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“In clouds of code, where data weaves,

A forecast forms from virtual leaves.
Machine learning, with eyes so keen,
Predicts the rain, where clouds have been.

From past patterns, it reads the sky,
Sensing when the heavens will cry.

With each drop's fall, its knowledge grows”
Grok



RESUMO

A precipitagdo na regido costeira de Pernambuco ¢ sensivel a variabilidade climatica, o que
refor¢a a necessidade de monitoramento e melhoria das previsdes, considerando o aumento da
incerteza e a intensificacdo de eventos climaticos extremos. Neste trabalho é realizada uma
analise detalhada sobre variabilidade temporal das principais varidveis atmosféricas que
influenciam na precipitacdo em Recife. Foi desenvolvido um modelo de Deep Learning que
utiliza 5 variaveis atmosféricas como entrada e realiza uma previsdo de precipitagdo com um
horizonte de sete dias a frente. O modelo foi treinado com séries temporais horarias, com um
total de 3.681.720 valores, de 1941 até¢ 2009. O periodo de dados de 2010 até 2023 foi
utilizado para validar o modelo. A comparagao entre os resultados de precipitacdo modelada
pelo modelo de IA e a precipitagdo da reanalise mostraram uma correlacdo de Pearson de

0.6913, MAE de 79,3, MSE de 94,9, RMSE de 281,7 e R? de 0,48.

Palavras-chave: Previsao de chuvas; Recife - PE; Modelo de Deep Learning; Multilayer

Perceptron (MLP)



ABSTRACT

Precipitation in the coastal region of Pernambuco is sensitive to climate change, which underscores the
need for monitoring and improving forecasts, given the increased uncertainty and intensification of
extreme weather events. This study provides a detailed analysis of the temporal variability of the main
atmospheric variables influencing precipitation in Recife. A Deep Learning model was developed that
uses five atmospheric variables as inputs and produces a seven-day-ahead precipitation forecast. The
model was trained using hourly time series data—totaling 3,681,720 values—from 1941 to 2009. The
period from 2010 to 2023 was used to validate the model. A comparison between the modeled
precipitation results and reanalysis precipitation data showed a Pearson correlation of 0.6913, MAE of

79.3, MSE of 94.9, RMSE of 281.7, and R? of 0.48.

Keywords: Rainfall forecast; Recife - PE; Deep Learning model; Multilayer Perceptron (MLP)
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1. INTRODUCAO

A Regidao Nordeste do Brasil (NEB) ¢ caracterizada por uma alta variabilidade
espacial e temporal de chuvas, determinadas por sua posi¢do geografica, relevo e sistemas de
pressao atmosféricos, que estao entre os principais fatores climaticos que determinam a sua
sazonalidade (Ferreira, 2005). Entre os fendmenos de grande escala que atuam sobre o NEB, a
Zona de Convergéncia Intertropical (ZCIT) e o El Nino-Oscilagdo Sul sdo os mais
importantes (Hastenrath e Lamb 1977; Chiang et al. 2002; Giannini et al. 2004; Da Silva,
2004; Dos Santos et al., 2023). Em escala interanual, o NEB ¢ influenciado pela evaporacao
do Pacifico e Atlantico tropical, pela temperatura da superficie do mar (TSM), que ocasionam
o El Nifio/La Nina, o Dipolo do Atlantico e outros eventos que podem ocorrer na bacia oeste
do Atlantico Tropical Sul (ATS). Estas forgantes interanuais podem amplificar os periodos de
seca e chuvas intensas (Kayano; Andreoli, 2006; Rafaela; Lima, 2021; Souza et al., 2021).
Dentro dessa variabilidade natural do NEB também se encontram os fatores resultantes de
interagdo oceano-atmosfera, onde os mesmos influenciam o regime de chuvas das regides
semidridas e litoraneas (Silva et al., 2019; Rao; Chapa; Franchito, 1999). Alguns dos sistemas
meteoroldgicos mais relevantes para o NEB sdao: A ZCIT, A Zona de Convergéncia do
Atlantico Sul, Os Vortices Ciclonicos de Altos Niveis € Os Distiurbios Ondulatorios de Leste
(DOLs) (Kouadio et al., 2012; Chaves; Cavalcanti, 2001; De Albuquerque Cavalcanti, 2015;
Gomes et al., 2015). Em estudo recente, do Santos et al. (2023) identificaram que a Oscilagao
Decadal do Pacifico (PDO) exerce maior controle sobre a modulagdo dos padrdes climaticos
no NEB e revelaram outras influéncias diferenciais a partir de teleconexdes como a Oscilagao
Multidecadal do Atlantico (Atlantic Multidecadal Oscillation), indice Multivariado do ENSO
(Multivariate ENSO Index) e da Oscilacdo do Atlantico Norte (North Atlantic Oscillation) na
precipitacdo nas quatro sub-regides do NEB. Os padrdes de circulagdo do Atlantico
influenciam fortemente a precipitacdo interanual e interdecadal nas regides do Agreste, Sertdo

e Centro-Norte, possivelmente associados a posi¢ao da ZCIT.

No Leste do Nordeste Brasileiro (ENEB) esté localizada a cidade de Recife, no estado
de Pernambuco, e essa apresenta periodo chuvoso predominantemente entre margo a agosto,
com uma média anual de precipitacdo de 2290,55 mm (Silva Junior et al., 2020). No entanto,
a variabilidade interanual em alguns casos pode ocasionar eventos extremos, os quais

impactam de forma significativa as areas urbanas mais vulneraveis. Por ser uma cidade
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litoranea frequentemente afetada por eventos extremos de chuva, Recife ocupa a 16* posi¢ao
entre as cidades mais ameacadas no mundo pelas mudangas climaticas (Baltar De Souza

Ledo; Silveira Andrade; Felipe Nascimento, 2021).

Recife passou por alguns grandes eventos climaticos extremos nos ultimos 15 anos,
como em 2010 e em 2022. Em 2010 os DOLs resultaram em inundagdes severas que
atingiram 45 municipios em Pernambuco, incluindo a capital, Recife, causando danos
generalizados (Luiz do Vale Silva et al., 2018). Ja em 2022 dois grandes eventos de DOLs, no
periodo entre 25 a 28 de maio, resultaram na precipitacdo acumulada superior a 500 mm o que
levou a morte de mais 130 pessoas entre os estados de Pernambuco, Alagoas e Paraiba

(Marengo et al., 2023).

A previsdo de eventos extremos causados por DOLs em Recife ¢ um desafio, devido a
variabilidade interanual, que estad ligada a mudangas na TSM no ATS. Anomalias positivas da
TSM podem intensificar os eventos de precipitacdo. Em 2010, por exemplo, a TSM na costa
do ENEB esteve acima da média por trés meses consecutivos, fornecendo vapor de dgua para
os sistemas de DOLs (Luiz do Vale Silva et al., 2018; Amorim; Chaves; Silva, 2014). Esse
vapor ¢ transportado pelos ventos alisios de sudeste, resultando em chuvas intensas na costa

de Pernambuco, incluindo Recife.

Portanto, a previsdo do tempo da cidade ¢ de extrema importancia para a preservagao
de vidas humanas e desempenha um papel critico no planejamento de acdes de defesa civil,
especialmente nas areas de risco como nas margens dos rios ou encostas com risco de

deslizamento (Dos Santos; Puppim De Oliveira, 2024).

A otimizagdo da previsdo de curto e médio prazo para Recife ¢ crucial para mitigar os
impactos de eventos extremos, como os DOLs. Os eventos climaticos extremos de 2010 e
2022 evidenciam a necessidade da melhora na velocidade com a qual as previsdes sao
realizadas em modelos numéricos para aumentar a capacidade de previsdo quando se coloca
em foco os efeitos das mudancas climaticas vigentes. Por isso se faz necessario a utilizagao de
ferramentas que aprimorem a velocidade da geragdo dessas previsdes para evitar tragédias em

eventos futuros.

Apesar dos modelos numéricos regionais representarem bem os fendmenos

atmosféricos e preverem com uma certa eficiéncia, cada vez mais temos o desenvolvimento e
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aperfeicoamento de modelos baseados em Redes neurais artificiais que sdo capazes de gerar
resultados confidveis de forma mais rapida (ANN - Artificial Neural Networks). As ANNs
(Figura 1.1) sd3o modelos computacionais capazes de aprender a partir de grandes volumes de
dados, sendo estas inspiradas pelas conexdes encontradas em neuronios biologicos (Basheer e
Hajmeer et al., 2000). Machine learning, por sua vez, refere-se a capacidade das maquinas de
aprender padrdes e tomar decisdes baseadas nesses dados, sem a necessidade de instrugdes
explicitas (Pandey et al., 2023). Essas tecnologias tém se destacado pela sua capacidade de

resolver problemas complexos em diversas areas do conhecimento (Abiodun et al., 2018).

Figura 1.1. Desenho esquematico de uma rede neural artificial de multicamadas feedforward. Fonte:

PIRES et al, 2023.
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Dentro das redes neurais existe uma categoria das mesmas denominada redes neurais

profundas (DNN - Deep Neural Networks), sendo estas capazes de melhor compreender
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relacdes complexas e hierdrquicas dos dados de entrada, traduzindo-se em maior capacidade
de aprendizado, além da possibilidade de serem utilizadas em diversas areas, como visao
computacional, processamento de linguagem natural, sistemas de recomendacdo, analise de
séries temporais e diagnosticos médicos, permitindo avangos significativos em tarefas que

exigem alto nivel de precisao e generalizagdo (Agarwall, 2018).

O uso de redes neurais tem se expandido rapidamente em setores como a industria
automobilistica, alimenticia, e metalurgica, bem como na area da satide e no setor financeiro
(Habehh e Goel, 2021; Nousias et al., 2023; Smith, 2020; Tkac¢ e Verner, 2016). Elas
oferecem solugdes para otimizagdo de processos, como na producdo industrial e detecgdo de
fraudes (Bin Sulaiman et al., 2022; Sudha et al., 2016), além de possibilitarem inovagdes em
areas como diagndsticos médicos e sistemas de recomendagdo (Latha e Rao, 2024; Nguyen et

al., 2022).

Uma das areas de maior aplica¢do das redes neurais ¢ na andlise de séries temporais,
essenciais para prever fendmenos que se desenvolvem ao longo do tempo (Kourentzes et al.,
2014). Esse tipo de analise é particularmente relevante no estudo da climatologia e
meteorologia, onde a previsao de eventos como precipitacdo, temperaturas extremas e padroes
atmosféricos pode impactar setores como a agricultura, a geragdao de energia e a gestdo de

desastres naturais (Scher ¢ Messori, 2018).

A utilizagdo de ANNs para a solucdo de problemas tem sido de grande interesse no
meio académico, industrial e empresarial, oferecendo respostas mais rapidas e, por vezes,
mais precisas do que modelos estatisticos tradicionais (Alon et al., 2001). A analise de séries
temporais, essenciais para o estudo da climatologia e meteorologia de uma regido, ¢ chave

para muitas das redes neurais utilizadas ao redor do mundo (Citakoglu e Coskun et al., 2022).

Estudos recentes t€ém desenvolvido e utilizado modelos de machine learning para
melhorar e agilizar as previsdes de curto prazo meteorologicas (Guo et al., 2024; Xie et al.,
2023). Pinheiro Gomes et al (2024) utilizou de modelos de redes neurais para auxiliar na
melhoria da previsdo da precipitacdo na regido da Amazonia Legal através da obtencdo de
dados de estagdes pluviométricas da regido, enquanto que em outras regides do globo como
na Etiopia (Kebede et al, 2024) foram utilizados dados de modelos climaticos e agéncias

internacionais em busca de respostas mais robustas e confidveis em uma regido de grande
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incerteza meteoroldgica devido a sua configuracdo geografica além das variagdes espacgo
temporais de uma latitude sob o efeito da ZCIT. Outros estudos buscam a melhoria da
previsibilidade de padrdes climaticos como o El Nind (ENSO) sendo este um evento de alta
imprevisibilidade (Ham et al, 2019; Chen et al, 2023), melhorias na obtengdo de dados e
previsibilidade de regides com potencial para usinas eolicas e geracdo de energia solar e

hidraulica (Ferrero Bermejo et al, 2019; Marugan et al, 2018).

As ANNs s3ao formadas por camadas de neurOnios interconectados, onde cada
neurdnio recebe valores de entrada, processa os mesmos utilizando uma fungdo de
combina¢do, uma soma ponderada, e uma funcdo de ativacdao que introduz nao linearidade ao
modelo. Essas redes neurais podem ser configuradas com diferentes niimeros de camadas e
conexdes o que permite desde arquiteturas simples, uma Unica camada, a complexas, com
multiplas camadas (Botelho Pires et al., 2025). O Multilayer Perceptron (MLP) ¢é uma
subclasse das ANNs e possui uma arquitetura feedforward, que significa que os dados fluem
em uma Unica dire¢do, das camadas de entrada para as camadas ocultas e, por fim, para a
camada de saida. O MLP ¢ composto por uma ou mais camadas ocultas (Figura 1.2), sendo
considerado uma rede neural profunda quando possui mais de uma camada oculta, sendo seu
diferencial sua capacidade de modelar relagdes nao lineares a partir da aplicagdo de fungdes
de ativagdo em cada camada oculta. Algumas das funcdes de ativacdo sdo a Unidade Linear
Retificada (ReLU), a fun¢do sigmoide logistica (sigmoid) e a fungdo hiperbdlica tangente
(tanh).

Figura 1.2. Desenho esquematico de uma MLP. Fonte: ALBUQUERQUE, 2024.
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2. OBJETIVOS

2.1 Objetivo Geral

Este trabalho tem como objetivo analisar o papel de diferentes forgcantes climaticas na
variabilidade de chuvas na Regido Metropolitana de Recife através do uso de modelos de

redes neurais, com o intuito de melhorar a previsibilidade de eventos extremos de chuva.

2.2 Objetivos Especificos

° Analisar as relagdes entre as variaveis escolhidas;
° Identificar padrdes climatologicos na regiao estudada;
° Desenvolver e aplicar modelo de rede neural para aprimorar a previsao

de eventos de chuvas extremas na regiao metropolitana de Recife.



19

3. METODOLOGIA

3.1 AREA DE ESTUDO

A cidade de Recife (8°04°03” S e 34°52°16” W) ¢ habitada por 1.48 milhdes de
pessoas, sendo a nona cidade mais populosa do pais, com uma extensao territorial de 218,843
km? e densidade demografica de 6.803,60 hab/km? (IBGE, 2024). Sua geomorfologia se
caracteriza como uma planicie aluvional, composta por ilhas e manguezais, cortada por
diversos rios como o Capibaribe, Beberibe e Tejipid, além de apresentar marés com

amplitudes de até 2 metros. (Figura 3.1).

Figura 3.1. Area de Estudo. Fonte: IBGE, https://www.ibge.gov.br:

LOCALIZAGAO DE RECIFE, PERNAMBUCO - BRASIL
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Elaboragdo Cartografica: Bruno Matos Chiquito (2024)
Fonte: Limites municipais e unidades federativas (IBGE, 2022)
Sistema de coordenadas geograficas. WGS 84 25 S

3.2 Base de Dados

Os conjuntos de dados horarios para a regido do leste do nordeste foram obtidos

através da base de dados de reanalise do ERAS5 que pertence ao ECMWF (European Centre
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for Medium-Range Weather Forecasts). O acronimo ERAS vem da abreviagdo de ECMWF
Reanalysis v5, esta base ¢ a quinta geracdo de reandlise atmosférica do ECMWF do clima
global, abrangendo o periodo de janeiro de 1941 até o presente. Esta base tem resolucao de
0,25° x 0,25°, disponivel em https://cds.climate.copernicus.eu/. Esta base tem sido comparada
com dados de radiossonda e mostra um ajuste melhorado para temperatura, vento e umidade
na troposfera. A resolugdo temporal e espacial aprimorada permite uma evolucdo detalhada
dos sistemas meteorologicos. Para precipitagdo, a correlagdo média global com dados GPCP
médios mensais ¢ aumentada de 67% para 77% (Hersbach et al., 2020). As varidveis a serem
consideradas para treinamento sdo dados didrios de temperatura da superficie do mar,

temperatura a 2 metros, pressao ao nivel do mar e precipitacao total.
3.3 Modelo de aprendizado profundo

O modelo desenvolvido neste estudo ¢ o MLP, este ¢ um tipo de rede neural
artificial que consiste em varias camadas de neurénios. O MLP ¢ uma rede neural semelhante
ao perceptron simples, porém possui mais de uma camada de neurdnios. Os neuronios do
MLP normalmente usam fung¢des de ativacdo ndo lineares, permitindo que a rede aprenda
padrdes complexos nos dados (Lightbody e Irwin 1996). Inspirando-se no funcionamento dos
neurdnios biologicos do sistema nervoso dos animais, estabeleceu-se na area da Inteligéncia

Artificial um modelo computacional de um neurdnio conforme ilustrado na figura 3.2.

Figura 3.2. Modelo computacional de um neuronio.
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Os sinais da entrada no neurdnio sdo representados pelo vetor x = [x1, x2, x3, ..., XN],
podendo corresponder aos pixels de uma imagem, por exemplo. Ao chegarem ao neuronio,
sao multiplicados pelos respectivos pesos sinapticos, que sdo os elementos do vetor w = [w1,

w2, w3, ..., WwN], gerando o valor z, comumente denominado potencial de ativa¢dao. O termo
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adicional b prové um grau de liberdade a mais, que ndo ¢ afetado pela entrada nessa

expressao, correspondendo tipicamente ao “bias”, de acordo com a equagdo 01 abaixo:

N
Xxw +b (01)
i=1

O valor z passa entdo por uma fungdo matematica de ativagdo o, com a caracteristica
de ser ndo linear, responsavel por limitar tal valor a um certo intervalo, produzindo o valor

final de saida e do neurénio.

Podemos combinar uma estrutura de camadas, cada uma com numero diferente de
neurdnios, formando uma rede neural denominada Perceptron Multicamadas, “Multilayer
Perceptron”. Os perceptrons multicamadas consistem em multiplas camadas de neurdnios,
cada uma totalmente conectada as da camada inferior (da qual recebem informacdes) e as
superiores (Zhang et al., 2023). O vetor de valores de entrada x passa pela camada inicial,
cujos valores de saida sdo ligados as entradas da camada seguinte, ¢ assim por diante, até que
a rede fornega como resultado os valores de saida da tltima camada. Pode-se arranjar a rede
em varias camadas, tornando-a profunda e capaz de aprender relagdes cada vez mais

complexas (Figura 3.3).

Figura 3.3. Neurénios combinados formando uma rede.

xq

A modelagem consiste dos seguintes passos:

A. Inicializagdo de todos os pesos da rede com pequenos valores

aleatorios.
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B. Fornecimento de dados de entrada a rede e calcular o valor da fungao

de erro obtida, ao comparar com o valor de saida esperado.

C. A minimiza¢do do valor da funcdo de erro, calculando os valores dos

gradientes para cada peso da rede.

D. Uma vez que temos o vetor gradiente calculado, atualiza-se cada peso
de modo iterativo, sempre recalculando os gradientes em cada passo de
iteracdo, até o erro diminuir e chegar abaixo de algum limiar preestabelecido,
ou o numero de iteragdes atingir um valor maximo, quando enfim o algoritmo

termina e a rede estd treinada (Poulton, 2001).

Este modelo utiliza 5 variaveis como entrada e realiza uma previsdo de sete dias a
frente. Baseado na série temporal de 3.681.720 valores, sdo utilizados os dados de 1941 até
2009 para treinar o modelo e os dados de 2010 até 2023 sdo utilizados para validar o modelo.
Quatro métricas estatisticas serdo aplicados para quantificar a precisdo e qualidade da

previsao do modelo, sdo elas:

° MAE (Erro Médio Absoluto): descreve a magnitude média dos erros.

° MSE (Erro Quadratico Médio): penaliza mais fortemente grandes desvios
pontuais.

° RMSE (Raiz do Erro Quadratico Médio): sendo tipicamente mais interpretavel

na mesma escala da variavel.

° R? (Coeficiente de Determinagdo):indicando quanto por cento da variacao da

precipita¢do no conjunto de validacdo foi explicada pelo modelo.

4. RESULTADOS

Os resultados aqui apresentados estdo divididos em anélises dos dados de entrada do
modelo e resultados da modelagem. A se¢do 4.1 mostra as séries temporais utilizadas nesta
pesquisa. A partir destas séries sdo estimadas as médias climatologicas mensais e anuais. Para
identificar variagdes interanuais sao estimadas as anomalias. A se¢do 4.2 ilustra o resultado da

modelagem de aprendizado profundo e validagao do modelo com os dados de reanalise.
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4.1. Analise de variabilidade temporal das variaveis assimiladas pelo

modelo

Nas Figuras 4.1.1 a 4.1.4, apresenta-se a analise da temperatura do ar a 2
metros, na qual é possivel observar uma tendéncia de aumento ao longo dos anos. Essa
tendéncia ¢ evidenciada tanto pela média moével na série temporal quanto pela linha de
tendéncia no grafico de anomalias, que indica variacdes positivas alcangando até 1°C. A
climatologia mensal revela um padrdo sazonal bem definido, com o pico de temperatura
ocorrendo em marc¢o € o més mais frio sendo agosto. Adicionalmente, a climatologia anual

reforga essa tendéncia de aumento da temperatura ao longo do periodo analisado.

Figura 4.1.1. Série mensal da temperatura do ar a 2 metros, de 1941 até 2023.
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Figura 4.1.2. Climatologia mensal da temperatura do ar a 2 metros, de 1941 até 2023.
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Figura 4.1.3. Série da média anual da temperatura do ar a 2 metros, de 1941 até 2023.
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Figura 4.1.4. Anomalia mensal da temperatura a 2 metros, de 1941 até 2023.
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As Figuras 4.1.5 a 4.1.8, que representam a andlise da pressdo atmosférica na
superficie, ndo evidenciam, a primeira vista, uma tendéncia clara de aumento. No entanto, ao
considerar a linha de tendéncia das anomalias, observa-se um leve crescimento ao longo do
periodo analisado. A série temporal e a climatologia anual permitem visualizar a evolugdo
dessa variavel ao longo do tempo, enquanto a climatologia mensal evidencia sua variabilidade

sazonal, caracterizada por um pico em agosto € um valor minimo em margo.

Figura 4.1.5. Serie mensal da Pressdao atmosférica na superficie, de 1941 até 2023.
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Figura 4.1.6. Climatologia mensal da Pressdo atmosférica na superficie, de 1941 até 2023.
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Figura 4.1.7. Série da média anual da Pressdo atmosférica na superficie, de 1941 até 2023.
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Figura 4.1.8. Anomalia mensal da Pressdo atmosférica na superficie, de 1941 até 2023.
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Nas Figuras 4.1.9 a 4.1.12, apresenta-se a andlise da temperatura da superficie do mar,
na qual os gréaficos da série temporal mensal, da climatologia anual e das anomalias indicam
uma tendéncia de elevacdo ao longo do periodo analisado. As anomalias registradas atingiram
valores de até 1°C, evidenciando um aumento significativo na temperatura da superficie
oceanica. A climatologia mensal revela um padrdo sazonal bem definido, com o menor valor

dessa variavel ocorrendo em agosto e o pico maximo registrado em abril.

Figura 4.1.9. Série mensal da temperatura da superficie do mar, de 1941 até 2023
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Figura 4.1.10. Climatologia mensal da temperatura da superficie do mar, de 1941 até 2023.
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Figura 4.1.11. Série da média anual da temperatura da superficie do mar, de 1941 até 2023.
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Figura 4.1.12. Anomalia mensal da temperatura da superficie do mar, de 1941 até 2023.
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As Figuras 4.1.13 a 4.1.16 apresentam a variabilidade da pressdo ao nivel médio do
mar, evidenciando uma tendéncia de aumento ao longo do periodo analisado, conforme
indicado pela linha de tendéncia das anomalias. No entanto, a série temporal mensal e a
climatologia anual revelam um comportamento relativamente disperso dentro de um intervalo
especifico evidenciado pela média movel. Por sua vez, a climatologia mensal destaca a

sazonalidade dessa varidvel, com um pico maximo em agosto € um minimo em marco.

Figura 4.1.13. Série mensal da Pressdo ao Nivel Médio do Mar, de 1941 até 2023.
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Figura 4.1.14. Climatologia mensal da Pressdo ao Nivel Médio do Mar, de 1941 até 2023.
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Figura 4.1.15. Série da média anual da Pressdo ao Nivel Médio do Mar, de 1941 até 2023
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Figura 4.1.16. Anomalia mensal da Pressdo ao Nivel Médio do Mar, de 1941 até 2023.
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As Figuras 4.1.17 a 4.1.20 representam a andlise da precipitagao total. Os graficos da
série temporal mensal, da climatologia anual e das anomalias ndo evidenciam, a principio,
uma tendéncia clara de variacdo ao longo do tempo. No entanto, ao observar a linha de
tendéncia das anomalias, verifica-se um leve aumento na precipitacdo total ao longo do
periodo analisado. A climatologia mensal destaca a sazonalidade do regime pluviométrico,

com o maior volume de precipitagdo registrado em julho e 0 menor em novembro.

Figura 4.1.17. Série mensal da Precipitagdo Total, de 1941 até 2023.
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Figura 4.1.18. Climatologia mensal da Precipitag¢do Total, de 1941 até 2023.
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Figura 4.1.20. Anomalia mensal da Precipitag¢do Total, de 1941 até 2023.
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E possivel observar que ao longo das ultimas décadas, uma tendéncia de aquecimento
tanto sobre areas continentais quanto na superficie ocednica, em concordiancia com as
projecdes de mudangas climaticas realizadas pelo Painel Intergovernamental sobre Mudangas
Climaticas (IPCC). A analise dos graficos de temperatura (Figuras 4.1.1 a 4.1.4) mostra
anomalias que podem alcancar até +1 °C acima da média ao longo de 82 anos, refor¢ando um
cenario de elevacdo gradual das temperaturas. Embora as climatologias mensais evidenciam
sobretudo a variagdo sazonal — com maximas em torno de fevereiro—margo € minimas em
agosto, as séries de anomalias revelam oscilagdes mais intensas que nao sdo inteiramente

capturadas por esses valores médios.

A identificagdo de picos positivos da anomalia na Figura 4.1.4 sugere possivel
associagdo como nos episoddios de El Nifio dos anos 1983, 1997 e 2016, indicando mudancas
significativas na circulagdo atmosférica global através do indice positivo do "Oceanic Nifio
Index". Em periodos recentes, algumas projecdes apontam para aquecimento adicional em
2024, resultado potencial da combinagdo entre El Nifio e o efeito de ilhas de calor urbanas na

Regido Metropolitana do Recife (COSTAS VAROTSOS et al., 2024).

As analises da pressdo atmosférica, tanto sobre a superficie do continente quanto do
oceano, (Figuras 4.1.5 a 4.1.8 e 4.1.13 a 4.1.16) mostram alteracdes discretas, mas com
capacidade de influenciar a convergéncia de umidade e geragdo de chuvas. Na regido da area
de estudo a Alta Pressao Subtropical do Atlantico Sul e ZCIT se destacam como mecanismos
fundamentais que controlam o regime de chuvas, principalmente entre marco e agosto.

Pequenas variagdes nesses campos de pressao podem intensificar ou impedir a formagao de
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nuvens, influenciando diretamente sobre a precipita¢do, especialmente quando combinadas a

anomalias positivas da TSM no Atlantico.

No que diz respeito a precipitacdo (Figuras 4.1.17 a 4.1.20), ndo foram verificadas
tendéncias de elevacdo ou redugdo tdo acentuadas quanto as observadas na TSM ou na
temperatura a 2 metros. Entretanto, ha picos de anomalia distribuidos ao longo da série
historica. Na cidade de Recife que pode apresentar média anual de chuvas com valores de até
2000mm, esses picos anOmalos positivos geralmente sdo resultantes da combinacdo de
sistemas meteorologicos, como o posicionamento da ZCIT e a atuacao de DOLs e, variagdes
em forgantes oceanicas como uma maior disponibilidade de vapor d’agua devido a anomalias

positivas da TSM.

O aquecimento, tanto continental quanto oceanico, pode favorecer a intensificacao de
eventos climaticos e o aumento da incerteza em relagdo a projecdes e previsoes das variaveis
oceano-atmosféricas como a precipitagao, ventos, TSM, etc. Em Recife, a proximidade com o
oceano, associada as condi¢des regionais, faz com que o regime de chuvas e a ocorréncia de
eventos climaticos sejam altamente sensiveis a pequenas alteragdes na dindmica
oceano—atmosfera. As evidéncias atuais apontam que pequenas variacdes de pressao e
elevacao consistente da temperatura sobre o continente € o oceano Atlantico podem ter efeitos
significativos no regime de chuvas locais, reforcando a necessidade de aperfeicoar as
previsdes e manter o monitoramento da regido, considerando o histérico de eventos extremos

e as estimativas de intensifica¢ao desses eventos em cenarios de mudangas climaticas.
4.2. Modelagem e validac¢ao

A modelagem consistiu na execu¢ao do modelo MLP e validagdo para a previsao de
precipitacdo para um ponto na Regido Metropolitana do Recife considerando diversos
conjuntos de hiperpardmetros para se alcangar o melhor resultado possivel. Além disso, ¢

discutido a qualidade do ajuste obtido e possiveis melhorias.
4.2.1 Configuracio do Modelo e Pré-processamento

O MLP foi configurado com trés camadas ocultas, cada uma contendo 64 neurdnios, €
fun¢do de ativagdo do tipo LeakyReLU com negative slope = 0,01. Foi aplicado dropout de

20% em cada camada para reduzir a chance de overfitting, além de callbacks de
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EarlyStopping e LearningRateMonitor para interromper o treinamento quando o erro de

validagdo ndo apresentasse melhorias significativas em 15 épocas.

Hiperparametros principais do modelo:

° Input size: 240 (resultado da combinagdo de 5 varidveis em 48 timesteps
passados);
° Output_size: 6 (previsao para 6 timesteps futuros);

° Hidden_size: 64;

° Numero de camadas ocultas: 3;
° Taxa de aprendizado (learning_rate): 1 x 10"-4;
° Batch_size: 32;

° Funcao de ativagao: LeakyReLU;
° Dropout: 20%.
Divisao temporal dos dados:
° Periodo de treinamento: 1941 até 31/12/2009;
° Periodo de validagao: 01/01/2010 até 2023.
Normalizagao e tratamento das variaveis:

° A precipitagdo total (TP) foi convertida para milimetros (quando
necessario) e, em conjunto com TSM, SP (Surface Pressure), MSL (Mean Sea Level
Pressure) e T2M (Iemperature at 2 meters), normalizada com o MinMaxScaler no

intervalo [0,1].

° Cada variavel foi escalonada individualmente, evitando que alguma

assumisse maior peso simplesmente por diferenca de ordem de magnitude.
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Essa padronizagdo tem como objetivo facilitar a convergéncia do modelo, pois a
homogeneidade de escala entre as variaveis de entrada costuma acelerar e estabilizar o

processo de ajuste dos parametros (HAYKIN, 2001).
4.2.2 Avalia¢ao do Desempenho

Apds o treinamento, o desempenho do modelo foi avaliado por meio de quatro
métricas de regressdo: Erro Médio Absoluto (MAE), Erro Quadratico Médio (MSE), Raiz do
Erro Quadratico Médio (RMSE) e Coeficiente de Determinagdo (R?). A Tabela 4.1 apresenta

os valores obtidos (exemplo representativo ap6s algumas rodadas de treinamento):

Tabela 4.1 - Valores obtidos a partir de um exemplo representativo de treinamento e

validacao.
Métrica Valor
MAE 79,3
MSE 94,9
RMSE 281,7
R? 0,48

O R? inferior a 0,50, embora ndo seja desprezivel e sugere que ha ainda ¢ necessario
um maior treinamento dos dados, uma vez que pouco mais da metade da variabilidade ndo
esta sendo capturada. A Figura 4.2.1 ilustra a evolucdo do loss (perda) de treinamento e
validagdo ao longo das épocas, mostrando tendéncia de convergéncia. J&4 a Figura 4.2.2
compara a curva das previsdes com os valores reais de precipitagdo em um periodo de
validagdo, revelando que o modelo acerta em linhas gerais a dindmica de variagdo, mas

apresenta desvios significativos em alguns picos de chuva.
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Figura 4.2.1. Evolugdo do loss do treinamento e valida¢do ao longo das épocas de treinamento.
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Figura 4.2.2 Comparagdo entre Valores Reais e Previsées do Modelo
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4.2.2.1 Analise Qualitativa das Previsoes

A comparacdo entre valores previstos e valores observados mostra que o MLP
consegue seguir, em termos gerais, a tendéncia de alta ou baixa na precipitacdo. Entretanto, a
dispersdo dos erros tende a aumentar em eventos extremos, como chuvas muito intensas ou
periodos muito secos. Esse comportamento ¢ frequente em previsdes meteoroldgicas baseadas
em machine learning, pois os modelos podem ter dificuldade em capturar variagdes muito
abruptas, resultantes de fendmenos de escala sindtica ou de mesoescala que ndo estejam

devidamente representados em todas as variaveis de entrada.

Adicionalmente, a simplicidade do modelo pode limitar a identificagdo de padrdes
temporais complexos — por exemplo, periodos de persisténcia de tempo chuvoso modulados
pela posicdo da ZCIT ou pela atuagdo de DOLs. Por isso, mesmo que o MLP consiga

identificar tendéncias gerais, podem ocorrer desvios pontuais na amplitude da precipitagdo.
4.2.2.2 Limitacoes na Comparacao com Dados Observacionais

O conjunto de dados de reanalise ERAS fornece uma base consistente ¢ ampla de

variaveis atmosféricas, mas ¢ importante ressaltar que, em aplicacdes locais, podem ocorrer
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discrepancias em relagdo a observagdes reais obtidas por estagdes meteoroldgicas proximas a

area de estudo. Essas diferengas podem ser atribuidas a fatores como:

Resolucao espacial do ERAS: O intervalo de 0,25° x 0,25° tende a suavizar
microclimas, principalmente em cidades costeiras e densamente urbanizadas, onde efeitos
locais — como ilhas de calor ou circulagdo de brisa — podem influenciar a precipitagdo de

forma mais intensa e pontual.

Efeitos de urbanizacdo: Regides com grande concentracdo de edificagdes, vias
asfaltadas e areas impermeabilizadas apresentam maior propensao a acumulo de calor, além
de alteracdes nos fluxos de umidade. Tais condi¢des podem ndo ser integralmente capturadas

por reanalises de abrangéncia global.

Eventos de mesoescala e sub-diarios: Fendmenos como as linhas de instabilidade,
sistemas convectivos localizados ¢ DOLs podem gerar picos de chuva de dificil representacao

em bases de dados globais ou em modelos de baixa resolucao.

Em decorréncia desses fatores, para modelos futuros com capacidades mais avancadas
de previsdo, se faz necessario a utilizacdo de séries temporais de estagdes meteorologicas
locais ou outros produtos de observacdo direta (por exemplo, dados de radar e pluviometros
automaticos), de modo a aferir e aprimorar a precisao dos resultados do MLP em capturar
picos de precipitacdo e eventos extremos. Dessa forma, seria possivel avaliar a robustez dos
modelos em representar a variabilidade microclimatica da cidade e, caso necessario,

incorporar ajustes ou melhorias em sua arquitetura ou no conjunto de variaveis de entrada.
4.2.3 Discussao dos Resultados e Perspectivas

Os resultados apresentados mostram que o MLP consegue capturar parcialmente a
variabilidade da precipitagdo, mas com desempenho que ainda pode ser melhorado. Algumas

reflexdes e pontos adicionais podem ser destacados:

1. Influéncia de forgantes de larga escala
A andlise exploratdria (Secdo 4.1) evidenciou tendéncias de aquecimento no Atlantico
e no continente, bem como variagdes de pressdo relativamente sutis, porém

significativas. Em anos com El Nifio ou quando a TSM do Atlantico estd acima da
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média, a precipitagdo em Recife tende a mostrar desvios consideraveis, ora reforgando
episodios intensos, ora reduzindo a quantidade de chuva. Essas condi¢des podem ser
mais bem capturadas com informacdes dindmicas adicionais (por exemplo, indices
como o Dipolo do Atlantico, a Oscilagao Decadal do Pacifico ou o Multivariate ENSO

Index).

2. Escalabilidade do modelo

Modelos MLP puros ndo levam em conta a correlacdo temporal de modo explicito,
dependendo unicamente das janelas de entrada definidas (48 dias neste trabalho). Em
estudos futuros, arquiteturas mais apropriadas para séries temporais, como LSTM,
GRU, TCN ou até Transformers (Temporal Fusion Transformer — TFT), podem
melhorar o aprendizado de longo prazo e o desempenho em eventos extremos (Lim et

al., 2021).

3. Resolucao espacial e dados locais

A adogdo de reanalises globais (ERAS) com resolucao de 0,25° x 0,25° implica em
perda de detalhes espaciais que podem ser decisivos para a precipitacdo em uma
cidade costeira e densamente urbanizada. Integragdo com downscaling dindmico ou
estatistico, bem como a assimilagdo de dados de radar meteoroldgico, poderia

aumentar a precisao local.

4. Impacto na tomada de decisdo

Apesar de algumas limitagdes, a modelagem aqui demonstrada tem potencial para
auxiliar sistemas de monitoramento e alerta da Defesa Civil. Mesmo um coeficiente de
determinagdo na faixa de ~0,48 pode indicar utilidade pratica em alertas de tendéncia
de aumento de chuva, desde que haja complementagdo com outras ferramentas de

previsdo numérica e observacdes em tempo real (Guo et al., 2024).
5. Melhorias e trabalho futuro

o Aumento no numero de variaveis: incluir vento, irradiacdo solar e
cobertura de nuvens, entre outras, pode melhorar a identificacdo de cenarios de

convecgao.
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o Técnicas de Ensemble: combinar diferentes redes neurais ou métodos

estatisticos pode aumentar a robustez da previsao.

o) Balanceamento de dados extremos: dado que eventos de chuva muito
intensa podem ser raros em comparagdo ao total de dias, podem-se empregar
técnicas especificas de resampling ou ponderagdo de erro focadas em picos de
chuva, contribuindo para reduzir os erros de previsdo exatamente nos casos

mais criticos (Scher e Messori, 2018).

Por fim, o MLP apresentou desempenho moderado explicando aproximadamente 48%
da variabilidade da precipitagdo no periodo de validagdo. Ainda que seja um indice
relativamente modesto para um problema tdo complexo como a previsdo de chuva em escala
local, ele indica um caminho promissor para estudos de previsdo baseados em machine
learning. Os ajustes finos de arquitetura, o aperfeicoamento dos dados de entrada (tanto em
qualidade quanto em abrangéncia de variaveis) e a adog¢do de outras arquiteturas
desenvolvidas especialmente para lidar com séries temporais sao melhorias necessarias para o

futuro desenvolvimento de modelos com maior capacidade de previsao.
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5. CONCLUSAO

Este trabalho teve como objetivo principal quantificar o papel de diferentes
forgantes climaticas na variabilidade de chuvas na Regido Metropolitana do Recife, por meio
do uso de um modelo de rede neural para aprimorar a previsibilidade de eventos extremos de
chuva. Para isso, foi desenvolvida uma abordagem que utilizou dados de reanalise (ERAS),
envolvendo variaveis como temperatura a 2 metros, temperatura da superficie do mar, pressao

ao nivel do mar e precipitagao.

Durante o desenvolvimento do trabalho, ficou evidente a influéncia da interagao
oceano-atmosfera sobre o regime de chuvas do Recife, especialmente no periodo chuvoso de
margo a agosto. As andlises da variabilidade dessas variaveis ao longo do tempo mostraram
tendéncias de aquecimento da atmosfera e do oceano, em consondncia com as previsoes de
aquecimento global e mudancgas climaticas. A precipitagdo, por sua vez, ndo apresentou um
aumento acentuado em sua tendéncia, mas, ao longo das décadas, foram observados diversos
eventos extremos e picos de anomalia relacionados a fendmenos sindticos e de mesoescala,

como os DOLs.

O modelo de rede neural profunda empregado foi o MLP, que buscou capturar a
evolucdo da precipitacdo em curtos intervalos de previsdo. Os resultados indicam que o
modelo conseguiu explicar cerca de 48% da variacao dos dados de validacao (R* = 0,48),
apresentando acertos na tendéncia geral de alta e baixa da precipitacdo, porém com

dificuldades em reproduzir a intensidade dos eventos extremos.

Essa limitagdo se deve a diversos fatores, como a resolu¢cdo espacial relativamente
baixa em comparagdo com a complexidade de uma regido litoranea e densamente urbanizada,
a representacdo insuficiente de fendmenos de mesoescala e a propria arquitetura do MLP, que
nao modela explicitamente as dependéncias de longo prazo. Ainda assim, os resultados
sinalizam que o uso de mais varidveis correlacionadas, a melhoria na qualidade dos dados e a
adocdo de arquiteturas avancadas de séries temporais (como Long Short-Term Memory e

Temporal Fusion Transformers) podem ampliar a capacidade de previsao.

O desenvolvimento e o uso de modelos de aprendizagem profunda, que fazem parte do

campo da inteligéncia artificial, t€m impacto direto na gestdo de riscos, especialmente em
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areas de alta vulnerabilidade e suscetiveis a eventos climaticos extremos. Uma previsdo mais
robusta permite que os 6rgdos governamentais ¢ a sociedade em geral tomem decisdes
adequadas frente a eventos extremos, por meio de acdes da Defesa Civil. A tendéncia global ¢
que haja um aumento na quantidade de eventos extremos, bem como na sua intensidade, o

que reforga a urgéncia em aprimorar técnicas de previsao.

Assim, as andlises realizadas e a aplicagdo do MLP configuram um passo inicial
relevante na busca por modelos de rede neural capazes de predizer, a partir de variaveis
climaticas e informagdes locais, eventos de precipitacdo e possiveis anomalias positivas.

Faz-se necessaria a continuidade da pesquisa para aperfeicoar os resultados.
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