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RESUMO

Circuitos Quanticos Variacionais (CQV) sdo uma abordagem promissora para o Processamento
de Linguagem Natural Quantico. Contudo, persiste uma lacuna entre as propriedades teéri-
cas dos circuitos, como expressabilidade e emaranhamento, e seu desempenho empirico. Esta
dissertacdo investiga sistematicamente essa relacdo na tarefa de analise de sentimentos, ava-
liando o impacto da representacdo de entrada e comparando com benchmarks classicos. Para
tal, foram avaliadas 15 arquiteturas de CQV em baixa (L = 1) e alta (L = 10) profundi-
dade, quantificando-se sua expressabilidade e poder de emaranhamento. Os modelos foram
testados em quatro bases de dados (trés sintéticas e a publica Stanford Sentiment Treebank
- SST) utilizando diferentes embeddings e dimensionalidades. A performance (métrica F1) foi
comparada a 7 modelos cléssicos e 26 configuracdes de ensembles com validacao estatistica.
Os resultados confirmam que emaranhamento e profundidade adequada s3o requisitos para
o desempenho em cendrios complexos; o aumento da profundidade de L = 1 para L = 10
foi fundamental para a performance dos circuitos emaranhadores, que também demonstraram
maior robustez a reducdo de dimensionalidade. Contudo, os modelos classicos de referéncia,
notadamente as Maquinas de Vetores de Suporte, apresentaram desempenho superior na base
SST, ndo sendo observada uma vantagem quantica. Em contrapartida, nas bases sintéticas, di-
versos modelos quanticos profundos alcancaram desempenho estatisticamente equivalente aos
melhores benchmarks classicos, evidenciando sua competitividade. Este trabalho estabelece,
portanto, uma ponte empirica entre teoria e pratica no projeto de CQVs, validando a relevancia
do emaranhamento e da profundidade e fornecendo diretrizes para arquiteturas quanticas mais

eficazes.

Palavras-chaves: aprendizagem de maquina quantica; circuitos quanticos variacionais; pro-

cessamento quantico de linguagem natural; analise de sentimentos; emaranhamento quantico.



ABSTRACT

Variational Quantum Circuits (VQCs) are a promising approach for Quantum Natural Lan-
guage Processing. However, a gap persists between the theoretical properties of circuits, such
as expressibility and entanglement, and their empirical performance. This dissertation system-
atically investigates this relationship in the sentiment analysis task, evaluating the impact of
the input representation and comparing against classical benchmarks. To this end, 15 VQC
architectures were evaluated at low (L = 1) and high (L = 10) depth, quantifying their
expressibility and entanglement power. The models were tested on four datasets (three syn-
thetic and the public Stanford Sentiment Treebank - SST) using different embeddings and
dimensionalities. Performance (F1-score) was compared to 7 classical models and 26 ensemble
configurations with rigorous statistical validation. The results confirm that entanglement and
adequate depth are requirements for performance in complex scenarios; the increase in depth
from L = 1 to L = 10 was fundamental for the performance of entangling circuits, which also
demonstrated greater robustness to dimensionality reduction. However, the classical reference
models, notably Support Vector Machines, showed superior performance on the SST dataset,
and no quantum advantage was observed. In contrast, on the synthetic datasets, several deep
quantum models achieved a performance statistically equivalent to the best classical bench-
marks, showcasing their competitiveness. This work, therefore, establishes an empirical bridge
between theory and practice in VQC design, validating the relevance of entanglement and

depth and providing guidelines for more effective quantum architectures.

Keywords: quantum machine learning; variational quantum circuits. quantum natural lan-

guage processing; sentiment analysis. quantum entanglement.
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[Figura 41 —
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lado direito exibem a diferenca percentual da métrica F1 entre o modelo
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de cada circuito. As barras de diferenca sao coloridas com a mesma cor do

melhor modelo em questao. As marcacoes que indicam semelhanca esta-

tistica sao advindas do teste pareado de Wilcoxon com correcao de p-valor

de Holm. . . . . . . . s
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do lado direito exibem a diferenca percentual da métrica F1 entre o modelo
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de cada circuito. As barras de diferenca sao coloridas com a mesma cor do

melhor modelo em questao. As marcacoes que indicam semelhanca esta-

tistica sao advindas do teste pareado de Wilcoxon com correcao de p-valor
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modelo em questao. As marcacoes que indicam semelhanca estatistica sao

advindas do teste pareado de Wilcoxon com correcao de p-valor de Holm.| .
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[Figura 45 —
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Resultados do desempenho F1 dos circuitos 7 ao 11 com os modelos gerado-
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lado direito exibem a diferenca percentual da métrica F1 entre o modelo

com a maior média F1 e o modelo Matryoshka, divididos pela profundidade

de cada circuito. As barras de diferenca sao coloridas com a mesma cor do

melhor modelo em questao. As marcacoes que indicam semelhanca esta-

tistica sao advindas do teste pareado de Wilcoxon com correcao de p-valor

de Holm. . . . . . . . . . .

[Figura 47 —

Resultados do desempenho 1 dos circuitos 12 ao 15 com os modelos gera-

dores de embeddings na base ChatGP [ - Dificil. Esses modelos implemen-
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do lado direito exibem a diferenca percentual da métrica F1 entre o modelo

com a maior média F1 e o modelo Matryoshka, divididos pela profundidade

de cada circuito. As barras de diferenca sao coloridas com a mesma cor do

melhor modelo em questao. As marcacoes que indicam semelhanca esta-

tistica sao advindas do teste pareado de Wilcoxon com correcao de p-valor

de Holm. . . . . . . . s
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exibem a diferenca percentual da métrica F1 entre o modelo com a maior

média F1 e o modelo Matryoshka, divididos pela profundidade de cada cir-

cuito. As barras de diferenca sao coloridas com a mesma cor do melhor

modelo em questao. As marcacoes que indicam semelhanca estatistica sao

advindas do teste pareado de Wilcoxon com correcao de p-valor de Holm | .
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1 INTRODUCAO

A ascensao da inteligéncia artificial, impulsionada por avancos exponenciais no poder com-
putacional e pela disponibilidade de vastos volumes de dados, redefiniu as fronteiras da tec-

nologia e da ciéncia (GOODFELLOW; BENGIO; COURVILLE, [2016)). No cerne dessa revoluc3o,

o campo do |Processamento de Linguagem Natural (PLN)| emergiu como uma das areas de

maior impacto, capacitando maquinas a interpretar, processar e gerar a linguagem humana com
uma sofisticacdo crescente. Arquiteturas de redes neurais profundas, notadamente os modelos
Transformer e seus derivados, estabeleceram novos paradigmas de desempenho em uma gama
diversificada de tarefas, desde a traducdo automatica até a andlise de sentimentos, tornando-
se ferramentas indispensaveis em aplicacdes comerciais, sociais e cientificas (VASWANI et al.,
2023).

Paralelamente a essa evolucdo no dominio cldssico, um novo paradigma computacional,
fundamentado nos principios da mecanica quantica, vem ganhando tracio e promete redefinir
os limites do que é computacionalmente tratavel (ARUTE et al., 2019). A computacdo quéntica,
que explora fen6menos como a superposicdo e o emaranhamento, oferece o potencial para
resolver classes especificas de problemas que s3o intrataveis para os supercomputadores mais
avancados da atualidade (NIELSEN; CHUANG, 2012). A interseccdo desses dois campos de
vanguarda da origem a Aprendizagem de Maquina Quantica — do inglés, Quantum Machine
Learning (QML) —, uma area de pesquisa que investiga como os recursos quanticos podem ser

alavancados para aprimorar algoritmos de aprendizagem de maquina (BIAMONTE et al., [2017)).

Dentro do escopo da [Quantum Machine Learning (QML), o [Circuito Quéantico Variaci-|

onal (CQV)| destaca-se como uma das abordagens mais promissoras (PERUZZO et al| 2014)

para a era atual de computadores quanticos de escala intermediaria e suscetiveis a ruido, a

era [Noisy Intermediate-Scale Quantum (NISQ)| (PRESKILL, [2018). Esses algoritmos hibridos,

que combinam um processador quantico com um otimizador classico, sdo andlogos as re-
des neurais classicas, onde um circuito quantico parametrizado, ou ansatz, é treinado para

aprender padrdes nos dados. A aplicacdo desses modelos a tarefas de [PLN| um campo emer-

gente conhecido como |Processamento Quéntico de Linguagem Natural (PQLN)| abre uma

nova e fascinante fronteira de investigacdo, com o potencial de explorar os vastos espacos de
Hilbert para representar e processar a informacdo linguistica de maneiras fundamentalmente

novas (CEREZO et al., 2021).
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Contudo, o desenvolvimento de [CQV] eficazes para tarefas de [PQLN] ainda é um campo
em aberto e repleto de desafios, como o fenémeno dos barren plateaus que pode dificultar o
treinamento de tais modelos (MCCLEAN et al., 2018). O projeto de um ansatz é, em grande
parte, um processo heuristico, e a comunidade cientifica ainda busca compreender quais sao
os principios arquitetdnicos que governam o desempenho de um classificador quantico. Ques-
toes sobre como a topologia do circuito, a escolha das portas quanticas e sua profundidade
impactam a capacidade do modelo de aprender e generalizar a partir de dados complexos,
como os embeddings de texto, permanecem sem respostas definitivas. E nesse contexto que
a presente dissertacdo se insere, buscando investigar a relacdo entre as propriedades tedri-
cas intrinsecas de um circuito, como sua expressabilidade e poder de emaranhamento (SIM;

JOHNSON; ASPURU-GUZIK, [2019)), e seu desempenho empirico.

1.1 CONTEXTUALIZACAO E MOTIVACAO

A investigacdo de algoritmos quanticos para tarefas de aprendizagem de maquina ndo
parte de uma premissa puramente tedrica, mas é motivada por evidéncias concretas de que a
computacdo quantica ja demonstrou potencial para superar as melhores abordagens classicas
conhecidas em dominios especificos. Algoritmos seminais, como o de Shor para a fatoracao de
inteiros (SHOR, [1994)) e o de Grover para busca em bases de dados n3o estruturadas (GROVER,
1996)), estabeleceram-se como provas de conceito fundamentais. O fato de que problemas de
relevancia pratica podem ser resolvidos de forma mais eficiente em um computador quantico
do que com os métodos classicos atuais serve como o principal catalisador que inspira a
comunidade cientifica a explorar se vantagens analogas podem ser encontradas em outras
areas complexas, como o Processamento de Linguagem Natural.

Desta forma, a motivacdo central deste trabalho reside na necessidade de se estabelecer
uma ponte entre a teoria e a pratica no projeto de[CQV| para anélise de sentimentos. Enquanto
a literatura tedrica sugere que propriedades como a expressabilidade — a capacidade do ansatz
de explorar o espaco de Hilbert — e o poder de emaranhamento — sua habilidade de gerar
correlacoes quanticas complexas — sdo indicadores-chave do potencial computacional de um
circuito, poucas pesquisas realizaram uma validacdo empirica sistematica dessas métricas em
um problema concreto de [PLN| (SIM; JOHNSON; ASPURU-GUZIK| [2019)). A presente pesquisa
é motivada pela hipétese de que uma andlise quantitativa dessas propriedades pode fornecer

diretrizes valiosas para o projeto de arquiteturas de redes neurais quanticas mais robustas e
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eficazes.

Adicionalmente, um aspecto fundamental e frequentemente subestimado no desenvolvi-
mento de modelos de [PQLN] é a interface entre os dados classicos e o processador quan-
tico (SCHULD; PETRUCCIONE, 2021). A maneira como um vetor de embedding de texto é
codificado em um estado quantico, bem como a escolha do préprio modelo gerador de embed-
dings e a dimensionalidade desse vetor, sdo fatores que podem influenciar de forma relevante
o desempenho do classificador (HALLER et al., 2022). Este trabalho é motivado, portanto, pela
necessidade de se investigar a sensibilidade dos modelos quanticos a essas escolhas, avaliando
como a resiliéncia a reducdo de dimensionalidade e a escolha do modelo Transformer impac-
tam a capacidade de aprendizado, especialmente quando comparados a benchmarks classicos
consolidados.

A pesquisa justifica-se, assim, pela sua contribuicdo em trés frentes principais. Primeira-
mente, ela oferece uma analise experimental abrangente, correlacionando métricas tedricas
(expressabilidade e emaranhamento) com o desempenho pratico (métrica F1) de uma vasta
gama de arquiteturas de circuitos. Essa métrica é escolhida tendo em vista sua robustez em
cenarios com desbalanceamento de classes, comuns na anélise de sentimentos. Por ser a média
harmdnica entre precisdo e revocacao, ela oferece uma avaliacdo de desempenho mais fidedigna
do que a acuracia isolada. Em segundo lugar, investiga de forma pormenorizada o impacto
da representacdo de dados classicos no desempenho quantico, um passo fundamental para o
desenvolvimento de aplicacdes praticas. Por fim, ao realizar uma comparac3o estatisticamente
validada com modelos cléssicos, o trabalho busca situar o estado atual dos [CQV| para anilise
de sentimentos, identificando tanto seu potencial quanto os desafios que ainda precisam ser

superados na busca por uma eventual vantagem quantica.

1.2 OBJETIVOS

A presente dissertacao delineia um conjunto de metas claras e interdependentes, estrutu-
radas em um objetivo geral que norteia a investigacdo e em objetivos especificos que detalham

as etapas necessarias para alcanca-lo.
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1.2.1 Objetivo Geral

O objetivo geral desta dissertacdo é realizar uma investigacdo sistematica e experimental
sobre a relacdo entre as propriedades tedricas de expressabilidade e emaranhamento de dife-
rentes arquiteturas de circuitos quanticos variacionais e seu desempenho empirico na tarefa
de classificacdo de sentimentos, avaliando também o impacto da representacio vetorial dos
dados de entrada e estabelecendo uma comparacao rigorosa com modelos de aprendizagem

de maquina classicos.

1.2.2 Objetivos Especificos

Para alcancar o objetivo geral supracitado, foram definidos os seguintes objetivos especifi-

COs:

1. Projetar e implementar um conjunto diversificado de 15 arquiteturas de circuitos quan-
ticos variacionais, com diferentes topologias, tipos de portas quanticas e capacidades
de emaranhamento, avaliando cada uma em configuracdes de baixa (L = 1) e alta
(L = 10) profundidade. A avaliagdo foca deliberadamente nestes dois extremos para
contrastar uma linha de base de recursos minimos com o limite superior da capaci-
dade representacional investigada. Essa analise nos extremos é a mais informativa para

entender o impacto fundamental da profundidade na performance.

2. Quantificar, para cada arquitetura de circuito proposta, as métricas tedricas de expres-
sabilidade, por meio da divergéncia de Kullback-Leibler, e de poder de emaranhamento,

utilizando a medida de Meyer-Wallach.

3. Investigar o impacto da representacdo de dados de entrada no desempenho dos clas-
sificadores, comparando trés modelos geradores de embeddings (Matryoshka, Nomic e
MPNet) e avaliando a resiliéncia dos modelos a reducdo de dimensionalidade dos vetores

(de 768 para 32 e 16 atributos).

4. Avaliar o desempenho dos modelos quanticos e classicos em quatro bases de dados de
analise de sentimentos: trés bases sintéticas de complexidade crescente e a base de dados

publica [SST] utilizando a métrica F1 como principal indicador de desempenho.
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5. Estabelecer uma linha de base robusta por meio da implementacdo e avaliacdo de um
conjunto de 7 modelos de aprendizagem de maquina classicos consolidados, além de 10
configuracoes de ensembles classicos, para uma comparacao direta com as abordagens

quanticas, incluindo 16 modelos quénticos em formato ensemble.

1.3 ESTRUTURA DA DISSERTACAO

A fim de apresentar a pesquisa de forma clara, légica e progressiva, esta dissertacdo foi
organizada na seguinte estrutura de capitulos. O Capitulo [2] estabelece a Fundamentacao
Teodrica, introduzindo os conceitos essenciais da computacdo quantica, aprendizagem de ma-
quina quantica, as métricas de capacidade de circuitos, as técnicas de processamento de lin-
guagem natural e os métodos de validacdo estatistica que sustentam o trabalho. O Capitulo
descreve a Metodologia, detalhando o desenho experimental, a configuracao do ambiente,
as bases de dados, os modelos quanticos e classicos utilizados e os procedimentos de avali-
acao e comparacdo. O Capitulo |4 discorre sobre os Resultados e Discussdao dos achados,
interpretando os resultados a luz da teoria e correlacionando as diferentes variaveis do estudo.
Por fim, o Capitulo [f] apresenta a Conclus@o, sintetizando os principais resultados, validando
as hipéteses levantadas, reconhecendo as limitacSes da pesquisa e apontando direcoes para

trabalhos futuros.
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2 FUNDAMENTACAO TEORICA

Este capitulo tem como objetivo apresentar os conceitos tedricos que fundamentam o
desenvolvimento desta dissertacdo. A estrutura do capitulo foi projetada para construir o
conhecimento de forma progressiva, partindo dos principios da computacdo quéantica e da
aprendizagem de maquina quantica, passando pelas métricas utilizadas para avaliar os circuitos
e pelas técnicas de processamento de linguagem natural, até chegar aos modelos classicos que

servem como referéncia de comparacao e aos métodos de validacdo estatistica empregados.

2.1 COMPUTACAO QUANTICA

A computacdo classica, que sustenta a tecnologia digital contemporanea, baseia-se em
principios da fisica classica para processar informacdes codificadas em bits, unidades que as-
sumem estados discretos de 0 ou 1. Em contrapartida, a computacdo quantica emerge como
um paradigma computacional que explora os fendmenos da mecanica quantica, como a su-
perposicdo e o emaranhamento, para processar informacdes de maneiras fundamentalmente
distintas.

Proposta inicialmente por fisicos como Richard Feynman, que vislumbrou a utilizacdo de
sistemas quanticos para simular outros sistemas quénticos de forma mais eficiente (FEYNMAN,
1982)), esta area promete solucdes para problemas intrataveis aos computadores mais poderosos
da atualidade.

Ganhos de performance tedricos ja foram demonstrados em algoritmos candnicos que for-
necem fortes indicios dessa vantagem. O algoritmo de Shor, por exemplo, oferece um ganho
exponencial, em relacdo aos melhores algoritmos classicos conhecidos, para a fatoracao de nu-
meros primos, um problema no cerne da seguranca de dados e da criptografia moderna (SHOR,
1994)). De forma anéloga, o algoritmo de Grover prové um ganho quadratico frente as solucdes
classicas na busca em bancos de dados ndo estruturados (GROVER, 1996)). Tais algoritmos for-
necem a evidéncia fundamental que motiva a investigacdo do potencial quantico em outras
areas, como a simulacdo de sistemas moleculares, a otimizacdo de larga escala e, como foco
deste trabalho, a aprendizagem de maquina (NIELSEN; CHUANG, 2012; ARUTE et al., 2019).

A seguir, serdo introduzidos os conceitos elementares da computacdo quantica que sdo

indispensaveis para a compreensao deste trabalho.
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2.1.1 O qubit: superposicao e a esfera de Bloch

A unidade fundamental de informacao na computacdo quantica é o bit quantico, ou qubit.
Diferentemente de um bit classico, que estad restrito aos estados 0 ou 1, um qubit pode
existir em uma combinacdo linear, ou superposicdo, desses dois estados. Matematicamente,
o estado de um qubit, denotado por |¢)) na notacdo de Dirac, pode ser descrito como um
vetor em um espaco de Hilbert complexo e bidimensional, C2, munido do produto interno
candnico (NIELSEN; CHUANG, |2012). Neste formalismo, a base computacional é formada pelos
estados |0) e |1), que sdo definidos como ortonormais em relacdo a este produto interno.
Qualquer estado de um qubit pode, entdo, ser expresso como uma combinacdo linear nesta

base:
) = a[0) + 51), (2.1)

no qual a e [ sdo nldmeros complexos conhecidos como amplitudes de probabilidade. O
principio da superposicao é um dos pilares que distinguem a computacao quantica, permitindo
que um qubit explore um continuo de estados, e ndo apenas dois valores discretos. O quadrado

2 representa, respectivamente, a probabilidade de

dos médulos dessas amplitudes, ||a|* e || 3]
se obter o resultado 0 ou 1 ao se realizar uma medicdo do qubit na base computacional,
conforme a regra de Born (BORN, [1926). Uma condi¢do fundamental é que a soma dessas
probabilidades deve ser igual a 1, o que impde a restricao de normalizacao ao estado do qubit:
lla||* + ||3]|* = 1. Esta propriedade permite que um (nico qubit codifique uma quantidade
de informacdo potencialmente maior do que um bit classico, uma capacidade que se expande
exponencialmente com o aumento do nimero de qubits em um sistema.

Para a visualizacdo geométrica do estado de um (nico qubit, utiliza-se a Esfera de Bloch,
uma representacdo onde qualquer estado puro pode ser mapeado a um ponto na superficie
de uma esfera de raio unitario (NIELSEN; CHUANG, 2012), no qual uma representacdo grafica
pode ser vista na Figura [I] Dessa forma, o estado de um qubit pode ser parametrizado por

dois angulos reais, 6 (0 < 0 < m) e ¢ (0 < ¢ < 27), da seguinte forma:

[4) = cos (g) |0) + € sin (g) 1), (2.2)

dessa maneira, o polo norte da esfera (@ = 0) corresponde ao estado |0), enquanto o polo sul
(0 = 7) corresponde ao estado |1). Os demais pontos na superficie da esfera representam todos

os possiveis estados de superposicao do qubit. O angulo ¢ representa a fase relativa entre os
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estados |0) e |1), um grau de liberdade que n3o possui andlogo direto na computacio classica
e que é fundamental para os fendmenos de interferéncia quéantica (SCHULD; PETRUCCIONE,

2018).

Figura 1 — Representacdo geométrica do estado de um qubit na Esfera de Bloch. Os polos norte e sul cor-
respondem aos estados da base computacional |0) e |1), respectivamente, enquanto os pontos na
superficie representam os estados de superposicio.

0)

Lz

1)

Fonte: [KOCKUM; NORI| (2019))

2.1.2 Portas quanticas

De forma anéloga as portas légicas na computacdo classica, as portas quanticas s3o as
operacdes elementares que manipulam o estado dos qubits. Matematicamente, uma porta
quantica que atua sobre n qubits é representada por uma matriz unitaria U de dimensdo
2nx2n. Sua aplicacdo sobre um estado |¢)) resulta em um novo estado |¢') = U |¢). A
condicdo de unitariedade (UDU = UUP = I, onde UP ¢ a transposta conjugada de U e [
é a matriz identidade) garante que a operacdo seja reversivel e preserve a norma do vetor de

estado, uma caracteristica fundamental da evolucdo quantica, conforme descrito pela equacao
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de Schrodinger (NIELSEN; CHUANG, [2012)). Foi demonstrado por Deutsch que um conjunto
finito de portas quanticas, conhecido como conjunto universal, é suficiente para aproximar
qualquer operacdo unitdria com precisdo arbitraria (NADA, |1992).

As portas utilizadas neste trabalho podem ser divididas em portas de um e de dois qubits.
Dentre as portas de um qubit, a porta de Hadamard (H) é uma das mais importantes, sendo
responsavel por criar superposicdes uniformes a partir dos estados da base. As portas de Pauli
(X, Y, Z) correspondem a rotacdes de 7 radianos em torno dos eixos x, y e z da Esfera de
Bloch, respectivamente, sendo a porta X o analogo quantico da porta NOT classica.

As portas de rotacdo (Rx(6), Ry (), Rz(0)) generalizam as portas de Pauli, permitindo
rotacOes de um angulo arbitrario 6 em torno dos respectivos eixos. Além destas, a porta de rota-
cdo genérica (R(0, ¢, \)) permite uma transformacdo unitaria arbitraria sobre um Gnico qubit.
A combinacao de portas de rotacao é de particular relevancia para os circuitos quanticos variaci-
onais, pois os seus angulos podem ser parametrizados e otimizados classicamente (BERGHOLM
et al, 2022)).

Para que a computacdo quantica seja universal, sdo necessarias também portas que atuem
sobre multiplos qubits, pois estas s3o as responsaveis pela criacao de emaranhamento. A porta
CNOT (Controlled-NOT) é um exemplo candnico de porta de dois qubits: ela possui um
qubit de controle e um qubit alvo, e aplica uma porta X no alvo se, e somente se, o controle
estiver no estado |1). De forma andloga, a porta CZ (Controlled-Z) aplica uma porta Z no
alvo se o controle for |1), introduzindo uma fase condicional no sistema. A capacidade de criar
correlacoes condicionais por meio destas portas é o que permite a construcao de algoritmos

quanticos complexos e o aproveitamento do emaranhamento como recurso computacional.

2.1.3 Emaranhamento quantico

O emaranhamento é um dos fenémenos mais caracteristicos da mecanica quantica, descrito
por Schrédinger como a propriedade definidora que a distingue da fisica classica (SCHRsDINGER,
1935)). Um sistema de miltiplos qubits é dito emaranhado quando o estado quantico do sistema
como um todo n3o pode ser fatorado como um produto tensorial dos estados individuais de
seus qubits constituintes (NIELSEN; CHUANG, 2012). Em outras palavras, os qubits perdem
sua descricao individual e passam a existir em um estado correlacionado, onde o resultado da
medicao de um deles estd intrinsecamente ligado ao resultado da medicdo dos outros.

Estas correlacoes, que Einstein, Podolsky e Rosen questionaram em seu famoso para-



38

doxo Einstein-Podolsky-Rosen (EPR) como uma “acdo fantasmagoérica a distancia” (EINSTEIN;
PODOLSKY; ROSEN, [1935)), foram posteriormente confirmadas como uma propriedade funda-
mental da natureza pelos experimentos baseados nas desigualdades de Bell (BELL, 1964).
Hoje, entende-se que o emaranhamento n3o viola a causalidade, mas representa correlacoes
nao-locais que sdo um recurso computacional essencial. Um exemplo canonico de um estado
emaranhado de dois qubits é o estado de Bell |®T) = %(IO(D +|11)), onde a medicdo de um
qubit determina instantaneamente o estado do outro, independentemente da distancia fisica
que os separe.

No contexto da aprendizagem de maquina quantica, o emaranhamento é fundamental
para a capacidade dos circuitos de aprender padrées complexos nos dados. A aplicacdo de
portas de multiplos qubits, como CNOT e CZ, é o mecanismo pelo qual o emaranhamento
é gerado e manipulado dentro de um circuito. A capacidade de um ansatz variacional de
explorar o vasto espaco de Hilbert de um sistema de multiplos qubits e de criar correlacGes
complexas que podem ndo estar explicitas nos dados de entrada esta intrinsecamente ligada a
sua capacidade de gerar emaranhamento. Esta propriedade é uma das hipdteses centrais para
explicar as diferencas de desempenho entre as arquiteturas de circuitos quanticos analisadas

neste trabalho.

2.1.4 Medicao

O processo de medicao constitui a interface entre o dominio quantico, onde a informacdo é
processada, e o mundo classico, onde os resultados sdo observados. De acordo com os postula-
dos da mecanica quantica, a medicao é um processo inerentemente probabilistico e irreversivel
que projeta o estado quéntico sobre um conjunto de estados de base ortogonais (NIELSEN;
CHUANG, 2012). Quando um qubit em um estado de superposicdo |[¢)) = a|0) + B |1) é
medido na base computacional (]0), |1)), seu estado quéntico colapsa para um dos estados
base.

Este colapso da funcdo de onda ocorre com probabilidades definidas pela Regra de Born,
ao estabelecer que a probabilidade de se obter o resultado classico 0 ser de P(0) = ||a||?, e a
probabilidade de se obter o resultado 1 é P(1) = ||3]|* (BORN, 1926). Uma vez que a medicdo
é realizada, a informacdo sobre as amplitudes « e 3 é perdida, e o qubit permanece no estado
classico para o qual colapsou. Este processo é fundamental para a extracao de resultados de

um algoritmo quantico e representa a fonte de aleatoriedade intrinseca a computacao quantica.
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No contexto dos circuitos quanticos variacionais, € comum n3o apenas medir os estados
finais, mas calcular o valor esperado de um observavel. Um observavel é uma propriedade
fisica do sistema representada por um operador Hermitiano, como os operadores de Pauli (X,
Y, Z). O valor esperado de um observavel O para um sistema no estado |¢)) é dado por
O = (¥| O |¢). Este valor esperado é um niimero real classico, que pode ser estimado por
meio da amostragem repetida do circuito (preparando o estado e medindo multiplas vezes)
e do célculo da média dos resultados. Na aprendizagem de maquina quantica, este valor é
frequentemente utilizado como a saida do modelo, que é entao processada por uma funcdo de
custo classica para guiar o processo de otimizacao dos parametros do circuito. Para consolidar
os conceitos de qubit, portas quanticas e medicdo, a Figura 2] ilustra um circuito elementar

que integra essas operacdes para gerar e medir um estado emaranhado.

Figura 2 — Exemplo de um circuito quantico elementar que gera um estado de Bell, um dos estados maxima-
mente emaranhados de dois qubits. O circuito opera sobre dois qubits, |qo) € |g1), € um bit classico,
¢p. Uma porta de Hadamard (H) é aplicada ao primeiro qubit para criar uma superposicdo, seguida
por uma porta CNOT, que emaranha os dois qubits. Por fim, uma medicdo na base do observavel
Z é realizada no primeiro qubit, e o resultado classico é armazenado no bit ¢g.

|90) ’—@

‘(h) D

Co

Fonte: elaborada pelo autor (2025)

2.2 APRENDIZAGEM DE MAQUINA QUANTICA

A interseccao entre a computacdo quantica e a aprendizagem de maquina da origem ao
campo do [QML] Este campo investiga como os principios quanticos podem ser utilizados para
aprimorar ou desenvolver novos algoritmos de aprendizagem, bem como a aplicacdo de técnicas
de aprendizagem de maquina classica para controlar e analisar sistemas quanticos (BIAMONTE
et al}, [2017)). Na era atual de computadores quanticos com um ndmero intermedidrio de qu-
bits e suscetiveis a ruido (a era , uma das abordagens mais promissoras e ativamente

pesquisadas é a que se baseia em algoritmos quénticos variacionais (CEREZO et al., 2021).
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2.2.1 Circuitos quanticos Variacionais

Os @] também conhecidos como algoritmos quanticos hibridos, representam uma classe
de algoritmos projetados para alavancar o poder computacional dos processadores quanticos
atuais em conjunto com os otimizadores classicos (PERUZZO et al., 2014)). A arquitetura de um
[CQV] é inerentemente hibrida e opera em um ciclo de otimizac&o iterativo, conforme ilustrado

a seguir:

1. Preparacdo de parametros: um computador classico inicializa um conjunto de parame-

tros 6.

2. Execucdo quantica: estes parametros sdo enviados a um processador quantico para con-

figurar um [Circuito Quéntico Parametrizado (CQP), também conhecido como ansatz.

O circuito é executado, geralmente com um estado de entrada que codifica os dados do
problema. Também é possivel simular esta execucdo quantica utilizando computadores

classicos.

3. Medicdo: o estado de saida do circuito quantico é medido, gerando resultados classicos
(bits). Este processo é repetido mdltiplas vezes para se obter uma estimativa estatistica

do valor esperado de um ou mais observaveis.

4. Calculo da funcao de custo: o computador classico utiliza os resultados das medicdes
para calcular o valor de uma funcdo de custo, C(#), que quantifica o qudo bem o circuito

esta resolvendo a tarefa desejada.

5. Otimizacdo classica: um algoritmo de otimizac3o classico utiliza o valor da funcdo de

custo para propor um novo conjunto de pardmetros ¢’ com o objetivo de minimizar C(6).
6. Iteracdo: os passos 2 a 5 sdo repetidos até que um critério de convergéncia seja atingido.

O coracdo da parte quantica deste ciclo é o ansatz, ou [CQP] Trata-se de um circuito
quantico de topologia fixa, composto por portas fixas (como CNOT e Hadamard) e portas
parametrizadas (como as de rotacdo Rx(6;), Ry (6;) e Rz(6;). O conjunto de pardmetros
0 = {01,605, ,0)} constitui os graus de liberdade do modelo, anilogos aos pesos e vieses
de uma rede neural classica (BENEDETTI et al}, [2019)). A capacidade de um [CQV] de aprender
um determinado padrdo de dados esta diretamente ligada a capacidade representacional de

seu ansatz, que, por sua vez, é determinada pela escolha das portas, sua conectividade e sua
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profundidade. A concepcao de ansatze eficazes é um dos principais focos de pesquisa na area,
sendo o objeto central da investigacao experimental desta dissertacao.

A notavel flexibilidade dos [CQV] reside em sua capacidade de atuar como aproximadores
de fun¢des, de forma anéloga as redes neurais cléssicas. Foi demonstrado que os [CQP] po-
dem ser expressos como uma forma de Série de Fourier generalizada, o que lhes confere o
potencial para modelar funcdes complexas e ndo-lineares (SCHULD; PETRUCCIONE, [2021)). De
fato, investigacoes sobre o poder de expressividade desses modelos sugerem que, para um
mesmo ndmero de parametros, as redes neurais quanticas podem alcancar uma "dimens3o
efetiva"maior do que suas contrapartes classicas, indicando uma capacidade representacional
potencialmente superior (ABBAS et al., 2021)).

Uma das mais promissoras vias para se obter uma vantagem quantica com estes modelos
é através da perspectiva dos kernels quanticos. Proposto em trabalhos seminais como o de
Havli¢ek et al| (2019), este método utiliza um circuito quéntico para mapear os dados de
entrada classicos para um espaco de caracteristicas quantico de alta dimensionalidade. Se este
mapeamento for dificil de ser simulado classicamente, um classificador linear nesse novo espaco
pode superar os melhores classificadores classicos. A natureza e as condicOes exatas para que
essa vantagem quantica se manifeste, contudo, sdo um tdpico de intensa pesquisa e debate
na comunidade (SCHULD), [2021).

Apesar de seu potencial tedrico, o sucesso pratico de um[CQV|depende crucialmente do pro-
jeto de sua arquitetura e de sua treinabilidade. Pesquisas recentes indicam que mesmo ansatze
de profundidade rasa podem ser poderosos, contanto que possuam capacidade de emaranha-
mento suficiente (GILI et al., 2023), um achado que ressoa diretamente com os objetivos desta
dissertacdo. No entanto, a treinabilidade desses circuitos é desafiada pelo fenémeno dos barren
plateaus. Foi demonstrado que a topografia da paisagem de custo, incluindo a presenca de
platds, é fortemente dependente ndo apenas da arquitetura, mas também da escolha da funcao
de custo, com custos "locais"oferecendo um caminho para mitigar o problema (CEREZO et al.,
2020).

Essa interacao entre expressividade, capacidade de emaranhamento e treinabilidade moti-
vou o desenvolvimento de diversas arquiteturas e metodologias. No contexto de classificadores,
propostas pioneiras como a de Farhi e Neven| (2018)) estabeleceram as bases para a aplicacdo de
[CQV|em problemas de aprendizagem supervisionada. O avanco da area tem inspirado também
trabalhos que exploram, por exemplo, o uso de otimizacao evoluciondria para os parametros de

classificadores quanticos variacionais (COSTA; NETO, 2025), o desenvolvimento de neurdnios
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quanticos parametrizados de profundidade constante (CARVALHO; NETO, 2023), a recomen-
dacdo de arquiteturas de circuitos com base em medidas de complexidade dos dados (NETO,
2025)) e a aplicacdo de classificadores baseados em sistemas quanticos abertos (BRITO; NETO;
BERNARDES, 2024). Tais avancos reforcam a posicdo dos como uma das mais ativas e

promissoras frentes da [QML]

2.2.2 Codificacao de dados classicos em estados quanticos

Um pré-requisito fundamental para a aplicacao de algoritmos quanticos a problemas de
aprendizagem de maquina é a capacidade de codificar dados classicos em estados quanticos.
Este processo, conhecido como preparaciao de estado ou mapeamento de caracteristicas quan-
ticas, consiste em mapear um vetor de caracteristicas classico x € R" para um estado quantico
|t)(x)) em um espaco de Hilbert (SCHULD; PETRUCCIONE, |2021)). A escolha da estratégia de
codificacdo é de relevancia central, pois ela define como a informacao do problema é apresen-
tada ao processador quantico, influenciando diretamente a geometria do espaco de estados e,
consequentemente, a capacidade do modelo de aprender fronteiras de decisdo eficazes.

Existem diversas estratégias de codificacdo, cada uma com suas préprias vantagens e des-
vantagens em termos de recursos (nimero de qubits e profundidade do circuito) e capacidade
expressiva. Exemplos incluem o basis embedding, que associa cada vetor de entrada a um es-
tado da base computacional, e o angle embedding, que codifica as caracteristicas nos angulos
de rotacdo de portas quanticas.

Neste trabalho, adota-se a estratégia de amplitude embedding. Este método é particu-
larmente eficiente em termos de nimero de qubits, pois permite codificar um vetor de ca-
racteristicas * com N elementos no vetor de amplitudes de um estado quantico de apenas
n = [logy(N)] qubits. O estado resultante é da forma:

1 N-1

Z L (2:3)

onde ||z|| é a norma euclidiana do vetor, que garante a normaliza¢do do estado quantico, e

¢ (x

~lell £

i) representa os estados da base computacional. Embora o Amplitude Embedding seja ex-
ponencialmente eficiente no uso de qubits, a preparacdo de um estado arbitrario com esta
técnica pode, em geral, exigir um circuito de profundidade exponencial (NIELSEN; CHUANG,

2012). Contudo, existem métodos eficientes para a construcdo destes circuitos. A implemen-
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tac3o utilizada nesta dissertacdo se baseia no trabalho de Mottonen et al.| (2004)), que propde
um método sistematico para decompor a preparacao de um estado quantico arbitrario em
uma sequéncia de portas de rotacao uniformemente controladas, otimizando a construcao do

circuito de codificac3o.

2.2.3 Otimizacao e a paisagem de custo

O treinamento de um @] é, em sua esséncia, um problema de otimizacdo: encontrar o
conjunto de pardmetros 0* que minimiza uma funcdo de custo C(#) definida classicamente. A
funcao de custo é tipicamente avaliada a partir das medicdes do circuito quantico, o que intro-
duz um ruido de amostragem inerente ao processo. Este ruido, combinado com a complexidade
da prépria arquitetura quantica, pode tornar a otimizacdo uma tarefa desafiadora (CEREZO et
al., 2021)).

A caracterizacdo da funcdo de custo em relacdo aos parametros do circuito define a pai-
sagem de custo. O sucesso de um algoritmo de otimizacdo, especialmente os baseados em
gradiente, como o Adam, depende da topografia desta paisagem. Um dos maiores desafios
identificados no treinamento de [CQV] é o fenémeno dos barren plateaus. Formalizado por [Mc-
Clean et al.| (2018), este fendmeno descreve como, em vastas regides da paisagem de custo, a
magnitude esperada dos gradientes diminui exponencialmente a medida que mais qubits sao
adicionados ao circuito. Na pratica, isso significa que para um sistema com um ndmero ainda
modesto de qubits, os gradientes ja sdo tao pequenos que se tornam indistinguiveis do ruido
estatistico, impedindo que um otimizador como o Adam encontre uma direcdo para aprimorar
os parametros do modelo.

A presenca de um barren plateau implica que a paisagem de custo é extremamente plana
em quase toda a sua extensao. Para um otimizador baseado em gradiente, a auséncia de uma
“descida” clara torna a busca por um minimo local uma tarefa intratavel, pois as atualiza-
cOes dos parametros se tornam aleatérias e ineficazes. Foi demonstrado que a ocorréncia de
barren plateaus esta correlacionada com diversos fatores, incluindo a profundidade do ansatz
(circuitos muito profundos tendem a apresentar o problema), a natureza global da funcdo de
custo e o nivel de emaranhamento gerado aleatoriamente pelo circuito. Compreender e miti-
gar este fendmeno é um dos campos de pesquisa mais ativos em [QML] sendo crucial para o

desenvolvimento de algoritmos quanticos variacionais escalaveis e treinaveis.
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2.3 METRICAS DE CAPACIDADE DE CIRCUITOS QUANTICOS

O desempenho de um em uma tarefa de aprendizagem de maquina n3o depende
apenas do algoritmo de otimizacao classico, mas é intrinsecamente governado pelo projeto
de seu ansatz. A topologia do circuito, a escolha das portas quanticas e sua profundidade
determinam as propriedades fundamentais do modelo. A fim de caracterizar e comparar dife-
rentes ansatze de uma maneira que transcenda o seu desempenho em uma (nica tarefa, foram
propostas métricas quantitativas para avaliar sua capacidade computacional intrinseca. Dentre
estas, a expressabilidade e o poder de emaranhamento se destacam como indicadores-chave
do potencial de um circuito. Estas métricas, sistematicamente estudadas por \Sim, Johnson e
Aspuru-Guzik (2019), oferecem uma metodologia para analisar e projetar arquiteturas dem
de forma mais fundamentada, uma abordagem que tem sido explorada em trabalhos recentes,

como o de Maouaki et al.| (2025), para o desenvolvimento de modelos quénticos robustos.

2.3.1 Expressabilidade

A expressabilidade de um [CQP] quantifica a sua capacidade de gerar um conjunto de
estados que seja representativo do espaco de Hilbert. Em outras palavras, um circuito com
alta expressabilidade é capaz de explorar uma porcao maior e mais diversificada do espaco de
todos os possiveis estados quanticos (SIM; JOHNSON; ASPURU-GUZIK| 2019). Esta propriedade
é desejavel, pois, em teoria, um modelo mais expressivo tem o potencial de aproximar uma
classe mais ampla de funcdes e, consequentemente, de aprender fronteiras de decisdo mais
complexas.

Para quantificar a expressabilidade, (SIM; JOHNSON; ASPURU-GUZIK, 2019) propuseram
uma metodologia que compara a distribuicdo de estados gerados pelo [CQP|com a distribuicdo
de estados uniformemente aleatérios, conhecida como distribuicao de Haar. O procedimento

consiste em:

1. Gerar um conjunto de estados |¢;) aplicando o U(;) com pardmetros ; amostrados
aleatoriamente a partir de uma distribuicdo uniforme. O estado inicial é tipicamente o

estado |0)*".

2. Gerar um segundo conjunto de estados |¢/;) amostrados diretamente da distribuicdo de

Haar, que representa o conjunto dos estados quanticos de forma também uniforme.
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3. Calcular a fidelidade, ' = || (¢;] |1;) ||, entre pares de estados, um de cada conjunto,

para construir uma distribuicdo de probabilidades de fidelidade, Pogp(F).

4. Comparar esta distribuicdo com a distribuicdo teérica de fidelidade para estados aleaté-

rios de Haar, que para um sistema de n qubits é dada por Ppaa.(F) = (2n1)(1F)*2.

A métrica de expressabilidade, denotada por Expr, é entdo definida como a divergéncia de

Kullback-Leibler (KL) entre a distribuicdo gerada pelo e a distribuicio de Haar:

Prop(F
Expr = Dycr, (Peop|| Prasr ) = / Peop(F)log (%) dF. (2.4)

Um valor de Dy, préximo de zero indica que a distribuicao de estados gerada pelo cir-
cuito é muito similar a distribuicdo uniforme de Haar, significando que o circuito possui alta
expressabilidade. Por outro lado, um valor elevado de Dy, sugere que o circuito sé consegue
gerar estados em uma sub-regido restrita do espaco de Hilbert, possuindo baixa expressabili-
dade. E relevante notar, contudo, que uma expressabilidade excessivamente alta nem sempre
é benéfica, pois pode estar associada a paisagens de custo mais complexas e ao fenémeno dos

barren plateaus, tornando a otimizagdo do circuito mais desafiadora (HOLMES et al., 2022).

2.3.2 Emaranhamento

O poder de emaranhamento, ou capacidade de emaranhamento, de um circuito quanti-
fica a sua habilidade de gerar estados emaranhados a partir de estados iniciais que nao sio
emaranhados (estados produto). Uma vez que o emaranhamento é um recurso quéntico fun-
damental e uma propriedade que nao possui analogo classico, a capacidade de um circuito
de geréd-lo é considerada um indicador crucial de seu potencial para alcancar uma vantagem
computacional (SIM; JOHNSON; ASPURU-GUZIK|, 2019).

Para quantificar esta propriedade, Sim, Johnson e Aspuru-Guzik| (2019)) utilizam a medida
de emaranhamento de Meyer-Wallach, que oferece uma forma computacionalmente tratavel
de avaliar o grau de emaranhamento de um estado puro de miltiplos qubits. Para um estado
puro [1)) de um sistema de n qubits, a medida de Meyer-Wallach, Q(]¢)), é definida a partir

da pureza média dos subsistemas de um Unico qubit:

Qe =2(1- 131 (1)), (25)
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onde pr = Tri(|1)(¢]) é a matriz de densidade reduzida do k-ésimo qubit, obtida ao se
tracar sobre todos os outros qubits do sistema. O valor de Q varia de 0, para um estado
completamente separavel (produto), a 1, para um estado que é, em média, maximamente
emaranhado, como os estados de Grafo (HEIN; EISERT; BRIEGEL, [2004)).

A capacidade de emaranhamento do @] denotada por Ent, é entdo calculada como o
valor médio da medida de Meyer-Wallach sobre o conjunto de estados de saida, gerados a partir
da aplicacdo do circuito U(6) sobre o estado inicial n3o emaranhado [0)*", para diferentes
conjuntos de parametros # amostrados aleatoriamente. Matematicamente, a capacidade de

emaranhamento é a média sobre o espaco de parametros:

Ent — / Q (U(6)/0)=") p(0)dd, (2.6)

no qual p(#) é a distribuicdo de probabilidade dos pardmetros. Um valor de Ent préximo de 1
indica que o circuito é um emaranhador poderoso, enquanto um valor préximo de 0 indica que
ele possui pouca ou nenhuma capacidade de gerar correlacdes quanticas. Como destacado por
Maouaki et al.| (2025), a anélise conjunta da expressabilidade e do poder de emaranhamento
oferece um panorama mais completo da capacidade de um circuito, sendo uma ferramenta

valiosa para o projeto de arquiteturas de redes neurais quanticas mais robustas e eficazes.

2.3.3 Arquitetura e profundidade do ansatz

O projeto do ansatz é um fator critico que determina a capacidade de um [CQV] Duas
de suas caracteristicas mais importantes sao a profundidade e a topologia. A profundidade do
circuito, aqui denotada por L, refere-se ao nimero de vezes que um bloco fundamental de
portas é repetido sequencialmente. Um circuito com L = 1 é considerado “raso”, enquanto
um com L maior (por exemplo, L = 10) é considerado “profundo”. Em geral, o aumento da
profundidade eleva a capacidade expressiva do circuito, permitindo-lhe, em teoria, aproximar
funcoes mais complexas. Contudo, esta vantagem vem com um compromisso: circuitos mais
profundos sdo mais suscetiveis aos efeitos do ruido em hardware quantico real e, como sera
discutido, podem ser mais propensos ao fenémeno dos barren plateaus, dificultando o seu
treinamento (CEREZO et al, 2021). A andlise comparativa entre configuracdes de circuitos
rasos (L = 1) e profundos (L = 10) é, portanto, uma investigacdo central desta dissertacao.

A topologia do ansatz diz respeito ao padrao de conectividade estabelecido pelas portas



47

de mdltiplos qubits (emaranhadoras). Esta arquitetura define quais qubits interagem entre si,
influenciando diretamente a forma como as correlacdes sdo criadas e propagadas pelo circuito.
Diferentes topologias podem ser mais adequadas para diferentes estruturas de problemas. As
estratégias de conectividade investigadas neste trabalho incluem a de vizinhos préximos (li-
near), onde cada qubit interage apenas com seus adjacentes; a de anel, onde o qubit controle
pode estar n3o-adjacente ao qubit alvo; e a de todos-para-todos, onde cada qubit interage
com todos os outros. A escolha da topologia é um fator determinante para o poder de ema-

ranhamento do circuito.

2.4 PROCESSAMENTO DE LINGUAGEM NATURAL E ANALISE DE SENTIMENTO

O [PLN] é um campo da inteligéncia artificial e da ciéncia da computacdo que se dedica a
capacitar as maquinas a compreender, interpretar e gerar a linguagem humana de forma dtil e
significativa (JURAFSKY; MARTIN| [2008)). Dentre as in(imeras tarefas abrangidas pelo [PLN] a
andlise de sentimentos se destaca como uma das mais relevantes para aplicacdes comerciais e
sociais. Esta tarefa consiste na identificacdo e extracao de informacdes subjetivas em textos,
como opinides e emocodes, classificando-as tipicamente em categorias de polaridade: positiva,
negativa ou neutra (LIU, 2012). Para que um algoritmo de aprendizagem de maquina, seja ele
classico ou quantico, possa realizar tal tarefa, é indispensavel que o texto, uma forma de dado
ndo estruturado, seja primeiramente convertido em uma representacdo numérica estruturada

que possa ser processada computacionalmente.

2.4.1 Representacdo vetorial de texto (embeddings)

Os modelos de aprendizagem de maquina n3o operam diretamente sobre o texto em sua
forma bruta. Portanto, o passo inicial e fundamental em qualquer pipeline de [PLN| moderno
é a transformac3o do texto em vetores de niimeros reais, um processo conhecido como repre-
sentacado vetorial de texto ou, mais comumente, embedding de texto. As abordagens iniciais
para esta tarefa, como Bag-of-Words ou TF-IDF, representavam documentos como vetores
esparsos e de alta dimensionalidade, onde cada dimensao correspondia a uma palavra do vo-
cabulario. Embora uteis, essas representacGes falhavam em capturar as relacdes semanticas e
sintaticas entre as palavras (JURAFSKY; MARTIN, 2008).

A revolugdo no [PLN] veio com a introducdo de embeddings de palavras densos, populariza-
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dos por modelos como o Word2Vec (MIKOLOV et al., 2013). Estes modelos aprendem a mapear
cada palavra para um vetor denso de baixa dimensionalidade, com a propriedade fundamental
de que palavras com significados contextuais similares sao representadas por vetores préximos
no espaco vetorial. Esta nocdo de que a semantica pode ser capturada pela geometria do
espaco de embeddings permitiu que os modelos de aprendizagem de maquina generalizassem
o conhecimento a partir das relacdes entre as palavras, em vez de trata-las como simbolos
isolados. Esta mesma légica se estende da representacao de palavras para a de sentencas e

documentos inteiros, que é o foco deste trabalho.

2.4.2 Modelos Transformer e Sentence-BERT

A arquitetura Transformer, introduzida por [Vaswani et al.| (2023)), representou um marco
no campo do [PLN] superando as limitagdes das arquiteturas de redes neurais recorrentes
(RNNs) e convolucionais (CNNs) que dominavam a area até entdo. O componente central e
inovador do Transformer é o mecanismo de autoatencdo, que permite ao modelo ponderar
a importancia de todas as palavras em uma sequéncia de entrada ao processar cada palavra
individualmente. Isso capacita o modelo a capturar dependéncias de longo alcance e relacoes
contextuais complexas de forma mais eficaz e paralelizavel do que as abordagens sequenciais

anteriores. Modelos pré-treinados de larga escala baseados na arquitetura Transformer, como

o |Bidirectional Encoder Representations from Transformers (BERT)| estabeleceram novos

estados da arte em uma vasta gama de tarefas de [PLN]

Contudo, modelos como o foram primariamente projetados para produzir embed-
dings de tokens (palavras ou subpalavras) que s3o sensiveis ao contexto. Derivar uma repre-
sentacdo vetorial de alta qualidade para uma sentenca inteira a partir destes embeddings de
token n3o é uma tarefa trivial, estratégias simples, como a média dos vetores dos tokens,
frequentemente produzem resultados subétimos para tarefas que exigem uma compreensdo

semantica fina, como a comparacdo de similaridade entre sentencas. Para solucionar esta

questdo, Reimers e Gurevych (2019a)) propuseram o |Sentence-BERT (SBERT)| uma modi-
ficacdo da arquitetura [BERT| O [SBERT] utiliza uma rede siamesa para refinar um modelo

Transformer pré-treinado em tarefas de comparacao de pares de sentencas. Este processo oti-
miza o modelo para gerar embeddings de sentencas em um espaco vetorial onde sentencas
semanticamente similares possuam uma alta similaridade de cosseno, tornando-as adequadas

para tarefas de classificacdo, agrupamento e busca semantica. O modelo all-mpnet-base-v2,
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utilizado nesta dissertacdo, é um exemplo de [SBERT]| que se baseia na robusta arquitetura
MPNet, uma técnica de pré-treinamento que combina as vantagens do e do XLNet

para uma compreens3o de linguagem mais aprofundada (SONG et al, 2020)).

2.4.3 Matryoshka representation learning

Apesar do sucesso dos grandes modelos de linguagem na geracao de embeddings de alta
qualidade, a sua dimensionalidade elevada (tipicamente 768, 1024 ou mais dimensdes) pode
impor desafios praticos em termos de armazenamento, custo computacional e laténcia em

aplicacdes do mundo real. Para enderecar esta questdo, Kusupati et al.|(2024)) introduziram

o conceito de |Matryoshka Representation Learning (MRL)l A técnica se inspira nas bonecas-

russas, onde uma boneca menor se aninha dentro de uma maior. De forma anéloga, o [MRL]
treina um Unico vetor de embedding de alta dimensionalidade de tal forma que seus prefixos
(as primeiras 32, 64, 128, ... dimensdes) também funcionem como representacdes de menor
dimensao e de alta qualidade para o mesmo dado.

Este aninhamento de representacdes é alcancado por meio de uma modificacdo na funcao
de custo durante o treinamento do modelo. Em vez de otimizar o desempenho apenas para a
dimensionalidade final, a funcdo de custo do [MRL] é uma soma ponderada das perdas calcu-
ladas para um conjunto de dimensionalidades pré-definidas. Isso forca o modelo a aprender a
concentrar a informacdo mais relevante nas dimensdes iniciais do vetor, enquanto as dimensdes
subsequentes adicionam refinamentos progressivos.

A principal vantagem do[MRL] ¢ a flexibilidade e a eficiéncia adaptativa que ele oferece. Com
um Gnico modelo treinado, é possivel extrair embeddings de diferentes tamanhos, permitindo
que o usudrio escolha a dimensionalidade que oferece o melhor equilibrio entre desempenho e
custo computacional para uma determinada aplicacdo, sem a necessidade de treinar mdltiplos
modelos. O modelo Nomic Embed Text, da Nomic Al, bem como o modelo tomaarsen/mpnet-
base-nli-matryoshka, sdo exemplos praticos de arquiteturas que implementam os principios do
(NUSSBAUM et al., 2024)). A capacidade destes modelos de fornecer vetores de dimensi-
onalidade varidvel é uma caracteristica central explorada nos experimentos desta dissertacao,
especialmente na analise do impacto da reducao da dimensionalidade do vetor de entrada no

desempenho dos classificadores.
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2.5 MODELOS DE APRENDIZAGEM DE MAQUINA CLASSICOS

Para avaliar de forma criteriosa o desempenho e o potencial dos , é indispensavel esta-
belecer uma linha de base sélida a partir de modelos de aprendizagem de maquina classicos
consolidados. A comparacao com estes modelos, que representam o estado da pratica em
diversas tarefas de classificacao, permite contextualizar os resultados obtidos e identificar ce-
narios onde as abordagens quanticas podem, eventualmente, oferecer uma vantagem. Esta
secao descreve brevemente os algoritmos classicos utilizados como benchmarks nesta disser-
tacdo, abrangendo modelos lineares, métodos baseados em instancias, maquinas de vetores de

suporte e técnicas de ensemble.

2.5.1 Modelos lineares

Modelos lineares constituem uma das classes mais fundamentais de algoritmos em apren-
dizagem de maquina. Sua premissa central é a de que a relacdo entre as caracteristicas de
entrada e a saida pode ser modelada por meio de uma combinac3o linear. Para tarefas de
classificacdo, isso se traduz na busca por uma fronteira de decisdo linear (um hiperplano) que
separe as classes no espaco de caracteristicas (HASTIE; TIBSHIRANI; FRIEDMAN, [2009)).

A Regressdo Logistica, apesar de seu nome, é um modelo de classificacdo binaria. Ela
utiliza a funcao sigmoide para mapear a saida de uma funcao linear dos dados de entrada
para um valor entre 0 e 1, que é interpretado como a probabilidade de a amostra pertencer a
classe positiva. Uma vez que as probabilidades sdo obtidas, um limiar de decisdo (tipicamente
0,5) é utilizado para atribuir a classe final. Sua simplicidade, interpretabilidade e eficiéncia
computacional a tornam um dos modelos de referéncia mais utilizados (HASTIE; TIBSHIRANI;
FRIEDMAN, [2009).

O Perceptron, proposto por Rosenblatt| (1958), é um dos algoritmos de aprendizagem
supervisionada mais antigos e representa a forma mais simples de uma rede neural artificial.
Ele calcula uma soma ponderada das caracteristicas de entrada e aplica uma funcao de ativacao
do tipo degrau para produzir uma saida binaria. O algoritmo de aprendizado do Perceptron é
iterativo e atualiza os pesos apenas quando uma amostra é classificada incorretamente. Sua
principal limitacdo tedrica é a garantia de convergéncia apenas para casos em que os dados

sdo linearmente separaveis.
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2.5.2 K-vizinhos Mais Proximos

O algoritmo dos K-vizinhos Mais Préximos - do inglés, [K-Nearest Neighbors (KNN)| - é

um método de aprendizagem nao-paramétrico e baseado em instancias. Diferentemente de
modelos como a Regressdo Logistica, que aprendem uma funcdo de mapeamento explicita,
o [KNN] é considerado um algoritmo de “aprendizagem preguicosa”, pois ndo constréi um
modelo geral durante a fase de treinamento, mas simplesmente armazena todas as amostras
do conjunto de dados (ALTMAN, (1992).

O processo de classificacdo para uma nova amostra é direto: o algoritmo identifica os
k pontos de dados do conjunto de treinamento que estao mais préximos da nova amostra
no espaco de caracteristicas, utilizando uma métrica de distdncia (comumente a distancia
euclidiana). A classe da nova amostra é entdo determinada pela votacdo majoritaria entre as
classes de seus k vizinhos. A simplicidade de seu principio, aliada a sua capacidade de formar
fronteiras de decis3o altamente n3o-lineares e locais, o torna um benchmark eficaz, embora
seu custo computacional na fase de predicao possa ser elevado para grandes conjuntos de

dados.

2.5.3 MaAquinas de Vetores de Suporte

As Maquinas de Vetores de Suporte - do inglés, |Support Vector Machines (SVM)|- sdo uma

classe de algoritmos de aprendizagem supervisionada particularmente poderosos para tarefas
de classificagdo. Propostos por [Cortes e Vapnik| (1995), o principio fundamental de um [SVM]
no caso linearmente separavel, é encontrar o hiperplano que n3o apenas separa as classes, mas
que o faz com a maior margem de separacao possivel . Esta margem é a distancia entre o
hiperplano e os pontos de dados mais préximos de cada classe, conhecidos como vetores de
suporte. A maximizacdo da margem confere ao modelo uma boa capacidade de generalizac3o.

Para lidar com dados que n3o sdo linearmente separaveis, os [SVM] utilizam a “artimanha
do kernel”. Esta técnica permite que o algoritmo opere em um espaco de caracteristicas de alta
dimensionalidade, onde os dados podem se tornar linearmente separaveis, sem a necessidade
de calcular explicitamente as coordenadas dos dados neste novo espaco. Isso é feito por meio
de uma funcao de kernel, K(x;,x;), que calcula o produto escalar entre as amostras em um

espaco transformado. Os kernels utilizados neste trabalho incluem:
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» Linear: o caso mais simples, que resulta em uma fronteira de decisdo linear no espaco

original.

» Polinomial: permite a criacdo de fronteiras de decisdo polinomiais, cuja complexidade é

controlada pelo grau do polinémio.

» Rede de base basial: Um kernel popular e flexivel, que mapeia as amostras para um
espaco de dimensdo infinita, sendo capaz de criar fronteiras de decisao nao-lineares e

complexas.

2.5.4 Métodos de ensemble

Métodos de ensemble s3o técnicas que combinam as predicdes de mdltiplos modelos de
aprendizagem (estimadores base) para produzir um classificador final mais robusto e preciso
do que qualquer um de seus componentes individuais. A premissa central é que, ao agregar
as “opinides” de diversos modelos, os erros de um estimador podem ser compensados pelos

acertos de outros.

2.5.4.1 Bagging e Florestas Randémicas

O Bootstrap Aggregating (ou Bagging), é uma técnica de ensemble projetada principal-
mente para reduzir a varidncia de um estimador (BREIMAN, [1996). O processo consiste em
criar maltiplos subconjuntos de dados a partir do conjunto de treinamento original por meio de
amostragem com reposicdo (bootstrap). Um estimador base é treinado de forma independente
em cada um desses subconjuntos. A predicdo final é obtida pela agregacao das predicGes de
todos os estimadores, geralmente por votacdo majoritaria (para classificacdo) ou pela média
(para regressdo).

As Florestas Randomicas sdo uma aplicacdo especifica e poderosa do Bagging, utilizando
arvores de decisdo como estimadores base (BREIMAN| 2001). Além da amostragem de dados
do Bagging, as Florestas Randomicas introduzem uma segunda camada de aleatoriedade: ao
construir cada arvore, em cada n6 de decisao, apenas um subconjunto aleatério de carac-
teristicas é considerado para determinar a melhor divisdo. Este processo descorrelaciona as
arvores do ensemble, reduzindo ainda mais a variancia e tornando o modelo final robusto ao

sobreajuste.
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2.5.4.2 Boosting e o AdaBoost

Diferentemente do Bagging, onde os modelos s3o treinados em paralelo, o Boosting é uma
técnica de ensemble sequencial. Os estimadores base sdo construidos um apds o outro, e cada
novo modelo é treinado para corrigir os erros cometidos pelos seus predecessores. O objetivo
principal do Boosting é reduzir o viés do modelo final.

O Adaptive Boosting (ou AdaBoost), proposto por [Freund e Schapire (1997)), é um dos
algoritmos de Boosting mais conhecidos. Ele funciona ajustando iterativamente os pesos das
amostras de treinamento. Inicialmente, todas as amostras tém o mesmo peso. Apds cada
iteracdo, o algoritmo aumenta o peso das amostras que foram classificadas incorretamente
pelo estimador atual, fazendo com que o préoximo estimador foque mais nestes casos erroneos.
A predicdo final é uma votacdo ponderada de todos os estimadores, onde os modelos com

menor taxa de erro recebem um peso maior.

2.5.5 Agregacao por votacao

A agregacdo por votacdo é uma maneira simples e eficaz de combinar as predicdes de um

conjunto de classificadores diversos. Existem duas abordagens principais:

= Votac3o majoritaria (hard voting): A predic3o final é a classe que recebe a maioria dos
votos dos classificadores base. Cada modelo tem um voto, e a classe mais votada é a

escolhida.

= Votac3o ponderada (soft Voting): Este método agrega as probabilidades preditas por
cada classificador para cada classe. A classe final é aquela que possui a maior probabili-
dade média. Este tipo de votacao é frequentemente preferivel quando os classificadores

individuais s3o bem calibrados e fornecem estimativas de probabilidade confiaveis.

2.6 AVALIACAO DE MODELOS E VALIDACAO ESTATISTICA

A construcdo e o treinamento de modelos de aprendizagem de maquina, sejam eles clas-
sicos ou quanticos, representam apenas uma parte do ciclo de desenvolvimento. Uma etapa
igualmente crucial consiste na avaliacao rigorosa de seu desempenho e na validac3do estatistica

das comparacoes entre diferentes arquiteturas. N3o é suficiente apenas observar os valores de
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uma métrica de desempenho; é necessario garantir que a métrica escolhida seja apropriada para
o problema em questdo e que as diferencas de desempenho observadas sejam estatisticamente
significativas, e nao meros artefatos de flutuacoes aleatérias no processo de treinamento e
teste. Esta secdo descreve o arcabouco metodolégico utilizado neste trabalho para a avaliacao

e a comparacao dos modelos propostos.

2.6.1 Meétrica F1

A escolha de uma métrica de avaliacao adequada é fundamental para se obter uma com-
preensdo fidedigna do desempenho de um classificador. Embora a acuradcia — a proporcao
de predicdes corretas — seja uma métrica intuitiva, ela pode ser enganosa em cenarios com
classes desbalanceadas. Por exemplo, em um conjunto de dados com 95% de amostras da
classe A e 5% da classe B, um classificador trivial que sempre prediz a classe A alcancaria
uma acuracia de 95%, embora seja completamente indtil para identificar a classe minoritaria.
Para contornar esta limitacdo, utilizam-se métricas baseadas na matriz de confusdo, como a
precisao e a revocacao.

A precisdo mede a exatid3o das predicoes positivas, sendo definida como a razao entre os
verdadeiros positivos (TP) e o total de predicdes positivas (TP + FP, onde FP s3o os falsos
positivos). Ela responde a pergunta: “Dentre todas as instancias que o modelo classificou
como positivas, quantas eram de fato positivas?".

TP
Precisio = —— 2.
recisao TP + FP ( 7)

A revocacao, também conhecida como sensibilidade, mede a completude das predicdes,
sendo definida como a razdo entre os verdadeiros positivos (TP) e o total de instancias
que sdo de fato positivas (TP + FN, onde FN s3o os falsos negativos). Ela responde a
pergunta: “Dentre todas as instancias que eram de fato positivas, quantas o modelo conseguiu
identificar?".

TP

R 0 = ——— 2.
evocacdo = m— (2.8)

Frequentemente, existe um trade-off entre a precisdo e a revocacdo. A métrica F1 foi
concebida para agregar estas duas medidas em um (nico valor, sendo definida como a média
harmonica entre elas. A média harmdnica penaliza valores extremos de forma mais severa que
a média aritmética, de modo que um F1 elevado sé é alcancado quando tanto a precisdo

quanto a revocagdo sdo altas (RIJSBERGEN, |1979).
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Precisdo - Revocacao

F=2- (2.9)

Precisdo + Revocacao

Devido a sua robustez em cendrios com desbalanceamento de classes, a métrica F1 é a
métrica principal utilizada nesta dissertacdo para avaliar e comparar o desempenho dos modelos

de classificacdo de sentimentos.

2.6.2 Testes de hip6tese para comparacao de classificadores

Ao comparar o desempenho de dois ou mais classificadores, observar uma diferenca no valor
médio de uma métrica como a métrica F1 n3o é suficiente para declarar a superioridade de um
modelo sobre o outro. Essa diferenca pode ser resultado de flutuacoes estocasticas inerentes ao
processo experimental (como inicializacdo aleatéria de pardmetros ou amostragem de dados).
Para determinar se a diferenca observada é estatisticamente significativa, recorre-se a testes
de hipétese (DEMsAR), 2006)).

Neste trabalho, adota-se o teste pareado de Wilcoxon. Trata-se de um teste de hipotese
nao-paramétrico utilizado para comparar duas amostras pareadas e determinar se suas media-
nas populacionais diferem. A escolha de um teste ndo-paramétrico é particularmente adequada
para a comparacao de classificadores, uma vez que as distribuicdes de suas métricas de desem-
penho frequentemente nao seguem uma distribuicdo normal, uma suposicao fundamental para
testes paramétricos como o teste t-pareado (DEMSsAR, [2006)). No contexto desta pesquisa, as
amostras pareadas sao os conjuntos de 30 valores de F1 obtidos para cada par de modelos sob
as mesmas condicles experimentais (mesmas 30 seeds iniciais).

Quando miltiplas comparacées de hipoteses sdo realizadas simultaneamente, surge o pro-
blema das comparacées miltiplas. Se cada teste individual for realizado com um nivel de
significancia «, a probabilidade de se cometer ao menos um erro do Tipo | (rejeitar incorreta-
mente uma hipdtese nula verdadeira) em toda a familia de testes aumenta consideravelmente.
Para controlar esta taxa de erro familiar, é necessario aplicar um procedimento de correcao
dos p-valores.

Para este fim, emprega-se a correcdo de Holm-Bonferroni, proposta por Holm| (1979).
Este método é um procedimento sequencial que ajusta o nivel de significancia para cada teste
de forma menos conservadora que a correcdo de Bonferroni tradicional, oferecendo maior

poder estatistico. O método ordena os p-valores do menor para o maior e os compara com
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(e}

niveis de significincia sequencialmente ajustados (¢, %7, - ,a; sendo k o ndmero de p-
valores avaliados), proporcionando um controle rigoroso da taxa de erro familiar supracitada.
A utilizacao do teste de Wilcoxon em conjunto com a correcao de Holm-Bonferroni estabelece,
portanto, um arcabouco estatistico robusto para validar as conclusdes sobre as diferencas de

desempenho entre os modelos analisados nesta dissertacao.
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3 METODO PROPOSTO E DESENHO EXPERIMENTAL

Este capitulo é dedicado a apresentacao do método central investigado nesta dissertacao
e ao detalhamento do desenho experimental concebido para sua validacdo e anélise. Primei-
ramente, na secdo [3.1] descreve-se o modelo de classificacdo quéntica proposto, detalhando
sua arquitetura, os componentes variacionais e as estratégias de treinamento. Em seguida, na
secdo (3.2 é apresentado o desenho experimental, que engloba a configuracdo do ambiente,
as bases de dados utilizadas, os modelos classicos de comparacdo e o arcabouco estatistico

empregado para garantir a robustez das conclusoes.

3.1 MODELO HIBRIDO QUANTICO-CLASSICO PROPOSTO

Esta secdo descreve a arquitetura e os componentes do classificador quantico variacional
que constitui o objeto de estudo desta pesquisa. O modelo segue um fluxo hibrido quantico-
classico, onde dados textuais s3o pré-processados e codificados em estados quanticos, que sao
entdo manipulados por um circuito parametrizado para realizar a tarefa de classificacdo de

sentimentos.

3.1.1 Arquitetura geral do classificador

O classificador quantico proposto opera em trés estagios fundamentais, conforme o esque-

matico exibido na Figura 3

1. : o vetor de caracteristicas classico, proveniente do embedding de uma sentenca, é
codificado em um estado quantico. Neste trabalho, utiliza-se a técnica de amplitude
embedding (MOTTONEN et al., 2004)), que codifica um vetor normalizado de N caracte-

risticas nas amplitudes de um estado de loga(N) qubits.

2. Ansatz variacional: O estado quéntico preparado é entdo processado por um [CQP] ou
ansatz. Este circuito é composto por uma sequéncia de portas quanticas cujas rotacoes
sao definidas por um conjunto de parametros classicos otimizaveis, . O projeto deste

ansatz é o foco central da investigacdo.

3. Medicdo: Ao final do circuito, uma medicao é realizada sobre os qubits. Para esta tarefa
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de classificacdo, mede-se o valor esperado do observavel Pauli Z em todos os qubits, o
que produz uma saida classica no intervalo [-1,1]. Este valor é entdo mapeado para as

classes do problema, onde -1 representa o sentimento negativo e +1, o positivo.

Figura 3 — Template de circuito com preparacdo de estado por amplitude (PE), o bloco de ansatz varidvel
através das possibilidades da Figura [4] e medicdo pelo observavel Z.

0) — R
0) — N
o i Z
<
0) — L/

Fonte: elaborada pelo autor (2025)

3.1.2 Catalogo de ansatze investigados

Para investigar sistematicamente a relacdo entre a arquitetura do [CQP] e seu desempe-
nho, este trabalho propoe e analisa 15 ansatze distintos, cujos diagramas s3o apresentados
na Figura [4] A selecdo destes circuitos foi projetada para cobrir uma gama diversificada de
topologias e capacidades de emaranhamento, permitindo uma analise incremental de sua com-
plexidade. Diversas arquiteturas foram inspiradas em propostas da literatura, notavelmente do
estudo comparativo de (SIM; JOHNSON; ASPURU-GUZIK, [2019)). A justificativa para a proposicdo

de cada circuito é detalhada a seguir:

» Circuitos 1, 2 e 3: Representam as arquiteturas mais fundamentais, servindo como
linhas de base ndo-emaranhadoras. Cada circuito utiliza uma (nica camada de portas de
rotacdo em torno de um dos eixos cartesianos da Esfera de Bloch: Rx para o circuito

1, Ry para o circuito 2 e Rz para o circuito 3.

» Circuito 4: Propoe um incremento em relacdo aos anteriores ao combinar duas camadas
de rotacdo em eixos ndo comutaveis (Rx e Rz). Esta arquitetura é inspirada no “Circuito
1" do estudo de |Sim, Johnson e Aspuru-Guzik| (2019) e visa testar se a capacidade de

gerar rotacoes arbitrarias sobre um qubit melhora o desempenho.



59

= Circuito 5: Utiliza uma camada de portas de rotacdo genéricas (R), que sdo, por
definicdo, universais para um Gnico qubit. Este circuito é proposto para uma comparacao
direta com o circuito 4, avaliando se uma parametrizacdo mais explicita da rotacao

oferece vantagens sobre a composicdo de rotaces em eixos fixos.

» Circuitos 6: Adiciona uma camada de portas CNOT em topologia circular ao circuito
5. O objetivo é introduzir emaranhamento de forma explicita e avaliar o impacto da
adicdo de correlacdes quanticas a um ansatz ja expressivo em termos de operacoes de

um qubit.

» Circuitos 7 a 11: Formam um bloco de estudo para uma andlise incremental do ema-

ranhamento.

— O circuito 7 inicia com uma estrutura simples, combinando portas Hadamard (H)

e rotacoes Rx.

— O circuito 8 adiciona portas de emaranhamento CZ ao circuito 7. Sua arquitetura
é inspirada no “Circuito 9" de |Sim, Johnson e Aspuru-Guzik| (2019), que por sua

vez se baseia no conceito de Quantum Kitchen Sinks de Wilson et al.| (2018)).

— O circuito 9 substitui as portas Rx do circuito 8 por rotacdes genéricas R, para

testar o efeito de uma parametrizacdo mais rica.

— O circuito 10 e o circuito 11 s3o analogos aos circuitos 8 e 9, respectivamente,
mas substituem as portas CZ por CNOTs, permitindo uma comparacdo direta entre

diferentes tipos de portas de controle.

» Circuitos 12 e 13: Investigam arquiteturas com conectividade de vizinhos préoximos.
O circuito 12 implementa um padrao simples de rotacdes controladas. O circuito 13,
inspirado no “Circuito 7" de (SIM; JOHNSON; ASPURU-GUZIK| 2019)) e utilizado no algo-
ritmo QVECTOR (JOHNSON et al., [2017)), intercala camadas de rotacdes n3o controladas

entre as portas de emaranhamento.

» Circuitos 14 e 15: S3o propostos para avaliar o impacto de topologias de conectividade

mais complexas.

— O circuito 14 emprega uma construcdo em blocos de circuito, conforme proposto

por |Schuld et al.| (2020), que combina intera¢des de vizinhos préximos com in-
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teracSes de longo alcance, sendo analogo ao “Circuito 15" de |Sim, Johnson e

Aspuru-Guzik| (2019).

— O circuito 15, inspirado no “Circuito 6" de|Sim, Johnson e Aspuru-Guzik| (2019) e
originalmente proposto por Sousa e Ramos (2006, implementa uma conectividade
do tipo “todos-para-todos”, representando o mais alto grau de interacao entre os

qubits dentre os modelos testados.

3.1.3 Agregacao de modelos quanticos via ensemble

Além da anélise de circuitos individuais, este trabalho propde a construcdo e avaliacao
de ensembles de modelos quanticos. O objetivo é investigar se a combinacdo de miltiplos
classificadores pode levar a umo desempenho mais robusta e precisa. As estratégias de ensemble
e os circuitos base utilizados est3o listados no Quadro[I] Para os ensembles do tipo AdaBoost
e Bagging, foram selecionados os circuitos 6, 9 e 14 devido as suas topologias que, embora
relativamente enxutas, apresentam um alto potencial de emaranhamento e expressabilidade.
Adicionalmente, sdo propostos ensembles baseados em votacdo (hard e soft voting) para
analisar o comportamento agregado de circuitos com diferentes niveis de complexidade e

topologias de conectividade.
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(c) Circuito 3 (d) Circuito 4 (e) Circuito 5

Figura 4 — Conjunto de ansatze utilizados com seus cddigos identificacdo unica.
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Quadro 1 — Ensemble de modelos quénticos utilizados

ID Descricao

16 AdaBoost do circuito 6
17 Bagging do circuito 6
18 AdaBoost do circuito 9
19 Bagging do circuito 9
20 AdaBoost do circuito 14
21 Bagging do circuito 14

22 Soft voting dos circuitos 1, 2 e 3

23 Hard voting dos circuitos 1, 2 e 3

24 Soft voting dos circuitos 1, 2,3 e 5

25 Hard voting dos circuitos 1, 2, 3 e 5
26  Soft voting dos circuitos 1, 2, 3,5e 6
27 Hard voting dos circuitos 1, 2, 3, 5 e 6
28 Soft voting dos circuitos 7-11

29 Hard voting dos circuitos 7-11

30 Soft voting dos circuitos 12, 14 e 15
31 Hard voting dos circuitos 12, 14 e 15

Fonte: Elaborada pelo autor (2025)

3.2 DESENHO EXPERIMENTAL PARA VALIDACAO

Esta secao descreve o desenho experimental utilizado para treinar, avaliar e comparar os
modelos quanticos propostos na secdo anterior, bem como os modelos classicos de referéncia.

O fluxo geral do processo experimental é apresentado no diagrama da Figura [5]

3.2.1 Configuracao de ambiente

Esta pesquisa foi executada em um ambiente Linux com sistema operacional Ubuntu 24.04

dentro do Windows 11 utilizando o |Windows Subsystem for Linux (WSL)| O computador no

qual este ambiente foi montado possui uma CPU Intel® Core™ i9-10900F e 128 gigabtyes de
RAM. Somado a isso, utilizou-se a linguagem de programacdo Python (ROSSUM; JR, 1995) na

versao 3.12.8 com as seguintes bibliotecas:

= Aeon (MIDDLEHURST et al., [2024)) versdo 1.1.0;

= Matplotlib (HUNTER, 2007 versdo 3.10.3;
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Figura 5 — Fluxo geral do método experimental, detalhando as etapas sequenciais: (a) selecdo e preparacdo
das bases de dados; (b) conversdo do texto em vetores numéricos (embeddings); (c) anlise da
dimensionalidade do vetor de entrada; e (d) treinamento e avaliacdo dos modelos de classificacdo
quanticos e classicos, incluindo seus ensembles.
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Fonte: elaborada pelo autor (2025)

= Numpy (HARRIS et al., 2020)) versdo 2.0.2;

= Pandas (TEAM, [2024)) versdo 2.2.3;

= PennylLane (BERGHOLM et al., | 2022)) versdo 0.41.1;

= PyTreeBank (RAIMAN, 2020) vers3o 0.2.7;

= Scikit-Learn (PEDREGOSA et al., 2018) versdo 1.6.1;

= Sentence Transformers (REIMERS; GUREVYCH, 2019b) vers3o 4.1.0;
= Statsmodels (SEABOLD; PERKTOLD), 2010) versdo 0.14.4;

= Weights and Biases (BIEWALD) 2020)) versdo 0.19.11.

Todos os cddigos pertinentes a esta pesquisa podem ser encontrados em (FILHO, [2025)).

3.2.2 Base de dados

Quatro bases de dados sustentam esta pesquisa, sendo trés delas sintéticas a partir de [Kart-
saklis et al. (2021) para distinguir frases de tom alegre ou triste, e a quarta correspondendo ao

corpus publico (SOCHER et al., 2013) através da biblioteca PyTreeBank (RAIMAN, [2020)).



64

Para criar os conjuntos sintéticos, empregou-se o ChatGPT (OPENAI, 2025) com um
prompt desenvolvido especificamente para este trabalho. Obtiveram-se trés niveis de com-

plexidade:
= Fécil: frases curtas (5-7 palavras), sem nomes proprios;
» Médio: maior nimero de termos e grau de ambiguidade lexical;

» Dificil: inclusdo de nomes proprios, coletivos e outros elementos que elevam a ambigui-

dade.

Cada conjunto contém 100 frases por classe (alegre/triste) para treinamento e 25 por
classe para teste, todas geradas em inglés para garantir compatibilidade com as ferramentas
de pré-processamento e com os modelos de embeddings.

O SST complementa esses dados, reunindo 11.855 sentencas de criticas de filmes pré-
processadas pelo parser da Stanford e anotadas por trés avaliadores humanos, totalizando
215.154 frases unicas. Neste estudo, adota-se a classificacdo binéaria, agrupando as sentencas
negativas (ou levemente negativas) em uma classe e as levemente positivas (ou positivas) em

outra, descartando-se as sentencas neutras.

3.2.3 Processamento e Representacao dos Dados

A convers3do do texto em vetores numéricos é uma etapa fundamental do pipeline. Para esta
tarefa, serdo empregados trés modelos geradores de embeddings: sentence-transformers/all-
mpnet-base-v2, a ser chamado apenas de modelo MPNet, tomaarsen /mpnet-base-nli-matryoshka,
modelo Matryoshka, e nomic-ai/nomic-embed-text-v1.5, modelo Nomic. A utilizacdo de mul-
tiplos geradores visa avaliar a sensibilidade dos classificadores a representacio de entrada.

Adicionalmente, sera conduzido um estudo sobre o impacto da dimensionalidade do vetor
de entrada no desempenho dos modelos. Utilizando o modelo Matryoshka, que permite a
geracao de vetores de tamanhos variados, serdo testadas as dimensionalidades de 768, 32 e 16
atributos. O objetivo principal desta etapa € investigar a resiliéncia dos modelos a reducao de
dimensionalidade e justificar a escolha de uma representacdo de entrada mais compacta (16
atributos) para os experimentos principais, o que, no caso quantico, impacta diretamente na

largura (nimero de qubits) do circuito.
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3.2.4 Modelos Classicos para Comparacao

Para estabelecer uma linha de base de desempenho e contextualizar os resultados dos
modelos quanticos, serdo utilizados sete algoritmos de aprendizagem de maquina classicos,
conforme listados no Quadro [2] Estes modelos foram obtidos através da biblioteca Scikit-
Learn e utilizados com seus parametros padrdo, a fim de garantir um benchmark justo e
reprodutivel. Adicionalmente, serao construidos e avaliados ensembles de modelos classicos,
detalhados no Quadro[3] para permitir uma comparac&o direta com as estratégias de ensemble

quanticas.

Quadro 2 — Modelos classicos utilizados

ID Descricao

32 Regressao logistica

33 Perceptron

34 K-vizinhos mais préximos
35 Floresta randémica

36 SVM com kernel linear

37 SVM com kernel polinomial
38 SVM com kernel RBF

Fonte: Elaborada pelo autor (2025)

Quadro 3 — Ensemble de modelos classicos utilizados

ID Descricao

39 AdaBoost da regressao logistica

40 Bagging da regressao logistica

41 Soft voting de SVM (linear, polinomial, RBF)

42  Hard voting de SVM (linear, polinomial, RBF)

43  Soft voting de regressao logistica, perceptron e KNN

44  Hard voting de regressao logistica, perceptron e KNN

Fonte: Elaborada pelo autor (2025)

3.2.5 Estratégia de Otimizacao e Treinamento

Para todos os modelos quanticos, a otimizacdo dos parametros  do ansatz é realizada

pelo otimizador Adam (KINGMA; BA, 2017)). O treinamento se utiliza de um tamanho de batch
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de 20 amostras para as bases sintéticas e 512 para a base [SST], sendo executado por 40 épocas

em todos os cendrios. A métrica final para avaliacdo de desempenho é a F1.

3.2.6 Analise de Propriedades Intrinsecas e Desempenho

Parte central deste trabalho é a investigacao da relacao entre as propriedades intrinsecas
dos circuitos e seu desempenho pratico. Para tanto, serdo calculadas as métricas de expressa-
bilidade e poder de emaranhamento para cada um dos 15 ansatze propostos, tanto com uma
(L = 1) quanto com dez (L = 10) camadas de profundidade. Adicionalmente, investiga-se
como a etapa de preparacdo de estados (amplitude embedding) afeta estas mesmas medidas.
Os valores obtidos para estas métricas serdo entdo correlacionados com o desempenho F1
alcancada pelos respectivos circuitos em cada base de dados, buscando identificar padroes e

dependéncias.

3.2.7 Validacao Estatistica

Para garantir a robustez das conclusdes, cada experimento serd repetido 30 vezes com
diferentes sementes de aleatoriedade (seeds). A comparacdo de desempenho entre os modelos
sera realizada por meio do teste pareado de Wilcoxon (WILCOXON, [1945), aplicado sobre as
distribuicdes dos 30 valores da métrica F1. Para controlar o erro do Tipo | decorrente das
multiplas comparacoes, os p-valores obtidos serdo corrigidos utilizando o método de Holm-
Bonferroni (HOLM, 1979). Um resultado sera considerado estatisticamente significativo se o
p-valor ajustado for inferior a 0.05. Adicionalmente, serdo construidos diagramas de diferenca
critica para visualizacdao dos agrupamentos de modelos com desempenho estatisticamente

equivalente.
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4 RESULTADOS E DISCUSSAO

Neste capitulo, procede-se a analise e interpretacao dos resultados experimentais obtidos a
luz da metodologia delineada no capitulo[3] O objetivo é contextualizar os achados, correlacio-
nando o desempenho empirico dos modelos com suas propriedades tedricas e arquitetonicas. A
analise subsequente esta estruturada em secGes que buscam, de forma progressiva, destrinchar
os fatores que influenciaram o desempenho dos classificadores. Inicialmente, a discussdo se
aprofunda no papel das propriedades quanticas intrinsecas dos circuitos, como o emaranha-
mento e a expressabilidade. Em seguida, investiga-se a influéncia da representacdo vetorial
de entrada, abordando a sensibilidade dos modelos a escolha do gerador de embeddings e a
reducdo de dimensionalidade. Por fim, realiza-se uma anélise comparativa detalhada entre os
modelos quanticos e os benchmarks classicos, situando os resultados obtidos no panorama
atual da area e discutindo as implicacOes para a busca por uma vantagem quantica em tarefas

de processamento de linguagem natural.

4.1 PAPEL DO EMARANHAMENTO, PROFUNDIDADE E EXPRESSABILIDADE NA CA-
PACIDADE REPRESENTACIONAL

A analise minuciosa dos resultados obtidos nos experimentos revela uma hierarquia clara de
fatores que governam o desempenho dos classificadores quanticos variacionais na tarefa de ana-
lise de sentimentos. Dentre estes, a capacidade intrinseca do ansatz de gerar emaranhamento,
a profundidade do circuito e a sua expressabilidade emergem ndo como meros otimizadores de
desempenho, mas como elementos fundamentais que ditam a capacidade representacional do
modelo. Esta secdo dedica-se a interpretar os resultados sob a ética dessas propriedades, de-
monstrando como sua interacao é determinante para o sucesso da classificacdo, especialmente
ao transitar de cenarios sintéticos para dados do mundo real.

Observa-se, primeiramente, um agrupamento natural de circuitos com desempenho limi-
tado, notadamente os de natureza nao-emaranhadora. Através da Figura E] percebe-se que os
circuitos 1 a 5 e 7, cujas arquiteturas se baseiam exclusivamente em portas de rotacdo de um
Unico qubit, compartilham uma limitacdo fundamental: sua incapacidade de criar ou manipu-
lar ativamente as correlacdes quanticas entre os qubits. Embora demonstrem desempenhos

variaveis nas bases sintéticas, frequentemente influenciados pela qualidade do embedding de
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Figura 6 — Resultados das medidas de expressabilidade e emaranhamento e a métrica F1 na base Utilizou-
se o eixo logaritmico da Divergéncia KL para melhor visualizacdo dos dados. Cada subindice no
canto inferior direito refere-se ao cédigo do circuito equivalente.
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Fonte: Elaborada pelo autor (2025)

entrada, seu desempenho na base [SST]| é consistentemente modesta. Esta falha consideravel
em um cenario de dados complexo e ruidoso sugere que a capacidade de processamento local,
ainda que sofisticada, é insuficiente para a tarefa.

Para quantificar esta limitacdo, nota-se que mesmo os ansatze ndo-emaranhadores mais
performaticos neste grupo ndo alcancam resultados expressivos na base [SST| tendo em vista
os resultados consolidados através das Figuras[7} 8} [0 [L0] LT} [12] [I3] e [14] O circuito 5, que
utiliza uma porta de rotacdo genérica (R), atinge uma mediana de F1 de aproximadamente
0.16 com L = 1. De forma similar, o circuito 2 (Ry) alcanca uma mediana de F1 perto de
0.28 com L = 1. Em contrapartida, o circuito 1 (Rx) e o circuito 4 (Rx, Rz) apresentam
um desempenho residual, com medianas de F1 de aproximadamente 0.03 para L = 1. O
aumento da profundidade para L = 10 nestes circuitos ndo produziu ganhos estatisticamente

relevantes na maioria dos casos, e em nenhuma situacdo foi capaz de eleva-los a um patamar
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competitivo. Este comportamento reforca a hipétese de que a mera adicdo de pardametros em
uma arquitetura ndo-emaranhadora n3o expande sua capacidade representacional de forma a
capturar a complexidade semantica de dados do mundo real.

Em contraposicdo, os circuitos projetados com capacidade de emaranhamento intrinseco
(6,8,9,11, 12,13, 14 e 15) exibem uma dindmica fundamentalmente distinta. Para este grupo,
a profundidade do circuito atua como um fator habilitador. A transicido da profundidade de
L =1 para L = 10 resulta, quase invariavelmente, em um salto de desempenho expressivo e
estatisticamente relevante na base [SST| O caso mais emblematico é o do circuito 6, que passa
de uma mediana de F1 nula para aproximadamente 0.45. De forma analoga, o circuito 14 eleva
seu desempenho de uma mediana de F1 de cerca de 0.15 para perto de 0.50, estabelecendo-se
como um dos melhores estimadores individuais. O circuito 9, por sua vez, transita de uma
mediana de 0.04 para aproximadamente 0.44.

Esta melhora de desempenho evidencia que, para ansatze emaranhadores, o aumento do
numero de camadas nao é um simples refinamento, mas um requisito para destravar seu
potencial computacional. As camadas adicionais de portas de miultiplos qubits, como CNOT
ou CZ, permitem ao modelo construir correlacdes mais complexas e explorar um subespaco de
Hilbert mais vasto, uma capacidade que se mostra indispensavel para navegar a paisagem de
otimizacdo de um problema com dados do mundo real. Enquanto a configuracdo com L =1
destes circuitos muitas vezes falha em convergir para uma solucdo Util, a configuracdo com
L = 10 demonstra uma capacidade de aprendizado robusta.

Em contrapartida, nota-se um comportamento destoante em comparacdo com bases sin-
téticas. Com um exemplo de frases sintéticas visto pelo Quadro [4] é possivel compreender os
comportamentos da métrica F1 nas basesChatGPT Facil, Médio e Dificil pelas Figuras ,
e[I7] Apesar da escala variar conforme as bases, entende-se um comportamento similar entre
elas: circuitos emaranhadores, no geral, obtiveram melhores resultados em comparacdo com
os circuitos sem tal capacidade.

Uma anélise tedrica das propriedades dos circuitos, apresentada nas Figuras [18] e [19] ofe-
rece um embasamento para estes achados empiricos. A etapa de preparacio de estados (PE]
por amplitude, por si sé, ja introduz um emaranhamento inicial no sistema, com um valor
medido de aproximadamente 0.39. Os circuitos ndo-emaranhadores (1 a 5 e 7) meramente
herdam este emaranhamento, sendo incapazes de manipuld-lo ou ampliad-lo. Seus valores de
emaranhamento, quando combinados com a [PE| permanecem em um patamar préximo ao da

preparacao isolada. Isso indica que seu processamento subsequente ndo explora ativamente as
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Figura 7 — Resultados do desempenho F1 dos circuitos 1 ao 6 na base Esses algoritmos classificadores
demonstram a crescente complexidade ao utilizar portas quinticas e portas CNOT. As marcacdes

que indicam semelhanca estatistica sao advindas do teste pareado de Wilcoxon.
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Fonte: Elaborada pelo autor (2025)
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Figura 8 — Resultados do desempenho F1 dos circuitos 7 ao 11 na base Esses algoritmos classificadores

implementam diferentes formas de emaranhamento quéntico. As marcacdes que indicam seme-
Ihanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Fonte: Elaborada pelo autor (2025)
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Figura 9 — Resultados do desempenho F1 dos circuitos 12 ao 15 na base Esses algoritmos classificadores

implementam diferentes tipos de conectividade entre qubits. As marcacGes que indicam semelhanca
estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 10 — Resultados do desempenho F1 dos circuitos 32, 33 e 36 na base Esses algoritmos classifica-
dores implementam modelos classicos lineares. As marcacées que indicam semelhanca estatistica

sdo advindas do teste pareado de Wilcoxon.
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Fonte: Elaborada pelo autor (2025)
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Figura 11 — Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 na base Esses algoritmos

classificadores implementam modelos classicos ndo-lineares. As marcacdes que indicam semelhanca
estatistica s3o advindas do teste pareado de Wilcoxon.
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Figura 12 — Resultados do desempenho F1 dos circuitos 16 ao 21 na base Esses algoritmos classificadores
implementam modelos de ensemble através de AdaBoost ou Bagging de circuitos quanticos. As
marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 13 — Resultados do desempenho F1 dos circuitos 22 ao 31 na base Esses algoritmos classificadores
implementam modelos de ensemble através de hard ou soft voting de circuitos quanticos. As
marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 14 — Resultados do desempenho F1 dos circuitos 39 ao 44 na base Esses algoritmos classificadores

implementam modelos de ensemble classicos. As marca¢des que indicam semelhanca estatistica
sdo advindas do teste pareado de Wilcoxon.
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Quadro 4 — Exemplo de frases criadas através do ChatGPT. E possivel perceber um aumento na complexidade
lexical das palavras utilizadas.

Nivel  Classe Frase

Facil Positiva  She was glad to help her colleagues.
Negativa She was mournful after the farewell.

Médio Positiva  They were optimistic about the future.
Negativa He felt disillusioned by the broken promises.

Dificil Positiva  Jessica relished the challenge of the demanding role.
Negativa William pondered the meaning behind the cryptic message.

Fonte: Elaborada pelo autor (2025)

Figura 15 — Resultados das medidas de expressabilidade e emaranhamento e a métrica F1 na base ChatGPT -
Facil. Utilizou-se o eixo logaritmico da Divergéncia KL para melhor visualizacdo dos dados. Cada
subindice no canto inferior direito refere-se ao cédigo do circuito equivalente.
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Figura 16 — Resultados das medidas de expressabilidade e emaranhamento e a métrica F1 na base ChatGPT
- Médio. Utilizou-se o eixo logaritmico da Divergéncia KL para melhor visualizacdo dos dados.
Cada subindice no canto inferior direito refere-se ao cédigo do circuito equivalente.
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Fonte: Elaborada pelo autor (2025)

correlacoes quanticas presentes no estado de entrada.

Em contraste, os circuitos com capacidade de emaranhamento intrinseco demonstram um
comportamento distinto. Arquiteturas como as dos circuitos 6, 9, 11 e 15, especialmente na
configuracdo com L = 10, apresentam valores de emaranhamento préximos, em torno de 0.82,
que s3o substancialmente superiores ao valor herdado da[PE] Isso comprova que o ansatz est3
ativamente gerando e acumulando correlacoes entre os qubits, uma caracteristica que se cor-
relaciona diretamente com seu desempenho superior. A capacidade de gerar emaranhamento,
e ndo apenas de recebé-lo como entrada, parece ser a propriedade distintiva que confere poder
de classificacdo a estas arquiteturas.

A expressabilidade, embora seja uma métrica relevante, parece atuar como um fator secun-
dario quando n3o acompanhada da capacidade de emaranhamento. O circuito 5, por exemplo,

quando combinado com a [PE| e com L = 1, exibe uma das melhores métricas de expressa-
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Figura 17 — Resultados das medidas de expressabilidade e emaranhamento e a métrica F1 na base ChatGPT -
Dificil. Utilizou-se o eixo logaritmico da Divergéncia KL para melhor visualizagcdo dos dados. Cada
subindice no canto inferior direito refere-se ao cédigo do circuito equivalente.
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Fonte: Elaborada pelo autor (2025)

bilidade (divergéncia KL de aproximadamente 0.03), superando, em teoria, outros modelos.
Contudo, seu desempenho na base [SST| (mediana de F1 em torno de 0.16) é modesto. Esta
divergéncia sugere que uma alta capacidade de explorar o espaco de estados de um Unico qubit,
por si sO, é insuficiente. Uma hipdtese para este fendmeno é que uma expressabilidade muito
elevada, sem a estrutura conferida por um emaranhamento robusto, pode levar a paisagens de
custo complexas e suscetiveis ao fendmeno de barren plateaus, dificultando a otimizacdo em
cenarios com dados ruidosos.

A expressabilidade, portanto, torna-se mais eficaz quando associada a um ansatz que
pode gerar correlacdes. O circuito 15 com L = 1 ilustra este ponto: ele possui a melhor
expressabilidade entre todos os circuitos (KL de préximo de 0.0037) e ja possui um poder de
emaranhamento relevante (0.73), o que se traduz em um desempenho superior na base ﬁ

(mediana de F1 perto de 0.31) em comparacdo ao circuito 5. Isso indica que a capacidade de
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Figura 18 — Resultados da medida de expressabilidade dos circuitos e o impacto da interferéncia da
Utilizou-se o eixo logaritmico da Divergéncia KL para melhor visualizacdo dos dados.
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Figura 19 — Resultados da medida de emaranhamento dos circuitos e o impacto da interferéncia da
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explorar o espaco de Hilbert é mais bem aproveitada quando o modelo também pode estruturar
a informac3do de forma complexa através das correlacdes quanticas.

A anilise do impacto da profundidade também reforca esta conclusiao. Para os circuitos
ndo-emaranhadores, como o 1 e 0 2, o aumento de L = 1 para L = 10 ndo gera diferenca
estatistica na base [SST| Teoricamente, isso ocorre porque miltiplas rotacdes sequenciais no
mesmo eixo sao redutiveis a uma Unica rotacdo, nao expandindo a capacidade fundamental
do circuito. Por outro lado, para os circuitos emaranhadores, cada camada adicional introduz
uma nova oportunidade de criar correlacdes, o que se traduz em um ganho de desempenho
relevante. O circuito 8, por exemplo, salta de uma mediana de F1 de aproximadamente 0.03
para 0.38 ao passar de L =1 para L = 10.

Em sintese, os resultados convergem para uma conclusdo central: a combinacao de um
ansatz com capacidade de emaranhamento intrinseco e uma profundidade adequada é um
requisito para o sucesso na tarefa de classificacdo de sentimentos em cenarios de dados do
mundo real. Os circuitos ndo-emaranhadores, independentemente de sua complexidade em
termos de rotacdes de um UGnico qubit, mostraram-se fundamentalmente limitados, com seu
desempenho sendo dominado pela qualidade dos embeddings de entrada e pela simplicidade
da tarefa. Em contrapartida, os circuitos emaranhadores, ao serem dotados de profundidade
suficiente, demonstraram a capacidade de superar as limitacGes de uma representacao de en-
trada menos otimizada e de aprender as fronteiras de decisdo complexas exigidas pela base
[SST] Este achado n3o apenas valida a importéncia tedrica do emaranhamento, mas também
oferece uma diretriz pratica para o desenho de futuros classificadores quanticos para tarefas
de processamento de linguagem natural, indicando que o investimento em arquiteturas pro-
fundas e com alta capacidade de gerar correlacdes € um caminho promissor. Somado a isso, a
expressabilidade, embora relevante, nao é um preditor suficiente de sucesso, podendo levar a

desafios de otimizacao quando nao acompanhada de outros fatores.

4.2 INFLUENCIA DA REPRESENTACAO VETORIAL DE ENTRADA

Uma vez estabelecida a relevancia das propriedades intrinsecas dos circuitos quanticos na
secao anterior, a analise volta-se para a interface entre o dominio classico e o quantico: a
representacdo vetorial de entrada. Esta etapa, responsavel por traduzir a informacao textual
em um formato numérico, constitui um pilar fundamental cujo impacto no desempenho dos

classificadores, tanto quanticos quanto clssicos, é de relevancia central para os objetivos desta
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pesquisa. A maneira como os dados sdo estruturados no espaco de atributos pode facilitar
ou dificultar a tarefa de aprendizado, influenciando diretamente a capacidade dos modelos
de encontrar fronteiras de decisao eficazes. Desta forma, as subsecdes a seguir dedicam-se
a dissecar, de maneira pormenorizada, a influéncia de duas facetas desta representacio: a
resiliéncia dos modelos a reducao de dimensionalidade do vetor de embeddings e a sensibilidade

de seu desempenho a escolha do modelo gerador.

4.2.1 Resiliéncia dos modelos classificatérios e reducao de dimensionalidade

A transicao de vetores de embeddings de alta dimensionalidade para representacdes mais
compactas é uma etapa de relevancia pratica e tedrica, especialmente no contexto da com-
putacdo quantica na era NISQ, onde o niimero de qubits disponiveis constitui uma limitac3do
fundamental. A investigacdo de como diferentes arquiteturas, tanto classicas quanto quanti-
cas, respondem a essa perda de informac3o explicita oferece insights valiosos sobre a robustez,
a eficiéncia e a capacidade de aprendizado de cada modelo. Esta subsecdo dedica-se a analisar
comparativamente a resiliéncia dos classificadores propostos, interpretando a variacao de seu
desempenho F1 quando a dimensionalidade do vetor de entrada, gerado pelo modelo Ma-
tryoshka, é reduzida de 768 para 16 atributos. Tendo isso em vista, tais interpretacdes sao
oriundas das Figuras 20} 21} 22} [23] e [24] para a base ChatGPT - Facil, Figuras[25} [26] [27] [28| e
para a base ChatGPT - Médio e Figuras [30] 31}, 32] [33] € [34] para a base ChatGPT - Dificil
que exibem o comportamento dos circuitos ao utilizarem diferentes tamanhos de vetores de
entrada.

Uma das observacoes mais diretas que emergem da analise é a notavel robustez exibida
pelos principais modelos cléssicos. Classificadores como a Regress3o Logistica (modelo 32) e as
[SVM]com kernels linear (modelo 36) e RBF (modelo 38) demonstram uma resiliéncia a redugdo
de dimensionalidade nas bases sintéticas. Na base ChatGPT Dificil, por exemplo, o [SVM] com
kernel RBF apresentou uma queda de desempenho de apenas 2% ao transitar de 768 para 16
atributos, passando de uma mediana de F1 de 1.0 para 0.98. De forma similar, a Regressao
Logistica, na mesma base, registrou uma reducido de desempenho de aproximadamente 2%,
com a mediana caindo de 1.0 para 0.98.

Este comportamento, consistente também nas bases ChatGPT Facil e Médio, onde a de-
gradacdo de desempenho foi frequentemente nula ou estatisticamente irrelevante, sugere uma

conclusao importante sobre a natureza da representacao de entrada: a informacdo essencial
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Figura 20 — Resultados do desempenho F1 dos circuitos 1 ao 6 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Facil. Esses modelos demonstram a crescente complexidade ao utilizar portas
quanticas e portas CNOT. As barras comparativas do lado direito exibem a diferenca percentual
da métrica F1 ao se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de
cada circuito. As marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de
Wilcoxon com correcdo de p-valor de Holm.
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Figura 21 —

Circuito ID

Resultados do desempenho F1 dos circuitos 7 ao 11 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Facil. Esses modelos implementam diferentes formas de emaranhamento
quantico. As barras comparativas do lado direito exibem a diferenca percentual da métrica F1 ao
se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As
marcacOes que indicam semelhanca estatistica s3o advindas do teste pareado de Wilcoxon com
correcdo de p-valor de Holm.
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Figura 22 —

Circuito ID

Resultados do desempenho F1 dos circuitos 12 ao 15 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Facil. Esses modelos implementam diferentes tipos de conectividade entre
qubits. As barras comparativas do lado direito exibem a diferenca percentual da métrica F1 ao
se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As
marcacOes que indicam semelhanca estatistica s3o advindas do teste pareado de Wilcoxon com
correcdo de p-valor de Holm.
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Figura 23 — Resultados do desempenho F1 dos circuitos 32, 33 e 36 com diferentes tamanhos de vetor de
entrada na base ChatGPT - Facil. Esses modelos implementam modelos classicos lineares. As
barras comparativas do lado direito exibem a diferenca percentual da métrica F1 ao se reduzir
de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As marcacdes
que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com correcdo de
p-valor de Holm.
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Figura 24 —

Circuito ID

Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 com diferentes tamanhos de vetor de
entrada na base ChatGPT - Facil. Esses modelos implementam modelos classicos n3o-lineares.
As barras comparativas do lado direito exibem a diferenca percentual da métrica F1 ao se reduzir
de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As marcacdes
que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com correcdo de
p-valor de Holm.
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Figura 25 —

Circuito ID

Resultados do desempenho F1 dos circuitos 1 ao 6 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Médio. Esses modelos demonstram a crescente complexidade ao utilizar portas
quanticas e portas CNOT. As barras comparativas do lado direito exibem a diferenca percentual
da métrica F1 ao se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de
cada circuito. As marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de
Wilcoxon com correcdo de p-valor de Holm.
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Figura 26 — Resultados do desempenho F1 dos circuitos 7 ao 11 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Médio. Esses modelos implementam diferentes formas de emaranhamento
quantico. As barras comparativas do lado direito exibem a diferenca percentual da métrica F1 ao
se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As
marcacOes que indicam semelhanca estatistica s3o advindas do teste pareado de Wilcoxon com
correcdo de p-valor de Holm.
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Figura 27 —

Circuito ID

Resultados do desempenho F1 dos circuitos 12 ao 15 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Médio. Esses modelos implementam diferentes tipos de conectividade entre
qubits. As barras comparativas do lado direito exibem a diferenca percentual da métrica F1 ao
se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As
marcacOes que indicam semelhanca estatistica s3o advindas do teste pareado de Wilcoxon com
correcdo de p-valor de Holm.
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Figura 28 — Resultados do desempenho F1 dos circuitos 32, 33 e 36 com diferentes tamanhos de vetor de
entrada na base ChatGPT - Médio. Esses modelos implementam modelos classicos lineares. As
barras comparativas do lado direito exibem a diferenca percentual da métrica F1 ao se reduzir
de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As marcacdes
que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com correcdo de
p-valor de Holm.
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Figura 29 —

Circuito ID

Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 com diferentes tamanhos de vetor de
entrada na base ChatGPT - Médio. Esses modelos implementam modelos classicos n3o-lineares.
As barras comparativas do lado direito exibem a diferenca percentual da métrica F1 ao se reduzir
de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As marcacdes
que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com correcdo de
p-valor de Holm.
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Figura 30 —

Circuito ID

Resultados do desempenho F1 dos circuitos 1 ao 6 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Dificil. Esses modelos demonstram a crescente complexidade ao utilizar portas
quanticas e portas CNOT. As barras comparativas do lado direito exibem a diferenca percentual
da métrica F1 ao se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de
cada circuito. As marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de
Wilcoxon com correcdo de p-valor de Holm.
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Figura 31 —

Circuito ID

Resultados do desempenho F1 dos circuitos 7 ao 11 com diferentes tamanhos de vetor de entrada
na base ChatGPT - Dificil. Esses modelos implementam diferentes formas de emaranhamento
quantico. As barras comparativas do lado direito exibem a diferenca percentual da métrica F1 ao
se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As
marcacOes que indicam semelhanca estatistica s3o advindas do teste pareado de Wilcoxon com
correcdo de p-valor de Holm.
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Figura 32 — Resultados do desempenho F1 dos circuitos 12 ao 15 com diferentes tamanhos de vetor de entrada

Circuito ID

na base ChatGPT - Dificil. Esses modelos implementam diferentes tipos de conectividade entre
qubits. As barras comparativas do lado direito exibem a diferenca percentual da métrica F1 ao
se reduzir de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As
marcacOes que indicam semelhanca estatistica s3o advindas do teste pareado de Wilcoxon com
correcdo de p-valor de Holm.
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Figura 33 — Resultados do desempenho F1 dos circuitos 32, 33 e 36 com diferentes tamanhos de vetor de
entrada na base ChatGPT - Dificil. Esses modelos implementam modelos classicos lineares. As
barras comparativas do lado direito exibem a diferenca percentual da métrica F1 ao se reduzir
de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As marcacdes
que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com correcdo de
p-valor de Holm.
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Figura 34 —

Circuito ID

Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 com diferentes tamanhos de vetor de
entrada na base ChatGPT - Dificil. Esses modelos implementam modelos classicos n3o-lineares.
As barras comparativas do lado direito exibem a diferenca percentual da métrica F1 ao se reduzir
de 768 atributos para 16 atributos, divididos pela profundidade de cada circuito. As marcacdes
que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com correcdo de
p-valor de Holm.
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para a tarefa de classificacdo, ao menos nos cendrios sintéticos, parece estar altamente con-
centrada nos primeiros 16 atributos gerados pelo embedding Matryoshka. A eficiéncia dos
modelos classicos em capturar este sinal concentrado, seja por meio de uma fronteira de de-
cisao linear ou de um mapeamento ndo-linear para um espaco de maior dimensao, evidencia
sua adequacdo para este tipo de problema quando a informacao classificatéria é bem definida.

Em contrapartida, os circuitos quanticos ndo-emaranhadores demonstram uma sensibili-
dade consideravelmente maior a perda de informacdo. A analise do circuito 1, que emprega
apenas portas Ry, revela uma queda de desempenho relevante em todas as bases sintéticas.
Na base ChatGPT Facil, a reducdo de dimensionalidade de 768 para 16 atributos resultou em
uma diminuicdo da mediana de F1 de 0.96 para 0.76 (L = 1), o que representa uma perda
de desempenho de aproximadamente 27%. De forma anéloga, para o circuito 2, baseado em
portas Ry, a mesma transicao na base ChatGPT Médio provocou uma reducdo de cerca de
26% em seu desempenho, com a mediana de F1 caindo de 0.94 para 0.75.

Este comportamento indica que as arquiteturas quanticas mais simples, desprovidas de
capacidade de emaranhamento intrinseco, sdo fortemente dependentes da informacao expli-
cita contida nos vetores de alta dimensdo. Sua limitada capacidade representacional, que se
restringe a operacoes locais em cada qubit, mostra-se insuficiente para aprender as correla-
¢Oes implicitas entre os atributos restantes e, assim, compensar a informacdo descartada. O
aumento da profundidade para L = 10 nestes circuitos ndo foi capaz de mitigar de forma
consistente essa perda, reforcando a ideia de que, para arquiteturas n3o-emaranhadoras, a
mera adicdo de parametros nao expande sua capacidade de aprendizado de forma a superar
uma representacao de entrada mais pobre.

Um comportamento peculiar e revelador é observado em alguns circuitos quanticos rasos,
que parecem ser suscetiveis a um certo “ruido” introduzido por um excesso de atributos. O
caso mais emblematico é o do circuito 6 na base ChatGPT Dificil, que, em sua configuracao
com L = 1, apresentou uma melhora de desempenho com a reducdo da dimensionalidade.
Ao passar de 768 para 16 atributos, sua mediana de F1 aumentou de 0.70 para 0.78, um
ganho de aproximadamente 10%. Este fendmeno contraintuitivo sugere que, para um ansatz
com capacidade de aprendizado limitada pela baixa profundidade, um nimero excessivo de
atributos pode complicar a paisagem de otimizacdo, introduzindo ruido que o modelo nao
consegue filtrar eficazmente. A apresentacao de um sinal mais conciso, com 16 atributos,
parece ter facilitado a convergéncia para uma solucdo de melhor qualidade, evidenciando uma

interacdo sutil entre a capacidade do modelo e a complexidade da representacao dos dados.
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A profundidade, contudo, emerge como um poderoso mecanismo de mitigacdo da perda
de informac3do, especialmente nos circuitos com capacidade de emaranhamento. A anilise
comparativa entre as configuracoes com L = 1 e L. = 10 revela que as arquiteturas quanticas
profundas podem, de fato, aprender a compensar a auséncia de atributos explicitos. O circuito
10, na base ChatGPT Dificil, ilustra este ponto de forma clara. Com L = 1, a reducdo de
768 para 16 atributos provoca uma queda de desempenho de cerca de 39% (mediana de F1
de 0.98 para 0.71). No entanto, com L = 10, essa mesma reduc3o resulta em uma queda de
apenas 5% (de 1.0 para 0.96).

De forma ainda mais expressiva, o circuito 8 na base ChatGPT Fécil, ao passar de 768 para
16 atributos, sofre uma queda de desempenho de aproximadamente 16% em sua configuraco
com L = 1 (de 0.89 para 0.76). Contudo, na configuracdo com L = 10, essa diferenca é
completamente eliminada, com o modelo alcangcando o desempenho méaxima (mediana de 1.0)
em ambas as dimensionalidades. Este comportamento se repete em outros circuitos emara-
nhadores, como o 11 e o 14, e fornece uma forte evidéncia de que a profundidade adequada
permite a estas arquiteturas aprender as correlacoes implicitas e complexas entre os atributos
remanescentes.

Esta capacidade de compensacdo é uma caracteristica fundamental que distingue os cir-
cuitos quanticos profundos e emaranhadores. Enquanto os circuitos quanticos rasos dependem
da informacao explicita presente nos atributos, os ansatze profundos demonstram uma capaci-
dade de aprendizado mais abstrata. Eles ndo apenas processam a informac3o de entrada, mas
sao capazes de inferir relacoes latentes para reconstruir, de forma efetiva, o sinal classificatério
que foi perdido na etapa de reducao dimensional.

Em sintese, a andlise da resiliéncia a reducdo de dimensionalidade revela uma clara hi-
erarquia de capacidade entre os modelos. Os classificadores classicos de ponta demonstram
uma robustez excepcional, indicando que, para as bases sintéticas, a tarefa pode ser resolvida
com um sinal concentrado em poucos atributos. Os circuitos quanticos ndo-emaranhadores,
por sua vez, mostram-se frageis, com seu desempenho sendo degradado pela perda de infor-
macdo. Finalmente, os circuitos quanticos emaranhadores e profundos se destacam por sua
capacidade Unica de mitigar essa perda, utilizando a profundidade como um mecanismo para
aprender correlacdes complexas e compensar a auséncia de atributos. Este achado, embora
reforce a dependéncia do desempenho quantico da profundidade do circuito, aponta para um
potencial de aprendizado mais sofisticado, sugerindo que arquiteturas quanticas com capaci-

dade representacional suficiente podem ser particularmente adequadas para problemas onde
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o sinal classificatério reside ndao apenas nos atributos explicitos, mas nas intrincadas relacdes

entre eles.

4.2.2 Sensibilidade do desempenho classificatéria a escolha do modelo gerador de

embeddings

A etapa de geracdo de embeddings constitui a interface fundamental entre o dominio
da linguagem natural e o espaco vetorial no qual os modelos classificatérios, tanto classicos
quanto quanticos, operam. A escolha do modelo responsavel por esta transformacdo nao
é uma mera tecnicalidade de pré-processamento, mas uma decisao que pode influenciar de
forma relevante a estrutura do espaco de caracteristicas e, consequentemente, a capacidade
dos classificadores de encontrar uma fronteira de decisao eficaz. Esta subsecao se dedica a
analisar a sensibilidade do desempenho dos modelos propostos a escolha entre os trés geradores
de embeddings investigados — Matryoshka, Nomic e MPNet —, utilizando os 16 atributos
iniciais como base de comparacao. Tal analise é feita se debrucando sobre as Figuras , , ,
[38|e[39 para a base ChatGPT - Facil, Figuras[40} [41] [42] [43]e[44] para a base ChatGPT - Médio
e Figuras [45)], 40}, [47] [48] e [49 para a base ChatGPT - Dificil, no qual é possivel compreender
o desempenho dos circuitos tendo em vista diferentes modelos geradores de embeddings.

Uma das observacdes mais consistentes, ao se analisar as arquiteturas quanticas mais sim-
ples, é sua acentuada dependéncia da qualidade da representacdo de entrada. Os circuitos
ndo-emaranhadores, cuja capacidade representacional é inerentemente limitada a operacdes
locais, mostram-se particularmente suscetiveis as sutilezas de cada modelo gerador de embed-
dings. O circuito 2 (Ry), com L = 1, na base ChatGPT Médio, exemplifica esta dependéncia:
sua mediana de F1 com o embedding Matryoshka foi de 0.75, um resultado cerca de 17% infe-
rior ao obtido com o MPNet, que alcancou uma mediana de 0.90. Tal disparidade sugere que,
na auséncia de mecanismos quanticos para criar correlaces complexas, o desempenho do clas-
sificador torna-se um reflexo direto de qudo linearmente separaveis os dados sdo apresentados
pelo embedding.

Esta vulnerabilidade n3o é um fendmeno isolado. Na base ChatGPT Dificil, o circuito 1
(Rx) com L = 1 obteve uma mediana de F1 de 0.92 com o embedding do modelo Nomic,
enquanto seu desempenho com o Matryoshka foi de 0.82, aproximadamente 11% inferior. De
forma similar, o circuito 4 (Rx, Rz), na mesma base e com L = 1, também apresentou um

desempenho cerca de 11% inferior ao utilizar o Matryoshka em comparacdo com o Nomic. Estes
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Figura 35 — Resultados do desempenho F1 dos circuitos 1 ao 6 com os modelos geradores de embeddings na
base ChatGPT - Facil. Esses modelos demonstram a crescente complexidade ao utilizar portas
quanticas e portas CNOT. As barras comparativas do lado direito exibem a diferenca percentual
da métrica F1 entre o modelo com a maior média F1 e o modelo Matryoshka, divididos pela
profundidade de cada circuito. As barras de diferenca sdo coloridas com a mesma cor do melhor
modelo em questdo. As marcacdes que indicam semelhanca estatistica sdo advindas do teste
pareado de Wilcoxon com correcdo de p-valor de Holm.
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Figura 36 —

Circuito ID

Resultados do desempenho F1 dos circuitos 7 ao 11 com os modelos geradores de embeddings
na base ChatGPT - Facil. Esses modelos implementam diferentes formas de emaranhamento
quantico. As barras comparativas do lado direito exibem a diferenca percentual da métrica F1
entre o modelo com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de
cada circuito. As barras de diferenca sdo coloridas com a mesma cor do melhor modelo em quest3o.
As marcagbes que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com
correcdo de p-valor de Holm.
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Figura 37 — Resultados do desempenho F1 dos circuitos 12 ao 15 com os modelos geradores de embeddings
na base ChatGPT - Facil. Esses modelos implementam diferentes tipos de conectividade entre
qubits. As barras comparativas do lado direito exibem a diferenca percentual da métrica F1 entre
o modelo com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada
circuito. As barras de diferenca sdo coloridas com a mesma cor do melhor modelo em questdo. As
marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com
correcdo de p-valor de Holm.
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Figura 38 — Resultados do desempenho F1 dos circuitos 32, 33 e 36 com os modelos geradores de embeddings
na base ChatGPT - Facil. Esses modelos implementam modelos classicos lineares. As barras
comparativas do lado direito exibem a diferenca percentual da métrica F1 entre o modelo com a
maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada circuito. As barras
de diferenca sdo coloridas com a mesma cor do melhor modelo em questdo. As marcacdes que
indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com correcio de p-valor

de Holm.
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Figura 39 —

Circuito ID

Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 com os modelos geradores de embed-
dings na base ChatGPT - Facil. Esses modelos implementam modelos classicos ndo-lineares. As
barras comparativas do lado direito exibem a diferenca percentual da métrica F1 entre o modelo
com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada circuito. As
barras de diferenca s3o coloridas com a mesma cor do melhor modelo em questdo. As marcacdes
que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com correcio de
p-valor de Holm.
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Figura 40 — Resultados do desempenho F1 dos circuitos 1 ao 6 com os modelos geradores de embeddings na
base ChatGPT - Médio. Esses modelos demonstram a crescente complexidade ao utilizar portas
quanticas e portas CNOT. As barras comparativas do lado direito exibem a diferenca percentual
da métrica F1 entre o modelo com a maior média F1 e o modelo Matryoshka, divididos pela
profundidade de cada circuito. As barras de diferenca s3o coloridas com a mesma cor do melhor
modelo em questdo. As marcagdes que indicam semelhanca estatistica sdo advindas do teste
pareado de Wilcoxon com correcdo de p-valor de Holm.
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Figura 41 —

Circuito ID

Resultados do desempenho F1 dos circuitos 7 ao 11 com os modelos geradores de embeddings
na base ChatGPT - Médio. Esses modelos implementam diferentes formas de emaranhamento
quantico. As barras comparativas do lado direito exibem a diferenca percentual da métrica F1
entre o modelo com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de
cada circuito. As barras de diferenca s3o coloridas com a mesma cor do melhor modelo em quest3o.
As marcagbes que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com
correcdo de p-valor de Holm.
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Figura 42 — Resultados do desempenho F1 dos circuitos 12 ao 15 com os modelos geradores de embeddings

Circuito ID

na base ChatGPT - Médio. Esses modelos implementam diferentes tipos de conectividade entre
qubits. As barras comparativas do lado direito exibem a diferenca percentual da métrica F1 entre
o modelo com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada
circuito. As barras de diferenca s3o coloridas com a mesma cor do melhor modelo em questdo. As
marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com
correcdo de p-valor de Holm.
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Figura 43 — Resultados do desempenho F1 dos circuitos 32, 33 e 36 com os modelos geradores de embeddings
na base ChatGPT - Médio. Esses modelos implementam modelos classicos lineares. As barras
comparativas do lado direito exibem a diferenca percentual da métrica F1 entre o modelo com a
maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada circuito. As barras
de diferenca s3o coloridas com a mesma cor do melhor modelo em questdo. As marcacdes que
indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com correcio de p-valor

de Holm.
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Figura 44 — Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 com os modelos geradores de embed-
dings na base ChatGPT - Médio. Esses modelos implementam modelos classicos n3o-lineares. As
barras comparativas do lado direito exibem a diferenca percentual da métrica F1 entre o modelo
com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada circuito. As
barras de diferenca s3o coloridas com a mesma cor do melhor modelo em questdo. As marcacdes
que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com correcio de
p-valor de Holm.
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Figura 45 —

Circuito ID

Resultados do desempenho F1 dos circuitos 1 ao 6 com os modelos geradores de embeddings na
base ChatGPT - Dificil. Esses modelos demonstram a crescente complexidade ao utilizar portas
quanticas e portas CNOT. As barras comparativas do lado direito exibem a diferenca percentual
da métrica F1 entre o modelo com a maior média F1 e o modelo Matryoshka, divididos pela
profundidade de cada circuito. As barras de diferenca sdo coloridas com a mesma cor do melhor
modelo em questdo. As marcacdes que indicam semelhanca estatistica sdo advindas do teste
pareado de Wilcoxon com correcdo de p-valor de Holm.

= : Y

Legenda oo I
tomaarsen/mpnet-base-nli-matryoshka
nomic-ai/nomic-embed-text-v1.5 '
all-mpnet-base-v2 I

1 camada 1

10 camadas |.|],|°

Sem diferenca entre camadas

Sem diferenca entre transformers

I

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -20 —-10

F1 F1 (%)
(Melhor — Matryoshka)

O =

Fonte: Elaborada pelo autor (2025)



114

Figura 46 —

Circuito ID

Resultados do desempenho F1 dos circuitos 7 ao 11 com os modelos geradores de embeddings
na base ChatGPT - Dificil. Esses modelos implementam diferentes formas de emaranhamento
quantico. As barras comparativas do lado direito exibem a diferenca percentual da métrica F1
entre o modelo com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de
cada circuito. As barras de diferenca sdo coloridas com a mesma cor do melhor modelo em quest3o.
As marcagbes que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com
correcdo de p-valor de Holm.
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Figura 47 —

Circuito ID

Resultados do desempenho F1 dos circuitos 12 ao 15 com os modelos geradores de embeddings
na base ChatGPT - Dificil. Esses modelos implementam diferentes tipos de conectividade entre
qubits. As barras comparativas do lado direito exibem a diferenca percentual da métrica F1 entre
o modelo com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada
circuito. As barras de diferenca sdo coloridas com a mesma cor do melhor modelo em questdo. As
marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com
correcdo de p-valor de Holm.
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Figura 48 — Resultados do desempenho F1 dos circuitos 32, 33 e 36 com os modelos geradores de embeddings
na base ChatGPT - Dificil. Esses modelos implementam modelos classicos lineares. As barras
comparativas do lado direito exibem a diferenca percentual da métrica F1 entre o modelo com a
maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada circuito. As barras
de diferenca sdo coloridas com a mesma cor do melhor modelo em questdo. As marcacdes que
indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com correcio de p-valor
de Holm.
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Figura 49 —

Circuito ID

Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 com os modelos geradores de embed-
dings na base ChatGPT - Dificil. Esses modelos implementam modelos classicos nao-lineares. As
barras comparativas do lado direito exibem a diferenca percentual da métrica F1 entre o modelo
com a maior média F1 e o modelo Matryoshka, divididos pela profundidade de cada circuito. As
barras de diferenca s3o coloridas com a mesma cor do melhor modelo em questdo. As marcacdes
que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon com correcio de
p-valor de Holm.
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resultados reforcam a conclusdo de que, para ansatze de baixa capacidade representacional,
a escolha do modelo gerador de embeddings ndo é apenas um fator de otimizacdo, mas um
determinante critico do desempenho final.

Em contraposicdo a este cenario, os modelos classicos de ponta demonstram uma robustez
notavel. A Regressdo Logistica (modelo 32) e as Maquinas de Vetores de Suporte com kernels
linear (modelo 36) e RBF (modelo 38) exibem umo desempenho consistentemente elevada em
todas as bases sintéticas, com uma sensibilidade reduzida a escolha do embedding. Na base
ChatGPT Dificil, por exemplo, o SVM com kernel linear alcancou uma mediana de F1 de
0.98 com o Matryoshka, um resultado estatisticamente equivalente ao obtido com os demais
embeddings.

A estabilidade destes modelos classicos sugere que, para a tarefa proposta e com os dados
sintéticos, a informacdo classificatéria fundamental é preservada em todas as representacdes
vetoriais testadas e é acessivel por meio de fronteiras de decisdo (lineares ou ndo-lineares)
que estes modelos s3o eficientes em encontrar. O Perceptron (modelo 33), no entanto, atua
como um contraponto, exibindo uma volatilidade consideravel e reforcando que nem todos os
modelos classicos compartilham da mesma robustez, sendo seu desempenho mais dependente
de uma representacao de entrada que favoreca uma separacdo linear ideal.

A introducdo de profundidade e, de forma mais relevante, de capacidade de emaranha-
mento intrinseco nos ansatze quanticos atua como um poderoso mecanismo mitigador desta
dependéncia. Para os circuitos emaranhadores, o aumento do nimero de camadas de L = 1
para L = 10 n3o apenas aprimora o desempenho, mas também confere ao modelo uma maior
robustez em relacdo a escolha do embedding. O circuito 6, na base ChatGPT Dificil, é um
exemplo emblematico desta dinamica. Com L = 1, o desempenho com o embedding Nomic
(mediana de 0.88) é superior a obtida com o Matryoshka (mediana de 0.78). Contudo, com
L = 10, ambos os modelos convergem para umo desempenho de exceléncia, com medianas
de 0.98, eliminando a disparidade inicial.

De forma anéloga, o circuito 8, na base ChatGPT Facil, demonstra uma inversdo de de-
sempenho. Com L = 1, o MPNet se mostra a melhor opcao, mas com L = 10, é o Matryoshka
que alcanca o desempenho maxima (mediana de 1.0), superando os demais. Este comporta-
mento sugere que a capacidade representacional expandida do circuito profundo permite-lhe
aprender a extrair o sinal classificatério de forma eficaz, mesmo a partir de uma representacao
de entrada que, para um ansatz mais simples, seria subétima.

O circuito 9, na base ChatGPT Dificil, reforca esta conclusdo. o desempenho com o
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embedding Matryoshka para L = 1 (mediana de 0.86) é aproximadamente 13% inferior a do
Nomic (mediana de 0.98). No entanto, ao se aumentar a profundidade para L = 10, o modelo
com Matryoshka eleva sua mediana para 0.98, alcancando um desempenho estatisticamente
equivalente ao do Nomic. Fica evidente que a profundidade e o emaranhamento conferem
ao classificador quantico uma relativa robustez, tornando-o menos suscetivel as variacdes na
etapa de pré-processamento classico.

Esta robustez adquirida pelos circuitos quanticos profundos e emaranhadores os aproxima,
em comportamento, dos modelos classicos mais estaveis. Enquanto um circuito quantico raso
atua como um processador sensivel, cujo sucesso depende de uma entrada de dados “ideal”,
um circuito profundo torna-se um aprendiz mais auténomo, capaz de inferir e construir as
correlacGes necessarias para a tarefa, mesmo a partir de uma representacao de entrada menos
otimizada.

A interacdo entre a complexidade do problema e a escolha do embedding também se mos-
tra relevante. Nas bases ChatGPT Facil e Dificil, o modelo Nomic frequentemente favorece
os circuitos mais simples, enquanto na base ChatGPT Médio, o MPNet por vezes assume a
lideranca. O Matryoshka, por sua vez, embora nem sempre seja o melhor para os circuitos
rasos, demonstra ser uma escolha de exceléncia quando combinado com arquiteturas profun-
das e emaranhadoras, como os circuitos 6 e 11, que alcancam desempenho méxima nesta
configuracdo.

Esta variacdo sugere que n3o existe um modelo gerador de embeddings universalmente
superior, mas sim uma interacao complexa entre a forma como cada modelo estrutura o
espaco vetorial e a capacidade de cada classificador de explorar essa estrutura. A escolha
6tima do embedding é, portanto, dependente tanto da arquitetura do classificador quanto da
natureza intrinseca dos dados.

Em sintese, a analise da sensibilidade dos classificadores a escolha do modelo gerador de em-
beddings revela uma clara hierarquia. Os circuitos quanticos ndo-emaranhadores posicionam-se
como os mais frageis, com seu desempenho sendo fortemente condicionado pela qualidade da
representacdo de entrada. Os modelos classicos de ponta, em contrapartida, exibem uma no-
tavel estabilidade, alcancando alto desempenho de forma consistente. Por fim, os circuitos
quanticos profundos e emaranhadores emergem como as arquiteturas mais sofisticadas, que
utilizam sua capacidade representacional expandida n3o apenas para aprimorar o desempenho,
mas também para mitigar a dependéncia de uma representaciao de entrada especifica. Este

achado sublinha uma conclusdo fundamental: o investimento em arquiteturas quanticas com
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alta capacidade de emaranhamento e profundidade adequada é um caminho promissor nao
apenas para alcancar um desempenho superior, mas também para desenvolver classificadores
mais robustos e versateis, menos suscetiveis as variacoes nas etapas de pré-processamento

classico.

4.3 COMPARACAO ENTRE MODELOS QUANTICOS E CLASSICOS E SEUS ENSEM-
BLES

Uma anélise criteriosa do desempenho dos modelos propostos revela uma distincdo clara
entre os resultados obtidos nas bases de dados sintéticas e no cenario de maior complexidade
da base [SST| A comparacdo direta com os benchmarks cléssicos estabelece um panorama
factual sobre o estado atual dos classificadores quanticos variacionais para a tarefa de analise
de sentimentos, permitindo uma discussdo aprofundada sobre suas potencialidades e os desafios
que ainda persistem na busca por uma vantagem quantica. Esta secao se dedica a dissecar

essa comparacdo, contextualizando os achados e explorando as razdes por tras das lacunas

de desempenho observadas. Sendo assim, utiliza-se as Figuras [50| [51} 52} 53] [54} 55 [56] e
para a base ChatGPT - Facil, Figuras [58] [59} [60] [61] [62] 63} [64] € [65] para a base ChatGPT
- Médio e Figuras [66}, [67} [68} [69} [70} [71} [72] e [73| para a base ChatGPT - Dificil de modo a

criar uma compreensao conjunta dos modelos quanticos e classicos dentro dos experimentos
com 16 atributos e modelo Matryoshka como gerador de embeddings.

Observa-se, primeiramente, uma superioridade notavel dos modelos classicos mais robustos
na base de dados [SST| Classificadores como as com kernels linear (modelo 36) e RBF
(modelo 38), bem como a Regressdo Logistica (modelo 32), estabeleceram uma linha de base
de alto desempenho, alcancando medianas da métrica F1 em torno de 0.73. Este patamar
de desempenho supera consistentemente todos os circuitos quanticos individuais testados,
incluindo as arquiteturas mais complexas e profundas. Este achado é de relevancia central,
pois evidencia que, para a tarefa de analise de sentimentos com os 16 atributos de embedding
extraidos do modelo Matryoshka, uma solucao classica e relativamente simples ndao apenas
é viavel, mas também mais eficaz, indicando que uma possivel vantagem quantica n3do foi
alcancada neste cenario experimental especifico.

A existéncia desta lacuna de desempenho merece uma analise multifatorial, cujas raizes
podem ser tracadas a partir de desafios tedricos e praticos inerentes aos modelos quanticos

variacionais. Uma das hipéteses centrais reside na dificuldade de otimizacao desses circuitos.
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Figura 50 — Resultados do desempenho F1 dos circuitos 1 ao 6 na base ChatGPT - Facil. Esses algoritmos

classificadores demonstram a crescente complexidade ao utilizar portas quéanticas e portas CNOT.
As marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 51 — Resultados do desempenho F1 dos circuitos 7 ao 11 na base ChatGPT - Facil. Esses algoritmos

classificadores implementam diferentes formas de emaranhamento quéantico. As marcacdes que
indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 52 — Resultados do desempenho F1 dos circuitos 12 ao 15 na base ChatGPT - Facil. Esses algoritmos

classificadores implementam diferentes tipos de conectividade entre qubits. As marcaces que
indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 53 — Resultados do desempenho F1 dos circuitos 32, 33 e 36 na base ChatGPT - Facil. Esses algoritmos

classificadores implementam modelos classicos lineares. As marcacdes que indicam semelhanca
estatistica s3o advindas do teste pareado de Wilcoxon.
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Figura 54 — Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 na base ChatGPT - Facil. Esses

algoritmos classificadores implementam modelos classicos nao-lineares. As marcacdes que indicam
semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 55 — Resultados do desempenho F1 dos circuitos 16 ao 21 na base ChatGPT - Facil. Esses algoritmos
classificadores implementam modelos de ensemble através de AdaBoost ou Bagging de circuitos
quanticos. As marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de

Wilcoxon.
16 1 o o °
o o o
17 1
-]
o
18 A
o o o
a
2
=
I~
S
19 A
[
20 1
o
o o o ° °
21 A
Legenda
[ 1 camada
74 10 camadas
X Sem diferenca entre camadas
0.70 0.75 0.80 0.85 0.90 0.95 1.00

F1

Fonte: Elaborada pelo autor (2025)



127

Figura 56 — Resultados do desempenho F1 dos circuitos 22 ao 31 na base ChatGPT - Facil. Esses algoritmos
classificadores implementam modelos de ensemble através de hard ou soft voting de circuitos
quanticos. As marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de

Wilcoxon.
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Figura 57 — Resultados do desempenho F1 dos circuitos 39 ao 44 na base ChatGPT - Facil. Esses algo-

ritmos classificadores implementam modelos de ensemble classicos. As marca¢des que indicam
semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 58 — Resultados do desempenho F1 dos circuitos 1 ao 6 na base ChatGPT - Médio. Esses algoritmos

classificadores demonstram a crescente complexidade ao utilizar portas quanticas e portas CNOT.
As marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 59 — Resultados do desempenho F1 dos circuitos 7 ao 11 na base ChatGPT - Médio. Esses algoritmos

classificadores implementam diferentes formas de emaranhamento quéantico. As marcacdes que
indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 60 — Resultados do desempenho F1 dos circuitos 12 ao 15 na base ChatGPT - Médio. Esses algoritmos

classificadores implementam diferentes tipos de conectividade entre qubits. As marcaces que
indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 61 — Resultados do desempenho F1 dos circuitos 32, 33 e 36 na base ChatGPT - Médio. Esses algo-

ritmos classificadores implementam modelos classicos lineares. As marcacdes que indicam seme-
Ihanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 62 — Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 na base ChatGPT - Médio. Esses

algoritmos classificadores implementam modelos classicos nao-lineares. As marcacdes que indicam
semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 63 — Resultados do desempenho F1 dos circuitos 16 ao 21 na base ChatGPT - Médio. Esses algoritmos

Circuito ID

classificadores implementam modelos de ensemble através de AdaBoost ou Bagging de circuitos
quanticos. As marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de
Wilcoxon.
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Figura 64 — Resultados do desempenho F1 dos circuitos 22 ao 31 na base ChatGPT - Médio. Esses algoritmos
classificadores implementam modelos de ensemble através de hard ou soft voting de circuitos
quanticos. As marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de
Wilcoxon.
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Figura 65 — Resultados do desempenho F1 dos circuitos 39 ao 44 na base ChatGPT - Médio. Esses algo-

ritmos classificadores implementam modelos de ensemble classicos. As marca¢des que indicam
semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 66 — Resultados do desempenho F1 dos circuitos 1 ao 6 na base ChatGPT - Dificil. Esses algoritmos

classificadores demonstram a crescente complexidade ao utilizar portas quanticas e portas CNOT.
As marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 67 — Resultados do desempenho F1 dos circuitos 7 ao 11 na base ChatGPT - Dificil. Esses algoritmos

classificadores implementam diferentes formas de emaranhamento quéantico. As marcacdes que
indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 68 — Resultados do desempenho F1 dos circuitos 12 ao 15 na base ChatGPT - Dificil. Esses algoritmos

classificadores implementam diferentes tipos de conectividade entre qubits. As marcaces que
indicam semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 69 — Resultados do desempenho F1 dos circuitos 32, 33 e 36 na base ChatGPT - Dificil. Esses algoritmos

classificadores implementam modelos classicos lineares. As marcacdes que indicam semelhanca
estatistica s3o advindas do teste pareado de Wilcoxon.
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Figura 70 — Resultados do desempenho F1 dos circuitos 34, 35, 37 e 38 na base ChatGPT - Dificil. Esses

algoritmos classificadores implementam modelos classicos nao-lineares. As marcacdes que indicam
semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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Figura 71 — Resultados do desempenho F1 dos circuitos 16 ao 21 na base ChatGPT - Dificil. Esses algoritmos
classificadores implementam modelos de ensemble através de AdaBoost ou Bagging de circuitos
quanticos. As marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de

Wilcoxon.
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Figura 72 — Resultados do desempenho F1 dos circuitos 22 ao 31 na base ChatGPT - Dificil. Esses algoritmos
classificadores implementam modelos de ensemble através de hard ou soft voting de circuitos
quanticos. As marcacdes que indicam semelhanca estatistica sdo advindas do teste pareado de
Wilcoxon.
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Figura 73 — Resultados do desempenho F1 dos circuitos 39 ao 44 na base ChatGPT - Dificil. Esses algo-

ritmos classificadores implementam modelos de ensemble classicos. As marca¢des que indicam
semelhanca estatistica sdo advindas do teste pareado de Wilcoxon.
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As paisagens de custo associadas aos sdo frequentemente complexas, repletas de minimos
locais e regioes de gradientes evanescentes, os supracitados barren plateaus. Embora o uso de
otimizadores avancados como o Adam e o treinamento em miltiplos seeds busquem mitigar
esse problema, a sua presenca pode impedir que os circuitos convirjam para uma solucdo
6tima, uma dificuldade que é exacerbada pela maior complexidade e pelo ruido intrinseco aos
dados do mundo real da base [SST|

Adicionalmente, a forma como a informacao classica é codificada no estado quantico é
um fator que nao pode ser subestimado. A estratégia de amplitude embedding utilizada neste
trabalho, embora eficiente em termos de nimero de qubits, pode n3o ser a ideal para capturar
as nuances semanticas contidas nos vetores de embeddings. E possivel que esta codificacio
ndo estruture os dados de uma forma que permita ao circuito quantico explorar plenamente
fendmenos como a superposicdo e o emaranhamento para a tarefa de classificacdo. A busca por
métodos de codificacdo de dados mais intrinsecamente “quanticos”, que mapeiem o problema
de forma a maximizar o potencial computacional do algoritmo, permanece como uma area de
investigacao ativa e relevante.

As caracteristicas intrinsecas da base de dados[SST|também se apresentam como um fator
contribuinte relevante para a dificuldade enfrentada pelos modelos quanticos. Conforme se
pode observar na Tabela[l] a base [SST| possui um desbalanceamento de classes consideravel,
com um numero de exemplos da classe negativa sendo aproximadamente quatro vezes maior
que o da classe positiva. Modelos sensiveis a paisagem de otimizacdo, como os circuitos
quanticos variacionais, podem ter sua convergéncia prejudicada por esse desequilibrio, tendendo
a favorecer a classe majoritaria e, consequentemente, resultando em valores mais baixos para
a métrica F1, que é sensivel tanto a precisdo quanto a revocacdo. Os modelos classicos, por
sua vez, frequentemente incorporam mecanismos de regularizacdo ou sao inerentemente mais
robustos a este tipo de desafio.

Em contrapartida ao desempenho na base [SST] os resultados obtidos nas bases sintéticas
ChatGPT oferecem uma perspectiva mais otimista e revelam que os modelos quanticos, sob
certas condicGes, sdo altamente competitivos. Os diagramas de diferenca critica demonstram
que, nestes cendrios com dados mais estruturados e balanceados, a lacuna de desempenho entre
os melhores modelos quanticos e os melhores modelos classicos se estreita consideravelmente,
e em muitos casos, desaparece.

Na base ChatGPT Facil, por exemplo, o diagrama de diferenca critica posiciona o ensemble

quantico 28 (soft voting dos circuitos 7 ao 11) com L = 10 na mesma clique de desempenho
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Tabela 1 — Nimero de exemplos e média de palavras por exemplo por base de dados

Base Tipo de base Classe N° de exemplos Média do n° de palavras
ChatGPT - Facil Treino Positiva 100 6,95
ChatGPT - Facil Treino Negativa 100 7,02
ChatGPT - Facil Teste Positiva 25 7,48
ChatGPT - Facil  Teste Negativa 25 8,00
ChatGPT - Médio Treino Positiva 100 7,80
ChatGPT - Médio Treino Negativa 100 7,79
ChatGPT - Médio Teste Positiva 25 8,00
ChatGPT - Médio Teste Negativa 25 7,68
ChatGPT - Dificil Treino Positiva 100 9,48
ChatGPT - Dificil  Treino Negativa 100 10,11
ChatGPT - Dificil Teste Positiva 25 0,88
ChatGPT - Dificil Teste Negativa 25 10,24
SST Treino Positiva  1.288 18,84
SST Treino Negativa 4.934 18,95
SST Teste Positiva 399 18,74
SST Teste Negativa 1.301 19,04

Fonte: Elaborada pelo autor (2025)

que os modelos cléssicos de ponta, como o KNN (34), o SVM Linear (36) e o SVM RBF
(38), indicando que seus desempenhos sdo estatisticamente indistinguiveis. De forma similar,
na base ChatGPT Meédio, diversos circuitos quanticos profundos, como o modelo 28, 29
(hard voting dos circuitos 7 ao 11) e 31 (hard voting dos circuitos 12, 14 e 15), todos com
10 camadas, compartilham a clique de melhor desempenho com os modelos classicos mais
robustos, incluindo a Regressdo Logistica (32) e as diferentes variagdes do SVM. Essas e
outras constatacdes sdo advindas das Figuras [74] [75] [76] e [77]

Este padrdo de competitividade se estende a base ChatGPT Dificil, onde o ensemble
quantico 31 e L = 10 e o SVM Linear (36) se encontram no grupo de melhor desempenho,
superando outros modelos classicos e quanticos. A capacidade dos circuitos emaranhadores
e profundos de igualar, e por vezes superar, modelos classicos consolidados em cenarios de
dados sintéticos sugere que sua capacidade representacional é, de fato, elevada. Isso indica
que a dificuldade observada na base ndo advém de uma incapacidade fundamental de
aprendizado, mas sim de uma maior sensibilidade a fatores como ruido, desbalanceamento e
a complexidade da fronteira de decisao de dados do mundo real.

Apesar da superioridade geral dos benchmarks classicos na base [SST] seria um equivoco
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Figura 74 — Diagrama de diferenca critica da performance F1 na base ChatGPT - Facil. Foram exibidos apenas
cliques que contenham modelos classicos, de forma ensemble ou isolada, e os modelos quanticos
envolvidos (nas suas versGes L = 1 e L = 10).
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Fonte: Elaborada pelo autor (2025)

desconsiderar o potencial dos melhores modelos quanticos. Circuitos individuais como o 14
e o 15, na sua configuracao com L = 10, alcancaram medianas de F1 de aproximadamente
0.50 e 0.47, respectivamente. De forma anéloga, o ensemble quantico 21 (bagging do circuito
14) obteve uma mediana de F1 préxima a 0.48. Embora estes valores sejam inferiores aos
obtidos pelos SVMs, eles sdo relevantes e se aproximam do desempenho de outros modelos
classicos, como o Perceptron (modelo 33, mediana de 0.69) e o KNN (modelo 34, mediana
de 0.69). Isso indica que a abordagem quantica n3o é invidvel, mas sim que exige arquiteturas
sofisticadas e recursos computacionais (representados aqui pela profundidade) para se tornar
competitiva.

Este desempenho dos melhores circuitos quanticos na base reforca um dos temas

centrais desta dissertacdo, ja explorado na secdo [4.1; a combinacao de um ansatz com ca-
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Figura 75 — Diagrama de diferenca critica da performance F1 na base ChatGPT - Médio. Foram exibidos
apenas cliques que contenham modelos classicos, de forma ensemble ou isolada, e os modelos
quanticos envolvidos (nas suas versdes L = 1 e L = 10).
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pacidade intrinseca de gerar emaranhamento e uma profundidade adequada é um requisito
indispensavel para o sucesso em tarefas de classificacdo de sentimentos com dados do mundo
real. Os modelos que se destacaram (14, 15, 6, 9 e 11) sdo precisamente aqueles que, em
suas configuracdes com L = 10, exibem as melhores métricas de expressabilidade e emaranha-
mento. O seu desempenho, ainda que n3o supere a dos melhores modelos cléssicos, estd em
uma ordem de magnitude superior a dos circuitos ndo-emaranhadores, validando a hipdtese
de que estas propriedades quanticas sao cruciais para o aprendizado de padrées complexos.
A analise comparativa com os modelos classicos que utilizam técnicas de ensemble também
oferece insights valiosos. Modelos como o 41 e o 42, que combinam diferentes kernels de
SVM, alcancaram um desempenho de ponta na baseﬁ (mediana de 0.73), igualando-se aos

seus melhores componentes individuais. Isso demonstra a eficacia de agregar modelos classicos
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Figura 76 — Diagrama de diferenca critica da performance F1 na base ChatGPT - Dificil. Foram exibidos
apenas cliques que contenham modelos classicos, de forma ensemble ou isolada, e os modelos
quanticos envolvidos (nas suas versdes L = 1 e L = 10).
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diversos e robustos. Em contraste, os ensembles quanticos, como o 28 e o 30, embora também
compostos por estimadores diversos, tiveram seu desempenho final limitada pelo desempenho
do seu componente mais fraco na tarefa, um fendmeno atribuido a diluicdo das predices de
maior confianca. Este comportamento sugere que a construcdo de ensembles quanticos eficazes
pode requerer n3o apenas a diversidade, mas também uma consisténcia de alto desempenho
entre seus componentes.

Em sintese, o confronto entre os classificadores quanticos e os benchmarks classicos esta-
belece um panorama claro e honesto. Para a tarefa de anélise de sentimentos na base[SST|com
a representacdo de dados utilizada, os modelos classicos, especialmente os baseados em SVM
e Regressao Logistica, demonstram uma superioridade em termos de desempenho F1. Essa

lacuna pode ser atribuida a uma combinacdo de fatores, incluindo os desafios de otimizacao
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Figura 77 — Diagrama de diferenca critica da performance F1 na base Foram exibidos apenas cliques que
contenham modelos classicos, de forma ensemble ou isolada, e os modelos quanticos envolvidos
(nas suas versdes L =1 e L = 10).
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dos circuitos quanticos, a natureza da codificacao dos dados e as caracteristicas da prépria

base [SST| Contudo, o desempenho competitivo dos modelos quénticos em bases sintéticas

e o desempenho relevante das arquiteturas quanticas mais complexas e profundas no cenério

real indicam um caminho promissor. O trabalho posiciona o emaranhamento e a profundidade

como condices necessarias, embora nao suficientes, para que os modelos quanticos possam,

futuramente, se tornar competitivos e, eventualmente, superar as abordagens classicas em

dominios de problemas de crescente complexidade.
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5 CONCLUSAO

Este trabalho se propds a realizar uma investigacao sistematica e experimental sobre a
expressividade e o emaranhamento de circuitos quanticos variacionais aplicados a tarefa de
classificacdo de sentimentos. Diante do crescente interesse no campo do Processamento de
Linguagem Natural Quantico, buscou-se preencher uma lacuna na literatura, transitando de
andlises puramente tedricas para uma avaliacio empirica que correlaciona as propriedades
arquitetonicas dos circuitos — como topologia, profundidade e capacidade de emaranhamento
— com seu desempenho pratico em cenérios de complexidade crescente.

Para alcancar este objetivo, delineou-se uma metodologia abrangente, detalhada no capi-
tulo[3] que envolveu a anlise de 15 arquiteturas de circuitos distintas, comparadas a 7 modelos
classicos e avaliadas em 22 configuracdes de ensembles. O estudo foi fundamentado em quatro
bases de dados: trés conjuntos de dados sintéticos de dificuldade crescente (ChatGPT Fécil,
Médio e Dificil) e uma base de dados do mundo real, o . A investigacdo foi aprofundada
pela andlise do impacto de trés modelos geradores de embeddings (Matryoshka, Nomic e
MPNet) e pela avaliacdo da resiliéncia dos classificadores a reducdo da dimensionalidade do
vetor de entrada. Todos os resultados foram validados por meio de testes estatisticos rigorosos,

garantindo a robustez das conclusdes subsequentes, que foram interpretadas em detalhe no

Capitulo [4]

5.1 SINTESE DOS RESULTADOS E VALIDACAO DOS OBJETIVOS

A anilise agregada dos resultados, apresentada e discutida no Capitulo [4 permite validar
o cumprimento dos objetivos delineados para esta dissertacao. A seguir, detalha-se como cada
meta especifica foi alcancada, sintetizando os principais achados do estudo.

O primeiro objetivo, referente ao projeto e implementacdo de um conjunto diversificado
de 15 arquiteturas de circuitos quanticos variacionais, foi integralmente cumprido através da
metodologia descrita na secdo [3.1.2] Cada uma das arquiteturas, que variaram em topologia,
tipo de portas e capacidade de emaranhamento, foi avaliada em configuracdes de baixa (L = 1)
e alta (L = 10) profundidade, formando a base para toda a anélise empirica subsequente.

Em atendimento ao segundo objetivo, quantificaram-se as métricas tedricas para cada uma

das arquiteturas propostas. A expressabilidade foi medida por meio da divergéncia de Kullback-
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Leibler em relacao a distribuicdo de Haar, enquanto o poder de emaranhamento foi avaliado
utilizando a medida de Meyer-Wallach, conforme detalhado na secdo . Estes calculos
foram fundamentais para a posterior correlacao entre a teoria e o desempenho pratico dos
circuitos.

O terceiro objetivo, que visava investigar o impacto da representacao de dados de entrada,
foi sistematicamente investigado. Compararam-se trés modelos geradores de embeddings (Ma-
tryoshka, Nomic e MPNet) e avaliou-se a resiliéncia dos modelos a reducdo de dimensionali-
dade (de 768 para 32 e 16 atributos), conforme a anélise na se¢do[4.2.1] A anélise demonstrou
que, embora modelos classicos e circuitos quanticos profundos exibam relevante resiliéncia a
reducao de dimensionalidade, os circuitos quanticos rasos mostraram-se mais sensiveis a essa
perda de informacao.

Para o quarto objetivo, avaliou-se o desempenho dos 44 modelos (quanticos e classicos)
em quatro bases de dados: as trés bases sintéticas de complexidade crescente (ChatGPT Facil,
Médio e Dificil) e a base de dados publica . A métrica F1, utilizada como principal indicador
de desempenho, permitiu uma comparacdo quantitativa e rigorosa do poder de classificacdo
de cada abordagem nos diferentes cenarios propostos.

Em cumprimento ao quinto objetivo, estabeleceu-se uma linha de base robusta por meio
da implementacdo e avaliacao de 7 modelos de aprendizagem de maquina classicos e 10
configuracdes de ensembles classicos. A comparacao direta com as 15 arquiteturas quanticas
individuais e os 16 ensembles quanticos, discutida na secdo 4.3, revelou que os modelos
classicos, notadamente as Maquinas de Vetores de Suporte (modelos 36 e 38) e a Regressdo
Logistica (modelo 32), apresentaram um desempenho superior na base , estabelecendo
um benchmark de desempenho que n3o foi superado pelas abordagens quanticas investigadas.

A correlacdo entre o desempenho empirico e as métricas tedricas, cerne do sexto objetivo,
revelou uma dependéncia fundamental do emaranhamento e da profundidade para o sucesso
dos classificadores quanticos, conforme a discussdo na secdo . Circuitos nao-emaranhadores
(1 a5 e 7) tiveram performance limitada, especialmente na base . Em contrapartida, os
circuitos emaranhadores (como os modelos 6, 9, 11, 14 e 15), especialmente na configuracdo
com L = 10, foram os Unicos a alcancar resultados relevantes, validando a hipétese de que
a capacidade de gerar correlacoes quanticas complexas é um requisito para a classificacdo de
dados do mundo real.

Finalmente, o sétimo objetivo, que demandava uma validac3o estatistica rigorosa, foi cum-

prido por meio da repeticao de cada experimento com 30 sementes de aleatoriedade e da apli-
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cacdo do teste pareado de Wilcoxon com a correcdo de Holm-Bonferroni. Esta metodologia,
utilizada em todas as analises comparativas, garantiu que as conclusdes sobre as diferencas de
desempenho entre os modelos fossem estatisticamente significativas e confidveis, conferindo

robustez aos achados da dissertacdo.

5.2 LIMITACOES DA PESQUISA

O reconhecimento das limitacGes de um estudo é um passo fundamental para a contextu-
alizacdo de seus achados e para o delineamento de futuras investigacdes. A presente pesquisa,
embora abrangente em seu escopo, possui certas restricoes que merecem ser explicitadas.

Primeiramente, no que tange a representacao dos dados, a analise principal de desempenho
e o estudo de reducao de dimensionalidade concentraram-se nos vetores gerados pelo modelo
Matryoshka. Embora a comparacdo com os modelos Nomic e MPNet tenha fornecido insights
valiosos sobre a sensibilidade dos classificadores, uma investigacdo mais aprofundada com
outros modelos de embeddings de ponta poderia revelar dindmicas distintas. Adicionalmente,
o trabalho se limitou ao uso da codificacao por amplitude embedding, sendo esta apenas
uma das miultiplas estratégias possiveis para mapear dados classicos em estados quanticos.
Métodos alternativos poderiam interagir de maneiras diferentes com os ansatze propostos e,
consequentemente, alterar os resultados.

Outra limitacdo relevante reside nas caracteristicas da base de dados [SST| que possui
um desbalanceamento consideravel entre as classes positiva e negativa, conforme detalhado
na Tabela [, Embora a métrica F1 seja adequada para lidar com tal situacdo, sabe-se que
o desbalanceamento pode dificultar o processo de treinamento e a convergéncia de modelos
sensiveis a paisagem de custo, como é o caso dos circuitos variacionais. A aplicacdo de técnicas
de reamostragem, como SMOTE ou undersampling, ndo foi contemplada no escopo deste
trabalho, mas poderia potencialmente alterar o desempenho dos modelos.

Adicionalmente, todos os experimentos foram conduzidos em um simulador quantico ideal,
que n3o leva em consideracao os efeitos do ruido. O desempenho dos circuitos em um hardware
quantico da era NISQ), sujeito a erros de portas, decoeréncia e outros fenémenos, representaria
um desafio adicional e, provavelmente, resultaria em um desempenho inferior. A implementacao
e a avaliacao de técnicas de mitigacao de erro, embora cruciais para a aplicacdo pratica, fugiram
ao escopo desta dissertacdo, que se concentrou na capacidade representacional intrinseca das

arquiteturas.
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Por fim, a otimizacdo de hiperpardmetros, tanto para os modelos quanticos (por exem-
plo, taxa de aprendizado, otimizador, ndmero de épocas) quanto para os modelos classicos
(pardmetros de regularizacdo, grau do polinémio do kernel, entre outros), foi mantida com
configuracoes fixas ou padrao para garantir uma comparacao justa entre as arquiteturas. Uma
busca exaustiva por hiperparametros étimos para cada modelo poderia, potencialmente, alte-
rar os rankings de desempenho, mas representaria um custo computacional custoso e desviaria

o foco da anélise arquitetonica central deste trabalho.

5.3 TRABALHOS FUTUROS

As limitacGes identificadas nesta pesquisa abrem caminho para diversas e promissoras ave-
nidas de investigacdo futura, que podem aprofundar e expandir os achados aqui apresentados.
Uma direcao natural consiste na validacdo experimental dos resultados em hardware quantico
real. A execucdo dos circuitos mais promissores, como os modelos 14 e 15 com L = 10,
em diferentes plataformas de computadores quanticos, aliada a incorporacido de técnicas de
mitigacdo de erro, permitiria uma avaliacao mais realista de sua viabilidade e desempenho em
um ambiente com ruido.

Outra vertente de pesquisa relevante reside na exploracdo de outras estratégias de codifi-
cacado de dados. A investigacao de métodos alternativos, como o Angle Embedding ou o Dense
Angle Embedding, e a andlise de sua interacdo com as métricas de expressabilidade e ema-
ranhamento poderiam revelar combinacdes de codificacdo e ansatz mais eficazes para tarefas
de processamento quantico de analise de sentimento, potencialmente alterando a hierarquia
de desempenho observada neste trabalho.

Além disso, a analise dos ensembles revelou que as abordagens de votacao simples podem
ser prejudicadas pela presenca de estimadores de menor desempenho. Isso sugere a necessidade
de desenvolver métodos de ensemble quanticos mais sofisticados. Uma proposta de trabalho
futuro seria o desenvolvimento de esquemas de votacdo ponderada, nos quais a contribuicdo de
cada estimador base, seja no Soft ou no Hard Voting, é ajustada por seu desempenho individual
ou por uma métrica de confianca, a fim de evitar a diluicio do desempenho final pelos modelos
mais fracos. Além disso, uma analise da quantidade de atributos também ¢é interessante,
tendo em vista modelos quanticos com performances similares a modelos classicos. Isso pode
indicar uma superioridade quantica no que tange a necessidade de complexidade, sabendo que

esses algoritmos quanticos requisitaram menos parametros treinaveis para atingir o mesmo



155

desempenho.

Por fim, a metodologia de anélise sistematica de circuitos aqui desenvolvida pode ser apli-
cada a um escopo mais amplo de problemas de processamento de texto. Trabalhos futuros
poderiam investigar o desempenho destas e de outras arquiteturas quanticas em tarefas mais
complexas, como a classificacao de textos com muiiltiplas classes, o reconhecimento de entidade
nomeada ou a inferéncia de linguagem natural. Tais estudos seriam fundamentais para se obter
uma compreensao mais completa do dominio de problemas em que os classificadores quan-
ticos variacionais podem, eventualmente, oferecer uma vantagem em relacdo as abordagens

classicas.
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