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RESUMO

O processamento da informacdo quantica inaugura uma nova forma de computacao e uma
nova forma de pensar técnicas de processamento de dados para aprendizagem de maquinas.
Este estudo investiga o uso da superposicdao na construcao de batches de dados. Trabalhos
como (FARHI_NEVEN, 2?018) e (SCHULD et all, P020) introduziram a ideia mas até o presente
momento nao existe uma analise comparativa ou mesmo uma formalizagcdo conceitual sobre
o tema. De forma a preencher essa lacuna, propde-se um método comparativo e uma catego-
rizacao das estratégias encontradas na literatura. Como contribuicdo adicional, apresenta-se
uma nova estratégia em que o batch é composto por mais de um circuito com dados em su-
perposicdo. As estratégias foram avaliadas de forma experimental em classificadores quanticos
variacionais para diferentes configuracdes de hiperparametros do batch. Entre os resultados,
verificou-se que estratégias com maior quantidade de padrdoes em superposicdo alcancaram
valores médios superiores de acuracia no treino e no teste, além de maior capacidade de

generalizacao.

Palavras-chaves: computacao quantica; classificadores quanticos; aprendizagem em batch;

algoritmos variacionais.



ABSTRACT

Quantum information processing inaugurates a new form of computation and a new way
of designing data processing techniques for machine learning. This study investigates the use
of superposition in the construction of data batches. Works such as (FARHI. NEVEN, P018) and
(SCHULD et all, P020) introduced the idea, but up to now there has been neither a comparative
analysis nor a conceptual formalization of the subject. To fill this gap, a comparative method
and a categorization of the strategies found in the literature are proposed. As an additional
contribution, a new strategy is presented in which the batch is composed of more than one
circuit with data in superposition. The strategies were experimentally evaluated in variational
quantum classifiers under different batch hyperparameter configurations. Among the results,
it was observed that strategies with a higher number of superposed patterns achieved superior

average accuracy in both training and testing, as well as greater generalization capacity.

Keywords: quantum computing; quantum classifiers; batch learning; variational algorithms.
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1 INTRODUCAO

A constatacdo de que a mecanica quantica é capaz de produzir padrdes contra intuitivos nos
dados e com dificil reprodutibilidade em um computador classico tem gerado a expectativa de
possiveis ganhos em aplicacoes de computacdo quantica na area de aprendizagem de maquinas
(BIAMONTE et all, PO17).

A computacdo quantica consiste em um modelo de processamento da informacao baseado
nas leis da mecanica quantica (NIELSEN: CHUANG, P010). Algoritmos que fazem uso desse
modelo buscam superar limitacdes no modelo classico e obter algum tipo de aceleraciao ou
melhoria de desempenho. LimitacGes como a fatoraciao de inteiros em tempo polinomial e a
simulacao de sistemas fisicos de forma eficiente ja tém solucdes algoritmicas quanticas com
vantagens tedricas conhecidas (MONTANARO, POTH).

A aprendizagem de maquinas é um ramo de inteligéncia artificial que habilita computa-
dores a executar tarefas sem serem explicitamente programados. De forma geral, um modelo
classico de aprendizagem faz uso de um conjunto de dados para alimentar um algoritmo que
iterativamente busca maximizar uma medida de desempenho. Robética, veiculos autonomos e
reconhecimento de discurso sao algumas aplicacdes populares de aprendizagem de maquinas
presentes no dia-a-dia (ALZUBI: NAYYAR: KUMAR, P018).

Um crescente niimero de estudos tém buscado explorar diferentes abordagens do que se
entende como aprendizagem de maquinas quantica. Lamichhane e Rawaf (P025) apresentam
4 principais abordagens que se distinguem na forma como os recursos quanticos sdo utilizados
no contexto de aprendizagem de maquinas. Schuld, Sinayskiy e Petrucciong (?0T5) discutem o
uso da computacdo e dos algoritmos quanticos como ferramentas de suporte a aprendizem mas
apontam que a formalizacao conceitual de uma teoria quantica de aprendizagem permanece
obscura.

Embora muito ja se tenha explorado nas formas de concatenar as disciplinas de aprendi-
zagem de maquinas e de computacdo quantica, o desenvolvimento do dispositivo fisico para
materializar essas ideias se encontra em seus estagios iniciais de desenvolvimento. Isso mo-
tiva direcionar esforcos de pesquisa para compreender o que é possivel ser feito com o atual
hardware disponivel gerando possivelmente evidéncias praticas de vantagens no dominio de
processamento de informacdo quéntica (BHARTI et all, P027).

Uma das abordagens que se mostra bastante promissora para o dispositivo quantico exis-
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tente na atualidade é a utilizacdo de modelos de aprendizagem de maquina baseados em cir-
cuitos quanticos parametrizados. Essa abordagem guarda similaridades com modelos classicos
consagrados (redes neurais e métodos de kernel), justificando parte do sucesso em problemas
de classificacdo, regressdo e modelagem generativa (BENEDET T ef all, P019). Para tarefas de
aprendizagem supervisionada onde o objetivo é encontrar um mapeamento de um conjunto de
entradas para um conjunto de saidas, os métodos de estimacao de kernel quantico e algoritmos
quanticos variacionais tém sido amplamente utilizados (IERBIetal, P023).

A estimacdo de kernel quantico consiste basicamente em fazer um mapeamento da infor-
macdo para um espaco de dimensdo mais alta (espaco de Hilbert) que tenha uma fronteira
de decisao linear e acessa-lo através de operadores de medicao. Esse modelo de aprendiza-
gem guarda uma relacdo muito préxima com os métodos de kernel em aprendizagem classica,
distinguindo-se dele apenas na forma como a saida é extraida do modelo (SCHULD, PO2T).

A abordagem baseada em algoritmos variacionais faz uso de portas parametrizadas que sado
ajustadas a cada apresentacdo de um novo padrao. O ajuste é feito classicamente utilizando
uma funcdo de perda construida com base na saida do processador quantico (CEREZO et all,
2027). Classificadores (MAHESHWARI: SIERRA-SOSA: GARCIA-ZAPIRAIN, 2021), autoencoders
(ROMERO: _OLSON: ASPURU-GUZIK, P017) e redes neurais (CONG: CHOL LUKIN, 2019) estdo
entre as aplicacdes de algoritmos variacionais no contexto de aprendizagem de maquinas.

Essas estratégias pensadas para o processador quantico atual buscam fazer uso de recursos
quanticos, como superposicao e emaranhamento, para obter algum tipo de vantagem com-
parativamente a forma classica de processamento. O que torna ainda mais custosa a busca
por bons algoritmos quanticos é o requisito de que eles ja devem nascer com a promessa de

resolver intratabilidades de algoritmos classicos (NIELSEN: CHUANG, 2010).

1.1 MOTIVACAO

O dispositivo quantico disponivel ndo tem o potencial de implementar as principais solucoes
que evidenciam, de forma tedrica, as vantagens da computacdo quantica. As limitacdes na
quantidade e conectividade de qubits associadas aos erros de decoeréncia impdem restricoes
e disciplinam novas formas de uso (CEREZO et arl, P02T).

Algoritmos variacionais sdo uma das principais abordagens para explorar evidéncias praticas
das vantagens da computacdo quantica com o dispositivo atual. Esses algoritmos também sao

conhecidos como analogos quanticos das redes neurais e utilizam otimizadores classicos como
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parte das etapas de processamento (CEREZO et all, PO2T).

No contexto de aprendizagem quantica variacional, otimizadores baseados em gradiente
apresentam desempenho superior em relacdo a abordagem livre de gradiente (COCKWOOD,
P0272). O gradiente descendente, juntamente com suas versdes estocastica e de mini-batch,
estdo entre as técnicas mais populares desse modelo de otimizacdo (RUDER, PUTH) e se dife-
renciam pela forma como os dados sdo apresentados.

Métodos de otimizacdo estocastica em aprendizagem classica consideram subconjuntos de
tamanho fixo do conjunto de treinamento para atualizar iterativamente os pesos (GOODFELTOW
st-all, P016). O uso mais eficiente da informacdo e passos iterativos de computacdo menos
custosos sao algumas das motivacoes a favor dos métodos estocasticos comparados ao método
deterministico (BOTTOU: CURTIS: NOCEDAL, P018).

Outra estratégia consiste em aproveitar o melhor que os métodos estocastico e determinis-
tico tem a oferecer. Eriedlander e Schmidt (2012) propdem um método de otimizacdo hibrida
deterministico-estocastica que inicia com gradiente incremental e paulatinamente aumenta a
quantidade de amostras de forma a preservar um rapido progresso inicial sem sacrificar uma
taxa de convergéncia atrativa.

O advento de um novo modelo de computacdo permite ampliar o repertério de estratégias
de otimizacdo em aprendizagem de maquinas supervisionada baseada em gradiente. Sweke ef
all (2020) exploram novas formas de otimizacdo estocastica em contextos onde processadores
quantico e classico trabalham de forma colaborativa em algoritmos variacionais. Kiibler et al
(P020) propdem uma otimizacdo adaptativa baseada na quantidade de medic3es para estimar
observaveis em arquiteturas de processamento hibridas.

No contexto de aprendizagem de maquinas quantica, algumas técnicas baseadas em super-
posicdo de estados tem sido exploradas em conjuncdo com otimizacdo estocastica baseada em
gradiente. Farhie Neven (2018) consideram um problema de classificagdo binaria e codificam
subconjuntos do conjunto de treino como a superposicdo de estados baseados em amostras
pertencentes a uma mesma classe. Schuld et all (2020) esbogam uma ideia de otimiza¢do com
dados em superposicdo. Duan, Sun e Hsieh (2024) exploram o comportamento de otimizacdo
estocastica com um subconjunto de treino fixo e codificado em superposico.

Apesar dos trabalhos relacionados existentes na literatura introduzirem uma ideia a respeito
de como recursos quanticos podem ser utilizados para apresentar padrGes de forma alternativa,
ndo existe uma formalizacdo conceitual de batch que seja de uso comum entre eles e permita

uma comunicacdo clara sobre o tema. Ademais, as formas alternativas de apresentacio de
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padrdes ocupam uma importancia sencundaria e ainda pouco avaliadas de forma analitica e
experimental.

Esse trabalho explora estratégias de otimizacdo estocastica em aprendizagem supervisio-
nada com base em algoritmos variacionais. Serdo apresentadas 3 técnicas de apresentacio de
padrOes para passos iterativos de otimizacdo. Em virtude da auséncia de formas comparativas
de estratégias de batch no dominio quantico, sera definido um critério quantitivo de compa-
racao para avaliar as estratégias apresentadas quanto a convergéncia e as acuracias de treino

e teste.

1.2 OBJETIVOS

O objetivo geral desse trabalho é avaliar, de forma experimental, o uso de diferentes
técnicas de apresentacido de padrdoes em modelos de aprendizagem supervisionada baseados

em gradiente.

1.2.1 Objetivos Especificos

1. Definir estratégias de apresentacdo de padroes;
2. Definir critério de valoracdo das estratégias apresentadas;

3. Avaliar a importancia de hiperparametros relacionados a natureza quantica de proces-

samento da informacao no desempenho de modelos de aprendizagem supervisionada.

A formalizacao conceitual de estratégias de treinamento em batch com o uso de recursos
quanticos e um critério para valora-las estdo entre as principais contribuicoes tedricas alcan-
cadas no presente trabalho. Do ponto de vista pratico, os resultados nimericos obtidos para
dois conjuntos de dados evidenciam que, em arquiteturas executadas com baixo nimero de
medicoes por circuito, um maior nivel de superposicdo entre os padroes acelera a convergéncia
e permite obter maiores valores médios de acuracias no treino e no teste.

Nos capitulos que seguem, serdo apresentados fundamentos teéricos, conceitos autéctones
e resultados experimentais. O capitulo B introduz as principais ideias sobre computacdo quan-
tica e aprendizagem de maquinas utilizados nos capitulos seguintes. O capitulo B desenvolve o

conceito das estratégias de batch sequencial, em superposicdo e duplo. O capitulo 8 especifica
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o aparato experimental e o critério comparativo utilizado. O capitulo B apresenta e discute os
resultados obtidos. Por fim, o capitulo B sintetiza as principais contribuicdes e sugere direcoes

de trabalhos futuros.
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2 FUNDAMENTACAO TEORICA

2.1 COMPUTACAO QUANTICA

A computacdo quantica é um campo de conhecimento que investiga o uso dos principios
da mecanica quantica para o processamento da informacdo. Diferentemente do modelo de
computacdo tradicional que utiliza l6gica booleana para processar informacao deterministica, a
computacdo quantica utiliza um conjunto especifico de propriedades para processar informacao
probabilistica (NIELSEN: CHUANG, P010).

A unidade basica de informacdo quantica é o bit quantico ou qubit. Essa unidade consiste
em uma abstracdo matematica para sistemas fisicos de 2 niveis, a exemplo do spin de um
elétron ou da polarizacdo de um féton. O qubit é comumente representado pela notacio de
Dirac ou pela notac3o vetorial, ambas apresentadas na equagdo 21 (NIELSEN: CHUANG, 2010).

aq
V) = a1 ]0) + ag[l), [¥) = (2.1)
Qg

Na equacgdo 71, os termos |0) e |1) representam os estados da base e a natureza probabi-
listica do qubit é capturada pelas amplitudes complexas a; e ;. Até ser medido, o qubit no
estado |1)) existe como a superposicdo dos estados da base com probabilidades |a; | para |0)

e |az|? para [1).

2.1.1 Evolucao de Estados

Um sistema quantico fechado evolui através de transformacdes unitarias (NIELSEN: CHU-
ANG, P0T0). A notacdo algébrica utilizada para descrever uma evolugdo do estado ) pelo

operador unitario U é apresentada na equacao 22

¥ =Uly) (2.2)

E possivel representar evolucdes de forma grafica utilizando a linguagem de circuitos. Nessa
linguagem, as linhas representam os fios do circuito e conferem uma semantica de transcurso
temporal ou mesmo as entidades fisicas participativas do sistema. As portas quanticas sao
representadas por caixas e sao responsaveis pela alteracdo do estado de forma equivalente aos

operadores na notacdo algébrica (NIELSEN: CHUANG, 2010).
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0) — X X

Figura 1 — Exemplo de circuito quantico

A figura [ ilustra um circuito quéntico inicializado em |0) no qual é aplicada uma porta

X seguida de um operador de medida.

A tabela [ exibe alguns dos operadores mais comuns. Qualquer operacdo unitaria em um

unico qubit pode ser escrita a partir do conjunto de operadores { RY, RZ}. Qualquer unitaria

arbitraria pode ser construida através de operadores atuando em um tnico qubit e o operador

CNOT.
Operador Matriz Descricao Circuito
Porta X 01 Inverte |0) <> |1). X
_0 i Combina inversdo e fase; gera ro-
Porta ¥ i tacoes no eixo Y. .
Porta Z Lo Aplica uma fase de 7 ao estado |1). 7
. —z}—
Hadamard (11 Cria superposicdo entre |0) e |1).
1 L _J perposic 0) e 1)
1000 Aplica X no alvo se o controle for —
CNOT
0100 ).
0 0 01 ©®
0 01 0
Rotacdo RX cos(0/2)  —isin(6/2) Rotagdo em torno do eixo X. — R, (6)
—isin(0/2)  cos(0/2)
Rotacdo RY cos(0/2) —sin(6/2) Rotag&do em torno do eixo Y. — R,(0)
sin(6/2)  cos(6/2)
Rotacao RZ e i/ 0 Rotacdo em torno do eixo Z. — R.(0)
0 €i0/2
Rotacdo Geral exp (—i%ii- &) Rotagdo de 0 em torno do eixo i. 1 R(, 77)

2.1.2 Medida

Tabela 1 — Operadores quanticos com representaces matriciais e circuitais.

MedicBes quanticas consistem na aplicacdo de um conjunto de operadores {M,,} que

obedecem a relacdo 3", M M,, = I e realizam um dos possiveis resultados m que podem

ocorrer durante a experimentacdo. A probabilidade do resultado m ocorrer para um sistema
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inicialmente no estado [¢) é dada pela equa¢do P73 (NIELSEN: CHUANG, 2010).
p(m) = (| M} M, 1) (2.3)

O estado do sistema apds a aplicacdo do operador de medida M,,, é dado por:

M, 1))
V| MM, [0)

Medidas projetivas s3o um caso especial em que, além de satisfazer a relacdo 3°,,, M M, =

V) = (2.4)

I, os operadores do conjunto {M,,} sdo projetores ortogonais. Essas medidas sdo descritas

por observaveis (O) com decomposicdo espectral dada pela equacdo 5.

O=> mP, (2.5)

Em 3, os valores de m correspondem aos possiveis resultados de medida. Cada valor de
m corresponde ao autovalor associado ao projetor P,, do observavel O. Nessa formulacao,
a probabilidade do resultado m para um sistema inicialmente no estado [¢)) é descrita pela

equacdo 8 (NIELSEN: CHUANG, 2010).
p(m) = (Y[ Pn |¢) (2.6)

O valor esperado do observavel O é dado pela equacdo D7 (NIELSEN: CHUANG, 2010).

E(O) = ([ M [) (2.7)
2.2 ALGORITMOS QUANTICOS VARIACIONAIS

Algoritmos Quanticos Variacionais sio estruturas de processamento hibrido classico-quantica
em que um otimizador cléssico é utilizado para treinar um circuito quantico parametrizado (CE-
REZO et all, P021)).

Um circuito quantico parametrizado pode ser definido como uma operacdo unitaria ajus-
tavel em um sistema de n qubits. Esse tipo de circuito é o elo do processamento hibrido uma
vez que estabelece a conexdo entre recursos computacionais de natureza quantica e classica
(SIM:JOHNSON: ASPURU-GUZIK, 2019).

De forma geral, a esséncia de um algoritmo quéantico variacional apresenta 4 passos (QI et

all, P024):

1. Codificar um problema como uma fun¢do de custo C(60) otimizavel;
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2. Construir um circuito quantico com parametros 6;
3. Medir o estado de saida e calcular a funcdo de custo C(6);
4. Atualizar 0 utilizando um otimizador classico.

As subsecdes a seguir detalhardo as ferramentas essenciais para o funcionamento de uma

arquitetura de algoritmo quantico variacional.

2.2.1 Funcao de Custo

Uma funcdo de custo é um mapeamento de um conjunto de parametros 8 para um ndmero
real. No contexto de algoritmos variacionais, ela é uma funcdo de um conjunto de estados de
entrada {py}, um conjunto de observaveis {Oy} e um circuito parametrizado U(8). Matema-

ticamente (CEREZO et all, PO2T):

C(0) = f({r}, {0k}, U(0)) (2.8)

E desejavel que o valor minimo da funcdo de custo coincida com a solucdo do problema a

ser tratado por meio da abordagem variacional .

2.2.2 Ansatz

Circuitos quanticos parametrizados também s3o conhecidos como ansatz na literatura de
algoritmos variacionais. Eles carregam a estrutura a ser atualizada a cada passo de otimizacao e
podem ser matematicamente descritos como um produto de L operacGes unitarias sequencias
(CEREZO et all, PO2T):

U(B) = UL(QL)"‘U2(92)U1(91) (2-9)

O sucesso de um algoritmo variacional estd fortemente associado a escolha do ansatz.
A quantidade de pardmetros, a profundidade do circuito e sua capacidade de representar
o espaco de solucGes sdo aspectos importantes para embasar o uso de um ansatz em um
algoritmo variacional (SIM: JOHNSON: ASPURU-GUZIK, P019). Alguns tipos de ansatz levam em
consideracao informacdes sobre o problema a ser resolvido, outros procuram atingir o requisito
de baixa profundidade levando em consideracdo o hardware disponivel (CEREZO et all, P02T).
A figura R ilustra um exemplo de ansatz para um sistema de 3 qubits com portas de rotacao

Ry, estruturas de emaranhamento com CNOT e pardmetros {6, 01, 02, 05}.



25

10) — Br (o) Ry (03)
10) — By (61) —& O
|0) — Ry (62) @

Figura 2 — Exemplo de ansatz

2.2.3 Gradientes

A saida do ansatz apresentado de forma genérica na subsecao 222 é obtida a partir de um
conjunto de medicdes finita para extrair o valor esperado de um observavel O. As principais

técnicas para obter a derivada parcial de (O)g em relacdo a entrada 6, sdo (HARROW: NAPP,

= Diferencas Finitas: a derivada parcial é obtida utilizando apenas as medicdes de (O)

com 6; deslocado de um pequeno valor € por meio da expressdo 2710,

(0 1
891 - 2¢

[(O)o+ee: — (O)o—cé] (2.10)

» Medicoes Analiticas: a derivada parcial

9(O)e
00;

a(g)a é extraida do dispositivo quantico. Nessa

09;

formulacdo, é expressa em parcelas que podem ser obtidas a partir de medicoes
no processador quantico e posteriormente combinadas em um coprocessador classico

(SCHULD et an, POTY).

Algoritmos variacionais baseados em medicGes analiticas apresentam melhores taxas de

2.2.4 Otimizacao

Algoritmos variacionais otimizam classicamente uma funcao de custo definida em termos do
parametro 0 da equacdo 9. E possivel agrupar as técnicas de otimizacdo em duas categorias:
as que fazem uso do gradiente descendente e as que ndo fazem (CEREZO et all, P02T).

Abordagens baseadas no gradiente descendente atualizam o paradmetro 6 iterativamente

na direcdo contraria do gradiente da func&o de custo C(0) ponderado por um fator .. O passo
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iterativo de atualizacao é dado pela equacao PT1I.
0"+ 6" — avC(6) (2.11)

O gradiente VC(0) em Pl pode ser obtido a partir dos métodos apresentados na subsecdo

P73

2.3 APRENDIZAGEM DE MAQUINAS

Uma definicao de aprendizagem de maquinas consiste em considerar uma classe de tare-
fas T', uma medida de performance P e uma experiéncia E. Com base nesses elementos, a
aprendizagem consiste em fazer com que a perfomance de uma maquina na classe de tarefas
T, medida por P, melhore com a experiéncia E (MITCHELT, 1997).

A forma como a experiéncia E é estruturada conduz a diferentes tipos de aprendizagem.
Um dos tipos é o supervisionado em que a dindmica de aprendizagem é assistida por um
professor (GOODFELLOW ef all, PUTH).

Algoritmos de aprendizagem supervisionada recebem como entrada conjuntos de dados
rotulados e tem por objetivo encontrar um relacionamento entre caracteristicas e rétulos. As

caracteristicas sao informacdes acerca do dominio do problema. Os rétulos s3o valores inseridos

por um professor ou especialista do dominio.

2.3.1 Classificacao Binaria

Um problema de classificacdo é um exemplo de aprendizagem supervisionada. Esse tipo
de problema assume como premissa a existéncia de uma relacdo entre entrada e saida nos
dados disponiveis. A busca desse relacionamento pode ser expressa matematicamente como
selecionar uma funcdo h em um conjunto de hipéteses H que obtenha melhor resultado em
associar o elemento x; a saida y; do conjunto D = {(x;,v;),i = 1,2,..., N}.

Para aferir a qualidade de um resultado é necessaria uma métrica £ que indique de forma
quantitativa a taxa de aderéncia de um modelo h aos dados D. A métrica L recebe como
parametros h(x;) e y; e retorna um valor representativo do quanto o resultado de h(x;) esta
préximo da saida v;.

Uma das formas de selecionar a hipdtese h € H é assumir uma forma paramétrica hy onde

0 c R%. O problema de aprendizagem se resume a encontrar uma configuracio paramétrica
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que minimize o erro de classificacdo. Se considerarmos C(8) = & SV, L(hg(x;), y;) como o
erro associado a entrada paramétrica 0, é possivel definir matematicamente um problema de

aprendizagem como:
. 1Y
min C(0) = min ; L(he(x;), i) (2.12)
A depender do dominio da saida, um problema de classificacao pode ser binario ou multi-

classe. No caso de classficacao binaria, a saida assume apenas dois valores distintos. No caso

multiclasse, a saida pode assumir mais de dois valores.

2.3.2 Classificadores Quanticos

Algoritmos Quanticos Variacionais podem ser utilizados em tarefas de aprendizagem de
maquinas. Nessa abordagem, a camada variacional descrita na subseciao 22 é interpretada
como modelo e o processo de aprendizagem acontece iterativamente através do ajuste paramé-
trico para minimizar o custo (BENEDET ITet all, P0TY). Modelos de aprendizagem construidos
com base em algoritmos variacionais sdo aproximadores universais de funcdes (SCHULD: SWEKE;
MEYER, PO2T).

Um classificador quantico é um caso particular de algoritmo variacional. Ele funciona de
forma similar a abordagem classica, substituindo a familia paramétrica de hipéteses hg € H
discutida na subsecao anterior por um circuito parametrizado. Um classificador construido
nesse formato possui 3 elementos basicos: uma estrurura codificadora, uma camada de pro-

cessamento para evoluir estados e uma regra de decisdo (LAROSE: COYLE, 2020).

2.3.2.1 Codificacdo

A depender do tipo do dado, um modelo de aprendizagem quantica pode exigir um passo
adicional em seu fluxo de execucdo. Quando o dado é de origem quantica, a exemplo dos dados
provenientes de sensores quanticos, nao ha necessidade de uma etapa de codificacdo. Quando
o dado é cléssico, torna-se necessario representa-lo em um estado quantico para processa-lo.

Algumas formas de representacdo mais comuns sdo: pela base, pela amplitude e pelo

angulo. A seguir serdo detalhadas cada uma delas.
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2.3.2.1.1 Base

A codificacdo por base associa o estado de cada qubit a representacdo binaria de uma
dada entrada. De forma geral, seja z um valor escalar com representacdo binaria equivalente
a mostrada na equacdo 713.

b = boby...b_1 (2.13)

O estado |bob;...b,,—1) € definido como a representacdo do valor escalar z pelo método de
codificacdo pela base. Uma forma de preparar esse estado é considerar um sistema inicializado
em |0) com uma quantidade de qubits equivalente ao comprimento da string binaria de =
e aplicar portas X aos qubits onde a representacao binaria assume valor 1. A equacdo 714
apresenta o operador capaz de codificar um escalar z com representacdo binaria b utilizando

o método descrito.
n—1
E) =R X" (2.14)
i=0

Para um vetor x = (zg,x1,...,xx_1) com N entradas escalares, a codificacio pela base
requer uma quantidade de qubits proporcional ao comprimento da string binaria da entrada

(n). A complexidade de preparacdo do estado é O(Nn).

2.3.2.1.2 Amplitude

A codificacdo por amplitude associa as amplitudes de um conjunto de qubits com as
coordenadas de um vetor complexo normalizado. Matematicamente, se x = (xq, 1, ..., Tn_1)
é um vetor de CV com Y N:!|z;|2 = 1, o estado |1/} codificado por amplitude para x é dado

pela equacao 7T1H.
N-1

W) = Y i i) (2.15)

i=0
Existem diferentes propostas de implementacao desse esquema de codificacdo com dife-

rentes complexidades. Mottonen et all (2004) propoém um método com complexidade expo-
nencial no nimero de qubits. Araujo et al] (2021)) apresentam um algoritmo com complexidade
polilogaritmica no tamanho da entrada.

A codificacdo por amplitude faz uso de uma quantidade de qubits equivalente a log NV,
onde N é a quantidade de amplitudes a serem carregadas. Sob determinadas condicGes, esse

tipo de codificacdo apresenta complexidade O(N)/O(log N) (SCHULD: PETRUCCIONE, 202T).
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0y 42— E(x) < M(8) FH~<

Figura 3 — Modelo de aprendizagem baseado em circuito quantico parametrizado

2.3.2.1.3 Angulo

A codificagdo por angulo associa cada entrada de um vetor x = (xg, 21, ...,Zx_1) a0
angulo de uma porta de rotacdo aplicada em um qubit. A equacao P18 ilustra um operador
U que prepara a codificacdo descrita para o vetor x em um sistema de N qubits aplicando

portas de rotacao em Y.
N-1
i=0

A codificacdo por angulo requer uma quantidade de qubits equivalente ao tamanho da

entrada (V). A complexidade de preparacido do estado é O(N).

2.3.2.2 Processamento

Modelos baseados em circuitos variacionais fazem uso de um circuito composto de duas
partes, sendo uma destinada a codificacdo segundo alguma técnica como as apresentadas
na subsecdo PZ3271 e outra voltada ao modelo propriamente dito. A figura B ilustra um
circuito variacional representativo dessa abordagem, onde £(x) corresponde a uma estrutura
de codificacdo para a amostra x do conjunto de dados e M(8@) o modelo com parametros @
a serem ajustados.

O operador U(x;0) que sintetiza a estrutura é mostrado na equacdo P17
U(x,0) = M(0)E(x) (2.17)

Circuitos quanticos variacionais podem ser interpretados como modelos de aprendizagem

dagem da outra é o tratamento que se da a saida do circuito. Essa distincao serd abordada

nas subsecdes que seguem.

2.3.2.2.1 Modelos Quéanticos Deterministicos

Um modelo deterministico se aproveita da estrutura da equacdo D714 e utiliza o valor

esperado de um operador de medicdo O como a saida do modelo (SCHULD: PETRUCCIONE,
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2071). Matematicamente, se (%, 0)) = U(x, 0) |0) é o estado resultante do circuito apds a
etapa de codificacdo e processamento do modelo, a saida fp(x) para o observavel O é dada
por:

fo(x) = (¥(x,0)| O |¥(x,0)) (2.18)
2.3.2.2.2 Modelos Quéanticos Probabilisticos

Diferentemente da abordagem deterministica que utiliza o valor esperado de um operador
de medicao O como a saida do modelo, modelos probabilisticos associam cada medicdo a
pode ser expresso em termos das possiveis saidas como 3,y ¥ |y) (y| € o modelo quantico

probabilistico é definido pela equacao 219.

po(ylx) = [(ylv(x, 0))* (2.19)

A equacdo 7T9 mede a incerteza da saida y para uma dada entrada x. Um classificador

pode utilizar a quantificacdo dessa incerteza para estabelecer mecanismos de predicao.

2.3.2.3 Regra de Decisao

Algoritmos variacionais exibem saidas desprovidas de uma relacdo semantica com a ativi-
dade fim de um classificador. A regra de decisdo é o componente responsavel por estabelecer
um relacionamento semantico entre as saidas dos processamentos e o critério de classificacdo
(LAROSE: COYLE, 2020).

Em problemas de classificacdo binaria é usual selecionar apenas um qubit para fazer me-
digbes e extrair o valor esperado de um observavel (SCHUID et-an, 2020). Ao valor esperado
obtido é adicionado um viés treindvel e o resultado é mapeado em um conjunto com dois

valores. A funcao responsavel pelo mapeamento estabelece o critério de decisao.

2.4 CONSIDERACOES FINAIS

O presente capitulo abordou um recorte multidisciplinar dos conhecimentos que subsidiam
os desenvolvimentos posteriores deste trabalho. A secdo 271 apresentou o modelo de compu-

tac3o utilizado, mostrando como a unidade bésica de informaco (qubit) é manipulada por
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transformacoes unitarias e como a informacdo é extraida através de medicoes. A secdo D2
detalhou a estrutura e funcionamento do modelo algoritmico variacional, destacando conside-
racoes sobre a eficiéncia relativas a obtencao dos gradientes e ao desempenho do otimizador.
Por fim, a secdo 23 abordou a empregabilidade dos algoritmos variacionais no contexto de
aprendizagem supervisionada, apresentando a formulacdo de um classificador binario que tem
como entrada dados cléssicos codificados em estados quanticos e cuja saida pode ser inter-

pretada por diferentes mecanismos.
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3 BATCH QUANTICO

3.1 BATCH CLASSICO

O problema de minimizacdo da funcdo de custo descrito em 212 pode ser resolvido de
forma iterativa utilizando o conjunto de dados D = {(x;,¥;),i = 1,2,..., N} e o algoritmo
do Gradiente Descendente. Esse algoritmo atualiza o pardametro 6 na direcdo contraria ao

gradiente do custo ( VC(0)) ponderado pelo fator 7:
't «— 0" —nvC(6") (3.1)

Em virtude do fator VC(6) em B ser calculado para todo o conjunto D, a cardinalidade
desse conjunto pode afetar de forma expressiva o desempenho do algoritmo (BOTTOU efall,
T99T). Uma das formas de superar essa limitacdo é fazer atualizacBes paramétricas a cada
nova apresentacdo de um exemplo (x;,y;) € D escolhido de forma aleatéria. Essa estratégia
de atualizacdo reduz em um fator de N o computo de VC(6) em Bl e é conhecida como
uma versao estocastica do Gradiente Descendente.

Outra estratégia de atualizacdo paramétrica é considerar subconjuntos de D com cardi-
nalidade T e calcular o gradiente para cada um desses subconjuntos. Uma escolha razoavel
da quantidade de subconjuntos torna menos custosa a determinacdo do gradiente. E pos-
sivel, ainda, encontrar estratégias que relacionam W com outros hiperparametros. He, Liu
e Tad (P01Y) trazem evidéncias tedricas e empiricas de uma relacdo de W com a taxa de
aprendizagem de forma a ampliar a capacidade de generalizacao em modelos de aprendizagem
profunda.

O conceito de batch em aprendizagem classica esta intrinsecamente relacionado as estra-
tégias escolhidas para fazer atualizacées paramétricas do tipo Bl. Quando todo o conjunto
D é utilizado para calcular o gradiente, tem-se uma aprendizagem em batch. Quando apenas
uma amostra em D ¢ utilizada, tem-se uma aprendizagem online. Um aspecto vantajoso desse
altimo tipo de aprendizagem é a capacidade de atualizar o modelo a medida que novas amos-
tras de treino est3o disponiveis, conferindo instantaneidade a sua forma de operacdo (HAYKIN,

9008)_
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3.2 O EQUIVALENTE QUANTICO

Estratégias de aprendizagem em batch exploram formas diferentes de apresentar padrdes
a algoritmos como foi detalhado na secao BZl. As subsecdes a seguir irdo explorar novas

estratégias de batch em padrdes codificados em estados quanticos.

3.2.1 Batch Sequencial

Consiste em apresentar um ou mais padrdes codificados em estados quanticos e apresentar
um de cada vez. O Unico diferencial dessa abordagem é utilizar o mapeamento de dados classi-
cos em quanticos e explorar as possiveis correlacdes existentes em um novo espaco para obter
resultados melhores. A figura B ilustra um batch sequencial de tamanho 4. Cada |z/1)i€{17273’4}

corresponde a um padr3o carregado e depois processado por uma camada variacional (M(8)).

loa) || M0) o+l | (M) §
- H R 1+ HAR
s | | M(8) o+ | M) i
- —~<F- — -

Figura 4 — Exemplo de batch sequencial de tamanho 4

Para um circuito variacional descrito pela equacdo 711, o custo C(0) pode ser descrito em
termos da funcdo de perda £, das entradas x; e do parametro variacional @, para um batch

de tamanho n, como:

> L(U(x:0). ) (32)

3.2.2 Batch Superposicao

Consiste em codificar 2 ou mais padrdes em estados quanticos e coloca-los em super-

posicdo. A figura B ilustra um batch superposicdo com 4 padrbes carregados em estados
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) ic(1.2.3.4y, colocados em superposicdo e processados por uma camada variacional (M(6)).

Figura 5 — Exemplo de batch sequencial de tamanho 4
Para o batch em superposicao, a expressao da equacdo B2 se reduz a:
C(0) = LIU(x1,...,%n;0),i) (33)

O circuito que implementa um batch em superposicdo é composto de 2 subsistemas. Um
deles serve para criar uma camada de enderecamento dos estados a serem carregados no outro
subsistema. A figura B ilustra um circuito com o caso geral de um batch em superposicdo em
que e denota a quantidade de qubits no subsistema de enderecamento, d representa a quanti-
dade de qubits no subsistema destinado ao carregamento dos dados, £ o operador responsavel

por carregar dados classicos no dispositivo quantico e M(6@) é um circuito parametrizado em

0.

&L

]
——
1 TT/ ;

E(x1) H E(x2) —— E(x1) H M(0) H—

|

Figura 6 — Batch Superposicdo - caso geral

Assumindo um estado inicial |¢g) = |0>®(6+d)

, O primeiro passo para construir um batch
em superposicao é aplicar portas Hadamard ao subsistema de enderecamento. O estado do

sistema, representado por |p;) na figura B, é dado pela expressdo em B4,

1) = (H®* ® I%%) |ipo) = \/12— ( ) Ii>) 0)* (3.4)

ie{0,1}¢
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A aposicao de portas Hadamard nos qubits de enderecamento cria uma camada com a
superposicao de todos estados possiveis para a quantidade e, resultando em um total de 2°.
O segundo passo para construir um batch em superposicdo é carregar os dados classicos x;
no dispositivo quantico, inserindo controles distintos de forma a esgotar a quantitade total de
enderecos. Dessa forma, a quantidade total de dados classicos (L) em um batch em superpo-
sicdo é limitada a quantidade de enderecos disponiveis (L = 2¢). O estado do sistema apds o

carregamento dos dados, representado por |p9), é dado pela expressdo B3.
|p2) = CE D (E(xw)) - - CH(E(x2))C(E(x0)) 1) (3.5)
Cada operador (" denota a operacio controlada nos e qubits de enderecamento e i o valor
decimal do controle representado por uma string binaria de comprimento e.
Combinando as expressdes obtidas nas equaces B4 e B, |ps) pode ser reescrito como:

1 4 J
P2 = 7 ( > i) E(xi,) [0) ) (3.6)

1€{0,1}¢

Na expressdo B8, o subscrito i, se refere a representacao decimal de uma string binéria
i € {0,1}¢. Chamemos de |1;,) = £(x;,)]|0)?) o estado resultante da aplicacio do operador £
ao dado classico x;, nos qubits de dados inicializados em |0). O estado final apds a aplicacdo
do circuito parametrizado M (@), representado por |p3) na figura B, é dado por:

|w3>=<f®e®M<e>>¢12_e( S ) W):;Q_e( 5 |z'>M<e>|wz-d>) (3.7)

1€{0,1}¢ 1€{0,1}¢

A expressao da equacdo B indica que, apds aplicar o circuito M(€) que atua apenas nos
qubits de dados, o estado final composto pelos dois subsistemas resulta na superposicdo do
modelo aplicado a cada ponto de dado x;, inicializado em um estado quantico pelo operador
&. Nesse ponto, ao selecionar um qubit de dados para medicdo, o sistema colapsa de forma
aleatéria para um dos valores contidos na superposicdo. Dessa forma, o valor esperado do
observavel aferido é composto uniformemente por contribuicoes advindas de todos os pontos
de dados carregados.

Apbés a aplicacdo de um observavel O aos qubits de dados, o valor esperado da medida
pode ser o obtido por meio da equacdo B8.

E@z;( )3 <wid\M*<e>OM<9>md>) (38)

1€{0,1}¢

As principais desvantagens do batch em superposicdo comparadas ao sequencial sao o uso
de mais espaco e a maior complexidade na preparacdo dos multicontrolados para incluir os

qubits de enderecamento.
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3.2.3 Batch Duplo

Consiste em uma abordagem hibrida que mescla os conceitos apresentados nas subsecdes
anteriores. Cada batch duplo apresenta sequencialmente padrdes codificados em superposicoes

distintas. A figura [@ ilustra um batch duplo com 2 superposicdes distintas e 2 padrdes em cada

uma delas.
o e . S e e, -
1 1

Figura 7 — Exemplo de batch duplo de tamanho 2 com superposicdes de tamanho 2

Para o batch duplo, a express&o do custo (C) faz uso de uma estrutura de soma no tamanho
do batch sequencial como na equacao B2 e de uma estrutura de carregamento de padrdes
em superposicdo como em B3. Matematicamente, para uma quantidade b de superposicdes

distintas, cada uma com k padrdes, o erro pode ser expresso como:
CO) = LUK, ....,x1;0),u) (3.9)

onde xg denota o padrdo ¢ carregado na superposicao j.

Expressdes similares a de saida do batch em superposicao podem ser obtidas para os
circuitos componentes do batch duplo. Diferentemente das demais estratégias, a atualizacdo
de pesos no batch duplo soma classicamente os valores extraidos de dados em superposicao.
O aspecto atrativo em considerar esse tipo de abordagem é a economia que pode ser obtida

na preparacao dos estados sem abrir mao do recurso de superposicao.

3.3 CONSIDERACOES FINAIS

Em aprendizagem classica, a tnica forma de manipular a apresentacdo de dados em batch
é através da selecao de subconjuntos de padrdes do conjunto de treino. Na otimizacao baseada
em gradiente, esses subconjuntos selecionados sao utilizados para computar o gradiente da
funcdo de custo e atualizar iterativamente os pesos.

A computacdo quantica permite pensar uma nova forma de apresentar padroes a partir do

recurso da superposicao. Esse recurso torna possivel carregar mais de um padrao e processar
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todo o conjunto carregado em um dnico fluxo de execucdo, permutando o custo computacional
de tempo por espaco.

A secao B2 discutiu as diferentes formas em que o recurso da superposicao pode ser
explorado no plano semantico de aprendizagem em batch. A subsecdo B=2 apresentou um
modelo de batch em que cada padriao é carregado em um circuito e em seguida as saidas
sao processadas classicamente para avaliar a funcdo de custo. A subsecdo B22 apresentou
um modelo em que todos os padrbes sdo colocados em superposicdo e processados em um
Gnico circuito. A subsecdao B3 apresentou um modelo em que padrdes sao carregados em
superposicoes distintas. O que diferencia os modelos apresentados é a quantidade de parcelas

no computo da funcao de custo para estimar iterativamente o gradiente.
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4 METODOLOGIA

Este capitulo descreve o processo experimental utilizado para avaliar o desempenho de um
modelo variacional treinado com as diferentes estratégias de batch apresentadas no capitulo
B. Foram empregados batches de classe (inica de forma a suprimir o carregamento dos rétulos
e do circuito comparativo entre o rétulo e o valor de predicdo, simplificando a arquitetura do
modelo em termos de espaco. O modelo variacional foi fixado em duas camadas para manter
baixa profundidade dos circuitos e isolar o efeito das estratégias de batch no treinamento.

A analise comprarativa privilegiou problemas de classificacdo binaria em virtude da simpli-
cidade e aplicabilidade em diversos dominios praticos como detecao de fraudes e diagndsticos
médicos. Sendo o foco do presente estudo explorar novas formas de treinamento em batch no

dominio quantico, a comparacdo com modelos classicos no estado da arte foi suprimida.

4.1 PROCESSAMENTO QUANTICO
4.1.1 Entrada

Cada amostra foi codificada nas amplitudes para garantir maior economia de espaco no
carregamento dos dados classicos. Os batches de superposicdo foram construidos utilizando
qubits auxiliares com portas Hadamard e operacdes controladas tendo como alvo as amos-
tras codificadas. A figura B ilustra um circuito codificador do batch em superposicao para 4

amostras. Cada [t;);c; o5 4y representa uma amostra carregada no estado [¢;).
0) _i H [ ]
0) —{ 1]
n— H H H F

o) | 2) | [ s) || [%a)
0) ——— — — — —

Figura 8 — Exemplo de entrada com 4 amostras carregadas em superposicdo
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4.1.2 Modelo

O modelo utilizado em todos os experimentos foi construido de forma a manter baixa
profundidade no circuito e com portas parametrizadas atuando em um ou dois qubits, conforme
descrito em (SCHULD et all, P020). As caracteristicas de baixa profundidade e portas sob no
maximo dois qubits permitem encurtar o tempo de experimentacdao sem comprometer o espaco
de expressividade do modelo.

A arquitetura foi fixada com 2 camadas, cada uma com operacdes de rotacdo e uma
estrutura de emaranhamento com portas CNOT, conforme exemplificado na figura para um

sistema com 3 qubits.

—H R(a}, 81,7) @+ R(a?, 51,77 O
—H R(03, 83.3) = H R(od, 57, 17) P
— R(ad, B3,73) S R(a?, 82,72) & :

““““ CAMADA 1 T CAMADA?2

Figura 9 — Exemplo de modelo com 3 qubits e 2 camadas

Esse tipo de arquitetura usa uma quantidade de parametros treinaveis de complexidade
polilogaritmica no tamanho da entrada e apresenta resultados competitivos em benchmarks

de dados classicos (SCHULD et all, 2020), justificando sua ado¢do no presente trabalho.

4.1.3 Saida

O circuito correspondente aos esquemas de codificacdo apresentados em BTl acrescido da
arquitetura de modelo especificada em E12 foi executado s vezes, sendo s um hiperparametro
selecionado a depender da estratégia de batch. Para todas as execucdes, foi fixado um qubit de
dados para ser medido com o operador Pauli Z e o valor esperado extraido apés as s execucdes.
O valor esperado de Pauli Z acrescido de um bias treinavel foi utilizado para alimentar a regra

de decisdo do modelo.
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|41) )| |CAMADA 1| |CAMADA 2

Figura 10 — Exemplo de circuito com entrada, modelo e medicdo

4.2 CONFIGURACAO EXPERIMENTAL

4.2.1 Bases de Dados

A experimentacdo com as estratégias de batch discutidas no capitulo B foi feita com
as bases IRIS e MNIST. Essas bases foram escolhidas por apresentarem diferentes niveis de
complexidade e adequacdo ao aparato experimental.

A pequena quantidade de amostras e a baixa dimensionalidade da base IRIS a torna ade-
quada para testes iniciais em circuitos de escala reduzida. A MNIST, sendo numerosa em
amostras e dimensionalmente mais complexa, permite explorar limites de escalabilidade do
aparato. Os tépicos a seguir irdo detalhar cada uma delas, especificando o uso no corrente

trabalho.

4.2.1.1 IRIS

O conjunto de dados IRIS (EISHER, 1930) contém 150 amostras com registros métricos
do comprimento e largura das sépalas e pétalas de 3 espécies de flores do tipo iris: versicolor,
virginica e setosa. O conjunto esta distribuido na proporcdo de 50 amostras para cada espécie
e contém um rétulo adicional com a informacdo da espécie para cada registro métrico.

Para fins de classificacdo binaria, foi utilizado um subconjunto da base IRIS com 100
amostras de flores do tipo setosa e versicolor, sendo 50 para cada tipo. A escolha desse
subconjunto foi motivada pela existéncia de outros trabalhos na literatura que fazem uso
do mesmo subconjunto, como em (PIRAIFERRIE, 2024) e em (DUAN: SUN: HSIEH, 2024). O

conjunto de dados foi obtido na biblioteca scikit-learn (PEDREGOSA et arl, DOTT).



41

4.2.1.2 MNIST

O conjunto de dados MNIST (CECUN et all, T998) contém 70.000 amostras com imagens
de digitos de 0 a 9 escritos a m3o. Cada imagem possui dimensdo 28x28 pixels preenchidos
com diversos niveis de cinza.

O subconjunto utilizado na experimentacdo fez uso de 400 amostras dos digitos 3 e 6 em
uma distribuicdo de 200 para cada. A escolha desse subconjunto foi motivada pela existéncia
de outros trabalhos na literatura que fazem uso do mesmo subconjunto, como em (FARHI
NEVEN, P0T8) e em (CHEN etall, 2020). O conjunto completo foi obtido na biblioteca keras

(TEAM, P024).

4.2.2 Simulador Quantico

Toda a codificacdo dos experimentos foi feita utilizando Pennylane. O Pennylane é um
framework de cédigo aberto que contém uma série de recursos voltados para otimizacdo de
algoritmos quénticos e hibridos (BERGHOIM et all, ?018).

Foram utilizados os simuladores default.qubit e lightning.gnu para executar parte em
estacdo de trabalho pessoal e no cluster Apuana, respectivamente. O default.qubit é um
simulador baseado em Python ideal para prototipacdes de até 20 qubits. O lightning.gpu é

um simulador escrito em C++ com otimizacdo extremamente eficiente em dispositivos com

20 qubits ou mais.

4.2.3 Pré-Processamento dos Dados

Os conjuntos de dados foram pré-processados com a normalizacdo das caracteristicas no
intervalo [0, 1] e o mapeamento da saida no conjunto {—1,1}. O propésito da normalizac3o é
carregar as caracteristicas nas amplitudes obedecendo a condicdo de soma 1 das probabilidades
dos estados. O mapeamento da saida foi feito para adequar o rétulo de cada padriao aos
autovalores de medicdo do operador Pauli Z.

Além dos pré-processamentos descritos acima, o conjunto de dados MNIST foi redimensi-

onado em 8x8 de forma a reduzir a quantidade de qubits utilizada durante a experimentacao.
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4.2.4 Otimizador

A otimizacao dos parametros do modelo descrito na subsecao BT foi feita através do
otimizador Adam com taxa de aprendizagem fixada em 0.01 (DIEDERIK, P014). Esse otimiza-
dor é baseado no algoritmo do gradiente descendente apresentado no capitulo B e substitui o
gradiente da equacdo BT por uma expressao definida em termos de suas médias méveis para
convergir mais rapido. Os gradientes dos circuitos foram obtidos utilizando a técnica de me-

dicdes analiticas descrita na subsecao 7273. As implementacdes do otimizador e do gradiente

foram obtidas na API do Pennylane (BERGHOI' M et all, PO18).

4.2.5 Meétricas de Avaliacao

A inexisténcia de métodos comparativos na literatura de aprendizagem quantica em batch
tornou necessario o desenvolvimento de um critério valorativo apresentado ao longo dessa
subsecao.

O desempenho das estratégias descritas no capitulo B foi aferido a partir do conceito de

densidade de shots no batch explicitado a seguir.

Definicao 1 Sejam s e n as quantidades totais de shots e de padrbes definidos para um

batch, respectivamente. A densidade de shots (1) no batch é dada pela relacio:

s
n= n (4-1)

A motivacdo em construir essa definicdo é tornar os parametros s e n independentes da
forma como cada estratégia os implementa. Para © = 8 shots/padrdo e n = 4 padrdes,
por exemplo, a quantidade total de shots no batch é igual a 32. Cada uma das estratégias

implementa um batch com p = 8 de formas diferentes:
» Batch Sequencial: 4 circuitos, cada um com 1 padrdo e 8 shots;
» Batch Superposicao: 1 circuito com 4 padrdes e 32 shots;
» Batch Duplo: 2 circuitos, cada um com 2 padroes e 16 shots.

A experimentacao consistiu em fixar a densidade de shots em cada batch e comparar, para
um mesmo valor de n, as estratégias em termos da quantidade de iteracdes até a convergéncia

e das acuracias de treino e teste.
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A escolha de fixar esse parametro foi motivada de forma a garantir que, independente da
estratégia escolhida, cada batch contenha a mesma quantidade de padrdes e que cada padrao
seja apresentado a mesma quantidade de vezes a cada atualizacdo de pesos do algoritmo de
otimizacao.

Cada estratégia de batch emprega um ou mais circuitos para apresentar os padrdes. Com a
quantidade de padrdes e a densidade de shots fixadas para o batch, torna-se necessario definir,
para cada circuito, a quantidade de padroes a serem carregados e a respectiva quantidade
de shots. Seja b a quantidade de circuitos utilizados por uma das estratégias apresentadas da
secdo B2. De forma genérica, a quantidade de padrdes carregados (n.) e a quantidade de

shots (s.) em cada circuito do batch sdo dados pelas expressdes das equacdes B2 e B3
(4.2)

(4.3)

As expressdes quantitativas relativas aos padrdes e shots por circuito apresentadas nas
equacdes acima podem ser particularizadas para cada uma das estratégias definidas na secdo

B2. Assumindo n e yu fixos, temos:

» Batch Sequencial: cada circuito carrega apenas um padrao, resultando em uma quan-
tidade de circuitos equivalente a quantidade de padrdes (b = n). O nimero de padrdes
n

carregados no circuito (n.) é dado por n, = 7 = % = 1 e a quantidade de shots no

circuito (s.) € dada por s, = § = 2 = y;

» Batch Superposto: um unico circuito carrega todos os padrdes em superposicdo, logo

b = 1. Substituindo o valores de b nas equacdes B2 e B3, temos n. =n e S, = s;

= Batch Duplo: esse é o caso mais geral e as expressdes quantitativas referentes aos

circuitos sdo definidas pelas equacoes B2 e B3.

Da analise dos valores de n. e s. apresentada acima, é possivel constatar que as estratégias
de batch sequencial e superposto sao casos particulares da estratégia de batch duplo para os
casos onde b assume os valores extremos de 1 e n. A tabela abaixo sintetiza as expressGes

quantitativas definidas para as estratégias detalhadas acima.
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Estratégia | Sequencial | Superposto Duplo
n. 1 n l<n.<n
Sec 1 s 1< S.<s
b n l<b<n

Tabela 2 — Sintese das expressdes quantitivas de padrdes e shots por circuito no batch
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5 RESULTADOS

Os resultados comparativos foram gerados para a quantidade de padrdes n assumindo
valores no conjunto {2,4,8} e para a densidade de shots p em {8, 16,32}, ambas as quan-
tidades definidas por batch. O propdsito de considerar quantidades de padrdes miltiplas de
2 é carregar o maior valor possivel de amostras pelo mecanismo de codificacao discutido na
subsecdo BET1l. As densidades de shots foram escolhidas de forma a garantir que cada padrao
seja apresentado pelo menos uma vez para as diferentes quantidades de padrdes pré-definidas.
Para cada configuracdo (n, ) foram executados 10 experimentos e extraidos a média e o
desvio.

As tabelas B e B exibem as configuracdes de hiperparametros para os valores de n e p

fixados em cada estratégia.

(a) Hiperpardmetros Sequencial (b) Hiperpardmetros Superposicio
Batch Sequencial | Circuito Batch Superposicao | Circuito
n| u S b | n.| se n| pu S b Ne | Se

8 | 16 2 1 8 8 | 16 1 2 16
2116 | 32 2 1 16 2116 | 32 1 2 | 32
32 | 64 2 1 32 32 | 64 1 2 | 64
8 | 32 4 1 8 8 | 32 1 4 | 32
4116 | 64 4 1 16 4116 | 64 1 4 | 64
32 | 128 4 1 32 32 | 128 1 4 | 128
8 | 64 8 1 8 8 | 64 1 8 | 64
8 |16 | 128 8 1 16 8 |16 | 128 1 8 | 128
32 | 256 8 1 32 32 | 256 1 8 | 256

Tabela 3 — Hiperpardmetros para as estratégias sequencial e superposicao

As secOes a seguir detalham os resultados obtidos para os conjuntos de dados IRIS e
MNIST apresentados na subsecdo BEZ21. Cada secdo serd segmentada pela quantidade de
padrdes (n) e reunird informacdes graficas e numéricas para as estratégias de batch com

diferentes configuracdes de hiperparametros.
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Batch Duplo | Circuito
n| u s | b|n.| sc
8 [ 32 2| 2 | 16
411664 | 2] 2 | 32
32128 12| 2 | 64
2| 4 2
8 | 64 s
412 116
21 4 | 64

8116 | 128
412 | 32
204 |12
32 | 256 8
41 2 | 64

Tabela 4 — Hiperparametros para a estratégia de batch duplo

5.1 IRIS

.11 n=2

A analise dos graficos da figura I permite constatar que a estratégia de batch em super-
posicdo apresenta melhor desempenho frente a estratégia sequencial para todos os valores de
1 analisados. E possivel verificar ainda que a estratégia de batch em superposicio apresenta
convergéncia mais acelerada e curvas mais suaves.

A tabela B exibe os maiores valores das acuracias médias de treino e teste juntamente com
a iteracdo em que foram obtidos. O melhor valor de acuracia média para o treino foi de 1.000
e ocorreu na iteracao 144 da estratégia de batch em superposicdo com p = 32 e apresentou
desvio nulo. Para o valor médio da acuracia de teste, a estratégia de superposicdo com p = 16
e i = 32 juntamente com a estratégia sequencial para y = 32 apresentaram valor médio de

1.000 com desvio nulo.

Hiperparametros Treino Teste

p | b | Estratégia | Iteracdol | Médial | Desviol | Iteracao2 | Média2 | Desvio2

8 2 | Sequencial 153 0.895 0.037 205 0.910 0.066
1 | Superposicao 221 0.952 0.017 161 0.975 0.040

16 2 | Sequencial 184 0.949 0.028 194 0.955 0.027
1 | Superposicido 216 0.991 0.011 142 1.000 0.000

30 2 | Sequencial 228 0.988 0.010 141 1.000 0.000
1 | Superposicao 144 1.000 0.000 85 1.000 0.000

Tabela 5 — Melhores acuracias de treino e teste para n = 2
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Figura 11 — Resultados IRIS para n = 2

5.1.2 n=4

A andlise dos graficos da figura [ permite concluir que as estratégias de batch sequencial e
de superposicao apresentaram comportamentos similares ao caso n = 2. Para o batch duplo, o
desempenho ficou intermedidrio entre as demais estratégias com uma relativa proximidade da

estratégia de superposicao a medida que a densidade de shots no batch aumenta. No grafico
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da figura para ;. = 32, é possivel identificar que as curvas de acurécia de treino e teste
para as estratégias de batch em superposicao e duplo ficam praticamente ajustadas.

A tabela B exibe os maiores valores das acuracias médias de treino e teste juntamente com
a iteracdo em que foram obtidos. O melhor valor de acuracia média para o treino foi de 1.000
e ocorreu para as estratégias de batch em superposicdo e duplo para p € {16,32}. Para o
valor médio da acuracia de teste, o melhor valor obtido foi 1.000 e ocorreu para as todas as
estratégias para i € {16,32}. E possivel constatar também que, para um mesmo valor de
acuracia média atingido pelas 3 estratégias, a estrategia de batch em superposicao alcanca o

valor maximo com uma quantidade menor de iteracoes.

Hiperparametros Treino Teste

p | b | Estratégia | Iteracaol | Médial | Desviol | Iteracdao2 | Média2 | Desvio2
4 | Sequencial 139 0.904 0.036 231 0.945 0.042

8 | 1 | Superposicio 206 0.991 0.010 140 1.000 0.000
2 Duplo 218 0.955 0.014 221 0.990 0.020
4 | Sequencial 224 0.954 0.021 163 0.985 0.032

16 | 1 | Superposicdo 106 1.000 0.000 80 1.000 0.000
2 Duplo 223 0.992 0.011 234 1.000 0.000
4 | Sequencial 220 0.991 0.006 158 1.000 0.000

32 | 1 | Superposiciao 62 1.000 0.000 44 1.000 0.000
2 Duplo 173 1.000 0.000 57 1.000 0.000

Tabela 6 — Melhores acuracias de treino e teste paran =4
513 n=38

A anélise dos graficos da figura I3 permite extrair conclusdes analogas as que foram
apresentadas para os casos n = 2 e n = 4 nas subsecdes anteriores. O aspecto inovador da
andlise para o caso n = 8 é o comportamento do hiperparametro b em diferentes estratégias e
valores de . Nas figuras [33 e [3H, valores menores de b possibilitam uma convergéncia mais
acelerada com acuracias mais altas em um regime de baixa densidade de shots. O grafico da
figura exibe um comportamento das curvas de acuracia praticamente sobrepostos para as
estratégias de batch em superposicdo e duplo para os diferentes valores de b.

A tabela [@ exibe os maiores valores das acuracias médias de treino e teste juntamente
com a iteracao em que foram obtidos. O melhor valor de acuracia média para o treino foi de

1.000 e ocorreu para a estratégia de batch em superposicao em todos os valores de y e para
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Figura 12 — Resultados IRIS para n =4

a estratégia de batch duplo com p € {16, 32} em diferentes valores de b. Para o valor médio

da acuracia de teste, o melhor valor obtido foi 1.000 e ocorreu para as estratégias de batch

em superposicdo e duplo para i € {8,16,32} e diferentes valores de b. E possivel constatar

também que, para um mesmo valor de acuracia média atingido pelas estratégias que fazem

uso de padrdes em superposicdo, valores menores de b conduzem uma quantidade menor de

iteracdes para atingir o valor méximo. Diferentemente dos resultados exibidos nas tabelas B
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e B, no caso n = 8 a estratégia sequencial ndo atingiu o mesmo patamar das demais mesmo

com o aumento da densidade de shots no batch. Isso sugere que a estratégia sequencial sofra

algum tipo de perda em termos de poder de generalizacdo com o aumento da quantidade de

padroes no batch em configuracoes com baixo valor de p.

IRIS
(u,n)=1(8,8)
Fungdo Objetivo Acurécia de Treino Acurécia de Teste
1.09 & ---- batch sequencial 1.0 e ,r, Y ({,? 1.00 . i‘ ",” : JJ. [ 'I
---- batch superposicao ey “,\ ok iy iy
0.9 perposi 4 i dyy ‘1,,‘,1‘.;',, .\,«h Aok, it | 095 ) ', VY h& :‘" \ :
“-- batch duplo (b=2) 0.9 Yt "” M i 4 Al s%' i
0.8 ---- batch duplo (b= 4) ,ﬂ,u hh A'.’,,.v, b ,N‘: ..A M,f"m i ,\1’ 0.90 ‘ fif ,”l“'.i~ :
’ | AT ' 4
0.8 &3' 0.85 i "F.-'l” ;{ﬁ iR
0.7 shg'f: L .5'
. 0.80 froy iy
0.6 ; 0.7 ---- batch sequencial ---- batch sequencial
b %n nl'n'\n ) % ,,‘,,,,, ,,,I:‘,.,I{'Ap ---- batch superposicao 0.75 ---- batch superposicao
05 b g" %K "’ﬁ 06 —— batchduplo (b=2) | 070 —-— batch duplo (b=2)
0.4 ---- batch duplo (b =4) 0.65 --== batch duplo (b =4)
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Iteragdo Iteragdo Iteragao
(@) u=328
IRIS
(1, n) =(16,8)
Fungdo Objetivo Acurécia de Treino Acurécia de Teste
. 1.0 . ~ rv
1.0 ---- batch sequencnél )\ .,\-*‘,,‘-(*'w" e q-.\.,uw.\,,,\,‘,,«.‘\:m, 1.00 W‘h\.,&,ﬁ s | \m u'\"E:"" \*M‘}‘ ‘T‘.’
0.9 ;‘ ---- batch superposicao p :.,:l"‘ mw", ‘\‘\,,,.,.,;f‘ S g-\‘ ‘J"‘""w’t‘/m 0.95 "'ri .'ﬂ ; :.,
911 ---- batch duplo (b=2) 0.9 A ™ ,..N : Bl "a’
N 1 v' i I’
08 k. ---- batch duplo (b=4) :;ﬁ ! 0-90 f"' " J;" Rt
. ié Iy
| 081 i} 0.85
0.7 1y
, 0.80
0.6 0.7 :" ---- batch sequencial ---- batch sequencial
hl . 0.75 .
i ---- batch superposicao ---- batch superposicao
0.5 0.6 ,f/ ---= batch duplo (b=2) | 0.701 | ---- batch duplo (b=2)
0.4 ---- batch duplo (b =4) 0.65 g ---- batch duplo (b =4)
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Iteragao Iteragdo lteragao
(b) n=16
IRIS
(1,n)=(32,8)
Fungdo Objetivo Acurdcia de Treino Acurdcia de Teste
1.0 ---- batch sequenci"al 1.0 ﬁ'@i’?"}\hﬁ”s-,"a'f'""‘.'"‘"""" R o 1.00 " l",m" ’4," 4 ” " ':
0.9 ---= batch superposicao S 0.95 ff "
---- batch duplo (b=2) 0.9 qﬁ
0.8 ---- batch duplo (b =4) ! 0.90
081 | 0.85
0.7 i
d 0.80
0.6 0.74 | ---- batch sequencial ---- batch sequencial
05 ‘.‘I ---- batch superposicao 0.75 ---- batch superposicao
' 0.6 ,,’,' ---- batch duplo (b =2) 0.70 ---- batch duplo (b=2)
04 / ---- batch duplo (b= 4) ---- batch duplo (b= 4)
0.65
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Iteragdo Iteragdo Iteragdo
(c) p =32
n=2~8

Figura 13 — Resultados IRIS para
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Hiperparametros Treino Teste

p | b | Estratégia | Iteracaol | Médial | Desviol | Iteracdao2 | Média2 | Desvio2
8 | Sequencial 189 0.901 0.028 108 0.925 0.056

8 1 | Superposicido 146 1.000 0.000 73 1.000 0.000
2 Duplo 147 0.990 0.009 38 1.000 0.000
4 Duplo 173 0.955 0.024 96 0.985 0.023
8 Sequencial 140 0.964 0.021 122 0.980 0.024

16 1 | Superposicado 86 1.000 0.000 49 1.000 0.000
2 Duplo 92 1.000 0.000 45 1.000 0.000
4 Duplo 203 0.991 0.008 191 1.000 0.000
8 | Sequencial 227 0.994 0.006 76 0.995 0.015

3 1 | Superposiciao 45 1.000 0.000 40 1.000 0.000
2 Duplo 58 1.000 0.000 47 1.000 0.000
4 Duplo 81 1.000 0.000 52 1.000 0.000

Tabela 7 — Melhores acuracias de treino e teste paran =8

5.1.4 Sintese dos Resultados

As analises apresentadas nas subsecdes BT, b T e B T3 permitem concluir que, fixados

os hiperpardmetros (n, ;1) do batch, o ritmo de convergéncia do modelo e suas acurécias de

treino e teste sdo afetados pelo hiperpardmetro b (quantidade de circuitos). Valores menores

de b refletem uma convergéncia mais acelerada e acuracias maiores com menor desvio.

O aparato experimental selecionado obteve acuracias de treino e teste com valor 1.000

e desvio nulo para a estratégia de superposicdo em boa parte dos cendrios avaliados. Para

as demais estratégias, os valores de acuracia obtidos foram superiores ou préximos de 0.9

indicando que, a despeito da minimalidade dos recursos empregados na definicdo e operacdo

do modelo, o aparato experimental conseguiu produzir resultados expressivos.

5.2 MNIST

5.21 n=2

A andlise dos graficos da figura 4 permite extrair conclusdes analogas as que foram

apresentadas para o caso n = 2 do conjunto de dados IRIS na secdo anterior. O Unico

diferencial para o conjunto MNIST diz respeito a suavidade das curvas.

A tabela B exibe os maiores valores das acuradcias médias de treino e teste juntamente
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com a iteracao em que foram obtidos. O melhor valor de acuracia média para o treino foi de
0.913 e ocorreu na iteracdo 887 da estratégia de batch em superposicao com p = 32 e desvio
de 0.020. Para o valor médio da acurdcia de teste, a estratégia de superposicao com p = 32

apresentou valor médio de 0.921 com desvio de 0.024.

Hiperparametros Treino Teste

p | b | Estratégia | Iteracaol | Médial | Desviol | Iteracao2 | Média2 | Desvio2

g 2 | Sequencial 897 0.741 0.054 943 0.759 0.072
1 | Superposicao 948 0.806 0.040 933 0.829 0.060

16 2 | Sequencial 931 0.825 0.031 937 0.840 0.056
1 | Superposicido 895 0.880 0.015 846 0.889 0.030

3 2 | Sequencial 923 0.883 0.025 936 0.896 0.032
1 | Superposicao 887 0.913 0.020 753 0.921 0.024

Tabela 8 — Melhores acuracias de treino e teste para n = 2
522 n=4

A andlise dos graficos da figura I3 permite extrair conclusdes analogas as que foram
apresentadas para o caso n = 4 do conjunto de dados IRIS na secdo anterior.

A tabela @ exibe os maiores valores das acuracias médias de treino e teste juntamente com
a iteracdo em que foram obtidos. O melhor valor de acuracia média para o treino foi de 0.927 e
ocorreu na iteracao 868 da estratégia de batch em superposicao com p = 32 e desvio de 0.013.
Para o valor médio da acuracia de teste, a estratégia de superposicao com p = 32 apresentou
valor médio de 0.938 com desvio de 0.027. E possivel constatar ainda que, comparativamente
aos valores da tabela B, as estratégias de batch sequencial e em superposicdo tiveram uma

melhora nos valores de acuracia com o aumento da quantidade de padrdes no batch.

5.2.3 n=38

A andlise dos graficos da figura I8 permite extrair conclusdes analogas as que foram
apresentadas para o caso n = 8 do conjunto de dados IRIS na secdo anterior.

A tabela [0 exibe os maiores valores das acuracias médias de treino e teste juntamente
com a iteracdo em que foram obtidos. O melhor valor de acuracia média para o treino foi de

0.931 e ocorreu na iteracao 828 da estratégia de batch duplo com p = 32 e desvio de 0.020.
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Figura 14 — Resultados MNIST para n = 2

Para o valor médio da acuracia de teste, a estratégia de superposicao com p = 32 apresentou

valor médio de 0.938 com desvio de 0.038. Diferentemente das configuracdes experimentais

anteriores, o caso n = 8 do conjunto de dados MNIST lanca a perspectiva de que a estratégia

de batch duplo pode apresentar aspectos vantajosos em termos de acuracias frente as demais

estratégias.
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Hiperparametros Treino Teste

p | b | Estratégia | Iteracaol | Médial | Desviol | Iteracdao2 | Média2 | Desvio2
4 | Sequencial 847 0.763 0.045 781 0.778 0.045

8 | 1 | Superposicio 957 0.877 0.008 881 0.886 0.039
2 Duplo 935 0.837 0.034 929 0.846 0.026
4 | Sequencial 798 0.842 0.035 811 0.861 0.053

16 | 1 | Superposicdo 903 0.913 0.017 874 0.920 0.027
2 Duplo 852 0.888 0.035 823 0.905 0.038
4 | Sequencial 917 0.896 0.014 890 0.909 0.043

32 | 1 | Superposicio 868 0.927 0.013 829 0.938 0.027
2 Duplo 933 0.917 0.021 953 0.931 0.023

Tabela 9 — Melhores acuracias de treino e teste paran =4

Hiperparametros Treino Teste

p | b | Estratégia | Iteracdaol | Médial | Desviol | Iteracao2 | Média2 | Desvio2
8 | Sequencial 843 0.788 0.027 930 0.802 0.047

8 1 | Superposicido 923 0.910 0.022 833 0.929 0.029
2 Duplo 856 0.886 0.027 936 0.892 0.021
4 Duplo 957 0.837 0.032 878 0.844 0.058
8 | Sequencial 934 0.860 0.021 862 0.866 0.038

16 1 | Superposicado 940 0.924 0.021 898 0.930 0.030
2 Duplo 892 0.906 0.018 734 0.910 0.030
4 Duplo 946 0.886 0.030 955 0.903 0.045
8 | Sequencial 831 0.898 0.021 846 0.914 0.031

3 1 | Superposicado 917 0.928 0.019 505 0.938 0.038
2 Duplo 828 0.931 0.020 788 0.936 0.024
4 Duplo 752 0.921 0.017 545 0.928 0.029

Tabela 10 — Melhores acuracias de treino e teste paran = 8

5.2.4 Sintese dos Resultados

Os resultados para a base MNIST detalhados nas subsecoes B2, 572 e b 23 permitem

extrair conclusdes similares as que foram discutidas na secdo Bl para a base IRIS sob a ética

de um novo fator de escala.

No cenario aqui apresentado, houve um aumento da quantidade de amostras por um fator

multiplicativo de 4 e da quantidade de qubits por um fator de 3. Mesmo em uma escala maior,

fixados os hiperparametros (n, 1) do batch, ritmos de convergéncia mais acelerados e acuracias

de treino e teste mais altas sao obtidos para valores menores de b.
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Figura 15 — Resultados MNIST para n =4

Além do fator de escala, outro diferencial observado na base MNIST em relacdo a IRIS
foi o desempenho das estratégias de batch duplo e de superposicao. Para a configuracao
hiperparamétrica (n, 1) = (8,32), o maior valor médio da acuracia de treino foi obtido para
estratégia de batch duplo com b = 2. Ainda que pouco expressiva em termos numeéricos,
essa diferenca sugere que possa haver uma ligeira sensibilidade no desempenho das estratégias

relacionada ao fator de escala ou a prépria natureza dos dados (vide tabela I0).
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16 — Resultados MNIST para n =8
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6 CONCLUSAO

As técnicas de construcao de batch da secao B2 apresentaram diferentes curvas de desem-
penho quando valoradas pelo critério definido na subsecdo BE2H. De forma geral, as estratégias
com maiores quantidades de padrées em superposicao trouxeram resultados de acuracias me-
lhores nos cendrios de baixa densidade de shots analisados (1 € {8,16}). Para = 32, as
estratégias com algum nivel de superposicdo de padrdes se mostraram igualmente competitivas
com curvas de acuracias praticamente sobrepostas.

O presente estudo também evidencia a importancia de hiperpardametros como a densidade
de shots (), a quantidade de padrdes (n) e o nivel de superposicdo (b) no batch. Os experi-
mentos com os conjuntos de dados IRIS e MNIST sinalizaram que, mesmo com uma densidade
baixa, é possivel obter resultados satisfatérios e competitivos.

Do ponto de vista pratico, as estratégias que fazem uso de superposicao apresentam a
desvantagem do uso de qubits adicionais pelo método de construcdo aqui proposto. Apesar
do custo adicional em espaco, essas estratégias se mostraram mais céleres no que tange a
convergéncia da funcdo objetivo.

Possiveis direcbes de trabalhos futuros emergem das lacunas ainda inexploradas nesse
estudo. Uma delas é referente a composicao do batch. Até o presente momento, todo o
aparato experimental fez uso de batches com padrdes de uma (nica classe. Generalizar a
composicao do batch pode revelar outras disposicoes arquiteturais com melhor potencial de
empregabilidade.

Outro caminho de investigacdo esta relacionado as expressdes analiticas para associar os
hiperparametros analisados. A andlise numérica aponta diferencas de comportamentos para
composicdes (n, i1, b) em cada estratégia mas n3o delimita fronteiras que disciplinem a escolha
dos hiperparametros 6timos para um determinado contexto. Obter expressdes analiticas pode

ajudar a delimitar essas fronteiras e aprimorar as técnicas de batch.
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