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RESUMO

A crescente dependência de plataformas de e-learning, intensificada por eventos globais (a
exemplo da Covid-19) que as transformaram em infraestruturas educacionais de alta critici-
dade operacional, exige arquiteturas resilientes, com elevada disponibilidade e desempenho
compatível com as demandas institucionais. O Moodle, amplamente adotado como solução de
código aberto, carece de análises quantitativas que revelem vulnerabilidades em suas arquitetu-
ras de implantação e permitam propor melhorias fundamentadas em evidências analíticas. Este
trabalho busca preencher essa lacuna ao propor e validar um framework híbrido e hierárquico
de modelagem que combina modelos combinatórios e de espaço de estado para avaliar, de
forma integrada, a disponibilidade e o desempenho do ambiente Moodle sobre a pilha LAMP
(Linux, Apache, MySQL, PHP). A metodologia desenvolvida integra Diagramas de Blocos de
Confiabilidade (RBD) para representar dependências estruturais, Cadeias de Markov de Tempo
Contínuo (CTMC) para capturar a dinâmica de falhas e reparos, e Redes de Petri Estocásticas
(SPN) para modelar a concorrência e as políticas de escalonamento automático em ambientes
de nuvem. A validação dos modelos, conduzida por meio de injeção controlada de falhas em
componentes críticos e análise estatística com intervalo de confiança de 95%, demonstrou
que: (i) a arquitetura básica em hardware físico apresenta disponibilidade de 99,75%, corres-
pondendo a 21,89 horas de inatividade anual; (ii) a introdução de redundância física eleva a
disponibilidade para 99,9994%, reduzindo o tempo de inatividade em 99,75%; (iii) a virtua-
lização, embora reduza a disponibilidade isoladamente (38,92 horas de inatividade), quando
associada à redundância no nível do host, atinge 99,86% de disponibilidade, representando
uma redução de 44,82% no tempo de inatividade em relação ao cenário base; e (iv) em nuvem
pública, os modelos SPN revelam que políticas de escalonamento reativo podem levar à sa-
turação e à degradação da vazão sob carga elevada. Conclui-se que arquiteturas virtualizadas
com redundância e dimensionamento elástico em nuvem são estratégias eficazes para assegu-
rar alta disponibilidade (>99,8%) e desempenho consistente. As principais contribuições deste
trabalho incluem um framework analítico validado para planejamento de capacidade, diretrizes
quantitativas para aprimoramento arquitetural e uma metodologia experimental reprodutível
para avaliação de plataformas de aprendizagem.

Palavras-chaves: Disponibilidade. RBD. CTMC. SPN. LAMP. Moodle.



ABSTRACT

The growing dependence on e-learning platforms, intensified by global events (such as COVID-
19), which have become highly operationally critical educational infrastructures, requires re-
silient architectures with high availability and performance compatible with institutional de-
mands. Moodle, widely adopted as an open-source solution, supports quantitative analyses that
reveal vulnerabilities in its deployment architectures and enable the proposal of improvements
based on analytical evidence. This work seeks to fill this gap by proposing and validating a
hybrid, hierarchical modeling framework that combines combinatorial and state-space models
to comprehensively assess the availability and performance of the Moodle environment on the
LAMP stack (Linux, Apache, MySQL, PHP). The developed methodology integrates Relia-
bility Block Diagrams (RBDs) to represent structural dependencies, Continuous-Time Markov
Chains (CTMCs) to capture failure and repair dynamics, and Stochastic Petri Nets (SPNs)
to model concurrency and autoscaling policies in cloud environments. Model validation, con-
ducted through controlled fault injection in critical components and statistical analysis with a
95% confidence interval, demonstrated that: (i) the basic architecture on physical hardware
presents 99.75% availability, corresponding to 21.89 hours of annual downtime; (ii) the in-
troduction of physical redundancy increases availability to 99.9994%, reducing downtime by
99.75%; (iii) virtualization, although reducing availability exclusively (38.92 hours of down-
time), when associated with host-level redundancy, achieves 99.86% availability, representing
a 44.82% reduction in downtime compared to the baseline scenario; and (iv) in the public
cloud, SPN models reveal that reactive scheduling policies lead to saturation and throughput
manipulation under high load. We conclude that virtualized architectures with redundancy and
elastic scaling in the cloud are effective strategies for ensuring high availability (>99.8%) and
consistent performance. The main contributions of this work include a validated analytical
framework for capacity planning, quantitative guidelines for architectural improvement, and a
reproducible experimental methodology for evaluating learning platforms.

Keywords: Availability. RBD. CTMC. SPN. LAMP. Moodle.
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1 INTRODUÇÃO

À medida que as tecnologias progrediram e a necessidade por métodos flexíveis e aces-
síveis de ensino aumentou, os Learning Management System (LMS) tornaram-se elementos
essenciais nos ambientes educacionais. Uma das principais soluções nesta área é o Modular
Object-Oriented Dynamic Learning Environment (Moodle), um sistema de gerenciamento de
aprendizagem de código aberto amplamente utilizado em instituições educacionais devido à
sua habilidade de oferecer recursos robustos para desenvolvimento e entrega de cursos, suporte
multilíngue e opções de personalização (AL-AJLAN; ZEDAN, 2008). Hoje, é importante manter
essas plataformas disponíveis para garantir uma experiência educacional plenamente eficaz. A
resiliência de um LMS como o Moodle se refere à capacidade do sistema de resistir às falhas,
mantendo suas funcionalidades principais e recuperando-se rapidamente de interrupções além
de apresentar desempenho que atenda às necessidades dos seus utilizadores

Esta dissertação propõe, através do uso modelos combinatórios como Diagramas de Blocos
de Confiabilidade – RBD –, Cadeias de Markov de Tempo Contínuo – Continuous-Time Markov
Chain (CTMC) – e Redes de Petri Estocásticas – Stochastic Petri Net (SPN) – avaliar o
desempenho e a disponibilidade da instalação do Moodle dentro de uma infraestrutura Linux,
Apache, MySQL, PHP/Perl/Python (LAMP) bem como estudar cenários alternativos que
melhorem o seu desempenho. A união desses modelos permite uma avaliação detalhada e
abrangente do sistema, levando em consideração as interdependências entre seus componentes,
os efeitos de suas falhas/reparos e aqueles menos impactantes no resultado final. A análise
sugerida tem como objetivo aumentar a disponibilidade em plataformas LMS, por meio da
avaliação de métricas relacionadas ao desempenho e à disponibilidade do sistema, tais como
taxa de utilização dos recursos e tempo médio entre falhas e reparos.

1.1 MOTIVAÇÃO E JUSTIFICATIVA

A constante evolução tecnológica, impulsionada por eventos globais como a pandemia de
COVID-19, alçou os Ambientes de Gestão de Aprendizagem (LMS) de ferramentas auxiliares
a sistemas essenciais à operação e continuidade das atividades educacionais (TESAR, 2020).
Esses sistemas se tornaram essenciais para a criação, gestão e distribuição de conteúdo digital,
desempenhando papel central na interação entre docentes, discentes e o conteúdo educacional.
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Dentre os diversos LMS disponíveis, o Moodle destaca-se como a solução de código aberto
mais amplamente adotada (ALTINPULLUK; KESIM, 2021). Desenvolvido em PHP no início dos
anos 2000, o Moodle possui instalação relativamente simples, sendo tradicionalmente implan-
tado sobre a pilha LAMP (Linux, Apache, MySQL, PHP) (COMMUNITY, 2024), o que contribui
para sua popularidade em instituições de ensino de diferentes portes e regiões (AL-AJLAN; ZE-

DAN, 2008).
A confiabilidade, a disponibilidade e a resiliência desses ambientes digitais constituem requi-

sitos fundamentais para garantir uma experiência de aprendizado uniforme e de alta qualidade.
No contexto atual, a resiliência não é apenas ao tempo de atividade, mas envolve também a
habilidade do sistema para resistir a interrupções, manter funções críticas em operação e se
recuperar prontamente de falhas. Uma análise minuciosa da disponibilidade é necessária para
aprimorar a resiliência das plataformas LMS, garantindo que as atividades acadêmicas sofram
o mínimo de interrupção.

A análise de disponibilidade não se limita simplesmente à quantificação do tempo em que o
sistema está operacional; envolve uma compreensão detalhada de como o sistema responde a
diferentes exigências (MACIEL, 2023b). Nesse contexto, os modelos de estado, que descrevem
o comportamento do sistema por meio de estados e transições, são essenciais. Eles oferecem
uma base sólida para a avaliação quantitativa da disponibilidade, permitindo a identificação
de áreas críticas e a adoção de estratégias de mitigação de risco, o que, por sua vez, aprimora
a resiliência do sistema.

A transição do LMS para um ponto central das atividades acadêmicas elevou o atributo
de desempenho a um requisito indispensável. Atrasos no tempo de resposta ou uma latência
elevada comprometem diretamente a experiência de uso, sendo agravados pela variabilidade
da carga de trabalho: operações intensivas no banco de dados, mesmo com poucos usuários,
podem impactar negativamente o sistema mais do que acessos simultâneos a conteúdos está-
ticos. Essa imprevisibilidade operacional torna a identificação de gargalos e falhas um desafio
constante.

Adicionalmente, em infraestruturas de nuvem, a escalabilidade constitui um fator decisivo
para garantir níveis adequados de desempenho e disponibilidade. A configuração de meca-
nismos de auto-scaling requer um equilíbrio cuidadoso entre custo e desempenho. Políticas
reativas podem ser ineficazes sob picos de carga inesperados, enquanto abordagens proativas
incorrem em risco de superprovisionamento. Como testar esses comportamentos diretamente
em ambientes de produção pode acarretar interrupções indesejadas, a modelagem estocástica
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surge como alternativa viável para análise preditiva.
A modelagem formal é, portanto, um instrumento poderoso para essa análise. Modelos

de espaço de estado, como as Cadeias de Markov de Tempo Contínuo (CTMC) e Redes de
Petri Estocásticas (SPN), permitem representar transições entre estados com base em taxas
de falha e de reparo, incorporando elementos de concorrência, sincronização e comportamento
probabilístico. Essas abordagens complementam os Diagramas de Blocos de Confiabilidade
(RBD), que, embora eficazes na representação da estrutura lógica do sistema, são limitados
quanto à modelagem de dinâmicas temporais e de dependência entre recursos.

O uso de simulação pode ser uma alternativa à modelagem formal, contudo, enquanto
técnicas de simulação exploram o comportamento do sistema por meio de múltiplas execuções
experimentais para fornecer resultados com aproximação estatística, a abordagem via mode-
lagem formal busca a obtenção de soluções analíticas. Para modelos cujo espaço de estados é
computacionalmente tratável, essa metodologia permite a obtenção de métricas de desempe-
nho exatas e uma análise de todos os “comportamentos” possíveis. Essa característica oferece
uma compreensão abrangente do sistema, eliminando a incerteza estatística inerente à amos-
tragem de cenários simulados e permitindo focar a análise parâmetros fundamentais, como as
taxas de falha e reparo, por exemplo.

A integração de RBD, CTMC e SPN constitui uma forma robusta para avaliar tanto a
disponibilidade quanto o desempenho do Moodle operando sobre uma infraestrutura LAMP.
Essa abordagem multifacetada permite capturar a complexidade do sistema sob diversas pers-
pectivas, identificando gargalos, interdependências e efeitos de propagação de falhas.

Dessa forma, esta dissertação justifica-se por propor um framework analítico que visa: (i)
identificar os componentes críticos para a disponibilidade e o desempenho da plataforma Mo-
odle; (ii) avaliar quantitativamente o impacto de alterações arquiteturais, como a introdução
de redundância ou a variação de tipos de instância de nuvem; e (iii) oferecer suporte analítico
à tomada de decisão, com vistas à otimização da alocação de recursos e ao equilíbrio entre
desempenho e disponibilidade.

A contribuição científica reside, portanto, na construção de um modelo estocástico abran-
gente e integrado que reflita o comportamento de um LMS complexo, fornecendo subsídios
concretos para o planejamento proativo de capacidade e para o aprimoramento da resiliência
e eficiência dos ambientes de aprendizagem digitais.
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1.2 OBJETIVOS

O objetivo central deste trabalho é analisar e avaliar quantitativamente o desempenho e a
disponibilidade de um ambiente virtual de gestão de aprendizagem, especificamente o Moodle,
a partir do desenvolvimento e aplicação de uma abordagem de modelagem híbrida e hierárquica
baseada em RBD, CTMC e SPN. Essa abordagem permite identificar parâmetros sensíveis,
analisar cenários críticos e propor melhorias estruturais que contribuam para a aumento da
eficiência e da disponibilidade do sistema.

Para alcançar o objetivo geral, os seguintes objetivos específicos foram estabelecidos:

1. Desenvolver e validar um modelo formal hierárquico que integre múltiplos formalismos:

• RBD: para quantificar métricas de disponibilidade da arquitetura, considerando as
dependências lógicas entre os componentes.

• CTMC e SPN: para capturar o comportamento dinâmico do sistema, incluindo os
processos de falha e reparo, a chegada de requisições de utilizadores e a utilização
de recursos.

2. Estimar um conjunto de métricas de interesse a partir dos modelos, incluindo:

• Métricas de Disponibilidade: Disponibilidade, Indisponibilidade, Número de nove,
Tempo Médio de Falha (Mean Time to Failure (MTTF)), Tempo Médio de Reparo
(Mean Time to Repair (MTTR)), Downtime e Uptime.

• Métricas de Desempenho: Vazão (Throughput), probabilidade de descarte, taxa de
descarte e utilização do sistema.

3. Identificar os componentes e parâmetros mais impactantes para o desempenho e dispo-
nibilidade do sistema, por meio de análises de sensibilidade.

4. Quantificar métricas de desempenho e disponibilidade do sistema, por meio da modela-
gem e avaliação de cenários de aprimoramento da plataforma.

5. Apresentar recomendações e estratégias baseados nos resultados obtidos a fim de for-
necer suporte à decisão para o planejamento de ambientes de aprendizagem digitais.
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1.3 TRABALHOS RELACIONADOS

Para situar esta pesquisa no contexto científico e fundamentar sua contribuição, esta seção
apresenta uma revisão dos trabalhos que abordam os pilares centrais da pesquisa. A análise
foca em estudos sobre a avaliação de desempenho e disponibilidade de componentes da pilha
LAMP, a implementação de sistemas de gestão de aprendizagem em ambientes de nuvem e a
aplicação de modelagem estocástica para análise de desempenho e escalonamento automático.

A literatura inicial focou no desempenho de componentes individuais da pilha LAMP. Jogi
e Sinha (2016) realizaram estudo sobre o desempenho do banco de dados, incluindo o MySQL,
em cenários de alta carga de gravação. Kurien, Mathew e Mana (2022) estudaram a interação
do PHP com o MySQL em um Sistema de Gerenciamento de Ativos, com foco na segurança
e integridade dos dados. Koch e Hao (2021) apresentaram uma análise do desempenho de
componentes individuais em uma pilha LAMP, com ênfase particular no Servidor Web Apache
em ambientes de nuvem (AWS).

Paralelamente, outros estudos avaliaram LMS de uma perspectiva mais sistêmica. Wan-
napiroon, Kaewrattanapat e Premsmith (2019), por sua vez, desenvolveram um Sistema de
Gerenciamento de Aprendizagem em Nuvem (Cloud Learning Management System (CLMS)),
avaliando eficiência e satisfação do usuário, mas sem incluir testes relacionados à disponibili-
dade.

Mais recentemente, pesquisas começaram a endereçar a avaliação de desempenho e dispo-
nibilidade de Ambientes Virtuais de Aprendizagem (AVAs), como o Moodle, em infraestruturas
de nuvem. Lima et al. (2021a) e Lima et al. (2021b) realizaram uma avaliação focada no de-
sempenho e no consumo de energia do ambiente Moodle em nuvens privadas. Avançando
nesta linha, Gonçalves et al. (2022) propuseram modelos estocásticos para o planejamento de
AVAs, comparando o impacto de arquiteturas baseadas em contêineres e máquinas virtuais.
Estes trabalhos confirmam a relevância de avaliar o Moodle, mas focam primariamente em
desempenho e consumo de energia, ou no planejamento de infraestrutura, sem uma análise
aprofundada da disponibilidade validada por falhas nos componentes base.

Embora os trabalhos de Lima et al. (2021a), Lima et al. (2021b) e Gonçalves et al. (2022)
abordem o Moodle, o presente trabalho se diferencia e estende a literatura ao focar especifi-
camente na avaliação da plataforma sobre a pilha LAMP tradicional. A contribuição central é
uma metodologia híbrida e hierárquica (RBD, CTMC e SPN) para uma análise detalhada da
disponibilidade do Moodle. Crucialmente, esta modelagem é validada experimentalmente atra-
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vés da injeção de falhas e reparos nos componentes críticos da pilha (Hardware, SO, Apache,
MySQL e PHP), provando a precisão e aplicabilidade dos modelos propostos de uma forma
não explorada pelos estudos anteriores.

A aplicação de modelagem estocástica para avaliar a disponibilidade de serviços em nu-
vem é uma área de pesquisa ativa e recente, o que reforça a relevância desta dissertação.
Metodologias similares têm sido aplicadas a outros serviços de nuvem análogos ao Moodle.
Por exemplo, uma série de estudos recentes modelou a disponibilidade e o desempenho de
servidores de arquivos, como o Nextcloud, em nuvens privadas e em Apache Cloudstack, uti-
lizando SPN. Em linhas semelhantes, Borges et al. (2025) avaliaram um sistema de vigilância
por vídeo com armazenamento distribuído e Silva et al. (2024) analisaram a disponibilidade
de uma plataforma Mobile Backend as a Service (MBaaS), ambos utilizando modelagem de
disponibilidade e análise de sensibilidade. Callou e Vieira (2024) também fornecem uma análise
geral da disponibilidade e desempenho de serviços em nuvem.

No contexto específico dos sistemas de e-learning e escalonamento automático, trabalhos
pioneiros como o Casale e Cremonesi (2006) já abordavam a modelação e análise de desem-
penho de um sistema de e-learning em larga escala, embora em arquiteturas físicas. O estudo
seminal de Fe et al. (2017) propôs um modelo SPN para auxiliar no planeamento da nuvem
com escalonamento automático, avaliando métricas de desempenho e custo.

Para além da modelação reativa, a literatura explora outras estratégias de escalonamento.
Abordagens proativas ou preditivas tentam antecipar futuras necessidades de recursos com base
em dados históricos, utilizando técnicas como séries temporais ou machine learning como em
Padala, Hou e Shin (2009) e Gandhi et al. (2014). Embora potencialmente mais eficientes
na gestão de picos de carga previsíveis, estes métodos acarretam uma maior complexidade de
implementação e o risco de sobreprovisionamento se as previsões forem imprecisas. Investiga-
ções mais recentes também combinam modelos de desempenho com heurísticas de otimização,
como o GRASP, para automatizar a busca por configurações ótimas que equilibrem custo e
desempenho, apontando para uma futura automação do planeamento de capacidade a exem-
plo de Fé I. et al. (2022). Em um contexto correlato de gerenciamento de recursos, Feitosa
et al. (2025) realizaram uma avaliação de desempenho abrangente de estratégias de migração
de contêineres, um aspecto vital da elasticidade em ambientes modernos. A nossa escolha de
focar no escalonamento reativo é justificada pela sua prevalência nas configurações padrão
das plataformas de nuvem comerciais e pela sua relevância direta para os administradores de
sistemas que gerem estes ambientes no dia-a-dia.
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A Tabela 1 apresenta uma comparação entre trabalhos relacionados e a presente dissertação
em termos de principais contribuições.

A abordagem proposta nesta dissertação, portanto, fornece uma análise quantitativa apro-
fundada de métricas de disponibilidade (MTTF, MTTR) e desempenho (utilização, probabili-
dade de descarte, taxa de descarte e vazão efetiva), focada especificamente na implantação do
Moodle sobre a pilha LAMP. Enquanto outros estudos recentes analisaram o desempenho do
Moodle em nuvens privadas, a validação experimental por injeção de falhas nos componentes
específicos do LAMP (Hardware, SO, Apache, MySQL, PHP) preenche uma lacuna metodo-
lógica clara. Por fim, os resultados apresentados fornecem diretrizes práticas para gestores e
pesquisadores interessados em aprimorar a disponibilidade e o desempenho do Moodle, com
especial relevância para instituições educacionais que usam LMSs de alta disponibilidade para
garantir a continuidade de suas operações acadêmicas.

Tabela 1 – Tabela comparativa dos trabalhos relacionados
Autores Tipo de LMS * Desempenho Disponibilidade Redundância Análise de Sensibilidade Performabilidade Virtualização

(JOGI; SINHA, 2016) N/A (Bancos de Dados) N/A
(WANNAPIROON; KAEWRATTA-
NAPAT; PREMSMITH, 2019)

Cloud LMS Nuvem

(KURIEN; MATHEW; MANA,
2022)

N/A (Digital AMS) N/A

(KOCH; HAO, 2021) N/A (Pilha LAMP) Nuvem (AWS)
(CASALE; CREMONESI, 2006) N/A (E-learning) Local (Grid)
(FE et al., 2017) N/A (IaaS) Local e Nuvem (Auto-scaling)
(PADALA; HOU; SHIN, 2009) N/A (Recursos Virtuais) Local
(GANDHI et al., 2014) N/A (Nuvem) Nuvem (Provisioning)
(Fé I. et al., 2022) N/A (Nuvem) Nuvem Privada
(LIMA et al., 2021a; LIMA et al.,
2021b)

Moodle Nuvem Privada

(GONÇALVES et al., 2022) Moodle (AVA) Nuvem (VM/Contêiner)
(SILVA et al., 2023) N/A (Serv. Arquivos) Nuvem Privada
(CALLOU; VIEIRA, 2024) N/A (Genérico) Nuvem
(LEONARDO; BEZERRA; CALLOU,
2024)

N/A (Nextcloud) Nuvem Privada

(GOMES; CALLOU, 2024) N/A (Serv. Arquivos) Nuvem Privada
(SILVA et al., 2024) N/A (MBaaS) Nuvem
(LEONARDO; CALLOU, 2025) N/A (Nextcloud) Nuvem Privada
(BORGES et al., 2025) N/A (Vigilância) Nuvem (Distribuído)
(FEITOSA et al., 2025) N/A (Contêineres) Nuvem Privada
Nosso trabalho Moodle Local e Nuvem

*N/A = "Não Aplicável".

Fonte: Elaborada pelo autor (2025)

1.4 ESTRUTURA DA DISSERTAÇÃO

Esta dissertação está organizada em sete capítulos. Inicialmente, o primeiro capítulo apre-
senta uma visão geral introdutória sobre o tema estudado bem como a motivação e justificativa
para o trabalho, os objetivos pretendidos com o estudo, além de trabalhos relacionados.

Em seguida, no Capítulo 2 é apresentado a fundamentação teórica que dá suporte a este
estudo. Nesse capítulo é discutido a pilha LAMP, uma visão geral sobre o LMS Moodle,
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bem como conceitos indispensáveis sobre avaliação de desempenho de sistemas e formalismos
inerentes ao caso. Nessa seção se discute o conceito sobre injeção de falhas. Por fim, são
estudados conceitos importantes sobre virtualização e escalonamento automático.

O Capítulo 3 é dedicado à metodologia e à arquitetura propostas na dissertação. Nesta
parte do trabalho detalhamos como a arquitetura básica foi implementada bem como a me-
todologia de pesquisa necessária para sua validação.

O Capítulo 4 é dedicado aos modelos analíticos propostos com base na arquitetura estudada
no capítulo anterior. Aqui mostramos uma arquitetura básica de uma instalação Moodle em
máquina física como também arquiteturas derivadas para implementação em sistemas virtuali-
zados. Propomos também arquiteturas redundantes bem como de desempenho da plataforma.

No Capítulo 5, o foco se volta para a validação do modelo analítico da arquitetura básica.
É apresentado o processo de validação experimental, que busca confirmar se o modelo teórico
representa, com um grau de confiança estatístico, o comportamento do sistema real. Para tal,
uma implementação da arquitetura básica é submetida a um experimento de injeção de falhas,
onde dados sobre a disponibilidade são coletados e analisados. culminando na comparação do
resultado de disponibilidade estimado pelo modelo com o intervalo de confiança obtido a partir
dos dados experimentais. O objetivo deste capítulo é, portanto, estabelecer a credibilidade do
modelo base, assegurando que ele possa ser utilizado com confiança como um alicerce para
as análises comparativas e os estudos de caso que serão conduzidos no Capítulo 6.

O Capítulo 6 dedica-se à análise detalhada das arquiteturas desenvolvidas no Capítulo 4.
O escopo principal reside na avaliação de desempenho e na mensuração da disponibilidade do
sistema, utilizando métricas escolhidas para cada modelo. Concomitantemente, uma análise
de sensibilidade é conduzida para inferir os parâmetros mais determinantes sobre as métricas
supracitadas. Em seguida, por meio de uma série de experimentações, examina-se como altera-
ções nos parâmetros de entrada ou de saída do modelo podem influenciar cenários distintos e,
por conseguinte, orientar a seleção da instalação mais apropriada do Moodle. Nesse capítulo,
também, é realizado estudo de caso sobre instâncias virtuais.

Por fim, o Capítulo 7 apresenta a conclusão da trabalho, indicando as principais contribui-
ções para a sociedade, dificuldades encontradas bem como direções para futuras pesquisas.
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2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo apresenta os conceitos fundamentais necessários à compreensão deste traba-
lho. Inicialmente, é apresentada uma visão geral sobre os Sistemas de Gestão de Aprendizagem
— LMS. Em seguida, para melhor entender a configuração do LMS discutido nesta dissertação,
exploramos a Pilha LAMP. A continuação inclui um estudo sobre Avaliação de Desempenho
de Sistemas, com ênfase em dependabilidade por meio de modelos estocásticos associados
a modelos combinatórios e de espaço de estado. É igualmente crucial entender a análise de
sensibilidade paramétrica, assim como o procedimento de injeção de falhas em sistemas. De
igual modo é explorado conceitos cruciais sobre virtualização, escalonamento automático.

2.1 LEARNING MANAGEMENT SYSTEM – LMS

O Learning Management System (LMS), traduzido como Sistema de Gestão de Apren-
dizagem, é uma tecnologia baseada na web, plataforma ou software voltado para organizar,
gerenciar e avaliar processos de ensino. Essencialmente pensado para o e-learning1, este sis-
tema geralmente inclui duas partes principais: Um servidor responsável pelas funções centrais
e uma interface de usuário – User Interface (UI) – utilizada por instrutores, estudantes e
administradores.

Nos últimos anos, o setor educacional sofreu mudanças significativas devido ao avanço
acelerado da tecnologia. Uma das transformações mais evidentes foi a popularização dos LMS,
que surgiram como uma alternativa ao modelo tradicional de ensino em sala de aula. O
LMS oferece diversos recursos, incluindo salas virtuais, fóruns, avaliações online e ferramentas
colaborativas, que não só enriquecem a experiência de aprendizado, mas também facilitam a
interação entre estudantes e professores. Este movimento em direção ao aprendizado digital foi
motivado pela demanda por flexibilidade, acessibilidade e eficiência no contexto educacional
(LIAW; HUANG, 2013).

Embora os conceitos iniciais sobre LMS datem de 1924 (TEAM, 2024) e o desenvolvimento
do principal expoente, o Moodle 2, remonte a 2002 (COMMUNITY, 2024), um aumento subs-
tancial em sua utilização foi observado durante a pandemia da COVID-19, quando inúmeras
1 Forma de ensino e aprendizado que utiliza tecnologias digitais e recursos online para facilitar a aquisição

de conhecimentos e habilidades.
2 Disponível em https://moodle.org/
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instituições educacionais foram obrigadas a fazer uma rápida transição para o aprendizado
remoto.

O site Forbes Advisor (HAAN, 2024) realizou uma avaliação das principais opções de LMS,
considerando vários fatores, tais como facilidade de utilização, custo, capacidades de perso-
nalização e atendimento ao cliente. O Moodle destaca-se por sua interface intuitiva e uma
ampla gama de funcionalidades, incluindo aprendizado móvel, videoconferência, detecção de
plágio, apoio para cursos online abertos massivos e integrações. Sua natureza de código aberto
garante uma alta personalização, tornando-o adequado para empresas, escolas e universidades.

Moodle foi criado usando a estrutura de código aberto denominada LAMP, que é formada
por Linux (sistema operacional), Apache (servidor web), MySQL (banco de dados) e PHP
(linguagem de programação). Devido à portabilidade desses elementos e à adaptabilidade da
plataforma, ela oferece suporte a uma grande variedade de ambientes. Apesar de o Moodle
poder ser facilmente instalado em outras arquiteturas tecnológicas, a configuração LAMP
permanece como a escolha preferida pelos administradores do Moodle (Moodle Community,
2024).

As bases pedagógicas do sistema estão fundamentadas no construtivismo social que define
que a interação entre aluno e conteúdo é a principal responsável pelo conhecimento adquirido
pelo discente (MOODLE, 2020). A plataforma oferece suporte para cursos presenciais, mistos
e totalmente online, disponibilizando mais de 20 tipos de atividades, como fóruns, salas de
bate-papo, wikis, glossários, quizzes e tarefas (TRINDADE, 2020).

Dois módulos de questionário importantes são o survey e o feedback. O módulo survey
disponibiliza questionários com perguntas pré-definidas, como o COLLES (Constructivist On-

Line Learning Environment Survey), que aborda a qualidade do ambiente de aprendizado
online, e o ATTLS (Attitudes to Thinking and Learning Survey), que avalia atitudes em
relação ao pensamento crítico e ao ensino (TRINDADE, 2020). Em contrapartida, o módulo
feedback permite que os professores criem questionários personalizados para coletar opiniões
dos alunos (TRINDADE, 2020).

2.2 PILHA LAMP

Dentre os conjuntos de software frequentemente utilizados para servidores web, LAMP –
Acrônimo para Linux, Apache, MySQL, PHP – é uma implementação amplamente adotada
(AKATSU et al., 2020) e de fácil instalação. A combinação do Sistema Operacional Linux,
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do Servidor Web Apache, do banco de dados MySQL e da linguagem de programação PHP
(PRANAM, 2018) tornou-se uma escolha comum para diversos sites.

A seguir, apresentamos uma explicação sucinta de cada componente dessa pilha ampla-
mente empregada em sistemas web.

• Linux: Desenvolvido como um sistema operacional de código aberto nos anos 1990
por Linus Torvalds, o Linux surgiu a partir do Unix (SAILELLAH, 2023). Logo conquistou
popularidade e, hoje em dia, é implementado em diversas plataformas, desde desktops até
servidores. A razão principal do sucesso do Linux está na sua confiabilidade, segurança e
capacidade de escalonamento, permitindo personalizações que atendem às necessidades
específicas de indivíduos e organizações (NARCISO, 2023). O Linux funciona como a
camada inicial da pilha LAMP e oferece suporte aos outros componentes das camadas
superiores;

• Apache: O acesso a recursos na web depende do emprego de um software apto a atender
às requisições de um cliente, o qual é denominado servidor web. Atualmente, existem
várias opções disponíveis, como IIS, Nginx e lighttpd, etc. O Apache é um dos ser-
vidores web mais frequentemente utilizados. Este servidor oferece um amplo conjunto
de funcionalidades, ferramentas e uma extensa comunidade de usuários ativos, o que o
torna uma escolha frequente como principal servidor web (KOCH; HAO, 2021). Conhecido
também como servidor HTTP Apache, foi lançado em 1995, e rapidamente se destacou,
tornando-se a solução de servidor web mais utilizada já em 1996 (APACHE, 2024). De
acordo com uma pesquisa recente de (NETCRAFT, 2024), constatou-se que até fevereiro
de 2024, o Apache liderava o mercado juntamente com o Nginx.

Devido à sua natureza de código aberto e à colaboração comunitária, o Apache é geral-
mente visto como mais acessível e fácil de aprender em comparação a outros servidores
que demandam um maior esforço para aprendizado – por exemplo, NGINX (GIRVIN,
2025).

• MySQL: Reconhecido como um dos bancos de dados relacionais mais utilizados, MySQL
é celebrado por seu excelente desempenho, confiabilidade e facilidade de operação
(MySQL, 2024). Sua vasta aceitação deriva da sua compatibilidade com uma gama de
linguagens de programação populares, como PHP, Python, Java, C, entre outras. Fre-
quente na função de banco de dados web, o MySQL possui uma capacidade significativa
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de armazenamento, guardando desde dados individuais até inventários abrangentes de
itens acessíveis. Ele simplifica a automação da recuperação de dados e proporciona su-
porte eficiente na criação de aplicativos web em PHP (KURIEN; MATHEW; MANA, 2022).
Sendo o banco de dados open-source mais reconhecido, MySQL é frequentemente pre-
ferido para diversas aplicações web (MySQL, 2024).

• PHP: Acrônimo recursivo para PHP: Hypertext Preprocessor. Esta linguagem de script,
de código aberto, é largamente empregada, especialmente para o desenvolvimento web,
e pode ser integrada ao HTML (PHP, 2024). As páginas PHP podem conter instruções
HTML junto com código PHP, facilitando seu uso por iniciantes na programação. Além
disso, possui funcionalidades avançadas que a tornam ideal para projetos web mais
complexos, como o Moodle. De acordo com (PYPL, 2024), PHP é a sétima linguagem
de programação mais utilizada globalmente, destacando-se como uma das principais
opções para desenvolvedores na criação de aplicações web.

Figura 1 – Arquitetura da Pilha LAMP

Fonte: SYED (2022)

A pilha LAMP (Figura 1) funciona como um sistema unificado que oferece as capacidades
de um aplicativo web. O processo começa quando o cliente faz uma requisição, a qual é
atendida pelo servidor Apache. Este, por sua vez, determina se o arquivo solicitado é estático
ou dinâmico. Se o arquivo for dinâmico, o Apache encaminha a solicitação para o interpretador
de linguagem adequado, como o PHP. Nesta fase, o script pode se comunicar com o banco
de dados MySQL para buscar ou armazenar dados para uso futuro.
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O PHP, então, manipula os dados e retorna o conteúdo dinâmico em HTML para o servidor
Apache, que o renderiza no navegador do usuário. Dessa forma, o ciclo de requisição e resposta
é concluído.

Conforme ilustrado na Figura 2, o Moodle foi projetado para ser instalado em uma pilha
LAMP, que representa a configuração de instância mais básica disponível.

Figura 2 – Arquitetura Moodle

Fonte: BüCHNER (2022)

2.3 VIRTUALIZAÇÃO

A virtualização consiste no paradigma de separar o hardware do sistema operacional a
partir da criação de uma camada de abstração entre eles. Essa tecnologia permite que, em
uma mesma máquina física, exista vários máquinas virtualizadas, cada qual com seu sistema
operacional e independência entre si apesar de estarem no mesmo servidor. O uso dessa
arquitetura é possibilitado pelo hypervisor, um programa que cria e administra as Máquinas
Virtuais (VMs) (POPEK; GOLDBERG, 1974). O hypervisor abstrai os recursos do hardware
hospedeiro — como processador, memória e espaço de armazenamento — das máquinas
virtuais e os distribui conforme a necessidade para cada VM, passando a sensação de que cada
máquina tem seu próprio hardware exclusivo.

Existem duas formas principais de virtualização. A virtualização completa que simula todo
o hardware, permitindo, assim, que os sistemas virtualizados operem isoladamente, contudo
essa abordagem gera uma perda de desempenho. Por outro lado a paravirtualização adota uma
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abordagem de colaboração, onde o sistema virtualizado interage diretamente com o hypervisor
(BARHAM et al., 2003). Essa técnica diminui a sobrecarga e melhora o desempenho do sistema

Através dos anos a virtualização trouxe muitos benefícios, principalmente para aplicações
web que agora podem ser desenvolvidas em qualquer local do planeta e implementada em um
servidor na nuvem. O isolamento proporcionado pelo servidor assegura que cada VM funcione
como um ambiente individual, evitando que uma falha ou problema de segurança em uma VM
afete as outras, aumentando a segurança do sistema (WALDSPURGER, 2002). Com o passar
dos anos essa tecnologia se tornou tão onisciente que praticamente qualquer usuário pode ter
uma máquina virtualizada com sistema operacional de hardware dedicado.

Um dos maiores benefícios da virtualização é a sua flexibilidade, permitindo criar, apagar
ou mover rapidamente máquinas virtuais (VMs) entre diferentes servidores físicos, conforme
as demandas do ambiente de computação.

Plataformas de aprendizado, a exemplo do Moodle, que passam por picos de demanda em
certos momentos – por exemplo, como início de semestre, semanas de avaliação ou encer-
ramento do período letivo –, se beneficiam ao serem implementadas de forma virtualizada.
A virtualização oferece a flexibilidade necessária para gerenciar mudanças, permitindo a dis-
tribuição de serviços entre várias VMs e garantindo um desempenho constante e de alta
disponibilidade (CLARK et al., 2005).

Porém, otimizar a alocação de recursos e prever o desempenho sob diferentes cargas são
desafios grandes. A flexibilidade da virtualização cria um novo problema: o gerenciamento de
um sistema complexo. Essa complexidade justifica a necessidade de uma forma de modelagem
formal, como a proposta aqui, para analisar e otimizar o desempenho do sistema a partir de
métricas de interesse.

2.4 ESCALONAMENTO AUTOMÁTICO

A elasticidade é um dos principais atributos da computação em nuvem. Entendida como
a capacidade do sistema se ajustar, em tempo de execução, os recursos computacionais para
se adequar às variações de carga (HERBST; KOUNEV; REUSSNER, 2013). O escalonamento
automático é o método que concretiza essa elasticidade, automatizando o provisionamento de
recursos sem interferência humana a fim de aperfeiçoar o equilíbrio do sistema.

A adaptação de recursos normalmente acontecem de duas maneiras: Escalonamento Ver-
tical compreendendo a modificação de recursos (ex: CPU, RAM) de uma VM existente e,
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Escalonamento Horizontal que consiste em adicionar ou retirar instâncias de VM de um nú-
mero de máquinas virtuais anteriormente determinadas.

Uma correta adoção de uma política de escalonamento automático é fator crítico para
atender aos usuários e evitar desperdício de recursos computacionais. Contudo, a complexidade
dessa configuração – que implica no conhecimento dos limites do sistema – demonstra a
necessidade de um modelo estruturado que possibilite a análise de cenários para identificar a
melhor forma de implementação do sistema(GANDHI et al., 2014).

O escalonamento automático está diretamente ligado ao conceito de elasticidade, uma
característica fundamental da computação em nuvem que a distingue de outros paradigmas
de computação distribuída, como a computação em grade (ARAUJO, 2015). A elasticidade é
a capacidade que um sistema possui de alocar e desalocar recursos computacionais de forma
dinâmica e autônoma, com o objetivo de adaptar-se às variações da carga de trabalho ao longo
do tempo (ARAUJO, 2015), (LIMA, 2015). Isso permite que o sistema “estique” ou “encolha”
sua capacidade para manter o desempenho acordado em um Service Level Agreement (SLA),
otimizando ao mesmo tempo os custos operacionais (ARAUJO, 2015). Ao consumidor, os
recursos parecem ser ilimitados e podem ser ajustados sob demanda (MELL; GRANCE, 2011).

A alocação de recursos em uma nuvem do tipo Infrastructure as a Service (IaaS) é um
desafio central (MANVI; SHYAM, 2014). As estratégias de gerenciamento de elasticidade são
cruciais para o ambiente e podem ser classificadas como (ARAUJO, 2015):

• Reativas: As decisões de escalonamento (adicionar ou remover recursos) são tomadas em
resposta atençao a limiares pré-definidos em métricas de desempenho, como utilização
de CPU ou tempo de resposta. A sua principal desvantagem é o tempo necessário para
que um novo recurso seja provisionado e esteja pronto para uso, o que pode levar a um
período de degradação do serviço.

• Proativas: Utilizam técnicas de análise de séries temporais e aprendizado de máquina
para prever o comportamento futuro da carga de trabalho. Com base nessas predições,
os recursos são alocados ou desalocados antecipadamente, buscando evitar violações de
SLA antes que ocorram (HERBST; KOUGIOUKOTAS; REMANN, 2013).

A escalabilidade horizontal, que consiste em alterar o número de instâncias de um recurso
(como VMs), é a abordagem mais comum para implementar o escalonamento automático
(GUPTA; CHRISTIE; MANJULA, 2017).
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2.5 DEPENDABILIDADE

O conceito de dependabilidade remonta à década de 1820, quando Charles Babbage pla-
nejou um sistema de cálculo mecânico com o objetivo de eliminar erros humanos (SCHAFFER,
1994). O trabalho de Laprie (1995) lista os primeiros conceitos de dependabilidade e, desde
então, tem sido usado na academia. Para Avizienis et al. (2004) a dependabilidade de um
sistema é a capacidade de evitar falhas de serviço que são frequentes ou mais graves do que
o aceitável.

Tanto que foi necessário criar uma taxonomia para demonstrar o funcionamento de sistemas
confiáveis, como mostrado na Figura 3

Figura 3 – Árvore de confiabilidade e segurança

Fonte: Adaptado de AVIZIENIS et al. (2004)

Pode-se observar que a dependabilidade é um conceito que envolve seis requisitos principais
(COSTA, 2015)

• Disponibilidade – Capacidade do sistema estar pronto para fornecer o serviço correta-
mente;

• Confiabilidade – Probabilidade de o sistema fornecer o serviço continuamente, sem erros,
até um certo tempo t;

• Segurança – Ausência de consequências catastróficas para o(s) usuário(s) e o ambiente;
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• Confidencialidade – Ausência de divulgação não autorizada de informações;

• Integridade – Ausência de alterações impróprias no estado do sistema;

• Manutenibilidade – Capacidade de passar por reparos e modificações;

Um elemento crucial ao desenvolver um modelo de avaliação de desempenho para o LMS
é a Disponibilidade, que Maciel (2023a) define como a proporção estimada do tempo em que
o sistema está funcional ao longo de seu ciclo de vida. Além disso, é fundamental entender
a Disponibilidade Estacionária (𝐴) como a relação entre o tempo de operação esperado e a
soma do tempo de operação e falhas esperados. Esta medida pode ser expressa pela seguinte
Equação 2.1:

𝐴 = 𝐸[𝑈𝑝𝑡𝑖𝑚𝑒]
𝐸[𝑈𝑝𝑡𝑖𝑚𝑒] + 𝐸[𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒] (2.1)

Onde:

• A é a disponibilidade estacionária do sistema;

• E[Uptime] é o tempo de atividade esperado do sistema;

• E[Tempo de inatividade] é o tempo esperado de falha do sistema;

A disponibilidade é frequentemente expressa pelo número de noves, que indica a quanti-
dade de dígitos 9 consecutivos na porcentagem de tempo em que o sistema está operacional
(MARWAH et al., 2010). Por exemplo, se um sistema está disponível 99, 9% do tempo, sua
disponibilidade é designada por 3 noves. A quantidade de noves é determinada pela Equação
2.2:

𝑁 = − log10(1 − 𝐴) (2.2)

A indisponibilidade, em contraste com a disponibilidade, refere-se à probabilidade de que
o sistema não esteja acessível. Pode ser calculado usando as Equações (2.3) e (2.4)

𝑈𝐴 = 𝐸[𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒]
𝐸[𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒] + 𝐸[𝑈𝑝𝑡𝑖𝑚𝑒] (2.3)

𝑈𝐴 = 1 − 𝐴 (2.4)

Através da indisponibilidade, pode-se calcular o período em que o sistema estará inativo
dentro de um determinado intervalo de tempo. O tempo de inatividade anual indica o número
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esperado de horas em que o sistema não funcionará durante um ano. Esse valor é determinado
conforme a Equação 2.5:

𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝑦𝑒𝑎𝑟 = 𝑈𝐴 × 8760ℎ (2.5)

Os dados de uptime e downtime não estão sempre disponíveis; em tais casos, são utilizadas
as médias entre eventos de falhas e reparos para que:

• MTTF – Tempo médio para que falhas do sistema ocorram. Ele pode ser calculado
usando a expressão:

𝑀𝑇𝑇𝐹 =
∫︁ ∞

0
𝑅(𝑡) 𝑑𝑡 (2.6)

onde 𝑅(𝑡) é a função de confiabilidade do sistema, representando a probabilidade de
que o sistema opere sem falhas até o tempo 𝑡.

• MTTR – Tempo médio para o sistema ficar disponível após uma falha ocorrer. Pode ser
calculado usando a expressão:

𝑀𝑇𝑇𝑅 =
∫︁ ∞

0
𝑀(𝑡) 𝑑𝑡 (2.7)

onde 𝑀(𝑡) é a função de manutenibilidade do sistema, representando a probabilidade de
que o reparo do sistema não seja concluído até o tempo 𝑡.

De tal forma que a disponibilidade (𝐴) pode ser calculada usando a Equação 2.8:

𝐴 = 𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
(2.8)

2.6 AVALIAÇÃO DE DESEMPENHO DE SISTEMAS

A avaliação de desempenho é um processo sistemático que visa analisar e quantificar o
comportamento de um sistema computacional em relação a um conjunto de métricas, sob uma
determinada carga de trabalho (DANTAS, 2008). Esta avaliação é essencial para o planejamento
de capacidade, otimização, depuração e comparação de sistemas (JAIN, 1991).

As métricas de desempenho mais comuns incluem, mas não se limitam a:
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• Tempo de Resposta: Intervalo de tempo entre o envio de uma requisição por um usuário
e o recebimento da resposta completa do sistema (MENASCé; ALMEIDA; DOWDY, 2002).

• Vazão (Throughput): Taxa na qual as requisições podem ser atendidas pelo sistema,
geralmente medida em requisições por segundo ou transações por segundo (MENASCé;

ALMEIDA; DOWDY, 2002).

• Utilização: Percentual de tempo em que um recurso (por exemplo, CPU, disco) está
ocupado processando requisições (DANTAS, 2008).

A avaliação pode ser realizada através de medições em sistemas reais, simulação ou mo-
delagem analítica (DANTAS, 2008). A modelagem analítica, utilizando técnicas como SPN, é
particularmente útil para analisar o desempenho de sistemas complexos e distribuídos, como os
encontrados em ambientes de nuvem (MELO, 2016a). A avaliação pode ser aplicada a domínios
específicos, como bancos de dados em nuvens híbridas como no trabalho de (TEIXEIRA, 2017),
aplicações Software as a Service (SaaS) a exemplo da tese de Gonzaga (2014), ou analisando
o impacto de funcionalidades de segurança no consumo de recursos como tratado em Orozco
(2018).

2.7 MODELOS PARA ANÁLISE DE DESEMPENHO E DISPONIBILIDADE

A avaliação de sistemas computacionais, em particular no campo dos Ambientes de Gestão
de Aprendizagem demanda uma análise cuidadosa de suas características de desempenho e
disponibilidade para assegurar a qualidade do serviço (TRINDADE, 2020). Dada a complexidade
desses ambientes, a modelagem matemática surge como uma estratégia essencial para a análise
quantitativa do sistema (MELO, 2018) e (DIAS, 2017). Na literatura, os modelos empregados
para esse propósito podem ser divididos em duas categorias principais: modelos combinatórios
e modelos de espaço de estado. Modelos combinatórios, como os RBDs, são apropriados para
expressar a estrutura lógica do sistema e a forma como as falhas dos componentes afetam o
sistema em sua totalidade (CLEMENTE, 2022) e (ČEPIN, 2011). Por outro lado, modelos de
espaço de estado, como as CTMCs e as SPNs, são utilizados para representar o comportamento
dinâmico do sistema, detalhando as transições entre diversos estados operacionais e de falha
ao longo do tempo (MARSAN; CONTE; BALBO, 1984). Comumente, essas metodologias são
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aplicadas de maneira complementar, em estruturas hierárquicas, para oferecer uma análise
completa. A seguir detalharemos cada um desses formalismos.

2.7.1 Diagramas de Bloco de Confiabilidade - RBD

O Diagrama de Bloco de Confiabilidade é uma abordagem gráfica e um modelo combi-
natório utilizado para a análise de disponibilidade e confiabilidade de sistemas. A abordagem
é fundamentada na lógica de sucesso, onde um sistema é considerado operacional se houver
pelo menos um caminho contínuo de blocos funcionais conectando o nó de entrada ao nó de
saída do diagrama. Este formalismo permite ilustrar de forma intuitiva como a confiabilidade
dos componentes individuais (representados por blocos) contribui para a confiabilidade geral
do sistema, seja levando ao sucesso ou à falha (CATELANI; CIANI; VENZI, 2015) e (LIU; WU,
2011).

O RBD é ideal para calcular métricas como confiabilidade, disponibilidade e MTTF de um
sistema a partir dos dados de seus componentes (ČEPIN, 2011).

Um RBD é constituído por blocos conectados que podem ser organizados em três con-
figurações principais para representar as interdependências lógicas entre os componentes do
sistema:

• Configuração em Série: Representa uma lógica "E"(AND), na qual todos os componentes
do sistema devem estar operacionais para que o sistema funcione (Figura 4). A falha de
um único bloco causa a falha de todo o sistema.

Figura 4 – RBD em série

Fonte: Elaborada pelo autor (2025)

A disponibilidade (𝐴𝑠𝑒𝑟𝑖𝑒) de um sistema com 𝑛 componentes em série é o produto da
disponibilidade de seus componentes individuais (𝐴𝑖), conforme Equação 2.9
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𝐴série =
𝑛∏︁

𝑖=1
𝐴𝑖 = 𝐴1 × 𝐴2 × · · · × 𝐴𝑛 (2.9)

• Configuração em Paralelo: Representa uma lógica "OU"(OR) e é utilizada para modelar
sistemas com redundância de componente (Figura 5). O sistema é considerado opera-
cional se pelo menos um de seus 𝑛 componentes redundantes estiver funcionando. O
sistema só falha se todos os seus componentes falharem simultaneamente.

Figura 5 – RBD em paralelo

Fonte: Elaborada pelo autor (2025)

A disponibilidade (𝐴𝑝𝑎𝑟𝑒𝑙𝑒𝑙𝑜) de um sistema com 𝑛 componentes em paralelo é calculado
conforme Equação 2.11

𝐴paralelo = 1 −
𝑛∏︁

𝑖=1
(1 − 𝐴𝑖) (2.10)

• Configuração K-out-of-N (KooN): Esta é uma configuração mais geral de redundância,
na qual um sistema composto por 𝑁 componentes idênticos é considerado operacional se
pelo menos 𝐾 desses componentes estiverem funcionando (onde 1 ≤ 𝐾 ≤ 𝑁) (Figura
6).

A disponibilidade de um sistema KooN (𝐴𝐾𝑜𝑜𝑁), assumindo componentes idênticos com
disponibilidade 𝐴𝑐 é dada pela Equação 2.11

𝐴KooN =
𝑛∑︁

𝑖=𝑘

(︃
𝑛

𝑖

)︃
𝐴𝑖

𝑐 × (1 − 𝐴𝑐)𝑛−𝑖 (2.11)

A configuração em paralelo é um caso particular de KooN, onde K=1. Esta estrutura é
fundamental para modelar sistemas com redundância parcial, como por exemplo clusters
de servidores.
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Figura 6 – RBD KooN com K=2 e N=3

Fonte: Elaborada pelo autor (2025)

Uma das principais aplicações do RBD é como o primeiro nível em uma modelagem hi-
erárquica (DIAS, 2017). Sistemas ou subsistemas complexos que operam em série (e cujos
componentes possuem taxas de falha e reparo exponencialmente distribuídas) podem ser sin-
tetizados por um modelo RBD. O resultado dessa sintetização é um único bloco com valores
equivalentes de 𝑀𝑇𝑇𝐹 e 𝑀𝑇𝑇𝑅, por exemplo. Esses valores agregados são, então, utilizados
como parâmetros para as transições temporizadas de um modelo de espaço de estado de nível
superior, como uma SPN, reduzindo a complexidade do modelo final (CLEMENTE, 2022).

Apesar de sua utilidade, o RBD é um modelo estático e possui limitações. Ele tem difi-
culdades em representar sistemas com dependências complexas, diferentes políticas de reparo,
ou sistemas cujo comportamento de falha muda dinamicamente ao longo do tempo. Para
capturar essas dinâmicas complexas, modelos de espaço de estado como as SPNs e CTMCs
são mais adequados e frequentemente utilizados de forma complementar (MELO, 2018)

2.7.2 Cadeias de Markov de Tempo Contínuo - CTMC

Uma Cadeia de Markov de Tempo Contínuo (CTMC) é um formalismo matemático baseado
em modelos de espaço de estado, fundamental para a análise de sistemas cujo comportamento
evolui ao longo do tempo de forma probabilística. Uma CTMC é um processo estocástico
caracterizado por possuir um conjunto discreto de estados e um parâmetro de tempo contínuo,
o que significa que as mudanças de estado podem ocorrer em qualquer instante (SOUZA, 2009).
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A principal característica deste processo é a propriedade de Markov, também conhecida
como propriedade de “falta de memória”. Esta propriedade estabelece que a evolução futura
do sistema, a partir de um estado conhecido, depende exclusivamente de seu estado atual,
sendo independente de todos os estados passados que levaram até ele. Para que um processo
satisfaça a propriedade de Markov em tempo contínuo, o tempo de permanência em qualquer
estado deve ser uma variável aleatória que segue uma distribuição exponencial. A taxa desta
distribuição, denotada por 𝜆, determina a frequência com que as transições para outro estado
ocorrem.

Dentro de um contexto envolvendo qualquer sistema que possa ser consertado, este pode
estar em estado de falha ou em condições operacionais. Quando os parâmetros “tempo até a
falha” (Time to Failure (TTF)) e “tempo até o reparo” (Time to Repair (TTR)) seguem uma
distribuição exponencial com taxas 𝜆 e 𝜇, respectivamente, a disponibilidade do modelo pode
ser ilustrada conforme a Figura 7.

Figura 7 – Modelo genérico em CTMC

Fonte: Elaborada pelo autor (2025)

Nesta configuração, o estado 𝑈 (ativo) denota a condição operacional, enquanto o estado
𝐷 (inativo) indica a falha (MACIEL, 2023a). O evento de falha é caracterizado pela transição
do estado 𝑈 para 𝐷 com taxa 𝜆, enquanto o reparo é descrito pela transição do estado 𝐷

para 𝑈 com taxa 𝜇. Ademais, a matriz de taxas, 𝑄, pode ser expressa conforme apresentado
pela Equação 2.12.

𝑄 =

⎛⎜⎜⎝−𝜆 𝜆

𝜇 −𝜇

⎞⎟⎟⎠ (2.12)

Resolvendo o sistema de equações, as probabilidades de estado estacionário são 𝜋𝑈 = 𝜇
𝜆+𝜇

e 𝜋𝐷 = 𝜆
𝜆+𝜇

. Neste contexto, a disponibilidade do sistema é a probabilidade dele estar no
estado operacional, ou seja, 𝐴 = 𝜋𝑈
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Uma das principais restrições da modelagem direta com CTMCs é a explosão combina-
tória do espaço de estados, que aumenta com a quantidade de componentes concorrentes,
dificultando assim a construção da matriz 𝑄 e tornando sua solução computacionalmente
inviável.

Formalismos de alto nível como Redes de Petri Estocásticas (SPNs) proporcionam uma
especificação modular e concisa, fundamentada em lugares, tokens e transições. Muitas ferra-
mentas realizam o mapeamento automático da SPN para a CTMC correspondente, elaboram
𝑄 e resolvem o modelo de forma numérica.

2.7.3 Redes de Petri Estocásticas - SPN

A avaliação de sistemas computacionais complexos, que englobam concorrência, sincroni-
zação e compartilhamento de recursos, requer a utilização de formalismos de modelagem com
grande capacidade expressiva. As Redes de Petri – Petri Net (PN) – tradicionais são um dos
formalismos, amplamente empregados para descrever e analisar o comportamento lógico de
um sistema, mas sem uma concepção inerente de tempo. Para analisar métricas de desempe-
nho (como vazão, tempo de resposta) e confiabilidade (como disponibilidade, confiabilidade),
é essencial incluir a variável temporal no modelo (MELO, 2018).

As SPNs surgem como uma extensão do formalismo clássico justamente para suprir essa
necessidade, associando um tempo de disparo, que é uma variável aleatória, a cada transição
da rede (MOLLOY, 1982). A escolha da distribuição de probabilidade para esses tempos é um
aspecto fundamental. Nas SPNs, as durações das atividades são tipicamente modeladas pela
distribuição exponencial, que possui a distinta propriedade de “falta de memória” (memoryless

property). Essa abordagem implica que a probabilidade de um evento futuro ocorrer (como a
falha de um componente) depende apenas do estado atual do sistema, e não do tempo que
ele já permaneceu nesse estado.

A característica de ausência de memória é o que define formalmente um processo de
Markov. Por essa razão, a evolução de uma SPN ao longo do tempo pode ser representada
por uma CTMC. Para compreender essa ligação, é necessário estabelecer o espaço de estado
do sistema, que representa o conjunto de todas as configurações possíveis que o sistema pode
ter. Em uma Rede de Petri, cada configuração é representada por uma marcação, que indica
a alocação de tokens nos lugares da rede. Ainda é necessário entender o conceito de gráfico
de acessibilidade que é um grafo que inclui todos os estados (marcações) que o sistema pode
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atingir a partir de um estado inicial, assim como as transições (disparos) que conectam um
estado ao outro. Em razão da propriedade de Markov assegurada pela distribuição exponencial,
esse diagrama de alcançabilidade é matematicamente equivalente a uma CTMC, onde os nós
representam os estados e os arcos indicam as taxas de transição entre eles (MARSAN; CONTE;

BALBO, 1984). A principal vantagem de conseguir uma CTMC equivalente é que existem
soluções analíticas e numéricas estabelecidas para “solucioná-la”.

Formalmente, uma SPN é representada por elementos distintos, como mostrado na Figura
8: lugares (círculos), que representam estados ou condições; tokens (pontos), que residem nos
lugares e definem a marcação atual da rede; transições (retângulos), que denotam eventos
ou ações; e arcos (setas), que conectam lugares a transições e vice-versa, definindo o fluxo
de tokens. Arcos inibidores – terminados com um pequeno círculo – habilitam uma transição
apenas se um lugar específico estiver vazio (CIARDO; GERMAN; LINDEMANN, 1994).

Figura 8 – Elementos de uma SPN

Fonte: (AUSTREGéSILO; CALLOU, 2019)

As SPNs são adequadas para modelar ambientes de nuvem, que são inerentemente concor-
rentes, assíncronos e estocásticos. O modelo proposto neste artigo utilizará lugares para ras-
trear o estado do sistema a partir de transições temporizadas para representar o processamento
de trabalhos, enquanto transições imediatas capturam a lógica da política de escalonamento
automático, modelando a dinâmica complexa do ambiente Moodle.

O comportamento dinâmico de umaSPN é determinado pelas regras de sua semântica de
disparo. A Figura 9 mostra um modelo genérico de uma SPN. Uma transição é considerada
habilitada quando todos os seus lugares de entrada contêm tokens suficientes e todos os seus
lugares conectados por arcos inibidores estão vazios. Uma vez habilitada, a transição pode
disparar, consumindo tokens de seus lugares de entrada e depositando tokens em seus lugares
de saída, o que altera a marcação da rede para um novo estado. Se transições imediatas e tem-
porizadas estiverem habilitadas simultaneamente, a transição imediata sempre terá prioridade
(CLEMENTE, 2022).

Por fim, é necessário destacar que os arcos possuem pesos. Esses pesos indicam quantos
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Figura 9 – Modelo Genérico em SPN

Fonte: Elaborada pelo autor (2025)

tokens são consumidos de um lugar ou quantos tokens são inseridos num lugar por uma
transição ao disparar. Os pesos são fundamentais para definir a regra de habilitação de uma
transição: ela só pode disparar se houver ao menos tantos tokens quanto o peso de cada arco
de entrada exige. O peso padrão é 1, contudo, a depender o que se pretende modelar, podem
ter valores diferentes ou expressões condicionais que os determinem.

2.8 ANÁLISE DE SENSIBILIDADE

A técnica de análise de sensibilidade é amplamente empregada na classificação para de-
terminar quais fatores exercem maior influência sobre as métricas de um modelo (HAMBY,
1994). Um método direto e eficaz consiste em alterar cada parâmetro individualmente en-
quanto os demais permanecem constantes. Ao fazer isso, é possível obter uma classificação
de sensibilidade ao observar as mudanças na saída do modelo.

Na análise de desempenho, a técnica da análise diferencial é frequentemente utilizada.
Esta técnica envolve o cálculo das derivadas parciais das métricas relevantes com respeito
a cada parâmetro. Por exemplo, considerando a métrica 𝑌 , que é função de um parâmetro
𝜆, a sensibilidade de 𝑌 em relação a 𝜆 é determinada utilizando a Equação 2.13 ou 2.14,
dependendo da escala de sensibilidade escolhida (FRANK, 1978).

𝑆𝜆(𝑌 ) = 𝜕𝑌

𝜕𝜆
(2.13)
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𝑆*
𝜆(𝑌 ) = 𝜕𝑌

𝜕𝜆

(︃
𝜆

𝑌

)︃
(2.14)

𝑆𝜆(𝑌 ) e 𝑆*
𝜆(𝑌 ) também são chamados de coeficientes de sensibilidade (HAMBY, 1994).

Os valores desses coeficientes, quando ordenados, produzem uma classificação que é usada
para comparar o grau de influência entre todos os parâmetros.

2.9 INJEÇÃO DE FALHA

A injeção de falhas é uma técnica experimental para avaliação da dependabilidade de um
sistema, que consiste em introduzir falhas de forma deliberada e controlada para observar seu
comportamento e testar seus mecanismos de tolerância a falhas (LIMA, 2015). O objetivo é
avaliar a robustez do sistema e medir métricas como cobertura de falhas, latência de detecção
e tempo de recuperação (DANTAS et al., 2011).

Essa técnica é uma alternativa poderosa ao monitoramento passivo de sistemas, espe-
cialmente quando as falhas naturais são eventos raros, pois permite acelerar o processo de
avaliação e testar cenários de falha específicos que podem não ocorrer naturalmente (CLE-

MENTE, 2022). A injeção de falhas pode ser realizada em diferentes níveis (LIMA, 2015):

• Nível de Hardware: Através da alteração de componentes ou exposição a ambientes que
induzam erros.

• Nível de Software: Inserção de código que simula falhas de software, como corrupção de
memória ou desligamentos inesperadas.

• Nível de Simulação/Modelo: Introdução de eventos de falha em modelos analíticos ou
de simulação para avaliar o impacto no comportamento geral do sistema (MENDONçA et

al., 2018).
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3 METODOLOGIA E ARQUITETURA

Este capítulo apresenta a metodologia e a arquitetura sugerida para avaliar a disponibilidade
e desempenho de um LMS instalado sob uma pilha LAMP

3.1 METODOLOGIA

A metodologia sugerida abrange seis fases, cada uma estruturada da melhor forma para
assegurar uma análise metódica do LMS implementado na plataforma LAMP. Primeiramente,
é fundamental definir o cenário de base que servirá como ponto de referência ao longo da
pesquisa. Este cenário engloba todas as variáveis e condições iniciais que serão levadas em
conta durante o estudo (ARAUJO et al., 2013). Essa fase é essencial para assegurar que os
resultados obtidos sejam significativos e aplicáveis ao contexto analisado (MACIEL et al., 2018).
Posteriormente, procede-se à configuração do ambiente onde a pesquisa será conduzida. Isso
envolve preparar todos os recursos, ferramentas e condições necessárias para a execução dos
experimentos. Nesta etapa, um servidor é instanciado com a pilha LAMP, já descrita na Seção
2.2. A configuração correta do ambiente é crucial para garantir a validade e confiabilidade
dos dados coletados. A Figura 10 apresenta o fluxograma utilizado para ilustrar a metodologia
proposta.

Figura 10 – Metodologia Proposta

Fonte: Elaborada pelo autor (2025)

Com o ambiente devidamente configurado, inicia-se a fase de experimentação e coleta
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de dados. Neste ponto, no servidor Moodle (Máquina/Servidor B), falhas são sistematica-
mente injetadas e reparadas em cada componente do sistema seguindo os códigos disponibi-
lizados nos Apêndices A, B, C, D e E. Este processo é executado usando um script Python
hospedado em um servidor secundário (Máquina/Servidor A). Os tempos para injeção e reparo
de falhas seguem uma distribuição exponencial para simular imprevisibilidade dos eventos. Esta
Máquina/Servidor A também é responsável por verificar a disponibilidade do serviço Moodle
a cada cinco segundos, registrando essa informação em um arquivo. Nas etapas subsequentes,
os dados deste arquivo de log serão usados para determinar o tempo médio para falha e o
tempo médio para reparo real do sistema. Essas informações são importantes para calcular a
disponibilidade do sistema.

Durante a fase de “Experimentação e coleta de dados”, falhas e reparos são introduzidos
em cada parte do sistema (hardware, software, Apache, MySQL e PHP) em intervalos com
tempo exponencial distribuído por meio de um script Python hospedado na Máquina/Servidor
A – Figura 11 e Figura 12. O script gera tempo de falha distribuídos exponencialmente para
o componente alvo e monitora se o tempo gerado foi alcançado. Caso seja atingido, uma
falha será injetada no componente. Após a geração da falha, é necessário também reparar o
componente dentro de um tempo distribuído exponencialmente. Assim, o script calcula esse
tempo e aguarda até que ele seja atingido. Quando alcançado, o componente é reparado e um
novo tempo de falha é determinado.

Figura 11 – Diagrama de Injeção de Falha

Fonte: Elaborada pelo autor (2025)

Figura 12 – Diagrama de Injeção de Reparo

Fonte: Elaborada pelo autor (2025)

Uma vez concluída a coleta de dados, o passo seguinte é propor modelos que consigam
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representar adequadamente os comportamentos observados. Esses modelos permanecerão pro-
visórios até passarem pelo processo de validação. Validar é uma fase crucial que assegura a
precisão e robustez necessárias para que os modelos sejam aplicáveis de forma prática.

Na etapa de validação, é crucial verificar se os modelos refletem o cenário original com
elevado grau de confiança. Para este propósito, comparamos os resultados do cenário original
com os obtidos pelos modelos propostos. É desejável que os resultados dos modelos propostos
caiam dentro de um intervalo de confiança de 95%.

Caso os modelos sejam considerados satisfatórios, o processo avança para a etapa de
proposição de cenários e extensão dos modelos. Se não, é necessário verificar se houve algum
problema na fase de experimentação de dados ou nos modelos propostos. Esta verificação
assegura que apenas modelos confiáveis prossigam no processo.

Durante a fase de proposição de cenários/ extensão dos modelos, a partir dos modelos
validados, são propostos novos cenários de de análise bem como a extensão dos modelos criados

É possível resumir as fases e resultados na Tabela 2:
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Tabela 2 – Compilado do processo metodológico

Passo metodológico Produto/Saída da etapa

Definição do cenário base
Estabelecimento de um ambiente inicial que reflete
as condições reais ou ideais do estudo, servindo como
referência para análises comparativas.

Configuração do ambiente
Implementação das condições e ferramentas neces-
sárias para a realização do estudo, incluindo a ins-
talação de softwares, definição de recursos físicos e
ajustes nas variáveis do sistema.

Experimentação e coleta de dados

Injeção de falhas e reparos com tempo exponencial-
mente distribuídos nos componentes do servidor Mo-
odle. Coleta do status do servidor (𝑈𝑃 ou 𝐷𝑂𝑊𝑁)
e criação de arquivo de Log para posterior análise.

Proposição de modelos
Criação de modelos em RBD, CTMC e/ou SPN que
reflita(m) o cenário base.

Validação dentro do intervalo de
confiança

Análise dos dados adquiridos na etapa de expe-
rimentação e coleta de dados definindo métricas
de interesse (como disponibilidade, indisponibilidade,
tempo de inatividade anual, etc) comparando-os e
validando-as com os dados da literatura e validando-
os dentro do intervalo de confiança definido.

Proposição de cenários/Extensão
dos modelos

A partir dos modelos previamente validados, serão
delineados novos cenários de estudo, bem como pro-
movidas ampliações e ajustes nos modelos existentes,
com o objetivo de capturar de forma abrangente dife-
rentes condições operacionais e variações do sistema
analisado.

Fonte: Elaborada pelo autor (2025)

3.2 ARQUITETURA BÁSICA

Nesta subseção, é descrita a arquitetura básica empregada para a elaboração deste estudo.
A Figura 13 ilustra a arquitetura proposta. Ela consiste em dois servidores conectados por
meio de um switch que possibilita a comunicação entre as máquinas.

A Máquina/Servidor A é um Servidor Linux 22.04 LTS encarregado de conduzir injeções de
falhas e reparos com tempos distribuídos exponencialmente nos componentes da Máquina/-
Servidor B. Esses injetores são scripts Python e, além de sua execução, a Máquina/Servidor
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Figura 13 – Arquitetura proposta

Fonte: Elaborada pelo autor (2025)

A monitora o status (disponibilidade ou indisponibilidade) do Moodle que está hospedado na
Máquina/Servidor B como mostrado na Figura 14

Figura 14 – Injetor de falhas/reparo

Fonte: Elaborada pelo autor (2025)

Os scripts de injeção de falhas têm a função de introduzir falhas e efetuar reparos nos com-
ponentes da Máquina/Servidor B, incluindo Hardware, Sistema Operacional, Apache, MySQL
e PHP. A implementação de cinco scripts diferentes garante que cada operação de falha e re-
paro seja executada de forma autônoma e segura. Esses scripts estão disponíveis nos Apêndices
A, B, C, D e E desta dissertação.
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A Máquina/Servidor B, que é um Servidor Linux 22.04 LTS, atua como a estrutura principal
do sistema, executando uma pilha LAMP juntamente com o Moodle LMS na versão 4.3. A
operação ininterrupta dos componentes essenciais do sistema é crucial para sua disponibilidade:
hardware, sistema operacional, Apache, MySQL e PHP devem estar sempre funcionais para
que o Moodle esteja online. A falha em qualquer um deles resulta em uma indisponibilidade
temporária do sistema, o que ressalta a importância de cada componente para a manutenção
da funcionalidade global do sistema.

Neste ambiente Moodle, falhas e reparos são aplicados a cada parte do sistema em mo-
mentos que seguem uma distribuição exponencial, usando os scripts Python que executam na
Máquina/Servidor A. Esta máquina também tem a função de verificar a disponibilidade do
Moodle a cada cinco segundos e armazenar as informações em um arquivo de log ilustrado
na Figura 13 através do código disponibilizado no Apêndice F. Quando todos os componentes
estão operacionais, o servidor registra a data e hora e o status “UP” no log. Se algum com-
ponente estiver indisponível, ele registra a data e hora e o status “DOWN”. Esses registros
serão posteriormente utilizados para calcular o MTTF e o MTTR, dados cruciais para avaliar
a disponibilidade do sistema.

O arquivo de log terá entradas como no exemplo abaixo:
1 2024 -02 -19 21:00:09:047 - System - UP

2024 -02 -19 21:00:14:813 - System - UP

3 2024 -02 -19 21:00:21:344 - System - UP

2024 -02 -19 21:00:27:107 - System - UP

5 2024 -02 -19 21:00:32:906 - System - UP

2024 -02 -19 21:00:38:696 - System - UP

7 2024 -02 -19 21:00:44:496 - System - UP

2024 -02 -19 21:00:50:309 - System - Down

9 2024 -02 -19 21:00:56:065 - System - Down

2024 -02 -19 21:01:01:846 - System - Down

11 2024 -02 -19 21:01:07:648 - System - Down

2024 -02 -19 21:01:13:466 - System - Down

13 2024 -02 -19 21:01:19:269 - System - Down

Esta abordagem permite rastrear por quanto tempo a Máquina/Servidor B esteve disponível
ou indisponível, o que permite a aplicação dos modelos descritos no Capítulo 4.
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3.3 ARQUITETURA BASEADA EM NUVEM PÚBLICA

Além da arquitetura básica, propomos analisar uma instalação do Moodle implantada em
uma infraestrutura de nuvem pública, tomando por base o sistema AWS. Esta arquitetura foi
concebida para ser flexível a fim de suportar tanto recursos fixos quanto variáveis que possam
acomodar a carga de trabalho exigente de um ambiente educacional (ASSUNÇÃO et al., 2016).
Escolhemos a IaaS que fornece controle de servidor e a migração do Moodle para a nuvem
(BISWAS et al., 2015).

Os pedidos dos usuários são enviados para um front-end que, nesta arquitetura, é im-
plementado pelo serviço Elastic Load Balancing da AWS. Este componente atua como um
balanceador de carga, distribuindo as requisições uniformemente sobre um conjunto de VMs,
cada qual executando um servidor web Apache para processar as solicitações do Moodle. Para
alcançar seu desempenho máximo, a arquitetura emprega duas categorias de instâncias de VM:
um número fixo de VMs reservadas e um número dinâmico de instâncias de VM sob demanda
acionadas para lidar com picos de tráfego (BISWAS et al., 2015).

Figura 15 – Topologia de nuvem com escalonamento automático

Fonte: Adaptado de (FE et al., 2017)

A Figura 15 fornece uma visão geral da arquitetura de sistemas elásticos na nuvem. As
instâncias reservadas são mostradas em blocos cinza escuro e as instâncias sob demanda
em cinza claro. O administrador do sistema reserva um certo número de VMs, enquanto as
VMs sob demanda mudam dinamicamente com base em parâmetros definidos pelo usuário
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para auto-escalonamento (valores mínimos e máximos, tipo de instância e carga de trabalho
observada).

No caso descrito, o front-end solicita a criação de novas VMs sob demanda por meio de
chamadas Elastic Compute Cloud (EC2) ao gerenciador de nuvem, mas esse ajuste também
poderia ser feito no painel da plataforma (HUNG; HU; LI, 2012). Isso afeta as métricas de
desempenho do sistema, por exemplo, taxa de transferência, tempo médio de resposta ou
utilização do sistema.

O pedido é enviado de maneira semelhante a uma fila. Se não houver VM disponível
para lidar com novos pedidos eles serão enfileirados na fila de espera, onde aguardarão as
VMs (tanto reservadas quanto sob demanda) estarem desocupadas. Uma vez que uma VM é
finalizada, ela verifica a fila de VMs para o primeiro pedido a ser satisfeito (a regra “primeiro
a entrar, primeiro a sair” ou FIFO). Este conceito de fila é projetado para evitar a perda de
um pedido durante os picos de carga.

O sistema adota uma política de escalonamento automático reativo, que monitora cons-
tantemente a carga de trabalho da VM para orientar a decisão de escalonamento. Quando
a quantidade de solicitações na fila atinge um limiar, uma ação de escalonamento é iniciada
instanciando sob demanda novas VMs que atendem aos requisitos das solicitações recebidas.
Da mesma forma, quando a carga de trabalho é baixa e o uso de recursos excede a necessidade,
um limite de redução leva à destruição das VMs sob demanda, visando à redução de custos
operacionais desnecessários.

A seleção de um tipo de VM é uma opção de configuração importante, pois tem um forte
impacto no desempenho do sistema. Fornecedores de nuvem, como a AWS, dispõem inúmeras
opções de VMs capacidades de processamento (vCPU), memória e variações de preço distintas,
que precisam ser selecionados cuidadosamente à luz dos requisitos da aplicação.

Além disso, é crucial determinar quantas requisições cada instância da VM pode atender em
sua configuração mínima, sem redundâncias ou configurações na máquina para aumentar seu
desempenho como mecanismos de cache, por exemplo. Para tanto, recorreu-se à documentação
oficial de instalação do Moodle (Moodle Community, 2024) a fim de saber a configuração mínima
para uma instalação bem como estimar a capacidade de usuários atendidos. É crucial, também,
entender que esses números são aproximações para usuários ativos simultaneamente com um
perfil de uso moderado. A documentação Moodle recomenda como parâmetro mínimo de
memória 1GB de RAM e como parâmetro ideal em um servidor de produção 8G.

A Tabela 3 ilustra exemplos de tipos de instância do Amazon EC2 com seus respectivos
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recursos e a estimativa da quantidade de alunos únicos que podem ser atendidos. VMs com
mais vCPUs e memória podem processar requisições mais rapidamente, mas implicam um
custo maior.

Tabela 3 – Estimativa de capacidade de instâncias AWS para Moodle

Instância vCPUs Memória (GiB) Usuários
Simultaneamente

t3.small/t4g.small 2 2 5 – 15
t3.medium/t4g.medium 2 4 15 – 40
t3.large/t4g.large 2 8 40 – 80
t3.xlarge/t4g.xlarge 4 16 80 – 180
t3.2xlarge/t4g.2xlarge 8 32 180 – 400

Fonte: adaptada de (FE et al., 2017)),

A arquitetura detalhada nesta seção, com seus componentes essenciais como o balanceador
de carga, o uso combinado de instâncias reservadas e sob demanda, e a política de escalo-
namento reativo, estabelece a base para a análise subsequente. A complexa interação entre
a carga de trabalho variável, as capacidades de processamento das diferentes instâncias das
VM e os limiares de escalonamento torna a avaliação puramente descritiva insuficiente para
prever o comportamento do sistema sob diferentes condições. Portanto, para capturar essa
dinâmica e avaliar quantitativamente as métricas de interesse, faz-se necessária a construção
de um modelo formal.



54

4 MODELOS PROPOSTOS

Com base na arquitetura do LMS Moodle, detalhada no capítulo anterior, este capítulo
dedica-se à concepção e formalização dos modelos propostos para a análise comparativa de seu
desempenho e disponibilidade em dois cenários de implantação distintos: uma implementação
local, em infraestrutura física própria, e uma implementação em nuvem pública, utilizando
os serviços da AWS. A utilização de modelos matemáticos permite realizar uma avaliação do
comportamento do sistema em ambos os contextos, viabilizando a tomada de decisão pelos
administradores do sistema.

Tendo em vista a complexidade do sistema, que envolve tanto a confiabilidade estrutural
dos componentes quanto a dinâmica de carga de trabalho e provisionamento de recursos,
optou-se por uma estratégia de modelagem hierárquica. Esta abordagem permite decompor a
o sistema, modelando diferentes aspectos com o formalismo mais adequado e, posteriormente,
integrando os submodelos para uma análise completa.

Nesta abordagem hierárquica, cada formalismo é empregado para capturar aspectos dis-
tintos do sistema. O RBD é utilizado para a análise da disponibilidade estrutural, oferecendo
uma representação intuitiva de como os componentes se interligam em série e paralelo e como
suas falhas individuais impactam a funcionalidade do sistema como um todo. Para modelar
o comportamento dinâmico de falha e reparo de componentes individuais ou subsistemas, as
CTMCs são aplicadas, permitindo o cálculo de métricas como o MTTF e MTTR. Por fim,
para analisar os aspectos de desempenho e a dinâmica complexa de carga de trabalho, filas e
alocação de recursos, especialmente os mecanismos de escalonamento automático no cenário
em nuvem, as SPNs são o formalismo mais adequado devido à sua capacidade de modelar
concorrência, sincronização e contenção por recursos.

No contexto da modelagem hierárquica, os RBDs são empregados no primeiro nível para
analisar o sistema a partir de suas dependências funcionais mais simples, como componentes
em série. O resultado dessa análise é a sintetização de um sistema em um único bloco com
a determinação de valores MTTF, MTTR, Disponibilidade, Uptime e Downtime, que servirão
de insumo para os modelos de espaço de estado subsequentes.

A evolução natural do processo de modelagem consiste na utilização de CTMC, uma vez
que este formalismo permite mapear de forma explícita as dependências entre os componentes
do sistema, superando as limitações do RBD, que assume a independência estrutural entre os
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blocos. Dessa forma, é possível capturar de modo mais realista, por exemplo, o impacto do
tempo de falha e de reparo de cada componente sobre as métricas de desempenho analisadas,
conferindo maior aderência às condições operacionais reais.

Pensamento semelhante se aplica à SPN, uma vez que o mapeamento usando RBD não
captura a dinâmica complexa da arquitetura Moodle na AWS, que inclui o enfileiramento de
requisições e as políticas de auto escalonamento faz-se necessário o uso de uma abordagem
mais robusta.

4.1 ARQUITETURA BÁSICA

Nesta seção apresentaremos os modelos básicos da arquitetura Moodle de maneira que
servirão para o entendimento da plataforma bem como base para validação e expansão para
modelos mais complexos.

4.1.1 Modelo Básico em RBD

A partir da arquitetura delineada na Seção 3.2, foi desenvolvido uma representação RBD
para os componentes do sistema. O modelo consiste em cinco blocos dispostos em série,
conforme descrito a seguir:

• HW (Hardware): Refere-se ao equipamento físico necessário para executar o Software
(SO) e serviços necessários para o Moodle;

• SO (Sistema Operacional): Software base que gerencia o hardware e oferece serviços
essenciais para os outros componentes;

• Apache: Servidor web que manipula solicitações HTTP e entrega conteúdo aos usuários;

• PHP: Linguagem script do lado do servidor usada para executar e redenrizar páginas
dinâmicas do Moodle;

• MySQL: Sistema de gerenciamento de banco de dados relacional que armazena e gerencia
dados do Moodle.

RBDs são comumente usados para representar e analisar a disponibilidade de sistemas. Em
um RBD, o sistema é decomposto em componentes individuais, cada um representado por um
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bloco, e as conexões entre os blocos indicam a dependência funcional desses componentes.
O arranjo desses blocos, que podem ser configurados em série, paralelo ou uma combinação
de ambos, ajuda a avaliar a confiabilidade geral do sistema. A simplicidade visual dos RBDs
auxilia na compreensão e comunicação da estrutura do sistema, facilitando a identificação de
componentes críticos e potenciais pontos de falha.

Em arquiteturas onde é essencial que todos os componentes funcionem corretamente para
que o sistema tenha êxito, uma configuração em série é ideal. Aqui, o mau funcionamento
de apenas um componente provoca a falha do sistema inteiro. Este tipo de configuração é
representativo de cenários onde a continuidade operacional depende de cada elemento na
cadeia. Assim, ela ilustra situações onde o sucesso do sistema depende do desempenho eficaz
de cada componente, delineando a importância de assegurar a operação confiável de cada
parte.

Neste estudo, é assumido que o sistema só estará operacional quando todos os seus com-
ponentes estiverem ativos ao mesmo tempo. Consequentemente, uma representação em série
dos componentes é exigida, como demonstrado na Figura 16.

Figura 16 – RBD Proposto

Fonte: Elaborada pelo autor (2025)

A disposição em série ressalta a dependência vital que cada elemento tem na estrutura
do Moodle. Uma falha no Hardware (HW) impede, por exemplo, o funcionamento do Sis-
tema Operacional (SO). Se o Apache não estiver operando, as requisições HTTP não serão
processadas. A falha do PHP impede que o Moodle execute sua lógica e, sem o MySQL, o
Moodle não se consegue acessar ou armazenar informações. Por isso, a integridade de cada
componente é essencial para a operação total do sistema.

Em continuidade, adota-se uma representação mais abstrata do modelo, consolidando
os três últimos blocos (Apache, PHP e MySQL) em um único elemento representativo da
aplicação Moodle chamado 𝐴𝑃𝑃 , como ilustrado na Figura 17. Essa simplificação se justifica
pela necessidade de reduzir a complexidade do diagrama, mantendo, entretanto, a essência da
confiabilidade do sistema. Tal abordagem permite analisar o comportamento do Moodle como
uma unidade funcional integrada, sem perda significativa de precisão no contexto das métricas



57

de disponibilidade e confiabilidade, pois os componentes internos da aplicação podem ser
considerados interdependentes e de similar criticidade operacional. Assim, a análise permanece
focada na avaliação de falhas em níveis mais amplos, atendendo aos objetivos deste estudo.

Figura 17 – RBD Moodle

Fonte: Elaborada pelo autor (2025)

A configuração apresentada representa o mínimo necessário (cenário base) para o funcio-
namento do Moodle. Cada componente representado no RBD é essencial, e qualquer falha em
um desses componentes resulta em indisponibilidade do sistema. Garantir a operação adequada
de cada componente é vital para manter a disponibilidade e a confiabilidade do sistema.

4.1.2 Modelo Básico Virtualizado em CTMC

As CTMCs modelam sistemas onde o comportamento estocástico e as transições de estado
ocorrem ao longo do tempo. No formalismo CTMC, o Moodle é representado por um conjunto
de estados e taxas de transição entre esses estados, que são distribuídos exponencialmente.
As CTMCs permitem uma análise detalhada de processos dinâmicos, como falhas e reparos
de componentes, fornecendo uma visão precisa do comportamento temporal do sistema e
permitindo cálculos rigorosos de métricas de desempenho, como disponibilidade.

CTMCs são particularmente adequados para sistemas onde a dinâmica temporal e o com-
portamento estocástico são críticos. Por exemplo, em sistemas de manutenção e reparo, as
CTMCs podem modelar eventos de falha, processos de recuperação e suas respectivas du-
rações. Essa abordagem fornece uma compreensão detalhada de como os tempos de falha e
reparo influenciam a disponibilidade do sistema. As Cadeias de Markov de Tempo Contínuo
oferecem previsões precisas e insights sobre o desempenho do sistema, capturando a natureza
probabilística das transições de estado.

Para garantir a alta confiabilidade das métricas calculadas, um modelo baseado em CTMC
foi desenvolvido a partir do RBD da Figura 17. A Figura 18 ilustra este modelo, mostrando
os componentes do sistema e suas interconexões.
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Figura 18 – CTMC Moodle

Fonte: Elaborada pelo autor (2025)

Neste formalismo, a pilha LAMP é tratada como um único componente, incorporando os
parâmetros de falha e reparo de cada elemento. O status dos componentes define cada estado,
conforme mostrado na Tabela 4. A combinação desses componentes unificados é chamada de
𝐴𝑃𝑃 .

Tabela 4 – CTMC – Descrição dos estados

Estado Descrição Sistema
UUU Hardware, SO e APP disponíveis Disponível
UUD Hardware e SO disponíveis; APP in-

disponível
Indisponível

UDD Hardware disponível; SO e APP in-
disponíveis

Indisponível

DDD Hardware, SO e APP indisponíveis Indisponível
Fonte: Elaborada pelo autor (2025)

No modelo visualizado na Figura 18, 𝜆 representa a taxa de falha e 𝜇 a taxa de reparo dos
componentes do sistema. Suas descrições são apresentados na Tabela 5. Os estados seguem
uma sequência em que 𝑈 representa o estado funcional (UP) e 𝐷 representa um componente
em falha (DOWN), respectivametne para Hardware, SO e APP.

A probabilidade do sistema estar funcionalmente disponível, denotada por 𝐴𝑠 = 𝜋(𝑈𝑈𝑈),
corresponde à probabilidade de estado estacionário estar no estado 𝑈𝑈𝑈 . Neste estado, o
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Tabela 5 – CTMC – Descrição das taxas

Taxa Descrição
𝜆ℎ𝑑𝑤 Taxa de falha da VM
𝜆𝑜𝑠 Taxa de falha do software
𝜆𝑎𝑝𝑝 Taxa de falha da aplicação
𝛼ℎ𝑑𝑤 Taxa de instanciação da VM
𝜇𝑜𝑠 Taxa de reboot do software
𝜇𝑎𝑝𝑝 Taxa de reparo da aplicação

Fonte: Elaborada pelo autor (2025)

sistema está operacional. Caso um componente LAMP falhe a uma taxa de 𝜆𝑎𝑝𝑝, o sistema
se desloca para o estado 𝑈𝑈𝐷. Deste estado, ele pode ser reparado a uma taxa de 𝜇𝑎𝑝𝑝,
retornando ao estado 𝑈𝑈𝑈 . Estando no estado 𝑈𝑈𝐷 pode ocorrer uma falha no sistema
operacional com uma taxa de 𝜆𝑜𝑠 levando o sistema para o estado 𝑈𝐷𝐷, podendo ser reparado
a uma taxa de 𝜇𝑜𝑠, Isso leva o sistema ao estado inicial 𝑈𝑈𝑈 . Ainda no estado 𝑈𝑈𝑈 pode
ocorrer uma falha no sistema operacional com uma taxa 𝜆𝑜𝑠. Nesse caso o sistema migra para
o estado 𝑈𝐷𝐷. Falhas de hardware ocorrem a uma taxa de 𝜆ℎ𝑑𝑤 a partir estados 𝑈𝑈𝐷, 𝑈𝐷𝐷

ou 𝑈𝑈𝑈 transferindo o sistema para o estado 𝐷𝐷𝐷, que só pode ser recuperado por meio
de reparo de hardware a uma taxa 𝜇ℎ𝑑𝑤.

O modelo de disponibilidade do sistema pode ser avaliado usando a fórmula fechada 4.1,
concebida usando a ferramenta Mathematica em conjunto com a ferramenta Mercury (SILVA

et al., 2015).

𝐴 = (𝜆hdw + 𝜆os + 𝜇app) 𝛼hdw (𝜆hdw + 𝜇os)
(𝜆app + 𝜆hdw + 𝜆os + 𝜇app) (𝜆hdw + 𝛼hdw) (𝜆hdw + 𝜆os + 𝜇os)

(4.1)

O modelo baseado em CTMC permite modelagem precisa de taxas de falha e reparo,
capturando transições entre estados operacionais e não operacionais ao longo do tempo. Toda
a pilha LAMP é tratada como um único componente no modelo CTMC mostrado na Figura
18. Essa abordagem simplifica o gerenciamento de componentes do sistema, especialmente
caso se queira no futuro usar VM ou contêineres. Quando o sistema entra no estado 𝐷𝐷𝐷,
uma nova VM ou contêiner pode ser instanciado, retornando o sistema ao estado 𝑈𝑈𝑈 sem
a necessidade de reparos de componentes individuais melhorando, a priori, a disponibilidade
do sistema.
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4.2 ARQUITETURA REDUNDANTE

Uma vez estabelecido o comportamento do sistema em sua arquitetura básica, a etapa
subsequente da análise consiste em explorar estratégias de aprimoramento da disponibilidade
e do desempenho do Moodle. A introdução de redundância se apresenta como a técnica útil
para mitigar pontos de falha, permitindo ampliar a tolerância do sistema e, por consequência,
aumentar sua resiliência frente a falhas inesperadas de componentes críticos.

Considerando a arquitetura proposta para o Moodle na Figura 17 e considerando que
todos os componentes são vitais para garantir a continuidade do serviço, eventuais falhas
em qualquer um destes elementos comprometem de maneira imediata a operacionalidade da
plataforma. Visando eliminar tais pontos únicos de falha, optou-se por adotar uma estratégia
de redundância completa, replicando todos os componentes do sistema em caminhos paralelos
de operação como mostrado na Figura 19

Figura 19 – RBD Moodle Redundante

Fonte: Elaborada pelo autor (2025)

A representação formal dessa abordagem foi construída por meio de um RBD, no qual
cada cadeia funcional completa (𝐻𝑊, 𝑆𝑂 e 𝐴𝑃𝑃 ) é duplicada. Esses caminhos redundantes,
conectados em paralelo no modelo, permitem que o sistema continue operacional mesmo que
ocorra a falha de uma das cadeias inteiras. Assim, o RBD explicita que basta ao menos uma
cadeia funcional estar íntegra para assegurar o fornecimento do serviço, refletindo o princípio
de tolerância a falhas aplicado ao ambiente Moodle.

Essa estratégia de redundância completa potencializa a disponibilidade do sistema ao con-
templar falhas em múltiplos pontos da arquitetura. Diferentemente de modelos que privilegiam
apenas a redundância na camada de aplicação, a abordagem aqui empregada amplia a proteção
para o nível de infraestrutura (hardware) e o nível de software de base (sistema operacional),
garantindo uma cobertura mais abrangente e robusta contra falhas que possam interromper a
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prestação do serviço.

4.3 ARQUITETURA VIRTUALIZADA

Após a proposição do modelo de redundância, esta seção abordará a modelagem do ambi-
ente Moodle quando implantado em uma arquitetura virtualizada. A virtualização representa
um paradigma fundamental na computação moderna, permitindo a abstração dos recursos de
hardware de um servidor físico para criar e gerenciar múltiplas VMs isoladas, cada uma com
seu próprio sistema operacional e aplicações.

A introdução da camada de virtualização gerenciada pelo hypervisor cria novas interde-
pendências que impactam diretamente a disponibilidade do serviço final. Em tal ambiente, a
disponibilidade do Moodle não depende apenas do software da aplicação em si, mas de toda
a pilha de componentes subjacentes: a VM, o hypervisor e o hardware do servidor físico. A
falha em qualquer um desses níveis resulta na indisponibilidade do serviço, caracterizando uma
dependência em série entre as camadas. Para analisar corretamente o sistema, é imprescindível
modelar essa dependência hierárquica.

Para capturar tanto a dependência estrutural quanto o comportamento dinâmico do sis-
tema, esta seção adotará uma estratégia de modelagem em dois níveis. Inicialmente, um RBD
será utilizado para representar a pilha de virtualização de um único servidor, possibilitando o
cálculo de sua disponibilidade e das taxas de falha e reparo equivalentes. Em seguida, uma SPN
será empregada para modelar o comportamento do sistema completo, que pode ser composto
por múltiplos servidores virtualizados em configurações redundantes, utilizando os parâmetros
obtidos na análise do RBD, bem como por um pool de VMs.

4.3.1 Modelo Virtualizado em RBD

A primeira etapa na modelagem da arquitetura virtualizada consiste em analisar a dispo-
nibilidade de um único servidor que hospeda o ambiente Moodle. Para isso, partimos de um
RBD, conforme ilustrado na Figura 20. Este modelo em série representa a dependência entre
as camadas de hardware e software que compõem um servidor virtual. A lógica, mais uma
vez, é que a disponibilidade do Moodle depende do funcionamento simultâneo de todas os
componentes do sistema.

O modelo é constituído por cinco blocos em série, cada um representando uma camada
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Figura 20 – RBD Moodle Virtualizado

Fonte: Elaborada pelo autor (2025).

da pilha de virtualização e aplicação, quais sejam:

• HW (Hardware do host): Representa os componentes físicos do servidor hospedeiro. Este
bloco engloba a falha de qualquer elemento de hardware, como CPU, memória RAM,
discos de armazenamento, fontes de alimentação ou placas de rede.

• SO (Sistema Operacional do host): Representa o sistema operacional principal que é
executado diretamente sobre o hardware. É a camada que serve de base para a execução
do software de virtualização.

• VMM (Virtual Machine Monitor): Representa o software de virtualização, ou hypervisor.
Esta é a camada responsável por criar, gerenciar e alocar os recursos de hardware para
as máquinas virtuais.

• NC (Node Controller): Representa o serviço de software de gerenciamento do nó. Este
componente é responsável por controlar o ciclo de vida das VMs no hospedeiro, respon-
dendo a comandos de um controlador de nuvem de nível superior (por exemplo, para
iniciar ou parar VMs). Sua falha impede a correta administração das VMs no host.

• VM (Virtual Machine): Componente que representa uma instância completa do Moodle
em uma máquina virtual, modelada por meio da CTMC apresentada na Figura 18.

Dado que os cinco blocos estão em uma configuração em série, a falha de qualquer um
deles leva à indisponibilidade do Moodle. A disponibilidade 𝐴 do sistema hospedado neste
servidor virtualizado é dado pelo produto da disponibilidade individual de cada um de seus
componentes, isto é, 𝐴 = 𝐴𝐻𝑊 × 𝐴𝑆𝑂 × 𝐴𝑉 𝑀𝑀 × 𝐴𝑁𝐶 × 𝐴𝑉 𝑀

Este modelo detalhado permite, por exemplo, uma análise de sensibilidade precisa, possibi-
litando a identificação do componente que mais contribui para a indisponibilidade do sistema.
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As métricas deste modelo (𝑀𝑇𝑇𝐹 e 𝑀𝑇𝑇𝑅) servirão como parâmetros para o modelo SPN
de nível superior.

4.3.2 Modelo Virtualizado em SPN com redundância

O próximo modelo estendido é uma SPN baseada em virtualização desenvolvido para
capturar o comportamento dinâmico do Moodle adicionando um servidor redundante no qual
um componente secundário (ou de reserva) permanece em um estado inativo ou desligado
enquanto o servidor primário está operacional. O servidor reserva só é ativado após a detecção
da falha do primário.

A Figura 21 ilustra o modelo proposto para representar uma arquitetura com redundân-
cia cold standby (ativo/passivo), mecanismo no qual um componente primário (𝑈) está em
operação enquanto um componente secundário (𝑆𝐶) permanece em um estado inativo, sendo
ativado somente após a falha do primário. A complexidade da lógica de detecção de falha,
chaveamento (failover) e retorno ao estado original torna a SPN um formalismo ideal para
capturar com precisão o comportamento dinâmico e as diferentes fases de disponibilidade e
indisponibilidade do sistema.

Figura 21 – SPN Moodle Virtualizado com redundância no servidor

Fonte: Elaborada pelo autor (2025)
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O modelo é composto por dois submodelos principais: um para o componente primário
(composto pelos lugares 𝑈 (servidor principal ativo) e 𝐷 (servidor principal inativo) e outro
para o secundário composto por 𝑆𝑈 (servidor secundário ativo) e 𝑆𝐷 (servidor secundário
inativo).

O componente primário possui um comportamento simples de falha (transição 𝐹 ) e reparo
(transição 𝑅), com 𝑀𝑇𝑇𝐹 associado à transição 𝐹 e 𝑀𝑇𝑇𝑅 à 𝑅. De maneira semelhante
há tempos de falha e reparo associados às transições 𝐹𝑆 e 𝑅𝑆. O arco inibidor da transição
𝑂𝑁 possibilita a habilitação do lugar 𝑆𝐶 quando o lugar 𝑈 estiver vazio.

Nesse modelo o cálculo de disponibilidade é dado pela probabilidade do sistema estar no
estado 𝑈 ou no estado 𝑆𝑈 .

O subsistema que representa as VMs, por sua vez, é composto pelos lugares 𝑉 𝑀𝑈 (VM
ativa) e 𝑉 𝑀𝐷 (VM inativa). Semelhante ao modelo do servidor, existe duas transições tem-
porizadas que são responsáveis por retirar e inserir tokens do lugar 𝑉 𝑀𝑈 representando a
falha – 𝐹𝑉 𝑀 – e o reparo das VMs – 𝑅𝑉 𝑀 .

Adicionalmente, existe uma transição imediata nomeada como 𝑇𝐼0 que possui uma expres-
são de guarda para sua ativação. Para um servidor no lugar 𝑆𝑒𝑟𝑣𝑒𝑟, a transição será ativada
quando a expressão de guarda ((#𝐷 > 0)AND(#𝑆𝐷 > 0))OR((#𝐷 > 0)AND(#𝑆𝑈 =

0)AND(#𝑆𝐷 = 0)) ou ((#𝑈 = 0)AND(#𝑆𝑈 = 0)) for verdadeira.
Os arcos que chegam e saem da transição 𝑇𝐼0 possuem peso padrão modificado para 𝑉 𝑀

de maneira que quando a transação é disparada todos os tokens do lugar 𝑉 𝑀𝑈 são retirados
sendo colocados no lugar 𝑉 𝑀𝐷.

O objetivo deste modelo é analisar a disponibilidade do sistema, considerando não apenas as
falhas individuais das máquinas virtuais, mas, crucialmente, a sua dependência da infraestrutura
física subjacente.

Este modelo abrangente permite uma análise completa do sistema virtualizado redundante.
A disponibilidade do serviço é definida pela condição de que pelo menos um dos hosts esteja
operacional e haja pelo menos uma VM disponível para processar as requisições nesse host. A
disponibilidade total é, portanto, a soma das probabilidades de estado estacionário de todas
as marcações que satisfazem essa condição.
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4.4 MODELO DE DESEMPENHO

Após a construção e análise dos modelos focados nas arquiteturas básicas, redundantes
e virtualizadas, esta seção final do capítulo apresenta um modelo de desempenho. Enquanto
os modelos anteriores foram essenciais para quantificar a probabilidade de o sistema estar
operacional, métricas como utilização, probabilidade de descarte e vazão podem ser calculadas
por meio de um modelo que mapeia o ciclo de vida das requisições ao sistema.

Para este fim, foi desenvolvido o modelo em SPN mostrado na Figura 22 que integra os
elementos da arquitetura virtualizada com foco na análise de desempenho. O modelo detalhado
a seguir irá representar, portanto, o percurso completo de uma requisição do usuário, desde
sua chegada ao sistema, passando pela lógica do balanceador de carga, pela potencial espera
em uma fila, pelo processamento em uma das VMs disponíveis até a conclusão do serviço. A
análise deste modelo permitirá a avaliação quantitativa de indicadores chave de desempenho,
oferecendo uma visão do comportamento do sistema sob diferentes cargas de trabalho e
validando a eficácia da arquitetura elástica estudada.

Figura 22 – SPN de Desempenho Moodle

Fonte: Elaborada pelo autor (2025)

O modelo proposto oferece uma representação detalhada da dinâmica do Moodle em
nuvem, focando na interação entre a chegada de usuários, a alocação das VMs e as políticas
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de escalonamento automático que ajustam a quantidade de Máquinas Virtuais conforme a
demanda.

O modelo é dividido em três sub-redes: Admissão, que modela a chegada de trabalhos;
Serviço, responsável pela alocação e processamento dos trabalhos no Moodle; e Escaloa-

mento automático, que modela a adição e a remoção de recursos computacionais.
A sub-rede de admissão é composta por dois lugares – Entrada e AguardaMoodle – que

representam a quantidade de trabalhos ou requisições que podem ser realizadas e a espera
desses trabalhos na fila do sistema. A transição Chegada contém a variável com o tempo de
chegada entre requisições. Uma requisição chegando em AguardaMoodle e havendo VM e
recursos de processamento disponíveis a transição imediata Alocação é disparada e o trabalho
passa para a próxima sub-rede.

A sub-rede de Serviço é composta por dois lugares que gerenciam o ciclo de vida do proces-
samento: MoodleAlocado e VMMoodle. O lugar MoodleAlocado representa os trabalhos
que estão sendo ativamente processados; VMMoodle, por sua vez, modela a capacidade
de processamento disponível em uma instância de VM. A transição temporizada Processa-

mento, cuja taxa segue uma distribuição exponencial, modela o tempo de processamento dos
trabalhos. Ao ser concluído, o recurso da VM é liberado (uma marca retorna a VMMoodle)
e o aluno (token que estava em MoodleAlocado)) retorna ao lugar entrada de maneira que
realizar uma requisição (acesso) ao sistema. O disparo da transição VMF causa a falha de um
VM instanciada e, através do arco à VM que falhou.

Por fim, a sub-rede de Escalonamento automático contém a lógica de instanciação e
desligamento de VMs, bem como o funcionamento do host. Os lugares SU e SD representam
o servidor online e offline, respectivamente. O servidor pode falhar através da transição F e
se recuperar através da R. O lugar VMs contém o pool de máquinas virtuais disponíveis. O
lugar VMTI representa uma VM aguardando para ser instanciada, o que ocorre através do
disparo da transição TI.

Os lugares principais são parametrizados com variáveis que definem a configuração inicial
da SPN como mostrado na Tabela 6. No lugar SU há a variável Server, indicando o número
de servidores disponíveis. No lugar VMs há a variável VM, que indica a quantidade inicial de
máquinas virtuais no pool. O lugar Entrada é configurado com a variável Alunos, indicando
a quantidade de estudantes que utilizam o sistema. Finalmente, o lugar VMMoodle possui
a variável ProcessamentoVM, que representa a capacidade de processamento da instância da
VM utilizada (conforme Tabela 3).
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Tabela 6 – Descrição dos lugares do modelo SPN

Lugar Descrição Marcação inicial
SU Disponibilidade do servidor Server
SD Indisponibilidade do servidor -
VMs Pool de VMs VM
VMTI VM a ser instanciada -
VMMoodle VM Moodle disponível ProcessamentoVM
Entrada Entrada das requisições Alunos

AguardaMoodle Fila aguardando alocação de recurso
para trabalho -

MoodleAlocado Um recurso (processamentoVM) foi
alocado a um trabalho -

Fonte: Elaborada pelo autor (2025)

A Tabela 7 apresenta a descrição das variáveis do modelo. A variação desses parâmetros
será utilizada na análise de estudos de caso para avaliar o desempenho do Moodle sob diferentes
condições.

Tabela 7 – Descrição das variáveis do modelo

Definição Descrição
Server Quantidade de servidores disponíveis
VM Pool de VMs

ProcessamentoVM Capacidade de processamento de cada VM (Alocado no
lugar “VMMoodle”)

Alunos Quantidade de usuários do sistema (alocado no lugar
“Entrada”)

MTTF Tempo médio de falha do servidor
MTTR Tempo médio de reparo do servidor
MTBA Tempo médio de chegada entre requisições
MTBI Tempo médio para instanciação de uma VM
MTTF_VM Tempo médio de falha da VM

MTBP Tempo médio para processamento de um trabalho pelo
Moodle

Fonte: Elaborada pelo autor (2025)

A dinâmica do modelo SPN é governada por suas transições temporizadas ou imediatas.
Cada uma dessas das transições temporizadas é associada a uma variável que define seu
comportamento temporal o que torna o modelo flexível e parametrizável. A Tabela 8 apresenta
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o mapeamento usado nas transições às suas variáveis correspondentes.

Tabela 8 – Descrição das transições do modelo SPN

Transição Tipo Descrição Guarda Definição
associada Prioridade

R Temporizada Reparo do servidor - MTTR -
F Temporizada Falha do servidor - MTTF -
Chegada Temporizada Chegada de requisições (VMMoodle>0) OR (VMAlocada>0) MTBA -

TI Temporizada Instanciamento de uma nova
VM

(U>0) AND (VMMoodle <=
(ProcessamentoVM*20)/100)

MTBI 2

VMF Temporizada Falha da VM instanciada (VMMoodle>0) OR (VMAlocada>0) MTTF_VM -

Processamento Temporizada Processamento de
requisições pelo Moodle - MTBP -

Escalonar Imediata
Escalonamento de uma nova

VM quando a alocada
estiver com menos de 20%

de recursos disponíveis

(((U>0) AND (VMMoodle <=
(ProcessamentoVM*20)/100))
OR ((U>0) AND (AguardaMoodle >=
0) AND (VMMoodle <=
(ProcessamentoVM*20)/100))
OR ((U>0) AND (AguardaMoodle >=
0) AND (VMMoodle <=
(ProcessamentoVM*20)/100) AND
(VMAlocada>0)))

- 2

Alocacao Imediata Aloca uma requisição a um
processamento Moodle - - 1

DesligaVM Imediata
Desliga uma VM quando o
lugar VMMoodle possuir
valor superior a 40% da

definição ProcessamentoVM

VMMoodle > (ProcessamentoVM +
(ProcessamentoVM*40)/100)

- 1

Fonte: Elaborada pelo autor (2025)

Enquanto o fluxo básico de requisições é definido por arcos de peso unitário, a lógica central
do modelo é implementada por um conjunto de arcos especiais, nos quais esta descrição
se concentrará. Tais arcos são cruciais para o comportamento dinâmico do sistema, sendo
responsáveis por: (I) acionar o escalonamento e o desligamento de VMs; (II) instanciar uma
nova VM, adicionando capacidade de processamento ao sistema através de um arco com peso
variável; e (III) zerar as filas e os recursos alocados em caso de uma falha completa do servidor
físico. A Tabela 9 apresenta a especificação destes arcos mais importantes. A sintaxe usada
para expressar esta condição é a usada pela ferramenta Mercury (SILVA et al., 2015)

Para concluir a descrição do modelo, é fundamental detalhar a funcionalidade das transi-
ções que realizam a lógica de escalonamento automático: Escalonador e DesligarVM. Este
mecanismo garante a elasticidade do ambiente, ajustando dinamicamente o número de Máqui-
nas Virtuais à demanda, com o objetivo de garantir a disponibilidade sem incorrer em custos
com recursos ociosos. A lógica é implementada da seguinte forma:

• Scale-Up: A transição Escalonador é acionada em cenários de alta demanda. Seu dis-
paro ocorre quando a quantidade de recursos de processamento disponíveis, representada
pelo número de marcas no lugar VMMoodle, cai abaixo de um limiar inferior (neste mo-
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Tabela 9 – Arcos com pesos condicionais do modelo

Origem Destino Peso condicional Ação
VMTI F IF(Server-#D=1):(#VMTI) ELSE(0) Retirar todos os tokens alocados em VMTI
VMMoodle F IF(Server-#D=1):(#VMMoodle) ELSE(0) Retirar todos os tokens alocados em

VMMoodle
VMs F IF(Server-#D=1):(#VMs) ELSE(0) Retirar todos os tokens alocados em VMs
TI VMMoodle ProcessamentoVM Adicionar uma VM com Ns tokens definidos

em Capacidade de Processamento
F Entrada IF(Server-#D=1):(#MoodleAlocado +

#AguardaMoodle) ELSE(0)
Retirar todos os trabalhos que estavam sendo
processados

VMMoodle VMF IF(#MoodleAlocado >=
ProcessamentoVM):(0)
IF(#VMMoodle >=
ProcessamentoVM):(ProcessamentoVM)
ELSE(#VMMoodle)

Falhar uma VM retirando seus tokens de
VMMoodle e MoodleAlocado

MoodleAlocado VMF IF(#MoodleAlocado >
ProcessamentoVM):(ProcessamentoVM)
IF(#VMMoodle <
ProcessamentoVM):(#MoodleAlocado)
IF(#MoodleAlocado <
ProcessamentoVM):(0)
ELSE(#MoodleAlocado)

Falhar uma VM retirando seus tokens de
VMMoodle e MoodleAlocado

Fonte: Elaborada pelo autor (2025)

delo, 20% da capacidade total de uma VM). Este comportamento representa a alocação
e instanciação de uma nova VM para aumentar a capacidade de serviço do sistema.

• Scale-Down: Inversamente, a transição DesligarVM é responsável por otimizar o uso
de recursos em períodos de baixa demanda. Ela é disparada quando os recursos ociosos
no sistema excedem um limiar superior. No modelo, isso ocorre quando o número de
marcas em VMMoodle indica que há o equivalente a uma VM inteira mais 40% de
uma segunda VM ociosa. O seu disparo remove uma VM inativa, reduzindo custos de
infraestrutura.

O modelo proposto constitui uma base formal e flexível para a análise de desempenho do
sistema Moodle em nuvem. As seções seguintes mostrarão a validação da arquitetura básica
bem como a aplicação dos modelos aqui criados, instanciando seus parâmetros com valores
numéricos para simular diferentes cenários operacionais e avaliar métricas de interesse.
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5 VALIDAÇÃO DO MODELO ARQUITETURA BÁSICA

Após a concepção dos modelos analíticos no capítulo anterior, uma etapa fundamental do
processo de análise de sistemas é a validação. A validação busca verificar se o modelo proposto
representa, com um grau aceitável de precisão, o comportamento do sistema real. Sem esta
etapa, as conclusões tiradas a partir do modelo poderiam não ser críveis. Este capítulo detalha,
portanto, o processo experimental e estatístico realizado para validar o modelo da arquitetura
básica, que serve como alicerce para todas as análises subsequentes.

Para tal, foi adotada uma metodologia que combina a execução de um experimento prático
com a análise estatística dos resultados já detalhado no Capítulo 3. O processo consiste
em submeter uma implementação real da arquitetura básica a um ciclo de falhas e reparos
controlados, coletar dados de disponibilidade e, por fim, comparar esses dados experimentais
com os resultados obtidos através dos modelos. O objetivo é determinar se o modelo tem
evidências para ser aceito como uma representação do sistema real.

5.1 AMBIENTE EXPERIMENTAL E INJEÇÃO DE FALHAS

O primeiro passo para a validação foi a construção de um ambiente de teste que replica a
arquitetura básica proposta: uma instalação do Moodle sobre uma pilha LAMP (Linux, Apache,
MySQL, PHP). Este ambiente foi configurado em um servidor físico com especificações que
garantem o funcionamento adequado da aplicação, servindo como o nosso “sistema alvo”.

Para simular o comportamento de falha e reparo do sistema ao longo do tempo sem a
necessidade de esperar por falhas naturais, foi empregada a técnica de injeção de falhas. Um
conjunto de scripts foi desenvolvido para atuar como um injetor de falhas, que, em intervalos
de tempo aleatórios uniformes, interrompia um dos serviços essenciais dos componentes da
pilha LAMP, no Sistema Operacional ou no no Hardware. De forma análoga, o reparo era
simulado pela restauração do serviço interrompido.

Paralelamente, em um segundo servidor, um script atuou monitorando os serviços do
Moodle, do Sistema Operacional e do Hardware do servidor principal, verificando a cada 5
segundos o seu o estado do serviço Moodle e registrando a informação em um arquivo de
log. Este log de disponibilidade constitui o dado bruto coletado do experimento, contendo o
histórico temporal do comportamento do sistema real.
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Os trabalhos de (BEZERRA, 2015), (COSTA, 2015) e (DANTAS et al., 2012) mostram os tem-
pos necessários para configurar 𝑀𝑇𝑇𝐹𝑠 e 𝑀𝑇𝑇𝑅𝑠 nos scripts dos componentes estudados.
Os valores da Tabela 10 foram inseridos no RBD da Figura 16 para se ter os valores padrões
desejáveis no experimento.

Tabela 10 – Componentes do sistema

Componente MTTF (h) MTTR (h)
Hardware 8760 1.67
Sistema Operacioanl 2880 1
MySQL 1440 1
Apache 788.4 0.5
PHP 788.4 0.5

Fonte: Elaborada pelo autor (2025)

No contexto experimental, busca-se validar empiricamente que a métrica de disponibilidade
aferida no experimento esteja estatisticamente consistente com o comportamento esperado do
sistema, previamente modelado. Para isso, estabelece-se como critério que o valor observado
de disponibilidade no experimento deve situar-se dentro do intervalo de confiança de 95%
estimado a partir do modelo de referência da Figura 16

O Intervalo de Confiança é uma medida estatística crucial para a validação de modelos de
simulação e análise de resultados experimentais (CLEMENTE, 2022). Ele fornece uma faixa de
valores na qual se espera, com um determinado nível de confiança (geralmente 95%), que o
verdadeiro valor de um parâmetro da população se encontre (DEVORE, 2008). A utilização de
intervalos de confiança permite verificar se o resultado obtido por um modelo analítico ou de
simulação é estatisticamente consistente com os dados medidos em um sistema real (MORAIS

et al., 2013).
A partir dos valores mostrados na Tabela 10, derivam-se as métricas de disponibilidade

do sistema, calculadas a partir da ferramente Mercury, permitindo estabelecer uma estimativa
pontual de disponibilidade. A métrica de disponibilidade obtida nesse experimento será com-
parada ao intervalo de confiança do modelo base, visando verificar sua consistência estatística
e, portanto, a validade do experimento.

A partir da análise do modelo pelo Mercury chega-se aos valores indicados na Tabela 11:
Contudo é inviável validar um experimento quando se tem componentes com tempos de

falha ou reparos muito altos. Desafio semelhante foi enfrentado por (BEZERRA, 2015), (COSTA,
2015) e (DANTAS et al., 2012). Para isso é necessário usar um “fator de aceleração” para
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Tabela 11 – Valores de referência

Métrica Valor
MTTF (horas) 270.81150
MTTR (horas) 0.67786
Disponibilidade (%) 99.750
Número de 9’s 2.60260
Uptime (horas no ano) 8743.92581
Downtime (horas no ano) 21.88695

Fonte: Elaborada pelo autor (2025)

componentes com tempos de falha elevados de maneira que “falhem” proporcionalmente mais
rápidos. Nosso estudo aplicou um fator de aceleração de 1.000 unidades de tempo a todos os
𝑀𝑇𝑇𝐹𝑠 de maneira que seus tempos iniciais, no script de falha, foram divididos pelo “fator
de aceleração” resultando nos valores mostrados na Tabela 12. Para calcular as métricas
corretamente e validar a arquitetura básica os tempos foram restaurados à sua grandeza de
origem multiplicando-os pelo “fator de aceleração” anteriormente definido.

Tabela 12 – Parâmetros de entrada com fator de acelaração

Componente MTTF (h) MTTR (h)
Hardware 8.76 1.67
Sistema Operacioanl 2.88 1
MySQL 1.44 1
Apache 0.7884 0.5
PHP 0.7884 0.5

Fonte: Elaborada pelo autor (2025)

O sistema ficou sob monitoramento por aproximadamente 103 horas resultando em um
arquivo de log pouco mais de 74.222 linhas mostrando todos os períodos de disponibilidade
ou indisponibilidade do servidor Moodle através de marcações 𝑈𝑃 ou 𝐷𝑜𝑤𝑛 como mostrado
na Seção 3.2.

5.2 ANÁLISE DOS DADOS EXPERIMENTAIS

Com o log de disponibilidade gerado pelo experimento, a próxima fase deve ser a análise
do arquivo para extrair as métricas empíricas do sistema. A partir das marcas de tempo, foram
calculados todos os Períodos em Operação (UP) e Períodos em Falha (Down) do Moodle.
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Com base nestes dados, foi analisado a disponibilidade do sistema a partir dos valores de
MTTF e MTTF, usando a equação 2.8 de forma a verificar se o experimento condiz, com
certo grau de confiança, com a realidade.

Os dados compilados a partir do arquivo de log são mostrados na Tabela 13:

Tabela 13 – Valores do experimento

Métrica Valor
MTTF (horas) 332.6726
MTTR (horas) 1.1525
Disponibilidade (%) 99.6583
Número de 9’s 2.4664
Uptime (horas no ano) 8730.07456
Downtime (horas no ano) 29.92543

Fonte: Elaborada pelo autor (2025)

Para a validação formal do modelo analítico, adotou-se o método estatístico proposto por
(KEESEE, 1965), que consiste no cálculo do intervalo de confiança para a disponibilidade a
partir de dados experimentais. Este método utiliza o número de ciclos de falha/reparo – que
no experimento correspondeu a 94. Esse valor corresponde ao grau de liberdade da distribuição
F de Snedecor, que se demonstrou a mais adequada para os dados coletados. A partir desta
distribuição, com um nível de confiança de 95%, foram obtidos os valores críticos inferior (𝐿)

e superior (𝑈), conforme detalhado na Tabela 14.

Tabela 14 – Valores base para grau de liberdade

Distribuição F Valor
Grau de liberdade 94
Valor crítico inferior – L 0.6658
Valor crítico superior – U 1.502

Fonte: Elaborada pelo autor (2025)

Estes valores críticos são então aplicados na Equação 5.1 para determinar os limites do
intervalo de confiança da disponibilidade:

(︂ 1
1 + 𝑈

,
1

1 + 𝐿

)︂
=
(︂ 1

1 + 1.502 ,
1

1 + 0.6658

)︂
(5.1)

A execução do cálculo resulta em um intervalo de confiança para a disponibilidade experi-
mental de (0, 994877894; 0, 997723002), cujos limites estão apresentados na Tabela 15.
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Tabela 15 – Intervalo de Confiança do Experimento

Intervalo de Confiança - 95% Experimento Modelo
(0.99487 – 0.99772) 0.99658 0.99750

Fonte: Elaborada pelo autor (2025)

5.3 COMPARAÇÃO E CONCLUSÃO DA VALIDAÇÃO

Como o valor encontrado pelo modelo está contido no intervalo de confiança de 95% obtido
experimentalmente, não há evidências estatísticas para rejeitar o modelo. Esta consistência
assegura que o modelo proposto reflete adequadamente o comportamento do sistema real e,
portanto, pode ser utilizado com confiança como uma base validada para a criação de novos
modelos do sistema e para a obtenção das demais métricas.
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6 ESTUDOS DE CASO

Com a arquitetura básica devidamente validada no capítulo anterior, e com os modelos
gerais para as demais arquiteturas já concebidos, este capítulo dedica-se à aplicação prática
destes formalismos. Através de uma série de estudos de caso, os modelos serão utilizados como
uma ferramenta preditiva para avaliar quantitativamente os benefícios de diferentes cenários,
algo que seria custoso e complexo de se realizar com experimentos em ambientes reais. O
objetivo é fornecer uma análise comparativa que possa guiar o planejamento de infraestruturas
para o ambiente Moodle, respondendo às questões de pesquisa levantadas por este trabalho.

A análise se debruçará em quatro estudos de caso sequenciais e complementares, conforme
a estrutura delineada no trabalho. Primeiramente, será conduzida uma análise de sensibili-
dade sobre o modelo da arquitetura básica para identificar os componentes mais críticos que
impactam a disponibilidade do sistema.

Em seguida, como segundo estudo, será avaliado o ganho de disponibilidade obtido com a
introdução de redundância em pontos do sistema bem como em outras métricas de interesse
para o modelo. O terceiro estudo de caso será conduzido sobre a arquitetura virtualizada,
analisando o impacto da pilha de virtualização na disponibilidade de ponta a ponta do serviço.
Por fim, o último estudo de caso mudará o foco da disponibilidade para o desempenho,
utilizando o modelo concebido para analisar métricas como utilização e vazão, entre outras,
em um cenário de nuvem pública com escalonamento automático.

Em conjunto, estes estudos fornecem uma análise comparativa e abrangente, oferecendo
insights para o planejamento e a otimização de infraestruturas para ambientes de gestão de
aprendizagem.

6.1 AVALIAÇÃO DO IMPACTO DOS COMPONENTES DA ARQUITETURA BÁSICA SO-
BRE A DISPONIBILIDADE

O primeiro estudo de caso consiste em uma análise de sensibilidade do modelo validado da
arquitetura básica, para tanto usamos o modelo em CTMC descrito na Figura 18. O objetivo
desta análise é identificar quantitativamente quais parâmetros são mais críticos para o cálculo
da disponibilidade. A identificação desses pontos sensíveis é fundamental, pois permite direci-
onar os esforços de otimização de forma mais eficaz, visando o maior ganho de disponibilidade
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com o menor investimento de recursos.
Utilizando as taxas apresentadas na Tabela 10 e calculando os tempos médios de falha

e reparo do componente app – representado na CTMC da Figura 18 como a composição
funcional do Apache, PHP e MySQL, conforme ilustrado no RBD da Figura 17 – obtêm-se
os valores de taxas consolidados na Tabela 16, servindo como valores de referência (baseline)
empregados nas análises subsequentes.

Tabela 16 – CTMC – Parâmetros de Entrada

Taxa Descrição Valor ℎ−1

𝜆ℎ𝑑𝑤 Taxa de Falha da VM 1/4380
𝜆𝑠𝑜 Taxa de Falha do Software 1/2880
𝜆𝑎𝑝𝑝 Taxa de Falha da Aplicação 1/309.48
𝛼ℎ𝑑𝑤 Taxa de Instanciação da VM 1/0.0417
𝜇𝑠𝑜 Taxa de Reboot do Software 1/0.05
𝜇𝑎𝑝𝑝 Taxa de Reparo da Aplicação 1/0.607

Fonte: Elaborada pelo autor (2025)

A metodologia adotada foi a análise de sensibilidade diferencial estudada na Seção 2.8, que
avalia a taxa de variação da métrica de saída (disponibilidade) em resposta a uma mudança
em um único parâmetro de entrada, enquanto os demais permanecem fixos em seus valores
de baseline. A análise de sensibilidade diferencial é caracterizada pelo índice de sensibilidade
𝑆𝜆(𝑌 ) que indica o impacto dos parâmetros 𝜆 e 𝜇 na disponibilidade do sistema.

Importante recordar que as taxas 𝜆 e 𝜇 são, respectivamente, o inverso dos tempos de
𝑀𝑇𝑇𝐹 e 𝑀𝑇𝑇𝑅 dos estados analisados. A Tabela 17 mostra os resultados desta análise,
classificando a sensibilidade de cada parâmetro. Os resultados são ordenados de acordo com
os valores absolutos dos índices de sensibilidade. O valor absoluto reflete a intensidade com
que um parâmetro pode influenciar a disponibilidade. Valores negativos indicam que há uma
relação inversa entre os parâmetros e a disponibilidade do sistema.

Os resultados consolidados da análise revelam que a disponibilidade do sistema exibe a
maior sensibilidade em relação aos parâmetros do componente de aplicação (𝐴𝑃𝑃 ) . Isso
indica que melhorias na taxa de reparo (𝜇𝑎𝑝𝑝) ou na redução da taxa de falhas da aplicação
(𝜆𝑎𝑝𝑝) geram um impacto mais significativo na disponibilidade do serviço quando comparadas
a melhorias de mesma magnitude em outros elementos da arquitetura.

O Sistema Operacional (𝑆𝑂) é identificado como o segundo componente mais crítico com
base também nos valores de 𝜇 e 𝜆.
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Tabela 17 – Resultado da Análise de Sensibilidade

Taxa Valor do Índice de Sensibilidade
𝜆𝑎𝑝𝑝 −1,9595 × 10−3

𝜇𝑎𝑝𝑝 1,9589 × 10−3

𝜇𝑠𝑜 1,7360 × 10−5

𝜆𝑠𝑜 −1,6947 × 10−5

𝛼ℎ𝑑𝑤 9,5204 × 10−6

𝜆ℎ𝑑𝑤 −9,2484 × 10−6

Fonte: Elaborada pelo autor (2025)

Para compreender de forma mais aprofundada o impacto efetivo dessas taxas, foram con-
duzidos experimentos nos quais se variaram os parâmetros de falha e de reparo relativos à
aplicação e ao sistema operacional, considerados os dois componentes mais críticos do sis-
tema. Tais parâmetros foram ajustados para valores superiores e inferiores em relação às suas
taxas originais, de modo a avaliar diferentes cenários de comportamento. A partir desses ex-
perimentos, foi possível gerar gráficos que evidenciam em quais condições o sistema apresenta
melhores resultados em termos de disponibilidade, permitindo uma análise comparativa mais
robusta e fundamentada.

Os gráficos das Figuras 23 e 24 mostram a variação da disponibilidade (A) – delimitada
pela linha azul – em relação à taxa de interesse. Para fins de comparação, traçamos uma
reta (linha laranja) com o valor da disponibilidade validada pela 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 mostrado em seção
anterior.

Inicialmente, analisamos a variação da disponibilidade em relação ao tempo de falha da
aplicação 𝑀𝑇𝑇𝐹𝑎𝑝𝑝, pois a análise de sensibilidade mostrou que este parâmetro foi o mais
sensível. Variou-se o tempo entre 200ℎ e 650ℎ. O gráfico dos valores para esses tempos
pode ser visto na Figura 23a. Observamos que, à medida que o tempo de falha aumenta, a
disponibilidade aumenta, chegando a 99,8% próximo de 650ℎ.

Uma vez que estamos analisando a taxa de falhas, podemos estudar a falha do sistema
operacional (𝜆𝑠𝑜) – o quarto parâmetro mais sensível do modelo. A Figura 23b mostra que
com o aumento do tempo de falhas do Sistema Operacional, o Moodle tende a aumentar
sua disponibilidade, semelhante ao parâmetro anterior, porém de forma bem menos sensível
à variação. Observa-se que o LMS leva muito mais tempo para se distanciar do limiar da
da baseline, bem como apresenta significativa diferença na sua curva quando comparado aos
99,8% da análise anterior.
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Figura 23 – Variação 𝐴 × 𝑀𝑇𝑇𝐹 para componentes Aplicação e Sistema Operacional

(a) Variação 𝐴 × 𝑀𝑇𝑇𝐹𝑎𝑝𝑝 (b) Variação 𝐴 × 𝑀𝑇𝑇𝐹𝑠𝑜

Fonte: Elaborada pelo autor (2025)

Continuando o estudo de caso, percebemos que, de acordo com a Tabela 17, o segundo
componente mais sensível é o tempo de reparo do aplicativo (representado pela taxa 𝜇𝑎𝑝𝑝). De
maneira semelhante, plotamos o gráfico de sua variação na Figura 24a. Percebemos que tempos
de reparo mais prolongados resultam em menor disponibilidade do sistema,isto é, à medida
que a taxa de reparo diminui (ou seja, o tempo médio de reparo aumenta), a disponibilidade
do sistema também se reduz de forma correspondente.

Figura 24 – Variação 𝐴 × 𝑀𝑇𝑇𝑅 para componentes Aplicação e Sistema Operacional

(a) Variação 𝐴 × 𝑀𝑇𝑇𝑅𝑎𝑝𝑝 (b) Variação 𝐴 × 𝑀𝑇𝑇𝑅𝑠𝑜

Fonte: Elaborada pelo autor (2025)

Comportamento análogo é observado em relação à taxa de reparo do sistema operacional
(𝜇𝑠𝑜), conforme ilustrado na Figura 24b. Um aumento no tempo de reparo implica redução na
disponibilidade do sistema; entretanto, como esse parâmetro apresenta sensibilidade menor do
que a taxa de reparo do aplicativo (𝜇𝑎𝑝𝑝), constata-se uma diminuição bem menos acentuada
da disponibilidade mesmo diante de variações mais amplas de tempo em comparação ao efeito
verificado para 𝜇𝑎𝑝𝑝.
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É importante notar a diferença visual no comportamento das curvas apresentadas na Fi-
gura 23 e na Figura 24. Enquanto a variação da disponibilidade em função do 𝑀𝑇𝑇𝐹 (Fi-
gura 23) exibe um comportamento assintótico, a variação em função do 𝑀𝑇𝑇𝑅 (Figura 24)
apresenta um comportamento praticamente linear. Essa distinção é explicada pela relação
matemática fundamental da disponibilidade (𝐴) em estado estacionário, definida pela Equa-
ção 6.1.

𝐴 = 𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
(6.1)

No caso da análise da Figura 23, o 𝑀𝑇𝑇𝑅 é mantido constante enquanto o 𝑀𝑇𝑇𝐹 varia.
A natureza da função na Equação 6.1 faz com que, para valores baixos de 𝑀𝑇𝑇𝐹 , cada
incremento gere um ganho significativo de disponibilidade. Contudo, à medida que o 𝑀𝑇𝑇𝐹

se torna muito grande, o sistema se aproxima de seu limite teórico de 100% de disponibilidade
(𝐴 → 1). Cada hora adicional de confiabilidade (𝑀𝑇𝑇𝐹 ) resulta em um ganho marginal cada
vez menor, fazendo com que a curva tenha características de uma função assintótica.

Por outro lado, na análise da Figura 24, o 𝑀𝑇𝑇𝐹 é mantido constante enquanto o
𝑀𝑇𝑇𝑅 varia. Embora a função ainda seja inerentemente não linear, no contexto de sistemas
de alta disponibilidade como o analisado, onde o valor de 𝑀𝑇𝑇𝐹 possui magnitude maior
que o 𝑀𝑇𝑇𝑅 (𝑀𝑇𝑇𝐹 ≫ 𝑀𝑇𝑇𝑅), a relação pode ser aproximada por uma função linear.
A indisponibilidade (𝑈) do sistema é dada pela Equação 6.2:

𝑈 = 1 − 𝐴 = 𝑀𝑇𝑇𝑅

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
(6.2)

Dado que 𝑀𝑇𝑇𝐹 é um valor muito grande em comparação com a faixa de variação
de 𝑀𝑇𝑇𝑅 nos gráficos, o denominador (𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅) muda muito pouco. Portanto,
podemos aproximar 𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅 ≈ 𝑀𝑇𝑇𝐹 . Com isso, a indisponibilidade se torna
aproximadamente proporcional ao 𝑀𝑇𝑇𝑅, Equação 6.3:

𝑈 ≈ 1
𝑀𝑇𝑇𝐹

· 𝑀𝑇𝑇𝑅 (6.3)

Como a indisponibilidade (𝑈) tem uma relação aproximadamente linear com o 𝑀𝑇𝑇𝑅,
a disponibilidade (𝐴 = 1 − 𝑈) também terá. Isso resulta na reta com inclinação negativa
observada no gráfico da Figura 24, onde cada hora adicional de indisponibilidade para re-
paro (𝑀𝑇𝑇𝑅) causa uma redução percentual correspondente e praticamente constante na
disponibilidade total do sistema.
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Percebe-se, portanto, que a análise de sensibilidade é fundamental no estudo da disponi-
bilidade do sistema, pois permite a identificação dos parâmetros mais críticos que impactam
diretamente sua disponibilidade. Além da otimização de recursos, a análise de sensibilidade
fornece dados quantitativos que dão suporte a decisões estratégicas, como agendamento de
manutenção preventiva, investimento em novos equipamentos ou atualizações de software.

6.2 AVALIAÇÃO DA ARQUITETURA REDUNDANTE

Nesta seção, será realizada a avaliação do impacto da introdução de mecanismos de re-
dundância na arquitetura do Moodle, tomando como base o modelo RBD apresentado ante-
riormente na Figura 19. Esse modelo serve como referência para representar a dependência
estrutural entre os principais componentes do sistema. O objetivo da análise é quantificar, de
maneira comparativa, as melhorias obtidas a partir da duplicação de componentes críticos,
considerando métricas clássicas de confiabilidade, como o tempo médio até a falha (𝑀𝑇𝑇𝐹 ),
o tempo médio de reparo (𝑀𝑇𝑇𝑅), a disponibilidade e o número de noves associada a esta
disponibilidade. A análise também contemplará a estimativa de tempos de operação (𝑢𝑝𝑡𝑖𝑚𝑒)
e de indisponibilidade (𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒), permitindo uma visão ampla sobre os benefícios e limita-
ções do uso de redundância no contexto do Moodle.

O modelo proposto RBD foi então resolvido para obter as probabilidades de estado esta-
cionário e as métricas de interesse foram calculadas. Para avaliar a eficácia desta estratégia,
a Tabela 18 compara os resultados obtidos para o modelo redundante com os da arquitetura
básica.

Tabela 18 – Comparação entre Arquitetura Básica e Arquitetura Redundante Física

Métrica Arquitetura
Básica

Arquitetura
Redundante

Física

Melhoria (%)

A (%) 99,7503 99,9994 +0,25%
MTTF (h) 270,81 406,22 +49,99%
MTTR (h) 0,6778 0,0025 –99,63%
Números de 9’s 2,60 5,20 +100%
Uptime (h/ano) 8743,93 8765,76 +0,25%
Downtime (h/ano) 21,89 0,055 –99,75%

Fonte: Elaborada pelo autor (2025)

A avaliação do modelo sem redundância revelou um tempo médio até a falha (𝑀𝑇𝑇𝐹 )
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de aproximadamente 270,81 horas. Por sua vez, o tempo médio de reparo (𝑀𝑇𝑇𝑅) nesse
cenário foi de 0,6779 horas. A partir desses valores, a disponibilidade estimada do sistema foi
de 99,7503%, equivalente a cerca de 2,6 “noves”, demonstrando um desempenho consistente,
porém limitado em relação a falhas pontuais. Traduzindo esses indicadores para um horizonte
anual, obteve-se um tempo médio de operação (uptime) de aproximadamente 8743, 93 horas
e um tempo médio de indisponibilidade (downtime) de 21, 89 horas por ano.

Com a introdução da redundância no modelo RBD, os resultados mostraram avanços
significativos. O tempo médio até a falha foi elevado para cerca de 406, 21 horas, evidenciando
a maior resiliência do sistema em suportar falhas de componentes individuais sem comprometer
sua operação completa. Além disso, o tempo médio de reparo sofreu uma redução expressiva,
atingindo 0, 0025 horas.

No que se refere à disponibilidade, a configuração redundante apresentou um valor de
99,999%, o que corresponde a cerca de 5, 2 “noves”. Trata-se de um incremento considerá-
vel em relação ao cenário sem redundância, representando um salto qualitativo no nível de
qualidade de serviço percebido. Em termos absolutos, o sistema redundante passa a oferecer,
em média, 8765, 76 horas de operação contínua ao longo do ano, com apenas 0,055 horas de
indisponibilidade anual, contra quase 22 horas no cenário básico.

Essa evolução comprova a eficácia da estratégia de duplicação de caminhos completos
no modelo RBD, que permite contornar falhas pontuais e garantir a continuidade do serviço
com interrupções mínimas. O aumento do MTTF, aliado a um MTTR praticamente nulo,
transforma a relação 𝑀𝑇 𝑇 𝐹

𝑀𝑇 𝑇 𝐹 +𝑀𝑇 𝑇 𝑅
, elevando de forma substancial a disponibilidade do sistema.

Em síntese, a comparação entre os dois cenários demonstra que a aplicação de redundância
em paralelo não apenas aumenta a confiabilidade estrutural do sistema, como também poten-
cializa a qualidade percebida pelos usuários, ao reduzir drasticamente os períodos médios de
indisponibilidade.

6.3 AVALIAÇÃO DA ARQUITETURA VIRTUALIZADA

Após a análise de estratégias de redundância em uma arquitetura física tradicional, este
estudo de caso volta sua atenção para um paradigma arquitetônico alternativo e predominante
na computação moderna: a virtualização. A migração de uma implementação em hardware
dedicado para um ambiente virtualizado introduz benefícios como a consolidação de recursos,
flexibilidade e agilidade no gerenciamento. Contudo, também adiciona novas camadas à pilha
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de dependência do sistema (por exemplo, o hardware do hospedeiro, o sistema operacional do
hospedeiro e o hypervisor), cujo impacto na disponibilidade do serviço precisa ser quantificado.

O objetivo desta seção é, portanto, avaliar o comportamento do ambiente Moodle quando
implantado em uma infraestrutura virtualizada e, subsequentemente, analisar a eficácia da
redundância neste novo contexto. Para conduzir esta análise, serão avaliados dois cenários
distintos, ambos utilizando os modelos SPN para arquiteturas virtualizadas desenvolvidos no
Capítulo 4.

Inicialmente, será analisada uma arquitetura virtualizada básica, composta por um único
servidor hospedeiro (a partir do modelo da Figura 20). Em seguida, será avaliada uma arqui-
tetura virtualizada com redundância cold-standby no nível do servidor (a partir do modelo da
Figura 21), empregando dois hosts físicos para aumentar a resiliência do sistema. A compa-
ração entre estes cenários e a arquitetura física original fornecerá uma visão abrangente sobre
as vantagens e desvantagens de cada abordagem em termos de disponibilidade.

A partir dos trabalhos de (BEZERRA, 2015), (COSTA, 2015), (DANTAS et al., 2012) e (MELO,
2016b) e dos experimentos feitos anteriormente com a dependência 𝐴𝑃𝑃 encontramos os
tempos necessários para configurar os parâmetros de entrada do modelo RBD proposto na
Figura 20. Esses valores são mostrados na Tabela 19

Tabela 19 – Parâmetros de entrada do modelo RBD

Componente MTTF (h) MTTR (h)
Hardware 8760 1.67
Sistema Operacional 2880 1
VMM 2990 1
NC 788.0 1
VM 279.45 0.64

Fonte: Elaborada pelo autor (2025)

Resolvendo o modelo encontramos os valores expressos na Tabela 20 comparando as saídas
do modelo virtualizado com a baseline da Figura 17:

Ao introduzir a arquitetura virtualizada, cujo modelo RBD passou a contemplar seis blocos
– incluindo Hardware, Software, Virtual Machine Monitor (VMM), Node Controller (NC),
Sistema Operacional da VM (OS_VM) e a Aplicação Moodle instanciada na VM (APP_VM)
– observou-se impacto direto nos indicadores de confiabilidade e disponibilidade. O 𝑀𝑇𝑇𝐹 foi
reduzido para 177, 20 horas, evidenciando maior probabilidade de ocorrência de falhas, dada
a quantidade superior de componentes e, consequentemente, de pontos de falha potenciais.
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Tabela 20 – Comparação entre Arquitetura Básica e Arquitetura Virtualizada

Métrica Arquitetura
Básica

Arquitetura
Virtualizada

Diferença (%)

A (%) 99,7503 99,5560 –0,19%
MTTF (h) 270,81 177,20 –34,6%
MTTR (h) 0,6778 0,7901 +16,6%
Números de 9’s 2,60 2,35 –9,6%
Uptime (h/ano) 8743,93 8726,89 –0,19%
Downtime (h/ano) 21,89 38,91 +77,8%

Fonte: Elaborada pelo autor (2025)

O 𝑀𝑇𝑇𝑅 também apresentou um leve aumento, chegando a 0,7903 horas, o que pode
ser interpretado como reflexo da maior complexidade do ambiente virtualizado e da maior
quantidade de elementos interdependentes envolvidos no processo de reparo.

Em consequência desses fatores, a disponibilidade do sistema virtualizado apresentou um
decréscimo, sendo calculada em 99,556%, equivalente a aproximadamente 2, 35 “noves”. Na
prática, isso se traduziu em uma redução do tempo médio de operação anual para 8726,89
horas e um aumento do downtime anual para 38,92 horas (próximos do dobro do tempo de
indisponibilidade observado no modelo tradicional).

De forma geral, esses resultados demonstram que, apesar de a virtualização trazer benefí-
cios operacionais como flexibilidade, escalabilidade e facilidade de gerenciamento, ela também
introduz novos pontos de falha e aumenta a complexidade estrutural do sistema. Contudo,
vale ressaltar que a adoção da virtualização pode compensar essas perdas de disponibilidade ao
oferecer estratégias de recuperação rápidas ou por meio de recursos que promovam a melhoria
desta métrica, como a implementação de redundâncias.

Agora partimos para a comparação entre a arquitetura básica e a arquitetura Virtualizada
com Redundância no Host (Figura 21). O objetivo é, a partir de um novo modelo em SPN,
verificar se existem benefícios em termos de disponibilidade e no Downtime anual introduzido
pela abordagem.

A Tabela 21 sintetiza os parâmetros de entrada empregados na modelagem da disponibili-
dade do Moodle, considerando a arquitetura escolhida. Uma vez que estamos modelando via
SPN, as métricas serão: disponibilidade (A), número de noves e Downtime anual para o seu
cálculo usamos a notação constante na Tabela 22 no Mercury

O modelo SPN foi então resolvido para obter a disponibilidade e demais métricas de
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Tabela 21 – Entradas do modelo virtualizado com redundância

Parâmetro Valor
Server 1
VM 1
MTTF Servidor (horas) 484.2940
MTTR Servidor (horas) 1.0376
MTTSC (horas) 0.019166
MTTF_SU (horas) 581.15
MTTF_VM (horas) 279.4506
MTTR_VM (horas) 0.6460

Fonte: Elaborada pelo autor (2025)

Tabela 22 – Definição das métricas de interesse da SPN com redundância

Métrica Notação
A (%) P{(((#U>0)OR(#SU>0))AND(#VMU>0))}

N9s -LOG{(1-P{(((#U>0)OR(#SU>0))AND(#VMU>0)))}
Downtime (h/ano) (1-P{(((#U>0)OR(#SU>0))AND(#VMU>0))})*8760

Fonte: Elaborada pelo autor (2025)

interesse. Para avaliar a eficácia desta estratégia, a Tabela 23 compara os resultados obtidos
pela arquitetura básica com os valores obtidos através arquitetura virtualizada com redundância
aplicada.

Tabela 23 – Comparação entre Arquitetura Básica e Arquitetura Virtualizada com redundância

Métrica Arquitetura
Básica

Arquitetura
Virtualizada
Redundante

Melhoria (%)

A (%) 0.99750 0.99862 +0,112%
Números de 9’s 2.60 2.86 +10,00%
Downtime (h/ano) 21.88695 12.0758 -44,82%

Fonte: Elaborada pelo autor (2025)

A Tabela 23 apresenta os resultados comparativos entre a arquitetura básica, sem mecanis-
mos de redundância, e a arquitetura virtualizada acrescida de redundância no host, aplicadas
ao ambiente do Moodle. Observa-se que a arquitetura virtualizada com redundância oferece
ganhos em termos de disponibilidade em comparação cenário anterior sem redundância.

Em relação à disponibilidade percentual (A%), verifica-se um acréscimo de aproximada-
mente 0,112% ao se migrar do modelo básico (99,750%) para o modelo virtualizado redundante



85

(99,862%). Embora à primeira vista a variação possa parecer modesta, ela traduz a redução
de interrupções potencialmente críticas no contexto educacional, sobretudo em períodos de
alta utilização do Moodle, como épocas de provas ou entrega de trabalhos.

No indicador de números de noves, houve um incremento de 2,60 para 2,86, correspon-
dendo a uma melhoria percentual de 10,00%. Esse aumento reforça a robustez adicional
proporcionada pela combinação de virtualização e redundância.

A métrica de Downtime anual apresentou o maior ganho relativo: passou de 21,89 ho-
ras/ano para 12,08 horas/ano, evidenciando uma redução de aproximadamente 44,82%. Esse
resultado indica que a utilização de redundância no host virtualizado praticamente dobra a
capacidade do sistema Moodle de permanecer operacional ao longo do ano. A redução do
Downtime pode ser atribuída principalmente à capacidade de failover automático dos recur-
sos virtualizados redundantes, que permite a rápida transferência de cargas de trabalho entre
servidores físicos em caso de falhas, reduzindo o tempo médio de reparo.

6.4 ANÁLISE DE DESEMPENHO EM NUVEM PÚBLICA

Esta seção apresenta um estudo de caso utilizando o modelo de SPN proposto para avaliar
o desempenho do Moodle sob diversas configurações como modelado na Figura 22. A análise
emprega a ferramenta Mercury (SILVA et al., 2015) e avalia as principais métricas de desempenho
detalhadas na Tabela 24, conforme proposto em Maciel (2023a).

Para garantir que a análise de desempenho do modelo seja representativa de um cenário
real, a parametrização das transições temporizadas foi baseada na literatura. Os valores pro-
postos nos trabalhos base (DANTAS et al., 2012), (COSTA, 2015), (BEZERRA, 2015) e (FE et

al., 2017) foram utilizados como referência. A Tabela 25 detalha os tempos associados a cada
transição temporizada do modelo previamente descrito na Tabela 8.

Embora não tenham sido derivados de medições empíricas, os tempos de processamento
para diferentes instâncias da AWS foram estimados com base nas especificações de desempenho
disponibilizadas pelo provedor e ajustados proporcionalmente. Considerando um tempo de
processamento de 60 segundos para o tipo de instância menor, os tempos de processamento
para as demais quatro instâncias foram calculados reduzindo-se sucessivamente 15% em relação
ao tempo da instância anterior. Este método de estimativa, embora simplificado, é válido
para fins de modelagem e permite ajustes flexíveis por parte de administradores de sistema
em cenários reais de implantação. Os valores estimados de Mean Time Between Processing
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Tabela 24 – Métricas de Desempenho Avaliadas no Estudo de Caso

Métrica Descrição Fórmula
Utilização Proporção média de VMs

efetivamente alocadas em
relação à capacidade total.

𝐸{#VMAlocada}
⧸︀(︀

(VM + 1) ×
ProcessamentoVM

)︀
Probabilidade de
Descarte

Probabilidade de rejeição de
requisição quando todos os
recursos estão ocupados e há
requisições em espera.

𝑃{(#VMAlocada =
ProcessamentoVM × (VM +
1)) and (#AguardaMoodle > 0)}

Taxa de Descarte Frequência de perda de
requisições por unidade de
tempo, calculada pelo produto
entre a taxa de chegada e a
probabilidade de descarte.

𝑃{(#VMAlocada =
ProcessamentoVM × (VM +
1)) and (#AguardaMoodle >
0)} × (1/MTBA)

Vazão Taxa efetiva de requisições
concluídas com sucesso, obtida
como a diferença entre a taxa
de chegada e a taxa de
descarte.

(1/MTBA) −
(︀
𝑃{(#VMAlocada =

ProcessamentoVM × (VM +
1)) and (#AguardaMoodle >
0)} × (1/MTBA)

)︀
Fonte: Elaborada pelo autor (2025).

Tabela 25 – Transições Temporizadas, Variáveis e Tempos Associados

Transição Variável Tempo (h)
F MTTF 484.29406
R MTTR 1.03769
Chegada MTBA 0.0083
Processamento MTBP variável
VMF MTTF_VM 279.45069
TI MTBI 0.0167

Fonte: Elaborada pelo autor (2025).

(𝑀𝑇𝐵𝑃 ) para as cinco instâncias da AWS estão detalhados na Tabela 26. Esses valores foram
integrados ao modelo para avaliar o impacto do desempenho heterogêneo das instâncias sobre
o comportamento do sistema.

Essa abordagem contribui para um cenário de modelagem de desempenho mais realista ao
incorporar a variabilidade dos tempos de processamento entre diferentes perfis de máquinas
virtuais, o que é típico em ambientes LMSs em nuvem.

O estudo de caso foi conduzido variando-se sistematicamente os parâmetros de número de
VMs, número de alunos e capacidade de processamento da VM listados da Tabela 7, com o
objetivo de investigar o impacto dessas variáveis sobre as métricas de desempenho previamente
definidas. Para cada configuração, foram compilados dados representando a relação entre as



87

Tabela 26 – MTBP Estimado para Instâncias AWS

Instância MTBP Estimado (h)
t3.small 0.0167
t3.medium 0.0142
t3.large 0.0128
t3.xlarge 0.0115
t3.2xlarge 0.0103

Fonte: Elaborada pelo autor (2025).

métricas analisadas e os diferentes tipos de instâncias AWS especificados na Tabela 3.
Para a execução do experimento, foi adotada uma metodologia de análise em três etapas. A

primeira etapa concentrou-se na avaliação da utilização do sistema em função da escalabilidade
da infraestrutura. Para isso, o sistema foi submetido a uma carga de trabalho constante de 200
usuários simultâneos, enquanto se variava o número de máquinas virtuais (VMs) disponíveis.
O objetivo dessa etapa foi identificar o ponto de inflexão a partir do qual um aumento no
número de VMs não resultava mais em ganhos significativos na redução de saturação dos
recursos.

A partir dos pontos de inflexão identificados, realizou-se uma segunda análise, voltada à
avaliação da utilização do sistema sob demanda variável. Nessa fase, o número de VMs foi
mantido fixo para cada tipo de instância (conforme os resultados obtidos na primeira etapa),
e a carga de trabalho foi ajustada de forma progressiva, variando de 10 a 200 usuários simul-
tâneos. Esse procedimento possibilitou observar o comportamento da utilização de recursos
sob demanda crescente em uma infraestrutura já previamente dimensionada.

Por fim, a terceira etapa concentrou-se na análise do desempenho do sistema. Mantendo
o número de VMs fixo (conforme determinado na segunda etapa), o sistema foi submetido a
uma carga de usuários dimensionada explicitamente para a capacidade estimada de cada tipo
de instância, conforme apresentado na Tabela 27.

Os parâmetros ProcessamentoVM e MTBP da Tabela 7 desempenharam um papel crucial
nos experimento, pois especificam o tipo de instância da AWS avaliada. O ProcessamentoVM

foi definida com base no número mínimo de usuários simultâneos suportados por cada instância,
com valores variando de 5 a 180, conforme mostrado na Tabela 3, enquanto o MTBP foi
definido de acordo com as especificações apresentadas na Tabela 26.
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Tabela 27 – Estimativa de Usuários por Instâncias AWS

Instância Número de Usuários por Experimento
t3.small 25 – 31
t3.medium 75 – 81
t3.large 200 – 206
t3.xlarge 400 – 406
t3.2xlarge 900 – 906

Fonte: Elaborada pelo autor (2025).

6.4.1 Análise de Utilização por Número de Máquinas Virtuais

Em relação à avaliação da utilização do sistema (Figura 25), observa-se que as duas ins-
tâncias de menor porte, t3.small e t3.medium, apresentam um padrão constante de saturação.
Ambas mantêm um nível de utilização elevado, próximo de 99,77%, independentemente do
aumento no número de máquinas virtuais de 1 até 10. Esse comportamento revela uma limi-
tação clara de capacidade, indicando que essas instâncias operam como gargalos persistentes
de desempenho para a carga de trabalho aplicada, mostrando-se insuficientes para processar
a demanda, mesmo quando configuradas com o maior número de VMs.

Figura 25 – Utilização x Número de VMs

Fonte: Elaborada pelo autor (2025)

A alteração no padrão de comportamento torna-se evidente a partir da instância t3.large.
Essa configuração mantém a utilização máxima até aproximadamente quatro VMs, passando,
a partir da quinta máquina, a apresentar uma queda gradual. Ainda assim, a redução na
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utilização é modesta, atingindo valores próximos de 50% apenas quando são alocadas dez
VMs. Essa característica sugere que a capacidade de processamento da instância t3.large,
embora superior às menores, ainda exige uma quantidade relativamente elevada de VMs para
aliviar o gargalo imposto pela carga de 200 usuários simultâneos.

Por sua vez, a instância t3.xlarge revela um desempenho superior em termos de capacidade
de processamento. Sua curva de utilização começa a apresentar uma queda mais acentuada
já a partir da segunda VM, evidenciando uma mitigação mais eficiente do gargalo de recursos
conforme o sistema é escalado. Com o acréscimo de mais máquinas virtuais, a utilização
continua a declinar, alcançando valores abaixo de 30% quando são utilizadas dez VMs, o que
reforça a maior robustez da instância para atender à mesma carga de trabalho.

Por fim, a instância mais robusta, t3.2xlarge, demonstra ser capaz de resolver de forma
bastante eficiente o gargalo de recursos. Já com apenas uma VM atinge utilização máxima,
mas, ao adicionar uma segunda máquina, verifica-se uma queda substancial na taxa de utili-
zação, que passa a valores levemente superiores a 10% com dez VMs. Esse comportamento
denota a presença de capacidade computacional alta, eliminando o gargalo aparente com
apenas algumas unidades.

Os resultados apresentados permitem evidenciar uma estratificação clara no desempenho
das diferentes instâncias avaliadas. As instâncias de menor porte revelam-se sistematicamente
subdimensionadas para a carga de 200 usuários, enquanto as de maior porte, especialmente
a t3.2xlarge, asseguram maior escalabilidade e flexibilidade operacional, ressaltando a impor-
tância crítica do dimensionamento adequado para garantir a eficiência e o desempenho do
Moodle.

Atendendo ao objetivo de identificar o ponto de inflexão a partir do qual um aumento
no número de VMs deixa de gerar ganhos significativos na redução da saturação adotou-se
como critério prático o menor número de VMs após o qual o incremento de mais uma VM
produz uma redução marginal da utilização considerada não significativa (ordem de grandeza:
redução < 5 pontos percentuais no nível de utilização). Com base nas curvas da Figura 25
e nos parâmetros experimentais, os pontos de inflexão observados são, aproximadamente, os
seguintes: t3.small e t3.medium não alcançaram um ponto de inflexão no intervalo testado
(1–10 VMs), mantendo utilização elevada (≈ 99,7%) e, portanto, não se mostram solução
custo-efetiva para a carga de 200 usuários; t3.large apresenta ponto de inflexão próximo de
4–5 VMs, a partir do qual ganhos adicionais passam a ser marginais. A instância t3.xlarge

tem ponto de inflexão em torno de 2–3 VMs, apresentando diminuições mais acentuadas de
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utilização nas primeiras VMs adicionadas. A t3.2xlarge, por sua vez, apresenta ponto de
inflexão em 1–2 VMs, indicando que uma ou duas unidades já fornecem folga substancial
para a carga testada. Em termos de compromisso custo × desempenho, pode-se optar pela
t3.xlarge com 2 VMs ou t3.large com 4–5 VMs, visto que ambas as opções aliviam gargalos
com número moderado de VMs.

6.4.2 Análise de Utilização sob Carga Variável de Usuários Simultâneos

No experimento que avaliou a utilização do sistema sob demanda variável, manteve-se
a infraestrutura fixa em 5 máquinas virtuais, enquanto a carga de trabalho foi escalonada
de 10 até 200 usuários simultâneos. O comportamento do sistema, ilustrado na Figura 26,
revela uma estratificação bastante clara do desempenho das instâncias estudadas, permitindo
inferências relevantes sobre sua capacidade de suportar o crescimento da demanda.

Figura 26 – Utilização x Núm. de Usuários

Fonte: Elaborada pelo autor (2025)

As instâncias de menor porte, t3.small e t3.medium, apresentaram esgotamento precoce
de seus recursos computacionais. O gráfico evidencia que a t3.small atingiu rapidamente a
utilização próxima ao limite máximo (cerca de 99,7%) já a partir de 30 usuários, mantendo-se
saturada para quaisquer valores adicionais de carga. A t3.medium, por sua vez, mesmo com
um incremento moderado de recursos, atingiu saturação com aproximadamente 80 usuários,
não apresentando capacidade adicional para absorver picos. Esse comportamento demons-
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tra uma subdimensionamento evidente dessas configurações, caracterizando-as como gargalos
persistentes para aplicações de maior porte.

Ao se observar a instância t3.large, percebe-se um padrão intermediário. Inicialmente, sua
utilização cresce linearmente em função do aumento de usuários, evidenciando bom aproveita-
mento da capacidade até um ponto de saturação próximo de 200 usuários. Esse padrão revela
que a t3.large é mais adequada ao cenário avaliado, pois consegue distribuir de forma eficiente
seus recursos computacionais durante grande parte do crescimento de demanda, apresentando
saturação apenas em cargas elevadas, compatíveis com o limite projetado para essa categoria
de instância.

Por outro lado, as instâncias mais robustas, t3.xlarge e t3.2xlarge, destacam-se pelo sig-
nificativo excedente de capacidade computacional. A t3.xlarge inicia com baixa utilização e
vai crescendo suavemente, alcançando apenas cerca de 45% de uso com 180 usuários, o
que evidencia grande folga de processamento para acomodar aumentos adicionais de carga
sem riscos de degradação do serviço. Mais impressionante ainda é a t3.2xlarge, que mantém
utilização próximo de 20% mesmo no pico de 200 usuários simulados, demonstrando estar
substancialmente sobredimensionada frente ao cenário testado.

Essa análise conjunta sugere que, embora as instâncias de menor porte não atendam de
forma satisfatória à demanda em ambientes com alta concorrência, as instâncias de médio
e alto porte oferecem margens de segurança amplas, dotadas de capacidade para absorver
crescimento futuro de requisições bem como picos de demanda, preservando a estabilidade e
a qualidade do serviço..

6.4.3 Análise de Desempenho com Carga Estimada de Usuários por Instância

No estudo de caso final, o desempenho do sistema foi avaliado novamente. Diferentemente
dos estudos anteriores, o objetivo aqui foi submeter cada tipo de instância a uma carga de
trabalho adaptada explicitamente à sua capacidade estimada, mantendo a configuração da
infraestrutura fixa em cinco VMs.

Esse procedimento visou proporcionar uma comparação mais justa entre as instâncias,
permitindo mensurar não apenas a capacidade de processamento, mas também a qualidade
do serviço e a experiência do usuário final sob uma demanda ideal ou próxima do limite de
capacidade.

Para quantificar o desempenho, três métricas de interesse foram avaliadas: probabilidade
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de descarte, taxa de descarte e a vazão, conforme mostrado nas Tabelas 28, 29 e 30.
A análise combinada desses dados permite avaliar a capacidade de processamento de cada
instância.

Tabela 28 – Probabilidade de Descarte para Instâncias AWS com 5 VMs

t3.small t3.medium t3.large t3.xlarge t3.2xlarge
Users DP Users DP Users DP Users DP Users DP

25 0 75 0 200 0 400 0 900 0
26 0.6051 76 0.5540 201 0.5190 401 0.4827 901 0.4445
27 0.9077 77 0.8799 202 0.8582 402 0.8332 902 0.8039
28 0.9833 78 0.9758 203 0.9691 403 0.9604 903 0.9493
29 0.9959 79 0.9946 204 0.9932 404 0.9913 904 0.9884
30 0.9975 80 0.9973 205 0.9972 405 0.9968 905 0.9963
31 0.9977 81 0.9977 206 0.9977 406 0.9977 906 0.9976

Fonte: Elaborada pelo autor (2025).

Tabela 29 – Taxa de Descarte para Instâncias AWS com 5 VMs (h−1)

t3.small t3.medium t3.large t3.xlarge t3.2xlarge
Users DR Users DR Users DR Users DR Users DR

25 0 75 0 200 0 400 0 900 0
26 72.6137 76 66.4831 201 62.2822 401 57.9204 901 53.3421
27 108.9215 77 105.5908 202 102.9880 402 99.9809 902 96.4727
28 117.9992 78 117.0937 203 116.2906 403 115.2532 903 113.9105
29 119.5127 79 119.3497 204 119.1890 404 118.9503 904 118.6106
30 119.7022 80 119.6817 205 119.6627 405 119.6215 905 119.5607
31 119.7213 81 119.7210 206 119.7247 406 119.7191 906 119.7144

Fonte: Elaborada pelo autor (2025).

Tabela 30 – Vazão para Instâncias AWS com 5 VMs

t3.small t3.medium t3.large t3.xlarge t3.2xlarge
Users TP Users TP Users TP Users TP Users TP

25 120.0000 75 120.0000 200 120.0000 400 120.0000 900 120.0000
26 47.3863 76 53.5169 201 57.7179 401 62.0797 901 66.6580
27 11.0786 77 14.4092 202 17.0120 402 20.0191 902 23.5273
28 2.0008 78 2.9064 203 3.7094 403 4.7468 903 6.0896
29 0.4874 79 0.6504 204 0.8111 404 1.0498 904 1.3895
30 0.2979 80 0.3183 205 0.3373 405 0.3785 905 0.4393
31 0.2787 81 0.2790 206 0.2754 406 0.2810 906 0.2856

Fonte: Elaborada pelo autor (2025).

Observando os resultados, nota-se que para todas as instâncias, à medida que o número
de usuários aumenta, a probabilidade de descarte aumenta, atingindo valores próximos de 1, o
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que sinaliza saturação do sistema e filas cheias para o número especificado de usuários. Conse-
quentemente, a taxa de descarte também cresce, aproximando-se da taxa máxima de chegada,
o que demonstra que a maioria das requisições adicionais provavelmente será rejeitada.

Esse comportamento afeta diretamente a vazão do sistema, que começa em níveis altos
(próximo a 120 requisições por unidade de tempo), mas declina à medida que o sistema
se aproxima de sua capacidade máxima, caindo para valores próximos de zero em cenários
de maior sobrecarga. Esses resultados demonstram que, embora as instâncias consigam lidar
bem com cargas moderadas, elas rapidamente atingem seus limites operacionais e começam
a rejeitar requisições.

Assim, o estudo destaca a importância de estratégias de escalabilidade ou balanceamento
de carga para garantir um desempenho adequado e uma experiência satisfatória ao usuário
diante de picos de demanda.

De forma geral, os resultados evidenciam que, ainda que as instâncias consigam operar
de maneira aceitável sob cargas moderadas, o aumento exponencial de usuários impõe uma
limitação previsível, tornando inevitável o descarte de requisições e a redução drástica da vazão.
Esses achados reforçam a importância de um dimensionamento cuidadoso da infraestrutura e
da adoção de políticas de escalabilidade automatizada para atender demandas dinâmicas de
forma sustentável e garantir qualidade de serviço.

Ao final desta análise, é importante destacar algumas considerações adicionais acerca das
hipóteses e simplificações adotadas. Nesta etapa, assumiu-se que as requisições geradas pe-
los usuários são homogêneas em termos de custo de processamento, isto é, possuem tempos
médios de serviço equivalentes. Essa hipótese, embora coerente com o objetivo de avaliar o
comportamento global do sistema sob diferentes configurações de instâncias virtuais, implica
a abstração de uma característica relevante dos sistemas de gestão de aprendizagem: a he-
terogeneidade dos objetos de aprendizagem manipulados. Arquivos de vídeo, apresentações
interativas e documentos PDF, por exemplo, demandam diferentes quantidades de processa-
mento, memória e largura de banda, afetando de modo desigual os recursos da pilha LAMP.
Considerar explicitamente essas classes de requisição representaria um refinamento importante
do modelo, permitindo caracterizar cargas mistas e avaliar o impacto diferencial de cada tipo
de conteúdo sobre o desempenho do sistema.

O modelo final proposto também representa o ambiente Moodle de forma agregada, tra-
tando a pilha LAMP como um único bloco funcional. Essa escolha visou reduzir a complexidade
estrutural inicial e viabilizar a análise comparativa entre instâncias com base em métricas de
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utilização global. No entanto, reconhece-se que os elementos que compõem a pilha impactam
de maneira distinta a latência e a capacidade de resposta do sistema. Uma possível extensão
deste trabalho consiste, portanto, em estratificar o modelo em subcomponentes corresponden-
tes a cada camada da pilha, de modo a capturar com maior precisão os gargalos específicos e
analisar de forma mais granular a contribuição individual de cada serviço para o desempenho
global do Moodle.

Além disso, observa-se que a análise de desempenho foi conduzida sob uma perspectiva
sistêmica e generalista, com foco no comportamento agregado dos recursos computacionais.
A incorporação de métricas específicas do LMS (como o número de acessos simultâneos por
módulo, fórum, tarefa, questionário, etc ou os padrões de uso observados em períodos de
pico) poderia proporcionar uma análise mais aderente ao comportamento real da aplicação.
Tal abordagem permitiria calibrar o modelo a partir de traços de uso empíricos do Moodle,
aprimorando a representatividade dos resultados e fortalecendo a conexão entre a modelagem
e o contexto de uso educacional.

Por fim, ressalta-se que a validação empírica realizada concentrou-se no modelo básico
e na métrica de disponibilidade estacionária, uma vez que esse cenário fornece a referência
fundamental sobre a qual os modelos redundantes e virtualizados foram construídos. Essa
decisão metodológica buscou assegurar a consistência interna dos resultados e a correção
estrutural do modelo antes da aplicação de extensões mais complexas. A validação dos modelos
avançados demandaria medições experimentais detalhadas, com instrumentação distribuída,
monitoramento de falhas e correlação temporal de eventos entre múltiplas VMs. Embora tal
processo extrapole o escopo desta pesquisa, constitui um desdobramento natural do trabalho,
possibilitando a verificação empírica das métricas de performabilidade e confiabilidade sob
diferentes níveis de virtualização e redundância.
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7 CONCLUSÃO E TRABALHOS FUTUROS

Esta dissertação propôs-se a enfrentar o desafio de avaliar e otimizar quantitativamente a
disponibilidade e o desempenho do ambiente de gestão de aprendizagem Moodle, uma plata-
forma de missão crítica para diversas instituições educacionais. Para tal, foi desenvolvido um
framework de modelagem híbrido e hierárquico, que se mostrou capaz de capturar a complexi-
dade de diferentes arquiteturas de implantação, desde instalações físicas básicas até ambientes
elásticos em nuvem pública. Os objetivos específicos traçados no início deste trabalho foram
alcançados, culminando na geração de modelos validados, na quantificação de métricas de
interesse e na formulação de recomendações estratégicas alicerçadas na análise de instâncias
em nuvem.

O ponto de partida foi o estabelecimento de uma baseline para uma arquitetura básica em
hardware físico. A validação experimental, por meio de injeção de falhas, conferiu credibilidade
ao modelo dentro de um intervalo de confiança de 95%, que estimou uma disponibilidade de
99,75%, correspondendo a um tempo de inatividade anual de quase 22 horas. A análise de
sensibilidade subsequente foi importante, ao identificar a camada de aplicação (APP) como o
componente mais crítico, indicando que os esforços de otimização deveriam se concentrar em
sua taxa de falha e reparo para obter o maior impacto.

A primeira evolução arquitetural investigada foi a introdução de redundância física completa
do sistema. Os resultados foram numericamente significativos, com uma melhoria de mais de
90% na redução do downtime, que caiu para 0,055 horas anuais.

A investigação da arquitetura virtualizada trouxe à tona uma das nuances mais impor-
tantes deste trabalho. Ao introduzir novas camadas de software na pilha de dependência, a
complexidade do sistema aumentou e, paradoxalmente, a disponibilidade foi degradada, com o
downtime anual subindo para 38,92 horas, um aumento de 77,8% em relação ao cenário base.
Este resultado demonstrou que sua verdadeira força reside em sua capacidade de atuar como
uma plataforma intermediária para técnicas avançadas de recuperação. De fato, a combinação
de virtualização com redundância no nível do host superou a arquitetura básica, reduzindo o
downtime anual em 44,82% , oferecendo uma solução equilibrada e viável.

Finalmente, a análise de desempenho em nuvem pública, utilizando um modelo SPN, de-
monstrou o trade-off fundamental entre os tipos de instâncias e o desempenho do sistema.
Instâncias subdimensionadas saturaram rapidamente, levando a altas probabilidades de des-
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carte e a uma queda abrupta da vazão. Este comportamento evidenciou uma limitação das
políticas de escalonamento puramente reativas, apontando para a necessidade de abordagens
mais inteligentes e preditivas para o gerenciamento de recursos.

7.1 PRINCIPAIS CONTRIBUIÇÕES

As principais contribuições deste trabalho são:

• Framework Analítico Híbrido Validado: A principal contribuição científica foi a propo-
sição e validação empírica de uma metodologia que integrou, de forma hierárquica, o
formalismo RBD. Este framework demonstrou ser robusto e flexível, capaz de avaliar
conjuntamente a disponibilidade e o desempenho de sistemas complexos. Embora apli-
cado ao Moodle, sua natureza é genérica e pode ser adaptada para a análise de qualquer
aplicação web multicamada, servindo como um guia metodológico para pesquisadores e
profissionais da área.

• Diretrizes Quantitativas para Planejamento de Capacidade: O trabalho vai além de aná-
lises teóricas, ela fornecer um conjunto de dados comparativos que traduzem decisões
arquitetônicas (como a adoção de redundância ou virtualização) em métricas de impacto
de interesse para gestores e tomadores de decisão (por exemplo, horas de downtime por
ano e vazão de requisições).

• Metodologia Experimental e Artefatos Reprodutíveis: A validação dos modelos teóricos
por meio de um experimento prático de injeção de falhas conferiu um alto grau de
credibilidade aos resultados obtidos. A metodologia detalhada e os scripts de injeção de
falhas, disponibilizados como apêndice da dissertação, constituem um ativo valioso para
a comunidade, permitindo a replicação, verificação e extensão desta pesquisa por outros
pesquisadores.

Além das contribuições mencionadas, o artigo “Availability Evaluation of a Learning Ma-
nagement Environment” foi aceito no “1st Workshop on Resilience Engineering in Computer
Systems” durante o LADC’24: 13th Latin–American Symposium on Dependable and Secure
Computing.

Atualmente o artigo “Stochastic Model for the Performance of a Learning Management
System” foi submetido ao LADC’25, encontrando-se sob avaliação.
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7.2 LIMITAÇÕES E DIFICULDADES

Apesar das contribuições apresentadas, este trabalho enfrentou algumas limitações e de-
safios que merecem destaque.:

• Modelos de Falha e Reparo: A utilização de distribuições de probabilidade exponenciais
para modelar os tempos de falha e de reparo foi uma premissa que viabilizou a análise
por meio de Cadeias de Markov. No entanto, essa abordagem pode não retratar todas
as realidades, pois falhas no mundo real podem seguir outras distribuições ou ocorrer
em “rajadas”, e o tempo de reparo pode depender da complexidade da falha, aspectos
não capturados pelo modelo.

• Parametrização do Modelo de Desempenho em Nuvem: Os parâmetros de desempenho
para as instâncias de nuvem (AWS), como a capacidade de usuários e os tempos de
processamento, foram estimados com base na documentação oficial do Moodle e em
ajustes proporcionais, em vez de medições empíricas diretas sob carga. Essa abordagem
foi necessária para viabilizar a análise comparativa entre diferentes tipos de instância.
Contudo, implica que os valores absolutos de desempenho (vazão, taxa de descarte)
são uma aproximação. O desempenho em um ambiente de produção real pode variar,
influenciado por fatores como a complexidade dos cursos e o comportamento específico
dos usuários.

• Política de Escalonamento em Nuvem: A análise de desempenho em nuvem focou exclu-
sivamente em políticas de escalonamento reativas, baseadas em limiares de utilização.
Embora comuns em implementações padrão, os resultados sugeriram que elas podem
apresentar problemas, especialmente para lidar com picos de carga súbitos

7.3 TRABALHOS FUTUROS

Com base nas limitações e descobertas desta pesquisa, delineiam-se direções para investi-
gações subsequentes. Primeiramente, recomenda-se a expansão dos modelos para arquiteturas
de microsserviços, investigando o impacto de containerização (Docker/Kubernetes) na dispo-
nibilidade do Moodle, com ênfase em falhas em cascata e orquestração de clusters.
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Em segundo lugar, propõe-se a integração de análises econômicas aos formalismos de
desempenho, avaliando trade-offs entre SLAs, custos operacionais e políticas de auto-scaling

em ambientes de nuvem híbrida (AWS/Azure/GCP).
Um terceiro eixo envolve o desenvolvimento de mecanismos de tolerância a falhas adapta-

tiva, utilizando aprendizado de máquina para prever falhas e ajustar redundâncias dinamica-
mente. Paralelamente, estudos sobre segurança cibernética poderiam incorporar ameaças (ex.:
DDoS, injeção SQL) aos modelos SPN, quantificando seu impacto na disponibilidade.

Para validar a escalabilidade do framework, sugere-se sua aplicação em instituições de
grande porte, coletando datasets reais de produção.

Por fim, a criação de plugins para ferramentas como Zabbix permitiria automatizar a coleta
de métricas em tempo real, consolidando a ponte entre modelagem teórica e operação real.
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APÊNDICE A – SCRIPT PARA INJEÇÃO DE FALHA E REPARO NO

HARDWARE

Script para injetar falhas e reparos no hardware

1 #!/usr/bin/python3

2

3 import subprocess

4 import time

5 from datetime import datetime

6 import numpy as np

7

8 def falha(mttf):

9 tempo_falha = np.random.exponential(mttf , 1)[0]

10 time.sleep(tempo_falha)

11 timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

12

13 # Chama o script de falha.py (certifique -se de fornecer o caminho

correto se n o estiver na mesma pasta)

14 subprocess.run(["python", "hardware_desliga.py"])

15

16 return tempo_falha , timestamp

17

18 def reparo(mttr):

19 tempo_reparo = np.random.exponential(mttr , 1)[0]

20 time.sleep(tempo_reparo)

21 timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

22

23 # Chama o script de reparo.py (certifique -se de fornecer o caminho

correto se n o estiver na mesma pasta)

24 subprocess.run(["python", "hardware_religa.py"])

25

26 return tempo_reparo , timestamp

27

28 def main():

29 mttf = 8.760*3600 # Mean Time To Failure in seconds

30 mttr = 1.67*3600 # Mean Time To Repair in seconds

31 log_file = "fault_log.txt"

32
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33 try:

34 while True:

35 # Simula falha

36 falha_tempo , falha_timestamp = falha(mttf)

37 with open(log_file , "a") as log:

38 log.write(f"Hardware Failure - MTTF: {falha_tempo :.2f} -

Timestamp: {falha_timestamp }\n")

39

40 # Simula reparo

41 reparo_tempo , reparo_timestamp = reparo(mttr)

42 with open(log_file , "a") as log:

43 log.write(f"Hardware Repair - MTTR: {reparo_tempo :.2f} -

Timestamp: {reparo_timestamp }\n")

44

45 except KeyboardInterrupt:

46 print(" S i m u l a o interrompida pelo u s u r i o .")

47

48 if __name__ == "__main__":

49 main()

Código Fonte 1 – Código Python para injetar falhas e reparos no hardware

Script para desligar o hardware (falha)

1 import winrm

2

3 def desligar_maquina_fisica(ip_machine , usuario , senha):

4 winrm_session = winrm.Session(

5 f'http ://{ ip_machine }:5985/ wsman',

6 auth=(usuario , senha),

7 server_cert_validation='ignore '

8 )

9

10 script_path = r'C:\ ScriptsHyperV\Shutdown -Remote.ps1' # Coloque o

caminho correto do script

11 comando_ps = f'powershell -File {script_path} -ComputerName {

ip_machine}'

12

13 resultado = winrm_session.run_ps(comando_ps)

14

15 if resultado.status_code == 0:
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16 print(f"A m q u i n a '{ip_machine}' foi desligada com sucesso.")

17 else:

18 print(f"Erro ao desligar a m q u i n a '{ip_machine }': {resultado.

std_err.decode ()}")

19

20 # C o n f i g u r a e s de IPMI da m q u i n a f s i c a

21 ip_machine = '10.255.255.40 '

22 usuario_machine = 'administrador '

23 senha_machine = '@vfesc87!'

24

25 # Chamar a f u n o para desligar a m q u i n a f s i c a

26 desligar_maquina_fisica(ip_machine , usuario_machine , senha_machine)

Código Fonte 2 – Código Python para desligar o hardware

Script para religar o hardware (reparo)

1 from wakeonlan import send_magic_packet

2 from ping3 import ping , verbose_ping

3 import time

4

5 def verificar_status_da_maquina(ip, tempo_espera =10):

6 try:

7 resposta_ping = ping(ip, timeout=tempo_espera)

8 return resposta_ping is not None

9 except Exception as e:

10 print(f"Erro ao verificar status da m q u i n a : {e}")

11 return False

12

13 def ligar_maquina_remotamente(mac_address , ip_address):

14 if verificar_status_da_maquina(ip_address):

15 print(f"A m q u i n a com o e n d e r e o IP '{ip_address}' j e s t

ligada.")

16 else:

17 try:

18 send_magic_packet(mac_address)

19 print(f"Pacote Wake -on-LAN enviado com sucesso para '{

mac_address }'.")

20 except Exception as e:

21 print(f"Erro ao enviar pacote Wake -on-LAN: {e}")

22
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23 # Aguarde alguns segundos antes de verificar o status

novamente

24 time.sleep (5)

25

26 if verificar_status_da_maquina(ip_address):

27 print(f"A m q u i n a com o e n d e r e o IP '{ip_address}' foi

ligada a p s o erro no envio do pacote.")

28 else:

29 print(f"A m q u i n a com o e n d e r e o IP '{ip_address}'

ainda e s t desligada.")

30

31 # E n d e r e o MAC da placa de rede da m q u i n a

32 mac_address = 'B8:97:5A:8A:34:93 '

33 # E n d e r e o IP da m q u i n a

34 ip_address = '10.255.255.40 '

35

36 # Chamar a f u n o para enviar o pacote WoL

37 ligar_maquina_remotamente(mac_address , ip_address)

Código Fonte 3 – Código Python para religar o hardware



110

APÊNDICE B – SCRIPT PARA INJEÇÃO DE FALHA E REPARO NO

SISTEMA OPERACIONAL

Script para injetar falhas e reparos no Sistema Operacional

1 #!/usr/bin/python3

2

3 import subprocess

4 import time

5 from datetime import datetime

6 import numpy as np

7

8 def falha(mttf):

9 tempo_falha = np.random.exponential(mttf , 1)[0]

10 time.sleep(tempo_falha)

11 timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

12

13 # Chama o script de falha.py (certifique -se de fornecer o caminho

correto se n o estiver na mesma pasta)

14 subprocess.run(["python", "os_desliga.py"])

15

16 return tempo_falha , timestamp

17

18 def reparo(mttr):

19 tempo_reparo = np.random.exponential(mttr , 1)[0]

20 time.sleep(tempo_reparo)

21 timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

22

23 # Chama o script de reparo.py (certifique -se de fornecer o caminho

correto se n o estiver na mesma pasta)

24 subprocess.run(["python", "os_inicia.py"])

25

26 return tempo_reparo , timestamp

27

28 def main():

29 mttf = 2.8*3600 # Mean Time To Failure in seconds

30 mttr = 1*3600 # Mean Time To Repair in seconds

31 log_file = "fault_log.txt"

32
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33 try:

34 while True:

35 # Simula falha

36 falha_tempo , falha_timestamp = falha(mttf)

37 with open(log_file , "a") as log:

38 log.write(f"OS Failure - MTTF: {falha_tempo :.2f} -

Timestamp: {falha_timestamp }\n")

39

40 # Simula reparo

41 reparo_tempo , reparo_timestamp = reparo(mttr)

42 with open(log_file , "a") as log:

43 log.write(f"OS Repair - MTTR: {reparo_tempo :.2f} -

Timestamp: {reparo_timestamp }\n")

44

45 except KeyboardInterrupt:

46 print(" S i m u l a o interrompida pelo u s u r i o .")

47

48 if __name__ == "__main__":

49 main()

Código Fonte 4 – Código Python para injetar falhas e reparos no Sistema Operacional

Script para desligar o Sistema Operacional (falha)

1 import winrm

2 from winrm.protocol import Protocol

3

4 def pausar_vm(nome_vm , ip_hyper_v , usuario , senha):

5 # Configurar a c o n e x o WinRM

6 winrm_session = winrm.Session(

7 f'http ://{ ip_hyper_v }:5985/ wsman',

8 auth=(usuario , senha),

9 server_cert_validation='ignore ' # Ajuste isso conforme

n e c e s s r i o para ambientes de p r o d u o

10 )

11

12 # Caminho do script no servidor remoto

13 script_path = r'C:\ ScriptsHyperV\Pause -VM-Remote.ps1'

14

15 # Comando PowerShell para executar o script remoto

16 comando_ps = f'powershell -File {script_path} -VMName {nome_vm}'
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17

18 # Executar o comando via WinRM

19 resultado = winrm_session.run_ps(comando_ps)

20

21 # Verificar o resultado

22 if resultado.status_code == 0:

23 print(f"A VM '{nome_vm}' foi pausada com sucesso.")

24 else:

25 print(f"Erro ao pausar a VM '{nome_vm}': {resultado.std_err.

decode ()}")

26

27 # Nome da VM

28 nome_da_vm = 'UbuntuServer -CInMoodle '

29

30 # IP do Hyper -V

31 ip_hyper_v = '10.255.255.40 '

32

33 # Credenciais do Hyper -V

34 usuario_hyper_v = 'administrador '

35 senha_hyper_v = '@vfesc87!'

36

37 pausar_vm(nome_da_vm , ip_hyper_v , usuario_hyper_v , senha_hyper_v)

Código Fonte 5 – Código Python para desligar o Sistema Operacional

Script para religar o Sistema Operacional (reparo)

1 import winrm

2 from winrm.protocol import Protocol

3

4 def iniciar_vm(nome_vm , ip_hyper_v , usuario , senha):

5 winrm_session = winrm.Session(

6 f'http ://{ ip_hyper_v }:5985/ wsman',

7 auth=(usuario , senha),

8 server_cert_validation='ignore '

9 )

10

11 script_path = r'C:\ ScriptsHyperV\Start -VM-Remote.ps1'

12 comando_ps = f'powershell -File {script_path} -VMName {nome_vm}'

13

14 resultado = winrm_session.run_ps(comando_ps)



113

15

16 if resultado.status_code == 0:

17 print(f"A VM '{nome_vm}' foi iniciada com sucesso.")

18 else:

19 print(f"Erro ao iniciar a VM '{nome_vm}': {resultado.std_err.

decode ()}")

20

21 # Nome da VM

22 nome_da_vm = 'UbuntuServer -CInMoodle '

23

24 # IP do Hyper -V

25 ip_hyper_v = '10.255.255.40 '

26

27 # Credenciais do Hyper -V

28 usuario_hyper_v = 'administrador '

29 senha_hyper_v = '@vfesc87!'

30

31 iniciar_vm(nome_da_vm , ip_hyper_v , usuario_hyper_v , senha_hyper_v)

Código Fonte 6 – Código Python para religar o Sistema Operacional
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APÊNDICE C – SCRIPT PARA INJEÇÃO DE FALHA E REPARO NO APACHE

1 #!/usr/bin/python3

2

3 import numpy as np

4 import time

5 from datetime import datetime

6 import paramiko

7

8 def falha(mttr , ssh_client):

9 tempo_falha = np.random.exponential(mttr , 1)[0]

10 time.sleep(tempo_falha)

11 timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

12

13 # Simula falha no servidor remoto (substitua o comando conforme

n e c e s s r i o )

14 comando_falha = "sudo service apache2 stop"

15 stdin , stdout , stderr = ssh_client.exec_command(comando_falha)

16

17 return tempo_falha , timestamp

18

19 def reparo(mttf , ssh_client):

20 tempo_reparo = np.random.exponential(mttf , 1)[0]

21 time.sleep(tempo_reparo)

22 timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

23

24 # Simula reparo no servidor remoto (substitua o comando conforme

n e c e s s r i o )

25 comando_reparo = "sudo service apache2 start"

26 stdin , stdout , stderr = ssh_client.exec_command(comando_reparo)

27

28 return tempo_reparo , timestamp

29

30 def conectar_ssh(host , usuario , senha):

31 ssh = paramiko.SSHClient ()

32 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy ())

33 ssh.connect(host , username=usuario , password=senha)

34 return ssh

35
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36 def main():

37 host_remoto = "10.255.255.41"

38 usuario_ssh = "gervasio"

39 senha_ssh = "123456"

40

41 mttf = 0.7884*3600 # Mean Time To Failure

42 mttr = 0.5*3600 # Mean Time To Repair in seconds

43 log_file = "fault_log.txt"

44

45 ssh_cliente = conectar_ssh(host_remoto , usuario_ssh , senha_ssh)

46

47 try:

48 while True:

49 # Simula falha

50 falha_tempo , falha_timestamp = falha(mttf , ssh_cliente)

51 with open(log_file , "a") as log:

52 log.write(f"Apache Failure - MTTF: {falha_tempo :.2f} -

Timestamp: {falha_timestamp }\n")

53

54 # Simula reparo

55 reparo_tempo , reparo_timestamp = reparo(mttr , ssh_cliente)

56 with open(log_file , "a") as log:

57 log.write(f"Apache Repair - MTTR: {reparo_tempo :.2f} -

Timestamp: {reparo_timestamp }\n")

58

59 except KeyboardInterrupt:

60 print(" S i m u l a o interrompida pelo u s u r i o .")

61 ssh_cliente.close()

62

63 if __name__ == "__main__":

64 main()

Código Fonte 7 – Código Python para injetar falhas e reparos no Apache
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APÊNDICE D – SCRIPT PARA INJEÇÃO DE FALHA E REPARO NO MYSQL

1 #!/usr/bin/python3

2

3 import numpy as np

4 import time

5 from datetime import datetime

6 import paramiko

7

8 def falha(mttr , ssh_client):

9 tempo_falha = np.random.exponential(mttr , 1)[0]

10 time.sleep(tempo_falha)

11 timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

12

13 # Simula falha no servidor remoto (substitua o comando conforme

n e c e s s r i o )

14 comando_falha = "sudo service mysql stop"

15 stdin , stdout , stderr = ssh_client.exec_command(comando_falha)

16

17 return tempo_falha , timestamp

18

19 def reparo(mttf , ssh_client):

20 tempo_reparo = np.random.exponential(mttf , 1)[0]

21 time.sleep(tempo_reparo)

22 timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

23

24 # Simula reparo no servidor remoto (substitua o comando conforme

n e c e s s r i o )

25 comando_reparo = "sudo service mysql start"

26 stdin , stdout , stderr = ssh_client.exec_command(comando_reparo)

27

28 return tempo_reparo , timestamp

29

30 def conectar_ssh(host , usuario , senha):

31 ssh = paramiko.SSHClient ()

32 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy ())

33 ssh.connect(host , username=usuario , password=senha)

34 return ssh

35
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36 def main():

37 host_remoto = "10.255.255.41"

38 usuario_ssh = "gervasio"

39 senha_ssh = "123456"

40

41 mttf = 1.4*3600 # Mean Time To Failure

42 mttr = 1*3600 # Mean Time To Repair

43 log_file = "fault_log.txt"

44

45 ssh_cliente = conectar_ssh(host_remoto , usuario_ssh , senha_ssh)

46

47 try:

48 while True:

49 # Simula falha

50 falha_tempo , falha_timestamp = falha(mttf , ssh_cliente)

51 with open(log_file , "a") as log:

52 log.write(f"MySQL Failure - MTTF: {falha_tempo :.2f} -

Timestamp: {falha_timestamp }\n")

53

54 # Simula reparo

55 reparo_tempo , reparo_timestamp = reparo(mttr , ssh_cliente)

56 with open(log_file , "a") as log:

57 log.write(f"MySQL Repair - MTTR: {reparo_tempo :.2f} -

Timestamp: {reparo_timestamp }\n")

58

59 except KeyboardInterrupt:

60 print(" S i m u l a o interrompida pelo u s u r i o .")

61 ssh_cliente.close()

62

63 if __name__ == "__main__":

64 main()

Código Fonte 8 – Código Python para injetar falhas e reparos no MySQL
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APÊNDICE E – SCRIPT PARA INJEÇÃO DE FALHA E REPARO NO PHP

1 #!/usr/bin/python3

2

3 import numpy as np

4 import time

5 from datetime import datetime

6 import paramiko

7

8 def falha(mttr , ssh_client):

9 tempo_falha = np.random.exponential(mttr , 1)[0]

10 time.sleep(tempo_falha)

11 timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

12

13 # Simula falha no servidor remoto (substitua o comando conforme

n e c e s s r i o )

14 comando_falha = "sudo service php8.1-fpm stop"

15 stdin , stdout , stderr = ssh_client.exec_command(comando_falha)

16

17 return tempo_falha , timestamp

18

19 def reparo(mttf , ssh_client):

20 tempo_reparo = np.random.exponential(mttf , 1)[0]

21 time.sleep(tempo_reparo)

22 timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")[:-3]

23

24 # Simula reparo no servidor remoto (substitua o comando conforme

n e c e s s r i o )

25 comando_reparo = "sudo service php8.1-fpm start"

26 stdin , stdout , stderr = ssh_client.exec_command(comando_reparo)

27

28 return tempo_reparo , timestamp

29

30 def conectar_ssh(host , usuario , senha):

31 ssh = paramiko.SSHClient ()

32 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy ())

33 ssh.connect(host , username=usuario , password=senha)

34 return ssh

35
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36 def main():

37 host_remoto = "10.255.255.41"

38 usuario_ssh = "gervasio"

39 senha_ssh = "123456"

40

41 mttf = 0.7884*3600 # Mean Time To Failure

42 mttr = 0.5*3600 # Mean Time To Repair

43 log_file = "fault_log.txt"

44

45 ssh_cliente = conectar_ssh(host_remoto , usuario_ssh , senha_ssh)

46

47 try:

48 while True:

49 # Simula falha

50 falha_tempo , falha_timestamp = falha(mttf , ssh_cliente)

51 with open(log_file , "a") as log:

52 log.write(f"PHP Failure - MTTF: {falha_tempo :.2f} -

Timestamp: {falha_timestamp }\n")

53

54 # Simula reparo

55 reparo_tempo , reparo_timestamp = reparo(mttr , ssh_cliente)

56 with open(log_file , "a") as log:

57 log.write(f"PHP Repair - MTTR: {reparo_tempo :.2f} -

Timestamp: {reparo_timestamp }\n")

58

59 except KeyboardInterrupt:

60 print(" S i m u l a o interrompida pelo u s u r i o .")

61 ssh_cliente.close()

62

63 if __name__ == "__main__":

64 main()

Código Fonte 9 – Código Python para injetar falhas e reparos no PHP
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APÊNDICE F – SCRIPT PARA MONITORAR O SISTEMA E SALVAR O

ESTADO "UP"OU "DOWN"EM ARQUIVO DE LOG

1 import paramiko

2 import os

3 import subprocess

4 import datetime

5 import time

6 import mysql.connector

7 from ping3 import ping

8 import threading # Certifique -se de importar o m d u l o threading

9

10 # C o n f i g u r a e s do servidor MySQL

11 mysql_server_ip = "10.255.255.41"

12 mysql_port = 3306

13

14 # C o n f i g u r a e s do servidor Apache

15 apache_server_ip = "10.255.255.41"

16 apache_log_file = "apache_status.log"

17

18 # C o n f i g u r a e s do servidor PHP

19 php_server_ip = "10.255.255.41"

20 php_log_file = "php_status.log"

21

22 # C o n f i g u r a e s do servidor MySQL

23 mysql_log_file = "mysql_status.log"

24

25 # C o n f i g u r a e s para acesso SSH

26 ssh_username = "gervasio"

27 ssh_password = "123456"

28

29 # C d i g o s ANSI para controle de cores

30 GREEN = '\033[92m'

31 RED = '\033[91m'

32 ENDC = '\033[0m'

33

34 # C o n f i g u r a e s do servidor hardware

35 hardware_server_ip = "10.255.255.40"
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36 hardware_log_file = "hardware_status.log"

37

38 # C o n f i g u r a e s do servidor SO

39 os_server_ip = "10.255.255.41"

40 os_log_file = "os_status.log"

41

42 def check_ping(server_ip , service_name):

43 try:

44 response = ping(server_ip , timeout=1, unit="ms")

45 return response is not None

46 except Exception as e:

47 print(f"Erro ao verificar ping para {service_name }: {e}")

48 return False

49

50 def check_mysql_service(log_file , ssh_client=None):

51 try:

52 # Se um cliente SSH for fornecido , executa o comando remotamente

53 if ssh_client:

54 command = "service mysql status" # Use o comando apropriado

para verificar o status do MySQL remotamente

55 stdin , stdout , stderr = ssh_client.exec_command(command)

56 result = stdout.channel.recv_exit_status ()

57 return result == 0

58 else:

59 # Tenta conectar ao MySQL usando o m d u l o mysql -connector -

python

60 conn = mysql.connector.connect(

61 host=mysql_server_ip ,

62 port=mysql_port ,

63 user='moodleuser ',

64 password='Oz83 .*5 Fm6Mj0Hd9 ',

65 database='moodle '

66 )

67 conn.close()

68 return True

69 except Exception as e:

70 # Se houver uma e x c e o , o s e r v i o e s t i n d i s p o n v e l

71 log_failure(log_file , "MySQL")

72 return False
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73

74 def check_apache_service(log_file , ssh_client=None):

75 try:

76 # Se um cliente SSH for fornecido , executa o comando remotamente

77 if ssh_client:

78 command = "pgrep -f apache2"

79 stdin , stdout , stderr = ssh_client.exec_command(command)

80 result = stdout.channel.recv_exit_status ()

81 return result == 0

82 else:

83 # Verifica se o processo do Apache e s t em e x e c u o

84 subprocess.check_output (["pgrep", "-f", "apache2"])

85 return True

86 except subprocess.CalledProcessError as e:

87 # Se houver uma e x c e o , o s e r v i o e s t i n d i s p o n v e l

88 log_failure(log_file , "Apache")

89 return False

90

91 def check_php_service(log_file , ssh_client=None):

92 try:

93 # Se um cliente SSH for fornecido , executa o comando remotamente

94 if ssh_client:

95 command = "pgrep -f php"

96 stdin , stdout , stderr = ssh_client.exec_command(command)

97 result = stdout.channel.recv_exit_status ()

98 return result == 0

99 else:

100 # Substitua este bloco de c d i g o conforme n e c e s s r i o para

verificar o status do PHP

101 # Aqui estamos apenas imitando uma v e r i f i c a o bem -sucedida

102 # usando a f u n o subprocess.check_output para n o gerar

e x c e e s .

103 subprocess.check_output (["echo", "PHP is running"])

104 return True

105 except subprocess.CalledProcessError as e:

106 # Se houver uma e x c e o , o s e r v i o e s t i n d i s p o n v e l

107 log_failure(log_file , "PHP")

108 return False

109
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110 def check_hardware(log_file):

111 try:

112 hardware_reachable = check_ping(hardware_server_ip , "Hardware")

113 if not hardware_reachable:

114 log_failure(log_file , "Hardware")

115 else:

116 log_recovery(log_file , "Hardware")

117 except Exception as e:

118 print(f"Erro ao monitorar hardware: {e}")

119

120 def check_os(log_file):

121 try:

122 os_reachable = check_ping(os_server_ip , "OS")

123 if not os_reachable:

124 log_failure(log_file , "OS")

125 else:

126 log_recovery(log_file , "OS")

127 except Exception as e:

128 print(f"Erro ao monitorar sistema operacional: {e}")

129

130 def log_failure(log_file , service_name):

131 current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f

")[:-3]

132 new_entry = f"{service_name} - Not Reachable at {current_time}"

133

134 # Verifica se a nova entrada j e s t no arquivo de log

135 with open(log_file , "r") as file:

136 if new_entry in file.read():

137 print(f"{service_name} - Not Reachable already logged.")

138 return

139

140 # Se n o estiver , adiciona a nova entrada

141 with open(log_file , "a") as file:

142 file.write(f"{RED}{ new_entry }{ENDC}\n")

143 print(f"{service_name} - Not Reachable. Logged to {log_file} at {

current_time}")

144

145 def log_failure_with_service(log_file , service_name , additional_message="

"):
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146 current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f

")[:-3]

147 new_entry = f"{service_name} - Service unavailable at {current_time}"

148

149 # Cria o arquivo de log se n o existir

150 if not os.path.exists(log_file):

151 with open(log_file , "a"):

152 pass

153

154 # Verifica se a nova entrada j e s t no arquivo de log

155 with open(log_file , "r") as file:

156 if new_entry in file.read():

157 print(f"{service_name} - Service unavailable already logged."

)

158 return

159

160 # Se n o estiver , adiciona a nova entrada

161 with open(log_file , "a") as file:

162 file.write(f"{RED}{ new_entry }{ENDC}\n")

163 print(f"{service_name} - Service unavailable . Logged to {

log_file} at {current_time}")

164

165 def log_recovery(log_file , service_name):

166 current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f

")[:-3]

167 with open(log_file , "a") as file:

168 file.write(f"{GREEN}{ service_name} - Service recovered at {

current_time }{ENDC}\n")

169 print(f"{service_name} - Service recovered. Logged to {log_file}

at {current_time}")

170

171 def establish_ssh_connection(server_ip , username , password):

172 ssh_client = paramiko.SSHClient ()

173 ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy ())

174 ssh_client.connect(server_ip , username=username , password=password)

175 return ssh_client

176

177 def monitor_mysql_service(ssh_client=None):

178 try:
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179 mysql_service_available = check_mysql_service(mysql_log_file ,

ssh_client)

180 if not mysql_service_available:

181 log_failure(mysql_log_file , "MySQL")

182 else:

183 log_recovery(mysql_log_file , "MySQL")

184 except Exception as e:

185 print(f"Erro ao monitorar o s e r v i o MySQL: {e}")

186

187 def monitor_apache_service(ssh_client=None):

188 try:

189 apache_service_available = check_apache_service(apache_log_file ,

ssh_client)

190 if not apache_service_available:

191 log_failure(apache_log_file , "Apache")

192 else:

193 log_recovery(apache_log_file , "Apache")

194 except Exception as e:

195 print(f"Erro ao monitorar o s e r v i o Apache: {e}")

196

197 def monitor_php_service(ssh_client=None):

198 try:

199 php_service_available = check_php_service(php_log_file ,

ssh_client)

200 if not php_service_available:

201 log_failure(php_log_file , "PHP")

202 else:

203 log_recovery(php_log_file , "PHP")

204 except Exception as e:

205 print(f"Erro ao monitorar o s e r v i o PHP: {e}")

206

207 def monitor_hardware ():

208 while True:

209 try:

210 check_hardware(hardware_log_file)

211 except Exception as e:

212 print(f"Erro ao monitorar hardware: {e}")

213

214 # Pausa por 30 segundos antes de realizar a p r x i m a
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v e r i f i c a o

215 time.sleep (30)

216

217 def monitor_os ():

218 while True:

219 try:

220 check_os(os_log_file)

221 except Exception as e:

222 print(f"Erro ao monitorar sistema operacional: {e}")

223

224 # Pausa por 30 segundos antes de realizar a p r x i m a

v e r i f i c a o

225 # time.sleep (30)

226 def system_status ():

227 apache_reachable = check_ping(apache_server_ip , "Apache")

228 php_reachable = check_ping(php_server_ip , "PHP")

229 mysql_reachable = check_ping(mysql_server_ip , "MySQL")

230 hardware_reachable = check_ping(hardware_server_ip , "Hardware")

231 os_reachable = check_ping(os_server_ip , "OS")

232

233 if apache_reachable and php_reachable and mysql_reachable and

hardware_reachable and os_reachable:

234 apache_ssh_client = establish_ssh_connection(apache_server_ip ,

ssh_username , ssh_password)

235 php_ssh_client = establish_ssh_connection(php_server_ip ,

ssh_username , ssh_password)

236 mysql_ssh_client = establish_ssh_connection(mysql_server_ip ,

ssh_username , ssh_password)

237

238 apache_service_available = check_apache_service(apache_log_file ,

apache_ssh_client)

239 php_service_available = check_php_service(php_log_file ,

php_ssh_client)

240 mysql_service_available = check_mysql_service(mysql_log_file ,

mysql_ssh_client)

241

242 apache_ssh_client.close()

243 php_ssh_client.close ()

244 mysql_ssh_client.close()
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245

246 if apache_service_available and php_service_available and

mysql_service_available:

247 return "System - UP"

248 else:

249 return "System - Down"

250 else:

251 return "System - Down"

252

253 def main():

254 system_log_file = "system_log.txt"

255

256 while True:

257 try:

258 status = system_status ()

259 current_time = datetime.datetime.now().strftime("%Y-%m-%d %H

:%M:%S:%f")[:-3]

260 with open(system_log_file , "a") as file:

261 file.write(f"{current_time} - {status }\n")

262 print(f"System Status: {status }. Logged to {

system_log_file} at {current_time}")

263 except Exception as e:

264 print(f"Erro: {e}")

265

266 # Pausa por 05 segundos antes de realizar a p r x i m a

v e r i f i c a o

267 time.sleep (5)

268

269 if __name__ == "__main__":

270 main()

Código Fonte 10 – Código Python para monitorar e salvar status do sistema - roda a cada 5seg
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APÊNDICE G – SCRIPT PARA ANALISAR DADOS DE LOG E MOSTRAR

MÉTRICAS DE INTERESSE

1 '''

2 O script Python processa um arquivo de log do sistema para calcular

m t r i c a s de disponibilidade , como Tempo M d i o a t a Falha (MTTF),

3 Tempo M d i o para Reparo (MTTR), e outras e s t a t s t i c a s relacionadas.

4 Ele l o arquivo de log , identifica p e r o d o s de funcionamento (UP) e

p e r o d o s de falha (Down),

5 calcula as m t r i c a s mencionadas e gera um arquivo de s a d a com essas

i n f o r m a e s . A l m disso ,

6 o script realiza a n l i s e s e s t a t s t i c a s adicionais , como o c l c u l o de

intervalos de c o n f i a n a e outras m t r i c a s de disponibilidade.

7 As m t r i c a s calculadas s o detalhadas e armazenadas em um arquivo de

s a d a para r e f e r n c i a posterior.

8 '''

9

10 import sys

11 import math

12 from datetime import datetime

13

14 fator_aceleracao = int (1000)

15

16 def processar_logs(caminho_entrada):

17 with open(caminho_entrada , 'r') as arquivo:

18 linhas = arquivo.readlines ()

19

20 grupos_up = []

21 grupos_down = []

22 grupo_atual = {'status ': None , 'inicio ': None , 'fim': None}

23

24 total_mttf = 0 # Adicionado para calcular o total de MTTF

25 total_mttr = 0 # Adicionado para calcular o total de MTTR

26

27 for i in range(len(linhas) - 1):

28 linha_atual = linhas[i]

29 linha_seguinte = linhas[i + 1]

30
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31 partes_atual = linha_atual.split(' - ')

32 partes_seguinte = linha_seguinte.split(' - ')

33

34 if len(partes_atual) < 3 or len(partes_seguinte) < 3:

35 # Linhas mal formatadas , ignorar

36 continue

37

38 timestamp_atual_str , status_atual = partes_atual [0], partes_atual

[-1]. strip()

39 timestamp_seguinte_str , status_seguinte = partes_seguinte [0],

partes_seguinte [-1]. strip()

40

41 timestamp_atual = datetime.strptime(timestamp_atual_str , '%Y-%m-%

d %H:%M:%S:%f')

42 timestamp_seguinte = datetime.strptime(timestamp_seguinte_str , '%

Y-%m-%d %H:%M:%S:%f')

43

44 if grupo_atual['status '] is None:

45 grupo_atual['status '] = status_atual

46 grupo_atual['inicio '] = timestamp_atual

47

48 if status_atual != status_seguinte:

49 grupo_atual['fim'] = timestamp_seguinte

50

51 if grupo_atual['status '] == 'UP':

52 grupos_up.append ({'inicio ': grupo_atual['inicio '], 'fim':

grupo_atual['fim']})

53 total_mttf += (grupo_atual['fim'] - grupo_atual['inicio '

]).total_seconds () # Adicionado para calcular MTTF

54 elif grupo_atual['status '] == 'Down':

55 grupos_down.append ({'inicio ': grupo_atual['inicio '], 'fim

': grupo_atual['fim']})

56 total_mttr += (grupo_atual['fim'] - grupo_atual['inicio '

]).total_seconds () # Adicionado para calcular MTTR

57

58 grupo_atual = {'status ': status_seguinte , 'inicio ':

timestamp_seguinte , 'fim': None}

59

60 # Tratar o ltimo grupo
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61 grupo_atual['fim'] = timestamp_seguinte

62 if grupo_atual['status '] == 'UP':

63 grupos_up.append ({'inicio ': grupo_atual['inicio '], 'fim':

grupo_atual['fim']})

64 total_mttf += (grupo_atual['fim'] - grupo_atual['inicio ']).

total_seconds () # Adicionado para calcular MTTF

65 elif grupo_atual['status '] == 'Down':

66 grupos_down.append ({'inicio ': grupo_atual['inicio '], 'fim':

grupo_atual['fim']})

67 total_mttr += (grupo_atual['fim'] - grupo_atual['inicio ']).

total_seconds () # Adicionado para calcular MTTR

68

69 return grupos_up , grupos_down , total_mttf , total_mttr

70

71 def imprimir_resultados(grupos_up , grupos_down , total_mttf , total_mttr):

72 with open(caminho_saida , "w") as arquivo_saida:

73 for i, grupo in enumerate(grupos_up , start =1):

74 if i <= len(grupos_down):

75 linha_up = f"Sistema UP - I n c i o : {grupo['inicio ']}, Fim

: {grupo['fim ']}, TTF: { (grupo['fim '] - grupo['inicio

']).total_seconds ():.3f}s"

76 linha_down = f"Sistema Down - I n c i o : {grupos_down[i

-1][' inicio ']}, Fim: {grupos_down[i-1]['fim ']}, TTR: {

(grupos_down[i-1]['fim '] - grupos_down[i-1][' inicio

']).total_seconds ():.3f}s"

77 print(linha_up)

78 print(linha_down)

79 arquivo_saida.write(linha_up + "\n")

80 arquivo_saida.write(linha_down + "\n")

81 else:

82 linha_up = f"Sistema UP - I n c i o : {grupo['inicio ']}, Fim

: {grupo['fim ']}, TTF: { (grupo['fim '] - grupo['inicio

']).total_seconds ():.3f}s"

83 print(linha_up)

84 arquivo_saida.write(linha_up + "\n")

85

86 # Adicionar a quantidade de UP e Down

87 qtde_up = f"\nTotal repairs (System UP): {len(grupos_up)}"

88 qtde_down = f"Total failures (System Down): {len(grupos_down)}"
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89 print(qtde_up)

90 print(qtde_down)

91 arquivo_saida.write(qtde_up + "\n")

92 arquivo_saida.write(qtde_down + "\n")

93

94 # Adicionar o total de MTTF e MTTR

95 total_mttf_str = f"\nTTF(s) [*fator aceleracao ]: {total_mttf :.3f}

"

96 total_mttr_str = f"TTR(s): {total_mttr :.3f}"

97 mttf=( total_mttf /3600)*fator_aceleracao

98 mttr=total_mttr /3600

99

100 ttf_str=f"TTF(h): {mttf :.6f}"

101 ttr_str=f"TTR(h): {mttr :.6f}"

102

103 MTTF=f"\nMTTF(h): {mttf / len(grupos_up):.10f}"

104 MTTR=f"MTTR(h): {mttr / len(grupos_down):.10f}"

105 A=f"\nA: {mttf / (mttf + mttr):.10f}"

106 U=f"U: {1-(mttf / (mttf + mttr)):.10f}"

107 Num9=f"Number of 9's: {-math.log(1-(mttf / (mttf + mttr))) / math

.log (10) :.10f}"

108 Uptime=f"Uptime: {8760 -(1 -( mttf / (mttf + mttr)))*8760:.10f}"

109 Downtime=f"Downtime: {(1-( mttf / (mttf + mttr)))*8760:.10f}"

110 #############################################

111 alfa =0.05 # n v e l de c o n f i a n a 95%

112 ###########################################

113 nivelConfianca=f" N v e l de c o n f i a n a : {alfa}"

114 RO=f"RO: {(mttr/mttf):.10f}"

115 GrauLiberdadeNumeradorF=f" D i s t r i b u i a o F = GL Numerador: {len(

grupos_up)}"

116 GrauLiberdadeDenominadorF=f" D i s t r i b u i a o F = GL Denominador: {

len(grupos_down)}"

117

118

119 valorCritico1 =0.7992 #GL ANALISADO

120 valorCritico2 =1.251 #GL ANALISADO

121 v1=f"Valor C r t i c o Inferior: {valorCritico1}"

122 v2=f"Valor C r t i c o Superior: {valorCritico2}"

123 ##########################################
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124 Rl=f"R_l: {(mttr/mttf)/valorCritico2 :.10f}"

125 Ru=f"R_u: {(mttr/mttf)/valorCritico1 :.10f}"

126 intervaloConfiancaInferior=f"Intervalo inferior: {1/(1+( mttr/mttf

)/valorCritico1):.10f}"

127 intervaloConfiancaSuperior=f"Intervalo Superior: {1/(1+( mttr/mttf

)/valorCritico2):.10f}"

128

129 print(total_mttf_str)

130 print(total_mttr_str)

131 print(ttf_str)

132 print(ttr_str)

133 print(MTTF)

134 print(MTTR)

135 print("\ n P a r m e t r o s d i s t r i b u i o ")

136 print(GrauLiberdadeNumeradorF)

137 print(GrauLiberdadeDenominadorF)

138 print(nivelConfianca)

139 print(v1)

140 print(v2)

141 print(RO)

142 print(Rl)

143 print(Ru)

144 print("\nIntervalo de c o n f i a n a 95%")

145 print(intervaloConfiancaInferior)

146 print(intervaloConfiancaSuperior)

147 print(A)

148 print(U)

149 print(Num9)

150 print(Uptime)

151 print(Downtime)

152 print(f"\nDados salvos em {caminho_saida }\n")

153

154 arquivo_saida.write(total_mttf_str + "\n")

155 arquivo_saida.write(total_mttr_str + "\n")

156 arquivo_saida.write(ttf_str + "\n")

157 arquivo_saida.write(ttr_str + "\n")

158 arquivo_saida.write(MTTF + "\n")

159 arquivo_saida.write(MTTR + "\n")

160 arquivo_saida.write("\n"+" P a r m e t r o s d i s t r i b u i o "+ "\n")
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161 arquivo_saida.write(GrauLiberdadeNumeradorF + "\n")

162 arquivo_saida.write(GrauLiberdadeDenominadorF + "\n")

163 arquivo_saida.write(nivelConfianca + "\n")

164 arquivo_saida.write(v1 + "\n")

165 arquivo_saida.write(v2 + "\n")

166 arquivo_saida.write(RO + "\n")

167 arquivo_saida.write(Rl + "\n")

168 arquivo_saida.write(Ru + "\n")

169 arquivo_saida.write("\n"+"Intervalo de c o n f i a n a 95%"+ "\n")

170 arquivo_saida.write(intervaloConfiancaInferior + "\n")

171 arquivo_saida.write(intervaloConfiancaSuperior + "\n")

172 arquivo_saida.write(A + "\n")

173 arquivo_saida.write(U + "\n")

174 arquivo_saida.write(Num9 + "\n")

175 arquivo_saida.write(Uptime + "\n")

176 arquivo_saida.write(Downtime + "\n")

177

178 if __name__ == "__main__":

179 caminho_entrada = r"D:\\ Users\\ Gervasio Teixeira \\ Downloads \\

system_log.txt"

180

181 caminho_saida = r"D:\\ Users\\ Gervasio Teixeira \\ Downloads \\

System_MTTF_MTTR.txt"

182 grupos_up , grupos_down , total_mttf , total_mttr = processar_logs(

caminho_entrada)

183

184 imprimir_resultados(grupos_up , grupos_down , total_mttf , total_mttr)

Código Fonte 11 – Código Python para analisar arquivo de LOG e mostrar métricas de interesse
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