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RESUMO

Insetos transmissores de doenças, como o Aedes aegypti, causam danos significativos em
várias áreas da sociedade. Doenças relacionadas, como Dengue, Zika e Chikungunya têm cau-
sado prejuízos sanitários, sociais e econômicos ao redor do globo, principalmente em países
tropicais. Dentre os métodos de combate, a vigilância entomológica provê mecanismos pre-
ditivos baseados em indicadores-chave, envolve a metodologia de ovitrampas e consequente
contagem manual de ovos do mosquito em palhetas de ovitrampa para obtenção de infor-
mações para posterior tomada de decisões no combate ao mosquito. Problemas inerentes à
laboriosa contagem manual dos ovos demandam métodos acurados de contagem automática.
Este trabalho propõe o desenvolvimento de uma metodologia de contagem automática de ovos
de Aedes aegypti em palhetas de ovitrampa de viável aplicação operacional, de baixo custo e
que, além de resolver problemas fundamentais da captura de imagens, como dificuldades de
iluminação, resolve também problemas frequentes na literatura, como a captura redundante
de regiões da palheta. Abordagens anteriores promoveram considerável avanço no desenvol-
vimento de métodos de contagem automática, restando, entretanto, numerosas dificuldades
e pontos de melhoria. Contribuições importantes desta pesquisa incluem a definição de uma
metodologia de contagem de ovos baseada em redes neurais de detecção de objetos, além da
criação de um dispositivo de baixo custo para captura adequada de imagens em palhetas de
ovitrampa, a criação de base de dados numericamente significativa dessas imagens, avaliação
experimental do impacto de técnicas de pré-processamento baseadas em processamento de
imagens, bem como de rede neural de restauração de imagens degradadas. Também, trei-
namento e avaliação de modelos, como D-FINE e RF-DETR, obtendo erro médio de 91,26
ovos e -2,77% de erro global percentual no reconhecimento de ovos em imagens com ruídos
expressivos, bem como, por fim, o uso de quantidade significativa de 28 palhetas como con-
junto independente de validação da aplicabilidade desta metodologia em cenários de uso real,
número bastante expressivo considerando-se trabalhos encontrados na literatura.

Palavras-chave: Contagem automática. Aedes aegypti. Aprendizagem Profunda. Dispositivo
de captura de baixo custo. Base de dados de ovos. Palheta de ovitrampa.



ABSTRACT

ABSTRACT
Disease-transmitting insects, such as Aedes aegypti, cause significant damage in vari-

ous areas of society. Related diseases such as Dengue, Zika, and Chikungunya have led to
health, social, and economic losses worldwide, especially in tropical countries. Among the
control methods, entomological surveillance provides predictive mechanisms based on key in-
dicators, involving the use of ovitraps and subsequent manual counting of mosquito eggs on
oviposition paddles to support decision-making in mosquito control. Problems inherent in the
labor-intensive manual counting process demand accurate automatic counting methods. This
work proposes the development of an automatic Aedes aegypti egg-counting methodology
for oviposition paddles, with low cost and operational feasibility, which, in addition to solving
fundamental issues in image acquisition such as lighting difficulties, also addresses frequent
problems reported in the literature, including redundant capture of paddle regions. Previous
approaches have promoted considerable progress in developing automatic counting methods;
however, numerous challenges and areas for improvement remain. Important contributions of
this research include the definition of an egg-counting methodology based on object detection
neural networks, the development of a low-cost device for proper image acquisition in ovipo-
sition paddles, the creation of a numerically significant image dataset, and an experimental
evaluation of the impact of preprocessing techniques based on image processing, as well as a
neural network for restoring degraded images. Additionally, training and evaluation of models
such as D-FINE and RF-DETR achieved a mean error of 91.26 eggs and a mean percent-
age error of -2.77% in recognizing eggs in images with expressive noise. Finally, a substantial
number of 28 paddles were used as an independent set to validate the applicability of this
methodology in real-world scenarios, a figure that is considerably significant considering works
reported in the literature.

Keywords: Automatic counting. Aedes aegypti. Deep learning. Low-cost capture device. Egg
database. Oviposition paddle.
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1 INTRODUÇÃO

O Aedes aegypti é um mosquito transmissor de doenças como dengue, febre amarela,
chikungunya e zika, além de, associado a esta última, poder causar microcefalia por infecção
congênita (ARAÚJO et al., 2018). Sua provável origem é o Nordeste da África, especificamente
o Egito (PESSÔA; MARTINS, 1982), de modo que foi introduzido no Brasil durante o período
colonial, provavelmente por meio do transporte marítimo, em especial, de navios negreiros
(PAIXAO, 2007) (CONSOLI; OLIVEIRA, 1994). O mosquito incide sobre toda faixa tropical e
sub-tropical do planeta e, por ser considerado cosmopolita, acompanha o ser humano e, desse
modo, manifesta-se principalmente em regiões urbanas, tanto no domicílio como também no
peridomicílio humanos.

Historicamente, o Brasil tem sofrido surtos e epidemias de arboviroses transmitidas pelo
Ae. aegypti, a exemplo da tríplice epidemia dos vírus zika, dengue e chikungunya, ocorrida em
2016 e da epidemia de dengue em 2019. No País, no período compreendido entre 2008 e 2019,
foram notificados cerca de 11,6 milhões de casos suspeitos de dengue, zika e chikungunya,
sendo, somente a dengue, responsável por cerca de 10,6 milhões desse total (SAúDE, 2020).
Os dois anos seguintes foram marcados pela queda acentuada no número de casos dessas
doenças. Porém, em 2022, houve um aumento abrupto, de modo que somente o número de
casos notificados de dengue atingiu cerca de 1,4 milhões até a semana epidemiológica 51, com
um total de 1.053 mortes no ano. Isto põe em clareza o constante risco de ressurgimento de
surtos e epidemias de arboviroses no País (Ministério da Saúde – Secretaria de Vigilância em Saúde,
2022; SAúDE, 2024).

Ainda mais, em 2023, o número de casos de dengue teve ainda aumento, de maneira a
atingir cerca de 1,6 milhões de casos prováveis e 1094 mortes confirmadas (Ministério da Saúde –

Brasil, 2024b). No ano seguinte, o número de casos teve expressivo aumento e alcançou cerca
de 6,5 milhões de casos prováveis de dengue e 6.297 óbitos (o maior da série histórica), o
que representa um aumento de 400% em relação ao ano de 2023 (Ministério da Saúde – Brasil,
2024a). Isso fez com que o número de óbitos por dengue em 2024 superasse a quantidade de
óbitos por COVID-19 no mesmo ano(Ministério da Saúde – Brasil, 2025a). Portanto, dessa forma,
como constatado pelas autoridades sanitárias, o Brasil tem enfrentado consecutivas epidemias
de dengue ao longo dos últimos três anos (2022, 2023 e 2024) (Ministério da Saúde – Secretaria

de Vigilância em Saúde e Ambiente, 2024). Por fim, somente até a 27ª semana epidemiológica de
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2025, já foram notificados mais de 1,6 milhões de casos prováveis de dengue com 1.420 óbitos
ao total, além de mais de 3.900 casos de Zika e cerca de 109 mil de Chikungunya (Ministério

da Saúde – Brasil, 2024a).
Ante esse cenário, os sistemas de vigilância provêm meios capazes de se detectar, com

antecedência, o surgimento de novos surtos de donças transmitidas pelo vetor. Por um lado,
a vigilância epidemiológica estuda, entre outras coisas, o processo da saúde-doença na soci-
edade (FILHO; ROUQUAYROL, 1992), de modo a tratar-se da observação sistemática e ativa
de casos suspeitos ou confirmados de doenças transmissíveis e suas causas. Tal abordagem,
entretando, configura-se como um método tardio, pois suas ações visam primeiro conhecer
fatores determinantes na saúde coletiva ou individual, para só então adotar ações de controle
dessas doenças (ACOSTA, 2016). Por outro lado, a vigilância entomológica abrange escolha,
coleta e acompanhamento de dados de indicadores eleitos associados ao vetor de doenças com
o objetivo de determinar mudanças na distribuição geográfica de um espaço, no sentido de se
obter dados da população do mosquito ao longo do tempo numa dada região, além de fornecer
informações que deêm suporte a oportunas tomadas de decisão no âmbito de programas de
combate ao vetor. (ORGANIZATION et al., 2016).

A vigilância entomológica faz uso de duas técnicas, a saber: Pesquisa larvária e vigilância
pela presença de ovos em ovitrampas. A primeira consiste na busca de larvas de mosquitos em
recipientes com água, e em levantamentos quantitativos a partir desses dados. Por outro lado,
a segunda, trata-se de contagem de ovos do mosquito depositados em armadilhas especiais
chamadas ovitrampas.

Nesse contexto, ovitrampa consiste numa armadilha de deposição de ovos do mosquito
(ou ovoposição) e é formada por um recipiente cilíndrico preto abastecido de agua de torneira
no seu interior, tendo nele fixado um substrato de ovoposição, na forma de uma palheta
de superfície áspera que serve para deposição de ovos pela fêmea adulta do mosquito. Essa
técnica possibilita, através da contagem de ovos de Aedes aegypti nas palhetas de ovitrampa,
a geração de inferências acerca da densidade do vetor em regiões específicas antes que seu
adensamento populacional resulte no aparecimento de doenças relacionadas. Desenvolvida nos
Estados Unidos, em estudos partir de 1965 (FAY; PERRY et al., 1965; FAY; ELIASON et al., 1966),
tal ferramenta vem, desde então, sendo amplamente utilizada em várias partes do mundo,
(PERICH et al., 2003), também sendo mais encontrada na literatura, além de aplicada por
municípios no Brasil, por recomendação do Ministério da Saúde.

Desta forma, a metodologia de implementação de ovitrampas envolve como etapa indis-
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pensável a contagem manual de ovos de Aedes aegypti para a obtenção de índices de ovos.
Estes indicadores (e a precisão deles) são cruciais para, no âmbito da vigilância entomológica,
realizar o monitoramento periódico, a obtenção de informações sobre a infestação dos mosqui-
tos de forma oportuna para direcionar ações de controle vetorial a partir do bloqueio de focos.
Também, a implementação e avaliação de tecnologias de controle, como o uso de Estação
Disseminadora de Larvicida (EDL), do método Wolbachia e da Técnica do Inseto Estéril por
Irradiação (TIE) e visita de casa em casa em áreas prioritárias dependem obrigatoriamente da
prévia aplicação de ovitrampas (Ministério da Saúde – Brasil, 2025d).

Entretanto, métodos tradicionais de contagem manual, visual e não-automática são fre-
quentemente sujeitos a erros e vieses, além de serem laboriosos, tediosos e demorados e
poderem levar ao acúmulo de palhetas (MAINS; MERCER; DOBSON, 2008), o que, em última
instância, pode atrasar o monitoramento e ações de controle vetorial. Desta forma, diversos
métodos de contagem automática têm sido estudados na literatura com vistas a acelerar o
tempo de contagem e obter performance satisfatória e indicadores fidedignos de forma tem-
pestiva e menos laboriosa. Então, métodos de contagem automática de ovos do Aedes aegypti,
além de aumentar a confiabilidade da análise, podem favorecer a tomada de ações de controle
em tempo hábil para evitar surtos da doença.

Outrossim, esta contagem automática apresenta desafios peculiares que envolvem o uso
de dispositivos de captura, geralmente custosos, baseados em componentes eletrônicos para
auxiliar na captura como, uso de sistemas de iluminação, para assim, obterem-se imagens
digitais para contagem automática. Também a contagem automática a partir de imagens é,
em si, desafiadora e alvo de pesquisas ao longo dos anos, a exemplo de (SANTOS et al., 2008;
FEITOSA et al., 2015; SILVA, 2021; VICENTE et al., 2024), com limitações e pontos de melhoria
ainda observados, como, a captura redundante de regiões da palheta pelo dispositivo de cap-
tura, o aumento expressivo de erro de contagem em imagens ruidosas, bases de validação final
da solução com poucas imagens, dentre outros. Nesse sentido, atualmente, há a necessidade
do desenvolvimento de uma metodologia de contagem que envolva, tanto o uso de dispositivos
eficientes, mas também de baixo custo, fácil transporte e manuseio, como também o uso de
métodos computacionais mais eficientes, do estado da arte, a exemplo de modelos baseados
em Transformers, além da aplicação de mecanismos de attention para contagem de automá-
tica de ovos de A. aegypti em palhetas de ovitrampas, para tornar, por fim, mais célere o
monitoramento e aplicação de ações de controle no âmbito da implementação da vigilância
entomológica.
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À luz disso, este trabalho ocupa-se de desenvolver dispositivo eficiente de baixo custo e de
fácil uso operacional para captura de imagens em palhetas de ovitrampa, aliado à criação de
uma base de tamanho expressivo, além do uso de métodos de inteligência computacional para
o reconhecimento de ovos de A. aegypti em palhetas de ovitrampa com performance signifi-
cativa, em especial de redes neurais de restauração de imagens degradadas, como o MPRNet,
modelos de detecção de objetos baseados em Transformers, como RF-DETR. Estas ferramen-
tas propostas visam auxiliar na aplicação da metodologia do uso de ovitrampas e contribuir
para a celeridade na obtenção de indicadores precisos, que por sua vez, no âmbito da vigilância
entomológica, servem de base para o direcionamento de ações efetivas no monitoramento e
controle do mosquito vetor de doenças como Dengue, Zika e Chikungunya e febre amarela.

1.1 ORGANIZAÇÃO DO DOCUMENTO

Este documento está posto estruturado da seguinte forma: O capítulo 1 contém a introdu-
ção e relata os objetivos deste trabalho. No capítulo 2, está contida a fundamentação teórica,
onde são expostos os conceitos a serem tratados noutros capítulos. O capítulo 3 apresenta
os trabalhos relacionados à contagem automática de ovos de Aedes aegypti. Por sua vez, o
capítulo 4, apresenta a metodologia empregada neste trabalho e no capítulo 5 são expostos
os resultados. No capítulo 6, é feita a conclusão e relato de trabalhos futuros.

1.2 OBJETIVOS

O objetivo geral desta pesquisa é propor uma metodologia de contagem automática de
ovos de Aedes aegypti em ovitrampas a partir de imagens obtidas por smartphone, aliada ao
uso de dispositivo de captura de baixo custo.

Para alcançar este objetivo, seguem-se os objetivos específicos:

a) Definir um protocolo de contagem automática que envolva captura de imagens de pa-
lhetas com smartphone e ferramentas de baixo custo e de fácil manuseio operacional;

b) Desenvolver um dispositivo de baixo custo para auxiliar a captura adequada de imagens
em palhetas de ovitrampa que resolva problemas comuns apontados na literatura;

c) Criar uma base de dados a partir de palhetas de ovitrampa capturadas usando a meto-
dologia definida e dispositivo de captura de baixo custo;
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d) Treinar modelos de detecção de objetos do estado da arte para a tarefa de reconheci-
mento de ovos de Aedes aegypti usando a base de dados criada;

e) Tratar imagens ruidosas com técnicas de processamento de imagens;

f) Lidar com imagens degradadas e de baixa resolução usando rede neural de restauração
de imagens;

g) Testar o desempenho dos modelos de contagem de ovos de A. aegypti em palhetas
contadas por técnicos da Fundação Oswaldo Cruz (Fiocruz) em Pernambuco.

1.3 PRINCIPAIS CONTRIBUIÇÕES

a) Definição de um protocolo de contagem de ovos de A. aegypti de melhor uso operacional
e de baixo custo;

b) Criação de um dispositivo de captura de baixo custo que possibilita a captura de imagens
da superfície de uma palheta de ovitrampa com iluminação adequada e de forma a evitar
sobreposição de regiões da palheta (redundância de captura);

c) Criação de uma base de dados de imagens de palhetas de ovitrampa para treinamento
de modelos de aprendizagem profunda;

d) Testar técnicas de processamento de imagens e rede neural de restauração de imagens
para lidar com imagens de palhetas com ruídos;

e) Aplicar redes neurais do estado da arte voltadas à detecção de ovos de A. aegypti, como
D-FINE, RF-DETR e da série de modelos YOLO num protocolo de contagem de baixo
custo e relacionado a imagens de baixa resolução capturadas por smartphone.
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2 FUNDAMENTAÇÃO TEÓRICA

2.1 O MOSQUITO AEDES AEGPYPTI

Ao longo da história, a espécie humana tem ocupado espaços que já eram habitat de várias
outras espécies, o que pode causar, tanto a extinção das espécies que tiveram seus habitat
invadido, como também causar o comensalismo. Nesse último caso, as espécies não humanas
permanecem se reproduzindo em territórios ocupados pelo homem e, tratando-se de espécies
de insetos que se alimentam de sangue de animais vertebrados (preferencialmente humano),
essa combinação pode gerar consequências graves (POWELL; TABACHNICK, 2013).

Uma vez que insetos transmissores de doenças humanas são partícipes dessa domesticação,
de modo a viverem em proximidade com humanos (antropofilia), ocorre uma mudança na
preferência da fonte de sangue, deixando de ser de fonte animal (zoofagia) para ser de fonte
humana (antropofagia). Tal permuta, faz com que humanos sofram com doenças infecciosas
antes restritas aos animais. Isso acarreta também que, os insetos vetores de doenças passar a
ser espécies invasoras, de modo que, não só passam acompanhar o homem em seu domicílio e
peridomicílio, como também ser espalhados por ele à medida em que o homem ocupa outros
espaços geográficos (LOUNIBOS, 2002).

Nessa circunstância, insere-se o mosquito Aedes aegypti (“odioso do Egito”), vetor de
doenças como febre amarela, dengue, chikungunya e zika (Ministério da Saúde – Brasil, 2023).
Descrito cientificamente pela primeira vez em 1757 por Fredrik Hasselqvist (HASSELQUIST,
1757) como Cullex aegypti (GARCES-AYALA et al., 2014), é de origem africana e, com menos
de um centímetro de comprimento, é menor do que mosquitos comuns, sendo caracterizado
pela sua cor preta com listras brancas no tronco e nas pernas e asas translúcidas, além de
ruído praticamente inaudível aos humanos ao voar.

Enquanto que o mosquito macho alimenta-se apenas de frutas, a fêmea, porém é hemató-
faga, de maneira que, após a cópula, precisa alimentar-se de sangue como fonte de proteína
para realizar a maturação completa de seus ovos. Durante seu tempo aproximado de vida de
trinta dias, pode dar origem a cerca 1.500 mosquitos. Após a fecundação e postura dos ovos,
inicia-se o ciclo de vida do Ae. Aegypti, o qual, após a eclosão do ovo, atinge a fase adulta
em cerca de dez dias (CRUZ, 2022b).

Cada mosquito fêmea põe entre 150 a 200 ovos, os quais inicialmente são de cor branca,
tornando-se pretos e brilhantes ao passar do tempo, como mostra a Figura 1 (MUNDIM-POMBO
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et al., 2021). Possuem menos de 1 mm de comprimento e cerca de 0,2 mm de largura, e são
depositados pelo mosquito em criadouros naturais ou artificiais, de modo a ficarem a milímetros
de distância de água parada e limpa. Após cerca de 15h, adquirem resistência à secura, de
modo que podem suportar até cerca de 450 dias sem contato com água (CRUZ, 2022a). Após
ocorrer contato com água, os ovos eclodem em pouco menos de 30 min, e entre sete e nove
dias tornam-se mosquitos adultos, tendo passado pelas suas quatro fases: Ovo, larva, pupa e
adulto (SANTO, 2025).

Figura 1 – Ovos de Aedes aegypti

Fonte: (MUNDIM-POMBO et al., 2021)

Uma vez infectado com os vírus, o mosquito adulto fêmea transmite o vírus por toda vida
e, é possível que pelo menos uma parte de seus descendentes já nasçam portadores do vírus
(SANTO, 2025). Em adição a isso, em cada ciclo de reprodutivo, a fêmea pode depositar cerca
de 100 ovos; isso pode ocorrer a cada quatro dias, o que favorece a proliferação do vírus
(Ministério da Saúde – Brasil, 2025b).
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2.1.1 Doenças relacionadas

2.1.2 Dengue

É uma doença causada pelo vírus da dengue (DENV), que possui quatro sorotipos: DENV-
1, DENV-2, DENV-3 e DENV-4. Os sorotipos são variações do mesmo vírus e, mesmo perten-
cendo à mesma espécie, distinguem-se entre si quanto à sua composição antigênica (Ministério

da Saúde – Brasil, 2025c).
Estima-se que há cerca de 390 milhões de infecções anualmente ao redor do mundo. A

doença ocorre em lugares como, na América do Sul, Central, nordeste da Ásia e Pacífico Sul
e é transmitida pela picada do Ae. aegypti e tem histórico considerável de epidemias no Brasil
(KAUFMAN, 2019).

É importante salientar que o mosquito é infectado pelo vírus após sugar o sangue de um
humano infectado com a dengue (no curto período em que o humano tem o vírus circulando
em sua corrente sanguínea) e, só então, depois de cerca de 10 a 12 dias, o mosquito se torna
infectivo, portanto transmissor da doença (Instituto Oswaldo Cruz – Fiocruz, 2025).

Após cerca de 5 a 8 dias, os sintomas da doença manifestam-se, quais sejam febre, erupção
cutânea, dor de cabeça severa, dor nas articulações e nos músculos, dentre outros sintomas
(KAUFMAN, 2019). Inclusive, a palavra “dengue” é de origem espanhola e significa “manha”,
“melindre” e faz referência ao estado em que o infectado se encontra, devido aos sintomas
(Secretaria de Estado da Saúde do Espírito Santo, 2015).

Ainda, o infectado pode se recuperar da doença em cerca de uma semana, porém, a doença
pode ser severa nos casos de Dengue Hemorrágica e causar até óbito (KAUFMAN, 2019).

2.1.3 Chikungunya

Causada pelo vírus chikungunya (CHIKV), é uma doença febril aguda, transmitida pelo
Ae. aegypti e Aedes albopictus, conhecido como muriçoca. Foi primeiramente descoberta em
1952 no Planalto de Makonde (hoje, Tanzânia), no leste da África. A palavra “chikungunya”
signfica “aqueles que se dobram”, de modo à fazer referência às dores articulares causadas
pela doença (Agência Fiocruz de Notícias, 2023; BARTHOLOMEEUSEN et al., 2023).

Quanto aos sintomas, a doença acomete as articulações, de modo que é potencialmente
debilitante, dada a intensidade e cronicidade do quadro de dor (ESPORCATTE; PORTES, 2019).
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Após o período de incubação do vírus (3 a 7 dias), a maioria dos pacientes sofre com dor em
múltiplas articulações (poliartralgia), além de dor muscular (mialgia), que podem ser crônicos
(THIBERVILLE et al., 2013; BARTHOLOMEEUSEN et al., 2023).

Ainda, a doença pode progredir em três fases: aguda, com duração de sete até 14 dias;
subaguda, que permanece até três meses e, por fim, crônica, em que os sintomas duram mais
de três meses (MARQUES et al., 2017).

No caso da chikungunya, a incidência de pacientes que precisam de atenção médica é
maior, em relação a outras arboviroses comuns. Ainda após a fase aguda, alguns pacientes
pode ocorrer reincidência da doença (recidiva), persistente dor em uma ou mais articulações
(artralgia) ou dores musculoesqueléticas (THIBERVILLE et al., 2013). Inclusive, a artralgia pode
perdurar por até três anos (SCHILTE et al., 2013).

Nos casos graves, a doença pode causar encefalite, miocardite, hepatite e falência múlti-
pla de órgãos. Afora, o acometimento neurológico pode causar convulsões, alteração mental,
paralisia fácida, de maneira que pode culminar na morte do paciente (SINGH et al., 2008; RA-

JAPAKSE; RODRIGO; RAJAPAKSE, 2010). Ainda, também a doença tem um efeito expressivo
na saúde e qualidade de vida de indivíduos que já possuem doenças crônicas, de maneira a
resultar também, em prejuízos econômicos, em especial em países emergentes (THIBERVILLE

et al., 2013).

2.1.4 Zika

O Zika vírus (ZIKV) é um flavivírus, que, a propósito pertence à família dos vírus da
Febre Amarela, Dengue e Chikungunya. É transmitido vetorialmente através da picada do
Ae. aegypti ou do Aedes albopictus, também por meio de relações sexuais sem proteção com
pessoas portadoras do vírus, transfusão de sangue e transplante de órgãos, também de pessoas
portadoras da doença. Ainda, a transmissão se dá vetorialmente, de mãe para filho, durante a
gestação ou no momento do parto (ANTONIOU et al., 2021; VIVEIROS et al., 2025).

Assim, infecções pelo ZIKV têm sido reportados desde os anos 1950 em vários países do
continente africano e desde 1966 na Ásia. Contudo, a partir de 2015, a doença se espalhou
pelas Américas, com o pico de 500 mil infectados. Alcançou a Europa em 2019 e Índia em 2021
(World Health Organization, 2022; JONG; GROBUSCH, 2025). Em dezembro de 2023, já haviam 91
países ou territórios com casos já registrados de infecção por vírus Zika (RABE et al., 2025).

Os casos de infecção pelo ZIKV são, em sua maioria, assintomáticos ou com sintomas leves.



29

Entretanto, quando há, entre os sintomas estão: Erupções cutâneas, dor de cabeça, febre, dor
nas articulações, conjuntivite. Podem ser observados ainda, vômitos, diarreia, edema, dor
abdominal, dentre outros sintomas, a exemplo da pressão intraocular.

Para além disso, destaca-se que, apesar de atingir uma parte menor no conjunto de in-
fectados, as queixas clínicas neurais ou graves podem também ocorrer, de maneira a causar
danos ao desenvolvimento neurológico (FACCINI et al., 2022; VIVEIROS et al., 2025).

Entretanto, apesar do risco de doença vírus Zika grave em adultos ser baixo, de modo a
causar poucas mortes, a transmissão vertical, de mãe para filho, tem um enorme impacto em
questões de saúde, devido ao fato do nascimento de bebês com microcefalia. Nessa perspectiva,
o termo Síndrome Congênita do Zika descreve os casos de recém-nascidos afetados pela
combinação de microcefalia com outras anomalias de desenvolvimento (PEREIRA et al., 2020;
GIRALDO; GONZALEZ-OROZCO; RAJSBAUM, 2023).

Inclusive, em 2015 e 2016, houve o maior surto de vírus Zika já observado, além de estar
associado a anomalias graves no desenvolvimento do sistema nervoso central em fetos. Nesse
período, houve um aumento do número de bebês com microcefalia potencialmente associado
ao surto de ZIKV (LEBOV et al., 2023).

2.2 SISTEMAS DE VIGILÂNCIA

No contexto de Sistemas de Vigilância, a vigilância epidemiológica proporciona a obser-
vação sistemática e ativa de ocorrência de doenças e de infectados, o que é uma vigilância
de pessoas. Assim, é um método tardio para detectar epidemias. Por outro lado, a Vigilância
Entomológica envolve atividades referentes a fatores de riscos biológicos, baseados na coleta
e tratamento de dados referentes ao vetor de doenças. É observada a periodicidade na co-
leta desses dados, de maneira a se ater a intervalos pré-definidos para se obter indicadores
escolhidos (MARTINEZ; LEGALL, 1998).

2.2.0.1 Vigilância Entomológica

Haja vista a rápida ascenção de doenças transmitidas por mosquitos, como é o caso da
dengue, Chikungunya e Zika, além do alto porcentual de infecções, a Vigilância Entomológica
é aplicada por governos na forma de planos de ação para combater essas doenças, na detecção,
controle e, quando possível, erradicação dos vetores (VILLA, 2020). Assim, a Vigilância Ento-
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mológica do Ae. aegypti é uma ferramenta empregada para monitorar, de maneira tempestiva
e permanente, a presença dos vetores de doenças, seus principais criadouros, bem como a
distribuição geográfica deles no território. A propósito, tem sido aplicados no Brasil, sistemas
de Vigilância Entomológica, complementados com uso de Sistemas de Informação Geográfica
para auxílio na tomada de decisões e controle do vetor (EIRAS; RESENDE, 2009; PEPIN et al.,
2013).

Adicionalmente, recomenda-se realizar pelo menos um levantamento de índice larvário
– Levantamento de Índice Amostral (LIA) ou Levantamento Rápido de Índices para Aedes
aegypti (LIRAa). Entretanto, é importante realizar a análise dos dados considerando-se tam-
bém distintas metodologias de levantamento entomológico, haja vista os índices estimados
pelo LIRAa/LIA representarem um retrato momentâneo, de maneira a apresentarem variações
nos níveis de infestação e dos tipos de recipientes predominantes, devido a diferentes perí-
odos do ano em que são realizados, principalmente por conta das variações climáticas. Por
certo, ainda, podem ser empregados métodos complementares, tais como contagem de pupas
e coleta de mosquito adultos.

Nesse ínterim, para aplicação das demais técnicas de controle do vetor, o emprego de
ovitrampa constitui-se num critério obrigatório para a caraterização do território, com vistas
à implementação e avaliação das outras tecnologias de controle, como o uso do método
Wolbachia, uso de EDL e inseto estéril por irradiação. Assim, o Ministério da Saúde preconiza
que a vigilância entomológica seja realizada por meio de ovitrampas, para todos os municípios
brasileiros, estando infestados ou não, com monitoramento periódico, com uma distribuição
ampla por todo o território urbano ou em locais estratégicos (Ministério da Saúde – Brasil, 2025d).

2.2.0.2 Ovitrampa

É uma armadilha utilizada como substrato de ovoposição, isto é, deposição (coleta) de
ovos de Ae. aegypti ou até mesmo do Ae. albopictus. É constituída por um vaso de plástico
preenchido com água, uma palheta de madeira, um clipe de metal, o qual prende a palheta ao
vaso. A superfície áspera da ovitrampa é voltada para o interior do vaso.

O vaso de plástico na cor preta, funciona como um depósito de água e possui capacidade
para 1L; apesar disso, a quantidade de água é limitada a 500 ml por um orifício realizado na
lateral do vaso, o qual limita a quantidade de água. A palheta com dimensões próximas de
15 por 1,5 cm colocada e presa ao vaso pelo clipe, é feita de madeira aglomerada, do tipo
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Eucatex® (Eucatex S.A. Industria e Comercio) e sobre sua superfície áspera, o mosquito fêmea
deposita seus ovos, como se vê na Figura 2. Podem ser acrescentados, na água, atrativos ao
mosquito fêmea, como levedo de cerveja (Ministério da Saúde – Brasil, 2025d).

Figura 2 – Ovitrampa

Fonte: (Ministério da Saúde – Brasil, 2025d)

Assim, o uso dessas armadilhas constitui-se num método sensível, de baixo custo e fácil
manuseamento em campo para detectar a presença do vetor e guiar as ações subsequentes,
como o levantamento de índices de ovos, seguido de ações posteriores (BRAGA et al., 2000).

Ademais, ao contrário dos índices estimados pelo LIRAa/LIA, que oferecem um retrato
momentâneo, o monitoramento por ovitrampa fornece índices de ovos de maneira periódica.
Estes índices podem indicar um nível maior de infestação por conta da alta sensibilidade que
a ovitrampa apresenta.

2.2.0.3 Monitoramento

Desta feita, as ovitrampas são distribuídas obedecendo a um raio de distância de 300 ou
400m uma da outra, considerada a capacidade operacional do local. Isto feito, o monitoramento
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em áreas prioritárias é feito semanal ou quinzenalmente, enquanto que, nas demais áreas
monitoradas, é mensal, a depender também da capacidade operacional.

A partir da aplicação, coleta e transporte e contagem de ovos de ovitrampa, são levan-
tados indicadores entomológicos, quais sejam: Índice de Densidade de Ovo (IDO), Índice de
Positividade de Ovo (IPO) e Índice de Densidade Vetorial (IDV). O IDO, indica a quantidade
média de ovos por ovitrampa positiva (que contém ovos). É obtido a partir da divisão do
número geral de ovos pela quantidade de armadilhas positivas. Por outro prisma, o IPO obtém
o porcentual de armadilhas positivas em relação ao total de armadilhas. Por fim, o IDV, indica
a média de ovos por armadilhas em geral (positivas ou não). Obtém-se através da divisão do
número geral de ovos pela quantidade total de armadilhas examinadas, contendo elas ovos ou
não (Ministério da Saúde – Brasil, 2025d).

Este monitoramento, feito em continuidade por no mínimo três meses, é requisito para
a implementação de outras tecnologias no combate ao vetor, a exemplo de uso de estações
disseminadoras de larvicidas, a liberação de mosquitos com a bactéria Wolbachia, bem como
também da liberação de mosquito estéril por irradiação.

2.2.0.4 Contagem manual de ovos de A. aegypti

A fidelidade desses índices de ovos supracitados é determinante para a correta aplicação
das posteriores ações de controle vetorial e mobilização da sociedade, bem como da tomada de
decisões de controle e prevenção e definição de estratégias de combate por parte dos gestores.
Uma vez que as ovitrampas são instaladas, distribuídas, recolhidas e, por fim, transportadas
para o laboratório, é feita a contagem dos ovos (Ministério da Saúde – Brasil, 2025d).

A contagem é realizada manualmente por um técnico treinado que utiliza um microscópio
estereoscópio (lupa). Desta forma, a quantidade de ovos é contada e as palhetas contendo
ovos são consideradas positivas e as que não têm, negativas (Instituto Oswaldo Cruz – Fiocruz,
2024). Ovos inviáveis, isto é, secos ou já eclodidos são desconsiderados da contagem.

É recomendado que contagem de ovos seja feita sequencialmente por campos da palheta,
fazendo-se uso de um lápis ou de uma lâmina de microscopia para delimitação das regiões,
visando evitar a leitura de regiões já consideradas na contagem e, assim, obter uma leitura
equivocada. Para tanto, pode-se adotar a marcação com lápis dos campos já lidos para evitar
a contagem de campos repetidos.

Com isso, a implementação da Vigilância Entomológica na avaliação do controle do Ae.
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aegypti pode ser limitada, devido à falta de indicadores confiáveis e práticos. Nesse sentido, a
contagem de ovos do vetor é determinante para o emprego mais efetivo de ações subsequentes
de controle do mosquito (SCOTT; MORRISON, 2009; SCOTT; MORRISON, 2010; BARRERA, 2016).

2.3 PROCESSAMENTO DE IMAGENS

Uma imagem é definida como uma função bidimensional, 𝑓(𝑥, 𝑦), em que 𝑥 e 𝑦 são
coordenadas espaciais, e a intensidade (ou nível de cinza) é a amplitude de 𝑓 em qualquer
ponto 𝑓(𝑥, 𝑦) no plano (GONZALEZ; WOODS, 2015). Quando tanto 𝑥, 𝑦 quanto os valores
de intensidade são quantidades finitas e discretas, tem-se uma imagem digital. Ou seja, uma
imagem digital é uma representação concreta de objetos do campo visual com informação
espacial (layout) e intensidade (cores ou tons de cinza). Nesse cenário, cada ponto da imagem
é chamado de pixel (PETERS, 2017).

Outrossim, uma imagem binária é formada somente por pixels de intensidade 0 (preto) ou
1 (branco). Já uma imagem em escala de cinza é representada por uma função de intensidade
de luz, com coordenadas 𝑥, 𝑦 e contém pixels visíveis como preto, branco ou cinza (cores
intermediárias entre preto e branco). Já a imagem colorida (como com o sistema Red, Green,
Blue (RGB)) possui, para cada ponto (𝑥, 𝑦), um array 1 × 3, em que cada elemento desse
array refere-se a um canal de cor (vermelho, verde e azul) e indica o nível de brilho de cada
cor. Portanto, trata-se de uma imagem multidimensional com três canais (PETERS, 2017).

A área de Processamento Digital de Imagens refere-se ao estudo de informação de imagens
digitais, manipulação, extração de características, descrição e visualização, ou seja, abrange
(não só) processos cujas entradas e saídas são imagens, mas também extração de atributos
de imagens até o reconhecimento de objetos individuais (GONZALEZ; WOODS, 2015).

Uma vez que este campo envolve processamento de imagens digitais por um computador
digital, logo, esta área está associada diretamente ao computador, uma vez que imagens digitais
necessitam, tanto de capacidade de armazenamento e desempenho computacional (PETERS,
2017). Quanto aos processamentos aplicados, pode resumir-se em três níveis: Baixo (como
o pré-processamento para reduzir o ruído), médio (a exemplo da segmentação e descrição) e
alto, que envolve “dar sentido” a objetos reconhecidos através da análise de imagens (PETERS,
2017).

Processamento de Imagens envolve um conjunto de metodologias, como: Aquisição de
imagens, realce de imagens, restauração de imagens, processamento de imagens coloridas,
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processamento morfológico, segmentação, reconhecimento, entre outras. No entanto, a defi-
nição e emprego de quais metodologias é orientada ao problema, de modo que, para uma dada
aplicação ou sistema de processamento de imagens é possível que nem todos os passos são
requeridos (GONZALEZ; WOODS, 2015).

2.3.1 Realce de Imagens

A partir do plano ou domínio da imagem, pode ser aplicado processamento espacial, cujas
categorias principais são: Transformação de intensidade e filtragem espacial. Aquela lida de
forma individual nos pixels de uma imagem para manipulação de contraste e limiarização,
por exemplo. Esta, porém, trata de operações como o realce de imagens e distingue-se por
envolver em seu processamento os pixels vizinhos (SOLOMON; BRECKON, 2011).

Neste sentido, Realce de Imagens é a aplicação de técnicas de manipulação de imagem
para torná-la mais adequada ao domínio específico de um problema; assim, é, por natureza,
orientada ao problema (PRATT, 2007). Em outras palavras, significa tornar a informação con-
tida na imagem mais visível (NDE-Ed, 2000). Sendo desta forma, a priori, o observador é quem
avalia o êxito da aplicação do processamento. Em outros casos, porém, no contexto de uma
aplicação de computacional de reconhecimento de objetos, por exemplo, a definição do melhor
realce está associada ao sucesso na taxa de detecção do sistema, por exemplo. Ou seja, o a
melhor técnica é a que resulta em melhor reconhecimento de objetos por parte da aplicação
(GONZALEZ; WOODS, 2015).

2.3.2 Color Jitter

É uma técnica aplicada para simular diferentes variações de ambiente e de iluminação numa
imagem, através da alteração de propriedades de cor de uma imagem. A exemplo de alterações
aleatórias no brilho, contraste, saturação ou matiz de uma imagem (PYTORCH, 2025a). No
contexto de Data Augmentation, quando se pretende aumentar um conjunto de dados, pode ser
aplicada (em conjunto com outras técnicas existentes) para aumentar a diversidade dos dados
de um modo mais natural (ZENG et al., 2023). As transformações de intensidade propostas
nesta técnica podem realçar os ovos de A. aegypti na superfície das palhetas de ovitrampa,
promovendo uma melhor separação visual entre objeto de interesse e background.
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2.3.3 Processamento de histograma

O histograma de uma imagem exibe a frequência relativa de ocorrência dos valores de
intensidade dos pixels em relação aos valores em si. São definidos intervalos de intensidade,
chamados bins e assim, as intensidades são agrupadas em cada bin (PETERS, 2017).

Então, a partir do histograma de uma imagem, podem ser aplicados diversos processamen-
tos espaciais no âmbito da manipulação de histograma com intuito de realçar imagens; entre
eles estão o alargamento de contraste, equalização de histograma, especificação de histograma
e equalização adaptativa (OPENCV, 2025a).

2.3.4 Equalização de Histograma

No contexto das técnicas de processamento de histograma, a equalização de histograma
é uma técnica que uniformiza a distribuição dos níveis de intensidades dos pixels presentes na
imagem, de modo a obter uma imagem de saída cujos valores do histograma sejam mais bem
distribuídos ao longo das intensidades possíveis da imagem.

Para tanto, baseia-se no histograma da imagem de entrada e lida com diversos cenários.
Entre os casos, estão: Imagens escuras, quando os componentes do histograma estão concen-
trados no nível inferior; imagens muito claras, quando os componentes estão abundantes do
lado direito ou, por fim, quando as intensidades estão estreitas num intervalo curto, o que
produz imagens de baixo contraste (histograma estreito). Estes casos, são alguns dos exem-
plos de problemas que podem ser tratados com equalização de histograma. Objetiva-se atingir
uma imagem de alto contraste em que seja exibida uma variedade uniforme de tons (GARG;

JAIN, 2017). Em imagens de palhetas de ovitrampa, onde é comum naturalmente haver baixo
constraste (especialmente regiões muito escuras), esta transformação torna-se promissora para
distribuir de forma mais equânime os níveis de intensidade na imagem e realçar sua superífie
e ovos contidos nela (MUNGRA et al., 2020; CHOWDHURY; LIU; RAMANNA, 2024; SAIFULLAH;

DREŻEWSKI, 2024).

2.3.5 Contrast Limited Adaptative Histogram Equalization (CLAHE)

Uma das limitações da equalização de histograma é que, por aumentar o constraste da
imagem, o constraste do ruído também é aumentado. Ante isso, O Contrast Limited Adaptive
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Histogram Equalization (CLAHE) surge como uma extensão adaptativa da Equalização de
Histograma, acrescida da aplicação de um limiar de contraste (MUSTAFA; KADER, 2018). Esta
transformação divide a imagem em regiões chamadas tiles e aplica a Equalização de Histo-
grama em cada uma delas. Em seguida, um clip limit (ou fator de contraste) pré-definido é
aplicado a cada histograma obtido e o excesso é redistribuído igualmente abaixo desse limiar.
Devido a isso, o contraste é limitado, o que impede a amplificação do ruído. À propósito,
esta característica é promissora para o tratamento das imagens de palhetas, que naturalmente
possuem ruído visual devido à textura do material e à presença de detritos, além dos próprios
ovos. Por fim, para reunir as regiões outrora separadas, é aplicada Interpolação Bilinear (PIZER

et al., 1990) (MATHWORKS, 2024). Possui requisitos computacionais modestos e requer apenas
o fator de contraste como parâmetro de entrada (ZUIDERVELD, 1994).

2.4 VISÃO COMPUTACIONAL

No âmbito da Inteligência Artificial (IA), espera-se que um sistema seja capaz de perceber
o ambiente a sua volta e tomar decisões baseado em suas percepções. Dentro desse conjunto
de percepções possíveis, está a percepção visual e é nela que a visão computacional está
concentrada. Em outras palavras, é a ciência de perceber e compreender o ambiente através
de imagens e vídeos, de maneira a construir um modelo físico desse ambiente e tomar ações
apropriadas (ELGENDY, 2020). Assim , é um ramo da Inteligência Artificial e tem como obje-
tivo utilizar computadores para emular o sistema visual humano, de forma a aprender, ter a
capacidade de realizar inferências e agir com base nas informações visuais percebidas (GONZA-

LEZ; WOODS, 2015). Distingue-se do processamento de imagens, por envolver o entendimento
do que acontece numa imagem, que é uma tarefa muito além do processamento (ELGENDY,
2020).Em outras palavras, é a ciência de entender ou manipular imagens e vídeos (SHANMU-

GAMANI, 2018). Possui diversas aplicações, como realidade aumentada, direção autônoma,
inspeção industrial, dentre outras (SHANMUGAMANI, 2018).

Baseada no sistema visual humano, objetiva reconstruir e interpretar cenas naturais a
partir de imagens (SZELISKI, 2022). Em alto nível, o sistema visual humano assemelha-se ao dos
animais e consiste de um sensor (nesse caso, o olho) que captura a imagem; o cérebro processa
essa informação e a interpreta e, por fim, o sistema retorna uma predição dos elementos da
imagem, baseado nos dados extraídos dela (ELGENDY, 2020). A Figura 3 sintetiza o sistema
visual humano aos agentes sensor e interpretador.
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Para observadores humanos, ao visualizar uma imagem ou cena contendo cães, a interpreta-
ção e entendimento do cenário são instantâneos; os componentes da imagem são reconhecidos
e podem ser contados de maneira bastante espontânea. O reconhecimento de que na cena exi-
bida na Figura 3 há cachorros só é possível porque o observador foi treinado ao longo de anos
a identificar cães. No entanto, se esta fosse mostrada pela primeira vez a um humano, seria
necessário fornecer também a informação de que se tratam de cachorros. Este é o processo de
treinamento. Ao ver porém um outro animal, como um cavalo, o humano poderia julgar, pela
semelhança, tratar-se de um cão também. Ao receber a informação de que a identificação está
errada e que trata-se de um cavalo, o cérebro ajusta seu aprendizado. Assim, de modo geral,
um cérebro é treinado a identificar classes de objetos em geral, bastaria adicionar mais classes
(ELGENDY, 2020).

O mesmo, em alto nível, acontece no treinamento de sistemas de visão computacional
para aprenderem a identificar objetos. Enquanto para humanos, basta poucos exemplos para
aprender o padrão, para computadores, são necessárias milhares e até milhões (a depender
da complexidade) de imagens para aprender-se a identificar os objetos vistos no treinamento
(ELGENDY, 2020).

Figura 3 – Sistema Visual Humano

Fonte: (ELGENDY, 2020)

Um aspecto importante em sistemas de visão computacional consiste na escolha do melhor
sensor adequado ao problema para captura de dados do ambiente. Câmera digital, radar, raio-
x, entre outros tipos, combinados ou não, simulam o que é o olho humano e dos animais. Para
atuar como dispositivos de interpretação e fazer o que o cérebro faz, são usados algoritmos
de visão computacional, os quais, cumpririam o papel de cérebros artificias e serem capazes
de, receber os sinais obtidos pelo sensor, extrair características, detectar padrões e identicar



38

objetos (ELGENDY, 2020). No caso do cérebro biológico, a informação vinda de outro neurônio
é recebida por um neurônio através dos dendritos, passa por um fluxo interno ao neurônio e,
por fim, é externada para outro neurônio, por meio das sinapses, como mostra a Figura 4. De
forma análoga, os neurônios artificias possuem uma entrada, um processamnto interno e uma
saída de sinais (ELGENDY, 2020).

Figura 4 – Semelhanças entre neurônios biológicos e sistemas artificias

Fonte: (ELGENDY, 2020)

Semelhante ao processamento pelo qual a informação passa no cérebro biológico, cada
neurônio artificial, conectado a outros, ao receber uma quantidade suficiente de sinais de en-
trada, dispara um sinal para cada neurônio com qual está conectado. Este fluxo individual
é tornado mais complexo, ao envolver, por exemplo, milhões de neurônios conectados entre
si. Ao ter diversas camadas de neurônios, produz-se um comportamento de aprendizagem.
Ao criar-se uma rede de neurônios artificias conectados e com várias camadas, como exem-
plifica a Figura 5, obtém-se uma Rede Neural Artificial (RNA); desta forma, está a se usar
Aprendizagem Profunda ou Deep Learning (DL). Na figura, observa-se os neurônios da ca-
mada de entrada (input), os neurônios das camadas intermediárias ocultas (hidden layers) e
os neurônios da camada de saída (output).

2.4.1 Aprendizagem Profunda

Aprendizagem profunda é um tipo específico da Aprendizagem de Máquina (AM), que,
subsequentemente, é um campo da IA, de modo que técnicas de AM influenciaram no de-
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Figura 5 – Rede Neural Artificial

Fonte: (ELGENDY, 2020)

senvolvimento de algoritmos de aprendizagem profunda (GOODFELLOW; BENGIO; COURVILLE,
2016).

Neste campo, há o conceito elmentar de que um neurônio artificial (ou perceptron) possui
entradas, realiza uma soma ponderada e retorna um resultado. Este modelo de arquitetura
que foi proposto inicialmente por (ROSENBLATT, 1958) é modelo mais simples de uma RNA
(GéRON, 2019). No contexto da aprendizagem, a atribuição dos pesos do perceptron, que
vão influenciar na saída, é determinada durante o treinamento, tendo como base os dados de
treinamento utilizados (SHANMUGAMANI, 2018).

Por princípio, como mostra a Figura 6, as entradas passam por soma ponderada pelos
pesos weights. O perceptron aprende funções simples ao atualizar seus pesos de acordo com
os dados e este processo de aprendizagem é chamado de treinamento. Por fim, a saída, passa
para uma função de ativação (ou step function), que serve para introduzir não linearidade às
redes neurais e possibilita o aprendizado em cenários complexos. Ainda, a função de ativação
decide se o sinal do perceptron deve ser emitido ou passar para as seguintes camadas (layers)
(SHANMUGAMANI, 2018).

Adicionalmente, o uso de perceptrons possui capacidade limitada, como apontado por
(MARVIN; SEYMOUR, 1969), a exemplo da resolução trivial de problemas de “Ou Exclusivo”
(XOR). Entretanto, ao adotar o uso de múltiplos perceptrons associados, estas limitações são
resolvidas. Assim, Multi-Layer Perceptron (MLP) consiste numa camada de netrada, camadas
ocultas e uma saída. Cada camada é completamente conectada com a próxima e, a excessão
da camada final, possui um viés (bias), como exibe a Figura 7.

À luz do exposto, dadas estas bases, uma RNA é uma coleção de perceptrons, conectados
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Figura 6 – Diagrama de Perceptron

Fonte: (SHANMUGAMANI, 2018)

Figura 7 – Multi-Layer Perceptron

Fonte: (GéRON, 2019)

entre si de maneira a formar camadas ocultas que, em decorrência disso, formam a base não
linear que mapeiam as camadas de entrada para as camadas de saída. A RNA faz, então,
um mapeamento entrada-saída, de forma que considera a soma ponderada das entradas e as
entradas dos vieses (bias). Por fim, chama-se arquitetura a estrutura geral da RNA e modelo
o conjunto de valores dos pesos e bias (ELGENDY, 2020).

Isto dito, quando uma RNA é formada por uma pilha de camadas ocultas, passa a ser
chamada de Rede Neural Profunda ou Deep Neural Network (DNN), nome que faz referência
à profundiade da arquitetura do modelo, dado número de camadas ocutas (GéRON, 2019).

O processo de treinamento do modelo é o que determina os valores dos pesos e dos vieses.
No início do treinamento, esses valores são inicializados de forma aleatória e ajustados ao
longo do treinamento com base numa função de erro. Já o erro é calculado ao comparar-se a
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saída do modelo com a saída esperada, chamada de verdade fundamental (ground-truth), os
quais, na aprendizagem supervisionada, são fornecidos pelo supervisor que determina a saída
correta esperada.

Desta forma, o erro serve de base para ajuste dos valores do peso, de modo a refinar o
aprendizado do modelo. O treinamento é interrompido quando o erro não mais é reduzido
ou por vontade do humano que opera o treinamento do modelo, por meio de gatilhos no
algoritmo de treinamento. Desta forma, o modelo aprende as características dos dados e
aprende a identificar padrões.

No caso de imagens, digitais, o conteúdo básico é formado por pixels com features ele-
mentares, como, bordas, ângulos, cor, forma e textura ou mais complexas como olhos, boca,
faces etc. (SZELISKI, 2022). Assim, as features representam as características das imagens e
são utilizadas para aprendizado de características durante o treinamento (SHANMUGAMANI,
2018).

O emprego de DL para visão computacional pode ser dividido em várias categorias de
tarefa: Classificação, detecção, segmentação e geração, tanto de imagens, como de vídeos
(SZELISKI, 2022).

2.4.2 Redes Neurais Convolucionais

Baseadas no córtex visual humano, as Redes Neurais Convolucionais ou Convolutional
Neural Network (CNN) assemelham-se à RNA, no sentido de possuírem pesos, viés, função
de ativação e saída. Devido ao fato de imagens serem grandes, usar RNA em imagens produ-
ziria uma arquitura com um número muito expressivo de neurônios, além de não produzir o
aprendizado eficiente das features presentes na imagem (SHANMUGAMANI, 2018).

À vista disso, a estrutura de uma imagem digital, como descrito na seção 2.3, uma imagem
é considerada um volume e possui dimensões de altura, largura e profundidade; esta, inclusive,
associada à quantidade de canais da imagem, por exemplo: No sisetma de cores RGB, a
profundidade da imagem seria 3 (SHANMUGAMANI, 2018). Nesse sentido, os neurônios da
CNN são organizados também de forma volumétrica para tomar vantages a partir da imagem.
Cada camada transforma o volume de entrada num volume de saída.

A priori, o bloco básico de uma CNN é uma camada convolucional; cada neurônio da
primeira camada é concetado a apenas aos pixels em seu campo receptivo, ou seja, uma região
específica da imagem. Assim, na segunda camada convolucional, cada neurônio conecta-se da
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mesma forma a apenas uma região. Essa arquitetura faz com que, nas camadas iniciais, a
rede concentre-se nas features de baixo nível (genéricas, como bordas) e nas camadas finais,
nas de alto nível (como faces). Essa estrutura é comum em imagens do mundo real e torna
apropriado o uso de CNN (GéRON, 2019).

Ainda mais, as features são extraídas através dos filtros (ou kernels). Os valores desses
kernels são aprendidos no treinamento. Os filtros deslizam sobre a imagem e realizam uma
operação de convolução, o que resulta num conjunto de mapas de ativação (feature maps);
o objetivo é detectar padrões e extrair features. Após as camadas de convolução, as features
passadas para uma camada de neurônios totalmente conectados e, por fim, para a camada de
saída, onde ocorre a predição. A Figura 8 exibe, em alto nível a síntese da arquitetura de uma
CNN, com amada de entrada, camadas convolucionais, uma camada totalmente conectada
(Fully connected layer e a camada de saída.

Figura 8 – Arquitetura em alto nível de uma CNN

Fonte: (ELGENDY, 2020)

Assim, Redes Neurais Convolucionais têm obtido dessempenhos consideráveis em cenários
visuais complexos. Tarefas como condução autônoma, condução autônoma de veículos, além
de tarefas como reconhecimento de voz ou Processamento de Linguagem Natural (PLN), são
algumas das tarefas possíveis por conta do uso dessas redes (GéRON, 2019).

2.4.3 Modelos de Detecção de Objetos

Classificação de imagens, detecção de objetos e segmentação semântica são alguns exem-
plos de tarefas que envolvem o uso de DL para visão computacional.

Classificação de imagens significa rotular ou classificar uma imagem com base num objeto
ou conceito presente nela (SHANMUGAMANI, 2018). A classificação atribui um rótulo a uma
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imagem com base num conjunto pré-definido de categorias, por exemplo, rotular uma imagem
em classes, como gato ou cachorro, a exemplo da Figura 9 (ELGENDY, 2020).

Figura 9 – Exemplo de Classificação de Imagens

Fonte: (SHANMUGAMANI, 2018)

Por outro lado, detecção de objetos envolve não somente classificar a imagem, mas também
localizar e detectar cada tipo de objeto nela presente, além de apresentar pontuações de
confiança (confidence scores para cada objeto. Ou seja, enquanto a classificação rotula a
imagem como um todo, a detecção de objetos localiza a posição de cada objeto e rotula cada
um (SHANMUGAMANI, 2018). Assim, uma imagem pode contar múltiplos objetos de diferentes
classes (ELGENDY, 2020). Outras tarefas, como segmentação semântica, que classifica à nível
de pixels e segmentação por instância, que, além disso, individualiza objetos distintos (GéRON,
2019).

Portanto, detecção de objetos objetiva classificar múltiplos objetos numa imagem e atri-
buir caixas delimitadoras (bounding boxes) para cada objeto (GéRON, 2019), como exibe a a
Figura 10, em que os objetos das classes “dog”, “chair” e “person” são localizados e rotulados.

Nesse tipo de tarefa, a arquitetura dos modelos de detecção de objetos baseados em CNN,
de modo geral, é composta por: Backbone, Neck e Head. O backbone, usado para extração
de características da imagem, de modo a obter a imagem de entrada e obtém mapas de
ativação da imagem. Geralmente, usam-se modelos de classificação com a última camada
fully connected removida. (JIAO et al., 2019). Já o head, propõe e refina as classificações e
scores dos objetos, bem como, numa tarefa de regressão, as caixas delimitadoras (bounding
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Figura 10 – Exemplo de Detecção de Objetos

Fonte: (SHANMUGAMANI, 2018)

box).
Em suma, o backbone recebe uma imagem como entrada e extrai as features, em seguida o

neck, agrega e combina as features de múltiplas escalas e, ao fim, o head, a partir delas, retorna
a detecção (caixas delimitadoras, rótulos e pontuação de confiança). Como usam-se modelos
de classificação como backbone, o neck e head são determinantes definir um framework de
detecção (MATHWORKS, 2025a).

2.4.4 YOLOv10

O YOLOv10, pertencente à família de modelos You Only Look Once (YOLO), é uma
arquitetura para detecção de objetos e segmentação por instância. Representa uma melhoria
em várias abordagens em relação aos modelos de detecção de objetos em tempo real de ponta
a ponta (end-to-end), tanto no desempenho verificado em dataset de benchmark quanto no
tempo de inferência, dentre outras métricas. Os experimentos de então demonstraram que o
YOLOv10 significativamente superou modelos do estado da arte ao considerar-se o tradeoff
entre acurácia e custo computacional nas várias escalas de arquitetura disponibilizadas (WANG

et al., 2024).
O YOLOv10 introduz melhorias em vários pontos-chave de melhoria nos componentes de

sua arquitetura, de modo a aproveitar pontos fortes dos predecessores, mas também introduzir
mudanças. No backbone, que opera a extração de features, usa-se uma versão aprimorada
do Cross Stage Partial Network (CSPNet) para melhorar o fluxo do gradiente e reduzir a
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redundância computacional. Também, no neck, que agrega características extraídas e as passa
para o head, são incluídas camadas Path Aggregation Network (PAN) para obter fusão eficaz
de features em várias escalas. Ainda, o One-toMany Head, gera diversas predições por objeto
durante o treinamento para fornecer ricos sinais de supervisão e melhorar a precisão. Por fim,
o One-to-One Head gera uma única e melhor predição por objeto durante a inferência para
remover a necessidade de uso do NMS, assim então, reduz a latência e melhora a eficiência
(WANG et al., 2024; ULTRALYTICS, 2024).

Quanto aos avanços propostos, está a estratégia de NMS-free training, ou treinamento sem
Non-Maximum Suppression (NMS), que utiliza atribuições duplas consistentes (consistent dual
assignments) para poder tornar o NMS dispensável durante o treinamento e reduzir a latência
de inferência (WANG et al., 2024).

Além disso, destaca-se a introdução de uma arquitetura holística voltada à eficiência e
precisão, que abrange a inclusão de um head de classificação mais leve, nomeado Lightweight
classification head. Assim como a head de classificação assume maior importância em relação
à head de regressão, reduziu-se a sobrecarga da head de classificação. Dessa forma, adotou-se
uma arquitetura mais leve para este componente, composto por duas convoluções à nível de
dimensão (depthwise) e com tamanho de filtro 3 × 3, seguidas por uma convolução 1 × 1

(WANG et al., 2024).
Ainda, foram feitos ajustes diversos no modelo, como o uso de maiores filtros convolucionais

para ter um receptive field maior e aumentar a capacidade de extração de features. Ainda,
foram incluídos módulos parciais de self-attention (Partial Self-Attention (PSA)) para melhorar
a performance sem introduzir custo computacional colateral (WANG et al., 2024).

Além disso, outro refinamento proposto foi a Spatial-channel decoupled downsampling, que
desacopla a redução espacial da modulação de canal para minimizar a perda de informação e
custo computacional. Além disso, Rank-guided block design, adapta o design dos blocos com
base na redundância instrínseca dos estágios, de modo a garantir um uso ideal dos parâmetros.
Por fim, a consistent matching metric alinha a supervisão entre as duas estratégias (One-to-
One Head e One-to-Many Head) para melhorar a qualidade das predições. A arquitetura geral
do YOLOv10 é exibida na Figura 11.

Quanto a desempenho superior a modelos de então, YOLOv10-S/X são, respectivamente,
1.8 e 1.3 vezes mais rápidos do o RT-DETR-R18/R101, mantendo desempenho similar nas
demais métricas. Ainda, com desempenho semelhante, alcança uma redução de cerca de 46%
na latência em relação ao YOLOv9-C e YOLOv10-B. Acrescenta-se que, utiliza os parâmetros
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Figura 11 – Arquitetura do YOLOv10

Fonte: (WANG et al., 2024)

de forma mais eficiente, de maneira que, no YOLOv10 na escala L e X, excede o desempenho
do YOLOv8 nas escalas L e X, com 0.3 e 0.5 AP e é 1.8 e 2.3 vezes menor em quantidade de
parâmetros, respectivamente. Inclusive, YOLOv10 na escala M alcança AP similar ao YOLOv9-
M e YOLO-MS, mesmo possuindo 23% e 31% menos parâmetros de treinamento. Desta forma,
YOLOv10 supera o desempenho dos modelos de detecção de objetos predecessores com uma
cobertura ampla de experimentos (WANG et al., 2024).

Assi, seu melhor equilíbrio entre desempenho e precisão tornam este modelo aplicável ao
cenário de contagem de ovos, tanto para se obter uma metodologia de contagem de custo
computacional viável, quanto atingir níveis de precisão satistafórios ao cenário de contagem
em imagens de baixa resolução.

2.4.5 YOLOv12

Apesar de o uso de mecanismos de atenção (attention) afetarem de forma negativa a ve-
locidade dos modelos, de modo a serem inferiores nesse ponto a modelos baseados em CNN,
YOLOv12, propõe mudanças na arquitetura atual desta família de modelos, de maneira a
utilizar uma estrutura centrada em attention para usar suas vantagens e, simultaneamente,
igualar-se à velocidade dos modelos anteriores somente baseados em CNN (TIAN; YE; DOER-

MANN, 2025).
Caracteriza-se pela inserção do mecanismo de atenção, como Area Attention Mechanism,

que envolve autoatenção para processamento de grandes receptive fields de maneira eficiente.
Divide os mapas de ativação em 𝑙 áreas de tamanhos iguais (por padrão, 4), tanto horizontal
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como verticalmente, como exibe a Figura 12. Esse mecanismo evita operações complexas
enquanto mantém um receptive field grande, o que resulta numa alta eficiência, pois reduz
o custo computacional comparado ao uso de self-attention padrão (TIAN; YE; DOERMANN,
2025).

Figura 12 – Exemplo de aplicação de Area Attention do YOLOv12

Fonte: (TIAN; YE; DOERMANN, 2025)

Outro acréscimo importante, é Residual Efficient Layer Aggregation Networks (R-ELAN).
As Efficient Layer Aggregation Networks (ELAN) são projetadas para melhorar a agregação
de features, porém esta arquitetura pode causar instabilidade. Nesse sentido, no YOLOv12,
foi proposta a R-ELAN para introduzir conexões residuais da entrada para a saída através do
bloco, com um fator de escala (por padrão 0.01). Outro ponto é que a arquitetura aplica uma
camada de transição para ajustar as dimensões do canal e produzir somente um feature map.
Este, é processado por meio de blocos em sequência, sucedidos pela concatenação, de modo
que forma uma estrutura de gargalo (TIAN; YE; DOERMANN, 2025).

Ainda, utiliza-se uma estrutura otimizada de atenção adaptada à estrutura do YOLO, de
modo a manter a eficiência. Inclui Flash attention, para minizar a sobrecarga no acesso à
memória. Ademais, dentro de um módulo de atenção, foi feito um ajuste na proporção entre
as camadas de entrada e a camada de saída (MLP ratio); por padrão essa razão é 4, porém
o YOLOv12 obteve melhor performance com um MLP ratio de 1.2. Isso equilibra o custo
computacional entre a rede e o mecanismo de atenção e reduz a profundidade das camadas
ocultas e facilita a otimização, além de aproveitar ao máximo as operações de convolução com
eficiência no uso dos recursos computacionais (TIAN; YE; DOERMANN, 2025). Na detecção de
ovos de A. aegypti em imagens palhetas de ovitrampa caracterizadas pela presença de ruídos
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visuais, aplicação de mecanismos de attention nesta arquitetura YOLO de modo computa-
cionalmente eficiente pode prover um modelo capaz de focar em features importantes nas
imagens em detrimento de ruídos ou características secundárias.

Este modelo supera todos os modelos de detecção de objetos em tempo real em desem-
penho de precisão, enquanto mantém velocidade similar. A exemplo, numa GPU NVIDIA T4,
o YOLOv12-N alcança 40.6% de mean Average Precision (mAP) (Ou precisão média) com
uma latência de 1.64 ms e supera YOLOv12-N e YOLOV11-N por 2.1% mAP com veloci-
dade próxima. Não só supera modelos atuais de ponta a ponta, como Deformable Transfor-
mers (DETR), mas também suas melhorias, quais sejam: RT-DETR, RTDETRv2; YOLOv12-S
mostra-se superior ao RF-DETR-R18 e RT-DETRv2-R18 e mostra-se 42% mais rápido, mesmo
com o uso de 36% do custo computacional e 45% dos parâmetros (TIAN; YE; DOERMANN,
2025).

2.4.6 RF-DETR

Similarmente ao YOLO, DETR é uma série de modelos e o RF-DETR, parte desse conjunto,
apresenta desempenho semelhante ao YOLOv12. Os detectores baseados em transformers,
como o DETR, tiveram início com o Real-Time DEtection TRansformer (RT-DETR) por
(ZHAO et al., 2024). Dentre as categorias mais atuais de modelos de detecção de objetos,
como modelos de visão de linguagem ou Vision Language Models (VLMs), modelos baseados
em CNN (como o YOLO), o grupo de modelos DETR enquadram-se numa abordagem baseada
em transformers, como exibe a Figura 13. Abordagens obsoletas, que incluem modelos como
EfficientDet (TAN; PANG; LE, 2020), K-SVD (AHARON; ELAD; BRUCKSTEIN, 2006) apresentam
desempenho inferior em comparação com as metodologias atuais (SAPKOTA et al., 2025).
Dentre outras melhorias, o conjunto de modelos DETR propôs uma alternativa ao NMS, já
que este afeta o desempenho (ZHAO et al., 2024).

O RF-DETR, segundo o estudo de (SAPKOTA et al., 2025), utiliza um backbone DINOv2,
proposto por (OQUAB et al., 2023). Nesse estudo feito também num conjunto de dados de
frutas verdes, a arquitetura do RF-DETR utiliza mecanismos de atenção e destacou-se na mo-
delagem de contexto global, de maneira a obterem-se, em casos de objetos ambíguos ou com
oclusão, detecções particularmente eficientes. Como exibide a Figura 14, RF-DETR é constu-
ído sobre uma arquitetura codificador-decodificador (chamada encoder-decoder) baseada em
transformers. São utilizados também módulos multi-scale de atenção para substituir os mapas
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Figura 13 – Classificação das metodologias de modelos de detecção de objetos. A figura exibe de baixo para
cima (em ordem cronológica), as metodologias utilizadas. Destaca-se as abordagens do estado
da arte, como CNN-based e Transformer-based methods, os quais são amplamente utilizados
atualmente, além dos VLMs, que estão em uso crescente.

Fonte: (SAPKOTA et al., 2025)

de ativação dos módulos de atenção (ZHU et al., 2020). Devido à rápida convergência do mo-
delo e eficiência computacional, inclusive dos recursos de memória, foi adotado um mecanismo
para refinamento das bounding boxes, além de a proposição de regiões ser também feita a
partir de uma variante do Deformable DETR, para servir como entrada para o decodificador
para, por fim, ocorrer o refinamento da bounding box (ZHU et al., 2020).

No caso de de problemas de detecção de classe única, RF-DETR obteve uma melhor
mAP@50 de 0.9464, o que mostra a capacidade de detectar frutas verdes mesmo em cená-
rios desordenados. A maior mAP@50:95 obtida foi pelo YOLOv12-N foi 0.7620, entretanto,
RF-DETR obtém melhor performance em cenários espacias maix complexos. Na detecção
multi-classe, obteve um desempenho superior com mAP@50 de 0.8298, o que superou o mo-
delo predecessor, de forma a evidenciar a capacidade do modelo de bem diferenciar objetos
com ou sem oclusão. Outro ponto importante do RF-DET-R é sua rápida convergência du-
rante o treinamento, de maneira que o treinamento atingiu um platô e alcançou desempenhos
imporantes após ser treinado por apenas 10 épocas, o que é um evidente caso de destaque
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Figura 14 – Arquiteura do RF-DETR

Fonte: (SAPKOTA et al., 2025)

(SAPKOTA et al., 2025).
Por fim, em aplicações do mundo real, há a indefiniçao de (entre o RF-DETR ou YOLOv12)

qual modelo obtém desempenho superior. É evidenciado, que apesar de a arquitetura do
RF-DETR permitir alta velocidade, este é mais recomendado para tarefas onde a precisão
é mais crítica, já que obteve superior desempenho neste ponto em geral, enquanto que o
YOLOv12 permanece mais adequado para detecção em aplicações de tempo real. Destarte, a
capacidade do RF-DETR de modelar o contexto global e seu bom desempenho em cenários
com oclusão são particularmente relevantes para este trabalho, uma vez que os ovos nas
palhetas frequentemente se encontram aglomerados e sobrepostos

2.4.7 D-FINE

É um modelo de detecção de objetos em tempo real, que representa um aprimoramento
a partir da série de modelos DETR, principalmente quanto à precisão de localização, justo
por conta de redefinir a tarefa de regressão referente às caixas delimitadoras. Seu ponto chave
busca resolver um problema na delimitação das bounding boxes, qual seja: Modelos tradicionais
de detecção de objetos tratam a localização das caixas delimitadoras como pontos fixos e as
tratam apenas com funções de perda (loss functions, a exemplo de L1 e Intersection over
Union (IoU). Esta forma, porém, falha em modelar a incerteza da localização, o que limita a
precisão e atrasa a convergência. Portanto, em aplicações real-time, com as quais o D-FINE
visa lidar, a alta precisão e a baixa latência são requisitos essenciais. Assim, por esta razão,
D-FINE lida com a tarefa de regressão referente às caixas delimitadoras de modo a utilizar
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uma arbordagem probabilística e autodestilação (PENG et al., 2024).
Quanto às suas melhorias, o D-FINE, propõe importantes abordagens arquiteturais relaci-

onadas aos componentes: O Fine-Grained Distribution Refinement (FDR) e o Global Optimal
Localization Self-Distillation (GO-LSD). O FDR, transforma o processo de regressão para não
mais ser de coordenadas fixas e sim para envolver modelagens de distribuição de probabilidade,
o que proporciona um maior ajuste fino nas representações intermediárias. Este componente,
portanto, refina essas distribuições de forma iterativa e residual, de maneira a possibilitar
de modo gradativo um ajuste na precisão de localização, tarefa importante em modelos de
detecção de objetos. (PENG et al., 2024).

Ainda como mostra a Figura 15, o FDR, em repetição, otimiza a distribuição de granulação
fina gerada pelas camadas. Por início, a primera camada decodificadora prevê caixas delimita-
doras preliminares e distribuições de probabilidade também preliminares. Por sequência, cada
uma das quatro bordas de uma caixa é associada a uma distribuição, para ser como uma caixa
delimitadora de referência, para então, as camadas posteriores refiná-las por meio do ajuste
das distribuições de forma residual. Por fim, as distribuições refinadas são aplicadas às quatro
bordas da caixa delimitadora preliminar; esse processo ocorre de forma iterativa e por fim,
espera-se obter melhor precisão nas caixas delimitadoras (PENG et al., 2024).

Figura 15 – Visão geral do componente FDR do modelo D-FINE: Observa-se que as distribuições de probabili-
dade operam como uma representação intermediária de granulação mais fina e que posteriormente
são refinadas pelas camadas de decodificação considerando as conexões residuais na arquitetura
da rede.

Fonte: (PENG et al., 2024)

Como é sabido que as camadas mais profundas produzem predições mais corretas em ter-
mos de localização, outro ponto de ajuste envolve o componente GO-LSD. Este, então, utiliza
uma estratégia de otimização bidirecional que transfere a tarefa de regressão de localização
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(referente às bounding boxes) das camadas mais profundas para as camadas mais superficiais
através da autodestilação, ao mesmo tempo que simplifica as tarefas de predição residual para
camadas mais profundas. As camadas superficiais são as camadas inicias do modelo, enquanto
que as camadas mais profundas são as camadas finais; salienta-se que este ajuste introduz
baixos custos no treinamento (PENG et al., 2024).

Assim, o GO-LSD destila o conhecimento de localização das distribuições refinadas para
as camadas superficiais. Ao longo do treinamento, as camadas finais produzem cada vez mais
rótulos (labels) mais precisos. As camadas superficiais alinham suas predições com as labels
através do GO-LSD, de modo a obter mais precisão nas predições. À medida que as predições
iniciais melhoram, as camadas posteriores focam em refinar resíduos menores. Em suma, são
utilizadas as distribuições refinadas das camadas finais para destilar conhecimento para as
camadas superficiais. Assim, este mecanismo de reforço leva a, ao longo do processo, obter
localizações mais precisas (PENG et al., 2024). A precisão na delimitação das bounding boxes
é crucial no presente estudo, pois um erro de localização pode levar à contagem dupla ou à
omissão de ovos, impactando diretamente a acurácia do índice entomológico final.

Com isso, outros ajustes menores incorporam otimizações leves no custo computacional em
módulos intensivos e em operações, o que por fim produz um melhor equilíbrio entre latência
e precisão. Portanto, em experimentos, o D-FINE alcança 54% Average Precision (AP) no
dataset Common Objects in Context (COCO) a 124 Frames Per Second (FPS), bem como
55.8% a 78 FPS. Pré-treinado no dataset Objects365, D-FINE na escala L e X, obtém 57.1%
AP e 59.3% AP, respectivamente, de modo a superar os modelos de detecção de objetos de
então. Ao considerarem-se os modelos DETR, há um aumento de desempenho de 5.3% AP em
favor do D-FINE, com a introdução de parâmetros e custos de treinamento também mínimos.
Portanto, constitui-se num modelo competitivo tanto para uso em aplicações com foco em
precisão quanto ainda para uso em cenários de tempo real (PENG et al., 2024).

2.4.8 MPRNet

No contexto de restauração de imagens com redes neurais, a tarefa visa, a partir de uma
imagem degradada e tendo conhecimento do processo que causou a degradação, obter-se sua
versão original (GONZALEZ; WOODS, 2015; ZAMIR et al., 2021). Nesse ínterim, há uma tarefa
desafiadora, dado trade-off entre valorizar detalhes espacias ou detalhes contextualizados de
alto nível no processo de recuperação de imagens. Nesse quesito, o Multi-Stage Progressive



53

Image Restoration (MPRNet) insere nesse ambiente uma arquitetura para otimizar esse equi-
líbrio (ZAMIR et al., 2021).

Para este tipo de tarefa, modelos baseados em CNN, dividem-se entre três abordagens
principais: Abordagens single-stages (de stágio único), multi-stage (multiestágio) e de atten-
tion. O MPRNet, enquadra-se na abordagem multi-estágio, que caracteriza-se por realizar a
restauração de forma progressiva, tendo em cada estágio uma sub-rede leve. Assim, a arquite-
tura do MPRNet aprende de maneira progressiva as funções de restauração, de modo a dividir
este processo em etapas ou estágios gerenciáveis. A priori, o MPRNet aprende as features con-
textualizadas com o uso de arquiteturas de codificador e decodificador e, a posteriori, combina
essas features com um ramo de alta resolução que retém informação local. Em cada etapa
ou estágio, é introduzido um design adaptativo à nível de pixel que utiliza o mecanismo de
atenção supervisionada no próprio local para novamente ponderar a features locais. A troca
de informações entre os estágios é um ponto chave dessa arquitetura (ZAMIR et al., 2021).

Assim, do ponto de vista arquitetural, o MPRNet divide-se em três estágios para restaurar
a imagem de forma progressiva. Então, os primeiros dois estágios, como mostra a Figura 16,
baseiam-se em sub-redes de codificação e decodificação (encoder-decoder) que aprendem as
informações mais amplas da imagem, devido ao uso de recpetive fields grandes. Dado que
esta tarefa é senível e requer que os pixels da imagem entrada correspondam aos da saída, o
terceiro estágio da arquitetura emprega uma sub-rede que atua na resolução da imagem de
entrada sem reduzir suas dimensões, de modo a preservar as texturas finas na imagem final
restaurada (ZAMIR et al., 2021).

Deste modo, ainda, os estágios incorporarm um módulo de atenção supervisionada entre
cada dois estágios. Com a supervisão das imagens de referência (ground-truth), o módulo
reescala os mapas de ativação dos estágios anteriores antes de passá-los para o próximo
estágio. Outrossim, há um mecanismo de fusão de features entre os estágios de maneira
que as features contextualizadas multiescala intermediárias da sub-rede anterior auxiliam a
consolidar as features intermediárias da próxima sub-rede. Em que pese o MPRNet agregar
vários estágios, cada um tem acesso à imagem de entrada. É também adaptada uma hierarquia
multi-patch na imagem de entrada, de forma a dividí-la em patches não sobrepostos (sem
intersecção) da seguinte forma: 4 para o estágio 1, 2 para o estágio 2 e a imagem original
para o terceiro estágio.

Quanto às suas tarefas divide-se em: Image deblurring (para remover borramento), image
denoising (para remover ruído em geral) e image derraining (para remover traços de chuva).
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Figura 16 – Arquitetura multiestágio do MPRNet: Observa-se que os estágios primeiros extram características
multiescala contextualizadas e os últimos estágios atuam na resolução da imagem original para se
obter saídas precisas do ponto de vista espacial.

Fonte: (ZAMIR et al., 2021)

Quanto à image deblurring, por exemplo, o modelo foi avaliado no dataset GoPro e HIDE.
De um modo geral, o modelo supera modelos de então, com os quais foi comparado. De
modo geral, o MPRNet obtém desempenho significativo em datasets de benchmark. Quanto
à tamanho, o modelo é considerado leve e eficiente quanto à tempo de execução, o que torna
seu uso favorável em ambientes de baixos recursos computacionais.

2.5 CONCLUSÃO DO CAPÍTULO

O capítulo 2 apresentou uma revisão teórica dos conceitos básicos de que este trabalho
trata. Por início, foram abordados conceitos relacionados ao mosquito Aedes aegypti e doenças
relacionadas a este vetor. Por sequência, foi discorrida uma elucidação acerca dos sistemas de
vigilância do vetor, em especial da vigilância entomológica, destacando-se o uso de ovitram-
pas. Ainda, foi introduzido a área de processamento de imagens, incluídas algumas técnicas
de realce de imagens. Ademais, deteve-se sobre a visão computacional e suas aplicações. Além
disso, expôs-se de forma sucinta a aprendizagem profunda, bem como sua aplicação na vi-
são computacional. Por fim, tratou-se dos modelos envolvidos no contexto deste trabalho:
YOLOv10, YOLOv12, RF-DETR, D-FINE e MPRNet.
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3 TRABALHOS RELACIONADOS

Neste capítulo, serão apresentados trabalhos voltados à contagem automática de ovos de
Aedes aegypti em ovitrampas, abrangendo abordagens encontradas na literatura tanto voltadas
à aplicação de Processamento de Imagens, por início, e Aprendizagem Profunda, por fim. Esta
divisão baseia-se nas categorias de principais abordagens usadas na literatura para esse caso
ao longo do tempo.

3.1 CONTAGEM AUTOMÁTICA COM PROCESSAMENTO DE IMAGENS

Abordagens primárias de contagem automática de ovos de A. aegypti em ovitrampas
envolvem Processamento de Imagens. Assim, (SANTOS et al., 2008) propôs uma abordagem
nesse sentido, que consiste em aplicar segmentação de cor e filtros não lineares baseados em
morfologia matemática.

As imagens foram obtidas por câmera digital com 7.2 MP (megapixels), LCD 2.5, com
aplicação de zoom óptico de 4.5 vezes e com lente Leica DC Vario Elmarit. As ovitrampas
foram digitalizadas com resolução de 700 dpi e zoom óptico de 4 vezes. Ao fim, obtem-se uma
imagem digital no sistema RGB com 3000 x 2300 px de dimensão. Para fins de experimentos,
as imagens foram divididas em seções (sub-imagens) e a contagem do número correto de
ovos (contagem de referência) para fins de comparação com os métodos desenvolvidos se
deu manualmente de forma visual através das imagens. Os autores propuseram três métodos
de contagem. No “Método 1”, as imagens são convertidas para o sistema YIQ, o canal I foi
segmentado e é aplicado uma binarização com limiar fixo de 130. Após, é aplicado um algoritmo
de componentes conectados (rotulação de componentes conexos), de modo a aplicar um rótulo
em cada área branca. Em seguida, as áreas menores do que 100 px (tamanho médio de um
ovo) são desconsideradas. Após isso, a imagem é filtrada com a operação morfológica de
fechamento, tendo uma imagem de um ovo levemente inclinado como elemento estruturante
da operação. As dimensões deste elemento são de 8 x 13 px. Por fim, foi calculada a média
de pixels brancos na imagem, considerando que um ovo ocupa 170 px. Assim, portanto, a
quantidade de ovos é obtida.

Por sua vez, no “Método 2 - Limiar Fixo”, a imagem também a convertida para o sistema
YIQ e o canal I é segmentado. A partir daí, se introduzem mudanças pontuais no fluxo, com
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o restante do fluxo permanecendo inalterado. Nesse caso, a limiarização é feita com o limiar
de 200 e esse valor obtido após análise do histograma da imagem. Outro, o “Método 2 -
K-Médias”, faz a binarização automática com base no método k-médias [7, 8, 9, 10] com 3
entradas, 4 classes, taxa de aprendizagem de 0.1 e máximo de 200 iterações. Para a contagem,
é considerado o tamanho médio de um ovo como 220 px.

Os experimentos foram feitos considerando 6 imagens. Por fim, os resultados evidenciaram
que o “Método 1” atingiu erro máximo de 25% na segunda imagem, o que equivale a uma
diferença de dois ovos. Em geral, o erro foi de 9%. Por sua vez, o “Método 2 - Limiar Fixo”
apresentou resultados superiores aos demais. Por fim, o “Método 2 - K-Médias” obteve taxa
de erro média de 7.33%, de maneira que as duas versões do Método 2 obtiveram erro menor
do que 10%.

O método apresentado neste trabalho possui aplicação limitada, dada à forte dependência
da intensidade dos pixels da imagem, considerando que uma palheta pode ter várias condições
de iluminação. Ademais, a base de experimentos é pequena para evidenciar o êxito da solução
desenvolvida.

Semelhantemente, (GUSMÃO; MACHADO; RODRIGUES, 2009) propõe contagem de ovos do
vetor através de Processamento de Imagens voltadas a exploração dos sistemas de cor e apli-
cação do algoritmo de agrupamento K-Means. Em princípio, as imagens RGB são convertidas
para o espaço L*a*b. Os componentes a* e b* são usados para agrupar a imagem de entrada
usando o mapa K-Means. O número de clusters (agrupamentos) é definido como 3, referentes
a: Ovo, ovitrampa e regiões intermediárias. O algoritmo aleatoriamente seleciona os vetores
inciais de média e como critério de parada foram usados dois argumentos: O valor máximo
de 100 iterações e a estimativa de coesão. O algoritmo, então para quando a soma das dis-
tâncias de cada objeto não pode mais diminuir. O algoritmo repete o agrupamento 3 vezes,
cada qual com um novo conjunto de posições inicias do vetor de média e retorna a solução
com menor valor de soma das distâncias dos vetores ponto-média. Após isso obtém imagens
de agrupamento; a imagem é convertida para o sistema Hue, Saturation, Value (HSV) e o
canal H (matiz) é segmentado. Em seguida, para cada cluster, é obtido o valor médio de
matiz e o valor de cada grupo caso, é atribuído para 1 (caso seja superior a 0.5) e para 0
(caso contrário). Com isso, obtém-se uma imagem binária e é então aplicado um algoritmo de
rotulação de componentes conexos. Após isso, são desconsideradas as regiões com menos de
140 pixels. Por fim, considerou-se que um ovo ocupa uma área de 357 px e então, calculou-se
a quantidade de ovos com base numa média aritmética considerando esse valor.
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Os resultados mostraram um erro individual máximo de 45.45% na primeira imagem, o
que correspondeu a uma diferença de dez ovos. No geral, o erro médio foi de 1.16% com
um desvio padrão de 4.15. O método apresenta uma melhoria de erro médio de 6.66% para
1.16% em relação ao proposto por (SANTOS et al., 2008), em que pese o erro individual ter
aumentado de 25% para 45.45% e o desvio padrão, de 1.6 para 4.15.

Esta abordagem, novamente, apresenta uma dependência importante em relação à ilumi-
nação e cor da imagem, desconsiderando totalmente outros traços e características do objeto
de interesse, além de ser experimentada com poucas imagens.

(SILVA; RODRIGUES; ARAUJO, 2012a) desenvolveu um sistema de aquisição de imagens de
palhetas de ovitrampa associado a um método de contagem, tanto automática como também
semi-automática (assistida). Observa-se nesse trabalho, ainda a aplicação de técnicas de pro-
cessamento de imagens. As informações obtidas pelo sistema são enviadas para um servidor
web, onde são analisadas as palhetas por técnicas de processamento de imagens, em especial
baseada nos processos de segmentação, filtragem e quantificação. No geral, a contagem é
feita em três etapas, em que a primeira é segmentação, que é composta por uma operação
AND entre duas máscaras geradas por duas formas de segmentação distintas (por cor e por
limiarização). A segunda, é uma filtragem morfológica, em que utilizou-se um filtro de moda
com dimensões de 3 x 3 pixels. Em seguida, foi feita uma filtragem morfológica de abertura
com um elemento estruturante no formato de um disco com raio de 2 px. A terceira etapa,
por fim, consiste na contagem dos ovos por meio do cálculo de média tendo considerando a
área média de um ovo como 160 px (valor determinado após experimentos em 100 imagens
de ovos). Na análise de 100 imagens, o método automático obteve um erro médio de 16.26%
e o erro global, considerando a totalização das contagens manual e automática, foi de 2.67%.

Observa-se que este método é estritamente vinculado à características das imagens nessas
condições, haja vista a própria menção de que o valor médio do tamanho de um ovo pode
variar ao tratar-se de imagens de tamanho diferente. Aqui, apesar de o conjunto de imagens
ser maior, ainda é baixo dado o cenário e o método de contagem é estritamente associado às
características específicas dessas imagens.

Ademais, em (FEITOSA et al., 2015), a partir de imagens capturadas com microscópio
Universal Serial Bus (USB), com 96 dpi de resolução em 800 x 600 pixels de dimensão (além das
imagens disponibilizadas por (PORTELLA, 2009), foram tratados métodos de processamento de
imagens. A partir de uma imagem RGB, o canal R foi segmentado e o histograma da imagem
foi normalizado. Após, utilizou-se a técnica de limiarização Otsu, seguida por uma operação
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morfológica em que o elementro estruturante tem o formato de um disco com raio de 1 pixel.
Em seguida, foi aplicado um algoritmo de rotulação de componentes conexos. Após, as áreas
com menos de 140 pixels foram desconsideradas e, a partir de um valor determinado de área
de ovo (362 pixels), foi calculada a média de pixels brancos e, assim, obteve-se a quantidade
de ovos. Outro método de contagem proposto, distingue-se em pontos-chave, como: Utiliza
as imagens no espaço de cores L*a*b o algoritmo K-Means e pelo valor definido como área
de um ovo para fins de cálculo (357 pixels). Por fim, a contagem é feita por cálculo de média,
como no primeiro método. Em geral, o método 1 obteve o melhor erro global (erro 0) e o
método 2 obteve o melhor resultado em média de erro: 18.12%.

Entre as limitações do trabalho, destacam-se: A necessidade de controle de iluminação por
parte do dispositivo de captura, além da necessidade se obter uma massa maior de imagens.
Qual os anteriores, este apresenta forte associação às características específicas das imagens,
como alta dependência em relação à cor dos ovos, além de ser especializado apenas nessas
condições de captura, já que é estritamente ligado a esse tamanho de imagem.

Por outro lado, (COSTA, 2017), utiliza um Sistema de Inferência Fuzzy (SIF) e verifica os
resultados com base em 206 imagens. Como resultados, obteve acurácia de 98.94% e coefi-
ciente de correlação de Matthews de 0.9 para classificação e contagem dos ovos, comparado
com a contagem manual. Contudo, há a presença de um valor alto de falsos positivos. Ainda,
observa-se, ainda ligação dessa abordagem proposta com as caracteristicas específicas das ima-
gens (como de cor, luminosidade etc) justo por utilizar técnicas de processamento de imagens
como ponto chave, a exemplo de técnicas de binarização.

Observa-se o uso de Processamento de imagens, agora, aliado à Aprendizagem de Máquina,
no trabalho proposto por (ROCHA; BIZERRA; MAGALHÃES, 2019), onde utiliza-se principalmente
o algoritmo Haar Cascade para otimizar o reconhecimento dos objetos e buscar evitar falsos
positivos. Menciona-se que imagem passa antes por um filtro de realce (high-boost). Usa-
se um equipamento eletrônico para captura (que, inclusive, usa Light-Emitting Diode (LED)
de branca) e processamento de imagens para realização da contagem. Apresentou resultados
como: De 26 ovos contidos numa imagem, reconheceu 14, no geral teve alguns falsos positivos.

Como limitações desse trabalho, tem-se que: Há a necessidade de uma base maior de ima-
gens e de um dispositivo de captura, que além de iluminar bem as imagens (este apresentou
alguns pontos de melhoria), seja de baixo custo e de fácil manuseio. Além disso, a conta-
gem necessitaria ser mais capaz de lidar com problemas comuns em palhetas: Ovos adjuntos,
sobrepostos, segmentados, dentre outras disposições.
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Como observa-se, a somente aplicação de métodos de processamento de imagens é alta-
mente vinculada às condições das imagens para as quais são implementadas, como intensidade
de cor e dimensões da imagem. Ademais, é imperioso a adoção de métodos computacionais ca-
pazes de, em fato, aprender a reconhecer ovos de Aedes aegytpi, não somente aplicar métodos
em condições controladas e que sejam estritamente localizados. Imagens com sobreposição de
ovos, oclusão, além de background escuro ou ruidoso ou mesmo imagems ruidosas no geral
são encontradas em cenários reais.

Portanto, para cenários e imagens de mundo real, são necessários métodos capazes de
modelar suficientemente a complexidade das imagens e dos objetos de interesse, de modo
atender os pontos supracitados. Ante isso, dados os avanços da Aprendizagem Profunda e
sua aplicação para Visão Computacional, a literatura passou a envolver estas áreas na tarefa
de contagem de ovos de A. aegypti, ou seja, a aplicação de técnicas de Processamento de
Imagens (ainda que associadas a AM) para o problema de contagem automática de ovos de
Ae. aegypti, tem perdido, progressivamente, importante espaço para dar lugar a métodos de
DL.

A respeito da contagem automática com processamento de imagens, a Tabela 1 faz um
comparativo dos trabalhos acima mencionados.



60

Tabela 1 – Comparativo de trabalhos na literatura que utilizam Processamento de Imagens para contagem
automática de ovos de A. aegypti

Trabalho Técnica Dispositivo de captura
de imagens

Melhores resultados Limitações

(SANTOS et
al., 2008)

Segmentação de cor e
filtros não lineares
baseados em
morfologia
matemática

Câmera digital com 7.2
MP, LCD 2.5, com
aplicação de zoom óptico
de 4.5 vezes e com lente
Leica DC Vario Elmarit.

Erro médio de 7.33% Dependência estrita da
intensidade dos pixels da
imagem. Modelo não
aprende a identificar ovos
propriamente dito, mas se
baseia em técnicas de
filtragem e cálculos de área
média de ovo.

(GUSMÃO;
MACHADO;
RODRIGUES,
2009)

Segmentação de cor e
filtros não lineares
baseados em
morfologia
matemática

Câmera digital 7.2 MP,
LCD 2.5”, zoom óptico
4.5x e lente LEICA DC
Vario Elmarit

Erro médio de 1.16% e
desvio padrão de 4.15.

Abordagem testada em
poucas imagens e
altamente vinculada às
características particulares
das imagens e não ao
reconhecimento de padrões
que caracterizam um ovo.

(SILVA;
RODRIGUES;
ARAUJO,
2012a)

Segmentação,
filtragem e
quantificação.

Dispositivo com placa de
controle, câmera digital
com 7,1 megapixels e modo
“super-macro”, sistema de
iluminação e suporte para
translação de palhetas.

Erro médio de 16.26% e
erro global de 2.67%.

Método específico às
características das imagens
utilizadas, como
iluminação, cor e tamanho
médio de ovos.

(FEITOSA et
al., 2015)

Processamento de
histograma,
segmentação,
filtragem, limiarização
e agrupamento

Microscópio USB com 96
dpi de resolução.

Erro global 0 erro médio
de 18,12%

Método fortemente
associado às características
específicas das imagens e
alta dependência em
relação à cor dos ovos,
além de ser específico para
essas condições de captura.

(COSTA,
2017)

Segmentação,
extração de
características e
lógica fuzzy.

Câmera BIOFOCUS
acoplada a um microscópio
Stemi 305 body (Carl Zeiss
Microsscopy GmbH).

Acurácia de 98.94%
para classificação de
ovos e coeficiente de
correlação de Matthews
de 0.9 em relação à
contagem manual.

Ligação da abordagem com
as características
específicas das imagens,
como cor, luminosidade etc.

(ROCHA;
BIZERRA;
MAGALHÃES,
2019)

Filtragem e algoritmo
Haar Cascade para
reconhecimento de
objetos.

Equipamento com
dispositivos eletrônicos,
como câmera de 5MP,
luzes de LED branco,
dentre outros.

Taxa de recall de cerca
de 60%

Base experimentos
pequena, dificuldade ainda
com iluminação e com ovos
adjuntos ou sobrepostos,
além de dispositivo de
captura com custo
considerável.

Fonte: Elaborada pelo autor (2025).

3.2 CONTAGEM AUTOMÁTICA COM APRENDIZAGEM PROFUNDA

A priori, (SANTANA et al., 2019) propõe uma abordagem baseada em redes neurais para
contagem dos ovos de A. aegypti (e também de A. albopictus) em palhetas de ovitrampa.
Propôs um dispositivo de hardware que possui integrado nele uma câmera (microscópio digital)
para captura de imagens, um módulo de contagem dos ovos e uma palicação web para exibir
os resultados das contagens efetuadas.

Então, foi usado um modelo de detecção de objetos, o Region-based Fully Convolutional
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Networks (R-FCN), proposto por (DAI et al., 2016), pré-treinado no dataset COCO e com um
conjunto de 984 imagens. O R-FCN alcançaou precisão de 91% na classificação dos ovos e
para validar a utilização do dispositivo de captura, foram utilizadas 10 palhetas reais obtidas.

Entretanto, pontua-se que a solução proposta tem redução do desempenho em relação à
disposição de ovos (oclusão de ovos, ovos adjuntos etc). Destaca-se, ainda, o custo associ-
ado ao dispositivo de captura, dado que possui diversas interfaces de conexão, como USB,
MicroUSB, High-Definition Multimedia Interface (HDMI), interface de áudio, porta Ethernet
etc. Um outro ponto importante é a sobreposição na captura das imagens pelo dispositivo de
captura, dado que o trabalho menciona que há uma sobreposição de 10%. Esta sobreposição
causa recontagem de ovos (ovos são contados mais de uma vez) e leva a erro a contagem
de uma palheta completa, que é requisito essencial para obtenção dos índices de ovos, como
o IDO e o IDV. Estes índices são cruciais e parte do fluxo de implementação da Vigilância
Entomológica, como recomendada o Ministério da Saúde do Brasil (Ministério da Saúde – Brasil,
2025d).

Ainda com uso de Deep Learning, (SILVA et al., 2021) propõe uma metodologia para seg-
mentação de ovos para auxiliar a contagem. Com imagens obtidas por câmera digital de 7.2
MP LCD 2,5 polegadas, zoom óptico de 4.5 vezes e lente Leica DC Vario Elmari Foram
digitalizadas 10 palhetas e obteve-se um total de 30 imagens de 1024 x 768 pixels de dimen-
são. A partir de uma imagem, gera 12 sub-imagens de dimensão 256 x 256 pixels e então,
obteve-se 228 imagens após esse pré-processamento. Após isso, ocorre segmentação, etapa
na qual são experimentados o uso de uma rede U-Net e de uma SegNet, além de uma Res-
net50 pré-treinada. Em seguida, o pós-processamento é feito com uma operação morfológica
de fechamento em que o elemento estruturante é um disco com raio de 7 pixels. Logo depois,
utilizou-se uma técnica para fechar os buracos segmentados em regiões de ovos e foi aplicado
o algoritmo de rotulação de componentes conectados. Para fins de contagem de ovos, se uma
região contiver a área menor do 1.5 vezes o tamanho médio de um ovo (1321 pixels), é consi-
derado como apenas um ovo. Caso contrário, é realizada a divisão do tamanho da região pelo
tamanho médio de um ovo e o resultado inteiro obtido corresponde à quantidade de ovos.
Quanto a resultados, os melhores foram com U-Net, com acurácia de segmentação de 98.65%
e erro médio quadrático de 4.25% na contagem dos ovos.

Em que pese a abordagem atual ter substituído a limiarização de imagem por segmentação
usando redes neurais, ainda apresenta limitações relacionadas a: Tamanho (área) dos ovos
não é um valor seguro para estimar a quantidade de ovos numa imagem, já que diferentes
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tamanhos de ovos ou mesmo ovos segmentados (parcialmente na imagem, parcialmente não)
deturpariam a estimativa feita de contagem. Ademais, a quantidade de imagens testadas
poderia ser maior, de modo a envolver um número expressivo de palhetas. Por fim, o método
não aprende a reconhecer os ovos de fato, mas se baseia, em última instância, em estimativas
e aplicação de redes neurais apenas atua na tarefa de segmentação, não na detecção em si.

Também, (SILVA, 2021) criou um dispositivo de hardware que possui uma câmera digital
acoplada a ele para captura de imagens. A partir de 100 palhetas, aplicou técnicas de data
augmentation e, assim, criou uma base de dados com 3703 imagens. Analisou a discrepância
entre contagem automática e manual, além de criar um software para auxiliar técnicos na
contagem dos ovos. Com a base de dados de imagens criada, treinou modelos de aprendizagem
profunda voltados a detecção de objetos, como EfficientDet, YOLOv4 e RFCN e foi verificado
nos experimentos que os modelos EfficientDet e YOLOv4 foram superiores.

O dispositivo de captura poderia envolver componentes que o tornasse de mais baixo custo
e principalmente de fácil manuseio, operação e transporte, dado que isto tornaria mais viável
seu uso por parte dos profissionais que atuam em campo na implementação da vigilância
e controle do vetor, como instalação, contagem de ovitrampas e monitoramento em geral.
Inclusive, o fato de o hardware de captura envolver uma câmera digital e de principalmente ser
razoavelmente grande relativo a uma palheta, é um fator de peso em desfavor da praticidade
de uso, ainda mais em campo. Ainda, o dispositivo causa sobreposição na captura de imagens,
o que leva a estatísticas equivocadas sobre a contagem em palheta completa, pois regiões
da palheta são consideradas mais de uma vez. Ainda sobre o dispositivo de captura, o autor
refere-se à limitações por conta do foco da câmera digital, uma vez que esta se move sobre a
palheta e, por vezes, captura imagens com ruído relacionado ao foco, o defocus blur.

Outro ponto é que não foi considerada nem medida a contagem em palheta completa, dado
fundamental para obter os indicadores de ovos, como o IDO e outros para fins de vigilância
entomológica. Ainda, o autor menciona a questão de imagens ruidosas ou de baixa qualidade
como fatores de comprometem a capacidade dos modelos de reconhecer os objetos, o que
impacata diretamente no resultado da contagem dos ovos de mosquito. Como palhetas de
ovitrampas são instaladas em diversos locais ao ar livre, estão, assim, suscetíveis à diversos
fatores que contribuem para que a palheta, ao ser considerada para contagem, tenha ruídos.
Assim, as metodologias de contagem de ovos, devem lidar com este fator, de maneira que lide
também com imagens ruidosas de diversos ruídos existentes. Acerca disso, a literatura atual
menciona abordagens possíveis, como a restauração de imagens degradadas por redes neurais.
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Ainda, a validação da metodologia de contagem quanto à comparação da contagem manual
com a contagem automática, considerou 13 palhetas, número que poderia ser mais expressivo
para se avaliar uma metodologia de contagem automática proposta. Por fim, dados os recentes
avanços em termos de modelos de detecção de objetos com desempenhos superiores aos de
então, com alta precisão e baixa latência amparados em amplos experimentos, é importante
treinar esses modelos do estado da arte, refiná-los com o fim de se obter um desempenho
melhor. Em geral, estas melhorias, seria ideal uma metodologia de contagem que considerasse
estes pontos-chave com vistas a contribuir com mais avanços nesta área do conhecimento e
relacionados a contagem automática de ovos de A. aegypti.

Por sua vez, (JAVED et al., 2023) apresenta uma solução que consiste num software gratuito
de contagem (EggCountAI), cuja contagem baseia-se no modelo Mask Region-based Convo-
lutional Neural Network (Mask R-CNN). As palhetas, nesse caso, disntinguem-se por serem
de tiras de lixa (sandpaper strip). As imagens foram capturadas com uma câmera Olympus
Tough TG-6 para obterem-se as imagens macroscópicas, ao passo que, as imagens microscó-
picas foram coletadas com um microscópio Nikon SMZ18 ajustado para uma ampliação de 8x
com uma lente objetiva de 1x, utilizando o software NISElements da Nikon.

Para cada tipo de imagem (microscópica e macroscópica), um modelo é treinado para
detectar ovos e obtém-se, para imagens microscópicas, mAP de 0.92, Mean Average Recall
(mAR) de 0.90 e F1-Score de 0.91. No modelo treinado para imagens macroscópicas, obtém-se
0.91 mAP, 0.90 mAR e 0.90 de F1-Score. O software EggCountAI conta automaticamente
ovos em um diretório contendo imagens de tiras de lixa.

Para testar a solução, comparou-se com as ferramentas de contagem ICount e MECVision
usando 10 imagens microscópicas e 10 macroscópicas. Os resultados evidenciaram superior
desempenho em relação às outras ferramentas, de modo que se obteve acurácia geral de
98.88% para as imagens microscópicas e de 96.06% para imagens macroscópicas. Por sua vez,
ICount obteve 81.71% e 82.22%, respectivamente para imagens micro e macro, enquanto que
o MECVision obteve 68.01% e 51.71% para imagens micro e macro, nessa mesma ordem,
o que ressalta a superioridade da abordagem proposta. Quanto a erro médio, a solução, o
EggCountAI obteve 1.90 para imagens micro e 74.30 para imagens macro, além de obter
desempenho melhor ao lidar com ovos sobrepostos ou agrupados.

Em relação a essa metodologia, observa-se o conjunto bastante reduzido de imagens para
validação do desempenho da solução, o que limita a quantidade de instâncias de ovos. Observa-
se que as imagens não apresentam ruídos significativos (ou mesmo forte presença deles), pelo
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fato de o substrato de ovoposição ser de tiras de lixa com fundo amarelado. A propósito, isso
limita a aplicação desta metodologia apenas a esses tipos de imagens, já que não representa
todos os cenários de utilização quanto ao substrato para deposição de ovos utilizado. Inclusive,
não é feito um tratamento mais específico para lidar com imagens ruidosas, como muito escuras
ou com ruído de borramento. Ademais, a forma de captura das imagens envolve dispositivos que
aumentam o custo do processo como um todo. O uso câmera e do microscópio supracitados
encarecem financeiramente o processo de aquisição das imagens e suscita a necessidade de
utilizarem-se dispositivos de baixo custo para alcançar resultados similares. Com dispositivo
de mais baixo custo para captura e de melhor manuseio, transporte e utilização e campo
(principalmente), uma metodologia, como de contagem, proporcionaria maior reprodutibilidade
para cenários de aplicação real.

Ademais, o trabalho (NARANJO-ALCAZAR et al., 2024) também aplicou aprendizagem pro-
funda para classificar ovos em duas classes: Eclodidos e não eclodidos. Propôs também re-
construir a imagem de uma palheta a partir das imagens parciais diminuindo a duplicidade e
corte de ovos entre imagens (ovos segmentados), mas ainda mantendo certo grau de sobre-
posição. O dispositivo de captura desenvolvido possui acoplado a si um microscópio DinoLite
AM4013MZT e é capaz de capturar imagens de várias palhetas sem ser necessário remover e
colocar as palhetas ao longo do processo e também proveu a contagem em palheta completa.
A partir de uma palheta, obtém-se 165 imagens parciais e a movimentação do microscópio em
relação à palheta gera sobreposição, como mencionado pelos autores e dataset obtido consistiu
de 96 imagens em que 24 foram separadas para o conjunto de teste, as quais continham 215
instâncias de ovos eclodidos e 1160 de ovos não eclodidos. Em relação à contagem, utilizaram-
se modelos de segmentação semântica, quais sejam: Mask R-CNN e Cascade Mask-RCNN. Os
resultados mostraram que o primeiro obteve melhor desempenho com 0.91 mAP@.5, contra
0.89 mAP@.5 do outro modelo.

Em relação a limitações, destaca-se que o dispositivo de captura, em que pese seja prático,
poderia ser de melhor transporte e manuseio para atividades de vigilância entomológica em
campo. Ademais, há uma sobreposição importante na captura das imagens, fato que inclusive,
fez com que imagens consecutivas de uma palheta não fossem rotuladas para evitar considerar
o mesmo ovo duas vezes. Portanto, há a necessidade de se tratar o problema da sobreposição
de regiões da superfície da palheta na captura. Ademais, o conjunto de imagens treinamento
é ainda muito pequeno, bem como a quantidade de instâncias de ovos também o é, nem foi
mencionada a aplicação de técnicas de aumento de dados. Ademais, modelos mais recentes



65

de segmentação estão disponíveis na literatura, os quais possuem desempenho importante
evidenciado com base em amplas experimentações. Por fim, não foi apresentada a contagem
geral de uma palheta completa para assim, compararar-se com a contagem manual e calcular
o erro em métricas como erro médio absoluto, por exemplo.

Por fim, (VICENTE et al., 2024) com o uso de um estereomicroscópio Leica MC170 HD,
capturou imagens de palhetas de ovitrampas, criou um conjunto de treinamento e propôs
três modelos de detecção de objetos, como Faster R-CNN, Side-Aware Boundary Localization
(SABL) e FoveaBox. A base de imagens é composta de imagens obtidas em campo e em
laboratório. No geral, há 247 imagens, sendo que 123 foram coletadas em campo e 124,
em laboratório, o que totaliza 12.513 instâncias de ovos anotados. Pontua-se que os ovos
obtidos em laboratório são provenientes de ovitrampas e são maturados, mas distinguem-se
pelo fato de que um filtro de papel foi colocado nas ovitrampa para manter os níveis adequados
de humidade para facilitar a eclosão e, por fim, na fase adulta, os mosquitos fêmeas foram
alimentados com uma solução de capim e repasto sanguíneo para aumentar a postura de ovos
com maior viabilidade.

Os resultados mostraram que o FoveaBox obteve melhor desempenho que os demais mo-
delos, especialmente na contagem de ovos muito próximos uns dos outros (disposição que é
comum nessa base de dados) ou agrupados (sobrepostos). Foi verificado que o erro médio
aumenta de forma expressiva à medida que mais imagens são consideradas, sendo de 2.68
com até 100 imagens, 26.21 entre 101 e 300 imagens e, por fim, 123.25 para mais de 300
imagens.

Isto colocado, com relação a pontos-chave de melhoria, alguns substratos de ovoposição
utilizados não são de superfície planas, o que levou a dificuldades no reconhecimento de
objetos posicionados lateralmente à estrutura, o que levou a inviabilidade de anotação e de
reconhecimento pelo modelo; isto pode levar, num cenário de inferência em aplicações do
mundo real, a expressiva subcontagem dos ovos nas palhetas, fato este que inviabilizaria a
solução para fins de obtenção de indicadores relacionados à vigilância entomológica. Ademais,
houve dificuldades também na contagem dos ovos devido à presença numerosa de ovos nas
imagens, dispostos muito próximos uns aos outros e em grupos; ainda, a presença de ruídos
foi apontada como um fator que traz dificuldades à contagem. Também, modelos do estado
da arte podem ser aplicados com o fim de se obter desempenho melhor na contagem, além
da aplicação de modelos de restauração de imagens para tratar cenários desafiadores como
imagens ruidosas. Por fim, há a necessidade de coleta de mais imagens para treinamento e
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obtenção de modelos com melhor capacidade de generalização, considerando o cenário de
mundo real em que devem ser aplicados.

Para fins de comparação, a Tabela 2 expõe de forma resumida as abordagens utilizadas
nos trabalhos desta seção.
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Tabela 2 – Comparativo de trabalhos na literatura que utilizam Aprendizagem Profunda para contagem auto-
mática de ovos de A. aegypti

Trabalho Técnica Dispositivo de captura
de imagens

Melhores resultados Limitações

(SANTANA et
al., 2019)

Algoritmo R-FCN
para detecção de ovos

Dispositivo de hardware
como um scanner com
microscópio digital USB
com zoom óptico de 500x

Precisão de 91% 10% sobreposição em áreas
da palheta, dispositivo de
captura com custo
significativo, dificuldade
com sobreposição e ovos
adjuntos

(SILVA et al.,
2021)

U-Net, SegNet e
Resnet50, morfologia
matemática e
segmentação

Câmera digital de 7.2 MP
LCD 2,5 polegadas, zoom
óptico de 4.5x e lente Leica
DC Vario Elmari

Acurácia de
segmentação de 98.65%
e erro médio quadrático
de 4.25%

Método não aprende a
contar ovos, mas segmenta
imagens com base em suas
características específica.
Base de experimentos ainda
pouco expressiva

(SILVA, 2021) EfficientDet, YOLOv4
e RFCN para
detecção de ovos

Dispositivo de hardware
feito com impressora 3D e
com câmera de microscopia
de 5MP

YOLOv4 com 92%,
94% e 93% nos
conjuntos de treino,
validação e teste e leva
14 segundos para
inferência em 204
imagens

Dispositivo de hardware de
captura ainda com custo
considerável,
acentuadamente grande e
de difícil manuseio em
campo no âmbito da
vigilância entomológica.
Não houve um tratamento
de imagens ruidosas

(JAVED et al.,
2023)

Mask-RCNN para
detecção de ovos

Câmera Olympus Tough
TG-6 e microscópio Nikon
SMZ18 com zoom de 8x e
lente objetiva de 1x,
respectivamente
macroscópica e
microscópica

Acurácia geral de
98.88% para as imagens
microscópicas e de
96.06% para imagens
macroscópicas erro
médio 74.30 (macro) e
de 1.90 (micro)

Conjunto reduzido de
imagens de validação. Não
houve tratamento para
imagens ruidosas já que as
imagens não têm ruído
significativo. Uso das
referidas câmeras
macroscópicas e
microscópicas encarecem a
metodologia de contagem
de ovos

(NARANJO-
ALCAZAR et
al., 2024)

Modelos Mask-RCNN
e Cascade
Mask-RCNN para
segmentação de ovos

Dispositivo de hardware
com microscópio DinoLite
AM4013MZT

0.91 mAP@.5 Dispositivo de hardware de
captura significativamente
grande e por isso, de difícil
transporte e manuseio para
atuação em campo no
âmbito da vigilância
entomológica. Há
sobreposição considerável
na captura dos ovos, além
de o conjunto de
treinamento ser pequeno.
Não foi apresentada
contagem total de uma
palheta. Modelos do estado
da arte podem ser aplicados

(VICENTE et
al., 2024)

Faster R-CNN,
Side-Aware Boundary
Localization (SABL)
e FoveaBox para
detecção de ovos.

Estereomicroscópio Leica
MC170 HD

FoveaBox obteve melhor
correlação

Os ovos coletados em
laboratório não estão em
superfície plana, o que
desfavorece a contagem,
pois esconde ovos. Podem
ser experimentados
modelos mais recentes e
com melhor desempenho

Fonte: Elaborada pelo autor (2025).
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3.3 CONCLUSÃO DO CAPÍTULO

Este capítulo apresentou trabalhos relacionados à tarefa de contagem automática de ovos
de A. aegypti em palhetas de ovitrampa, divididos em duas abordagens principais: Processa-
mento de Imagens, inicialmente, e Aprendizagem Profunda, por fim.

Evidencia-se o esforço contínuo dedicado à esta tarefa, bem como os deasafios a ela rela-
cionados. Em que pesem avanços importantes terem sido realizados, ainda permanecem áreas
importantes de melhoria, como: Desenvolver dispositivo de captura de mais baixo custo e
de fácil utilização, manuseio e transporte; utilizar maiores bases de dados, tanto para trei-
namento, quanto para fins de comparação entre contagem automática e contagem manual;
treinar modelos do estado da arte na área de aprendizagem profunda, como, modelos que
adotam mecanismos mais robustos, como attention, como YOLOv12 e D-FINE, baseados em
transformers, como RF-DETR, dentre outros modelos e tecnologias com melhorias verificadas
em reconhecidos datasets de benchmark, como COCO; buscar resolver problemas referentes à
captura de imagens, como sobreposição de regiões; lidar com imagens ruidosas, como ruído de
borramento por meio de modelos de restauração de imagens ou outra técnica com o mesmo
fim. Portanto, esses pontos principais enfatizam a atual necessidade de avanços nessa área do
conhecimento.

Assim, nesse contexto, o presente trabalho distingue-se positivamente pela criação de uma
base de dados maior. Ainda, pontua-se a criação de um dispositivo para captura de imagens
feito com impressora 3D. Além disso, caracteriza-se pela criação de um protocolo autoral para
os modelos de contagem, além de serem experimentados vários modelos de aprendizagem
profunda do estado da arte com treinamento para contagem a partir de imagens de baixa
resolução capturadas por câmeras de smartphones. Também ressalta-se a aplicação de modelo
de restauração de imagens baseado em redes neurais e sua inclusão no protocolo autoral
de contagem e são incluídas e avaliadas também o impacto do uso técnicas de realce com
processamento de imagens na contaem dos ovos, na estrutura do protocolo de contagem
proposto. Desta forma, o capítulo seguinte detalha os procedimentos metodológicos que foram
utilizados com vistas a atingir esses objetivos acima pontuados.
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4 MATERIAIS E MÉTODOS

No âmbito da Metodologia Científica, este capítulo tem o intuito de esclarecer os materiais
e métodos aplicados no desenvolvimento deste trabalho.

4.1 FLUXO DE DESENVOLVIMENTO DO TRABALHO

O fluxo proposto de contagem de ovos de Aedes aegypti é apresentado Figura 17. Dado
como entrada uma palheta de ovitrampa (cerca de 15 x 5 cm), são capturadas 3 imagens
digitais com apoio do dispositivo de captura; essas imagens são chamadas de “segmentos” e
representam três divisões da palheta, assim nomeadas: Base, centro e topo, cada qual com
dimensão de 4160 x 3120 pixels. Para cada cada segmento, é feita uma operação de corte na
imagem em forma de grade, num corte de 7 linhas e 6 colunas. Esse processamento, resulta
em 42 imagens chamadas “crops”, em que cada uma tem cerca de 491 x 431 px. Ao considerar
os três segmentos da palheta, após essa operação obtém-se 126 “crops”.

Em seguida, o fluxo de contagem subdivide-se em três: Fluxo I, voltado à aplicação mo-
delos de restauração de imagens baseados em Redes Neurais (tal como o MPRNet) como
operação intermediária para após isso ser realizada a contagem por modelos de Aprendizagem
Profunda; Fluxo II, cujo foco são técnicas de Processamento de Imagens, como Equalização
de Histograma, para depois serem aplicados os modelos de contagem; e, por fim, Fluxo III, em
que a contagem é feita diretamente por modelos sem a aplicação de operações intermediárias.

Deste modo, dado que uma palheta foi a entrada deste fluxo, obtém-se ao final o resultado
da contagem de ovos de Aedes aegypti nesta palheta: As imagens com as detecções e o total
de ovos na palheta.
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Figura 17 – Fluxo Completo de Contagem

Fonte: Figura do autor (2025)

4.2 AQUISIÇÃO DE PALHETAS

Dada a colaboração existente entre o a FIOCRUZ-PE e o Centro de Informática, foram
fornecidas palhetas de ovitrampa utilizadas na vigilância entomológica, já abastecidas de ovos
de Ae. aegypti. Ao total, cerca de 152 palhetas foram disponibilizadas e consideradas para este
trabalho, cada qual com as características e dimensões apresentas na Figura 18.

Dentre essas palhetas, 28, foram fornecidas juntamente com a contagem estimada de
ovos, conforme técnicos da FIOCRUZ-PE, e foram, portanto, consideradas na verificação dos
resultados dos experimentos descritos nas seções posteriores deste trabalho.
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Figura 18 – Palheta de ovitrampa

Fonte: SILVA (2021)

4.3 CAPTURA DE IMAGENS

Dentre várias formas possíveis de captura de imagens a partir das palhetas de ovitrampa,
foram utilizados um smartphone e um suporte de captura desenvolvido no âmbito deste tra-
balho, os quais são utilizados em conjunto e serão descritos logo abaixo.

4.3.1 Dispositivo móvel de captura

Para captura das imagens digitais foi utilizado um smartphone Samsung Galaxy A03s,
lançado em 2021 e considerado um modelo de entrada. Possui um processador Octa-Core (4 x
2.3Ghz + 4 x 1.8Ghz), 3GB de memória RAM e 32GB de armazenamento interno (SAMSUNG,
2021b).

O dispositivo possui também uma câmera frontal de 5MP (não utilizada neste trabalho)
e uma câmera traseira composta por três sensores: Um principal de 13MP, um de 2MP para
captura macro e um sensor de profundidade de 2MP. Enquanto a câmera principal de 13MP é
indicada para obter imagens grandes e com alta resolução, a câmera macro, por outro lado é de
baixa resolução e é utilizada para objetos muito próximos da lente (cerca de 4 cm, segundo o
fabricante) (BRASIL, 2021). Entretanto, foi utilizada a câmera principal de 13MP por fornecer
melhor resolução. Além disso, o a câmera traseira possui um Flash com luz de LED branca,
como mostra a Figura 19.
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4.3.1.1 Limitações da captura direta por smartphone

Em que pese a qualidade considerável na captura de imagens digitais com o disposi-
tivo acima mencionado, foram observadas limitações que inviabilizaram o uso definitivo do
smarthphone por si só, isto é, sem instrumento auxiliar. Iluminação não uniforme, intersecção
entre os segmentos da palheta na captura são os principais pontos limitadores desta abordagem
sendo ela adotada sem acessórios ou suporte.

Figura 19 – Câmera traseira - Samsung A03S

Fonte: SAMSUNG (2021a)

Dado que o Flash de LED branco está posto lateralmente ao sensor principal de 13MP,
conforme Figura 19, a imagem digital capturada da palheta, nesse caso, apresenta iluminação
não uniforme, isto é, um lado da imagem recebia mais reflectância e isto produzia uma imagem
com o lado esquerdo mais ilumninado e o lado direito (especialmente a extremidade inferior)
mais escuro. Como apontado por (GONZALEZ; WOODS, 2015), um ponto de uma imagem
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digital é formado por luminância e reflectância, e neste caso, pelo fato de a luminância ser
maior no lado esquerdo, a luz não era uniformemente distribuída nas regiões do segmento de
uma palheta, como observado na Figura 20, o que, por conseguinte compromete o resultado
dos processamentos posteriores.

Figura 20 – Segmento de palheta com iluminação não uniforme

Fonte: Figura do autor (2025)

Ademais, outro ponto limitador da abordagem de captura manual dos segmentos de uma
palheta, consiste na intersecção de segmentos da imagem, ou seja, ao capturar imagens dos três
segmentos de uma palheta (base, centro e topo), sem o auxílio de um suporte, por consequência
haverão regiões comuns ou de intersecção por não haver um delimitador físico para cada
segmento, como mostra a Figura 21. Tal inconsistência levaria a uma contagem futura dúbia
do número de ovos numa palheta em que os objetos de interesse seriam considerados duas
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vezes.

Figura 21 – Divisão de segmentos com áreas comuns

Fonte: Figura do autor (2025)

Por fim, outros problemas tais como a falta de uma distância fixa pré-estabelecida entre a
câmera do stmartphone para a superfície da palheta também produziriam imagens instáveis.
Afora outros fatores, tais como inclinação (ainda que leve) da câmera em relação à superfície
também resultariam em imagens com condições diversas entre si, logo, despadronizadas. Tais
razões suscitaram o desenvolvimento de um Suporte de Captura, com o intuito de sanar os
principais problemas da captura puramente manual e desestruturada.

4.3.2 Suporte de captura desenvolvido

Dada a necessidade de sanar os problemas de despadronização na captura das fotos de uma
palheta, foi desenvolvido no âmbito deste projeto, um Suporte de Captura (ou Dispositivo de
Captura), criado com impressora 3D, com o objetivo de ser uma estrutura fixa de sustentação
para a câmera do smartphone, bem como um provedor de iluminação padronizada, sanando
assim, os problemas supracitados.

Este Dispositivo de Captura mede 18 cm de comprimento, 10 cm de largura e 7 cm de
altura. É composto por duas partes: A plataforma inferior de captura, sobre a qual fica a
palheta e o suporte superior de captura, onde apoia-se o celular. O suporte de captura, visto
de cima, é exibido na Figura 22 e Figura 23.
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Figura 22 – Suporte de captura de imagens de palheta de ovitrampa

Fonte: Figura do autor (2025)

Figura 23 – Suporte de captura de imagens de palheta de ovitrampa com smartphone posicionado

Fonte: Figura do autor (2025)
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Assim sendo, a plataforma inferior de captura mede 17 cm x 5 cm, e sobre ela é colocada a
palheta. Possui 8 ranhuras triangulares ao longo de sua superfície, as quais servem para encaixe
do ressalto (saliência) da parte principal superior, conforme Figura 25. De modo semelhante,
o suporte superior de captura possui as saliências para fixação com a plataforma inferior de
captura, conforme Figura 24. Desta forma, esses encaixes de fixação mantém bem delimitados
e sem intersecção os segmentos da palheta durante a captura das fotos.

Figura 24 – Características do Suporte de Captura

Fonte: Figura do autor (2025)

Figura 25 – Plataforma inferior do Suporte de Captura de imagens de palheta de ovitrampa

Fonte: Figura do autor (2025)

Ademais, o suporte superior possui acoplada a ele 4 pequenas lâmpadas de LED branca,
alimentadas por uma bateria. Possui ainda, uma entrada USB-C para carregamento da bateria,
além de uma pequena alavanca mecânica, para o operador humano controlar o acionamento
e desligamento das lâmpadas.

Desta forma, ao utilizar o Suporte, o operador humano captura três fotos, uma para cada
segmento da imagem: Base, centro e topo. Cada segmento é bem delimitado devido às ranhuras
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e encaixes, o que evita a captura de áreas comuns. As lâmpadas de LED branca, direcionam-se
da parte superior para a plataforma inferior, deste modo iluminando os quatro cantos de cada
segmento da palheta. Pelo fato de a câmera estar fixa e imóvel numa distância de cerca de 6
cm da palheta, de modo a evitar o problema de variação de inclinação na captura.

Então, o Suporte de Captura, é usado para obter imagens digitais com excelente qualidade
de iluminação, de maneira a sanar os fatores limitadores acima expostos, como iluminação
irregular, intersecção de regiões e variações de inclinação. Além do mais, é um instrumento
pequeno, prático e de fácil utilização por operadores humanos, o que torna mais segura e
estabelecida esta etapa do processo como um todo de contagem de ovos de Ae. aegypti em
palhetas de ovitrampa.

Nessa situação, o uso de sistemas de iluminação no contexto de captura de imagens de
palhetas de ovitrampa com ovos de Aedes aegypti são também adotados em sistemas de
capturas de ovos do mosquito, como em (SILVA; RODRIGUES; ARAUJO, 2012b), que menciona
LED branca e (HAMESSE et al., 2023).

Ademais, no contexto de a metodologia de contagem de ovos aqui proposta, em especial, o
dispositivo de captura ser de baixo custo, assevera-se que no contexto desta solução a diferença
de qualidade e quantidade de componentes eletrônicos, como câmeras digitais e sistemas de
iluminação, serve como premissa forte para concluir que o custo final do dispositivo de captura
proposto neste trabalho é menor do que o custo associado ao empregado em outros trabalhos
da literatura.

Nesse sentido, tem-se que, a câmera do smartphone Samsung Galaxy A03 adotada neste
trabalho, em comparação com a câmera “Olympus Tough TG-6 e microscópio Nikon”, utilizado
como dispositivo de captura em (JAVED et al., 2023), bem como o molde feito com impressora
3D (deste trabalho), comparado com sistemas mais complexos de captura, como o “Dispositivo
de hardware com microscópio DinoLite AM4013MZT”, empregado por (NARANJO-ALCAZAR et

al., 2024).
Por fim, para cada palheta, as três imagens resultantes podem ser exemplificadas na Fi-

gura 26.

4.3.3 Geração de grids (crops)

Durante testes iniciais, dado um segmento de uma palheta (por exemplo, como visto na
Figura 20), verificou-se que ao aplicar zoom nestas imagens, os ovos do mosquito começam
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Figura 26 – Imagens resultantes após uso do Suporte de Captura

Fonte: Figura do autor (2025)

a tornar-se mais claramente visíveis na superfície da palheta (como mostra a Figura 27), bem
como também é possível a um modelo treinado reconhecer os ovos na imagem.

Figura 27 – Exemplo de detecção de ovo após aplicação de zoom

Fonte: Figura do autor (2025)

Com isso, visando a cobertura de toda a superfície da palheta, realizou-se o seguinte
processamento descrito no Algoritmo 1 para geração de crops para cada segmento da palheta.



79

Algoritmo 1: Geração de crops a partir de uma palheta
Input: Conjunto de segmentos 𝑆 de tamanho 3 da palheta 𝑃𝑥.
Output: Um conjunto de recortes de imagem (crops), com 𝐶 crops por segmento 𝑠

de entrada, totalizando 𝐶 × 3 crops.
foreach segmento 𝑠 ∈ 𝑆 do

Dividir o segmento 𝑠 em um grid de tamanho 7× 6, resultando em 𝐶 = 42 crops.;
for 𝑖← 0 to 𝐶 − 1 do

Salvar o crop 𝑖 como arquivo: <Px>_<s>_grid_<i>;;
Exemplo: P1_base_grid_0, P1_base_grid_1, ..., P1_base_grid_41.;

end

end

Dada uma palheta como entrada, ao utilizar-se o Dispositivo de Captura desenvolvido,
obtém-se a partir dela os segmentos base, centro e topo. Cada segmento possui dimensão de
4160 x 3120 pixels. A partir destes segmentos passa-se a geração dos crops.

Este próximo processamento é uma operação em que a imagem é divida em pequenas
porções de imagem, chamadas de crop. Adotou-se o valor de 7 linhas e 6 colunas e dividiu-se
a imagem como uma matriz; isto resulta em 42 imagens, cada qual com de 491 x 431 px. Esta
etapa do processamento é expressa na Figura 28.

Figura 28 – Processo de geração de crops a partir de um segmento de palheta

Fonte: Figura do autor (2025)

Nesse contexto, é sabido que há um thresholding quanto à quantidade de linhas e colu-
nas escolhida. Inicialmente, por natureza, sabe-se que um segmento de imagem possui ovos
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excessivamente pequenos e até dificilmente vistos por um humano ou reconhecidos por um
modelo. Assim, ao cortar essa imagem em outras micro imagens, não se deve aumentar em
excesso a quantidade de cortes, sob pena de cortar os objetos de interesse em partes ou de se
obter imagens excessivamente pequenas.

Deste modo, testou-se vários valores de linha e coluna, tais como 4 x 4, 5 x 5 e 7 x
6. Nos testes iniciais, cada um deles deu origem a imagens resultantes com resoluções de,
respectivamente, 611x815, 489x652 e 407x466 pixels.

Adicionalmente, constatou-se que a qualidade das deteções aumenta assim que a quanti-
dade de crops aumenta. Ou seja, quanto mais crops de imagem, obtém-se mais detecções de
qualidade, como mostra a Figura 27. A ressalva consiste em não aumentar muito o número
de crops, haja vista que, ao se aumentar o número de crops, a dimensão das imagens finais
diminui.

Figura 29 – Exemplo de crop obtido

Fonte: Figura do autor (2025)

Portanto, o dispositivo de captura obtém, ao fim do processo 126 imagens, que representam
em conjunto, a totalidade da superfície de uma palheta completa. Cada imagem, a exemplo da
Figura 29, possui 491 x 431 de dimensão, com cores especificadas no sistema de cores RGB e
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comprimidas sob o formato de arquivo Joint Photographic Experts Group (JPG) (GONZALEZ;

WOODS, 2015).

4.3.4 Base de imagens

A base de dados utilizada, disponibilizada por (SILVA, 2021) foi utilizada neste trabalho.
Esta base foi feita a partir de 100 palhetas, capturada utilizando câmera digital e cada imagem
possui 680 x 480 px de dimensão. É formada por 1.162 imagens originais e, consideradas as
obtidas, por data augmentation, possui 3.703 imagens.

4.3.5 Base de dados criada

No âmbito deste trabalho, com Dispositivo de Captura desenvolvido com impressora 3D,
foi criada uma base de imagens de ovos de Ae. aegypti a partir de 124 palhetas de ovitrampa
disponibilizadas pela FIOCRUZ-PE, capturadas com o smartphone acima mencionado. Ao
seguir-se os passos descritos nas seções anteriores, foi criada uma base própria de imagens que
formada por 2.340 imagens e com o total de 8.745 ovos do mosquito. Cada imagem possui
491 x 430 px, aproximadamente.

Por consequência, foi feita a divisão deste conjunto de dados com vistas ao treinamento de
modelos de detecção de objetos voltados ao reconhecimento de ovos de Ae. aegypti. A divisão
das imagens obedece ao exibido na Tabela 3.

Tabela 3 – Divisão do dataset de ovos de Aedes aegypti em palhetas de ovitrampa

Partição Quantidade de
Imagens

Quantidade de Ovos

Treinamento 1.872 6.970
Validação 234 922
Teste 234 853
Total 2.340 8.745

Fonte: Elaborada pelo autor (2025)

No âmbito de modelos de Aprendizagem Profunda, a obtenção, rotulação e demais trata-
mentos dos dados constituem-se em parte fundamental do fluxo de criação de um modelo, além
de exigir tempo e esforço humanos consideráveis (GOODFELLOW; BENGIO; COURVILLE, 2016).
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Portanto, este conjunto de dados criado é uma contribuição importante para o refinamento
posterior de modelos de detecção de objetos voltados ao domínio deste trabalho.

4.3.6 Base de dados derivada

Com vista a aumentar o conjunto de dados, aproveitou-se a base de dados proposta por
(SILVA, 2021). Esta base é formada por 1.162 imagens de ovos de Ae. aegypti em palhetas de
ovitrampa; cada imagem possui 640 x 480 px. As condições de captura, porém, distinguem-se,
pois o dispositivo de captura é uma câmera digital (em vez de um smartphone) e o suporte
de captura é bem maior e de funcionamento distinto.

Estas imagens apresentam uma qualidade visual bem melhor, em que pese haver imagens
ruidosas, dada a natureza do problema. A Figura 30 mostra exemplos de imagens desta base
em que fica à mostra a diferença na qualidade das imagens.

Figura 30 – Exemplo de imagens da base criada por (SILVA, 2021)

Fonte: Elaborada pelo autor (2025)

Visando aumentar o conjunto de treinamento, bem como a variedade de condições de
iluminação, cor, brilho em que os ovos estão presentes na imagem e até, fez-se o redimensio-
namento das imagens desta referida base e as imagens foram agregadas ao dataset de imagens
capturadas por celular criado neste trabalho. Assim, as imagens da base obtidas por câmera
digital, foram redimensionadas para um tamanho próximo o suficiente, de modo que o ta-
manho dos objetos de interesse ficasse próximo do que são na base captura por smartphone.
Assim, as imagens foram redimensionadas de 640 x 480 para aproximadamente 491 x 430 px.
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Por consequência, a partir disto, obteve-se um conjunto de imagens ainda maior, com mais
exemplos de treinamento e objetos com mais variações de condições. Este dataset está assim
dividido, como mostra a Tabela 4.

Tabela 4 – Divisão das imagens do dataset derivado

Partição Quantidade de
Imagens

Quantidade de Ovos

Treinamento 2.799 11.113
Validação 349 1.397
Teste 351 1.326
Total 3.499 13.836

Fonte: Elaborada pelo autor (2025)

4.3.7 Conjunto de palhetas contadas

Ainda, foi obtido pelo projeto um conjunto de 28 palhetas de ovitrampa contadas pelos
técnicos da FIOCRUZ-PE. Esse conjunto de imagens totaliza 3.528 imagens e totaliza 8.035
ovos. Esse conjunto de palhetas foi capturado com o Dispositivo de Captura baseado em
impressora 3D desenvolvido neste trabalho. Tal grupo de palhetas foi rotulado e também
contado pelo autor utilizando-se da ferramenta de rotulação LabelImg (TZUTALIN, 2015).
Esta rotulação é necessária para obter-se a mAP.

Essas palhetas constituem-se numa coleção importante (e mais atual) para servir como um
conjunto de dados Real World (do mundo real) e assim serem usadas para, em última análise,
verificar o desempenho dos modelos de contagem automática desenvolvidos e comparar com
a contagem humana manual.

4.3.7.1 Desafios à contagem automática

A contagem automática de ovos de Ae. aegypti abrange alguns desafios: Quanto à qua-
lidade das imagens capturadas e à disposição dos ovos na palheta. Nesse sentido, ruídos são
bastante comuns nessas imagens, o que requer robustez por parte dos métodos de contagem,
a fim de lidar com esses problemas. Observa-se na Figura 31, uma imagem com iluminação
irregular, que é um dos ruídos comuns nas imagens. Somado a isso, problemas na disposição
dos ovos, como, quando os ovos estão sobrepostos, adjuntos, além de estarem segmentados;
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ademais, ruídos gerais existentes nas imagens, que são característicos do uso de ovitrampas,
como objetos estranhos, também são obstáculos para a contagem automática.

Figura 31 – Exemplo de imagem ruidosa de palheta, especialmente com iluminação irregular

Fonte: Elaborada pelo autor (2025)

4.4 MÉTODOS DE CONTAGEM AUTOMÁTICA COM APRENDIZAGEM PROFUNDA

Conforme o fluxo descrito na Figura 17, adotou-se o uso de diversas abordagens para a
contagem automática de ovos de Ae. aegypti em palhetas de ovitrampa, cada qual com suas
operações intermediárias. As seções seguintes detalham cada fluxo alternativo para contagem
automática.

4.4.1 Ambiente de treinamento

O processo de treinamento dos modelos foi realizado no Google Colab Pro+, o qual fornece
um ambiente virtual dotado de 83.5 GB de memória RAM, além de uma GPU de NVIDIA
A100-SXM4-40GB, com memória RAM de 40 GB.
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4.5 FLUXO I: CONTAGEM ALIADA À APLICAÇÃO DE MODELOS DE RESTAURAÇÃO
DE IMAGENS BASEADOS EM APRENDIZAGEM PROFUNDA

Neste fluxo, utilizou-se Aprendizagem Profunda voltada a restauração de imagens, haja
vista os desafios à contagem automática, em especial a presença de tipos de ruídos na base
de dados de ovos de Ae. aegypti, com os quais um modelo de restauração poderia lidar.

Ássim, neste fluxo, um modelo de melhoria foi aplicado como etapa intermediária, antes
da realização da inferência pelo modelo de contagem automática.

4.5.1 MPRNet

Como define (GONZALEZ; WOODS, 2015), a Restauração de Imagens, de modo geral,
distingue-se do Ralce de Imagens, por ser este um processo objetivo, ao contrário daquele (re-
alce), que é subjetivo e baseado na percepção do observador humano. Ademais, a restauração
de imagens visa recuperar uma imagem corrompida em cenários onde se tem o conhecimento
de qual foi o fenômeno de degradação que causou o ruído e, a partir daí prover a aplicação
do processo contrário, para, assim, a partir de uma imagem degradada, obter sua versão dita
limpa. Assim, ruídos como borramento, ruídos de chuva e ruídos em geral podem ser tratados
por esta técnica.

Então, dada a tarefa de lidar com imagens de baixa qualidade e com presença de ruídos es-
pecíficos, optou-se por um tratamento com Redes Neurais de restauração de imagens, uma vez
que são amplamente aplicados atualmente, como, tal qual exposto por (ARCHANA; JEEVARAJ,
2024).

Assim, utilizou-se o modelo de restauração MPRNet, proposto por (ZAMIR et al., 2021),
que, no contexto de restauração de imagens, busca em sua transformação, equilibrar tanto
detalhes espaciais, como também informações de alto nível nas imagens, de modo a buscar
manter uma transformação final que apresente nitidez nos detalhes, como texturas e bordas e
ainda nas informações de alto nível.

O MPRNet provê de arquitetura que lida com a Restauração de Imagens de três tipos de
ruídos: Image Deblurring, Image Derraining e Image Denoising (RAJAEI; RAJAEI; DAMAVANDI,
2023). Sua arquitetura de três estágios, como mostra a Figura 16, restaura gradativamente
a imagem ao longo desses estágios e faz, nesse processo, uso de skip connections entre eles,
tanto internamente, quanto entre os estágios. Quanto aos estágios, assim divide-se: Nos dois
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primeiros, uma estrutura codificador-decodificador (ou encoder-decoder) é implementada com
base no padrão de uma rede U-Net (RONNEBERGER; FISCHER; BROX, 2015), tal qual exibe a
Figura 32 com o intuito de aprender informações contextuais completas da imagem degradada.

Figura 32 – Sub-rede encoder-decoder

Fonte: (ZAMIR et al., 2021)

Por conseguinte, no terceiro estágio, uma ORSNet opera também na imagem original,
mais precisamente em sua resolução, para gerar saídas espacialmente precisas e obter-se uma
imagem de saída com correspondência espacial pixel a pixel em relação à imagem original,
como exibe a Figura 33.

Figura 33 – Bloco ORB da sub-rede ORSNet

Fonte: (ZAMIR et al., 2021)

Entre os estágios 1 e 2, em especial entre os dois encoder-decoder, há um módulo denomi-
nado CSFF, como aponta a Figura 34. Já entre os estágios 2 e 3, entre os encoder-decoder e
ORSNet, de igual modo está o módulo CSFF, conforme Figura 35. Devido ao uso repetido de
operações de up-sampling e down-sampling, pode ocorrer perda de informação. Nesse ponto,
o CSFF torna a rede menos vulnerável à perda de informação. Acrescenta-se que, o uso do
CSFF, permite com que features multi-escala oriundas de um estágio auxiliem a enriquecer as
fatures do estágio subsequente. Por fim, à medida que o CSFF facilita o fluxo de informação,
o processo de otimização da rede se torna mais estável, o que permite com que a arquitetura
da rede seja aumentada, de modo a adicionarem-se mais estágios.
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Figura 34 – CSFF entre os estágios 1 e 2

Fonte: (ZAMIR et al., 2021)

Figura 35 – CSFF entre os estágios 2 e 2

Fonte: (ZAMIR et al., 2021)

Ao contrário de outras redes multi-estágio de restauração de imagens, tais como, (SUIN;

PUROHIT; RAJAGOPALAN, 2020; ZHANG et al., 2019), que fazem a predição numa imagem, para
então passá-la para o próximo estágio, a MPRNet, usa SAM como módulo de attention entre
os dois estágios, o que facilita o ganho de performance significativa (ZAMIR et al., 2021). Por a
restauração ser progressiva entre os estágios, o SAM, exibido na Figura 36, é útil por fornecer
sinais de supervisão de ground-truth ao longo deste processo. Ainda, previsões supervisionadas
localmente são usadas também para gerar mapas de attention e, assim, suprimir features menos
significativas, de maneira a passar para o próximo estágio somente informações úteis.

No contexto de imagens de ovos de Ae. aegypti em palhetas de ovitrampa, em que há, ruí-
dos diversos abundantes, considerou-se adotar o MPRNet dada sua arquitetura de restauração
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Figura 36 – Módulo SAM

Fonte: (ZAMIR et al., 2021)

progressiva de imagem adotar mecanismos e estratégias para tentar evitar a propagação de ru-
ídos para a imagem de saída. Portanto, o uso de diversos módulos com estratégias pertinentes,
aliadas a mecanismos de atenção, como acima citado (dentre outros), tornam a arquitetura
do MPRNet propícia para restauração de imagens no âmbito deste trabalho.

Ainda, o MPRNet, em 10 datasets de benchmark, nas suas três tarefas (Image Deblurring,
Image Deraining e Image Denoising) obtém desempenho superior em relação a outros modelos
com os quais é comparado. Além disso, caracteriza-se por ser eficiente em questão de tamanho
e em tempo de execução, o que favorece até sua aplicação em dispositivos com recursos
limitados (ZAMIR et al., 2021).

Destarte, este modelo é pré-treinado no conjunto de dados GoPro (NAH; KIM; LEE, 2017),
que possui 2.103 pares de imagens na partição de treinamento e 1.111, na de validação. Ainda,
o modelo teve o desempenho verificado na partição de teste do dataset HIDE (SHEN et al.,
2019) e RealBlur (RIM et al., 2020; ZAMIR et al., 2021).

Então, como acima mencionado, o MPRNet é disponibilizado para três distintas tarefas
de restauração de imagens: Image Deblurring, Image Deraining e Image Denoising. Aquela
(Deblurring) é voltada a restauração de ruído causado por falta de foco (Defocus blur),
movimento do sensor ou do objeto (Motion blur) ou por limtações óticas. Essa, a tarefa de
Image Derraining, por sua vez visa remover traços de chuva presentes na imagem, mantendo
sua nitidez. Por fim, o Image Denoising, consiste em remover ruídos de modo geral da imagem,
como o ruído gaussiano e ainda assim manter detalhes de alta qualidade na imagem (ELAD;

KAWAR; VAKSMAN, 2023).
Nesse contexto, observa-se na base de dados de imagens de palhetas de ovitrampa captu-

radas por smartphone, a presença de numerosa de ruído de borramento (ou Blur). A propósito,
a Figura 37, exibe a presença de ruídos do tipo blur. Logo, ao utilizar o modelo optou-se por
um tratamento específico com a tarefa de remoção de ruído de borramento: Image Deblurring.
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Figura 37 – Imagens com a presença de ruído de borramento

Fonte: Figura do autor (2025)

4.6 FLUXO II: CONTAGEM ALIDADA A TÉCNICAS DE PROCESSAMENTO DE IMA-
GENS

4.6.1 Aplicação inicial de técnicas de realce de imagens

Como define (GONZALEZ; WOODS, 2015), Realce de Imagens é o processo de manipulação
de imagens para torná-las mais adequadas ao fim específico de uma aplicação em relação ao
que elas inicialmente eram. Por natureza, estas técnicas são orientadas ao problema, isto é,
o conjunto de técnicas aplicadas obedece ao domínio específico da aplicação ou sistema de
Visão Computacional.

Assim, a partir de uma imagem original da superfície de uma palheta proveniente da
base capturada por smartphone, foi aplicado zoom, a ponto de se visualizar bem os ovos e,
em sequência, foram aplicadas diversas técnicas de Realce de Imagens, como Color Jitter,
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Equalização de Histograma e CLAHE.
Então, a partir daí, utilizou-se um modelo YOLOv10, treinado no âmbito deste trabalho na

base proposta por (SILVA, 2021) e realizou-se a inferência em um grupo de imagens capturadas
por smartphone para verificar o efeito da aplicação de técnicas de realce na contagem de
ovos. Portanto, foram aplicadas as transformações conforme o que as subseções seguintes
discriminam.

4.6.1.1 Color Jitter

É uma técnica comumente aplicada para Data Augmentation e consiste em gerar variações
de cor em imagens, quanto à brilho, saturação, contraste e matiz (PYTORCH, 2025a). Dessa
maneira, ao aplicar estas transformações, verificou-se que mais objetos de interesse eram
reconhecidos pelo YOLOv10. Isto é expresso, a exemplo, na Figura 38.

Figura 38 – Imagens de palheta de ovitrampa após aplicação de variações de contrate, brilho e saturação

Fonte: Figura do autor (2025)
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4.6.1.2 Equalização de Histograma

Dentre as várias transformações de Transformação de Histograma, adotou-se, a Equaliza-
ção de Histograma. Esta transformação é útil para realçar imagens de baixo contraste e produz
uma distribuição mais uniforme das intensidades dos pixels presentes na imagem (OPENCV,
2025b; MATHWORKS, 2025b).

Desta forma, como menciona a Figura 17, antes da inferência por um modelo de Deep
Learning, foram aplicadas individualmente as Técnicas de Realce intermediárias com o fim
de submeter ao modelo uma imagem já realçada e assim, verificar o desemepenho da conta-
gem automática. Esta operação é padrão e não recebe quaisquer parâmetros para ajuste, ao
contrário da trasnformação seguinte.

4.6.1.3 Contrast Limited Adaptive Histogram Equalization (CLAHE)

Justo por que a Equalização de Histograma, que para fins de realce de contraste, considera
o contraste global da imagem, o que nem sempre produz resultados satisfatórios, como no
caso em que há tanto pixels muito escuros e muito claros.

Assim, CLAHE) (Ou Equalização Adaptativa), em vez de considerar o contraste global,
divide a imagem em regiões, chamadas tiles e considera o constraste de cada região e então,
cada tile é equalizado normalmente. Ainda, para evitar que o ruído possa ser aumentado nas
regiões, é aplicado um limitador de constraste, de modo que, se um bin da equalização de
histograma ultrapassar este limite (clipLimit), os pixels excedentes serão distribuídos unifor-
memente ao longo do histograma. Por fim, uma Interpolação Bilinear é aplicada.

Portanto, foram utilizados como parâmetros, os seguintes valores: O tamanho do tile (ti-
leGridSize) foi definido como 8x8 px e o limiar de corte, o clipLimit foi definido como 2.0
(OPENCV, 2025c). Estes valores de parâmetros produzem um efeito equilibrado na transfor-
mação, com um tileGridSize adequado ao tamanho das imagens de dimensão 491 x 431 px e
com um clipLimit conservador com intuito de obter um bom equilíbrio de constraste, evitando
transformações extremas.
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4.7 FLUXO III: CONTAGEM DIRETA COM REDES NEURAIS

Entende-se como a utilização de um modelo de Aprendizagem Profunda para realizar infe-
rência diretamente nas imagens sem que haja etapas intermediárias, como pré-processamento
ou realce de imagens.

Então, já de posse da base de dados, procedeu-se ao treinamento dos modelos de Apren-
dizagem Profunda, como mencionado em seguida.

4.7.1 YOLOv10

Foi utilizado um modelo YOLOv10, proposto por (WANG et al., 2024). Este, conforme docu-
mentação oficial, possui 6 tamanhos disponibilizados, divididos por quantidade de parâmetros
e complexidade. Dado que a base de dados utilizada neste trabalho não é suficientemente
grande, como se exige para modelos de Aprendizagem Aprendizagem como este, optou-se por
utilizar o YOLOv10-M.

Este modelo é disponibilizado já pré-treinado no dataset COCO 2017, que é composto por
80 classes genéricas, como pessoa, carro, maçã, laranja etc. O conjunto possui cerca de 118
mil imagens para treino e 5 mil para validação, além de cerca de 40 mil imagens de teste.

Considerando a literatura, optou-se por utilizar este modelo pré-treinado em COCO 2017 e
aplicar Transfer Learning para obter vantagens desta técnica e obter um desempenho melhor,
considerando o amplo conjunto de características gerais extraídas pelo modelo dado seu extenso
número de 80 classes.

Quanto aos hiper-parâmetros, o modelo foi treinado como descreve a Tabela 5. O modelo
foi treinado por 100 épocas, com batch-size de 32 e o otimizador escolhido foi o AdamW,
além de ter sido aplicada uma regularização L2 (conhecida como Ridge Regression com valor
de 0.0005 para ajudar a controlar o overfitting.

Assim, a partir desse YOLOv10m pré-treinado em COCO 2017, o treinamento foi feito
na base de dados de treinamento proposta por (SILVA, 2021) a uma taxa de aprendizagem
de 0.003, o que é uma taxa baixa e apropriada para aplicar Fine-tuning, sem sobrescrever
excessivamente os valores dos pesos e desperdiçar o aprendizado anterior e mais geral do
modelo e que também é recomendado na documentação oficial para o ajuste fino com datasets
customizados. Além disso, foi utilizado um Batch size de 32 para dar maior estabilidade ao
treinamento. O parâmetro imgsz com valor 640 refere-se ao tamanho para o qual as imagens
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de entrada são redimensionadas antes de serem submetidas ao modelo durante o treino e
geralmente, quanto maior for, pode produzir resultados melhores.

Tabela 5 – Principais hiperparâmetros utilizados no treinamento do YOLOv10-M

Hiperparâmetro Valor
Épocas 100
Batch size 32
Learning rate 0,003
Otimizador AdamW
Weight decay 0,0005
imgsz 640

Fonte: Elaborada pelo autor (2025)

Além disso, como recomendado pela literatura para evitar overfitting, foram aplicadas al-
gumas técnicas de Data Augmentation, conforme exibido na Tabela 6. Estas técnicas aplicadas
visando fornecer ao modelos dados em mais variadas condições de posicionamento (como ob-
jetivam as transformações como Flip Horizontal) ou de condições de iluminação (a exemplo da
transformação de Saturação), de tamanho (como usado com a transformação de Scale). Isto,
por fim, ajuda o modelo a ser mais tolerante a essas variações e generalizar melhor (GéRON,
2019).

Tabela 6 – Técnicas de Data Augmentation aplicadas no treinamento do YOLOv10-M

Técnica Valor
Flip horizontal 0,5
Mosaic 0,5
HSV Saturation 0,7
AutoAugment RandAugment
Erasing 0,3
Translate 0,1
Scale 0,3

Fonte: Elaborada pelo autor (2025)

Como apontado, foi utilizado horizontal flip com valor de 0.5, o qual inverte horizontal-
mente 50% das imagens, além de mosaic com valor 0.5, que monta 4 imagens numa só para
auxiliar na generalização e é aplicado, nesse caso, sobre 70% das imagens (ULTRALYTICS,
2025e).

Ainda, foi aplicada um ajuste de saturação (HSV Saturation) que modifica a intensidade da
imagem aleatoriamente numa faixa de -0.7 a 0.7. Inclusive, AutoAgument com valor RandAug-
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ment, o qual aplica uma seleção aleatória de transformações. Também foi utilizado Erasing,
que, por sua vez apaga partes da imagem para simular oclusão de objetos, que é um problema
importante de ser tratado em virtude dos desafios inerentes à contagem automática (nesse
caso, objetos sobrepostos).

Também, foi aplicada um Translate leve de 0.1, o qual desloca as imagens horizontal e
verticalmente de acordo com esta magnitude definida. Por fim, foi empregada uma transfor-
mação scale de 0.3, que redimensiona as imagens dentro desse valor definido como margem
(para mais ou para menos). Ela é útil para simular objetos a diferentes distâncias: mais perto
ou mais longe.

Observa-se, portanto, que a definição dos parâmetros supracitados, obedeceu às seguin-
tes condições: Proporcionar aumento de dados, produzir dados sintéticos em situações mais
diversas, bem como, não causar ruído expressivo nos dados, ou mesmo amplificar ruídos já
existentes numa imagem.

4.7.2 YOLOv12

Considerando o modelo proposto em (TIAN; YE; DOERMANN, 2025) apresentar bons de-
sempenhos superiores ao YOLOv10, adotou-se o YOLOv12 em sua versão YOLOv12-M, que
conta com 20.2 milhões de parâmetros e AP50:95 de 52.5, que é levemente superior ao anterior
(51.1); isso medido no cojunto de validação do dataset COCO 2017.

Dado este modelo base YOLOv12, pré-treinado na base de treinamento COCO 2017 e visto
que ele possui 5 tamanhos de escala, utilizou-se o modelo intermediário, o YOLOv12-M, dado
sua referida quantidade de parâmetros e haja vista que os de maior escala, como YOLOv12-L
ou YOLOv12-X são mais complexos e possuem uma quantidade consideravelmente maior de
parâmetros, respectivamente 26.5 e 59.3 milhões de parâmetros. Por conseguinte, dado que
o tamanho do dataset utilizado neste trabalho ser considerado pequeno, isto poderia levar a
overfitting, já que estes modelos maiores escala são mais recomendados quando se tem uma
quantidade bem maior e mais variada de dados de treinamento.

Nesse sentido, foi feito fine-tuning a partir do modelo base pré-treinado, com os hiperpa-
râmetros definidos conforme a Tabela 7.

A quantidade de épocas foi mantida em 100, mesmo o dataset sendo pequeno, por conta
do patience 15, que interromperia o treinamento. Além disso, ao fim do treinamento, são
obtidos os pesos do modelo com o melhor desempenho e os últimos pesos; ainda, o trei-
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Tabela 7 – Hiperparâmetros utilizados no treinamento do modelo YOLOv12-M

Hiperparâmetro Valor
Épocas 100
Batch size 32
Learning rate 0,002
Otimizador AdamW
Dropout 0.35
Weight decay 0,005
Patience 15
imgsz 1024

Fonte: Elaborada pelo autor (2025)

namento foi monitorado através das métricas como mAP@0.50, por exemplo, para obter os
últimos pesos associados a uma boa performance, principalmente nas primeiras dezenas de
épocas para evitar overfitting. O parâmetro imgsz foi mantido com valor de 640, pois, mesmo
que aumentando-o, o desempenho do modelo poderia melhorar, entretanto, este parâmetro
influencia significativamente no custo computacional envolvido no treinamento, em especial
a memória RAM da GPU do Google Colab Pro+. Deste modo, verificou-se em experimentos
que, ao aumentar imgsz para 1024, por exemplo, o tamanho do batch precisaria ser diminuído
significativamente. Então, decidiu-se por manter o batch size 32 para dar mais estabilidade ao
treinamento.

Ademais, o hiperparâmetro patience, referido acima, está associado à técnica de Early
Stopping e produz o seguinte efeito: O treinamento é interrompido quando, mesmo após 15
épocas consecutivas, o modelo não apresenta melhoria nas métricas de validação; isto é útil
para evitar overfitting (ULTRALYTICS, 2025d).

Também, dada a ocorrência de overfitting em experimentos intermediários, optou-se tam-
bém por utilizar uma regularização mais forte com dropout de 0.35. O Weight decay com
valor 0,0005 é um valor padrão e apropriado para uma regularização leve. Dado o valor mais
forte do dropout, optou-se por não penalizar muito o modelo para não incorrer em underfit-
ting, como ocorreu em experimentações anteriores deste modelo. Junto às outras técnicas de
regularização como L2 e Weight decay utilizadas, servem como mecanismo para controlar o
overfitting.

Ainda, visando tornar o modelo mais resiliente a variações nas características dos dados de
palhetas de ovitrampa presentes no mundo real, como variações de iluminação de posiciona-
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mento, rotação e outras variações, foi aplicado um conjunto de técnicas de Data Augmentation,
como mostra a Tabela 8.

Tabela 8 – Técnicas de Data Augmentation aplicadas no treinamento do YOLOv12-M

Técnica Valor
HSV Hue 0,015
HSV Saturation 0,7
HSV Value 0,4
Translate 0,1
Scale 0,5
Flip horizontal 0,5
Mosaic 0,5
AutoAugment RandAugment
Erasing 0,4

Fonte: Elaborada pelo autor (2025)

O HSV Hue altera as cores da imagem na faixa de intervalo especificada (nesse caso -0.15
a 0.15) e é útil para simular mais condições de cor de um objeto de interesse. Doutra forma, o
HSV Value opera ajustes no brilho da imagem, de acordo com o valor fornecido. É importante
para cenários em que o objeto de interesse aparece mais claro ou mais escuro a depender da
luz do ambiente.

4.7.3 RF-DETR

Considerou-se o modelo RF-DETR, mencionado em (SAPKOTA et al., 2025), o qual apre-
senta desempenho concorrente ao do YOLOv12, de modo a superá-lo com mAP@50 de 0.9464
num cenário de classe única, bem como também, em vários cenários multiclasse. Dado prin-
cipalmente seu bom desempenho em tarefas complexas, com oclusão de objetos (que é caso
comum em ovos de Ae. aegypti em palhetas de ovitrampa, bem como sua rápida convergên-
cia, especialmente em problemas de classe única, de modo o treinamento do modelo alcançou
platô em 10 épocas. Por estas razões, adotou-se este modelo para o problema atual. Ainda, o
RF-DETR é mais voltado a cenários onde é mais importante a acurácia em cenários críticos
(como backgrounds complexos) do que a velocidade de inferência, por exemplo, em cenários
de detecção em tempo real, para o qual o YOLOv12 é mais recomendado.

Dado que este modelo possui duas versões de tamanhos disponíveis, quais sejam: RF-
DETR-base (ou RF-DETR-B), com 29 milhões de parâmetros e RF-DETR-large, com 128
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milhões de parâmetros, foi adotado o modelo com menos parâmetros, considerando o cenário
atual deste trabalho.

O modelo é pré-treinado no dataset ImageNet-1K, que é composto por 1000 classes de
objetos variados, como cachorro, gato, avisão, morango, dentre outros. É composto por cerca
de 1.2 milhão de imagens de treinamento, 50 mil imagens de validação e 100 mil de teste.
Fornece, portanto, um conjunto variado e objetos e principalmente, de características genéricas
que apoiam o uso da técnica de Fine-tuning.

Assim sendo, o modelo foi ajustado, conforme os hiperparâmetros de treinamento apon-
tados na Tabela 9.

Tabela 9 – Principais hiperparâmetros do treinamento do modelo RF-DETR-B

Hiperparâmetro Valor
Épocas 15
Batch size 16
Learning rate 0,0001
Otimizador AdamW
Weight decay 0,0001
Resolução de entrada 560

Fonte: Elaborada pelo autor (2025)

A quantidade baixa de épocas em relação ao YOLOv12 sustenta-se pelo fato de o RF-DETR
alcançar um desempenho estável de maneira rápida em poucas épocas, como por exemplo,
10 épocas em cenários de classe única num problema agrícola, apontado por (SAPKOTA et

al., 2025). O tamano do batch foi reduzido dadas as restrições de memória do ambiente
virtual do Google Colab. A taxa de aprendizagem foi assim definida para usufruir mais das
vantagens do aprendizado anterior do modelo, de modo a utilizar os benefícios do Fine-tuning.
A regularização L2 (Weight decay) foi mantida em 0.0001 por ser leve e ainda assim ser útil
para controlar o sobreajuste. A resolução de entrada não foi aumentada, dadas as restrições
do ambiente, de modo que ficou com um valor de 560 x 560 px.

4.7.4 D-FINE

Foi utilizada uma recente contribuição de (PENG et al., 2024), o D-FINE, um modelo de
detecção de objetos voltado a obter um equilíbrio entre velocidade e acurácia, além de obter
melhor acurácia na regressão referente à tarefa de localização de objetos, ponto importante
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em modelos de detecção de objetos. Além do mais, no COCO Dataset, obteve desempenho
superior aos modelos existentes, quando se considerou acurácia e eficiência em geral (como
custo computacional, por exemplo).

O D-FINE é disponibilizado em duas versões: pré-treinado somente na base COCO 2017
e na base Objects365 + COCO 2017. Utilizou-se a segunda versão pré-treinada, por ser
melhor para tarefas de Fine-tuning, além de ser mais ideal para generalização. Quanto a
escala, o D-FINE pré-treinado em Objects365+COCO possui 4 tamanhos: D-FINE-S, D-FINE-
M, D-FINE-L e D-FINE-X, respectivamente com 10, 19, 31 62 milhões de parâmetros de
treinamento. Por considerar mais apropriado ao dataset utilizado neste trabalho, adotou-se o
D-FINE-M, já que, por ser um equilíbrio importante em capacidade de aprendizado, dados os
desafios envolvendo ruídos na base de dados obtida por smartphone e o controle de overfitting,
que poderia ocorrer com mais facilidade num modelo com muitos parâmetros, dado o tamanho
da base.

Ainda, destaca-se o amplo conjunto de classes contidas no dataset Objects365, no qual
D-FINE é pré-treinado. Seu número extenso de 365 classes, cerca de 2 milhões de imagens
e a presença de 30 milhões de objetos nelas, fornece um conjunto amplo de características e
diferentes cenários para aprendizado do modelo. Portanto, apropriar-se dessa ampla capaci-
dade de extração de características fornece um modelo com um bom ponto de partida para
aprendizado específico de objetos, como é o caso de ovos de Ae. aegypti, através da aplicação
de ajuste fino neste modelo.

Assim, a partir da implementação proposta por (PENG et al., 2024), implementou-se ajus-
tes na implementação padrão dos autores com vista a tornar melhor a reprodutibilidade dos
experimentos. Ademais, o modelo requer um conjunto de dados anotado no formato COCO,
o que exigiu uma conversão no formato de anotação do dataset utilizado neste trabalho, de
PASCAL VOC para COCO.

Então, acerca dos hiperparâmetros, o modelo foi configurado como mostra a Tabela 10.
Observa-se a distinção entre taxas de aprendizagem, com um valor mais baixo (0.00002)
para o backbone (extrator de características) do modelo e uma maior taxa geral de 0.0002.
Tal diferenciação visa aproveitar melhor o aprendizado geral do modelo e sua capacidade de
extração de características, dado seu referido amplo número de classes genéricas, no qual é
pré-treinado e, em conjunto, ainda assim manter uma taxa de aprendizagem geral ainda baixa
para ajuste fino.

Utilizou-se o batch de tamanho 32 para proporcionar maior estabilidade ao modelo, dentro
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dos limites do ambiente de execução. O tamanho das imagens manteve-se em 640 x 640 px
e o treinamento durou 132 épocas. Por fim, após a conclusão do treinamento, obtém-se os
pesos que contém o melhor resultado do modelo no conjunto de validação.

Tabela 10 – Hiperparâmetros utilizados no treinamento do modelo D-FINE-M

Hiperparâmetro Valor
Épocas 132
Batch size 32
Learning rate (backbone) 0,00002
Learning rate geral 0,0002
Otimizador AdamW
base size 640

Fonte: Elaborada pelo autor (2025)

Ainda, a transformação RandomPhotometricDistort, também usada em (LIU et al., 2016),
aleatoriamente distorce a imagem, baseado em Color Jitter, de modo a manipular brilho,
constraste, saturação e matiz (PYTORCH, 2025d). O intento é tornar o modelo mais resiliente
a variações de cor e luz. Por sua vez, RandomZoomOut aplica produz o efeito de um Zoom
out, o que faz com que a imagem pareça mais distante; os pixels em volta são preenchidos
com o valor definido de 0 (preto) (PYTORCH, 2025e).

Também, RandomIoUCrop faz alterações na imagem, de modo a deslocar o objeto de
interesse para fora da imagem, mas mantendo um IoU mínimo, nesse caso 0.8; Na prática,
grande parte do objeto ainda continuará visível na imagem e o restante, não (PYTORCH, 2025c).
Outrossim, a transformação RandomHorizontalFlip, de maneira aleatória, faz um flip (ou giro)
na imagem dada uma probabilidade, definida como 0.4, nesse caso (PYTORCH, 2025b).

Tabela 11 – Técnicas de Data Augmentation aplicadas no treinamento do D-FINE-M

Técnica Valor
RandomPhotometricDistort 0,05
RandomZoomOut 0
RandomIoUCrop 0,8
RandomHorizontalFlip 0,4

Fonte: Elaborada pelo autor (2025)

Por fim, com vistas a obter um desempenho melhor quanto a generalização, controlar o
ajuste fino e ampliar o conjunto de imagens de treinamento, utilizou-se técnicas de aumento de
dados, as quais estão descritas na Tabela 11. Há uma particularidade nesse caso, no que tange
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à aplicação de transformações nas imagens: São usadas técnicas mais agressivas de aumento
de dados sobre as imagens até a época 120 e, seguidas por 4 épocas com transformações
mais leves e, por fim, não são feitas mais transformações. Isto visa propor mais imagens ao
modelo no início e assim tentar controlar o ajuste fino e, após isso, propor ao modelo imagens
com transformações leves e, por fim, sem transformações, as quais são mais parecidas com as
imagens do mundo real, com as quais o modelo terá que lidar na inferência. Esta estratégia
de aplicação de transformações de data augmentation em fases é baseada no treinamento do
próprio D-FINE, aplicado pelos autores em (PENG et al., 2024) e proposta no trabalho original
de (LV et al., 2024).

4.8 MÉTRICAS DE AVALIAÇÃO DE DESEMPENHO

As métricas de avaliação permitem avaliar o sistema que está sendo desenvolvido. No con-
texto de modelos de Aprendizagem de Máquina, intenta-se saber quão bom é o funcionamento
do modelo que se está desenvolvendo (ELGENDY, 2020). Isto posto, já obtidas as as métricas
de desempenho, têm-se um guia para as ações futuras no treinamento e ajuste de modelos
(GOODFELLOW; BENGIO; COURVILLE, 2016).

Também, é importante salientar que a definição de métricas é orientada ao problema que
se tenta resolver e acrescenta-se, que, problemas específicos podem requerer o uso de métricas
mais avançadas (GOODFELLOW; BENGIO; COURVILLE, 2016).

Logo, no âmbito deste trabalho, foram utilizadas as métricas descritas nesta seção, tanto as
gerais, como, em especial, as voltadas especificamente para a tarefa de Detecção de Objetos.

Ainda, pontua-se que, métricas que dependam de True Negative (TN) não são aplicadas
em contextos de modelos de detecção de objetos pelas seguintes razões: O background de uma
imagem pode possuir um número muito expressivo de combinações de pixels e quaisquer dessas
combinações seriam caracterizadas como TN. Assim, se fora adotada, haveria um conjunto
vasto e, principalmente, indefinido de regiões TN, o que inflacionaria enganosamente a acurácia
do modelo, de modo a levar a medições errôneas (ApX Machine Learning, 2025); O fim da tarefa
de detecção de objetos é reconhecer e localizar os objetos de interesse na imagem e não em
considerar o background para fins de medição de acerto. Por fim, trabalhos na literatura, como
os que empregam datasets de benchmark, quais (LIN et al., 2014; EVERINGHAM et al., 2010)
assim o fazem. Portanto, o uso de TN em detecção de objetos não é significativo e, logo, são
comumente ignorados (SuperAnnotate, 2023; Neuralception, 2024).
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Isto posto, no contexto de Detecção de Objetos, além das métricas usuais, usam-se métricas
específicas como, por exemplo, mAP, que avalia a tarefa de detecção em si e é muito utilizada
também em benchmarking.

Além do mais, no contexto de Detecção de Objetos, as métricas são peculiares também
devido ao fato de ser feita por humanos. A anotação das bounding boxes feita pelo rotulador
é chamada de ground-truth e define onde o objeto de interesse está localizado na imagem.
Como essa demarcação do ground-truth poder variar, em alguns pixels, de humano para hu-
mano, é difícil ao modelo detectar exatamente a caixa delimitadora rotulada pelo humano
(SHANMUGAMANI, 2018).

Portanto, para determinar se uma previsão é correta ou errada, usa-se a métrica auxiliar
IoU, que avalia a tarefa de localização. Esta métrica é descrita na subseção abaixo.

4.8.1 Intersection Over Union (IoU)

Dada uma rotulação verdadeira (ground-truth) e uma bounding box predita pelo modelo,
esta métrica auxiliar mensura quão boa é a detecção, baseado na interseção entre o posicio-
namento de ambas as caixas. Portanto, calcula-se a razão entre a área de interseção (Area of
Overlap) entre elas e a área da união (Area of Union), como exibe a Figura 39.

Figura 39 – Definição de Intersection over Union (IoU)

Fonte:(ELGENDY, 2020)

O valor dessa métrica auxiliar é definido de 0 a 100, de maneira que, quanto maior for a
interseção entre as bounding boxes verdadeiras e as preditas pelo modelo, maior seu valor,
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como ilustra a Figura 40 (ELGENDY, 2020).

Figura 40 – Exemplo de valores de Intersection over Union (IoU)

Fonte:(ELGENDY, 2020)

4.8.2 mean Average Precision (mAP)

mAP é obtida a partir da precisão (Precision) e revocação (Recall) e seus valores são
porcentuais, portanto, variam de 0 a 100, de maneira que quanto maior o valor, melhor é o
resultado. É diferente da acurácia medida em problema de classificação (ELGENDY, 2020).

Para tanto, mAP é obtida a partir da AP de cada classe, também chamada de preci-
são média, que, por sua vez é obtida após cálculo da área sob a Curva precision-recall (Ou
Precision-Recall Curve (PR Curve)) e fornece um único valor que engloba o desempenho de
precision e recall do modelo, de modo que provê uma avaliação geral do desempenho (UL-

TRALYTICS, 2025c). Em suma, AP agrega PR Curve em um único valor, de modo a representar
a média de todas as precisões.

Por fim, mAP é obtida após cálculo da média dos AP para cada classe. A predição é
considerada correta se o mAP é superior a 0.5 (SHANMUGAMANI, 2018).

4.8.3 Recall

Também nominada de sensibilidade, mede a capacidade de o modelo identificar os casos
positivos. Indica a proporção de instâncias (nesse caso, objetos) que o modelo identificou
corretamente. Um recall alto indica que o modelo reconheceu a maioria dos objetos, com
alguns falsos negativos (ULTRALYTICS, 2025b). É definida pela Fórmula 4.1.
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Recall = 𝑉 𝑃

𝑉 𝑃 + 𝐹𝑁
(4.1)

4.8.4 Precision

Também chadamada de especificidade, é o oposto do Recall e mede quantos dos objetos
identificados estão realmente corretos. Alta precisão signfica que o modelo tem poucos casos
de falsos positivos (ULTRALYTICS, 2025b). Obedece à Fórmula 4.2.

Precision = 𝑉 𝑃

𝑉 𝑃 + 𝐹𝑃
(4.2)

4.8.5 F1-Score

F1-Score sintetiza as precision e recall numa métrica só e representa ambas. É obtida
calculando-se a média harmônica dessas métricas, como exposto na Fórmula 4.3 (ELGENDY,
2020). O valor 𝑝 refere-se à precisão e 𝑟, ao recall. Isto posto, para obter um alto F1-Score, o
modelo precisa também ter boa precisão e revocação, cumulativamente. Esta métrica fornece
uma medição equilibrada do desempenho do modelo e é especialmente importante nos casos
de datasets desbalanceados ou no caso em que, para o modelo, é importante tanto evitar
falsos positivos como falsos negativos (ULTRALYTICS, 2025a).

𝐹1 = 2𝑝𝑟

𝑝 + 𝑟
(4.3)

4.8.6 Contagem absoluta

Como a natureza do problema necessita obter a quantidade de ovos de Aedes aegypti
presentes em palhetas de ovitrampa, foi utilizada também a contagem absoluta. Assim, a partir
da contagem absoluta de ovos do mosquito e da contagem feita por técnicos da FIOCRUZ-PE,
foram também obtidas as seguintes métricas:



104

4.8.6.1 Mean Absolute Error (MAE)

Mean Absolute Error (MAE), também chamada de Erro Médio Absoluto, é usada para
medir erro em sistemas de previsão. Essa métrica, como aponta a Fórmula 4.4, expressa a
média aritmética dos erros absolutos, i.e. a diferença absoluta entre o valor real e o valor
previsto pelo modelo. 𝑌𝑖 refere-se ao valor observado, enquanto que 𝑋𝑖 é o valor previsto.

𝑀𝐴𝐸 = 1
𝑛

𝑛∑︁
𝑖=1
|𝑌𝑖 −𝑋𝑖| (4.4)

4.8.6.2 Mean Squared Error (MSE)

Mean Squared Error (MSE), também chamada de Erro Médio Quadrático, é semelhante
ao MAE, no sentido de medir a média dos erros absolutos das previsões. Todavia, distingue-se
desta por dar um peso maior às diferenças verificadas entre os valores real e previsto, em virtude
da potenciação aplicada. Na prática, penaliza mais erros significativos. Assim, na Fórmula 4.5
e, tal como na Fórmula 4.4, 𝑌𝑖 e 𝑋𝑖 também referem-se, respectivamente, ao valor real e ao
valor estipulado pelo modelo.

𝑀𝑆𝐸 = 1
𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 −𝑋𝑖)2 (4.5)

4.8.6.3 Erro Relativo Percentual

É a diferença porcentual entre a contagem automática e a contagem de referência após
inferência num conjunto de imagens. Nesse caso, é considerada as contagens automáticas e
manuais totais num conjunto de palhetas para expressar uma diferença porcentual, seja positiva
(o modelo contou a mais) ou negativa (o modelo contou a menos). Essa métrica é adotada
também por (SANTOS et al., 2008; GUSMÃO; MACHADO; RODRIGUES, 2009; SILVA; RODRIGUES;

ARAUJO, 2012b; FEITOSA et al., 2015) e é chamada igualmente de Erro Porcentual Global e
neste trabalho, é também considerada na contagem geral de ovos por palheta.
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Erro Relativo Percentual =
(︃

Total Automático− Total Manual
Total Manual

)︃
× 100 (4.6)

4.9 PROTOCOLO EXPERIMENTAL

4.9.1 Base para treinamento de modelos

O dataset derivado, de que trata 4.3.6, foi utilizado. O motivo é por fornecer um número
maior de imagens, o que, por conseguinte, provê mais instâncias de objetos, além também
de aumentar a variação dos dados em termos de formas em que o objeto está posto, como
condições distintas de iluminação, de cor, bem como backgrounds diferentes etc. Portanto, a
generalização por parte do modelo pode ser favorecida quando de sua aplicação para inferência
em situações de uso real.

Assim sendo, o dataset derivado foi utilizado nos experimentos para treinamento dos mo-
delos de detecção de objetos.

4.9.2 Palhetas contadas

Para fins de avaliação e comparação do desempenho dos modelos e abordagens propos-
tas nos três fluxos apresentados, foi realizada a inferência nas 28 palhetas fornecidas pela
FIOCRUZ-PE; estas possuem uma contagem de ovos realizada por técnicos treinados desta
fundação.

As palhetas contadas são identificadas e possuem as quantidades de ovos, como detalha a
Tabela 12.

4.9.3 Comparação dos fluxos

Para avaliar o impacto das etapas de pré-processamento, um mesmo modelo base de con-
tagem (YOLOv10-M) será utilizado como base nos três fluxos. No Fluxo I, a inferência será
realizada sobre as imagens resultantes da aplicação do modelo de restauração MPRNet. No
Fluxo II, cada técnica de realce será avaliada de forma independente. O YOLOv10-M será apli-
cado separadamente às imagens tratadas com Color Jitter, com Equalização de Histograma e
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Tabela 12 – Palhetas contadas manualmente por técnicos da FIOCRUZ e quantidade de ovos correspondente.

# Palheta Quantidade de ovos
1 ASF_CP4 213
2 ASF_CP5 361
3 ASF_CP6 113
4 ASF_CP7 137
5 ASF_CP8 133
6 ASF_CP9 172
7 PAM_1 238
8 PAM_2 95
9 PAM_3 168
10 PAM_4 234
11 PAM_5 412
12 PAM_6 210
13 PAM_7 196
14 PAM_8 408
15 PAM_9 604
16 PAM_10 402
17 WAN_1 1212
18 WAN_2 755
19 WAN_3 48
20 LESSA_1 293
21 LESSA_2 348
22 LESSA_3 323
23 LESSA_4 211
24 LESSA_5 130
25 LESSA_6 133
26 LESSA_7 258
27 LESSA_8 153
28 LESSA_9 75

Fonte: Elaborada pelo autor (2025)

com CLAHE. O objetivo é identificar qual dessas três técnicas de pré-processamento resulta
no melhor desempenho de contagem. No Fluxo III, o desempenho do YOLOv10-M em con-
tagem direta (sem pré-processamento) será avaliado e comparado com os outros modelos de
detecção propostos (YOLOv12-M, RF-DETR-B e D-FINE-M) para determinar o modelo mais
eficaz nesta abordagem.. Este protocolo de experimentos é sintetizado na Tabela 13.

A comparação do desempenho do modelo base (YOLOv10-M) nos três cenários permitirá
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avaliar a contribuição relativa de cada fluxo (restauração, realce ou contagem direta).

Tabela 13 – Protocolo de experimentos do modelo base YOLOv10-M em relação às etapas de pré-
processamento

Modelo Pré-processamento aplicado
YOLOv10-M MPRNet
YOLOv10-M Color Jitter
YOLOv10-M Equalização de histograma
YOLOv10-M CLAHE
YOLOv10-M Nenhum (contagem direta)

Fonte: Elaborada pelo autor (2025)

4.9.4 Avaliação final

Obtida a melhor abordagem de pré-processamento com o modelo base, na avaliação final,
os modelos do Fluxo III (contagem direta sem pré-processamento) serão também avaliados.
Esta avaliação utilizará o conjunto de 28 palhetas contadas por especialistas da FIOCRUZ-PE,
que funciona como um conjunto de teste independente e representa um cenário de aplicação
real. A contagem automática gerada pelos modelos será diretamente comparada com a con-
tagem manual dos especialistas.

4.9.5 Métricas de comparação

A eficácia dos modelos será avaliada por duas perspectivas. A performance na tarefa de
detecção será medida pela métrica mAP@.50. A acurácia na tarefa de contagem, que é o
objetivo final deste trabalho, será medida primariamente pelo MAE e secundariamente pelo
MSE e comparando os totais de ovos por palheta com os valores de referência (ground-truth).

Este processo culminará na identificação não apenas do melhor modelo dentro de cada
fluxo, mas também na definição da abordagem geral (inter-fluxo) mais acurada para a conta-
gem automática dos ovos.
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4.10 CONCLUSÃO DO CAPÍTULO

No presente capítulo, foram apresentados o fluxo geral de desenvolvimento do trabalho, a
forma de captura de imagens e tratamento posterior, o dispositivo auxiliar de captura de fotos,
a criação da base de dados, os modelos treinados, o protocolo experimental e as métricas de
avaliação utilizadas.
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5 RESULTADOS E DISCUSSÃO

5.1 FLUXOS I E II: AVALIAÇÃO DAS ETAPAS DE PRÉ-PROCESSAMENTO

Seguindo o disposto na seção 4.9, o modelo base YOLOv10-M obteve performance con-
forme as subseções abaixo.

5.1.1 Desepenho do modelo base YOLOv10-M no treinamento

Conforme o protocolo experimental definido na seção 4.9, o modelo YOLOv10-M foi trei-
nado na base derivada com os hiperparâmetros e técnicas de data augmentation expostos na
subseção 4.7.1. Com o score de confiança de 0.25, o modelo obteve o desempenho conforme
a Tabela 14.

Tabela 14 – Desempenho do base YOLOv10-M nos conjuntos de treino, validação e teste

Conjunto Precisão Revocação F1-Score mAP@0,50
Treinamento 0,6824 0,9120 0,7807 0,862
Validação 0,6884 0,8933 0,7776 0,845
Teste 0,6466 0,8982 0,7519 0,852

Fonte: Elaborada pelo autor (2025)

A priori, observa-se a estabilidade das métricas entre os conjuntos, o que minimiza a
presença de sobreajustamento considerável. Os valores de precisão apontam um desempenho
bom quanto ao acerto do modelo ao apontar ovos nas imagens. Com base nesse valor, há,
porém, uma apresenta presença significante de falsos positivos, que é também explicada pelo
cenário desafiador de contagem em imagens ruidosas. A revocação alta e estável mostra que
o modelo consegue perceber boa parte dos ovos presentes nas imagens e desconsidera uma
margem pequena na contagem, o que é uma boa performance. O valor de F1-Score confirma
o bom desempenho geral do modelo e expressa o bom equilíbrio entre precisão e recall. Por
fim, mAP@0,50, indica que, com IoU com limiar de 0.5 na predição das boudning boxes de
detecção de ovos, o modelo obtém bom equilíbrio entre precisão e revocação no geral. Assim,
o modelo mantém um bom desempenho entre as tarefas de classificação e de localização,
mesmo em imagens de baixa resolução e com ruídos, como é o caso.
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5.1.2 Pré-processamento com MPRNet

A partir do modelo base obtido, a etapa de pré-processamento com MPRNet com a tarefa
de Image deblurring feita nas imagens das 28 palhetas contadas, resultou num conjunto de
imagens que foram submetidas ao modelo base (YOLOv10-M) para avaliação. Esta abordagem
teve impacto nas detecções de ovos, a exemplo do que mostra a Figura 41.

Figura 41 – Impacato da restauração do ruído de borramento com MPRNet no reconhecimento de ovos

Fonte: Figura do autor (2025)



111

A restauração aplicada pelo modelo produziu melhorias muito leves, o que pode ser por
conta da complexidade visual do cenário. Ainda asism, conforme experimento, levou a aumento
na detecção de ovos, o que favoreceu principalmente quando se tem uma quantidade numerosa
de ovos na imagem e que não eram reconhecidos por conta do ruído. Nesses casos, ovos eram
desconsiderados, principalmente quando estavam oclusos ou adjuntos.

Em contrapartida, a abordagem aumentou o número de detecções de falsos positivos em
alguns casos, de maneira que o modelo base reconheceu ruído como sendo ovo.

5.1.2.1 Desempenho do modelo base com MPRNet

A avaliação do modelo base foi feita nas 28 palhetas contadas por técnicos da FIOCRUZ-
PE. O modelo obteve o desempenho conforme a Tabela 15.
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Tabela 15 – Desempenho do modelo base na contagem de ovos por palheta com MPRNet como pré-
processamento

Palheta Contagem
Manual

Contagem
YOLOv10-M

mAP@0.50

ASF_CP4 213 213 0,817
ASF_CP5 361 419 0,753
ASF_CP6 113 87 0,717
ASF_CP7 137 145 0,762
ASF_CP8 133 78 0,671
ASF_CP9 172 150 0,764
PAM_1 238 211 0,705
PAM_2 95 537 0,739
PAM_3 168 416 0,799
PAM_4 234 519 0,897
PAM_5 412 917 0,767
PAM_6 210 222 0,876
PAM_7 196 514 0,681
PAM_8 408 449 0,890
PAM_9 604 433 0,740
PAM_10 402 320 0,573
WAN_1 1212 1657 0,738
WAN_2 755 1037 0,782
WAN_3 48 49 0,938
LESSA_1 293 166 0,761
LESSA_2 348 775 0,864
LESSA_3 323 379 0,787
LESSA_4 211 219 0,854
LESSA_5 130 119 0,897
LESSA_6 133 158 0,845
LESSA_7 258 182 0,875
LESSA_8 153 217 0,910
LESSA_9 75 72 0,734
Total de ovos 8.035 10.660 –

Nota: O símbolo “–” indica valor não aplicável.

Fonte: Elaborada pelo autor (2025).

A contagem absoluta indica que o modelo com esta abordagem superou a contagem de
referência de forma significativa no somatório total de ovos. Em algumas palhetas, por exemplo,
a contagem foi inferior e noutras, foi muito superior. No geral, em 17 palhetas, a contagem
do modelo foi superior à contagem manual, em 10 foi inferior e por uma vez o resultado
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correspondeu (palheta ASF_CP4).
As demais métricas, como mostra a Tabela 16, apontam um erro médio absoluto de cerca

de 136 unidades, MSE muito expressivo e erro relativo percentual indica que no geral, o modelo
superou em 32% a contagem de referência. A média aritmética dos mAP@0.50 das palhetas
aponta um valor razoável.

Tabela 16 – Métricas globais de desempenho do modelo base com MPRNet

Métrica Valor
MAE 136,61
MSE 43.936,04
Erro Relativo Percentual 32,66%
Média geral mAP@0,50 0,7906

Fonte: Elaborada pelo autor (2025).

Nesse caso, essa abordagem de pré-processamento produziu resultados ainda insuficientes,
mesmo no cenário de imagens ruidosas.

5.1.3 Pré-processamento com Color Jitter

Esta abordagem como etapa intermediária à contagem proporcionou os resultados, con-
forme a Tabela 17.
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5.1.3.1 Desempenho do modelo base com Color Jitter

Tabela 17 – Desempenho do modelo base na contagem de ovos por palheta com Color Jitter como pré-
processamento

Palheta Contagem
Manual

Contagem
YOLOv10-M

mAP@0.50

ASF_CP4 213 253 0,766
ASF_CP5 361 499 0,733
ASF_CP6 113 132 0,691
ASF_CP7 137 202 0,745
ASF_CP8 133 165 0,572
ASF_CP9 172 281 0,634
PAM_1 238 321 0,738
PAM_2 95 681 0,591
PAM_3 168 274 0,756
PAM_4 234 571 0,830
PAM_5 412 1007 0,782
PAM_6 210 248 0,857
PAM_7 196 672 0,660
PAM_8 408 624 0,850
PAM_9 604 626 0,672
PAM_10 402 426 0,482
WAN_1 1212 1812 0,687
WAN_2 755 1067 0,759
WAN_3 48 51 0,893
LESSA_1 293 181 0,652
LESSA_2 348 847 0,831
LESSA_3 323 528 0,676
LESSA_4 211 279 0,786
LESSA_5 130 160 0,830
LESSA_6 133 187 0,741
LESSA_7 258 216 0,815
LESSA_8 153 242 0,871
LESSA_9 75 81 0,711
Total de ovos 8.035 12.633 –

Nota: O símbolo “–” indica valor não aplicável.

Fonte: Elaborada pelo autor (2025).
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Em alguns casos, esta abordagem resultou num realce que possibilitou o reconhecimento
de ovos antes não detectados. Entretanto, produziu um número muito expressivo na contagem
de ovos. Em algumas palhetas, a diferença entre as contagens foi de 600 (palheta WAN_1)
ovos. Em 25 de 28 palhetas o modelo superou a contagem de referência. Em 15 palhetas, o
grau de erro ficou abaixo de 100 unidades e para as demais treze, superou esse valor, o que
evidencia o grau de erro geral dessa abordagem.

Com 4598 ovos contados a mais no total, o que equivale a 57% de erro relativo percentual,
conforme a Tabela 18, o modelo apresentou erro médio considerável (175,21), o que representa
um erro de 175 ovos por palheta, que é um valor expressivo. O MSE também foi acentuado
nessa abordagem e mAP@0.50 teve leve redução.

17.

Tabela 18 – Métricas globais de desempenho do modelo YOLOv10-M com Color Jitter

Métrica Valor
MAE 175,21
MSE 68.645,36
Erro relativo percentual 57,22%
Média geral mAP@0.50 0,73

Fonte: Elaborada pelo autor (2025).

Dessarte, esta também abordagem resultou em erros elevados, especialmente em relação
à contagem de ovos.

5.1.4 Pré-processamento com Equalização de histograma

5.1.4.1 Desempenho do modelo base com Equalização de histograma

O uso desta abordagem ainda fez a contagem total de ovos como um todo superar signi-
ficativamente a contagem de referência, de maneira que em 23 palhetas foram contados ovos
a mais e a diferença geral atingiu 2697 ovos. Em relação a graus de erro, em 16 palhetas,
a diferença entre as contagens não ultrapassou 100 ovos. Todavia, em 12 palhetas, a conta-
gem superou este valor e contriui para um erro considerável. Os resultados são mostrados na
Tabela 19.
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Tabela 19 – Desempenho do modelo YOLOv10-M na contagem de ovos por palheta com Equalização de
histograma como pré-processamento

Palheta Contagem
Manual

Contagem
YOLOv10-M

mAP@0.50

ASF_CP4 213 245 0,433
ASF_CP5 361 391 0,419
ASF_CP6 113 115 0,142
ASF_CP7 137 149 0,190
ASF_CP8 133 157 0,323
ASF_CP9 172 302 0,260
PAM_1 238 307 0,550
PAM_2 95 275 0,489
PAM_3 168 424 0,498
PAM_4 234 480 0,534
PAM_5 412 897 0,682
PAM_6 210 255 0,468
PAM_7 196 601 0,464
PAM_8 408 528 0,610
PAM_9 604 561 0,513
PAM_10 402 351 0,352
WAN_1 1212 1404 0,627
WAN_2 755 883 0,662
WAN_3 48 56 0,283
LESSA_1 293 104 0,194
LESSA_2 348 680 0,545
LESSA_3 323 370 0,409
LESSA_4 211 253 0,493
LESSA_5 130 181 0,388
LESSA_6 133 229 0,318
LESSA_7 258 209 0,397
LESSA_8 153 248 0,492
LESSA_9 75 77 0,276
Total de ovos 8.035 10.732 –

Nota: O símbolo “–” indica valor não aplicável.

Fonte: Elaborada pelo autor (2025).

A partir da Tabela 20, identifica-se valor razoável de erro médio, ao considerar-se o cenário
de contagem, porém um valor ainda expressivo para o MSE é observado, o que reflete as
diferenças entre as contagens. A média dos valores de mAP@0.50 está diminuta e reflete a
piora na tarefa de detecção de objetos.



117

Tabela 20 – Métricas globais de desempenho do modelo YOLOv10-M com Equalização de histograma

Métrica Valor
MAE 120,04
MSE 29.620,11
Erro relativo percentual 33,56%
Média geral mAP@0.50 0,43

Fonte: Elaborada pelo autor (2025).

5.1.5 Pré-processamento com CLAHE

5.1.5.1 Desempenho do modelo base com CLAHE

Como mostra a A Tabela 21, a equalização adaptativa, por sua vez, obteve desempenho
conservador, muito próximo à abordagem anterior e com um leve aumento na quantidade total
de ovos contados.
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Tabela 21 – Desempenho do modelo YOLOv10-M na contagem de ovos por palheta com CLAHE como pré-
processamento

Palheta Contagem
Manual

Contagem
YOLOv10-M

mAP@0.50

ASF_CP4 213 214 0,769
ASF_CP5 361 376 0,704
ASF_CP6 113 79 0,571
ASF_CP7 137 141 0,630
ASF_CP8 133 117 0,583
ASF_CP9 172 221 0,659
PAM_1 238 262 0,707
PAM_2 95 554 0,659
PAM_3 168 407 0,782
PAM_4 234 510 0,857
PAM_5 412 877 0,815
PAM_6 210 229 0,878
PAM_7 196 547 0,704
PAM_8 408 515 0,859
PAM_9 604 525 0,703
PAM_10 402 356 0,525
WAN_1 1212 1609 0,746
WAN_2 755 967 0,803
WAN_3 48 51 0,924
LESSA_1 293 154 0,579
LESSA_2 348 733 0,854
LESSA_3 323 391 0,714
LESSA_4 211 228 0,806
LESSA_5 130 127 0,860
LESSA_6 133 167 0,798
LESSA_7 258 192 0,760
LESSA_8 153 214 0,856
LESSA_9 75 75 0,672
Total de ovos 8.035 10.838 –

Nota: O símbolo “–” indica valor não aplicável.

Fonte: Elaborada pelo autor (2025).

A diferença entre as contagens do modelo em relação às contagens de refeência separadas
por grupos de palhetas, exibida na Tabela 22 evidencia a tendência do modelo superar a
contagem com valores de diferença consideravelmente altos, em que pese estar associado à
detecção em imagens ruidosas.
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Tabela 22 – Diferença entre contagem do modelo base e contagem de referência entre os grupos de palhetas

Grupo de Palhetas Contagem do
modelo

ASF_CP 19 ovos a mais
PAM 1560 ovos a mais
WAN 612 ovos mais
LESSA 357 ovos a mais

Fonte: Elaborada pelo autor (2025).

Conforme Tabela 23, o erro médio é ainda conservador, com cerca de 127 ovos de dife-
rença por palheta e MSE também alto refletem a contagem com considerada discrepância.
Erro relativo percentual é ainda significativo e a média dos valores de mAP@0.50 apresenta
desempenho similar à abordagem anterior.

Tabela 23 – Métricas globais de desempenho do modelo YOLOv10-M com CLAHE

Métrica Valor
MAE 127,46
MSE 39.016,61
Erro relativo percentual 34,88%
Média geral mAP@0.50 0,74

Fonte: Elaborada pelo autor (2025).

5.2 FLUXO III: CONTAGEM DIRETA SEM PRÉ-PROCESSAMENTO

Neste fluxo, os modelos treinados na base derivada foram usados para inferência nas pa-
lhetas contadas sem etapa intermediária de pré-processamento.

5.2.1 YOLOv10-M

Conforme a Tabela 24, o modelo YOLOV10-M apresentou um desempenho considerável
em relação à contagem total de ovos, com um total de 1867 ovos a mais que a contagem
manual, o que representa um valor mais próximo da quantidade real de ovos. Em 12 palhetas,
a diferença entre as contagens foi no máximo de 30 ovos; ainda, em 6 palhetas, a diferença
esteve entre 31 e 100 e nas demais 11, a diferença ultrapassou 100 ovos.



120

Tabela 24 – Desempenho do modelo YOLOv10-M na contagem direta de ovos em palheta de ovitrampa

Palheta Contagem
Manual

Contagem
YOLOv10-M

mAP@0.50

ASF_CP4 213 192 0,855
ASF_CP5 361 370 0,770
ASF_CP6 113 80 0,734
ASF_CP7 137 120 0,782
ASF_CP8 133 65 0,709
ASF_CP9 172 132 0,795
PAM_1 238 203 0,791
PAM_2 95 488 0,752
PAM_3 168 379 0,833
PAM_4 234 491 0,898
PAM_5 412 875 0,813
PAM_6 210 213 0,903
PAM_7 196 476 0,736
PAM_8 408 434 0,908
PAM_9 604 404 0,749
PAM_10 402 289 0,579
WAN_1 1212 1551 0,765
WAN_2 755 987 0,799
WAN_3 48 46 0,955
LESSA_1 293 151 0,762
LESSA_2 348 718 0,891
LESSA_3 323 344 0,798
LESSA_4 211 196 0,873
LESSA_5 130 107 0,924
LESSA_6 133 146 0,854
LESSA_7 258 175 0,862
LESSA_8 153 202 0,936
LESSA_9 75 68 0,787
Total de ovos 8.035 9.902 –

Nota: O símbolo “–” indica valor não aplicável.

Fonte: Elaborada pelo autor (2025).

Como mostra a Tabela 25, tanto MAE quanto MSE apresentam valores razoáveis. O erro
relativo porcentual mostra uma diferença de 23% entre as contagens automática e manual. A
média dos mAP@0.50 apresenta um considerável equilíbrio entre precisão e sensibilidade, além
de uma melhora significativa na tarefa de detecção de objetos.
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Tabela 25 – Métricas globais de desempenho do modelo YOLOv10-M na contagem direta

Métrica Valor
MAE 123,75
MSE 34.182,39
Erro relativo percentual 23,23%
Média geral mAP@0.50 0,81

Fonte: Elaborada pelo autor (2025).

Este método, portanto, apresenta resultados promissores na contagem automática de ovos
de A. aegypti.

5.2.2 YOLOv12-M

Com este modelo, conforme a Tabela 26, a contagem automática de ovos apresenta tam-
bém valores mais próximos à contagem manual, o que é um resultado importante nesta tarefa,
principalmente no caso de contagem a partir de imagens capturadas por smartphone. A menor
diferença entre as contagens foi na palheta PAM_6, em que a diferença foi de 2 ovos a mais.
No geral, a contagem do modelo foi maior que a manual em 14 palhetas e menor noutras 14;
ainda, quanto a grau de erro, em 11 palhetas, a diferença foi de até 30 ovos.
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Tabela 26 – Desempenho do modelo YOLOv12-M na contagem direta de ovos em palheta de ovitrampa

Palheta Contagem
Manual

Contagem
YOLOv12-M

mAP@0.50

ASF_CP4 213 197 0,839
ASF_CP5 361 353 0,723
ASF_CP6 113 93 0,683
ASF_CP7 137 146 0,750
ASF_CP8 133 80 0,646
ASF_CP9 172 135 0,727
PAM_1 238 182 0,743
PAM_2 95 354 0,699
PAM_3 168 309 0,816
PAM_4 234 472 0,900
PAM_5 412 780 0,835
PAM_6 210 212 0,917
PAM_7 196 426 0,736
PAM_8 408 364 0,880
PAM_9 604 372 0,728
PAM_10 402 385 0,581
WAN_1 1212 1421 0,774
WAN_2 755 872 0,803
WAN_3 48 77 0,970
LESSA_1 293 159 0,683
LESSA_2 348 659 0,882
LESSA_3 323 124 0,742
LESSA_4 211 191 0,838
LESSA_5 130 57 0,887
LESSA_6 133 159 0,798
LESSA_7 258 164 0,867
LESSA_8 153 206 0,922
LESSA_9 75 77 0,742
Total de ovos 8.035 9.026 –

Nota: O símbolo “–” indica valor não aplicável.

Fonte: Elaborada pelo autor (2025).

Este modelo ainda obteve um erro médio, bem como MSE bastante reduzidos, o que
minimiza a diferença entre as contagens automática e manual, como mostra a Tabela 27. O erro
relativo percentual batante diminuto aponta para uma inferência que, no geral, aproxima-se
mais da contagem de referência. Ainda, a média dos mAP@0.50 é um valor consideravelmente
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bom e demonstra boa performance do modelo na detecção com IoU de 0.5 e boa relação entre
precisão e recall.

Tabela 27 – Métricas globais de desempenho do modelo YOLOv12-M na contagem direta

Métrica Valor
MAE 107,04
MSE 22.380,04
Erro relativo percentual 12,33%
Média geral mAP@0.50 0,79

Fonte: Elaborada pelo autor (2025).

5.2.3 RF-DETR-B

Como exibe a Tabela 28, o RF-DETR-B apresenta desempenho bastante elevado na conta-
gem total de ovos, com uma diferença de 223 ovos a menos comparado à contagem manual.
Ainda, com imagens com a presença de diversos tipos de degradação, o modelo consegue
aproximar-se da contagem real de ovos com diferença acentuadamente baixa, como nas pa-
lhetas WAN_1 (diferença de 56 ovos), LESSA_5 (8 ovos), LESSA_6 (7 ovos) e LESSA_9 (5
ovos).



124

Tabela 28 – Desempenho do modelo RF-DETR-B na contagem direta de ovos em palhetas de ovitrampa

Palheta Contagem
Manual

Contagem
RF-DETR-B

ASF_CP4 213 170
ASF_CP5 361 310
ASF_CP6 113 96
ASF_CP7 137 125
ASF_CP8 133 69
ASF_CP9 172 100
PAM_1 238 149
PAM_2 95 306
PAM_3 168 261
PAM_4 234 384
PAM_5 412 654
PAM_6 210 183
PAM_7 196 376
PAM_8 408 315
PAM_9 604 290
PAM_10 402 239
WAN_1 1212 1268
WAN_2 755 668
WAN_3 48 67
LESSA_1 293 168
LESSA_2 348 530
LESSA_3 323 237
LESSA_4 211 167
LESSA_5 130 122
LESSA_6 133 130
LESSA_7 258 157
LESSA_8 153 191
LESSA_9 75 80
Total de ovos 8.035 7.812

Fonte: Elaborada pelo autor (2025).

Outrossim, a quantidade de ovos detectada por palheta pelo modelo superou a quantidade
real em 10 ocasiões e foi inferior em 18. Ainda, como mostra a Tabela 29, quanto às faixas
de diferença entre as contagens automática e manual, a diferença não ultrapassou 100 ovos
em 20 das 28 palhetas. Estas medições representam uma contagem geral com performance
bastante acentuada.
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Tabela 29 – Faixas de diferença de ovos e quantidade de palhetas na contagem com RF-DETR-B

Faixa de diferença de ovos Número de palhetas
0 – 10 6
11 – 30 4
31 – 100 12
≥ 101 8

Fonte: Elaborada pelo autor (2025).

Doutra forma, à nível de grupo de palhetas, o modelo contou mais ovos do que a contagem
manual em alguma e menos, noutras, como exibe a Tabela 30.

Tabela 30 – Diferença entre contagem do RF-DETR-B e contagem de referência entre os grupos de palhetas

Grupo de Palhetas Contagem
RF-DETR-B

ASF_CP (6 palhetas) 259 ovos a menos
PAM (10 palhetas) 164 ovos a mais
WAN (3 palhetas) 12 ovos a menos
LESSA (9 palhetas) 142 ovos a menos

Fonte: Elaborada pelo autor (2025).

Entretanto, ao considerar a quantidade de palhetas em cada grupo, observa-se que o
modelo teve um desempenho substancial dada a quantidade de palhetas em cada grupo. Por
exemplo, mesmo na contagem das 10 palhetas PAM, o modelo contou apenas 164 ovos a
mais. Este desempenho é ainda mais elevado ao se considerar que nesse grupo há 2.967
ovos. Destaca-se também a performance nas palhetas WAN, que mesmo com 2.015 ovos, a
contagem automática reconheceu somente 12 ovos a menos. Também, nas 9 palhetas LESSA,
que possui 1.924 ovos, a contagem automática apresentou uma diferença bastante diminuta de
142 ovos a menos. Por fim, nas palhetas ASF_CP, a contagem apresentou a maior diferença,
entretanto, ainda razoável, considerando que possui 1.129 ovos.

Quanto aos demais resultados, como exibe a Tabela 31, o erro médio foi de somente cerca
de 91 ovos, o que corrobora o alto desempenho da contagem automática. Semelhantemente,
o MSE apresenta valor bastante reduzido, o que demonstra o baixo grau de diferença entre a
contagem do modelo e a contagem real de ovos. Ainda, o erro relativo percentual é acentua-
damente baixo e destaca o potencial deste modelo para contagem de ovos em aplicações de
mundo real no contexto da vigilância entomológica.
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Tabela 31 – Métricas globais de desempenho do modelo RF-DETR-B na contagem direta de ovos em palheta
de ovitrampa

Métrica Valor
MAE 91,96
MSE 14.433,96
Erro relativo percentual -2,77%

Fonte: Elaborada pelo autor (2025).

5.2.4 D-FINE-M

O D-FINE-M, por sua vez, distancia-se de forma considerável em termos de contagem
absoluta de ovos, como exibe a Tabela 32,. Nesse caso, a diferença entre as contagens é de
3.116 ovos a mais em relação à contagem manual. O melhor desempenho foi nas palhetas
PAM_10, LESSA_3, LESSA_1, ASF_CP9, PAM_1 em que o modelo apresentou diferença
porcentual de, respectivamente, 2,29%, 4,44%, 4,64%, -7,03% e -9,16%.

Em relação aos graus de erro na contagem absoluta, em 17 palhetas, a diferença não
ultrapassou 100 ovos, entretanto ultrapassou este limiar noutras 10 palhetas e apenas uma
vez, o erro esteve abaixo de 10.
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Tabela 32 – Desempenho do modelo D-FINE-M na contagem direta de ovos em palhetas de ovitrampa

Palheta Contagem
Manual

Contagem
D-FINE-M

ASF_CP4 213 254
ASF_CP5 361 445
ASF_CP6 113 180
ASF_CP7 137 224
ASF_CP8 133 151
ASF_CP9 172 185
PAM_1 238 262
PAM_2 95 481
PAM_3 168 378
PAM_4 234 503
PAM_5 412 855
PAM_6 210 276
PAM_7 196 485
PAM_8 408 438
PAM_9 604 433
PAM_10 402 393
WAN_1 1212 1430
WAN_2 755 893
WAN_3 48 143
LESSA_1 293 280
LESSA_2 348 706
LESSA_3 323 338
LESSA_4 211 267
LESSA_5 130 201
LESSA_6 133 236
LESSA_7 258 269
LESSA_8 153 283
LESSA_9 75 162
Total de ovos 8.035 11.151

Fonte: Elaborada pelo autor (2025).

Ainda, o modelo contou ovos a mais em 25 das 28 palhetas, o que equivale a cerca de 38%
ovos a mais, como exibe a Tabela 33. O erro médio foi razoável, bem como o MSE também;
isso ressalta que, mesmo o modelo contando objetos a mais na maioria dos casos, a diferença
permanece diminuta em outros casos, o que pode explicar o valor não tão elevado para MAE
e MSE.
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Tabela 33 – Métricas globais de desempenho do modelo D-FINE-M na contagem direta de ovos em palhetas
de ovitrampas

Métrica Valor
MAE 125,07
MSE 30.328,43
Erro relativo percentual 38,78%

Fonte: Elaborada pelo autor (2025).

Desta forma, mesmo em imagens de baixa resolução, o D-FINE aproxima-se da contagem
real em algumas palhetas, porém distancia-se acentuadamente noutras.

5.3 AVALIAÇÃO FINAL

No âmbito das atividades de vigilância entomológica é fundamental obter indicadores im-
portantes sobre o vetor de doenças numa região. No uso de ovitrampas para deposição de
ovos, é passo importante a obtenção de indicadores de ovos; ainda, é importante que sejam
fidedignos pois sobre eles baseiam-se passos posteriores importantes para uma implementação
exitosa da vigilância entomológica no controle do A. aegypti.

Destarte, dado que a contagem de ovos influencia de forma direta no planejamento de
ações para combate ao mosquito, tal contagem automática de ovos deve aproximar-se o
máximo possível da quantidade real de ovos nas palhetas de ovitrampa examinadas. Ademais,
na contagem de palhetas, o erro médio é o mais importante do que os erros individuais, pois
o método será aplicado sobre várias palhetas em uso prático; mesmo assim, por óbvio, a
abordagem deve obter bom desempenho em palhetas individuais, mantendo equilíbrio entre
entre falsos positivos e falsos negativos e não cometer erros consideravelmente grandes.

Em relação ao impacto de técnicas de pré-processamento na contagem automática, a
aplição do modelo de restauração de imagens (MPRNet) especializado na remoção de ruído de
borramento obteve menor diferença entre as contagens automática e manual, bem como maior
mAP@0.50 no geral (0,79) e menor erro relativo percentual (32,66%). Todavia, a aplicação
de equalização de histograma apresentou menor MAE (120,04) dentre as técnicas de pré-
processamento, enquanto que CLAHE obteve performance inferior a esta, porém com métricas
próximas, como MAE de 127,46. Dentre todas as técnicas, color jitter apresentou menor
performance com erros significativos, como diferença de 4598 ovos em relação à contagem
manual nas 28 palhetas utilizadas. Desta forma, as abordagens de MPRNet e equalização de
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histograma apresentam resultados mais promissores quanto à contagem associada técnicas de
pré-processamento.

Por outro lado, a respeito da abordagem de contagem direta (sem pré-processaemnto),
ao considerar principalmente os resultados da contagem absoluta, erro médio absoluto, erro
médio quadrático e erro relativo percentual, o modelo RF-DETR-B apresentou performance
mais próxima da adequada para aplicação em cenários reais de contagem, de modo a obter a
contagem absoluta mais próxima da manual, com MAE de 91,96, MSE de 14.433,96 e erro
relativo percentual de -2,77% em relação à contagem manual nas 28 palhetas consideradas.
De igual modo, em comparação com os demais modelos associados ou não a técnicas de
pré-processamento, obteve o melhor desempenho, o que leva à avaliação de que, nesse cenário
experimental, a contagem direta levou a melhor desempenho nas principais métricas avaliadas.

5.3.1 Comparativo com trabalhos da literatura na contagem de ovos de Ae. aegypti

No conjunto de abordagens de Processamento de Imagens, o algoritmo proposto em (RO-

CHA; BIZERRA; MAGALHÃES, 2019), foi validado numa única imagem contendo 26 ovos, dos
quais o algoritmo detectou 14, o que resulta numa acurácia de cerca de 53,85%, abaixo do
atingido pelo RF-DETR-B neste trabalho (97,23%), ainda que este tenha sido submetido a
um conjunto expressivo de imagens.

De modo similar, o uso da técnica de Processamento de Imagens, agora aliada à lógica
fuzzy, o sistema de inferência referido em (COSTA, 2017), obteve acurácia de 98,94% num
conjunto de 206 imagens que continham 386 ovos do mosquito Ae. aegypti. No presente
trabalho, mesmo com um número mais expressivo de objetos e imagens, o valor observado de
acurácia foi bastante próximo, de modo a ser, assim, levemente inferior.

Por outro lado, ao considerarem-se abordagens de Aprendizagem Profunda, o modelo de
contagem em imagens macroscópicas, proposto por (JAVED et al., 2023), obteve acurácia de
96,06% no conjunto de 10 imagens a que foi submetido. No âmbito deste trabalho o RF-DETR-
B, alcançou 97,23% na mesma métrica tendo por base o total de ovos contados, conforme
Tabela 28. Isto mostra que, mesmo num conjunto bastante aumentado de imagens, distribuídas
em 28 palhetas distintas, conjunto esse com presença importante de imagens ruidosas, o
modelo de detecção de objetos melhor avaliado neste trabalho obteve desempenho superior ao
do observado no referido estudo. Pontua-se, porém, que para imagens microscópicas, (JAVED

et al., 2023) obteve acurácia levemente superior à alcançada neste trabalho: 98,88%.
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Ainda, no (VICENTE et al., 2024) trabalho, observou-se que o modelo FoveaBox atingiu
maior error proporcionalmente ao número de ovos nas imagens a que foi submetido, de ma-
neira que, quanto mais imagens o MAE era progressivamente maior. Para imagens que continha
ao menos 100 ovos, o FoveaBox obteve MAE de 123,25, enquanto que o RF-DETR-B, ao con-
siderar o quantitativo total de ovos de 8.035, obteve um MAE de 91,96, conforme Tabela 31.
Isto mostra que o RF-DETR-B, apesar de erros individuais em imagens ou em palhetas, obteve,
nos experimentos deste trabalho desempenho superior, ainda que com um número muito mais
expressivo de imagens e capturadas por smartphone.

Acrescenta-se que, quanto ao observado em (SILVA et al., 2021), o erro médio quadrado
obtido foi de 4,25, enquanto que o melhor modelo deste trabalho, obteve o valor de 14.433,96,
conforme Tabela 31. Ressalta-se a limitada amostra do referido trabalho (4 imagens e 71 ovos),
enquanto que neste trabalho, 28 palhetas com 126 imagens cada, o que totaliza 3.528 imagens
parciais que abrigam 8.035 ovos.

Tabela 34 – Comparativo de trabalhos na literatura para contagem de ovos de A. aegypti

Abordagem Técnica Acurácia
(%)

MAE MSE Número
de
imagens

Número
de ovos

(ROCHA; BIZERRA;
MAGALHÃES, 2019)

PI 53,85 - - 1 26

(COSTA, 2017) PI 98,94 - - 206 386
(JAVED et al., 2023) DL 96,06 - - 10 18773
(VICENTE et al., 2024) DL - 123,25 - - -
(SILVA et al., 2021) DL - - 4,25 4 71
RF-DETR-B DL 97,23 91,96 14433,96 3528 8035

Fonte: Elaborada pelo autor (2025).

Portanto, como sintetiza a Tabela 34, o modelo RF-DETR-B destaca-se dentre outras
abordagens por obter desempenho superior às demais abordagens na métrica de MAE e se-
gunda melhor acurácia com 97,23%, ainda que o tamanho do conjunto de imagens utilizadas
nos experimentos foi bem maior (3.528). Por outro lado, em termos de quantidade de ovos,
houve menos objetos (8.035) em comparação com os 18.773 ovos em (JAVED et al., 2023).

Portanto, mesmo sem utilizar dispositivos de captura melhores, tais como Estereomicros-
cópio Leica MC170 HD utilizado por (VICENTE et al., 2024) ou Câmera Olympus Tough TG-6
e microscópio Nikon SMZ18, como em (JAVED et al., 2023), o presente trabalho obteve desem-
penho próximo ou superior nas métricas observadas, mesmo utilizando um smartphone com
sensor de 13MP para captura das fotos. Tais resultados comparativos evidenciam o desempe-



131

nho observado na abordagem de contagem direta com RF-DETR-B numa base de imagens
capturadas por smartphone no contexto deste trabalho.
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6 CONCLUSÃO E TRABALHOS FUTUROS

No âmbito de comabate ao mosquito Aedes aegypti, vetor de doenças como Dengue,
Zika e Chikungunya, têm sido aplicadas metodologias, dentre as quais, a de implementação
de ovitrampas para obtenção de indicadores fundamentais para a tomada eficiente de ações
de controle. Nesse ínterim, o processo de contagem de ovos em palhetas de ovitrampa é
uma atividade trabalhosa, que pode ser simplificada com a aplicação de técnicas de visão
computacional.

Este trabalho tratou de propor uma metodologia de contagem automática de ovos de
Aedes aegypti em palhetas de ovitrampa associada à utilização da câmera de smartphone
para captura de imagens. Também, foi criado um dispositivo de baixo custo para captura
de imagens de palhetas de ovitrampa para ser utilizado em conjunto com um smartphone a
fim de prover a obtenção de imagens, considerando requisitos importantes como captura sem
regiões repetidas, distância padrão entre palheta e câmera e iluminação regular da superfície
da palheta.

Ainda, foi criada uma base de dados com significativa quantidade de imagens obtidas
a partir do dispositivo de captura. Por fim, foi avaliado o impacto da aplicação de pré-
processamento nas imagens antes da contagem automática, como o modelo MPRNet para
resturação de imagens degradas com ruído de borramento, Color Jitter, equalização de his-
tograma e CLAHE. Além disso, foram também avaliados modelos para a contagem sem a
utilização de pré-processamento antes da inferência, como YOLOv10, YOLOv12, RF-DETR e
D-FINE.

As contribuições desta pesquisa podem ser resumidas a:

• Definição de um protocolo de contagem de ovos de Aedes aegypti em palhetas de
ovitrampas associado ao uso de smartphone para captura das imagens.

• Desenvolvimento de um dispositivo de captura de baixo custo feito com impressora 3D
para ser utilizado em conjunto com um smartphone na obtenção de imagens de palhetas
de ovitrampas.

• Criação de base de dados de imagens de ovos de A. aegypti em palhetas de ovitrampas
para o treinamento de redes neurais de detecção de objetos.
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• Avaliação do impacto da contagem automática em conjunto com a aplicação de técnicas
de processamento de imagens e de rede neural de restauração de imagens.

• Utilização de redes neurais artificiais do estado da arte voltadas à detecção de objetos
para o reconhecimento e contagem de ovos do mosquito em palhetas de ovitrampa no
contexto de imagens ruidosas e de baixa resolução, além de comparação com resultados
de trabalhos semelhantes na literatura.

Esta pesquisa resultou na obteção de um modelo de detecção de objetos RF-DETR-B
aplicado à contagem direta em imagens (sem pré-processaemnto) com erro global percentual
de -2,77% comparado à contagem manual num conjunto de 28 palhetas e erro médio de 91,26.
Ademais, a avaliação do impacto de técnicas de pré-processamento na contagem com redes
neurais demonstrou desempenhos similares entre equalização de histograma e equalização
adaptativa, respectivamente com erro médio de 120,04 e 127,46 também na contagem de
28 palhetas de ovitrampa. A aplicação do modelo de restauração MPRNet apresentou, no
entanto, maior mAP@0.50 no geral, além de menor erro relativo percentual e menor diferença
entre contagens no âmbito das técnicas de pré-processamento.

Os trabalhos futuros podem ser sintetizados em:

• Obtenção de mais imagens como base de dados para o treinamento de modelos de
aprendizagem profunda.

• Validação da abordagem num conjunto ainda mais expressivo de palhetas contadas.

• Realização de experimentos em campo utilizando a metodologia proposta num fluxo
completo de implementação de ovitrampas visando testá-la em situações de uso real,
obter pontos de melhoria e ajustar a metodologia e seus componentes, como o dispositivo
de captura.

• Desenvolver aplicativo móvel para sistematizar a captura de imagens de palhetas de
ovitrampa.

• Projetar e implementar sistema de informações geográficas voltado ao monitoramento
da aplicação de ovitrampas, obtenção de dados relacionados à contagem de ovos, dentre
outras funcionalidades.
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• Elicitar requisitos, junto à FIOCRUZ-PE e Instituto Aggeu Magalhães acerca do desen-
volvimento de eventuais aplicações web e móveis, bem como de outras tecnologias e
ferramentas de suporte no âmbito da implmementação da metodologia de implantação
de ovitrampas.
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