
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

OSMAR FREITAS DA SILVA JÚNIOR

POPULATION PERSISTENCE AND DIVERGENCE
DRIVEN BY ENVIRONMENTAL CHANGES

Recife
2025



OSMAR FREITAS DA SILVA JÚNIOR

POPULATION PERSISTENCE AND DIVERGENCE
DRIVEN BY ENVIRONMENTAL CHANGES

Tese apresentada ao Programa de Pós-Graduação
em Física da Universidade Federal de Pernambuco,
como requisito parcial para a obtenção do título de
Doutor em Física.

Área de Concentração: Física Teórica e Computa-
cional

Orientador: Paulo Roberto de Araújo Campos

Coorientadora: Sabrina Borges Lino Araújo

Recife
2025



Silva Junior, Osmar Freitas da.
   Population Persistence and Divergence Driven by Environmental
Changes / Osmar Freitas da Silva Junior. - Recife, 2025.
   143f.: il.

   Tese (Doutorado) - Universidade Federal de Pernambuco, Centro
de Ciências Exatas e da Natureza, Programa de Pós-Graduação
Física, 2025.
   Orientação: Paulo Roberto de Araújo Campos.
   Coorientação: Sabrina Borges Lino Araújo.
   Inclui referências e apêndices.

   1. Evolutionary dynamics; 2. Environmental changes; 3.
Persistence; 4. Speciation. I. Campos, Paulo Roberto de Araújo.
II. Araújo, Sabrina Borges Lino. III. Título.

UFPE-Biblioteca Central

.Catalogação de Publicação na Fonte. UFPE - Biblioteca Central



OSMAR FREITAS DA SILVA JÚNIOR 

 
 

POPULATION PERSISTENCE AND DIVERGENCE DRIVEN BY 

ENVIRONMENTAL CHANGES 

 
 
Tese apresentada ao Programa de            
Pós-Graduação em Física da Universidade 
Federal de Pernambuco, como requisito 
parcial para a obtenção do título de Doutor 
em Física. 
 
Área de Concentração: Física Teórica e 
Computacional 

 
 
Data de aprovação: 06/06/2025. 
 
 

BANCA EXAMINADORA 

 
 
 

_______________________________________________ 
Prof. Dr. Paulo Roberto de Araujo Campos  

Orientador 
Universidade Federal de Pernambuco 

 
 

_______________________________________________ 
Prof. Dr. Pedro Valadão Carelli 

Examinador Interno 
Universidade Federal de Pernambuco 

 
 

_______________________________________________ 
Profa. Dra. Ana Carolina Oliveira de Queiroz Carnaval  

Examinadora Externa 
City University of New York 

 
 

_______________________________________________ 
Profa. Dra. Celia Beatriz Anteneodo de Porto 

Examinadora Externa 
Pontifícia Universidade Católica do Rio de Janeiro 

 
 

_______________________________________________ 
Prof. Dr. José Alexandre Felizola Diniz Filho 

Examinador Externo  
Universidade Federal de Goiás 



ACKNOWLEDGEMENTS

Agradeço à meu pai por ter me ensinado que pra tudo na vida se dá um jeito, à minha
mãe por me mostrar que quanto mais se vive mais a gente aprende, e aos meus irmãos, sem
os quais me faltariam cúmplices nessa aventura que é fazer parte da nossa família.

Agradeço aos meu orientadores por me orientarem tanto na academia quanto na vida. Em
particular, ao Prof. Paulo Campos pela oportunidade que me foi dada e pela paciência ao
me orientar em uma área na qual sempre tive muito fascínio, porém poquíssima experiência.
Também à Profa. Sabrina Araújo por ter topado fazer parte de minha formação, por me abrir
tantas portas e por me aproximar da biologia e, especialmente, dos biólogos.

Agradeço também aos professores que me ensinaram muito além da sala de aula, à todo
o grupo de Interações Biológicas, à todo o grupo do LTEEI e aos colegas do DF com quem
partilhei essa caminhada na academia. Em particular, ao meu colega Diego por dividirmos as
dores e o fascínio de ser cientista.

Agradeço também à FACEPE, sem a qual esta pesquisa não se realizaria; à estrutura
fornecida pela UFPE, pelo Departamento de Física e pelo laboratório de Dinâmica Evolu-
cionária.

E, por fim, agradeço à estocaticidade dos eventos históricos que fizeram com que hoje eu
tenha, sempre ao meu lado, minhas companheiras de vida: Ravena e Suricat.



ABSTRACT

The evolution of life accompanies the dynamics of our planet Earth. From continental
drift to glacial ages, geological events have shaped the Earth’s surface and climate, influenc-
ing the evolutionary history of populations. Much more recently, the human species became
capable of great modifications on the planet as well. Increasing global temperature, altering
the course of rivers and an ever-expanding usage of the land are some examples of human
activities that cause great pressure upon other species. In this work, we use stochastic evolu-
tionary models to study two aspects of evolution driven by environmental changes: population
persistence and divergence. Persistence is the ability of a population to survive and adapt
to drastic environmental changes, while divergence involves the initial differentiation process
leading to new species. Our first approach on persistence deals with evolutionary rescue, a
process where adaptive evolution reverts the fate of a population doomed to extinction. With
a combination of analytical and simulation methods, we show the relation between the prob-
ability of extinction and the intensity of stress level upon the population. We characterize
the parallelism of the evolutionary response and its relation with demographic and genetic
factors of density regulation and epistasis, respectively. In the sequel, we pass to study the
divergence process at the speciation level in a population divided into a two-deme system
where geographic environmental events determine the possibility of exchanging individuals.
In this neutral selective model, only the migration rate among patches and the intermittent
periods of connectance and isolation can promote population divergence leading to speciation.
We register the dynamics through a phylogenetic speciation tree and show how the rate and
mode of speciation are related to the time the population spent in isolation. At last, we study
speciation in a metapopulation model under environmental fluctuations, where both selection
and migration are present. We carry out a statistical analysis over different sets of parameters
in order to examine the resulting diversity. We then compare how different scenarios of envi-
ronmental variations - including the magnitude and frequency of these changes - affect the
persistence and divergence of the metapopulation. We find that the pattern of speciation is
only dependent on the net effect of the environmental disturbances, despite the rate at which
the events occur. We hope that these models can give us insight into the processes affecting
life’s diversity and resilience.

Keywords: Evolutionary dynamics. Environmental changes. Persistence. Speciation.



RESUMO

A evolução da vida acompanha a dinâmica do nosso planeta Terra. Da deriva continental
às eras glaciais, eventos geológicos moldaram a superfície e o clima da Terra, influenciando
a história evolutiva das populações. Muito mais recentemente, a espécie humana também
se tornou capaz de grandes modificações no planeta. O aumento da temperatura global, a
alteração do curso dos rios e o uso cada vez maior da terra são alguns exemplos de ativi-
dades humanas que exercem grande pressão sobre outras espécies. Neste trabalho, utilizamos
modelos evolutivos estocásticos para estudar dois aspectos da evolução impulsionados por
mudanças ambientais: persistência e divergência populacional. Persistência é a capacidade de
uma população sobreviver e se adaptar a mudanças ambientais drásticas, enquanto divergência
envolve o processo inicial de diferenciação que leva ao surgimento de novas espécies. Nossa
primeira abordagem sobre persistência trata do resgate evolutivo, um processo em que a adap-
tação reverte o destino de uma população fadada à extinção. Combinando métodos analíticos
e simulação, mostramos a relação entre a probabilidade de extinção e o nível de estresse so-
bre a população. Investigamos a resposta evolutiva e sua relação com fatores demográficos
e genéticos, envolvendo crescimento populacional e epistasia, respectivamente. Na sequência,
passamos a estudar o processo de divergência à nível de espécies em uma população dividida
em duas ilhas, onde eventos ambientais geográficos determinam a possibilidade de troca de
indivíduos. Neste modelo neutro, apenas a taxa de migração entre as ilhas e os períodos inter-
mitentes de conectância e isolamento podem promover a divergência populacional, levando à
especiação. Registramos a dinâmica por meio de uma filogenia e mostramos como a taxa e o
modo de especiação estão relacionados ao tempo de isolamento. Por fim, estudamos a especi-
ação em um modelo de metapopulação sob flutuações ambientais, onde tanto a seleção quanto
a migração estão presentes. Realizamos uma análise estatística sobre diferentes conjuntos de
parâmetros para examinar a diversidade resultante. Em seguida, comparamos como diferentes
cenários de variações ambientais – incluindo a magnitude e a frequência dessas mudanças –
afetam a persistência e a divergência da metapopulação. Descobrimos que o padrão de espe-
ciação depende apenas do efeito líquido das perturbações ambientais, independentemente da
taxa em que os eventos ocorrem. Esperamos que a discussão deles possa nos dar uma visão
sobre os processos que afetam a diversidade e a resiliência da vida.

Palavras-chaves: Dinâmica evolucionária. Mudanças ambientais. Persitência. Especiação.
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1 INTRODUCTION

Nothing in biology makes sense

except in the light of evolution.

(Dobzhansky)

The evolution of life accompanies the dynamics of our planet Earth. From continental drift
to glacial ages, geological events have shaped the Earth’s surface and climate, influencing the
evolutionary history of populations, with species regularly appearing, getting extinguished and
modifying over larger time scales. Much more recently, the human species became capable of
great modifications on the planet as well. Increasing global temperature, altering the course
of rivers and an ever-expanding usage of the land are some examples of human activities
that cause great pressure upon other species. Both natural and anthropomorphic causes can
affect the stability of populations, leading to differential changes in species, a reorganization
of species communities, and a risk of extinction. In an ever-changing planet, understanding
the effect of environmental modifications on life’s diversity and resilience is essential to grasp
the fate of species, including our own.

Evolutionary Theory is one of the most beautiful and successful theories in science. Through
the set of its essential mechanisms, we came to understand the complex collective behavior
of living organisms, to track the origin of their common ancestors, and to account for the
abundant variety of life forms. In this thesis, we focus on two aspects of evolution driven by
environmental changes: population persistence and divergence. Persistence refers to a pop-
ulation’s ability to survive drastic environmental alterations and their potential to adapt to
the newly harsh conditions. Divergence refers to the initial process of differentiation that will
ultimately give rise to new species, and encompasses the influence that variable environmental
conditions have on the development and maintenance of diversity.

In this introductory chapter, we briefly present and discuss some relevant aspects that
contextualize this work - the mechanisms shaping population evolution and evolutionary re-
sponses to environmental changes. The reader can jump to the last section of this chapter for
the specific applications of these subjects in this thesis and their corresponding chapters.
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1.1 An initial disclaimer

Evolution is inherently influenced by both random and deterministic factors. As such, a
great body of evolutionary models is often stochastic, accounting for the inherent unpredictabil-
ity of events like mutation, reproductive success, and environmental changes, which can lead to
different evolutionary outcomes even with the same initial conditions (CROW; KIMURA, 1970).

This thesis incorporates computational and probabilistic models to study population evo-
lution driven by environmental changes. When possible, the biological concepts are presented
together with simple probabilistic models of population genetics in the hope that they can
complement each other to a better understanding.

Regarding the works resulting from this research, we utilize random branching processes
for many of our analytical approximations, and the central limit theorem for a feasible com-
parison between abrupt and continuous environmental fluctuations (FELLER, 1991). On the
computational aspect, all works are grounded in individual-based models with a genetic basis
(DEANGELIS; GRIMM, 2014). This allows for simulation of complex ecological and evolutionary
processes, including trait variation, demographic stochasticity, and the influence of individual-
level mechanisms on population dynamics. In this microevolutionary approach, evolutionary
patterns emerge from the collective interaction between individuals, their environment and the
effects of genetic architecture.

1.2 Population Growth

In biology, a population is the summation of living organisms of the same group or species,
inhabiting the same place. By reproducing, individuals of the same species pass on their
hereditary traits to their descendants. The first and simplest life forms to arise on Earth
replicate themselves, and at some point in life’s history, some newly developed forms needed
the combination of two parents to generate offspring. Even with a low life expectancy, a set
of individuals will grow in number as long as food, space, and other resources are available.
But of course, a population can not grow indefinitely. The limitations of space and resources
impose an upper limit on the final population size, usually dubbed the system’s carrying

capacity. Additionally, the rate at which a population grows can change based on the current
population density (Fig. 1).
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Figure 1 – Simple distinction between independent and dependent density growth, represented by an expo-
nential and logistic growth, respectively.
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Density-dependent growth may reflect intrinsic ecological properties such as competition
for resources, prey-predator dynamics, or simply crowding. Density dependence is important to
conservation because it can lead to either population regulation (i.e., stabilization of population
size) or population destabilization (thus increasing the probability of population going extinct)
(GOMULKIEWICZ; HOLT, 1995). In particular, extinction risk increases significantly if population
size or density falls below a certain threshold value (OVASKAINEN; HANSKI, 2003).

As long as environmental conditions do not interfere with the population structure or its
carrying capacity, an established population may maintain its numbers invariant over long
time scales. However, more commonly than not, intense or abrupt environmental changes can
disturb stable populations and lead to their decline (WILLI; HOFFMANN, 2009).

1.3 Evolutionary mechanisms

The individuals comprising a population are different, and this information is stored in their
genotypes (genes) and expressed in their phenotypes (traits). Over generations, evolutionary
mechanisms shape the population composition, increasing or decreasing its variability. In this
section, we present a short overview of the genotype-phenotype mapping, the inheritance of
traits, and the main drivers of population evolution, namely selection, mutation, migration,
and genetic drift.
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Genotype-Phenotype mapping

The genome is a collection of "sites" (loci) that store the genetic information of an or-
ganism. In the molecular context of DNA polymerase, each locus is filled with one of the four
possible nucleotides {𝐴, 𝑇, 𝐺, 𝐶}. For a given genome with a length of 𝐿 loci, there are 4𝐿

unique combinations of this four-letter alphabet. Only some regions of the genome carry the
genetic information that codes for proteins 1. When read by sequence-reading proteins, this
information is biologically expressed through phenotypic traits (RIDLEY, 2003): continuous or
discrete observable characteristics including its morphology, immune defenses, reproduction
rates, behavior, biochemical properties, etc.

Importantly, the mapping genotype-phenotype (𝐺 → 𝑃 ), is not necessarily a one-to-one
map (DROSSEL, 2001). Gene expression is regulated by a variety of mechanisms that may de-
pend on stimuli from the external environment. Organisms may exhibit heritable phenotypical
changes that do not involve changes in the genetic sequence of a cell at all - for example,
through epigenetics and phenotypic plasticity. Furthermore, some genes may be active at dif-
ferent stages in the developmental process. In sum, the phenotype is the result of an extremely
complex interplay of the different parts of the genome, and of its environment.

Drivers of evolutionary change

Mutation

The most common way to pass genetic material is through vertical gene transfer 2, most
commonly known as reproduction. Asexual organisms make clones of themselves, while sexual
organisms mix the genomes of both parents following a specific recombination rule. Both
copying and mixing are molecular processes prone to errors, resulting in a change of the
discrete hereditary information not present in the previous generation - a mutation.

At the molecular level, mutations are copying errors in the form of base nucleotide sub-

stitutions. Although other forms of modification of genetic information are well known (such
1 Not all sections of the genome result in expression: some are responsible for the regulatory activity of

reading-and-coding, catalytic tasks in the cells, and some others are regarded as inactive. A complete gene
has several loci, typically of the order of ∼ 104 in simple prokaryotes, reaching about ∼ 109 in humans -
where, in the latter, only ∼ 3 percent code for proteins (NOWAK, 2006).

2 Horizontal gene transfer is the transmission of DNA between organisms during their lifetime, rather than
from parent to offspring. Most common in prokaryotic cells.
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as insertion and deletion), the heuristic arguments for their negligible occurrence rely on the
mechanism of self-correction present in the code transcription process (DROSSEL, 2001). Al-
though some regions of the genome have a higher mutation rate than others, which mutation
will arise and in which generation is completely unpredictable (LYNCH et al., 2016). Mutations
are, therefore, a random source of genetic variation.

Genetic drift

The reproduction process inherently bears the mechanism of genetic drift - stochastic
fluctuations in population gene pool. Genetic drift carries the probabilistic nature of a sampling
process, since chance has a role in determining which individual survives, how many offspring
they produce, and which genes they pass on to the next generation. Random drift does not
have a preferential direction, it can increase or decrease a gene frequency, leading a genotype
to be established3 or be lost. As is the case with all stochastic processes, its effects manifest
more rapidly and are more pronounced in smaller populations, which is even more relevant for
the fate of novel mutations.

Let us use a simple stochastic reproductive model of asexual populations to illustrate
genetic drift. In the Wright-Fisher model (GILLESPIE, 1998), the descendants of generation 𝑡+1

are randomly sampled with replacement from the parents’ generation 𝑡 with some probability
𝑝 ∈ [0, 1]. The generations are discrete and do not overlap, all individuals reproduce and die
simultaneously, i.e., once generation 𝑡 + 1 is obtained, it replaces the previous one. With a
constant population size 𝑁 , let 𝑋 = 0, 1, 2, ..., 𝑁 be a random variable assigning the number
of copies of one of the lineages present. The probability to sample a number 𝑋 = 𝑗 in 𝑁

independent trials follows a binomial distribution 𝑋 ∼ 𝐵𝑖𝑛(𝑁, 𝑝), where

𝑃𝑟𝑜𝑏 (𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖) = 𝑁 !
𝑗!(𝑁 − 𝑗)!𝑝

𝑗(1 − 𝑝)𝑁−𝑗,

which is known to have mean 𝐸[𝑋] = 𝑁𝑝 and variance 𝑉 𝑎𝑟[𝑋] = 𝑁𝑝(1 − 𝑝). Here, 𝑝 is
simply the fraction of the individuals present of a given lineage,

𝑝 = 𝑝𝑘∑︀
𝑘 𝑝𝑘

= 𝑖

𝑁
, (1.1)

which makes the sample process equivalent to randomly picking balls from a box with re-
placement 4. Here we have a simple mathematical description of random genetic drift. At
3 We say a genotype has established when its gene frequency or density becomes large enough to overcome

the random fluctuations of genetic drift.
4 This case represents the absence of selection or a neutral selective model.
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any given generation, individuals lineage frequencies change at a rate inversely proportional to
population size. Thus, the Wright-Fisher model indicates that random drift is stronger in small
populations. Furthermore, its dependency on the current frequency implies that rare lineages
(very low frequency) have a higher chance of being extinct in subsequent steps.

Selection

Selection is a mechanism responsible by the adaptation of the organisms to their environ-
ment(DARWIN, 1859). In a given environment, some traits may be particularly advantageous
when compared to others enhancing the chance of an organism’s survival and reproduction.
Individuals with selectively favored traits are said to be well-adapted to the conditions they live
in, because they have a higher chance of passing their genes, increasing trait frequency in fu-
ture generations. Since evolution is a stochastic process, sometimes it is not the most adapted
individual that thrives, especially when populations are small or their relative advantage is low.

The relative advantage is quantified as fitness. Assuming that the advantage is purely
additive and does not change regarding individuals’ frequency, in an isogenic population with
fitness 𝐹 = 1, a distinct genotype 𝜎 5, is said to have fitness 𝐹 (𝜎) = 1 + 𝑠. If 𝑠 > 1, this
genotype is favored by selection to increase its frequency. However, since reproduction is a
stochastic sample process, all genotypes are susceptible to random genetic drift. Even the
fittest among them can be purged in subsequent generations - especially in small populations.
So it is natural to ask the probability of a genotype with relative fitness 𝐹 (𝜎) = 1 + 𝑠 to
escape random drift.

To understand how this advantageous effect acts on the probability of genotype survival let
us use a classical branching process approach of following the fate of a single genotype (CROW;

KIMURA, 1970). A population grows in discrete non-overlapping generations. Let 𝑝0, 𝑝1, 𝑝2, ..

be the probabilities that the lineage will leave 0, 1, 2, ... descendants in the next generation,
i.e. 𝑃 (𝑋 = 𝑘) = 𝑝𝑘 and ∑︀𝑘 𝑝𝑘 = 1. In particular, 𝑝0 is the probability that given genotype
will go extinct. Such assumption have a probability generating function:

𝑃𝑋(𝑍) = 𝑝0 + 𝑝1 𝑍 + 𝑝2 𝑍2 + ... =
∞∑︁

𝑍=0
𝑝𝑘 𝑍𝑘, (1.2)

where the probability of leaving 𝑘 mutant genes for the next generation is given as the
coefficient of 𝑍𝑘.
5 Therefore, we are assuming that such genotype contributes to a phenotype which ultimately affects fitness.



1 INTRODUCTION 25

Now, let the number of offspring per birth event be drawn from a Poisson distribution with
mean 𝜆 = 1 + 𝑠. Thus, if 𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆), so 𝑃 (𝑋 = 𝑘) = 𝜆𝑘

𝑘! 𝑒−𝜆 with offspring number
𝑘 = 0, 1, 2.... Therefore, its generating function can be obtained as

𝑃𝑋(𝑍) =
∞∑︁

𝑘=0

𝜆𝑘

𝑘! 𝑒−𝜆𝑍𝑘

= 𝑒−𝜆
∞∑︁

𝑘=0

(𝜆𝑍)𝑘

𝑘!

= 𝑒−𝜆𝑒𝜆𝑍

= 𝑒(1+𝑠)(𝑍−1).

The probability of extinction of a branching process starting with a single individual is
the smallest root of the equation 𝑃𝑋(𝑍) = 𝑍 for 𝑍 ∈ (0, 1) (see Appendix A), which
admits a fixed point solution given by 𝑍 = 𝑒(1+𝑠)(𝑍−1). Rewriting 𝑍 = 1 − 𝜋, where 𝜋 is
the probability that such genotype is fixed or established (i.e. does not go extinct), one have
𝑃𝑋(1 − 𝜋) = 𝑒(1+𝑠)(1−𝜋−1). Solving the fixed point for 𝜋:

𝜋 = 1 − 𝑒−(1+𝑠)𝜋, (1.3)

which is a transcendental equation for 𝜋. We then solve for the selective advantage 𝑠:

−(1 + 𝑠)𝜋 = 𝑙𝑛(1 − 𝜋)

𝑠 = −1 − 𝑙𝑛(1 − 𝜋)
𝜋

.

Assuming that 𝜋 is small, and hence 𝑠, we expand the natural log and neglect the terms
of order 𝑂(𝜋3) and higher, such that

𝑠 = −1 − 1
𝜋

[︃
− 𝜋 − 𝜋2

2 + 𝑂(𝜋3)
]︃

⇒ 𝜋 ≈ 2𝑠.

(1.4)

Thus, under a random branching process, survival probability is linear with the fitness
difference. An extensive revision made by Wahl and Patwa (PATWA; WAHL, 2008), summarizes
many different approaches to determine the probability of survival of a genotype (or to escape
drift) as a function of its selective advantage. Strikingly, all the models’ predictions point
to a linear dependence on 𝜋 ≈ 𝑐𝑠, differing only by a scalar magnitude 𝑐 ∈ R. This semi-
quantitative result implies that, despite the distinction in the approaches, the analyses are
valid for a large class of exchangeable models, as they converge to expected general results.
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Lastly, we would like to address the interplay between selection and drift. If there is no
selective advantage 𝑠 = 0, the probability that a single genotype survive is equal to 𝜋 = 1

𝑁
.

So, there should be a threshold for fitness values, small enough such that

𝜋 = 2𝑠 ≈ 1
𝑁

. (1.5)

Therefore, for a fixed 𝑠, drift dominates in very small populations, where 𝑁𝑠 ≪ 1, despite
selection. On the other hand, in the 𝑁𝑠 ≫ 1 limit, corresponding to large populations sizes,
selection plays a role by increasing the frequency of the fitter genotypes despite drift (DESAI;

FISHER, 2007).
In sum, adaptation is the evolution of trait frequencies through the process of selection.

While mutation and drift are inherently random forces, selection has a direction, guiding
evolution towards heritable adaptations to the current environment.

Migration and Gene flow

Last, but no less important, is the mechanism of migration or gene flow: the exchange of
individuals and, consequently, their genetic material within or between divided subpopulations.
When an individual migrates to a new population and breeds, it introduces genes from its
ancestral population into the new one. Depending on migration intensity, gene flow might be
enough to homogenize the populations, reducing genetic variability of the total population
(GAVRILETS, 2004).

A simple model illustrates gene flow homogenizing effect (RIDLEY, 2003): let us consider
the case of two asexual populations, 1 and 2, that can exchange migrants with probability 𝑚

per generation. The frequency of a specific genotype in population 1 in generation 𝑡 is written
𝑝𝑡. Supposing population 2 is sufficiently large, we can assume that the frequency of the same
genotype in population 2 is not changing between generations and write it as 𝑞. In the absence
of mutation and selection, genotype frequency at the next generation 𝑝𝑡+1 depends on the
number of migrants received from population 2 with probability 𝑚 𝑞 and of natives that do
not migrate with probability (1 − 𝑚) 𝑝𝑡,

𝑝𝑡+1 = (1 − 𝑚) 𝑝𝑡 + 𝑚 𝑞.

Solving for 𝑡 = 0, we have the frequency 𝑝1 = (1 − 𝑚) 𝑝0 + 𝑞 𝑚. If we keep applying this
recursive relation, we found that the genotype frequency in population 1 at any generation 𝑡
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is given by
𝑝𝑡 = 𝑞 + (𝑝0 − 𝑞) (1 − 𝑚)𝑡.

The equation says that the difference between the gene frequency in population 1 and
population 2 decreases by a factor (1 − 𝑚) per generation. Given enough time, the small
population will have the same gene frequency as the large population 𝑝 = 𝑞. Similar arguments
apply if, instead of there being one source and one recipient population, the source is a set of
many subpopulations (RIDLEY, 2003; GAVRILETS, 2004).

High migration rates can even restrict genetic variation promoted by other mechanisms,
such as mutation and recombination. Seeing it the other way around, restrictions to gene
flow will allow genetic variation to increase, resulting in population divergence at the genetic
level, which, as we will discuss below, is an essential step for the emergence of new species.
Migration highlights how a population’s organizational structure and habitat are also important
for its genetic diversity. In particular, regarding adaptation, migration can also increase the
population’s potential to persist local environmental changes, as it can bring genetic novelty
not present in the receiving subpopulation.

These mechanisms all have the potential to alter the frequencies of genes and traits within
populations, thereby acting as drivers of evolutionary change. Nonetheless, natural selection
and genetic drift modify the prevalence of existing genes by increasing or decreasing the
occurrence of traits. On the other hand, mutation and migration can introduce entirely novel
characteristics into a population.

1.4 Adaptation on Fitness Landscapes

Fitness encompasses the organism’s ability to survive, mate, and produce offspring. Through
experimental and observational methodologies, researchers can approximate a genotype or phe-
notype’s fitness by attributing it to a quantitative value (for instance, the number of offspring
it produces) (BARRICK; LENSKI, 2013). However, it is important to recognize that fitness is
inherently a relative measure, dependent on the environment in which the organism lives.

Historically, the field of evolutionary biology has benefited from mathematical models of
fitness landscapes (FRAGATA et al., 2019). Fitness or adaptive landscapes offer insights into
evolutionary dynamics by metaphorically illustrating how traits or genes are related to an
organism’s reproductive success and the dynamics of adaptation. In its simplest form, most
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models assume the existence of an optimum combination of traits that maximizes fitness in
a given environment (ORR, 2005b). This idea is better visualized as a landscape-like figure
(Figure 2A), where each "point" in the base grid represents a specific combination between
the axis traits, and the height corresponds to their respective fitness.

Figure 2 – Simple representation of fitness landscapes. (A) In continuum phenotypic landscapes, population
can explore all posible combinations of traits. Red arrows represent a "trajectory" of a population. As
selection increases the frequency of fitter individuals, adaptation is an walking towards the peak. (B)
Discrete genotypic landscape for when only 4 mutations are responsible for the adaptation process.
Arrows represent single mutation transitions, where the red ones are transitions to genotypes of
higher fitness.
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Source: The author (2024).

Using this heuristic geometric representation, each individual of a population can be rep-
resented by a point in space, whose position matches their respective gene or trait. Over
generations, evolutionary mechanisms shape the population composition. Mutation and re-
combination "move" the offspring through the fitness landscape as vectors of random length
and directions. Newly arising mutations (de novo mutations) are regarded as beneficial or
deleterious depending on their contribution to the population’s overall fitness (DESAI; FISHER,
2007), i.e., if they bring individuals closer or far from the optimum phenotype, respectively.
Since selection can increase or decrease traits’ frequency depending on their fitness, under
this framework, adaptation is seen as population trajectories over a fitness landscape towards
fitness peaks.
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Genome size and Epistasis

Choosing between phenotypic or genotypic landscapes is a matter of the biological system
of interest. A phenotypic model presumes that the traits under selection can assume continuous
values (such as weight, body part lengths, or metabolic rate), in other words, the population
has the potential to "explore" all trait space. This reasoning underlies the common assumption
in population genetics that adaptation consists of fine-tuning the phenotype with very large

numbers of genes carrying mutations of relatively small effect (ORR, 2005b). Effectively, this
approximation is equivalent to a genome of infinite sites or alleles, where every mutation is a
de novo mutation.

However, adaptation to specific environmental conditions might involve very few loci. For
example, the adaptation of bacterial 𝛽-lactamase to a novel antibiotic is related to only 5
mutations that control the phenotype conferring resistance. In these cases, a common approach
for most studies is to model a finite biallelic genome of length 𝐿, with alleles {0, 1} merely
to indicate if a mutation is present or absent in the original sequence (KAUFFMAN; LEVIN,
1987). This leads to a discretization of the fitness landscape (Figure 2B), where each of the
2𝐿 possible combinations is mapped into its respective fitness value. Evolution on genotypic
space carries a notion of neighborhood and distance distinct from their phenotypic counterpart.
Since mutations are modeled as 1-single letter transitions, this gives rise to a binary space
connected through single-digit flip - or an L-dimensional hypercube H2

𝐿 (Figure 3). This space
is characterized by short distances and high dimensionality (NOWAK, 2006).

Figure 3 – Hypercube representation for L=3 and L=4. Only in the first case, fitness is assigned to each vertex
in parenthesis. Arrows heads represent transitions to fitter states, while the circles outline a state
that maximizes fitness - a fitness peak.

Source: Modified from (KAUFFMAN; WEINBERGER, 1989)
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Furthermore, the discretization of genotypic space may exhibit epistasis (KAUFFMAN; WEIN-

BERGER, 1989). Epistasis refers to a phenomenon where the fitness effect of a mutation at a
given locus may depend on the mutations at other loci - in other words, it may depend on
the genetic background. Mathematically, if the fitness of a genotype 𝜎 = (𝑠1, 𝑠2, .., 𝑠𝐿) can
be decomposed into a sum of independent contributions from each site, thus

𝐹 (𝜎) =
𝐿∑︁

𝑖=1
𝐹 (𝑠𝑖),

then the sites will be uncorrelated, and the landscape exhibits a single fitness peak like in
Figure 2. Otherwise, correlated sites can be thought of as a coupling or interaction between
the sites, similar to a Hamiltonian for a system of interacting particles (MANHART; MOROZOV,
2014).

Unlike the continuum space of large genomes, where each mutation contributes indepen-
dently to fitness, epistasis introduces non-additive effects: a double mutant (with mutations
in two loci) may have a phenotype that differs significantly from the sum of the effects of
each single mutation (De Visser; KRUG, 2014). As we shall discuss in Chapter 2, epistasis is
responsible for determining landscape topography and exhibits multiple fitness peaks, which,
ultimately, affects the accessibility of evolutionary trajectories.

Population size and mutation fate

Population size mediates the counteracting forces between selection and genetic drift. At
large population sizes 𝑁 >> 1, selection prevails, purging deleterious mutations and rapidly
increasing the size of beneficial ones. Over fitness landscapes, population trajectories resemble
monotonic walks transitioning over states of ever-increasing fitness. At finite sizes, however,
the population is better described as a cloud around a given trait moving on the landscape,
but in some cases can divide itself into subpopulations, each of them describing their particular
trajectories, which can culminate in the same or even different fitness peaks. Population evo-
lutionary trajectories are subject to stochastic fluctuations, and new or rare mutations (which
have low frequency) can be lost due to random genetic drift (see Figure 4).

Let us assume that, during reproduction, there exists a chance 𝑈 for the descendant being
born with a different genetic code from their parents. Hence, considering a population of size
𝑁 , 𝑁𝑈 is the influx of new mutants in the evolving population at each generation, providing
a genotypic diversity upon which selection can act. Additionally, let 𝑠 (from Eq. 1.4) be the
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probability they survive drift. If, over generations, mutations arise at rate 𝑁𝑈 on average, a
mutation takes a time 𝑡 = 1

𝑁𝑈
to arise, and a time

𝑡𝑒𝑠𝑡 ∼ 1
𝑁𝑈𝑠

, (1.6)

to get established within the population. The establishment refers to a threshold frequency
needed for a genotype to no longer be extinct by drift. It does not have a priori definition, is
an ad hoc threshold imposed by an arbitrary confidence interval (DESAI; FISHER, 2007). Upon
our assumptions from previous sections, the mutant lineage must reach a size 𝑁 ∼ 1/𝑠 before
it becomes “safe” from extinction and begins to grow mostly deterministically (DESAI; FISHER,
2007).

Figure 4 – Mutations arise at short time scales but are rapidly purged by genetic drift. With a probability
proportional to 𝑠, mutations can reach a threshold frequency to survive drift and, once done, they
can reach fixation at time 𝑡𝑓𝑖𝑥.

Source: The author (2024).

Typically, before a mutation can sweep to fixation, de novo beneficial mutations arise in a
different lineage and become established, leading to competition between each other (Figure
5). This phenomenon is called clonal interference (BARRICK; LENSKI, 2013), common in asexual
populations where there is no recombination. On the other hand, through sexual reproduction,
previously competing mutations can coexist in the offspring, leading to an increase in fitness.6

6 This is one of the factors that make sex an advantageous process.
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Figure 5 – Representation of the discussed regimes in asexual and sexual populations. If de novo mutations
establishes simultaneously, they compete for fixation. In contrast with clonal interference, we see
how recombination can decreases the competing aspect by assimilating both genotypes in the same
descendant.

Source: Modified from (BARRICK; LENSKI, 2013).

An important disclaimer

As a metaphor, fitness landscapes are universally used to describe adaptation, emphasizing
the potential of species to adapt and explore new habitats and resources, and more recently
have been used to study speciation (GAVRILETS, 1997). However, some considerations must
be made regarding their limitations and applications.

A tentative picture emerging from the fitness landscape metaphor is the possibility of
continuous optimization by selection. This view might lead to a common misconception that
survival is guaranteed only for the fittest, better-adapted individuals. One can not stress enough
that the evolutionary process is inherently probabilistic: genetic variants that aid survival and
reproduction are much more likely to become common than variants that don’t. Both in natural
and lab populations, maladapted individuals still coexist in low frequency.

The construction of empirical fitness landscapes is only feasible for simple lab-cultivated
microorganisms (De Visser; KRUG, 2014), for which the variety of expressed traits is less abun-
dant, the mapping genotype-fitness is straightforward, and genomic variation can be carefully
registered by whole-genome sequencing (BARRICK; LENSKI, 2013).

Nevertheless, phenotypic and genotypic fitness landscapes are a semi-quantitative approx-
imation that "highlights" the microscopic details of the evolutionary process. Properties of
the landscape - such as peak fraction, deviation from additivity, and accessibility of paths
(LOBKOVSKY; WOLF; KOONIN, 2011) - are investigated to better understand the restrictions
that the space itself imposes on evolutionary dynamics, integrating a path-dependent analysis
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to evolutionary theory. For our particular interest, it can give us insight about the processes
involving population persistence and divergence.

1.5 Population Persistence

The environment sets the conditions by which populations adapt. Presumably, the set of
phenotypic traits of natural populations is responsible for maintaining stable population sizes in
a constant environment (BARRETT; HENDRY, 2012). When the environment changes, existing
phenotypes are expected to be less adapted. Abrupt environmental changes induce levels of
stress that may cause population decline, hamper its adaptation, and, in the last instance,
lead to its extinction. As a response to escape such a fate, populations can either disperse or
adapt via phenotypic plasticity and genetic evolution (LALAND et al., 2015; BELL, 2017).

If your home becomes unfavorable or even threatening, the first and most intuitive response
of any individual is to disperse in search of better, safer places. But to organisms lacking mo-
bility, such as plants, or large-scale environmental changes like global temperature oscillations,
all that is left is to adapt or to perish (DAVIS; SHAW; ETTERSON, 2005; BANK, 2022).

Phenotypic plasticity is an adaptation mechanism present in some organisms that allows
the variation of traits during their lifespan without any genetic change. In analogy to the
previous section, the map 𝐺 → 𝑃 is no longer unique because the same genotype no longer
expresses a trait value but encompasses a trait range 7. Plants are everyday evidence of a
plastic response: put a plant in a water vessel or a very different soil and it will change its root
lengths to allocate its resources better; or note the change in its leaves’ shape and size when
growing in altered light levels.

Populations lacking a plastic response can only generate the necessary novelty to cope
with environmental changes through genetic evolution: a fitter genotype must be established
- either by new mutations or standing genetic variation. Therefore, adaptation must happen
sufficiently fast to ensure population survival. When a declining population, fated to go extinct,
restores a positive growth rate by genetic adaptation, we say the population has undergone
an Evolutionary Rescue.
7 By definition, plasticity has an energetic cost to maintain the biochemical mechanisms used to sense the

environment and produce the appropriate response. Otherwise, one may wonder, if plasticity is so good
and fast to cope with environmental changes, would plastic organisms out-compete non-plastic ones?
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Figure 6 – Signature of evolutionary rescue. Once a stressful enough environmental change happens, popula-
tion declines and can only restore positive growth through adaptive evolution. Traced line shows
the case for when the mutation is already present, and solid line for de novo mutations (note the
failed attempts to survive genetic drift).
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Source: The author (2024).

The signature of evolutionary rescue is the U-shaped curve for population decline and
recovery (Fig 6). Populations have a higher chance of going extinct the smaller their size and
the longer the time spent in small sizes (HANSKI, 1998).

Evolutionary rescue has been frequently documented in laboratory-controlled experiments
involving microorganisms, providing a means to estimate the frequency of rescue under various
conditions. Observations in natural populations are somehow cumbersome. The lack of demo-
graphic data, the correlation between multiple traits, and density-dependent regulation can all
obscure the evolutionary response (CARLSON; CUNNINGHAM; WESTLEY, 2014). Nevertheless,
the development of antibiotics, the agricultural application of pesticides, and the invasion of
new species are accepted examples involving rescue (BELL, 2017). Comprehending the mech-
anisms involved in evolutionary rescue is essential for conservation biology and population
management in the face of environmental instability.

Evolutionary rescue integrates a non-trivial relation between demography and evolution
(ORR; UNCKLESS, 2008; WILLI; HOFFMANN, 2009). On one hand, a population’s adaptive evo-
lutionary response depends on the availability of beneficial genotypes that can restore a positive
growth rate. On the other hand, at small population sizes, genetic drift is enhanced, reducing
genetic variation and the establishment chance of fitter genotypes, further reduces evolutionary
potential (LYNCH et al., 2016).

Mathematically, both the fitness contributions of genotypes to population growth and the
probability of surviving drift can be analytically derived from classical assumptions of population
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genetic theory and random branching processes. The probability of evolutionary rescue can
then be correlated with the availability of rescue mutations. We develop and compare these
derivations with numerical simulations in Chapter 2.

1.6 Population Divergence

The evolution of life on Earth shows a sustained diversification process with species regularly
appearing, getting extinguished and modifying over larger time scales. Modern life is believed to
have descended from a single ancestor and then split into different groups. Based on molecular
data (WOESE; KANDLER; WHEELIS, 1990), the classification of life divides the early life forms
into three domains: it has branched first in Bacteria and Archaea; and the Eukarya (the domain
we belong to) branched from Archaea. This diversification is famously illustrated in the Tree
of Life (Fig.7), which connects our common ancestors’ evolutionary history to today’s living
forms.

Figure 7 – Conceptual visualization of the Tree of Life, showing ancient life’s differentiation into three great
domains. The subdivision into further groups shows the variety of life forms in each domain. The
evolutionary history within each of these groups (e.g. the animal kingdom) can also be represented
by their corresponding tree.

Source: From (WOESE, 1996).

The emergence and maintenance of diversity is one of life’s inherent features and can be
observed and classified across different biological scales - from domains to species.
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Species is a fundamental "unit" used to classify diversity, and speciation is the process by
which an ancestral population splits into two or more distinct descendant populations. How
much "distinct" is required to identify a species varies, because several closely related species
concepts exist (RIDLEY, 2003). The biological species concept (MAYR, 1963) defines species
in terms of interbreeding (or gene flow) 8: individuals belong to the same species as long
as reproduction of fertile offspring is possible among them. In other words, the rise of new
species requires reproductive isolation. The emergence of reproductive isolation involves the
interruption of gene flow between populations, leading populations to harbor distinct gene pools
and evolutionary trajectories, which in turn promotes speciation (DOBZHANSKY, 1970). Under
this genetic perspective, population genetic divergence will always accompany speciation.

In all the works in this thesis regarding speciation, we utilize the biological species con-
cept described above, with focus on the mechanisms that promote genetic differentiation or
population divergence. Below we present how geographic isolation and selection (in the form
of local adaptation or divergent selection) are the two most common mechanisms that en-
hance reproductive isolation, and thus the evolution of population divergence (FITZPATRICK;

FORDYCE; GAVRILETS, 2009).

Geographic Isolation

Geographic isolation is the most accepted and simplest mechanism to explain speciation
events. As populations are separated from each other, random change in gene frequencies
through mutation, recombination and genetic drift, together with the impossibility of gene
flow, will eventually lead to different genetic compositions. Early studies on the gene flow
effect on speciation usually adopted the framework of a metapopulation - a population divided
among regions or demes and connected by migration. These early models of biogeography
(MACARTHUR; WILSON, 1967) could provide valuable insights into the intensity of gene flow
required to prevent or allow speciation to occur, and the effects of habitat structure on diversity
patterns.

In natural populations, barriers can be permeable or simply do not last forever. For in-
stance, sea-level oscillations driven by Earth’s glacial periods induce periods of connection and
isolation between oceanic islands (HE et al., 2019) and rivers close to continental shelf (BAGGIO
8 Other species definitions are more suitable for asexual organisms, for example, their similarity in morpho-

logical, genetic, or ecological characteristics.
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et al., 2017). The secondary contact between previously isolated populations can affect the
speciation dynamics in a non-trivial way (AGUILéE; LAMBERT; CLAESSEN, 2011). In chapter 3,
we investigate the speciation dynamics of a two-deme system when migration is intermittent,
in other words, the population evolves in altered periods of connection and isolation.

Selection

Genetic divergence may also be enhanced by natural selection. Populations adapting to
different environments or exploiting different resources, generate phenotypic and genetic dif-
ferences among them, leading to reproductive isolation (RUNDLE; NOSIL, 2005). Replicate lab-
oratory experiments with Drosophilia fruit flies have shown that lineages selected to different
environments have a lower chance of mating success than lineages evolving to the same labo-
ratory conditions (NOSIL; HARMON; SEEHAUSEN, 2009). Furthermore, great genetic divergence
followed by a rapid emergence of reproductive isolation was found for populations adapting in
high-temperature environments (FRY, 2009).

An important final consideration is the strength of selection or its selective pressure. Low
genetic variance is expected in scenarios where selection strongly favors a specific combination
of traits, in opposition to a neutral scenario where selection is absent. In metapopulations, with
local adaptation in each region, strong selection reduces the effective number of migrants, since
many of them are fated to extinction when moving between environments. In this sense, strong
selective pressure might overcome moderate gene flow to result in population divergence.

Figure 8 – Visualization of the differentiation between individuals of a population. The arrows in the upper row
indicate that reproduction is possible. Population diverges, acquiring distinct phenotypes and/or
genotypes, leading to speciation.

Source: Modified from (NOSIL; HARMON; SEEHAUSEN, 2009).
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It is important to highlight that selection and migration may act together or separately.
Furthermore, both mechanisms can be altered by abiotic and biotic environmental changing
factors such as climate, habitat structure, food resources and, of course, geographic barriers.
In this sense, environmental changes can alter the speciation process, e.g. resulting in large
or lower diversity. In chapter 4, we model a metapopulation connected by migration in which
each deme favors distinct traits. We report the degree of genetic differentiation among the
subpopulations at which the homogenizing effect of gene flow and the differentiating effect of
local adaptation interplay. We then ask how perturbations in the local environmental conditions
might affect the diversity patterns.

1.7 Outline

Stochastic evolutionary models are developed to mathematically describe the processes
that change the distribution of heritable variants in a population over time. The environment
defines both the conditions necessary for population adaptation and its organizational struc-
ture. In a changing world, alterations in the environmental conditions can profoundly influence
a population’s evolutionary history.

This thesis includes the works I have done over the course of my Doctorate studies and
the different subjects approached here are connected by environmental changes’ role in the
evolution of population persistence and divergence. The chapters’ ordering is not chronological
but tailored so that the structure of this thesis is divided into two parts. The first half (chapter
2) addresses the persistence of populations through evolutionary rescue. In the latter half
(chapters 3 and 4), we study population divergence and the patterns of speciation driven by
environmental changes.

More specifically, in Chapter 2, a well-adapted asexual population is submitted to an abrupt
variation in the conditions necessary for survival. Under this level of selective stress, population
size is intensely reduced and can lead to its extinction. Population extinction can be prevented
by density regulation, but if environmental change is too stressful, only the rise and estab-
lishment of a new mutation that can cope with the new environment guarantees population
persistence. We assess the population extinction risk, the degree of parallelism of the evolu-
tionary response, and how epistasis may alter the outcome due to the incongruence of the
fitness landscape map. Its results were published in Refs. (FREITAS; CAMPOS, 2024b; FREITAS;
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CAMPOS, 2024a).
In Chapter 3, geographic environmental events affect the connection between a population

divided into a two-deme system. In this neutral selective model, only the migration rate between
the patches and the intermittent periods of connectance and isolation can promote population
divergence leading to speciation. We report the dynamics of population divergence through its
phylogenetic speciation tree, characterize their structure, and ask if the intermittent periods
of connectance and isolation leave a signature in the phylogeny’s macroevolutionary patterns.
Its results were published in Ref. (FREITAS; CAMPOS; ARAUJO, 2024).

In Chapter 4, both selection and migration are present in a metapopulation model. We
measure genomic divergence and speciation patterns for varying intensities of gene flow and
selective pressure. We then compare how different scenarios of environmental variations -
including the magnitude and frequency of these changes - affect the maintenance of diversity.
Its results were published in Ref. (FREITAS; ARAUJO; CAMPOS, 2022).
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2 EVOLUTIONARY RESCUE

Mal escapo à fome, mal escapo aos tiros

Mal escapo aos homens, mal escapo ao vírus

Passam raspando, tirando até meu verniz.

(Gilberto Gil)

Evolutionary rescue (ER) is the process in which a population declining due to environ-
mental changes, fated to go extinct, averts its fate by increasing in number through adaptive
evolution alone (BELL, 2017; LALAND et al., 2015). Under ER, adaptation must happen suf-
ficiently fast to ensure population survival. In turn, the probability of converting a positive
growth rate over short time scales depends on the availability of genetic variation of signifi-
cant effects and their chance to survive drift when rare (GOMULKIEWICZ; HOLT, 1995; ORR;

UNCKLESS, 2008; ANCIAUX et al., 2018; MCDONOUGH; CONNALLON, 2023).

In natural populations, ER has been observed in populations persisting herbicide resis-
tance (KREINER; STINCHCOMBE; WRIGHT, 2018), the introduction of novel-pathogens (SEARLE;

CHRISTIE, 2021), and climate change (SCHIFFERS et al., 2013) as common causes of population
decline. ER is also observed in the experimental evolution of microbial systems, studying pop-
ulation stress response to antibiotics (WEINREICH; WATSON; CHAO, 2005), increased salinity
concentration (BELL; GONZALEZ, 2011), and temperature variation (HUANG et al., 2018).

Theoretical research has made significant contributions to identifying the key factors that
influence the probability of evolutionary rescue. Initial population sizes (FLATHER et al., 2011;
BELL, 2013) and the pace of population decline, which is based on how stressed out or how
maladapted the population is to the unfavorable environment (HARMAND et al., 2017; MAR-

REC; BITBOL, 2020; WAHL; CAMPOS, 2023), are known demographic factors. Standing genetic
variation (genotypes that exist before the environmental change) and the rate of de novo
mutations from the dwindling wild-type population (ORR; UNCKLESS, 2014; UECKER; OTTO;

HERMISSON, 2014; TANAKA; WAHL, 2022) are relevant genetic factors.

Although treated separately in most studies, in reality, genetic and demographic factors are
intertwined. Population size and its variation rate mediate the evolutionary mechanisms that
shape the genetic diversity within populations, the availability of beneficial mutations, and the
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constraints on adaptive pathways (ORR, 2005a; De Visser; KRUG, 2014). These demographic
effects on genetic variation show the importance of integrating evolution and ecology for
studying population persistence in the face of environmental stress (GOMULKIEWICZ; HOLT,
1995; ORR; UNCKLESS, 2008).

In this chapter, we investigate the influence of demographic and genetic factors on evo-
lutionary rescue (WILLI; HOFFMANN, 2009). In the first work, we study the fate of a density-
regulated population under stress. We show that stress level divides the dynamics into two
distinct regimes, one where density regulation guarantees population persistence, and the
other where survival depends on whether evolutionary rescue is achievable. We characterize
the probability of evolutionary rescue and the degree of genetic parallelism of the evolutionary
response. In the latter work, we implement a three-layer genotype → phenotype → fitness
map to address the influence of genetic background on ER. We show that the likelihood of
extinction is smaller when the degree of epistasis is higher. We discuss the results in light of
the emerging non-linearity/incongruence of the fitness landscape.

In the following sections we first present the common design for both studies: the im-
plementation of Fisher’s Geometric Model as a fitness landscape; the population model of
demographic variation that may or may not contain a density dependence; and our procedure
for environmental change. Next, the sections of each study, namely 2.4 Density Regulation and
Parallelism and 2.5 Epistasis and Incongruence, contain their respective discussions, analytical
and simulation results.

2.1 Fisher’s Geometric Model

Historically, the field of evolutionary biology has benefited from mathematical models of
fitness landscapes (FRAGATA et al., 2019), including the study on ER (TENAILLON, 2014; AN-

CIAUX et al., 2018; WAHL; CAMPOS, 2023). In Fisher’s geometric model (FGM), one ascribes
a phenotype vector to each individual whose components correspond to trait values (FISHER,
1930; ORR, 2005a). Thus, each phenotype is seen as a point in a phenotypic space of dimen-
sionality 𝑛, where 𝑛 denotes the number of traits that characterize the individual. Therefore,
a phenotype is represented as a vector 𝑧⃗ = (𝑧1, 𝑧2, . . . , 𝑧𝑛), in which 𝑧𝑖 is the value of trait 𝑖.
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The FGM assumes the existence of an optimum value for each trait, 𝑜𝑖, such that the
optimum phenotype 𝑜⃗ = (𝑜1, 𝑜2, . . . , 𝑜𝑛) also corresponds to a point in the 𝑛−dimensional
phenotypic space (WAXMAN, 2006). We assume that all traits are under Gaussian stabilizing
selection, such that the fitness of a given individual with phenotype 𝑧⃗ is proportional to

𝑆(𝑧⃗) = exp
[︃
− 𝑑2

2𝛼2
𝑧

]︃
, with 𝑑2 =

𝑛∑︁
𝑖=1

|𝑧𝑖 − 𝑜𝑖|2, (2.1)

where 1/𝛼𝑧 is the selection strength or the width of the Gaussian curve, and 𝑑 is the phenotypic
or Euclidean distance from the individual to the optimum phenotype. Throughout this work,
we assume 𝛼𝑧 = 1 1.

In the case of classical FGM, which relies on an infinite number of loci, the phenotype of the
mutant offspring will amount to 𝑧⃗ + 𝑢⃗, where the size of mutation effects, 𝑟, on the phenotype,
is taken from an exponential distribution of mean value 𝜆. Following the same procedure as in
Ref. (CONNALLON; CLARK, 2014; MCDONOUGH; CONNALLON, 2023), the mutation vector with
size 𝑟 is

𝑢⃗|𝑟 =
⎛⎝ 𝑟𝑦1√︁∑︀

𝑘 𝑦2
𝑘

,
𝑟𝑦2√︁∑︀

𝑘 𝑦2
𝑘

, . . . ,
𝑟𝑦𝑛√︁∑︀

𝑘 𝑦2
𝑘

⎞⎠ , (2.2)

where 𝑦𝑘 with 𝑘 = 1, . . . , 𝑛 are independent random variables taken from a standard nor-
mal distribution. Thus, the current model assumes that mutations affects all traits (isotropic
mutation).

Additionally, we also consider a version of the FGM in which the individuals are equipped
with an explicit genetic ground: a finite-locus biallelic genome. Henceforth, this FGM version is
referred to as the genotypic FGM (HWANG; PARK; KRUG, 2017; WAHL; CAMPOS, 2023). In the
genotypic FGM, the genome size is 𝐿, and so, to each individual, one associates its phenotype
𝑧⃗ together with its genotype 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝐿). The genotypic space consists of 2𝐿 possible
sequences, as 𝑠𝑗 = 0, 1. The state 𝑠𝑗 = 0 means the absence of mutation in locus 𝑗. Once a
mutation occurs, a single locus is randomly chosen to mutate.

To build the phenotypic space underlying the genotypic space, 𝐿 mutation vectors are
required, 𝜂1, 𝜂2, . . . , 𝜂𝐿. Taken as reference the sequence 𝑆 = (0, 0, . . . , 0) to which one
ascribes, without loss of generality, the phenotype 0⃗ = (0, 0, . . . , 0), the phenotype associated
to any of the 2𝐿 sequences is done by making use of the additive assumption (TENAILLON,
1 In Chapter 4, the effect of selective strength in population evolution is an important varying parameter.
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2014). For example, the corresponding phenotype of genotype 𝑆 = (0, 1, 1, 0, . . . , 0) is simply
obtained by additively combining mutation vectors 𝜂2 and 𝜂3, such that 𝑧𝑠 = 0⃗ + 𝜂2 + 𝜂3.
A library of 𝐿 mutations is prepared in advance, and when a back mutation occurs, the
phenotypic value is adjusted by subtracting the effect of that mutation. Each mutation vector
𝜂𝑘 is determined in the same way as in classic FGM 2, and follows Eq. (2.2).

2.2 Population model

We assume an evolving asexual population with non-overlapping generations of haploid
individuals whose size 𝑁 is variable. As aforesaid, the fitness landscape assumes an optimum
value for the trait, 𝑜⃗ (WAXMAN, 2006). In particular, we assume that the population is under
density regulation. In a density-regulated population of size 𝑁 , and with selective pressure
upon the individual given by Eq. 2.1, the absolute fitness of an individual of phenotype 𝑧⃗ is
then calculated as (CHEVIN; LANDE, 2010)

𝑊 (𝑧⃗, 𝑁) = 𝑊 1−𝑁/𝐾
𝑚𝑎𝑥 𝑆(𝑧⃗), (2.3)

where 𝐾 is the carrying capacity and 𝑊𝑚𝑎𝑥 is the maximum reproductive rate. At each repro-
duction event, the number of offspring for each individual is drawn from a Poisson distribution
of parameter 𝑊 (𝑧⃗, 𝑁). Each offspring inherits the phenotype of its parent, but mutations can
occur for each birth event with probability 𝜇 per individual per generation.

Our choice of density-dependence holds when population growth is hindered by crowding,
predators, or competition (OSMOND; MAZANCOURT, 2013). In natural populations, this kind
of dependence is observed in the early stages of invading species and pathogen host-switching
(IWASA; MICHOR; NOWAK, 2004), where the abundance of resources or the lack of predators
allows a rapid increase in population size despite the struggle to adapt to unexplored envi-
ronments or new-host conditions, which is then followed by a density-dependent growth as
crowding or competition increases (SEARLE; CHRISTIE, 2021).
2 Importantly, the genotypic FGM does NOT assume a direct relationship from genotype to fitness. Its main

contribution is the discretization of phenotypic space. In the section of our next study, we define a proper
model that accounts for a genotype-fitness-map.
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2.3 Environmental Stress

Without loss of generality, we assume that the optimum trait is at position 0⃗. As an initial
condition, a isogenic population is fully adapted to its environment (thus, 𝑧⃗ = 0⃗ and 𝑆 = 1

for all individuals), and the initial population size equals 𝐾 (thus, 𝑊 = 1). At time 𝑡 = 0,
an abrupt environmental change takes place, and now the phenotypic optimum is placed at
a distance 𝑑 = Δ from 0⃗, but in a random direction. Distance Δ is chosen such that initial
population fitness equals 𝑊0 = 1 − 𝛿, where the parameter 𝛿 refers to the initial fitness drop
or stress level. Substituting all this in Eq. 2.3

1 − 𝛿 = 𝑒−Δ2/2𝛼2
𝑧 ,

we find that the initial phenotypic distance to the optimum at fixed 𝛿 is

Δ =
√︁

−2𝛼2
𝑧 ln(1 − 𝛿). (2.4)

Because of the density regulation, at this point, we may distinguish the existence of two
regimes: the non-extinction regime and the rescue/extinction regime. Without density regula-
tion and in the absence of mutations, the population will face a geometric decline in its size
and will ultimately face extinction unless a rescue mutation occurs. Upon density regulation,
we easily notice that, even in the absence of mutation, when

𝛿 < 1 − 1
𝑊𝑚𝑎𝑥

, (2.5)

the population can restore a positive growth rate by adjusting its population size. When the
condition (2.5) holds, thus 𝑊 > 1 = 𝑊

1− 𝑁+
𝐾

𝑚𝑎𝑥 (1−𝛿), and in the absence of mutations, positive
growth rates are restored at population size 𝑁+, given by

𝑁+ = 𝐾

[︃
1 + ln(1 − 𝛿)

ln(𝑊𝑚𝑎𝑥)

]︃
. (2.6)

When the environmental stress is sufficiently high, such that 𝛿 > 1 − 1
𝑊𝑚𝑎𝑥

, a positive growth
rate can only be restored through the occurrence of adaptive mutations.

2.4 Density regulation and Parallelism

Diversified populations embarking on seemingly comparable habitats are expected to display
similarity at both phenotypic (BOLNICK et al., 2018) and genotypic levels (SCHLUTER et al.,
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2004; ORR, 2005b). However, despite similar environmental conditions, populations undergoing
evolution often exhibit divergent evolutionary trajectories. This divergence underscores the
complex interplay of genetic, ecological, and stochastic factors contributing to the variability
observed in the evolutionary outcomes of seemingly analogous populations (STUART et al.,
2017). To quantify how recurrent or similar the process leading to adaptation is, theoretical
models and replicate experiments (WICHMAN et al., 1999; BAILEY; RODRIGUE; KASSEN, 2015;
LENSKI, 2017; BLOUNT; LENSKI; LOSOS, 2018) evolve independent populations to equal or
different environmental conditions to assess their degree of parallel evolution.

Parallelism measures repeated evolutionary changes across various biological scales, includ-
ing phenotypic, functional, biochemical, or genetic traits (BOLNICK et al., 2018). Its analysis
can focus either on the similarity of the outcomes or of the evolutionary trajectories. Parallel
evolution does not need to be complete, and evaluation of replicate populations often resides
within a spectrum between total distinction and parallelism (THOMPSON; OSMOND; SCHLUTER,
2019; YAMAGUCHI; WILEY; OTTO, 2022). Given its broader application, one must adequately
define parallelism for a particular problem. Assuming specific genes conduct the adaptation
process differently and their recurrence might be essential to ER, it sounds natural to inquire if
the same set of mutations are responsible for rescuing populations that face similar challenges.

In particular, the demographic dynamics typical of an evolutionary rescue scenario might af-
fect parallelism in non-trivial ways. The probability of parallel evolution is known to be affected
by population size: a higher degree of parallelism is expected with increased population size
because this reduces the effect of drift and favors the establishment of large-effect mutations
(BAILEY et al., 2017). Therefore, one expects that different regimes of population variation
influence parallelism.

Following this reasoning, in this work, we investigate how the intensity of environmental
change affects population persistence and the parallelism of its evolutionary trajectories. We
study the evolution of density-regulated populations and characterize the regimes in which evo-
lutionary rescue is attained. We also evaluate the degree of parallelism of mutational pathways
between replicated populations and how this evolutionary process is affected by the different
demographic regimes.
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2.4.1 Path Analysis

Over time, the population evolves subject to selection, genetic drift and mutations. From
a genetic viewpoint, adaptation at the DNA sequence level proceeds via mutational pathways:
one can construct an evolutionary trajectory through a succession of genotypes by tracking
a set of mutations arising at a given generation. By starting with a population of clonal
individuals of genotype 𝜎0, the succession 𝜎0 → 𝜎1 → ... → 𝜎𝑛 is dubbed an evolutionary
path 𝜑. By registering genotypic changes along the dynamics, one can study evolution from
the perspective of adaptive trajectories over fitness landscapes (LOBKOVSKY; KOONIN, 2012;
SZENDRO et al., 2013; De Visser; KRUG, 2014). Evolutionary constraints determine the likelihood
of evolution taking any particular path among the many possible competitive trajectories
(WEINREICH; WATSON; CHAO, 2005). By comparing the trajectories of independent populations,
this framework provides a statistical tool to characterize parallelism at a microevolutionary
scale, where the order in which mutations arise and are established will be relevant to the
population’s rescue.

One must establish a criterion to determine which genotypes represent each step of the
evolutionary path. Following a previous study (SZENDRO et al., 2013), we store each de novo

mutation that arises for the first time in each generation, along with the genotype from which
it originated. After the simulations have ended and the dominant genotype has been identified,
we trace the line of descent that links it to the ancestral genotype. Alternatively, a second
method that relies on the fittest genotype present in each generation is considered (FREITAS;

WAHL; CAMPOS, 2021). Accordingly, the evolutionary trajectory consists of a collection of
genotypes that represent an ascending route, from a fitness perspective, toward the ending
point of the evolutionary path. Both methods yield similar qualitative results.

To quantify parallelism, we use two distinct measures: the degree of parallelism and the
mean path divergence. The degree of parallelism is defined here as the probability that the
evolutionary paths of the two replicates of the population, here denoted as replicates 𝐴 and
𝐵, subject to the same environmental conditions, are the same. Under this perspective, paths
that diverge by at least a single genotype in the sequence are treated as distinct. Thus, the
degree of parallelism is quantified by measuring the fraction of trajectories in a given ensemble
of size 𝐸 in which 𝜑𝐴

𝑘 equals 𝜑𝐵
𝑘 with 𝑘 = 1, . . . , 𝐸, where the superscript ℓ = 𝐴, 𝐵 denote the

replicate index. On the other hand, the mean path divergence is a more refined measurement
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Figure 9 – Representation of two distinct paths with the same initial and ending points. The Hamming
distance ℎ is measured for each point 𝜎𝐴 ∈ 𝜑𝐴 to every point 𝜎𝐵 ∈ 𝜑𝐵 , and vice-versa. The
shortest measure is stored.

Source: The author (2024).

of parallelism since it quantifies the degree of similarity between the paths - or, analogously,
of dissimilarity.

We measure the divergence among accessible paths to account for the inner-path distance
between all genotypes of a pair of paths (LOBKOVSKY; WOLF; KOONIN, 2011; MANHART;

MOROZOV, 2014). One defines Ω(𝜑𝐴
𝑘 , 𝜑𝐵

𝑘 ) as the distance, or divergence, between two paths
𝜑𝐴

𝑘 and 𝜑𝐵
𝑘 . For the sake of clearness, from now on we will omit the index 𝑘. The divergence

between two path is then calculated as:

Ω(𝜑𝐴, 𝜑𝐵) = 1
Γ(𝜑𝐴) + Γ(𝜑𝐵)

(︃ ∑︁
𝜎𝐴∈𝜑𝐴

ℎ(𝜎𝐴, 𝜑𝐵) +
∑︁

𝜎𝐵∈𝜑𝐵

ℎ(𝜎𝐵, 𝜑𝐴)
)︃

, (2.7)

where Γ(𝜑) is the length (number of steps) of path 𝜑, and ℎ(𝜎𝐴, 𝜑𝐵) is the shortest Hamming
distance between a genotype 𝜎𝐴 and all genotypes 𝜎𝐵 ∈ 𝜑𝐵. To be clearer, for each genotype
𝜎𝐴 comprising pathway 𝜑𝐴, one estimate its Hamming distance to every genotype 𝜎𝐵 ∈ 𝜑𝐵.
The lowest distance is then stored and repeated until all genotypes in 𝜑𝐴 are rated. The process
is then repeated in reverse, from 𝜑𝐵 to 𝜑𝐴 (see Figure 9). The divergence Ω(𝜑𝐴, 𝜑𝐵) is the
mean value of those shortest Hamming distances. The mean path divergence is calculated as
the average of Ω(𝜑𝐴

𝑘 , 𝜑𝐵
𝑘 ) with 𝑘 = 1, . . . , 𝐸, in the ensemble of 𝐸 trajectories.
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Upon the definition of the quantities above, the degree of parallelism accounts for the
situations in which Γ(𝜑𝐴) = Γ(𝜑𝐵), and also Ω(𝜑𝐴, 𝜑𝐵) = 0.

2.4.2 Simulation Protocol

In this section, we describe how we implement our simulations. We distinguish how we
estimate the probability of rescue from that of the calculations of the properties related to the
evolutionary trajectories, as the latter ones are more costly from a computational perspective.
Table 2 lists the parameters used and their values in our study.

parameter definition value
𝑁0 initial population size 10000
𝐾 carrying capacity 10000
𝑊𝑚𝑎𝑥 reproductive factor 1.5
𝐿 number of loci 12
𝑛 number of traits 3; 5; 10; 20; 30
𝑈 mutation probability 0.005
𝜆 mean phenotypic effect 0.4
1/𝛼𝑧 strength of selection 1.0
𝛿 stress level 0.0-0.8

Table 1 – Parameters of the model. The third column either defines the value or range of values of each
parameter explored along the work. In bold, the most prevalent used value of each parameter.

At the beginning of each run, one has a clonal population whose genotype is the same as
the reference sequence 𝑆 = (0, 0, . . . , 0) with corresponding phenotype 0⃗ = (0, 0, . . . , 0), as
explained above. For each run, we draw 𝐿 mutations vectors 𝜂1, 𝜂2, . . . , 𝜂𝐿, in which the mag-
nitude 𝑟 of each of those vectors is a random variable taken from an exponential distribution
of mean value 𝜆. Given 𝑟, the vector 𝜂⃗𝑖 has its components determined by Eq. (2.2), and so
𝑛 random draws from a standard normal distribution are required.

After setting the genotype-phenotype mapping, the phenotypic optimum 𝑜⃗ = (𝑜1, 𝑜2, . . . , 𝑜𝑛)

is placed at a phenotypic distance Δ from 0⃗, i.e., it lies in a random position of a hypersurface
of radius Δ centered at 0⃗. Once the position of the phenotypic optimum is defined, one can
now easily calculate the fitness value associated with any sequence 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝐿), as
the fitness depends on the phenotypic distance to the optimum.
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The clonal population with initial fitness 1 − 𝛿 is then let to evolve subject to selection
and mutation. The offspring number of each individual is given by a Poisson distribution of
parameter 𝑊 (𝑧⃗, 𝑁). The offspring is an exact copy of its parent, except when a mutation
occurs with probability 𝑈 for each birth event. In the case of mutation, a random genome
locus is chosen and changed, 0 → 1 or 1 → 0. According to our description, in the first
generation, there will be 𝑁0(1 − 𝛿)𝑈 mutants, and this number of new genetic variants will
shrink as time advances unless a rescue mutation occurs.

The population is let to evolve up to extinction, i.e., population size shrinking to zero, or
when the number of individuals of fitness value larger than 𝑜𝑛𝑒, meaning positive growth rate,
exceeds a critical size, which we choose as 100. The outcome is independent of this particular
choice, provided that it is not too small but large enough to warrant that the mutant has been
established. Simulation results are precisely the same as those in which the population is left
to evolve for a long time. This criterion is the same as in Ref. (OSMOND; OTTO; MARTIN, 2020;
WAHL; CAMPOS, 2023). We then store the outcome of the run, extinction or rescued, and the
probability of extinction is just a fraction of the runs in which the population was extinct. The
likelihood of rescue is just its complement.

To estimate the degree of parallelism and mean path divergence, the initial population and
fitness landscape are set up precisely in the same way as described above. The path analysis
is carried out among those trajectories where the population did not go extinct. However,
instead of stopping the simulation when the number of individuals with a positive growth rate
attains 100, the population evolves up to either reaching the genotype providing the highest
fitness, i.e., the global optimum of the genotypic fitness landscape, or for 5, 000 generations,
whatever occurs first. Note that, in the genotypic model, because of the discretization of the
projection of the fitness landscape onto the genotypic space, the phenotype corresponding to
the genotype that provides the highest fitness will almost certainly differ from 𝑜⃗. Usually, the
accessibility of the global optimum is pretty high, though the population can sometimes evolve
to another local optimum of the fitness landscape. It is important to highlight at this point
that contrary to the phenotypic FGM in which a single optimum exists, the discreteness of the
genotype space gives rise to the existence of multiple local optima of the fitness landscape
(HWANG; PARK; KRUG, 2017).



2 EVOLUTIONARY RESCUE 50

2.4.3 Results

Probability of evolutionary rescue

Here we quantify how the severity of the environmental variation, here quantified by the
parameter 𝛿, affects the probability of evolutionary rescue.

An exact expression for the probability of rescue upon density regulation is quite trouble-
some, as the fitness varies with the population size. However, we can get essential insights
from a more straightforward scenario. Therefore, in the formulation that follows, the fitness is
assumed to be equal to 𝑊𝑔𝑒𝑜𝑚 = 𝑊𝑚𝑎𝑥 exp(−𝑑2/2𝛼2

𝑧), i.e., there is no mechanism of density
regulation. Under this assumption, a wild population with initial fitness 𝑊0 = 1 − 𝛿 will face
a geometric decline in size unless a rescue mutation occurs. In this former approach, we will
consider the phenotypic FGM. Suppose the wild-type population is at a distance 𝑑 from the
optimum phenotype. Given a mutation 𝑢⃗, the fitness of the mutant is then calculated as

𝑊 (𝑧⃗) = 𝑊𝑚𝑎𝑥 exp
[︂
−1

2(𝑑 − 𝑢⃗)2
]︂

= 𝑊𝑚𝑎𝑥 exp
[︃
−𝑑2

2 − 𝑢2

2 + 𝑑𝑢 cos 𝜃

]︃

= 𝑊 (𝑢, 𝜃),

(2.8)

where 𝜃 is the angle between vectors 𝑢⃗ and 𝑑. We want to find the probability 𝜋̄ that a randomly
chosen mutation is a rescue mutation and survives drift. Mutations’ size and orientation are
drawn from the distribution in Eq. 2.2, and we have:

𝜋̄ =
∫︁∫︁

𝑊 (𝑢,𝜃)≥1

𝑃𝑢(𝑢) 𝑃𝜃(𝜃) 𝜋(𝑢, 𝜃) 𝑑𝜃 𝑑𝑢. (2.9)

Here, 𝜋(𝑢, 𝜃) is the probability of establishment of a mutation of fitness 𝑊 (𝑢, 𝜃). We use
the branching process formulation (see Chapter 1) to determine 𝜋(𝑢, 𝜃), and so 𝜋(𝑢, 𝜃) is
numerically obtained as the fixed point of the probability generating function for a Poisson-
distributed offspring number, 𝜋 = 1 − 𝑒−𝜋𝑊 (𝑢,𝜃).

The double integral is bounded by the intervals of 𝑢 and 𝜃 in which population has a
positive growth rate 𝑊 (𝑢, 𝜃) ≥ 1 (i.e. rescue is attained). In principle, we are free to choose
the distribution 𝑃𝑢(𝑢). On the other hand, the distribution 𝑃𝜃(𝜃) must account for the dot
product (𝑢⃗.𝑑) and the dimensionality of phenotype space 𝑛. Without loss of generality, one
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may assume that 𝑑 lies along the 𝑥-axis. In this case, cos 𝜃 is just the projection of the unit
vector along 𝑢⃗-direction on the 𝑥-axis (see Fig. 10 for a schematic representation). Importantly,
cos 𝜃 is invariant to changes in the length of the mutation vector 𝑢⃗. Eq. (2.9) is better written
as

𝜋̄ =
∫︁∫︁

𝑊 (𝑢,cos 𝜃)≥1

𝑃𝑢(𝑢) 𝑃𝜃(cos 𝜃) 𝜋(𝑢, cos 𝜃) 𝑑(cos 𝜃) 𝑑𝑢. (2.10)

where 𝑃𝜃(cos 𝜃) is the probability density of cos 𝜃 ∈ (−1, 1), given by

𝑃𝜃(cos 𝜃) = 𝐶𝑛

[︁
1 − cos2 𝜃

]︁𝑛−3
2 , with 𝐶𝑛 =

[︃
√

𝜋
Γ(𝑛−1

2 )
Γ(𝑛

2 )

]︃−1

, (2.11)

as demonstrated by Wahl and Campos (2023).
Let us now define the limits of integration in Eq. (2.9). As aforementioned, a rescue

mutation must restore a positive growth rate. This means that the mutant must lie within a
hypersphere of radius 𝑟 in the phenotypic space such that

𝑊 (𝑟) = 𝑊𝑚𝑎𝑥 exp
[︂
−1

2𝑟2
]︂

= 1.

This hypersphere centered at the phenotypic optimum and of radius 𝑟 =
√

2 ln 𝑊𝑚𝑎𝑥 delimits
the domain of rescue. From Eq. (2.8), one sees that the condition 𝑊 (𝑢, 𝜃) = 1 holds when
−1

2(𝑑 − 𝑢⃗)2 = 𝑟2. Solving for 𝑢, one finds that the upper and lower limits for 𝑢 are

𝑢± = 𝑑 cos 𝜃 ±
√︁

𝑑2(cos2 𝜃 − 1) + 𝑟2. (2.12)

Thus, for a given 𝜃, the interval 𝑢 ∈ (𝑢−, 𝑢+) delimits the subset of rescue mutations (as
in Fig. 10). When 𝜃 = 0, one has 𝑢 ∈ (𝑑 − 𝑟, 𝑑 + 𝑟), while 𝜃𝑚𝑎𝑥 is such that 𝑢⃗ tangents the
hypersphere, wielding a single solution 𝑢 = 𝑑 cos 𝜃𝑚𝑎𝑥, and so

cos 𝜃𝑚𝑎𝑥 =
√︃

1 −
(︂

𝑟

𝑑

)︂2
.

Note that this construction holds only when 𝑑 > 𝑟, where 𝑑 = |𝑑|. Therefore the probability
of rescue is finally provided by

𝜋̄ =
∫︁ 𝑢+

𝑢−

∫︁ 1

cos 𝜃𝑚𝑎𝑥

𝑃𝑢(𝑢) 𝑃𝜃(cos 𝜃) 𝜋(𝑢, cos 𝜃) 𝑑(cos 𝜃) 𝑑𝑢. (2.13)

Because 𝜋̄ (Eq. 2.13) corresponds to the probability of rescue of a single mutation; the
probability of extinction of the population is simply

𝑃𝑒𝑥𝑡 = (1 − 𝜋̄)𝐴, (2.14)
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Figure 10 – Three-dimensional Fisher’s geometric model, 𝑛 = 3. The wild-type population is at a distance
𝑑 = Δ from the phenotypic optimum. The sphere of radius 𝑟 delimits the domain of rescue,
𝑊 (𝑢, 𝜃) = 1. For a given angle 𝜃, mutations of magnitude between 𝑢− and 𝑢+ are rescue
mutations. Owing to the symmetry, all mutation vectors lying on the red-shaded conical surface
are rescue mutations.

Source: The author (2024).

where 𝐴 is the total number of mutants arising before extinction (ORR; UNCKLESS, 2008).
For a population declining geometrically

𝐴 = 𝑈𝑁0

∞∑︁
𝑖=1

𝑊 𝑖
0 = 𝑈𝑁0

1 − 𝛿

𝛿
,

where 𝑊0 = 1 − 𝛿 is the wildtype fitness.
The left panel of Figure 11 presents the probability of extinction as a function of the stress

level 𝛿 for the case of density-independence, i.e., the population faces a geometric decline
in the absence of rescue mutations. In this simpler scenario, we obtain a perfect agreement
between simulation results and our analytical prediction (Eq. 2.14).

An approximation for the case with density regulation

Upon density regulation, the fitness of both wild-type and mutants are no longer constant,
as they depend on the population size (Eq. 2.3). However, the previous development for
the density-independent case can provide an upper and lower bound for the probability of
rescue/extinction when density regulation exists.

For the lower-bound estimate of the probability of extinction, we assume that fitness
remains constant and equal to 𝑊 (𝑧⃗) = 𝑊𝑚𝑎𝑥𝑆(𝑧⃗). Therefore, we assume a scenario in which
fitness is over-evaluated, enhancing (reducing) the chance of rescue (extinction).
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As the stress level 𝛿 is taken at the reference of the initial population fitness, in which
𝑁0 = 𝑁 , one has that the fitness of the wildtype population is simply 𝑊 (⃗0) = 𝑊𝑚𝑎𝑥(1 − 𝛿).
As said before, when 𝛿 > 1 − 1

𝑊𝑚𝑎𝑥
, the growth rate becomes negative, and so the population

will be doomed to extinction unless a rescue mutation happens. In the right panel of Figure
11, we compare the simulation for a population upon density regulation and the theoretical
lower bound for this probability that assumes density-independence.

Figure 11 – Extinction probability as a function of the stress level 𝛿 for the phenotypic FGM. The plot
compares the simulation results (data points) with analytical predictions (lines). In the left panel,
the simulation data is contrasted with the analytical prediction in Eq. (2.14), whereas in the right
panel, the simulation data is plotted alongside upper and lower bound estimates of the extinction
probability for a population under density regulation, as provided by Eqs. (2.14) and (2.16). The
parameter values are carrying capacity 𝐾 = 10000, number of traits 𝑛 = 5, mutation probability
𝑈 = 0.005, and mean value of phenotypic effects 𝜆 = 0.4.

Source: The author (2024).

In its turn, an upper bound can also be found by considering the formulation of constant
fitness, but now including the dependence on the time the mutation occurs. In this approach,
the fitness value to be considered is the fitness when the mutation arises, which now carries a
dependence on the population size. The reasoning is that the fitness at the moment mutant
appears will be central to its establishment. The population size at time 𝑡 can be determined
by the recursive equation

𝑁𝑡+1 = 𝑁𝑡𝑊
1− 𝑁𝑡

𝐾
𝑚𝑎𝑥 (1 − 𝛿), (2.15)

and so the fitness of the mutation at time 𝑡 will be estimated as given by Eq. (2.3). The
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likelihood of extinction of the population can be obtained as

𝑃𝑒𝑥𝑡 =
∏︁

𝑡

[1 − 𝜋̄(𝑡)]𝑈𝑁𝑡 , (2.16)

where now 𝜋̄(𝑡) depends on the time 𝑡 the mutant arises, and 𝑈𝑁𝑡 is the number of mutants
generated at generation 𝑡. In the expression above, Eq (2.16), the probability of extinction is
just the product of extinction probabilities of mutants arising in all times 𝑡.

The reason Eq.(2.16) overestimates the actual extinction can be understood as follows:
When a rescue mutation occurs at a time 𝑡 with corresponding population size 𝑁𝑡 > 1, one
does not observe an immediate reversion of the tendency of decreasing the total population
size as the rescue mutation is rare at the moment it occurs. It will take a while until it gets
established and increases in number to compensate for the decline of the wild-type population.
The upper bound is also plotted in the right panel of Figure 11.

The genotypic FGM

From now on, we focus on the genotypic version of the FGM. As defined earlier, we consider
a finite biallelic genome of size 𝐿. In contrast to the previous scenario, the pool of mutation
vectors is now restrained to 𝐿 draws, and so de novo mutations at a given time 𝑡 are Poisson
distributed with mean 𝐴𝑡/𝐿 = 𝑁𝑡𝑈/𝐿. We will use the same reasoning employed to the upper
limit of the extinction probability developed above, but now under the assumption of a finite
genome size 𝐿.

Importantly, not all mutations can lead the population to the rescue domain. One can
define the proportion or probability that a given mutation can be a rescue mutation as

𝑓 =
∫︁∫︁

𝑊 (𝑢,cos 𝜃)≥1

𝑃𝑢(𝑢) 𝑃𝜃(cos 𝜃) 𝑑(cos 𝜃) 𝑑𝑢.

The probability that a single de novo mutation occurs 𝑖 times at time 𝑡 and fails to rescue
the population is [1 − 𝜋(𝑡)]𝑖. Summing over all independent lineages 𝑖,

∞∑︁
𝑖=0

𝑒−𝜇𝜇𝑖

𝑖! [1 − 𝜋(𝑡)]𝑖 = exp
[︃

−𝜋(𝑡)𝐴𝑡

𝐿

]︃

in which 𝜇 = 𝐴𝑡/𝐿 (WAHL; CAMPOS, 2023). Now integrating over the rescue domain, we find
the probability of rescue owing to mutations at time 𝑡:

𝑅𝑡 = 1 − 1
𝑓

∫︁∫︁
𝑊 (𝑢,𝜃)≥1

𝑃𝑢(𝑢) 𝑃𝜃(𝜃) exp
[︃

−𝜋(𝑡)𝐴𝑡

𝐿

]︃
𝑑𝜃 𝑑𝑢. (2.17)
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Where, once again, the fixation probability depends on the magnitude of mutation effects 𝑢

and cos 𝜃. Since there are 𝐿 possible mutation vectors, the probability that a mutation rescues
the population given 𝐿 is 𝑃𝑟𝑒𝑠𝑐𝑢𝑒|𝐿(𝑡) = 1 − (1 − 𝑅𝑡𝑓)𝐿 (WAHL; CAMPOS, 2023). In this way,
our upper estimate for the probability of extinction for a genotypic FGM is simply

𝑃𝑒𝑥𝑡 =
∏︁

𝑡

(1 − 𝑅𝑡𝑓)𝐿. (2.18)

Figure 12 – Extinction probability as a function of the stress level 𝛿 for the genotypic FGM. The plot compares
the simulation results (data points) with the analytical predictions (lines), given by Eq. (2.27).
The parameter values are genome size 𝐿 = 12, carrying capacity 𝐾 = 10000, number of traits
𝑛 = 5, mutation probability 𝑈 = 0.005, and mean value of phenotypic effects 𝜆 = 0.4.

Source: The author (2024).

Figure 12 shows the extinction probability versus the stress level 𝛿 for the genotypic FGM.
In this instance, we have considered genome size 𝐿 = 12. The approximation provided by
Eqs.(2.17)-(2.27), which works as an upper limit, fits reasonably well our simulation data in
a broad range of 𝛿-values. However, we see that at small 𝛿, instead of providing an upper
limit, the theoretical curve underestimates 𝑃𝑒𝑥𝑡. Our theoretical development considers that
the evolutionary rescue owes to the occurrence of one-step rescue mutations (OSMOND; OTTO;

MARTIN, 2020), but the assumption is not so critical. The occurrence of two or multiple-step
rescue mutations remains at low probability despite its increase with the stress level, as shown
in Figure S3. We also observe that the likelihood of multiple-step rescue mutations grows
with the number of traits 𝑛 but still remains as non-dominant events. The larger contribution
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of double or multiple mutations to the rescue with 𝑛 occurs because the probability that a
mutation is beneficial and its fitness gain decreases with the number of traits 𝑛 (ORR, 2000).

The occurrence of double or multiple mutants may also have a prominent role when 𝛿 is
small. However, because in the range of small 𝛿, rescue mutations might confer small pheno-
typic effects, the existence of double mutations is more likely to have a harmful effect on fitness.
As already pointed out, the fraction of beneficial mutations decreases as one approaches the
phenotypic optimum (WAXMAN, 2006; RAM; HADANY, 2015). Therefore, once the population
resides close to the phenotypic optimum and a beneficial mutation is carried by an individual,
i.e., and so approaching even further the phenotypic optimum, the probability that a second
mutation has a detrimental effect will be enhanced.

Figure 13 – Extinction probability as a function of the stress level 𝛿 for the genotypic FGM. The number of
traits 𝑛 is indicated in the legend. The vertical line delimits non-extinction and rescue/extinction
domains. The parameter values are genome size 𝐿 = 12, carrying capacity 𝐾 = 10000, mutation
probability 𝑈 = 0.005, and mean value of phenotypic effects 𝜆 = 0.4. Error bars were omitted
because their size is of the order or smaller than the symbols marking the data points.

Source: The author (2024).

In Fig. 13, we explore the dependence of the extinction probability on the stress level
𝛿 and the dimensionality of the phenotypic space 𝑛. We observe an evident qualitative and
quantitative behavior change at the critical 𝛿 = 𝛿𝑐. By increasing 𝛿, we move from the
domain of non-extinction to the domain in which the probability of extinction is non-null. For
large 𝛿, the extinction probability will eventually level off to one. The width of this transition
shrinks with the number of traits 𝑛. The theoretical prediction, Eq. (2.27), works well within
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the limitations of the framework for small and intermediate 𝑛 but breaks down for large
dimensionalities. Figure S1 shows results up to 𝑛 = 10, and the prediction of the approximation,
which is supposed to work as an upper bound, is satisfactory. However, for 𝑛 = 20 and 𝑛 = 30,
we already observe a considerable discrepancy (data not shown).

Degree of parallelism

The previous developments about the probability of evolutionary rescue and extinction of
populations will be helpful in order to understand better the underlying processes that drive
the evolutionary process and affect the degree of parallelism of independent populations.

Initially, both population replicates are isogenic and their sizes equal the carrying capacity
𝐾, which is assumed to be the same, i.e., 𝐾𝐴 = 𝐾𝐵 = 𝐾. At 𝑡 = 0, the phenotypic optimum
is placed at a distance such that the initial fitness of every individual equals 1 − 𝛿. The
phenotypic optimum is the same for both populations.

To quantify the degree of evolutionary parallelism, we keep track of the evolutionary tra-
jectory of each population and utilize the metrics defined in Section 2.4.1. The left panel of
Figure 14 exhibits the degree of parallelism versus the initial population’s stress level, 𝛿. Results
are shown for distinct values of the number of traits 𝑛. As we can see, the larger the 𝑛, the
larger the degree of parallelism in all the range of 𝛿. On the other hand, the right panel of
Figure 14 exhibits the dependence of the mean path divergence versus 𝛿. The measurement is
taken by calculating the distance Ω(𝜑𝐴

𝑘 , 𝜑𝐵
𝑘 ), as defined in Eq. (2.7), between the simultaneous

evolutionary paths in replicates 𝐴 and 𝐵. There is an evident negative correlation between
the degree of parallelism and the mean path divergence. Thus, the larger the number of traits,
the smaller the genetic divergence between the evolutionary trajectories. Path divergence is
generally negatively correlated to repeatability measures (REIA; CAMPOS, 2020).

From both plots, it is noticeable a change of behavior at the critical point 𝛿𝑐 = 1−1/𝑊𝑚𝑎𝑥,
that delimits the domains of non-extinction and rescue/extinction. Except for a small trait
number, the degree of parallelism decreases with 𝛿, reaches a minimum at 𝛿 = 𝛿𝑐, and then
features an abrupt rise at the domain of rescue/extinction. Conversely, when looking at the
mean path divergence, 𝛿 = 𝛿𝑐 is the point at which the path divergence reaches a maximum
for intermediate and large 𝑛. The change of behavior resembles those observed in systems
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Figure 14 – Parallelism and mean path divergence as a function of the stress level 𝛿 for the genotypic FGM.
The number of traits 𝑛 is indicated in the legend. From the green vertical line onwards, the
population is in a regime of rescue/extinction. The parameter values are genome size 𝐿 = 12,
carrying capacity 𝐾 = 10000, mutation probability 𝑈 = 0.005, and mean value of phenotypic
effects 𝜆 = 0.4. Error bars were omitted because their size is of the order or smaller than the
symbols marking the data points.

.
Source: The author (2024).

displaying a phase transition. This behavior change turns even more abrupt as the number of
traits is augmented. Similar qualitative behavior is seen for the mean path divergence.

The characterization of the degree of parallelism in the first regime, the domain of non-
extinction, which is delimited by 𝛿 < 1−1/𝑊𝑚𝑎𝑥, is more easily understood. As well known, the
probability that a mutation is beneficial decreases with its phenotypic effect within the FGM
formulation (HARTL; TAUBES, 1996). Because the probability of parallelism decreases with the
number of available beneficial mutations (ORR, 2005b), the drop in the degree of parallelism,
as observed here, concurs with previous findings. By augmenting 𝛿, one increases the chance
of a mutation being beneficial. Raising 𝛿 also decreases the population size in which a positive
growth rate is restored, as one can infer from Eq. (2.6). Consequently, this will reduce the
supply of beneficial mutations and diminish the occurrence of clonal interference, in which rare
large-effect mutations get established (GERRISH; LENSKI, 1998; CAMPOS; WAHL, 2009; BAILEY

et al., 2017). Also, higher stress levels may allow mutations of small effects to freely accumulate
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independently and not be shared between the two populations in the regime of non-extinction.
In this model, where mutation-effect sizes follow an exponential distribution, the presence of
many small-effect mutations in the genome could contribute to the decrease in parallelism.
Altogether, these factors contribute to the reduction of parallelism with the increase of stress
level 𝛿 in the domain of non-extinction. A rise in the mean path divergence and mean number
of steps toward the optimum results in a decrease in parallelism.

The second regime establishes a clear connection between parallel evolution and evolution-
ary rescue. When multiple populations or species face a similar threat, those independently
evolving traits conferring resistance or resilience are more likely to undergo evolutionary rescue
(GOMULKIEWICZ; HOLT, 1995; CARLSON; CUNNINGHAM; WESTLEY, 2014). The independent
evolution of similar traits in different lineages can contribute to the overall success and sur-
vival of species or populations in the face of environmental threats. The abrupt increase in
the degree of parallelism follows a similar rise in the probability of extinction. The effect of
increasing stress levels 𝛿 is two-fold: large 𝛿 means a fast decline in population size, leading
the population to more promptly reach critical small sizes (CARLSON; CUNNINGHAM; WEST-

LEY, 2014), but also signifying that fewer opportunities will be available to generate rescue
mutations and restore positive growth rates. The evolutionary rescue upon high levels of stress
relies on the existence of a few mutations of large phenotypic effect. This problem is even more
evident when the number of available loci is small. In fact, for small genome sizes 𝐿, there is a
chance that none of the 𝐿 one-step mutations are rescue mutations (WAHL; CAMPOS, 2023).
Therefore, evolving under conditions of severe environmental stress contributes to the increase
in repeatability and parallelism at the genotypic level.

2.4.4 Discussion

Together, an integrated study of parallel evolution alongside evolutionary rescue is essential
to cope with empirical investigations on rapid evolution, where fewer genes are responsible for
adaptive responses to stress. Replicate experiments with microbial systems addressing popula-
tion resistance to antibiotics (WEINREICH; WATSON; CHAO, 2005; GERSTEIN; LO; OTTO, 2012),
salinity concentration (BELL; GONZALEZ, 2011), and temperature (HUANG et al., 2018), are
proper systems for comparing our theoretical predictions since in the controlled-lab conditions
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the severity of stress can be tuned, whole-genome sequencing is achievable, and factors that
affect the per-capita growth rate can be controlled.

As aforesaid, the existence of a mechanism of density regulation leads to observing two
distinct regimes, with consequences for the evolutionary outcome and the evolving level of
parallelism. In the former, the stress level, quantified by the level of maladaptation, is such that
the population can restore positive growth rates by adjusting its population size or through
adaptive mutations. In this regime, the population has a null chance of extinction. In the
second identified regime, dubbed the rescue/extinction regime, the level of maladaptation is
sufficiently high such that the population will be doomed to extinction unless a rescue mutation
occurs (GOMULKIEWICZ; HOLT, 1995; ALEXANDER et al., 2014; BELL, 2017).

Notably, we have characterized these two regimes by studying the dependence of the prob-
ability of rescue/extinction on the stress level 𝛿. We have developed an analytical approach to
estimate the likelihood of rescue/extinction that matches our simulation for geometrically de-
clining populations, i.e., non-density regulated. However, those approximations are also helpful
in providing upper and lower bound estimates for the density-regulated case.

Our formalization and analytical approximations are not broadly applicable, limited to
studies of parallelism and evolutionary rescue at lower levels of biological organization, where
protein, gene, and mutations are expected to constrain the number of possible paths for the
adaptive process. In our model, asexual populations adapt solely through de novo mutations,
but higher levels of parallelism from standing genetic variation are predicted in theory (BURKE;

LITI; LONG, 2014) and observed in experiments (MACPHERSON; NUISMER, 2017). Expanding the
methods to characterize mutational paths to include standing variation, sexual recombination
(THOMPSON; OSMOND; SCHLUTER, 2019), and epistasis are all clear avenues for developing
our implications on their roles in genetic parallelism.

• The main results presented in this section have been published in the article: Freitas,

Osmar, and Paulo RA Campos."Understanding Evolutionary Rescue and Parallelism in

Response to Environmental Stress." Evolution (2024). Ref. (FREITAS; CAMPOS, 2024b)
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2.5 Epistasis and Incongruence

Epistasis refers to the phenomenon whereby the genetic background (the set of preexist-
ing mutations) influences a mutation’s effect on fitness and, thus, on adaptive evolution. In
particular, it may also influence a population’s fate by constraining the availability of genetic
mutations that can lead to rescue in a declining population. Understanding the influence of
epistasis in the process of Evolutionary Rescue is the matter of the current contribution.

In this section, we implement the FGM and NK models as a genotype → phenotype →

fitness map to study the conditions for the evolutionary rescue of an asexual population subject
to an abrupt environmental change. The motivation for this three-layer mapping is the con-
trol of epistasis as a free parameter. We compare individual-based simulations with analytical
approximations when possible. We have found that higher levels of epistasis increase the incon-
gruence or non-linearity between maps and determine the fraction of available mutations that
can lead to rescue. These results show that landscape topographical properties - influenced by
epistatic interactions - play an essential role in population persistence, showing the importance
of integrating the genetic bases of adaptation in studying the problem of evolutionary rescue.

2.5.1 Kauffman’s NK Model

The NK landscape model of random epistatic interactions was introduced by Kauffman
et al. (KAUFFMAN; WEINBERGER, 1989) to study the influence of landscape ruggedness on
adaptive evolution. It resembles spin-like models of disordered magnetic materials, common
in solid-state physics, where each of the atoms spins can assume one of two possible states
{±1} (DERRIDA, 1981). Likewise, each organism in the population is represented by a binary
sequence, and both systems may exhibit frustration. For each gene (locus) in the genotype,
one evaluates its interactions with other genes to estimate its contribution to the phenotype.
In the model, 𝐾 determines the level of interaction between genes and can be adjusted as a
parameter to change the degree of ruggedness of the landscape.

As a model for the genotype-phenotype mapping, we consider the NK landscape model
(KAUFFMAN; LEVIN, 1987; MACKEN; PERELSON, 1989). The model determines an individual’s
phenotype from its genotype, denoted as 𝑆. Each individual is characterized by a genome
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consisting of 𝐿 loci, represented as 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝐿), where each 𝑠𝛼 is a binary variable
𝑠𝛼 ∈ {0, 1}. Therefore, the genotype space consists of 2𝐿 sequences.

The contribution of a given locus j to the phenotype, denoted as 𝜔𝑗, is a function de-
termined by 𝜔𝑗 = 𝑔[𝑠𝑗,

∏︀(𝑗)], relying on the state 𝑠𝑗 of locus j and the state of a set of
𝐾 neighbors, denoted as ∏︀(𝑗). The 𝐾 neighbors are selected randomly from the remaining
𝐿 − 1 loci. Therefore, each 𝜔𝑗 has 2𝐾+1 distinct arguments randomly drawn from a uniform
distribution, defined in the [0, 𝑏] range. Finally, the phenotypic value 𝑧 is estimated as

𝑧 = 1
𝐿

𝐿∑︁
𝑗=1

𝜔𝑗. (2.19)

By changing the parameter 𝐾, one varies the degree of ruggedness of the genotype-
phenotype landscape: from the additive model, which corresponds to 𝐾 = 0 and is also known
as Mt. Fuji landscape (AITA; HUSIMI, 1996), to a completely uncorrelated fitness landscape,
which is obtained by making 𝐾 = 𝐿 − 1. The latter is also known as the House-of-Cards, a
biological version of the random-energy spin glass model of Derrida (KINGMAN, 1977; DERRIDA,
1981).

An important feature of the NK landscape model is that it incorporates interdependencies,
or epistatic interactions, among the genome’s loci. If an allele at a specific locus changes, it
impacts not only the fitness contribution of that locus but also the contributions of loci that
are epistatically coupled to it. Epistasis is modulated by the parameter K.

Epistasis is directly related to the fitness landscape’s topography (BANK, 2022). If muta-
tions have an effect independent of its genetic background (no epistasis), the landscape bears
a single adaptive peak. Thus, an optimizing combination of mutations carries the single fittest
solution to population survival. In turn, incrementing epistasis leads to increased fitness peaks,
giving rise to a rugged landscape i.e. multiple local optima. In most of the applications of the
NK model, phenotypic values are used as a proxy for fitness (FREITAS; WAHL; CAMPOS, 2021;
REIA; CAMPOS, 2020; KAUFFMAN; LEVIN, 1987). However, here, one assumes an additional
layer, i.e., genotype → phenotype → fitness, and the mapping from genotype to fitness is no
longer direct (HWANG; PARK; KRUG, 2017; CIRNE; CAMPOS, 2022). In this multi-layer mapping
the number of local fitness peaks may differ between the genotype-phenotype map, and the
phenotype-fitness map. Like in Srivastava and Payne (2022), these inherent discrepancies or
differences in the topographical properties are referred to as incongruence.
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Figure 15 – Illustration of the modelling of evolutionary rescue. In this illustration, the wild-type population
has phenotype 𝑓 by randomly picking a sequence in the genotype space. The optimum is placed
a distance Δ from 𝑓 , such that the fitness of the wild-type population equals 1 − 𝛿. The interval
(𝑢−, 𝑢+) delimits the phenotypic domain in which the population can restore a positive growth
rate (𝑊 > 1). Superimposed on the illustration is a drawing of the phenotype distribution, which
is a Gaussian distribution.
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Source: The author (2024).

2.5.2 Simulation Protocol

Similar to the previous work, an initial isogenic population of size 𝑁0 is set up to simulate
evolutionary rescue following an abrupt environmental change. The genotype of the initial
population, 𝑆0, with corresponding phenotype 𝑧0, is randomly chosen among the 2𝐿 genotypes
that comprise the genotypic space.

At the onset of the simulation, time 𝑡 = 0, a sudden shift occurs in the environment, leading
to the relocation of the phenotypic optimum to a position Δ away from 𝑧0, as illustrated in
Fig.15. The phenotypic displacement Δ is calculated such that the population’s fitness at time
𝑡 = 0 amounts to 1 − 𝛿, where 𝛿 is described as the initial population’s stress level or the
level of maladaptation. Notice though, that under density independence, the initial phenotypic
distance to the optimum at fixed 𝛿 is

Δ =

⎯⎸⎸⎷−2 ln
[︃

1 − 𝛿

𝑊𝑚𝑎𝑥

]︃
. (2.20)

In the absence of density regulation and upon the inexistence of rescue mutations, the popu-
lation is expected to shrink geometrically and go extinct.

To estimate the probability of extinction/rescue, we let the population evolve up to its
extinction or when positive growth rates have been restored. In the latter situation, the simu-
lation stops as soon as the number of individuals of fitness larger than one, 𝑊 (𝑧) > 1, exceeds
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200. The results are not sensitive to this particular choice. The probability of rescue is just a
fraction of the simulations in which rescue has been found.

Additionally, we analyze the topographical properties of the resulting fitness landscape.
The former quantity is the fraction of genotypes in the genotypic space with fitness values
larger than one, 𝑊 (𝑧) > 1, meaning positive growth rates. This quantity is of great interest as
this fraction directly estimates the number of potential rescue mutations. The second quantity
is incongruence, as first presented in Ref. (SRIVASTAVA; PAYNE, 2022). The incongruence is
then quantified as the average of the absolute change in the number of peaks ⟨|𝑝𝑓 − 𝑝𝑔𝑝|⟩,
where 𝑝𝑓 and 𝑝𝑔𝑝 are the number of peaks in the fitness landscape and genotype-phenotype
map, respectively.

2.5.3 Results

Figure 16 – Incongruence and the fraction of potential rescue mutations as a function of the stress level.
Curves denote different degrees of epistasis 𝐾. The thick solid line is the analytical result for
the uncorrelated case, 𝐾 = 11, obtained from Eq. (2.23). Error bars are smaller than points.
Parameters for both cases are 𝐿 = 12, 𝑊𝑚𝑎𝑥 = 1.5, and 𝑏 = 6.
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Topographical properties

Here, we investigate how the stress level, quantifying the initial phenotypic distance from
the wild-type population to the optimum, shapes the fitness landscape. First, it is essential to
highlight that as opposed to the original phenotypic Fisher’s geometric model (FGM), which
displays a single optimum, its genotypic counterpart has multiple local optima due to the
discreteness of the genotype space (HWANG; PARK; KRUG, 2017). In the left panel of Fig. 16,
we explore the dependence of the incongruence on the stress level, 𝛿. We verified that the
number of local optima of the fitness landscape is greater than that observed for the NK
landscape model and, as we see from the plot, reaches a maximum at intermediate values
of the epistatic parameter 𝐾. However, we also observe that the incongruence is significantly
reduced as the stress level is augmented, making the fitness landscape smoother at more severe
stress levels.

In the right panel of Fig. 16, the fraction of potential rescue genotypes is shown as a
function of 𝛿, i.e., those genotypes that can effectively restore positive growth rates. As ex-
pected, it is a decreasing function of 𝛿. Except for 𝐾 = 0 and 𝐾 = 1, the curves collapse
and coincide with the theoretical prediction, to be discussed below, showing that sufficient
epistasis increases the availability of rescue mutations.

For our theoretical prediction, note that the phenotype associated with a given genotype
is a sum of 𝐿 contributions, one for each locus, which, in turn, are random values taken from
a uniform distribution 𝑈(0, 𝑏), with mean 𝑓 = 𝑏/2 and variance 𝜎2 = 𝑉 𝑎𝑟[𝑓 ] given by

𝑉 𝑎𝑟[𝑓 ] = 𝑓 2 − 𝑓
2

=
∫︁ 𝑏

0
���*

1/𝑏
𝑝(𝑓) 𝑓 2 𝑑𝑓 − 𝑏2/4

= 𝑏2/12.

Following the Central Limit Theorem (REICHL, 2016), the probability distribution of phenotypic
values for the uncorrelated landscape is a Gaussian with the same mean and variance 𝜎2

𝑓 =
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𝜎2/𝐿, which is easily obtained by taking the variance of the mean:

𝑉 𝑎𝑟[𝑓 ] = 𝑉 𝑎𝑟

[︃
1
𝐿

𝐿∑︁
𝑖=1

𝑓𝑖

]︃

= 1
𝐿2

𝐿∑︁
𝑖=1

𝑉 𝑎𝑟 [𝑓𝑖]

= 1
𝐿2 𝐿 𝑉 𝑎𝑟 [𝑓 ]

= 𝑏2

12𝐿
.

Therefore, a Gaussian distribution of mean 𝑏/2 and variance 𝜎2
𝑓 = 𝑏2

12𝐿
, holds irrespective

of the value of the epistatic parameter 𝐾:

𝑝(𝑓) =
√︃

6𝐿

𝜋𝑏2 exp
(︃

−6𝐿(𝑓 − 𝑏/2)2

𝑏2

)︃
, (2.21)

As one samples a single phenotypic distribution, when the phenotypic values are low cor-
related, as found for intermediate and large 𝐾, the distribution of phenotypic value for this
sample already approaches the distribution above (Eq. 2.21). But this is no longer true for
small 𝐾, such as 𝐾 = 0 and 𝐾 = 1, where we have a very high correlation and the distribu-
tion for one sample is more likely to explore a smaller domain of possible phenotypic values.
This situation is depicted in Figure 17, where we show the distribution of phenotypic values
for epistatic parameters 𝐾 = 0 (additive landscape) and 𝐾 = 11 (uncorrelated landscape)
for single and multiple samples. The distributions on the left correspond to one sampling of
the phenotypic landscape, whereas on the right, one has the resulting distribution over 1, 000

distinct samples of the phenotypic landscape. The dashed lines are the theoretical distribution
given by Eq. (2.21). This evidence explains why the fraction of potential rescue genotypes for
low 𝐾 do not collapse with those for intermediate and large 𝐾 in Fig. 16.

Although analytical expressions are generally troublesome, some derivations are possible in
the particular case of the uncorrelated fitness landscape, as the following shows.

An approximation for the case 𝐾 = 𝐿 − 1

The wild-type population has a phenotype value provided by Eq. (2.21), as its genotype is
randomly chosen among the 2𝐿 sequences of the genotype space. In the uncorrelated case, any
mutant will also have its phenotype value, 𝑓

′ , taken from the same distribution, and therefore,
the mutation phenotypic effect will be 𝑢 = 𝑓

′ − 𝑓 . Because 𝑓 and 𝑓
′ are both Gaussian
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Figure 17 – The distribution of phenotypic values over the entire genotype sequence. The epistatic parameter
value is K = 0 (upper panels) and K = 11 (lower panels). In the left panel, the distribution
is obtained from a single sample of the phenotypic landscape, whereas in the right panel, the
distribution is taken from an ensemble of 1, 000 samples of the phenotypic landscape

Source: The author (2024).

variables, 𝑢 will also be given by a Gaussian distribution of null mean and variance 2𝜎2
𝑓 , i.e.,

𝑝(𝑢) =
√︃

3𝐿

𝜋𝑏2 exp
(︃

−3𝐿𝑢2

𝑏2

)︃
. (2.22)

Not every mutation can potentially steer the population toward the rescue domain. The
probability that a random mutation is a potential rescue mutation is simply

𝜌 =
∫︁ 𝑢+

𝑢−
𝑝(𝑢)𝑑𝑢, (2.23)

where the condition
𝑊 (𝑢) = 𝑊𝑚𝑎𝑥𝑒− 1

2 (Δ−𝑢)2 = 1 (2.24)

provides the upper and lower bounds of the integral, i.e., within this range, positive growth
rates (fitness larger than one) are ensured. The solutions of Eq. 2.24 are 𝑢± = Δ±

√
2 ln 𝑊𝑚𝑎𝑥.

In the right panel of Fig. 16, the theoretical prediction for the fraction of potential rescue
mutations, Eqs. (2.23) and (2.22), is plotted along with simulation results, where a good
agreement is found, except for small 𝐾 for the reasons outlined in the previous section.
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Figure 18 – Probability of extinction for the uncorrelated landscape, 𝐾 = 11, as a function of the stress
level for the (left panel) phenotypic and (right panel) genotypic versions of the model. Curves
represent distinct values of mutation probability 𝜇. Solid lines are the analytical approximations,
Eqs. (2.25) (phenotypic model) and (2.27) (genotypic model). Error bars are smaller than the
points. Parameter values are 𝑁0 = 104, 𝑊𝑚𝑎𝑥 = 1.5, 𝑏 = 6, and genome size 𝐿 = 12 (genotypic
model).
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As already highlighted, only mutants of fitness larger than one can contribute to rescuing
the population. As in our previous work, the probability that a randomly chosen mutation
rescues the population is again given by Eq. 2.9:

𝜋̄ =
∫︁ 𝑢+

𝑢−
𝑝(𝑢)𝜋(𝑢)𝑑𝑢.

As already derived, the probability of population extinction for the phenotypic case is

𝑃𝑒𝑥𝑡 = (1 − 𝜋̄)𝐴, (2.25)

where 𝐴 is the total number of mutants (ORR; UNCKLESS, 2008). As for the genotypic
version, 𝐿 potential rescue mutations exist. Depending on the mutation probability 𝜇 and the
rate of population decline 1 − 𝛿, these 𝐿 one-step mutations can repeatedly occur up to the
population’s extinction or rescue. The chance that a single potential rescue mutation arises 𝑖

times without getting established and rescuing the population is [1 − 𝜋(𝑢)]𝑖. As in the previous
sections, we assume that de novo mutations follow a Poisson distribution with an average of
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𝐴/𝐿, so all loci are equally likely to be mutated. The likelihood that a single potential rescue
mutation effectively rescues the population is determined as follows:

𝑅 = 1 − 1
𝜌

𝑢+∫︁
𝑢−

𝑝(𝑢) exp
(︃

−𝜋(𝑢)𝐴
𝐿

)︃
𝑑𝑢. (2.26)

with 𝜌 given by Eq. (2.23). Note that 𝑅×𝜌 provides the likelihood a potential rescue mutation
gets established. Because there are 𝐿 one-step mutations, the probability of extinction of the
population is calculated as

𝑃𝑒𝑥𝑡 = (1 − 𝑅𝜌)𝐿. (2.27)

In Figure 18, we show the probability of extinction as a function of the stress level, 𝛿, for
a population of initial size 𝑁0 = 10, 000 and distinction values of the mutation probability 𝜇.
For the genotypic model, we have considered genome size 𝐿 = 12. We confront the simulation
results with the theoretical prediction, Eq. (2.25) and Eq. (2.27). The theory fits reasonably
well the simulation data for low and intermediate 𝜇 but not for large mutation probabilities. We
hypothesize that the inconsistency at large 𝜇 is because of the interference among coexisting
mutations (BARRICK; LENSKI, 2013), whose competition hinders fitter variants from increasing
in size. The probability of extinction displays a sharp increase with 𝛿 at small 𝜇, but the rise
of 𝑃𝑒𝑥𝑡 is smoothed with the augmentation of 𝜇.

General case

So far, we have addressed the case of the uncorrelated fitness landscape, which has allowed
us to derive analytical approximations and get critical insight into the problem. In Fig. 19, we
show the probability of population extinction versus the stress level 𝛿 and distinct epistatic
parameter values.

The likelihood of extinction is a monotonic increasing function of 𝛿, which holds for all
𝐾. Counterintuitively, we notice that, except for very small 𝛿, smaller extinction probabilities
occur at larger 𝐾. Usually, when we think about the role of turning the fitness landscape more
rugged, the evolutionary process becomes more constrained, and more easily, populations get
trapped at local fitness peaks, which at first glance could mean some difficulty in establishing
positive growth rates. However, an opposite scenario is observed. The reason larger 𝐾 means
an enhanced chance of rescuing the population is two-fold: first, the phenotypic effect of
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Figure 19 – Probability of extinction as a function of the stress level for distinct values of the epistatic
parameter 𝐾. Error bars are smaller than points. Parameter values are 𝐿 = 12, 𝜇 = 1 × 10−4,
𝑁0 = 104, 𝑊𝑚𝑎𝑥 = 1.5, and 𝑏 = 6.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
stress level, 

0.0

0.2

0.4

0.6

0.8

1.0
P e

xt
K=0
K=1
K=3
K=6
K=11

Source: The author (2024).

mutations 𝑢 is proportional to (𝐾 + 1)/𝐿 (CAMPOS; ADAMI; WILKE, 2002). If the evolutionary
process of rescue relies mainly on few-step mutations, then a larger 𝐾 would ensure a higher
chance of producing a phenotypic displacement to move the population for the rescue domain
[𝑓 +𝑢−, 𝑓 +𝑢+] (see Fig. 15). In other words, on average, there exist local solutions to rescue.
Second, the main advantage of a smoother landscape (small 𝐾) in a genotype → fitness
map relies on establishing multiple-step mutations as the population can more easily sweep
through the landscape. However, because the three-layer mapping of genotype → phenotype
→ fitness leads to incongruence, an increase in the number of peaks in the fitness landscape
compared to its phenotypic counterpart curbs much of its advantage in terms of diffusion over
the genotypic space through mutations.

We also observe that the different behavior at very small 𝛿, in which lower extinction
probabilities do not ensue from very large 𝐾, such as 𝐾 = 11, is amplified at large 𝜇. Indeed,
this abnormality can be understood in the face of the fundamentals of Fisher’s geometric
model. When the distance to the optimum phenotype is narrow, mutations of sizable effect
are likely to have a detrimental effect (TENAILLON, 2014; RAM; HADANY, 2015), i.e., they can
fall outside the rescue domain [𝑓 + 𝑢−, 𝑓 + 𝑢+].
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Figure 20 – Probability of extinction as a function of the mutation probability. Curves represent different stress
levels 𝛿. Error bars are smaller than points. Solid lines are analytical approximations for the full
uncorrelated case (𝐾 = 11), Eq. (2.27). Parameter values are 𝐿 = 12, 𝑁0 = 104, 𝑊𝑚𝑎𝑥 = 1.5,
and 𝑏 = 6. The epistatic parameter 𝐾 is indicated in the subtitle of the panels.
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Figure 20 now explores the dependence of the extinction probability 𝑃𝑒𝑥𝑡 on the mutation
probability 𝜇. The extinction probability is a monotonic decreasing function of 𝜇. The larger
the stress level 𝛿, the larger the mutation probability 𝜇 that characterizes the onset of the
rescuing regime. Results are qualitatively the same for 𝐾 = 3 (left panel) and 𝐾 = 11 (right
panel). We contrast the simulation data in the right panel with the theoretical prediction,
Eq. (2.27). Note that the theoretical predictions fit the simulation data over a broad range
of mutation probability 𝜇, which is widened with 𝛿. As mentioned before, the theory ceases
to predict the simulation data well when coexistence and interference among mutations exist.
An increased 𝛿 entails a swift population decline, thus reducing 𝐴, the number of mutations
up to population extinction. This is why the theoretical prediction is suitable over a broader
range of 𝜇 with the augmentation of 𝛿.
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2.5.4 Discussion

Understanding the role of epistasis in evolutionary rescue is crucial because it can signifi-
cantly influence the outcomes of rescue attempts, as well as the long-term viability of rescued
populations. In this context, the role of epistasis is addressed here as the genotype-phenotype
map, provided by the NK landscape model, proposed by Srivastava and Payne (2022).

Our results show that the degree of epistasis can significantly impact the fate of en-
dangered populations. Remarkably, we have shown extinction probabilities are larger when
smoother genotype-phenotype maps are used. The reason for this outcome is two-fold: first,
the phenotypic effect of mutations is proportional to (𝐾 +1)/𝐿, and hence, high epistasis can
provide sufficiently large mutation effects, thus ensuring the population’s rescue. Second, the
whole mapping genotype-phenotype-fitness leads to incongruence in the landscapes, making
smooth landscapes at the phenotypic level more rugged at the fitness level. Thus, it curbs the
advantages of smooth landscapes in an evolutionary context, that is, the accessibility of ben-
eficial mutations that can accumulate gradually and allow populations to move freely across
the landscape.

From a mathematical perspective, we derived analytical results for the fraction of potential
rescue mutations, i.e., those mutations that can restore positive growth rates. More impor-
tantly, we developed a formulation to analytically estimate the probability of extinction in the
uncorrelated model version that applies to the case of 𝐾 = 𝐿 − 1. We also introduced a
phenotypic version of the model, which we used to give us some insight into the derivations
for the genotypic model.

• The main results presented in this section have been published in the article: Freitas,

Osmar, and Paulo RA Campos. "The role of espistasis in evolutionary rescue." The

European Physical Journal E (2024). Ref. (FREITAS; CAMPOS, 2024a)
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2.6 Conclusions

Understanding the eco-evolutionary process known as evolutionary rescue is crucial not
only in the face of global climate change (PAULS et al., 2013; SOUZA et al., 2023), but equally
important in the study of pathogenic microbes, for example providing insights into the is-
sue of antibiotic resistance, a global health challenge (LIN; KUSSELL, 2016; LARSSON; FLACH,
2022). Although primarily studied assuming abiotic sources of demographic change, the study
of evolutionary rescue can also provide a proper framework for the role of biotic agents of
demographic change, such as introducing a novel pathogen (SEARLE; CHRISTIE, 2021), a topic
closely related to the epidemics of virulent pathogens.

Within the framework of our first study, we investigate density regulation effects on evo-
lutionary rescue and parallel evolution at genetic levels (CHEVIN; LANDE, 2010). Although the
contribution of population size to parallelism is the subject of many studies, they are usually
restricted to populations of constant size. A meta-analysis from (BAILEY et al., 2017) shows
an increase in parallelism with population size from bacteria and fungi, while (SZENDRO et

al., 2013) reports a non-monotonic dependence when looking at the repeatability of adaptive
pathways. Although some theoretical works address these questions in populations with varying
sizes (e.g., in bottlenecked populations (FREITAS; WAHL; CAMPOS, 2021)), growth and decline
rates remain deterministic. Thus, a clearer formalization of the effects of density regulation on
parallel evolution was missing.

The Fisher Geometric Model (FGM) plays a crucial role in understanding evolutionary
rescue and has been proven to offer an adequate framework to the changing environments
(MATUSZEWSKI; HERMISSON; KOPP, 2014; TENAILLON, 2014; ANCIAUX et al., 2018). More-
over, by investigating the relationship between genotype, phenotype, and fitness, we can gain
essential insights into the molecular mechanisms underlying evolutionary processes and the
adaptation of organisms to their environments, with evolution driven by genotype changes and
selection based on phenotypes (CATALÁN et al., 2023). In this context, in our second study, we
address the mapping genotype → phenotype → fitness, highlighting the effects of epistasis on
the map nonlinear transformations and how it can significantly impact the fate of endangered
populations.
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In conclusion, these couple of works aim to contribute to understanding population per-
sistence and their evolutionary responses in the face of environmental changes. Investigating
the impact of different demographic regimes, as other forms of density regulation, could pro-
vide valuable insights into the interplay between population dynamics and genetic adaptation.
Replicate experiments are giving new insights into genetic parallelism and the constraints pro-
moting the repeatability of evolutionary outcomes, as well as empirical fitness landscapes. By
studying these mechanisms, we can better understand how populations adapt and evolve in
response to environmental stress and develop more effective conservation and management
strategies to ensure their persistence or halt their spread, as with emerging diseases.
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3 SPECIATION IN A NEUTRAL MODEL

Tantos povos se cruzam nessa terra

Que o mais puro padrão é o mestiço

Deixe o mundo rodar que dá é nisso

A roleta dos genes nunca erra

(Mestre Ambrósio)

The evolution of life on Earth shows a great diversification of organisms. This inherent
feature of life can be observed under different biological scales, from genomics to species
to ecological levels of organization. At the population level, geographic isolation and selec-
tion pressure are the two fundamental mechanisms behind the emergence and maintenance
of diversity. Still, geographic isolation alone is enough to generate a wide range of biodiver-
sity dynamics and patterns (PRINCEPE et al., 2022; COYNE; ORR, 2004; AGUIAR et al., 2009),
highly influenced by population’s biogeographic history (GAVRILETS, 2014) and spatial struc-
ture (CAMPOS et al., 2013; MARQUITTI; FERNANDES; AGUIAR, 2020).

As populations are separated from each other, the stochastic nature of mutation and ge-
netic drift, together with the impossibility of exchanging genes through reproduction (gene
flow), leads to differentiation. As a result, previously identical populations will eventually be-
come so distinct that reproduction among them is impossible - this reproductive isolation is a
common criterion to characterize speciation (MAYR, 1963; FITZPATRICK; FORDYCE; GAVRILETS,
2009).

The evolutionary history of population differentiation can be represented by a phylogeny: a
tree-like structure where branch ramifications account for speciation events and terminal nodes
to the species. Together with ecological and evolutionary data, phylogenetic trees are used to
study the processes behind diversification (NEE; MOOERS; HARVEY, 1992; MOOERS; HEARD,
1997; BLUM; FRANçOIS, 2006; MORLON, 2014), including those at microevolutionary scale
(COSTA et al., 2019). For instance, the distribution of a phylogeny branches length, over time
and among lineages, are common topological metrics used to assert variations in the speciation
and extinction rates among species (SHAO; SOKAL, 1990; MOOERS; HEARD, 1997; MORLON,
2014), including those promoted by partial isolation (MARQUITTI; FERNANDES; AGUIAR, 2020).
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In this work, we theoretically study the macroevolutionary speciation patterns that emerge
from the microevolutionary dynamics of populations inhabiting two patches (or islands). Pop-
ulations evolve due to recombination, mutation, and migration of individuals between patches.
The model is neutral, meaning that neither survival nor reproduction depends on a fixed geno-
type - there is no selection, thus speciation emerges only from isolation. However, individuals
must have a minimal amount of genetic similarity in order to reproduce. This dynamic was
studied for a scenario of constant migration probability through time (PRINCEPE et al., 2022),
and intermittent migration (PRINCEPE et al., 2023), where migration between patches can
only occur in specific periods defined by the empirical data of sea level oscillations (SPRATT;

LISIECKI, 2016). In addition to the ecological metrics evaluated in previous studies (richness,
𝛽-diversity, and species asymmetry distribution) (PRINCEPE et al., 2022; PRINCEPE et al., 2023),
here we track each speciation and extinction event, build the complete and extant phylogenies,
and characterize the topological patterns in terms of phylogeny balance, speciation accelera-
tion, and age. Our results highlight how the microevolutionary dynamics subject to different
isolation regimes can reflect the macroevolutionary patterns.

3.1 Derrida-Higgs Model of Speciation

A number of statistical models of evolving populations in neutral landscapes are widely
used in the literature (GAVRILETS, 2004). The interest of this approach lies in the possibility of
clarifying evolutionary phenomena by means of methods and concepts developed in statistical
mechanics. In this context, the model introduced by Derrida and Higgs (HIGGS; DERRIDA, 1991)
is particularly interesting as a simple model containing the concept and dynamics of biological
speciation.

In this neutral speciation model, individuals are characterized by a biallelic genome of
length 𝐺 and alleles {𝑆1, 𝑆2, ..., 𝑆𝐺}, with 𝑆𝑖 = ±1. For simplicity, individuals are haploid and
hermaphrodite. At each generation, 𝑀 offspring are born, replacing their parental generation.
In this way, the population size through time does not vary. The population is characterized
by an 𝑀 × 𝑀 matrix 𝑄 whose components measure the degree of genetic similarity between
each pair of individuals 𝛼 and 𝛽:

𝑞𝛼𝛽 = 1
𝐺

𝐺∑︁
𝑖=1

𝑆𝛼
𝑖 𝑆𝛽

𝑖 , with 𝑞𝛼𝛼 = 1. (3.1)
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Similarity ranges from completely different (𝑞𝛼𝛽 = −1) to identical pairs (𝑞𝛼𝛽 = 1).
Alternatively, the genetic distance between the individuals, measuring the number of genes
bearing different alleles, is the Hamming distance 𝐻𝛼𝛽 = 𝐺(1 − 𝑞𝛼𝛽)/2.

In discrete non-overlapping generations and under random mating, the chance of selecting
a partner is simply 1/𝑀 . For large genome size 𝐺 >> 1, one can show (see Appendix B) that,
given enough time, the overlaps 𝑞𝛼𝛽 converge to a stationary distribution centered at

𝑞𝛼𝛽
𝑡→∞ → 𝑞0 ≈ 1

(1 + 4𝜇𝑀) , (3.2)

where 𝜇 is the mutation probability per locus at each birth event. This approximation holds
for 𝜇 and 1/𝑀 much smaller than one, which is always the case for real populations.

The particularity of the Derrida-Higgs model is that reproduction occurs between pairs of
individuals, 𝛼 and 𝛽 (𝛼 ̸= 𝛽), if and only if 𝑞𝛼𝛽 > 𝑞𝑚𝑖𝑛, i.e. if parents share a minimum similarity
𝑞𝑚𝑖𝑛 of their genome. If 𝑞𝑚𝑖𝑛 > 𝑞0, the population divides into groups of individuals whose
average similarity is larger than 𝑞𝑚𝑖𝑛, i.e. there is no gene flow between groups. Therefore, the
Derrida-Higgs model incorporates the definition of species as reproductively isolated groups.

The original model is restricted to sufficiently large genomes and the emergence of sym-

patric speciation - divergence in the absence of geographic isolation. The conditions for sym-
patric speciation in a finite genome of size 𝐺 only hold above a critical value of 𝐺, which
depends on population size, mutation rate and 𝑞𝑚𝑖𝑛 (AGUIAR et al., 2009). An extension of the
model for geographically structured populations of infinite genome was proposed by Manzo
and Peliti (MANZO; PELITI, 1994), and have shown the effects of geographic isolation in the
process of allopatric speciation. Recent analytical and numerical progress was made by Principe
et al (PRINCEPE et al., 2022) for the case of two insular populations of finite genome, where
individuals could be exchanged between patches with migration probability 𝜀.

In this latter case, individuals are characterized by their genomes and by the patches they
occupy: 𝑞 is the similarities between individuals inhabiting the same island, and 𝑝 for different
areas. For 𝜀, 𝜇 and 1/𝑀 all much smaller than 1, similarities also converge to a stationary
distribution 𝑞0 and 𝑝0, and the total number os species in the islands, 𝑁𝑇 , can be estimated
as a function of the expected number of species in each island 𝑁 :

𝑁𝑇 = 𝑁

(︃
2 − 𝑝0

𝑞0

)︃
. (3.3)
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The explicit derivations of these results are in Refs (PRINCEPE et al., 2022). 1 In a qualitative
analysis, when there is no migration 𝜀 = 0 the islands are independent, and one expects that
the similarity between individuals of different islands tends to zero, thus 𝑝0 → 0, and 𝑁𝑇 = 2𝑁 .
When migration dominates over mutations 𝜀 >> 𝜇, the two islands behave as a single island
with double population size, thus 𝑝0 → 𝑞0 and 𝑁𝑇 = 𝑁 . This behavior is summarized in
Figure 21, for variations in genome size 𝐺.

Figure 21 – Example results from Derria-Higgs model on a two-deme population, showing how the total
species richness of both islands 𝑁𝑇 changes with migration rate 𝜀 and genome size 𝐺.
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For genome sizes of 𝐺 ≤ 2000, the expected behavior of Equation 3.3 is shown. Under
complete isolation (𝜀 = 0), we have one species in each island and 𝑁𝑇 = 2, and a single
species shared by both islands for a higher enough migration rate. Interestingly, low levels of
migration increase the diversity of the system.

On the other hand, larger genome sizes induce increased variation in the speciation pro-
cess, with species being generated inside each island even under complete isolation - we call
this differentiation process pure sympatric speciation. To study the effects of gene flow on
speciation without the biases of such a process, we avoid this regime.

1 Reproduced in Appendix B of this thesis for completeness.
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3.2 Phylogenetic Trees

Accordingly to our previous discussion and the models presented, we define speciation by
the impossibility of gene flow between populations. Over time, individuals can accumulate
genetic differences until reproductive isolation is reached (𝑞𝛼𝛽 > 𝑞𝑚𝑖𝑛). A speciation event
occurs each time a group of compatible individuals splits into subgroups, i.e. no individual is
genetically compatible with another individual from another subgroup, breaking the possibility
of gene flow between populations. When this happens, each subgroup receives a new species
identity (colours in Fig. 22). Every ten generations, one identifies species, recording the time
they emerged and went extinct, as well as their ancestral species. This procedure enables us to
build the phylogenetic tree. We have analyzed the complete and extant phylogenies: the former
includes the sequence of all speciation and extinction events (Fig. 22); in the latter, information
about extinct species is missing. We note that other methods for generating phylogenies from
individual-based models are known (COSTA et al., 2018).

Figure 22 – Example of the model evolution under constant migration. There are three plots: the upper
and middle panels correspond to the complete and extant phylogenies, respectively. The plot at
the bottom illustrates species distribution abundance in each patch over time. In each speciation
event, the most abundant species maintains its ancestral color.

Source: The author (2024).

An overall observation is that much information can be lost when analyzing the phylogeny
of extant species instead of the complete phylogeny. In these instances, we observe that recent
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speciation events may last a few generations, probably because the similarity of two very
similar species falls below the speciation threshold again, allowing the fusion/hybridization
into a single species (BOTELHO; MARQUITTI; AGUIAR, 2022) or because the abundance of the
new species is so small that it quickly becomes extinct by drift. Here we do not differentiate
fusion from extinction and all events in which a species disappears are counted as an extinction
event. When three or more speciation events arise from the same species the phylogenies
contain polytomies (multifurcation) (MOOERS; HEARD, 1997; HOELZER; MEINICK, 1994) (see,
for example, the extant phylogeny in Fig. 27C).

Phylogenies are the result of speciation and extinction events along population history,
and its topology contains information about the diversification process. For example, early
stochastic models of population differentiation, such as Yule (YULE, 1925) and birth-death
models (KENDALL, 1948), utilize a constant diversification rate in their processes. As a result,
their phylogenies exhibit a specific tree topology where ramifications are uniformly distributed
over time and among branches. On the contrary, if some lineages speciate more than others
it affects the phylogeny balance (Fig 23.A). If speciation events are not uniformly distributed
in time, this variation clusters the ramifications of the tree (Fig 23.B).

Figure 23 – Exemplification of two topological features of phylogenies that carry information about the diver-
sification process. A) The distribution of ramifications among branches - the phylogeny balance.
B) The change in speciation rate over time.

Source: The author (2024).

In our model, lineage speciation and extinction rates are not imposed as parameters but
emerge naturally from the population-level dynamics. To search for its signal in the phylogeny,
we utilize the topological metrics of tree balance and acceleration of the speciation rate.
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Phylogeny balance (𝐽):
Balance measures how much speciation and/or extinction rate vary among lineages. We

use the 𝐽 metric to evaluate the phylogeny balance statistics (LEMANT et al., 2022). It retains
direct mathematical relationships with common balance indices (like Sackin’s Index (SACKIN,
1972)), but 𝐽 is a normalized metric that enables meaningful comparison of trees with differ-
ent numbers of leaves. Furthermore, 𝐽 is not restricted to bifurcating trees, as its definition
addresses polytomies - a ramification in more than 2 branches.

Let {ℓ1, ℓ2, ...ℓ𝑛} be the terminal nodes (species) in a tree with 𝑛 nodes (Figure 24 below).
Tree balance is defined as

𝐽 = 1∑︀𝑛
𝑘=1 ℓ𝑘

𝑛∑︁
𝑖=1

ℓ𝑖 𝑊𝑖. (3.4)

The sum is made over the number of leaves ℓ𝑖 at the end of each internal node labeled
𝑖. Let 𝜂𝑖 be the number of branches or ramifications directly sprouting from node 𝑖, and one
define 𝑊𝑖 ∈ [0, 1] as the normalized Shannon entropy of the leaves:

𝑊𝑖 =
𝜂𝑖∑︁

𝑗=1
𝑊𝑖𝑗 =

𝜂𝑖∑︁
𝑗=1

−𝑝𝑖𝑗 𝑙𝑜𝑔𝜂𝑖
𝑝𝑖𝑗, (3.5)

where 𝑝𝑖𝑗 = ℓ𝑗/ℓ𝑖 is the proportion of total leaves at the end of each branch. Note that∑︀
𝑗 𝑝𝑖𝑗 = 1, and if all 𝑝𝑖𝑗 are equal for a given internal node 𝑖, all descendants are split into

equal subtrees, resulting in 𝑊𝑖 = 𝑙𝑜𝑔𝜂𝑖
𝜂𝑖 = 1 for maximum balance. An unequal distribution

reduces the balance value, with the limit case 𝑊𝑖 = 0 if and only if 𝑖 spawns only one
descendant, thus 𝜂𝑖 = 1. Figure 24 shows an example of the parameters used to calculate 𝐽

from a sample tree.

Acceleration of speciation (𝛼):
Branch lengths represent the time between speciation events, their distribution tells us if

such events happen uniformly over evolutionary time or are clustered at specific periods. Let
𝑔2, 𝑔3, ..., 𝑔𝑘 be the distances between each node of a phylogeny with 𝑘−1 speciation events. A
reliable index proposed by Pybus and Harvey (2000) to analyze topological aspects of branch
lengths is the 𝛾-statistics, defined as:

𝛾 = 𝐶

[︃
2

𝑁 − 2

∑︀𝑁−1
𝑗=2 𝑇 (𝑗)
𝑇 (𝑁) − 1

]︃
, with

⎧⎪⎪⎨⎪⎪⎩
𝑇 (𝑗) = ∑︀𝑗

𝑘=2 𝑘𝑔𝑘,

𝐶 =
√︁

3(𝑁 − 2).
(3.6)
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Figure 24 – A sample tree exhibiting the necessary and sufficient parameters for the calculus of both topolog-
ical metrics. The balance (𝐽) requires the number of leaves ℓ𝑖 and ramifications 𝜂𝑖 for each node
𝑖. Acceleration of the speciation rate (𝛼) requires the distance between each internal node 𝑔𝑖.

g2

g3

g4

g5

Source: The author (2024).

Here, 𝑘𝑔𝑘 is used to measure the relative position of nodes within the phylogeny, 𝑇 (𝑗)

is the sum of branch lengths up to node 𝑗 + 1, and 𝑇 (𝑁) is the total distance of all tree
branches. If the population speciates at a constant rate 𝑏 per branch, then 𝑔𝑘 = 1/𝑏𝑘 and
𝛾 = 0. We follow the work of Costa et al. (2019), and write the time between speciation
events as 𝑔𝑘 = 𝑘−𝛼

𝑏
, where 𝛼 accounts for the change in this time or the net acceleration

of speciation. The choice of 𝛼 is twofold: (1) 𝛾-statistics is sensible to the number of leaves
in the tree 𝑁 , while 𝛼(𝛾, 𝑁) can be uniquely determined given 𝛾 and 𝑁 ; (2) both 𝛼 and
𝛾 correctly predicts a constant speciation rate per branch, as in a pure-birth model (𝛼 = 1,
𝛾 = 0), but only 𝛼 can predict a constant speciation rate per unit time, as in a Yule model
(𝛼 = 0, 𝛾 < 0). Under this framework, values that differ from random branching processes
show an accumulation of speciation events at the end of population history for 𝛼 > 1, and at
the beginning for 𝛼 < 0. In this sense, 𝛼 tells us if phylogeny results from more ancient or
recent speciation.
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3.3 Barriers to gene flow

The isolation imposed by barriers may be complete but temporary, alternating between pe-
riods of connection and seclusion. There are many empirical examples where the intermittence
of the barrier can play an essential role in populations’ ecological and evolutionary dynamics.
These studies range from oceanic islands (HE et al., 2019), watersheds (BAGGIO et al., 2017),
sky islands (PAN et al., 2019) and even host-pathogen interaction (hosts seen as patches of
pathogens) (GORDO et al., 2009; BOEGER et al., 2022; D’BASTIANI et al., 2023). In particular,
geological landscapes associated with climatic variations may induce or act as temporal barri-
ers (HUGHES; EASTWOOD, 2006; EZARD; PURVIS, 2016; PERES et al., 2020). The frequency and
duration of those periods of isolation and gene flow may influence in complex ways the speci-
ation process (NEE; MOOERS; HARVEY, 1992; AGUILéE; LAMBERT; CLAESSEN, 2011), leaving a
signature in the phylogenetic data.

We model two migratory scenarios: (1) the patches are permanently connected, and migra-
tion is constant through time; (2) the patches have periods of connection and isolation, and
migration can only occur during the connection period. We considered the historical sea-level
variation over the past 800 thousand years to establish the pattern of connection between the
patches (SPRATT; LISIECKI, 2016), where each iteration of the model represents 400 years.

The two patches are isolated when the sea level is above a threshold ℎ (understood as the
seabed that halts migration between patches); otherwise, they are connected with a constant
migration rate, regardless of how below the sea level is from the threshold. Then, the deeper
the threshold (lower values of ℎ), the longer the net time spent in isolation (Figure 25).

In classical biogeography (RIDLEY, 2003), biologists classify speciation in a spectrum from
sympatric to allopatric speciation. Allopatry requires geographic isolation, sympatry does not.
Furthermore, allopatric processes can involve dispersal and/or vicariance. Speciation by dis-
persal involves isolation by distance and is commonly used in models with explicit spatial
structure. Vicariance involves geographical isolation promoted by barriers. Since our model
involves intermittent barriers, we refer to vicariance when speciation is happening due to or
along the emergence of a barrier.
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Figure 25 – A) Sea-level oscillation over the previous 800 thousand years obtained from Spratt2016. Horizontal
dashed lines represent the thresholds ℎ, in which the patches isolate when the sea level is above
them (highlighted by the solid black lines). For example, despite seabed depth, the red dots mark
the moments when the patches are fully connected and isolated, respectively. B) The relation
between the time spent in isolation and seabed depth is approximately linear.
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3.4 Simulation protocol

Initially, one equally allocates 𝑀 genetically identical individuals over the two patches.
Over 𝑇 = 2000 iterations, the population can reproduce and migrate, as detailed below. At
each iteration, 𝑀/2 offspring is born in each patch, replacing their parental generation. In this
way, the population size through time does not vary. Reproduction occurs between pairs of
individuals, 𝛼 and 𝛽 (𝛼 ̸= 𝛽), within the same patch and whose genetic dissimilarity is equal to
or smaller than 𝑞𝑚𝑖𝑛. For each birth event, one randomly chooses a focal parent 𝛼. This focal
parent has a maximum of 𝑀/2 trials to find a genetically compatible mate 𝛽, also randomly
defined, with replacement, between the individuals in the same patch. The first individual 𝛽

that satisfies 𝑞𝛼,𝛽 ≤ 𝑞𝑚𝑖𝑛 reproduces with 𝛼, and they generate one offspring. The offspring
inherits locus by locus the allele of 𝛼 or 𝛽 with equal probability. Additionally, each locus can
mutate with probability 𝜇. This process is repeated until exactly 𝑀/2 births per habitat patch
are obtained. Regardless of the scenarios, during periods of connection, each individual can
migrate to the other patch with probability 𝜀 per iteration (Fig. 26A).
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Figure 26 – Schematic overview of the study. (A) The model considers an initial population occupying two
patches. At each model iteration, the individuals can migrate and reproduce. We evaluate a con-
stant and an intermittent (as illustrated) migration. Reproduction promotes population variability
due to recombination and mutation. (B) The model outputs allow us to identify species distribu-
tion as well as the complete (including extinctions) and extant (without extinction) phylogenies.
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For each simulation, we evaluate the macroevolutionary patterns (balance and acceleration)
in the phylogenies’ topology, the number of speciation events, the number of species at a given
time 𝑁𝑇 , and the distribution of species among patches. To measure the distribution of species
among the patches we use the percentage of exclusive species in the patches through the 𝛽-
diversity index:

𝛽 = 2𝑁𝑇 − 𝑁1 − 𝑁2

𝑁𝑇

, (3.7)

where 𝑁𝑖 is the number of species in patch 𝑖. When 𝛽 = 0, all species are present in both
patches, while 𝛽 = 1 means the species are exclusive in each patch.
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We also measure the richness asymmetry distribution between patches in a given time,
Δ𝑁 = |𝑁1 − 𝑁2|/(𝑁1 + 𝑁2). In a recent study (PRINCEPE et al., 2022), the authors observed
that the asymmetry could be higher than expected by chance, even under patch equivalence
and constant migration.

All statistical analyses were performed in R v.4.1.2 (Posit team, 2022). We used drop.fossil
function of the ape package in 𝑅 (PARADIS; SCHLIEP, 2019) to built the extant trees.

3.4.1 Parameter values and data treatment

For all simulations, we assume a total population size of 𝑀 = 400 individuals, a genome
size of 𝐺 = 2000 loci, a mutation probability 𝜇 = 0.001 per locus, a total of 𝑇 = 2000

generations and the maximal genetic dissimilarity of 𝑞𝑚𝑖𝑛 = 0.9 - therefore a difference of
𝐻𝑚𝑖𝑛 = 100 genes. For this set of parameters, pure sympatric speciation is unlikely to occur
when the patches are entirely isolated (𝜀 = 0) (as was shown in Fig 21).

We vary migration rate 𝜀 from 0 to 0.2 and sea level threshold ℎ from −100 to 0 (the sea
level data vary between −130.0𝑚 to +19.2𝑚 (SPRATT; LISIECKI, 2016)). We also considered
the scenario without isolation, equivalent to ℎ > 19.2𝑚. To facilitate the comparison between
different sea level thresholds, the results are presented in terms of the fraction of time in
isolation, 𝑡ℎ, and the mean migration rate, 𝜀 = 𝜀(1− 𝑡ℎ), ranging from 0 to 0.08. The relation
between 𝑡ℎ and ℎ, for −100 ≤ ℎ ≤ 0, is approximately linear, 𝑡ℎ ≈ |ℎ|/100 (see Fig. 25B).

For each set of parameters, we realized 50 independent replications. As the calculation of
𝐽 and phylogeny age require at least one speciation event, while 𝛼-statistics two events, we
report only the cases in which at least 20% of the replications attended this criterion.

To better understand how the above metrics relate to each other, we measure their cor-
relation: for each isolation time (𝑡ℎ) we calculated the Pearson correlation for the data set of
the independent runs, comprising the aforementioned mean migration rate interval. Results
are reported at the end of simulations (𝑇 = 2000).
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3.5 Results

Instances of the evolutionary trajectory under our model produce different evolutionary
dynamics (Fig. 27). Although they are just examples without a proper statistical analysis,
some visible elements help to understand the results.

Figure 27 – Examples of the model evolution under constant (top) and intermittent (bottom) migration; as
well as low (left) and high (right) migration. For each example, there are three plots: upper and
middle panels correspond to the complete and extant phylogenies, respectively. The plot at the
bottom illustrates species distribution abundance in each patch over time. In each speciation event,
the most abundant species maintains its previous color. The horizontal black line in the lower plot
indicates when patches are isolated. In all plots, the most abundant species keep the ancestral
color. The values of migration probability and the percentage time in isolation (𝑡ℎ ≈ |ℎ|/100) are
indicated in the figure headings.
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Source: The author (2024).

Two modes of speciation can be observed: (i) speciation induced by migration (when spe-
ciation occurs during connection phase); (ii) vicariance, the speciation caused by the barrier’s
emergence. Speciation induced by migration can occur if migration is low (Fig. 27A), but
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it is prevented under high migration (Fig. 27B). This speciation induced by migration was
previously observed by (PRINCEPE et al., 2022), in which a few individuals migrate to another
island and found a new population or impose several genetic novelties that result in sympatric
speciation. For example, in Fig. 27A, the second speciation event (yellow) owes to a founder
population (the yellow species that occur in 𝑃2 emerged from the green species from 𝑃1) and,
subsequently, a cascade of speciation takes place in sympatry. On the other hand, speciation
promoted by vicariance is the predominant process under high migration: during the migrating
period, the patches share the same species, and during the isolation, speciation events occur
(Fig. 27D, and also discussed by (PRINCEPE et al., 2023)).

Statistical analysis over an ensemble of independent evolutionary trajectories unveils dif-
ferent scenarios in terms of the mean migration rate (𝜀) and time in isolation (𝑡ℎ). We report
the ecological and macroevolutionary patterns at the end of simulations (Fig. 28 and 29).

Figure 28 – Number of speciation events, species richness, 𝛽 diversity, and species asymmetry distribution as
a function of the mean migration rate (𝜀) for different intermittent regimes (colors). The calculus
of all metrics is made only by the end of the simulation (𝑇 = 2000). The solid curves represent
the average over 50 replications, and the shadow area the confidence interval of 90%.
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Despite the high number of species generated throughout history (Fig. 28A), the number
of species coexisting at a particular generation (for example, at the end of simulations, as in
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Fig. 28B) is of the order of units. Thus, over a long time, the number of extinction events is
practically the same as speciation events (Fig. 28A).

The species distribution among patches at the end of simulations shows a decrease in 𝛽-
diversity with mean migration rate for all but the most isolated case (Fig. 28C). This decrease
is expected since migration between patches favors the homogenization of species distribution.
However, as 𝛽-diversity is measured at the end of the simulation and the last iterations are in
isolation (∀𝑡ℎ > 0, see Fig. 25), for 𝑡ℎ ≈ 80% these last iterations are time enough to promote
speciation, keeping 𝛽-diversity in high values. The 𝛽-diversity for 𝑡ℎ ≈ 20% and 𝑡ℎ ≈ 40%

decreases more slowly than 𝑡ℎ = 0 because the intermittence of the migration promotes
speciation (see Fig. 28A) and also because the last time in isolation can promote speciation
for not all but part of the species. The asymmetry of the species distribution over the patches
varies with the migration intensity in a very similar fashion, despite isolation time (Fig. 28D).
The higher asymmetry occurs under low migration probability ( 𝜀 ≈ 0.005). Although the
difference is subtle, it reveals that as the migration increases, the species distribution obtained
from the simulations tends to be more symmetrical.

The phylogenetic metrics reveal different macroevolutionary patterns (Fig.29). In panel
Fig. 29A, the phylogeny balance 𝐽 displays a non-linear dependence on the migration 𝜀,
declining for low values of migration rate regardless of the isolation regime, up to reaching a
minimum at 𝜀 ≈ 0.02, which corresponds to the points at which species richness and speciation
events achieve their maximum. Then, the phylogeny becomes more balanced with increasing
migration. In this regime, the signature of the intermittent barriers on the phylogeny balance
becomes prominent, so that the phylogeny balance tends to decrease with the time spent in
isolation.

The balance of the complete phylogeny indicates the speciation mode. When migration is
low, the species distribution that emerges from the dynamics is not symmetrical, thus one patch
has more abundant species. The chance that two (or more) immigrated individuals reproduce
is higher if their patch of origin has one abundant species, as it increases the likelihood of the
two individuals being compatible and establishing a new species (PRINCEPE et al., 2022). This
dynamics of speciation reduces the balance of the phylogeny (Fig. 29A) since new species
are generally emerging from one abundant species. Under sufficiently high migration, species
disperse over the patches and occupy them equally (symmetry). The emergence of a barrier
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Figure 29 – Macroevolutionary patterns (phylogeny balance, speciation acceleration, and age) for complete
phylogenies versus the mean migration rate(𝜀) for different intermittent regimes (colors). The
solid curves represent the average value of the metrics and shadow areas indicate the confidence
interval of 90%. Following the 𝛼 definition, the dashed red lines indicate the interval in which the
results do not differ from random branching models.
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in this scenario promotes speciation by vicariance, and symmetrical speciation events tend to
occur, increasing the balance of the phylogeny.

Looking at the acceleration of speciation metric, 𝛼, one also observes that at low migration
rates, the results are unaffected by the duration of isolation events. Like for 𝐽 , at intermediate
and large migration rates, the effect of the isolation time, 𝑡ℎ, on the metric comes about, and
now we see that for more isolated populations (𝑡ℎ ≈ 40% and 𝑡ℎ ≈ 80%), 𝛼 saturates at a
rate of 𝛼 ≈ 1.25, meaning that speciation events are more numerous in recent history. On the
other hand, under reduced isolation (𝑡ℎ = 0 and 𝑡ℎ ≈ 20%) and 𝜀 > 0.02, speciation events
are more uniformly distributed over evolutionary time (0 < 𝛼 < 1).

In complete phylogenies, the first speciation event equals the phylogeny age (Fig. 29C).
At low 𝜀, it happens almost at the same iteration time despite isolation, an indication of the
mean waiting time for allopatric speciation. Increasing migration rate tends to increase the
time needed to speciate. The exception is for the most isolated case (𝑡ℎ ≈ 80%) since a long
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period of isolation is imposed at the beginning of the dynamics (see Fig. 25).

The values of balance, speciation acceleration, and phylogeny age of extant phylogeny have
different tendencies from complete phylogeny (Fig. 29D-F). Regardless of migration intensity
and isolation period, the extant phylogenies are balanced, accelerated and the information
of the first speciation event tends to be lost as the migration increases; that is, the age
decreases. Thus, the scenarios with different isolation times were not distinguishable on extant
phylogenies. However, is important to highlight that the extant phylogenies presented a very
low number of species, which may reduce the statistical significance of these results.

Recent studies have shown that the emergence of a barrier initially favors speciation,
followed by a reduction of the speciation rate, probably due to the decline of opportunity for
new speciation (ALENCAR; QUENTAL, 2021). On the other hand, cycles of gene flow during
speciation promoted by intermittent barriers were shown to generate species at an exponential
rate (HE et al., 2019).

To see the effect of barrier emergence, we report the balance and speciation acceleration
over time for complete phylogenies, for the same migration rate (𝜀 = 0.08), and when the
population spends more time in isolation (𝑡ℎ ≈ 80%) and in connection (𝑡ℎ ≈ 20%) (Fig. 30).
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Figure 30 – Evolution of phylogeny balance and acceleration of speciation for combinations of isolation 𝑡ℎ ≈
{80, 20} and migration rate 𝜀 = 0.08. Solid lines represent the average of 50 replications, while
dotted ones delimit the confidence interval of 90%. Following the 𝛼 definition, the dashed red lines
indicate the interval in which the results do not differ from random branching models. Background
gray bands indicate when patches are isolated for each 𝑡ℎ.
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Comparing the balance between the two cases there is a distinct tendency: for high isolation,
barrier emergence induces a pulse of speciation events – speciation by vicariance – whose rate
is captured by its acceleration; while for low isolation, speciation is induced during periods of
connectance – speciation induced by migration – and its rate sharply decreased with barrier
emergence. We see the initial time period of isolation/connectance seems determinant to
establish the genetic variation within and among patches, thus we see a higher initial tree
balance for 𝑡ℎ ≈ 80% in contrast with 𝑡ℎ ≈ 20%.

Acceleration of speciation tends to a positive stationary value while the phylogeny balance
tends to decrease regardless of the scenarios. In fact, for a long enough time, the phylogeny
balance should tend to zero since each extinct branch contributes with the decrease of 𝐽 . Both
𝛼 and 𝐽 metrics depend on all historical events of extinctions and speciations, and they tend
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to converge as the recent events become only an insignificant fraction of the whole history.
Our results showed that at each emergence of a barrier, the speciation rate first quickly

increases and then slows down. However, when the time in isolation is insufficient to decrease
acceleration to values before the vicariance, each new isolation event tends to increase the
acceleration.

Next, we investigate how the results from Figure 28 and 29 correlate with each other.
Interestingly, we observe, in general, that the degree of correlation drops off with the period
of isolation 𝑡ℎ (Fig. 31). For example, our results unveil that all metrics are poorly correlated
at the more extreme value of 𝑡ℎ, corresponding to 𝑡ℎ ≈ 80%. The correlations between
the metrics related to the phylogenies (𝐽 , 𝐴𝑔𝑒, and 𝛼) are relatively weak regardless of the
isolation period. Nevertheless, in a low isolation period, the phylogeny balance 𝐽 displays a
substantial correlation with the remaining metrics: asymmetry, 𝛽 diversity, species richness,
and speciation number. However, for scenarios of a high isolation period, 𝐽 and 𝛼 can provide
important complementary information along with those related to species composition.

Figure 31 – Correlation tables between the analyzed metrics for the four scenarios of isolation (𝑡ℎ indicated
in the figure). The correlation was obtained comprising the whole interval of migration values
𝜀 ∈ (0.002, 0.08), with values reported at the end of simulations (𝑇 = 2000) for all complete
phylogenies.
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3.6 Conclusion

In this insular model of speciation by genetic differentiation, we investigate macroevolu-
tionary patterns through topological phylogenetic metrics.

The imbalance of empirical phylogenies often has been associated with heterogeneous
ecological processes among lineages (BLUM; FRANçOIS, 2006; CARON; PIE, 2020). However,
theoretical models have already shown that unbalanced phylogenies can emerge when speci-
ation involves isolation by distance (PIGOT et al., 2010; COSTA et al., 2019), while balanced
phylogenies from sympatric (COSTA et al., 2019) and vicariant (PIGOT et al., 2010; MARQUITTI;

FERNANDES; AGUIAR, 2020) speciation. In line with these theoretical studies, our statistical
analysis of the complete phylogenies reinforces the need to consider nonecological processes
when interpreting macroevolutionary patterns.

The role of the geographical barriers and the duration of the isolation period is also evident
when we look at the acceleration of the speciation process. Accelerated speciation occurs
(𝛼 > 1) for high isolation times (Fig. 29B). These results are at odds with those expected
in null models such as (YULE, 1925) and birth-death models (KENDALL, 1948), where the
speciation rate can be constant or equal among all lineages. Although these null models do
not deal with the microevolutionary dynamics, at first glance, an agreement between the two
approaches was expected as, in both cases, individuals are ecologically equivalent (ALENCAR;

QUENTAL, 2021), but see (MCPEEK, 2008).

Previous theoretical studies have shown that in scenarios of smooth ecological pressure
(GASCUEL et al., 2015) (near the neutral regime), the longer the time spent in isolation, the
more unbalanced and accelerated the phylogeny; in contrast, shorter times lead to balanced
and decelerated trees. Although our model differs in many respects, we observe this behavior
for a sufficiently high migration.

The simplified assumptions we made to study the mechanisms of diversification with
intermittent gene flow have some limitations. Regarding the parameters, population size
(𝑀 = 400), mutation rate (𝜇 = 0.001), genomic size (𝐵 = 2000), and time for one iteration
(400 years, although it implies in 2.5×10−6 mutation per locus per year) are far from realistic.
This set of parameter combinations reproduces the expected empirical scenario of vicariance:
two species emerge when the two islands are isolated. However, the number of coexisting
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species (richness) was rarely superior to 10 because extinctions are likely to occur under low
populations. Consequently, extant phylogenies generated by the model lack sufficient richness
for a meaningful statistical analysis. Extant phylogenies tend to be balanced and accelerated
regardless of the duration of intermittent barriers; being indistinguishable regardless of isola-
tion time. Although statistical inference of these extant trees is fragile, we hypothesize that
these two general features will prevail when compared with the complete ones, given that the
removal of extinct species implies the loss of many ancient speciation events, resulting in long
branches connecting recent speciation events, thus giving rise to “tippy" trees (see for example
Fig. 27C). Furthermore, such losses also affect the increase in phylogenetic balance, since all
extinct species represent branches without speciation (LEMANT et al., 2022). Modifications on
the model structure, as increasing the number of islands, could be done to promote higher
richness. Nevertheless, our model allows a better understanding of the speciation mechanism
under intermittent regimes and its consequence on the complete phylogeny. It showed some
possible effects of migration intensity and isolation time on the speciation process.

In our model, lineage speciation and extinction rates are not imposed as a parameter
but emerge naturally from the population-level dynamics and are influenced by two major
factors: species abundance and abiotic paleoenvironmental conditions. Here we stress a scenario
where paleoenvironmental conditions are directly related to population isolation mechanisms
and, thus, to the diversification process (CARNAVAL et al., 2009). As such, we highlight the
importance of integrating phylogeny data with historical paleoenvironmental data in order to
explore its role in ecological biodiversity better.

• The main results presented in this section have been published in the article: Freitas,

Osmar, Paulo RA Campos, and Sabrina BL Araujo. "Patch biogeography under intermit-

tent barriers: macroevolutionary consequences of microevolutionary processes." Journal

of Evolutionary Biology (2024). Ref. (FREITAS; CAMPOS; ARAUJO, 2024)
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4 SPECIATION IN A METAPOPULATION

Biogeography does more

than ask where organisms live;

it asks why they are found there.

(MacArthur & Wilson)

Speciation events can occur either by geographic isolation or selective pressure imposed on
organisms in a population. Geographic isolation is the most accepted and simple mechanism
to explain speciation events, however, it is not enough to describe the great diversity of species
on our planet.

Selective pressure promotes speciation when inducing adaptation to different environmental
conditions, leading to population divergence. In this sense, speciation is expected to be trig-
gered by events of environmental change as well, as a response to climate adaptation (QVARN-

STRÖM et al., 2016), but also as a result of human activities and urbanization (THOMPSON;

RIESEBERG; SCHLUTER, 2018; HENDRY; NOSIL; RIESEBERG, 2007). On the other hand, species
unable to cope with a scenario of fast and intense environmental alterations may go extinct.

To analyze both selection and geographic effects on speciation, it is convenient to use
structured population models such as a metapopulation (HANSKI, 1998; GAVRILETS, 2004).
In this scenario, populations are distributed among patches connected by migration and each
patch may harbor different environmental conditions that maximize survival. Straightforwardly,
one can now quantify and separate the contribution of each mechanism and asses the diversity
within and among the subpopulations.

In this chapter, we investigate the effect of geographic isolation and selective pressure on
the diversity and persistence of a metapopulation in a time-varying environment. For this, we
use an individual-based model with genetic ground, where the population evolves in response
to viability selection, density-dependent reproduction, and migration. We assess the diversity
pattern and the degree of divergence at equilibrium and how it differs when evolving under
different environmental perturbations. Our results show the conditions in which environmental
pressure and its temporal variation can favor species diversity maintenance or extinction, and
allow us to discuss the impacts of the intense and rapid climatic oscillations occurring on our
planet.
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4.1 Model

As in our previous approaches (see Chapter 2), our model is phenotypic with a genetic basis,
in which individual traits represent a point in phenotypic or trait space. Mutations correspond
to random displacements in trait space and are assumed to act additively. Selection acts on the
probability of individual survival - their fitness or viability - and is proportional to the distance
from an individual’s traits to the corresponding optimum traits on each patch.

Differently, here, environmental changes are modelled in a perturbative way through fluc-
tuations in the optimum phenotype of every patch. These changes are expected to increase the
mismatch of individuals’ phenotype with the optimum in their respective patch, thus causing a
drop in individual viability. The possibility of exchanging patches through migration regardless
of an optimum match acts as a double edge: well-adapted individuals may find it hard to
survive in different environments; ill-adapted ones may have the luck to find more suitable
places. In harsh conditions, in which either the selective pressure is too intense, or the rate of
environmental changes is too high, the risk of population extinction is enhanced regardless of
migration (CHEVIN; LANDE; MACE, 2010). Together, these processes may influence the level of
genetic variation and diversity of the metapopulation.

4.1.1 Metapopulation

A metapopulation is a spatially structured model in which local populations inhabit patches
connected by dispersal. The patches can represent different spatial locations or resources, as
hosts in the host-parasite interactions (BRAGA et al., 2018). One can picture a network where
population reproduction and adaptation are restricted within each node (see Figure 32).

Earlier mathematical models on metapopulation dynamics have focused on the alternate
states of occupancy and vacancy of its patches, and have shown how local extinction and
recolonization influence demographic persistence, the coexistence of interacting species, and
genetic variation (BÜRGER, 2006; LEVINS, 1969; HANSKI, 1998).

In our mechanistic modeling, a metapopulation is distributed over a constant number of
𝑀 patches under sustained environmental change. As our focus is on environmental changes
and not on the different landscape structures, we adopt a homogeneous configuration for the
fragmented metapopulation. The patches have the same carry capacity 𝐾 and form a fully
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Figure 32 – Representation of a metapopulation model, consisting of connected patches and the individuals
that inhabit them. Colors allude to the differences in population composition. In this particular
case of a homogeneous metapopulation, all the patches are mutually connected.

j

i

Source: Modified from (HACKL; DUBERNET, 2019).

connected network. Individuals inside the patch can migrate at a probability 𝑚 per generation
and are equally likely to move to one of the 𝑀 − 1 remaining patches.

4.1.2 Fitness landscape

At the phenotypic level, a trait under selection determines the probability of individual
survival in each patch. For 𝐿 traits, we represent an individual’s phenotype as a 𝐿-dimensional
vector, 𝑟⃗ = 𝑟1, 𝑟2, ..., 𝑟𝐿 , where 𝑟𝑖 is the trait value of the 𝑖-th trait, and 𝑟⃗ is the phenotype
vector associated with a given genotype. We use Fisher’s Geometric model (FISHER, 1930;
ORR, 2005b; SOUSA et al., 2016; BRAGA et al., 2018), to define the fitness of an individual as
a function of the Euclidean distance between 𝑟⃗ and ℎ⃗ - the traits that maximize population
survival in a given patch. Under Gaussian stabilizing selection, the viability of an organism 𝑗

with phenotype 𝑟𝑗 = (𝑟𝑗,1, 𝑟𝑗,2, . . . , 𝑟𝑗,𝐿) in a given patch 𝑘 is calculated as

𝑉 𝑘
𝑗 = exp

(︃
−
∑︀

ℓ(𝑟𝑗,ℓ − ℎ𝑘,ℓ)2

2𝛼2
𝑟

)︃
, (4.1)

where ℎ𝑘,ℓ represents the optimum value of trait ℓ at patch 𝑘, which is subject to temporal
change. The parameter 𝛼𝑟 is the width of the viability function, and is associated with the
strength of selection; the smaller the 𝛼𝑟 the stronger the selection is. In the limit 𝛼𝑟 → 0, only
those individuals whose phenotype matches the patch optimum phenotype survive, whereas in
the limit 𝛼𝑟 → ∞ one recovers the neutral selection regime (Figure 33).
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Figure 33 – Example of the one-dimensional Gaussian viability function for different widths 𝛼𝑟 (colours). On
the trait-axis, we have the individual phenotype at point 𝑟 and the optimum phenotype of the
patch it inhabits ℎ. Selective pressure goes with 1/𝛼𝑟, thus the individual has zero probability of
survival for the blue curve, low probability for the green, and almost one for the red. In the limit
𝛼𝑟 → ∞ one has 𝑉 → 1, thus individuals are always viable as there are effectively no selection
mechanisms.
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Importantly, the width of viability selection 𝛼𝑟 is responsible for establishing the tolerance
limits of the individuals. The lower the 𝛼𝑟, the stronger the selection and the narrower the
phenotypic range the individuals are viable. Note that selection is independent and equally
strong in all 𝐿 traits.

4.1.3 Population growth and speciation

Individuals are haploid and characterized by an infinitely large genome, such that the infinite
sites assumption applies (see Chapter 1). In this case, every mutation, which occurs at a rate 𝜇

per genome per generation, is unique. Therefore, there is no back mutation. Once a mutation
arises, the phenotype of the mutant becomes 𝑟⃗ + 𝜂⃗ (Fig. 34 presents an illustration of the
process). So a mutation can affect the 𝐿 traits, resulting in a displacement 𝜂⃗ in the phenotypic
space. Because we make use of the additive assumption, mutations are combined additively,
such that the phenotype arising from two mutations is simply 𝑟⃗ + 𝜂1 + 𝜂2 (MARTIN; ELENA;
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LENORMAND, 2007; HWANG; PARK; KRUG, 2017). Once a mutation occurs, each component of
the displacement vector 𝜂⃗ is obtained from a Gaussian distribution of null mean and variance
𝜎2

𝑚𝑢𝑡. Henceforth, 𝜎𝑚𝑢𝑡 is set at 𝜎𝑚𝑢𝑡 = 0.01. 1

Figure 34 – Scheme of the model dynamics. Individuals are distributed among patches, illustrated by green,
red, and yellow colors. At each generation, individuals go through Selection, Reproduction, and
Migration. Selection: patches impose a survival probability (viability) on their inhabitants. The
position of the peaks, on the phenotypic space ℎ⃗ (illustrated by each colored vector) denotes the
optimum phenotype, which changes from patch to patch. Reproduction: occurs sexually among
individuals inhabiting the same patch and are not genetically too dissimilar, i.e., their genetic
distance must be smaller than a critical value 𝑔. The offspring of a couple is a product of parental
genomic recombination plus a possible mutation. Migration: occurs between patches with a prob-
ability 𝑚 per individual.

Source: The author (2024).

Reproduction occurs locally inside each patch. Each individual randomly selects a potential
partner from the same patch. Reproduction ensues once the Hamming distance, the genetic
distance between two genotypes, is smaller than 𝑔. In the infinite site approach, the Hamming
distance is simply given by

𝜋𝑖𝑗 = 𝑛𝑖 + 𝑛𝑗 − 2𝑛𝑖,𝑗, (4.2)

where 𝑛𝑖 is the number of mutations of genotype 𝑖, and 𝑛𝑖,𝑗 is the number of mutations shared
by the two genotypes. Then, if the condition 𝜋𝑖𝑗 < 𝑔 is met, there is exchange of genetic
1 A high rate, but still in the range of realistic values as found for Drosophila melanogaster and microbes

(Drake 1999; Gao, Pan, Hu, Ma, Wu, Shao, Barton, Woodruff, Zhang, and Fu 2011.
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information, in which the one-point crossover scheme is adopted for the recombination (see
Fig. 34). Accordingly, the parental genotypes are cut once in a randomly chosen position of the
genome and recombined to form the offspring (KLUG; PARK; KRUG, 2019). Non-overlapping
generations and a density-dependent population regulation are assumed (HASSELL, 1975), such
that the number of copies of a given offspring is obtained from a Poisson distribution of mean
value (HENRIQUES-SILVA et al., 2015)

𝜌 = 𝜆

(1 + 𝛾𝑁𝑡)𝛽
, (4.3)

with
𝛾 = 𝜆1/𝛽 − 1

𝐾
. (4.4)

In Eq. (4.3), 𝜆 refers to per capita growth rate, 𝑁𝑡 is number of successful mating in the
patch. Note that 𝛾 is chosen such that the minimum value of 𝜌 is one if 𝑁𝑡 = 𝐾. In fact,
𝐾 makes the role of a carrying capacity and is assumed to be the same for all patches. The
parameter 𝛽 defines the type of competition, and is set at 𝛽 = 1, corresponding to a contest
competition (OLIVEIRA et al., 2020).2

As in our previous chapter, we define that a speciation event occurs when gene flow
between two subpopulations is not possible. Therefore, a species is a subpopulation where all
members have their Hamming distance, 𝜋, larger or equal to 𝑔, relative to any other group,i.e.
no member of distinct subpopulations can mate and recombine. The latter condition means
that there are no connected paths in genotype space connecting the two genomes, i.e., there
are no intermediate species connecting them.

4.1.4 Enviromental perturbations

In the regime of environmental variations, the fitness landscape is not static, such that
the phenotype favored by each patch changes periodically. Every 𝜏 generations the phenotype
favored by patch 𝑘, ℎ⃗𝑘 = (ℎ𝑘,1, ℎ𝑘,2, . . . , ℎ𝑘,𝐿) undergoes a shift in the phenotype space. Each
component ℎ𝑘,𝑗 changes by an amount 𝜀𝑗 obtained from a Gaussian distribution of null mean
and variance 𝜎2

ℎ.
Given our focus on the frequency and magnitude of environmental fluctuations, it seems

natural to inquire about the role of gradual vs. discontinuous and abrupt changes in the
2 Note that, in Chapter 2, the per capita growth rate was given by the fitness itself 𝑊 . But here, fitness 𝑉 is

taken solely as the probability of survival; and the growth rate emerges from the demographic regulation.
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dynamics. It seems plausible that a gradual phenotype displacement must be drawn from a
distribution with 𝜎𝑔𝑟𝑎𝑑𝑢𝑎𝑙 < 𝜎ℎ. But how much smaller must 𝜎𝑔𝑟𝑎𝑑𝑢𝑎𝑙 be, and how can we
relate it to the different time-scales for a reasonable statistical comparison?

We borrow an idea from the Central Limit Theorem (REICHL, 2016). If 𝑋 is a random
variable from a probability density 𝑃 (𝑋), the theorem states that the average of a large
number of statistically independent events 𝑁 , will be a Gaussian centered at 𝑥̄, and with
standard deviation 𝜎𝑥/

√
𝑁 (see Appendix C for a formal derivation of the theorem). In our

case, the number of events of gradual change equals 𝜏 generations. As the displacement of
the optimum phenotype is additive over time, the accumulated distribution of gradual changes
matches the distribution under discontinuous change whenever 𝜎2

𝑔𝑟𝑎𝑑𝑢𝑎𝑙 = 𝜎2
ℎ/𝜏 in our model,

which assumes a non-constant displacement per event. For the sake of clarity, Fig. 5 shows
a sketch of the dynamics under the two scenarios under the elucidative example of constant
displacement. After time 𝜏 , the net displacement of the two processes will be the same.

Figure 35 – A mere illustration of moving optimum for a given patch. In this example, the displacement of the
optimum phenotype is constant during each event, whereas in our simulations the displacement
in each trait is taken from a Gaussian distribution. When we compare gradual (corresponding to
𝜏 = 1) vs. abrupt environmental changes, the standard deviation for the gradual process is chosen
such that over a time 𝜏 the distribution of the net displacement for the two processes are exactly
the same.
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4.2 Simulation and Measurements

The model is comprised of a recurrent cycle (see also Fig. 34): viability selection, recom-
bination followed by reproduction, and migration. Concerning the details of each stage of the
life cycle:

1. Selection: each individual survives this step with a probability provided by Eq. 4.1. Those
individuals who do not survive will be removed. Therefore, those individuals whose phe-
notype is more distant from the optimum phenotype will be removed with a higher
probability.

2. Reproduction: for each surviving individual, another individual from the same patch is
randomly selected (with reposition). If the Hamming distance between the two genotypes
is smaller than 𝑔, the matting is successful; the genomes of these two individuals are
recombined and a mutation can occur with probability 𝜇. This new genome is then
reserved until all individuals in the patch have had a chance to mate. Then, copies of
these new genomes recompose the population in the patch. The number of copies of
each genome is defined by a Poisson distribution of parameter 𝜌, as defined in Eq. 4.3.
Those individuals that failed to recombine cannot reproduce and will not be present in
the next generation.

3. Migration: every individual migrates to a random patch with probability 𝑚 per genera-
tion, and with a probability 1−𝑚 remains in the original patch. In the case of migration,
the recipient patch is chosen randomly among the 𝑀 − 1 available patches.

As initial conditions, we start the simulations with an isogenic population, i.e. with the
same genotype and phenotype. Each patch begins at its full carry capacity 𝐾. Though the
landscape is heterogeneous, and thereby each component of the optimum phenotype ℎ⃗𝑘 in
patch 𝑘 is chosen from a Gaussian distribution with standard deviation 𝜎 = 0.3.

We assess all our measures after the metapopulation has evolved for 30, 000 generations,
ensuring that measurements are taken after an equilibrium regime has been attained. Table 2
presents the values of the parameters used in our simulations.
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Parameters Description Values
M number of patches 10
L number of traits 3, 5, 7
𝜇 mutation rate 0.01
m migration rate 0.003 - 0.005 - 0.007
𝛼𝑟 width of the viability function 0.2 - 4.0
𝜎ℎ std deviation of environmental changes 0.02, 0.05, 0.07, 0.10
𝜏 period of environmental changes 200, 500, 1000
𝐾 carrying capacity per patch 500
𝜆 per capita growth rate 3
𝑔 minimum shared mutations 10

Table 2 – Parameters of the model. The third column either defines the value or range of values of each
parameter explored along the work. In bold, the most prevalent used value of each parameter.

One of the main quantities of our interest is the number of species, hereafter species
richness. The species richness relies on genetic measurements of the pool of extant distinct
genotypes in the metapopulation. The other two quantities assessed in all simulations are
genetic and phenotypic dissimilarities, which correspond to the average Hamming distance,
𝜋, and average distance in the phenotypic space, 𝜋𝑃 , respectively. For both quantities, a
sampling of size 𝑁* is taken from the whole population and hence proceeds with the pairwise
measurements and average estimates. For each pair of genomes 𝑖 and 𝑗, the Hamming distance
between them is just 𝜋(𝑖, 𝑗) = 𝑛𝑖 +𝑛𝑖 −2𝑛𝑖,𝑗, where, as before, 𝑛𝑖 is the number of mutations
of genotype 𝑖, and 𝑛𝑖,𝑗 is simply the number of mutations shared by the two genotypes. On
the other hand, the phenotypic distance between two sampled individuals is given by

𝜋𝑃 (𝑖, 𝑗) =
√︃∑︁

𝑘

(𝑟𝑖,𝑘 − 𝑟𝑗,𝑘)2, (4.5)

and provides the Euclidian distance between the two samples individuals in the phenotypic
space, whose average must be divided by the total number of possible pairwise comparisons
𝑛(𝑛 − 1)/2:

𝜋𝑝 =
∑︀

𝜋𝑝(𝑖, 𝑗)
𝑁*(𝑁* − 1)/2 , (4.6)

where 𝑁* is sampling size, and the sum runs over all pairs of the sampling.
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4.3 Results

4.3.1 The role of migration in shaping diversity

As previously mentioned, selective pressure and geographic isolation affect population di-
vergence and thus shape diversity. In this metapopulation model where each of the 𝑀 patches
has a different phenotypic optimum, one can expect that the severity of selection will promote
population divergence as different traits are better adapted to different patches.

We visit the parameter space of both metrics and observe the species richness. Figure 36
displays a heat map for the species richness in terms of the viability width 𝛼𝑟 and migration
probability 𝑚.

Figure 36 – Species richness in terms of the width 𝛼𝑟 and migration. The selective pressure is inverse with
𝛼𝑟, thus from right to left we go from the neutral regime where effectively there is no selection
mechanism, to a domain of increased pressure where populations are at risk of local and global
extinction. The values of the remaining parameters are those in bold in table 2.
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Source: The author (2024).

In the neutral regime (𝛼𝑟 > 3), species richness is defined by migration probability alone.
For very low migration (𝑚 ≤ 0.004) populations are sufficiently isolated, such that the average
number of migrants exchanged between patches is not enough to prevent population diver-
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gence. In this extreme case, speciation is promoted solely by the stochastic and independent
accumulation of different genetic variations between subpopulations of different patches. As
a result, the maximum number of species equals the number of patches. As 𝑚 is increased,
we enhance gene flow between clusters of subpopulations, thus the average species richness
decreases until migration is high enough to homogenize the whole metapopulation into a single
species.

As selective pressure increases we leave the neutral regime, and individuals less adapted to
their patch begin to be ruled out by viability selection, thus reducing diversity within each patch
and enhancing diversity among patches. Notably, in the extreme case where 𝛼𝑟 < 0.5, diversity
drops considerably and irrespective of migration rate. Selection strength is too punishable for
individuals not close enough to the optimum, especially for those already adapted to their
patch but forced to migrate to another (remember that migration is random and individuals
do not evaluate if it is better to migrate or not). In this narrow range, metapopulation dynamics
prevail with alternate episodes of local extinction and recolonization, and even global extinction
(as shown further below in Figure 39).

For a finer analysis of the role of migration in population divergence, we assess the level of
genetic and phenotypic divergence within the population, and their distance to the optimum
phenotype of their respective patch Figure 37. For all the metrics, we acknowledge the effect
of migration from intermediate levels of 𝛼𝑟 and forward, with no substantial change in the
domain of severe pressure (𝛼𝑟 ≤ 1.5).

The role of migration in the genotypic domain is central to determining reproductive
isolation and speciation. As the migration increases, genetic and phenotypic distance among
the sampled individuals reduces significantly (please note the logarithmic scale in Fig. 37),
leading to low species diversity. The correlation between the distances is somewhat expected
as the effect of mutations on phenotype is additive.

The right panel exhibits the average phenotypic distance from the individuals in the sam-
pling to the optimum phenotypes of the patches they lie in. Contrary to what has been observed
regarding the pairwise phenotypic distance, the phenotypic distance to the patch’s optimum
phenotype grows with migration. This behavior is set up on the onset of the neutral regime,
and the divergence between the curves increases with 𝛼𝑟.

Altogether, these outcomes suggest that as individuals increase their motility over the
metacommunity they become phenotypically more similar. At the same time, they are pheno-
typically more distant from the optimum phenotype in their patch. This phenomenon occurs
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Figure 37 – Average pairwise Hamming distance (left panel), average pairwise phenotypic distance (middle
panel) and phenotypic distance to the optimum imposed by the inhabited patch (right panel)
versus the width of the viability function, 𝛼𝑟. Migration probabilities are shown in the legends.
The values of the remaining parameters are those in bold in table 2.

Source: The author (2024).

because the selection strength is reduced, allowing the population to survive in a subopti-
mal condition (ARAUJO et al., 2015; BROOKS; HOBERG; BOEGER, 2019), experiencing different
selective pressures more frequently. Under higher migration, our results show that it is selec-
tively advantageous to have a phenotype that reasonably matches most of the patches, as a
generalist of sorts.

4.3.2 Diversity and Environmental fluctuations

In Figure 38, we investigate how the strength of selection shapes the species richness when
the environment changes. Migration probability 𝑚 is set at 𝑚 = 0.005, guaranteeing a single
species in the neutral regime when there is no change. Results are shown for different values
of 𝜏 , the time to environmental changes, with 𝜏 → ∞ meaning no change at all.

The species richness is a one-humped function of 𝛼𝑟 (the width of selection viability). As 𝜏
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Figure 38 – The dependence of the species richness on the width of the viability function, 𝛼𝑟. The selection
strength or pressure can be understood as 1/𝛼𝑟. Different curves denote distinct values of the
period of disturbance events, 𝜏 . From right to left 𝜏 = 200, 𝜏 = 500, 𝜏 = 1000, and 𝜏 → ∞. The
open symbols correspond to the gradual counterpart of the discontinuous environmental changes
upon the condition that 𝜎2

𝑔𝑟𝑎𝑑𝑢𝑎𝑙 = 𝜎2
ℎ/𝜏 . The values of the remaining parameters are those in

bold in Table 2.
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decreases (i.e., environmental changes are more frequent), the curves are shifted towards higher
values of 𝛼𝑟. The extent of the interval where the species richness remains in its maximum
value and the regime of weak selection also depends on 𝜏 . Thus, the homogenizing effect of
dispersal depends on the rate of environmental changes.

Selective pressure goes with 1/𝛼𝑟, being responsible for establishing the tolerance limits of
the individuals. When 𝛼𝑟 is small, meaning the selection is strong, the shift of the optimum
phenotypes can be disruptive at a global scale, leading to population extinction. As we report
in Figure 39). while the likelihood of global extinctions shrinks when 𝛼𝑟 is augmented, events
of local extinction, i.e., those in which a patch becomes empty, are still probable. Local ex-
tinctions can lead to a continuous process of extinction followed by recolonization of patches,
entailing the loss of genetic variation, the so-called founder effect (BARTON; CHARLESWORTH,
1984), and hence the reduced species richness. On the other hand, when 𝛼𝑟 increases, selection
becomes softer, turning the drift of the optimum phenotype less harsh. The softness of selec-
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Figure 39 – Metapopulation extinction risk (left panel) and fraction of non-empty patches (right panel) versus
the width of the viability function, 𝛼𝑟. The periods of disturbance events, 𝜏 , are indicated in the
legend.The values of the remaining parameters are those in bold in Table 2.

Source: The author (2024).

tion first leads to increased species richness within the metapopulation, as local populations
can now respond to selection and evolve towards the optimum phenotype, thus avoiding local
extinction. Therefore, at small and intermediate values of 𝛼𝑟, the variation of optimum phe-
notypes among patches, which is expected to be more significant than the resulting variation
due to environmental changes within the patch, contributes to making subpopulations more
reproductive isolated and effectively reducing gene flow. Thus, at intermediate 𝛼𝑟, local adap-
tation differentiates the subpopulations and, importantly, the degree of divergence depends on
the rate of environment fluctuation.

In Figure 38, we also compare gradual vs. abrupt environmental changes. For abrupt
changes, we set the magnitude at 𝜎ℎ = 0.05 and different values for the time between en-
vironmental changes 𝜏 were simulated. In the same plot, we present results for their gradual
counterparts (open symbols). As aforementioned, gradual environmental changes are subject
to the condition 𝜎𝑔𝑟𝑎𝑑𝑢𝑎𝑙 = 𝜎ℎ/

√
𝜏 . In a nutshell, we can state that the curves nearly collapse,

meaning that the pattern of speciation is practically independent of the mode and rate of
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environmental changes. Quite surprisingly, these outcomes demonstrate that, at least for fluc-
tuating environments, what matters is the magnitude of the net displacement in the phenotypic
space over a given time interval.

Although this equivalence is expected for the moving optimum, it is not a trivial matter that
the population, evolving at its own time-scale and mechanisms, would bear similar results at the
speciation level. Note that the metapopulation is constantly under viability selection. Gradual
changes are more frequent and less drastic (𝜎𝑔𝑟𝑎𝑑 at each generation), thus the selection
response to environmental changes is smoother, and evolution towards the optimum phenotype
can be achieved through a smaller number of generations. On the other hand, when the events
take a long time to occur and are more pronounced (𝜎ℎ at each 𝜏 generations), there is an
abrupt drop in the viability of the local population, thus the response to selection is intense.
More generations are expected for the population to reach viability around the new optimum
phenotype. Despite that, the rate at which these changes occur seems to have no noticeable
effect once the overall effect is the same.

In order to comprehend the macroevolutionary scenario, it is important to see how it relates
to the metapopulation dynamics at a finer scale. Figure 40 shows the dependence of the genetic
and phenotypic distance among individuals on the width 𝛼𝑟.

Both distances have a similar pattern of the species richness (Fig. 2): they first increase with
𝛼𝑟 reaching a maximum and then decrease. Although strong selection imposes differentiation
among individuals, it also increases mortality, extinguishing individuals from some patches
(Fig. 3). Then, a little reduction in the selection strength avoids extinctions and increases the
overall differentiation. Interestingly, different from its genetic counterpart, phenotypic distance
is sensitive to environmental fluctuations, and its highest phenotypic distance occurs under
the smaller period of environmental changes, probably because the higher number of changing
events increases the chance that the optimum phenotypes are farther from each other. Once
again, results for abrupt environmental changes match their gradual counterparts. The shape
of the curves is basically unaltered, and a collapse of the curves is still observed.
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Figure 40 – Average pairwise Hamming distance (left panel) and average pairwise phenotypic distance (right
panel) as a function of the width 𝛼𝑟. Different values of the time to environmental changes
are encoded by different colors, as indicated in the legends. Data are compared to their gradual
counterparts, in which 𝜎𝑔𝑟𝑎𝑑𝑢𝑎𝑙 = 𝜎ℎ/

√
𝜏 . The values of the remaining parameters are those in

bold in table 2.

Source: The author (2024).

4.3.3 Further investigation of parameter space

In this last section, we extend the results of the model in two ways: 1) exploring their
sensibility to model parameters - the number of traits 𝐿 and patches’ carry capacity 𝐾; and
2) modifying the selection mechanism to include directional selection, the effects of a global
trait and an ingenuous implementation of phenotypic plasticity.

Dependence on the number of traits

The number of traits, 𝐿, is the dimensionality of the phenotypic space and the number of
terms in the argument of the Gaussian viability function, as defined in Eq. (4.1). From our
knowledge of classical statistical mechanics, and similar reasoning applied to random walks,
the squared distance in the numerator of the Gaussian function should scale with 𝐿. Because
𝛼𝑟 appears in the equation as 1/𝛼2

𝑟 , we expect a rescaling factor of 𝛼𝑟/𝐿2.
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Figure 41 – Dependence on the number of traits. Species richness vs. the rescale quantity 𝛼𝑟/
√

𝐿, where 𝐿
is the number of traits (values indicated in the legend). The values of the remaining parameters
are those in bold in table 2.

Source: The author (2024).

In fact, we observe in Figure 41 a collapse of the curves for different values of 𝐿, showing
that the effect of the number of traits is to shift the whole curve, keeping its shape unaltered,
by a factor proportional to

√
𝐿.

Dependence with carry capacity

For the sake of completeness, in Fig. 42 we show the effect of the carrying capacity on the
pattern of speciation. We observe that changing the carrying capacity 𝐾 while keeping the
migration rate constant is similar to changing migration while keeping the carrying capacity
fixed. 𝐾 = 500 corresponds to the prevalent value used in our simulations. When the carrying
capacity is reduced to 𝐾 = 400, the onset of the neutral regime shifts towards higher 𝛼𝑟, and
when it is further reduced to 𝐾 = 200, the species richness plateaus at the highest diversity
for the majority of 𝛼𝑟. This behavior is quite similar to the one displayed in Figure 36 for
migration.
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Figure 42 – Dependence on the carrying capacity 𝐾. Species richness vs. the width 𝛼𝑟 for different values of
𝐾, indicated in the legend. The values of the remaining parameters are those in bold in table 2.

Source: The author (2024).

Furthermore, as discussed in Chapter 1, genetic drift is stronger in populations of small
sizes, which enhances their genetic divergence among patches. These results lead us to con-
clude that what matters is the number or flux of migrants per generation (𝑁 𝑚, where 𝑁 is
the population size at a given generation) since this number is directly proportional to both
migration rate and carrying capacity.

Dependence on the magnitude of environmental changes

In Figure 43, we observe the influence of the variance of environmental changes, 𝜎2
ℎ on

species richness. The rise of 𝜎2
ℎ might bring about more severe drops of the viability within a

patch at the time of the optimum phenotype shift, especially when selection is intense. We
notice that the domain of 𝛼𝑟, in which the events of local extinction followed by recolonization
are relevant, is broadened with 𝜎2

ℎ. This region is characterized by the growth of the species
richness with 𝛼𝑟.
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Figure 43 – Dependence of the species richness on the width of the viability function, 𝛼𝑟. The standard
deviations for environmental changes are indicated in the legend. The values of the remaining
parameters are those in bold in Table 2.

Source: The author (2024).

Directional selection - gradual vs. abrupt changes

Here we will consider a slight modification of our modeling and include a directional
component of selection, such that the population faces a combination of directional and
stabilizing selection. With directional selection at a single trait 𝑗, the 𝑗−th component of the
optimum phenotype at patch 𝑘 at the 𝑛−th environmental change becomes

ℎ𝑘,𝑗 = ℎ0
𝑘,𝑗 + 𝒱𝑛 + ϒ, (4.7)

where 𝒱 denotes the directional component of selection, ϒ is the sum of 𝑛 Gaussian variable of
null mean and variance 𝜎2

ℎ, and ℎ0
𝑘,𝑗 is its initial value. In order to make a correct comparison

between gradual and abrupt changes, 𝒱𝑔𝑟𝑎𝑑𝑢𝑎𝑙=𝒱/𝜏 , and as already established 𝜎2
𝑔𝑟𝑎𝑑𝑢𝑎𝑙 =

𝜎2
ℎ/𝜏 .

Figure 44 displays the species richness vs. 𝛼𝑟 under a metapopulation subject to directional
and stabilizing selection. In the plot, we have chosen the directional component slightly lower
than the fluctuations 𝒱 = 𝜎ℎ/10. Results are presented for abrupt changes taking place every
𝜏 = 200 generations and gradual changes under our rescale, as emphasized above. Once again,
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Figure 44 – Dependence of the species richness on the width of the viability function, 𝛼𝑟 under directional
(𝒱 = 0.005) and stabilizing selection. The two curves differ by abrupt or gradual environmental
disturbances 𝜎2

𝑔𝑟𝑎𝑑𝑢𝑎𝑙 = 𝜎2
ℎ/𝜏 , with 𝜎ℎ = 0.05. The values of the remaining parameters are those

in bold in table 2.

Source: The author (2024).

the agreement between the two scenarios is remarkable. Therefore, the pattern of speciation
remains unaltered even when directional selection components are considered.

Global vs. local traits

In the model, local adaptation manifests as a phenotypic optimum, a 𝐿-dimensional position
in trait space, unique to each patch. Biologically speaking, we are assuming that the conditions
or resources necessary to strive in each patch are not only different but also independent. On
the other hand, abiotic pervasive factors such as temperature (Fig 45) and atmospheric 𝐶𝑂2

concentration can directly affect ecosystems’ function as a whole and drive population evolution
at a global-scale.

That said, it seems natural to inquire how adaptation to a global selective trait pervasive
to all metapopulation, e.g. temperature, may alter the emergence of diversity. To that, we
maintain our protocol of drawing a phenotypic position ℎ⃗ from a Gaussian distribution with
standard deviation 𝜎 = 0.3, but now the 𝑗−th component of the optimum phenotype of all
3 <https://climate.metoffice.cloud/current𝑤𝑎𝑟𝑚𝑖𝑛𝑔.ℎ𝑡𝑚𝑙 >
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Figure 45 – Annual global average temperatures expressed as the difference from pre-industrial conditions
based on the 1850-1900 average. Four different data sets are shown - HadCRUT5, NOAAGlobal-
Temp, GISTEMP, and Berkeley Earth - as well as two reanalyses - ERA5 and JRA-55. There is
good agreement on the overall evolution of global temperatures and year-to-year variability.

Source: Public image accessed in 2025. 3

patches is the same, i.e. this single trait is global and felt by all metapopulation irrespective
of the patch the individuals are inhabiting.

In Figure 46, we show the pattern of species richness and the metrics of population diver-
gence at genotypic and phenotypic levels, for different magnitudes of environmental changes
relative to the local and global traits, hereafter 𝜎𝑙 and 𝜎𝑔. In the results, 𝜎𝑙 is fixed at 0.05.
Species richness, genotypic and phenotypic divergence show a monotonic response with 𝜎𝑔,
with increased magnitude on the global trait leading to increased levels of population diver-
gence among the sampled individuals. On the upper right panel, we separate the phenotypic
distance among the global and local traits. Population can more easily follow the global trait
the lower the 𝜎𝑔. Interestingly, on the intermediate values of 𝛼𝑟 the mismatch on the global
trait results in populations more closely adapted to their local traits.

Effects of phenotypic plasticity

The capacity of the population to adapt to environmental changes is intrinsically related
to how fast population variation can emerge from the dynamics. In our model, mutation and
recombination are the main drivers of population variation and both happen at a time-scale
of discrete generations - from parents to their offspring.
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Figure 46 – Species richness, average pairwise Hamming distance, average pairwise phenotypic distance and
phenotypic distance to the optimum imposed by the inhabited patch versus the width of the
viability function, 𝛼𝑟. Dependence on the magnitude of global trait variation 𝜎𝑔 is indicated in the
legend. In the upper right panel, we distinguish the distance to local and global traits - full and
empty points, respectively. The values of the remaining parameters are those in bold in table 2.
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In reality, as a response to biotic and abiotic changes, some individuals are capable of alter-
ing their phenotypic traits during their lifetime without changes to their genetic counterparts.
The ability to express different phenotypes from the same set of genotypes is called phenotypic
plasticity (see Chapter 1 for discussion).

Here we imbue our metapopulation with such capacity by extending the range in which the
optimum phenotype is reachable. We assume that individuals near enough of the phenotypic
optimum by a distance 𝜎𝑝𝑝 may reach the benefits of being exactly in the optimum through
phenotypic plasticity (see scheme in Figure 47). In other words, if |𝑟⃗ − ℎ⃗| < 𝜎𝑝𝑝 then 𝑉 = 1.

Importantly, over the years, we realized this approach has been rather ingenious. Firstly,
because plasticity is not a property of the environment but of the organism (LALAND et al.,
2015). Secondly, the use of plasticity comes with an inherent fitness cost due to the biochemical
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Figure 47 – One-dimensional representation of our modeling of phenotypic plasticity. The optimum phenotype
is centered at a point ℎ of the trait axis. Here, individuals whose phenotype is at a given distance
from the optimum (purple interval), are considered sufficiently adapted to survive viability selection
Eq. 4.1. In other words, if |𝑟 − ℎ| < 𝜎𝑝𝑝 then 𝑉 = 1.

h pp h+ pp

h

Source: The author (2024).

and physiological machinery that individuals must have to sense the environment during their
lifetime and build a proper response.

Regardless, Figure 48 shows our results for different levels of plasticity given by the pa-
rameter 𝜎𝑝𝑝. We can see that through plasticity the populations have their divergence reduced
both at genotypic and phenotypic level, which results in less number of species maintained
in the interval of intermediate selective pressure. Although this difference is not so drastic
at species richness and hamming distance, it is more evident at the phenotypic divergence,
with both cases equally closer to their patch optimum. As expected, with this implementation,
populations are less punished for not being in the patch optimum which is reflected in the
decrease of metapopulation extinction risk for higher 𝜎𝑝𝑝.
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Figure 48 – Species richness, average pairwise Hamming distance, phenotypic distance to the optimum and
extinction risk for the effect of phenotypic plasticity 𝜎𝑝𝑝 versus the width of the viability function,
𝛼𝑟. The values of the remaining parameters are those in bold in table 2.
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4.4 Conclusions

There is a long-standing debate about the role of climatic and ecological changes in shaping
biodiversity. Little is known whether the biotic responses are a consequence of fast, rapid,
or gradual climate change (BOTTA et al., 2019). While some empirical studies suggest that
evolutionary responses are slower relative to environmental change, i.e., environmental changes
are abrupt (DAVIS; SHAW; ETTERSON, 2005), taking as a special case climate change (HUNTLEY

et al., 1991), other studies claim that such changes are gradual or even that both modes co-
occur (OSGOOD; WHITE; BAUM, 2021). Biological responses to environmental change occur
through migration and phenotypic or molecular evolution, and when failing, populations and
species can go locally or even globally extinct (DAVIS; SHAW; ETTERSON, 2005; LORENZEN et

al., 2011).
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We proposed a metapopulation model that employs the framework of Fisher’s geometric
model to study how the pattern of diversification and speciation is influenced by environmental
changes and their modes of occurrence. Quite surprisingly, we found that the pattern of
diversification and speciation is only dependent on the magnitude of the environmental changes
in a given time interval, regardless of whether the changes are abrupt or ensue from repeated
processes of smaller variations. According to our approach, the magnitude of environmental
changes corresponds to each patch displacements of the optimum phenotype. We draw the
displacements from a Gaussian distribution of null mean and fixed variance. By rescaling the
variance, here using the reasoning of the Central Limit Theorem, one can generate distributions
of events that are additive and of smaller magnitudes that are equivalent to those resulting
from single events. Because the Central Limit Theorem ensures that the distribution of a sum
of independent stochastic variables is Gaussian-distributed, regardless of the distribution of the
stochastic variables, our claim is not dependent on the particular choice for the distribution of
the magnitude of environmental changes. Our claim remains unaltered even in the presence
of directional selection.

The aforementioned achievements are clearly of difficult empirical verification in natural
populations, but one expects them to be feasible in well-controlled lab conditions. Nevertheless,
our framework is a stepping-stone for future investigation regarding the effects of different
metapopulation structures for studying the effects of landscape fragmentation, proper modeling
of phenotypic plasticity, and quantification of both the founder effect and the evolutionary
rescue processes happening in the domain of strong selection.

• The main results presented in this section have been published in the article: Freitas, Os-

mar, Sabrina BL Araujo, and Paulo RA Campos. "Speciation in a metapopulation model

upon environmental changes." Ecological Modelling (2022). Ref. (FREITAS; ARAUJO;

CAMPOS, 2022)
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5 OVERALL CONCLUSIONS

We are most likely to protect what we appreciate,

and we are mostly likely to appreciate what we understand.

By learning about the processes and diversity of life,

we also become more aware of ourselves

and our place in the biosphere.

(Neil Campbell)

In this thesis, we have addressed the implications of environmental changes to population
adaptation and diversity through stochastic evolutionary models.

In the first work, we study population persistence in the form of evolutionary rescue, where
adaptation must happen sufficiently fast to ensure population survival. First, we show that a
density-dependent growth can indeed obscure the observation of rescue in declining popula-
tions, since extinction can be prevented by adjusting its size to better cope with the stressful
environment. A merit of our model is to show a clear delineation of two regimes separated
by a critical level of stress, where, in the latter, the population can only persist through the
establishment of rescue mutations. The probability of extinction increases with stress because
the availability of rescue mutations decreases. Therefore, the order in which mutations arise
in the population becomes more essential to rescue in more stressful environments. Next, we
make some simplifications of our model to study the effects of epistatic genetic interactions in
evolutionary rescue. Although high levels of epistasis constrain the accessibility of evolution-
ary trajectories over fitness landscapes, high epistasis can provide beneficial mutations with
sufficiently large fitness effects that can rescue the population. In this tradeoff between muta-
tion availability and its effects, we show that low to intermediate values of epistasis have an
increased risk for population extinction.

Our second work studies population divergence in an insular system subject to isolation
mechanisms driven by environmental events of geographic barriers. We show how gene flow,
in the form of migration between islands, influences speciation. By registering the speciation
dynamics in a phylogeny, we infer signatures of the intermittent geographical events in the
population history. In our model, higher rates of speciation are expected when populations
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spend too much time in isolation, and the distribution of speciation events among lineages
involves the distribution of species abundances among islands, which are dependent on the
intermittent regimes of connection and isolation.

At last, we study a metapopulation model under environmental fluctuations, where both
migration and local adaptation influence population divergence and persistence. We make an
extensive statistical analysis on the effects of gene flow and selective pressure on population
diversity, reported by species richness but also by their genotypic and phenotypic divergence.
We study the influence of environmental perturbations in function of selective pressure, going
from a neutral regime where divergence is solely promoted by migration, to a stronger selec-
tive regime where local and global extinction risk are enhanced. We see that more frequent
perturbations promote higher divergence at the phenotypic level, which in turn is accompanied
by genetic divergence, resulting in more species diversity. We compare the effect of abrupt and
gradual disturbances and show that, in our model, the pattern of speciation is only dependent
on the net effect of the environmental disturbances, despite the rate at which the events occur.

The works here discussed have their own limitations and the potential to be expanded
in a number of interesting ways, as described in their sectorial conclusions. My only hope is
that they can offer us insights and reflections into the processes affecting life’s diversity and
resilience.



123

REFERENCES

AGUIAR, M. A. M. D.; BARANGER, M.; BAPTESTINI, E.; KAUFMAN, L.; BAR-YAM, Y.
Global patterns of speciation and diversity. Nature, Nature Publishing Group, v. 460, n. 7253,
p. 384–387, 2009.

AGUILéE, R.; LAMBERT, A.; CLAESSEN, D. Ecological speciation in dynamic landscapes.
Journal of Evolutionary Biology, v. 24, n. 12, p. 2663–2677, 2011. Available at:
<https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1420-9101.2011.02392.x>.

AITA, T.; HUSIMI, Y. Fitness spectrum among random mutants on mt. fuji-type fitness
landscape. Journal of theoretical biology, Elsevier, v. 182, n. 4, p. 469–485, 1996.

ALENCAR, L. R. V. de; QUENTAL, T. B. Linking population-level and microevolutionary
processes to understand speciation dynamics at the macroevolutionary scale. Ecology and
Evolution, v. 11, n. 11, p. 5828–5843, 2021. ISSN 20457758.

ALEXANDER, H. K.; MARTIN, G.; MARTIN, O. Y.; BONHOEFFER, S. Evolutionary rescue:
linking theory for conservation and medicine. Evolutionary applications, Wiley Online Library,
v. 7, n. 10, p. 1161–1179, 2014.

ANCIAUX, Y.; CHEVIN, L.-M.; RONCE, O.; MARTIN, G. Evolutionary rescue over a fitness
landscape. Genetics, Oxford University Press, v. 209, n. 1, p. 265–279, 2018.

ARAUJO, S. B.; BRAGA, M. P.; BROOKS, D. R.; AGOSTA, S. J.; HOBERG, E. P.;
HARTENTHAL, F. W. V.; BOEGER, W. A. Understanding host-switching by ecological
fitting. PLoS One, Public Library of Science San Francisco, CA USA, v. 10, n. 10, p.
e0139225, 2015.

BAGGIO, R. A.; STOIEV, S. B.; SPACH, H. L.; BOEGER, W. A. Opportunity and taxon
pulse: the central influence of coastal geomorphology on genetic diversification and endemism
of strict estuarine species. Journal of Biogeography, v. 44, n. 7, p. 1626–1639, 2017. ISSN
13652699.

BAILEY, S. F.; BLANQUART, F.; BATAILLON, T.; KASSEN, R. What drives parallel
evolution? BioEssays, v. 39, n. 1, p. e201600176, 2017.

BAILEY, S. F.; RODRIGUE, N.; KASSEN, R. The Effect of Selection Environment on the
Probability of Parallel Evolution. Molecular Biology and Evolution, v. 32, n. 6, p. 1436–1448,
2015.

BANK, C. Epistasis and adaptation on fitness landscapes. Annual review of ecology, evolution,
and systematics, Annual Reviews, v. 53, p. 457–479, 2022.

BARRETT, R. D.; HENDRY, A. P. Evolutionary rescue under environmental change?
Behavioural responses to a changing world, Oxford University Press, p. 216–233, 2012.

BARRICK, J. E.; LENSKI, R. E. Genome dynamics during experimental evolution. Nature
Reviews Genetics, Nature Publishing Group, v. 14, n. 12, p. 827–839, 2013. ISSN 14710056.
Available at: <http://dx.doi.org/10.1038/nrg3564>.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1420-9101.2011.02392.x
http://dx.doi.org/10.1038/nrg3564


REFERENCES 124

BARTON, N. H.; CHARLESWORTH, B. Genetic revolutions, founder effects, and speciation.
Annual review of ecology and systematics, Annual Reviews 4139 El Camino Way, PO Box
10139, Palo Alto, CA 94303-0139, USA, v. 15, n. 1, p. 133–164, 1984.

BELL, G. Evolutionary rescue and the limits of adaptation. Philosophical Transactions of the
Royal Society B: Biological Sciences, The Royal Society, v. 368, n. 1610, p. 20120080, 2013.

BELL, G. Evolutionary rescue. Annual Review of Ecology, Evolution, and Systematics, Annual
Reviews, v. 48, p. 605–627, 2017.

BELL, G.; GONZALEZ, A. Adaptation and evolutionary rescue in metapopulations
experiencing environmental deterioration. Science, American Association for the Advancement
of Science, v. 332, n. 6035, p. 1327–1330, 2011.

BLOUNT, Z. D.; LENSKI, R. E.; LOSOS, J. B. Contingency and determinism in evolution:
Replaying life’s tape. Science, v. 362, p. eaam5979, 2018.

BLUM, M. G. B.; FRANçOIS, O. Which Random Processes Describe the Tree of Life? A
Large-Scale Study of Phylogenetic Tree Imbalance. Systematic Biology, v. 55, n. 4, p. 685–691,
08 2006. ISSN 1063-5157. Available at: <https://doi.org/10.1080/10635150600889625>.

BOEGER, W. A.; BROOKS, D. R.; TRIVELLONE, V.; AGOSTA, S. J.; HOBERG, E. P.
Ecological super-spreaders drive host–range oscillations: Omicron and risk space for emerging
infectious disease. Transboundary and Emerging Diseases, v. 69, n. 5, p. e1280–e1288, 2022.
ISSN 18651682.

BOLNICK, D. I.; BARRETT, R. D.; OKE, K. B.; RENNISON, D. J.; STUART, Y. E.
(Non)parallel evolution. Annual Review of Ecology, Evolution, and Systematics, v. 49, n. 1,
p. 303–330, 2018. ISSN 1543-592X.

BOTELHO, L. L.; MARQUITTI, F. M. D.; AGUIAR, M. A. M. de. Extinction and
hybridization in a neutral model of speciation. Journal of Physics A: Mathematical
and Theoretical, IOP Publishing, v. 55, n. 38, p. 385601, aug 2022. Available at:
<https://dx.doi.org/10.1088/1751-8121/ac88a5>.

BOTTA, F.; DAHL-JENSEN, D.; RAHBEK, C.; SVENSSON, A.; NOGUÉS-BRAVO, D.
Abrupt change in climate and biotic systems. Current Biology, Elsevier, v. 29, n. 19, p.
R1045–R1054, 2019.

BRAGA, M. P.; ARAUJO, S. B.; AGOSTA, S.; BROOKS, D.; HOBERG, E.; NYLIN, S.;
JANZ, N.; BOEGER, W. A. Host use dynamics in a heterogeneous fitness landscape generates
oscillations in host range and diversification. Evolution, Wiley Online Library, v. 72, n. 9, p.
1773–1783, 2018.

BROOKS, D. R.; HOBERG, E. P.; BOEGER, W. A. The Stockholm paradigm: climate
change and emerging disease. [S.l.]: University of Chicago Press, 2019.

BÜRGER, R. Genetic Structure and Selection in Subdivided Populations by F. Rousset. [S.l.]:
Wiley Online Library, 2006.

BURKE, M. K.; LITI, G.; LONG, A. D. Standing Genetic Variation Drives Repeatable
Experimental Evolution in Outcrossing Populations of Saccharomyces cerevisiae. Molecular
Biology and Evolution, v. 31, n. 12, p. 3228–3239, 2014. ISSN 0737-4038. Available at:
<https://doi.org/10.1093/molbev/msu256>.

https://doi.org/10.1080/10635150600889625
https://dx.doi.org/10.1088/1751-8121/ac88a5
https://doi.org/10.1093/molbev/msu256


REFERENCES 125

CAMPOS, P. R.; ADAMI, C.; WILKE, C. O. Optimal adaptive performance and delocalization
in nk fitness landscapes. Physica A: Statistical Mechanics and its Applications, Elsevier,
v. 304, n. 3-4, p. 495–506, 2002.

CAMPOS, P. R.; WAHL, L. M. The effects of population bottlenecks on clonal interference,
and the adaptation effective population size. Evolution, Blackwell Publishing Inc Malden,
USA, v. 63, n. 4, p. 950–958, 2009.

CAMPOS, P. R. A.; ROSAS, A.; OLIVEIRA, V. M. de; GOMES, M. A. F. Effect of landscape
structure on species diversity. PLOS ONE, Public Library of Science, v. 8, n. 6, p. 1–10, 06
2013. Available at: <https://doi.org/10.1371/journal.pone.0066495>.

CARLSON, S. M.; CUNNINGHAM, C. J.; WESTLEY, P. A. Evolutionary rescue in a changing
world. Trends in Ecology & Evolution, Elsevier, v. 29, n. 9, p. 521–530, 2014.

CARNAVAL, A. C.; HICKERSON, M. J.; HADDAD, C. F.; RODRIGUES, M. T.; MORITZ, C.
Stability predicts genetic diversity in the brazilian atlantic forest hotspot. Science, American
Association for the Advancement of Science, v. 323, n. 5915, p. 785–789, 2009.

CARON, F. S.; PIE, M. R. The phylogenetic signal of diversification rates. Journal of
Zoological Systematics and Evolutionary Research, v. 58, n. 4, p. 1432–1436, 2020. Available
at: <https://onlinelibrary.wiley.com/doi/abs/10.1111/jzs.12379>.

CATALÁN, P.; GARCÍA-MARTÍN, J. A.; AGUIRRE, J.; CUESTA, J. A.; MANRUBIA,
S. Entropic contribution to phenotype fitness. Journal of Physics A: Mathematical and
Theoretical, IOP Publishing, v. 56, n. 34, p. 345601, 2023.

CHEVIN, L.-M.; LANDE, R. When do adaptive plasticity and genetic evolution prevent
extinction of a density-regulated population? Evolution, Blackwell Publishing Inc Malden,
USA, v. 64, n. 4, p. 1143–1150, 2010.

CHEVIN, L.-M.; LANDE, R.; MACE, G. M. Adaptation, plasticity, and extinction in a
changing environment: towards a predictive theory. PLoS biology, Public Library of Science
San Francisco, USA, v. 8, n. 4, p. e1000357, 2010.

CIRNE, D.; CAMPOS, P. R. Rate of environmental variation impacts the predictability in
evolution. Physical Review E, APS, v. 106, n. 6, p. 064408, 2022.

CONNALLON, T.; CLARK, A. G. Balancing selection in species with separate sexes: insights
from fisher’s geometric model. Genetics, Oxford University Press, v. 197, n. 3, p. 991–1006,
2014.

COSTA, C. L.; LEMOS-COSTA, P.; MARQUITTI, F. M.; FERNANDES, L. D.; RAMOS,
M. F.; SCHNEIDER, D. M.; MARTINS, A. B.; De Aguiar, M. A. Signatures of
Microevolutionary Processes in Phylogenetic Patterns. Systematic Biology, v. 68, n. 1, p.
131–144, 2019. ISSN 1076836X.

COSTA, C. L.; MARQUITTI, F. M.; PEREZ, S. I.; SCHNEIDER, D. M.; RAMOS, M. F.;
AGUIAR, M. A. de. Registering the evolutionary history in individual-based models of
speciation. Physica A: Statistical Mechanics and its Applications, Elsevier BV, v. 510, p.
1–14, nov 2018. Available at: <https://doi.org/10.1016%2Fj.physa.2018.05.150>.

COYNE, J. A.; ORR, H. A. Speciation. 1. ed. [S.l.]: Sinauer Associates, Inc., 2004. ISBN
0878930892.

https://doi.org/10.1371/journal.pone.0066495
https://onlinelibrary.wiley.com/doi/abs/10.1111/jzs.12379
https://doi.org/10.1016%2Fj.physa.2018.05.150


REFERENCES 126

CROW, J.; KIMURA, M. An Introduction to Population Genetics Theory. Burgess Publishing
Company, 1970. ISBN 9780808729013. Available at: <https://books.google.com.br/books?
id=MLETAQAAIAAJ>.

DARWIN, C. On the Origin of Species by Means of Natural Selection. London: Murray, 1859.
Or the Preservation of Favored Races in the Struggle for Life.

DAVIS, M. B.; SHAW, R. G.; ETTERSON, J. R. Evolutionary responses to changing climate.
Ecology, Wiley Online Library, v. 86, n. 7, p. 1704–1714, 2005.

De Visser, J. A. G.; KRUG, J. Empirical fitness landscapes and the predictability of evolution.
Nature Reviews Genetics, Nature Publishing Group, v. 15, n. 7, p. 480–490, 2014. ISSN
14710064.

DEANGELIS, D. L.; GRIMM, V. Individual-based models in ecology after four decades.
F1000prime reports, v. 6, p. 39, 2014.

DERRIDA, B. Random-energy model: An exactly solvable model of disordered systems.
Physical Review B, APS, v. 24, n. 5, p. 2613, 1981.

DESAI, M. M.; FISHER, D. S. Beneficial mutation-selection balance and the effect of linkage
on positive selection. Genetics, v. 176, n. 3, p. 1759–1798, 2007. ISSN 00166731.

DOBZHANSKY, T. Genetics of the evolutionary process. [S.l.]: Columbia University Press,
1970.

DROSSEL, B. Biological evolution and statistical physics. Advances in physics, Taylor &
Francis, v. 50, n. 2, p. 209–295, 2001.

D’BASTIANI, E.; PRINCEPE, D.; MARQUITTI, F. M. D.; BOEGER, W. A.; CAMPIãO,
K. M.; ARAUJO, S. B. L. Effect of host-switching on the ecological and evolutionary
patterns of parasites. Systematic Biology, 04 2023. ISSN 1063-5157. Syad022. Available at:
<https://doi.org/10.1093/sysbio/syad022>.

EZARD, T. H. G.; PURVIS, A. Environmental changes define ecological limits to species
richness and reveal the mode of macroevolutionary competition. Ecology Letters, v. 19, n. 8, p.
899–906, 2016. Available at: <https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.12626>.

FELLER, W. An introduction to probability theory and its applications, Volume 2. [S.l.]: John
Wiley & Sons, 1991.

FISHER, R. A. The genetical theory of natural selection. London: Claredon Press, 1930.

FITZPATRICK, B.; FORDYCE, J.; GAVRILETS, S. Pattern, process and geographic modes of
speciation. Journal of evolutionary biology, Wiley Online Library, v. 22, n. 11, p. 2342–2347,
2009.

FLATHER, C. H.; HAYWARD, G. D.; BEISSINGER, S. R.; STEPHENS, P. A. Minimum
viable populations: is there a ‘magic number’ for conservation practitioners? Trends in ecology
& evolution, Elsevier, v. 26, n. 6, p. 307–316, 2011.

FRAGATA, I.; BLANCKAERT, A.; LOURO, M. A. D.; LIBERLES, D. A.; BANK, C. Evolution
in the light of fitness landscape theory. Trends in ecology & evolution, Elsevier, v. 34, n. 1, p.
69–82, 2019.

https://books.google.com.br/books?id=MLETAQAAIAAJ
https://books.google.com.br/books?id=MLETAQAAIAAJ
https://doi.org/10.1093/sysbio/syad022
https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.12626


REFERENCES 127

FREITAS, O.; ARAUJO, S. B.; CAMPOS, P. R. Speciation in a metapopulation model upon
environmental changes. Ecological Modelling, Elsevier, v. 468, p. 109958, 2022.

FREITAS, O.; CAMPOS, P. R. The role of epistasis in evolutionary rescue. The European
Physical Journal E, Springer, v. 47, n. 7, p. 49, 2024.

FREITAS, O.; CAMPOS, P. R. Understanding evolutionary rescue and parallelism in response
to environmental stress. Evolution, Oxford University Press US, v. 78, n. 8, p. 1453–1463,
2024.

FREITAS, O.; CAMPOS, P. R.; ARAUJO, S. B. Patch biogeography under intermittent
barriers: macroevolutionary consequences of microevolutionary processes. Journal of
Evolutionary Biology, Oxford University Press US, v. 37, n. 12, p. 1488–1498, 2024.

FREITAS, O.; WAHL, L. M.; CAMPOS, P. R. Robustness and predictability of evolution in
bottlenecked populations. Physical Review E, APS, v. 103, n. 4, p. 042415, 2021.

FRY, J. D. Laboratory experiments on speciation. Experimental evolution: Concepts,
methods, and applications of selection experiments, University of California Press, p. 631–656,
2009.

GASCUEL, F.; FERRIÈRE, R.; AGUILÉE, R.; LAMBERT, A. How Ecology and Landscape
Dynamics Shape Phylogenetic Trees. Systematic Biology, v. 64, n. 4, p. 590–607, 2015. ISSN
1076836X.

GAVRILETS, S. Evolution and speciation on holey adaptive landscapes. Trends in ecology &
evolution, Elsevier, v. 12, n. 8, p. 307–312, 1997.

GAVRILETS, S. Speciation in metapopulations. In: Ecology, genetics and evolution of
metapopulations. [S.l.]: Elsevier, 2004. p. 275–303.

GAVRILETS, S. Models of speciation: Where are we now? Journal of Heredity, v. 105, n. S1,
p. 743–755, 2014. ISSN 14657333.

GERRISH, P. J.; LENSKI, R. E. The fate of competing beneficial mutations in an asexual
population. Genetica, Springer, v. 102, p. 127–144, 1998.

GERSTEIN, A. C.; LO, D. S.; OTTO, S. P. Parallel Genetic Changes and Nonparallel
Gene–Environment Interactions Characterize the Evolution of Drug Resistance in
Yeast. Genetics, v. 192, n. 1, p. 241–252, 2012. ISSN 1943-2631. Available at:
<https://doi.org/10.1534/genetics.112.142620>.

GILLESPIE, J. Population Genetics: A Concise Guide. Johns Hopkins University Press,
1998. (A Johns Hopkins paperback : Science). ISBN 9780801857553. Available at:
<https://books.google.com.br/books?id=zb1qAAAAMAAJ>.

GOMULKIEWICZ, R.; HOLT, R. D. When does evolution by natural selection prevent
extinction? Evolution, JSTOR, v. 49, n. 1, p. 201–207, 1995.

GORDO, I.; GOMES, M. G. M.; REIS, D. G.; CAMPOS, P. R. Genetic diversity in the sir
model of pathogen evolution. PloS one, Public Library of Science San Francisco, USA, v. 4,
n. 3, p. e4876, 2009.

https://doi.org/10.1534/genetics.112.142620
https://books.google.com.br/books?id=zb1qAAAAMAAJ


REFERENCES 128

HACKL, J.; DUBERNET, T. Epidemic spreading in urban areas using agent-based
transportation models. Future internet, MDPI, v. 11, n. 4, p. 92, 2019.

HANSKI, I. Metapopulation dynamics. Nature, Nature Publishing Group, v. 396, n. 6706, p.
41–49, 1998.

HARMAND, N.; GALLET, R.; JABBOUR-ZAHAB, R.; MARTIN, G.; LENORMAND, T.
Fisher’s geometrical model and the mutational patterns of antibiotic resistance across dose
gradients. Evolution, Blackwell Publishing Inc Malden, USA, v. 71, n. 1, p. 23–37, 2017.

HARTL, D. L.; TAUBES, C. H. Compensatory nearly neutral mutations: selection without
adaptation. Journal of Theoretical Biology, Elsevier, v. 182, n. 3, p. 303–309, 1996.

HASSELL, M. Density-dependence in single-species populations. The Journal of animal
ecology, JSTOR, p. 283–295, 1975.

HE, Z.; LI, X.; YANG, M.; WANG, X.; ZHONG, C.; DUKE, N. C.; WU, C. I.; SHI, S.
Speciation with gene flow via cycles of isolation and migration: Insights from multiple
mangrove taxa. National Science Review, v. 6, n. 2, p. 275–288, 2019. ISSN 2053714X.

HENDRY, A. P.; NOSIL, P.; RIESEBERG, L. H. The speed of ecological speciation.
Functional ecology, Wiley Online Library, v. 21, n. 3, p. 455–464, 2007.

HENRIQUES-SILVA, R.; BOIVIN, F.; CALCAGNO, V.; URBAN, M. C.; PERES-NETO, P. R.
On the evolution of dispersal via heterogeneity in spatial connectivity. Proceedings of the
Royal Society B: Biological Sciences, The Royal Society, v. 282, n. 1803, p. 20142879, 2015.

HIGGS, P. G.; DERRIDA, B. Stochastic models for species formation in evolving populations.
Journal of Physics A: Mathematical and General, IOP Publishing, v. 24, n. 17, p. L985, 1991.

HOELZER, G. A.; MEINICK, D. J. Patterns of speciation and limits to phylogenetic
resolution. Trends in Ecology Evolution, v. 9, n. 3, p. 104–107, 1994. ISSN 0169-5347.
Available at: <https://www.sciencedirect.com/science/article/pii/0169534794902070>.

HUANG, C.-J.; LU, M.-Y.; CHANG, Y.-W.; LI, W.-H. Experimental Evolution of Yeast for
High-Temperature Tolerance. Molecular Biology and Evolution, v. 35, n. 8, p. 1823–1839,
2018. ISSN 0737-4038. Available at: <https://doi.org/10.1093/molbev/msy077>.

HUGHES, C.; EASTWOOD, R. Island radiation on a continental scale: Exceptional
rates of plant diversification after uplift of the andes. Proceedings of the National
Academy of Sciences, v. 103, n. 27, p. 10334–10339, 2006. Available at: <https:
//www.pnas.org/doi/abs/10.1073/pnas.0601928103>.

HUNTLEY, B.; CRAMER, W.; MORGAN, A. V.; PRENTICE, H. C.; ALLEN, J. R. Predicting
the response of terrestrial biota to future environmental changes. In: Past and Future Rapid
Environmental Changes. [S.l.]: Springer, 1991. p. 487–504.

HWANG, S.; PARK, S.-C.; KRUG, J. Genotypic complexity of fisher’s geometric model.
Genetics, Oxford University Press, v. 206, n. 2, p. 1049–1079, 2017.

IWASA, Y.; MICHOR, F.; NOWAK, M. A. Evolutionary dynamics of invasion and escape.
Journal of Theoretical Biology, v. 226, n. 2, p. 205–214, 2004. ISSN 0022-5193. Available
at: <https://www.sciencedirect.com/science/article/pii/S0022519303003333>.

https://www.sciencedirect.com/science/article/pii/0169534794902070
https://doi.org/10.1093/molbev/msy077
https://www.pnas.org/doi/abs/10.1073/pnas.0601928103
https://www.pnas.org/doi/abs/10.1073/pnas.0601928103
https://www.sciencedirect.com/science/article/pii/S0022519303003333


REFERENCES 129

KAUFFMAN, S.; LEVIN, S. Towards a general theory of adaptive walks on rugged landscapes.
Journal of theoretical Biology, Elsevier, v. 128, n. 1, p. 11–45, 1987.

KAUFFMAN, S. A.; WEINBERGER, E. D. The NK model of rugged fitness landscapes and
its application to maturation of the immune response. Journal of Theoretical Biology, v. 141,
n. 2, p. 211–245, 1989. ISSN 10958541.

KENDALL, D. G. On the Generalized "Birth-and-Death" Process. The Annals of Mathematical
Statistics, Institute of Mathematical Statistics, v. 19, n. 1, p. 1 – 15, 1948. Available at:
<https://doi.org/10.1214/aoms/1177730285>.

KINGMAN, J. On the properties of bilinear models for the balance between genetic mutation
and selection. In: CAMBRIDGE UNIVERSITY PRESS. Mathematical Proceedings of the
Cambridge Philosophical Society. [S.l.], 1977. v. 81, n. 3, p. 443–453.

KLUG, A.; PARK, S.-C.; KRUG, J. Recombination and mutational robustness in neutral
fitness landscapes. PLoS computational biology, Public Library of Science San Francisco, CA
USA, v. 15, n. 8, p. e1006884, 2019.

KREINER, J. M.; STINCHCOMBE, J. R.; WRIGHT, S. I. Population genomics of herbicide
resistance: Adaptation via evolutionary rescue. Annual Review of Plant Biology, Annual
Reviews, v. 69, n. Volume 69, 2018, p. 611–635, 2018. ISSN 1545-2123. Available at: <https:
//www.annualreviews.org/content/journals/10.1146/annurev-arplant-042817-040038>.

LALAND, K. N.; ULLER, T.; FELDMAN, M. W.; STERELNY, K.; MÜLLER, G. B.;
MOCZEK, A.; JABLONKA, E.; ODLING-SMEE, J. The extended evolutionary synthesis:
its structure, assumptions and predictions. Proceedings of the royal society B: biological
sciences, The Royal Society, v. 282, n. 1813, p. 20151019, 2015.

LARSSON, D.; FLACH, C.-F. Antibiotic resistance in the environment. Nature Reviews
Microbiology, Nature Publishing Group, v. 20, n. 5, p. 257–269, 2022.

LEMANT, J.; SUEUR, C. L.; MANOJLOVIć, V.; NOBLE, R. Robust, Universal Tree Balance
Indices. Systematic Biology, v. 71, n. 5, p. 1210–1224, 04 2022. ISSN 1063-5157. Available
at: <https://doi.org/10.1093/sysbio/syac027>.

LENSKI, R. E. Convergence and divergence in a long-term experiment with bacteria. The
American Naturalist, v. 190, n. S1, p. S57–S68, 2017. PMID: 28731830.

LEVINS, R. Some demographic and genetic consequences of environmental heterogeneity for
biological control. American Entomologist, Oxford University Press, v. 15, n. 3, p. 237–240,
1969.

LIN, W.-H.; KUSSELL, E. Complex interplay of physiology and selection in the emergence of
antibiotic resistance. Current Biology, Elsevier, v. 26, n. 11, p. 1486–1493, 2016.

LOBKOVSKY, A. E.; KOONIN, E. V. Replaying the tape of life: quantification of the
predictability of evolution. Frontiers in genetics, Frontiers Media SA, v. 3, p. 246, 2012.

LOBKOVSKY, A. E.; WOLF, Y. I.; KOONIN, E. V. Predictability of evolutionary trajectories
in fitness landscapes. PLoS computational biology, Public Library of Science San Francisco,
USA, v. 7, n. 12, p. e1002302, 2011.

https://doi.org/10.1214/aoms/1177730285
https://www.annualreviews.org/content/journals/10.1146/annurev-arplant-042817-040038
https://www.annualreviews.org/content/journals/10.1146/annurev-arplant-042817-040038
https://doi.org/10.1093/sysbio/syac027


REFERENCES 130

LORENZEN, E. D.; NOGUÉS-BRAVO, D.; ORLANDO, L.; WEINSTOCK, J.; BINLADEN,
J.; MARSKE, K. A.; UGAN, A.; BORREGAARD, M. K.; GILBERT, M. T. P.; NIELSEN,
R. et al. Species-specific responses of late quaternary megafauna to climate and humans.
Nature, Nature Publishing Group, v. 479, n. 7373, p. 359–364, 2011.

LYNCH, M.; ACKERMAN, M. S.; GOUT, J.-F.; LONG, H.; SUNG, W.; THOMAS, W. K.;
FOSTER, P. L. Genetic drift, selection and the evolution of the mutation rate. Nature
Reviews Genetics, Nature Publishing Group, v. 17, n. 11, p. 704–714, 2016.

MACARTHUR, R. H.; WILSON, E. O. The Theory of Island Biogeography. Rev
- revised. Princeton University Press, 1967. ISBN 9780691088365. Available at:
<http://www.jstor.org/stable/j.ctt19cc1t2>.

MACKEN, C. A.; PERELSON, A. S. Protein evolution on rugged landscapes. Proceedings of
the National Academy of Sciences, v. 86, n. 16, p. 6191–6195, 1989. ISSN 0027-8424.

MACPHERSON, A.; NUISMER, S. L. The probability of parallel genetic evolution from
standing genetic variation. Journal of Evolutionary Biology, v. 30, n. 2, p. 326–337, 02 2017.
ISSN 1010-061X. Available at: <https://doi.org/10.1111/jeb.13006>.

MANHART, M.; MOROZOV, A. V. Statistical physics of evolutionary trajectories on fitness
landscapes. In: First-Passage Phenomena and Their Applications. [S.l.]: World Scientific,
2014. p. 416–446.

MANZO, F.; PELITI, L. Geographic speciation in the derrida-higgs model of species
formation. Journal of Physics A: Mathematical and General, v. 27, n. 21, p. 7079, nov 1994.
Available at: <https://dx.doi.org/10.1088/0305-4470/27/21/022>.

MARQUITTI, F. M. D.; FERNANDES, L. D.; AGUIAR, M. A. M. de. Allopatry increases the
balance of phylogenetic trees during radiation under neutral speciation. Ecography, v. 43,
n. 10, p. 1487–1498, 2020. ISSN 16000587.

MARREC, L.; BITBOL, A.-F. Adapt or perish: Evolutionary rescue in a gradually deteriorating
environment. Genetics, Oxford University Press, v. 216, n. 2, p. 573–583, 2020.

MARTIN, G.; ELENA, S. F.; LENORMAND, T. Distributions of epistasis in microbes fit
predictions from a fitness landscape model. Nature genetics, Nature Publishing Group, v. 39,
n. 4, p. 555–560, 2007.

MATUSZEWSKI, S.; HERMISSON, J.; KOPP, M. Fisher’s geometric model with a moving
optimum. Evolution, Wiley Online Library, v. 68, n. 9, p. 2571–2588, 2014.

MAYR, E. Animal species and evolution. [S.l.]: Harvard University Press, 1963.

MCDONOUGH, Y.; CONNALLON, T. Effects of population size change on the genetics of
adaptation following an abrupt change in environment. Evolution, Oxford University Press
US, p. qpad103, 2023.

MCPEEK, M. The ecological dynamics of clade diversification and community assembly.
The American Naturalist, v. 172, n. 6, p. E270–E284, 2008. PMID: 18851684. Available at:
<https://doi.org/10.1086/593137>.

http://www.jstor.org/stable/j.ctt19cc1t2
https://doi.org/10.1111/jeb.13006
https://dx.doi.org/10.1088/0305-4470/27/21/022
https://doi.org/10.1086/593137


REFERENCES 131

MOOERS, A. O.; HEARD, S. B. Inferring evolutionary process from phylogenetic tree shape.
The Quarterly Review of Biology, University of Chicago Press, v. 72, n. 1, p. 31–54, 1997.
ISSN 00335770, 15397718. Available at: <http://www.jstor.org/stable/3036810>.

MORLON, H. Phylogenetic approaches for studying diversification. Ecology Letters, v. 17,
n. 4, p. 508–525, 2014. Available at: <https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.
12251>.

NEE, S.; MOOERS, A. O.; HARVEY, P. H. Tempo and mode of evolution revealed from
molecular phylogenies. Proceedings of the National Academy of Sciences, v. 89, n. 17, p.
8322–8326, 1992. Available at: <https://www.pnas.org/doi/abs/10.1073/pnas.89.17.8322>.

NOSIL, P.; HARMON, L. J.; SEEHAUSEN, O. Ecological explanations for (incomplete)
speciation. Trends in ecology & evolution, Elsevier, v. 24, n. 3, p. 145–156, 2009.

NOWAK, M. A. Evolutionary dynamics: exploring the equations of life. [S.l.]: Harvard
university press, 2006.

OLIVEIRA, V. M. de; MENDES, B. B.; ROQUE, M.; CAMPOS, P. R. Extinction-colonization
dynamics upon a survival-dispersal trade-off. Ecological Complexity, Elsevier, v. 43, p.
100856, 2020.

ORR, H. A. Adaptation and the cost of complexity. Evolution, Wiley Online Library, v. 54,
n. 1, p. 13–20, 2000.

ORR, H. A. The genetic theory of adaptation: a brief history. Nature Reviews Genetics,
Nature Publishing Group, v. 6, n. 2, p. 119–127, 2005.

ORR, H. A. The probability of parallel evolution. Evolution, v. 59, n. 1, p. 216–220, 2005.

ORR, H. A.; UNCKLESS, R. L. Population extinction and the genetics of adaptation. The
American Naturalist, The University of Chicago Press, v. 172, n. 2, p. 160–169, 2008.

ORR, H. A.; UNCKLESS, R. L. The population genetics of evolutionary rescue. PLoS
genetics, Public Library of Science San Francisco, USA, v. 10, n. 8, p. e1004551, 2014.

OSGOOD, G. J.; WHITE, E. R.; BAUM, J. K. Effects of climate-change-driven gradual
and acute temperature changes on shark and ray species. Journal of Animal Ecology, Wiley
Online Library, 2021.

OSMOND, M. M.; MAZANCOURT, C. de. How competition affects evolutionary rescue.
Philosophical Transactions of the Royal Society B: Biological Sciences, v. 368, n. 1610, p.
20120085, 2013. Available at: <https://royalsocietypublishing.org/doi/abs/10.1098/rstb.
2012.0085>.

OSMOND, M. M.; OTTO, S. P.; MARTIN, G. Genetic paths to evolutionary rescue and the
distribution of fitness effects along them. Genetics, Oxford University Press, v. 214, n. 2, p.
493–510, 2020.

OVASKAINEN, O.; HANSKI, I. Extinction threshold in metapopulation models. In: JSTOR.
Annales Zoologici Fennici. [S.l.], 2003. p. 81–97.

http://www.jstor.org/stable/3036810
https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.12251
https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.12251
https://www.pnas.org/doi/abs/10.1073/pnas.89.17.8322
https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2012.0085
https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2012.0085


REFERENCES 132

PAN, T.; WANG, H.; OROZCOTERWENGEL, P.; HU, C. C.; WU, G. Y.; QIAN, L. F.; SUN,
Z. L.; SHI, W. B.; YAN, P.; WU, X. B.; ZHANG, B. W. Long-term sky islands generate
highly divergent lineages of a narrowly distributed stream salamander (Pachyhynobius
shangchengensis) in mid-latitude mountains of East Asia. BMC Evolutionary Biology, BMC
Evolutionary Biology, v. 19, n. 1, p. 1–15, 2019. ISSN 14712148.

PARADIS, E.; SCHLIEP, K. ape 5.0: an environment for modern phylogenetics and
evolutionary analyses in R. Bioinformatics, v. 35, p. 526–528, 2019.

PATWA, Z.; WAHL, L. The fixation probability of beneficial mutations. Journal of The Royal
Society Interface, v. 5, n. 28, p. 1279–1289, 2008. ISSN 1742-5689.

PAULS, S. U.; NOWAK, C.; BÁLINT, M.; PFENNINGER, M. The impact of global climate
change on genetic diversity within populations and species. Molecular ecology, Wiley Online
Library, v. 22, n. 4, p. 925–946, 2013.

PERES, E. A.; ROCHA, R. Pinto-da; LOHMANN, L. G.; MICHELANGELI, F. A.;
MIYAKI, C. Y.; CARNAVAL, A. C. Patterns of species and lineage diversity in the atlantic
rainforest of brazil. In: . Neotropical Diversification: Patterns and Processes. Cham:
Springer International Publishing, 2020. p. 415–447. ISBN 978-3-030-31167-4. Available at:
<https://doi.org/10.1007/978-3-030-31167-4_16>.

PIGOT, A. L.; PHILLIMORE, A. B.; OWENS, I. P.; ORME, C. D. L. The shape and temporal
dynamics of phylogenetic trees arising from geographic speciation. Systematic Biology, v. 59,
n. 6, p. 660–673, 2010. ISSN 10635157.

Posit team. RStudio: Integrated Development Environment for R. Boston, MA, 2022.
Available at: <http://www.posit.co/>.

PRINCEPE, D.; CZARNOBAI, S.; CAETANO, R. A.; MARQUITTI, F. M. D.; AGUIAR,
M. A. M. de; ARAUJO, S. B. L. Intermittent migration can induce pulses of speciation
in a two-island system. Evolution, p. qpad210, 12 2023. ISSN 0014-3820. Available at:
<https://doi.org/10.1093/evolut/qpad210>.

PRINCEPE, D.; CZARNOBAI, S.; PRADELLA, T. M.; CAETANO, R. A.; MARQUITTI, F.
M. D.; AGUIAR, M. A. M. de; ARAUJO, S. B. L. Diversity patterns and speciation processes
in a two-island system with continuous migration. Evolution, p. 1–12, 2022. ISSN 0014-3820.

PYBUS, O. G.; HARVEY, P. H. Testing macro-evolutionary models using incomplete
molecular phylogenies. Proceedings: Biological Sciences, The Royal Society, v. 267, n. 1459,
p. 2267–2272, 2000. ISSN 09628452. Available at: <http://www.jstor.org/stable/2665821>.

QVARNSTRÖM, A.; ÅLUND, M.; MCFARLANE, S. E.; SIRKIÄ, P. M. Climate adaptation
and speciation: particular focus on reproductive barriers in ficedula flycatchers. Evolutionary
applications, Wiley Online Library, v. 9, n. 1, p. 119–134, 2016.

RAM, Y.; HADANY, L. The probability of improvement in Fisher’s geometric model: A
probabilistic approach. Theoretical population biology, Elsevier, v. 99, p. 1–6, 2015.

REIA, S. M.; CAMPOS, P. R. Analysis of statistical correlations between properties of
adaptive walks in fitness landscapes. Royal Society open science, The Royal Society, v. 7,
n. 1, p. 192118, 2020.

https://doi.org/10.1007/978-3-030-31167-4_16
http://www.posit.co/
https://doi.org/10.1093/evolut/qpad210
http://www.jstor.org/stable/2665821


REFERENCES 133

REICHL, L. E. A modern course in statistical physics. [S.l.]: John Wiley & Sons, 2016.

RIDLEY, M. Evolution. [S.l.]: Wiley-Blackwell; 3rd ed., 2003.

RUNDLE, H. D.; NOSIL, P. Ecological speciation. Ecology letters, Wiley Online Library, v. 8,
n. 3, p. 336–352, 2005.

SACKIN, M. J. “Good” and “Bad” Phenograms. Systematic Biology, v. 21, n. 2, p. 225–226,
07 1972. ISSN 1063-5157. Available at: <https://doi.org/10.1093/sysbio/21.2.225>.

SCHIFFERS, K.; BOURNE, E. C.; LAVERGNE, S.; THUILLER, W.; TRAVIS, J. M. J. Limited
evolutionary rescue of locally adapted populations facing climate change. Philosophical
Transactions of the Royal Society B: Biological Sciences, v. 368, n. 1610, p. 20120083, 2013.
Available at: <https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2012.0083>.

SCHLUTER, D.; CLIFFORD, E. A.; NEMETHY, M.; MCKINNON, J. S. Parallel evolution
and inheritance of quantitative traits. The American Naturalist, v. 163, n. 6, p. 809–822,
2004. PMID: 15266380.

SEARLE, C. L.; CHRISTIE, M. R. Evolutionary rescue in host-pathogen systems. Evolution,
Blackwell Publishing Inc Malden, USA, v. 75, n. 11, p. 2948–2958, 2021.

SHAO, K. T.; SOKAL, R. R. Tree balance. Systematic Zoology, v. 39, n. 3, p. 266–276,
1990. ISSN 1063-5157.

SOUSA, J. A. M. de; ALPEDRINHA, J.; CAMPOS, P. R.; GORDO, I. Competition and
fixation of cohorts of adaptive mutations under fisher geometrical model. PeerJ, PeerJ Inc.,
v. 4, p. e2256, 2016.

SOUZA, K. S.; FORTUNATO, D. S.; JARDIM, L.; TERRIBILE, L. C.; LIMA-RIBEIRO,
M. S.; MARIANO, C. A.; PINTO-LEDEZMA, J. N.; LOYOLA, R.; DOBROVOLSKI, R.;
RANGEL, T. F. et al. Evolutionary rescue and geographic range shifts under climate change
for global amphibians. Frontiers in Ecology and Evolution, Frontiers, v. 11, p. 1038018, 2023.

SPRATT, R. M.; LISIECKI, L. E. A Late Pleistocene sea level stack. Clim. Past, Copernicus
Publications, v. 12, n. 4, p. 1079–1092, apr 2016. ISSN 1814-9332.

SRIVASTAVA, M.; PAYNE, J. L. On the incongruence of genotype-phenotype and fitness
landscapes. PLoS Computational Biology, Public Library of Science San Francisco, CA USA,
v. 18, n. 9, p. e1010524, 2022.

STUART, Y. E.; VEEN, T.; WEBER, J. N.; HANSON, D.; RAVINET, M.; LOHMAN, B. K.;
THOMPSON, C. J.; TASNEEM, T.; DOGGETT, A.; IZEN, R. et al. Contrasting effects
of environment and genetics generate a continuum of parallel evolution. Nature ecology &
evolution, Nature Publishing Group UK London, v. 1, n. 6, p. 0158, 2017.

SZENDRO, I. G.; FRANKE, J.; VISSER, J. A. G. M. de; KRUG, J. Predictability of evolution
depends nonmonotonically on population size. Proceedings of the National Academy of
Sciences, v. 110, n. 2, p. 571–576, 2013.

TANAKA, M. M.; WAHL, L. M. Surviving environmental change: when increasing population
size can increase extinction risk. Proceedings of the Royal Society B, The Royal Society,
v. 289, n. 1976, p. 20220439, 2022.

https://doi.org/10.1093/sysbio/21.2.225
https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2012.0083


REFERENCES 134

TENAILLON, O. The utility of Fisher’s geometric model in evolutionary genetics. Annual
review of ecology, evolution, and systematics, Annual Reviews, v. 45, p. 179–201, 2014.

THOMPSON, K. A.; OSMOND, M. M.; SCHLUTER, D. Parallel genetic evolution and
speciation from standing variation. Evolution Letters, Oxford University Press, v. 3, n. 2, p.
129–141, 2019.

THOMPSON, K. A.; RIESEBERG, L. H.; SCHLUTER, D. Speciation and the city. Trends in
ecology & evolution, Elsevier, v. 33, n. 11, p. 815–826, 2018.

UECKER, H.; OTTO, S. P.; HERMISSON, J. Evolutionary rescue in structured populations.
The American Naturalist, University of Chicago Press Chicago, IL, v. 183, n. 1, p. E17–E35,
2014.

WAHL, L. M.; CAMPOS, P. R. Evolutionary rescue on genotypic fitness landscapes. Journal
of the Royal Society Interface, Royal Society, v. 103, n. 20, p. 20230424, 2023.

WAXMAN, D. Fisher’s geometrical model of evolutionary adaptation—beyond spherical
geometry. Journal of Theoretical Biology, Elsevier, v. 241, n. 4, p. 887–895, 2006.

WEINREICH, D. M.; WATSON, R. A.; CHAO, L. Perspective: sign epistasis and genetic
costraint on evolutionary trajectories. Evolution, Wiley Online Library, v. 59, n. 6, p.
1165–1174, 2005.

WICHMAN, H. A.; BADGETT, M. R.; SCOTT, L. A.; BOULIANNE, C. M.; BULL, J. J.
Different trajectories of parallel evolution during viral adaptation. Science, v. 285, n. 5426, p.
422–424, 1999. ISSN 0036-8075.

WILLI, Y.; HOFFMANN, A. A. Demographic factors and genetic variation influence
population persistence under environmental change. Journal of evolutionary biology, Blackwell
Publishing Ltd Oxford, UK, v. 22, n. 1, p. 124–133, 2009.

WOESE, C. R. Phylogenetic trees: Whither microbiology? Current Biology, Elsevier, v. 6,
n. 9, p. 1060–1063, 1996.

WOESE, C. R.; KANDLER, O.; WHEELIS, M. L. Towards a natural system of organisms:
proposal for the domains archaea, bacteria, and eucarya. Proceedings of the National
Academy of Sciences, v. 87, n. 12, p. 4576–4579, 1990.

YAMAGUCHI, R.; WILEY, B.; OTTO, S. P. The phoenix hypothesis of speciation.
Proceedings of the Royal Society B, The Royal Society, v. 289, n. 1987, p. 20221186, 2022.

YULE, G. U. A mathematical theory of evolution, based on the conclusions of dr. j. c.
willis, f.r.s. Philosophical Transactions of the Royal Society of London. Series B, Containing
Papers of a Biological Character, The Royal Society, v. 213, p. 21–87, 1925. ISSN 02643960.
Available at: <http://www.jstor.org/stable/92117>.

http://www.jstor.org/stable/92117


135

APPENDIX A – BRANCHING PROCESS

The branching process is a mathematical model of a population in which each individual in
generation 𝑛 produces some random number of individuals in generation 𝑛 + 1, accordingly to
a probability distribution. The probability of extinction or survival of a lineage can be derived
as follows.

Let 𝑝0, 𝑝1, 𝑝2, .. be the probabilities that the lineage will leave 0, 1, 2, ... descendants in the
next generation, i.e. ∑︀𝑘 𝑝𝑘 = 1. In particular, 𝑝0 is the probability that given lineage will go
extinct. Such assumption have a probability generating function:

𝑓(𝑥) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥
2 + ... =

∞∑︁
𝑘=0

𝑝𝑘𝑥𝑘, (A.1)

where the probability of leaving 𝑘 mutant genes for the next generation is given as the
coefficient of 𝑥𝑘. The mean number of descendants, i.e. the mean of this distribution is given
by 𝑑𝑓

𝑑𝑥

⃒⃒⃒
𝑥=1

= 𝑓 ′(1), since

𝑓 ′(𝑥) = 𝑝1 + 2𝑝2𝑥 + 3𝑝3𝑥
2 + ... =

∞∑︁
𝑘=0

𝑘𝑝𝑘𝑥𝑘

𝑓 ′(1) =
∞∑︁

𝑘=0
𝑘𝑝𝑘 =< 𝑘 >= 𝜇.

Assuming that the subsequent offspring distribution is independent of the previous gener-
ations, in the next generation

𝑓
(︁
𝑓(𝑥)

)︁
=

∞∑︁
𝑘=0

𝑝𝑘(𝑓(𝑥))𝑘 (A.2)

and analogously, after 𝑛 generations (𝑛 = 0, 1, 2, ...),

𝑓(𝑓(𝑓(. . . 𝑓⏟  ⏞  
𝑛 𝑡𝑖𝑚𝑒𝑠

(𝑥) . . .)) = 𝑓𝑛−1(𝑓(𝑥)) = 𝑓(𝑓𝑛−1(𝑥)) = 𝑓𝑛(𝑥), (A.3)

which one denotes by 𝑓𝑛(𝑥), with 𝑓1(𝑥) = 𝑓(𝑥) (CROW; KIMURA, 1970). Therefore, the
statistics of the nth generation is the compound of its generating functions. Hence, by the
chain rule, the average number of descendants at the nth generation is:
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𝜇𝑛 = 𝑓 ′
𝑛(1)

= 𝑓 ′
𝑛−1

(︁
𝑓(1)

)︁
𝑓 ′(1)

= 𝑓 ′
𝑛−1(1) 𝑓 ′(1)

= 𝑓 ′
𝑛−1(1) 𝜇

= 𝑓 ′
𝑛−2(1) 𝜇2 = . . .

= 𝜇𝑛.

So if each individual is expected to have more than one offspring, then the population will
increase. If each individual is expected to have either one or no offspring, then the population
will remain constant or decrease until eventually die out. On average, if the lineage leaves
𝜇 < 1 descendants per generation it is bound to go extinct as 𝑛 increases, in contrast to the
case 𝜇 > 1. ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜇 < 1 𝜇𝑛 → 0,

𝜇 = 1 𝜇𝑛 → 1,

𝜇 > 1 𝜇𝑛 → 𝑁.

Interestingly, for this stochastic model, the lineage might have an appreciable probability
of extinction, despite its replication rate. We refine these qualitative results by investigating
the probability of the lineage being extinct by generation 𝑛 (stress on the italic). Let

𝜃𝑛 = Prob (nth generation has no individuals )

= Prob (extinction occurs by nth generation)

= 𝑓𝑛(0)

= 𝑓𝑛−1(𝑓(0))

= 𝑓(𝑓...(0)...))

= 𝑓(𝑓𝑛−1(0))

𝜃𝑛 = 𝑓(𝜃𝑛−1).

(A.4)

Since such an event could happen in any previous generation, we add the probabilities:

Prob (extinct by nth generation) = Prob (extinct by (n - 1)th) + Prob (extinct at nth).

or 𝜃𝑛 = 𝜃𝑛−1 + Prob (extinct at nth)

⇒ 𝜃𝑛 ≥ 𝜃𝑛−1, ∀ n.
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Assuming the non-trivial case where 𝜃0 = 0, we have that

0 = 𝜃0 ≤ 𝜃1 ≤ 𝜃2 ≤ 𝜃3 ≤ ... ≤ 1, (A.5)

thus 𝜃𝑛 is a non-decreasing sequence bounded by 1 (its a probability), hence, there exists
a value 𝜃 such that 𝜃𝑛 converges to 𝜃, as 𝑛 → ∞. We call 𝜃 the probability of ultimate
extinction, and it is the solution of Equation A.4 when taking this limit:

lim
𝑛→∞

𝜃𝑛 = lim
𝑛→∞

𝑓(𝜃𝑛−1)

𝜃 = 𝑓(𝜃),
(A.6)

with 𝜃 ∈ [0, 1]. Remember that 𝑓(𝜃) is just the probability generating function in Equation
A.1,

𝑓(𝜃) =
∞∑︁

𝑘=0
𝑝𝑘𝜃𝑘. (A.7)

It is easy to see that 𝑓(1) = 1 is a trivial solution. To investigate the existence of other
roots, i.e., if there exists other points in which the 𝑓(𝜃) curve intersects Equation A.6, we note
that its derivative 𝑓 ′(𝜃) is strictly increasing for 0 < 𝜃 < 1 and 𝑓 ′′(𝜃) is convex on that same
interval; as shown in Figure 49. Thus, for 𝑓(0) = 𝑝0 > 0, the existence of another solution
depends on the slope of the curve at 𝜃 = 1, which happens to be 𝑓 ′(1) = 𝜇, the average
number of descendants.

Figure 49 – Depending on the slope at 𝜃 = 1, the PGF 𝑓(𝜃) may have one additional solution at 𝜃*.

In the line of our previous discussion, we see that ultimate extinction is inevitable when
the mean number of offspring is 𝜇 ≤ 1. On the other hand, despite the average increase in
individuals’ frequency with 𝜇 > 1, there is still a probability 0 < 𝜃* < 1 of such lineage
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disappears over time. This result evinces the role of random genetic drift1, a stochastic effect
inherent to the sampling process. It is known that when there are few copies of a lineage, the
effect of genetic drift is larger (GILLESPIE, 1998). We can calculate the variance of the process
to investigate this observation mathematically. Still, sadly, the branching process variance is
rather cumbersome and makes no explicit reference to the size 𝑁 of the population.

Poisson-distributed offspring

We now assume a particular form of distribution 𝑝𝑘. Let the number of offspring per birth
event be drawn from a Poisson distribution with mean 𝜆. Thus, if 𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆), so
𝑃𝑟(𝑋 = 𝑥) = 𝜆𝑥

𝑥! 𝑒−𝜆 with offspring number 𝑥 = 0, 1, 2... . Therefore its generating function
is

𝐺𝑋(𝑘) =
∞∑︁

𝑥=0

𝜆𝑥

𝑥! 𝑒−𝜆𝑘𝑥

= 𝑒−𝜆
∞∑︁

𝑥=0

(𝜆𝑘)𝑥

𝑥! 𝑘𝑥

= 𝑒−𝜆𝑒𝜆𝑘

= 𝑒𝜆(𝑘−1).

(A.8)

The probability of extinction of a branching process starting with a single individual is the
smallest root of the equation 𝐺𝑋(𝑘) = 𝑘 for 𝑘 ∈ (0, 1). Which admits a fixed point solution
given by 𝑘 = 𝑒𝜆(𝑘−1). Rewriting 𝑘 = 1 − 𝜋, where 𝜋 is the probability that such mutation is
fixed or established (i.e. does not go extinct), one have 𝐺𝑋(1 − 𝜋) = 𝑒𝜆(1−𝜋−1). Solving the
fixed point for 𝜋:

𝜋 = 1 − 𝑒−𝜆𝜋. (A.9)

In our general case, we use a phenotypic FGM (i.e. infinite alleles or genoma) to establish
the fitness of a wild-type population at a distance 𝑑 from the optimum phenotype. Given a
mutation displacement 𝑢⃗, the mean offspring number is
1 The "genetic" part is referent to our particular problem.
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𝜆 = 𝑊𝑚𝑎𝑥 exp
[︂
−1

2(𝑑 − 𝑢⃗)2
]︂

= 𝑊𝑚𝑎𝑥 exp
[︂
−1

2(𝑑2 − 𝑢2 + 2𝑑.𝑢⃗)
]︂

= 𝑊𝑚𝑎𝑥 exp
[︃
−𝑑2

2 − 𝑢2

2 + 𝑑𝑢 cos 𝜃

]︃

= 𝑊 (𝑢, 𝜃),

(A.10)

where 𝜃 is the angle between vector 𝑢⃗ and 𝑑, and 𝑊𝑚𝑎𝑥 is the maximum growth rate.
Substituting in the fixed point for 𝜋(𝑢, 𝜃), we finally obtain:

𝜋(𝑢, 𝜃) = 1 − 𝑒−𝑊 (𝑢,𝜃)𝜋(𝑢,𝜃). (A.11)
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APPENDIX B – DERRIDA-HIGGS DYNAMICS

In the Derrida-Higgs model of speciation, the similarity between two individuals 𝛼 and 𝛽

is given by

𝑞𝛼𝛽 = 1
𝐺

𝐺∑︁
𝑖=1

𝑆𝛼
𝑖 𝑆𝛽

𝑖 , (B.1)

with genome size 𝐺 and alleles 𝑆𝑖 at each locus 𝑖. We can then calculate the similarity between
two individuals at generation 𝑡 + 1, in terms of their parents at generation 𝑡. Let 𝑃1(𝛼) and
𝑃2(𝛼) be the parents of 𝛼 and 𝑃1(𝛽) and 𝑃2(𝛽) the parents of 𝛽. On average, 𝛼 gets the
allele 𝑆𝑖 from one of its parent with probability

𝐸[𝑆𝛼
𝑖 ] = 𝑒−2𝜇

2 (𝑆𝑃1(𝛼)
𝑖 + 𝑆

𝑃2(𝛼)
𝑖 ). (B.2)

The same calculation can be performed for 𝛽, and thus the average similarity is given by

𝐸[𝑞𝛼𝛽] = 𝑒−4𝜇

4𝐺

𝐺∑︁
𝑖=1

(𝑆𝑃1(𝛼)
𝑖 + 𝑆

𝑃2(𝛼)
𝑖 )(𝑆𝑃1(𝛽)

𝑖 + 𝑆
𝑃2(𝛽)
𝑖 )

= 𝑒−4𝜇

4
(︁
𝑞𝑃1(𝛼)𝑃1(𝛽) + 𝑞𝑃1(𝛼)𝑃2(𝛽) + 𝑞𝑃2(𝛼)𝑃1(𝛽) + 𝑞𝑃2(𝛼)𝑃2(𝛽)

)︁ (B.3)

which is exact for a very large genome 𝐺 → ∞, thus the expected values coincide with
the real similarity 𝐸[𝑞𝛼𝛽] = 𝑞𝛼𝛽. When the parents of an individual are equal, the similarity
between them equals 1, and among the other potential parents is approximately 𝑞, the average
similarity of the distribution. Following Eq. B.3, the average similarity between pairs in the
next generations is:

𝑞𝑡+1 = 𝑒−4𝜇

4 (1 + 3𝑞𝑡). (B.4)

On the other hand, when all progenitors are different, their average similarity will be 𝑞, and
so

𝑞𝑡+1 = 𝑞𝑡 𝑒−4𝜇. (B.5)

The probability of these events are simpley 4/𝑀 and 1−4/𝑀 , respectively, thus, the average
similarity among the descendants of the next generation is

𝑞𝑡+1 = 4
𝑀

𝑒−4𝜇

4 (1 + 3𝑞𝑡) +
(︂

1 − 4
𝑀

)︂
𝑒−4𝜇𝑞𝑡 =

[︂
𝑞𝑡

(︂
1 − 1

𝑀

)︂
+ 1

𝑀

]︂
𝑒−4𝜇. (B.6)
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For small mutation rate and large population size, an explicit expression can be found for
the equilibrium similarity 𝑞0, where 𝑞′ = 𝑞:

𝑞0 = 1
1 + 4𝜇𝑀

. (B.7)

However, if exists a minimum similarity 𝑞𝑚𝑖𝑛 > 𝑞0 necessary for reproduction to occur between
mating pairs, before the similarity distribution reach an equilibrium at 𝑞0, the population will
split in groups of species where 𝑞 > 𝑞𝑚𝑖𝑛 within a species, but 𝑞 < 𝑞𝑚𝑖𝑛 among species. There-
fore, in the Derrida-Higgs model, the condition 𝑞𝑚𝑖𝑛 > 𝑞0 is essential to promote speciation.

Two-islands

Now, with a population divided into two patches or islands, we have the similarity among
individuals in the same patch 𝑞 and between patches 𝑝. The evolution of 𝑞 is given by Eq. B.6,
while for 𝑝, the contribution to offspring similarity coming from parents that have come from
a different island is 𝑝𝑡+1 = 𝑝𝑡 𝑒−4𝜇. The dynamics of 𝑞 and 𝑝 after migration are, therefore,
given by the following equations:

𝑞𝑡+1 = [𝑎(𝜀) 𝑞𝑡 + 𝑏(𝜀) 𝑝𝑡] 𝑒−4𝜇

𝑝𝑡+1 = [𝑏(𝜀) 𝑞𝑡 + 𝑎(𝜀) 𝑝𝑡] 𝑒−4𝜇
(B.8)

where 𝑎(𝜀) = (1 − 𝜀)2 + 𝜀2is the probability that both 𝛼 and 𝛽 did not migrate or that
they both migrated, therefore keeping their original geographic relation, and 𝑏(𝜀) = 2𝜀(1 − 𝜀)

is the probability that one of them exchanged places, altering the geographic relative position
of the pair. The equilibrium solutions are obtained by setting 𝑞𝑡+1 = 𝑞𝑡 and 𝑝𝑡+1 = 𝑝𝑡. For 𝜀,
𝜇 and 1/𝑀 all much smaller than 1, we obtain

𝑞0(𝜈, 𝜎) = 𝜈 + 2𝜎

2𝜎 (2𝜈 + 1) + 𝜈 (𝜈 + 1)

𝑝0(𝜈, 𝜎) = 2𝜎

2𝜎 (2𝜈 + 1) + 𝜈 (𝜈 + 1)

(B.9)

where 𝜈 = 4𝜇𝑀 and 𝜎 = 𝑀𝜀 is the average number of exchanged migrants at each
generation. Note that for 𝜎 >> 𝜈, we have 𝑝0(𝜈, 𝜎) = 𝑞0(2𝜈, 0), indicating that for a large
migration intensity the two islands behave as a single island with twice the population. The
expected number of species in each island 𝑁 can be estimated through Eq. B.9, by replacing
𝑞0(𝜈, 𝜇) → 𝑞𝑚𝑖𝑛 and 𝑀 → 𝑚 - the population size that equilibrates at 𝑞𝑚𝑖𝑛. Solving for 𝑚,
one found the number of species in each island to be 𝑁 = 𝑀/𝑚:
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𝑁 = 𝜈(4𝜎 + 𝜈)
(2𝜎 + 𝜈) (𝑞−1

𝑚𝑖𝑛 − 1)
. (B.10)

The total number of species in the islands, 𝑁𝑇 , can also be estimated as

𝑁𝑇 = 𝑁

(︃
2 − 𝑝0(𝜈, 𝜎)

𝑞0(2𝜈, 0)

)︃
. (B.11)

When 𝜎 = 0 the islands are independent and 𝑁𝑇 = 2𝑁 . When migration dominates over
mutations, 𝜎 >> 𝜇, 𝑁𝑇 = 𝑁 .
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APPENDIX C – CENTRAL LIMIT THEOREM

The Central Limit Theorem states that the probability density describing the distribution
of outcomes of a large number of events universally approaches a Gaussian distribution. Let us
consider a stochastic variable, 𝑌𝑁 , which is the deviation from the average of 𝑁 statistically
independent measurements of a stochastic variable 𝑋. We write 𝑌𝑁 as

𝑌𝑁 = 1
𝑁

(𝑋1 + ... + 𝑋𝑁) − 𝑥̄ = 𝑍1 = .. + 𝑍𝑁 . (C.1)

The characteristic function, 𝑓𝑍(𝑘; 𝑁), for the stochastic variable, 𝑍𝑖 = (1/𝑁)(𝑋𝑖 − 𝑥̄),
can be written

𝑓𝑍(𝑘; 𝑁) =
∫︁ ∞

−∞
𝑑𝑥 𝑒𝑖(𝑘/𝑁)(𝑥−𝑋̄)𝑃𝑋(𝑥) = 1 − 1

2
𝑘2

𝑁2 𝜎2
𝑋 + ..., (C.2)

where 𝜎2
𝑋 = 𝑥2 − 𝑥̄2 is the variance. For large 𝑁 and finite variance, higher-order terms in

the expansion of the right-hand side can be neglected. The characteristic function for 𝑌𝑁 is
then

𝑓𝑌𝑁
(𝑘) =

(︃
1 − 1

2
𝑘2

𝑁2 𝜎2
𝑋

)︃𝑁

→ 𝑒𝑥𝑝

(︃
−𝑘2𝜎2

𝑋

2𝑁

)︃
𝑎𝑠 𝑁 → ∞. (C.3)

In the last equation, we have used the identity lim𝑁→∞(1 + 𝑥/𝑁)𝑁 = 𝑒𝑥. Thus, for large 𝑁 ,

𝑃𝑌𝑁
(𝑦) = 1

2𝜋

∫︁
𝑑𝑘 𝑒𝑖𝑘𝑦 𝑒𝑥𝑝

(︃
−𝑘2𝜎2

𝑋

2𝑁

)︃
=
√︃

𝑁

2𝜋𝜎2
𝑋

𝑒𝑥𝑝

(︃
−𝑁𝑦2

2𝜎2
𝑋

)︃
. (C.4)

Regardless of the form of 𝑃𝑋(𝑥), if it has finite moments, the average of a large number
of statically independent measurements of 𝑋 will be a Gaussian centered at 𝑥̄, with standard
deviation which is 1/

√
𝑁 times the standard deviation of the probability density of 𝑋.
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APPENDIX D – SUPPLEMENTARY RESULTS

Chapter 2

Figure 50 – Proportion of cases in which evolutionary rescue is attained by multiple mutational steps as a
function of the stress level 𝛿 for the genotypic FGM. The number of traits 𝑛 is indicated in the
legend. The parameter values are genome size 𝐿 = 12, carrying capacity 𝐾 = 10000, mutation
probability 𝑈 = 0.005, and mean value of phenotypic effects 𝜆 = 0.4. Error bars were omitted
because their size is of the order or smaller than the symbols marking the data points.
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Figure 51 – Extinction probability as a function of the stress level 𝛿 for the genotypic FGM. The number
of traits 𝑛 is indicated in the legend. From the green vertical line onwards, the population is in
the regime of rescue/extinction. The plot compares the simulation results (data points) with the
analytical predictions (lines), given by Eq.(19). The parameter values are genome size 𝐿 = 12,
carrying capacity 𝐾 = 10000, mutation probability 𝑈 = 0.005, and mean value of phenotypic
effects 𝜆 = 0.4. Error bars were omitted because their size is of the order or smaller than the
symbols marking the data points.
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Figure 52 – Probability of extinction as a function of the stress level for the genotypic model. Curves represent
different degrees of epistasis 𝐾. Error bars are smaller than points. Parameters for both cases are
𝐿 = 12, 𝑁0 = 105, 𝑊𝑚𝑎𝑥 = 1.5, and 𝑏 = 6. Mutation rate are 𝜇 = 10−5 for the left panel and
𝜇 = 10−3 for the right panel.
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Chapter 3

Here we report, over time, the richness, phylogeny balance, and speciation acceleration.
The two last metrics consider the complete phylogeny. We combine scenarios of high and
low migration (𝜀 = {0.08, 0.02}), for when the population spends more time in isolation
(𝑡ℎ ≈ 80%) and in connection (𝑡ℎ ≈ 40%) (Fig. 53).

The richness oscillatory pattern observed in all scenarios (Fig. 53)) reveals that the system
is out of equilibrium (as pointed by (PRINCEPE et al., 2023)); however, acceleration of speciation
tends to a positive stationary value while the phylogeny balance tends to decrease regardless
of the scenarios. In fact, for a long enough time, the phylogeny balance should tend to zero
since each extinct branch contributes with the decrease of 𝐽 . Both 𝛼 and 𝐽 metrics depend
on all historical events of extinctions and speciations, and they tend to converge as the recent
events become only an insignificant fraction of the whole history.
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Figure 53 – Evolution of richness, acceleration of speciation and phylogeny balance for combinations of
isolation 𝑡ℎ ≈ {80, 20} and migration rate 𝜀 = {0.02, 0.08}. Solid lines represent the average
of 50 replications, while dotted ones delimit the confidence interval of 90%. Following the 𝛼
definition, the dashed red lines indicate the interval in which the results do not differ from random
branching models. Background gray bands indicate when patches are isolated for each 𝑡ℎ.
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