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RESUMO

O processamento da informação quântica inaugura uma nova forma de computação e uma

nova forma de pensar técnicas de processamento de dados para aprendizagem de máquinas.

Este estudo investiga o uso da superposição na construção de batches de dados. Trabalhos

como (FARHI; NEVEN, 2018) e (SCHULD et al., 2020) introduziram a ideia mas até o presente

momento não existe uma análise comparativa ou mesmo uma formalização conceitual sobre

o tema. De forma a preencher essa lacuna, propõe-se um método comparativo e uma catego-

rização das estratégias encontradas na literatura. Como contribuição adicional, apresenta-se

uma nova estratégia em que o batch é composto por mais de um circuito com dados em su-

perposição. As estratégias foram avaliadas de forma experimental em classificadores quânticos

variacionais para diferentes configurações de hiperparâmetros do batch. Entre os resultados,

verificou-se que estratégias com maior quantidade de padrões em superposição alcançaram

valores médios superiores de acurácia no treino e no teste, além de maior capacidade de

generalização.

Palavras-chaves: computação quântica; classificadores quânticos; aprendizagem em batch;

algoritmos variacionais.



ABSTRACT

Quantum information processing inaugurates a new form of computation and a new way

of designing data processing techniques for machine learning. This study investigates the use

of superposition in the construction of data batches. Works such as (FARHI; NEVEN, 2018) and

(SCHULD et al., 2020) introduced the idea, but up to now there has been neither a comparative

analysis nor a conceptual formalization of the subject. To fill this gap, a comparative method

and a categorization of the strategies found in the literature are proposed. As an additional

contribution, a new strategy is presented in which the batch is composed of more than one

circuit with data in superposition. The strategies were experimentally evaluated in variational

quantum classifiers under different batch hyperparameter configurations. Among the results,

it was observed that strategies with a higher number of superposed patterns achieved superior

average accuracy in both training and testing, as well as greater generalization capacity.

Keywords: quantum computing; quantum classifiers; batch learning; variational algorithms.
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1 INTRODUÇÃO

A constatação de que a mecânica quântica é capaz de produzir padrões contra intuitivos nos

dados e com difícil reprodutibilidade em um computador clássico tem gerado a expectativa de

possíveis ganhos em aplicações de computação quântica na área de aprendizagem de máquinas

(BIAMONTE et al., 2017).

A computação quântica consiste em um modelo de processamento da informação baseado

nas leis da mecânica quântica (NIELSEN; CHUANG, 2010). Algoritmos que fazem uso desse

modelo buscam superar limitações no modelo clássico e obter algum tipo de aceleração ou

melhoria de desempenho. Limitações como a fatoração de inteiros em tempo polinomial e a

simulação de sistemas físicos de forma eficiente já têm soluções algorítmicas quânticas com

vantagens teóricas conhecidas (MONTANARO, 2016).

A aprendizagem de máquinas é um ramo de inteligência artificial que habilita computa-

dores à executar tarefas sem serem explicitamente programados. De forma geral, um modelo

clássico de aprendizagem faz uso de um conjunto de dados para alimentar um algoritmo que

iterativamente busca maximizar uma medida de desempenho. Robótica, veículos autônomos e

reconhecimento de discurso são algumas aplicações populares de aprendizagem de máquinas

presentes no dia-a-dia (ALZUBI; NAYYAR; KUMAR, 2018).

Um crescente número de estudos têm buscado explorar diferentes abordagens do que se

entende como aprendizagem de máquinas quântica. Lamichhane e Rawat (2025) apresentam

4 principais abordagens que se distinguem na forma como os recursos quânticos são utilizados

no contexto de aprendizagem de máquinas. Schuld, Sinayskiy e Petruccione (2015) discutem o

uso da computação e dos algoritmos quânticos como ferramentas de suporte à aprendizem mas

apontam que a formalização conceitual de uma teoria quântica de aprendizagem permanece

obscura.

Embora muito já se tenha explorado nas formas de concatenar as disciplinas de aprendi-

zagem de máquinas e de computação quântica, o desenvolvimento do dispositivo físico para

materializar essas ideias se encontra em seus estágios iniciais de desenvolvimento. Isso mo-

tiva direcionar esforços de pesquisa para compreender o que é possível ser feito com o atual

hardware disponível gerando possivelmente evidências práticas de vantagens no domínio de

processamento de informação quântica (BHARTI et al., 2022).

Uma das abordagens que se mostra bastante promissora para o dispositivo quântico exis-
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tente na atualidade é a utilização de modelos de aprendizagem de máquina baseados em cir-

cuitos quânticos parametrizados. Essa abordagem guarda similaridades com modelos clássicos

consagrados (redes neurais e métodos de kernel), justificando parte do sucesso em problemas

de classificação, regressão e modelagem generativa (BENEDETTI et al., 2019). Para tarefas de

aprendizagem supervisionada onde o objetivo é encontrar um mapeamento de um conjunto de

entradas para um conjunto de saídas, os métodos de estimação de kernel quântico e algoritmos

quânticos variacionais têm sido amplamente utilizados (JERBI et al., 2023).

A estimação de kernel quântico consiste basicamente em fazer um mapeamento da infor-

mação para um espaço de dimensão mais alta (espaço de Hilbert) que tenha uma fronteira

de decisão linear e acessá-lo através de operadores de medição. Esse modelo de aprendiza-

gem guarda uma relação muito próxima com os métodos de kernel em aprendizagem clássica,

distinguindo-se dele apenas na forma como a saída é extraída do modelo (SCHULD, 2021).

A abordagem baseada em algoritmos variacionais faz uso de portas parametrizadas que são

ajustadas a cada apresentação de um novo padrão. O ajuste é feito classicamente utilizando

uma função de perda construída com base na saída do processador quântico (CEREZO et al.,

2021). Classificadores (MAHESHWARI; SIERRA-SOSA; GARCIA-ZAPIRAIN, 2021), autoencoders

(ROMERO; OLSON; ASPURU-GUZIK, 2017) e redes neurais (CONG; CHOI; LUKIN, 2019) estão

entre as aplicações de algoritmos variacionais no contexto de aprendizagem de máquinas.

Essas estratégias pensadas para o processador quântico atual buscam fazer uso de recursos

quânticos, como superposição e emaranhamento, para obter algum tipo de vantagem com-

parativamente à forma clássica de processamento. O que torna ainda mais custosa a busca

por bons algoritmos quânticos é o requisito de que eles já devem nascer com a promessa de

resolver intratabilidades de algoritmos clássicos (NIELSEN; CHUANG, 2010).

1.1 MOTIVAÇÃO

O dispositivo quântico disponível não tem o potencial de implementar as principais soluções

que evidenciam, de forma teórica, as vantagens da computação quântica. As limitações na

quantidade e conectividade de qubits associadas aos erros de decoerência impõem restrições

e disciplinam novas formas de uso (CEREZO et al., 2021).

Algoritmos variacionais são uma das principais abordagens para explorar evidências práticas

das vantagens da computação quântica com o dispositivo atual. Esses algoritmos também são

conhecidos como análogos quânticos das redes neurais e utilizam otimizadores clássicos como
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parte das etapas de processamento (CEREZO et al., 2021).

No contexto de aprendizagem quântica variacional, otimizadores baseados em gradiente

apresentam desempenho superior em relação à abordagem livre de gradiente (LOCKWOOD,

2022). O gradiente descendente, juntamente com suas versões estocástica e de mini-batch,

estão entre as técnicas mais populares desse modelo de otimização (RUDER, 2016) e se dife-

renciam pela forma como os dados são apresentados.

Métodos de otimização estocástica em aprendizagem clássica consideram subconjuntos de

tamanho fixo do conjunto de treinamento para atualizar iterativamente os pesos (GOODFELLOW

et al., 2016). O uso mais eficiente da informação e passos iterativos de computação menos

custosos são algumas das motivações a favor dos métodos estocásticos comparados ao método

determinístico (BOTTOU; CURTIS; NOCEDAL, 2018).

Outra estratégia consiste em aproveitar o melhor que os métodos estocástico e determinís-

tico tem a oferecer. Friedlander e Schmidt (2012) propõem um método de otimização híbrida

determinístico-estocástica que inicia com gradiente incremental e paulatinamente aumenta a

quantidade de amostras de forma a preservar um rápido progresso inicial sem sacrificar uma

taxa de convergência atrativa.

O advento de um novo modelo de computação permite ampliar o repertório de estratégias

de otimização em aprendizagem de máquinas supervisionada baseada em gradiente. Sweke et

al. (2020) exploram novas formas de otimização estocástica em contextos onde processadores

quântico e clássico trabalham de forma colaborativa em algoritmos variacionais. Kübler et al.

(2020) propõem uma otimização adaptativa baseada na quantidade de medições para estimar

observáveis em arquiteturas de processamento híbridas.

No contexto de aprendizagem de máquinas quântica, algumas técnicas baseadas em super-

posição de estados tem sido exploradas em conjunção com otimização estocástica baseada em

gradiente. Farhi e Neven (2018) consideram um problema de classificação binária e codificam

subconjuntos do conjunto de treino como a superposição de estados baseados em amostras

pertencentes à uma mesma classe. Schuld et al. (2020) esboçam uma ideia de otimização com

dados em superposição. Duan, Sun e Hsieh (2024) exploram o comportamento de otimização

estocástica com um subconjunto de treino fixo e codificado em superposição.

Apesar dos trabalhos relacionados existentes na literatura introduzirem uma ideia a respeito

de como recursos quânticos podem ser utilizados para apresentar padrões de forma alternativa,

não existe uma formalização conceitual de batch que seja de uso comum entre eles e permita

uma comunicação clara sobre o tema. Ademais, as formas alternativas de apresentação de
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padrões ocupam uma importância sencundária e ainda pouco avaliadas de forma analítica e

experimental.

Esse trabalho explora estratégias de otimização estocástica em aprendizagem supervisio-

nada com base em algoritmos variacionais. Serão apresentadas 3 técnicas de apresentação de

padrões para passos iterativos de otimização. Em virtude da ausência de formas comparativas

de estratégias de batch no domínio quântico, será definido um critério quantitivo de compa-

ração para avaliar as estratégias apresentadas quanto à convergência e às acurácias de treino

e teste.

1.2 OBJETIVOS

O objetivo geral desse trabalho é avaliar, de forma experimental, o uso de diferentes

técnicas de apresentação de padrões em modelos de aprendizagem supervisionada baseados

em gradiente.

1.2.1 Objetivos Específicos

1. Definir estratégias de apresentação de padrões;

2. Definir critério de valoração das estratégias apresentadas;

3. Avaliar a importância de hiperparâmetros relacionados à natureza quântica de proces-

samento da informação no desempenho de modelos de aprendizagem supervisionada.

A formalização conceitual de estratégias de treinamento em batch com o uso de recursos

quânticos e um critério para valorá-las estão entre as principais contribuições teóricas alcan-

çadas no presente trabalho. Do ponto de vista prático, os resultados númericos obtidos para

dois conjuntos de dados evidenciam que, em arquiteturas executadas com baixo número de

medições por circuito, um maior nível de superposição entre os padrões acelera a convergência

e permite obter maiores valores médios de acurácias no treino e no teste.

Nos capítulos que seguem, serão apresentados fundamentos teóricos, conceitos autóctones

e resultados experimentais. O capítulo 2 introduz as principais ideias sobre computação quân-

tica e aprendizagem de máquinas utilizados nos capítulos seguintes. O capítulo 3 desenvolve o

conceito das estratégias de batch sequencial, em superposição e duplo. O capítulo 4 especifica
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o aparato experimental e o critério comparativo utilizado. O capítulo 5 apresenta e discute os

resultados obtidos. Por fim, o capítulo 6 sintetiza as principais contribuições e sugere direções

de trabalhos futuros.
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2 FUNDAMENTAÇÃO TEÓRICA

2.1 COMPUTAÇÃO QUÂNTICA

A computação quântica é um campo de conhecimento que investiga o uso dos princípios

da mecânica quântica para o processamento da informação. Diferentemente do modelo de

computação tradicional que utiliza lógica booleana para processar informação determinística, a

computação quântica utiliza um conjunto específico de propriedades para processar informação

probabilística (NIELSEN; CHUANG, 2010).

A unidade básica de informação quântica é o bit quântico ou qubit. Essa unidade consiste

em uma abstração matemática para sistemas físicos de 2 níveis, a exemplo do spin de um

elétron ou da polarização de um fóton. O qubit é comumente representado pela notação de

Dirac ou pela notação vetorial, ambas apresentadas na equação 2.1 (NIELSEN; CHUANG, 2010).

|ψ⟩ = α1 |0⟩+ α2 |1⟩ , |ψ⟩ =

α1

α2

 (2.1)

Na equação 2.1, os termos |0⟩ e |1⟩ representam os estados da base e a natureza probabi-

lística do qubit é capturada pelas amplitudes complexas α1 e α2. Até ser medido, o qubit no

estado |ψ⟩ existe como a superposição dos estados da base com probabilidades |α1|2 para |0⟩

e |α2|2 para |1⟩.

2.1.1 Evolução de Estados

Um sistema quântico fechado evolui através de transformações unitárias (NIELSEN; CHU-

ANG, 2010). A notação algébrica utilizada para descrever uma evolução do estado |ψ⟩ pelo

operador unitário U é apresentada na equação 2.2.

|ψ′⟩ = U |ψ⟩ (2.2)

É possível representar evoluções de forma gráfica utilizando a linguagem de circuitos. Nessa

linguagem, as linhas representam os fios do circuito e conferem uma semântica de transcurso

temporal ou mesmo as entidades físicas participativas do sistema. As portas quânticas são

representadas por caixas e são responsáveis pela alteração do estado de forma equivalente aos

operadores na notação algébrica (NIELSEN; CHUANG, 2010).
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|0⟩ X

Figura 1 – Exemplo de circuito quântico

A figura 1 ilustra um circuito quântico inicializado em |0⟩ no qual é aplicada uma porta

X seguida de um operador de medida.

A tabela 1 exibe alguns dos operadores mais comuns. Qualquer operação unitária em um

único qubit pode ser escrita a partir do conjunto de operadores {RY,RZ}. Qualquer unitária

arbitrária pode ser construída através de operadores atuando em um único qubit e o operador

CNOT .

Operador Matriz Descrição Circuito

Porta X
[

0 1
1 0

]
Inverte |0⟩ ↔ |1⟩. X

Porta Y
[

0 −i

i 0

]
Combina inversão e fase; gera ro-
tações no eixo Y . Y

Porta Z
[

1 0
0 −1

]
Aplica uma fase de π ao estado |1⟩. Z

Hadamard 1√
2

[
1 1
1 −1

]
Cria superposição entre |0⟩ e |1⟩. H

CNOT


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Aplica X no alvo se o controle for
|1⟩.

Rotação RX
[

cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

]
Rotação em torno do eixo X. Rx(θ)

Rotação RY
[

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
Rotação em torno do eixo Y . Ry(θ)

Rotação RZ
[

e−iθ/2 0
0 eiθ/2

]
Rotação em torno do eixo Z. Rz(θ)

Rotação Geral exp
(
−i θ

2 n⃗ · σ⃗
)

Rotação de θ em torno do eixo n⃗. R(θ, n⃗)

Tabela 1 – Operadores quânticos com representações matriciais e circuitais.

2.1.2 Medida

Medições quânticas consistem na aplicação de um conjunto de operadores {Mm} que

obedecem à relação ∑
m M

†
mMm = I e realizam um dos possíveis resultados m que podem

ocorrer durante a experimentação. A probabilidade do resultado m ocorrer para um sistema
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inicialmente no estado |ψ⟩ é dada pela equação 2.3 (NIELSEN; CHUANG, 2010).

p(m) = ⟨ψ|M †
mMm |ψ⟩ (2.3)

O estado do sistema após a aplicação do operador de medida Mm é dado por:

|ψ′⟩ = Mm |ψ⟩√
⟨ψ|M †

mMm |ψ⟩
(2.4)

Medidas projetivas são um caso especial em que, além de satisfazer a relação ∑
m M

†
mMm =

I, os operadores do conjunto {Mm} são projetores ortogonais. Essas medidas são descritas

por observáveis (O) com decomposição espectral dada pela equação 2.5.

O =
∑
m

mPm (2.5)

Em 2.5, os valores de m correspondem aos possíveis resultados de medida. Cada valor de

m corresponde ao autovalor associado ao projetor Pm do observável O. Nessa formulação,

a probabilidade do resultado m para um sistema inicialmente no estado |ψ⟩ é descrita pela

equação 2.6 (NIELSEN; CHUANG, 2010).

p(m) = ⟨ψ|Pm |ψ⟩ (2.6)

O valor esperado do observável O é dado pela equação 2.7 (NIELSEN; CHUANG, 2010).

E(O) = ⟨ψ|M |ψ⟩ (2.7)

2.2 ALGORITMOS QUÂNTICOS VARIACIONAIS

Algoritmos Quânticos Variacionais são estruturas de processamento híbrido clássico-quântica

em que um otimizador clássico é utilizado para treinar um circuito quântico parametrizado (CE-

REZO et al., 2021).

Um circuito quântico parametrizado pode ser definido como uma operação unitária ajus-

tável em um sistema de n qubits. Esse tipo de circuito é o elo do processamento híbrido uma

vez que estabelece a conexão entre recursos computacionais de natureza quântica e clássica

(SIM; JOHNSON; ASPURU-GUZIK, 2019).

De forma geral, a essência de um algoritmo quântico variacional apresenta 4 passos (QI et

al., 2024):

1. Codificar um problema como uma função de custo C(θ) otimizável;
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2. Construir um circuito quântico com parâmetros θ;

3. Medir o estado de saída e calcular a função de custo C(θ);

4. Atualizar θ utilizando um otimizador clássico.

As subseções a seguir detalharão as ferramentas essenciais para o funcionamento de uma

arquitetura de algoritmo quântico variacional.

2.2.1 Função de Custo

Uma função de custo é um mapeamento de um conjunto de parâmetros θ para um número

real. No contexto de algoritmos variacionais, ela é uma função de um conjunto de estados de

entrada {ρk}, um conjunto de observáveis {Ok} e um circuito parametrizado U(θ). Matema-

ticamente (CEREZO et al., 2021):

C(θ) = f({ρk}, {Ok}, U(θ)) (2.8)

É desejável que o valor mínimo da função de custo coincida com a solução do problema a

ser tratado por meio da abordagem variacional .

2.2.2 Ansatz

Circuitos quânticos parametrizados também são conhecidos como ansatz na literatura de

algoritmos variacionais. Eles carregam a estrutura a ser atualizada a cada passo de otimização e

podem ser matematicamente descritos como um produto de L operações unitárias sequencias

(CEREZO et al., 2021):

U(θ) = UL(θL) · · ·U2(θ2)U1(θ1) (2.9)

O sucesso de um algoritmo variacional está fortemente associado à escolha do ansatz.

A quantidade de parâmetros, a profundidade do circuito e sua capacidade de representar

o espaço de soluções são aspectos importantes para embasar o uso de um ansatz em um

algoritmo variacional (SIM; JOHNSON; ASPURU-GUZIK, 2019). Alguns tipos de ansatz levam em

consideração informações sobre o problema a ser resolvido, outros procuram atingir o requisito

de baixa profundidade levando em consideração o hardware disponível (CEREZO et al., 2021).

A figura 2 ilustra um exemplo de ansatz para um sistema de 3 qubits com portas de rotação

RY , estruturas de emaranhamento com CNOT e parâmetros {θ0, θ1, θ2, θ3}.
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|0⟩ RY (θ0) RY (θ3)

|0⟩ RY (θ1)

|0⟩ RY (θ2)

Figura 2 – Exemplo de ansatz

2.2.3 Gradientes

A saída do ansatz apresentado de forma genérica na subseção 2.2.2 é obtida a partir de um

conjunto de medições finita para extrair o valor esperado de um observável O. As principais

técnicas para obter a derivada parcial de ⟨O⟩θ em relação à entrada θi são (HARROW; NAPP,

2021):

• Diferenças Finitas: a derivada parcial é obtida utilizando apenas as medições de ⟨O⟩

com θi deslocado de um pequeno valor ϵ por meio da expressão 2.10.

∂⟨O⟩θ
∂θi

≈ 1
2ϵ

[⟨O⟩θ+ϵêi
− ⟨O⟩θ−ϵêi

] (2.10)

• Medições Analíticas: a derivada parcial ∂⟨O⟩θ

∂θi
é extraída do dispositivo quântico. Nessa

formulação, ∂⟨O⟩θ

∂θi
é expressa em parcelas que podem ser obtidas a partir de medições

no processador quântico e posteriormente combinadas em um coprocessador clássico

(SCHULD et al., 2019).

Algoritmos variacionais baseados em medições analíticas apresentam melhores taxas de

convergência (HARROW; NAPP, 2021). No contexto de aprendizagem variacional, o uso de

medições analíticas para obter gradientes melhora o desempenho do otimizador (LOCKWOOD,

2022).

2.2.4 Otimização

Algoritmos variacionais otimizam classicamente uma função de custo definida em termos do

parâmetro θ da equação 2.9. É possível agrupar as técnicas de otimização em duas categorias:

as que fazem uso do gradiente descendente e as que não fazem (CEREZO et al., 2021).

Abordagens baseadas no gradiente descendente atualizam o parâmetro θ iterativamente

na direção contrária do gradiente da função de custo C(θ) ponderado por um fator α. O passo



26

iterativo de atualização é dado pela equação 2.11.

θt+1 ← θt − α∇C(θ) (2.11)

O gradiente∇C(θ) em 2.11 pode ser obtido a partir dos métodos apresentados na subseção

2.2.3.

2.3 APRENDIZAGEM DE MÁQUINAS

Uma definição de aprendizagem de máquinas consiste em considerar uma classe de tare-

fas T , uma medida de performance P e uma experiência E. Com base nesses elementos, a

aprendizagem consiste em fazer com que a perfomance de uma máquina na classe de tarefas

T , medida por P , melhore com a experiência E (MITCHELL, 1997).

A forma como a experiência E é estruturada conduz a diferentes tipos de aprendizagem.

Um dos tipos é o supervisionado em que a dinâmica de aprendizagem é assistida por um

professor (GOODFELLOW et al., 2016).

Algoritmos de aprendizagem supervisionada recebem como entrada conjuntos de dados

rotulados e tem por objetivo encontrar um relacionamento entre características e rótulos. As

características são informações acerca do domínio do problema. Os rótulos são valores inseridos

por um professor ou especialista do domínio.

2.3.1 Classificação Binária

Um problema de classificação é um exemplo de aprendizagem supervisionada. Esse tipo

de problema assume como premissa a existência de uma relação entre entrada e saída nos

dados disponíveis. A busca desse relacionamento pode ser expressa matematicamente como

selecionar uma função h em um conjunto de hipóteses H que obtenha melhor resultado em

associar o elemento xi à saída yi do conjunto D = {(xi, yi), i = 1, 2, ..., N}.

Para aferir a qualidade de um resultado é necessária uma métrica L que indique de forma

quantitativa a taxa de aderência de um modelo h aos dados D. A métrica L recebe como

parâmetros h(xi) e yi e retorna um valor representativo do quanto o resultado de h(xi) está

próximo da saída yi.

Uma das formas de selecionar a hipótese h ∈ H é assumir uma forma paramétrica hθ onde

θ ∈ Rd. O problema de aprendizagem se resume a encontrar uma configuração paramétrica
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que minimize o erro de classificação. Se considerarmos C(θ) = 1
N

∑N
i=1 L(hθ(xi), yi) como o

erro associado à entrada paramétrica θ, é possível definir matematicamente um problema de

aprendizagem como:

min
θ
C(θ) = min

θ

1
N

N∑
i=1
L(hθ(xi), yi) (2.12)

A depender do domínio da saída, um problema de classificação pode ser binário ou multi-

classe. No caso de classficação binária, a saída assume apenas dois valores distintos. No caso

multiclasse, a saída pode assumir mais de dois valores.

2.3.2 Classificadores Quânticos

Algoritmos Quânticos Variacionais podem ser utilizados em tarefas de aprendizagem de

máquinas. Nessa abordagem, a camada variacional descrita na subseção 2.2.2 é interpretada

como modelo e o processo de aprendizagem acontece iterativamente através do ajuste paramé-

trico para minimizar o custo (BENEDETTI et al., 2019). Modelos de aprendizagem construídos

com base em algoritmos variacionais são aproximadores universais de funções (SCHULD; SWEKE;

MEYER, 2021).

Um classificador quântico é um caso particular de algoritmo variacional. Ele funciona de

forma similar à abordagem clássica, substituindo a família paramétrica de hipóteses hθ ∈ H

discutida na subseção anterior por um circuito parametrizado. Um classificador construído

nesse formato possui 3 elementos básicos: uma estrurura codificadora, uma camada de pro-

cessamento para evoluir estados e uma regra de decisão (LAROSE; COYLE, 2020).

2.3.2.1 Codificação

A depender do tipo do dado, um modelo de aprendizagem quântica pode exigir um passo

adicional em seu fluxo de execução. Quando o dado é de origem quântica, a exemplo dos dados

provenientes de sensores quânticos, não há necessidade de uma etapa de codificação. Quando

o dado é clássico, torna-se necessário representá-lo em um estado quântico para processá-lo.

Algumas formas de representação mais comuns são: pela base, pela amplitude e pelo

ângulo. A seguir serão detalhadas cada uma delas.
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2.3.2.1.1 Base

A codificação por base associa o estado de cada qubit à representação binária de uma

dada entrada. De forma geral, seja z um valor escalar com representação binária equivalente

à mostrada na equação 2.13.

b = b0b1...bn−1 (2.13)

O estado |b0b1...bn−1⟩ é definido como a representação do valor escalar z pelo método de

codificação pela base. Uma forma de preparar esse estado é considerar um sistema inicializado

em |0⟩ com uma quantidade de qubits equivalente ao comprimento da string binária de z

e aplicar portas X aos qubits onde a representação binária assume valor 1. A equação 2.14

apresenta o operador capaz de codificar um escalar z com representação binária b utilizando

o método descrito.

E(b) =
n−1⊗
i=0

Xbi (2.14)

Para um vetor x = (x0, x1, ..., xN−1) com N entradas escalares, a codificação pela base

requer uma quantidade de qubits proporcional ao comprimento da string binária da entrada

(n). A complexidade de preparação do estado é O(Nn).

2.3.2.1.2 Amplitude

A codificação por amplitude associa as amplitudes de um conjunto de qubits com as

coordenadas de um vetor complexo normalizado. Matematicamente, se x = (x0, x1, ..., xN−1)

é um vetor de CN com ∑N−1
i=0 |xi|2 = 1, o estado |ψx⟩ codificado por amplitude para x é dado

pela equação 2.15.

|ψx⟩ =
N−1∑
i=0

xi |i⟩ (2.15)

Existem diferentes propostas de implementação desse esquema de codificação com dife-

rentes complexidades. Mottonen et al. (2004) propoẽm um método com complexidade expo-

nencial no número de qubits. Araujo et al. (2021) apresentam um algoritmo com complexidade

polilogarítmica no tamanho da entrada.

A codificação por amplitude faz uso de uma quantidade de qubits equivalente à logN ,

onde N é a quantidade de amplitudes a serem carregadas. Sob determinadas condições, esse

tipo de codificação apresenta complexidade O(N)/O(logN) (SCHULD; PETRUCCIONE, 2021).
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n|0⟩ E(x) M(θ)

Figura 3 – Modelo de aprendizagem baseado em circuito quântico parametrizado

2.3.2.1.3 Ângulo

A codificação por ângulo associa cada entrada de um vetor x = (x0, x1, ..., xN−1) ao

ângulo de uma porta de rotação aplicada em um qubit. A equação 2.16 ilustra um operador

U que prepara a codificação descrita para o vetor x em um sistema de N qubits aplicando

portas de rotação em Y .

E(x) =
N−1⊗
i=0

RY (xi) (2.16)

A codificação por ângulo requer uma quantidade de qubits equivalente ao tamanho da

entrada (N). A complexidade de preparação do estado é O(N).

2.3.2.2 Processamento

Modelos baseados em circuitos variacionais fazem uso de um circuito composto de duas

partes, sendo uma destinada à codificação segundo alguma técnica como as apresentadas

na subseção 2.3.2.1 e outra voltada ao modelo propriamente dito. A figura 3 ilustra um

circuito variacional representativo dessa abordagem, onde E(x) corresponde à uma estrutura

de codificação para a amostra x do conjunto de dados e M(θ) o modelo com parâmetros θ

a serem ajustados.

O operador U(x; θ) que sintetiza a estrutura é mostrado na equação 2.17.

U(x,θ) =M(θ)E(x) (2.17)

Circuitos quânticos variacionais podem ser interpretados como modelos de aprendizagem

determinísticos ou probabilísticos (SCHULD; PETRUCCIONE, 2021). O que diferencia uma abor-

dagem da outra é o tratamento que se dá à saída do circuito. Essa distinção será abordada

nas subseções que seguem.

2.3.2.2.1 Modelos Quânticos Determinísticos

Um modelo determinístico se aproveita da estrutura da equação 2.17 e utiliza o valor

esperado de um operador de medição O como a saída do modelo (SCHULD; PETRUCCIONE,
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2021). Matematicamente, se |ψ(x,θ)⟩ = U(x,θ) |0⟩ é o estado resultante do circuito após a

etapa de codificação e processamento do modelo, a saída fθ(x) para o observável O é dada

por:

fθ(x) = ⟨ψ(x,θ)| O |ψ(x,θ)⟩ (2.18)

2.3.2.2.2 Modelos Quânticos Probabilísticos

Diferentemente da abordagem determinística que utiliza o valor esperado de um operador

de medição O como a saída do modelo, modelos probabilísticos associam cada medição a

um valor do domínio de saída y ∈ Y (SCHULD; PETRUCCIONE, 2021). Nessa perspectiva, O

pode ser expresso em termos das possíveis saídas como ∑
y∈Y y |y⟩ ⟨y| e o modelo quântico

probabilístico é definido pela equação 2.19.

pθ(y|x) = |⟨y|ψ(x,θ)⟩|2 (2.19)

A equação 2.19 mede a incerteza da saída y para uma dada entrada x. Um classificador

pode utilizar a quantificação dessa incerteza para estabelecer mecanismos de predição.

2.3.2.3 Regra de Decisão

Algoritmos variacionais exibem saídas desprovidas de uma relação semântica com a ativi-

dade fim de um classificador. A regra de decisão é o componente responsável por estabelecer

um relacionamento semântico entre as saídas dos processamentos e o critério de classificação

(LAROSE; COYLE, 2020).

Em problemas de classificação binária é usual selecionar apenas um qubit para fazer me-

dições e extrair o valor esperado de um observável (SCHULD et al., 2020). Ao valor esperado

obtido é adicionado um viés treinável e o resultado é mapeado em um conjunto com dois

valores. A função responsável pelo mapeamento estabelece o critério de decisão.

2.4 CONSIDERAÇÕES FINAIS

O presente capítulo abordou um recorte multidisciplinar dos conhecimentos que subsidiam

os desenvolvimentos posteriores deste trabalho. A seção 2.1 apresentou o modelo de compu-

tação utilizado, mostrando como a unidade básica de informação (qubit) é manipulada por
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transformações unitárias e como a informação é extraída através de medições. A seção 2.2

detalhou a estrutura e funcionamento do modelo algorítmico variacional, destacando conside-

rações sobre a eficiência relativas à obtenção dos gradientes e ao desempenho do otimizador.

Por fim, a seção 2.3 abordou a empregabilidade dos algoritmos variacionais no contexto de

aprendizagem supervisionada, apresentando a formulação de um classificador binário que tem

como entrada dados clássicos codificados em estados quânticos e cuja saída pode ser inter-

pretada por diferentes mecanismos.
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3 BATCH QUÂNTICO

3.1 BATCH CLÁSSICO

O problema de minimização da função de custo descrito em 2.12 pode ser resolvido de

forma iterativa utilizando o conjunto de dados D = {(xi, yi), i = 1, 2, ..., N} e o algoritmo

do Gradiente Descendente. Esse algoritmo atualiza o parâmetro θ na direção contrária ao

gradiente do custo ( ∇C(θ)) ponderado pelo fator η:

θt+1 ← θt − η∇C(θt) (3.1)

Em virtude do fator ∇C(θ) em 3.1 ser calculado para todo o conjunto D, a cardinalidade

desse conjunto pode afetar de forma expressiva o desempenho do algoritmo (BOTTOU et al.,

1991). Uma das formas de superar essa limitação é fazer atualizações paramétricas a cada

nova apresentação de um exemplo (xi, yi) ∈ D escolhido de forma aleatória. Essa estratégia

de atualização reduz em um fator de N o cômputo de ∇C(θ) em 3.1 e é conhecida como

uma versão estocástica do Gradiente Descendente.

Outra estratégia de atualização paramétrica é considerar subconjuntos de D com cardi-

nalidade W e calcular o gradiente para cada um desses subconjuntos. Uma escolha razoável

da quantidade de subconjuntos torna menos custosa a determinação do gradiente. É pos-

sível, ainda, encontrar estratégias que relacionam W com outros hiperparâmetros. He, Liu

e Tao (2019) trazem evidências teóricas e empíricas de uma relação de W com a taxa de

aprendizagem de forma a ampliar a capacidade de generalização em modelos de aprendizagem

profunda.

O conceito de batch em aprendizagem clássica está intrinsecamente relacionado às estra-

tégias escolhidas para fazer atualizações paramétricas do tipo 3.1. Quando todo o conjunto

D é utilizado para calcular o gradiente, tem-se uma aprendizagem em batch. Quando apenas

uma amostra em D é utilizada, tem-se uma aprendizagem online. Um aspecto vantajoso desse

último tipo de aprendizagem é a capacidade de atualizar o modelo a medida que novas amos-

tras de treino estão disponíveis, conferindo instantaneidade à sua forma de operação (HAYKIN,

2008).
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3.2 O EQUIVALENTE QUÂNTICO

Estratégias de aprendizagem em batch exploram formas diferentes de apresentar padrões

a algoritmos como foi detalhado na seção 3.1. As subseções a seguir irão explorar novas

estratégias de batch em padrões codificados em estados quânticos.

3.2.1 Batch Sequencial

Consiste em apresentar um ou mais padrões codificados em estados quânticos e apresentar

um de cada vez. O único diferencial dessa abordagem é utilizar o mapeamento de dados clássi-

cos em quânticos e explorar as possíveis correlações existentes em um novo espaço para obter

resultados melhores. A figura 4 ilustra um batch sequencial de tamanho 4. Cada |ψ⟩i∈{1,2,3,4}

corresponde a um padrão carregado e depois processado por uma camada variacional (M(θ)).

|ψ1⟩ M(θ) + |ψ2⟩ M(θ)

|ψ3⟩ M(θ) + |ψ4⟩ M(θ)

Figura 4 – Exemplo de batch sequencial de tamanho 4

Para um circuito variacional descrito pela equação 2.17, o custo C(θ) pode ser descrito em

termos da função de perda L, das entradas xi e do parâmetro variacional θ, para um batch

de tamanho n, como:

C(θ) = 1
n

n∑
i=1
L(U(xi; θ), yi) (3.2)

3.2.2 Batch Superposição

Consiste em codificar 2 ou mais padrões em estados quânticos e colocá-los em super-

posição. A figura 5 ilustra um batch superposição com 4 padrões carregados em estados
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|ψ⟩i∈{1,2,3,4}, colocados em superposição e processados por uma camada variacional (M(θ)).

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩ M(θ)

Figura 5 – Exemplo de batch sequencial de tamanho 4

Para o batch em superposição, a expressão da equação 3.2 se reduz a:

C(θ) = L(U(x1, . . . ,xn; θ), yi) (3.3)

O circuito que implementa um batch em superposição é composto de 2 subsistemas. Um

deles serve para criar uma camada de endereçamento dos estados a serem carregados no outro

subsistema. A figura 6 ilustra um circuito com o caso geral de um batch em superposição em

que e denota a quantidade de qubits no subsistema de endereçamento, d representa a quanti-

dade de qubits no subsistema destinado ao carregamento dos dados, E o operador responsável

por carregar dados clássicos no dispositivo quântico e M(θ) é um circuito parametrizado em

θ.

d

. . .

. . .

. . .

. . .

e

H

H

H

E(x1) E(x2) E(xL) M(θ)

|φ1⟩ |φ2⟩ |φ3⟩

Figura 6 – Batch Superposição - caso geral

Assumindo um estado inicial |φ0⟩ = |0⟩⊗(e+d), o primeiro passo para construir um batch

em superposição é aplicar portas Hadamard ao subsistema de endereçamento. O estado do

sistema, representado por |φ1⟩ na figura 6, é dado pela expressão em 3.4.

|φ1⟩ = (H⊗e ⊗ I⊗d) |φ0⟩ = 1√
2e

 ∑
i∈{0,1}e

|i⟩

 |0⟩⊗d (3.4)
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A aposição de portas Hadamard nos qubits de endereçamento cria uma camada com a

superposição de todos estados possíveis para a quantidade e, resultando em um total de 2e.

O segundo passo para construir um batch em superposição é carregar os dados clássicos xi

no dispositivo quântico, inserindo controles distintos de forma a esgotar a quantitade total de

endereços. Dessa forma, a quantidade total de dados clássicos (L) em um batch em superpo-

sição é limitada à quantidade de endereços disponíveis (L = 2e). O estado do sistema após o

carregamento dos dados, representado por |φ2⟩, é dado pela expressão 3.5.

|φ2⟩ = C(L−1)(E(xL)) · · ·C1(E(x2))C0(E(x1)) |φ1⟩ (3.5)

Cada operador Ci denota a operação controlada nos e qubits de endereçamento e i o valor

decimal do controle representado por uma string binária de comprimento e.

Combinando as expressões obtidas nas equações 3.4 e 3.5, |φ2⟩ pode ser reescrito como:

|φ2⟩ = 1√
2e

 ∑
i∈{0,1}e

|i⟩ E(xid
) |0⟩d

 (3.6)

Na expressão 3.6, o subscrito id se refere à representação decimal de uma string binária

i ∈ {0, 1}e. Chamemos de |ψid
⟩ = E(xid

) |0⟩d) o estado resultante da aplicação do operador E

ao dado clássico xid
nos qubits de dados inicializados em |0⟩. O estado final após a aplicação

do circuito parametrizado M(θ), representado por |φ3⟩ na figura 6, é dado por:

|φ3⟩ = (I⊗e ⊗M(θ)) 1√
2e

 ∑
i∈{0,1}e

|i⟩ |ψid
⟩

 = 1√
2e

 ∑
i∈{0,1}e

|i⟩M(θ) |ψid
⟩

 (3.7)

A expressão da equação 3.7 indica que, após aplicar o circuitoM(θ) que atua apenas nos

qubits de dados, o estado final composto pelos dois subsistemas resulta na superposição do

modelo aplicado a cada ponto de dado xid
inicializado em um estado quântico pelo operador

E . Nesse ponto, ao selecionar um qubit de dados para medição, o sistema colapsa de forma

aleatória para um dos valores contidos na superposição. Dessa forma, o valor esperado do

observável aferido é composto uniformemente por contribuições advindas de todos os pontos

de dados carregados.

Após a aplicação de um observável O aos qubits de dados, o valor esperado da medida

pode ser o obtido por meio da equação 3.8.

E(O) = 1
2e

 ∑
i∈{0,1}e

⟨ψid
|M†(θ)OM(θ) |ψid

⟩

 (3.8)

As principais desvantagens do batch em superposição comparadas ao sequencial são o uso

de mais espaço e a maior complexidade na preparação dos multicontrolados para incluir os

qubits de endereçamento.
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3.2.3 Batch Duplo

Consiste em uma abordagem híbrida que mescla os conceitos apresentados nas subseções

anteriores. Cada batch duplo apresenta sequencialmente padrões codificados em superposições

distintas. A figura 7 ilustra um batch duplo com 2 superposições distintas e 2 padrões em cada

uma delas.

+
|ψ1⟩ |ψ2⟩ M(θ) |ψ3⟩ |ψ4⟩ M(θ)

Figura 7 – Exemplo de batch duplo de tamanho 2 com superposições de tamanho 2

Para o batch duplo, a expressão do custo (C) faz uso de uma estrutura de soma no tamanho

do batch sequencial como na equação 3.2 e de uma estrutura de carregamento de padrões

em superposição como em 3.3. Matematicamente, para uma quantidade b de superposições

distintas, cada uma com k padrões, o erro pode ser expresso como:

C(θ) =
b∑

j=1
L(U(xj

1, . . . ,x
j
k; θ), yi) (3.9)

onde xj
i denota o padrão i carregado na superposição j.

Expressões similares à de saída do batch em superposição podem ser obtidas para os

circuitos componentes do batch duplo. Diferentemente das demais estratégias, a atualização

de pesos no batch duplo soma classicamente os valores extraídos de dados em superposição.

O aspecto atrativo em considerar esse tipo de abordagem é a economia que pode ser obtida

na preparação dos estados sem abrir mão do recurso de superposição.

3.3 CONSIDERAÇÕES FINAIS

Em aprendizagem clássica, a única forma de manipular a apresentação de dados em batch

é através da seleção de subconjuntos de padrões do conjunto de treino. Na otimização baseada

em gradiente, esses subconjuntos selecionados são utilizados para computar o gradiente da

função de custo e atualizar iterativamente os pesos.

A computação quântica permite pensar uma nova forma de apresentar padrões a partir do

recurso da superposição. Esse recurso torna possível carregar mais de um padrão e processar
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todo o conjunto carregado em um único fluxo de execução, permutando o custo computacional

de tempo por espaço.

A seção 3.2 discutiu as diferentes formas em que o recurso da superposição pode ser

explorado no plano semântico de aprendizagem em batch. A subseção 3.2.1 apresentou um

modelo de batch em que cada padrão é carregado em um circuito e em seguida as saídas

são processadas classicamente para avaliar a função de custo. A subseção 3.2.2 apresentou

um modelo em que todos os padrões são colocados em superposição e processados em um

único circuito. A subseção 3.2.3 apresentou um modelo em que padrões são carregados em

superposições distintas. O que diferencia os modelos apresentados é a quantidade de parcelas

no cômputo da função de custo para estimar iterativamente o gradiente.
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4 METODOLOGIA

Este capítulo descreve o processo experimental utilizado para avaliar o desempenho de um

modelo variacional treinado com as diferentes estratégias de batch apresentadas no capítulo

3. Foram empregados batches de classe única de forma a suprimir o carregamento dos rótulos

e do circuito comparativo entre o rótulo e o valor de predição, simplificando a arquitetura do

modelo em termos de espaço. O modelo variacional foi fixado em duas camadas para manter

baixa profundidade dos circuitos e isolar o efeito das estratégias de batch no treinamento.

A análise comprarativa privilegiou problemas de classificação binária em virtude da simpli-

cidade e aplicabilidade em diversos domínios práticos como deteção de fraudes e diagnósticos

médicos. Sendo o foco do presente estudo explorar novas formas de treinamento em batch no

domínio quântico, a comparação com modelos clássicos no estado da arte foi suprimida.

4.1 PROCESSAMENTO QUÂNTICO

4.1.1 Entrada

Cada amostra foi codificada nas amplitudes para garantir maior economia de espaço no

carregamento dos dados clássicos. Os batches de superposição foram construídos utilizando

qubits auxiliares com portas Hadamard e operações controladas tendo como alvo as amos-

tras codificadas. A figura 8 ilustra um circuito codificador do batch em superposição para 4

amostras. Cada |ψi⟩i∈{1,2,3,4} representa uma amostra carregada no estado |ψi⟩.

|0⟩ H

|0⟩ H

|0⟩
|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|0⟩

Figura 8 – Exemplo de entrada com 4 amostras carregadas em superposição
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4.1.2 Modelo

O modelo utilizado em todos os experimentos foi construído de forma a manter baixa

profundidade no circuito e com portas parametrizadas atuando em um ou dois qubits, conforme

descrito em (SCHULD et al., 2020). As características de baixa profundidade e portas sob no

máximo dois qubits permitem encurtar o tempo de experimentação sem comprometer o espaço

de expressividade do modelo.

A arquitetura foi fixada com 2 camadas, cada uma com operações de rotação e uma

estrutura de emaranhamento com portas CNOT, conforme exemplificado na figura para um

sistema com 3 qubits.

CAMADA 1 CAMADA 2

R(α1
1, β

1
1 , γ

1
1) R(α2

1, β
2
1 , γ

2
1)

R(α1
2, β

1
2 , γ

1
2) R(α2

1, β
2
1 , γ

2
1)

R(α1
3, β

1
3 , γ

1
3) R(α2

1, β
2
1 , γ

2
1)

Figura 9 – Exemplo de modelo com 3 qubits e 2 camadas

Esse tipo de arquitetura usa uma quantidade de parâmetros treináveis de complexidade

polilogarítmica no tamanho da entrada e apresenta resultados competitivos em benchmarks

de dados clássicos (SCHULD et al., 2020), justificando sua adoção no presente trabalho.

4.1.3 Saída

O circuito correspondente aos esquemas de codificação apresentados em 4.1.1 acrescido da

arquitetura de modelo especificada em 4.1.2 foi executado s vezes, sendo s um hiperparâmetro

selecionado a depender da estratégia de batch. Para todas as execuções, foi fixado um qubit de

dados para ser medido com o operador Pauli Z e o valor esperado extraído após as s execuções.

O valor esperado de Pauli Z acrescido de um bias treinável foi utilizado para alimentar a regra

de decisão do modelo.
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. . .

. . .

. . .

|0⟩ H

|0⟩ H

|0⟩
|ψ1⟩ |ψn⟩ CAMADA 1 CAMADA 2

|0⟩

Figura 10 – Exemplo de circuito com entrada, modelo e medição

4.2 CONFIGURAÇÃO EXPERIMENTAL

4.2.1 Bases de Dados

A experimentação com as estratégias de batch discutidas no capítulo 3 foi feita com

as bases IRIS e MNIST. Essas bases foram escolhidas por apresentarem diferentes níveis de

complexidade e adequação ao aparato experimental.

A pequena quantidade de amostras e a baixa dimensionalidade da base IRIS a torna ade-

quada para testes iniciais em circuitos de escala reduzida. A MNIST, sendo numerosa em

amostras e dimensionalmente mais complexa, permite explorar limites de escalabilidade do

aparato. Os tópicos a seguir irão detalhar cada uma delas, especificando o uso no corrente

trabalho.

4.2.1.1 IRIS

O conjunto de dados IRIS (FISHER, 1936) contém 150 amostras com registros métricos

do comprimento e largura das sépalas e pétalas de 3 espécies de flores do tipo iris: versicolor,

virginica e setosa. O conjunto está distribuído na proporção de 50 amostras para cada espécie

e contém um rótulo adicional com a informação da espécie para cada registro métrico.

Para fins de classificação binária, foi utilizado um subconjunto da base IRIS com 100

amostras de flores do tipo setosa e versicolor, sendo 50 para cada tipo. A escolha desse

subconjunto foi motivada pela existência de outros trabalhos na literatura que fazem uso

do mesmo subconjunto, como em (PIRA; FERRIE, 2024) e em (DUAN; SUN; HSIEH, 2024). O

conjunto de dados foi obtido na biblioteca scikit-learn (PEDREGOSA et al., 2011).
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4.2.1.2 MNIST

O conjunto de dados MNIST (LECUN et al., 1998) contém 70.000 amostras com imagens

de dígitos de 0 à 9 escritos a mão. Cada imagem possui dimensão 28x28 pixels preenchidos

com diversos níveis de cinza.

O subconjunto utilizado na experimentação fez uso de 400 amostras dos dígitos 3 e 6 em

uma distribuição de 200 para cada. A escolha desse subconjunto foi motivada pela existência

de outros trabalhos na literatura que fazem uso do mesmo subconjunto, como em (FARHI;

NEVEN, 2018) e em (CHEN et al., 2020). O conjunto completo foi obtido na biblioteca keras

(TEAM, 2024).

4.2.2 Simulador Quântico

Toda a codificação dos experimentos foi feita utilizando Pennylane. O Pennylane é um

framework de código aberto que contém uma série de recursos voltados para otimização de

algoritmos quânticos e híbridos (BERGHOLM et al., 2018).

Foram utilizados os simuladores default.qubit e lightning.gnu para executar parte em

estação de trabalho pessoal e no cluster Apuana, respectivamente. O default.qubit é um

simulador baseado em Python ideal para prototipações de até 20 qubits. O lightning.gpu é

um simulador escrito em C++ com otimização extremamente eficiente em dispositivos com

20 qubits ou mais.

4.2.3 Pré-Processamento dos Dados

Os conjuntos de dados foram pré-processados com a normalização das características no

intervalo [0, 1] e o mapeamento da saída no conjunto {−1, 1}. O propósito da normalização é

carregar as características nas amplitudes obedecendo a condição de soma 1 das probabilidades

dos estados. O mapeamento da saída foi feito para adequar o rótulo de cada padrão aos

autovalores de medição do operador Pauli Z.

Além dos pré-processamentos descritos acima, o conjunto de dados MNIST foi redimensi-

onado em 8x8 de forma a reduzir a quantidade de qubits utilizada durante a experimentação.
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4.2.4 Otimizador

A otimização dos parâmetros do modelo descrito na subseção 4.1.2 foi feita através do

otimizador Adam com taxa de aprendizagem fixada em 0.01 (DIEDERIK, 2014). Esse otimiza-

dor é baseado no algoritmo do gradiente descendente apresentado no capítulo 3 e substitui o

gradiente da equação 3.1 por uma expressão definida em termos de suas médias móveis para

convergir mais rápido. Os gradientes dos circuitos foram obtidos utilizando a técnica de me-

dições analíticas descrita na subseção 2.2.3. As implementações do otimizador e do gradiente

foram obtidas na API do Pennylane (BERGHOLM et al., 2018).

4.2.5 Métricas de Avaliação

A inexistência de métodos comparativos na literatura de aprendizagem quântica em batch

tornou necessário o desenvolvimento de um critério valorativo apresentado ao longo dessa

subseção.

O desempenho das estratégias descritas no capítulo 3 foi aferido a partir do conceito de

densidade de shots no batch explicitado a seguir.

Definição 1 Sejam s e n as quantidades totais de shots e de padrões definidos para um

batch, respectivamente. A densidade de shots (µ) no batch é dada pela relação:

µ = s

n
(4.1)

A motivação em construir essa definição é tornar os parâmetros s e n independentes da

forma como cada estratégia os implementa. Para µ = 8 shots/padrão e n = 4 padrões,

por exemplo, a quantidade total de shots no batch é igual à 32. Cada uma das estratégias

implementa um batch com µ = 8 de formas diferentes:

• Batch Sequencial: 4 circuitos, cada um com 1 padrão e 8 shots;

• Batch Superposição: 1 circuito com 4 padrões e 32 shots;

• Batch Duplo: 2 circuitos, cada um com 2 padrões e 16 shots.

A experimentação consistiu em fixar a densidade de shots em cada batch e comparar, para

um mesmo valor de n, as estratégias em termos da quantidade de iterações até a convergência

e das acurácias de treino e teste.
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A escolha de fixar esse parâmetro foi motivada de forma a garantir que, independente da

estratégia escolhida, cada batch contenha a mesma quantidade de padrões e que cada padrão

seja apresentado a mesma quantidade de vezes a cada atualização de pesos do algoritmo de

otimização.

Cada estratégia de batch emprega um ou mais circuitos para apresentar os padrões. Com a

quantidade de padrões e a densidade de shots fixadas para o batch, torna-se necessário definir,

para cada circuito, a quantidade de padrões a serem carregados e a respectiva quantidade

de shots. Seja b a quantidade de circuitos utilizados por uma das estratégias apresentadas da

seção 3.2. De forma genérica, a quantidade de padrões carregados (nc) e a quantidade de

shots (sc) em cada circuito do batch são dados pelas expressões das equações 4.2 e 4.3.

nc = n

b
(4.2)

sc = s

b
(4.3)

As expressões quantitativas relativas aos padrões e shots por circuito apresentadas nas

equações acima podem ser particularizadas para cada uma das estratégias definidas na seção

3.2. Assumindo n e µ fixos, temos:

• Batch Sequencial: cada circuito carrega apenas um padrão, resultando em uma quan-

tidade de circuitos equivalente a quantidade de padrões (b = n). O número de padrões

carregados no circuito (nc) é dado por nc = n
b

= n
n

= 1 e a quantidade de shots no

circuito (sc) é dada por sc = s
b

= s
n

= µ;

• Batch Superposto: um único circuito carrega todos os padrões em superposição, logo

b = 1. Substituindo o valores de b nas equações 4.2 e 4.3, temos nc = n e sc = s;

• Batch Duplo: esse é o caso mais geral e as expressões quantitativas referentes aos

circuitos são definidas pelas equações 4.2 e 4.3.

Da análise dos valores de nc e sc apresentada acima, é possível constatar que as estratégias

de batch sequencial e superposto são casos particulares da estratégia de batch duplo para os

casos onde b assume os valores extremos de 1 e n. A tabela abaixo sintetiza as expressões

quantitativas definidas para as estratégias detalhadas acima.
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Estratégia Sequencial Superposto Duplo
nc 1 n 1 < nc < n

sc µ s µ < sc < s

b n 1 1 < b < n

Tabela 2 – Síntese das expressões quantitivas de padrões e shots por circuito no batch
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5 RESULTADOS

Os resultados comparativos foram gerados para a quantidade de padrões n assumindo

valores no conjunto {2, 4, 8} e para a densidade de shots µ em {8, 16, 32}, ambas as quan-

tidades definidas por batch. O propósito de considerar quantidades de padrões múltiplas de

2 é carregar o maior valor possível de amostras pelo mecanismo de codificação discutido na

subseção 4.1.1. As densidades de shots foram escolhidas de forma a garantir que cada padrão

seja apresentado pelo menos uma vez para as diferentes quantidades de padrões pré-definidas.

Para cada configuração (n, µ) foram executados 10 experimentos e extraídos a média e o

desvio.

As tabelas 3 e 4 exibem as configurações de hiperparâmetros para os valores de n e µ

fixados em cada estratégia.

(a) Hiperparâmetros Sequencial
Batch Sequencial Circuito
n µ s b nc sc

8 16 2 1 8
16 32 2 1 162
32 64 2 1 32
8 32 4 1 8
16 64 4 1 164
32 128 4 1 32
8 64 8 1 8
16 128 8 1 168
32 256 8 1 32

(b) Hiperparâmetros Superposição
Batch Superposição Circuito
n µ s b nc sc

8 16 1 2 16
16 32 1 2 322
32 64 1 2 64
8 32 1 4 32
16 64 1 4 644
32 128 1 4 128
8 64 1 8 64
16 128 1 8 1288
32 256 1 8 256

Tabela 3 – Hiperparâmetros para as estratégias sequencial e superposição

As seções a seguir detalham os resultados obtidos para os conjuntos de dados IRIS e

MNIST apresentados na subseção 4.2.1. Cada seção será segmentada pela quantidade de

padrões (n) e reunirá informações gráficas e numéricas para as estratégias de batch com

diferentes configurações de hiperparâmetros.
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Batch Duplo Circuito
n µ s b nc sc

8 32 2 2 16
16 64 2 2 324
32 128 2 2 64

2 4 328 64
4 2 16
2 4 6416 128
4 2 32
2 4 128

8

32 256
4 2 64

Tabela 4 – Hiperparâmetros para a estratégia de batch duplo

5.1 IRIS

5.1.1 n = 2

A análise dos gráficos da figura 11 permite constatar que a estratégia de batch em super-

posição apresenta melhor desempenho frente à estratégia sequencial para todos os valores de

µ analisados. É possível verificar ainda que a estratégia de batch em superposição apresenta

convergência mais acelerada e curvas mais suaves.

A tabela 5 exibe os maiores valores das acurácias médias de treino e teste juntamente com

a iteração em que foram obtidos. O melhor valor de acurácia média para o treino foi de 1.000

e ocorreu na iteração 144 da estratégia de batch em superposição com µ = 32 e apresentou

desvio nulo. Para o valor médio da acurácia de teste, a estratégia de superposição com µ = 16

e µ = 32 juntamente com a estratégia sequencial para µ = 32 apresentaram valor médio de

1.000 com desvio nulo.

Hiperparâmetros Treino Teste
n µ b Estratégia Iteração1 Média1 Desvio1 Iteração2 Média2 Desvio2

2 Sequencial 153 0.895 0.037 205 0.910 0.0668
1 Superposição 221 0.952 0.017 161 0.975 0.040
2 Sequencial 184 0.949 0.028 194 0.955 0.02716
1 Superposição 216 0.991 0.011 142 1.000 0.000
2 Sequencial 228 0.988 0.010 141 1.000 0.000

2

32
1 Superposição 144 1.000 0.000 85 1.000 0.000

Tabela 5 – Melhores acurácias de treino e teste para n = 2
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(a) µ = 8

(b) µ = 16

(c) µ = 32

Figura 11 – Resultados IRIS para n = 2

5.1.2 n = 4

A análise dos gráficos da figura 12 permite concluir que as estratégias de batch sequencial e

de superposição apresentaram comportamentos similares ao caso n = 2. Para o batch duplo, o

desempenho ficou intermediário entre as demais estratégias com uma relativa proximidade da

estratégia de superposição a medida que a densidade de shots no batch aumenta. No gráfico
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da figura 15c para µ = 32, é possível identificar que as curvas de acurácia de treino e teste

para as estratégias de batch em superposição e duplo ficam praticamente ajustadas.

A tabela 6 exibe os maiores valores das acurácias médias de treino e teste juntamente com

a iteração em que foram obtidos. O melhor valor de acurácia média para o treino foi de 1.000

e ocorreu para as estratégias de batch em superposição e duplo para µ ∈ {16, 32}. Para o

valor médio da acurácia de teste, o melhor valor obtido foi 1.000 e ocorreu para as todas as

estratégias para µ ∈ {16, 32}. É possível constatar também que, para um mesmo valor de

acurácia média atingido pelas 3 estratégias, a estrategia de batch em superposição alcança o

valor máximo com uma quantidade menor de iterações.

Hiperparâmetros Treino Teste
n µ b Estratégia Iteração1 Média1 Desvio1 Iteração2 Média2 Desvio2

4 Sequencial 139 0.904 0.036 231 0.945 0.042
1 Superposição 206 0.991 0.010 140 1.000 0.0008
2 Duplo 218 0.955 0.014 221 0.990 0.020
4 Sequencial 224 0.954 0.021 163 0.985 0.032
1 Superposição 106 1.000 0.000 80 1.000 0.00016
2 Duplo 223 0.992 0.011 234 1.000 0.000
4 Sequencial 220 0.991 0.006 158 1.000 0.000
1 Superposição 62 1.000 0.000 44 1.000 0.000

4

32
2 Duplo 173 1.000 0.000 57 1.000 0.000

Tabela 6 – Melhores acurácias de treino e teste para n = 4

5.1.3 n = 8

A análise dos gráficos da figura 13 permite extrair conclusões análogas às que foram

apresentadas para os casos n = 2 e n = 4 nas subseções anteriores. O aspecto inovador da

análise para o caso n = 8 é o comportamento do hiperparâmetro b em diferentes estratégias e

valores de µ. Nas figuras 13a e 13b, valores menores de b possibilitam uma convergência mais

acelerada com acurácias mais altas em um regime de baixa densidade de shots. O gráfico da

figura 13c exibe um comportamento das curvas de acurácia praticamente sobrepostos para as

estratégias de batch em superposição e duplo para os diferentes valores de b.

A tabela 7 exibe os maiores valores das acurácias médias de treino e teste juntamente

com a iteração em que foram obtidos. O melhor valor de acurácia média para o treino foi de

1.000 e ocorreu para a estratégia de batch em superposição em todos os valores de µ e para
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(a) µ = 8

(b) µ = 16

(c) µ = 32

Figura 12 – Resultados IRIS para n = 4

a estratégia de batch duplo com µ ∈ {16, 32} em diferentes valores de b. Para o valor médio

da acurácia de teste, o melhor valor obtido foi 1.000 e ocorreu para as estratégias de batch

em superposição e duplo para µ ∈ {8, 16, 32} e diferentes valores de b. É possível constatar

também que, para um mesmo valor de acurácia média atingido pelas estratégias que fazem

uso de padrões em superposição, valores menores de b conduzem uma quantidade menor de

iterações para atingir o valor máximo. Diferentemente dos resultados exibidos nas tabelas 5
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e 6, no caso n = 8 a estratégia sequencial não atingiu o mesmo patamar das demais mesmo

com o aumento da densidade de shots no batch. Isso sugere que a estratégia sequencial sofra

algum tipo de perda em termos de poder de generalização com o aumento da quantidade de

padrões no batch em configurações com baixo valor de µ.

(a) µ = 8

(b) µ = 16

(c) µ = 32

Figura 13 – Resultados IRIS para n = 8
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Hiperparâmetros Treino Teste
n µ b Estratégia Iteração1 Média1 Desvio1 Iteração2 Média2 Desvio2

8 Sequencial 189 0.901 0.028 108 0.925 0.056
1 Superposição 146 1.000 0.000 73 1.000 0.000
2 Duplo 147 0.990 0.009 88 1.000 0.000

8

4 Duplo 173 0.955 0.024 96 0.985 0.023
8 Sequencial 140 0.964 0.021 122 0.980 0.024
1 Superposição 86 1.000 0.000 49 1.000 0.000
2 Duplo 92 1.000 0.000 45 1.000 0.000

16

4 Duplo 203 0.991 0.008 191 1.000 0.000
8 Sequencial 227 0.994 0.006 76 0.995 0.015
1 Superposição 45 1.000 0.000 40 1.000 0.000
2 Duplo 58 1.000 0.000 47 1.000 0.000

8

32

4 Duplo 81 1.000 0.000 52 1.000 0.000

Tabela 7 – Melhores acurácias de treino e teste para n = 8

5.1.4 Síntese dos Resultados

As análises apresentadas nas subseções 5.1.1, 5.1.2 e 5.1.3 permitem concluir que, fixados

os hiperparâmetros (n, µ) do batch, o ritmo de convergência do modelo e suas acurácias de

treino e teste são afetados pelo hiperparâmetro b (quantidade de circuitos). Valores menores

de b refletem uma convergência mais acelerada e acurácias maiores com menor desvio.

O aparato experimental selecionado obteve acurácias de treino e teste com valor 1.000

e desvio nulo para a estratégia de superposição em boa parte dos cenários avaliados. Para

as demais estratégias, os valores de acurácia obtidos foram superiores ou próximos de 0.9

indicando que, a despeito da minimalidade dos recursos empregados na definição e operação

do modelo, o aparato experimental conseguiu produzir resultados expressivos.

5.2 MNIST

5.2.1 n = 2

A análise dos gráficos da figura 14 permite extrair conclusões análogas às que foram

apresentadas para o caso n = 2 do conjunto de dados IRIS na seção anterior. O único

diferencial para o conjunto MNIST diz respeito à suavidade das curvas.

A tabela 8 exibe os maiores valores das acurácias médias de treino e teste juntamente
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com a iteração em que foram obtidos. O melhor valor de acurácia média para o treino foi de

0.913 e ocorreu na iteração 887 da estratégia de batch em superposição com µ = 32 e desvio

de 0.020. Para o valor médio da acurácia de teste, a estratégia de superposição com µ = 32

apresentou valor médio de 0.921 com desvio de 0.024.

Hiperparâmetros Treino Teste
n µ b Estratégia Iteração1 Média1 Desvio1 Iteração2 Média2 Desvio2

2 Sequencial 897 0.741 0.054 943 0.759 0.0728
1 Superposição 948 0.806 0.040 933 0.829 0.060
2 Sequencial 931 0.825 0.031 937 0.840 0.05616
1 Superposição 895 0.880 0.015 846 0.889 0.030
2 Sequencial 923 0.883 0.025 936 0.896 0.032

2

32
1 Superposição 887 0.913 0.020 753 0.921 0.024

Tabela 8 – Melhores acurácias de treino e teste para n = 2

5.2.2 n = 4

A análise dos gráficos da figura 15 permite extrair conclusões análogas às que foram

apresentadas para o caso n = 4 do conjunto de dados IRIS na seção anterior.

A tabela 9 exibe os maiores valores das acurácias médias de treino e teste juntamente com

a iteração em que foram obtidos. O melhor valor de acurácia média para o treino foi de 0.927 e

ocorreu na iteração 868 da estratégia de batch em superposição com µ = 32 e desvio de 0.013.

Para o valor médio da acurácia de teste, a estratégia de superposição com µ = 32 apresentou

valor médio de 0.938 com desvio de 0.027. É possível constatar ainda que, comparativamente

aos valores da tabela 8, as estratégias de batch sequencial e em superposição tiveram uma

melhora nos valores de acurácia com o aumento da quantidade de padrões no batch.

5.2.3 n = 8

A análise dos gráficos da figura 16 permite extrair conclusões análogas às que foram

apresentadas para o caso n = 8 do conjunto de dados IRIS na seção anterior.

A tabela 10 exibe os maiores valores das acurácias médias de treino e teste juntamente

com a iteração em que foram obtidos. O melhor valor de acurácia média para o treino foi de

0.931 e ocorreu na iteração 828 da estratégia de batch duplo com µ = 32 e desvio de 0.020.
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(a) µ = 8

(b) µ = 16

(c) µ = 32

Figura 14 – Resultados MNIST para n = 2

Para o valor médio da acurácia de teste, a estratégia de superposição com µ = 32 apresentou

valor médio de 0.938 com desvio de 0.038. Diferentemente das configurações experimentais

anteriores, o caso n = 8 do conjunto de dados MNIST lança a perspectiva de que a estratégia

de batch duplo pode apresentar aspectos vantajosos em termos de acurácias frente às demais

estratégias.
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Hiperparâmetros Treino Teste
n µ b Estratégia Iteração1 Média1 Desvio1 Iteração2 Média2 Desvio2

4 Sequencial 847 0.763 0.045 781 0.778 0.045
1 Superposição 957 0.877 0.008 881 0.886 0.0398
2 Duplo 935 0.837 0.034 929 0.846 0.026
4 Sequencial 798 0.842 0.035 811 0.861 0.053
1 Superposição 903 0.913 0.017 874 0.920 0.02716
2 Duplo 852 0.888 0.035 823 0.905 0.038
4 Sequencial 917 0.896 0.014 890 0.909 0.043
1 Superposição 868 0.927 0.013 829 0.938 0.027

4

32
2 Duplo 933 0.917 0.021 953 0.931 0.023

Tabela 9 – Melhores acurácias de treino e teste para n = 4

Hiperparâmetros Treino Teste
n µ b Estratégia Iteração1 Média1 Desvio1 Iteração2 Média2 Desvio2

8 Sequencial 843 0.788 0.027 930 0.802 0.047
1 Superposição 923 0.910 0.022 833 0.929 0.029
2 Duplo 856 0.886 0.027 936 0.892 0.021

8

4 Duplo 957 0.837 0.032 878 0.844 0.058
8 Sequencial 934 0.860 0.021 862 0.866 0.038
1 Superposição 940 0.924 0.021 898 0.930 0.030
2 Duplo 892 0.906 0.018 734 0.910 0.030

16

4 Duplo 946 0.886 0.030 955 0.903 0.045
8 Sequencial 831 0.898 0.021 846 0.914 0.031
1 Superposição 917 0.928 0.019 505 0.938 0.038
2 Duplo 828 0.931 0.020 788 0.936 0.024

8

32

4 Duplo 752 0.921 0.017 545 0.928 0.029

Tabela 10 – Melhores acurácias de treino e teste para n = 8

5.2.4 Síntese dos Resultados

Os resultados para a base MNIST detalhados nas subseções 5.2.1, 5.2.2 e 5.2.3 permitem

extrair conclusões similares às que foram discutidas na seção 5.1 para a base IRIS sob a ótica

de um novo fator de escala.

No cenário aqui apresentado, houve um aumento da quantidade de amostras por um fator

multiplicativo de 4 e da quantidade de qubits por um fator de 3. Mesmo em uma escala maior,

fixados os hiperparâmetros (n, µ) do batch, ritmos de convergência mais acelerados e acurácias

de treino e teste mais altas são obtidos para valores menores de b.
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(a) µ = 8

(b) µ = 16

(c) µ = 32

Figura 15 – Resultados MNIST para n = 4

Além do fator de escala, outro diferencial observado na base MNIST em relação à IRIS

foi o desempenho das estratégias de batch duplo e de superposição. Para a configuração

hiperparamétrica (n, µ) = (8, 32), o maior valor médio da acurácia de treino foi obtido para

estratégia de batch duplo com b = 2. Ainda que pouco expressiva em termos numéricos,

essa diferença sugere que possa haver uma ligeira sensibilidade no desempenho das estratégias

relacionada ao fator de escala ou a própria natureza dos dados (vide tabela 10).
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(a) µ = 8

(b) µ = 16

(c) µ = 32

Figura 16 – Resultados MNIST para n = 8
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6 CONCLUSÃO

As técnicas de construção de batch da seção 3.2 apresentaram diferentes curvas de desem-

penho quando valoradas pelo critério definido na subseção 4.2.5. De forma geral, as estratégias

com maiores quantidades de padrões em superposição trouxeram resultados de acurácias me-

lhores nos cenários de baixa densidade de shots analisados (µ ∈ {8, 16}). Para µ = 32, as

estratégias com algum nível de superposição de padrões se mostraram igualmente competitivas

com curvas de acurácias praticamente sobrepostas.

O presente estudo também evidencia a importância de hiperparâmetros como a densidade

de shots (µ), a quantidade de padrões (n) e o nível de superposição (b) no batch. Os experi-

mentos com os conjuntos de dados IRIS e MNIST sinalizaram que, mesmo com uma densidade

baixa, é possível obter resultados satisfatórios e competitivos.

Do ponto de vista prático, as estratégias que fazem uso de superposição apresentam a

desvantagem do uso de qubits adicionais pelo método de construção aqui proposto. Apesar

do custo adicional em espaço, essas estratégias se mostraram mais céleres no que tange à

convergência da função objetivo.

Possíveis direções de trabalhos futuros emergem das lacunas ainda inexploradas nesse

estudo. Uma delas é referente à composição do batch. Até o presente momento, todo o

aparato experimental fez uso de batches com padrões de uma única classe. Generalizar a

composição do batch pode revelar outras disposições arquiteturais com melhor potencial de

empregabilidade.

Outro caminho de investigação está relacionado às expressões analíticas para associar os

hiperparâmetros analisados. A análise numérica aponta diferenças de comportamentos para

composições (n, µ, b) em cada estratégia mas não delimita fronteiras que disciplinem a escolha

dos hiperparâmetros ótimos para um determinado contexto. Obter expressões analíticas pode

ajudar a delimitar essas fronteiras e aprimorar as técnicas de batch.
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