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RESUMO

O reconhecimento automatico de gestos é essencial para promover a comunicacao inclusiva, so-
bretudo junto as comunidades Surdas. Entretanto, persistem desafios significativos em funcéo
da diversidade linguistica das linguas de sinais e das limitacdes das abordagens convencio-
nais, as quais tipicamente exigem grandes conjuntos de dados rotulados e apresentam baixo
potencial de generalizacdo entre diferentes idiomas, comprometendo a escalabilidade e aplica-
bilidade pratica. Neste contexto, este trabalho prop&e a utilizacdo do SignWriting, um sistema
padronizado de notacdo visual que codifica gestos de forma independente do idioma, como
alternativa para um reconhecimento universal de gestos estaticos das maos. A metodologia
emprega o MediaPipe para extracdo automatica de marcos anatémicos das maos, seguida de
técnicas de normalizacao espacial e aumento sintético de dados a fim de mitigar variabilidades
individuais e ambientais. O modelo foi avaliado em 16 conjuntos de dados distintos, abran-
gendo 132 classes de gestos provenientes de miultiplas regides e linguas de sinais. Os resultados
obtidos indicam robustez na generalizacdo entre linguas, corroborando o potencial do Sign-
Writing como ferramenta unificadora. Adicionalmente, andlises de sensibilidade evidenciaram
a influéncia dos erros de deteccao de marcos sobre o desempenho do classificador, apontando
direcbes para futuras melhorias. Todo o cédigo-fonte encontra-se disponivel no repositério

pablico: <https://github.com /karo-txs/signwriting-recognition>.

Palavras-chave: Reconhecimento de Gestos; SignWriting; Aprendizado Profundo; Aumento

de Dados.
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ABSTRACT

Automatic gesture recognition is essential for promoting inclusive communication, especially
within Deaf communities. However, significant challenges persist due to the linguistic diversity
of sign languages and the limitations of conventional approaches, which typically require large
labeled datasets and have low potential for generalization across languages, compromising
scalability and practical applicability. In this context, this work proposes the use of SignWrit-
ing, a standardized visual notation system that encodes gestures independently of language,
as an alternative for the universal recognition of static hand gestures. The methodology em-
ploys MediaPipe for automatic extraction of hand anatomical landmarks, followed by spatial
normalization and synthetic data-augmentation techniques to mitigate individual and envi-
ronmental variability. The model was evaluated on 16 distinct datasets, covering 132 gesture
classes from multiple regions and sign languages. The obtained results indicate robustness in
cross-language generalization, corroborating the potential of SignWriting as a unifying tool.
Additionally, sensitivity analyses revealed the influence of landmark-detection errors on classi-
fier performance, pointing to directions for future improvements. All source code is available

in the public repository: |<https://github.com /karo-txs/signwriting-recognition>.

Keywords: Gesture Recognition; SignWriting; Deep Learning; Data Augmentation.
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1 INTRODUCAO

As linguas de sinais sao sistemas linguisticos complexos que utilizam predominantemente
movimentos das maos, expressoes faciais e posturas corporais, constituindo-se como o principal
meio de comunicacdo das comunidades Surdas (PRIEUR et al., | 2020). Além de fundamentais
para a expressao e interacao social, essas linguas desempenham papel central na promocao
da inclusdo, garantindo maior acesso a educacado, ao trabalho e a servicos essenciais. Entre-
tanto, barreiras comunicacionais entre Surdos e Ouvintes ainda persistem, limitando a plena
integracdo dessas comunidades (MANZOOR et al., 2024; SABATO; SANDRONI; MARCECA, 2023).

Com os avancos em visao computacional e aprendizado profundo, o Reconhecimento Au-
tomatico de Linguas de Sinais (SLR, do inglés Sign Language Recognition) tornou-se uma
area de pesquisa relevante, apresentando solu¢Bes para reduzir tais barreiras (ROBERT; DU-
RAISAMY], [2023} |AL-QURISHI; KHALID; SOUISSI, [2021} |ALAYED), |2024; [CHEOK; OMAR; JAWARD),
2017)). Esses sistemas tém potencial para traduzir gestos em representacdes compreensiveis
por maquinas, viabilizando aplicacdes como tradutores em tempo real, recursos educacionais
interativos e ferramentas assistivas para maior autonomia dos Surdos.

Nas dltimas décadas, progressos notaveis em aprendizado profundo tém impulsionado sig-
nificativamente o desenvolvimento de métodos voltados ao SLR, ampliando a eficiéncia e
precisao dessa tarefa. Dentre as técnicas mais utilizadas, destacam-se as Redes Neurais Con-
volucionais (CNNs, do inglés Convolutional Neural Networks) (POORNIMA; SRINATH, 2024;
KUMAR et al, |2024} |GANGWAR et al., [2024; RANGU et al [2024; |GULATI; RAJPUT; SINGH), 2024}
DHANALAKSHMI et al., 2024)), as Redes Neurais Recorrentes (RNNs, do inglés Recurrent Neural
Networks) e suas variantes, como as Redes de Meméria de Longo e Curto Prazo (LSTM, do
inglés Long Short-Term Memory) (YEWARE et al., 2023; PURI et al., 2023; GANDHE et al., [2024;
HUANG; CHOUVATUT, [2024), além dos Transformers Visuais (ViTs, do inglés Vision Transfor-
mers) (ALNABIH; MAGHARI, 2024} |GUPTA et al., [2022; |ZHANG et al., |2023)), que recentemente
ganharam popularidade. As CNNs destacam-se na andlise de gestos estaticos devido ao seu
alto desempenho na extracdo automatica de caracteristicas espaciais relevantes a partir de
imagens, enquanto as RNNs e LSTMs tém sido aplicadas com sucesso em cendrios dinamicos,
nos quais é fundamental a capacidade de modelar dependéncias temporais. Mais recentemente,
os ViTs introduziram melhorias significativas ao utilizarem mecanismos de atencao, resultando

em maior eficacia no processamento visual e na captura de dependéncias globais das imagens.
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Entretanto, diversos desafios ainda limitam a generalizacdo e escalabilidade desses sistemas.
Uma limitacdo relevante das abordagens existentes é o foco predominante em linguas de sinais
especificas, como a Lingua de Sinais Americana (ASL, do inglés American Sign Language)
(BHATT; MALIK; INDRA, 2024} INASR; KADER, [2023]; ABDULLAH et al., 2023; JOURNAL, 2023),
Arabe (ArSL, do inglés Arabic Sign Language) (ALABBAD et al,, 2022; ELSHAER et al., | 2024;
KHATTAB et al, 2024; [HASSAN; SABRI; ALI,|2024)), Indiana (ISL, do inglés Indian Sign Language)
(SIDHU et al., |2024; |PASSI et al| 2024} |SHIRUDE et al., 2024; SRIKANTARAO et al., 2024) €, com
menor frequéncia a Brasileira (LIBRAS, Lingua Brasileira de Sinais) (BHARTI; BALMIK; NANDY|,
2023; |JAWAD; KOYUNCU| [2022; FURTADO; OLIVEIRA; SHIRMOHAMMADI|, 2023), dificultando a
criacao de sistemas capazes de atender as centenas de linguas de sinais existentes ao redor do
mundo.

Além disso, essas abordagens frequentemente requerem conjuntos extensos de dados ro-
tulados, cuja obtencdo é um processo oneroso e trabalhoso, limitando significativamente sua
aplicabilidade pratica e escalabilidade. Outro desafio critico é a variabilidade cultural e regio-
nal das linguas de sinais, na qual gestos aparentemente idénticos podem possuir significados
distintos ou até mesmo ofensivos dependendo do contexto sociocultural em que s3o utilizados
(SINDHU et al., |2024; /ABDULLAH; AMOUDI; ALGHAMDI|, 2024} |WAGHMARE, 2023).

A diversidade cultural entre as mais de 150 linguas de sinais existentes nao se limita ao
nivel fonolégico, mas também se manifesta no campo semantico. Isso significa que um mesmo
arranjo manual pode assumir significados distintos dependendo da comunidade linguistica. Por
exemplo, na ASL, o gesto formado pela m3o em configuracdo “T" (polegar entre o indicador
e o médio) é utilizado para representar bathroom/toilet, enquanto em LIBRAS esse mesmo
formato corresponde apenas a letra “T" do alfabeto manual, sem qualquer valor semantico
adicional.

Outro exemplo ocorre com o gesto popularmente associado ao / love you na ASL: embora
amplamente reconhecido como expressdo afetiva no contexto norte-americano, em outras
linguas de sinais, como a ArSL, é interpretado apenas como uma letra isolada, sem transmitir
o mesmo significado. Tais discrepancias evidenciam o risco de treinar classificadores baseados
em dados de uma Unica comunidade e aplicar os resultados, sem adaptacao, em diferentes
contextos culturais, comprometendo a precisao e a adequacao da interpretacdo automatica.

Uma alternativa promissora para superar essas limitacOes técnicas é o uso de sistemas
simbdlicos padronizados, como o SignWriting (SUTTON, [1974a) e o Sistema de Notacdo de

Hamburgo (HamNoSys, do inglés Hamburg Notation System) (PRILLWITZ et al., (1989). Tais
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sistemas fornecem formas padronizadas de representacdo dos gestos, promovendo uma abs-
tracdo simbdlica consistente e interpretavel tanto por humanos quanto por maquinas. Em
particular, o SignWriting destaca-se devido a sua estrutura visual e universal, que permite
representar claramente configuracdes das maos e movimentos corporais de maneira indepen-
dente do idioma utilizado. Essa caracteristica torna o SignWriting especialmente atrativo para
pesquisas em reconhecimento automatico, por facilitar a generalizacao entre diferentes linguas
de sinais. Dessa forma, essa abordagem surge como uma alternativa vidvel para o desenvol-
vimento de modelos computacionais escalaveis e generalizaveis, capazes de atender diferentes
comunidades linguisticas.

Ao representar os gestos em uma forma padronizada e escrita, o SignWriting possibilita
abordar o reconhecimento automatico de gestos como um problema de interpretacdo textual.
Essa perspectiva facilita o desenvolvimento de sistemas autométicos de reconhecimento de
gestos mais inclusivos, escalaveis e independentes de idiomas especificos. Ademais, o uso dessa
notacdo visual permite a aplicacao direta de técnicas computacionais, como normalizacao
espacial e aumento sintético dos dados, promovendo maior robustez perante as variabilidades
individuais e contextuais comuns em ambientes reais, como diferencas no estilo dos usuarios
e condicGes ambientais diversas. Dessa forma, o SignWriting abre possibilidades tecnolégicas
para o desenvolvimento de sistemas praticos e globalmente acessiveis.

Nesse sentido, este trabalho propde-se a investigacdo do SignWriting como notacdo uni-
versal para o reconhecimento de gestos estaticos das maos, avaliando-o em 16 conjuntos de
dados que totalizam 132 classes distintas, provenientes de diferentes linguas de sinais. Para
alcancar esse objetivo, é introduzido um método baseado na deteccdo de marcos anatomi-
cos das mi3os (/landmarks) pelo MediaPipe, os quais passam por um médulo de normalizagdo
geométrica que reduz variacdes de translacdo, rotacao e escala. Essa etapa, que constitui a
principal contribuicdo do trabalho, gera representacdoes mais estaveis e invariantes, facilitando
a tarefa de classificacdo mesmo em cenarios com recursos limitados de dados. Em seguida, os
vetores normalizados sdo processados por uma rede totalmente conectada (FC, do inglés Fully
Connected) de pequena escala, que produz a distribuicdo de probabilidade sobre as classes de
gestos e realiza o mapeamento final para os simbolos correspondentes no SignWriting.

Cabe salientar, entretanto, que a traducdo completa de lingua de sinais para texto ou audio
constitui um processo mais amplo, que envolve também outras etapas essenciais, tais como o
reconhecimento de movimentos dindmicos e expressoes faciais, elementos estes que ndo sao

contemplados no escopo deste estudo. Assim, o reconhecimento dos gestos estaticos das maos
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configura-se como uma etapa inicial e fundamental dentro de um pipeline mais abrangente
de traducdo automatica. Ademais, o éxito da metodologia proposta reforca a viabilidade de
aplicacOes escalaveis que, baseadas em sinais visuais, promovem a inclusao socio-digital da

comunidade Surda no amago da sociedade.

1.1 OBJETIVOS

O objetivo central desta dissertacdo é propor, implementar e avaliar um pipeline de trei-
namento dataset-agndstico para reconhecimento em tempo real de gestos manuais estaticos,
fundamentado na representacdo grafica universal SignWriting. O pipeline foi concebido para
oferecer alta capacidade de generalizacdo entre distintas linguas de sinais, reduzindo de forma
significativa o esforco de adaptacdo a novas comunidades surdas.

Com base no objetivo principal, os seguintes objetivos especificos foram definidos para

orientar o desenvolvimento deste trabalho:

» Propor e implementar um modelo computacional universal para reconheci-
mento automatico de gestos estaticos das maos: Desenvolver uma abordagem
baseada no SignWriting como representacdo simbdlica central, visando superar limita-
cOes relacionadas a barreiras linguisticas, culturais e regionais, a fim de oferecer uma

solucdo escalavel e aplicavel a diferentes comunidades Surdas globalmente.

» Integrar técnicas de normalizacao e aumento sintético dos dados: Aplicar es-
tratégias robustas para gerenciar variabilidades individuais (como tamanhos, formatos e
posturas das maos) e contextuais (condicdes de iluminacdo, dngulos de captura e ruido

ambiental), visando aumentar a robustez e generalizacdo dos modelos desenvolvidos.

= Avaliar experimentalmente a eficacia e generalizacao da abordagem proposta:
Realizar testes com multiplos conjuntos de dados representativos, abrangendo diferen-
tes idiomas e contextos culturais, com o intuito de validar o desempenho pratico e a

capacidade de generalizacao do modelo.

» Validar a viabilidade técnica do sistema proposto em tempo real: Avaliar o
desempenho operacional da solucdo proposta por meio de métricas, tais como tempo de
inferéncia, consumo de recursos computacionais e acuracia, garantindo que o sistema

possa ser empregado eficazmente em dispositivos com restricoes computacionais.
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1.2 ESTRUTURA DA DISSERTACAO

O restante deste trabalho estd organizado em cinco capitulos: o apresenta
os fundamentos tedricos necessarios para a compreensdo do reconhecimento de gestos e do
sistema SignWriting; o revisa trabalhos relacionados, abordando sistemas de escrita
visual e métodos modernos de reconhecimento de gestos; o detalha o modelo
proposto, desde a extracdo de /landmarks com Mediapipe até o treinamento do modelo; o
expde os resultados experimentais, validando a robustez e aplicabilidade do sistema;

e o|Capitulo 6| conclui a pesquisa, destacando suas contribuicdes e propondo direcdes futuras.
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2 FUNDAMENTACAO TEORICA

2.1 NOTACOES VISUAIS PARA LINGUAS DE SINAIS

A comunicacao por meio das linguas de sinais envolve uma combinacdo complexa de ele-
mentos visuais, incluindo configuraces de mao, movimentos, expressdes faciais e posturas
corporais (CHEOK; OMAR; JAWARD) 2017; INEIVA; ZANCHETTIN| 2018). Para codificar tais par-
ticularidades linguisticas de maneira padronizada e estruturada, diversos sistemas formais de
notacdo visual tém sido desenvolvidos ao longo das ultimas décadas. Entre esses sistemas

destacam-se o SignWriting e o HamNoSys.

2.1.1 SignWriting

O SignWriting é um sistema visual padronizado, criado por Valerie Sutton em 1974, conce-

bido para representar de maneira estruturada e independente do idioma os principais elementos
linguisticos das linguas de sinais, tais como a configuracdo e orientacdo das maos, trajetorias
de movimento, localizacdo espacial relativa ao corpo e expressdes faciais (SUTTON, [1974a). A
Figura [I] ilustra alguns exemplos representativos dos simbolos utilizados no SignWriting para
descrever configuracdes das maos comumente encontradas nas linguas de sinais.
Uma das caracteristicas mais notaveis do SignWriting é sua alta acessibilidade grafica, per-
mitindo que sinais sejam lidos e escritos mesmo por usuarios sem conhecimento prévio de
linguistica formal. Criado por Valerie Sutton como uma forma visual intuitiva para documen-
tac3do das linguas de sinais, esse sistema facilita ndo apenas a comunicacdo, mas também abre
possibilidades para aplicacGes tecnolégicas.

No contexto especifico do reconhecimento automatico de linguas de sinais, o SignWriting
surge como uma alternativa poderosa para lidar com a diversidade linguistica e cultural. Sua
estrutura simbdlica é projetada para ser universal e independente do idioma (STIEHL et al.,
2015), o que favorece sua aplicacdo em cendrios multiculturais. No entanto, o mapeamento
automatico de sinais representados em videos ou marcos anatémicos das maos (/andmarks)
para simbolos gréficos do SignWriting constitui um desafio computacional significativo. Para
enfrentar tais desafios, é necessario recorrer a técnicas de visdo computacional e aprendizado
de maquina, garantindo representacdes robustas e precisas dos gestos, mesmo em condicoes

varidveis de captura e interpretacao.
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Figura 1 — Exemplos de simbolos do SignWriting que descrevem diferentes configuracdes de mdo em linguas
de sinais.

Fonte: Wikipedia, 2007. Disponivel em:
< https://en.wikipedia.org/wiki/File:Handshape_equiv2.png>.

2.1.2 Hamburg Notation System (HamNoSys)

O HamNoSys foi desenvolvido no final da década de 1980 pelo Instituto de Linguistica
da Universidade de Hamburgo, visando fornecer uma representacdo fonolégica detalhada e
padronizada para as linguas de sinais (PRILLWITZ et al., [1989)). O sistema baseia-se em um
conjunto detalhado de simbolos graficos que descrevem precisamente elementos fonoldgicos
das linguas de sinais, tais como configuracao das maos, localizacao espacial relativa ao corpo,
orientacdo das maos e trajetdrias dos movimentos realizados, conforme ilustrado na Figura [2|

Embora o HamNoSys proporcione um maior grau de detalhamento fonolégico quando com-
parado ao SignWriting, o sistema apresenta desafios significativos que restringem sua adocdo
ampla tanto em contextos linguisticos quanto tecnoldgicos. Estudos como o de Ferlin et al.
(FERLIN; MAJCHROWSKA; NALEPA, 2024) destacam inconsisténcias frequentes na rotulagem
dos simbolos e uma curva de aprendizado acentuada, fatores que representam barreiras impor-
tantes para usuarios e desenvolvedores. Adicionalmente, a existéncia de variacGes nas formas

graficas dos simbolos do HamNoSys torna desafiadora a padronizacdo consistente de conjuntos


https://en.wikipedia.org/wiki/File:Handshape_equiv2.png
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Figura 2 — Exemplos do conjunto de simbolos do HamNoSys, representando configuracdes de m3o.

Fonte: Adaptado de Universidade de Hamburgo, s.d. Disponivel em: |[<https://www.sign-lang.
uni-hamburg.de/projekte /hamnosys/hamnosyserklaerungen /englisch /contents.html>/

de dados, aumentando consideravelmente a complexidade envolvida na sua aplicacdo compu-
tacional e na criacdo de modelos automaticos robustos (FERLIN; MAJCHROWSKA; NALEPA,
2024).

2.1.3 Comparacao e Relevancia para Aplicacoes Computacionais

O SignWriting e o HamNoSys possuem caracteristicas distintas que podem ser consideradas
complementares, diferindo principalmente em termos de acessibilidade grafica, complexidade
técnica e detalhamento fonolégico. Enquanto o SignWriting é reconhecido por sua alta intui-
tividade grafica e facilidade de aprendizado, o HamNoSys destaca-se sobretudo pela precisao
técnica na descricao detalhada dos aspectos fonolégicos das linguas de sinais, sendo particu-
larmente valorizado em estudos linguisticos formais (PRILLWITZ et al., (1989).

Na Figura , apresentamos um exemplo comparativo entre as duas notacbes: em (a),
observa-se a composicdo de um sinal no SignWriting, cuja representacdo é visualmente clara
e diretamente associada a configuracdo manual; em (b), a mesma informac3o é registrada em
HamNoSys, cuja estrutura simbdlica, embora tecnicamente mais precisa, € menos intuitiva
para usuarios nao especialistas. Essa diferenca ilustra de maneira pratica como a notacdo

SignWriting tende a ser mais acessivel e compreensivel em cendrios de aplicacao computacional.


https://www.sign-lang.uni-hamburg.de/projekte/hamnosys/hamnosyserklaerungen/englisch/contents.html
https://www.sign-lang.uni-hamburg.de/projekte/hamnosys/hamnosyserklaerungen/englisch/contents.html
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No contexto especifico deste trabalho, optou-se pelo uso do SignWriting devido a sua
simplicidade grafica, maior acessibilidade para usuérios sem treinamento linguistico especiali-
zado e sua proposta de universalidade simbdlica, aspectos que favorecem o desenvolvimento
de sistemas computacionais escaldveis e com maior potencial de generalizagdo (BIANCHINI;
BORGIA; MARSICO, 2012; BOUZID; JEMNI, 2013; |[STIEHL et al|, |2015} |SEVILLA; ESTEBAN; LAHOZ-
BENGOECHEA, [2023)). Essa escolha facilita o processo de mapeamento automético dos dados
capturados, tais como os marcos anatémicos das maos, para representaces simbélicas es-
truturadas, promovendo maior consisténcia, robustez técnica e aplicabilidade em contextos
multiculturais.

Figura 3 — Comparacdo visual entre os sistemas SignWriting e HamNoSys.

g AP S T

(a) SignWriting (b) HamNoSys

Fonte: A autora (2025)

2.2 RECONHECIMENTO DE GESTOS

O reconhecimento automético de gestos consiste em um conjunto de métodos computaci-
onais destinados a interpretacdo e identificacdo de movimentos e configuracdes corporais, com
destaque especial para movimentos das m3os, bracos, posturas e expressdes faciais (GUPTA et
al., 2022; |SAHOO et al., [2022)). A capacidade de sistemas computacionais reconhecerem auto-
maticamente gestos possui uma ampla gama de aplicacdes praticas, destacando-se a Interacao
Humano-Computador (IHC), a acessibilidade tecnoldgica voltada para comunidades Surdas e
aplicacdes em areas como entretenimento digital, educacdo inclusiva e telemedicina (ZHANG
et al., 2023). Nesta subsecdo, sdo discutidos os fundamentos conceituais e técnicos relaciona-

dos a natureza dos gestos, suas principais formas de representacao simbdlica e as categorias
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metodoldgicas mais utilizadas no reconhecimento automatico de gestos.

2.2.1 Gestos Estaticos e Dinamicos

Uma das distincdes fundamentais no reconhecimento automatico de gestos refere-se a
classificacdo entre gestos estaticos e dinamicos. Os gestos estaticos sdo tipicamente defini-
dos por configuracdes espaciais corporais, especialmente relacionadas a posicdo e forma das
maos, enquanto os gestos dinamicos envolvem variacOes espaciais e temporais continuas, de-
mandando técnicas especificas para capturar dependéncias sequenciais nos dados ao longo do
tempo (GiLER; YiCEDAg, [2021)).

Gestos estaticos sdo comumente tratados como problemas de classificacdo estatica, usando
abordagens baseadas em CNNs, ViTs ou Redes Totalmente Conectadas (FC, do inglés Fully
Connected), especialmente adequadas quando os dados ja estdo estruturados em formato veto-
rial. Em contraste, os gestos dinamicos requerem métodos capazes de lidar explicitamente com
dependéncias sequenciais e temporais, sendo amplamente empregadas RNNs e suas variantes

especializadas, como as LSTMs (GiLER; YiCEDAg, 2021).

2.2.2 Aquisicao e Representacao dos Dados

Diversas técnicas podem ser empregadas para a aquisicao e representacao dos dados utiliza-

dos no reconhecimento automatico de gestos. Entre as abordagens mais comuns destacam-se:

= Cameras RGB (2D): amplamente utilizadas devido a simplicidade e baixo custo, cap-
turam imagens bidimensionais que s3o, entretanto, suscetiveis a variacGes ambientais
significativas, tais como iluminac3o irregular, oclusGes parciais e variacoes nos angulos

de captura (CHEOK; OMAR; JAWARD, [2017)).

= Cameras de profundidade (3D): fornecem informacdes tridimensionais detalhadas,
permitindo uma captura espacial mais precisa e reduzindo problemas associados as va-

riacoes ambientais, embora ainda possam sofrer com oclusdes.

» Sensores inerciais e dispositivos vestiveis: incluem sensores especializados, como
luvas equipadas com acelerdmetros e giroscépios, permitindo capturar detalhadamente

movimentos tridimensionais. Apesar de fornecerem dados altamente precisos, esses dis-
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positivos tém escalabilidade limitada por exigirem hardware dedicado e especifico para

sua implementagcdo (MOHANDES; DERICHE; LIU, [2014)).

Neste estudo adota-se exclusivamente a modalidade de imagens RGB capturadas por came-
ras convencionais, tanto pela ampla disponibilidade desse tipo de sensor quanto pela facilidade
de integracao em ambientes reais, aspectos essenciais para a reprodutibilidade e escalabilidade
da proposta. As demais técnicas sdo discutidas apenas para contextualizacao e nao fazem

parte do escopo experimental desta pesquisa.

2.3 EXTRACAO DE MARCOS (LANDMARKS)

Uma etapa essencial no reconhecimento automatico de gestos consiste na deteccao, ex-
tracdo e normalizacdo de marcos anatdmicos (/landmarks), especialmente aqueles relacionados
as mdos. Essa fase envolve a identificacao precisa e padronizada de pontos-chave, como ar-
ticulacdes, pontas dos dedos e posicao do pulso, resultando em uma representacdo abstrata
e compacta dos gestos realizados. Essa representacdo é significativamente menos suscetivel
a ruidos provenientes de fatores como diferentes tonalidades de pele, condicoes variadas de
iluminacdo ou complexidade dos fundos das imagens capturadas.

A deteccdo automatica desses marcos anatomicos pode ser realizada por meio de fra-
meworks de Visdo Computacional baseadas em aprendizado profundo, como o MediaPipe
Hand Landmark Detector (GOOGLE, [2020), que identifica 21 marcos tridimensionais em cada
mé&o, conforme ilustrado na Figura[dl A conversdo dos dados brutos de imagens para represen-
tacoes vetoriais baseadas nesses marcos simplifica significativamente a tarefa computacional de
reconhecimento, ao focar exclusivamente em caracteristicas geométricas essenciais das maos,

reduzindo assim a dimensionalidade e complexidade dos dados utilizados pelos modelos.
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Figura 4 — Marcos da m3o direita conforme definidos pelo MediaPipe; para a mao esquerda, basta considerar
o reflexo horizontal desses pontos.

19 0. Wrist 11. Middle Finger DIP
8 16 1. Thumb CMC 12. Middle Finger TIP
7 15 2. Thumb MCP 13. Ring Finger MCP
62 10 14 20 3. Thumb IP 14. Ring Finger PIP
19 4. Thumb TIP 15. Ring Finger DIP
4 5\ 9 13 ‘18 5. Index Finger MCP 16. Ring Finger TIP
3N 17 6. Index Funger PIP  17. Pinky MCP
2 7. Index Funger DIP 18. Pinky PIP
8. Index Funger TIP 19. Pinky DIP
1 A 9. Middle Finger MCP  20. Pinky TIP

10. Middle Finger PIP

Fonte: A autora (2025)

O uso de representacGes baseadas em marcos anatomicos apresenta diversas vantagens praticas

e metodolégicas no contexto do reconhecimento automatico de gestos:

» Reducao significativa da dimensionalidade: Em vez de utilizar imagens completas
como entrada direta para os modelos, s3o processados apenas conjuntos limitados de
pontos-chave (por exemplo, 21 marcos no caso do MediaPipe), diminuindo consideravel-
mente a complexidade computacional e permitindo maior eficiéncia tanto no treinamento

quanto na inferéncia dos modelos (GUPTA et al., 2022).

» Menor sensibilidade a variacOes visuais e ambientais: Representacoes baseadas
em marcos anatomicos sao menos susceptiveis a interferéncias provenientes de fatores
externos, como diferentes tonalidades de pele, roupas, iluminacao ou complexidade dos
fundos, ja que o foco principal reside nas coordenadas geométricas e estruturais dos

gestos.

» Representacao espacial tridimensional: Algumas ferramentas, como o MediaPipe,
fornecem coordenadas em trés dimensdes (x, y, z), permitindo analises mais completas da
estrutura espacial das maos. Essa representacdo tridimensional auxilia significativamente
na reducdo de ambiguidades causadas por angulos desfavoraveis e facilita a captura

precisa de movimentos complexos.

Apesar dessas vantagens claras, é importante ressaltar que a eficacia das representacdes
baseadas em marcos anatomicos depende diretamente da precisdo do método utilizado para a
deteccdo desses pontos-chave. Erros de deteccdo, tais como a presenca de outliers (pontos de-

tectados fora da posicdo esperada), ou imprecisdes causadas por condicdes ambientais adversas
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podem impactar negativamente a qualidade dos dados, afetando diretamente o desempenho

dos modelos de reconhecimento automatico subsequentes.



28

3 TRABALHOS RELACIONADOS

Nas duas dltimas décadas, a investigacao em reconhecimento automatico de linguas de
sinais deslocou-se de classificadores baseados em atributos manuais para arquiteturas de apren-
dizagem profunda que convertem sequéncias gestuais diretamente em glossas ou sentencas.
Embora o ganho de desempenho em datasets de ASL, ArSL, ISL e LIBRAS seja expressivo,
sobretudo apés combinacdes CNN, LSTM e Transformers multimodais, o panorama perma-
nece, em grande medida, monolingue. Cada comunidade requer extensos ciclos de anotacao e
fine-tuning, o que eleva os custos de transferéncia para novos dialetos. Tal limitacao renova o
interesse por sistemas de escrita gestual potencialmente universais, entre os quais o SignWri-

ting se destaca, gracas a representacdo iconica independente de lingua (SUTTON, |1974b)).

3.1 RECONHECIMENTO E TRADUCAO DE LINGUAS DE SINAIS

Nas aplicacdes de aprendizado profundo ao reconhecimento de linguas de sinais, redes
convolucionais atuaram como principais extratoras de caracteristicas visuais, em cenérios tipi-
camente isolados, restritos a gestos estaticos ou sequéncias curtas. Trabalhos que fazem uso
de CNNs (POORNII\/IA; SRINATH), |2024; KUMAR et al., [2024; GANGWAR et al., [2024; RANGU et al.,
2024; |GULATI; RAJPUT; SINGH, 2024} DHANALAKSHMI et al., 2024} |GUPTA et al., 2022) e versoes
leves de YOLO (NAVIN et al., [2025; BURIBAYEV et al., |2025; |ALSHARIF et al., 2025)) ilustram
essa fase, alcancando acuracia acima de 95% em alfabetos de ASL, Bangla (BdSL, do inglés
Bangla Sign Language) e ISL.

Com a popularizacdo dos ViTs e de bibliotecas de deteccdo de pontos-chave, como Media-
Pipe e OpenPose, surgiram arquiteturas hibridas que combinam CNNs e ViTs, além de solucoes
que integram descritores de pose de m3os a fluxos de pixels (DAMDOO; KUMAR, [2025; IMAIA;
LOPES; DAVID) [2025; [MARQUEZ et al., 2025, RODRIGUEZ et al., |2025)). Apesar dos ganhos re-
centes em alcance e precisao, a maioria dos estudos continua a utilizar datasets monolingues,
o que preserva a dificuldade de generalizac3o intralinguistica que serd examinada nas secdes
seguintes.

Entre as abordagens que mantém a CNN como nicleo da extracdo visual, sobressai o tra-
balho de (GUPTA et al., 2022), que combina uma CNN com um ViT. O método foi avaliado

nos conjuntos NUS Hand Posture, Sign Language Digits (Turquia) (PISHARADY; VADAKKE-
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PAT; POH, 2014) e em um subconjunto alfabético de ASL, alcancando acuracia entre 90% e
99%. Ainda assim, o experimento permanece limitado a gestos estaticos de digitos e letras
provenientes dessas linguas de maior alcance, de modo que o viés monolingue anteriormente
mencionado continua vigente.

No contexto da traducdo continua de sinais em texto, os autores em (MAIA; LOPES; DAVID,
2025) combinam a deteccdo de pontos-chave corporais do MediaPipe com um pipeline Trans-
former duplo, segmentado em Sign2Gloss e Gloss2Text. A primeira etapa utiliza CTC-Loss,
enquanto a segunda realiza ajuste fino do modelo BART. Avaliado no corpus PHOENIX14T,
o sistema preservou a qualidade mesmo apos forte reducdo de dimensionalidade. No conjunto
How2Sign, entretanto, o desempenho caiu de forma acentuada, possivelmente devido a au-
séncia de anotacdes de glossas, evidenciando a vulnerabilidade de métodos que dependem de
glossérios alinhados e de bases especificas de ASL-Alem3o.

A Tabela[I]sintetiza esse panorama, comparando diferentes trabalhos recentes em reconhe-
cimento de gestos estaticos de maos quanto a abordagem utilizada, quantidade de conjuntos
de dados, nimero de classes e linguas de sinais avaliadas. Nota-se que, na maioria dos casos
apresentados, os experimentos permanecem restritos a poucas bases (em média até trés) e a
duas ou trés linguas de sinais, o que reforca a dificuldade de generalizacao interlinguistica. Em
contraste, este estudo expande a analise para 16 conjuntos heterogéneos, cobrindo 132 classes

distribuidas em oito linguas de sinais distintas.

Tabela 1 — Comparacdo com estudos da literatura sobre Reconhecimento de Poses de M3o. A tabela apresenta
a abordagem utilizada, nimero de conjuntos de dados de teste, quantidade de classes e as linguas
de sinais avaliadas. As linguas de sinais suportadas pelos conjuntos de dados s3o: ASL (American
Sign Language, TSL (Turkish Sign Language), ISL (Indian Sign Language, ArSL (Arabic Sign
Language), BdSL (Bengali Sign Language), LSA (Argentine Sign Language), DGS (Deutsche
Gebdardensprache), PSL (Pakistan Sign Language) e LIBRAS (Lingua Brasileira de Sinais).

Estudo Abordagem Conjuntos de Classes Linguas de Sinais
dados de teste

(GUPTA et al., 2022) CNN 3 20 ASL, TSL

(MENON; SRUTHI; LI{ CNN 1 26 ISL

JIYA, 2022)

(ALAMRI et al.| [2024) YOLOv8 2 32 ArSL

(SURJO et al., 2023) VGG16 1 37 BdSL

(RONCHETTI et al), DenseNet 3 71 LSA, DGS

2023)

(FALLAH et al., [2024) FC-NN 3 89 ASL, ISL, BdSL

Este estudo Mediapipe + FC (Sign- 16 132 ASL, ISL, LSA, ArSL, BdSL,
Writing) DGS, PSL e LIBRAS

Fonte: A autora (2025).
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3.2 ABORDAGENS MULTILINGUA

A fragmentacdo inerente as mais de 150 linguas de sinais existentes impde um desafio
singular aos sistemas de reconhecimento e traducao: modelos treinados em um dnico idioma
apresentam drastica perda de desempenho quando expostos a gestos provenientes de outras
comunidades linguisticas. Por essa razao, cresce o interesse em arquiteturas multilinguas capa-
zes de compartilhar parametros entre diferentes conjuntos de dados e, assim, reduzir o custo
de adicdo de novas linguas.

Entre as propostas mais robustas nessa linha, o GmTC (Graph and General Two-Stream
Network) combina uma Graph Convolutional Networks, encarregado de codificar relacdes espa-
ciais finas entre superpixels, com um multi-head attention voltado para capturar dependéncias
de longo alcance (MIAH et al., [2024)). Avaliado em cinco corpora de origens culturais distintas
(coreano, americano, japonés, entre outros), o modelo alcancou média de acurécia superior a
98% sem exigir ajustes significativos na fase de pré-processamento.

Seguindo a proposta de vocabulario miltiplo, o framework OpenHands adota um protocolo
baseado em poses extraidas pelo MediaPipe e disponibiliza checkpoints pré-treinados para seis
linguas de sinais: ASL, Argentina (LSA, do Espanhol Lengua de Sefias Argentina), Chinesa
(CSL, do inglés Chinese Sign Language), Grega (GSL, do inglés Greek Sign Language), ISL e
Turca (TSL, do inglés Turkish Sign Language) (SELVARAJ et al., [2022)). O principal diferencial
é um pré-treino auto-supervisionado sobre mais de um milhdo de quadros ndo anotados de
Indian Sign Language, cujo conhecimento se transfere para idiomas de baixo recurso e pode
reduzir em até 40% a necessidade de dados rotulados.

InvestigacGes recentes tém ampliado o espectro metodolégico. O SB-SLR adota um fluxo
exclusivamente esquelético, no qual quadros-pivé sdo identificados antes do processamento
por uma CNN temporal 2-D; essa configuracao produz ganhos consistentes em cenérios de
desequilibrio de classe e variacao de signatarios, inclusive para linguas de sinais pouco estuda-
das, como a cazaque (RENJITH; SURESH; RASHMI, 2025). Estratégias hibridas de deteccdo de
lingua seguida de reconhecimento obtém acuracia superior a 98% em dois idiomas (NURNOBY;
EL-ALFY, 2023). Abordagens bilingues fundamentadas no YOLOv11, por sua vez, registram
mAP acima de 99% nos alfabetos de BdSL e ASL (NAVIN et al., 2025)).

No campo da traducdo, iniciativas como o AfriSign, que emprega Transformers multilin-
gues para seis linguas africanas (TAKYI et al,, [2025)), e abordagens gloss-free, a exemplo do

Sign2GPT-Next, que integra um ViT Dino-V2 a um GPT multilinguistico (BABISHA et al.,
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2024), indicam ser possivel reduzir a dependéncia da camada de glossas mesmo em cenérios
de recursos limitados.

Apesar dos avancos, o panorama atual continua dependente de dados amplamente ano-
tados para cada lingua. Tanto a calibracdo de detectores de pontos-chave, cujos erros se
propagam aos modelos, quanto o ajuste dos médulos de pré-processamento linguistico na
etapa de traducdo ainda requerem supervisdo especifica, fazendo o custo de expansdo crescer
a medida que novas comunidades linguisticas sao incluidas. Essa limitacdo tem estimulado a
busca por representacoes independentes de idioma que atuem como pivés semantico-graficos

entre diferentes linguas de sinais (FINK et al., 2023; YAZDANI; GENABITH; ESPAGA-BONET, 2025)).

3.3 SIGNWRITING

O SignWriting é um método que descreve configuracées de mao, trajetdrias, expressoes
faciais e orientacdo corporal por meio de simbolos iconicos dispostos em duas dimensdes. Por
ser independente de idioma, permitindo registrar qualquer sinal sem recorrer a glossas verbais,
o SignWriting é um candidato natural a atuar como pivé em aplicagdes computacionais mul-
tilingues. As pesquisas sobre o SignWriting tém avancado em trés frentes: (i) reconhecimento
automatico, (ii) traduc3o e sintese visual e (iii) ferramentas educacionais e de acessibilidade.

No eixo de reconhecimento, os primeiros protétipos dedicaram-se a classificacao de sim-
bolos isolados. Liu et al. (2010) (LIU et al, 2010) apresentaram um sistema de interacdo
humano—computador capaz de reconhecer determinadas trajetérias manuais e mapea-las para
simbolos do SignWriting. Avancos subsequentes exploraram CNNs para identificar conjuntos
de pictogramas: o estudo de (STIEHL et al., 2015) obteve 94,4% de acerto em 7994 amostras
distribuidas em 103 classes, enquanto (SEVILLA; ESTEBAN; LAHOZ-BENGOECHEA, 2023) com-
binou redes neurais e regras especialistas para modelar a natureza composicional dos sinais,
registrando ganho relativo de 17% sobre uma abordagem baseada apenas em aprendizado
profundo. Cabe ressaltar que ambas as linhas de investigacdo se concentram nos desenhos dos
simbolos, e ndo no reconhecimento dos sinais a partir de imagens ou videos de signatarios.

Um contraponto relevante as abordagens que operam exclusivamente sobre pictogramas
estaticos é o Deep Hand, de Koller et al. (2016) (KOLLER; NEY; BOWDEN, 2016), que utiliza
os cédigos do SignWriting para gerar rétulos fracos dos quadros de video. O trabalho introduz
uma CNN pré-treinada, refinada com mais de 1 milhdo de quadros rotulados automaticamente

(abrangendo 60 configuracdes de mio distintas) e alcanca 62,8% de acerto top-1. Sua principal
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contribuicdo é mostrar que rétulos imperfeitos derivados do SignWriting podem sustentar
treinamento em larga escala e ainda generalizar entre diferentes corpora e signatarios. Nesse
sentido, o estudo de Koller (2016) pode ser visto como precursor da ideia central explorada
nesta dissertacdo: o uso do SignWriting como uma forma de anotacdo simbdlica intermediaria
capaz de reduzir a dependéncia de anotacoes manuais extensivas e tornar viavel o aprendizado
em cenarios de baixo recurso.

No dominio da traducdo entre linguas faladas e sinais codificados em SignWriting, (JI-
ANG et al., [2022) mostraram que técnicas classicas de aprendizado de maquina podem ser
transferidas com é&xito quando o corpus de origem (SignBank) utiliza o SignWriting como re-
presentacdo intermediéria, alcancando pontuac3o superior a 30 de BLEU (Bilingual Evaluation
Understudy) para o par ASL para inglés. Mais recentemente, (FREITAS et al., 2023) empregou
codificacdes formais em SignWriting para treinar modelos de representacdo latente, obtendo
81% de acuracia em uma tarefa de classificacdo com apenas 889 amostras, o que reforca o
potencial de pesquisas em cenarios de baixo recurso.

No dominio da sintese de movimentos e ambientes imersivos, diversos autores exploram
SignWriting como camada de entrada para gerar animacdes fidedignas. (BOUZID et al.,, 2012)
propuseram a conversao dos sinais para um avatar 3D, enquanto projetos como tuniSigner e
SiGML-to-VR (BOUZID; JEMNI, 2014, WOLFF; ANDERSON; BANI¢, |2024)) exibem tradugdes em
tempo real de textos ou discursos para ASL dentro de ambientes de realidade virtual. Essa
linha de investigacdo foi estendida a acessibilidade televisiva, com a proposta de encapsular
SignWriting em legendas IMSC1 para a futura TV 3.0 brasileira (LOBEIRO; VAZ; ALVES, 2022).

Em sintese, a literatura revela o papel estratégico do SignWriting como representac3o
universal: ele viabiliza traduc3o, indexacdo textual, animac3do de avatares e ensino formal sem
depender de glossas verbais. Todavia, a maioria dos trabalhos concentra-se em tarefas pontuais
(simbolos isolados ou geracdo de animacdes) e raramente avalia a generalizac3o interlinguistica
em larga escala. Estudos como (KOLLER; NEY; BOWDEN, 2016; JIANG et al., [2022; FREITAS et
al, 2023) tipicamente restringem suas andlises a duas ou trés linguas de sinais e a menos
de quatro bases de dados, o que limita a avaliacdo da robustez intercultural dos métodos.
A presente dissertacao avanca nesse cenario ao explorar a classificacdo automética de gestos
estaticos das m3os em 16 bases heterogéneas (132 classes, miltiplas linguas), evidenciando o
potencial do SignWriting para unificar pipelines de reconhecimento e traducao em contextos

multilingues.
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4 MODELO PROPOSTO

Este trabalho propée uma metodologia para o desenvolvimento e validacdo experimental
de um sistema automatico de reconhecimento de gestos estaticos das maos utilizando o Sign-
Writing como representacao intermediaria padronizada. A escolha dessa representacao visa ex-
plicitamente aumentar a generalizacao linguistica e escalabilidade dos modelos desenvolvidos,
buscando mitigar limitacoes técnicas frequentemente encontradas em sistemas convencionais
de reconhecimento automatico de linguas de sinais, como diversidade linguistica, variabilidade
cultural e necessidade constante de retreinamento.

Figura 5 — Fluxograma da metodologia proposta que compreende quatro etapas principais: extracdo auto-
mética dos marcos anatémicos (landmarks) das m3os, normalizacdo espacial dos dados obtidos,
geracdo de dados sintéticos utilizando técnicas de aumento (data augmentation) e a arquitetura
para reconhecimento automatico dos gestos estaticos das m3os.
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A metodologia proposta, ilustrada na Figura[b], comeca com a detec¢do dos marcos da mao

pelo MediaPipe, resultando em trés tensores independentes, como exemplificado na Figura [6}

= (a) 21 marcos em coordenadas de imagem (21,3): (x,y) normalizados ao plano da

camera e z como profundidade relativa;
= (b) handness (1,1): escalar que indica se a m&o detectada é direita (1) ou esquerda (0);

= (c) 21 marcos em coordenadas de mundo (21, 3): posicdes (x,y, z) no espaco tridimen-

sional real, em escala métrica e com origem no centro da camera.
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Figura 6 — Exemplo dos tensores resultantes da deteccdo de marcos da mao pelo MediaPipe.
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Os tensores (a) e (c) passam, em paralelo, por um médulo de normalizacdo que reduz
variacdes de translacdo, rotacdo e escala. Essa etapa constitui a principal contribuicdo deste
trabalho: ao aplicar transformacdes geométricas sobre os landmarks do MediaPipe, obtém-se
representacoes invariantes as diferencas de posicao e orientacao da mao, o que gera amostras
mais estaveis e consistentes para o classificador. Como resultado, o modelo final demanda
menos parametros, pode ser treinado com quantidades menores de dados rotulados e ainda
assim mantém desempenho competitivo em mudltiplas linguas de sinais.

Em seguida, cada tensor normalizado ¢é linearizado (transformado em vetor unidimensional)
e todos s3o concatenados, formando um Unico vetor de atributos. Esse vetor alimenta uma
rede totalmente conectada (FC) composta por quatro blocos idénticos, cada qual organizado
na ordem Batch Normalization, Rectified Linear Unit (ReLU) e Dropout. Por fim, uma camada
densa com Softmax produz a distribuicao de probabilidade sobre as classes de gestos estaticos,

cujo rétulo previsto é mapeado para o simbolo correspondente no SignWriting.

4.1 EXTRACAO AUTOMATICA DE MARCOS ANATOMICOS COM MEDIAPIPE

A extracao automatica dos marcos anatomicos das maos foi realizada utilizando a biblio-
teca MediaPipe Hand Landmark Detecto:ﬂ, uma ferramenta amplamente reconhecida por sua

capacidade de realizar deteccdes rapidas e precisas das maos em tempo real. O Mediapipe

1 <https://ai.google.dev/edge/mediapipe/solutions/vision /hand_landmarker>
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fornece um conjunto fixo de 21 marcos anatémicos (landmarks) tridimensionais por m3o, to-
talizando 63 valores por m3o (cada ponto contendo coordenadas espaciais (z,¥, z), além de

fornecer informacdes adicionais sobre a probabilidade de lateralidade (direita ou esquerda).

4.2 NORMALIZACAO DE DADOS

A normalizacdo espacial dos dados extraidos é uma etapa crucial para o reconhecimento
automatico de gestos, visto que variacGes nas posicoes, orientacoes e escalas das maos cap-
turadas podem introduzir ruidos e inconsisténcias significativas no processo de treinamento
dos modelos. Para garantir maior robustez e generalizacdo das representacoes utilizadas, é
realizado um procedimento de normalizacdo espacial dos marcos anatdémicos (landmarks),

assegurando representacGes invariantes quanto a escala, rotacao e posicao espacial das maos.

4.2.1 Calculo do Vetor Normal da Palma da Mao

Os 21 landmarks 3-D fornecidos pelo MediaPipe sdo armazenados num tensor P € R**3,

em que cada linha p; = (z;,y;, z;) representa um ponto anatémico.

Para estimar a orientacdo global da m&o, usamos apenas trés pontos (enumerados conforme

a Figura |4)):
» po — pulso
» ps5 — base do dedo

» Ppi7 — base do dedo minimo

Dois vetores s3ao entao formados a partir do pulso: vi = p17 — po € V2 = P5 — Po.
O produto vetorial desses vetores gera um vetor perpendicular ao plano da palma; apds
normalizacao obtemos
5 Vi X Vo
n=——-,
Vi X va|

onde 77 tem médulo 1 e aponta para fora da palma.
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4.2.2 Alinhamento dos Landmarks ao Plano da Palma

Depois de calcular o vetor normal 77, os landmarks s3o rotacionados para um sistema de
coordenadas local em que

= O eixo Z aponta na direcdo de 7i (perpendicular a palma);

= O eixo X estd contido na palma;

= O ponto de rotacdo é o pulso, que passa a ser a origem.

Esse alinhamento elimina diferencas de orientacdo entre maos filmadas de angulos distintos,

reduzindo a variabilidade dos dados. E construida uma base ortonormal {Z, 7, Z}:

u 2:ﬁ
« 7=(1,0,0)x 7

n
STl
I
Ry
X
<y

Empilhando esses vetores linha-a-linha, forma-se a matriz de rotacdo R = |7

5’I’

Por fim, cada landmark é transladado até a origem (subtraindo py) e multiplicado por R:
pi=R (pi - po)- (4.2)

4.2.3 Angulo de Alinhamento no Plano da Palma

Depois de fixar um referencial local na palma, ainda falta resolver a rotacdo em torno do
4 . - ~ . b ” ~ by
préprio eixo Z para que todas as maos fiquem “retas” uma em relacdo a outra. Escolhemos o

vetor que vai do pulso até a articulacdo média do dedo médio,

u = Py — Po; (4.3)

pois ele é aproximadamente ortogonal a linha que une os dedos indicador e minimo, servindo

como um meridiano natural da mao.
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O angulo de alinhamento 6 é entdo a direcdo desse vetor no plano XY

6 = atan2(u,, u,) + 90°, (4.4)

onde atan2(y, z) devolve o argumento polar do vetor (z,y) no intervalo (—180°,180°]. O
termo adicional 90° faz o dedo médio apontar para o eixo Y positivo apds a rotacao, definindo

um “cima” comum para todas as capturas.

4.2.4 Aplicacao da Rotacao Planar

Para uniformizar o gesto, subtraimos primeiro o pulso (colocando-o na origem) e depois

giramos todo o conjunto de /landmarks em torno do eixo Z:

pi = Rz(0) (pi - po)» (4.5)

cosf) —sinf 0

Rz(0) = |sinf cos® 0] - (4.6)

0 0 1

Apds essa etapa, quaisquer duas m3os capturadas (independentemente de como a camera
estava orientada) ficam no mesmo sistema de eixos: palma no plano Z = 0 e dedo médio

apontando para cima.

4.2.5 Escalonamento para [0, 1]

Com a m3o ja posicionada num referencial comum, resta eliminar diferencas absolutas
de tamanho. Projetamos cada componente (x,y, z) para o intervalo [0, 1] por meio de uma
normalizacdo minimo—-maximo feita eixo-a-eixo onde o min e o max sao tomados sobre o
conjunto completo de landmarks (21 pontos) para cada eixo separadamente. O resultado é
um bounding box unitério cujo canto inferior esquerdo é (0,0,0) e o canto oposto é (1,1, 1).

Esse procedimento garante que todas as configuracdes de mao sejam representadas consis-
tentemente dentro de uma mesma faixa numérica, oferecendo invariancia quanto as diferencas

individuais no tamanho das maos, contribuindo diretamente para a robustez e generaliza-
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cao dos modelos computacionais desenvolvidos. A Figura [/| apresenta exemplos dos marcos

anatomicos antes e apds a aplicacao do procedimento de normalizacao descrito.

Figura 7 — Exemplos da aplicacdo da normalizac3o.
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Fonte: A autora (2025)

4.3 AUMENTO ARTIFICIAL DE DADOS

Para aumentar a diversidade dos dados e aprimorar a robustez dos modelos frente a varia-
cBes anatdémicas e ambientais, técnicas especificas de aumento artificial (data augmentation)
foram aplicadas ao conjunto de treinamento. Essas técnicas introduzem variacdes sintéticas
nas representacoes dos gestos, simulando diferentes condicdes praticas que podem ocorrer em

ambientes reais.

4.3.1 Rotacado dos Dedos

Para ampliar a variedade dos dados de treino sem comprometer a anatomia da mao, faze-
mos leves rotacoes independentes somente nas pontas de cada dedo. Essas rotacdes acontecem
em um dnico plano (eixo Z fixo), mantendo a base do dedo parada; assim, a junta principal
que liga o dedo a mao continua sem se mover. A Tabela [2| traz uma lista de quais os mar-
cos podem ser movidos em conjunto para cada dedo de forma que respeite minimamente o
comportamento anatémico de uma mao.

Para cada dedo sorteia-se um limite O, € {1°,...,10°} e, em seguida, um angulo
0 ~ U(—bmax, Omax ). Portanto o desvio minimo é 1° e o maximo 10°.

Sejam Py, P, P: € R’ (0s pontos base, intermediario e ponta). O vetor v = p — p; de

cada ponto acima da base é girado por
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Tabela 2 — Dedos e marcos considerados. Os indices seguem a convencdo do MediaPipe apresentada na Fi-

gurad]

Dedo Base (b) Intermediario (m)  Ponta (t)
polegar 2 3 4
indicador 6 7 8

médio 10 11 12

anelar 14 15 16
minimo 18 19 20

Fonte: A autora (2025)

cosf —sinf 0
Rxy(0) = |sinf cos@® 0], (4.7)

0 0 1

resultando em
P, = Py + Bxy (0)(Pm — ),

P; = Ps + RXY(Q)(pt - Pb)'

Somente p,, e p; sao alterados; p, permanece intacto, garantindo coeréncia com a cine-

(4.8)

matica real da m3ao.

4.3.2 Adicao de Ruido

Com o objetivo de simular condicdes realisticas de captura e aumentar a robustez do mo-
delo frente a ruidos tipicos encontrados em cenarios praticos, foram adicionadas perturbacoes
aleatérias as coordenadas dos marcos anatomicos extraidos. Cada ponto anatomico recebe
um deslocamento aleatério €, cujos componentes sao gerados independentemente por meio de
uma distribuicdo uniforme dentro de um intervalo controlado, definido por ¢ € [0,001;0, 005],

conforme representado pela Equacdo [4.9;

p=p+e e~U-H 0) (4.9)

Essa técnica simula condicoes adversas frequentemente encontradas em aplicacGes reais,
tais como variacdes na qualidade da captura (baixa resolucdo, movimentos indesejados) e in-
terferéncias causadas por mudancas nas condicdes de iluminacdo ou outros fatores ambientais.

Associada a estratégias de normalizacao espacial baseadas em fatores de escala e alinhamento
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geométrico (TURNER; SMITH, [2023; |CHUNG et al., 2023), essa abordagem contribui direta-
mente para aumentar a robustez, confiabilidade e capacidade de generalizacdo dos modelos

desenvolvidos, resultando em maior eficacia pratica do sistema proposto.

44 ARQUITETURA DO MODELO

A arquitetura computacional proposta foi baseada em uma rede neural totalmente conec-
tada (FC) e foi projetada especificamente para equilibrar eficiéncia, simplicidade estrutural e
capacidade de generalizacdo em contextos reais de reconhecimento automatico de gestos. A
escolha dessa arquitetura foi motivada pela utilizacdo de representacdes compactas baseadas
em marcos anatémicos (landmarks) das m3os, que permitem dispensar modelos computaci-
onais mais complexos, possibilitando uma boa eficiéncia em tempo real em dispositivos com
recursos limitados.

Cada bloco da arquitetura é composto por camadas selecionadas e otimizadas, visando
garantir maior estabilidade durante o treinamento e minimizar problemas como o sobreajuste,

resultando em modelos mais generalizaveis. Os componentes principais incluem:

= Batch Normalization: Normaliza as ativacoes intermediarias do modelo, estabilizando
a distribuicao dos dados durante o treinamento, acelerando a convergéncia dos algorit-

mos e reduzindo a variancia interna dos dados (|OFFE; SZEGEDY| 2015)).

= Funcdo de ativacao ReLU (Rectified Linear Unit): Introduz n3o-linearidade as ca-
madas intermediarias, favorecendo a extracao de caracteristicas relevantes e acelerando

a convergéncia dos modelos (NAIR; HINTON| 2010)).

» Dropout: Implementado com uma taxa de 0,4, essa técnica desativa aleatoriamente
neurdnios durante o treinamento, prevenindo efetivamente o sobreajuste e assegurando

maior capacidade de generalizacdo do modelo (SRIVASTAVA et al., 2014).

A camada final consiste em uma camada Densa seguida pela aplicacdo da funcao Softmax,
que gera probabilidades normalizadas associadas a cada classe de gesto. Essa etapa possibilita
a classificacdo direta e eficiente das configuracdes das maos representadas pelo SignWriting,

assegurando interpretacoes claras e precisas do sistema proposto.
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45 AMBIENTE EXPERIMENTAL

O ambiente experimental foi elaborado com o objetivo de avaliar tanto a eficacia preditiva
quanto a eficiéncia computacional do modelo proposto, buscando simular cenarios represen-
tativos das condicOes praticas de uso. As subsecOes a seguir descrevem detalhadamente os
conjuntos de dados utilizados, as métricas de avaliacdo adotadas e a configuracdo do ambi-

ente computacional empregado.

4.5.1 Conjuntos de Dados
4.5.1.1 Conjunto de Treinamento

O conjunto de treinamento foi elaborado utilizando como base principal imagens proveni-
entes do catélogo oficial do SignWritinéﬂ, garantindo que as amostras estejam rigorosamente
alinhadas a notacdo visual padronizada. Foram selecionadas trés imagens diferentes (visGes
frontal, lateral esquerda e lateral direita) para cada um dos 261 gestos distintos considerados,
resultando inicialmente em 783 imagens representativas.

Adicionalmente, para aumentar a diversidade e robustez dos dados utilizados no treina-
mento, foram incorporadas 25 amostras extras por classe, provenientes das particdes de treina-
mento de 16 conjuntos de dados publicamente disponiveis, que serdo apresentados na subsecao
seguinte. Nos casos em que os autores dos conjuntos disponibilizavam divisoes explicitas em
treino e teste, utilizamos exclusivamente a particao de treino. Quando tais divisdes ndo estavam
presentes, uma fracdo do conjunto original de teste foi separada e destinada ao treinamento,
de forma estratificada, assegurando equilibrio entre classes e consisténcia metodoldgica.

Ademais, visando aumentar significativamente a capacidade de generalizacdo do modelo,
técnicas de aumento sintético e normalizacdo espacial foram aplicadas as amostras originais.
Cada imagem foi submetida a 25 rotacdes artificiais e aleatérias das articulacdes dos dedos,
simulando variacbes anatomicas naturais, além de 25 perturbacdes sintéticas de ruido, repli-
cando condicdes realisticas frequentemente encontradas em ambientes reais, tais como baixa
resolucdo das imagens ou variacoes nas condicoes de iluminacdo. Esses procedimentos introdu-
ziram variacdes controladas nas representacdes, preservando cuidadosamente as caracteristicas

fundamentais dos gestos.

2 |<https://www.signhwriting.org/>
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Para a validacdo durante o treinamento, cada conjunto de dados de treino foi dividido de
forma aleatéria em duas particdes: 80% das amostras foram destinadas ao treinamento e 20%
a validacdo. Essa estratégia foi preferida em relacdo ao uso de validacdo cruzada (k-fold),
pois a maioria dos conjuntos ja possui particdes de teste previamente definidas pelos autores,
o que inviabiliza a aplicacao uniforme de k-fold em todos os cenarios. Além disso, o custo
computacional de treinar mdltiplos folds em 16 bases distintas seria desproporcional, dado o
foco do estudo em avaliar generalizacao entre mdltiplas linguas de sinais € ndo em otimizar
desempenho em um (nico corpus.

Os parametros finais utilizados nas técnicas de aumento artificial dos dados foram de-
terminados com base em um estudo sistematico de ablacdo, cujos detalhes metodoldgicos e

resultados quantitativos sdo discutidos na Secdo [5.2

4.5.1.2 Conjuntos de dados de teste.

Para a avaliacdo final, utilizamos 16 conjuntos de teste originais fornecidos pelos autores
das bases. Como cada conjunto foi originalmente anotado em sistemas ou notacdes diferen-
tes, realizamos um mapeamento manual das classes para a nomenclatura de SignWriting,
garantindo consisténcia na comparacdo. Esse alinhamento exigiu analisar o catalogo oficial
de SignWriting e associar cada gesto a representacdo equivalente, com base em semelhancas
visuais e estruturais.

A Tabela [3| resume as principais caracteristicas de cada conjunto de dados selecionado,
que em conjunto totalizam 132 classes tinicas: NUS Hand Posture dataset | (PISHARADY; VA-
DAKKEPAT; POH, 2014)), NUS Hand Posture dataset || (PISHARADY; VADAKKEPAT; LOH|, 2012),
OUHANDS (MATILAINEN et al., 2016, ASL Digits (MAVI, 2021)), Indian Alphabet (SONAWANE,
2020), HAGRID (KAPITANOV et al, [2024)), HG14 (GiLER; YiCEDAg, 2021), LSA16 handshapes
(RONCHETTI et al., [2016)), Pugeault (PUGEAULT; BOWDEN, [2011)), ArSL21L (GOCHOO, 2022),
ASL Alphabet (NAGARAJ, 2018), KU-BdSL (JIM et al., 2023)), PSL (IMRAN et al., 2021)), Ben-
gali Alphabet (RAFI et al., 2019), PHOENIX-14 Handshapes (KOLLER; NEY; BOWDEN, 2016) e
LSWH100 (LOBO-NETO; PEDRINI, 2024).

Excecoes: em particular, o conjunto HAGRID n3o dispunha de particao de teste. Trata-se
de um banco extenso com aproximadamente 500 mil imagens; desse total, extraimos uma
amostra balanceada de 13 mil imagens (mil por classe) para compor o conjunto de teste, além

de selecionar 25 imagens adicionais por classe para compor o treinamento. Essa adaptacdo
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Tabela 3 — Conjuntos de dados de lingua de sinais utilizados nos testes, apresentando informacdes sobre o
nimero de classes, tamanhos das imagens e quantidade de amostras destinadas aos testes. As
linguas de sinais suportadas pelos conjuntos de dados sdo: ASL (American Sign Language), ISL
(Indian Sign Language), LSA (Argentine Sign Language), ArSL (Arabic Sign Language), BdSL
(Bengali Sign Language), PSL (Pakistan Sign Language), DGS (German Sign Language) e LIBRAS
(Lingua Brasileira de Sinais).

Nome Linguagem Classes Tamanho Quantidade de amostras
de Sinal das imagens usadas para teste

NUS Hand Posture dataset | Nao definida 9 160x120 241

NUS Hand Posture dataset Il N3o definida 9 160x120 2.000

OUHANDS N3o definida 10 640x480 1.000

ASL Digits ASL 10 100x100 2.062

Indian Alphabet ISL 13 128x128 15.600

HAGRID N3o definida 13 512x683 13.000

HG14 N3o definida 14 256x256 14.000

LSA16 handshapes LSA 15 640x480 800

Pugeault ASL 21 87x124 12.547

ArSL21L ArSL 21 416x416 14.202

ASL Alphabet ASL 23 200x200 28

KU-BdSL BdSL 25 3024x4032 1.500

PSL PSL 31 640x480 1.480

Bengali Alphabet BdSL 34 224x224 1.520

PHOENIX-14 Handshapes DGS 44 93x132 1.837

LSWH100 LIBRAS 100 500x500 4.000

Fonte: A autora (2025)

assegurou a viabilidade de uso do HAGRID de forma compativel com os demais experimentos.

4.5.2 Meétricas de Avaliacao

Com o intuito de avaliar tanto a eficacia quanto a viabilidade operacional do modelo
proposto, foram definidas quatro métricas principais. Essas métricas foram selecionadas para
abranger aspectos criticos como precisao do reconhecimento, robustez em contextos multi-

classes e desempenho computacional para aplicacdes em tempo real:

» Acuracia: Mede a proporcdo total de predicdes corretamente classificadas pelo modelo
em relacao ao total de predicoes realizadas, fornecendo uma avaliacao direta da eficacia

geral do sistema proposto.

» F1-Score: Combina as métricas de precisdo (precision) e revocacdo (recall) em uma
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tnica medida harmonica, sendo especialmente relevante para avaliar o desempenho do

modelo em conjuntos com classes desbalanceadas ou com diferentes niveis de dificuldade.

Tempo de Inferéncia: Corresponde ao tempo médio, medido em milissegundos, re-
querido pelo modelo para processar uma imagem e fornecer a respectiva predicdo. Essa
métrica é especialmente importante para garantir a viabilidade pratica do sistema em
dispositivos com restricoes computacionais, permitindo aplicacoes efetivas em tempo

real.

Taxa de inferéncia ( Throughput): Refere-se ao nimero médio de imagens processa-
das pelo modelo por unidade de tempo, tipicamente em quadros por segundo (frames
per second - FPS). Esta métrica é crucial para avaliar o desempenho computacional e
a escalabilidade do sistema, principalmente em aplicacbes em larga escala ou cendrios

que exigem respostas rapidas.

Para garantir robustez estatistica dos resultados obtidos, todas as métricas foram calcu-

ladas com base em miiltiplas execucBes independentes (10 repeticdes). Os resultados finais

foram reportados como médias acompanhadas por intervalos de confianca com nivel de sig-

nificAncia de 95%, permitindo assim uma andlise estatistica da variabilidade dos resultados

obtidos.

4.5.3 Configuracao do Ambiente de Treinamento

As especificacdes detalhadas do equipamento utilizado para a execucao dos experimentos

sdo apresentadas a seguir:

CPU: Intel Core i7-12700H, 122 geracdo (14 nicleos)

Meméria RAM: 16 GB DDR4

A configuracdo dos hiperparametros e da arquitetura do modelo foi definida utilizando

técnicas de otimizacdo automatica, especificamente Otimizacdo Bayesiana e Random Search.

As decisGes finais sobre a estrutura e hiperparametros foram obtidas apés experimentos preli-

minares, detalhados na Secdo [5] Os detalhes dessa configuracdo sdo apresentados abaixo:
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Arquitetura da Rede Neural

» Nlmero de camadas ocultas: 4 camadas totalmente conectadas.
» Funcdo de ativacdo: ReLU (Rectified Linear Unit) para introducdo de n3o-linearidade.

» Dropout: Implementado com taxa de 0,4 para prevenir sobreajuste.

4.5.3.1 Hiperpardmetros e Otimizacdo

= Otimizador: Adam (Adaptive Moment Estimation), escolhido devido ao seu desempe-
nho superior e ajuste dindmico eficiente da taxa de aprendizado durante o treinamento

(KINGMA; BA, [2014)).

» Funcao de perda: Categorical Cross-Entropy, ideal para problemas de classificacdo

multiclasse, amplamente adotada na literatura da area (BISHOP, 2006)).

» Taxa de aprendizado inicial: 0,001, ajustada dinamicamente utilizando um Learning

Rate Scheduler de decaimento exponencial (taxa de decaimento = 0,99 por época).
= Tamanho do lote (batch size): 32.

= Ndmero maximo de épocas: 100, com critério de parada antecipada ( Early Stopping)
baseado no desempenho do conjunto de validacdo para garantir eficiéncia computacional

e evitar sobreajuste.
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5 RESULTADOS

Neste capitulo sao apresentados e discutidos os resultados experimentais obtidos com a
metodologia proposta. As analises realizadas contemplam aspectos essenciais como eficicia
preditiva, robustez a variacoes ambientais e eficiéncia computacional da abordagem em diversos
cendrios experimentais. Para isso, foram realizados experimentos comparativos abrangentes
em multiplos conjuntos de dados, visando demonstrar a capacidade do modelo em generalizar
efetivamente para diferentes contextos linguisticos e condicdes praticas.

Além das analises comparativas de desempenho em diferentes cenérios, sdo discutidos
resultados detalhados obtidos através de estudos sistematicos de ablacdo, cujo objetivo é
avaliar quantitativamente o impacto de cada etapa do processo metodoldgico proposto. Esses
estudos permitem compreender melhor a contribuicdo especifica das técnicas de normalizacdo
espacial, aumento sintético dos dados e componentes arquiteturais do modelo.

Por fim, s3o apresentados experimentos especificos sobre a robustez do método frente a
variacdes nas condicGes ambientais e diferentes niveis de restricio computacional, fornecendo
evidéncias sobre a eficiéncia e aplicabilidade pratica da abordagem em dispositivos com recursos

limitados, cenario crucial para aplicacGes reais de reconhecimento automatico de gestos.

5.1 COMPARACAO COM METODOS DO ESTADO DA ARTE

Inicialmente, foram conduzidos experimentos quantitativos comparando o desempenho do
método proposto com abordagens consagradas na literatura (estado da arte), utilizando ml-
tiplos conjuntos de dados amplamente reconhecidos na area de reconhecimento automatico
de gestos, incluindo NUS |, NUS |I, OUHANDS, LSA16 e PHOENIX-14 Handshapes. Os
resultados obtidos nestes experimentos sdo sintetizados detalhadamente na Tabela [4, permi-
tindo avaliar diretamente o desempenho relativo da abordagem proposta frente a métodos

previamente estabelecidos.

Entre os conjuntos avaliados, destaca-se o LSWH100 que é um novo conjunto de dados que
contém representacdes sintéticas de gestos anotados diretamente com simbolos do SignWri-
ting. Trata-se de um conjunto pioneiro, ainda ndo explorado em estudos anteriores, permitindo
avaliar especificamente a eficacia do método proposto em contextos baseados explicitamente

nessa notacao visual.
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Cumpre ressaltar que, em todos os experimentos, o protocolo manteve-se idéntico: empregou-
se a mesma arquitetura de rede, os mesmos hiperparametros e uma base inicial de treinamento
comum. Para cada conjunto de dados, foram adicionadas 25 amostras do conjunto de treino do
respectivo conjunto de dados, o que assegura que eventuais variacdes de desempenho reflitam,
primordialmente, as particularidades de cada conjunto de dados.

Em sintese, mesmo ndo atingindo o melhor resultado em todos os conjuntos de dados, o
método mantém desempenho competitivo em uma variedade de bases publicas. Essa abran-
géncia, aliada a simplicidade arquitetural, ao baixo tempo de inferéncia e a pequena quantidade
de amostras reais usadas para treinamento, sustenta a viabilidade do sistema em ambientes
de producdo que envolvem multiplas linguas de sinais, diferentes condicGes de filmagem e
restricoes de hardware.

A Figura [8] apresenta as matrizes de confusdo normalizadas obtidas nos experimentos re-
alizados com os 16 conjuntos de dados distintos. Nelas, é possivel observar detalhadamente
a capacidade do modelo em discriminar corretamente entre diferentes classes de gestos, com
predominancia acentuada de valores elevados na diagonal principal indicando um alto desempe-
nho preditivo e robustez significativa. Esses resultados confirmam a eficacia pratica do método
proposto na identificacdo correta dos gestos estaticos de maos, corroborando claramente a sua

capacidade de generalizacdo e robustez em contextos variados.
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Tabela 4 — Comparacdo quantitativa entre o método proposto e diversas abordagens de referéncia em diferen-
tes conjuntos de dados de reconhecimento de gestos. Os métodos comparados incluem modelos
amplamente utilizados, como CNN, Redes de Prototipagem (ProtoNet, do inglés Prototypical
Networks), Redes Neurais Convolucionais com Cépsulas (CCNN, do inglés Convolutional Capsule
Neural Network), DenseNet (do inglés Densely Connected Convolutional Networks), VGG16 (do
inglés Visual Geometry Group 16), You Only Look Once versdo 8.0 (YOLOV8) e ViT. Para cada
conjunto de dados, a tabela apresenta a acuracia média obtida por cada método. No caso da nossa
abordagem, os resultados sdo exibidos com um intervalo de erro calculado a partir de bootstrap
de 10 execucdes independentes. Os tracos (—) indicam que o respectivo trabalho da literatura n3o
reportou resultados naquele conjunto especifico, ja que a maioria dos estudos foi avaliada apenas
em uma, duas ou trés bases, e ndo em todas as utilizadas neste estudo. Dessa forma, a comparacdo
deve ser entendida como parcial: cada método da literatura é contrastado com o proposto apenas

nos COI’IjUhtOS em comum.

Método

NUS |

NUS 1I

OUHANDS

ASL Digits

CNN (GUPTA et al) 2022)
2RCNN (SAHOO et al | [2022)

CNN (KUMAR; SURESH; DINESH|
2022)

CNN (GUPTA et al [2022)

0,9943

0,9480

0,8757

0,9906

Este estudo

1,0000 + 0,0000

0,9871 + 0,0056

0,9818 + 0,0123

0,9902 4 0,0053

Método Indian Alphabet HAGRID HG14 LSAl6
FC (FALLAH et al. [2024) 0,9995 - - -

CNN (MENON; SRUTHI; LIJIYAL2022)  0,9986 - - -
Densenet201 (PADHI; DAS, 2022) - 0,9755 - -

CNN (MISHRA et al} [2023) ; 0,9921 - -
CCNN (GILER; YuCEDAg, [2021) - - 0,8739 -
ResNet50 (AWALUDDIN; CHAO; - - 0,9747 -
CHIOU, [2023)

ProtoNet (RONCHETTI et al., [2023) - - - 0,9838
VGG16 (QUIROGA et al), [2017) - . . 0,9592

Este estudo

0,9968 + 0,0009

0,9549 + 0,0022

0,9685 4= 0,0045

0,8439 & 0,0584

Método Pugeault ArSL21L ASL Alphabet KU-BdSL
ViT (ZHANG et al.| [2023) 0,9653 - 0,9944 -
YOLOv8 (ALAMRI et al., [2024) - 0,9799 - -

FC (FALLAH et al., [2024) - - 0,9940 -

ViT (ALSHARIF et al., 2023 - - 0,9998 -

VGG16 (SURJO et al., [2023) - - - 0,9800

Este estudo

0,9483 £ 0,0068

0,9598 £ 0,0046

0,9167 & 0,0986

0,9865 £ 0,0091

Método PSL Bengali Alphabet PHOENIX-14 LSWH100
Handshapes

CNN (AROOJ et al., [2024)) 0,9874 - - -

FC (FALLAH et al} 2024) - 0,9996 - -

ANN (IRVANIZAM; HORATIUS;| - 0,9841 - -

SOFYAN,| [2023))

DenseNet (RONCHETTI et al., 2023) - - 0,9605 -

Este estudo

0,9819 + 0,0062

0,7258 + 0,0263

0,8553 4+ 0,0175

0,9098 + 0,0085

Fonte: A autora (2025)
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Figura 8 — Matrizes de confusdo normalizadas para os 16 experimentos realizados em diferentes conjuntos de
dados de reconhecimento de gestos. Cada matriz ilustra o desempenho do modelo em termos de
acuracia de classificacdo entre classes, com maior intensidade de cor ao longo da diagonal indicando
melhor precisdo de predicdo.

(c) OUHANDS (d) ASL Digits

(i) Pugeault

(m) PSL (n) Bengali Alphabet (o) PHOENIX-14 (p) LSWH100

Fonte: A autora (2025)
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5.2 ESTUDO DE ABLACAO

Com o objetivo de avaliar detalhadamente a contribuic3do individual de cada componente
metodolégico no desempenho geral do modelo proposto, foi realizado um estudo sistematico
de ablacdo. Essa abordagem permite identificar claramente quais etapas metodolégicas sdo
essenciais para o funcionamento eficaz do sistema, bem como entender precisamente o impacto
isolado e combinado de estratégias como normalizacdo espacial, aumento de dados sintéticos
e diferentes modelos de aprendizado utilizados (HASTIE; TIBSHIRANI; FRIEDMAN, 2009).

Para os experimentos de ablacdo adotou-se exclusivamente o HAGRID, um corpus de gestos
genéricos de mao que n3o estd vinculado a nenhuma lingua de sinais especifica. Esta escolha
deve-se a trés fatores principais: oferece um conjunto de teste volumoso com 13.000 amostras;
exibe qualidade de imagem superior a colecoes mais antigas e ja é largamente empregado na

literatura, o que facilita comparacoes diretas.

5.2.1 Impacto das Arquiteturas e Modelos de Aprendizado

O primeiro experimento realizado visou avaliar quantitativamente o impacto direto das
diferentes arquiteturas e algoritmos de aprendizado sobre a tarefa especifica de classificacdo
automatica de gestos. Todos os classificadores avaliados foram inseridos no mesmo fluxo
ilustrado na Figura [} Os valores resultantes da normalizacdo sdo entdo concatenados em um
Unico vetor de caracteristicas, que serve de entrada aos modelos comparados.

Foram comparadas multiplas abordagens amplamente adotadas na literatura, abrangendo
desde métodos classicos de aprendizado de maquina até arquiteturas profundas mais comple-
xas, conforme detalhado na Tabela[5] Entre as técnicas avaliadas encontram-se FC, Redes Neu-
rais Convolucionais Unidimensionais (CONV1D, do inglés 1D Convolutional Neural Networks),
Florestas Aleatérias (RF, do inglés Random Forest), Maquinas de Vetores de Suporte (SVM,
do inglés, Support Vector Machines), Algoritmo dos K-Vizinhos Mais Préximos (KNN, do in-
glés K-Nearest Neighbors), Regressdo Logistica (LR, do inglés Logistic Regression), Gradient
Boosting (GBC) e AdaBoost (Adaptive Boosting).

Adicionalmente, foi explorada uma arquitetura baseada em Redes Totalmente Conectadas
com blocos residuais, combinada a um embedding pré-treinado disponibilizado pelo Google
(denominado FC + embedder). Essa abordagem especifica busca combinar a eficiéncia com-

putacional das redes totalmente conectadas com a capacidade aprimorada de representacao
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dos embeddings pré-treinados, visando capturar relacdes mais complexas e robustas presentes
nos dados.

Para garantir uma anélise robusta e abrangente, em cada caso também foram avaliadas
diferentes combinacdes de estratégias de normalizacdo espacial e técnicas de aumento de dados
sintéticos, como Rotacdo dos Dedos e Adicdo de Ruido, permitindo uma avaliacdo rigorosa

do impacto isolado e combinado dessas estratégias sobre o desempenho preditivo do modelo.

Tabela 5 — Comparacdo do desempenho de diferentes modelos em termos de acuracia e FI-score, conside-
rando varias combinacdes de normalizacdo e métodos de aumento de dados no conjunto de dados

HAGRID.

Sem métodos de normalizacdo e sem aumento de dados

Modelo Acurécia F1

FC 0,1106 + 0,0059 0,0421 + 0,0032
FC + embedder 0,6564 + 0,0119 0,6212 + 0,0131
CONV1D 0,0899 + 0,0069 0,0234 + 0,0029
RF 0,1214 + 0,0034 0,0756 + 0,0033
SVM 0,0841 £ 0,0069 0,0389 + 0,0046
GBC 0,0766 + 0,0058 0,0157 + 0,0021
Adaboost 0,0994 + 0,0055 0,0607 + 0,0057
KNN 0,0946 + 0,0049 0,0616 + 0,0045
LR 0,1118 + 0,0033 0,0506 + 0,0019

Com normalizacdo e sem métodos de aumento

FC 0,5147 + 0,0082 0,476 & 0,0104

FC + embedder 0,5317 + 0,0105 0,5081 + 0,0107
CONV1D 0,1591 4 0,0086 0,0566 + 0,0052
RF 0,6023 + 0,0158 0,5736 + 0,0169
SVM 0,6312 + 0,0084 0,5909 + 0,0088
GBC 0,3364 + 0,0103 0,3253 + 0,0098
Adaboost 0,1138 + 0,0063 0,098 £ 0,0066

KNN 0,2667 + 0,0068 0,2362 + 0,0106
LR 0,5861 + 0,0056 0,5388 + 0,0067

Com normalizacdo e com aumento de “Rotacdo dos Dedos"

FC 0,7305 + 0,0098 0,7254 + 0,0106
FC + embedder 0,7042 + 0,0107 0,7054 + 0,011

CONV1D 0,5279 + 0,0078 0,5126 + 0,0075
RF 0,6433 + 0,0131 0,6296 + 0,0137
SVM 0,6534 + 0,0076 0,6534 + 0,0081
GBC 0,3389 + 0,0116 0,3303 + 0,0111
Adaboost 0,1206 + 0,0089 0,0684 + 0,0069
KNN 0,5968 + 0,0123 0,5962 + 0,0124
LR 0,6456 + 0,0088 0,6356 + 0,0107

Com normalizagdo e com aumentos de “Rotacdo dos Dedos” e “Ruido”

FC 0,757 + 0,0085 0,7531 + 0,0083
FC + embedder 0,6895 + 0,0117 0,6883 + 0,0127
CONV1D 0,4893 + 0,0095 0,4718 + 0,0094
RF 0,6263 + 0,0122 0,6095 + 0,013

SVM 0,6579 + 0,0082 0,6524 + 0,0072
GBC 0,3142 + 0,0126 0,3126 + 0,0128
Adaboost 0,2131 + 0,0125 0,1499 + 0,0084
KNN 0,6002 + 0,0091 0,5995 + 0,0085
LR 0,6489 + 0,0092 0,6391 + 0,0082

Fonte: A autora (2025)
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5.2.2 Impacto de Diferentes Conjuntos de Treinamento

Um segundo experimento de ablacdo foi realizado com o objetivo especifico de avaliar o
impacto direto que diferentes composicoes do conjunto de treinamento tém sobre o desem-
penho final do modelo proposto. Para garantir consisténcia metodolégica e comparabilidade
direta dos resultados, foi utilizada a configuracdo étima identificada no estudo anterior, in-
cluindo técnicas de normalizacdo espacial ativa e estratégias de aumento sintético de dados
(“Rotacdo dos Dedos” e “Adicdo de Ruido").

Os resultados obtidos com esse experimento s3o apresentados detalhadamente na Tabela[g]
considerando trés configuracGes distintas de composicdo do conjunto de treinamento, descritas

a seguir:

= SignWriting (oficial): Modelo treinado exclusivamente com o conjunto oficial de ima-
gens de SignWriting. Esta configuracdo serve como referéncia direta (baseline), permi-
tindo avaliar especificamente o desempenho do método na representacdo padronizada

original, sem a influéncia de outras variacGes externas.

» SignWriting + LSWH100: Modelo treinado utilizando a combinacdo do conjunto
oficial SignWriting com o conjunto LSWH100, contendo 100 classes de gestos represen-
tadas diretamente em SignWriting. Essa configuracdo foi projetada para avaliar explicita-
mente o impacto da inclusdo do LSWH100 sobre a robustez, generalizacdo e desempenho

geral do método em condicdes variadas.

= SignWriting + Amostra do Experimento: Modelo treinado com a combinacdo do
conjunto oficial do SignWriting e pequenas amostras especificas extraidas do conjunto
do experimento sendo avaliado. Foram utilizadas 25 amostras adicionais por classe,
provenientes do respectivo conjunto quando disponiveis. Para os conjuntos de dados
sem particdes pré-definidas para treinamento, separou-se uma amostra de 25 exemplos
por classe para o treinamento, preservando as demais para teste. Essa configuracao
foi adotada para avaliar o impacto pratico direto de complementar o treinamento com
amostras especificas do dominio-alvo, visando aumentar a robustez e o desempenho

preditivo do modelo em condicdes mais proximas da aplicacdo pratica.
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Tabela 6 — Resultados de desempenho do modelo no conjunto de dados HAGRID em trés configuracbes de
treinamento, medidos por acuracia e FI-score, todos acompanhados de intervalos de confianca
calculados por meio de bootstrap.

Conjunto de treinamento Acurécia F1
SW 0,7247 + 0,0065  0,7166 + 0,0058
SW + LSWH100 0,8705 + 0,0060  0,8694 + 0,0060

SW + Amostra do Experimento 0,9549 + 0,0022 0,9549 + 0,0022
Fonte: A autora (2025)

5.2.3 Impacto do Fator de Aumento e do Tamanho da Amostra

Um terceiro estudo de ablacao foi realizado com o objetivo de avaliar como o tamanho ini-
cial do conjunto de treinamento e o fator de aumento artificial dos dados (data augmentation)
influenciam o desempenho preditivo do modelo. Mais especificamente, buscou-se identificar
quantitativamente o impacto combinado dessas duas variaveis criticas na capacidade geral de
generalizacao do método proposto.

Os resultados quantitativos obtidos nesse estudo sdo apresentados na Tabela [7] desta-
cando o desempenho alcancado em termos de acuracia e FI-score, considerando diferentes
combinacdes entre o fator de aumento aplicado as amostras e o nimero inicial de exemplos
de treinamento por classe.

O fator de aumento (augmentation factor) refere-se diretamente ao nimero de amostras
adicionais geradas artificialmente para cada exemplo original, utilizando técnicas previamente
descritas, como Rotacdo dos Dedos e Adicdo de Ruido. Os valores considerados variaram
entre 5 e 25, permitindo expor sistematicamente o modelo a diferentes graus de variabilidade
controlada, com o intuito de aprimorar explicitamente a capacidade de generalizacdo.

Além disso, foi analisado o impacto do nimero inicial de amostras disponiveis para treina-
mento (antes da aplicacdo das técnicas de aumento), variando também entre 5 e 25 amostras
por classe. Essa avaliacdo permitiu compreender a interacdo entre a quantidade inicial de dados

disponiveis e o fator de aumento artificial na capacidade preditiva e robustez do modelo.

5.2.4 Avaliacao de Desempenho sob Diferentes Restricoes Computacionais

Visando avaliar como diferentes restricoes computacionais impactam o desempenho do mo-
delo durante a etapa de inferéncia, foram realizados experimentos sistematicos em ambientes

controlados utilizando Docker. O modelo treinado foi convertido para o formato TensorFlow
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Tabela 7 — Desempenho do modelo em termos de acuracia e FI-score no conjunto de dados HAGRID para
diferentes combinagdes de fatores de aumento e nimero de amostras de treinamento. O fator de
aumento, variando de 5 a 25, representa a multiplicacdo de amostras para elevar a variabilidade
dos dados, enquanto o nimero de amostras de treinamento (de 5 a 25) indica a quantidade de
exemplos originais utilizados antes do aumento.

Fator Nimero de amostras Acuracia F1

5 5 0,9227 + 0,0079 0,9231 + 0,0077
5 10 0,9419 + 0,0034  0,9418 + 0,0035
5 15 0,9462 + 0,0045 0,9465 + 0,0044
5 20 0,9515 + 0,0040 0,9517 + 0,0040
5 25 0,9507 £+ 0,0052 0,9509 + 0,0051
10 5 0,9133 £+ 0,0027 0,9130 £ 0,0027
10 10 0,9356 + 0,0058 0,9354 + 0,0058
10 15 0,9491 + 0,0048 0,9492 + 0,0048
10 20 0,9485 + 0,0049 0,9486 + 0,0050
10 25 0,9538 £+ 0,0050 0,9539 £ 0,0049
15 5 0,9198 + 0,0062 0,9200 + 0,0062
15 10 0,9390 + 0,0058 0,9388 + 0,0058
15 15 0,9439 £+ 0,0035 0,9441 £ 0,0035
15 20 0,9457 £+ 0,0056 0,9458 £+ 0,0057
15 25 0,9541 + 0,0044  0,9543 + 0,0044
20 5 0,9209 + 0,0053 0,9206 + 0,0054
20 10 0,9415 + 0,0044  0,9416 + 0,0043
20 15 0,9486 + 0,0055 0,9487 £+ 0,0055
20 20 0,9521 + 0,0045 0,9522 + 0,0045
20 25 0,9482 + 0,0037 0,9482 + 0,0037
25 5 0,9358 + 0,0037 0,9359 £ 0,0037
25 10 0,9335 £+ 0,0050 0,9337 £+ 0,0049
25 15 0,9501 + 0,0033 0,9502 + 0,0033
25 20 0,9518 + 0,0032 0,9520 + 0,0032
25 25 0,9554 + 0,0056 0,9555 £ 0,0056

Fonte: A autora (2025)

Lite (TFLite), sem aplicacdo de otimizacSes adicionais (como quantizacdo), resultando em
um arquivo compacto de aproximadamente 3 megabytes. Essa conversdo visou especifica-
mente avaliar a capacidade pratica do modelo em ambientes com recursos computacionais
limitados.

Durante os testes, foram medidas métricas quantitativas como o tempo médio de inferéncia,
a taxa de inferéncias por segundo (throughput), e o consumo médio de CPU e meméria. Cada
configuracdo testada foi repetida 30 vezes, utilizando lotes padronizados de 1.000 inferéncias

cada, garantindo robustez estatistica e replicabilidade dos resultados.
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A Figura[9 detalha a relacdo entre o nimero de nicleos de CPU e o throughput obtido em
diferentes configuracdes de memdria, evidenciando a escalabilidade e a estabilidade operacio-
nal da abordagem. Observa-se claramente que o throughput aumenta proporcionalmente ao
nimero de nicleos de CPU até atingir um ponto de saturacao, no qual incrementos adicionais
resultam em ganhos minimos. Para referéncia, a configuracdo mais eficiente obteve aproxi-
madamente 18.500 inferéncias por segundo, correspondendo a um tempo médio de apenas

0,00005 segundos por inferéncia.

Figura 9 — Relacdo entre nimero de CPUs e throughput
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A Figura ilustra o impacto direto do niimero de CPUs sobre o tempo médio de in-
feréncia por amostra. Observa-se claramente que o tempo médio diminui a medida que s3o
adicionados ntcleos de CPU, até alcancar um platé em que ganhos adicionais sdo reduzidos.
Esses resultados fornecem evidéncias claras sobre o equilibrio ideal entre desempenho obtido
e recursos computacionais utilizados, facilitando decisdes praticas sobre alocacdo eficiente em
aplicacdes reais.

Finalmente, a Figura apresenta a relacao entre quantidade de meméria alocada e o
throughput, revelando desempenho constante e robusto em todas as configuracdes avaliadas.
Esses achados demonstram a capacidade do modelo de operar eficientemente em ambientes
computacionais com recursos limitados, sugerindo sua viabilidade pratica mesmo em disposi-

tivos com restricoes significativas de memoria.
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Figura 10 — Relac3o entre nimero de CPUs e tempo médio de inferéncia
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Figura 11 — Relacdo entre meméria e throughput
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5.2.5 Impacto de Erros de Deteccdo de Marcos (Landmarks)

Com o objetivo de compreender o impacto das falhas ou imprecisGes na etapa de deteccdo
automatica dos marcos anatdmicos (landmarks) realizada pelo Mediapipe, foi conduzida uma
analise manual detalhada. Essa andlise buscou quantificar o quanto os erros de deteccao afetam
diretamente o desempenho global do modelo proposto.

Os resultados quantitativos detalhados obtidos nessa anélise estdo apresentados na Ta-
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bela [8] especificando a acuracia global original, o nimero total de erros observados, a quan-
tidade de erros diretamente atribuiveis a deteccao dos marcos pelo Mediapipe e a acurdcia
ajustada calculada formalmente para cada conjunto de dados.

Essa acurécia ajustada é calculada pela Equacdo[5.1] que procura isolar os erros diretamente
relacionados a deteccdo de marcos pelo Mediapipe, oferecendo uma estimativa do desempenho

que poderia ser alcancado caso esses erros fossem mitigados:

Ntotal - Nmediapipe_error - Nmodel_error (5 1)

Acuracia Ajustada =
Ntotal - Nmediapipe_error

onde:
»  Niotal: Nimero total de amostras avaliadas.
*  Nmediapipe_error: Quantidade de erros atribuiveis diretamente ao Mediapipe.

* Nmodel_error: NUmero de erros cometidos exclusivamente pelo modelo, excluindo-se as

falhas provenientes diretamente do Mediapipe.

Tabela 8 — Resumo do desempenho do modelo com acurécia ajustada conforme a Equacdo para cada
conjunto de dados. A tabela inclui a acuracia original, a contagem total de erros, os erros atribuidos
ao Mediapipe e a acuracia ajustada recalculada, que leva em consideracdo as falhas de deteccao
relacionadas ao Mediapipe.

Conjunto de dados Acuréacia Erro total Erros do Erro Media- Acurécia
Mediapipe pipe (%) Ajustada
NUS I 0,9871 26 12 46,15% 0,9926
OUHANDS 0,9818 11 4 36,36% 0,9911
ASL Digits 0,9902 15 14 93,33% 0,9994
Indian Alphabet 0,9968 48 4 8,33% 0,9971
HAGRID 0,9549 544 437 80,33% 0,9907
HG14 0,9685 384 245 63,80% 0,9885
LSA16 0,8439 45 23 51,11% 0,9160
Pugeault 0,9483 346 161 46,53% 0,9720
ArSL21L 0,9598 155 48 30,97% 0,9719
ASL Alphabet 0,9167 2 2 100,0% 1,0000
KU-BdSL 0,9865 20 12 60,0% 0,9932
PSL 0,9819 17 15 88,24% 0,9979
Bengali Alphabet  0,7258 393 201 51,15% 0,8482
PHOENIX-14 0,8553 856 804 93,93% 0,9461
LSWH100 0,9098 278 86 30,94% 0,9377

Fonte: A autora (2025)
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E importante enfatizar que essa métrica n3o substitui as medidas tradicionais de acuracia;
seu objetivo especifico é fornecer uma estimativa da penalizacao sofrida pelo modelo devido aos
erros externos a classificacao, provenientes exclusivamente da etapa de deteccao automatica.

Os resultados apresentados na Tabela [8 indicam que o nimero de erros do MediaPipe é
elevado em alguns conjuntos, comprometendo de forma significativa a acuracia global. Isso su-
gere que parte consideravel das discrepancias observadas ndo decorre do classificador proposto,
mas sim de limitacGes na etapa de pré-processamento. Assim, ao comparar os resultados com
outros métodos da literatura, deve-se considerar que o desempenho do modelo aqui avaliado
sofre restricGes adicionais, pois depende integralmente da qualidade dos marcos detectados
pelo MediaPipe. Em outras palavras, a acuracia reportada pode estar subestimando a real ca-
pacidade discriminativa da arquitetura, ja que erros do detector sdo propagados ao classificador
sem possibilidade de correcao posterior.

Para mitigar esse problema em trabalhos futuros, algumas estratégias praticas podem ser

exploradas, tais como:

» Aplicacdo de filtros estatisticos de outliers para descartar quadros com marcos eviden-

temente incoerentes;

= Uso de técnicas de suavizagdo temporal em sequéncias de video (ex.: filtros de Kalman

ou médias mdveis), reduzindo a variabilidade abrupta entre quadros consecutivos;

» Calibracao ou ajuste fino dos parametros internos do MediaPipe, de forma a adequar o

detector as condicdes especificas de captura de cada base;

= Exploracdo de detectores alternativos ou modelos hibridos (ex.: OpenPose combinado

ao MediaPipe), de modo a aumentar a robustez na deteccdo dos marcos.

Embora o MediaPipe apresente elevada eficiéncia e seja amplamente adotado pela comu-
nidade de visao computacional, sua utilizacdo em bases heterogéneas expde limitacoes que,
neste trabalho, se mostraram relevantes. Reconhecer o peso desses erros é fundamental para
interpretar corretamente os resultados obtidos e para guiar melhorias metodolégicas que apro-

ximem o desempenho observado do desempenho potencial estimado pela acuracia ajustada.
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5.3 ANALISE QUALITATIVA DE ERROS DE DETECCAO DO MEDIAPIPE

Para compreender de forma qualitativa o impacto especifico das falhas na etapa de de-
teccdo automatica de marcos anatdémicos (/landmarks) pelo Mediapipe sobre o desempenho
geral do modelo de classificacdo proposto, realizou-se uma anélise detalhada por meio de
verificacdo manual. Essa andlise qualitativa buscou identificar quais erros podem ser atribui-
dos ao Mediapipe, diferenciando-os dos erros diretamente relacionados ao préoprio modelo de

reconhecimento de gestos.

Figura 12 — Exemplos qualitativos de erros na deteccao de marcos pelo Mediapipe em reconhecimento de
gestos. A figura exibe cinco gestos distintos, cada um em trés estagios: (1) a imagem original, (2)
os marcos (landmarks detectados pelo Mediapipe e (3) os marcos normalizados utilizados como
entrada para o modelo. Em cada caso, o Mediapipe falha em capturar corretamente os marcos
da m3o, resultando em representacdes desalinhadas, incompletas ou distorcidas. Esses erros de
deteccdo, como pontas dos dedos ausentes ou posicdes incorretas dos dedos, introduzem ruido no
processo, afetando negativamente a precisdo de classificacdo do modelo.
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Fonte: A autora (2025)

Na Figura [12], sdo apresentados exemplos qualitativos representativos de erros especificos
cometidos pela ferramenta Mediapipe durante a deteccao automética dos marcos anatémicos
das maos. Cada exemplo detalha claramente trés estagios distintos do processo: a imagem
original contendo o gesto real realizado, os marcos anatémicos detectados automaticamente
pelo Mediapipe €, finalmente, a representacdo normalizada desses marcos, que corresponde a
entrada fornecida ao modelo durante a etapa de classificac3o.

Os erros ilustrados ocorrem tipicamente quando o MediaPipe n3o consegue identificar cor-
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retamente a posicao ou orientaciao dos dedos, resultando em representacoes incorretas, distor-
cidas ou incompletas em relacdo aos gestos originais. Consequentemente, tais erros impactam
diretamente e significativamente a eficacia do processo de classificacdo, ja que o modelo passa
a receber entradas ruidosas, imprecisas ou inconsistentes com o gesto originalmente realizado.
Essa situacao evidencia a importancia critica da precisdao na etapa inicial de deteccdo dos
marcos para a robustez global do sistema.

Essa analise qualitativa ressalta explicitamente a necessidade de técnicas mais rigorosas de
pré-processamento e evidencia a importancia de investigar aprimoramentos ou alternativas ao

Mediapipe na etapa de deteccao de marcos anatémicos.
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6 CONCLUSAO

Este trabalho apresentou o desenvolvimento e a validacdo experimental de um sistema
automatico de reconhecimento de gestos estaticos das maos baseado no SignWriting, com o
intuito especifico de superar barreiras linguisticas e culturais presentes em diferentes linguas de
sinais. A metodologia proposta utilizou marcos anatdémicos (/landmarks) extraidos automatica-
mente com o MediaPipe, técnicas robustas de normalizacdo espacial, estratégias de aumento
sintético dos dados e uma arquitetura de rede neural totalmente conectada para realizar a
classificacdo dos gestos.

A avaliac3do realizada em 16 conjuntos de dados distintos, contemplando um total de 132
classes Unicas de gestos, revelou resultados consistentes quanto a capacidade de generalizacdo
do método proposto, destacando o potencial do SignWriting como soluc3o eficaz e unificadora
para o reconhecimento interlinguistico de configuracdes de m3o (handshapes). Além disso, o
estudo evidenciou a praticidade do sistema em cenarios reais e reforcou a relevancia académica
e tecnoldgica do SignWriting como notacao visual independente de idioma.

Contudo, foram identificadas limitacGes importantes que oferecem oportunidades futuras
claras para aprimoramentos. A ferramenta MediaPipe, embora eficiente operacionalmente em
tempo real, demonstrou vulnerabilidade em condicoes adversas, como baixa iluminacao e gestos
anatomicos complexos, influenciando diretamente a precisao final do sistema. Além disso,
a abordagem focada exclusivamente em gestos estaticos nao contemplou outros aspectos
essenciais das linguas de sinais, especialmente movimentos continuos e expressoes faciais.

Essas limitacdes identificadas fornecem caminhos concretos para pesquisas futuras:

» Aprimoramento da deteccao de marcos: Investigacdo de técnicas de pds-processamento,
como filtragem robusta de outliers, suavizacdo temporal das deteccOes e alternativas ou

melhorias ao MediaPipe para aprimorar a robustez da deteccao de marcos.

» Reconhecimento de sinais dinamicos: Incorporar recursos adicionais do SignWriting
relacionados a movimentos e sequéncias gestuais, ampliando a abrangéncia linguistica e

comunicativa do sistema.

» Integracao de expressoes faciais e contexto linguistico: Explorar métodos para
integrar expressoes faciais e contextuais na classificacdo, aumentando a completude

linguistica e aplicabilidade pratica da abordagem.
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Em sintese, os resultados obtidos fornecem evidéncias de que o SignWriting, em combi-
nacdo com técnicas de visdo computacional e aprendizado profundo, oferece um alicerce para

sistemas futuros mais completos e inclusivos de traducdo de linguas de sinais.
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ANEXO A - LISTAGEM DE GESTOS DO SIGNWRITING

Code Name Front Back Left Right
S100 Index ]
3
A
S101 Index on Circle ‘
- 4
S103 Index on Oval ;‘
g
S105 Index on Angle \ o
e
S
S106 Index Bent pe
S107 Index Bent on Circle =
4
R
S10a Index Cup %
s
3
S10b Index Hinge on Fist 2
N
,\f
S10c Index Hinge on Fist Low
S10e Index Middle
s110 Index Middle Bent -
S112 Index Middle Hinge

S115

Index Middle Unit
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S118 Index Middle Unit Cup ﬁ 3 i i
S119 Index Middle Unit Hinge Q Q . E’ i
S11a Index Middle Cross i I 6 a
S11c Middle Bent Over Index & ‘ j ﬁ
S11e Index Middle Thumb :i {g \:
o LK), 4

S124 Index Up, Middle Hinge,

Thumb Side ‘ *— -*
S127 Index Middle Up Spread,

Thumb Forward
S128 Index Middle Thumb Cup ﬁ ’ ' ‘
S12a Index Middle Thumb

Hook ﬁ ‘ r 1
S12b Index Middle Thumb
S12d Index Middle Unit,

Thumb Side * i » * *
S12e Index Middle Unit,

Thumb Tight * t * *
S133 Index Middle Cross, ‘ ‘

Thumb Side %, ‘ i \
S135 Index Middle Unit Cup, ‘ ] :i i

Thumb Forward
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S13d Index Middle Thumb,

Unit Hinge r ‘
S13f Index Middle Thumb

Angle ! ]
S140 Middle Thumb Angle

Out, Index Up
S142 Middle Thumb Angle,

Index Up y ‘
S144 Four Fingers % g
S147 Four Fingers Unit e
S14a Four Fingers Unit Bent ? “ F w
S14c Five Fingers Spread i | : } " g %
S14e Five Fingers Spread,

Four Bent W ‘ ﬁ ﬁ
S150 Five Fingers Spread, All

¥ e F 3
S151 FiveFingers Spread, All

Bent Heel llﬂ; '.‘." {Il \\7

. < v/ .

S152 Five Fingers Spread, p .

Thumb Forward ﬂ ‘
S153 Five Fingers Spread Cup ’ ;g.|
S154 Five Fingers Spread Cup ’ ﬁ

Open

~
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S155 Five Fingers Spread

Hinge open g Q ﬁ §
S157 Five Fingers Spread )

=7 % A F 3
S15a Flat Hand | l é a
S15d Flat Thumb Side l l ﬁ @
S160 Flat Thumb Forward . ' g i
S168 Claw No Thumb ’ ‘ @ a
S169 Claw Thumb Forward !
S16¢c Open Cup a
S16d Cup ’ ? a
S16f Cup Thumb Side v )
S170 Open Cup No Thumb L Q
S171 Cup No Thumb Q g ?
S172 Open Cup Thumb

Forward ‘ F q
S173 Cup Thumb Forward ! : :

¢ 3




75

S$174 Open Curlicue , .
S175 Curlicue "
P L1717 X
S176 Circle '
S177 Oval
S178 Oval Thumb Side )
S17b Open Hinge ,
S17c Open Hinge Thumb
Forward ’ % ': :'
S17d Hinge
S17e Small Hinge % . :
S17f Open Hinge Thumb Side € E
' ii A |
$180 Hinge Thumb Side _
S181 Open Hinge No Thumb
@
S182 Hinge No Thumb ‘a
S185 Angle
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S186 Index Middle Ring w w # 4
S187 Index Middle Ring on
- y w % %
S18b Index Middle Ring, Bent a ‘ F i
S18c Index Middle Ring, Unit a “ e é
S18d Index Middle Ring, Unit 7
" ! ‘ ! ]
S192 Baby Up
S193 Baby Up On Fist Thumb
, 4 )\
Under ' '
S194 Baby Up On Circle b [ 1 \
S195 Baby Up On Oval 2 g
! ‘ l‘ .‘
S198 Baby Bent ? i i i
S19a Baby Thumb ‘
S19c Baby Index Thumb | I % i
S1a0 Baby Index I , ‘ “ a
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S1a1 Baby Index on Circle
S1a3 Baby Index on Angle I I E ﬂ
S1a4 Index Middle Baby I ’ ‘ I ﬁ a
S1a5 Index Middle Baby on

o w w b ﬂ
S1a7 Ring Hinge )

[ 1
|

S1a8 Index Middle Baby on '

Angle w ‘ w ﬁ
S1b1 Ring Baby on Circle “ | i y ; i
S1b2 Ring Baby on Oval ‘i i [ 1 i i f
S1bb Index Ring Baby on

- v w b é
S1c1 Index Ring Baby on i%

" “ i #
S1c3 Index Ring Baby on Angle I I ‘ | i
S1c5 Middle Hinge i ‘ i i
Si1cd Middle Ring Baby * il ii i?
Sice Middle Ring Baby on w il[ ﬁ ii

Circle
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S1d0 Middle Ring Baby on Cup i! II i% %i
S1d1 Middle Ring Baby on

Hinge % #
S1d2 Middle Ring Baby on

o ‘ w f i
S1d3 Middle Ring Baby on

s I B A |
S1d4 Middle Ring Baby on
S1d5 Middle Ring Baby Bent ‘ q P q
S1d7 Middle Ring Baby Unit on
S1d8 Middle Ring Baby Unit on

Hook Out
S1da Middle Ring Baby Unit on

- . g k i
S1dc Index Thumb Side I I I l
S1de Index Thumb Side,

Thumb Diagonal ‘ * ‘ ‘
S1df Index Thumb Side,

Thumb Unit d ‘ @ ﬁ
S1e1l Index Thumb Side, Index

¥ e § 1
Sled Index Thumb Forward, ‘ | I |

Index Straight
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S1e8 Index Thumb Curve,

Thumb Side ! ‘ ' ‘!
S1ea Index Thumb Curve,

Thumb Under g ‘ ' ‘
Sieb Index Thumb Circle
Si1ec Index Thumb Cup
Sled Index Thumb Cup Open
S1ee Index Thumb Hinge
Stef Index Thumb Hinge

fAaF
S1f0 Index Thumb Hinge !
S1f1 Index Thumb Hinge

o ‘ . ! g
S1f2 Index Thumb Angle Out
S1f4 Index Thumb Angle
S1f5 Thumb 7
S1f7 Thumb Side Diagonal
S1f8 Thumb Side Unit ? ?
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S1f9 Thumb Side Bent q ?
S1fa Thumb Forward
S1fb Thumb Between Index

Middle ’ ‘ ' '
Sifc Thumb Between Middle

" ig ‘ ' !
S1fd Thumb Between Ring

” ! ‘ ‘ '
S1ff Thumb Over Two Fingers ' '
S201 Thumb Under Four

o ' ‘ r ‘
S203 Fist ! '




	Folha de rosto
	
	Agradecimentos
	Resumo
	Abstract
	Lista de Figuras
	Lista de tabelas
	Sumário
	Introdução
	Objetivos
	Estrutura da dissertação

	Fundamentação Teórica
	Notações Visuais para Línguas de Sinais
	SignWriting
	Hamburg Notation System (HamNoSys)
	Comparação e Relevância para Aplicações Computacionais

	Reconhecimento de Gestos
	Gestos Estáticos e Dinâmicos
	Aquisição e Representação dos Dados

	Extração de Marcos (Landmarks)

	Trabalhos Relacionados
	Reconhecimento e Tradução de Línguas de Sinais
	Abordagens Multilíngua
	SignWriting

	Modelo Proposto
	Extração Automática de Marcos Anatômicos com MediaPipe
	Normalização de Dados
	Cálculo do Vetor Normal da Palma da Mão
	Alinhamento dos Landmarks ao Plano da Palma
	Ângulo de Alinhamento no Plano da Palma
	Aplicação da Rotação Planar
	Escalonamento para [0,1]

	Aumento Artificial de Dados
	Rotação dos Dedos
	Adição de Ruído

	Arquitetura do Modelo
	Ambiente Experimental
	Conjuntos de Dados
	Conjunto de Treinamento
	Conjuntos de dados de teste.

	Métricas de Avaliação
	Configuração do Ambiente de Treinamento
	Hiperparâmetros e Otimização



	Resultados
	Comparação com Métodos do Estado da Arte
	Estudo de Ablação
	Impacto das Arquiteturas e Modelos de Aprendizado
	Impacto de Diferentes Conjuntos de Treinamento
	Impacto do Fator de Aumento e do Tamanho da Amostra
	Avaliação de Desempenho sob Diferentes Restrições Computacionais
	Impacto de Erros de Detecção de Marcos (Landmarks)

	Análise Qualitativa de Erros de Detecção do Mediapipe

	Conclusão
	Referências
	Listagem de gestos do SignWriting

