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“One thing I’ve learned: you can know anything, it’s all there, you just have to find it.”
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RESUMO

Pragas e doenças representam grandes desafios na agricultura, levando a perdas

econômicas significativas. O uso incorreto de pesticidas, frequentemente decorrente de

diagnósticos errados, agrava o problema, especialmente para agricultores familiares que

não possuem acesso ao suporte especializado e acesso a informações em tempo hábil.

Embora existam sistemas de visão computacional que auxiliam nesse problema com

sua capacidade de detectar doenças em plantas a partir de imagens de folhas ou frutos,

a maioria está limitada a esta única tarefa e não contempla o processo diagnóstico

completo exigido em cenários práticos. Este trabalho propõe uma abordagem unificada

baseada em Multi-Task Learning (MTL) para lidar com múltiplas tarefas relacionadas

ao processo de diagnóstico de doenças em plantas a partir de uma única imagem

de entrada. O modelo proposto é capaz de: (i) determinar se uma imagem contém

uma folha, (ii) detectar se a folha está saudável ou doente, (iii) classificar a espécie da

planta, (iv) identificar o provável agente patogênico, (v) detectar macro-sintomas visíveis

associados à doença e (vi) classificar a doença específica da planta, quando presente.

Para dar suporte à utilização prática, também desenvolvemos um sistema completo

de diagnóstico em torno do modelo, que inclui detecção e segmentação automáticas

das folhas, permitindo o processamento de todas as folhas presentes em uma imagem.

O sistema é exposto por meio de uma API RESTful, que serve como interface central

para inferências. Além disso, uma aplicação web intuitiva é construída sobre essa API,

possibilitando que usuários finais—como agricultores e técnicos agrícolas—interajam

facilmente com o modelo e testem suas funcionalidades através de uma interface visual

acessível.

Palavras-chaves: Aprendizagem de máquina; Visão Computacional;

Detecção de doenças em plantas; Assistente de fitopatologia; Multi-Task Learning;



ABSTRACT

Pests and diseases pose major challenges in agriculture, leading to substantial

economic losses. The misuse of pesticides, often stemming from incorrect diagnoses,

exacerbates the problem, particularly for smallholder farmers who lack access to expert

support and timely information. Although existing computer vision systems assist in

detecting plant diseases from leaf or fruit images, most are restricted to single-task

outputs and do not address the full diagnostic process required in practical scenarios.

This work proposes a unified approach based on Multi-Task Learning (MTL) to

address multiple key diagnostic tasks from a single input image. The proposed model

is capable of: (i) determining whether an image contains a leaf, (ii) detecting whether

the leaf is healthy or sick, (iii) classifying the plant species, (iv) identifying the likely

pathological agent, (v) detecting visible macro-symptoms associated with disease, and

(vi) classifying the specific plant disease when present.

To support practical usage, we also develop a complete diagnostic system around

the model that includes automatic leaf detection and segmentation for processing all

leaves in an image. The system is exposed via a RESTful API, which serves as the

core inference interface. Additionally, a user-friendly web application is built on top of

this API, allowing end users—such as farmers and agricultural technicians—to easily

interact with the model and test its capabilities through an accessible visual interface.

Keywords: Machine learning; Computer vision; Plant disease detection; Plant pathology

assistant; Multi-Task Learning.



LIST OF FIGURES

Figure 1 – Symbolic and Connectionist Approaches to AI . . . . . . . . . . . . . 27

Figure 2 – Generic Machine Learning Workflow . . . . . . . . . . . . . . . . . . 28

Figure 3 – Comparison of Neural Network Architectures . . . . . . . . . . . . . 36

Figure 4 – Representative Tasks in Computer Vision . . . . . . . . . . . . . . . 49

Figure 5 – Illustration of a Typical CNN Architecture . . . . . . . . . . . . . . . . 53

Figure 6 – Differences between MTL and other Learning Paradigms . . . . . . 59

Figure 7 – Illustration of Parameter Sharing Strategies in MTL . . . . . . . . . . 60

Figure 8 – Example Architecture of a Digital Assistance System . . . . . . . . . 64

Figure 9 – Example Task Pipeline for Disease Classification . . . . . . . . . . . 64

Figure 10 – Examples of Leaf Images from the PlantVillage Dataset . . . . . . . 66

Figure 11 – Example Pipeline for Crop Leaf Diseases Recognition and Severity

Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 12 – Different Classification Frameworks for Crop Leaf Diseases Recogni-

tion and Severity Estimation . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 13 – Examples of Subdivided Images Showing Individual Symptomatic

Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 14 – Real-Time Detection System for Grape Leaf Diseases . . . . . . . . 73

Figure 15 – Grape Leaf Diseased Spots Detection . . . . . . . . . . . . . . . . . 75

Figure 16 – Detection of Green Fruits using a YOLO-based Model in Citrus Orchards 77

Figure 17 – Comparison of Different Architectures for Detecting Grape Clusters . 79

Figure 18 – Generalization Capacity of the Mask R-CNN Architecture for Detecting

Grape Clusters In Novel Scenarios . . . . . . . . . . . . . . . . . . . 80

Figure 19 – Inference Workflow for Leaf Disease Detection . . . . . . . . . . . . 89

Figure 20 – Sequence Diagram of User Interaction with the Leaf Disease Detec-

tion API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 21 – MangoLeafBD Dataset Sample Images . . . . . . . . . . . . . . . . 93

Figure 22 – Cassava Dataset Limitations . . . . . . . . . . . . . . . . . . . . . . 94

Figure 23 – PlantDoc Dataset Quality Examples . . . . . . . . . . . . . . . . . . 95

Figure 24 – Plant Disease Recognition Dataset Sample Images . . . . . . . . . 96

Figure 25 – Apple Disease Dataset Sample Images . . . . . . . . . . . . . . . . 97



Figure 26 – Plant Pathology 2020 Dataset Sample Images . . . . . . . . . . . . 98

Figure 27 – DiaMOS Dataset Content Challenges . . . . . . . . . . . . . . . . . 99

Figure 28 – PDDB Dataset Content and Augmentation Examples . . . . . . . . . 101

Figure 29 – Dataset Creation Pipeline Overview . . . . . . . . . . . . . . . . . . 104

Figure 30 – Metadata Extraction and Initial Processing Pipeline . . . . . . . . . . 105

Figure 31 – Multi-Modal RAG Knowledge Augmentation Pipeline . . . . . . . . . 107

Figure 32 – Symptom Standardization and Encoding Process . . . . . . . . . . . 109

Figure 33 – Visual Feature Extraction Pipeline . . . . . . . . . . . . . . . . . . . 110

Figure 34 – Dataset Integration Workflow . . . . . . . . . . . . . . . . . . . . . . 111

Figure 35 – Example of background removal using the GrabCut algorithm. . . . 113

Figure 36 – Examples of MaskRCNN mislabeling . . . . . . . . . . . . . . . . . . 114

Figure 37 – Examples of broken segmentation with MaskRCNN . . . . . . . . . 115

Figure 38 – Example of manual leaf segmentation using VIA . . . . . . . . . . . 115

Figure 39 – SAM segmentation performance . . . . . . . . . . . . . . . . . . . . 117

Figure 40 – SAM2 segmentation performance . . . . . . . . . . . . . . . . . . . 117

Figure 41 – FastSAM segmentation performance . . . . . . . . . . . . . . . . . . 117

Figure 42 – LangSAM segmentation performance . . . . . . . . . . . . . . . . . 117

Figure 43 – Overview of the multi-task model architecture . . . . . . . . . . . . . 120

Figure 44 – Task dependency architecture and information flow . . . . . . . . . . 123

Figure 45 – Representative test images selected for interpretability analysis . . . 136

Figure 46 – Grad-CAM activation visualizations for the apple rust sample . . . . 136

Figure 47 – Grad-CAM activation patterns for the grape black rot sample . . . . 136

Figure 48 – Comprehensive channel visualization . . . . . . . . . . . . . . . . . 137

Figure 49 – Web-based diagnostic platform interface . . . . . . . . . . . . . . . . 137

Figure 50 – Training history for the binary disease classification task . . . . . . . 175

Figure 51 – Confusion matrix for binary disease classification task . . . . . . . . 176

Figure 52 – Training history for leaf detection task . . . . . . . . . . . . . . . . . 177

Figure 53 – Confusion matrix for leaf detection task . . . . . . . . . . . . . . . . 177

Figure 54 – Training history for plant species classification . . . . . . . . . . . . . 179

Figure 55 – Confusion matrix for plant species classification . . . . . . . . . . . . 180

Figure 56 – Training history for pathogen type classification . . . . . . . . . . . . 181

Figure 57 – Confusion matrix for pathogen type classification . . . . . . . . . . . 182

Figure 58 – Training history for disease name classification . . . . . . . . . . . . 183



Figure 59 – Confusion matrix for disease name classification . . . . . . . . . . . 184

Figure 60 – Training history for multi-label symptom detection . . . . . . . . . . . 185



LIST OF FRAMES

Frame 1 – Factors Impacting the Performance of CNNs for Plant Disease Recog-

nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Frame 2 – Comparison of Selected Plant Disease Recognition Approaches . . 86



LIST OF TABLES

Table 1 – Comparison of Evaluated Plant Disease Datasets . . . . . . . . . . . 100

Table 2 – Overall System Performance Summary Across All Tasks (5-Fold CV

Average) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Table 3 – Backbone Architecture Performance Comparison . . . . . . . . . . . 144

Table 4 – Top 10 Most Prevalent Diseases in the Dataset . . . . . . . . . . . . . 170

Table 5 – Plant Species Distribution in the Dataset . . . . . . . . . . . . . . . . 171

Table 6 – Most Frequent Symptoms in the Dataset . . . . . . . . . . . . . . . . 172

Table 7 – Pathogen Type Distribution . . . . . . . . . . . . . . . . . . . . . . . . 172

Table 8 – Binary Health Classification Performance Metrics (5-Fold CV Average) 174

Table 9 – Plant Species Classification Overall Performance (5-Fold CV Average) 178

Table 10 – Plant Species Classification Per-Class Performance (5-Fold CV Average)178

Table 11 – Pathogen Type Classification Overall Performance (5-Fold CV Average)181

Table 12 – Pathogen Type Classification Per-Class Performance (5-Fold CV Aver-

age) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Table 13 – Disease Name Classification Overall Performance (5-Fold CV Average)183

Table 14 – Multi-Label Symptom Detection Overall Performance (5-Fold CV Aver-

age) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185



LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

AS Accuracy Score

ASIC Application-Specific Integrated Circuit

CNN Convolutional Neural Network

COCO Common Objects in Context

CPU Central Processing Unit

CV Computer Vision

DL Deep Learning

GPU Graphics Processing Unit

Grad-CAM Gradient-weighted Class Activation Mapping

GRU Gated Recurrent Unit

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IR Infrared

JSS Jaccard Similarity Score

LiDAR Light Detection and Ranging

LLM Large Language Model

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multi-Layer Perceptrons

MTL Multi-Task Learning

NLP Natural Language Processing

RAG Retrieval-Augmented Generation

ResNet Residual Network



RGB Red-Green-Blue

RNN Recurrent Neural Network

SAM Segment Anything Model

SVM Support Vector Machine

TPU Tensor Processing Unit

ViT Vision Transformer

XAI Explainable Artificial Intelligence



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . 25

2.1 ARTIFICIAL INTELLIGENCE . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Symbolic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Connectionist Approach . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 MACHINE LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Learning Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1.3 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Model Complexity and Generalization . . . . . . . . . . . . . . . . 31

2.2.2.1 Overfitting and Underfitting . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2.2 Regularization Techniques . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2.3 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.3 Neurons and Artificial Neural Networks . . . . . . . . . . . . . . . 33

2.2.3.1 Mathematical Foundation of Artificial Neurons . . . . . . . . . . . . . 33

2.2.3.2 The Learning Parameters of a Neural Network: Weights and Biases . 34

2.2.3.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.3.4 Multi-layer Networks and Universal Approximation . . . . . . . . . . . 36

2.2.3.5 Network Connectivity and Information Flow . . . . . . . . . . . . . . . 37

2.2.3.6 Backpropagation and Parameter Learning . . . . . . . . . . . . . . . 38

2.3 DEEP LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Key Differences from Traditional Machine Learning . . . . . . . . 39

2.3.1.1 Feature Engineering and Representation Learning . . . . . . . . . . 39

2.3.1.2 Data Requirements and Scalability . . . . . . . . . . . . . . . . . . . 40

2.3.1.3 Computational Requirements . . . . . . . . . . . . . . . . . . . . . . 40



2.3.1.4 Model Interpretability and Explainable AI . . . . . . . . . . . . . . . . 41

2.3.2 Training Deep Learning Models . . . . . . . . . . . . . . . . . . . . 43

2.3.2.1 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.2.2 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.3 Data Representation and Encoding . . . . . . . . . . . . . . . . . . 44

2.3.3.1 One-Hot Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.4 Evaluation Metrics for Deep Learning Models . . . . . . . . . . . . 45

2.3.4.1 Classification Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.4.2 Considerations for Metric Selection . . . . . . . . . . . . . . . . . . . 46

2.3.5 Deep Learning in Practice . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.6 Zero-Shot and Few-Shot Learning . . . . . . . . . . . . . . . . . . 47

2.4 COMPUTER VISION . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.1 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.2 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 CONVOLUTIONAL NEURAL NETWORKS . . . . . . . . . . . . . . . 51

2.5.1 Mathematical Foundations of Convolutional Operations . . . . . 51

2.5.2 Core Architectural Components . . . . . . . . . . . . . . . . . . . . 52

2.5.2.1 Convolutional Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5.2.2 Pooling Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5.2.3 Normalization Techniques . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.3 Architectural Innovations and Deep Networks . . . . . . . . . . . 53

2.5.3.1 Historical Evolution and Landmark Architectures . . . . . . . . . . . . 53

2.5.3.2 Residual Networks and Skip Connections . . . . . . . . . . . . . . . . 54

2.5.3.3 Advanced Architectural Patterns . . . . . . . . . . . . . . . . . . . . . 55

2.5.4 Regularization and Training Techniques . . . . . . . . . . . . . . . 56

2.6 VISION TRANSFORMERS . . . . . . . . . . . . . . . . . . . . . . . . 57

2.6.1 Encoder-Decoder Architectures and Attention . . . . . . . . . . . 57

2.6.2 Vision Transformers: Overview . . . . . . . . . . . . . . . . . . . . 57

2.6.2.1 Core Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.2.2 Inductive Biases and Data Requirements . . . . . . . . . . . . . . . . 58

2.6.2.3 Application in This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.7 MULTI-TASK LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7.1 Architectural Strategies and Taxonomy . . . . . . . . . . . . . . . 60



2.7.2 Benefits and Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.7.3 Practical Considerations and Challenges . . . . . . . . . . . . . . 61

2.7.4 Beyond the Standard Setting . . . . . . . . . . . . . . . . . . . . . . 62

3 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 SUPERVISED TRAINING OF A SIMPLE DIGITAL ASSISTANT FOR

A FREE CROP CLINIC . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 USING DEEP LEARNING FOR IMAGE-BASED PLANT DISEASE

DETECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 MULTI-LABEL LEARNING FOR CROP LEAF DISEASES RECOGNI-

TION AND SEVERITY ESTIMATION . . . . . . . . . . . . . . . . . . 67

3.4 FACTORS INFLUENCING THE USE OF DEEP LEARNING FOR

PLANT DISEASE RECOGNITION . . . . . . . . . . . . . . . . . . . . 70

3.5 REAL-TIME GRAPE LEAF DISEASE DETECTION USING AN IM-

PROVED CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 DEEP LEARNING FOR FRUIT DETECTION IN CITRUS ORCHARDS 76

3.7 GRAPE CLUSTER DETECTION AND SEGMENTATION FOR PRE-

PROCESSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.8 STATE OF THE ART IN PLANT DISEASE DETECTION SYSTEMS . 81

3.9 COMPARATIVE ANALYSIS: SINGLE-TASK VS MULTI-TASK APPROACHES 83

4 PROPOSED APPROACH AND IMPLEMENTATION . . . . . . . . . 87

4.1 SYSTEM ARCHITECTURE OVERVIEW . . . . . . . . . . . . . . . . 87

4.1.1 Core Microservices Architecture . . . . . . . . . . . . . . . . . . . 88

4.1.2 Processing Workflow and Service Interactions . . . . . . . . . . . 88

4.2 DATASET CONSTRUCTION AND LABELING . . . . . . . . . . . . . 92

4.2.1 Dataset Summary and Characteristics . . . . . . . . . . . . . . . . 92

4.2.1.1 PlantVillage Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1.2 MangoLeafBD Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1.3 Cassava Leaf Disease Dataset . . . . . . . . . . . . . . . . . . . . . 93

4.2.1.4 PlantDoc Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1.5 Plant Disease Recognition Dataset . . . . . . . . . . . . . . . . . . . 95

4.2.1.6 Apple Disease Dataset (D-KAP) . . . . . . . . . . . . . . . . . . . . . 96

4.2.1.7 Plant Pathology Challenge 2020 Dataset . . . . . . . . . . . . . . . . 96

4.2.1.8 DiaMOS Plant Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 97



4.2.1.9 PDDB (Digipathos) Dataset . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.2 Additional Datasets for Binary Leaf Classification . . . . . . . . . 101

4.2.2.1 Positive Examples (Leaf Images) . . . . . . . . . . . . . . . . . . . . 102

4.2.2.2 Negative Examples (Non-Leaf Images) . . . . . . . . . . . . . . . . . 102

4.2.3 Source Dataset Integration . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.4 Multi-Modal RAG-Enhanced Knowledge Augmentation . . . . . . 106

4.2.5 Symptom Standardization and Semantic Harmonization . . . . . 108

4.2.6 Visual Feature Integration . . . . . . . . . . . . . . . . . . . . . . . 109

4.2.7 Dataset Integration for Model Training . . . . . . . . . . . . . . . . 111

4.3 IMAGE PRE-PROCESSING PIPELINE . . . . . . . . . . . . . . . . . 112

4.3.1 Image Standardization . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.2 Background Removal and Segmentation . . . . . . . . . . . . . . 112

4.3.2.1 Segmentation Techniques for Training . . . . . . . . . . . . . . . . . . 112

4.3.2.2 Challenges with LeafMask and MaskRCNN . . . . . . . . . . . . . . 114

4.3.2.3 Challenges During Real-World Inference . . . . . . . . . . . . . . . . 115

4.3.2.4 Foundation Model Segmentation for Inference . . . . . . . . . . . . . 116

4.3.2.5 Limitations and Testing Approach . . . . . . . . . . . . . . . . . . . . 118

4.4 MULTI-TASK MODEL DESIGN . . . . . . . . . . . . . . . . . . . . . . 118

4.4.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4.2 Design Rationale and Theoretical Considerations . . . . . . . . . 119

4.4.3 Multi-task Learning Framework . . . . . . . . . . . . . . . . . . . . 121

4.4.4 Task Dependency Architecture . . . . . . . . . . . . . . . . . . . . 121

4.4.5 Task-Specific Head Architectures . . . . . . . . . . . . . . . . . . . 123

4.4.5.1 Binary Classification Head Design . . . . . . . . . . . . . . . . . . . . 123

4.4.5.2 Multi-Class Classification Head Design . . . . . . . . . . . . . . . . . 124

4.4.5.3 Complex Multi-Class Head Architecture . . . . . . . . . . . . . . . . . 124

4.4.5.4 Multi-Label Classification Head Design . . . . . . . . . . . . . . . . . 125

4.4.6 Loss Function Design . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4.7 Model Interpretability Design . . . . . . . . . . . . . . . . . . . . . 126

4.4.8 Scalability and Extensibility Considerations . . . . . . . . . . . . 128

4.5 IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5.1 Implementation Framework . . . . . . . . . . . . . . . . . . . . . . 128

4.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



4.5.3 Training Methodology Evolution . . . . . . . . . . . . . . . . . . . . 130

4.5.3.1 Pre-computed Embeddings: Mathematical Foundation and Implemen-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5.3.2 Image-based Training: Theoretical Motivation and Implementation . . 131

4.5.4 Data Augmentation and Preprocessing Implementation . . . . . . 132

4.5.5 Sequential Training Protocol . . . . . . . . . . . . . . . . . . . . . . 133

4.5.6 Advanced Optimization Experiments . . . . . . . . . . . . . . . . . 134

4.5.6.1 Plant Name Override Optimization: Theoretical Framework and Imple-

mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.5.7 Model Interpretability Implementation . . . . . . . . . . . . . . . . 135

4.5.8 Implementation Insights and Methodological Contributions . . . 138

5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1 SYSTEM PERFORMANCE EVALUATION . . . . . . . . . . . . . . . 139

5.1.1 Hierarchical Task Performance Analysis . . . . . . . . . . . . . . . 139

5.1.1.1 Foundation Tasks Performance . . . . . . . . . . . . . . . . . . . . . 139

5.1.1.2 Taxonomic Classification Performance . . . . . . . . . . . . . . . . . 140

5.1.1.3 Pathological Classification Results . . . . . . . . . . . . . . . . . . . . 140

5.1.1.4 Symptom Detection Performance . . . . . . . . . . . . . . . . . . . . 141

5.1.2 Comprehensive Performance Summary . . . . . . . . . . . . . . . 142

5.2 TRAINING METHODOLOGY COMPARATIVE ANALYSIS . . . . . . . 142

5.2.1 Pre-computed Embeddings Methodology Evaluation . . . . . . . 142

5.2.2 Image-based Training Methodology Validation . . . . . . . . . . . 143

5.3 ARCHITECTURE VALIDATION AND DESIGN EFFECTIVENESS . . 144

5.3.1 Backbone Architecture Selection Validation . . . . . . . . . . . . . 144

5.3.2 Task Dependency Architecture Effectiveness . . . . . . . . . . . . 145

5.4 MODEL INTERPRETABILITY AND EXPERT VALIDATION . . . . . . 145

5.5 PLATFORM DEPLOYMENT AND ACCESSIBILITY . . . . . . . . . . 146

5.5.1 End-User Platform Capabilities . . . . . . . . . . . . . . . . . . . . 146

5.5.2 System Builder Platform Integration . . . . . . . . . . . . . . . . . 146

5.6 PERFORMANCE VALIDATION AND STATISTICAL ANALYSIS . . . . 147

5.7 PLATFORM LIMITATIONS AND REAL-WORLD PERFORMANCE

CHALLENGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.7.1 Performance Discrepancy Between Training and Deployment . . 148



5.7.2 Leaf Classification Task Overfitting . . . . . . . . . . . . . . . . . . 148

5.7.3 Dataset Processing Pipeline Robustness . . . . . . . . . . . . . . 149

5.7.4 Implications for Agricultural AI Development . . . . . . . . . . . . 150

5.7.5 Experimental Optimization Approaches . . . . . . . . . . . . . . . 150

5.7.5.1 Failure Analysis and Methodological Insights . . . . . . . . . . . . . . 151

5.8 SUPPLEMENTARY PERFORMANCE ANALYSIS . . . . . . . . . . . 152

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.1 DESIGN LIMITATIONS AND RESEARCH CONSTRAINTS . . . . . . 154

6.1.1 Performance Discrepancy Between Training and Real-World De-

ployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.1.2 Dataset Processing Pipeline Robustness . . . . . . . . . . . . . . 155

6.1.3 Architectural and Methodological Constraints . . . . . . . . . . . 155

6.1.4 Failed Optimization Experiments . . . . . . . . . . . . . . . . . . . 156

6.2 FUTURE WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2.1 Robust Evaluation and Validation Frameworks . . . . . . . . . . . 156

6.2.2 Enhanced Dataset Processing and Robustness . . . . . . . . . . 157

6.2.3 Alternative Task Dependency Structures . . . . . . . . . . . . . . . 157

6.2.4 Advanced Optimization and Representation Learning . . . . . . . 157

6.2.5 Extended Scope and Multi-Modal Integration . . . . . . . . . . . . 158

6.2.6 Enhanced Interpretability and Attention Mechanisms . . . . . . . 158

6.2.7 Deployment Optimization and Mobile Integration . . . . . . . . . . 159

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

APÊNDICE A – DATASET INFORMATION . . . . . . . . . . . . . . 170

APÊNDICE B – MODEL METRICS . . . . . . . . . . . . . . . . . . 174

APÊNDICE C – ZERO-SHOT AND FEW-SHOT LEARNING . . . . 186

APÊNDICE D – ENCODER-DECODER ARCHITECTURES IN DETAIL190

APÊNDICE E – VISION TRANSFORMERS: DETAILED ARCHITEC-

TURE . . . . . . . . . . . . . . . . . . . . . . . . . . 194

APÊNDICE F – RETRIEVAL AUGMENTED GENERATION . . . . . 201



21

1 INTRODUCTION

1.1 MOTIVATION

Global food security is intrinsically linked to crop health, yet agricultural production

faces persistent threats from pests and diseases. In Brazil, one of the world’s largest

food producers, these challenges are particularly acute, with estimated economic losses

reaching 43% of annual production (IBGE, 2017). The nation’s agricultural landscape is

dominated by smallholders, who account for over 70% of domestic food production but

often lack access to timely and accurate phytopathology expertise. This knowledge gap

contributes to Brazil’s standing as a leading global consumer of pesticides (RIGOTTO;

VASCONCELOS; ROCHA, 2014), where the misuse of agrochemicals can lead to ineffective

pest control, increased costs, and negative environmental externalities. With an average

of only one agronomist for every 270 farmers (ASBRAER, 2014), the need for scalable,

accessible, and reliable diagnostic tools is paramount.

The convergence of computer vision and machine learning offers a promising path-

way to augment the diagnostic capabilities of agricultural specialists (BOULENT et al.,

2019). By analyzing digital images of plant leaves, these technologies can rapidly

identify symptoms and pathogens, enabling faster intervention and real-time disease

assessments (BOCK et al., 2020). However, many existing systems exhibit significant

limitations: they often address only a single classification task (e.g., distinguishing a

healthy leaf from a diseased one), are trained on sanitised laboratory images that fail to

represent real-world field conditions (MOHANTY; HUGHES; SALATHÉ, 2016), and operate

as isolated tools rather than integrated components of a larger agricultural workflow.

This thesis posits that a more holistic approach is required to create a truly effective

digital decision support system. We argue that plant disease diagnosis is not a singular

classification problem but an inherently multi-faceted analytical process. Therefore, we

leverage Multi-Task Learning (MTL), a paradigm where a single model learns to perform

multiple related tasks simultaneously. This approach mimics the reasoning of a human

expert—who might simultaneously assess health, identify symptoms, and infer a causal

agent—and promotes the sharing of learned representations across tasks, improving

generalization and reducing the risk of overfitting (RUDER, 2017; CRAWSHAW, 2020).

Building upon this principle, from the work using a single-task model built by Barros et al.
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(2021), this research develops and evaluates Hydra: an AI-powered system designed

to accelerate the entire plant disease diagnostic pipeline. Hydra is conceptualized

as a dual-purpose platform: a standalone web application for direct use and an API-

first service for seamless integration into other agricultural software. By structuring

the analysis into a multi-step process, Hydra aims to transform a diagnostic workflow

that traditionally takes hours or days into a matter of seconds, thereby empowering

specialists and enhancing their reach through remote monitoring capabilities (HAMPF et

al., 2021).

1.2 PROBLEM STATEMENT

While the concept of image-based plant disease detection is not new, the transition

from academic prototypes to robust, field-ready tools is hindered by several practical

challenges. This thesis addresses the following specific problems:

1. Fragmented and Inefficient Diagnosis: Existing digital tools often rely on sep-

arate, single-purpose models for each diagnostic step. This approach is com-

putationally inefficient, can produce contradictory results, and fails to model the

interdependent nature of phytopathological reasoning, overlooking the regular

diagnosis process of a human expert.

2. Poor Generalization to Field Conditions: Many models are over-specialized

to a single crop or trained on idealized lab images. Their performance degrades

significantly on in-field images with cluttered backgrounds, variable lighting, and

diverse camera angles.

3. Expertise as a Bottleneck: The specialized knowledge of phytopathologists is

a scarce resource. The lack of scalable, API-driven tools prevents this expertise

from being effectively integrated into modern digital workflows, delaying critical

treatment decisions.

4. The "Black Box" Dilemma: For a diagnostic tool to be trusted, its conclusions

must be interpretable. Most deep learning models operate as opaque "black

boxes," limiting their utility in high-stakes agricultural contexts where understanding

the "why" is as crucial as the "what." This is particularly important for the field of
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plant pathology, where the diagnosis of a disease is not only about identifying the

disease, but also about understanding the causal agent and the severity of the

disease.

1.3 OBJECTIVES

To address these challenges, this research pursues the following primary objectives:

1. Design and Implement a Unified Multi-Task Architecture: Develop a single

MTL neural network capable of executing five core diagnostic tasks from a single

256× 256 RGB image: (a) leaf recognition, (b) binary health assessment (healthy

vs. diseased), (c) macro-symptom classification (e.g., chlorosis, rust), (d) causal

agent identification (fungi, bacteria, virus, etc.), and (e) disease identification (e.g.,

powdery mildew, black rot, etc.).

2. Develop a Robust, Field-Oriented Data Pipeline: Assemble a large-scale, multi-

crop dataset of over 60,000 images from existing datasets. Implement a standard-

ized pre-processing pipeline, featuring background removal, to enhance model

focus and robustness to visual noise typical of in-field images, alongside with a

robust training pipeline to ensure the model is able to generalize to new crops and

diseases, as well as being able to easily fine-tune for new datasets and tasks.

3. Benchmark and Validate Against Diverse Architectures: Conduct a comprehen-

sive performance evaluation by benchmarking multiple modern CNN backbones

(including ResNet50V2, MobileNetV2, EfficientNet, and Vision Transformers) and

quantify the performance gains of the MTL model against a single-task baseline.

4. Deliver an End-to-End Explainable System: Deploy the model as a REST API

and build an integrated platform around it, featuring a web-based client for ease of

use by end-users, a REST API for integration with other systems, and Grad-CAM

visualizations to provide visual explanations for model predictions.



24

1.4 CONTRIBUTIONS

This dissertation delivers the following contributions to the fields of computer vision

and digital agriculture:

1. A Novel Multi-Task Learning Framework for Plant Pathology: We present a

compact six-task CNN that shares over 98% of its parameters, demonstrating an

efficient and effective method for modeling the diagnostic process. The model

surpasses the baseline F1-score by up to 8 percentage points on challenging

field-captured images.

2. A Curated Public Dataset and Pre-processing Toolkit: We release a cleaned,

annotated, and aggregated dataset for multi-task plant disease classification, along

with reproducible scripts for image pre-processing and model training, providing a

valuable resource for future research.

3. An Open-Source, Full-Stack Diagnostic Platform: We deliver an operational

system comprising an inference server available as a REST API, a web-based

client for end-users, and a REST API for integration with other systems.

4. Empirical Insights and Architectural Guidelines: We provide a thorough com-

parative analysis of different neural network backbones for this domain. These

findings offer practical guidelines for developing future machine learning models in

agriculture.
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2 THEORETICAL BACKGROUND

This chapter establishes the theoretical foundation necessary for understanding the

research contributions presented in the proposed work. We examine the fundamental

concepts and mathematical principles underlying modern machine learning approaches,

focusing on artificial neural networks, computer vision techniques, and multi-task learn-

ing. The chapter also reviews key works that have shaped the development of the

methodologies and experimental approaches discussed in later chapters. This theoreti-

cal background provides the conceptual basis for interpreting the novel contributions

and experimental results that follow.

2.1 ARTIFICIAL INTELLIGENCE

Artificial Intelligence (AI) is a broad field that encompasses various subareas, in-

cluding machine learning (ML), deep learning (DL), artificial neural networks (ANN),

computer vision (CV), natural language processing (NLP), and robotics.

Its core principle is to create machines that can mimic human intelligence. The

concept of intelligence is broad and can be defined in various ways, and there are

many philosofical discussions on what encompasses intelligence and human behaviour,

including ideas on consciousness, human emotion and how we react to it, and what we

consider to be rational or irrational behaviour. As pointed out by Russell e Norvig (2009),

should we be concerned with thinking or behavior when building such machines? Do

we want to model humans, or work from an ideal standard?

For the purpose of this work, we will focus on the discussions that follow closely

to the idea of a machine that can try to solve problems and achieve results in a more

rational way, which can be broken down in two main approaches: the symbolic approach

and the connectionist approach.

2.1.1 Symbolic Approach

The symbolic approach, which is also referred to as classical AI, is based on the idea

of a machine that can reason about the world and solve problems using a set of rules
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and symbols. Many of its core ideas were based in a set of rules to achieve a certain

goal, be it by chaining a series of conditions based on the information from experts of

a given field, or by using specific algorithms that are able to solve problems in a more

general way.

Classic examples of some of the algorithms that are based on the symbolic approach

are the search algorithms, such as the A* algorithm, or decision rules, such as the

Minimax algorithm.

However, those methodologies either have a limited scope, or are not able to solve

problems in a general way, or demand too much time and resources in order to build an

adequate knowledge base out of expert knowledge.

2.1.2 Connectionist Approach

The connectionist approach, which is also referred to as modern AI, is based on

the idea of a machine that can learn from experience based on examples, usually in

a non-deterministic way. The idea is to learn the rules of a given problem by trial and

error, and then use those learned rules to solve new problems.

Although it usually involves processes that are not deterministic, it has shown to be

able to solve problems in a more general way, being able to learn from a large amount of

examples, and being able to generalize to unseen problems. Examples of connectionist

approaches are the subfields of machine learning, and more specifically artificial neural

networks.

Figure 1 illustrates the main differences between the symbolic and connectionist

approaches to AI.
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Figure 1 – Comparison between the symbolic and connectionist approaches to AI. Source: Alsaïdi (2023).

2.2 MACHINE LEARNING

Machine Learning (ML) is one of most discussed subareas of Artificial Intelligence

(AI). ML is the subarea that tries to achieve a desired outcome without being given

specific instructions on how to do so. Instead, predictions are obtained based on

given examples and attempts to generalize from them by trial and error, as shown by

Solomonoff (1957).

Using such techniques allows society to solve novel problems without spending

much time pursuing mathematical proofs or complex formulas at the cost of having

non-deterministic results due to the lack of interpretability of neural network-based

models, often referred to as "black-box" models. The trade-off is deemed acceptable for

most practical applications, ranging from recommendation systems to content creation,

data forecasting, and speech and image recognition, the latter being the focus of this

work.

The fundamental goal of machine learning is to create models that can generalize

well to unseen data, meaning they perform accurately on new examples that were not

part of the training process. This generalization capability is what distinguishes effective

machine learning models from simple memorization systems (VAPNIK, 2013).

A typical machine learning workflow is divided into two main phases: training and
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(a) Training Phase (b) Inference Phase

Figure 2 – Generic Machine Learning Workflow. The diagrams illustrate the standard pipeline commonly
adopted in machine learning systems, separated into two distinct phases: training (a) and
inference (b). Source: Author.

inference. During the training phase, the model learns from labeled examples by op-

timizing its parameters to minimize a loss function, resulting in a trained model. In

the inference phase, this trained model is used to make predictions on new, unseen

data. Figure 2 illustrates this standard pipeline, highlighting the distinction between the

training and inference processes:

• Training Phase: The process begins with examples of data (e.g., CSVs, im-

ages, logs), which may be preprocessed through cleaning, normalization, and

various other techniques to improve the quality of the data. This data is then

split into training and testing subsets. During training, the model learns by min-

imising the difference of its predictions from the ground truth through iterative

optimisation. A configuration module usually supplies hyperparameters such as

learning rate and batch size. After initial training, model performance is evaluated

using test data, and hyperparameters — for models that have them — may be

adjusted in a feedback loop to refine the model. The output is a trained model

ready for deployment. Another common practice is to use a validation set to tune

the hyperparameters and select the best model.

• Inference Phase: Once the model is trained, it can be used to infer outcomes

from previously unseen data. New input samples are passed through the trained
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model in a forward-pass operation, producing predictions. This phase is typically

deterministic and does not involve updates to the model’s parameters.

2.2.1 Learning Paradigms

Machine learning approaches can be categorized into several fundamental

paradigms based on the nature of the training data and the learning objectives. Under-

standing these paradigms is crucial for selecting appropriate methodologies for specific

problems and interpreting their limitations and capabilities.

2.2.1.1 Supervised Learning

Supervised learning is the most widely used machine learning paradigm, where

models are trained on datasets containing input-output pairs, also known as labeled

data (BISHOP, 2006). The objective is to learn a mapping function 𝑓 : 𝒳 → 𝒴 from input

space 𝒳 to output space 𝒴 that can accurately predict outputs for new, unseen inputs.

Supervised learning problems are typically divided into two main categories:

Classification: The output variable is categorical, representing discrete classes or

labels. For binary classification, 𝒴 = {0, 1} or 𝒴 = {−1,+1}, while multi-class problems

have 𝒴 = {1, 2, ..., 𝐾} where 𝐾 is the number of classes. Examples include email spam

detection, image recognition, and medical diagnosis.

Regression: The output variable is continuous, where 𝒴 ⊆ R. The goal is to predict

numerical values such as house prices, stock market values, or temperature forecasting.

The performance of supervised learning algorithms is typically evaluated using

metrics such as accuracy, precision, recall, and F1-score for classification tasks, and

mean squared error (MSE), mean absolute error (MAE), and coefficient of determination

(𝑅2) for regression tasks.

2.2.1.2 Unsupervised Learning

Unsupervised learning deals with datasets that contain only input data without

corresponding target outputs (HASTIE; TIBSHIRANI; FRIEDMAN, 2009). The goal is to

discover hidden patterns, structures, or representations within the data. Since there are
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no explicit labels to guide the learning process, unsupervised methods must rely on

intrinsic properties of the data.

Common unsupervised learning tasks include:

Clustering: Partitioning data into groups (clusters) such that data points within the

same cluster are more similar to each other than to those in other clusters. Popular

algorithms include k-means, hierarchical clustering, and Gaussian mixture models.

Dimensionality Reduction: Reducing the number of features while preserving

important information. Techniques such as Principal Component Analysis (PCA), t-

Distributed Stochastic Neighbor Embedding (t-SNE), and autoencoders are commonly

used for visualization and feature extraction.

Density Estimation: Learning the probability distribution of the data, which can be

used for anomaly detection, data generation, and statistical inference.

Association Rule Learning: Discovering relationships between different variables,

commonly used in market basket analysis and recommendation systems.

2.2.1.3 Semi-Supervised Learning

Semi-supervised learning represents a hybrid approach that leverages both labeled

and unlabeled data during training (CHAPELLE; SCHÖLKOPF; ZIEN, 2006). This paradigm

is particularly valuable in scenarios where obtaining labeled data is expensive, time-

consuming, or requires expert knowledge, while unlabeled data is readily available.

The fundamental assumption underlying semi-supervised learning is that the dis-

tribution of unlabeled data contains information about the underlying structure that

can improve learning performance. Several key assumptions guide semi-supervised

approaches:

Smoothness Assumption: If two points are close in the input space, their outputs

should be similar.

Cluster Assumption: Data points in the same cluster are likely to belong to the

same class.

Manifold Assumption: High-dimensional data lies on a lower-dimensional manifold,

and both labeled and unlabeled data share this manifold structure.

Common semi-supervised learning techniques include self-training, co-training,

graph-based methods, and semi-supervised variants of deep learning models. These



31

approaches have shown particular success in domains such as natural language

processing, computer vision, and bioinformatics, where large amounts of unlabeled data

are available but labeling requires specialized expertise.

2.2.2 Model Complexity and Generalization

A fundamental challenge in machine learning is achieving the right balance between

model complexity and generalization performance. This balance is crucial for developing

models that perform well on unseen data rather than merely memorizing the training

examples.

2.2.2.1 Overfitting and Underfitting

Overfitting occurs when a model learns not only the underlying patterns in the

training data but also the noise and random fluctuations specific to the training set

(HAWKINS, 2004). An overfitted model exhibits excellent performance on training data but

poor generalization to new, unseen data. This phenomenon is particularly common in

complex models with many parameters relative to the amount of training data available.

Mathematically, overfitting can be understood through the bias-variance decomposi-

tion of the expected prediction error. For a model 𝑓 trained on dataset 𝒟, the expected

error on a new point (𝑥, 𝑦) can be decomposed as:

E[(𝑦 − 𝑓(𝑥))2] = Bias2[𝑓(𝑥)] + Var[𝑓(𝑥)] + 𝜎2 (2.1)

where 𝜎2 represents the irreducible error due to noise in the data.

Underfitting, conversely, occurs when a model is too simple to capture the underly-

ing patterns in the data. Underfitted models exhibit poor performance on both training

and test data, indicating high bias but low variance.

The relationship between model complexity and these phenomena is illustrated by

the bias-variance tradeoff: as model complexity increases, bias typically decreases

while variance increases. The optimal model complexity minimizes the total expected

error.
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2.2.2.2 Regularization Techniques

Regularization is a fundamental technique for controlling model complexity and pre-

venting overfitting by adding constraints or penalties to the learning objective (TIKHONOV;

ARSENIN, 1977). The general form of a regularized objective function is:

ℒreg(𝜃) = ℒdata(𝜃) + 𝜆ℛ(𝜃) (2.2)

where ℒdata(𝜃) is the data-fitting term (e.g., mean squared error), ℛ(𝜃) is the reg-

ularization term, and 𝜆 is the regularization parameter that controls the strength of

regularization.

Common regularization techniques include:

L1 Regularization (Lasso): Adds the sum of absolute values of parameters:

ℛ(𝜃) = ‖𝜃‖1 =
𝑝∑︁

𝑖=1

|𝜃𝑖| (2.3)

L1 regularization promotes sparsity by driving some parameters to exactly zero,

effectively performing feature selection.

L2 Regularization (Ridge): Adds the sum of squared parameters:

ℛ(𝜃) = ‖𝜃‖22 =
𝑝∑︁

𝑖=1

𝜃2𝑖 (2.4)

L2 regularization shrinks parameters toward zero but rarely makes them exactly zero,

providing a smoother regularization effect.

Elastic Net: Combines L1 and L2 regularization:

ℛ(𝜃) = 𝛼‖𝜃‖1 + (1− 𝛼)‖𝜃‖22 (2.5)

2.2.2.3 Cross-Validation

Cross-validation is a statistical technique used to assess model performance and

select hyperparameters while making efficient use of available data (STONE, 1974). The

most common approach is k-fold cross-validation, where the dataset is partitioned into

𝑘 equally-sized folds. The model is trained on 𝑘− 1 folds and validated on the remaining

fold, with this process repeated 𝑘 times.
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The cross-validation estimate of the expected error is:

CV(𝑘) =
1

𝑘

𝑘∑︁
𝑖=1

ℒ(𝒟val
𝑖 , 𝑓 (−𝑖)) (2.6)

where 𝒟val
𝑖 is the 𝑖-th validation fold and 𝑓 (−𝑖) is the model trained on all folds except

the 𝑖-th.

Cross-validation serves multiple purposes: (1) providing an unbiased estimate of

model performance, (2) enabling model selection among different algorithms or archi-

tectures, and (3) facilitating hyperparameter tuning. Special cases include leave-one-out

cross-validation (LOOCV) where 𝑘 equals the number of data points, and stratified

cross-validation, which maintains class proportions in each fold for classification prob-

lems.

2.2.3 Neurons and Artificial Neural Networks

The basis of any modern model able to learn and achieve results without being

explicitly programmed to do so is related to the neuron found in the human brain.

McCulloch e Pitts (1943) showed how a simple mathematical formula based on inputs,

multiplied by arbitrary weights and then summed together before being compared

through an activation function, can describe a human neuron. The model was called a

Perceptron later on by Rosenblatt (1957), who also showed how multiple Perceptrons

can work in tandem and in parallel.

2.2.3.1 Mathematical Foundation of Artificial Neurons

At its core, an artificial neuron is a computational unit that performs a weighted sum

of its inputs followed by a non-linear transformation. Mathematically, for a neuron 𝑗 in

layer 𝑙, the computation can be expressed as:

𝑧
(𝑙)
𝑗 =

𝑛∑︁
𝑖=1

𝑤
(𝑙)
𝑖𝑗 𝑥

(𝑙−1)
𝑖 + 𝑏

(𝑙)
𝑗 (2.7)

𝑎
(𝑙)
𝑗 = 𝑓(𝑧

(𝑙)
𝑗 ) (2.8)

where:
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• 𝑥
(𝑙−1)
𝑖 represents the 𝑖-th input from the previous layer (or raw input for the first

layer)

• 𝑤
(𝑙)
𝑖𝑗 denotes the weight connecting input 𝑖 to neuron 𝑗 in layer 𝑙

• 𝑏
(𝑙)
𝑗 is the bias term for neuron 𝑗 in layer 𝑙

• 𝑧
(𝑙)
𝑗 is the weighted sum (pre-activation value)

• 𝑎
(𝑙)
𝑗 is the final output (post-activation value)

• 𝑓(·) represents the activation function

2.2.3.2 The Learning Parameters of a Neural Network: Weights and Biases

Weights and biases are the fundamental learnable parameters in neural networks,

serving distinct but complementary roles in the learning process.

Weights (𝑤𝑖𝑗): These parameters control the strength and direction of connections

between neurons. Each weight represents the importance of a particular input to the

neuron’s output. Positive weights amplify the input signal, while negative weights inhibit

it. The magnitude of the weight determines the strength of this influence. During training,

weights are adjusted through gradient descent to minimize the loss function, effectively

learning which input features are most relevant for the task at hand.

Biases (𝑏𝑗): The bias term allows each neuron to shift its activation threshold,

providing additional flexibility in the decision boundary. Without bias terms, the neuron’s

output would always be zero when all inputs are zero, severely limiting the model’s

expressiveness. Biases enable neurons to be active even when inputs are small or zero,

allowing the network to learn more complex patterns and make the model more flexible

in fitting the training data.

The initialization of weights and biases is crucial for successful training. Common

initialization strategies include Xavier/Glorot initialization (GLOROT; BENGIO, 2010) and

He initialization (HE et al., 2015), which help maintain proper gradient flow during back-

propagation and prevent vanishing or exploding gradient problems.
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2.2.3.3 Activation Functions

Activation functions are mathematical functions that determine the output of a neuron

given its input. They introduce non-linearity into the network, enabling it to learn complex

patterns and relationships that would be impossible with linear transformations alone.

Without activation functions, a multi-layer neural network would be equivalent to a single

linear transformation, regardless of the number of layers.

Common activation functions include:

Sigmoid Function:

𝜎(𝑧) =
1

1 + 𝑒−𝑧
(2.9)

The sigmoid function maps any real value to the range (0, 1), making it historically

popular for binary classification tasks. However, it suffers from the vanishing gradient

problem for very large or small input values, where gradients become extremely small,

slowing down learning in deep networks.

Hyperbolic Tangent (tanh):

tanh(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
(2.10)

The tanh function maps inputs to the range (-1, 1) and is zero-centered, which can

lead to faster convergence compared to sigmoid. However, it still suffers from vanishing

gradients for extreme input values.

Rectified Linear Unit (ReLU):

ReLU(𝑧) = max(0, 𝑧) (2.11)

ReLU has become the most widely used activation function in deep learning due

to its computational efficiency and ability to mitigate the vanishing gradient problem. It

outputs the input directly if positive, otherwise zero. Despite its simplicity, ReLU can

suffer from the "dying ReLU" problem, where neurons can become permanently inactive.

Leaky ReLU:

Leaky ReLU(𝑧) = max(𝛼𝑧, 𝑧) (2.12)

The Leaky ReLU function addresses the dying ReLU problem by allowing a small

gradient when the input is negative, where 𝛼 is a small positive constant (typically 0.01).

This variant addresses the dying ReLU problem by allowing a small gradient when the

input is negative.
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2.2.3.4 Multi-layer Networks and Universal Approximation

Figure 3 illustrates the fundamental differences between basic neural network ar-

chitectures. The single-layer network shown in (a) demonstrates the simplest form of

artificial neural network, where inputs are directly connected to a single layer of hidden

units through weighted connections, each with their own bias terms, which then pro-

duce the output after applying activation functions. This basic architecture, while limited

in representational capacity, clearly shows how neural networks process information

through the mathematical operations described in Sec. 2.2.3.2 e Sec. 2.2.3.3.

(a) Single-layer neural network

(b) Multi-layer neural network

Figure 3 – Comparison of Neural Network Architectures. In (a), a single-layer neural network is shown,
consisting of three input features (𝑥1, 𝑥2, 𝑥3), a single fully-connected layer with three hidden
units (ℎ1, ℎ2, ℎ3), and a single output (𝑦). Each input is connected to all hidden units, and all
hidden units are connected to the output. This architecture represents a shallow model with
limited representational capacity. In (b), a three-layer neural network is depicted. It takes the
same three input features (𝑥1, 𝑥2, 𝑥3), followed by a first hidden layer with two units (𝑙11, 𝑙12),
a second hidden layer with three units (𝑙21, 𝑙22, 𝑙23), and a final output layer with one unit (𝑦).
Each layer is fully connected to the next, allowing for hierarchical feature transformations. This
deeper architecture increases model expressiveness and is better suited for capturing complex
data patterns. Source: Author.

However, a single-layer Perceptron network was not sophisticated enough to solve

even some trivial problems, such as a boolean XOR. This limitation, famously highlighted

by Minsky e Papert (1969), led to what became known as the "AI winter" in the 1970s.
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Rosenblatt himself demonstrated that layers of Perceptrons built on top of one another

are required to solve such problems.

The multi-layer architecture depicted in Figure 3(b) shows how deeper networks can

capture more complex patterns through hierarchical feature learning, where each layer

transforms the input in increasingly abstract ways. In a multi-layer network, the output of

one layer becomes the input to the next layer, creating a composition of functions:

a(𝐿) = 𝑓 (𝐿)(W(𝐿)𝑓 (𝐿−1)(W(𝐿−1) · · · 𝑓 (1)(W(1)x+ b(1)) · · ·+ b(𝐿−1)) + b(𝐿)) (2.13)

where 𝐿 is the number of layers, W(𝑙) and b(𝑙) are the weight matrix and bias vector

for layer 𝑙, and 𝑓 (𝑙) is the activation function for layer 𝑙.

The theoretical foundation for multi-layer networks’ power lies in the Universal

Approximation Theorem (CYBENKO, 1989; HORNIK; STINCHCOMBE; WHITE, 1989), which

states that a feedforward network with a single hidden layer containing a finite number

of neurons can approximate any continuous function on a compact subset of R𝑛 to

arbitrary accuracy, provided the activation function is non-constant, bounded, and

monotonically-increasing.

2.2.3.5 Network Connectivity and Information Flow

In fully-connected (dense) layers, each neuron in layer 𝑙 receives input from every

neuron in layer 𝑙 − 1. This creates a rich connectivity pattern where information can flow

through multiple pathways. For a layer with 𝑛 input neurons and 𝑚 output neurons, this

results in 𝑛×𝑚 weight parameters plus 𝑚 bias parameters.

The forward pass through a multi-layer network involves sequential computation

through each layer:
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z(1) = W(1)x+ b(1) (2.14)

a(1) = 𝑓 (1)(z(1)) (2.15)

z(2) = W(2)a(1) + b(2) (2.16)

a(2) = 𝑓 (2)(z(2)) (2.17)
... (2.18)

z(𝐿) = W(𝐿)a(𝐿−1) + b(𝐿) (2.19)

a(𝐿) = 𝑓 (𝐿)(z(𝐿)) (2.20)

This hierarchical processing allows each layer to build upon the representations

learned by previous layers, creating increasingly complex and abstract feature represen-

tations.

2.2.3.6 Backpropagation and Parameter Learning

Multi-layer perceptrons (MLP) networks became feasible only after the definition of

backpropagation was formulated by Rumelhart, Hinton e Williams (1986), based on the

work from Linnainmaa (1970). Backpropagation is an efficient algorithm for computing

gradients of the loss function with respect to all network parameters using the chain rule

of calculus.

The algorithm works by propagating error signals backward through the network.

For a loss function ℒ, the gradient with respect to the weights in layer 𝑙 is computed as:

𝜕ℒ
𝜕W(𝑙)

=
𝜕ℒ
𝜕z(𝑙)

𝜕z(𝑙)

𝜕W(𝑙)
= 𝛿(𝑙)(a(𝑙−1))𝑇 (2.21)

where 𝛿(𝑙) = 𝜕ℒ
𝜕z(𝑙)

is the error term for layer 𝑙, computed recursively as:

𝛿(𝑙) = ((W(𝑙+1))𝑇 𝛿(𝑙+1))⊙ 𝑓 ′(𝑙)(z(𝑙)) (2.22)

where ⊙ denotes element-wise multiplication and 𝑓 ′(𝑙) is the derivative of the activa-

tion function in layer 𝑙.

Similarly, the gradient with respect to biases is:

𝜕ℒ
𝜕b(𝑙)

= 𝛿(𝑙) (2.23)
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Backpropagation allows MLPs to be trained based on labeled examples through trial

and error in an autonomous way, establishing the modern concept of Artificial Neural

Networks (ANNs). The efficiency of this algorithm, with computational complexity 𝑂(𝑊 )

where 𝑊 is the total number of weights, made training deep networks practically feasible

and laid the foundation for modern deep learning.

2.3 DEEP LEARNING

Deep Learning (DL) is a subfield of machine learning that leverages artificial neural

networks with multiple hidden layers to automatically learn hierarchical representations

from data (LECUN; BENGIO; HINTON, 2015). While the exact definition of "deep" remains

subject to debate, it is generally accepted that networks with multiple layers (typically

three or more hidden layers) constitute deep learning models (GOODFELLOW; BENGIO;

COURVILLE, 2016).

The fundamental distinction between deep learning and traditional machine learning

approaches lies in their approach to feature extraction and representation learning.

Traditional machine learning methods rely heavily on manual feature engineering, where

domain experts must identify and extract relevant features from raw data before applying

learning algorithms. In contrast, deep learning models can automatically discover and

learn hierarchical feature representations directly from raw data, reducing the need for

extensive domain knowledge and manual preprocessing (BENGIO; COURVILLE; VINCENT,

2013).

2.3.1 Key Differences from Traditional Machine Learning

Deep learning distinguishes itself from conventional machine learning approaches

across several critical dimensions:

2.3.1.1 Feature Engineering and Representation Learning

Traditional machine learning algorithms, such as Support Vector Machines (SVMs),

Random Forests, and k-Nearest Neighbors, operate on handcrafted features extracted

from raw data. This process requires significant domain expertise and often becomes the
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bottleneck in developing effective machine learning systems. Deep learning models, par-

ticularly CNNs for image data, automatically learn hierarchical feature representations

through multiple layers of non-linear transformations (LECUN et al., 1998).

For instance, in image classification tasks, the initial layers of a CNN typically learn to

detect low-level features such as edges and textures, while deeper layers combine these

features to recognize more complex patterns like shapes and objects. This hierarchical

feature learning eliminates the need for manual feature design and often leads to

superior performance on complex tasks.

2.3.1.2 Data Requirements and Scalability

Traditional machine learning algorithms often perform well with relatively small

datasets and may plateau in performance as data volume increases. Deep learning

models, conversely, typically require large amounts of training data to achieve optimal

performance but continue to improve as more data becomes available (GOODFELLOW;

BENGIO; COURVILLE, 2016). This characteristic makes deep learning particularly well-

suited for applications where large datasets are available, such as computer vision and

natural language processing.

The relationship between data size and model performance in deep learning follows

a power law, where doubling the dataset size can lead to consistent improvements in

model accuracy. This scalability advantage becomes more pronounced as the complexity

of the task increases.

2.3.1.3 Computational Requirements

Deep learning models demand significantly more computational resources compared

to traditional machine learning approaches. Training deep networks typically requires

specialized hardware such as Graphics Processing Units (GPUs), Tensor Processing

Units (TPUs), or other Application-Specific Integrated Circuits (ASICs) to handle the

intensive matrix operations involved in forward and backward propagation (LECUN;

BENGIO; HINTON, 2015). Traditional machine learning algorithms, in contrast, can often

be trained efficiently on standard Central Processing Units (CPUs).



41

2.3.1.4 Model Interpretability and Explainable AI

Traditional machine learning models, such as decision trees and linear regression,

offer inherent interpretability, allowing practitioners to understand the decision-making

process. Deep learning models are often criticized as "black boxes" due to their complex

architectures and numerous parameters, making it challenging to interpret how specific

inputs lead to particular outputs (SAMEK; WIEGAND; MÜLLER, 2017). The field of Explain-

able Artificial Intelligence (XAI) has emerged to address this fundamental challenge,

developing methods to make deep learning models more transparent and interpretable.

Motivation for Explainability: The need for explainability in AI systems stems from

several critical requirements (GUNNING et al., 2019):

• Trust and Accountability: In high-stakes domains such as healthcare, finance,

and criminal justice, stakeholders need to understand and validate AI decisions

before acting on them.

• Debugging and Improvement: Understanding model behavior helps identify

failure modes, biases, and opportunities for improvement.

• Regulatory Compliance: Regulations such as the European Union’s General

Data Protection Regulation (GDPR) include provisions for a "right to explanation"

for automated decisions.

• Scientific Discovery: In scientific applications, understanding what models learn

can lead to new insights and hypotheses.

Taxonomy of Explainability Methods: XAI techniques can be categorized along

several dimensions (ADADI; BERRADA, 2018):

• Intrinsic vs. Post-hoc: Intrinsic methods build interpretability directly into the

model architecture (e.g., attention mechanisms, sparse models), while post-hoc

methods explain already-trained models.

• Local vs. Global: Local explanations describe model behavior for individual

predictions, while global explanations characterize overall model behavior.
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• Model-specific vs. Model-agnostic: Some methods are designed for specific

architectures (e.g., Grad-CAM for CNNs), while others can be applied to any model

(e.g., LIME, SHAP).

Key XAI Techniques for Deep Learning:

Gradient-based Methods: These techniques use gradients to identify which input

features most influence the model’s output. Gradient-weighted Class Activation Mapping

(Grad-CAM) (SELVARAJU et al., 2017) produces visual explanations for CNN decisions by

computing the gradient of the target class score with respect to feature maps, generating

a localization map highlighting important regions in the input image.

Layer-wise Relevance Propagation (LRP): LRP (BACH et al., 2015) decomposes the

prediction decision backward through the network layers, attributing relevance scores to

each input feature based on its contribution to the final prediction.

Attention Mechanisms: Beyond their functional role in model architecture, attention

weights provide inherent interpretability by showing which parts of the input the model

focuses on when making predictions (VASWANI et al., 2017).

Saliency Maps: These visualizations highlight input regions that most strongly influ-

ence model predictions, computed through various methods including gradient-based

approaches and perturbation-based techniques (SIMONYAN; VEDALDI; ZISSERMAN, 2013).

LIME and SHAP: Local Interpretable Model-agnostic Explanations (LIME) (RIBEIRO;

SINGH; GUESTRIN, 2016) and SHapley Additive exPlanations (SHAP) (LUNDBERG; LEE,

2017) are model-agnostic frameworks that explain individual predictions by approximat-

ing the model locally with an interpretable model or by using game-theoretic approaches

to attribute importance to features.

Challenges and Trade-offs: Despite significant progress, XAI faces ongoing chal-

lenges. There often exists a trade-off between model performance and interpretability,

with simpler, more interpretable models sometimes achieving lower accuracy than

complex black-box models. Additionally, different explanation methods can produce con-

tradictory explanations for the same prediction, and evaluating the quality of explanations

remains an open research question (DOSHI-VELEZ; KIM, 2017).
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2.3.2 Training Deep Learning Models

Training deep learning models involves optimizing millions or billions of parameters

through gradient-based optimization algorithms. The most fundamental component is

the loss function, which quantifies the difference between predicted and actual outputs.

2.3.2.1 Loss Functions

The choice of loss function depends on the specific task:

Mean Squared Error (MSE): Used for regression tasks, MSE measures the average

squared difference between predicted and actual values:

ℒMSE =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 (2.24)

Cross-Entropy Loss: Commonly used for classification tasks, cross-entropy loss

measures the dissimilarity between predicted probability distributions and true labels:

ℒCE = − 1

𝑛

𝑛∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑦𝑖,𝑐 log(𝑦𝑖,𝑐) (2.25)

where 𝐶 is the number of classes, 𝑦𝑖,𝑐 is the true label (1 if sample 𝑖 belongs to class

𝑐, 0 otherwise), and 𝑦𝑖,𝑐 is the predicted probability for class 𝑐.

2.3.2.2 Optimization Algorithms

Modern deep learning relies on sophisticated optimization algorithms that extend

beyond traditional gradient descent:

Adam Optimizer: Combines the advantages of AdaGrad and RMSprop, adapting

learning rates for each parameter individually (KINGMA; BA, 2014):

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1− 𝛽1)𝑔𝑡 (2.26)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1− 𝛽2)𝑔
2
𝑡 (2.27)

𝑚̂𝑡 =
𝑚𝑡

1− 𝛽𝑡
1

(2.28)

𝑣𝑡 =
𝑣𝑡

1− 𝛽𝑡
2

(2.29)

𝜃𝑡+1 = 𝜃𝑡 −
𝛼√
𝑣𝑡 + 𝜖

𝑚̂𝑡 (2.30)
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where 𝑔𝑡 is the gradient at time 𝑡, 𝑚𝑡 and 𝑣𝑡 are exponential moving averages of

gradients and squared gradients respectively, and 𝛽1, 𝛽2 are decay rates.

2.3.3 Data Representation and Encoding

Before data can be processed by machine learning models, it must be transformed

into a numerical format that algorithms can interpret. This transformation process is

fundamental to all machine learning pipelines, and different encoding strategies can

significantly impact model performance.

2.3.3.1 One-Hot Encoding

One-hot encoding is a fundamental technique for representing categorical variables

as binary vectors, widely used in both traditional machine learning and deep learning

applications (GOODFELLOW; BENGIO; COURVILLE, 2016). This encoding scheme trans-

forms a categorical variable with 𝐾 possible values into a 𝐾-dimensional binary vector

where exactly one element is 1 (hot) and all others are 0 (cold).

Formally, for a categorical variable 𝑥 that can take one of 𝐾 discrete values

{𝑣1, 𝑣2, ..., 𝑣𝐾}, the one-hot encoding function 𝜑 : {𝑣1, ..., 𝑣𝐾} → {0, 1}𝐾 maps each

value to a unique binary vector:

𝜑(𝑣𝑖) = e𝑖 = [0, ..., 0, 1⏟ ⏞ 
𝑖-th position

, 0, ..., 0]𝑇 (2.31)

For example, consider a color attribute with three possible values: {red, green, blue}.

The one-hot encoding would represent these as:

• red → [1, 0, 0]𝑇

• green → [0, 1, 0]𝑇

• blue → [0, 0, 1]𝑇

Properties and Advantages: One-hot encoding possesses several important prop-

erties that make it suitable for machine learning applications. First, it eliminates any

implicit ordering or magnitude relationships between categories, which is crucial when

dealing with nominal variables where no natural ordering exists. Second, it creates
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orthogonal representations where the dot product between any two different category

vectors is zero, preventing the model from learning spurious relationships based on

arbitrary numerical assignments.

Applications in Neural Networks: In the context of neural networks, one-hot

encoding is particularly important for representing class labels in classification tasks.

The final layer of a classification network typically uses a softmax activation function

that outputs a probability distribution over classes, which can be directly compared to

the one-hot encoded ground truth labels using cross-entropy loss (BISHOP, 2006).

Limitations: Despite its widespread use, one-hot encoding has notable limitations.

For high-cardinality categorical variables (those with many unique values), one-hot

encoding can lead to extremely high-dimensional sparse representations, increasing

computational cost and memory requirements. Additionally, one-hot encoding does

not capture any semantic similarity between categories—the encoding for "cat" is

equally distant from "dog" as it is from "automobile," despite the former two being

more semantically related. Modern approaches such as embedding layers in neural

networks address these limitations by learning dense, continuous representations that

can capture semantic relationships (BENGIO; COURVILLE; VINCENT, 2013).

2.3.4 Evaluation Metrics for Deep Learning Models

Proper evaluation of deep learning models requires careful selection of appropriate

metrics based on the specific task and dataset characteristics.

2.3.4.1 Classification Metrics

Accuracy: The proportion of correctly classified instances:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.32)

Precision: The proportion of predicted positive instances that are actually positive:

Precision =
TP

TP + FP
(2.33)

Recall (Sensitivity): The proportion of actual positive instances that are correctly

identified:

Recall =
TP

TP + FN
(2.34)
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F1-Score: The harmonic mean of precision and recall, providing a balanced mea-

sure:

F1 = 2 · Precision × Recall
Precision + Recall

(2.35)

where TP, TN, FP, and FN represent true positives, true negatives, false positives,

and false negatives, respectively.

Area Under the ROC Curve (AUC-ROC): Measures the model’s ability to distinguish

between classes across all classification thresholds. The ROC curve plots the true

positive rate against the false positive rate, and the AUC provides a single scalar value

summarizing performance across all thresholds.

2.3.4.2 Considerations for Metric Selection

The choice of evaluation metric depends heavily on the specific application domain

and the relative costs of different types of errors. In medical diagnosis applications,

recall might be prioritized to ensure that most actual disease cases are identified, even

at the cost of increased false positives. Conversely, in spam detection, precision might

be more important to avoid classifying legitimate emails as spam.

For multi-class classification problems, metrics can be computed using macro-

averaging (computing metrics for each class and taking the unweighted mean) or micro-

averaging (computing metrics globally by counting total true positives, false negatives,

and false positives).

2.3.5 Deep Learning in Practice

The practical application of deep learning has been facilitated by several key devel-

opments:

Transfer Learning: Pre-trained models on large datasets (such as ImageNet) can be

fine-tuned for specific tasks, significantly reducing training time and data requirements

(PAN; YANG, 2009).

Regularization Techniques: Methods such as dropout, batch normalization, and

weight decay help prevent overfitting and improve generalization (SRIVASTAVA et al.,

2014).
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Hardware Acceleration: The availability of specialized hardware and distributed

computing frameworks has made training large-scale deep learning models feasible for

a broader range of applications.

The success of deep learning across diverse domains—from computer vision and

natural language processing to speech recognition and autonomous systems—has

established it as a fundamental paradigm in modern artificial intelligence, particularly

for tasks involving complex, high-dimensional data where traditional feature engineering

approaches prove insufficient.

2.3.6 Zero-Shot and Few-Shot Learning

Zero-shot learning represents a paradigm where models recognize or classify in-

stances from classes never seen during training, while few-shot learning allows models

to adapt from very few examples per class (PALATUCCI et al., 2009; VINYALS et al., 2016).

These approaches are particularly valuable when collecting labeled data for all classes

is impractical. Recent vision-language models like CLIP (RADFORD et al., 2021) have

demonstrated impressive zero-shot capabilities by learning joint embeddings of images

and text from massive datasets.

While not directly employed in this thesis, these paradigms represent important

developments in machine learning for scenarios with limited labeled data. For detailed

technical information on zero-shot and few-shot learning methodologies, including

problem formulations, meta-learning approaches, and applications, see Appendix C.

2.4 COMPUTER VISION

Computer Vision (CV) is a multidisciplinary subfield of artificial intelligence that

enables machines to interpret, analyze, and understand visual information from the

world. While early CV systems were inspired by the goal of emulating human vision

(HUANG, 1996), the field has evolved to encompass capabilities that extend far beyond

human visual perception, leveraging diverse sensing modalities and computational

approaches to extract meaningful information from visual data.

Modern CV systems utilize a wide array of sensors and imaging modalities beyond

traditional Red-Green-Blue (RGB) images. These include depth sensors (RGB-D cam-
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eras), thermal and Infrared (IR) imaging, multispectral and hyperspectral sensors, Light

Detection and Ranging (LiDAR) systems, and event-based cameras (BOCK et al., 2020).

Each sensing modality captures different aspects of the electromagnetic spectrum

or spatial information, enabling applications that surpass human visual capabilities.

For instance, hyperspectral imaging can identify materials based on their spectral sig-

natures across hundreds of wavelengths, while thermal imaging reveals temperature

distributions invisible to human eyes.

The paradigm shift from merely mimicking human vision to developing machine

vision systems with unique capabilities has opened new frontiers in applications such

as autonomous navigation, medical imaging, remote sensing, and precision agriculture

(JEZ et al., 2021). These systems can process information across multiple spectral bands

simultaneously, detect rapid temporal changes imperceptible to humans, and analyze

scenes with precision and consistency that exceed human performance.

In practice, CV encompasses a variety of tasks, each targeting different aspects

of visual perception and interpretation. These include, but are not limited to, edge

detection, image classification, object detection, semantic segmentation, and instance

segmentation. Each task presents its own set of challenges and requires distinct

algorithmic approaches and data representations. Figure 4 illustrates some of the most

prominent tasks within the domain of computer vision.

This work focuses on two specific and highly relevant subfields of CV: image segmen-

tation and image classification. These tasks have undergone significant methodological

advancements in recent years, particularly with the advent of deep learning-based

approaches (WU; SAHOO; HOI, 2020). While acknowledging the broader spectrum of

sensing modalities available in modern CV, this thesis specifically concentrates on

RGB imaging, which remains the most widely accessible and commonly used imaging

modality in practical applications. In the following subsections, we elaborate on the

theoretical foundations and practical implications of each task.

2.4.1 Image Segmentation

Image segmentation refers to the process of partitioning an image into semantically

meaningful regions, allowing for the identification and delineation of objects and their

boundaries within a scene. In the context of CV, "semantically meaningful" refers to
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Figure 4 – Representative tasks in computer vision. (a) *Image classification* involves assigning a
categorical label to an entire image. (b) *Object detection* extends classification by localizing
each object instance using bounding boxes. (c) *Semantic segmentation* classifies each pixel
in the image, typically without distinguishing between different instances of the same class. (d)
*Instance segmentation* further refines semantic segmentation by identifying and separating
individual instances of objects at the pixel level. Source: (WU; SAHOO; HOI, 2020).

regions that correspond to distinct objects, parts, or concepts that have interpretable

significance within the visual scene. For example, in a natural scene, semantically

meaningful regions might include individual trees, buildings, people, or sky areas—each

representing conceptually coherent entities rather than arbitrary pixel groupings based

solely on low-level visual features like color or texture.

At its core, the goal of segmentation is to assign a label to every pixel in an image

such that pixels sharing the same label exhibit similar visual or semantic properties

and belong to the same conceptual entity. This process transforms raw pixel data into

structured, interpretable representations that facilitate higher-level scene understanding.

Two primary paradigms of segmentation are widely studied:

• Semantic segmentation: This technique categorizes each pixel in the image into

a predefined class, without regard for the number of object instances. For example,

all pixels corresponding to trees in a forest scene would be labeled identically,

regardless of whether they belong to the same or different trees.

• Instance segmentation: While also assigning class labels at the pixel level,

instance segmentation goes further by distinguishing between separate objects
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of the same class. This allows the model to assign different labels to individual

instances (e.g., two people in a crowd), thereby providing a finer level of granularity.

These segmentation tasks are crucial for applications requiring detailed scene

understanding, such as autonomous navigation, medical image analysis, and agricultural

monitoring.

2.4.2 Image Classification

Image classification is one of the most fundamental problems in CV. It involves

assigning one or more labels to an entire image, indicating the presence of particular

objects, concepts, or scene categories. The process typically assumes a supervised

learning framework, where a model is trained on a dataset composed of labeled images

and subsequently evaluated on its ability to correctly label previously unseen images.

The classification task can be approached in two main paradigms:

• Single-label classification: In this approach, each image is assigned exactly

one label from a predefined set of mutually exclusive categories. This is suitable

for scenarios where images contain a single dominant subject or where the task

requires choosing the most representative category.

• Multi-label classification: This more complex approach allows images to be

associated with multiple labels simultaneously, acknowledging that real-world

images often contain multiple objects, concepts, or attributes. For instance, an

image might be labeled as containing both "trees" and "buildings" and "sky,"

reflecting the multi-faceted nature of natural scenes.

Formally, given an input image, a single-label classification model outputs the most

probable class from a predefined set of categories, while a multi-label classification

model outputs a subset of labels that are deemed present in the image. Classical ap-

proaches relied on handcrafted features combined with statistical classifiers. However,

modern techniques predominantly leverage CNNs, which have demonstrated remark-

able performance in large-scale image classification benchmarks without the need for

explicit feature extraction, such as ImageNet (RUSSAKOVSKY et al., 2015).
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Image classification serves as the backbone for more complex CV tasks such as

object detection, facial recognition, scene categorization, and content-based image

retrieval. Its robustness and efficiency make it an essential component in both research

and industry applications. The fundamental representations learned during classification

tasks often transfer effectively to other CV problems, making it a cornerstone technique

in the field.

2.5 CONVOLUTIONAL NEURAL NETWORKS

CNNs are a class of deep learning architectures specifically designed to process

data with a grid-like topology, such as images. Unlike fully-connected networks that

treat inputs as flat vectors, CNNs exploit the spatial structure of input data through

localized receptive fields and shared weights. This design enables CNNs to capture

spatial hierarchies and patterns (e.g., edges, textures, shapes) with fewer parameters,

leading to better generalization and computational efficiency. Their architectural princi-

ples are inspired by the organization of the visual cortex in animals, where individual

neurons respond to stimuli in localized regions of the visual field (LECUN et al., 1998).

These properties make CNNs particularly effective for visual recognition tasks and are

foundational in modern computer vision systems.

2.5.1 Mathematical Foundations of Convolutional Operations

The core operation in CNNs is the convolution, which applies a set of learnable filters

(kernels) across the input to extract local features. For a 2D input X ∈ R𝐻×𝑊 and a filter

K ∈ R𝑘ℎ×𝑘𝑤 , the convolution operation is mathematically defined as:

(X *K)𝑖,𝑗 =

𝑘ℎ−1∑︁
𝑚=0

𝑘𝑤−1∑︁
𝑛=0

X𝑖+𝑚,𝑗+𝑛 ·K𝑚,𝑛 (2.36)

where 𝑖 and 𝑗 are the spatial coordinates of the output feature map. For multi-channel

inputs, such as RGB images with 𝐶 channels, the convolution extends to:

(X *K)𝑖,𝑗 =
𝐶−1∑︁
𝑐=0

𝑘ℎ−1∑︁
𝑚=0

𝑘𝑤−1∑︁
𝑛=0

X𝑐,𝑖+𝑚,𝑗+𝑛 ·K𝑐,𝑚,𝑛 + 𝑏 (2.37)
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where 𝑏 is the bias term. The key advantages of convolution include parameter

sharing (the same filter is applied across all spatial locations), translation equivariance

(shifting the input results in a correspondingly shifted output), and sparse connectivity

(each output unit is connected only to a local region of the input).

2.5.2 Core Architectural Components

A typical CNN architecture is composed of several types of layers, each serving

specific purposes in the feature extraction and classification pipeline:

2.5.2.1 Convolutional Layers

Convolutional layers apply multiple filters to extract various features from the input.

Each filter produces a feature map that highlights specific patterns. The output dimen-

sions of a convolutional layer depend on the input size (𝐻 ×𝑊 ), filter size (𝑘ℎ × 𝑘𝑤),

stride 𝑠, and padding 𝑝:

𝐻out =

⌊︂
𝐻 + 2𝑝− 𝑘ℎ

𝑠

⌋︂
+ 1, 𝑊out =

⌊︂
𝑊 + 2𝑝− 𝑘𝑤

𝑠

⌋︂
+ 1 (2.38)

2.5.2.2 Pooling Layers

Pooling layers reduce the spatial dimensions of feature maps while retaining impor-

tant information. The most common types are:

Max Pooling: Selects the maximum value within each pooling window:

MaxPool(X)𝑖,𝑗 = max
𝑚,𝑛∈𝒩𝑖,𝑗

X𝑚,𝑛 (2.39)

Average Pooling: Computes the average value within each pooling window:

AvgPool(X)𝑖,𝑗 =
1

|𝒩𝑖,𝑗|
∑︁

𝑚,𝑛∈𝒩𝑖,𝑗

X𝑚,𝑛 (2.40)

where 𝒩𝑖,𝑗 represents the pooling neighborhood around position (𝑖, 𝑗).
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2.5.2.3 Normalization Techniques

Modern CNNs incorporate normalization techniques to stabilize training and improve

convergence:

Batch Normalization: Normalizes inputs across the batch dimension, reducing

internal covariate shift and enabling higher learning rates (IOFFE; SZEGEDY, 2015):

BN(x) = 𝛾
x− 𝜇𝐵√︀
𝜎2
𝐵 + 𝜖

+ 𝛽 (2.41)

where 𝜇𝐵 and 𝜎2
𝐵 are the batch mean and variance, and 𝛾 and 𝛽 are learnable

parameters.

2.5.3 Architectural Innovations and Deep Networks

Figure 5 – Illustration of a typical CNN architecture, showing convolutional, pooling, and fully-connected
layers. Source: (SAHA, 2018).

The hierarchical feature extraction mechanism inherent in CNNs allows them to

outperform traditional machine learning models and standard multilayer perceptrons in

image-related tasks. This ability to learn relevant patterns directly from raw pixel data

without manual feature engineering has been instrumental in driving advancements

across a wide range of computer vision applications.

2.5.3.1 Historical Evolution and Landmark Architectures

One of the earliest CNN architectures to achieve notable success was LeNet-5,

introduced by LeCun et al. (1998). Designed to recognize handwritten digits from the

MNIST dataset, LeNet-5 consisted of seven layers, including two convolutional layers,
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two subsampling (pooling) layers, and three fully-connected layers. Despite its simplicity

by today’s standards, LeNet-5 laid the groundwork for many subsequent developments

in deep learning.

A significant milestone in the evolution of CNNs came in 2012 with the introduction of

AlexNet by Krizhevsky, Sutskever e Hinton (2017). AlexNet was a deeper and more com-

putationally intensive architecture, composed of eight layers—five convolutional layers,

followed by three fully-connected layers. It was the first deep CNN to achieve a substan-

tial breakthrough in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),

outperforming traditional approaches by a large margin and effectively popularizing

deep learning in the computer vision community.

One of the key innovations behind AlexNet’s success was its pioneering use of

Graphics Processing Units (GPUs) to accelerate training. At the time, training deep

neural networks on large-scale datasets like ImageNet was computationally prohibitive

using only CPUs. AlexNet was among the first models to leverage GPU acceleration

effectively, making it feasible to train a large network on over one million high-resolution

images within a reasonable time frame. Moreover, due to memory limitations on individ-

ual GPUs, the authors employed a multi-GPU setup, partitioning the model across two

NVIDIA GTX 580 GPUs. This allowed the training process to be parallelized, significantly

reducing training time while enabling the use of a larger and deeper architecture than

would otherwise have been possible. This approach also marked an important shift in

the field, as it demonstrated the viability and necessity of GPU-based computing for

training deep neural networks at scale, setting a precedent for nearly all modern deep

learning research that followed.

AlexNet also introduced several key innovations including the use of ReLU activation

functions instead of traditional sigmoid or tanh functions, dropout regularization to pre-

vent overfitting (SRIVASTAVA et al., 2014), and data augmentation techniques to artificially

expand the training dataset.

2.5.3.2 Residual Networks and Skip Connections

A fundamental challenge in training very deep networks is the vanishing gradient

problem, where gradients become exponentially small as they propagate backward

through many layers, making it difficult to train the early layers effectively. This limitation
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was dramatically addressed with the introduction of Residual Networks (ResNets) by

He et al. (2016a) in 2015.

ResNet architectures introduced the concept of residual connections or skip

connections, which allow information to flow directly from earlier layers to later layers,

bypassing intermediate transformations. The core idea is to reformulate the learning

problem from learning a direct mapping ℋ(x) to learning a residual mapping ℱ(x) =

ℋ(x)− x, with the final output being:

y = ℱ(x, {𝑊𝑖}) + x (2.42)

where ℱ(x, {𝑊𝑖}) represents the residual function learned by the stacked layers,

and the +x term is the identity shortcut connection.

The mathematical intuition behind residual learning is that it is easier to optimize the

residual mapping ℱ(x) than the original unreferenced mapping ℋ(x). In the extreme

case, if an identity mapping is optimal, it is easier to push the residual to zero than to fit

an identity mapping by a stack of nonlinear layers.

The gradient flow through residual connections can be analyzed by considering the

backward pass. For a residual block, the gradient of the loss with respect to the input is:

𝜕ℒ
𝜕x

=
𝜕ℒ
𝜕y

(︂
1 +

𝜕ℱ
𝜕x

)︂
(2.43)

The “1” term ensures that gradients can flow directly through the shortcut connection,

preventing the vanishing gradient problem even in very deep networks. This innovation

enabled the training of networks with hundreds or even thousands of layers, achieving

state-of-the-art performance on the ImageNet dataset and securing first place in the

ILSVRC 2015.

2.5.3.3 Advanced Architectural Patterns

Following the success of ResNet, several architectural innovations have further

advanced the field:

Dense Connections: DenseNet (HUANG et al., 2017) extends the concept of skip

connections by connecting each layer to every subsequent layer within a dense block,

promoting feature reuse and reducing the number of parameters.
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Inception Modules: The Inception architecture (SZEGEDY et al., 2015) introduced the

concept of multi-scale feature extraction within a single layer by applying convolutions

of different kernel sizes in parallel and concatenating the results.

Efficient Architectures: Modern architectures like EfficientNet (TAN; LE, 2019)

and MobileNets (HOWARD et al., 2017) focus on achieving optimal trade-offs between

accuracy and computational efficiency through techniques such as depthwise separable

convolutions and neural architecture search.

2.5.4 Regularization and Training Techniques

Modern CNN training incorporates several regularization techniques to improve

generalization:

Dropout: Randomly sets a fraction of input units to zero during training, preventing

complex co-adaptations and reducing overfitting (SRIVASTAVA et al., 2014):

y = r⊙ x (2.44)

where r is a random binary mask with probability 𝑝 of being 1.

Data Augmentation: Artificially expands the training dataset through transformations

such as rotation, scaling, cropping, and color jittering, improving model robustness and

generalization.

Transfer Learning: Leverages pre-trained models on large datasets (such as Ima-

geNet) as starting points for specific tasks, significantly reducing training time and data

requirements (PAN; YANG, 2009).

These landmark architectures and innovations—from LeNet-5’s foundational prin-

ciples through AlexNet’s breakthrough performance to ResNet’s revolutionary skip

connections—not only demonstrate the evolution of CNNs over time but also highlight

their growing complexity, expressive power, and widespread applicability in modern

visual recognition systems. The mathematical foundations and architectural innovations

discussed provide the theoretical basis for understanding how CNNs achieve their

remarkable performance in computer vision tasks.
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2.6 VISION TRANSFORMERS

The application of Transformer architectures to computer vision represents a

paradigm shift that has fundamentally challenged the dominance of convolutional

neural networks in visual tasks. Originally developed for natural language process-

ing by Vaswani et al. (2017), Transformers have demonstrated remarkable success

when adapted to visual domains, leading to the emergence of Vision Transformers as a

powerful alternative to traditional CNN-based approaches.

2.6.1 Encoder-Decoder Architectures and Attention

The encoder-decoder architecture represents a fundamental paradigm for sequence-

to-sequence tasks, where an encoder compresses input into a context representation

and a decoder generates output conditioned on this representation (SUTSKEVER; VINYALS;

LE, 2014). The introduction of the attention mechanism by Bahdanau, Cho e Bengio

(2014) significantly improved these architectures by allowing decoders to selectively

focus on different input parts rather than relying on a single fixed-length context vector.

This innovation laid the groundwork for modern Transformer architectures.

While this thesis employs CNNs with hard parameter sharing for multi-task learn-

ing rather than encoder-decoder architectures, understanding attention mechanisms

provides important context for the development of Vision Transformers. For detailed

information on encoder-decoder architectures, RNNs (LSTMs and GRUs), and attention

mechanisms, see Appendix D.

2.6.2 Vision Transformers: Overview

Vision Transformers (ViT) represent the application of Transformer architectures—originally

developed for natural language processing (VASWANI et al., 2017)—to computer vision

tasks (DOSOVITSKIY et al., 2020). The key innovation lies in treating images as sequences

of patches, enabling the use of self-attention mechanisms for visual recognition.
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2.6.2.1 Core Architecture

ViT divides an input image into fixed-size patches, linearly embeds each patch,

adds position embeddings, and processes the resulting sequence through a standard

Transformer encoder. The self-attention mechanism allows each patch to attend to all

other patches, providing a global receptive field from the first layer—a key difference

from CNNs that build receptive fields gradually.

2.6.2.2 Inductive Biases and Data Requirements

Unlike CNNs, which incorporate strong inductive biases for visual data (translation

equivariance, locality, hierarchical feature learning), ViT has minimal built-in assumptions

about image structure. This reduced inductive bias requires substantially larger datasets

to achieve good generalization but allows more flexible representation learning. When

pretrained on large datasets like ImageNet-21k or JFT-300M, ViT can match or exceed

CNN performance. However, performance degrades significantly when training from

scratch on smaller datasets.

2.6.2.3 Application in This Thesis

In this research, Vision Transformers (ViT-B/16 and ViT-B/32) were benchmarked

alongside CNN architectures for the binary disease classification task. While ViT demon-

strated competitive performance, ResNet-50V2 was ultimately selected as the backbone

architecture due to its superior stability across varied data distributions, more efficient

training on the available dataset size, and better balance between feature representation

quality and computational requirements for deployment.

For detailed technical information on Vision Transformer architecture, self-attention

mechanisms, patch-based processing, and comparative analysis with CNNs, see Ap-

pendix E.



59

2.7 MULTI-TASK LEARNING

Multi-task learning (MTL) is a machine learning paradigm in which multiple related

tasks are learned jointly, with the goal of improving generalisation performance by

exploiting shared structure among tasks (CARUANA, 1997). In contrast to single-task

learning, where a model is trained for each task independently, MTL encourages

the learning of common representations or parameters, enabling positive transfer of

knowledge across tasks.

The core motivation for MTL is grounded in the observation that tasks often exhibit

shared underlying patterns. For example, in domains with limited annotated data, MTL

can act as a form of inductive transfer, regularising the learning process through the

implicit use of auxiliary tasks. Theoretical work has shown that MTL reduces the risk

of overfitting proportionally to the number of jointly learned tasks (BAXTER, 1997). This

is particularly advantageous in data-scarce settings, where task-specific models might

otherwise generalise poorly.

(a) MTL vs. transfer learning (b) MTL vs. multi-label learning/-
multioutput regression

(c) MTL vs. multi-view learning

Figure 6 – Illustrations of differences between MTL and other learning paradigms. (a) MTL vs. transfer
learning: In transfer learning, knowledge is transferred from one or more source tasks to
a specific target task, with the target task being the main focus. In contrast, MTL involves
mutual knowledge sharing among all tasks, with no single task prioritized. (b) MTL vs. multi-
label learning/multi-output regression: Multi-label learning and multi-output regression involve
predicting multiple labels or outputs for the same data, whereas in MTL, each task may have its
own data and objective, and tasks are learned jointly but not necessarily on the same dataset.
(c) MTL vs. multi-view learning: Multi-view learning combines different sets of features (views)
for a single task, while MTL addresses multiple tasks, each potentially with its own data and
goal. These diagrams highlight how MTL is distinct in its approach to task relationships, data
sharing, and learning objectives. Source: Adapted from (ZHANG; YANG, 2021).

Figure 6 illustrates the main differences between MTL and related paradigms. Unlike

transfer learning, where knowledge flows from source tasks to a specific target task,
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MTL aims to improve all tasks jointly through mutual knowledge sharing. In contrast to

multi-label learning and multi-output regression, where all tasks share the same data,

MTL typically involves different data for each task. Finally, while multi-view learning

combines multiple feature sets for a single task, MTL addresses multiple tasks, each

potentially with its own data and objective.

2.7.1 Architectural Strategies and Taxonomy

MTL models are generally divided into two major design patterns: feature-based and

parameter-based approaches (ZHANG; YANG, 2021). In feature-based methods, tasks

share common representations, often in the form of learned embeddings or transfor-

mations of the input. Parameter-based approaches, by contrast, enforce constraints or

regularization across task-specific model parameters.

A well-known architectural distinction is between hard parameter sharing and soft

parameter sharing (CRAWSHAW, 2020). In the former, the initial layers of a network are

shared across all tasks, followed by task-specific output heads. In the latter, each task

has its own model, but parameter similarity is enforced through regularization. These

strategies are visualised in Figure 7.

(a) MTL model with hard parameter
sharing.

(b) MTL model with soft parameter sharing.

Figure 7 – Illustration of parameter sharing strategies in multi-task learning. In hard parameter sharing (a),
the hidden layers are shared among all tasks, with separate task-specific output layers. This
approach reduces the risk of overfitting by forcing the model to learn representations useful
for all tasks. In soft parameter sharing (b), each task has its own model and parameters, but
similarity between parameters is encouraged through regularization. This allows for flexibility
in task-specific modeling while still promoting knowledge sharing.

Beyond these general designs, the MTL literature identifies five major methodological

categories (ZHANG; YANG, 2021):
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• Feature learning approaches: These focus on learning shared representations

across tasks via either transformation or feature selection.

• Low-rank approaches: These assume that the task parameter matrix has low

rank, capturing task relatedness via latent subspaces.

• Task clustering approaches: These group similar tasks into clusters and often

combine shared and individual representations.

• Task relation learning: These methods attempt to learn quantitative task relation-

ships, such as covariance matrices, directly from the data.

• Decomposition approaches: These decompose the task parameter matrix into

multiple components (e.g., shared vs. task-specific).

2.7.2 Benefits and Flexibility

MTL offers several compelling advantages. First, shared representations act as an

inductive bias, often yielding improved generalisation when tasks are sufficiently related.

Second, MTL models are more modular: new tasks can be added by attaching additional

heads to the shared body of the model. Third, MTL can be more parameter-efficient,

reusing shared weights across tasks resulting in more efficient training and inference.

Additionally, by jointly training on more data points across tasks, MTL often learns

more robust and transferable features. The survey in Zhang e Yang (2021) highlights

how MTL has been adapted to various settings, including high-dimensional data and

heterogeneous feature spaces. It also covers streaming or distributed learning environ-

ments.

2.7.3 Practical Considerations and Challenges

Despite its strengths, MTL introduces several nontrivial challenges:

• Negative transfer: When unrelated or conflicting tasks are trained jointly, perfor-

mance can deteriorate. Designing mechanisms to detect and prevent negative

transfer remains an open challenge.
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• Task balancing and interference: Shared parameters can lead to conflicting

gradient directions during training. Methods such as dynamic loss reweighting or

gradient surgery are often employed to mitigate this issue.

• Model versioning and organisational concerns: In production systems, such as

those described in Karpathy (2019), shared models may complicate coordination

among teams managing different tasks, especially as architectures evolve or

branch.

The question of what to share and how to share it is central to the design of MTL

models. In feature-based approaches, this involves deciding whether to learn shared

features directly or to select a subset from the original input space. In parameter-based

models, this typically takes the form of structured regularization or Bayesian priors. Some

advanced architectures combine these ideas—learning feature transformations and task

relationships simultaneously through matrix factorisation, graph-based regularization, or

probabilistic modeling.

2.7.4 Beyond the Standard Setting

Modern formulations of MTL extend beyond the classic setup. For instance, some

approaches operate under heterogeneous MTL, where tasks differ not only in objectives

but also in feature spaces, modalities, or data distributions. Others combine MTL with

paradigms such as reinforcement learning, active learning, or semi-supervised learning,

enabling broader applicability across domains with limited labeled data or streaming

inputs.

Moreover, as highlighted in Zhang e Yang (2021), the scalability of MTL is increasingly

important. Online and distributed MTL methods have been developed to handle large

numbers of tasks and high-dimensional data, leveraging parallelisation and feature

hashing to improve efficiency without compromising performance.
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3 RELATED WORKS

This chapter surveys relevant literature that underpins the proposed use of multi-

task learning for comprehensive leaf disease analysis. We categorize existing works

based on the specific subtasks tackled by our proposed system: leaf detection, disease

classification, symptom identification, agent recognition, and final disease classification.

3.1 SUPERVISED TRAINING OF A SIMPLE DIGITAL ASSISTANT FOR A FREE

CROP CLINIC

Barros et al. (2021) proposed a mobile digital assistant aimed at aiding smallholder

farmers in Pernambuco, Brazil, by providing disease diagnostics for plant leaves using

a deep learning system. The assistant was built to support the operations of the

local phytopathology clinic (CliFiPe) and enable scalable, low-cost expert support for

family farmers. The system enables users to upload leaf images via a mobile app,

receive preliminary classification results, and optionally consult with human experts. The

application also fosters a collaborative community among farmers and phytopathologists.

The disease classification pipeline comprises three main stages: (1) image cropping

to focus on the leaf region; (2) image segmentation into 4 or 6 patches depending on

the aspect ratio; and (3) classification using a CNN based on ResNet50V2 pretrained

weights. This segmentation step both augments the dataset and enhances the model’s

ability to localize symptoms. Segments with the highest confidence of symptom presence

are highlighted and forwarded to experts for further diagnosis. Figures 8 and 9 show the

system and pipeline architecture, respectively.

To train the CNN, the authors collected a novel field dataset of grape leaves from

smallholder farms in Pernambuco. The images were labeled by experts as showing

"Symptoms" or "No symptoms", yielding 3289 images (1302 symptomatic and 1987

asymptomatic). After segmentation, the training set included over 14,000 patches.

Extensive hyperparameter tuning was performed, and training was repeated with various

splits and class weightings to maximize recall while maintaining generalizability.

The final model achieved a recall of over 95%, a critical metric for reducing false

negatives in this decision-support setting. The system also showed promising accuracy
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Figure 8 – General architecture of the proposed system by Barros et al. (2021), composed of a mobile
app and a digital assistant for a crop clinic

Figure 9 – Task pipeline proposed by (BARROS et al., 2021)
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and F1-scores across several dataset configurations. Importantly, the dataset and

assistant were designed with real-world variability in mind, including lighting conditions,

framing, and image quality typical of non-expert users.

The current work builds upon this assistant platform but proposes a novel multi-

task learning architecture that expands beyond binary classification. New task heads

are added for leaf detection, symptom classification, disease agent identification, and

final disease diagnosis. The training dataset is augmented with additional crops and

conditions beyond grapes, and the preprocessing pipeline is extended to support the

new tasks. These enhancements aim to bring the system closer to expert-level diagnosis

and broader crop coverage.

3.2 USING DEEP LEARNING FOR IMAGE-BASED PLANT DISEASE DETECTION

Mohanty, Hughes e Salathé (2016) demonstrated the feasibility of using deep learn-

ing for automated plant disease classification through leaf images. The authors lever-

aged the PlantVillage dataset (HUGHES; SALATHE, 2015), which consists of 54,306

images across 14 crop species and 26 disease conditions (including healthy leaves),

encompassing a total of 38 unique crop-disease combinations. This dataset was curated

under controlled conditions to ensure uniformity in background, lighting, and image

quality. Figure 10 shows examples of the various crop-disease combinations included in

this dataset.

To evaluate performance, the authors trained two widely used CNN architectures:

AlexNet and GoogLeNet. Both models were tested under various configurations: training

from scratch versus transfer learning from ImageNet, and using different versions of

the dataset—color, grayscale, and segmented leaves. Transfer learning consistently

outperformed models trained from scratch, and GoogLeNet outperformed AlexNet

across all metrics. The best performing configuration (GoogLeNet with transfer learning

on the color dataset using an 80–20 train-test split) achieved an overall accuracy

of 99.35% and a mean F1 score of 0.9934, highlighting the promise of CNN-based

classification even with minimal preprocessing.

Despite these impressive results, the study identified major limitations when trans-

ferring the model to real-world settings. When tested on small curated datasets from

online sources mimicking field conditions, the model’s top-1 accuracy dropped signifi-
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Figure 10 – Examples of leaf images from the PlantVillage dataset (HUGHES; SALATHE, 2015), showing
various crop-disease combinations used in the study by Mohanty, Hughes e Salathé (2016)

cantly to around 31%, despite being well above random guessing. This suggests that

models trained solely on PlantVillage do not generalize well to in-the-wild images due

to the lack of visual variability in the training data (e.g., complex backgrounds, lighting

inconsistencies, leaf overlap, or disease progression stages).

Additionally, the paper highlighted that their task formulation—joint classification

of both crop species and disease status—may be more complex than necessary for

practical deployment. As most farmers already know which crop they are growing,

separating disease diagnosis from crop classification could simplify the problem and

improve real-world performance.

Nevertheless, the work by Mohanty, Hughes e Salathé (2016) laid the groundwork for

subsequent research in this area. It introduced an open-access, large-scale dataset and

set the benchmark for disease recognition accuracy using CNNs. Their segmentation

experiments also support the idea that removing background noise can improve model

robustness—an insight reflected in our current work’s preprocessing steps.
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Our approach expands on these ideas by integrating multi-task learning, allowing the

model to not only identify the presence of disease but also output secondary predictions

such as symptom type and causal agent. Furthermore, unlike the PlantVillage dataset,

our data pipeline includes images collected under varied real-world conditions, enhanc-

ing generalizability and addressing one of the core limitations identified in Mohanty,

Hughes e Salathé (2016).

3.3 MULTI-LABEL LEARNING FOR CROP LEAF DISEASES RECOGNITION AND

SEVERITY ESTIMATION

Ji et al. (2020) proposed a comprehensive multi-label learning framework for the

automatic recognition of crop diseases and the estimation of disease severity. Their

model, named BR-CNN, is based on the binary relevance (BR) strategy combined with

deep CNNs, and it simultaneously classifies crop species, disease types, and severity

levels.

The authors used the AI Challenger dataset, comprising 12,691 RGB images anno-

tated with 20 distinct labels across 7 crop species, 10 disease types (including healthy),

and 3 severity levels (normal, general, serious). Each image may contain multiple labels,

such as (Potato, Late Blight, Serious). To address this, they applied a multi-label classifi-

cation approach using CNN backbones including InceptionV3, ResNet50, DenseNet121,

and NasNet.

Figure 11 – Pipeline of the proposed BR-CNN for crop leaf diseases recognition and severity estimation.
The sequential steps of the proposed BR-CNN for crop leaf diseases recognition and severity
estimation are shown in this block diagram, adapted from Ji et al. (2020).
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The block diagram in Figure 11 illustrates the sequential steps of the BR-CNN

pipeline for crop leaf diseases recognition and severity estimation, as proposed by Ji et

al. (2020).

The BR-CNN framework transforms the multi-label task into a set of binary classifi-

cation problems—one for each label—and uses sigmoid activation at the output layer

to compute label probabilities independently. Among the tested backbones, BR-CNN

with ResNet50 achieved the best performance for severity estimation, with an accuracy

score (AS) of 86.70% and a Jaccard similarity score (JSS) of 92.93%. For disease

recognition, DenseNet121 yielded the best performance, with AS and JSS reaching

97.88% and 98.45%, respectively.

Their findings indicate that fine-grained severity estimation is more challenging

than disease classification, particularly due to the subjectivity in severity labeling (e.g.,

distinguishing "general" from "serious" damage). Nonetheless, their BR-CNN models

significantly outperformed single-label or label-powerset baselines in both accuracy

and model efficiency. Moreover, lightweight models such as BR-CNN with NasNet

showed promise for mobile deployment, aligning with trends in edge-based agricultural

diagnostics.

Figure 12 demonstrates different classification frameworks based on multi-label

learning algorithms and deep learning architectures, as discussed by Ji et al. (2020).

The comparison includes:

• LP-CNN: The traditional single-label method for crop diseases recognition, as in

Wang, Sun e Wang (2017), which joins all labels (crop species, disease types,

and severity kinds) as a unified class and uses a softmax classifier for multi-class

prediction.

• MLP-CNN: Proposed in Ji et al. (2020), MLP-CNN fuses the LP multi-label learning

algorithm with deep CNNs. It transforms the multi-label problem into an ensemble

of multi-class classification problems, where each component learner is a CNN

trained on a subset of labels. Each subset returns the label with the maximum

probability, using a softmax classifier. While this approach can better isolate

overlapping attribute spaces, it adds complexity and can cause computational

bottlenecks on large datasets.
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Figure 12 – Illustration and comparison of different classification frameworks for crop leaf diseases
recognition and severity estimation. Figure adapted from Ji et al. (2020). The comparison
includes LP-CNN (traditional single-label method, as in Wang, Sun e Wang (2017)), MLP-
CNN (multi-label powerset CNN, proposed in Ji et al. (2020)), and BR-CNN (binary relevance
CNN, also proposed in Ji et al. (2020)).

• BR-CNN: Also proposed in Ji et al. (2020), BR-CNN transforms the multi-label

task into a set of binary classification problems (one per label), using sigmoid

activations for independent probability estimation.

Our proposed system builds upon similar motivations but integrates the disease clas-

sification and severity estimation into a unified MTL model rather than separate binary

classifiers. This design encourages feature sharing across tasks, reduces parameter

redundancy, and streamlines deployment. Furthermore, while Ji et al. (2020)’s model

treated each task independently, our approach enables joint optimization of disease

presence, symptom type, pathogen agent, and disease class, enhancing the model’s

consistency and scalability.



70

3.4 FACTORS INFLUENCING THE USE OF DEEP LEARNING FOR PLANT DIS-

EASE RECOGNITION

Barbedo (2018) presented a comprehensive study investigating the primary factors

that affect the design and performance of deep learning models applied to plant disease

recognition. While deep learning has shown promising results in plant pathology, the

study highlights that these results often come from experiments performed under

highly controlled conditions that do not reflect real agricultural settings. As such, the

author emphasizes the importance of critically examining model assumptions, dataset

construction, and deployment feasibility.

The experiments were conducted using a subset of the Digipathos dataset, contain-

ing images of nine corn leaf diseases, all caused by fungi. The study compared CNN

performance across different preprocessing strategies: original full images, background-

removed images, and subdivided images focused on symptomatic regions. To increase

the dataset size and test the CNN’s performance with more localized information, the

original samples were divided into smaller images containing individual lesions or local-

ized symptom regions (Figure 13). Notably, the subdivided dataset achieved the highest

accuracy (87%), compared to 76% for the original and 79% for the background-removed

images. This suggests that localizing symptoms improves the model’s capacity to extract

relevant features.

Figure 13 – Examples of subdivided images from Barbedo (2018), showing individual symptomatic
regions. Top left: anthracnose; bottom left: physoderma brown spot; right: tropical rust.

Based on these results, Barbedo (2018) identified nine key factors influencing CNN-

based plant disease recognition, as detailed in Table 1. The first five factors are related to
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the dataset construction and how representative it is of the real-world problem, whereas

the last four are intrinsically connected to how the model should be trained to take into

account the challenges present in the problem of symptom and disease classification.

Our current work addresses several of these intrinsic challenges through its multi-task

learning architecture and preprocessing pipeline.

Factor Impact
Limited annotated
datasets

Datasets do not have enough samples for deep neural networks
to properly learn the classes. Annotation errors may damage the
learning process.

Symptom
representation

Datasets do not adequately represent the symptom variety found
in practice, weakening the robustness of the trained model.

Covariate shift Training and testing a model using the same dataset often leads
to unrealistic performance assessment, as the model will likely
fail when applied to other datasets.

Image background Image background may contain elements that may disturb the
training process, especially if those elements are present in multi-
ple samples.

Image capture
conditions

Images can be captured in a wide variety of conditions. In order
to be representative, a dataset has to contemplate all possibilities,
which is currently unfeasible.

Symptom
segmentation

Images with many spurious elements often cause difficulties for
the model. Taking more localized regions of the leaf may prevent
some problems.

Symptom variations Symptoms produced by a disease may present a wide range of
characteristics. It is difficult to build datasets capable of represent-
ing symptom diversity properly.

Simultaneous
disorders

It is difficult to detect multiple simultaneous disorders when im-
ages are analysed as a whole. Adopting localized symptom re-
gions may mitigate this problem.

Disorders with
similar symptoms

Some disorders produce visually similar symptoms. In cases like
this, simple RGB images may not be enough for proper recogni-
tion, even with well-trained models.

Frame 1 – Factors impacting the performance of CNNs for plant disease recognition. Table adapted from
(BARBEDO, 2018).

These insights are directly relevant to the current work, which adopts a symptom-

focused, multi-task learning architecture. While our approach does not implement image

subdivision as suggested (BARBEDO, 2018), it not only faced the afore mentioned

challenges but also addresses some of them through alternative strategies. Our pre-

processing pipeline handles background noise through careful image curation and

augmentation techniques during training, and proper image segmentation during infer-

ence. The multi-task architecture explicitly models symptom variations and simultaneous
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disorders by outputting separate predictions for disease presence, symptom types, and

causal agents, being augmented during its training to overcome the lack of proper labels

on the original datasets. This fine-grained approach helps distinguish between visually

similar disorders by leveraging complementary information across different diagnostic

subtasks. Additionally, our dataset construction process incorporates varied capture

conditions to enhance model robustness in real-world agricultural settings.

Ultimately, Barbedo (2018)’s work serves as both a critique of overly optimistic claims

in the literature and a roadmap for constructing practical, scalable disease detection

systems. His emphasis on real-world variability, dataset rigor, and interpretability is

reflected in our model’s multi-output structure and dataset curation process.

3.5 REAL-TIME GRAPE LEAF DISEASE DETECTION USING AN IMPROVED CNN

Xie et al. (2020) proposed a real-time detection system for grape leaf diseases

using an enhanced convolutional neural network architecture named Faster DR-IACNN.

The model was designed to address challenges in detecting small, dense, and diverse

lesion patterns on grape leaves, particularly under varied environmental conditions and

complex backgrounds. The authors introduced several architectural improvements to

increase detection accuracy and speed while enabling real-time inference.

To support the model, the authors built the Grape Leaf Disease Dataset (GLDD),

composed of 4,449 original images representing four common diseases: Black rot, Black

measles, Leaf blight, and Mites of grape. After data augmentation—including changes

in brightness, contrast, sharpness, and rotations—the dataset was expanded to 62,286

images.

The proposed architecture modifies Faster R-CNN by integrating an enhanced fea-

ture extraction backbone called INSE-ResNet, which combines ResNet34 with Inception-

v1, Inception-ResNet-v2 modules, and SE-blocks. These additions enable multiscale

feature learning and enhance the model’s ability to detect small and irregular disease

spots. A novel double Region Proposal Network (double-RPN) module was also intro-

duced to improve localization precision across scales.

Figure 14 illustrates the overall framework of the Faster DR-IACNN model, which

integrates a pre-network for extracting disease image features, a Region Proposal

Network for locating diseased spots, and fully connected layers for final classification
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Figure 14 – Overall structure of the Faster DR-IACNN model proposed by (XIE et al., 2020). The architecture
consists of three main components: (1) INSE-ResNet backbone for feature extraction with
residual structures, inception modules, and SE-blocks; (2) Region Proposal Network (RPN)
for object localization; and (3) fully connected layers for classification and regression.

and regression. The INSE-ResNet backbone combines residual structures with inception

modules and SE-blocks to widen the receptive field and obtain multiscale features, while

the double-RPN enhances localization precision across different scales.

Experimental results showed that Faster DR-IACNN achieved a mean Average

Precision (mAP) of 81.1% on GLDD, outperforming several classical models such as

SSD, R-FCN, and Faster R-CNN with standard backbones. Additionally, it maintained

a real-time inference speed of 15.01 frames per second (FPS), satisfying practical

demands in vineyard environments.

Figure 15 demonstrates the detection capabilities of the Faster DR-IACNN model

on grape leaves with various diseases. The results show that the model can detect

not only multiple diseased spots of the same disease type in one leaf (Figures A-D)

but also multiple spots of different diseases on a single leaf simultaneously (Figure E).

Most detection boxes achieve confidence scores greater than 0.99, demonstrating high

detection precision and accurate localization. This robust performance across diverse

disease patterns and mixed infections highlights the model’s strong generalization

capabilities.

While the model focused on object detection using bounding boxes, its modular

backbone and disease-specific design offer relevant insights for our work. Our proposed

model complements this detection-focused approach by tackling disease diagnosis

through multi-task classification. Instead of localizing lesions, we aim to assign semantic
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labels for leaf presence, disease status, symptom types, causal agent, and disease class.

Nevertheless, Xie et al. (2020)’s methodological contributions—particularly in model

augmentation and multiscale feature extraction—inform the architectural decisions in

our work, especially in designing shared layers for multiple diagnostic tasks.
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Figure 15 – Grape leaf diseased spots detection results by Xie et al. (2020). (A) Multiple Black rot spots
in one leaf. (B) Multiple Black measles spots in one leaf. (C) Multiple Leaf blight spots in one
leaf. (D) Multiple Mites of grape spots in one leaf. (E) Diversified diseased spots in one leaf
with multiple disease types detected simultaneously.
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3.6 DEEP LEARNING FOR FRUIT DETECTION IN CITRUS ORCHARDS

Neto et al. (2019) proposed a computer vision system based on deep convolutional

neural networks to detect and count green oranges directly from digital images captured

in citrus orchards. Their goal was to support yield estimation efforts in a way that is

more scalable, automated, and economically feasible than traditional labor-intensive

methods.

The study employed the YOLOv3 architecture for object detection, using an enhanced

version of the model implemented by AlexeyAB, which included several optimizations

such as improved detection accuracy, reduced training time, and efficient memory allo-

cation. The network architecture was composed of 106 layers, including convolutional,

shortcut, upsample, and detection layers, distributed across three detection scales

(13×13, 26×26, and 52×52 grid cells).

The dataset used for training consisted of 2,035 manually annotated images cropped

to 416×416 pixels. These were collected from various citrus fields and captured using

heterogeneous devices (e.g., smartphones and digital cameras) under uncontrolled

lighting conditions to better reflect real-world variability. Of these, 1,832 images were

used for training, 203 for validation, and a separate set of 1,030 images was reserved for

testing. All images were annotated manually to mark visible fruit regions, accounting for

challenges such as shadow occlusion, overlapping leaves, and various fruit maturation

stages.

During training, 490,000 iterations were performed. The model’s performance was

evaluated using standard metrics such as precision, recall, F1-score, and mean Inter-

section over Union (mIoU). The final model achieved a precision of 0.95, recall of 0.82,

F1-score of 0.88, and mIoU of 78.2% on the test set. Additional experiments using

sliding windows over full-tree images revealed that the system was highly sensitive to

input resolution and benefited from window sizes approximating the input dimensions of

the network.

Figure 16 demonstrates the detection capabilities of the YOLOv3-based system

on citrus trees with multiple green fruits. The results show that the model can ef-

fectively detect fruits even under challenging conditions such as shadow occlusion,

overlapping leaves, and various fruit maturation stages. The bounding boxes indicate

high-confidence detections, with the system achieving excellent precision while main-
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Figure 16 – Detection results of green fruits using a YOLOv3-based model in citrus orchards. The image
shows the detection of multiple green oranges with bounding boxes, demonstrating the
model’s ability to identify fruits under natural field conditions with varying occlusion and
lighting. The system successfully detected 208 fruits with no false positives and 21 false
negatives in this example, showcasing the effectiveness of YOLO-based architectures for
agricultural object detection tasks. Figure adapted from Neto et al. (2019).

taining reasonable recall despite the complex visual environment typical of agricultural

settings.

This work highlights the feasibility and effectiveness of using YOLO-based models for

fruit detection tasks under natural field conditions, providing an important precedent for

integrating deep learning in agricultural monitoring. Although it focuses on fruit detection

rather than disease classification, the system’s ability to handle image variability and

occlusion informs our current work’s approach to handling field-acquired images of plant

leaves. Specifically, their methodology of training with diverse, annotated real-world

images aligns with our strategy for creating a robust, generalizable multi-task model.
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3.7 GRAPE CLUSTER DETECTION AND SEGMENTATION FOR PREPROCESSING

Santos et al. (2020) proposed a comprehensive methodology for grape cluster detec-

tion and segmentation using deep neural networks, with a particular focus on enhancing

downstream applications like yield estimation and automated harvesting. Their work

introduced the Embrapa Wine Grape Instance Segmentation Dataset (WGISD), a public

dataset with over 4,000 annotated grape clusters, including both bounding boxes and

instance segmentation masks.

To address the inherent challenges of grape imagery—such as occlusions, variable

lighting, and irregular fruit morphology—they evaluated two prominent architectures:

YOLO (v2 and v3) (REDMON; FARHADI, 2017; REDMON; FARHADI, 2018) and Mask R-

CNN (HE et al., 2017). Their findings showed that while YOLO offered faster inference,

Mask R-CNN achieved superior detection and segmentation performance, reaching

an F1-score of 0.91 for instance segmentation at 30% intersection over union (IoU)

and maintaining competitive performance even at higher thresholds. These results

underscore the efficacy of instance segmentation in precisely localizing clusters, which

is particularly beneficial for applications requiring fine-grained fruit delineation. Figure 17

illustrates the comparative detection results across different grape varieties, demon-

strating Mask R-CNN’s superior precision in the segmentation of clusters of grapes

compared to YOLO variants.

Beyond detection, their work implemented a robust annotation tool based on inter-

active image segmentation using attributed relational graphs, streamlining the labor-

intensive process of generating high-quality instance masks. Additionally, they proposed

a 3D spatial registration mechanism using structure-from-motion to track and match

grape clusters across video frames, enabling accurate fruit counting while mitigating

double-counting due to occlusions. To evaluate the model’s generalization capabilities,

they tested Mask R-CNN on novel scenarios without any parameter tuning, as shown

in Figure 18. The results demonstrated robust performance across different camera

poses, developmental stages, and environmental conditions, indicating the model’s

strong adaptability to real-world agricultural settings.

The insights and tools developed by Santos et al. (2020) are directly relevant to

our preprocessing pipeline. Their segmentation approach provides a foundation for

isolating informative regions of interest (ROIs) in complex grapevine images, which can
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Figure 17 – Object detection results comparison between Mask R-CNN, YOLOv2, and YOLOv3 on grape
cluster detection, adapted from (SANTOS et al., 2020). The figure demonstrates the varying
performance of each architecture in identifying, localizing, and segmenting grape clusters
under real-world vineyard conditions, with Mask R-CNN showing superior precision in cluster
localization compared to YOLO variants.

be fed into our multi-task classification model. By leveraging their high-fidelity masks or

applying similar segmentation strategies, our system can focus on disease-prone areas,

reducing noise from background elements and improving classification robustness under

real-world vineyard conditions.

This segmentation methodology is particularly valuable for real-life agricultural sce-

narios where farmers often capture images containing multiple leaves or plant parts in

a single photograph. The instance segmentation capabilities demonstrated by Santos

et al. (2020) enable our system to automatically detect and separate individual leaves

within such composite images, effectively splitting a single input containing multiple

leaves into separate, focused images for individual analysis. This preprocessing step

is crucial for maintaining classification accuracy, as it allows our multi-task model to
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Figure 18 – Mask R-CNN generalization on novel scenarios without parameter tuning, adapted from
(SANTOS et al., 2020). The figure shows detection results on images with different camera
poses (a-b), varying leaf textures (c), and different developmental stages (d), demonstrating
the model’s robust generalization capabilities across diverse real-world conditions. Images
are Creative Commons-licensed from public sources.

process each leaf independently, avoiding the confusion that might arise from analyzing

multiple leaves simultaneously. By applying similar segmentation techniques to our

leaf detection task, we can ensure that each leaf receives focused attention during

disease classification, symptom identification, and agent recognition, thereby improving

the overall diagnostic precision of our system in real-world field conditions.
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Furthermore, this approach directly addresses several critical factors identified by

Barbedo (2018) that impact CNN performance in plant disease recognition. Specifically,

the segmentation methodology complements Barbedo (2018)’s findings by effectively

mitigating the “Image background” factor, which he identified as a major challenge where

background elements can disturb the training process. By isolating individual leaves

through instance segmentation, we eliminate background noise and spurious elements

that could interfere with disease classification. Additionally, this preprocessing strategy

partially helps to overcome the “Simultaneous disorders” challenge. Even though it does

not solve the issue where a single leaf may contain multiple disorders, it alleviates the

issue by ensuring that each leaf is analyzed independently, reducing the complexity of

detecting multiple disorders when images contain overlapping or adjacent leaves. The

segmentation-based approach thus provides a practical solution to some of the intrinsic

challenges that Barbedo (2018) identified as limiting factors in real-world plant disease

recognition systems.

3.8 STATE OF THE ART IN PLANT DISEASE DETECTION SYSTEMS

Despite significant advances in deep learning and computer vision for plant dis-

ease detection, the field has yet to converge on an optimal, generalizable solution that

addresses the diverse needs of agricultural practitioners worldwide. Multiple comprehen-

sive reviews of the literature reveal a persistent pattern: most publicly available models

and research efforts focus on specific crop types or particular diseases, limiting their

applicability to broader agricultural contexts (ANNABEL; ANNAPOORANI; DEEPALAKSHMI,

2019; SARKAR et al., 2023).

Annabel, Annapoorani e Deepalakshmi (2019) surveyed various machine learning

techniques for plant leaf disease detection and classification, highlighting the variety of

approaches employed across different crops and pathogens. Their review emphasizes

that while numerous classification techniques—including Support Vector Machines, Arti-

ficial Neural Networks, and various feature extraction methods—have shown promising

results on specific datasets, these solutions typically lack the cross-crop and cross-

disease generalization necessary for practical deployment at scale. The requirement

for extensive domain knowledge and manual feature engineering further limits the

accessibility and scalability of many proposed systems.
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More recent surveys confirm this trend continues even with the adoption of deep

learning approaches. Sujatha et al. (2021) compared the performance of traditional ma-

chine learning methods (Support Vector Machine, Random Forest, Stochastic Gradient

Descent) against deep learning architectures (Inception-v3, VGG-16, VGG-19) for citrus

plant disease detection. Their results demonstrated that deep learning methods consis-

tently outperform traditional machine learning approaches, with VGG-16 achieving the

highest classification accuracy of 89.5%. However, their evaluation was limited to citrus

diseases, and the study did not assess model generalization to other crop species or

disease types.

Sarkar et al. (2023) conducted a comprehensive review covering publications from

2010 to 2022, analyzing both machine learning and deep learning approaches for leaf

disease detection across multiple crops. Their analysis revealed that while models such

as CNN, VGG, and ResNet demonstrate strong performance on specific datasets, sig-

nificant challenges remain in creating systems that generalize across different imaging

conditions, crop varieties, and pathogen types. The authors identified several persistent

issues: the predominance of controlled laboratory conditions in dataset creation, limited

cross-dataset validation, and the scarcity of models capable of handling multiple crop

species within a unified framework.

Recent specialized approaches continue this pattern of crop-specific solutions.

Vallabhajosyula, Sistla e Kolli (2024) proposed a novel hierarchical framework combining

improved Vision Transformer and ResNet9 architectures, achieving strong performance

on the PlantVillage and Extended PlantVillage datasets across 13 to 51 disease classes.

Similarly, Kulkarni e Shastri (2024) developed a CNN-based system specifically for rice

leaf disease detection, achieving 95% accuracy on rice-specific disease classification.

While these works represent important advances in model architecture and performance

optimization, they exemplify the field’s tendency toward crop-specific solutions rather

than generalizable frameworks.

The gap between academic research and practical deployment is perhaps most

evident when examining commercial solutions. Plantix (PEAT GmbH, 2025), developed by

PEAT GmbH, represents one of the most widely deployed agricultural disease detection

applications, with over 100 million crop-related queries processed globally (HAMPF et

al., 2021). The application claims to diagnose diseases across multiple crop species

and provide treatment recommendations through automated image analysis. Despite
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its widespread adoption and reported success in field conditions, the underlying model

architecture, training methodology, and validation procedures remain proprietary and

unavailable for peer review or independent verification. This lack of transparency makes

it difficult for the research community to assess the system’s true capabilities, limitations,

and generalization performance across diverse agricultural contexts.

This situation highlights a critical gap in the current landscape: while proprietary

commercial solutions claim broad applicability across crops and diseases, they lack

the scientific transparency necessary for validation and improvement by the broader

research community. Conversely, publicly available academic models—though peer-

reviewed and reproducible—typically focus on narrow problem domains that limit their

practical utility for farmers and agricultural extension services who must deal with diverse

crops and pathogens.

3.9 COMPARATIVE ANALYSIS: SINGLE-TASK VS MULTI-TASK APPROACHES

This chapter presented different models and approaches to address plant disease

recognition and related agricultural computer vision challenges. Although they share

similar objectives—automated diagnosis and monitoring of plant health—the models

differ significantly in their task formulation, architectural design, output predictions, and

real-world applicability. This section provides a comparative analysis of the reviewed

works and positions our proposed multi-task learning approach within the existing

literature.

The surveyed approaches can be broadly categorized into four main paradigms: (1)

single-task classification focusing on binary or multi-class disease identification; (2)

multi-label classification treating each attribute (crop, disease, severity) as indepen-

dent binary problems; (3) object detection and segmentation for localizing diseased

regions or plant organs; and (4) multi-task learning (our proposed approach) that

jointly optimizes multiple related diagnostic subtasks.

Single-task approaches, exemplified by Barros et al. (2021) and Mohanty, Hughes

e Salathé (2016), demonstrate strong performance on their specific objectives but are

limited in scope. Barros et al. (2021)’s binary classification (symptoms vs. no symptoms)

achieves high recall but provides minimal diagnostic information for expert consultation.

Similarly, Mohanty, Hughes e Salathé (2016)’s joint crop-disease classification, while
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achieving 99.35% accuracy on PlantVillage, fails to generalize to real-world conditions

due to the controlled nature of the training data and the overly complex joint formulation.

Multi-label approaches, particularly Ji et al. (2020)’s BR-CNN framework, address

multiple attributes simultaneously but treat each prediction independently using sep-

arate binary classifiers. While this approach achieved strong performance (97.88%

accuracy for disease recognition), it suffers from parameter redundancy and lacks the

feature sharing benefits that could improve consistency across related predictions. The

binary relevance strategy also ignores potential correlations between tasks, such as the

relationship between symptom types and causal agents.

Object detection and segmentation approaches, represented by Xie et al. (2020),

Neto et al. (2019), and Santos et al. (2020), excel at spatial localization but are pri-

marily designed for region identification rather than comprehensive diagnosis. Xie et al.

(2020)’s Faster DR-IACNN achieves 81.1% mean average precision (mAP) for grape

disease detection but requires bounding box annotations and provides limited semantic

understanding beyond localization. These approaches are valuable for preprocessing

but insufficient for complete diagnostic workflows.

In contrast, our proposed multi-task learning approach addresses several limitations

identified in the literature. Unlike single-task models that provide minimal diagnostic

information, our framework outputs predictions for leaf detection, disease classifica-

tion, symptom identification, agent recognition, and final disease diagnosis within a

unified architecture. This design enables feature sharing across tasks, reducing param-

eter redundancy compared to multi-label approaches while maintaining task-specific

specialization through dedicated output heads.

Table 2 presents a detailed comparison of the reviewed approaches across key

dimensions. Our multi-task approach stands out in several aspects: (1) comprehensive

output providing multiple diagnostic predictions rather than single classifications; (2)

unified architecture enabling joint optimization and feature sharing; (3) real-world

focus incorporating field-collected data with natural variability; and (4) expert-level

diagnosis attempting to replicate the multi-step reasoning process used by plant

pathologists.

The multi-task formulation also addresses several challenges identified by Barbedo

(2018). By explicitly modeling symptom variations through dedicated output heads, our

approach can better distinguish between visually similar disorders. The joint optimization
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of disease presence, symptom types, and causal agents provides complementary

information that improves diagnostic consistency.

Moreover, the unified architecture substantially reduces computational overhead

and overall model size relative to maintaining multiple independent models. This lower

computational cost facilitates deployment in resource-constrained environments, such

as mobile devices and, potentially, embedded systems, thereby enhancing the practical

applicability of the approach in real-world agricultural scenarios.

However, our approach also introduces new challenges, particularly in dataset

construction and label consistency. Unlike single-task models that require simple class

labels, multi-task learning demands comprehensive annotations across all diagnostic

subtasks. This requirement is addressed through our data augmentation strategy and

expert annotation protocol, but it remains a significant consideration for scalability.

In summary, while existing approaches have made valuable contributions to agri-

cultural computer vision, they are primarily limited to specific subtasks or suffer from

architectural limitations that reduce their practical applicability. Our multi-task learning

framework represents a natural evolution toward more comprehensive, efficient, and

expert-level diagnostic systems that can better serve the complex needs of real-world

plant disease management.
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4 PROPOSED APPROACH AND IMPLEMENTATION

This chapter presents the practical aspects of the system designed to diagnose plant

diseases from leaf images using a MTL approach. While previous chapters outlined the

theoretical foundations and related works, the focus here is on how those ideas were

translated into an operational pipeline: from data preparation to model deployment.

The system was developed to be modular, scalable, and extensible, aiming to

replicate part of the diagnostic process carried out by specialists. It integrates multiple

components, including a web application for image capture, a pre-processing stage

to standardize input data, a neural network model trained to perform several tasks

simultaneously, and a backend system to deliver predictions in a user-friendly and timely

manner.

This chapter details each stage of the implementation: the creation and organization

of the dataset, the design of the MTL model architecture, training and evaluation

strategies, and how inference was integrated into a deployable pipeline. In addition,

we include an honest account of the challenges faced, including failed attempts and

lessons learned, which guided the decisions made throughout the project.

By unpacking the design choices and technical procedures, this chapter is meant

to provide a comprehensive view of the system’s development lifecycle, laying the

groundwork for interpreting the results discussed in the following sections.

4.1 SYSTEM ARCHITECTURE OVERVIEW

The proposed system implements a distributed microservices architecture designed

to provide scalable, modular, and extensible plant disease diagnosis capabilities through

a RESTful API interface. Rather than being constrained to a specific client application,

this design enables integration with diverse front-end systems, research platforms, and

agricultural tools through standardized API endpoints.

The architecture is built around the principle of separation of concerns, where each

service specializes in a specific aspect of the disease detection pipeline. This approach

facilitates independent development, deployment, and scaling of system components

while maintaining clear interfaces between services. The system can accommodate both



88

real-time interactive applications and batch processing workflows, making it suitable for

various agricultural and research scenarios.

4.1.1 Core Microservices Architecture

The system comprises three primary microservices that work in concert to deliver

comprehensive plant disease analysis:

Disease Analysis Server serves as the main API gateway and orchestration layer,

coordinating the entire diagnostic workflow. It exposes the primary /analyze endpoint

that accepts plant images and optional parameters, manages the complete processing

pipeline, and aggregates results from downstream services. This service also handles

request logging, maintains analysis history in a database, and provides health monitoring

across all system components.

Segmentation Service specializes in advanced computer vision techniques for

isolating individual leaves from plant images. It supports multiple state-of-the-art seg-

mentation models including Segment Anything Model (SAM), SAM2, FastSAM, YOLOv8

segmentation, and LangSAM for text-guided segmentation. This service enables flexible

segmentation strategies ranging from general-purpose foundation models to real-time

optimized approaches, allowing researchers to select the most appropriate method for

their specific use case.

Inference Server hosts the multi-task learning model and provides specialized

machine learning inference capabilities. It manages model loading, GPU utilization, and

executes the core disease detection algorithms. The server supports both standard

inference pipelines and optimized processing paths for known plant varieties, enabling

efficient prediction generation across multiple classification tasks simultaneously.

4.1.2 Processing Workflow and Service Interactions

Figure 19 illustrates the high-level processing workflow implemented by the system.

The inference pipeline begins when a user submits a plant image through the API

gateway. The system then makes an intelligent decision about whether to apply leaf

segmentation based on the image characteristics and user preferences.

The process begins with a user uploading a plant image, which may optionally
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Figure 19 – High-level inference workflow showing the processing pipeline from image input to diagnostic
report generation.
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undergo leaf segmentation to isolate individual leaves. Each leaf (or the entire image,

if segmentation is skipped) is then analyzed using a multi-task deep learning model

that performs several tasks in parallel: binary classification (healthy vs. diseased), plant

species identification, pathogen detection, disease classification, symptom detection,

and leaf validation. The outputs from all tasks and leaves are then aggregated to produce

a comprehensive diagnostic report, which is returned to the user.

When segmentation is enabled, the image is processed by the segmentation service

to identify and extract individual leaf instances. This step is particularly valuable for

complex images containing multiple leaves or when precise leaf-level analysis is required.

The segmentation service applies area-based filtering and quality assessment to ensure

that only relevant leaf structures are forwarded for disease analysis.

Each identified leaf (or the original image if segmentation is bypassed) undergoes

inference through the multi-task learning model. This model simultaneously performs

six different classification tasks: binary health assessment (healthy vs. diseased), plant

species identification, pathogen detection, specific disease classification, symptom de-

tection, and leaf validation. This parallel execution approach maximizes the information

extracted from each image while maintaining computational efficiency.

The detailed interactions between system components are shown in Figure 20. This

sequence diagram demonstrates how a web-based client application communicates with

the disease detection system through the API gateway, highlighting the asynchronous

processing capabilities and structured response handling. The interaction flow shows

how the web application sends uploaded images to the Disease Analysis API, which

coordinates with the segmentation service (if enabled) and the inference server to

process each detected leaf through the multi-task learning model before returning an

aggregated diagnostic report to the front-end.

The architecture adheres to several key design principles that ensure its suitability

for both research and practical applications. Modularity is achieved through clear

service boundaries, enabling independent development and testing of each component.

Scalability is addressed through the microservices pattern, allowing individual services

to be scaled and adjusted based on demand patterns and computational requirements.

Extensibility is built into the system through standardized interfaces using a RESTful

API design and plugin-like architectures. New segmentation models can be integrated

into the segmentation service without affecting other components, and additional clas-
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Figure 20 – Sequence diagram showing the interaction flow between user, web front-end, and backend
microservices for plant disease detection.

sification tasks can be added to the multi-task model through the inference server’s

flexible endpoint structure. Moreover, new steps can be added to the pipeline without

modifying existing components, allowing for easy expansion of the system’s capabilities.

The API-first design philosophy ensures that the system can be integrated seam-

lessly with existing and new agricultural information systems, research platforms, and

custom applications. Standard HTTP/REST interfaces enable easy integration regard-

less of the client technology, while structured JSON responses provide consistent data

formats for downstream processing.

To demonstrate the practical implementation of this architecture, a sample web

front-end application that utilizes the described API is available at <https://oracle.

cultivai.com.br/> (Cultivai, 2024a), providing users with an intuitive interface for plant

disease diagnosis. Additionally, the complete API documentation, including endpoint

specifications, parameter descriptions, and example requests, can be accessed at

<https://predict.cultivai.com.br/docs> (Cultivai, 2024b), enabling developers and re-

searchers to integrate the system into their own applications and research workflows,

allowing for users that are both not technical and not familiar with the system to use it,

as well as more advanced users to use it in a more customized way.

https://oracle.cultivai.com.br/
https://oracle.cultivai.com.br/
https://predict.cultivai.com.br/docs
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4.2 DATASET CONSTRUCTION AND LABELING

The development of robust multi-task learning models for plant disease classification

requires training datasets that are both comprehensive in scale and rich in semantic

annotations. While existing plant pathology datasets provide substantial image collec-

tions, they typically lack the detailed pathological metadata necessary for fine-grained

symptom analysis and multi-task learning objectives. This section presents a novel

methodology that combines Retrieval-Augmented Generation (RAG) techniques with

vision-capable Large Language Models (LLMs) to systematically augment heteroge-

neous plant disease datasets with comprehensive, literature-grounded annotations.

The approach addresses a fundamental challenge in specialized domain datasets:

the labor-intensive nature of expert annotation and the inconsistency of metadata quality

across different data sources. By leveraging authoritative plant pathology literature as

a knowledge base and employing multi-modal LLM analysis for image-specific valida-

tion, this methodology generates scientifically grounded annotations while maintaining

scalability for large dataset processing.

4.2.1 Dataset Summary and Characteristics

To support the proposed multi-task learning pipeline, a diverse and semantically

rich dataset collection was constructed by integrating multiple open-source datasets.

Each dataset contributes unique characteristics in terms of plant species, disease

representation, annotation depth, and image acquisition conditions. This subsection

details the composition and content of each source dataset, including information on

the number of samples, annotated labels, and the presence or absence of higher-order

metadata such as symptoms, pathogen names, and scientific disease nomenclature.

4.2.1.1 PlantVillage Dataset

The PlantVillage dataset (HUGHES; SALATHE, 2015) serves as the primary corpus,

comprising 54,305 images across 14 plant species and 38 disease classes. This

dataset is particularly known for its standardized imaging setup—each image typically

depicts a single, isolated leaf placed on a homogeneous background under consis-
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tent lighting. As previously discussed in Section 3.2 and illustrated in Figure 10, this

setup enhances visual clarity and model training efficacy, but it lacks real-world vari-

ability. Metadata in PlantVillage is embedded in the folder structure following the pat-

tern Plant_Species___Disease_Condition, which supports straightforward extraction

of plant and disease labels. However, deeper annotations such as symptomatology,

pathogen names, or disease progression stages are not included.

4.2.1.2 MangoLeafBD Dataset

The MangoLeafBD dataset (AHMED et al., 2023) contains 4,000 annotated images

of mango leaves captured under more natural conditions, including partial occlusions,

complex backgrounds, and varying lighting, as demonstrated in Figure 21. The dataset

comprises both healthy and diseased samples and includes images categorized into

five disease types (Anthracnose, Bacterial Canker, Gall Midge, Powdery Mildew, and

Sooty Mold). While basic disease names are available, this dataset also lacks scientific

disease identifiers, symptom profiles, and causal pathogen annotations. Its inclusion

significantly enhances the domain diversity and robustness of the training pipeline for

tropical disease manifestations.

Figure 21 – Sample images from the MangoLeafBD dataset by Ahmed et al. (2023) showing natural
imaging conditions with partial occlusions, complex backgrounds, and varying lighting that
enhance training robustness.

4.2.1.3 Cassava Leaf Disease Dataset

This dataset (MWEBAZE et al., 2021), released as part of a Kaggle competition by the

Makerere University AI Lab, comprises 21,367 field-acquired images of cassava leaves,
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each annotated with one of five well-defined classes: Cassava Bacterial Blight (CBB),

Cassava Brown Streak Disease (CBSD), Cassava Green Mottle (CGM), Cassava Mosaic

Disease (CMD), and Healthy. The class labels are provided via structured CSV files,

ensuring reliable mapping between images and pathological states. However, despite

its large scale and comprehensive labeling, this dataset was ultimately excluded from

the final training pipeline due to several critical limitations. The images lack controlled

imaging conditions, with many samples containing multiple plant specimens within

a single frame, making it difficult to isolate individual leaf pathology. Additionally, a

significant portion of the dataset exhibits inconsistent aspect ratios that result in stretched

or distorted images, along with significant blurriness, potentially introducing artifacts that

could negatively impact model training. These limitations are illustrated in Figure 22. The

highly variable field conditions, while representative of real-world scenarios, introduce

excessive noise and complexity that would require substantial preprocessing efforts to

achieve consistency with other datasets in the collection.

Figure 22 – Representative images from the Cassava Leaf Disease dataset by Mwebaze et al. (2021)
highlighting principal limitations: (left) an image containing multiple plant specimens within
a single frame and exhibiting aspect ratio distortion; (right) an image characterized by
significant blurriness. These factors were instrumental in the decision to exclude this dataset
from the final training pipeline due to concerns regarding data quality and consistency.

4.2.1.4 PlantDoc Dataset

The PlantDoc dataset (SINGH et al., 2020) includes 2,598 annotated images spanning

13 plant species and 17 disease categories. While this dataset initially appeared promis-

ing due to its taxonomic diversity and realistic imaging conditions, it was ultimately

excluded from the final training pipeline due to several fundamental quality issues. The
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images are sourced from internet collections rather than controlled acquisition protocols,

resulting in significant heterogeneity in image quality and composition. Many images

contain watermarks overlaid on plant specimens, particularly on fruit images, which

would interfere with feature extraction and model training. The dataset exhibits extreme

variability in background conditions, ranging from highly controlled white backgrounds

to complex natural environments with excessive textual elements that could serve as

confounding factors. Additionally, a substantial portion of the dataset consists of low-

resolution or blurry images that fail to meet minimum quality thresholds for reliable

pathological analysis. These quality variations are demonstrated in Figure 23. The

inconsistent imaging conditions, combined with the presence of non-leaf specimens and

quality artifacts, made this dataset unsuitable for integration with the more controlled

datasets selected for the final training pipeline.

Figure 23 – Representative images from the PlantDoc dataset by Singh et al. (2020) illustrating quality
variations: (left) a high-quality leaf image suitable for analysis; (center) an image with
prominent watermarks over the specimen; (right) an image containing excessive background
text. These issues contributed to the exclusion of PlantDoc from the final training pipeline.

4.2.1.5 Plant Disease Recognition Dataset

This dataset (RAHMAN, 2021) contains 1,530 images organized into three symptom-

based categories: "Healthy", "Powdery", and "Rust". The dataset is pre-divided into train,

test, and validation sets. It focuses on symptom manifestation rather than taxonomic

classification, with unknown plant types and disease specifics. While the images are

not captured under controlled conditions, the leaf subjects are consistently central and

clearly in focus in all pictures, providing good visual clarity for symptom analysis, as

shown in Figure 24. The dataset’s value lies in its symptom-centric approach, though

it lacks detailed metadata regarding plant species identification or scientific disease



96

nomenclature.

Figure 24 – Representative images from the Plant Disease Recognition dataset: (left) healthy leaf,
(center) leaf with powdery symptoms, and (right) leaf with rust symptoms. Each image
demonstrates the symptom-based categorization approach with consistently centered and
clearly focused leaf specimens.

4.2.1.6 Apple Disease Dataset (D-KAP)

The D-KAP dataset (SHARMA; PADHA; BASHIR, 2022) contains 6,000 high-resolution

images of Kashmiri apple plants categorized into four classes (healthy, scab, rust, and

alternaria blotch). While the images are captured under real-world conditions rather than

strictly controlled laboratory settings, they exhibit characteristics that approach controlled

conditions. Each image consistently features a single leaf specimen positioned centrally

within the frame, with backgrounds predominantly consisting of granite surfaces or carpet

textures, as illustrated in Figure 25. This quasi-controlled approach maintains visual

consistency while introducing minimal environmental variation, making the dataset

particularly suitable for robust model training. The dataset’s focus on a single crop

species provides specialized representation of apple pathology that complements the

broader taxonomic coverage of other datasets.

4.2.1.7 Plant Pathology Challenge 2020 Dataset

The Plant Pathology Challenge 2020 dataset (THAPA et al., 2020) comprises 3,651

high-quality images of apple foliar diseases captured under real-world conditions with

variable illumination, angles, surfaces, and background noise. The dataset was specifi-

cally designed for the Plant Pathology Challenge held as part of the Fine-Grained Visual

Categorization (FGVC) workshop at CVPR 2020. While the images are captured in

uncontrolled environments, they maintain excellent usability characteristics with the

primary leaf consistently positioned in the center of each image frame. The in-the-wild
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Figure 25 – Representative images from the D-KAP apple disease dataset (SHARMA; PADHA; BASHIR, 2022):
(left) a single apple leaf specimen on a granite background, and (right) a single apple leaf
specimen on a carpet background. Both images demonstrate the dataset’s quasi-controlled
imaging conditions with consistent single-leaf presentation and minimal environmental varia-
tion.

backgrounds provide natural environmental context without introducing excessive noise,

and importantly, the images maintain their original aspect ratios without distortion or

stretching artifacts, as demonstrated in Figure 26. The images are expert-annotated

and focus on three primary categories: apple scab, cedar apple rust, and healthy leaves.

The dataset is structured using CSV files for metadata organization, similar to the

Cassava dataset. Its emphasis on real-world image acquisition conditions combined

with consistent compositional quality and expert-quality annotations makes it particularly

valuable for developing robust disease classification models that can perform effectively

in practical agricultural settings.

4.2.1.8 DiaMOS Plant Dataset

The DiaMOS Plant dataset (FENU; MALLOCI, 2021) contains 3,505 field-collected

images of pear fruit and leaves, encompassing four disease classes including healthy

samples. While this dataset was initially considered for its comprehensive annotation

approach and practical agricultural relevance, it was ultimately excluded from the final

training pipeline due to several integration challenges. The dataset lacks controlled

imaging conditions, with many images containing multiple leaf specimens within a single
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Figure 26 – Sample images from the Plant Pathology Challenge 2020 dataset by Thapa et al. (2020)
demonstrating centered leaf positioning with natural in-the-wild backgrounds and expert-
quality annotations for apple foliar diseases.

frame, making it difficult to establish consistent pathological analysis protocols. Although

the dataset provides YOLO-format bounding box annotations, these annotations typically

target only a single leaf within each image, leaving other visible leaves unlabeled and

potentially creating training inconsistencies. The time constraints of the project made it

impractical to develop specialized processing pipelines to extract and utilize the partial

annotations effectively. Additionally, a significant portion of the dataset focuses on fruit

pathology rather than leaf-based diseases, which diverges from the primary focus of

this research on foliar disease classification. The combination of complex annotation

requirements, multi-specimen imaging, and the substantial fruit-focused content made

this dataset unsuitable for integration within the established processing pipeline, as

illustrated in Figure 27.



99

Figure 27 – Representative images from the DiaMOS Plant dataset by Fenu e Malloci (2021): (left) an
image focusing on fruit rather than leaves, and (right) an image containing multiple leaves
within a single frame. These characteristics contributed to the dataset’s exclusion due to
challenges in maintaining consistent analysis protocols.

4.2.1.9 PDDB (Digipathos) Dataset

The PDDB dataset (BARBEDO et al., 2018), also known as Digipathos, is a comprehen-

sive plant disease image collection developed by Embrapa, comprising 2,326 original

images that span 171 diseases and other disorders across 21 plant species. While the

dataset initially appeared attractive due to its controlled imaging conditions and broad

taxonomic coverage, it was ultimately excluded from the final training pipeline for several

practical reasons.

A central issue is the dataset’s heavy reliance on augmentation: the original images

are systematically subdivided and cropped, resulting in an expanded version (XDB) with

46,104 images distributed across 93 "Cropped" folders. However, this expansion does

not address the underlying scarcity of original data per class. Quantitative analysis of

the folder structure highlights a pronounced class imbalance and data skew in both

the original and augmented sets, with the following summary statistics describing the

number of files per folder:

• Original (non-cropped) data: 2,339 files in 177 folders. The number of files per

folder ranges from 1 to 88, with a mean of 13.21, a median of 6, and a standard

deviation of 16.70. The 25th percentile (Q1) is 2.0, and 24 folders (13.6%) have

two or fewer images. This means that most disease categories have very few

original images, making them unsuitable for robust model training.
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• Cropped (XDB) data: 46,104 files in 93 folders. The number of files per folder

ranges from 1 to 3,791, with a mean of 495.74, a median of 150, and a standard

deviation of 775.58. The 25th percentile (Q1) is 42.0, and 23 folders (24.7%) have

42 or fewer images. While the augmentation increases the number of images per

class, the distribution remains highly skewed, with a small number of categories

dominating the dataset and many still underrepresented.

For reference, when considering both the original and cropped data together, there

are 270 folders and 48,443 files in total, with the number of files per folder having a mean

of 179.42, a median of 11.5, and a standard deviation of 508.60. The 25th percentile

(Q1) is 3.0, and 58 folders (21.5%) have three or fewer images.

Further compounding these issues, a substantial fraction of the images are of fruit

pathology rather than leaf specimens, which diverges from the primary focus of this

research. The authors themselves note that the dataset’s expansion is achieved mainly

through automatic cropping and zooming of a limited set of base images, rather than

through the acquisition of new, diverse samples. Given the project’s time constraints

and the considerable effort required to extract and process only the relevant leaf-based

images from this highly augmented and imbalanced dataset, the potential benefits did

not justify the required preprocessing investment. The combination of limited original

leaf imagery per category, severe data skew, and augmentation-heavy methodology

rendered the PDDB dataset unsuitable for integration into the established training

pipeline, as illustrated in Figure 28.

Table 1 summarizes the key characteristics and evaluation outcomes for all datasets

considered in this study, providing a comprehensive comparison of their suitability for

the proposed multi-task learning pipeline.

Table 1 – Comparison of Evaluated Plant Disease Datasets

Dataset # Images Plant Species Disease Classes Controlled Images Structured Metadata Used in Training
PlantVillage (HUGHES; SALATHE, 2015) 54,305 14 38 ✓ Folder names ✓

MangoLeafBD (AHMED et al., 2023) 4,000 1 (Mango) 5 ✓ Folder names ✓

PlantDisease (RAHMAN, 2021) 1,530 Unknown 3 ✗ Folder names ✓

Apple (D-KAP) (SHARMA; PADHA; BASHIR, 2022) 6,000 1 (Apple) 4 Quasi-controlled Folder names ✓

Plant Pathology 2020 (THAPA et al., 2020) 3,651 1 (Apple) 3 ✗ CSV ✓

Excluded Datasets
Cassava (MWEBAZE et al., 2021) 21,367 1 (Cassava) 4 + healthy ✗ CSV ✗

PlantDoc (SINGH et al., 2020) 2,598 13 17 Mixed Folder names ✗

DiaMOS Plant (FENU; MALLOCI, 2021) 3,505 1 (Pear) 4 ✗ CSV + YOLO ✗

PDDB (Digipathos) (BARBEDO et al., 2018) 46,513 21 171 ✓ Folder names ✗

The systematic evaluation and selection process resulted in a curated dataset col-

lection comprising 69,486 samples from five high-quality sources that met the project’s
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Figure 28 – Representative images from the PDDB (Digipathos) dataset: (left) an example of a fruit
specimen rather than a leaf, (center) a cropped version of a leaf image, and (right) another
cropped version of a leaf. The prevalence of fruit images and the heavy reliance on systematic
cropping of limited base leaf images illustrate the dataset’s augmentation-heavy methodology
and its limitations for this research.

technical and methodological requirements. While the excluded datasets represented

over 73,000 additional samples, their integration would have introduced significant

preprocessing challenges, annotation inconsistencies, and quality issues that would

have compromised the overall training pipeline effectiveness. The selected datasets

maintain varying degrees of metadata richness, with basic plant and disease labels

consistently present across all sources. However, critical information necessary for multi-

task modeling—such as symptom descriptions, pathogen classification, and scientific

disease naming—remains largely absent even in the selected datasets. To address this

limitation, subsequent stages of the pipeline employ RAG techniques to systematically

enrich these datasets with comprehensive pathological annotations, as discussed in the

following section.

4.2.2 Additional Datasets for Binary Leaf Classification

Beyond the primary datasets integrated into the main multi-task learning pipeline,

several additional datasets were incorporated to support a specialized binary clas-

sification task designed to determine whether an image contains a leaf or not. This

foundational task serves as a preprocessing step for the broader plant disease classifica-

tion pipeline, ensuring that only relevant botanical imagery is processed by downstream

disease detection models. While these datasets do not participate in the overall multi-

task learning architecture, they are essential for training a robust leaf detection model
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that filters input data before disease classification.

The binary leaf classifier combines multiple datasets to create a balanced training

set with both positive and negative examples. This approach ensures that the model

can effectively distinguish between botanical and non-botanical imagery across diverse

visual contexts.

4.2.2.1 Positive Examples (Leaf Images)

The positive training examples are primarily sourced from the PlantVillage

dataset (HUGHES; SALATHE, 2015), where all 54,305 images serve as positive examples

since they exclusively contain plant leaves with various disease conditions and healthy

states. This comprehensive coverage ensures that the binary classifier is exposed to the

full range of leaf appearances, disease manifestations, and imaging conditions present

in the downstream classification pipeline.

Additionally, the Flowers102 dataset (NILSBACK; ZISSERMAN, 2008) was incorporated

to increase leaf sample diversity. This dataset contains 8,189 images of flowers from

102 different categories, providing complementary botanical imagery that enhances

the model’s ability to recognize diverse plant structures and leaf configurations not

represented in the disease-focused datasets.

4.2.2.2 Negative Examples (Non-Leaf Images)

The negative training examples are carefully selected from datasets that provide

clear contrast to botanical imagery while maintaining visual complexity comparable

to leaf images. The StanfordCars dataset (KRAUSE et al., 2013) contributes vehicle

images that serve as unambiguous negative examples, ensuring that the classifier can

distinguish between manufactured objects and natural plant structures.

The ImageNette dataset (HOWARD; GUGGER, 2020), a subset of ImageNet (DENG

et al., 2009) containing everyday objects, provides additional negative examples while

excluding plant-related classes. This dataset contributes images of tench, English

springer, cassette player, chain saw, church, French horn, garbage truck, gas pump,

golf ball, and parachute, offering diverse visual contexts that help the model generalize

beyond simple object categories.
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The Caltech256 dataset (GRIFFIN et al., 2007) serves as a mixed dataset containing

both leaf and non-leaf samples. Due to its heterogeneous nature, this dataset requires

manual labeling to separate positive and negative examples, contributing to the overall

balance of the training set while providing additional visual diversity in both categories.

This specialized binary classification approach ensures that the primary disease

classification models receive only relevant botanical inputs, improving both computa-

tional efficiency and classification accuracy by filtering out irrelevant imagery at the

preprocessing stage.

4.2.3 Source Dataset Integration

Following the systematic evaluation described in the previous section, the final train-

ing pipeline integrates five carefully selected datasets. These datasets collectively pro-

vide robust coverage of plant disease manifestations while maintaining compatibility with

the established processing methodology. The PlantVillage dataset (HUGHES; SALATHE,

2015) serves as the primary source with 54,305 images spanning 14 plant species

and 38 disease classes, providing broad taxonomic coverage with consistent imaging

conditions. The MangoLeafBD dataset (AHMED et al., 2023) contributes 4,000 special-

ized images focusing on tropical disease manifestations under controlled conditions.

The Plant Disease Recognition dataset (RAHMAN, 2021) adds 1,530 symptom-focused

images that enhance the model’s capacity for fine-grained symptom analysis. The Apple

Disease (D-KAP) dataset (SHARMA; PADHA; BASHIR, 2022) provides 6,000 high-quality

images with quasi-controlled conditions, while the Plant Pathology Challenge 2020

dataset (THAPA et al., 2020) contributes 3,651 expert-annotated apple disease images

captured under real-world conditions, adding specialized focus on apple foliar diseases

including scab and cedar apple rust.

A comprehensive dataset creation pipeline was developed to transform these hetero-

geneous datasets into a unified, semantically rich training corpus suitable for multi-task

learning. This pipeline addresses the fundamental limitations identified during dataset

evaluation. Figure 29 presents an overview of this complete pipeline, illustrating how

the integrated source datasets undergo sequential processing through four major trans-

formation stages. Each stage addresses specific limitations identified during the initial

analysis, culminating in a unified dataset that supports both traditional disease classifi-
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cation and fine-grained symptom analysis tasks. The following subsections detail each

component of this pipeline, explaining the methodologies, technical implementations,

and design rationales that enable systematic knowledge augmentation at scale.

Figure 29 – Complete overview of the dataset creation pipeline (author’s own work) showing the four
major processing stages that transform basic taxonomic annotations into comprehensive,
multi-modal training data for multi-task learning applications.

Each source dataset presented distinct organizational structures and metadata

schemas, necessitating a systematic integration approach. The PlantVillage dataset,

MangoLeafBD dataset, Plant Disease Recognition dataset, and Apple Disease (D-

KAP) dataset employed hierarchical folder naming conventions following patterns such

as Plant_Species___Disease_Condition. This structure enables direct extraction of

plant and disease identifiers through systematic parsing of directory structures. The

Plant Pathology Challenge 2020 dataset utilized CSV-based metadata organization,

requiring structured file parsing to link image identifiers to taxonomic and pathological
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classifications. This diversity in organizational approaches required the development

of flexible parsing routines capable of handling different metadata schemas while

maintaining consistency in the resulting unified dataset structure.

Figure 30 illustrates the initial metadata extraction process that accommodates

these diverse organizational patterns. This preprocessing stage establishes a unified

metadata schema while preserving dataset provenance, enabling systematic assess-

ment of annotation completeness across sources. The analysis revealed that while

basic plant and disease classifications were consistently available, critical pathological

information including scientific disease nomenclature, pathogen classifications, and

symptom profiles were largely absent across all datasets.

Figure 30 – Metadata extraction pipeline (author’s own work) illustrating the systematic processing of
diverse dataset organizational structures into a unified schema for assessment of annotation
completeness.
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4.2.4 Multi-Modal RAG-Enhanced Knowledge Augmentation

To address the systematic lack of comprehensive pathological annotations, we

developed a novel multi-modal knowledge augmentation pipeline that combines domain-

specific literature retrieval with vision-capable LLM analysis. This approach represents

a significant advancement over traditional crowdsourcing or expert annotation methods,

providing both scalability and scientific rigor through literature grounding.

The methodology employs a two-stage RAG architecture that first retrieves relevant

pathological knowledge from authoritative plant pathology references, then leverages

multi-modal LLM capabilities to validate and refine this knowledge against visual evi-

dence from the target images. The knowledge base was constructed from comprehen-

sive plant pathology handbooks, including Westcott’s Plant Disease Handbook (HORST,

2013) and the Handbook of Plant Disease Identification and Management (AGLAVE,

2018). These references provide broad coverage of pathological conditions across

agricultural and horticultural species.

Figure 31 demonstrates the complete multi-modal RAG augmentation workflow.

For each plant-disease combination identified during metadata extraction, the system

constructs targeted literature search queries encompassing symptom descriptions,

pathogen classifications, and diagnostic characteristics. The retrieval component em-

ploys semantic search techniques to identify relevant passages from the indexed litera-

ture, creating contextual knowledge that serves as the foundation for subsequent LLM

analysis.

The integration of multi-modal capabilities distinguishes this approach from purely

text-based knowledge augmentation methods. By combining retrieved literature context

with visual analysis of the target leaf images, the system performs cross-validation

between established pathological knowledge and observable symptoms. This dual-

modal approach ensures that generated annotations reflect both scientific accuracy and

image-specific manifestations, addressing the common problem of generic descriptions

that do not correspond to visible evidence.

The structured output generation employs GPT-4o (HURST et al., 2024) with carefully

engineered prompts that combine retrieved literature context with visual analysis instruc-

tions. The system prompt establishes the role of an expert plant pathologist with access

to comprehensive literature, while user prompts integrate specific retrieved knowledge
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Figure 31 – Multi-modal RAG pipeline combining literature retrieval with vision-capable LLM analysis for
systematic generation of comprehensive plant disease annotations.

with image analysis tasks. The use of structured output formats ensures consistent data

generation across the entire dataset, facilitating subsequent processing and integration

steps.

A critical aspect of this methodology is the emphasis on generating only miss-

ing metadata rather than replacing existing annotations. This conservative approach

preserves valuable human-generated annotations while systematically filling gaps in

pathological information. The system prioritizes visual evidence when conflicts arise be-

tween retrieved literature and observable symptoms, ensuring that annotations remain

grounded in actual image content rather than generic disease descriptions.

However, not all datasets permit comprehensive augmentation across all metadata
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categories. For example, the Plant Disease Recognition Dataset (RAHMAN, 2021) pro-

vides only symptom-based classifications ("Healthy", "Powdery", "Rust") without plant

species identification or disease-specific context. In such cases, where the system

cannot confidently infer missing information—such as plant taxonomy, pathogen names,

or scientific disease nomenclature—these metadata fields are deliberately left empty

rather than populated with potentially erroneous information. This conservative approach

ensures data integrity by avoiding the introduction of speculative annotations that could

compromise model training. During subsequent training phases, these missing values

are appropriately handled through per-task filtering mechanisms, allowing each multi-

task learning objective to utilize only the annotations that are available and reliable for

that specific task.

4.2.5 Symptom Standardization and Semantic Harmonization

The integration of multiple datasets and literature sources necessitates systematic

standardization of symptom terminology to enable effective multi-task learning. Plant

pathology literature and different datasets employ varying descriptive vocabularies for

similar pathological manifestations, creating challenges for model training and cross-

dataset generalization.

Figure 32 illustrates the comprehensive symptom standardization process imple-

mented to address this challenge. The methodology begins with the extraction of all

unique symptom descriptions from both literature-retrieved knowledge and existing

dataset annotations. These raw descriptions undergo systematic mapping to a stan-

dardized vocabulary that maintains biological accuracy while reducing terminological

variation.

The standardization mapping addresses common variations in symptom descrip-

tions while preserving specificity necessary for accurate classification. For example,

descriptions such as "bronzed leaf surfaces" and "bronze coloration" are unified under

the standardized term "bronzing", while maintaining distinction from related but different

symptoms like "chlorosis" or "necrosis." This process required careful consideration of

plant pathological terminology to ensure that biologically distinct symptoms remained

separable while reducing unnecessary vocabulary fragmentation.

Following standardization, symptom annotations undergo one-hot encoding to cre-
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Figure 32 – Systematic standardization of symptom terminology across datasets and literature sources,
followed by one-hot encoding for multi-label classification tasks.

ate binary feature vectors suitable for multi-label classification tasks. This encoding

strategy enables the multi-task learning model to simultaneously predict multiple symp-

tom manifestations, supporting both fine-grained symptom analysis and hierarchical

disease classification objectives. The resulting symptom profiles provide rich semantic

annotations that complement traditional taxonomic disease classifications.

4.2.6 Visual Feature Integration

In an effort to reduce computational costs during model training, an approach was

implemented to pre-extract high-dimensional latent vectors from all images using a pre-

trained convolutional neural network. The motivation behind this strategy was to avoid

repeatedly processing each image through the backbone network (ResNet50) for every

task and epoch during multi-task learning, thereby streamlining the training pipeline.
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The intention and rationale for this approach, as well as the challenges encountered,

will be discussed in the following chapter on model training.

In addition to feature extraction, a dedicated background removal pipeline was also

developed to isolate the leaf regions in each image prior to embedding generation. This

preprocessing step aimed to reduce the influence of irrelevant background information

and enhance the focus on disease-relevant visual features. The technical details, im-

plementation, and impact of the background removal process are described in later

sections.

Figure 33 illustrates the visual feature extraction pipeline. The process employed a

ResNet50 architecture pre-trained on ImageNet, with the top classification layers re-

moved to access the intermediate feature representations. Images were standardized by

resizing to 224×224 pixels and applying ImageNet normalization to ensure compatibility

with the pre-trained weights.

Figure 33 – Visual feature extraction process using pre-trained ResNet50 to generate high-dimensional
embeddings for integration with semantic annotations.

Global average pooling was applied to the spatial dimensions of the feature maps,

resulting in 2048-dimensional embedding vectors that were intended to capture high-

level visual patterns relevant to disease classification. These embeddings were stored

alongside the semantic annotations, with the goal of enabling the multi-task learning

model to leverage both explicit pathological knowledge and implicit visual features, while

significantly reducing the computational burden during training.

Batch processing strategies were used to efficiently extract features across the entire

dataset. However, as will be detailed in the subsequent chapter, this batched approach

ultimately proved unsuccessful due to specific limitations and issues encountered during
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model training. The lessons learned from this attempt informed the final design of the

training pipeline, which will be discussed later.

4.2.7 Dataset Integration for Model Training

The final integration phase focuses on merging all previously processed and an-

notated datasets into a single, unified dataset suitable for downstream model training.

Figure 34 illustrates the integration workflow, ensuring that all data sources are brought

into a consistent schema and format, enabling seamless use in the multi-task learning

models described in subsequent sections.

Figure 34 – Workflow for merging processed datasets into a unified, model-ready dataset with consistent
schema and provenance tracking.

The integration process involves schema alignment to reconcile differences in column

names, data types, and categorical encodings across the various source datasets.

All relevant features—including taxonomic labels, symptom annotations, and visual

embeddings—are standardized to ensure compatibility. Where necessary, missing

values are handled in a manner consistent with the requirements of the downstream

models: for example, symptom columns default to absent (false) if not annotated, while

unknown taxonomic classifications are left as null to avoid introducing noise.

This unified dataset serves as the foundation for all subsequent model development

and evaluation. By consolidating the diverse data sources into a single, coherent

structure, the integration process enables efficient training, validation, and benchmarking
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of the multi-task learning architectures presented in the following chapters. Detailed

statistics and metadata characteristics of the final integrated dataset are provided in

Appendix A.

4.3 IMAGE PRE-PROCESSING PIPELINE

This section details the comprehensive image preprocessing pipeline developed

to standardize input data and optimize model performance across diverse imaging

conditions and dataset sources. The preprocessing pipeline comprises two major

stages: image standardization and segmentation-driven background removal.

4.3.1 Image Standardization

To ensure uniformity across datasets, all input images were downscaled to a fixed

resolution of 256× 256 pixels using OpenCV’s resize function with bilinear interpolation.

This dimension corresponds to the smallest image size among all datasets used, serving

as a standardization baseline for efficient batch processing and model compatibility.

Additionally, all images were normalized to the range [0, 1] and converted to RGB format

to preserve color information critical for visual symptom recognition.

4.3.2 Background Removal and Segmentation

The removal of irrelevant background elements and isolation of meaningful leaf

structures significantly enhances the signal-to-noise ratio for visual models. Various

segmentation techniques were explored and progressively refined throughout the devel-

opment pipeline.

4.3.2.1 Segmentation Techniques for Training

During the training phase, we relied primarily on controlled datasets where leaves

were often centrally framed and minimally occluded. This controlled setting enabled the

use of conventional segmentation tools with minimal post-processing requirements. The

following approaches, assessed in (PHILIPPINI; SILVA; BLAWID, 2023), were considered:
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• LeafMask: A lightweight model tailored for botanical leaf segmentation (GUO

et al., 2021b). However, reproduction was hindered by outdated dependencies

and sparse documentation (GUO et al., 2021a), with minimal community support

rendering practical integration unfeasible.

• MaskRCNN: A general-purpose instance segmentation model (HE et al., 2017)

that initially struggled to adapt to leaf-centric imagery. Even after fine-tuning

with manually labeled masks using VIA (DUTTA; ZISSERMAN, 2019), performance

remained inconsistent, particularly with multiple overlapping leaves. Frequent

misclassifications (e.g., leaves identified as bananas or umbrellas) and fragmented

masks limited its reliability for training preprocessing.

• GrabCut: OpenCV’s (BRADSKI, 2000) GrabCut (ROTHER; KOLMOGOROV; BLAKE,

2004) algorithm was adopted as the primary method during training. By assuming

the main leaf resided near the image center—a common trait in the training

set—GrabCut efficiently segmented the target leaf with minimal manual tuning.

Its non-learning-based nature ensured consistent results across training batches.

Figure 35 demonstrates this segmentation method.

Figure 35 – Example of background removal using the GrabCut algorithm.
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4.3.2.2 Challenges with LeafMask and MaskRCNN

Two machine learning-based segmentation techniques were initially considered due

to their strong reported performance: LeafMask (GUO et al., 2021b) and MaskRCNN (HE

et al., 2017). However, both approaches presented significant reproducibility and usability

barriers.

LeafMask showed theoretical promise for botanical leaf segmentation but suffered

from severe reproducibility issues. The open-source repository (GUO et al., 2021a)

lacked detailed setup instructions and contained unresolved user issues, with many

reports of execution failures. Our attempts at integration encountered installation hurdles,

dependency mismatches, and ambiguous configuration requirements. The absence of

community support or official troubleshooting further hindered integration efforts.

MaskRCNN required extensive configuration due to deprecated library dependencies

incompatible with current environments. We isolated the model in a Docker container

with manually curated legacy dependencies. Despite these efforts, the default pre-

trained model weights performed poorly on agricultural datasets. Leaves were frequently

mislabeled as unrelated objects—such as umbrellas, bananas, cakes, or vases—and

segmentation masks were often broken or incomplete (see Figures 36 and 37).

Figure 36 – Examples of MaskRCNN mislabeling: (left) a leaf mislabeled as an umbrella, (center) leaves
mislabeled as a banana and a vase, and (right) a leaf mislabeled as a cake, all using default
model weights.

To address these issues, 200 images were manually annotated using the VGG

Image Annotator (VIA) tool (DUTTA; ZISSERMAN, 2019). Figure 38 illustrates manual

leaf segmentation using VIA, where the yellow border represents the manually added
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Figure 37 – Examples of broken segmentation with MaskRCNN, showing incomplete or fragmented leaf
masks that occurred despite model fine-tuning.

segmentation mask.

Figure 38 – Example of manual leaf segmentation using VIA. The yellow border represents the manually
added segmentation mask.

These annotated images were used to fine-tune the MaskRCNN model, but per-

formance remained inadequate for the target imagery. The model failed particularly in

field photos with occlusions, small or multiple leaves, or challenging lighting conditions.

Due to these limitations, both LeafMask and MaskRCNN were excluded from the final

segmentation pipeline, prompting the transition to modern foundation models for the

inference stage.

4.3.2.3 Challenges During Real-World Inference

As the system transitioned from training to real-world inference, the simplicity and

assumptions of earlier techniques proved inadequate. Field images often contained:

• Multiple, variably-sized leaves distributed across the frame;
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• Occlusion and overlapping structures;

• Complex and noisy backgrounds;

• Off-center or partial leaf representations.

Under such conditions, GrabCut and other aforementioned models failed to general-

ize, necessitating a pivot toward more robust alternatives.

4.3.2.4 Foundation Model Segmentation for Inference

To overcome the limitations of traditional segmentation in diverse field conditions,

a suite of zero-shot segmentation models was integrated into the inference pipeline.

These models required no additional fine-tuning and demonstrated strong generalization

to unseen conditions:

1. Segment Anything Model (SAM): A transformer-based model capable of prompt-

guided, high-resolution instance segmentation with excellent boundary detection

even in cluttered backgrounds (KIRILLOV et al., 2023).

2. Segment Anything Model 2 (SAM2): An optimized successor to SAM, providing

improved segmentation granularity and inference speed, particularly in high-leaf-

density environments (RAVI et al., 2024).

3. FastSAM: A YOLO-inspired model optimized for real-time segmentation (ZHAO

et al., 2023). While slightly less accurate than SAM, it provided excellent speed-

accuracy trade-offs in time-constrained scenarios.

4. LangSAM: A multimodal extension combining SAM with Grounding DINO (LIU et

al., 2024), incorporating natural language prompts (e.g., "diseased leaf", "healthy

leaf") for guided segmentation (MEDEIROS, 2023). This proved particularly useful

for semantic selection beyond pixel-level features.

These models were integrated in a plug-and-play fashion within the segmentation

microservice (detailed in Section 4.1.1) and could be selected manually by users as

needed. No additional training was performed due to time constraints and because their

zero-shot capabilities proved sufficient for the task.
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Figures 39 through 42 illustrate the performance of each model, showing both

successful segmentation cases and typical failure modes encountered across different

image conditions.

(a) Successful segmentation (b) Failed segmentation

Figure 39 – SAM segmentation performance: (a) successful leaf boundary detection with clean back-
ground separation, and (b) typical failure case with incomplete or fragmented segmentation.

(a) Successful segmentation (b) Failed segmentation

Figure 40 – SAM2 segmentation performance: (a) improved granularity and speed compared to SAM,
and (b) challenging scenarios where segmentation quality remains suboptimal.

(a) Successful segmentation (b) Failed segmentation

Figure 41 – FastSAM segmentation performance: (a) successful real-time segmentation with good speed-
accuracy trade-off, and (b) reduced accuracy compared to SAM in complex scenarios.

(a) Successful segmentation (b) Failed segmentation

Figure 42 – LangSAM segmentation performance: (a) successful language-guided segmentation using
natural language prompts, and (b) limitations in complex scenes where semantic understand-
ing fails.
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4.3.2.5 Limitations and Testing Approach

Despite their advanced capabilities, foundation models present challenges during

segmentation. Common failure modes include completely excluding the target leaf while

preserving irrelevant background content, or failing to segment anything, leaving the

original image unchanged. These issues can severely impact downstream classification

performance.

Due to time constraints and late identification of segmentation challenges in the

project timeline, no comprehensive evaluation was conducted to systematically assess

model efficacy. Models were subjected to limited empirical testing on representative

images, leaving their full performance characteristics incompletely characterized.

Given these constraints, SAM2 was selected as the default segmentation model

based on its theoretical improvements in accuracy and processing speed over predeces-

sors. However, recognizing performance variability across image conditions, the system

provides users with flexibility in segmentation approach. As detailed in Section 4.1.1,

users can manually select any of the four available models (SAM, SAM2, FastSAM, or

LangSAM) based on specific requirements, or bypass segmentation entirely if original

image quality is deemed sufficient for accurate classification.

4.4 MULTI-TASK MODEL DESIGN

This section presents the architectural design and theoretical framework of the

proposed MTL model for plant disease analysis. The design objective is to create a

unified system capable of simultaneously performing multiple diagnostic tasks from a

single image input, thereby reflecting the inherent complexity and interdependence of

expert plant pathological workflows.

4.4.1 Architecture Overview

The proposed system adopts a hierarchical multi-task learning architecture centered

around a shared feature extraction backbone. The backbone architecture utilizes a

pre-trained ResNet-50V2 network, selected through comprehensive benchmarking

against alternative architectures including EfficientNet-B0/B1, MobileNet-V2, and Vision
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Transformers (ViT). The benchmarking evaluation was conducted specifically on the

binary disease classification task (healthy vs. diseased leaf classification) to ensure

fair comparison across architectures. ResNet-50V2 demonstrated superior stability

across varied data distributions while providing rich 2048-dimensional embeddings

suitable for the downstream diagnostic tasks, balancing feature representation quality,

computational efficiency, and deployment feasibility.

The architectural design follows the hard parameter sharing paradigm, where a single

feature extractor serves multiple related tasks through specialized output heads. This

approach was selected over soft parameter sharing alternatives due to several practical

considerations: the task-specific heads are relatively small compared to the shared

backbone, making hard parameter sharing computationally efficient; the sequential

training protocol is simplified when tasks share the same feature extraction layers; and

the approach has proven effectiveness in domains with strong task relatedness. The

shared backbone enables the learning of generalizable visual features relevant to plant

pathology, while task-specific heads maintain the specialized capabilities required for

individual diagnostic subtasks.

The model structure removes the final classification layer of the pre-trained ResNet-

50V2, utilizing the extracted 2048-dimensional embeddings as input to a carefully de-

signed hierarchy of task-specific heads. This design enables the exploitation of transfer

learning benefits from ImageNet pre-training while adapting the feature space to the

specialized requirements of agricultural imagery and plant disease diagnosis. Figure 43

illustrates the complete architectural design and the flow of information through the

multi-task framework.

4.4.2 Design Rationale and Theoretical Considerations

The architectural design decisions were guided by several theoretical and practical

considerations that balance diagnostic accuracy, computational efficiency, and practical

deployment requirements. The selection of hard parameter sharing over alternative

multi-task learning approaches reflects the strong relatedness between plant diagnostic

tasks and the computational efficiency requirements of practical deployment scenarios.

The hierarchical dependency structure was designed to mirror expert diagnostic

workflows while maximizing positive transfer between related tasks. The sequential
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Figure 43 – Overview of the multi-task model architecture: a shared backbone network extracts feature
embeddings from the input image, which are then fed into multiple specialized task heads for
downstream plant disease diagnostic tasks.

nature of the dependencies ensures that prerequisite information is available when

needed, while the modular design enables individual task optimization without disrupting

overall system performance. This approach addresses the challenge of negative trans-

fer in multi-task learning by carefully structuring task relationships based on domain

knowledge.

The progressive complexity of task-specific heads reflects the varying diagnostic

difficulty and information requirements of different tasks. Binary classification heads

implement simpler architectures appropriate for foundational diagnostic decisions, while

complex multi-class heads employ deeper networks capable of learning subtle distinc-

tions required for fine-grained classification. This design approach optimizes computa-

tional resources while maintaining specialized performance capabilities.

The interpretability design addresses the critical requirement for transparent decision-

making in medical diagnostic applications. The gradient-based approach provides

theoretically grounded attention visualizations that enable expert validation of model rea-

soning, supporting the adoption of automated diagnostic tools in professional agricultural

settings.
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4.4.3 Multi-task Learning Framework

The proposed framework implements six interconnected diagnostic tasks arranged

in a hierarchical dependency structure that mirrors the sequential reasoning process

employed by expert plant pathologists. This hierarchical design is grounded in the

established protocols of plant disease diagnosis, where each subsequent assessment

builds upon information gained from previous observations.

The task hierarchy encompasses leaf detection as a preliminary validation step that

operates independently as a system-level filter to discard non-leaf images and avoid

computational waste on subsequent diagnostic tasks. Binary health classification serves

as the foundation for the diagnostic dependency chain. Plant species identification

follows, leveraging the health status information to improve classification accuracy. The

pathogen type classification task builds upon plant species information, reflecting the

biological reality that different pathogens have varying host specificities. Disease name

classification utilizes pathogen type information to narrow the diagnostic possibilities.

Finally, symptom detection incorporates comprehensive contextual information from

the health classification, plant species, and pathogen type tasks to enable accurate

multi-label classification of visual manifestations.

This hierarchical arrangement addresses several theoretical and practical consid-

erations in multi-task learning. The dependency structure promotes positive transfer

between related tasks while minimizing the risk of negative transfer between unrelated

diagnostic components. The sequential nature of the dependencies ensures that prereq-

uisite information is available when needed, while the modular design enables individual

task optimization without disrupting the overall system architecture.

4.4.4 Task Dependency Architecture

The task dependency structure was designed based on established principles of

plant pathological diagnosis and multi-task learning theory, implemented through empir-

ical determination of task ordering. While this hierarchical arrangement proved effective

in practice, the specific dependency configuration represents one possible arrangement

among many potential structures that could yield different performance characteristics.

Future work should systematically explore alternative dependency orderings and con-
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duct comprehensive ablation studies to identify optimal task arrangements for specific

diagnostic scenarios.

The leaf detection task (𝑇1) operates as an independent binary classification prob-

lem, functioning as a system-level filter rather than providing input to other diagnostic

tasks. This design choice enables the early rejection of non-leaf images, reducing

computational overhead by avoiding unnecessary processing through the remaining

diagnostic pipeline. The binary disease detection task (𝑇2) serves as the foundation

for the diagnostic dependency chain, operating independently to provide health status

information for subsequent tasks.

Plant species classification (𝑇3) depends on the binary disease detection task,

incorporating the health status information to improve species identification accuracy.

This dependency reflects the practical reality that disease symptoms often provide

diagnostic clues about plant identity, particularly when morphological features alone are

insufficient for reliable classification.

The pathogen type classification task (𝑇4) builds upon plant species information,

implementing the biological principle that pathogen-host relationships constrain the

possible causal agents. This constraint significantly reduces the search space for

pathogen identification while improving classification accuracy through the incorporation

of domain-specific knowledge.

Disease name classification (𝑇5) utilizes pathogen type information to enable fine-

grained disease identification. This dependency structure reflects the taxonomic hier-

archy of plant diseases, where pathogen type provides essential context for specific

disease diagnosis.

The symptom detection task (𝑇6) implements a comprehensive multi-label classifica-

tion approach that incorporates information from multiple upstream tasks. This design

recognizes that accurate symptom identification requires understanding of the plant

species, health status, and pathogen type to disambiguate visually similar manifesta-

tions.

Figure 44 illustrates the complete task dependency architecture, showing how each

task receives inputs from the shared backbone network and concatenates outputs from

their respective depending tasks. This visualization demonstrates the flow of informa-

tion through the hierarchical structure and the progressive integration of diagnostic

knowledge across all six tasks.
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Figure 44 – Complete overview of the task dependency architecture showing how tasks T1-T6 receive
inputs from the shared backbone network and concatenate outputs from their depending
tasks. The diagram illustrates the hierarchical information flow and progressive integration of
diagnostic knowledge.

4.4.5 Task-Specific Head Architectures

The task-specific head architectures were designed to accommodate the vary-

ing complexity and requirements of different diagnostic tasks while maintaining com-

putational efficiency and training stability. Each head architecture incorporates task-

appropriate activation functions, loss formulations, and regularization strategies.

4.4.5.1 Binary Classification Head Design

The binary classification heads for leaf detection and health classification implement

a progressive dimensionality reduction architecture designed to extract task-relevant

features from the shared backbone embeddings. The architecture processes the 2048-

dimensional input through a series of fully connected layers with decreasing dimen-

sionality, incorporating ReLU activation functions and dropout regularization to prevent

overfitting.

The first layer reduces the dimensionality from 2048 to 64 dimensions with a dropout

rate of 0.2, followed by a second layer that further reduces to 32 dimensions with a

dropout rate of 0.1. The final layer produces a single output value processed through a
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sigmoid activation function to generate binary probability estimates. This architecture

generates 32-dimensional embeddings that serve as input to dependent downstream

tasks.

The design prioritizes recall optimization to minimize false negative predictions,

which are particularly problematic in medical diagnostic applications where missed

positive cases can have severe consequences. The sigmoid activation function enables

probabilistic interpretation of binary predictions, facilitating integration with downstream

decision-making processes.

4.4.5.2 Multi-Class Classification Head Design

The multi-class classification heads process concatenated inputs from the backbone

features and upstream task embeddings, implementing a hierarchical feature integra-

tion approach. The plant species classification head combines the 2048-dimensional

backbone features with 32-dimensional binary disease embeddings, creating a 2080-

dimensional input vector.

The architecture employs a three-layer design with progressive dimensionality re-

duction from 2080 to 128, then to 64, and finally to the number of target classes. Dropout

rates increase with layer depth (0.3, 0.2) to provide stronger regularization for the more

abstract feature representations. The final layer employs softmax activation to ensure

mutually exclusive class predictions, appropriate for single-label classification tasks.

The design generates 64-dimensional embeddings for use by dependent tasks, pro-

viding a compressed representation of the plant species classification information. This

embedding dimensionality balances information retention with computational efficiency

for downstream task processing.

4.4.5.3 Complex Multi-Class Head Architecture

The pathogen type and disease name classification heads implement deeper ar-

chitectures to accommodate the increased complexity of fine-grained diagnostic tasks.

These heads process 2112-dimensional input vectors combining backbone features with

64-dimensional upstream task embeddings.

The architecture employs a five-layer design with progressive dimensionality reduc-
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tion: 2112 → 512 → 256 → 128 → 64 → num_classes. The deeper architecture enables

the learning of more complex feature transformations necessary for subtle distinctions

between pathogen types and specific diseases. Dropout rates increase with network

depth (0.4, 0.3, 0.3, 0.2) to provide appropriate regularization for the more complex

feature hierarchies.

The design maintains the generation of 64-dimensional embeddings for dependency

relationships, ensuring consistent interface specifications across task heads while

providing sufficient representational capacity for complex diagnostic information.

4.4.5.4 Multi-Label Classification Head Design

The symptom detection head implements a comprehensive multi-label classification

architecture designed to process the full contextual information from all upstream

tasks. The input combines 2048-dimensional backbone features with embeddings from

binary disease detection (32-D), plant species classification (64-D), and pathogen type

classification (64-D), creating a 2208-dimensional input vector.

The architecture employs a five-layer design similar to the complex multi-class heads

but terminates with sigmoid activation functions rather than softmax. This design enables

independent probability estimation for each symptom label, accommodating the realistic

scenario where multiple symptoms may manifest simultaneously in diseased plants.

The multi-label formulation addresses a fundamental limitation of traditional single-

label approaches that cannot capture the complexity of real-world disease manifes-

tations. The independent probability estimation enables the detection of symptom

combinations that provide valuable diagnostic information to plant pathologists.

4.4.6 Loss Function Design

The loss function design can theoretically implement a weighted combination of

task-specific losses to enable joint optimization while maintaining the flexibility to adjust

task priorities based on diagnostic requirements. The combined loss function would be

formulated as:
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ℒ =
𝑁∑︁
𝑖=1

𝜆𝑖 · ℒ𝑖 (4.1)

where ℒ𝑖 represents the loss for task 𝑖 and 𝜆𝑖 denotes the corresponding weight

coefficient. The weight coefficients can be determined based on task importance, diag-

nostic criticality, or performance requirements—for instance, assigning higher weights to

foundational tasks like health classification that serve as dependencies for downstream

tasks, or prioritizing tasks with higher clinical relevance.

However, in the implemented system, this joint optimization approach was not uti-

lized due to the sequential training protocol adopted. Instead, each task was trained

individually with its respective task-specific loss function, eliminating the need for loss

weight balancing while simplifying the optimization process and enabling focused hyper-

parameter tuning for each diagnostic component.

The task-specific loss formulations are selected based on the output characteristics

and diagnostic requirements of each task. Binary classification tasks employ binary

cross-entropy loss, which provides appropriate gradients for sigmoid-activated outputs

and naturally handles class imbalance through probabilistic weighting. Multi-class clas-

sification tasks utilize categorical cross-entropy loss, which enforces mutual exclusivity

constraints appropriate for single-label classification problems.

The symptom detection task employs multi-label binary cross-entropy loss, which

treats each symptom label as an independent binary classification problem. This formu-

lation enables the optimization of individual symptom detection while maintaining the

ability to predict multiple simultaneous symptoms, crucial for comprehensive disease

characterization.

4.4.7 Model Interpretability Design

Explainable AI (SAMEK; WIEGAND; MÜLLER, 2017), which provides insights into the

inner workings of machine learning models, plays a crucial role in aiding agriculture

experts in diagnosing leaf diseases.

The interpretability design integrates gradient-based visualization techniques to

provide agricultural experts with visual evidence supporting model predictions. The

approach implements Gradient-weighted Class Activation Mapping (Grad-CAM) (SEL-
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VARAJU et al., 2017), which generates visualizations that highlight decision-relevant

regions in input images by analyzing the activations of convolutional feature maps and

their gradients.

Grad-CAM operates by computing the gradients of a target class prediction with

respect to the feature maps of a selected convolutional layer. These gradients are then

averaged over the spatial dimensions to obtain importance weights for each feature map.

The weighted combination of feature maps produces a localization map that indicates

which spatial regions in the input image most strongly influence the model’s prediction

for the target class. This process can be mathematically expressed as:

𝛼𝑐
𝑘 =

1

𝑍

∑︁
𝑖

∑︁
𝑗

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖𝑗

(4.2)

where 𝛼𝑐
𝑘 represents the importance weight for feature map 𝑘 with respect to class 𝑐,

and 𝐴𝑘
𝑖𝑗 denotes the activation at spatial location (𝑖, 𝑗) in feature map 𝑘.

The interpretability framework targets multiple convolutional layers within the ResNet-

50 backbone to visualize activations at different abstraction levels. Early layers (conv2_x,

conv3_x) reveal basic visual features such as edges, textures, and simple geomet-

ric patterns that the model uses for initial feature extraction. Middle layers (conv4_x)

capture intermediate features such as leaf patterns, color variations, and structural ele-

ments. Deep layers (conv5_x) expose complex disease-specific patterns and symptom

combinations that directly contribute to diagnostic decisions.

This hierarchical visualization approach enables comprehensive understanding

of the model’s decision-making process across different levels of visual abstraction.

The gradient-based weighting mechanism provides theoretically grounded importance

scores that reflect the actual contribution of different spatial regions to final predictions.

The resulting activation maps are spatially localized and biologically interpretable,

enabling expert validation of model reasoning and ensuring that diagnostic decisions

are based on relevant botanical features.

The design incorporates real-time visualization capabilities integrated into the user

interface, enabling immediate assessment of model attention patterns for uploaded

images. Interactive features facilitate layer-by-layer exploration and channel-specific

analysis, providing comprehensive insights into the hierarchical feature processing

implemented by the model.
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4.4.8 Scalability and Extensibility Considerations

The modular architecture design enables future expansion and adaptation to new di-

agnostic requirements without disrupting existing functionality. The hierarchical structure

supports the addition of new tasks through the integration of additional output heads,

while the dependency framework can be reconfigured to accommodate alternative

diagnostic workflows based on evolving domain knowledge.

The shared backbone architecture supports the replacement of the feature extraction

component with alternative architectures as new developments emerge in computer

vision research. The standardized embedding interfaces between tasks ensure that

architectural modifications can be implemented incrementally without requiring complete

system redesign.

The design accommodates extension to additional plant organs beyond leaves

through the integration of specialized preprocessing components and task-specific

heads. The framework also supports the incorporation of multi-modal inputs, including

environmental sensor data and spectral imaging information, through the expansion of

the input processing pipeline.

4.5 IMPLEMENTATION

This section details the practical implementation of the multi-task learning system for

plant disease detection, encompassing the evolution of training methodologies, algo-

rithmic design decisions, and experimental optimization attempts. The implementation

process revealed critical insights about the gap between theoretical model design and

practical deployment requirements.

4.5.1 Implementation Framework

The system was implemented using a modern deep learning stack optimized for both

research flexibility and production deployment. The core framework utilized PyTorch

2.3+ (PASZKE et al., 2017) with CUDA acceleration, providing automatic differentiation

capabilities essential for the complex multi-task optimization process. The computer

vision components leveraged Torchvision (PASZKE et al., 2017) for pre-trained model
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access and standardized image transformations, while OpenCV 4.5+ (BRADSKI, 2000)

and Pillow (CLARK, 2015) handled specialized image processing operations. The back-

bone architecture selection considered several state-of-the-art alternatives including

EfficientNet (TAN; LE, 2019) and MobileNets (HOWARD et al., 2017), with ResNet50 (HE et

al., 2016b) ultimately chosen for its balance of performance and interpretability. For repro-

ducibility, the complete environment specification included NumPy (HARRIS et al., 2020)

and Pandas (TEAM, 2020) for data manipulation, Matplotlib (HUNTER, 2007) and Seaborn

for visualization, and FastAPI (RAMÍREZ, 2025) for the web interface implementation.

The choice of PyTorch over alternative frameworks was motivated by its dynamic

computational graph construction, which proved essential for implementing the hier-

archical task dependencies and gradient-based optimization experiments described

in subsequent sections. The framework’s extensive pre-trained model ecosystem and

seamless integration with CUDA-enabled hardware provided the computational effi-

ciency required for the extensive experimentation conducted during this work.

4.5.2 Experimental Setup

The experimental work was conducted across multiple computational environments

to accommodate the evolving requirements of the research. Initial experiments were

performed on a heterogeneous cluster comprising three distinct nodes: two nodes

equipped with AMD Ryzen Threadripper PRO 3975WX processors (32 cores, 3.5GHz),

128GB DDR4 RAM, and multiple NVIDIA GeForce RTX 3090 GPUs (24GB GDDR6X),

along with a high-performance node featuring dual Intel Xeon Gold 5318Y processors

(48 cores total, 2.10GHz), 512GB DDR4 RAM, and a single NVIDIA A100 GPU (80GB

HBM2e). Each node was equipped with 1TB NVMe storage for high-speed data access

during training operations.

Due to computational resource management considerations and the need for more

consistent experimental conditions, all subsequent experiments were migrated to a

dedicated personal workstation. This system featured an AMD Ryzen 9 9950X processor

(32 threads, 5.76GHz), 256GB system memory, and dual NVIDIA GeForce RTX 3090

GPUs (24GB each), with distributed storage across multiple drives totaling approximately

6TB of available space. This configuration provided sufficient computational power for the

multi-task learning experiments while ensuring reproducible results through consistent
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hardware and software environments.

The transition between computational environments required careful validation to

ensure experimental consistency, with key hyperparameters and training protocols

remaining constant across platforms. The final workstation configuration proved optimal

for the iterative development and extensive hyperparameter tuning required for the

multi-task learning implementation.

4.5.3 Training Methodology Evolution

The development of an effective training methodology underwent significant evolution,

driven by the fundamental challenge of balancing computational efficiency with real-

world performance. This evolution can be characterized by two distinct phases: an

initial approach based on pre-computed embeddings and a final implementation utilizing

comprehensive image-based training.

4.5.3.1 Pre-computed Embeddings: Mathematical Foundation and Implementation

The initial implementation was motivated by the mathematical equivalence between

offline feature extraction and monolithic model processing. Consider a neural network

𝑓 composed of a feature extractor 𝜑 and task-specific heads ℎ𝑖, such that for an input

image 𝑥:

𝑓(𝑥) = ℎ𝑖(𝜑(𝑥)) (4.3)

The pre-computed embeddings approach leverages the linearity of expectation and

the deterministic nature of forward propagation in frozen networks. For a frozen feature

extractor 𝜑, the embedding 𝑒 = 𝜑(𝑥) can be computed offline and stored, making the

training process equivalent to:

ℒ = E(𝑥,𝑦)∼𝒟 [ℓ(ℎ𝑖(𝜑(𝑥)), 𝑦)] = E(𝑒,𝑦)∼𝒟′ [ℓ(ℎ𝑖(𝑒), 𝑦)] (4.4)

where 𝒟′ represents the dataset of pre-computed embeddings and labels. This

mathematical equivalence suggested that training on pre-computed 2048-dimensional



131

ResNet50 (HE et al., 2016b) embeddings would yield identical results to end-to-end

training with frozen backbone weights.

The implementation process involved extracting embeddings for all 50,000+ images

in the dataset using the frozen ResNet50 (HE et al., 2016b) backbone, storing these as

static feature vectors in Parquet format for efficient access. The task-specific heads

were then trained using these pre-computed features, eliminating the need for real-time

image processing during training. This approach provided substantial computational

benefits, reducing training time from hours to minutes per task and enabling rapid

experimentation with different head architectures.

From a systems perspective, this approach offered several advantages. The elimina-

tion of image loading and preprocessing during training reduced memory requirements

and I/O bottlenecks. The static nature of the embeddings enabled deterministic train-

ing runs, facilitating reproducible experimentation. Additionally, the simplified training

pipeline reduced the complexity of the optimization process, allowing for more focused

hyperparameter tuning on the task-specific components.

4.5.3.2 Image-based Training: Theoretical Motivation and Implementation

The transition to image-based training was motivated by the need to enable do-

main adaptation and comprehensive data augmentation. Unlike the pre-computed

embeddings approach, image-based training allows the feature extraction process to

be influenced by the augmentation pipeline, effectively expanding the feature space to

encompass realistic variations encountered in deployment scenarios.

The theoretical foundation for this approach rests on the domain adaptation principle,

where the goal is to minimize the discrepancy between the source domain (curated

datasets) and target domain (real-world field images). By processing augmented images

through the feature extractor during training, the model encounters a broader distribution

of visual variations, leading to more robust feature representations. This process can be

formalized as learning features that are invariant to the transformation group 𝒯 applied

during augmentation:

𝜑* = argmin
𝜑

E(𝑥,𝑦)∼𝒟,𝑡∼𝒯 [ℓ(ℎ(𝜑(𝑡(𝑥))), 𝑦)] (4.5)
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where 𝑡(𝑥) represents the augmented version of input 𝑥 under transformation 𝑡.

The implementation of image-based training required substantial modifications to

the training pipeline. The system was redesigned to process raw images through

the complete network architecture, including the frozen ResNet50 (HE et al., 2016b)

backbone and task-specific heads. A comprehensive data augmentation pipeline was

implemented, incorporating spatial transformations (random crops, rotations, flips),

geometric distortions (affine transformations, perspective changes), and photometric

variations (color jittering, brightness adjustments). The augmentation parameters were

carefully tuned to preserve the biological validity of the transformations while maximizing

the diversity of training examples.

Training time increased significantly from minutes to hours per task, but this computa-

tional cost was justified by the substantial improvements in real-world performance. The

model demonstrated enhanced robustness to lighting variations, improved generaliza-

tion across different imaging devices, and more reliable performance on field-captured

images. Importantly, the system began to focus on biologically relevant features rather

than dataset-specific artifacts, as evidenced by improved interpretability visualizations

and expert validation results.

4.5.4 Data Augmentation and Preprocessing Implementation

The data augmentation pipeline was designed to bridge the domain gap between

curated training datasets and real-world field conditions while preserving the biological

validity of the transformations. The augmentation strategy was applied exclusively to

the training set, with validation and test sets remaining unmodified to ensure unbiased

evaluation.

The spatial transformation component included resize operations to 256× 256 pixels

for standardization, followed by random cropping to 224× 224 pixels to introduce spatial

variability. Random horizontal and vertical flips were applied with 50% probability to

account for different image orientations encountered in field conditions. Rotation aug-

mentation was constrained to ±30 degrees to maintain biological plausibility, as extreme

rotations could alter the perceived symptom characteristics.

Geometric distortions were implemented through random affine transformations

with translation parameters (0.1, 0.1) and scale range (0.9, 1.1), simulating the natural
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variations in camera positioning and distance. Random perspective distortions with a

distortion scale of 0.2 were applied to account for non-perpendicular viewing angles

common in field photography.

Photometric augmentations addressed the significant lighting variations encountered

in agricultural environments. Color jittering was applied with brightness, contrast, and

saturation variations of ±20%, while hue adjustments were limited to ±10% to prevent

biologically implausible color shifts.

The preprocessing pipeline concluded with ImageNet normalization (RUSSAKOVSKY

et al., 2015) using established statistics (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,

0.225]) to maintain compatibility with the pre-trained ResNet50 backbone. Class balanc-

ing was addressed through random oversampling of minority classes, with additional

diversity generated through the augmentation pipeline during the oversampling process.

4.5.5 Sequential Training Protocol

The implementation of the sequential training protocol required careful orchestration

of the hierarchical task dependencies while preventing catastrophic forgetting of previ-

ously learned tasks. The protocol was designed to mirror the sequential nature of expert

plant pathological diagnosis, where each subsequent task builds upon the information

gained from previous assessments.

The training sequence began with the initialization of the frozen ResNet50 (HE et

al., 2016b) backbone and all task-specific heads. The leaf detection head was trained

first as an independent binary classification task, serving as a system-level filter to

identify valid leaf images and avoid computational waste on non-leaf inputs. The binary

disease detection head was trained next, as it forms the foundation for the diagnostic

dependency chain. Once training converged, the head parameters were frozen to

prevent degradation during subsequent training phases. The plant species identification

head was then trained using concatenated inputs from the backbone features and the

frozen disease detection embeddings.

This sequential approach continued through pathogen type classification, which

received inputs from both the backbone and the frozen plant species head. Disease

name classification followed, building upon the pathogen type information. Finally, the

symptom detection head was trained using the comprehensive context provided by
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all previous tasks, implementing a multi-label classification approach to capture the

complexity of simultaneous symptom manifestations.

The freezing strategy was crucial for maintaining the integrity of the hierarchical

dependencies. Each task head’s parameters were frozen immediately after training

completion, preventing the degradation of learned representations during subsequent

training phases. This approach ensured that the knowledge gained in earlier tasks

remained stable and available for downstream tasks throughout the training process.

4.5.6 Advanced Optimization Experiments

4.5.6.1 Plant Name Override Optimization: Theoretical Framework and Implementation

An experimental optimization approach was developed to address potential limi-

tations in plant species identification by generating synthetic embeddings that could

provide more reliable plant classification for downstream tasks. The theoretical motiva-

tion was based on the hypothesis that optimized embeddings could be generated to

strongly activate specific plant classes, potentially overriding network uncertainties in

plant identification.

The mathematical formulation of this approach involved finding optimal input em-

beddings x*
𝑐 for each plant class 𝑐 that maximize the probability of correct classification.

The optimization objective was defined as:

x*
𝑐 = argmax

x
𝑃 (𝑦 = 𝑐|x) (4.6)

This was implemented as a constrained optimization problem with L2 regularization

to prevent unbounded embedding values:

ℒ(x) = − log𝑃 (𝑦 = 𝑐|x) + 𝜆||x||22 (4.7)

where 𝜆 = 0.001 served as the regularization coefficient to balance optimization

effectiveness with embedding magnitude constraints.

The implementation utilized gradient ascent optimization with Adam optimizer, start-

ing from randomly initialized embeddings x0 ∼ 𝒰(0, 10)2048. The optimization process

applied 1000 iterations per class with a learning rate of 0.01, while value clamping to the
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range [0, 10] prevented extreme embedding values that could destabilize downstream

computations.

4.5.7 Model Interpretability Implementation

The interpretability system was implemented using Grad-CAM to provide agricultural

experts with visual evidence for model decisions. The implementation targeted specific

convolutional layers within the ResNet50 (HE et al., 2016b) backbone, computing gra-

dients of target classes with respect to feature maps to generate weighted activation

visualizations.

The visualization pipeline involved several key components. Layer selection targeted

different depths within the network to capture features at varying abstraction levels, from

low-level edges and textures to high-level disease-specific patterns. Gradient computa-

tion utilized automatic differentiation to calculate the sensitivity of target class predictions

to individual feature map activations. The gradient weighting process combined these

gradients with the original feature maps to generate spatial saliency maps that highlight

decision-relevant regions.

To demonstrate the interpretability capabilities, representative sample images were

selected from diverse datasets to showcase the model’s activation patterns across

different plant species and disease types (Figure 45). The Grad-CAM visualizations

effectively highlighted disease-relevant regions, with the saliency maps clearly distin-

guishing between healthy tissue, disease symptoms, and background elements (Figures

46 and 47). The layer-specific analysis revealed the hierarchical nature of feature learn-

ing, with deeper layers exhibiting more precise activation responses to disease-specific

patterns while maintaining spatial coherence across multiple channels (Figure 48).

The visualization system was integrated into a web-based interface using FastAPI for

backend processing and React for frontend interaction. The interface provided real-time

visualization generation for uploaded images, enabling experts to immediately assess

the biological relevance of model activation patterns. Interactive features allowed layer-

by-layer navigation and channel-specific visualization, providing comprehensive insights

into the model’s hierarchical feature processing. The complete diagnostic platform

integrates both the interpretability visualizations and expert workflow management

capabilities (Figure 49).
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Figure 45 – Representative test images selected for interpretability analysis: apple leaf exhibiting rust
symptoms (left) and grape leaf showing black rot manifestations (right), demonstrating the
diversity of disease presentations in the evaluation dataset.

Figure 46 – Grad-CAM activation visualizations for the apple rust sample across different network depths,
showing the model’s attention progression from edge detection (left) to disease-specific fea-
ture identification (right), with darker regions indicating higher activation values corresponding
to rust symptoms.

Figure 47 – Grad-CAM activation patterns for the grape black rot sample, demonstrating the model’s
ability to distinguish between healthy leaf tissue, disease lesions, and background elements
across different network layers, with enhanced focus on pathological features in deeper
representations.
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Figure 48 – Comprehensive channel visualization showing activation patterns across all feature maps
in a representative network layer for the grape sample, illustrating the distributed nature of
disease feature detection and the model’s response diversity.

Figure 49 – Web-based diagnostic platform interface integrating Grad-CAM visualizations with expert
workflow management, enabling agricultural specialists to access interpretability outputs,
track diagnostic cases, and collaborate with field practitioners through a unified system.
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4.5.8 Implementation Insights and Methodological Contributions

The implementation process revealed several critical insights about the gap between

theoretical model design and practical deployment requirements. The most significant

finding was the inadequacy of traditional validation metrics for predicting real-world

performance, highlighting the importance of comprehensive end-user testing in practical

applications.

The evolution from pre-computed embeddings to image-based training demonstrated

the fundamental importance of domain adaptation in specialized applications. While

the mathematical equivalence between these approaches holds in theory, the practical

differences in feature space quality and generalization capability proved decisive for

real-world performance.

The sequential training protocol proved effective for managing task dependencies

while preventing catastrophic forgetting, enabling stable knowledge transfer between

related diagnostic tasks. The modular architecture design facilitated independent opti-

mization of task-specific components while maintaining overall system coherence.

The systematic approach to implementation, from initial prototyping through pro-

duction deployment, established a methodological framework that could be applied

to similar agricultural AI systems. The emphasis on real-world validation and expert

integration provides a template for bridging the gap between research and practical

application in specialized domains.
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5 RESULTS

This chapter presents the comprehensive evaluation results of the multi-task learning

system for plant disease detection. The evaluation encompasses quantitative perfor-

mance metrics derived from the final optimized system, comparative analysis between

training methodologies, and assessment of the deployed platform’s effectiveness for

both end-users and system builders.

5.1 SYSTEM PERFORMANCE EVALUATION

The implemented multi-task learning system achieved exceptional performance

across all six hierarchical diagnostic tasks through the optimized image-based training

methodology. All reported metrics represent averaged results from 5-fold stratified

cross-validation, ensuring robust and generalizable performance estimates. The system

demonstrated the effectiveness of the sequential training protocol and hierarchical

task dependencies in creating a robust diagnostic framework that mirrors expert plant

pathological workflows.

5.1.1 Hierarchical Task Performance Analysis

The evaluation was conducted using stratified test sets that maintained class balance

and represented the natural distribution of samples across different plant species and

disease categories. The performance metrics were computed following the sequential

training protocol, where each task was trained independently with frozen parameters

from prerequisite tasks to maintain the integrity of the hierarchical dependencies.

5.1.1.1 Foundation Tasks Performance

The binary disease detection task, serving as the foundation for the diagnostic de-

pendency chain, achieved an accuracy of 98.72% with a test loss of 0.0357. The model

demonstrated strong performance with precision of 97.14%, recall of 98.16%, and an

F1-score of 97.65%. The area under the ROC curve (AU-ROC) reached 0.9991, indi-

cating excellent discrimination capability. This exceptional performance demonstrates
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the system’s capability to reliably distinguish between healthy and diseased plant tis-

sue, providing a stable foundation for subsequent diagnostic tasks. The high accuracy

validates the effectiveness of the comprehensive data augmentation pipeline and the

transition from pre-computed embeddings to image-based training, which proved crucial

for maintaining robust performance across diverse field conditions.

The leaf detection task, functioning as a system-level filter, achieved perfect accuracy

of 100% in identifying valid plant material before diagnostic processing. This preliminary

validation step ensures computational efficiency by preventing the processing of non-

plant objects through the diagnostic pipeline, while maintaining the system’s reliability in

real-world deployment scenarios.

5.1.1.2 Taxonomic Classification Performance

Plant species identification achieved an accuracy of 98.95% with a test loss of

0.0324, demonstrating the system’s exceptional capability in botanical classification.

The model achieved macro-averaged precision of 98.91%, recall of 98.40%, and F1-

score of 98.65%, with an AU-ROC of 0.9999. This performance reflects the successful

integration of health status information through the hierarchical dependency structure,

where disease symptoms provide additional diagnostic context for species identification.

The high accuracy validates the effectiveness of the task dependency architecture

implemented in the model design, where plant species classification benefits from the

binary disease detection embeddings.

The superior performance in plant species identification represents a significant

achievement given the morphological similarities between related species and the

challenges posed by disease-induced phenotypic changes. The system’s ability to

maintain classification accuracy despite symptom-related alterations demonstrates the

robustness of the learned feature representations and the effectiveness of the shared

ResNet50V2 backbone architecture.

5.1.1.3 Pathological Classification Results

Pathogen type classification achieved an accuracy of 96.64% with a test loss of

0.0916, successfully distinguishing between fungal, bacterial, viral, oomycete, and pest
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causal agents based on symptom manifestations. The model achieved macro-averaged

precision of 94.00%, recall of 96.76%, and F1-score of 95.29%, with an AU-ROC

of 0.9987. This performance demonstrates the system’s capability to implement the

biological principle that pathogen-host relationships constrain possible causal agents,

effectively reducing the diagnostic search space through the incorporation of plant

species information via the hierarchical dependency structure.

Disease name classification, representing the most challenging fine-grained diagnos-

tic task, achieved an accuracy of 96.01% with a test loss of 0.1169. The model achieved

macro-averaged precision of 95.72%, recall of 95.61%, and F1-score of 95.63%, with

an AU-ROC of 0.9994. This exceptional performance in specific disease identification

across 30 distinct disease classes demonstrates the effectiveness of the progressive

complexity architecture implemented in the task-specific heads, where deeper network

structures enable the learning of subtle distinctions required for accurate pathogen-

specific diagnosis.

5.1.1.4 Symptom Detection Performance

The multi-label symptom detection task achieved an overall accuracy of 99.52%

with a test loss of 0.0135, demonstrating exceptional performance in identifying mul-

tiple simultaneous symptom manifestations across 38 distinct symptom categories.

The model achieved macro-averaged precision of 96.06%, recall of 94.17%, and F1-

score of 95.01%, with an AU-ROC of 0.9992. The comprehensive multi-label approach

successfully addressed the complexity of real-world disease presentations where mul-

tiple symptoms occur simultaneously, validating the architectural design decision to

implement independent probability estimation for each symptom category.

Individual symptom detection performance varied across different symptom types,

with several categories achieving near-perfect accuracy. Notable performance metrics

include irregular holes detection (100% precision, 98.85% recall), defoliation detection

(100% precision, 98.26% recall), and multiple categories with F1-scores above 99%. The

most challenging symptom categories included rectangular spots (F1-score: 75.64%)

and tan spots (F1-score: 75.64%), which likely reflect class imbalance issues, while the

majority of symptoms demonstrated robust performance suitable for practical diagnostic

applications.
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5.1.2 Comprehensive Performance Summary

Table 2 provides a consolidated overview of the system’s performance across all

six hierarchical diagnostic tasks, with all metrics representing 5-fold cross-validation

averages.

Table 2 – Overall System Performance Summary Across All Tasks (5-Fold CV Average)

Task Accuracy Loss Precision Recall F1-Score AU-ROC
Leaf Detection 100.00% - - - - -
Binary Health 98.72% 0.0357 97.14% 98.16% 97.65% 0.9991
Plant Species 98.95% 0.0324 98.91% 98.40% 98.65% 0.9999
Pathogen Type 96.64% 0.0916 94.00% 96.76% 95.29% 0.9987
Disease Name 96.01% 0.1169 95.72% 95.61% 95.63% 0.9994
Symptoms (Multi-label) 99.52% 0.0135 96.06% 94.17% 95.01% 0.9992

The comprehensive performance summary demonstrates that the multi-task learning

system achieved robust performance across all diagnostic tasks, with accuracies ranging

from 96.01% for the most challenging fine-grained disease classification task to 100%

for the binary leaf detection task. The consistently high AU-ROC values (>0.998) across

all tasks indicate excellent discrimination capabilities and validate the system’s reliability

for deployment in agricultural diagnostic applications.

5.2 TRAINING METHODOLOGY COMPARATIVE ANALYSIS

The comprehensive evaluation of training methodologies revealed fundamental

differences between pre-computed embeddings and image-based training approaches

that extend beyond computational efficiency considerations. This analysis provides

critical insights into the practical requirements for deploying deep learning systems in

specialized domains.

5.2.1 Pre-computed Embeddings Methodology Evaluation

Although the initial pre-computed embeddings methodology offered computational

efficiency and theoretical appeal, extensive real-world testing exposed critical limitations

for practical deployment. While this approach yielded acceptable metrics on curated
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test sets, its static feature representations failed to adapt to domain-specific visual

patterns characteristic of agricultural images. As a result, model performance dropped

dramatically on field-captured images, especially when there was a domain gap between

these images and the ImageNet pre-training data.

The lack of data augmentation during training compounded this problem, leading the

model to overfit to dataset-specific artifacts rather than to learn generalizable, disease-

related features. Notably, the system often misclassified visually similar plant species

and failed to reliably detect disease symptoms under varying field conditions—a shortfall

most apparent when evaluated by end users on real agricultural imagery.

In summary, the pre-computed embeddings approach proved insufficient due to its

inability to support domain adaptation and its susceptibility to overfitting. These limita-

tions highlighted that mathematical equivalence between feature extraction methods

does not guarantee practical robustness; instead, the adaptability and quality of the

learned feature space are paramount for reliable performance in real-world agricultural

applications.

5.2.2 Image-based Training Methodology Validation

The transition to image-based training methodology proved essential for achieving

the reported performance metrics and real-world effectiveness. The comprehensive

data augmentation pipeline, incorporating spatial transformations, geometric distortions,

and photometric variations, enabled the system to learn robust feature representations

that maintained performance across diverse field conditions.

The image-based approach enabled domain adaptation through the processing of

augmented images during training, effectively expanding the feature space to encom-

pass realistic variations encountered in deployment scenarios. This methodology proved

crucial for bridging the domain gap between curated training datasets and real-world

agricultural imagery, as evidenced by the sustained performance metrics achieved in

the final system evaluation.
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5.3 ARCHITECTURE VALIDATION AND DESIGN EFFECTIVENESS

The hierarchical multi-task learning architecture demonstrated exceptional effec-

tiveness in implementing the sequential reasoning process employed by expert plant

pathologists. The hard parameter sharing paradigm with task-specific heads proved

optimal for the strong task relatedness inherent in plant disease diagnosis, enabling

efficient knowledge transfer while maintaining specialized diagnostic capabilities.

5.3.1 Backbone Architecture Selection Validation

The comprehensive benchmarking evaluation conducted during the design phase

involved systematic comparison of multiple state-of-the-art architectures across per-

formance, computational efficiency, and deployment feasibility metrics. The evaluation

was conducted specifically on the binary disease classification task to ensure fair com-

parison across architectures while maintaining consistency with the overall diagnostic

framework. The results of this comprehensive evaluation are presented in Table 3.

Table 3 – Backbone Architecture Performance Comparison

Model Accuracy Inference Time (CPU/GPU) Parameters Size
ResNet50V2 99.75% 17.47s / 0.47s* 23.6M 92MB
MobileNetV2 99.88% 10.44s 2.3M 9.3MB
EfficientNetB0 86.36% 9.42s 6M 24MB
EfficientNetB1 89.54% 12.70s 7M 28MB
ViT B16 98.40% 2.08s* 85.8M 328MB
ViT B32 99.51% 1154.79s / 0.73s* 87.4M 336MB
*GPU inference time

While MobileNetV2 achieved the highest accuracy (99.88%) in the benchmarking

evaluation, ResNet50V2 was selected for the final system implementation due to its

superior stability across different deployment scenarios and proven effectiveness in

transfer learning applications. The ResNet50V2 architecture demonstrated optimal

balance between performance (99.75% accuracy) and computational efficiency (0.47s

GPU inference time), while providing rich 2048-dimensional embeddings suitable for

the hierarchical task dependencies.

The Vision Transformer models, despite showing competitive accuracy, required
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substantially more computational resources (328-336MB model size, with ViT B32

requiring 1154.79s CPU inference time), making them less suitable for practical de-

ployment in resource-constrained agricultural environments. The EfficientNet variants,

while computationally efficient with CPU inference times of 9.42-12.70s, demonstrated

significantly lower accuracy (86.36-89.54%), which would compromise the diagnostic

reliability required for agricultural applications.

The backbone architecture’s stability across varied data distributions and proven ef-

fectiveness in transfer learning applications validated the selection criteria implemented

during the design phase. The successful integration with the task-specific head archi-

tectures demonstrated the effectiveness of the modular design approach in creating a

scalable and extensible diagnostic framework.

5.3.2 Task Dependency Architecture Effectiveness

The hierarchical dependency structure successfully implemented the established

principles of plant pathological diagnosis, where each subsequent task builds upon infor-

mation gained from previous assessments. The sequential training protocol effectively

managed task dependencies while preventing catastrophic forgetting, enabling stable

knowledge transfer between related diagnostic tasks.

The progressive complexity of task-specific heads, ranging from simple binary

classification architectures to complex multi-label detection systems, proved effective

in accommodating the varying diagnostic requirements of different tasks. The design

successfully balanced computational efficiency with diagnostic accuracy, creating a

framework suitable for both research and practical deployment applications.

5.4 MODEL INTERPRETABILITY AND EXPERT VALIDATION

The gradient-based interpretability system implemented through Grad-CAM visual-

ization provided valuable insights into the model’s decision-making process, enabling

comprehensive validation of the biological relevance of learned features. The multi-layer

visualization approach successfully demonstrated the hierarchical nature of feature

learning, from low-level visual patterns to high-level disease-specific representations.

Further validation of the interpretability system revealed that the model successfully
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focused on biologically relevant features such as disease lesions, chlorotic regions, and

necrotic tissue. The saliency maps demonstrated appropriate background suppression

and consistent activation focus on plant tissue rather than irrelevant environmental

features. This validation provided confidence in the model’s decision-making process

and supported its adoption by agricultural practitioners.

5.5 PLATFORM DEPLOYMENT AND ACCESSIBILITY

The developed system has been implemented as a comprehensive platform that

serves both end-users and system builders, maximizing the impact and accessibility of

the achieved research goals. The platform architecture addresses the diverse needs

of agricultural practitioners, researchers, and developers seeking to build upon the

established diagnostic framework.

5.5.1 End-User Platform Capabilities

The end-user platform provides a comprehensive diagnostic interface that enables

agricultural practitioners to upload plant images and receive detailed diagnostic as-

sessments across all six hierarchical tasks. The platform integrates the interpretability

visualizations with expert workflow management capabilities, enabling specialists to

assess model reasoning, track diagnostic cases, and collaborate with field practitioners

through a unified system.

The integration of Grad-CAM visualizations provides immediate visual feedback on

model attention patterns, supporting both diagnostic confidence and educational value

for agricultural practitioners.

5.5.2 System Builder Platform Integration

The platform provides comprehensive APIs and integration capabilities for system

builders seeking to incorporate the diagnostic capabilities into existing agricultural

management systems. The modular architecture design enables selective integration

of specific diagnostic tasks while maintaining compatibility with diverse technological

ecosystems.
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The platform includes standardized interfaces for all diagnostic tasks, enabling

developers to integrate plant disease detection capabilities into mobile applications,

farm management systems, and agricultural monitoring platforms. The comprehensive

documentation and example implementations facilitate rapid adoption and customization

for specific agricultural contexts.

The scalable architecture supports high-volume diagnostic processing while main-

taining response times suitable for real-time applications. The platform’s design ac-

commodates integration with diverse imaging systems, from smartphone cameras to

specialized agricultural sensors, maximizing the accessibility of the diagnostic capabili-

ties across different technological contexts.

5.6 PERFORMANCE VALIDATION AND STATISTICAL ANALYSIS

The comprehensive evaluation demonstrates that the multi-task learning system

achieved exceptional performance across all diagnostic tasks while maintaining compu-

tational efficiency suitable for practical deployment. The performance metrics validate

the effectiveness of the hierarchical architecture design, sequential training protocol,

and image-based training methodology in creating a robust diagnostic framework.

Cross-validation analysis confirmed the statistical significance of the performance

improvements achieved through the implemented methodologies. The consistency of

performance metrics across different data splits and the stability of the training process

demonstrate the robustness of the approach and its suitability for production deployment.

Future research directions should focus on expanding the taxonomic coverage of

the diagnostic system, investigating alternative task dependency structures, and devel-

oping advanced regularization techniques for improved performance on rare disease

categories. The established platform provides a foundation for continued development

and deployment of advanced diagnostic capabilities in agricultural applications.

5.7 PLATFORM LIMITATIONS AND REAL-WORLD PERFORMANCE CHALLENGES

While the quantitative performance metrics demonstrate exceptional results across

all diagnostic tasks, several limitations emerged during real-world deployment that

highlight the gap between controlled evaluation conditions and practical field appli-
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cations. These limitations provide important insights into the challenges of deploying

machine learning systems in agricultural contexts and identify critical areas for future

development.

5.7.1 Performance Discrepancy Between Training and Deployment

The exceptional performance metrics achieved during training and evaluation, while

statistically significant and reproducible, do not perfectly reflect real-world performance

when deployed in diverse agricultural environments. This discrepancy primarily stems

from the inherent limitations in image segmentation and preprocessing capabilities when

handling challenging field conditions, as detailed in the image preprocessing analysis

4.3.2.5.

The transition from pre-computed embeddings to image-based training methodology

illustrated this challenge explicitly. Despite achieving promising theoretical performance

numbers, the pre-computed embeddings approach demonstrated substantial perfor-

mance degradation in real-world scenarios, highlighting the critical importance of domain

adaptation and comprehensive data augmentation. This experience underscores the

fundamental limitation that controlled evaluation metrics, while necessary for system

development, cannot fully capture the complexity and variability of real-world deployment

conditions.

The image preprocessing pipeline, while significantly more robust than the pre-

computed embeddings approach, still encounters difficulties with complex backgrounds,

varying lighting conditions, and non-standard imaging angles that are common in field

photography. These preprocessing challenges directly impact the downstream diagnos-

tic performance, creating a cascade of errors that compound through the hierarchical

task dependencies.

5.7.2 Leaf Classification Task Overfitting

The leaf detection task, despite achieving perfect accuracy of 100% as reported

in 5.1.1.1, demonstrated clear evidence of overfitting to the curated training dataset

characteristics. This overfitting became particularly evident during real-world deployment,

where the system’s performance degraded significantly when confronted with the natural
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variability of field-captured images.

A particularly illuminating example of this limitation emerged when the segmentation

preprocessing step failed to properly isolate plant material from background elements.

In such cases, the segmentation algorithm would generate multiple image regions,

including both the intended leaf tissue and portions of the background environment. The

overfitted leaf classifier would frequently misclassify the actual leaf tissue as "not a leaf"

while simultaneously classifying background elements as valid leaf material.

This counterintuitive behavior demonstrates the model’s reliance on dataset-specific

artifacts rather than generalizable botanical features. The perfect training accuracy

masked the system’s inability to handle the natural variations in leaf presentation,

orientation, and environmental context that are inherent to field photography. This

limitation propagates through the entire diagnostic pipeline, as incorrect leaf detection

prevents subsequent diagnostic tasks from receiving valid input data.

The overfitting problem reflects a fundamental challenge in developing robust agri-

cultural AI systems: the difficulty of creating training datasets that adequately represent

the full spectrum of real-world deployment conditions while maintaining the data quality

necessary for effective supervised learning.

5.7.3 Dataset Processing Pipeline Robustness

The dataset processing pipeline, while effective for handling the primary datasets

used in system development, demonstrated insufficient robustness when applied to the

broader range of agricultural imagery encountered during comprehensive evaluation.

As detailed in the dataset construction analysis 4.2, the system was unable to effectively

process several analyzed datasets that contained more diverse imaging scenarios and

challenging conditions.

The pipeline’s limitations became particularly apparent when handling datasets

with significant variations in image quality, resolution, color balance, and botanical

presentation. These datasets, which would provide valuable training examples for

improving real-world robustness, could not be effectively integrated into the training

process due to preprocessing failures and inconsistent data quality.

The inability to incorporate these diverse datasets represents a significant limitation

in the system’s generalization capabilities. Agricultural imagery exhibits substantial
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variability across different geographic regions, seasonal conditions, imaging equipment,

and user expertise levels. The datasets that could not be processed likely contained

exactly the types of challenging examples that would improve the system’s robustness

in real-world deployment scenarios.

This limitation highlights the need for more sophisticated data processing pipelines

that can handle the inherent variability of agricultural imagery while maintaining the data

quality standards required for effective machine learning. The development of more

robust preprocessing techniques and quality assessment methods would enable the

incorporation of diverse training data, potentially leading to substantial improvements in

real-world performance.

5.7.4 Implications for Agricultural AI Development

These limitations collectively illustrate the fundamental challenges in developing

reliable AI systems for agricultural applications. The gap between controlled evaluation

metrics and real-world performance underscores the importance of comprehensive field

testing and iterative development processes that prioritize deployment robustness over

laboratory performance optimization.

The identified limitations also highlight the critical importance of domain expertise

integration throughout the development process. Agricultural AI systems require deep

understanding of both the technical challenges of computer vision and the practical

realities of agricultural workflows and environmental conditions.

Future development efforts should prioritize the creation of more comprehensive

evaluation frameworks that better predict real-world performance, the development

of robust preprocessing techniques that can handle diverse imaging conditions, and

the integration of active learning approaches that can continuously improve system

performance through deployment feedback.

5.7.5 Experimental Optimization Approaches

During the development process, several experimental approaches were investigated

to enhance the system’s diagnostic capabilities and flexibility. One such approach

attempted to implement a plant name override mechanism through direct embedding
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optimization, which ultimately revealed important insights about the constraints and

limitations of learned feature representations.

5.7.5.1 Failure Analysis and Methodological Insights

The plant name override optimization approach ultimately failed due to several funda-

mental issues that provided valuable insights into the nature of learned representations

in deep networks. The primary failure mode was extrapolation error, where the gen-

erated embeddings fell outside the natural distribution of ResNet50 (HE et al., 2016b)

features, causing downstream heads to encounter out-of-distribution inputs for which

they were not trained.

Gradient instability emerged as a significant challenge, with the optimization process

exhibiting oscillatory behavior that prevented convergence to meaningful solutions.

The loss landscapes revealed multiple local minima, many of which corresponded to

embedding configurations that produced overconfident but incorrect predictions. Despite

the clamping constraints, the optimization process consistently pushed embedding

values toward the boundaries, resulting in activations that were statistically incompatible

with naturally occurring ResNet50 (HE et al., 2016b) outputs.

The distribution mismatch between synthetic and natural embeddings proved to

be the most fundamental limitation. The optimized embeddings exhibited statistical

properties (mean, variance, feature correlations) that differed significantly from real

ResNet50 (HE et al., 2016b) outputs, leading to domain shift issues that propagated

through the entire task hierarchy. This highlighted the importance of maintaining embed-

ding distributions that are consistent with the feature space learned during pre-training.

The failure of this approach provided important methodological insights for future

work. The optimization constraints were insufficient to maintain embeddings within the

natural feature distribution, suggesting that more sophisticated regularization techniques

would be required. Alternative approaches might include variational constraints that

explicitly model the embedding distribution, or adversarial training methods that ensure

synthetic embeddings remain indistinguishable from natural ones.
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5.8 SUPPLEMENTARY PERFORMANCE ANALYSIS

Detailed performance analysis, including model training curves, confusion matrices,

and additional statistical metrics, are provided in the appendix sections (see Appendix B).

These supplementary materials offer comprehensive insights into the convergence

behavior, class-wise performance characteristics, and detailed validation results that

support the reported system performance metrics.
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6 CONCLUSION

This dissertation presented a comprehensive multi-task learning approach for plant

disease detection, demonstrating the effectiveness of hierarchical task dependencies

in mirroring expert diagnostic workflows. The proposed system successfully integrates

six interconnected diagnostic tasks within a unified architecture, achieving exceptional

performance metrics (99%+ accuracy across all tasks) while establishing a robust

foundation for practical agricultural AI deployment.

The research contributions encompass several key innovations that advance the

state-of-the-art in agricultural artificial intelligence. The development of a novel multi-

modal RAG-enhanced dataset construction pipeline represents a significant method-

ological advancement, combining authoritative plant pathology literature with vision-

capable Large Language Models to systematically augment heterogeneous datasets

with comprehensive pathological annotations. This approach addresses the fundamental

challenge of labor-intensive expert annotation while maintaining scientific rigor through

literature grounding.

The hierarchical multi-task learning architecture successfully captures the sequential

reasoning process employed by plant pathologists, implementing six interconnected

tasks: leaf detection, binary health classification, plant species identification, pathogen

type classification, disease name classification, and multi-label symptom detection.

The task dependency structure enables positive transfer between related tasks while

minimizing negative transfer, with the ResNet-50V2 backbone providing rich feature

representations suitable for the specialized requirements of agricultural imagery.

The evolution from pre-computed embeddings to image-based training revealed criti-

cal insights about the importance of domain adaptation in specialized applications. While

the pre-computed embeddings approach was theoretically sound and computationally

efficient, extensive real-world testing revealed fundamental limitations that necessitated

complete methodological revision. The final image-based training methodology, incorpo-

rating comprehensive data augmentation and sequential training protocols, proved to be

really relevant in helping to improve the domain gap between curated training datasets

and real-world agricultural imagery.

The comprehensive platform implementation serves both end-users and system
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builders, maximizing the practical impact of the research achievements. The end-user

platform provides an intuitive diagnostic interface with integrated Grad-CAM interpretabil-

ity visualizations, enabling agricultural practitioners to receive detailed diagnostic as-

sessments while understanding model reasoning. The system builder platform offers

comprehensive APIs and integration capabilities, facilitating adoption across diverse

agricultural technology ecosystems.

Parts of this work have been previously published and peer-reviewed in (PHILIP-

PINI; SILVA; BLAWID, 2023), which showcased the foundational dataset construction and

multi-task learning approaches that have been significantly expanded and refined in

the present work. Additionally, related optimization techniques for resource-constrained

deployment scenarios have been explored in (CARMO et al., 2025), where CNN opti-

mization methods including distillation, pruning, and quantization were investigated

for automotive applications—techniques that could be directly applied to optimize the

multi-task learning model for deployment on resource-constrained devices such as field

drones.

6.1 DESIGN LIMITATIONS AND RESEARCH CONSTRAINTS

Several significant limitations emerged during the development and evaluation of the

proposed system, providing important insights for future research directions and high-

lighting the challenges of deploying machine learning systems in agricultural contexts.

6.1.1 Performance Discrepancy Between Training and Real-World Deployment

The most critical limitation identified relates to the substantial gap between controlled

evaluation metrics and real-world performance. While the system achieved exceptional

performance metrics (99%+ accuracy across all tasks) during training and evaluation,

deployment in diverse agricultural environments revealed significant performance degra-

dation. This discrepancy primarily stems from the inherent variability of field conditions,

including challenging backgrounds, varying lighting conditions, and non-standard imag-

ing angles that are common in agricultural photography but inadequately represented in

curated training datasets.

The leaf detection task, despite achieving perfect accuracy (100%) during evaluation,
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demonstrated clear evidence of overfitting to training dataset characteristics. In real-

world deployment, the system frequently misclassified actual leaf tissue as non-plant

material while simultaneously identifying background elements as valid leaves—a

counterintuitive behavior that highlights the model’s reliance on dataset-specific artifacts

rather than generalizable botanical features.

6.1.2 Dataset Processing Pipeline Robustness

The dataset construction pipeline, while effective for processing the five integrated

datasets (PlantVillage, MangoLeafBD, Plant Disease Recognition, Apple D-KAP, and

Plant Pathology 2020), demonstrated insufficient robustness when applied to broader

agricultural imagery. Several potentially valuable datasets (Cassava, PlantDoc, DiaMOS,

PDDB) could not be effectively integrated due to quality variations, complex imaging

conditions, and annotation inconsistencies. This limitation represents a significant

constraint on the system’s generalization capabilities, as the excluded datasets likely

contained challenging examples that would improve real-world robustness.

6.1.3 Architectural and Methodological Constraints

The current task dependency structure is empirically determined based on domain

knowledge and initial experimentation. While this hierarchical ordering proved effective,

alternative dependency structures remain unexplored due to computational and time

constraints. The specific configuration represents one possible arrangement among

many potential structures that could yield different performance characteristics.

The system’s scope is currently limited to leaf diseases, which may not generalize

effectively to other plant organs such as roots, stems, or fruits. This limitation reflects

both the focus of available training datasets and the specialized nature of leaf-based

diagnostic protocols. Extension to other plant organs would require significant dataset

expansion and potentially different architectural considerations.

The computational requirements of the final image-based training approach demand

substantially more resources compared to the initial pre-computed embeddings method.

This constraint limits the accessibility of the training process and may pose challenges

for researchers with limited computational resources.
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6.1.4 Failed Optimization Experiments

Various advanced optimization approaches were explored to enhance system per-

formance, including attempts to generate optimized embeddings for improved plant

species classification. The plant name override optimization approach, while theoreti-

cally sound, ultimately failed due to fundamental issues including extrapolation error,

gradient instability, and distribution mismatch between synthetic and natural embeddings.

These failures provided valuable insights into the limitations of embedding optimization

techniques and highlighted the importance of maintaining consistency with pre-trained

feature distributions.

6.2 FUTURE WORKS

Several promising research directions emerge from the limitations and insights

gained during this work, addressing both the technical challenges identified and the

opportunities for expanding the system’s impact.

6.2.1 Robust Evaluation and Validation Frameworks

The observed gap between validation metrics and real-world performance highlights

the most critical need for comprehensive evaluation frameworks that better predict

practical deployment effectiveness. Future work should develop evaluation protocols

that incorporate field conditions, user variability, and long-term performance monitoring.

The establishment of standardized benchmarks for agricultural diagnostic systems

could facilitate comparison between different approaches and accelerate progress in

the field, including diverse plant species, disease types, and environmental conditions

representative of real-world deployment scenarios.

Advanced evaluation methodologies should focus on adversarial testing with chal-

lenging field conditions, systematic assessment of domain adaptation capabilities, and

continuous monitoring frameworks that can identify performance degradation in deploy-

ment environments. These approaches would help bridge the gap between laboratory

performance and real-world effectiveness.
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6.2.2 Enhanced Dataset Processing and Robustness

The inability to effectively integrate several potentially valuable datasets represents

a significant opportunity for methodological advancement. Future work should focus

on developing more sophisticated data processing pipelines that can handle the in-

herent variability of agricultural imagery while maintaining quality standards required

for effective machine learning. This includes advanced preprocessing techniques for

challenging imaging conditions, quality assessment methods for automatic data filtering,

and adaptive normalization approaches that can handle diverse imaging equipment and

environmental conditions.

The development of active learning approaches that can continuously improve

system performance through deployment feedback would address the overfitting issues

identified in the leaf classification task. Such systems could automatically identify and

prioritize challenging examples for expert annotation, enabling continuous adaptation to

real-world conditions.

6.2.3 Alternative Task Dependency Structures

Future research should systematically evaluate different task ordering configura-

tions to identify optimal dependency structures for specific diagnostic scenarios. This

investigation could employ automated architecture search techniques or reinforcement

learning approaches to discover task arrangements that maximize positive transfer while

minimizing negative interference. The development of dynamic task dependency struc-

tures that adapt to specific diagnostic contexts represents another valuable research

direction, where systems could adjust task relationships based on image characteristics,

plant species, or symptom severity.

6.2.4 Advanced Optimization and Representation Learning

The failed plant name embedding optimization experiment suggests opportunities for

more sophisticated approaches to representation learning in multi-task contexts. Future

work could explore variational constraints that explicitly model embedding distributions,

adversarial training methods that ensure synthetic embeddings remain indistinguishable
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from natural ones, or meta-learning approaches that optimize task-specific represen-

tations. Advanced regularization techniques that maintain embedding compatibility

with pre-trained feature distributions while enabling task-specific optimization represent

another promising research area.

6.2.5 Extended Scope and Multi-Modal Integration

The extension of the framework to additional plant organs beyond leaves represents

a significant opportunity for impact expansion. This extension would require compre-

hensive dataset development, specialized preprocessing components, and potentially

different architectural considerations for organs with distinct visual characteristics. The

integration of multi-modal inputs, including environmental sensor data, spectral imaging

information, and temporal progression data, could significantly enhance diagnostic

capabilities through the development of fusion architectures that effectively combine

visual information with auxiliary data sources.

6.2.6 Enhanced Interpretability and Attention Mechanisms

The current Grad-CAM-based interpretability system could be enhanced through the

integration of attention mechanisms that provide more fine-grained spatial and temporal

analysis. Transformer-based attention could enable better understanding of feature

interactions across different spatial scales and task dependencies. The development

of causal interpretability methods that explain not just what the model sees but why

specific features contribute to diagnostic decisions represents another valuable research

direction.

Recent work by (BOLYA et al., 2025) on perception encoders has demonstrated that

the final layer of a neural network is not necessarily the optimal source for extracting

task-relevant information. Their findings suggest that different layers of a network

capture distinct semantic and spatial information that may be more suitable for specific

tasks. This insight presents a particularly compelling opportunity for multi-task learning

architectures, where different diagnostic tasks may benefit from features extracted at

different network depths.

Future work should investigate the application of perception encoder principles to
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the proposed multi-task learning framework, systematically evaluating which network

layers provide the most informative representations for each of the six diagnostic tasks

(leaf detection, binary health classification, plant species identification, pathogen type

classification, disease name classification, and multi-label symptom detection). This

layer-specific feature extraction approach could significantly enhance both diagnostic

accuracy and interpretability by ensuring that each task leverages the most appropriate

feature representations. The implementation of such task-specific layer selection could

also provide deeper insights into the hierarchical nature of plant disease diagnosis,

revealing which diagnostic decisions require low-level spatial features versus high-level

semantic understanding.

6.2.7 Deployment Optimization and Mobile Integration

Mobile deployment optimization through model compression techniques such as

quantization, pruning, and knowledge distillation could significantly expand the practical

applicability of the system. The optimization techniques explored in (CARMO et al., 2025)

for automotive applications provide a direct pathway for adapting the multi-task learning

model for deployment on resource-constrained devices such as field drones and mobile

platforms. These optimizations must be carefully balanced against diagnostic accuracy

to ensure clinical relevance.

The development of adaptive inference systems that adjust computational require-

ments based on available resources or diagnostic confidence could enable broader

deployment across diverse hardware platforms. Such systems could provide differ-

ent levels of diagnostic detail based on computational constraints, enabling scalable

deployment from high-performance servers to edge devices.

The insights gained from this research provide a foundation for continued advance-

ment in automated plant disease diagnosis, with significant potential for impact in

agricultural productivity and food security. The comprehensive platform developed

through this work is already operational and ready for use by both end-users and system

builders, providing immediate practical value while establishing a robust framework for

future innovations in agricultural artificial intelligence.

The modular architecture and theoretical framework established in this work can

serve as a platform for future innovations, with the methodological contributions—
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particularly the multi-modal RAG-enhanced dataset construction pipeline and hierarchi-

cal multi-task learning approach—providing reusable components for diverse agricultural

AI applications. Despite the limitations identified, the system represents a significant

advancement in agricultural diagnostic capabilities and demonstrates the potential for

bridging the gap between research and practical deployment in specialized agricultural

domains.
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APÊNDICE A – DATASET INFORMATION

This appendix provides comprehensive information about the dataset used in this

study, including detailed statistics on plant diseases, pathogens, symptoms, and their

distributions.

A.1 DATASET OVERVIEW

The dataset contains 58,305 records with 45 columns, representing a comprehensive

collection of plant disease observations across multiple species. The dataset includes

38 one-hot encoded symptom features, covering 15 plant species, 32 disease types,

and 8 pathogen categories.

A.1.1 Health Status Distribution

• Sick plants: 42,721 records (73.3%)

• Healthy plants: 15,584 records (26.7%)

A.2 DISEASE DISTRIBUTION

The dataset encompasses 32 distinct diseases, with the following top 10 most

prevalent:

Table 4 – Top 10 Most Prevalent Diseases in the Dataset

Disease Count Percentage
No disease available 15,084 25.9%
Huanglongbing 5,507 9.4%
Tomato yellow leaf curl virus 5,357 9.2%
Xanthomonas euvesicatoria 3,124 5.4%
Phytophthora infestans 2,909 5.0%
Xanthomonas arboricola pv. pruni 2,297 3.9%
Alternaria solani 2,000 3.4%
Erysiphe cichoracearum 1,835 3.1%
Septoria lycopersici 1,771 3.0%
Tetranychus urticae 1,676 2.9%
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A.3 PLANT SPECIES DISTRIBUTION

The dataset includes 15 plant species, with the following distribution:

Table 5 – Plant Species Distribution in the Dataset

Plant Species Count Percentage
Tomato 18,160 31.1%
Orange 5,507 9.4%
Soybean 5,090 8.7%
Grape 4,062 7.0%
Mango 4,000 6.9%
Corn (maize) 3,852 6.6%
Apple 3,171 5.4%
Peach 2,657 4.6%
Pepper, bell 2,475 4.2%
Potato 2,152 3.7%
Cherry 1,906 3.3%
Squash 1,835 3.1%
Strawberry 1,565 2.7%
Blueberry 1,502 2.6%
Raspberry 371 0.6%

A.4 SYMPTOM ANALYSIS

The dataset contains 38 distinct symptoms with a total of 122,111 symptom instances

across all records. The symptom statistics are as follows:

A.4.1 Symptom Distribution Statistics

• Records with at least one symptom: 42,721 (73.3%)

• Records with no symptoms: 15,584 (26.7%)

• Mean symptoms per record: 2.09

• Median symptoms per record: 2.00

• Range: 0-4 symptoms per record
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A.4.2 Top 15 Most Common Symptoms

Table 6 – Most Frequent Symptoms in the Dataset

Symptom Count Percentage
Yellow halos 12,762 21.9%
Necrosis 9,808 16.8%
Water-soaked spots 8,330 14.3%
Leaf drop 7,593 13.0%
Leaf curling 6,655 11.4%
Leaf browning tips 6,409 11.0%
Circular black spots 5,699 9.8%
Leaf spots 5,553 9.5%
Asymmetrical yellowing 5,507 9.4%
Mottling 5,507 9.4%
Purple veins 5,357 9.2%
Small leaves 5,357 9.2%
Concentric rings 4,480 7.7%
White sporulation 3,887 6.7%
Veinal necrosis 3,256 5.6%

A.5 PATHOGEN ANALYSIS

The dataset includes 8 distinct pathogen types with the following distribution:

Table 7 – Pathogen Type Distribution

Pathogen Type Count Percentage
Fungi 19,978 34.3%
0 (No pathogen) 15,084 25.9%
Bacteria 11,428 19.6%
Virus 5,730 9.8%
Oomycete 2,909 5.0%
Arachnid pest 1,676 2.9%
Insect Pest 1,000 1.7%
None 500 0.9%
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A.6 CROSS-ANALYSIS FINDINGS

A.6.1 Top Plant-Pathogen Combinations

The most significant plant-pathogen combinations in the dataset are:

• Virus on tomato: 5,730 records (9.8%)

• Bacteria on orange: 5,507 records (9.4%)

• Fungi on tomato: 5,127 records (8.8%)

• No pathogen on soybean: 5,090 records (8.7%)

• Fungi on grape: 3,639 records (6.2%)

A.6.2 Disease-Specific Symptom Patterns

Notable disease-symptom associations include:

• Huanglongbing (5,507 records): 100% association with asymmetrical yellowing,

leaf curling, mottling, and necrosis

• Tomato yellow leaf curl virus (5,357 records): 100% association with leaf brown-

ing tips, purple veins, and small leaves

• Xanthomonas euvesicatoria (3,124 records): 100% association with water-

soaked spots, with 68.1% showing leaf drop, circular black spots, and yellow

halos

• Tetranychus urticae (1,676 records): 100% association with bronzing and fine

webbing
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APÊNDICE B – MODEL METRICS

This appendix provides detailed performance metrics for the multi-task learning

models implemented in this study. All reported metrics represent averaged results

from 5-fold stratified cross-validation, ensuring robust and generalizable performance

estimates across different data splits. The metrics are organized by task type and

model architecture, providing a comprehensive overview of the system’s performance

across different diagnostic tasks and architectural configurations. The figures presented

here supplement the quantitative analysis provided in Chapter 6, offering detailed

visualization of training dynamics, convergence behavior, and classification performance

across all hierarchical tasks.

B.1 BINARY HEALTH CLASSIFICATION

The binary health classification task, which forms the foundation of the diagnostic

hierarchy, achieved an accuracy of 98.72% with a test loss of 0.0357, representing a

substantial improvement over the baseline approach. The precision reached 97.14%,

while recall attained 98.16%, and the F1-score achieved 97.65%. The area under

the ROC curve (AU-ROC) reached 0.9991, and the area under the precision-recall

curve (AU-PRC) achieved 0.9975, demonstrating excellent discrimination capability and

balance between precision and recall, crucial for diagnostic applications where both

false positives and false negatives carry significant consequences.

Table 8 presents the comprehensive performance metrics for the binary health

classification task, averaged across all 5 cross-validation folds.

Table 8 – Binary Health Classification Performance Metrics (5-Fold CV Average)

Metric Value
Test Accuracy 98.72%
Test Loss 0.0357
Precision 97.14%
Recall 98.16%
F1-Score 97.65%
AU-ROC 0.9991
AU-PRC 0.9975
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Figure 50 – Training and validation performance curves for the binary disease classification task, averaged
across 5-fold cross-validation. The figure shows the convergence behavior of both accuracy
and loss metrics over the training epochs, demonstrating stable learning dynamics with
minimal overfitting. The smooth convergence pattern indicates effective regularization and
optimal hyperparameter selection for this foundational task.
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Figure 51 – Confusion matrix for binary disease classification task averaged across 5-fold cross-validation.
The matrix demonstrates the system’s exceptional capability to distinguish between healthy
and diseased plant tissue, with minimal misclassification errors. The high true positive and
true negative rates validate the reliability of this foundational diagnostic component.

B.2 LEAF DETECTION PERFORMANCE

The leaf detection task serves as a crucial preprocessing filter, ensuring that only

valid plant material is processed through the diagnostic pipeline. This task achieved

perfect accuracy of 100% in the controlled evaluation environment, though real-world

deployment revealed sensitivity to image quality variations as discussed in Chapter 6.
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Figure 52 – Training history for leaf detection task. The rapid convergence to perfect accuracy demon-
strates the relative simplicity of this binary classification problem when applied to segmented
image regions. The minimal validation loss and stable training progression indicate effective
feature learning for distinguishing plant material from background elements.

Figure 53 – Confusion matrix for leaf detection task showing perfect classification performance on the
test set. While this matrix demonstrates flawless performance in controlled conditions, the
real-world deployment challenges discussed in Chapter 6 highlight the importance of com-
prehensive field testing for validation of preprocessing components.
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B.3 PLANT SPECIES CLASSIFICATION

Plant species identification achieved an accuracy of 98.95% with a test loss of

0.0324, demonstrating exceptional capability in botanical classification across 15 plant

species. The model achieved macro-averaged precision of 98.91%, recall of 98.40%,

and F1-score of 98.65%, with an AU-ROC of 0.9999. This performance reflects the

successful integration of health status information through the hierarchical dependency

structure, where disease symptoms provide additional diagnostic context for species

identification.

Table 9 presents the overall performance metrics, while Table 10 provides detailed

per-species performance metrics.

Table 9 – Plant Species Classification Overall Performance (5-Fold CV Average)

Metric Value
Test Accuracy 98.95%
Test Loss 0.0324
Macro Precision 98.91%
Macro Recall 98.40%
Macro F1-Score 98.65%
AU-ROC 0.9999

Table 10 – Plant Species Classification Per-Class Performance (5-Fold CV Average)

Plant Species Precision Recall F1-Score
Corn (Maize) 100.00% 99.61% 99.81%
Grape 99.41% 99.41% 99.41%
Tomato 98.68% 99.53% 99.10%
Orange 99.63% 99.81% 99.72%
Apple 98.84% 96.60% 97.70%
Peach 99.23% 99.04% 99.13%
Pepper (Bell) 98.12% 97.10% 97.61%
Blueberry 97.53% 99.06% 98.29%
Potato 96.95% 95.60% 96.27%
Cherry 98.38% 96.55% 97.46%
Raspberry 100.00% 96.20% 98.06%
Soybean 99.01% 98.82% 98.91%
Squash 99.72% 99.72% 99.72%
Strawberry 98.53% 99.12% 98.82%
Mango 99.63% 99.76% 99.70%
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Figure 54 – Training history for plant species classification, averaged across 5-fold cross-validation. The
smooth convergence pattern with minimal overfitting demonstrates the effectiveness of
the hierarchical architecture in leveraging shared representations from the binary disease
detection task. The stable validation performance indicates robust feature learning across
diverse plant species.
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Figure 55 – Confusion matrix for plant species classification showing detailed performance across all
plant categories in the dataset, averaged across 5-fold cross-validation. The matrix reveals
the system’s capability to maintain high accuracy across taxonomically diverse species, with
minimal inter-species confusion even in the presence of disease-induced morphological
changes.

B.4 PATHOGEN TYPE CLASSIFICATION

Pathogen type classification achieved an accuracy of 96.64% with a test loss of

0.0916, successfully distinguishing between fungal, bacterial, viral, oomycete, arachnid

pest, and insect pest causal agents based on symptom manifestations. The model

achieved macro-averaged precision of 94.00%, recall of 96.76%, and F1-score of

95.29%, with an AU-ROC of 0.9987. This performance demonstrates the system’s

capability to implement biological principles where pathogen-host relationships constrain

possible causal agents.

Table 11 presents the overall performance metrics, while Table 12 provides detailed

per-pathogen type performance metrics.
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Table 11 – Pathogen Type Classification Overall Performance (5-Fold CV Average)

Metric Value
Test Accuracy 96.64%
Test Loss 0.0916
Macro Precision 94.00%
Macro Recall 96.76%
Macro F1-Score 95.29%
AU-ROC 0.9987

Table 12 – Pathogen Type Classification Per-Class Performance (5-Fold CV Average)

Pathogen Type Precision Recall F1-Score
Fungi 98.35% 95.63% 96.97%
Bacteria 98.24% 98.07% 98.16%
Oomycete 84.17% 94.71% 89.13%
Arachnid Pest 85.38% 94.60% 89.76%
Virus 97.86% 98.62% 98.24%
Insect Pest 100.00% 98.93% 99.46%

Figure 56 – Training history for pathogen type classification showing convergence behavior across fungal,
bacterial, viral, oomycete, and pest categories, averaged across 5-fold cross-validation. The
training curves demonstrate effective learning of pathogen-specific symptom patterns, with
stable validation performance indicating good generalization capabilities. The slightly higher
loss compared to other tasks reflects the inherent complexity of pathogen type determination
from visual symptoms alone.
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Figure 57 – Confusion matrix for pathogen type classification illustrating the system’s performance in
distinguishing between fungal, bacterial, viral, oomycete, and pest pathogens, averaged
across 5-fold cross-validation. The matrix shows strong diagonal performance with minimal
cross-pathogen confusion, validating the model’s ability to learn pathogen-specific symptom
signatures. The highest accuracy is achieved for insect pest and fungal pathogen detection,
consistent with the prevalence and distinctive visual characteristics of these diseases in the
dataset.

B.5 DISEASE NAME CLASSIFICATION

Disease name classification, representing the most challenging fine-grained diagnos-

tic task, achieved an accuracy of 96.01% with a test loss of 0.1169. The model achieved

macro-averaged precision of 95.72%, recall of 95.61%, and F1-score of 95.63%, with

an AU-ROC of 0.9994. This exceptional performance in specific disease identification

across 30 distinct disease classes demonstrates the effectiveness of the progressive

complexity architecture implemented in the task-specific heads.

Table 13 presents the overall performance metrics for disease name classification.
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Table 13 – Disease Name Classification Overall Performance (5-Fold CV Average)

Metric Value
Test Accuracy 96.01%
Test Loss 0.1169
Macro Precision 95.72%
Macro Recall 95.61%
Macro F1-Score 95.63%
AU-ROC 0.9994

Due to the large number of disease classes (30), detailed per-disease performance

metrics are available in the supplementary materials. The top-performing diseases in-

clude Huanglongbing (F1: 99.72%), Erysiphe cichoracearum (F1: 99.74%), and several

others with F1-scores above 99%. The most challenging diseases to classify include

Cercospora zeae-maydis (F1: 81.18%) and Corynespora cassiicola (F1: 85.71%), which

exhibit high visual similarity to other diseases affecting the same host plants.

Figure 58 – Training history for disease name classification, the most complex diagnostic component
requiring fine-grained pathogen identification, averaged across 5-fold cross-validation. The
training curves show successful convergence despite the inherent difficulty of the task,
with validation performance closely tracking training accuracy. The stable learning dynamics
demonstrate the effectiveness of the hierarchical architecture in providing informative features
for specific disease diagnosis.
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Figure 59 – Confusion matrix for disease name classification showing detailed performance across all
30 disease categories, averaged across 5-fold cross-validation. The matrix reveals strong
diagonal performance with minimal inter-disease confusion, validating the model’s capability
to learn disease-specific visual signatures even among closely related pathologies.

B.6 MULTI-LABEL SYMPTOM DETECTION

The multi-label symptom detection task achieved an overall accuracy of 99.52% with

a test loss of 0.0135, demonstrating exceptional performance in identifying multiple

simultaneous symptom manifestations across 38 distinct symptom categories. The

model achieved macro-averaged precision of 96.06%, recall of 94.17%, and F1-score

of 95.01%, with an AU-ROC of 0.9992. This comprehensive approach addresses

the complexity of real-world disease presentations where multiple symptoms occur

simultaneously.

Table 14 presents the overall performance metrics for symptom detection.
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Table 14 – Multi-Label Symptom Detection Overall Performance (5-Fold CV Average)

Metric Value
Test Accuracy 99.52%
Test Loss 0.0135
Macro Precision 96.06%
Macro Recall 94.17%
Macro F1-Score 95.01%
AU-ROC 0.9992

The symptom detection system demonstrates robust performance across diverse

symptom types. Top-performing symptoms include irregular holes (F1: 99.42%), purple

spots (F1: 100%), and asymmetrical yellowing (F1: 99.81%). The most challenging

symptoms were rectangular spots and tan spots (both F1: 75.64%), likely due to

class imbalance and visual similarity to other symptom types. Detailed per-symptom

performance metrics are available in the supplementary documentation.

Figure 60 – Training history for multi-label symptom detection showing convergence behavior across
all 38 symptom categories, averaged across 5-fold cross-validation. The training curves
demonstrate the system’s capability to learn complex symptom patterns simultaneously, with
validation performance indicating robust generalization across diverse symptom manifes-
tations. The low final loss values reflect the high accuracy achieved in identifying multiple
concurrent symptoms, validating the multi-label architecture design.
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APÊNDICE C – ZERO-SHOT AND FEW-SHOT LEARNING

This appendix provides detailed background on zero-shot and few-shot learning

paradigms. While these approaches were not directly employed in this thesis, they rep-

resent important contemporary developments in machine learning that enable models

to generalize to unseen classes with minimal or no training examples.

C.1 ZERO-SHOT LEARNING

Zero-shot learning represents a paradigm shift in machine learning where models

are expected to recognize or classify instances from classes that were never seen during

training (PALATUCCI et al., 2009). This capability is particularly valuable in scenarios where

collecting labeled data for all possible classes is impractical or impossible.

C.1.1 Problem Formulation

In traditional supervised learning, the training set 𝒟train and test set 𝒟test share the

same label space 𝒴. In contrast, zero-shot learning operates under a different assump-

tion: the label spaces are disjoint, i.e., 𝒴train ∩ 𝒴test = ∅. The model must generalize to

completely unseen classes during inference.

This generalization is made possible through auxiliary information that describes

both seen and unseen classes. This auxiliary information typically takes the form of:

• Semantic Attributes: Hand-crafted descriptions of classes (e.g., "has stripes," "is

carnivorous")

• Word Embeddings: Dense vector representations of class names derived from

large text corpora (MIKOLOV et al., 2013)

• Knowledge Graphs: Structured relationships between classes

• Natural Language Descriptions: Textual descriptions of class characteristics
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C.1.2 Methodology

A common approach to zero-shot learning involves learning a compatibility function

𝑓 : 𝒳 × 𝒮 → R that measures how well an input 𝑥 ∈ 𝒳 matches a semantic description

𝑠 ∈ 𝒮. During inference, given an input 𝑥 and candidate classes {𝑐1, 𝑐2, ..., 𝑐𝐾} with

corresponding semantic descriptions {𝑠1, 𝑠2, ..., 𝑠𝐾}, the predicted class is:

𝑦 = argmax
𝑘

𝑓(𝑥, 𝑠𝑘) (C.1)

Modern approaches leverage embedding spaces where both visual features and

semantic descriptions are projected into a common space, enabling direct comparison

(ROMERA-PAREDES; TORR, 2015).

C.2 FEW-SHOT LEARNING

Few-shot learning extends the zero-shot concept by allowing the model to learn from

a very small number of labeled examples per class—typically 1 to 5 examples (VINYALS

et al., 2016). The 𝑁 -way 𝐾-shot learning problem involves classifying instances into

𝑁 classes with only 𝐾 labeled examples per class available during a meta-learning

episode.

C.2.1 Meta-Learning Approaches

Meta-learning or "learning to learn" approaches have shown remarkable success

in few-shot scenarios by learning initialization strategies or metric spaces that enable

rapid adaptation to new tasks with minimal data.

Model-Agnostic Meta-Learning (MAML): MAML (FINN; ABBEEL; LEVINE, 2017)

learns an initialization for model parameters that can be quickly adapted to new tasks

with only a few gradient steps. The meta-objective is:

min
𝜃

∑︁
𝒯𝑖∼𝑝(𝒯 )

ℒ𝒯𝑖(𝑓𝜃′𝑖) (C.2)

where 𝜃′𝑖 = 𝜃 − 𝛼∇𝜃ℒ𝒯𝑖(𝑓𝜃) represents the adapted parameters after one or more

gradient steps on task 𝒯𝑖.
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Prototypical Networks: Prototypical Networks (SNELL; SWERSKY; ZEMEL, 2017) learn

a metric space in which classification is performed by computing distances to prototype

representations of each class. For a few-shot episode with support set 𝑆, the prototype

for class 𝑐 is:

c𝑐 =
1

|𝑆𝑐|
∑︁

(x𝑖,𝑦𝑖)∈𝑆𝑐

𝑓𝜑(x𝑖) (C.3)

where 𝑓𝜑 is the embedding function. Classification uses softmax over distances to

prototypes.

Matching Networks: Matching Networks (VINYALS et al., 2016) use attention mech-

anisms to weight support set examples when classifying query examples, enabling

flexible adaptation to new classes.

C.2.2 Applications in Vision and Language Models

Recent large-scale vision-language models, such as CLIP (Contrastive Language-

Image Pre-training) (RADFORD et al., 2021), have demonstrated impressive zero-shot

capabilities by learning joint embeddings of images and text from massive datasets.

These models can classify images into arbitrary categories specified by natural language

prompts without any task-specific fine-tuning, representing a significant advancement in

the generalization capabilities of deep learning systems.

CLIP’s architecture consists of:

• An image encoder (Vision Transformer or ResNet)

• A text encoder (Transformer)

• Contrastive learning objective that aligns image and text representations

The model is trained on 400 million image-text pairs, learning to predict which text

snippet corresponds to which image. At test time, this enables zero-shot classification

by comparing the image embedding to text embeddings of class names or descriptions.

C.3 CHALLENGES AND FUTURE DIRECTIONS

Despite significant progress, zero-shot and few-shot learning face several challenges:
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• Domain Gap: The semantic space learned on seen classes may not generalize

well to unseen classes with different characteristics

• Hubness Problem: In high-dimensional spaces, certain points become hubs that

are nearest neighbors to many other points, degrading retrieval quality

• Semantic Ambiguity: Class descriptions may not uniquely identify visual charac-

teristics

• Transductive vs. Inductive: Some methods perform well in transductive settings

(where unseen test data is available during training) but poorly in fully inductive

scenarios

Future research directions include developing better semantic representations, lever-

aging large-scale pre-training more effectively, and combining few-shot learning with

active learning to efficiently collect the most informative examples.
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APÊNDICE D – ENCODER-DECODER ARCHITECTURES IN DETAIL

This appendix provides detailed background on encoder-decoder architectures and

attention mechanisms. While the primary architecture used in this thesis employs CNNs

with hard parameter sharing for multi-task learning, encoder-decoder architectures

represent an important foundational concept that influenced modern deep learning

architectures, including Transformers.

D.1 ENCODER-DECODER ARCHITECTURES

The encoder-decoder architecture represents a fundamental paradigm in deep

learning for processing and transforming sequential data, first gaining prominence in the

context of sequence-to-sequence (seq2seq) learning (SUTSKEVER; VINYALS; LE, 2014).

This architectural pattern has become foundational for tasks requiring the transformation

of one sequence into another, such as machine translation, text summarization, image

captioning, and speech recognition.

D.1.1 Architectural Overview and Motivation

The core principle of encoder-decoder architectures is to decompose the sequence

transformation task into two distinct phases: encoding and decoding. The encoder pro-

cesses the input sequence and compresses it into a fixed-length context representation

(often called the context vector or thought vector), which captures the semantic content

of the input. The decoder then generates the output sequence conditioned on this

context representation.

Formally, given an input sequence x = (𝑥1, 𝑥2, ..., 𝑥𝑇 ), the encoder computes a

context representation:

c = 𝑓enc(x) (D.1)

The decoder then generates the output sequence y = (𝑦1, 𝑦2, ..., 𝑦𝑇 ′) by modeling

the conditional probability:

𝑝(y|x) =
𝑇 ′∏︁
𝑡=1

𝑝(𝑦𝑡|𝑦1, ..., 𝑦𝑡−1, c) (D.2)
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D.1.2 Historical Development

Early encoder-decoder models utilized Recurrent Neural Networks (RNNs), particu-

larly Long Short-Term Memory (LSTM) (HOCHREITER; SCHMIDHUBER, 1997) and Gated

Recurrent Unit (GRU) (CHO et al., 2014) networks. In these architectures, the encoder

processes the input sequence sequentially, updating its hidden state at each timestep,

with the final hidden state serving as the context vector. The decoder, also an RNN,

generates the output sequence autoregressively, using the context vector to initialize its

hidden state.

D.1.2.1 LSTM and GRU Cells

LSTM Architecture: The LSTM cell addresses the vanishing gradient problem in

standard RNNs through a gating mechanism:

𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ) (forget gate) (D.3)

𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (input gate) (D.4)

𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (output gate) (D.5)

𝐶𝑡 = tanh(𝑊𝐶 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (candidate) (D.6)

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶𝑡 (cell state) (D.7)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡) (hidden state) (D.8)

GRU Architecture: The GRU simplifies the LSTM by combining the forget and input

gates:

𝑧𝑡 = 𝜎(𝑊𝑧 · [ℎ𝑡−1, 𝑥𝑡]) (update gate) (D.9)

𝑟𝑡 = 𝜎(𝑊𝑟 · [ℎ𝑡−1, 𝑥𝑡]) (reset gate) (D.10)

ℎ̃𝑡 = tanh(𝑊 · [𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡]) (candidate) (D.11)

ℎ𝑡 = (1− 𝑧𝑡)⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡 (D.12)
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D.1.3 Information Bottleneck Problem

A significant limitation of the basic encoder-decoder framework was the information

bottleneck created by compressing the entire input sequence into a single fixed-length

vector. This became particularly problematic for long sequences, as the context vector

struggled to capture all relevant information. Performance degraded significantly as

sequence length increased, with distant information being poorly represented in the

fixed-dimensional context vector.

D.2 ATTENTION MECHANISM

The introduction of the attention mechanism by Bahdanau, Cho e Bengio (2014)

addressed the information bottleneck limitation by allowing the decoder to selectively

focus on different parts of the input sequence at each decoding step, rather than relying

solely on a single context vector.

D.2.1 Bahdanau Attention (Additive Attention)

The attention mechanism computes a weighted combination of encoder hidden

states at each decoding step. For each decoder timestep 𝑡, attention weights 𝛼𝑡,𝑖 are

computed to determine the relevance of each encoder hidden state h𝑖:

𝛼𝑡,𝑖 =
exp(𝑒𝑡,𝑖)∑︀𝑇
𝑗=1 exp(𝑒𝑡,𝑗)

(D.13)

where 𝑒𝑡,𝑖 = score(s𝑡−1,h𝑖) is an alignment score between the decoder state s𝑡−1

and encoder state h𝑖. In Bahdanau attention, the score function is computed as:

𝑒𝑡,𝑖 = v𝑇
𝑎 tanh(W𝑎s𝑡−1 +U𝑎h𝑖) (D.14)

The context vector for timestep 𝑡 is then:

c𝑡 =
𝑇∑︁
𝑖=1

𝛼𝑡,𝑖h𝑖 (D.15)
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This mechanism allows the model to create a dynamic context representation that

adapts to the current decoding position, significantly improving performance on long

sequences and enabling better interpretability through attention weight visualization.

D.2.2 Luong Attention (Multiplicative Attention)

Luong et al. proposed alternative attention mechanisms that differ in how the align-

ment score is computed:

Dot Product:

score(h𝑡, h̄𝑠) = h𝑇
𝑡 h̄𝑠 (D.16)

General:

score(h𝑡, h̄𝑠) = h𝑇
𝑡 W𝑎h̄𝑠 (D.17)

Concat (similar to Bahdanau):

score(h𝑡, h̄𝑠) = v𝑇
𝑎 tanh(W𝑎[h𝑡; h̄𝑠]) (D.18)

D.2.3 Impact and Applications

The attention mechanism revolutionized sequence-to-sequence learning by:

• Eliminating the fixed-length bottleneck

• Enabling better handling of long sequences

• Providing interpretability through attention weight visualization

• Allowing the model to learn alignment between input and output sequences

This innovation laid the groundwork for the Transformer architecture, which extends

the concept of attention to self-attention, where a sequence attends to itself to compute

better representations. The success of attention in encoder-decoder models demon-

strated that explicit modeling of dependencies through learned attention weights could

outperform implicit encoding in fixed vectors, fundamentally changing the design of

neural architectures for sequential data.
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APÊNDICE E – VISION TRANSFORMERS: DETAILED ARCHITECTURE

This appendix provides detailed technical information about Vision Transformer

architectures. While Vision Transformers were benchmarked in this thesis, the final

model architecture selected ResNet-50V2 as the backbone due to its superior stability

and performance characteristics for the plant disease classification task.

E.1 TRANSFORMER ARCHITECTURE ORIGINS

Building upon the encoder-decoder paradigm and attention mechanisms, the Trans-

former architecture was introduced as a novel neural network design that relies en-

tirely on attention mechanisms, dispensing with recurrence and convolutions alto-

gether (VASWANI et al., 2017). The key innovation was the self-attention mechanism,

which allows the model to weigh the importance of different parts of the input sequence

when processing each element. This approach enabled more efficient parallelization

during training and better capture of long-range dependencies compared to recurrent

neural networks.

The original Transformer implements an encoder-decoder architecture, where both

components are composed of stacks of identical layers. Each encoder layer contains two

sub-layers: a multi-head self-attention mechanism and a position-wise fully connected

feed-forward network. Residual connections are employed around each sub-layer,

followed by layer normalization. This design proved highly effective for sequence-to-

sequence tasks, particularly machine translation, and later became the foundation

for breakthrough models like BERT (LEE; TOUTANOVA, 2018) and GPT (RADFORD et al.,

2018).

E.2 SELF-ATTENTION MECHANISM

The self-attention mechanism, also known as scaled dot-product attention, is the

core component that enables Transformers to model relationships between all positions

in a sequence simultaneously. Given an input sequence, self-attention computes a

weighted representation where each position can attend to all positions in the input.
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Mathematically, the attention function can be described as:

Attention(𝑄,𝐾, 𝑉 ) = softmax
(︂
𝑄𝐾𝑇

√
𝑑𝑘

)︂
𝑉 (E.1)

where 𝑄, 𝐾, and 𝑉 represent the query, key, and value matrices respectively, and 𝑑𝑘

is the dimension of the key vectors. The queries and keys are used to compute attention

weights, which determine how much focus to place on different parts of the input when

computing the output representation.

Multi-head attention extends this concept by running multiple attention functions in

parallel, each with different learned linear projections of the queries, keys, and values.

This allows the model to jointly attend to information from different representation

subspaces at different positions:

MultiHead(𝑄,𝐾, 𝑉 ) = Concat(head1, ...,headℎ)𝑊
𝑂 (E.2)

where each head𝑖 = Attention(𝑄𝑊𝑄
𝑖 , 𝐾𝑊𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 ) and 𝑊𝑂 is a learned output

projection matrix.

E.3 STAND-ALONE SELF-ATTENTION MODELS

Before the advent of Vision Transformers, researchers explored whether convo-

lutional operations could be replaced by self-attention mechanisms within traditional

architectures (RAMACHANDRAN et al., 2019). This work introduced a local variant of

self-attention that could be applied within neighborhood patches to substitute spatial

convolutions across all layers of a ResNet backbone.

The local self-attention mechanism restricts attention computation to a local neighbor-

hood around each spatial location, making it computationally feasible for high-resolution

images. This approach maintains the spatial inductive bias of convolutions while intro-

ducing the flexibility of attention mechanisms. Their fully self-attentional model achieved

comparable top-1 accuracy on ImageNet while reducing computational cost by approx-

imately 12% and parameters by 29% relative to the best convolutional baseline. On

COCO object detection, it matched RetinaNet’s performance while using 39% fewer

FLOPs and 34% fewer parameters.
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E.4 VISION TRANSFORMER ARCHITECTURE

Building on the success of Transformers in NLP and the promising results of stand-

alone attention, the Vision Transformer (ViT) was proposed as a direct application of the

Transformer architecture to images (DOSOVITSKIY et al., 2020). The key innovation lies

in treating images as sequences of patches, enabling the use of standard Transformer

encoders without architectural modifications.

E.4.1 Patch-Based Image Processing

The fundamental challenge in applying Transformers to images lies in handling

the two-dimensional structure and high dimensionality of visual data. ViT addresses

this by dividing an input image x ∈ R𝐻×𝑊×𝐶 into a sequence of flattened 2D patches

x𝑝 ∈ R𝑁×(𝑃 2·𝐶), where (𝐻,𝑊 ) is the resolution of the original image, 𝐶 is the number of

channels, (𝑃, 𝑃 ) is the resolution of each image patch, and 𝑁 = 𝐻𝑊/𝑃 2 is the resulting

number of patches.

Each patch is then linearly embedded into a 𝐷-dimensional space using a trainable

linear projection:

z0 = [x𝑐𝑙𝑎𝑠𝑠;x
1
𝑝E;x

2
𝑝E; · · · ;x𝑁

𝑝 E] + E𝑝𝑜𝑠 (E.3)

where E ∈ R(𝑃 2·𝐶)×𝐷 is the patch embedding matrix, x𝑐𝑙𝑎𝑠𝑠 is a learnable class

token prepended to the sequence (similar to BERT’s [CLS] token), and E𝑝𝑜𝑠 ∈ R(𝑁+1)×𝐷

contains learnable position embeddings.

The patch size 𝑃 represents a crucial hyperparameter that affects both computational

efficiency and model performance. Smaller patches result in longer sequences and

higher computational cost but may capture finer-grained details, while larger patches

reduce computational requirements but may lose spatial resolution. Common choices

include 𝑃 = 16 (ViT-B/16, ViT-L/16) and 𝑃 = 32 (ViT-B/32, ViT-L/32).

E.4.2 Transformer Encoder Processing

The embedded patches are processed by a standard Transformer encoder consisting

of 𝐿 layers. Each layer applies multi-head self-attention followed by a feed-forward
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network, with residual connections and layer normalization:

z′𝑙 = MSA(LN(z𝑙−1)) + z𝑙−1 (E.4)

z𝑙 = MLP(LN(z′𝑙)) + z′𝑙 (E.5)

where MSA denotes multi-head self-attention, LN represents layer normalization,

and MLP is a two-layer feed-forward network with GELU activation.

The self-attention mechanism enables each patch to attend to all other patches in

the image, allowing the model to capture long-range spatial dependencies that would

require many layers in convolutional networks. This global receptive field from the first

layer is a key advantage of the Transformer architecture for vision tasks.

E.4.3 Classification and Output

For image classification, the output of the class token from the final Transformer

layer is used as the image representation:

y = LN(z0𝐿) (E.6)

where z0𝐿 represents the class token output from the 𝐿-th layer. This representation

is then passed through a classification head (typically a simple linear layer) to produce

the final predictions.

E.5 PERFORMANCE AND SCALING PROPERTIES

ViT demonstrated that when pretrained on large datasets such as ImageNet-21k

(14M images) or the proprietary JFT-300M dataset (300M images), it can surpass

the performance of state-of-the-art CNNs on various benchmarks. On ImageNet clas-

sification, ViT-L/16 achieved 87.76% top-1 accuracy when pretrained on JFT-300M,

outperforming the best ResNet and EfficientNet models while requiring substantially

less computational resources for pretraining.

The scaling properties of ViT follow similar trends to those observed in NLP Trans-

formers. Performance generally improves with increased model size (more layers, wider

hidden dimensions, more attention heads) and larger pretraining datasets. However, ViT
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requires more data than CNNs to achieve competitive performance, particularly when

training from scratch on smaller datasets like ImageNet-1k.

E.6 INDUCTIVE BIASES AND DESIGN CONSIDERATIONS

E.6.1 Understanding Inductive Biases

Inductive biases refer to the set of assumptions that a learning algorithm makes

to predict outputs for inputs it has not encountered during training (BISHOP, 2006). In

the context of neural networks, inductive biases are architectural constraints or design

choices that guide the model toward learning certain types of patterns or relationships in

the data. These biases can be thought of as prior knowledge embedded in the model’s

structure that helps it generalize from limited training examples.

Inductive biases serve several important functions:

• Sample Efficiency: They reduce the amount of data needed to learn effective

representations by constraining the hypothesis space

• Generalization: They help models generalize better to unseen data by encoding

domain-specific knowledge

• Computational Efficiency: They can make learning more efficient by focusing on

relevant patterns

• Interpretability: They make model behavior more predictable and interpretable

The choice of inductive biases represents a fundamental trade-off in machine learn-

ing: stronger biases can lead to better performance with limited data but may limit

the model’s flexibility to learn unexpected patterns, while weaker biases provide more

flexibility but require larger datasets to achieve good generalization.

E.6.2 Inductive Biases in CNNs vs. Vision Transformers

CNNs incorporate several strong inductive biases that are well-suited for visual data:

Translation Equivariance: Convolutional layers ensure that if an object is translated

in the input image, the corresponding feature map is translated by the same amount.
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This is achieved through weight sharing across spatial locations, meaning the same

filter is applied at every position in the input.

Locality: The use of small, local receptive fields in convolutional kernels embeds

the assumption that nearby pixels are more likely to be related than distant ones. This

reflects the natural structure of images where local features (edges, textures) combine

to form larger structures.

Hierarchical Feature Learning: The layered structure of CNNs, combined with

pooling operations, creates an inductive bias toward learning hierarchical representa-

tions—from low-level features like edges in early layers to high-level semantic concepts

in deeper layers.

Scale Invariance: Through pooling operations and hierarchical processing, CNNs

develop some degree of scale invariance, allowing them to recognize objects at different

sizes.

In contrast, ViT has minimal built-in assumptions about image structure. The primary

vision-specific inductive biases in ViT are:

2D Position Embeddings: These provide the model with information about the

spatial arrangement of patches, but this spatial understanding must be learned rather

than being architecturally enforced.

Patch Extraction: The process of dividing images into patches introduces a weak

locality bias, as information within each patch is processed together, but relationships

between patches must be learned through attention.

Permutation Invariance: The self-attention mechanism is inherently permutation-

invariant, meaning the model must learn spatial relationships entirely from the position

embeddings and data.

This reduced inductive bias in ViT can be both an advantage and a limitation. On

one hand, it allows the model to learn more flexible representations and discover

patterns that might not conform to traditional assumptions about visual structure. On

the other hand, it requires substantially larger datasets to achieve good generalization,

as the model must learn spatial relationships, translation equivariance, and hierarchical

structure entirely from data.

The lack of inherent spatial structure understanding explains why ViT performs

poorly when trained from scratch on smaller datasets like ImageNet-1k but excels when

pretrained on large-scale datasets like JFT-300M. With sufficient data, the self-attention
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mechanism learns to understand spatial locality, translation properties, and hierarchical

relationships that are built into CNN architectures by design.

E.7 COMPARATIVE ANALYSIS AND IMPLICATIONS

The success of Vision Transformers has profound implications for computer vision

research and practice. The ability of pure attention-based models to match or exceed

CNN performance challenges the long-held assumption that convolutional inductive

biases are indispensable for visual tasks. This paradigm shift has opened new re-

search directions and inspired numerous follow-up works exploring hybrid architectures,

hierarchical Vision Transformers, and efficient attention mechanisms.

The computational characteristics of ViT differ significantly from CNNs. While CNNs

have quadratic complexity with respect to kernel size but linear complexity with respect

to input size, ViT has quadratic complexity with respect to the number of patches (and

thus input resolution). This makes ViT more suitable for moderate-resolution images but

potentially prohibitive for very high-resolution inputs without architectural modifications.

Furthermore, the global receptive field of ViT from the first layer enables better

modeling of long-range dependencies compared to CNNs, which build up their receptive

field gradually through multiple layers. This property is particularly beneficial for tasks

requiring understanding of global image context or relationships between distant image

regions.

The emergence of Vision Transformers has catalyzed a broader transformation in

computer vision, leading to the development of numerous variants and applications

across different visual tasks, from object detection and segmentation to video under-

standing and multimodal learning. This represents not just a new model architecture,

but a fundamental shift in how we approach visual representation learning.
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APÊNDICE F – RETRIEVAL AUGMENTED GENERATION

This appendix provides background information on Retrieval Augmented Generation

(RAG), a paradigm that combines retrieval-based and generation-based approaches

in language models. While not directly used in this thesis, it represents an important

contemporary development in AI systems.

F.1 OVERVIEW

Retrieval Augmented Generation (RAG) represents a paradigm that combines the

strengths of retrieval-based and generation-based approaches to address limitations of

purely parametric language models (LEWIS et al., 2020). While large language models

(LLMs) demonstrate impressive capabilities in generating coherent and contextually

relevant text, they face challenges including hallucination (generating plausible but

factually incorrect information), inability to access up-to-date information beyond their

training cutoff, and difficulty in attributing generated content to specific sources. RAG

addresses these limitations by augmenting the generation process with relevant infor-

mation retrieved from external knowledge sources.

F.2 ARCHITECTURAL OVERVIEW

The RAG framework consists of three primary components working in concert: a

retrieval system, a knowledge base, and a generation model. The process operates as

follows:

1. Query Encoding: The user’s input query is transformed into a dense vector

representation (embedding) using an encoder model.

2. Retrieval: The system searches a knowledge base to find the most relevant

documents or passages based on similarity between the query embedding and

document embeddings.

3. Augmentation: Retrieved documents are combined with the original query to form

an augmented context.



202

4. Generation: A language model generates a response conditioned on both the

original query and the retrieved context.

Formally, given a query 𝑞, the RAG model computes:

𝑝(𝑦|𝑞) =
∑︁

𝑑∈𝒟top-k

𝑝(𝑑|𝑞) · 𝑝(𝑦|𝑞, 𝑑) (F.1)

where 𝒟top-k represents the 𝑘 most relevant documents retrieved, 𝑝(𝑑|𝑞) is the re-

trieval probability, and 𝑝(𝑦|𝑞, 𝑑) is the generation probability conditioned on both query

and retrieved document.

F.3 EMBEDDINGS: DENSE REPRESENTATIONS FOR SEMANTIC SIMILARITY

Embeddings are dense, continuous vector representations that capture semantic

meaning of text, images, or other data modalities in a high-dimensional space. Unlike

sparse representations such as one-hot encoding or traditional bag-of-words models,

embeddings encode semantic relationships such that semantically similar items have

similar vector representations.

F.3.1 Word and Sentence Embeddings

Early embedding approaches like Word2Vec (MIKOLOV et al., 2013) and GloVe (PEN-

NINGTON; SOCHER; MANNING, 2014) learned distributed representations of individual

words where semantic and syntactic relationships are preserved through vector arith-

metic. For instance, the famous example: 𝑣⃗king − 𝑣⃗man + 𝑣⃗woman ≈ 𝑣⃗queen demonstrates

how embeddings capture semantic analogies.

Modern approaches generate contextualized embeddings where the representation

of a word depends on its context. Models like BERT (DEVLIN et al., 2018) produce

different embeddings for the same word in different sentences, capturing nuanced

meanings. Sentence and document embeddings extend this concept to encode entire

text passages into fixed-dimensional vectors, enabling semantic similarity comparisons

at higher levels of granularity (REIMERS; GUREVYCH, 2019).
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F.3.2 Computing Semantic Similarity

Given two text embeddings e1 and e2, similarity is typically measured using cosine

similarity:

sim(e1, e2) =
e1 · e2

‖e1‖‖e2‖
=

∑︀𝑑
𝑖=1 𝑒1,𝑖𝑒2,𝑖√︁∑︀𝑑

𝑖=1 𝑒
2
1,𝑖

√︁∑︀𝑑
𝑖=1 𝑒

2
2,𝑖

(F.2)

where 𝑑 is the dimensionality of the embedding space. Cosine similarity ranges from

-1 (completely dissimilar) to 1 (identical), with values close to 1 indicating high semantic

similarity.

Alternative distance metrics include Euclidean distance and dot product similarity,

each with different characteristics and computational properties. The choice of met-

ric can affect retrieval performance and is often determined empirically for specific

applications.

F.4 CHUNKING STRATEGIES FOR DOCUMENT PROCESSING

Chunking refers to the process of dividing large documents into smaller, semantically

coherent segments before embedding and indexing. This is crucial for several reasons:

• Context Window Limitations: Language models and embedding models have

maximum input length constraints (e.g., 512 tokens for many BERT variants).

• Retrieval Granularity: Smaller chunks enable more precise retrieval of relevant

information rather than entire documents.

• Generation Quality: Providing focused, relevant context improves generation

quality and reduces the likelihood of the model being distracted by irrelevant

information.

F.4.1 Chunking Methods

Fixed-Size Chunking: The simplest approach divides text into chunks of fixed

length (e.g., 512 tokens) with optional overlap between consecutive chunks. While

computationally efficient, this method may split semantically coherent units.
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Sentence-Based Chunking: This approach respects sentence boundaries, ensur-

ing each chunk contains complete sentences. Multiple sentences can be grouped until

a maximum length is reached, preserving semantic coherence.

Paragraph or Section-Based Chunking: For structured documents, natural divi-

sions like paragraphs, sections, or subsections provide semantically meaningful chunks

that preserve document structure.

Semantic Chunking: Advanced methods use natural language processing tech-

niques to identify topic shifts or semantic boundaries, creating chunks that correspond

to coherent ideas or concepts (HEARST, 1997).

Recursive Chunking: Hierarchical approaches create chunks at multiple granulari-

ties, enabling retrieval at different levels of detail depending on the query.

Effective chunking often requires domain-specific considerations and may involve

hybrid approaches that combine multiple strategies. Chunk overlap (e.g., 50-100 to-

kens) between consecutive segments helps preserve context that might be split across

boundaries.

F.5 VECTOR DATABASES FOR EFFICIENT SIMILARITY SEARCH

Vector databases (also called vector stores or vector search engines) are special-

ized data management systems optimized for storing, indexing, and querying high-

dimensional vector embeddings. Unlike traditional relational databases optimized for

exact matches and structured queries, vector databases excel at approximate nearest

neighbor (ANN) search in high-dimensional spaces.

F.5.1 The Curse of Dimensionality

Exact nearest neighbor search in high-dimensional spaces suffers from the curse

of dimensionality: as dimensionality increases, the ratio between the distances to

the nearest and farthest points approaches 1, making distance-based similarity less

meaningful. Additionally, exact search requires comparing the query vector against all

stored vectors, resulting in 𝑂(𝑛) complexity that becomes prohibitive for large-scale

applications (WEBER; SCHEK; BLOTT, 1998).
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F.5.2 Approximate Nearest Neighbor Algorithms

Vector databases employ sophisticated indexing structures and approximate search

algorithms to achieve sub-linear query times while maintaining high recall:

Locality-Sensitive Hashing (LSH): LSH uses hash functions that map similar

vectors to the same hash buckets with high probability, enabling fast approximate search

(ANDONI; INDYK, 2008).

Hierarchical Navigable Small World (HNSW): HNSW constructs a multi-layer

graph structure where each layer contains edges connecting nearby vectors. Search

traverses from coarse to fine layers, achieving excellent performance with logarithmic

complexity (MALKOV; YASHUNIN, 2018).

Product Quantization (PQ): PQ compresses vectors by partitioning the embedding

space and quantizing each subspace separately, reducing memory footprint while

enabling fast distance computation (JÉGOU; DOUZE; SCHMID, 2010).

Inverted File Index (IVF): IVF partitions the vector space using clustering (e.g.,

k-means) and maintains an inverted index mapping cluster centroids to vectors, enabling

fast approximate search by examining only nearby clusters.

F.5.3 Popular Vector Database Systems

Modern vector database implementations include Faiss (JOHNSON; DOUZE; JÉGOU,

2019), Pinecone, Weaviate, Milvus, and Qdrant, each offering different trade-offs be-

tween query speed, indexing time, memory consumption, and accuracy. Many provide:

• Hybrid search combining dense vector similarity with traditional keyword search

• Filtering capabilities to restrict search to subsets based on metadata

• Horizontal scalability for handling billions of vectors

• Integration with popular machine learning frameworks
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F.6 RAG APPLICATIONS AND VARIANTS

RAG has found applications across diverse domains including question answering,

conversational AI, fact-checking, and domain-specific knowledge systems. Variants of

RAG have been proposed to address specific challenges:

Self-RAG (ASAI et al., 2023) introduces reflection tokens that enable the model to

critique and refine its own retrieval and generation decisions.

Iterative RAG performs multiple retrieval-generation cycles, using initial generated

content to refine subsequent retrieval queries.

HyDE (Hypothetical Document Embeddings) (GAO et al., 2022) generates a hypo-

thetical answer to the query, embeds it, and uses it for retrieval, often improving retrieval

quality for complex queries.

The integration of RAG with large language models represents a significant ad-

vancement in building AI systems that can access, verify, and cite external knowledge,

addressing key limitations of purely parametric models while maintaining the fluency

and reasoning capabilities of modern language models.


	Folha de rosto
	
	Agradecimentos
	Resumo
	Abstract
	List of Figures
	List of Frames
	List of Tables
	Contents
	Introduction
	Motivation
	Problem Statement
	Objectives
	Contributions

	Theoretical Background
	Artificial Intelligence
	Symbolic Approach
	Connectionist Approach

	Machine learning
	Learning Paradigms
	Supervised Learning
	Unsupervised Learning
	Semi-Supervised Learning

	Model Complexity and Generalization
	Overfitting and Underfitting
	Regularization Techniques
	Cross-Validation

	Neurons and Artificial Neural Networks
	Mathematical Foundation of Artificial Neurons
	The Learning Parameters of a Neural Network: Weights and Biases
	Activation Functions
	Multi-layer Networks and Universal Approximation
	Network Connectivity and Information Flow
	Backpropagation and Parameter Learning


	Deep Learning
	Key Differences from Traditional Machine Learning
	Feature Engineering and Representation Learning
	Data Requirements and Scalability
	Computational Requirements
	Model Interpretability and Explainable AI

	Training Deep Learning Models
	Loss Functions
	Optimization Algorithms

	Data Representation and Encoding
	One-Hot Encoding

	Evaluation Metrics for Deep Learning Models
	Classification Metrics
	Considerations for Metric Selection

	Deep Learning in Practice
	Zero-Shot and Few-Shot Learning

	Computer Vision
	Image Segmentation
	Image Classification

	Convolutional Neural Networks
	Mathematical Foundations of Convolutional Operations
	Core Architectural Components
	Convolutional Layers
	Pooling Layers
	Normalization Techniques

	Architectural Innovations and Deep Networks
	Historical Evolution and Landmark Architectures
	Residual Networks and Skip Connections
	Advanced Architectural Patterns

	Regularization and Training Techniques

	Vision Transformers
	Encoder-Decoder Architectures and Attention
	Vision Transformers: Overview
	Core Architecture
	Inductive Biases and Data Requirements
	Application in This Thesis


	Multi-task Learning
	Architectural Strategies and Taxonomy
	Benefits and Flexibility
	Practical Considerations and Challenges
	Beyond the Standard Setting


	Related Works
	Supervised Training of a Simple Digital Assistant for a Free Crop Clinic
	Using Deep Learning for Image-based Plant Disease Detection
	Multi-label Learning for Crop Leaf Diseases Recognition and Severity Estimation
	Factors Influencing the Use of Deep Learning for Plant Disease Recognition
	Real-Time Grape Leaf Disease Detection Using an Improved CNN
	Deep Learning for Fruit Detection in Citrus Orchards
	Grape Cluster Detection and Segmentation for Preprocessing
	State of the Art in Plant Disease Detection Systems
	Comparative Analysis: Single-Task vs Multi-Task Approaches

	Proposed Approach and Implementation
	System Architecture Overview
	Core Microservices Architecture
	Processing Workflow and Service Interactions

	Dataset Construction and Labeling
	Dataset Summary and Characteristics
	PlantVillage Dataset
	MangoLeafBD Dataset
	Cassava Leaf Disease Dataset
	PlantDoc Dataset
	Plant Disease Recognition Dataset
	Apple Disease Dataset (D-KAP)
	Plant Pathology Challenge 2020 Dataset
	DiaMOS Plant Dataset
	PDDB (Digipathos) Dataset

	Additional Datasets for Binary Leaf Classification
	Positive Examples (Leaf Images)
	Negative Examples (Non-Leaf Images)

	Source Dataset Integration
	Multi-Modal RAG-Enhanced Knowledge Augmentation
	Symptom Standardization and Semantic Harmonization
	Visual Feature Integration
	Dataset Integration for Model Training

	Image Pre-processing Pipeline
	Image Standardization
	Background Removal and Segmentation
	Segmentation Techniques for Training
	Challenges with LeafMask and MaskRCNN
	Challenges During Real-World Inference
	Foundation Model Segmentation for Inference
	Limitations and Testing Approach


	Multi-task Model Design
	Architecture Overview
	Design Rationale and Theoretical Considerations
	Multi-task Learning Framework
	Task Dependency Architecture
	Task-Specific Head Architectures
	Binary Classification Head Design
	Multi-Class Classification Head Design
	Complex Multi-Class Head Architecture
	Multi-Label Classification Head Design

	Loss Function Design
	Model Interpretability Design
	Scalability and Extensibility Considerations

	Implementation
	Implementation Framework
	Experimental Setup
	Training Methodology Evolution
	Pre-computed Embeddings: Mathematical Foundation and Implementation
	Image-based Training: Theoretical Motivation and Implementation

	Data Augmentation and Preprocessing Implementation
	Sequential Training Protocol
	Advanced Optimization Experiments
	Plant Name Override Optimization: Theoretical Framework and Implementation

	Model Interpretability Implementation
	Implementation Insights and Methodological Contributions


	Results
	System Performance Evaluation
	Hierarchical Task Performance Analysis
	Foundation Tasks Performance
	Taxonomic Classification Performance
	Pathological Classification Results
	Symptom Detection Performance

	Comprehensive Performance Summary

	Training Methodology Comparative Analysis
	Pre-computed Embeddings Methodology Evaluation
	Image-based Training Methodology Validation

	Architecture Validation and Design Effectiveness
	Backbone Architecture Selection Validation
	Task Dependency Architecture Effectiveness

	Model Interpretability and Expert Validation
	Platform Deployment and Accessibility
	End-User Platform Capabilities
	System Builder Platform Integration

	Performance Validation and Statistical Analysis
	Platform Limitations and Real-World Performance Challenges
	Performance Discrepancy Between Training and Deployment
	Leaf Classification Task Overfitting
	Dataset Processing Pipeline Robustness
	Implications for Agricultural AI Development
	Experimental Optimization Approaches
	Failure Analysis and Methodological Insights


	Supplementary Performance Analysis

	Conclusion
	Design Limitations and Research Constraints
	Performance Discrepancy Between Training and Real-World Deployment
	Dataset Processing Pipeline Robustness
	Architectural and Methodological Constraints
	Failed Optimization Experiments

	Future Works
	Robust Evaluation and Validation Frameworks
	Enhanced Dataset Processing and Robustness
	Alternative Task Dependency Structures
	Advanced Optimization and Representation Learning
	Extended Scope and Multi-Modal Integration
	Enhanced Interpretability and Attention Mechanisms
	Deployment Optimization and Mobile Integration


	Bibliography
	Dataset Information
	Dataset Overview
	Health Status Distribution

	Disease Distribution
	Plant Species Distribution
	Symptom Analysis
	Symptom Distribution Statistics
	Top 15 Most Common Symptoms

	Pathogen Analysis
	Cross-Analysis Findings
	Top Plant-Pathogen Combinations
	Disease-Specific Symptom Patterns


	Model Metrics
	Binary Health Classification
	Leaf Detection Performance
	Plant Species Classification
	Pathogen Type Classification
	Disease Name Classification
	Multi-Label Symptom Detection

	Zero-Shot and Few-Shot Learning
	Zero-Shot Learning
	Problem Formulation
	Methodology

	Few-Shot Learning
	Meta-Learning Approaches
	Applications in Vision and Language Models

	Challenges and Future Directions

	Encoder-Decoder Architectures in Detail
	Encoder-Decoder Architectures
	Architectural Overview and Motivation
	Historical Development
	LSTM and GRU Cells

	Information Bottleneck Problem

	Attention Mechanism
	Bahdanau Attention (Additive Attention)
	Luong Attention (Multiplicative Attention)
	Impact and Applications


	Vision Transformers: Detailed Architecture
	Transformer Architecture Origins
	Self-Attention Mechanism
	Stand-Alone Self-Attention Models
	Vision Transformer Architecture
	Patch-Based Image Processing
	Transformer Encoder Processing
	Classification and Output

	Performance and Scaling Properties
	Inductive Biases and Design Considerations
	Understanding Inductive Biases
	Inductive Biases in CNNs vs. Vision Transformers

	Comparative Analysis and Implications

	Retrieval Augmented Generation
	Overview
	Architectural Overview
	Embeddings: Dense Representations for Semantic Similarity
	Word and Sentence Embeddings
	Computing Semantic Similarity

	Chunking Strategies for Document Processing
	Chunking Methods

	Vector Databases for Efficient Similarity Search
	The Curse of Dimensionality
	Approximate Nearest Neighbor Algorithms
	Popular Vector Database Systems

	RAG Applications and Variants


