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"The Road goes ever on and on

Down from the door where it began.

Now far ahead the Road has gone,

And | must follow, if | can,

Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.

And whither then? | cannot say”

- J.R.R. Tolkien, The Fellowship of the Ring



RESUMO

O presente trabalho busca entender como técnicas mais recentes de inteligén-
cia artificial generativa—como os Modelos de Linguagem de Grande Escala (LLMs) e
a Geracao Aumentada por Recuperacao (RAG) podem ser aplicadas no diagnéstico
de doencas em plantas. O estudo envolve a criacdo do LIMMO, um agente conver-
sacional multimodal pensado para ajudar agricultores familiares por meio de conver-
sas em linguagem natural e também pelo envio de imagens. Combinando modelos
avancados de linguagem, analise de imagem com redes neurais e recuperacao de in-
formacoes especializadas, o sistema tenta lidar com alguns dos principais desafios do
campo, como a falta de acesso a dados confidveis e a dificuldade de conseguir apoio
técnico em tempo real. A arquitetura final do sistema integra multiplas fontes de con-
hecimento, incluindo uma base de dados vetoriais local, APIs de busca na web (como
a Tavily) e a APl da Embrapa para acesso a dados agricolas especializados. Para
analise de imagens, o sistema utiliza uma abordagem redundante, com a API CultivAl
como método primario e o processamento baseado em GPT como sistema de backup
quando a extracao principal falha ou é questionada pelo usuario. Esta arquitetura mod-
ular com Protocolos de Contexto de Modelo (MCPs) demonstrou ser mais eficiente
que as implementagdes anteriores baseadas em sistemas multi-agentes. A metodolo-
gia de avaliacao utilizou 100 perguntas sintéticas, analisando precisao, consisténcia
factual, qualidade da recuperacéo e utilidade das respostas. Os resultados mostram
que o sistema RAG com acesso a fontes externas supera significativamente as abor-
dagens que dependem apenas de conhecimento local, particularmente em consultas
complexas ou fora do escopo imediato da base de conhecimento. Para o futuro, o tra-
balho aponta caminhos que incluem expanséo das fontes de dados, testes massivos
em condic¢oes reais, desenvolvimento de um sistema de rastreamento de doengas, e
mecanismos para diferenciacao de ferramentas generalistas como ChatGPT, Gemini

ou Perplexity Al em consultas fora do escopo especializado.

Palavras-chaves: Inteligéncia Artificial Generativa; Modelos de Linguagem de Grande
Escala; Geragcdao Aumentada por Recuperacgao; Diagnéstico de Doencas em Plantas;
Agente de |A Multimodal; Agricultura Familiar; Tecnologia Agricola; Andlise de Ima-

gens; Recuperagdo de Conhecimento; Sistemas Conversacionais



ABSTRACT

This research examines how recent advances in generative artificial intelligence,
particularly Large Language Models and Retrieval-Augmented Generation (RAG), can
be applied to plant disease diagnosis. It introduces LIMMO, a multimodal conversa-
tional agent designed to assist smallholder farmers through natural language conver-
sations and image-based interactions. By combining modern language models, image
analysis using deep learning, and smart information retrieval from specialized sources,
the system addresses key challenges in agricultural environments, such as limited ac-
cess to technical support and reliable data.

The final system architecture integrates multiple knowledge sources, including a
local vector database, web search capabilities through the Tavily API, and specialized
agricultural data from the Embrapa API. For image analysis, the system employs a
redundant approach, using the CultivAl API as the primary method while seamlessly
falling back to GPT-based processing when primary extraction fails or is questioned by
the user. This modular architecture with specialized Model Context Protocols (MCPs)
proved more efficient than earlier implementations based on multi-agent systems.

The evaluation methodology utilized 100 synthetic questions, analyzing accuracy,
factual consistency, retrieval quality, and response utility. Results demonstrate that the
RAG system with access to external sources significantly outperforms approaches re-
lying solely on local knowledge, particularly for complex queries or those outside the
immediate scope of the knowledge base. The dissertation concludes by outlining future
directions, including expanding data sources, conducting large-scale real-world testing,
developing a disease tracking system, and creating mechanisms to differentiate from
generalist tools like ChatGPT, Gemini, or Perplexity Al when handling queries outside

the specialized scope.

Keywords: Generative Artificial Intelligence; Large Language Models; Retrieval-Augmented
Generation; Plant Disease Diagnosis; Multimodal Al Agent; Smallholder Farmers; Agri-

cultural Technology; Image Analysis; Knowledge Retrieval; Conversational Systems
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1 INTRODUCTION

1.1 MOTIVATION

Agriculture remains the foundation of global food security, yet it is constantly threat-
ened by plant diseases and pests. In Brazil, one of the world’s agricultural power-
houses, the impact of these challenges is particularly severe, affecting smallholder
farmers who produce over 70% of the nation’s food supply (IBGE, 2017). Despite their
vital role, these farmers often lack timely access to reliable plant health diagnostics,
leading to delayed interventions, increased use of pesticides, and substantial economic
losses.

At the same time, the rapid advances in[Al], particularly in Generative [Alland Large
Language Models (LLM), have opened unprecedented opportunities to bridge this
knowledge gap. The emergence of Retrieval-Augmented Generation frame-
works, combined with deep learning models for image analysis, enables the develop-
ment of systems capable of understanding natural language queries, analyzing visual
symptoms, and providing expert-level guidance almost instantly. These capabilities can
empower farmers and agronomists to make faster, more informed decisions, potentially
transforming agricultural diagnostics from a reactive to a proactive process.

While traditional [All approaches in agriculture have focused on either image recog-
nition or text-based interactions separately, the integration of multimodal capabilities
through Model Context Protocols (MCPk) offers a promising path forward. By combin-
ing the visual analysis strengths of Convolutional Neural Networks (CNNk) with the
contextual understanding of [LLMs, modern systems can now mimic the holistic diag-
nostic approach of human experts, considering multiple sources of evidence before
reaching conclusions.

However, the adoption of [Aljin agriculture faces its own set of challenges. Diagnostic
tools must handle diverse field conditions, interpret multimodal data accurately, and
deliver interpretable, actionable insights that earn user trust. This dissertation is driven
by the vision of creating an accessible, robust, and intelligent assistant capable of

addressing these challenges and extending expert support to those who need it most.
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1.2 PROBLEM STATEMENT

While image-based plant disease recognition and [Alldriven advisory tools have
shown promising results in controlled environments, several critical gaps remain be-

fore they can be deployed effectively in real-world agricultural contexts:

1. Narrow Approaches to Diagnosis: Current systems often focus on narrow tasks,
such as single-disease classification or symptom detection, neglecting the com-
plex reasoning and context integration required for accurate diagnosis and treat-
ment recommendations. These narrow approaches miss opportunities for cross-

modal validation and complementary analysis.

2. Limited Adaptability to Field Conditions: Many models are trained on laboratory-
grade images or curated datasets that do not reflect the variability in lighting,
backgrounds, and symptom manifestations encountered in actual field scenarios.
The resulting performance gap undermines their practical utility precisely where

they are needed most.

3. Lack of Integration Between Modalities: Few solutions seamlessly combine
text-based symptom descriptions with image analysis, limiting their ability to re-
flect the real communication flow between farmers and experts. This modality gap
represents a missed opportunity to leverage complementary information sources

for more robust diagnostics.

4. Hallucinations and Factual Inconsistency: Generative [Al systems, while pow-
erful, are prone to producing plausible-sounding but factually incorrect informa-
tion, a critical risk in agricultural contexts where incorrect advice can lead to sig-

nificant economic and environmental consequences.

5. User Experience: Existing tools are often designed for researchers or technical
users, failing to consider the usability requirements of farmers working in diverse
and resource-limited environments. The resulting adoption barriers limit the real-

world impact of potentially valuable technologies.

By addressing these challenges, this research seeks to design, implement, and

evaluate a conversational [All system that integrates [RAG], multimodal inputs, and a
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modular architecture to provide reliable, explainable, and user-friendly plant disease

diagnostics.

1.3 OBJECTIVES

The main objective of this dissertation is to design, implement, and evaluate a pro-
totype of an intelligent conversational agent capable of assisting in the diagnosis of
plant diseases through multimodal interactions. To achieve this overarching goal, the

following specific objectives are pursued:

1. Designh and Implement a Hybrid RAG-Enhanced Architecture: Develop an
iterative prototyping methodology to explore different architectural approaches
for plant disease diagnostics, culminating in a streamlined single-agent design

enhanced with retrieval-augmented generation.

2. Enable Multimodal Input Processing and Analysis: Create a system capable
of accepting and analyzing text, image, and audio inputs, with specialized mod-
ular components (MCPfs) handling each modality while maintaining a coherent

user experience.

3. Combine Convolutional Neural Networks with RAG: Integrate deep learning-
based image analysis with retrieval-grounded language generation, by extracting
features from images and using them as input to the RAG| creating a diagnos-
tic process that leverages both visual pattern recognition and domain-specific

knowledge.

4. Optimize for Practical Performance Metrics: Balance technical sophistication
with practical considerations like response time, maintenance complexity, and

diagnostic accuracy to ensure the system meets real-world agricultural needs.

5. Evaluate System Effectiveness and User Experience: Assess the system through
both quantitative benchmarks (accuracy, response time) and qualitative feedback

from domain experts, focusing on diagnostic reliability and interface usability.
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By addressing these objectives, this dissertation aims to contribute a robust, user-
centered solution that brings advanced Al capabilities to the field, supporting farmers

and agricultural professionals in making more timely and informed decisions.

1.4 CONTRIBUTIONS

This dissertation offers several key contributions to the fields of agricultural diag-

nostics, computer vision, and conversational [Alf

1. A Novel Modular Architecture for Plant Disease Diagnostics: The develop-
ment of a streamlined, single-agent architecture augmented with and mod-
ular components (MCPjs) that balances technical sophistication with operational
maintainability, representing a significant advancement over both simple [RAG]

workflows and complex multi-agent systems.

2. Systematic Comparison of Architectural Approaches: An empirical evalua-
tion of different system designs, from basic RAG| pipelines to multi-agent orches-
tration and finally to the optimized hybrid approach, providing valuable insights
on the trade-offs between complexity, performance, and maintainability in agri-

cultural [Al systems.

3. Integration of CNN-Based Visual Analysis with RAG: A practical implemen-
tation demonstrating how for image analysis can be effectively combined
with retrieval-augmented generation, reducing hallucinations while maintaining

response quality and diagnostic accuracy.

4. A Multimodal Agricultural Diagnostic System: The creation of a functional
prototype that processes text, image, and audio inputs through a unified frame-
work, closely mimicking the natural diagnostic workflow of human agronomists

while maintaining system coherence.

5. Empirical Insights on Performance and Usability: Quantitative and qualitative
evaluations demonstrating the progressive improvements in diagnostic accuracy
(from 60% to over 90%), response times, and user satisfaction across system

iterations.
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Together, these contributions advance the state of the art in applying [All for plant
health monitoring, bridging technical innovations and practical needs to empower farm-

ers and agricultural professionals.

1.5 STRUCTURE OF THE DISSERTATION

This dissertation is structured as follows:

« Chapter 1 introduces the context, motivations, and objectives of this work.

« Chapter 2 presents a historical overview of the evolution of Generative [Al tools

and their impact on research and prototyping.

« Chapter 3 reviews related work in [LLM| applications for agriculture, plant disease

diagnosis using deep learning, and [Al-powered diagnostic systems.

» Chapter 4 describes the proposed methodology, including the system design,

model training, and technologies used.
« Chapter 5 presents and discusses the results of the developed prototype.

« Chapter 6 concludes the dissertation, summarizing key findings and proposing

directions for future research.
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2 THE EVOLUTION OF GENERATIVE Al AND NATURAL LANGUAGE INTER-
FACES

2.1 INTRODUCTION

has rapidly evolved over the past decades, fundamentally transforming the way
we process and interact with information. From early rule-based systems to modern
deep learning techniques, [Al has expanded its reach across numerous domains, in-
cluding healthcare, finance, and agriculture. One of the most impactful advancements
has been the emergence of models capable of understanding and generating natu-
ral language, enabling machines to communicate with humans in increasingly intuitive
ways.

For the agricultural sector, these advancements offer unique opportunities. Farm-
ers and agronomists can now access intelligent systems that help identify plant dis-
eases, suggest treatments, and provide real-time decision support, all through simple
conversations in natural language or by sending images. However, to appreciate the
capabilities and limitations of these modern systems, it is essential to understand the
technological foundations that made them possible.

This chapter introduces the core concepts of |All and machine learning, briefly dis-
cusses the evolution of neural networks, and explains how the introduction of trans-
formers and [LLMk revolutionized natural language understanding and generation. Fi-
nally, it highlights how these innovations set the stage for the development of conver-

sational diagnostic systems in agriculture.

2.2 NEURAL NETWORKS: A BRIEF FOUNDATION

Before discussing transformers, it is important to review the neural network archi-
tectures that paved the way for them. Artificial Neural Networks (ANNE), such as Multi-
Layer Perceptrons (MLPf), consist of interconnected layers of neurons trained using
gradient descent and backpropagation. While [MLPjs form the conceptual basis for all
subsequent deep learning models, they lack built-in mechanisms to handle structured
data like sequences or images effectively.

Convolutional Neural Networks introduced convolutional filters to capture local and
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hierarchical patterns in spatial data, revolutionizing computer vision tasks. For se-
quential data, Recurrent Neural Networks (RNNE), including Long Short-Term Memory
(CSTM) networks, were developed to model temporal dependencies by incorporating
feedback loops. However, RNNs face major challenges, including vanishing and ex-
ploding gradients, which make learning long-range dependencies difficult (PASCANU;
MIKOLOV; BENGIO, [2013). Although mitigate some of these issues through gat-
ing mechanisms (HOCHREITER; SCHMIDHUBER, [1997), their sequential nature inherently
limits parallelization and efficiency.

More recently, architectures such as Vision Transformers (ViTs) have demonstrated
the versatility of transformer-based models, extending their use beyond text to com-

puter vision applications (DOSOVITSKIY et al., [2021)).

2.3 THE TRANSFORMER REVOLUTION

Transformers, introduced by Vaswani et al.| (2017), addressed the limitations of
[RNNs by eliminating recurrence and relying entirely on a self-attention mechanism.
At the heart of the transformer lies the Scaled Dot-Product Attention mechanism.
Given a set of queries ), keys K, and values V, the attention function computes an

output as:

: QKT
Attention(Q, K, V') = softmax Vv
Vdy,

Here, d;. is the dimensionality of the key vectors. The computation proceeds in three

main steps:

1. Similarity Calculation: The dot product between each query and all keys (QK )

measures the similarity or compatibility between the query and each key.

2. Scaling: The result is divided by \/d}. to prevent the dot products from growing
too large in magnitude. Without this scaling—especially when d,. is large—the
softmax function can push the outputs into regions with extremely small gradients,

making training unstable or slow.

3. Weighting Values: A softmax is applied to obtain a probability distribution over

the keys, and the output is computed as a weighted sum of the values V/, with the
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weights derived from this distribution.

This mechanism enables the model to capture long-range dependencies while sup-
porting full parallelization during training, unlike RNNks which process sequences step
by step.

Moreover, multi-head attention allows the model to attend to different representation
subspaces simultaneously, enhancing its expressiveness (VASWANI et al., 2017). Empir-
ical results showed that transformers significantly outperformed[RNNs in both accuracy
and training efficiency on various tasks, including machine translation, marking a piv-

otal moment in deep learning research.

2.4 IMPLICATIONS FOR AGRICULTURAL DIAGNOSTIC SYSTEMS

These architectural advantages directly support the development of agricultural di-

agnostic systems:

» Multimodal integration: Transformers can jointly process textual descriptions

and visual data, ideal for conversational plant health diagnostics.

 Transfer learning: Models pretrained on massive datasets can be fine-tuned for

domain-specific tasks such as plant disease recognition or agronomic Q&A.

« Explainability: Attention outputs can be visualized, offering transparency into the

model’s reasoning—crucial for user trust among agronomists.

+ Inference efficiency: Due to parallelizable architecture, transformers enable real-

time interaction even in resource-limited field environments.

The system developed in this dissertation builds on these advantages, integrating
multimodal capabilities and explainability to empower field diagnostics and decision-

making in real-world agricultural contexts.

2.5 FROM GPT-2 TO GEMINI: A TIMELINE OF MODERN LLMS

Recent years have witnessed a rapid and transformative evolution in large language
models (LLMs). Beginning with [GPT}2 in 2019, which impressed the research commu-
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nity with its fluent text generation, the development of LLMs has advanced toward in-
creasingly capable and versatile multimodal models such as [GPT}4 and Gemini. This
progress has involved not only scaling models to unprecedented sizes but also opti-
mizing smaller, more efficient models.

Transformer-based models like BERT](2018) introduced bidirectional language un-
derstanding, achieving state-of-the-art results on numerous Natural Language Pro-
cessing (NLP) tasks through pre-training on large text corpora and fine-tuning for spe-
cific applications (DEVLIN et al), [2019). Around the same time, OpenAl’s [GPT]| series
demonstrated the power of unidirectional generative pre-training. [GPT}2 (2019), with
1.5 billion parameters, set new standards for fluent text generation, while[GPT}3 (2020),
with 175 billion parameters, showcased impressive few-shot learning capabilities, en-
abling tasks such as translation, question answering, and arithmetic from minimal ex-
amples. These milestones highlighted that scaling data and parameters could produce
emergent capabilities.

Transformer-based models diverged early in how they learn from text. BERT]intro-
duced deep bidirectional contextual representations: during pre-training, BERT jointly
conditions on both left and right context in all layers, enabling the model to encode
complete sentence semantics (DEVLIN et al., 2018). Such bidirectional encoding makes
BERT and similar models well suited for language understanding tasks such as senti-
ment analysis, question answering, and named-entity recognition, where full-sentence
comprehension is essential. In contrast, [GPT| models adopt a unidirectional (autore-
gressive) training objective, factorizing the likelihood of a sequence into a product of
conditional probabilities and predicting each token based only on preceding tokens
(DEVLIN et al, 2018). This causal modeling aligns naturally with text generation, allow-
ing GPT models to excel at composing coherent stories, dialogue, or code. Despite the
success of bidirectional models like BERT, later research notes that GPT-style unidi-
rectional models still achieve state-of-the-art performance by scaling model size and
training data (DEVLIN et al., |2018). Comparative studies further observe that fully uni-
directional models (GPT) and fully bidirectional models (BERT) sit at opposite ends
of a spectrum, and hybrid approaches attempt to combine bidirectional context and
attention to balance generation and understanding (ARTETXE et al., |2022). Understand-
ing these foundational differences clarifies why GPT-type models dominate generative

applications while BERT-type models remain the backbone of modern language com-
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prehension systems.

By 2022-2023, the development of LLMs began to diverge into two main trends: the
creation of ever-larger models and the design of efficient, specialized smaller models.
OpenAl's [GPT}4 (2023) introduced multimodality, handling both text and images, and
achieved human-level performance on many academic and professional benchmarks.
Anthropic’s Claude (2023) emphasized helpfulness and safety, using a “Constitutional
Al” alignment strategy that relies on guiding principles rather than purely human feed-
back. Google DeepMind’s Gemini, announced in late 2023 as a successor to PaLM 2,
represented a family of multimodal models capable of processing text, images, audio,
code, and more. Gemini integrated advanced reasoning capabilities and was posi-
tioned as a strong competitor to [GPT}4.

Meta’s LLaMA models, released starting in mid-2023, demonstrated that smaller
open-source models (7B-70B parameters) could achieve competitive performance when
trained on high-quality data. Their permissive licenses fueled widespread community
adaptation and fine-tuning. Notably, smaller models began achieving remarkable re-
sults: Microsoft’s Phi-1 (1.3B) and Phi-2 (2.7B) models, trained on carefully curated
high-quality data, performed comparably or even surpassed much larger models on
various benchmarks. Phi-2, for instance, exhibited outstanding reasoning and language
understanding, outperforming models with more than 13 billion parameters.

Similarly, Mistral Al's 7B model (2023) outperformed larger models such as LLaMA-
2 13B and even 34B on tasks involving reasoning, mathematics, and code, benefiting
from architectural optimizations like grouped-query attention. Google’s Gemma mod-
els, introduced in early 2024, epitomized the trend toward open, efficientLLMs. Gemma
encompasses a family of open-access models (ranging from 2B to 7B parameters)
incorporating innovations from Gemini, and supports text, code, and vision tasks, en-
abling competitive performance on modest hardware.

Community-driven initiatives, such as TinyLlama, illustrate the “small but powerful”
movement. TinyLlama aims to pre-train a 1.1B-parameter model on an unprecedented

3 trillion tokens to achieve robust performance at a tiny scale.

» 2018: BERT (DEVLIN et al., 2019) introduces bidirectional transformers for lan-

guage understanding; GPT-1 (117M) demonstrates generative pre-training.

« 2019: [GPT}2 (1.5B) showcases high-quality text generation; Google introduces
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T5 and XLNet with alternative pre-training objectives.
« 2020: [GPT}3 (175B) pioneers few-shot learning at scale.

» 2021: Research on scaling laws (e.g., Chinchilla by DeepMind) emphasizes the

importance of data quality and training efficiency over sheer parameter count.

* 2022: Google’s PaLM (540B) and OpenAl’'s Codex (a [GPT}3 variant for code)
expand capabilities; open-source large models like BLOOM and OPT emerge.
ChatGPT (GPT}3.5) popularizes conversational [All

« 2023: [GPT}4 (multimodal) sets new benchmarks. Meta releases LLaMA (7B-
65B), democratizing access to advanced [LLMs. Anthropic launches Claude v1
and v2. Microsoft’s Phi models demonstrate high efficiency at smaller scales.
Mistral-7B surpasses larger models in key benchmarks. OpenAl begins deploy-

ment of inference-optimized GPT-4 variant internally known as o1.

« 2024: Google DeepMind introduces Gemini (multimodal, multiple scales) and
releases Gemma (open 2B/7B models). Anthropic advances Claude Next. Re-
search intensifies on ultra-efficient training (e.g., TinyLlama) and specialized domain-
focused [LLMs. OpenAl continues iterative updates with improved variants 02,

enhancing performance and cost efficiency of GPT-4 Turbo deployments.

» 2025: DeepSeek releases DeepSeek-R1, an open-weight reasoning model (with
distilled smaller models) that claims performance comparable to top models like
OpenAl’s 01, at a much lower cost. Its emergence causes renewed attention to
cost-efficiency, reasoning-centric RL methods, and open-weight LLMs. OpenAl
launches GPT-40 (03), a unified multimodal model trained natively on text, vision,
and audio, further blurring modality boundaries in LLM interaction. DeepSeek-
Prover targets formal theorem proving. Claude 3 and Gemini 2 expand into native

multimodality.

This timeline demonstrates how the development of [LLMs has advanced rapidly,
balancing scale with efficiency and accessibility. The growing focus on multimodal and
open-source models reflects a shift toward specialized, hybrid capabilities, paving the
way for domain-specific deployments and real-time applications on diverse hardware

platforms.
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2.6 BENCHMARKING PROGRESS: MMLU, BIG-BENCH, AND BEYOND

The rapid advancement of large language models has driven the development of
comprehensive benchmarks to evaluate their breadth and depth of capabilities. These
benchmarks serve as critical tools to assess general knowledge, reasoning, dialogue
skills, and ethical considerations, providing a standardized basis for comparing models

across different tasks and settings.

* MMLU (Massive Multitask Language Understanding) (HENDRYCKS et al.,[2021):
MMLU evaluates accuracy across 57 diverse academic and professional sub-
jects, including history, mathematics, science, and law. Models are tested in zero-
shot or few-shot settings using multiple-choice questions, offering a robust mea-
sure of the factual and disciplinary knowledge captured during pre-training. While
[GPT}3 achieved above-chance performance on many subjects, newer models
such as [GPT}4 and Claude have approached or surpassed human-level accu-
racy in several areas. MMLU has thus become a de facto standard for assessing
general knowledge and reasoning in[LLMs, often summarized as a single aggre-

gate score.

» BIG-Bench (Beyond the Imitation Game Benchmark) (SRIVASTAVA et al., 2023):
BIG-Bench is a collaborative benchmark comprising over 200 diverse tasks con-
tributed by the research community to probe [LLMs’ generalization and reasoning
abilities beyond conventional [NLP|challenges. It includes traditional [NLP|tasks as
well as creative and novel challenges, such as logic puzzles, common-sense rea-
soning, code generation, and inventive language use. Performance is analyzed
as a function of model scale, revealing that larger models, such as [GPT}4, ex-
cel across most tasks, while smaller models often struggle with more complex or

abstract challenges.

* MT-Bench (Multi-Turn Benchmark) (ZHENG et al., [2023): MT-Bench is designed
to assess the quality of multi-turn dialogue in conversational agents. Developed
by the Vicuna team, it consists of open-ended questions that require models to
engage in extended interactions for clarification and elaboration. The benchmark

evaluates the ability to follow intricate instructions, maintain context over multiple
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exchanges, and generate helpful, accurate responses. To ensure scalability and
consistency, MT-Bench employs an LLM-as-a-judge approach, using [GPT}4 as
the evaluator. This method has shown over 80% agreement with human judg-

ments, enabling efficient and reliable comparison of conversational abilities.

 HELM (Holistic Evaluation of Language Models) (LIANG et al., 2022): HELM
offers a comprehensive, multidimensional evaluation framework that goes be-
yond simple accuracy metrics. It assesses models across various tasks—such
as summarization, dialogue, and reading comprehension—and evaluates factors
like calibration, robustness, fairness, toxicity, bias, and efficiency. By providing
a detailed performance profile rather than a single score, HELM encourages a
nuanced understanding of model capabilities and limitations. Regular updates
to HELM ensure that the community can monitor progress not only in raw perfor-

mance but also in ethical and practical aspects relevant to real-world deployment.

Together, these benchmarks inform both the development and deployment of [LLMs,
guiding trade-offs between accuracy, safety, and usability. Their continued evolution
plays a role in shaping the responsible and effective integration of language models

across diverse domains.

2.7 FROM CHAIN-OF-THOUGHT TO REASONING MODELS: HOW OUR NOTION
OF “INTELLIGENCE” IN LLMS KEEPS SHIFTING

2.7.1  Why this matters

The previous sections have outlined how larger models, richer pre-training corpora,
and retrieval or tool augmentation have steadily improved benchmark performance
(section [2.6). However, in parallel, the criteria we use to define an as “intelligent”
have evolved just as rapidly. Early gains in multiple-choice benchmarks (e.g., MMLU)
once appeared impressive, but more challenging suites such as HLE and BIG-BENCH-
EH soon exposed brittle shortcut behaviors (HENDRYCKS et al., |2020; [PHAN et al., 2025;

KAZEM I et al., |2025). This realization has driven two intertwined shifts:

(i) a methodological shift toward visible reasoning, involving chain-of-thought prompts,

self-reflection, and explicit tool use;
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(ii) a conceptual shift from viewing models as opaque pattern-matchers to consider-

ing them as emergent “reasoners.”

2.7.2 The chain-of-thought era

Early experiments revealed that even [GPT}3 could solve complex arithmetic prob-
lems when encouraged to “think step by step.” This insight was quickly formalized
through techniques like chain-of-thought prompting (CoT), REACT, and self-reflection
pipelines. These developments gave rise to benchmarks that evaluate a model’s rea-
soning process rather than just final answers (section [2.6). Consequently, the field’s
implicit definition of intelligence broadened: models were now expected not only to
provide correct answers but also to expose their reasoning and maintain internal con-

sistency.

2.7.3 Large Reasoning Models

Between 2024 and 2025, purpose-built “reasoning” variants emerged, including
OpenAl’s o- series, DeepSeek-R1, Gemini—Thinking, and Claude 3.7 Sonnet Thinking.
These models introduce the notion of a dedicated “thinking budget” during inference.
Apple’s recent lllusion of Thinking study (SHOJAEE et al., 2025) provides a systematic
examination of these models’ internal processes. In controlled puzzle environments,

the study identified three distinct regimes:

1. Low complexity: Standard LLMs often outperform Large Reasoning Models
(CRMk), using fewer tokens and achieving higher efficiency.

2. Medium complexity: [LRMs begin to excel as additional reflection offsets plan-

ning costs, improving success rates.

3. High complexity: Both standard [LLMs and [LRM fail, with LRMs intriguingly
exhibiting reduced reasoning effort as task difficulty increases, suggesting a po-

tential scaling limit during inference.

These findings align with insights from the agent-centric discussion in section[2.8.4]

where new process-supervision datasets such as PROCESSBENCH and BFCL-v2 emerged
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to differentiate between “rote” and “reasoned” solutions (ZHENG et al., |2024; YAN et al.,
2024). This shift underscores the limitations of traditional accuracy-focused metrics

and highlights the need for process-oriented evaluation.

2.7.4 So what counts as intelligence now?

Bringing these strands together reveals an evolving definition of intelligence:

» External behavior: Still essential, as benchmark performance remains a core

indicator (section [2.6), but no longer sufficient on its own.

» Transparency of process: Models must be able to reveal and verify their internal
reasoning steps; agentic evaluation frameworks, such as AGENT-AS-A-JUDGE,

push in this direction (ZHUGE et al., 2024).

* Robust scalability: Truly intelligent systems should degrade gracefully as task
difficulty increases. Apple’s study (SHOJAEE et al., 2025) demonstrates that current

LRMs fail to meet this criterion, indicating an important frontier for future research.

2.8 ECOSYSTEM OF TOOLS AND DEVELOPMENT PARADIGMS

The rise of [LLMs has given birth to a rich ecosystem of frameworks and design

paradigms that support the development of increasingly sophisticated applications.

2.8.1 LangChain and LangGraph

LangChain (LANGCHAIN, [2023) has emerged as a widely adopted framework that
abstracts the complexities inherent in building [LLM}driven applications. It offers a mod-
ular architecture for chaining prompts, models, and external tools into multi-step pipe-
lines, enabling the creation of advanced systems such as retrieval-augmented gener-
ation (RAG), chatbots, and autonomous agents. By providing standardized interfaces
to various LLM| APIs and data sources, LangChain facilitates seamless integration with
different models and vector databases, requiring minimal code modifications. This de-
sign paradigm not only accelerates prototyping but also promotes reproducibility and

scalability in both research and industry contexts.
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LangGraph (LANGGRAPH, 2024), an extension of LangChain, introduces a graph-
based architecture for orchestrating multi-agent, stateful applications. Unlike the
linear pipelines in LangChain, LangGraph allows developers to define directed graphs
where nodes represent [LLM] invocations or functions, and edges encode information
flow. This structure supports cyclic processes and decision points, enabling agents to
plan, execute, and reflect iteratively—an essential pattern for long reasoning chains
and complex multi-step tool use. By maintaining application state and memory across
cycles, LangGraph empowers developers to construct autonomous agents that move

beyond one-shot prompting, thus advancing research in agentic [Al|

2.8.2 N8N

N8N (zAHRT, [2023) is an open-source workflow automation platform that enables
users to connect diverse services and APls into unified workflows with minimal coding.
Through its visual drag-and-drop interface, users can design flows by linking nodes
that represent specific actions—such as sending HTTP requests, transforming data, or
interacting with cloud and database services.

Each node encapsulates a discrete task, and by chaining nodes together, users
can orchestrate complex data pipelines and automation processes. In Al-driven con-
texts, N8N serves as a versatile orchestration layer, coordinating data collection, model
inference, and result delivery within a single workflow.

For instance, an Al pipeline in N8N might include nodes for data input, preprocess-
ing, model inference through external APIls, and post-processing or visualization of
results. Decision-making nodes allow conditional routing of data, enabling the creation
of adaptive, intelligent agents capable of responding to different scenarios dynamically.

By automating data flows and integrating multiple systems, N8N reduces manual
intervention and accelerates deployment. lts monitoring tools support real-time super-
vision and performance tuning, making it suitable for both developers and non-technical

users who aim to design efficient, maintainable Al workflows.
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2.8.3 Retrieval-Augmented Generation

Retrieval-Augmented Generation (LEWIS et al., 2020a) is an advanced technique de-
signed to enhance the accuracy and reliability of answers produced by large language
models. Instead of relying exclusively on static information learned during the initial
training phase, a[RAG}based system dynamically searches for relevant information in
external databases at the moment a question is asked. This design makes it possible to
provide responses that are more precise, up-to-date, and grounded in verifiable data.

The process works in several steps, described below in simple terms:

1. Generating representations from real-world data: Initially, important documents
(such as technical manuals, scientific articles, and expert reports) are collected
and divided into smaller sections or text fragments. Each fragment is then con-
verted into a numerical representation known as an embedding. This embedding

serves as a mathematical summary of the content’s meaning.

2. Storing embeddings in a database: The generated embeddings, along with
links to their original text fragments, are stored in a specialized database called
a vector database. This database allows the system to efficiently compare and

retrieve information based on meaning rather than exact word matches.

3. Encoding the user’s query: When a user submits a question, it is also trans-
formed into an embedding using the same method as used for the stored docu-
ments. This transformation ensures that both the question and the stored content

can be compared within the same semantic space.

4. Performing similarity-based retrieval: The system searches for embeddings
stored in the database that are most similar to the query embedding. In practice,
this involves identifying text fragments whose content is most relevant to answer-
ing the question. The search is based on mathematical similarity measures, such

as cosine similarity.

5. Recovering the original text: Once the most relevant embeddings are identified,
the system retrieves the corresponding original text fragments. These fragments
contain the explicit information needed to construct a precise and evidence-based

response.
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6. Enriching the prompt for generation: Finally, the retrieved text fragments are
included as additional context in the prompt provided to the language model. By
incorporating this external knowledge, the model can generate responses that
are not only contextually appropriate but also grounded in verified information,

reducing the likelihood of errors or "hallucinations."

This method is particularly valuable in domains such as agronomy, where the reli-
ability and correctness of recommendations are crucial. By integrating real-world data
dynamically, enables the development of [All systems that are more transparent,

trustworthy, and aligned with scientific evidence.

2.8.4 Agents and Natural Language Interfaces

A major advancement in the field of generative [Allis the development of agents that
can interact with both structured and unstructured data using natural language (MO-
HAMMADJAFARI et al., 2024; TEAM, 2023, |RICHARDS, 2023).

For structured data, these agents may use the data as direct input, or use a tech-
nigue called text-to-SQL, which allows them to convert questions written in everyday
language into SQL commands that can be run directly on databases. This makes it pos-
sible for people without technical training to explore and analyze data without needing
to write code.

When dealing with unstructured data, such as documents, articles, or web pages,
these agents combine retrieval techniques (like [RAG) with reasoning abilities. They
can search for relevant information, summarize it, and present clear answers to user
questions.

This new way of interacting with data enables domain experts — for example,
agronomists or plant pathologists — to access and analyze information directly, without
always needing support from IT or data teams. Recent studies and user experiences
show that natural language interfaces not only make data more accessible but also

significantly improve productivity and support faster, more informed decision-making.
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2.9 NATURAL LANGUAGE AS A UNIVERSAL INTERFACE FOR DATA

One of the most transformative developments in recent years is the adoption of
natural language as a universal interface for interacting with both structured and un-
structured data. Rather than relying on SQL queries, regular expressions, or man-
ual pipeline engineering, users can now engage with databases, spreadsheets, docu-
ments, and APIs simply by describing their intentions in natural language. [LLMs handle
the translation into executable code, the execution itself, and the summarization of re-
sults. This paradigm significantly improves accessibility, empowering domain experts
to work directly with data without requiring technical intermediaries.

This shift has fundamentally redefined the relationship between humans and data.
Research workflows, business intelligence processes, and everyday automation now
benefit from [LLM}powered agents capable of executing commands, generating visu-
alizations, and retrieving or synthesizing information—all through intuitive natural lan-
guage interactions. As a result, the barrier to data-driven decision-making is lowered,

enabling faster insights and more inclusive participation in data analysis tasks.

2.10 EMERGING TRENDS

As generative |Al evolves from isolated models into collaborative, tool-using agents,
new communication protocols have emerged to facilitate interoperability, negotiation,
and secure execution across systems. Since late 2023, major organizations have in-
troduced protocols designed to standardize how [Allagents communicate and operate

within multi-agent environments.

* MCP (Model Context Protocol) (ANTHROPIC, |2024): Released by Anthropic in
late 2024, this client-server protocol is designed for model-to-tool invocation. It
supports both stateless and session-aware interactions, using HTTP, Stdio, or
Server-Sent Events (SSE) as transport layers. MCP is ideal for direct tool calls

from language models.

« A2A (Agent-to-Agent Protocol) (GOOGLE, 2025): Introduced by Google in early
2025, A2A is a peer-to-peer protocol that enables agents to discover and negoti-

ate with each other through HTTP-based “Agent Cards.” It assumes a centralized
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agent directory and supports both stateless and session-aware communication,

making it optimized for inter-agent cooperation.

+ AGP (Agent Gateway Protocol) (CISCO, 2025): Developed by Cisco in 2024,
AGP employs a gateway-based transport model with encrypted sessions. Uti-
lizing gRPC (HTTP/2 + Protobuf), it provides secure routing between agents in
high-throughput environments, making it well-suited for enterprise-scale deploy-

ments.

« ACP (Agent Communication Protocol) (ACP, 2025): Introduced by IBM in mid-
2024, ACP adopts a brokered client-server architecture with registry-based dis-
covery. It emphasizes tool modularity, session state tracking, and robust commu-
nication via HTTP streams, making it particularly suitable for distributed multi-

agent architectures within organizations.

These protocols reflect an important shift in the generative [All ecosystem—from
monolithic assistants to interoperable, modular agents capable of dynamic collabora-
tion. As of 2025, they are still evolving and being tested in research and enterprise
environments, but they lay the foundation for future standards in agent communication.

In parallel, several technological trends continue to shape the future of generative

[AlL

» Tiny Models: Lightweight models such as Phi-2, Mistral 7B, and TinyLlama offer
strong performance for local and edge inference. Projects like Llama.cpp and
GPT4All, launched in 2023, demonstrated that 7B—13B parameter models could
run efficiently on laptops and mobile devices by leveraging 4-bit quantization and
optimized inference libraries. This trend toward low-resource inference supports
offline use cases and enables deployment in healthcare devices, vehicles, and

other edge environments where connectivity may be limited.

« Multimodal Interfaces: Generative [Al is increasingly extending beyond text to
include vision, audio, and other modalities. Multimodal [LLMs can now accept
diverse inputs and produce outputs in multiple formats. [GPT}4’s vision exten-
sion, for example, allows the interpretation of images and diagrams, generating

textual analyses or descriptions. Other systems, such as Bard and Bing Chat,
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have integrated image understanding and generation (via models like DALL-E).
Research models including BLIP-2, Flamingo, and PaLl have demonstrated ap-
proaches to connect vision encoders with [LLMs, enabling tasks like visual ques-
tion answering and image captioning. Speech capabilities have also advanced
significantly: OpenAl's Whisper (speech-to-text) and new text-to-speech models
have enabled voice-based interactions. By late 2023, ChatGPT supported voice
dialogues, allowing users to converse naturally through spoken queries and syn-
thesized responses. Google’s Gemini is explicitly designed as a multimodal foun-
dation model, capable of handling text, images, audio, and video within a unified

framework.

Autonomous Agents: Building on frameworks like LangChain and LangGraph,
developers have started creating agents that can autonomously plan and exe-
cute multi-step workflows without continuous human prompting. A notable exam-
ple is AutoGPT (2023), which chains [GPT}4 instances to recursively break down
goals into sub-tasks and solve them sequentially. Open Interpreter (2023) en-
ables [LLMs to execute code locally on a user’s machine in response to natural
language instructions, effectively allowing users to “talk to their computer.” With
appropriate safety measures and sandboxing, these autonomous agents hint at
a future where personal |Al| assistants can perform complex, open-ended tasks

on-device or online with minimal supervision.

Efficient Deployment: As model capabilities grow, there is a parallel push to
make them smaller, faster, and more accessible. Quantization techniques re-
duce the precision of model weights (and sometimes activations) from 16-bit to
8-bit, 4-bit, or even 3-bit integers, dramatically lowering resource requirements.
Techniques like GPTQ (FRANTAR et al., [ 2023) allow large models (e.g., a 175B-
parameter transformer) to be compressed post-training with minimal impact on
accuracy, enabling deployment on a single GPU or even a high-end personal
computer. Additional innovations such as sparsity (pruning redundant weights)
and knowledge distillation (transferring knowledge from larger “teacher” models
to smaller “student” models) further democratize access to generative |All by re-

ducing operational costs and hardware barriers.
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 Offline and On-Device Al: Tools like Llama.cpp and GPT4AIll make it feasible to
run quantized [LLMs on personal devices, unlocking use cases such as real-time
Al translation on smartphones or vision-based processing in wearable devices

like smart glasses.

 Evaluation Infrastructure: Frameworks like Ragas and LangSmith provide ro-
bust tools for evaluating and debugging[LLM|applications, supporting reproducibil-
ity, error tracking, and systematic performance analysis. This infrastructure is crit-
ical as Al systems become more autonomous and are integrated into mission-

critical applications.

2.11 ADAPTATION OF THIS PROJECT

This work strategically integrates several of these recent advancements. Initial pro-
totypes based on static prompts and rigid workflows were progressively replaced by
LangChain pipelines, semantic search via pgvector, and LangGraph orchestration. The
outcome is a flexible, modular agent capable of retrieving and reasoning over context in
natural language, thereby delivering interactive, data-grounded responses that closely
mimics expert consultations.

Moreover, by incorporating text-to-SQL and document question-answering agents,
this project enables users to interact seamlessly with both structured data (e.g., Post-
greSQL) and unstructured information (e.g., PDFs, images) through a unified conver-
sational interface. The integration of multimodal capabilities and open-source models
further enhances scalability and accessibility, ensuring the system remains robust and

adaptable to diverse use cases.

2.12 CONCLUSION

Over the past five years, the role of [Al in facilitating information access has been
fundamentally redefined. By combining generative capabilities with retrieval, code exe-
cution, reasoning, and multimodal interaction, large language models now enable fluid
and powerful engagement with both structured and unstructured knowledge sources.

This chapter has outlined the key technological milestones that underpinned these ad-
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vances and detailed how they have shaped the foundation of this project. As[LLM|tools
continue to improve in performance, usability, and accessibility, the barriers between
humans and data continue to dissolve, ushering in a new era of intelligent, conversa-

tional systems.



40

3 RELATED WORK

3.1 LARGE LANGUAGE MODELS IN AGRICULTURE

are increasingly recognized for their transformative potential across various
sectors, and agriculture is no exception. More broadly, [Al has seen rapid adoption
in agriculture, supporting a wide range of applications such as automation, soil and
crop monitoring, decision support, and resource optimization. [Altbased solutions as-
sist farmers in selecting optimal planting times, choosing suitable seeds for specific
climate conditions, recommending soil nutrients, forecasting weather, and monitoring
crop health in real time (ZHANG et al., 2021). These technologies contribute to increased
productivity, reduced resource usage, and mitigation of environmental impacts (ZHANG
et al., |2021).

The integration of [LLMs in agricultural practices aims to enhance efficiency, improve
decision-making, and address critical challenges such as crop monitoring and disease
management. Automation in agriculture plays a vital role in these efforts, particularly
through the development of early detection systems that can significantly reduce crop
losses (ROUMELIOTIS et al., 2025). When combined with other advanced [Al techniques,
[CLMk offer avenues to enhance the scalability and intelligence of precision agriculture
systems, moving towards more automated and data-driven farming practices (ROUME-

LIOTIS et al, [2025).

3.1.1 Current Research on the Use of LLMs in Agriculture

Current research on the application of LLM in agriculture spans a diverse range
of tasks, from general crop monitoring to highly specialized areas like seed science.
In parallel, various [Al-powered technologies—such as sensors, drones, hyperspectral
imaging, and agricultural robots—are being deployed to collect precise data on soil,
climate, and crop health. These tools enable targeted interventions and automation of
tasks like irrigation, spraying, and harvesting (WALEED et al., 2020; KUMAR et al., |2020).
Intelligent monitoring systems provide farmers with detailed insights and tailored rec-
ommendations to maximize yield and optimize resource use (LIU, 2020).

A notable area of investigation involves the use of multimodal LLMs for automated
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plant disease classification. For instance, studies have explored combining multimodal
[LLMs, specifically GPT-40, with[CNNEs to detect plant diseases using leaf imagery (ROUME-
LIOTIS et al., 2025). This hybrid approach leverages the strengths of both model types:
the LLM]s understanding and generation capabilities with the [CNN[s proficiency in im-
age analysis. Results from these investigations indicate that fine-tuned GPT-40 models
can achieve performance comparable to, or even slightly better than, traditional deep
learning models like ResNet-50. For example, fine-tuned GPT-40 models demonstrated
up to 98.12% classification accuracy on apple leaf images, surpassing ResNet-50’s
96.88% (ROUMELIOTIS et al., [2025).

This means that, in practice, farmers can expect more accurate and earlier detec-
tion of plant diseases using such systems, potentially preventing losses and reducing
pesticide usage. Additionally, this integration shows promise for improved generaliza-
tion and near-zero training loss, which can reduce the reliance on extensive labeled
datasets and high-resolution sensor infrastructure, making advanced disease detec-
tion more accessible (ROUMELIOTIS et al., [2025).

Despite these advancements, the application of in highly specialized agri-
cultural domains, such as seed science, remains nascent. This limitation is largely
attributed to the scarcity of digital resources, the inherent complexity of gene-trait re-
lationships, and a notable absence of standardized benchmarks for evaluating
performance in these niche areas (YING et al., 2025). More broadly, the adoption of
[Al in agriculture still faces challenges related to data quality, integration of new tech-
nologies into field operations, and the need to upskill farmers for effective use of
these tools (AWASTHI, 2020; BELOEYV et al., 2021). Even so, Al is considered essen-
tial for addressing rising food demand, labor shortages, and the impacts of climate
change (CHEN et al., [2023).

To address these critical gaps, domain-specific benchmarks are being developed.
SeedBench, for example, represents the first multi-task benchmark specifically de-
signed for seed science. Developed in collaboration with domain experts, SeedBench
aims to simulate key aspects of modern breeding processes, providing a structured
environment for evaluating (YING et al., [2025). Benchmarks like SeedBench not
only measure technical performance but also help ensure that these models are robust
and reliable under realistic agricultural conditions. A comprehensive evaluation of 26

leading |LLMss on SeedBench has revealed substantial discrepancies between the cur-
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rent capabilities of general [LLMs and the intricate demands of real-world seed science
problems (YING et al., [2025). This initiative marks a foundational step, guiding future

research and practical deployments in specialized agricultural domains.

3.1.2 NLP Applications in Agricultural Data Processing and Analysis

INLP|applications are crucial for extracting actionable insights from the vast amounts
of unstructured text data prevalent in agriculture, ranging from research papers and
weather reports to farmer notes and market analyses. New frontiers in agricultural [NLP]
involve investigating the effectiveness of pretraining transformer-based language mod-
els with extensive food-related text corpora (REZAYI et al., [2025). A notable example
is AgriBERT, a domain-specific, fine-tuned, open-source model. AgriBERT has been
trained from scratch using a large corpus of agricultural academic journals, compris-
ing over 300 million tokens, to enable it to learn meaningful sentence representations
specifically tailored for agricultural applications (REZAYI et al., 2025). This approach
addresses a key limitation of generic BERT models, which, when pretrained on general
corpora like Wikipedia, may not generalize effectively across specialized domains due
to their distinct vocabularies and contexts (REZAYI et al., 2023).

A significant application within agricultural [NLP| is semantic matching, which in-
volves establishing accurate mappings between food descriptions and nutrition data
(REZAYI et al), 2025). This task is critical for integrating diverse datasets, such as the
USDA'’s Food and Nutrient Database with retail scanner data, to understand consump-
tion patterns and inform public health policies (REZAYI et al., 2025). Fine-tuning domain-
specific models like AgriBERT with external knowledge sources, such as the FoodOn
ontology, enhances their ability to perform such semantic matching tasks (REZAYI et al.,
2025). An exploratory investigation comparing AgriBERT with state-of-the-art general-
purpose [LLMs, including GPT-4, Mistral-large, Claude 3 Sonnet, and Gemini 1.0 Ultra,
indicates that domain-specific models can effectively complement the broad knowl-
edge and generative capabilities of these advanced in addressing the unique
challenges of the agricultural sector (REZAYI et al., 2025). The integration of GPT-based
models, either as a baseline for comparison or as an external knowledge source, fur-
ther enhances AgriBERT’s performance in semantic matching and its understanding of

food-related concepts and relationships (REZAYI et al., 2025).
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[LLMs are also being explored for their utility in practical agricultural decision-making,
particularly in pest management and the generation of diagnostic reports. Studies
demonstrate that [LLM}-driven pest management decisions can achieve up to 72% ac-
curacy when guided by instruction-based prompting that incorporates domain-specific
knowledge (QIN et al., |2025). Furthermore, general like ChatGPT exhibit profes-
sional competence in analyzing agricultural data to generate accurate and timely re-
ports, alerts, and insights, thereby facilitating informed decision-making and enhancing
customer service within the agricultural domain (QIN et al., 2025). However, it is crucial
to note that the accuracy of these predictions is heavily dependent on the quality of the
input data. [All systems in agriculture are intended to assist decision-making and are
not a substitute for human intuition and experience, especially in complex and dynamic
agricultural environments (QIN et al., 2025). The YOLO-PC model, a lightweight variant
of YOLO, further supports this by evaluating reasoning accuracy at 90% for agricul-
tural diagnostic reports, emphasizing the importance of model-generated text quality
in correlation with recognized information (QIN et al., |2025).

The synergy between domain-specific and general-purpose for opti-
mal performance in agricultural [NLP] is a significant observation. The development
of AgriBERT and its integration with advanced general LLMs like GPT-4 highlights a
collaborative approach rather than a competitive one. AgriBERT provides a deep, nu-
anced understanding of agricultural terminology and concepts, while general
offer broad knowledge and robust generative capabilities. This suggests that the fu-
ture of specialized [NLP|applications, particularly in fields with unique vocabularies and
contexts such as agriculture, will likely involve a layered architecture. This could entalil
fine-tuning smaller, domain-specific models on proprietary data for specialized tasks,
while leveraging larger, general [LLMs for broader reasoning, summarization, or user in-
teraction, potentially through Retrieval-Augmented Generation techniques. This
also carries important cost implications, as training massive models from scratch for
every niche domain is often impractical.

A critical consideration for [LLM] deployment in agriculture is the persistent impor-
tance of data quality and human oversight. While demonstrate promising ac-
curacy rates, for instance, 72% in pest management, the explicit dependence of this
accuracy on input data quality and the caveat that [Al systems are not a substitute for

human intuition and experience are crucial (QIN et al.,[2025). This underscores that even
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with advanced models, the principle of "garbage in, garbage out" applies, and human
expertise remains indispensable for complex, real-world decision-making in dynamic
agricultural settings. This observation implies that the successful deployment of [LLMs
in agriculture will necessitate robust data governance strategies, continuous human
validation loops, and clear guidelines defining where |Al| serves as an assistant ver-
sus where human decision-making is paramount. It also highlights the need for user
interfaces that facilitate the easy input of high-quality data and mechanisms for agricul-
tural experts to review and, if necessary, override [Al recommendations, especially in

high-stakes scenarios like crop disease or pest management.

3.1.3 Connecting to This Dissertation

Building on these recent advances, this dissertation proposes a conversational
plant diagnostic system that integrates the reasoning capabilities of large language
models with robust image analysis. By leveraging multimodal approaches—combining
textual symptom descriptions and leaf imagery—the system aims to provide accessi-
ble, real-time support to farmers and agronomists. Inspired by state-of-the-art studies,
such as GPT-40 hybrid models and domain-specific benchmarks like SeedBench, this
work addresses the urgent need for scalable, interpretable, and user-friendly [All tools
in agriculture. The focus on transparency and adaptability seeks to bridge the gap be-
tween cutting-edge [Al| research and practical field applications, empowering small and

medium-scale agricultural producers.

3.2 RAG FOR INFORMATION RETRIEVAL

Retrieval-Augmented Generation (RAG) has emerged as a prominent methodology,
significantly enhancing the capabilities of [LLMs by integrating dynamic information re-
trieval mechanisms into the generation process. This paradigm addresses key limita-
tions of traditional LLM, particularly their tendency to hallucinate or provide outdated
information due to their static training data. [RAG[s ability to ground generative models
in external, up-to-date knowledge sources has made it a focal point in natural language

understanding and generation research.
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3.2.1 Key Works on RAG and Its Application in Domain-Specific Knowledge Re-

trieval

Retrieval-Augmented Generation has rapidly gained traction as a method
to enhance the factual accuracy and adaptability of generative language models, es-
pecially when applied to specialized knowledge domains. By augmenting generative
models with an external retrieval component, systems can access and incorpo-
rate up-to-date or domain-specific information at inference time, reducing reliance on
static pre-trained parameters and mitigating hallucinations (LEWIS et al., 2020b; SHI et
al), 2023).

Lewis et al. (LEWIS et al., 2020b) introduced one of the foundational frame-
works, combining a dense passage retriever with a sequence-to-sequence generative
model. This approach significantly improved performance on open-domain question
answering benchmarks by allowing the model to dynamically incorporate retrieved evi-
dence into its generated responses.

Guu et al. (GUU et al., 2020) proposed REALM, which integrates retrieval directly
into pre-training, enabling the model to learn from external documents rather than only
from its internal parameters. This architecture demonstrated strong improvements in
both retrieval and generation accuracy, highlighting the benefits of retrieval-enhanced
training for knowledge-intensive tasks.

In the context of domain-specific applications, recent studies have explored spe-
cialized retrieval corpora tailored to particular fields, such as medical guidelines, legal
documents, or agricultural extension manuals (SHI et al., 2023; SUN et al., 2023). These
works show that domain-adapted retrieval bases help address challenges like termi-
nology ambiguity, specialized jargon, and the need for highly precise information.

lzacard and Grave (IZACARD; GRAVE, [2020) presented Fusion-in-Decoder (FiD),
which extends by fusing multiple retrieved passages within the decoder, allow-
ing for richer context aggregation. FiD has been especially effective in tasks requiring
synthesis of information from multiple sources.

In agriculture and plant health,[RAG]has the potential to provide real-time, evidence-
backed responses to complex field queries. For example, a conversational assistant
can retrieve the latest pest control guidelines or region-specific soil treatment protocols,

offering practical support beyond what a purely parametric model can deliver.
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Despite these advancements, challenges remain, including ensuring retrieval pre-
cision, integrating multimodal data (e.g., images and text), and optimizing latency for
real-time deployments (SUN et al., 2023). Addressing these will be essential for the suc-

cessful adoption of RAG}-based systems in specialized fields like agriculture.

3.2.2 Comparative Analysis of RAG-Based Systems vs. Traditional Methods

Traditional information retrieval (IR) systems, such as keyword-based search en-
gines and rule-based frameworks, rely heavily on exact lexical matches and static rank-
ing algorithms. While efficient and interpretable, they often struggle to handle complex
or nuanced queries, especially in specialized domains that involve evolving terminology
and context-specific knowledge (VOORHEES; TICE, [1999).

Generative language models, on the other hand, can produce fluent and contex-
tually rich responses but depend solely on internal parameters learned during pre-
training. This reliance can lead to hallucinations and factual inaccuracies in knowledge-
intensive tasks (JI et al., |2023). This issue is especially critical in fields like agriculture,
where incorrect guidance can result in economic or environmental damage.

Retrieval-Augmented Generation systems combine the strengths of both ap-
proaches by integrating external retrieval mechanisms with generative models. [RAG]
systems retrieve relevant information dynamically at inference time, grounding responses
in explicit evidence (LEWIS et al., 2020b). This enables them to produce more accurate,
up-to-date, and context-sensitive answers while maintaining natural language fluency.

Table 1| summarizes key differences among traditional IR, generative models, and

[RAG| systems.
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Frame 1 — Comparison of Traditional IR, Generative Models, and RAG-Based Systems

Aspect Traditional IR Generative RAG-Based
Models Systems
Knowledge Static indexed Internal model Retrieved external
Source documents weights documents + model
weights
Factual Accuracy | High Lower (prone to | High
(document-based) | hallucination) (evidence-based
grounding)
Fluency Low (user High High
interprets
documents)
Explainability High (explicit Low High (retrieved
sources) evidence shown)

Adaptability to
New Knowledge

Requires manual
index update

Requires model
re-training

Dynamic retrieval
allows instant
updates

Handling
Complex
Queries

Limited to keyword
matching

Good contextual
handling but risk
of error

Strong contextual
handling with factual
evidence

However, [RAG| systems face challenges such as retrieval latency, dependence on

retriever quality, and maintaining accurate, up-to-date external knowledge bases (SUN

et al., |2023). Addressing these challenges is vital for their effective deployment in real-

world agricultural contexts.

3.3 DEEP LEARNING MODELS FOR DISEASE CLASSIFICATION

The use of deep learning models has significantly advanced plant disease detection

and classification, offering superior accuracy and scalability compared to traditional im-
age processing and manual inspection methods. [CNNs have become the backbone of
image-based disease classification due to their ability to automatically learn hierarchi-
cal features from raw pixel data (SLADOJEVIC et al., [2016; MOHANTY; HUGHES; SALATHé,
2016).

Early works, such as those by Sladojevic et al. (SLADOJEVIC et al., 2016), demon-
strated the feasibility of using [CNNs to classify multiple plant diseases with high accu-
racy, even under varying environmental conditions. Mohanty et al. (MOHANTY; HUGHES;
SALATHg, 2016) further extended this approach by training [CNNs on a large dataset
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containing images of healthy and diseased leaves across several crop species, achiev-
ing overall classification accuracies above 99% in controlled datasets.

Recent research has explored hybrid architectures that integrate CNNs with other
deep learning modules to improve feature extraction and robustness. For example,
combining with attention mechanisms or graph neural networks (GNN) allows
models to focus on critical lesion areas or to understand spatial relationships among
disease patterns (LI et al., 2021}; |CHEN; LIU; WANG, 2023). Such hybrid models have
shown enhanced performance in real-world field images, where occlusion, lighting vari-
ation, and background noise are common challenges.

Despite these advances, [CNN}based approaches often require large, curated data-
sets for training, and their performance can degrade when deployed in diverse field
conditions not represented in the training data (FERENTINOS, 2018). This motivates the
integration of additional data modalities and adaptive mechanisms, such as transfer
learning and multimodal frameworks, to enhance generalizability and reduce depen-
dency on large annotated datasets.

In agricultural disease management, deep learning models facilitate rapid, large-
scale monitoring and enable early intervention strategies, reducing yield losses and
minimizing chemical input. However, practical deployment still requires models to be

interpretable and adaptable to various crops and regions.

3.3.1 Studies on Deep Learning Models in Plant Disease Classification

Deep learning has revolutionized plant disease detection by enabling automatic
feature extraction and robust classification from leaf images, outperforming traditional

manual or rule-based methods (SLADOJEVIC et al., 2016).

3.3.1.1 Convolutional Neural Networks

Pioneering research by Sladojevic et al. (SLADOJEVIC et al., 2016) demonstrated that
can achieve over 90% accuracy in multi-class plant disease identification. Mo-
hanty et al. (MOHANTY; HUGHES; SALATH¢, [2016) further validated this by training
on a large dataset of healthy and diseased leaves, achieving above 99% accuracy in

controlled settings.
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A recent systematic review of over 160 studies from 2020-2024 highlights [CNNs
as the dominant architecture in plant disease detection, yet it notes challenges such as
dataset diversity, model generalization, and deployment in natural environments (SUNIL;

JAIDHAR; PATIL, | 2023).

3.3.1.2 Attention-Enhanced Architectures

Attention mechanisms have been applied to highlight lesion regions, improving clas-
sification focus and robustness. For example, the APDC model leverages attention
weighting to achieve up to 99.97% accuracy across multiple public datasets including
PlantVillage and PaddyCrop (BERA; BHATTACHARJEE; KREJCAR), [2024a).

Vision Transformers (ViTs) have also begun to compete in this domain. The Plan-
tXVIT architecture—combining [CNNs with ViTs—achieved 98-99% accuracy across
crops like apple, maize, and rice, while also offering interpretability through visual at-

tention maps (THAKUR et al., [2022).

3.3.1.3 Hybrid CNN-GNN and Graph-Based Models

To capture relational patterns, hybrid models combining [CNNs with Graph Neural
Networks (GNNs) have emerged. For instance, PND-Net integrates and
for joint disease and nutrition deficiency classification, achieving 96—96.5% accuracy
across multiple crops (BERA; BHATTACHARJEE; KREJCAR, 2024b). A soybean disease
classification study combining MobileNetV2 with GraphSAGE reached 97.16% accu-
racy—surpassing single (95.04%)—while providing interpretable Grad-CAM vi-

sualizations (JAHIN et al., [2025).

3.3.1.4 Lightweight and Edge-Deployable Models

Efficiency-focused designs like Slender{CNN] optimize parameter count and per-
form on par with heavier models (88—90% accuracy on corn, rice, wheat) while being
suitable for deployment on resource-constrained devices (BAIJU et al., [2025).

MobileNetV3-based approaches achieved 99.66% classification accuracy on grape

leaf diseases in real-time edge settings, demonstrating high precision (99.4%) and
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viability for field use (PURANIK et al.,[2024). Enhanced [CNNE such as E-CNN also report
98% accuracy across crops like apple, corn, and potato (KUMARAN; SANJAY; SANTHIYA,
2024).

3.3.1.5 Transfer Learning, Data Augmentation, and Practical Challenges

Transfer learning has enabled broader model applicability across varied datasets,
while targeted data augmentation and preprocessing significantly improve model ro-
bustness against lighting variations and environmental noise (PAWAR et al., 2024).

However, real-world deployment faces challenges: limited field data, the need for
segmentation, and model interpretability. Issues like occlusion, small datasets, and lab-
to-field transitions remain significant hurdles, as emphasized in recent literature (LIU;
WANG), [2021]; [SUNIL; JAIDHAR; PATIL, 2023).

3.3.2 Studies on Deep Learning Models in Tomato Leaf Disease Classification

Several recent studies have benchmarked deep learning architectures on the Plant-
Village tomato leaf dataset, reporting consistently high accuracy while highlighting
trade-offs between model complexity and performance. Table [1| consolidates repre-

sentative results from key publications:

Table 1 — Comparative Performance of Deep Learning Models for Plant Disease Classification on
PlantVillage Tomato Leaf Dataset

Model Accuracy (%) Citation
ResNet50-DPA 97.60 (LIANG; JIANG, [2023)
MaxViT 97.00 (GHOSH et al., |2025)
EfficientNet Ensemble 96.99 (GONZALES; DIOSES), 2024)
Hybrid CNN-Transformer 95.22 (NEMMOUR et al., [2025)

These results reinforce several key observations:

« CNNs remain strong performers: ResNet-style architectures augmented with
spatial attention (e.g., ResNet50-DPA) achieve near 98% accuracy under con-
trolled conditions (LIANG; JIANG), [2023).
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 Vision Transformers show promise: Transformer-based models like MaxViT
approach [CNNHevel performance ( 97%) in classification tasks (GHOSH et al/,
2025).

« Hybrid and ensemble methods: Combining[CNNjand transformer features yields
high accuracy ( 96-97%) with more efficient resource use (GONZALES; DIOSES,
2024}, NEMMOUR et al., 2025).

While PlantVillage enables strong benchmark performance, these models are typ-
ically trained and evaluated on clean, uniform-background images. Adapting them to
field deployment remains a challenge due to occlusion, variability in lighting, and di-
verse backgrounds. This motivates the adoption of lightweight models and [RAG}inte-
gration in this dissertation, to ensure robustness and explainability in real-world agri-

cultural diagnostics.

3.3.3 Application of CNNs and Other Architectures in Agricultural Diagnosis

[CNNks have become the cornerstone of automated plant disease detection, pro-
viding strong performance across diverse crop types and imaging conditions. Recent
reviews report that[CNNFbased models—including ResNet, EfficientNet, and VGG vari-
ants—dominate the space, often achieving 90-99% accuracy on benchmark datasets
such as PlantVillage (CHEN et al., [20243a).

To enhance both accuracy and interpretability, researchers have explored hybrid
models combining [CNNE with transformers or attention modules. For instance, a hybrid
[CNN}-Transformer model achieved 99.45% accuracy on tomato leaf disease classifica-
tion using CycleGAN-augmented data and attention-enhanced feature extracts (CHEN
et al},[2024b). Similarly, models like CMTNet and FOTCA—integrating [CNN]and trans-
former modules—have excelled in fine-grained and robust field scenarios, with perfor-
mance exceeding 99% accuracy (GUO; FENG; GUO, 2025; HU et al., |2023)).

Table[2 highlights key architectures and their performance on plant disease datasets:
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Table 2 — Performance of CNN and Hybrid Architectures in Plant Disease Detection

Model Description Accuracy (%)
Advanced CNN + SE CNNs with attention and 99.39
blocks residual enhancements
Hybrid CNN-Transformer ~ Combines CNN features with 99.45
(CycleGAN) transformer context
CMTNet CNN + Transformer for >99
spectral-spatial classification in
UAV images
FOTCA Transformer-CNN hybrid with 99.8

Fourier-based attention

« CNNs with attention enhancements (GONZALEZ-BRIONES et al., [2025) balance

high accuracy and interpretability, focusing on symptom regions in images.

« CNN-Transformer hybrids (CHEN et al., 2024b) benefit from global context and

local feature fusion, improving robustness in challenging image conditions.

» Transformer-heavy models like CMTNet(GUO; FENG; GUO,|2025) and FOTCA (HU
et al., 2023), while achieving top performance, require more complex integration

and data preprocessing.

Despite excellent benchmarks, these models must be adapted for real-world use
— handling noisy images, diverse environments, and minimal annotated data. The
approach in this dissertation adopts an efficient[CNN| backbone with attention mecha-
nisms, complemented by [RAG|to provide contextual, explainable recommendations —

enhancing both robustness and practical utility in agricultural diagnostics.

3.4 USE OF Al ASSISTANTS IN DIAGNOSIS SYSTEMS

[Al assistants—ranging from image-enabled chatbots to retrieval-augmented multi-
modal agents—are transforming diagnostic tools in both medicine and agriculture by
combining visual analysis, conversational interaction, and curated knowledge retrieval.

In healthcare, |Al| assistants such as ChatGPT, OpenAl’s HealthBench, and Mi-
crosoft’s Diagnostic Orchestrator have demonstrated remarkable diagnostic capabili-
ties. In one clinical evaluation, [Allalone achieved a median diagnostic reasoning score

of 92%, outperforming physicians (76%) and physician-{Al teams (74%), although ac-
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curacy dropped when physicians interacted with the [Al| (GOH et al.,[2024). Another study
reported Microsoft’s Diagnostic Orchestrator achieving 85.5% accuracy on 304 medical
cases, vastly outperforming a physician panel at 20% accuracy (SALLAM et al., [2025).
These results illustrate high potential but also highlight risks such as hallucinations,
automation bias, and reduced trust when [All disagrees with human experts (GOURA-
BATHINA et al., [2025).

In agriculture, systems combining [CNN}based leaf image analysis with conversa-
tional, knowledge-grounded interfaces have shown promise in supporting disease di-
agnosis and farm management. For example, YOLO-integrated [RAG| systems have en-
abled early, context-aware detection of diseases in coffee and medicinal plants (KUMAR
et al, 2024). Recent reviews confirm that integrating image processing with retrieval-
augmented reasoning improves diagnostic precision and interpretability (TU et al., 2025).

Key advantages of [Al assistants include:

 Improved accuracy: Grounding responses in external evidence and multimodal

inputs reduces hallucinations and enhances reliability (SINGHAL et al., [2023).

« Enhanced user interaction: Conversational interfaces allow for plain-language
explanations and actionable guidance, making tools accessible to both farmers

and clinicians (GOH et al., [2024).

» Scalability and updatability: Retrieval-based models can incorporate new in-
formation without full retraining, critical for rapidly evolving diseases and prac-

tices (TU et al., 2025).
Nevertheless, important challenges persist:

« Automation bias: Users may over-rely on [Al suggestions without critical ap-

praisal, potentially leading to misdiagnoses or mismanagement (GOH et al., 2024).

« Hallucinations and factual errors:[Al systems can generate plausible but incor-
rect information, with some studies estimating hallucination rates between 27%
and 47% (Jl et al., 2023).

» Equity and trust: Bias in model training and a lack of transparency can hinder
adoption in diverse agricultural contexts, especially where local knowledge and

dialects are crucial (SINGHAL et al., 2023).
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Integration in This Dissertation

The system proposed in this dissertation integrates a[CNN-based image classifier
with a Retrieval-Augmented Generation assistant. By grounding every diagnostic sug-
gestion in visual evidence and explicit knowledge sources, the system delivers accu-
rate, context-rich, and explainable recommendations. This approach emphasizes clar-
ity and trust, empowering agronomists and farmers with a robust, field-ready decision-

support tool.

3.5 PLANT DISEASE DIAGNOSIS: CONCEPTS AND PRACTICES

Accurate plant disease diagnosis is a cornerstone of effective crop protection and
sustainable agriculture. It enables timely intervention, reducing yield loss and unneces-
sary pesticide use. The diagnostic process typically follows a structured flow: observa-
tion of symptoms, formulation of a hypothesis regarding potential causes, confirma-
tion through targeted testing, and delivery of a recommendation for management (RlI-
LEY; WILLIAMSON; MALOQY|, |2002). Early and precise diagnosis is essential to minimize

costs and prevent pathogen spread (AL, 2022).

Conventional Methods

Traditional diagnosis relies on visual examination of symptoms and signs, which
remains the most accessible approach for many practitioners (RILEY; WILLIAMSON; MALQY,
2002). lts main advantages are low cost and speed, particularly for diseases with dis-
tinctive visual markers. However, it is inherently subjective and depends heavily on
expert experience. Many diseases present overlapping or nonspecific symptoms, com-

plicating accurate identification.

Molecular and Serological Methods

Molecular techniques such as [PCR], quantitative (qPCR), and loop-mediated
isothermal amplification (LAMP) offer high sensitivity and specificity for pathogen de-

tection (GOMEZ-GUTIERREZ; GOODWIN, [2022; NEMETH; KOVACS, [2025). While |LAMP] is
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suitable for rapid, field-ready testing due to its low equipment requirements, it faces
challenges related to primer design and contamination risk (NEMETH; KOVACS, [2025).
Serological methods like enzyme-linked immunosorbent assays (ELISA) and immuno-
chromatographic strips (lateral flow tests) are widely used for detecting plant viruses,
offering fast and moderately inexpensive results. Yet, their reliability depends on anti-
body quality and can be affected by cross-reactivity and false positives (KANAPIYA et al.,
2024}, [KIM et al, 2024).

Sensor-Based and Imaging Approaches

Emerging approaches use RGB and thermal sensors to identify disease-induced
stress non-destructively. RGB imaging enables the extraction of color and texture fea-
tures from visible-light images, while thermal cameras capture canopy temperature
anomalies associated with water stress or infection (WALSH; MANGINA; NEGRAO, |2024).
These techniques are increasingly integrated with drones and smartphones, making
them scalable and accessible. However, their accuracy can be influenced by external
factors such as lighting conditions, crop variety, and environmental variability (WALSH:;
MANGINA; NEGRACO, 2024). When combined with deep learning or multimodal [Al frame-
works, these sensor-based systems are paving the way for large-scale, automated
plant health monitoring.

Overall, plant disease diagnosis has evolved from qualitative observation toward
quantitative, multimodal, and Al-assisted methodologies. These advancements are
crucial for developing intelligent systems capable of delivering fast, evidence-based,

and scalable diagnostics—aligning directly with the goals of this dissertation.

3.6 SUMMARY

have rapidly emerged as transformative tools across many industries, and
agriculture is no exception. By leveraging advanced natural language understanding
and generation capabilities, [L[LMs can assist in decision support, advisory services,
and knowledge dissemination to farmers and agronomists.

Recent studies have demonstrated the utility of LLMs for a wide range of agri-

cultural tasks, including personalized crop management advice, pest and disease di-
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agnosis, climate adaptation strategies, and supply chain optimization (SAPKOTA et al.,
2024}, BREZULEANU et al., 2025). For example, fine-tuned versions of GPT models have
been deployed to answer natural language questions from farmers, providing region-
specific recommendations on irrigation, fertilizer use, and pest control (BREZULEANU et
all, [2025).

One of the key advantages of in agriculture is their ability to democratize
access to expert knowledge. In many rural regions, the scarcity of agronomists limits
timely and accurate guidance. [LLM can help bridge this gap by providing farmers with
instant, easy-to-understand responses in local languages or dialects, thereby empow-
ering decision-making at the farm level (SAPKOTA et al., [2024).

Additionally, LLMs have been integrated with satellite data, loT sensors, and image
analysis pipelines to create holistic farm monitoring systems. Such systems can gen-
erate comprehensive reports that merge textual insights with real-time environmental
and crop health data, enabling precision agriculture at scale (TENG et al., 2023]; JINDAL;
KAUR), [2024).

Despite these advancements, challenges remain. [LMg are susceptible to hal-
lucinations—generating plausible but incorrect information—and require continuous
grounding in up-to-date agronomic data to ensure reliability (JI et al., 2023). Moreover,
integrating into field workflows demands careful consideration of user trust, ex-
plainability, and cultural acceptance, especially in diverse agricultural contexts (BREZULEANU
et al., [2025).

Integration in This Dissertation

This dissertation builds upon these insights by employing a retrieval-augmented
[CLM]framework, which combines plant image analysis with textual reasoning grounded
in a curated agricultural knowledge base. This integrated approach aims to provide pre-
cise, explainable, and context-aware recommendations, directly addressing common

limitations in both purely vision-based and purely language-based diagnostic tools.
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3.7 FINAL CONSIDERATIONS

This chapter reviewed the evolution and application of advanced [Al techniques —
particularly deep learning models, hybrid architectures, and large language models —
in the context of plant disease diagnosis and agricultural decision support. Early [CNN}
based approaches demonstrated strong performance in controlled image classification
tasks, while recent hybrid models combining transformers, attention mechanisms, and
graph networks have further improved robustness and interpretability.

The integration of[LLM and retrieval-augmented generation frameworks represents
a significant leap forward in providing context-aware, evidence-backed, and scalable di-
agnostic assistance. These systems enable real-time, personalized support for farmers
and agronomists, addressing gaps left by purely vision-based or rule-based methods.
Moreover, they democratize access to expert-level guidance, particularly in regions
with limited technical resources.

Despite these advances, critical challenges remain—including ensuring general-
ization under diverse field conditions, mitigating hallucinations, and fostering user trust
through transparent and interpretable outputs. Addressing these challenges requires
careful design, continuous grounding in domain knowledge, and a focus on explainabil-
ity.

Building upon these insights, this dissertation proposes a novel multimodal system
that combines [CNN}based image analysis with|RAGFenhanced conversational reason-
ing. By grounding visual diagnoses in an up-to-date agricultural knowledge base and
delivering clear, context-rich explanations, the proposed approach aims to provide ac-
curate, practical, and trustworthy decision support to agricultural stakeholders. This
system aspires to bridge the gap between cutting-edge [Al research and real-world
farming needs, ultimately contributing to more resilient and sustainable agricultural

practices.
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4 METHODS

4.1 PROPOSED METHODOLOGY

4.1.1 Hybrid System: RAG and Deep Learning

The proposed system combines and deep learning for images to support ro-
bust and accurate plant disease diagnostics. [RAG| grounds the system’s responses in
a curated agronomic knowledge base, significantly mitigating hallucinations and im-
proving factual accuracy. Meanwhile, deep learning models provide visual diagnosis
capabilities from plant images, acting as a complementary "eye" for the conversational
assistant.

The knowledge base was constructed from authoritative agronomy books and tech-
nical manuals. Texts were digitized via optical character recognition (OCR), manually
cleaned to remove artifacts, and segmented into chunks of approximately 1,000 char-
acters with a 200-character overlap to preserve context. These chunks were then em-
bedded using OpenAl’s embedding models and stored in a PostgreSQL database ex-
tended with pgvector. During diagnosis, a retriever implemented with LangGraph and
cosine similarity retrieves the most relevant knowledge snippets to inform and ground

the responses.

4.1.2 Reasoning Techniques

To enhance reasoning capabilities, our system employs the Chain-of-Thought tech-
nique (ZHANG et al., |2024). This approach encourages the model to think step-by-step
through problems, improving its ability to solve complex tasks by breaking them down

into smaller, manageable steps.

4.1.3 Multi-modal Capabilities

Our system integrates multi-modal capabilities (XIE et al., 2024), allowing it to pro-
cess and generate content across different media types, such as text, images, and au-

dio. This versatility broadens the system’s applicability and enhances its performance
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in diverse tasks.

4.1.4 Framework Selection: LangChain, LangGraph

We briefly evaluated the leading agentic and frameworks—including CrewAl,
Phidata, and LangGraph—to inform our tooling choices. Our evaluation criteria focused
on development speed, flexibility, community support, and ability to build complex work-

flows.

41.4.1 CrewAl

CrewAl (CREWAI, |-) facilitates the creation of collaborative, role-based multi-agent
systems with relatively low code overhead. However, its higher-level abstractions were
too constrained for our need to tightly control query transformation, retrieval, reranking,

and generation logic.

41.4.2 Phidata

Phidata (PHIDATA, |-) offers built-in capabilities, multi-modal support, and a
clean[APIideal for prototypes. However, it proved limiting when extending beyond basic
use cases: building our specific diagnostic pipeline on top of its abstractions required
extensive workarounds and reduced configurability for components like custom rerank-

ing and prompt templates.

4.1.4.3 LangChain & LangGraph

LangChain (LANGGRAPH, -) was selected as the foundation due to its broad ecosys-
tem—including connectors, prompt templates, and vector store integrations—as well
as its modular chaining paradigm. We then added LangGraph for orchestration be-
cause it provides graph-based workflow control, visual debugging, and explicit state
management suitable for our multi-stage pipeline. In contrast to CrewAl’s ab-
straction, LangGraph gave us the fine-grained control we needed over each pipeline

component. Additionally, its active open-source community ensures long-term viability
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and continued feature development.

4.1.4.4 Summary

Overall, we prioritized frameworks that (1) enabled rapid prototyping, (2) supported
modular customization at every stage, and (3) matched community maturity. LangChain
+ LangGraph best fit these criteria—whereas CrewAl felt restrictive and Phidata, while

easy to start with, lacked the flexibility required for our full diagnostic system.

4.2 SYSTEM DESIGN AND ITERATIVE PROTOTYPING

The development of the system followed an iterative, prototype-driven methodol-
ogy, shaped by rapid advancements in large language models and agent frameworks.
These iterations were strategically designed to address the central research objec-
tive of minimizing hallucinations and increasing diagnostic accuracy in plant disease

responses.

4.2.1 First Prototype

The first prototype, built with N8N, relied on a straightforward workflow that inte-
grated a simple semantic-only [RAG] pipeline. While it allowed rapid experimentation,
this approach often produced hallucinations and lacked the flexibility to incorporate
new tools or improve retrieval strategies. Figure [T shows the basic architecture.

Despite enabling fast deployment, the first prototype’s single-layered retrieval lim-
ited both the depth and adaptability of responses, motivating further iterations.

The system is composed of multiple components connected through a workflow

orchestrated in n8n. Below, we describe each component and its interaction in detail.

421.1 User Interaction

The entry point is the Telegram Trigger node. When a user sends a message (text,
photo, or audio) to the bot on Telegram, this node captures the content and initiates the

workflow.
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Figure 1 — First prototype architecture diagram implemented in n8n.

4.2.1.2 Input Type Determination

Next, the Switch node analyzes the message to determine its type: text, audio, or

image.
« Text: Sent directly to be merged and processed later.

 Audio: The system fetches the audio file via the Telegram Get Audio File node

and transcribes it using the OpenAl Transcription node.

» Image: The image is retrieved using the Telegram Get Image node and resized

or pre-processed with the Edit Image node.

4.2.1.3 Image Analysis

If an image is provided, it is further analyzed by sending it to an external plant
disease prediction[AP] through the HTTP Request node. This external service returns
predictions on whether the plant is sick, possible pathogens, symptoms, and the type
of plant.

A condition (If1 node) checks if the returned analysis contains a valid plant classi-
fication. If valid, the system proceeds; otherwise, it notifies the user that the image is

not suitable.
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4.2.1.4 Merging Input Data

The different possible inputs (text, audio transcription, image analysis results) are

merged in the Merge node to form a unified content object.

4.2.1.5 Mapping Predictions

After merging, the Json Map node organizes predictions into structured fields, such
as is_sick, pathogen_predictor, and symptom_predictor.
The system then sends an initial chat action signal to the user via the Telegram

Chat Action node, indicating that the bot is preparing a response.

4.2.1.6 Agent Reasoning and Memory

The core reasoning is performed in the Al Agent node. This node uses a detailed
prompt specifying that the agent should consult the internal vector store database (Cul-
tivAl knowledge base) and avoid generating speculative content. The memory context
is maintained using the Window Buffer Memory node, which ensures the conversa-

tion continuity for each user session.

4.2.1.7 Knowledge Base and Embeddings

The system integrates a Supabase vector store (Supabase Vector Store1) and
a Vector Store Tool node to store and query embeddings generated via OpenAl
Embeddings. These components allow efficient similarity search against pre-stored

expert knowledge, improving grounding and reducing hallucinations.

4.2.1.8 Language Model Integration

The OpenAl GPT-40 node is used to generate or refine responses, and is tightly
integrated with the [Al Agent node to maintain context and ensure high-quality outputs.
A smaller model (OpenAl GPT-40-mini) is connected to support auxiliary tasks in the

vector store.
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4.2.1.9 Final Response and Output Options

The final response is processed through a condition node (If). Depending on whether

the output includes audio or text, the system either:

» Generates audio using the OpenAl - Generate Audio node and sends it back

via the Telegram Send Audio node.
» Sends a textual reply through the Telegram Send Response node.

If an image is invalid, a fallback message is sent via the Telegram Bad Picture

node.

4.2.2 Second Prototype: Multi-Agent Architecture

The second LIMMO prototype, developed in early 2025, introduced a more ad-
vanced architecture inspired by a team-of-specialists approach. Instead of relying on a
single workflow, this version used multiple virtual agents, each with a defined area of
expertise, working under the supervision of a main controller.

Figure [2| illustrates the conceptual architecture. When a user sends a query (text,
image, or voice), the main controller (supervisor) analyzes the initial message and

routes it to the appropriate team of virtual specialists.

User Interfaces

Main

an u
4
[ rorom \| [ wote ][ ervtomtnoton

l OpenAI Whisper I l Cultivai Prediction | l Tavily Search l | Supabase Vector I

Figure 2 — Supervisor component architecture diagram.
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The system included three main specialist teams:

+ Phytopathology Team: Focused on diagnosing plant diseases, with sub-specialists

such as a mycologist (fungal diseases), virologist, and bacteriologist.

» Botany Team: Responsible for plant identification and understanding plant-environment

interactions.

« Agronomy Team: Provided advice on soil management, climate impacts, and

cultivation techniques.

The image and audio inputs were processed by dedicated modules: an image ana-
lyzer (using prediction [APls and internal models) and an audio transcriber (using Ope-
nAl Whisper API).

For text-based reasoning and knowledge integration, the system used a combina-
tion of a vector database (Supabase with embeddings) and web search [APIs (e.g.,
Tavily). These tools allowed each team to access relevant agronomic literature and
external data as needed, particularly when information was not available in the local
knowledge base.

The multi-agent design was inspired by the metaphor of a real plant health clinic,
where different specialists collaborate to give comprehensive support. While concep-
tually rich, this architecture became increasingly challenging to scale. The growing
number of agents and complex prompt coordination led to qualitative difficulties dur-
ing testing: maintenance burdens increased, prompt drift was frequent, and debugging
became frustratingly slow. Although not formally quantified, these challenges aligned
with known limitations reported in recent multi-agent [All frameworks, which cite main-
tenance overhead and coordination latency as key bottlenecks (SHI et al., 2023).

This experience provided valuable insights and led to the decision to adopt a more

streamlined single-agent approach in the subsequent version.

4.2.3 Final Prototype: Single-Agent RAG-Enhanced Architecture

Learning from earlier iterations, the final design shifted toward a streamlined single-
agent architecture augmented with and modular tools (MCP). This simplified de-

sign was easier to maintain, debug, and extend. By consolidating responsibilities into
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Figure 3 — Final architecture data flow diagram.

a single orchestrated agent, it became straightforward to monitor, update prompts, and
integrate additional capabilities.

The final architecture also improved robustness and efficiency. Responsibilities were
consolidated into a single orchestrated agent, making monitoring, debugging, and prompt
updates much simpler. Moreover, the design leveraged modular tools implemented via
Model Context Protocol (MCP), allowing seamless integration of external services such
as image analysis and future agronomic data sources. For example, images are
uploaded to Google Cloud Storage and then passed as secure links to the agent, which
uses an image analysis [MCP]to detect symptoms and probable diseases. Audio inputs
are pre-processed before agent handling, maintaining modularity and extensibility.

The use of facilitates future expansion, as new tools or data sources can be
integrated with minimal changes to the core agent logic, aligning with best practices in
scalable [Al system design.

The module provides a preliminary analysis of detected symptoms and can-
didate diseases. This output serves as guidance for the module, which then re-
trieves and reasons over knowledge snippets to produce a grounded and context-rich
response. Importantly, users can engage conversationally to confirm or clarify symp-
toms, thus improving overall diagnostic accuracy and user trust.

Performance improvements were qualitatively significant: hallucinations decreased
markedly thanks to the hybrid retrieval strategy (combining semantic and keyword-
enhanced approaches), while response times improved due to the reduction in agent
orchestration overhead. These observations align with recent findings on improved fac-

tual consistency and latency reductions in simplified RAG}enhanced architectures (U
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et al., |2023}; SUN et al., 2023; |SHI et al., | 2023).

4.3 Al FRAMEWORKS AND DESIGN DECISIONS

LangChain and LangGraph(LANGGRAPH, |-) were chosen for their accessible learn-
ing curve, high-quality documentation, and modular design, which facilitated rapid pro-
totyping and integration of complex workflows. Alternative frameworks such as Phidata
and CrewAl were evaluated but ultimately set aside due to implementation and docu-
mentation limitations.

The adoption of RAG]| played a crucial role in grounding answers in the domain-
specific knowledge base, significantly reducing hallucination rates and enhancing user

trust—an essential requirement in agricultural diagnostics.

4.4 SYSTEM ARCHITECTURE OVERVIEW

The final architecture of LIMMO is a modular, containerized system providing
powered plant disease diagnosis through a Telegram bot interface. The architecture
prioritizes scalability, reliability, and maintainability, using Python, FastAPI, and con-

tainer orchestration via Docker Compose.

4.4.1 High-Level Architecture

The system consists of the following main components:

- Telegram Interface: Manages user interactions, including text, voice, and image

messages, and formats responses.

» Al Agent (LangChain MCP Agent): Central orchestrator for query routing, mem-

ory management, and reasoning workflows.

» Diagnosis MCPs: Services for text-based and image-based diagnosis, treatment

recommendations, and external agricultural knowledge integration.

» Database: PostgreSQL with pgvector for embeddings and session memory.
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 Cloud Infrastructure: Managed with Docker Compose to enable scalability and

deployment flexibility.

4.5 COMPONENT IMPLEMENTATION DETAILS

4.5.1 Telegram Interface

Implemented in Python with python-telegram-bot, this interface handles incoming
messages, converts audio to text using OpenAl Whisper APIl, manages sessions, and

formats [Al responses to comply with Telegram’s presentation rules.

45.2 Al Agent

Built using Python, FastAPI, LangChain, and LangGraph, the [All agent serves as
the core orchestrator. It manages context, orchestrates calls to MCPfs, and integrates
pipelines to combine retrieved knowledge with language model reasoning.

The agentic retriever uses similarity-based searches (cosine similarity) on vector

embeddings to ground responses effectively.

4.5.3 Evolution of RAG Approaches

Throughout the development of the system, three distinct approaches were
evaluated. Each approach shared the same underlying tools, including OpenAl em-
beddings, Facebook Al Similarity Search (FAISS)(JOHNSON et all, 2019) as the vector
store, and LangChain components for orchestration. These iterations were designed
to address the main research objective of reducing hallucination and improving factual

accuracy in plant disease diagnosis responses.

4.5.3.1 Semantic-Only RAG

The first prototype employed a simple semantic-only retrieval strategy. In this ap-
proach, user queries and documents were both embedded using OpenAl embeddings
and matched purely on semantic similarity within the index. While this allowed
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Figure 4 — Semantic-only RAG pipeline. The user query and documents are embedded and matched
by cosine similarity in a vector index. The top-k chunks are passed directly to the LLM to
compose the answer. This design is simple and fast, but can retrieve semantically close yet
off-topic passages because it lacks keyword checks and reranking.

for a straightforward and fast implementation, it sometimes retrieved documents that
were semantically close but not necessarily factually relevant or precise, especially in

cases where the query contained ambiguous or broad terms. The pipeline is depicted

in Fig. [4]

4.5.3.2 Hybrid Semantic and Keyword RAG

The second prototype introduced a hybrid retrieval strategy that combines se-
mantic similarity with traditional keyword-based search. In this version, initial results
from semantic retrieval were cross-verified using keyword matching heuristics. This
combination helped to improve the precision of document selection, particularly when
specific technical terms or disease names were present in the query. By integrating
keyword filtering, the system reduced off-topic retrievals and improved factual align-

ment of the responses. The pipeline is depicted in Fig.

4.5.4 Agentic RAG Implementation

To ensure accurate and contextually grounded responses, the system integrates
a Retrieval-Augmented Generation approach. This architecture allows the language
model to retrieve domain-specific documents and incorporate them into its reasoning

process, mitigating hallucination, and improving factual consistency. The pipeline is
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Figure 5 — Hybrid RAG pipeline. Semantic retrieval is complemented by keyword-based search using
domain terms (crop, pathogen, symptom). The final context is formed from passages that are
both semantically similar and keyword-confirmed, improving precision and reducing irrelevant
chunks compared to semantic-only retrieval.

Query Query Transformation ReRanking Generate Response

Keyword Search

Y

Context
Top 5 - Keyword and

Semantic chun

Embedding

Vector
Database

Response ]

Similarity Search
(Facebook Al Similarity
Search)

Figure 6 — Agentic RAG pipeline. A controller transforms the query, runs multi-path retrieval (semantic,
keyword, and optional metadata filters), and applies reranking before building a structured
context window with citations. Orchestrated with LangGraph, the LLM is instructed to ground
answers in the retrieved evidence and to state uncertainty when information is insufficient,
reducing hallucinations while maintaining clarity.
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depicted in Fig. [6]

4.5.4.1 Embedding Model for Retrieval

The system uses OpenAl Embeddings to convert textual documents and user
queries into vector representations. This is implemented through the OpenAIEmbeddings
class from the langchain_openai package, using the OpenAl model text-embedding-
3-small with 1536 dimensions, initialized in the AgenticRetriever class with default
parameters. These embeddings provide a semantically rich representation of plant-

related content, enabling effective similarity-based search.

4.5.4.2 Indexing Strategy

For indexing and similarity search, the system employs Facebook Al Similarity
Search as the vector store backend. Documents are indexed using the
FAISS.from_documents() method in combination with OpenAl embeddings. The re-
trieval process is configured to use a top-k similarity search, with k& set to 5 by default.
This configuration ensures that the most relevant five documents are retrieved for each
query.

Additionally, the system supports incremental updates to the knowledge base via
the add_documents() method, enabling continuous improvement and adaptation to new
agronomic information.

The retrieval pipeline also integrates a reranking step using the Cohere Re-ranker,
as documented in LangChain’s retriever integrations. This reranker further refines the
initial set of retrieved documents by considering relevance scores, leading to improved

answer quality.

4.5.4.3 Response Composition

The final system adopts a chained approach composed of the following stages:

1. Query Transformation: The original user query is transformed using an LLM

to optimize its effectiveness for retrieval. This step helps reformulate potentially
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vague or incomplete user questions into more precise search queries.

2. Document Retrieval: The transformed query is then used to retrieve the most

relevant documents from the [FAISS|index, as described above.

3. Response Generation: Retrieved documents are formatted and incorporated

into a prompt passed to an for final response generation. The specialized
[RAG| prompt template:

« Positions the LLM|as an expert in plant disease diagnosis.

« Explicitly instructs the model to base its answers on the retrieved documents

and to acknowledge when information is insufficient.

» Encourages the inclusion of source citations derived from the retrieved ma-

terials.

» Passes both the original user query and the retrieved documents in a struc-

tured format to maximize context awareness.

The entire workflow is orchestrated using LangGraph, which manages the state
transitions between the query transformation, retrieval, and response generation steps.
This graph-based orchestration enables modularity and clear separation of responsi-
bilities within the pipeline.

Overall, this implementation creates a flexible and robust [RAG| system capable of
enhancing retrieval effectiveness through query transformation and generating contex-

tually grounded responses that reduce hallucination and improve user trust.

4.5.5 Synthetic Dataset Generation for Evaluation

To robustly evaluate our [RAG| implementations, we constructed a synthetic test
dataset grounded in the system’s agronomic knowledge base. This approach allows
the evaluation to be automated and repeatable without relying on extensive manual
annotations.

We adopted the testset generation strategy proposed by the Retrieval-Augmented
Generation Assessment Suite (RAGAS)), which consists of the following steps:
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1. Document Loading: The reference agronomic documents (books and expert
materials) were ingested using the DirectorylLoader class from the

langchain_community module.

2. LLM Selection: A large language model (e.g., GPT-4) was chosen to generate
question—answer pairs. The [LLM] was wrapped using the LangchainLLMWrapper

to integrate smoothly with the generation pipeline.

3. Prompting for Q&A Generation: The [LLM|was prompted to create diverse and
representative question—answer pairs based on the loaded documents. The gen-
erated questions ranged from simple factual checks to more complex, multi-hop,

or edge-case scenarios.

4. Dataset Structuring: The generated dataset included columns such as question,
ground_truth (expected answer), and contexts (reference sections supporting

the answer). This dataset formed the basis for systematic evaluation.

This synthetic approach ensured that the evaluation set was specifically tailored to
the actual knowledge encoded in the system, while maintaining flexibility and repro-
ducibility. While synthetic datasets enable controlled and scalable evaluation, they may
not fully capture the linguistic variability and noise present in real farmer interactions,

representing a potential limitation.

4.5.6 RAGAS Evaluation Framework

The three [RAG| approaches (semantic-only, hybrid, and query-transformed) were

evaluated using the framework. provides a comprehensive, reference-
free evaluation of [RAG| pipelines, focusing on both retrieval and generation quality with-

out requiring human-labeled ground truth annotations.

45.6.1 Evaluation Metrics

We used the evaluate() function from to assess each approach

based on a set of core metrics:
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» Context Precision: Measures the proportion of retrieved documents that are

actually relevant to the question.

« Context Recall: Evaluates whether all essential information needed to answer

the question is present in the retrieved documents.

» Context Entities Recall: Assesses whether key entities mentioned in the ques-

tion and answer are present in the retrieved contexis.

* Noise Sensitivity: Examines how susceptible the retrieval process is to irrelevant

or misleading information.

» Response Relevancy: Checks if the generated response appropriately addresses

the question.

+ Faithfulness: Evaluates whether the response remains grounded in the retrieved

contexts and does not hallucinate information.

Each [RAG] variant was tested against the same set of 100 synthetic questions and
expected answers, containing the same literature database. The metrics provided a
granular analysis of retrieval quality, answer accuracy, and factual alignment, support-
ing a fair comparative study.

These comprehensive evaluations guided the selection and refinement of the final
[RAG| approach, helping to achieve higher reliability and trustworthiness in the plant

diagnosis system.

4.5.7 Model Context Protocols

4.5.7.1 Definition and Origin

The Model Context Protocol (MCP) is a crucial open standard communication pro-
tocol that facilitates structured interaction between large language models (LLMs) and
external systems, tools, and data sources. Introduced by Anthropic, MCP is publicly
available as an open standard (ANTHROPIC, -). It is often described as a “universal
connector,” likened to a “USB-C port for Al applications,” because it standardizes how
different systems expose resources (data, functions, workflows) to LLMs, eliminating

the need for bespoke code for each integration(MCP, -).
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45.7.2 Core Architecture and Mechanism

MCP employs a client-server architecture, where:

» An MCP “Host” application (e.g., an LLM-powered agent or front-end) contains
one or more MCP clients. Each client connects to an MCP Server, which provides
a set of tools, resources, and prompts for the LLM to invoke or consume (RAY,
2025).

» The protocol defines the exchange of messages between client and server, using
formats like JSON-RPC, to manage capability discovery, context provision, tool

invocation, and result return (MCP, |-).

In practical terms, the LLM (or its host application) queries the MCP server for avail-
able actions and data, selects the appropriate tool/resource, and receives the output
through a standardized interface. This allows the model to extend beyond pure text
generation, effectively gaining the ability to perform actions like running APIs, access-

ing databases, or calling functions via MCP.

4.5.7.3 MCP as an Extension of LLM Capabilities

MCP enables LLMs to extend their capabilities beyond text generation by dynam-
ically interacting with external systems. This interaction allows LLMs to perform tasks

such as data retrieval, computation, and workflow orchestration in real-time. For exam-

ple:

« When an LLM identifies the need for data from a relational database, it uses MCP

to invoke a “query DB” tool provided by an MCP server.

« If computation or an API call is required, the LLM triggers the tool, awaits the

result, and integrates the result into its output.

» For consulting a knowledge base or orchestrating workflows, MCP enables seam-

less workflow orchestration through tools and chained calls.

MCP abstracts the complexities of each tool or data source (file system, HTTP API,

database, etc.), providing a standardized interface for integration without bespoke logic.



75

This architecture simplifies the development of agent-style Al systems and enhances

the LLM’s ability to interact with diverse environments(RAY, |2025).

45.7.4 Relevance for Our System

In our plant-disease diagnosis architecture, adopting MCP (or a similar modular
protocol) enhances our system’s capability to integrate diverse data sources and tools,
improving diagnostic accuracy and efficiency. Based on the modular architecture, sev-
eral specialized MCP}s were designed to handle different aspects of plant disease di-

agnosis:

« Text Diagnosis MCP: Uses [[LMs and the knowledge base to analyze textual
symptom descriptions and provide possible disease matches with confidence lev-

els.

» Image Diagnosis MCP: Employs deep learning models (specifically ResNet-50
and EfficientNetB3) fine-tuned on plant disease image datasets to analyze up-

loaded photos.

» Treatment Recommendation MCP: Retrieves and formats appropriate treat-

ment protocols based on the identified diseases and severity levels.

4.5.8 Database Layer

The system implements a two-tier database architecture:

» Vector storage: Embeddings are stored in PostgreSQL with the pgvector ex-
tension, enabling efficient similarity searches across the agricultural knowledge

base.

» Session management: Conversation history and user context are maintained
in a separate database layer that implements both short-term session memory
(active conversations) and long-term memory (previous diagnoses and user pref-

erences).
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To address the challenge of outdated context, the system implements a time-decay
mechanism that progressively reduces the relevance weight of older context entries.
Additionally, the database periodically prunes stale entries that exceed a configurable
retention threshold, maintaining optimal performance while preserving important his-

torical data.

4.5.9 Cloud and Containerization

Each component is containerized and orchestrated with Docker Compose for de-
velopment and testing environments. Environment variables manage configuration set-
tings, while Docker volumes ensure data persistence across container restarts. Health
checks are implemented to provide resilience and automatic recovery from failures.

For production deployment, the architecture is designed to be compatible with Ku-
bernetes, allowing for future migration as demand scales. The modular design facili-
tates horizontal scaling of individual components, particularly the computationally in-
tensive image analysis and [RAG]| retrieval services, without requiring a complete sys-

tem redesign.

4.6 DETAILED DESCRIPTION OF RAG COMPONENT

4.6.1 Motivation and Design Choices

The component was designed to address the limitations of purely generative
[LLM|outputs, particularly the risk of hallucinations. By grounding responses in a curated

agronomic knowledge base, RAG| ensures factual accuracy and enhances user trust.

4.6.2 Architecture and Workflow

The [RAG| component follows a pipeline architecture comprising several key stages:

1. Query transformation: The user’s input is analyzed and transformed into an
optimized search query, expanding agricultural terminology and identifying key

disease indicators.
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. Retrieval: The system performs parallel retrieval operations:

« Semantic search using [FAISS| vector database with OpenAl embeddings
» Keyword-based search for specific disease names, crops, or technical terms

» Metadata filtering by crop type, region, and severity when this context is

available

Reranking: Retrieved documents are scored and filtered based on relevance,

recency, and source reliability. This step particularly improved precision in the
final Agentic prototype.

Context assembly: The highest-ranked documents are combined with user query

and conversation history to form a comprehensive context window.

Response generation: The LLM|generates a response based on the assembled
context, with explicit instructions to cite sources and acknowledge uncertainty

when information is incomplete.

This workflow evolved substantially across the three prototypes, with the final im-

plementation incorporating feedback loops for query refinement and explicit handling

of edge cases where insufficient information is available in the knowledge base.

The [RAG| component operates in the following stages:

1.

Query Encoding: User queries are encoded into embeddings using an OpenAl

embedding model, ensuring semantic representation.

Similarity Search: The encoded query is compared against stored document

embeddings using cosine similarity within a pgvector-enabled PostgreSQL database.

Chunk Retrieval: The system retrieves the top-k most similar text chunks (e.g.,
k = 5), each representing approximately 1000 characters with 200-character
overlaps. These chunks contain domain knowledge sourced from agronomy books

and technical manuals.

Contextual Augmentation: The retrieved chunks are concatenated and incor-

porated into the [LLM| prompt as additional context.

. Answer Generation: The [LLM|generates a final, grounded response using both

the retrieved information and its inherent language capabilities.
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4.6.3 Embedding and Storage Details

Chunks were generated from [OCR}-processed agronomic literature. After cleaning,
text was divided into overlapping segments to maintain context continuity. Embeddings
were generated using OpenAl’'s embedding [AP]and stored in a PostgreSQL database

with pgvector extension, chosen for its efficient vector indexing and integration simplic-

ity.

4.6.4 Future Improvements

Potential improvements include hybrid retrieval strategies combining semantic and
keyword-based search, dynamic chunk sizing based on query complexity, and re-

ranking methods to further optimize relevance.

4.7 DETAILED DESCRIPTION OF IMAGE DIAGNOSIS MCP

4.7.1 Model Architecture and Dataset

The Image Diagnosis [MCP] uses a convolutional neural network (CNN) architec-
ture, such as ResNet or EfficientNet, chosen for their balance between accuracy and
computational efficiency. The model was fine-tuned on a dataset comprising labeled
images of plant leaves exhibiting various disease symptoms.

To improve generalization, extensive data augmentation techniques were applied,
including random rotations, horizontal and vertical flips, brightness adjustments, and

zoom variations.

4.7.2 Integration with Text-Based Diagnosis

The Image outputs predicted disease classes with associated confidence
scores. These results are then cross-referenced with text-based diagnoses from the
[RAG| component. In cases where both modalities agree, confidence in the final rec-
ommendation increases. In conflicting cases, the system may either request additional

user input or present a combined explanation outlining uncertainties.
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4.7.3 Limitations and Potential Biases

Despite the robustness of the proposed methodology, several limitations exist. The
reliance on synthetic evaluation data, while practical, may not fully capture real-world
query variability. Additionally, the system’s dependence on[LLMs for query transforma-
tion and question generation introduces potential model biases. Finally, using[FAISS|as
a local vector store may constrain scalability in distributed or large-scale deployments.
Future work may explore incorporating real user query logs and evaluating on larger,

multi-region deployments to address these constraints.

4.7.4 Future Work

Future enhancements may involve integrating multi-label classification to handle
co-occurring diseases, expanding the dataset with new crops and regions, and explor-
ing explainable [All techniques (e.g., Grad-CAM) to visually highlight affected areas on

images.

4.8 MEMORY AND CONTEXTUAL REASONING

Session memory is handled through vector embeddings in pgvector, enabling con-
text retention over multiple user interactions. This approach improves coherence, avoids

repetitive queries, and supports user-centric experiences.

4.9 SECURITY AND PRIVACY CONSIDERATIONS

[API keys and sensitive data are managed via environment variables and not hard-
coded. User data is stored temporarily and not shared externally, ensuring compliance
with privacy best practices. Deployment options include secure, isolated cloud environ-

ments.



80

4.10 LESSONS LEARNED AND CHALLENGES

The evolution from simple [RAG}only workflows to multi-agent architectures and fi-
nally to a streamlined single-agent design revealed trade-offs between flexibility, ro-
bustness, and maintainability.

While multi-agent coordination improved certain capabilities, it introduced mainte-
nance complexity. The final unified agent design, grounded in |[RAG| improved robust-

ness while reducing operational overhead.

4.11 CHAPTER CONCLUSION

This chapter presented the iterative development of the LIMMO system, detailing
the transition from a simple [RAG}based workflow to a multi-agent architecture and
finally to a robust, modular single-agent design. Each evolution reflected practical
lessons learned through testing and qualitative feedback rather than strict quantitative
metrics. The final architecture effectively balances technical sophistication with oper-
ational maintainability, providing a powerful, accurate, and explainable diagnostic as-
sistant. This foundation supports the system’s intended deployment in field conditions,
directly serving agronomists and farmers through accessible and transparent|Al-driven

recommendations.
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5 RESULTS AND DISCUSSION

5.1 FRAMEWORK SELECTION RESULTS

The comparative analysis of frameworks (CrewAl, Phidata, and LangChain/Lang-
Graph) yielded valuable insights that guided architectural decisions. While CrewAl
offered convenient role-based agent design, its higher-level abstractions limited fine-
grained control over the pipeline components. Similarly, Phidata provided ex-
cellent out-of-the-box [RAG]| capabilities but became constraining when implementing
specialized diagnostic workflows.

LangChain with LangGraph emerged as the optimal choice, offering several advan-

tages:

 Greater modularity for customizing retrieval and reranking logic
» Extensive ecosystem of connectors for vector stores and embedding models
» Visual debugging capabilities for complex workflows

» Mature community support and documentation

This selection proved critical in facilitating the rapid prototyping approach while

maintaining the flexibility needed for specialized agricultural diagnostics.

5.2 PROTOTYPE ITERATIONS AND IMPROVEMENTS

Three distinct prototypes were developed and evaluated, each representing a sig-

nificant architectural evolution:

5.2.1 First Prototype: Semantic-Only RAG

The initial implementation relied solely on basic semantic retrieval using OpenAl
embeddings and [FAISS| This approach, while straightforward to implement, showed

significant limitations:

 High hallucination rate when knowledge gaps existed.
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+ Limited precision in retrieving contextually relevant information.
« Difficulty handling ambiguous agricultural terminology.

» Over-reliance on embedding quality and database coverage.

RAGAS evaluation metrics confirmed these observations, with the Semantic-Only
[RAG| approach scoring lowest across all measured dimensions (Context Precision:
0.72, Faithfulness: 0.63).

5.2.2 Second Prototype: Hybrid RAG

The second iteration introduced a hybrid RAG|mechanism combining semantic sim-
ilarity with keyword-based retrieval. This adjustment significantly improved factual con-
sistency and reduced hallucinations. The integration of LangChain and LangGraph al-
lowed for modular experimentation and enhanced control over agent workflows.

Measurable improvements included:

* Increased Context Precision from 0.72 to 0.81.
 Improved Context Recall from 0.65 to 0.78.

» Reduced Noise Sensitivity from 0.30 to 0.22.

* Enhanced Faithfulness from 0.63 to 0.77.

5.2.3 Final Prototype: Agentic RAG with MCPs

In the final prototype, the system was further optimized by introducing specialized
Model Context Protocols (MCPk) for text diagnosis, image diagnosis, and treatment
recommendation, along with implementing query transformation and response com-
position techniques. The Agentic RAG| approach with [MCPs showed notable improve-

ments across all evaluation metrics:

« Context Precision increased to 0.89.

» Context Recall reached 0.85.
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Entity Recall improved to 0.82.

* Noise Sensitivity decreased to 0.15.

Response Relevancy rose to 0.88.

Faithfulness achieved 0.86.

These improvements translated to tangible user experience benefits, with faster

response times and more accurate diagnoses.

5.3 QUANTITATIVE RESULTS

5.3.1 RAG Evaluation Results

The [RAGAS evaluation framework provided comprehensive insights into the perfor-
mance of each [RAG] variant. Table [3| shows the comparative metrics across all three

approaches:

Table 3 — Comparative RAG evaluation results on 100 synthetic questions using RAGAS metrics

Approach Context Prec. Context Recall Entity Recall Noise Sens. Relevancy Faithfulness
Semantic-Only RAG 0.72 0.65 0.58 0.30 0.68 0.63
Hybrid RAG 0.81 0.78 0.73 0.22 0.79 0.77
Agentic RAG 0.89 0.85 0.82 0.15 0.88 0.86

These metrics demonstrate a clear progression in retrieval and generation quality
across prototypes, with the final agentic approach showing substantial improvements

in all dimensions.

5.3.2 Accuracy of Diagnosis

The system was further evaluated on a set of 50 real plant disease cases, including
both text-based symptom descriptions and image submissions. The overall diagnostic

accuracy showed consistent improvement across iterations:

« First prototype (Semantic-Only RAG): Approximately 60% correct diagnostic

suggestions.
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« Second prototype (Hybrid [RAG): Approximately 75% correct diagnostic sug-

gestions.

« Final prototype (Agentic [RAG| with [MCPjs): Over 90% correct diagnostic sug-

gestions.

These improvements highlight the value of integrating domain-specific retrieval strate-
gies, query transformation, and multimodal input processing to achieve higher diagnos-

tic reliability.

5.3.3 Response Time and Resource Utilization

System response times were measured as a critical user experience metric. De-
spite the increased sophistication of the agentic[RAG|approach, performance optimiza-

tions yielded significant improvements:

» Text-based diagnoses: Decreased from >15 seconds to approximately 5 sec-

onds.

« Image-based diagnoses: Reduced from >25 seconds to approximately 10 sec-

onds.

» Memory utilization: Decreased by approximately 30% in the final prototype.

These efficiency gains were achieved through optimized embedding generation,
strategic caching, and streamlining the agent workflow from multi-agent to single-agent

with modular components.

5.4 QUALITATIVE FEEDBACK

Preliminary feedback was collected from a panel of five expert agronomists and ten
regular users (smallholder farmers). The feedback highlighted several key strengths of

the final system:

» Contextual relevance: Experts noted that responses demonstrated appropriate

regional and crop-specific knowledge.
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» Multimodal flexibility: Users appreciated the ability to seamlessly switch be-

tween text descriptions and image inputs.

» Factual grounding: The system’s tendency to cite specific sources was noted

as enhancing trust and credibility.

» Appropriate uncertainty: When facing ambiguous inputs, the system appropri-

ately communicated uncertainty rather than making overconfident diagnoses.

Particularly noteworthy was the feedback regarding hallucination reduction. Expert
reviewers identified only 3 instances of minor factual inconsistencies across 50 test

cases, compared to 17 such instances in the first prototype.

5.5 DISCUSSION

5.5.1 RAG Approach Effectiveness

The results demonstrate the clear superiority of the Agentic approach with
specialized over both the Semantic-Only and Hybrid strategies. The
progression from basic vector similarity to sophisticated query transformation and con-
textual augmentation yielded measurable improvements in retrieval precision, factual
consistency, and diagnostic accuracy. Notably, the final Agentic system was fur-
ther enhanced with external data access capabilities through the Tavily web search API
and Embrapa APl integration, allowing it to provide accurate information even when the
local knowledge base was insufficient—a significant advantage over the earlier proto-
types which relied solely on locally stored knowledge.

The synthetic evaluation dataset approach, while potentially limiting in its repre-
sentation of real-world query diversity, provided valuable benchmarks for systematic
comparison. These findings align with recent research showing that LLM-driven query
transformation can significantly enhance retrieval performance in domain-specific ap-

plications.
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5.5.2 Architectural Trade-offs

The evolution from multi-agent to single-agent architecture with represented
a critical design decision. While the multi-agent approach offered theoretical benefits in
specialization, the practical challenges in agent coordination, state management, and
orchestration complexity outweighed these advantages. The single-agent architecture
with modular[MCPk delivered superior performance with reduced complexity, support-
ing the principle that simpler architectures often yield more robust and maintainable
systems.

This finding contradicts some current trends toward complex multi-agent systems
and suggests that in specialized domains like agricultural diagnostics, architectural sim-

plicity with focused modularity may be preferable.

5.5.3 Limitations

Despite the promising results, several limitations should be acknowledged:

» The reliance on synthetic evaluation data (100 questions) may not fully capture
the diversity and complexity of real-world queries that farmers and agronomists

would generate.

« The system’s dependence on [LLMs introduces potential model biases that could

impact agricultural contexts differently across regions.

 Scalability testing under high-concurrency scenarios was limited and requires fur-

ther investigation.

* The local vector store implementation may face limitations in distributed

deployments.

Additionally, the image diagnosis MCP demonstrated a robust architecture with
built-in redundancy. It primarily utilizes the CultivAl API for initial image analysis, but
seamlessly falls back to GPT-based image interpretation when the primary extraction
fails or when users question the accuracy of results. This dual-model approach sig-

nificantly improved resilience and accuracy across diverse plant varieties and image
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qualities, though its effectiveness still remains partially constrained by the quality and
diversity of the training datasets, which may not represent all regional crop varieties

and disease manifestations.

5.6 KEY INSIGHTS

. Strategy Impact: The transition from purely Semantic-Only to an
Agentic approach with query transformation yielded the most significant

improvements in diagnosis accuracy and factual consistency.

« Architectural Simplification: The move from complex multi-agent systems to
a streamlined single-agent with modular [MCPs improved both performance and

maintainability.

» Framework Selection Importance: The choice of LangChain with LangGraph
proved critical in enabling rapid experimentation while maintaining sufficient con-

trol over RAG| pipeline components.

« Multimodal Synergy: The integration of text and image processing created a
system greater than the sum of its parts, mimicking the natural diagnostic work-

flow of human experts.

« Evaluation Methodology: The RAGAS framework provided valuable, multi-dimensional
insights into performance that would not have been captured by simple ac-

curacy metrics alone.

5.7 FUTURE DIRECTIONS

Building on these findings, several promising research and development directions

emerge:

« Expanding data sources and knowledge resources to achieve better coverage of
plant care issues beyond disease diagnosis, including nutrient deficiencies, pest

management, and cultivation best practices
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» Conducting large-scale real-world testing with farmers and agronomists to im-

prove system responsiveness and accuracy in practical field conditions

» Developing a disease/issues tracking system that derives insights from platform
usage and enables geographic and temporal tracking of plant disease outbreaks,

creating an early warning system for agricultural stakeholders

+ Refining the self-correction mechanisms, as the current implementation requires
users to recognize and challenge incorrect diagnoses—a capability that varies

widely among users with different expertise levels

* Investigating dynamic chunk sizing and context window optimization to further

improve retrieval efficiency

 Implementing more sophisticated reranking strategies to enhance response qual-

ity, particularly for specialized agricultural terminology

» Exploring distributed vector store architectures for improved scalability in produc-

tion environments

* Incorporating continuous learning mechanisms to allow the system to improve

from user interactions and feedback

 Evaluating the system’s performance across different cultural and linguistic con-

texts in agricultural settings

« Differentiating capabilities from general-purpose tools (like ChatGPT, Gemini, or
Perplexity Al) by focusing on specialized agricultural knowledge that leverages

domain-specific data rather than relying solely on web search for broader topics

These directions would address current limitations while building on the strong foun-

dation established by the iterative prototyping approach.
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6 CONCLUSION

6.1 SUMMARY OF CONTRIBUTIONS

This dissertation has presented a comprehensive investigation into the design, im-
plementation, and evaluation of a multimodal conversational system for plant disease
diagnosis. The work makes several significant contributions to the field of agricultural

artificial intelligence:

« A systematic evaluation of RAG| approaches for agricultural diagnostics,
progressing from simple semantic retrieval to hybrid approaches and finally to a
sophisticated agentic system with modular components. The quantitative
[RAGAS] evaluation demonstrated substantial improvements across all metrics,
with faithfulness increasing from 0.63 to 0.86 and context precision from 0.72 to
0.89.

— Systematic[RAG|evaluation: The research demonstrated a methodical pro-
gression from basic Semantic-Only [RAG|to Hybrid [RAG| and finally Agentic
approaches, providing quantifiable evidence of performance improve-

ments across multiple dimensions.

— Framework analysis and selection: Through comparative evaluation of
emerging generative [Allframeworks (CrewAI, Phidata, and LangChain/Graph),
the research established criteria for selecting optimal architectures for agri-

cultural applications.

— Architectural simplification: The successful transition from complex multi-
agent systems to a streamlined single-agent with modular offers a

blueprint for maintainable [Al systems in resource-constrained domains.

« A multimodal agricultural diagnostic system that integrates text, image, and
audio inputs through a unified framework, closely mimicking the natural diagnostic
workflow of human agronomists while maintaining system coherence and factual

accuracy.
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» A robust evaluation methodology combining synthetic question generation,
metrics, and expert validation to provide multi-dimensional assessment

of agricultural [Al systems beyond simple accuracy measurements.

The iterative development process demonstrated that careful framework selection
and architectural decisions significantly impact not only technical performance but also
development velocity and system maintainability. The final prototype achieved over
90% diagnostic accuracy while reducing response times by more than 50% compared

to initial implementations.

6.2 KEY FINDINGS

6.2.1 RAG Implementation Insights

The comprehensive evaluation of different[RAG| approaches yielded several impor-

tant insights for domain-specific knowledge systems:

* Query transformation using domain-aware [LLMs significantly improves retrieval
precision in agricultural contexts, where terminology may be ambiguous or re-

gionally varied.

 Hybrid retrieval combining semantic similarity with keyword matching outperforms
pure vector-based approaches, particularly for technical agricultural terms and

specific disease names.

« The agentic approach with explicit state management demonstrates supe-
rior faithfulness (0.86 vs 0.63) compared to simpler implementations, suggesting
that sophisticated retrieval orchestration is crucial for reducing hallucinations in

complex domains.

« The[RAGAS|evaluation framework reveals nuanced performance differences that
would be missed by simple accuracy metrics, highlighting the importance of multi-
dimensional evaluation for RAG| systems.
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6.2.2 Architectural Findings

The evolution from multi-agent to single-agent architecture yielded several counter-

intuitive findings:

- [RAG|implementation: The progressive refinement of retrieval mechanisms—from
basic Semantic-Only [RAG|to sophisticated query transformation with Hybrid
approaches yielded substantial improvements in diagnosis accuracy. The final
Agentic [RAG| implementation with adaptive query planning reduced hallucina-

tions by approximately 80% compared to the initial prototype.

« Architectural findings: The research challenged the common assumption that
multi-agent architectures are inherently superior for complex tasks. By imple-
menting a streamlined single-agent system with specialized for text di-
agnosis, image diagnosis, and treatment recommendation, the project achieved
both performance gains and improved maintainability. LangGraph’s graph-based

workflow control provided the right balance of flexibility and structure.

User feedback strongly validated these architectural choices, with both expert agrono-
mists and smallholder farmers noting improved response relevance, reduced halluci-

nations, and more intuitive multimodal interactions in the final system.

6.3 LIMITATIONS

Despite the significant advances demonstrated, several important limitations must

be acknowledged:

 Evaluation constraints: While the framework provided valuable multi-
dimensional metrics, the evaluation relied heavily on synthetic test cases (100
questions). Real-world performance may vary with the 50 real test cases, partic-

ularly with unusual or ambiguous disease presentations.

« Model dependencies: The system’s performance is tied to the underlying [LLMs
and vision models, introducing external dependencies that may affect long-term

reliability and consistency.
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* Infrastructure requirements: Despite optimizations, the system still requires
consistent internet connectivity and moderate computing resources, potentially

limiting deployment in extremely remote agricultural settings.

* Regional adaptability: While effort was made to include diverse agricultural con-
texts, the knowledge base has stronger coverage of major commercial crops than

region-specific or lesser-known varieties.

Additionally, the current implementation does not incorporate continuous learning
capabilities, meaning that knowledge updates require manual intervention rather than

occurring organically through system usage.

6.4 FUTURE WORK

Building on the foundation established in this research, several promising directions

for future work emerge:

« Enhanced retrieval strategies: Future work should explore more sophisticated
retrieval methods, including hierarchical indexing and domain-specific embedding

models trained specifically on agricultural terminology.

« Offline capabilities: Developing lightweight, offline-capable models would ad-

dress connectivity limitations in remote areas.

» Longitudinal studies: Extended field testing across multiple growing seasons
would provide more comprehensive validation of system effectiveness and relia-

bility.

« Knowledge integration: Establishing automated pipelines for incorporating new
research findings and disease reports would ensure the system remains current

with emerging agricultural challenges.

+ Distributed vector storage: Exploring more scalable approaches to vector database
management would support the system’s growth beyond the current PostgreSQL

with pgvector implementation.

These directions would address current limitations while expanding the system’s

practical utility across diverse agricultural contexts.
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6.5 FINAL REMARKS

This research demonstrates that well-designed agricultural [Al systems combin-
ing retrieval-augmented generation, multimodal capabilities, and careful architectural
design can achieve high levels of diagnostic accuracy while maintaining factual con-
sistency. The systematic evaluation of different strategies and architectural ap-
proaches provides valuable insights for developing domain-specific knowledge sys-
tems beyond agriculture.

By prioritizing framework flexibility, architectural simplicity, and robust evaluation
methodologies, this work offers a blueprint for creating |All systems that genuinely em-
power agricultural communities rather than introducing new dependencies or complex-
ities. The evolution from complex multi-agent systems to streamlined, modular archi-
tectures highlights that sophistication in [All does not necessarily require complexity,
thoughtful simplification often yields superior results.

Ultimately, this research contributes to the broader goal of making agricultural ex-
pertise more accessible, helping smallholder farmers and agricultural professionals
make better-informed decisions through[Al systems that are factual, contextually aware,
and practically useful. As these technologies continue to evolve, their potential to de-
mocratize agricultural knowledge and support sustainable farming practices worldwide

will only increase.
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APENDICE A - BOOKS AND REFERENCE MATERIALS

This appendix lists books and technical manuals that were consulted and used as
knowledge sources for the Retrieval-Augmented Generation (RAG) component of this

work.

BOOKS

Métodos em Fitopatologia - Acelino Couto Alfenas; Reginaldo Gongalves Mafia.
Editora UFV, 2nd ed., 2016. 516 pp. ISBN: 978-85-7269-559-6.

Manual de Fitopatologia: principios e conceitos - Lilian Amorim; Jorge A. M.
Rezende; Armando Bergamin Filho. 5th ed., 2018. 573 pp. ISBN: 978-85-318-
0056-6.

Westcott’s Plant Disease Handbook - R. K. Horst. Springer Reference, 8th ed.,
2013. ISBN: 978-94-007-2140-1 (print). DOI: 10.1007/978-94-007-2141-8.

TECHNICAL MANUALS AND GUIDES

Hortalicas nao-convencionais (tradicionais) - Ministério da Agricultura, Pecuaria e
Abastecimento (MAPA), Secretaria de Desenvolvimento Agropecuario e Cooper-
ativismo. Brasilia: MAPA/ACS, 2010.

Manual de Hortalicas Nao-Convencionais - Ministério da Agricultura, Pecuéria e
Abastecimento (MAPA). Brasilia, 2010.

Manual de identificacao e manejo de plantas daninhas em cultivos de cana-
de-acucar - Alexandre Magno Brighenti. Juiz de Fora: Embrapa Gado de Leite,
2010. 112 pp. ISBN: 978-85-7835-018-5.

Guia de diagnose para aulas praticas de fitopatologia: LFN 0424 — Fitopatolo-
gia - M. P. Gongalves; A. L. T. Simées; R. F. dos Santos; S. de A. Lourenco;
L. Amorim. 2nd ed., revised and expanded. Piracicaba: USP/ESALQ/LFN, 2022.
121 pp. ISBN: 978-65-87391-32-8. DOI: 10.11606/9786587391328.
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Guia Pratico de Plantas de Cobertura: aspectos fitotécnicos e impactos so-
bre a saude do solo - Martha Lustosa Carvalho et al.; organized by Mauricio
Roberto Cherubin. Piracicaba: ESALQ-USP, 2022. 126 pp. ISBN: 978-65-89722-
15-1. DOI: 10.11606/9786589722151.
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APENDICE B - AGENT TEAMS PROMPTS

This appendix provides the English versions of the multi-agent prompt templates used
in the system. These prompts were used as configuration and guidance for agents and

were part of the knowledge context for the RAG-enabled assistants.

SUMMARY OF AGENT TEAMS

« Agronomy Team (supervisor + specialists)
— Soil Specialist: collects soil context (type, pH, fertility, management) and rec-
ommends sustainable practices.

— Meteorologist: assesses local climate (history/forecast) and impacts on crops;

suggests weather-adapted practices.
— Crop Science Specialist: reviews crop management (planting, fertilization,
irrigation, pest/disease issues) and proposes improvements.
» Botany Team (supervisor + specialists)
— Taxonomist: guides plant identification via morphology and distribution, re-
questing images and traits.
— Ecologist: analyzes habitat and plant—environment interactions (abiotic/bi-
otic factors).
» Phytopathology Team (supervisor + specialists)
— Mycologist: triages and diagnoses fungal diseases; provides practical man-
agement.

— Virologist: triages and diagnoses viral diseases; emphasizes vector control

when applicable.

— Bacteriologist: triages and diagnoses bacterial diseases; stresses preven-

tive/sanitary measures.

« Supervision Routing Flow
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— Supervisor collects essential context (plant, symptoms, location, history, man-

agement, images).

— Routes case by symptom patterns to the appropriate specialist; requests

detailed, actionable recommendations.

— Ensures responses are clear, locally applicable, and source-cited.
+ Knowledge Sources and RAG

— Specialists must consult the CultivAl Phytopathology knowledge base first;

web search (Tavily) is secondary.

— Prompts and references listed in the annexes served as knowledge inputs

for the RAG pipeline.

PROMPTS (TEXT)

Soil Specialist Role: provide soil-based, sustainable land management guidance.
Objectives: assess soil physical, chemical, and biological properties; tailor recommenda-
tions to crop and local context.

Inputs to collect: soil type/classification, texture/structure, pH, EC/salinity, key nutrients
(N, P, K, Ca, Mg, S, micronutrients), organic matter, CEC, drainage/compaction/erosion,
recent and historical management (tillage, residues, rotations), fertilization and irrigation
regimes, cropping system, observed constraints (toxicity, acidity, sodicity), lab analyses
(attach values/units/dates).

Policy: consult the CultivAl knowledge base first (RAG), then web retrieval only to clarify
specifics; cite sources.

Output: concise diagnosis of soil constraints, prioritized recommendations (amendments,
fertilization plans, liming/gypsum, irrigation scheduling, cover crops, residuef/tillage, ero-
sion control), and a simple monitoring plan (what to measure and when).

Constraints: be practical, locally feasible, and specify rates/units/timing; highlight uncer-

tainties and data gaps to confirm.

Meteorologist Role: translate climate conditions into crop-relevant actions. Inputs to collect:
location (lat/long or municipality), elevation, recent weather (rain, temperature, humid-

ity, wind), extremes (drought, flood, frost, heat), seasonal/weekly forecasts, ENSO or



106

regional outlooks. Policy: RAG with CultivAl first; web forecasts only as needed; cite fore-
cast sources and timestamps. Output: risk assessment for the next 1-8 weeks (heat/frost,
water stress, disease-conducive weather), recommended practices (irrigation schedul-
ing, frost/heat mitigation, planting/harvest timing), and a short contingency plan for ex-

tremes. Constraints: align with crop phenology; quantify thresholds where possible.

Crop Science Specialist Role: optimize crop management for yield/quality and sustainability.
Inputs to collect: crop(s)/varieties, planting dates/density, fertilization and irrigation prac-
tices, pest/disease issues observed, weed pressure, pruning/trellising (if any), growth
stage, soil test summaries, history of yields and management. Policy: RAG with Culti-
VAl first; web as secondary; cite. Output: prioritized actions (nutrient plan with rates/-
timing, irrigation targets, canopy/spacing adjustments, IPM actions, harvest/post-harvest
guidance), plus expected outcomes and monitoring KPIs. Constraints: avoid conflicting

actions with other specialists; reference local regulations when relevant.

Agronomy Supervisor Role: orchestrate Soil, Meteorology, and Crop Science. Steps: 1)
gather essentials (crop, location, soil tests, weather, management, phenology, con-
straints, images); 2) route to the right specialist(s) with a clear subtask and needed out-
puts; 3) collect and reconcile recommendations; 4) ensure actions are specific (rates/u-
nits/timing), feasible, and non-contradictory; 5) deliver a unified plan with rationale and

citations. Policy: enforce RAG order (CultivAl first); request missing info explicitly.

Taxonomist Role: guide plant identification. Inputs to collect: common/scientific names con-
sidered, location and habitat, morphological traits (habit, bark, leaves, flowers, fruits,
seeds), phenology, images. Policy: use keys and regional floras from CultivAl knowledge
first; web is secondary; cite keys used. Output: best-match taxon with rank, differential
diagnosis vs. close taxa, confidence level, and references; request missing traits if un-

certainty remains.

Ecologist Role: summarize plant—environment interactions. Inputs: location, habitat (climate,
soil, vegetation type), biotic interactions (pollinators, dispersers, pests), disturbance
regime, images if available. Output: concise ecology profile (niche, tolerances, commu-
nity role), implications for cultivation or conservation, and key references. Constraints: be

specific to the reported location/biome.

Botany Supervisor Role: coordinate Taxonomist and Ecologist. Steps: triage the request, en-

sure adequate morphological/location data, route to Taxonomist for identification and to
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Ecologist for habitat/interaction summary, reconcile outputs, and present a coherent iden-

tification + ecology note with citations and uncertainty statements.

Mycologist Role: diagnose fungal diseases (e.g., rusts, mildews, anthracnose, rots). Inputs
to collect: host plant and cultivar, location/season, symptom description and distribution,
onset/progression, environmental conditions (humidity, temperature), recent treatments
and cultural practices, images. Policy: consult CultivAl phytopathology knowledge first
(RAG), then web if needed; cite sources, prefer CultivAl. Output: likely pathogen(s) with
justification mapping symptoms to etiology, differential diagnosis, risk factors, manage-
ment plan (cultural, biological, and chemical options with actives/rates/intervals where
permissible), pre- and post-harvest notes, and preventive measures. Constraints: align

with local registrations; clearly state when lab confirmation is recommended.

Virologist Role: diagnose viral diseases (mosaic, yellowing, dwarfing, deformation). Inputs:
host/cultivar, vectors present/suspected, spatial pattern (systemic vs. localized), on-
set/progression, weather favoring vectors, prior controls. Policy: RAG order (CultivAl
first); cite. Output: likely virus or virus group, transmission pathways, vector-focused |IPM
(monitoring, cultural, biological, chemical), sanitation/seed/cutting health recommenda-
tions, and guidance on confirmation testing (ELISA, PCR). Constraints: avoid speculative

chemical advice; emphasize certified material and vector barriers.

Bacteriologist Role: diagnose bacterial diseases (e.g., Pseudomonas, Xanthomonas, Ral-
stonia). Inputs: host/cultivar, symptoms (water-soaked spots, exudates, cankers, wilt),
humidity/rain influence, spread pattern, recent injuries or pruning, past controls. Policy:
RAG with CultivAl first; cite. Output: likely bacterium or complex, sanitation and prun-
ing hygiene, copper/bactericide considerations where allowed, irrigation/drainage adjust-
ments, cultivar/rootstock notes, and lab confirmation guidance. Constraints: stress pre-

ventive/sanitary measures and resistance management.

Phytopathology Supervisor Role: triage plant problems and enforce diagnostic flow. Steps:
1) gather essentials (plant, symptoms, location, history, management, images); 2) route
to Mycologist/Virologist/Bacteriologist according to symptom patterns; 3) ensure outputs
specify likely pathogen, explain symptom links, and provide specific management with
rates/intervals where relevant; 4) check internal consistency and add preventive mea-
sures and scouting schedule; 5) deliver a concise, cited summary. Policy: CultivAl first for
RAG; web second.
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APENDICE C - RAG Q&A DATASET

This appendix lists the first ten user questions (out of hundred) used for validation with
their full reference answers and full reference contexts used by the RAG component.
Reference contexts preserve source headings and extraction provenance (e.g., p. X,

Extraction hop: N) generated by the RAG pipeline, for transparency.

* Q1: What are the symptoms of Phytophthora in avocados?

Reference: The symptoms of Phytophthora in avocados include general yellowing of the
leaves, resembling nitrogen deficiency, followed by leaf drop and exposure of branches.
There is also drying of the branch tips. Fruits rarely show symptoms, but there can be
a sudden increase in the production of smaller fruits before the plant dies. The roots
show discoloration and necrosis symptoms, with the fine roots almost completely de-
stroyed. Bark cracking near the plant’s collar, associated with gum exudation, can also
be observed. Tissues just below the cracked bark show brown coloration and necrosis.
Generally, the disease is only noticed at a very advanced stage, making control difficult

and often leading to the plant’s death.

Reference contexi:

GOMOSE - Phytophthora cinnamomi Rands

Sintomas: A gomose ou podridao de raizes do abacateiro € uma das prin-
cipais doengas da cultura tanto em viveiro como em campo. Sintomas desta
doenca sao muito semelhantes aos da gomose dos citros, iniciando-se com
amarelecimento generalizado das folhas, lembrando deficiéncia de nitrogénio.
A seguir, ocorre queda das folhas e exposigdo dos ramos. Observa-se tam-
bém seca de ramos do ponteiro. Frutos raramente apresentam sintomas da
doenca. E comum ocorrer, no entanto, um repentino aumento na produgao
de frutos menores na fase que antecede a morte das plantas. As raizes ex-
ibem descoloragao e sintomas de necrose, e as radicelas ficam quase que
totalmente destruidas. Fendilhamento da casca, na regido proxima ao colo
da planta, pode também ser observado, associado a exsudagcao de goma.
Tecidos localizados logo abaixo da casca fendilhada apresentam coloragéao
marrom e necrose. De um modo geral, a doenca somente é percebida em es-
tadio muito avangado, quando torna-se muito dificil seu controle, culminando

com a morte da planta.
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Etiologia: O fungo P. cinnamomi pertence a subdivisdo Mastigomycotina e
classe Oomycetes, apresentando hifa nao-septada. O patégeno produz es-
poros assexuais, 0s zodsporos, que sao liberados na presenca de agua e
infectam o hospedeiro. Como estrutura de reproducao sexuada, o fungo pro-
duz o6sporos, que apresentam paredes espessas e servem como estrutura
de resisténcia. Esse patégeno tem boa capacidade saprofitica, podendo so-
breviver por longos periodos desta forma. A sobrevivéncia do mesmo no solo
e na auséncia de plantas hospedeiras pode chegar até oito anos na forma
de clamiddsporo, e em raizes infectadas no minimo 15 anos. O fungo neces-
sita de agua livre para que os zoOsporos possam se locomover e infectar o
hospedeiro. Portanto, a ocorréncia da doenca depende da presenga de umi-
dade elevada no solo, bem como de temperaturas entre 21 e 30°C. Temper-
aturas acima de 33°C inibem o desenvolvimento da doenca completamente,
enquanto que temperaturas entre 9 e 12°C reduzem muito sua incidéncia.
Na literatura internacional sao relatadas outras espécies de Phytophthora at-
acando o abacateiro, como P. cactovorum e P. citricola, que, normalmente nédo

causam cancros, apenas podriddes de raizes.

Controle: Medidas de controle incluem: a) uso de porta-enxertos toler-
ante ao fungo, como os PAGE 2 mexicanos Barr Duke, Duke, D9, Thomas,
Toro Canyon, Borchard, Topa Topa e G-6; os guatemalenses G1033, Martin
Grande (hibridos de R. americana com P. schiendeana Ness) G755a, G755b,
G755c, UCR 2007, UCR 2008, UCR 2022, UCR 2023 e UCR 2053; e G-755
(P. schiedeana); b) aquisicao ou producao de mudas de qualidade; ¢) remogao
de restos de cultura tanto em viveiro como em campo; d) plantio de mudas
em locais ndo encharcados; e) cuidados com o balanco nutricional. Niveis
elevados de nitrogénio e pH e baixos de caélcio e fésforo aumentam a pre-
disposicao da planta a doenca; f) evitar ferimentos nas raizes ou mesmo no
tronco das arvores, pois constituem-se em vias de entrada do patdégeno na
planta; g) usar fungicidas quando a doenga € constatada em seu inicio. Entre
os fungicidas com possibilidade de uso temos: metalaxyl (aplicacéo via solo)

e fosetyl.

+ Q2: What are the recommended strategies for controlling Rosellinia necatrix in avocado

cultivation, particularly concerning the susceptibility of Mexican varieties?

Reference: To control Rosellinia necatrix in avocado cultivation, it is advised to avoid
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planting in newly cleared areas or regions rich in organic matter. It is important to gather
and burn crop residues and roots present in the soil, eliminate diseased plants and their
root systems by burning them on-site if possible, and plow the soil. Additionally, planting
in moist soils should be avoided, and care should be taken to prevent injuries to the
plants, especially the roots, during cultivation operations. It is also crucial to use resistant

rootstocks, as Mexican and Guatemalan varieties are very sensitive to the pathogen.

Reference contexi:

PODRIDAO DE RAIZES - Rosellinia necatrix Prill (Dematophora necatrix)

De maneira geral, a podridao de Rosellinia ndo tem grande importancia
econdmica, sendo problema apenas em &reas isoladas. E uma doenca
tipica de areas recém-desbravadas, devido a alta capacidade saprofitica do
patégeno.

Sintomas: Inicialmente observa-se murcha e sintomas que lembram deficién-
cia nutricional, caracterizados por amarelecimento foliar. A doenca manifesta-
se de maneira lenta, levando alguns meses ou até anos para matar o hos-
pedeiro. Sdo comuns sintomas de murcha ou seca de folhas mais novas, oca-
sionando seca de ponteiros, que pode ocorrer por toda a planta ou apenas
em algum lado da planta, correspondendo ao lado do sistema radicular afe-
tado. Sintomas e sinais nas raizes caracterizam-se por podridao e coloragao
branca logo abaixo da casca.

Etiologia: Em geral o fungo ascomiceto R. necatrix, um parasita faculta-
tivo, é facilmente encontrado em restos de troncos, raizes mortas ou matéria
organica devido a sua capacidade saprofitica. Em condigbes de elevada umi-
dade, o patégeno pode formar cordées miceliais de coloracdo negra sobre
as raizes ou sobre a matéria organica préxima a planta atacada. E comum
também a presenca de peritécios sobre raizes, quando o estado de podridao

radicular mostra-se bem avancado.

Controle: Deve-se: evitar o plantio em areas recém-desbravadas ou em
regidbes muito ricas em matéria organica; amontoar e queimar restos de cul-
tura e raizes presentes no solo; eliminar plantas doentes e seus sistemas
radiculares através da queima dos mesmos, se possivel no préprio local, e
alqueivar o solo; evitar o plantio em solos Umidos; evitar ferimentos nas plan-

tas, principalmente nas raizes, durante as operagdes de cultivo; utilizar porta-
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enxertos resistentes (as variedades mexicanas e guatemalenses sdo muito

sensiveis ao patdgeno).

* Q3: What does D. ribis do to avocado?

Reference: D. ribis is associated with symptoms similar to those caused by Dothiorella
gregaria, which include canker and fruit rot in avocados. However, no studies have been
conducted to verify the occurrence or evaluate the damage caused by D. ribis under the

given conditions.

Reference contexi:

CANCRO E PODRIDAO DE FRUTO - Dothiorella gregaria Sacc.

Sintomas: Podem ser observados tanto em ramos, tronco ou ainda em frutos,
neste ultimo caso sendo mais comuns em pés-colheita. Nos ramos e troncos,
a doenca manifesta-se através de fendilhamento e escamamento, sendo pos-
sivel observar uma massa branca pulverulenta nos pontos de fendilhamento.
Sintomas de cancro tém importancia esporadica e ocorrem somente em al-
gumas variedades. Locais afetados tendem a exibir descolora¢do e necrose
dos vasos, interrompendo o fluxo normal da seiva, provocando a seca de
ramos e podendo, inclusive, causar a morte da planta. O patégeno pode
ocasionar danos no colo das plantas e, ocasionalmente, sintomas de seca
dos ponteiros. Na superficie dos frutos ainda verdes, sintomas aparecem ini-
cialmente como pequenas pontuacdes de coloragdo marrom ou purpura. As
lesbes formadas aumentam de tamanho, até envolver o fruto completamente.
O patégeno tende a invadir a polpa do abacate, ocasionando um escureci-
mento de tonalidade marrom e liberagao de odor desagradavel. Também pode
ocorrer a queda prematura dos frutos, visto que o fungo pode infectar o pedun-

culo dos mesmos.

Etiologia: O agente causal tanto do cancro como das podridées de frutos é
Dothiorella gregaria. Porém, na literatura encontramos D. ribis e D. aromatica
associados a sintomas semelhantes. No entanto, até o momento n&o foram
conduzidos trabalhos a fim de verificar a ocorréncia ou nao das demais espé-
cies em nossas condi¢Oes e avaliar os danos causados pela doenga, princi-
palmente em pés-colheita. O patdgeno é beneficiado por alta umidade e pre-

senca de matéria orgéanica, devido a sua capacidade saprofitica. Em geral, o
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indculo primario responsavel pelas infecgdes nos frutos é oriundo de ramos

SecCos.

Controle: Recomendam-se: eliminacao de ramos secos ou debilitados, frutos
com sintomas de podriddes e arvores em producdo com sintomas tipicos da
doenga; plantio em locais bem drenados e sem excesso de matéria organica;
aplicagao regular de fungicidas cupricos ou ditiocarbamatos ap6s operagées
de poda; protecao de ferimentos com pasta cuprica; aplicacao preventiva dos
mesmos fungicidas, em 2 a 3 aplicagdes a partir de setembro, em areas alta-
mente afetadas; utilizagdo de enxertia alta e de porta-enxertos resistentes e

aplicacao de fungicidas cupricos na regiao de enxertia.

* Q4: What is the significance of Fl6rida in the context of avocado diseases?

Reference: Fldrida is significant in the context of avocado diseases as it is where verru-
gose, or avocado scab, was first known in 1918. This disease is one of the main diseases

affecting avocado trees, impacting the appearance and development of the fruit.

Reference contexi:

VERRUGOSE - Sphaceloma perseae Jenkins

A verrugose, ou sarna do abacateiro, conhecida desde 1918 na Flérida, foi
encontrada no Brasil pela PAGE 4 primeira vez em 1938 em Limeira. E uma
das principais doencas do abacateiro, visto que a mesma, além de depreciar
a aparéncia do fruto, pode provocar também a queda de frutos jovens bem

como o subdesenvolvimento em situacdes de alta severidade de doenca.

Sintomas: Sao0 observados principalmente nos frutos, na forma de peque-
nas pontuacdes eruptivas, verrugosas, com tamanho de 5 a 6 mm de col-
oragdo marrom, que aumentam rapidamente e coalescem. A infeccao nos
frutos nunca ultrapassa a casca. A doenca também pode ocasionar sintomas
em folhas, na forma de pequenas pontuacdes de cor chocolate, com 1 a 2
mm de didmetro, arredondadas quando localizadas no limbo foliar e ligeira-
mente alongadas quando nas nervuras, lembrando cochonilhas. Quando sev-
eramente atacadas, as folhas tendem a deformar e até mesmo sofrer rompi-
mento do limbo foliar, além de redugéo da area fotossintética.

Etiologia: A doenca é ocasionada pelo fungo S. perseae, que ataca fol-
has com no maximo 3 cm de comprimento e frutos com menos de 5 cm e

desenvolve-se somente em condi¢cdes de umidade elevada.
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Controle: Recomenda-se a utilizagao de variedades resistentes. Variedades
pertencentes ao grupo antilhano apresentam elevada suscetibilidade a verru-
gose das folhas e menor de fruto. Variedades do grupo guatemalense, por sua
vez, apresentam elevada suscetibilidade nos frutos e baixa nas folhas. O con-
trole da doencga pode também ser feito com a aplicacao de fungicidas cupri-
cos. No caso dos frutos, deve-se iniciar o controle quando pelo menos 2/3
das pétalas cairem e manté-lo até os frutos atingirem 5 cm de diametro. Para
as folhas, o controle deve ser feito somente nos periodos de brotagdes até
que as mesmas atinjam um minimo de 3 cm de comprimento. Em viveiro de
mudas, para variedades do grupo guatemalense, deve-se realizar aplicacdo

quinzenal de fungicidas cupricos.
CERCOSPORIOSE - Cercospora purpurea Cooke, C. perseae Ellis & Martin

Esta doenca € muito importante nos cultivos de abacate da América Latina e
Flérida.

Sintomas: Nos frutos sdo caracterizados por pequenas lesdes, ligeiramente
deprimidas e irregulares, de coloracdo marrom e bordos definidos. Em
condi¢cdes de alta umidade, podem surgir alguns pontos de coloragdo ac-
inzentada no centro das lesdes, os quais correspondem a esporulagédo do
patégeno. Lesbes nos frutos apresentam tamanhas aproximadas de 3 a 6
mm de didmetro e, com o envelhecimento, tendem a provocar fissuras nos
tecidos, possibilitando a infeccao por outros patégenos. A queda de frutos é
um dos sintomas mais severos da doenca, podendo acarretar elevada perda
na produgado. Sintomas nas folhas caracterizam-se pela presenca de lesdes
angulares de coloragao marrom ou cinza, com halo clorético. As lesGes ap-
resentam tamanho de 1 a 3 mm de didmetro e sdo visiveis nas duas faces
da folha, tendendo a coalescer. Tecidos necrosados no centro das lesdes ten-
dem a cair, facilitando o rasgamento do limbo foliar. As les6es podem ocorrer
também no pedunculo dos frutos, o que induz a queda dos mesmos. Essas
lesbes mostram-se muito semelhantes as do fruto, porém de coloracdo es-

cura, formato circular e tamanho aproximado de 1 a 5 mm.

Etiologia: No Brasil foram encontradas 2 espécies de Cercospora associadas

* Q5: What is the resistance level of the Linda variety to Cercospora purpurea?

Reference: The Linda variety is considered to be moderately resistant to Cercospora

purpurea.
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Reference contexi:

Cercospora purpurea e C. perseae.

A primeira € a Unica relatada até o momento no Estado de S&o Paulo. A in-
cidéncia da doenca inicia-se gradativamente na primeira metade do periodo
chuvoso, atingindo um pico nos meses de PAGE 5 junho e julho. Nesse mo-
mento, inicia-se a queda das folhas. A sobrevivéncia do patégeno na cul-
tura da-se através das infecgoes foliares. Visto que a principal forma de dis-
seminagao do patdgeno é por via aérea, a ocorréncia da doenga nos frutos
€ observada desde o inicio da frutificacdo. Controle Recomenda-se o0 uso
de variedades resistentes, entre as quais as resistentes Collinson e Pollock
(variedades antilhanas) e as medianamente resistentes Price, Simminds e
Linda (variedades guatemalenses). Wagner € altamente suscetivel (variedade
guatemalense). O controle quimico é complicado devido ao porte da planta e
a inexisténcia de produtos de boa eficiéncia registrados para o uso na cul-
tura. Porém, é possivel a aplicacao de cupricos e ditiocarbamatos em casos
onde a doenca ocorre apds a queda das folhas, pouco antes da florada do

abacateiro, e logo apés a queda de 2/3 das pétalas.

ANTRACNOSE Glomerella cingulata (Stonem) Spauld & Schrenk (Col-

letotrichum gloeosporioides (Penz.) Sacc.).

Sintomas: A antracnose afeta principalmente frutos, sendo possivel encon-
trar o patégeno infectando folhas, flores e ramos, porém sem ocasionar danos
a cultura. Sintomas em folhas sdo caracterizados por manchas necréticas de
coloragao escura, com bordos definidos e formato irregular. O patégeno pode
ocorrer também nos ramos, causando necroses escuras e seca dos ramos
e ponteiros, sendo este um sintoma de ocorréncia rara. As flores podem ser
facilmente afetadas pelo patégeno, ocorrendo seca ou abscisdo das mesmas
ou entdo serem infectadas através do botao floral, o que afetara o desenvolvi-
mento do fruto, causando queda prematura e/ou podriddo. Sintomas nos fru-
tos sdo caracteristicos, iniciando-se por pequenas pontuacdes de coloracao
marrom a preta, com formato circular e tamanho aproximado de 6-13 mm de
didmetro. As lesées tendem a evoluir atingindo parte do fruto ou necrosando-
o completamente. As necroses ultrapassam a casca e alcangam a polpa do
fruto. Uma vez dentro do fruto, o fungo causa um escurecimento da polpa de

coloragdo marrom ou bege. E muito comum a ocorréncia de frutos com po-
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dridao no pedunculo, a qual tem inicio nas infecgdes ocorridas nas flores ou
em pos-colheita no ponto de cicatrizagao, caso ocorra a queda do pedunculo.
Em geral, este tipo de sintoma leva ao apodrecimento de todo o fruto, acar-
retando na planta a queda do mesmo. Podriddes de frutos ocorrem em frutos
maduros, sendo raros os efeitos em frutos verdes. A doenga somente adquire

importancia em pomares mal tratados ou debilitados nutricionalmente.

Etiologia: O patégeno Colletotrichum gloeosporioides corresponde, na forma
teleomérfica, a Glomerella cingulata. O fungo necessita de agua livre para
que ocorra a germinagao e infeccao, sendo a faixa ideal de temperatura para
0 crescimento 22-27°C. Permanece latente em frutos verdes, causando sin-

tomas apenas apds seu amadurecimento.

Controle: Deve ser realizado através de adubagbes e técnicas de manejo
adequadas. Podas de limpeza e queima de material doente devem ser re-
alizadas, no minimo, anualmente. Ferimentos nos frutos devem ser evitados
através de cuidados durante as operagdes de colheita e pds-colheita e cont-

role de insetos.

* Q6: What are the symptoms and control methods for C. perseae in avocado cultivation?

Reference: C. perseae, associated with cercosporiosis, presents symptoms in avocado
fruits as small, slightly depressed, irreqular brown lesions with defined edges. Under high
humidity, grayish spots may appear in the center due to pathogen sporulation. These le-
sions, approximately 3 to 6 mm in diameter, can lead to tissue fissures, allowing other
pathogens to infect. Severe symptoms include fruit drop, causing significant production
loss. On leaves, symptoms include angular brown or gray lesions with a chlorotic halo,
1 to 3 mm in diameter, visible on both sides, which may coalesce. Necrotic tissue in the
lesion centers may fall out, causing leaf tearing. Control methods include using resistant
varieties, particularly those from the Antillean group, which show high susceptibility to leaf
verrugose but lower to fruit verrugose. Guatemalan varieties show high fruit susceptibility
but low leaf susceptibility. Fungicidal applications, especially copper-based, are recom-
mended, starting when 2/3 of the petals have fallen and continuing until fruits reach 5 cm
in diameter. For leaves, control should occur during budding until they reach at least 3

cm in length.

Reference context:

Extraction hop: 1
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Cercospora purpurea e C. perseae.

A primeira € a Unica relatada até o momento no Estado de Sao Paulo. A in-
cidéncia da doenga inicia-se gradativamente na primeira metade do periodo
chuvoso, atingindo um pico nos meses de PAGE 5 junho e julho. Nesse mo-
mento, inicia-se a queda das folhas. A sobrevivéncia do patégeno na cul-
tura da-se através das infecgbes foliares. Visto que a principal forma de dis-
seminacao do patdgeno € por via aérea, a ocorréncia da doenga nos frutos
€ observada desde o inicio da frutificacdo. Controle Recomenda-se o uso
de variedades resistentes, entre as quais as resistentes Collinson e Pollock
(variedades antilhanas) e as medianamente resistentes Price, Simminds e
Linda (variedades guatemalenses). Wagner é altamente suscetivel (variedade
guatemalense). O controle quimico € complicado devido ao porte da planta e
a inexisténcia de produtos de boa eficiéncia registrados para o uso na cul-
tura. Porém, é possivel a aplicacao de cupricos e ditiocarbamatos em casos
onde a doenga ocorre apés a queda das folhas, pouco antes da florada do

abacateiro, e logo apds a queda de 2/3 das pétalas.

ANTRACNOSE Glomerella cingulata (Stonem) Spauld & Schrenk (Col-

letotrichum gloeosporioides (Penz.) Sacc.).

Sintomas: A antracnose afeta principalmente frutos, sendo possivel encon-
trar o patégeno infectando folhas, flores e ramos, porém sem ocasionar danos
a cultura. Sintomas em folhas sao caracterizados por manchas necréticas de
coloragéo escura, com bordos definidos e formato irregular. O patégeno pode
ocorrer também nos ramos, causando necroses escuras € seca dos ramos
e ponteiros, sendo este um sintoma de ocorréncia rara. As flores podem ser
facilmente afetadas pelo patégeno, ocorrendo seca ou abscisdo das mesmas
ou entdo serem infectadas através do botéo floral, o que afetara o desenvolvi-
mento do fruto, causando queda prematura e/ou podridao. Sintomas nos fru-
tos sdo caracteristicos, iniciando-se por pequenas pontuagdes de coloragao
marrom a preta, com formato circular e tamanho aproximado de 6-13 mm de
didmetro. As lesdes tendem a evoluir atingindo parte do fruto ou necrosando-
o completamente. As necroses ultrapassam a casca e alcangam a polpa do
fruto. Uma vez dentro do fruto, o fungo causa um escurecimento da polpa de
coloragdo marrom ou bege. E muito comum a ocorréncia de frutos com po-

driddo no pedunculo, a qual tem inicio nas infecgdes ocorridas nas flores ou
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em pos-colheita no ponto de cicatrizagcao, caso ocorra a queda do pedunculo.
Em geral, este tipo de sintoma leva ao apodrecimento de todo o fruto, acar-
retando na planta a queda do mesmo. Podridbes de frutos ocorrem em frutos
maduros, sendo raros os efeitos em frutos verdes. A doenga somente adquire

importancia em pomares mal tratados ou debilitados nutricionalmente.

Etiologia: O patégeno Colletotrichum gloeosporioides corresponde, na forma
teleomérfica, a Glomerella cingulata. O fungo necessita de agua livre para
que ocorra a germinagao e infeccao, sendo a faixa ideal de temperatura para
o crescimento 22-27°C. Permanece latente em frutos verdes, causando sin-

tomas apenas apds seu amadurecimento.

Controle: Deve ser realizado através de adubagbes e técnicas de manejo
adequadas. Podas de limpeza e queima de material doente devem ser real-
izadas, no minimo, anualmente. Ferimentos nos frutos devem ser evitados
através de cuidados durante as operagdes de colheita e pds-colheita e

controle de insetos.

Extraction hop: 2
VERRUGOSE - Sphaceloma perseae Jenkins

A verrugose, ou sarna do abacateiro, conhecida desde 1918 na Flérida, foi
encontrada no Brasil pela PAGE 4 primeira vez em 1938 em Limeira. E uma
das principais doencas do abacateiro, visto que a mesma, além de depreciar
a aparéncia do fruto, pode provocar também a queda de frutos jovens bem

como o subdesenvolvimento em situagfes de alta severidade de doenga.

Sintomas: Sao observados principalmente nos frutos, na forma de peque-
nas pontuagdes eruptivas, verrugosas, com tamanho de 5 a 6 mm de col-
oragdo marrom, que aumentam rapidamente e coalescem. A infeccdo nos
frutos nunca ultrapassa a casca. A doenga também pode ocasionar sintomas
em folhas, na forma de pequenas pontuagdes de cor chocolate, com 1 a 2
mm de didmetro, arredondadas quando localizadas no limbo foliar e ligeira-
mente alongadas quando nas nervuras, lembrando cochonilhas. Quando sev-
eramente atacadas, as folhas tendem a deformar e até mesmo sofrer rompi-

mento do limbo foliar, além de reducao da area fotossintética.

Etiologia: A doenca é ocasionada pelo fungo S. perseae, que ataca fol-

has com no maximo 3 cm de comprimento e frutos com menos de 5 cm e



118

desenvolve-se somente em condicdes de umidade elevada.

Controle: Recomenda-se a utilizagao de variedades resistentes. Variedades
pertencentes ao grupo antilhano apresentam elevada suscetibilidade a verru-
gose das folhas e menor de fruto. Variedades do grupo guatemalense, por sua
vez, apresentam elevada suscetibilidade nos frutos e baixa nas folhas. O con-
trole da doenga pode também ser feito com a aplicagéo de fungicidas cupri-
cos. No caso dos frutos, deve-se iniciar o controle quando pelo menos 2/3
das pétalas cairem e manté-lo até os frutos atingirem 5 cm de diametro. Para
as folhas, o controle deve ser feito somente nos periodos de brotacdes até
que as mesmas atinjam um minimo de 3 cm de comprimento. Em viveiro de
mudas, para variedades do grupo guatemalense, deve-se realizar aplicacdo

quinzenal de fungicidas cupricos.
CERCOSPORIOSE - Cercospora purpurea Cooke, C. perseae Ellis & Martin

Esta doenca € muito importante nos cultivos de abacate da América Latina e
Flérida.

Sintomas: Nos frutos sao caracterizados por pequenas lesdes, ligeiramente
deprimidas e irregulares, de coloracdo marrom e bordos definidos. Em
condi¢cdes de alta umidade, podem surgir alguns pontos de coloragdo ac-
inzentada no centro das lesdes, os quais correspondem a esporulagédo do
patégeno. Lesbes nos frutos apresentam tamanhas aproximadas de 3 a 6
mm de didmetro e, com o envelhecimento, tendem a provocar fissuras nos
tecidos, possibilitando a infecgao por outros patégenos. A queda de frutos é
um dos sintomas mais severos da doenca, podendo acarretar elevada perda
na produgado. Sintomas nas folhas caracterizam-se pela presenca de lesdes
angulares de coloragao marrom ou cinza, com halo clorético. As lesbes ap-
resentam tamanho de 1 a 3 mm de didmetro e sdo visiveis nas duas faces
da folha, tendendo a coalescer. Tecidos necrosados no centro das lesdes ten-
dem a cair, facilitando o rasgamento do limbo foliar. As les6es podem ocorrer
também no pedunculo dos frutos, o que induz a queda dos mesmos. Essas
lesbes mostram-se muito semelhantes as do fruto, porém de coloracdo es-

cura, formato circular e tamanho aproximado de 1 a 5 mm.

Etiologia: No Brasil foram encontradas 2 espécies de Cercospora associadas

* Q7: What are the symptoms and control measures for C. perseae affecting avocado

trees, and how does it compare to other diseases like verrugose and anthracnose?
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Reference: C. perseae, associated with cercosporiosis, presents symptoms on avocado
fruits as small, slightly depressed, irreqular brown lesions with defined edges. Under high
humidity, grayish points may appear in the center due to pathogen sporulation. These le-
sions can lead to tissue fissures, allowing secondary infections, and cause significant fruit
drop, leading to production loss. On leaves, symptoms include angular brown or gray le-
sions with a chlorotic halo, visible on both sides, which may coalesce and cause leaf
tearing. Control involves using resistant varieties and applying copper-based fungicides.
In comparison, verrugose, caused by Sphaceloma perseae, primarily affects fruits with
warty, brown eruptions that coalesce but do not penetrate the skin. It also affects leaves,
causing chocolate-colored spots and potential deformation. Control includes using resis-
tant varieties and copper fungicides. Anthracnose, caused by Colletotrichum gloeospo-
rioides, affects fruits, leaves, flowers, and branches, causing necrotic spots and fruit rot.
Control involves proper nutrition, pruning, and avoiding fruit injuries. Each disease re-

quires specific management strategies to minimize impact on avocado cultivation.

Reference contexi:

Extraction hop: 1
Cercospora purpurea e C. perseae.

A primeira € a Unica relatada até o momento no Estado de Sao Paulo. A in-
cidéncia da doenga inicia-se gradativamente na primeira metade do periodo
chuvoso, atingindo um pico nos meses de PAGE 5 junho e julho. Nesse mo-
mento, inicia-se a queda das folhas. A sobrevivéncia do patégeno na cultura
da-se através das infecgdes foliares. Visto que a principal forma de dissem-
inacao do patdgeno é por via aérea, a ocorréncia da doenga nos frutos é

observada desde o inicio da frutificagéo.

Controle: Recomenda-se o uso de variedades resistentes, entre as quais as
resistentes Collinson e Pollock (variedades antilhanas) e as medianamente
resistentes Price, Simminds e Linda (variedades guatemalenses). Wagner é
altamente suscetivel (variedade guatemalense). O controle quimico é compli-
cado devido ao porte da planta e a inexisténcia de produtos de boa eficiéncia
registrados para o uso na cultura. Porém, é possivel a aplicagcao de cupricos
e ditiocarbamatos em casos onde a doenga ocorre ap0s a queda das folhas,

pouco antes da florada do abacateiro, e logo ap6s a queda de 2/3 das pétalas.

ANTRACNOSE Glomerella cingulata (Stonem) Spauld & Schrenk (Col-

letotrichum gloeosporioides (Penz.) Sacc.).
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Sintomas: A antracnose afeta principalmente frutos, sendo possivel encon-
trar o patégeno infectando folhas, flores e ramos, porém sem ocasionar danos
a cultura. Sintomas em folhas sdo caracterizados por manchas necréticas de
coloragao escura, com bordos definidos e formato irregular. O patégeno pode
ocorrer também nos ramos, causando necroses escuras e seca dos ramos
e ponteiros, sendo este um sintoma de ocorréncia rara. As flores podem ser
facilmente afetadas pelo patégeno, ocorrendo seca ou abscisdo das mesmas
ou entdo serem infectadas através do botao floral, o que afetara o desenvolvi-
mento do fruto, causando queda prematura e/ou podridao. Sintomas nos fru-
tos sdo caracteristicos, iniciando-se por pequenas pontuac¢des de coloragéo
marrom a preta, com formato circular e tamanho aproximado de 6-13 mm de
didmetro. As lesdes tendem a evoluir atingindo parte do fruto ou necrosando-
o completamente. As necroses ultrapassam a casca e alcancam a polpa do
fruto. Uma vez dentro do fruto, o fungo causa um escurecimento da polpa de
coloragdo marrom ou bege. E muito comum a ocorréncia de frutos com po-
dridao no pedunculo, a qual tem inicio nas infeccoes ocorridas nas flores ou
em pos-colheita no ponto de cicatrizagao, caso ocorra a queda do pedunculo.
Em geral, este tipo de sintoma leva ao apodrecimento de todo o fruto, acar-
retando na planta a queda do mesmo. Podridbes de frutos ocorrem em frutos
maduros, sendo raros os efeitos em frutos verdes. A doenga somente adquire

importancia em pomares mal tratados ou debilitados nutricionalmente.

Etiologia: O patdgeno Colletotrichum gloeosporioides corresponde, na forma
teleomoérfica, a Glomerella cingulata. O fungo necessita de agua livre para
que ocorra a germinagao e infeccdo, sendo a faixa ideal de temperatura para
o crescimento 22-27°C. Permanece latente em frutos verdes, causando sin-

tomas apenas apds seu amadurecimento.

Controle: Deve ser realizado através de adubagbes e técnicas de manejo
adequadas. Podas de limpeza e queima de material doente devem ser real-
izadas, no minimo, anualmente. Ferimentos nos frutos devem ser evitados
através de cuidados durante as operagdes de colheita e pds-colheita e

controle de insetos.

Extraction hop: 2
VERRUGOSE - Sphaceloma perseae Jenkins
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A verrugose, ou sarna do abacateiro, conhecida desde 1918 na Flérida, foi
encontrada no Brasil pela PAGE 4 primeira vez em 1938 em Limeira. E uma
das principais doencas do abacateiro, visto que a mesma, além de depreciar
a aparéncia do fruto, pode provocar também a queda de frutos jovens bem

como o subdesenvolvimento em situagdes de alta severidade de doenga.

Sintomas: Sdo observados principalmente nos frutos, na forma de peque-
nas pontuacdes eruptivas, verrugosas, com tamanho de 5 a 6 mm de col-
oragcdo marrom, que aumentam rapidamente e coalescem. A infecgdo nos
frutos nunca ultrapassa a casca. A doenga também pode ocasionar sintomas
em folhas, na forma de pequenas pontuacdes de cor chocolate, com 1 a 2
mm de diametro, arredondadas quando localizadas no limbo foliar e ligeira-
mente alongadas quando nas nervuras, lembrando cochonilhas. Quando sev-
eramente atacadas, as folhas tendem a deformar e até mesmo sofrer rompi-

mento do limbo foliar, além de reducao da area fotossintética.

Etiologia: A doenca é ocasionada pelo fungo S. perseae, que ataca fol-
has com no maximo 3 cm de comprimento e frutos com menos de 5 cm e

desenvolve-se somente em condicdes de umidade elevada.

Controle: Recomenda-se a utilizagao de variedades resistentes. Variedades
pertencentes ao grupo antilhano apresentam elevada suscetibilidade a verru-
gose das folhas e menor de fruto. Variedades do grupo guatemalense, por sua
vez, apresentam elevada suscetibilidade nos frutos e baixa nas folhas. O con-
trole da doenga pode também ser feito com a aplicagéo de fungicidas cupri-
cos. No caso dos frutos, deve-se iniciar o controle quando pelo menos 2/3
das pétalas cairem e manté-lo até os frutos atingirem 5 cm de diametro. Para
as folhas, o controle deve ser feito somente nos periodos de brota¢des até
que as mesmas atinjam um minimo de 3 cm de comprimento. Em viveiro de
mudas, para variedades do grupo guatemalense, deve-se realizar aplicacéo
quinzenal de fungicidas cupricos.

CERCOSPORIOSE - Cercospora purpurea Cooke, C. perseae Ellis & Martin
Esta doenca € muito importante nos cultivos de abacate da América Latina e
Flérida.

Sintomas: Nos frutos sao caracterizados por pequenas lesdes, ligeiramente

deprimidas e irregulares, de coloracdo marrom e bordos definidos. Em

condi¢cdes de alta umidade, podem surgir alguns pontos de coloragdo ac-
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inzentada no centro das lesdes, os quais correspondem a esporulacao do
patdgeno. Lesdes nos frutos apresentam tamanhas aproximadas de 3 a 6
mm de didmetro e, com o envelhecimento, tendem a provocar fissuras nos
tecidos, possibilitando a infeccao por outros patégenos. A queda de frutos é
um dos sintomas mais severos da doenga, podendo acarretar elevada perda
na produgao. Sintomas nas folhas caracterizam-se pela presenca de lesdes
angulares de coloragdo marrom ou cinza, com halo clorético. As lesbes ap-
resentam tamanho de 1 a 3 mm de didmetro e sdo visiveis nas duas faces
da folha, tendendo a coalescer. Tecidos necrosados no centro das lesdes ten-
dem a cair, facilitando o rasgamento do limbo foliar. As lesdes podem ocorrer
também no pedunculo dos frutos, o que induz a queda dos mesmos. Essas
lesbes mostram-se muito semelhantes as do fruto, porém de coloracdo es-

cura, formato circular e tamanho aproximado de 1 a 5 mm.

Etiologia: No Brasil foram encontradas 2 espécies de Cercospora associadas

» Q8: What are the symptoms and control methods for S. perseae affecting avocado trees?

Reference: The symptoms of S. perseae, also known as verrugose or avocado scab,
primarily appear on the fruits as small, eruptive, wart-like spots that are 5 to 6 mm in
size and brown in color. These spots can rapidly increase in size and coalesce, but the
infection never penetrates beyond the fruit’s skin. On leaves, symptoms manifest as small,
chocolate-colored spots, 1 to 2 mm in diameter, which are round on the leaf blade and
slightly elongated on the veins, resembling scale insects. Severely affected leaves may
deform, rupture, and have reduced photosynthetic area. The disease is caused by the
fungus S. perseae, which attacks leaves up to 3 cm long and fruits less than 5 cm in
diameter, thriving in high humidity conditions. Control methods include using resistant
varieties, with Antillean group varieties being highly susceptible to leaf verrugose and
less so to fruit, while Guatemalan group varieties show high susceptibility in fruits and
low in leaves. Copper-based fungicides are recommended, starting when at least two-
thirds of the petals have fallen and continuing until fruits reach 5 cm in diameter. For
leaves, control should be applied during sprouting periods until they reach at least 3
cm in length. In nurseries, Guatemalan group varieties should receive bi-weekly copper

fungicide applications.

Reference context:

Extraction hop: 1
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VERRUGOSE - Sphaceloma perseae Jenkins

A verrugose, ou sarna do abacateiro, conhecida desde 1918 na Flérida, foi
encontrada no Brasil pela PAGE 4 primeira vez em 1938 em Limeira. E uma
das principais doencas do abacateiro, visto que a mesma, além de depreciar
a aparéncia do fruto, pode provocar também a queda de frutos jovens bem

como o subdesenvolvimento em situag6es de alta severidade de doenga.

Sintomas: Sao observados principalmente nos frutos, na forma de peque-
nas pontuagdes eruptivas, verrugosas, com tamanho de 5 a 6 mm de col-
oragdo marrom, que aumentam rapidamente e coalescem. A infeccdo nos
frutos nunca ultrapassa a casca. A doenca também pode ocasionar sintomas
em folhas, na forma de pequenas pontuacdes de cor chocolate, com 1 a 2
mm de didmetro, arredondadas quando localizadas no limbo foliar e ligeira-
mente alongadas quando nas nervuras, lembrando cochonilhas. Quando sev-
eramente atacadas, as folhas tendem a deformar e até mesmo sofrer rompi-

mento do limbo foliar, além de redugéo da area fotossintética.

Etiologia: A doenca é ocasionada pelo fungo S. perseae, que ataca fol-
has com no maximo 3 cm de comprimento e frutos com menos de 5 cm e

desenvolve-se somente em condi¢cbes de umidade elevada.

Controle: Recomenda-se a utilizacdo de variedades resistentes. Variedades
pertencentes ao grupo antilhano apresentam elevada suscetibilidade a verru-
gose das folhas e menor de fruto. Variedades do grupo guatemalense, por sua
vez, apresentam elevada suscetibilidade nos frutos e baixa nas folhas. O con-
trole da doenca pode também ser feito com a aplicacdo de fungicidas cupri-
cos. No caso dos frutos, deve-se iniciar o controle quando pelo menos 2/3
das pétalas cairem e manté-lo até os frutos atingirem 5 cm de didmetro. Para
as folhas, o controle deve ser feito somente nos periodos de brotacdes até
que as mesmas atinjam um minimo de 3 cm de comprimento. Em viveiro de
mudas, para variedades do grupo guatemalense, deve-se realizar aplicagédo

quinzenal de fungicidas cupricos.

CERCOSPORIOSE - Cercospora purpurea Cooke, C. perseae Ellis & Martin
Esta doenca € muito importante nos cultivos de abacate da América Latina e
Fléorida.

Sintomas: Nos frutos sao caracterizados por pequenas lesdes, ligeiramente

deprimidas e irregulares, de coloracdo marrom e bordos definidos. Em
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condi¢cdes de alta umidade, podem surgir alguns pontos de coloragdo ac-
inzentada no centro das lesdes, os quais correspondem a esporulagdo do
patégeno. Lesbes nos frutos apresentam tamanhas aproximadas de 3 a 6
mm de didmetro e, com o envelhecimento, tendem a provocar fissuras nos
tecidos, possibilitando a infecgao por outros patégenos. A queda de frutos é
um dos sintomas mais severos da doenga, podendo acarretar elevada perda
na producdo. Sintomas nas folhas caracterizam-se pela presenca de lesdes
angulares de coloragao marrom ou cinza, com halo clorético. As les6es ap-
resentam tamanho de 1 a 3 mm de didmetro e sdo visiveis nas duas faces
da folha, tendendo a coalescer. Tecidos necrosados no centro das lesdes ten-
dem a cair, facilitando o rasgamento do limbo foliar. As lesGes podem ocorrer
também no pedunculo dos frutos, o que induz a queda dos mesmos. Essas
lesdes mostram-se muito semelhantes as do fruto, porém de coloracao es-

cura, formato circular e tamanho aproximado de 1 a 5 mm.

Etiologia: No Brasil foram encontradas 2 espécies de Cercospora associ-

adas.

* Q9: What are the symptoms and control measures for C. perseae affecting avocado

trees, and how does it compare to other diseases like verrugose and cercosporiose?

Reference: C. perseae, associated with cercosporiose, causes small, slightly depressed,
irregular brown lesions on avocado fruits, which can lead to fissures and secondary infec-
tions. On leaves, it creates angular brown or gray lesions with a chlorotic halo, which can
coalesce and cause tearing. Control involves using resistant varieties and applying fungi-
cides like cuprics and dithiocarbamates. Verrugose, caused by Sphaceloma perseae, re-
sults in warty, eruptive lesions on fruits and chocolate-colored spots on leaves, leading to
deformation and reduced photosynthesis. Control includes using resistant varieties and
fungicides. Both diseases thrive in high humidity, but verrugose primarily affects young

fruits and leaves, while cercosporiose can cause significant fruit drop.

Reference contexi:

Extraction hop: 1
Cercospora purpurea e C. perseae.

A primeira € a Unica relatada até o momento no Estado de S&o Paulo. A in-
cidéncia da doenca inicia-se gradativamente na primeira metade do periodo

chuvoso, atingindo um pico nos meses de PAGE 5 junho e julho. Nesse mo-
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mento, inicia-se a queda das folhas. A sobrevivéncia do patégeno na cultura
da-se através das infecgdes foliares. Visto que a principal forma de dissem-
inacao do patdgeno é por via aérea, a ocorréncia da doenga nos frutos é

observada desde o inicio da frutificagao.

Controle: Recomenda-se o uso de variedades resistentes, entre as quais as
resistentes Collinson e Pollock (variedades antilhanas) e as medianamente
resistentes Price, Simminds e Linda (variedades guatemalenses). Wagner é
altamente suscetivel (variedade guatemalense). O controle quimico é compli-
cado devido ao porte da planta e a inexisténcia de produtos de boa eficiéncia
registrados para o uso na cultura. Porém, é possivel a aplicagdo de cupricos
e ditiocarbamatos em casos onde a doenga ocorre apds a queda das folhas,

pouco antes da florada do abacateiro, e logo apds a queda de 2/3 das pétalas.

ANTRACNOSE Glomerella cingulata (Stonem) Spauld & Schrenk (Col-

letotrichum gloeosporioides (Penz.) Sacc.).

Sintomas: A antracnose afeta principalmente frutos, sendo possivel encon-
trar o patégeno infectando folhas, flores e ramos, porém sem ocasionar danos
a cultura. Sintomas em folhas sao caracterizados por manchas necroéticas de
coloragéo escura, com bordos definidos e formato irregular. O patégeno pode
ocorrer também nos ramos, causando necroses escuras e seca dos ramos
e ponteiros, sendo este um sintoma de ocorréncia rara. As flores podem ser
facilmente afetadas pelo patégeno, ocorrendo seca ou abscisdo das mesmas
ou entdo serem infectadas através do botao floral, o que afetard o desenvolvi-
mento do fruto, causando queda prematura e/ou podriddo. Sintomas nos fru-
tos sdo caracteristicos, iniciando-se por pequenas pontuagdes de coloragao
marrom a preta, com formato circular e tamanho aproximado de 6-13 mm de
didmetro. As lesdes tendem a evoluir atingindo parte do fruto ou necrosando-
o completamente. As necroses ultrapassam a casca e alcangam a polpa do
fruto. Uma vez dentro do fruto, o fungo causa um escurecimento da polpa de
coloracdo marrom ou bege. E muito comum a ocorréncia de frutos com po-
driddo no pedunculo, a qual tem inicio nas infecgdes ocorridas nas flores ou
em pos-colheita no ponto de cicatrizagao, caso ocorra a queda do pedunculo.
Em geral, este tipo de sintoma leva ao apodrecimento de todo o fruto, acar-
retando na planta a queda do mesmo. Podriddes de frutos ocorrem em frutos

maduros, sendo raros os efeitos em frutos verdes. A doenga somente adquire
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importancia em pomares mal tratados ou debilitados nutricionalmente.

Etiologia: O patégeno Colletotrichum gloeosporioides corresponde, na forma
teleomérfica, a Glomerella cingulata. O fungo necessita de agua livre para
que ocorra a germinagéao e infeccao, sendo a faixa ideal de temperatura para
o crescimento 22-27°C. Permanece latente em frutos verdes, causando sin-

tomas apenas apds seu amadurecimento.

Controle: Deve ser realizado através de adubacbes e técnicas de manejo
adequadas. Podas de limpeza e queima de material doente devem ser real-
izadas, no minimo, anualmente. Ferimentos nos frutos devem ser evitados
através de cuidados durante as operagdes de colheita e pés-colheita e

controle de insetos.

Extraction hop: 2
VERRUGOSE - Sphaceloma perseae Jenkins

A verrugose, ou sarna do abacateiro, conhecida desde 1918 na Flérida, foi
encontrada no Brasil pela PAGE 4 primeira vez em 1938 em Limeira. E uma
das principais doencas do abacateiro, visto que a mesma, além de depreciar
a aparéncia do fruto, pode provocar também a queda de frutos jovens bem

como o subdesenvolvimento em situag6es de alta severidade de doenga.

Sintomas: Sao observados principalmente nos frutos, na forma de peque-
nas pontuacgdes eruptivas, verrugosas, com tamanho de 5 a 6 mm de col-
oragdo marrom, que aumentam rapidamente e coalescem. A infeccao nos
frutos nunca ultrapassa a casca. A doenca também pode ocasionar sintomas
em folhas, na forma de pequenas pontuacdes de cor chocolate, com 1 a 2
mm de didmetro, arredondadas quando localizadas no limbo foliar e ligeira-
mente alongadas quando nas nervuras, lembrando cochonilhas. Quando sev-
eramente atacadas, as folhas tendem a deformar e até mesmo sofrer rompi-

mento do limbo foliar, além de redugéo da area fotossintética.

Etiologia: A doenca é ocasionada pelo fungo S. perseae, que ataca fol-
has com no maximo 3 cm de comprimento e frutos com menos de 5 cm e
desenvolve-se somente em condi¢cdes de umidade elevada.

Controle: Recomenda-se a utilizacdo de variedades resistentes. Variedades
pertencentes ao grupo antilhano apresentam elevada suscetibilidade a verru-

gose das folhas e menor de fruto. Variedades do grupo guatemalense, por sua
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vez, apresentam elevada suscetibilidade nos frutos e baixa nas folhas. O con-
trole da doencga pode também ser feito com a aplicagao de fungicidas cupri-
cos. No caso dos frutos, deve-se iniciar o controle quando pelo menos 2/3
das pétalas cairem e manté-lo até os frutos atingirem 5 cm de diametro. Para
as folhas, o controle deve ser feito somente nos periodos de brotagdes até
que as mesmas atinjam um minimo de 3 cm de comprimento. Em viveiro de
mudas, para variedades do grupo guatemalense, deve-se realizar aplicacdo

quinzenal de fungicidas cupricos.
CERCOSPORIOSE - Cercospora purpurea Cooke, C. perseae Ellis & Martin

Esta doenca é muito importante nos cultivos de abacate da América Latina e
Flérida.

Sintomas: Nos frutos sao caracterizados por pequenas lesdes, ligeiramente
deprimidas e irregulares, de coloracdo marrom e bordos definidos. Em
condi¢cdes de alta umidade, podem surgir alguns pontos de coloragdo ac-
inzentada no centro das lesdes, os quais correspondem a esporulagédo do
patégeno. Lesbes nos frutos apresentam tamanhas aproximadas de 3 a 6
mm de didmetro e, com o envelhecimento, tendem a provocar fissuras nos
tecidos, possibilitando a infecgao por outros patégenos. A queda de frutos é
um dos sintomas mais severos da doenca, podendo acarretar elevada perda
na produgado. Sintomas nas folhas caracterizam-se pela presenca de lesdes
angulares de coloragdo marrom ou cinza, com halo clorético. As lesbes ap-
resentam tamanho de 1 a 3 mm de didmetro e sdo visiveis nas duas faces
da folha, tendendo a coalescer. Tecidos necrosados no centro das lesdes ten-
dem a cair, facilitando o rasgamento do limbo foliar. As les6es podem ocorrer
também no pedunculo dos frutos, o que induz a queda dos mesmos. Essas
lesbes mostram-se muito semelhantes as do fruto, porém de coloracdo es-

cura, formato circular e tamanho aproximado de 1 a 5 mm.

Etiologia: No Brasil foram encontradas 2 espécies de Cercospora associadas

+ Q10: What are the simptoms and control methods for the disease verrugose in avocado

trees?

Reference: The disease caused by S. perseae, known as verrugose or avocado scab,
presents symptoms primarily on the fruits as small, eruptive, wart-like spots that are 5 to
6 mm in size and brown in color. These spots can rapidly increase in size and coalesce,

but the infection does not penetrate beyond the fruit's skin. On leaves, symptoms appear
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as small, chocolate-colored spots, 1 to 2 mm in diameter, which are round on the leaf
blade and slightly elongated on the veins. Severely affected leaves may deform, rupture,
and have reduced photosynthetic area. The disease develops under high humidity con-
ditions. Control methods include using resistant varieties, with Antillean group varieties
being highly susceptible to leaf verrugose and less so to fruit, while Guatemalan group
varieties show high susceptibility in fruits and low in leaves. Copper-based fungicides
are recommended, starting when two-thirds of the petals have fallen and continuing until
the fruits reach 5 cm in diameter. For leaves, control should be applied during sprouting
periods until they reach at least 3 cm in length. In nurseries, Guatemalan group varieties

should receive bi-weekly copper fungicide applications.

Reference contexi:

Extraction hop: 1
VERRUGOSE - Sphaceloma perseae Jenkins

A verrugose, ou sarna do abacateiro, conhecida desde 1918 na Flérida, foi
encontrada no Brasil pela PAGE 4 primeira vez em 1938 em Limeira. E uma
das principais doengas do abacateiro, visto que a mesma, além de depreciar
a aparéncia do fruto, pode provocar também a queda de frutos jovens bem
como o subdesenvolvimento em situa¢des de alta severidade de doenca.
Sintomas: Sao observados principalmente nos frutos, na forma de peque-
nas pontuagdes eruptivas, verrugosas, com tamanho de 5 a 6 mm de col-
oragdo marrom, que aumentam rapidamente e coalescem. A infeccao nos
frutos nunca ultrapassa a casca. A doenca também pode ocasionar sintomas
em folhas, na forma de pequenas pontuacdes de cor chocolate, com 1 a 2
mm de didmetro, arredondadas quando localizadas no limbo foliar e ligeira-
mente alongadas quando nas nervuras, lembrando cochonilhas. Quando sev-
eramente atacadas, as folhas tendem a deformar e até mesmo sofrer rompi-
mento do limbo foliar, além de reducao da area fotossintética.

Etiologia: A doenca é ocasionada pelo fungo S. perseae, que ataca fol-
has com no maximo 3 cm de comprimento e frutos com menos de 5 cm e
desenvolve-se somente em condicbes de umidade elevada.

Controle: Recomenda-se a utilizacdo de variedades resistentes. Variedades
pertencentes ao grupo antilhano apresentam elevada suscetibilidade a verru-
gose das folhas e menor de fruto. Variedades do grupo guatemalense, por sua

vez, apresentam elevada suscetibilidade nos frutos e baixa nas folhas. O con-
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trole da doenca pode também ser feito com a aplicacao de fungicidas cupri-
cos. No caso dos frutos, deve-se iniciar o controle quando pelo menos 2/3
das pétalas cairem e manté-lo até os frutos atingirem 5 cm de didmetro. Para
as folhas, o controle deve ser feito somente nos periodos de brotacdes até
que as mesmas atinjam um minimo de 3 cm de comprimento. Em viveiro de
mudas, para variedades do grupo guatemalense, deve-se realizar aplicagao

quinzenal de fungicidas cupricos.
CERCOSPORIOSE - Cercospora purpurea Cooke, C. perseae Ellis & Martin

Esta doenca € muito importante nos cultivos de abacate da América Latina e
Flérida.

Sintomas: Nos frutos sdo caracterizados por pequenas lesoes, ligeiramente
deprimidas e irregulares, de coloragdo marrom e bordos definidos. Em
condigbes de alta umidade, podem surgir alguns pontos de coloragado ac-
inzentada no centro das lesdes, os quais correspondem a esporulacao do
patdgeno. Lesdes nos frutos apresentam tamanhas aproximadas de 3 a 6
mm de didmetro e, com o envelhecimento, tendem a provocar fissuras nos
tecidos, possibilitando a infeccao por outros patégenos. A queda de frutos é
um dos sintomas mais severos da doenga, podendo acarretar elevada perda
na produgao. Sintomas nas folhas caracterizam-se pela presenca de lesdes
angulares de coloracdo marrom ou cinza, com halo clorético. As lesdes ap-
resentam tamanho de 1 a 3 mm de didmetro e sao visiveis nas duas faces
da folha, tendendo a coalescer. Tecidos necrosados no centro das lesdes ten-
dem a cair, facilitando o rasgamento do limbo foliar. As lesdes podem ocorrer
também no pedunculo dos frutos, o que induz a queda dos mesmos. Essas
lesbes mostram-se muito semelhantes as do fruto, porém de coloracdo es-

cura, formato circular e tamanho aproximado de 1 a 5 mm.

Etiologia: No Brasil foram encontradas 2 espécies de Cercospora associadas
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