
]

Para argumentos grandes, utiliza-se a seguinte aproximação:

Θ3ρ(ρ,n,q)−−−→
kρ→∞

−2 j
πkρ

√
aρ

[
1

2kρa
sin(kρ(ρ −a))+ cos(kρ(ρ −a))

]
Para os demais casos, utiliza-se a equação (2.152) diretamente.

Nota-se que tanto q quanto ρ podem ser arrays, o que pode ser visto no código apresentado a

seguir:

Código 3.20: theta_3_rho.m

function r = theta_3_rho(n, q, k, rho, P) %eq 30': adição de K aos

parâmetros para diferenciar região interna de externa (kd | k0); q

and rho might be arrays

ni = n*pi/P.delta_phi;
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A_k_rho = sqrt(k.^2 - (q*pi/P.L).^2);

A_k_rho = cinv(A_k_rho);

if ni ==0

argmin = 2*10^(-P.expmin);

else

argmin = 2*10^((c_log(ni)-P.expmin)/(1+ni));

end

if size(rho, 2) > 1

k_rho = A_k_rho;

if abs(k_rho*P.a) > P.argmax

r = -2j./(pi*k_rho*sqrt(P.a*rho)).*(sin(k_rho*(rho-P.a))/(2*

k_rho*P.a)+cos(k_rho*(rho-P.a)));

elseif abs(k_rho*P.a) < argmin && ni == 0

r = -2j/pi*(1/(k_rho*P.a)+k_rho*P.a/2*log(P.gamma*k_rho*rho/2))

;

elseif abs(k_rho*P.a) < argmin && ni ~= 0

r = -1j/(pi*k_rho)*((rho/P.a).^ni/P.a + (P.a./rho).^(ni-1)./rho

);

else

r = besselj(ni, k_rho*rho)*dH2(ni, k_rho*P.a) - dJ(ni, k_rho*P.

a)*besselh(ni, 2, k_rho*rho);

end

else

r = zeros(size(A_k_rho));

for it = 1:size(A_k_rho, 2)

k_rho = A_k_rho(it);

if abs(k_rho*P.a) > P.argmax

r(it) = -2j/(pi*k_rho*sqrt(P.a*rho))*(sin(k_rho*(rho-P.a))

/(2*k_rho*P.a)+cos(k_rho*(rho-P.a)));

elseif abs(k_rho*P.a) < argmin && ni == 0

r(it) = -2j/pi*(1/(k_rho*P.a)+k_rho*P.a/2*log(P.gamma*k_rho*

rho/2));

elseif abs(k_rho*P.a) < argmin && ni ~= 0

r(it) = -1j/(pi*k_rho)*((rho/P.a)^ni/P.a + (P.a/rho)^(ni-1)/

rho);

else
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r(it) = besselj(ni, k_rho*rho)*dH2(ni, k_rho*P.a) - dJ(ni,

k_rho*P.a)*besselh(ni, 2, k_rho*rho);

end

end

end

function r = c_log(ni)

r = sum(log10(2:ceil(ni)))-log10(2*pi);

end

end

3.21 theta_5.m

Essa função calcula a combinação de funções de Bessel Θ5 de acordo com a equação (2.55),

dados os valores de n, q e o argumento adicional k, cujo propósito é diferenciar entre a região interna e

externa da antena:

Θ5(n,q) = Jν(kρd b)H(2)
ν (kρd a)− Jν(kρd a)H(2)

ν (kρd b)

kρ e ν são definidos na equação (2.19):

kρ
2 = k2 −

(
qπ

L

)2

ν =
nπ

∆φ

As funções de Bessel não podem ser computadas diretamente para argumentos pequenos ou

grandes [29]. Nesse caso, foram utilizadas aproximações assintóticas descritas no Apêndice A.

Para argumentos pequenos, ou seja, kρ pequeno, e n = ν = 0, utiliza-se a seguinte aproximação:

Θ5(0,q)−−−→
kρ→0

j
2
π

ln
(

b
a

)
Para argumentos pequenos e n ̸= 0, que implicam ν ̸= 0, utiliza-se a seguinte aproximação:

Θ5(n,q)−−−→
kρ→0

j
1

νπ

[(
b
a

)ν

−
(

a
b

)ν
]

Para argumentos grandes, utiliza-se a seguinte aproximação:

Θ5(n,q)−−−→
kρ→∞

2 j
πkρ

√
ab

sin(kρ(b−a))

Para os demais casos, utiliza-se a equação (2.55) diretamente.

Assim como em Θ1, q pode ser uma array. O código é apresentado a seguir:
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Código 3.21: theta_5.m

function r = theta_5(n, q, k, P) %thetas appendix: adição de K aos

parâmetros para diferenciar região interna de externa (kd | k0); q

might be array

ni = n*pi/P.delta_phi;

A_k_rho = sqrt(k.^2 - (q*pi/P.L).^2);

A_k_rho = cinv(A_k_rho);

if ni == 0

argmin = 2*10^(-P.expmin);

else

argmin = 2*10^((c_log(ni)-P.expmin)/(1+ni));

end

r = zeros(size(A_k_rho));

for it = 1:size(A_k_rho, 2)

k_rho = A_k_rho(it);

if abs(k_rho*P.a) > P.argmax

r(it) = 2j/(pi*k_rho*sqrt(P.a*P.b))*sin(k_rho*(P.b-P.a));

elseif abs(k_rho*P.a) < argmin && ni == 0

r(it) = 2j/pi*log(P.b/P.a);

elseif abs(k_rho*P.a) < argmin && ni ~= 0

r(it) = 1j/(ni*pi)*((P.b/P.a)^ni - (P.a/P.b)^ni);

else

r(it) = besselj(ni, k_rho*P.b)*besselh(ni, 2, k_rho*P.a) -

besselj(ni, k_rho*P.a)*besselh(ni, 2, k_rho*P.b);

end

end

function r = c_log(ni)

r = sum(log10(2:ceil(ni)))-log10(2*pi);

end

end

3.22 theta_7_rho.m

Essa função calcula a combinação de funções de Bessel Θ7ρ de acordo com a equação (2.150),

dados os valores de ρ , n, q e um argumento adicional k, cujo propósito é diferenciar entre a região interna
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e externa da antena:

Θ7ρ(ρ,n,q) = J′ν(kρd ρ)H(2)
ν (kρd a)− Jν(kρd a)H(2)

ν

′
(kρd ρ)

kρ e ν são definidos na equação (2.19):

kρ
2 = k2 −

(
qπ

L

)2

ν =
nπ

∆φ

As funções de Bessel não podem ser computadas diretamente para argumentos pequenos ou

grandes [29]. Nesse caso, foram utilizadas aproximações assintóticas descritas no Apêndice A.

Para argumentos pequenos, ou seja, kρ pequeno, e n = ν = 0, utiliza-se a seguinte aproximação:

Θ7ρ(ρ,0,q)−−−→
kρ→0

j
2
π

[
1

kρρ
+

kρρ

2
ln
(

γ

2
kρa
)]

Para argumentos pequenos e n ̸= 0, que implicam ν ̸= 0, utiliza-se a seguinte aproximação:

Θ7ρ(ρ,n,q)−−−→
kρ→0

j
1

πkρ

[
1
a

(
ρ

a

)ν−1

+
1
ρ

(
a
ρ

)ν
]

Para argumentos grandes, utiliza-se a seguinte aproximação:

Θ7ρ(ρ,n,q)−−−→
kρ→∞

2 j
πkρ

√
aρ

[
cos(kρ(ρ −a))− 1

2kρρ
sin(kρ(ρ −a))

]
Para os demais casos, utiliza-se a equação (2.150) diretamente.

Assim como em Θ3ρ , q e ρ podem ser arrays. O código é apresentado a seguir:

Código 3.22: theta_7_rho.m

function r = theta_7_rho(n, q, k, rho, P) %thetas appendix: adição de

K aos parâmetros para diferenciar região interna de externa (kd |

k0); q and rho might be arrays

ni = n*pi/P.delta_phi;

A_k_rho = sqrt(k.^2 - (q*pi/P.L).^2);

A_k_rho = cinv(A_k_rho);

if ni == 0

argmin = 2*10^(-P.expmin);

else

argmin = 2*10^((c_log(ni)-P.expmin)/(1+ni));

end
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if size(rho, 2) > 1

k_rho = A_k_rho;

if abs(k_rho*P.a) > P.argmax

r = 2j./(pi*k_rho*sqrt(P.a*rho)).*(cos(k_rho*(rho-P.a))-sin(

k_rho*(rho-P.a))./(2*k_rho*rho)); %todo: test 2*k_rho*rho;

is k_rho array?

elseif abs(k_rho*P.a) < argmin && ni == 0

r = 2j/pi*(1./(k_rho*rho)+k_rho*rho/2*log(P.gamma*k_rho*P.a/2))

;

elseif abs(k_rho*P.a) < argmin && ni ~= 0

r = 1j/(pi*k_rho)*((rho/P.a).^(ni-1)/P.a + (P.a./rho).^ni./rho)

;

else

r = dJ(ni, k_rho*rho)*besselh(ni, 2, k_rho*P.a) - besselj(ni,

k_rho*P.a)*dH2(ni, k_rho*rho);

end

else

r = zeros(size(A_k_rho));

for it = 1:size(A_k_rho, 2)

k_rho = A_k_rho(it);

if abs(k_rho*P.a) > P.argmax

r(it) = 2j/(pi*k_rho*sqrt(P.a*rho))*(cos(k_rho*(rho-P.a))-sin

(k_rho*(rho-P.a))/(2*k_rho*rho));

elseif abs(k_rho*P.a) < argmin && ni == 0

r(it) = 2j/pi*(1/(k_rho*rho)+k_rho*rho/2*log(P.gamma*k_rho*P.

a/2));

elseif abs(k_rho*P.a) < argmin && ni ~= 0

r(it) = 1j/(pi*k_rho)*((rho/P.a)^(ni-1)/P.a + (P.a/rho)^ni/

rho);

else

r(it) = dJ(ni, k_rho*rho)*besselh(ni, 2, k_rho*P.a) - besselj

(ni, k_rho*P.a)*dH2(ni, k_rho*rho);

end

end

end

function r = c_log(ni)

r = sum(log10(2:ceil(ni)))-log10(2*pi);

end



818181

end

3.23 z_in_f.m

Essa função calcula a contribuição da corrente elétrica na impedância de entrada (também

conhecida como auto-impedância da prova de alimentação) de acordo com a equação (2.173):

Z f
in =− 1

I2
0

jωµ∆φL
4

(b−a)ρ0

∞

∑
n=1

∞

∑
q=1

(
Ĵss

v f (ρ0,n,q)
)2

k2
d − k2

nq

Lembrando que ρ0 é apresentado na equação (2.163) como (a+b)/2 e knq é definido na equação

(2.164) como:

knq =

√(
nπ

ρ0∆φ

)2

+

(
qπ

L

)2

Os somatórios infinitos em n e q têm seus intervalos limitados, respectivamente, por nMax e

qMax. O código é apresentado a seguir:

Código 3.23: z_in_f.m

function r = z_in_f(P) %eq 108

rho0 = (P.a+P.b)/2;

r = -1/P.I0^2*1j*P.omega*P.mu*P.delta_phi*P.L/4*(P.b-P.a)*rho0*

summation();

function acc = summation()

acc = 0;

for n = 1:P.nMax

for q = 1:P.qMax

k_nq = sqrt((n*pi/(rho0*P.delta_phi))^2+(q*pi/P.L)^2);

acc = acc + J_vf_Tss(rho0, n, q, P)^2/(P.kd^2-k_nq^2);

end

end

end

end

3.24 z_in_m.m

Essa função calcula a contribuição da corrente magnética na impedância de entrada de acordo

com a equação (2.159), dadas as matrizes V e d como entrada:
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ZM
in =− 1

I2
0

M

∑
m=1

P

∑
p=1

dmpVmp

O somatório duplo é equivalente a multiplicar a transposta da matriz V pela matriz d, portanto, a

implementação foi feita dessa forma. Para o problema abordado neste trabalho, os valores na matriz V
sempre serão reais, portanto é indiferente utilizar a transposição com ou sem conjugado complexo. O

código é apresentado a seguir:

Código 3.24: z_in_m.m

function r = z_in_m(d_mat, V_mat, P) %eq 110

r = -1/P.I0^2*(V_mat' * d_mat);

end

3.25 Efields.m - Campo elétrico radiado pela antena

Essa função calcula as componentes θ e φ do campo elétrico radiado pela antena através das

equações (2.185) e (2.190):

Eθ (r,θ ,φ)−→
r→∞

2e− jk0r

r sinθ

 j
M̂e f

φ
(0,k0 cosθ)

H(2)
n (kρ0 b)

∞

∑
n=1

jn+1

H(2)
n (kρ0 b)

(
e− jnφM̂e f

φ
(n,k0 cosθ)+

+ e jnφM̂e f
φ

(−n,k0 cosθ)

)]

Eφ (r,θ ,φ)−→
r→∞

2 j
b

e− jk0r

k0r
cosθ

sin2
θ

∞

∑
n=1

jn+1n

H(2)
n

′
(kρ0 b)

[
e− jnφM̂e f

φ
(n,k0 cosθ)− e jnφM̂e f

φ
(−n,k0 cosθ)

]

Nota-se a ausência dos termos em r na implementação. Isso se deve ao quadrado do módulo do

campo elétrico ser utilizado no cálculo da intensidade de radiação, como explicado na seção 3.26. A fase

do campo e− jk0r desaparece por conta do operador módulo, e, visto que há um termo r2 na intensidade de

radiação, o termo r no denominador da equação dos campos é cancelado.

O somatório tem seu intervalo limitado de 0 a nMax e é calculado através da função sum do Matlab

que soma os valores em uma array e retorna um único valor. Percebe-se que a parte do somatório referente

às transformadas exponencial-Fourier da corrente magnética é semelhante em ambas as componentes

do campo, diferindo apenas pelo sinal da segunda parte. Sendo assim, foi utilizada uma subfunção que

recebe o valor do sinal, calcula a soma ou subtração das duas transformadas. Além disso, aplicando

a transformada exponencial-Fourier na equação (2.98), vemos que é possível obter as transformadas

exponencial-Fourier da corrente magnética, multiplicando os elementos da matriz d pelos valores dados

pela equação (2.107).

O código é apresentado a seguir:
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Código 3.25: Efields.m

function [Etheta, Ephi] = Efields(theta, phi, dMat, P) %eqs 120, 124

krho0 = P.k0*sin(theta);

ns = 1:P.nMax;

Etheta = 2/sin(theta)*(1j*M_phi_Tef(0, P.k0*cos(theta))/besselh(0,

2, krho0*P.b)+sum(1j.^(ns+1)./besselh(ns, 2, krho0*P.b).*exp_M(

theta, phi, 1)));

Ephi = 2j*cos(theta)/(P.b*P.k0*sin(theta)^2)*sum(1j.^(ns+1).*ns./

dH2(ns, krho0*P.b).*exp_M(theta, phi, -1));

function r = exp_M(theta, phi, sign)

r = zeros(1, P.nMax);

for n = ns

r(n) = exp(-1j*n*phi)*M_phi_Tef(n, P.k0*cos(theta)) + sign*exp

(1j*n*phi)*M_phi_Tef(-n, P.k0*cos(theta));

end

end

function r = M_phi_Tef(n, kz)

r = 0;

for m = 1:P.Mmax

for p = 1:P.Pmax

r = r + dMat((m-1)*P.Pmax+p, 1)*M_phi_mp_Tef(n, kz, m, p, P);

end

end

end

end

3.26 gain.m

Essa função calcula o ganho da antena através da equação (2-46) de Balanis [33], dado o campo

elétrico e a potência de entrada na antena:

Gain = 4π
U(θ ,φ)

Pin

Onde U é a intensidade de radiação na direção (θ ,φ) em coordenadas esféricas e Pin é a potência de

entrada na antena. A intensidade de radiação é dada pela equação (2-12a) de Balanis[33]:

U(θ ,φ) =
r2

2η
|E(r,θ ,φ)|2
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Nota-se a ausência do termo r2 na implementação, visto que a equação do campo elétrico possui

um termo 1/r como visto na Seção 3.25. O código é apresentado a seguir:

Código 3.26: gain.m

function G = gain(field, power, P)

U = abs(field)^2/(2*P.eta_0);

G = 4*pi*U/power;

end

3.27 radpat.m

Essa função gera os diagramas de radiação dada a matriz d e a potência de entrada para calcular

o ganho a partir do campo.

Analisando as equações para o campo elétrico, vemos que ela possui singularidades em alguns

ângulos. As equações das componentes θ e φ do campo elétrico possuem sin(θ) e sin2(θ) no denominador,

respectivamente. Com isso, para θ = nπ onde n ∈ Z o campo é indefinido. No caso da equação da

componente φ , existe um termo cos(θ) no numerador, que, embora não cause uma singularidade, cria

uma descontinuidade do gráfico em θ = n π

2 para n ímpar.

Para corrigir isso na apresentação dos gráficos, foi adicionado ou subtraído um termo π/1000

nos ângulos descritos acima.

Dada a amplitude do campo elétrico, é calculado o ganho, que é então convertido para decibéis

para ser exibido no gráfico. Utiliza-se a função polarpattern [34] do Matlab para gerar o gráfico, visto

que essa é uma função específica para diagramas de radiação.

A implementação é apresentada a seguir:

Código 3.27: radpat.m

function [Gphi0_db, Gtheta90_db] = radpat(dMat, peak_power, P)

%phi = 0 plane

Gphi0 = zeros(361, 3);

[Etheta, Ephi] = Efields(pi/1000, pi-pi/1000, dMat, P);

Gphi0(1,:) = [0, gain(Etheta, peak_power, P), gain(Ephi, peak_power

, P)];

Gphi0(361,:) = [360, gain(Etheta, peak_power, P), gain(Ephi,

peak_power, P)];

parfor theta=1:179

[Etheta, Ephi] = Efields(theta*pi/180, pi/1000, dMat, P);

Gphi0(theta+1,:) = [theta, gain(Etheta, peak_power, P), gain(Ephi

, peak_power, P)];

end

[Etheta, Ephi] = Efields(180-pi/1000, pi-pi/1000, dMat, P);
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Gphi0(181,:) = [180, gain(Etheta, peak_power, P), gain(Ephi,

peak_power, P)];

parfor theta=1:179

[Etheta, Ephi] = Efields(theta*pi/180, pi-pi/1000, dMat, P);

Gphi0(theta+181,:) = [theta+180, gain(Etheta, peak_power, P),

gain(Ephi, peak_power, P)];

end

[~, Ephi] = Efields(90*pi/180+pi/1000, pi/1000, dMat, P);

Gphi0(91,3) = gain(Ephi, peak_power, P);

[~, Ephi] = Efields(90*pi/180+pi/1000, pi-pi/1000, dMat, P);

Gphi0(271,3) = gain(Ephi, peak_power, P);

%theta = 90 plane

Gtheta90 = zeros(361, 3);

parfor phi=0:360

[Etheta, Ephi] = Efields(pi/2-pi/1000, phi*pi/180, dMat, P);

Gtheta90(phi+1,:) = [phi, gain(Etheta, peak_power, P), gain(Ephi,

peak_power, P)];

end

[~, Ephi] = Efields(pi/2-pi/1000, pi/1000, dMat, P);

Gtheta90(1,3) = gain(Ephi, peak_power, P);

[~, Ephi] = Efields(pi/2-pi/1000, 180*pi/180+pi/1000, dMat, P);

Gtheta90(181,3) = gain(Ephi, peak_power, P);

Gtheta90(361,3) = Gtheta90(1,3);

%convert to db scale

Gphi0_db = Gphi0;

Gphi0_db(:,2) = 10*log10(Gphi0_db(:,2));

Gphi0_db(:,3) = 10*log10(Gphi0_db(:,3));

Gtheta90_db = Gtheta90;

Gtheta90_db(:,2) = 10*log10(Gtheta90_db(:,2));

Gtheta90_db(:,3) = 10*log10(Gtheta90_db(:,3));

figure('Name','gain_theta@phi=0'); polarpattern(Gphi0_db(:,1),

Gphi0_db(:,2), TitleTopTextInterpreter="tex", TitleTop = "E_{\

theta} @ \phi=0"+char(176))

figure('Name','gain_phi@phi=0'); polarpattern(Gphi0_db(:,1),

Gphi0_db(:,3), TitleTopTextInterpreter="tex", TitleTop = "E_{\

phi} @ \phi=0"+char(176))
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figure('Name','gain_theta@theta=90'); polarpattern(Gtheta90_db(:,1)

, Gtheta90_db(:,2), TitleTopTextInterpreter="tex", TitleTop = "

E_{\theta} @ \theta=90"+char(176))

figure('Name','gain_phi@theta=90'); polarpattern(Gtheta90_db(:,1),

Gtheta90_db(:,3), TitleTopTextInterpreter="tex", TitleTop = "E_

{\phi} @ \theta=90"+char(176))

end
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4
RESULTADOS

Neste capítulo, os resultados obtidos através do Método dos Momentos são apresentados. Como

referência, são utilizados 2 modelos no HFSS [24], um com alimentação por cabo coaxial e outro por fita

de corrente, assim como utilizado neste trabalho. Nota-se que o HFSS utiliza o método numérico Método

dos Elementos Finitos (FEM em inglês). A seguinte imagem mostra a antena embutida no HFSS, onde a

região destacada em verde claro é a cavidade no corpo do cilindro que está preenchida por um dielétrico

representado pela cor azul e as superfícies condutoras perfeitas são representadas pela cor verde musgo.

Figura 16: Antena cilíndrica embutida no HFSS.

As dimensões utilizadas nos modelos do MoM e HFSS estão dispostas na Tabela 2:
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Parâmetro Valor Unidade

a 250 mm

b 253,048 mm

z1 -36,59 mm

z2 36.59 mm

φ1 -6,8182 grau

φ2 6,8182 grau

z1a -23,68 mm

z2a 23,68 mm

z f 6,05 mm

φ f 0 grau

Wf 4 mm

Tabela 2: Dimensões da antena

O dielétrico utilizado tem permissividade relativa 2.55 com tangente de perdas 0.0022.

Além disso, os modelos do HFSS precisam de alguns parâmetros extras. O cilindro condutor

possui altura de 500 mm e o cabo coaxial possui as seguintes dimensões:

Parâmetro Valor Unidade

f er 2.05 mm

f ir 0.65 mm

f l 20 mm

Tabela 3: Dimensões do cabo coaxial

Onde f er é o raio do dielétrico, f ir é o raio do condutor e f l o comprimento do cabo. O dielétrico do

cabo possui permissividade relativa 1,9 e tangente de perdas 0,001.

O comprimento do cabo é relevante na simulação, já que a porta de excitação (wave port) precisa

estar longe o suficiente de descontinuidades para que modos não propagantes tenham espaço para serem

devidamente atenuados. O manual do HFSS edição 2005 [35] sugere utilizar uma distância de pelo menos

1/8 do comprimento de onda, o que para 2,4 GHz é 16 mm. Vale notar que a versão mais atual do manual

[36] não sugere um valor, mas sim, fornece um procedimento para determinar a distância da porta para a

descontinuidade.

Os raios internos e externos do cabo coaxial são baseados na norma MIL-STD-348 [37], que

define o diâmetro máximo do condutor interno como 1,3 mm. Para o condutor externo foi utilizado o

valor de 4,1 mm fornecido na especificação do conector SMA modelo 3005 do fabricante KLC [38].

O dielétrico utilizado é baseado no material Teflon disponível na biblioteca de materiais do HFSS

2024R2, porém com a permissividade relativa alterada de 2,1 para 1,9 para que o cabo coaxial tenha

impedância de 50 Ω para as dimensões utilizadas. A impedância do cabo coaxial pode ser calculada pela

equação (2.7) e tabela 2.1 de Pozar [23]:



898989



Z0 =

√
R+ jωL
G+ jωC

L =
µ

2π
ln

b
a

C =
2πε ′

ln b
a

G =
2πωε ′′

ln b
a

(4.1)

Para um bom condutor, podemos assumir R << jωL, portanto, no numerador fica apenas o

termo em L. ε ′ é a permissividade relativa enquanto ε ′′ é a a permissividade relativa multiplicada pela

tangente de perdas. Substituindo as dimensões do cabo coaxial e as propriedades elétricas do dielétrico

nas equações, obtemos Z0 ≈ 50+0.025i Ω.

A Figura 17 mostra a cavidade e o cabo coaxial em perfil.

Figura 17: Cavidade cilíndrica e cabo coaxial em perfil

4.1 Impedância de entrada do MoM em diferentes parametri-
zações

A precisão da computação é controlada pelos parâmetros Mmax, Pmax, nMax, qMax e NKz. A

escolha desses parâmetros é crucial para a obtenção de bons resultados e impacta significativamente no
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tempo de execução do MoM. Convém recordar a finalidade desses parâmetros. Mmax e Pmax controlam

a discretização utilizada pela função de base e teste do MoM, onde Mmax controla a quantidade de

harmônicos da função e Pmax a quantidade de segmentos em que a corrente é discretizada. nMax e

qMax controlam os limites superiores de somatórios infinitos, por exemplo, os somatórios da equação

(2.173) implementada por 3.23. Já NKz é utilizado para controlar o limite da integral na equação (2.136)

implementada por 3.7.

A seguir, são apresentados os resultados para a impedância de entrada da antena variando esses

parâmetros. Todos os gráficos vão de 2.2 GHz a 2.6 GHz com variação de 1 MHz, totalizando 401

amostras.

4.1.1 Variando Pmax

A seguinte imagem mostra a impedância de entrada da antena para diferentes valores de Pmax,

onde Mmax = 1, e o valor dos demais parâmetros é 50.

Figura 18: Impedância de Entrada variando o valor de Pmax

Analisando o gráfico, vemos que para pequenos valores de Pmax, incrementos pequenos têm

mudanças grandes na impedância de entrada, porém para valores maiores de Pmax, a mudança é bem

menor, o que indica que o resultado está convergindo.

Contudo, nota-se que para Pmax = 22 o gráfico possui anomalias. Esse comportamento é
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esperado, e não um defeito do Método dos Momentos ou do código, mas sim uma limitação computacional

a respeito dos somatórios e integrais com intervalo infinito, visto que é impossível computar o valor exato

de tais expressões. Conforme o número de funções de base aumenta, o espaço coberto por cada uma delas

diminui e são necessárias mais componentes da equação (2.136), o que equivale a harmônicos de maior

frequência.

Conforme explicado nas Seções 3.23, 3.6 e 3.7, os parâmetros nMax e qMax controlam o limite de

somatórios infinitos, enquanto Nkz controla o limite de uma integral infinita. Sendo assim, se aumentarmos

esses valores, espera-se que a anomalia desapareça. Sendo assim, o seguinte gráfico mostra a configuração

M1P22 (Mmax = 1 e Pmax = 22) com nMax, qMax e Nkz iguais a 50, comparada com nMax, qMax e

Nkz iguais a 100:

Figura 19: Impedância de entrada de M1P22 para diferentes valores de nMax, qMax e NKz

Com o aumento dos parâmetros nMax, qMax e Nkz a anomalia desaparece e a amplitude e

frequência do pico da impedância voltam para a região esperada.

4.1.2 Variando Mmax

A seguinte imagem mostra a impedância de entrada da antena para diferentes valores de Mmax,

onde Pmax = 18, e o valor dos demais parâmetros é 50.
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Figura 20: Impedância de Entrada variando o valor de Mmax

Ao contrário de Pmax, o valor de Mmax não tem muita influência na impedância de entrada.

Além disso, próximo de 2.56 GHz percebe-se um pico secundário no gráfico. Em teoria, os termos de

ressonância criados pelo fechamento da cavidade ao aplicar o princípio da equivalência deveriam se

cancelar perfeitamente, deixando o gráfico suave. Porém, devido a erros de precisão numérica, isso não

acontece. Para Mmax = 5, o pico secundário é bastante notável em comparação com os demais valores.

4.1.3 Variando NKz

A seguinte imagem mostra a impedância de entrada da antena para diferentes valores de NKz,

onde Mmax = 1, Pmax = 18 e os demais parâmetros são iguais a 50.
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Figura 21: Impedância de Entrada variando o valor de NKz

Vemos que NKz tem pouca influência na impedância de entrada e que o resultado converge.

4.1.4 Variando qMax

A seguinte imagem mostra a impedância de entrada da antena para diferentes valores de qMax,

onde Mmax = 1, Pmax = 18 e os demais parâmetros são iguais a 50.
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Figura 22: Impedância de Entrada variando o valor de qMax

Vemos que para valores baixos de qMax aparecem anomalias nos resultados e, portanto, um

valor mínimo adequado deve ser utilizado, nesse caso, 50. Satisfeita essa condição, o valor de qMax não

influencia muito a impedância de entrada, e vemos que os resultados convergem.

4.1.5 Variando nMax

A seguinte imagem mostra a impedância de entrada da antena para diferentes valores de nMax,

onde Mmax = 1, Pmax = 18 e os demais parâmetros são iguais a 50.
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Figura 23: Impedância de Entrada variando o valor de nMax

Vemos que nMax influencia ligeiramente na posição da impedância e que o resultado converge,

tanto que a curva para 70 se sobrepõe à de 60.

4.2 Impedância de entrada do MoM e dos modelos do HFSS

A seguinte imagem mostra a impedância de entrada dos dois modelos do HFSS e do MoM. Para o

MoM foram utilizados Mmax = 1, Pmax = 18 e os demais parâmetros em 50. Essa escolha de parâmetros

se mostrou um bom compromisso entre acurácia e tempo de execução, o que será abordado na Sessão

4.4. O modelo HFSS_probe é a antena com alimentação por cabo coaxial e HFSS_strip é a antena com

alimentação por fita de corrente.
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Figura 24: Impedância de Entrada do MoM comparada aos modelos do HFSS

Vemos que o MoM deu resultados comparáveis com o HFSS. Nota-se que a resistência do MoM

se assemelha mais à resistência do modelo com alimentação via cabo coaxial (HFSS_probe), enquanto a

reatância se assemelha mais ao modelo com alimentação por fita condutora (HFSS_strip). Isso mostra que

há espaço para melhoria no método adotado de modelagem da alimentação da antena.

Podemos observar que a curva da reatância cruza o zero numa frequência próxima ao pico da

resistência. Isso indica que a reatância está sob controle, o que é uma propriedade esperada das antenas

híbridas, e que ela se comporta como uma antena de substrato fino [15].

4.3 Diagramas de radiação do MoM e dos modelos do HFSS

A seguir são apresentados os diagramas de radiação da antena analisada em 2.435 GHz, que

é a frequência do pico da parte real da impedância na configuração Mmax = 1, Pmax = 18 e demais

parâmetros em 50.

Os gráficos mostram o ganho da antena em uma escala de −50 a 10 dB a fim de poder observar

a componente φ do ganho na mesma escala que a componente θ , mesmo que medições com uma faixa

dinâmica de mais de 30 dB dificilmente sejam acuradas.

Nota-se que a equação para o ganho (na realidade são as equações do campo elétrico) obtida a

partir do MoM possui singularidades em alguns pontos, como abordado em 3.27. Nesses ângulos, um
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valor angular próximo (δ = π/1000) é utilizado ao computar o ganho. Para φ = 0◦, as singularidades

ocorrem em ambas as componentes quando θ é um múltiplo inteiro de π e ocorrem em múltiplos inteiros

de π/2 apenas na componente φ . Já em θ = 90◦, as singularidades ocorrem apenas na componente φ

quando φ é múltiplo inteiro de π .

4.3.1 Componentes θ e φ do ganho

Os seguintes gráficos mostram o ganho do MoM e HFSS separados nas componentes θ e φ em

θ = 90◦ e φ = 0◦, respectivamente.

Figura 25: Componentes θ e φ do ganho do MoM comparado ao HFSS em θ = 90◦
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Figura 26: Componentes θ e φ do ganho do MoM comparado ao HFSS em φ = 0◦

Percebe-se que a componente φ do ganho é extremamente pequena em relação à componente

θ e nem o HFSS nem o MoM são capazes de computar essa componente com acurácia, sendo o mais

importante o fato de que o ganho é muito pequeno. Isso demonstra que a antena, de fato, possui baixa

polarização cruzada.

Já na componente θ , a correspondência entre o MoM e o HFSS é excelente na parte frontal da

antena, enquanto na parte traseira, nota-se uma ausência de franjas no MoM. Isso se deve a um cilindro

infinito ser utilizado no modelo do MoM, visto que não há bordas para o campo difratar e criar franjas na

parte traseira da antena. O efeito da altura do cilindro pode ser visto nos seguintes gráficos que mostram a

componente θ do ganho do HFSS para diferentes alturas.
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Figura 27: Componente θ do ganho em θ = 90◦ para diferentes alturas do cilindro condutor
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Figura 28: Componente θ do ganho em φ = 0◦ para diferentes alturas do cilindro condutor

Podemos observar que, conforme a altura do cilindro aumenta, menor é o ganho na região traseira

da antena.

4.3.2 Ganho total

Os seguintes gráficos mostram o ganho total do MoM e HFSS em θ = 90◦ e φ = 0◦, respectiva-

mente. Lembrando que o ganho total é a soma das componentes φ e θ do ganho.
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Figura 29: Ganho total do MoM comparado ao HFSS em θ = 90◦
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Figura 30: Ganho total do MoM comparado ao HFSS em φ = 0◦

Podemos ver que o ganho total é praticamente igual à componente θ do ganho, o que reforça que

a antena tem baixa polarização cruzada. Essa é uma propriedade muito interessante desse tipo de antena e

o MoM é capaz de capturar esse fenômeno.

4.4 Tempo de execução

Um ponto importante a se considerar é o tempo de execução do MoM para diferentes parâmetros.

O computador utilizado para executar o MoM e o HFSS foi o mesmo e possui a seguinte configuração:

■ Sistema operacional Windows 10

■ Processador Intel Core i7-7700 CPU @ 3,60 GHz
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■ 16 Gb de RAM DDR4 @ 2400 MHz

■ Matlab R2022b e HFSS 2019 R1

A seguinte imagem mostra o tempo de execução dos modelos do HFSS com alimentação por

ponta de prova coaxial e fita condutora comparados com o tempo de execução do MoM:

Figura 31: Tempo de execução do MoM comparado com o HFSS

O tempo de execução do software desenvolvido utilizando o MoM foi substancialmente menor

que o do HFSS. Claro que assim como no HFSS há vários parâmetros que podem ser alterados para trocar

precisão por tempo, aqui é exatamente igual. As próximas figuras mostram como alterar os parâmetros de

precisão impacta no tempo de execução.

A seguinte imagem mostra o tempo de execução para diferentes valores de Pmax e Mmax com os

demais parâmetros em 50.
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Figura 32: Tempo de execução do MoM para diferentes combinações de Mmax e Pmax

Observa-se que o tempo não aumenta de forma linear, portanto, levando em conta os resultados

obtidos de impedância de entrada, é mais apropriado utilizar uma configuração com Mmax = 1 e Pmax =

14 ou 18, por exemplo, a configuração M1P18 (Mmax = 1 e Pmax = 18).

A seguinte imagem mostra o tempo de execução para diferentes valores de nMax, onde Mmax = 1

e Pmax = 18 e os demais parâmetros valem 50.

Figura 33: Tempo de execução do MoM para diferentes valores de nMax

Vemos que o tempo aumenta de forma aproximadamente linear ao aumentar nMax. A impedância

de entrada varia ligeiramente ao aumentar esse parâmetro, mas a diferença não é muito significativa, então

o aumento de tempo não justifica aumentar muito o valor de nMax, sendo um valor de 50 suficiente.
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A seguinte imagem mostra o tempo de execução para diferentes valores de NKz, onde Mmax = 1

e Pmax = 18 e os demais parâmetros valem 50.

Figura 34: Tempo de execução do MoM para diferentes valores de NKz

A primeira vista, parece contraintuitivo que o tempo de execução não esteja estritamente au-

mentando conforme o intervalo de integração aumenta, porém, levando em conta como o algoritmo de

integração funciona, i.e. quadratura adaptativa de Gauss-Kronrod [39], percebe-se que ele apresenta um

comportamento caótico, já que uma pequena mudança no intervalo pode mudar completamente a forma

com que os intervalos de integração serão divididos, e a complexidade temporal de calcular cada um deles.

No geral, pode-se esperar que o tempo de execução muda de forma significativa quando a quantidade de

subdivisões que o algoritimo precisa fazer também muda, caso contrário, o tempo é aproximadamente

constante. Como a diferença na impedância ao variar NKz é muito pequena, e podemos considerar o tempo

constante, a escolha de NKz não é muito relevante para o tempo de execução no intervalo investigado.

A seguinte imagem mostra o tempo de execução para diferentes valores de qMax, onde Mmax = 1

e Pmax = 18 e os demais parâmetros valem 50.
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Figura 35: Tempo de execução do MoM para diferentes valores de qMax

Os somatórios controlados pelo parâmetro qMax são relativamente rápidos de computar ao se

comparar com o somatório da equação (2.136), devido à integral. Sendo assim, aumentar esse parâmetro

influencia pouco no tempo de execução, logo, recomenda-se utilizar o mesmo valor de nMax para evitar

desbalancear a matriz de impedância. Nota-se que para qMax=40 o tempo de execução é aproximadamente

a metade dos demais valores, mas dado que para esse caso a impedância possui anomalias, o tempo de

execução ser menor é irrelevante.
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5
CONCLUSÃO

O processo de analisar antenas com geometrias complexas é bastante trabalhoso. Não só é

necessário um avançado conhecimento de eletromagnetismo e cálculo, mas, dada a complexidade das

equações envolvidas, conhecimento de programação também é essencial para conseguir obter resultados

relevantes de maneira rápida. Mesmo assim, todo esse trabalho é justificável, dadas as propriedades

que tais antenas apresentam. Esse é o caso das antenas cilíndricas híbridas embutidas, que possuem as

características de conformidade e baixo perfil das antenas de microfita cilíndricas [1], e baixa polarização

cruzada e baixa reatância indutiva das antenas híbridas embutidas [14].

Foi com o propósito de analisar as antenas cilíndricas híbridas embutidas que este trabalho foi

desenvolvido. O Capítulo 2 apresenta o desenvolvimento teórico de uma antena desse tipo e, através do

Método dos Momentos [19] e outros métodos analíticos de eletromagnetismo, chega-se a um sistema linear

e a equações para calcular os elementos desse sistema. Com isso, no Capítulo 3 é apresentado o programa

desenvolvido em Matlab [40] que implementa tais equações e resolve o sistema, assim sendo possível

computar o diagrama de radiação e a impedância de entrada da antena. Por fim, os resultados obtidos são

apresentados no Capítulo 4, onde é feita uma exploração de como os parâmetros do programa influenciam

no tempo de execução e na acurácia dos resultados. Os resultados são validados comparando-os aos

obtidos no software comercial HFSS [24], e podemos concluir que houve excelente compatibilidade entre

os resultados deste trabalho e do HFSS.

5.1 Contribuições

As principais contribuições desta dissertação incluem:

■ Desenvolvimento de uma formulação teórica: A pesquisa estabeleceu um arcabouço teórico

para a análise de antenas cilíndricas híbridas embutidas.

■ Implementação numérica validada: A ferramenta computacional desenvolvida e validada

oferece um meio para caracterizar essas antenas. O código fonte pode ser acessado em

https://github.com/rma6/embedded-cylindrical-antenna-mom.

■ Análise de características de desempenho: O estudo permitiu a compreensão de aspectos

como polarização cruzada e reatância indutiva, considerados no projeto e otimização de

antenas.

https://github.com/rma6/embedded-cylindrical-antenna-mom
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5.2 Trabalhos Futuros

■ Automatização da escolha dos parâmetros de precisão: Desenvolver algoritmos que

permitam a escolha automática dos parâmetros Mmax, PMax, nMax, qMax e NKz, buscando

um equilíbrio entre a acurácia do resultado e o tempo computacional.

■ Determinação automática da faixa de operação da antena: Implementar funcionalidades

que permitam ao programa determinar, de forma autônoma, a faixa de frequência de operação

da antena.

■ Expansão das características de análise da antena: Integrar ao software o cálculo de outras

características de desempenho da antena, como eficiência de radiação, largura de banda e

ganho, para fornecer uma análise mais completa.

■ Avaliação de outras técnicas de integração: Investigar e implementar o uso de outras

técnicas de integração numérica, além da quadratura de Gauss-Kronrod adaptativa [39], para

verificar a possibilidade de ganhos em termos de acurácia ou tempo de processamento.
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A
ANÁLISE ASSINTÓTICA DAS FUNÇÕES Θn

As funções Θn são combinações da função de Bessel do primeiro tipo e da função de Hankel,

onde n define quais funções aparecem derivadas na equação. Particularmente, estamos interessados nas

funções Θ1, Θ3, Θ5 e Θ7, como definidas a seguir:

Θ1(n,q) = J′ν(kρb)H(2)
ν

′
(kρa)− J′ν(kρa)H(2)

ν

′
(kρb) (A.1)

Θ3(n,q) = Jν(kρb)H(2)
ν

′
(kρa)− J′ν(kρa)H(2)

ν (kρb) (A.2)

Θ5(n,q) = Jν(kρb)H(2)
ν (kρa)− Jν(kρa)H(2)

ν (kρb) (A.3)

Θ7(n,q) = J′ν(kρb)H(2)
ν (kρa)− Jν(kρa)H(2)

ν

′
(kρb) (A.4)

Onde ν = nπ

∆φ
e kρ =

√
k2 − qπ

L
2. k pode ser k0 ou kd a depender da região na qual a função Θ está sendo

usada.

Nenhuma das funções Θn pode ser computada diretamente, visto que elas não são bem com-

portadas para argumentos muito pequenos ou muito grandes. Por conta disso, faz-se necessário utilizar

aproximações nessas regiões. No Apêndice D de Harrington [20], podemos encontrar as aproximações

assintóticas para as funções de Bessel, e a partir delas derivar as aproximações das funções Θn.

Para argumentos pequenos e ordem 0 [20] (D-9):

J0(x)−−→
x→0

1− x2

4 −→ 1

Y0(x)−−→
x→0

2
π

ln
(

γx
2

) (A.5)

E suas derivadas:

J′0(x)−−→x→0
− x

2

Y ′
0(x)−−→x→0

2
π

1
x

(A.6)
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Onde γ = 1.781 é a constante de Euler-Mascheroni [20] (D-8) 1.

Para argumentos pequenos e ordem diferente de 0 [20] (D-10):

Jν(x)−−→
x→0

1
ν!

( x
2

)ν

Nν(x)−−→
x→0

− (ν−1)!
π

(
2
x

)ν
(A.7)

E suas derivadas:

J′ν(x)−−→x→0
ν

ν!
xν−1

2ν

Y ′
ν(x)−−→x→0

ν!
π

2ν

xν+1

(A.8)

Para argumentos grandes e Re(ν)> 0 e | f ase(x)|< π [20] (D-11):

Jν(x)−−−→
x→∞

√
2

πx cos
(
x− π

4 −
νπ

2

)
Yν(x)−−−→

x→∞

√
2

πx sin
(
x− π

4 −
νπ

2

) (A.9)

E suas derivadas:

J′ν(x)−−−→x→∞
−
√

2
πx

[
1
2x cos

(
x− νπ

2 − π

4

)
+ sin

(
x− νπ

2 − π

4

)]
Y ′

ν(x)−−−→x→∞

√
2

πx

[
− 1

2x sin
(
x− νπ

2 − π

4

)
+ cos

(
x− νπ

2 − π

4

)] (A.10)

Lembrando que a função de Hankel do segundo tipo é definida como [20] (D-12):

Hν
(2)(x) = Jν(x)− jYν(x)

Hν
(2)(x)

′
= J′ν(x)− jY ′

ν(x)
(A.11)

Agora, substituímos as expressões assintóticas nas definições das funções Θn.

Para argumento pequeno e ordem igual a 0:

Θ1(0,q)−−−→
kρ→0

j
1
π

[
b
a
− a

b

]
(A.12)

Θ3(0,q)−−−→
kρ→0

− j
2
π

[
1

kρa
+

kρa
2

ln
(

γ

2
kρb
)]

(A.13)

Θ5(0,q)−−−→
kρ→0

j
2
π

ln
(

b
a

)
(A.14)

Θ7(0,q)−−−→
kρ→0

j
2
π

[
1

kρb
+

kρb
2

ln
(

γ

2
kρa
)]

(A.15)

Para argumentos pequenos e ordem diferente de 0:

1Na notação mais atual, γ = 0.577, e eγ = 1.781 porém no Harrington, ele utiliza γ diretamente como 1.781
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Θ1(n,q)−−−→
kρ→0

j
ν

π

1
kρ

2

[
− 1

a2

(
b
a

)ν−1

− 1
b2

(
a
b

)ν−1
]

(A.16)

Θ3(n,q)−−−→
kρ→0

− j
ν

πkρ

[
1
a

(
b
a

)ν

+
1
b

(
a
b

)ν−1
]

(A.17)

Θ5(n,q)−−−→
kρ→0

j
1

νπ

[(
b
a

)ν

−
(

a
b

)ν
]

(A.18)

Θ7(n,q)−−−→
kρ→0

j
1

πkρ

[
1
a

(
b
a

)ν−1

+
1
b

(
a
b

)ν
]

(A.19)

Para argumentos grandes:

Θ1(n,q)−−−→
kρ→∞

2 j
πkρ

√
ab

(1+
1

4kρ
2ab

)
sin(kρ(b−a))+

(
1

2kρb
− 1

2kρa

)
cos(kρ(b−a))

 (A.20)

Θ3(n,q)−−−→
kρ→∞

−2 j
πkρ

√
ab

[
1

2kρa
sin(kρ(b−a))+ cos(kρ(b−a))

]
(A.21)

Θ5(n,q)−−−→
kρ→∞

2 j
πkρ

√
ab

sin
(
kρ(b−a)

)
(A.22)

Θ7(n,q)−−−→
kρ→∞

2 j
πkρ

√
ab

[
cos
(
kρ(b−a)

)
− 1

2kρb
sin
(
kρ(b−a)

)]
(A.23)

Formalmente, definimos argumento pequeno como aquele menor do que argmin. Para ordem

igual a 0 definimos argmin como:

argmin = 2×10−expmin (A.24)

Já para ordem diferente de 0, definimos argmin como:

argmin = 2×10
1

ν+1

[
log10

(
ν!
2π

)
− expmin

]
(A.25)

Argumento grande é definido como aquele maior que o valor arbitrário argmax.

Para evitar calcular o fatorial de um número potencialmente grande, podemos reescrever a

expressão utilizando a propriedade do logaritmo dos produtos como:

log(x!) =
x

∑
n=1

log(n) (A.26)
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