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“In clouds of code, where data weaves, 
A forecast forms from virtual leaves. 
Machine learning, with eyes so keen, 

Predicts the rain, where clouds have been. 
 

From past patterns, it reads the sky, 
Sensing when the heavens will cry. 

With each drop's fall, its knowledge grows”  
Grok 



 

RESUMO 
 

A precipitação na região costeira de Pernambuco é sensível a variabilidade climática, o que 

reforça a necessidade de monitoramento e melhoria das previsões, considerando o aumento da 

incerteza e a intensificação de eventos climáticos extremos. Neste trabalho é realizada uma 

análise detalhada sobre variabilidade temporal das principais variáveis atmosféricas que 

influenciam na precipitação em Recife. Foi desenvolvido um modelo de Deep Learning que 

utiliza 5 variáveis atmosféricas como entrada e realiza uma previsão de precipitação com um 

horizonte de sete dias à frente. O modelo foi treinado com séries temporais horárias, com um 

total de 3.681.720 valores, de 1941 até 2009. O período de dados de 2010 até 2023 foi 

utilizado para validar o modelo. A comparação entre os resultados de precipitação modelada 

pelo modelo de IA e a precipitação da reanálise mostraram uma correlação de Pearson de 

0.6913, MAE de 79,3, MSE de 94,9, RMSE de 281,7 e R² de 0,48.  

 

Palavras-chave: Previsão de chuvas; Recife - PE; Modelo de Deep Learning; Multilayer 

Perceptron (MLP) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

ABSTRACT 

Precipitation in the coastal region of Pernambuco is sensitive to climate change, which underscores the 

need for monitoring and improving forecasts, given the increased uncertainty and intensification of 

extreme weather events. This study provides a detailed analysis of the temporal variability of the main 

atmospheric variables influencing precipitation in Recife. A Deep Learning model was developed that 

uses five atmospheric variables as inputs and produces a seven-day-ahead precipitation forecast. The 

model was trained using hourly time series data—totaling 3,681,720 values—from 1941 to 2009. The 

period from 2010 to 2023 was used to validate the model. A comparison between the modeled 

precipitation results and reanalysis precipitation data showed a Pearson correlation of 0.6913, MAE of 

79.3, MSE of 94.9, RMSE of 281.7, and R² of 0.48. 

Keywords: Rainfall forecast; Recife - PE; Deep Learning model; Multilayer Perceptron (MLP) 
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1.​INTRODUÇÃO 

 A Região Nordeste do Brasil (NEB) é caracterizada por uma alta variabilidade 

espacial e temporal de chuvas, determinadas por sua posição geográfica, relevo e sistemas de 

pressão atmosféricos, que estão entre os principais fatores climáticos que determinam a sua 

sazonalidade (Ferreira, 2005). Entre os fenômenos de grande escala que atuam sobre o NEB, a 

Zona de Convergência Intertropical (ZCIT) e o El Niño-Oscilação Sul são os mais 

importantes (Hastenrath e Lamb 1977; Chiang et al. 2002; Giannini et al. 2004; Da Silva, 

2004; Dos Santos et al., 2023). Em escala interanual, o NEB é influenciado pela evaporação 

do Pacifico e Atlântico tropical, pela temperatura da superfície do mar (TSM), que ocasionam 

o El Niño/La Niña, o Dipolo do Atlântico e outros eventos que podem ocorrer na bacia oeste 

do Atlântico Tropical Sul (ATS). Estas forçantes interanuais podem amplificar os períodos de 

seca e chuvas intensas (Kayano; Andreoli, 2006; Rafaela; Lima, 2021; Souza et al., 2021). 

Dentro dessa variabilidade natural do NEB também se encontram os fatores resultantes de 

interação oceano-atmosfera, onde os mesmos influenciam o regime de chuvas das regiões 

semiáridas e litorâneas (Silva et al., 2019; Rao; Chapa; Franchito, 1999). Alguns dos sistemas 

meteorológicos mais relevantes para o NEB são: A ZCIT, A Zona de Convergência do 

Atlântico Sul, Os Vórtices Ciclônicos de Altos Níveis e Os Distúrbios Ondulatórios de Leste 

(DOLs) (Kouadio et al., 2012; Chaves; Cavalcanti, 2001; De Albuquerque Cavalcanti, 2015; 

Gomes et al., 2015). Em estudo recente, do Santos et al. (2023) identificaram que a Oscilação 

Decadal do Pacífico (PDO) exerce maior controle sobre a modulação dos padrões climáticos 

no NEB e revelaram outras influências diferenciais a partir de teleconexões como a Oscilação 

Multidecadal do Atlântico (Atlantic Multidecadal Oscillation), Índice Multivariado do ENSO 

(Multivariate ENSO Index) e da Oscilação do Atlântico Norte (North Atlantic Oscillation) na 

precipitação nas quatro sub-regiões do NEB. Os padrões de circulação do Atlântico 

influenciam fortemente a precipitação interanual e interdecadal nas regiões do Agreste, Sertão 

e Centro-Norte, possivelmente associados à posição da ZCIT. 

No Leste do Nordeste Brasileiro (ENEB) está localizada a cidade de Recife, no estado 

de Pernambuco, e essa apresenta período chuvoso predominantemente entre março a agosto, 

com uma média anual de precipitação de 2290,55 mm (Silva Junior et al., 2020). No entanto, 

a variabilidade interanual em alguns casos pode ocasionar eventos extremos, os quais 

impactam de forma significativa as áreas urbanas mais vulneráveis. Por ser uma cidade 
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litorânea frequentemente afetada por eventos extremos de chuva, Recife ocupa a 16ª posição 

entre as cidades mais ameaçadas no mundo pelas mudanças climáticas (Baltar De Souza 

Leão; Silveira Andrade; Felipe Nascimento, 2021). 

Recife passou por alguns grandes eventos climáticos extremos nos últimos 15 anos, 

como em 2010 e em 2022. Em 2010 os DOLs resultaram em inundações severas que 

atingiram 45 municípios em Pernambuco, incluindo a capital, Recife, causando danos 

generalizados (Luiz do Vale Silva et al., 2018). Já em 2022 dois grandes eventos de DOLs, no 

período entre 25 a 28 de maio, resultaram na precipitação acumulada superior a 500 mm o que 

levou à morte de mais 130 pessoas entre os estados de Pernambuco, Alagoas e Paraíba 

(Marengo et al., 2023). 

A previsão de eventos extremos causados por DOLs em Recife é um desafio, devido à 

variabilidade interanual, que está ligada a mudanças na TSM no ATS. Anomalias positivas da 

TSM podem intensificar os eventos de precipitação. Em 2010, por exemplo, a TSM na costa 

do ENEB esteve acima da média por três meses consecutivos, fornecendo vapor de água para 

os sistemas de DOLs (Luiz do Vale Silva et al., 2018; Amorim; Chaves; Silva, 2014). Esse 

vapor é transportado pelos ventos alísios de sudeste, resultando em chuvas intensas na costa 

de Pernambuco, incluindo Recife. 

Portanto, a previsão do tempo da cidade é de extrema importância para a preservação 

de vidas humanas e desempenha um papel crítico no planejamento de ações de defesa civil, 

especialmente nas áreas de risco como nas margens dos rios ou encostas com risco de 

deslizamento (Dos Santos; Puppim De Oliveira, 2024). 

A otimização da previsão de curto e médio prazo para Recife é crucial para mitigar os 

impactos de eventos extremos, como os DOLs. Os eventos climáticos extremos de 2010 e 

2022 evidenciam a necessidade da melhora na velocidade com a qual as previsões são 

realizadas em modelos numéricos para aumentar a capacidade de previsão quando se coloca 

em foco os efeitos das mudanças climáticas vigentes. Por isso se faz necessário a utilização de 

ferramentas que aprimorem a velocidade da geração dessas previsões para evitar tragédias em 

eventos futuros. 

Apesar dos modelos numéricos regionais representarem bem os fenômenos 

atmosféricos e preverem com uma certa eficiência, cada vez mais temos o desenvolvimento e 
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aperfeiçoamento de modelos baseados em Redes neurais artificiais que são capazes de gerar 

resultados confiáveis de forma mais rápida (ANN - Artificial Neural Networks). As ANNs 

(Figura 1.1) são modelos computacionais capazes de aprender a partir de grandes volumes de 

dados, sendo estas inspiradas pelas conexões encontradas em neurônios biológicos (Basheer e 

Hajmeer et al., 2000). Machine learning, por sua vez, refere-se à capacidade das máquinas de 

aprender padrões e tomar decisões baseadas nesses dados, sem a necessidade de instruções 

explícitas (Pandey et al., 2023). Essas tecnologias têm se destacado pela sua capacidade de 

resolver problemas complexos em diversas áreas do conhecimento (Abiodun et al., 2018). 

Figura 1.1. Desenho esquemático de uma rede neural artificial de multicamadas feedforward. Fonte: 

PIRES et al, 2023. 

 

 

Dentro das redes neurais existe uma categoria das mesmas denominada redes neurais 

profundas (DNN - Deep Neural Networks), sendo estas capazes de melhor compreender 
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relações complexas e hierárquicas dos dados de entrada, traduzindo-se em maior capacidade 

de aprendizado, além da possibilidade de serem utilizadas em diversas áreas, como visão 

computacional, processamento de linguagem natural, sistemas de recomendação, análise de 

séries temporais e diagnósticos médicos, permitindo avanços significativos em tarefas que 

exigem alto nível de precisão e generalização (Agarwall, 2018). 

O uso de redes neurais tem se expandido rapidamente em setores como a indústria 

automobilística, alimentícia, e metalúrgica, bem como na área da saúde e no setor financeiro 

(Habehh e Goel, 2021; Nousias et al., 2023; Smith, 2020; Tkáč e Verner, 2016). Elas 

oferecem soluções para otimização de processos, como na produção industrial e detecção de 

fraudes (Bin Sulaiman et al., 2022; Sudha et al., 2016), além de possibilitarem inovações em 

áreas como diagnósticos médicos e sistemas de recomendação (Latha e Rao, 2024; Nguyen et 

al., 2022). 

Uma das áreas de maior aplicação das redes neurais é na análise de séries temporais, 

essenciais para prever fenômenos que se desenvolvem ao longo do tempo (Kourentzes et al., 

2014). Esse tipo de análise é particularmente relevante no estudo da climatologia e 

meteorologia, onde a previsão de eventos como precipitação, temperaturas extremas e padrões 

atmosféricos pode impactar setores como a agricultura, a geração de energia e a gestão de 

desastres naturais (Scher e Messori, 2018). 

A utilização de ANNs para a solução de problemas tem sido de grande interesse no 

meio acadêmico, industrial e empresarial, oferecendo respostas mais rápidas e, por vezes, 

mais precisas do que modelos estatísticos tradicionais (Alon et al., 2001). A análise de séries 

temporais, essenciais para o estudo da climatologia e meteorologia de uma região, é chave 

para muitas das redes neurais utilizadas ao redor do mundo (Citakoglu e Coşkun et al., 2022).  

Estudos recentes têm desenvolvido e utilizado modelos de machine learning para 

melhorar e agilizar as previsões de curto prazo meteorológicas (Guo et al., 2024; Xie et al., 

2023). Pinheiro Gomes et al (2024) utilizou de modelos de redes neurais para auxiliar na 

melhoria da previsão da precipitação na região da Amazônia Legal através da obtenção de 

dados de estações pluviométricas da região, enquanto que em outras regiões do globo como 

na Etiópia (Kebede et al, 2024) foram utilizados dados de modelos climáticos e agências 

internacionais em busca de respostas mais robustas e confiáveis em uma região de grande 
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incerteza meteorológica devido a sua configuração geográfica além das variações espaço 

temporais de uma latitude sob o efeito da ZCIT. Outros estudos buscam a melhoria da 

previsibilidade de padrões climáticos como o El Ninõ (ENSO) sendo este um evento de alta 

imprevisibilidade (Ham et al, 2019; Chen et al, 2023), melhorias na obtenção de dados e 

previsibilidade de regiões com potencial para usinas eólicas e geração de energia solar e 

hidráulica (Ferrero Bermejo et al, 2019; Marugán et al, 2018). 

As ANNs são formadas por camadas de neurônios interconectados, onde cada 

neurônio recebe valores de entrada, processa os mesmos utilizando uma função de 

combinação, uma soma ponderada, e uma função de ativação que introduz não linearidade ao 

modelo. Essas redes neurais podem ser configuradas com diferentes números de camadas e 

conexões o que permite desde arquiteturas simples, uma única camada, a complexas, com 

múltiplas camadas (Botelho Pires et al., 2025). O Multilayer Perceptron (MLP) é uma 

subclasse das ANNs e possui uma arquitetura feedforward, que significa que os dados fluem 

em uma única direção, das camadas de entrada para as camadas ocultas e, por fim, para a 

camada de saída. O MLP é composto por uma ou mais camadas ocultas (Figura 1.2), sendo 

considerado uma rede neural profunda quando possui mais de uma camada oculta, sendo seu 

diferencial sua capacidade de modelar relações não lineares a partir da aplicação de funções 

de ativação em cada camada oculta. Algumas das funções de ativação são a Unidade Linear 

Retificada (ReLU), a função sigmoide logística (sigmoid) e a função hiperbólica tangente 

(tanh). 

 

 

 

 

 

 

 

Figura 1.2. Desenho esquemático de uma MLP. Fonte: ALBUQUERQUE, 2024. 
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2.​OBJETIVOS 

2.1 Objetivo Geral 

Este trabalho tem como objetivo analisar o papel de diferentes forçantes climáticas na 

variabilidade de chuvas na Região Metropolitana de Recife através do uso de modelos de 

redes neurais, com o intuito de melhorar a previsibilidade de eventos extremos de chuva. 

2.2 Objetivos Específicos 

●​ Analisar as relações entre as variáveis escolhidas; 

●​ Identificar padrões climatológicos na região estudada; 

●​ Desenvolver e aplicar modelo de rede neural para aprimorar a previsão 

de eventos de chuvas extremas na região metropolitana de Recife. 
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3.​METODOLOGIA 

3.1 ÁREA DE ESTUDO 

​ A cidade de Recife (8º04’03” S e 34º52’16” W) é habitada por 1.48 milhões de 

pessoas, sendo a nona cidade mais populosa do país, com uma extensão territorial de 218,843 

km² e densidade demográfica de 6.803,60 hab/km² (IBGE, 2024). Sua geomorfologia se 

caracteriza como uma planície aluvional, composta por ilhas e manguezais, cortada por 

diversos rios como o Capibaribe, Beberibe e Tejipió, além de apresentar marés com 

amplitudes de até 2 metros. (Figura 3.1).  

 

Figura 3.1. Área de Estudo. Fonte: IBGE, https://www.ibge.gov.br.

 

 

3.2 Base de Dados 

Os conjuntos de dados horários para a região do leste do nordeste foram obtidos 

através da base de dados de reanálise do ERA5 que pertence ao ECMWF (European Centre 
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for Medium-Range Weather Forecasts). O acrônimo ERA5 vem da abreviação de ECMWF 

Reanalysis v5, esta base é a quinta geração de reanálise atmosférica do ECMWF do clima 

global, abrangendo o período de janeiro de 1941 até o presente. Esta base tem resolução de 

0,25° x 0,25°, disponível em https://cds.climate.copernicus.eu/. Esta base tem sido comparada 

com dados de radiossonda e mostra um ajuste melhorado para temperatura, vento e umidade 

na troposfera. A resolução temporal e espacial aprimorada permite uma evolução detalhada 

dos sistemas meteorológicos. Para precipitação, a correlação média global com dados GPCP 

médios mensais é aumentada de 67% para 77% (Hersbach et al., 2020). As variáveis a serem 

consideradas para treinamento são dados diários de temperatura da superfície do mar, 

temperatura a 2 metros, pressão ao nível do mar e precipitação total. 

​ 3.3 Modelo de aprendizado profundo 

​ O modelo desenvolvido neste estudo é o MLP, este é um tipo de rede neural 

artificial que consiste em várias camadas de neurônios. O MLP é uma rede neural semelhante 

ao perceptron simples, porém possui mais de uma camada de neurônios. Os neurônios do 

MLP normalmente usam funções de ativação não lineares, permitindo que a rede aprenda 

padrões complexos nos dados (Lightbody e Irwin 1996). Inspirando-se no funcionamento dos 

neurônios biológicos do sistema nervoso dos animais, estabeleceu-se na área da Inteligência 

Artificial um modelo computacional de um neurônio conforme ilustrado na figura 3.2. 

Figura 3.2. Modelo computacional de um neurônio. 

 

Os sinais da entrada no neurônio são representados pelo vetor x = [x1, x2, x3, …, xN], 

podendo corresponder aos pixels de uma imagem, por exemplo. Ao chegarem ao neurônio, 

são multiplicados pelos respectivos pesos sinápticos, que são os elementos do vetor w = [w1, 

w2, w3, …, wN], gerando o valor z, comumente denominado potencial de ativação. O termo 
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adicional b provê um grau de liberdade a mais, que não é afetado pela entrada nessa 

expressão, correspondendo tipicamente ao “bias”, de acordo com a equação 01 abaixo: 

​ ​ ​ ​ ​ ​ ​ ​ ​ (01) 
𝑖=1

𝑁

∑ 𝑥
𝑖
 𝑤

𝑖
+ 𝑏

O valor z passa então por uma função matemática de ativação σ, com a característica 

de ser não linear, responsável por limitar tal valor a um certo intervalo, produzindo o valor 

final de saída e do neurônio. 

Podemos combinar uma estrutura de camadas, cada uma com número diferente de 

neurônios, formando uma rede neural denominada Perceptron Multicamadas, “Multilayer 

Perceptron”. Os perceptrons multicamadas consistem em múltiplas camadas de neurônios, 

cada uma totalmente conectada às da camada inferior (da qual recebem informações) e às 

superiores (Zhang et al., 2023). O vetor de valores de entrada x passa pela camada inicial, 

cujos valores de saída são ligados às entradas da camada seguinte, e assim por diante, até que 

a rede forneça como resultado os valores de saída da última camada. Pode-se arranjar a rede 

em várias camadas, tornando-a profunda e capaz de aprender relações cada vez mais 

complexas (Figura 3.3). 

Figura 3.3. Neurônios combinados formando uma rede. 

 

A modelagem consiste dos seguintes passos: 

A.​ Inicialização de todos os pesos da rede com pequenos valores 

aleatórios. 
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B.​ Fornecimento de dados de entrada à rede e calcular o valor da função 

de erro obtida, ao comparar com o valor de saída esperado. 

C.​ A minimização do valor da função de erro, calculando os valores dos 

gradientes para cada peso da rede. 

D.​ Uma vez que temos o vetor gradiente calculado, atualiza-se cada peso 

de modo iterativo, sempre recalculando os gradientes em cada passo de 

iteração, até o erro diminuir e chegar abaixo de algum limiar preestabelecido, 

ou o número de iterações atingir um valor máximo, quando enfim o algoritmo 

termina e a rede está treinada (Poulton, 2001). 

Este modelo utiliza 5 variáveis como entrada e realiza uma previsão de sete dias à 

frente. Baseado na série temporal de 3.681.720 valores, são utilizados os dados de 1941 até 

2009 para treinar o modelo e os dados de 2010 até 2023 são utilizados para validar o modelo. 

Quatro métricas estatísticas serão aplicados para quantificar a precisão e qualidade da 

previsão do modelo, são elas: 

●​ MAE (Erro Médio Absoluto): descreve a magnitude média dos erros. 

●​ MSE (Erro Quadrático Médio): penaliza mais fortemente grandes desvios 

pontuais. 

●​ RMSE (Raiz do Erro Quadrático Médio): sendo tipicamente mais interpretável 

na mesma escala da variável. 

●​ R² (Coeficiente de Determinação):indicando quanto por cento da variação da 

precipitação no conjunto de validação foi explicada pelo modelo. 

4.​RESULTADOS 

Os resultados aqui apresentados estão divididos em análises dos dados de entrada do 

modelo e resultados da modelagem. A seção 4.1 mostra as séries temporais utilizadas nesta 

pesquisa. A partir destas séries são estimadas as médias climatológicas mensais e anuais. Para 

identificar variações interanuais são estimadas as anomalias. A seção 4.2 ilustra o resultado da 

modelagem de aprendizado profundo e validação do modelo com os dados de reanálise.  
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4.1. Análise de variabilidade temporal das variáveis assimiladas pelo 

modelo 

​ Nas Figuras 4.1.1 a 4.1.4, apresenta-se a análise da temperatura do ar a 2 

metros, na qual é possível observar uma tendência de aumento ao longo dos anos. Essa 

tendência é evidenciada tanto pela média móvel na série temporal quanto pela linha de 

tendência no gráfico de anomalias, que indica variações positivas alcançando até 1ºC. A 

climatologia mensal revela um padrão sazonal bem definido, com o pico de temperatura 

ocorrendo em março e o mês mais frio sendo agosto. Adicionalmente, a climatologia anual 

reforça essa tendência de aumento da temperatura ao longo do período analisado. 

Figura 4.1.1. Série mensal da temperatura do ar a 2 metros, de 1941 até 2023. 

 

Figura 4.1.2. Climatologia mensal da temperatura do ar a 2 metros, de 1941 até 2023. 
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Figura 4.1.3. Série da média anual da temperatura do ar a 2 metros, de 1941 até 2023. 

 

 

Figura 4.1.4. Anomalia mensal da temperatura a 2 metros, de 1941 até 2023. 
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As Figuras 4.1.5 a 4.1.8, que representam a análise da pressão atmosférica na 

superfície, não evidenciam, à primeira vista, uma tendência clara de aumento. No entanto, ao 

considerar a linha de tendência das anomalias, observa-se um leve crescimento ao longo do 

período analisado. A série temporal e a climatologia anual permitem visualizar a evolução 

dessa variável ao longo do tempo, enquanto a climatologia mensal evidencia sua variabilidade 

sazonal, caracterizada por um pico em agosto e um valor mínimo em março. 

Figura 4.1.5. Série mensal da Pressão atmosférica na superfície, de 1941 até 2023. 

 

 

Figura 4.1.6. Climatologia mensal da Pressão atmosférica na superfície, de 1941 até 2023. 
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Figura 4.1.7. Série da média anual da Pressão atmosférica na superfície, de 1941 até 2023. 

 

 

Figura 4.1.8. Anomalia mensal da Pressão atmosférica na superfície, de 1941 até 2023. 
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Nas Figuras 4.1.9 a 4.1.12, apresenta-se a análise da temperatura da superfície do mar, 

na qual os gráficos da série temporal mensal, da climatologia anual e das anomalias indicam 

uma tendência de elevação ao longo do período analisado. As anomalias registradas atingiram 

valores de até 1°C, evidenciando um aumento significativo na temperatura da superfície 

oceânica. A climatologia mensal revela um padrão sazonal bem definido, com o menor valor 

dessa variável ocorrendo em agosto e o pico máximo registrado em abril. 

 

Figura 4.1.9. Série mensal da temperatura da superfície do mar, de 1941 até 2023 
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Figura 4.1.10. Climatologia mensal da temperatura da superfície do mar, de 1941 até 2023. 

 

 

 

Figura 4.1.11. Série da média anual da temperatura da superfície do mar, de 1941 até 2023. 
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Figura 4.1.12. Anomalia mensal da temperatura da superfície do mar, de 1941 até 2023. 

 

As Figuras 4.1.13 a 4.1.16 apresentam a variabilidade da pressão ao nível médio do 

mar, evidenciando uma tendência de aumento ao longo do período analisado, conforme 

indicado pela linha de tendência das anomalias. No entanto, a série temporal mensal e a 

climatologia anual revelam um comportamento relativamente disperso dentro de um intervalo 

específico evidenciado pela média móvel. Por sua vez, a climatologia mensal destaca a 

sazonalidade dessa variável, com um pico máximo em agosto e um mínimo em março. 

Figura 4.1.13. Série mensal da Pressão ao Nível Médio do Mar, de 1941 até 2023. 
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Figura 4.1.14. Climatologia mensal da Pressão ao Nível Médio do Mar, de 1941 até 2023. 

 

 

Figura 4.1.15. Série da média anual da Pressão ao Nível Médio do Mar, de 1941 até 2023
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Figura 4.1.16. Anomalia mensal da Pressão ao Nível Médio do Mar, de 1941 até 2023. 

 

 

As Figuras 4.1.17 a 4.1.20 representam a análise da precipitação total. Os gráficos da 

série temporal mensal, da climatologia anual e das anomalias não evidenciam, a princípio, 

uma tendência clara de variação ao longo do tempo. No entanto, ao observar a linha de 

tendência das anomalias, verifica-se um leve aumento na precipitação total ao longo do 

período analisado. A climatologia mensal destaca a sazonalidade do regime pluviométrico, 

com o maior volume de precipitação registrado em julho e o menor em novembro. 

Figura 4.1.17. Série mensal da Precipitação Total, de 1941 até 2023. 
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Figura 4.1.18. Climatologia mensal da Precipitação Total, de 1941 até 2023. 

 

 

 

Figura 4.1.19. Série da média anual da Precipitação Total, de 1941 até 2023. 
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Figura 4.1.20. Anomalia mensal da Precipitação Total, de 1941 até 2023. 

 

​

​ É possível observar que ao longo das últimas décadas, uma tendência de aquecimento 

tanto sobre áreas continentais quanto na superfície oceânica, em concordância com as 

projeções de mudanças climáticas realizadas pelo Painel Intergovernamental sobre Mudanças 

Climáticas (IPCC). A análise dos gráficos de temperatura (Figuras 4.1.1 a 4.1.4) mostra 

anomalias que podem alcançar até +1 °C acima da média ao longo de 82 anos, reforçando um 

cenário de elevação gradual das temperaturas. Embora as climatologias mensais evidenciam 

sobretudo a variação sazonal — com máximas em torno de fevereiro–março e mínimas em 

agosto, as séries de anomalias revelam oscilações mais intensas que não são inteiramente 

capturadas por esses valores médios. 

A identificação de picos positivos da anomalia na Figura 4.1.4 sugere possível 

associação como nos episódios de El Niño dos anos 1983, 1997 e 2016, indicando mudanças 

significativas na circulação atmosférica global através do índice positivo do "Oceanic Niño 

Index". Em períodos recentes, algumas projeções apontam para aquecimento adicional em 

2024, resultado potencial da combinação entre El Niño e o efeito de ilhas de calor urbanas na 

Região Metropolitana do Recife (COSTAS VAROTSOS et al., 2024). 

As análises da pressão atmosférica, tanto sobre a superfície do continente quanto do 

oceano, (Figuras 4.1.5 a 4.1.8 e 4.1.13 a 4.1.16) mostram alterações discretas, mas com 

capacidade de influenciar a convergência de umidade e geração de chuvas. Na região da área 

de estudo a Alta Pressão Subtropical do Atlântico Sul e ZCIT se destacam como mecanismos 

fundamentais que controlam o regime de chuvas, principalmente entre março e agosto. 

Pequenas variações nesses campos de pressão podem intensificar ou impedir a formação de 
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nuvens, influenciando diretamente sobre a precipitação, especialmente quando combinadas a 

anomalias positivas da TSM no Atlântico. 

No que diz respeito à precipitação (Figuras 4.1.17 a 4.1.20), não foram verificadas 

tendências de elevação ou redução tão acentuadas quanto as observadas na TSM ou na 

temperatura a 2 metros. Entretanto, há picos de anomalia distribuídos ao longo da série 

histórica. Na cidade de Recife que pode apresentar média anual de chuvas com valores de até 

2000mm, esses picos anômalos positivos geralmente são resultantes da combinação de 

sistemas meteorológicos, como o posicionamento da ZCIT e a atuação de DOLs e, variações 

em forçantes oceânicas como uma maior disponibilidade de vapor d’água devido a anomalias 

positivas da TSM.  

O aquecimento, tanto continental quanto oceânico, pode favorecer a intensificação de 

eventos climáticos e o aumento da incerteza em relação a projeções e previsões das variáveis 

oceano-atmosféricas como a precipitação, ventos, TSM, etc. Em Recife, a proximidade com o 

oceano, associada às condições regionais, faz com que o regime de chuvas e a ocorrência de 

eventos climáticos sejam altamente sensíveis a pequenas alterações na dinâmica 

oceano–atmosfera. As evidências atuais apontam que pequenas variações de pressão e 

elevação consistente da temperatura sobre o continente e o oceano Atlântico podem ter efeitos 

significativos no regime de chuvas locais, reforçando a necessidade de aperfeiçoar as 

previsões e manter o monitoramento da região, considerando o histórico de eventos extremos 

e as estimativas de intensificação desses eventos em cenários de mudanças climáticas. 

4.2. Modelagem e validação 

A modelagem consistiu na execução do modelo MLP e validação para a previsão de 

precipitação para um ponto na Região Metropolitana do Recife considerando diversos 

conjuntos de hiperparâmetros para se alcançar o melhor resultado possível. Além disso, é 

discutido a qualidade do ajuste obtido e possíveis melhorias. 

4.2.1 Configuração do Modelo e Pré-processamento 

O MLP foi configurado com três camadas ocultas, cada uma contendo 64 neurônios, e 

função de ativação do tipo LeakyReLU com negative_slope = 0,01. Foi aplicado dropout de 

20% em cada camada para reduzir a chance de overfitting, além de callbacks de 
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EarlyStopping e LearningRateMonitor para interromper o treinamento quando o erro de 

validação não apresentasse melhorias significativas em 15 épocas. 

Hiperparâmetros principais do modelo: 

●​ Input_size: 240 (resultado da combinação de 5 variáveis em 48 timesteps 

passados); 

●​ Output_size: 6 (previsão para 6 timesteps futuros); 

●​ Hidden_size: 64; 

●​ Número de camadas ocultas: 3; 

●​ Taxa de aprendizado (learning_rate): 1 × 10^-4; 

●​ Batch_size: 32; 

●​ Função de ativação: LeakyReLU; 

●​ Dropout: 20%. 

Divisão temporal dos dados: 

●​ Período de treinamento: 1941 até 31/12/2009; 

●​ Período de validação: 01/01/2010 até 2023. 

Normalização e tratamento das variáveis: 

●​ A precipitação total (TP) foi convertida para milímetros (quando 

necessário) e, em conjunto com TSM, SP (Surface Pressure), MSL (Mean Sea Level 

Pressure) e T2M (Temperature at 2 meters), normalizada com o MinMaxScaler no 

intervalo [0,1]. 

●​ Cada variável foi escalonada individualmente, evitando que alguma 

assumisse maior peso simplesmente por diferença de ordem de magnitude. 
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Essa padronização tem como objetivo facilitar a convergência do modelo, pois a 

homogeneidade de escala entre as variáveis de entrada costuma acelerar e estabilizar o 

processo de ajuste dos parâmetros (HAYKIN, 2001). 

4.2.2 Avaliação do Desempenho 

Após o treinamento, o desempenho do modelo foi avaliado por meio de quatro 

métricas de regressão: Erro Médio Absoluto (MAE), Erro Quadrático Médio (MSE), Raiz do 

Erro Quadrático Médio (RMSE) e Coeficiente de Determinação (R²). A Tabela 4.1 apresenta 

os valores obtidos (exemplo representativo após algumas rodadas de treinamento): 

Tabela 4.1 - Valores obtidos a partir de um exemplo representativo de treinamento e 

validação. 

Métrica Valor 

MAE 79,3 

MSE 94,9 

RMSE 281,7 

R² 0,48 

O R² inferior a 0,50, embora não seja desprezível e sugere que há ainda é necessário 

um maior treinamento dos dados, uma vez que pouco mais da metade da variabilidade não 

está sendo capturada. A Figura 4.2.1 ilustra a evolução do loss (perda) de treinamento e 

validação ao longo das épocas, mostrando tendência de convergência. Já a Figura 4.2.2 

compara a curva das previsões com os valores reais de precipitação em um período de 

validação, revelando que o modelo acerta em linhas gerais a dinâmica de variação, mas 

apresenta desvios significativos em alguns picos de chuva. 
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Figura 4.2.1. Evolução do loss do treinamento e validação ao longo das épocas de treinamento.

 

 

 

 

 

 

 

Figura 4.2.2 Comparação entre Valores Reais e Previsões do Modelo 
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4.2.2.1 Análise Qualitativa das Previsões 

A comparação entre valores previstos e valores observados mostra que o MLP 

consegue seguir, em termos gerais, a tendência de alta ou baixa na precipitação. Entretanto, a 

dispersão dos erros tende a aumentar em eventos extremos, como chuvas muito intensas ou 

períodos muito secos. Esse comportamento é frequente em previsões meteorológicas baseadas 

em machine learning, pois os modelos podem ter dificuldade em capturar variações muito 

abruptas, resultantes de fenômenos de escala sinótica ou de mesoescala que não estejam 

devidamente representados em todas as variáveis de entrada. 

Adicionalmente, a simplicidade do modelo pode limitar a identificação de padrões 

temporais complexos — por exemplo, períodos de persistência de tempo chuvoso modulados 

pela posição da ZCIT ou pela atuação de DOLs. Por isso, mesmo que o MLP consiga 

identificar tendências gerais, podem ocorrer desvios pontuais na amplitude da precipitação. 

4.2.2.2 Limitações na Comparação com Dados Observacionais 

O conjunto de dados de reanálise ERA5 fornece uma base consistente e ampla de 

variáveis atmosféricas, mas é importante ressaltar que, em aplicações locais, podem ocorrer 
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discrepâncias em relação a observações reais obtidas por estações meteorológicas próximas à 

área de estudo. Essas diferenças podem ser atribuídas a fatores como: 

Resolução espacial do ERA5: O intervalo de 0,25° x 0,25° tende a suavizar 

microclimas, principalmente em cidades costeiras e densamente urbanizadas, onde efeitos 

locais — como ilhas de calor ou circulação de brisa — podem influenciar a precipitação de 

forma mais intensa e pontual. 

Efeitos de urbanização: Regiões com grande concentração de edificações, vias 

asfaltadas e áreas impermeabilizadas apresentam maior propensão a acúmulo de calor, além 

de alterações nos fluxos de umidade. Tais condições podem não ser integralmente capturadas 

por reanálises de abrangência global. 

Eventos de mesoescala e sub-diários: Fenômenos como as linhas de instabilidade, 

sistemas convectivos localizados e DOLs podem gerar picos de chuva de difícil representação 

em bases de dados globais ou em modelos de baixa resolução. 

Em decorrência desses fatores, para modelos futuros com capacidades mais avançadas 

de previsão, se faz necessário a utilização de séries temporais de estações meteorológicas 

locais ou outros produtos de observação direta (por exemplo, dados de radar e pluviômetros 

automáticos), de modo a aferir e aprimorar a precisão dos resultados do MLP em capturar 

picos de precipitação e eventos extremos. Dessa forma, seria possível avaliar a robustez dos 

modelos em representar a variabilidade microclimática da cidade e, caso necessário, 

incorporar ajustes ou melhorias em sua arquitetura ou no conjunto de variáveis de entrada. 

4.2.3 Discussão dos Resultados e Perspectivas 

Os resultados apresentados mostram que o MLP consegue capturar parcialmente a 

variabilidade da precipitação, mas com desempenho que ainda pode ser melhorado. Algumas 

reflexões e pontos adicionais podem ser destacados: 

1.​ Influência de forçantes de larga escala​

A análise exploratória (Seção 4.1) evidenciou tendências de aquecimento no Atlântico 

e no continente, bem como variações de pressão relativamente sutis, porém 

significativas. Em anos com El Niño ou quando a TSM do Atlântico está acima da 
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média, a precipitação em Recife tende a mostrar desvios consideráveis, ora reforçando 

episódios intensos, ora reduzindo a quantidade de chuva. Essas condições podem ser 

mais bem capturadas com informações dinâmicas adicionais (por exemplo, índices 

como o Dipolo do Atlântico, a Oscilação Decadal do Pacífico ou o Multivariate ENSO 

Index). 

2.​ Escalabilidade do modelo​

Modelos MLP puros não levam em conta a correlação temporal de modo explícito, 

dependendo unicamente das janelas de entrada definidas (48 dias neste trabalho). Em 

estudos futuros, arquiteturas mais apropriadas para séries temporais, como LSTM, 

GRU, TCN ou até Transformers (Temporal Fusion Transformer – TFT), podem 

melhorar o aprendizado de longo prazo e o desempenho em eventos extremos (Lim et 

al., 2021). 

3.​ Resolução espacial e dados locais​

A adoção de reanálises globais (ERA5) com resolução de 0,25° x 0,25° implica em 

perda de detalhes espaciais que podem ser decisivos para a precipitação em uma 

cidade costeira e densamente urbanizada. Integração com downscaling dinâmico ou 

estatístico, bem como a assimilação de dados de radar meteorológico, poderia 

aumentar a precisão local. 

4.​ Impacto na tomada de decisão​

Apesar de algumas limitações, a modelagem aqui demonstrada tem potencial para 

auxiliar sistemas de monitoramento e alerta da Defesa Civil. Mesmo um coeficiente de 

determinação na faixa de ~0,48 pode indicar utilidade prática em alertas de tendência 

de aumento de chuva, desde que haja complementação com outras ferramentas de 

previsão numérica e observações em tempo real (Guo et al., 2024). 

5.​ Melhorias e trabalho futuro 

○​ Aumento no número de variáveis: incluir vento, irradiação solar e 

cobertura de nuvens, entre outras, pode melhorar a identificação de cenários de 

convecção. 
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○​ Técnicas de Ensemble: combinar diferentes redes neurais ou métodos 

estatísticos pode aumentar a robustez da previsão. 

○​ Balanceamento de dados extremos: dado que eventos de chuva muito 

intensa podem ser raros em comparação ao total de dias, podem-se empregar 

técnicas específicas de resampling ou ponderação de erro focadas em picos de 

chuva, contribuindo para reduzir os erros de previsão exatamente nos casos 

mais críticos (Scher e Messori, 2018). 

Por fim, o MLP apresentou desempenho moderado explicando aproximadamente 48% 

da variabilidade da precipitação no período de validação. Ainda que seja um índice 

relativamente modesto para um problema tão complexo como a previsão de chuva em escala 

local, ele indica um caminho promissor para estudos de previsão baseados em machine 

learning. Os ajustes finos de arquitetura, o aperfeiçoamento dos dados de entrada (tanto em 

qualidade quanto em abrangência de variáveis) e a adoção de outras arquiteturas 

desenvolvidas especialmente para lidar com séries temporais são melhorias necessárias para o 

futuro desenvolvimento de modelos com maior capacidade de previsão. 
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5. CONCLUSÃO 

​ Este trabalho teve como objetivo principal quantificar o papel de diferentes 

forçantes climáticas na variabilidade de chuvas na Região Metropolitana do Recife, por meio 

do uso de um modelo de rede neural para aprimorar a previsibilidade de eventos extremos de 

chuva. Para isso, foi desenvolvida uma abordagem que utilizou dados de reanálise (ERA5), 

envolvendo variáveis como temperatura a 2 metros, temperatura da superfície do mar, pressão 

ao nível do mar e precipitação. 

Durante o desenvolvimento do trabalho, ficou evidente a influência da interação 

oceano-atmosfera sobre o regime de chuvas do Recife, especialmente no período chuvoso de 

março a agosto. As análises da variabilidade dessas variáveis ao longo do tempo mostraram 

tendências de aquecimento da atmosfera e do oceano, em consonância com as previsões de 

aquecimento global e mudanças climáticas. A precipitação, por sua vez, não apresentou um 

aumento acentuado em sua tendência, mas, ao longo das décadas, foram observados diversos 

eventos extremos e picos de anomalia relacionados a fenômenos sinóticos e de mesoescala, 

como os DOLs. 

O modelo de rede neural profunda empregado foi o MLP, que buscou capturar a 

evolução da precipitação em curtos intervalos de previsão. Os resultados indicam que o 

modelo conseguiu explicar cerca de 48% da variação dos dados de validação (R² ≈ 0,48), 

apresentando acertos na tendência geral de alta e baixa da precipitação, porém com 

dificuldades em reproduzir a intensidade dos eventos extremos. 

Essa limitação se deve a diversos fatores, como a resolução espacial relativamente 

baixa em comparação com a complexidade de uma região litorânea e densamente urbanizada, 

a representação insuficiente de fenômenos de mesoescala e a própria arquitetura do MLP, que 

não modela explicitamente as dependências de longo prazo. Ainda assim, os resultados 

sinalizam que o uso de mais variáveis correlacionadas, a melhoria na qualidade dos dados e a 

adoção de arquiteturas avançadas de séries temporais (como Long Short-Term Memory e 

Temporal Fusion Transformers) podem ampliar a capacidade de previsão. 

O desenvolvimento e o uso de modelos de aprendizagem profunda, que fazem parte do 

campo da inteligência artificial, têm impacto direto na gestão de riscos, especialmente em 



43 
 
 

áreas de alta vulnerabilidade e suscetíveis a eventos climáticos extremos. Uma previsão mais 

robusta permite que os órgãos governamentais e a sociedade em geral tomem decisões 

adequadas frente a eventos extremos, por meio de ações da Defesa Civil. A tendência global é 

que haja um aumento na quantidade de eventos extremos, bem como na sua intensidade, o 

que reforça a urgência em aprimorar técnicas de previsão. 

Assim, as análises realizadas e a aplicação do MLP configuram um passo inicial 

relevante na busca por modelos de rede neural capazes de predizer, a partir de variáveis 

climáticas e informações locais, eventos de precipitação e possíveis anomalias positivas. 

Faz-se necessária a continuidade da pesquisa para aperfeiçoar os resultados. 
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