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RESUMO 

Rins e fígado desempenham papel central na homeostase e na eliminação de 

substâncias tóxicas, sendo frequentemente acometidos por doenças de alta 

prevalência. Considerando os riscos e as elevadas taxas de mortalidade e morbidade 

em estágios avançados, o presente trabalho aplicou abordagens metabonômicas e 

quimiométricas para o diagnóstico de Lesão Renal Aguda (LRA) e o estadiamento de 

Nefrite Lúpica (NL) e de Fibrose Periportal (FPP) associada à esquistossomose. No 

estudo da LRA, espectros de RMN de ¹H de urina de neonatos prematuros obtidos da 

literatura foram analisados por algoritmos de aprendizado de máquina, incluindo 

Regressão Logística (LR), Análise Discriminante Linear (LDA) e Máquina de Vetores 

de Suporte (SVM). O modelo SVM apresentou melhor desempenho (VPP 100%, 

sensibilidade 71,4%, especificidade 100% e exatidão 85%), destacando seis 

metabólitos, valina, lactato, lisina, creatinina, taurina e creatina, relacionados a 

alterações no metabolismo da taurina. No estudo da NL, amostras séricas foram 

analisadas por RMN de ¹H e os espectros submetidos a combinação dos algoritmos 

de aprendizado de máquina (LR, LDA e SVM) com técnicas de seleção de variáveis. 

O modelo LR com seletor SFS-LR apresentou os melhores resultados (exatidão 

92,3%), sendo o ácido pirúvico e o lactato os principais discriminantes entre os 

subtipos de NL, associados a aumento da glicólise e processos inflamatórios. Para a 

FPP, cinco biomarcadores séricos foram analisados por diferentes algoritmos (LR, 

LDA, SVM e Árvore de Decisão), com a Árvore de Decisão obtendo o melhor 

desempenho (exatidão 86%), destacando o número de plaquetas como variável mais 

relevante. Os resultados reforçam o potencial da metabonômica integrada à 

quimiometria e ao aprendizado de máquina como ferramenta não invasiva e acessível 

para diagnóstico e estadiamento de doenças renais e hepáticas. 

 

Palavras-chave: Aprendizado de Máquina; Lesão Renal Aguda; Nefrite Lúpica, 

Esquistossomose mansoni. 

 

 

 

 

 

 



 
 

ABSTRACT 

The kidneys and liver play a central role in homeostasis and the elimination of toxic 

substances, and are often affected by highly prevalent diseases. Considering the risks 

and high mortality and morbidity rates in advanced stages, this study applied 

metabolomic and chemometric approaches for the diagnosis of Acute Kidney Injury 

(AKI) and the staging of Lupus Nephritis (LN) and Periportal Fibrosis (PPF) associated 

with schistosomiasis. In the ARF study, ¹H NMR spectra of urine from premature 

newborns obtained from the literature were analyzed by machine learning algorithms, 

including Logistic Regression (LR), Linear Discriminant Analysis (LDA), and Support 

Vector Machine (SVM). The SVM model performed best (PPV 100%, sensitivity 71.4%, 

specificity 100%, and accuracy 85%), highlighting six metabolites, valine, lactate, 

lysine, creatinine, taurine, and creatine, related to changes in taurine metabolism. In 

the NL study, serum samples were analyzed by ¹H NMR, and the spectra were 

subjected to a combination of machine learning algorithms (LR, LDA, and SVM) with 

variable selection techniques. The LR model with SFS-LR selector presented the best 

results (92.3% accuracy), with pyruvic acid and lactate being the main discriminants 

between NL subtypes, associated with increased glycolysis and inflammatory 

processes. For FPP, five serum biomarkers were analyzed by different algorithms (LR, 

LDA, SVM, and Decision Tree), with the Decision Tree obtaining the best performance 

(86% accuracy), highlighting platelet count as the most relevant variable. The results 

reinforce the potential of metabolomics integrated with chemometrics and machine 

learning as a non-invasive and accessible tool for the diagnosis and staging of kidney 

and liver diseases. 

 

Keywords: Machine Learning; Acute Kidney Injury; Lupus Nephritis; Schistosomiasis 

mansoni.  



 
 

LISTA DE ILUSTRAÇÕES 

Figura 1 - Roda de urina que descreve possíveis cores, cheiros e sabores da urina e 

era utilizado para diagnosticar doenças. ................................................................... 15 

Figura 2 – Etapas no desenvolvimento de um estudo metabonômico. ..................... 25 

Figura 3. Geração de dois níveis de energia em núcleos com spin 12  frente a um 

campo magnético externo. ........................................................................................ 27 

Figura 4 – Sistema de coordenadas representando o vetor de magnetização resultante 

do efeito de B0. .......................................................................................................... 28 

Figura 5 – Vetor de magnetização após o pulso perpendicular ao campo magnético 

B0. Componentes no plano xy (que determina T2) e no eixo z (que determina T1). . 30 

Figura 6 – Representação gráfica da sequência de pulsos PRESAT. ....................... 31 

Figura 7 – Diagrama de energia dos spins (I e S). a) Distribuição populacional na 

presença de B0. b) Populações do spin S igualadas por meio das transições proibidas.

 .................................................................................................................................. 33 

Figura 8 – Sequências de pulsos. (a) PRESAT, (b) NOESY 1D com PRESAT, e (c) 

CPMG com PRESAT. Os termos d1, d8, d20 e t2 são atraso de relaxamento, tempo de 

mistura, tempo de meio-spin-eco e tempo de aquisição, respectivamente; e ϕ1, ϕ2, ϕ3, 

ϕ4 e ϕ5 são fases de pulsos, enquanto ϕR é a fase do receptor ................................. 34 

Figura 9 – Sequência de pulsos CPMG .................................................................... 35 

Figura 10  –  Geração de amostra sintética utilizando a técnica SMOTE. ................ 41 

Figura 11 – Projeção dos objetos no plano formado pelas duas primeiras PCs. ....... 45 

Figura 12 – Exemplo de um problema de classificação binária com dados lineares 

separáveis usando SVM. .......................................................................................... 49 

Figura 13 - Modelo genérico de uma DT. .................................................................. 51 

Figura 14 – Exemplo da distribuição de um conjunto de dados composto por duas 

classes. a) Antes da LDA e b) Depois da LDA. ......................................................... 53 

Figura 15 - Fluxograma do processamento realizado no conjunto de dados - LRA. . 66 

Figura 16 – Espectros de RMN de 1H – análise de amostras de urina. a) originais; b) 

normalizados (norma 2 - euclidiana). ........................................................................ 69 

Figura 17 - Gráficos de escores. a) PC1 vs PC2; b) PC1 vs PC3; c) PC2 vs PC3. ... 70 

Figura 18 - Gráfico de escores da PCA. a) antes e b) depois do SMOTE. ............... 71 

Figura 19 - Resultados da validação dos modelos – LR, SVM e LDA. ...................... 72 



 
 

Figura 20 – Histogramas referente aos testes de permutação: a) LR, b) SVM e c) LDA.

 .................................................................................................................................. 74 

Figura 21 – Importância das variáveis no modelo SVM. ........................................... 76 

Figura 22 - Estrutura dos seis metabólitos identificados. Posição dos Hidrogênios 

ligados a carbonos primários e secundários referente aos deslocamentos químicos 

em destaque. ............................................................................................................. 77 

Figura 23 – Corte de um espectro de urina de pacientes com LRA na região dos 

metabólitos identificados. .......................................................................................... 77 

Figura 24 - Gráfico de bolhas da análise das vias metabólicas na LRA. ................... 79 

Figura 25 - Fluxograma do processamento realizado no conjunto de dados - NL. ... 84 

Figura 26 - Espectros amostras de soro de pacientes com Nefrite Lúpica: a) sem 

normalização; b) normalizados. ................................................................................. 87 

Figura 27 - Gráfico de escores da PCA formado por PC1 e PC2 das amostras de 

pacientes com NL. ..................................................................................................... 88 

Figura 28 - Gráfico de escores NL: a) antes do SMOTE; b) depois do SMOTE........ 89 

Figura 29 – Gráficos de radar construídos a partir das figuras de mérito dos modelos 

SVM, LDA e LR, considerando os métodos de seleção de variáveis**: a) Sem seleção; 

b) GA; c) SFM-LR; d) SFM-RF; e) SFS-LR; f) SFS-RF. ............................................ 91 

Figura 30 - Importância das variáveis na combinação SFS-LR com classificador LR.

 .................................................................................................................................. 94 

Figura 31 - Estrutura química dos metabólitos identificados. Posição dos Hidrogênios 

ligados aos carbonos primários referente aos deslocamentos químicos em destaque.

 .................................................................................................................................. 95 

Figura 32 - Gráfico de bolhas da análise das vias metabólicas na NL. ..................... 96 

Figura 33 - Gráfico de escores comparando a distribuição das amostras de diferentes 

centros: Hospital das Clínicas (C/HC e EF/HC) e Jaboatão dos Guararapes (C/ELF e 

EF/ELF). (a) PC1 vs PC2 – sem normalização; b) PC1 vs PC2 – com normalização 

LSN; c) PC1 vs PC3 – sem normalização; d) PC1 vs PC3 – com normalização LSN.

 ................................................................................................................................ 109 

Figura 34 - Matriz de correlação. A) Sem normalização; B) Com normalização – LSN.

 ................................................................................................................................ 110 

Figura 35 - PCA. a) Gráfico de escores – PC1 vs PC2; b) Gráfico de pesos – PC1 vs 

PC2; c) Gráfico de escores – PC1 vs PC3; d) Gráfico de pesos – PC1 vs PC3. .... 111 



 
 

Figura 36 - Árvore de decisão para classificação da FPP. Em cada nó encontra-se a 

impureza de Gini, o número de amostras, a distribuição por classes: [0 (C), 1 (EF)], e 

a classe com a maioria das amostras. .................................................................... 114 

Figura 37 - Curva ROC: índice de Coutinho ............................................................ 116 

Figura 38 - Importância das variáveis no modelo DT. ............................................. 118 

 

Figura B1 – Gráficos de pesos (loadings). a) PC1; b) PC2. .................................... 149 
Figura B2 - Gráfico de escores 3D. ......................................................................... 150 
 

Figura C1 - Histogramas das variáveis com as maiores diferenças nas distribuições 

antes e depois do SMOTE, selecionadas pelas menores p-valores do teste de KS.

 ................................................................................................................................ 152 
 

Figura D1- Gráfico de escores da PCA nos dados de NL. a) PC1 vs. PC2; b) PC1 vs. 

PC3; c) PC2 vs. PC3. .............................................................................................. 153 
Figura D2 - Gráficos de pesos (loadings). a) PC1; b) PC2. ..................................... 154 
 

Figura E1 - Histogramas das variáveis com as maiores diferenças nas distribuições 

antes e depois do SMOTE, selecionadas pelas menores p-valores do teste de KS.

 ................................................................................................................................ 156 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

LISTA DE TABELAS 

Tabela 1 – Matriz de contingência genérica. ............................................................. 54 

Tabela 2 - Estadiamento de LRA em pediátricos proposto pela KDIGO. ................... 60 

Tabela 3 - Características dos indivíduos entre controles e casos da LRA. .............. 68 

Tabela 4 – Matriz de contingência dos modelos LR, SVM e LDA. ............................. 72 

Tabela 5 – Resultados da validação dos modelos – LR, SVM e LDA. ...................... 72 

Tabela 6 - Divisão dos conjuntos de treino e teste para cada classe da NL. ............. 84 

Tabela 7 - Características demográficas e parâmetros clínicos de acordo com as 

classes da NL. ........................................................................................................... 86 

Tabela 8 - Resultados da validação dos modelos. .................................................... 92 

Tabela 9 - Figuras de mérito do modelo LR combinado com o seletor SFS-LR. ....... 93 

Tabela 10 - Características demográficas e parâmetros clínico-laboratoriais de acordo 

com a gravidade da esquistossomose mansoni. ..................................................... 107 

Tabela 11 - Matriz de contingência dos modelos LR, SVM, LDA e DT. ................... 112 

Tabela 12 - Figuras de mérito calculadas para cada modelo. ................................. 112 

Tabela 13 - Figuras de mérito do melhor modelo de classificação do presente trabalho 

e do estudo de Liu e colaboradores (2024). ............................................................ 115 

Tabela 14 - Matriz de contingência e figuras de mérito: Índice de Coutinho. .......... 116 

Tabela 15 - Importância das variáveis no modelo LDA. .......................................... 117 

 

Tabela A1 – Parâmetros utilizados na otimização dos algoritmos pelo método 

GridSearchCV() ....................................................................................................... 148 

Tabela A2 – Parâmetros de cada modelo de classificação após a otimização ........ 148 

 

Tabela C1 - Resultados do teste de Kolmogorov-Smirnov (KS). ............................. 151 
 

Tabela E1 - Resultados do teste de Kolmogorov-Smirnov (KS). ............................. 155 
 

 

 

 

 

 

 



 
 

 

SUMÁRIO 

I. PRÓLOGO ........................................................................................................ 15 

II. SINOPSE .......................................................................................................... 17 

III. HIPÓTESE GERAL ........................................................................................... 18 

IV. Objetivo Geral ................................................................................................... 18 

CAPÍTULO 1 ............................................................................................................. 19 

1. FUNDAMENTAÇÃO TEÓRICA ......................................................................... 20 

1.1. Metabonômica ................................................................................................ 20 

1.1.1. Biofluidos .................................................................................................. 21 

1.1.2. Técnicas Analíticas ................................................................................... 22 

1.1.3. Fluxograma do estudo metabonômico ..................................................... 24 

1.2. Espectroscopia de RMN ................................................................................. 26 

1.3. Fundamentos .................................................................................................. 26 

1.3.1. Sequência de pulsos Pré-saturação ......................................................... 30 

1.3.2. Sequência de pulsos NOESY ................................................................... 32 

1.3.3. Sequência de pulsos CPMG .................................................................... 34 

1.3.4. Processamento dos espectros ................................................................. 35 

1.4. Quimiometria .................................................................................................. 36 

1.4.1. Pré-processamento e Pré-tratamento de Dados ...................................... 38 

1.4.2. Redução da Dimensionalidade ................................................................. 41 

1.4.3. Modelos de Classificação ......................................................................... 46 

1.5. Validação e figuras de mérito ......................................................................... 54 

CAPÍTULO 2 ............................................................................................................. 57 

2. Ensaios Metabonômicos para o Monitoramento de Doenças Renais ............... 58 

2.1. Lesão Renal Aguda (LRA) .............................................................................. 59 

2.2. Nefrite Lúpica .................................................................................................. 61 

Estudo 1 – Diagnóstico de Lesão Renal Aguda em Recém-Nascidos Prematuros 63 

2.3. Objetivos específicos ...................................................................................... 63 

2.4. Materiais e Métodos........................................................................................ 63 

2.4.1. Conjunto de dados – Lesão Renal Aguda (LRA) ...................................... 63 

2.4.2. Espectroscopia de RMN de 1H - LRA ....................................................... 64 

2.4.3. Processamento dos dados - LRA ............................................................. 64 

2.4.4. Análise Quimiométrica .............................................................................. 65 

2.4.5. Identificação dos metabólitos ................................................................... 67 

2.5. Resultados e Discussão - LRA ....................................................................... 68 

2.5.1. Visualização dos dados ............................................................................ 68 

2.5.2. Modelos de Classificação ......................................................................... 72 



 
 

2.5.3. Identificação dos metabólitos ................................................................... 75 

2.6. Conclusão do Estudo 1 – Lesão Renal Aguda ............................................... 80 

Estudo 2 – Estadiamento da Nefrite Lúpica Proliferativa com ou sem lesão 

membranosa. 81 

2.7. Objetivos específicos ...................................................................................... 81 

2.8. Materiais e Métodos........................................................................................ 81 

2.8.1. Amostragem – Nefrite Lúpica (NL) ........................................................... 81 

2.8.2. Considerações Éticas – NL ...................................................................... 82 

2.8.3. Espectroscopia de RMN de ¹H - NL ......................................................... 82 

2.8.4. Processamento dos dados - NL ............................................................... 82 

2.8.5. Análise Quimiométrica .............................................................................. 83 

2.8.6. Identificação dos metabólitos ................................................................... 85 

2.9. Resultados e Discussão - NL .......................................................................... 86 

2.9.1. Dados clínicos .......................................................................................... 86 

2.9.2. Visualização dos dados ............................................................................ 86 

2.9.3. Modelos de classificação .......................................................................... 89 

2.9.4. Identificação dos metabólitos ................................................................... 94 

2.10. Conclusão do Estudo 2 – Nefrite Lúpica ......................................................... 97 

CAPÍTULO  3 ............................................................................................................ 98 

3. Estudo 3. Aprendizado de Máquina empregado na Avaliação da Fibrose 

Periportal em Pacientes com Esquistossomose mansoni ......................................... 99 

3.1. Ensaios Metabolômicos e Metabonômicos em estudos sobre esquistossomose

 101 

3.2. Objetivos Específicos.................................................................................... 104 

3.3. Materiais e Métodos...................................................................................... 104 

3.3.1. Amostragem ........................................................................................... 104 

3.3.2. Análise Quimiométrica ............................................................................ 105 

3.3.3. Considerações Éticas ............................................................................. 106 

3.4. Resultados e Discussão ............................................................................... 107 

3.4.1. Dados Clínicos ....................................................................................... 107 

3.4.2. Visualização dos dados .......................................................................... 108 

3.4.3. Modelos de Classificação ....................................................................... 111 

3.4.4. Importância das Variáveis ...................................................................... 117 

3.5. Conclusão do Estudo 3 – Estadiamento de Fibrose Periportal ..................... 120 

4. Conclusão ....................................................................................................... 121 

Perspectivas ............................................................................................................ 122 

REFERÊNCIAS 123 

APÊNDICE A – PARÂMETROS DOS MODELOS ............................................... 148 



 
 

APÊNDICE B – GRÁFICOS DE PESOS DA PCA: LRA. ..................................... 149 

APÊNDICE C – TESTE DE KOLMOGOROV-SMIRNOV: LRA ............................ 151 

APÊNDICE D – GRÁFICOS DE ESCORES E PESOS DA PCA: NL................... 153 

APÊNDICE E – TESTE DE KOLMOGOROV-SMIRNOV: NL .............................. 155 

APÊNDICE F – NOTA DE IMPRENSA ................................................................ 157 

ANEXO 1 ............................................................................................................. 158 

ANEXO 2 ............................................................................................................. 159 



15 
 

I. PRÓLOGO 

A resposta de organismos frente a estímulos ou a ações externas causadoras de 

doenças ou lesões faz parte de reações complexas e, muitas vezes, imprevisíveis, no 

qual o objetivo é retornar ao estado de equilíbrio, princípio fundamental da 

homeostase. Pode-se dizer que essa relação entre doença e perturbação biológica 

vem sendo investigada desde a Antiguidade. Na Grécia Antiga, já se discutia a 

importância de modificações em tecidos e fluidos como indicativos de condições 

clínicas. Na Idade Média, por exemplo, gráficos de urina foram utilizados para associar 

alterações de cor e odor a diferentes enfermidades (NICHOLSON; LINDON, 2008). 

Figura 1 - Roda de urina que descreve possíveis cores, cheiros e sabores da urina e era utilizado 
para diagnosticar doenças. 

 

Fonte: NICHOLSON; LINDON, 2008 

Nesse âmbito, a metabonômica surgiu com o propósito de analisar amostras 

biológicas de forma global, permitindo a avaliação da resposta metabólica de um 

organismo frente a agentes externos, e se apresenta como uma abordagem cada vez 

mais empregada na literatura para auxiliar no entendimento de processos biológicos 
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complexos. Sua aplicação estende-se a seres humanos, animais, plantas e também 

à análise da qualidade de alimentos e frutos que possivelmente tenham sofrido 

alterações externas (CANUTO et al., 2018).  

No que diz respeito ao emprego da metabonômica na investigação do perfil 

metabólico de biofluidos de indivíduos, destacam-se benefícios como a avaliação da 

suscetibilidade a doenças, a compreensão da resposta e da adaptação a tratamentos, 

bem como a busca por novos fármacos a partir de descobertas bioquímicas. Para que 

seja possível a investigação, o fluxo de trabalho de um estudo metabonômico utiliza 

de técnicas analíticas para análise das amostras e de diferentes métodos 

quimiométricos e estatísticos para extrair informações dos conjuntos de dados 

extensos e complexos que são obtidos. 

As técnicas quimiométricas são indispensáveis no manuseio de dados durante 

o estudo metabonômico, em particular, ferramentas de análise multivariadas são 

altamente empregadas para identificar tendências e padrões. Além disso, com o 

surgimento e crescente aplicação de algoritmos de aprendizado de máquina, o 

tratamento de dados complexos alcançou avanços em diversas áreas, inclusive em 

problemas médicos. Esses algoritmos podem ainda ser empregados em dados de 

exames de rotina para previsão e compreensão de um conjunto de parâmetros 

bioquímicos séricos no desenvolvimento de doenças (LIU et al., 2024). 

Com o desenvolvimento das tecnologias analíticas e computacionais, novas 

perspectivas foram abertas para a investigação de inúmeras doenças. Sendo assim, 

a metabonômica, aliada ao aprendizado de máquina, tem se mostrado uma 

ferramenta poderosa para identificar alteração metabólicas associados a condições 

renais (ANEKTHANAKUL et al., 2021). De forma paralela, a análise de biomarcadores 

séricos provenientes de exames laboratoriais complementa o estudo de doenças 

hepáticas, fornecendo indicadores clínicos essenciais para diagnóstico e 

estadiamento (LIU et al., 2024). 

Diante deste panorama, o presente trabalho de tese foi motivado pelo interesse 

em integrar essas abordagens multidisciplinares para avançar na compreensão de 

três patologias. Examinando aspectos metabonômicos e clínicos, no contexto da 

Lesão Renal Aguda, Nefrite Lúpica e Esquistossomose Mansoni, por meio da 

aplicação de técnicas de aprendizado de máquina. Buscou-se extrair informações 

relevantes tanto dos perfis metabólicos quanto dos biomarcadores séricos. 
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II. SINOPSE  

O presente trabalho está estruturado em três capítulos. O primeiro capítulo 

apresenta a fundamentação teórica, abordando a estratégia metabonômica, as 

técnicas analíticas e quimiométricas empregadas durante o desenvolvimento do 

estudo. O segundo capítulo descreve o desenvolvimento do estudo metabonômico 

baseado em RMN de ¹H, voltado para doenças renais, no qual são utilizados 

algoritmos de aprendizado de máquina para construir modelos de classificação. O 

terceiro capítulo traz o desenvolvimento de modelos de classificação utilizando 

algoritmos de aprendizado de máquina aplicados a biomarcadores séricos para o 

estadiamento de Fibrose Periportal em pacientes diagnosticados com 

Esquistossomose Mansoni. 

No capítulo 2, são descritos modelos de classificação baseados em 

aprendizado de máquina voltados para o diagnóstico de Lesão Renal Aguda e para o 

estadiamento de Nefrite Lúpica. Ambos os conjuntos de dados foram obtidos por meio 

da análise de RMN de ¹H. O conjunto referente à Lesão Renal Aguda foi extraído da 

base de dados Metabolomics Workbench, constituído por espectros de amostras de 

urina. Essa matriz de dados passou por etapas prévias de pré-processamento, 

incluindo SMOTE; os modelos foram treinados, validados, e as variáveis importantes 

para a discriminação foram investigadas. Já o conjunto de Nefrite Lúpica foi obtido a 

partir da análise de amostras de soro realizadas no Departamento de Química 

Fundamental da UFPE, e passou pelas mesmas etapas do primeiro conjunto, 

incluindo o uso de algoritmos de seleção de variáveis. 

No capítulo 3, são descritos modelos de classificação baseados em 

aprendizado de máquina voltados para o estadiamento da Fibrose Periportal leve e 

avançada em pacientes infectados com Schistosoma mansoni. Biomarcadores 

séricos obtidos por exames laboratoriais foram utilizados na construção dos modelos, 

que foram posteriormente validados. A robustez desses modelos foi comparada ao 

índice Coutinho, já descrito e utilizado na literatura para discriminar os graus dessa 

fibrose. Uma revisão da literatura sobre a investigação metabolômica e metabonômica 

da Fibrose Periportal foi publicada e encontra-se disponível no ANEXO 1, servindo 

como material complementar que amplia o contexto científico deste trabalho. 
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III. HIPÓTESE GERAL 

Modelos quimiométricos são capazes de diagnosticar Lesão Renal Aguda e 

Nefrite Lúpica e estadiar a Fibrose Periportal na Esquistossomose com precisão. 

IV. Objetivo Geral 

Desenvolver, a partir de ensaios metabonômicos e quimiométricos, modelos 

para o diagnóstico de Lesão Renal Aguda e Nefrite Lúpica e estadiamento da Fibrose 

Periportal na Esquistossomose. 

IV.i.  Objetivos específicos 

• Investigar e otimizar algoritmos de aprendizado de máquina supervisionado em 

um conjunto de dados disponíveis em um banco de dados de Lesão Renal Aguda 

em prematuros. 

• Avaliar o desempenho dos modelos com base nas figuras de mérito e os 

deslocamentos químicos importantes para as discriminações de pacientes com e 

sem Lesão Renal Aguda. 

• Obter espectros de amostras de soro de pacientes com Nefrite Lúpica por 

Ressonância Magnética Nuclear de ¹H. 

• Investigar e otimizar algoritmos de aprendizado de máquina supervisionado, 

combinados com técnicas de seleção de variáveis, para o conjunto de dados de 

Nefrite Lúpica. 

• Avaliar o desempenho dos modelos para o diagnóstico de Nefrite Lúpica e suas 

combinações com os métodos de seleção de variáveis com base nas figuras de 

mérito. 

• Identificar os metabólitos referentes aos sinais de maior importância para 

construção do melhor modelo para o diagnóstico de Nefrite Lúpica. 

• Desenvolver modelos quimiométricos baseados em algoritmos de aprendizado de 

máquina para classificação das formas leves e avançadas da Fibrose Periportal, 

por esquistossomose, em pacientes com Esquistossomose Mansoni utilizando 

biomarcadores séricos (AST, ALT, FAL, GGT e PLT). 

• Avaliar o desempenho dos modelos com base nas figuras de mérito e a 

importância de cada biomarcador sérico na discriminação das classes. 
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1. FUNDAMENTAÇÃO TEÓRICA 

1.1. Metabonômica 

As ciências ômicas são um conjunto de abordagens que, através da coleta e 

análise de um grande número de dados, estudam o funcionamento e as alterações 

biológicas de células, tecidos e organismos inteiros. As ômicas descrevem sistemas 

biológicos como um todo e são divididas em: genômica, transcriptômica, proteômica, 

lipidômica, metabolômica/metabonômica, entre outras. Para lidar com a quantidade 

de dados que são gerados e sua complexidade, ferramentas estatísticas multivariadas 

e, na maioria das vezes, aprendizado de máquina são empregados (XU et al., 2023; 

SHAO et al., 2023). 

Dentre as abordagens citadas, a metabonômica é responsável por investigar 

alterações metabólicas em resposta a estímulos fisiopatológicos e intervenções 

externas que causaram perturbação na homeostase (NICHOLSON et al., 1999). São 

então os metabólitos, moléculas de baixo massa molar, intermediários ou produtos de 

reações químicas catalisadas por diferentes enzimas nos sistemas vivos (KISELEVA 

et al., 2022). 

Na literatura, podemos encontrar trabalhos relacionados a estudos 

metabonômicos e metabolômicos (SU et al., 2021; HANG et al., 2022; MARINO et al., 

2021). É frequente o uso dos termos metabolômico e metabonômico como sinônimos. 

No entanto, há uma diferença filosófica importante, que tem impacto na estratégia 

metodológica adotada em cada abordagem. Segundo Nicholson e Lindon (2008), a 

metabonômica visa medir de maneira ampla a resposta metabólica global a estímulos 

biológicos ou manipulação genética dos sistemas vivos, com objetivo de entender a 

mudança através do tempo em sistemas complexos. Enquanto a metabolômica, está 

voltada para discriminação analítica de amostras biológicas complexas através da 

caracterização e quantificação de todas as espécies químicas presentes na amostra, 

concentrando-se em um conjunto específico de metabólitos. A necessidade de 

identificação e quantificação absoluta dos metabólitos exige a utilização de uma 

ferramenta de separação de misturas (cromatografia, eletroforese) antes da técnica 

espectrométrica (normalmente, espectrometria de massas). No caso da abordagem 

metabonômica, como não há necessidade de quantificação absoluta, a técnica 

espectrométrica (normalmente, espectroscopia de ressonância magnética nuclear) 

pode ser utilizada na amostra praticamente in natura (DUNN; ELIS, 2005). Neste texto, 
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será utilizado o termo metabonômica, pois nenhuma técnica de separação de misturas 

será empregada e os dados espectrais serão obtidos usando RMN. 

A possibilidade de caracterizar as alterações metabólicas utilizando da 

metabonômica, pode fornecer informações sobre mecanismos e rotas capazes de 

auxiliar no diagnóstico e evolução de doenças, bem como a resposta de organismos 

a tratamentos (BJERRUM et al., 2021; SU et al., 2021). Desse modo, trabalhos na 

literatura vêm empregando a metabonômica em diversos estudos envolvendo 

doenças, entre os quais, pode-se apontar aqueles voltados para o diagnóstico e 

tratamento de diferentes tipos de câncer (CHEN et al., 2022; QI et al., 2022; OLIVEIRA 

et al., 2024), HIV (GABAZANA; SITOLE, 2021), lesões hepáticas (HU; SHEN; CHEN, 

2023; RODRIGUES et al., 2022), doenças renais (LAI et al., 2023), entre tantas outras. 

Vale ressaltar que, apesar de a maioria dos estudos ser voltada para doenças, a 

metabonômica também pode ser aplicada em outras investigações, como por 

exemplo, estudos envolvendo extrato de plantas (DAI et al., 2021; LI et al., 2022). 

1.1.1. Biofluidos 

A caracterização dos perfis metabólicos é realizada através da análise de fluidos 

corporais e tecidos, entre eles: derivados sanguíneos (soro e plasma), urina, fezes, 

fluido seminal, saliva, suor e até lágrimas (GRASSO et al., 2022). A principal vantagem 

no uso desses biofluidos está associada a métodos minimamente invasivos utilizados 

no processo de coleta das amostras (GARZARELLI et al., 2022). Os metabólitos e as 

lipoproteínas, encontrados nos biofluidos, são secretados por diferentes tecidos em 

resposta a estímulos fisiológicos ou estressores, tornando-os sensíveis não só às 

condições de saúde, mas também às variações genéticas, fatores ambientais, estilo 

de vida, hábitos nutricionais e medicamentos, fornecendo informações importantes 

em termos sistêmicos (VIGNOLI et al., 2022). 

Para fim de análise metabonômica, os biofluidos podem ser utilizados 

isoladamente ou em conjunto. Yanlan e colaboradores (2023), por exemplo, buscaram 

mecanismos envolvidos nos sintomas intestinais agudos induzidos por radiação em 

pacientes com câncer cervical e, para alcançar tal objetivo, utilizaram três biofluidos 

diferentes: urina, plasma e fezes. Dong e colaboradores (2023), que com o intuito de 

descobrir biomarcadores para a predição de infarto agudo do miocárdio em pacientes 

com doença arterial coronariana, também analisaram amostras de soro, urina e fezes, 

onde os metabólitos sanguíneos funcionaram melhor para a predição. 
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O soro, frequentemente, é um dos biofluidos mais utilizados para representação 

fenotípica em diagnósticos e tratamentos (GRASSO et al., 2022). Cerca de 60% do 

corpo humano é constituído por fluido intracelular e extra-celular, como plasma, linfa, 

líquor, humor aquoso, fluido pleural, sinovial. Na verdade, o sangue, composto por 

plasma e células (hemacias, plaquetas e leucócitos) circula pelo sistema circulatório, 

percorrendo todos os tecidos e órgãos (GUYTON; HALL, 2011). 

O soro é o líquido obtido quando o sangue total coagula e, em laboratório, a 

separação é realizada com centrifugação. Sua composição consiste em água, várias 

proteínas, peptídeos, aminoácidos, hormônios, compostos de nitrogênio, vários íons 

e sais, vestígios de ácidos nucléicos, metabólitos e lipídios. Por outro lado, o plasma 

é obtido utilizando um agente anticoagulante, que é adicionado ao sangue total antes 

de ser centrifugado para remoção das células sanguíneas (KISELEVA et al., 2022). 

Entretanto, o anticoagulante pode causar perdas nas informações e interferir nas 

análises. Além disso, o soro costuma apresentar uma concentração maior de 

metabólitos, como aminoácidos e derivados (SOTELO-OROZCO et al., 2021). Sendo 

assim, esse será o material biológico estudado no presente trabalho. 

1.1.2. Técnicas Analíticas 

Os metabólitos que compõem o sangue podem ser divididos em grupos de 

acordo com suas propriedades físico-químicas. A diversidade das espécies reflete 

diretamente nas dificuldades de investigação do metaboloma frente às técnicas de 

análise disponíveis (KISELEVA et al., 2022). Como resultado, diversos estudos 

metabonômicos nos últimos anos têm explorado uma variedade de técnicas analíticas. 

As mais comuns incluem a espectroscopia de ressonância magnética nuclear (RMN) 

e a espectrometria de massas (MS, do inglês, Mass Spectrometry); a segunda é 

frequentemente usada com técnicas cromatográficas como LC-MS (do inglês, Liquid 

Chromatography-Mass Spectrometry) e GC-MS (do inglês, Gas Chromatography-

Mass Spectrometry). A escolha da técnica deve ser feita considerando as 

características das espécies químicas que estão presentes nas amostras. 

No que diz respeito ao uso do GC-MS e LC-MS, as quais são técnicas de 

separação que apresentam alta eficiência, resolução, repetibilidade e, em conjunto 

com a detecção por MS, uma alta sensibilidade, capaz de detectar compostos com 

concentrações da ordem de pM (REY-STOLLE et al., 2022; BJERRUM et al., 2021). 

Diversos estudos metabonômicos, dedicados à progressão e diagnóstico de doenças 
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por meio dessas técnicas, podem ser encontrados na literatura. No que se refere as 

análises por cromatografia líquida acoplada a espectrometria de massas, trabalhos 

incluem a investigação de diferentes tipos de câncer (YANG et al., 2022; YUAN et al., 

2023), diabetes (HAO et al., 2023), insuficiência cardíaca (ZHANG et al; 2022), doença 

hepática (SHEN et al., 2023), doença renal (LEE et al., 2022; JACOB et al., 2022), 

entre outras condições. O mesmo pode ser observado nos estudos utilizando a 

cromatografia gasosa, com trabalhos envolvendo diferentes tipos de câncer (WANG 

et al., 2023; DI GIOVANNI et al., 2023; EROGLU et al., 2022), tuberculose pulmonar 

(WANG et al., 2022), doença hepática (HUANG et al., 2021), doença renal (FRANIEK 

et al., 2022), entre outras. 

É comum combinar o uso do GC-MS e do LC-MS em um mesmo trabalho como 

técnicas complementares uma à outra (KOU et al., 2022; WANG et al., 2022). Por 

exemplo, Wang e colaboradores (2022), utilizando a abordagem metabolômica, 

empregaram ambas as técnicas cromatográficas para investigar metabólitos 

presentes em pacientes que apresentaram diabetes mellitus pós-transplante de 

fígado. A análise multivariada, realizada pelos autores, demonstrou uma alta qualidade 

do ajuste para os modelos gerados e permitiu selecionar 30 metabólitos diferenciais 

(15 de LC-MS, 15 de GC-MS) associados às possíveis vias metabólicas envolvidas. 

Entretanto, o estudo metabolômico utilizando MS enfrenta dificuldades, 

principalmente, na etapa de preparo da amostra, que frequentemente é laboriosa, o 

que pode ser um entrave ao uso da técnica. Por outro lado, a etapa de identificação 

dos metabólitos é facilitada, visto que costuma ser feita a partir da comparação dos 

espectros com bibliotecas espectrais comerciais, com padrão de fragmentação que 

constam em bancos de dados de metabólitos e, se o equipamento permitir, através da 

elucidação estrutural de espectros obtidos de fragmentação MS/MS (REY-STOLLE et 

al., 2022; BJERRUM et al., 2021).  

A espectroscopia de ressonância magnética nuclear (RMN) surge então como 

uma alternativa complementar as demais técnicas citadas. Apesar de apresentar uma 

menor sensibilidade comparada ao MS, os resultados nesse quesito podem ser 

melhorados por meio do aumento do número de varreduras, da intensidade de campo, 

do resfriamento criogênico, do uso de microssondas e de métodos de hiperpolarização 

(SAIGUSA et al., 2021; RAJA et al., 2020). A técnica ainda apresenta outras 

vantagens, como robustez, reprodutibilidade e requer mínimo preparo de amostra 

(GHINI et al., 2023). Além disso, o tempo de análise é relativamente baixo, todos os 
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metabólitos são medidos simultaneamente e, caso seja o foco do trabalho, compostos 

de interesse podem ser quantificados (RAJA et al., 2020). 

Uma série de trabalhos na literatura está voltada para estudos metabonômicos 

que utilizam a RMN como técnica de análise (ZHONG et al., 2019; JIN et al., 2022, 

HANG et al., 2022; YANG et al., 2021). Com relação à investigação de doenças, é 

possível encontrar trabalhos envolvendo diferentes tipos de câncer (HASUBEK et al., 

2023; OLIVEIRA et al., 2024; CARDOSO et al., 2022; RAZAVI et al., 2024), diabetes 

(BRAGG et al., 2022), doenças cardíacas (DONG et al., 2023; HASSELBALCH et al., 

2023), depressão (HUNG et al., 2021), meningite tuberculosa (PARIHAR et al., 2022), 

infertilidade masculina (NETO et al., 2022), doenças renais (FONSECA et al., 2023; 

KIM et al., 2023), osteoporose (PONTES et al., 2019), entre outras condições.  

O emprego do RMN permite a análise de amostras sem preparos laboriosos, o 

que facilita a investigação de diferentes materiais biológicos. Trabalhos como os 

citados acima, mostram a infinidade de possibilidades quando se trabalha com 

metabonômica, isso sem citar a diversidade de abordagens que podem ser 

empregadas durante o tratamento dos dados. 

1.1.3. Fluxograma do estudo metabonômico 

Para um estudo metabonômico, é necessário definir o que será investigado e a 

população de estudo, bem como o material a ser analisado, o preparo da amostra, a 

aquisição de dados e outras etapas que compõem o fluxo de trabalho. Todo o 

processo, desde a coleta da amostra até a identificação dos metabólitos, consiste em 

uma série de etapas que devem ser seguidas para garantir o sucesso durante a 

execução do estudo. Alguns trabalhos na literatura, como o de DE SAN-MARTIN e 

colaboradores (2021) e de Bjerrum e colaboradores (2021), discutem o fluxo de 

trabalho comumente aplicado, apresentado na Figura 2. 
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Figura 2 – Etapas no desenvolvimento de um estudo metabonômico.

 

Fonte: Adaptado de DE SAN-MARTIN e colaboradores (2021). 

A seleção da população de estudo deve considerar características como o 

estágio e grau da doença, intervenções cirúrgicas, entre outras. Os dados 

demográficos e clínicos precisam ser devidamente registrados, visto que os 

metabólitos podem ser alterados devido à idade, sexo, estilo de vida, condições 

fisiopatológicas e intervenções cirúrgicas. A coleta e o preparo das amostras são 

processos importantes para garantir a integridade das mesmas durante todo o período 

até a análise. Antes de preparar a amostra, todas devem ser randomizadas para evitar 

o viés analítico. Na maioria das vezes, apenas a diluição da amostra em D2O é 

suficiente para a análise no RMN. A aquisição dos espectros é realizada através de 

experimentos de RMN de 1H e, quando necessário, experimentos bidimensionais 

podem ser aplicados. O processamento dos espectros é feito para gerar uma matriz 

numérica e envolve a redução de ruído e correção de linha de base. O pré-

processamento da matriz inclui a aplicação de normalização das amostras, 

escalamento ou transformações das variáveis. Na análise multivariada, busca-se por 

padrões ou tendências de agrupamento das amostras e constrói-se modelos de 

predição com valores significativos de validação para que possam ser usados na 

identificação dos metabólitos. A identificação dos metabólitos é realizada atribuindo 

sinais indicados pelo modelo como importantes. 
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1.2. Espectroscopia de RMN 

A espectroscopia ressonância magnética nuclear (RMN) apresenta vantagens 

frente as técnicas cromatográficas, principalmente, no que diz respeito a facilidade do 

preparo de amostra (EMWAS et al., 2019). É considerada a técnica mais poderosa 

para a análise química (NEULING et al., 2023) e uma das predominantes, além do 

MS, na metabonômica e na análise estrutural (MIELKO et al., 2021). 

1.3. Fundamentos 

A espectroscopia de Ressonância Magnética Nuclear (RMN) envolve a interação 

entre a radiação eletromagnética, na faixa da radiofrequência, e a matéria, mais 

especificamente, os núcleos atômicos. Os núcleos atômicos possuem quatro 

propriedades físicas fundamentais: massa, carga elétrica, momento magnético e 

momento angular. No contexto da RMN, é crucial compreender a interação entre o 

momento magnético nuclear e o campo magnético aplicado. Os núcleos magnéticos 

se comportam como pequenas barras magnéticas frente a um campo magnético, e 

seu número de spin (I) é uma propriedade intrínseca associada às partículas 

subatômicas e uma forma de momento angular (LEVITT, 2008). 

Partículas com spin I possuem (I) níveis degenerados, mas na presença de um 

campo magnético externo a degenerescência é quebrada (LEVITT, 2008). Por 

exemplo, núcleos com I = 1/2, como é o caso do núcleo de hidrogênio-1, podem 

assumir dois estados quânticos. Na ausência do campo magnético externo (B0), 

ambos os estados quânticos são equivalentes e nenhuma excitação é possível. Na 

presença de B0 há quebra da degenerescência, o dipolo magnético (µ) do núcleo se 

alinha na direção do campo aplicado e o núcleo tem duas possibilidades de estados 

quânticos, de menor e de maior energia (DIEHL, 2008). A diferença de energia entre 

os dois níveis gerados (α e β) é dada por ∆E= hv. A Figura 3 representa os dois níveis 

de energia de núcleos com spin 1/2. 
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Figura 3. Geração de dois níveis de energia em núcleos com spin 
1

2
 frente a um campo magnético 

externo. 

 

Fonte: Adaptado de DIEHL (2008). 

A ocupação nos dois estados de energia depende da energia térmica e 

magnética. Quando em temperatura ambiente e o campo aplicado é fraco, as 

populações em ambos os estados são praticamente iguais, de modo que os spins em 

direções opostas quase se cancelam (SILVERSTEIN et al., 2019). O sinal detectado 

é resultado do excesso de spin que ocupa o estado de menor energia, pois esses 

spins podem ser excitados pelo pulso de radiofrequência e, ao retornarem ao 

equilíbrio, liberam a energia que gera o sinal registrado. 

O excesso de spin pode ser aumentado diminuindo a energia térmica, reduzindo 

a temperatura. Por exemplo, considerando apenas o efeito da temperatura, no zero 

absoluto todos os spins estariam no estado de menor energia, consequentemente, o 

excesso de spin seria máximo, apesar de não ser algo prático de se desenvolver em 

um laboratório. Ao invés disso, a intensidade do campo pode ser aumentada, logo, 

maior será a energia entre os estados, menor a excitação dos spins para Nβ e maior 

o excesso de spins em Nα (SILVERSTEIN et al., 2019). 

A diferença da população entre os dois estados pode ser calculada através da 

distribuição de Boltzmann (Eq. 1): 

𝑁𝛼

𝑁𝛽
 =  𝑒

∆𝐸
𝑘𝐵𝑇⁄

     (1) 
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A distribuição de Boltzmann mostra a forte dependência entre as populações e 

a intensidade do campo magnético. Em um campo magnético forte, como em 600 

MHz, a relação Nα/Nβ é apenas 0,999904. Mesmo em uma pequena fração de excesso 

de spin, a quantidade do núcleo presente na amostra é vasta permitindo observar um 

número maior de spins que serão responsáveis pelo sinal no espectro (DIEHL, 2008). 

Para auxiliar no entendimento do experimento dentro do RMN, pode-se usar o 

sistema de coordenadas. Considerando o sistema em equilíbrio térmico, a aplicação 

do campo estático B0 faz com que o momento magnético nuclear precessione na 

direção do eixo Z, resultando em uma magnetização (M0), que corresponde ao 

somatório dos momentos magnéticos no eixo z (Eq. 2). 

Figura 4 – Sistema de coordenadas representando o vetor de magnetização resultante do efeito de 
B0. 

 

Fonte: A autora (2025). 

𝑀0 = 𝛴µ      (2) 

O movimento de precessão possui uma frequência angular chamada de 

frequência de Larmor (v). A equação fundamental da RMN (Eq. 3) correlaciona a 

frequência de Larmor com a intensidade do campo magnético. A constante 

magnetogírica (γ) é específica para cada núcleo e indica a proporcionalidade entre 

momento magnético e número de spin, como demostrado na Eq. 4 (SILVERSTEIN et 

al., 2019). 

𝑣 = (
𝛾

2𝜋
) 𝐵0      (3) 
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𝛾 =
2𝜋µ

ℎ𝐼
      (4) 

Através da equação fundamental da RMN, é possível descrever um instrumento 

em termos da intensidade do campo magnético ou em relação a frequência de Larmor 

em unidades tesla (T) ou megahertz (MHz), respectivamente. Por exemplo, um 

equipamento com campo de 9,39 T é chamado de espectrômetro de RMN de 400 

MHz, frequência de ressonância do 1H frente ao campo. 

Um experimento simples de RMN pulsado é realizado com um campo magnético 

oscilante (B1), de frequência 𝑣, aplicado na forma de pulso perpendicular ao campo 

magnético estático (B0). Esse pulso de radiofrequência rotaciona o vetor de 

magnetização (M0) do eixo z para o plano xy, resultando na nova componente de 

magnetização Mxy. Durante esse processo, ocorre a coerência de spin entre os spins 

nucleares, garantindo uma relação de fase entre eles. A voltagem induzida pela 

precessão dos spins no plano xy é recebida na bobina da sonda, e o sinal resultante 

é conhecido como decaimento livre da indução (FID). Em seguida, a magnetização 

retorna ao eixo z, restabelecendo o equilíbrio, processo conhecido como relaxação 

(COLNAGO; ANDRADE, 2017). O sinal é adquirido como uma função do tempo e, por 

meio da transformada de Fourier, é convertido para o domínio da frequência, 

permitindo a observação do espectro de RMN. 

Após o pulso, dois processos de relaxação estão envolvidos no FID, longitudinal 

e transversal. A relaxação longitudinal refere-se ao processo pelo qual a magnetização 

retorna ao equilíbrio ao longo do eixo do campo magnético B0 e é caracterizada pelo 

tempo T1, que indica quanto tempo Mz leva para retornar à condição inicial. A 

relaxação transversal está relacionada ao decaimento da magnetização no plano xy 

devido à perda de coerência de fase entre os spins, sendo representada pelo tempo 

T2, que indica quanto tempo Mxy leva para retornar à condição inicial (COLNAGO; 

ANDRADE, 2017). Os tempos de relaxação são variáveis extremamente importantes 

na RMN e podem ser empregados em diferentes experimentos como uma forma de 

filtrar espécies durante a aquisição do espectro. Embora T1 e T2 geralmente tenham 

a mesma ordem de grandeza, em moléculas maiores e/ou sistemas mais viscosos, T2 

tende a ser menor que T1. Nas seções dedicadas aos experimentos aplicados, no 

presente trabalho, isso será abordado novamente. 
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Figura 5 – Vetor de magnetização após o pulso perpendicular ao campo magnético B0. Componentes 
no plano xy (que determina T2) e no eixo z (que determina T1). 

 

Fonte: Adaptado de SILVA (2017) 

É relevante destacar que a frequência de absorção do spin nuclear pode ser 

afetada e, consequentemente, os tempos de relaxação sofrerem alterações. Por 

exemplo, a intensidade do campo magnético no núcleo pode ser alterada pela 

densidade eletrônica que o envolve. Essa proteção, resultante da precessão dos 

elétrons sob a influência de B0, gera um campo magnético adicional que pode se opor 

ao campo magnético aplicado. Com o aumento da densidade eletrônica ao redor do 

núcleo, o campo efetivo diminui, levando a frequências de ressonância mais baixas. 

Em outras palavras, além da dependência do campo B0, a frequência pode variar a 

depender do ambiente químico em que o spin nuclear se encontra (RULE; 

HITCHENS, 2006). 

A escala de deslocamento químico (δ) é a forma utilizada para remover a 

dependência da frequência de ressonância do campo B0, onde todas as frequências 

são convertidas para uma escala adimensional. Desse modo, é possível comparar 

espectros obtidos em campos magnéticos com diferentes intensidades (RULE; 

HITCHENS, 2006). O deslocamento é calculado a partir da Eq. 5, sendo expresso em 

ppm: 

δ =
(𝑣𝐴−𝑣𝑅)

𝑣𝑅
× 106 (𝑝𝑝𝑚)    (5) 

onde, 𝑣𝑅 é a frequência do núcleo de referência e 𝑣𝐴 a frequência do núcleo 

investigado. Com as variações nos deslocamentos químicos ao longo do espectro é 

possível atribuir os sinais com base no ambiente químico e, consequentemente, 

elucidar estruturas dos compostos investigados. 

1.3.1. Sequência de pulsos Pré-saturação 

Amostras de biofluidos (soro, plasma ou urina) apresentam uma grande 

quantidade de água em sua composição. Quando submetida à análise por 
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espectroscopia de RMN de 1H, a água apresenta um sinal intenso no espectro que 

pode sobrepor sinais de analitos importantes para o estudo, além de saturar o detector 

e causar distorções de linha de base (ZHENG; PRICE, 2010). Algumas alternativas 

podem ser aplicadas para minimizar ou reduzir ao máximo o sinal de próton do 

solvente, entre elas, o uso de solventes deuterados e os métodos de supressão são 

os mais comuns (MO; RAFTERY, 2008). 

A sequência de pulsos de pré-saturação do sinal do solvente, mais conhecida 

como PRESAT, é um método comumente aplicado na supressão do sinal de água. 

Vantagens como a facilidade de uso e a simples implementação são responsáveis 

pela sua popularidade. O experimento consiste em um pulso constante de baixa 

intensidade na frequência de ressonância do solvente que, com o tempo, resulta na 

quebra de coerência dos spins ao redor do plano xy durante a aquisição, evitando a 

aquisição do sinal na bobina (SOONG et al., 2024).  

No equilíbrio, o vetor de magnetização da água e do soluto estão alinhados em 

torno do eixo z, o pulso é então aplicado (entre 1 e 10 s) ao longo do eixo y na 

frequência de ressonância do solvente (água, no presente trabalho) fazendo com que 

o vetor gire em torno do eixo zx, perdendo a coerência dos spins. A moléculas em 

investigação não sofrem perturbação, então um pulso de 90º é aplicado invertendo 

sua magnetização e da água para plano xy para obtenção do sinal. Os spins da água 

permanecem decoerentes e se cancelam, o resultado é um sinal do solvente bastante 

reduzido, mantendo o sinal dos analitos de interesse (SOONG et al., 2024). A Figura 

6 ilustra esse processo. 

Figura 6 – Representação gráfica da sequência de pulsos PRESAT.

 

Fonte: SOONG e colaboradores (2024) 
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1.3.2. Sequência de pulsos NOESY 

A depender do tipo de biofluido a ser analisado e dos analitos de interesse, 

diferentes sequências de pulsos podem ser empregadas com o intuito de obter 

melhores resultados. Para amostras de soro ou plasma, em geral, são aplicados 

experimentos de CPMG (Carr-Purcell-Meiboom-Gill) e de difusão. Para urina, 

experimentos de espectroscopia do efeito nuclear Overhauser (NOESY) são 

suficientes, visto que os sinais do espectro de RMN desse material são constituídos 

praticamente de metabólitos de baix(GHINI et al., 2023). 

Os núcleos podem ter dois tipos de interações ou acoplamentos magnéticos: 

dipolo-dipolo e spin-spin, sendo que o segundo é conhecido como acoplamento 

escalar. A sequência de pulsos NOESY está fundamentada na teoria do efeito nuclear 

Overhauser (NOE). O NOE se baseia no acoplamento dipolo-dipolo entre dois spins: 

um spin de interesse (I), que terá sua intensidade de sinal influenciada pelo 

relaxamento de um spin perturbado (S).  

Durante o experimento, o spin S é saturado (Nα = Nβ) com um pulso longo de 

baixa frequência. O spin I, espacialmente próximo, ainda apresenta diferença de 

população (∆) entre os estados, mas quando o sistema busca reestabelecer o 

equilíbrio e igualar as populações do spin S, suas transições interferem no equilíbrio 

das populações do spin I, afetando a intensidade do sinal de forma positiva ou 

negativa (DOOST et al., 2019; KUMAR; GRACE, 2017).  

O efeito pode ser observado por meio de diagramas de energia, Figura 7. O 

equilíbrio pode ser reestabelecido por meio dois tipos de transições de energia, zero-

quanta (ZQ) ou duplo-quanta (DQ). Transições proibidas pela mecânica quântica, mas 

que podem ocorrer devido as interações spin-rede (SILVA, 2010). 
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Figura 7 – Diagrama de energia dos spins (I e S). a) Distribuição populacional na presença de B0. b) 
Populações do spin S igualadas por meio das transições proibidas.

 

Fonte: Adaptado de SILVA (2010). 

A combinação do PRESAT e NOESY, NOESY 1D PRESAT, é considerada uma 

das sequências de pulsos preferidas em estudos metabolômicos/metabonômicos, 

devido à sua alta capacidade de supressão do sinal da água (SINGH et al., 2023). As 

medições de NOE utilizam três pulsos de 90°: o primeiro alinha a magnetização dos 

spins para o plano transversal, seguido de um período de evolução t1; o segundo 

pulso alinha a magnetização na direção longitudinal. Como resultado dessa 

magnetização fora do equilíbrio, o NOE é produzido durante um período de mistura 

(Ʈmix). No terceiro pulso, a magnetização encontra-se novamente no plano transversal 

e os dados são adquiridos (t2) (KUMAR; GRACE, 2017; HUSSAIN et al., 2022). A 

Figura 8 apresenta graficamente as sequências de pulsos citadas e a CPMG, 

sequência que será abordada na próxima seção. 

 

 

 

 

 

 

 

a) 

 

b) 
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Figura 8 – Sequências de pulsos. (a) PRESAT, (b) NOESY 1D com PRESAT, e (c) CPMG com 
PRESAT. Os termos d1, d8, d20 e t2 são atraso de relaxamento, tempo de mistura, tempo de meio-spin-
eco e tempo de aquisição, respectivamente; e ϕ1, ϕ2, ϕ3, ϕ4 e ϕ5 são fases de pulsos, enquanto ϕR é a 

fase do receptor 

 

Fonte: Adaptado de SINGH e colaboradores (2023). 

1.3.3. Sequência de pulsos CPMG 

Além da quantidade de água, amostras de biofluidos, principalmente soro, 

possuem compostos de alta massa molar em sua composição, geralmente proteínas, 

que apresentam sinal alargado no espectro e podem sobrepor os sinais de metabólitos 

de interesse. Apesar das proteínas poderem ser removidas nas etapas de preparo de 

amostra, há preocupações a respeito da integridade da amostra durante o processo 

(MA et al., 2023). Como alternativa, a sequência de pulsos conhecida como filtro de 

T2 ou CPMG (Carr-Purcell-Meiboom-Gill) pode ser empregada com o objetivo de filtrar 

os compostos de alta massa molar, sem a necessidade de remoção física prévia.  

O CPMG foi baseado na técnica spin echo de HAHN (1950), publicada em seu 

artigo em 1950s, com sequência de pulsos proposta por Carr e Purcell (1954) e com 

sucessivos pulsos coerentes propostos por Meiboom e Gill (1958). O experimento 

consiste na aplicação de um pulso de 90º, levando a magnetização para o plano xy, 

seguido de uma série de pulsos de refocagem de 180º no eixo y em intervalos de 

tempo (Ʈ). 

a) 

b) 

c) 
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Figura 9 – Sequência de pulsos CPMG 

 

Fonte: SILVA (2017) 

Inicialmente, o vetor de magnetização está na direção do campo magnético 

externo, em seguida o pulso de 90° é aplicado levando a magnetização para o plano 

xy. Logo depois, a magnetização transversal e o sinal medido decaem no intervalo de 

tempo Ʈ, consequência da defasagem dos spins. A defasagem é o fenômeno onde 

vários spins apresentam frequências de Larmor diferentes da frequência base de 

Larmor (ω 0). Com o pulso de 180º aplicado em y, as componentes no plano são 

giradas, invertendo a direção dos vetores que são refocalizados no tempo Ʈ gerando 

o sinal de echo (COLNAGO; ANDRADE, 2017; JUNG; WEIGEL, 2013). 

Há duas situações nas quais os efeitos de defasagem levam ao relaxamento 

transversal e que devem ser consideradas na sequência de spin echo: quando o efeito 

de defasagem é causado apenas pelas heterogeneidades do campo magnético e 

quando é causado por flutuações adicionais do campo que variam com o tempo. 

Nesse segundo caso, as flutuações no campo ocorrem devido as interações aleatórias 

de spin-spin, resultado do movimento browniano das moléculas. Desse modo, os 

spins encontram-se ambientes e frequências diferentes antes e depois do pulso 

medido, ocasionando uma defasagem estocástica dos spins e levando ao decaimento 

irreversível da magnetização transversal e do sinal medido (JUNG; WEIGEL, 2013).  

Compostos de alta massa molar, como as proteínas, apresentam valores 

menores de T2 em comparação com moléculas de baixa massa molar e relaxam mais 

rapidamente. Portanto, é crucial que o tempo entre o pulso de 180° e o sinal de echo 

seja suficientemente longo para permitir que a magnetização transversal dos spins 

das espécies a serem filtradas decaia, mas ainda menor que o T2 das espécies de 

interesse. No presente trabalho, a sequência de pulso CPMG será aplicada após a 

supressão da água na análise de amostras de soro. 

1.3.4. Processamento dos espectros  

O processamento dos espectros de RMN é de fundamental importância antes de 

seguir para o tratamento estatístico e visa remover variações indesejadas causadas 
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pelo estado da amostra, diluição, modo de medição, entre outros fatores. As etapas 

do processamento dos espectros envolvem a correção da linha de base e da fase, 

alinhamento dos sinais, binning espectral e construção da matriz de dados. 

Desajustes de fase entre o campo RF e o receptor do sinal podem resultar em 

espectros com inversão de fase, situação na qual há uma mistura de linhas espectrais 

absortivas desejáveis e linhas dispersivas, resultando em picos que não têm forma 

simétrica e podem apresentar partes positivas e negativas (WORLEY; POWERS, 

2014). A correção da fase pode ser realizada em softwares, como o MestReNova, de 

forma manual ou automática. Variações de cunho experimental e instrumental, assim 

como distorções e/ou ruídos de baixas frequências, na linha de base, podem ser 

removidas ou minimizadas realizando a correção da linha de base. Esse ajuste pode 

ser realizado por meio de ajustes polinomiais (SUN; XIA, 2024). 

Deslocamentos espectrais são comuns em espectros de RMN, sendo o 

alinhamento dos picos fundamental para a modelagem (MISHRA et al., 2020). Esse 

alinhamento pode ser realizado de maneira simples, utilizando um sinal de referência 

de um padrão adicionado à amostra ou um sinal conhecido presente na mesma. 

Alternativamente, existem métodos mais robustos que utilizam espectros de 

referência para garantir um alinhamento preciso (SUN; XIA, 2024). O método de 

binning minimiza o efeito das variações de deslocamento espectrais entre as amostras 

e ainda reduz o número de variáveis a serem analisadas. Ele divide o espectro em 

regiões (bins) de largura uniforme, que são integradas para compor a matriz de dados 

(CHAI et al., 2023). Geralmente, a largura do bin varia entre 0,01 e 0,05 ppm 

(SAVORANI et al., 2010).  

Após as etapas de processamento dos espectros, os dados são organizados em 

uma matriz, na qual as variáveis estão nas colunas (deslocamento químico) e as 

amostras nas linhas. Nesse formato, a matriz de dados está pronta para as etapas de 

pré-processamento e pré-tratamento. 

1.4. Quimiometria 

O desenvolvimento tecnológico ao longo dos anos e a introdução de 

instrumentos de análises capazes de gerar uma grande quantidade de dados, tornou 

a extração de informações dos experimentos um desafio. A Quimiometria surgiu da 

necessidade de traduzir esses grandes conjuntos de dados, por meio de ferramentas 

matemáticas e estatísticas, em informações importantes (FERREIRA, 2015). A IUPAC 
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define Quimiometria como a aplicação da estatística para a análise de dados químicos 

(da química orgânica, analítica ou medicinal) e o planejamento de experimentos e 

simulações químicas (IUPAC, 2019). A análise de dados químicos na Quimiometria 

diz respeito à aplicação de algoritmos para o processamento de dados multivariados, 

permitindo manusear e melhorar respostas analíticas de modo que etapas de preparo 

de amostras podem ser poupadas (SAVELIEV et al., 2024). Esses algoritmos são 

formalismos matemáticos que podem extrair informações atribuídas ao conjunto de 

dados. Eles são métodos de reconhecimento de padrões, através dos quais podemos 

identificar tendências e agrupamentos, e serão empregados neste estudo. 

A estrutura de um estudo quimiométrico pode ser dividida em pré-processamento 

e pré-tratamento dos dados, redução da dimensionalidade, emprego de métodos de 

reconhecimento de padrões (análise exploratória e classificação) e a tomada de 

decisão. Os métodos de pré-tratamento visam remover variações que podem levar a 

viés dentro do conjunto de dados. Os métodos de reconhecimento de padrão podem 

ser divididos em supervisionados e não supervisionados. A principal diferença entre 

eles está no conhecimento dos outputs alvos (valores de saída, classe das amostras) 

durante o aprendizado, que é necessária na construção dos modelos supervisionados, 

mas que não é utilizada nos modelos não supervisionados (GALVAN et al., 2023).  

Os modelos não supervisionados podem ser divididos em agrupamento e 

redução de dimensão. Entre os principais métodos empregados na clusterização, 

podemos destacar o agrupamento hierárquico (HCA, do inglês, Hierarchical Clustering 

Analysis) e o K-means. Na redução de dimensão, temos como destaque a análise de 

componentes principais (PCA, do inglês, Principal Component Analysis) (CHI et al., 

2024). 

No que diz respeito aos modelos supervisionados, estes podem ser divididos em 

classificadores lineares e não lineares. Entre os principais algoritmos lineares de 

aprendizado de máquina estão a análise discriminante linear (LDA, do inglês, Linear 

Discriminant Analysis), regressão logística (LR, do inglês, Logistic Regression), a 

regressão por mínimos quadrados parciais (PLS, do inglês, Partial Least Squares), a 

análise discriminante por mínimos quadrados parciais (PLS-DA, do inglês, Partial 

Least Squares Discriminant Analysis). Entre os classificadores não lineares, temos o 

K-vizinhos mais próximos (KNN, do inglês, K-Nearest Neighbors), árvores de decisão 

(DT, do inglês, Decision Tree), floresta aleatória (RF, do inglês, Random Forest), 
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máquina de vetores de suporte (SVM, do inglês, Support Vector Machine), entre outros 

(CHI et al., 2024). 

Os algoritmos de aprendizado de máquina escolhidos em um estudo 

quimiométrico dependem das características dos dados experimentais, da 

composição da matriz de dados (número de amostras e variáveis), da demanda 

computacional exigida e do resultado que os pesquisadores visam obter. É comum 

ver trabalhos que utilizam mais de um algoritmo (HAYATI et al., 2024; OLIVEIRA et al., 

2024) para encontrar aquele que melhor se adequa e explica seus dados. O presente 

trabalho selecionou a PCA como modelo não supervisionado para a análise 

exploratória, e a LR, a LDA, o SVM e a DT como modelos de classificação a serem 

investigados. Esses algoritmos serão discutidos nas próximas seções. 

1.4.1. Pré-processamento e Pré-tratamento de Dados 

Processamentos podem ser realizados tanto nas amostras (linhas) quanto nas 

variáveis (colunas) em uma matriz de dados. O objetivo, como descrito por Ferreira 

(2015), é minimizar variações indesejadas que não foram removidas durante a 

aquisição de dados e não serão eliminadas naturalmente durante a análise, 

influenciando negativamente os resultados. Desse modo, espera-se que as 

informações de interesse possam se destacar e resultar em uma melhor modelagem. 

Vale ressaltar que os tratamentos também podem levar à perda de informações 

importantes, distorcer e comprometer os resultados (MISHRA et al., 2020). Por isso, 

deve-se dar tanta atenção quanto nas demais etapas. Esta seção será dedicada aos 

métodos de pré-processamento e pré-tratamento aplicados à matriz de dados, uma 

vez que a etapa de processamento dos espectros foi abordada anteriormente. 

A melhoria na relação sinal/ruído (S/R) é um dos resultados obtidos na etapa de 

pré-processamento, na qual métodos de suavização aplicados às amostras, como a 

média móvel ou o filtro de Savitzky-Golay, são responsáveis por tal feito (FERREIRA, 

2015). No entanto, as alterações nos dados podem ser feitas de forma distorcida ou 

eliminar variáveis importantes. Portanto, os métodos de suavização devem ser 

empregados com cuidado e descartados quando observadas perdas de informações. 

Fatores como falta de homogeneidade da amostra, diferenças na preparação e 

outras fontes de variação experimental estão atrelados a erros sistemáticos 

indesejados responsáveis por diferenças de concentração entre amostras (SUN; XIA, 

2024). A normalização surge como método aplicado para remover variação indesejada 



39 
 

de amostra para amostra, com o objetivo de torná-las comparáveis entre si. Nesse 

processo, cada uma das variáveis da amostra é dividida por um fator de normalização.  

Na normalização pelo comprimento do vetor, a norma de valor absoluto e a 

euclidiana, comumente usadas, são fatores de normalização que podem ser 

empregados. A norma de valor absoluto é obtida pela soma dos valores absolutos de 

todas as variáveis da amostra. Enquanto a norma euclidiana é dada pela raiz 

quadrada da soma do valor quadrado de todas as variáveis, e é a mais utilizada 

(FERREIRA, 2015). 

A equação 6 expressa a normalização feita em cada linha da matriz, onde ‖𝑥𝑖‖ 

pode ser de norma 1 (Eq. 7) ou norma 2 (Eq. 8): 

𝑥𝑖𝑗 =
𝑥𝑖𝑗

‖𝑥𝑖‖
 

 

‖𝑥𝑖‖ 1 = ∑|𝑥𝑖𝑗|

𝐽

𝑗=1

 

 

‖𝑥𝑖‖ 2 = √∑ 𝑥2
𝑖𝑗

𝐽

𝑗=1

 

 

Além dos problemas que podem interferir na análise de dados mencionados até 

agora, é comum haver variáveis que apresentam ordens de grandeza muito 

diferentes. A diferença entre as dimensões (escalas) dos dados em cada variável afeta 

diretamente o modelo. Dessa forma, as variáveis mais intensas sobressaem sobre as 

demais. Métodos de escalamento podem ser empregados para minimizar essas 

diferenças e tornar as variáveis comparáveis. O escalamento de variância unitária (Eq. 

9), ou auto-escalamento, é frequentemente aplicado. Trata-se de um método de 

escalamento baseado na dispersão dos dados, em que as variáveis centradas na 

média são divididas por seus respectivos desvios-padrão (Eq. 10). Como resultado, 

os dados se tornam adimensionais, não variando mais com respeito à unidade original 

dos dados (CAMPOS; REIS, 2020; FERREIRA, 2015). 

𝑥𝑖𝑗 =
𝑥𝑖𝑗 − 𝑥𝑗

𝑠𝑗
 

(6) 

(7) 

(8) 

(9) 



40 
 

𝑠𝑗 = √
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1

𝑛 − 1
 

Apesar de as etapas de pré-processamento corrigirem ruídos e possíveis erros 

aleatórios inerentes às amostras e variáveis durante o processo de aquisição dos 

dados, existe outro desafio a ser enfrentado durante a modelagem: o 

desbalanceamento entre as classes de um conjunto de dados, que pode resultar em 

um modelo enviesado, com desempenho superior para as amostras da classe 

majoritária. Aumentar a representatividade da classe minoritária pode contribuir para 

a capacidade preditiva e a robustez do modelo, sendo considerado, nesses casos, um 

tipo de pré-processamento. Assim, o uso de técnicas de reamostragem pode equilibrar 

os conjuntos de treinamento, reduzindo o viés e balanceando a influência das classes. 

Entre os algoritmos existentes para realizar a amostragem em um conjunto de 

dados, destaca-se a técnica de Sobreamostragem de Minoria Sintética (SMOTE, do 

inglês Synthetic Minority Over-sampling Technique). Em vez de simplesmente replicar 

as amostras da classe minoritária, o SMOTE gera novas amostras sintéticas a partir 

das existentes. Para isso, seleciona amostras que estão próximas umas das outras 

em um espaço de características e cria novas amostras ao longo do segmento que 

conecta pares de amostras reais. Durante o processo, o SMOTE seleciona uma 

amostra aleatória da classe minoritária, encontra seus k vizinhos mais próximos da 

mesma classe e gera uma amostra sintética em um ponto aleatório no segmento de 

reta que conecta a amostra original ao vizinho selecionado (Figura 10) (RODRIGUES; 

LUNA; PINTO, 2023). 

(10) 
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Figura 10  – Geração de amostra sintética utilizando a técnica SMOTE.

 

Fonte: MORENO-BAREA et al., 2022. 

As amostras sintéticas geradas pelo SMOTE tendem a ser menos dispersas do 

que aquelas pertencentes à distribuição original. Isso ocorre porque o processo de 

geração por interpolação linear posiciona essas amostras mais próximas do centro da 

distribuição da classe minoritária. A diferença entre as distribuições antes e depois da 

aplicação do SMOTE pode ser significativa, especialmente quando há um número 

reduzido de amostras minoritárias (ELREEDY; ATIYA, 2024). Por isso, o uso do 

SMOTE deve ser feito com cautela. 

Por fim, o conjunto de dados pode apresentar uma alta dimensão, onde, o 

número de variáveis pode exceder muito o número de amostras. Esse perfil de dados 

pode afetar significativamente a precisão e estabilidade do modelo, resultando em 

dificuldades durante a modelagem. A redução da dimensionalidade pode ser utilizada 

como alternativa para melhorar o desempenho da modelagem nesses casos, isso 

pode ser feito por meio de algoritmos de seleção de variáveis ou até mesmo utilizando 

a PCA, como já relatado na literatura (HAYATI et al., 2024). 

1.4.2. Redução da Dimensionalidade 

1.4.2.1. Técnicas de Seleção de Variáveis 

O desequilíbrio em conjuntos de dados, no que diz respeito a relação do número 

de variáveis e observações, é um dos grandes problemas enfrentados durante a 

modelagem por aprendizado de máquina. A presença de variáveis altamente 
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correlacionadas e que não apresentam relação alguma com a condição a ser 

investigada, além de formarem um espaço de alta dimensão, pode enganar o 

treinamento do algoritmo. A seleção de variáveis é uma etapa importante, e 

frequentemente empregada em aprendizado de máquina, que tem como objetivo 

principal selecionar um subconjunto de variáveis relevantes com base nos critérios de 

avaliação de suas importâncias. Como resultado, espera-se um melhor desempenho 

nos processos de aprendizado e classificação, além da redução no custo 

computacional e melhor interpretabilidade do modelo (LABORY; NJOMGUE-FOTSO; 

BOTTINI, 2024). 

Os métodos de seleção de variáveis podem ser divididos em três categorias 

principais: métodos de filtro (do inglês, filter methods), métodos de empacotamento 

(do inglês, wrapper methods) e os métodos integrados (do inglês, embedded 

methods). Os métodos de filtro avaliam o desempenho estatístico dos dados de forma 

independente do modelo de aprendizado, combinando técnicas de ranqueamento com 

critérios estatísticos e utilizando ordenações para selecionar as variáveis. Todo o 

processo de filtragem das variáveis irrelevantes ocorre antes do início do processo de 

classificação e não envolve o algoritmo de aprendizado, diferente dos métodos de 

empacotamento (JIA et al., 2022; HULJANAH et al., 2019).  

Os métodos de empacotamento avaliam subconjuntos de variáveis medindo sua 

influência sobre a exatidão do modelo durante o treinamento até encontrar as 

combinações mais adequadas, resultando em uma grande quantidade de cálculos e 

maior demanda computacional do que métodos de filtro, principalmente quando 

conjuntos de dados volumosos são utilizados (JIA et al., 2022; HULJANAH et al., 

2019). Eles podem ser divididos entre determinísticos e meta-heurísticos. As duas 

últimas classes serão empregadas neste presente trabalho por meio dos algoritmos 

SFS (do inglês, Sequential Forward Selection) e GA (do inglês, Genetic Algorithm), 

respectivamente. Apesar do gasto computacional utilizando os métodos de 

empacotamento, eles apresentam melhor desempenho do que os de filtro (JIA et al., 

2022). 

Os métodos integrados avaliam as variáveis durante cada iteração do processo 

de treinamento do modelo, extraindo gradualmente as que mais contribuem em 

determinadas iterações. Assim como nos métodos empacotas, os métodos integrados 

buscam por um subconjunto ótimo de variáveis que estão incorporadas na construção 

do classificador e que tem grande impacto na exatidão durante o treinamento. O 



43 
 

método mais utilizado é o de regularização, que penaliza as variáveis menos 

relevantes atribuindo limites aos coeficientes. Os algoritmos SFM (do inglês, Select 

From Model) e LASSO (do inglês, Least Absolute Shrinkage and Selection Operator) 

fazem parte desse tipo de métodos (ALMARWI; AL-GAPHARI, 2024; HULJANAH et 

al., 2019). 

O desempenho do algoritmo para seleção de variáveis depende da natureza dos 

dados, dos objetivos da aplicação e dos algoritmos utilizados no processo, este último, 

no caso dos métodos empacotados e integrados. No presente trabalho, três métodos 

foram avaliados, sendo eles o SFM, SFS e GA. 

O algoritmo SFM realiza a seleção de variáveis com base na importância 

atribuída a cada uma delas por um estimador. Inicialmente, define-se um valor limite 

de importância, uma fronteira entre as variáveis que serão selecionadas e as que 

serão eliminadas. Em seguida, as variáveis com importância abaixo do limite são 

eliminadas. As demais são, então, utilizadas para o treinamento de um modelo de 

aprendizado de máquina (ELDAHSHAN; ALHABSHY; MOHAMMED, 2023). Esse 

método é comumente aplicado com estimadores baseados em árvores (como 

Random Forest ou Extra Trees), utilizando a importância baseada no índice de Gini, 

mas também pode ser usado com modelos lineares (OLIVEIRA et al., 2024).  

O algoritmo SFS começa com nenhuma variável e adiciona uma a uma a cada 

iteração até que um critério ou o número desejado de características seja atendido. 

Como resultado, tem-se a solução ótima local entre as iterações ou a solução com o 

número desejado de variáveis no subconjunto. Basicamente, o algoritmo testa todas 

as variáveis uma por uma e escolhe a melhor; em seguida, combina essa variável com 

cada uma das outras, testando as combinações em pares e selecionando a melhor. O 

processo é repetido, adicionando uma nova variável à combinação anterior. Por fim, o 

resultado final é a melhor solução entre essas iterações: o conjunto de variáveis que, 

passo a passo, mais contribuiu para o desempenho do modelo (ALMAGHTHAWI; 

AHMAD; ALSAADI, 2022).  

O GA é um algoritmo de busca meta-heurística adaptativa, baseado em 

mecanismos da evolução natural, usa operações genéticas até atingir uma solução 

ótima. Ele avalia um conjunto de soluções candidatas, chamadas cromossomos, e 

simula o princípio da sobrevivência do mais apto, conforme a teoria de Darwin. Os 

cromossomos são definidos como uma sequência de conjunto de variáveis. (HABIB; 

VICENTE-PALACIOS; GARCÍA-SÁNCHEZ, 2025). 
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Segundo Chiesa et al. (2020), o Algoritmo Genético é composto por cinco etapas 

principais: inicia-se com a criação de uma população de soluções aleatórias, seguida 

pela avaliação de cada uma com base em uma função de aptidão. Em seguida, são 

selecionadas as melhores soluções, que passam por cruzamentos e mutações 

aleatórias com baixa probabilidade. Essas três últimas fases compõem o processo 

evolutivo, por meio do qual se obtém uma nova geração de soluções mais aptas. 

1.4.2.2. Análise de Componentes Principais 

A análise de componentes principais (PCA) é uma técnica de análise estatística 

multivariada amplamente utilizada para análise exploratória de dados, detecção de 

amostras anômalas (outliers), redução de dimensionalidade, entre outras aplicações. 

Classificada como um algoritmo de transformação linear não supervisionado, a PCA 

projeta os dados de alta dimensionalidade em um novo sistema de coordenadas, onde 

as novas variáveis, denominadas componentes principais (PCs), são combinações 

lineares das variáveis originais (ANOWAR et al., 2021). Considere uma matriz 𝑋 de 

dimensão 𝑚 × 𝑛, onde as linhas representam amostras ou objetos e as colunas 

representam variáveis ou características. A PCA decompõe essa matriz por meio da 

combinação linear dessas variáveis, reduzindo a dimensionalidade dos dados e 

explicando a variação presente. 

As componentes principais (PCs) têm como objetivo explicar a máxima variância 

dos dados. A primeira componente principal (PC1) explica a maior parte da variação 

dos dados. A segunda componente principal (PC2) é ortogonal à PC1 e captura a 

variância que a primeira não explicou. O mesmo ocorre com a terceira componente 

principal (PC3) em relação à PC2, e assim por diante, até que toda a variação nos 

dados seja explicada (LEE; JEMAIN, 2021). A Figura 11 traz uma representação 

gráfica da projeção das amostras (ou objetos) por PC1 e PC2. 
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Figura 11 – Projeção dos objetos no plano formado pelas duas primeiras PCs.

 
Fonte: ESBENSEN; GELADI, 2009. 

A decomposição de uma matriz X utilizando combinação linear, geralmente 

centrada na média ou autoescalada, com variância máxima pode ser expressa pela 

Eq. (11): 

X = TPT + E     (11) 

Na qual, T é a matriz de escores, P é a matriz ortonormal de pesos e E é a matriz 

residual (LEE; JEMAIN, 2021). Os escores carregam informações sobre as amostras, 

enquanto os pesos (ou loadings) representam as contribuições das variáveis para 

cada componente principal (FERREIRA, 2015). A matriz residual pode ser definida 

como as diferenças entre as variáveis originais e as reconstruídas (GARCIA-ALVAREZ 

et al., 2023). 

A decomposição em valores singulares (SVD, do inglês, Singular Value 

Decomposition) e o NIPALS (do inglês, Nonlinear Iterative Partial Least Squares) são 

os algoritmos mais utilizados na PCA. Ambos buscam autovetores e autovalores da 

matriz de covariância de X ou da matriz de correlação, se a matriz tiver sido 

autoescalada (LEE; JEMAIN, 2021). 

O cálculo das matrizes T e P utilizando o SVD pode ser descrito pela Eq. 12: 

X=USVT + E     (12) 

Onde, X e E são os mesmos da Eq. (11). O produto US representa a matriz de 

escores T, onde U é a matriz ortonormal dos escores e S é a matriz diagonal com os 

valores singulares. A matriz V é a matriz ortonormal de pesos P. A matriz SST é uma 
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matriz diagonal que contém os valores singulares ao quadrado, que são equivalentes 

à matriz diagonal de autovalores 𝚲. Os autovalores (𝜆) estão ordenados em ordem 

decrescente e correspondem à variância explicada (ESBENSEN; GELADI, 2009; 

GARCIA-ALVAREZ et al., 2023).  

A PCA permite a visualização e interpretação dos dados de maneira mais 

aprofundada do que quando analisadas apenas variáveis individuais. Portanto, é 

quase sempre a primeira análise realizada na análise estatística multivariada 

(ESBENSEN; GELADI, 2009). Em aprendizado de máquina, é frequentemente 

utilizada como um passo de pré-processamento (HAYATI et al., 2024). 

1.4.3. Modelos de Classificação 

Os modelos de classificação são compostos por algoritmos de aprendizado 

supervisionado. O objetivo é treinar os modelos com base nos valores de saída para 

guiar o processo de aprendizado. Como resultado, o modelo treinado é capaz de 

prever dados novos e não vistos. Os algoritmos de aprendizado de máquina 

supervisionados são amplamente utilizados em estudos metabolômicos e 

metabonômicos (YANG et al., 2017; CHI et al., 2021; SUN et al., 2024). Durante o 

estudo, uma série de modelos pode ser testada, desde os mais simples até os mais 

complexos, e a escolha dependerá do seu desempenho. 

O presente estudo investigou algoritmos de aprendizado paramétricos e não 

paramétricos. Modelos paramétricos assumem que os dados seguem uma 

distribuição de probabilidade específica e que a função que os descreve possui um 

número fixo de parâmetros, o que proporciona uma interpretação mais direta dos 

resultados. Por outro lado, modelos não paramétricos não fazem essas suposições, e 

o número de parâmetros não é fixo, podendo aumentar conforme o volume de dados 

cresce, tornando o modelo mais flexível para representar dados complexos. Contudo, 

esses modelos tendem a ser mais difíceis de interpretar e apresentam maior custo 

computacional e tendem a sobreajustes com maior frequência (IMAM, MUSILEK, 

REFORMAT, 2024) 

1.4.3.1. Regressão Logística 

A regressão logística (LR) é uma forma de regressão generalizada que permite 

modelar a probabilidade de um resultado binário. Ela usa a função logística (ou 

sigmoide) para transformar a combinação linear das variáveis independentes em uma 
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probabilidade que varia entre 0 e 1, adequada para dados binários. A LR pode analisar 

tanto problemas de regressão como de classificação (ZHENG et al., 2024). O modelo 

padrão de regressão logística, é descrito pela equação 13: 

log(𝑜𝑑𝑑𝑠) = 𝑙𝑛 ⌈
𝑃(𝑌)

1 − 𝑃(𝑌)
⌉ = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 

𝑃(𝑌)

1 − 𝑃(𝑌)
= 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑘𝑥𝑘 

 

𝑃(𝑌) = 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑘𝑥𝑘 − 𝑃(𝑌)𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑘𝑥𝑘 

 

𝑃(𝑌) =
𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑘𝑥𝑘

1 −  𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑘𝑥𝑘
 

Os termos x1,i, x2,i ... xp,i são as variáveis preditoras. Yi é uma variável aleatória 

de Bernoulli que representa o resultado para o indivíduo i. O resultado é geralmente 

codificado numericamente como 1 (caso) ou 0 (controle). Portanto, P(Yi = 1) é a 

probabilidade de o fenótipo ser igual a um caso (DUMANCAS et al., 2015). Assim, a 

regressão logística relaciona a probabilidade Y às variáveis preditoras (Eq. 14). 

Os coeficientes de regressão refletem o efeito de cada variável independente na 

capacidade preditiva do modelo. O objetivo é estimar os parâmetros β desconhecidos 

responsáveis por um hiperplano que possa separar e classificar claramente todas as 

amostras (PAN et al., 2024). A estimativa de máxima verossimilhança é então utilizada 

para encontrar o conjunto de parâmetros para os quais a probabilidade dos dados 

observados é maior (BOATENG; ABAYE, 2019). 

A LR é considerada uma técnica estatística mais flexível do que outras, porém 

apresenta problemas quando as variáveis estão altamente correlacionadas, ou seja, 

quando carregam a mesma informação, resultando em problemas de 

multicolinearidade (FERNANDES et al., 2019). Para lidar com esse problema comum 

em conjuntos de dados, pode-se fazer uso de ferramentas para reduzir a 

dimensionalidade dos dados, por exemplo. 

Estudos metabonômicos ou metabolômicos são comumente encontrados na 

literatura empregando a Regressão Logística (LR) como modelo de diagnóstico. Foi o 

caso de Yang e colaboradores (2017), que, utilizando alguns algoritmos de 

aprendizado de máquina, chegaram a um modelo de diagnóstico com a LR baseada 

em três metabólitos, com precisão de 94,64%. Já no trabalho de Sun e colaboradores 

(14) 
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(2024), mesmo selecionando 12 metabólitos para a LR e obtendo uma excelente 

capacidade preditiva com a validação do conjunto de treinamento, os resultados foram 

insatisfatórios no conjunto de validação, apresentando uma baixa capacidade 

preditiva. 

Considerando a quantidade de algoritmos de aprendizado de máquina 

supervisionados que podem ser empregados e as características particulares de cada 

conjunto de dados, um único estudo pode empregar vários algoritmos. 

1.4.3.2. Máquina de Vetores de Suporte 

A máquina de vetores de suporte (SVM) é um algoritmo que busca encontrar um 

hiperplano em um espaço n-dimensional, onde n é o número de covariáveis que 

separa as amostras em suas classes. Por exemplo, dados constituídos de respostas 

binárias (y = {-1,1}) linearmente separáveis podem ser separados por um vetor de 

peso (w) encontrado pelo SVM (DEBIK et al., 2021). Nesse caso, o hiperplano que 

separa as classes é descrito pela equação 15: 

wTx +b = 0     (15) 

Sendo que b é um termo escalar que ajusta a posição do hiperplano, sem alterar 

sua orientação, para que a margem seja maximizada (DEBIK et al., 2021). Essa 

margem se refere à distância das amostras de um grupo mais próximas das amostras 

do outro grupo. As amostras que melhor definem a margem são os vetores de suporte. 
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Figura 12 – Exemplo de um problema de classificação binária com dados lineares separáveis usando 
SVM. 

 

Fonte: Adaptado de THARWAT (2019). 

O espaço divido pelo hiperplano resulta em dois meios espaços: um positivo, 

onde as amostras da classe positiva se encontram, e um negativo, onde as amostras 

da classe negativa estão. Dois planos são construídos para cada classe e podem ser 

definidos por:  

wTx + b ≥ 1, para a classe positiva; 

wTx + b ≤ 1, para a classe negativa. 

A margem pode ser descrita pela distância desses planos até o hiperplano e 

calculada como 
2

‖𝑤‖
 (THARWAT, 2019). 

A maximização da margem permite classificar corretamente novos dados que 

estejam dentro dessa margem, de cada lado do hiperplano de classificação, uma 

característica única do SVM.  

A classificação do SVM pode ser linear ou não linear. Nos casos em que os dados 

não são separáveis linearmente, as funções de kernel ou truques de kernel podem ser 

usadas para transformar os dados em espaços de recursos de dimensão maior. O 

primeiro passo é definir a função de kernel adequada (ROY; CHAKRABORTY, 2023). 

No caso do SVM com kernel linear, o parâmetro de regularização, denominado C, é 

um hiperparâmetro de ajuste que permite flexibilizar as classificações erradas feitas 
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pela margem. Com grandes valores de C, o modelo tenta classificar todos os pontos 

de treinamento corretamente, mesmo que uma margem pequena seja escolhida para 

o hiperplano. Já com pequenos valores de C, o modelo será otimizado para uma 

margem maior separando o hiperplano, mesmo que haja mais classificações 

incorretas. (MENDEZ; REINKE; BROADHURST, 2019).  

Estudos metabolômicos e metabonômicos descritos na literatura vêm, ao longo 

dos anos, investigando o potencial do SVM no diagnóstico de doenças, empregando 

diferentes kernels e obtendo resultados satisfatórios, com modelos de boa capacidade 

preditiva (ZHENG et al., 2017; WANG et al., 2023). Uma das principais vantagens do 

SVM como algoritmo de aprendizado de máquina supervisionado na estratégia 

metabonômica é sua capacidade de lidar de forma robusta com a multicolinearidade 

entre as variáveis preditoras. 

1.4.3.3. Árvore de Decisão  

Algoritmos baseados em árvores fazem parte do conjunto de métodos 

supervisionados, os quais dividem o espaço das variáveis em um conjunto de regras 

de decisão hierárquicas. Esses modelos podem ser empregados tanto em tarefas de 

classificação quanto de regressão, sendo mais comuns na resolução de problemas 

de classificação (LIU; XUAN; XIAO, 2025). 

Entre esses algoritmos, destaca-se a Árvore de Decisão (DT, do inglês Decision 

Tree), que recebe esse nome devido à sua estrutura ramificada, semelhante a uma 

árvore invertida. Essa estrutura é composta por um nó raiz (ponto inicial), nós de 

decisão (pontos onde são avaliadas variáveis preditoras), galhos (regras ou condições 

de decisão) e nós folha (resultados ou classes finais). A DT realiza sucessivas divisões 

com base nas variáveis, a partir do nó raiz, que corresponde à variável mais 

discriminativa, até que cada caminho leve a um nó folha, onde a classificação é 

definida com base nas categorias do problema (BANSAL; GOYAL; CHOUDHARY, 

2022). A Figura 13 apresenta um modelo de DT binária. O processo inicia no nó raiz, 

onde a variável X1 é avaliada e segue a condição X1 ≥ 0.5. 
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Figura 13 - Modelo genérico de uma DT.

 

Fonte: A autora (2025). 

A divisão dos nós e a construção da árvore são realizadas com base no ganho 

de informação, que mede a quantidade de informação que uma variável fornece sobre 

a classe. O algoritmo DT escolhe para dividir o nó inicial a variável que maximiza esse 

ganho (BANSAL; GOYAL; CHOUDHARY, 2022). 

O ganho de informação (GI) é baseado na entropia, ou melhor, mede a redução 

esperada dessa medida, a qual expressa a impureza dos dados. Assim, o GI é definido 

como a diferença entre a entropia do conjunto original e a entropia condicional após a 

divisão com base na característica selecionada (TANGIRALA, 2020). A entropia é 

calculada como a soma, para cada classe, da probabilidade da classe multiplicada 

pelo seu logaritmo em base 2, com sinal negativo. Considerando um conjunto de 

dados L e uma variável x com V valores distintos, seja |Lv| o subconjunto de L em que 

x=v. A entropia de L e o ganho de informação de x são dados por: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑖𝑎 (𝐿) =  − ∑ 𝑝𝑖 log
2

( 𝑝𝑖)
𝑗
𝑖=1     (16) 
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𝐺𝐼(𝐿, 𝑥) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑖𝑎 (𝐿)  − ∑
|𝐿𝑉|

|𝐿|
𝐸𝑛𝑡𝑟𝑜𝑝𝑖𝑎 (𝐿𝑉)𝑉

𝑣=1      (17) 

O critério de impureza de Gini e a profundidade máxima costumam ser usados 

para evitar sobreajustes (HAQUE; ISLAM; ERFAN, 2025). O índice de Gini determina 

a impureza ou pureza de uma classe durante a criação da DT, após a divisão ao longo 

de uma variável específica (TANGIRALA, 2020). O cálculo do índice de Gini pode ser 

realizado usando a expressão: 

𝐺𝐼𝑁𝐼(𝐿) = 1 − ∑ p𝑖
2𝑗

𝑖=1      (18) 

Onde, j é o número total de classes, pi é a proporção de observações no nó que 

pertencem a classe i.  

As DT são amplamente utilizadas em tarefas de aprendizado de máquina, isso 

se deve ao fato de serem intuitivas e interpretáveis (HAQUE; ISLAM; ERFAN, 2025). 

Por serem algoritmos não paramétricos, funciona bem com dados não linearmente 

separáveis. 

Além disso, há métodos baseados em DT, como a Floresta Aleatória (RF, do 

inglês Random Forest). O algoritmo RF constrói diversas árvores de decisão a partir 

de diferentes subconjuntos do conjunto de dados e combina seus resultados para 

melhorar a precisão das previsões. Em problemas de classificação, o resultado final é 

determinado pela maioria dos votos das árvores, enquanto, em regressão, utiliza-se a 

média das previsões (AHMAD et al., 2022). 

1.4.3.4. Análise Discriminante Linear 

A análise discriminante linear (LDA) é um algoritmo de aprendizado de máquina 

que tem como objetivo encontrar uma combinação linear de variáveis independentes 

que maximize a separação entre diferentes classes e minimize a variabilidade dentro 

das classes (QU; PEI, 2024). 
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Figura 14 – Exemplo da distribuição de um conjunto de dados composto por duas classes. a) Antes 
da LDA e b) Depois da LDA. 

 

Fonte: (QU; PEI, 2024) 

A LDA é baseada no teorema de Bayes, que calcula a probabilidade posterior de 

uma amostra pertencer a uma determinada classe. Ela foi desenvolvida para variáveis 

independentes com distribuição normal e parte do pressuposto de que as classes 

possuem matrizes de covariância comuns, facilitando o cálculo das probabilidades a 

posteriori e permitindo a implementação do algoritmo de forma eficiente (BOEDEKER; 

KEARNS, 2019; GRAF; ZELDOVICH; FRIEDRICH, 2024). 

A função discriminante linear (Eq. 19) pode ser expressa como: 

𝑦(𝒙) = 𝒘𝑇𝒙 + 𝑤0 

onde 𝑥 é o vetor de entrada das variáveis, 𝑤 é o vetor dos coeficientes lineares e 𝑤0 

é um termo de enviesamento (intercepto da função). Esses dois últimos termos são 

calculados com base na média e na matriz de covariância de cada classe nos dados 

de treinamento. Embora LDA e Regressão Logística (LR) se assemelhem ao 

trabalharem com funções de probabilidade, a principal diferença está na estimativa 

dos coeficientes (GRAF; ZELDOVICH; FRIEDRICH, 2024). 

A LDA possui algumas desvantagens, entre elas, a falta de robustez frente a 

ruídos e outliers, e a singularidade da matriz de dispersão dentro da classe, está última 

pode ser causada por um número insuficiente de amostras e variáveis altamente 

correlacionadas (QU; PEI, 2024). Apesar dessas limitações, trabalhos como o de 

Hayati e colaboradores (2024) mostram que, mesmo em dados de alta 

dimensionalidade, utilizando técnicas de pré-processamento, é possível obter 

(19) 

a) b) 



54 
 

modelos LDA com até 87% de precisão. Com a aplicação de técnicas para reduzir a 

dimensionalidade dos dados, como a PCA, o modelo alcançou uma precisão de 100%. 

1.5. Validação e figuras de mérito 

A etapa de validação é essencial para garantir a robustez e a confiabilidade do 

modelo, especialmente se a intenção for introduzir essa abordagem na rotina clínica. 

Neste estudo, abordaremos seis métricas, ou figuras de mérito, que fornecem uma 

visão geral do desempenho do modelo: AUROC, sensibilidade, especificidade, 

precisão, exatidão e F1-Score. 

A curva ROC (do inglês, Receiver Operating Characteristic) resume a 

capacidade do modelo em classificar corretamente as amostras às suas classes. A 

curva é plotada em função da taxa de verdadeiros positivos (TPR, do inglês, True 

Positive Rate) e da taxa de falsos positivos (FPR, do inglês, False Positive Rate). A 

área sob a curva (AUROC, do inglês, Area Under Receiver Operating Characteristic) 

pode ser vista como a probabilidade de um paciente selecionado aleatoriamente seja 

classificado realmente como um paciente do que como um controle (STOJANOV et 

al., 2023). A TPR do modelo é a sua sensibilidade e a FPR é numericamente igual a 

1 – especificidade, no qual a especificidade é a taxa de verdadeiros negativos (POLO; 

MIOT, 2020). 

Todas essas figuras de méritos são calculadas com base na matriz de 

contingência, utilizando os valores de VP, FN, FP e VN (KAWAMURA, 2002). Um 

exemplo desse tipo de matriz é apresentado na Tabela 1. 

Tabela 1 – Matriz de contingência genérica. 

  Diagnóstico Padrão 

Teste 

 Positivo Negativo 

Positivo VP FP 

Negativo FN VN 
Fonte: Adaptado de KAWAMURA (2002). 

Onde, 

Verdadeiros positivos (VP) – número de pacientes previstos corretamente como 

positivo. 

Falsos negativos (FN) – número de pacientes previstos erroneamente como 

controle. 
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Falsos positivos (FP) – número de controle previstos erroneamente como 

pacientes. 

Verdadeiros negativos (VN) – número de controle previstos corretamente como 

controle. 

A sensibilidade e a especificidade são calculadas com base as equações 20 e 

21: 

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒 =  
𝑉𝑃

𝑉𝑃 + 𝐹𝑁
 

𝐸𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑑𝑎𝑑𝑒 =  
𝑉𝑁

𝑉𝑁 + 𝐹𝑃
 

O Valor Preditivo Positivo (VPP) é a figura de mérito que fornece uma estimativa 

da capacidade preditiva do modelo voltada para a classe positiva, ou seja, a 

probabilidade de classificar um indivíduo doente como positivo (STOJANOV et al., 

2023). Desse modo, pode ser calculada da seguinte maneira (Eq. 22): 

𝑉𝑃𝑃 =  
𝑉𝑃

𝑉𝑃 + 𝐹𝑃
 

O Valor Preditivo Negativo (VPN) é a probabilidade de classificar um indivíduo 

do grupo controle como negativo, e pode ser calculado pela Eq. (23). 

𝑉𝑃𝑁 =  
𝑉𝑁

𝑉𝑁 + 𝐹𝑁
 

A exatidão fornece uma avaliação mais ampla do modelo, estimando o número 

de previsões corretas, tanto positivas quanto negativas. Sua fórmula (Eq. 24) é 

definida como: 

𝐸𝑥𝑎𝑡𝑖𝑑ã𝑜 =  
𝑉𝑃 + 𝑉𝑁

𝑉𝑃 + 𝐹𝑃 + 𝑉𝑁 + 𝐹𝑁
 

O F1-Score é uma figura de mérito que equilibra precisão e sensibilidade (Eq. 

25). Isso é importante porque uma alta precisão pode mascarar um desempenho ruim 

na identificação de casos positivos, que reflete em uma baixa sensibilidade (LABORY; 

NJOMGUE-FOTSO; BOTTINI, 2024). Portanto, quanto mais próximo de 1 for o valor 

do F1-Score, mais robusto é o modelo. 

(20) 

(21) 

(22) 

(24) 

(25) 

(23) 
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𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑉𝑃𝑃 × 𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒

𝑉𝑃𝑃 + 𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒
 

Com a disponibilidade dos dados de predição e dos rótulos verdadeiros, as 

figuras de mérito são calculadas com base nessas predições, fornecendo uma 

avaliação do desempenho dos modelos nos dados fornecidos. 

O coeficiente Kappa de Cohen (1960) é utilizado para avaliar a concordância 

entre dois diferentes métodos classificadores. O coeficiente é calculado relacionando 

a proporção de concordância entre os classificadores (𝑝𝑜 ) com a proporção de 

concordância ao acaso entre os classificadores (𝑝𝑒) (VACH; GERKE, 2023): 

𝜅 =  
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
      (26) 

Onde, 

𝑝𝑂 =
𝑉𝑃 + 𝑉𝑁

𝑁
 

𝑝𝑒 =  [(
𝑉𝑃+𝐹𝑃

𝑁
) × (

𝑉𝑃+𝐹𝑁

𝑁
)] + [(

𝑉𝑁+𝐹𝑁

𝑁
) × (

𝑉𝑁+𝐹𝑃

𝑁
)], e N representa o número de 

observações. 
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2. Ensaios Metabonômicos para o Monitoramento de Doenças Renais 

Doenças renais afetam o desempenho e a capacidade do rim de filtrar o excesso 

de água e resíduos do sangue, resultando em consequências sistêmicas que tornam 

diagnósticos e tratamentos difíceis e custosos. Entre algumas condições comuns 

estão a nefropatia diabética, lesão renal aguda e doenças renais policísticas, que 

podem progredir para a doença renal crônica (ABBISS; MAKER; TRENGOVE, 2019). 

Diabetes e hipertensão são as principais causas da doença renal crônica, que afeta 

cerca de 850 milhões de pessoas em todo o mundo (ISN, 2023). Essas condições 

estão associadas à maioria dos diagnósticos de insuficiência renal, uma condição em 

que a TFG é menor que 60 ml/min/1,73m² ou inferior a 15% do normal por 3 meses 

ou mais (AGUIAR et al., 2020). Outras condições, como lúpus e outras doenças 

imunológicas, cálculos renais, próstata aumentada e infecções repetidas do trato 

urinário, também podem causar danos aos rins a longo prazo, levando à insuficiência 

renal e, em estágios mais avançados, à doença renal terminal (ERNSTMEYER; 

CHRISTMAN, 2024). 

Os tratamentos substitutivos, nos casos de doença renal terminal, compreendem 

diálise ou transplante. Apesar do transplante apresentar melhores resultados, os 

pacientes ainda possuem expectativa de vida reduzida em comparação com a 

população em geral, além de complicações relacionadas à infecção, rejeição e 

malignidade (TESFAYE et al., 2024). A doença renal crônica em estágio avançado 

pode levar à insuficiência renal e, consequentemente, à doença renal terminal. Trata-

se de um problema de saúde pública que impõe um grande fardo aos pacientes, aos 

sistemas de saúde e à sociedade como um todo. 

O desenvolvimento de pesquisas voltadas para diagnóstico precoce, 

tratamentos, mecanismos envolvendo a doença, entre outras investigações, fazem 

parte de um conjunto de medidas que podem ser adotadas para contribuir com 

profissionais de saúde no enfretamento do problema e tratamento. A abordagem 

metabonômica tem se destacado como uma alternativa promissora no estudo e 

diagnóstico de diversas doenças, incluindo as renais (WANG et al., 2021). Esta 

abordagem visa investigar metabólitos e mecanismos bioquímicos associados às 

alterações nos perfis metabólicos devido à presença da Lesão Renal Aguda e Nefrite 

Lúpica, podendo assim auxiliar no diagnóstico precoce, estadiamento e prognóstico 

dessas doenças (SILVA et al., 2018; XU et al., 2023; FONSECA et al., 2023). Estudos 
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metabonômicos utilizam a análise de biofluidos (sangue, urina, fezes, entre outros) e 

apresentam a forma de amostragem minimamente invasiva como grande vantagem. 

Como discutido no Capítulo 1, a espectroscopia de ressonância magnética 

nuclear (RMN) está entre as principais técnicas analíticas empregadas em estudos 

metabonômicos. Sendo assim, considerando as vantagens do uso da espectroscopia 

de RMN, a estratégia metabonômica e o rápido avanço tecnológico que tende cada 

vez mais ao uso de técnicas de aprendizado de máquina, o presente capítulo busca 

demonstrar que o emprego de algoritmos de aprendizado de máquina pode 

efetivamente extrair e utilizar informações dos espectros de RMN de ¹H para classificar 

com precisão pacientes com doenças renais. Aqui, foram desenvolvidos modelos 

metabonômicos, em dois estudos: (1) diagnostico de Lesão Renal Aguda em recém-

nascidos; e (2) estadiamento de Nefrite Lúpica, proliferativa com e sem lesão 

membranosa, em adultos. 

2.1. Lesão Renal Aguda (LRA) 

Classificada como uma síndrome, a Lesão Renal Aguda (LRA) é a perda aguda 

da função renal que pode apresentar formas leves até as mais graves, como perda 

completa da função renal, necessitando de TRS. Atrelados a LRA estão o aumento da 

morbidade, a mortalidade de curto e longo prazo e altos custos com tratamentos 

(STRAUSS et al., 2024). 

No que diz respeito aos fatores de riscos associados ao desenvolvimento da 

LRA, a DRC é um deles, no qual, adultos com uma Taxa de Filtração Glomerular 

estimada (TFGe) menor que 60 ml/min/1,73m² estão particularmente em risco. Além 

disso, a DRC também é reconhecida como sequela da LRA. Outras condições como 

doença cardíaca, hipertensão, diabetes, idade igual ou superior a 65 anos, 

malignidade, sepse e pacientes cirúrgicos estão entre os principais fatores de risco 

(MOHAMED; MARTIN, 2024). 

Trata-se de uma síndrome complexa que ocorre em diversos aspectos e 

manifestações clínicas, na qual, a Kidney Disease: Improving Global Outcomes 

(KDIGO) orienta que profissionais de saúde usem a definição de LRA da AKI Network 

(MEHTA et al., 2007) como estratégia de diagnóstico (KHWAJA, 2012). Os critérios 

adotados pela AKI são: 
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• Redução abrupta na função renal, atualmente definida como um aumento 

maior ou igual a 0,3 mg/dl (≥ 26,5 mol/l) da creatinina sérica, em 48 horas. 

• Aumento da creatinina sérica para valores maiores ou iguais a 1,5 vezes o 

valor de referência, nos últimos sete dias. 

• Redução na produção de urina (volume ≤ 0,5 ml/kg/h durante 6 h). 

A KDIGO ainda sugere que o estadiamento da doença seja realizado de acordo 

com a gravidade, considerando três estágios. A Tabela 2 traz a definição da LRA em 

pacientes pediátricos. É importante destacar a necessidade de estadiamento visto que 

o risco de morte aumenta a cada estágio.  

Tabela 2 - Estadiamento de LRA em pediátricos proposto pela KDIGO. 

Estágio Creatinina sérica (CrS) Produção de urina 

1 
≥0,3 mg/dL em 48 horas ou aumento de 

≥50% em 7 dias 
>0,5 e ≤ 1 mL/kg/h 

2 Aumento da creatinina ≥100% >0,3 e ≤ 0,5 mL/kg/h 

3 

Aumento da creatinina ≥200% ou CrS ≥4 

mg/dL ou recebimento de diálise ou 

eGFR≤35 mL/min/1,73 m² 

(neonatal cut-off: CrS > 2.5 mg/dL) 

≤ 0,3 mL/kg/h 

Fonte: (KHWAJA, 2012) 

O diagnóstico de LRA, pelos critérios KDIGO, deve ser interpretado em conjunto 

com a condição clínica do paciente, uma vez que a creatinina sérica e a produção de 

urina também podem ser afetadas por fatores não renais. A possibilidade de os 

sintomas da disfunção renal começarem antes mesmo do indivíduo buscar ajuda 

médica, aliada ao tempo necessário para definir com precisão a presença da 

síndrome, pode resultar no diagnóstico tardio (PICKERS et al., 2021). Levando em 

consideração os fatores citados acima e a alta taxa de LRA em pacientes em unidades 

de terapia intensiva, a busca por métodos de diagnóstico precoce e os mecanismos 

associados ao tratamento da LRA são desafios atuais (XU et al., 2023). 

A metabonômica surge como uma alternativa a ser utilizada na investigação de 

diversas doenças, incluindo a LRA, seja voltada para o diagnóstico, estadiamento ou 

prognóstico. Apesar da maior incidência de estudos metabonômicos abordando a 

DRC, a LRA também vem sendo investigada. São encontrados trabalhos envolvendo 
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diferentes faixa-etárias, desde adultos (XU et al., 2023), crianças (FRANIEK et al., 

2022) e até neonatais prematuros (MERCIER et al., 2017).  

Assim como nos estudos encontrados na literatura, o presente trabalho buscou 

desenvolver uma abordagem que possa auxiliar no diagnóstico e estadiamento 

voltado para doenças renais utilizando técnicas de aprendizado de máquina. A 

tecnologia ômica foi empregada à análise global de metabólitos urinários e séricos 

com o intuito de encontrar ferramentas que possam discriminar pacientes acometidos 

pela Lesão Renal Aguda e Nefrite Lúpica, e os principais metabólitos responsáveis 

capazes de auxiliar na tomada de decisão. 

2.2. Nefrite Lúpica 

O Lúpus Eritematoso Sistêmico (LES) é uma doença autoimune crônica, 

complexa, que provoca lesão inflamatória e de origem imunológica em diversos 

sistemas, entre eles o musculoesquelético, nervoso e renal (KHAROUF et al., 2025). 

Essa condição é caracterizada pela ação de anticorpos autorreativos contra antígenos 

nucleares, formando complexos imunes que se depositam em diferentes órgãos, 

desencadeando processos inflamatórios locais (SIMON et al., 2025). Quando a 

deposição desses complexos ocorre nos glomérulos dos rins, resulta na Nefrite Lúpica 

(NL), que provoca lesões de diferentes categorias histológicas (IKEUCHI et al., 2025). 

A NL afeta de 30% a 50% dos pacientes com LES, constitui uma de suas 

manifestações mais graves, e até 20% dos pacientes com NL podem chegar a 

desenvolver uma doença renal terminal (DRT) em 10 anos de diagnóstico de LES 

(SIMON et al., 2025; ANDERS et al., 2020). 

A NL é uma forma de glomerulonefrite e suas categorias histológicas são 

divididas em seis classes distintas, que estão relacionadas ao grau de envolvimento 

renal, sendo a biópsia seu padrão ouro de diagnóstico (SAMY et al., 2025). A 

classificação foi atualizada pela Sociedade Internacional de Nefrologia/Sociedade de 

Patologia Renal (ISN/RPS) (BAJEMA et al., 2018). 

Na classe I, a NL apresenta gromérulos normais na microscopia ótica, mas a 

imunoflorescência mostra pequenos depósitos imunocomplexos no interior dos 

glomérulos, que são unidades funcionais dos rins. Na classe II, esses depósitos 

causam aumento do número de células mesangiais (hiperplasia mesangial) e matriz 

mesangial. Nas classes III e IV, chamadas de NL proliferativa focal e difusa, 

respectivamente, esses depósitos aparecem em várias regiões do glomérulo, e a 
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diferença entre elas está na quantidade de glomérulos afetados: menos de 50% na 

classe III e 50% ou mais na classe IV. Na classe V, os depósitos aparecem no 

espessamento difuso da membrana basal glomerular, levando a um tipo de lesão 

chamada membranosa (MUSA; ROUT; QURIE, 2025).  

Entre as principais características associadas às classes, as III e IV apresentam 

as maiores probabilidades de ter lesões ativas e o maior risco de progressão para a 

DRC. Juntamente com a classe VI, que representa a fase crônica terminal da doença, 

são consideradas as formas mais graves da NL (MUSA; ROUT; QURIE, 2025). No que 

diz respeito aos parâmetros clínicos, as classes III e IV, em geral, apresentam 

proteinúria acima de 500 mg/24 h e, em casos graves, perda da função renal. Além 

disso, existe a combinação de alterações proliferativas e membranosas, as classes III 

e IV podem estar associadas à classe V, também chamadas de formas mistas 

(III/IV+V) (REIS-NETO et al., 2024). 

A NL mista possui parâmetros clínicos e histológicos mais graves do que a NL 

de classe V, como observado no trabalho de Samy e colaboradores (2025), isso 

porque a classe mista conta com as classes graves da doença (III e IV). Entretanto, 

quando comparada a NL mista com a NL proliferativa pura (III e IV), achados na 

literatura sugerem que a NL mista tem um prognóstico pior do que a LN proliferativa 

pura, podendo resultar em desfechos renais desfavoráveis (IKEUCHI et al., 2016). 

Ainda, a classe histopatológica pode mudar durante o tratamento da NL, sendo 

clinicamente difícil de classificar a NL proliferativa da LN membranosa ou da classe 

mista, por estarem envolvidas com proteinúria grave e diminuição da função renal 

(ANEKTHANAKUL et al., 2021). 

Na literatura, a maioria dos trabalhos utilizam parâmetros clínicos para propor 

alternativas pouco invasivas na classificação histopatológica da NL (ARAÚJO JÚNIOR 

et al., 2023; WANG et al., 2025). Em relação à metabonômica ou metabolômica, um 

dos poucos achados é o estudo de Anekthanakul e colaboradores (2021), que utilizou 

análise direcionada para encontrar metabólitos capazes de distinguir indivíduos 

saudáveis de pacientes com NL, bem como a classe III/IV da classe V pura. Unindo a 

razão entre dois metabólitos com a TFGe e a UPCR, os autores chegaram em 

resultados promissores. 

Dado que a biópsia renal é um procedimento invasivo, que o prognóstico da NL 

mista ainda ser incerto e que seu desfecho clínico pode diferir da NL proliferativa pura, 

faz-se necessário a continuidade na busca por alternativas não invasivas que possam, 



63 
 

não só discriminar essas classes e auxiliar na tomada de decisão, como também 

fornecer informações a respeito da diferença entre elas a nível metabólico. Sendo 

assim, o presente estudo investigou amostras de pacientes adultos com NL 

proliferativa e NL mista (proliferativa e membranosa). 

Abaixo, seguem os estudos desenvolvidos no âmbito desta tese. 

Estudo 1 – Diagnóstico de Lesão Renal Aguda em Recém-Nascidos Prematuros 

2.3. Objetivos específicos 

• Investigar e otimizar algoritmos de aprendizado de máquina 

supervisionado em um conjunto de dados de LRA em prematuros 

publicado – Conjunto de dados de Lesão Renal Aguda. 

• Avaliar o desempenho dos modelos com base nas figuras de mérito e os 

deslocamentos químicos importantes para as discriminações das 

classes. 

• Identificar os principais metabólitos responsáveis pela discriminação 

entre presença e ausência de LRA nesta população. 

2.4. Materiais e Métodos 

2.4.1. Conjunto de dados – Lesão Renal Aguda (LRA) 

O estudo envolveu um total de 40 bebês prematuros (<31 semanas), que 

coletaram urina no dia 2 de vida, 20 deles com o diagnóstico de LRA (11 do sexo 

feminino) e 20 deles sem o diagnóstico de LRA (13 do sexo feminino). Foram incluídos 

os critérios de inclusão, peso ao nascer (≤ 1200 g) e idade gestacional (≤ 31 semanas), 

e de exclusão doença renal congênita e não sobrevivência após as primeiras 48 horas 

de vida (MERCIER et al., 2017). 

Incialmente, o conjunto de dados utilizado foi proveniente da literatura, do 

trabalho de MERCIER e colaboradores (2017), intitulado Preterm Neonatal Urinary 

Renal Developmental and Acute Kidney Injury Metabolomic Profiling: An Exploratory 

Study. Estes dados estão disponíveis no site do National Metabolomics Data 

Repository (NMDR) do NIH Common Fund, o Metabolomics 

Workbench, https://www.metabolomicsworkbench.org , onde foi atribuído o ID do 

Projeto PR000048. Os dados podem ser acessados diretamente por meio do DOI do 

https://www.metabolomicsworkbench.org/
https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Project&ProjectID=PR000048
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Projeto: 10.21228/M8101K. Este trabalho é apoiado pelo Metabolomics 

Workbench/National Metabolomics Data Repository (NMDR) (concessão nº U2C-

DK119886), Common Fund Data Ecosystem (CFDE) (concessão nº 3OT2OD030544) 

e Metabolomics Consortium Coordinating Center (M3C) (concessão nº 1U2C-

DK119889).  

2.4.2. Espectroscopia de RMN de 1H - LRA 

O biofluido investigado foi urina. As amostras foram preparadas com adição de 

D2O e uma solução de padrão interno contendo ácido 4,4-dimetil-4-silapentano-1-

sulfônico (DSS, referência de deslocamento químico), imidazol (indicador de pH) e 

NaN3 (para inibir o crescimento bacteriano) foi adicionada. Os tubos foram misturados, 

centrifugados e uma alíquota de 200 µL do sobrenadante foi transferida para tubos de 

RMN de 3 mm. Mais detalhes do preparo de amostra podem ser acessados no 

Metabolomics Workbench (Projeto PR000048).  

As 40 amostras de urina foram analisadas por RMN de ¹H em um espectrômetro 

da Bruker de 22,3 T, operando a 950 MHz, localizado no David H. Murdock Research 

Institute em Kannapolis, NC, EUA. Os dados foram adquiridos usando uma sequência 

de pulsos de presaturação 1D NOESY (noesypr1d, [tempo de reciclagem (TR) de 2 s 

- 90°-t1-90°-tm-90°-aquisição do decaimento de indução livre]) e os espectros foram 

processados usando no software Chenomx NMR Suite 7.51 Professional (Chenomx, 

Edmonyon, Alberta Canada) 

2.4.3. Processamento dos dados - LRA 

Neste estudo, o tratamento dos espectros e dos dados foi conduzido de maneira 

diferente do realizado no artigo original (MERCIER et al., 2017) em alguns aspectos. 

Abaixo estão descritos os tratamentos realizados por eles e, em seguida, os 

procedimentos adotados no presente estudo. 

MERCIER e colaboradores: A fase e a linha de base foram corrigidas 

manualmente para cada espectro. Os espectros foram referenciados internamente ao 

sinal do DSS. A divisão dos espectros foi feita com bin de 0,04 ppm entre δ 0,50-9,00 

ppm (229 variáveis), excluindo a região do sinal do DSS, água (4,68 - 4,88 ppm), urea 

(5.60–6.00 ppm) e imidazol (7,20 - 7,28 ppm). A normalização foi feita pela integral 

total de cada espectro (NCV - norma 1). Em seguida, a matriz formada pelos dados 

http://dx.doi.org/10.21228/M8101K
https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Project&ProjectID=PR000048
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normalizados e agrupados por bin foi escalada pelo método de Pareto e centralizada 

antes das análises multivariadas, que foram: PCA e OPLS-DA. A validação cruzada 

de 7-fold foi utilizada para avaliar o desempenho do modelo com base na sua 

capacidade de predição (Q²). 

Presente estudo: Utilizando o software MestReNova (versão 12.0.0) a fase foi 

corrigida manualmente e a linha de base usando polinômios de Bernstein. Os 

espectros foram referenciados internamente ao sinal do DSS. A divisão dos espectros 

foi feita com o mesmo valor de bin (0,04 ppm), mas na região entre δ 0,50 – 4,60 ppm 

(102 variáveis). A matriz de dados foi criada em .csv contendo 40 amostras e 102 

variáveis. 

2.4.4. Análise Quimiométrica 

A análise quimiométrica do conjunto de dados, incluindo as etapas de pré-

processamento, visualização, análise exploratória e modelos de classificação, foram 

desenvolvidos em linguagem Python 3, utilizando o ambiente interativo de 

programação Google Colaboratory (Colab), uma plataforma gratuita oferecida pelo 

Google para execução em Jupyter Notebook. Para a execução dos algoritmos de 

aprendizados de máquina e todas as etapas necessária, uma série de bibliotecas foi 

utilizada: 

Scikit-learn (PEDREGOSA et al., 2011), numpy (HARRIS et al., 2020), pandas 

(MCKINNEY, 2010), seaborn (WASKOM, 2021), scipy (VIRTANEN et al., 2020), 

matplotlib (HUNTER, 2007), statsmodels (SEABOLD; PERKTOLD, 2010), 

imbalanced-learn (LEMAITRE; NOGUEIRA; ARIDAS, 2017) e tqdm (MATIYASEVICH, 

2015). 

Inicialmente, os dados foram normalizados utilizando a normalização pelo 

comprimento do vetor (norma 2) e autoescalados para a PCA e métodos de 

classificação. Durante a PCA, os outliers identificados foram removidos.  LR, SVM e 

LDA foram os algoritmos de classificação escolhidos e tiveram seus parâmetros 

otimizados utilizando o GridSearchCV. O desempenho dos modelos de classificação 

foi avaliado utilizando 8 figuras de mérito calculadas a partir da matriz de contingência 

obtida da validação do conjunto de teste. As figuras de mérito foram: exatidão (Eq. 

24), VPP (Eq. 22), VPN (Eq. 23), sensibilidade (Eq. 20), especificidade (Eq. 21), F1-

Score (Eq. 25), Kappa (Eq. 26) e AUROC. O teste de permutação foi empregado em 

todos os modelos de classificação para avaliar a não aleatoriedade da predição. 
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Inicialmente, os 40 espectros das amostras de urina de bebês prematuros foram 

divididos em conjunto de treinamento e teste, 13 e 7 amostras por classe (com e sem 

LRA), respectivamente, utilizando o algoritmo Kennard-Stone (KENNARD; STONE, 

1969), que seleciona as amostras com base nas distâncias entre elas. A 

reprodutibilidade dos modelos foi garantida com o parâmetro random_state. 

Embora as classes de treinamento já estivessem balanceadas (13 amostras 

cada), a Técnica de Sobre-amostragem de Minorias Sintéticas (SMOTE, do inglês 

Synthetic Minority Over-sampling Technique) foi utilizada para sintetizar e aumentar o 

número de amostras, devido ao número reduzido de amostras, que poderia 

comprometer a construção do modelo preditivo. Foram geradas 10 amostras sintéticas 

adicionais, todas utilizadas na construção do modelo, sendo adicionadas às amostras 

originais do conjunto de treino, totalizando 23 amostras por classe. O conjunto de teste 

foi composto exclusivamente por amostras reais, utilizadas para predição como um 

conjunto externo para avaliar a qualidade do modelo. 

Em seguida, os algoritmos de aprendizado de máquina LR, SVM e LDA foram 

treinados com 46 amostras (23 de cada classe) e validados com 14 amostras (7 de 

cada classe) no conjunto de teste. 

Figura 15 - Fluxograma do processamento realizado no conjunto de dados - LRA.
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2.4.5. Identificação dos metabólitos  

Definido o melhor modelo, por meio das figuras de mérito, para prosseguir com 

as análises das variáveis mais importantes na classificação foram investigadas. O 

processo de atribuição dos possíveis metabólitos foi realizado utilizando os bancos de 

dados eletrônicos como HMDB (do inglês, Human Metabolome Database) (WISHART 

et al., 2022), BMRB (do inglês, Biological Magnetic Resonance Bank) (ULRICH et al., 

2008) e artigos publicados. A busca pelas possíveis rotas metabólicas afetadas foi 

realizada utilizando o Pathways Analysis da plataforma Metaboanalyst 6.0. 
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2.5. Resultados e Discussão - LRA 

Como descrito por Mercier e colaboradores (2017), as características 

demográficas dos pacientes não apresentaram diferenças estatisticamente 

significativas (Tabela 3), mais informações podem ser encontradas no artigo. 

Tabela 3 - Características dos indivíduos entre controles e casos da LRA. 

 Sem LRA 
(média ± DP) 

LRA 
(média ± DP) 

p-valor 

N 20 20 - 

Peso ao nascer (g) 834,0 ± 291,9 815,8 ± 288,2 0,84 
Idade Gestacional (semanas) 26,3 ± 2,3 26,1 ± 2,3 0,84 

Sexo (F/M) 11,0/9,0 13,0/7,0  0,52 

Fonte: MERCIER et al., 2017 

Portanto, a análise dos dados foi focada na discriminação entre bebês 

prematuros com e sem o diagnóstico de LRA, desconsiderando outros fatores de 

intervenção. Os algoritmos de aprendizado de máquina tiveram seus parâmetros 

otimizados (Apêndice A), foram treinados e tiveram seus desempenhos avaliados. 

Toda a análise de dados foi realizada com as variáveis na faixa de 0,50 – 4,60 

ppm e apesar de existir sinais além dessa faixa de deslocamento químico, a variação 

do pH na amostra de urina deslocou alguns sinais nessa região, que não foi possível 

ajustar com o sinal de referência. Além disso, trabalhos na literatura como o de 

Gronwald e colaboradores (2011), mostram que a maior parte dos metabólitos 

responsáveis por discriminar pacientes com doença renais em amostra de urina, estão 

nessa faixa de deslocamento químico. 

2.5.1. Visualização dos dados 

Inicialmente, a matriz de dados pós processamento dos espectros foi 

normalizada e, em seguida, auto-escalada. A Figura 16 apresenta os espectros antes 

e após a normalização, sendo possível notar que alguns sinais estavam muito mais 

intensos em algumas poucas amostras do que nas demais. Vale ressaltar que as 

amostras passaram por um processo de preparo que as tornam propensas a erros 

sistemáticos. Após a normalização, essas variações, possivelmente de origem 

experimental ou características do próprio material biológico, são minimizadas, 

preservando a informação qualitativa e quantitativa que distingue uma amostra da 

outra. 
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Figura 16 – Espectros de RMN de 1H – análise de amostras de urina. a) originais; b) normalizados 
(norma 2 - euclidiana). 

 

Fonte: A autora (2025) 

Em seguida, os dados foram auto-escalados e a análise exploratória foi realizada 

com a PCA. As três primeiras componentes principais (PC1, PC2 e PC3) explicaram 

juntas 58,07% da variância dos dados e não foram observadas tendências de 

separação entre as classes de interesse. Esse comportamento corrobora com o que 

foi observado por Marcier e colaboradores (2017) em seu artigo, apesar dos autores 

não terem especificado se algum método de escalamento foi aplicado, mencionando 

apenas a normalização. A Figura 17 apresenta os gráficos de escores para as 

combinações entre PC1, PC2 e PC3. 
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Figura 17 - Gráficos de escores. a) PC1 vs PC2; b) PC1 vs PC3; c) PC2 vs PC3. 

 

Fonte: A autora (2025) 

Os gráficos de pesos, que indicam a influência das variáveis na distribuição das 

amostras em relação a cada PC, estão disponíveis no Apêndice B (Figura B1). Para a 

construção dos modelos de classificação o conjunto de dados foi dividido em treino e 

teste como descrito na metodologia. Antes da modelagem, para lidar com o baixo 

número de amostras, ambas as classes do conjunto de treinamento foram 

sobreamostradas utilizando o algoritmo SMOTE, número de vizinhos igual a 5. A PCA 

foi então gerada um conjunto de treinamento antes e depois do SMOTE, conforme 

presente na Figura 18. 
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Figura 18 - Gráfico de escores da PCA. a) antes e b) depois do SMOTE.

 

O SMOTE cria amostras sintéticas posicionando-as no eixo formado entre pares 

de amostras reais da classe minoritária. Observa-se inicialmente o aumento do 

número de amostras entre as elipses de 95% e 99% confiança do T² de Hotelling. 

Como nenhuma delas ficou fora da elipse não houve exclusão no conjunto de dados. 

Além disso, notou-se que as amostras sintéticas apresentam um padrão mais 

contraído em relação à distribuição verdadeira dos dados. Esse comportamento é 

resultado do processo de geração do SMOTE, que utiliza interpolação linear, fazendo 

com que as novas amostras tendam a ser posicionadas mais próximas do centro da 

nuvem de dados originais (ELREEDY; ATIYA, 2019). 

Apesar da distribuição observada na PCA, é importante verificar se os padrões 

gerados pelo SMOTE permanecem consistentes com a distribuição original das 

amostras. Para investigar se as distribuições das populações antes e depois do 

SMOTE diferem significativamente, foi aplicado o teste de Kolmogorov–Smirnov (KS) 

(KOLMOGOROV, 1933) às 102 variáveis. A diferença máxima entre as duas 

distribuições foi quantificada pela estatística D. Os resultados indicaram que as 

variáveis não apresentaram mudanças estatisticamente significativas, não havendo 

evidências para rejeitar a hipótese nula de igualdade das distribuições (p > 0,05). Os 

valores individuais do teste podem ser consultados no Apêndice C (Tabela C1). Em 

seguida, os modelos de classificação foram treinados com as amostras. 
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2.5.2. Modelos de Classificação 

A escolha dos algoritmos de aprendizado de máquina para os modelos de 

classificação foi realizada com o objetivo de testar classificadores de fácil 

interpretação, visto que, no contexto clínico, entender como os metabólitos estão 

associados à doença é uma necessidade. 

A matriz de dados após as etapas de pré-processamento ficou com dimensão de 

60 x 102. A divisão em conjunto de treinamento e teste resultou em 46 amostras para 

o treinamento do modelo e 14 amostras de teste para obter as figuras de mérito. A 

Tabela 4 apresenta a matriz de contingência para cada um dos modelos e a Figura 19 

e a Tabela 5 trazem as figuras de mérito, que são responsáveis por informar a 

capacidade de classificar e discriminar as classes investigadas. 

Tabela 4 – Matriz de contingência dos modelos LR, SVM e LDA. 

Diagnóstico Padrão 
 LRA  Controle 

LR 
LRA 5 0 

Controle 2 7 

SVM 
LRA 5 0 

Controle 2 7 

LDA 
LRA 
Controle 

4 
3 

0 
7 

Figura 19 - Resultados da validação dos modelos – LR, SVM e LDA. 

 
*Validação Cruzada              Fonte: A autora (2025) 

Tabela 5 – Resultados da validação dos modelos – LR, SVM e LDA. 

Figuras de Mérito LR SVM LDA 

Kappa 0,714 0,714 0,571 

AUROC 0,857 0,857 0,786 

Valor de p 0,02 0,02 0,066 
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Os modelos treinados neste capítulo pertencem a dois grupos de algoritmos de 

aprendizado de máquina: paramétricos (LR, LDA e SVM linear) e não paramétricos 

(SVM kernel). Modelos paramétricos, como a Regressão Logística (LR) e a Análise 

Discriminante Linear (LDA), requerem a estimação de parâmetros diretamente a partir 

dos dados, tornando-se suscetíveis a problemas de multicolinearidade e à alta 

dimensionalidade (HAYATI et al., 2024). No caso do presente estudo, em que o 

conjunto de treinamento continha apenas 46 amostras e 102 variáveis, essas 

limitações se tornam mais evidentes. De fato, o LDA não apresentou desempenho no 

nível dos demais, possivelmente devido à instabilidade da matriz de covariância 

estimada em um cenário onde o número de variáveis excede o número de amostras 

(NAM; KIM; CHUNG, 2020). 

Por outro lado, tanto o SVM linear quanto a Regressão Logística alcançaram 

bons resultados nas validações cruzadas e externa. Embora a LR também seja 

paramétrica, sua formulação regularizada permite lidar melhor com conjuntos de 

dados de alta dimensionalidade. Já o SVM, por ser um modelo não paramétrico, 

apresenta maior robustez frente à multicolinearidade, pois sua estratégia de encontrar 

o hiperplano de separação ótimo não depende da inversão de matrizes de covariância 

(SHARMA et al., 2024). Assim, as características intrínsecas de cada algoritmo 

impactaram diretamente a performance observada, favorecendo os classificadores 

lineares SVM e LR no contexto avaliado. 

Trabalhos recentes, como o de Huang e colaboradores (2025), investigaram 

quatro algoritmos de aprendizado de máquina em pacientes com sepse que 

apresentavam ou não LRA. Utilizando amostras de soro, cromatografia líquida e três 

metabólitos séricos identificados, alcançaram valores de AUC de 0,90 e 0,83 para LR 

e SVM, respectivamente. Já no trabalho de Lee e colaboradores (2022), com doença 

renal crônica pediátrica e utilizando a cromatografia como técnica de análise, o SVM 

apresentou os melhores resultados de AUC entre os algoritmos empregados; 

entretanto, o F1-score, média harmônica entre precisão e sensibilidade, não 

ultrapassou 0,51. Esses resultados evidenciam o uso cada vez mais frequente de 

aprendizado de máquina em estudos envolvendo doenças renais e destacam os 

resultados do presente trabalho como promissores. 

Embora as figuras de mérito tenham mostrado robustez dos modelos no 

presente trabalho, é importante considerar que eles podem apresentar deficiências na 

capacidade de generalização devido a overfitting (superajuste) (DE ANDRADE et al., 
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2020). Mesmo que os modelos se ajustem bem aos dados de treinamento e prevejam 

com precisão os dados de teste, o conjunto de amostras do teste é pequeno e pode 

ter sido classificado por uma modelagem com um ajuste aos dados aleatórios, em vez 

de uma verdadeira capacidade de generalização. 

O teste de permutação é uma técnica estatística usada para avaliar a 

significância do desempenho de um modelo de aprendizado de máquina. Neste 

estudo, foi aplicado um teste de permutação de exatidão. Os modelos foram treinados 

e re-treinados com amostras cujas etiquetas foram embaralhadas aleatoriamente. 

Para cada permutação, a exatidão do modelo no conjunto de teste foi calculada. Esse 

processo foi repetido 1000 vezes para cada um dos três modelos. A Figura 20 traz o 

histograma e o p-valor para cada teste. 

Figura 20 – Histogramas referente aos testes de permutação: a) LR, b) SVM e c) LDA. 

 

 

Fonte: A autora (2025) 

a) b) 

c) 
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O histograma acima mostra a distribuição das exatidões obtidas a partir de 1000 

permutações aleatórias das etiquetas de treinamento. Cada barra no histograma 

representa a frequência das acurácias obtidas em cada intervalo específico de 

acurácia. A linha vertical vermelha indica a acurácia do modelo original obtida no 

conjunto de teste. Observa-se que a maioria das acurácias permutadas estão 

concentradas em torno de valores mais baixos com poucas permutações resultando 

em acurácias tão altas quanto a do modelo original, isso para os modelos SVM e LR. 

Isso sugere que o desempenho do modelo original é superior ao que seria esperado 

ao acaso. Para o modelo LDA, a acurácia do modelo original encontra-se em valor 

mais baixo, região que há uma frequência maior de acurácias permutadas. 

O valor de p calculado, que é a proporção de permutações que resultaram em 

uma acurácia maior ou igual à do modelo original, é baixo (p < 0,05) para os modelos 

SVM e LR. Isso indica que é improvável que a alta acurácia do modelo original seja 

devida ao acaso para esses modelos, sugerindo que eles possuem um desempenho 

significativo. Entretanto, o modelo LDA apresentou p > 0,05, logo, não possui um 

desempenho estatisticamente significativo. 

Apesar do alto desempenho do modelo SVM, mesmo considerando a matriz sem 

nenhuma redução da dimensionalidade, esses resultados foram obtidos com um 

conjunto de dados pequeno. Deve-se ser cauteloso, pois a performance observada 

pode não se confirmar em um conjunto de dados maior e mais realista, sendo 

necessário investigações futuras com maiores conjuntos de dados. Ainda assim, 

mesmo de forma preliminar, foram obtidos resultados promissores utilizando os 

algoritmos de aprendizado de máquina investigados neste estudo, associados a 

dados obtidos por espectroscopia de RMN de ¹H, para discriminar indivíduos com 

lesão renal aguda de indivíduos saudáveis.  

2.5.3. Identificação dos metabólitos 

A etapa de identificação dos metabólitos é de grande importância nos estudos 

metabonômicos, a partir dela é possível identificar as rotas metabólicas que são 

perturbadas como resultado da homeostase. Para encontrar as variáveis mais 

influentes nas previsões, foram usados os valores dos coeficientes absolutos do 

modelo, referentes às variáveis que têm maior impacto na decisão do SVM. Ao 

observar a Figura 21, podemos separar as variáveis em dois grupos: coeficientes 

positivos e negativos. Os coeficientes positivos sugerem que a variável está 
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fortemente associada à classe positiva (1 - paciente com LRA), enquanto os 

coeficientes negativos indicam que está associada à classe negativa (0 - controle). 

Figura 21 – Importância das variáveis no modelo SVM. 

 

Fonte: A autora (2025) 

Com uma análise inicial, foi possível identificar seis metabólitos diferenciais 

utilizando o banco de dados HMDB (do inglês, Human Metabolome Database) e 

artigos da literatura. As estruturas químicas (Figura 22) e os deslocamentos químicos 

δ1,05, δ1,33, δ3,01, δ3,05, δ3,45, δ3,93, foram atribuídos à valina, lactato, lisina, 

creatinina, taurina, creatina, respectivamente (Figura 23). 

 

 

 

 

 

 

 

 

 



77 
 

Figura 22 - Estrutura dos seis metabólitos identificados. Posição dos Hidrogênios ligados a carbonos 
primários e secundários referente aos deslocamentos químicos em destaque.

 

Figura 23 – Corte de um espectro de urina de pacientes com LRA na região dos metabólitos 

identificados.

 

Fonte: A autora (2025) 

O coeficiente positivo para o sinal do lactato (Figura 21) indica que altos valores 

desse metabólito estão associados à LRA. Esses metabólitos também foram 

responsáveis por discriminar casos de controle no estudo de Fonseca e colaboradores 

(2023), que investigaram a DRC empregando a estratégia metabonômica. Kim e 
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colaboradores (2014), que trabalharam com ratos com DRC, encontraram o sinal do 

lactato substancialmente maior nos ratos com DRC. 

O coeficiente negativo para o sinal da creatinina indica que altos valores desse 

metabólito estão associados ao grupo de controle, mas a creatinina sérica já é 

utilizada como biomarcador no diagnóstico de LRA e está associada ao seu aumento 

em pacientes que têm a doença. Entretanto, há baixa sensibilidade e especificidade 

atreladas à creatinina para avaliar e determinar a LRA precoce, pois condições clínicas 

podem comprometer a determinação de suas concentrações (FONSECA et al., 2023). 

Ainda, no artigo dos autores responsáveis pelo banco de dados (MERCIER et al., 

2017), tanto a creatinina quanto a creatina foram metabólitos correlacionados à idade 

gestacional, exclusivos de neonatos sem diagnóstico de LRA, o que corrobora os 

resultados da análise do presente trabalho, visto que esses dois metabólitos estão 

associados ao grupo de controle. 

No que diz respeito à valina e à lisina, há relatos na literatura que apresentaram 

ambos os metabólitos como variáveis importantes na construção de modelos PLS 

envolvendo doenças renais (CHASAPI et al., 2021; FRANIEK et al., 2022). Franiek e 

colaboradores (2022), empregaram metabolômica urinária para desenvolver 

preditores de lesão renal aguda pediátrica utilizando cromatografia gasosa. A taurina 

se destacou como o segundo metabólito mais importante para o modelo de 

classificação de LRA vs. Controle. 

A análise de vias metabólicas foi realizada no MetaboAnalyst 6.0, sendo 

representada por um gráfico de bolhas (Figura 24). As três vias destacadas na Figura 

24 apresentaram significância estatística (p-valor < 0,05), mas apenas o metabolismo 

da taurina apresentou-se como uma via que sofreu impacto. As demais estão 

posicionadas no zero do eixo de impacto, logo, o impacto dessas vias é praticamente 

nulo e não devem ser consideradas relevantes para interpretações. 
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Figura 24 - Gráfico de bolhas da análise das vias metabólicas na LRA.

 

Fonte: A autora (2025) 

Segundo Franiek e colaboradores (2022), diversos estudos associam a taurina 

à proteção renal, destacando seu papel na regulação do fluxo sanguíneo renal e da 

função endotelial vascular. Em lesões renais induzidas por isquemia/reperfusão (I/R), 

a taurina atua atenuando os danos iniciais por meio da eliminação de espécies 

reativas de oxigênio durante a inflamação glomerular, além de ser excretada na urina 

após a lesão, o que justifica sua alteração observada em casos de disfunção renal. 

O SVM se mostra mais uma vez como um algoritmo de aprendizado de máquina 

que pode ser explorado em estudos metabonômicos. 
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2.6. Conclusão do Estudo 1 – Lesão Renal Aguda 

O presente capítulo teve como objetivo inicial investigar e avaliar o emprego de 

algoritmos de aprendizado de máquina em um conjunto de dados da literatura para 

discriminar bebês com diagnóstico de LRA de bebês prematuros sem o diagnóstico. 

Utilizando a estratégia metabonômica baseada em espectros de RMN de ¹H, três 

algoritmos foram investigados: Regressão Logística (LR), Máquina de Vetores de 

Suporte (SVM) e Análise Discriminante Linear (LDA), empregando SMOTE e sem 

etapas prévias de redução da dimensionalidade da matriz, seus desempenhos foram 

avaliados por meio das figuras de mérito. A validação dos modelos foi realizada com 

um conjunto de dados extraídos da matriz original. 

Entre os três modelos avaliados, o SVM e a LR apresentaram os melhores 

desempenhos, ambos errando a classificação de duas amostras, resultando em 

exatidão de 86% e VPP de 100%. Esses resultados sugerem que a informação está 

contida no conjunto de dados, sendo acessível pela estratégia metabonômica. A LDA 

obteve desempenho inferior aos demais, além disso, com base nos testes de 

permutação, o modelo não se mostrou estatisticamente significativo, estando 

sobreajustado. 

Considerando que foram usados algoritmos de classificação fáceis de 

interpretar, foram selecionadas as 30 variáveis mais importantes para o desempenho 

do SVM linear na discriminação das classes. Seis deslocamentos químicos foram 

atribuídos a metabólitos: valina, lactato, lisina, creatinina, taurina e creatina, os quais 

corroboram resultados da literatura e cuja variação está associada a doenças renais, 

com destaque para a taurina, cujo metabolismo foi a principal rota alterada na análise 

das vias metabólicas. 

 

 

 

 

 



81 
 

Estudo 2 – Estadiamento da Nefrite Lúpica Proliferativa com ou sem lesão 

membranosa. 

2.7. Objetivos específicos 

• Obter espectros de amostras de soro de pacientes com Nefrite Lúpica 

por Ressonância Magnética Nuclear de ¹H. 

• Investigar e otimizar algoritmos de aprendizado de máquina 

supervisionado, combinados com técnicas de seleção de variáveis, para 

o conjunto de dados de Nefrite Lúpica. 

• Construir modelos metabonômicos para discriminar pacientes com 

Nefrite Lúpica proliferativa com ou sem lesão membranosa. 

• Avaliar o desempenho dos modelos e suas combinações com os 

métodos de seleção de variáveis com base nas figuras de mérito. 

• Identificar os metabólitos referentes aos sinais de maior importância para 

construção do melhor modelo. 

2.8. Materiais e Métodos 

2.8.1. Amostragem – Nefrite Lúpica (NL) 

A seleção dos pacientes incluídos neste estudo e as coletas de sangue foram 

realizadas no ambulatório do setor de Nefrologia do Hospital das Clínicas da 

Universidade Federal de Pernambuco (HC–UFPE), em pacientes acompanhados por 

pesquisadores parceiros e pela equipe do ambulatório de Glomerulonefrite do próprio 

hospital. As amostras de sangue foram coletadas e armazenadas no Laboratório de 

Imunopatologia Keizo Asami (LIKA/UFPE). 

Foram incluídos 36 pacientes, 25 com NL classificada como III/IV e 11 com NL 

classificada como III/IV+V, com mais de 18 anos de idade, com diagnóstico de lúpus 

e nefrite lúpica confirmada por biópsia renal (classes III a V). Como critérios de 

exclusão, foram considerados: pacientes que não preenchiam os critérios para LES 

ou biópsia de nefrite lúpica; aqueles sem laudo histopatológico confirmatório de nefrite 

lúpica; e pacientes com sorologias positivas para hepatite B, hepatite C, HIV ou sífilis. 

Todos os pacientes estavam sob terapia de indução com metilprednisolona 

intravenosa, seguida de prednisona oral e seis doses únicas e rápidas de 

ciclofosfamida intravenosa (500 mg a 1 g) ou micofenolato de mofetila (2 a 3 g/dia). 
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Após a fase de indução, os pacientes receberam terapia de manutenção com 

azatioprina ou micofenolato, conforme protocolos previamente estabelecidos. 

2.8.2. Considerações Éticas – NL 

Este estudo foi aprovado pelo comitê de ética da Universidade Federal de 

Pernambuco (CAAE 11401219.2.0000.8807) e está de acordo com a Declaração de 

Helsinque. Todos os pacientes recrutados assinaram um termo de consentimento livre 

e esclarecido. 

2.8.3. Espectroscopia de RMN de ¹H - NL 

Para a realização da análise, as amostras foram descongeladas e uma alíquota 

de 400 μL da amostra de soro foi transferida para um tubo de RMN, com 5 mm de 

diâmetro interno. Em seguida, foram adicionados 200 μL de água deuterada (D₂O) e 

o conteúdo foi homogeneizado manualmente. Os espectros de RMN de 1H foram 

obtidos usando a sequência de pulsos CPMG (Carr-Purcell-Meiboom-Gill), com pré-

saturação (presat) do sinal da água em 4,70 ppm, no espectrômetro modelo Ascend 

(Bruker®) operando a 400 MHz. Foram utilizados os seguintes parâmetros 

experimentais: i) tempo de pré-saturação igual a 3 s, ii) janela espectral de 5,88 kHz, 

iii) número de ciclos de 126, iv) tau igual a 0,0003 s, v) bigtau igual a 0,076 s e vi) 128 

transientes. Os espectros foram processados usando line broadening de 0,3 Hz.  

2.8.4. Processamento dos dados - NL 

O processamento dos espectros foi conduzido utilizando o software MestReNova 

12.0.0, no qual a linha de base foi corrigida automaticamente e a fase foi ajustada no 

modo manual. Em seguida, o sinal correspondente ao grupo metil do lactato foi 

utilizado como referência e o espectro alinhado ao seu sinal em δ 1,33 ppm. Todos os 

espectros foram sobrepostos graficamente para verificação da qualidade dos ajustes 

realizados. O espectro foi cortado para remover regiões que não continham os 

compostos de interesse, ficando definida a faixa entre δ 0,5 e 4,50 para continuar com 

as análises. A região então definida, foi dividida em intervalos (bins) de 0,04 ppm para 

a construção da matriz de dados. Por fim, a matriz de dados foi exportada para o excel 

constituída por 36 amostras e 100 variáveis, a qual foi em seguida submetida às 

análises quimiométricas. 
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2.8.5. Análise Quimiométrica 

A análise quimiométrica do conjunto de dados, incluindo as etapas de pré-

processamento, visualização, análise exploratória e modelos de classificação, foram 

desenvolvidos em linguagem Python 3, utilizando o ambiente interativo de 

programação Google Colaboratory (Colab), uma plataforma gratuita oferecida pelo 

Google para execução em Jupyter Notebook. Para a execução dos algoritmos de 

aprendizados de máquina e todas as etapas necessária, uma série de bibliotecas foi 

utilizada: 

Scikit-learn (PEDREGOSA et al., 2011), numpy (HARRIS et al., 2020), pandas 

(MCKINNEY, 2010), seaborn (WASKOM, 2021), scipy (VIRTANEN et al., 2020), 

matplotlib (HUNTER, 2007), statsmodels (SEABOLD; PERKTOLD, 2010), 

imbalanced-learn (LEMAITRE; NOGUEIRA; ARIDAS, 2017) e tqdm (MATIYASEVICH, 

2015). 

Inicialmente, os dados foram normalizados utilizando a normalização pelo 

comprimento do vetor (norma 2) e autoescalados para a PCA e métodos de 

classificação. Durante a PCA, os outliers identificados foram removidos.  LR, SVM e 

LDA foram os algoritmos de classificação escolhidos e tiveram seus parâmetros 

otimizados utilizando o GridSearchCV. O desempenho dos modelos de classificação 

foi avaliado utilizando 8 figuras de mérito calculadas a partir da matriz de contingência 

obtida da validação do conjunto de teste. As figuras de mérito foram: exatidão (Eq. 

24), VPP (Eq. 22), VPN (Eq. 23), sensibilidade (Eq. 20), especificidade (Eq. 21), F1-

Score (Eq. 25), Kappa (Eq. 26) e AUROC. O teste de permutação foi empregado em 

todos os modelos de classificação para avaliar a significância estatística da exatidão 

dos modelos. 

Inicialmente, foi empregada a técnica de SMOTE com o objetivo de sintetizar e 

aumentar o número de amostras da classe minoritária, uma vez que o 

desbalanceamento compromete a construção de modelos preditivos robustos. A 

classe minoritária (III/IV+V), que anteriormente possuía 11 amostras, teve sua 

quantidade dobrada. Ao final, a matriz de dados foi composta por 24 amostras da 

Classe III/IV e 22 da Classe III/IV+V (11 verdadeiras e 11 sintéticas). Antes da divisão 

em grupos de treino e teste, as amostras sintéticas foram removidas do conjunto de 

dados, e a divisão, utilizando o método de Kennard-Stone, foi realizada apenas nas 

amostras originais. A distribuição das amostras encontra-se apresentada na Tabela 6. 



84 
 

Tabela 6 - Divisão dos conjuntos de treino e teste para cada classe da NL. 

 Classe III/IV Classe III/IV+V 

Treino 17 16 

Teste 7 6 

  

O conjunto de teste foi composto exclusivamente por amostras reais, utilizadas 

para predição como um conjunto externo para avaliar a qualidade do modelo. Durante 

a etapa de treinamento dos modelos, foram testadas combinações entre métodos de 

seleção de variáveis e de classificação, com objetivo de reduzir a dimensionalidade. 

No total, foram 18 combinações compostas por três algoritmos de classificação (SVM, 

LDA e LR) sem seleção de variáveis e combinados com três métodos de seleção. Os 

métodos de seleção utilizados foram o SFM (Select From Model), SFS (Sequential 

Forward Selection), usando o classificador LR (Logistic Regression) e RF (Random 

Forest), e o GA (Genetic Algorithm).  

Figura 25 - Fluxograma do processamento realizado no conjunto de dados - NL.
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2.8.6. Identificação dos metabólitos  

Definido o melhor modelo, por meio das figuras de mérito, para prosseguir com 

as análises as variáveis mais importantes na classificação foram investigadas. O 

processo de atribuição dos possíveis metabólitos foi realizado utilizando os bancos de 

dados eletrônicos como HMDB (do inglês, Human Metabolome Database) (WISHART 

et al., 2022), BMRB (do inglês, Biological Magnetic Resonance Bank) (ULRICH et al., 

2008) e artigos publicados. A busca pelas possíveis rotas metabólicas afetadas foi 

realizada utilizando o Pathways Analysis da plataforma Metaboanalyst 6.0. 
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2.9. Resultados e Discussão - NL 

2.9.1.  Dados clínicos 

Foram incluídas 36 amostras, classificadas em dois grupos segundo os 

resultados da biópsia renal: classe III/IV e classe III/IV+V. Para avaliar diferenças 

significativas entre as classes, foi utilizado o teste de Mann–Whitney para as variáveis 

contínuas e o teste qui-quadrado para as variáveis categóricas. A Tabela 7 apresenta 

as características demográficas e parâmetros clínicos, divididos conforme a 

distribuição das classes. 

Tabela 7 - Características demográficas e parâmetros clínicos de acordo com as classes da NL. 

 Classe III/IV 
(média ± DP) 

Classe III/IV+V 
(média ± DP) 

p-valor 

N 25 11 - 

Idade (anos ± DP) 33,2 ± 10,2 28,8 ± 5,2 0,409* 
Sexo (F/M) 21,0/4,0 10,0/1,0 0,977** 

IMC (média ± DP) 25,5 ± 5,8 23,3 ± 5,2  0,410* 

Tempo de diagnóstico do LES (meses) 61,7 ± 67,1 107,5 ± 69,7 0,022* 

Tempo de diagnóstico da NL (meses) 42,9 ± 46,01 69,9 ± 63,2 0,056* 

Proteinúria 3,0 ± 1,4 6,6 ± 5,2  0,020* 

Nº Glomérulos 17,4 ± 10,6 20,7 ± 8,6 0,310* 
*Teste de Mann-Whitney/**Teste qui-quadrado 

O tempo de diagnóstico do LES e a proteinúria foram as únicas variáveis que 

apresentaram diferenças estatisticamente significativas.  Pacientes da classe III/IV+V 

apresentaram tempo médio de diagnóstico do LES significativamente maior (107,5 ± 

69,7 meses) comparado a III/IV (61,7 ± 67,1 meses; p = 0,022). A proteinúria também 

foi significativamente maior na classe III/IV+V (6,6 ± 5,2 g/24h) em comparação à 

classe III/IV (3,0 ± 1,4 g/24h; p = 0,020), indicando maior comprometimento renal. Os 

resultados sugerem que pacientes com a lesão membranosa (classe V) associada à 

lesão glomerular podem apresentar um quadro clínico mais prolongado e maior 

gravidade renal, o que pode influenciar no tratamento e prognóstico (WANG et al., 

2025).  

2.9.2.  Visualização dos dados 

Inicialmente, a matriz de dados (36x100) composta por amostras de pacientes 

com nefrite lúpica (NL) proliferativa e nefrite lúpica mista (proliferativa e membranosa) 
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passou por etapas de pré-processamento, que incluem a normalização nas amostras 

e autoescalamento nas variáveis. A Figura 26 traz o espectro antes e depois da 

normalização. 

Figura 26 - Espectros amostras de soro de pacientes com Nefrite Lúpica: a) sem normalização; b) 
normalizados. 

 
Fonte: A autora (2025) 

Como já descrito anteriormente, a etapa de pré-tratamento na matriz de dados 

visa minimizar possíveis variações oriundas de erros durante a obtenção e preparo da 

amostra, ou até mesmo na aquisição dos espectros. Em seguida, foi realizada a PCA, 

com a finalidade de observar tendências de separação e identificar possíveis amostras 

anômalas. As três primeiras componentes principais (PCs, do inglês Principal 

Components) explicam cerca de 80% da variância dos dados, mas não foi possível 

observar uma tendência de separação entre as classes. O gráfico de escores (Figura 

27), formado pelas duas primeiras PCs, mostra o grupo da NL de classe mista 
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(III/IV+V) menos disperso do que o grupo da NL proliferativa (III/IV); o mesmo padrão 

foi observado nas demais combinações de PCs (Apêndice D). 

Figura 27 - Gráfico de escores da PCA formado por PC1 e PC2 das amostras de pacientes com NL. 

 

Fonte: A autora (2025) 

No que diz respeito à presença de amostras anômalas, apenas uma, pertencente 

à classe III/IV+V, ficou fora das elipses de confiança do T² de Hotelling e foi removida 

da matriz de dados para dar continuidade às análises seguintes. 

Considerando o desbalanceamento entre as classes investigadas, a etapa de 

sobreamostragem foi empregada utilizando o SMOTE, dobrando o número de 

amostras da classe minoritária, com o objetivo de alcançar figuras de mérito robustas 

e previsões eficientes durante o processo de construção dos modelos (RODRIGUES; 

LUNA; PINTO, 2023). Na Figura 28 estão os gráficos de escores da PCA antes e 

depois do SMOTE. 
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Figura 28 - Gráfico de escores NL: a) antes do SMOTE; b) depois do SMOTE. 

 

Fonte: A autora (2025) 

A distribuição das amostras sintéticas segue o padrão das demais, entretanto, é 

necessário investigar se, estatisticamente, isso de fato ocorre. Para isso, aplicou-se o 

teste de Kolmogorov-Smirnov (KS) (KOLMOGOROV, 1933) às 100 variáveis, 

comparando as distribuições originais com as obtidas após o SMOTE. A diferença 

entre elas foi quantificada pela estatística D, e os resultados indicaram que não há 

diferença estatisticamente significativa, com p-valor > 0,05 para todas as variáveis, 

não havendo evidências para rejeitar a hipótese nula de igualdade das distribuições. 

Os valores de D para cada variável, bem como os gráficos das 10 variáveis com 

maiores valores de D, estão apresentados no Apêndice E. Na próxima seção, os 

resultados dos modelos de classificação treinados com as amostras originais e 

sintéticas. 

2.9.3.  Modelos de classificação 

Inicialmente, todas as amostras foram utilizadas para criar as amostras sintéticas 

com o SMOTE. Em seguida, sete amostras originais da classe III/IV e seis da III/IV+V, 

foram cuidadosamente selecionadas para o conjunto de teste usando o Kennard-

Stone. Desse modo, apenas as amostras originais foram incluídas, garantindo que o 

diagnóstico do modelo não seja tendencioso. As demais amostras originais e todas as 

amostras sintéticas foram utilizadas como conjunto de treinamento, resultando em 17 

amostras da classe III/IV e 16 amostras da classe III/IV+V. Seguindo com a escolha 
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dos algoritmos de aprendizado de máquina com facilidade de interpretação, foram 

empregados o SVM, a LDA e o LR. 

O conjunto de treinamento foi utilizado para construir os modelos de classificação 

com cada um dos métodos de seleção de variáveis que foram descritos na 

metodologia (SFM, SFS e GA) e tiveram seus parâmetros otimizados com o 

GridSearchCV (Apêndice A). 

Com o intuito de facilitar a visualização e comparação do desempenho dos 

modelos em múltiplas figuras de mérito, utilizou-se um gráfico radar, que permite 

representar simultaneamente as diferentes métricas de forma intuitiva. No entanto, 

para maior rigor científico, os valores exatos das figuras de mérito estão apresentados 

na Tabela 8. 

O gráfico radar (Figura 29) apresenta simultaneamente as figuras de mérito dos 

modelos avaliados (exatidão, VPP, VPN, especificidade, sensibilidade, f1-score, 

kappa e AUROC). Cada eixo do gráfico representa uma métrica, e o polígono formado 

pelos valores indica o desempenho geral do modelo. Quanto maior a área preenchida 

e mais próximo do limite máximo em todos os eixos, melhor o desempenho global. 

Essa representação facilita a comparação visual entre modelos, permitindo identificar 

rapidamente quais apresentam comportamento equilibrado em todas as métricas ou 

desempenho destacado em métricas específicas. 
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Figura 29 – Gráficos de radar construídos a partir das figuras de mérito dos modelos SVM, LDA e LR, 
considerando os métodos de seleção de variáveis**: a) Sem seleção; b) GA; c) SFM-LR; d) SFM-RF; e) 

SFS-LR; f) SFS-RF. 

 
Fonte: A autora (2025) 

*Validação cruzada (etapa de treinamento). 
**Linhas de referência de 0 (menor raio) a 100% (maior raio), em intervalos de 20%. 
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Tabela 8 - Resultados da validação dos modelos. 

 Sem seleção de variáveis GA SFM-LR SFM-RF 

 SVM(RBF) LDA LR SVM(RBF) LDA LR SVM(RBF) LDA LR SVM(RBF) LDA LR 

Exatidão*  84,8% 78,6% 73,3% 81,9% 97,1% 88.6% 91,4% 79,5% 85,2% 88,1% 70,0% 70,0% 
Exatidão 84,6% 61,5% 84,6% 76,9% 69,2% 76.9% 84,6% 76,9% 76,9% 84,6% 69,2% 76,9% 

VPP 83,3% 57,1% 75,0% 66,7% 62,5% 71.4% 83,3% 66,7% 66,7% 83,3% 60,0% 66,7% 
VPN 85,7% 66,7% 100,0% 100,0% 80,0% 80.0% 85,7% 100,0% 85,7% 85,7% 100,0% 85,7% 

Especificidade 85,7% 57,1% 71,4% 57,1% 57,1% 57.1% 85,7% 57,1% 85,7% 85,7% 42,9% 85,7% 
Sensibilidade 83,3% 66,7% 100,0% 100,0% 83,3% 83.3% 83,3% 100,0% 100,0% 83,3% 100,0% 100,0% 

F1-Score 83,3% 61,5% 85,7% 80,0% 71,4% 76.9% 83,3% 80,0% 80,0% 83,3% 75,0% 80,0% 
Kappa 0,69 0,235 0,698 0,552 0,395 0.541 0,69 0,552 0,552 0,690 0,409 0,552 

AUROC 0,905 0,615 0,762 0,833 0,667 0.833 0,905 0,786 0,762 0,905 0,81 0,857 

p-Valor** 0,029 0,198 0,005 0,069 0,118 0.04 0,012 0,029 0,015 0,018 0,151 0,081 

 

 SFS-LR SFS-RF 

 SVM(RBF) LDA LR SVM(RBF) LDA LR 

Exatidão*  85,2% 76,2% 91,0% 88,1% 73,3% 76,2% 
Exatidão 69,2% 76,9% 92,3% 69,2% 92,3% 84,6% 

VPP 60,0% 66,7% 85,7% 62,5% 85,7% 75,0% 
VPN 100,0% 100,0% 100,0% 80,0% 100,0% 100,0% 

Especificidade 42,9% 57,1% 85,7% 57,1% 85,7% 71,4% 
Sensibilidade 100,0% 100,0% 100,0% 83,3% 100,0% 100,0% 

F1-Score 75,0% 80,0% 92,3% 71,4% 92,3% 85,7% 
Kappa 0,409 0,552 0,847 0,395 0,847 0,698 

AUROC 0,857 0,81 0,857 0,692 0,857 0,881 

p-Valor** 0,142 0,037 0,000 0,158 0,001 0,004 

*Validação cruzada (etapa de treinamento). 

**Teste de permutação 
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Ao observar os gráficos da Figura 29 e os resultados da Tabela 8, nota-se quais 

modelos de classificação apresentam melhor desempenho para cada método de 

seleção de variáveis. Entre todas as combinações avaliadas, o modelo LR aliado ao 

método SFS com classificador LR (SFS-LR) destacou-se, apresentando o melhor 

desempenho geral. 

Oliveira e colaboradores (2024), que investigaram diferentes formalismos 

quimiométricos para o diagnóstico de câncer de próstata, concluíram que as 

combinações GA-LDA e GA-LR obtiveram os melhores resultados em relação às 

figuras de mérito. No presente estudo, a combinação SFS-LR com classificador LR 

não apenas apresentou desempenho superior às demais combinações testadas, 

como também alcançou valores de figuras de mérito (Tabela 9) compatíveis ou 

superiores aos relatados na literatura, indicando robustez do método empregado 

(ANEKTHANAKUL et al., 2021). O teste de permutação resultou em p-valor < 0,01, 

demonstrando a significância estatística do modelo. 

Tabela 9 - Figuras de mérito do modelo LR combinado com o seletor SFS-LR. 

Figuras de Mérito SFS-LR-LR 

Exatidão* 91,0% 

Exatidão 92,3% 

VPP 85,7% 

VPN 100,0% 

Especificidade 85,7% 

Sensibilidade 100,0% 
F1-Score 92,3% 

Kappa 0,847 
AUROC 0,857 

Valor de p 0,002 

*Validação cruzada (etapa de treinamento). 

Anekthanakul e colaboradores (2021), que teve como objetivo a predição da 

nefrite lúpica membranosa utilizando biomarcadores urinários, testaram combinações 

de ácido picolínico (Pic), triptofano (Trp), TFGe e UPCR (Proporção de Proteína e 

Creatinina na Urina) para propor sete modelos de regressão logística, cujo 

desempenho foi avaliado por meio da AUROC. O modelo com melhor desempenho 

combinou a razão [Pic/Trp], TFGe e UPCR, alcançando uma AUROC de 0,91 na 

classificação de NL da classe III/IV em relação à classe V. Embora o estudo tenha 

fornecido informações valiosas e, assim como o presente trabalho, tenha mostrado 
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bom potencial na identificação de biomarcadores, ambos foram conduzidos em 

populações relativamente pequenas. Portanto, a utilização clínica desses metabólitos 

como biomarcadores depende de validações adicionais em conjuntos maiores. 

2.9.4.  Identificação dos metabólitos 

A combinação SFS-LR selecionou 30 variáveis para os modelos de classificação. 

Em seguida, a importância de cada variável no modelo LR foi extraída e apresentada 

na Figura 30. Os coeficientes responsáveis pela construção do modelo podem ser 

divididos em positivos e negativos: os positivos sugerem que a variável está 

fortemente associada à classe positiva (1 – pacientes com NL classe III/IV+V), 

enquanto os negativos indicam associação à classe negativa (0 – pacientes com NL 

classe III/IV). 

Figura 30 - Importância das variáveis na combinação SFS-LR com classificador LR. 

 

Fonte: A autora (2025) 

A partir de buscas nos bancos de dados BRMB, HMDB e em artigos da literatura, 

oito compostos foram atribuídos aos deslocamentos químicos das variáveis 

importantes para o modelo. Os compostos (Figura 31) são: N‑acetil‑L‑alanina (δ 2,06), 
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ácido pirúvico (δ 2,35), ácido 2‑metilglutárico (δ 1,07), L‑alanina (δ 1,51), ácido 

α‑ceto‑isovalérico (δ 1,15), lactato (δ 1,31), valina (δ 1,03) e dimetilsulfona (δ 3,14). 

Figura 31 - Estrutura química dos metabólitos identificados. Posição dos Hidrogênios ligados aos 
carbonos primários referente aos deslocamentos químicos em destaque. 

 

No que diz respeito à análise da variação de metabólitos entre as classes de NL, 

existem poucos trabalhos publicados. No entanto, a valina e a dimetilsulfona já foram 

empregadas na literatura para avaliação precisa da insuficiência renal, sendo a valina 

considerada um indicador do metabolismo ácido-base e a dimetilsulfona um marcador 

de estresse oxidativo. Como resultado, a degradação da valina associada à acidose 

metabólica reduz seus níveis na DRC, enquanto a dimetilsulfona tende a apresentar 

valores elevados (EHRICH et al., 2021). No contexto da NL, o presente estudo mostra 

que o coeficiente negativo da valina reflete seu leve aumento nos pacientes com 

classe III/IV, enquanto a dimetilsulfona aparece levemente associada à classe III/IV+V. 

Para auxiliar a interpretação em relação a influência dos metabólitos na NL, a 

análise de vias metabólicas foi realizada no MetaboAnalyst 6.0. A análise indicou a 

glicólise e o metabolismo do piruvato como rotas significativamente enriquecidas 

(Figura 32). Em pacientes com lúpus eritematoso, as células T apresentam 

anormalidades metabólicas, incluindo aumento da glicólise e do estresse oxidativo, 

processos que promovem a geração de células inflamatórias (SHARABI; TSOKOS, 

2020). Esses resultados estão de acordo com os níveis séricos observados de ácido 

pirúvico e lactato. O ácido pirúvico foi encontrado em maior concentração nos 

pacientes com NL classe III/IV+V, enquanto o lactato esteve levemente mais 

associado aos casos de NL classe III/IV. 
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Figura 32 - Gráfico de bolhas da análise das vias metabólicas na NL.

 

Fonte: A autora (2025) 

Ainda, a biossíntese e degradação da valina, leucina e isoleucina, a biossíntese 

de pantotenato e CoA e o metabolismo da alanina, aspartato e glutamato também se 

apresentaram como rotas metabólicas significativamente enriquecidas, entretanto, o 

impacto nessas vias foi praticamente nulo. A N‑acetil‑L‑alanina foi o metabólito que 

apresentou maior importância na construção do modelo, seu coeficiente negativo está 

associado aos pacientes com classe III/IV. Apesar de alguns aminoácidos como a 

alanina, glutamina e leucina serem descritas como essenciais no metabolismo das 

células T, não há menção específica à N-acetil-L-alanina (GUO et al., 2024). A 

presença desse metabólito na nossa análise pode representar a descoberta de uma 

derivação metabólica pouco explorada, o que justifica investigações futuras para 

entender melhor sua relação com a NL.  
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2.10.  Conclusão do Estudo 2 – Nefrite Lúpica 

Como continuação do capítulo na investigação de doenças renais, os algoritmos 

LR, LDA e SVM foram testados para discriminar pacientes com NL de classe III/IV dos 

pacientes de classe III/IV+V. Além do emprego do SMOTE para equilibrar as classes, 

três métodos de seleção de variáveis foram avaliados: SFS, SFM e GA. Por meio da 

análise das figuras de mérito, a maioria das combinações de modelos e seleção de 

variáveis, e até mesmo o modelo sem seleção, apresentaram bons desempenhos. 

Entre eles, o modelo LR após o SFS-LR apresentou os melhores resultados de 

classificação, com exatidão de 92,3% e sensibilidade de 100%, resultado de apenas 

uma amostra classificada de maneira incorreta. 

Como resultado do modelo LR para NL, das 30 variáveis mais importantes, oito 

deslocamentos químicos foram atribuídos aos metabólitos: N‑acetil‑L‑alanina, ácido 

α‑ceto‑isovalérico, ácido 2‑metilglutárico, L‑alanina, ácido pirúvico, lactato, valina e 

dimetilsulfona. Com destaque para o ácido pirúvico e lactato que podem ser 

associados com o aumento da glicólise e processos que promovem a geração de 

células inflamatórias. Com base na análise das vias metabólicas e de trabalhos da 

literatura, os metabólitos encontrados podem estar associados a variações no 

processo inflamatório da NL grave, podendo ser alvos de investigações futuras. 
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3. Estudo 3. Aprendizado de Máquina empregado na Avaliação da Fibrose 

Periportal em Pacientes com Esquistossomose mansoni 

A esquistossomose, considerada um grave problema de saúde pública, está 

entre as doenças tropicais negligenciadas que afetam, principalmente, países 

subdesenvolvidos da África e da América Latina (SANTOS et al., 2022). No Brasil, 

segundo o Ministério da Saúde (2024), a esquistossomose está presente 

intensamente numa faixa de terras ao longe de quase toda costa litorânea da Região 

Nordeste, do Rio Grande do Norte em direção ao sul, incluídas as zonas quentes e 

úmidas dos estados da Paraíba, de Pernambuco, Alagoas, Sergipe, do Maranhão e 

da Bahia, onde se interioriza alcançando Minas Gerais, no Sudeste, seguindo o trajeto 

de importantes bacias hidrográficas. A transmissão ocorre por meio do contato com 

águas contaminadas, que afetam especialmente populações vulneráveis ou que 

entram em contato com águas por conta da pesca e da agricultura. A falta de 

saneamento básico, fatores demográficos, socioeconômicos, ambientais, presença do 

caramujo hospedeiro e o contato com corpos d’água são os principais riscos para a 

infecção por Schistosoma mansoni no Brasil (BEZERRA et al., 2021). 

Causada pela infecção por vermes do gênero Schistosoma, a esquistossomose 

é uma doença parasitária crônica que pode se manifestar de duas formas, intestinal e 

urogenital, e depende da espécie com qual o ser humano foi infectado. A S. mansoni, 

S. japonicum, S. mekongi, S. guineensis e S. intercalatum são responsáveis por 

causar a esquistossomose intestinal e a S. haematobium por causar a urogenital 

(WHO, 2022). A evolução da doença da fase aguda para a crônica é caracterizada 

pela resposta imunológica à deposição cumulativa de ovos. Os ovos liberados pelas 

fêmeas nas veias mesentéricas migram para o fígado e ficam retidos no espaço porta. 

O granuloma se forma ao redor dos ovos, no espaço porta, levando à formação da 

fibrose periportal (FPP) ou fibrose de Symers. A FPP é característica da doença e 

pode levar à hipertensão portal e suas manifestações e complicações, como 

esplenomegalia, hiperesplenismo, formação de circulação colateral e sangramento 

digestivo. A FPP é considerada uma complicação grave e comum da fase crônica por 

S. mansoni e da hipertensão portal, estima-se que o tempo entre o início da infecção 

e a FPP avançada é de 5 a 15 anos (GUNDA et al., 2020; EWUZIE et al., 2025). 

A FPP em estágio avançado pode levar à morbidade e mortalidade devido ao 

acúmulo de tecido fibrótico, que reduz a elasticidade das veias e contribui para a 
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obstrução do fluxo sanguíneo portal, resultando em hipertensão portal, formação de 

varizes esofágicas, sangramento gastrointestinal e, por fim, morte prematura 

(BARRETO et al., 2017; EWUZIE et a., 2025). Sendo assim, avaliar a presença e o 

grau da FPP é fundamental na prevenção de complicações da doença, permitindo 

desenvolver estratégias de tratamento, bem como monitorar a resposta à terapia 

(Barreto et al., 2022). 

Entre as técnicas mais empregadas para o diagnóstico da FPP, está a 

ultrassonografia (US). Apesar da utilização de outras técnicas, como a tomografia 

computadorizada e a imagem por ressonância magnética, a US destaca-se devido ao 

seu baixo custo e sensibilidade comparável a da biópsia hepática. Entretanto, há 

limitações, principalmente no que diz respeito à disponibilidade de aparelhos em 

unidades de atenção primária em áreas endêmicas e à necessidade de um 

examinador especialista com experiência no diagnóstico e classificação 

ultrassonográfica da FPP, pelo protocolo de Niamey, preconizado pela Organização 

Mundial de Saude (HASHIM; BERZIGOTTI, 2021). Alternativas minimamente 

invasivas e de fácil acesso são uma necessidade, principalmente, em áreas 

endêmicas de difícil acesso. Sendo assim, este capítulo da tese será voltado à 

utilização de biomarcadores séricos obtidos através de exames de rotina na 

construção de modelos quimiométricos visando a discriminação entre FPP leve e 

avançada. 

No que diz respeito a literatura sobre o uso de biomarcadores séricos na 

investigação minimamente invasiva da FPP, no trabalho de Barreto e colaboradores 

(2022), a contagem de plaquetas e o índice Coutinho foram apresentados como testes 

promissores para avaliar a FPP em áreas endêmicas para esquistossomose. Ambos 

os testes utilizam biomarcadores séricos e, além de serem simples e baratos, 

permitem uma interpretação objetiva dos resultados. 

O índice Coutinho (IC) foi desenvolvido por Barreto e colaboradores (2017), que 

realizaram uma análise multivariada por regressão logística (LR) com sete 

biomarcadores. No modelo final, apenas a fosfatase alcalina (FAL) e a contagem de 

plaquetas (PLT) foram significativas na predição da FPP. O índice consiste em uma 

equação simples (27): a razão entre os valores de FAL e a contagem de PLT. 

𝐼𝐶 =
(𝐹𝐴𝐿/𝐿𝑆𝑁)

𝑃𝐿𝑇
𝑥100     (27) 
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Apesar dos avanços no uso de biomarcadores séricos e da evolução observada 

nos estudos disponíveis na literatura, ainda há limitações para o diagnóstico preciso 

da FPP em diferentes estágios. No que diz respeito ao diagnóstico por US, variações 

entre equipamentos e diferenças na interpretação entre analistas continuam sendo 

problemas persistentes, que podem impactar diretamente a predição. 

O aprendizado de máquina surge como um método capaz de processar grandes 

quantidades de dados complexos. Liu et al. (2024) apresentaram um dos poucos 

estudos na literatura que utilizaram algoritmos de aprendizado de máquina em 

conjunto com indicadores séricos de rotina para desenvolver um modelo preditivo de 

FPP, especificamente em pacientes infectados com Schistosoma japonicum. Os 

autores relataram um bom desempenho preditivo dos modelos testados. A proposta 

central foi explorar as vantagens dos métodos de aprendizado de máquina na análise 

de dados complexos, permitindo um diagnóstico mais preciso da fibrose hepática na 

esquistossomose. 

Considerando as questões levantadas, a necessidade de alternativas para a 

investigação da FPP e a utilização de algoritmos de aprendizado de máquina e sua 

capacidade em lidar com dados complexos, o presente capítulo tem como objetivo 

avaliar o emprego de algoritmos de aprendizado de máquina para predizer FPP leve 

e avançada em pacientes infectados por Schistosoma mansoni. Ainda, para fins de 

complementação, a próxima seção será dedicada a uma análise na literatura dos 

estudos metabonômicos/metabolômicos sobre esquistossomose. 

3.1. Ensaios Metabolômicos e Metabonômicos em estudos sobre 

esquistossomose 

A busca por alternativas minimamente invasivas, além da US, que possam ser 

utilizadas na avaliação da FPP relacionada ao esquistossomo vem sendo relatada na 

literatura (BARRETO et al., 2017; RODRIGUES et al., 2022; LIU et al., 2024). Entre 

elas, estão modelos metabonômicos utilizando espectros de RMN de ¹H associados 

a aprendizado de máquina (RODRIGUES et al., 2022) e o uso de biomarcadores 

séricos, seja para o desenvolvimento de um índice (BARRETO et al., 2017) ou 

empregados em algoritmos de aprendizado de máquina (LIU et al., 2024).  

No cenário mundial, em uma busca na literatura nos últimos 10 anos, a maior 

parte dos estudos metabonômicos/metabolômicos envolvendo esquistossomose foi 

conduzida no continente asiático (ZHU et al., 2017; HU et al., 2017; RONG et al., 2019; 
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HU et al., 2020; HUANG et al., 2020; CHIENWICHAI et al., 2022; ZHOU et al., 2023; 

Li et al.,2024; CHIENWICHAI et al.,2024), seguido pelo Brasil (GOUVEIA et al., 2017; 

LOYO et al., 2021; RODRIGUES et al., 2022), pela África (TAWANA-NDOLO et al., 

2023) e pelos Estados Unidos (CORTES-SELVA et al., 2021). Uma característica 

recorrente nesses trabalhos é o número reduzido de amostras analisadas. Exceção a 

esse padrão é o estudo de Tawana-Ndolo e colaboradores (2023), que investigou a 

infecção por Schistosoma haematobium em 527 crianças. Nos demais trabalhos, 

mesmo aqueles realizados em camundongos, o número de participantes não 

ultrapassou 70.  

Considerando a diversidade de amostras que podem ser utilizadas em estudos 

metabonômicos, como soro, urina, fezes, tecidos e até medula óssea, a maioria das 

investigações envolvendo esquistossomose concentrou-se na análise de soro e urina. 

Para a caracterização desses biofluidos, diferentes técnicas analíticas podem ser 

empregadas, destacando-se a cromatografia líquida como a mais utilizada nos 

trabalhos envolvendo a esquistossomose (HU et al., 2017; RONG et al., 2019; HU et 

al., 2020; HUANG et al., 2020; CHIENWICHAI et al., 2022; ZHOU et al., 2023; Li et 

al.,2024; CHIENWICHAI et al.,2024). 

No que diz respeito às análises estatísticas multivariadas aplicadas aos 14 

estudos encontrados envolvendo metabolômica/metabonômica e esquistossomose, a 

maioria empregou os métodos PLS-DA ou OPLS-DA, em conjunto com a PCA, 

enquanto apenas um deles utilizou apenas a PCA (LOYO et al., 2021). As 

investigações resultaram em modelos com capacidade preditiva (Q²) variando de 0,5 

até 0,991. Este último valor foi relatado por Rong e colaboradores (2019), cujo modelo 

também apresentou bom ajuste segundo os valores de R², reforçando o potencial da 

metabonômica como alternativa promissora para o diagnóstico precoce e a 

identificação de biomarcadores associados à esquistossomose. Entre os trabalhos 

que avaliaram seus modelos por meio da curva ROC, Tawana-Ndolo e colaboradores 

(2023) obtiveram uma AUROC de 0,875, resultado considerado promissor pelo que 

vem sendo reportado na literatura. 

A possibilidade de identificação de biomarcadores com potencial clínico em 

estudos metabonômicos é uma grande ferramenta na investigação de alterações 

significativas nas vias metabólicas durante a infecção por Schistosoma. Cerca de 30 

metabólitos, entre os trabalhos dos últimos 10 anos na literatura, com S. mansoni e S. 

japonicum foram identificados como alterados no soro ou urina de humanos e ratos 
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infectados. A análise de aminoácidos como resultados da infecção por ambas as 

espécies revela efeitos significativos no metabolismo de proteínas e aminoácidos de 

cadeia ramificada. Outro metabólito relatado foi o gliceraldeído, envolvido no 

metabolismo de aldeídos, reflete alterações bioquímicas associadas à fibrose 

hepática, particularmente em infecções causadas por S. mansoni (RODRIGUES et al., 

2022). 

A análise das alterações metabólicas, incluindo as do ciclo do TCA, metabolismo 

de aminoácidos e lipídios, é essencial para compreender a relação entre alterações 

bioquímicas e manifestações clínicas da esquistossomose, como fibrose hepática e 

disfunções imunológicas. A complexidade das interações hospedeiro-parasita é 

evidenciada pela compreensão dos mecanismos patogênicos envolvidos e destacam 

a necessidade de pesquisas futuras que integrem dados metabolômicos, genômicos 

e imunológicos. Avanços metodológicos e conceituais nesse âmbito têm o potencial 

de melhorar o manejo de doenças induzidas por Schistosoma e ampliar a 

compreensão das perturbações metabólicas associadas a outras infecções 

parasitárias, oferecendo novas oportunidades para intervenções clínicas 

(RODRIGUES et al., 2025). 

Em suma, no que diz respeito a metabonômica, uma parte dos artigos 

encontrados na literatura se concentraram na identificação das potenciais vias 

metabólicas associadas à infecção, considerando o local da doença, enquanto outros 

buscaram classificar e monitorar a progressão da doença. A presente seção foi escrita 

com o objetivo de trazer uma visão geral sobre ensaios metabolômicos e 

metabonômicos na literatura envolvendo esquistossomose. Na sequência, a 

continuidade do capítulo será voltada para o uso de biomarcadores séricos e 

algoritmos de aprendizado de máquina para o estadiamento de FPP. Para 

informações mais detalhadas sobre a abordagem metabonômica na 

esquistossomose, recomenda-se a leitura integral do artigo de revisão “Metabolomics 

assays applied to schistosomiasis studies: a scoping review” (RODRIGUES et al., 

2025), produzido no contexto deste trabalho. 
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3.2. Objetivos Específicos 

• Investigar o uso de biomarcadores séricos (AST, ALT, FAL, GGT e PLT) na 

avaliação da fibrose periportal na esquistossomose mansoni. 

• Desenvolver modelos quimiométricos baseados em algoritmos de aprendizado 

de máquina para classificação das formas leves e avançadas da fibrose 

periportal, utilizando a ultrassonografia como método de referência. 

• Avaliar o desempenho dos modelos com base nas figuras de mérito e a 

importância de cada biomarcador sérico na discriminação das classes. 

3.3. Materiais e Métodos 

3.3.1. Amostragem 

O presente estudo avaliou dados obtidos de exames laboratoriais do banco de 

dados do Ambulatório de Esquistossomose do HC/UFPE (HC) e da cidade de 

Jaboatão dos Guararapes (JG) que fazem parte da rotina de solicitações médicas para 

os pacientes atendidos. Os biomarcadores séricos analisados foram o aspartato 

aminotransferase (AST), alanina aminotransferase (ALT), fosfatase alcalina (FAL) e 

gama-glutamil transferase (GGT), além da contagem de plaquetas (PLT). Os 

pacientes são homens e mulheres residentes do estado de Pernambuco com idade 

entre 18 e 80 anos infectados pelo Schistosoma Mansoni com FPP evidente, 

recrutados nos períodos de setembro de 2015 a agosto de 2016 e março de 2019 a 

2022.  

O diagnóstico foi baseado na história clínica de contato com fontes de água em 

áreas endêmicas, relatos de tratamento com praziquantel, juntamente com os 

achados no US de FPP. Como critério de exclusão, estão pacientes 

esplenectomizados, doença hepática de outra etiologia, etilistas, pacientes com 

marcadores dos vírus HIV ou das hepatites B ou C, ou outras doenças hepáticas. 

No que diz respeito ao tamanho da amostra, inicialmente, o banco de dados, 

composto por informações adquiridas no município de Jaboatão dos Guararapes e no 

HC-UFPE, continha 288 pacientes, sendo 172 mulheres e 116 homens. A distribuição 

dos padrões de FPP foi a seguinte: grupo AB = 18, grupo C = 93, grupo D = 81 e grupo 

E/F = 96. Para o presente trabalho, 184 pacientes foram incluídos, sendo 108 

mulheres e 76 homens. A FPP foi classificada de acordo com o protocolo de Niamey 
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em padrão C (periférico, leve) e padrões E ou F (central e periférico, avançada ou 

muito avançada). 

3.3.2. Análise Quimiométrica 

A análise quimiométrica do conjunto de dados, incluindo as etapas de pré-

processamento, visualização, análise exploratória e modelos de classificação, foram 

desenvolvidos em linguagem Python 3, utilizando o ambiente interativo de 

programação Google Colaboratory (Colab), uma plataforma gratuita oferecida pelo 

Google para execução em Jupyter Notebook. Para a execução dos algoritmos de 

aprendizados de máquina e todas as etapas necessária, uma série de bibliotecas foi 

utilizada: 

Scikit-learn (PEDREGOSA et al., 2011), Numpy (HARRIS et al., 2020), Pandas 

(MCKINNEY, 2010), seaborn (WASKOM, 2021), scipy (VIRTANEN et al., 2020), 

matplotlib (HUNTER, 2007), statsmodels (SEABOLD; PERKTOLD, 2010) e tqdm 

(MATIYASEVICH, 2015). 

Inicialmente, foram detectados dois valores ausentes que foram tratados com a 

imputação da mediana de cada classe, em seguida, os dados foram autoescalados 

para a PCA e futuras etapas de classificação.  

 Para os modelos de classificação, as amostras foram divididas em conjunto de 

treinamento e teste, 70% e 30%, respectivamente, utilizando o algoritmo Kennard-

Stone, que seleciona as amostras com base nas distâncias entre elas. A 

reprodutibilidade dos modelos foi garantida com o parâmetro random_state. Em 

seguida, os algoritmos de aprendizado de máquina, LDA, SVM, LR e Árvore de 

Decisão, tiveram seus parâmetros otimizados com o gridsearchCV, treinados com 128 

amostras e validados com 56 amostras de teste. O desempenho dos modelos de 

classificação foi avaliado utilizando seis figuras de mérito calculadas a partir da matriz 

de contingência obtida da validação do conjunto de teste. As figuras de mérito foram: 

exatidão (Eq. 21), VPP (Eq. 19), VPN (Eq. 20), sensibilidade (Eq. 17), especificidade 

(Eq. 18), F1-Score (Eq. 22), Kappa (Eq. 23) e AUROC. O teste de permutação foi 

empregado em todos os modelos de classificação para avaliar a significância 

estatística da exatidão dos modelos. 

A escolha dos algoritmos de aprendizado de máquina foi realizada com o objetivo 

de testar tanto classificadores lineares quanto não lineares. Além disso, foram 
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consultados trabalhos da literatura e do próprio grupo de pesquisa em que este estudo 

está sendo desenvolvido. 

3.3.3. Considerações Éticas 

O projeto foi aprovado pelo Comitê de Ética em Pesquisa (CEP) do Hospital das 

Clínicas da UFPE/ EBSERH, sob o parecer 4.465.533. A pesquisa envolvendo os 

dados dos pacientes de Jaboatão dos Guararapes-PE também passou pelo comitê de 

ética e pesquisa sob o parecer 5330740 e foram cedidos após a publicação dos dados 

(OZAKI et al., 2024). 
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3.4. Resultados e Discussão 

3.4.1. Dados Clínicos 

Foram incluídas 184 amostras, classificadas em dois grupos conforme os 

critérios ultrassonográficos do Padrão de Niamey: padrão C, correspondente à forma 

leve de fibrose periportal, e padrões E/F, representando os casos de forma avançada. 

A Tabela 10 apresenta as características demográficas e os parâmetros clínico-

laboratoriais dos pacientes incluídos, estratificados de acordo com a gravidade da 

fibrose. 

Tabela 10 - Características demográficas e parâmetros clínico-laboratoriais de acordo com a 
gravidade da esquistossomose mansoni. 

 Grupo I (Padrão C) Grupo II (Padrão EF) p-valor 

n 88 96 - 

Idade (anos ± DP) (41,4 ± 15,0) (51,2 ± 14,5) 0,00001* 

Sexo (M/F) (35,2%/64,8%) (46,9%/53,1%) 0,146** 

AST (média ± DP) (13,8 ± 10,1) (28,3±20,3) < 0,001* 

ALT (média ± DP) (23,0 ± 20,5) (27,3 ± 21,5) 0,16* 

FAL (média ± DP) (105,0 ± 171,9) (178,1 ± 142,6) < 0,0001* 

GGT (média ± DP) (34,7 ± 46,1) (80,0 ± 78,9) < 0,0001* 

PLT (média ± DP) (249 ± 100) (108,8±80,6) < 0,0001* 

*Teste de Mann-Whitney/**Teste qui-quadrado 

A análise estatística apresentada na Tabela 10 evidenciou diferenças 

significativas entre os grupos com padrão leve (C) e avançado (EF) da FPP em 

pacientes com esquistossomose mansoni. Utilizando-se o teste de Mann-Whitney 

para as variáveis contínuas e o teste qui-quadrado para a variável categórica, 

observou-se associação entre as formas avançadas da doença e maior idade, 

elevação das enzimas AST, FAL e GGT, além de uma redução significativa na 

contagem plaquetária. Por outro lado, embora a ALT tenha apresentado valores 

discretamente mais elevados no grupo com fibrose avançada, essa diferença não 

atingiu significância estatística. 
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3.4.2. Visualização dos dados 

O presente estudo clínico visa avaliar o emprego de modelos preditivos para 

discriminar FPP, leve e avançada/muito avançada, baseados em dados clínicos de 

pacientes infectados pelo Schistosoma mansoni. Com o intuito de obter um método 

de triagem clínica e fornecer informações de como as vias metabólicas dos 

biomarcadores séricos estão associadas ao desenvolvimento dessa condição, a 

matriz de dados composta por 184 amostras e cinco variáveis (AST, ALT, FAL, GGT e 

PLT) passou por etapas de pré-processamento antes do processo de modelagem. 

Inicialmente, foi realizada a busca por valores ausentes, comuns em matriz de dados 

de análises clínicas, na qual, dois valores estavam ausentes e foram tratados com a 

substituição pela mediana, uma vez que é um método robusto à presença de outliers 

e distribuições assimétricas (ALAM et al., 2023). Em seguida, as variáveis foram 

padronizadas por autoescalamento antes de qualquer modelo empregado, 

supervisionado e não supervisionado. 

É comum na rotina clínica que esses valores de AST, ALT, FAL, GGT e PLT sejam 

normalizados pelo limite superior da normalidade (LSN), devido a diferenças entre 

centros e kit análises. Sendo assim, a PCA foi empregada com os valores com e sem 

a normalização pelo LSN com o objetivo de investigar a distribuição das amostras 

considerando ambos os tratamentos. A Figura 33 apresenta os gráficos de escores 

como resultado da PCA. 
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Figura 33 - Gráfico de escores comparando a distribuição das amostras de diferentes centros: 
Hospital das Clínicas (C/HC e EF/HC) e Jaboatão dos Guararapes (C/JG e EF/JG). (a) PC1 vs PC2 – 
sem normalização; b) PC1 vs PC2 – com normalização LSN; c) PC1 vs PC3 – sem normalização; d) 

PC1 vs PC3 – com normalização LSN. 

 

Fonte: A autora (2025) 

Foi possível observar que, tanto no conjunto de amostras normalizadas quanto no 

não normalizado, os padrões de agrupamento das amostras do mesmo grupo se 

mantêm, mesmo quando provenientes de centros diferentes. Pode-se chamar atenção 

para a Figura 33. a), onde é possível observar uma melhor tendência de separação 

entre os grupos C e EF do que nas demais. Ainda, com a normalização pelo LSN, a 

matriz de dados apresentou duas variáveis altamente correlacionadas, ou seja, que 

carregam informações semelhantes. Nas matrizes de correlação da Figura 34, é 

possível observar que nos dados não normalizados essa correlação entre ALT e AST 

diminuiu. 
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Figura 34 - Matriz de correlação. A) Sem normalização; B) Com normalização – LSN. 

 

Fonte: A autora (2025) 

A normalização reduziu a variação observada para cada parâmetro. Ao observar 

os valores médio de ALT (0,60±0,56) e AST (0,62±0,51), esse comportamento fica 

mais claro. Sendo essas duas variáveis altamente correlacionadas, uma delas 

precisaria ser removida para evitar o risco de multicolinearidade nos modelos de 

classificação. Entretanto, considerando que o presente estudo visa investigar a 

influência dos cinco biomarcadores séricos e como os resultados da PCA não 

mostraram diferença entre os tratamentos, as análises seguiram com a matriz de 

dados sem a normalização pelo LSN. 

Seguindo com análise da PCA, visando identificar a ocorrência de amostras 

anômalas e se há agrupamento natural nas classes de interesse, é possível observar 

uma dispersão das amostras principalmente em relação ao grupo EF. As três primeiras 

componentes principais explicam cerca de 84% da variação dos dados. A Figura 35 

apresenta os gráficos de escore e de pesos da PCA para as três primeiras 

componentes, indicando uma tendência de agrupamento das amostras classificadas 

como grupo C com escores negativos nas três componentes principais. 

O gráfico de pesos da PC1 e PC2 (Figura 35. b) indica que as amostras do grupo 

C apresentam níveis séricos de PLT mais elevados, já as amostras do grupo EF 

apresentam níveis séricos de GGT, FAL, AST e ALT mais elevados e estão associados 

à sua maior dispersão no sentido positivo da PC1, com exceção do GGT e ALT que 

também estão a maior dispersão nos sentidos positivo e negativo, respectivamente, 

A B 
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de PC2. No que diz respeito ao gráfico de pesos da PC1 e PC3 (Figura 35. d), FAL, 

GGT e PLT estão fortemente associados a dispersão das amostras no sentido da PC3. 

Figura 35 - PCA. a) Gráfico de escores – PC1 vs PC2; b) Gráfico de pesos – PC1 vs PC2; c) Gráfico 
de escores – PC1 vs PC3; d) Gráfico de pesos – PC1 vs PC3. 

 

Fonte: A autora (2025) 

Considerando os resultados observados por meio da PCA, a etapa seguinte foi 

construir os modelos de classificação. 

3.4.3. Modelos de Classificação 

Foram aplicados quatro formalismos quimiométricos para modelar o conjunto 

de dados: a Regressão Logística (LR, do inglês, Logistic Regression), a Análise 

Discriminante Linear (LDA, do inglês, Linear Discriminant Analysis), o Máquina de 
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Vetores de Suporte (SVM, do inglês, Support Vector Machine) e Árvore de Decisão 

(DT, do inglês, Decision Tree). Para isso, o conjunto de 184 amostras foi divido em um 

grupo de treinamento, contendo 128 amostras, e grupo de teste, contendo 56 

amostras. Os modelos foram treinados e validados com o grupo de teste, a exatidão 

também foi avaliada por validação cruzada (kfold = 10) no conjunto de treino. A 

significância do desempenho dos modelos foi avaliada com o teste de permutação, 

com 1000 permutações cada teste e resultado expresso em p-valor. A matriz de 

contingência para cada um dos modelos e os resultados da validação estão 

apresentados nas Tabelas 11 e 12, respectivamente. 

Tabela 11 - Matriz de contingência dos modelos LR, SVM, LDA e DT. 

Diagnóstico Padrão 
 EF C 

LR 
EF 18 4 

C 10 24 

SVM 
EF 18 4 

C 10 24 

LDA 
EF 19 5 

C 9 23 

DT 
EF 21 1 

C 7 27 
 

Tabela 12 - Figuras de mérito calculadas para cada modelo. 

Figuras de Mérito LR SVM LDA DT 

Exatidão* 79% 78% 81% 81% 

Exatidão 75% 75% 75% 86% 

Sensibilidade 64% 64% 68% 75% 

Especificidade 86% 86% 82% 96% 

VPP 82% 82% 79% 96% 

VPN 71% 71% 72% 79% 

F1-score 72% 72% 73% 84% 

AUROC 0,879 0,875 0,884 0,875 
Kappa 0,500 0,500 0,500 0,714 

Valor de p** 0,052 0,002 0,045 0,000 

*Validação Cruzada       
**Teste de permutação 

Inicialmente, três modelos paramétricos lineares de aprendizado de máquina 

foram empregados: LR, LDA e SVM (com kernel linear). Os dois primeiros modelos 

apresentaram o mesmo desempenho na classificação das amostras do conjunto de 

teste, entretanto, a regressão logística (LR) não passou no teste de permutação (p-
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valor > 0,05). O modelo LDA classificou corretamente a mesma quantidade de 

amostras dos modelos anteriores, o que resultou em uma exatidão de 75% nos três. 

No entanto, a LDA acertou uma amostra a mais no grupo com FPP avançada. 

É importante destacar que os três modelos apresentaram maior taxa de erro na 

classificação das amostras do grupo com FPP avançada, resultando em valores de 

sensibilidade na faixa de 60%. 

Como alternativa não paramétrica, o algoritmo de árvore de decisão (DT) foi 

avaliado, apresentando o melhor desempenho de classificação entre os modelos 

testados e, consequentemente, os melhores resultados nas figuras de mérito, 

especialmente nos valores de especificidade, valor preditivo positivo (VPP) e índice 

Kappa. Este último indicou uma concordância substancial entre a predição do modelo 

e a classificação real, considerando também a possibilidade de acerto ao acaso. As 

áreas sob as curvas ROC apresentaram valores muito próximos entre os quatro 

modelos em torno de 0,88, indicando uma boa capacidade dos modelos em distinguir 

amostras positivas de negativas. A Figura 36 traz a DT para a classificação das 

amostras de FPP, construída com profundidade máxima igual a 5 e número mínimo 

de amostras por folha igual a 3. 
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Figura 36 - Árvore de decisão para classificação da FPP. Em cada nó encontra-se a impureza de Gini, o número de amostras, a distribuição por classes: [0 
(C), 1 (EF)], e a classe com a maioria das amostras. 

 

Fonte: A autora (2025).
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A profundidade da árvore (max_depth = 4) e o valor mínimo de 3 amostras por 

folha favoreceram a geração de um modelo robusto, evitando segmentações que 

poderiam se ajustar demais ao ruído dos dados de treino e impedindo a formação de 

decisões com base em pequenos grupos. Ainda, foi possível identificar os erros ao 

observar os nós terminais, onde 9 amostras, de um total de 128, foram classificadas 

de forma incorreta. 

No que diz respeito à literatura, são limitados os trabalhos que empregam 

biomarcadores séricos a modelos de aprendizado máquina para prever FPP. Entre 

eles, o estudo de Liu e colaboradores (2024) usaram exames de rotina sanguínea e 

informações básicas de pacientes com Schistosoma japonicum para estabelecer um 

modelo de aprendizado de máquina capaz de prever precocemente a FPP. Seis 

algoritmos diferentes de aprendizado de máquina foram avaliados para estabelecer 

os modelos de predição, onde, a LR, SVM e KNN apresentaram os piores 

desempenhos, com a AUC menor que 0,75. No caso dos autores, o LightGBM foi o 

algoritmo que melhor classificou as amostras, com a AUC de 0,84. Ao comparar com 

o melhor modelo do presente trabalho, pode-se afirmar resultados estão de acordo 

com o que vem sendo encontrado na literatura (Tabela 13) 

Tabela 13 - Figuras de mérito do melhor modelo de classificação do presente trabalho e do estudo de 
Liu e colaboradores (2024). 

Figuras de Mérito DT LightGBM (Liu et al., 2024) 

Exatidão 86% 81% 

Sensibilidade 75% 71% 

Especificidade 96% 84% 

VPP 96% 84% 

VPN 79% 80% 

F1-score 84% 77% 

Kappa 0,71 0,394 

Além dos modelos de aprendizado de máquina, o índice de Coutinho foi 

calculado para as amostras e, em seguida, uma curva ROC foi construída de C vs. 

EF, utilizando o índice para discriminar as duas classes e avaliando, por meio da área 

sob a curva, quão bem as amostras são discriminadas em diferentes limiares. A Figura 

37 apresenta o gráfico da curva ROC, bem como o valor da área sob a curva, que foi 

de 0,84, valor próximo ao dos modelos apresentado neste presente trabalho. O limiar 

que apresentou melhor relação entre sensibilidade e especificidade foi em 0,351. Com 

esse valor estabelecido, foi possível gerar uma matriz de contingência, na qual os 
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valores menores que 0,351 foram classificados como C e valores maiores que 0,351 

foram classificados como EF (Tabela 14). 

Figura 37 - Curva ROC: índice de Coutinho 

 

Fonte: A autora (2025) 

Tabela 14 - Matriz de contingência e figuras de mérito: Índice de Coutinho. 

 Diagnóstico padrão Cutoff (Coutinho-index) = 0,351  
AUC = 0,84  
Exatidão 78% 
Sensibilidade 72% 
Especificidade 84% 
VPP 83% 
VPN 74% 
F1-Score 77% 

EF C 

EF 68 14 

C 26 73 

Os resultados referentes ao desempenho do índice de Coutinho estão entre os 

achados encontrados no presente trabalho utilizando aprendizado de máquina. No 

trabalho de Barreto e colaboradores (2022), o índice de Coutinho foi capaz de prever 

a FPP avançada na maioria dos indivíduos avaliados. Com ponto de corte ≥ 0,316, o 

estudo revelou uma curva AUROC de 0,70, sensibilidade de 67,4% e especificidade 

de 68,3%, indicando um desempenho inferior. Os autores obtiveram esses resultados 
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comparando pacientes sem FPP (A+B) com pacientes de FPP avançada (EF), apesar 

da maior diferença entre os pacientes, o desempenho do índice, neste caso, pode ser 

atribuído ao menor tamanho da amostra (n=87) utilizada. 

É importante destacar que tanto os modelos de classificação quanto o índice 

Coutinho, fazem parte da busca por alternativas pouco invasivas capazes de 

diagnosticar e/ou estadiar a presença de FPP, principalmente em suas formas graves. 

Os modelos de classificação apresentados, com destaque para LDA e DT, obtiveram 

bons desempenho e demonstraram robustez ao classificar as amostras com FPP leve 

e avançada/muito avançada. Eles podem, portanto, ser vistos como uma alternativa 

para a discriminação de pacientes nessas condições, principalmente, por utilizarem 

biomarcadores séricos que estão disponíveis por meio de exames laboratoriais de 

rotina, facilitando o acesso de pacientes de áreas endêmicas e rurais. 

3.4.4. Importância das Variáveis 

O índice de Coutinho foi desenvolvido por Barreto e colaboradores (2017) por 

meio de um modelo de regressão logística (LR) utilizando 7 biomarcadores séricos na 

construção do modelo, entre eles, estavam os 5 avaliados no presente trabalho (AST, 

ALT, FAL, GGT e PLT). Os autores chegaram em um modelo final onde apenas a FAL 

e o número de PLT foram variáveis significativas para a FPP. 

Com o intuito de investigar como essas variáveis se comportaram no presente 

trabalho, esta seção será dedicada a apresentar e avaliar suas importâncias para a 

construção dos modelos LDA e DT.  

Iniciando pela LDA, para entender como cada variável influenciou na construção 

do modelo, foram usados os coeficientes absolutos (Tabela 15). 

Tabela 15 - Importância das variáveis no modelo LDA. 

Variável Coeficiente - LDA 

FAL -0,051357 

ALT -0,552133 

AST 0,782260 

GGT 0,289840 

PLT -1,753637 

Intercepto 0,0436 

O indicador sérico que apresenta maior influência na construção do modelo é o 

número de PLT, apresentando o maior coeficiente entre os demais. Como o modelo 
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LDA foi construído de tal forma que os voluntários com padrão C tenham escores 

menores que aqueles com padrão EF, os níveis séricos mais elevados de plaquetas 

(PLT), alanina aminotransferase (ALT) e fosfatase alcalina (FAL) tendem a diminuir o 

escore LDA para a amostras, classificando-a no grupo C. A contagem de PLT tem sido 

usada como indicador da hipertensão portal, varizes esofágicas e sangramento do 

trato digestivo superior, sintomas da FPP avançada, que resultam na redução do 

número de PLT (BARRETO et al., 2021; LEITE et al., 2013). 

Por outro lado, níveis séricos elevados de aspartato aminotransferase (AST) e 

gama glutamil transferase (GGT) aumentam o escore LDA da amostra, classificando-

a no grupo EF. O segundo indicador sérico mais importante foi a AST, uma enzima 

encontrada no fígado, mas também presente em outros tecidos do corpo humano, por 

isso, seus níveis anormais devem ser interpretados com cautela. Em casos de lesão 

hepatocelular, ocorre liberação de aminotransferases pelos hepatócitos, resultando 

em níveis séricos elevados (KALAS et al., 2021). Apesar de se esperar que na FPP a 

função hepatocelular esteja preservada, alterações nas enzimas hepáticas podem 

refletir danos funcionais a nível celular (LEITE et al., 2013; SILVA et al., 2018). 

Seguindo com as investigações, o modelo gerado com o algoritmo DT não gera 

coeficientes assim como o LDA, mas fornece as variáveis mais importantes na sua 

construção. A Figura 38 apresenta as variáveis mais importantes na discriminação dos 

pacientes de grau leve dos avançados. 

Figura 38 - Importância das variáveis no modelo DT.

Fonte: A autora (2025) 



119 
 

 Nesse caso, o número de PLT, assim como na LDA, apresenta a maior influência 

na discriminação dos grupos e, em segundo lugar, a FAL assume a posição. O número 

de PLT se destaca como um parâmetro essencial no processo de classificação. É 

válido notar que a importância das variáveis FAL e AST estão o inverso de como elas 

se comportaram na LDA. A enzima FAL é um biomarcador sérico importante para 

avaliar anormalidades colestáticas, sendo útil no diagnóstico de doenças hepáticas 

crônicas, seus níveis séricos são utilizados em investigações de trabalhos na literatura 

para prever fibrose (hepática e periportal) significativa e apresentam resultados 

promissores (LEITE et al., 2013; HU et al., 2019; ZENG et al., 2024). Esse resultado 

tem relação direta com o índice de Coutinho no qual FAL e PLT são utilizados e 

contribuem de forma semelhante para a classificação.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 
 

3.5. Conclusão do Estudo 3 – Estadiamento de Fibrose Periportal 

Este trabalho teve como objetivo investigar o uso de biomarcadores séricos na 

construção de algoritmos de aprendizado de máquina aplicados à progressão da FPP 

para formas mais graves, em pacientes com Schistosoma mansoni. Quatro algoritmos 

foram avaliados: Regressão Logística (LR), Máquina de Vetores de Suporte (SVM), 

Análise Discriminante Linear (LDA) e Árvore de Decisão (DT). Entre eles, apenas o 

LR não apresentou desempenho significativo no teste de permutação. 

 Ao avaliar os três modelos restantes, o algoritmo de Árvore de Decisão 

apresentou os melhores resultados com exatidão de 86%, valor predito positivo (VPP) 

de 96% e coeficiente Kappa de 0,710, se destaca entre os demais modelos, 

evidenciando sua robustez na classificação. Ao avaliar as variáveis importantes para 

os modelos LDA e DT, foi possível ver como os biomarcadores séricos influenciaram 

na construção dos modelos, com atenção para PLT e FAL que apresentaram maior 

importância para construção do modelo DT, e estão relacionados diretamente no 

cálculo do índice de Coutinho, o que reforça sua relevância clínica. 

Por fim, pode-se concluir que os modelos apresentados no presente trabalho 

apresentaram resultados promissores na discriminação de pacientes com formas leve 

e avançada de FPP. Tais achados sugerem que o uso de algoritmos de aprendizado 

de máquina configura-se como mais uma ferramenta a ser explorada e investigada 

para o monitoramento da FPP, especialmente em áreas endêmicas e com difícil 

acesso aos métodos padrão. 
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4. Conclusão 

O presente estudo teve como objetivo desenvolver, a partir de ensaios 

metabonômicos e quimiométricos, modelos para o diagnóstico de Lesão Renal Aguda 

em recém-nascidos, para a discriminação de Nefrite Lúpica proliferativa associada ou 

não à membranosa e para a discriminação entre Fibrose Periportal leve e avançada, 

em pacientes com esquistossomose mansoni. O emprego dos algoritmos de 

aprendizado de máquina seguiu por dois caminhos, um deles na abordagem 

metabonômica em pacientes com Lesão Renal Aguda e Nefrite Lúpica, enquanto o 

outro se baseou em parâmetros bioquímicos séricos de pacientes com Fibrose 

Periportal. 

Para todas as doenças investigadas, os modelos de classificação empregados 

demonstraram alta acurácia, com destaque para os modelos SVM e LR. Além disso, 

foi possível identificar possíveis metabólitos associados às condições investigadas, os 

quais revelam informações sobre vias metabólicas perturbadas e oferecem novas 

perspectivas sobre a doença. 

Os resultados indicam que a hipótese de que o perfil de metabólitos endógenos 

presentes em biofluidos de uma pessoa se altera em função de seu status clínico 

(doente/saudável) mostrou-se correta. Essa perturbação, acessada por meio de 

ferramentas quimiométricas aplicadas a dados espectrais obtidos desses biofluidos, 

permitiu investigar sistemas complexos de forma minimamente invasiva, oferecendo 

ferramentas promissoras para o diagnóstico e estadiamento de doenças renais e 

hepáticas, mesmo diante da limitação no número de amostras. 
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Perspectivas 

Os resultados do presente estudo demonstraram-se promissores, o emprego de 

modelos metabonômicos e quimiométricos na investigação de doenças renais e 

hepáticas, apresentaram bons desempenhos. Entretanto, assim como observado na 

literatura, o presente estudo encontrou limitações relacionadas ao número de 

amostras e, mesmo com a aplicação da sobreamostragem, ainda seria importante 

trabalhar com conjuntos maiores para avaliar melhor a robustez dos modelos. 

Aumentar o número de amostras segue como uma das principais perspectivas 

futuras, não apenas para continuidade deste estudo, mas também para trabalhos 

futuros. Além disso, três artigos, um em etapa de submissão e dois em produção, são 

esperados como resultado desta tese, somando-se ao artigo de revisão já publicado. 

Como projeto futuro, pretende-se analisar amostras de pacientes com doença 

renal terminal submetidos a transplante por meio de RMN de ¹H, integrando 

abordagem metabonômica, parâmetros clínicos e aprendizado de máquina. O objetivo 

é investigar os perfis metabólicos de pacientes que necessitam de diálise pós-

transplante em comparação àqueles que não apresentam essa necessidade, 

utilizando os resultados e métodos desta tese como direcionamento. 

O crescente desenvolvimento de estudos metabonômicos e a aplicação de 

aprendizado de máquina em dados clínicos podem contribuir para um futuro baseado 

em técnicas não invasivas como forma de diagnóstico, trazendo não apenas maior 

conforto aos pacientes, mas também a possibilidade de identificar doenças de forma 

precoce e em larga escala. 
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APÊNDICE A – PARÂMETROS DOS MODELOS 

Tabela A 1 – Parâmetros utilizados na otimização dos algoritmos pelo método GridSearchCV(). 

Algoritmo Parâmetros Valores otimizados 

SVM 

C [0.001, 0.01, 0.1, 1, 10, 100] 

kernel ["linear", "rbf", "poly"] 

gamma ["scale", "auto", 0.001, 0.01, 0.1, 1] 

LDA 
Encolhimento [sim; não] 

Solucionador ["svd", "lsqr", "eigen"] 

LR C [0.01, 0.1, 1, 10, 100] 

DT 
máx. profundidade [1, 2, 3, 4, 5, 6, 8, 10] 

nº min. de amostras por 
folha 

[1, 2, 3, 4, 5, 6] 

Mais detalhes sobre os parâmetros e os algoritmos podem ser acessados na referência PEDREGOSA 

et al., 2011a. 

Tabela A 2 – Parâmetros de cada modelo de classificação após a otimização. 

Conjunto de dados Algoritmos Seletor Parâmetros 

LRA SVM - C: 1, kernel:"linear" 

 LDA - shrinkage: "auto", solver: "lsqr" 

 LR - C: 1, solver:'lbfgs' 

NL SVM - C: 1, gamma: 0.1, kernel: 'rbf' 

 LDA - solver: 'svd' 

 LR - C: 1, solver:'lbfgs' 

 SVM SFM-LR C: 1, gamma: 0.1, kernel: 'rbf' 

 LDA SFM-LR shrinkage:"auto", solver:"lsqr" 

 LR SFM-LR C: 100, solver: 'lbfgs' 

 SVM SFS-LR C: 10, gamma: 0.1, kernel: 'rbf' 

 LDA SFS-LR shrinkage:"auto", solver:"lsqr" 

 LR SFS-LR C: 1, solver:'lbfgs' 

 SVM SFM-RF C: 1, gamma: 0.1, kernel: 'rbf' 

 LDA SFM-RF shrinkage:"auto", solver:"lsqr" 

 LR SFM-RF C: 0.01, solver: 'lbfgs' 

 SVM SFS-RF C: 1, gamma: 0,1, kernel: 'rbf' 

 LDA SFS-RF shrinkage:"auto", solver:"lsqr 

 LR SFS-RF C: 1, solver:'lbfgs' 

 SVM GA C: 1.0, kernel: 'rbf' 

 LDA GA solver: 'svd' 

 LR GA C: 1.0, solver: 'lbfgs' 

FPP SVM  C: 0.01, kernel: "linear" 

 LDA  solver: 'svd' 

 LR  C: 0.1, solver: 'lbfgs' 

 DT 
 criterion: 'gini', max_depth: 5, 

min_samples_leaf: 3 
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APÊNDICE B – GRÁFICOS DE PESOS DA PCA: LRA. 

Figura B1 – Gráficos de pesos (loadings). a) PC1; b) PC2. 

 

a) 
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Figura B2 - Gráfico de escores 3D.
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APÊNDICE C – TESTE DE KOLMOGOROV-SMIRNOV: LRA 

Tabela C1 - Resultados do teste de Kolmogorov-Smirnov (KS). 

Índice Variável D (KS) p_valor Índice Variável D (KS) p_valor 

0 0.53194 0.095318 0.992405 51 2.57413 0.115385 0.954587 

1 0.57199 0.073579 0.999832 52 2.61417 0.135452 0.869359 

2 0.61203 0.173913 0.620789 53 2.65421 0.175585 0.609575 

3 0.65207 0.120401 0.936742 54 2.69426 0.14214 0.830821 

4 0.69211 0.105351 0.980507 55 2.7343 0.115385 0.954587 

5 0.73216 0.070234 0.999934 56 2.77434 0.130435 0.896505 

6 0.7722 0.118729 0.94357 57 2.81439 0.128763 0.90547 

7 0.81224 0.128763 0.90547 58 2.85443 0.091973 0.995148 

8 0.85229 0.168896 0.653915 59 2.89447 0.117057 0.949879 

9 0.89233 0.168896 0.653915 60 2.93451 0.143813 0.824894 

10 0.93237 0.175585 0.609575 61 2.97456 0.113712 0.960102 

11 0.97241 0.14214 0.830821 62 3.0146 0.117057 0.949879 

12 1.01246 0.130435 0.896505 63 3.05464 0.170569 0.646525 

13 1.0525 0.108696 0.973425 64 3.09469 0.147157 0.80083 

14 1.09254 0.14214 0.830821 65 3.13473 0.185619 0.539818 

15 1.13259 0.083612 0.998741 66 3.17477 0.132107 0.888197 

16 1.17263 0.152174 0.770043 67 3.21481 0.167224 0.668392 

17 1.21267 0.118729 0.94357 68 3.25486 0.125418 0.917873 

18 1.25271 0.152174 0.770043 69 3.2949 0.117057 0.949879 

19 1.29276 0.150502 0.783088 70 3.33494 0.133779 0.879598 

20 1.3328 0.153846 0.759172 71 3.37499 0.152174 0.770043 

21 1.37284 0.152174 0.770043 72 3.41503 0.107023 0.977148 

22 1.41289 0.150502 0.783088 73 3.45507 0.118729 0.94357 

23 1.45293 0.108696 0.973425 74 3.49511 0.100334 0.987428 

24 1.49297 0.118729 0.94357 75 3.53516 0.147157 0.80083 

25 1.53301 0.145485 0.813272 76 3.5752 0.162207 0.702762 

26 1.57306 0.128763 0.90547 77 3.61524 0.147157 0.80083 

27 1.6131 0.157191 0.736464 78 3.65529 0.118729 0.94357 

28 1.65314 0.157191 0.736464 79 3.69533 0.14214 0.830821 

29 1.69319 0.167224 0.668392 80 3.73537 0.168896 0.653915 

30 1.73323 0.175585 0.609575 81 3.77541 0.098662 0.988559 

31 1.77327 0.138796 0.853481 82 3.81546 0.130435 0.896505 

32 1.81331 0.185619 0.539818 83 3.8555 0.100334 0.987428 

33 1.85336 0.173913 0.620789 84 3.89554 0.153846 0.759172 

34 1.8934 0.145485 0.813272 85 3.93559 0.133779 0.879598 

35 1.93344 0.113712 0.960102 86 3.97563 0.148829 0.794511 

36 1.97349 0.158863 0.723471 87 4.01567 0.09699 0.990622 

37 2.01353 0.16388 0.688755 88 4.05571 0.12709 0.913739 

38 2.05357 0.145485 0.813272 89 4.09576 0.180602 0.574729 

39 2.09361 0.17893 0.587849 90 4.1358 0.100334 0.987428 

40 2.13366 0.132107 0.888197 91 4.17584 0.167224 0.668392 
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41 2.1737 0.158863 0.723471 92 4.21589 0.14214 0.830821 

42 2.21374 0.132107 0.888197 93 4.25593 0.170569 0.646525 

43 2.25379 0.167224 0.668392 94 4.29597 0.153846 0.759172 

44 2.29383 0.160535 0.716412 95 4.33601 0.147157 0.80083 

45 2.33387 0.202341 0.434622 96 4.37606 0.137124 0.858953 

46 2.37391 0.145485 0.813272 97 4.4161 0.168896 0.653915 

47 2.41396 0.167224 0.668392 98 4.45614 0.135452 0.869359 

48 2.454 0.128763 0.90547 99 4.49619 0.147157 0.80083 

49 2.49404 0.148829 0.794511 100 4.53623 0.133779 0.879598 

50 2.53409 0.145485 0.813272 101 4.57627 0.123746 0.925838 

p-valor > 0,05 sugere que as distribuições das variáveis antes e depois do 

SMOTE são estatisticamente semelhantes. 

Figura C1 - Histogramas das variáveis com as maiores diferenças nas distribuições antes e depois do 
SMOTE, selecionadas pelas menores p-valores do teste de KS. 
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APÊNDICE D – GRÁFICOS DE ESCORES E PESOS DA PCA: NL 

Figura D1- Gráfico de escores da PCA nos dados de NL. a) PC1 vs. PC2; b) PC1 vs. PC3; c) PC2 vs. 
PC3. 
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Figura D2 - Gráficos de pesos (loadings). a) PC1; b) PC2. 
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APÊNDICE E – TESTE DE KOLMOGOROV-SMIRNOV: NL 

Tabela E1 - Resultados do teste de Kolmogorov-Smirnov (KS). 

Índice Variável D (KS) p_valor Índice Variável D (KS) p_valor 

0 0.511671 0.084848 0.999364 51 2.54902 0.135758 0.912112 

1 0.551619 0.077576 0.999868 52 2.58897 0.135758 0.912112 

2 0.591567 0.117576 0.969994 53 2.62892 0.135758 0.912112 

3 0.631516 0.107879 0.985928 54 2.66887 0.105455 0.989028 

4 0.671464 0.077576 0.999868 55 2.70881 0.146667 0.861036 

5 0.711412 0.087273 0.999002 56 2.74876 0.146667 0.861036 

6 0.75136 0.077576 0.999868 57 2.78871 0.087273 0.999002 

7 0.791308 0.087273 0.999002 58 2.82866 0.163636 0.770751 

8 0.831256 0.166061 0.752737 59 2.86861 0.164848 0.761848 

9 0.871204 0.224242 0.40273 60 2.90855 0.126061 0.946338 

10 0.911152 0.059394 1.00000 61 2.9485 0.174545 0.700867 

11 0.9511 0.164848 0.761848 62 2.98845 0.174545 0.700867 

12 0.991048 0.115152 0.975347 63 3.0284 0.203636 0.521032 

13 1.031 0.145455 0.868193 64 3.06835 0.214545 0.454436 

14 1.07094 0.174545 0.700867 65 3.10829 0.174545 0.700867 

15 1.11089 0.115152 0.975347 66 3.14824 0.174545 0.700867 

16 1.15084 0.106667 0.987527 67 3.18819 0.164848 0.761848 

17 1.19079 0.084848 0.999364 68 3.22814 0.193939 0.580503 

18 1.23074 0.144242 0.875207 69 3.26809 0.243636 0.309024 

19 1.27068 0.066667 0.999993 70 3.30803 0.133333 0.923151 

20 1.31063 0.184242 0.638462 71 3.34798 0.124848 0.950586 

21 1.35058 0.206061 0.501553 72 3.38793 0.155152 0.817097 

22 1.39053 0.235152 0.346206 73 3.42788 0.224242 0.40273 

23 1.43048 0.174545 0.700867 74 3.46783 0.224242 0.40273 

24 1.47042 0.087273 0.999002 75 3.50777 0.224242 0.40273 

25 1.51037 0.153939 0.82525 76 3.54772 0.224242 0.40273 

26 1.55032 0.106667 0.987527 77 3.58767 0.243636 0.309024 

27 1.59027 0.184242 0.638462 78 3.62762 0.233939 0.354308 

28 1.63022 0.214545 0.454436 79 3.66757 0.233939 0.354308 

29 1.67016 0.146667 0.861036 80 3.70752 0.233939 0.354308 

30 1.71011 0.145455 0.868193 81 3.74746 0.224242 0.40273 

31 1.75006 0.203636 0.521032 82 3.78741 0.224242 0.40273 

32 1.79001 0.126061 0.946338 83 3.82736 0.233939 0.354308 

33 1.82996 0.135758 0.912112 84 3.86731 0.224242 0.40273 

34 1.8699 0.185455 0.628445 85 3.90726 0.233939 0.354308 

35 1.90985 0.174545 0.700867 86 3.9472 0.233939 0.354308 

36 1.9498 0.145455 0.868193 87 3.98715 0.193939 0.580503 

37 1.98975 0.164848 0.761848 88 4.0271 0.204848 0.511486 

38 2.0297 0.225455 0.393754 89 4.06705 0.113939 0.977817 

39 2.06965 0.244848 0.302126 90 4.107 0.116364 0.972693 

40 2.10959 0.116364 0.972693 91 4.14694 0.145455 0.868193 
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41 2.14954 0.164848 0.761848 92 4.18689 0.206061 0.501553 

42 2.18949 0.095758 0.996071 93 4.22684 0.116364 0.972693 

43 2.22944 0.175758 0.691155 94 4.26679 0.195152 0.570594 

44 2.26939 0.166061 0.752737 95 4.30674 0.156364 0.808776 

45 2.30933 0.088485 0.998769 96 4.34668 0.156364 0.808776 

46 2.34928 0.135758 0.912112 97 4.38663 0.13697 0.906355 

47 2.38923 0.164848 0.761848 98 4.42658 0.146667 0.861036 

48 2.42918 0.156364 0.808776 99 4.46653 0.117576 0.969994 

49 2.46913 0.193939 0.580503     

50 2.50907 0.124848 0.950586     

p-valor > 0,05 sugere que as distribuições das variáveis antes e depois do 

SMOTE são estatisticamente semelhantes. 

Figura E1 - Histogramas das variáveis com as maiores diferenças nas distribuições antes e depois do 
SMOTE, selecionadas pelas menores p-valores do teste de KS. 

 



157 
 

APÊNDICE F – NOTA DE IMPRENSA 

QUIMIOMETRIA APLICADA À AVALIAÇÃO CLÍNICA DE LESÃO RENAL AGUDA, 

NEFRITE LÚPICA E ESQUISTOSSOMOSE  

(Tese de Doutorado) 

Programa de Pós-Graduação em Química da Universidade Federal de Pernambuco 

Doutorando: Antonia Regina dos Santos Gois (Bolsista Capes) 

Orientador: Prof. Dr. Ricardo Oliveira da Silva 

A abordagem metabonômica visa investigar alterações nos perfis de metabólitos 

associadas a condições fisiológicas ou patológicas, como doenças. A informação 

contida em biofluidos (sangue, urina, fezes, entre outros) pode ser utilizada para 

auxiliar no diagnóstico precoce, estadiamento e prognóstico de diversas 

enfermidades, tornando a metabonômica uma ferramenta minimamente invasiva 

aplicável na tomada de decisões clínicas. Para extrair essas informações, são 

empregadas técnicas analíticas, seguidas de algoritmos de aprendizado de máquina, 

que consistem em métodos matemáticos capazes de processar grandes conjuntos de 

dados e identificar padrões relevantes. 

Nesta tese de doutorado, foram desenvolvidos modelos metabonômicos para 

diagnosticar Lesão Renal Aguda (LRA) e monitorar Nefrite Lúpica (NL) proliferativa e, 

de forma paralela, modelos quimiométricos para monitorar a Fibrose Periportal (FPP). 

O conjunto de dados LRA foi coletado na literatura e o primeiro a ser investigado, 

baseado em 40 amostras de bebês prematuro o modelo de diagnóstico apresentou 

exatidão de 86%, sensibilidade de 71,40% e especificidade de 100%. Para o 

estadiamento de NL proliferativa com e sem lesão membranosa, as amostras foram 

coletadas no Hospital das Clínicas (HC) da UFPE, analisadas e passaram para etapa 

de modelagem, na qual, o modelo de estadiamento apresentou exatidão de 92,3%, 

sensibilidade de 100% e especificidade de 85,7%. Para o estadiamento de FPP, dados 

de exame de rotina de 184 pacientes, do HC e de Jaboatão dos Guararapes, foram 

investigados, no qual o modelo construído apresentou exatidão de 86%, sensibilidade 

de 75% e especificidade de 96%. 

A investigação em torno de diferentes algoritmos de aprendizado de máquina, 

associados com etapas de pré-processamento resultaram em modelos com bons 

desempenhos, mesmo enfrentando problemas com o número de amostras reduzido 

nos dados de LRA e NL. Os resultados mostraram o potencial dos modelos 

metabonômicos e de aprendizado de máquina como uma alternativa minimamente 

invasiva que, além de reduzir a necessidade de procedimentos invasivos, como 

biópsias renais, fornece dados sobre alterações metabólicas específicas das doenças. 

 



158 
 

ANEXO 1 

1. PRIMEIRA PÁGINA DO ARTIGO PUBLICADO REFERENTE AO CAPÍTULO 3: Revisão 
sobre ensaios metabolômicos aplicados em estudos sobre esquistossomose.  
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ANEXO 2 

2. PRIMEIRA PÁGINA DO ARTIGO PUBLICADO EM ESTUDO PARALELO A TESE: Triagem 
Metabolômica de Amostras Fecais como Método Alternativo aos Ensaios Clínicos Iniciais 
de Alergia à Proteína do Leite de Vaca em Lactentes. 

 


