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ABSTRACT

The demand for antennas that combine structural integration, high performance, and
versatility drives research into innovative configurations. In this context, this dissertation presents
the theoretical formulation, numerical implementation, and validation of a computational method
for the analysis of embedded hybrid cylindrical antennas using the Method of Moments (MoM).
These antennas combine the structural advantages of cylindrical conformal antennas with the
performance enhancements of hybrid microstrip antennas, standing out for their ability to offer
reduced cross-polarization and compensation of inductive reactance, crucial characteristics for
optimizing performance in various applications.

Through the application of the equivalence principle, the interface between the dielectric
cavity and the external environment is replaced by a surface of magnetic currents, allowing for
the independent analysis of the cavity and free space. The dielectric cavity is thus modeled as a
structure enclosed by perfect electric conductors, enabling the calculation of electromagnetic
fields via resonant cavity methods and Green’s functions in the Fourier domain. The surface
magnetic current introduced in this transformation is discretized with sinusoidal basis functions
in the angular and axial directions. The feeding probe is modeled as a conducting strip and
incorporated into the MoM formulation, resulting in a linear system from which the input
impedance and radiation patterns are obtained.

An original software, implemented in Matlab, was developed to automate the proposed
analysis. The validation of this tool is performed through comparisons with HFSS simulations,
showing excellent agreement in impedance results and radiation patterns. Additionally, a
parametric study was conducted to analyze the impact of critical parameters on accuracy and
execution time, demonstrating the robustness and computational efficiency of the proposed
method.

Keywords: Embedded antennas, Hybrid cylindrical antennas, Method of Moments, Computati-
onal electromagnetics, Matlab.



RESUMO

A demanda por antenas que combinem integra¢do estrutural, alto desempenho e versa-
tilidade impulsiona a pesquisa em configuragdes inovadoras. Neste contexto, esta dissertacao
apresenta a formulagdo tedrica, implementagdo numérica e validacao de um método computacio-
nal para a anélise de antenas cilindricas hibridas embutidas utilizando o Método dos Momentos
(MoM). Essas antenas combinam as vantagens estruturais das antenas conformadas cilindricas
com os aprimoramentos de desempenho das antenas de microfita hibridas, destacando-se pela
capacidade de oferecer redugdo da polarizacdo cruzada e compensacao da reatancia indutiva,
caracteristicas cruciais para a otimiza¢ao do desempenho em diversas aplicacoes.

Por meio da utilizagdo do principio da equivaléncia, a interface entre a cavidade dielétrica
e o ambiente externo € substituida por uma superficie de correntes magnéticas, permitindo a
analise independente da cavidade e do espaco livre. A cavidade dielétrica é, assim, modelada
como uma estrutura fechada por condutores elétricos perfeitos, permitindo o calculo dos campos
eletromagnéticos via métodos de cavidade ressonante e fun¢des de Green no dominio de Fourier.
A corrente magnética superficial introduzida nessa transformacao € discretizada com fung¢des
de base senoidais nas direcdes angular e axial. A ponta de prova de alimentacdo € modelada
como uma fita condutora e incorporada a formula¢do do MoM, resultando em um sistema linear
a partir do qual se obtém a impedancia de entrada e os diagramas de radiacao.

Um software original, implementado em Matlab, foi desenvolvido para automatizar
a andlise proposta. A validacdo dessa ferramenta € realizada por meio de comparagdes com
simulacdes no HFSS, apresentando excelente concordancia nos resultados de impedancia e
diagramas de radiag¢do. Adicionalmente, um estudo paramétrico foi conduzido para analisar o
impacto de parametros criticos na acurécia e no tempo de execucdo, evidenciando a robustez e a

eficiéncia computacional do método proposto.

Palavras-chave: Antenas embutidas, Antenas cilindricas hibridas, Método dos Momentos,

Eletromagnetismo computacional, Matlab.
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INTRODUCAO

As antenas de microfita conformadas constituem uma classe de antenas projetadas para
se adaptar a superficie do dispositivo, sendo bastante utilizadas em aplicagdes aeroespaciais, em
que o baixo arrasto dessas antenas € particularmente desejado [1]. Existem estudos desse tipo de
antena nos mais diversos formatos, entretanto, os mais comuns séo cilindros [2, 3, 4, 5] e esferas
[6, 7, 8, 9]. Na industria aeroespacial, por exemplo, as antenas cilindricas podem ser incluidas
no corpo de foguetes e avides [10, 11, 12]. Destacam-se duas categorias de antena nas quais as
antenas de microfita conformadas podem se encaixar: antenas flush-mounted (embutidas) [13],
nas quais a antena € instalada rente ao dispositivo, minimizando o arrasto € o impacto visual; e
antenas cavity-backed [3], nas quais a antena € instalada sobre uma cavidade, melhorando alguns
aspectos das antenas de microfita tradicionais, como banda e diretividade. A Figura 1 mostra

algumas geometrias de antenas conformes.

Figura 1: Diferentes geometrias de antenas conformes. Fonte: Conformal Array Antenna Theory
and Design

Antenas de microfita hibridas de patch retangular [14] possuem duas de suas bordas
aterradas, em contraste com o projeto tradicional, na qual nenhuma das bordas estd aterrada.

Esse tipo de antena foi desenvolvido para superar limitacdes das antenas de microfita tradicionais
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quando um substrato mais espesso € utilizado, i.e., alta polarizacdo cruzada e alta reatancia
indutiva [15].

Polarizacao cruzada refere-se a componente ortogonal a polarizagdo principal de uma
antena. Por exemplo, se a antena for projetada para ter polariza¢do horizontal, a polarizacao
cruzada serd a vertical. Uma antena com baixa polarizacdo cruzada oferece vdrias vantagens,
como uma melhor qualidade de sinal, maior isolamento entre canais (possibilitando a utiliza¢do
de multiplexagdo por divisdo de polarizagdo) e maior eficiéncia.

A impedancia de entrada refere-se a relacdo entre a tensdo e a corrente na porta de
alimentacdo da antena. Este parametro € fundamental, pois o ideal € que a impedancia de entrada
esteja ajustada (casada) com a impedancia da linha de transmissdo para garantir a maxima
eficiéncia.

Ao aterrar as bordas opostas do patch, a antena ganha a propriedade de baixa polariza¢io
cruzada, e o problema de alta reatancia indutiva é solucionado [16]. Esses comportamentos
sdo observados nas simulacdes apresentadas no capitulo Resultados. A Figura 2 mostra duas

configuracdes de antenas hibridas conformes cilindricas.

———

Figura 2: Antenas hibridas conformes cilindricas

Antenas cilindricas hibridas embutidas [17] sdo uma combinacao de antenas de microfita
conformadas cilindricas e antenas de microfita hibridas, oferecendo os beneficios das duas
técnicas. Dada a relevancia desse tipo de antena, este trabalho tem como objetivo desenvolver
um software para calcular as caracteristicas de impedancia de entrada e diagrama de radiacao,
dadas as propriedades eletromagnéticas e geométricas de uma antena desse tipo. A vantagem
de criar um solucionador novo especifico para um tipo de antena € que se espera um tempo de
execucao menor do que um solucionador geral, como discutido na Sessdo 4.4. Além disso, o
solucionador fica livre de restri¢cdes de exportagdo, desde que uma linguagem de cédigo livre seja
utilizada na implementacdo, que um software comercial tem dado o uso ébvio para desenvolver
armas [18]. Por fim, mesmo que nenhum desses pontos fosse relevante, a documentagao em
si do processo de criacdo de um solucionador personalizado e a associacio de vdrias técnicas
analiticas do eletromagnetismo tém grande valor didético.

No capitulo Formulacdo Tedrica, é feita uma andlise da antena utilizando diversas

técnicas analiticas e o método numérico do Método dos Momentos (MoM) [19]. Na Secdo
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2.3, é aplicado o principio da equivaléncia [20] para fechar a cavidade dielétrica da antena com
um condutor perfeito, o que € compensado pela adicao de uma corrente magnética na regiao
fechada. Na Sec¢do 2.3, € utilizado o método da cavidade ressonante [21] para calcular o campo
eletromagnético no dominio de Fourier dentro da cavidade, dadas as condicdes de contorno nas
paredes da cavidade. Em seguida, as fun¢des de Green na cavidade sdo calculadas, um requisito
para utilizar o modelo da corrente superficial na presenca de um dielétrico [22]. A interpretacdo
fisica da fun¢do de Green € que, com ela, € possivel calcular o campo elétrico a partir de um
impulso unitéario de corrente na superficie. Na Sec¢do 2.5, o campo eletromagnético externo €
obtido impondo a condi¢do de radiacdo e, entdo, as fun¢des de Green na regido externa sao
calculadas. Na Secdo 2.6, € introduzida a funcdo de base escolhida para ser utilizada com o
MoM e a corrente magnética, introduzida na Sec¢d@o 2.3 ao aplicar o principio da equivaléncia, é
discretizada. Na Sec¢ao 2.7, a corrente volumétrica na ponta de prova de alimentagdo € definida.
Para modelar a ponta de prova coaxial, foi utilizado o modelo de fita condutora [23]. Na Se¢do
2.8, as condig¢des de contorno da componente ¢ do campo H sdo utilizadas em conjunto com
o produto simétrico com a fung¢ao de teste, que, por conveniéncia, ¢ a mesma fungao utilizada
como func¢do de base, para originar uma equacdo no formato de sistema linear, na qual a matriz
Z tem seus termos oriundos dos campos excitados pela corrente magnética, enquanto a matriz
V tem seus termos oriundos da excitacdo da antena, proveniente da corrente volumétrica na
fita condutora. Ao resolver esse sistema, os pesos da matriz d sdo determinados, e a partir
deles a corrente superficial, e entdo o diagrama de radiacdo e impedancia de entrada podem
ser calculados. As equacdes para os elementos das matrizes Z e V sdo apresentadas na Secdo
2.9 e Secao 2.10, respectivamente. Na Secao 2.11, as equacdes para a impedancia de entrada
sdo apresentadas. A impedancia é separada em duas partes, uma oriunda da corrente magnética
superficial, e a outra da corrente elétrica na fita condutora. Na Se¢do 2.12, as equagdes para os
diagramas de radiac@o sdo apresentadas.

O capitulo Implementagdo descreve a implementagcdo do software escrito em Matlab,
que, utilizando a formulac@o do capitulo 2, computa a impedancia de entrada e diagrama de
radiacdo da antena.

O capitulo Resultados apresenta os resultados obtidos comparando-os com dois modelos
no HFSS [24], um com excitacdo feita com fita de corrente, e outro com um cabo coaxial.
As dimensdes e caracteristicas eletromagnéticas utilizadas na antena sdo as de Ribeiro Filho.
[14]. Um estudo sobre a influéncia dos parametros de precisao utilizados no software ¢ feito,

mostrando o impacto que eles t€ém na impedancia de entrada e no tempo de execugdo.
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FORMULACAO TEORICA

2.1 Geometria e propriedades elétricas

Uma antena cilindrica embutida € construida posicionando uma superficie condutiva
em uma cavidade setorial cilindrica, que por sua vez € preenchida com um material dielétrico.
A cavidade estd inserida em um cilindro condutor elétrico perfeito de raio b e altura infinita,
e € definida pelos limites angulares ¢; e ¢, radiais a a b e axiais z; a z. O dielétrico possui
permissividade elétrica relativa €, e tangente de perdas tand. A permeabilidade magnética do
material € considerada igual a permeabilidade do vacuo . A figura 3 contém uma representaciao

da cavidade.

Figura 3: Cavidade setorial cilindrica.

O patch é entao impressa na superficie da cavidade, no raio b. O escopo deste trabalho sdo
as antenas hibridas, que, no caso de um patch retangular, possuem duas bordas opostas aterradas,
i.e, em contato com o corpo condutor do cilindro. Existem duas configuracdes possiveis de
aterramento: bordas superior e inferior, ou bordas laterais. Dependendo dessa escolha, ao

aplicar o principio da equivaléncia, a direcdo da corrente magnética na superficie serd diferente.



15

Denominamos entdo a antena do tipo M, como possuindo bordas superior e inferior aterradas e,
portanto, corrente magnética na dire¢do z, enquanto a antena do tipo My possui as bordas laterais
aterradas e corrente magnética na direcdo ¢. O estudo das antenas do tipo M, foi feito em [25].
O foco deste trabalho s@o as antenas do tipo My, porém uma formulagdo geral para correntes em
uma direcao arbitrdria é apresentada. Em ambos os casos, a corrente € aproximada como estando
somente em uma dire¢do, quando na realidade isso ndo acontece, especialmente conforme o
tamanho da abertura da cavidade aumenta.

Formalmente, a antena tipo M, esté localizada entre z; e z» na direcdo z e entre os angulos
014 € o4, enquanto a antena M, estd localizada entre 7, € 22, na diregdo z e entre os dngulos ¢,
€ (Pz.

As figuras 4 e 5 representam as antenas do tipo M, e My, respectivamente.

21 v\ Izla
y o y
X X
Figura 4: Antena hibrida do tipo M, Figura 5: Antena hibrida do tipo M,

Formalmente, a geometria da cavidade € definida através das seguintes equacoes:

a<p<b
01 <9 < @.1)

211<z<p

Ja a antena do tipo M € definida por:

¢ (2.2)
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A partir das equagdes anteriores, definimos:

L=7—1z

2.3
AP =dr— @)

2.2 Visao Geral

As proximas sec¢des deste capitulo detalham a formulagdo tedrica para a andlise da antena
descrita na secdo anterior.

Na Secdo 2.3, abordaremos o principio da equivaléncia [20], que transforma o problema
original em um problema equivalente ao fechar a cavidade dielétrica com um condutor perfeito e
separar a antena em uma regiao interna (cavidade) e uma regido externa (espago livre). Com
essa modificacdo, faz-se necessdrio acrescentar correntes magnéticas na regido fechada, a fim de
manter o campo externo igual ao problema original.

Na Secdo 2.4, utilizaremos a cavidade fechada na se¢do anterior para aplicar o método
da cavidade ressonante [21] e calcular o campo eletromagnético dentro da cavidade e, entdo,
calcular as fun¢des de Green. Esse tltimo passo € um requisito para aplicar o método da corrente
superficial [22] e € andlogo a aplicar um impulso unitdrio de corrente magnética na superficie
para calcular os campos resultantes.

Na Secdo 2.5, o campo eletromagnético externo € calculado impondo a condicao de
radiacdo e as fungdes de Green externas sdo calculadas.

Na Secdo 2.6 o Método dos Momentos (MoM) [19] € apresentado. A corrente magnética
introduzida na Secdo 2.3 € discretizada, o que € um requisito do MoM, e a func¢do de base é
definida.

Na Secado 2.7, a alimentacdo da antena é definida. A antena é alimentada por uma
ponta de prova coaxial modelada como uma fita condutora perfeita [23] portando uma corrente
volumétrica.

Na Secdo 2.8, aplicam-se as condi¢des de contorno na interface da cavidade com o
espaco livre para obter uma rela¢io entre o campo magnético interno e externo. Entdo, aplicando
o produto simétrico do campo com a funcao de teste (a mesma que a funcio de base), chegamos
a uma formulac@o em formato de sistema linear com 3 matrizes: a matriz de impedancia Z,
matriz de coeficientes d e matriz de tensdes V. Os elementos das matrizes Z e V sdo calculados,
respectivamente, na Secao 2.9 e Secdo 2.10, e ao resolver o sistema, obt€ém-se os elementos da
matriz d, a partir da qual se calcula a corrente na antena, e a impedancia de entrada e o diagrama
de radiacdo sao derivados.

Por fim, na Se¢do 2.11, a impedancia de entrada € calculada somando as contribui¢cdes
da corrente magnética na superficie com a corrente na fita condutora utilizada na alimentacao da

antena; e na Secao 2.12, o diagrama de radiacdo € calculado.
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2.3 Principio da equivaléncia

O principio da equivaléncia [20] (3-5) afirma que fontes que produzem o mesmo campo
em uma certa regido sdo equivalentes nessa regido. Portanto, é possivel criar uma estrutura
equivalente alterando as propriedades da interface antena-exterior de forma que o campo externo
permanec¢a o mesmo, mas, do ponto de vista matemaético, o problema se torna mais fécil de ser
resolvido.

E com esse intuito que o principio da equivaléncia é utilizado aqui. A superficie da
cavidade (p = b) € substituida por uma superficie condutora elétrica perfeita. Dessa forma, a
cavidade passa a possuir todas as 6 interfaces com condutores elétricos perfeitos, o que serd
aproveitado nas Se¢Oes 2.4.1 e 2.4.2. Para manter o campo externo igual ao da configuragcdo
original, é necessario introduzir uma corrente magnética na superficie da cavidade conforme
[20] (3-15):

M=E xh 2.4)

Onde E é o campo elétrico e # € o versor normal.

2.3.1 Corrente magnética na regiao interna

Internamente, o vetor normal da superficie estd na direcdo radial negativa (—p) e o
campo elétrico € tangencial a superficie numa dire¢do arbitréria, i.e. possui componentes axial

(z) e angular (¢), conforme ilustrado na Figura 6:

Figura 6: Versor normal e campo elétrico na regido interna.
Portanto, pela equagdo (2.4):
M; =E(b,$,2) x (—ap) = dp x E(b,$,2) =M (2.5)

2.3.2 Corrente magnética na regiao externa

Analogamente a regido interna, o vetor normal agora estéd na direcdo radial positiva e o

campo elétrico continua 0 mesmo, como ilustrado na Figura 7:
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.

Figura 7: Campo elétrico e versor normal na regido externa.

Novamente pela equacdo (2.4):
Me:E(b7¢>Z)XdP:(_aAP)XE(baq)?Z):_M (26)

Nota-se que as correntes magnéticas no interior e no exterior sao de mesma magnitude,

porém em sentidos opostos.

2.4 Campo eletromagnético na cavidade

Ao construir o problema equivalente, como demonstrado na se¢do anterior, a possibili-
dade de calcular os campos eletromagnéticos no interior da cavidade se abre. Isso € alcangado
utilizando as equacdes [20] (5-18, 5-19) para os campos T'M, (transversal magnético na dire¢ao
z) e TE, (transversal elétrico na direcdo z) respectivamente. Os modos transversais ocorrem
quando o campo eletromagnético estd confinado em um guia ou cavidade, e sdo caracterizados
por uma componente do campo estando num plano perpendicular, i.e. transversal, a dire¢ao de
propagacgdo. A direcdo arbitrdria da corrente magnética faz com que ambos os modos possam
aparecer, dependendo da geometria da antena. Por exemplo, a antena hibrida do tipo M possui
corrente magnética apenas na direcdo z [25] (3.2, 3.3) e, com isso, produz apenas campo TE;. Ja
a antena do tipo My possui corrente na dire¢do ¢, que, por ndo ser uma dire¢do cartesiana, gera
ambos os campos TE, e TM,.

As subsecOes 2.4.1 e 2.4.2 a seguir mostram o procedimento para calcular os campos.

2.4.1 Componentes de Campo TE,

A componente TE, dos campos, gerados através de potenciais vetores F=F (P, 9,2)az,
estard presente em ambos os campos excitados por correntes magnéticas M, e My. Nota-se que o
subscrito "d"indica que uma equacao estd relacionada a regido interna; inclusive, a permissividade
elétrica do dielétrico preenchendo a cavidade € definida como €; = €,&y. A partir disso, é possivel

calcular todas as componentes do campo eletromagnético através das equagdes [20] (5-19):
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__19F _ 1 9F
Ep=—52¢" Hp = 5ou9p0s
__OF, | 9°F
Ey =35 Ho = jop3900 27
1 92 2
\EZZO szm<$+kd>FZd
kg = o\/UE;

No interior da cavidade, o potencial vetor elétrico satisfaz a equacdo de onda em coorde-

nadas cilindricas:

V2F,, 4+ ks*F,, =0 (2.8)

E pode ser solucionado por separagdo de variaveis [20] (5-9):

F.,(p,9,2) = BE (kp,p)h(ve)h(k.,2) (2.9)

Onde h(v9) e h(k,,z) sdo fungdes harmonicas, BLE (kp,p) é uma combinagdo de fungdes de

Bessel e k;> =k, dz +kp d2_ O sobrescrito TE indica que essa funcao € relativa ao campo TE.

2.4.1.1 Condicéoes de contorno nas paredes ¢ = @1 e ¢ = (»

L

()

Figura 8: Paredes ¢ = ¢ ¢ ¢ = ¢5.

As paredes ¢ = @1 e ¢ = ¢» sdo condutoras elétricas perfeitas, portanto, os campos
tangenciais E; e E, sdo nulos nessas regides. Sendo assim:
E;=Ep=0[, , (2.10)

Pelas equacdes (2.7) e (2.9), isso implica:

dh(v9)
=0 2.11
d¢ 91,02 ( :

Lembrando que as fun¢des / sdo harmonicas, entdo devem conter uma combinacao de

senos e cossenos. Tendo isso em mente, chegamos a seguinte equacao:
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nm
A¢

OndeneNev= %. Nota-se que a solu¢@o deveria incluir um coeficiente, porém ele foi

h(vo) =cos (50~ 01)) @.12)

omitido, pois ao juntar as 3 partes da solucdo de F;, todos os coeficientes serdo reunidos em

apeénas um.

2.4.1.2 Condicoes de contorno nas paredes 7 =171 € 2 =2

2

Figura 9: Paredes z =zj e z = 25.

Nestas paredes, os campos tangenciais Ey € E, sdo nulos. Pelas equagdes (2.7) e (2.9):

JF;
Ep = — 155 = —3BYE (kp,p) 45 h(v9)h(kz,2) =0

" o 2.13)
JF, _ _ :
Ey=%55= %BgE(kpdp)h(vq))h(kzdz) =0 o
Isso implica:

h(kz,z) =0l (2.14)

Assim como no caso anterior, s; € uma fun¢do harmonica, logo:

) T

hlk) = sin (%20 2.15)

. . . ~ T
Onde g € N*, o conjunto dos nimeros naturais nao nulos, e k,, = qT.
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2.4.1.3 Condigoes de contorno na parede p = a

.

Figura 10: Parede p = a.

Nesta parede, os campos tangenciais Ey € E; sdo nulos. Logo, pelas equagdes (2.7) e

(2.9):
_9F _ d pTE _
Eg = G5 = dBYE (ko 0 )R(VO)lke,2) = 0| @.16)
O que implica:
4 pre (kp,p) =0 (2.17)
v - .
dp d p=a
A func¢do By é uma combinac¢ado de fun¢des de Bessel. Com isso, chegamos a seguinte
equacio:

/
Bz;E <dep) - dnq (JV (kpdp>H\(’2) (kpda) o J(/ (kpda)H\(fz) (kpdp)) (2.18)

Onde d,; € um coeficiente que engloba os coeficientes omitidos de & € h;. O valor de dy,; €
determinado pela fonte, como serd visto na se¢io 2.4.4 equacdo (2.63). Jy € a funcdo de Bessel
do primeiro tipo e H\(,z) ¢ a funcao de Hankel do segundo tipo. A fun¢do de Hankel do segundo
tipo € uma combinacdo das fun¢des de Bessel do primeiro tipo Jy e do segundo tipo Yy, expressa
como Héz) = Jy —iYy. A funcdo de Hankel ¢ utilizada ao longo da formulagdo para deixar as

equacdes mais compactas.

2.4.1.4 Transformada do potencial vetor elétrico
Substituindo (2.12), (2.15) e (2.18) em (2.9):
Flp.0.0) = BEp)oos (000 Jsin (Te-z)) @9
Onde v =2 e ky,* = ks* — (%)

Incluindo todos os possiveis valores de n e g, obtemos a solucdo geral da equacdo de

onda (2.8) no interior da cavidade:
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Fulp 0= Y, Y B Gppcos (5000 Jsin(Fe-z) 20
n=0 g=1

Definimos entdo as transformadas cosseno-seno da equagao (2.20):

F(p.9.9)= Y. Y F(p.n.g)cos (429 — o)) sin (% (z— )
n=0 ¢=1 2.21)
€02 /¢2 / .
F s Ity :_”l_ F I ) = - i I (z— dzd
pm9=gorf, | P9 2)cos (4(9 — 1) ) sin (9 (z—21)) dzdo
Onde €,= n=0
n+#0
Comparando (2.20) (2.21), concluimos que:
F (p,n.q) = BYE (ko,p)
(2.22)

/
= dnq Jv(kpdp)H\(/z) (kpda) _J(/(kpda)H\(/Z) (kpdp)

2.4.2 Componentes de Campo 7T M,

A componente ¢ da corrente magnética também gera um potencial vetor magnético na
direcdo z A= A, (p,9,2)d;), além do potencial vetor elétrico na dire¢do z que leva ao campo
TE,. O procedimento para o campo TM, é andlogo ao do campo TE,, porém utilizando a
equacao [20] (5-18):

1 9% 1 9A;
Ep = 508, 9pas Hp = 555"
o 1 82Azd _ aAzd
1 92 2
EZ:W(a_Zz—de)AZd HZZO

\

kg = 0.\/ILE,

Analogamente a equacgdo (2.9), temos que:

A<, (p.0.2) = BIM (kp, p)(v0) (k. 2) (2.24)

Onde o sobrescrito TM indica que a equagao € relativa ao campo TM.
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2.4.2.1 Condicoes de contorno nas paredes ¢ = @1 e ¢ =

Os campos E; e E, sdo nulos nessas paredes. Sendo assim, pelas equagoes (2.23) e
(2.24):

h(ve)=0|, , (2.25)

Resolvendo a equagdo, chegamos a:

nm

h(vg) = sin <A¢

(0— ¢1)> (2.26)

OndeneN*ev:%.

2.4.2.2 Condicoes de contorno nas paredes 7z =71 ez7=27

Nestas paredes, os campos tangenciais Ey e E, sdo nulos. Pelas equagdes (2.23) e (2.24):

d
—h(k,yz) =0

(2.27)

21,22

Portanto:

h(k,z) = cos (%(z — Z1)> (2.28)

Ondequekzd:%.

2.4.2.3 Condicoes de contorno na parede p = a
Nesta parede, os campos tangenciais Ey € E; sdo nulos. Logo, pelas equagdes (2.23) e

(2.24):

BIM (ky,p) = 0 . (2.29)

Logo:

BSM(dep) = Jnq (JV (deP)H\(/Z) (kp,a) = Jv (kpda)H\(/Z) (kpdp)> (2.30)

Onde f,, € andlogo a d, e € definido pela equagdo (2.56).

2.4.2.4 Transformada do potencial vetor magnético

Substituindo (2.26), (2.28) e (2.30) em (2.24):

Aop.0.2) = B p)sin (A2 (9 - 00 Joos (Pe-2)) @2
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2
Onde v = 3% e kp,” = ka* — ()

A solucido geral é:

o=, ZOBzM(kpdp)sin(gw—m)) os(Te-m)) e

Definimos entdo as transformadas seno-cosseno da equagdo (2.32):

A(p, ,z)zz ZASC(PﬂaCI}SiH(%((P—¢1)>cos(%(z—11))
(2.33)

A*(p.n,q) = &E/¢ A(p,¢,z)sin (%((P —¢1)) cos (7 (z—z1)) dzd¢

1 <1

q=0
q70

De forma geral, a notagdo utilizada para nomear as transformadas segue a convengado de

Onde €,=

utilizar o nome do nucleo sobre ¢ seguido do nome do nucleo sobre z, abreviando para a primeira
letra do nome ao lado do simbolo de chapéu. Nesse caso, seguindo a ordem dos nicleos sobre @
e z, temos seno seguido de cosseno, o que da a transformada o nome seno-cosseno, abreviado
para sc e anotado na equagio como [1*¢.

Comparando (2.32) (2.33), concluimos que:

A oy (Pn.a) = By (ko,p)

o o (2.34)
= fng [JV(deP)Hv (kpda) _Jv(kpda)Hv (dep)

2.4.3 Expansao do campo na cavidade

Agora que os vetores potenciais magnético e elétrico foram definidos, € possivel determi-
nar todas as 6 componentes do campo eletromagnético na cavidade através das equacoes (2.7),
(2.20), (2.22), (2.23), (2.32) e (2.34). A seguir € apresentado o cdlculo completo para o campo
E,. Para os demais campos, o processo € andlogo, portanto as contas sdo apresentadas de forma

simplificada.
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2.4.3.1 Campo Ej
Das equacdes (2.7) e (2.23) temos que:

1 9%A,, 10F,

= 2.35
Pa™ jwe; dpdz  p 99 (2.33)
Substituindo as equagdes (2.20), (2.22), (2.32) e (2.34):
_ e 1 d Asc qm nw i
EPd_Z Z [_M—Q%Azd(p’n,q)f—i_pA(PF‘zd (p7 ,Q)
n=1 g=1 (2.36)

- sin E(fl) —¢1)) sin (%(Z_Zl))

Nota-se que a equacdo (2.36) é uma transformada seno-seno:

Ep,(p.9.2) =i i pnqsm( 360 «m))sm(%(z—m))

E3 (pn.q)= A¢L/¢2/ Epdp,<z>zsm<A¢(¢ ¢1)>sm< (z— zl))dzdgb

(2.37)
Comparando as equagdes (2.36) e (2.37):
ss 1 grm o nw frcs
E (p7 n, ):_ngd L apAZd(pv yq ) mF‘Zd (pvn;q> (238)
2.4.3.2 Campo E
1 0%A,, OF
E — d Zd
b jwsdp 8¢3z+ dp
nTqr  0d A
Z Z P W] FREED)
n=0 g=
) /4
cos (25000 ) sin (P20
Identificando a transformada cosseno-seno:
—1 nw qru 3
Egypna) =8 A (p.ng) + —F " (p.n.a) (2.40)
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2.4.3.3 Campo E,

E 1 7’ +ik2 A =
W e, \ 92 )

n=1¢g=0

Identificando a transformada seno-cosseno:

2
de

JOE,

E oy (Piq) = A5 2y (P:1,q)

2.4.3.4 Campo H,

g 104y 1 J*F,,
pd—p 00  joudpdz

e A pnaysin (45 (9 - o0) oo (% (c))

1 0 qr
Z Z [pmb quc?pFZd (p.,4) L}

n=0 g=0

.COS(M,@ o)) cos (F(z-))

Identificando a transformada cosseno-cosseno:

Pd pAY” Zd

A 1 a A
Hcc(p=n7Q) o Acs(p7 76])—’—]—@—}7

2.4.3.5 Campo Hy

1 J’F,
d op  joup dgadz

B g d fsc 1 nm qm fes
H¢d—Z Z {—%Azd(l?,nﬂ)—mmf};‘zd

Identificando a transformada seno-cosseno:

(p7n,cj) '

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)
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A a » 1
He(pna) =~ 3 AL (pma) < 2a T (0ma) (2.46)

o 2 (2.47)
. o4 TCS nw.. (g,
Ha= Y, Y 2 Epmapcos (50 —0 Jsin (420
n=0 g=1
Identificando a transformada cosseno-seno:
H (p.n,q) = 5, FSp.n,q) (2.48)
Zd panaq _]O)IJ Zd panaq .

2.4.4 Funcoes de Green no interior da cavidade

Agora que temos todos os campos na cavidade, podemos utilizar a condi¢do de contorno
na superficie p = b para calcular as fun¢des de Green na cavidade. Uma funcdo de Green
representa a resposta ao impulso de um operador diferencial linear e € particularmente 1til para
resolver equagdes diferenciais lineares. Se temos um operador linear L, uma funcdo de Green G

¢ solucdo de LG = &, onde 9 ¢ a fungdo delta de Dirac.

L

Figura 11: Parede p = b
Da equagao (2.5), temos:

M; =~ x Eg = dp x [Eg, 8¢ + Ex,d;] = Eg,0: — Er, ) ,_, (2.49)

Assim como o campo elétrico, a corrente magnética M; também tem componentes na

direcdo ¢ e z:

M; = Ma, + Mydy (2.50)
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Comparando as ultimas duas equagdes, concluimos que:

M, = +E
e = Houlpmy 2.51)
My = —E.,| b

Aplicando a transformada cosseno-seno na equacgdo de M, e utilizando a equagao (2.40),
temos que:

M (n.q) = Eg (b.n,9)

<
(2.52)

d fs
(b,l’l,Q) + %P-'Zd (b7n7Q)
Agora, aplicando a transformada seno-cosseno na equagao de M, e utilizando a equagdo

(2.42), temos que:

Mg (n.q) = —F?“’<b ma)

w (2.53)
]a)edA (b,n,q)
2.4.4.1 Fungdo de Green para A,
A partir das equagdes (2.34) e (2.53):
ysc ks
M (n.q) = ——PL BT (ky, 1)
JWEq
2 (2.54)
2 2
=t [ g, YHS (k@) = Iy (g, )Y (K, )
Definimos ®5 como:
®s(n,q) = Jy (kp,b)HS (kp,a) — Iy (kpya) HS (Ko, b) (2.55)
Reformulando a equagdo (2.54), isolamos f,:
]608d SC
fnq = k2 @5(11 (])M (l’l q) (2.56)
Substituindo f;, na equagao (2.34):
Asc JOE rsc 2 2
Azd (p,n,q) = _W(Zq)M‘P (1,9) | Iy (ko P)YH (kp,@) — Iy (p, @) Hy (kp,p)
A (2.57)
=| G, (pon M (n.q)
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Onde a transformada da fun¢do de Green é:

o kp,0s(n,q)

AA [OE,
GMd (P1,q) = — 5= [ Iy (kp, ) HY (k@) — Iy () HY.

(ko,P)

2.4.4.2 Fungdo de Green para Fy

Utilizando as equacdes (2.22), (2.34) e (2.52):

M) =~ I Gk b)Y (kpya) v k)

]a)e bAQ L

+dnqkpd { (kpdb) ( ) (kpd ) (de ) ( ) (kpdb)}

Definimos ®; como:

H\(/Z) (kpdb)]

/ !
©1(n,q) = I, (kp,b)HS (Kpya) — T} (kp,@) HS (kp,b)

Substituindo @1 e @5 na equacdo (2.59):

ycs 1 nmw qm
MZ (n>CI) = fnq®5(” Q)+dnqkpd®l(n (I)

]a)s bA¢

Nota-se que:

fnq®5(”7Q): ]kz Mq)( ‘I)

Substituindo em (2.61) e isolando dy:

g Mzcs(n,q) nm qm Méjc(”ﬂ)
ng —

ko, ®1(n,q)  bAY L k3,0 (n,q)
Substituindo na equagao (2.22):

~ B M
B ) = |l e o
04 1(n,q) bA(]) L k @1(11 (])

2 7 (2)
Jv(kpdp)Hv (kpda) Jv(kpda)Hv (kpdp)

= Gyl (o.M (n.9)+ Gy (0.0, )M (n,0)

Onde as transformadas das fun¢des de Green sao:

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)
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AF nw gnw 1 /
G,¢ __"rgr {J ko 0VH (ky a) — T (ko a)HP (k } 2.65
My P D = AL i3 () | eV Boat) = I ) || (269

/\F /
Gl (pon.a) = b0 H ()~ Ty )5 ) || (26)

kpd®l <n7 q)

2.5 Campo eletromagnético externo

O campo eletromagnético externo, assim como o interno, pode possuir modos TE, e TM,
por conta da direcdo arbitraria da corrente magnética na superficie. Sendo assim, € necessario
expandir ambos os modos, como serd mostrado nesta secao. Nota-se que o subscrito O denota

entidades externas a cavidade.

2.5.1 Componentes de Campo TE,

Para o campo T E, temos um potencial vetor elétrico F= F, 4, que satisfaz a equagdo de

onda em coordenadas cilindricas:

V2, +kFy =0 ko= oy/Hog (2.67)

A solugdo de F;; por separacdo de varidveis € dada por [20] (5-14):

Fy(p.9,2) = HY (kpy p)e M0k (2.68)

Onden € Z, k; € R e kp, = 1 /k(% — k2. A fungdo de Hankel do segundo tipo foi escolhida por ser
a tnica funcao de Bessel que satisfaz a condi¢@o de radiacdo. Para a funcdo harmdnica em ¢, n
tem de ser inteiro para garantir a continuidade do campo angularmente. Para a fun¢do harmonica
em z, ndo ha restri¢do, portanto, o nimero pode ser real.

Somando todos os possiveis valores de n e integrando sobre k, chegamos a solucio geral
de F:

Fop.d.)= ) / Pk HS? (kg p)e ™ 3% (2.69)

NnN——oo —o0

Definindo o par de transformadas exponencial-Fourier:
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Ey(p.9,2) = Z / Ff(pnk)e o ¢k d

= (2.70)
E (pon k) = p.9.2)e" e dg d,
Comparando (2.69) e (2.70):
P}f)f(P,n, k) = fax, H (koo P) (2.71)

O Sobrescrito e f antecedido do simbolo de chapéu denota a transformada exponencial-

Fourier.

2.5.2 Componentes de Campo 7T M,
Para o campo TM,, os cdlculos sdo andlogos ao do campo TE,, porém utilizando o
potencial vetor magnético A= A d;.
A solucao por separacdo de varidveis €:
2 o o
Ay (p,0,2) = Hy? (kg p)e "0 eIt (2.72)

A soluciao geral é:

Ay (p,9,2) Z ot Hy (koo p)e " &5 ik, (2.73)

Definindo o par de transformadas exponencial-Fourier:

Ay (p,9,2) Z Aef (p, n,kz)e_f”‘f’ e_jkzzdkz
T (2.74)

A (p,n.k) Az (p,9,2)e? % dg dk,

—7T

Comparando (2.73) e (2.74):

N

Ai({(l):na kZ) = 8nk, ngz) (kpo P) (2.75)

2.5.3 Expansao do campo externo

O célculo para o campo externo € andlogo ao do campo interno, com a ressalva de que,
no dominio da transformada exponencial-Fourier, as derivadas d/d¢ e d/dz sdo substituidas,

respectivamente, por — jn € — jk,. Portanto, as 6 componentes do campo exterior sao:
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Egl k) == 2 A (o) + DES (oo
Eg (o) =~ AL (o) + 5 Pl (p.nk)
E k)= 2 A ok
A (pnk) = A (pnkc) - af;O%Iif)f (p.n. k)

A 2 Fal
Hef<p,l’l,kz) = .](&Fef(pa’%kz)

“ jouy <0

2.5.4 Funcoes de Green na regiao externa

(2.76)

2.77)

(2.78)

(2.79)

(2.80)

2.81)

A partir dos campos calculados na se¢ao anterior, aplicamos a condi¢do de contorno na

superficie p = b para calcular as fun¢des de Green para a regido externa.

Da equagdo (2.6), lembramos que a corrente magnética externa M, tem sentido oposto a

corrente magnética interna M;. Portanto, das equagoes (2.49) e (2.50), temos que:

M, = ~M;d; ~ Mydy = ~Egd; + E:dg|,_,

Isolando as componentes em z e ¢:

M, = +E¢0‘p:b
My = —Eql,_,

Aplicando a transformada exponencial-Fourier a ambas as equacoes:

M (k) = +E4] (b,n. k)
My (k) E‘ff<, k)

Utilizando as equacdes (2.77) e (2.78) em (2.84):

M (k) = — ke Aef k)+—pFef(bnk)

jogyb <0

(2.82)

(2.83)

(2.84)

(2.85)
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2.5.4.1 Fungdo de Green para A

Da equagao (2.75) e (2.85):

Isolando gy :

JOE ef
8nk, = —ZTM (”,kz)
k5o Hn (koo D)
Substituindo g, de volta na equag@o (2.75):

A [ (D€ ~ef
A (pnk) = 220 M (n. k) B (kp, )
K3, Hy) (koo b)

AA A
= Gf, (o.n kMG (1)

Onde:

2.5.4.2 Fungdo de Green para F

Substituindo as equagdes (2.71) e (2.86) em (2.85), temos:

A nk A ef /
M (0 = = M 0ok + b B )
0

Isolando fy,:

~ef ~
_ nk M¢ (n,kz) Mzef(n,kz)
3 / /
bkpo H1$2) (kpo b) kPoHISZ) (kpo b)

fnkZ =

Substituindo de volta na equagdo (2.71):

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)
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A Mef I’l,kz Aef
Fef(p,njkz) _ l’lkz ¢ ( ) n MZ (l’l,kz) Hn(z)(kpop)

T 113 / /
bkpo S (kpy ) ko HY (kpy b) (2.93)

= GA]}\T/(I)Q) (p7nakz)M;f(n,kz) + GZ)Z (p,n,kZ)MZef(n,kZ)

Onde as transformadas das fun¢des de Green sao:

(2)
A nk, Hy”' (k
GA/([)¢ (panvkz> - bk3z 7(12)/( R p) (2943)
Po Hn (kPO b)
(2)
A K 1 H,”(k
Gy (pon ko) = k—% (2.94b)
Po H,™ (kp, b)
Na presenca de corrente magnética apenas na direcao ¢, a equagao se resume a:
Ae AFO A ef
onf(pm,kz) = GM¢ (k)M " (n,k) (2.95)

2.6 Funcoes de base M, (¢,z) senoidais

As funcgOes de base sdo a esséncia do Método dos Momentos. Segundo Harrington [19],
0 Método dos Momentos permite solucionar uma equag@o linear no formato L(f) = g, onde L é
um operador integral, f é uma func¢io desconhecida e g é um termo de excitacdo (e.g, tensao
elétrica) [19] (1-1). A funcdo f € aproximada por uma combinagdo linear de coeficientes a serem
determinados e uma funcdo de base f; arbitraria. Matematicamente, isso € dado pelas equacdes
[19] (1-21, 1-22):

K K
=Y afi= Y al(fi)=¢g (2.96)
k=1 k=1

Existem diversas possibilidades de funcdes de base (e.g. pulso, triangular, senoidal, etc.).
Ja que os campos internos sao senoidais, escolheu-se utilizar fun¢des de base senoidais [26], o
que acaba simplificando as equagdes dos campos internos excitados por cada funcio de base.

Como indicado pelo somatdrio na equagdo (2.96), para aplicar o Método dos Momentos,
€ necessdario realizar uma discretizacdo em N partes. Neste caso, o que € discretizado € a corrente
magnética, de forma que ela seja constante por partes, ou seja, ao longo da direcdo que ela é
discretizada, em cada parte ela é constante nessa direcdo (vide a Figura 14 abaixo para uma
representacao visual).

Agora se faz necessdrio definir a geometria do parch da antena. Como explicado, o foco

desse trabalho € nas antenas do tipo My. Nessa geometria observa-se a presenga de corrente
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magnética apenas na direcdo @, visto que o campo elétrico esta na direcao z, como ilustrado na
Figura 12 para o lado externo (para o lado interno o versor normal 7 estéd na dire¢do —da,). Logo,
aplicando as equagdes 2.5 e 2.6 do principio da equivaléncia, fica evidente a dire¢do da corrente
magnética. Sendo assim, a corrente € discretizada de forma que ela seja constante na dire¢do z e
tenha varia¢ao senoidal em ¢.

Figura 12: Campo elétrico e versor normal na regido externa para a antena do tipo M.

Nota-se que a parte condutora elétrica na superficie ndo entra nessa discretizacdo, visto
que n3o ha corrente magnética nessa regido. As linhas pontilhadas na Figura 13 ilustram a

discretizagdo, onde cada segmento vai de z = z1, a 2 = 22, para p € [1,N].

24 2p

Zla

21 o 92

Figura 13: Discretizag@o da corrente para m = 1 e p arbitrério

Visto que o campo elétrico € nulo em ¢ e ¢, a funcdo de base senoidal tem de ser nula

tanto em ¢ quanto em ¢». Tendo essa restricdo em mente, chegamos a seguinte equagao:

Momp(9,2) = sin [z’—g (¢ — ¢1)} z1p <2< 22 (2.97)

Onde ¢ < ¢ < ¢, 21, <z <22, e m € N*. A varidvel m representa os diferentes harmonicos
que a funcdo de base pode assumir, conforme ilustrado na Figura 14.
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- 1 /¢2
¢ S
S <
Fungdo de base em m = 1 Fungdo de base em m =2

Figura 14: Fun¢do de base em diferentes valores de m.

Portanto, da equacgdo (2.96) com todos os valores possiveis de m e p, temos que a corrente

magnética na dire¢do ¢ € aproximada por:

M P
M¢(¢7Z) = Z depM¢mp(¢,Z) (2.98)
m=1p=1

Onde M € a quantidade de harmonicas e P a quantidade de segmentos. O Capitulo 4 explora

como a impedancia de entrada e o diagrama de radiaciao se comportam para diferentes valores de
MeP.

2.6.1 Transformada seno-cosseno na cavidade

Adiante, serd necessdrio ter a transformada seno-cosseno da funcdo de base em relagao

ao interior da cavidade. A partir da equacdo (2.33), temos:

(2.99)

A integral em ¢ pode ser facilmente calculada utilizando a ortogonalidade entre as
fungdes seno [27], ou seja, a integral serd diferente de O apenas quando m = n. A integral em z,
que denominaremos de 13, (g), pode ser resolvida por substitui¢do de varidveis. Nota-se que para
q = 0 terfamos uma divisao por 0, porém o integrando se torna 1 e a solu¢do da integral € trivial.

Resolvendo a equacdo (2.99):
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9 E,2A
é)cl‘fnp(n,(I) A;L 2¢ 5mn13p((I) 5mn13p((I) (2.100)
Onde:
1 m=n
On = (2.101)
0 m#n
(z2p —21p) g=0
Byg)=¢ " 77 (2.102)

an [sm (% (z2p —21)) — sin (- (21 —Z1))] q#0
2.6.2 Transformada exponencial-Fourier no exterior

A transformada exponencial-Fourier da func¢do de base também serd necessaria posterior-

mente. Da equagdo (2.70), temos:

Mg, (n.k) = (2] / / Momp(9,2)e”™? e dg di

. ¢ | 2p (2.103)
= W sin ( A0 (¢ — ¢1)) e dg ek,
o1 Z1p
A solugdo da integral em z € trivial e a denominaremos de Iy, (k):
eijZzp _ eijle
Iy (k;) = - (2.104)

Jkz
Ja a integral em ¢ € calculada com substituicdo de varidvel e utilizando a equagdo
(14.518) do Manual de Férmulas e Tabelas Matematicas [28]:

. e“(asinbx — bcosbx)
/e sinbx dx = 2B (2.105)
sin < (¢ — ¢>1)) Mgy = " [1 (= 1)"eindd (2.106)
A¢ mr\" _ 2 AP
¢ A n

Substituindo as equagdes (2.104) e (2.106) na equacdo (2.103), temos:
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9 1 jngi .
M) = (2m)? (me)2 v A VA LA SR
E —n

2.7 Excitacao

A excitagdo da superficie condutora da antena € assumida como sendo feita por um probe
interno. O probe é modelado como uma fita condutora [23], ou seja, a altura ao longo de z é
infinitesimalmente pequena. A fita se estende de p = a at€ p = b, possui largura angular A¢ » e

estd centrada em zy € @¢. A Figura 15 ilustra a fita de alimentag@o.

Figura 15: Geometria da fita de alimentag@o da antena.

Dada a largura angular e o centro da antena, podemos calcular os angulos iniciais e finais

da fita:
_ Agy
Dr=0r—"7 (2.108)
O = P+ -

A partir da largura angular, também podemos calcular a largura média da fita:

a-+b
2

As correntes superficiais e volumétricas na fita, ambas na dire¢do p, sdo, respectivamente,

We =

Af ¢ (2.109)

definidas como:

I
Jsr(p.9) = ijbf (2.110)

I
Jvf(pv(p,z):pA—(;)fé(Z—Zf) (2.111)

Nas Secdes 2.10 e 2.11, € necessdrio ter a transformada seno-seno da densidade volumé-

trica de corrente. Portanto, a partir da equacao (2.37) temos:
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fsf(pnq A¢L/¢2/ hoy(p ¢zsln(A¢(¢> ¢1))sm< (z— zl))dqu)

(2.112)

Resolvendo a integral, chegamos a:

4
JE}(p,n,m:mLp'OA% cos <£(¢1f¢1)>cos (A”gfwzfm)) sin(qf(zfm))
(2.113)

2.8 Condicoes de contorno do campo H,

Das equagdes de Maxwell, sabemos que na auséncia de corrente elétrica superficial, o campo

magnético tangencial na interface é continuo. Isso implica:
< < >

Hy(My)+Hy(Jyr) =Hy(My) (2.114)

Nota-se que isso s6 € vdlido em z; < z < 214 € 224 < 7 < 22 que € a regido da interface com
dielétrico. Na regido metdlica, ha correntes superficiais e a equagdo acima estaria incompleta. O
sobrescrito < denota campo dentro da cavidade, enquanto > denota campo externo. Ou seja, 0 campo
interno devido as correntes My e J, ¢ € igual ao campo externo devido a M.

Substituindo a equacdo (2.98) na equacio (2.114), temos:

Z dequ) (Mogmp) +H¢ vr) Z depH¢ (Momp)

m=1p=1 1p=1
P= e (2.115)
M P
< > <
= Z Z dmp {H¢(M¢mp) —H¢(M¢>mp)} = —Hy(Jif)
m=1p=1

A equacdo acima é andloga a equacdo (2.96). Segundo Harrington [19], é necessdrio determinar
um produto simétrico (f,g) adequado para o problema seguindo as restricdes impostas em [19](1-2, 1-3,
1-4). Podemos utilizar a equacao [19](1-11) como base e ajustar o intervalo de integracdo para o dominio

das fungdes na equagdo (2.114):

21 )
<f,g>=/0 /f(¢72)g(¢32)bdzd¢ (2.116)

Visto que estamos avaliando o produto simétrico em p = b, o termo b € adicionado a equagao.
Agora precisamos definir uma fungdo de peso para ser utilizada no produto simétrico, como mostra a

equacdo [19](1-23). Por conveniéncia, € utilizada a mesma funcdo que a fungao de base (2.97):
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My (9,z) = sin [%W’—ﬁbl)} <z<zy (2.117)

Onde s e ¢ sdo andlogos a m e p e aplicam-se as mesmas restricdes aos intervalos de ¢, z, s e 7.
Aplicando o produto simétrico (2.116) em (2.115) e (2.117), temos:

P
< > <
dmp [<H¢ (M¢mp)>M¢st> - <H¢(M¢mp)aM¢st>] = - <H¢(Jvf)aM¢st> (2-118)
=1

M
)3
m=1

Podemos representar a equacio acima em uma forma matricial:

4

Z][d] = [V] 2.119)

Onde:

< >

Zst,mp = <Hq> (M¢mp)7M¢Avt> - <H¢ (Mq)mp)aMtpst> (2-120)
<

Vg =— <H¢ (Jv‘f),M¢S,> (2.121)

Denominamos a matriz Z como matriz de impedancias e V como matriz de tensdes (ndo confundir
com as propriedades fisicas impedancia e tensao). Os subscritos st,mp e st indicam as coordenadas nas
matrizes, sendo Z e d matrizes quadradas de dimensdes (M - P)x(M - P) e V uma matriz coluna com M - P
linhas. Para converter os valores de s, ¢, m e p para o ndmero da linha e da coluna, respectivamente,

utilizam-se as seguintes equacdes:

linha= (s—1)*P+t
(2.122)
coluna= (m—1)xP+p

O préximo passo € determinar os elementos das matrizes V e Z, para entdo encontrar a matriz d
ao resolver o sistema linear da equagdo (2.119). Por fim, com a matriz d calculada, € possivel determinar

a impedancia de entrada e o diagrama de radia¢do da antena.

2.9 FElementos da matriz [Z]

<
A equagdo da matriz de impedéncias (2.120) tem uma componente referente ao campo Hy interno

>
e outra referente a0 campo Hy externo. Ja que os termos sdo independentes entre si, podemos calculd-los

individualmente.

2.9.1 Campo interno

Da equacdo (2.46)
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Hyo (o) = - 5-A% (puna) -

calculamos a transformada inversa pela equacao (2.33):

_ O sc 1 nm grm
Hde p,9,2) = 2 , E , [—A (psn,q) — mmszd (p.n 61)]

-sin (9—o1) ) cos (L (z—21)
(S50 e (Fe-0)

As transformadas de A,; e F,; sdo dadas pelas equagdes (2.57) e (2.64). No caso de F,4, estamos

apenas interessados na parte referente a M. Substituindo na equag@do acima:

= _ S S Jd AAy 1 nm gn AFy
n=1 ¢=0 (2.124)

M, .q)sin 5 (0~ 00 ) os (T(z—a))

Calculando o produto simétrico (2.116) com p = b:

< 2r 2
<H¢(M¢mp)aM¢sr>=/0 / Hy(Mpmp)Mysi(9,2) bdzdd

21
B SR d AAy 1 nm gn AFy
= Z Z [_QpGMq)w’n’q)_jwubM)LGM¢(b’n’q)].
n=1 g=0
e 2w 2o ni gr
'Mfl)mp(n’q)'b'/o /Z1 My (¢,z)sin <A¢(¢_¢l)> cos <L(z—zl)) dzd¢

(2.125)

Nota-se que a integral tem o mesmo formato da equacao (2.33). Com isso:

(2.126)

A transformada seno-cosseno de My € dada pela equagdo (2.100). A transformada em mn possui

a funcéo §,,, enquanto a transformada em st possui a fungdo J,,, 0 que significa que os somatdrios s terdo
valores ndo nulos quando m = s = n . Por conta disso, podemos remover o somatério em n ja que dado
um par m, s qualquer, apenas um valor de # resultard em um valor nao nulo no somatério. Analogamente,

podemos substituir # na equagdo por m ou s, no caso foi escolhido substituir n por m.
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oo

< _ bAY €, _i AA B 1 mn qm AFy
<H¢(M¢mp)7M¢st> = X:OZL&”S [ 8[) GM¢ (b7m7q) jopbAd L GM¢ (bam74)
q:

: ISp(Q)I?st(Q)

(2.127)

A transformada da func@o de Green Gy, para A4 € dada pela equag@o (2.58), a partir da qual

calculamos a derivada em p:

Jd Ay JOE, /
3p Ot 0ms0) == s [k (K@) = Ty ) HY (k) (2.128)
Pa ’
Definindo ®7(n,q) como:
!/
O7(n,q) = J.,(ky, b)H (kp,a) — I, (kp,a) HS (kp,b) (2.129)

Chegamos a:

d AAd ijd @7(11 q)
—G,f (b,n,q)=— ’ (2.130)
ap My D= )
Definindo ®3(n,q) como:
!
O3(n,q) = Jy(kp,b)HS (kp,a) — I, (kp,a) HY (K, b) (2.131)
E substituindo na equacéo (2.65):
AF, nw gr 1 O3(n,q)
Gy (b,n,q) = — 22 4%~ T3, 2.132
My P9 = 56 L 13, ©1(m) 2132

2.9.2 Campo externo

Da equacao (2.80):

yef _ 0 ref
Hd)o (p’nvkz) - _%AZ() (p,l’l,kz) - ]

calculamos a transformada inversa através da equacao (2.70):

oo oo a R kz . » B
Hyy(p,0,2) = Z / [—A;({(p,n,kz)— B sz)f(p,n,kz) e " eIk gk, (2.133)

N=——o0 —0oQ

Substituindo as equacdes (2.89) e (2.95):
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oo oo

> d AO nk AFO
Ho(My )= ——G)p (pnk —Gyr (pnkr) |-
o(Mo,,,) = ) [ ap "M PR = o M P (2.134)

Nn——oo —0Q

-M;ﬁp (n, kz)e*"'"d’ e k2 dk,

Tomando o produto simétrico (2.116) em p = b:

> - ~ d Ao nk, Ak
<H¢(M¢mp),M¢st>: ) / b[ apGM(P(bnk) wuobGM(P(bnk)

~ef o ro ‘ ‘
‘Mq)mp(”akz) /q) / Mys(9,2)e 7" e dgdyz | dk,
1 Yz

(2.135)

A integral dupla em ¢ e z € dada pela equagdo (2.103). Substituindo na equagao anterior, temos:

> 2 8 AO l’lkz AFO
<H¢(M¢mp M¢g,> Z (27) b[ 35 Oty 0ok =2 Gg (b |
= (2.136)
Mef (n,kz)Mef(_”a_kz)dkz

Om )4 Pst

Lembrando que a transformada exponencial-Fourier de M, € dada pela equac@o (2.107).

A partir da equagdo (2.90), calculamos a derivada da funcao de Green para Ay em relagdo a p:

g2 )
—JjOE k
*G 0 (p,n,kz) /0% ()( pP) (2.137)
Ip koo Hy” (kp, b)
Nota-se que a equacdo (2.137) é uma funcgao par em relacio a n e k,, enquanto a equacio (2.94a)
da func@o de Green para Fy ¢ impar em relacdo a n e k,. Portanto, a combinacgéo de fun¢des de Green na

equagdo (2.136) € par, visto que o termo

nk,
jouob

é impar em n e k,. Lembre-se que a multiplicag@o de fungdes impares resulta em uma funcdo par e que a

soma de fungdes de mesma paridade mantém a paridade. Podemos explorar a paridade das funcdes para
mudar os limites inferiores do somatdrio e integral na equagdo (2.136) para 1 e 0, respectivamente. O
termo do somatério referente a n = 0 € separado da equacdo, jd que nao faz sentido pensar na paridade em

n, nesse caso. Levando esses pontos em consideracdo, temos que:
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<H¢(M¢mp qu /0 (2m) 2b GAO (b,0,k,) ]

[ ;ip ;f(o k)+M¢f (0, k)M(pf(Ok)}dkﬁ—
+n /0 ) 2m)? G}?}(p(b,n,kz) J”ﬁwG]I;(}q}(bnk)} (2.138)
Mg <nk>M¢f< nk) e MG k)M (k)
7 (nk)M, 15 (0.1 + M e My (n,kz)] dk,

Embora a equacio tenha ficado mais extensa, o somatério da integral ¢ uma operagdo bem custosa
computacionalmente, entdo diminuir o intervalo de integracio pela metade ' compensa na implementagio

da equagao.

2.10 Elementos da matriz [V]

Calculando o produto simétrico (2.116) da equacdo (2.121):

2 oo
Ve = — <I<1¢ (‘]Vf)7M¢Sf> = _/ / FI(P (Jvf)(ba(PaZ)M‘Pst((PvZ)bdqu) (2.139)
0 —oo

Podemos utilizar o teorema da reciprocidade de Harrington [20](3-8) para mudar os termos
na equacdo. O teorema da reciprocidade afirma que é possivel trocar a excitacdo (corrente elétrica e
magnética) de lugar com os campos eletromagnéticos gerados por tal excitacdo sem alterar a resposta
no sistema. Ou seja, se temos correntes J e M? gerando campos E¢ e H¢, e correntes J” e MY gerando
campos E” e H?, podemos trocar os termos de posi¢io sem alterar o resultado. Formalmente, isso é

descrito pela equagao (3-36) de Harrington [20]:

/// (Eajb _HaMb) dt = //v/ (EbJ“ _HbMa> Jt .140)

O teorema da reciprocidade nos permite alterar o tipo de excitagdo e campo a depender das
condi¢des do problema. No nosso caso, podemos trocar o campo magnético por um campo elétrico
e também trocar a corrente J,y de posi¢do com a corrente Myy. Para isso, distribuimos as entidades

eletromagnéticas da seguinte forma:

'Matematicamente, os intervalos (—oo,0) e [0, 0) possuem 0 mesmo comprimento, porém na implementagio o
limite superior € limitado por um parametro finito, entdo na pratica o intervalo da equagao (2.138) é a metade do
que seria na equacao (2.136)
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conjunto’a” conjunto”’b”
" s (2.141)
M*=0 M" = My (9.2)8(p — b)dg '

H = Hy(J E' —E,(M
= Hy(Jyy) =Ep(My)

O teorema da reciprocidade pede por correntes volumétricas, entdo criamos uma a partir da
densidade superficial My adicionando o impulso unitério. Substituindo os valores acima na equagio
(2.140) chegamos a:

/// (0 — de) (Jvf-)M¢st(¢7Z)5(P - b)) dt = /// (E<p (Md)st)fv,- _ ()) dt (2.142)

Observa-se que o lado esquerdo da equagdo anterior € igual a equacdo (2.139). Sendo assim,

Vi = /// E, (Moyi)Jy,dT (2.143)

concluimos que:

Da equacao (2.38):

1 gn d
 jwe; L dp Zd

ESS (p n,q) = (p7 n, )—I—T(PFZZS([),”,Q)

Substituindo as transformadas dos potenciais vetores magnético e elétrico pelas equagdes (2.57)

e (2.64) respectivamente:

5 1 gn d AA r AF, 9
E} (p.ng)= {— e TGy b+ Gyl . nq)] Mg @144)

Tomando a transformada inversa pela equacdo (2.37), temos:

o

- 1 gr d AAy nn Ay sc
qu nzlql[ Ja)ng%Gqu(p’ ,61)‘*‘pA¢GM¢(Pan,f1)]Mqﬁst(”,@'

.sin ( 29 (¢ — ¢1)> sin (an(z—Z1)>

Substituindo na equagdo (2.143):

(2.145)

2 P b o 1 gn 9 Ady ~
N1 T

sin <””<¢ - ¢1)) sin <"L”<z—m>> By (p.9.2)pdpdd:
(2.146)

Isolando os termos em ¢ e z, podemos utilizar a equacao (2.112) para substituir a integral:



46

Aq)L -y [ L am 9 AAd nx_Gha

Substituindo a equagdo (2.100), onde mp € trocado por st, na equacao (2.147) chegamos a:

X_AM/ Z Lam o G, ,q>+Gf;’¢<psq>}

joea L op Mg A (2.148)
c ~
1) 7 (p.s,)pdp

Lembrando que a fun¢io 6 da equagéo (2.100) faz com que seja possivel eliminar o somatério
duplo, visto que o valor da expressdo s6 € diferente de 0 quando n = q.

Podemos calcular a derivada da funcdo de Green a partir da equagdo (2.58):

8 d €,
GA (po1q) = 1= |y ki, PYHY (k) = ki ) (k) (2.149)
Pd 5(n7q>

Nota-se a semelhanca da expressdo entre colchetes com @7 (2.129), porém com b trocado por p.

Chamemos entdo essa expressio de O7p:

/
@71 (p.11,q) = I} (kpy P HY (kpya) — Iy (kp,a@) HY (kp,p) (2.150)

Chegamos a forma final da derivada:

d AA e O1p(p,1,q)
ZGyE (pon,gq) = — L2 02T (2.151)
ap My P D= e ng)
Analogamente para ®3 (2.131), definimos ®3, como:
_ 2 ' (2)
O3p(p,n,q) = Jy(kp,p)Hy" (kp,a) —Jy, (kp,a)Hy ™ (kp,P) (2.152)
E substituindo na equagao (2.65):
AF, n gr 1 O3 (p,n,q)
G,¢ P 2.153

2.11 Impedancia de Entrada

A impedancia de entrada da antena pode ser calculada utilizando a equacio (7-90) de Harrington
[20]:

1 T i
Zin——mz#EJsds (2.154)
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Para nosso caso, o campo elétrico tem duas partes: uma gerada pela corrente magnética na
superficie e outra gerada pela corrente no probe. Essa corrente é volumétrica, e ndo superficial como a da

equacgdo do Harrington, por isso, a integral ¢ modificada para uma integral tripla:

Zin = — 12/// EMS E(Jy,)| - Jy,dv (2.155)

Podemos separar a impedancia entre as contribui¢des devido a corrente magnética e devido a

corrente no probe:

Zin=27M+7/ (2.156)

Onde cada componente é definida como:

M = —Ilz /// E(M,)J,dv (2.157a)
/// Jo )y dv (2.157b)

Para determinar a componente proveniente da corrente magnética, substituimos a equacao (2.98)

1
lel’;[ = 17 mp// Md)mp deV

Omlpl

1
- 2 mp///EP Meomp)Jypdv
i

=1p=1

na equacdo (2.157a):

(2.158)

Comparando com a equagao dos elementos da matriz V (2.143), vemos que a integral tripla é a

prépria equagdo (2.143), portanto:

- Z depvmp (2.159)

0 m=1 p=1

A componente da impedancia proveniente da corrente elétrica é chamada de auto-impedancia
do probe e podemos calculd-la de forma aproximada como a impedancia da cavidade fechada. Esta
técnica € utilizada, pois oferece um bom balango entre simplicidade e precisdo. Ela desconsidera varios
mecanismos, porém para substratos finos e frequéncia de operacdo préxima da frequéncia de ressonancia
da cavidade, a precisdo € boa o suficiente. A cavidade possui material dielétrico de permissividade
€ = g¢&, e paredes condutoras perfeitas. Radialmente, a cavidade é muito pequena em comparacao as
outras dimensdes, entdo aproximamos o campo como constante em p [21]. Portanto, como os campos
tangenciais Ey e E; t€ém de ser O nas superficies p = a € p = b, mas o campo ndo varia com p, isso
implica que Ey € E; sdo 0 em toda a cavidade. Além disso, como a derivada do campo em relagdo a p € 0,

a equacio de onda homogénea perde uma das componentes € se torna:
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102 9%
EW—FTZZ—Fk Ep(9,2) =0 (2.160)

As solucdes para a equagdo de onda homogénea sdo os campos modais dentro da cavidade, e

podemos resolver por separacdo de varidveis:

Ep(9,2) = h(ve)h(k,z) (2.161)

A condigdo de contorno em z = z1, z =22 € Ep(¢,z) =0, assim como em ¢ = ¢; e ¢ = ¢,. Sendo

assim, os modos ng do campo na cavidade sdo dados por:

. (nm . (qm
Epnq(¢7Z) = A,y sin <A¢>(¢ — ¢)])) sin (L(z—zl)> (2.162)
Onde n € N* e g € N*, Substituindo na equacio de onda, temos:
1 92 92
— =t = +ki |E, =0 2.163
<p0 Ere + 072 + nq> Png ( )

Onde py = (a+b)/2 e kyq sdo dados por:

nwt \> [qn\’
o Gt (%) 21609

No interior da cavidade, o campo também deve satisfazer a equacdo de onda com fontes:

po 992

Sendo que E, € obtido expandindo o campo nos modos ng:

1 9% 92 )
< +35a2 +k§> Ep = joul,, (2.165)

s
gk

EP(¢7Z) = Epnq(¢7Z)

1

1Anq sin <Zg(¢ - ¢1)) sin (qf(z—m)>

Substituindo a equagdo (2.166) em (2.165) e usando a equacio (2.163) para substituir as derivadas,

3
Il
_

Q
I

(2.166)

I
s
gk

lq

n
temos:

Y Y - Bansin (450 - 00 )sin (20 = jows, .167)
n=1g=1 9

Agora, multiplicando ambos os lados pelas fungdes seno com varidveis trocadas por n’ € ¢’ €

integrando em ¢ e z, temos:
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ii(kﬁ—k%)fan/:zsm(Mw o0 )sin (a0 -0 d¢/ sin (a2 ) sin (4 (e -21) )

n=1¢g=1 1
_]a)u/ / Jy, sm ¢ ¢1)> sin (q/Ln(zzl)> dz¢
¢ Jz

(2.168)
As integrais na esquerda podem ser solucionadas com a ortogonalidade entre as fungdes seno,

enquanto a integral da direita é dada pela equagdo (2.112):

Ay (2 — 12 )—]a),u.]f(po, n.q) (2.169)

Substituindo n’ e ¢’ por n e g, temos:

qu

M k)

A o (Po.,q) (2.170)

Substituindo na equagéo (2.166):

Ep(¢,2) = Z Z (kﬁfw“ )]vf(po,n,q) sin (Zg(q)—qbl)) sin (qf(z—zl)> (2.171)

:flzz J“’“ J F(Po,m,q): 2.172)

/ /q) / v (Po, 9,2) sin <A¢(¢ ¢1)> sin (qf( —Z1)> podzd9dp

Como foi assumido que ndo ha variagdo do campo elétrico em p, a integral nessa varidvel se

torna (b —a). A integral dupla restante é dada pela equacdo (2.112). Portanto:

n 12

2
S| Jcoqu)L i i ( vf Pom q) ) 2.173)

Lembrando que a transformada seno-seno da densidade de corrente volumétrica devido ao probe

¢é dada pela equacgao (2.113).
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2.12 Diagramas de radiacao

Para obter o diagrama de radiacio é necessario calcular as componentes 6 e ¢ do campo elétrico

distante. Essas equagdes sdo dadas por Harrington [20] (3-97):

Eg = —jouAg — jkoFy

, _ (2.174)
Ey = —jouAy + jkoFp

Da secdo 2.5 Campo eletromagnético externo, vemos que os vetores potenciais magnético e
elétrico s6 t&ém componente na direcdo z, ou seja, em coordenadas esféricas possuem apenas componentes

na direcdo 0:

—

A=A d, = Ag=—Aysin0

. _ (2.175)
F=F, 4, = Fy=—F,sin0
Substituindo na equagdo (2.174):
Eg = jouA, sin6 2.176)
Eq) = _jkOFZo sin 0
As componentes z dos vetores A e F' s@o dadas pelas equacdes (2.70) e (2.74):
k ) —Jjng ,~ikz g
Fy(p.9,2) P n, e z
n——oo
A, (p.¢,2) = Z pnk)e n =ik gk,
N——o0
A transformada exponencial-Fourier de A; é dada pela equacao (2.89):
~ (2)
Hy™ (koo P) yyef
Al (k) = - 15% ()
. B0 H (o) ?
J4 para F, a equagdo é a (2.95):
pef nk. H\ (kp,p) vyef
F (o nk)=——=—" P (n, k) (2.177)

b3y 1 (kp, b)

2.12.1 Campo Eg

Substituindo as equagdes (2.74) e (2.89) referentes ao potencial vetor magnético na equagdo

(2.176) para a componente 0, temos:

(ee]

M (n,k)

Eg(p,0,9) = kysin6 Z e in9 (ﬂf
sz (kpob)

Nn=—oo — " Po

H (kpy p)e 7 dk, (2.178)
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Podemos aproximar essa integral assintoticamente para p — oo pelo método do ponto-de-sela

dado por Harrington [20] (5-143), com a ressalva de que essa equacdo s6 é valida para 6 # 0 ou 7:

o . —jkor
/ 1(w)H? (p ViE— w2) eMidw — 2% " (—kpcos 6) (2.179)

—00

Fazendo as seguintes substitui¢des, chegamos a:

w— —k;
dw — —dk,
K2 —w2 >\ [kE— K2 =Ky,
m](—k VHY (pkp, ) e 2k, — Pl " (—kcos 0) (2.180)
oo . Po ¢ reo r J '

Comparando com a equacdo (2.179) vemos que a funcdo I é dada por:

Mef 7kZ
I(—k;) = — k) (2.181)
K2, Hy? (kpy b)

po~ 1

Portanto, aproximamos a equagio (2.178) para:

e~ Jkor .HHZ\;I;f(n,kocos 0)

Eg(1,0,0) — kisin6 Z e /|2
r—oo

n—-—oo

j 5 (2.182)
r K2, Hy (ko b)

k, e kp, sdo dados pelas seguintes equagdes:
k, = kgcos 0

ko, = /K 12 = /B sin® 0 = ko sin 6

Nota-se que para kp, a equagdo € vélida em 0 < 6 < 7. Substituindo na equagdo anterior,

chegamos a:

Ee(r707¢) r:z rsine
n——oo

(2.183)

2 Jkor > ine Mgf(n,kocosﬂ)
Y

n-+1
2
H (kp, b)

Para n < 0, utilizando a equagdo (10.4.2) de Olver et al. The Handbook of Mathematical
Functions[29]

O @) = (1" (@)
chegamos a seguinte relacdo:

+—n+1 +—n+1 n+1
J - J =] (2.184)

H) (koo b)) (—1H (koo b)) H (kpy b)

Com isso, € possivel reescrever o somatério com intervalo de n = 1 a n = oo e parcela referente a



52

n =0 a parte:

. yef o .
Eo(r0.) — 20 | My (Okocos®) !

LA ef
gy o <e~/"¢M (n.kycos0) +
r—oo  rSIin 9 Hr(12> (kpo b) :lHrEZ) (kp() b) (P

(2.185)

+ ej"d’qu;f(—n, ko cos 6))

2.12.2 Campo E

Substituindo as equagdes (2.70) e (2.177) referentes ao potencial vetor elétrico na equacio (2.176)

para a componente ¢:

. oo el
ikosin 0 . k, My (nk;) .
Eg(p,0,0)=TL00 Y pemin / B 0 T B ke, p)e IR dik (2.186)
b B @) 0
Nn——oo —o0 Po Hn (kPO b)

Definindo /(—k;) como:

Mef n,k,
I(—k;) = ﬁ7¢/( ) (2.187)
koo B (ky, b)

E utilizando a equacéo (2.180):

kosin® ~jtar M (n,kocos 0
Jkosin 6 Z o972 Jko jn+1kocos(9 ¢ (n,kocos8)

Ey(r,0,9) — (2.188)
e b r koo B (kpy b)
Utilizando k, = ko cos 0 e kp, = ko sin 6:
2e R cosh : M(;f(n,kocose)
Eg(r,0,0) — j=————— ) ne /0! i (2.189)
roe"b kor sin®@ & Y (kpy b)

Utilizando a relacdo (2.184), que também € valida para a derivada da funcio de Hankel, visto que
a derivada de uma func¢ado de Bessel trivial pode ser escrita como uma combinacao linear de fungdes de
Bessel [29]:

2je M cos v jin o nyeS no AyeS
Es(r,0,0) — == M 7 (n,kgcos 0) —e™ M " (—n,kocos @
o (n; ’¢)Hw b kor SiHZQZH(Z)/k ) e 0 (n,kgcosB) —e 0 (—n,kpcosB)

n=114n (Po )

(2.190)
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IMPLEMENTACAO

Neste capitulo € apresentada a implementacdo em Matlab do método proposto para calcular as
propriedades de uma antena cilindrica hibrida embutida.

Para manter uma correlacio entre as equagdes € a implementagdo, o cédigo foi separado em
diversos arquivos com fungdes para cada uma das equagdes relevantes. No geral, as fung¢des sdo imple-
mentacdes bem diretas das equacdes, porém, em alguns casos, € necessario abordar a equacéo de outra
maneira para ndo enfrentar problemas computacionais (e.g. singularidades, precisao, overflow).

Nota-se a utilizag@o de algumas técnicas para aumentar o desempenho da aplicagio:

s Vetorizacdo: E uma técnica onde os dados sdo processados utilizando as funcionalidades
de SIMD (Single Instruction, Multiple Data - Instru¢io Unica, Miltiplos Dados), onde uma
Unica instru¢do a nivel de CPU processa um conjunto de dados simultaneamente. Ao escrever
0 cédigo com certos padrdes e operadores, o Matlab (e outras linguagens, no geral, por
exemplo, python com a biblioteca numpy) automaticamente utiliza as instru¢des SIMD do
processador. Por exemplo, em vez de escrever um loop para somar os valores em uma array,

podemos utilizar a funcio sum fornecida pelo Matlab que faz uso de instru¢des SIMD [30].

n Paralelismo: Consiste em rodar cdlculos em paralelo. Essa técnica € bastante eficaz e trivial
de ser utilizada quando hé célculos que podem ser realizados de forma independente, ja
que, nesse caso, ndo € necessdrio lidar com acesso concorrente a recursos, comunicagao
entre processos e sincronizacdo. Neste trabalho, escolheu-se paralelizar o cdlculo de cada
frequéncia do gréfico de impedancia de entrada, visto que cada frequéncia € independente da
outra. Outra possibilidade seria calcular os elementos das matrizes V e Z em paralelo, ja que
esses também sdo independentes. O Matlab fornece algumas conveniéncias para paralelizar o
codigo, como o loop paralelo utilizando parfor ou a criagdo e gerenciamento automatico de

uma pool de processos utilizando a funcado gcp [31].

Outro ponto notdvel € a utilizagdo da funcdo quadgk do Matlab [32] que implementa integracao
por quadratura adaptativa de Gauss-Kronrod.

A integracdo adaptativa Gauss-Kronrod é um método numérico para o cdlculo de integrais de
forma precisa e eficiente. Diferente da abordagem nao adaptativa com um nimero fixo de pontos, este
método se destaca por sua capacidade de adaptacdo. Ele ajusta a alocacdo de pontos de amostragem

de acordo com o comportamento da fungdo, concentrando o esforco computacional nas regides onde a
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variacdo é mais acentuada. No geral, esse método oferece bom tempo computacional e precisdo para
fungdes oscilatérias como as que estamos interessados em integrar neste trabalho.
O cédigo completo estd disponivel em:

https://github.com/rma6/embedded-cylindrical—-antenna—-mom.

3.1 mom.m - Func¢ao main

O arquivo mom.m funciona como func¢do main da implementacao. No inicio, os objetos relaci-
onados ao logging da execugdo do c6digo, os objetos necessarios para realizar a computacio de forma
paralela e o espaco de frequéncias para o qual a impedancia de entrada vai ser calculada sdo iniciados.

Em seguida, as matrizes Z e V para cada frequéncia sdo computadas. Nota-se que o calculo das
matrizes em cada frequéncia € independente, assim como o cédlculo de cada tipo de matriz. Dessa forma,
¢é possivel calcular cada uma das matrizes Z e V em paralelo sem necessitar de comunicacio entre os
processos. Isso é feito através do médulo de computacio paralela do Matlab: Parallel Computing Toolbox
[31]. A funcdo gcp inicializa e retorna uma pool de processos para computacao paralela e, através da
funcdo parfeval, é possivel submeter trabalhos para serem executados pela pool.

Ap6s todas as matrizes Z e V serem calculadas, as matrizes d s@o calculadas e, em seguida, a
impedancia de entrada para cada frequéncia € calculada, também em paralelo, porém dessa vez utilizando
o comando parfor, uma versao paralela de for, mas que também utiliza a pool criada anteriormente de
forma implicita.

Com os dados de impedancia de entrada em maos, € utilizada a funcio findpeaks para encontrar o
pico na resisténcia. O diagrama de radiagéo ¢ calculado para a frequéncia detectada por essa fungéo, € o
valor da resisténcia no pico é utilizado para calcular a poténcia, através da relagdo R - [I|>/2, que serd
utilizada para calcular o ganho.

Por fim, o grafico da impedéncia de entrada é gerado, os dados gerados pela execuc¢do do programa
s@o salvos e o processo chega ao fim.

A seguir, é apresentado o c6digo de mom.m:

Coédigo 3.1: mom.m

close 'all'

%$sets up logging and output folders

tstamp = datetime (now, 'ConvertFrom', "datenum');

tstamp strrep(string(tstamp),':"',"'-");
tfolder = sprintf("data/%s", tstamp);
mkdir (tfolder)

diary (fullfile (tfolder, "log.txt"))

%; was omited for logging purposes

P=params (2.4%x10"9)
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%$sets up multithreading
pool = gcp();
queue = parallel.pool.DataQueue();

afterEach (queue, @disp);

$frequency space
fregs = linspace(2.2,2.6,401)%10"9;
fregs_ghz = fregs/10"9;

$starts jobs

fprintf ("Total number of jobs: %i\n", size(fregs, 2)x2)

for it = 1l:size(freqgs, 2)
Zjobs (it) = parfeval (pool, @buildZMat, 1, params (freqgs(it)), queue)
Vijobs (it) = parfeval (pool, @buildvMat, 1, params (fregs(it)), queue)
end

%colects jobs results
7S fetchOutputs (Zjobs) ;
Vs fetchOutputs (Vjobs) ;

%$calculates D matrix and input impedance

Ds = cell(size(Zs));

zinf = zeros(l, size(Zs, 1));
zinm = zeros(l, size(Zs, 1));
zin = zeros(l, size(Zs, 1));
parfor it = l:size(Zs, 1)

Ds{it} = Zs{it}\Vs{it};

zinf (it) = z_in_f (params (fregs(it)));
zinm(it) = z_in_m(Ds{it}, Vs{it}, params (fregs(it)));
zin(it) = zinf(it) + zinm(it);

end

%$finds peak in resistance then calculates and plots radiation pattern
[~, freg_ index] = findpeaks(real(zin));
peak_freq = freqgs (freg_index);
if size(peak_freq, 2) > 1
peak_freq = interpl (peak_freq,peak_freq,2.4e9, 'nearest');
freg_index = find(fregs == peak_freq);

end




56

peak_dMat = Ds{freqg_index};

peak_power = 0.5xreal (zin(freqg_index) ) xabs (P.I0)"2;

[gain_phi0, gain_theta90] = radpat (peak_dMat, peak_power, params (
peak_freq));

$plots zin results

figure ("Name", "zin")

plot (fregs_ghz, real(zin), 'color', '"#0072BD")
hold on

plot (fregs_ghz, imag(zin), 'color', "#D95319")
hold on

title("Z_{in}t")

legend ("Re", "Im")

xlabel ('GHz")

ylabel ('\Omega')

xlim([fregs_ghz (1) fregs_ghz(end)])

ylim ([-40 707)

grid on

$saves data

save (fullfile(tfolder, "workspace.mat"))

FigList = findobj(allchild(0), 'flat', 'Type', 'figure');
for iFig = l:length(FigList)

FigHandle = FigList (iFig);

FigName get (FigHandle, 'Name');
savefig(FigHandle, fullfile(sprintf ("data/%s/%s.fig", tstamp,
FigName))) ;

end

$finishes logging

sprintf ("finished MoM at %s", string(datetime))
diary off

beep

3.2 params.m - Estrutura com constantes fisicas e parametros

Esse arquivo contém todos os parametros e constantes utilizados pelo programa organizados em
uma Unica estrutura. A funcio params aceita como argumento a frequéncia em Hz do sinal utilizado
para excitar a antena e retorna uma estrutura contendo as constantes e parametros. As demais funcdes

da implementagdo aceitam como argumento uma instancia de params (sempre com nome P) para que
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possam acessar de forma conveniente os pardmetros necessdrios. As instincias sdo iniciadas em mom.m
para cada uma das frequéncias e passadas para as funcoes buildVMat e buildZMat que chamam todas as
outras fungdes na implementagdo. params nao € instanciado diretamente pelas fungdes para ndo acarretar
custos desnecessdrios de iniciar a estrutura vérias vezes seguidas .

A seguinte tabela mostra a correspondéncia entre os nomes das varidveis e simbolos utilizados na

formulacgdo:

! As primeiras versdes do c6digo faziam exatamente isso e o tempo de execugdo era péssimo. Com a ajuda do
profiler do Matlab, foi possivel descobrir que isso era um problema e o cédigo foi alterado para que params fosse
inicializado apenas uma vez para cada frequéncia
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Variavel Simbolo | Grandeza Fisica Unidade
P.mu Ho Permeabilidade do vacuo H/m
P.epsilon_0 & Permissividade do vacuo F/m
P.tanp tan & Tangente de perdas -
Pepsilon_d | g; Permissividade do dielétrico F/m
Peta_0 No Impedancia intrinseca do vacuo Q
Pa a Raio interno da cavidade m
Pb b Raio externo da cavidade/raio do cilindro condutor m
Pzl 21 Primeira posi¢do axial da cavidade m
P.z2 &) Segunda posi¢ado axial da cavidade m
P.phil O Primeira posi¢ao angular da cavidade rad
P.phi2 [0)) Segunda posicao radial da cavidade rad
Pz_la Zla Primeira posicdo axial da superficie da antena m
Pz_2a 22a Segunda posi¢ao axial da superficie da antena m
Pz_f Zf Posicdo axial da prova de alimentacdo da antena m
P.phif Or Posicdo radial da prova de alimentac¢do da antena rad
PW_f Wy Largura angular média da fita de alimentacao m
P.phi_If 017 Primeira posi¢do angular da fita de alimentagdo rad
P.phi_2f O2f Primeira posi¢do angular da fita de alimentacao rad
P.omega 0] Frequéncia angular do sinal de alimentagdo rad/s
P.I0 Il Corrente complexa do sinal de alimentagdo A
PL L Altura da cavidade m
P.delta_phi A¢ Extensao angular da cavidade rad
P.delta_phi_f | A¢s Extensdo angular da fita de alimentacao rad
Pkd kg Nimero de onda na cavidade dielétrica 1/m
PkO ko Nimero de onda no vicuo 1/m
P.argmax - Limite superior para aproximacdes assintéticas -
P.expmin - Expoente do limite inferior para aproximagdes assintéticas | -
P.gamma Y Logaritmo natural da constante de Euler -
P.Mmax M Quantidade de harmonicos da funcdo de base/teste -
P.Pmax P Quantidade de segmentos em que a corrente € discretizada | -
P.nMax - Limite superior dos somatdrios em n -
P.qMax - Limite superior dos somatdrios em g -
P.Nkz - Multiplicador do limite da integral do campo externo -

Tabela 1: Correspondéncia entre os nomes das varidveis no c6digo e os simbolos utilizados na

formulagao

O cédigo de params.m é apresentado a seguir:




Cdédigo 3.2: params.m

function P = params (freq)

$constants

P.mu = 4%xpi*10."-7;

P.epsilon_0 = 8.854e-12;

P.tanp = 2.2e-3;

P.epsilon_d = 2.55%xP.epsilon_0x* (1-1jxP.tanp);
P.eta_0 = sqrt (P.mu/P.epsilon_0);

$geometric parameters

P.a = 250e-3;

P.b = 253.048e-3;

P.z1 = -36.5%9e-3;

.z2 = 36.5%e-3;

.phil -6.8182 x pi/180;
.phi2 = 6.8182 % pi/180;

'y o

P.z_la = -23.68e-3;

P.z_2a = 23.68e-3;

P.phi_la = 0 * pi/180;
P.phi_2a = 10.9435 % pi/180;
P.z_f = 6.05e-3;

P.phif = 0;

P.W_f = 4.e-3;%rLphif

P.dphif = 2«P.W_f/(P.a+P.b);
P.phi_1f = P.phif - P.dphif/2;
P.phi_2f = P.phif + P.dphif/2;

$source parameters
P.omega = fregx2xpi;
P.I0 = 1;

%aliases

P.L = P.z2 - P.zl;

P.delta_phi = P.phi2 - P.phil;
P.delta_phia = P.phi_2a - P.phi_la;
.delta_phi_f = P.phi_2f - P.phi_1f;
.kd = P.omegax*xsqgrt (P.muxP.epsilon_d);

' ™ o

.k0 = P.omegax*xsqgrt (P.muxP.epsilon_0);




60

%$other parameters
P.argmax = 400;
.expmin = 200;

.gamma = 1.781072418;
.alpha = 0.5;

' U g

%$precision parameters
Mmax = 1;

.Pmax = 18;

P
P
P.nMax = 50;
P.gMax = 50;
P

.Nkz = 50;

3.3 buildVMat.m - Construcao da matriz V

Essa funcdo € responsdvel por construir a matriz V. Ela é chamada diretamente pela funcdo
parfeval em mom.m e por isso executa em outro processo. Por conta disso, buildVMat ndo pode escrever
diretamente no terminal e se faz necessario utilizar uma técnica de comunicagao entre processos para que
o processo principal executando mom.m possa fazer isso em seu lugar. No caso, foi utilizado um objeto
do tipo DataQueue, criado em mom.m e passado a buildVMat pelo argumento gueue, que permite trocar
dados entre os processos através da funcao send.

Tirando esses detalhes, a funcdo é bem simples, tudo o que ela faz € iniciar uma matriz coluna
com M - P linhas e depois calcular os valores de cada elemento através da fungao V.

O codigo de buildVMat é apresentado a seguir:

Cédigo 3.3: buildVMat.m

function r = buildVMat (P, queue) S%builds V matrix
send (queue, sprintf ("started buildvMat@%f at %s", P.omega/ (2xpi),
string(datetime)));

r = cell(l);

Vmatrix = zeros (P.Mmax*P.Pmax, 1);

for s = 1:P.Mmax
for t = 1:P.Pmax
Vmatrix((s—-1)*P.Pmax+t, 1) = V(s, t, P);
end

end

send (queue, sprintf ("finished buildVMat@%f at %s", P.omega/ (2xpi),
string(datetime)));
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r{l} = Vmatrix;

end

3.4 buildZMat.m - Construcao da matriz Z

Essa fungdo € responsavel por construir a matriz Z. Ela funciona de forma andloga a fungédo
buildVMat descrita na se¢d@o anterior, com a diferenca de a matriz ser quadrada de dimensdes (M -
P)x(M - P) e, em vez de uma unica fungdo ser utilizada para calcular o valor dos elementos, aqui temos
duas funcdes: Hphi_in_proj e Hphi_out_proj, responsdveis, respectivamente, pela proje¢cdo do campo
magnético na parte interna da antena e na parte externa.

O cédigo de buildZMat é apresentado a seguir:

Cédigo 3.4: buildZMat.m

function r = buildZMat (P, queue) S%$builds 7 matrix
send (queue, sprintf ("started buildZMat@%f at %s", P.omega/ (2+pi),
string(datetime)));

r = cell(l);

Zmatrix = zeros (P.Mmax*P.Pmax, P.Mmax*P.Pmax);
in = zeros (P.Mmax*P.Pmax, P.Mmax*P.Pmax);
out = zeros (P.Mmax*P.Pmax, P.MmaxxP.Pmax);
for m = 1:P.Mmax
for p = 1:P.Pmax
for s = 1:P.Mmax

for t = 1:P.Pmax
in((s-1) *P.Pmax+t, (m-1)*P.Pmax+p) = Hphi_in_proj(m, p, s,
t, P);
out ((s—-1)«P.Pmax+t, (m—-1)~*P.Pmax+p) = Hphi_out_proj(m, p, s
r t, P);
Zmatrix ((s—1)*P.Pmax+t, (m—1)*P.Pmax+p) = in((s—-1)*P.Pmax+t
;, (m=1)«*P.Pmaxtp) — out ((s—-1)*P.Pmax+t, (m-1)+P.Pmax+p);
end
end
end

end

send (queue, sprintf ("finished buildZMat@%$f at %s", P.omega/ (2xpi),
string (datetime)));
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r{l} = Zmatrix;

end

3.5 V.m - Elementos da matriz V

Essa fungdo calcula um elemento da matriz V através da equacio (2.148), dados os valores de s e

t como argumentos .

b oo
_ML __ 1 gr 9 AAd s GFa
Va="35 ’ Z[ o5 L 3PGIJ?/I¢(’)’S"1)+pA¢GM¢(p’S’Q)
€ 7S
1)y (0.5, )pdp

Na implementacdo, a integral e o somatorio sdo trocados de posicdo em relagdo a equacao, de
forma que o cédigo efetivamente calcula o somatério das integrais. O somatério tem seu limite superior
limitado pelo pardmetro P.gmax, visto que é impossivel computar exatamente um somatério com intervalo
infinito. A integral € resolvida pela funcdo integral do Matlab j& que é esperado que a funcao seja bem
comportada, portanto, ndo € necessdria nenhuma técnica especial. Uma caracteristica dessa funcio € a
vetorizacdo da varidvel sendo integrada, portanto, a varidvel rho, referente a p na equagao, é um vetor.
Isso foi levado em conta ao implementar V.m e suas subfun¢des para garantir a corretude do cédigo e
melhor eficiéncia ao tirar proveito da vetorizacgao.

O cédigo de V.m € apresentado a seguir:

Cédigo 3.5: V.m

function r = V (s, t, P) %eqg 101
r = P.delta_phi+P.L/4*summation () ;

function acc = summation ()
acc = 0;
for g = 1:P.gMax
fun = @(rho) ((-g*pi/ (1j*P.omegaxP.epsilon_d*P.L) *
drho_G_Mphi_TAd(rho, s, g, P) + s+*pi./(rhoxP.delta_phi) .=
G_Mphi_TFd(rho, s, g, P)).*E(q)/P.L*I3_p(gq, t, P).*xJ_vf_Tss(
rho, s, g, P).xrho);
acc = acc + integral (fun, P.a, P.Db);
end
end

end
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3.6 Hphi_in_proj.m - Projecao interna do campo magnético

Essa funcado calcula a componente phi da projecdo interna do campo magnético através da

equagdo (2.127), dados os argumentos m, p, s € t.

< B bA¢ &, B d Ay 1 mmgqn AFy,
<H¢(M¢mp)7M¢st>— 22L5ms[ %GM¢(b7maq) WWTGA/%(]?;”%Q) ’

Por conta da fung¢io §,,; na equagao, sabemos que o resultado s6 vai ser diferente de zero quando
m =s, o que € aproveitado no cédigo para reduzir o tempo de execucio.

O intervalo do somatoério infinito € limitado pelo paridmetro P.gmax, visto que nao € possivel
computar exatamente um somatorio infinito.

Além disso, uma parte dos termos que antecedem a transformada em F; da fungdo de Green sdo
independentes da varidvel do somatdrio g. Sendo assim, para evitar recalcular esses termos desnecessaria-
mente, eles sdo calculados apenas uma vez e guardados na varidvel temp.

O cédigo de Hphi_in_proj.m ¢ apresentado a seguir:

Cdédigo 3.6: Hphi_in_proj.m

function r = Hphi_in_proj(m, p, s, t, P) %eqg 89
$note that m==n==s or the results is 0
if m == s
r = P.bxP.delta_phi/ (2«P.L) *summation () ;

else

function acc = summation ()
acc = 0;
temp = m*pi”2/ (1j*P.omegaxP.muxP.b+P.delta_phi*P.L);
for g = 0:P.gMax
acc = acc + E(qg)*(-drho_G_Mphi_TAd(P.b, m, g, P)-temp*xgx
G_Mphi_TFd(P.b, m, g, P))*I3_p(g, p, P)*I3_p(g, t, P);

end
end

end
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3.7 Hphi_out_proj.m - Projecao externa do campo magnético

Essa funcdo calcula a componente phi da projecdo externa do campo magnético através da

equagdo (2.136), dados os argumentos m, p, s € t.

(oM, Mo ) = /0 s |- 5 Gyf (0.0
.[Mef 0.M 0. —k)+ M (o, k)Mf(Ok)]dk—i—

¢mp Ost ¢ Ost
Jd AAg nk, AF
+ Z (27)%b [_apGMq; (b,n,k.) — jwuzob GM¢ (b,n,kz)} :

' [M‘;ip (n’kZ)M;ff(_n’ ko) +M(7’£p (n, _kz)M;]sCt(—n,kz)Jr

+M€£( )M k) + M

oo oy 1T 1)

() (])st

O somatério infinito € limitado pelo pardmetro nMax e a integral infinita é limitada pelo pardmetro

NKz. O Cédigo € apresentado a seguir:

Cédigo 3.7: Hphi_out_proj.m

function r = Hphi_out_proj(m, p, s, t, P) %Seq 97

r = (2%xpi)"2xP.bxsummation () ;

function acc = summation ()
acc = 0;
for n = 0:P.nMax
0

if n ==

fun @Q(kz) Green_Mphi(P.b, 0, kz, P).*x(M_phi_mp_Tef (0, kz,
m, p, P).*«M_phi mp_Tef (0, -kz, s, t, P)
+ M_phi_mp_Tef (0, -kz, m, p, P).*M phi_mp_Tef (0, kz, s, t,
P))i
else
fun = @(kz) Green_Mphi(P.b, n, kz, P).x(M_phi_mp_Tef(n, kz,
m, p, P).xM _phi_mp_Tef(-n, -kz, s, t, P)
+ M_phi_mp_Tef(-n, -kz, m, p, P).xM _phi_mp_Tef(n, kz, s, t,
P));
+ M_phi_mp_Tef(n, -kz, m, p, P).xM phi mp Tef(-n, kz, s, t,
P)
+ M_phi_mp_Tef(-n, kz, m, p, P).*M phi mp Tef (n, -kz, s, t,
P)

end
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acc = acc + quadgk (@ (Akz) fun(Akz), 0, P.NkzxP.kO0);
end
end

end

3.8 E.m

Essa funcdo € a implementag¢io do simbolo €, apresentado na equacdo (2.33) e definido como:

1 q=0

e, =
1 2 qg#0

A implementagdo de €, € trivial e o c6digo de E.m € apresentado a seguir:

Cédigo 3.8: E.m

function r = E (n)

if n == 0

39 I3 _p.m

Essa funcao calcula a equagdo (2.102), dados os valores de p e g:

Ly(q) =) L
3p -
L [sin (e —20)) = sin (F (a1~ 2) | a#0

Lembrando que p € o indice da funcio de base que divide a superficie dielétrico-ar em faixas ao
longo da direcdo z, portanto, existem regides abaixo do patch e acima do patch. A depender da regido, a
forma de calcular as coordenadas z;,, € 72, € a altura da faixa L, muda.

Para faixas abaixo do patch utilizam-se as seguintes equacdes:

Zla — <1
L =
Popn2

zp=2a+(p—1)-L,

L2p :Zl+p'LP

Para faixas acima do patch utilizam-se as seguintes equacdes:
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_ 22 —22a
PoP2

2p=2a+(p—1-P/2)-L,

O cédigo de I3_p.m é apresentado a seguir:

Codigo 3.9: I3_p.m

function r = I3_p(g, p, P) %eqg 62
if p <= (P.Pmax/2)
Ip = (P.z_la - P.zl)/(P.Pmax/2);
z_lp = P.zl + (p-1)+*Llp;
z_2p = P.z1l + pxLp;
else

Lp = (P.z2 - P.z_2a)/(P.Pmax/2);
z_lp = P.z_2a + (p-P.Pmax/2-1)*Lp;
z_2p = P.z_2a + (p-P.Pmax/2) *Lp;

end

if g ==
r = z_2p-z_1p;
else
r = P.L/ (g*pi)* (sin(g*pi/P.L* (z_2p-P.zl))-sin(g*pi/P.L* (z_lp-P.zl
))) i
end

end

3.10 J vf Tss.m - Transformada seno-seno da corrente volu-

métrica na fita de alimentacao

Essa funcgdo calcula a transformada seno-seno da corrente volumétrica na fita de alimentacdo

através da equacdo (2.113) dados os parametros p, n e g:

4
JE}(p,nm:m[f‘M cos (A”‘(;i(«mf—m) ~ cos (A”‘;(@f—m)) sin(qL”@f—a))

Percebe=se que n aparece no denominador, porém nessa equagdo isso nao é um problema, visto
que n = 0 nunca serd passado como argumento para essa funcaoA implementacao é trivial e o cddigo é

apresentado a seguir:
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Cédigo 3.10: J_vf_Tss.m

function r = J_vf_Tss(rho, n, g, P) %eqg 81
r = 4%xP.10./ (nxpi*P.Lxrho*P.delta_phi_f)* (cos(nxpi/P.delta_phix (P.
phi_1f-P.phil))-cos (n*pi/P.delta_phi*x (P.phi_2f-P.phil)))*sin (gx*
pi/P.Lx(P.z_f-P.z1));

end

3.11 drho_G_Mphi_TAd.m - Derivada em relacio a p da
transformada A, da funcao de Green em A/

Essa fungdo calcula a derivada em relagio a p da transformada A, da fungdo de Green em M,

através da equacgao (2.151) dados os valores de p, n e g:

9 AA e, ©7p(p.1.q)
7G d n, :_J d Yp
3p M, P ) = S g )

Lembrando que k, € definido em 2.4.1.4 como:

2
T
kpdz _kd2 <q[ >

A parte imagindria de kj,, se existir, pode ser matematicamente tanto positiva quanto negativa,

porém, como escolhemos a varia¢do temporal na forma e/’, a onda na diregdo positiva de p deve ter
variac¢do de fase na forma e IkoaP que s6 decresce exponencialmente caso a parte imagindria de kp,, se
existir, for negativa. Por conta disso, é empregado o uso da fungdo cinv que inverte a parte imagindria

caso esta seja positiva. Tirando esse detalhe, a implementacdo € trivial e o cddigo é apresentado a seguir:

Cédigo 3.11: drho_G_Mphi_TAd.m

function r = drho_G_Mphi_TAd(rho, n, g, P) %eqg 103: rho and g might

be arrays
k_rho = sqrt(P.kd.”2 - (g*pi/P.L)."2);

k_rho = cinv(k_rho);

r = -1jxP.omegaxP.epsilon_d./k_rho.xtheta_7_rho(n, g, P.kd, rho, P)
./ (theta_5(n, g, P.kd, P));

end
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3.12 G_Mphi_TFd.m - Transformada F; da funcao de Green
em M 0

Essa fungdo calcula a transformada Fy da fun¢do de Green em M, através da equagdo (2.153)

dados os valores de p, n e g:

AF, nt g 1 O3,(p,n,q)
Gl (png) = 797 | Op(p.n.
My P D) = =i T B @ (na)

Assim como em drho_G_Mphi_TAd.m, aplica-se a fun¢@o cinv a kp, para garantir que a parte

imagindria ndo seja positiva. kp, ¢ dado pela equac@o:

2
T

O resto da implementacao € trivial e o cédigo é apresentado a seguir:

Codigo 3.12: G_Mphi_TFd.m

function r = G_Mphi_TFd(rho, n, g, P) %eq 105: rho and g might be
arrays
k_rho = sqgrt (P.kd.”2 - (g*pi/P.L)."2);

k_rho = cinv (k_rho);

r = —nxpixgxpi./ (P.b*P.delta_phi*P.Lxk_rho.”3).*theta_3_rho(n, g, P
.kd, rho, P)./(theta_1(n, g, P.kd, P));

end

3.13 cinv.m

Essa funcdo recebe um vetor de nimeros complexos e inverte a parte imagindria, caso essa
seja positiva. Efetivamente, ela for¢a todos os niimeros passados a terem parte imagindria negativa. A
implementa¢do utiliza um loop for, embora uma implementacio vetorizada seja mais eficiente, a diferenca
no tempo de execugdo seria imperceptivel, visto que quase todo o tempo de execugdo do programa esta

concentrado no célculo da integral em 3.7. O cédigo € apresentado a seguir:

Cddigo 3.13: cinv.m

function r = cinv(arr) %inverts complex number if imaginary part is
positive
for i = l:size(arr, 2)
if imag(arr(i)) > O
arr(i) = —-arr(i);
end

end




69

r = arr;

end

3.14 dH2.m - Derivada da funcao de Hankel do segundo tipo

Essa funcdo calcula a derivada da funciao de Hankel do segundo tipo através da equacao (10.6.2)
de Olver et al.[29]:

B,(z) = EBV@ —Bu(2)

Onde B € uma fungdo de Bessel trivial qualquer, nesse caso, a fungcdo de Hankel do segundo tipo. O

codigo, portanto, € trivial e é apresentado a seguir:

Codigo 3.14: dH2.m

function r = dH2 (ni, x) %derivative of hankel function of the second
kind
r = (ni.*besselh(ni, 2, x))./x — besselh(ni + 1, 2, x);

end

3.15 dJ.m - Derivada da func¢ao de Bessel do primeiro tipo

Essa funcdo calcula a derivada da funcdo de Bessel do primeiro tipo através da equacdo (10.6.2)
de Olver et al.[29]:

B,(z) = EBV (2) = By:1(2)

Onde B é uma funcdo de Bessel trivial qualquer, nesse caso, a fungdo de Bessel do primeiro tipo. O cédigo

é apresentado a seguir:

Coédigo 3.15: dJ.m

function r = dJd(ni, x) %derivative of bessel function of the first
kind
r = (nixbesselj(ni, x))/x — besselj(ni + 1, x);

end

3.16 I4_p.m

Essa fung¢do calcula a equacgio (2.104), dados os valores de k; e g:

ejkzZZp - ejkzzlp

I4p(kz) = ]k
Z
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Assim como em I3_p.m, existem faixas, indexadas por p, abaixo e acima do patch, para as quais
o célculo de z1,p € 72, muda.

Para faixas abaixo do patch utilizam-se as seguintes equacdes:

Zla — <1
L, =
P P2

zp=z+(p—1)-L,

2p=z21+p-Ly
Para faixas acima do patch utilizam-se as seguintes equacdes:
2222
P p/2
Zip=20a+((p—1-P/2)-L,
22p=2a+(p—P/2) Ly

Nota-se a presenca de K, no denominador. Essa fung¢do € utilizada na equagdo a ser integrada
pela funcdo quadgk do Matlab. Esse algoritmo consegue lidar com singularidades, e no geral, o algoritmo
de quadradura ndo passa os limites da integral para o integrando, de forma que K, = 0 nunca serd passado
como argumento para essa funcdo.

O cédigo € apresentado a seguir:

Cédigo 3.16: 14_p.m

function r = I4_p(kz, p, P) %Seq 73: kz might be array
if p <= (P.Pmax/2)
Ip = (P.z_la - P.zl)/(P.Pmax/2);
z_lp = P.z1l + (p-1)~*Lp;
z_2p = P.z1 + pxLp;
else
Lp = (P.z2 - P.z_2a)/(P.Pmax/2);
z_lp = P.z_2a + (p-P.Pmax/2-1)x*Lp;
z_2p = P.z_2a + (p-P.Pmax/2)x*Lp;

end

r = (exp(ljxkzxz_2p)-exp(lj.*kz.*z_1p)) ./ (1jxkz);

end

3.17 M_phi_mp_Tef.m

Essa fung¢do € responsdvel por calcular a transformada exponencial-Fourier da funcdo de base

através da equagao (2.107), dados os valores de m, p, n e k;:
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N 1 eindi .
M;;p(”’kz) = 2n) (m>2 ;ZZ; [1 — (_1)melnA¢] Iy (k;)
H —n

A implementacdo € trivial e o cddigo € apresentado a seguir:

Coédigo 3.17: M_phi_mp_Tef.m

function r = M_phi_Tef (n, kz, m, p, P) %eq 75; kz might be array
r = 1/ (2+pi)"2xexp (1j*n*P.phil) / ((m*xpi/P.delta_phi)"2-n"2) «*m*xpi/P.

delta_phix (1-(-1) "mxexp (lj*n*P.delta_phi)).*I4_p(kz, p, P);

end

3.18 Green_Mphi.m

Essa funcdo calcula a soma das fungdes de Green na equagdo (2.138) através das equagdes (2.94a)

e (2.137), dados os valores de p, n e k;:

I”LkZ GFO
joueb ~ My

: Jd AAo
Green_Mphi = —apG?,I(P (b,n,k;) — (b,n,k;)

A

(2)
H
G[\/(I)q) (p,n,k;) = ik (kpo p)

- 7
bkgy 1Y (kp, b)

!/
d Ao —joey H? (kp, P)
TGM¢ (pvnakz) = k ”(2) R0
p Po Hn (pr b)
Por conta da divisdo entre funcdes de Bessel, as fun¢des de Green ndo podem ser calculadas dire-

tamente para argumentos pequenos nem grandes. Nesses casos, sdo utilizadas aproximagdes assintdticas

descritas no Apéndice A.
Para argumentos com parte imagindria igual a O e parte real pequena, utilizam-se as seguintes

equagoes:
JOE& 1
X n=0
ko jSkob+kpblIn (%kpb)
n
0
joub n7
Para argumentos com parte real igual a 0 e parte imagindria pequena, utilizam-se as seguintes
equagoes:
jo& 0
S a=
kf)b In (— 7ilkpb)
n
0
joub n7

Para argumentos com parte real igual a 0 e parte imagindria grande, utiliza-se a seguinte equagao:
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o0& (nk,)?
ky — ouky(kpb)?

Para os demais casos, utiliza-se a equacdo diretamente.
A implementagdo trata kz como uma array, por isso calcula um valor de k, para cada valor em kz

e um valor para as fungdes de Green para cada kz. A implementagao € apresentada a seguir:

Codigo 3.18: Green_Mphi.m

function r = Green_Mphi (rho, n, kz, P) %eqgs 94-96: kz might be array
A_k_rho = sqrt(P.k0."2 - kz."2);
A_k_rho

cinv (A_k_rho);

if n == 0

argmin 2%10”" (-P.expmin) ;
else
argmin = 2x10"((c_log(n)-P.expmin)/ (1+n));

end

r = zeros(size(A_k_rho));
for it = 1l:size(A_k_rho, 2)
k_rho = A_k_rho(it);

if imag(k_rhoxP.b) == 0 && abs(real (k_rhoxP.b)) <= argmin
if n ==
r(it) = 1jxP.omegaxP.epsilon_0/k_rhox1l/(1jxpi/2xk_rho*P.b +
k_rho*P.bxlog (P.gamma*real (k_rho*P.b)/2));
else
r(it) = n/(1j*xP.omega*P.mu*P.b);
end
elseif real (k_rhoxP.b) == 0 && abs(imag(k_rhoxP.b)) <= argmin
if n ==
r(it) = 1j*P.omegax*P.epsilon_0/ (k_rhoxk_rhoxP.bxlog (P.gammax
imag (-k_rhoxP.b) /2));
else
r(it) = n/(1j*P.omega*P.muxP.b);
end
elseif real(k_rhoxP.b) == 0 && abs(imag(k_rhoxP.b)) >= P.argmax
r(it) = P.omegaxP.epsilon_0/k_rho + (nxkz(it))"2/(P.omega*P.mux

k_rhox (k_rho*P.b) "2);
else
dH2 _besselh = dH2(n, k_rho+xP.b)/besselh(n, 2, k_rhoxrho);
r(it) = 1j+P.omega*P.epsilon_0/k_rho+dH2_besselh + (n*kz (it))
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22/ (1jxP.omega*P.mu*P.b"2+xk_rho”3+dH2_besselh);
end

end

function r = c_log(ni)
r = sum(logl0(2:ceil(ni)))-1loglO (2xpi);
end

end

3.19 theta 1.m

Essa funcdo calcula a combinacdo de fungdes de Bessel ®; de acordo com a equagdo (2.60),
dados os valores de n, g e um argumento adicional k, cujo propdsito € diferenciar entre a regido interna e

externa da antena:

_ 7 2 / 2)
®1(H,Q)—Jv(kpb)Hv (kpa)—Jv(kpa)Hv (kpb)

Para a regido externa, utiliza-se k = ko, enquanto na regidio interna utiliza-se k = k;. Para calcular

k2 = K2 — (f)z

L
-

kp utiliza-se a equagdo (2.19) ou (2.68):

v € dado pela equacdo (2.19):

\%

As funcdes de Bessel sdo notdrias por apresentarem problemas computacionais para argumentos
muito grandes ou muito pequenos [29]. Tendo isso em mente, foram utilizadas aproximagdes assintdticas
para lidar com esses casos. O Apéndice A detalha as aproximacdes feitas.

Para argumentos pequenos, ou seja, kp, pequeno, e n = v = 0, utiliza-se a seguinte aproximagao:

1{b a
©:(0,q) — j— |- — -
1(0,9) " Jn[a b}

Para argumentos pequenos e n # 0, que implica v # 0, utiliza-se a seguinte aproximacao:

O1(n.q) V1| 1 (b V“+1 a\'"!
n i (2 — (4
e kp—0 Jnkf, a’* \a b* \ b

Para argumentos grandes, utiliza-se a seguinte aproximagao:

2j 1 . 1 1
1
0(n,q) —>kp = Ty ab ( +4kl%ab> sin(kp (b a))—l—(kab kaa> cos(ky(b—a))
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Para os demais casos, utiliza-se a equacao (2.60) diretamente. Detalhes sobre os argumentos
minimo e mdximo que chaveiam entre as aproximacdes € a equacio exata se encontram no Apéndice A

Ja que g pode ser uma array, € necessdrio calcular os valores de k, para cada valor de ¢, e, entdo,
calcular o valor de ® para cada valor de k.

A func@o c_log € utilizada para calcular o logaritmo de um fatorial, como explicado em A.26.

O cédigo € apresentado a seguir:

Cédigo 3.19: theta_1.m

function r = theta_1l(n, g, k, P) %$eqg 43: adicao de K aos parametros
para diferenciar regidao interna de externa (kd | kO0); g might be
array

ni = nxpi/P.delta_phi;

A_k_rho = sqgrt(k.”2 - (g*pi/P.L)."2);
A_k_rho

cinv (A_k_rho);

if ni == 0
argmin = 2x10" (-P.expmin) ;
else
argmin = 2x10"((c_log(ni)-P.expmin) / (1+ni));
end
r = zeros(size (A_k_rho));

for it = l:size(A_k_rho, 2)
k_rho = A_k_rho(it);

if abs(k_rhoxP.a) > P.argmax
r(it) = 23/ (pixk_rhoxsqrt (P.a*P.b))* ((1+1/ (4xk_rho"2+P.a*xP.b)) *
sin(k_rhox (P.b-P.a))+(1/ (2xk_rho*xP.b)-1/(2xk_rho*P.a)) xcos (
k_rhox (P.b-P.a)));
elseif abs(k_rhoxP.a) < argmin && ni ==
r(it) = 13/pi*(P.b/P.a-P.a/P.b);
elseif abs(k_rhoxP.a) < argmin && ni ~= 0
r(it) = 1j*ni/ (pi*k_rho"2)*((P.a/P.b)"(ni-1)/P.b"2 - (P.b/P.a)
~(ni-1)/P.a"2);

else
r(it) = dJd(ni, k_rhoxP.b)+dH2 (ni, k_rho*P.a) - dJ(ni, k_rho*P.a
) *dH2 (ni, k_rhoxP.Db);
end
end

function r = c_log(ni)
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r = sum(logl0(2:ceil(ni)))-1ogll (2xpi);
end

end

3.20 theta_3 rho.m

Essa fung@o calcula a combinagio de fung¢bes de Bessel ®3, de acordo com a equagdo (2.152),
dados os valores de p, n, ¢ e um argumento adicional &, cujo propdsito € diferenciar entre a regifio interna

e externa da antena:

2)’(

®3p(p,1,q) = Iy (kpyP)HY (kp,a) — I, (kp,a)HY (Kp,p)

kp € v sdo definidos na equagdo (2.19):

2
()

_nm
-

As fungdes de Bessel ndo podem ser computadas diretamente para argumentos pequenos ou

1%

grandes [29]. Nesse caso, foram utilizadas aproximacodes assintéticas descritas no Apéndice A.

Para argumentos pequenos, ou seja, k, pequeno, e n = v = 0, utiliza-se a seguinte aproximagao:

2
®3p(P70,6])kpj>—J;

Para argumentos pequenos e n # 0, que implica v # 0, utiliza-se a seguinte aproximacao:

1 (1 /p\Y 1 /a7
©3p(p,n,9) —>kp_)0 —J?kp [a <a> +E <p>

Para argumentos grandes, utiliza-se a seguinte aproximagao:

Yy |
kp—)w ﬂkp 1/ ap kaa

Para os demais casos, utiliza-se a equagdo (2.152) diretamente.

O3p(p;1,9) sin(kp (p —a)) +cos(kp (p —a))]

Nota-se que tanto g quanto p podem ser arrays, o que pode ser visto no cédigo apresentado a

seguir:

Cédigo 3.20: theta_3_rho.m

function r = theta_3_rho(n, g, k, rho, P) %eg 30': adicao de K aos
pardmetros para diferenciar regido interna de externa (kd | kO0); g
and rho might be arrays

ni = nxpi/P.delta_phi;
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A_k_rho = sqgrt(k.”2 - (g*pi/P.L)."2);
A_k_rho

cinv (A_k_rho);

if ni ==

argmin = 2%x10% (-P.expmin) ;
else

argmin = 2%x10"((c_log(ni)-P.expmin)/ (1+ni));
end

if size(rho, 2) > 1

k_rho = A_k_rho;

if abs(k_rhoxP.a) > P.argmax
r = -27j./ (pi*k_rhoxsqrt (P.a*rho)) .+ (sin (k_rhox (rho-P.a))/ (2%
k_rhoxP.a)+cos (k_rhox (rho-P.a)));

elseif abs(k_rhoxP.a) < argmin && ni ==

r = —23/pix(1/(k_rho*P.a)+k_rho*P.a/2xlog(P.gamma*k_rho*rho/2))
elseif abs(k_rho*P.a) < argmin && ni ~= 0
r = -1j/(pi*k_rho) * ((rho/P.a) .”ni/P.a + (P.a./rho).”(ni-1)./rho
)i
else
r = besselj(ni, k_rhoxrho)+*dH2(ni, k_rhoxP.a) - dJ(ni, k_rhoxP.
a) *besselh(ni, 2, k_rhoxrho);
end
else
r = zeros(size (A_k_rho));

for it = l:size(A_k_rho, 2)
k_rho = A_k_rho(it);

if abs(k_rhoxP.a) > P.argmax
r(it) = -23j/(pixk_rhoxsqrt (P.a*rho)) * (sin(k_rhox (rho-P.a))
/ (2xk_rhoxP.a)+cos (k_rho* (rho-P.a)));

elseif abs(k_rhoxP.a) < argmin && ni ==

r(it) = -23/pi*(1/(k_rho*P.a)+k_rho*P.a/2+«log(P.gamma*k_rhox
rho/2));
elseif abs(k_rhoxP.a) < argmin && ni ~= 0
r(it) = -1j/(pixk_rho)* ((rho/P.a) " ni/P.a + (P.a/rho)”" (ni-1)/
rho) ;

else
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r(it) = besselj(ni, k_rho*rho)*dH2 (ni, k_rhoxP.a) - dJ(ni,
k_rhoxP.a) *besselh (ni, 2, k_rhoxrho);
end
end

end

function r = c_log(ni)
r = sum(logl0(2:ceil(ni)))-1logl0 (2xpi);
end

end

3.21 theta 5.m

Essa funcdo calcula a combinacdo de fungdes de Bessel @5 de acordo com a equagdo (2.55),
dados os valores de n, g e o argumento adicional &, cujo propésito € diferenciar entre a regido interna e

externa da antena:

©5(1,q) = Jy (kp,b)HY (kpya) — Jy (kp,a)HY (ko b)

kp e v s@o definidos na equagdo (2.19):

2
()

L
-

As fungdes de Bessel ndo podem ser computadas diretamente para argumentos pequenos ou

\%

grandes [29]. Nesse caso, foram utilizadas aproximacdes assintSticas descritas no Apéndice A.

Para argumentos pequenos, ou seja, kp, pequeno, e n = v = 0, utiliza-se a seguinte aproximagao:

2 b
o) b
®5(0aq) kp—>0} ]TC n <a>

Para argumentos pequenos e n # 0, que implicam v # 0, utiliza-se a seguinte aproximagio:

®ﬂmQWg:ngn[(z>v—<Z>i

Para argumentos grandes, utiliza-se a seguinte aproximagao:

Os(n,q) ——

2j
kp%oc Tckp \/ ab

Para os demais casos, utiliza-se a equacao (2.55) diretamente.

sin(ky (b —a))

Assim como em @1, g pode ser uma array. O cédigo € apresentado a seguir:
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Cédigo 3.21: theta_S.m

function r = theta_5(n, g, k, P) %thetas appendix: adicao de K aos
pardmetros para diferenciar regido interna de externa (kd | kO0); g
might be array
ni = nxpi/P.delta_phi;

A_k_rho = sqrt(k.”2 - (g*pi/P.L)."2);
A_k_rho = cinv (A_k_rho);

if ni == 0
argmin = 2%10" (-P.expmin) ;
else
argmin = 2x10"((c_log(ni)-P.expmin)/ (1+ni));
end
r = zeros (size (A_k_rho));

for it = l:size(A_k_rho, 2)
k_rho = A_k_rho(it);

if abs(k_rhoxP.a) > P.argmax

r(it) = 273/ (pixk_rhoxsqrt (P.a*P.b))*sin(k_rhox (P.b-P.a));
elseif abs(k_rhoxP.a) < argmin && ni ==
r(it) = 2j/pixlog(P.b/P.a);
elseif abs(k_rhoxP.a) < argmin && ni ~= 0
r(it) = 1j/(nixpi)*((P.b/P.a) " ni - (P.a/P.b)" ni);
else
r(it) = besselj(ni, k_rho*P.b)xrbesselh(ni, 2, k_rhoxP.a) -
besselj(ni, k_rhoxP.a)*besselh(ni, 2, k_rhoxP.b);
end
end
function r = c_log(ni)
r = sum(logl0(2:ceil(ni)))-1ogll (2xpi);
end

end

3.22 theta_ 7 rho.m

Essa fung@o calcula a combinagio de fungGes de Bessel ®7, de acordo com a equagio (2.150),

dados os valores de p, n, ¢ € um argumento adicional k, cujo propdsito € diferenciar entre a regifio interna
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e externa da antena:

!
®1p(p,1,q) = I}y (kpyP)HY (kpya) — Iy (kp, @) HY (Kp,p)

kp € v sdo definidos na equagdo (2.19):

2
()

_onm
-

As fungdes de Bessel ndo podem ser computadas diretamente para argumentos pequenos ou

1%

grandes [29]. Nesse caso, foram utilizadas aproximacodes assintéticas descritas no Apéndice A.

Para argumentos pequenos, ou seja, k, pequeno, e n = v = 0, utiliza-se a seguinte aproximagao:

L kp (Y
kpp—i— > n<2kpa>]

Para argumentos pequenos e n # 0, que implicam v # 0, utiliza-se a seguinte aproximagio:

onlpma) — i (L) (Y
7P kp—0 Jnkp a\a p\p

Para argumentos grandes, utiliza-se a seguinte aproximagao:

2

G%p(P:QQ)WJ;

2j .
©7p(p,1,9) w W ap [COS(kp (p—a))— % sin(kp (p — a))]

Para os demais casos, utiliza-se a equagao (2.150) diretamente.

Assim como em O3, g € p podem ser arrays. O cédigo € apresentado a seguir:

Coédigo 3.22: theta_7_rho.m

function r = theta_7_rho(n, g, k, rho, P) S%$thetas appendix: adicao de
K aos paradmetros para diferenciar regido interna de externa (kd |
k0); g and rho might be arrays
ni = nxpi/P.delta_phi;

A_k_rho = sqrt(k.”2 — (g*pi/P.L)."2);

A_k_rho = cinv (A_k_rho);
if ni == 0
argmin = 2%10” (-P.expmin) ;
else
argmin = 2x10" ((c_log(ni)-P.expmin)/ (1+ni));

end
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if size(rho, 2) > 1

k_rho = A_k_rho;

if abs(k_rhoxP.a) > P.argmax
r = 2j./(pixk_rhoxsqrt (P.a*rho)) .* (cos (k_rhox (rho-P.a))-sin(
k_rhox (rho-P.a)) ./ (2«xk_rhoxrho)); %$todo: test 2+«k_rho*rho;
is k_rho array?
elseif abs(k_rhoxP.a) < argmin && ni ==
r = 23/pix(1./ (k_rhoxrho)+k_rho*xrho/2+xlog(P.gamma*k_rho*P.a/2))
elseif abs(k_rhoxP.a) < argmin && ni ~= 0

r = 1j/(pixk_rho)* ((rho/P.a).”(ni-1)/P.a + (P.a./rho).”"ni./rho)

else
r = dJ(ni, k_rhoxrho)*besselh(ni, 2, k_rhoxP.a) - besselj(ni,
k_rhoxP.a) *dH2 (ni, k_rho*rho);
end
else
r = zeros(size (A_k_rho));

for it = l:size (A_k_rho, 2)
k_rho = A_k_rho(it);

if abs(k_rhoxP.a) > P.argmax
r(it) = 23j/(pixk_rhoxsqrt (P.a*rho)) * (cos (k_rho* (rho-P.a))-sin
(k_rho* (rho-P.a))/ (2«xk_rhoxrho));

elseif abs(k_rhoxP.a) < argmin && ni ==

r(it) = 2j/pix(1/(k_rho*rho)+k_rho*rho/2xlog(P.gamma*k_rho*P.
a/2));
elseif abs(k_rhoxP.a) < argmin && ni ~= 0
r(it) = 1j/(pixk_rho)* ((rho/P.a)” (ni-1)/P.a + (P.a/rho)"ni/
rho) ;
else
r(it) = dJd(ni, k_rhoxrho)xbesselh(ni, 2, k_rhox*P.a) - besselj

(ni, k_rhoxP.a)*dH2 (ni, k_rhoxrho);

end
end
end
function r = c_log(ni)
r = sum(logl0(2:ceil(ni)))-1loglO (2xpi);

end
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‘end

3.23 z in fm

Essa fungdo calcula a contribuicdo da corrente elétrica na impedancia de entrada (também

conhecida como auto-impedancia da prova de alimentagdo) de acordo com a equagao (2.173):

2
le;l_ 112 ]C()[.iA¢L pozl Z ( vf pO,” q >
n=1q=

Lembrando que py € apresentado na equagdo (2.163) como (a+b) /2 e kyq € definido na equagio

(2.164) como:
nw \*  [qn\’
g = \/<P0A¢) " (L)

Os somatdrios infinitos em n e g tém seus intervalos limitados, respectivamente, por nMax e

gMax. O codigo € apresentado a seguir:

Cdédigo 3.23: z_in_f.m

function r = z_in_f (P) %eqg 108

rho0 = (P.a+P.b)/2;

r = -1/P.I0"2x1j*P.omega*P.muxP.delta_phi+P.L/4x (P.b-P.a)+xrho0x*

summation () ;

function acc = summation ()
acc = 0;
for n = 1:P.nMax

for g = 1:P.gMax
k_ng = sqgrt ((n*pi/ (rho0«P.delta_phi)) "2+ (g*pi/P.L)"2);
acc = acc + J_vf_Tss(rhoO, n, g, P)"2/(P.kd"2-k_ng"2);
end
end
end

end

3.24 7z in_ m.m

Essa funcio calcula a contribui¢c@o da corrente magnética na impedancia de entrada de acordo

com a equacdo (2.159), dadas as matrizes V e d como entrada:
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=7 Z demep

0 m=1 p=
O somatério duplo é equivalente a multiplicar a transposta da matriz V pela matriz d, portanto, a
implementacdo foi feita dessa forma. Para o problema abordado neste trabalho, os valores na matriz V
sempre serdo reais, portanto € indiferente utilizar a transposi¢do com ou sem conjugado complexo. O

codigo é apresentado a seguir:

Cdédigo 3.24: z_in_m.m

function r = z_in_m(d_mat, V_mat, P) %eqg 110
r = -1/P.I0"2x (V_mat' * d_mat);
end

3.25 Efields.m - Campo elétrico radiado pela antena

Essa funcgdo calcula as componentes 6 e ¢ do campo elétrico radiado pela antena através das
equagdes (2.185) e (2.190):

2o~ ikor M (0,kocos 0) A
Eg(r,0,0) — ¢ J e’f"d’Mef(n,kocos 0)+
r—es rsin @ 2 ¢
kp() n:lH pr
+ ej"‘que;f(—n,kocos 9)>
2je*jk0’ cos 0 w i —jng ~ef jné yef
Ey(r,0, (]))r_)oo b For sinl0 Z (2), t) [e M¢ (n,kocosB) —e M¢ (—n,kocos )
= n 0

Nota-se a auséncia dos termos em r na implementacdo. Isso se deve ao quadrado do médulo do
campo elétrico ser utilizado no cdlculo da intensidade de radiagcdo, como explicado na secdo 3.26. A fase

2 na intensidade de

do campo e /%" desaparece por conta do operador médulo, e, visto que ha um termo r
radiacdo, o termo r no denominador da equacio dos campos € cancelado.

O somatério tem seu intervalo limitado de 0 a nMax e € calculado através da funcio sum do Matlab
que soma os valores em uma array e retorna um Unico valor. Percebe-se que a parte do somatério referente
as transformadas exponencial-Fourier da corrente magnética ¢ semelhante em ambas as componentes
do campo, diferindo apenas pelo sinal da segunda parte. Sendo assim, foi utilizada uma subfun¢do que
recebe o valor do sinal, calcula a soma ou subtragdo das duas transformadas. Além disso, aplicando
a transformada exponencial-Fourier na equagdo (2.98), vemos que é possivel obter as transformadas
exponencial-Fourier da corrente magnética, multiplicando os elementos da matriz d pelos valores dados
pela equacgdo (2.107).

O cédigo € apresentado a seguir:
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Cédigo 3.25: Efields.m

function [Etheta, Ephi] = Efields(theta, phi, dMat, P) %eqgs 120, 124
krhoO = P.kO*sin(theta);

ns = 1:P.nMax;

Etheta = 2/sin(theta)* (1j*M_phi_Tef (0, P.kOxcos (theta)) /besselh (0,
2, krhoO*P.b)+sum(1j.” (ns+1)./besselh(ns, 2, krhoO*P.b).*xexp_M
theta, phi, 1)));

Ephi = 2j*cos (theta)/ (P.bxP.kOxsin (theta)"2)*sum(1j.” (ns+1) .*ns./
dH2 (ns, krhoO*P.b) .xexp_M(theta, phi, -1));

function r = exp_M(theta, phi, sign)
r = zeros(l, P.nMax);
for n = ns
r(n) = exp(-1j*nxphi)+«M_phi_Tef (n, P.kOxcos(theta)) + signx*exp
(13*xn*phi) *M_phi_Tef (-n, P.kOxcos (theta));
end
end

function r = M_phi_Tef (n, kz)

r = 0;
for m = 1:P.Mmax
for p = 1:P.Pmax
r = r + dMat ((m-1) *P.Pmax+p, 1)+*M_phi_mp_Tef(n, kz, m, p, P);
end
end
end

end

3.26 gain.m

Essa func@o calcula o ganho da antena através da equacdo (2-46) de Balanis [33], dado o campo

elétrico e a poténcia de entrada na antena:

U(e,¢)
P,

Gain =4n

Onde U ¢ a intensidade de radiagdo na direcdo (6,¢) em coordenadas esféricas e P, é a poténcia de

entrada na antena. A intensidade de radiacdo € dada pela equacao (2-12a) de Balanis[33]:

2

U(e,¢) = %\E(ne,w
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2

Nota-se a auséncia do termo r~ na implementacao, visto que a equagdo do campo elétrico possui

um termo 1/r como visto na Sec¢éo 3.25. O cddigo é apresentado a seguir:

Codigo 3.26: gain.m

function G = gain(field, power, P)
U = abs (field) "2/ (2xP.eta_0);
G = 4xpixU/power;

end

3.27 radpat.m

Essa funcdo gera os diagramas de radiagdo dada a matriz d e a poténcia de entrada para calcular
o ganho a partir do campo.

Analisando as equagdes para o campo elétrico, vemos que ela possui singularidades em alguns
angulos. As equacdes das componentes 6 e ¢ do campo elétrico possuem sin(6) e sin2(9) no denominador,
respectivamente. Com isso, para 8 = n7w onde n € Z o campo € indefinido. No caso da equagdo da
componente ¢, existe um termo cos(6) no numerador, que, embora ndo cause uma singularidade, cria
uma descontinuidade do grifico em 6 = n% para n fmpar.

Para corrigir isso na apresentagdo dos graficos, foi adicionado ou subtraido um termo 7,/1000
nos angulos descritos acima.

Dada a amplitude do campo elétrico, € calculado o ganho, que € entdo convertido para decibéis
para ser exibido no gréfico. Utiliza-se a fungdo polarpattern [34] do Matlab para gerar o gréfico, visto
que essa é uma funcao especifica para diagramas de radiacio.

A implementacdo € apresentada a seguir:

Cédigo 3.27: radpat.m

function [GphiO_db, Gtheta90_db] = radpat (dMat, peak_power, P)
%phi = 0 plane
GphiO = zeros (361, 3);
[Etheta, Ephi] = Efields(pi/1000, pi-pi/1000, dMat, P);

GphiO(1,:) = [0, gain(Etheta, peak_power, P), gain (Ephi, peak_power
PG
Gphi0O (361, :) = [360, gain(Etheta, peak_power, P), gain (Ephi,

peak_power, P)];
parfor theta=1:179
[Etheta, Ephi] = Efields (theta*pi/180, pi/1000, dMat, P);
GphiO (theta+l,:) = [theta, gain(Etheta, peak_power, P), gain (Ephi
, peak_power, P)];
end

[Etheta, Ephi] = Efields(180-pi/1000, pi-pi/1000, dMat, P);
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Gphi0O (181, :) = [180, gain(Etheta, peak_power, P)

peak_power, P)];

parfor theta=1:17
[Etheta, Ephi]

9

, gain (Ep

Efields (theta*pi/180, pi-pi/1000, dMat
GphiO (theta+181,:) = [theta+180, gain (Etheta,

gain (Ephi, peak_power, P)];

end

[~, Ephi] = Efields (90xpi/180+pi/1000, pi/1000,
Gphi0 (91, 3) = gain(Ephi, peak_power, P);

[~, Ephi] = Efields (90#pi/180+pi/1000,

Gphi0O (271,3) = gain(Ephi, peak_power, P);

$theta = 90 plane

Gtheta90 = zeros (361, 3);

parfor phi=0:360
[Etheta, Ephi]

peak_power,
end
[~, Ephi
Gtheta90

Gtheta90
Gtheta90

181,3) =
361,3) =

peak_powe

dMat, P);

pi-pi/1000, dMat,

Efields (pi/2-pi/1000, phixpi/180, dMat
Gtheta90 (phi+1l,:) = [phi, gain(Etheta, peak_power, P),

P)1;

] = Efields(pi/2-pi/1000, pi/1000, dMat,
(1,3) = gain(Ephi, peak_power, P);

[~, Ephi] = Efields(pi/2-pi/1000,
(
(

gain (Ephi, peak_power, P);
Gtheta90 (1, 3);

$convert to db scale

GphiO_db = GphiO;
GphiO_db(:,2)
GphiO_db(:, 3)

10x10gl0 (GphiO_db(:,2));
10x10gl0 (GphiO_db(:,3));

Gtheta90_db = Gtheta90;

Gtheta90_db(:, 2)
Gtheta90_db(:, 3)

figure ('Name', 'gain_theta@phi=0");

GphiO_db(:,2),

10x1ogl0 (Gtheta90_db(:,2));
10x1ogl0 (Gtheta90_db(:,3));

TitleTopTextInterpreter="tex",

theta} @ \phi=0"+char (176))

figure('Name', 'gain_phi@phi=0");

GphiO_db(:, 3),

TitleTopTextInterpreter="tex",

phi} @ \phi=0"+char (176))

P);

180+pi/180+pi/1000, dMa

TitleTop

TitleTop

hi,

; P);
rl P)I

P);

r P)i
gain (Ephi,

t, P);

polarpattern (GphiO_db(:,1),

= "E_(\

polarpattern (GphiO_db(:,1),

= "E_(\
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figure ('Name', 'gain_theta@theta=90"); polarpattern (Gtheta90_db(:,1)
, Gtheta90_db(:,2), TitleTopTextInterpreter="tex", TitleTop = "
E_{\theta} @ \theta=90"+char(176))

figure ('Name', '"gain_phi@theta=90"); polarpattern(Gtheta90_db(:,1),
Gtheta90_db(:,3), TitleTopTextInterpreter="tex", TitleTop = "E_
{\phi} @ \theta=90"+char (176))

end
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RESULTADOS

Neste capitulo, os resultados obtidos através do Método dos Momentos sdo apresentados. Como
referéncia, sdo utilizados 2 modelos no HFSS [24], um com alimentagdo por cabo coaxial e outro por fita
de corrente, assim como utilizado neste trabalho. Nota-se que o HFSS utiliza o método numérico Método
dos Elementos Finitos (FEM em inglés). A seguinte imagem mostra a antena embutida no HFSS, onde a
regido destacada em verde claro € a cavidade no corpo do cilindro que esta preenchida por um dielétrico

representado pela cor azul e as superficies condutoras perfeitas sao representadas pela cor verde musgo.

Figura 16: Antena cilindrica embutida no HFSS.

As dimensdes utilizadas nos modelos do MoM e HFSS estio dispostas na Tabela 2:
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Parametro | Valor Unidade
a 250 mm
b 253,048 | mm
21 -36,59 mm
2 36.59 mm
o1 -6,8182 | grau
(053 6,8182 | grau
Z1a -23,68 mm
4 23,68 mm
2f 6,05 mm
Or 0 grau
Wy 4 mm

Tabela 2: Dimensdes da antena

O dielétrico utilizado tem permissividade relativa 2.55 com tangente de perdas 0.0022.
Além disso, os modelos do HFSS precisam de alguns pardmetros extras. O cilindro condutor

possui altura de 500 mm e o cabo coaxial possui as seguintes dimensdes:

Parametro | Valor | Unidade
fer 2.05 | mm
fir 0.65 | mm
fl 20 mm

Tabela 3: Dimensdes do cabo coaxial

Onde fer € o raio do dielétrico, fir é o raio do condutor e f/ o comprimento do cabo. O dielétrico do
cabo possui permissividade relativa 1,9 e tangente de perdas 0,001.

O comprimento do cabo € relevante na simulacio, ja que a porta de excitacdo (wave port) precisa
estar longe o suficiente de descontinuidades para que modos ndo propagantes tenham espago para serem
devidamente atenuados. O manual do HFSS edicao 2005 [35] sugere utilizar uma distancia de pelo menos
1/8 do comprimento de onda, o que para 2,4 GHz é 16 mm. Vale notar que a versdo mais atual do manual
[36] ndo sugere um valor, mas sim, fornece um procedimento para determinar a distancia da porta para a
descontinuidade.

Os raios internos e externos do cabo coaxial sdo baseados na norma MIL-STD-348 [37], que
define o didmetro maximo do condutor interno como 1,3 mm. Para o condutor externo foi utilizado o
valor de 4,1 mm fornecido na especificagdo do conector SMA modelo 3005 do fabricante KLLC [38].

O dielétrico utilizado € baseado no material Teflon disponivel na biblioteca de materiais do HFSS
2024R2, porém com a permissividade relativa alterada de 2,1 para 1,9 para que o cabo coaxial tenha
impedancia de 50 Q para as dimensdes utilizadas. A impedéncia do cabo coaxial pode ser calculada pela
equagdo (2.7) e tabela 2.1 de Pozar [23]:
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7 R+ joL
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Para um bom condutor, podemos assumir R << j®L, portanto, no numerador fica apenas o
termo em L. € é a permissividade relativa enquanto €” € a a permissividade relativa multiplicada pela
tangente de perdas. Substituindo as dimensdes do cabo coaxial e as propriedades elétricas do dielétrico
nas equacdes, obtemos Zg ~ 50 4 0.025i Q.

A Figura 17 mostra a cavidade e o cabo coaxial em perfil.

ZJI»
19 =X
-

[
0 20 40 (mm)

Figura 17: Cavidade cilindrica e cabo coaxial em perfil

4.1 Impedancia de entrada do MoM em diferentes parametri-
zacoes

A precisdo da computagdo € controlada pelos pardmetros Mmax, Pmax, nMax, gMax e NKz. A

escolha desses parametros € crucial para a obtencdo de bons resultados e impacta significativamente no
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tempo de execugdo do MoM. Convém recordar a finalidade desses parimetros. Mmax e Pmax controlam
a discretizagdo utilizada pela fungdo de base e teste do MoM, onde Mmax controla a quantidade de
harmonicos da fun¢do e Pmax a quantidade de segmentos em que a corrente é discretizada. nMax e
gMax controlam os limites superiores de somatdérios infinitos, por exemplo, os somatérios da equagdo
(2.173) implementada por 3.23. J4 NKz € utilizado para controlar o limite da integral na equacio (2.136)
implementada por 3.7.

A seguir, sdo apresentados os resultados para a impedancia de entrada da antena variando esses
parametros. Todos os gréficos vao de 2.2 GHz a 2.6 GHz com variagdo de 1 MHz, totalizando 401

amostras.

4.1.1 Variando Pmax

A seguinte imagem mostra a impedancia de entrada da antena para diferentes valores de Pmax,

onde Mmax = 1, e o valor dos demais parametros é 50.

Impedancia de entrada variando Pmax
| | | |

2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6

40

20

20 | | m

2.2 2.25 23 2.35 2.4 2.45 2.5 2.55 26

Figura 18: Impedancia de Entrada variando o valor de Pmax

Analisando o grafico, vemos que para pequenos valores de Pmax, incrementos pequenos tém
mudangas grandes na impedancia de entrada, porém para valores maiores de Pmax, a mudanga é bem
menor, o que indica que o resultado estd convergindo.

Contudo, nota-se que para Pmax = 22 o grafico possui anomalias. Esse comportamento é
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esperado, e nao um defeito do Método dos Momentos ou do cddigo, mas sim uma limitagdo computacional
a respeito dos somatdrios e integrais com intervalo infinito, visto que € impossivel computar o valor exato
de tais expressdes. Conforme o niimero de funcdes de base aumenta, o espaco coberto por cada uma delas
diminui e sdo necessdrias mais componentes da equacio (2.136), o que equivale a harmdnicos de maior
frequéncia.

Conforme explicado nas Se¢des 3.23, 3.6 e 3.7, os parametros nMax e gMax controlam o limite de
somatorios infinitos, enquanto Nkz controla o limite de uma integral infinita. Sendo assim, se aumentarmos
esses valores, espera-se que a anomalia desapareca. Sendo assim, o seguinte grafico mostra a configuracio
MIP22 (Mmax = 1 e Pmax = 22) com nMax, gMax e Nkz iguais a 50, comparada com nMax, gMax e
Nkz iguais a 100:

Impedancia de entrada em Mmax=1 e Pmax=22
para diferentes valores de nMax, qMax e NK
T | T | T

60

40
30
20

10

2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6
60 T T T T

40 - 1

20 i

1 | | | 1 1 |

2.2 2.25 2.3 2.35 24 2.45 2.5 2.55 2.6

Figura 19: Impedancia de entrada de M1P22 para diferentes valores de nMax, qMax e NKz

Com o aumento dos parametros nMax, gMax e Nkz a anomalia desaparece e a amplitude e

frequéncia do pico da impedancia voltam para a regido esperada.

4.1.2 Variando Mmax

A seguinte imagem mostra a impedancia de entrada da antena para diferentes valores de Mmax,

onde Pmax = 18, e o valor dos demais parametros é 50.
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Impedéancia de entrada variando Mmax
| | | |

60

50

40
30

10

2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6
60 T T T T

N
(=
|
|

2.2 2.25 23 2.35 2.4 2.45 2.5 2.55 26

Figura 20: Impedancia de Entrada variando o valor de Mmax

Ao contririo de Pmax, o valor de Mmax ndo tem muita influéncia na impedancia de entrada.
Além disso, préximo de 2.56 GHz percebe-se um pico secunddrio no grifico. Em teoria, os termos de
ressondncia criados pelo fechamento da cavidade ao aplicar o principio da equivaléncia deveriam se
cancelar perfeitamente, deixando o gréfico suave. Porém, devido a erros de precisdo numérica, isso ndo

acontece. Para Mmax = 5, o pico secunddrio € bastante notdvel em compara¢do com os demais valores.

4.1.3 Variando NKz

A seguinte imagem mostra a impedancia de entrada da antena para diferentes valores de NKz,

onde Mmax = 1, Pmax = 18 e os demais pardmetros sio iguais a 50.
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Impedancia de entrada variando NKz
| | | |

60

50

40

30

10

2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6
60 T T T T

N
(=
|

|

2.2 2.25 23 2.35 2.4 2.45 2.5 2.55 26

Figura 21: Impedancia de Entrada variando o valor de NKz

Vemos que NKz tem pouca influéncia na impedancia de entrada e que o resultado converge.

4.1.4 Variando gMax

A seguinte imagem mostra a impedancia de entrada da antena para diferentes valores de gMax,

onde Mmax = 1, Pmax = 18 e os demais pardmetros sio iguais a 50.
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Impedancia de entrada variando gMax
T I T T

60

50

40

30

10

2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6
60 T T T T

2.2 2.25 23 2.35 2.4 2.45 2.5 2.55 26

Figura 22: Impedancia de Entrada variando o valor de gMax

Vemos que para valores baixos de gMax aparecem anomalias nos resultados e, portanto, um
valor minimo adequado deve ser utilizado, nesse caso, 50. Satisfeita essa condicao, o valor de gMax nio

influencia muito a impedancia de entrada, e vemos que os resultados convergem.

4.1.5 Variando nMax

A seguinte imagem mostra a impedancia de entrada da antena para diferentes valores de nMax,

onde Mmax = 1, Pmax = 18 e os demais pardmetros sio iguais a 50.
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Impedancia de entrada variando nMax
| | | |

60

50

40

30

10

2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6
60 T T T T

N
(=
|
|

2.2 2.25 23 2.35 2.4 2.45 2.5 2.55 26

Figura 23: Impedancia de Entrada variando o valor de nMax

Vemos que nMax influencia ligeiramente na posi¢do da impedancia e que o resultado converge,

tanto que a curva para 70 se sobrepde a de 60.

4.2 Impedancia de entrada do MoM e dos modelos do HFSS

A seguinte imagem mostra a impedancia de entrada dos dois modelos do HFSS e do MoM. Para o
MoM foram utilizados Mmax = 1, Pmax = 18 e os demais pardmetros em 50. Essa escolha de pardmetros
se mostrou um bom compromisso entre acurédcia e tempo de execugdo, o que serd abordado na Sessdo
4.4. O modelo HFSS_probe é a antena com alimentacio por cabo coaxial e HFSS_strip € a antena com

alimentacao por fita de corrente.
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60

Impedéancia de entrada do MoM e HFSS
T | | | |

MoM
HFSS probe

50

HFSS strip

40
30

10

2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6
60 T T T T

40

!

20

2.2 2.25 23 2.35 2.4 2.45 2.5 2.55 26

Figura 24: Impedancia de Entrada do MoM comparada aos modelos do HFSS

Vemos que o MoM deu resultados comparaveis com o HFSS. Nota-se que a resisténcia do MoM
se assemelha mais a resisténcia do modelo com alimentagdo via cabo coaxial (HFSS_probe), enquanto a
reatancia se assemelha mais ao modelo com alimentag@o por fita condutora (HFSS_strip). Isso mostra que
h4 espaco para melhoria no método adotado de modelagem da alimentagdo da antena.

Podemos observar que a curva da reatancia cruza o zero numa frequéncia préoxima ao pico da
resisténcia. Isso indica que a reatincia estd sob controle, o que é uma propriedade esperada das antenas

hibridas, e que ela se comporta como uma antena de substrato fino [15].

4.3 Diagramas de radiacao do MoM e dos modelos do HFSS

A seguir s@o apresentados os diagramas de radiacdo da antena analisada em 2.435 GHz, que
é a frequéncia do pico da parte real da impedancia na configuragdo Mmax = 1, Pmax = 18 e demais
parametros em 50.

Os graficos mostram o ganho da antena em uma escala de —50 a 10 dB a fim de poder observar
a componente ¢ do ganho na mesma escala que a componente 8, mesmo que medi¢des com uma faixa
dindmica de mais de 30 dB dificilmente sejam acuradas.

Nota-se que a equagdo para o ganho (na realidade sdo as equacdes do campo elétrico) obtida a

partir do MoM possui singularidades em alguns pontos, como abordado em 3.27. Nesses angulos, um
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valor angular préximo (6 = 7/1000) € utilizado ao computar o ganho. Para ¢ = 0°, as singularidades
ocorrem em ambas as componentes quando 8 ¢ um mudltiplo inteiro de 7 e ocorrem em multiplos inteiros

de m/2 apenas na componente ¢. J4 em 6 = 90°, as singularidades ocorrem apenas na componente ¢

quando ¢ é multiplo inteiro de 7.

4.3.1 Componentes 6 e ¢ do ganho

Os seguintes graficos mostram o ganho do MoM e HFSS separados nas componentes 6 e ¢ em

0 =90° e ¢ = 0°, respectivamente.

Ganhos em 0=90°

105> 9" 750 G, MoM
120° 10 60° —— G MoM
G() HFSS
135° ///,Q___\\\ 45° |——G,HFss
-70
150° 30°
-20
165° ~30 15°
180° % - $=0°
195° / / 345°
210° 330°
225° — 315°

240° 300°
255° 5700 285°

Figura 25: Componentes 0 e ¢ do ganho do MoM comparado ao HFSS em 6 = 90°
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Ganhos em ¢=0°
90°

105° 75° ——G, MoM
1200 _— o 60° T 8y MoM
0

G, HFSS
135° / \ 45° | —G, HFsS

/
150° / 30°

-20

165° ~30 15°
1800 0=00
195° 345°

210° 330°
225° 315°
240° 300°
255° 285°

270°

Figura 26: Componentes 6 e ¢ do ganho do MoM comparado ao HFSS em ¢ = 0°

Percebe-se que a componente ¢ do ganho é extremamente pequena em relagdo a componente
6 e nem o HFSS nem o MoM séo capazes de computar essa componente com acuracia, sendo o mais
importante o fato de que o ganho é muito pequeno. Isso demonstra que a antena, de fato, possui baixa
polarizagdo cruzada.

J4 na componente 0, a correspondéncia entre 0 MoM e o HFSS € excelente na parte frontal da
antena, enquanto na parte traseira, nota-se uma auséncia de franjas no MoM. Isso se deve a um cilindro
infinito ser utilizado no modelo do MoM, visto que nao hd bordas para o campo difratar e criar franjas na
parte traseira da antena. O efeito da altura do cilindro pode ser visto nos seguintes graficos que mostram a

componente 8 do ganho do HFSS para diferentes alturas.
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Componente 6 do ganho em 0=90°
para diferentes alturas do cilindro condutor

90°

105° 75°

120° 10 60°

135°

150°

165°

180°

195°

210°

225°

—250mm
—375mm
500mm
—625mm
——1000mm
1250mm
——1500mm

Figura 27: Componente 6 do ganho em 6 = 90° para diferentes alturas do cilindro condutor
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Componente 0 do ganho em ¢=0°

para diferentes alturas do cilindro condutor — 5,

o —375mm
90 75° 500mm
—625mm
——1000mm

1250mm
——1500mm

105°

120°

180°

195°

210°

225° 3156°

240° 300°
255° 270° 285°

Figura 28: Componente 6 do ganho em ¢ = 0° para diferentes alturas do cilindro condutor

Podemos observar que, conforme a altura do cilindro aumenta, menor € o ganho na regido traseira

da antena.

4.3.2 Ganho total

Os seguintes graficos mostram o ganho total do MoM e HFSS em 6 = 90° e ¢ = 0°, respectiva-

mente. Lembrando que o ganho total é a soma das componentes ¢ e 8 do ganho.
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Ganho total em 0=90°
90°

105° 75°
120° 10 60° E—yyey
0 ——HFSS
135° : 45°
150° 30°
165° 15°
180° $=0°
195° 345°
210° 330°
225°
240° 300°
255° 270° 285°

Figura 29: Ganho total do MoM comparado ao HFSS em 6 = 90°
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Ganho total em ¢=0°

105° 90° 750
120° —
——HFSS
150° 30°
165° 15°
180° o
195° 345°
210° 330°
205° 315°
240° 300°
255°  ,700  285°

Figura 30: Ganho total do MoM comparado ao HFSS em ¢ = 0°

Podemos ver que o ganho total € praticamente igual a componente 6 do ganho, o que reforca que
a antena tem baixa polarizac¢do cruzada. Essa é uma propriedade muito interessante desse tipo de antena e

0 MoM ¢€ capaz de capturar esse fendmeno.

4.4 Tempo de execucao

Um ponto importante a se considerar € o tempo de execu¢cdo do MoM para diferentes parametros.

O computador utilizado para executar o MoM e o HFSS foi o mesmo e possui a seguinte configuragao:

m Sistema operacional Windows 10

m Processador Intel Core 17-7700 CPU @ 3,60 GHz
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= 16 Gb de RAM DDR4 @ 2400 MHz

m Matlab R2022b e HFSS 2019 R1

A seguinte imagem mostra o tempo de execu¢do dos modelos do HFSS com alimentacao por

ponta de prova coaxial e fita condutora comparados com o tempo de execugdo do MoM:

Tempo de execugdao do MoM para diferentes combinagées de Mmax e Pmax
T T T T T T
12:54:58

T

12:00:00 [~

10:00:00 [~

08:00:00

06:00:00 05:14:12

T

04:00:00

02:00:00
00:56:07

00:23:16 00:38:05

00:013:03 00:0‘4:43

00:00:00
M1P4 M1P6 M1P14 M1P18 M1P22 M3P18 M5P18

Configuragao

Figura 31: Tempo de execu¢do do MoM comparado com o HFSS

O tempo de execugao do software desenvolvido utilizando o MoM foi substancialmente menor
que o do HFSS. Claro que assim como no HFSS h4 vérios parametros que podem ser alterados para trocar
precisdo por tempo, aqui é exatamente igual. As proximas figuras mostram como alterar os parametros de
precisdo impacta no tempo de execugio.

A seguinte imagem mostra o tempo de execugdo para diferentes valores de Pmax e Mmax com os

demais parametros em 50.
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Tempo de execugdo do MoM para diferentes combinagées de Mmax e Pmax
| | | | | | |
12:54:58

I

12:00:00

10:00:00 —

08:00:00 [~

06:00:00 [~ 05:14:12

04:00:00

02:00:00
00:56:07

00:38:05

00:23:16

00:0]3:03 00:0|4:43

00:00:00
M1P4 M1P6 M1P14 M1P18 M1P22 M3P18 M5P18

Configuragao

Figura 32: Tempo de execu¢do do MoM para diferentes combinacdes de Mmax e Pmax

Observa-se que o tempo ndo aumenta de forma linear, portanto, levando em conta os resultados
obtidos de impedancia de entrada, ¢ mais apropriado utilizar uma configuragdo com Mmax = 1 e Pmax =
14 ou 18, por exemplo, a configuracdo MIPI18 (Mmax =1 e Pmax = 18).

A seguinte imagem mostra o tempo de execugdo para diferentes valores de nMax, onde Mmax = 1

e Pmax = 18 e os demais parametros valem 50.

Tempo de execugdo do MoM para diferentes valores de nMax
I I I

T
00:51:45
00:50:00 — _
00:45:11
00:40:00 [~ 00:38:05 _
00:31:28
00:30:00 [~ —
00:24:31
00:20:00
00:10:00
00:00:00
30 40 50 60 70
nMax

Figura 33: Tempo de execu¢do do MoM para diferentes valores de nMax

Vemos que o tempo aumenta de forma aproximadamente linear ao aumentar nMax. A impedancia
de entrada varia ligeiramente ao aumentar esse pardmetro, mas a diferenca ndo € muito significativa, entdo

0 aumento de tempo ndo justifica aumentar muito o valor de nMax, sendo um valor de 50 suficiente.
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A seguinte imagem mostra o tempo de execugdo para diferentes valores de NKz, onde Mmax = 1

e Pmax = 18 e os demais parametros valem 50.

Tempo de execugido do MoM

00:40:39 para diferentes valores de NKz
I [ I
00:40:00 00:38:05 -
00:36:14 00:36:27
00:30:00 =
00:20:00 _
00:10:00 _
00:00:00
30 40 50 60
NKz

Figura 34: Tempo de execucao do MoM para diferentes valores de NKz

A primeira vista, parece contraintuitivo que o tempo de execu¢do ndo esteja estritamente au-
mentando conforme o intervalo de integracdo aumenta, porém, levando em conta como o algoritmo de
integracdo funciona, i.e. quadratura adaptativa de Gauss-Kronrod [39], percebe-se que ele apresenta um
comportamento cadtico, j4 que uma pequena mudancga no intervalo pode mudar completamente a forma
com que os intervalos de integracdo serdo divididos, e a complexidade temporal de calcular cada um deles.
No geral, pode-se esperar que o tempo de execucdo muda de forma significativa quando a quantidade de
subdivisdes que o algoritimo precisa fazer também muda, caso contrério, o tempo é aproximadamente
constante. Como a diferenca na impedancia ao variar NKz € muito pequena, e podemos considerar o tempo
constante, a escolha de NKz ndo € muito relevante para o tempo de execug@o no intervalo investigado.

A seguinte imagem mostra o tempo de execugao para diferentes valores de gMax, onde Mmax = 1

e Pmax = 18 e os demais parametros valem 50.
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Tempo de execugdo do MoM para diferentes valores de gMax
I I I I
00:38:05

00:35:30

00:34:16 00:34:44

00:30:00 [~

00:20:00

00:10:00 [~

00:00:00

gMax

Figura 35: Tempo de execu¢dao do MoM para diferentes valores de gMax

Os somatdrios controlados pelo parametro gMax sao relativamente rdpidos de computar ao se
comparar com o somatdrio da equacdo (2.136), devido a integral. Sendo assim, aumentar esse parimetro
influencia pouco no tempo de execug¢do, logo, recomenda-se utilizar o mesmo valor de nMax para evitar
desbalancear a matriz de impedancia. Nota-se que para gMax=40 o tempo de execucio é aproximadamente
a metade dos demais valores, mas dado que para esse caso a impedancia possui anomalias, o tempo de

execugdo ser menor € irrelevante.
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CONCLUSAO

O processo de analisar antenas com geometrias complexas € bastante trabalhoso. Nao s6 é
necessario um avancado conhecimento de eletromagnetismo e célculo, mas, dada a complexidade das
equagdes envolvidas, conhecimento de programacgdo também € essencial para conseguir obter resultados
relevantes de maneira rapida. Mesmo assim, todo esse trabalho é justificavel, dadas as propriedades
que tais antenas apresentam. Esse é o caso das antenas cilindricas hibridas embutidas, que possuem as
caracteristicas de conformidade e baixo perfil das antenas de microfita cilindricas [1], e baixa polariza¢do
cruzada e baixa reatincia indutiva das antenas hibridas embutidas [14].

Foi com o propésito de analisar as antenas cilindricas hibridas embutidas que este trabalho foi
desenvolvido. O Capitulo 2 apresenta o desenvolvimento tedrico de uma antena desse tipo e, através do
Método dos Momentos [19] e outros métodos analiticos de eletromagnetismo, chega-se a um sistema linear
e a equagdes para calcular os elementos desse sistema. Com isso, no Capitulo 3 € apresentado o programa
desenvolvido em Matlab [40] que implementa tais equagdes e resolve o sistema, assim sendo possivel
computar o diagrama de radiacdo e a impedancia de entrada da antena. Por fim, os resultados obtidos sdo
apresentados no Capitulo 4, onde € feita uma exploracdo de como os parametros do programa influenciam
no tempo de execucgdo e na acurdcia dos resultados. Os resultados sdo validados comparando-os aos
obtidos no software comercial HFSS [24], e podemos concluir que houve excelente compatibilidade entre
os resultados deste trabalho e do HFSS.

5.1 Contribuicoes
As principais contribuicdes desta dissertagdo incluem:

» Desenvolvimento de uma formulacio tedrica: A pesquisa estabeleceu um arcabougo tedrico

para a andlise de antenas cilindricas hibridas embutidas.

» Implementacio numérica validada: A ferramenta computacional desenvolvida e validada
oferece um meio para caracterizar essas antenas. O cédigo fonte pode ser acessado em

https://github.com/rma6/embedded-cylindrical—-antenna—mom.

» Analise de caracteristicas de desempenho: O estudo permitiu a compreensdo de aspectos
como polarizacio cruzada e reatancia indutiva, considerados no projeto e otimizagdo de

antenas.


https://github.com/rma6/embedded-cylindrical-antenna-mom
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5.2 Trabalhos Futuros

= Automatizacio da escolha dos parametros de precisdo: Desenvolver algoritmos que
permitam a escolha automdtica dos pardmetros Mmax, PMax, nMax, gMax e NKz, buscando

um equilibrio entre a acurécia do resultado e o tempo computacional.

s Determinacio automatica da faixa de operacao da antena: Implementar funcionalidades
que permitam ao programa determinar, de forma autdnoma, a faixa de frequéncia de operagéo

da antena.

» Expansio das caracteristicas de analise da antena: Integrar ao software o célculo de outras
caracteristicas de desempenho da antena, como eficiéncia de radiacao, largura de banda e

ganho, para fornecer uma andlise mais completa.

= Avaliacao de outras técnicas de integracdo: Investigar e implementar o uso de outras
técnicas de integracdo numérica, além da quadratura de Gauss-Kronrod adaptativa [39], para

verificar a possibilidade de ganhos em termos de acuracia ou tempo de processamento.
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ANALISE ASSINTOTICA DAS FUNCOES 0,

As funcdes ©,, sdo combinagdes da funcdo de Bessel do primeiro tipo e da funcdo de Hankel,
onde n define quais func¢des aparecem derivadas na equacdo. Particularmente, estamos interessados nas

funcdes O1, O3, O5 e B7, como definidas a seguir:

/ !
O, (n,q) = J.,(kyb)HE (kpa) — I, (kpa)H (kyb) (A1)
_ 2’ / ()
Os3(n,q) = Jy(kpb)Hy" (kpa) —Jy, (kpa)Hy™ (kpb) (A.2)
Os(n,q) = Jy (kob)Hy (kpa) = Jy (ko) H (kpb) (A3)
®1(n,q) = 1, (kpb)HE (kpa) — Jy (kpa) HY (kb A4
7(n,q) = Jy(kpb)H,” (kpa) — Iy (kpa)Hy™ (kpb) (A.4)
Onde v = % ekp =1/k>— %2. k pode ser kp ou k; a depender da regido na qual a funcio O estd sendo

usada.

Nenhuma das func¢des ®,, pode ser computada diretamente, visto que elas ndo sdo bem com-
portadas para argumentos muito pequenos ou muito grandes. Por conta disso, faz-se necessdrio utilizar
aproximacdes nessas regides. No Apéndice D de Harrington [20], podemos encontrar as aproximacoes
assintéticas para as funcdes de Bessel, e a partir delas derivar as aproximagdes das funcdes ©,,.

Para argumentos pequenos e ordem 0 [20] (D-9):

Jo(x) —1-% 51

x—0 (A5)
2 yx
YO(X) —>an Eln (7)
E suas derivadas:

J! — -2

O(X) x—0 2
(A.6)

10— 3

x—0

4
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Onde y = 1.781 € a constante de Euler-Mascheroni [20] (D-8) I

Para argumentos pequenos e ordem diferente de 0 [20] (D-10):

Jo(x) — 5 (3)"

Ny() — — 2 (2]

T X

E suas derivadas:

E suas derivadas:

Ji, (x) — - 2 [z—lxcos(x—%—@—i-sin(x—%—%)}

Vi) oy [ sin (v = 1) oo (v 2 - )

Agora, substituimos as expressoes assintéticas nas defini¢cdes das funcdes @,,.

Para argumento pequeno e ordem igual a 0:

Para argumentos pequenos e ordem diferente de 0:

(A7)

(A.8)

(A9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

'Na notacdo mais atual, y = 0.577, e ¢¥ = 1.781 porém no Harrington, ele utiliza y diretamente como 1.781
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v 1 /b\""' 1 vl
®1<”7‘1>m”xk2[‘az(a> ‘w(g) ] (A-16)
, P
v (1 /B 1 /a\"!
0O3(n,q) —>kﬁ0 —Jn—kp [a <a> +b<b> ] (A.17)
1 b\" v
O5(n.q) — ]m[(a> <Z) ] (A18)
p—>

1 [/
©r(ma) = fnk,,“) 5

Para argumentos grandes:

a v
b) ] (A.19)

2j 1 , 1 1
Oi(n,q) — o= Ty \/ab <1+4kp2ab> sin(kp (b—a)) + <2kpb 2k,,a> cos(kp(b—a))| (A.20)

2 [
kp—ro0 ﬂkp\/ab 2kp(l

Os(n,q) sin(ky (b —a)) + cos(kp (b—a))] (A.21)

2
Os(ma) 2 \J/%Sin (ko (b—a)) (A.22)
P p
2j 1
07(n,q) —— p— nkp] — [cos (kp(b—a)) — kab sin (kp (b — a))] (A.23)

Formalmente, definimos argumento pequeno como aquele menor do que argmin. Para ordem
igual a 0 definimos argmin como:
argmin = 2 x 1Q~pPmin (A.24)
Ja para ordem diferente de 0, definimos argmin como:
! .
T [loglo (%’—n) - expmm]

argmin =2 x 10 (A.25)

Argumento grande é definido como aquele maior que o valor arbitrario argmax.
Para evitar calcular o fatorial de um niimero potencialmente grande, podemos reescrever a

expressdo utilizando a propriedade do logaritmo dos produtos como:

log(x!) Z log(n (A.26)
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