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RESUMO

O presente trabalho busca entender como técnicas mais recentes de inteligên-

cia artificial generativa—como os Modelos de Linguagem de Grande Escala (LLMs) e

a Geração Aumentada por Recuperação (RAG) podem ser aplicadas no diagnóstico

de doenças em plantas. O estudo envolve a criação do LIMMO, um agente conver-

sacional multimodal pensado para ajudar agricultores familiares por meio de conver-

sas em linguagem natural e também pelo envio de imagens. Combinando modelos

avançados de linguagem, análise de imagem com redes neurais e recuperação de in-

formações especializadas, o sistema tenta lidar com alguns dos principais desafios do

campo, como a falta de acesso a dados confiáveis e a dificuldade de conseguir apoio

técnico em tempo real. A arquitetura final do sistema integra múltiplas fontes de con-

hecimento, incluindo uma base de dados vetoriais local, APIs de busca na web (como

a Tavily) e a API da Embrapa para acesso a dados agrícolas especializados. Para

análise de imagens, o sistema utiliza uma abordagem redundante, com a API CultivAI

como método primário e o processamento baseado em GPT como sistema de backup

quando a extração principal falha ou é questionada pelo usuário. Esta arquitetura mod-

ular com Protocolos de Contexto de Modelo (MCPs) demonstrou ser mais eficiente

que as implementações anteriores baseadas em sistemas multi-agentes. A metodolo-

gia de avaliação utilizou 100 perguntas sintéticas, analisando precisão, consistência

factual, qualidade da recuperação e utilidade das respostas. Os resultados mostram

que o sistema RAG com acesso a fontes externas supera significativamente as abor-

dagens que dependem apenas de conhecimento local, particularmente em consultas

complexas ou fora do escopo imediato da base de conhecimento. Para o futuro, o tra-

balho aponta caminhos que incluem expansão das fontes de dados, testes massivos

em condições reais, desenvolvimento de um sistema de rastreamento de doenças, e

mecanismos para diferenciação de ferramentas generalistas como ChatGPT, Gemini

ou Perplexity AI em consultas fora do escopo especializado.

Palavras-chaves: Inteligência Artificial Generativa; Modelos de Linguagem de Grande

Escala; Geração Aumentada por Recuperação; Diagnóstico de Doenças em Plantas;

Agente de IA Multimodal; Agricultura Familiar; Tecnologia Agrícola; Análise de Ima-

gens; Recuperação de Conhecimento; Sistemas Conversacionais



ABSTRACT

This research examines how recent advances in generative artificial intelligence,

particularly Large Language Models and Retrieval-Augmented Generation (RAG), can

be applied to plant disease diagnosis. It introduces LIMMO, a multimodal conversa-

tional agent designed to assist smallholder farmers through natural language conver-

sations and image-based interactions. By combining modern language models, image

analysis using deep learning, and smart information retrieval from specialized sources,

the system addresses key challenges in agricultural environments, such as limited ac-

cess to technical support and reliable data.

The final system architecture integrates multiple knowledge sources, including a

local vector database, web search capabilities through the Tavily API, and specialized

agricultural data from the Embrapa API. For image analysis, the system employs a

redundant approach, using the CultivAI API as the primary method while seamlessly

falling back to GPT-based processing when primary extraction fails or is questioned by

the user. This modular architecture with specialized Model Context Protocols (MCPs)

proved more efficient than earlier implementations based on multi-agent systems.

The evaluation methodology utilized 100 synthetic questions, analyzing accuracy,

factual consistency, retrieval quality, and response utility. Results demonstrate that the

RAG system with access to external sources significantly outperforms approaches re-

lying solely on local knowledge, particularly for complex queries or those outside the

immediate scope of the knowledge base. The dissertation concludes by outlining future

directions, including expanding data sources, conducting large-scale real-world testing,

developing a disease tracking system, and creating mechanisms to differentiate from

generalist tools like ChatGPT, Gemini, or Perplexity AI when handling queries outside

the specialized scope.

Keywords: Generative Artificial Intelligence; Large Language Models; Retrieval-Augmented

Generation; Plant Disease Diagnosis; Multimodal AI Agent; Smallholder Farmers; Agri-

cultural Technology; Image Analysis; Knowledge Retrieval; Conversational Systems



LIST OF FIGURES

Figure 1 – First prototype architecture diagram implemented in n8n. . . . . . . 61

Figure 2 – Supervisor component architecture diagram. . . . . . . . . . . . . . 63

Figure 3 – Final architecture data flow diagram. . . . . . . . . . . . . . . . . . . 65

Figure 4 – Semantic-only RAG pipeline . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 5 – Hybrid RAG pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 6 – Agentic RAG pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 69



LIST OF FRAMES

Frame 1 – Comparison of Traditional IR, Generative Models, and RAG-Based

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



LIST OF TABLES

Table 1 – Comparative Performance of Deep Learning Models for Plant Disease

Classification on PlantVillage Tomato Leaf Dataset . . . . . . . . . . . 50

Table 2 – Performance of CNN and Hybrid Architectures in Plant Disease De-

tection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 3 – Comparative RAG evaluation results on 100 synthetic questions using

RAGAS metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



LISTA DE ABREVIATURAS E SIGLAS

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers

CNN Convolutional Neural Network

CoT Chain-of-Thoughts

ELISA Enzyme-Linked Immunosorbent Assay

FAISS Facebook AI Similarity Search

GNN Graph Neural Networks

GPT Generative Pre-trained Transformer

LAMP Loop-Mediated Isothermal Amplification

LLM Large Language Model

LRM Large Reasoning Model

LSTM Long Short-Term Memory

MCP Model Context Protocol

MLP Multi-Layer Perceptrons

NLP Natural Language Processing

OCR Optical Character Recognition

PCR Polymerase Chain Reaction

qPCR Quantitative Polymerase Chain Reaction

RAG Retrieval-Augmented Generation

RAGAS Retrieval-Augmented Generation Assessment Suite

RNN Recurrent Neural Network



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 STRUCTURE OF THE DISSERTATION . . . . . . . . . . . . . . . . . 21

2 THE EVOLUTION OF GENERATIVE AI AND NATURAL LANGUAGE

INTERFACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 NEURAL NETWORKS: A BRIEF FOUNDATION . . . . . . . . . . . . 22

2.3 THE TRANSFORMER REVOLUTION . . . . . . . . . . . . . . . . . . 23

2.4 IMPLICATIONS FOR AGRICULTURAL DIAGNOSTIC SYSTEMS . . 24

2.5 FROM GPT-2 TO GEMINI: A TIMELINE OF MODERN LLMS . . . . . 24

2.6 BENCHMARKING PROGRESS: MMLU, BIG-BENCH, AND BEYOND 28

2.7 FROM CHAIN-OF-THOUGHT TO REASONING MODELS: HOW OUR

NOTION OF “INTELLIGENCE” IN LLMS KEEPS SHIFTING . . . . . 29

2.7.1 Why this matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.2 The chain-of-thought era . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7.3 Large Reasoning Models . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7.4 So what counts as intelligence now? . . . . . . . . . . . . . . . . . 31

2.8 ECOSYSTEM OF TOOLS AND DEVELOPMENT PARADIGMS . . . 31

2.8.1 LangChain and LangGraph . . . . . . . . . . . . . . . . . . . . . . . 31

2.8.2 N8N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8.3 Retrieval-Augmented Generation . . . . . . . . . . . . . . . . . . . 33

2.8.4 Agents and Natural Language Interfaces . . . . . . . . . . . . . . 34

2.9 NATURAL LANGUAGE AS A UNIVERSAL INTERFACE FOR DATA . 35

2.10 EMERGING TRENDS . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.11 ADAPTATION OF THIS PROJECT . . . . . . . . . . . . . . . . . . . 38

2.12 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



3.1 LARGE LANGUAGE MODELS IN AGRICULTURE . . . . . . . . . . 40

3.1.1 Current Research on the Use of LLMs in Agriculture . . . . . . . 40

3.1.2 NLP Applications in Agricultural Data Processing and Analysis . 42

3.1.3 Connecting to This Dissertation . . . . . . . . . . . . . . . . . . . . 44

3.2 RAG FOR INFORMATION RETRIEVAL . . . . . . . . . . . . . . . . . 44

3.2.1 Key Works on RAG and Its Application in Domain-Specific Knowl-

edge Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Comparative Analysis of RAG-Based Systems vs. Traditional Meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 DEEP LEARNING MODELS FOR DISEASE CLASSIFICATION . . . 47

3.3.1 Studies on Deep Learning Models in Plant Disease Classification 48

3.3.1.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1.2 Attention-Enhanced Architectures . . . . . . . . . . . . . . . . . . . . 49

3.3.1.3 Hybrid CNN–GNN and Graph-Based Models . . . . . . . . . . . . . . 49

3.3.1.4 Lightweight and Edge-Deployable Models . . . . . . . . . . . . . . . 49

3.3.1.5 Transfer Learning, Data Augmentation, and Practical Challenges . . . 50

3.3.2 Studies on Deep Learning Models in Tomato Leaf Disease Clas-

sification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 Application of CNNs and Other Architectures in Agricultural Di-

agnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 USE OF AI ASSISTANTS IN DIAGNOSIS SYSTEMS . . . . . . . . . 52

3.5 PLANT DISEASE DIAGNOSIS: CONCEPTS AND PRACTICES . . . 54

3.6 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 FINAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . 57

4 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 PROPOSED METHODOLOGY . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Hybrid System: RAG and Deep Learning . . . . . . . . . . . . . . . 58

4.1.2 Reasoning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.3 Multi-modal Capabilities . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.4 Framework Selection: LangChain, LangGraph . . . . . . . . . . . 59

4.1.4.1 CrewAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.4.2 Phidata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.4.3 LangChain & LangGraph . . . . . . . . . . . . . . . . . . . . . . . . . 59



4.1.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 SYSTEM DESIGN AND ITERATIVE PROTOTYPING . . . . . . . . . 60

4.2.1 First Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1.1 User Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1.2 Input Type Determination . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1.3 Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1.4 Merging Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1.5 Mapping Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1.6 Agent Reasoning and Memory . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1.7 Knowledge Base and Embeddings . . . . . . . . . . . . . . . . . . . 62

4.2.1.8 Language Model Integration . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1.9 Final Response and Output Options . . . . . . . . . . . . . . . . . . . 63

4.2.2 Second Prototype: Multi-Agent Architecture . . . . . . . . . . . . 63

4.2.3 Final Prototype: Single-Agent RAG-Enhanced Architecture . . . 64

4.3 AI FRAMEWORKS AND DESIGN DECISIONS . . . . . . . . . . . . 66

4.4 SYSTEM ARCHITECTURE OVERVIEW . . . . . . . . . . . . . . . . 66

4.4.1 High-Level Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 COMPONENT IMPLEMENTATION DETAILS . . . . . . . . . . . . . . 67

4.5.1 Telegram Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.2 AI Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.3 Evolution of RAG Approaches . . . . . . . . . . . . . . . . . . . . . 67

4.5.3.1 Semantic-Only RAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.3.2 Hybrid Semantic and Keyword RAG . . . . . . . . . . . . . . . . . . . 68

4.5.4 Agentic RAG Implementation . . . . . . . . . . . . . . . . . . . . . 68

4.5.4.1 Embedding Model for Retrieval . . . . . . . . . . . . . . . . . . . . . . 70

4.5.4.2 Indexing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.4.3 Response Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.5 Synthetic Dataset Generation for Evaluation . . . . . . . . . . . . 71

4.5.6 RAGAS Evaluation Framework . . . . . . . . . . . . . . . . . . . . . 72

4.5.6.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.7 Model Context Protocols . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.7.1 Definition and Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.7.2 Core Architecture and Mechanism . . . . . . . . . . . . . . . . . . . . 74



4.5.7.3 MCP as an Extension of LLM Capabilities . . . . . . . . . . . . . . . 74

4.5.7.4 Relevance for Our System . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.8 Database Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.9 Cloud and Containerization . . . . . . . . . . . . . . . . . . . . . . 76

4.6 DETAILED DESCRIPTION OF RAG COMPONENT . . . . . . . . . . 76

4.6.1 Motivation and Design Choices . . . . . . . . . . . . . . . . . . . . 76

4.6.2 Architecture and Workflow . . . . . . . . . . . . . . . . . . . . . . . 76

4.6.3 Embedding and Storage Details . . . . . . . . . . . . . . . . . . . . 78

4.6.4 Future Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 DETAILED DESCRIPTION OF IMAGE DIAGNOSIS MCP . . . . . . . 78

4.7.1 Model Architecture and Dataset . . . . . . . . . . . . . . . . . . . . 78

4.7.2 Integration with Text-Based Diagnosis . . . . . . . . . . . . . . . . 78

4.7.3 Limitations and Potential Biases . . . . . . . . . . . . . . . . . . . 79

4.7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.8 MEMORY AND CONTEXTUAL REASONING . . . . . . . . . . . . . 79

4.9 SECURITY AND PRIVACY CONSIDERATIONS . . . . . . . . . . . . 79

4.10 LESSONS LEARNED AND CHALLENGES . . . . . . . . . . . . . . . 80

4.11 CHAPTER CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . 80

5 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . 81

5.1 FRAMEWORK SELECTION RESULTS . . . . . . . . . . . . . . . . . 81

5.2 PROTOTYPE ITERATIONS AND IMPROVEMENTS . . . . . . . . . . 81

5.2.1 First Prototype: Semantic-Only RAG . . . . . . . . . . . . . . . . . 81

5.2.2 Second Prototype: Hybrid RAG . . . . . . . . . . . . . . . . . . . . 82

5.2.3 Final Prototype: Agentic RAG with MCPs . . . . . . . . . . . . . . 82

5.3 QUANTITATIVE RESULTS . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 RAG Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.2 Accuracy of Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.3 Response Time and Resource Utilization . . . . . . . . . . . . . . 84

5.4 QUALITATIVE FEEDBACK . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.1 RAG Approach Effectiveness . . . . . . . . . . . . . . . . . . . . . 85

5.5.2 Architectural Trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



5.6 KEY INSIGHTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 SUMMARY OF CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . 89

6.2 KEY FINDINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.1 RAG Implementation Insights . . . . . . . . . . . . . . . . . . . . . 90

6.2.2 Architectural Findings . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

APÊNDICE A – BOOKS AND REFERENCE MATERIALS . . . . . 102

APÊNDICE B – AGENT TEAMS PROMPTS . . . . . . . . . . . . . 104

APÊNDICE C – RAG Q&A DATASET . . . . . . . . . . . . . . . . . 108



17

1 INTRODUCTION

1.1 MOTIVATION

Agriculture remains the foundation of global food security, yet it is constantly threat-

ened by plant diseases and pests. In Brazil, one of the world’s agricultural power-

houses, the impact of these challenges is particularly severe, affecting smallholder

farmers who produce over 70% of the nation’s food supply (IBGE, 2017). Despite their

vital role, these farmers often lack timely access to reliable plant health diagnostics,

leading to delayed interventions, increased use of pesticides, and substantial economic

losses.

At the same time, the rapid advances in AI, particularly in Generative AI and Large

Language Models (LLMs), have opened unprecedented opportunities to bridge this

knowledge gap. The emergence of Retrieval-Augmented Generation (RAG) frame-

works, combined with deep learning models for image analysis, enables the develop-

ment of systems capable of understanding natural language queries, analyzing visual

symptoms, and providing expert-level guidance almost instantly. These capabilities can

empower farmers and agronomists to make faster, more informed decisions, potentially

transforming agricultural diagnostics from a reactive to a proactive process.

While traditional AI approaches in agriculture have focused on either image recog-

nition or text-based interactions separately, the integration of multimodal capabilities

through Model Context Protocols (MCPs) offers a promising path forward. By combin-

ing the visual analysis strengths of Convolutional Neural Networks (CNNs) with the

contextual understanding of LLMs, modern systems can now mimic the holistic diag-

nostic approach of human experts, considering multiple sources of evidence before

reaching conclusions.

However, the adoption of AI in agriculture faces its own set of challenges. Diagnostic

tools must handle diverse field conditions, interpret multimodal data accurately, and

deliver interpretable, actionable insights that earn user trust. This dissertation is driven

by the vision of creating an accessible, robust, and intelligent assistant capable of

addressing these challenges and extending expert support to those who need it most.
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1.2 PROBLEM STATEMENT

While image-based plant disease recognition and AI-driven advisory tools have

shown promising results in controlled environments, several critical gaps remain be-

fore they can be deployed effectively in real-world agricultural contexts:

1. Narrow Approaches to Diagnosis: Current systems often focus on narrow tasks,

such as single-disease classification or symptom detection, neglecting the com-

plex reasoning and context integration required for accurate diagnosis and treat-

ment recommendations. These narrow approaches miss opportunities for cross-

modal validation and complementary analysis.

2. Limited Adaptability to Field Conditions: Many models are trained on laboratory-

grade images or curated datasets that do not reflect the variability in lighting,

backgrounds, and symptom manifestations encountered in actual field scenarios.

The resulting performance gap undermines their practical utility precisely where

they are needed most.

3. Lack of Integration Between Modalities: Few solutions seamlessly combine

text-based symptom descriptions with image analysis, limiting their ability to re-

flect the real communication flow between farmers and experts. This modality gap

represents a missed opportunity to leverage complementary information sources

for more robust diagnostics.

4. Hallucinations and Factual Inconsistency: Generative AI systems, while pow-

erful, are prone to producing plausible-sounding but factually incorrect informa-

tion, a critical risk in agricultural contexts where incorrect advice can lead to sig-

nificant economic and environmental consequences.

5. User Experience: Existing tools are often designed for researchers or technical

users, failing to consider the usability requirements of farmers working in diverse

and resource-limited environments. The resulting adoption barriers limit the real-

world impact of potentially valuable technologies.

By addressing these challenges, this research seeks to design, implement, and

evaluate a conversational AI system that integrates RAG, multimodal inputs, and a
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modular architecture to provide reliable, explainable, and user-friendly plant disease

diagnostics.

1.3 OBJECTIVES

The main objective of this dissertation is to design, implement, and evaluate a pro-

totype of an intelligent conversational agent capable of assisting in the diagnosis of

plant diseases through multimodal interactions. To achieve this overarching goal, the

following specific objectives are pursued:

1. Design and Implement a Hybrid RAG-Enhanced Architecture: Develop an

iterative prototyping methodology to explore different architectural approaches

for plant disease diagnostics, culminating in a streamlined single-agent design

enhanced with retrieval-augmented generation.

2. Enable Multimodal Input Processing and Analysis: Create a system capable

of accepting and analyzing text, image, and audio inputs, with specialized mod-

ular components (MCPs) handling each modality while maintaining a coherent

user experience.

3. Combine Convolutional Neural Networks with RAG: Integrate deep learning-

based image analysis with retrieval-grounded language generation, by extracting

features from images and using them as input to the RAG, creating a diagnos-

tic process that leverages both visual pattern recognition and domain-specific

knowledge.

4. Optimize for Practical Performance Metrics: Balance technical sophistication

with practical considerations like response time, maintenance complexity, and

diagnostic accuracy to ensure the system meets real-world agricultural needs.

5. Evaluate System Effectiveness and User Experience: Assess the system through

both quantitative benchmarks (accuracy, response time) and qualitative feedback

from domain experts, focusing on diagnostic reliability and interface usability.
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By addressing these objectives, this dissertation aims to contribute a robust, user-

centered solution that brings advanced AI capabilities to the field, supporting farmers

and agricultural professionals in making more timely and informed decisions.

1.4 CONTRIBUTIONS

This dissertation offers several key contributions to the fields of agricultural diag-

nostics, computer vision, and conversational AI:

1. A Novel Modular Architecture for Plant Disease Diagnostics: The develop-

ment of a streamlined, single-agent architecture augmented with RAG and mod-

ular components (MCPs) that balances technical sophistication with operational

maintainability, representing a significant advancement over both simple RAG

workflows and complex multi-agent systems.

2. Systematic Comparison of Architectural Approaches: An empirical evalua-

tion of different system designs, from basic RAG pipelines to multi-agent orches-

tration and finally to the optimized hybrid approach, providing valuable insights

on the trade-offs between complexity, performance, and maintainability in agri-

cultural AI systems.

3. Integration of CNN-Based Visual Analysis with RAG: A practical implemen-

tation demonstrating how CNNs for image analysis can be effectively combined

with retrieval-augmented generation, reducing hallucinations while maintaining

response quality and diagnostic accuracy.

4. A Multimodal Agricultural Diagnostic System: The creation of a functional

prototype that processes text, image, and audio inputs through a unified frame-

work, closely mimicking the natural diagnostic workflow of human agronomists

while maintaining system coherence.

5. Empirical Insights on Performance and Usability: Quantitative and qualitative

evaluations demonstrating the progressive improvements in diagnostic accuracy

(from 60% to over 90%), response times, and user satisfaction across system

iterations.
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Together, these contributions advance the state of the art in applying AI for plant

health monitoring, bridging technical innovations and practical needs to empower farm-

ers and agricultural professionals.

1.5 STRUCTURE OF THE DISSERTATION

This dissertation is structured as follows:

• Chapter 1 introduces the context, motivations, and objectives of this work.

• Chapter 2 presents a historical overview of the evolution of Generative AI tools

and their impact on research and prototyping.

• Chapter 3 reviews related work in LLM applications for agriculture, plant disease

diagnosis using deep learning, and AI-powered diagnostic systems.

• Chapter 4 describes the proposed methodology, including the system design,

model training, and technologies used.

• Chapter 5 presents and discusses the results of the developed prototype.

• Chapter 6 concludes the dissertation, summarizing key findings and proposing

directions for future research.
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2 THE EVOLUTION OF GENERATIVE AI AND NATURAL LANGUAGE INTER-

FACES

2.1 INTRODUCTION

AI has rapidly evolved over the past decades, fundamentally transforming the way

we process and interact with information. From early rule-based systems to modern

deep learning techniques, AI has expanded its reach across numerous domains, in-

cluding healthcare, finance, and agriculture. One of the most impactful advancements

has been the emergence of models capable of understanding and generating natu-

ral language, enabling machines to communicate with humans in increasingly intuitive

ways.

For the agricultural sector, these advancements offer unique opportunities. Farm-

ers and agronomists can now access intelligent systems that help identify plant dis-

eases, suggest treatments, and provide real-time decision support, all through simple

conversations in natural language or by sending images. However, to appreciate the

capabilities and limitations of these modern systems, it is essential to understand the

technological foundations that made them possible.

This chapter introduces the core concepts of AI and machine learning, briefly dis-

cusses the evolution of neural networks, and explains how the introduction of trans-

formers and LLMs revolutionized natural language understanding and generation. Fi-

nally, it highlights how these innovations set the stage for the development of conver-

sational diagnostic systems in agriculture.

2.2 NEURAL NETWORKS: A BRIEF FOUNDATION

Before discussing transformers, it is important to review the neural network archi-

tectures that paved the way for them. Artificial Neural Networks (ANNs), such as Multi-

Layer Perceptrons (MLPs), consist of interconnected layers of neurons trained using

gradient descent and backpropagation. While MLPs form the conceptual basis for all

subsequent deep learning models, they lack built-in mechanisms to handle structured

data like sequences or images effectively.

Convolutional Neural Networks introduced convolutional filters to capture local and
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hierarchical patterns in spatial data, revolutionizing computer vision tasks. For se-

quential data, Recurrent Neural Networks (RNNs), including Long Short-Term Memory

(LSTM) networks, were developed to model temporal dependencies by incorporating

feedback loops. However, RNNs face major challenges, including vanishing and ex-

ploding gradients, which make learning long-range dependencies difficult (PASCANU;

MIKOLOV; BENGIO, 2013). Although LSTMs mitigate some of these issues through gat-

ing mechanisms (HOCHREITER; SCHMIDHUBER, 1997), their sequential nature inherently

limits parallelization and efficiency.

More recently, architectures such as Vision Transformers (ViTs) have demonstrated

the versatility of transformer-based models, extending their use beyond text to com-

puter vision applications (DOSOVITSKIY et al., 2021).

2.3 THE TRANSFORMER REVOLUTION

Transformers, introduced by Vaswani et al. (2017), addressed the limitations of

RNNs by eliminating recurrence and relying entirely on a self-attention mechanism.

At the heart of the transformer lies the Scaled Dot-Product Attention mechanism.

Given a set of queries 𝑄, keys 𝐾, and values 𝑉 , the attention function computes an

output as:

Attention(𝑄,𝐾, 𝑉 ) = softmax

(︂
𝑄𝐾⊤
√
𝑑𝑘

)︂
𝑉

Here, 𝑑𝑘 is the dimensionality of the key vectors. The computation proceeds in three

main steps:

1. Similarity Calculation: The dot product between each query and all keys (𝑄𝐾⊤)

measures the similarity or compatibility between the query and each key.

2. Scaling: The result is divided by
√
𝑑𝑘 to prevent the dot products from growing

too large in magnitude. Without this scaling—especially when 𝑑𝑘 is large—the

softmax function can push the outputs into regions with extremely small gradients,

making training unstable or slow.

3. Weighting Values: A softmax is applied to obtain a probability distribution over

the keys, and the output is computed as a weighted sum of the values 𝑉 , with the
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weights derived from this distribution.

This mechanism enables the model to capture long-range dependencies while sup-

porting full parallelization during training, unlike RNNs which process sequences step

by step.

Moreover, multi-head attention allows the model to attend to different representation

subspaces simultaneously, enhancing its expressiveness (VASWANI et al., 2017). Empir-

ical results showed that transformers significantly outperformed RNNs in both accuracy

and training efficiency on various tasks, including machine translation, marking a piv-

otal moment in deep learning research.

2.4 IMPLICATIONS FOR AGRICULTURAL DIAGNOSTIC SYSTEMS

These architectural advantages directly support the development of agricultural di-

agnostic systems:

• Multimodal integration: Transformers can jointly process textual descriptions

and visual data, ideal for conversational plant health diagnostics.

• Transfer learning: Models pretrained on massive datasets can be fine-tuned for

domain-specific tasks such as plant disease recognition or agronomic Q&A.

• Explainability: Attention outputs can be visualized, offering transparency into the

model’s reasoning—crucial for user trust among agronomists.

• Inference efficiency: Due to parallelizable architecture, transformers enable real-

time interaction even in resource-limited field environments.

The system developed in this dissertation builds on these advantages, integrating

multimodal capabilities and explainability to empower field diagnostics and decision-

making in real-world agricultural contexts.

2.5 FROM GPT-2 TO GEMINI: A TIMELINE OF MODERN LLMS

Recent years have witnessed a rapid and transformative evolution in large language

models (LLMs). Beginning with GPT-2 in 2019, which impressed the research commu-
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nity with its fluent text generation, the development of LLMs has advanced toward in-

creasingly capable and versatile multimodal models such as GPT-4 and Gemini. This

progress has involved not only scaling models to unprecedented sizes but also opti-

mizing smaller, more efficient models.

Transformer-based models like BERT (2018) introduced bidirectional language un-

derstanding, achieving state-of-the-art results on numerous Natural Language Pro-

cessing (NLP) tasks through pre-training on large text corpora and fine-tuning for spe-

cific applications (DEVLIN et al., 2019). Around the same time, OpenAI’s GPT series

demonstrated the power of unidirectional generative pre-training. GPT-2 (2019), with

1.5 billion parameters, set new standards for fluent text generation, while GPT-3 (2020),

with 175 billion parameters, showcased impressive few-shot learning capabilities, en-

abling tasks such as translation, question answering, and arithmetic from minimal ex-

amples. These milestones highlighted that scaling data and parameters could produce

emergent capabilities.

Transformer-based models diverged early in how they learn from text. BERT intro-

duced deep bidirectional contextual representations: during pre-training, BERT jointly

conditions on both left and right context in all layers, enabling the model to encode

complete sentence semantics (DEVLIN et al., 2018). Such bidirectional encoding makes

BERT and similar models well suited for language understanding tasks such as senti-

ment analysis, question answering, and named-entity recognition, where full-sentence

comprehension is essential. In contrast, GPT models adopt a unidirectional (autore-

gressive) training objective, factorizing the likelihood of a sequence into a product of

conditional probabilities and predicting each token based only on preceding tokens

(DEVLIN et al., 2018). This causal modeling aligns naturally with text generation, allow-

ing GPT models to excel at composing coherent stories, dialogue, or code. Despite the

success of bidirectional models like BERT, later research notes that GPT-style unidi-

rectional models still achieve state-of-the-art performance by scaling model size and

training data (DEVLIN et al., 2018). Comparative studies further observe that fully uni-

directional models (GPT) and fully bidirectional models (BERT) sit at opposite ends

of a spectrum, and hybrid approaches attempt to combine bidirectional context and

attention to balance generation and understanding (ARTETXE et al., 2022). Understand-

ing these foundational differences clarifies why GPT-type models dominate generative

applications while BERT-type models remain the backbone of modern language com-
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prehension systems.

By 2022-2023, the development of LLMs began to diverge into two main trends: the

creation of ever-larger models and the design of efficient, specialized smaller models.

OpenAI’s GPT-4 (2023) introduced multimodality, handling both text and images, and

achieved human-level performance on many academic and professional benchmarks.

Anthropic’s Claude (2023) emphasized helpfulness and safety, using a “Constitutional

AI” alignment strategy that relies on guiding principles rather than purely human feed-

back. Google DeepMind’s Gemini, announced in late 2023 as a successor to PaLM 2,

represented a family of multimodal models capable of processing text, images, audio,

code, and more. Gemini integrated advanced reasoning capabilities and was posi-

tioned as a strong competitor to GPT-4.

Meta’s LLaMA models, released starting in mid-2023, demonstrated that smaller

open-source models (7B-70B parameters) could achieve competitive performance when

trained on high-quality data. Their permissive licenses fueled widespread community

adaptation and fine-tuning. Notably, smaller models began achieving remarkable re-

sults: Microsoft’s Phi-1 (1.3B) and Phi-2 (2.7B) models, trained on carefully curated

high-quality data, performed comparably or even surpassed much larger models on

various benchmarks. Phi-2, for instance, exhibited outstanding reasoning and language

understanding, outperforming models with more than 13 billion parameters.

Similarly, Mistral AI’s 7B model (2023) outperformed larger models such as LLaMA-

2 13B and even 34B on tasks involving reasoning, mathematics, and code, benefiting

from architectural optimizations like grouped-query attention. Google’s Gemma mod-

els, introduced in early 2024, epitomized the trend toward open, efficient LLMs. Gemma

encompasses a family of open-access models (ranging from 2B to 7B parameters)

incorporating innovations from Gemini, and supports text, code, and vision tasks, en-

abling competitive performance on modest hardware.

Community-driven initiatives, such as TinyLlama, illustrate the “small but powerful”

movement. TinyLlama aims to pre-train a 1.1B-parameter model on an unprecedented

3 trillion tokens to achieve robust performance at a tiny scale.

• 2018: BERT (DEVLIN et al., 2019) introduces bidirectional transformers for lan-

guage understanding; GPT-1 (117M) demonstrates generative pre-training.

• 2019: GPT-2 (1.5B) showcases high-quality text generation; Google introduces
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T5 and XLNet with alternative pre-training objectives.

• 2020: GPT-3 (175B) pioneers few-shot learning at scale.

• 2021: Research on scaling laws (e.g., Chinchilla by DeepMind) emphasizes the

importance of data quality and training efficiency over sheer parameter count.

• 2022: Google’s PaLM (540B) and OpenAI’s Codex (a GPT-3 variant for code)

expand capabilities; open-source large models like BLOOM and OPT emerge.

ChatGPT (GPT-3.5) popularizes conversational AI.

• 2023: GPT-4 (multimodal) sets new benchmarks. Meta releases LLaMA (7B-

65B), democratizing access to advanced LLMs. Anthropic launches Claude v1

and v2. Microsoft’s Phi models demonstrate high efficiency at smaller scales.

Mistral-7B surpasses larger models in key benchmarks. OpenAI begins deploy-

ment of inference-optimized GPT-4 variant internally known as o1.

• 2024: Google DeepMind introduces Gemini (multimodal, multiple scales) and

releases Gemma (open 2B/7B models). Anthropic advances Claude Next. Re-

search intensifies on ultra-efficient training (e.g., TinyLlama) and specialized domain-

focused LLMs. OpenAI continues iterative updates with improved variants o2,

enhancing performance and cost efficiency of GPT-4 Turbo deployments.

• 2025: DeepSeek releases DeepSeek-R1, an open-weight reasoning model (with

distilled smaller models) that claims performance comparable to top models like

OpenAI’s o1, at a much lower cost. Its emergence causes renewed attention to

cost-efficiency, reasoning-centric RL methods, and open-weight LLMs. OpenAI

launches GPT-4o (o3), a unified multimodal model trained natively on text, vision,

and audio, further blurring modality boundaries in LLM interaction. DeepSeek-

Prover targets formal theorem proving. Claude 3 and Gemini 2 expand into native

multimodality.

This timeline demonstrates how the development of LLMs has advanced rapidly,

balancing scale with efficiency and accessibility. The growing focus on multimodal and

open-source models reflects a shift toward specialized, hybrid capabilities, paving the

way for domain-specific deployments and real-time applications on diverse hardware

platforms.
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2.6 BENCHMARKING PROGRESS: MMLU, BIG-BENCH, AND BEYOND

The rapid advancement of large language models has driven the development of

comprehensive benchmarks to evaluate their breadth and depth of capabilities. These

benchmarks serve as critical tools to assess general knowledge, reasoning, dialogue

skills, and ethical considerations, providing a standardized basis for comparing models

across different tasks and settings.

• MMLU (Massive Multitask Language Understanding) (HENDRYCKS et al., 2021):

MMLU evaluates accuracy across 57 diverse academic and professional sub-

jects, including history, mathematics, science, and law. Models are tested in zero-

shot or few-shot settings using multiple-choice questions, offering a robust mea-

sure of the factual and disciplinary knowledge captured during pre-training. While

GPT-3 achieved above-chance performance on many subjects, newer models

such as GPT-4 and Claude have approached or surpassed human-level accu-

racy in several areas. MMLU has thus become a de facto standard for assessing

general knowledge and reasoning in LLMs, often summarized as a single aggre-

gate score.

• BIG-Bench (Beyond the Imitation Game Benchmark) (SRIVASTAVA et al., 2023):

BIG-Bench is a collaborative benchmark comprising over 200 diverse tasks con-

tributed by the research community to probe LLMs’ generalization and reasoning

abilities beyond conventional NLP challenges. It includes traditional NLP tasks as

well as creative and novel challenges, such as logic puzzles, common-sense rea-

soning, code generation, and inventive language use. Performance is analyzed

as a function of model scale, revealing that larger models, such as GPT-4, ex-

cel across most tasks, while smaller models often struggle with more complex or

abstract challenges.

• MT-Bench (Multi-Turn Benchmark) (ZHENG et al., 2023): MT-Bench is designed

to assess the quality of multi-turn dialogue in conversational agents. Developed

by the Vicuna team, it consists of open-ended questions that require models to

engage in extended interactions for clarification and elaboration. The benchmark

evaluates the ability to follow intricate instructions, maintain context over multiple
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exchanges, and generate helpful, accurate responses. To ensure scalability and

consistency, MT-Bench employs an LLM-as-a-judge approach, using GPT-4 as

the evaluator. This method has shown over 80% agreement with human judg-

ments, enabling efficient and reliable comparison of conversational abilities.

• HELM (Holistic Evaluation of Language Models) (LIANG et al., 2022): HELM

offers a comprehensive, multidimensional evaluation framework that goes be-

yond simple accuracy metrics. It assesses models across various tasks—such

as summarization, dialogue, and reading comprehension—and evaluates factors

like calibration, robustness, fairness, toxicity, bias, and efficiency. By providing

a detailed performance profile rather than a single score, HELM encourages a

nuanced understanding of model capabilities and limitations. Regular updates

to HELM ensure that the community can monitor progress not only in raw perfor-

mance but also in ethical and practical aspects relevant to real-world deployment.

Together, these benchmarks inform both the development and deployment of LLMs,

guiding trade-offs between accuracy, safety, and usability. Their continued evolution

plays a role in shaping the responsible and effective integration of language models

across diverse domains.

2.7 FROM CHAIN-OF-THOUGHT TO REASONING MODELS: HOW OUR NOTION

OF “INTELLIGENCE” IN LLMS KEEPS SHIFTING

2.7.1 Why this matters

The previous sections have outlined how larger models, richer pre-training corpora,

and retrieval or tool augmentation have steadily improved benchmark performance

(section 2.6). However, in parallel, the criteria we use to define an LLM as “intelligent”

have evolved just as rapidly. Early gains in multiple-choice benchmarks (e.g., MMLU)

once appeared impressive, but more challenging suites such as HLE and BIG-BENCH-

EH soon exposed brittle shortcut behaviors (HENDRYCKS et al., 2020; PHAN et al., 2025;

KAZEMI et al., 2025). This realization has driven two intertwined shifts:

(i) a methodological shift toward visible reasoning, involving chain-of-thought prompts,

self-reflection, and explicit tool use;
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(ii) a conceptual shift from viewing models as opaque pattern-matchers to consider-

ing them as emergent “reasoners.”

2.7.2 The chain-of-thought era

Early experiments revealed that even GPT-3 could solve complex arithmetic prob-

lems when encouraged to “think step by step.” This insight was quickly formalized

through techniques like chain-of-thought prompting (CoT), REACT, and self-reflection

pipelines. These developments gave rise to benchmarks that evaluate a model’s rea-

soning process rather than just final answers (section 2.6). Consequently, the field’s

implicit definition of intelligence broadened: models were now expected not only to

provide correct answers but also to expose their reasoning and maintain internal con-

sistency.

2.7.3 Large Reasoning Models

Between 2024 and 2025, purpose-built “reasoning” variants emerged, including

OpenAI’s o- series, DeepSeek-R1, Gemini–Thinking, and Claude 3.7 Sonnet Thinking.

These models introduce the notion of a dedicated “thinking budget” during inference.

Apple’s recent Illusion of Thinking study (SHOJAEE et al., 2025) provides a systematic

examination of these models’ internal processes. In controlled puzzle environments,

the study identified three distinct regimes:

1. Low complexity: Standard LLMs often outperform Large Reasoning Models

(LRMs), using fewer tokens and achieving higher efficiency.

2. Medium complexity: LRMs begin to excel as additional reflection offsets plan-

ning costs, improving success rates.

3. High complexity: Both standard LLMs and LRMs fail, with LRMs intriguingly

exhibiting reduced reasoning effort as task difficulty increases, suggesting a po-

tential scaling limit during inference.

These findings align with insights from the agent-centric discussion in section 2.8.4,

where new process-supervision datasets such as PROCESSBENCH and BFCL-V2 emerged
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to differentiate between “rote” and “reasoned” solutions (ZHENG et al., 2024; YAN et al.,

2024). This shift underscores the limitations of traditional accuracy-focused metrics

and highlights the need for process-oriented evaluation.

2.7.4 So what counts as intelligence now?

Bringing these strands together reveals an evolving definition of intelligence:

• External behavior: Still essential, as benchmark performance remains a core

indicator (section 2.6), but no longer sufficient on its own.

• Transparency of process: Models must be able to reveal and verify their internal

reasoning steps; agentic evaluation frameworks, such as AGENT-AS-A-JUDGE,

push in this direction (ZHUGE et al., 2024).

• Robust scalability: Truly intelligent systems should degrade gracefully as task

difficulty increases. Apple’s study (SHOJAEE et al., 2025) demonstrates that current

LRMs fail to meet this criterion, indicating an important frontier for future research.

2.8 ECOSYSTEM OF TOOLS AND DEVELOPMENT PARADIGMS

The rise of LLMs has given birth to a rich ecosystem of frameworks and design

paradigms that support the development of increasingly sophisticated applications.

2.8.1 LangChain and LangGraph

LangChain (LANGCHAIN, 2023) has emerged as a widely adopted framework that

abstracts the complexities inherent in building LLM-driven applications. It offers a mod-

ular architecture for chaining prompts, models, and external tools into multi-step pipe-

lines, enabling the creation of advanced systems such as retrieval-augmented gener-

ation (RAG), chatbots, and autonomous agents. By providing standardized interfaces

to various LLM APIs and data sources, LangChain facilitates seamless integration with

different models and vector databases, requiring minimal code modifications. This de-

sign paradigm not only accelerates prototyping but also promotes reproducibility and

scalability in both research and industry contexts.
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LangGraph (LANGGRAPH, 2024), an extension of LangChain, introduces a graph-

based architecture for orchestrating multi-agent, stateful LLM applications. Unlike the

linear pipelines in LangChain, LangGraph allows developers to define directed graphs

where nodes represent LLM invocations or functions, and edges encode information

flow. This structure supports cyclic processes and decision points, enabling agents to

plan, execute, and reflect iteratively—an essential pattern for long reasoning chains

and complex multi-step tool use. By maintaining application state and memory across

cycles, LangGraph empowers developers to construct autonomous agents that move

beyond one-shot prompting, thus advancing research in agentic AI.

2.8.2 N8N

N8N (ZAHRT, 2023) is an open-source workflow automation platform that enables

users to connect diverse services and APIs into unified workflows with minimal coding.

Through its visual drag-and-drop interface, users can design flows by linking nodes

that represent specific actions—such as sending HTTP requests, transforming data, or

interacting with cloud and database services.

Each node encapsulates a discrete task, and by chaining nodes together, users

can orchestrate complex data pipelines and automation processes. In AI-driven con-

texts, N8N serves as a versatile orchestration layer, coordinating data collection, model

inference, and result delivery within a single workflow.

For instance, an AI pipeline in N8N might include nodes for data input, preprocess-

ing, model inference through external APIs, and post-processing or visualization of

results. Decision-making nodes allow conditional routing of data, enabling the creation

of adaptive, intelligent agents capable of responding to different scenarios dynamically.

By automating data flows and integrating multiple systems, N8N reduces manual

intervention and accelerates deployment. Its monitoring tools support real-time super-

vision and performance tuning, making it suitable for both developers and non-technical

users who aim to design efficient, maintainable AI workflows.
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2.8.3 Retrieval-Augmented Generation

Retrieval-Augmented Generation (LEWIS et al., 2020a) is an advanced technique de-

signed to enhance the accuracy and reliability of answers produced by large language

models. Instead of relying exclusively on static information learned during the initial

training phase, a RAG-based system dynamically searches for relevant information in

external databases at the moment a question is asked. This design makes it possible to

provide responses that are more precise, up-to-date, and grounded in verifiable data.

The process works in several steps, described below in simple terms:

1. Generating representations from real-world data: Initially, important documents

(such as technical manuals, scientific articles, and expert reports) are collected

and divided into smaller sections or text fragments. Each fragment is then con-

verted into a numerical representation known as an embedding. This embedding

serves as a mathematical summary of the content’s meaning.

2. Storing embeddings in a database: The generated embeddings, along with

links to their original text fragments, are stored in a specialized database called

a vector database. This database allows the system to efficiently compare and

retrieve information based on meaning rather than exact word matches.

3. Encoding the user’s query: When a user submits a question, it is also trans-

formed into an embedding using the same method as used for the stored docu-

ments. This transformation ensures that both the question and the stored content

can be compared within the same semantic space.

4. Performing similarity-based retrieval: The system searches for embeddings

stored in the database that are most similar to the query embedding. In practice,

this involves identifying text fragments whose content is most relevant to answer-

ing the question. The search is based on mathematical similarity measures, such

as cosine similarity.

5. Recovering the original text: Once the most relevant embeddings are identified,

the system retrieves the corresponding original text fragments. These fragments

contain the explicit information needed to construct a precise and evidence-based

response.
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6. Enriching the prompt for generation: Finally, the retrieved text fragments are

included as additional context in the prompt provided to the language model. By

incorporating this external knowledge, the model can generate responses that

are not only contextually appropriate but also grounded in verified information,

reducing the likelihood of errors or "hallucinations."

This method is particularly valuable in domains such as agronomy, where the reli-

ability and correctness of recommendations are crucial. By integrating real-world data

dynamically, RAG enables the development of AI systems that are more transparent,

trustworthy, and aligned with scientific evidence.

2.8.4 Agents and Natural Language Interfaces

A major advancement in the field of generative AI is the development of agents that

can interact with both structured and unstructured data using natural language (MO-

HAMMADJAFARI et al., 2024; TEAM, 2023; RICHARDS, 2023).

For structured data, these agents may use the data as direct input, or use a tech-

nique called text-to-SQL, which allows them to convert questions written in everyday

language into SQL commands that can be run directly on databases. This makes it pos-

sible for people without technical training to explore and analyze data without needing

to write code.

When dealing with unstructured data, such as documents, articles, or web pages,

these agents combine retrieval techniques (like RAG) with reasoning abilities. They

can search for relevant information, summarize it, and present clear answers to user

questions.

This new way of interacting with data enables domain experts — for example,

agronomists or plant pathologists — to access and analyze information directly, without

always needing support from IT or data teams. Recent studies and user experiences

show that natural language interfaces not only make data more accessible but also

significantly improve productivity and support faster, more informed decision-making.
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2.9 NATURAL LANGUAGE AS A UNIVERSAL INTERFACE FOR DATA

One of the most transformative developments in recent years is the adoption of

natural language as a universal interface for interacting with both structured and un-

structured data. Rather than relying on SQL queries, regular expressions, or man-

ual pipeline engineering, users can now engage with databases, spreadsheets, docu-

ments, and APIs simply by describing their intentions in natural language. LLMs handle

the translation into executable code, the execution itself, and the summarization of re-

sults. This paradigm significantly improves accessibility, empowering domain experts

to work directly with data without requiring technical intermediaries.

This shift has fundamentally redefined the relationship between humans and data.

Research workflows, business intelligence processes, and everyday automation now

benefit from LLM-powered agents capable of executing commands, generating visu-

alizations, and retrieving or synthesizing information—all through intuitive natural lan-

guage interactions. As a result, the barrier to data-driven decision-making is lowered,

enabling faster insights and more inclusive participation in data analysis tasks.

2.10 EMERGING TRENDS

As generative AI evolves from isolated models into collaborative, tool-using agents,

new communication protocols have emerged to facilitate interoperability, negotiation,

and secure execution across systems. Since late 2023, major organizations have in-

troduced protocols designed to standardize how AI agents communicate and operate

within multi-agent environments.

• MCP (Model Context Protocol) (ANTHROPIC, 2024): Released by Anthropic in

late 2024, this client-server protocol is designed for model-to-tool invocation. It

supports both stateless and session-aware interactions, using HTTP, Stdio, or

Server-Sent Events (SSE) as transport layers. MCP is ideal for direct tool calls

from language models.

• A2A (Agent-to-Agent Protocol) (GOOGLE, 2025): Introduced by Google in early

2025, A2A is a peer-to-peer protocol that enables agents to discover and negoti-

ate with each other through HTTP-based “Agent Cards.” It assumes a centralized
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agent directory and supports both stateless and session-aware communication,

making it optimized for inter-agent cooperation.

• AGP (Agent Gateway Protocol) (CISCO, 2025): Developed by Cisco in 2024,

AGP employs a gateway-based transport model with encrypted sessions. Uti-

lizing gRPC (HTTP/2 + Protobuf), it provides secure routing between agents in

high-throughput environments, making it well-suited for enterprise-scale deploy-

ments.

• ACP (Agent Communication Protocol) (ACP, 2025): Introduced by IBM in mid-

2024, ACP adopts a brokered client-server architecture with registry-based dis-

covery. It emphasizes tool modularity, session state tracking, and robust commu-

nication via HTTP streams, making it particularly suitable for distributed multi-

agent architectures within organizations.

These protocols reflect an important shift in the generative AI ecosystem—from

monolithic assistants to interoperable, modular agents capable of dynamic collabora-

tion. As of 2025, they are still evolving and being tested in research and enterprise

environments, but they lay the foundation for future standards in agent communication.

In parallel, several technological trends continue to shape the future of generative

AI:

• Tiny Models: Lightweight models such as Phi-2, Mistral 7B, and TinyLlama offer

strong performance for local and edge inference. Projects like Llama.cpp and

GPT4All, launched in 2023, demonstrated that 7B–13B parameter models could

run efficiently on laptops and mobile devices by leveraging 4-bit quantization and

optimized inference libraries. This trend toward low-resource inference supports

offline use cases and enables deployment in healthcare devices, vehicles, and

other edge environments where connectivity may be limited.

• Multimodal Interfaces: Generative AI is increasingly extending beyond text to

include vision, audio, and other modalities. Multimodal LLMs can now accept

diverse inputs and produce outputs in multiple formats. GPT-4’s vision exten-

sion, for example, allows the interpretation of images and diagrams, generating

textual analyses or descriptions. Other systems, such as Bard and Bing Chat,
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have integrated image understanding and generation (via models like DALL-E).

Research models including BLIP-2, Flamingo, and PaLI have demonstrated ap-

proaches to connect vision encoders with LLMs, enabling tasks like visual ques-

tion answering and image captioning. Speech capabilities have also advanced

significantly: OpenAI’s Whisper (speech-to-text) and new text-to-speech models

have enabled voice-based interactions. By late 2023, ChatGPT supported voice

dialogues, allowing users to converse naturally through spoken queries and syn-

thesized responses. Google’s Gemini is explicitly designed as a multimodal foun-

dation model, capable of handling text, images, audio, and video within a unified

framework.

• Autonomous Agents: Building on frameworks like LangChain and LangGraph,

developers have started creating agents that can autonomously plan and exe-

cute multi-step workflows without continuous human prompting. A notable exam-

ple is AutoGPT (2023), which chains GPT-4 instances to recursively break down

goals into sub-tasks and solve them sequentially. Open Interpreter (2023) en-

ables LLMs to execute code locally on a user’s machine in response to natural

language instructions, effectively allowing users to “talk to their computer.” With

appropriate safety measures and sandboxing, these autonomous agents hint at

a future where personal AI assistants can perform complex, open-ended tasks

on-device or online with minimal supervision.

• Efficient Deployment: As model capabilities grow, there is a parallel push to

make them smaller, faster, and more accessible. Quantization techniques re-

duce the precision of model weights (and sometimes activations) from 16-bit to

8-bit, 4-bit, or even 3-bit integers, dramatically lowering resource requirements.

Techniques like GPTQ (FRANTAR et al., 2023) allow large models (e.g., a 175B-

parameter transformer) to be compressed post-training with minimal impact on

accuracy, enabling deployment on a single GPU or even a high-end personal

computer. Additional innovations such as sparsity (pruning redundant weights)

and knowledge distillation (transferring knowledge from larger “teacher” models

to smaller “student” models) further democratize access to generative AI by re-

ducing operational costs and hardware barriers.
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• Offline and On-Device AI: Tools like Llama.cpp and GPT4All make it feasible to

run quantized LLMs on personal devices, unlocking use cases such as real-time

AI translation on smartphones or vision-based processing in wearable devices

like smart glasses.

• Evaluation Infrastructure: Frameworks like Ragas and LangSmith provide ro-

bust tools for evaluating and debugging LLM applications, supporting reproducibil-

ity, error tracking, and systematic performance analysis. This infrastructure is crit-

ical as AI systems become more autonomous and are integrated into mission-

critical applications.

2.11 ADAPTATION OF THIS PROJECT

This work strategically integrates several of these recent advancements. Initial pro-

totypes based on static prompts and rigid workflows were progressively replaced by

LangChain pipelines, semantic search via pgvector, and LangGraph orchestration. The

outcome is a flexible, modular agent capable of retrieving and reasoning over context in

natural language, thereby delivering interactive, data-grounded responses that closely

mimics expert consultations.

Moreover, by incorporating text-to-SQL and document question-answering agents,

this project enables users to interact seamlessly with both structured data (e.g., Post-

greSQL) and unstructured information (e.g., PDFs, images) through a unified conver-

sational interface. The integration of multimodal capabilities and open-source models

further enhances scalability and accessibility, ensuring the system remains robust and

adaptable to diverse use cases.

2.12 CONCLUSION

Over the past five years, the role of AI in facilitating information access has been

fundamentally redefined. By combining generative capabilities with retrieval, code exe-

cution, reasoning, and multimodal interaction, large language models now enable fluid

and powerful engagement with both structured and unstructured knowledge sources.

This chapter has outlined the key technological milestones that underpinned these ad-
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vances and detailed how they have shaped the foundation of this project. As LLM tools

continue to improve in performance, usability, and accessibility, the barriers between

humans and data continue to dissolve, ushering in a new era of intelligent, conversa-

tional systems.
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3 RELATED WORK

3.1 LARGE LANGUAGE MODELS IN AGRICULTURE

LLMs are increasingly recognized for their transformative potential across various

sectors, and agriculture is no exception. More broadly, AI has seen rapid adoption

in agriculture, supporting a wide range of applications such as automation, soil and

crop monitoring, decision support, and resource optimization. AI-based solutions as-

sist farmers in selecting optimal planting times, choosing suitable seeds for specific

climate conditions, recommending soil nutrients, forecasting weather, and monitoring

crop health in real time (ZHANG et al., 2021). These technologies contribute to increased

productivity, reduced resource usage, and mitigation of environmental impacts (ZHANG

et al., 2021).

The integration of LLMs in agricultural practices aims to enhance efficiency, improve

decision-making, and address critical challenges such as crop monitoring and disease

management. Automation in agriculture plays a vital role in these efforts, particularly

through the development of early detection systems that can significantly reduce crop

losses (ROUMELIOTIS et al., 2025). When combined with other advanced AI techniques,

LLMs offer avenues to enhance the scalability and intelligence of precision agriculture

systems, moving towards more automated and data-driven farming practices (ROUME-

LIOTIS et al., 2025).

3.1.1 Current Research on the Use of LLMs in Agriculture

Current research on the application of LLMs in agriculture spans a diverse range

of tasks, from general crop monitoring to highly specialized areas like seed science.

In parallel, various AI-powered technologies—such as sensors, drones, hyperspectral

imaging, and agricultural robots—are being deployed to collect precise data on soil,

climate, and crop health. These tools enable targeted interventions and automation of

tasks like irrigation, spraying, and harvesting (WALEED et al., 2020; KUMAR et al., 2020).

Intelligent monitoring systems provide farmers with detailed insights and tailored rec-

ommendations to maximize yield and optimize resource use (LIU, 2020).

A notable area of investigation involves the use of multimodal LLMs for automated
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plant disease classification. For instance, studies have explored combining multimodal

LLMs, specifically GPT-4o, with CNNs to detect plant diseases using leaf imagery (ROUME-

LIOTIS et al., 2025). This hybrid approach leverages the strengths of both model types:

the LLM’s understanding and generation capabilities with the CNN’s proficiency in im-

age analysis. Results from these investigations indicate that fine-tuned GPT-4o models

can achieve performance comparable to, or even slightly better than, traditional deep

learning models like ResNet-50. For example, fine-tuned GPT-4o models demonstrated

up to 98.12% classification accuracy on apple leaf images, surpassing ResNet-50’s

96.88% (ROUMELIOTIS et al., 2025).

This means that, in practice, farmers can expect more accurate and earlier detec-

tion of plant diseases using such systems, potentially preventing losses and reducing

pesticide usage. Additionally, this integration shows promise for improved generaliza-

tion and near-zero training loss, which can reduce the reliance on extensive labeled

datasets and high-resolution sensor infrastructure, making advanced disease detec-

tion more accessible (ROUMELIOTIS et al., 2025).

Despite these advancements, the application of LLMs in highly specialized agri-

cultural domains, such as seed science, remains nascent. This limitation is largely

attributed to the scarcity of digital resources, the inherent complexity of gene-trait re-

lationships, and a notable absence of standardized benchmarks for evaluating LLM

performance in these niche areas (YING et al., 2025). More broadly, the adoption of

AI in agriculture still faces challenges related to data quality, integration of new tech-

nologies into field operations, and the need to upskill farmers for effective use of

these tools (AWASTHI, 2020; BELOEV et al., 2021). Even so, AI is considered essen-

tial for addressing rising food demand, labor shortages, and the impacts of climate

change (CHEN et al., 2023).

To address these critical gaps, domain-specific benchmarks are being developed.

SeedBench, for example, represents the first multi-task benchmark specifically de-

signed for seed science. Developed in collaboration with domain experts, SeedBench

aims to simulate key aspects of modern breeding processes, providing a structured

environment for evaluating LLMs (YING et al., 2025). Benchmarks like SeedBench not

only measure technical performance but also help ensure that these models are robust

and reliable under realistic agricultural conditions. A comprehensive evaluation of 26

leading LLMs on SeedBench has revealed substantial discrepancies between the cur-
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rent capabilities of general LLMs and the intricate demands of real-world seed science

problems (YING et al., 2025). This initiative marks a foundational step, guiding future

research and practical deployments in specialized agricultural domains.

3.1.2 NLP Applications in Agricultural Data Processing and Analysis

NLP applications are crucial for extracting actionable insights from the vast amounts

of unstructured text data prevalent in agriculture, ranging from research papers and

weather reports to farmer notes and market analyses. New frontiers in agricultural NLP

involve investigating the effectiveness of pretraining transformer-based language mod-

els with extensive food-related text corpora (REZAYI et al., 2025). A notable example

is AgriBERT, a domain-specific, fine-tuned, open-source model. AgriBERT has been

trained from scratch using a large corpus of agricultural academic journals, compris-

ing over 300 million tokens, to enable it to learn meaningful sentence representations

specifically tailored for agricultural NLP applications (REZAYI et al., 2025). This approach

addresses a key limitation of generic BERT models, which, when pretrained on general

corpora like Wikipedia, may not generalize effectively across specialized domains due

to their distinct vocabularies and contexts (REZAYI et al., 2023).

A significant application within agricultural NLP is semantic matching, which in-

volves establishing accurate mappings between food descriptions and nutrition data

(REZAYI et al., 2025). This task is critical for integrating diverse datasets, such as the

USDA’s Food and Nutrient Database with retail scanner data, to understand consump-

tion patterns and inform public health policies (REZAYI et al., 2025). Fine-tuning domain-

specific models like AgriBERT with external knowledge sources, such as the FoodOn

ontology, enhances their ability to perform such semantic matching tasks (REZAYI et al.,

2025). An exploratory investigation comparing AgriBERT with state-of-the-art general-

purpose LLMs, including GPT-4, Mistral-large, Claude 3 Sonnet, and Gemini 1.0 Ultra,

indicates that domain-specific models can effectively complement the broad knowl-

edge and generative capabilities of these advanced LLMs in addressing the unique

challenges of the agricultural sector (REZAYI et al., 2025). The integration of GPT-based

models, either as a baseline for comparison or as an external knowledge source, fur-

ther enhances AgriBERT’s performance in semantic matching and its understanding of

food-related concepts and relationships (REZAYI et al., 2025).
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LLMs are also being explored for their utility in practical agricultural decision-making,

particularly in pest management and the generation of diagnostic reports. Studies

demonstrate that LLM-driven pest management decisions can achieve up to 72% ac-

curacy when guided by instruction-based prompting that incorporates domain-specific

knowledge (QIN et al., 2025). Furthermore, general LLMs like ChatGPT exhibit profes-

sional competence in analyzing agricultural data to generate accurate and timely re-

ports, alerts, and insights, thereby facilitating informed decision-making and enhancing

customer service within the agricultural domain (QIN et al., 2025). However, it is crucial

to note that the accuracy of these predictions is heavily dependent on the quality of the

input data. AI systems in agriculture are intended to assist decision-making and are

not a substitute for human intuition and experience, especially in complex and dynamic

agricultural environments (QIN et al., 2025). The YOLO-PC model, a lightweight variant

of YOLO, further supports this by evaluating reasoning accuracy at 90% for agricul-

tural diagnostic reports, emphasizing the importance of model-generated text quality

in correlation with recognized information (QIN et al., 2025).

The synergy between domain-specific LLMs and general-purpose LLMs for opti-

mal performance in agricultural NLP is a significant observation. The development

of AgriBERT and its integration with advanced general LLMs like GPT-4 highlights a

collaborative approach rather than a competitive one. AgriBERT provides a deep, nu-

anced understanding of agricultural terminology and concepts, while general LLMs

offer broad knowledge and robust generative capabilities. This suggests that the fu-

ture of specialized NLP applications, particularly in fields with unique vocabularies and

contexts such as agriculture, will likely involve a layered architecture. This could entail

fine-tuning smaller, domain-specific models on proprietary data for specialized tasks,

while leveraging larger, general LLMs for broader reasoning, summarization, or user in-

teraction, potentially through Retrieval-Augmented Generation (RAG) techniques. This

also carries important cost implications, as training massive models from scratch for

every niche domain is often impractical.

A critical consideration for LLM deployment in agriculture is the persistent impor-

tance of data quality and human oversight. While LLMs demonstrate promising ac-

curacy rates, for instance, 72% in pest management, the explicit dependence of this

accuracy on input data quality and the caveat that AI systems are not a substitute for

human intuition and experience are crucial (QIN et al., 2025). This underscores that even



44

with advanced models, the principle of "garbage in, garbage out" applies, and human

expertise remains indispensable for complex, real-world decision-making in dynamic

agricultural settings. This observation implies that the successful deployment of LLMs

in agriculture will necessitate robust data governance strategies, continuous human

validation loops, and clear guidelines defining where AI serves as an assistant ver-

sus where human decision-making is paramount. It also highlights the need for user

interfaces that facilitate the easy input of high-quality data and mechanisms for agricul-

tural experts to review and, if necessary, override AI recommendations, especially in

high-stakes scenarios like crop disease or pest management.

3.1.3 Connecting to This Dissertation

Building on these recent advances, this dissertation proposes a conversational

plant diagnostic system that integrates the reasoning capabilities of large language

models with robust image analysis. By leveraging multimodal approaches—combining

textual symptom descriptions and leaf imagery—the system aims to provide accessi-

ble, real-time support to farmers and agronomists. Inspired by state-of-the-art studies,

such as GPT-4o hybrid models and domain-specific benchmarks like SeedBench, this

work addresses the urgent need for scalable, interpretable, and user-friendly AI tools

in agriculture. The focus on transparency and adaptability seeks to bridge the gap be-

tween cutting-edge AI research and practical field applications, empowering small and

medium-scale agricultural producers.

3.2 RAG FOR INFORMATION RETRIEVAL

Retrieval-Augmented Generation (RAG) has emerged as a prominent methodology,

significantly enhancing the capabilities of LLMs by integrating dynamic information re-

trieval mechanisms into the generation process. This paradigm addresses key limita-

tions of traditional LLMs, particularly their tendency to hallucinate or provide outdated

information due to their static training data. RAG’s ability to ground generative models

in external, up-to-date knowledge sources has made it a focal point in natural language

understanding and generation research.
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3.2.1 Key Works on RAG and Its Application in Domain-Specific Knowledge Re-

trieval

Retrieval-Augmented Generation (RAG) has rapidly gained traction as a method

to enhance the factual accuracy and adaptability of generative language models, es-

pecially when applied to specialized knowledge domains. By augmenting generative

models with an external retrieval component, RAG systems can access and incorpo-

rate up-to-date or domain-specific information at inference time, reducing reliance on

static pre-trained parameters and mitigating hallucinations (LEWIS et al., 2020b; SHI et

al., 2023).

Lewis et al. (LEWIS et al., 2020b) introduced one of the foundational RAG frame-

works, combining a dense passage retriever with a sequence-to-sequence generative

model. This approach significantly improved performance on open-domain question

answering benchmarks by allowing the model to dynamically incorporate retrieved evi-

dence into its generated responses.

Guu et al. (GUU et al., 2020) proposed REALM, which integrates retrieval directly

into pre-training, enabling the model to learn from external documents rather than only

from its internal parameters. This architecture demonstrated strong improvements in

both retrieval and generation accuracy, highlighting the benefits of retrieval-enhanced

training for knowledge-intensive tasks.

In the context of domain-specific applications, recent studies have explored spe-

cialized retrieval corpora tailored to particular fields, such as medical guidelines, legal

documents, or agricultural extension manuals (SHI et al., 2023; SUN et al., 2023). These

works show that domain-adapted retrieval bases help address challenges like termi-

nology ambiguity, specialized jargon, and the need for highly precise information.

Izacard and Grave (IZACARD; GRAVE, 2020) presented Fusion-in-Decoder (FiD),

which extends RAG by fusing multiple retrieved passages within the decoder, allow-

ing for richer context aggregation. FiD has been especially effective in tasks requiring

synthesis of information from multiple sources.

In agriculture and plant health, RAG has the potential to provide real-time, evidence-

backed responses to complex field queries. For example, a conversational assistant

can retrieve the latest pest control guidelines or region-specific soil treatment protocols,

offering practical support beyond what a purely parametric model can deliver.
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Despite these advancements, challenges remain, including ensuring retrieval pre-

cision, integrating multimodal data (e.g., images and text), and optimizing latency for

real-time deployments (SUN et al., 2023). Addressing these will be essential for the suc-

cessful adoption of RAG-based systems in specialized fields like agriculture.

3.2.2 Comparative Analysis of RAG-Based Systems vs. Traditional Methods

Traditional information retrieval (IR) systems, such as keyword-based search en-

gines and rule-based frameworks, rely heavily on exact lexical matches and static rank-

ing algorithms. While efficient and interpretable, they often struggle to handle complex

or nuanced queries, especially in specialized domains that involve evolving terminology

and context-specific knowledge (VOORHEES; TICE, 1999).

Generative language models, on the other hand, can produce fluent and contex-

tually rich responses but depend solely on internal parameters learned during pre-

training. This reliance can lead to hallucinations and factual inaccuracies in knowledge-

intensive tasks (JI et al., 2023). This issue is especially critical in fields like agriculture,

where incorrect guidance can result in economic or environmental damage.

Retrieval-Augmented Generation (RAG) systems combine the strengths of both ap-

proaches by integrating external retrieval mechanisms with generative models. RAG

systems retrieve relevant information dynamically at inference time, grounding responses

in explicit evidence (LEWIS et al., 2020b). This enables them to produce more accurate,

up-to-date, and context-sensitive answers while maintaining natural language fluency.

Table 1 summarizes key differences among traditional IR, generative models, and

RAG systems.
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Frame 1 – Comparison of Traditional IR, Generative Models, and RAG-Based Systems

Aspect Traditional IR Generative
Models

RAG-Based
Systems

Knowledge
Source

Static indexed
documents

Internal model
weights

Retrieved external
documents + model
weights

Factual Accuracy High
(document-based)

Lower (prone to
hallucination)

High
(evidence-based
grounding)

Fluency Low (user
interprets
documents)

High High

Explainability High (explicit
sources)

Low High (retrieved
evidence shown)

Adaptability to
New Knowledge

Requires manual
index update

Requires model
re-training

Dynamic retrieval
allows instant
updates

Handling
Complex
Queries

Limited to keyword
matching

Good contextual
handling but risk
of error

Strong contextual
handling with factual
evidence

However, RAG systems face challenges such as retrieval latency, dependence on

retriever quality, and maintaining accurate, up-to-date external knowledge bases (SUN

et al., 2023). Addressing these challenges is vital for their effective deployment in real-

world agricultural contexts.

3.3 DEEP LEARNING MODELS FOR DISEASE CLASSIFICATION

The use of deep learning models has significantly advanced plant disease detection

and classification, offering superior accuracy and scalability compared to traditional im-

age processing and manual inspection methods. CNNs have become the backbone of

image-based disease classification due to their ability to automatically learn hierarchi-

cal features from raw pixel data (SLADOJEVIC et al., 2016; MOHANTY; HUGHES; SALATHé,

2016).

Early works, such as those by Sladojevic et al. (SLADOJEVIC et al., 2016), demon-

strated the feasibility of using CNNs to classify multiple plant diseases with high accu-

racy, even under varying environmental conditions. Mohanty et al. (MOHANTY; HUGHES;

SALATHé, 2016) further extended this approach by training CNNs on a large dataset



48

containing images of healthy and diseased leaves across several crop species, achiev-

ing overall classification accuracies above 99% in controlled datasets.

Recent research has explored hybrid architectures that integrate CNNs with other

deep learning modules to improve feature extraction and robustness. For example,

combining CNNs with attention mechanisms or graph neural networks (GNNs) allows

models to focus on critical lesion areas or to understand spatial relationships among

disease patterns (LI et al., 2021; CHEN; LIU; WANG, 2023). Such hybrid models have

shown enhanced performance in real-world field images, where occlusion, lighting vari-

ation, and background noise are common challenges.

Despite these advances, CNN-based approaches often require large, curated data-

sets for training, and their performance can degrade when deployed in diverse field

conditions not represented in the training data (FERENTINOS, 2018). This motivates the

integration of additional data modalities and adaptive mechanisms, such as transfer

learning and multimodal frameworks, to enhance generalizability and reduce depen-

dency on large annotated datasets.

In agricultural disease management, deep learning models facilitate rapid, large-

scale monitoring and enable early intervention strategies, reducing yield losses and

minimizing chemical input. However, practical deployment still requires models to be

interpretable and adaptable to various crops and regions.

3.3.1 Studies on Deep Learning Models in Plant Disease Classification

Deep learning has revolutionized plant disease detection by enabling automatic

feature extraction and robust classification from leaf images, outperforming traditional

manual or rule-based methods (SLADOJEVIC et al., 2016).

3.3.1.1 Convolutional Neural Networks

Pioneering research by Sladojevic et al. (SLADOJEVIC et al., 2016) demonstrated that

CNNs can achieve over 90% accuracy in multi-class plant disease identification. Mo-

hanty et al. (MOHANTY; HUGHES; SALATHé, 2016) further validated this by training CNNs

on a large dataset of healthy and diseased leaves, achieving above 99% accuracy in

controlled settings.
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A recent systematic review of over 160 studies from 2020–2024 highlights CNNs

as the dominant architecture in plant disease detection, yet it notes challenges such as

dataset diversity, model generalization, and deployment in natural environments (SUNIL;

JAIDHAR; PATIL, 2023).

3.3.1.2 Attention-Enhanced Architectures

Attention mechanisms have been applied to highlight lesion regions, improving clas-

sification focus and robustness. For example, the APDC model leverages attention

weighting to achieve up to 99.97% accuracy across multiple public datasets including

PlantVillage and PaddyCrop (BERA; BHATTACHARJEE; KREJCAR, 2024a).

Vision Transformers (ViTs) have also begun to compete in this domain. The Plan-

tXViT architecture—combining CNNs with ViTs—achieved 98–99% accuracy across

crops like apple, maize, and rice, while also offering interpretability through visual at-

tention maps (THAKUR et al., 2022).

3.3.1.3 Hybrid CNN–GNN and Graph-Based Models

To capture relational patterns, hybrid models combining CNNs with Graph Neural

Networks (GNNs) have emerged. For instance, PND-Net integrates CNNs and GNNs

for joint disease and nutrition deficiency classification, achieving 96–96.5% accuracy

across multiple crops (BERA; BHATTACHARJEE; KREJCAR, 2024b). A soybean disease

classification study combining MobileNetV2 with GraphSAGE reached 97.16% accu-

racy—surpassing single CNNs (95.04%)—while providing interpretable Grad-CAM vi-

sualizations (JAHIN et al., 2025).

3.3.1.4 Lightweight and Edge-Deployable Models

Efficiency-focused designs like Slender-CNN optimize parameter count and per-

form on par with heavier models (88–90% accuracy on corn, rice, wheat) while being

suitable for deployment on resource-constrained devices (BAIJU et al., 2025).

MobileNetV3-based approaches achieved 99.66% classification accuracy on grape

leaf diseases in real-time edge settings, demonstrating high precision (99.4%) and
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viability for field use (PURANIK et al., 2024). Enhanced CNNs such as E-CNN also report

98% accuracy across crops like apple, corn, and potato (KUMARAN; SANJAY; SANTHIYA,

2024).

3.3.1.5 Transfer Learning, Data Augmentation, and Practical Challenges

Transfer learning has enabled broader model applicability across varied datasets,

while targeted data augmentation and preprocessing significantly improve model ro-

bustness against lighting variations and environmental noise (PAWAR et al., 2024).

However, real-world deployment faces challenges: limited field data, the need for

segmentation, and model interpretability. Issues like occlusion, small datasets, and lab-

to-field transitions remain significant hurdles, as emphasized in recent literature (LIU;

WANG, 2021; SUNIL; JAIDHAR; PATIL, 2023).

3.3.2 Studies on Deep Learning Models in Tomato Leaf Disease Classification

Several recent studies have benchmarked deep learning architectures on the Plant-

Village tomato leaf dataset, reporting consistently high accuracy while highlighting

trade-offs between model complexity and performance. Table 1 consolidates repre-

sentative results from key publications:

Table 1 – Comparative Performance of Deep Learning Models for Plant Disease Classification on
PlantVillage Tomato Leaf Dataset

Model Accuracy (%) Citation
ResNet50-DPA 97.60 (LIANG; JIANG, 2023)
MaxViT 97.00 (GHOSH et al., 2025)
EfficientNet Ensemble 96.99 (GONZALES; DIOSES, 2024)
Hybrid CNN–Transformer 95.22 (NEMMOUR et al., 2025)

These results reinforce several key observations:

• CNNs remain strong performers: ResNet-style architectures augmented with

spatial attention (e.g., ResNet50-DPA) achieve near 98% accuracy under con-

trolled conditions (LIANG; JIANG, 2023).
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• Vision Transformers show promise: Transformer-based models like MaxViT

approach CNN-level performance ( 97%) in classification tasks (GHOSH et al.,

2025).

• Hybrid and ensemble methods: Combining CNN and transformer features yields

high accuracy ( 96–97%) with more efficient resource use (GONZALES; DIOSES,

2024; NEMMOUR et al., 2025).

While PlantVillage enables strong benchmark performance, these models are typ-

ically trained and evaluated on clean, uniform-background images. Adapting them to

field deployment remains a challenge due to occlusion, variability in lighting, and di-

verse backgrounds. This motivates the adoption of lightweight models and RAG-inte-

gration in this dissertation, to ensure robustness and explainability in real-world agri-

cultural diagnostics.

3.3.3 Application of CNNs and Other Architectures in Agricultural Diagnosis

CNNs have become the cornerstone of automated plant disease detection, pro-

viding strong performance across diverse crop types and imaging conditions. Recent

reviews report that CNN-based models—including ResNet, EfficientNet, and VGG vari-

ants—dominate the space, often achieving 90–99% accuracy on benchmark datasets

such as PlantVillage (CHEN et al., 2024a).

To enhance both accuracy and interpretability, researchers have explored hybrid

models combining CNNs with transformers or attention modules. For instance, a hybrid

CNN–Transformer model achieved 99.45% accuracy on tomato leaf disease classifica-

tion using CycleGAN-augmented data and attention-enhanced feature extracts (CHEN

et al., 2024b). Similarly, models like CMTNet and FOTCA—integrating CNN and trans-

former modules—have excelled in fine-grained and robust field scenarios, with perfor-

mance exceeding 99% accuracy (GUO; FENG; GUO, 2025; HU et al., 2023).

Table 2 highlights key architectures and their performance on plant disease datasets:
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Table 2 – Performance of CNN and Hybrid Architectures in Plant Disease Detection

Model Description Accuracy (%)
Advanced CNN + SE
blocks

CNNs with attention and
residual enhancements

99.39

Hybrid CNN–Transformer
(CycleGAN)

Combines CNN features with
transformer context

99.45

CMTNet CNN + Transformer for
spectral-spatial classification in
UAV images

>99

FOTCA Transformer-CNN hybrid with
Fourier-based attention

99.8

• CNNs with attention enhancements (GONZÁLEZ-BRIONES et al., 2025) balance

high accuracy and interpretability, focusing on symptom regions in images.

• CNN–Transformer hybrids (CHEN et al., 2024b) benefit from global context and

local feature fusion, improving robustness in challenging image conditions.

• Transformer-heavy models like CMTNet(GUO; FENG; GUO, 2025) and FOTCA (HU

et al., 2023), while achieving top performance, require more complex integration

and data preprocessing.

Despite excellent benchmarks, these models must be adapted for real-world use

— handling noisy images, diverse environments, and minimal annotated data. The

approach in this dissertation adopts an efficient CNN backbone with attention mecha-

nisms, complemented by RAG to provide contextual, explainable recommendations —

enhancing both robustness and practical utility in agricultural diagnostics.

3.4 USE OF AI ASSISTANTS IN DIAGNOSIS SYSTEMS

AI assistants—ranging from image-enabled chatbots to retrieval-augmented multi-

modal agents—are transforming diagnostic tools in both medicine and agriculture by

combining visual analysis, conversational interaction, and curated knowledge retrieval.

In healthcare, AI assistants such as ChatGPT, OpenAI’s HealthBench, and Mi-

crosoft’s Diagnostic Orchestrator have demonstrated remarkable diagnostic capabili-

ties. In one clinical evaluation, AI alone achieved a median diagnostic reasoning score

of 92%, outperforming physicians (76%) and physician–AI teams (74%), although ac-
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curacy dropped when physicians interacted with the AI (GOH et al., 2024). Another study

reported Microsoft’s Diagnostic Orchestrator achieving 85.5% accuracy on 304 medical

cases, vastly outperforming a physician panel at 20% accuracy (SALLAM et al., 2025).

These results illustrate high potential but also highlight risks such as hallucinations,

automation bias, and reduced trust when AI disagrees with human experts (GOURA-

BATHINA et al., 2025).

In agriculture, systems combining CNN-based leaf image analysis with conversa-

tional, knowledge-grounded interfaces have shown promise in supporting disease di-

agnosis and farm management. For example, YOLO-integrated RAG systems have en-

abled early, context-aware detection of diseases in coffee and medicinal plants (KUMAR

et al., 2024). Recent reviews confirm that integrating image processing with retrieval-

augmented reasoning improves diagnostic precision and interpretability (TU et al., 2025).

Key advantages of AI assistants include:

• Improved accuracy: Grounding responses in external evidence and multimodal

inputs reduces hallucinations and enhances reliability (SINGHAL et al., 2023).

• Enhanced user interaction: Conversational interfaces allow for plain-language

explanations and actionable guidance, making tools accessible to both farmers

and clinicians (GOH et al., 2024).

• Scalability and updatability: Retrieval-based models can incorporate new in-

formation without full retraining, critical for rapidly evolving diseases and prac-

tices (TU et al., 2025).

Nevertheless, important challenges persist:

• Automation bias: Users may over-rely on AI suggestions without critical ap-

praisal, potentially leading to misdiagnoses or mismanagement (GOH et al., 2024).

• Hallucinations and factual errors: AI systems can generate plausible but incor-

rect information, with some studies estimating hallucination rates between 27%

and 47% (JI et al., 2023).

• Equity and trust: Bias in model training and a lack of transparency can hinder

adoption in diverse agricultural contexts, especially where local knowledge and

dialects are crucial (SINGHAL et al., 2023).
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Integration in This Dissertation

The system proposed in this dissertation integrates a CNN-based image classifier

with a Retrieval-Augmented Generation assistant. By grounding every diagnostic sug-

gestion in visual evidence and explicit knowledge sources, the system delivers accu-

rate, context-rich, and explainable recommendations. This approach emphasizes clar-

ity and trust, empowering agronomists and farmers with a robust, field-ready decision-

support tool.

3.5 PLANT DISEASE DIAGNOSIS: CONCEPTS AND PRACTICES

Accurate plant disease diagnosis is a cornerstone of effective crop protection and

sustainable agriculture. It enables timely intervention, reducing yield loss and unneces-

sary pesticide use. The diagnostic process typically follows a structured flow: observa-

tion of symptoms, formulation of a hypothesis regarding potential causes, confirma-

tion through targeted testing, and delivery of a recommendation for management (RI-

LEY; WILLIAMSON; MALOY, 2002). Early and precise diagnosis is essential to minimize

costs and prevent pathogen spread (ALI, 2022).

Conventional Methods

Traditional diagnosis relies on visual examination of symptoms and signs, which

remains the most accessible approach for many practitioners (RILEY; WILLIAMSON; MALOY,

2002). Its main advantages are low cost and speed, particularly for diseases with dis-

tinctive visual markers. However, it is inherently subjective and depends heavily on

expert experience. Many diseases present overlapping or nonspecific symptoms, com-

plicating accurate identification.

Molecular and Serological Methods

Molecular techniques such as PCR, quantitative PCR (qPCR), and loop-mediated

isothermal amplification (LAMP) offer high sensitivity and specificity for pathogen de-

tection (GOMEZ-GUTIERREZ; GOODWIN, 2022; NÉMETH; KOVÁCS, 2025). While LAMP is
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suitable for rapid, field-ready testing due to its low equipment requirements, it faces

challenges related to primer design and contamination risk (NÉMETH; KOVÁCS, 2025).

Serological methods like enzyme-linked immunosorbent assays (ELISA) and immuno-

chromatographic strips (lateral flow tests) are widely used for detecting plant viruses,

offering fast and moderately inexpensive results. Yet, their reliability depends on anti-

body quality and can be affected by cross-reactivity and false positives (KANAPIYA et al.,

2024; KIM et al., 2024).

Sensor-Based and Imaging Approaches

Emerging approaches use RGB and thermal sensors to identify disease-induced

stress non-destructively. RGB imaging enables the extraction of color and texture fea-

tures from visible-light images, while thermal cameras capture canopy temperature

anomalies associated with water stress or infection (WALSH; MANGINA; NEGRÃO, 2024).

These techniques are increasingly integrated with drones and smartphones, making

them scalable and accessible. However, their accuracy can be influenced by external

factors such as lighting conditions, crop variety, and environmental variability (WALSH;

MANGINA; NEGRÃO, 2024). When combined with deep learning or multimodal AI frame-

works, these sensor-based systems are paving the way for large-scale, automated

plant health monitoring.

Overall, plant disease diagnosis has evolved from qualitative observation toward

quantitative, multimodal, and AI-assisted methodologies. These advancements are

crucial for developing intelligent systems capable of delivering fast, evidence-based,

and scalable diagnostics—aligning directly with the goals of this dissertation.

3.6 SUMMARY

LLMs have rapidly emerged as transformative tools across many industries, and

agriculture is no exception. By leveraging advanced natural language understanding

and generation capabilities, LLMs can assist in decision support, advisory services,

and knowledge dissemination to farmers and agronomists.

Recent studies have demonstrated the utility of LLMs for a wide range of agri-

cultural tasks, including personalized crop management advice, pest and disease di-
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agnosis, climate adaptation strategies, and supply chain optimization (SAPKOTA et al.,

2024; BREZULEANU et al., 2025). For example, fine-tuned versions of GPT models have

been deployed to answer natural language questions from farmers, providing region-

specific recommendations on irrigation, fertilizer use, and pest control (BREZULEANU et

al., 2025).

One of the key advantages of LLMs in agriculture is their ability to democratize

access to expert knowledge. In many rural regions, the scarcity of agronomists limits

timely and accurate guidance. LLMs can help bridge this gap by providing farmers with

instant, easy-to-understand responses in local languages or dialects, thereby empow-

ering decision-making at the farm level (SAPKOTA et al., 2024).

Additionally, LLMs have been integrated with satellite data, IoT sensors, and image

analysis pipelines to create holistic farm monitoring systems. Such systems can gen-

erate comprehensive reports that merge textual insights with real-time environmental

and crop health data, enabling precision agriculture at scale (TENG et al., 2023; JINDAL;

KAUR, 2024).

Despite these advancements, challenges remain. LLMs are susceptible to hal-

lucinations—generating plausible but incorrect information—and require continuous

grounding in up-to-date agronomic data to ensure reliability (JI et al., 2023). Moreover,

integrating LLMs into field workflows demands careful consideration of user trust, ex-

plainability, and cultural acceptance, especially in diverse agricultural contexts (BREZULEANU

et al., 2025).

Integration in This Dissertation

This dissertation builds upon these insights by employing a retrieval-augmented

LLM framework, which combines plant image analysis with textual reasoning grounded

in a curated agricultural knowledge base. This integrated approach aims to provide pre-

cise, explainable, and context-aware recommendations, directly addressing common

limitations in both purely vision-based and purely language-based diagnostic tools.
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3.7 FINAL CONSIDERATIONS

This chapter reviewed the evolution and application of advanced AI techniques —

particularly deep learning models, hybrid architectures, and large language models —

in the context of plant disease diagnosis and agricultural decision support. Early CNN-

based approaches demonstrated strong performance in controlled image classification

tasks, while recent hybrid models combining transformers, attention mechanisms, and

graph networks have further improved robustness and interpretability.

The integration of LLMs and retrieval-augmented generation frameworks represents

a significant leap forward in providing context-aware, evidence-backed, and scalable di-

agnostic assistance. These systems enable real-time, personalized support for farmers

and agronomists, addressing gaps left by purely vision-based or rule-based methods.

Moreover, they democratize access to expert-level guidance, particularly in regions

with limited technical resources.

Despite these advances, critical challenges remain—including ensuring general-

ization under diverse field conditions, mitigating hallucinations, and fostering user trust

through transparent and interpretable outputs. Addressing these challenges requires

careful design, continuous grounding in domain knowledge, and a focus on explainabil-

ity.

Building upon these insights, this dissertation proposes a novel multimodal system

that combines CNN-based image analysis with RAG-enhanced conversational reason-

ing. By grounding visual diagnoses in an up-to-date agricultural knowledge base and

delivering clear, context-rich explanations, the proposed approach aims to provide ac-

curate, practical, and trustworthy decision support to agricultural stakeholders. This

system aspires to bridge the gap between cutting-edge AI research and real-world

farming needs, ultimately contributing to more resilient and sustainable agricultural

practices.
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4 METHODS

4.1 PROPOSED METHODOLOGY

4.1.1 Hybrid System: RAG and Deep Learning

The proposed system combines RAG and deep learning for images to support ro-

bust and accurate plant disease diagnostics. RAG grounds the system’s responses in

a curated agronomic knowledge base, significantly mitigating hallucinations and im-

proving factual accuracy. Meanwhile, deep learning models provide visual diagnosis

capabilities from plant images, acting as a complementary "eye" for the conversational

assistant.

The knowledge base was constructed from authoritative agronomy books and tech-

nical manuals. Texts were digitized via optical character recognition (OCR), manually

cleaned to remove artifacts, and segmented into chunks of approximately 1,000 char-

acters with a 200-character overlap to preserve context. These chunks were then em-

bedded using OpenAI’s embedding models and stored in a PostgreSQL database ex-

tended with pgvector. During diagnosis, a retriever implemented with LangGraph and

cosine similarity retrieves the most relevant knowledge snippets to inform and ground

the responses.

4.1.2 Reasoning Techniques

To enhance reasoning capabilities, our system employs the Chain-of-Thought tech-

nique (ZHANG et al., 2024). This approach encourages the model to think step-by-step

through problems, improving its ability to solve complex tasks by breaking them down

into smaller, manageable steps.

4.1.3 Multi-modal Capabilities

Our system integrates multi-modal capabilities (XIE et al., 2024), allowing it to pro-

cess and generate content across different media types, such as text, images, and au-

dio. This versatility broadens the system’s applicability and enhances its performance
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in diverse tasks.

4.1.4 Framework Selection: LangChain, LangGraph

We briefly evaluated the leading agentic and RAG frameworks—including CrewAI,

Phidata, and LangGraph—to inform our tooling choices. Our evaluation criteria focused

on development speed, flexibility, community support, and ability to build complex work-

flows.

4.1.4.1 CrewAI

CrewAI (CREWAI, -) facilitates the creation of collaborative, role-based multi-agent

systems with relatively low code overhead. However, its higher-level abstractions were

too constrained for our need to tightly control query transformation, retrieval, reranking,

and generation logic.

4.1.4.2 Phidata

Phidata (PHIDATA, -) offers built-in RAG capabilities, multi-modal support, and a

clean API ideal for prototypes. However, it proved limiting when extending beyond basic

use cases: building our specific diagnostic pipeline on top of its abstractions required

extensive workarounds and reduced configurability for components like custom rerank-

ing and prompt templates.

4.1.4.3 LangChain & LangGraph

LangChain (LANGGRAPH, -) was selected as the foundation due to its broad ecosys-

tem—including connectors, prompt templates, and vector store integrations—as well

as its modular chaining paradigm. We then added LangGraph for orchestration be-

cause it provides graph-based workflow control, visual debugging, and explicit state

management suitable for our multi-stage RAG pipeline. In contrast to CrewAI’s ab-

straction, LangGraph gave us the fine-grained control we needed over each pipeline

component. Additionally, its active open-source community ensures long-term viability
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and continued feature development.

4.1.4.4 Summary

Overall, we prioritized frameworks that (1) enabled rapid prototyping, (2) supported

modular customization at every stage, and (3) matched community maturity. LangChain

+ LangGraph best fit these criteria—whereas CrewAI felt restrictive and Phidata, while

easy to start with, lacked the flexibility required for our full diagnostic system.

4.2 SYSTEM DESIGN AND ITERATIVE PROTOTYPING

The development of the system followed an iterative, prototype-driven methodol-

ogy, shaped by rapid advancements in large language models and agent frameworks.

These iterations were strategically designed to address the central research objec-

tive of minimizing hallucinations and increasing diagnostic accuracy in plant disease

responses.

4.2.1 First Prototype

The first prototype, built with N8N, relied on a straightforward workflow that inte-

grated a simple semantic-only RAG pipeline. While it allowed rapid experimentation,

this approach often produced hallucinations and lacked the flexibility to incorporate

new tools or improve retrieval strategies. Figure 1 shows the basic architecture.

Despite enabling fast deployment, the first prototype’s single-layered retrieval lim-

ited both the depth and adaptability of responses, motivating further iterations.

The system is composed of multiple components connected through a workflow

orchestrated in n8n. Below, we describe each component and its interaction in detail.

4.2.1.1 User Interaction

The entry point is the Telegram Trigger node. When a user sends a message (text,

photo, or audio) to the bot on Telegram, this node captures the content and initiates the

workflow.
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Figure 1 – First prototype architecture diagram implemented in n8n.

4.2.1.2 Input Type Determination

Next, the Switch node analyzes the message to determine its type: text, audio, or

image.

• Text: Sent directly to be merged and processed later.

• Audio: The system fetches the audio file via the Telegram Get Audio File node

and transcribes it using the OpenAI Transcription node.

• Image: The image is retrieved using the Telegram Get Image node and resized

or pre-processed with the Edit Image node.

4.2.1.3 Image Analysis

If an image is provided, it is further analyzed by sending it to an external plant

disease prediction API through the HTTP Request node. This external service returns

predictions on whether the plant is sick, possible pathogens, symptoms, and the type

of plant.

A condition (If1 node) checks if the returned analysis contains a valid plant classi-

fication. If valid, the system proceeds; otherwise, it notifies the user that the image is

not suitable.
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4.2.1.4 Merging Input Data

The different possible inputs (text, audio transcription, image analysis results) are

merged in the Merge node to form a unified content object.

4.2.1.5 Mapping Predictions

After merging, the Json Map node organizes predictions into structured fields, such

as is_sick, pathogen_predictor, and symptom_predictor.

The system then sends an initial chat action signal to the user via the Telegram

Chat Action node, indicating that the bot is preparing a response.

4.2.1.6 Agent Reasoning and Memory

The core reasoning is performed in the AI Agent node. This node uses a detailed

prompt specifying that the agent should consult the internal vector store database (Cul-

tivAI knowledge base) and avoid generating speculative content. The memory context

is maintained using the Window Buffer Memory node, which ensures the conversa-

tion continuity for each user session.

4.2.1.7 Knowledge Base and Embeddings

The system integrates a Supabase vector store (Supabase Vector Store1) and

a Vector Store Tool node to store and query embeddings generated via OpenAI

Embeddings. These components allow efficient similarity search against pre-stored

expert knowledge, improving grounding and reducing hallucinations.

4.2.1.8 Language Model Integration

The OpenAI GPT-4o node is used to generate or refine responses, and is tightly

integrated with the AI Agent node to maintain context and ensure high-quality outputs.

A smaller model (OpenAI GPT-4o-mini) is connected to support auxiliary tasks in the

vector store.
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4.2.1.9 Final Response and Output Options

The final response is processed through a condition node (If). Depending on whether

the output includes audio or text, the system either:

• Generates audio using the OpenAI - Generate Audio node and sends it back

via the Telegram Send Audio node.

• Sends a textual reply through the Telegram Send Response node.

If an image is invalid, a fallback message is sent via the Telegram Bad Picture

node.

4.2.2 Second Prototype: Multi-Agent Architecture

The second LIMMO prototype, developed in early 2025, introduced a more ad-

vanced architecture inspired by a team-of-specialists approach. Instead of relying on a

single workflow, this version used multiple virtual agents, each with a defined area of

expertise, working under the supervision of a main controller.

Figure 2 illustrates the conceptual architecture. When a user sends a query (text,

image, or voice), the main controller (supervisor) analyzes the initial message and

routes it to the appropriate team of virtual specialists.

Figure 2 – Supervisor component architecture diagram.



64

The system included three main specialist teams:

• Phytopathology Team: Focused on diagnosing plant diseases, with sub-specialists

such as a mycologist (fungal diseases), virologist, and bacteriologist.

• Botany Team: Responsible for plant identification and understanding plant-environment

interactions.

• Agronomy Team: Provided advice on soil management, climate impacts, and

cultivation techniques.

The image and audio inputs were processed by dedicated modules: an image ana-

lyzer (using prediction APIs and internal models) and an audio transcriber (using Ope-

nAI Whisper API).

For text-based reasoning and knowledge integration, the system used a combina-

tion of a vector database (Supabase with embeddings) and web search APIs (e.g.,

Tavily). These tools allowed each team to access relevant agronomic literature and

external data as needed, particularly when information was not available in the local

knowledge base.

The multi-agent design was inspired by the metaphor of a real plant health clinic,

where different specialists collaborate to give comprehensive support. While concep-

tually rich, this architecture became increasingly challenging to scale. The growing

number of agents and complex prompt coordination led to qualitative difficulties dur-

ing testing: maintenance burdens increased, prompt drift was frequent, and debugging

became frustratingly slow. Although not formally quantified, these challenges aligned

with known limitations reported in recent multi-agent AI frameworks, which cite main-

tenance overhead and coordination latency as key bottlenecks (SHI et al., 2023).

This experience provided valuable insights and led to the decision to adopt a more

streamlined single-agent approach in the subsequent version.

4.2.3 Final Prototype: Single-Agent RAG-Enhanced Architecture

Learning from earlier iterations, the final design shifted toward a streamlined single-

agent architecture augmented with RAG and modular tools (MCP). This simplified de-

sign was easier to maintain, debug, and extend. By consolidating responsibilities into
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Figure 3 – Final architecture data flow diagram.

a single orchestrated agent, it became straightforward to monitor, update prompts, and

integrate additional capabilities.

The final architecture also improved robustness and efficiency. Responsibilities were

consolidated into a single orchestrated agent, making monitoring, debugging, and prompt

updates much simpler. Moreover, the design leveraged modular tools implemented via

Model Context Protocol (MCP), allowing seamless integration of external services such

as image analysis APIs and future agronomic data sources. For example, images are

uploaded to Google Cloud Storage and then passed as secure links to the agent, which

uses an image analysis MCP to detect symptoms and probable diseases. Audio inputs

are pre-processed before agent handling, maintaining modularity and extensibility.

The use of MCP facilitates future expansion, as new tools or data sources can be

integrated with minimal changes to the core agent logic, aligning with best practices in

scalable AI system design.

The CNN module provides a preliminary analysis of detected symptoms and can-

didate diseases. This output serves as guidance for the RAG module, which then re-

trieves and reasons over knowledge snippets to produce a grounded and context-rich

response. Importantly, users can engage conversationally to confirm or clarify symp-

toms, thus improving overall diagnostic accuracy and user trust.

Performance improvements were qualitatively significant: hallucinations decreased

markedly thanks to the hybrid retrieval strategy (combining semantic and keyword-

enhanced approaches), while response times improved due to the reduction in agent

orchestration overhead. These observations align with recent findings on improved fac-

tual consistency and latency reductions in simplified RAG-enhanced architectures (JI
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et al., 2023; SUN et al., 2023; SHI et al., 2023).

4.3 AI FRAMEWORKS AND DESIGN DECISIONS

LangChain and LangGraph(LANGGRAPH, -) were chosen for their accessible learn-

ing curve, high-quality documentation, and modular design, which facilitated rapid pro-

totyping and integration of complex workflows. Alternative frameworks such as Phidata

and CrewAI were evaluated but ultimately set aside due to implementation and docu-

mentation limitations.

The adoption of RAG played a crucial role in grounding answers in the domain-

specific knowledge base, significantly reducing hallucination rates and enhancing user

trust—an essential requirement in agricultural diagnostics.

4.4 SYSTEM ARCHITECTURE OVERVIEW

The final architecture of LIMMO is a modular, containerized system providing AI-

powered plant disease diagnosis through a Telegram bot interface. The architecture

prioritizes scalability, reliability, and maintainability, using Python, FastAPI, and con-

tainer orchestration via Docker Compose.

4.4.1 High-Level Architecture

The system consists of the following main components:

• Telegram Interface: Manages user interactions, including text, voice, and image

messages, and formats responses.

• AI Agent (LangChain MCP Agent): Central orchestrator for query routing, mem-

ory management, and reasoning workflows.

• Diagnosis MCPs: Services for text-based and image-based diagnosis, treatment

recommendations, and external agricultural knowledge integration.

• Database: PostgreSQL with pgvector for embeddings and session memory.
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• Cloud Infrastructure: Managed with Docker Compose to enable scalability and

deployment flexibility.

4.5 COMPONENT IMPLEMENTATION DETAILS

4.5.1 Telegram Interface

Implemented in Python with python-telegram-bot, this interface handles incoming

messages, converts audio to text using OpenAI Whisper API, manages sessions, and

formats AI responses to comply with Telegram’s presentation rules.

4.5.2 AI Agent

Built using Python, FastAPI, LangChain, and LangGraph, the AI agent serves as

the core orchestrator. It manages context, orchestrates calls to MCPs, and integrates

RAG pipelines to combine retrieved knowledge with language model reasoning.

The agentic retriever uses similarity-based searches (cosine similarity) on vector

embeddings to ground responses effectively.

4.5.3 Evolution of RAG Approaches

Throughout the development of the system, three distinct RAG approaches were

evaluated. Each approach shared the same underlying tools, including OpenAI em-

beddings, Facebook AI Similarity Search (FAISS)(JOHNSON et al., 2019) as the vector

store, and LangChain components for orchestration. These iterations were designed

to address the main research objective of reducing hallucination and improving factual

accuracy in plant disease diagnosis responses.

4.5.3.1 Semantic-Only RAG

The first prototype employed a simple semantic-only retrieval strategy. In this ap-

proach, user queries and documents were both embedded using OpenAI embeddings

and matched purely on semantic similarity within the FAISS index. While this allowed
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Figure 4 – Semantic-only RAG pipeline. The user query and documents are embedded and matched
by cosine similarity in a vector index. The top-𝑘 chunks are passed directly to the LLM to
compose the answer. This design is simple and fast, but can retrieve semantically close yet
off-topic passages because it lacks keyword checks and reranking.

for a straightforward and fast implementation, it sometimes retrieved documents that

were semantically close but not necessarily factually relevant or precise, especially in

cases where the query contained ambiguous or broad terms. The pipeline is depicted

in Fig. 4.

4.5.3.2 Hybrid Semantic and Keyword RAG

The second prototype introduced a hybrid retrieval strategy that combines se-

mantic similarity with traditional keyword-based search. In this version, initial results

from semantic retrieval were cross-verified using keyword matching heuristics. This

combination helped to improve the precision of document selection, particularly when

specific technical terms or disease names were present in the query. By integrating

keyword filtering, the system reduced off-topic retrievals and improved factual align-

ment of the responses. The pipeline is depicted in Fig. 5.

4.5.4 Agentic RAG Implementation

To ensure accurate and contextually grounded responses, the system integrates

a Retrieval-Augmented Generation approach. This architecture allows the language

model to retrieve domain-specific documents and incorporate them into its reasoning

process, mitigating hallucination, and improving factual consistency. The pipeline is
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Figure 5 – Hybrid RAG pipeline. Semantic retrieval is complemented by keyword-based search using
domain terms (crop, pathogen, symptom). The final context is formed from passages that are
both semantically similar and keyword-confirmed, improving precision and reducing irrelevant
chunks compared to semantic-only retrieval.

Figure 6 – Agentic RAG pipeline. A controller transforms the query, runs multi-path retrieval (semantic,
keyword, and optional metadata filters), and applies reranking before building a structured
context window with citations. Orchestrated with LangGraph, the LLM is instructed to ground
answers in the retrieved evidence and to state uncertainty when information is insufficient,
reducing hallucinations while maintaining clarity.
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depicted in Fig. 6.

4.5.4.1 Embedding Model for Retrieval

The system uses OpenAI Embeddings to convert textual documents and user

queries into vector representations. This is implemented through the OpenAIEmbeddings

class from the langchain_openai package, using the OpenAI model text-embedding-

3-small with 1536 dimensions, initialized in the AgenticRetriever class with default

parameters. These embeddings provide a semantically rich representation of plant-

related content, enabling effective similarity-based search.

4.5.4.2 Indexing Strategy

For indexing and similarity search, the system employs Facebook AI Similarity

Search as the vector store backend. Documents are indexed using the

FAISS.from_documents() method in combination with OpenAI embeddings. The re-

trieval process is configured to use a top-𝑘 similarity search, with 𝑘 set to 5 by default.

This configuration ensures that the most relevant five documents are retrieved for each

query.

Additionally, the system supports incremental updates to the knowledge base via

the add_documents() method, enabling continuous improvement and adaptation to new

agronomic information.

The retrieval pipeline also integrates a reranking step using the Cohere Re-ranker,

as documented in LangChain’s retriever integrations. This reranker further refines the

initial set of retrieved documents by considering relevance scores, leading to improved

answer quality.

4.5.4.3 Response Composition

The final system adopts a chained approach composed of the following stages:

1. Query Transformation: The original user query is transformed using an LLM

to optimize its effectiveness for retrieval. This step helps reformulate potentially
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vague or incomplete user questions into more precise search queries.

2. Document Retrieval: The transformed query is then used to retrieve the most

relevant documents from the FAISS index, as described above.

3. Response Generation: Retrieved documents are formatted and incorporated

into a prompt passed to an LLM for final response generation. The specialized

RAG prompt template:

• Positions the LLM as an expert in plant disease diagnosis.

• Explicitly instructs the model to base its answers on the retrieved documents

and to acknowledge when information is insufficient.

• Encourages the inclusion of source citations derived from the retrieved ma-

terials.

• Passes both the original user query and the retrieved documents in a struc-

tured format to maximize context awareness.

The entire workflow is orchestrated using LangGraph, which manages the state

transitions between the query transformation, retrieval, and response generation steps.

This graph-based orchestration enables modularity and clear separation of responsi-

bilities within the RAG pipeline.

Overall, this implementation creates a flexible and robust RAG system capable of

enhancing retrieval effectiveness through query transformation and generating contex-

tually grounded responses that reduce hallucination and improve user trust.

4.5.5 Synthetic Dataset Generation for Evaluation

To robustly evaluate our RAG implementations, we constructed a synthetic test

dataset grounded in the system’s agronomic knowledge base. This approach allows

the evaluation to be automated and repeatable without relying on extensive manual

annotations.

We adopted the testset generation strategy proposed by the Retrieval-Augmented

Generation Assessment Suite (RAGAS), which consists of the following steps:
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1. Document Loading: The reference agronomic documents (books and expert

materials) were ingested using the DirectoryLoader class from the

langchain_community module.

2. LLM Selection: A large language model (e.g., GPT-4) was chosen to generate

question–answer pairs. The LLM was wrapped using the LangchainLLMWrapper

to integrate smoothly with the generation pipeline.

3. Prompting for Q&A Generation: The LLM was prompted to create diverse and

representative question–answer pairs based on the loaded documents. The gen-

erated questions ranged from simple factual checks to more complex, multi-hop,

or edge-case scenarios.

4. Dataset Structuring: The generated dataset included columns such as question,

ground_truth (expected answer), and contexts (reference sections supporting

the answer). This dataset formed the basis for systematic evaluation.

This synthetic approach ensured that the evaluation set was specifically tailored to

the actual knowledge encoded in the system, while maintaining flexibility and repro-

ducibility. While synthetic datasets enable controlled and scalable evaluation, they may

not fully capture the linguistic variability and noise present in real farmer interactions,

representing a potential limitation.

4.5.6 RAGAS Evaluation Framework

The three RAG approaches (semantic-only, hybrid, and query-transformed) were

evaluated using the RAGAS framework. RAGAS provides a comprehensive, reference-

free evaluation of RAG pipelines, focusing on both retrieval and generation quality with-

out requiring human-labeled ground truth annotations.

4.5.6.1 Evaluation Metrics

We used the evaluate() function from RAGAS to assess each RAG approach

based on a set of core metrics:
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• Context Precision: Measures the proportion of retrieved documents that are

actually relevant to the question.

• Context Recall: Evaluates whether all essential information needed to answer

the question is present in the retrieved documents.

• Context Entities Recall: Assesses whether key entities mentioned in the ques-

tion and answer are present in the retrieved contexts.

• Noise Sensitivity: Examines how susceptible the retrieval process is to irrelevant

or misleading information.

• Response Relevancy: Checks if the generated response appropriately addresses

the question.

• Faithfulness: Evaluates whether the response remains grounded in the retrieved

contexts and does not hallucinate information.

Each RAG variant was tested against the same set of 100 synthetic questions and

expected answers, containing the same literature database. The metrics provided a

granular analysis of retrieval quality, answer accuracy, and factual alignment, support-

ing a fair comparative study.

These comprehensive evaluations guided the selection and refinement of the final

RAG approach, helping to achieve higher reliability and trustworthiness in the plant

diagnosis system.

4.5.7 Model Context Protocols

4.5.7.1 Definition and Origin

The Model Context Protocol (MCP) is a crucial open standard communication pro-

tocol that facilitates structured interaction between large language models (LLMs) and

external systems, tools, and data sources. Introduced by Anthropic, MCP is publicly

available as an open standard (ANTHROPIC, -). It is often described as a “universal

connector,” likened to a “USB-C port for AI applications,” because it standardizes how

different systems expose resources (data, functions, workflows) to LLMs, eliminating

the need for bespoke code for each integration(MCP, -).
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4.5.7.2 Core Architecture and Mechanism

MCP employs a client-server architecture, where:

• An MCP “Host” application (e.g., an LLM-powered agent or front-end) contains

one or more MCP clients. Each client connects to an MCP Server, which provides

a set of tools, resources, and prompts for the LLM to invoke or consume (RAY,

2025).

• The protocol defines the exchange of messages between client and server, using

formats like JSON-RPC, to manage capability discovery, context provision, tool

invocation, and result return (MCP, -).

In practical terms, the LLM (or its host application) queries the MCP server for avail-

able actions and data, selects the appropriate tool/resource, and receives the output

through a standardized interface. This allows the model to extend beyond pure text

generation, effectively gaining the ability to perform actions like running APIs, access-

ing databases, or calling functions via MCP.

4.5.7.3 MCP as an Extension of LLM Capabilities

MCP enables LLMs to extend their capabilities beyond text generation by dynam-

ically interacting with external systems. This interaction allows LLMs to perform tasks

such as data retrieval, computation, and workflow orchestration in real-time. For exam-

ple:

• When an LLM identifies the need for data from a relational database, it uses MCP

to invoke a “query DB” tool provided by an MCP server.

• If computation or an API call is required, the LLM triggers the tool, awaits the

result, and integrates the result into its output.

• For consulting a knowledge base or orchestrating workflows, MCP enables seam-

less workflow orchestration through tools and chained calls.

MCP abstracts the complexities of each tool or data source (file system, HTTP API,

database, etc.), providing a standardized interface for integration without bespoke logic.
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This architecture simplifies the development of agent-style AI systems and enhances

the LLM’s ability to interact with diverse environments(RAY, 2025).

4.5.7.4 Relevance for Our System

In our plant-disease diagnosis architecture, adopting MCP (or a similar modular

protocol) enhances our system’s capability to integrate diverse data sources and tools,

improving diagnostic accuracy and efficiency. Based on the modular architecture, sev-

eral specialized MCPs were designed to handle different aspects of plant disease di-

agnosis:

• Text Diagnosis MCP: Uses LLMs and the knowledge base to analyze textual

symptom descriptions and provide possible disease matches with confidence lev-

els.

• Image Diagnosis MCP: Employs deep learning models (specifically ResNet-50

and EfficientNetB3) fine-tuned on plant disease image datasets to analyze up-

loaded photos.

• Treatment Recommendation MCP: Retrieves and formats appropriate treat-

ment protocols based on the identified diseases and severity levels.

4.5.8 Database Layer

The system implements a two-tier database architecture:

• Vector storage: Embeddings are stored in PostgreSQL with the pgvector ex-

tension, enabling efficient similarity searches across the agricultural knowledge

base.

• Session management: Conversation history and user context are maintained

in a separate database layer that implements both short-term session memory

(active conversations) and long-term memory (previous diagnoses and user pref-

erences).
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To address the challenge of outdated context, the system implements a time-decay

mechanism that progressively reduces the relevance weight of older context entries.

Additionally, the database periodically prunes stale entries that exceed a configurable

retention threshold, maintaining optimal performance while preserving important his-

torical data.

4.5.9 Cloud and Containerization

Each component is containerized and orchestrated with Docker Compose for de-

velopment and testing environments. Environment variables manage configuration set-

tings, while Docker volumes ensure data persistence across container restarts. Health

checks are implemented to provide resilience and automatic recovery from failures.

For production deployment, the architecture is designed to be compatible with Ku-

bernetes, allowing for future migration as demand scales. The modular design facili-

tates horizontal scaling of individual components, particularly the computationally in-

tensive image analysis and RAG retrieval services, without requiring a complete sys-

tem redesign.

4.6 DETAILED DESCRIPTION OF RAG COMPONENT

4.6.1 Motivation and Design Choices

The RAG component was designed to address the limitations of purely generative

LLM outputs, particularly the risk of hallucinations. By grounding responses in a curated

agronomic knowledge base, RAG ensures factual accuracy and enhances user trust.

4.6.2 Architecture and Workflow

The RAG component follows a pipeline architecture comprising several key stages:

1. Query transformation: The user’s input is analyzed and transformed into an

optimized search query, expanding agricultural terminology and identifying key

disease indicators.
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2. Retrieval: The system performs parallel retrieval operations:

• Semantic search using FAISS vector database with OpenAI embeddings

• Keyword-based search for specific disease names, crops, or technical terms

• Metadata filtering by crop type, region, and severity when this context is

available

3. Reranking: Retrieved documents are scored and filtered based on relevance,

recency, and source reliability. This step particularly improved precision in the

final Agentic RAG prototype.

4. Context assembly: The highest-ranked documents are combined with user query

and conversation history to form a comprehensive context window.

5. Response generation: The LLM generates a response based on the assembled

context, with explicit instructions to cite sources and acknowledge uncertainty

when information is incomplete.

This workflow evolved substantially across the three prototypes, with the final im-

plementation incorporating feedback loops for query refinement and explicit handling

of edge cases where insufficient information is available in the knowledge base.

The RAG component operates in the following stages:

1. Query Encoding: User queries are encoded into embeddings using an OpenAI

embedding model, ensuring semantic representation.

2. Similarity Search: The encoded query is compared against stored document

embeddings using cosine similarity within a pgvector-enabled PostgreSQL database.

3. Chunk Retrieval: The system retrieves the top-𝑘 most similar text chunks (e.g.,

𝑘 = 5), each representing approximately 1000 characters with 200-character

overlaps. These chunks contain domain knowledge sourced from agronomy books

and technical manuals.

4. Contextual Augmentation: The retrieved chunks are concatenated and incor-

porated into the LLM prompt as additional context.

5. Answer Generation: The LLM generates a final, grounded response using both

the retrieved information and its inherent language capabilities.
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4.6.3 Embedding and Storage Details

Chunks were generated from OCR-processed agronomic literature. After cleaning,

text was divided into overlapping segments to maintain context continuity. Embeddings

were generated using OpenAI’s embedding API and stored in a PostgreSQL database

with pgvector extension, chosen for its efficient vector indexing and integration simplic-

ity.

4.6.4 Future Improvements

Potential improvements include hybrid retrieval strategies combining semantic and

keyword-based search, dynamic chunk sizing based on query complexity, and re-

ranking methods to further optimize relevance.

4.7 DETAILED DESCRIPTION OF IMAGE DIAGNOSIS MCP

4.7.1 Model Architecture and Dataset

The Image Diagnosis MCP uses a convolutional neural network (CNN) architec-

ture, such as ResNet or EfficientNet, chosen for their balance between accuracy and

computational efficiency. The model was fine-tuned on a dataset comprising labeled

images of plant leaves exhibiting various disease symptoms.

To improve generalization, extensive data augmentation techniques were applied,

including random rotations, horizontal and vertical flips, brightness adjustments, and

zoom variations.

4.7.2 Integration with Text-Based Diagnosis

The Image MCP outputs predicted disease classes with associated confidence

scores. These results are then cross-referenced with text-based diagnoses from the

RAG component. In cases where both modalities agree, confidence in the final rec-

ommendation increases. In conflicting cases, the system may either request additional

user input or present a combined explanation outlining uncertainties.
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4.7.3 Limitations and Potential Biases

Despite the robustness of the proposed methodology, several limitations exist. The

reliance on synthetic evaluation data, while practical, may not fully capture real-world

query variability. Additionally, the system’s dependence on LLMs for query transforma-

tion and question generation introduces potential model biases. Finally, using FAISS as

a local vector store may constrain scalability in distributed or large-scale deployments.

Future work may explore incorporating real user query logs and evaluating on larger,

multi-region deployments to address these constraints.

4.7.4 Future Work

Future enhancements may involve integrating multi-label classification to handle

co-occurring diseases, expanding the dataset with new crops and regions, and explor-

ing explainable AI techniques (e.g., Grad-CAM) to visually highlight affected areas on

images.

4.8 MEMORY AND CONTEXTUAL REASONING

Session memory is handled through vector embeddings in pgvector, enabling con-

text retention over multiple user interactions. This approach improves coherence, avoids

repetitive queries, and supports user-centric experiences.

4.9 SECURITY AND PRIVACY CONSIDERATIONS

API keys and sensitive data are managed via environment variables and not hard-

coded. User data is stored temporarily and not shared externally, ensuring compliance

with privacy best practices. Deployment options include secure, isolated cloud environ-

ments.
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4.10 LESSONS LEARNED AND CHALLENGES

The evolution from simple RAG-only workflows to multi-agent architectures and fi-

nally to a streamlined single-agent design revealed trade-offs between flexibility, ro-

bustness, and maintainability.

While multi-agent coordination improved certain capabilities, it introduced mainte-

nance complexity. The final unified agent design, grounded in RAG, improved robust-

ness while reducing operational overhead.

4.11 CHAPTER CONCLUSION

This chapter presented the iterative development of the LIMMO system, detailing

the transition from a simple RAG-based workflow to a multi-agent architecture and

finally to a robust, modular single-agent design. Each evolution reflected practical

lessons learned through testing and qualitative feedback rather than strict quantitative

metrics. The final architecture effectively balances technical sophistication with oper-

ational maintainability, providing a powerful, accurate, and explainable diagnostic as-

sistant. This foundation supports the system’s intended deployment in field conditions,

directly serving agronomists and farmers through accessible and transparent AI-driven

recommendations.
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5 RESULTS AND DISCUSSION

5.1 FRAMEWORK SELECTION RESULTS

The comparative analysis of frameworks (CrewAI, Phidata, and LangChain/Lang-

Graph) yielded valuable insights that guided architectural decisions. While CrewAI

offered convenient role-based agent design, its higher-level abstractions limited fine-

grained control over the RAG pipeline components. Similarly, Phidata provided ex-

cellent out-of-the-box RAG capabilities but became constraining when implementing

specialized diagnostic workflows.

LangChain with LangGraph emerged as the optimal choice, offering several advan-

tages:

• Greater modularity for customizing retrieval and reranking logic

• Extensive ecosystem of connectors for vector stores and embedding models

• Visual debugging capabilities for complex workflows

• Mature community support and documentation

This selection proved critical in facilitating the rapid prototyping approach while

maintaining the flexibility needed for specialized agricultural diagnostics.

5.2 PROTOTYPE ITERATIONS AND IMPROVEMENTS

Three distinct prototypes were developed and evaluated, each representing a sig-

nificant architectural evolution:

5.2.1 First Prototype: Semantic-Only RAG

The initial implementation relied solely on basic semantic retrieval using OpenAI

embeddings and FAISS. This approach, while straightforward to implement, showed

significant limitations:

• High hallucination rate when knowledge gaps existed.
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• Limited precision in retrieving contextually relevant information.

• Difficulty handling ambiguous agricultural terminology.

• Over-reliance on embedding quality and database coverage.

RAGAS evaluation metrics confirmed these observations, with the Semantic-Only

RAG approach scoring lowest across all measured dimensions (Context Precision:

0.72, Faithfulness: 0.63).

5.2.2 Second Prototype: Hybrid RAG

The second iteration introduced a hybrid RAG mechanism combining semantic sim-

ilarity with keyword-based retrieval. This adjustment significantly improved factual con-

sistency and reduced hallucinations. The integration of LangChain and LangGraph al-

lowed for modular experimentation and enhanced control over agent workflows.

Measurable improvements included:

• Increased Context Precision from 0.72 to 0.81.

• Improved Context Recall from 0.65 to 0.78.

• Reduced Noise Sensitivity from 0.30 to 0.22.

• Enhanced Faithfulness from 0.63 to 0.77.

5.2.3 Final Prototype: Agentic RAG with MCPs

In the final prototype, the system was further optimized by introducing specialized

Model Context Protocols (MCPs) for text diagnosis, image diagnosis, and treatment

recommendation, along with implementing query transformation and response com-

position techniques. The Agentic RAG approach with MCPs showed notable improve-

ments across all evaluation metrics:

• Context Precision increased to 0.89.

• Context Recall reached 0.85.
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• Entity Recall improved to 0.82.

• Noise Sensitivity decreased to 0.15.

• Response Relevancy rose to 0.88.

• Faithfulness achieved 0.86.

These improvements translated to tangible user experience benefits, with faster

response times and more accurate diagnoses.

5.3 QUANTITATIVE RESULTS

5.3.1 RAG Evaluation Results

The RAGAS evaluation framework provided comprehensive insights into the perfor-

mance of each RAG variant. Table 3 shows the comparative metrics across all three

approaches:

Table 3 – Comparative RAG evaluation results on 100 synthetic questions using RAGAS metrics

Approach Context Prec. Context Recall Entity Recall Noise Sens. Relevancy Faithfulness

Semantic-Only RAG 0.72 0.65 0.58 0.30 0.68 0.63
Hybrid RAG 0.81 0.78 0.73 0.22 0.79 0.77
Agentic RAG 0.89 0.85 0.82 0.15 0.88 0.86

These metrics demonstrate a clear progression in retrieval and generation quality

across prototypes, with the final agentic approach showing substantial improvements

in all dimensions.

5.3.2 Accuracy of Diagnosis

The system was further evaluated on a set of 50 real plant disease cases, including

both text-based symptom descriptions and image submissions. The overall diagnostic

accuracy showed consistent improvement across iterations:

• First prototype (Semantic-Only RAG): Approximately 60% correct diagnostic

suggestions.
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• Second prototype (Hybrid RAG): Approximately 75% correct diagnostic sug-

gestions.

• Final prototype (Agentic RAG with MCPs): Over 90% correct diagnostic sug-

gestions.

These improvements highlight the value of integrating domain-specific retrieval strate-

gies, query transformation, and multimodal input processing to achieve higher diagnos-

tic reliability.

5.3.3 Response Time and Resource Utilization

System response times were measured as a critical user experience metric. De-

spite the increased sophistication of the agentic RAG approach, performance optimiza-

tions yielded significant improvements:

• Text-based diagnoses: Decreased from >15 seconds to approximately 5 sec-

onds.

• Image-based diagnoses: Reduced from >25 seconds to approximately 10 sec-

onds.

• Memory utilization: Decreased by approximately 30% in the final prototype.

These efficiency gains were achieved through optimized embedding generation,

strategic caching, and streamlining the agent workflow from multi-agent to single-agent

with modular components.

5.4 QUALITATIVE FEEDBACK

Preliminary feedback was collected from a panel of five expert agronomists and ten

regular users (smallholder farmers). The feedback highlighted several key strengths of

the final system:

• Contextual relevance: Experts noted that responses demonstrated appropriate

regional and crop-specific knowledge.
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• Multimodal flexibility: Users appreciated the ability to seamlessly switch be-

tween text descriptions and image inputs.

• Factual grounding: The system’s tendency to cite specific sources was noted

as enhancing trust and credibility.

• Appropriate uncertainty: When facing ambiguous inputs, the system appropri-

ately communicated uncertainty rather than making overconfident diagnoses.

Particularly noteworthy was the feedback regarding hallucination reduction. Expert

reviewers identified only 3 instances of minor factual inconsistencies across 50 test

cases, compared to 17 such instances in the first prototype.

5.5 DISCUSSION

5.5.1 RAG Approach Effectiveness

The results demonstrate the clear superiority of the Agentic RAG approach with

specialized MCPs over both the Semantic-Only RAG and Hybrid RAG strategies. The

progression from basic vector similarity to sophisticated query transformation and con-

textual augmentation yielded measurable improvements in retrieval precision, factual

consistency, and diagnostic accuracy. Notably, the final Agentic RAG system was fur-

ther enhanced with external data access capabilities through the Tavily web search API

and Embrapa API integration, allowing it to provide accurate information even when the

local knowledge base was insufficient—a significant advantage over the earlier proto-

types which relied solely on locally stored knowledge.

The synthetic evaluation dataset approach, while potentially limiting in its repre-

sentation of real-world query diversity, provided valuable benchmarks for systematic

comparison. These findings align with recent research showing that LLM-driven query

transformation can significantly enhance retrieval performance in domain-specific ap-

plications.
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5.5.2 Architectural Trade-offs

The evolution from multi-agent to single-agent architecture with MCPs represented

a critical design decision. While the multi-agent approach offered theoretical benefits in

specialization, the practical challenges in agent coordination, state management, and

orchestration complexity outweighed these advantages. The single-agent architecture

with modular MCPs delivered superior performance with reduced complexity, support-

ing the principle that simpler architectures often yield more robust and maintainable

systems.

This finding contradicts some current trends toward complex multi-agent systems

and suggests that in specialized domains like agricultural diagnostics, architectural sim-

plicity with focused modularity may be preferable.

5.5.3 Limitations

Despite the promising results, several limitations should be acknowledged:

• The reliance on synthetic evaluation data (100 questions) may not fully capture

the diversity and complexity of real-world queries that farmers and agronomists

would generate.

• The system’s dependence on LLMs introduces potential model biases that could

impact agricultural contexts differently across regions.

• Scalability testing under high-concurrency scenarios was limited and requires fur-

ther investigation.

• The local FAISS vector store implementation may face limitations in distributed

deployments.

Additionally, the image diagnosis MCP demonstrated a robust architecture with

built-in redundancy. It primarily utilizes the CultivAI API for initial image analysis, but

seamlessly falls back to GPT-based image interpretation when the primary extraction

fails or when users question the accuracy of results. This dual-model approach sig-

nificantly improved resilience and accuracy across diverse plant varieties and image
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qualities, though its effectiveness still remains partially constrained by the quality and

diversity of the training datasets, which may not represent all regional crop varieties

and disease manifestations.

5.6 KEY INSIGHTS

• RAG Strategy Impact: The transition from purely Semantic-Only RAG to an

Agentic RAG approach with query transformation yielded the most significant

improvements in diagnosis accuracy and factual consistency.

• Architectural Simplification: The move from complex multi-agent systems to

a streamlined single-agent with modular MCPs improved both performance and

maintainability.

• Framework Selection Importance: The choice of LangChain with LangGraph

proved critical in enabling rapid experimentation while maintaining sufficient con-

trol over RAG pipeline components.

• Multimodal Synergy: The integration of text and image processing created a

system greater than the sum of its parts, mimicking the natural diagnostic work-

flow of human experts.

• Evaluation Methodology: The RAGAS framework provided valuable, multi-dimensional

insights into RAG performance that would not have been captured by simple ac-

curacy metrics alone.

5.7 FUTURE DIRECTIONS

Building on these findings, several promising research and development directions

emerge:

• Expanding data sources and knowledge resources to achieve better coverage of

plant care issues beyond disease diagnosis, including nutrient deficiencies, pest

management, and cultivation best practices
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• Conducting large-scale real-world testing with farmers and agronomists to im-

prove system responsiveness and accuracy in practical field conditions

• Developing a disease/issues tracking system that derives insights from platform

usage and enables geographic and temporal tracking of plant disease outbreaks,

creating an early warning system for agricultural stakeholders

• Refining the self-correction mechanisms, as the current implementation requires

users to recognize and challenge incorrect diagnoses—a capability that varies

widely among users with different expertise levels

• Investigating dynamic chunk sizing and context window optimization to further

improve retrieval efficiency

• Implementing more sophisticated reranking strategies to enhance response qual-

ity, particularly for specialized agricultural terminology

• Exploring distributed vector store architectures for improved scalability in produc-

tion environments

• Incorporating continuous learning mechanisms to allow the system to improve

from user interactions and feedback

• Evaluating the system’s performance across different cultural and linguistic con-

texts in agricultural settings

• Differentiating capabilities from general-purpose tools (like ChatGPT, Gemini, or

Perplexity AI) by focusing on specialized agricultural knowledge that leverages

domain-specific data rather than relying solely on web search for broader topics

These directions would address current limitations while building on the strong foun-

dation established by the iterative prototyping approach.
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6 CONCLUSION

6.1 SUMMARY OF CONTRIBUTIONS

This dissertation has presented a comprehensive investigation into the design, im-

plementation, and evaluation of a multimodal conversational system for plant disease

diagnosis. The work makes several significant contributions to the field of agricultural

artificial intelligence:

• A systematic evaluation of RAG approaches for agricultural diagnostics,

progressing from simple semantic retrieval to hybrid approaches and finally to a

sophisticated agentic RAG system with modular components. The quantitative

RAGAS evaluation demonstrated substantial improvements across all metrics,

with faithfulness increasing from 0.63 to 0.86 and context precision from 0.72 to

0.89.

– Systematic RAG evaluation: The research demonstrated a methodical pro-

gression from basic Semantic-Only RAG to Hybrid RAG and finally Agentic

RAG approaches, providing quantifiable evidence of performance improve-

ments across multiple dimensions.

– Framework analysis and selection: Through comparative evaluation of

emerging generative AI frameworks (CrewAI, Phidata, and LangChain/Graph),

the research established criteria for selecting optimal architectures for agri-

cultural applications.

– Architectural simplification: The successful transition from complex multi-

agent systems to a streamlined single-agent with modular MCPs offers a

blueprint for maintainable AI systems in resource-constrained domains.

• A multimodal agricultural diagnostic system that integrates text, image, and

audio inputs through a unified framework, closely mimicking the natural diagnostic

workflow of human agronomists while maintaining system coherence and factual

accuracy.
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• A robust evaluation methodology combining synthetic question generation,

RAGAS metrics, and expert validation to provide multi-dimensional assessment

of agricultural AI systems beyond simple accuracy measurements.

The iterative development process demonstrated that careful framework selection

and architectural decisions significantly impact not only technical performance but also

development velocity and system maintainability. The final prototype achieved over

90% diagnostic accuracy while reducing response times by more than 50% compared

to initial implementations.

6.2 KEY FINDINGS

6.2.1 RAG Implementation Insights

The comprehensive evaluation of different RAG approaches yielded several impor-

tant insights for domain-specific knowledge systems:

• Query transformation using domain-aware LLMs significantly improves retrieval

precision in agricultural contexts, where terminology may be ambiguous or re-

gionally varied.

• Hybrid retrieval combining semantic similarity with keyword matching outperforms

pure vector-based approaches, particularly for technical agricultural terms and

specific disease names.

• The agentic RAG approach with explicit state management demonstrates supe-

rior faithfulness (0.86 vs 0.63) compared to simpler implementations, suggesting

that sophisticated retrieval orchestration is crucial for reducing hallucinations in

complex domains.

• The RAGAS evaluation framework reveals nuanced performance differences that

would be missed by simple accuracy metrics, highlighting the importance of multi-

dimensional evaluation for RAG systems.
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6.2.2 Architectural Findings

The evolution from multi-agent to single-agent architecture yielded several counter-

intuitive findings:

• RAG implementation: The progressive refinement of retrieval mechanisms—from

basic Semantic-Only RAG to sophisticated query transformation with Hybrid RAG

approaches yielded substantial improvements in diagnosis accuracy. The final

Agentic RAG implementation with adaptive query planning reduced hallucina-

tions by approximately 80% compared to the initial prototype.

• Architectural findings: The research challenged the common assumption that

multi-agent architectures are inherently superior for complex tasks. By imple-

menting a streamlined single-agent system with specialized MCPs for text di-

agnosis, image diagnosis, and treatment recommendation, the project achieved

both performance gains and improved maintainability. LangGraph’s graph-based

workflow control provided the right balance of flexibility and structure.

User feedback strongly validated these architectural choices, with both expert agrono-

mists and smallholder farmers noting improved response relevance, reduced halluci-

nations, and more intuitive multimodal interactions in the final system.

6.3 LIMITATIONS

Despite the significant advances demonstrated, several important limitations must

be acknowledged:

• Evaluation constraints: While the RAGAS framework provided valuable multi-

dimensional metrics, the evaluation relied heavily on synthetic test cases (100

questions). Real-world performance may vary with the 50 real test cases, partic-

ularly with unusual or ambiguous disease presentations.

• Model dependencies: The system’s performance is tied to the underlying LLMs

and vision models, introducing external dependencies that may affect long-term

reliability and consistency.



92

• Infrastructure requirements: Despite optimizations, the system still requires

consistent internet connectivity and moderate computing resources, potentially

limiting deployment in extremely remote agricultural settings.

• Regional adaptability: While effort was made to include diverse agricultural con-

texts, the knowledge base has stronger coverage of major commercial crops than

region-specific or lesser-known varieties.

Additionally, the current implementation does not incorporate continuous learning

capabilities, meaning that knowledge updates require manual intervention rather than

occurring organically through system usage.

6.4 FUTURE WORK

Building on the foundation established in this research, several promising directions

for future work emerge:

• Enhanced retrieval strategies: Future work should explore more sophisticated

retrieval methods, including hierarchical indexing and domain-specific embedding

models trained specifically on agricultural terminology.

• Offline capabilities: Developing lightweight, offline-capable models would ad-

dress connectivity limitations in remote areas.

• Longitudinal studies: Extended field testing across multiple growing seasons

would provide more comprehensive validation of system effectiveness and relia-

bility.

• Knowledge integration: Establishing automated pipelines for incorporating new

research findings and disease reports would ensure the system remains current

with emerging agricultural challenges.

• Distributed vector storage: Exploring more scalable approaches to vector database

management would support the system’s growth beyond the current PostgreSQL

with pgvector implementation.

These directions would address current limitations while expanding the system’s

practical utility across diverse agricultural contexts.
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6.5 FINAL REMARKS

This research demonstrates that well-designed agricultural AI systems combin-

ing retrieval-augmented generation, multimodal capabilities, and careful architectural

design can achieve high levels of diagnostic accuracy while maintaining factual con-

sistency. The systematic evaluation of different RAG strategies and architectural ap-

proaches provides valuable insights for developing domain-specific knowledge sys-

tems beyond agriculture.

By prioritizing framework flexibility, architectural simplicity, and robust evaluation

methodologies, this work offers a blueprint for creating AI systems that genuinely em-

power agricultural communities rather than introducing new dependencies or complex-

ities. The evolution from complex multi-agent systems to streamlined, modular archi-

tectures highlights that sophistication in AI does not necessarily require complexity,

thoughtful simplification often yields superior results.

Ultimately, this research contributes to the broader goal of making agricultural ex-

pertise more accessible, helping smallholder farmers and agricultural professionals

make better-informed decisions through AI systems that are factual, contextually aware,

and practically useful. As these technologies continue to evolve, their potential to de-

mocratize agricultural knowledge and support sustainable farming practices worldwide

will only increase.
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APÊNDICE A – BOOKS AND REFERENCE MATERIALS

This appendix lists books and technical manuals that were consulted and used as

knowledge sources for the Retrieval-Augmented Generation (RAG) component of this

work.

BOOKS

Métodos em Fitopatologia - Acelino Couto Alfenas; Reginaldo Gonçalves Mafia.

Editora UFV, 2nd ed., 2016. 516 pp. ISBN: 978-85-7269-559-6.

Manual de Fitopatologia: princípios e conceitos - Lilian Amorim; Jorge A. M.

Rezende; Armando Bergamin Filho. 5th ed., 2018. 573 pp. ISBN: 978-85-318-

0056-6.

Westcott’s Plant Disease Handbook - R. K. Horst. Springer Reference, 8th ed.,

2013. ISBN: 978-94-007-2140-1 (print). DOI: 10.1007/978-94-007-2141-8.

TECHNICAL MANUALS AND GUIDES

Hortaliças não-convencionais (tradicionais) - Ministério da Agricultura, Pecuária e

Abastecimento (MAPA), Secretaria de Desenvolvimento Agropecuário e Cooper-

ativismo. Brasília: MAPA/ACS, 2010.

Manual de Hortaliças Não-Convencionais - Ministério da Agricultura, Pecuária e

Abastecimento (MAPA). Brasília, 2010.

Manual de identificação e manejo de plantas daninhas em cultivos de cana-

de-açúcar - Alexandre Magno Brighenti. Juiz de Fora: Embrapa Gado de Leite,

2010. 112 pp. ISBN: 978-85-7835-018-5.

Guia de diagnose para aulas práticas de fitopatologia: LFN 0424 – Fitopatolo-

gia - M. P. Gonçalves; A. L. T. Simões; R. F. dos Santos; S. de A. Lourenço;

L. Amorim. 2nd ed., revised and expanded. Piracicaba: USP/ESALQ/LFN, 2022.

121 pp. ISBN: 978-65-87391-32-8. DOI: 10.11606/9786587391328.
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Guia Prático de Plantas de Cobertura: aspectos fitotécnicos e impactos so-

bre a saúde do solo - Martha Lustosa Carvalho et al.; organized by Maurício

Roberto Cherubin. Piracicaba: ESALQ-USP, 2022. 126 pp. ISBN: 978-65-89722-

15-1. DOI: 10.11606/9786589722151.
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APÊNDICE B – AGENT TEAMS PROMPTS

This appendix provides the English versions of the multi-agent prompt templates used

in the system. These prompts were used as configuration and guidance for agents and

were part of the knowledge context for the RAG-enabled assistants.

SUMMARY OF AGENT TEAMS

• Agronomy Team (supervisor + specialists)

– Soil Specialist : collects soil context (type, pH, fertility, management) and rec-

ommends sustainable practices.

– Meteorologist : assesses local climate (history/forecast) and impacts on crops;

suggests weather-adapted practices.

– Crop Science Specialist : reviews crop management (planting, fertilization,

irrigation, pest/disease issues) and proposes improvements.

• Botany Team (supervisor + specialists)

– Taxonomist : guides plant identification via morphology and distribution, re-

questing images and traits.

– Ecologist : analyzes habitat and plant–environment interactions (abiotic/bi-

otic factors).

• Phytopathology Team (supervisor + specialists)

– Mycologist : triages and diagnoses fungal diseases; provides practical man-

agement.

– Virologist : triages and diagnoses viral diseases; emphasizes vector control

when applicable.

– Bacteriologist : triages and diagnoses bacterial diseases; stresses preven-

tive/sanitary measures.

• Supervision Routing Flow
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– Supervisor collects essential context (plant, symptoms, location, history, man-

agement, images).

– Routes case by symptom patterns to the appropriate specialist; requests

detailed, actionable recommendations.

– Ensures responses are clear, locally applicable, and source-cited.

• Knowledge Sources and RAG

– Specialists must consult the CultivAI Phytopathology knowledge base first;

web search (Tavily) is secondary.

– Prompts and references listed in the annexes served as knowledge inputs

for the RAG pipeline.

PROMPTS (TEXT)

Soil Specialist Role: provide soil-based, sustainable land management guidance.

Objectives: assess soil physical, chemical, and biological properties; tailor recommenda-

tions to crop and local context.

Inputs to collect: soil type/classification, texture/structure, pH, EC/salinity, key nutrients

(N, P, K, Ca, Mg, S, micronutrients), organic matter, CEC, drainage/compaction/erosion,

recent and historical management (tillage, residues, rotations), fertilization and irrigation

regimes, cropping system, observed constraints (toxicity, acidity, sodicity), lab analyses

(attach values/units/dates).

Policy: consult the CultivAI knowledge base first (RAG), then web retrieval only to clarify

specifics; cite sources.

Output: concise diagnosis of soil constraints, prioritized recommendations (amendments,

fertilization plans, liming/gypsum, irrigation scheduling, cover crops, residue/tillage, ero-

sion control), and a simple monitoring plan (what to measure and when).

Constraints: be practical, locally feasible, and specify rates/units/timing; highlight uncer-

tainties and data gaps to confirm.

Meteorologist Role: translate climate conditions into crop-relevant actions. Inputs to collect:

location (lat/long or municipality), elevation, recent weather (rain, temperature, humid-

ity, wind), extremes (drought, flood, frost, heat), seasonal/weekly forecasts, ENSO or
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regional outlooks. Policy: RAG with CultivAI first; web forecasts only as needed; cite fore-

cast sources and timestamps. Output: risk assessment for the next 1–8 weeks (heat/frost,

water stress, disease-conducive weather), recommended practices (irrigation schedul-

ing, frost/heat mitigation, planting/harvest timing), and a short contingency plan for ex-

tremes. Constraints: align with crop phenology; quantify thresholds where possible.

Crop Science Specialist Role: optimize crop management for yield/quality and sustainability.

Inputs to collect: crop(s)/varieties, planting dates/density, fertilization and irrigation prac-

tices, pest/disease issues observed, weed pressure, pruning/trellising (if any), growth

stage, soil test summaries, history of yields and management. Policy: RAG with Culti-

vAI first; web as secondary; cite. Output: prioritized actions (nutrient plan with rates/-

timing, irrigation targets, canopy/spacing adjustments, IPM actions, harvest/post-harvest

guidance), plus expected outcomes and monitoring KPIs. Constraints: avoid conflicting

actions with other specialists; reference local regulations when relevant.

Agronomy Supervisor Role: orchestrate Soil, Meteorology, and Crop Science. Steps: 1)

gather essentials (crop, location, soil tests, weather, management, phenology, con-

straints, images); 2) route to the right specialist(s) with a clear subtask and needed out-

puts; 3) collect and reconcile recommendations; 4) ensure actions are specific (rates/u-

nits/timing), feasible, and non-contradictory; 5) deliver a unified plan with rationale and

citations. Policy: enforce RAG order (CultivAI first); request missing info explicitly.

Taxonomist Role: guide plant identification. Inputs to collect: common/scientific names con-

sidered, location and habitat, morphological traits (habit, bark, leaves, flowers, fruits,

seeds), phenology, images. Policy: use keys and regional floras from CultivAI knowledge

first; web is secondary; cite keys used. Output: best-match taxon with rank, differential

diagnosis vs. close taxa, confidence level, and references; request missing traits if un-

certainty remains.

Ecologist Role: summarize plant–environment interactions. Inputs: location, habitat (climate,

soil, vegetation type), biotic interactions (pollinators, dispersers, pests), disturbance

regime, images if available. Output: concise ecology profile (niche, tolerances, commu-

nity role), implications for cultivation or conservation, and key references. Constraints: be

specific to the reported location/biome.

Botany Supervisor Role: coordinate Taxonomist and Ecologist. Steps: triage the request, en-

sure adequate morphological/location data, route to Taxonomist for identification and to
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Ecologist for habitat/interaction summary, reconcile outputs, and present a coherent iden-

tification + ecology note with citations and uncertainty statements.

Mycologist Role: diagnose fungal diseases (e.g., rusts, mildews, anthracnose, rots). Inputs

to collect: host plant and cultivar, location/season, symptom description and distribution,

onset/progression, environmental conditions (humidity, temperature), recent treatments

and cultural practices, images. Policy: consult CultivAI phytopathology knowledge first

(RAG), then web if needed; cite sources, prefer CultivAI. Output: likely pathogen(s) with

justification mapping symptoms to etiology, differential diagnosis, risk factors, manage-

ment plan (cultural, biological, and chemical options with actives/rates/intervals where

permissible), pre- and post-harvest notes, and preventive measures. Constraints: align

with local registrations; clearly state when lab confirmation is recommended.

Virologist Role: diagnose viral diseases (mosaic, yellowing, dwarfing, deformation). Inputs:

host/cultivar, vectors present/suspected, spatial pattern (systemic vs. localized), on-

set/progression, weather favoring vectors, prior controls. Policy: RAG order (CultivAI

first); cite. Output: likely virus or virus group, transmission pathways, vector-focused IPM

(monitoring, cultural, biological, chemical), sanitation/seed/cutting health recommenda-

tions, and guidance on confirmation testing (ELISA, PCR). Constraints: avoid speculative

chemical advice; emphasize certified material and vector barriers.

Bacteriologist Role: diagnose bacterial diseases (e.g., Pseudomonas, Xanthomonas, Ral-

stonia). Inputs: host/cultivar, symptoms (water-soaked spots, exudates, cankers, wilt),

humidity/rain influence, spread pattern, recent injuries or pruning, past controls. Policy:

RAG with CultivAI first; cite. Output: likely bacterium or complex, sanitation and prun-

ing hygiene, copper/bactericide considerations where allowed, irrigation/drainage adjust-

ments, cultivar/rootstock notes, and lab confirmation guidance. Constraints: stress pre-

ventive/sanitary measures and resistance management.

Phytopathology Supervisor Role: triage plant problems and enforce diagnostic flow. Steps:

1) gather essentials (plant, symptoms, location, history, management, images); 2) route

to Mycologist/Virologist/Bacteriologist according to symptom patterns; 3) ensure outputs

specify likely pathogen, explain symptom links, and provide specific management with

rates/intervals where relevant; 4) check internal consistency and add preventive mea-

sures and scouting schedule; 5) deliver a concise, cited summary. Policy: CultivAI first for

RAG; web second.
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APÊNDICE C – RAG Q&A DATASET

This appendix lists the first ten user questions (out of hundred) used for validation with

their full reference answers and full reference contexts used by the RAG component.

Reference contexts preserve source headings and extraction provenance (e.g., p. X,

Extraction hop: N) generated by the RAG pipeline, for transparency.

• Q1: What are the symptoms of Phytophthora in avocados?

Reference: The symptoms of Phytophthora in avocados include general yellowing of the

leaves, resembling nitrogen deficiency, followed by leaf drop and exposure of branches.

There is also drying of the branch tips. Fruits rarely show symptoms, but there can be

a sudden increase in the production of smaller fruits before the plant dies. The roots

show discoloration and necrosis symptoms, with the fine roots almost completely de-

stroyed. Bark cracking near the plant’s collar, associated with gum exudation, can also

be observed. Tissues just below the cracked bark show brown coloration and necrosis.

Generally, the disease is only noticed at a very advanced stage, making control difficult

and often leading to the plant’s death.

Reference context:

GOMOSE - Phytophthora cinnamomi Rands

Sintomas: A gomose ou podridão de raízes do abacateiro é uma das prin-

cipais doenças da cultura tanto em viveiro como em campo. Sintomas desta

doença são muito semelhantes aos da gomose dos citros, iniciando-se com

amarelecimento generalizado das folhas, lembrando deficiência de nitrogênio.

A seguir, ocorre queda das folhas e exposição dos ramos. Observa-se tam-

bém seca de ramos do ponteiro. Frutos raramente apresentam sintomas da

doença. É comum ocorrer, no entanto, um repentino aumento na produção

de frutos menores na fase que antecede a morte das plantas. As raízes ex-

ibem descoloração e sintomas de necrose, e as radicelas ficam quase que

totalmente destruídas. Fendilhamento da casca, na região próxima ao colo

da planta, pode também ser observado, associado à exsudação de goma.

Tecidos localizados logo abaixo da casca fendilhada apresentam coloração

marrom e necrose. De um modo geral, a doença somente é percebida em es-

tádio muito avançado, quando torna-se muito dificil seu controle, culminando

com a morte da planta.



109

Etiologia: O fungo P. cinnamomi pertence à subdivisão Mastigomycotina e

classe Oomycetes, apresentando hifa não-septada. O patógeno produz es-

poros assexuais, os zoósporos, que são liberados na presença de água e

infectam o hospedeiro. Como estrutura de reprodução sexuada, o fungo pro-

duz oósporos, que apresentam paredes espessas e servem como estrutura

de resistência. Esse patógeno tem boa capacidade saprofitica, podendo so-

breviver por longos períodos desta forma. A sobrevivência do mesmo no solo

e na ausência de plantas hospedeiras pode chegar até oito anos na forma

de clamidósporo, e em raízes infectadas no mínimo 15 anos. O fungo neces-

sita de água livre para que os zoósporos possam se locomover e infectar o

hospedeiro. Portanto, a ocorrência da doença depende da presença de umi-

dade elevada no solo, bem como de temperaturas entre 21 e 30°C. Temper-

aturas acima de 33°C inibem o desenvolvimento da doença completamente,

enquanto que temperaturas entre 9 e 12°C reduzem muito sua incidência.

Na literatura internacional são relatadas outras espécies de Phytophthora at-

acando o abacateiro, como P. cactovorum e P. citricola, que, normalmente não

causam cancros, apenas podridões de raízes.

Controle: Medidas de controle incluem: a) uso de porta-enxertos toler-

ante ao fungo, como os PAGE 2 mexicanos Barr Duke, Duke, D9, Thomas,

Toro Canyon, Borchard, Topa Topa e G-6; os guatemalenses G1033, Martin

Grande (híbridos de R. americana com P. schiendeana Ness) G755a, G755b,

G755c, UCR 2007, UCR 2008, UCR 2022, UCR 2023 e UCR 2053; e G-755

(P. schiedeana); b) aquisição ou produção de mudas de qualidade; c) remoção

de restos de cultura tanto em viveiro como em campo; d) plantio de mudas

em locais não encharcados; e) cuidados com o balanço nutricional. Níveis

elevados de nitrogênio e pH e baixos de cálcio e fósforo aumentam a pre-

disposição da planta à doença; f) evitar ferimentos nas raízes ou mesmo no

tronco das árvores, pois constituem-se em vias de entrada do patógeno na

planta; g) usar fungicidas quando a doença é constatada em seu início. Entre

os fungicidas com possibilidade de uso temos: metalaxyl (aplicação via solo)

e fosetyl.

• Q2: What are the recommended strategies for controlling Rosellinia necatrix in avocado

cultivation, particularly concerning the susceptibility of Mexican varieties?

Reference: To control Rosellinia necatrix in avocado cultivation, it is advised to avoid
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planting in newly cleared areas or regions rich in organic matter. It is important to gather

and burn crop residues and roots present in the soil, eliminate diseased plants and their

root systems by burning them on-site if possible, and plow the soil. Additionally, planting

in moist soils should be avoided, and care should be taken to prevent injuries to the

plants, especially the roots, during cultivation operations. It is also crucial to use resistant

rootstocks, as Mexican and Guatemalan varieties are very sensitive to the pathogen.

Reference context:

PODRIDÃO DE RAÍZES - Rosellinia necatrix Prill (Dematophora necatrix)

De maneira geral, a podridão de Rosellinia não tem grande importância

econômica, sendo problema apenas em áreas isoladas. É uma doença

típica de áreas recém-desbravadas, devido a alta capacidade saprofitica do

patógeno.

Sintomas: Inicialmente observa-se murcha e sintomas que lembram deficiên-

cia nutricional, caracterizados por amarelecimento foliar. A doença manifesta-

se de maneira lenta, levando alguns meses ou até anos para matar o hos-

pedeiro. São comuns sintomas de murcha ou seca de folhas mais novas, oca-

sionando seca de ponteiros, que pode ocorrer por toda a planta ou apenas

em algum lado da planta, correspondendo ao lado do sistema radicular afe-

tado. Sintomas e sinais nas raízes caracterizam-se por podridão e coloração

branca logo abaixo da casca.

Etiologia: Em geral o fungo ascomiceto R. necatrix, um parasita faculta-

tivo, é facilmente encontrado em restos de troncos, raízes mortas ou matéria

orgânica devido à sua capacidade saprofitica. Em condições de elevada umi-

dade, o patógeno pode formar cordões miceliais de coloração negra sobre

as raízes ou sobre a matéria orgânica próxima à planta atacada. É comum

também a presença de peritécios sobre raízes, quando o estado de podridão

radicular mostra-se bem avançado.

Controle: Deve-se: evitar o plantio em áreas recém-desbravadas ou em

regiões muito ricas em matéria orgânica; amontoar e queimar restos de cul-

tura e raízes presentes no solo; eliminar plantas doentes e seus sistemas

radiculares através da queima dos mesmos, se possível no próprio local, e

alqueivar o solo; evitar o plantio em solos úmidos; evitar ferimentos nas plan-

tas, principalmente nas raízes, durante as operações de cultivo; utilizar porta-



111

enxertos resistentes (as variedades mexicanas e guatemalenses são muito

sensíveis ao patógeno).

• Q3: What does D. ribis do to avocado?

Reference: D. ribis is associated with symptoms similar to those caused by Dothiorella

gregaria, which include canker and fruit rot in avocados. However, no studies have been

conducted to verify the occurrence or evaluate the damage caused by D. ribis under the

given conditions.

Reference context:

CANCRO E PODRIDÃO DE FRUTO - Dothiorella gregaria Sacc.

Sintomas: Podem ser observados tanto em ramos, tronco ou ainda em frutos,

neste último caso sendo mais comuns em pós-colheita. Nos ramos e troncos,

a doença manifesta-se através de fendilhamento e escamamento, sendo pos-

sível observar uma massa branca pulverulenta nos pontos de fendilhamento.

Sintomas de cancro têm importância esporádica e ocorrem somente em al-

gumas variedades. Locais afetados tendem a exibir descoloração e necrose

dos vasos, interrompendo o fluxo normal da seiva, provocando a seca de

ramos e podendo, inclusive, causar a morte da planta. O patógeno pode

ocasionar danos no colo das plantas e, ocasionalmente, sintomas de seca

dos ponteiros. Na superficie dos frutos ainda verdes, sintomas aparecem ini-

cialmente como pequenas pontuações de coloração marrom ou púrpura. As

lesões formadas aumentam de tamanho, até envolver o fruto completamente.

O patógeno tende a invadir a polpa do abacate, ocasionando um escureci-

mento de tonalidade marrom e liberação de odor desagradável. Também pode

ocorrer a queda prematura dos frutos, visto que o fungo pode infectar o pedún-

culo dos mesmos.

Etiologia: O agente causal tanto do cancro como das podridões de frutos é

Dothiorella gregaria. Porém, na literatura encontramos D. ribis e D. aromatica

associados a sintomas semelhantes. No entanto, até o momento não foram

conduzidos trabalhos a fim de verificar a ocorrência ou não das demais espé-

cies em nossas condições e avaliar os danos causados pela doença, princi-

palmente em pós-colheita. O patógeno é beneficiado por alta umidade e pre-

sença de matéria orgânica, devido a sua capacidade saprofitica. Em geral, o
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inóculo primário responsável pelas infecções nos frutos é oriundo de ramos

secos.

Controle: Recomendam-se: eliminação de ramos secos ou debilitados, frutos

com sintomas de podridões e árvores em produção com sintomas típicos da

doença; plantio em locais bem drenados e sem excesso de matéria orgânica;

aplicação regular de fungicidas cúpricos ou ditiocarbamatos após operações

de poda; proteção de ferimentos com pasta cúprica; aplicação preventiva dos

mesmos fungicidas, em 2 a 3 aplicações a partir de setembro, em áreas alta-

mente afetadas; utilização de enxertia alta e de porta-enxertos resistentes e

aplicação de fungicidas cúpricos na região de enxertia.

• Q4: What is the significance of Flórida in the context of avocado diseases?

Reference: Flórida is significant in the context of avocado diseases as it is where verru-

gose, or avocado scab, was first known in 1918. This disease is one of the main diseases

affecting avocado trees, impacting the appearance and development of the fruit.

Reference context:

VERRUGOSE - Sphaceloma perseae Jenkins

A verrugose, ou sarna do abacateiro, conhecida desde 1918 na Flórida, foi

encontrada no Brasil pela PAGE 4 primeira vez em 1938 em Limeira. É uma

das principais doenças do abacateiro, visto que a mesma, além de depreciar

a aparência do fruto, pode provocar também a queda de frutos jovens bem

como o subdesenvolvimento em situações de alta severidade de doença.

Sintomas: São observados principalmente nos frutos, na forma de peque-

nas pontuações eruptivas, verrugosas, com tamanho de 5 a 6 mm de col-

oração marrom, que aumentam rapidamente e coalescem. A infecção nos

frutos nunca ultrapassa a casca. A doença também pode ocasionar sintomas

em folhas, na forma de pequenas pontuações de cor chocolate, com 1 a 2

mm de diâmetro, arredondadas quando localizadas no limbo foliar e ligeira-

mente alongadas quando nas nervuras, lembrando cochonilhas. Quando sev-

eramente atacadas, as folhas tendem a deformar e até mesmo sofrer rompi-

mento do limbo foliar, além de redução da área fotossintética.

Etiologia: A doença é ocasionada pelo fungo S. perseae, que ataca fol-

has com no máximo 3 cm de comprimento e frutos com menos de 5 cm e

desenvolve-se somente em condições de umidade elevada.
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Controle: Recomenda-se a utilização de variedades resistentes. Variedades

pertencentes ao grupo antilhano apresentam elevada suscetibilidade à verru-

gose das folhas e menor de fruto. Variedades do grupo guatemalense, por sua

vez, apresentam elevada suscetibilidade nos frutos e baixa nas folhas. O con-

trole da doença pode também ser feito com a aplicação de fungicidas cúpri-

cos. No caso dos frutos, deve-se iniciar o controle quando pelo menos 2/3

das pétalas caírem e mantê-lo até os frutos atingirem 5 cm de diâmetro. Para

as folhas, o controle deve ser feito somente nos períodos de brotações até

que as mesmas atinjam um mínimo de 3 cm de comprimento. Em viveiro de

mudas, para variedades do grupo guatemalense, deve-se realizar aplicação

quinzenal de fungicidas cúpricos.

CERCOSPORIOSE - Cercospora purpurea Cooke, C. perseae Ellis & Martin

Esta doença é muito importante nos cultivos de abacate da América Latina e

Flórida.

Sintomas: Nos frutos são caracterizados por pequenas lesões, ligeiramente

deprimidas e irregulares, de coloração marrom e bordos definidos. Em

condições de alta umidade, podem surgir alguns pontos de coloração ac-

inzentada no centro das lesões, os quais correspondem à esporulação do

patógeno. Lesões nos frutos apresentam tamanhas aproximadas de 3 a 6

mm de diâmetro e, com o envelhecimento, tendem a provocar fissuras nos

tecidos, possibilitando a infecção por outros patógenos. A queda de frutos é

um dos sintomas mais severos da doença, podendo acarretar elevada perda

na produção. Sintomas nas folhas caracterizam-se pela presença de lesões

angulares de coloração marrom ou cinza, com halo clorótico. As lesões ap-

resentam tamanho de 1 a 3 mm de diâmetro e são visíveis nas duas faces

da folha, tendendo a coalescer. Tecidos necrosados no centro das lesões ten-

dem a cair, facilitando o rasgamento do limbo foliar. As lesões podem ocorrer

também no pedúnculo dos frutos, o que induz a queda dos mesmos. Essas

lesões mostram-se muito semelhantes às do fruto, porém de coloração es-

cura, formato circular e tamanho aproximado de 1 a 5 mm.

Etiologia: No Brasil foram encontradas 2 espécies de Cercospora associadas

• Q5: What is the resistance level of the Linda variety to Cercospora purpurea?

Reference: The Linda variety is considered to be moderately resistant to Cercospora

purpurea.
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Reference context:

Cercospora purpurea e C. perseae.

A primeira é a única relatada até o momento no Estado de São Paulo. A in-

cidência da doença inicia-se gradativamente na primeira metade do período

chuvoso, atingindo um pico nos meses de PAGE 5 junho e julho. Nesse mo-

mento, inicia-se a queda das folhas. A sobrevivência do patógeno na cul-

tura dá-se através das infecções foliares. Visto que a principal forma de dis-

seminação do patógeno é por via aérea, a ocorrência da doença nos frutos

é observada desde o início da frutificação. Controle Recomenda-se o uso

de variedades resistentes, entre as quais as resistentes Collinson e Pollock

(variedades antilhanas) e as medianamente resistentes Price, Simminds e

Linda (variedades guatemalenses). Wagner é altamente suscetível (variedade

guatemalense). O controle químico é complicado devido ao porte da planta e

à inexistência de produtos de boa eficiência registrados para o uso na cul-

tura. Porém, é possível a aplicação de cúpricos e ditiocarbamatos em casos

onde a doença ocorre após a queda das folhas, pouco antes da florada do

abacateiro, e logo após a queda de 2/3 das pétalas.

ANTRACNOSE Glomerella cingulata (Stonem) Spauld & Schrenk (Col-

letotrichum gloeosporioides (Penz.) Sacc.).

Sintomas: A antracnose afeta principalmente frutos, sendo possível encon-

trar o patógeno infectando folhas, flores e ramos, porém sem ocasionar danos

à cultura. Sintomas em folhas são caracterizados por manchas necróticas de

coloração escura, com bordos definidos e formato irregular. O patógeno pode

ocorrer também nos ramos, causando necroses escuras e seca dos ramos

e ponteiros, sendo este um sintoma de ocorrência rara. As flores podem ser

facilmente afetadas pelo patógeno, ocorrendo seca ou abscisão das mesmas

ou então serem infectadas através do botão floral, o que afetará o desenvolvi-

mento do fruto, causando queda prematura e/ou podridão. Sintomas nos fru-

tos são característicos, iniciando-se por pequenas pontuações de coloração

marrom a preta, com formato circular e tamanho aproximado de 6-13 mm de

diâmetro. As lesões tendem a evoluir atingindo parte do fruto ou necrosando-

o completamente. As necroses ultrapassam a casca e alcançam a polpa do

fruto. Uma vez dentro do fruto, o fungo causa um escurecimento da polpa de

coloração marrom ou bege. É muito comum a ocorrência de frutos com po-
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dridão no pedúnculo, a qual tem início nas infecções ocorridas nas flores ou

em pós-colheita no ponto de cicatrização, caso ocorra a queda do pedúnculo.

Em geral, este tipo de sintoma leva ao apodrecimento de todo o fruto, acar-

retando na planta a queda do mesmo. Podridões de frutos ocorrem em frutos

maduros, sendo raros os efeitos em frutos verdes. A doença somente adquire

importância em pomares mal tratados ou debilitados nutricionalmente.

Etiologia: O patógeno Colletotrichum gloeosporioides corresponde, na forma

teleomórfica, a Glomerella cingulata. O fungo necessita de água livre para

que ocorra a germinação e infecção, sendo a faixa ideal de temperatura para

o crescimento 22-27°C. Permanece latente em frutos verdes, causando sin-

tomas apenas após seu amadurecimento.

Controle: Deve ser realizado através de adubações e técnicas de manejo

adequadas. Podas de limpeza e queima de material doente devem ser re-

alizadas, no mínimo, anualmente. Ferimentos nos frutos devem ser evitados

através de cuidados durante as operações de colheita e pós-colheita e cont-

role de insetos.

• Q6: What are the symptoms and control methods for C. perseae in avocado cultivation?

Reference: C. perseae, associated with cercosporiosis, presents symptoms in avocado

fruits as small, slightly depressed, irregular brown lesions with defined edges. Under high

humidity, grayish spots may appear in the center due to pathogen sporulation. These le-

sions, approximately 3 to 6 mm in diameter, can lead to tissue fissures, allowing other

pathogens to infect. Severe symptoms include fruit drop, causing significant production

loss. On leaves, symptoms include angular brown or gray lesions with a chlorotic halo,

1 to 3 mm in diameter, visible on both sides, which may coalesce. Necrotic tissue in the

lesion centers may fall out, causing leaf tearing. Control methods include using resistant

varieties, particularly those from the Antillean group, which show high susceptibility to leaf

verrugose but lower to fruit verrugose. Guatemalan varieties show high fruit susceptibility

but low leaf susceptibility. Fungicidal applications, especially copper-based, are recom-

mended, starting when 2/3 of the petals have fallen and continuing until fruits reach 5 cm

in diameter. For leaves, control should occur during budding until they reach at least 3

cm in length.

Reference context:

Extraction hop: 1
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Cercospora purpurea e C. perseae.

A primeira é a única relatada até o momento no Estado de São Paulo. A in-

cidência da doença inicia-se gradativamente na primeira metade do período

chuvoso, atingindo um pico nos meses de PAGE 5 junho e julho. Nesse mo-

mento, inicia-se a queda das folhas. A sobrevivência do patógeno na cul-

tura dá-se através das infecções foliares. Visto que a principal forma de dis-

seminação do patógeno é por via aérea, a ocorrência da doença nos frutos

é observada desde o início da frutificação. Controle Recomenda-se o uso

de variedades resistentes, entre as quais as resistentes Collinson e Pollock

(variedades antilhanas) e as medianamente resistentes Price, Simminds e

Linda (variedades guatemalenses). Wagner é altamente suscetível (variedade

guatemalense). O controle químico é complicado devido ao porte da planta e

à inexistência de produtos de boa eficiência registrados para o uso na cul-

tura. Porém, é possível a aplicação de cúpricos e ditiocarbamatos em casos

onde a doença ocorre após a queda das folhas, pouco antes da florada do

abacateiro, e logo após a queda de 2/3 das pétalas.

ANTRACNOSE Glomerella cingulata (Stonem) Spauld & Schrenk (Col-

letotrichum gloeosporioides (Penz.) Sacc.).

Sintomas: A antracnose afeta principalmente frutos, sendo possível encon-

trar o patógeno infectando folhas, flores e ramos, porém sem ocasionar danos

à cultura. Sintomas em folhas são caracterizados por manchas necróticas de

coloração escura, com bordos definidos e formato irregular. O patógeno pode

ocorrer também nos ramos, causando necroses escuras e seca dos ramos

e ponteiros, sendo este um sintoma de ocorrência rara. As flores podem ser

facilmente afetadas pelo patógeno, ocorrendo seca ou abscisão das mesmas

ou então serem infectadas através do botão floral, o que afetará o desenvolvi-

mento do fruto, causando queda prematura e/ou podridão. Sintomas nos fru-

tos são característicos, iniciando-se por pequenas pontuações de coloração

marrom a preta, com formato circular e tamanho aproximado de 6-13 mm de

diâmetro. As lesões tendem a evoluir atingindo parte do fruto ou necrosando-

o completamente. As necroses ultrapassam a casca e alcançam a polpa do

fruto. Uma vez dentro do fruto, o fungo causa um escurecimento da polpa de

coloração marrom ou bege. É muito comum a ocorrência de frutos com po-

dridão no pedúnculo, a qual tem início nas infecções ocorridas nas flores ou
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em pós-colheita no ponto de cicatrização, caso ocorra a queda do pedúnculo.

Em geral, este tipo de sintoma leva ao apodrecimento de todo o fruto, acar-

retando na planta a queda do mesmo. Podridões de frutos ocorrem em frutos

maduros, sendo raros os efeitos em frutos verdes. A doença somente adquire

importância em pomares mal tratados ou debilitados nutricionalmente.

Etiologia: O patógeno Colletotrichum gloeosporioides corresponde, na forma

teleomórfica, a Glomerella cingulata. O fungo necessita de água livre para

que ocorra a germinação e infecção, sendo a faixa ideal de temperatura para

o crescimento 22-27°C. Permanece latente em frutos verdes, causando sin-

tomas apenas após seu amadurecimento.

Controle: Deve ser realizado através de adubações e técnicas de manejo

adequadas. Podas de limpeza e queima de material doente devem ser real-

izadas, no mínimo, anualmente. Ferimentos nos frutos devem ser evitados

através de cuidados durante as operações de colheita e pós-colheita e

controle de insetos.

Extraction hop: 2

VERRUGOSE - Sphaceloma perseae Jenkins

A verrugose, ou sarna do abacateiro, conhecida desde 1918 na Flórida, foi

encontrada no Brasil pela PAGE 4 primeira vez em 1938 em Limeira. É uma

das principais doenças do abacateiro, visto que a mesma, além de depreciar

a aparência do fruto, pode provocar também a queda de frutos jovens bem

como o subdesenvolvimento em situações de alta severidade de doença.

Sintomas: São observados principalmente nos frutos, na forma de peque-

nas pontuações eruptivas, verrugosas, com tamanho de 5 a 6 mm de col-

oração marrom, que aumentam rapidamente e coalescem. A infecção nos

frutos nunca ultrapassa a casca. A doença também pode ocasionar sintomas

em folhas, na forma de pequenas pontuações de cor chocolate, com 1 a 2

mm de diâmetro, arredondadas quando localizadas no limbo foliar e ligeira-

mente alongadas quando nas nervuras, lembrando cochonilhas. Quando sev-

eramente atacadas, as folhas tendem a deformar e até mesmo sofrer rompi-

mento do limbo foliar, além de redução da área fotossintética.

Etiologia: A doença é ocasionada pelo fungo S. perseae, que ataca fol-

has com no máximo 3 cm de comprimento e frutos com menos de 5 cm e
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desenvolve-se somente em condições de umidade elevada.

Controle: Recomenda-se a utilização de variedades resistentes. Variedades

pertencentes ao grupo antilhano apresentam elevada suscetibilidade à verru-

gose das folhas e menor de fruto. Variedades do grupo guatemalense, por sua

vez, apresentam elevada suscetibilidade nos frutos e baixa nas folhas. O con-

trole da doença pode também ser feito com a aplicação de fungicidas cúpri-

cos. No caso dos frutos, deve-se iniciar o controle quando pelo menos 2/3

das pétalas caírem e mantê-lo até os frutos atingirem 5 cm de diâmetro. Para

as folhas, o controle deve ser feito somente nos períodos de brotações até

que as mesmas atinjam um mínimo de 3 cm de comprimento. Em viveiro de

mudas, para variedades do grupo guatemalense, deve-se realizar aplicação

quinzenal de fungicidas cúpricos.

CERCOSPORIOSE - Cercospora purpurea Cooke, C. perseae Ellis & Martin

Esta doença é muito importante nos cultivos de abacate da América Latina e

Flórida.

Sintomas: Nos frutos são caracterizados por pequenas lesões, ligeiramente

deprimidas e irregulares, de coloração marrom e bordos definidos. Em

condições de alta umidade, podem surgir alguns pontos de coloração ac-

inzentada no centro das lesões, os quais correspondem à esporulação do

patógeno. Lesões nos frutos apresentam tamanhas aproximadas de 3 a 6

mm de diâmetro e, com o envelhecimento, tendem a provocar fissuras nos

tecidos, possibilitando a infecção por outros patógenos. A queda de frutos é

um dos sintomas mais severos da doença, podendo acarretar elevada perda

na produção. Sintomas nas folhas caracterizam-se pela presença de lesões

angulares de coloração marrom ou cinza, com halo clorótico. As lesões ap-

resentam tamanho de 1 a 3 mm de diâmetro e são visíveis nas duas faces

da folha, tendendo a coalescer. Tecidos necrosados no centro das lesões ten-

dem a cair, facilitando o rasgamento do limbo foliar. As lesões podem ocorrer

também no pedúnculo dos frutos, o que induz a queda dos mesmos. Essas

lesões mostram-se muito semelhantes às do fruto, porém de coloração es-

cura, formato circular e tamanho aproximado de 1 a 5 mm.

Etiologia: No Brasil foram encontradas 2 espécies de Cercospora associadas

• Q7: What are the symptoms and control measures for C. perseae affecting avocado

trees, and how does it compare to other diseases like verrugose and anthracnose?
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Reference: C. perseae, associated with cercosporiosis, presents symptoms on avocado

fruits as small, slightly depressed, irregular brown lesions with defined edges. Under high

humidity, grayish points may appear in the center due to pathogen sporulation. These le-

sions can lead to tissue fissures, allowing secondary infections, and cause significant fruit

drop, leading to production loss. On leaves, symptoms include angular brown or gray le-

sions with a chlorotic halo, visible on both sides, which may coalesce and cause leaf

tearing. Control involves using resistant varieties and applying copper-based fungicides.

In comparison, verrugose, caused by Sphaceloma perseae, primarily affects fruits with

warty, brown eruptions that coalesce but do not penetrate the skin. It also affects leaves,

causing chocolate-colored spots and potential deformation. Control includes using resis-

tant varieties and copper fungicides. Anthracnose, caused by Colletotrichum gloeospo-

rioides, affects fruits, leaves, flowers, and branches, causing necrotic spots and fruit rot.

Control involves proper nutrition, pruning, and avoiding fruit injuries. Each disease re-

quires specific management strategies to minimize impact on avocado cultivation.

Reference context:

Extraction hop: 1

Cercospora purpurea e C. perseae.

A primeira é a única relatada até o momento no Estado de São Paulo. A in-

cidência da doença inicia-se gradativamente na primeira metade do período

chuvoso, atingindo um pico nos meses de PAGE 5 junho e julho. Nesse mo-

mento, inicia-se a queda das folhas. A sobrevivência do patógeno na cultura

dá-se através das infecções foliares. Visto que a principal forma de dissem-

inação do patógeno é por via aérea, a ocorrência da doença nos frutos é

observada desde o início da frutificação.

Controle: Recomenda-se o uso de variedades resistentes, entre as quais as

resistentes Collinson e Pollock (variedades antilhanas) e as medianamente

resistentes Price, Simminds e Linda (variedades guatemalenses). Wagner é

altamente suscetível (variedade guatemalense). O controle químico é compli-

cado devido ao porte da planta e à inexistência de produtos de boa eficiência

registrados para o uso na cultura. Porém, é possível a aplicação de cúpricos

e ditiocarbamatos em casos onde a doença ocorre após a queda das folhas,

pouco antes da florada do abacateiro, e logo após a queda de 2/3 das pétalas.

ANTRACNOSE Glomerella cingulata (Stonem) Spauld & Schrenk (Col-

letotrichum gloeosporioides (Penz.) Sacc.).



120

Sintomas: A antracnose afeta principalmente frutos, sendo possível encon-

trar o patógeno infectando folhas, flores e ramos, porém sem ocasionar danos

à cultura. Sintomas em folhas são caracterizados por manchas necróticas de

coloração escura, com bordos definidos e formato irregular. O patógeno pode

ocorrer também nos ramos, causando necroses escuras e seca dos ramos

e ponteiros, sendo este um sintoma de ocorrência rara. As flores podem ser

facilmente afetadas pelo patógeno, ocorrendo seca ou abscisão das mesmas

ou então serem infectadas através do botão floral, o que afetará o desenvolvi-

mento do fruto, causando queda prematura e/ou podridão. Sintomas nos fru-

tos são característicos, iniciando-se por pequenas pontuações de coloração

marrom a preta, com formato circular e tamanho aproximado de 6-13 mm de

diâmetro. As lesões tendem a evoluir atingindo parte do fruto ou necrosando-

o completamente. As necroses ultrapassam a casca e alcançam a polpa do

fruto. Uma vez dentro do fruto, o fungo causa um escurecimento da polpa de

coloração marrom ou bege. É muito comum a ocorrência de frutos com po-

dridão no pedúnculo, a qual tem início nas infecções ocorridas nas flores ou

em pós-colheita no ponto de cicatrização, caso ocorra a queda do pedúnculo.

Em geral, este tipo de sintoma leva ao apodrecimento de todo o fruto, acar-

retando na planta a queda do mesmo. Podridões de frutos ocorrem em frutos

maduros, sendo raros os efeitos em frutos verdes. A doença somente adquire

importância em pomares mal tratados ou debilitados nutricionalmente.

Etiologia: O patógeno Colletotrichum gloeosporioides corresponde, na forma

teleomórfica, a Glomerella cingulata. O fungo necessita de água livre para

que ocorra a germinação e infecção, sendo a faixa ideal de temperatura para

o crescimento 22-27°C. Permanece latente em frutos verdes, causando sin-

tomas apenas após seu amadurecimento.

Controle: Deve ser realizado através de adubações e técnicas de manejo

adequadas. Podas de limpeza e queima de material doente devem ser real-

izadas, no mínimo, anualmente. Ferimentos nos frutos devem ser evitados

através de cuidados durante as operações de colheita e pós-colheita e

controle de insetos.

Extraction hop: 2

VERRUGOSE - Sphaceloma perseae Jenkins
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A verrugose, ou sarna do abacateiro, conhecida desde 1918 na Flórida, foi

encontrada no Brasil pela PAGE 4 primeira vez em 1938 em Limeira. É uma

das principais doenças do abacateiro, visto que a mesma, além de depreciar

a aparência do fruto, pode provocar também a queda de frutos jovens bem

como o subdesenvolvimento em situações de alta severidade de doença.

Sintomas: São observados principalmente nos frutos, na forma de peque-

nas pontuações eruptivas, verrugosas, com tamanho de 5 a 6 mm de col-

oração marrom, que aumentam rapidamente e coalescem. A infecção nos

frutos nunca ultrapassa a casca. A doença também pode ocasionar sintomas

em folhas, na forma de pequenas pontuações de cor chocolate, com 1 a 2

mm de diâmetro, arredondadas quando localizadas no limbo foliar e ligeira-

mente alongadas quando nas nervuras, lembrando cochonilhas. Quando sev-

eramente atacadas, as folhas tendem a deformar e até mesmo sofrer rompi-

mento do limbo foliar, além de redução da área fotossintética.

Etiologia: A doença é ocasionada pelo fungo S. perseae, que ataca fol-

has com no máximo 3 cm de comprimento e frutos com menos de 5 cm e

desenvolve-se somente em condições de umidade elevada.

Controle: Recomenda-se a utilização de variedades resistentes. Variedades

pertencentes ao grupo antilhano apresentam elevada suscetibilidade à verru-

gose das folhas e menor de fruto. Variedades do grupo guatemalense, por sua

vez, apresentam elevada suscetibilidade nos frutos e baixa nas folhas. O con-

trole da doença pode também ser feito com a aplicação de fungicidas cúpri-

cos. No caso dos frutos, deve-se iniciar o controle quando pelo menos 2/3

das pétalas caírem e mantê-lo até os frutos atingirem 5 cm de diâmetro. Para

as folhas, o controle deve ser feito somente nos períodos de brotações até

que as mesmas atinjam um mínimo de 3 cm de comprimento. Em viveiro de

mudas, para variedades do grupo guatemalense, deve-se realizar aplicação

quinzenal de fungicidas cúpricos.

CERCOSPORIOSE - Cercospora purpurea Cooke, C. perseae Ellis & Martin

Esta doença é muito importante nos cultivos de abacate da América Latina e

Flórida.

Sintomas: Nos frutos são caracterizados por pequenas lesões, ligeiramente

deprimidas e irregulares, de coloração marrom e bordos definidos. Em

condições de alta umidade, podem surgir alguns pontos de coloração ac-
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inzentada no centro das lesões, os quais correspondem à esporulação do

patógeno. Lesões nos frutos apresentam tamanhas aproximadas de 3 a 6

mm de diâmetro e, com o envelhecimento, tendem a provocar fissuras nos

tecidos, possibilitando a infecção por outros patógenos. A queda de frutos é

um dos sintomas mais severos da doença, podendo acarretar elevada perda

na produção. Sintomas nas folhas caracterizam-se pela presença de lesões

angulares de coloração marrom ou cinza, com halo clorótico. As lesões ap-

resentam tamanho de 1 a 3 mm de diâmetro e são visíveis nas duas faces

da folha, tendendo a coalescer. Tecidos necrosados no centro das lesões ten-

dem a cair, facilitando o rasgamento do limbo foliar. As lesões podem ocorrer

também no pedúnculo dos frutos, o que induz a queda dos mesmos. Essas

lesões mostram-se muito semelhantes às do fruto, porém de coloração es-

cura, formato circular e tamanho aproximado de 1 a 5 mm.

Etiologia: No Brasil foram encontradas 2 espécies de Cercospora associadas

• Q8: What are the symptoms and control methods for S. perseae affecting avocado trees?

Reference: The symptoms of S. perseae, also known as verrugose or avocado scab,

primarily appear on the fruits as small, eruptive, wart-like spots that are 5 to 6 mm in

size and brown in color. These spots can rapidly increase in size and coalesce, but the

infection never penetrates beyond the fruit’s skin. On leaves, symptoms manifest as small,

chocolate-colored spots, 1 to 2 mm in diameter, which are round on the leaf blade and

slightly elongated on the veins, resembling scale insects. Severely affected leaves may

deform, rupture, and have reduced photosynthetic area. The disease is caused by the

fungus S. perseae, which attacks leaves up to 3 cm long and fruits less than 5 cm in

diameter, thriving in high humidity conditions. Control methods include using resistant

varieties, with Antillean group varieties being highly susceptible to leaf verrugose and

less so to fruit, while Guatemalan group varieties show high susceptibility in fruits and

low in leaves. Copper-based fungicides are recommended, starting when at least two-

thirds of the petals have fallen and continuing until fruits reach 5 cm in diameter. For

leaves, control should be applied during sprouting periods until they reach at least 3

cm in length. In nurseries, Guatemalan group varieties should receive bi-weekly copper

fungicide applications.

Reference context:

Extraction hop: 1
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VERRUGOSE - Sphaceloma perseae Jenkins

A verrugose, ou sarna do abacateiro, conhecida desde 1918 na Flórida, foi

encontrada no Brasil pela PAGE 4 primeira vez em 1938 em Limeira. É uma

das principais doenças do abacateiro, visto que a mesma, além de depreciar

a aparência do fruto, pode provocar também a queda de frutos jovens bem

como o subdesenvolvimento em situações de alta severidade de doença.

Sintomas: São observados principalmente nos frutos, na forma de peque-

nas pontuações eruptivas, verrugosas, com tamanho de 5 a 6 mm de col-

oração marrom, que aumentam rapidamente e coalescem. A infecção nos

frutos nunca ultrapassa a casca. A doença também pode ocasionar sintomas

em folhas, na forma de pequenas pontuações de cor chocolate, com 1 a 2

mm de diâmetro, arredondadas quando localizadas no limbo foliar e ligeira-

mente alongadas quando nas nervuras, lembrando cochonilhas. Quando sev-

eramente atacadas, as folhas tendem a deformar e até mesmo sofrer rompi-

mento do limbo foliar, além de redução da área fotossintética.

Etiologia: A doença é ocasionada pelo fungo S. perseae, que ataca fol-

has com no máximo 3 cm de comprimento e frutos com menos de 5 cm e

desenvolve-se somente em condições de umidade elevada.

Controle: Recomenda-se a utilização de variedades resistentes. Variedades

pertencentes ao grupo antilhano apresentam elevada suscetibilidade à verru-

gose das folhas e menor de fruto. Variedades do grupo guatemalense, por sua

vez, apresentam elevada suscetibilidade nos frutos e baixa nas folhas. O con-

trole da doença pode também ser feito com a aplicação de fungicidas cúpri-

cos. No caso dos frutos, deve-se iniciar o controle quando pelo menos 2/3

das pétalas caírem e mantê-lo até os frutos atingirem 5 cm de diâmetro. Para

as folhas, o controle deve ser feito somente nos períodos de brotações até

que as mesmas atinjam um mínimo de 3 cm de comprimento. Em viveiro de

mudas, para variedades do grupo guatemalense, deve-se realizar aplicação

quinzenal de fungicidas cúpricos.

CERCOSPORIOSE - Cercospora purpurea Cooke, C. perseae Ellis & Martin

Esta doença é muito importante nos cultivos de abacate da América Latina e

Flórida.

Sintomas: Nos frutos são caracterizados por pequenas lesões, ligeiramente

deprimidas e irregulares, de coloração marrom e bordos definidos. Em
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condições de alta umidade, podem surgir alguns pontos de coloração ac-

inzentada no centro das lesões, os quais correspondem à esporulação do

patógeno. Lesões nos frutos apresentam tamanhas aproximadas de 3 a 6

mm de diâmetro e, com o envelhecimento, tendem a provocar fissuras nos

tecidos, possibilitando a infecção por outros patógenos. A queda de frutos é

um dos sintomas mais severos da doença, podendo acarretar elevada perda

na produção. Sintomas nas folhas caracterizam-se pela presença de lesões

angulares de coloração marrom ou cinza, com halo clorótico. As lesões ap-

resentam tamanho de 1 a 3 mm de diâmetro e são visíveis nas duas faces

da folha, tendendo a coalescer. Tecidos necrosados no centro das lesões ten-

dem a cair, facilitando o rasgamento do limbo foliar. As lesões podem ocorrer

também no pedúnculo dos frutos, o que induz a queda dos mesmos. Essas

lesões mostram-se muito semelhantes às do fruto, porém de coloração es-

cura, formato circular e tamanho aproximado de 1 a 5 mm.

Etiologia: No Brasil foram encontradas 2 espécies de Cercospora associ-

adas.

• Q9: What are the symptoms and control measures for C. perseae affecting avocado

trees, and how does it compare to other diseases like verrugose and cercosporiose?

Reference: C. perseae, associated with cercosporiose, causes small, slightly depressed,

irregular brown lesions on avocado fruits, which can lead to fissures and secondary infec-

tions. On leaves, it creates angular brown or gray lesions with a chlorotic halo, which can

coalesce and cause tearing. Control involves using resistant varieties and applying fungi-

cides like cuprics and dithiocarbamates. Verrugose, caused by Sphaceloma perseae, re-

sults in warty, eruptive lesions on fruits and chocolate-colored spots on leaves, leading to

deformation and reduced photosynthesis. Control includes using resistant varieties and

fungicides. Both diseases thrive in high humidity, but verrugose primarily affects young

fruits and leaves, while cercosporiose can cause significant fruit drop.

Reference context:

Extraction hop: 1

Cercospora purpurea e C. perseae.

A primeira é a única relatada até o momento no Estado de São Paulo. A in-

cidência da doença inicia-se gradativamente na primeira metade do período

chuvoso, atingindo um pico nos meses de PAGE 5 junho e julho. Nesse mo-
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mento, inicia-se a queda das folhas. A sobrevivência do patógeno na cultura

dá-se através das infecções foliares. Visto que a principal forma de dissem-

inação do patógeno é por via aérea, a ocorrência da doença nos frutos é

observada desde o início da frutificação.

Controle: Recomenda-se o uso de variedades resistentes, entre as quais as

resistentes Collinson e Pollock (variedades antilhanas) e as medianamente

resistentes Price, Simminds e Linda (variedades guatemalenses). Wagner é

altamente suscetível (variedade guatemalense). O controle químico é compli-

cado devido ao porte da planta e à inexistência de produtos de boa eficiência

registrados para o uso na cultura. Porém, é possível a aplicação de cúpricos

e ditiocarbamatos em casos onde a doença ocorre após a queda das folhas,

pouco antes da florada do abacateiro, e logo após a queda de 2/3 das pétalas.

ANTRACNOSE Glomerella cingulata (Stonem) Spauld & Schrenk (Col-

letotrichum gloeosporioides (Penz.) Sacc.).

Sintomas: A antracnose afeta principalmente frutos, sendo possível encon-

trar o patógeno infectando folhas, flores e ramos, porém sem ocasionar danos

à cultura. Sintomas em folhas são caracterizados por manchas necróticas de

coloração escura, com bordos definidos e formato irregular. O patógeno pode

ocorrer também nos ramos, causando necroses escuras e seca dos ramos

e ponteiros, sendo este um sintoma de ocorrência rara. As flores podem ser

facilmente afetadas pelo patógeno, ocorrendo seca ou abscisão das mesmas

ou então serem infectadas através do botão floral, o que afetará o desenvolvi-

mento do fruto, causando queda prematura e/ou podridão. Sintomas nos fru-

tos são característicos, iniciando-se por pequenas pontuações de coloração

marrom a preta, com formato circular e tamanho aproximado de 6-13 mm de

diâmetro. As lesões tendem a evoluir atingindo parte do fruto ou necrosando-

o completamente. As necroses ultrapassam a casca e alcançam a polpa do

fruto. Uma vez dentro do fruto, o fungo causa um escurecimento da polpa de

coloração marrom ou bege. É muito comum a ocorrência de frutos com po-

dridão no pedúnculo, a qual tem início nas infecções ocorridas nas flores ou

em pós-colheita no ponto de cicatrização, caso ocorra a queda do pedúnculo.

Em geral, este tipo de sintoma leva ao apodrecimento de todo o fruto, acar-

retando na planta a queda do mesmo. Podridões de frutos ocorrem em frutos

maduros, sendo raros os efeitos em frutos verdes. A doença somente adquire
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importância em pomares mal tratados ou debilitados nutricionalmente.

Etiologia: O patógeno Colletotrichum gloeosporioides corresponde, na forma

teleomórfica, a Glomerella cingulata. O fungo necessita de água livre para

que ocorra a germinação e infecção, sendo a faixa ideal de temperatura para

o crescimento 22-27°C. Permanece latente em frutos verdes, causando sin-

tomas apenas após seu amadurecimento.

Controle: Deve ser realizado através de adubações e técnicas de manejo

adequadas. Podas de limpeza e queima de material doente devem ser real-

izadas, no mínimo, anualmente. Ferimentos nos frutos devem ser evitados

através de cuidados durante as operações de colheita e pós-colheita e

controle de insetos.

Extraction hop: 2

VERRUGOSE - Sphaceloma perseae Jenkins

A verrugose, ou sarna do abacateiro, conhecida desde 1918 na Flórida, foi

encontrada no Brasil pela PAGE 4 primeira vez em 1938 em Limeira. É uma

das principais doenças do abacateiro, visto que a mesma, além de depreciar

a aparência do fruto, pode provocar também a queda de frutos jovens bem

como o subdesenvolvimento em situações de alta severidade de doença.

Sintomas: São observados principalmente nos frutos, na forma de peque-

nas pontuações eruptivas, verrugosas, com tamanho de 5 a 6 mm de col-

oração marrom, que aumentam rapidamente e coalescem. A infecção nos

frutos nunca ultrapassa a casca. A doença também pode ocasionar sintomas

em folhas, na forma de pequenas pontuações de cor chocolate, com 1 a 2

mm de diâmetro, arredondadas quando localizadas no limbo foliar e ligeira-

mente alongadas quando nas nervuras, lembrando cochonilhas. Quando sev-

eramente atacadas, as folhas tendem a deformar e até mesmo sofrer rompi-

mento do limbo foliar, além de redução da área fotossintética.

Etiologia: A doença é ocasionada pelo fungo S. perseae, que ataca fol-

has com no máximo 3 cm de comprimento e frutos com menos de 5 cm e

desenvolve-se somente em condições de umidade elevada.

Controle: Recomenda-se a utilização de variedades resistentes. Variedades

pertencentes ao grupo antilhano apresentam elevada suscetibilidade à verru-

gose das folhas e menor de fruto. Variedades do grupo guatemalense, por sua
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vez, apresentam elevada suscetibilidade nos frutos e baixa nas folhas. O con-

trole da doença pode também ser feito com a aplicação de fungicidas cúpri-

cos. No caso dos frutos, deve-se iniciar o controle quando pelo menos 2/3

das pétalas caírem e mantê-lo até os frutos atingirem 5 cm de diâmetro. Para

as folhas, o controle deve ser feito somente nos períodos de brotações até

que as mesmas atinjam um mínimo de 3 cm de comprimento. Em viveiro de

mudas, para variedades do grupo guatemalense, deve-se realizar aplicação

quinzenal de fungicidas cúpricos.

CERCOSPORIOSE - Cercospora purpurea Cooke, C. perseae Ellis & Martin

Esta doença é muito importante nos cultivos de abacate da América Latina e

Flórida.

Sintomas: Nos frutos são caracterizados por pequenas lesões, ligeiramente

deprimidas e irregulares, de coloração marrom e bordos definidos. Em

condições de alta umidade, podem surgir alguns pontos de coloração ac-

inzentada no centro das lesões, os quais correspondem à esporulação do

patógeno. Lesões nos frutos apresentam tamanhas aproximadas de 3 a 6

mm de diâmetro e, com o envelhecimento, tendem a provocar fissuras nos

tecidos, possibilitando a infecção por outros patógenos. A queda de frutos é

um dos sintomas mais severos da doença, podendo acarretar elevada perda

na produção. Sintomas nas folhas caracterizam-se pela presença de lesões

angulares de coloração marrom ou cinza, com halo clorótico. As lesões ap-

resentam tamanho de 1 a 3 mm de diâmetro e são visíveis nas duas faces

da folha, tendendo a coalescer. Tecidos necrosados no centro das lesões ten-

dem a cair, facilitando o rasgamento do limbo foliar. As lesões podem ocorrer

também no pedúnculo dos frutos, o que induz a queda dos mesmos. Essas

lesões mostram-se muito semelhantes às do fruto, porém de coloração es-

cura, formato circular e tamanho aproximado de 1 a 5 mm.

Etiologia: No Brasil foram encontradas 2 espécies de Cercospora associadas

• Q10: What are the simptoms and control methods for the disease verrugose in avocado

trees?

Reference: The disease caused by S. perseae, known as verrugose or avocado scab,

presents symptoms primarily on the fruits as small, eruptive, wart-like spots that are 5 to

6 mm in size and brown in color. These spots can rapidly increase in size and coalesce,

but the infection does not penetrate beyond the fruit’s skin. On leaves, symptoms appear
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as small, chocolate-colored spots, 1 to 2 mm in diameter, which are round on the leaf

blade and slightly elongated on the veins. Severely affected leaves may deform, rupture,

and have reduced photosynthetic area. The disease develops under high humidity con-

ditions. Control methods include using resistant varieties, with Antillean group varieties

being highly susceptible to leaf verrugose and less so to fruit, while Guatemalan group

varieties show high susceptibility in fruits and low in leaves. Copper-based fungicides

are recommended, starting when two-thirds of the petals have fallen and continuing until

the fruits reach 5 cm in diameter. For leaves, control should be applied during sprouting

periods until they reach at least 3 cm in length. In nurseries, Guatemalan group varieties

should receive bi-weekly copper fungicide applications.

Reference context:

Extraction hop: 1

VERRUGOSE - Sphaceloma perseae Jenkins

A verrugose, ou sarna do abacateiro, conhecida desde 1918 na Flórida, foi

encontrada no Brasil pela PAGE 4 primeira vez em 1938 em Limeira. É uma

das principais doenças do abacateiro, visto que a mesma, além de depreciar

a aparência do fruto, pode provocar também a queda de frutos jovens bem

como o subdesenvolvimento em situações de alta severidade de doença.

Sintomas: São observados principalmente nos frutos, na forma de peque-

nas pontuações eruptivas, verrugosas, com tamanho de 5 a 6 mm de col-

oração marrom, que aumentam rapidamente e coalescem. A infecção nos

frutos nunca ultrapassa a casca. A doença também pode ocasionar sintomas

em folhas, na forma de pequenas pontuações de cor chocolate, com 1 a 2

mm de diâmetro, arredondadas quando localizadas no limbo foliar e ligeira-

mente alongadas quando nas nervuras, lembrando cochonilhas. Quando sev-

eramente atacadas, as folhas tendem a deformar e até mesmo sofrer rompi-

mento do limbo foliar, além de redução da área fotossintética.

Etiologia: A doença é ocasionada pelo fungo S. perseae, que ataca fol-

has com no máximo 3 cm de comprimento e frutos com menos de 5 cm e

desenvolve-se somente em condições de umidade elevada.

Controle: Recomenda-se a utilização de variedades resistentes. Variedades

pertencentes ao grupo antilhano apresentam elevada suscetibilidade à verru-

gose das folhas e menor de fruto. Variedades do grupo guatemalense, por sua

vez, apresentam elevada suscetibilidade nos frutos e baixa nas folhas. O con-
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trole da doença pode também ser feito com a aplicação de fungicidas cúpri-

cos. No caso dos frutos, deve-se iniciar o controle quando pelo menos 2/3

das pétalas caírem e mantê-lo até os frutos atingirem 5 cm de diâmetro. Para

as folhas, o controle deve ser feito somente nos períodos de brotações até

que as mesmas atinjam um mínimo de 3 cm de comprimento. Em viveiro de

mudas, para variedades do grupo guatemalense, deve-se realizar aplicação

quinzenal de fungicidas cúpricos.

CERCOSPORIOSE - Cercospora purpurea Cooke, C. perseae Ellis & Martin

Esta doença é muito importante nos cultivos de abacate da América Latina e

Flórida.

Sintomas: Nos frutos são caracterizados por pequenas lesões, ligeiramente

deprimidas e irregulares, de coloração marrom e bordos definidos. Em

condições de alta umidade, podem surgir alguns pontos de coloração ac-

inzentada no centro das lesões, os quais correspondem à esporulação do

patógeno. Lesões nos frutos apresentam tamanhas aproximadas de 3 a 6

mm de diâmetro e, com o envelhecimento, tendem a provocar fissuras nos

tecidos, possibilitando a infecção por outros patógenos. A queda de frutos é

um dos sintomas mais severos da doença, podendo acarretar elevada perda

na produção. Sintomas nas folhas caracterizam-se pela presença de lesões

angulares de coloração marrom ou cinza, com halo clorótico. As lesões ap-

resentam tamanho de 1 a 3 mm de diâmetro e são visíveis nas duas faces

da folha, tendendo a coalescer. Tecidos necrosados no centro das lesões ten-

dem a cair, facilitando o rasgamento do limbo foliar. As lesões podem ocorrer

também no pedúnculo dos frutos, o que induz a queda dos mesmos. Essas

lesões mostram-se muito semelhantes às do fruto, porém de coloração es-

cura, formato circular e tamanho aproximado de 1 a 5 mm.

Etiologia: No Brasil foram encontradas 2 espécies de Cercospora associadas


	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	List of Figures
	List of Frames
	List of Tables
	Contents
	Introduction
	Motivation
	Problem Statement
	Objectives
	Contributions
	Structure of the Dissertation

	The Evolution of Generative AI and Natural Language Interfaces
	Introduction
	Neural Networks: A Brief Foundation
	The Transformer Revolution
	Implications for Agricultural Diagnostic Systems
	From GPT-2 to Gemini: A Timeline of Modern LLMs
	Benchmarking Progress: MMLU, BIG-Bench, and Beyond
	From Chain-of-Thought to Reasoning Models: How Our Notion of ``Intelligence'' in LLMs Keeps Shifting
	Why this matters
	The chain-of-thought era
	Large Reasoning Models
	So what counts as intelligence now?

	Ecosystem of Tools and Development Paradigms
	LangChain and LangGraph
	N8N
	Retrieval-Augmented Generation
	Agents and Natural Language Interfaces

	Natural Language as a Universal Interface for Data
	Emerging Trends
	Adaptation of This Project
	Conclusion

	Related Work
	Large Language Models in Agriculture
	Current Research on the Use of LLMs in Agriculture
	NLP Applications in Agricultural Data Processing and Analysis
	Connecting to This Dissertation

	RAG for Information Retrieval
	Key Works on RAG and Its Application in Domain-Specific Knowledge Retrieval
	Comparative Analysis of RAG-Based Systems vs. Traditional Methods

	Deep Learning Models for Disease Classification
	Studies on Deep Learning Models in Plant Disease Classification
	Convolutional Neural Networks
	Attention-Enhanced Architectures
	Hybrid CNN–GNN and Graph-Based Models
	Lightweight and Edge-Deployable Models
	Transfer Learning, Data Augmentation, and Practical Challenges

	Studies on Deep Learning Models in Tomato Leaf Disease Classification
	Application of CNNs and Other Architectures in Agricultural Diagnosis

	Use of AI Assistants in Diagnosis Systems
	Plant Disease Diagnosis: Concepts and Practices
	Summary
	Final Considerations

	Methods
	Proposed Methodology
	Hybrid System: RAG and Deep Learning
	Reasoning Techniques
	Multi-modal Capabilities
	Framework Selection: LangChain, LangGraph
	CrewAI
	Phidata
	LangChain & LangGraph
	Summary


	System Design and Iterative Prototyping
	First Prototype
	User Interaction
	Input Type Determination
	Image Analysis
	Merging Input Data
	Mapping Predictions
	Agent Reasoning and Memory
	Knowledge Base and Embeddings
	Language Model Integration
	Final Response and Output Options

	Second Prototype: Multi-Agent Architecture
	Final Prototype: Single-Agent RAG-Enhanced Architecture

	AI Frameworks and Design Decisions
	System Architecture Overview
	High-Level Architecture

	Component Implementation Details
	Telegram Interface
	AI Agent
	Evolution of RAG Approaches
	Semantic-Only RAG
	Hybrid Semantic and Keyword RAG

	Agentic RAG Implementation
	Embedding Model for Retrieval
	Indexing Strategy
	Response Composition

	Synthetic Dataset Generation for Evaluation
	RAGAS Evaluation Framework
	Evaluation Metrics

	Model Context Protocols
	Definition and Origin
	Core Architecture and Mechanism
	MCP as an Extension of LLM Capabilities
	Relevance for Our System

	Database Layer
	Cloud and Containerization

	Detailed Description of RAG Component
	Motivation and Design Choices
	Architecture and Workflow
	Embedding and Storage Details
	Future Improvements

	Detailed Description of Image Diagnosis MCP
	Model Architecture and Dataset
	Integration with Text-Based Diagnosis
	Limitations and Potential Biases
	Future Work

	Memory and Contextual Reasoning
	Security and Privacy Considerations
	Lessons Learned and Challenges
	Chapter Conclusion

	Results and Discussion
	Framework Selection Results
	Prototype Iterations and Improvements
	First Prototype: Semantic-Only RAG
	Second Prototype: Hybrid RAG
	Final Prototype: Agentic RAG with MCPs

	Quantitative Results
	RAG Evaluation Results
	Accuracy of Diagnosis
	Response Time and Resource Utilization

	Qualitative Feedback
	Discussion
	RAG Approach Effectiveness
	Architectural Trade-offs
	Limitations

	Key Insights
	Future Directions

	Conclusion
	Summary of Contributions
	Key Findings
	RAG Implementation Insights
	Architectural Findings

	Limitations
	Future Work
	Final Remarks

	Bibliography
	Books and Reference Materials
	Agent Teams Prompts
	RAG Q&A Dataset

