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RESUMO

Insetos transmissores de doencas, como o Aedes aegypti, causam danos significativos em
varias areas da sociedade. Doencas relacionadas, como Dengue, Zika e Chikungunya tém cau-
sado prejuizos sanitarios, sociais e economicos ao redor do globo, principalmente em paises
tropicais. Dentre os métodos de combate, a vigilancia entomolégica prové mecanismos pre-
ditivos baseados em indicadores-chave, envolve a metodologia de ovitrampas e consequente
contagem manual de ovos do mosquito em palhetas de ovitrampa para obtencao de infor-
macdes para posterior tomada de decisGes no combate ao mosquito. Problemas inerentes a
laboriosa contagem manual dos ovos demandam métodos acurados de contagem automatica.
Este trabalho propoe o desenvolvimento de uma metodologia de contagem automatica de ovos
de Aedes aegypti em palhetas de ovitrampa de viavel aplicacdo operacional, de baixo custo e
que, além de resolver problemas fundamentais da captura de imagens, como dificuldades de
iluminac3o, resolve também problemas frequentes na literatura, como a captura redundante
de regiGes da palheta. Abordagens anteriores promoveram consideravel avanco no desenvol-
vimento de métodos de contagem automatica, restando, entretanto, numerosas dificuldades
e pontos de melhoria. Contribuicdes importantes desta pesquisa incluem a definicao de uma
metodologia de contagem de ovos baseada em redes neurais de deteccdo de objetos, além da
criacdo de um dispositivo de baixo custo para captura adequada de imagens em palhetas de
ovitrampa, a criacao de base de dados numericamente significativa dessas imagens, avaliacao
experimental do impacto de técnicas de pré-processamento baseadas em processamento de
imagens, bem como de rede neural de restauracdo de imagens degradadas. Também, trei-
namento e avaliacdo de modelos, como D-FINE e RF-DETR, obtendo erro médio de 91,26
ovos e -2,77% de erro global percentual no reconhecimento de ovos em imagens com ruidos
expressivos, bem como, por fim, o uso de quantidade significativa de 28 palhetas como con-
junto independente de validacdo da aplicabilidade desta metodologia em cenérios de uso real,

nimero bastante expressivo considerando-se trabalhos encontrados na literatura.

Palavras-chave: Contagem automatica. Aedes aegypti. Aprendizagem Profunda. Dispositivo

de captura de baixo custo. Base de dados de ovos. Palheta de ovitrampa.



ABSTRACT

ABSTRACT

Disease-transmitting insects, such as Aedes aegypti, cause significant damage in vari-
ous areas of society. Related diseases such as Dengue, Zika, and Chikungunya have led to
health, social, and economic losses worldwide, especially in tropical countries. Among the
control methods, entomological surveillance provides predictive mechanisms based on key in-
dicators, involving the use of ovitraps and subsequent manual counting of mosquito eggs on
oviposition paddles to support decision-making in mosquito control. Problems inherent in the
labor-intensive manual counting process demand accurate automatic counting methods. This
work proposes the development of an automatic Aedes aegypti egg-counting methodology
for oviposition paddles, with low cost and operational feasibility, which, in addition to solving
fundamental issues in image acquisition such as lighting difficulties, also addresses frequent
problems reported in the literature, including redundant capture of paddle regions. Previous
approaches have promoted considerable progress in developing automatic counting methods;
however, numerous challenges and areas for improvement remain. Important contributions of
this research include the definition of an egg-counting methodology based on object detection
neural networks, the development of a low-cost device for proper image acquisition in ovipo-
sition paddles, the creation of a numerically significant image dataset, and an experimental
evaluation of the impact of preprocessing techniques based on image processing, as well as a
neural network for restoring degraded images. Additionally, training and evaluation of models
such as D-FINE and RF-DETR achieved a mean error of 91.26 eggs and a mean percent-
age error of -2.77% in recognizing eggs in images with expressive noise. Finally, a substantial
number of 28 paddles were used as an independent set to validate the applicability of this
methodology in real-world scenarios, a figure that is considerably significant considering works

reported in the literature.

Keywords: Automatic counting. Aedes aegypti. Deep learning. Low-cost capture device. Egg

database. Oviposition paddle.
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1 INTRODUCAO

O Aedes aegypti é um mosquito transmissor de doencas como dengue, febre amarela,
chikungunya e zika, além de, associado a esta ultima, poder causar microcefalia por infeccdo
congénita (ARAUJO et al, 2018). Sua provavel origem é o Nordeste da Africa, especificamente
o Egito (PESSOA; MARTINS, [1982)), de modo que foi introduzido no Brasil durante o periodo
colonial, provavelmente por meio do transporte maritimo, em especial, de navios negreiros
(PAIXAO, [2007)) (CONSOLI; OLIVEIRA, [1994). O mosquito incide sobre toda faixa tropical e
sub-tropical do planeta e, por ser considerado cosmopolita, acompanha o ser humano e, desse
modo, manifesta-se principalmente em regidoes urbanas, tanto no domicilio como também no
peridomicilio humanos.

Historicamente, o Brasil tem sofrido surtos e epidemias de arboviroses transmitidas pelo
Ae. aegypti, a exemplo da triplice epidemia dos virus zika, dengue e chikungunya, ocorrida em
2016 e da epidemia de dengue em 2019. No Pais, no periodo compreendido entre 2008 e 2019,
foram notificados cerca de 11,6 milhdes de casos suspeitos de dengue, zika e chikungunya,
sendo, somente a dengue, responsavel por cerca de 10,6 milhdes desse total (SAGDE, 2020).
Os dois anos seguintes foram marcados pela queda acentuada no nimero de casos dessas
doencas. Porém, em 2022, houve um aumento abrupto, de modo que somente o nimero de
casos notificados de dengue atingiu cerca de 1,4 milhGes até a semana epidemioldgica 51, com
um total de 1.053 mortes no ano. Isto poe em clareza o constante risco de ressurgimento de
surtos e epidemias de arboviroses no Pais (Ministério da Satide — Secretaria de Vigilancia em Salide,
2022; |SAGDE, [2024)).

Ainda mais, em 2023, o nimero de casos de dengue teve ainda aumento, de maneira a
atingir cerca de 1,6 milhdes de casos provaveis e 1094 mortes confirmadas (Ministério da Satide —
Brasil, 2024b)). No ano seguinte, o nimero de casos teve expressivo aumento e alcancou cerca
de 6,5 milhdes de casos provaveis de dengue e 6.297 6bitos (o maior da série histérica), o
que representa um aumento de 400% em relacdo ao ano de 2023 (Ministério da Satide — Brasil,
2024a)). Isso fez com que o niimero de 6bitos por dengue em 2024 superasse a quantidade de
ébitos por COVID-19 no mesmo ano(Ministério da Satde — Brasil, 2025a]). Portanto, dessa forma,
como constatado pelas autoridades sanitérias, o Brasil tem enfrentado consecutivas epidemias
de dengue ao longo dos dltimos trés anos (2022, 2023 e 2024) (Ministério da Satide — Secretaria

de Vigilancia em Satide e Ambiente, 2024)). Por fim, somente até a 272 semana epidemiolégica de
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2025, ja foram notificados mais de 1,6 milhdes de casos provaveis de dengue com 1.420 ébitos
ao total, além de mais de 3.900 casos de Zika e cerca de 109 mil de Chikungunya (Ministério
da Satide — Brasil, [2024a)).

Ante esse cenario, os sistemas de vigilancia provém meios capazes de se detectar, com
antecedéncia, o surgimento de novos surtos de doncas transmitidas pelo vetor. Por um lado,
a vigilancia epidemiolégica estuda, entre outras coisas, o processo da salde-doenca na soci-
edade (FILHO; ROUQUAYROL, [1992)), de modo a tratar-se da observacdo sistemética e ativa
de casos suspeitos ou confirmados de doencas transmissiveis e suas causas. Tal abordagem,
entretando, configura-se como um método tardio, pois suas acdes visam primeiro conhecer
fatores determinantes na satde coletiva ou individual, para s6 entdo adotar acdes de controle
dessas doencas (ACOSTA, 2016). Por outro lado, a vigilancia entomolégica abrange escolha,
coleta e acompanhamento de dados de indicadores eleitos associados ao vetor de doencas com
o objetivo de determinar mudancas na distribuicao geografica de um espaco, no sentido de se
obter dados da populacdo do mosquito ao longo do tempo numa dada regiao, além de fornecer
informacdes que deém suporte a oportunas tomadas de decisdo no ambito de programas de
combate ao vetor. (ORGANIZATION et al., 2016).

A vigilancia entomoldgica faz uso de duas técnicas, a saber: Pesquisa larvéria e vigilancia
pela presenca de ovos em ovitrampas. A primeira consiste na busca de larvas de mosquitos em
recipientes com agua, e em levantamentos quantitativos a partir desses dados. Por outro lado,
a segunda, trata-se de contagem de ovos do mosquito depositados em armadilhas especiais
chamadas ovitrampas.

Nesse contexto, ovitrampa consiste numa armadilha de deposicdo de ovos do mosquito
(ou ovoposicdo) e é formada por um recipiente cilindrico preto abastecido de agua de torneira
no seu interior, tendo nele fixado um substrato de ovoposicdo, na forma de uma palheta
de superficie dspera que serve para deposicdo de ovos pela fémea adulta do mosquito. Essa
técnica possibilita, através da contagem de ovos de Aedes aegypti nas palhetas de ovitrampa,
a geracdo de inferéncias acerca da densidade do vetor em regides especificas antes que seu
adensamento populacional resulte no aparecimento de doencas relacionadas. Desenvolvida nos
Estados Unidos, em estudos partir de 1965 (FAY; PERRY et al., 1965} |FAY; ELIASON et al., (1966)),
tal ferramenta vem, desde entdo, sendo amplamente utilizada em vaérias partes do mundo,
(PERICH et al., |2003)), também sendo mais encontrada na literatura, além de aplicada por
municipios no Brasil, por recomendacdo do Ministério da Salde.

Desta forma, a metodologia de implementacdo de ovitrampas envolve como etapa indis-
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pensavel a contagem manual de ovos de Aedes aegypti para a obtencao de indices de ovos.
Estes indicadores (e a precisdo deles) sdo cruciais para, no ambito da vigilancia entomoldgica,
realizar o monitoramento periédico, a obtencao de informacdes sobre a infestacdo dos mosqui-
tos de forma oportuna para direcionar acoes de controle vetorial a partir do bloqueio de focos.

Também, a implementacdo e avaliacdo de tecnologias de controle, como o uso de |[Estacao

[Disseminadora de Larvicida (EDL), do método Wolbachia e da[Técnica do Inseto Estéril por|

Irradiacdo (TIE)| e visita de casa em casa em dreas prioritarias dependem obrigatoriamente da

prévia aplicacdo de ovitrampas (Ministério da Satde — Brasil, 2025d)).

Entretanto, métodos tradicionais de contagem manual, visual e n3o-automatica sao fre-
quentemente sujeitos a erros e vieses, além de serem laboriosos, tediosos e demorados e
poderem levar ao acimulo de palhetas (MAINS; MERCER; DOBSON, 2008), o que, em dltima
instancia, pode atrasar o monitoramento e acGes de controle vetorial. Desta forma, diversos
métodos de contagem automatica tém sido estudados na literatura com vistas a acelerar o
tempo de contagem e obter performance satisfatéria e indicadores fidedignos de forma tem-
pestiva e menos laboriosa. Entao, métodos de contagem automatica de ovos do Aedes aegypti,
além de aumentar a confiabilidade da anélise, podem favorecer a tomada de acGes de controle
em tempo habil para evitar surtos da doenca.

Outrossim, esta contagem automdtica apresenta desafios peculiares que envolvem o uso
de dispositivos de captura, geralmente custosos, baseados em componentes eletronicos para
auxiliar na captura como, uso de sistemas de iluminacao, para assim, obterem-se imagens
digitais para contagem automatica. Também a contagem automatica a partir de imagens é,
em si, desafiadora e alvo de pesquisas ao longo dos anos, a exemplo de (SANTOS et al., 2008;
FEITOSA et al., 2015; [SILVA, 2021; |VICENTE et al., 2024), com limitacdes e pontos de melhoria
ainda observados, como, a captura redundante de regides da palheta pelo dispositivo de cap-
tura, o aumento expressivo de erro de contagem em imagens ruidosas, bases de validac3o final
da solucdo com poucas imagens, dentre outros. Nesse sentido, atualmente, hd a necessidade
do desenvolvimento de uma metodologia de contagem que envolva, tanto o uso de dispositivos
eficientes, mas também de baixo custo, facil transporte e manuseio, como também o uso de
métodos computacionais mais eficientes, do estado da arte, a exemplo de modelos baseados
em Transformers, além da aplicacdo de mecanismos de attention para contagem de automa-
tica de ovos de A. aegypti em palhetas de ovitrampas, para tornar, por fim, mais célere o
monitoramento e aplicacdo de acdes de controle no ambito da implementacdo da vigilancia

entomoldgica.
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A luz disso, este trabalho ocupa-se de desenvolver dispositivo eficiente de baixo custo e de
facil uso operacional para captura de imagens em palhetas de ovitrampa, aliado a criacdo de
uma base de tamanho expressivo, além do uso de métodos de inteligéncia computacional para
o reconhecimento de ovos de A. aegypti em palhetas de ovitrampa com performance signifi-
cativa, em especial de redes neurais de restauracao de imagens degradadas, como o MPRNet,
modelos de deteccdo de objetos baseados em Transformers, como RF-DETR. Estas ferramen-
tas propostas visam auxiliar na aplicacao da metodologia do uso de ovitrampas e contribuir
para a celeridade na obtenc3o de indicadores precisos, que por sua vez, no ambito da vigilancia
entomoldgica, servem de base para o direcionamento de acGes efetivas no monitoramento e

controle do mosquito vetor de doencas como Dengue, Zika e Chikungunya e febre amarela.

1.1 ORGANIZACAO DO DOCUMENTO

Este documento esta posto estruturado da seguinte forma: O capitulo 1 contém a introdu-
cdo e relata os objetivos deste trabalho. No capitulo 2, esta contida a fundamentacao tedrica,
onde sdo expostos os conceitos a serem tratados noutros capitulos. O capitulo 3 apresenta
os trabalhos relacionados a contagem automatica de ovos de Aedes aegypti. Por sua vez, o
capitulo 4, apresenta a metodologia empregada neste trabalho e no capitulo 5 sdo expostos

os resultados. No capitulo 6, é feita a conclusao e relato de trabalhos futuros.

1.2 OBJETIVOS

O objetivo geral desta pesquisa é propor uma metodologia de contagem automatica de
ovos de Aedes aegypti em ovitrampas a partir de imagens obtidas por smartphone, aliada ao
uso de dispositivo de captura de baixo custo.

Para alcancar este objetivo, seguem-se os objetivos especificos:

a) Definir um protocolo de contagem automatica que envolva captura de imagens de pa-

lhetas com smartphone e ferramentas de baixo custo e de facil manuseio operacional;

b) Desenvolver um dispositivo de baixo custo para auxiliar a captura adequada de imagens

em palhetas de ovitrampa que resolva problemas comuns apontados na literatura;

c) Criar uma base de dados a partir de palhetas de ovitrampa capturadas usando a meto-

dologia definida e dispositivo de captura de baixo custo;
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d)

1.3

Treinar modelos de deteccdo de objetos do estado da arte para a tarefa de reconheci-

mento de ovos de Aedes aegypti usando a base de dados criada;
Tratar imagens ruidosas com técnicas de processamento de imagens;

Lidar com imagens degradadas e de baixa resolucao usando rede neural de restauracao

de imagens;

Testar o desempenho dos modelos de contagem de ovos de A. aegypti em palhetas

contadas por técnicos da |[Fundacdo Oswaldo Cruz (Fiocruz)| em Pernambuco.

PRINCIPAIS CONTRIBUICOES

Definicao de um protocolo de contagem de ovos de A. aegypti de melhor uso operacional

e de baixo custo;

Criacdo de um dispositivo de captura de baixo custo que possibilita a captura de imagens
da superficie de uma palheta de ovitrampa com iluminacao adequada e de forma a evitar

sobreposicdo de regides da palheta (redundancia de captura);

Criacdo de uma base de dados de imagens de palhetas de ovitrampa para treinamento

de modelos de aprendizagem profunda;

Testar técnicas de processamento de imagens e rede neural de restauracdao de imagens

para lidar com imagens de palhetas com ruidos;

Aplicar redes neurais do estado da arte voltadas a deteccdo de ovos de A. aegypti, como
D-FINE, RF-DETR e da série de modelos YOLO num protocolo de contagem de baixo

custo e relacionado a imagens de baixa resolucdo capturadas por smartphone.
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2 FUNDAMENTACAO TEORICA

2.1 O MOSQUITO AEDES AEGPYPTI

Ao longo da histéria, a espécie humana tem ocupado espacos que ja eram habitat de varias
outras espécies, o que pode causar, tanto a extincdo das espécies que tiveram seus habitat
invadido, como também causar o comensalismo. Nesse Gltimo caso, as espécies nao humanas
permanecem se reproduzindo em territérios ocupados pelo homem e, tratando-se de espécies
de insetos que se alimentam de sangue de animais vertebrados (preferencialmente humano),
essa combinacdo pode gerar consequéncias graves (POWELL; TABACHNICK| 2013)).

Uma vez que insetos transmissores de doencas humanas sao participes dessa domesticacao,
de modo a viverem em proximidade com humanos (antropofilia), ocorre uma mudanca na
preferéncia da fonte de sangue, deixando de ser de fonte animal (zoofagia) para ser de fonte
humana (antropofagia). Tal permuta, faz com que humanos sofram com doencas infecciosas
antes restritas aos animais. Isso acarreta também que, os insetos vetores de doencas passar a
ser espécies invasoras, de modo que, ndo sé passam acompanhar o homem em seu domicilio e
peridomicilio, como também ser espalhados por ele a medida em que o homem ocupa outros
espacos geograficos (LOUNIBOS, 2002).

Nessa circunstancia, insere-se o mosquito Aedes aegypti (“odioso do Egito"), vetor de
doencas como febre amarela, dengue, chikungunya e zika (Ministério da Satide — Brasil, 2023)).
Descrito cientificamente pela primeira vez em 1757 por Fredrik Hasselgvist (HASSELQUIST),
1757) como Cullex aegypti (GARCES-AYALA et al., [2014)), é de origem africana e, com menos
de um centimetro de comprimento, é menor do que mosquitos comuns, sendo caracterizado
pela sua cor preta com listras brancas no tronco e nas pernas e asas translicidas, além de
ruido praticamente inaudivel aos humanos ao voar.

Enquanto que o mosquito macho alimenta-se apenas de frutas, a fémea, porém é hematoé-
faga, de maneira que, apds a cépula, precisa alimentar-se de sangue como fonte de proteina
para realizar a maturacdao completa de seus ovos. Durante seu tempo aproximado de vida de
trinta dias, pode dar origem a cerca 1.500 mosquitos. Apds a fecundacdo e postura dos ovos,
inicia-se o ciclo de vida do Ae. Aegypti, o qual, apés a eclosao do ovo, atinge a fase adulta
em cerca de dez dias (CRUZ, 2022b)).

Cada mosquito fémea poe entre 150 a 200 ovos, os quais inicialmente sdo de cor branca,

tornando-se pretos e brilhantes ao passar do tempo, como mostra a Figura (MUNDIM-POMBO



| 26

, . Possuem menos de 1 mm de comprimento e cerca de 0,2 mm de largura, e sdo
depositados pelo mosquito em criadouros naturais ou artificiais, de modo a ficarem a milimetros
de distancia de agua parada e limpa. Apds cerca de 15h, adquirem resisténcia a secura, de
modo que podem suportar até cerca de 450 dias sem contato com agua (CRUZ, [2022a)). Apés
ocorrer contato com agua, os ovos eclodem em pouco menos de 30 min, e entre sete e nove

dias tornam-se mosquitos adultos, tendo passado pelas suas quatro fases: Ovo, larva, pupa e
adulto (SANTO, [2025)).

Figura 1 — Ovos de Aedes aegypti

Fonte: (MUNDIM-POMBO et al., [2021])

Uma vez infectado com os virus, o mosquito adulto fémea transmite o virus por toda vida
e, é possivel que pelo menos uma parte de seus descendentes ja nascam portadores do virus
(SANTO, 2025)). Em adicdo a isso, em cada ciclo de reprodutivo, a fémea pode depositar cerca

de 100 ovos; isso pode ocorrer a cada quatro dias, o que favorece a proliferacao do virus

(Ministério da Satde — Brasil, 2025b)).
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2.1.1 Doencas relacionadas
2.1.2 Dengue

E uma doenca causada pelo virus da dengue (DENV), que possui quatro sorotipos: DENV-
1, DENV-2, DENV-3 e DENV-4. Os sorotipos sdo variacdes do mesmo virus e, mesmo perten-
cendo a mesma espécie, distinguem-se entre si quanto a sua composicdo antigénica (Ministério
da Satide — Brasil, 2025¢).

Estima-se que ha cerca de 390 milhGes de infeccGes anualmente ao redor do mundo. A
doenca ocorre em lugares como, na América do Sul, Central, nordeste da Asia e Pacifico Sul
e é transmitida pela picada do Ae. aegypti e tem histérico consideravel de epidemias no Brasil
(KAUFMAN, 2019).

E importante salientar que o mosquito é infectado pelo virus apés sugar o sangue de um
humano infectado com a dengue (no curto periodo em que o humano tem o virus circulando
em sua corrente sanguinea) e, s entdo, depois de cerca de 10 a 12 dias, o mosquito se torna
infectivo, portanto transmissor da doenca (Instituto Oswaldo Cruz — Fiocruz, [2025]).

Apos cerca de 5 a 8 dias, os sintomas da doenca manifestam-se, quais sejam febre, erupcao
cutanea, dor de cabeca severa, dor nas articulacoes e nos miusculos, dentre outros sintomas
(KAUFMAN, [2019)). Inclusive, a palavra “dengue” é de origem espanhola e significa “manha”,
“melindre” e faz referéncia ao estado em que o infectado se encontra, devido aos sintomas
(Secretaria de Estado da Satide do Espirito Santo, [2015]).

Ainda, o infectado pode se recuperar da doenca em cerca de uma semana, porém, a doenca

pode ser severa nos casos de Dengue Hemorragica e causar até dbito (KAUFMAN| 2019).

2.1.3 Chikungunya

Causada pelo virus chikungunya (CHIKV), é uma doenca febril aguda, transmitida pelo
Ae. aegypti e Aedes albopictus, conhecido como muricoca. Foi primeiramente descoberta em
1952 no Planalto de Makonde (hoje, Tanzania), no leste da Africa. A palavra “chikungunya”
signfica “aqueles que se dobram”, de modo a fazer referéncia as dores articulares causadas
pela doenca (Agéncia Fiocruz de Noticias, [2023; BARTHOLOMEEUSEN et al., 2023).

Quanto aos sintomas, a doenca acomete as articulacdes, de modo que é potencialmente

debilitante, dada a intensidade e cronicidade do quadro de dor (ESPORCATTE; PORTES, 2019).
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Apds o periodo de incubacdo do virus (3 a 7 dias), a maioria dos pacientes sofre com dor em
multiplas articulagBes (poliartralgia), além de dor muscular (mialgia), que podem ser cronicos
(THIBERVILLE et al., 2013; BARTHOLOMEEUSEN et al., 2023)).

Ainda, a doenca pode progredir em trés fases: aguda, com duracdo de sete até 14 dias;
subaguda, que permanece até trés meses e, por fim, cronica, em que os sintomas duram mais
de trés meses (MARQUES et al., 2017)).

No caso da chikungunya, a incidéncia de pacientes que precisam de atencao médica é
maior, em relacdo a outras arboviroses comuns. Ainda apés a fase aguda, alguns pacientes
pode ocorrer reincidéncia da doenca (recidiva), persistente dor em uma ou mais articulacdes
(artralgia) ou dores musculoesqueléticas (THIBERVILLE et al., 2013). Inclusive, a artralgia pode
perdurar por até trés anos (SCHILTE et al., 2013).

Nos casos graves, a doenca pode causar encefalite, miocardite, hepatite e faléncia malti-
pla de érgdos. Afora, o acometimento neuroldgico pode causar convulsdes, alteracao mental,
paralisia facida, de maneira que pode culminar na morte do paciente (SINGH et al., 2008} RA-
JAPAKSE; RODRIGO; RAJAPAKSE, 2010). Ainda, também a doenca tem um efeito expressivo
na saude e qualidade de vida de individuos que ja possuem doencas crbnicas, de maneira a
resultar também, em prejuizos econdmicos, em especial em paises emergentes (THIBERVILLE

et al., 2013).

214 Zika

O Zika virus (ZIKV) é um flavivirus, que, a propésito pertence a familia dos virus da
Febre Amarela, Dengue e Chikungunya. E transmitido vetorialmente através da picada do
Ae. aegypti ou do Aedes albopictus, também por meio de relacdes sexuais sem protecao com
pessoas portadoras do virus, transfusdo de sangue e transplante de 6rgaos, também de pessoas
portadoras da doenca. Ainda, a transmissado se da vetorialmente, de mae para filho, durante a
gestacdo ou no momento do parto (ANTONIOU et al., [2021; VIVEIROS et al., 2025)).

Assim, infeccoes pelo ZIKV tém sido reportados desde os anos 1950 em varios paises do
continente africano e desde 1966 na Asia. Contudo, a partir de 2015, a doenca se espalhou
pelas Américas, com o pico de 500 mil infectados. Alcancou a Europa em 2019 e india em 2021
(World Health Organization, 2022; JONG; GROBUSCH, 2025). Em dezembro de 2023, ja haviam 91
paises ou territdrios com casos ja registrados de infeccdo por virus Zika (RABE et al., 2025).

Os casos de infeccdo pelo ZIKV s3o, em sua maioria, assintomaticos ou com sintomas leves.
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Entretanto, quando ha, entre os sintomas estdo: Erupcdes cutaneas, dor de cabeca, febre, dor
nas articulacdes, conjuntivite. Podem ser observados ainda, vomitos, diarreia, edema, dor
abdominal, dentre outros sintomas, a exemplo da pressdo intraocular.

Para além disso, destaca-se que, apesar de atingir uma parte menor no conjunto de in-
fectados, as queixas clinicas neurais ou graves podem também ocorrer, de maneira a causar
danos ao desenvolvimento neurolégico (FACCINI et al., [2022; VIVEIROS et al., 2025).

Entretanto, apesar do risco de doenca virus Zika grave em adultos ser baixo, de modo a
causar poucas mortes, a transmissdo vertical, de mae para filho, tem um enorme impacto em
questdes de satde, devido ao fato do nascimento de bebé&s com microcefalia. Nessa perspectiva,
o termo Sindrome Congénita do Zika descreve os casos de recém-nascidos afetados pela
combinacdo de microcefalia com outras anomalias de desenvolvimento (PEREIRA et al., | 2020;
GIRALDO; GONZALEZ-OROZCO; RAJSBAUM, 2023).

Inclusive, em 2015 e 2016, houve o maior surto de virus Zika ja observado, além de estar
associado a anomalias graves no desenvolvimento do sistema nervoso central em fetos. Nesse
periodo, houve um aumento do nimero de bebés com microcefalia potencialmente associado

ao surto de ZIKV (LEBOV et al., [2023).

2.2 SISTEMAS DE VIGILANCIA

No contexto de Sistemas de Vigilancia, a vigilancia epidemioldgica proporciona a obser-
vac3do sistemética e ativa de ocorréncia de doencas e de infectados, o que é uma vigilancia
de pessoas. Assim, é um método tardio para detectar epidemias. Por outro lado, a Vigilancia
Entomoldgica envolve atividades referentes a fatores de riscos bioldgicos, baseados na coleta
e tratamento de dados referentes ao vetor de doencas. E observada a periodicidade na co-
leta desses dados, de maneira a se ater a intervalos pré-definidos para se obter indicadores

escolhidos (MARTINEZ; LEGALL, (1998).

2.2.0.1 Vigilancia Entomoldgica

Haja vista a rapida ascencdo de doencas transmitidas por mosquitos, como é o caso da
dengue, Chikungunya e Zika, além do alto porcentual de infeccdes, a Vigilancia Entomoldgica
é aplicada por governos na forma de planos de acdo para combater essas doencas, na deteccdo,

controle e, quando possivel, erradicacdo dos vetores (VILLA|, 2020). Assim, a Vigilancia Ento-
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moldgica do Ae. aegypti é uma ferramenta empregada para monitorar, de maneira tempestiva
e permanente, a presenca dos vetores de doencas, seus principais criadouros, bem como a
distribuicao geografica deles no territério. A propoésito, tem sido aplicados no Brasil, sistemas
de Vigilancia Entomolégica, complementados com uso de Sistemas de Informacio Geografica
para auxilio na tomada de decisGes e controle do vetor (EIRAS; RESENDE, [2009; PEPIN et al.,
2013).

Adicionalmente, recomenda-se realizar pelo menos um levantamento de indice larvario

— |Levantamento de Indice Amostral (LIA)| ou [Levantamento Rapido de Indices para Aedes|

laegypti (LIRAa)| Entretanto, é importante realizar a anélise dos dados considerando-se tam-

bém distintas metodologias de levantamento entomolégico, haja vista os indices estimados
pelo [LIRAa)/LIA| representarem um retrato momentaneo, de maneira a apresentarem varia¢des
nos niveis de infestacdo e dos tipos de recipientes predominantes, devido a diferentes peri-
odos do ano em que sdo realizados, principalmente por conta das variacdes climaticas. Por
certo, ainda, podem ser empregados métodos complementares, tais como contagem de pupas
e coleta de mosquito adultos.

Nesse interim, para aplicacdo das demais técnicas de controle do vetor, o emprego de
ovitrampa constitui-se num critério obrigatério para a caraterizacdo do territério, com vistas
a implementacdo e avaliacdo das outras tecnologias de controle, como o uso do método
Wolbachia, uso de [EDL] e inseto estéril por irradiacdo. Assim, o Ministério da Satide preconiza
que a vigilancia entomoldgica seja realizada por meio de ovitrampas, para todos os municipios
brasileiros, estando infestados ou n3o, com monitoramento periédico, com uma distribuicao

ampla por todo o territério urbano ou em locais estratégicos (Ministério da Satde — Brasil, [2025d)).

2.2.0.2 Ovitrampa

E uma armadilha utilizada como substrato de ovoposicdo, isto é, deposicdo (coleta) de
ovos de Ae. aegypti ou até mesmo do Ae. albopictus. E constituida por um vaso de plastico
preenchido com agua, uma palheta de madeira, um clipe de metal, o qual prende a palheta ao
vaso. A superficie aspera da ovitrampa é voltada para o interior do vaso.

O vaso de plastico na cor preta, funciona como um depésito de dgua e possui capacidade
para 1L; apesar disso, a quantidade de agua é limitada a 500 ml por um orificio realizado na
lateral do vaso, o qual limita a quantidade de agua. A palheta com dimensdes préximas de

15 por 1,5 cm colocada e presa ao vaso pelo clipe, é feita de madeira aglomerada, do tipo
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Eucatex® (Eucatex S.A. Industria e Comercio) e sobre sua superficie dspera, o mosquito fémea

deposita seus ovos, como se vé na Figura . Podem ser acrescentados, na dgua, atrativos ao

mosquito fémea, como levedo de cerveja (Ministério da Satide — Brasil, [2025d)).

Figura 2 — Ovitrampa

Fonte: (IMinistério da Salde — Brasi||, |2025d|)

Assim, o uso dessas armadilhas constitui-se num método sensivel, de baixo custo e facil

manuseamento em campo para detectar a presenca do vetor e guiar as acdes subsequentes,

como o levantamento de indices de ovos, seguido de a¢ces posteriores (BRAGA et al., 2000).

Ademais, ao contrério dos indices estimados pelo [LIRAa)/|LIA, que oferecem um retrato

momentaneo, o monitoramento por ovitrampa fornece indices de ovos de maneira periddica.
Estes indices podem indicar um nivel maior de infestacdo por conta da alta sensibilidade que

a ovitrampa apresenta.

2.2.0.3 Monitoramento

Desta feita, as ovitrampas sdo distribuidas obedecendo a um raio de distancia de 300 ou

400m uma da outra, considerada a capacidade operacional do local. Isto feito, o monitoramento
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em areas prioritarias é feito semanal ou quinzenalmente, enquanto que, nas demais areas
monitoradas, é mensal, a depender também da capacidade operacional.

A partir da aplicacao, coleta e transporte e contagem de ovos de ovitrampa, sdo levan-

tados indicadores entomolégicos, quais sejam: |Indice de Densidade de Ovo (IDO), [indice de]

IPositividade de Ovo (IPO)| e |indice de Densidade Vetorial (IDV). O|IDO| indica a quantidade

média de ovos por ovitrampa positiva (que contém ovos). E obtido a partir da divisdo do
namero geral de ovos pela quantidade de armadilhas positivas. Por outro prisma, o [[PO] obtém
o porcentual de armadilhas positivas em relacdo ao total de armadilhas. Por fim, o [[DV] indica
a média de ovos por armadilhas em geral (positivas ou ndo). Obtém-se através da divisdo do
numero geral de ovos pela quantidade total de armadilhas examinadas, contendo elas ovos ou
ndo (Ministério da Satide — Brasil, 2025d)).

Este monitoramento, feito em continuidade por no minimo trés meses, é requisito para
a implementacao de outras tecnologias no combate ao vetor, a exemplo de uso de estacoes
disseminadoras de larvicidas, a liberacdo de mosquitos com a bactéria Wolbachia, bem como

também da liberacdo de mosquito estéril por irradiacao.

2.2.04 Contagem manual de ovos de A. aegypti

A fidelidade desses indices de ovos supracitados é determinante para a correta aplicacao
das posteriores acdes de controle vetorial e mobilizacdo da sociedade, bem como da tomada de
decisdes de controle e prevencao e definicdo de estratégias de combate por parte dos gestores.
Uma vez que as ovitrampas sdo instaladas, distribuidas, recolhidas e, por fim, transportadas
para o laboratério, é feita a contagem dos ovos (Ministério da Satde — Brasil, [2025d)).

A contagem é realizada manualmente por um técnico treinado que utiliza um microscépio
estereoscopio (lupa). Desta forma, a quantidade de ovos é contada e as palhetas contendo
ovos sdo consideradas positivas e as que n3o tém, negativas (lInstituto Oswaldo Cruz — Fiocruz,
2024). Ovos inviaveis, isto €, secos ou ja eclodidos sdo desconsiderados da contagem.

E recomendado que contagem de ovos seja feita sequencialmente por campos da palheta,
fazendo-se uso de um lapis ou de uma lamina de microscopia para delimitacdo das regides,
visando evitar a leitura de regides ja consideradas na contagem e, assim, obter uma leitura
equivocada. Para tanto, pode-se adotar a marcacao com lapis dos campos ja lidos para evitar
a contagem de campos repetidos.

Com isso, a implementacdo da Vigilancia Entomolégica na avaliacdo do controle do Ae.
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aegypti pode ser limitada, devido a falta de indicadores confiaveis e praticos. Nesse sentido, a
contagem de ovos do vetor é determinante para o emprego mais efetivo de acoes subsequentes

de controle do mosquito (SCOTT; MORRISON| 2009; SCOTT; MORRISON, [2010; BARRERA, |2016)).

2.3 PROCESSAMENTO DE IMAGENS

Uma imagem é definida como uma funcdo bidimensional, f(x,y), em que = e y s&o
coordenadas espaciais, e a intensidade (ou nivel de cinza) é a amplitude de f em qualquer
ponto f(x,y) no plano (GONZALEZ; WOODS, 2015). Quando tanto x, y quanto os valores
de intensidade sao quantidades finitas e discretas, tem-se uma imagem digital. Ou seja, uma
imagem digital é uma representacdo concreta de objetos do campo visual com informacdo
espacial (/ayout) e intensidade (cores ou tons de cinza). Nesse cenério, cada ponto da imagem
é chamado de pixel (PETERS, 2017)).

Outrossim, uma imagem binaria é formada somente por pixels de intensidade 0 (preto) ou
1 (branco). Ja uma imagem em escala de cinza é representada por uma funcdo de intensidade

de luz, com coordenadas z, y e contém pixels visiveis como preto, branco ou cinza (cores
intermedidrias entre preto e branco). J4 a imagem colorida (como com o sistema
possui, para cada ponto (z,y), um array 1 x 3, em que cada elemento desse
array refere-se a um canal de cor (vermelho, verde e azul) e indica o nivel de brilho de cada
cor. Portanto, trata-se de uma imagem multidimensional com trés canais (PETERS, 2017).

A area de Processamento Digital de Imagens refere-se ao estudo de informacdo de imagens
digitais, manipulacao, extracao de caracteristicas, descricao e visualizacdo, ou seja, abrange
(n3o0 sb) processos cujas entradas e saidas sdo imagens, mas também extracdo de atributos
de imagens até o reconhecimento de objetos individuais (GONZALEZ; WOODS, 2015)).

Uma vez que este campo envolve processamento de imagens digitais por um computador
digital, logo, esta area esta associada diretamente ao computador, uma vez que imagens digitais
necessitam, tanto de capacidade de armazenamento e desempenho computacional (PETERS,
2017). Quanto aos processamentos aplicados, pode resumir-se em trés niveis: Baixo (como
o pré-processamento para reduzir o ruido), médio (a exemplo da segmentacdo e descricdo) e
alto, que envolve “dar sentido” a objetos reconhecidos através da anélise de imagens (PETERS,
2017).

Processamento de Imagens envolve um conjunto de metodologias, como: Aquisicao de

imagens, realce de imagens, restauracdo de imagens, processamento de imagens coloridas,
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processamento morfolégico, segmentacdo, reconhecimento, entre outras. No entanto, a defi-
nicdo e emprego de quais metodologias é orientada ao problema, de modo que, para uma dada
aplicacdo ou sistema de processamento de imagens é possivel que nem todos os passos sao

requeridos (GONZALEZ; WOODS, 2015)).

2.3.1 Realce de Imagens

A partir do plano ou dominio da imagem, pode ser aplicado processamento espacial, cujas
categorias principais sao: Transformacdo de intensidade e filtragem espacial. Aquela lida de
forma individual nos pixels de uma imagem para manipulacdo de contraste e limiarizacao,
por exemplo. Esta, porém, trata de operacoes como o realce de imagens e distingue-se por
envolver em seu processamento os pixels vizinhos (SOLOMON; BRECKON, [2011)).

Neste sentido, Realce de Imagens é a aplicacao de técnicas de manipulacdo de imagem
para torna-la mais adequada ao dominio especifico de um problema; assim, é, por natureza,
orientada ao problema (PRATT, 2007)). Em outras palavras, significa tornar a informacdo con-
tida na imagem mais visivel (NDE-Ed, 2000). Sendo desta forma, a priori, o observador é quem
avalia o éxito da aplicacao do processamento. Em outros casos, porém, no contexto de uma
aplicacao de computacional de reconhecimento de objetos, por exemplo, a definicao do melhor
realce estd associada ao sucesso na taxa de deteccdo do sistema, por exemplo. Ou seja, o a
melhor técnica é a que resulta em melhor reconhecimento de objetos por parte da aplicacdo

(GONZALEZ; wOODS, 2015)).

2.3.2 Color Jitter

E uma técnica aplicada para simular diferentes variacdes de ambiente e de iluminacio numa
imagem, através da alteracdo de propriedades de cor de uma imagem. A exemplo de alteracoes
aleatérias no brilho, contraste, saturacdo ou matiz de uma imagem (PYTORCH, 2025a). No
contexto de Data Augmentation, quando se pretende aumentar um conjunto de dados, pode ser
aplicada (em conjunto com outras técnicas existentes) para aumentar a diversidade dos dados
de um modo mais natural (ZENG et al.,, 2023). As transformacdes de intensidade propostas
nesta técnica podem realcar os ovos de A. aegypti na superficie das palhetas de ovitrampa,

promovendo uma melhor separacao visual entre objeto de interesse e background.
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2.3.3 Processamento de histograma

O histograma de uma imagem exibe a frequéncia relativa de ocorréncia dos valores de
intensidade dos pixels em relacdo aos valores em si. S3o definidos intervalos de intensidade,
chamados bins e assim, as intensidades sdo agrupadas em cada bin (PETERS| 2017)).

Entdo, a partir do histograma de uma imagem, podem ser aplicados diversos processamen-
tos espaciais no ambito da manipulacdo de histograma com intuito de realcar imagens; entre
eles estdo o alargamento de contraste, equalizacao de histograma, especificacao de histograma

e equalizacdo adaptativa (OPENCV, 2025a).

2.3.4 Equalizacao de Histograma

No contexto das técnicas de processamento de histograma, a equalizacao de histograma
é uma técnica que uniformiza a distribuicao dos niveis de intensidades dos pixels presentes na
imagem, de modo a obter uma imagem de saida cujos valores do histograma sejam mais bem
distribuidos ao longo das intensidades possiveis da imagem.

Para tanto, baseia-se no histograma da imagem de entrada e lida com diversos cenérios.
Entre os casos, estdo: Imagens escuras, quando os componentes do histograma estdo concen-
trados no nivel inferior; imagens muito claras, quando os componentes estdo abundantes do
lado direito ou, por fim, quando as intensidades estao estreitas num intervalo curto, o que
produz imagens de baixo contraste (histograma estreito). Estes casos, sdo alguns dos exem-
plos de problemas que podem ser tratados com equalizacdo de histograma. Objetiva-se atingir
uma imagem de alto contraste em que seja exibida uma variedade uniforme de tons (GARG;
JAIN, 2017)). Em imagens de palhetas de ovitrampa, onde é comum naturalmente haver baixo
constraste (especialmente regides muito escuras), esta transformacdo torna-se promissora para
distribuir de forma mais equanime os niveis de intensidade na imagem e realcar sua superifie
e ovos contidos nela (MUNGRA et al} [2020; CHOWDHURY; LIU; RAMANNA, 2024} [SAIFULLAH;

DREZEWSKI, [2024)).

2.3.5 Contrast Limited Adaptative Histogram Equalization (CLAHE)

Uma das limitacoes da equalizacdo de histograma é que, por aumentar o constraste da

imagem, o constraste do ruido também é aumentado. Ante isso, O [Contrast Limited Adaptive
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[Histogram Equalization (CLAHE)| surge como uma extensdo adaptativa da Equalizacdo de

Histograma, acrescida da aplicacdo de um limiar de contraste (MUSTAFA; KADER), 2018). Esta
transformacao divide a imagem em regides chamadas tiles e aplica a Equalizacdo de Histo-
grama em cada uma delas. Em seguida, um clip limit (ou fator de contraste) pré-definido é
aplicado a cada histograma obtido e o excesso € redistribuido igualmente abaixo desse limiar.
Devido a isso, o contraste é limitado, o que impede a amplificacdo do ruido. A propésito,
esta caracteristica é promissora para o tratamento das imagens de palhetas, que naturalmente
possuem ruido visual devido a textura do material e a presenca de detritos, além dos proprios
ovos. Por fim, para reunir as regides outrora separadas, é aplicada Interpolacdo Bilinear (PIZER
et al,|1990) (MATHWORKS, 2024). Possui requisitos computacionais modestos e requer apenas

o fator de contraste como pardmetro de entrada (ZUIDERVELD, (1994)).

2.4 VISAO COMPUTACIONAL

No ambito da|Inteligéncia Artificial (IA)| espera-se que um sistema seja capaz de perceber

o ambiente a sua volta e tomar decisoes baseado em suas percepcoes. Dentro desse conjunto
de percepcdes possiveis, estd a percepcao visual e é nela que a visdo computacional esta
concentrada. Em outras palavras, é a ciéncia de perceber e compreender o ambiente através
de imagens e videos, de maneira a construir um modelo fisico desse ambiente e tomar acoes
apropriadas (ELGENDY, 2020). Assim , é um ramo da Inteligéncia Artificial e tem como obje-
tivo utilizar computadores para emular o sistema visual humano, de forma a aprender, ter a
capacidade de realizar inferéncias e agir com base nas informacdes visuais percebidas (GONZA-
LEZ; WOODS, 2015)). Distingue-se do processamento de imagens, por envolver o entendimento
do que acontece numa imagem, que é uma tarefa muito além do processamento (ELGENDY,
2020).Em outras palavras, é a ciéncia de entender ou manipular imagens e videos (SHANMU-
GAMANI, 2018)). Possui diversas aplicacdes, como realidade aumentada, direcdo auténoma,
inspecdo industrial, dentre outras (SHANMUGAMANI, 2018).

Baseada no sistema visual humano, objetiva reconstruir e interpretar cenas naturais a
partir de imagens (SZELISKI, 2022). Em alto nivel, o sistema visual humano assemelha-se ao dos
animais e consiste de um sensor (nesse caso, o olho) que captura a imagem; o cérebro processa
essa informac3o e a interpreta e, por fim, o sistema retorna uma predicao dos elementos da
imagem, baseado nos dados extraidos dela (ELGENDY, 2020). A Figura [3| sintetiza o sistema

visual humano aos agentes sensor e interpretador.
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Para observadores humanos, ao visualizar uma imagem ou cena contendo caes, a interpreta-
c3o e entendimento do cendrio sdo instantaneos; os componentes da imagem sao reconhecidos
e podem ser contados de maneira bastante espontanea. O reconhecimento de que na cena exi-
bida na Figura[3] ha cachorros sé é possivel porque o observador foi treinado ao longo de anos
a identificar cdes. No entanto, se esta fosse mostrada pela primeira vez a um humano, seria
necessario fornecer também a informac3o de que se tratam de cachorros. Este é o processo de
treinamento. Ao ver porém um outro animal, como um cavalo, o humano poderia julgar, pela
semelhanca, tratar-se de um cdo também. Ao receber a informac3do de que a identificacdo esta
errada e que trata-se de um cavalo, o cérebro ajusta seu aprendizado. Assim, de modo geral,
um cérebro é treinado a identificar classes de objetos em geral, bastaria adicionar mais classes
(ELGENDY, 2020)).

O mesmo, em alto nivel, acontece no treinamento de sistemas de visdo computacional
para aprenderem a identificar objetos. Enquanto para humanos, basta poucos exemplos para
aprender o padrdo, para computadores, sdo necessarias milhares e até milhdes (a depender
da complexidade) de imagens para aprender-se a identificar os objetos vistos no treinamento

(ELGENDY, 2020).

Figura 3 — Sistema Visual Humano
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Fonte: (ELGENDY} [2020))

Um aspecto importante em sistemas de visdo computacional consiste na escolha do melhor
sensor adequado ao problema para captura de dados do ambiente. Camera digital, radar, raio-
X, entre outros tipos, combinados ou nao, simulam o que é o olho humano e dos animais. Para
atuar como dispositivos de interpretacdo e fazer o que o cérebro faz, sdo usados algoritmos
de visao computacional, os quais, cumpririam o papel de cérebros artificias e serem capazes

de, receber os sinais obtidos pelo sensor, extrair caracteristicas, detectar padrdes e identicar
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objetos (ELGENDY, 2020). No caso do cérebro biolégico, a informacdo vinda de outro neurdnio
é recebida por um neurdnio através dos dendritos, passa por um fluxo interno ao neurénio e,
por fim, é externada para outro neurdnio, por meio das sinapses, como mostra a Figura [4] De
forma analoga, os neurdnios artificias possuem uma entrada, um processamnto interno e uma

saida de sinais (ELGENDY, 2020).

Figura 4 — Semelhancas entre neurdnios biolégicos e sistemas artificias
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Fonte: (ELGENDY} [2020))

Semelhante ao processamento pelo qual a informacdo passa no cérebro bioldgico, cada
neurdnio artificial, conectado a outros, ao receber uma quantidade suficiente de sinais de en-
trada, dispara um sinal para cada neurénio com qual estd conectado. Este fluxo individual
é tornado mais complexo, ao envolver, por exemplo, milhGes de neurdnios conectados entre
si. Ao ter diversas camadas de neurdnios, produz-se um comportamento de aprendizagem.

Ao criar-se uma rede de neurdnios artificias conectados e com varias camadas, como exem-

plifica a Figura [p| obtém-se uma [Rede Neural Artificial (RNA); desta forma, esta a se usar

Aprendizagem Profunda ou [Deep Learning (DL). Na figura, observa-se os neurdnios da ca-

mada de entrada (input), os neurbnios das camadas intermediarias ocultas (hidden layers) e

os neurbnios da camada de saida (output).

2.4.1 Aprendizagem Profunda

Aprendizagem profunda é um tipo especifico da [Aprendizagem de Maquina (AM)} que,

subsequentemente, é um campo da [JA] de modo que técnicas de [AM] influenciaram no de-
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Figura 5 — Rede Neural Artificial
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Fonte: (ELGENDY, [2020)

senvolvimento de algoritmos de aprendizagem profunda (GOODFELLOW; BENGIO; COURVILLE,
2016)).

Neste campo, ha o conceito elmentar de que um neurdnio artificial (ou perceptron) possui
entradas, realiza uma soma ponderada e retorna um resultado. Este modelo de arquitetura
que foi proposto inicialmente por (ROSENBLATT, 1958) é modelo mais simples de uma m
(GéRON, [2019)). No contexto da aprendizagem, a atribuicdo dos pesos do perceptron, que
vao influenciar na saida, é determinada durante o treinamento, tendo como base os dados de
treinamento utilizados (SHANMUGAMANI, 2018)).

Por principio, como mostra a Figura [6] as entradas passam por soma ponderada pelos
pesos weights. O perceptron aprende funcdes simples ao atualizar seus pesos de acordo com
os dados e este processo de aprendizagem é chamado de treinamento. Por fim, a saida, passa
para uma func&o de ativacdo (ou step function), que serve para introduzir ndo linearidade as
redes neurais e possibilita o aprendizado em cenarios complexos. Ainda, a funcao de ativacao
decide se o sinal do perceptron deve ser emitido ou passar para as seguintes camadas (/ayers)
(SHANMUGAMANI, [2018)).

Adicionalmente, o uso de perceptrons possui capacidade limitada, como apontado por
(MARVIN; SEYMOUR, [1969), a exemplo da resolu¢do trivial de problemas de “Ou Exclusivo”

(XOR). Entretanto, ao adotar o uso de multiplos perceptrons associados, estas limitaces sdo

resolvidas. Assim, |Multi-Layer Perceptron (MLP)| consiste numa camada de netrada, camadas

ocultas e uma saida. Cada camada é completamente conectada com a proxima e, a excessao
da camada final, possui um viés (bias), como exibe a Figura [7]

A luz do exposto, dadas estas bases, uma € uma colecao de perceptrons, conectados
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Figura 6 — Diagrama de Perceptron
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Figura 7 — Multi-Layer Perceptron
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entre si de maneira a formar camadas ocultas que, em decorréncia disso, formam a base nio
linear que mapeiam as camadas de entrada para as camadas de saida. A [RNA| faz, entdo,
um mapeamento entrada-saida, de forma que considera a soma ponderada das entradas e as

entradas dos vieses (bias). Por fim, chama-se arquitetura a estrutura geral da RNA e modelo

o conjunto de valores dos pesos e bias (ELGENDY, [2020)).

Isto dito, quando uma [RNA| é formada por uma pilha de camadas ocultas, passa a ser

chamada de Rede Neural Profunda ou |Deep Neural Network (DNN), nome que faz referéncia
3 profundiade da arquitetura do modelo, dado nimero de camadas ocutas (GéRON| 2019).

O processo de treinamento do modelo é o que determina os valores dos pesos e dos vieses.

No inicio do treinamento, esses valores s3o inicializados de forma aleatéria e ajustados ao

longo do treinamento com base numa funcao de erro. Ja o erro é calculado ao comparar-se a
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saida do modelo com a saida esperada, chamada de verdade fundamental (ground-truth), os
quais, na aprendizagem supervisionada, sdo fornecidos pelo supervisor que determina a saida
correta esperada.

Desta forma, o erro serve de base para ajuste dos valores do peso, de modo a refinar o
aprendizado do modelo. O treinamento é interrompido quando o erro ndo mais é reduzido
ou por vontade do humano que opera o treinamento do modelo, por meio de gatilhos no
algoritmo de treinamento. Desta forma, o modelo aprende as caracteristicas dos dados e
aprende a identificar padrdes.

No caso de imagens, digitais, o contelido basico é formado por pixels com features ele-
mentares, como, bordas, angulos, cor, forma e textura ou mais complexas como olhos, boca,
faces etc. (SZELISKI, 2022). Assim, as features representam as caracteristicas das imagens e
sdo utilizadas para aprendizado de caracteristicas durante o treinamento (SHANMUGAMANI,
2018).

O emprego de DL para visdo computacional pode ser dividido em vérias categorias de
tarefa: Classificacdo, deteccdo, segmentacdo e geracdo, tanto de imagens, como de videos

(SZELISKI, 2022).

2.4.2 Redes Neurais Convolucionais

Baseadas no cértex visual humano, as Redes Neurais Convolucionais ou [Convolutiona
[Neural Network (CNN)| assemelham-se a RNA| no sentido de possuirem pesos, viés, funcdo

de ativacdo e saida. Devido ao fato de imagens serem grandes, usar RNA| em imagens produ-
ziria uma arquitura com um ndmero muito expressivo de neurbnios, além de nao produzir o
aprendizado eficiente das features presentes na imagem (SHANMUGAMANI, [2018)).

A vista disso, a estrutura de uma imagem digital, como descrito na sec3o , uma imagem
é considerada um volume e possui dimensdes de altura, largura e profundidade; esta, inclusive,
associada a quantidade de canais da imagem, por exemplo: No sisetma de cores [RGB] a
profundidade da imagem seria 3 (SHANMUGAMANI, 2018)). Nesse sentido, os neurbnios da
[CNN]| sdo organizados também de forma volumétrica para tomar vantages a partir da imagem.
Cada camada transforma o volume de entrada num volume de saida.

A priori, o bloco basico de uma [CNN| é uma camada convolucional; cada neurénio da
primeira camada é concetado a apenas aos pixels em seu campo receptivo, ou seja, uma regiao

especifica da imagem. Assim, na segunda camada convolucional, cada neur6nio conecta-se da
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mesma forma a apenas uma regido. Essa arquitetura faz com que, nas camadas iniciais, a
rede concentre-se nas features de baixo nivel (genéricas, como bordas) e nas camadas finais,
nas de alto nivel (como faces). Essa estrutura é comum em imagens do mundo real e torna
apropriado o uso de [CNN]| (GéRON| [2019).

Ainda mais, as features sdo extraidas através dos filtros (ou kernels). Os valores desses
kernels sao aprendidos no treinamento. Os filtros deslizam sobre a imagem e realizam uma
operacdo de convolucdo, o que resulta num conjunto de mapas de ativaco (feature maps);
o objetivo é detectar padrdes e extrair features. Apés as camadas de convolucdo, as features
passadas para uma camada de neur6nios totalmente conectados e, por fim, para a camada de
saida, onde ocorre a predicdo. A Figura[§ exibe, em alto nivel a sintese da arquitetura de uma
[CNN| com amada de entrada, camadas convolucionais, uma camada totalmente conectada
(Fully connected layer e a camada de saida.

Figura 8 — Arquitetura em alto nivel de uma CNN
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Fonte: (ELGENDY} [2020))

Assim, Redes Neurais Convolucionais tém obtido dessempenhos consideraveis em cenarios

visuais complexos. Tarefas como conducdo autonoma, conducdo auténoma de veiculos, além

de tarefas como reconhecimento de voz ou |Processamento de Linguagem Natural (PLN)| sdo

algumas das tarefas possiveis por conta do uso dessas redes (GéRON, 2019)).

2.4.3 Modelos de Deteccao de Objetos

Classificacdo de imagens, deteccdo de objetos e segmentacdo semantica sao alguns exem-
plos de tarefas que envolvem o uso de [DL] para visdo computacional.
Classificacdo de imagens significa rotular ou classificar uma imagem com base num objeto

ou conceito presente nela (SHANMUGAMANI, 2018). A classificacdo atribui um rétulo a uma
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imagem com base num conjunto pré-definido de categorias, por exemplo, rotular uma imagem

em classes, como gato ou cachorro, a exemplo da Figura [9] (ELGENDY, [2020).

Figura 9 — Exemplo de Classificacdo de Imagens

Fonte: (SHANMUGAMANI, 2018])

Por outro lado, deteccdo de objetos envolve ndo somente classificar a imagem, mas também
localizar e detectar cada tipo de objeto nela presente, além de apresentar pontuacdes de
confianca (confidence scores para cada objeto. Ou seja, enquanto a classificacdo rotula a

imagem como um todo, a deteccao de objetos localiza a posicao de cada objeto e rotula cada

um (SHANMUGAMANI, 2018)). Assim, uma imagem pode contar multiplos objetos de diferentes

classes (ELGENDY, 2020)). Outras tarefas, como segmentacdo semantica, que classifica a nivel

de pixels e segmentacdo por instancia, que, além disso, individualiza objetos distintos (GéRON,
2019).
Portanto, deteccao de objetos objetiva classificar multiplos objetos numa imagem e atri-

buir caixas delimitadoras (bounding boxes) para cada objeto (GéRON, [2019)), como exibe a a
Figura |10, em que os objetos das classes “dog", “chair” e “person” sao localizados e rotulados.

Nesse tipo de tarefa, a arquitetura dos modelos de deteccao de objetos baseados em m
de modo geral, é composta por: Backbone, Neck e Head. O backbone, usado para extraciao

de caracteristicas da imagem, de modo a obter a imagem de entrada e obtém mapas de

ativacao da imagem. Geralmente, usam-se modelos de classificacdo com a dltima camada

fully connected removida. (JIAO et al., [2019). J& o head, propde e refina as classificacdes e

scores dos objetos, bem como, numa tarefa de regressdo, as caixas delimitadoras (bounding
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Figura 10 — Exemplo de Deteccdo de Objetos

Fonte: (SHANMUGAMANI, 2018)

box).

Em suma, o backbone recebe uma imagem como entrada e extrai as features, em seguida o
neck, agrega e combina as features de miultiplas escalas e, ao fim, o head, a partir delas, retorna
a deteccdo (caixas delimitadoras, rétulos e pontuacdo de confianca). Como usam-se modelos
de classificacao como backbone, o neck e head sao determinantes definir um framework de

deteccdo (MATHWORKS, 2025al).

2.4.4 YOLOv10

O YOLOV10, pertencente a familia de modelos [You Only Look Once (YOLO), é uma

arquitetura para deteccdo de objetos e segmentacdo por instancia. Representa uma melhoria
em vdrias abordagens em relacdo aos modelos de deteccdo de objetos em tempo real de ponta
a ponta (end-to-end), tanto no desempenho verificado em dataset de benchmark quanto no
tempo de inferéncia, dentre outras métricas. Os experimentos de entdo demonstraram que o
YOLOV10 significativamente superou modelos do estado da arte ao considerar-se o tradeoff
entre acuracia e custo computacional nas varias escalas de arquitetura disponibilizadas (WANG
et al., 2024).

O YOLOV10 introduz melhorias em varios pontos-chave de melhoria nos componentes de
sua arquitetura, de modo a aproveitar pontos fortes dos predecessores, mas também introduzir

mudancas. No backbone, que opera a extracdo de features, usa-se uma versdo aprimorada

do |Cross Stage Partial Network (CSPNet) para melhorar o fluxo do gradiente e reduzir a
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redundancia computacional. Também, no neck, que agrega caracteristicas extraidas e as passa

para o head, sdo incluidas camadas [Path Aggregation Network (PAN)| para obter fusdo eficaz

de features em varias escalas. Ainda, o One-toMany Head, gera diversas predicGes por objeto
durante o treinamento para fornecer ricos sinais de supervisao e melhorar a precisdo. Por fim,
o One-to-One Head gera uma unica e melhor predicdo por objeto durante a inferéncia para
remover a necessidade de uso do NMS, assim ent3o, reduz a laténcia e melhora a eficiéncia
(WANG et al., 2024; ULTRALYTICS| 2024]).

Quanto aos avancos propostos, esta a estratégia de NMS-free training, ou treinamento sem

[Non-Maximum Suppression (NMS)| que utiliza atribuices duplas consistentes (consistent dual

assignments) para poder tornar o dispensavel durante o treinamento e reduzir a laténcia
de inferéncia (WANG et al., [2024).

Além disso, destaca-se a introducao de uma arquitetura holistica voltada a eficiéncia e
precisdo, que abrange a inclusdo de um head de classificacdo mais leve, nomeado Lightweight
classification head. Assim como a head de classificacdo assume maior importancia em relacao
a head de regressao, reduziu-se a sobrecarga da head de classificacdo. Dessa forma, adotou-se
uma arquitetura mais leve para este componente, composto por duas convolucGes a nivel de
dimensdo (depthwise) e com tamanho de filtro 3 x 3, seguidas por uma convolugdo 1 x 1
(WANG et al., 2024]).

Ainda, foram feitos ajustes diversos no modelo, como o uso de maiores filtros convolucionais

para ter um receptive field maior e aumentar a capacidade de extracdo de features. Ainda,

foram incluidos médulos parciais de self-attention ([Partial Self-Attention (PSA)|) para melhorar

a performance sem introduzir custo computacional colateral (WANG et al., 2024).

Além disso, outro refinamento proposto foi a Spatial-channel decoupled downsampling, que
desacopla a reducao espacial da modulacao de canal para minimizar a perda de informacao e
custo computacional. Além disso, Rank-guided block design, adapta o design dos blocos com
base na redundancia instrinseca dos estagios, de modo a garantir um uso ideal dos parametros.
Por fim, a consistent matching metric alinha a supervis3o entre as duas estratégias (One-to-
One Head e One-to-Many Head) para melhorar a qualidade das predicdes. A arquitetura geral
do YOLOV10 é exibida na Figura |11}

Quanto a desempenho superior a modelos de entdo, YOLOv10-S/X s3o, respectivamente,
1.8 e 1.3 vezes mais rapidos do o RT-DETR-R18/R101, mantendo desempenho similar nas
demais métricas. Ainda, com desempenho semelhante, alcanca uma reducdo de cerca de 46%

na laténcia em relacdo ao YOLOV9-C e YOLOv10-B. Acrescenta-se que, utiliza os parametros
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Figura 11 — Arquitetura do YOLOv10
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Fonte: (WANG et al., [2024)

de forma mais eficiente, de maneira que, no YOLOv10 na escala L e X, excede o desempenho
do YOLOVS8 nas escalas L e X, com 0.3 e 0.5 AP e é 1.8 e 2.3 vezes menor em quantidade de
parametros, respectivamente. Inclusive, YOLOv10 na escala M alcanca AP similar ao YOLOvV9-
M e YOLO-MS, mesmo possuindo 23% e 31% menos pardmetros de treinamento. Desta forma,
YOLOvV10 supera o desempenho dos modelos de deteccdo de objetos predecessores com uma
cobertura ampla de experimentos (WANG et al., 2024).

Assi, seu melhor equilibrio entre desempenho e precisao tornam este modelo aplicavel ao
cenario de contagem de ovos, tanto para se obter uma metodologia de contagem de custo
computacional viavel, quanto atingir niveis de precisdo satistaférios ao cenario de contagem

em imagens de baixa resolucao.

245 YOLOv12

Apesar de o uso de mecanismos de atencdo (attention) afetarem de forma negativa a ve-
locidade dos modelos, de modo a serem inferiores nesse ponto a modelos baseados em [CNN]
YOLOV12, propée mudancas na arquitetura atual desta familia de modelos, de maneira a
utilizar uma estrutura centrada em attention para usar suas vantagens e, simultaneamente,
igualar-se a velocidade dos modelos anteriores somente baseados em (TIAN; YE; DOER-
MANN, [2025)).

Caracteriza-se pela insercdo do mecanismo de atencao, como Area Attention Mechanism,
que envolve autoatencdo para processamento de grandes receptive fields de maneira eficiente.

Divide os mapas de ativacdo em [ 4reas de tamanhos iguais (por padréo, 4), tanto horizontal
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como verticalmente, como exibe a Figura [12] Esse mecanismo evita operacdes complexas

enquanto mantém um receptive field grande, o que resulta numa alta eficiéncia, pois reduz

o custo computacional comparado ao uso de self-attention padrdo (TIAN; YE; DOERMANN,

2025).

Figura 12 — Exemplo de aplicacdo de Area Attention do YOLOv12

Fonte: (TIAN; YE; DOERMANN| [2025))

Outro acréscimo importante, é [Residual Efficient Layer Aggregation Networks (R-ELAN).

As [Efficient Layer Aggregation Networks (ELAN)| sdo projetadas para melhorar a agregacao

de features, porém esta arquitetura pode causar instabilidade. Nesse sentido, no YOLOv12,
foi proposta a [R-ELAN] para introduzir conexdes residuais da entrada para a saida através do
bloco, com um fator de escala (por padrdo 0.01). Outro ponto é que a arquitetura aplica uma
camada de transicdo para ajustar as dimensdes do canal e produzir somente um feature map.

Este, é processado por meio de blocos em sequéncia, sucedidos pela concatenacao, de modo

que forma uma estrutura de gargalo (TIAN; YE; DOERMANN, [2025)).

Ainda, utiliza-se uma estrutura otimizada de atencdo adaptada a estrutura do [YOLO| de
modo a manter a eficiéncia. Inclui Flash attention, para minizar a sobrecarga no acesso a
memoria. Ademais, dentro de um médulo de atencao, foi feito um ajuste na proporcdo entre
as camadas de entrada e a camada de saida ratio); por padrdo essa razdo é 4, porém
o YOLOvV12 obteve melhor performance com um [MLA ratio de 1.2. Isso equilibra o custo
computacional entre a rede e o mecanismo de atencdo e reduz a profundidade das camadas

ocultas e facilita a otimizacao, além de aproveitar ao maximo as operacoes de convolucdo com

eficiéncia no uso dos recursos computacionais (TIAN; YE; DOERMANN, 2025). Na deteccdo de

ovos de A. aegypti em imagens palhetas de ovitrampa caracterizadas pela presenca de ruidos
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visuais, aplicacdo de mecanismos de attention nesta arquitetura [YOLO] de modo computa-
cionalmente eficiente pode prover um modelo capaz de focar em features importantes nas
imagens em detrimento de ruidos ou caracteristicas secundarias.

Este modelo supera todos os modelos de deteccdo de objetos em tempo real em desem-

penho de precisdo, enquanto mantém velocidade similar. A exemplo, numa GPU NVIDIA T4,

o YOLOVI2-N alcanga 40.6% de [mean Average Precision (mAP)| (Ou precisdo média) com
uma laténcia de 1.64 ms e supera YOLOv12-N e YOLOV11-N por 2.1% com veloci-

dade préxima. N3o sé supera modelos atuais de ponta a ponta, como [Deformable Transfor-|
mers (DETR), mas também suas melhorias, quais sejam: RT-DETR, RTDETRv2; YOLOv12-S
mostra-se superior ao RF-DETR-R18 e RT-DETRv2-R18 e mostra-se 42% mais rapido, mesmo

com o uso de 36% do custo computacional e 45% dos parametros (TIAN; YE; DOERMANN,
2025).

2.4.6 RF-DETR

Similarmente ao[YOLO] [DETR|é uma série de modelos e o RF-DETR, parte desse conjunto,
apresenta desempenho semelhante ao YOLOv12. Os detectores baseados em transformers,

como o |DETR] tiveram inicio com o |Real-Time DEtection TRansformer (RT-DETR)| por

(ZHAO et al|, [2024)). Dentre as categorias mais atuais de modelos de deteccdo de objetos,

como modelos de visdo de linguagem ou |Vision Language Models (VLMs)| modelos baseados

em (como o[YOLO)J), o grupo de modelos| DETR|enquadram-se numa abordagem baseada

em transformers, como exibe a Figura . Abordagens obsoletas, que incluem modelos como

EfficientDet (TAN; PANG; LE, 2020)), K-SVD (AHARON; ELAD; BRUCKSTEIN, 2006 apresentam
desempenho inferior em comparacdo com as metodologias atuais (SAPKOTA et al., 2025).
Dentre outras melhorias, o conjunto de modelos propds uma alternativa ao [NMS] ja
que este afeta o desempenho (ZHAO et al., 2024)).

O RF-DETR, segundo o estudo de (SAPKOTA et al., [2025)), utiliza um backbone DINOv2,
proposto por (OQUAB et al., 2023). Nesse estudo feito também num conjunto de dados de
frutas verdes, a arquitetura do RF-DETR utiliza mecanismos de atencao e destacou-se na mo-
delagem de contexto global, de maneira a obterem-se, em casos de objetos ambiguos ou com
oclus3o, deteccdes particularmente eficientes. Como exibide a Figura[14, RF-DETR é constu-
ido sobre uma arquitetura codificador-decodificador (chamada encoder-decoder) baseada em

transformers. S3o utilizados também médulos multi-scale de atencdo para substituir os mapas
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Figura 13 — Classificacdo das metodologias de modelos de deteccdo de objetos. A figura exibe de baixo para
cima (em ordem cronolédgica), as metodologias utilizadas. Destaca-se as abordagens do estado
da arte, como CNN-based e Transformer-based methods, os quais sio amplamente utilizados
atualmente, além dos VLMs, que estdo em uso crescente.
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Fonte: (SAPKOTA et al., [2025)

de ativacdo dos médulos de atencdo (ZHU et al., [2020). Devido a rapida convergéncia do mo-

delo e eficiéncia computacional, inclusive dos recursos de meméria, foi adotado um mecanismo
para refinamento das bounding boxes, além de a proposicdo de regides ser também feita a

partir de uma variante do Deformable DETR| para servir como entrada para o decodificador

para, por fim, ocorrer o refinamento da bounding box (ZHU et al., [2020)).

No caso de de problemas de deteccao de classe Unica, RF-DETR obteve uma melhor
[MAPI@50 de 0.9464, o que mostra a capacidade de detectar frutas verdes mesmo em cené-
rios desordenados. A maior [nAP[@50:95 obtida foi pelo YOLOv12-N foi 0.7620, entretanto,
RF-DETR obtém melhor performance em cenarios espacias maix complexos. Na deteccdo
multi-classe, obteve um desempenho superior com [nAP@50 de 0.8298, o que superou o mo-
delo predecessor, de forma a evidenciar a capacidade do modelo de bem diferenciar objetos
com ou sem oclusdo. Outro ponto importante do RF-DET-R é sua rapida convergéncia du-
rante o treinamento, de maneira que o treinamento atingiu um plat6 e alcancou desempenhos

imporantes apds ser treinado por apenas 10 épocas, o que é um evidente caso de destaque
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Figura 14 — Arquiteura do RF-DETR
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(SAPKOTA et al, 2025)).

Por fim, em aplicacdes do mundo real, h3 a indefinicao de (entre o RF-DETR ou YOLOvV12)
qual modelo obtém desempenho superior. E evidenciado, que apesar de a arquitetura do
RF-DETR permitir alta velocidade, este é mais recomendado para tarefas onde a precisdao
é mais critica, ja que obteve superior desempenho neste ponto em geral, enquanto que o
YOLOv12 permanece mais adequado para deteccdo em aplicacGes de tempo real. Destarte, a
capacidade do RF-DETR de modelar o contexto global e seu bom desempenho em cenarios
com oclusdo sao particularmente relevantes para este trabalho, uma vez que os ovos nas

palhetas frequentemente se encontram aglomerados e sobrepostos

2.4.7 D-FINE

E um modelo de deteccio de objetos em tempo real, que representa um aprimoramento
a partir da série de modelos [DETR] principalmente quanto a precisdo de localizacgo, justo
por conta de redefinir a tarefa de regressdo referente as caixas delimitadoras. Seu ponto chave
busca resolver um problema na delimitacdo das bounding boxes, qual seja: Modelos tradicionais

de deteccdo de objetos tratam a localizacdo das caixas delimitadoras como pontos fixos e as

tratam apenas com funcdes de perda (loss functions, a exemplo de L1 e [Intersection over|

Union (loU)| Esta forma, porém, falha em modelar a incerteza da localizacdo, o que limita a

precisdo e atrasa a convergéncia. Portanto, em aplicacdes real-time, com as quais o D-FINE

visa lidar, a alta precisdo e a baixa laténcia sdo requisitos essenciais. Assim, por esta razao,

D-FINE lida com a tarefa de regressdo referente as caixas delimitadoras de modo a utilizar
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uma arbordagem probabilistica e autodestilacdo (PENG et al., 2024).

Quanto as suas melhorias, o D-FINE, propoe importantes abordagens arquiteturais relaci-

onadas aos componentes: O [Fine-Grained Distribution Refinement (FDR)| e o [Global Optimal|

[Localization Self-Distillation (GO-LSD)| O [FDR] transforma o processo de regressio para n3o

mais ser de coordenadas fixas e sim para envolver modelagens de distribuicdo de probabilidade,
0 que proporciona um maior ajuste fino nas representacdes intermediarias. Este componente,
portanto, refina essas distribuicdes de forma iterativa e residual, de maneira a possibilitar

de modo gradativo um ajuste na precisao de localizacdo, tarefa importante em modelos de

deteccdo de objetos. (PENG et al., [2024)).

Ainda como mostra a Figura[15] o[FDR] em repeticdo, otimiza a distribuicdo de granulacdo
fina gerada pelas camadas. Por inicio, a primera camada decodificadora prevé caixas delimita-
doras preliminares e distribuicGes de probabilidade também preliminares. Por sequéncia, cada
uma das quatro bordas de uma caixa é associada a uma distribuicao, para ser como uma caixa
delimitadora de referéncia, para entdo, as camadas posteriores refind-las por meio do ajuste
das distribuicdes de forma residual. Por fim, as distribuicdes refinadas sao aplicadas as quatro

bordas da caixa delimitadora preliminar; esse processo ocorre de forma iterativa e por fim,

espera-se obter melhor precisdo nas caixas delimitadoras (PENG et al., [2024).

Figura 15 — Visdo geral do componente FDR do modelo D-FINE: Observa-se que as distribuicdes de probabili-
dade operam como uma representac3o intermediaria de granulacao mais fina e que posteriormente
sdo refinadas pelas camadas de decodificacdo considerando as conexdes residuais na arquitetura
da rede.
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Como é sabido que as camadas mais profundas produzem predicoes mais corretas em ter-
mos de localizac3o, outro ponto de ajuste envolve o componente [GO-LSD] Este, ent3o, utiliza

uma estratégia de otimizacdo bidirecional que transfere a tarefa de regressdo de localizacdo
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(referente as bounding boxes) das camadas mais profundas para as camadas mais superficiais
através da autodestilacdo, ao mesmo tempo que simplifica as tarefas de predicdo residual para
camadas mais profundas. As camadas superficiais s3o as camadas inicias do modelo, enquanto
que as camadas mais profundas sdo as camadas finais; salienta-se que este ajuste introduz
baixos custos no treinamento (PENG et al., 2024).

Assim, o GO-LSD destila o conhecimento de localizacdo das distribuicées refinadas para
as camadas superficiais. Ao longo do treinamento, as camadas finais produzem cada vez mais
rétulos (labels) mais precisos. As camadas superficiais alinham suas predi¢es com as labels
através do GO-LSD, de modo a obter mais precisio nas predicdes. A medida que as predicdes
iniciais melhoram, as camadas posteriores focam em refinar residuos menores. Em suma, sao
utilizadas as distribuicoes refinadas das camadas finais para destilar conhecimento para as
camadas superficiais. Assim, este mecanismo de reforco leva a, ao longo do processo, obter
localizacGes mais precisas (PENG et al., 2024). A precisdo na delimitacdo das bounding boxes
é crucial no presente estudo, pois um erro de localizacao pode levar a contagem dupla ou a
omiss3o de ovos, impactando diretamente a acuracia do indice entomoldgico final.

Com isso, outros ajustes menores incorporam otimizacdes leves no custo computacional em

modulos intensivos e em operacSes, o que por fim produz um melhor equilibrio entre laténcia

e precisdo. Portanto, em experimentos, o D-FINE alcanca 54% |Average Precision (AP)| no

dataset [Common Objects in Context (COCO)| a 124 [Frames Per Second (FPS)| bem como
55.8% a 78 FPS. Pré-treinado no dataset Objects365, D-FINE na escala L e X, obtém 57.1%

e 59.3% AP, respectivamente, de modo a superar os modelos de deteccdo de objetos de
ent3o. Ao considerarem-se os modelos[DETR| h4 um aumento de desempenho de 5.3% [AP|em
favor do D-FINE, com a introducao de parametros e custos de treinamento também minimos.
Portanto, constitui-se num modelo competitivo tanto para uso em aplicacoes com foco em

precisdo quanto ainda para uso em cenérios de tempo real (PENG et al., 2024).

2.4.8 MPRNet

No contexto de restauracdo de imagens com redes neurais, a tarefa visa, a partir de uma
imagem degradada e tendo conhecimento do processo que causou a degradacao, obter-se sua
versdo original (GONZALEZ; WOODS, 2015; [ZAMIR et al., 2021). Nesse interim, ha uma tarefa

desafiadora, dado trade-off entre valorizar detalhes espacias ou detalhes contextualizados de

alto nivel no processo de recuperacao de imagens. Nesse quesito, o [Multi-Stage Progressive
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Image Restoration (MPRNet)| insere nesse ambiente uma arquitetura para otimizar esse equi-

librio (ZAMIR et al., 2021)).

Para este tipo de tarefa, modelos baseados em [CNN| dividem-se entre trés abordagens
principais: Abordagens single-stages (de stagio Gnico), multi-stage (multiestagio) e de atten-
tion. O [MPRNet], enquadra-se na abordagem multi-estagio, que caracteriza-se por realizar a
restauracao de forma progressiva, tendo em cada estagio uma sub-rede leve. Assim, a arquite-
tura do MPRNet aprende de maneira progressiva as funcdes de restauracao, de modo a dividir
este processo em etapas ou estagios gerenciaveis. A priori, o [MPRNet| aprende as features con-
textualizadas com o uso de arquiteturas de codificador e decodificador e, a posteriori, combina
essas features com um ramo de alta resolucdo que retém informacado local. Em cada etapa
ou estagio, é introduzido um design adaptativo a nivel de pixel que utiliza o mecanismo de
atencdo supervisionada no préprio local para novamente ponderar a features locais. A troca
de informacgdes entre os estagios é um ponto chave dessa arquitetura (ZAMIR et al., 2021)).

Assim, do ponto de vista arquitetural, o divide-se em trés estagios para restaurar
a imagem de forma progressiva. Ent3o, os primeiros dois estagios, como mostra a Figura (16}
baseiam-se em sub-redes de codificacdo e decodificacdo (encoder-decoder) que aprendem as
informacdes mais amplas da imagem, devido ao uso de recpetive fields grandes. Dado que
esta tarefa é senivel e requer que os pixels da imagem entrada correspondam aos da saida, o
terceiro estagio da arquitetura emprega uma sub-rede que atua na resolucao da imagem de
entrada sem reduzir suas dimensdes, de modo a preservar as texturas finas na imagem final
restaurada (ZAMIR et al., [2021)).

Deste modo, ainda, os estagios incorporarm um moddulo de atencdo supervisionada entre
cada dois estagios. Com a supervisdo das imagens de referéncia (ground-truth), o médulo
reescala os mapas de ativacdo dos estagios anteriores antes de passa-los para o préximo
estagio. Outrossim, hd um mecanismo de fusdo de features entre os estagios de maneira
que as features contextualizadas multiescala intermediarias da sub-rede anterior auxiliam a
consolidar as features intermedidrias da préxima sub-rede. Em que pese o agregar
vérios estagios, cada um tem acesso a imagem de entrada. E também adaptada uma hierarquia
multi-patch na imagem de entrada, de forma a dividi-la em patches ndo sobrepostos (sem
interseccdo) da seguinte forma: 4 para o estagio 1, 2 para o estagio 2 e a imagem original
para o terceiro estagio.

Quanto as suas tarefas divide-se em: Image deblurring (para remover borramento), image

denoising (para remover ruido em geral) e image derraining (para remover tracos de chuva).
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Figura 16 — Arquitetura multiestagio do MPRNet: Observa-se que os estagios primeiros extram caracteristicas
multiescala contextualizadas e os ltimos estagios atuam na resolucdo da imagem original para se
obter saidas precisas do ponto de vista espacial.
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Fonte: (ZAMIR et al., [2021))

Quanto a image deblurring, por exemplo, o modelo foi avaliado no dataset GoPro e HIDE.
De um modo geral, o modelo supera modelos de entao, com os quais foi comparado. De
modo geral, o obtém desempenho significativo em datasets de benchmark. Quanto
a tamanho, o modelo é considerado leve e eficiente quanto a tempo de execucdo, o que torna

seu uso favoravel em ambientes de baixos recursos computacionais.

2.5 CONCLUSAO DO CAPITULO

O capitulo 2 apresentou uma revisdo tedrica dos conceitos basicos de que este trabalho
trata. Por inicio, foram abordados conceitos relacionados ao mosquito Aedes aegypti e doencas
relacionadas a este vetor. Por sequéncia, foi discorrida uma elucidacdo acerca dos sistemas de
vigilancia do vetor, em especial da vigilancia entomolégica, destacando-se o uso de ovitram-
pas. Ainda, foi introduzido a area de processamento de imagens, incluidas algumas técnicas
de realce de imagens. Ademais, deteve-se sobre a visao computacional e suas aplicacdes. Além
disso, expds-se de forma sucinta a aprendizagem profunda, bem como sua aplicacdo na vi-
sao computacional. Por fim, tratou-se dos modelos envolvidos no contexto deste trabalho:

YOLOv10, YOLOv12, RF-DETR, D-FINE e [MPRNet|
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3 TRABALHOS RELACIONADOS

Neste capitulo, serdo apresentados trabalhos voltados a contagem automatica de ovos de
Aedes aegypti em ovitrampas, abrangendo abordagens encontradas na literatura tanto voltadas
a aplicacdo de Processamento de Imagens, por inicio, e Aprendizagem Profunda, por fim. Esta
divisdo baseia-se nas categorias de principais abordagens usadas na literatura para esse caso

ao longo do tempo.

3.1 CONTAGEM AUTOMATICA COM PROCESSAMENTO DE IMAGENS

Abordagens primarias de contagem automatica de ovos de A. aegypti em ovitrampas
envolvem Processamento de Imagens. Assim, (SANTOS et al., 2008) propés uma abordagem
nesse sentido, que consiste em aplicar segmentacao de cor e filtros ndo lineares baseados em
morfologia matematica.

As imagens foram obtidas por cadmera digital com 7.2 MP (megapixels), LCD 2.5, com
aplicacao de zoom o6ptico de 4.5 vezes e com lente Leica DC Vario Elmarit. As ovitrampas
foram digitalizadas com resolucdo de 700 dpi e zoom éptico de 4 vezes. Ao fim, obtem-se uma
imagem digital no sistema com 3000 x 2300 px de dimens3o. Para fins de experimentos,
as imagens foram divididas em secdes (sub-imagens) e a contagem do nimero correto de
ovos (contagem de referéncia) para fins de comparacdo com os métodos desenvolvidos se
deu manualmente de forma visual através das imagens. Os autores propuseram trés métodos
de contagem. No “Método 1", as imagens sdo convertidas para o sistema YIQ, o canal | foi
segmentado e é aplicado uma binarizacao com limiar fixo de 130. Apés, ¢ aplicado um algoritmo
de componentes conectados (rotulacdo de componentes conexos), de modo a aplicar um rétulo
em cada area branca. Em seguida, as areas menores do que 100 px (tamanho médio de um
ovo) sdo desconsideradas. Apés isso, a imagem é filtrada com a operacdo morfolégica de
fechamento, tendo uma imagem de um ovo levemente inclinado como elemento estruturante
da operacdo. As dimensGes deste elemento sdo de 8 x 13 px. Por fim, foi calculada a média
de pixels brancos na imagem, considerando que um ovo ocupa 170 px. Assim, portanto, a
quantidade de ovos é obtida.

Por sua vez, no “Método 2 - Limiar Fixo"”, a imagem também a convertida para o sistema

YIQ e o canal | é segmentado. A partir dai, se introduzem mudancas pontuais no fluxo, com
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o restante do fluxo permanecendo inalterado. Nesse caso, a limiarizacao é feita com o limiar
de 200 e esse valor obtido apés analise do histograma da imagem. Outro, o “Método 2 -
K-Médias”, faz a binarizacdo automéatica com base no método k-médias [7, 8, 9, 10] com 3
entradas, 4 classes, taxa de aprendizagem de 0.1 e maximo de 200 iteracdes. Para a contagem,
é considerado o tamanho médio de um ovo como 220 px.

Os experimentos foram feitos considerando 6 imagens. Por fim, os resultados evidenciaram
que o “Método 1" atingiu erro maximo de 25% na segunda imagem, o que equivale a uma
diferenca de dois ovos. Em geral, o erro foi de 9%. Por sua vez, o “Método 2 - Limiar Fixo"
apresentou resultados superiores aos demais. Por fim, o “Método 2 - K-Médias" obteve taxa
de erro média de 7.33%, de maneira que as duas versdes do Método 2 obtiveram erro menor
do que 10%.

O método apresentado neste trabalho possui aplicacdo limitada, dada a forte dependéncia
da intensidade dos pixels da imagem, considerando que uma palheta pode ter vérias condicoes
de iluminacdo. Ademais, a base de experimentos é pequena para evidenciar o éxito da solucdo
desenvolvida.

Semelhantemente, (GUSMAO; MACHADO; RODRIGUES), 2009) propde contagem de ovos do
vetor através de Processamento de Imagens voltadas a exploracao dos sistemas de cor e apli-
cacdo do algoritmo de agrupamento K-Means. Em principio, as imagens [RGB]|sdo convertidas
para o espaco L*a*b. Os componentes a* e b* s3o usados para agrupar a imagem de entrada
usando o mapa K-Means. O niimero de clusters (agrupamentos) é definido como 3, referentes
a: Ovo, ovitrampa e regides intermediarias. O algoritmo aleatoriamente seleciona os vetores
inciais de média e como critério de parada foram usados dois argumentos: O valor maximo
de 100 iteracOes e a estimativa de coesdo. O algoritmo, entdo para quando a soma das dis-
tancias de cada objeto ndo pode mais diminuir. O algoritmo repete o agrupamento 3 vezes,
cada qual com um novo conjunto de posicdes inicias do vetor de média e retorna a solucdo

com menor valor de soma das distancias dos vetores ponto-média. Apds isso obtém imagens

de agrupamento; a imagem ¢é convertida para o sistema [Hue, Saturation, Value (HSV)| e o

canal H (matiz) é segmentado. Em seguida, para cada cluster, é obtido o valor médio de
matiz e o valor de cada grupo caso, é atribuido para 1 (caso seja superior a 0.5) e para 0
(caso contrario). Com isso, obtém-se uma imagem binéria e é ent3o aplicado um algoritmo de
rotulacdao de componentes conexos. Apds isso, sdo desconsideradas as regides com menos de
140 pixels. Por fim, considerou-se que um ovo ocupa uma area de 357 px e entdo, calculou-se

a quantidade de ovos com base numa média aritmética considerando esse valor.
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Os resultados mostraram um erro individual maximo de 45.45% na primeira imagem, o
que correspondeu a uma diferenca de dez ovos. No geral, o erro médio foi de 1.16% com
um desvio padrdo de 4.15. O método apresenta uma melhoria de erro médio de 6.66% para
1.16% em relacdo ao proposto por (SANTOS et al., | 2008)), em que pese o erro individual ter
aumentado de 25% para 45.45% e o desvio padrdo, de 1.6 para 4.15.

Esta abordagem, novamente, apresenta uma dependéncia importante em relacdo a ilumi-
nacao e cor da imagem, desconsiderando totalmente outros tracos e caracteristicas do objeto
de interesse, além de ser experimentada com poucas imagens.

(SILVA; RODRIGUES; ARAUJO, 2012a)) desenvolveu um sistema de aquisicdo de imagens de
palhetas de ovitrampa associado a um método de contagem, tanto automatica como também
semi-automatica (assistida). Observa-se nesse trabalho, ainda a aplicacdo de técnicas de pro-
cessamento de imagens. As informacdes obtidas pelo sistema s3o enviadas para um servidor
web, onde sao analisadas as palhetas por técnicas de processamento de imagens, em especial
baseada nos processos de segmentacao, filtragem e quantificacdo. No geral, a contagem é
feita em trés etapas, em que a primeira é segmentacao, que é composta por uma operacao
AND entre duas mascaras geradas por duas formas de segmentacdo distintas (por cor e por
limiarizacdo). A segunda, é uma filtragem morfoldgica, em que utilizou-se um filtro de moda
com dimensdes de 3 x 3 pixels. Em seguida, foi feita uma filtragem morfoldgica de abertura
com um elemento estruturante no formato de um disco com raio de 2 px. A terceira etapa,
por fim, consiste na contagem dos ovos por meio do calculo de média tendo considerando a
drea média de um ovo como 160 px (valor determinado apés experimentos em 100 imagens
de ovos). Na anélise de 100 imagens, o método automatico obteve um erro médio de 16.26%
e o erro global, considerando a totalizacdo das contagens manual e automaética, foi de 2.67%.

Observa-se que este método é estritamente vinculado a caracteristicas das imagens nessas
condicGes, haja vista a prépria mencdo de que o valor médio do tamanho de um ovo pode
variar ao tratar-se de imagens de tamanho diferente. Aqui, apesar de o conjunto de imagens
ser maior, ainda é baixo dado o cenario e o0 método de contagem é estritamente associado as
caracteristicas especificas dessas imagens.

Ademais, em (FEITOSA et al,, 2015), a partir de imagens capturadas com microscépio

[Universal Serial Bus (USB)| com 96 dpi de resolu¢do em 800 x 600 pixels de dimens&o (além das

imagens disponibilizadas por (PORTELLA, 2009)), foram tratados métodos de processamento de
imagens. A partir de uma imagem [RGB] o canal R foi segmentado e o histograma da imagem

foi normalizado. Apds, utilizou-se a técnica de limiarizacdo Otsu, seguida por uma operacao
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morfolégica em que o elementro estruturante tem o formato de um disco com raio de 1 pixel.
Em seguida, foi aplicado um algoritmo de rotulacdo de componentes conexos. Apds, as areas
com menos de 140 pixels foram desconsideradas e, a partir de um valor determinado de area
de ovo (362 pixels), foi calculada a média de pixels brancos e, assim, obteve-se a quantidade
de ovos. Outro método de contagem proposto, distingue-se em pontos-chave, como: Utiliza
as imagens no espaco de cores L*a*b o algoritmo K-Means e pelo valor definido como éarea
de um ovo para fins de calculo (357 pixels). Por fim, a contagem é feita por calculo de média,
como no primeiro método. Em geral, o método 1 obteve o melhor erro global (erro 0) e o
método 2 obteve o melhor resultado em média de erro: 18.12%.

Entre as limitacdes do trabalho, destacam-se: A necessidade de controle de iluminacao por
parte do dispositivo de captura, além da necessidade se obter uma massa maior de imagens.
Qual os anteriores, este apresenta forte associacdo as caracteristicas especificas das imagens,
como alta dependéncia em relacao a cor dos ovos, além de ser especializado apenas nessas

condicoes de captura, ja que é estritamente ligado a esse tamanho de imagem.

Por outro lado, (COSTA, 2017)), utiliza um [Sistema de Inferéncia Fuzzy (SIF) e verifica os

resultados com base em 206 imagens. Como resultados, obteve acuricia de 98.94% e coefi-
ciente de correlacdo de Matthews de 0.9 para classificacdo e contagem dos ovos, comparado
com a contagem manual. Contudo, ha a presenca de um valor alto de falsos positivos. Ainda,
observa-se, ainda ligacao dessa abordagem proposta com as caracteristicas especificas das ima-
gens (como de cor, luminosidade etc) justo por utilizar técnicas de processamento de imagens
como ponto chave, a exemplo de técnicas de binarizac3o.

Observa-se o uso de Processamento de imagens, agora, aliado a Aprendizagem de Maquina,
no trabalho proposto por (ROCHA; BIZERRA; MAGALHAES| 2019), onde utiliza-se principalmente
o algoritmo Haar Cascade para otimizar o reconhecimento dos objetos e buscar evitar falsos

positivos. Menciona-se que imagem passa antes por um filtro de realce (high-boost). Usa-

se um equipamento eletrénico para captura (que, inclusive, usa [Light-Emitting Diode (LED)

de branca) e processamento de imagens para realizacdo da contagem. Apresentou resultados
como: De 26 ovos contidos numa imagem, reconheceu 14, no geral teve alguns falsos positivos.

Como limitacoes desse trabalho, tem-se que: H4 a necessidade de uma base maior de ima-
gens e de um dispositivo de captura, que além de iluminar bem as imagens (este apresentou
alguns pontos de melhoria), seja de baixo custo e de facil manuseio. Além disso, a conta-
gem necessitaria ser mais capaz de lidar com problemas comuns em palhetas: Ovos adjuntos,

sobrepostos, segmentados, dentre outras disposicoes.
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Como observa-se, a somente aplicacdo de métodos de processamento de imagens é alta-
mente vinculada as condicdes das imagens para as quais s3o implementadas, como intensidade
de cor e dimensGes da imagem. Ademais, é imperioso a adocao de métodos computacionais ca-
pazes de, em fato, aprender a reconhecer ovos de Aedes aegytpi, ndao somente aplicar métodos
em condicdes controladas e que sejam estritamente localizados. Imagens com sobreposicao de
ovos, oclusdo, além de background escuro ou ruidoso ou mesmo imagems ruidosas no geral
sao encontradas em cendrios reais.

Portanto, para cenarios e imagens de mundo real, sdo necessarios métodos capazes de
modelar suficientemente a complexidade das imagens e dos objetos de interesse, de modo
atender os pontos supracitados. Ante isso, dados os avancos da Aprendizagem Profunda e
sua aplicacao para Visdo Computacional, a literatura passou a envolver estas areas na tarefa
de contagem de ovos de A. aegypti, ou seja, a aplicacdo de técnicas de Processamento de
Imagens (ainda que associadas a para o problema de contagem automatica de ovos de
Ae. aegypti, tem perdido, progressivamente, importante espaco para dar lugar a métodos de
(DL

A respeito da contagem automatica com processamento de imagens, a Tabela (1| faz um

comparativo dos trabalhos acima mencionados.
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Tabela 1 — Comparativo de trabalhos na literatura que utilizam Processamento de Imagens para contagem
automatica de ovos de A. aegypti

Trabalho Técnica Dispositivo de captura Melhores resultados Limitacoes
de imagens
(SANTOS et Segmentacdo de cor e Camera digital com 7.2 Erro médio de 7.33% Dependéncia estrita da
al.| [2008) filtros n3o lineares MP, LCD 2.5, com intensidade dos pixels da
baseados em aplicacdo de zoom éptico imagem. Modelo n3o
morfologia de 4.5 vezes e com lente aprende a identificar ovos
matematica Leica DC Vario Elmarit. propriamente dito, mas se
baseia em técnicas de
filtragem e célculos de area
média de ovo.
(cusmAo; Segmentacdo de cor e Camera digital 7.2 MP, Erro médio de 1.16% e  Abordagem testada em
MACHADO; filtros ndo lineares LCD 2.5", zoom 6ptico desvio padrdo de 4.15. poucas imagens e
RODRIGUES baseados em 4.5x e lente LEICA DC altamente vinculada as
2009) morfologia Vario Elmarit caracteristicas particulares
matematica das imagens e n3o ao
reconhecimento de padrdes
que caracterizam um ovo.
(SiLva; Segmentacio, Dispositivo com placa de Erro médio de 16.26% e Método especifico as
RODRIGUES; filtragem e controle, camera digital erro global de 2.67%. caracteristicas das imagens
ARAUJO quantificacdo. com 7,1 megapixels e modo utilizadas, como
2012a) “super-macro”, sistema de iluminacdo, cor e tamanho
iluminacdo e suporte para médio de ovos.
translacdo de palhetas.
(FEITOSA et Processamento de Microscépio USB com 96 Erro global 0 erro médio Método fortemente
al.| 2015) histograma, dpi de resolucio. de 18,12% associado as caracteristicas
segmentac3do, especificas das imagens e
filtragem, limiarizacdo alta dependéncia em
e agrupamento relacdo a cor dos ovos,
além de ser especifico para
essas condicdes de captura.
(cosTa Segmentacio, Camera BIOFOCUS Acurécia de 98.94% Ligacdo da abordagem com
2017) extracdo de acoplada a um microscépio  para classificacdo de as caracteristicas
caracteristicas e Stemi 305 body (Carl Zeiss ovos e coeficiente de especificas das imagens,
l6gica fuzzy. Microsscopy GmbH). correlacdo de Matthews como cor, luminosidade etc.
de 0.9 em relacdo a
contagem manual.
(ROCHA; Filtragem e algoritmo  Equipamento com Taxa de recall de cerca  Base experimentos
BIZERRA; Haar Cascade para dispositivos eletrdnicos, de 60% pequena, dificuldade ainda
MAGALHAES reconhecimento de como camera de 5MP, com iluminagdo e com ovos
2019) objetos. luzes de LED branco, adjuntos ou sobrepostos,

dentre outros.

além de dispositivo de
captura com custo
consideravel.

Fonte: Elaborada pelo autor (2025).

3.2 CONTAGEM AUTOMATICA COM APRENDIZAGEM PROFUNDA

A priori, (SANTANA et al, [2019)) propde uma abordagem baseada em redes neurais para

contagem dos ovos de A. aegypti (e também de A. albopictus) em palhetas de ovitrampa.

Propds um dispositivo de hardware que possui integrado nele uma cadmera (microscépio digital)

para captura de imagens, um médulo de contagem dos ovos e uma palicacdo web para exibir

os resultados das contagens efetuadas.

Ent3o, foi usado um modelo de deteccdo de objetos, o [Region-based Fully Convolutional|
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[Networks (R-FCN), proposto por (DAI et al., 2016)), pré-treinado no dataset [COCO| e com um
conjunto de 984 imagens. O [R-FCN| alcancaou precisdo de 91% na classificacdo dos ovos e

para validar a utilizacdo do dispositivo de captura, foram utilizadas 10 palhetas reais obtidas.
Entretanto, pontua-se que a solucdo proposta tem reducao do desempenho em relacdo a
disposicdo de ovos (oclusdo de ovos, ovos adjuntos etc). Destaca-se, ainda, o custo associ-

ado ao dispositivo de captura, dado que possui diversas interfaces de conexdo, como [USB]

MicroUSB, [High-Definition Multimedia Interface (HDMI)| interface de dudio, porta Ethernet

etc. Um outro ponto importante é a sobreposicao na captura das imagens pelo dispositivo de
captura, dado que o trabalho menciona que had uma sobreposicdo de 10%. Esta sobreposicdo
causa recontagem de ovos (ovos sdo contados mais de uma vez) e leva a erro a contagem
de uma palheta completa, que é requisito essencial para obtencao dos indices de ovos, como
o [[DQ] e o [DV] Estes indices sdo cruciais e parte do fluxo de implementacdo da Vigilancia
Entomolégica, como recomendada o Ministério da Sadde do Brasil (Ministério da Satide — Brasil,
2025d).

Ainda com uso de Deep Learning, (SILVA et al., 2021) propde uma metodologia para seg-
mentac3o de ovos para auxiliar a contagem. Com imagens obtidas por camera digital de 7.2
MP LCD 2,5 polegadas, zoom optico de 4.5 vezes e lente Leica DC Vario Elmari Foram
digitalizadas 10 palhetas e obteve-se um total de 30 imagens de 1024 x 768 pixels de dimen-
sao. A partir de uma imagem, gera 12 sub-imagens de dimensdo 256 x 256 pixels e entdo,
obteve-se 228 imagens apds esse pré-processamento. Apds isso, ocorre segmentacao, etapa
na qual sdo experimentados o uso de uma rede U-Net e de uma SegNet, além de uma Res-
net50 pré-treinada. Em seguida, o pds-processamento é feito com uma operacdo morfoldgica
de fechamento em que o elemento estruturante é um disco com raio de 7 pixels. Logo depois,
utilizou-se uma técnica para fechar os buracos segmentados em regides de ovos e foi aplicado
o algoritmo de rotulacao de componentes conectados. Para fins de contagem de ovos, se uma
regido contiver a area menor do 1.5 vezes o tamanho médio de um ovo (1321 pixels), é consi-
derado como apenas um ovo. Caso contrario, é realizada a divisao do tamanho da regido pelo
tamanho médio de um ovo e o resultado inteiro obtido corresponde a quantidade de ovos.
Quanto a resultados, os melhores foram com U-Net, com acuracia de segmentacdo de 98.65%
e erro médio quadratico de 4.25% na contagem dos ovos.

Em que pese a abordagem atual ter substituido a limiarizacao de imagem por segmentacao
usando redes neurais, ainda apresenta limitacdes relacionadas a: Tamanho (area) dos ovos

ndo é um valor seguro para estimar a quantidade de ovos numa imagem, ja que diferentes
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tamanhos de ovos ou mesmo ovos segmentados (parcialmente na imagem, parcialmente n3o)
deturpariam a estimativa feita de contagem. Ademais, a quantidade de imagens testadas
poderia ser maior, de modo a envolver um nimero expressivo de palhetas. Por fim, o método
ndo aprende a reconhecer os ovos de fato, mas se baseia, em ultima instancia, em estimativas
e aplicacdo de redes neurais apenas atua na tarefa de segmentacdo, ndo na deteccdo em si.

Também, (SILVA| 2021)) criou um dispositivo de hardware que possui uma camera digital
acoplada a ele para captura de imagens. A partir de 100 palhetas, aplicou técnicas de data
augmentation e, assim, criou uma base de dados com 3703 imagens. Analisou a discrepancia
entre contagem automatica e manual, além de criar um software para auxiliar técnicos na
contagem dos ovos. Com a base de dados de imagens criada, treinou modelos de aprendizagem
profunda voltados a deteccdo de objetos, como EfficientDet, YOLOv4 e RFCN e foi verificado
nos experimentos que os modelos EfficientDet e YOLOv4 foram superiores.

O dispositivo de captura poderia envolver componentes que o tornasse de mais baixo custo
e principalmente de facil manuseio, operacao e transporte, dado que isto tornaria mais viavel
seu uso por parte dos profissionais que atuam em campo na implementacdo da vigilancia
e controle do vetor, como instalacdo, contagem de ovitrampas e monitoramento em geral.
Inclusive, o fato de o hardware de captura envolver uma camera digital e de principalmente ser
razoavelmente grande relativo a uma palheta, é um fator de peso em desfavor da praticidade
de uso, ainda mais em campo. Ainda, o dispositivo causa sobreposicao na captura de imagens,
o que leva a estatisticas equivocadas sobre a contagem em palheta completa, pois regides
da palheta sao consideradas mais de uma vez. Ainda sobre o dispositivo de captura, o autor
refere-se a limitacGes por conta do foco da camera digital, uma vez que esta se move sobre a
palheta e, por vezes, captura imagens com ruido relacionado ao foco, o defocus blur.

Outro ponto é que n3o foi considerada nem medida a contagem em palheta completa, dado
fundamental para obter os indicadores de ovos, como o [[DO| e outros para fins de vigilancia
entomoldgica. Ainda, o autor menciona a questdo de imagens ruidosas ou de baixa qualidade
como fatores de comprometem a capacidade dos modelos de reconhecer os objetos, o que
impacata diretamente no resultado da contagem dos ovos de mosquito. Como palhetas de
ovitrampas sao instaladas em diversos locais ao ar livre, estdo, assim, suscetiveis a diversos
fatores que contribuem para que a palheta, ao ser considerada para contagem, tenha ruidos.
Assim, as metodologias de contagem de ovos, devem lidar com este fator, de maneira que lide
também com imagens ruidosas de diversos ruidos existentes. Acerca disso, a literatura atual

menciona abordagens possiveis, como a restauracao de imagens degradadas por redes neurais.
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Ainda, a validacao da metodologia de contagem quanto a comparacao da contagem manual
com a contagem automatica, considerou 13 palhetas, nimero que poderia ser mais expressivo
para se avaliar uma metodologia de contagem automatica proposta. Por fim, dados os recentes
avancos em termos de modelos de deteccdo de objetos com desempenhos superiores aos de
entdo, com alta precisdo e baixa laténcia amparados em amplos experimentos, é importante
treinar esses modelos do estado da arte, refind-los com o fim de se obter um desempenho
melhor. Em geral, estas melhorias, seria ideal uma metodologia de contagem que considerasse
estes pontos-chave com vistas a contribuir com mais avancos nesta area do conhecimento e
relacionados a contagem automatica de ovos de A. aegypti.

Por sua vez, (JAVED et al, 2023) apresenta uma solucdo que consiste num software gratuito

de contagem (EggCountAl), cuja contagem baseia-se no modelo [Mask Region-based Convo-|

llutional Neural Network (Mask R-CNN)| As palhetas, nesse caso, disntinguem-se por serem

de tiras de lixa (sandpaper strip). As imagens foram capturadas com uma cdmera Olympus
Tough TG-6 para obterem-se as imagens macroscépicas, ao passo que, as imagens microsco-
picas foram coletadas com um microscépio Nikon SMZ18 ajustado para uma ampliacdo de 8x
com uma lente objetiva de 1x, utilizando o software NISElements da Nikon.

Para cada tipo de imagem (microscépica e macroscépica), um modelo é treinado para

detectar ovos e obtém-se, para imagens microscépicas, mAP de 0.92, [Mean Average Recalll

[(mAR)]de 0.90 e F1-Score de 0.91. No modelo treinado para imagens macroscépicas, obtém-se
0.91 mAP, 0.90 mAR e 0.90 de F1-Score. O software EggCountAl conta automaticamente

ovos em um diretério contendo imagens de tiras de lixa.

Para testar a solucao, comparou-se com as ferramentas de contagem /Count e MECVision
usando 10 imagens microscépicas e 10 macroscépicas. Os resultados evidenciaram superior
desempenho em relacdo as outras ferramentas, de modo que se obteve acuracia geral de
08.88% para as imagens microscépicas e de 96.06% para imagens macroscépicas. Por sua vez,
ICount obteve 81.71% e 82.22%, respectivamente para imagens micro e macro, enquanto que
o MECVision obteve 68.01% e 51.71% para imagens micro e macro, nessa mesma ordem,
0 que ressalta a superioridade da abordagem proposta. Quanto a erro médio, a solucdo, o
EggCountAl obteve 1.90 para imagens micro e 74.30 para imagens macro, além de obter
desempenho melhor ao lidar com ovos sobrepostos ou agrupados.

Em relacdo a essa metodologia, observa-se o conjunto bastante reduzido de imagens para
validacdo do desempenho da solucdo, o que limita a quantidade de instancias de ovos. Observa-

se que as imagens n3o apresentam ruidos significativos (ou mesmo forte presenca deles), pelo
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fato de o substrato de ovoposicdo ser de tiras de lixa com fundo amarelado. A propésito, isso
limita a aplicacdo desta metodologia apenas a esses tipos de imagens, jd que ndo representa
todos os cenarios de utilizacao quanto ao substrato para deposicao de ovos utilizado. Inclusive,
ndo é feito um tratamento mais especifico para lidar com imagens ruidosas, como muito escuras
ou com ruido de borramento. Ademais, a forma de captura das imagens envolve dispositivos que
aumentam o custo do processo como um todo. O uso camera e do microscépio supracitados
encarecem financeiramente o processo de aquisicao das imagens e suscita a necessidade de
utilizarem-se dispositivos de baixo custo para alcancar resultados similares. Com dispositivo
de mais baixo custo para captura e de melhor manuseio, transporte e utilizacdo e campo
(principalmente), uma metodologia, como de contagem, proporcionaria maior reprodutibilidade
para cendrios de aplicacao real.

Ademais, o trabalho (NARANJO-ALCAZAR et al., 2024) também aplicou aprendizagem pro-
funda para classificar ovos em duas classes: Eclodidos e ndo eclodidos. Propds também re-
construir a imagem de uma palheta a partir das imagens parciais diminuindo a duplicidade e
corte de ovos entre imagens (ovos segmentados), mas ainda mantendo certo grau de sobre-
posicdo. O dispositivo de captura desenvolvido possui acoplado a si um microscépio DinoL.ite
AMA4013MZT e é capaz de capturar imagens de varias palhetas sem ser necessario remover e
colocar as palhetas ao longo do processo e também proveu a contagem em palheta completa.
A partir de uma palheta, obtém-se 165 imagens parciais e a movimentacao do microscépio em
relacdo a palheta gera sobreposicdao, como mencionado pelos autores e dataset obtido consistiu
de 96 imagens em que 24 foram separadas para o conjunto de teste, as quais continham 215
instancias de ovos eclodidos e 1160 de ovos nao eclodidos. Em relacdo a contagem, utilizaram-
se modelos de segmentacdo semantica, quais sejam: [Mask R-CNNJe Cascade Mask-RCNN. Os
resultados mostraram que o primeiro obteve melhor desempenho com 0.91 [mAPJ@.5, contra
0.89 [mAPI@.5 do outro modelo.

Em relac3do a limitacdes, destaca-se que o dispositivo de captura, em que pese seja pratico,
poderia ser de melhor transporte e manuseio para atividades de vigilancia entomoldgica em
campo. Ademais, hd uma sobreposicdo importante na captura das imagens, fato que inclusive,
fez com que imagens consecutivas de uma palheta n3do fossem rotuladas para evitar considerar
o mesmo ovo duas vezes. Portanto, ha a necessidade de se tratar o problema da sobreposicao
de regides da superficie da palheta na captura. Ademais, o conjunto de imagens treinamento
é ainda muito pequeno, bem como a quantidade de instancias de ovos também o é, nem foi

mencionada a aplicacdo de técnicas de aumento de dados. Ademais, modelos mais recentes
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de segmentacdo estdo disponiveis na literatura, os quais possuem desempenho importante
evidenciado com base em amplas experimentacdes. Por fim, n3o foi apresentada a contagem
geral de uma palheta completa para assim, compararar-se com a contagem manual e calcular
o erro em métricas como erro médio absoluto, por exemplo.

Por fim, (VICENTE et al., 2024) com o uso de um estereomicroscépio Leica MC170 HD,

capturou imagens de palhetas de ovitrampas, criou um conjunto de treinamento e propds

trés modelos de deteccdo de objetos, como Faster R-CNN, [Side-Aware Boundary Localization|

(SABL)| e FoveaBox. A base de imagens é composta de imagens obtidas em campo e em

laboratério. No geral, ha 247 imagens, sendo que 123 foram coletadas em campo e 124,
em laboratério, o que totaliza 12.513 instancias de ovos anotados. Pontua-se que os ovos
obtidos em laboratério sao provenientes de ovitrampas e sdo maturados, mas distinguem-se
pelo fato de que um filtro de papel foi colocado nas ovitrampa para manter os niveis adequados
de humidade para facilitar a eclosdo e, por fim, na fase adulta, os mosquitos fémeas foram
alimentados com uma solucdo de capim e repasto sanguineo para aumentar a postura de ovos
com maior viabilidade.

Os resultados mostraram que o FoveaBox obteve melhor desempenho que os demais mo-
delos, especialmente na contagem de ovos muito préximos uns dos outros (disposicdo que é
comum nessa base de dados) ou agrupados (sobrepostos). Foi verificado que o erro médio
aumenta de forma expressiva a medida que mais imagens s3o consideradas, sendo de 2.68
com até 100 imagens, 26.21 entre 101 e 300 imagens e, por fim, 123.25 para mais de 300
imagens.

Isto colocado, com relacdao a pontos-chave de melhoria, alguns substratos de ovoposicao
utilizados n3o sdo de superficie planas, o que levou a dificuldades no reconhecimento de
objetos posicionados lateralmente a estrutura, o que levou a inviabilidade de anotacdo e de
reconhecimento pelo modelo; isto pode levar, num cenério de inferéncia em aplicacdes do
mundo real, a expressiva subcontagem dos ovos nas palhetas, fato este que inviabilizaria a
solucdo para fins de obtencdo de indicadores relacionados a vigilancia entomolégica. Ademais,
houve dificuldades também na contagem dos ovos devido a presenca numerosa de ovos nas
imagens, dispostos muito préximos uns aos outros e em grupos; ainda, a presenca de ruidos
foi apontada como um fator que traz dificuldades a contagem. Também, modelos do estado
da arte podem ser aplicados com o fim de se obter desempenho melhor na contagem, além
da aplicacdo de modelos de restauracao de imagens para tratar cenérios desafiadores como

imagens ruidosas. Por fim, ha a necessidade de coleta de mais imagens para treinamento e
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obtencdo de modelos com melhor capacidade de generalizacdo, considerando o cenario de
mundo real em que devem ser aplicados.
Para fins de comparacao, a Tabela 2| expde de forma resumida as abordagens utilizadas

nos trabalhos desta sec3o.
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Tabela 2 — Comparativo de trabalhos na literatura que utilizam Aprendizagem Profunda para contagem auto-
matica de ovos de A. aegypti

Trabalho

Técnica

Dispositivo de captura
de imagens

Melhores resultados

Limitacoes

(SANTANA et
al.| 2019)

(SILVA et al.
2021)

(siLva| 2021)

(JAVED et al.
2023)

(NARANJO-
ALCAZAR et
al.| 2024)

(VICENTE et
al.| 2024)

Algoritmo R-FCN
para deteccdo de ovos

U-Net, SegNet e
Resnet50, morfologia
matematica e
segmentacao

EfficientDet, YOLOv4
e RFCN para
deteccdo de ovos

Mask-RCNN para
deteccdo de ovos

Modelos Mask-RCNN
e Cascade
Mask-RCNN para
segmentacdo de ovos

Faster R-CNN,
Side-Aware Boundary
Localization (SABL)
e FoveaBox para
deteccdo de ovos.

Dispositivo de hardware
como um scanner com
microscépio digital USB
com zoom 6ptico de 500x

Camera digital de 7.2 MP
LCD 2,5 polegadas, zoom
optico de 4.5x e lente Leica
DC Vario Elmari

Dispositivo de hardware
feito com impressora 3D e
com camera de microscopia
de 5SMP

Camera Olympus Tough
TG-6 e microscépio Nikon
SMZ18 com zoom de 8x e
lente objetiva de 1x,
respectivamente
macroscopica e
microscépica

Dispositivo de hardware
com microscépio DinolLite
AM4013MZT

Estereomicroscépio Leica
MC170 HD

Precisdo de 91%

Acurécia de
segmentacio de 98.65%
e erro médio quadratico
de 4.25%

YOLOvV4 com 92%,
94% e 93% nos
conjuntos de treino,
validacao e teste e leva
14 segundos para
inferéncia em 204
imagens

Acurécia geral de
98.88% para as imagens
microscépicas e de
96.06% para imagens
macroscopicas erro
médio 74.30 (macro) e
de 1.90 (micro)

0.91 mAP@.5

FoveaBox obteve melhor
correlacdo

10% sobreposicdo em areas
da palheta, dispositivo de
captura com custo
significativo, dificuldade
com sobreposicdo e ovos
adjuntos

Método n3o aprende a
contar ovos, mas segmenta
imagens com base em suas
caracteristicas especifica.
Base de experimentos ainda
pouco expressiva

Dispositivo de hardware de
captura ainda com custo
consideravel,
acentuadamente grande e
de dificil manuseio em
campo no ambito da
vigilancia entomoldgica.
NZo houve um tratamento
de imagens ruidosas

Conjunto reduzido de
imagens de validacdo. Nao
houve tratamento para
imagens ruidosas ja que as
imagens ndo tém ruido
significativo. Uso das
referidas cameras
macroscopicas e
microscépicas encarecem a
metodologia de contagem
de ovos

Dispositivo de hardware de
captura significativamente
grande e por isso, de dificil
transporte e manuseio para
atuagdo em campo no
ambito da vigilancia
entomoldgica. Ha
sobreposicdo consideravel
na captura dos ovos, além
de o conjunto de
treinamento ser pequeno.
N3o foi apresentada
contagem total de uma
palheta. Modelos do estado
da arte podem ser aplicados

Os ovos coletados em
laboratério ndo estdo em
superficie plana, o que
desfavorece a contagem,
pois esconde ovos. Podem
ser experimentados
modelos mais recentes e
com melhor desempenho

Fonte: Elaborada pelo autor (2025).
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3.3 CONCLUSAO DO CAPITULO

Este capitulo apresentou trabalhos relacionados a tarefa de contagem automatica de ovos
de A. aegypti em palhetas de ovitrampa, divididos em duas abordagens principais: Processa-
mento de Imagens, inicialmente, e Aprendizagem Profunda, por fim.

Evidencia-se o esforco continuo dedicado a esta tarefa, bem como os deasafios a ela rela-
cionados. Em que pesem avancos importantes terem sido realizados, ainda permanecem areas
importantes de melhoria, como: Desenvolver dispositivo de captura de mais baixo custo e
de facil utilizacdo, manuseio e transporte; utilizar maiores bases de dados, tanto para trei-
namento, quanto para fins de comparacdo entre contagem automatica e contagem manual;
treinar modelos do estado da arte na area de aprendizagem profunda, como, modelos que
adotam mecanismos mais robustos, como attention, como YOLOv12 e D-FINE, baseados em
transformers, como RF-DETR, dentre outros modelos e tecnologias com melhorias verificadas
em reconhecidos datasets de benchmark, como [COCO} buscar resolver problemas referentes a
captura de imagens, como sobreposicao de regibes; lidar com imagens ruidosas, como ruido de
borramento por meio de modelos de restauracdao de imagens ou outra técnica com o mesmo
fim. Portanto, esses pontos principais enfatizam a atual necessidade de avancos nessa area do
conhecimento.

Assim, nesse contexto, o presente trabalho distingue-se positivamente pela criacdo de uma
base de dados maior. Ainda, pontua-se a criacdo de um dispositivo para captura de imagens
feito com impressora 3D. Além disso, caracteriza-se pela criacdo de um protocolo autoral para
os modelos de contagem, além de serem experimentados varios modelos de aprendizagem
profunda do estado da arte com treinamento para contagem a partir de imagens de baixa
resolucdo capturadas por cameras de smartphones. Também ressalta-se a aplicacdao de modelo
de restauracao de imagens baseado em redes neurais e sua inclusdo no protocolo autoral
de contagem e sdo incluidas e avaliadas também o impacto do uso técnicas de realce com
processamento de imagens na contaem dos ovos, na estrutura do protocolo de contagem
proposto. Desta forma, o capitulo seguinte detalha os procedimentos metodolégicos que foram

utilizados com vistas a atingir esses objetivos acima pontuados.
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4 MATERIAIS E METODOS

No ambito da Metodologia Cientifica, este capitulo tem o intuito de esclarecer os materiais

e métodos aplicados no desenvolvimento deste trabalho.

4.1 FLUXO DE DESENVOLVIMENTO DO TRABALHO

O fluxo proposto de contagem de ovos de Aedes aegypti é apresentado Figura [17] Dado
como entrada uma palheta de ovitrampa (cerca de 15 x 5 c¢cm), sdo capturadas 3 imagens
digitais com apoio do dispositivo de captura; essas imagens sao chamadas de “segmentos” e
representam trés divisdes da palheta, assim nomeadas: Base, centro e topo, cada qual com
dimens3o de 4160 x 3120 pixels. Para cada cada segmento, é feita uma operacdo de corte na
imagem em forma de grade, num corte de 7 linhas e 6 colunas. Esse processamento, resulta
em 42 imagens chamadas “crops”, em que cada uma tem cerca de 491 x 431 px. Ao considerar
os trés segmentos da palheta, apds essa operacdo obtém-se 126 “crops”.

Em seguida, o fluxo de contagem subdivide-se em trés: Fluxo |, voltado a aplicacdo mo-
delos de restauracdo de imagens baseados em Redes Neurais (tal como o como
operacao intermedidria para apds isso ser realizada a contagem por modelos de Aprendizagem
Profunda; Fluxo Il, cujo foco sdo técnicas de Processamento de Imagens, como Equalizacao
de Histograma, para depois serem aplicados os modelos de contagem; e, por fim, Fluxo Ill, em
que a contagem ¢ feita diretamente por modelos sem a aplicacdo de operacoes intermediarias.

Deste modo, dado que uma palheta foi a entrada deste fluxo, obtém-se ao final o resultado
da contagem de ovos de Aedes aegypti nesta palheta: As imagens com as deteccdes e o total

de ovos na palheta.
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Figura 17 — Fluxo Completo de Contagem
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Fonte: Figura do autor (2025)

4.2 AQUISICAO DE PALHETAS

Dada a colaboracdo existente entre o a FIOCRUZ-PE e o Centro de Informatica, foram
fornecidas palhetas de ovitrampa utilizadas na vigilancia entomoldgica, ja abastecidas de ovos
de Ae. aegypti. Ao total, cerca de 152 palhetas foram disponibilizadas e consideradas para este
trabalho, cada qual com as caracteristicas e dimensdes apresentas na Figura [1§|

Dentre essas palhetas, 28, foram fornecidas juntamente com a contagem estimada de
ovos, conforme técnicos da FIOCRUZ-PE, e foram, portanto, consideradas na verificacao dos

resultados dos experimentos descritos nas secoes posteriores deste trabalho.
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Figura 18 — Palheta de ovitrampa
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Fonte:
4.3 CAPTURA DE IMAGENS

Dentre vérias formas possiveis de captura de imagens a partir das palhetas de ovitrampa,
foram utilizados um smartphone e um suporte de captura desenvolvido no ambito deste tra-

balho, os quais sdo utilizados em conjunto e serdo descritos logo abaixo.

4.3.1 Dispositivo moével de captura

Para captura das imagens digitais foi utilizado um smartphone Samsung Galaxy A03s,
lancado em 2021 e considerado um modelo de entrada. Possui um processador Octa-Core (4 x
2.3Ghz + 4 x 1.8Ghz), 3GB de meméria RAM e 32GB de armazenamento interno (SAMSUNG,
2021).

O dispositivo possui também uma camera frontal de SMP (n3o utilizada neste trabalho)
e uma camera traseira composta por trés sensores: Um principal de 13MP, um de 2MP para
captura macro e um sensor de profundidade de 2MP. Enquanto a cdmera principal de 13MP é
indicada para obter imagens grandes e com alta resolucdo, a cdmera macro, por outro lado é de
baixa resolucdo e é utilizada para objetos muito préximos da lente (cerca de 4 cm, segundo o
fabricante) (BRASIL, [2021)). Entretanto, foi utilizada a cAmera principal de 13MP por fornecer
melhor resolucdo. Além disso, o a camera traseira possui um Flash com luz de @ branca,

como mostra a Figura [I9]
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4.3.1.1 Limitacbes da captura direta por smartphone

Em que pese a qualidade consideravel na captura de imagens digitais com o disposi-
tivo acima mencionado, foram observadas limitacdes que inviabilizaram o uso definitivo do
smarthphone por si sé, isto é, sem instrumento auxiliar. lluminacdo ndo uniforme, interseccdo
entre os segmentos da palheta na captura sao os principais pontos limitadores desta abordagem

sendo ela adotada sem acessorios ou suporte.

Figura 19 — Camera traseira - Samsung A03S

Depth Camera
2MP (F2.4)

Main Camera
13MP (F2.2)

Macro Camera
2MP (F2.4)

Fonte: [SAMSUNG| (2021al)

Dado que o Flash de [CED| branco esta posto lateralmente ao sensor principal de 13MP,
conforme Figura (19| a imagem digital capturada da palheta, nesse caso, apresenta iluminac3o
ndo uniforme, isto é, um lado da imagem recebia mais reflectancia e isto produzia uma imagem

com o lado esquerdo mais ilumninado e o lado direito (especialmente a extremidade inferior)

mais escuro. Como apontado por (GONZALEZ; WOODS, 2015), um ponto de uma imagem
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digital é formado por lumindncia e reflectancia, e neste caso, pelo fato de a luminancia ser
maior no lado esquerdo, a luz n3o era uniformemente distribuida nas regides do segmento de
uma palheta, como observado na Figura 20 o que, por conseguinte compromete o resultado

dos processamentos posteriores.

Figura 20 — Segmento de palheta com iluminacdo n3o uniforme

Fonte: Figura do autor (2025)

Ademais, outro ponto limitador da abordagem de captura manual dos segmentos de uma
palheta, consiste na interseccdo de segmentos da imagem, ou seja, ao capturar imagens dos trés
segmentos de uma palheta (base, centro e topo), sem o auxilio de um suporte, por consequéncia
haverdo regides comuns ou de interseccao por nao haver um delimitador fisico para cada
segmento, como mostra a Figura 21] Tal inconsisténcia levaria a uma contagem futura ddbia

do nimero de ovos numa palheta em que os objetos de interesse seriam considerados duas
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vezes.

Figura 21 — Divisdo de segmentos com areas comuns

Areas de intersecgio

AN

Fonte: Figura do autor (2025)

Por fim, outros problemas tais como a falta de uma distancia fixa pré-estabelecida entre a
camera do stmartphone para a superficie da palheta também produziriam imagens instaveis.
Afora outros fatores, tais como inclinacdo (ainda que leve) da cdmera em relacdo a superficie
também resultariam em imagens com condicdes diversas entre si, logo, despadronizadas. Tais
razdes suscitaram o desenvolvimento de um Suporte de Captura, com o intuito de sanar os

principais problemas da captura puramente manual e desestruturada.

4.3.2 Suporte de captura desenvolvido

Dada a necessidade de sanar os problemas de despadronizacdo na captura das fotos de uma
palheta, foi desenvolvido no ambito deste projeto, um Suporte de Captura (ou Dispositivo de
Captura), criado com impressora 3D, com o objetivo de ser uma estrutura fixa de sustentacdo
para a camera do smartphone, bem como um provedor de iluminacdo padronizada, sanando
assim, os problemas supracitados.

Este Dispositivo de Captura mede 18 cm de comprimento, 10 cm de largura e 7 cm de
altura. E composto por duas partes: A plataforma inferior de captura, sobre a qual fica a
palheta e o suporte superior de captura, onde apoia-se o celular. O suporte de captura, visto

de cima, é exibido na Figura |22 e Figura 23]
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Figura 22 — Suporte de captura de imagens de palheta de ovitrampa

Fonte: Figura do autor (2025)

Figura 23 — Suporte de captura de imagens de palheta de ovitrampa com smartphone posicionado

Fonte: Figura do autor (2025)
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Assim sendo, a plataforma inferior de captura mede 17 cm x 5 cm, e sobre ela é colocada a
palheta. Possui 8 ranhuras triangulares ao longo de sua superficie, as quais servem para encaixe
do ressalto (saliéncia) da parte principal superior, conforme Figura . De modo semelhante,
o suporte superior de captura possui as saliéncias para fixacao com a plataforma inferior de
captura, conforme Figura @ Desta forma, esses encaixes de fixacao mantém bem delimitados

e sem interseccdo os segmentos da palheta durante a captura das fotos.

Figura 24 — Caracteristicas do Suporte de Captura

(a) visdo lateral (b) Palheta iluminada (c) Lampadas de LED branca (d) Encaixes de fixacdo

Fonte: Figura do autor (2025)

Figura 25 — Plataforma inferior do Suporte de Captura de imagens de palheta de ovitrampa

Fonte: Figura do autor (2025)

Ademais, o suporte superior possui acoplada a ele 4 pequenas |dmpadas de [LED] branca,
alimentadas por uma bateria. Possui ainda, uma entrada[USB}C para carregamento da bateria,
além de uma pequena alavanca mecanica, para o operador humano controlar o acionamento
e desligamento das lampadas.

Desta forma, ao utilizar o Suporte, o operador humano captura trés fotos, uma para cada

segmento da imagem: Base, centro e topo. Cada segmento é bem delimitado devido as ranhuras
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e encaixes, 0 que evita a captura de dreas comuns. As |lampadas de [LED| branca, direcionam-se
da parte superior para a plataforma inferior, deste modo iluminando os quatro cantos de cada
segmento da palheta. Pelo fato de a camera estar fixa e imével numa distancia de cerca de 6
cm da palheta, de modo a evitar o problema de variacao de inclinacao na captura.

Ent3do, o Suporte de Captura, é usado para obter imagens digitais com excelente qualidade
de iluminacdo, de maneira a sanar os fatores limitadores acima expostos, como iluminac3o
irregular, interseccao de regides e variacoes de inclinacao. Além do mais, é um instrumento
pequeno, pratico e de facil utilizacao por operadores humanos, o que torna mais segura e
estabelecida esta etapa do processo como um todo de contagem de ovos de Ae. aegypti em
palhetas de ovitrampa.

Nessa situacdo, o uso de sistemas de iluminacdo no contexto de captura de imagens de
palhetas de ovitrampa com ovos de Aedes aegypti sao também adotados em sistemas de
capturas de ovos do mosquito, como em (SILVA; RODRIGUES; ARAUJO, [2012b)), que menciona
branca e (HAMESSE et al, [2023)).

Ademais, no contexto de a metodologia de contagem de ovos aqui proposta, em especial, o
dispositivo de captura ser de baixo custo, assevera-se que no contexto desta solucdo a diferenca
de qualidade e quantidade de componentes eletronicos, como cameras digitais e sistemas de
iluminacdo, serve como premissa forte para concluir que o custo final do dispositivo de captura
proposto neste trabalho é menor do que o custo associado ao empregado em outros trabalhos
da literatura.

Nesse sentido, tem-se que, a camera do smartphone Samsung Galaxy A03 adotada neste
trabalho, em comparacao com a camera “Olympus Tough TG-6 e microscépio Nikon", utilizado
como dispositivo de captura em (JAVED et al., 2023), bem como o molde feito com impressora
3D (deste trabalho), comparado com sistemas mais complexos de captura, como o “Dispositivo
de hardware com microscépio DinoLite AM4013MZT", empregado por (NARANJO-ALCAZAR et
al., 2024).

Por fim, para cada palheta, as trés imagens resultantes podem ser exemplificadas na Fi-

gura [26]

4.3.3 Geracao de grids (crops)

Durante testes iniciais, dado um segmento de uma palheta (por exemplo, como visto na

Figura 20, verificou-se que ao aplicar zoom nestas imagens, os ovos do mosquito comecam
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Figura 26 — Imagens resultantes apds uso do Suporte de Captura

Base Centro Topo

Fonte: Figura do autor (2025)

a tornar-se mais claramente visiveis na superficie da palheta (como mostra a Figura [27)), bem

como também é possivel a um modelo treinado reconhecer os ovos na imagem.

Figura 27 — Exemplo de deteccdo de ovo apds aplicacdo de zoom

Fonte: Figura do autor (2025)

Com isso, visando a cobertura de toda a superficie da palheta, realizou-se o seguinte

processamento descrito no Algoritmo [I] para geracdo de crops para cada segmento da palheta.
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Algoritmo 1: Gerac3o de crops a partir de uma palheta
Input: Conjunto de segmentos S de tamanho 3 da palheta Px.

Output: Um conjunto de recortes de imagem (crops), com C' crops por segmento s
de entrada, totalizando C' x 3 crops.
foreach segmento s € S do
Dividir o segmento s em um grid de tamanho 7 x 6, resultando em C' = 42 crops.;
fori< 0toC —1do
Salvar o crop i como arquivo: <Px>_<s>_grid_<i>;;
Exemplo: P1_base_grid_0, P1_base_grid_1, ..., P1_base_grid_41;

end

end

Dada uma palheta como entrada, ao utilizar-se o Dispositivo de Captura desenvolvido,
obtém-se a partir dela os segmentos base, centro e topo. Cada segmento possui dimensao de
4160 x 3120 pixels. A partir destes segmentos passa-se a geracao dos crops.

Este préximo processamento é uma operacao em que a imagem é divida em pequenas
porcdes de imagem, chamadas de crop. Adotou-se o valor de 7 linhas e 6 colunas e dividiu-se
a imagem como uma matriz; isto resulta em 42 imagens, cada qual com de 491 x 431 px. Esta

etapa do processamento é expressa na Figura [28

Figura 28 — Processo de geracdo de crops a partir de um segmento de palheta

(a) Segmento de imagem (b) Linhas indicadores do corte a ser feito (c) Crops gerados (7x6)

Fonte: Figura do autor (2025)

Nesse contexto, é sabido que hd um thresholding quanto a quantidade de linhas e colu-

nas escolhida. Inicialmente, por natureza, sabe-se que um segmento de imagem possui ovos
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excessivamente pequenos e até dificilmente vistos por um humano ou reconhecidos por um
modelo. Assim, ao cortar essa imagem em outras micro imagens, ndo se deve aumentar em
excesso a quantidade de cortes, sob pena de cortar os objetos de interesse em partes ou de se
obter imagens excessivamente pequenas.

Deste modo, testou-se varios valores de linha e coluna, tais como 4 x 4, 5 x5 e 7 x
6. Nos testes iniciais, cada um deles deu origem a imagens resultantes com resolucdes de,
respectivamente, 611x815, 489x652 e 407x466 pixels.

Adicionalmente, constatou-se que a qualidade das detecGes aumenta assim que a quanti-
dade de crops aumenta. Ou seja, quanto mais crops de imagem, obtém-se mais deteccdes de
qualidade, como mostra a Figura [27] A ressalva consiste em n3o aumentar muito o ndmero
de crops, haja vista que, ao se aumentar o niimero de crops, a dimensao das imagens finais
diminui.

Figura 29 — Exemplo de crop obtido

Fonte: Figura do autor (2025)

Portanto, o dispositivo de captura obtém, ao fim do processo 126 imagens, que representam
em conjunto, a totalidade da superficie de uma palheta completa. Cada imagem, a exemplo da

Figura[29] possui 491 x 431 de dimens3o, com cores especificadas no sistema de cores [RGB] e



81

comprimidas sob o formato de arquivo [Joint Photographic Experts Group (JPG)| (GONZALEZ;

WOODS, 2015)).

4.3.4 Base de imagens

A base de dados utilizada, disponibilizada por (SILVA, [2021) foi utilizada neste trabalho.
Esta base foi feita a partir de 100 palhetas, capturada utilizando camera digital e cada imagem
possui 680 x 480 px de dimensdo. E formada por 1.162 imagens originais e, consideradas as

obtidas, por data augmentation, possui 3.703 imagens.

4.3.5 Base de dados criada

No ambito deste trabalho, com Dispositivo de Captura desenvolvido com impressora 3D,
foi criada uma base de imagens de ovos de Ae. aegypti a partir de 124 palhetas de ovitrampa
disponibilizadas pela FIOCRUZ-PE, capturadas com o smartphone acima mencionado. Ao
seguir-se os passos descritos nas secoes anteriores, foi criada uma base prépria de imagens que
formada por 2.340 imagens e com o total de 8.745 ovos do mosquito. Cada imagem possui
491 x 430 px, aproximadamente.

Por consequéncia, foi feita a divisao deste conjunto de dados com vistas ao treinamento de
modelos de deteccao de objetos voltados ao reconhecimento de ovos de Ae. aegypti. A divisao

das imagens obedece ao exibido na Tabela [3|

Tabela 3 — Divisdo do dataset de ovos de Aedes aegypti em palhetas de ovitrampa

Particao Quantidade de Quantidade de Ovos
Imagens

Treinamento 1.872 6.970

Validacao 234 922

Teste 234 853

Total 2.340 8.745

Fonte: Elaborada pelo autor (2025)

No ambito de modelos de Aprendizagem Profunda, a obtenc3o, rotulacao e demais trata-
mentos dos dados constituem-se em parte fundamental do fluxo de criacdo de um modelo, além

de exigir tempo e esforco humanos consideraveis (GOODFELLOW; BENGIO; COURVILLE, 2016)).
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Portanto, este conjunto de dados criado é uma contribuicao importante para o refinamento

posterior de modelos de deteccdo de objetos voltados ao dominio deste trabalho.

4.3.6 Base de dados derivada

Com vista a aumentar o conjunto de dados, aproveitou-se a base de dados proposta por
, . Esta base é formada por 1.162 imagens de ovos de Ae. aegypti em palhetas de
ovitrampa; cada imagem possui 640 x 480 px. As condicdes de captura, porém, distinguem-se,
pois o dispositivo de captura é uma camera digital (em vez de um smartphone) e o suporte
de captura é bem maior e de funcionamento distinto.

Estas imagens apresentam uma qualidade visual bem melhor, em que pese haver imagens
ruidosas, dada a natureza do problema. A Figura [30] mostra exemplos de imagens desta base

em que fica a mostra a diferenca na qualidade das imagens.

Figura 30 — Exemplo de imagens da base criada por , 2021))

Fonte: Elaborada pelo autor (2025)

Visando aumentar o conjunto de treinamento, bem como a variedade de condicdes de
iluminac3o, cor, brilho em que os ovos estdo presentes na imagem e até, fez-se o redimensio-
namento das imagens desta referida base e as imagens foram agregadas ao dataset de imagens
capturadas por celular criado neste trabalho. Assim, as imagens da base obtidas por camera
digital, foram redimensionadas para um tamanho préximo o suficiente, de modo que o ta-
manho dos objetos de interesse ficasse proximo do que s3ao na base captura por smartphone.

Assim, as imagens foram redimensionadas de 640 x 480 para aproximadamente 491 x 430 px.
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Por consequéncia, a partir disto, obteve-se um conjunto de imagens ainda maior, com mais
exemplos de treinamento e objetos com mais variacdes de condicdes. Este dataset estd assim

dividido, como mostra a Tabela [4]

Tabela 4 — Divisdo das imagens do dataset derivado

Particao Quantidade de Quantidade de Ovos
Imagens

Treinamento 2.799 11.113

Validacao 349 1.397

Teste 351 1.326

Total 3.499 13.836

Fonte: Elaborada pelo autor (2025)

4.3.7 Conjunto de palhetas contadas

Ainda, foi obtido pelo projeto um conjunto de 28 palhetas de ovitrampa contadas pelos
técnicos da FIOCRUZ-PE. Esse conjunto de imagens totaliza 3.528 imagens e totaliza 8.035
ovos. Esse conjunto de palhetas foi capturado com o Dispositivo de Captura baseado em
impressora 3D desenvolvido neste trabalho. Tal grupo de palhetas foi rotulado e também
contado pelo autor utilizando-se da ferramenta de rotulacdo Labellmg (TZUTALIN, 2015).
Esta rotulacdo é necessaria para obter-se a[mAP]

Essas palhetas constituem-se numa colecdo importante (e mais atual) para servir como um
conjunto de dados Real World (do mundo real) e assim serem usadas para, em ultima anélise,
verificar o desempenho dos modelos de contagem automatica desenvolvidos e comparar com

a contagem humana manual.

4.3.7.1 Desafios a contagem automatica

A contagem automatica de ovos de Ae. aegypti abrange alguns desafios: Quanto a qua-
lidade das imagens capturadas e a disposicdo dos ovos na palheta. Nesse sentido, ruidos sao
bastante comuns nessas imagens, o que requer robustez por parte dos métodos de contagem,
a fim de lidar com esses problemas. Observa-se na Figura 31} uma imagem com iluminacdo
irregular, que é um dos ruidos comuns nas imagens. Somado a isso, problemas na disposicdo

dos ovos, como, quando os ovos estao sobrepostos, adjuntos, além de estarem segmentados;
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ademais, ruidos gerais existentes nas imagens, que sio caracteristicos do uso de ovitrampas,

como objetos estranhos, também s3o obstaculos para a contagem automatica.

Figura 31 — Exemplo de imagem ruidosa de palheta, especialmente com iluminacdo irregular

Fonte: Elaborada pelo autor (2025)

4.4 METODOS DE CONTAGEM AUTOMATICA COM APRENDIZAGEM PROFUNDA

Conforme o fluxo descrito na Figura [17], adotou-se o uso de diversas abordagens para a
contagem automatica de ovos de Ae. aegypti em palhetas de ovitrampa, cada qual com suas
operacdes intermediarias. As secOes seguintes detalham cada fluxo alternativo para contagem

automatica.

4.4.1 Ambiente de treinamento

O processo de treinamento dos modelos foi realizado no Google Colab Pro+, o qual fornece
um ambiente virtual dotado de 83.5 GB de meméria RAM, além de uma GPU de NVIDIA
A100-SXM4-40GB, com meméria RAM de 40 GB.
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4.5 FLUXO I: CONTAGEM ALIADA A APLICACAO DE MODELOS DE RESTAURACAO
DE IMAGENS BASEADOS EM APRENDIZAGEM PROFUNDA

Neste fluxo, utilizou-se Aprendizagem Profunda voltada a restauracdo de imagens, haja
vista os desafios a contagem automética, em especial a presenca de tipos de ruidos na base
de dados de ovos de Ae. aegypti, com os quais um modelo de restauracao poderia lidar.

Assim, neste fluxo, um modelo de melhoria foi aplicado como etapa intermediaria, antes

da realizacdo da inferéncia pelo modelo de contagem automatica.

4.5.1 MPRNet

Como define (GONZALEZ; WOODS, [2015)), a Restauracdo de Imagens, de modo geral,
distingue-se do Ralce de Imagens, por ser este um processo objetivo, ao contrério daquele (re-
alce), que é subjetivo e baseado na percep¢do do observador humano. Ademais, a restauracdo
de imagens visa recuperar uma imagem corrompida em cendrios onde se tem o conhecimento
de qual foi o fendmeno de degradacdo que causou o ruido e, a partir dai prover a aplicacdo
do processo contrario, para, assim, a partir de uma imagem degradada, obter sua versao dita
limpa. Assim, ruidos como borramento, ruidos de chuva e ruidos em geral podem ser tratados
por esta técnica.

Entdo, dada a tarefa de lidar com imagens de baixa qualidade e com presenca de ruidos es-
pecificos, optou-se por um tratamento com Redes Neurais de restauracdo de imagens, uma vez
que sdo amplamente aplicados atualmente, como, tal qual exposto por (ARCHANA; JEEVARAJ,
2024).

Assim, utilizou-se 0 modelo de restauracdo MPRNet, proposto por (ZAMIR et al|, 2021)),
que, no contexto de restauracdo de imagens, busca em sua transformacdo, equilibrar tanto
detalhes espaciais, como também informacdes de alto nivel nas imagens, de modo a buscar
manter uma transformacao final que apresente nitidez nos detalhes, como texturas e bordas e
ainda nas informacdes de alto nivel.

O prové de arquitetura que lida com a Restauracdo de Imagens de trés tipos de
ruidos: Image Deblurring, Image Derraining e Image Denoising (RAJAEI; RAJAEI; DAMAVANDI,
2023). Sua arquitetura de trés estagios, como mostra a Figura , restaura gradativamente
a imagem ao longo desses estagios e faz, nesse processo, uso de skip connections entre eles,

tanto internamente, quanto entre os estagios. Quanto aos estagios, assim divide-se: Nos dois
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primeiros, uma estrutura codificador-decodificador (ou encoder-decoder) é implementada com
base no padrdo de uma rede U-Net (RONNEBERGER; FISCHER; BROX, 2015)), tal qual exibe a
Figura[32]com o intuito de aprender informacdes contextuais completas da imagem degradada.

Figura 32 — Sub-rede encoder-decoder

Skip
connections

Fonte: (ZAMIR et al, [2021]))

Por conseguinte, no terceiro estagio, uma [ORSNet| opera também na imagem original,
mais precisamente em sua resolucdo, para gerar saidas espacialmente precisas e obter-se uma
imagem de saida com correspondéncia espacial pixel a pixel em relacio a imagem original,

como exibe a Figura [33]

Figura 33 — Bloco da sub-rede

B ) -G

Fonte: (ZAMIR et al, [2021))

Entre os estagios 1 e 2, em especial entre os dois encoder-decoder, hd um médulo denomi-
nado [CSFF], como aponta a Figura[34] Ja entre os estagios 2 e 3, entre os encoder-decoder e
[ORSNet] de igual modo estd o médulo [CSFF| conforme Figura[35] Devido ao uso repetido de
operacdes de up-sampling e down-sampling, pode ocorrer perda de informacao. Nesse ponto,
o [CSFF| torna a rede menos vulneravel a perda de informac3o. Acrescenta-se que, o uso do
[CSFF| permite com que features multi-escala oriundas de um est4gio auxiliem a enriquecer as
fatures do estagio subsequente. Por fim, a medida que o m facilita o fluxo de informacao,
o processo de otimizacdo da rede se torna mais estavel, o que permite com que a arquitetura

da rede seja aumentada, de modo a adicionarem-se mais estagios.



87

Figura 34 —|CSFF|entre os estagios 1 e 2
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Fonte: (ZAMIR et al), [2021))

Figura 35 —|CSFF| entre os estagios 2 e 2
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Fonte: (ZAMIR et al, [2021))

Ao contrério de outras redes multi-estagio de restauracdo de imagens, tais como, (SUIN;
PUROHIT; RAJAGOPALAN, 2020; [ZHANG et al., 2019), que fazem a predicdo numa imagem, para

entdo passa-la para o préximo estagio, a[MPRNet] usa [SAM] como médulo de attention entre

os dois estagios, o que facilita o ganho de performance significativa (ZAMIR et al., 2021)). Por a
restauracdo ser progressiva entre os estagios, o [SAM] exibido na Figura[36] é atil por fornecer
sinais de supervisdo de ground-truth ao longo deste processo. Ainda, previsdes supervisionadas
localmente sao usadas também para gerar mapas de attention e, assim, suprimir features menos
significativas, de maneira a passar para o préximo estagio somente informacdes Uteis.

No contexto de imagens de ovos de Ae. aegypti em palhetas de ovitrampa, em que ha, rui-

dos diversos abundantes, considerou-se adotar o[MPRNet| dada sua arquitetura de restauracio
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Figura 36 — Médulo
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Fonte: (ZAMIR et al., [2021))

progressiva de imagem adotar mecanismos e estratégias para tentar evitar a propagacao de ru-
idos para a imagem de saida. Portanto, o uso de diversos médulos com estratégias pertinentes,
aliadas a mecanismos de atencdo, como acima citado (dentre outros), tornam a arquitetura
do propicia para restauracdo de imagens no dmbito deste trabalho.

Ainda, o, em 10 datasets de benchmark, nas suas trés tarefas (Image Deblurring,
Image Deraining e Image Denoising) obtém desempenho superior em relacdo a outros modelos
com os quais é comparado. Além disso, caracteriza-se por ser eficiente em questao de tamanho
e em tempo de execucdo, o que favorece até sua aplicacdo em dispositivos com recursos
limitados (ZAMIR et al., [2021)).

Destarte, este modelo é pré-treinado no conjunto de dados GoPro (NAH; KIM; LEE, 2017)),
que possui 2.103 pares de imagens na particao de treinamento e 1.111, na de validacdo. Ainda,
o modelo teve o desempenho verificado na particdo de teste do dataset HIDE (SHEN et al.,
2019)) e RealBlur (RIM et al., 2020; ZAMIR et al., 2021).

Entdo, como acima mencionado, o é disponibilizado para trés distintas tarefas
de restauracdo de imagens: Image Deblurring, Image Deraining e Image Denoising. Aquela
(Deblurring) é voltada a restauracdo de ruido causado por falta de foco (Defocus blur),
movimento do sensor ou do objeto (Motion blur) ou por limtagdes éticas. Essa, a tarefa de
Image Derraining, por sua vez visa remover tracos de chuva presentes na imagem, mantendo
sua nitidez. Por fim, o Image Denoising, consiste em remover ruidos de modo geral da imagem,
como o ruido gaussiano e ainda assim manter detalhes de alta qualidade na imagem (ELAD;
KAWAR; VAKSMAN, 2023)).

Nesse contexto, observa-se na base de dados de imagens de palhetas de ovitrampa captu-
radas por smartphone, a presenca de numerosa de ruido de borramento (ou Blur). A propésito,
a Figura[37] exibe a presenca de ruidos do tipo blur. Logo, ao utilizar o modelo optou-se por

um tratamento especifico com a tarefa de remocao de ruido de borramento: Image Deblurring.
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Figura 37 — Imagens com a presenca de ruido de borramento

Fonte: Figura do autor (2025)

4.6 FLUXO Il: CONTAGEM ALIDADA A TECNICAS DE PROCESSAMENTO DE IMA-
GENS

4.6.1 Aplicacao inicial de técnicas de realce de imagens

Como define (GONZALEZ; WOODS, 2015), Realce de Imagens é o processo de manipulagdo

de imagens para torna-las mais adequadas ao fim especifico de uma aplicacdo em relacio ao
que elas inicialmente eram. Por natureza, estas técnicas sdo orientadas ao problema, isto é,
o conjunto de técnicas aplicadas obedece ao dominio especifico da aplicacdo ou sistema de
Visdo Computacional.

Assim, a partir de uma imagem original da superficie de uma palheta proveniente da
base capturada por smartphone, foi aplicado zoom, a ponto de se visualizar bem os ovos e,

em sequéncia, foram aplicadas diversas técnicas de Realce de Imagens, como Color Jitter,
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Equalizacdo de Histograma e [CLAHE]

Ent3o, a partir dai, utilizou-se um modelo YOLOv10, treinado no ambito deste trabalho na
base proposta por , e realizou-se a inferéncia em um grupo de imagens capturadas
por smartphone para verificar o efeito da aplicacdo de técnicas de realce na contagem de
ovos. Portanto, foram aplicadas as transformacdes conforme o que as subsecdes seguintes

discriminam.

4.6.1.1 Color Jitter

E uma técnica comumente aplicada para Data Augmentation e consiste em gerar variacoes

de cor em imagens, quanto a brilho, saturacdo, contraste e matiz (PYTORCH, [2025a). Dessa

maneira, ao aplicar estas transformacdes, verificou-se que mais objetos de interesse eram
reconhecidos pelo YOLOV10. Isto é expresso, a exemplo, na Figura [38]

Figura 38 — Imagens de palheta de ovitrampa ap6s aplicacdo de variacdes de contrate, brilho e saturacdo

(a) Imagem original apés zoom: (b) Imagem com variacio no
3 ovos brilho: 10 ovos

(c) Imagem com varia¢ao no (d) Imagem com variag¢do na
contraste: 25 ovos saturacdo: 3 ovos

Fonte: Figura do autor (2025)
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4.6.1.2 Equalizacdo de Histograma

Dentre as varias transformacdes de Transformacdo de Histograma, adotou-se, a Equaliza-
cdo de Histograma. Esta transformacao é atil para realcar imagens de baixo contraste e produz
uma distribuicdo mais uniforme das intensidades dos pixels presentes na imagem (OPENCV,
2025b; [MATHWORKS, [2025b)).

Desta forma, como menciona a Figura [L7 antes da inferéncia por um modelo de Deep
Learning, foram aplicadas individualmente as Técnicas de Realce intermediarias com o fim
de submeter ao modelo uma imagem ja realcada e assim, verificar o desemepenho da conta-
gem automatica. Esta operacdo é padrdo e ndo recebe quaisquer parametros para ajuste, ao

contréario da trasnformac3o seguinte.

4.6.1.3 Contrast Limited Adaptive Histogram Equalization (CLAHE)

Justo por que a Equalizac3o de Histograma, que para fins de realce de contraste, considera
o contraste global da imagem, o que nem sempre produz resultados satisfatérios, como no
caso em que ha tanto pixels muito escuros e muito claros.

Assim, (Ou Equalizagdo Adaptativa), em vez de considerar o contraste global,
divide a imagem em regides, chamadas tiles e considera o constraste de cada regido e entdo,
cada tile é equalizado normalmente. Ainda, para evitar que o ruido possa ser aumentado nas
regides, € aplicado um limitador de constraste, de modo que, se um bin da equalizacdo de
histograma ultrapassar este limite (clipLimit), os pixels excedentes serdo distribuidos unifor-
memente ao longo do histograma. Por fim, uma Interpolacdo Bilinear é aplicada.

Portanto, foram utilizados como pardmetros, os seguintes valores: O tamanho do tile (ti-
leGridSize) foi definido como 8x8 px e o limiar de corte, o clipLimit foi definido como 2.0
(OPENCV, [2025c). Estes valores de pardmetros produzem um efeito equilibrado na transfor-
macdo, com um tileGridSize adequado ao tamanho das imagens de dimensdo 491 x 431 px e
com um clipLimit conservador com intuito de obter um bom equilibrio de constraste, evitando

transformacoes extremas.
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4.7 FLUXO Ill: CONTAGEM DIRETA COM REDES NEURAIS

Entende-se como a utilizacdo de um modelo de Aprendizagem Profunda para realizar infe-
réncia diretamente nas imagens sem que haja etapas intermediarias, como pré-processamento
ou realce de imagens.

Ent3o, ja4 de posse da base de dados, procedeu-se ao treinamento dos modelos de Apren-

dizagem Profunda, como mencionado em seguida.

4.7.1 YOLOv10

Foi utilizado um modelo YOLOV10, proposto por (WANG et al.,2024)). Este, conforme docu-
mentac3o oficial, possui 6 tamanhos disponibilizados, divididos por quantidade de parametros
e complexidade. Dado que a base de dados utilizada neste trabalho n3o é suficientemente
grande, como se exige para modelos de Aprendizagem Aprendizagem como este, optou-se por
utilizar o YOLOv10-M.

Este modelo é disponibilizado j& pré-treinado no dataset [COCO] 2017, que é composto por
80 classes genéricas, como pessoa, carro, macd, laranja etc. O conjunto possui cerca de 118
mil imagens para treino e 5 mil para validacao, além de cerca de 40 mil imagens de teste.

Considerando a literatura, optou-se por utilizar este modelo pré-treinado em [COCO| 2017 e
aplicar Transfer Learning para obter vantagens desta técnica e obter um desempenho melhor,
considerando o amplo conjunto de caracteristicas gerais extraidas pelo modelo dado seu extenso
nimero de 80 classes.

Quanto aos hiper-parametros, o modelo foi treinado como descreve a Tabela . O modelo
foi treinado por 100 épocas, com batch-size de 32 e o otimizador escolhido foi o AdamW,
além de ter sido aplicada uma regularizacdo L2 (conhecida como Ridge Regression com valor
de 0.0005 para ajudar a controlar o overfitting.

Assim, a partir desse YOLOv10m pré-treinado em [COCOJ] 2017, o treinamento foi feito
na base de dados de treinamento proposta por (SILVA, |2021) a uma taxa de aprendizagem
de 0.003, o que é uma taxa baixa e apropriada para aplicar Fine-tuning, sem sobrescrever
excessivamente os valores dos pesos e desperdicar o aprendizado anterior e mais geral do
modelo e que também é recomendado na documentacao oficial para o ajuste fino com datasets
customizados. Além disso, foi utilizado um Batch size de 32 para dar maior estabilidade ao

treinamento. O parametro imgsz com valor 640 refere-se ao tamanho para o qual as imagens
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de entrada s3ao redimensionadas antes de serem submetidas ao modelo durante o treino e
geralmente, quanto maior for, pode produzir resultados melhores.

Tabela 5 — Principais hiperpardmetros utilizados no treinamento do YOLOv10-M

Hiperparametro Valor
Epocas 100
Batch size 32
Learning rate 0,003
Otimizador AdamW
Weight decay 0,0005
imgsz 640

Fonte: Elaborada pelo autor (2025)

Além disso, como recomendado pela literatura para evitar overfitting, foram aplicadas al-
gumas técnicas de Data Augmentation, conforme exibido na Tabela[f] Estas técnicas aplicadas
visando fornecer ao modelos dados em mais variadas condicdes de posicionamento (como ob-
jetivam as transformacgdes como Flip Horizontal) ou de condicSes de iluminag3o (a exemplo da
transformacdo de Saturacdo), de tamanho (como usado com a transformacdo de Scale). Isto,
por fim, ajuda o modelo a ser mais tolerante a essas variacdes e generalizar melhor (GéRON,
2019).

Tabela 6 — Técnicas de Data Augmentation aplicadas no treinamento do YOLOv10-M

Técnica Valor
Flip horizontal 0,5
Mosaic 0,5
HSV Saturation 0,7
AutoAugment RandAugment
Erasing 0,3
Translate 0,1
Scale 0,3

Fonte: Elaborada pelo autor (2025)

Como apontado, foi utilizado horizontal flip com valor de 0.5, o qual inverte horizontal-
mente 50% das imagens, além de mosaic com valor 0.5, que monta 4 imagens numa sé para
auxiliar na generalizacdo e é aplicado, nesse caso, sobre 70% das imagens (ULTRALYTICS,
2025¢€)).

Ainda, foi aplicada um ajuste de saturacdo (HSV Saturation) que modifica a intensidade da

imagem aleatoriamente numa faixa de -0.7 a 0.7. Inclusive, AutoAgument com valor RandAug-
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ment, o qual aplica uma selecdo aleatéria de transformacdes. Também foi utilizado Erasing,
que, por sua vez apaga partes da imagem para simular oclusiao de objetos, que é um problema
importante de ser tratado em virtude dos desafios inerentes a contagem automética (nesse
caso, objetos sobrepostos).

Também, foi aplicada um Translate leve de 0.1, o qual desloca as imagens horizontal e
verticalmente de acordo com esta magnitude definida. Por fim, foi empregada uma transfor-
macao scale de 0.3, que redimensiona as imagens dentro desse valor definido como margem
(para mais ou para menos). Ela é Gtil para simular objetos a diferentes distancias: mais perto
ou mais longe.

Observa-se, portanto, que a definicio dos pardmetros supracitados, obedeceu as seguin-
tes condicdes: Proporcionar aumento de dados, produzir dados sintéticos em situacées mais
diversas, bem como, nao causar ruido expressivo nos dados, ou mesmo amplificar ruidos ja

existentes numa imagem.

4.7.2 YOLOv12

Considerando o modelo proposto em (TIAN; YE; DOERMANN, [2025)) apresentar bons de-
sempenhos superiores ao YOLOv10, adotou-se o YOLOv12 em sua versdo YOLOv12-M, que
conta com 20.2 milhGes de parametros e AP50:95 de 52.5, que é levemente superior ao anterior
(51.1); isso medido no cojunto de validacdo do dataset 2017.

Dado este modelo base YOLOv12, pré-treinado na base de treinamento[COCO|2017 e visto
que ele possui 5 tamanhos de escala, utilizou-se o modelo intermediario, o YOLOv12-M, dado
sua referida quantidade de parametros e haja vista que os de maior escala, como YOLOv12-L
ou YOLOv12-X s3o mais complexos e possuem uma quantidade consideravelmente maior de
parametros, respectivamente 26.5 e 59.3 milhdes de parametros. Por conseguinte, dado que
o tamanho do dataset utilizado neste trabalho ser considerado pequeno, isto poderia levar a
overfitting, ja que estes modelos maiores escala sdo mais recomendados quando se tem uma
quantidade bem maior e mais variada de dados de treinamento.

Nesse sentido, foi feito fine-tuning a partir do modelo base pré-treinado, com os hiperpa-
rametros definidos conforme a Tabela [7l

A quantidade de épocas foi mantida em 100, mesmo o dataset sendo pequeno, por conta
do patience 15, que interromperia o treinamento. Além disso, ao fim do treinamento, sdo

obtidos os pesos do modelo com o melhor desempenho e os ultimos pesos; ainda, o trei-



95

Tabela 7 — Hiperpardmetros utilizados no treinamento do modelo YOLOv12-M

Hiperparametro Valor
Epocas 100
Batch size 32
Learning rate 0,002
Otimizador AdamW
Dropout 0.35
Weight decay 0,005
Patience 15
imgsz 1024

Fonte: Elaborada pelo autor (2025)

namento foi monitorado através das métricas como [mAP@0.50, por exemplo, para obter os
ultimos pesos associados a uma boa performance, principalmente nas primeiras dezenas de
épocas para evitar overfitting. O parametro imgsz foi mantido com valor de 640, pois, mesmo
que aumentando-o, o desempenho do modelo poderia melhorar, entretanto, este parametro
influencia significativamente no custo computacional envolvido no treinamento, em especial
a memoéria RAM da GPU do Google Colab Pro+. Deste modo, verificou-se em experimentos
que, ao aumentar imgsz para 1024, por exemplo, o tamanho do batch precisaria ser diminuido
significativamente. Entdo, decidiu-se por manter o batch size 32 para dar mais estabilidade ao
treinamento.

Ademais, o hiperparametro patience, referido acima, estd associado a técnica de Early
Stopping e produz o seguinte efeito: O treinamento é interrompido quando, mesmo apés 15
épocas consecutivas, o modelo ndo apresenta melhoria nas métricas de validacao; isto é atil
para evitar overfitting (ULTRALYTICS, 2025d)).

Também, dada a ocorréncia de overfitting em experimentos intermediarios, optou-se tam-
bém por utilizar uma regularizacdo mais forte com dropout de 0.35. O Weight decay com
valor 0,0005 é um valor padrao e apropriado para uma regularizacao leve. Dado o valor mais
forte do dropout, optou-se por nao penalizar muito o modelo para ndo incorrer em underfit-
ting, como ocorreu em experimentacoes anteriores deste modelo. Junto as outras técnicas de
regularizacdo como L2 e Weight decay utilizadas, servem como mecanismo para controlar o
overfitting.

Ainda, visando tornar o modelo mais resiliente a variacoes nas caracteristicas dos dados de

palhetas de ovitrampa presentes no mundo real, como variacdes de iluminacao de posiciona-
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mento, rotacdo e outras variacdes, foi aplicado um conjunto de técnicas de Data Augmentation,

como mostra a Tabela [8

Tabela 8 — Técnicas de Data Augmentation aplicadas no treinamento do YOLOv12-M

Técnica Valor

HSV Hue 0,015

HSV Saturation 0,7

HSV Value 0,4

Translate 0,1

Scale 0,5

Flip horizontal 0,5

Mosaic 0,5

AutoAugment RandAugment

Erasing 0,4

Fonte: Elaborada pelo autor (2025)

O HSV Hue altera as cores da imagem na faixa de intervalo especificada (nesse caso -0.15
a 0.15) e é (til para simular mais condicdes de cor de um objeto de interesse. Doutra forma, o
HSV Value opera ajustes no brilho da imagem, de acordo com o valor fornecido. E importante
para cendrios em que o objeto de interesse aparece mais claro ou mais escuro a depender da

luz do ambiente.

4.7.3 RF-DETR

Considerou-se o modelo RF-DETR, mencionado em (SAPKOTA et al., 2025), o qual apre-
senta desempenho concorrente ao do YOLOv12, de modo a supera-lo com mAP®@50 de 0.9464
num cenario de classe (inica, bem como também, em varios cenarios multiclasse. Dado prin-
cipalmente seu bom desempenho em tarefas complexas, com oclusdo de objetos (que é caso
comum em ovos de Ae. aegypti em palhetas de ovitrampa, bem como sua rapida convergén-
cia, especialmente em problemas de classe tnica, de modo o treinamento do modelo alcancou
platdé em 10 épocas. Por estas razdes, adotou-se este modelo para o problema atual. Ainda, o
RF-DETR é mais voltado a cenarios onde é mais importante a acuracia em cendrios criticos
(como backgrounds complexos) do que a velocidade de inferéncia, por exemplo, em cenérios
de deteccdo em tempo real, para o qual o YOLOv12 é mais recomendado.

Dado que este modelo possui duas versbes de tamanhos disponiveis, quais sejam: RF-

DETR-base (ou RF-DETR-B), com 29 milhdes de parametros e RF-DETR-large, com 128
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milhGes de parametros, foi adotado o modelo com menos parametros, considerando o cenério
atual deste trabalho.

O modelo é pré-treinado no dataset ImageNet-1K, que é composto por 1000 classes de
objetos variados, como cachorro, gato, avisio, morango, dentre outros. E composto por cerca
de 1.2 milhdo de imagens de treinamento, 50 mil imagens de validacdo e 100 mil de teste.
Fornece, portanto, um conjunto variado e objetos e principalmente, de caracteristicas genéricas
que apoiam o uso da técnica de Fine-tuning.

Assim sendo, o modelo foi ajustado, conforme os hiperparametros de treinamento apon-

tados na Tabela [0l

Tabela 9 — Principais hiperpardmetros do treinamento do modelo RF-DETR-B

Hiperparametro Valor
Epocas 15
Batch size 16
Learning rate 0,0001
Otimizador AdamW
Weight decay 0,0001
Resolucao de entrada 560

Fonte: Elaborada pelo autor (2025)

A quantidade baixa de épocas em relacdo ao YOLOv12 sustenta-se pelo fato de o RF-DETR
alcancar um desempenho estavel de maneira rapida em poucas épocas, como por exemplo,
10 épocas em cenérios de classe Gnica num problema agricola, apontado por (SAPKOTA et
al., 2025). O tamano do batch foi reduzido dadas as restricdes de memdria do ambiente
virtual do Google Colab. A taxa de aprendizagem foi assim definida para usufruir mais das
vantagens do aprendizado anterior do modelo, de modo a utilizar os beneficios do Fine-tuning.
A regularizagdo L2 (Weight decay) foi mantida em 0.0001 por ser leve e ainda assim ser (til
para controlar o sobreajuste. A resolucdo de entrada n3o foi aumentada, dadas as restricoes

do ambiente, de modo que ficou com um valor de 560 x 560 px.

4.7.4 D-FINE

Foi utilizada uma recente contribuicdo de (PENG et al., [2024)), o D-FINE, um modelo de
deteccao de objetos voltado a obter um equilibrio entre velocidade e acuracia, além de obter

melhor acuracia na regressao referente a tarefa de localizacdo de objetos, ponto importante
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em modelos de deteccdo de objetos. Além do mais, no [COCQ| Dataset, obteve desempenho
superior aos modelos existentes, quando se considerou acurécia e eficiéncia em geral (como
custo computacional, por exemplo).

O D-FINE é disponibilizado em duas versdes: pré-treinado somente na base [COCQO| 2017
e na base Objects365 + [COCQ| 2017. Utilizou-se a segunda versdo pré-treinada, por ser
melhor para tarefas de Fine-tuning, além de ser mais ideal para generalizacdo. Quanto a
escala, o D-FINE pré-treinado em Objects3654+COCO possui 4 tamanhos: D-FINE-S, D-FINE-
M, D-FINE-L e D-FINE-X, respectivamente com 10, 19, 31 62 milhdes de parametros de
treinamento. Por considerar mais apropriado ao dataset utilizado neste trabalho, adotou-se o
D-FINE-M, ja que, por ser um equilibrio importante em capacidade de aprendizado, dados os
desafios envolvendo ruidos na base de dados obtida por smartphone e o controle de overfitting,
que poderia ocorrer com mais facilidade num modelo com muitos parametros, dado o tamanho
da base.

Ainda, destaca-se o amplo conjunto de classes contidas no dataset Objects365, no qual
D-FINE é pré-treinado. Seu nimero extenso de 365 classes, cerca de 2 milhdes de imagens
e a presenca de 30 milhGes de objetos nelas, fornece um conjunto amplo de caracteristicas e
diferentes cenarios para aprendizado do modelo. Portanto, apropriar-se dessa ampla capaci-
dade de extracdo de caracteristicas fornece um modelo com um bom ponto de partida para
aprendizado especifico de objetos, como é o caso de ovos de Ae. aegypti, através da aplicacdo
de ajuste fino neste modelo.

Assim, a partir da implementac3o proposta por (PENG et al., [2024)), implementou-se ajus-
tes na implementacao padrao dos autores com vista a tornar melhor a reprodutibilidade dos
experimentos. Ademais, o modelo requer um conjunto de dados anotado no formato @]
0 que exigiu uma conversao no formato de anotacdo do dataset utilizado neste trabalho, de
PASCAL VOC para [COCO|

Entdo, acerca dos hiperparametros, o modelo foi configurado como mostra a Tabela [10]
Observa-se a distincdo entre taxas de aprendizagem, com um valor mais baixo (0.00002)
para o backbone (extrator de caracteristicas) do modelo e uma maior taxa geral de 0.0002.
Tal diferenciacdo visa aproveitar melhor o aprendizado geral do modelo e sua capacidade de
extracdo de caracteristicas, dado seu referido amplo nimero de classes genéricas, no qual é
pré-treinado e, em conjunto, ainda assim manter uma taxa de aprendizagem geral ainda baixa
para ajuste fino.

Utilizou-se o batch de tamanho 32 para proporcionar maior estabilidade ao modelo, dentro
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dos limites do ambiente de execucdo. O tamanho das imagens manteve-se em 640 x 640 px
e o treinamento durou 132 épocas. Por fim, apds a conclusdo do treinamento, obtém-se os

pesos que contém o melhor resultado do modelo no conjunto de validacao.

Tabela 10 — Hiperparametros utilizados no treinamento do modelo D-FINE-M

Hiperparametro Valor
Epocas 132
Batch size 32
Learning rate (backbone) 0,00002
Learning rate geral 0,0002
Otimizador AdamW
base size 640

Fonte: Elaborada pelo autor (2025)

Ainda, a transformacdo RandomPhotometricDistort, também usada em (LIU et al., 2016)),
aleatoriamente distorce a imagem, baseado em Color Jitter, de modo a manipular brilho,
constraste, saturacdo e matiz (PYTORCH, 2025d). O intento é tornar o modelo mais resiliente
a variacdes de cor e luz. Por sua vez, RandomZoomQut aplica produz o efeito de um Zoom
out, o que faz com que a imagem pareca mais distante; os pixels em volta sdo preenchidos
com o valor definido de 0 (preto) (PYTORCH, 2025€).

Também, RandomloUCrop faz alteracées na imagem, de modo a deslocar o objeto de
interesse para fora da imagem, mas mantendo um [loU| minimo, nesse caso 0.8; Na pratica,
grande parte do objeto ainda continuard visivel na imagem e o restante, ndo (PYTORCH, 2025c).
Outrossim, a transformacdo RandomHorizontalFlip, de maneira aleatéria, faz um flip (ou giro)

na imagem dada uma probabilidade, definida como 0.4, nesse caso (PYTORCH, [2025b)).

Tabela 11 — Técnicas de Data Augmentation aplicadas no treinamento do D-FINE-M

Técnica Valor
RandomPhotometricDistort 0,05
RandomZoomOQOut 0
RandomloUCrop 0,8
RandomHorizontalFlip 0,4

Fonte: Elaborada pelo autor (2025)

Por fim, com vistas a obter um desempenho melhor quanto a generalizacdo, controlar o
ajuste fino e ampliar o conjunto de imagens de treinamento, utilizou-se técnicas de aumento de

dados, as quais estdo descritas na Tabela[11] Ha uma particularidade nesse caso, no que tange
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a aplicacdo de transformacGes nas imagens: S3o usadas técnicas mais agressivas de aumento
de dados sobre as imagens até a época 120 e, seguidas por 4 épocas com transformacdes
mais leves e, por fim, nao sdo feitas mais transformacdes. Isto visa propor mais imagens ao
modelo no inicio e assim tentar controlar o ajuste fino e, apds isso, propor ao modelo imagens
com transformacdes leves e, por fim, sem transformacoes, as quais sao mais parecidas com as
imagens do mundo real, com as quais o modelo terd que lidar na inferéncia. Esta estratégia
de aplicacao de transformacoes de data augmentation em fases é baseada no treinamento do
préprio D-FINE, aplicado pelos autores em (PENG et al., 2024)) e proposta no trabalho original
de (LV et al, 2024).

4.8 METRICAS DE AVALIACAO DE DESEMPENHO

As métricas de avaliacao permitem avaliar o sistema que esta sendo desenvolvido. No con-
texto de modelos de Aprendizagem de Maquina, intenta-se saber quao bom é o funcionamento
do modelo que se estd desenvolvendo (ELGENDY| 2020). Isto posto, ja obtidas as as métricas
de desempenho, tém-se um guia para as acdes futuras no treinamento e ajuste de modelos
(GOODFELLOW; BENGIO; COURVILLE, [2016)).

Também, é importante salientar que a definicao de métricas é orientada ao problema que
se tenta resolver e acrescenta-se, que, problemas especificos podem requerer o uso de métricas
mais avancadas (GOODFELLOW; BENGIO; COURVILLE, 2016)).

Logo, no ambito deste trabalho, foram utilizadas as métricas descritas nesta secao, tanto as

gerais, como, em especial, as voltadas especificamente para a tarefa de Deteccdo de Objetos.

Ainda, pontua-se que, métricas que dependam de [True Negative (TN)| ndo sdo aplicadas

em contextos de modelos de deteccdo de objetos pelas seguintes razdes: O background de uma
imagem pode possuir um nimero muito expressivo de combinacdes de pixels e quaisquer dessas
combinagdes seriam caracterizadas como [TN] Assim, se fora adotada, haveria um conjunto
vasto e, principalmente, indefinido de regides[TN]} o que inflacionaria enganosamente a acurécia
do modelo, de modo a levar a medicdes errdneas (ApX Machine Learning, 2025); O fim da tarefa
de deteccdo de objetos é reconhecer e localizar os objetos de interesse na imagem e ndo em
considerar o background para fins de medicdo de acerto. Por fim, trabalhos na literatura, como
os que empregam datasets de benchmark, quais (LIN et al|, 2014, |EVERINGHAM et al., 2010)
assim o fazem. Portanto, o uso de em deteccao de objetos nao é significativo e, logo, sdo

comumente ignorados (SuperAnnotate, [2023} Neuralception, [2024]).
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Isto posto, no contexto de Deteccdo de Objetos, além das métricas usuais, usam-se métricas
especificas como, por exemplo, [nAP} que avalia a tarefa de deteccdo em si e é muito utilizada
também em benchmarking.

Além do mais, no contexto de Deteccdo de Objetos, as métricas sdo peculiares também
devido ao fato de ser feita por humanos. A anotacdo das bounding boxes feita pelo rotulador
é chamada de ground-truth e define onde o objeto de interesse esta localizado na imagem.
Como essa demarcacao do ground-truth poder variar, em alguns pixels, de humano para hu-

mano, é dificil ao modelo detectar exatamente a caixa delimitadora rotulada pelo humano

(SHANMUGAMANI, [2018)).

Portanto, para determinar se uma previsdao é correta ou errada, usa-se a métrica auxiliar

foU} que avalia a tarefa de localizacdo. Esta métrica é descrita na subsecdo abaixo.

4.8.1 Intersection Over Union (loU)

Dada uma rotulac3o verdadeira (ground-truth) e uma bounding box predita pelo modelo,
esta métrica auxiliar mensura qudo boa é a deteccdo, baseado na intersecdo entre o posicio-
namento de ambas as caixas. Portanto, calcula-se a razdo entre a drea de intersecdo (Area of

Overlap) entre elas e a 4rea da unido (Area of Union), como exibe a Figura 39

Figura 39 — Definicdo de Intersection over Union (loU)

Predicted person
bounding box
Ground truth person ‘
bounding box Area of
overlap
Score =
Area of
union
Fonte:(ELGENDY} [2020)

O valor dessa métrica auxiliar é definido de 0 a 100, de maneira que, quanto maior for a

intersecdo entre as bounding boxes verdadeiras e as preditas pelo modelo, maior seu valor,
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como ilustra a Figura [40] (ELGENDY} [2020).

Figura 40 — Exemplo de valores de Intersection over Union (loU)

Poor Good Excellent

Fonte:(ELGENDY} [2020)

4.8.2 mean Average Precision (mAP)

é obtida a partir da precisdo (Precision) e revocacdo (Recall) e seus valores sdo

porcentuais, portanto, variam de 0 a 100, de maneira que quanto maior o valor, melhor é o

resultado. E diferente da acuricia medida em problema de classificacdo (ELGENDY, 2020).
Para tanto, é obtida a partir da [AP] de cada classe, também chamada de preci-

sdo média, que, por sua vez é obtida apds célculo da area sob a Curva precision-recall (Ou

[Precision-Recall Curve (PR Curve))) e fornece um dnico valor que engloba o desempenho de

precision e recall do modelo, de modo que prové uma avaliacdo geral do desempenho (UL

TRALYTICS|, [2025¢). Em suma, [AP] agrega em um (nico valor, de modo a representar

a média de todas as precisoes.
Por fim, é obtida apés célculo da média dos [AP| para cada classe. A predicdo é
considerada correta se o é superior a 0.5 (SHANMUGAMANI, [2018)).

4.8.3 Recall

Também nominada de sensibilidade, mede a capacidade de o modelo identificar os casos
positivos. Indica a proporcdo de instancias (nesse caso, objetos) que o modelo identificou

corretamente. Um recall alto indica que o modelo reconheceu a maioria dos objetos, com

alguns falsos negativos (ULTRALYTICS| [2025b)). E definida pela Férmula [4.1]
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VP
Recall = m (41)

4.8.4 Precision

Também chadamada de especificidade, é o oposto do Recall e mede quantos dos objetos
identificados est3o realmente corretos. Alta precisdo signfica que o modelo tem poucos casos

de falsos positivos (ULTRALYTICS, [2025b). Obedece a Férmula [4.2]

‘/P
Precision = ———— 4.2
recision 2 2 (4.2)

4.8.5 FI1-Score

F1-Score sintetiza as precision e recall numa métrica s6 e representa ambas. E obtida
calculando-se a média harmdnica dessas métricas, como exposto na Férmula (ELGENDY,
2020). O valor p refere-se a precisdo e r, ao recall. Isto posto, para obter um alto F1-Score, o
modelo precisa também ter boa precisdo e revocacao, cumulativamente. Esta métrica fornece
uma medicdo equilibrada do desempenho do modelo e é especialmente importante nos casos
de datasets desbalanceados ou no caso em que, para o modelo, é importante tanto evitar

falsos positivos como falsos negativos (ULTRALYTICS, 2025a)).

2pr

Fl_

- (43)

4.8.6 Contagem absoluta

Como a natureza do problema necessita obter a quantidade de ovos de Aedes aegypti
presentes em palhetas de ovitrampa, foi utilizada também a contagem absoluta. Assim, a partir
da contagem absoluta de ovos do mosquito e da contagem feita por técnicos da FIOCRUZ-PE,

foram também obtidas as seguintes métricas:
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4.8.6.1 Mean Absolute Error (MAE)

IMean Absolute Error (MAE)| também chamada de Erro Médio Absoluto, é usada para

medir erro em sistemas de previsdo. Essa métrica, como aponta a Férmula [4.4] expressa a
média aritmética dos erros absolutos, i.e. a diferenca absoluta entre o valor real e o valor

previsto pelo modelo. Y; refere-se ao valor observado, enquanto que X; é o valor previsto.

1 n
MAE = =Y |Y; - X;| (4.4)
n;3

4.8.6.2 Mean Squared Error (MSE)

IMean Squared Error (MSE)| também chamada de Erro Médio Quadratico, é semelhante

ao [MAE] no sentido de medir a média dos erros absolutos das previsdes. Todavia, distingue-se
desta por dar um peso maior as diferencas verificadas entre os valores real e previsto, em virtude
da potenciacdo aplicada. Na pratica, penaliza mais erros significativos. Assim, na Férmula
e, tal como na Férmula [4.4) Y; e X; também referem-se, respectivamente, ao valor real e ao

valor estipulado pelo modelo.

MSE = 13 (v — x,)? (4.5)

ni4

4.8.6.3 Erro Relativo Percentual

E a diferenca porcentual entre a contagem automética e a contagem de referéncia apés
inferéncia num conjunto de imagens. Nesse caso, é considerada as contagens automaticas e
manuais totais num conjunto de palhetas para expressar uma diferenca porcentual, seja positiva
(o modelo contou a mais) ou negativa (o modelo contou a menos). Essa métrica é adotada
também por (SANTOS et al., 2008; |GUSMAO; MACHADO; RODRIGUES, |2009; [SILVA; RODRIGUES;
ARAUJO, 2012b; FEITOSA et al., 2015) e é chamada igualmente de Erro Porcentual Global e

neste trabalho, é também considerada na contagem geral de ovos por palheta.
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Total Automatico — Total Manual
Total Manual

Erro Relativo Percentual = (

) x 100 (4.6)

4.9 PROTOCOLO EXPERIMENTAL

4.9.1 Base para treinamento de modelos

O dataset derivado, de que trata [4.3.6, foi utilizado. O motivo é por fornecer um niimero
maior de imagens, o que, por conseguinte, prové mais instancias de objetos, além também
de aumentar a variacao dos dados em termos de formas em que o objeto estd posto, como
condicdes distintas de iluminacdo, de cor, bem como backgrounds diferentes etc. Portanto, a
generalizacao por parte do modelo pode ser favorecida quando de sua aplicacdo para inferéncia
em situacoes de uso real.

Assim sendo, o dataset derivado foi utilizado nos experimentos para treinamento dos mo-

delos de deteccdo de objetos.

4.9.2 Palhetas contadas

Para fins de avaliacao e comparacao do desempenho dos modelos e abordagens propos-
tas nos trés fluxos apresentados, foi realizada a inferéncia nas 28 palhetas fornecidas pela
FIOCRUZ-PE; estas possuem uma contagem de ovos realizada por técnicos treinados desta
fundacdo.

As palhetas contadas s3o identificadas e possuem as quantidades de ovos, como detalha a

Tabela [12

4.9.3 Comparacao dos fluxos

Para avaliar o impacto das etapas de pré-processamento, um mesmo modelo base de con-
tagem (YOLOv10-M) seré utilizado como base nos trés fluxos. No Fluxo |, a inferéncia sera
realizada sobre as imagens resultantes da aplicacdo do modelo de restauracdo [MPRNet, No
Fluxo Il, cada técnica de realce sera avaliada de forma independente. O YOLOv10-M sera apli-

cado separadamente as imagens tratadas com Color Jitter, com Equalizacdo de Histograma e
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Tabela 12 — Palhetas contadas manualmente por técnicos da FIOCRUZ e quantidade de ovos correspondente.

# Palheta Quantidade de ovos
1 ASF_CP4 213
2 ASF_CP5 361
3 ASF_CP6 113
4 ASF_CP7 137
5 ASF_CP8 133
6 ASF_CP9 172
7 PAM_1 238
8 PAM_2 95
9 PAM_3 168
10 PAM_4 234
11 PAM_5 412
12 PAM_6 210
13 PAM_7 196
14 PAM_S8 408
15 PAM_9 604
16 PAM_10 402
17 WAN_1 1212
18 WAN_?2 755
19 WAN_3 48
20 LESSA_1 293
21 LESSA_2 348
22 LESSA_3 323
23 LESSA_4 211
24 LESSA_5 130
25 LESSA_6 133
26 LESSA_7 258
27 LESSA_8 153
28 LESSA_9 75

Fonte: Elaborada pelo autor (2025)

com [CLAHE] O objetivo é identificar qual dessas trés técnicas de pré-processamento resulta

no melhor desempenho de contagem. No Fluxo Ill, o desempenho do YOLOv10-M em con-

tagem direta (sem pré-processamento) sera avaliado e comparado com os outros modelos de

deteccdo propostos (YOLOv12-M, RF-DETR-B e D-FINE-M) para determinar o modelo mais

eficaz nesta abordagem.. Este protocolo de experimentos é sintetizado na Tabela [13]

A comparagdo do desempenho do modelo base (YOLOv10-M) nos trés cenarios permitira
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avaliar a contribuicdo relativa de cada fluxo (restauracdo, realce ou contagem direta).

Tabela 13 — Protocolo de experimentos do modelo base YOLOv10-M em relacdo as etapas de pré-

processamento
Modelo Pré-processamento aplicado
YOLOv10-M MPRNet
YOLOv10-M Color Jitter
YOLOv10-M Equalizacado de histograma
YOLOv10-M CLAHE
YOLOv10-M Nenhum (contagem direta)

Fonte: Elaborada pelo autor (2025)

4.9.4 Avaliacao final

Obtida a melhor abordagem de pré-processamento com o modelo base, na avaliacdo final,
os modelos do Fluxo Il (contagem direta sem pré-processamento) serdo também avaliados.
Esta avaliacdo utilizara o conjunto de 28 palhetas contadas por especialistas da FIOCRUZ-PE,
que funciona como um conjunto de teste independente e representa um cenério de aplicacdo
real. A contagem automatica gerada pelos modelos serd diretamente comparada com a con-

tagem manual dos especialistas.

4.9.5 Meétricas de comparacao

A eficacia dos modelos serd avaliada por duas perspectivas. A performance na tarefa de
deteccdo serd medida pela métrica mAP@.50. A acuricia na tarefa de contagem, que é o
objetivo final deste trabalho, serd medida primariamente pelo [MAE| e secundariamente pelo
e comparando os totais de ovos por palheta com os valores de referéncia (ground-truth).

Este processo culminard na identificacio n3ao apenas do melhor modelo dentro de cada
fluxo, mas também na definicdo da abordagem geral (inter-fluxo) mais acurada para a conta-

gem automaética dos ovos.
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4.10 CONCLUSAO DO CAPITULO

No presente capitulo, foram apresentados o fluxo geral de desenvolvimento do trabalho, a
forma de captura de imagens e tratamento posterior, o dispositivo auxiliar de captura de fotos,
a criacdo da base de dados, os modelos treinados, o protocolo experimental e as métricas de

avaliacdo utilizadas.
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5 RESULTADOS E DISCUSSAO

5.1 FLUXOS I E Il: AVALIACAO DAS ETAPAS DE PRE-PROCESSAMENTO

Seguindo o disposto na secdo [4.9] o modelo base YOLOv10-M obteve performance con-

forme as subsecdes abaixo.

5.1.1 Desepenho do modelo base YOLOv10-M no treinamento

Conforme o protocolo experimental definido na secdo 4.9, o modelo YOLOv10-M foi trei-
nado na base derivada com os hiperparametros e técnicas de data augmentation expostos na
subsecdo [4.7.1] Com o score de confianca de 0.25, o modelo obteve o desempenho conforme

a Tabela[14]

Tabela 14 — Desempenho do base YOLOv10-M nos conjuntos de treino, validac3o e teste

Conjunto Precisao Revocacao F1-Score mAP@0,50
Treinamento 0,6824 0,9120 0,7807 0,862
Validacao 0,6884 0,8933 0,7776 0,845
Teste 0,6466 0,8982 0,7519 0,852

Fonte: Elaborada pelo autor (2025)

A priori, observa-se a estabilidade das métricas entre os conjuntos, o que minimiza a
presenca de sobreajustamento consideravel. Os valores de precisdo apontam um desempenho
bom quanto ao acerto do modelo ao apontar ovos nas imagens. Com base nesse valor, h3,
porém, uma apresenta presenca significante de falsos positivos, que é também explicada pelo
cenario desafiador de contagem em imagens ruidosas. A revocacdo alta e estavel mostra que
o modelo consegue perceber boa parte dos ovos presentes nas imagens e desconsidera uma
margem pequena na contagem, o que é uma boa performance. O valor de F1-Score confirma
o bom desempenho geral do modelo e expressa o bom equilibrio entre precisdo e recall. Por
fim, mAP®0,50, indica que, com [loU] com limiar de 0.5 na predicdo das boudning boxes de
deteccao de ovos, o modelo obtém bom equilibrio entre precisdo e revocacdo no geral. Assim,
o modelo mantém um bom desempenho entre as tarefas de classificacdo e de localizacao,

mesmo em imagens de baixa resolucdo e com ruidos, como é o caso.
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5.1.2 Pré-processamento com MPRNet

A partir do modelo base obtido, a etapa de pré-processamento com [MPRNet| com a tarefa
de Image deblurring feita nas imagens das 28 palhetas contadas, resultou num conjunto de
imagens que foram submetidas ao modelo base (YOLOv10-M) para avaliaco. Esta abordagem

teve impacto nas deteccoes de ovos, a exemplo do que mostra a Figura

Figura 41 — Impacato da restauracdo do ruido de borramento com MPRNet no reconhecimento de ovos

ASF_CP4_base_grid_26 antes ASF_CP4_base_grid_26 depois
8 ovos detectados 9 ovos detectados

. .

WAN_1_base_grid_0 antes WAN_1_base_grid_0 depois
9 ovos detectados 11 ovos detectados

WAN_1_centro_grid_18 antes WAN_1_centro_grid_18 depois
39 ovos detectados 46 ovos detectados

Fonte: Figura do autor (2025)
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A restauracao aplicada pelo modelo produziu melhorias muito leves, o que pode ser por
conta da complexidade visual do cenério. Ainda asism, conforme experimento, levou a aumento
na deteccao de ovos, o que favoreceu principalmente quando se tem uma quantidade numerosa
de ovos na imagem e que nao eram reconhecidos por conta do ruido. Nesses casos, ovos eram
desconsiderados, principalmente quando estavam oclusos ou adjuntos.

Em contrapartida, a abordagem aumentou o nimero de deteccdes de falsos positivos em

alguns casos, de maneira que o modelo base reconheceu ruido como sendo ovo.

5.1.2.1 Desempenho do modelo base com MPRNet

A avaliacdo do modelo base foi feita nas 28 palhetas contadas por técnicos da FIOCRUZ-

PE. O modelo obteve o desempenho conforme a Tabela [15]
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Tabela 15 — Desempenho do modelo base na contagem de ovos por palheta com MPRNet como pré-

processamento
Palheta Contagem Contagem mAP@0.50
Manual YOLOv10-M
ASF_CP4 213 213 0,817
ASF_CP5 361 419 0,753
ASF_CP6 113 87 0,717
ASF_CP7 137 145 0,762
ASF_CPS8 133 78 0,671
ASF_CP9 172 150 0,764
PAM_1 238 211 0,705
PAM_2 95 537 0,739
PAM_3 168 416 0,799
PAM_4 234 519 0,897
PAM_5 412 917 0,767
PAM_6 210 222 0,876
PAM_7 196 514 0,681
PAM_8 408 449 0,890
PAM_9 604 433 0,740
PAM_10 402 320 0,573
WAN_1 1212 1657 0,738
WAN_2 755 1037 0,782
WAN_3 48 49 0,938
LESSA_1 293 166 0,761
LESSA_2 348 775 0,864
LESSA_3 323 379 0,787
LESSA_4 211 219 0,854
LESSA_5 130 119 0,897
LESSA_6 133 158 0,845
LESSA_7 258 182 0,875
LESSA_8 153 217 0,910
LESSA_9 75 72 0,734
Total de ovos 8.035 10.660 =
Nota: O simbolo “~" indica valor n3o aplicavel.

Fonte: Elaborada pelo autor (2025).

A contagem absoluta indica que o modelo com esta abordagem superou a contagem de
referéncia de forma significativa no somatoério total de ovos. Em algumas palhetas, por exemplo,
a contagem foi inferior e noutras, foi muito superior. No geral, em 17 palhetas, a contagem

do modelo foi superior a contagem manual, em 10 foi inferior e por uma vez o resultado
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correspondeu (palheta ASF_CP4).

As demais métricas, como mostra a Tabela , apontam um erro médio absoluto de cerca
de 136 unidades, MSE muito expressivo e erro relativo percentual indica que no geral, o modelo
superou em 32% a contagem de referéncia. A média aritmética dos mAP®@0.50 das palhetas

aponta um valor razoavel.

Tabela 16 — Métricas globais de desempenho do modelo base com MPRNet

Métrica Valor
MAE 136,61
MSE 43.936,04
Erro Relativo Percentual 32,66%
Média geral mAP@©0,50 0,7906

Fonte: Elaborada pelo autor (2025).

Nesse caso, essa abordagem de pré-processamento produziu resultados ainda insuficientes,

mesmo no cenario de imagens ruidosas.

5.1.3 Pré-processamento com Color Jitter

Esta abordagem como etapa intermediaria a contagem proporcionou os resultados, con-

forme a Tabela [171
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5.1.3.1 Desempenho do modelo base com Color Jitter

Tabela 17 — Desempenho do modelo base na contagem de ovos por palheta com Color Jitter como pré-

processamento
Palheta Contagem Contagem mAP@0.50
Manual YOLOv10-M
ASF_CP4 213 253 0,766
ASF_CP5 361 499 0,733
ASF_CP6 113 132 0,691
ASF_CP7 137 202 0,745
ASF_CPs8 133 165 0,572
ASF_CP9 172 281 0,634
PAM_1 238 321 0,738
PAM_2 95 681 0,591
PAM_3 168 274 0,756
PAM_4 234 571 0,830
PAM_5 412 1007 0,782
PAM_6 210 248 0,857
PAM_T7 196 672 0,660
PAM_8 408 624 0,850
PAM_9 604 626 0,672
PAM_10 402 426 0,482
WAN_1 1212 1812 0,687
WAN_2 755 1067 0,759
WAN_3 48 51 0,893
LESSA_1 293 181 0,652
LESSA_2 348 847 0,831
LESSA_3 323 528 0,676
LESSA_4 211 279 0,786
LESSA_5 130 160 0,830
LESSA_6 133 187 0,741
LESSA_7 258 216 0,815
LESSA_S8 153 242 0,871
LESSA_9 75 81 0,711
Total de ovos 8.035 12.633 -
Nota: O simbolo “~" indica valor n3o aplicavel.

Fonte: Elaborada pelo autor (2025).
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Em alguns casos, esta abordagem resultou num realce que possibilitou o reconhecimento
de ovos antes nao detectados. Entretanto, produziu um nlimero muito expressivo na contagem
de ovos. Em algumas palhetas, a diferenca entre as contagens foi de 600 (palheta WAN_1)
ovos. Em 25 de 28 palhetas o modelo superou a contagem de referéncia. Em 15 palhetas, o
grau de erro ficou abaixo de 100 unidades e para as demais treze, superou esse valor, o que
evidencia o grau de erro geral dessa abordagem.

Com 4598 ovos contados a mais no total, o que equivale a 57% de erro relativo percentual,
conforme a Tabela , o modelo apresentou erro médio consideravel (175,21), o que representa
um erro de 175 ovos por palheta, que é um valor expressivo. O também foi acentuado
nessa abordagem e [mAPJ00.50 teve leve redugio.

17
Tabela 18 — Métricas globais de desempenho do modelo YOLOv10-M com Color Jitter
Métrica Valor
MAE 175,21
MSE 68.645,36
Erro relativo percentual 57,22%
Média geral mAP®©0.50 0,73

Fonte: Elaborada pelo autor (2025).

Dessarte, esta também abordagem resultou em erros elevados, especialmente em relacao

a contagem de ovos.

5.1.4 Pré-processamento com Equalizacao de histograma

5.1.4.1 Desempenho do modelo base com Equalizacdo de histograma

O uso desta abordagem ainda fez a contagem total de ovos como um todo superar signi-
ficativamente a contagem de referéncia, de maneira que em 23 palhetas foram contados ovos
a mais e a diferenca geral atingiu 2697 ovos. Em relacdo a graus de erro, em 16 palhetas,
a diferenca entre as contagens n3do ultrapassou 100 ovos. Todavia, em 12 palhetas, a conta-

gem superou este valor e contriui para um erro consideravel. Os resultados sdo mostrados na

Tabela [19



116

Tabela 19 — Desempenho do modelo YOLOv10-M na contagem de ovos por palheta com Equalizacdo de
histograma como pré-processamento

Palheta Contagem Contagem mAP@0.50
Manual YOLOv10-M
ASF_CP4 213 245 0,433
ASF_CP5 361 391 0,419
ASF_CP6 113 115 0,142
ASF_CP7 137 149 0,190
ASF_CP8 133 157 0,323
ASF_CP9 172 302 0,260
PAM_1 238 307 0,550
PAM_2 95 275 0,489
PAM_3 168 424 0,498
PAM_4 234 480 0,534
PAM_b 412 897 0,682
PAM_6 210 255 0,468
PAM_7 196 601 0,464
PAM_8 408 528 0,610
PAM_9 604 561 0,513
PAM_10 402 351 0,352
WAN_1 1212 1404 0,627
WAN_2 755 883 0,662
WAN_3 48 56 0,283
LESSA_1 293 104 0,194
LESSA_2 348 680 0,545
LESSA_3 323 370 0,409
LESSA_4 211 253 0,493
LESSA_5 130 181 0,388
LESSA_6 133 229 0,318
LESSA_7 258 209 0,397
LESSA_38 153 248 0,492
LESSA_9 75 77 0,276
Total de ovos 8.035 10.732 -
Nota: O simbolo “~" indica valor n3o aplicavel.

Fonte: Elaborada pelo autor (2025).

A partir da Tabela [20] identifica-se valor razoavel de erro médio, ao considerar-se o cenério
de contagem, porém um valor ainda expressivo para o é observado, o que reflete as
diferencas entre as contagens. A média dos valores de mAP00.50 esta diminuta e reflete a

piora na tarefa de deteccdo de objetos.
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Tabela 20 — Métricas globais de desempenho do modelo YOLOv10-M com Equalizag3o de histograma

Meétrica Valor
MAE 120,04
MSE 29.620,11
Erro relativo percentual 33,56%
Média geral mAP®©@0.50 0,43

Fonte: Elaborada pelo autor (2025).

5.1.5 Pré-processamento com CLAHE

5.1.5.1 Desempenho do modelo base com CLAHE

Como mostra a A Tabela [21} a equalizacdo adaptativa, por sua vez, obteve desempenho
conservador, muito préoximo a abordagem anterior e com um leve aumento na quantidade total

de ovos contados.
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Tabela 21 — Desempenho do modelo YOLOv10-M na contagem de ovos por palheta com CLAHE como pré-

processamento
Palheta Contagem Contagem mAP@0.50
Manual YOLOv10-M
ASF_CP4 213 214 0,769
ASF_CP5 361 376 0,704
ASF_CP6 113 79 0,571
ASF_CP7 137 141 0,630
ASF_CPS8 133 117 0,583
ASF_CP9 172 221 0,659
PAM_1 238 262 0,707
PAM_2 95 554 0,659
PAM_3 168 407 0,782
PAM_4 234 510 0,857
PAM_5 412 877 0,815
PAM_6 210 229 0,878
PAM_7 196 547 0,704
PAM_8 408 515 0,859
PAM_9 604 525 0,703
PAM_10 402 356 0,525
WAN_1 1212 1609 0,746
WAN_2 755 967 0,803
WAN_3 48 51 0,924
LESSA_1 293 154 0,579
LESSA_2 348 733 0,854
LESSA_3 323 391 0,714
LESSA_4 211 228 0,806
LESSA_5 130 127 0,860
LESSA_6 133 167 0,798
LESSA_7 258 192 0,760
LESSA_8 153 214 0,856
LESSA_9 75 75 0,672
Total de ovos 8.035 10.838 =
Nota: O simbolo “~" indica valor n3o aplicavel.

Fonte: Elaborada pelo autor (2025).

A diferenca entre as contagens do modelo em relacdo as contagens de refeéncia separadas
por grupos de palhetas, exibida na Tabela evidencia a tendéncia do modelo superar a
contagem com valores de diferenca consideravelmente altos, em que pese estar associado a

deteccdo em imagens ruidosas.
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Tabela 22 — Diferenca entre contagem do modelo base e contagem de referéncia entre os grupos de palhetas

Grupo de Palhetas

Contagem do
modelo

ASF_CP
PAM
WAN
LESSA

19 ovos a mais
1560 ovos a mais
612 ovos mais
357 ovos a mais

Fonte: Elaborada pelo autor (2025).

Conforme Tabela 23] o erro médio é ainda conservador, com cerca de 127 ovos de dife-

renca por palheta e [MSE] também alto refletem a contagem com considerada discrepéncia.

Erro relativo percentual é ainda significativo e a média dos valores de [mAP0.50 apresenta

desempenho similar a abordagem anterior.

Tabela 23 — Métricas globais de desempenho do modelo YOLOv10-M com CLAHE

Métrica Valor
MAE 127,46
MSE 39.016,61
Erro relativo percentual 34,88%
Média geral mAP®@0.50 0,74

Fonte: Elaborada pelo autor (2025).

5.2 FLUXO Ill: CONTAGEM DIRETA SEM PRE-PROCESSAMENTO

Neste fluxo, os modelos treinados na base derivada foram usados para inferéncia nas pa-

Ilhetas contadas sem etapa intermediaria de pré-processamento.

5.2.1 YOLOv10-M

Conforme a Tabela 24}, o modelo YOLOV10-M apresentou um desempenho consideravel

em relacdo a contagem total de ovos, com um total de 1867 ovos a mais que a contagem

manual, o que representa um valor mais préximo da quantidade real de ovos. Em 12 palhetas,

a diferenca entre as contagens foi no maximo de 30 ovos; ainda, em 6 palhetas, a diferenca

esteve entre 31 e 100 e nas demais 11, a diferenca ultrapassou 100 ovos.
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Tabela 24 — Desempenho do modelo YOLOv10-M na contagem direta de ovos em palheta de ovitrampa

Palheta Contagem Contagem mAP@0.50
Manual YOLOv10-M
ASF_CP4 213 192 0,855
ASF_CP5 361 370 0,770
ASF_CP6 113 80 0,734
ASF_CP7 137 120 0,782
ASF_CP8 133 65 0,709
ASF_CP9 172 132 0,795
PAM_1 238 203 0,791
PAM_2 95 438 0,752
PAM_3 168 379 0,833
PAM_4 234 491 0,898
PAM_5 412 875 0,813
PAM_6 210 213 0,903
PAM_T7 196 476 0,736
PAM_8 408 434 0,908
PAM_9 604 404 0,749
PAM_10 402 289 0,579
WAN_1 1212 1551 0,765
WAN_2 755 987 0,799
WAN_3 48 46 0,955
LESSA_1 293 151 0,762
LESSA_2 348 718 0,891
LESSA_3 323 344 0,798
LESSA_4 211 196 0,873
LESSA_5 130 107 0,924
LESSA_6 133 146 0,854
LESSA_7 258 175 0,862
LESSA_S8 153 202 0,936
LESSA_9 75 68 0,787
Total de ovos 8.035 9.902 —
Nota: O simbolo “~" indica valor n3o aplicavel.

Fonte: Elaborada pelo autor (2025).

Como mostra a Tabela [25] tanto [MAE] quanto [MSE] apresentam valores razoaveis. O erro
relativo porcentual mostra uma diferenca de 23% entre as contagens automatica e manual. A
média dos[mAP00.50 apresenta um consideravel equilibrio entre precisdo e sensibilidade, além

de uma melhora significativa na tarefa de deteccdo de objetos.
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Tabela 25 — Métricas globais de desempenho do modelo YOLOv10-M na contagem direta

Meétrica Valor
MAE 123,75
MSE 34.182,39
Erro relativo percentual 23,23%
Média geral mAP@©0.50 0,81

Fonte: Elaborada pelo autor (2025).

Este método, portanto, apresenta resultados promissores na contagem automatica de ovos

de A. aegypti.

5.2.2 YOLOv12-M

Com este modelo, conforme a Tabela [26, a contagem automatica de ovos apresenta tam-

bém valores mais proximos a contagem manual, o que é um resultado importante nesta tarefa,

principalmente no caso de contagem a partir de imagens capturadas por smartphone. A menor

diferenca entre as contagens foi na palheta PAM_6, em que a diferenca foi de 2 ovos a mais.

No geral, a contagem do modelo foi maior que a manual em 14 palhetas e menor noutras 14;

ainda, quanto a grau de erro, em 11 palhetas, a diferenca foi de até 30 ovos.
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Tabela 26 — Desempenho do modelo YOLOv12-M na contagem direta de ovos em palheta de ovitrampa

Palheta Contagem Contagem mAP@0.50
Manual YOLOv12-M
ASF_CP4 213 197 0,839
ASF_CP5 361 353 0,723
ASF_CP6 113 93 0,683
ASF_CP7 137 146 0,750
ASF_CP8 133 80 0,646
ASF_CP9 172 135 0,727
PAM_1 238 182 0,743
PAM_2 95 354 0,699
PAM_3 168 309 0,816
PAM_4 234 472 0,900
PAM_5 412 780 0,835
PAM_6 210 212 0,917
PAM_7 196 426 0,736
PAM_8 408 364 0,880
PAM_9 604 372 0,728
PAM_10 402 385 0,581
WAN_1 1212 1421 0,774
WAN_2 755 872 0,803
WAN_3 48 77 0,970
LESSA_1 293 159 0,683
LESSA_2 348 659 0,882
LESSA_3 323 124 0,742
LESSA_4 211 191 0,838
LESSA_5 130 57 0,887
LESSA_6 133 159 0,798
LESSA_7 258 164 0,867
LESSA_S8 153 206 0,922
LESSA_9 75 77 0,742
Total de ovos 8.035 9.026 —
Nota: O simbolo “~" indica valor n3o aplicavel.

Fonte: Elaborada pelo autor (2025).

Este modelo ainda obteve um erro médio, bem como [MSE]| bastante reduzidos, o que
minimiza a diferenca entre as contagens automaética e manual, como mostra a Tabela[27] O erro
relativo percentual batante diminuto aponta para uma inferéncia que, no geral, aproxima-se

mais da contagem de referéncia. Ainda, a média dos[mAP[00.50 é um valor consideravelmente
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bom e demonstra boa performance do modelo na deteccdo com loU]de 0.5 e boa relacdo entre

precisao e recall.

Tabela 27 — Métricas globais de desempenho do modelo YOLOv12-M na contagem direta

Meétrica Valor
MAE 107,04
MSE 22.380,04
Erro relativo percentual 12,33%
Média geral mAP®©@0.50 0,79

Fonte: Elaborada pelo autor (2025).

5.2.3 RF-DETR-B

Como exibe a Tabela 28] o RF-DETR-B apresenta desempenho bastante elevado na conta-
gem total de ovos, com uma diferenca de 223 ovos a menos comparado a contagem manual.
Ainda, com imagens com a presenca de diversos tipos de degradacdo, o modelo consegue
aproximar-se da contagem real de ovos com diferenca acentuadamente baixa, como nas pa-

lhetas WAN_1 (diferenca de 56 ovos), LESSA_5 (8 ovos), LESSA_6 (7 ovos) e LESSA_9 (5

ovos).
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Tabela 28 — Desempenho do modelo RF-DETR-B na contagem direta de ovos em palhetas de ovitrampa

Palheta Contagem Contagem
Manual RF-DETR-B
ASF_CP4 213 170
ASF_CP5 361 310
ASF_CP6 113 96
ASF_CP7 137 125
ASF_CP8 133 69
ASF_CP9 172 100
PAM_1 238 149
PAM_2 95 306
PAM_3 168 261
PAM_4 234 384
PAM_5 412 654
PAM_6 210 183
PAM_7 196 376
PAM_8 408 315
PAM_9 604 290
PAM_10 402 239
WAN_1 1212 1268
WAN_2 755 668
WAN_3 48 67
LESSA_1 293 168
LESSA_2 348 530
LESSA_3 323 237
LESSA_4 211 167
LESSA_5 130 122
LESSA_6 133 130
LESSA_7 258 157
LESSA_8 153 191
LESSA_9 75 80
Total de ovos 8.035 7.812

Fonte: Elaborada pelo autor (2025).

Outrossim, a quantidade de ovos detectada por palheta pelo modelo superou a quantidade
real em 10 ocasides e foi inferior em 18. Ainda, como mostra a Tabela , quanto as faixas
de diferenca entre as contagens automatica e manual, a diferenca ndo ultrapassou 100 ovos
em 20 das 28 palhetas. Estas medicGes representam uma contagem geral com performance

bastante acentuada.
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Tabela 29 — Faixas de diferenca de ovos e quantidade de palhetas na contagem com RF-DETR-B

Faixa de diferenca de ovos Nuamero de palhetas
0-10 6

11 - 30 4

31 - 100 12

> 101 8

Fonte: Elaborada pelo autor (2025).

Doutra forma, a nivel de grupo de palhetas, o modelo contou mais ovos do que a contagem

manual em alguma e menos, noutras, como exibe a Tabela [30]

Tabela 30 — Diferenca entre contagem do RF-DETR-B e contagem de referéncia entre os grupos de palhetas

Grupo de Palhetas Contagem
RF-DETR-B
ASF_CP (6 palhetas) 259 ovos a menos
PAM (10 palhetas) 164 ovos a mais
WAN (3 palhetas) 12 ovos a menos
LESSA (9 palhetas) 142 ovos a menos

Fonte: Elaborada pelo autor (2025).

Entretanto, ao considerar a quantidade de palhetas em cada grupo, observa-se que o
modelo teve um desempenho substancial dada a quantidade de palhetas em cada grupo. Por
exemplo, mesmo na contagem das 10 palhetas PAM, o modelo contou apenas 164 ovos a
mais. Este desempenho é ainda mais elevado ao se considerar que nesse grupo ha 2.967
ovos. Destaca-se também a performance nas palhetas WAN, que mesmo com 2.015 ovos, a
contagem automatica reconheceu somente 12 ovos a menos. Também, nas 9 palhetas LESSA,
que possui 1.924 ovos, a contagem automatica apresentou uma diferenca bastante diminuta de
142 ovos a menos. Por fim, nas palhetas ASF_CP, a contagem apresentou a maior diferenca,
entretanto, ainda razoavel, considerando que possui 1.129 ovos.

Quanto aos demais resultados, como exibe a Tabela[31] o erro médio foi de somente cerca
de 91 ovos, o que corrobora o alto desempenho da contagem automatica. Semelhantemente,
o [MSE]| apresenta valor bastante reduzido, o que demonstra o baixo grau de diferenca entre a
contagem do modelo e a contagem real de ovos. Ainda, o erro relativo percentual é acentua-
damente baixo e destaca o potencial deste modelo para contagem de ovos em aplicacoes de

mundo real no contexto da vigilancia entomoldgica.
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Tabela 31 — Métricas globais de desempenho do modelo RF-DETR-B na contagem direta de ovos em palheta
de ovitrampa

Métrica Valor
MAE 91,96
MSE 14.433,96
Erro relativo percentual -2,77%

Fonte: Elaborada pelo autor (2025).

5.2.4 D-FINE-M

O D-FINE-M, por sua vez, distancia-se de forma consideravel em termos de contagem
absoluta de ovos, como exibe a Tabela [32]. Nesse caso, a diferenca entre as contagens é de
3.116 ovos a mais em relacdo a contagem manual. O melhor desempenho foi nas palhetas
PAM_10, LESSA_3, LESSA_1, ASF_CP9, PAM_1 em que o modelo apresentou diferenca
porcentual de, respectivamente, 2,29%, 4,44%, 4,64%, -7,03% e -9,16%.

Em relacdo aos graus de erro na contagem absoluta, em 17 palhetas, a diferenca nao
ultrapassou 100 ovos, entretanto ultrapassou este limiar noutras 10 palhetas e apenas uma

vez, o erro esteve abaixo de 10.
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Tabela 32 — Desempenho do modelo D-FINE-M na contagem direta de ovos em palhetas de ovitrampa

Palheta Contagem Contagem
Manual D-FINE-M
ASF_CP4 213 254
ASF_CP5 361 445
ASF_CP6 113 180
ASF_CP7 137 224
ASF_CP8 133 151
ASF_CP9 172 185
PAM_1 238 262
PAM_2 95 481
PAM_3 168 378
PAM_4 234 503
PAM_5 412 855
PAM_6 210 276
PAM_7 196 485
PAM_8 408 438
PAM_9 604 433
PAM_10 402 393
WAN_1 1212 1430
WAN_ 2 755 893
WAN_3 48 143
LESSA_1 293 280
LESSA_2 348 706
LESSA_3 323 338
LESSA_4 211 267
LESSA_5 130 201
LESSA_6 133 236
LESSA_7 258 269
LESSA_8 153 283
LESSA_9 75 162
Total de ovos 8.035 11.151

Fonte: Elaborada pelo autor (2025).

Ainda, o modelo contou ovos a mais em 25 das 28 palhetas, o que equivale a cerca de 38%
ovos a mais, como exibe a Tabela[33] O erro médio foi razodvel, bem como o também;
isso ressalta que, mesmo o modelo contando objetos a mais na maioria dos casos, a diferenca

permanece diminuta em outros casos, o que pode explicar o valor ndo t3o elevado para [MAE|

e MSE!
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Tabela 33 — Métricas globais de desempenho do modelo D-FINE-M na contagem direta de ovos em palhetas
de ovitrampas

Métrica Valor
MAE 125,07
MSE 30.328,43
Erro relativo percentual 38,78%

Fonte: Elaborada pelo autor (2025).

Desta forma, mesmo em imagens de baixa resolucdo, o D-FINE aproxima-se da contagem

real em algumas palhetas, porém distancia-se acentuadamente noutras.

5.3 AVALIACAO FINAL

No ambito das atividades de vigilancia entomolégica é fundamental obter indicadores im-
portantes sobre o vetor de doencas numa regido. No uso de ovitrampas para deposicdo de
ovos, é passo importante a obtencdo de indicadores de ovos; ainda, é importante que sejam
fidedignos pois sobre eles baseiam-se passos posteriores importantes para uma implementacao
exitosa da vigilancia entomolégica no controle do A. aegypti.

Destarte, dado que a contagem de ovos influencia de forma direta no planejamento de
acOes para combate ao mosquito, tal contagem automética de ovos deve aproximar-se o
maximo possivel da quantidade real de ovos nas palhetas de ovitrampa examinadas. Ademais,
na contagem de palhetas, o erro médio é o mais importante do que os erros individuais, pois
o método serad aplicado sobre varias palhetas em uso pratico, mesmo assim, por ébvio, a
abordagem deve obter bom desempenho em palhetas individuais, mantendo equilibrio entre
entre falsos positivos e falsos negativos e ndo cometer erros consideravelmente grandes.

Em relacao ao impacto de técnicas de pré-processamento na contagem automatica, a
aplicdo do modelo de restauracdo de imagens (MPRNet)) especializado na remoc&o de ruido de
borramento obteve menor diferenca entre as contagens automatica e manual, bem como maior
[mMAPJR0.50 no geral (0,79) e menor erro relativo percentual (32,66%). Todavia, a aplicacdo
de equalizacdo de histograma apresentou menor (120,04) dentre as técnicas de pré-
processamento, enquanto que [CLAHE| obteve performance inferior a esta, porém com métricas
préximas, como M] de 127,46. Dentre todas as técnicas, color jitter apresentou menor
performance com erros significativos, como diferenca de 4598 ovos em relacdo a contagem

manual nas 28 palhetas utilizadas. Desta forma, as abordagens de e equalizac3o de
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histograma apresentam resultados mais promissores quanto a contagem associada técnicas de
pré-processamento.

Por outro lado, a respeito da abordagem de contagem direta (sem pré-processaemnto),
ao considerar principalmente os resultados da contagem absoluta, erro médio absoluto, erro
médio quadratico e erro relativo percentual, o modelo RF-DETR-B apresentou performance
mais proxima da adequada para aplicacdo em cenérios reais de contagem, de modo a obter a
contagem absoluta mais préxima da manual, com [MAE| de 91,96, [MSE| de 14.433,96 e erro
relativo percentual de -2,77% em relacdo a contagem manual nas 28 palhetas consideradas.
De igual modo, em comparacao com os demais modelos associados ou ndo a técnicas de
pré-processamento, obteve o melhor desempenho, o que leva a avaliacao de que, nesse cenario

experimental, a contagem direta levou a melhor desempenho nas principais métricas avaliadas.

5.3.1 Comparativo com trabalhos da literatura na contagem de ovos de Ae. aegypti

No conjunto de abordagens de Processamento de Imagens, o algoritmo proposto em (RO-
CHA; BIZERRA; MAGALHAES, [2019)), foi validado numa (nica imagem contendo 26 ovos, dos
quais o algoritmo detectou 14, o que resulta numa acuracia de cerca de 53,85%, abaixo do
atingido pelo RF-DETR-B neste trabalho (97,23%), ainda que este tenha sido submetido a
um conjunto expressivo de imagens.

De modo similar, o uso da técnica de Processamento de Imagens, agora aliada a légica
fuzzy, o sistema de inferéncia referido em (COSTA, [2017)), obteve acurécia de 98,94% num
conjunto de 206 imagens que continham 386 ovos do mosquito Ae. aegypti. No presente
trabalho, mesmo com um nimero mais expressivo de objetos e imagens, o valor observado de
acuracia foi bastante préximo, de modo a ser, assim, levemente inferior.

Por outro lado, ao considerarem-se abordagens de Aprendizagem Profunda, o modelo de
contagem em imagens macroscépicas, proposto por (JAVED et al.,, 2023), obteve acuracia de
96,06% no conjunto de 10 imagens a que foi submetido. No 4mbito deste trabalho o RF-DETR-
B, alcancou 97,23% na mesma métrica tendo por base o total de ovos contados, conforme
Tabela . Isto mostra que, mesmo num conjunto bastante aumentado de imagens, distribuidas
em 28 palhetas distintas, conjunto esse com presenca importante de imagens ruidosas, o
modelo de deteccdo de objetos melhor avaliado neste trabalho obteve desempenho superior ao
do observado no referido estudo. Pontua-se, porém, que para imagens microscépicas, (JAVED

et al., 2023)) obteve acuracia levemente superior a alcancada neste trabalho: 98,88%.
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Ainda, no (VICENTE et al.,, [2024)) trabalho, observou-se que o modelo FoveaBox atingiu
maior error proporcionalmente ao niimero de ovos nas imagens a que foi submetido, de ma-
neira que, quanto mais imagens o[MAE|era progressivamente maior. Para imagens que continha
ao menos 100 ovos, o FoveaBox obteve MAE|de 123,25, enquanto que o RF-DETR-B, ao con-
siderar o quantitativo total de ovos de 8.035, obteve um [MAE| de 91,96, conforme Tabela [31]
Isto mostra que o RF-DETR-B, apesar de erros individuais em imagens ou em palhetas, obteve,
nos experimentos deste trabalho desempenho superior, ainda que com um ndmero muito mais
expressivo de imagens e capturadas por smartphone.

Acrescenta-se que, quanto ao observado em (SILVA et al.,, 2021)), o erro médio quadrado
obtido foi de 4,25, enquanto que o melhor modelo deste trabalho, obteve o valor de 14.433,96,
conforme Tabela[31] Ressalta-se a limitada amostra do referido trabalho (4 imagens e 71 ovos),
enquanto que neste trabalho, 28 palhetas com 126 imagens cada, o que totaliza 3.528 imagens

parciais que abrigam 8.035 ovos.

Tabela 34 — Comparativo de trabalhos na literatura para contagem de ovos de A. aegypti

Abordagem Técnica Acuracia MAE MSE Namero Namero
(%) de de ovos
imagens

~ (ROCHA; BIZERRA; PI 53,85 - - 1 26
MAGALHAES| [2019)
(cosTA| 2017) Pl 98,94 - - 206 386
(JAVED et al.| [2023) DL 96,06 - - 10 18773
(VICENTE et al.| [2024) DL - 123,25 - - -
(SILVA et al.| 2021) DL - - 4,25 4 71
RF-DETR-B DL 97,23 91,96 14433,96 3528 8035

Fonte: Elaborada pelo autor (2025).

Portanto, como sintetiza a Tabela [34], o modelo RF-DETR-B destaca-se dentre outras
abordagens por obter desempenho superior as demais abordagens na métrica de [MAE| e se-
gunda melhor acurécia com 97,23%, ainda que o tamanho do conjunto de imagens utilizadas
nos experimentos foi bem maior (3.528). Por outro lado, em termos de quantidade de ovos,
houve menos objetos (8.035) em comparagdo com os 18.773 ovos em (JAVED et al., [2023).

Portanto, mesmo sem utilizar dispositivos de captura melhores, tais como Estereomicros-
c6pio Leica MC170 HD utilizado por (VICENTE et al., [2024) ou Camera Olympus Tough TG-6
e microscépio Nikon SMZ18, como em (JAVED et al., 2023, o presente trabalho obteve desem-
penho préximo ou superior nas métricas observadas, mesmo utilizando um smartphone com

sensor de 13MP para captura das fotos. Tais resultados comparativos evidenciam o desempe-
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nho observado na abordagem de contagem direta com RF-DETR-B numa base de imagens

capturadas por smartphone no contexto deste trabalho.
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6 CONCLUSAO E TRABALHOS FUTUROS

No ambito de comabate ao mosquito Aedes aegypti, vetor de doencas como Dengue,
Zika e Chikungunya, tém sido aplicadas metodologias, dentre as quais, a de implementacdo
de ovitrampas para obtencao de indicadores fundamentais para a tomada eficiente de acdes
de controle. Nesse interim, o processo de contagem de ovos em palhetas de ovitrampa é
uma atividade trabalhosa, que pode ser simplificada com a aplicacdo de técnicas de visao
computacional.

Este trabalho tratou de propor uma metodologia de contagem automatica de ovos de
Aedes aegypti em palhetas de ovitrampa associada a utilizacao da camera de smartphone
para captura de imagens. Também, foi criado um dispositivo de baixo custo para captura
de imagens de palhetas de ovitrampa para ser utilizado em conjunto com um smartphone a
fim de prover a obtencdo de imagens, considerando requisitos importantes como captura sem
regides repetidas, distancia padrdo entre palheta e camera e iluminacdo regular da superficie
da palheta.

Ainda, foi criada uma base de dados com significativa quantidade de imagens obtidas
a partir do dispositivo de captura. Por fim, foi avaliado o impacto da aplicacdo de pré-
processamento nas imagens antes da contagem automatica, como o modelo para
resturacao de imagens degradas com ruido de borramento, Color Jitter, equalizacdo de his-
tograma e [CLAHE] Além disso, foram também avaliados modelos para a contagem sem a
utilizacdo de pré-processamento antes da inferéncia, como YOLOv10, YOLOv12, RF-DETR e
D-FINE.

As contribuicGes desta pesquisa podem ser resumidas a:

» Definicdo de um protocolo de contagem de ovos de Aedes aegypti em palhetas de

ovitrampas associado ao uso de smartphone para captura das imagens.

» Desenvolvimento de um dispositivo de captura de baixo custo feito com impressora 3D
para ser utilizado em conjunto com um smartphone na obtencao de imagens de palhetas

de ovitrampas.

» Criacao de base de dados de imagens de ovos de A. aegypti em palhetas de ovitrampas

para o treinamento de redes neurais de deteccao de objetos.
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» Avaliacao do impacto da contagem automatica em conjunto com a aplicacdo de técnicas

de processamento de imagens e de rede neural de restauracao de imagens.

» Utilizac3o de redes neurais artificiais do estado da arte voltadas a deteccdo de objetos
para o reconhecimento e contagem de ovos do mosquito em palhetas de ovitrampa no
contexto de imagens ruidosas e de baixa resolucdo, além de comparacao com resultados

de trabalhos semelhantes na literatura.

Esta pesquisa resultou na obtecao de um modelo de deteccao de objetos RF-DETR-B
aplicado a contagem direta em imagens (sem pré-processaemnto) com erro global percentual
de -2,77% comparado a contagem manual num conjunto de 28 palhetas e erro médio de 91,26.
Ademais, a avaliacdo do impacto de técnicas de pré-processamento na contagem com redes
neurais demonstrou desempenhos similares entre equalizacdo de histograma e equalizacao
adaptativa, respectivamente com erro médio de 120,04 e 127,46 também na contagem de
28 palhetas de ovitrampa. A aplicacdo do modelo de restauracao apresentou, no
entanto, maior[mAPJ@0.50 no geral, além de menor erro relativo percentual e menor diferenca
entre contagens no ambito das técnicas de pré-processamento.

Os trabalhos futuros podem ser sintetizados em:

» Obtencdo de mais imagens como base de dados para o treinamento de modelos de

aprendizagem profunda.
» Validacdo da abordagem num conjunto ainda mais expressivo de palhetas contadas.

» Realizacdo de experimentos em campo utilizando a metodologia proposta num fluxo
completo de implementacao de ovitrampas visando testa-la em situacdes de uso real,
obter pontos de melhoria e ajustar a metodologia e seus componentes, como o dispositivo

de captura.

» Desenvolver aplicativo mével para sistematizar a captura de imagens de palhetas de

ovitrampa.

» Projetar e implementar sistema de informacdes geograficas voltado ao monitoramento
da aplicacdo de ovitrampas, obtencao de dados relacionados a contagem de ovos, dentre

outras funcionalidades.
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= Elicitar requisitos, junto a FIOCRUZ-PE e Instituto Aggeu Magalh3es acerca do desen-
volvimento de eventuais aplicacbes web e mdveis, bem como de outras tecnologias e

ferramentas de suporte no ambito da implmementacao da metodologia de implantacao

de ovitrampas.
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