e~
e
e

=

UFPE

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

GERVASIO EUFRAUZINO TEIXEIRA

AVALIACAO DE DESEMPENHO E DISPONIBILIDADE DE UM AMBIENTE DE
GESTAO DE APRENDIZAGEM A PARTIR DE MODELOS COMBINATORIAIS E
DE ESPACO DE ESTADO

Recife
2025

GERVASIO EUFRAUZINO TEIXEIRA

AVALIACAO DE DESEMPENHO E DISPONIBILIDADE DE UM AMBIENTE DE
GESTAO DE APRENDIZAGEM A PARTIR DE MODELOS COMBINATORIAIS E
DE ESPACO DE ESTADO

Dissertacao apresentada ao Programa de Pos-
Graduacdo em Ciéncia da Computacdo da Universi-
dade Federal de Pernambuco, como requisito parcial
para a obtencao do titulo de Mestre em Ciéncia da
Computacao.

Area de Concentracdo: Redes de Computadores
e Sistemas Distribuidos

Orientador (a): Prof. Dr. Jamilson Ramalho Dan-
tas

Recife
2025

.Catalogacéo de Publicacéo na Fonte. UFPE - Biblioteca Central

Tei xeira, Gervasi o Eufrauzi no.

Aval i acdo de desenpenho e di sponi bilidade de um anbi ente de
Gest do de Aprendi zagem a partir de nodel os conbi nat6rios e de
espaco de estado / Gervasio Eufrauzino Teixeira. - Recife, 2025.

133f.: il.

Di sserttacao (Mestrado)- Universi dade Federal do Pernanbuco,
Centro de Informatica - Cln, Programa de POs- G aduagdo em
Ci énci a da Conput agdo, 2025.

Orientacdo: Jam | son Ramal ho Dant as.

1. Disponibilidade; 2. RBD, 3. CTIMC, 4. SPN, 5. LAWP; 6.
Moodl e. |. Dantas, Jam |son Ramal ho. Il. Titulo.

UFPE- Bi bl i ot eca Central

Gervasio Eufrauzino Teixeira

“Avaliagcao de desempenho e disponibilidade de um ambiente de gestao de
aprendizagem a partir de modelos combinatérios e de espago de estado”

Dissertagdo de mestrado apresentada ao
Programa de Pos-Graduacdo em Ciéncia da
Computacdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtencao do titulo de Mestre em Ciéncia da
Computacdo. Area de Concentracio: Redes
de Computadores e Sistemas Distribuidos

Aprovado em: 29/07/2025.

BANCA EXAMINADORA

Prof. Dr. Andson Marreiros Balieiro
Centro de Informatica / UFPE

Prof. Dr. Gustavo Rau de Almeida Callou
Departamento de Computagdao /UFRPE

Prof. Dr. Jamilson Ramalho Dantas
Centro de Informatica / UFPE
(orientador)

A todos que lutam, trabalham e estudam... dedico.

AGRADECIMENTOS

A Deus, que no seu mistério da unidade se mostra trino e na sua trindade nos aparece uno.

A minha esposa Diana e minha filha Valentina que sempre me apoiaram e entenderam
minhas auséncias em suas vidas nos momentos que precisei.

A minha cunhada Dania pelas energias enviadas.

Aos amigos da 22 Vara Mista de Cajazeiras Lucivaldo, Chislene e Corrinha pelo apoio no
trabalho.

Ao Prof. Paulo Maciel pela generosidade em compartilhar seus conhecimentos.

Ao meu orientador, Prof. Jamilson Dantas, pela paciéncia e disponibilidade. Agradeco de
coracao.

Aos colegas do grupo MoDCS, em especial Erick Barros, pela forca, pela ajuda e pelas
palavras de encorajamento.

Aos colegas da Faculdade Catélica da Paraiba, em especial ao NT| — Ndcleo de Tecno-

logia da Informacao — e a Coordenacao do Curso de Ciéncia da Computacdo na pessoa do

Coordenador Prof. René Gadelha.

“N3o se preocupe com suas falhas no que tentou fazer,
mas no que ainda é possivel realizar.”

— S30 Jo3o Paulo Il

RESUMO

A crescente dependéncia de plataformas de e-learning, intensificada por eventos globais (a
exemplo da Covid-19) que as transformaram em infraestruturas educacionais de alta critici-
dade operacional, exige arquiteturas resilientes, com elevada disponibilidade e desempenho
compativel com as demandas institucionais. O Moodle, amplamente adotado como solucao de
cédigo aberto, carece de anadlises quantitativas que revelem vulnerabilidades em suas arquitetu-
ras de implantacao e permitam propor melhorias fundamentadas em evidéncias analiticas. Este
trabalho busca preencher essa lacuna ao propor e validar um framework hibrido e hierarquico
de modelagem que combina modelos combinatérios e de espaco de estado para avaliar, de
forma integrada, a disponibilidade e o desempenho do ambiente Moodle sobre a pilha LAMP
(Linux, Apache, MySQL, PHP). A metodologia desenvolvida integra Diagramas de Blocos de
Confiabilidade (RBD) para representar dependéncias estruturais, Cadeias de Markov de Tempo
Continuo (CTMC) para capturar a dindmica de falhas e reparos, e Redes de Petri Estocésticas
(SPN) para modelar a concorréncia e as politicas de escalonamento automatico em ambientes
de nuvem. A validacdo dos modelos, conduzida por meio de injecdo controlada de falhas em
componentes criticos e andlise estatistica com intervalo de confianca de 95%, demonstrou
que: (i) a arquitetura basica em hardware fisico apresenta disponibilidade de 99,75%, corres-
pondendo a 21,89 horas de inatividade anual; (ii) a introducdo de redundéncia fisica eleva a
disponibilidade para 99,9994%, reduzindo o tempo de inatividade em 99,75%; (iii) a virtua-
lizacdo, embora reduza a disponibilidade isoladamente (38,92 horas de inatividade), quando
associada a redundancia no nivel do host, atinge 99,86% de disponibilidade, representando
uma reducdo de 44,82% no tempo de inatividade em relacdo ao cendrio base; e (iv) em nuvem
publica, os modelos SPN revelam que politicas de escalonamento reativo podem levar a sa-
turacdo e a degradacdo da vazdo sob carga elevada. Conclui-se que arquiteturas virtualizadas
com redundancia e dimensionamento elastico em nuvem s3o estratégias eficazes para assegu-
rar alta disponibilidade (>99,8%) e desempenho consistente. As principais contribuicdes deste
trabalho incluem um framework analitico validado para planejamento de capacidade, diretrizes
quantitativas para aprimoramento arquitetural e uma metodologia experimental reprodutivel

para avaliacdo de plataformas de aprendizagem.

Palavras-chaves: Disponibilidade. RBD. CTMC. SPN. LAMP. Moodle.

ABSTRACT

The growing dependence on e-learning platforms, intensified by global events (such as COVID-
19), which have become highly operationally critical educational infrastructures, requires re-
silient architectures with high availability and performance compatible with institutional de-
mands. Moodle, widely adopted as an open-source solution, supports quantitative analyses that
reveal vulnerabilities in its deployment architectures and enable the proposal of improvements
based on analytical evidence. This work seeks to fill this gap by proposing and validating a
hybrid, hierarchical modeling framework that combines combinatorial and state-space models
to comprehensively assess the availability and performance of the Moodle environment on the
LAMP stack (Linux, Apache, MySQL, PHP). The developed methodology integrates Relia-
bility Block Diagrams (RBDs) to represent structural dependencies, Continuous-Time Markov
Chains (CTMCs) to capture failure and repair dynamics, and Stochastic Petri Nets (SPNs)
to model concurrency and autoscaling policies in cloud environments. Model validation, con-
ducted through controlled fault injection in critical components and statistical analysis with a
95% confidence interval, demonstrated that: (i) the basic architecture on physical hardware
presents 99.75% availability, corresponding to 21.89 hours of annual downtime; (ii) the in-
troduction of physical redundancy increases availability to 99.9994%, reducing downtime by
99.75%; (iii) virtualization, although reducing availability exclusively (38.92 hours of down-
time), when associated with host-level redundancy, achieves 99.86% availability, representing
a 44.82% reduction in downtime compared to the baseline scenario; and (iv) in the public
cloud, SPN models reveal that reactive scheduling policies lead to saturation and throughput
manipulation under high load. We conclude that virtualized architectures with redundancy and
elastic scaling in the cloud are effective strategies for ensuring high availability (>99.8%) and
consistent performance. The main contributions of this work include a validated analytical
framework for capacity planning, quantitative guidelines for architectural improvement, and a

reproducible experimental methodology for evaluating learning platforms.

Keywords: Availability. RBD. CTMC. SPN. LAMP. Moodle.

LISTA DE FIGURAS

[Figura 1 — Arquitetura da Pilha LAMP| 29
[Figura 2 — Arquitetura Moodlel 30
IFigura 3 — Arvore de confiabilidade e segurancal. 33
[Figura4 — RBD emserief 37
[Figurab — RBD em paralelo| 38
[Figura 6 — RBD KooN com K=2e N=3| 39
[Figura 7 — Modelo genéricoem CTMC| 40
[Figura 8 — Elementos de uma SPN| 42
[Figura 9 — Modelo Genéricoem SPN| 43
[Figura 10 — Metodologia Propostal, 45
[Figura 11 — Diagrama de Injecaode Falha| 46
[Figura 12 — Diagrama de Injecao de Reparo| 46
[Figura 13 — Arquitetura propostal 49
[Figura 14 — Injetor de falhas/reparo| 49
[Figura 15 — Topologia de nuvem com escalonamento automatico| 51
[Figura 16 — RBD Proposto| 56
[Figura 17 — RBD Moodlel 57
[Figura 18 — CTMC Moodle| 58
[Figura 19 — RBD Moodle Redundante] 60
[Figura 20 — RBD Moodle Virtualizado| 62
[Figura 21 — SPN Moodle Virtualizado com redundancia no servidor| 63
[Figura 22 — SPN de Desempenho Moodle| 65

[Figura 23 — Variacao A x MI"I'F' para componentes Aplicacao e Sistema Operacional 78

[Figura 24 — Variacao A x M'IT"I'R para componentes Aplicacao e Sistema Operacionall 78
[Figura 25 — Utilizacdo x Namero de [Virtual Machine (VM)s 88

[Figura 26 — Utilizacao x Num. de Usuarios| 90

LISTA DE CODIGOS

[Codigo Fonte 1

Codigo Python

[Codigo Fonte 2

Codigo Python

[Codigo Fonte 3

Codigo Python

para injetar falhas e reparos no hardware| 106
para desligar o hardwarel 107
para religar o hardware] 108

[Codigo Fonte 4

Codigo Python

para injetar falhas e reparos no Sistema Operacionall 110

[Codigo Fonte 5 — Coédigo Python para desligar o Sistema Operacional] 111
[Codigo Fonte 6 — Coddigo Python para religar o Sistema Operacional| 112
[Codigo Fonte 7 — (Codigo Python para injetar falhas e reparos no Apache. 114
[Codigo Fonte 8 — (Codigo Python para injetar falhas e reparos no MySQL| 116
[Codigo Fonte 9 — Codigo Python para injetar falhas e reparos no PHP| 118
[Codigo Fonte 10 — Codigo Python para monitorar e salvar status do sistema - roda a [
| cada bseg|l 120
[Codigo Fonte 11 Codigo Python para analisar arquivo de LOG e mostrar métricas |
| de interessel L 128

LISTA DE TABELAS

[Tabela 1 — Tabela comparativa dos trabalhos relacionados| 24
[Tabela 2 — Compilado do processo metodologicol 43
[Tabela 3 — Estimativa de capacidade de instancias|[Amazon Web Services (AWS)| para |
I Moodlel 53
[Tabela 4 — CIMC — Descricao dos estados| 58
(Tabela b — CIMC — Descricaodastaxas| 59
[Tabela 6 — Descricao dos lugares do modelo SPN|. 67
[labela 7 — Descricao das variaveis do modelo|. 67
[Tabela 8 — Descricao das transicoes do modelo SPN| 68
[Tabela 9 — Arcos com pesos condicionais do modelo| 69
[labela 10 — Componentes do sistemal 71
[fabela 11 — Valores de referéncial L 72
[Tabela 12 — Parametros de entrada com fator de acelaracaol. 72
[Tabela 13 — Valores do experimento| 73
[Tabela 14 — Valores base para grau de liberdade] 73
[Tabela 15 — Intervalo de Confianca do Experimento| 74
[labela 16 — CTMC — Parametros de Entradal 76
[labela 17 — Resultado da Analise de Sensibilidadel 77
[Tabela 18 — Comparacao entre Arquitetura Basica e Arquitetura Redundante Fisical] . . 80
[Tabela 19 — Parametros de entrada do modelo |Reliability Block Diagram (RBD)[. . . . 82
[Tabela 20 — Comparacao entre Arquitetura Basica e Arquitetura Virtualizadal. 83
labela 21 — Entradas do modelo virtualizado com redundancial 84
[Tabela 22 — Definicao das métricas de interesse da SPN com redundancial] 84
[Tabela 23 — Comparacao entre Arquitetura Basica e Arquitetura Virtualizada com re- [
I dundancial 84
[Tabela 24 — Métricas de Desempenho Avaliadas no Estudode Caso|. 86
[Tabela 25 — Transicoes Temporizadas, Variaveis e Tempos Associados| 86
[Tabela 26 — MTBP Estimado para Instancias AWS| 87
[Tabela 27 — Estimativa de Usuarios por Instancias AWS| 88
[Tabela 28 — Probabilidade de Descarte para Instancias AWS com 5 VMs| 92

[Tabela 29 — Taxa de Descarte para Instincias AWS com 5 VMs (h=%)
[Tabela 30 — Vazao para Instancias AWS com 5 VMs|

AWS
CLMS
CTMC
EC2
laaS
LAMP
LMS
MBaa$S
Moodle
MTTF
MTTR
PN
RBD
SaaS
SLA
SO
SPN
TTF
TTR

ul

VM

LISTA DE ABREVIATURAS E SIGLAS

Amazon Web Services

Cloud Learning Management System
Continuous-Time Markov Chain

Elastic Compute Cloud

Infrastructure as a Service

Linux, Apache, MySQL, PHP /Perl /Python
Learning Management System

Mobile Backend as a Service

Modular Object-Oriented Dynamic Learning Environment
Mean Time to Failure

Mean Time to Repair

Petri Net

Reliability Block Diagram

Software as a Service

Service Level Agreement

Software

Stochastic Petri Net

Time to Failure

Time to Repair

User Interface

Virtual Machine

LISTA DE SIMBOLOS

Taxa de reboot do Hardware
Taxa de reparo

Taxa de falha

SUMARIO

il INTRODUCAO|t ittt e e e e e e e et e e e e e 18
1.1 MOTIVACAO E JUSTIFICATIVAl, 18
................................. 21
13 [RABALHOS RELACIONADOS 22
1.4 ESTRUTURA DA DISSERTACAQ|., 24
2 FUNDAMENTACAO TEORICA| i i ie i 26
21 [FARNING MANAGEMENT SYSTEM —[LMSl 26
2.2 PILHA LAMPI. o o 27
2.3 VIRTUALIZACAO| 30

31
25 DEPENDABILIDADE 33
2.6 AVALIACAO DE DESEMPENHO DE SISTEMAS| 35
27 MODELOS PARA ANALISE DE DESEMPENHO E DISPONIBILIDADE| . . 36
2.7.1 Diagramas de Bloco de Confiabilidade - RBD| 37
2.7.2 Cadeias de Markov de Tempo Continuo - CTMC| 39
2.7.3 Redes de Petri Estocasticas - SPNI 41
28 ANALISE DE SENSIBILIDADE 43
2.9 INJECAO DE FALHA|. 44
B M™METODOLOGIA E ARQUITETURA| 45
31 METODOLOGIAl 45
B.2 ARQUITETURA BASICAl 48
3.3 ARQUITETURA BASEADA EM NUVEM PUBLICA| 51

4 MODELOS PROPOSTOS

44 MODELO DE DESEMPENHO 65

5 VALIDACAO DO MODELO ARQUITETURA BASICA| 70
5.1 AMBIENTE EXPERIMENTAL E INJECAO DE FALHAS| 70
52 ANALISE DOS DADQS EXPERIMENTAIS 72
5.3 COMPARACAO E CONCLUSAO DA VALIDACAO| 74
6 ESTUDOSDECASOIt 75
6.1 AVALIACAO DO IMPACTO DOS COMPONENTES DA ARQUITETURA |
| BASICA SOBRE A DISPONIBILIDADE| 75
6.2 AVALIACAO DA ARQUITETURA REDUNDANTE| 80
6.3 AVALIACAO DA ARQUITETURA VIRTUALIZADA! 81
6.4 ANALISE DE DESEMPENHO EM NUVEM PUBLICA| 85
0.4.1 Analise de Utilizacao por Numero de Maquinas Virtuais| 88
6.4.2 Analise de Utilizacao sob Carga Variavel de Usuarios Simultaneos| . 90
6.4.3 Analise de Desempenho com Carga Estimada de Usuarios por Ins- |
I tancial 91
7 CONCLUSAO E TRABALHOS FUTUROS| 95
7.1 PRINCIPAIS CONTRIBUICOES|, 96
7.2 LIMITACOES E DIFICULDADES] 97

(3 TRABALHOS FUTUROS

IAPENDICE A — SCRIPT PARA INJECAO DE FALHA E REPARO |
NO HARDWARE 106

IAPENDICE B — SCRIPT PARA INJECAO DE FALHA E REPARO |
0 NOSISTEMA OPERACIONAL

[APENDICE C — SCRIPT PARA INJECAO DE FALHA E REPARO |
NOAPACHE ot ee e e e 114
[APENDICE D - SCRIPT PARA INJECAO DE FALHA E REPARO |
NOMYSQL . . . oot e ee e e e e e e 116
[APENDICE E — SCRIPT PARA INJECAO DE FALHA E REPARO |
NOPHPooii i 118

. 128

>

18

1 INTRODUCAO

A medida que as tecnologias progrediram e a necessidade por métodos flexiveis e aces-

siveis de ensino aumentou, os |Learning Management System (LMS)| tornaram-se elementos

essenciais nos ambientes educacionais. Uma das principais solucdes nesta area é o [Modular]

|Object-Oriented Dynamic Learning Environment (Moodle), um sistema de gerenciamento de

aprendizagem de cédigo aberto amplamente utilizado em instituicGes educacionais devido a
sua habilidade de oferecer recursos robustos para desenvolvimento e entrega de cursos, suporte
multilingue e opcdes de personalizacdo (AL-AJLAN; ZEDAN, 2008)). Hoje, é importante manter
essas plataformas disponiveis para garantir uma experiéncia educacional plenamente eficaz. A
resiliéncia de um [LMS] como o Moodle se refere a capacidade do sistema de resistir as falhas,
mantendo suas funcionalidades principais e recuperando-se rapidamente de interrupcdes além
de apresentar desempenho que atenda as necessidades dos seus utilizadores

Esta dissertacdo propoe, através do uso modelos combinatérios como Diagramas de Blocos
de Confiabilidade —[RBD]—, Cadeias de Markov de Tempo Continuo —[Continuous-Time Markov]
|Chain (CTMC)| — e Redes de Petri Estocasticas — [Stochastic Petri Net (SPN)| — avaliar o
desempenho e a disponibilidade da instalacdo do Moodle dentro de uma infraestrutura

|Apache, MySQL, PHP /Perl/Python (LAMP) bem como estudar cendrios alternativos que

melhorem o seu desempenho. A unido desses modelos permite uma avaliacdo detalhada e
abrangente do sistema, levando em consideracao as interdependéncias entre seus componentes,
os efeitos de suas falhas/reparos e aqueles menos impactantes no resultado final. A analise
sugerida tem como objetivo aumentar a disponibilidade em plataformas [LMS] por meio da
avaliacdo de métricas relacionadas ao desempenho e a disponibilidade do sistema, tais como

taxa de utilizacdo dos recursos e tempo médio entre falhas e reparos.

1.1 MOTIVACAO E JUSTIFICATIVA

A constante evolucao tecnolégica, impulsionada por eventos globais como a pandemia de
COVID-19, alcou os Ambientes de Gestao de Aprendizagem de ferramentas auxiliares
a sistemas essenciais a operacdo e continuidade das atividades educacionais (TESAR, [2020)).
Esses sistemas se tornaram essenciais para a criacao, gestao e distribuicao de contetdo digital,

desempenhando papel central na interacao entre docentes, discentes e o contetido educacional.

19

Dentre os diversos [LMS| disponiveis, o[Moodle| destaca-se como a solucdo de cédigo aberto
mais amplamente adotada (ALTINPULLUK; KESIM, [2021)). Desenvolvido em PHP no inicio dos
anos 2000, o Moodle possui instalacao relativamente simples, sendo tradicionalmente implan-
tado sobre a pilha[LAMP] (Linux, Apache, MySQL, PHP) (COMMUNITY| [2024)), o que contribui
para sua popularidade em instituicdes de ensino de diferentes portes e regides (AL-AJLAN; ZE-
DAN| 2008)).

A confiabilidade, a disponibilidade e a resiliéncia desses ambientes digitais constituem requi-
sitos fundamentais para garantir uma experiéncia de aprendizado uniforme e de alta qualidade.
No contexto atual, a resiliéncia nao é apenas ao tempo de atividade, mas envolve também a
habilidade do sistema para resistir a interrupcdes, manter funcdes criticas em operacdo e se
recuperar prontamente de falhas. Uma andlise minuciosa da disponibilidade é necesséria para
aprimorar a resiliéncia das plataformas [LMS] garantindo que as atividades académicas sofram
o minimo de interrupcao.

A analise de disponibilidade ndo se limita simplesmente a quantificacdo do tempo em que o
sistema esta operacional; envolve uma compreensao detalhada de como o sistema responde a
diferentes exigéncias (MACIEL, 2023b)). Nesse contexto, os modelos de estado, que descrevem
o comportamento do sistema por meio de estados e transicGes, sao essenciais. Eles oferecem
uma base sélida para a avaliacdo quantitativa da disponibilidade, permitindo a identificacdo
de areas criticas e a adocao de estratégias de mitigacao de risco, o que, por sua vez, aprimora
a resiliéncia do sistema.

A transicdo do [LMS] para um ponto central das atividades académicas elevou o atributo
de desempenho a um requisito indispensavel. Atrasos no tempo de resposta ou uma laténcia
elevada comprometem diretamente a experiéncia de uso, sendo agravados pela variabilidade
da carga de trabalho: operacGes intensivas no banco de dados, mesmo com poucos usuarios,
podem impactar negativamente o sistema mais do que acessos simultaneos a contetidos esta-
ticos. Essa imprevisibilidade operacional torna a identificacao de gargalos e falhas um desafio
constante.

Adicionalmente, em infraestruturas de nuvem, a escalabilidade constitui um fator decisivo
para garantir niveis adequados de desempenho e disponibilidade. A configuracao de meca-
nismos de auto-scaling requer um equilibrio cuidadoso entre custo e desempenho. Politicas
reativas podem ser ineficazes sob picos de carga inesperados, enquanto abordagens proativas
incorrem em risco de superprovisionamento. Como testar esses comportamentos diretamente

em ambientes de producdo pode acarretar interrupcdes indesejadas, a modelagem estocastica

20

surge como alternativa vidvel para analise preditiva.

A modelagem formal é, portanto, um instrumento poderoso para essa analise. Modelos
de espaco de estado, como as Cadeias de Markov de Tempo Continuo (CTMC]) e Redes de
Petri Estocasticas , permitem representar transicoes entre estados com base em taxas
de falha e de reparo, incorporando elementos de concorréncia, sincronizacdo e comportamento
probabilistico. Essas abordagens complementam os Diagramas de Blocos de Confiabilidade
, que, embora eficazes na representacdo da estrutura légica do sistema, sao limitados
quanto a modelagem de dinamicas temporais e de dependéncia entre recursos.

O uso de simulacdo pode ser uma alternativa a modelagem formal, contudo, enquanto
técnicas de simulacao exploram o comportamento do sistema por meio de mdltiplas execuces
experimentais para fornecer resultados com aproximacao estatistica, a abordagem via mode-
lagem formal busca a obtencao de solucdes analiticas. Para modelos cujo espaco de estados é
computacionalmente tratavel, essa metodologia permite a obtencdo de métricas de desempe-
nho exatas e uma andlise de todos os “comportamentos” possiveis. Essa caracteristica oferece
uma compreensao abrangente do sistema, eliminando a incerteza estatistica inerente a amos-
tragem de cenéarios simulados e permitindo focar a analise parametros fundamentais, como as
taxas de falha e reparo, por exemplo.

A integracio de [RBD| [CTM(e [SPN]| constitui uma forma robusta para avaliar tanto a

disponibilidade quanto o desempenho do Moodle operando sobre uma infraestrutura [LAMP]
Essa abordagem multifacetada permite capturar a complexidade do sistema sob diversas pers-
pectivas, identificando gargalos, interdependéncias e efeitos de propagacdo de falhas.

Dessa forma, esta dissertacdo justifica-se por propor um framework analitico que visa: (i)
identificar os componentes criticos para a disponibilidade e o desempenho da plataforma Mo-
odle; (ii) avaliar quantitativamente o impacto de alteracdes arquiteturais, como a introducio
de redundancia ou a variagdo de tipos de instancia de nuvem; e (iii) oferecer suporte analitico
a tomada de decisdo, com vistas a otimizacdo da alocacao de recursos e ao equilibrio entre
desempenho e disponibilidade.

A contribuicdo cientifica reside, portanto, na construcdo de um modelo estocastico abran-
gente e integrado que reflita o comportamento de um [LMS] complexo, fornecendo subsidios
concretos para o planejamento proativo de capacidade e para o aprimoramento da resiliéncia

e eficiéncia dos ambientes de aprendizagem digitais.

21

1.2 OBJETIVOS

O objetivo central deste trabalho é analisar e avaliar quantitativamente o desempenho e a
disponibilidade de um ambiente virtual de gestao de aprendizagem, especificamente o [Moodle|
a partir do desenvolvimento e aplicacdo de uma abordagem de modelagem hibrida e hierarquica

baseada em [RBD)], [CTM(e [SPN| Essa abordagem permite identificar pardmetros sensiveis,

analisar cenarios criticos e propor melhorias estruturais que contribuam para a aumento da
eficiéncia e da disponibilidade do sistema.

Para alcancar o objetivo geral, os seguintes objetivos especificos foram estabelecidos:

1. Desenvolver e validar um modelo formal hierarquico que integre miultiplos formalismos:

» [RBD} para quantificar métricas de disponibilidade da arquitetura, considerando as

dependéncias ldgicas entre os componentes.

» [CTMC| e[SPNE para capturar o comportamento dindmico do sistema, incluindo os

processos de falha e reparo, a chegada de requisicoes de utilizadores e a utilizacao

de recursos.
2. Estimar um conjunto de métricas de interesse a partir dos modelos, incluindo:

» Meétricas de Disponibilidade: Disponibilidade, Indisponibilidade, Nimero de nove,
Tempo Médio de Falha (Mean Time to Failure (MTTF)), Tempo Médio de Reparo
(Mean Time to Repair (MTTR)), Downtime e Uptime.

= Métricas de Desempenho: Vazdo (Throughput), probabilidade de descarte, taxa de

descarte e utilizacdo do sistema.

3. ldentificar os componentes e parametros mais impactantes para o desempenho e dispo-

nibilidade do sistema, por meio de anélises de sensibilidade.

4. Quantificar métricas de desempenho e disponibilidade do sistema, por meio da modela-

gem e avaliacdo de cenarios de aprimoramento da plataforma.

5. Apresentar recomendacdes e estratégias baseados nos resultados obtidos a fim de for-

necer suporte a decisdo para o planejamento de ambientes de aprendizagem digitais.

22

1.3 TRABALHOS RELACIONADOS

Para situar esta pesquisa no contexto cientifico e fundamentar sua contribuicdo, esta secdo
apresenta uma revisao dos trabalhos que abordam os pilares centrais da pesquisa. A analise
foca em estudos sobre a avaliacdo de desempenho e disponibilidade de componentes da pilha
LAMP, a implementacao de sistemas de gestdo de aprendizagem em ambientes de nuvem e a
aplicacdo de modelagem estocastica para anélise de desempenho e escalonamento automatico.

A literatura inicial focou no desempenho de componentes individuais da pilha [LAMP] Jogi
e Sinha (2016) realizaram estudo sobre o desempenho do banco de dados, incluindo o MySQL,
em cendrios de alta carga de gravacdo. Kurien, Mathew e Mana| (2022)) estudaram a interacdo
do PHP com o MySQL em um Sistema de Gerenciamento de Ativos, com foco na seguranca
e integridade dos dados. Koch e Hao| (2021) apresentaram uma analise do desempenho de
componentes individuais em uma pilha[LAMP]| com &nfase particular no Servidor Web Apache
em ambientes de nuvem (AWS).

Paralelamente, outros estudos avaliaram [LMS| de uma perspectiva mais sistémica. Wan-

napiroon, Kaewrattanapat e Premsmith| (2019), por sua vez, desenvolveram um Sistema de

Gerenciamento de Aprendizagem em Nuvem ((Cloud Learning Management System (CLMS)),

avaliando eficiéncia e satisfacao do usuario, mas sem incluir testes relacionados a disponibili-
dade.

Mais recentemente, pesquisas comecaram a enderecar a avaliacao de desempenho e dispo-
nibilidade de Ambientes Virtuais de Aprendizagem (AVAs), como o Moodle, em infraestruturas
de nuvem. |Lima et al. (2021a) e |Lima et al.| (2021b) realizaram uma avaliacdo focada no de-
sempenho e no consumo de energia do ambiente Moodle em nuvens privadas. Avancando
nesta linha, |Goncalves et al.| (2022)) propuseram modelos estocasticos para o planejamento de
AVAs, comparando o impacto de arquiteturas baseadas em contéineres e maquinas virtuais.
Estes trabalhos confirmam a relevancia de avaliar o Moodle, mas focam primariamente em
desempenho e consumo de energia, ou no planejamento de infraestrutura, sem uma anélise
aprofundada da disponibilidade validada por falhas nos componentes base.

Embora os trabalhos de [Lima et al|(2021a), Lima et al.[(2021b) e|Goncalves et al.| (2022))
abordem o Moodle, o presente trabalho se diferencia e estende a literatura ao focar especifi-

camente na avaliacdo da plataforma sobre a pilha LAMP| tradicional. A contribuicdo central é

uma metodologia hibrida e hierarquica (RBD} |[CTMC| e [SPN]) para uma anélise detalhada da

disponibilidade do Moodle. Crucialmente, esta modelagem é validada experimentalmente atra-

23

vés da injecdo de falhas e reparos nos componentes criticos da pilha (Hardware, SO, Apache,
MySQL e PHP), provando a precisdo e aplicabilidade dos modelos propostos de uma forma
nao explorada pelos estudos anteriores.

A aplicacdo de modelagem estocastica para avaliar a disponibilidade de servicos em nu-
vem é uma area de pesquisa ativa e recente, o que reforca a relevancia desta dissertacao.
Metodologias similares tém sido aplicadas a outros servicos de nuvem analogos ao Moodle.
Por exemplo, uma série de estudos recentes modelou a disponibilidade e o desempenho de
servidores de arquivos, como o Nextcloud, em nuvens privadas e em Apache Cloudstack, uti-
lizando [SPN| Em linhas semelhantes, Borges et al| (2025]) avaliaram um sistema de vigilancia

por video com armazenamento distribuido e Silva et al.| (2024) analisaram a disponibilidade

de uma plataforma [Mobile Backend as a Service (MBaaS), ambos utilizando modelagem de

disponibilidade e anélise de sensibilidade. Callou e Vieira (2024) também fornecem uma analise
geral da disponibilidade e desempenho de servicos em nuvem.

No contexto especifico dos sistemas de e-learning e escalonamento automatico, trabalhos
pioneiros como o |Casale e Cremonesi (2006) ja abordavam a modelacdo e anélise de desem-
penho de um sistema de e-learning em larga escala, embora em arquiteturas fisicas. O estudo
seminal de [Fe et al | (2017) propés um modelo para auxiliar no planeamento da nuvem
com escalonamento automatico, avaliando métricas de desempenho e custo.

Para além da modelacdo reativa, a literatura explora outras estratégias de escalonamento.
Abordagens proativas ou preditivas tentam antecipar futuras necessidades de recursos com base
em dados histéricos, utilizando técnicas como séries temporais ou machine learning como em
Padala, Hou e Shin| (2009)) e |Gandhi et al| (2014). Embora potencialmente mais eficientes
na gestdo de picos de carga previsiveis, estes métodos acarretam uma maior complexidade de
implementacao e o risco de sobreprovisionamento se as previsdes forem imprecisas. Investiga-
cSes mais recentes também combinam modelos de desempenho com heuristicas de otimizacao,
como o GRASP, para automatizar a busca por configuracdes étimas que equilibrem custo e
desempenho, apontando para uma futura automacao do planeamento de capacidade a exem-
plo de [Fé I. et al.|(2022). Em um contexto correlato de gerenciamento de recursos, [Feitosa
et al. (2025) realizaram uma avaliacdo de desempenho abrangente de estratégias de migracdo
de contéineres, um aspecto vital da elasticidade em ambientes modernos. A nossa escolha de
focar no escalonamento reativo é justificada pela sua prevaléncia nas configuracdes padrao
das plataformas de nuvem comerciais e pela sua relevancia direta para os administradores de

sistemas que gerem estes ambientes no dia-a-dia.

24

A Tabela|l{apresenta uma comparacao entre trabalhos relacionados e a presente dissertacao
em termos de principais contribuicoes.
A abordagem proposta nesta dissertacdo, portanto, fornece uma analise quantitativa apro-

fundada de métricas de disponibilidade (MTTH, [MTTR) e desempenho (utilizacdo, probabili-

dade de descarte, taxa de descarte e vazio efetiva), focada especificamente na implantacdo do
Moodle sobre a pilha [LAMP] Enquanto outros estudos recentes analisaram o desempenho do
Moodle em nuvens privadas, a validacao experimental por injecao de falhas nos componentes
especificos do [LAMP] (Hardware, SO, Apache, MySQL, PHP) preenche uma lacuna metodo-
l6gica clara. Por fim, os resultados apresentados fornecem diretrizes praticas para gestores e
pesquisadores interessados em aprimorar a disponibilidade e o desempenho do Moodle, com
especial relevancia para instituicdes educacionais que usam [LMSE de alta disponibilidade para
garantir a continuidade de suas operacdes académicas.

Tabela 1 — Tabela comparativa dos trabalhos relacionados

Autores Tipo de LMS * D pent Disponibilidade Redundéancia Analise de Sensibilidade Performabilidade Virtualizacdo

~(boat; sinHa|[2016) N/A (Bancos de Dados) v N/A

(WANNAPIROON; KAEWRATTA-, Cloud LMS v’ Nuvem

NAPAT; PREMSMITH|[2019)

(KURIEN; MATHEW; MANA N/A (Digital AMS) N/A

2022)

(KOCH; HAO|[2021) N/A (Pilha LAMP) v Nuvem (AWS)

(CASALE; CREMONESI| 2006 N/A (E-learning) v Local (Grid)

(FE et al.|[2017) N/A (laaS) v v v Local e Nuvem (Auto-scaling)

(PADALA; HOU; SHIN|[2009) N/A (Recursos Virtuais) v Local

(GANDHI et al.|[2014) N/A (Nuvem) v Nuvem (Provisioning)

(Fé 1. et al.[[2022) N/A (Nuvem) v v v Nuvem Privada

(LIMA et al.| |2021a| |LIMA et al. Moodle v Nuvem Privada

2021b)

(GONCALVES et al.||2022) Moodle (AVA) v Nuvem (VM/Cont&iner)

(SILVA et al.|12023) N/A (Serv. Arquivos) v Nuvem Privada

(CALLOU; VIEIRA|[2024) N/A (Genérico) v v Nuvem

(LEONARDO; BEZERRA; CALLOU N/A (Nextcloud) v v Nuvem Privada

2024)

(GOMES; CALLOU| 2024) N/A (Serv. Arquivos) v Nuvem Privada

(SILVA et al.|[2024) N/A (MBaaS) v v Nuvem

(LEONARDO; CALLOU||2025) N/A (Nextcloud) v Nuvem Privada

(BORGES et al.||2025) N/A (Vigilancia) v v Nuvem (Distribuido)

(FEITOSA et al.| [2025) N/A (Contéineres) v v Nuvem Privada
“Nosso trabalho Moodle v v v v Local e Nuvem

*N/A = "N3o Aplicavel".
Fonte: Elaborada pelo autor (2025)

1.4 ESTRUTURA DA DISSERTACAO

Esta dissertacao estd organizada em sete capitulos. Inicialmente, o primeiro capitulo apre-

senta uma vis3o geral introdutéria sobre o tema estudado bem como a motivacao e justificativa

para o trabalho, os objetivos pretendidos com o estudo, além de trabalhos relacionados.

Em seguida, no Capitulo [2| é apresentado a fundamentacao tedrica que da suporte a este

estudo. Nesse capitulo é discutido a pilha [LAMP] uma visdo geral sobre o [LMS] Moodle,

25

bem como conceitos indispensaveis sobre avaliacdo de desempenho de sistemas e formalismos
inerentes ao caso. Nessa secao se discute o conceito sobre injecdo de falhas. Por fim, sdo
estudados conceitos importantes sobre virtualizacdo e escalonamento automatico.

O Capitulo [3] é dedicado a metodologia e a arquitetura propostas na dissertacdo. Nesta
parte do trabalho detalhamos como a arquitetura basica foi implementada bem como a me-
todologia de pesquisa necesséaria para sua validacao.

O Capitulo[4)é dedicado aos modelos analiticos propostos com base na arquitetura estudada
no capitulo anterior. Aqui mostramos uma arquitetura basica de uma instalacdo Moodle em
maquina fisica como também arquiteturas derivadas para implementacdo em sistemas virtuali-
zados. Propomos também arquiteturas redundantes bem como de desempenho da plataforma.

No Capitulo 5], o foco se volta para a validacdo do modelo analitico da arquitetura basica.
E apresentado o processo de validacio experimental, que busca confirmar se o modelo teérico
representa, com um grau de confianca estatistico, o comportamento do sistema real. Para tal,
uma implementacao da arquitetura basica é submetida a um experimento de injecdo de falhas,
onde dados sobre a disponibilidade sdo coletados e analisados. culminando na comparacao do
resultado de disponibilidade estimado pelo modelo com o intervalo de confianca obtido a partir
dos dados experimentais. O objetivo deste capitulo é, portanto, estabelecer a credibilidade do
modelo base, assegurando que ele possa ser utilizado com confianca como um alicerce para
as analises comparativas e os estudos de caso que serdo conduzidos no Capitulo [6]

O Capitulo [f] dedica-se a anélise detalhada das arquiteturas desenvolvidas no Capitulo [4]
O escopo principal reside na avaliacdo de desempenho e na mensuracdo da disponibilidade do
sistema, utilizando métricas escolhidas para cada modelo. Concomitantemente, uma analise
de sensibilidade é conduzida para inferir os pardmetros mais determinantes sobre as métricas
supracitadas. Em seguida, por meio de uma série de experimentacGes, examina-se como altera-
cOes nos parametros de entrada ou de saida do modelo podem influenciar cenérios distintos e,
por conseguinte, orientar a selecao da instalacdo mais apropriada do Moodle. Nesse capitulo,
também, é realizado estudo de caso sobre instancias virtuais.

Por fim, o Capitulo|7| apresenta a conclusdo da trabalho, indicando as principais contribui-

cOes para a sociedade, dificuldades encontradas bem como direcdes para futuras pesquisas.

26

2 FUNDAMENTACAO TEORICA

Este capitulo apresenta os conceitos fundamentais necessarios a compreensao deste traba-
lho. Inicialmente, é apresentada uma visdo geral sobre os Sistemas de Gestdo de Aprendizagem
—[EMS] Em seguida, para melhor entender a configuracdo do[LMS|discutido nesta dissertacao,
exploramos a Pilha [LAMP]. A continuagdo inclui um estudo sobre Avaliacdo de Desempenho
de Sistemas, com énfase em dependabilidade por meio de modelos estocasticos associados
a modelos combinatérios e de espaco de estado. E igualmente crucial entender a analise de
sensibilidade paramétrica, assim como o procedimento de injecdo de falhas em sistemas. De

igual modo é explorado conceitos cruciais sobre virtualizacdo, escalonamento automatico.

2.1 LEARNING MANAGEMENT SYSTEM - LMS

O Learning Management System (LMS)), traduzido como Sistema de Gestdo de Apren-
dizagem, é uma tecnologia baseada na web, plataforma ou software voltado para organizar,
gerenciar e avaliar processos de ensino. Essencialmente pensado para o e-learningl] este sis-

tema geralmente inclui duas partes principais: Um servidor responsavel pelas funcdes centrais

e uma interface de usudrio — |User Interface (Ul) — utilizada por instrutores, estudantes e

administradores.

Nos ultimos anos, o setor educacional sofreu mudancas significativas devido ao avanco
acelerado da tecnologia. Uma das transformacdes mais evidentes foi a popularizacdo dos[LMS]
que surgiram como uma alternativa ao modelo tradicional de ensino em sala de aula. O
[LMS] oferece diversos recursos, incluindo salas virtuais, féruns, avaliagdes online e ferramentas
colaborativas, que n3o sb enriquecem a experiéncia de aprendizado, mas também facilitam a
interacdo entre estudantes e professores. Este movimento em direcdo ao aprendizado digital foi
motivado pela demanda por flexibilidade, acessibilidade e eficiéncia no contexto educacional
(LIAW; HUANG, [2013)).

Embora os conceitos iniciais sobre [LMS| datem de 1924 (TEAM| [2024) e o desenvolvimento
do principal expoente, o Moodle E] remonte a 2002 (COMMUNITY, 2024), um aumento subs-

tancial em sua utilizacdo foi observado durante a pandemia da COVID-19, quando inimeras

1 Forma de ensino e aprendizado que utiliza tecnologias digitais e recursos online para facilitar a aquisic3o

de conhecimentos e habilidades.

2 Disponivel em https://moodle.org/

27

instituicoes educacionais foram obrigadas a fazer uma rapida transicdo para o aprendizado
remoto.

O site Forbes Advisor (HAAN, 2024) realizou uma avaliacdo das principais opcdes de LMS,
considerando vérios fatores, tais como facilidade de utilizacdo, custo, capacidades de perso-
nalizacdo e atendimento ao cliente. O Moodle destaca-se por sua interface intuitiva e uma
ampla gama de funcionalidades, incluindo aprendizado moével, videoconferéncia, deteccdo de
plagio, apoio para cursos online abertos massivos e integracdes. Sua natureza de codigo aberto
garante uma alta personalizacao, tornando-o adequado para empresas, escolas e universidades.

Moodle foi criado usando a estrutura de cédigo aberto denominada [LAMP] que é formada
por Linux (sistema operacional), Apache (servidor web), MySQL (banco de dados) e PHP
(linguagem de programacido). Devido a portabilidade desses elementos e a adaptabilidade da
plataforma, ela oferece suporte a uma grande variedade de ambientes. Apesar de o Moodle
poder ser facilmente instalado em outras arquiteturas tecnolégicas, a configuracdo [LAMP
permanece como a escolha preferida pelos administradores do Moodle (Moodle Community,
2024).

As bases pedagogicas do sistema estdo fundamentadas no construtivismo social que define
que a interacao entre aluno e conteldo é a principal responsavel pelo conhecimento adquirido
pelo discente (MOODLE, [2020)). A plataforma oferece suporte para cursos presenciais, mistos
e totalmente online, disponibilizando mais de 20 tipos de atividades, como féruns, salas de
bate-papo, wikis, glossérios, quizzes e tarefas (TRINDADE, 2020).

Dois médulos de questionario importantes sdo o survey e o feedback. O médulo survey
disponibiliza questionarios com perguntas pré-definidas, como o COLLES (Constructivist On-
Line Learning Environment Survey), que aborda a qualidade do ambiente de aprendizado
online, e o ATTLS (Attitudes to Thinking and Learning Survey), que avalia atitudes em
relacdo ao pensamento critico e ao ensino (TRINDADE, 2020). Em contrapartida, o médulo
feedback permite que os professores criem questionarios personalizados para coletar opinides

dos alunos (TRINDADE, [2020).

2.2 PILHA LAMP

Dentre os conjuntos de software frequentemente utilizados para servidores web, LAMP] -
Acronimo para Linux, Apache, MySQL, PHP — é uma implementacdo amplamente adotada

(AKATSU et al,, 2020) e de facil instalacdo. A combinacdo do Sistema Operacional Linux,

28

do Servidor Web Apache, do banco de dados MySQL e da linguagem de programacido PHP
(PRANAM, 2018)) tornou-se uma escolha comum para diversos sites.
A seguir, apresentamos uma explicacdo sucinta de cada componente dessa pilha ampla-

mente empregada em sistemas web.

» Linux: Desenvolvido como um sistema operacional de cédigo aberto nos anos 1990
por Linus Torvalds, o Linux surgiu a partir do Unix (SAILELLAH, [2023)). Logo conquistou
popularidade e, hoje em dia, é implementado em diversas plataformas, desde desktops até
servidores. A razao principal do sucesso do Linux esta na sua confiabilidade, seguranca e
capacidade de escalonamento, permitindo personalizacGes que atendem as necessidades
especificas de individuos e organizacdes (NARCISO, 2023)). O Linux funciona como a
camada inicial da pilha [LAMP] e oferece suporte aos outros componentes das camadas

superiores;

= Apache: O acesso a recursos na web depende do emprego de um software apto a atender
as requisicoes de um cliente, o qual é denominado servidor web. Atualmente, existem
varias opcoes disponiveis, como /1S, Nginx e lighttpd, etc. O Apache é um dos ser-
vidores web mais frequentemente utilizados. Este servidor oferece um amplo conjunto
de funcionalidades, ferramentas e uma extensa comunidade de usuérios ativos, o que o
torna uma escolha frequente como principal servidor web (KOCH; HAO, | 2021)). Conhecido
também como servidor HT TP Apache, foi lancado em 1995, e rapidamente se destacou,
tornando-se a solucdo de servidor web mais utilizada ja em 1996 (APACHE, 2024). De
acordo com uma pesquisa recente de (NETCRAFT), |2024)), constatou-se que até fevereiro

de 2024, o Apache liderava o mercado juntamente com o Nginx.

Devido a sua natureza de codigo aberto e a colaboracdo comunitaria, o Apache é geral-
mente visto como mais acessivel e facil de aprender em comparacdo a outros servidores
que demandam um maior esforco para aprendizado — por exemplo, NGINX (GIRVIN,

2025).

= MySQL: Reconhecido como um dos bancos de dados relacionais mais utilizados, MySQL
é celebrado por seu excelente desempenho, confiabilidade e facilidade de operacdo
(MySQL, 2024)). Sua vasta aceitagdo deriva da sua compatibilidade com uma gama de
linguagens de programacao populares, como PHP, Python, Java, C, entre outras. Fre-

quente na funcdo de banco de dados web, o MySQL possui uma capacidade significativa

29

de armazenamento, guardando desde dados individuais até inventarios abrangentes de
itens acessiveis. Ele simplifica a automac3o da recuperacdo de dados e proporciona su-
porte eficiente na criacdo de aplicativos web em PHP (KURIEN; MATHEW; MANA| [2022).
Sendo o banco de dados open-source mais reconhecido, MySQL é frequentemente pre-

ferido para diversas aplicacdes web (MySQL, 2024)).

» PHP: Acrénimo recursivo para PHP: Hypertext Preprocessor. Esta linguagem de script,
de cédigo aberto, é largamente empregada, especialmente para o desenvolvimento web,
e pode ser integrada ao HTML (PHP, |2024)). As paginas PHP podem conter instrucdes
HTML junto com cédigo PHP, facilitando seu uso por iniciantes na programacdo. Além
disso, possui funcionalidades avancadas que a tornam ideal para projetos web mais
complexos, como o Moodle. De acordo com (PYPL, 2024), PHP é a sétima linguagem
de programacdo mais utilizada globalmente, destacando-se como uma das principais

opcoes para desenvolvedores na criacao de aplicacGes web.

Figura 1 — Arquitetura da Pilha LAMP

PHP/Perl/Python
Scripting Layer

Apache MySQL
Web Server Layer Database Layer

Linux
Operating System Layer

Fonte: SYED| (2022)

A pilha (Figura [1)) funciona como um sistema unificado que oferece as capacidades
de um aplicativo web. O processo comeca quando o cliente faz uma requisicdo, a qual é
atendida pelo servidor Apache. Este, por sua vez, determina se o arquivo solicitado é estatico
ou dinamico. Se o arquivo for dindmico, o Apache encaminha a solicitacdo para o interpretador
de linguagem adequado, como o PHP. Nesta fase, o script pode se comunicar com o banco

de dados MySQL para buscar ou armazenar dados para uso futuro.

30

O PHP, ent3o, manipula os dados e retorna o contetido dindmico em HTML para o servidor
Apache, que o renderiza no navegador do usuario. Dessa forma, o ciclo de requisicao e resposta
é concluido.

Conforme ilustrado na Figura [2, o Moodle foi projetado para ser instalado em uma pilha

LAMP, que representa a configuracao de instancia mais basica disponivel.

Figura 2 — Arquitetura Moodle

” MOODLE LMS)
Workplace
Plugins
i -
Programming Language Database System Web Server
MySQL / MariaDB /
PHP PostgreSQL, Oracle, MS Apache & IS
_ SQAL Server, ...)
' ™
Operating System
Linux, Windows, Mac OS, ...
X)

Fonte: (2022)

2.3 VIRTUALIZACAO

A virtualizacdo consiste no paradigma de separar o hardware do sistema operacional a
partir da criacdo de uma camada de abstracido entre eles. Essa tecnologia permite que, em
uma mesma maquina fisica, exista varios maquinas virtualizadas, cada qual com seu sistema
operacional e independéncia entre si apesar de estarem no mesmo servidor. O uso dessa

arquitetura é possibilitado pelo hypervisor, um programa que cria e administra as Maquinas

Virtuais (VMs) (POPEK; GOLDBERG, [1974). O hypervisor abstrai os recursos do hardware

hospedeiro — como processador, meméria e espaco de armazenamento — das maquinas
virtuais e os distribui conforme a necessidade para cada VM, passando a sensacdo de que cada
maquina tem seu préprio hardware exclusivo.

Existem duas formas principais de virtualizacdo. A virtualizacao completa que simula todo
o hardware, permitindo, assim, que os sistemas virtualizados operem isoladamente, contudo

essa abordagem gera uma perda de desempenho. Por outro lado a paravirtualizacdo adota uma

31

abordagem de colaboracao, onde o sistema virtualizado interage diretamente com o hypervisor
(BARHAM et al, [2003). Essa técnica diminui a sobrecarga e melhora o desempenho do sistema

Através dos anos a virtualizacao trouxe muitos beneficios, principalmente para aplicacoes
web que agora podem ser desenvolvidas em qualquer local do planeta e implementada em um
servidor na nuvem. O isolamento proporcionado pelo servidor assegura que cada VM funcione
como um ambiente individual, evitando que uma falha ou problema de seguranca em uma VM
afete as outras, aumentando a seguranca do sistema (WALDSPURGER, [2002). Com o passar
dos anos essa tecnologia se tornou tao onisciente que praticamente qualquer usuéario pode ter
uma maquina virtualizada com sistema operacional de hardware dedicado.

Um dos maiores beneficios da virtualizacao é a sua flexibilidade, permitindo criar, apagar
ou mover rapidamente maquinas virtuais (VMs) entre diferentes servidores fisicos, conforme
as demandas do ambiente de computacao.

Plataformas de aprendizado, a exemplo do Moodle, que passam por picos de demanda em
certos momentos — por exemplo, como inicio de semestre, semanas de avaliacao ou encer-
ramento do periodo letivo —, se beneficiam ao serem implementadas de forma virtualizada.
A virtualizacdo oferece a flexibilidade necessaria para gerenciar mudancas, permitindo a dis-
tribuicao de servicos entre varias VMs e garantindo um desempenho constante e de alta
disponibilidade (CLARK et al., 2005).

Porém, otimizar a alocacao de recursos e prever o desempenho sob diferentes cargas sdo
desafios grandes. A flexibilidade da virtualizacdo cria um novo problema: o gerenciamento de
um sistema complexo. Essa complexidade justifica a necessidade de uma forma de modelagem
formal, como a proposta aqui, para analisar e otimizar o desempenho do sistema a partir de

métricas de interesse.

2.4 ESCALONAMENTO AUTOMATICO

A elasticidade é um dos principais atributos da computacao em nuvem. Entendida como
a capacidade do sistema se ajustar, em tempo de execucdo, os recursos computacionais para
se adequar as variacles de carga (HERBST; KOUNEV; REUSSNER, [2013). O escalonamento
automatico é o método que concretiza essa elasticidade, automatizando o provisionamento de
recursos sem interferéncia humana a fim de aperfeicoar o equilibrio do sistema.

A adaptacdo de recursos normalmente acontecem de duas maneiras: Escalonamento Ver-

tical compreendendo a modificacdo de recursos (ex: CPU, RAM) de uma VM existente e,

32

Escalonamento Horizontal que consiste em adicionar ou retirar instancias de VM de um nu-
mero de maquinas virtuais anteriormente determinadas.

Uma correta adocdo de uma politica de escalonamento automatico é fator critico para
atender aos usuarios e evitar desperdicio de recursos computacionais. Contudo, a complexidade
dessa configuracdo — que implica no conhecimento dos limites do sistema — demonstra a
necessidade de um modelo estruturado que possibilite a anélise de cendrios para identificar a
melhor forma de implementacdo do sistema(GANDHI et al., [2014)).

O escalonamento automatico estd diretamente ligado ao conceito de elasticidade, uma
caracteristica fundamental da computacdo em nuvem que a distingue de outros paradigmas
de computac3o distribuida, como a computacdo em grade (ARAUJO, [2015)). A elasticidade é
a capacidade que um sistema possui de alocar e desalocar recursos computacionais de forma
dindmica e auténoma, com o objetivo de adaptar-se as variacdes da carga de trabalho ao longo

do tempo (ARAUJO, [2015), (LIMA, 2015). Isso permite que o sistema “estique” ou “encolha”

sua capacidade para manter o desempenho acordado em um |Service Level Agreement (SLA),

otimizando ao mesmo tempo os custos operacionais (ARAUJO, [2015). Ao consumidor, os

recursos parecem ser ilimitados e podem ser ajustados sob demanda (MELL; GRANCE, 2011)).

A alocagdo de recursos em uma nuvem do tipo |Infrastructure as a Service (laaS) é um

desafio central (MANVI; SHYAM, [2014)). As estratégias de gerenciamento de elasticidade sdo

cruciais para o ambiente e podem ser classificadas como (ARAUJO, [2015)):

» Reativas: As decisdes de escalonamento (adicionar ou remover recursos) sdo tomadas em
resposta atencao a limiares pré-definidos em métricas de desempenho, como utilizacao
de CPU ou tempo de resposta. A sua principal desvantagem é o tempo necessario para
que um novo recurso seja provisionado e esteja pronto para uso, o que pode levar a um

periodo de degradacdo do servico.

» Proativas: Utilizam técnicas de analise de séries temporais e aprendizado de maquina
para prever o comportamento futuro da carga de trabalho. Com base nessas predicoes,
os recursos sao alocados ou desalocados antecipadamente, buscando evitar violacoes de

SLA| antes que ocorram (HERBST; KOUGIOUKOTAS; REMANN, 2013).

A escalabilidade horizontal, que consiste em alterar o nimero de instancias de um recurso
(como VMs), é a abordagem mais comum para implementar o escalonamento automatico

(GUPTA; CHRISTIE; MANJULA, 2017)).

33

2.5 DEPENDABILIDADE

O conceito de dependabilidade remonta a década de 1820, quando Charles Babbage pla-
nejou um sistema de célculo mecanico com o objetivo de eliminar erros humanos (SCHAFFER,
1994). O trabalho de |Laprie| (1995) lista os primeiros conceitos de dependabilidade e, desde
entdo, tem sido usado na academia. Para Avizienis et al.| (2004) a dependabilidade de um
sistema é a capacidade de evitar falhas de servico que s3o frequentes ou mais graves do que
o aceitavel.

Tanto que foi necessario criar uma taxonomia para demonstrar o funcionamento de sistemas

confidveis, como mostrado na Figura

Figura 3 — Arvore de confiabilidade e seguranca

/--
Disponibilidade
Confiabjlidade
Atributos .< Seguranca
Confidencialidade

Integridade
Manutenibilidade
Dependabilidade
e Se Falhas
guranca
Ameacas Erros
Defeitos

Prevencao a falhas
. Tolerancia a falhas
Meios

Remocado de falhas
\ Previsdo de falhas

Fonte: Adaptado de AVIZIENIS et al.| (2004)

Pode-se observar que a dependabilidade é um conceito que envolve seis requisitos principais

(COSTA| 2015)

» Disponibilidade — Capacidade do sistema estar pronto para fornecer o servico correta-

mente;

» Confiabilidade — Probabilidade de o sistema fornecer o servico continuamente, sem erros,

até um certo tempo t;

= Seguranca — Auséncia de consequéncias catastréficas para o(s) usuério(s) e o ambiente;

34

» Confidencialidade — Auséncia de divulgacdo n3do autorizada de informacoes;
» Integridade — Auséncia de alteracées impréprias no estado do sistema;
» Manutenibilidade — Capacidade de passar por reparos e modificacdes;

Um elemento crucial ao desenvolver um modelo de avaliacdo de desempenho para o
é a Disponibilidade, que Maciel (2023a]) define como a proporcao estimada do tempo em que
o sistema esta funcional ao longo de seu ciclo de vida. Além disso, é fundamental entender
a Disponibilidade Estacionaria (A) como a relacdo entre o tempo de operacdo esperado e a
soma do tempo de operacao e falhas esperados. Esta medida pode ser expressa pela seguinte

Equacdo 2.1}
= E[Uptime]
~ E[Uptime] + E[Downtime]

(2.1)

Onde:
» A ¢é a disponibilidade estacionaria do sistema;
= E[Uptime] é o tempo de atividade esperado do sistema;
» E[Tempo de inatividade] é o tempo esperado de falha do sistema;

A disponibilidade é frequentemente expressa pelo nimero de noves, que indica a quanti-
dade de digitos 9 consecutivos na porcentagem de tempo em que o sistema esta operacional
(MARWAH et al,, |2010). Por exemplo, se um sistema esta disponivel 99,9% do tempo, sua
disponibilidade é designada por 3 noves. A quantidade de noves é determinada pela Equacao

2.2t

N = —log;y(1 — A) (2.2)

A indisponibilidade, em contraste com a disponibilidade, refere-se a probabilidade de que
o sistema ndo esteja acessivel. Pode ser calculado usando as Equacdes (2.3 e ([2.4))

E[Downtime]

UA =
E[Downtime] + E[Uptime)]

(2.3)

UA=1-A (2.4)

Através da indisponibilidade, pode-se calcular o periodo em que o sistema estara inativo

dentro de um determinado intervalo de tempo. O tempo de inatividade anual indica o nimero

35

esperado de horas em que o sistema ndo funcionara durante um ano. Esse valor é determinado
conforme a Equacdo [2.5;
Downtimeye,, = UA x 8760h (2.5)

Os dados de uptime e downtime n3o estdo sempre disponiveis; em tais casos, sdo utilizadas

as médias entre eventos de falhas e reparos para que:

» [MTTF| - Tempo médio para que falhas do sistema ocorram. Ele pode ser calculado

usando a expressao:

MTTF = /O T R(t) dt (2.6)

onde R(t) é a funcdo de confiabilidade do sistema, representando a probabilidade de

que o sistema opere sem falhas até o tempo t.

= [MTTR]- Tempo médio para o sistema ficar disponivel apés uma falha ocorrer. Pode ser

calculado usando a expressao:

MTTR = /OOO M(#)dt (2.7)

onde M(t) é a funcdo de manutenibilidade do sistema, representando a probabilidade de

que o reparo do sistema nao seja concluido até o tempo t.
De tal forma que a disponibilidade (A) pode ser calculada usando a Equac3o :

MTTF

A—
MTTEF + MTTR

(2.8)

2.6 AVALIACAO DE DESEMPENHO DE SISTEMAS

A avaliacdo de desempenho é um processo sistematico que visa analisar e quantificar o
comportamento de um sistema computacional em relacdo a um conjunto de métricas, sob uma
determinada carga de trabalho (DANTAS, |2008)). Esta avaliacdo é essencial para o planejamento
de capacidade, otimizac3o, depuracdo e comparacdo de sistemas (JAIN| 1991)).

As métricas de desempenho mais comuns incluem, mas ndo se limitam a:

36

= Tempo de Resposta: Intervalo de tempo entre o envio de uma requisicao por um usuario

e o recebimento da resposta completa do sistema (MENASCé; ALMEIDA; DOWDY, [2002)).

» Vazdo (Throughput): Taxa na qual as requisicbes podem ser atendidas pelo sistema,
geralmente medida em requisicdes por segundo ou transacdes por segundo (MENASCé;

ALMEIDA; DOWDY, 2002).

» Utilizacdo: Percentual de tempo em que um recurso (por exemplo, CPU, disco) esta

ocupado processando requisicdes (DANTAS, 2008).

A avaliacao pode ser realizada através de medicGes em sistemas reais, simulacao ou mo-
delagem analitica (DANTAS, 2008). A modelagem analitica, utilizando técnicas como , é
particularmente Gtil para analisar o desempenho de sistemas complexos e distribuidos, como os
encontrados em ambientes de nuvem (MELO, 2016a)). A avaliacdo pode ser aplicada a dominios

especificos, como bancos de dados em nuvens hibridas como no trabalho de (TEIXEIRA, 2017)),

aplicagdes [Software as a Service (SaaS) a exemplo da tese de |Gonzagal (2014)), ou analisando

o impacto de funcionalidades de seguranca no consumo de recursos como tratado em |Orozco

(2018).

2.7 MODELOS PARA ANALISE DE DESEMPENHO E DISPONIBILIDADE

A avaliacao de sistemas computacionais, em particular no campo dos Ambientes de Gestao
de Aprendizagem demanda uma analise cuidadosa de suas caracteristicas de desempenho e
disponibilidade para assegurar a qualidade do servico (TRINDADE, |2020)). Dada a complexidade
desses ambientes, a modelagem matematica surge como uma estratégia essencial para a anélise
quantitativa do sistema (MELO) 2018) e (DIAS, 2017). Na literatura, os modelos empregados
para esse propdsito podem ser divididos em duas categorias principais: modelos combinatérios
e modelos de espaco de estado. Modelos combinatérios, como os[RBDE, sdo apropriados para
expressar a estrutura légica do sistema e a forma como as falhas dos componentes afetam o
sistema em sua totalidade (CLEMENTE, 2022) e (CEPIN, 2011). Por outro lado, modelos de

espaco de estado, como as[CTMCk e as[SPNE, s3o utilizados para representar o comportamento

dinamico do sistema, detalhando as transicdes entre diversos estados operacionais e de falha

ao longo do tempo (MARSAN; CONTE; BALBO, 1984). Comumente, essas metodologias sdo

37

aplicadas de maneira complementar, em estruturas hierarquicas, para oferecer uma analise

completa. A seguir detalharemos cada um desses formalismos.

2.7.1 Diagramas de Bloco de Confiabilidade - RBD

O Diagrama de Bloco de Confiabilidade é uma abordagem grafica e um modelo combi-
natério utilizado para a andlise de disponibilidade e confiabilidade de sistemas. A abordagem
é fundamentada na légica de sucesso, onde um sistema é considerado operacional se houver
pelo menos um caminho continuo de blocos funcionais conectando o n6 de entrada ao né de
saida do diagrama. Este formalismo permite ilustrar de forma intuitiva como a confiabilidade
dos componentes individuais (representados por blocos) contribui para a confiabilidade geral
do sistema, seja levando ao sucesso ou a falha (CATELANI; CIANI; VENZI, 2015) e (LIU; WU,
2011)).

O RBD é ideal para calcular métricas como confiabilidade, disponibilidade e MTTF de um
sistema a partir dos dados de seus componentes (CEPIN, 2011)).

Um [RBD)] é constituido por blocos conectados que podem ser organizados em trés con-
figuracGes principais para representar as interdependéncias légicas entre os componentes do

sistema:

» Configuracdo em Série: Representa uma légica "E"(AND), na qual todos os componentes
do sistema devem estar operacionais para que o sistema funcione (Figura . A falha de
um unico bloco causa a falha de todo o sistema.

Figura 4 — RBD em série

BEGIN =—— — — END

Fonte: Elaborada pelo autor (2025)

A disponibilidade (Agic) de um sistema com n componentes em série é o produto da

disponibilidade de seus componentes individuais (Ai), conforme Equacio

38

Asérie:HAi:AIXA2X"'XAn (29)

i=1

= Configuracdo em Paralelo: Representa uma logica "OU"(OR) e é utilizada para modelar
sistemas com redundancia de componente (Figura . O sistema é considerado opera-
cional se pelo menos um de seus n componentes redundantes estiver funcionando. O
sistema sé falha se todos os seus componentes falharem simultaneamente.

Figura 5 — RBD em paralelo

BEGIN “— —— END

Fonte: Elaborada pelo autor (2025)

A disponibilidade (Aparereio) de um sistema com n componentes em paralelo é calculado

conforme Equacdo [2.11

Aparalelo =1- H(l - Az) (210)

i=1

= Configuracdo K-out-of-N (KooN): Esta é uma configuracdo mais geral de redundancia,
na qual um sistema composto por N componentes idénticos é considerado operacional se
pelo menos K desses componentes estiverem funcionando (onde 1 < K < N) (Figura

A disponibilidade de um sistema KooN (Ax,,n), assumindo componentes idénticos com

disponibilidade A, é dada pela Equacdo [2.11

n

AkooN =Y <n) ALx (1= A" (2.11)
i=k *
A configuracao em paralelo é um caso particular de KooN, onde K=1. Esta estrutura é

fundamental para modelar sistemas com redundancia parcial, como por exemplo clusters

de servidores.

39

Figura 6 — RBD KooN com K=2 e N=3

b1
BEGIN =— —— END

b2 2/3

Fonte: Elaborada pelo autor (2025)

Uma das principais aplicacoes do |RBD| é como o primeiro nivel em uma modelagem hi-
erdrquica (DIAS, 2017). Sistemas ou subsistemas complexos que operam em série (e cujos
componentes possuem taxas de falha e reparo exponencialmente distribuidas) podem ser sin-
tetizados por um modelo RBD. O resultado dessa sintetizacdo é um Gnico bloco com valores
equivalentes de M TT'F e MTTR, por exemplo. Esses valores agregados sao, entdo, utilizados
como parametros para as transicoes temporizadas de um modelo de espaco de estado de nivel
superior, como uma , reduzindo a complexidade do modelo final (CLEMENTE, [2022)).

Apesar de sua utilidade, o RBD é um modelo estatico e possui limitacdes. Ele tem difi-
culdades em representar sistemas com dependéncias complexas, diferentes politicas de reparo,
ou sistemas cujo comportamento de falha muda dinamicamente ao longo do tempo. Para
capturar essas dindmicas complexas, modelos de espaco de estado como as SPNs e CTMCs

sdo mais adequados e frequentemente utilizados de forma complementar (MELO), 2018)

2.7.2 Cadeias de Markov de Tempo Continuo - CTMC

Uma Cadeia de Markov de Tempo Continuo ((CTMC|) é um formalismo matemético baseado
em modelos de espaco de estado, fundamental para a anélise de sistemas cujo comportamento
evolui ao longo do tempo de forma probabilistica. Uma [CTMC] é um processo estocastico
caracterizado por possuir um conjunto discreto de estados e um parametro de tempo continuo,

o que significa que as mudancas de estado podem ocorrer em qualquer instante (SOUZA| 2009).

40

A principal caracteristica deste processo é a propriedade de Markov, também conhecida
como propriedade de “falta de meméria”. Esta propriedade estabelece que a evolucdo futura
do sistema, a partir de um estado conhecido, depende exclusivamente de seu estado atual,
sendo independente de todos os estados passados que levaram até ele. Para que um processo
satisfaca a propriedade de Markov em tempo continuo, o tempo de permanéncia em qualquer
estado deve ser uma variadvel aleatéria que segue uma distribuicdo exponencial. A taxa desta
distribuicdo, denotada por), determina a frequéncia com que as transicdes para outro estado
ocorrem.

Dentro de um contexto envolvendo qualquer sistema que possa ser consertado, este pode

estar em estado de falha ou em condicdes operacionais. Quando os parametros “tempo até a

falha” ((Time to Failure (TTF)) e “tempo até o reparo” ([Time to Repair (T TR)) seguem uma

distribuicao exponencial com taxas \ e u, respectivamente, a disponibilidade do modelo pode

ser ilustrada conforme a Figura [7]

Figura 7 — Modelo genérico em CTMC

Fonte: Elaborada pelo autor (2025)

Nesta configuracdo, o estado U (ativo) denota a condicdo operacional, enquanto o estado
D (inativo) indica a falha (MACIEL, |2023a). O evento de falha é caracterizado pela transi¢do
do estado U para D com taxa A, enquanto o reparo é descrito pela transicao do estado D
para U com taxa p. Ademais, a matriz de taxas, (), pode ser expressa conforme apresentado

pela Equacdo [2.12]

-2 A
Q= (2.12)
O
Resolvendo o sistema de equacdes, as probabilidades de estado estacionéario sdo 7y = ﬁ

_ A

e TD = Y Neste contexto, a disponibilidade do sistema é a probabilidade dele estar no

estado operacional, ou seja, A = 7y

41

Uma das principais restricées da modelagem direta com [CTMCk é a explosdo combina-
toria do espaco de estados, que aumenta com a quantidade de componentes concorrentes,
dificultando assim a construcdo da matriz () e tornando sua solucdo computacionalmente
inviavel.

Formalismos de alto nivel como Redes de Petri Estocasticas (SPNs) proporcionam uma
especificacdo modular e concisa, fundamentada em lugares, tokens e transicdes. Muitas ferra-
mentas realizam o mapeamento automatico da [SPN]| para a[CTM(correspondente, elaboram

() e resolvem o modelo de forma numérica.

2.7.3 Redes de Petri Estocasticas - SPN

A avaliacdo de sistemas computacionais complexos, que englobam concorréncia, sincroni-

zacdo e compartilhamento de recursos, requer a utilizacdo de formalismos de modelagem com

grande capacidade expressiva. As Redes de Petri —[Petri Net (PN)| - tradicionais sdo um dos

formalismos, amplamente empregados para descrever e analisar o comportamento légico de
um sistema, mas sem uma concepcao inerente de tempo. Para analisar métricas de desempe-
nho (como vazido, tempo de resposta) e confiabilidade (como disponibilidade, confiabilidade),
é essencial incluir a varidvel temporal no modelo (MELO, 2018)).

As [SPNEk surgem como uma extens3do do formalismo cléssico justamente para suprir essa
necessidade, associando um tempo de disparo, que é uma variavel aleatéria, a cada transicao
da rede (MOLLOY, |1982)). A escolha da distribuicdo de probabilidade para esses tempos é um
aspecto fundamental. Nas SPNs, as duracdes das atividades s3o tipicamente modeladas pela
distribuicdo exponencial, que possui a distinta propriedade de “falta de meméria” (memoryless
property). Essa abordagem implica que a probabilidade de um evento futuro ocorrer (como a
falha de um componente) depende apenas do estado atual do sistema, e ndo do tempo que
ele ja permaneceu nesse estado.

A caracteristica de auséncia de memoéria é o que define formalmente um processo de
Markov. Por essa razao, a evolucdo de uma SPN ao longo do tempo pode ser representada
por uma [CTMC| Para compreender essa ligacdo, é necessario estabelecer o espaco de estado
do sistema, que representa o conjunto de todas as configuraces possiveis que o sistema pode
ter. Em uma Rede de Petri, cada configuracdo é representada por uma marcacao, que indica
a alocacdo de tokens nos lugares da rede. Ainda é necessario entender o conceito de grafico

de acessibilidade que é um grafo que inclui todos os estados (marcacdes) que o sistema pode

42

atingir a partir de um estado inicial, assim como as transicdes (disparos) que conectam um
estado ao outro. Em razao da propriedade de Markov assegurada pela distribuicdo exponencial,
esse diagrama de alcancabilidade é matematicamente equivalente a uma CTMC, onde os nés
representam os estados e os arcos indicam as taxas de transicdo entre eles (MARSAN; CONTE;
BALBO), (1984)). A principal vantagem de conseguir uma CTMC equivalente é que existem
solucdes analiticas e numéricas estabelecidas para “soluciona-la”.

Formalmente, uma SPN é representada por elementos distintos, como mostrado na Figura
B} lugares (circulos), que representam estados ou condices; tokens (pontos), que residem nos
lugares e definem a marcacdo atual da rede; transicdes (retangulos), que denotam eventos
ou acdes; e arcos (setas), que conectam lugares a transicdes e vice-versa, definindo o fluxo
de tokens. Arcos inibidores — terminados com um pequeno circulo — habilitam uma transicdo

apenas se um lugar especifico estiver vazio (CIARDO; GERMAN; LINDEMANN, |1994)).

Figura 8 — Elementos de uma SPN

OB I s

a) Lugar b) Transicdo c) Arco d) Token e) Transicao f) Arco
Imediata Temporizada Inibidor

Fonte: (AUSTREGéSILO; CALLOU, [2019)

As SPNs s3o adequadas para modelar ambientes de nuvem, que s3o inerentemente concor-
rentes, assincronos e estocasticos. O modelo proposto neste artigo utilizara lugares para ras-
trear o estado do sistema a partir de transicdes temporizadas para representar o processamento
de trabalhos, enquanto transicoes imediatas capturam a légica da politica de escalonamento
automatico, modelando a dinamica complexa do ambiente Moodle.

O comportamento dindmico de umadSPN]| é determinado pelas regras de sua semantica de
disparo. A Figura [9] mostra um modelo genérico de uma [SPN| Uma transicdo é considerada
habilitada quando todos os seus lugares de entrada contém tokens suficientes e todos os seus
lugares conectados por arcos inibidores estdo vazios. Uma vez habilitada, a transicdo pode
disparar, consumindo tokens de seus lugares de entrada e depositando tokens em seus lugares
de saida, o que altera a marcac3do da rede para um novo estado. Se transicdes imediatas e tem-
porizadas estiverem habilitadas simultaneamente, a transicdo imediata sempre tera prioridade
(CLEMENTE, 2022).

Por fim, é necessario destacar que os arcos possuem pesos. Esses pesos indicam quantos

43

Figura 9 — Modelo Genérico em SPN

Fonte: Elaborada pelo autor (2025)

tokens s3o consumidos de um lugar ou quantos tokens sdo inseridos num lugar por uma
transicdo ao disparar. Os pesos sdo fundamentais para definir a regra de habilitacao de uma
transicao: ela sé pode disparar se houver ao menos tantos tokens quanto o peso de cada arco
de entrada exige. O peso padrdo é 1, contudo, a depender o que se pretende modelar, podem

ter valores diferentes ou expressdes condicionais que os determinem.

2.8 ANALISE DE SENSIBILIDADE

A técnica de analise de sensibilidade é amplamente empregada na classificacdo para de-
terminar quais fatores exercem maior influéncia sobre as métricas de um modelo (HAMBY,
1994). Um método direto e eficaz consiste em alterar cada pardmetro individualmente en-
quanto os demais permanecem constantes. Ao fazer isso, é possivel obter uma classificacdo
de sensibilidade ao observar as mudancas na saida do modelo.

Na analise de desempenho, a técnica da anélise diferencial é frequentemente utilizada.
Esta técnica envolve o calculo das derivadas parciais das métricas relevantes com respeito
a cada parametro. Por exemplo, considerando a métrica Y, que é funcdo de um parametro
A, a sensibilidade de Y em relacdo a)\ é determinada utilizando a Equacdo [2.13| ou [2.14]

dependendo da escala de sensibilidade escolhida (FRANK, (1978).

oy

SY) = 5%

(2.13)

44

SH(Y) ::i:i<;§> (2.14)

SA(Y) e S5(Y) também sdo chamados de coeficientes de sensibilidade (HAMBY, [1994).
Os valores desses coeficientes, quando ordenados, produzem uma classificacdo que é usada

para comparar o grau de influéncia entre todos os parametros.

2.9 INJECAO DE FALHA

A injecdo de falhas é uma técnica experimental para avaliacdo da dependabilidade de um
sistema, que consiste em introduzir falhas de forma deliberada e controlada para observar seu
comportamento e testar seus mecanismos de tolerdncia a falhas (LIMA, 2015). O objetivo é
avaliar a robustez do sistema e medir métricas como cobertura de falhas, laténcia de deteccao
e tempo de recupera¢do (DANTAS et al., 2011).

Essa técnica é uma alternativa poderosa ao monitoramento passivo de sistemas, espe-
cialmente quando as falhas naturais sdo eventos raros, pois permite acelerar o processo de
avaliacdo e testar cenédrios de falha especificos que podem n3o ocorrer naturalmente (CLE-

MENTE, 2022)). A inje¢do de falhas pode ser realizada em diferentes niveis (LIMA| 2015):

» Nivel de Hardware: Através da alteracdo de componentes ou exposicao a ambientes que

induzam erros.

= Nivel de Software: Insercdo de cédigo que simula falhas de software, como corrupcdo de

memodria ou desligamentos inesperadas.

= Nivel de Simulacdo/Modelo: Introducdo de eventos de falha em modelos analiticos ou
de simulacdo para avaliar o impacto no comportamento geral do sistema (MENDONCA et

al, 2018).

45

3 METODOLOGIA E ARQUITETURA

Este capitulo apresenta a metodologia e a arquitetura sugerida para avaliar a disponibilidade

e desempenho de um [LMS] instalado sob uma pilha [LAMP]

3.1 METODOLOGIA

A metodologia sugerida abrange seis fases, cada uma estruturada da melhor forma para
assegurar uma analise metddica do [LMS|implementado na plataforma [LAMP] Primeiramente,
é fundamental definir o cenario de base que servird como ponto de referéncia ao longo da
pesquisa. Este cendrio engloba todas as varidveis e condicdes iniciais que serao levadas em
conta durante o estudo (ARAUJO et al, 2013)). Essa fase é essencial para assegurar que os
resultados obtidos sejam significativos e aplicaveis ao contexto analisado (MACIEL et al., [2018]).
Posteriormente, procede-se a configuracao do ambiente onde a pesquisa serad conduzida. Isso
envolve preparar todos os recursos, ferramentas e condicGes necessérias para a execucao dos
experimentos. Nesta etapa, um servidor é instanciado com a pilha[LAMP], j& descrita na Secéo
[2.2] A configuracdo correta do ambiente é crucial para garantir a validade e confiabilidade
dos dados coletados. A Figura[10] apresenta o fluxograma utilizado para ilustrar a metodologia

proposta.

Figura 10 — Metodologia Proposta

Definigdo do Configuragao do Experimentagio e
cenario base ambiente coleta de dados

Proposigao de
modelos

F Y

h 4

| Proposicdo de |
cenarios/
Extensido dos
modelos

Validagéo dentro
Sim—) +—— do intervalo de
confianga

Nao

Fonte: Elaborada pelo autor (2025)

Com o ambiente devidamente configurado, inicia-se a fase de experimentacao e coleta

46

de dados. Neste ponto, no servidor Moodle (Maquina/Servidor B), falhas sdo sistematica-
mente injetadas e reparadas em cada componente do sistema seguindo os cédigos disponibi-
lizados nos Apéndices A, B, C, D e E. Este processo é executado usando um script Python
hospedado em um servidor secundario (Maquina/Servidor A). Os tempos para injecdo e reparo
de falhas seguem uma distribuicdo exponencial para simular imprevisibilidade dos eventos. Esta
Maquina/Servidor A também é responsavel por verificar a disponibilidade do servico Moodle
a cada cinco segundos, registrando essa informacdo em um arquivo. Nas etapas subsequentes,
os dados deste arquivo de log serdo usados para determinar o tempo médio para falha e o
tempo médio para reparo real do sistema. Essas informacGes sdo importantes para calcular a
disponibilidade do sistema.

Durante a fase de “Experimentacdo e coleta de dados”, falhas e reparos sao introduzidos
em cada parte do sistema (hardware, software, Apache, MySQL e PHP) em intervalos com
tempo exponencial distribuido por meio de um script Python hospedado na Maquina/Servidor
A — Figura [I1] e Figura [I2] O script gera tempo de falha distribuidos exponencialmente para
o componente alvo e monitora se o tempo gerado foi alcancado. Caso seja atingido, uma
falha sera injetada no componente. Apds a geracdo da falha, é necessario também reparar o
componente dentro de um tempo distribuido exponencialmente. Assim, o script calcula esse
tempo e aguarda até que ele seja atingido. Quando alcancado, o componente é reparado e um

novo tempo de falha é determinado.

Figura 11 — Diagrama de Injecdo de Falha

'L . Néo |

e - - - Py -

| Gerar tempo de '
falha distribuido Ag"g;dfaa:;mm 4 Tema':;:,dz,flha >—sim-> Injegdo de falha
exponencialmente g

. vy A _d . A

Fonte: Elaborada pelo autor (2025)

Figura 12 — Diagrama de Injecdo de Reparo

4’ - Nao |

| Gerartempode |
reparo distribuido Agudardartempo :j_""’““;:’_ deidreparo _»—Sim-»| Injegédo de reparo
exponencialmente | € reparo ing °_ —

Fonte: Elaborada pelo autor (2025)

Uma vez concluida a coleta de dados, o passo seguinte é propor modelos que consigam

47

representar adequadamente os comportamentos observados. Esses modelos permanecerao pro-
visorios até passarem pelo processo de validacdo. Validar é uma fase crucial que assegura a
precisao e robustez necessarias para que os modelos sejam aplicaveis de forma pratica.

Na etapa de validacao, é crucial verificar se os modelos refletem o cenério original com
elevado grau de confianca. Para este propésito, comparamos os resultados do cenério original
com os obtidos pelos modelos propostos. E desejavel que os resultados dos modelos propostos
caiam dentro de um intervalo de confianca de 95%.

Caso os modelos sejam considerados satisfatérios, o processo avanca para a etapa de
proposicdo de cendrios e extensdo dos modelos. Se nao, é necessério verificar se houve algum
problema na fase de experimentacdo de dados ou nos modelos propostos. Esta verificacao
assegura que apenas modelos confidveis prossigam no processo.

Durante a fase de proposicdo de cenarios/ extensao dos modelos, a partir dos modelos
validados, sdo propostos novos cenarios de de analise bem como a extensdo dos modelos criados

E possivel resumir as fases e resultados na Tabela [2}

48

Tabela 2 — Compilado do processo metodolégico

Passo metodologico Produto/Saida da etapa

Estabelecimento de um ambiente inicial que reflete
Definicao do cenario base as condicOes reais ou ideais do estudo, servindo como
referéncia para analises comparativas.

Implementacdo das condicdes e ferramentas neces-
sarias para a realizacdo do estudo, incluindo a ins-
talacdo de softwares, definicao de recursos fisicos e
ajustes nas variaveis do sistema.

Configuracdo do ambiente

Injecao de falhas e reparos com tempo exponencial-
mente distribuidos nos componentes do servidor

Experimentacdo e coleta de dados [odle] Coleta do status do servidor (UP ou DOW N)
e criacdo de arquivo de Log para posterior analise.

Criacdo de modelos em , e/ou que

Proposicdo de modelos reflita(m) o cenério base.

Anidlise dos dados adquiridos na etapa de expe-
rimentacao e coleta de dados definindo métricas
de interesse (como disponibilidade, indisponibilidade,
tempo de inatividade anual, etc) comparando-os e
validando-as com os dados da literatura e validando-
os dentro do intervalo de confianca definido.

Validacdo dentro do intervalo de
confianca

A partir dos modelos previamente validados, serao
delineados novos cenérios de estudo, bem como pro-
movidas ampliacOes e ajustes nos modelos existentes,
com o objetivo de capturar de forma abrangente dife-
rentes condicGes operacionais e variacoes do sistema
analisado.

Proposicdo de cendrios/Extensdo
dos modelos

Fonte: Elaborada pelo autor (2025)

3.2 ARQUITETURA BASICA

Nesta subsecao, é descrita a arquitetura basica empregada para a elaboracao deste estudo.
A Figura ilustra a arquitetura proposta. Ela consiste em dois servidores conectados por
meio de um switch que possibilita a comunicacdo entre as maquinas.

A Maquina/Servidor A é um Servidor Linux 22.04 LTS encarregado de conduzir injecSes de
falhas e reparos com tempos distribuidos exponencialmente nos componentes da Maquina/-

Servidor B. Esses injetores sdo scripts Python e, além de sua execucdo, a Maquina/Servidor

49

Figura 13 — Arquitetura proposta

=

Injecdo de falhafreparo———» I
™
My SoL

onitora Status do Moodle————»

-

Maquina/Servidor A - Maquina/Servidor B -@
{ Servidor Monitor/injetor) {Servidor Moodle)

Fonte: Elaborada pelo autor (2025)

A monitora o status (disponibilidade ou indisponibilidade) do Moodle que estd hospedado na

Maquina/Servidor B como mostrado na Figura

Figura 14 — Injetor de falhas/reparo

A

HW SO

Apache PHP MySQL

Fonte: Elaborada pelo autor (2025)

Os scripts de injecdo de falhas tém a funcao de introduzir falhas e efetuar reparos nos com-
ponentes da Maquina/Servidor B, incluindo Hardware, Sistema Operacional, Apache, MySQL
e PHP. A implementacdo de cinco scripts diferentes garante que cada operacdo de falha e re-
paro seja executada de forma auténoma e segura. Esses scripts estao disponiveis nos Apéndices

A, B, C, D e E desta dissertacao.

50

A Maquina/Servidor B, que é um Servidor Linux 22.04 LTS, atua como a estrutura principal
do sistema, executando uma pilha LAMP juntamente com o Moodle LMS na versdo 4.3. A
operacao ininterrupta dos componentes essenciais do sistema é crucial para sua disponibilidade:
hardware, sistema operacional, Apache, MySQL e PHP devem estar sempre funcionais para
que o Moodle esteja online. A falha em qualquer um deles resulta em uma indisponibilidade
temporaria do sistema, o que ressalta a importancia de cada componente para a manutencao
da funcionalidade global do sistema.

Neste ambiente Moodle, falhas e reparos sdo aplicados a cada parte do sistema em mo-
mentos que seguem uma distribuicdo exponencial, usando os scripts Python que executam na
Maquina/Servidor A. Esta maquina também tem a funcdo de verificar a disponibilidade do
Moodle a cada cinco segundos e armazenar as informacdes em um arquivo de log ilustrado
na Figura (13| através do codigo disponibilizado no Apéndice F. Quando todos os componentes
estdo operacionais, o servidor registra a data e hora e o status “UP" no log. Se algum com-
ponente estiver indisponivel, ele registra a data e hora e o status “DOWN". Esses registros

serdo posteriormente utilizados para calcular o[MTTF| e o [MTTR| dados cruciais para avaliar

a disponibilidade do sistema.
O arquivo de log terd entradas como no exemplo abaixo:

1 2024-02-19 21:00:09:047 - System - UP
2024-02-19 21:00:14:813 - System - UP

3 2024-02-19 21:00:21:344 - System - UP
2024-02-19 21:00:27:107 - System - UP

5 2024-02-19 21:00:32:906 - System - UP
2024-02-19 21:00:38:696 - System - UP

7 2024-02-19 21:00:44:496 - System - UP
2024-02-19 21:00:50:309 - System - Down

9 2024-02-19 21:00:56:065 - System - Down
2024-02-19 21:01:01:846 - System - Down

11 2024-02-19 21:01:07:648 - System - Down
2024-02-19 21:01:13:466 - System - Down

13 2024-02-19 21:01:19:269 - System - Down

Esta abordagem permite rastrear por quanto tempo a Maquina/Servidor B esteve disponivel

ou indisponivel, o que permite a aplicacdo dos modelos descritos no Capitulo [4]

51

3.3 ARQUITETURA BASEADA EM NUVEM PUBLICA

Além da arquitetura basica, propomos analisar uma instalacio do implantada em
uma infraestrutura de nuvem publica, tomando por base o sistema [AWS] Esta arquitetura foi

concebida para ser flexivel a fim de suportar tanto recursos fixos quanto variaveis que possam

acomodar a carga de trabalho exigente de um ambiente educacional (ASSUNCAO et al., [2016)).

Escolhemos a que fornece controle de servidor e a migragdo do Moodle para a nuvem

(BISWAS et al., [2015)).

Os pedidos dos usudrios sdo enviados para um front-end que, nesta arquitetura, é im-
plementado pelo servico Elastic Load Balancing da AWS. Este componente atua como um
balanceador de carga, distribuindo as requisicdes uniformemente sobre um conjunto de [VME,
cada qual executando um servidor web Apache para processar as solicitacoes do Moodle. Para
alcancar seu desempenho méaximo, a arquitetura emprega duas categorias de instancias de[VM}

um numero fixo de VMk reservadas e um nimero dindmico de instancias de VMl sob demanda

acionadas para lidar com picos de trafego (BISWAS et al., 2015).

Figura 15 — Topologia de nuvem com escalonamento automatico

Users

Fonte: Adaptado de (FE et al) 2017)

A Figura [15] fornece uma visdo geral da arquitetura de sistemas elasticos na nuvem. As
instancias reservadas sao mostradas em blocos cinza escuro e as instancias sob demanda
em cinza claro. O administrador do sistema reserva um certo nimero de [VMk, enquanto as

VM sob demanda mudam dinamicamente com base em pardmetros definidos pelo usudrio

52

para auto-escalonamento (valores minimos e maximos, tipo de instancia e carga de trabalho
observada).

No caso descrito, o front-end solicita a criacao de novas VMs sob demanda por meio de

chamadas |Elastic Compute Cloud (EC2) ao gerenciador de nuvem, mas esse ajuste também

poderia ser feito no painel da plataforma (HUNG; HU; LI, [2012). Isso afeta as métricas de
desempenho do sistema, por exemplo, taxa de transferéncia, tempo médio de resposta ou
utilizacdo do sistema.

O pedido é enviado de maneira semelhante a uma fila. Se ndo houver [VM] disponivel
para lidar com novos pedidos eles serdo enfileirados na fila de espera, onde aguardarao as
VM5 (tanto reservadas quanto sob demanda) estarem desocupadas. Uma vez que uma é
finalizada, ela verifica a fila de para o primeiro pedido a ser satisfeito (a regra “primeiro
a entrar, primeiro a sair” ou FIFO). Este conceito de fila é projetado para evitar a perda de
um pedido durante os picos de carga.

O sistema adota uma politica de escalonamento automatico reativo, que monitora cons-
tantemente a carga de trabalho da [VM] para orientar a decisdo de escalonamento. Quando
a quantidade de solicitaces na fila atinge um limiar, uma acdo de escalonamento é iniciada
instanciando sob demanda novas [VMk que atendem aos requisitos das solicitacdes recebidas.
Da mesma forma, quando a carga de trabalho é baixa e o uso de recursos excede a necessidade,
um limite de reducdo leva a destruicdo das [VMp sob demanda, visando a redugdo de custos
operacionais desnecessarios.

A selecdo de um tipo de [VM]é uma opcdo de configuracdo importante, pois tem um forte
impacto no desempenho do sistema. Fornecedores de nuvem, como a[AWS| dispdem intimeras
opcoes de capacidades de processamento (vCPU), memodria e variacdes de preco distintas,
que precisam ser selecionados cuidadosamente a luz dos requisitos da aplicacdo.

Além disso, é crucial determinar quantas requisicdes cada instancia da[VM]pode atender em
sua configuracdo minima, sem redundancias ou configuracdes na maquina para aumentar seu
desempenho como mecanismos de cache, por exemplo. Para tanto, recorreu-se a documentacao
oficial de instalacdo do Moodle (Moodle Community, [2024) a fim de saber a configuracdo minima
para uma instalacdo bem como estimar a capacidade de usuérios atendidos. E crucial, também,
entender que esses nimeros s3o aproximacdes para usuarios ativos simultaneamente com um
perfil de uso moderado. A documentacdo Moodle recomenda como pardametro minimo de
memoria 1GB de RAM e como parametro ideal em um servidor de producao 8G.

A Tabela [3|ilustra exemplos de tipos de instancia do Amazon com seus respectivos

53

recursos e a estimativa da quantidade de alunos tnicos que podem ser atendidos. [VMk com

mais vCPUs e memoéria podem processar requisicdes mais rapidamente, mas implicam um

custo maior.
Tabela 3 — Estimativa de capacidade de insténciasm para Moodle
Instancia vCPUs Meméria (GiB) _ Usuarios
Simultaneamente
t3.small/t4g.small 2 5-15
t3.medium/t4g.medium 2 15 - 40
t3.large/t4g.large 2 40 - 80
t3.xlarge/t4g.xlarge 4 16 80 — 180
t3.2xlarge/t4g.2xlarge 8 32 180 — 400

Fonte: adaptada de (FE et al., |2017)),

A arquitetura detalhada nesta secao, com seus componentes essenciais como o balanceador
de carga, o uso combinado de instancias reservadas e sob demanda, e a politica de escalo-
namento reativo, estabelece a base para a analise subsequente. A complexa interacdo entre
a carga de trabalho variavel, as capacidades de processamento das diferentes instancias das
VM| e os limiares de escalonamento torna a avaliacdo puramente descritiva insuficiente para
prever o comportamento do sistema sob diferentes condicdes. Portanto, para capturar essa
dindmica e avaliar quantitativamente as métricas de interesse, faz-se necessaria a construcao

de um modelo formal.

54

4 MODELOS PROPOSTOS

Com base na arquitetura do [LMS|[Moodle| detalhada no capitulo anterior, este capitulo
dedica-se a concepcdo e formalizacao dos modelos propostos para a analise comparativa de seu
desempenho e disponibilidade em dois cenarios de implantacdo distintos: uma implementacao
local, em infraestrutura fisica prépria, e uma implementacao em nuvem publica, utilizando
os servicos da [AWS] A utilizacdo de modelos mateméticos permite realizar uma avaliacdo do
comportamento do sistema em ambos os contextos, viabilizando a tomada de decisdo pelos
administradores do sistema.

Tendo em vista a complexidade do sistema, que envolve tanto a confiabilidade estrutural
dos componentes quanto a dindmica de carga de trabalho e provisionamento de recursos,
optou-se por uma estratégia de modelagem hierdrquica. Esta abordagem permite decompor a
o sistema, modelando diferentes aspectos com o formalismo mais adequado e, posteriormente,
integrando os submodelos para uma anélise completa.

Nesta abordagem hierarquica, cada formalismo é empregado para capturar aspectos dis-
tintos do sistema. O RBD ¢é utilizado para a andlise da disponibilidade estrutural, oferecendo
uma representacdo intuitiva de como os componentes se interligam em série e paralelo e como
suas falhas individuais impactam a funcionalidade do sistema como um todo. Para modelar
o comportamento dinamico de falha e reparo de componentes individuais ou subsistemas, as
CTMC s sao aplicadas, permitindo o calculo de métricas como o MTTF e MTTR. Por fim,
para analisar os aspectos de desempenho e a dinamica complexa de carga de trabalho, filas e
alocacao de recursos, especialmente os mecanismos de escalonamento automatico no cenario
em nuvem, as SPNs sdo o formalismo mais adequado devido a sua capacidade de modelar
concorréncia, sincronizacdo e contencao por recursos.

No contexto da modelagem hierarquica, os [RBDp sdo empregados no primeiro nivel para
analisar o sistema a partir de suas dependéncias funcionais mais simples, como componentes
em série. O resultado dessa andlise é a sintetizacdo de um sistema em um Unico bloco com

a determinacio de valores[MTTF| [MTTR] Disponibilidade, Uptime e Downtime, que servirdo

de insumo para os modelos de espaco de estado subsequentes.
A evoluc3o natural do processo de modelagem consiste na utilizacdo de [CTMC], uma vez
que este formalismo permite mapear de forma explicita as dependéncias entre os componentes

do sistema, superando as limitacdes do [RBD] que assume a independéncia estrutural entre os

55

blocos. Dessa forma, é possivel capturar de modo mais realista, por exemplo, o impacto do
tempo de falha e de reparo de cada componente sobre as métricas de desempenho analisadas,
conferindo maior aderéncia as condicGes operacionais reais.

Pensamento semelhante se aplica a [SPN] uma vez que o mapeamento usando [RBD| n3o
captura a dindmica complexa da arquitetura Moodle na AWS, que inclui o enfileiramento de
requisicoes e as politicas de auto escalonamento faz-se necessario o uso de uma abordagem

mais robusta.

4.1 ARQUITETURA BASICA

Nesta secdo apresentaremos os modelos basicos da arquitetura de maneira que
servirao para o entendimento da plataforma bem como base para validacdo e expansao para

modelos mais complexos.

4.1.1 Modelo Basico em RBD

A partir da arquitetura delineada na Segdo [3.2] foi desenvolvido uma representacdo [RBD
para os componentes do sistema. O modelo consiste em cinco blocos dispostos em série,

conforme descrito a seguir:

» HW (Hardware): Refere-se ao equipamento fisico necessario para executar o [Software
(SO)| e servicos necessarios para o [Moodle;

= SO (Sistema Operacional): Software base que gerencia o hardware e oferece servicos

essenciais para os outros componentes;
= Apache: Servidor web que manipula solicitacdes HTTP e entrega contelido aos usuérios;

» PHP: Linguagem script do lado do servidor usada para executar e redenrizar paginas

dindmicas do [Moodle}

= MySQL: Sistema de gerenciamento de banco de dados relacional que armazena e gerencia

dados do [Moodlel

[RBDE sdo comumente usados para representar e analisar a disponibilidade de sistemas. Em

um RBD, o sistema é decomposto em componentes individuais, cada um representado por um

56

bloco, e as conexdes entre os blocos indicam a dependéncia funcional desses componentes.
O arranjo desses blocos, que podem ser configurados em série, paralelo ou uma combinacdo
de ambos, ajuda a avaliar a confiabilidade geral do sistema. A simplicidade visual dos [RBDk
auxilia na compreensdo e comunicacdo da estrutura do sistema, facilitando a identificacdo de
componentes criticos e potenciais pontos de falha.

Em arquiteturas onde é essencial que todos os componentes funcionem corretamente para
que o sistema tenha éxito, uma configuracao em série é ideal. Aqui, o0 mau funcionamento
de apenas um componente provoca a falha do sistema inteiro. Este tipo de configuracdo é
representativo de cenarios onde a continuidade operacional depende de cada elemento na
cadeia. Assim, ela ilustra situacGes onde o sucesso do sistema depende do desempenho eficaz
de cada componente, delineando a importancia de assegurar a operacao confidvel de cada
parte.

Neste estudo, é assumido que o sistema sé estara operacional quando todos os seus com-
ponentes estiverem ativos ao mesmo tempo. Consequentemente, uma representacdo em série

dos componentes ¢ exigida, como demonstrado na Figura [16]

Figura 16 — RBD Proposto

- -G G 6 -
HW 50

Apache PHP MySQL

Fonte: Elaborada pelo autor (2025)

A disposicao em série ressalta a dependéncia vital que cada elemento tem na estrutura
do . Uma falha no Hardware (HW) impede, por exemplo, o funcionamento do Sis-
tema Operacional (SO). Se o Apache n3o estiver operando, as requisicdes HT TP n3do serdo
processadas. A falha do PHP impede que o execute sua ldgica e, sem o MySQL, o
ndo se consegue acessar ou armazenar informacdes. Por isso, a integridade de cada
componente é essencial para a operacdo total do sistema.

Em continuidade, adota-se uma representacdo mais abstrata do modelo, consolidando
os trés ultimos blocos (Apache, PHP e MySQL) em um Unico elemento representativo da
aplicacdo Moodle chamado AP P, como ilustrado na Figura [I7] Essa simplificacdo se justifica
pela necessidade de reduzir a complexidade do diagrama, mantendo, entretanto, a esséncia da
confiabilidade do sistema. Tal abordagem permite analisar o comportamento do Moodle como

uma unidade funcional integrada, sem perda significativa de precisdo no contexto das métricas

57

de disponibilidade e confiabilidade, pois os componentes internos da aplicacdo podem ser
considerados interdependentes e de similar criticidade operacional. Assim, a analise permanece

focada na avaliacdo de falhas em niveis mais amplos, atendendo aos objetivos deste estudo.

Figura 17 — RBD Moodle

HW S50 APP

Fonte: Elaborada pelo autor (2025)

A configuracdo apresentada representa o minimo necessario (cenario base) para o funcio-
namento do [Moodlel Cada componente representado no [RBD] € essencial, e qualquer falha em
um desses componentes resulta em indisponibilidade do sistema. Garantir a operacdo adequada

de cada componente é vital para manter a disponibilidade e a confiabilidade do sistema.

4.1.2 Modelo Basico Virtualizado em CTMC

As[CTMCs modelam sistemas onde o comportamento estocéstico e as transicdes de estado

ocorrem ao longo do tempo. No formalismo [CTMC| o[Moodle] é representado por um conjunto

de estados e taxas de transicao entre esses estados, que sao distribuidos exponencialmente.
As [CTMCk permitem uma anélise detalhada de processos dindmicos, como falhas e reparos
de componentes, fornecendo uma visdo precisa do comportamento temporal do sistema e
permitindo célculos rigorosos de métricas de desempenho, como disponibilidade.

[CTMCE séo particularmente adequados para sistemas onde a dindmica temporal e o com-
portamento estocastico sdo criticos. Por exemplo, em sistemas de manutencdo e reparo, as
[CTMCE podem modelar eventos de falha, processos de recuperacdo e suas respectivas du-
racoes. Essa abordagem fornece uma compreensdo detalhada de como os tempos de falha e
reparo influenciam a disponibilidade do sistema. As Cadeias de Markov de Tempo Continuo
oferecem previsOes precisas e insights sobre o desempenho do sistema, capturando a natureza
probabilistica das transicoes de estado.

Para garantir a alta confiabilidade das métricas calculadas, um modelo baseado em [CTMC|
foi desenvolvido a partir do [RBD| da Figura [17] A Figura [18] ilustra este modelo, mostrando

os componentes do sistema e suas interconexdes.

58

Figura 18 — CTMC Moodle

DDD

Aso

Fonte: Elaborada pelo autor (2025)

Neste formalismo, a pilha [LAMP] é tratada como um Gnico componente, incorporando os
parametros de falha e reparo de cada elemento. O status dos componentes define cada estado,
conforme mostrado na Tabela[d] A combinacdo desses componentes unificados é chamada de
APP.

Tabela 4 — CTMC — Descricdo dos estados

Estado Descricao Sistema
Uuu Hardware, SO e APP disponiveis Disponivel
uubD Hardware e SO disponiveis; APP in- Indisponivel
disponivel
UubDD Hardware disponivel; SO e APP in- Indisponivel
disponiveis
DDD Hardware, SO e APP indisponiveis Indisponivel

Fonte: Elaborada pelo autor (2025)

No modelo visualizado na Figura[18] A representa a taxa de falha e 1 a taxa de reparo dos
componentes do sistema. Suas descri¢cdes sdo apresentados na Tabela 5] Os estados seguem
uma sequéncia em que U representa o estado funcional (UP) e D representa um componente
em falha (DOWN), respectivametne para Hardware, e APP.

A probabilidade do sistema estar funcionalmente disponivel, denotada por A, = myyoy,

corresponde a probabilidade de estado estacionario estar no estado UUU. Neste estado, o

59

Tabela 5 — CTMC — Descricdo das taxas

Taxa Descricao
Ahduw Taxa de falha da VM
Aos Taxa de falha do software
Nigars Taxa de falha da aplicacao
Ohdw Taxa de instanciacdo da VM
Lhos Taxa de reboot do software
Happ Taxa de reparo da aplicacao

Fonte: Elaborada pelo autor (2025)

sistema esta operacional. Caso um componente falhe a uma taxa de \,p,, o sistema
se desloca para o estado UUD. Deste estado, ele pode ser reparado a uma taxa de 4,
retornando ao estado UUU. Estando no estado UUD pode ocorrer uma falha no sistema
operacional com uma taxa de A, levando o sistema para o estado U D D, podendo ser reparado
a uma taxa de ji,s, Isso leva o sistema ao estado inicial UUU. Ainda no estado UUU pode
ocorrer uma falha no sistema operacional com uma taxa \,s. Nesse caso o sistema migra para
o estado UDD. Falhas de hardware ocorrem a uma taxa de A4, a partir estados UUD, UDD
ou UUU transferindo o sistema para o estado DD D, que s6 pode ser recuperado por meio
de reparo de hardware a uma taxa fijqy-

O modelo de disponibilidade do sistema pode ser avaliado usando a férmula fechada [4.1]
concebida usando a ferramenta Mathematica em conjunto com a ferramenta Mercury (SILVA

et al, 2015)).

A (Ahdw + Aos + Lapp) Chdw (Andw + flos) (4.1)
<)\app +)\hdw +)\os + Napp) <)\de + ahdw) <)\de + >\os + ,U/os) -

O modelo baseado em permite modelagem precisa de taxas de falha e reparo,

capturando transicOes entre estados operacionais e nao operacionais ao longo do tempo. Toda
a pilha [LAMP] é tratada como um dnico componente no modelo [CTMC| mostrado na Figura
[18] Essa abordagem simplifica o gerenciamento de componentes do sistema, especialmente
caso se queira no futuro usar VM| ou contéineres. Quando o sistema entra no estado DDD,
uma nova [VM] ou contéiner pode ser instanciado, retornando o sistema ao estado UUU sem
a necessidade de reparos de componentes individuais melhorando, a priori, a disponibilidade

do sistema.

60

4.2 ARQUITETURA REDUNDANTE

Uma vez estabelecido o comportamento do sistema em sua arquitetura basica, a etapa
subsequente da analise consiste em explorar estratégias de aprimoramento da disponibilidade
e do desempenho do Moodle. A introducao de redundancia se apresenta como a técnica util
para mitigar pontos de falha, permitindo ampliar a tolerancia do sistema e, por consequéncia,
aumentar sua resiliéncia frente a falhas inesperadas de componentes criticos.

Considerando a arquitetura proposta para o Moodle na Figura e considerando que
todos os componentes sio vitais para garantir a continuidade do servico, eventuais falhas
em qualquer um destes elementos comprometem de maneira imediata a operacionalidade da
plataforma. Visando eliminar tais pontos Unicos de falha, optou-se por adotar uma estratégia
de redundancia completa, replicando todos os componentes do sistema em caminhos paralelos

de operacao como mostrado na Figura

Figura 19 — RBD Moodle Redundante

HW 50 APP

BEGIN END
HW SO APP

Fonte: Elaborada pelo autor (2025)

A representacdo formal dessa abordagem foi construida por meio de um [RBD] no qual
cada cadeia funcional completa (HW, SO e APP) é duplicada. Esses caminhos redundantes,
conectados em paralelo no modelo, permitem que o sistema continue operacional mesmo que
ocorra a falha de uma das cadeias inteiras. Assim, o [RBD)] explicita que basta ao menos uma
cadeia funcional estar integra para assegurar o fornecimento do servico, refletindo o principio
de tolerancia a falhas aplicado ao ambiente [Moodle|

Essa estratégia de redundancia completa potencializa a disponibilidade do sistema ao con-
templar falhas em multiplos pontos da arquitetura. Diferentemente de modelos que privilegiam
apenas a redundancia na camada de aplicacdo, a abordagem aqui empregada amplia a protecdo
para o nivel de infraestrutura (hardware) e o nivel de software de base (sistema operacional),

garantindo uma cobertura mais abrangente e robusta contra falhas que possam interromper a

61

prestacao do servico.

4.3 ARQUITETURA VIRTUALIZADA

Apos a proposicao do modelo de redundancia, esta secao abordarad a modelagem do ambi-
ente [Moodle] quando implantado em uma arquitetura virtualizada. A virtualizacdo representa
um paradigma fundamental na computacdo moderna, permitindo a abstracdo dos recursos de
hardware de um servidor fisico para criar e gerenciar mdltiplas isoladas, cada uma com
seu préprio sistema operacional e aplicacoes.

A introducdo da camada de virtualizacdo gerenciada pelo hypervisor cria novas interde-
pendéncias que impactam diretamente a disponibilidade do servico final. Em tal ambiente, a
disponibilidade do nao depende apenas do software da aplicacao em si, mas de toda
a pilha de componentes subjacentes: a [VM], o hypervisor e o hardware do servidor fisico. A
falha em qualquer um desses niveis resulta na indisponibilidade do servico, caracterizando uma
dependéncia em série entre as camadas. Para analisar corretamente o sistema, é imprescindivel
modelar essa dependéncia hierarquica.

Para capturar tanto a dependéncia estrutural quanto o comportamento dinamico do sis-
tema, esta secdo adotard uma estratégia de modelagem em dois niveis. Inicialmente, um [RBD]
sera utilizado para representar a pilha de virtualizacao de um Gnico servidor, possibilitando o
célculo de sua disponibilidade e das taxas de falha e reparo equivalentes. Em seguida, uma[SPN|
sera empregada para modelar o comportamento do sistema completo, que pode ser composto
por miultiplos servidores virtualizados em configuraces redundantes, utilizando os parametros

obtidos na anélise do RBD, bem como por um pool de VM.

4.3.1 Modelo Virtualizado em RBD

A primeira etapa na modelagem da arquitetura virtualizada consiste em analisar a dispo-
nibilidade de um Unico servidor que hospeda o ambiente Moodle. Para isso, partimos de um
[RBD)], conforme ilustrado na Figura 20| Este modelo em série representa a dependéncia entre
as camadas de hardware e software que compdem um servidor virtual. A légica, mais uma
vez, é que a disponibilidade do depende do funcionamento simultaneo de todas os
componentes do sistema.

O modelo é constituido por cinco blocos em série, cada um representando uma camada

62

Figura 20 — RBD Moodle Virtualizado

Fisico Virtual
= X E F I B
HW S0 VMM NC VM

Fonte: Elaborada pelo autor (2025).

da pilha de virtualizac3do e aplicacdo, quais sejam:

= HW (Hardware do host): Representa os componentes fisicos do servidor hospedeiro. Este
bloco engloba a falha de qualquer elemento de hardware, como CPU, meméria RAM,

discos de armazenamento, fontes de alimentacao ou placas de rede.

= SO (Sistema Operacional do host): Representa o sistema operacional principal que é
executado diretamente sobre o hardware. E a camada que serve de base para a execucao

do software de virtualizacao.

= VMM (Virtual Machine Monitor): Representa o software de virtualizacdo, ou hypervisor.
Esta é a camada responsavel por criar, gerenciar e alocar os recursos de hardware para

as maquinas virtuais.

= NC (Node Controller): Representa o servico de software de gerenciamento do né. Este
componente é responsavel por controlar o ciclo de vida das no hospedeiro, respon-
dendo a comandos de um controlador de nuvem de nivel superior (por exemplo, para

iniciar ou parar[VME). Sua falha impede a correta administracdo das [VMk no host.

= VM (Virtual Machine): Componente que representa uma instancia completa do Moodle

em uma maquina virtual, modelada por meio da CTMC apresentada na Figura [18]

Dado que os cinco blocos estdo em uma configuracdao em série, a falha de qualquer um
deles leva a indisponibilidade do [Moodlel A disponibilidade A do sistema hospedado neste
servidor virtualizado é dado pelo produto da disponibilidade individual de cada um de seus
componentes, isto é, A = Agw X Aso X Avmm X Anc X Ay

Este modelo detalhado permite, por exemplo, uma anélise de sensibilidade precisa, possibi-

litando a identificacao do componente que mais contribui para a indisponibilidade do sistema.

63

As métricas deste modelo (MTTF e MTTR) servirdo como parametros para o modelo

de nivel superior.

4.3.2 Modelo Virtualizado em SPN com redundancia

O préximo modelo estendido é uma [SPN| baseada em virtualizacdo desenvolvido para
capturar o comportamento dindmico do adicionando um servidor redundante no qual
um componente secundério (ou de reserva) permanece em um estado inativo ou desligado
enquanto o servidor primario esta operacional. O servidor reserva sé é ativado apds a deteccao
da falha do primario.

A Figura ilustra o modelo proposto para representar uma arquitetura com redundan-
cia cold standby (ativo/passivo), mecanismo no qual um componente priméario (U) estd em
operacgdo enquanto um componente secundario (SC') permanece em um estado inativo, sendo
ativado somente apds a falha do primario. A complexidade da légica de deteccdo de falha,
chaveamento (failover) e retorno ao estado original torna a um formalismo ideal para
capturar com precisao o comportamento dindmico e as diferentes fases de disponibilidade e

indisponibilidade do sistema.

Figura 21 — SPN Moodle Virtualizado com redundancia no servidor

VMU

FVM

TIO

VMD

Fonte: Elaborada pelo autor (2025)

64

O modelo é composto por dois submodelos principais: um para o componente primario
(composto pelos lugares U (servidor principal ativo) e D (servidor principal inativo) e outro
para o secundario composto por SU (servidor secundério ativo) e SD (servidor secundario
inativo).

O componente primario possui um comportamento simples de falha (transicdo F') e reparo
(transicdo R), com MTTYF associado a transicdo F' e MTTR a R. De maneira semelhante
ha tempos de falha e reparo associados as transicdes F'S e RS. O arco inibidor da transicdo
ON possibilita a habilitacdo do lugar SC' quando o lugar U estiver vazio.

Nesse modelo o célculo de disponibilidade é dado pela probabilidade do sistema estar no
estado U ou no estado SU.

O subsistema que representa as , por sua vez, é composto pelos lugares VMU
ativa) e VM D inativa). Semelhante ao modelo do servidor, existe duas transicdes tem-
porizadas que s3o responsaveis por retirar e inserir tokens do lugar VMU representando a
falha — Fy) — e o reparo das VMs — Ry ;.

Adicionalmente, existe uma transicao imediata nomeada como 770 que possui uma expres-
sdo de guarda para sua ativacdo. Para um servidor no lugar Server, a transicdo sera ativada
quando a expressdo de guarda ((#D > 0)AND(#SD > 0))OR((#D > 0)AND(#SU =
0)AND(#SD = 0)) ou ((#U = 0)AND(#SU = 0)) for verdadeira.

Os arcos que chegam e saem da transicao 7'10 possuem peso padrdo modificado para VM
de maneira que quando a transacao ¢ disparada todos os tokens do lugar V MU sao retirados
sendo colocados no lugar VM D.

O objetivo deste modelo é analisar a disponibilidade do sistema, considerando ndo apenas as
falhas individuais das maquinas virtuais, mas, crucialmente, a sua dependéncia da infraestrutura
fisica subjacente.

Este modelo abrangente permite uma analise completa do sistema virtualizado redundante.
A disponibilidade do servico é definida pela condicao de que pelo menos um dos hosts esteja
operacional e haja pelo menos uma [VM] disponivel para processar as requisicdes nesse host. A
disponibilidade total é, portanto, a soma das probabilidades de estado estacionario de todas

as marcacdes que satisfazem essa condic3o.

65

4.4 MODELO DE DESEMPENHO

Apds a construcdo e analise dos modelos focados nas arquiteturas basicas, redundantes
e virtualizadas, esta secdo final do capitulo apresenta um modelo de desempenho. Enquanto
os modelos anteriores foram essenciais para quantificar a probabilidade de o sistema estar
operacional, métricas como utilizacdo, probabilidade de descarte e vazao podem ser calculadas
por meio de um modelo que mapeia o ciclo de vida das requisicOes ao sistema.

Para este fim, foi desenvolvido o modelo em [SPN| mostrado na Figura 22] que integra os
elementos da arquitetura virtualizada com foco na anélise de desempenho. O modelo detalhado
a seguir ird representar, portanto, o percurso completo de uma requisicao do usuério, desde
sua chegada ao sistema, passando pela l6gica do balanceador de carga, pela potencial espera
em uma fila, pelo processamento em uma das VMs disponiveis até a conclusao do servico. A
andlise deste modelo permitird a avaliacdo quantitativa de indicadores chave de desempenho,
oferecendo uma visdo do comportamento do sistema sob diferentes cargas de trabalho e

validando a eficacia da arquitetura elastica estudada.

Figura 22 — SPN de Desempenho Moodle

e Escalonamento ~
@ Automatico Escalonador Ty

L 0O =

SuU - (.

- VMTI !

1

1

|

v

S VMs

B . N - o ML . =
B i S e il e e e b

+" Admjssio ,/ Servigo

: '
! VMMoodle
Entrada ' VMF
Chegada AauardaMoodle \Am_c,‘;io MoadleAlocado Processamento
L]

~ .
N s

Fonte: Elaborada pelo autor (2025)

O modelo proposto oferece uma representacdo detalhada da dindmica do Moodle em

nuvem, focando na interacdo entre a chegada de usudrios, a alocagdo das [VME e as politicas

66

de escalonamento automatico que ajustam a quantidade de Maquinas Virtuais conforme a
demanda.

O modelo é dividido em trés sub-redes: Admissao, que modela a chegada de trabalhos;
Servico, responsavel pela alocacdo e processamento dos trabalhos no Moodle; e Escaloa-
mento automatico, que modela a adicdo e a remocao de recursos computacionais.

A sub-rede de admissdo é composta por dois lugares — Entrada e AguardaMoodle — que
representam a quantidade de trabalhos ou requisicoes que podem ser realizadas e a espera
desses trabalhos na fila do sistema. A transicio Chegada contém a varidvel com o tempo de
chegada entre requisicoes. Uma requisicao chegando em AguardaMoodle e havendo VM e
recursos de processamento disponiveis a transicao imediata Alocacao é disparada e o trabalho
passa para a proxima sub-rede.

A sub-rede de Servico é composta por dois lugares que gerenciam o ciclo de vida do proces-
samento: MoodleAlocado e VMMoodle. O lugar MoodleAlocado representa os trabalhos
que estao sendo ativamente processados; VMMoodle, por sua vez, modela a capacidade
de processamento disponivel em uma instancia de VM| A transicdo temporizada Processa-
mento, cuja taxa segue uma distribuicdo exponencial, modela o tempo de processamento dos
trabalhos. Ao ser concluido, o recurso da é liberado (uma marca retorna a VMMoodle)
e o aluno (token que estava em MoodleAlocado)) retorna ao lugar entrada de maneira que
realizar uma requisicdo (acesso) ao sistema. O disparo da transicdo VMF causa a falha de um
instanciada e, através do arco a VM que falhou.

Por fim, a sub-rede de Escalonamento automatico contém a ldgica de instanciacao e
desligamento de [VME, bem como o funcionamento do host. Os lugares SU e SD representam
o servidor online e offline, respectivamente. O servidor pode falhar através da transicao F e
se recuperar através da R. O lugar VMs contém o pool de maquinas virtuais disponiveis. O
lugar VMTI representa uma VM aguardando para ser instanciada, o que ocorre através do
disparo da transicao TI.

Os lugares principais sdo parametrizados com variaveis que definem a configurac3o inicial
da SPN como mostrado na Tabela [} No lugar SU ha a varidvel Server, indicando o niimero
de servidores disponiveis. No lugar VMs ha a varidvel VM, que indica a quantidade inicial de
maquinas virtuais no pool. O lugar Entrada é configurado com a variavel Alunos, indicando
a quantidade de estudantes que utilizam o sistema. Finalmente, o lugar VMMoodle possui
a variavel ProcessamentoVM, que representa a capacidade de processamento da instancia da

VM utilizada (conforme Tabela [3)).

67

Tabela 6 — Descricdo dos lugares do modelo SPN

Lugar Descricao Marcacao inicial
SuU Disponibilidade do servidor Server

SD Indisponibilidade do servidor -

VMs Pool de VMs VM

VMTI VM a ser instanciada -
VMMoodle VM Moodle disponivel ProcessamentoVM
Entrada Entrada das requisicGes Alunos

Fila aguardando alocac3o de recurso
AguardaMoodle & " -
para trabalho

MoodleAlocado Um recurso (processamentoVM) foi)
alocado a um trabalho

Fonte: Elaborada pelo autor (2025)

A Tabela [7| apresenta a descricao das varidveis do modelo. A variacao desses parametros

serd utilizada na anélise de estudos de caso para avaliar o desempenho do[Moodle sob diferentes

condicoes.
Tabela 7 — Descricdo das varidveis do modelo
Definicao Descricao
Server Quantidade de servidores disponiveis
VM Pool de VMs
ProcessamentoVM Capacidade de processa‘r‘nento de cagia VM (Alocado no
lugar “VMMoodle")
Quantidade de usuérios do sistema (alocado no lugar
Alunos " "
Entrada”)
MTTF Tempo médio de falha do servidor
MTTR Tempo médio de reparo do servidor
MTBA Tempo médio de chegada entre requisicoes
MTBI Tempo médio para instanciacao de uma VM
MTTF_VM Tempo médio de falha da VM
MTBP Tempo médio para processamento de um trabalho pelo
Moodle

Fonte: Elaborada pelo autor (2025)

A dindmica do modelo [SPN| é governada por suas transicGes temporizadas ou imediatas.
Cada uma dessas das transicbes temporizadas é associada a uma variadvel que define seu

comportamento temporal o que torna o modelo flexivel e parametrizavel. A Tabela[8|apresenta

68

0 mapeamento usado nas transicoes as suas varidveis correspondentes.

Tabela 8 — Descricdo das transicdes do modelo SPN

Transicao Tipo Descricao Guarda Defm.u,:ao Prioridade
4 4 associada
R Temporizada Reparo do servidor - MTTR -
F Temporizada Falha do servidor - MTTF -
Chegada Temporizada Chegada de requisicdes (VMMoodle>0) OR (VMAlocada>0) MTBA -
. Instanciamento de uma nova (U>@) AND (VMMoodle <=
T Temporizada VM (ProcessamentoVMx20)/100) MTBI 2
VMF Temporizada Falha da VM instanciada (VMMoodle>@) OR (VMAlocada>@) MTTF_VM -
Processamento Temporizada Processamento de - MTBP -

requisicdes pelo Moodle

(((U>0) AND (VMMoodle <=

(ProcessamentoVMx20)/100))

OR ((U>@) AND (AguardaMoodle >=

@) AND (VMMoodle <=

(ProcessamentoVM%20)/100)) - 2
OR ((U>0) AND (AguardaMoodle >=

2) AND (VMMoodle <=

(ProcessamentoVM%20)/100) AND

(VMAlocada>0)))

Escalonamento de uma nova
VM quando a alocada
estiver com menos de 20%
de recursos disponiveis

Escalonar Imediata

. Aloca uma requisicdo a um
Alocacao Imediata quIsis - - 1
processamento Moodle

Desliga uma VM quando o
. . lugar VMMoodle possuir VMMoodle > (ProcessamentoVM +
Reslead el valor superior a 40% da (ProcessamentoVMx40)/100)) 1

definicdo ProcessamentoVM

Fonte: Elaborada pelo autor (2025)

Enquanto o fluxo basico de requisicdes é definido por arcos de peso unitério, a légica central
do modelo é implementada por um conjunto de arcos especiais, nos quais esta descricao
se concentrara. Tais arcos s3o cruciais para o comportamento dindmico do sistema, sendo
responsaveis por: (1) acionar o escalonamento e o desligamento de VMs; (Il) instanciar uma
nova VM, adicionando capacidade de processamento ao sistema através de um arco com peso
variavel; e (I1l) zerar as filas e os recursos alocados em caso de uma falha completa do servidor
fisico. A Tabela [9] apresenta a especificacdo destes arcos mais importantes. A sintaxe usada
para expressar esta condicdo é a usada pela ferramenta Mercury (SILVA et al., [2015))

Para concluir a descricdo do modelo, é fundamental detalhar a funcionalidade das transi-
cOes que realizam a légica de escalonamento automatico: Escalonador e DesligarVM. Este
mecanismo garante a elasticidade do ambiente, ajustando dinamicamente o niimero de Maqui-
nas Virtuais a demanda, com o objetivo de garantir a disponibilidade sem incorrer em custos

com recursos ociosos. A légica é implementada da seguinte forma:

= Scale-Up: A transicdo Escalonador é acionada em cenérios de alta demanda. Seu dis-
paro ocorre quando a quantidade de recursos de processamento disponiveis, representada

pelo nimero de marcas no lugar VMMoodle, cai abaixo de um limiar inferior (neste mo-

69

Tabela 9 — Arcos com pesos condicionais do modelo

Origem Destino
VMTI F
VMMoodle F
VMs F

TI VMMoodle
[F Entrada
VMMoodle VMF
MoodleAlocado VMF

Peso condicional
IF (Server-#D=1): (#VMTI) ELSE(0)
IF(Server-#D=1): (#VMMoodle) ELSE(Q)

IF(Server-#D=1): (#VMs) ELSE(®)

ProcessamentoVM

IF(Server-#D=1): (#MoodleAlocado +
#AguardaMoodle) ELSE(Q)

IF (#MoodleAlocado >=
ProcessamentoVM) : (0)

IF (#VMMoodle >=

ProcessamentoVM) : (ProcessamentoVM)
ELSE (#VMMoodle)

IF (#MoodleAlocado >
ProcessamentoVM) : (ProcessamentoVM)
IF (#VMMoodle <
ProcessamentoVM) : (#MoodleAlocado)
IF (#MoodleAlocado <
ProcessamentoVM) : (@)

ELSE (#MoodleAlocado)

Acéao
Retirar todos os tokens alocados em VMTI

Retirar todos os tokens alocados em
VMMoodle

Retirar todos os tokens alocados em VMs

Adicionar uma VM com Ns tokens definidos
em Capacidade de Processamento

Retirar todos os trabalhos que estavam sendo
processados

Falhar uma VM retirando seus tokens de
VMMoodle e MoodleAlocado

Falhar uma VM retirando seus tokens de
VMMoodle e MoodleAlocado

Fonte: Elaborada pelo autor (2025)

delo, 20% da capacidade total de uma VM). Este comportamento representa a alocacdo

e instanciacdo de uma nova VM para aumentar a capacidade de servico do sistema.

= Scale-Down: Inversamente, a transicdo DesligarVM é responsavel por otimizar o uso

de recursos em periodos de baixa demanda. Ela é disparada quando os recursos ociosos

no sistema excedem um limiar superior. No modelo, isso ocorre quando o nimero de

marcas em VMMoodle indica que hd o equivalente a uma VM inteira mais 40% de

uma segunda VM ociosa. O seu disparo remove uma VM inativa, reduzindo custos de

infraestrutura.

O modelo proposto constitui uma base formal e flexivel para a analise de desempenho do

sistema Moodle em nuvem. As secdes seguintes mostrarao a validacdo da arquitetura basica

bem como a aplicacdo dos modelos aqui criados, instanciando seus parametros com valores

numéricos para simular diferentes cenarios operacionais e avaliar métricas de interesse.

70

5 VALIDACAO DO MODELO ARQUITETURA BASICA

Apos a concepcdo dos modelos analiticos no capitulo anterior, uma etapa fundamental do
processo de andlise de sistemas ¢ a validac3o. A validacao busca verificar se o modelo proposto
representa, com um grau aceitavel de precisdo, o comportamento do sistema real. Sem esta
etapa, as conclusées tiradas a partir do modelo poderiam nao ser criveis. Este capitulo detalha,
portanto, o processo experimental e estatistico realizado para validar o modelo da arquitetura
basica, que serve como alicerce para todas as analises subsequentes.

Para tal, foi adotada uma metodologia que combina a execucao de um experimento pratico
com a andlise estatistica dos resultados ja detalhado no Capitulo [3] O processo consiste
em submeter uma implementacdo real da arquitetura basica a um ciclo de falhas e reparos
controlados, coletar dados de disponibilidade e, por fim, comparar esses dados experimentais
com os resultados obtidos através dos modelos. O objetivo é determinar se o modelo tem

evidéncias para ser aceito como uma representacao do sistema real.

5.1 AMBIENTE EXPERIMENTAL E INJECAO DE FALHAS

O primeiro passo para a validacao foi a construcdo de um ambiente de teste que replica a
arquitetura basica proposta: uma instalagdo do[Moodle|sobre uma pilha[LAMP](Linux, Apache,
MySQL, PHP). Este ambiente foi configurado em um servidor fisico com especificacdes que
garantem o funcionamento adequado da aplicacdo, servindo como o nosso “sistema alvo”.

Para simular o comportamento de falha e reparo do sistema ao longo do tempo sem a
necessidade de esperar por falhas naturais, foi empregada a técnica de injecdo de falhas. Um
conjunto de scripts foi desenvolvido para atuar como um injetor de falhas, que, em intervalos
de tempo aleatérios uniformes, interrompia um dos servicos essenciais dos componentes da
pilha LAMP, no Sistema Operacional ou no no Hardware. De forma analoga, o reparo era
simulado pela restauracdo do servico interrompido.

Paralelamente, em um segundo servidor, um script atuou monitorando os servicos do
Moodle, do Sistema Operacional e do Hardware do servidor principal, verificando a cada 5
segundos o seu o estado do servico Moodle e registrando a informacdo em um arquivo de
log. Este log de disponibilidade constitui o dado bruto coletado do experimento, contendo o

histérico temporal do comportamento do sistema real.

71

Os trabalhos de (BEZERRA, 2015)), (COSTA, 2015) e (DANTAS et al., 2012) mostram os tem-

pos necessarios para configurar MTTFs e MTTRs nos scripts dos componentes estudados.
Os valores da Tabela [10] foram inseridos no [RBD| da Figura [16] para se ter os valores padrdes

desejaveis no experimento.

Tabela 10 — Componentes do sistema

Componente MTTF (h) MTTR (h)
Hardware 8760 1.67
Sistema Operacioanl 2880 1
MySQL 1440 1
Apache 788.4 0.5
PHP 788.4 0.5

Fonte: Elaborada pelo autor (2025)

No contexto experimental, busca-se validar empiricamente que a métrica de disponibilidade
aferida no experimento esteja estatisticamente consistente com o comportamento esperado do
sistema, previamente modelado. Para isso, estabelece-se como critério que o valor observado
de disponibilidade no experimento deve situar-se dentro do intervalo de confianca de 95%
estimado a partir do modelo de referéncia da Figura

O Intervalo de Confianca é uma medida estatistica crucial para a validacdo de modelos de
simulac&o e anélise de resultados experimentais (CLEMENTE, [2022)). Ele fornece uma faixa de
valores na qual se espera, com um determinado nivel de confianca (geralmente 95%), que o
verdadeiro valor de um pardmetro da populacdo se encontre (DEVORE, [2008)). A utilizacdo de
intervalos de confianca permite verificar se o resultado obtido por um modelo analitico ou de
simulac&o é estatisticamente consistente com os dados medidos em um sistema real (MORAIS
et al, 2013).

A partir dos valores mostrados na Tabela [10, derivam-se as métricas de disponibilidade
do sistema, calculadas a partir da ferramente Mercury, permitindo estabelecer uma estimativa
pontual de disponibilidade. A métrica de disponibilidade obtida nesse experimento serd com-
parada ao intervalo de confianca do modelo base, visando verificar sua consisténcia estatistica
e, portanto, a validade do experimento.

A partir da analise do modelo pelo Mercury chega-se aos valores indicados na Tabela [11}

Contudo é inviavel validar um experimento quando se tem componentes com tempos de
falha ou reparos muito altos. Desafio semelhante foi enfrentado por (BEZERRA, 2015)), (COSTA,

2015) e (DANTAS et al., [2012). Para isso é necessario usar um “fator de aceleragdo” para

72

Tabela 11 — Valores de referéncia

Métrica Valor
MTTF (horas) 270.81150
MTTR (horas) 0.67786
Disponibilidade (%) 99.750
Ndmero de 9's 2.60260
Uptime (horas no ano) 8743.92581
Downtime (horas no ano) 21.88695

Fonte: Elaborada pelo autor (2025)

componentes com tempos de falha elevados de maneira que “falhem” proporcionalmente mais
rapidos. Nosso estudo aplicou um fator de aceleracdo de 1.000 unidades de tempo a todos os
MTTF's de maneira que seus tempos iniciais, no script de falha, foram divididos pelo “fator
de aceleracdo” resultando nos valores mostrados na Tabela [12] Para calcular as métricas
corretamente e validar a arquitetura basica os tempos foram restaurados a sua grandeza de

origem multiplicando-os pelo “fator de aceleracdo” anteriormente definido.

Tabela 12 — Pardmetros de entrada com fator de acelaracio

Componente MTTF (h) MTTR (h)
Hardware 8.76 1.67
Sistema Operacioan| 2.88 1
MySQL 1.44 1
Apache 0.7884 0.5
PHP 0.7834 0.5

Fonte: Elaborada pelo autor (2025)

O sistema ficou sob monitoramento por aproximadamente 103 horas resultando em um
arquivo de log pouco mais de 74.222 linhas mostrando todos os periodos de disponibilidade
ou indisponibilidade do servidor Moodle através de marcacdes U P ou Down como mostrado

na Secdo [3.2

5.2 ANALISE DOS DADOS EXPERIMENTAIS

Com o log de disponibilidade gerado pelo experimento, a préxima fase deve ser a analise
do arquivo para extrair as métricas empiricas do sistema. A partir das marcas de tempo, foram

calculados todos os Periodos em Operacdo (UP) e Periodos em Falha (Down) do Moodle.

73

Com base nestes dados, foi analisado a disponibilidade do sistema a partir dos valores de

MTTF| e [MTTF|, usando a equacio de forma a verificar se o experimento condiz, com

certo grau de confianca, com a realidade.

Os dados compilados a partir do arquivo de log sdo mostrados na Tabela [13}

Tabela 13 — Valores do experimento

Métrica Valor
MTTF (horas) 332.6726
MTTR (horas) 1.1525
Disponibilidade (%) 99.6583
Ndmero de 9's 2.4604
Uptime (horas no ano) 8730.07456
Downtime (horas no ano) 29.92543

Fonte: Elaborada pelo autor (2025)

Para a validacao formal do modelo analitico, adotou-se o método estatistico proposto por
(KEESEE, |1965)), que consiste no célculo do intervalo de confianca para a disponibilidade a
partir de dados experimentais. Este método utiliza o nimero de ciclos de falha/reparo — que
no experimento correspondeu a 94. Esse valor corresponde ao grau de liberdade da distribuicao
F de Snedecor, que se demonstrou a mais adequada para os dados coletados. A partir desta
distribuicdo, com um nivel de confianca de 95%, foram obtidos os valores criticos inferior (L)

e superior (U), conforme detalhado na Tabela [14]

Tabela 14 — Valores base para grau de liberdade

Distribuicao F Valor
Grau de liberdade 94
Valor critico inferior — L 0.6658
Valor critico superior — U 1.502

Fonte: Elaborada pelo autor (2025)

Estes valores criticos sdo entdo aplicados na Equacao para determinar os limites do

intervalo de confianca da disponibilidade:

< 1 1) B (1 1) (5.1)
1+U 14+L/) \1+41502" 1+ 0.6658 '
A execucao do célculo resulta em um intervalo de confianca para a disponibilidade experi-

mental de (0,994877894; 0,997723002), cujos limites est3o apresentados na Tabela [L5]

74

Tabela 15 — Intervalo de Confianca do Experimento

Intervalo de Confianca - 95% Experimento Modelo
(0.99487 — 0.99772) 0.99658 0.99750

Fonte: Elaborada pelo autor (2025)

53 COMPARACAO E CONCLUSAO DA VALIDACAO

Como o valor encontrado pelo modelo esté contido no intervalo de confianca de 95% obtido
experimentalmente, ndo ha evidéncias estatisticas para rejeitar o modelo. Esta consisténcia
assegura que o modelo proposto reflete adequadamente o comportamento do sistema real e,
portanto, pode ser utilizado com confianca como uma base validada para a criacdo de novos

modelos do sistema e para a obtencdo das demais métricas.

75

6 ESTUDOS DE CASO

Com a arquitetura basica devidamente validada no capitulo anterior, e com os modelos
gerais para as demais arquiteturas ja concebidos, este capitulo dedica-se a aplicacao pratica
destes formalismos. Através de uma série de estudos de caso, os modelos serdo utilizados como
uma ferramenta preditiva para avaliar quantitativamente os beneficios de diferentes cenarios,
algo que seria custoso e complexo de se realizar com experimentos em ambientes reais. O
objetivo é fornecer uma analise comparativa que possa guiar o planejamento de infraestruturas
para o ambiente [Moodle], respondendo as questdes de pesquisa levantadas por este trabalho.

A analise se debrucard em quatro estudos de caso sequenciais e complementares, conforme
a estrutura delineada no trabalho. Primeiramente, serd conduzida uma anélise de sensibili-
dade sobre o modelo da arquitetura basica para identificar os componentes mais criticos que
impactam a disponibilidade do sistema.

Em seguida, como segundo estudo, sera avaliado o ganho de disponibilidade obtido com a
introducdo de redundancia em pontos do sistema bem como em outras métricas de interesse
para o modelo. O terceiro estudo de caso serd conduzido sobre a arquitetura virtualizada,
analisando o impacto da pilha de virtualizacdo na disponibilidade de ponta a ponta do servico.
Por fim, o Gltimo estudo de caso mudard o foco da disponibilidade para o desempenho,
utilizando o modelo concebido para analisar métricas como utilizacdo e vazao, entre outras,
em um cenario de nuvem publica com escalonamento automatico.

Em conjunto, estes estudos fornecem uma analise comparativa e abrangente, oferecendo
insights para o planejamento e a otimizacdo de infraestruturas para ambientes de gestdo de

aprendizagem.

6.1 AVALIACAO DO IMPACTO DOS COMPONENTES DA ARQUITETURA BASICA SO-
BRE A DISPONIBILIDADE

O primeiro estudo de caso consiste em uma andlise de sensibilidade do modelo validado da
arquitetura basica, para tanto usamos o modelo em [CTMC] descrito na Figura [I8 O objetivo
desta andlise é identificar quantitativamente quais parametros sao mais criticos para o calculo
da disponibilidade. A identificacdo desses pontos sensiveis é fundamental, pois permite direci-

onar os esforcos de otimizacao de forma mais eficaz, visando o maior ganho de disponibilidade

76

com o menor investimento de recursos.

Utilizando as taxas apresentadas na Tabela e calculando os tempos médios de falha
e reparo do componente app — representado na CTMC da Figura COmo a composicao
funcional do Apache, PHP e MySQL, conforme ilustrado no RBD da Figura [I7] — obtém-se
os valores de taxas consolidados na Tabela [16] servindo como valores de referéncia (baseline)

empregados nas analises subsequentes.

Tabela 16 — CTMC — Parametros de Entrada

Taxa Descricao Valor h~!
Mdw Taxa de Falha da VM 1/4380
Ao Taxa de Falha do Software 1/2880
Xapp Taxa de Falha da Aplicacdo 1/309.48
Ohdw Taxa de Instanciacdo da VM 1/0.0417
Lhso Taxa de Reboot do Software 1/0.05
Happ Taxa de Reparo da Aplicagdo 1/0.607

Fonte: Elaborada pelo autor (2025)

A metodologia adotada foi a anélise de sensibilidade diferencial estudada na Secdo[2.8] que
avalia a taxa de variacdo da métrica de saida (disponibilidade) em resposta a uma mudanca
em um Unico parametro de entrada, enquanto os demais permanecem fixos em seus valores
de baseline. A anélise de sensibilidade diferencial é caracterizada pelo indice de sensibilidade
S\(Y') que indica o impacto dos pardmetros A e p na disponibilidade do sistema.

Importante recordar que as taxas A e pu sdo, respectivamente, o inverso dos tempos de
MTTF e MTTR dos estados analisados. A Tabela mostra os resultados desta analise,
classificando a sensibilidade de cada parametro. Os resultados s3o ordenados de acordo com
os valores absolutos dos indices de sensibilidade. O valor absoluto reflete a intensidade com
que um parametro pode influenciar a disponibilidade. Valores negativos indicam que ha uma
relacdo inversa entre os parametros e a disponibilidade do sistema.

Os resultados consolidados da anélise revelam que a disponibilidade do sistema exibe a
maior sensibilidade em relacdo aos pardmetros do componente de aplicacdo (APP) . Isso
indica que melhorias na taxa de reparo (1t4y,) ou na reducdo da taxa de falhas da aplicacdo
(Aapp) geram um impacto mais significativo na disponibilidade do servico quando comparadas
a melhorias de mesma magnitude em outros elementos da arquitetura.

O Sistema Operacional (SO) é identificado como o segundo componente mais critico com

base também nos valores de ;1 e A.

77

Tabela 17 — Resultado da Anélise de Sensibilidade

Taxa Valor do indice de Sensibilidade
Napp —1,9595 x 1073
Happ 1,9589 x 1073
Hso 1,7360 x 1075
Aso —1,6947 x 107°
Apdw 9,5204 x 1076
Ahdw —9,2484 x 1076

Fonte: Elaborada pelo autor (2025)

Para compreender de forma mais aprofundada o impacto efetivo dessas taxas, foram con-
duzidos experimentos nos quais se variaram os parametros de falha e de reparo relativos a
aplicacdo e ao sistema operacional, considerados os dois componentes mais criticos do sis-
tema. Tais parametros foram ajustados para valores superiores e inferiores em relacdo as suas
taxas originais, de modo a avaliar diferentes cenarios de comportamento. A partir desses ex-
perimentos, foi possivel gerar graficos que evidenciam em quais condicGes o sistema apresenta
melhores resultados em termos de disponibilidade, permitindo uma anélise comparativa mais
robusta e fundamentada.

Os graficos das Figuras 23] e mostram a variacdo da disponibilidade (A) — delimitada
pela linha azul — em relacdo a taxa de interesse. Para fins de comparacdo, tracamos uma
reta (linha laranja) com o valor da disponibilidade validada pela baseline mostrado em secdo
anterior.

Inicialmente, analisamos a variacdo da disponibilidade em relacdo ao tempo de falha da
aplicagdo MTTF,,,, pois a andlise de sensibilidade mostrou que este parametro foi o mais
sensivel. Variou-se o tempo entre 200h e 650h. O grafico dos valores para esses tempos
pode ser visto na Figura [23a] Observamos que, a medida que o tempo de falha aumenta, a
disponibilidade aumenta, chegando a 99,8% préximo de 650h.

Uma vez que estamos analisando a taxa de falhas, podemos estudar a falha do sistema
operacional (\s,) — 0 quarto pardmetro mais sensivel do modelo. A Figura mostra que
com o aumento do tempo de falhas do Sistema Operacional, o Moodle tende a aumentar
sua disponibilidade, semelhante ao parametro anterior, porém de forma bem menos sensivel
a variacdo. Observa-se que o leva muito mais tempo para se distanciar do limiar da
da baseline, bem como apresenta significativa diferenca na sua curva quando comparado aos

99,8% da anélise anterior.

78

Figura 23 — Variacdo A x MTTF para componentes Aplicacdo e Sistema Operacional

——Disponibilidade —#— Baseline

0998

®

< 09975 @
<

0997

0,9965

200 250 300 350 400 450 500
MTTF_app (h)

550

600

—e—Disponibilidade —8— Baseline

150,00 250,00 350,00 450,00 550,00 650,00
MTTF _so (h)

(a) Variagdo A x MTT F,yp,

Fonte

(b) Variagdo A x MTTF,

: Elaborada pelo autor (2025)

Continuando o estudo de caso, percebemos que, de acordo com a Tabela [I7] o segundo

componente mais sensivel é o tempo de reparo do aplicativo (representado pela taxa fi,,;,). De

maneira semelhante, plotamos o grafico de sua variacdo na Figura[24al Percebemos que tempos

de reparo mais prolongados resultam em menor disponibilidade do sistema,isto é, a medida

que a taxa de reparo diminui (ou seja, o tempo médio de reparo aumenta), a disponibilidade

do sistema também se reduz de forma correspondente.

Figura 24 — Variacdo A x MTTR para componentes Aplicacdo e Sistema Operacional

—a— Disponibilidade —&— Baseline

0,9985

0,998

£ 09975 ~o—o
<
0997

0,9965

04 05 086 07 08 09 1
MTTR_app (h)

—s—Disponibilidade —#—Baseline

0,75 1,25 1,75 2,25 275 3,5
MTTR_so (h)

(a) Variagdo A x MTT R,

(b) Variagdo A x MTTR;,

Fonte: Elaborada pelo autor (2025)

Comportamento analogo é observado em relacdo a taxa de reparo do sistema operacional

(14s0), conforme ilustrado na Figura [24bl Um aumento no tempo de reparo implica reducdo na

disponibilidade do sistema; entretanto, como esse parametro apresenta sensibilidade menor do

que a taxa de reparo do aplicativo (fi4yp), constata-se uma diminuicdo bem menos acentuada

da disponibilidade mesmo diante de variacGes mais amplas de tempo em comparacao ao efeito

verificado para figpp.

79

E importante notar a diferenca visual no comportamento das curvas apresentadas na Fi-
gura e na Figura [24] Enquanto a variacdo da disponibilidade em fun¢do do MTTF (Fi-
gura exibe um comportamento assintético, a variacdo em funcdo do MTTR (Figura
apresenta um comportamento praticamente linear. Essa distincdo é explicada pela relacdo

matematica fundamental da disponibilidade (A) em estado estacionério, definida pela Equa-

¢ao[6.1]

B MTTF
 MTTF + MTTR

No caso da anélise da Figura[23, o MTT'R é mantido constante enquanto o MTTF varia.

A

(6.1)

A natureza da funcdo na Equacao faz com que, para valores baixos de MTTF, cada
incremento gere um ganho significativo de disponibilidade. Contudo, a medida que o MTTF
se torna muito grande, o sistema se aproxima de seu limite tedrico de 100% de disponibilidade
(A — 1). Cada hora adicional de confiabilidade (MTTF) resulta em um ganho marginal cada
vez menor, fazendo com que a curva tenha caracteristicas de uma func3o assintética.

Por outro lado, na andlise da Figura [24, o MTTF é mantido constante enquanto o
MTTR varia. Embora a func3do ainda seja inerentemente n3o linear, no contexto de sistemas
de alta disponibilidade como o analisado, onde o valor de MTTF possui magnitude maior
que o MTTR (MTTF > MTTR), a relacdo pode ser aproximada por uma funcdo linear.
A indisponibilidade (U) do sistema é dada pela Equacgo [6.2]

MTTR

U=1-A=1m7F + MTTR (6.2)

Dado que MTTF é um valor muito grande em comparacdo com a faixa de variacdo
de MTTR nos graficos, o denominador (MTTF + MTTR) muda muito pouco. Portanto,
podemos aproximar MTTF + MTTR ~ MTTF. Com isso, a indisponibilidade se torna

aproximadamente proporcional ao MTTR, Equacdo [6.3}

1
MTTF

~
~

-MTTR (6.3)

Como a indisponibilidade (U) tem uma relacdo aproximadamente linear com o MTTR,
a disponibilidade (A = 1 — U) também terd. Isso resulta na reta com inclinagdo negativa
observada no grafico da Figura [24] onde cada hora adicional de indisponibilidade para re-
paro (MTTR) causa uma reducdo percentual correspondente e praticamente constante na

disponibilidade total do sistema.

80

Percebe-se, portanto, que a anéalise de sensibilidade é fundamental no estudo da disponi-
bilidade do sistema, pois permite a identificacao dos pardmetros mais criticos que impactam
diretamente sua disponibilidade. Além da otimizacdo de recursos, a andlise de sensibilidade
fornece dados quantitativos que d3o suporte a decisGes estratégicas, como agendamento de

manutencao preventiva, investimento em novos equipamentos ou atualizacdes de software.

6.2 AVALIACAO DA ARQUITETURA REDUNDANTE

Nesta secdo, sera realizada a avaliacao do impacto da introducao de mecanismos de re-
dundancia na arquitetura do Moodle, tomando como base o modelo RBD apresentado ante-
riormente na Figura [19] Esse modelo serve como referéncia para representar a dependéncia
estrutural entre os principais componentes do sistema. O objetivo da anélise é quantificar, de
maneira comparativa, as melhorias obtidas a partir da duplicacdo de componentes criticos,
considerando métricas classicas de confiabilidade, como o tempo médio até a falha (MTTF),
o tempo médio de reparo (MTTR), a disponibilidade e o nimero de noves associada a esta
disponibilidade. A anélise também contemplaré a estimativa de tempos de operacdo (uptime)
e de indisponibilidade (downtime), permitindo uma visdo ampla sobre os beneficios e limita-
cOes do uso de redundancia no contexto do Moodle.

O modelo proposto [RBD] foi entdo resolvido para obter as probabilidades de estado esta-
cionario e as métricas de interesse foram calculadas. Para avaliar a eficacia desta estratégia,

a Tabela [18| compara os resultados obtidos para o modelo redundante com os da arquitetura

basica.
Tabela 18 — Comparacdo entre Arquitetura Béasica e Arquitetura Redundante Fisica
Métrica Arquitetura Arquitetura Melhoria (%)
Basica Redundante
Fisica
A (%) 99,7503 99,9994 +0,25%
MTTF (h) 270,81 406,22 +49,99%
MTTR (h) 0,6778 0,0025 -99,63%
Ndmeros de 9's 2,60 5,20 +100%
Uptime (h/ano) 8743,93 8765,76 +0,25%
Downtime (h/ano) 21,89 0,055 -99,75%

Fonte: Elaborada pelo autor (2025)

A avaliacdo do modelo sem redundancia revelou um tempo médio até a falha (MTTF)

81

de aproximadamente 270,81 horas. Por sua vez, o tempo médio de reparo (MTTR) nesse
cenario foi de 0,6779 horas. A partir desses valores, a disponibilidade estimada do sistema foi
de 99,7503%, equivalente a cerca de 2,6 “noves”, demonstrando um desempenho consistente,
porém limitado em relacao a falhas pontuais. Traduzindo esses indicadores para um horizonte
anual, obteve-se um tempo médio de operacdo (uptime) de aproximadamente 8743, 93 horas
e um tempo médio de indisponibilidade (downtime) de 21,89 horas por ano.

Com a introducdo da redundancia no modelo [RBD] os resultados mostraram avancos
significativos. O tempo médio até a falha foi elevado para cerca de 406, 21 horas, evidenciando
a maior resiliéncia do sistema em suportar falhas de componentes individuais sem comprometer
sua operacao completa. Além disso, o tempo médio de reparo sofreu uma reducdo expressiva,
atingindo 0, 0025 horas.

No que se refere a disponibilidade, a configuracdo redundante apresentou um valor de
99,999%, o que corresponde a cerca de 5,2 “noves”. Trata-se de um incremento considera-
vel em relacdo ao cendrio sem redundancia, representando um salto qualitativo no nivel de
qualidade de servico percebido. Em termos absolutos, o sistema redundante passa a oferecer,
em média, 8765, 76 horas de operacdo continua ao longo do ano, com apenas 0,055 horas de
indisponibilidade anual, contra quase 22 horas no cenario basico.

Essa evolucdo comprova a eficicia da estratégia de duplicacdo de caminhos completos
no modelo [RBD] que permite contornar falhas pontuais e garantir a continuidade do servico

com interrupcdes minimas. O aumento do MTTF, aliado a um MTTR praticamente nulo,

MTTF

transforma a relacdo MR+ MTTE®

elevando de forma substancial a disponibilidade do sistema.

Em sintese, a comparacdo entre os dois cenarios demonstra que a aplicacdo de redundancia
em paralelo ndo apenas aumenta a confiabilidade estrutural do sistema, como também poten-
cializa a qualidade percebida pelos usuarios, ao reduzir drasticamente os periodos médios de

indisponibilidade.

6.3 AVALIACAO DA ARQUITETURA VIRTUALIZADA

Apbs a analise de estratégias de redundancia em uma arquitetura fisica tradicional, este
estudo de caso volta sua atencdo para um paradigma arquitetonico alternativo e predominante
na computacdo moderna: a virtualizacdo. A migracao de uma implementacao em hardware
dedicado para um ambiente virtualizado introduz beneficios como a consolidacio de recursos,

flexibilidade e agilidade no gerenciamento. Contudo, também adiciona novas camadas a pilha

82

de dependéncia do sistema (por exemplo, o hardware do hospedeiro, o sistema operacional do
hospedeiro e o hypervisor), cujo impacto na disponibilidade do servico precisa ser quantificado.

O objetivo desta secdo é, portanto, avaliar o comportamento do ambiente Moodle quando
implantado em uma infraestrutura virtualizada e, subsequentemente, analisar a eficacia da
redundancia neste novo contexto. Para conduzir esta andlise, serdo avaliados dois cenarios
distintos, ambos utilizando os modelos SPN para arquiteturas virtualizadas desenvolvidos no
Capitulo [4]

Inicialmente, serd analisada uma arquitetura virtualizada béasica, composta por um dnico
servidor hospedeiro (a partir do modelo da Figura . Em seguida, serad avaliada uma arqui-
tetura virtualizada com redundancia cold-standby no nivel do servidor (a partir do modelo da
Figura [21)), empregando dois hosts fisicos para aumentar a resiliéncia do sistema. A compa-
racdo entre estes cenarios e a arquitetura fisica original fornecerd uma visdo abrangente sobre
as vantagens e desvantagens de cada abordagem em termos de disponibilidade.

A partir dos trabalhos de (BEZERRA, 2015)), (COSTA| 2015)), (DANTAS et al., 2012) e (MELO),
2016b)) e dos experimentos feitos anteriormente com a dependéncia APP encontramos os
tempos necessarios para configurar os parametros de entrada do modelo [RBD] proposto na

Figura [20] Esses valores sdo mostrados na Tabela

Tabela 19 — Parametros de entrada do modelo m

Componente MTTF (h) MTTR (h)
Hardware 8760 1.67
Sistema Operacional 2880 1
VMM 2990 1
NC 788.0 1
VM 279.45 0.64

Fonte: Elaborada pelo autor (2025)

Resolvendo o modelo encontramos os valores expressos na Tabela 20| comparando as saidas
do modelo virtualizado com a baseline da Figura [17}

Ao introduzir a arquitetura virtualizada, cujo modelo RBD passou a contemplar seis blocos
— incluindo Hardware, Software, Virtual Machine Monitor (VMM), Node Controller (NC),
Sistema Operacional da VM (OS_VM) e a Aplicagdo Moodle instanciada na VM (APP_VM)
— observou-se impacto direto nos indicadores de confiabilidade e disponibilidade. O MTT'F foi
reduzido para 177,20 horas, evidenciando maior probabilidade de ocorréncia de falhas, dada

a quantidade superior de componentes e, consequentemente, de pontos de falha potenciais.

83

Tabela 20 — Comparacdo entre Arquitetura Basica e Arquitetura Virtualizada

Métrica Arquitetura Arquitetura Diferenca (%)
Basica Virtualizada
A (%) 99,7503 99,5560 0,19%
MTTF (h) 270,81 177,20 —34,6%
MTTR (h) 0,6778 0,7901 +16,6%
Ndmeros de 9's 2,60 2,35 -9,6%
Uptime (h/ano) 8743,93 8726,89 -0,19%
Downtime (h/ano) 21,89 38,91 +77,8%

Fonte: Elaborada pelo autor (2025)

O MTTR também apresentou um leve aumento, chegando a 0,7903 horas, o que pode
ser interpretado como reflexo da maior complexidade do ambiente virtualizado e da maior
quantidade de elementos interdependentes envolvidos no processo de reparo.

Em consequéncia desses fatores, a disponibilidade do sistema virtualizado apresentou um
decréscimo, sendo calculada em 99,556%, equivalente a aproximadamente 2,35 “noves”. Na
pratica, isso se traduziu em uma reducdo do tempo médio de operacdo anual para 8726,89
horas e um aumento do downtime anual para 38,92 horas (préximos do dobro do tempo de
indisponibilidade observado no modelo tradicional).

De forma geral, esses resultados demonstram que, apesar de a virtualizacdo trazer benefi-
cios operacionais como flexibilidade, escalabilidade e facilidade de gerenciamento, ela também
introduz novos pontos de falha e aumenta a complexidade estrutural do sistema. Contudo,
vale ressaltar que a adocao da virtualizacdo pode compensar essas perdas de disponibilidade ao
oferecer estratégias de recuperacdo rapidas ou por meio de recursos que promovam a melhoria
desta métrica, como a implementacado de redundancias.

Agora partimos para a comparacao entre a arquitetura basica e a arquitetura Virtualizada
com Redundancia no Host (Figura . O objetivo é, a partir de um novo modelo em ,
verificar se existem beneficios em termos de disponibilidade e no Downtime anual introduzido
pela abordagem.

A Tabela 21| sintetiza os parametros de entrada empregados na modelagem da disponibili-
dade do Moodle, considerando a arquitetura escolhida. Uma vez que estamos modelando via
SPN|, as métricas serdo: disponibilidade (A), nimero de noves e Downtime anual para o seu
calculo usamos a notacdo constante na Tabela 22| no Mercury

O modelo SPN foi entdo resolvido para obter a disponibilidade e demais métricas de

84

Tabela 21 — Entradas do modelo virtualizado com redundancia

Parametro Valor
Server 1
VM 1
MTTF Servidor (horas) 4384.2940
MTTR Servidor (horas) 1.0376
MTTSC (horas) 0.019166
MTTF_SU (horas) 581.15
MTTF_VM (horas) 279.4506
MTTR_VM (horas) 0.6460

Fonte: Elaborada pelo autor (2025)

Tabela 22 — Definicdo das métricas de interesse da SPN com redundéncia

Métrica Notacao
A (%) P{(((#U>Q)OR (#SU>@)) AND (#VMU>0)) }
N9s -LOG{ (1-P{ (((#U>0)OR(#SU>0))AND (#VMU>0)))}
Downtime (h/ano) (1-P{ (((#U>@)OR(#SU>0)) AND (#VMU>0)) }) %8760

Fonte: Elaborada pelo autor (2025)

interesse. Para avaliar a eficacia desta estratégia, a Tabela [23] compara os resultados obtidos
pela arquitetura basica com os valores obtidos através arquitetura virtualizada com redundancia

aplicada.

Tabela 23 — Comparacdo entre Arquitetura Bésica e Arquitetura Virtualizada com redundancia

Métrica Arquitetura Arquitetura Melhoria (%)
Basica Virtualizada
Redundante
A (%) 0.99750 0.99862 +0,112%
Nimeros de 9's 2.60 2.86 +10,00%
Downtime (h/ano) 21.88695 12.0758 -44.,82%

Fonte: Elaborada pelo autor (2025)

A Tabela|23| apresenta os resultados comparativos entre a arquitetura basica, sem mecanis-
mos de redundancia, e a arquitetura virtualizada acrescida de redundancia no host, aplicadas
ao ambiente do Moodle. Observa-se que a arquitetura virtualizada com redundancia oferece
ganhos em termos de disponibilidade em comparacdo cenario anterior sem redundancia.

Em relacdo a disponibilidade percentual (A%), verifica-se um acréscimo de aproximada-

mente 0,112% ao se migrar do modelo basico (99,750%) para o modelo virtualizado redundante

85

(99,862%). Embora a primeira vista a variacdo possa parecer modesta, ela traduz a reducdo
de interrupcoes potencialmente criticas no contexto educacional, sobretudo em periodos de
alta utilizacdo do Moodle, como épocas de provas ou entrega de trabalhos.

No indicador de nimeros de noves, houve um incremento de 2,60 para 2,86, correspon-
dendo a uma melhoria percentual de 10,00%. Esse aumento reforca a robustez adicional
proporcionada pela combinacao de virtualizacdo e redundancia.

A métrica de Downtime anual apresentou o maior ganho relativo: passou de 21,89 ho-
ras/ano para 12,08 horas/ano, evidenciando uma reducdo de aproximadamente 44,82%. Esse
resultado indica que a utilizacdo de redundancia no host virtualizado praticamente dobra a
capacidade do sistema Moodle de permanecer operacional ao longo do ano. A reducdo do
Downtime pode ser atribuida principalmente a capacidade de failover automatico dos recur-
sos virtualizados redundantes, que permite a rapida transferéncia de cargas de trabalho entre

servidores fisicos em caso de falhas, reduzindo o tempo médio de reparo.

6.4 ANALISE DE DESEMPENHO EM NUVEM PUBLICA

Esta secdo apresenta um estudo de caso utilizando o modelo de SPN proposto para avaliar
o desempenho do Moodle sob diversas configuracdes como modelado na Figura[22] A analise
emprega a ferramenta Mercury (SILVA et al, | 2015)) e avalia as principais métricas de desempenho
detalhadas na Tabela [24] conforme proposto em [Maciel (2023a).

Para garantir que a andlise de desempenho do modelo seja representativa de um cenario
real, a parametrizacdo das transicoes temporizadas foi baseada na literatura. Os valores pro-
postos nos trabalhos base (DANTAS et al,, 2012), (COSTA, 2015, (BEZERRA, 2015) e (FE et
al., 2017)) foram utilizados como referéncia. A Tabela [25| detalha os tempos associados a cada
transicdo temporizada do modelo previamente descrito na Tabela [g]

Embora nao tenham sido derivados de medicdoes empiricas, os tempos de processamento
para diferentes instancias da[AWS]|foram estimados com base nas especificacdes de desempenho
disponibilizadas pelo provedor e ajustados proporcionalmente. Considerando um tempo de
processamento de 60 segundos para o tipo de instancia menor, os tempos de processamento
para as demais quatro instancias foram calculados reduzindo-se sucessivamente 15% em relacdo
ao tempo da instancia anterior. Este método de estimativa, embora simplificado, é valido
para fins de modelagem e permite ajustes flexiveis por parte de administradores de sistema

em cenarios reais de implantacdo. Os valores estimados de Mean Time Between Processing

86

Tabela 24 — Métricas de Desempenho Avaliadas no Estudo de Caso

Métrica Descricao Férmula

Utilizag3o Propor¢do média de VMs E{#VMAlocada}/((VM + 1) x
efetivamente alocadas em ProcessamentoVM)
relacdo a capacidade total.

Probabilidade de Probabilidade de rejeicdo de P{(#VMAlocada =

Descarte

Taxa de Descarte

Vazio

requisicdo quando todos os
recursos estdo ocupados e ha
requisicdes em espera.

Frequéncia de perda de
requisicGes por unidade de
tempo, calculada pelo produto
entre a taxa de chegada e a
probabilidade de descarte.

Taxa efetiva de requisicbes
concluidas com sucesso, obtida
como a diferenca entre a taxa
de chegada e a taxa de
descarte.

ProcessamentoVM x (VM +
1)) and (#AguardaMoodle > 0)}

P{(#VMAlocada =
ProcessamentoVM x (VM +
1)) and (#AguardaMoodle >
0)} x (1/MTBA)

(1/MTBA) — (P{(#VMAlocada =
ProcessamentoVM x (VM +

1)) and (#AguardaMoodle >

0)} x (1/MTBA))

Fonte: Elaborada pelo autor (2025).

Tabela 25 — Transicdes Temporizadas, Variaveis e Tempos Associados

Transicao Variavel Tempo (h)
F MTTF 484.29406
R MTTR 1.03769
Chegada MTBA 0.0083
Processamento MTBP variavel
VMF MTTF_VM 279.45069
TI MTBI 0.0167

Fonte: Elaborada pelo autor (2025).

(MTBP) para as cinco instancias da AWS estdo detalhados na Tabela[26] Esses valores foram

integrados ao modelo para avaliar o impacto do desempenho heterogéneo das instancias sobre

o comportamento do sistema.

Essa abordagem contribui para um cenario de modelagem de desempenho mais realista ao

incorporar a variabilidade dos tempos de processamento entre diferentes perfis de maquinas

virtuais, o que é tipico em ambientes LMSk em nuvem.

O estudo de caso foi conduzido variando-se sistematicamente os pardmetros de nimero de

[VME, niimero de alunos e capacidade de processamento da [VM] listados da Tabela [7] com o

objetivo de investigar o impacto dessas varidveis sobre as métricas de desempenho previamente

definidas. Para cada configuracdo, foram compilados dados representando a relacdo entre as

87

Tabela 26 — MTBP Estimado para Instancias AWS

Instancia MTBP Estimado (h)
t3.small 0.0167
t3.medium 0.0142
t3.large 0.0128
t3.xlarge 0.0115
t3.2xlarge 0.0103

Fonte: Elaborada pelo autor (2025).

métricas analisadas e os diferentes tipos de instancias [AWS| especificados na Tabela [3

Para a execucdo do experimento, foi adotada uma metodologia de andlise em trés etapas. A
primeira etapa concentrou-se na avaliacdo da utilizacdo do sistema em funcao da escalabilidade
da infraestrutura. Para isso, o sistema foi submetido a uma carga de trabalho constante de 200
usuarios simultaneos, enquanto se variava o nimero de maquinas virtuais (VM) disponiveis.
O objetivo dessa etapa foi identificar o ponto de inflexdao a partir do qual um aumento no
namero de VM ndo resultava mais em ganhos significativos na reducdo de saturacdo dos
recursos.

A partir dos pontos de inflexao identificados, realizou-se uma segunda analise, voltada a
avaliacdo da utilizacdo do sistema sob demanda varidvel. Nessa fase, o nimero de foi
mantido fixo para cada tipo de instancia (conforme os resultados obtidos na primeira etapa),
e a carga de trabalho foi ajustada de forma progressiva, variando de 10 a 200 usuéarios simul-
taneos. Esse procedimento possibilitou observar o comportamento da utilizacao de recursos
sob demanda crescente em uma infraestrutura ja previamente dimensionada.

Por fim, a terceira etapa concentrou-se na andlise do desempenho do sistema. Mantendo
o numero de fixo (conforme determinado na segunda etapa), o sistema foi submetido a
uma carga de usuarios dimensionada explicitamente para a capacidade estimada de cada tipo
de instancia, conforme apresentado na Tabela [27]

Os parametros ProcessamentoVM e MTBP da Tabela [7| desempenharam um papel crucial
nos experimento, pois especificam o tipo de instancia da[AWS]| avaliada. O ProcessamentoVM
foi definida com base no niimero minimo de usuarios simultaneos suportados por cada instancia,
com valores variando de 5 a 180, conforme mostrado na Tabela [3| enquanto o MTBP foi

definido de acordo com as especificagdes apresentadas na Tabela [26]

88

Tabela 27 — Estimativa de Usuérios por Instdncias AWS

Instancia Namero de Usuarios por Experimento
t3.small 25 -31
t3.medium 75 - 81
t3.large 200 — 206
t3.xlarge 400 - 406
t3.2xlarge 900 — 906

Fonte: Elaborada pelo autor (2025).

6.4.1 Analise de Utilizacao por Nimero de Maquinas Virtuais

Em relacdo a avaliacdo da utilizacdo do sistema (Figura [25]), observa-se que as duas ins-

tancias de menor porte, t3.small e t3.medium, apresentam um padrdo constante de saturacao.

Ambas mantém um nivel de utilizacdo elevado, préximo de 99,77%, independentemente do

aumento no nimero de maquinas virtuais de 1 até 10. Esse comportamento revela uma limi-

tacao clara de capacidade, indicando que essas instancias operam como gargalos persistentes

de desempenho para a carga de trabalho aplicada, mostrando-se insuficientes para processar

a demanda, mesmo quando configuradas com o maior nimero de VM.

Figura 25 — Utilizagdo x Nimero de VM

09977

0,8979

0,7982

0,6984

0,5986

0,4989

Utilizagao (%)

03991

0,2993

0,1995

0,0998

0,0000

——t3.small

Utiliza¢do x Nim. de VMs

5 6 7 8 9
Nim. de VMs

t3.medium t3large t3xlarge —8—t3.2darge

Fonte: Elaborada pelo autor (2025)

A alteracdo no padrao de comportamento torna-se evidente a partir da instancia t3.large.

Essa configuracdo mantém a utilizacdo méaxima até aproximadamente quatro VM, passando,

a partir da quinta maquina, a apresentar uma queda gradual. Ainda assim, a reducao na

89

utilizacdo é modesta, atingindo valores préximos de 50% apenas quando sdo alocadas dez
VME. Essa caracteristica sugere que a capacidade de processamento da instancia t3.large,
embora superior as menores, ainda exige uma quantidade relativamente elevada de VM para
aliviar o gargalo imposto pela carga de 200 usuéarios simultaneos.

Por sua vez, a instancia t3.xlarge revela um desempenho superior em termos de capacidade
de processamento. Sua curva de utilizacdo comeca a apresentar uma queda mais acentuada
ja a partir da segunda [VM], evidenciando uma mitigacdo mais eficiente do gargalo de recursos
conforme o sistema é escalado. Com o acréscimo de mais maquinas virtuais, a utilizacdo
continua a declinar, alcancando valores abaixo de 30% quando s3o utilizadas dez , o que
reforca a maior robustez da instancia para atender a mesma carga de trabalho.

Por fim, a instancia mais robusta, t3.2xlarge, demonstra ser capaz de resolver de forma
bastante eficiente o gargalo de recursos. J4 com apenas uma [VM] atinge utilizagdo méaxima,
mas, ao adicionar uma segunda maquina, verifica-se uma queda substancial na taxa de utili-
zac3o, que passa a valores levemente superiores a 10% com dez VMk. Esse comportamento
denota a presenca de capacidade computacional alta, eliminando o gargalo aparente com
apenas algumas unidades.

Os resultados apresentados permitem evidenciar uma estratificacdo clara no desempenho
das diferentes instancias avaliadas. As instancias de menor porte revelam-se sistematicamente
subdimensionadas para a carga de 200 usudrios, enquanto as de maior porte, especialmente
a t3.2xlarge, asseguram maior escalabilidade e flexibilidade operacional, ressaltando a impor-
tancia critica do dimensionamento adequado para garantir a eficiéncia e o desempenho do
Moodle.

Atendendo ao objetivo de identificar o ponto de inflexdo a partir do qual um aumento
no nimero de VMs deixa de gerar ganhos significativos na reducao da saturacao adotou-se
como critério pratico o menor niimero de VMs apés o qual o incremento de mais uma VM
produz uma reducdo marginal da utilizacdo considerada n3o significativa (ordem de grandeza:
reducdo < 5 pontos percentuais no nivel de utilizacdo). Com base nas curvas da Figura
e nos parametros experimentais, os pontos de inflexdo observados sao, aproximadamente, os
seguintes: t3.small e t3.medium n3o alcancaram um ponto de inflexdo no intervalo testado
(1-10 VMs), mantendo utilizacdo elevada (= 99,7%) e, portanto, ndo se mostram solucdo
custo-efetiva para a carga de 200 usuérios; t3.large apresenta ponto de inflexdo préximo de
4-5 VMs, a partir do qual ganhos adicionais passam a ser marginais. A instancia t3.xlarge

tem ponto de inflexdo em torno de 2-3 VMs, apresentando diminuicGes mais acentuadas de

90

utilizacdo nas primeiras VMs adicionadas. A t3.2xlarge, por sua vez, apresenta ponto de
inflexdo em 1-2 VMs, indicando que uma ou duas unidades ja fornecem folga substancial
para a carga testada. Em termos de compromisso custo x desempenho, pode-se optar pela
t3.xlarge com 2 VMs ou t3.large com 4-5 VMs, visto que ambas as opcdes aliviam gargalos

com numero moderado de VMs.

6.4.2 Analise de Utilizacao sob Carga Variavel de Usuarios Simultaneos

No experimento que avaliou a utilizacdo do sistema sob demanda varidvel, manteve-se
a infraestrutura fixa em 5 maquinas virtuais, enquanto a carga de trabalho foi escalonada
de 10 até 200 usuérios simultaneos. O comportamento do sistema, ilustrado na Figura [26),
revela uma estratificacao bastante clara do desempenho das instancias estudadas, permitindo
inferéncias relevantes sobre sua capacidade de suportar o crescimento da demanda.

Figura 26 — Utilizacdo x Ndm. de Usudrios

Utilizagdo x Usuéarios

0,9979 —a

0,8981 /
0,7983 c{
0,6985

0,5087

(%)

- 0,4989

Utilizacdo

0,3991 dl
0,2994

0,1996

10 20 30 40 50 60 70 80 a0 100 110 120 130 140 150 160 170 180 150 200
Num. de Usudrios

—8—13.small t3.medium t3.large t3.xlarge —@—13 2xlarge

Fonte: Elaborada pelo autor (2025)

As instancias de menor porte, t3.small e t3.medium, apresentaram esgotamento precoce
de seus recursos computacionais. O grafico evidencia que a t3.small atingiu rapidamente a
utilizacdo préxima ao limite méaximo (cerca de 99,7%) ja a partir de 30 usudrios, mantendo-se
saturada para quaisquer valores adicionais de carga. A t3.medium, por sua vez, mesmo com
um incremento moderado de recursos, atingiu saturacdo com aproximadamente 80 usuarios,

nao apresentando capacidade adicional para absorver picos. Esse comportamento demons-

91

tra uma subdimensionamento evidente dessas configuracGes, caracterizando-as como gargalos
persistentes para aplicacoes de maior porte.

Ao se observar a instancia t3.large, percebe-se um padrdo intermediario. Inicialmente, sua
utilizacdo cresce linearmente em funcdo do aumento de usudrios, evidenciando bom aproveita-
mento da capacidade até um ponto de saturacdo préximo de 200 usudrios. Esse padrao revela
que a t3.large é mais adequada ao cenario avaliado, pois consegue distribuir de forma eficiente
seus recursos computacionais durante grande parte do crescimento de demanda, apresentando
saturacdo apenas em cargas elevadas, compativeis com o limite projetado para essa categoria
de instancia.

Por outro lado, as instancias mais robustas, t3.xlarge e t3.2xlarge, destacam-se pelo sig-
nificativo excedente de capacidade computacional. A t3.xlarge inicia com baixa utilizacao e
vai crescendo suavemente, alcancando apenas cerca de 45% de uso com 180 usudrios, o
que evidencia grande folga de processamento para acomodar aumentos adicionais de carga
sem riscos de degradacdo do servico. Mais impressionante ainda é a t3.2xlarge, que mantém
utilizacdo proximo de 20% mesmo no pico de 200 usuérios simulados, demonstrando estar
substancialmente sobredimensionada frente ao cenério testado.

Essa analise conjunta sugere que, embora as instancias de menor porte ndo atendam de
forma satisfatéria a demanda em ambientes com alta concorréncia, as instancias de médio
e alto porte oferecem margens de seguranca amplas, dotadas de capacidade para absorver
crescimento futuro de requisicbes bem como picos de demanda, preservando a estabilidade e

a qualidade do servico..

6.4.3 Analise de Desempenho com Carga Estimada de Usuarios por Instancia

No estudo de caso final, o desempenho do sistema foi avaliado novamente. Diferentemente
dos estudos anteriores, o objetivo aqui foi submeter cada tipo de instancia a uma carga de
trabalho adaptada explicitamente a sua capacidade estimada, mantendo a configuracdo da
infraestrutura fixa em cinco VMs.

Esse procedimento visou proporcionar uma comparacao mais justa entre as instancias,
permitindo mensurar ndo apenas a capacidade de processamento, mas também a qualidade
do servico e a experiéncia do usuério final sob uma demanda ideal ou préxima do limite de
capacidade.

Para quantificar o desempenho, trés métricas de interesse foram avaliadas: probabilidade

92

de descarte, taxa de descarte e a vazdo, conforme mostrado nas Tabelas 28] 29 e 30

A analise combinada desses dados permite avaliar a capacidade de processamento de cada

instancia.
Tabela 28 — Probabilidade de Descarte para Instancias AWS com 5 VMs
t3.small t3.medium t3.large t3.xlarge t3.2xlarge
Users DP Users DP Users DP Users DP Users DP
25 0 75 0 200 0 400 0 900 0
26 0.6051 76 0.5540 201 0.5190 401 0.4827 901 0.4445
27 0.9077 77 0.8799 202 0.8582 402 0.8332 902 0.8039
28 0.9833 78 0.9758 203 0.9691 403 0.9604 903 0.9493
29 0.9959 79 0.9946 204 0.9932 404 0.9913 904 0.9884
30 0.9975 80 0.9973 205 0.9972 405 0.9968 905 0.9963
31 0.9977 81 0.9977 206 0.9977 406 0.9977 906 0.9976
Fonte: Elaborada pelo autor (2025).
Tabela 29 — Taxa de Descarte para Instancias AWS com 5 VMs (h™1)
t3.small t3.medium t3.large t3.xlarge t3.2xlarge
Users DR Users DR Users DR Users DR Users DR
25 0 75 0 200 0 400 0 900 0
26 72.6137 76 66.4831 201 62.2822 401 57.9204 901 53.3421
27 108.9215 7 105.5908 202 102.9880 402 99.9809 902 96.4727
28 117.9992 78 117.0937 203 116.2906 403 115.2532 903 113.9105
29 119.5127 79 119.3497 204 119.1890 404 118.9503 904 118.6106
30 119.7022 80 119.6817 205 119.6627 405 119.6215 905 119.5607
31 119.7213 81 119.7210 206 119.7247 406 119.7191 906 119.7144
Fonte: Elaborada pelo autor (2025).
Tabela 30 — Vaz3o para Instancias AWS com 5 VMs
t3.small t3.medium t3.large t3.xlarge t3.2xlarge
Users TP Users TP Users TP Users TP Users TP
25 120.0000 75 120.0000 200 120.0000 400 120.0000 900 120.0000
26 47.3863 76 53.5169 201 57.7179 401 62.0797 901 66.6580
27 11.0786 77 14.4092 202 17.0120 402 20.0191 902 23.5273
28 2.0008 78 2.9064 203 3.7094 403 4.7468 903 6.0896
29 0.4874 79 0.6504 204 0.8111 404 1.0498 904 1.3895
30 0.2979 80 0.3183 205 0.3373 405 0.3785 905 0.4393
31 0.2787 81 0.2790 206 0.2754 406 0.2810 906 0.2856

Fonte: Elaborada pelo autor (2025).

Observando os resultados, nota-se que para todas as instancias, a medida que o niimero

de usuarios aumenta, a probabilidade de descarte aumenta, atingindo valores préximos de 1, o

93

que sinaliza saturacdo do sistema e filas cheias para o nimero especificado de usuarios. Conse-
quentemente, a taxa de descarte também cresce, aproximando-se da taxa maxima de chegada,
o que demonstra que a maioria das requisicoes adicionais provavelmente sera rejeitada.

Esse comportamento afeta diretamente a vazao do sistema, que comeca em niveis altos
(préximo a 120 requisicdes por unidade de tempo), mas declina a medida que o sistema
se aproxima de sua capacidade maxima, caindo para valores proximos de zero em cenarios
de maior sobrecarga. Esses resultados demonstram que, embora as instancias consigam lidar
bem com cargas moderadas, elas rapidamente atingem seus limites operacionais e comecam
a rejeitar requisicoes.

Assim, o estudo destaca a importancia de estratégias de escalabilidade ou balanceamento
de carga para garantir um desempenho adequado e uma experiéncia satisfatoria ao usuario
diante de picos de demanda.

De forma geral, os resultados evidenciam que, ainda que as instancias consigam operar
de maneira aceitavel sob cargas moderadas, o aumento exponencial de usuarios impde uma
limitacdo previsivel, tornando inevitavel o descarte de requisicdes e a reducao drastica da vazao.
Esses achados reforcam a importancia de um dimensionamento cuidadoso da infraestrutura e
da adocdo de politicas de escalabilidade automatizada para atender demandas dindmicas de
forma sustentavel e garantir qualidade de servico.

Ao final desta analise, é importante destacar algumas consideracdes adicionais acerca das
hipoteses e simplificacoes adotadas. Nesta etapa, assumiu-se que as requisicdes geradas pe-
los usuarios sao homogéneas em termos de custo de processamento, isto é, possuem tempos
médios de servico equivalentes. Essa hipotese, embora coerente com o objetivo de avaliar o
comportamento global do sistema sob diferentes configuracdes de instancias virtuais, implica
a abstracao de uma caracteristica relevante dos sistemas de gestdo de aprendizagem: a he-
terogeneidade dos objetos de aprendizagem manipulados. Arquivos de video, apresentacdes
interativas e documentos PDF, por exemplo, demandam diferentes quantidades de processa-
mento, memoria e largura de banda, afetando de modo desigual os recursos da pilha LAMP.
Considerar explicitamente essas classes de requisicao representaria um refinamento importante
do modelo, permitindo caracterizar cargas mistas e avaliar o impacto diferencial de cada tipo
de contelido sobre o desempenho do sistema.

O modelo final proposto também representa o ambiente Moodle de forma agregada, tra-
tando a pilha LAMP como um Unico bloco funcional. Essa escolha visou reduzir a complexidade

estrutural inicial e viabilizar a analise comparativa entre instancias com base em métricas de

94

utilizacdo global. No entanto, reconhece-se que os elementos que compdem a pilha impactam
de maneira distinta a laténcia e a capacidade de resposta do sistema. Uma possivel extensao
deste trabalho consiste, portanto, em estratificar o modelo em subcomponentes corresponden-
tes a cada camada da pilha, de modo a capturar com maior precisdo os gargalos especificos e
analisar de forma mais granular a contribuicdo individual de cada servico para o desempenho
global do Moodle.

Além disso, observa-se que a analise de desempenho foi conduzida sob uma perspectiva
sistémica e generalista, com foco no comportamento agregado dos recursos computacionais.
A incorporacdo de métricas especificas do LMS (como o nimero de acessos simultaneos por
modulo, férum, tarefa, questionario, etc ou os padrGes de uso observados em periodos de
pico) poderia proporcionar uma anélise mais aderente ao comportamento real da aplicac3o.
Tal abordagem permitiria calibrar o modelo a partir de tracos de uso empiricos do Moodle,
aprimorando a representatividade dos resultados e fortalecendo a conexao entre a modelagem
e o contexto de uso educacional.

Por fim, ressalta-se que a validacao empirica realizada concentrou-se no modelo basico
e na métrica de disponibilidade estacionaria, uma vez que esse cenario fornece a referéncia
fundamental sobre a qual os modelos redundantes e virtualizados foram construidos. Essa
decisdo metodoldgica buscou assegurar a consisténcia interna dos resultados e a correcdo
estrutural do modelo antes da aplicacdo de extensoes mais complexas. A validacao dos modelos
avancados demandaria medicdes experimentais detalhadas, com instrumentacdo distribuida,
monitoramento de falhas e correlacao temporal de eventos entre maltiplas VMs. Embora tal
processo extrapole o escopo desta pesquisa, constitui um desdobramento natural do trabalho,
possibilitando a verificacdo empirica das métricas de performabilidade e confiabilidade sob

diferentes niveis de virtualizacdo e redundancia.

95

7 CONCLUSAO E TRABALHOS FUTUROS

Esta dissertacao propds-se a enfrentar o desafio de avaliar e otimizar quantitativamente a
disponibilidade e o desempenho do ambiente de gestdo de aprendizagem Moodle, uma plata-
forma de miss3o critica para diversas instituicGes educacionais. Para tal, foi desenvolvido um
framework de modelagem hibrido e hierarquico, que se mostrou capaz de capturar a complexi-
dade de diferentes arquiteturas de implantacao, desde instalacdes fisicas basicas até ambientes
elasticos em nuvem publica. Os objetivos especificos tracados no inicio deste trabalho foram
alcancados, culminando na geracdo de modelos validados, na quantificacdo de métricas de
interesse e na formulacdo de recomendacdes estratégicas alicercadas na analise de instancias
em nuvem.

O ponto de partida foi o estabelecimento de uma baseline para uma arquitetura basica em
hardware fisico. A validacao experimental, por meio de injecao de falhas, conferiu credibilidade
ao modelo dentro de um intervalo de confianca de 95%, que estimou uma disponibilidade de
99,75%, correspondendo a um tempo de inatividade anual de quase 22 horas. A anélise de
sensibilidade subsequente foi importante, ao identificar a camada de aplicacdo (APP) como o
componente mais critico, indicando que os esforcos de otimizacdo deveriam se concentrar em
sua taxa de falha e reparo para obter o maior impacto.

A primeira evolucao arquitetural investigada foi a introduc3do de redundancia fisica completa
do sistema. Os resultados foram numericamente significativos, com uma melhoria de mais de
90% na reducdo do downtime, que caiu para 0,055 horas anuais.

A investigacdo da arquitetura virtualizada trouxe a tona uma das nuances mais impor-
tantes deste trabalho. Ao introduzir novas camadas de software na pilha de dependéncia, a
complexidade do sistema aumentou e, paradoxalmente, a disponibilidade foi degradada, com o
downtime anual subindo para 38,92 horas, um aumento de 77,8% em relacdo ao cenario base.
Este resultado demonstrou que sua verdadeira forca reside em sua capacidade de atuar como
uma plataforma intermediaria para técnicas avancadas de recuperacdo. De fato, a combinacao
de virtualizacdo com redundancia no nivel do host superou a arquitetura basica, reduzindo o
downtime anual em 44,82% , oferecendo uma solucdo equilibrada e viavel.

Finalmente, a anélise de desempenho em nuvem publica, utilizando um modelo SPN, de-
monstrou o trade-off fundamental entre os tipos de instancias e o desempenho do sistema.

Instancias subdimensionadas saturaram rapidamente, levando a altas probabilidades de des-

96

carte e a uma queda abrupta da vazao. Este comportamento evidenciou uma limitacdo das
politicas de escalonamento puramente reativas, apontando para a necessidade de abordagens

mais inteligentes e preditivas para o gerenciamento de recursos.

7.1 PRINCIPAIS CONTRIBUICOES

As principais contribuicdes deste trabalho s3o:

» Framework Analitico Hibrido Validado: A principal contribuicdo cientifica foi a propo-
sicdo e validacao empirica de uma metodologia que integrou, de forma hierarquica, o
formalismo RBD. Este framework demonstrou ser robusto e flexivel, capaz de avaliar
conjuntamente a disponibilidade e o desempenho de sistemas complexos. Embora apli-
cado ao Moodle, sua natureza é genérica e pode ser adaptada para a analise de qualquer
aplicacao web multicamada, servindo como um guia metodoldgico para pesquisadores e

profissionais da area.

= Diretrizes Quantitativas para Planejamento de Capacidade: O trabalho vai além de ané-
lises tedricas, ela fornecer um conjunto de dados comparativos que traduzem decisGes
arquitetdnicas (como a adoc¢3o de redundancia ou virtualizacdo) em métricas de impacto
de interesse para gestores e tomadores de decisdo (por exemplo, horas de downtime por

ano e vazdo de requisicOes).

» Metodologia Experimental e Artefatos Reprodutiveis: A validacdo dos modelos teéricos
por meio de um experimento pratico de injecao de falhas conferiu um alto grau de
credibilidade aos resultados obtidos. A metodologia detalhada e os scripts de injecao de
falhas, disponibilizados como apéndice da dissertacdo, constituem um ativo valioso para
a comunidade, permitindo a replicacdo, verificacdo e extensdo desta pesquisa por outros

pesquisadores.

Além das contribuicoes mencionadas, o artigo “Availability Evaluation of a Learning Ma-
nagement Environment” foi aceito no “1st Workshop on Resilience Engineering in Computer
Systems” durante o LADC'24: 13th Latin—American Symposium on Dependable and Secure
Computing.

Atualmente o artigo “Stochastic Model for the Performance of a Learning Management

System” foi submetido ao LADC'25, encontrando-se sob avaliacdo.

97

7.2 LIMITACOES E DIFICULDADES

Apesar das contribuicdes apresentadas, este trabalho enfrentou algumas limitacdes e de-

safios que merecem destaque.:

» Modelos de Falha e Reparo: A utilizacao de distribuicGes de probabilidade exponenciais
para modelar os tempos de falha e de reparo foi uma premissa que viabilizou a anélise
por meio de Cadeias de Markov. No entanto, essa abordagem pode nao retratar todas
as realidades, pois falhas no mundo real podem seguir outras distribuicGes ou ocorrer
em “rajadas”, e o tempo de reparo pode depender da complexidade da falha, aspectos

nao capturados pelo modelo.

= Parametrizacdo do Modelo de Desempenho em Nuvem: Os pardmetros de desempenho
para as instancias de nuvem (AWS), como a capacidade de usudrios e os tempos de
processamento, foram estimados com base na documentacdo oficial do Moodle e em
ajustes proporcionais, em vez de medicoes empiricas diretas sob carga. Essa abordagem
foi necessaria para viabilizar a analise comparativa entre diferentes tipos de instancia.
Contudo, implica que os valores absolutos de desempenho (vazdo, taxa de descarte)
sao uma aproximacdo. O desempenho em um ambiente de producdo real pode variar,
influenciado por fatores como a complexidade dos cursos e o comportamento especifico

dos usuarios.

» Politica de Escalonamento em Nuvem: A analise de desempenho em nuvem focou exclu-
sivamente em politicas de escalonamento reativas, baseadas em limiares de utilizac3o.
Embora comuns em implementacdes padrao, os resultados sugeriram que elas podem

apresentar problemas, especialmente para lidar com picos de carga subitos

7.3 TRABALHOS FUTUROS

Com base nas limitacdes e descobertas desta pesquisa, delineiam-se direcGes para investi-
gacdes subsequentes. Primeiramente, recomenda-se a expansao dos modelos para arquiteturas
de microsservicos, investigando o impacto de containerizacdo (Docker/Kubernetes) na dispo-

nibilidade do Moodle, com énfase em falhas em cascata e orquestracdo de clusters.

98

Em segundo lugar, propde-se a integracao de andlises econdmicas aos formalismos de
desempenho, avaliando trade-offs entre SLAs, custos operacionais e politicas de auto-scaling
em ambientes de nuvem hibrida (AWS/Azure/GCP).

Um terceiro eixo envolve o desenvolvimento de mecanismos de tolerdncia a falhas adapta-
tiva, utilizando aprendizado de maquina para prever falhas e ajustar redundancias dinamica-
mente. Paralelamente, estudos sobre seguranca cibernética poderiam incorporar ameacas (ex.:
DDoS, injecdo SQL) aos modelos SPN, quantificando seu impacto na disponibilidade.

Para validar a escalabilidade do framework, sugere-se sua aplicacdo em instituicGes de
grande porte, coletando datasets reais de producao.

Por fim, a criacao de plugins para ferramentas como Zabbix permitiria automatizar a coleta

de métricas em tempo real, consolidando a ponte entre modelagem tedrica e operacdo real.

99

REFERENCIAS

AKATSU, S.; MASUDA, A.; SHIDA, T.; TSUDA, K. A study of quality indicator model of
large-scale open source software projects for adoption decision-making. Procedia Computer
Science, Elsevier, v. 176, p. 3665-3672, 2020.

AL-AJLAN, A.; ZEDAN, H. Why moodle. In: IEEE. 2008 12th IEEE International Workshop
on Future Trends of Distributed Computing Systems. [S.l.], 2008. p. 58-64.

ALTINPULLUK, H.; KESIM, M. A systematic review of the tendencies in the use of learning
management systems. Turkish Online Journal of Distance Education, Anadolu University,
v. 22, n. 3, p. 40-54, 2021.

APACHE. Apache, Apache HTTP Server Project. 2024. <https://httpd.apache.org/
ABOUT_APACHE.html>. Accessed: 2024-05-12.

ARAUJO, C. J. M. Um Modelo de Avaliacdo de Desempenho de Estratégias de Geréncia de
Elasticidade de Acordo com o Comportamento da Carga de Trabalho. Tese (Tese (Doutorado
em Ciéncia da Computacdo)) — Universidade Federal de Pernambuco, Recife, 2015.

ARAUJO, J.; ALVES, V.; OLIVEIRA, D.; DIAS, P.; SILVA, B.; MACIEL, P. An investigative
approach to software aging in android applications. In: 2013 IEEE International Conference
on Systems, Man, and Cybernetics. [S.l.: s.n.], 2013. p. 1229-1234.

ASSUNCAO, M. de; CARDONHA, C.; NETTO, M.; CUNHA, R. Impact of user patience
on auto-scaling resource capacity for cloud services. Future Generation Computer Systems,
v. 55, p. 41-50, 2016.

AUSTREGéSILO, M.; CALLOU, G. Stochastic models for optimizing availability, cost and
sustainability of data center power architectures through genetic algorithm. Revista de
Informatica Tedrica e Aplicada, v. 26, p. 27-44, 08 2019.

AVIZIENIS, A.; LAPRIE, J.-C.; RANDELL, B.; LANDWEHR, C. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing, v. 1, n. 1, p. 11-33, 2004.

BARHAM, P.: DRAGOVIC, B.: FRASER, K.; HAND, S.; HARRIS, T.; HO, A;
NEUGEBAUER, R.; PRATT, I.; WARFIELD, A. Xen and the art of virtualization. In:

Proceedings of the nineteenth ACM symposium on Operating systems principles. [S.l.]: ACM,
2003. p. 164-177.

BEZERRA, M. C. dos S. Modelos para analise de disponibilidade de arquitetura de um servico
de Vod Streaming na nuvem. Tese (Doutorado) — Universidade Federal de Pernambuco,
2015.

BISWAS, A.; MAJUMDAR, S.; NANDY, B.; EL-HARAKI, A. An autoscaling framework for
controlling enterprise resources on clouds. In: 2015 15th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid). [S.l.]: IEEE, 2015. p. 971-980.

BORGES, I.; ANDRADE, E.; SILVA, F. A.; CALLOU, G. Availability evaluation of a
video surveillance system with distributed storage. Cluster Computing, 2025. Aceito para
publicacdo.

https://httpd.apache.org/ABOUT_APACHE.html
https://httpd.apache.org/ABOUT_APACHE.html

100

BiuCHNER, A. Moodle 4 Administration - Fourth Edition: An administrator’s guide to
configuring, securing, customizing, and extending Moodle. Packt Publishing, 2022. Accessed
5/12/24. Disponivel em: <https://subscription.packtpub.com/book/web-development/
9781801816724 /2 /ch02lvl1sec08 /understanding-the-moodle-architecture>.

CALLOU, G.; VIEIRA, M. Availability and performance analysis of cloud services. In: 13th
Latin-American Symposium on Dependable and Secure Computing (LADC). [S.l.: s.n.], 2024.

CASALE, G.; CREMONESI, P. Performance models for hierarchical grid architectures. In:
2006 IEEE International Conference on Grid Computing (GRID). [S.l.]: IEEE, 2006. p.
232-239.

CATELANI, M.; CIANI, L.; VENZI, M. Reliability assessment for complex systems: A
new approach based on rbd models. In: 2015 IEEE International Symposium on Systems
Engineering (ISSE). [S.l.: s.n.], 2015. v. 0, n. 3, p. 286-290.

CEPIN, M. Reliability block diagram. In: Assessment of Power System Reliability. [S.1.]:
Springer, 2011. p. 119-123. ISBN 978-0-85729-687-0.

CIARDO, G.; GERMAN, R.; LINDEMANN, C. A characterization of the stochastic process
underlying a stochastic petri net. IEEE Transactions on Software Engineering, v. 20, n. 7, p.
506-515, 1994.

CLARK, C.; FRASER, K.; HAND, S.; HANSEN, J. G.; JUL, E.; LIMPACH, C.; PRATT, I
WARFIELD, A. Live migration of virtual machines. In: Proceedings of the 2nd Symposium
on Networked Systems Design & Implementation (NSDI). USENIX Association, 2005. p.
273-286. Disponivel em: <https://www.usenix.org/legacy/events/nsdi05/tech/full_papers/
clark/clark.pdf>.

CLEMENTE, D. A. M. Modelagem hierarquica da disponibilidade de servicos hospedados em
Centro de Dados. Tese (Dissertacdo (Mestrado em Ciéncia da Computacdo)) — Universidade
Federal de Pernambuco, Recife, 2022.

COMMUNITY, M. About Moodle. 2024. |<https://docs.moodle.org/403/en/About_
Moodle>. Accessed April 02, 2024.

COSTA, I. de O. Modelos par analise de disponibilidade em uma plataforma de mobile
backend as a service. Tese (Doutorado) — Universidade Federal de Pernambuco, 2015.

DANTAS, J.; LIMA, C.; MACIEL, P.; SOUZA, J.; LIMA, R. Availability evaluation of a
transaction-oriented system using a fault injection tool. In: International Conference on
Software Engineering and Knowledge Engineering (SEKE). [S.1.: s.n.], 2011. p. 306-311.

DANTAS, J.; MATOS, R.; ARAUJO, J.; MACIEL, P. An availability model for eucalyptus
platform: an analysis of warm-standy replication mechanism. ACM. IEEE Computer Society,
v. 3, n. 3, p. 1664-1669, 2012.

DANTAS, J. L. C. Um Ambiente para Avaliacio de Desempenho de Sistemas Web
Clusterizados com Suporte a Replicagdo de Contetido. Tese (Dissertagdo (Mestrado em
Ciéncia da Computacdo)) — Universidade Federal de Pernambuco, Recife, 2008.

DEVORE, J. L. Probability and statistics for engineering and the sciences. [S..]: Spinger,
2008.

https://subscription.packtpub.com/book/web-development/9781801816724/2/ch02lvl1sec08/understanding-the-moodle-architecture
https://subscription.packtpub.com/book/web-development/9781801816724/2/ch02lvl1sec08/understanding-the-moodle-architecture
https://www.usenix.org/legacy/events/nsdi05/tech/full_papers/clark/clark.pdf
https://www.usenix.org/legacy/events/nsdi05/tech/full_papers/clark/clark.pdf
https://docs.moodle.org/403/en/About_Moodle
https://docs.moodle.org/403/en/About_Moodle

101

DIAS, F. A Hierarchical Model for Performance and Availability Evaluation of laaS Cloud
Environments. Tese (Tese (Doutorado em Ciéncia da Computa¢do)) — Universidade Federal
de Pernambuco, Recife, 2017.

FE, I.; MATQOS, R.; DANTAS, J.; MELO, C.; MACIEL, P. Stochastic model of performance
and cost for auto-scaling planning in public cloud. In: 2017 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). [S.l.: s.n.], 2017. p. 2081-2086.

FEITOSA, L.; BARBOSA, V.; SABINO, A.; LIMA, L. N.; FE, I; SILVA, L. G.; CALLOU, G;
CARVALHO, J. O.; LEAO, E. M.; NGUYEN, T. A.; REGO, P. A. L.; SILVA, F. A. P. A. A

comprehensive performance evaluation of container migration strategies. Computing, 2025.

Aceito para publicacdo.

FRANK, P. M. Introduction to System Sensitivity Theory. [S.l.]: Academic Press Inc., 1978.

Fé 1., M. R.; DANTAS, J.; MELO, C.; ARAUJO, J.; MACIEL, P. Performance-cost trade-off
in auto-scaling mechanisms for cloud computing. Sensors, v. 22, n. 3, p. 1221, 2022.

GANDHI, A.; DUBE, P.; KARVE, A.; KOCHUT, A.; ZHANG, L. Adaptive, model-driven
autoscaling for cloud applications. In: 2014 IEEE International Conference on Autonomic
Computing (ICAC). [S.l.]: IEEE, 2014. p. 157-164.

GIRVIN, D. What is Apache? In-Depth Overview of Apache Web Server. 2025.
<https://www.sumologic.com/blog/apache-web-server-introduction>. Accessed: 2025-04-
02.

GOMES, A.; CALLOU, G. Models for availability evaluation of file servers in private clouds.
Computing, 2024.

GONCALVES, C. F.; ANDRADE, E.; MENDONCA, J.; CALLOU, G. Modelos estocasticos
para o planejamento de ambientes avas baseados em contéineres e maquinas virtuais. Revista
de Informatica Tedrica e Aplicada: RITA, v. 29, n. 2, 2022.

GONZAGA, C. Um Modelo para Avaliacio de Desempenho e Disponibilidade de Aplicacées
de Software como Servigo (SaaS). Tese (Dissertacdo (Mestrado em Ciéncia da Computacdo))
— Universidade Federal de Pernambuco, Recife, 2014.

GUPTA, A.; CHRISTIE, R.; MANJULA, P. Scalability in internet of things: features,
techniques and research challenges. Int. J. Comput. Intell. Res, v. 13, n. 7, p. 1617-1627,
2017.

HAAN, K. Best Learning Management Systems (LMS) Of 2024. 2024. <https:
/ /www.forbes.com /advisor /business/best-learning-management-systems/>. Accessed:
2024-05-12.

HAMBY, D. A review of techniques for parameter sensitivity analysis of environmental
models. Environmental Monitoring and Assessment, v. 32, n. 2, p. 135-154, 1994.

HERBST, N. R.; KOUGIOUKOTAS, S.; REMANN, R. Elasticity in cloud computing: What
it is, and what it is not. In: 10th International Conference on Autonomic Computing (ICAC).
[S.I.]: USENIX, 2013. (Anais...).

https://www.sumologic.com/blog/apache-web-server-introduction
https://www.forbes.com/advisor/business/best-learning-management-systems/
https://www.forbes.com/advisor/business/best-learning-management-systems/

102

HERBST, N. R.; KOUNEV, S.; REUSSNER, R. Elasticity in cloud computing: What it is,
and what it is not. In: Proceedings of the 10th International Conference on Utility and Cloud
Computing (UCC). [S.l.]: ACM, 2013. p. 23-32.

HUNG, C.; HU, Y.; LI, K. Auto-scaling model for cloud computing system. International
Journal of Hybrid Information Technology, v. 5, n. 2, p. 181-186, 2012.

JAIN, R. The art of computer systems performance analysis: techniques for experimental
design, measurement, simulation, and modeling. [S.l.]: John Wiley & Sons, Inc., 1991.

JOGI, V. D.; SINHA, A. Performance evaluation of mysql, cassandra and hbase for heavy write
operation. In: 3rd Int’l Conf. on Recent Advances in Information Technology (RAIT-2016).
Dhanbad, India: [s.n.], 2016.

KEESEE, W. R. A Method of Determining a Confidence Interval for Availability. 1965. Point
Mugu, California: Miscellaneous Publication.

KOCH, J.; HAO, W. Apache and http/2 in the cloud: A comparative study of apache
architecture in aws. In: 2021 IEEE 12th Annual Information Technology, Electronics and
Mobile Communication Conference (IEMCON 2021). Vancouver, BC, Canada: [s.n.], 2021.
p. 673-680.

KURIEN, A. T. J.; MATHEW, S. A.; MANA, S. C. Development of php and mysql
based digital asset management system for secure organizations. In: 2022 6th International
Conference on Trends in Electronics and Informatics, ICOEI 2022 - Proceedings. [S.l.]: Institute
of Electrical and Electronics Engineers Inc., 2022. p. 1859-1863. ISBN 9781665483285.

LAPRIE, J.-C. Dependable computing and fault tolerance: Concepts terminology. In:
Fault-Tolerant Computing, Twenty-Fifth International Symposium on. [S.l.]: IEEE, 1995. p.
2-11.

LEONARDO, W.; BEZERRA, T.; CALLOU, G. Stochastic petri net models for availability
and performance evaluation of nextcloud service hosted in apache cloudstack. In: 13th
Latin-American Symposium on Dependable and Secure Computing (LADC). [S.l.: s.n.], 2024.

LEONARDO, W.; CALLOU, G. Avaliacao da disponibilidade do servico nextcloud hospedado
em nuvem privada. In: Workshop de Testes e Tolerdncia a Falhas (WTF). [S.l.: s.n.], 2025.

Artigo submetido ao Simpésio Brasileiro de Redes de Computadores e Sistemas Distribuidos
(SBRC 2025).

LIAW, S. S.; HUANG, H. M. Perceived satisfaction, perceived usefulness and interactive
learning environments as predictors to self-regulation in e-learning environments. Computers
Education, v. 60, n. 1, 2013.

LIMA, C.; GOMES, A.; ANDRADE, E.; CALLOU, G. Avaliacdo de desempenho e consumo
de energia de um ambiente virtual de aprendizagem em nuvens privadas. Revista Brasileira
de Computacdo Aplicada, v. 13, n. 1, p. 74-87, 2021.

LIMA, C. J.; GOMES, A.; ANDRADE, E.; CALLOU, G. Avaliacao de desempenho e consumo
de energia do ambiente moodle. Research, Society and Development, v. 10, n. 5, 2021.

LIMA, C. M. B. Um Modelo para Avaliacao de Desempenho, Custo e Disponibilidade de
Ambientes de Nuvens Hibridas. Tese (Dissertacdo (Mestrado em Ciéncia da Computacgdo))
— Universidade Federal de Pernambuco, Recife, 2015.

103

LIU, Y.; WU, W. Research on the system of reliability block diagram design and reliability
prediction. In: 2011 Int. Conf. Syst. Sci. Eng. Des. Manuf. Informatiz. ICSEM 2011. [S.I.:
s.n.], 2011. v. 2, p. 35-38.

MACIEL, P. R. M. Performance, Reliability, and Availability Evaluation of Computational
Systems, Volume I: Performance and Background. [S.l.]: Chapman and Hall/CRC, 2023.

MACIEL, P. R. M. Performance, Reliability, and Availability Evaluation of Computational
Systems, Volume II: Performance and Background. [S.l.]: Chapman and Hall/CRC, 2023.

MACIEL, R.; ARAUJO, J.; DANTAS, J.; MELO, C.; GUEDES, E.; MACIEL, P. Impact of
a ddos attack on computer systems: An approach based on an attack tree model. In: 2018
Annual IEEE International Systems Conference (SysCon). [S.l.: s.n.], 2018. p. 1-8.

MANVI, S. S.; SHYAM, G. K. Resource management for infrastructure as a service (iaas) in
cloud computing: A survey. Journal of network and computer applications, Elsevier, v. 41, p.
424-440, 2014.

MARSAN, M. A.; CONTE, G.; BALBO, G. A class of generalized stochastic petri nets for the
performance evaluation of multiprocessor systems. ACM Transactions on Computer Systems
(TOCS), ACM, v. 2, n. 2, p. 93-122, 1984.

MARWAH, M.; MACIEL, P.; SHAH, A.; SHARMA, R.; CHRISTIAN, T.; ALMEIDA, V.
Quantifying the sustainability impact of data center availability. SIGMETRICS Perform. Eval.
Rev., New York, NY, USA, v. 37, n. 4, p. 64-68, 2010.

MELL, P.; GRANCE, T. The nist definition of cloud computing (nist special publication
800-145). [S.1.], 2011.

MELO, C. Um Modelo Hierarquico para Avaliacdo de Disponibilidade e Desempenho
Orientado a Capacidade de Ambientes de Nuvem Privada. Tese (Tese (Doutorado em Ciéncia
da Computagdo)) — Universidade Federal de Pernambuco, Recife, 2018.

MELO, C. A. S. Um Modelo de Avaliacio de Desempenho e Disponibilidade de Bancos de
Dados Relacionais em Ambientes de Nuvens. Tese (Dissertacdo (Mestrado em Ciéncia da
Computacdo)) — Universidade Federal de Pernambuco, Recife, 2016.

MELO, C. A. S. d. Avaliacado da Disponibilidade de Infraestrutura de Sincronizacdo de Dados.
Dissertacdo (Dissertacdo de Mestrado) — Universidade Federal de Pernambuco, Centro de
Informéatica, Recife, 2016.

MENASCé, D. A.; ALMEIDA, V. A. F. d.; DOWDY, L. W. Performance by design: computer
capacity planning by example. [S..]: Prentice Hall PTR, 2002.

MENDONCA, J.; LIMA, R.; MATOS, R.; FERREIRA, J.; ANDRADE, E. Availability analysis
of a disaster recovery solution through stochastic models and fault injection experiments.
In: 2018 IEEE 32nd International Conference on Advanced Information Networking and
Applications (AINA). [S.l.]: IEEE, 2018. p. 135-142.

MOLLQY, M. Performance analysis using stochastic petri nets. [EEE Transactions on
Computers, C-31, n. 9, p. 913-917, 1982.

MOODLE. About Moodle. 2020. <https://docs.moodle.org/38/en/About_Moodle>.
Disponivel em: <https://docs.moodle.org/38/en/About_Moodle>.

https://docs.moodle.org/38/en/About_Moodle
https://docs.moodle.org/38/en/About_Moodle

104

Moodle Community. Installing Moodle. 2024. <https://docs.moodle.org/404 /en/Installing__
Moodle>. Accessed: May 12, 2024.

MORAIS, I. d. et al. Um modelo para avaliacdo de desempenho de web service em nuvem no
consumo de imagens em dispositivos moéveis. In: Anais do XXVII Simpésio Brasileiro de Redes
de Computadores e Sistemas Distribuidos. Porto Alegre, RS, Brasil: Sociedade Brasileira de
Computacao, 2013.

MySQL. What is MySQL? 2024. <https://www.oracle.com/mysql/what-is-mysql />|
Accessed: May 12, 2024.

NARCISO, J. Principais vantagens do linux e porque muitas em-

presas adotam esse sistema! 2023. <https://www.dio.me/articles/
principais-vantagens-do-linux-e-porque-muitas-empresas-adotam-esse-sistema>. Ac-
cessed: 2024-05-12.

NETCRAFT. Netcraft, February 2024 Web Server Survey. 2024. <https://www.netcraft.
com /blog/february-2024-web-server-survey>. Accessed: 2024-05-12.

OROZCO, A. M. S. BALANCEAMENTO ENTRE SEGURANCA E DESEMPENHO NA
COMUNICACAO ENTRE OS PLANOS DE CONTROLE E DADOS EM REDES DEFINIDAS
POR SOFTWARE. Tese (Tese (Doutorado)) — Pontificia Universidade Catdlica do Rio
Grande do Sul, 2018.

PADALA, P.; HOU, K.; SHIN, K. Automated control of multiple virtualized resources. In:
Proceedings of the 4th ACM European conference on Computer systems. [S.l.]: ACM, 2009.
p. 43-56.

PHP. What is PHP? 2024. <https://www.php.net/manual/en/intro-whatis.php>. Accessed:
May 12, 2024.

POPEK, G.; GOLDBERG, R. Formal requirements for virtualizable third generation
architectures. Communications of the ACM, v. 17, n. 7, p. 412-421, 1974.

PRANAM, A. Understand the software stack. In: Product Management Essentials. Berkeley,
CA: Apress, 2018. p. 23-37.

PYPL. PYPL index. PopularitY of Programming Language. 2024. <https://pypl.github.io/
PYPL.html>. Accessed: May 12, 2024.

SAILELLAH, H. R. P. Linux Operating System: History, Functions, Advantages, and
Disadvantages. 2023. <https://it.telkomuniversity.ac.id /en/linux-operating-system />.
Accessed: 2024-05-12.

SCHAFFER, S. Babbage's intelligence: Calculating engines and the factory system. Critical
Inquiry, The University of Chicago Press, 1994.

SILVA, A. da; CALLOU, G.; VALENTIM, T.; DANTAS, J. Anilise de desempenho de
servidores de arquivos em nuvem privada. In: Seminério Integrado de Software e Hardware
(SEMISH). [S.I.: s.n.], 2023. Parte do XLIII Congresso da Sociedade Brasileira de Computacido
(CSBCQ).

https://docs.moodle.org/404/en/Installing_Moodle
https://docs.moodle.org/404/en/Installing_Moodle
https://www.oracle.com/mysql/what-is-mysql/
https://www.dio.me/articles/principais-vantagens-do-linux-e-porque-muitas-empresas-adotam-esse-sistema
https://www.dio.me/articles/principais-vantagens-do-linux-e-porque-muitas-empresas-adotam-esse-sistema
https://www.netcraft.com/blog/february-2024-web-server-survey
https://www.netcraft.com/blog/february-2024-web-server-survey
https://www.php.net/manual/en/intro-whatis.php
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://it.telkomuniversity.ac.id/en/linux-operating-system/

105

SILVA, B.; MATOS, R.; CALLOU, G.; FIGUEIREDQO, J.; OLIVEIRA, D.; FERREIRA, J;
DANTAS, J.; LOBO, A.; ALVES, V.; MACIEL, P. Mercury: An integrated environment for
performance and dependability evaluation of general systems. In: INDUSTRIAL TRACK AT
45TH DEPENDABLE SYSTEMS AND NETWORK CONFERENCE (DSN 2015). [S.l.: s.n],
2015.

SILVA, F. A.; ANTONIO, J. M.; RAFAEL, J.; C., J.; CALLOU, G. Availability assessment
and sensitivity analysis of an mbaas platform. International Journal of Computational Science
and Engineering (IJCSE), 2024.

SOUZA, E. T. G. de. Avaliacdo do impacto de uma politica de manutencdo na
performabilidade de sistemas de transferéncia eletrénica de fundos. Tese (Doutorado) —
Universidade Federal de Pernambuco, 20009.

SYED, M. Apache2, PHP8.1, MariaDB (LAMP Stack) on Ubuntu 22.04.
2022. Accessed 5/12/24. Disponivel em: <https://marsown.com/wordpress/
install-lamp-stack-ubuntu-20-04 />

TEAM, E. L. Histéria do LMS. 2024. |<https://www.easy-Ims.com/pt/
centro-de-conhecimento/centro-Ims/historia-do-Ims/item10401>. Accessed: 2024-12-
05.

TEIXEIRA, J. C. Uma Abordagem para Avaliacdo de Desempenho e Disponibilidade de
Sistemas de Bancos de Dados NoSQL em Ambientes de Nuvem Hibrida. Tese (Tese
(Doutorado em Ciéncia da Computacdo)) — Universidade Federal de Pernambuco, Recife,
2017.

TESAR, M. Towards a post-covid-19 'new normality?’: Towards a post-covid-19 ‘new
normality?’: Physical and social distancing, the move to online and higher education. Policy
Futures in Education, v. 18, n. 5, p. 558-563, 2020.

TRINDADE, F. R. Predicdo de Desempenho no Moodle usando Principios da Andragogia.
Tese (Dissertacdo (Mestrado em Computacdo)) — Universidade Federal de Goias, Goiania,
2020.

WALDSPURGER, C. Memory resource management in vmware esx server. In: Proceedings
of the 5th symposium on Operating Systems Design and Implementation. [S.1.]: USENIX
Association, 2002. p. 181-194.

WANNAPIROON, P.; KAEWRATTANAPAT, N.; PREMSMITH, J. Development of cloud
learning management systems for higher education institutions. In: 2019 Research, Invention,
and Innovation Congress (RI2C 2019). Bangkok, Thailand: [s.n.], 2019.

https://marsown.com/wordpress/install-lamp-stack-ubuntu-20-04/
https://marsown.com/wordpress/install-lamp-stack-ubuntu-20-04/
https://www.easy-lms.com/pt/centro-de-conhecimento/centro-lms/historia-do-lms/item10401
https://www.easy-lms.com/pt/centro-de-conhecimento/centro-lms/historia-do-lms/item10401

APENDICE A - SCRIPT PARA INJECAO DE FALHA E REPARO NO
HARDWARE

Script para injetar falhas e reparos no hardware

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

import subprocess
import time
from datetime import datetime

import numpy as np

def falha(mttf):
tempo_falha = np.random.exponential(mttf, 1)[0]
time.sleep(tempo_falha)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

subprocess.run(["python”, "hardware_desliga.py”])

return tempo_falha, timestamp

def reparo(mttr):

tempo_reparo = np.random.exponential(mttr, 1)[0]

time.sleep(tempo_reparo)

timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

subprocess.run(["python”, "hardware_religa.py"])

return tempo_reparo, timestamp

def main():
mttf

8.760%3600

mttr 1.67%3600

log_file = "fault_log.txt"

106

107

33 try:

34 while True:

35 # Simula falha

36 falha_tempo, falha_timestamp = falha(mttf)

37 with open(log_file, "a") as log:

38 log.write(f"Hardware Failure - MTTF: {falha_tempo:.2f} -
Timestamp: {falha_timestamp}\n")

39

40 # Simula reparo

41 reparo_tempo, reparo_timestamp = reparo(mttr)

42 with open(log_file, "a") as log:

43 log.write(f"Hardware Repair - MTTR: {reparo_tempo:.2f}
Timestamp: {reparo_timestamp}\n")

44

45 except KeyboardInterrupt:

46 print(”"Simula o interrompida pelo usu rio.")

47

48 if __name__ == "__main__":

49 main ()

Cédigo Fonte 1 — Cédigo Python para injetar falhas e reparos no hardware
Script para desligar o hardware (falha)

1 import winrm

3 def desligar_maquina_fisica(ip_machine, usuario, senha):

4 winrm_session = winrm.Session(

5 f'http://{ip_machine}:5985/wsman',

6 auth=(usuario, senha),

7 server_cert_validation="'ignore'

8)

9

10 script_path = r'C:\ScriptsHyperV\Shutdown-Remote.ps1' # Coloque o

caminho correto do script

11 comando_ps = f'powershell -File {script_path} -ComputerName {
ip_machine}'

12

13 resultado = winrm_session.run_ps(comando_ps)

14

15 if resultado.status_code == 0:

108

16 print(f"A m quina '{ip_machine}' foi desligada com sucesso.")
17 else:
18 print(f"Erro ao desligar a m quina '{ip_machine}': {resultado.

std_err.decode () }")
19

20 # Configura es de IPMI da m quina f sica

21 ip_machine = '10.255.255.40"

22 usuario_machine = 'administrador'
23 senha_machine = '@vfesc87!'

24

25 # Chamar a fun o para desligar a m quina f sica

26 desligar_maquina_fisica(ip_machine, usuario_machine, senha_machine)

Cédigo Fonte 2 — Cédigo Python para desligar o hardware
Script para religar o hardware (reparo)

1 from wakeonlan import send_magic_packet
2 from ping3 import ping, verbose_ping

3 import time

5 def verificar_status_da_maquina(ip, tempo_espera=10):

6 try:

7 resposta_ping = ping(ip, timeout=tempo_espera)

8 return resposta_ping is not None

9 except Exception as e:

10 print(f"Erro ao verificar status da m quina: {e}")
11 return False

12

13 def ligar_maquina_remotamente(mac_address, ip_address):

14 if verificar_status_da_maquina(ip_address):

15 print(f"A m quina com o endere o IP '{ip_address}' j est
ligada.")

16 else:

17 try:

18 send_magic_packet (mac_address)

19 print(f"Pacote Wake-on-LAN enviado com sucesso para '{

mac_address}'.")
20 except Exception as e:
21 print(f"Erro ao enviar pacote Wake-on-LAN: {el}")

22

109

23 # Aguarde alguns segundos antes de verificar o status

novamente

24 time.sleep(5)

25

26 if verificar_status_da_maquina(ip_address):

27 print(f"A m quina com o endere o IP '{ip_address}' foi

ligada ap s o erro no envio do pacote.”)

28 else:

29 print(f"A m quina com o endere o IP '{ip_address}'
ainda est desligada."”)

30

31 # Endere o MAC da placa de rede da m quina
32 mac_address = 'B8:97:5A:8A:34:93"'

33 # Endere o IP da m quina

34 ip_address = '10.255.255.40"'

35

36 # Chamar a fun 0 para enviar o pacote WolL

37 ligar_maquina_remotamente (mac_address, ip_address)

Cédigo Fonte 3 — Cddigo Python para religar o hardware

APENDICE B - SCRIPT PARA INJECAO DE FALHA E REPARO NO
SISTEMA OPERACIONAL

Script para injetar falhas e reparos no Sistema Operacional

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

import subprocess
import time
from datetime import datetime

import numpy as np

def falha(mttf):
tempo_falha = np.random.exponential(mttf, 1)[0]
time.sleep(tempo_falha)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

subprocess.run(["python", "os_desliga.py”])

return tempo_falha, timestamp

def reparo(mttr):

tempo_reparo = np.random.exponential(mttr, 1)[0]

time.sleep(tempo_reparo)

timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

subprocess.run(["python”, "os_inicia.py”"])

return tempo_reparo, timestamp

def main():
mttf

2.8%3600

mttr 1*%3600

log_file = "fault_log.txt"

110

111

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

if

__hame__ == _main_

try:
while True:
Simula falha
falha_tempo, falha_timestamp = falha(mttf)

with open(log_file, "a") as log:

log.write(f"0S Failure - MTTF: {falha_tempo:.2f} -

Timestamp: {falha_timestamp}\n")

Simula reparo
reparo_tempo, reparo_timestamp = reparo(mttr)

with open(log_file, "a") as log:

log.write(f"0S Repair - MTTR: {reparo_tempo:.2f}

Timestamp: {reparo_timestamp}\n")

except KeyboardInterrupt:

print(”"Simula o interrompida pelo usu rio.")

" ",

main ()

Cédigo Fonte 4 — Cddigo Python para injetar falhas e reparos no Sistema Operacional

Script para desligar o Sistema Operacional (falha)

1

10

11

12

13

14

15

16

import winrm

from winrm.protocol import Protocol

def pausar_vm(nome_vm, ip_hyper_v, usuario, senha):

Configurar a conex o WinRM

winrm_session = winrm.Session(
f'http://{ip_hyper_v}:5985/wsman',
auth=(usuario, senha),
server_cert_validation="'ignore' # Ajuste isso conforme

necess rio para ambientes de produ o

Caminho do script no servidor remoto

script_path = r'C:\ScriptsHyperV\Pause-VM-Remote.ps1'

Comando PowerShell para executar o script remoto

comando_ps = f'powershell -File {script_path} -VMName {nome_vm}'

17

18

19

20

21

22

23

24

25

26

28

29

30

31

32

Executar o comando via WinRM
resultado winrm_session.run_ps(comando_ps)
Verificar o resultado
if resultado.status_code

print(f"A VM

"{nome_vm}' pausada com sucesso.")

print(f"Erro ao pausar a VM '{nome_vm}': {resultado.std_err.

decode () }")

Nome da VM
nome_da_vm "UbuntuServer -CInMoodle'
IP do Hyper-V

ip_hyper_v '10.255.255.40"'

33 # Credenciais do Hyper-V

34 usuario_hyper_v = 'administrador'
35 senha_hyper_v = '@vfesc87!'
36

37 pausar_vm(nome_da_vm, ip_hyper_v, usuario_hyper_v, senha_hyper_v)

Cédigo Fonte 5 — Cédigo Python para desligar o Sistema Operacional
Script para religar o Sistema Operacional (reparo)

1 import winrm

2 from winrm.protocol import Protocol

4 def iniciar_vm(nome_vm, ip_hyper_v, usuario, senha):

5 winrm_session = winrm.Session(

6 f'http://{ip_hyper_v}:5985/wsman',

7 auth=(usuario, senha),

8 server_cert_validation="'ignore'

9)

10

11 script_path = r'C:\ScriptsHyperV\Start-VM-Remote.ps1'

12 comando_ps f'powershell -File {script_path} -VMName {nome_vm}'
13

14 resultado winrm_session.run_ps(comando_ps)

113

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

if resultado.status_code == 0:

print(f"A VM '{nome_vm}' foi
else:
print(f"Erro ao iniciar a VM

decode () }")

Nome da VM
nome_da_vm = 'UbuntuServer-CInMoodle'
IP do Hyper-V

ip_hyper_v = '10.255.255.40"
Credenciais do Hyper-V
usuario_hyper_v = 'administrador'
senha_hyper_v = '@vfesc87!'

iniciar_vm(nome_da_vm, ip_hyper_v,

usuario_hyper_v,

iniciada com sucesso.")

'"{nome_vm}': {resultado.std_err.

senha_hyper_v)

Cédigo Fonte 6 — Cédigo Python para religar o Sistema Operacional

APENDICE C - SCRIPT PARA INJECAO DE FALHA E REPARO NO APACHE

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

import numpy as np

import time

from datetime import datetime

import paramiko

def

def

def

falha(mttr, ssh_client):
tempo_falha = np.random.exponential(mttr, 1)[0]
time.sleep(tempo_falha)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

comando_falha = "sudo service apache2 stop"”

stdin, stdout, stderr = ssh_client.exec_command(comando_falha)

return tempo_falha, timestamp

reparo(mttf, ssh_client):
tempo_reparo = np.random.exponential(mttf, 1)[0]
time.sleep(tempo_reparo)

timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

comando_reparo = "sudo service apache2 start”

stdin, stdout, stderr = ssh_client.exec_command(comando_reparo)

return tempo_reparo, timestamp

conectar_ssh(host, usuario, senha):

ssh = paramiko.SSHClient ()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect (host, username=usuario, password=senha)

return ssh

115

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

def main():
host_remoto = "10.255.255.41"
usuario_ssh = "gervasio”
senha_ssh = "123456"
mttf = 0.7884%3600 # Mean Time To Failure
mttr = 0.5%3600 # Mean Time To Repair in seconds
log_file = "fault_log.txt"
ssh_cliente = conectar_ssh(host_remoto, usuario_ssh, senha_ssh)
try:

while True:

Simula falha

falha_tempo, falha_timestamp = falha(mttf, ssh_cliente)

with open(log_file, "a") as log:

log.write(f"Apache Failure - MTTF: {falha_tempo:.2f} -

Timestamp: {falha_timestamp}\n")

Simula reparo

reparo_tempo, reparo_timestamp = reparo(mttr, ssh_cliente)

with open(log_file, "a") as log:

log.write(f"Apache Repair - MTTR: {reparo_tempo:.2f}

Timestamp: {reparo_timestamp}\n")

except KeyboardInterrupt:
print(”"Simula o interrompida pelo usu rio.")

ssh_cliente.close()

n

if __name__ == "__main__

n .,

main ()

Cédigo Fonte 7 — Cédigo Python para injetar falhas e reparos no Apache

APENDICE D - SCRIPT PARA INJECAO DE FALHA E REPARO NO MYSQL

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

import numpy as np

import time

from datetime import datetime

import paramiko

def

def

def

falha(mttr, ssh_client):
tempo_falha = np.random.exponential(mttr, 1)[0]
time.sleep(tempo_falha)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

comando_falha = "sudo service mysql stop”

stdin, stdout, stderr = ssh_client.exec_command(comando_falha)

return tempo_falha, timestamp

reparo(mttf, ssh_client):
tempo_reparo = np.random.exponential(mttf, 1)[0]
time.sleep(tempo_reparo)

timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

comando_reparo = "sudo service mysqgl start”

stdin, stdout, stderr = ssh_client.exec_command(comando_reparo)

return tempo_reparo, timestamp

conectar_ssh(host, usuario, senha):

ssh = paramiko.SSHClient ()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect (host, username=usuario, password=senha)

return ssh

117

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

def main():
host_remoto = "10.255.255.41"
usuario_ssh = "gervasio”
senha_ssh = "123456"
mttf = 1.4%x3600 # Mean Time To Failure

mttr = 1*3600 # Mean Time To Repair

log_file = "fault_log.txt"
ssh_cliente = conectar_ssh(host_remoto, usuario_ssh, senha_ssh)
try:

while True:

Simula falha

falha_tempo, falha_timestamp = falha(mttf, ssh_cliente)

with open(log_file, "a") as log:

log.write(f"MySQL Failure - MTTF: {falha_tempo:.2f} -

Timestamp: {falha_timestamp}\n")

Simula reparo

reparo_tempo, reparo_timestamp = reparo(mttr, ssh_cliente)

with open(log_file, "a") as log:

log.write(f"MySQL Repair - MTTR: {reparo_tempo:.2f} -

Timestamp: {reparo_timestamp}\n")

except KeyboardInterrupt:
print(”"Simula o interrompida pelo usu rio.")

ssh_cliente.close()

n

if __name__ == "__main__

n .,

main ()

Cédigo Fonte 8 — Cddigo Python para injetar falhas e reparos no MySQL

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

118

APENDICE E - SCRIPT PARA INJECAO DE FALHA E REPARO NO PHP

import numpy as np

import time

from datetime import datetime

import paramiko

def

def

def

falha(mttr, ssh_client):
tempo_falha = np.random.exponential(mttr, 1)[0]

time.sleep(tempo_falha)

timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

comando_falha = "sudo service php8.1-fpm stop”

stdin, stdout, stderr = ssh_client.exec_command(comando_falha)

return tempo_falha, timestamp

reparo(mttf, ssh_client):

tempo_reparo = np.random.exponential(mttf, 1)[0]

time.sleep(tempo_reparo)

timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

comando_reparo = "sudo service php8.1-fpm start”

stdin, stdout, stderr = ssh_client.exec_command(comando_reparo)

return tempo_reparo, timestamp

conectar_ssh(host, usuario, senha):

ssh = paramiko.SSHClient ()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect (host, username=usuario, password=senha)

return ssh

119

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

def main():
host_remoto = "10.255.255.41"
usuario_ssh = "gervasio”
senha_ssh = "123456"
mttf = 0.7884%3600 # Mean Time To Failure
mttr = 0.5%3600 # Mean Time To Repair
log_file = "fault_log.txt"
ssh_cliente = conectar_ssh(host_remoto, usuario_ssh, senha_ssh)
try:

while True:

Simula falha

falha_tempo, falha_timestamp = falha(mttf, ssh_cliente)

with open(log_file, "a") as log:

log.write(f"PHP Failure - MTTF: {falha_tempo:.2f} -

Timestamp: {falha_timestamp}\n")

Simula reparo

reparo_tempo, reparo_timestamp = reparo(mttr, ssh_cliente)

with open(log_file, "a") as log:

log.write(f"PHP Repair - MTTR: {reparo_tempo:.2f}

Timestamp: {reparo_timestamp}\n")

except KeyboardInterrupt:
print(”"Simula o interrompida pelo usu rio.")

ssh_cliente.close()

n

if __name__ == "__main__

n .,

main ()

Cédigo Fonte 9 — Cédigo Python para injetar falhas e reparos no PHP

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

APENDICE F - SCRIPT PARA MONITORAR O SISTEMA E SALVAR O
ESTADO "UP"OU "DOWN"EM ARQUIVO DE LOG

import paramiko

import os

import subprocess
import datetime

import time

import mysql.connector
from ping3 import ping

import threading

mysql_server_ip = "10.255.255.41"
mysql_port = 3306

apache_server_ip = "10.255.255.41"
apache_log_file = "apache_status.log’
php_server_ip = "10.255.255.41"
php_log_file = "php_status.log"”
mysql_log_file = "mysql_status.log”
ssh_username = "gervasio”
ssh_password = "123456"

GREEN = '\@33[92m'

RED = '\@33[91m'

ENDC = '\033[0Om'

hardware_server_ip = "10.255.255.40"

120

121

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

hardware_log_file = "hardware_status.log

Configura
os_server_ip =

os_log_file = "os_status.log'

def check_ping(server_ip,

try:

n

es do servidor SO

"10.255.255.41"

service_name):

response = ping(server_ip, timeout=1, unit="ms")

return response is not None

except Exception as e:

print(f"Erro ao verificar ping para {service_namel}: {e}")

return False

def check_mysqgl_service(log_file, ssh_client=None):

try:

Se um cliente SSH for fornecido, executa o comando remotament

if ssh_client:

command = "service mysql status” # Use o comando apropriad

para verificar o status do MySQL remotamente

stdin, stdout, stderr = ssh_client.exec_command(command)

result = stdout.channel.recv_exit_status()

return result ==
else:
Tenta conectar

python

0

ao MySQL usando o m dulo mysql-connector -

conn = mysql.connector.connect(

host=mysql_server_ip,

port=mysqgl_port,

user="'moodleuser ',

password="'0z83 .*x5Fm6MjOHd9 ',

database="'moodle'

)
conn.close ()

return True

except Exception as e:

Se houver uma exce

log_failure(log_file,

return False

o, 0O servi o est indispon vel

n MySQL H)

@

(0]

122

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

def check_apache_service(log_file, ssh_client=None):
try:
Se um cliente SSH for fornecido, executa o comando remotamente
if ssh_client:
command = "pgrep -f apache2”
stdin, stdout, stderr = ssh_client.exec_command(command)
result = stdout.channel.recv_exit_status()
return result == 0
else:
Verifica se o processo do Apache est em execu 0
subprocess.check_output (["pgrep”, "-f", "apache2"])
return True
except subprocess.CalledProcessError as e:
Se houver uma exce o, o servi o est indispon vel
log_failure(log_file, "Apache")

return False

def check_php_service(log_file, ssh_client=None):
try:
Se um cliente SSH for fornecido, executa o comando remotamente

if ssh_client:

command = "pgrep -f php”

stdin, stdout, stderr = ssh_client.exec_command(command)
result = stdout.channel.recv_exit_status()

return result == 0

else:
Substitua este bloco de ¢ digo conforme necess rio para
verificar o status do PHP
Aqui estamos apenas imitando uma verifica o bem-sucedida
usando a fun 0 subprocess.check_output para n o gerar
exce es.
subprocess.check_output(["echo”, "PHP is running"])
return True
except subprocess.CalledProcessError as e:
Se houver uma exce o, O servi o est indispon vel
log_failure(log_file, "PHP")

return False

123

110

111

112

113

116

117

118

119

120

121

122

123

124

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

def check_hardware(log_file):
try:
hardware_reachable = check_ping(hardware_server_ip, "Hardware")
if not hardware_reachable:
log_failure(log_file, "Hardware”)
else:
log_recovery(log_file, "Hardware')
except Exception as e:

print(f"Erro ao monitorar hardware: {e}")

def check_os(log_file):
try:
os_reachable = check_ping(os_server_ip, "0S")
if not os_reachable:
log_failure(log_file, "0S")
else:
log_recovery(log_file, "0S")
except Exception as e:

print(f"Erro ao monitorar sistema operacional: {e}")

def log_failure(log_file, service_name):

current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S:
u)[:_3:|

new_entry = f"{service_name} - Not Reachable at {current_time}”

Verifica se a nova entrada j est no arquivo de log

with open(log_file, "r") as file:
if new_entry in file.read():
print(f"{service_name} - Not Reachable already logged.")

return

Se n o estiver, adiciona a nova entrada
with open(log_file, "a") as file:
file.write(f"{RED}{new_entry}{ENDC}\n")

%f

print(f"{service_name} - Not Reachable. Logged to {log_file} at {

current_time}")

def log_failure_with_service(log_file, service_name, additional_message

II):

-n

124

146

147

148

149

150

151

152

153

154

155

156

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

def

def

def

current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f
11)[:_3]

new_entry = f"{service_name} - Service unavailable at {current_timel}"

Cria o arquivo de log se n o existir
if not os.path.exists(log_file):
with open(log_file, "a"):

pass

Verifica se a nova entrada j est no arquivo de log
with open(log_file, "r") as file:
if new_entry in file.read():
print(f"{service_name} - Service unavailable already logged."

)

return

Se n o estiver, adiciona a nova entrada

with open(log_file, "a") as file:
file.write(f"{RED}{new_entry}{ENDC}\n")
print(f"{service_name} - Service unavailable . Logged to {

log_file} at {current_time}")

log_recovery(log_file, service_name):
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f
")L:-31
with open(log_file, "a") as file:
file.write(f"{GREEN}{service_name} - Service recovered at {
current_time}{ENDC}\n")
print(f"{service_name} - Service recovered. Logged to {log_file}

at {current_timel}")

establish_ssh_connection(server_ip, username, password):

ssh_client = paramiko.SSHClient ()
ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh_client.connect(server_ip, username=username, password=password)

return ssh_client

monitor_mysql_service(ssh_client=None):

try:

125

179

180

181

182

183

184

185

186

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

mysql_service_available = check_mysql_service(mysql_log_file,

ssh_client)
if not mysql_service_available:
log_failure(mysql_log_file, "MySQL")
else:
log_recovery(mysql_log_file, "MySQL")
except Exception as e:

print(f"Erro ao monitorar o servi o MySQL: {el}")

def monitor_apache_service(ssh_client=None):

try:

apache_service_available = check_apache_service(apache_log_file,

ssh_client)
if not apache_service_available:
log_failure(apache_log_file, "Apache")
else:
log_recovery(apache_log_file, "Apache")
except Exception as e:

print(f"Erro ao monitorar o servi o Apache: {el}")

def monitor_php_service(ssh_client=None):
try:
php_service_available = check_php_service(php_log_file,
ssh_client)
if not php_service_available:
log_failure(php_log_file, "PHP")
else:
log_recovery(php_log_file, "PHP")
except Exception as e:

print(f"Erro ao monitorar o servi o PHP: {el}")

def monitor_hardware():
while True:
try:
check_hardware (hardware_log_file)
except Exception as e:

print(f"Erro ao monitorar hardware: {e}")

126

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

time.sleep(30)

def monitor_os():
while True:
try:
check_os(os_log_file)
except Exception as e:

print(f"Erro ao monitorar sistema operacional: {e}")

def system_status():
apache_reachable = check_ping(apache_server_ip, "Apache")
php_reachable = check_ping(php_server_ip, "PHP")
mysqgl_reachable = check_ping(mysqgl_server_ip, "MySQL")
hardware_reachable = check_ping(hardware_server_ip, "Hardware")

os_reachable = check_ping(os_server_ip, "0S")

if apache_reachable and php_reachable and mysqgl_reachable and
hardware_reachable and os_reachable:
apache_ssh_client = establish_ssh_connection(apache_server_ip,
ssh_username, ssh_password)
php_ssh_client = establish_ssh_connection(php_server_ip,
ssh_username, ssh_password)
mysql_ssh_client = establish_ssh_connection(mysql_server_ip,

ssh_username, ssh_password)

apache_service_available = check_apache_service(apache_log_file,
apache_ssh_client)

php_service_available = check_php_service(php_log_file,
php_ssh_client)

mysql_service_available = check_mysqgl_service(mysql_log_file,

mysqgl_ssh_client)

apache_ssh_client.close ()
php_ssh_client.close ()

mysgl_ssh_client.close()

127

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

if apache_service_available and php_service_available
mysql_service_available:
return "System - UP"
else:
return "System - Down"”
else:

return "System - Down"”

def main():

system_log_file = "system_log.txt"

while True:
try:

status = system_status ()

and

current_time = datetime.datetime.now().strftime("%Y-%m-%d %H

(M %S %t Y[-3]
with open(system_log_file, "a") as file:
file.write(f"{current_time} - {status}\n")
print(f"System Status: {status}. Logged to {
system_log_file} at {current_time}")
except Exception as e:

print(f"Erro: {el}")

Pausa por 05 segundos antes de realizar a pr xima
verifica o
time.sleep(5)

n

if __name__ == _main_

",

main ()

Cédigo Fonte 10 — Cédigo Python para monitorar e salvar status do sistema - roda a cada 5seg

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

128

APENDICE G - SCRIPT PARA ANALISAR DADOS DE LOG E MOSTRAR

METRICAS DE INTERESSE

O script Python processa um arquivo de log do sistema para calcular
m tricas de disponibilidade, como Tempo M dio at a Falha (MTTF),

Tempo M dio para Reparo (MTTR), e outras estat sticas relacionadas.

Ele 1 0o arquivo de log, identifica per odos de funcionamento (UP) e
per odos de falha (Down),

calcula as m tricas mencionadas e gera um arquivo de sa da com essas
informa es. Al m disso,

0 script realiza an lises estat sticas adicionais, como o c¢c lculo de
intervalos de confian a e outras m tricas de disponibilidade.

As m tricas calculadas s o detalhadas e armazenadas em um arquivo de

sa da para refer ncia posterior.

import sys
import math

from datetime import datetime
fator_aceleracao = int(1000)
def processar_logs(caminho_entrada):
with open(caminho_entrada, 'r') as arquivo:

linhas = arquivo.readlines()

grupos_up = []

1]

grupo_atual = {'status': None, 'inicio': None, 'fim': None}

grupos_down

total_mttf @ # Adicionado para calcular o total de MTTF

total_mttr @ # Adicionado para calcular o total de MTTR
for i in range(len(linhas) - 1):
linha_atual = linhas[i]

linha_seguinte = linhas[i + 1]

129

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

partes_atual = linha_atual.split(' - ')

partes_seguinte = linha_seguinte.split(' - ')

if len(partes_atual) < 3 or len(partes_seguinte) < 3:

continue

timestamp_atual_str, status_atual = partes_atual[@], partes_atual
[-1].strip()
timestamp_seguinte_str, status_seguinte = partes_seguintel[0Q],

partes_seguinte[-1].strip()

timestamp_atual = datetime.strptime(timestamp_atual_str, '%Y-%m-%
d %H:%M:%S:%f")
timestamp_seguinte = datetime.strptime(timestamp_seguinte_str, '%

Y-%m-%d %H:%M:%S:%f")

if grupo_atual['status'] is None:
grupo_atual['status'] = status_atual

grupo_atual['inicio'] = timestamp_atual

if status_atual != status_seguinte:

grupo_atual['fim'] = timestamp_seguinte

if grupo_atual['status'] == "'UP':
grupos_up.append({'inicio': grupo_atual['inicio'], 'fim':
grupo_atuall['fim'1})
total_mttf += (grupo_atuall['fim'] - grupo_atual['inicio'
1).total_seconds ()
elif grupo_atual['status']l == 'Down':
grupos_down . append({'inicio': grupo_atual['inicio'], 'fim
'": grupo_atuall['fim'1]})
total_mttr += (grupo_atuall['fim'] - grupo_atual['inicio'

1) .total_seconds ()

grupo_atual = {'status': status_seguinte, 'inicio':

timestamp_seguinte, 'fim': None}

130

61 grupo_atual['fim'] = timestamp_seguinte
62 if grupo_atual['status'] == 'UP':
63 grupos_up.append({'inicio': grupo_atual['inicio'], 'fim':

grupo_atuall['fim']})

64 total_mttf += (grupo_atuall['fim'] - grupo_atual['inicio']).
total_seconds() # Adicionado para calcular MTTF

65 elif grupo_atual['status'] == 'Down':

66 grupos_down.append({'inicio': grupo_atual['inicio'], 'fim':
grupo_atuall['fim"']})

67 total_mttr += (grupo_atuall['fim'] - grupo_atual['inicio']).
total_seconds() # Adicionado para calcular MTTR

68

69 return grupos_up, grupos_down, total_mttf, total_mttr

70

71 def imprimir_resultados(grupos_up, grupos_down, total_mttf, total_mttr):

72 with open(caminho_saida, "w") as arquivo_saida:

73 for i, grupo in enumerate(grupos_up, start=1):

74 if i <= len(grupos_down):

75 linha_up = f"Sistema UP - In cio: {grupo['inicio'l}, Fim

{grupol['fim"']1}, TTF: { (grupo['fim'] - grupol['inicio
']).total_seconds():.3f}s"
76 linha_down = f"Sistema Down - In cio: {grupos_down[i
-11["inicio ']}, Fim: {grupos_down[i-1]J['fim"']1}, TTR: {
(grupos_down[i-1]J['fim'] - grupos_down[i-1]['inicio

']).total_seconds():.3f}s"”

77 print(linha_up)

78 print(linha_down)

79 arquivo_saida.write(linha_up + "\n")

80 arquivo_saida.write(linha_down + "\n")

81 else:

82 linha_up = f"Sistema UP - In cio: {grupol['inicio']}, Fim

{grupo['fim"'1}, TTF: { (grupo['fim'] - grupo['inicio
']).total_seconds():.3f}s"”

83 print(linha_up)

84 arquivo_saida.write(linha_up + "\n")

85

86 # Adicionar a quantidade de UP e Down

87 gtde_up = f"\nTotal repairs (System UP): {len(grupos_up)}”

88 gtde_down = f"Total failures (System Down): {len(grupos_down)}"

131

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

print(qtde_up)
print(gtde_down)
arquivo_saida.write(gtde_up + "\n")

arquivo_saida.write(qtde_down + "\n")

Adicionar o total de MTTF e MTTR

total_mttf_str = f"\nTTF(s) [*fator aceleracao]: {total_mttf:.3f}

n

total_mttr_str f"TTR(s): {total_mttr:.3f}"
mttf=(Ctotal_mttf/3600)*fator_aceleracao

mttr=total_mttr/3600

ttf_str=f"TTF(h): {mttf:.6f3}"
ttr_str=f"TTR(h): {mttr:.6f}"

MTTF=f"\nMTTF (h): {mttf / len(grupos_up):.10f}"

MTTR=f"MTTR(h): {mttr / len(grupos_down):.10f}"

A=f"\nA: {mttf / (mttf + mttr):.10f}"

U=f"U: {1-(mttf / (mttf + mttr)):.10f}"

Num9=f"Number of 9's: {-math.log(1-(mttf / (mttf + mttr))) / math
.log(10):.10f}"

Uptime=f"Uptime: {8760-(1-(mttf / (mttf + mttr)))=*8760:.10f}"

Downtime=f"Downtime: {(1-(mttf / (mttf + mttr)))*8760:.10f3}"

HAHHHHAHH S HHAHAHAHFHH S HH A RS AR SR B S HH SRS H SRR S HH

alfa=0.05 # n vel de confian a 95%

HHHAHHAAHH AR HHARHHASHHASH AR HHASHHASH AR S H AR

nivelConfianca=f"N vel de confian a: {alfa}"”

RO=f"RO: {(mttr/mttf):.10f}"

GrauLiberdadeNumeradorF=f"Distribui ao F = GL Numerador: {len(
grupos_up)}"

GrauLiberdadeDenominadorF=f"Distribui ao F = GL Denominador: {

len(grupos_down)}”

valorCritico1=0.7992 #GL ANALISADO
valorCritico2=1.251 #GL ANALISADO
vi=f"Valor Cr tico Inferior: {valorCriticol}"”
v2=f"Valor Cr tico Superior: {valorCritico2}"”

HAHHHHHHHHHAHHHHH BB A A A S HHHHH B R A S HHHHHHH

132

124

125

126

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

R1I=f"R_1: {(mttr/mttf)/valorCritico2:.10f}"
Ru=f"R_u: {(mttr/mttf)/valorCriticol:.10f}"

intervaloConfiancalInferior=f"Intervalo inferior:

Y/valorCriticol):.10f}"

intervaloConfiancaSuperior=f"Intervalo Superior:

Y/valorCritico2):.10f}"

print(total_mttf_str)
print(total_mttr_str)
print(ttf_str)

print(ttr_str)

print (MTTF)

print (MTTR)

print("\nPar metros distribui o")
print(GrauLiberdadeNumeradorF)
print(GrauLiberdadeDenominadorF)
print(nivelConfianca)

print(vl)

print(v2)

print (RO)

print (R1)

print (Ru)

print("\nIntervalo de confian a 95%")
print(intervaloConfiancalnferior)
print(intervaloConfiancaSuperior)
print (A)

print (U)

print (Num9)

print(Uptime)

print (Downtime)

print(f”"\nDados salvos em {caminho_saida}\n")

arquivo_saida.write(total_mttf_str + "\n")
arquivo_saida.write(total_mttr_str + "\n")
arquivo_saida.write(ttf_str + "\n")
arquivo_saida.write(ttr_str + "\n")
arquivo_saida.write(MTTF + "\n")

arquivo_saida.write(MTTR + "\n")

arquivo_saida.write("\n"+"Par metros distribui

{1/(1+(mttr/mttf

{1/(1+(mttr/mttf

on+ Il\nll)

133

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

arquivo_saida.write(GraulLiberdadeNumeradorF + "\n")
arquivo_saida.write(GrauLiberdadeDenominadorF + "\n")
arquivo_saida.write(nivelConfianca + "\n")
arquivo_saida.write(vl + "\n")

arquivo_saida.write(v2 + "\n")

arquivo_saida.write(RO + "\n")

arquivo_saida.write(R1 + "\n")

arquivo_saida.write(Ru + "\n")
arquivo_saida.write(”"\n"+"Intervalo de confian a 95%"+ "\n")
arquivo_saida.write(intervaloConfiancalInferior + "\n")
arquivo_saida.write(intervaloConfiancaSuperior + "\n")
arquivo_saida.write(A + "\n")

arquivo_saida.write(U + "\n")

arquivo_saida.write(Num9 + "\n")
arquivo_saida.write(Uptime + "\n")
arquivo_saida.write(Downtime + "\n")

n

__hame__ == _main_

",

caminho_entrada = r"”"D:\\Users\\Gervasio Teixeiral\Downloads\\

system_log. txt"

caminho_saida = r”"D:\\Users\\Gervasio Teixeira\\Downloads\\
System_MTTF_MTTR. txt"
grupos_up, grupos_down, total_mttf, total_mttr = processar_logs(

caminho_entrada)

imprimir_resultados (grupos_up, grupos_down, total_mttf, total_mttr)

Cédigo Fonte 11 — Cédigo Python para analisar arquivo de LOG e mostrar métricas de interesse

	Folha de rosto
	
	Agradecimentos
	Resumo
	Abstract
	Lista de Figuras
	Listing
	Lista de quadros
	Lista de tabelas
	Lista de símbolos
	Sumário
	Introdução
	Motivação e Justificativa
	Objetivos
	Trabalhos Relacionados
	Estrutura da Dissertação

	Fundamentação Teórica
	Learning Management System – LMS
	Pilha LAMP
	Virtualização
	Escalonamento Automático
	Dependabilidade
	Avaliação de Desempenho de Sistemas
	Modelos para Análise de Desempenho e Disponibilidade
	Diagramas de Bloco de Confiabilidade - RBD
	Cadeias de Markov de Tempo Contínuo - CTMC
	Redes de Petri Estocásticas - SPN

	Análise de Sensibilidade
	Injeção de Falha

	Metodologia e arquitetura
	Metodologia
	Arquitetura Básica
	Arquitetura Baseada em Nuvem Pública

	Modelos propostos
	Arquitetura Básica
	Modelo Básico em RBD
	Modelo Básico Virtualizado em CTMC

	Arquitetura Redundante
	Arquitetura Virtualizada
	Modelo Virtualizado em RBD
	Modelo Virtualizado em SPN com redundância

	Modelo de Desempenho

	Validação do Modelo Arquitetura Básica
	Ambiente Experimental e Injeção de Falhas
	Análise dos Dados Experimentais
	Comparação e Conclusão da Validação

	Estudos de Caso
	Avaliação do Impacto dos Componentes da Arquitetura Básica sobre a Disponibilidade
	Avaliação da Arquitetura Redundante
	Avaliação da Arquitetura Virtualizada
	Análise de Desempenho em Nuvem Pública
	Análise de Utilização por Número de Máquinas Virtuais
	Análise de Utilização sob Carga Variável de Usuários Simultâneos
	Análise de Desempenho com Carga Estimada de Usuários por Instância

	Conclusão e Trabalhos Futuros
	Principais Contribuições
	Limitações e Dificuldades
	Trabalhos Futuros

	Referências
	Script para injeção de falha e reparo no Hardware
	Script para injeção de falha e reparo no Sistema Operacional
	Script para injeção de falha e reparo no Apache
	Script para injeção de falha e reparo no MySQL
	Script para injeção de falha e reparo no PHP
	Script para monitorar o sistema e salvar o estado "UP"ou "Down"em arquivo de LOG
	Script para analisar dados de LOG e mostrar métricas de interesse

