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RESUMO

O reconhecimento automático de gestos é essencial para promover a comunicação inclusiva, so-
bretudo junto às comunidades Surdas. Entretanto, persistem desafios significativos em função
da diversidade linguística das línguas de sinais e das limitações das abordagens convencio-
nais, as quais tipicamente exigem grandes conjuntos de dados rotulados e apresentam baixo
potencial de generalização entre diferentes idiomas, comprometendo a escalabilidade e aplica-
bilidade prática. Neste contexto, este trabalho propõe a utilização do SignWriting, um sistema
padronizado de notação visual que codifica gestos de forma independente do idioma, como
alternativa para um reconhecimento universal de gestos estáticos das mãos. A metodologia
emprega o MediaPipe para extração automática de marcos anatômicos das mãos, seguida de
técnicas de normalização espacial e aumento sintético de dados a fim de mitigar variabilidades
individuais e ambientais. O modelo foi avaliado em 16 conjuntos de dados distintos, abran-
gendo 132 classes de gestos provenientes de múltiplas regiões e línguas de sinais. Os resultados
obtidos indicam robustez na generalização entre línguas, corroborando o potencial do Sign-
Writing como ferramenta unificadora. Adicionalmente, análises de sensibilidade evidenciaram
a influência dos erros de detecção de marcos sobre o desempenho do classificador, apontando
direções para futuras melhorias. Todo o código-fonte encontra-se disponível no repositório
público: <https://github.com/karo-txs/signwriting-recognition>.

Palavras-chave: Reconhecimento de Gestos; SignWriting; Aprendizado Profundo; Aumento
de Dados.

https://github.com/karo-txs/signwriting-recognition


ABSTRACT

Automatic gesture recognition is essential for promoting inclusive communication, especially
within Deaf communities. However, significant challenges persist due to the linguistic diversity
of sign languages and the limitations of conventional approaches, which typically require large
labeled datasets and have low potential for generalization across languages, compromising
scalability and practical applicability. In this context, this work proposes the use of SignWrit-
ing, a standardized visual notation system that encodes gestures independently of language,
as an alternative for the universal recognition of static hand gestures. The methodology em-
ploys MediaPipe for automatic extraction of hand anatomical landmarks, followed by spatial
normalization and synthetic data-augmentation techniques to mitigate individual and envi-
ronmental variability. The model was evaluated on 16 distinct datasets, covering 132 gesture
classes from multiple regions and sign languages. The obtained results indicate robustness in
cross-language generalization, corroborating the potential of SignWriting as a unifying tool.
Additionally, sensitivity analyses revealed the influence of landmark-detection errors on classi-
fier performance, pointing to directions for future improvements. All source code is available
in the public repository: <https://github.com/karo-txs/signwriting-recognition>.

Keywords: Gesture Recognition; SignWriting; Deep Learning; Data Augmentation.

https://github.com/karo-txs/signwriting-recognition
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1 INTRODUÇÃO

As línguas de sinais são sistemas linguísticos complexos que utilizam predominantemente
movimentos das mãos, expressões faciais e posturas corporais, constituindo-se como o principal
meio de comunicação das comunidades Surdas (PRIEUR et al., 2020). Além de fundamentais
para a expressão e interação social, essas línguas desempenham papel central na promoção
da inclusão, garantindo maior acesso à educação, ao trabalho e a serviços essenciais. Entre-
tanto, barreiras comunicacionais entre Surdos e Ouvintes ainda persistem, limitando a plena
integração dessas comunidades (MANZOOR et al., 2024; SABATO; SANDRONI; MARCECA, 2023).

Com os avanços em visão computacional e aprendizado profundo, o Reconhecimento Au-
tomático de Línguas de Sinais (SLR, do inglês Sign Language Recognition) tornou-se uma
área de pesquisa relevante, apresentando soluções para reduzir tais barreiras (ROBERT; DU-

RAISAMY, 2023; AL-QURISHI; KHALID; SOUISSI, 2021; ALAYED, 2024; CHEOK; OMAR; JAWARD,
2017). Esses sistemas têm potencial para traduzir gestos em representações compreensíveis
por máquinas, viabilizando aplicações como tradutores em tempo real, recursos educacionais
interativos e ferramentas assistivas para maior autonomia dos Surdos.

Nas últimas décadas, progressos notáveis em aprendizado profundo têm impulsionado sig-
nificativamente o desenvolvimento de métodos voltados ao SLR, ampliando a eficiência e
precisão dessa tarefa. Dentre as técnicas mais utilizadas, destacam-se as Redes Neurais Con-
volucionais (CNNs, do inglês Convolutional Neural Networks) (POORNIMA; SRINATH, 2024;
KUMAR et al., 2024; GANGWAR et al., 2024; RANGU et al., 2024; GULATI; RAJPUT; SINGH, 2024;
DHANALAKSHMI et al., 2024), as Redes Neurais Recorrentes (RNNs, do inglês Recurrent Neural

Networks) e suas variantes, como as Redes de Memória de Longo e Curto Prazo (LSTM, do
inglês Long Short-Term Memory) (YEWARE et al., 2023; PURI et al., 2023; GANDHE et al., 2024;
HUANG; CHOUVATUT, 2024), além dos Transformers Visuais (ViTs, do inglês Vision Transfor-

mers) (ALNABIH; MAGHARI, 2024; GUPTA et al., 2022; ZHANG et al., 2023), que recentemente
ganharam popularidade. As CNNs destacam-se na análise de gestos estáticos devido ao seu
alto desempenho na extração automática de características espaciais relevantes a partir de
imagens, enquanto as RNNs e LSTMs têm sido aplicadas com sucesso em cenários dinâmicos,
nos quais é fundamental a capacidade de modelar dependências temporais. Mais recentemente,
os ViTs introduziram melhorias significativas ao utilizarem mecanismos de atenção, resultando
em maior eficácia no processamento visual e na captura de dependências globais das imagens.
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Entretanto, diversos desafios ainda limitam a generalização e escalabilidade desses sistemas.
Uma limitação relevante das abordagens existentes é o foco predominante em línguas de sinais
específicas, como a Língua de Sinais Americana (ASL, do inglês American Sign Language)
(BHATT; MALIK; INDRA, 2024; NASR; KADER, 2023; ABDULLAH et al., 2023; JOURNAL, 2023),
Árabe (ArSL, do inglês Arabic Sign Language) (ALABBAD et al., 2022; ELSHAER et al., 2024;
KHATTAB et al., 2024; HASSAN; SABRI; ALI, 2024), Indiana (ISL, do inglês Indian Sign Language)
(SIDHU et al., 2024; PASSI et al., 2024; SHIRUDE et al., 2024; SRIKANTARAO et al., 2024) e, com
menor frequência a Brasileira (LIBRAS, Língua Brasileira de Sinais) (BHARTI; BALMIK; NANDY,
2023; AWAD; KOYUNCU, 2022; FURTADO; OLIVEIRA; SHIRMOHAMMADI, 2023), dificultando a
criação de sistemas capazes de atender às centenas de línguas de sinais existentes ao redor do
mundo.

Além disso, essas abordagens frequentemente requerem conjuntos extensos de dados ro-
tulados, cuja obtenção é um processo oneroso e trabalhoso, limitando significativamente sua
aplicabilidade prática e escalabilidade. Outro desafio crítico é a variabilidade cultural e regio-
nal das línguas de sinais, na qual gestos aparentemente idênticos podem possuir significados
distintos ou até mesmo ofensivos dependendo do contexto sociocultural em que são utilizados
(SINDHU et al., 2024; ABDULLAH; AMOUDI; ALGHAMDI, 2024; WAGHMARE, 2023).

A diversidade cultural entre as mais de 150 línguas de sinais existentes não se limita ao
nível fonológico, mas também se manifesta no campo semântico. Isso significa que um mesmo
arranjo manual pode assumir significados distintos dependendo da comunidade linguística. Por
exemplo, na ASL, o gesto formado pela mão em configuração “T” (polegar entre o indicador
e o médio) é utilizado para representar bathroom/toilet, enquanto em LIBRAS esse mesmo
formato corresponde apenas à letra “T” do alfabeto manual, sem qualquer valor semântico
adicional.

Outro exemplo ocorre com o gesto popularmente associado ao I love you na ASL: embora
amplamente reconhecido como expressão afetiva no contexto norte-americano, em outras
línguas de sinais, como a ArSL, é interpretado apenas como uma letra isolada, sem transmitir
o mesmo significado. Tais discrepâncias evidenciam o risco de treinar classificadores baseados
em dados de uma única comunidade e aplicar os resultados, sem adaptação, em diferentes
contextos culturais, comprometendo a precisão e a adequação da interpretação automática.

Uma alternativa promissora para superar essas limitações técnicas é o uso de sistemas
simbólicos padronizados, como o SignWriting (SUTTON, 1974a) e o Sistema de Notação de
Hamburgo (HamNoSys, do inglês Hamburg Notation System) (PRILLWITZ et al., 1989). Tais
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sistemas fornecem formas padronizadas de representação dos gestos, promovendo uma abs-
tração simbólica consistente e interpretável tanto por humanos quanto por máquinas. Em
particular, o SignWriting destaca-se devido à sua estrutura visual e universal, que permite
representar claramente configurações das mãos e movimentos corporais de maneira indepen-
dente do idioma utilizado. Essa característica torna o SignWriting especialmente atrativo para
pesquisas em reconhecimento automático, por facilitar a generalização entre diferentes línguas
de sinais. Dessa forma, essa abordagem surge como uma alternativa viável para o desenvol-
vimento de modelos computacionais escaláveis e generalizáveis, capazes de atender diferentes
comunidades linguísticas.

Ao representar os gestos em uma forma padronizada e escrita, o SignWriting possibilita
abordar o reconhecimento automático de gestos como um problema de interpretação textual.
Essa perspectiva facilita o desenvolvimento de sistemas automáticos de reconhecimento de
gestos mais inclusivos, escaláveis e independentes de idiomas específicos. Ademais, o uso dessa
notação visual permite a aplicação direta de técnicas computacionais, como normalização
espacial e aumento sintético dos dados, promovendo maior robustez perante as variabilidades
individuais e contextuais comuns em ambientes reais, como diferenças no estilo dos usuários
e condições ambientais diversas. Dessa forma, o SignWriting abre possibilidades tecnológicas
para o desenvolvimento de sistemas práticos e globalmente acessíveis.

Nesse sentido, este trabalho propõe-se à investigação do SignWriting como notação uni-
versal para o reconhecimento de gestos estáticos das mãos, avaliando-o em 16 conjuntos de
dados que totalizam 132 classes distintas, provenientes de diferentes línguas de sinais. Para
alcançar esse objetivo, é introduzido um método baseado na detecção de marcos anatômi-
cos das mãos (landmarks) pelo MediaPipe, os quais passam por um módulo de normalização
geométrica que reduz variações de translação, rotação e escala. Essa etapa, que constitui a
principal contribuição do trabalho, gera representações mais estáveis e invariantes, facilitando
a tarefa de classificação mesmo em cenários com recursos limitados de dados. Em seguida, os
vetores normalizados são processados por uma rede totalmente conectada (FC, do inglês Fully

Connected) de pequena escala, que produz a distribuição de probabilidade sobre as classes de
gestos e realiza o mapeamento final para os símbolos correspondentes no SignWriting.

Cabe salientar, entretanto, que a tradução completa de língua de sinais para texto ou áudio
constitui um processo mais amplo, que envolve também outras etapas essenciais, tais como o
reconhecimento de movimentos dinâmicos e expressões faciais, elementos estes que não são
contemplados no escopo deste estudo. Assim, o reconhecimento dos gestos estáticos das mãos
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configura-se como uma etapa inicial e fundamental dentro de um pipeline mais abrangente
de tradução automática. Ademais, o êxito da metodologia proposta reforça a viabilidade de
aplicações escaláveis que, baseadas em sinais visuais, promovem a inclusão socio-digital da
comunidade Surda no âmago da sociedade.

1.1 OBJETIVOS

O objetivo central desta dissertação é propor, implementar e avaliar um pipeline de trei-
namento dataset-agnóstico para reconhecimento em tempo real de gestos manuais estáticos,
fundamentado na representação gráfica universal SignWriting. O pipeline foi concebido para
oferecer alta capacidade de generalização entre distintas línguas de sinais, reduzindo de forma
significativa o esforço de adaptação a novas comunidades surdas.

Com base no objetivo principal, os seguintes objetivos específicos foram definidos para
orientar o desenvolvimento deste trabalho:

• Propor e implementar um modelo computacional universal para reconheci-

mento automático de gestos estáticos das mãos: Desenvolver uma abordagem
baseada no SignWriting como representação simbólica central, visando superar limita-
ções relacionadas a barreiras linguísticas, culturais e regionais, a fim de oferecer uma
solução escalável e aplicável a diferentes comunidades Surdas globalmente.

• Integrar técnicas de normalização e aumento sintético dos dados: Aplicar es-
tratégias robustas para gerenciar variabilidades individuais (como tamanhos, formatos e
posturas das mãos) e contextuais (condições de iluminação, ângulos de captura e ruído
ambiental), visando aumentar a robustez e generalização dos modelos desenvolvidos.

• Avaliar experimentalmente a eficácia e generalização da abordagem proposta:
Realizar testes com múltiplos conjuntos de dados representativos, abrangendo diferen-
tes idiomas e contextos culturais, com o intuito de validar o desempenho prático e a
capacidade de generalização do modelo.

• Validar a viabilidade técnica do sistema proposto em tempo real: Avaliar o
desempenho operacional da solução proposta por meio de métricas, tais como tempo de
inferência, consumo de recursos computacionais e acurácia, garantindo que o sistema
possa ser empregado eficazmente em dispositivos com restrições computacionais.
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1.2 ESTRUTURA DA DISSERTAÇÃO

O restante deste trabalho está organizado em cinco capítulos: o Capítulo 2 apresenta
os fundamentos teóricos necessários para a compreensão do reconhecimento de gestos e do
sistema SignWriting; o Capítulo 3 revisa trabalhos relacionados, abordando sistemas de escrita
visual e métodos modernos de reconhecimento de gestos; o Capítulo 4 detalha o modelo
proposto, desde a extração de landmarks com Mediapipe até o treinamento do modelo; o
Capítulo 5 expõe os resultados experimentais, validando a robustez e aplicabilidade do sistema;
e o Capítulo 6 conclui a pesquisa, destacando suas contribuições e propondo direções futuras.
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2 FUNDAMENTAÇÃO TEÓRICA

2.1 NOTAÇÕES VISUAIS PARA LÍNGUAS DE SINAIS

A comunicação por meio das línguas de sinais envolve uma combinação complexa de ele-
mentos visuais, incluindo configurações de mão, movimentos, expressões faciais e posturas
corporais (CHEOK; OMAR; JAWARD, 2017; NEIVA; ZANCHETTIN, 2018). Para codificar tais par-
ticularidades linguísticas de maneira padronizada e estruturada, diversos sistemas formais de
notação visual têm sido desenvolvidos ao longo das últimas décadas. Entre esses sistemas
destacam-se o SignWriting e o HamNoSys.

2.1.1 SignWriting

O SignWriting é um sistema visual padronizado, criado por Valerie Sutton em 1974, conce-
bido para representar de maneira estruturada e independente do idioma os principais elementos
linguísticos das línguas de sinais, tais como a configuração e orientação das mãos, trajetórias
de movimento, localização espacial relativa ao corpo e expressões faciais (SUTTON, 1974a). A
Figura 1 ilustra alguns exemplos representativos dos símbolos utilizados no SignWriting para
descrever configurações das mãos comumente encontradas nas línguas de sinais.
Uma das características mais notáveis do SignWriting é sua alta acessibilidade gráfica, per-
mitindo que sinais sejam lidos e escritos mesmo por usuários sem conhecimento prévio de
linguística formal. Criado por Valerie Sutton como uma forma visual intuitiva para documen-
tação das línguas de sinais, esse sistema facilita não apenas a comunicação, mas também abre
possibilidades para aplicações tecnológicas.

No contexto específico do reconhecimento automático de línguas de sinais, o SignWriting
surge como uma alternativa poderosa para lidar com a diversidade linguística e cultural. Sua
estrutura simbólica é projetada para ser universal e independente do idioma (STIEHL et al.,
2015), o que favorece sua aplicação em cenários multiculturais. No entanto, o mapeamento
automático de sinais representados em vídeos ou marcos anatômicos das mãos (landmarks)
para símbolos gráficos do SignWriting constitui um desafio computacional significativo. Para
enfrentar tais desafios, é necessário recorrer a técnicas de visão computacional e aprendizado
de máquina, garantindo representações robustas e precisas dos gestos, mesmo em condições
variáveis de captura e interpretação.
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Figura 1 – Exemplos de símbolos do SignWriting que descrevem diferentes configurações de mão em línguas
de sinais.

Fonte: Wikipedia, 2007. Disponível em:
<https://en.wikipedia.org/wiki/File:Handshape_equiv2.png>.

2.1.2 Hamburg Notation System (HamNoSys)

O HamNoSys foi desenvolvido no final da década de 1980 pelo Instituto de Linguística
da Universidade de Hamburgo, visando fornecer uma representação fonológica detalhada e
padronizada para as línguas de sinais (PRILLWITZ et al., 1989). O sistema baseia-se em um
conjunto detalhado de símbolos gráficos que descrevem precisamente elementos fonológicos
das línguas de sinais, tais como configuração das mãos, localização espacial relativa ao corpo,
orientação das mãos e trajetórias dos movimentos realizados, conforme ilustrado na Figura 2.

Embora o HamNoSys proporcione um maior grau de detalhamento fonológico quando com-
parado ao SignWriting, o sistema apresenta desafios significativos que restringem sua adoção
ampla tanto em contextos linguísticos quanto tecnológicos. Estudos como o de Ferlin et al.
(FERLIN; MAJCHROWSKA; NALEPA, 2024) destacam inconsistências frequentes na rotulagem
dos símbolos e uma curva de aprendizado acentuada, fatores que representam barreiras impor-
tantes para usuários e desenvolvedores. Adicionalmente, a existência de variações nas formas
gráficas dos símbolos do HamNoSys torna desafiadora a padronização consistente de conjuntos

https://en.wikipedia.org/wiki/File:Handshape_equiv2.png
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Figura 2 – Exemplos do conjunto de símbolos do HamNoSys, representando configurações de mão.

Fonte: Adaptado de Universidade de Hamburgo, s.d. Disponível em: <https://www.sign-lang.
uni-hamburg.de/projekte/hamnosys/hamnosyserklaerungen/englisch/contents.html>.

de dados, aumentando consideravelmente a complexidade envolvida na sua aplicação compu-
tacional e na criação de modelos automáticos robustos (FERLIN; MAJCHROWSKA; NALEPA,
2024).

2.1.3 Comparação e Relevância para Aplicações Computacionais

O SignWriting e o HamNoSys possuem características distintas que podem ser consideradas
complementares, diferindo principalmente em termos de acessibilidade gráfica, complexidade
técnica e detalhamento fonológico. Enquanto o SignWriting é reconhecido por sua alta intui-
tividade gráfica e facilidade de aprendizado, o HamNoSys destaca-se sobretudo pela precisão
técnica na descrição detalhada dos aspectos fonológicos das línguas de sinais, sendo particu-
larmente valorizado em estudos linguísticos formais (PRILLWITZ et al., 1989).

Na Figura 3, apresentamos um exemplo comparativo entre as duas notações: em (a),
observa-se a composição de um sinal no SignWriting, cuja representação é visualmente clara
e diretamente associada à configuração manual; em (b), a mesma informação é registrada em
HamNoSys, cuja estrutura simbólica, embora tecnicamente mais precisa, é menos intuitiva
para usuários não especialistas. Essa diferença ilustra de maneira prática como a notação
SignWriting tende a ser mais acessível e compreensível em cenários de aplicação computacional.

https://www.sign-lang.uni-hamburg.de/projekte/hamnosys/hamnosyserklaerungen/englisch/contents.html
https://www.sign-lang.uni-hamburg.de/projekte/hamnosys/hamnosyserklaerungen/englisch/contents.html
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No contexto específico deste trabalho, optou-se pelo uso do SignWriting devido à sua
simplicidade gráfica, maior acessibilidade para usuários sem treinamento linguístico especiali-
zado e sua proposta de universalidade simbólica, aspectos que favorecem o desenvolvimento
de sistemas computacionais escaláveis e com maior potencial de generalização (BIANCHINI;

BORGIA; MARSICO, 2012; BOUZID; JEMNI, 2013; STIEHL et al., 2015; SEVILLA; ESTEBAN; LAHOZ-

BENGOECHEA, 2023). Essa escolha facilita o processo de mapeamento automático dos dados
capturados, tais como os marcos anatômicos das mãos, para representações simbólicas es-
truturadas, promovendo maior consistência, robustez técnica e aplicabilidade em contextos
multiculturais.

Figura 3 – Comparação visual entre os sistemas SignWriting e HamNoSys.

(a) SignWriting (b) HamNoSys

Fonte: A autora (2025)

2.2 RECONHECIMENTO DE GESTOS

O reconhecimento automático de gestos consiste em um conjunto de métodos computaci-
onais destinados à interpretação e identificação de movimentos e configurações corporais, com
destaque especial para movimentos das mãos, braços, posturas e expressões faciais (GUPTA et

al., 2022; SAHOO et al., 2022). A capacidade de sistemas computacionais reconhecerem auto-
maticamente gestos possui uma ampla gama de aplicações práticas, destacando-se a Interação
Humano-Computador (IHC), a acessibilidade tecnológica voltada para comunidades Surdas e
aplicações em áreas como entretenimento digital, educação inclusiva e telemedicina (ZHANG

et al., 2023). Nesta subseção, são discutidos os fundamentos conceituais e técnicos relaciona-
dos à natureza dos gestos, suas principais formas de representação simbólica e as categorias
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metodológicas mais utilizadas no reconhecimento automático de gestos.

2.2.1 Gestos Estáticos e Dinâmicos

Uma das distinções fundamentais no reconhecimento automático de gestos refere-se à
classificação entre gestos estáticos e dinâmicos. Os gestos estáticos são tipicamente defini-
dos por configurações espaciais corporais, especialmente relacionadas à posição e forma das
mãos, enquanto os gestos dinâmicos envolvem variações espaciais e temporais contínuas, de-
mandando técnicas específicas para capturar dependências sequenciais nos dados ao longo do
tempo (GüLER; YüCEDAğ, 2021).

Gestos estáticos são comumente tratados como problemas de classificação estática, usando
abordagens baseadas em CNNs, ViTs ou Redes Totalmente Conectadas (FC, do inglês Fully

Connected), especialmente adequadas quando os dados já estão estruturados em formato veto-
rial. Em contraste, os gestos dinâmicos requerem métodos capazes de lidar explicitamente com
dependências sequenciais e temporais, sendo amplamente empregadas RNNs e suas variantes
especializadas, como as LSTMs (GüLER; YüCEDAğ, 2021).

2.2.2 Aquisição e Representação dos Dados

Diversas técnicas podem ser empregadas para a aquisição e representação dos dados utiliza-
dos no reconhecimento automático de gestos. Entre as abordagens mais comuns destacam-se:

• Câmeras RGB (2D): amplamente utilizadas devido à simplicidade e baixo custo, cap-
turam imagens bidimensionais que são, entretanto, suscetíveis a variações ambientais
significativas, tais como iluminação irregular, oclusões parciais e variações nos ângulos
de captura (CHEOK; OMAR; JAWARD, 2017).

• Câmeras de profundidade (3D): fornecem informações tridimensionais detalhadas,
permitindo uma captura espacial mais precisa e reduzindo problemas associados às va-
riações ambientais, embora ainda possam sofrer com oclusões.

• Sensores inerciais e dispositivos vestíveis: incluem sensores especializados, como
luvas equipadas com acelerômetros e giroscópios, permitindo capturar detalhadamente
movimentos tridimensionais. Apesar de fornecerem dados altamente precisos, esses dis-



25

positivos têm escalabilidade limitada por exigirem hardware dedicado e específico para
sua implementação (MOHANDES; DERICHE; LIU, 2014).

Neste estudo adota-se exclusivamente a modalidade de imagens RGB capturadas por câme-
ras convencionais, tanto pela ampla disponibilidade desse tipo de sensor quanto pela facilidade
de integração em ambientes reais, aspectos essenciais para a reprodutibilidade e escalabilidade
da proposta. As demais técnicas são discutidas apenas para contextualização e não fazem
parte do escopo experimental desta pesquisa.

2.3 EXTRAÇÃO DE MARCOS (LANDMARKS)

Uma etapa essencial no reconhecimento automático de gestos consiste na detecção, ex-
tração e normalização de marcos anatômicos (landmarks), especialmente aqueles relacionados
às mãos. Essa fase envolve a identificação precisa e padronizada de pontos-chave, como ar-
ticulações, pontas dos dedos e posição do pulso, resultando em uma representação abstrata
e compacta dos gestos realizados. Essa representação é significativamente menos suscetível
a ruídos provenientes de fatores como diferentes tonalidades de pele, condições variadas de
iluminação ou complexidade dos fundos das imagens capturadas.

A detecção automática desses marcos anatômicos pode ser realizada por meio de fra-

meworks de Visão Computacional baseadas em aprendizado profundo, como o MediaPipe

Hand Landmark Detector (GOOGLE, 2020), que identifica 21 marcos tridimensionais em cada
mão, conforme ilustrado na Figura 4. A conversão dos dados brutos de imagens para represen-
tações vetoriais baseadas nesses marcos simplifica significativamente a tarefa computacional de
reconhecimento, ao focar exclusivamente em características geométricas essenciais das mãos,
reduzindo assim a dimensionalidade e complexidade dos dados utilizados pelos modelos.
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Figura 4 – Marcos da mão direita conforme definidos pelo MediaPipe; para a mão esquerda, basta considerar
o reflexo horizontal desses pontos.

Fonte: A autora (2025)

O uso de representações baseadas em marcos anatômicos apresenta diversas vantagens práticas
e metodológicas no contexto do reconhecimento automático de gestos:

• Redução significativa da dimensionalidade: Em vez de utilizar imagens completas
como entrada direta para os modelos, são processados apenas conjuntos limitados de
pontos-chave (por exemplo, 21 marcos no caso do MediaPipe), diminuindo consideravel-
mente a complexidade computacional e permitindo maior eficiência tanto no treinamento
quanto na inferência dos modelos (GUPTA et al., 2022).

• Menor sensibilidade a variações visuais e ambientais: Representações baseadas
em marcos anatômicos são menos susceptíveis a interferências provenientes de fatores
externos, como diferentes tonalidades de pele, roupas, iluminação ou complexidade dos
fundos, já que o foco principal reside nas coordenadas geométricas e estruturais dos
gestos.

• Representação espacial tridimensional: Algumas ferramentas, como o MediaPipe,
fornecem coordenadas em três dimensões (x, y, z), permitindo análises mais completas da
estrutura espacial das mãos. Essa representação tridimensional auxilia significativamente
na redução de ambiguidades causadas por ângulos desfavoráveis e facilita a captura
precisa de movimentos complexos.

Apesar dessas vantagens claras, é importante ressaltar que a eficácia das representações
baseadas em marcos anatômicos depende diretamente da precisão do método utilizado para a
detecção desses pontos-chave. Erros de detecção, tais como a presença de outliers (pontos de-
tectados fora da posição esperada), ou imprecisões causadas por condições ambientais adversas



27

podem impactar negativamente a qualidade dos dados, afetando diretamente o desempenho
dos modelos de reconhecimento automático subsequentes.
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3 TRABALHOS RELACIONADOS

Nas duas últimas décadas, a investigação em reconhecimento automático de línguas de
sinais deslocou-se de classificadores baseados em atributos manuais para arquiteturas de apren-
dizagem profunda que convertem sequências gestuais diretamente em glossas ou sentenças.
Embora o ganho de desempenho em datasets de ASL, ArSL, ISL e LIBRAS seja expressivo,
sobretudo após combinações CNN, LSTM e Transformers multimodais, o panorama perma-
nece, em grande medida, monolíngue. Cada comunidade requer extensos ciclos de anotação e
fine-tuning, o que eleva os custos de transferência para novos dialetos. Tal limitação renova o
interesse por sistemas de escrita gestual potencialmente universais, entre os quais o SignWri-
ting se destaca, graças à representação icônica independente de língua (SUTTON, 1974b).

3.1 RECONHECIMENTO E TRADUÇÃO DE LÍNGUAS DE SINAIS

Nas aplicações de aprendizado profundo ao reconhecimento de línguas de sinais, redes
convolucionais atuaram como principais extratoras de características visuais, em cenários tipi-
camente isolados, restritos a gestos estáticos ou sequências curtas. Trabalhos que fazem uso
de CNNs (POORNIMA; SRINATH, 2024; KUMAR et al., 2024; GANGWAR et al., 2024; RANGU et al.,
2024; GULATI; RAJPUT; SINGH, 2024; DHANALAKSHMI et al., 2024; GUPTA et al., 2022) e versões
leves de YOLO (NAVIN et al., 2025; BURIBAYEV et al., 2025; ALSHARIF et al., 2025) ilustram
essa fase, alcançando acurácia acima de 95% em alfabetos de ASL, Bangla (BdSL, do inglês
Bangla Sign Language) e ISL.

Com a popularização dos ViTs e de bibliotecas de detecção de pontos-chave, como Media-
Pipe e OpenPose, surgiram arquiteturas híbridas que combinam CNNs e ViTs, além de soluções
que integram descritores de pose de mãos a fluxos de pixels (DAMDOO; KUMAR, 2025; MAIA;

LOPES; DAVID, 2025; MARQUEZ et al., 2025; RODRIGUEZ et al., 2025). Apesar dos ganhos re-
centes em alcance e precisão, a maioria dos estudos continua a utilizar datasets monolíngues,
o que preserva a dificuldade de generalização intralinguística que será examinada nas seções
seguintes.

Entre as abordagens que mantêm a CNN como núcleo da extração visual, sobressai o tra-
balho de (GUPTA et al., 2022), que combina uma CNN com um ViT. O método foi avaliado
nos conjuntos NUS Hand Posture, Sign Language Digits (Turquia) (PISHARADY; VADAKKE-
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PAT; POH, 2014) e em um subconjunto alfabético de ASL, alcançando acurácia entre 90% e
99%. Ainda assim, o experimento permanece limitado a gestos estáticos de dígitos e letras
provenientes dessas línguas de maior alcance, de modo que o viés monolíngue anteriormente
mencionado continua vigente.

No contexto da tradução contínua de sinais em texto, os autores em (MAIA; LOPES; DAVID,
2025) combinam a detecção de pontos-chave corporais do MediaPipe com um pipeline Trans-

former duplo, segmentado em Sign2Gloss e Gloss2Text. A primeira etapa utiliza CTC-Loss,
enquanto a segunda realiza ajuste fino do modelo BART. Avaliado no corpus PHOENIX14T,
o sistema preservou a qualidade mesmo após forte redução de dimensionalidade. No conjunto
How2Sign, entretanto, o desempenho caiu de forma acentuada, possivelmente devido à au-
sência de anotações de glossas, evidenciando a vulnerabilidade de métodos que dependem de
glossários alinhados e de bases específicas de ASL-Alemão.

A Tabela 1 sintetiza esse panorama, comparando diferentes trabalhos recentes em reconhe-
cimento de gestos estáticos de mãos quanto à abordagem utilizada, quantidade de conjuntos
de dados, número de classes e línguas de sinais avaliadas. Nota-se que, na maioria dos casos
apresentados, os experimentos permanecem restritos a poucas bases (em média até três) e a
duas ou três línguas de sinais, o que reforça a dificuldade de generalização interlinguística. Em
contraste, este estudo expande a análise para 16 conjuntos heterogêneos, cobrindo 132 classes
distribuídas em oito línguas de sinais distintas.

Tabela 1 – Comparação com estudos da literatura sobre Reconhecimento de Poses de Mão. A tabela apresenta
a abordagem utilizada, número de conjuntos de dados de teste, quantidade de classes e as línguas
de sinais avaliadas. As línguas de sinais suportadas pelos conjuntos de dados são: ASL (American
Sign Language, TSL (Turkish Sign Language), ISL (Indian Sign Language, ArSL (Arabic Sign
Language), BdSL (Bengali Sign Language), LSA (Argentine Sign Language), DGS (Deutsche
Gebärdensprache), PSL (Pakistan Sign Language) e LIBRAS (Língua Brasileira de Sinais).

Estudo Abordagem Conjuntos de
dados de teste

Classes Línguas de Sinais

(GUPTA et al., 2022) CNN 3 20 ASL, TSL
(MENON; SRUTHI; LI-
JIYA, 2022)

CNN 1 26 ISL

(ALAMRI et al., 2024) YOLOv8 2 32 ArSL
(SURJO et al., 2023) VGG16 1 37 BdSL
(RONCHETTI et al.,
2023)

DenseNet 3 71 LSA, DGS

(FALLAH et al., 2024) FC-NN 3 89 ASL, ISL, BdSL

Este estudo Mediapipe + FC (Sign-
Writing)

16 132 ASL, ISL, LSA, ArSL, BdSL,
DGS, PSL e LIBRAS

Fonte: A autora (2025).
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3.2 ABORDAGENS MULTILÍNGUA

A fragmentação inerente às mais de 150 línguas de sinais existentes impõe um desafio
singular aos sistemas de reconhecimento e tradução: modelos treinados em um único idioma
apresentam drástica perda de desempenho quando expostos a gestos provenientes de outras
comunidades linguísticas. Por essa razão, cresce o interesse em arquiteturas multilínguas capa-
zes de compartilhar parâmetros entre diferentes conjuntos de dados e, assim, reduzir o custo
de adição de novas línguas.

Entre as propostas mais robustas nessa linha, o GmTC (Graph and General Two-Stream

Network) combina uma Graph Convolutional Networks, encarregado de codificar relações espa-
ciais finas entre superpixels, com um multi-head attention voltado para capturar dependências
de longo alcance (MIAH et al., 2024). Avaliado em cinco corpora de origens culturais distintas
(coreano, americano, japonês, entre outros), o modelo alcançou média de acurácia superior a
98% sem exigir ajustes significativos na fase de pré-processamento.

Seguindo a proposta de vocabulário múltiplo, o framework OpenHands adota um protocolo
baseado em poses extraídas pelo MediaPipe e disponibiliza checkpoints pré-treinados para seis
línguas de sinais: ASL, Argentina (LSA, do Espanhol Lengua de Señas Argentina), Chinesa
(CSL, do inglês Chinese Sign Language), Grega (GSL, do inglês Greek Sign Language), ISL e
Turca (TSL, do inglês Turkish Sign Language) (SELVARAJ et al., 2022). O principal diferencial
é um pré-treino auto-supervisionado sobre mais de um milhão de quadros não anotados de
Indian Sign Language, cujo conhecimento se transfere para idiomas de baixo recurso e pode
reduzir em até 40% a necessidade de dados rotulados.

Investigações recentes têm ampliado o espectro metodológico. O SB-SLR adota um fluxo
exclusivamente esquelético, no qual quadros-pivô são identificados antes do processamento
por uma CNN temporal 2-D; essa configuração produz ganhos consistentes em cenários de
desequilíbrio de classe e variação de signatários, inclusive para línguas de sinais pouco estuda-
das, como a cazaque (RENJITH; SURESH; RASHMI, 2025). Estratégias híbridas de detecção de
língua seguida de reconhecimento obtêm acurácia superior a 98% em dois idiomas (NURNOBY;

EL-ALFY, 2023). Abordagens bilíngues fundamentadas no YOLOv11, por sua vez, registram
mAP acima de 99% nos alfabetos de BdSL e ASL (NAVIN et al., 2025).

No campo da tradução, iniciativas como o AfriSign, que emprega Transformers multilín-
gues para seis línguas africanas (TAKYI et al., 2025), e abordagens gloss-free, a exemplo do
Sign2GPT-Next, que integra um ViT Dino-V2 a um GPT multilinguístico (BABISHA et al.,
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2024), indicam ser possível reduzir a dependência da camada de glossas mesmo em cenários
de recursos limitados.

Apesar dos avanços, o panorama atual continua dependente de dados amplamente ano-
tados para cada língua. Tanto a calibração de detectores de pontos-chave, cujos erros se
propagam aos modelos, quanto o ajuste dos módulos de pré-processamento linguístico na
etapa de tradução ainda requerem supervisão específica, fazendo o custo de expansão crescer
à medida que novas comunidades linguísticas são incluídas. Essa limitação tem estimulado a
busca por representações independentes de idioma que atuem como pivôs semântico-gráficos
entre diferentes línguas de sinais (FINK et al., 2023; YAZDANI; GENABITH; ESPAñA-BONET, 2025).

3.3 SIGNWRITING

O SignWriting é um método que descreve configurações de mão, trajetórias, expressões
faciais e orientação corporal por meio de símbolos icônicos dispostos em duas dimensões. Por
ser independente de idioma, permitindo registrar qualquer sinal sem recorrer a glossas verbais,
o SignWriting é um candidato natural a atuar como pivô em aplicações computacionais mul-
tilíngues. As pesquisas sobre o SignWriting têm avançado em três frentes: (i) reconhecimento
automático, (ii) tradução e síntese visual e (iii) ferramentas educacionais e de acessibilidade.

No eixo de reconhecimento, os primeiros protótipos dedicaram-se à classificação de sím-
bolos isolados. Liu et al. (2010) (LIU et al., 2010) apresentaram um sistema de interação
humano–computador capaz de reconhecer determinadas trajetórias manuais e mapeá-las para
símbolos do SignWriting. Avanços subsequentes exploraram CNNs para identificar conjuntos
de pictogramas: o estudo de (STIEHL et al., 2015) obteve 94,4% de acerto em 7994 amostras
distribuídas em 103 classes, enquanto (SEVILLA; ESTEBAN; LAHOZ-BENGOECHEA, 2023) com-
binou redes neurais e regras especialistas para modelar a natureza composicional dos sinais,
registrando ganho relativo de 17% sobre uma abordagem baseada apenas em aprendizado
profundo. Cabe ressaltar que ambas as linhas de investigação se concentram nos desenhos dos
símbolos, e não no reconhecimento dos sinais a partir de imagens ou vídeos de signatários.

Um contraponto relevante às abordagens que operam exclusivamente sobre pictogramas
estáticos é o Deep Hand, de Koller et al. (2016) (KOLLER; NEY; BOWDEN, 2016), que utiliza
os códigos do SignWriting para gerar rótulos fracos dos quadros de vídeo. O trabalho introduz
uma CNN pré-treinada, refinada com mais de 1 milhão de quadros rotulados automaticamente
(abrangendo 60 configurações de mão distintas) e alcança 62,8% de acerto top-1. Sua principal
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contribuição é mostrar que rótulos imperfeitos derivados do SignWriting podem sustentar
treinamento em larga escala e ainda generalizar entre diferentes corpora e signatários. Nesse
sentido, o estudo de Koller (2016) pode ser visto como precursor da ideia central explorada
nesta dissertação: o uso do SignWriting como uma forma de anotação simbólica intermediária
capaz de reduzir a dependência de anotações manuais extensivas e tornar viável o aprendizado
em cenários de baixo recurso.

No domínio da tradução entre línguas faladas e sinais codificados em SignWriting, (JI-

ANG et al., 2022) mostraram que técnicas clássicas de aprendizado de máquina podem ser
transferidas com êxito quando o corpus de origem (SignBank) utiliza o SignWriting como re-
presentação intermediária, alcançando pontuação superior a 30 de BLEU (Bilingual Evaluation

Understudy) para o par ASL para inglês. Mais recentemente, (FREITAS et al., 2023) empregou
codificações formais em SignWriting para treinar modelos de representação latente, obtendo
81% de acurácia em uma tarefa de classificação com apenas 889 amostras, o que reforça o
potencial de pesquisas em cenários de baixo recurso.

No domínio da síntese de movimentos e ambientes imersivos, diversos autores exploram
SignWriting como camada de entrada para gerar animações fidedignas. (BOUZID et al., 2012)
propuseram a conversão dos sinais para um avatar 3D, enquanto projetos como tuniSigner e
SiGML-to-VR (BOUZID; JEMNI, 2014; WOLFF; ANDERSON; BANIć, 2024) exibem traduções em
tempo real de textos ou discursos para ASL dentro de ambientes de realidade virtual. Essa
linha de investigação foi estendida à acessibilidade televisiva, com a proposta de encapsular
SignWriting em legendas IMSC1 para a futura TV 3.0 brasileira (LOBEIRO; VAZ; ALVES, 2022).

Em síntese, a literatura revela o papel estratégico do SignWriting como representação
universal: ele viabiliza tradução, indexação textual, animação de avatares e ensino formal sem
depender de glossas verbais. Todavia, a maioria dos trabalhos concentra-se em tarefas pontuais
(símbolos isolados ou geração de animações) e raramente avalia a generalização interlinguística
em larga escala. Estudos como (KOLLER; NEY; BOWDEN, 2016; JIANG et al., 2022; FREITAS et

al., 2023) tipicamente restringem suas análises a duas ou três línguas de sinais e a menos
de quatro bases de dados, o que limita a avaliação da robustez intercultural dos métodos.
A presente dissertação avança nesse cenário ao explorar a classificação automática de gestos
estáticos das mãos em 16 bases heterogêneas (132 classes, múltiplas línguas), evidenciando o
potencial do SignWriting para unificar pipelines de reconhecimento e tradução em contextos
multilíngues.
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4 MODELO PROPOSTO

Este trabalho propõe uma metodologia para o desenvolvimento e validação experimental
de um sistema automático de reconhecimento de gestos estáticos das mãos utilizando o Sign-
Writing como representação intermediária padronizada. A escolha dessa representação visa ex-
plicitamente aumentar a generalização linguística e escalabilidade dos modelos desenvolvidos,
buscando mitigar limitações técnicas frequentemente encontradas em sistemas convencionais
de reconhecimento automático de línguas de sinais, como diversidade linguística, variabilidade
cultural e necessidade constante de retreinamento.

Figura 5 – Fluxograma da metodologia proposta que compreende quatro etapas principais: extração auto-
mática dos marcos anatômicos (landmarks) das mãos, normalização espacial dos dados obtidos,
geração de dados sintéticos utilizando técnicas de aumento (data augmentation) e a arquitetura
para reconhecimento automático dos gestos estáticos das mãos.

Fonte: A autora (2025)

A metodologia proposta, ilustrada na Figura 5, começa com a detecção dos marcos da mão
pelo MediaPipe, resultando em três tensores independentes, como exemplificado na Figura 6:

• (a) 21 marcos em coordenadas de imagem (21, 3): (𝑥, 𝑦) normalizados ao plano da
câmera e 𝑧 como profundidade relativa;

• (b) handness (1, 1): escalar que indica se a mão detectada é direita (1) ou esquerda (0);

• (c) 21 marcos em coordenadas de mundo (21, 3): posições (𝑥, 𝑦, 𝑧) no espaço tridimen-
sional real, em escala métrica e com origem no centro da câmera.
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Figura 6 – Exemplo dos tensores resultantes da detecção de marcos da mão pelo MediaPipe.

Fonte: A autora (2025)

Os tensores (a) e (c) passam, em paralelo, por um módulo de normalização que reduz
variações de translação, rotação e escala. Essa etapa constitui a principal contribuição deste
trabalho: ao aplicar transformações geométricas sobre os landmarks do MediaPipe, obtêm-se
representações invariantes às diferenças de posição e orientação da mão, o que gera amostras
mais estáveis e consistentes para o classificador. Como resultado, o modelo final demanda
menos parâmetros, pode ser treinado com quantidades menores de dados rotulados e ainda
assim mantém desempenho competitivo em múltiplas línguas de sinais.

Em seguida, cada tensor normalizado é linearizado (transformado em vetor unidimensional)
e todos são concatenados, formando um único vetor de atributos. Esse vetor alimenta uma
rede totalmente conectada (FC) composta por quatro blocos idênticos, cada qual organizado
na ordem Batch Normalization, Rectified Linear Unit (ReLU) e Dropout. Por fim, uma camada
densa com Softmax produz a distribuição de probabilidade sobre as classes de gestos estáticos,
cujo rótulo previsto é mapeado para o símbolo correspondente no SignWriting.

4.1 EXTRAÇÃO AUTOMÁTICA DE MARCOS ANATÔMICOS COM MEDIAPIPE

A extração automática dos marcos anatômicos das mãos foi realizada utilizando a biblio-
teca MediaPipe Hand Landmark Detector 1, uma ferramenta amplamente reconhecida por sua
capacidade de realizar detecções rápidas e precisas das mãos em tempo real. O Mediapipe
1 <https://ai.google.dev/edge/mediapipe/solutions/vision/hand_landmarker>

https://ai.google.dev/edge/mediapipe/solutions/vision/hand_landmarker
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fornece um conjunto fixo de 21 marcos anatômicos (landmarks) tridimensionais por mão, to-
talizando 63 valores por mão (cada ponto contendo coordenadas espaciais (𝑥, 𝑦, 𝑧), além de
fornecer informações adicionais sobre a probabilidade de lateralidade (direita ou esquerda).

4.2 NORMALIZAÇÃO DE DADOS

A normalização espacial dos dados extraídos é uma etapa crucial para o reconhecimento
automático de gestos, visto que variações nas posições, orientações e escalas das mãos cap-
turadas podem introduzir ruídos e inconsistências significativas no processo de treinamento
dos modelos. Para garantir maior robustez e generalização das representações utilizadas, é
realizado um procedimento de normalização espacial dos marcos anatômicos (landmarks),
assegurando representações invariantes quanto à escala, rotação e posição espacial das mãos.

4.2.1 Cálculo do Vetor Normal da Palma da Mão

Os 21 landmarks 3-D fornecidos pelo MediaPipe são armazenados num tensor P ∈ R21×3,
em que cada linha p𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) representa um ponto anatômico.

Para estimar a orientação global da mão, usamos apenas três pontos (enumerados conforme
a Figura 4):

• p0 – pulso

• p5 – base do dedo

• p17 – base do dedo mínimo

Dois vetores são então formados a partir do pulso: v1 = p17 − p0 e v2 = p5 − p0.
O produto vetorial desses vetores gera um vetor perpendicular ao plano da palma; após

normalização obtemos

𝑛⃗ = v1 × v2

‖v1 × v2‖
, (4.1)

onde 𝑛⃗ tem módulo 1 e aponta para fora da palma.
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4.2.2 Alinhamento dos Landmarks ao Plano da Palma

Depois de calcular o vetor normal 𝑛⃗, os landmarks são rotacionados para um sistema de
coordenadas local em que

• O eixo 𝑍 aponta na direção de 𝑛⃗ (perpendicular à palma);

• O eixo 𝑋 está contido na palma;

• O ponto de rotação é o pulso, que passa a ser a origem.

Esse alinhamento elimina diferenças de orientação entre mãos filmadas de ângulos distintos,
reduzindo a variabilidade dos dados. É construída uma base ortonormal {𝑥⃗, 𝑦⃗, 𝑧⃗}:

• 𝑧⃗ = 𝑛⃗

• 𝑦⃗ = (1, 0, 0) × 𝑧⃗

• 𝑥⃗ = 𝑧⃗ × 𝑦⃗

Empilhando esses vetores linha-a-linha, forma-se a matriz de rotação 𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑥⃗⊤

𝑦⃗⊤

𝑧⃗⊤

⎤⎥⎥⎥⎥⎥⎥⎥⎦.

Por fim, cada landmark é transladado até a origem (subtraindo p0) e multiplicado por 𝑅:

p̃𝑖 = 𝑅
(︁
p𝑖 − p0

)︁
. (4.2)

4.2.3 Ângulo de Alinhamento no Plano da Palma

Depois de fixar um referencial local na palma, ainda falta resolver a rotação em torno do

próprio eixo 𝑍 para que todas as mãos fiquem “retas” uma em relação à outra. Escolhemos o
vetor que vai do pulso até a articulação média do dedo médio,

u = p9 − p0, (4.3)

pois ele é aproximadamente ortogonal à linha que une os dedos indicador e mínimo, servindo
como um meridiano natural da mão.
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O ângulo de alinhamento 𝜃 é então a direção desse vetor no plano 𝑋𝑌 :

𝜃 = atan2(𝑢𝑦, 𝑢𝑥) + 90∘, (4.4)

onde atan2(𝑦, 𝑥) devolve o argumento polar do vetor (𝑥, 𝑦) no intervalo (−180∘, 180∘]. O
termo adicional 90∘ faz o dedo médio apontar para o eixo 𝑌 positivo após a rotação, definindo
um “cima” comum para todas as capturas.

4.2.4 Aplicação da Rotação Planar

Para uniformizar o gesto, subtraímos primeiro o pulso (colocando-o na origem) e depois
giramos todo o conjunto de landmarks em torno do eixo 𝑍:

p̃𝑖 = 𝑅𝑍(𝜃)
(︁
p𝑖 − p0

)︁
, (4.5)

𝑅𝑍(𝜃) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
cos 𝜃 − sin 𝜃 0

sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (4.6)

Após essa etapa, quaisquer duas mãos capturadas (independentemente de como a câmera
estava orientada) ficam no mesmo sistema de eixos: palma no plano 𝑍 = 0 e dedo médio
apontando para cima.

4.2.5 Escalonamento para [0, 1]

Com a mão já posicionada num referencial comum, resta eliminar diferenças absolutas
de tamanho. Projetamos cada componente (𝑥, 𝑦, 𝑧) para o intervalo [0, 1] por meio de uma
normalização mínimo–máximo feita eixo-a-eixo onde o min e o max são tomados sobre o
conjunto completo de landmarks (21 pontos) para cada eixo separadamente. O resultado é
um bounding box unitário cujo canto inferior esquerdo é (0, 0, 0) e o canto oposto é (1, 1, 1).

Esse procedimento garante que todas as configurações de mão sejam representadas consis-
tentemente dentro de uma mesma faixa numérica, oferecendo invariância quanto às diferenças
individuais no tamanho das mãos, contribuindo diretamente para a robustez e generaliza-
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ção dos modelos computacionais desenvolvidos. A Figura 7 apresenta exemplos dos marcos
anatômicos antes e após a aplicação do procedimento de normalização descrito.

Figura 7 – Exemplos da aplicação da normalização.

Fonte: A autora (2025)

4.3 AUMENTO ARTIFICIAL DE DADOS

Para aumentar a diversidade dos dados e aprimorar a robustez dos modelos frente a varia-
ções anatômicas e ambientais, técnicas específicas de aumento artificial (data augmentation)
foram aplicadas ao conjunto de treinamento. Essas técnicas introduzem variações sintéticas
nas representações dos gestos, simulando diferentes condições práticas que podem ocorrer em
ambientes reais.

4.3.1 Rotação dos Dedos

Para ampliar a variedade dos dados de treino sem comprometer a anatomia da mão, faze-
mos leves rotações independentes somente nas pontas de cada dedo. Essas rotações acontecem
em um único plano (eixo 𝑍 fixo), mantendo a base do dedo parada; assim, a junta principal
que liga o dedo à mão continua sem se mover. A Tabela 2 traz uma lista de quais os mar-
cos podem ser movidos em conjunto para cada dedo de forma que respeite minimamente o
comportamento anatômico de uma mão.

Para cada dedo sorteia-se um limite 𝜃max ∈ {1∘, . . . , 10∘} e, em seguida, um ângulo
𝜃 ∼ 𝒰(−𝜃max, 𝜃max). Portanto o desvio mínimo é 1∘ e o máximo 10∘.

Sejam p𝑏, p𝑚, p𝑡 ∈ R3 (os pontos base, intermediário e ponta). O vetor v = p − p𝑏 de
cada ponto acima da base é girado por
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Tabela 2 – Dedos e marcos considerados. Os índices seguem a convenção do MediaPipe apresentada na Fi-
gura 4.

Dedo Base (𝑏) Intermediário (𝑚) Ponta (𝑡)

polegar 2 3 4
indicador 6 7 8
médio 10 11 12
anelar 14 15 16
mínimo 18 19 20

Fonte: A autora (2025)

𝑅𝑋𝑌 (𝜃) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
cos 𝜃 − sin 𝜃 0

sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (4.7)

resultando em
p′

𝑚 = p𝑏 + 𝑅𝑋𝑌 (𝜃)
(︁
p𝑚 − p𝑏

)︁
,

p′
𝑡 = p𝑏 + 𝑅𝑋𝑌 (𝜃)

(︁
p𝑡 − p𝑏

)︁
.

(4.8)

Somente p𝑚 e p𝑡 são alterados; p𝑏 permanece intacto, garantindo coerência com a cine-
mática real da mão.

4.3.2 Adição de Ruído

Com o objetivo de simular condições realísticas de captura e aumentar a robustez do mo-
delo frente a ruídos típicos encontrados em cenários práticos, foram adicionadas perturbações
aleatórias às coordenadas dos marcos anatômicos extraídos. Cada ponto anatômico recebe
um deslocamento aleatório 𝜖, cujos componentes são gerados independentemente por meio de
uma distribuição uniforme dentro de um intervalo controlado, definido por 𝛿 ∈ [0, 001; 0, 005],
conforme representado pela Equação 4.9:

p′ = p + 𝜖, 𝜖 ∼ 𝒰(−𝛿, 𝛿) (4.9)

Essa técnica simula condições adversas frequentemente encontradas em aplicações reais,
tais como variações na qualidade da captura (baixa resolução, movimentos indesejados) e in-
terferências causadas por mudanças nas condições de iluminação ou outros fatores ambientais.
Associada a estratégias de normalização espacial baseadas em fatores de escala e alinhamento
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geométrico (TURNER; SMITH, 2023; CHUNG et al., 2023), essa abordagem contribui direta-
mente para aumentar a robustez, confiabilidade e capacidade de generalização dos modelos
desenvolvidos, resultando em maior eficácia prática do sistema proposto.

4.4 ARQUITETURA DO MODELO

A arquitetura computacional proposta foi baseada em uma rede neural totalmente conec-
tada (FC) e foi projetada especificamente para equilibrar eficiência, simplicidade estrutural e
capacidade de generalização em contextos reais de reconhecimento automático de gestos. A
escolha dessa arquitetura foi motivada pela utilização de representações compactas baseadas
em marcos anatômicos (landmarks) das mãos, que permitem dispensar modelos computaci-
onais mais complexos, possibilitando uma boa eficiência em tempo real em dispositivos com
recursos limitados.

Cada bloco da arquitetura é composto por camadas selecionadas e otimizadas, visando
garantir maior estabilidade durante o treinamento e minimizar problemas como o sobreajuste,
resultando em modelos mais generalizáveis. Os componentes principais incluem:

• Batch Normalization: Normaliza as ativações intermediárias do modelo, estabilizando
a distribuição dos dados durante o treinamento, acelerando a convergência dos algorit-
mos e reduzindo a variância interna dos dados (IOFFE; SZEGEDY, 2015).

• Função de ativação ReLU (Rectified Linear Unit): Introduz não-linearidade às ca-
madas intermediárias, favorecendo a extração de características relevantes e acelerando
a convergência dos modelos (NAIR; HINTON, 2010).

• Dropout: Implementado com uma taxa de 0,4, essa técnica desativa aleatoriamente
neurônios durante o treinamento, prevenindo efetivamente o sobreajuste e assegurando
maior capacidade de generalização do modelo (SRIVASTAVA et al., 2014).

A camada final consiste em uma camada Densa seguida pela aplicação da função Softmax,
que gera probabilidades normalizadas associadas a cada classe de gesto. Essa etapa possibilita
a classificação direta e eficiente das configurações das mãos representadas pelo SignWriting,
assegurando interpretações claras e precisas do sistema proposto.
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4.5 AMBIENTE EXPERIMENTAL

O ambiente experimental foi elaborado com o objetivo de avaliar tanto a eficácia preditiva
quanto a eficiência computacional do modelo proposto, buscando simular cenários represen-
tativos das condições práticas de uso. As subseções a seguir descrevem detalhadamente os
conjuntos de dados utilizados, as métricas de avaliação adotadas e a configuração do ambi-
ente computacional empregado.

4.5.1 Conjuntos de Dados

4.5.1.1 Conjunto de Treinamento

O conjunto de treinamento foi elaborado utilizando como base principal imagens proveni-
entes do catálogo oficial do SignWriting2, garantindo que as amostras estejam rigorosamente
alinhadas à notação visual padronizada. Foram selecionadas três imagens diferentes (visões
frontal, lateral esquerda e lateral direita) para cada um dos 261 gestos distintos considerados,
resultando inicialmente em 783 imagens representativas.

Adicionalmente, para aumentar a diversidade e robustez dos dados utilizados no treina-
mento, foram incorporadas 25 amostras extras por classe, provenientes das partições de treina-
mento de 16 conjuntos de dados publicamente disponíveis, que serão apresentados na subseção
seguinte. Nos casos em que os autores dos conjuntos disponibilizavam divisões explícitas em
treino e teste, utilizamos exclusivamente a partição de treino. Quando tais divisões não estavam
presentes, uma fração do conjunto original de teste foi separada e destinada ao treinamento,
de forma estratificada, assegurando equilíbrio entre classes e consistência metodológica.

Ademais, visando aumentar significativamente a capacidade de generalização do modelo,
técnicas de aumento sintético e normalização espacial foram aplicadas às amostras originais.
Cada imagem foi submetida a 25 rotações artificiais e aleatórias das articulações dos dedos,
simulando variações anatômicas naturais, além de 25 perturbações sintéticas de ruído, repli-
cando condições realísticas frequentemente encontradas em ambientes reais, tais como baixa
resolução das imagens ou variações nas condições de iluminação. Esses procedimentos introdu-
ziram variações controladas nas representações, preservando cuidadosamente as características
fundamentais dos gestos.
2 <https://www.signwriting.org/>

https://www.signwriting.org/


42

Para a validação durante o treinamento, cada conjunto de dados de treino foi dividido de
forma aleatória em duas partições: 80% das amostras foram destinadas ao treinamento e 20%
à validação. Essa estratégia foi preferida em relação ao uso de validação cruzada (k-fold),
pois a maioria dos conjuntos já possui partições de teste previamente definidas pelos autores,
o que inviabiliza a aplicação uniforme de k-fold em todos os cenários. Além disso, o custo
computacional de treinar múltiplos folds em 16 bases distintas seria desproporcional, dado o
foco do estudo em avaliar generalização entre múltiplas línguas de sinais e não em otimizar
desempenho em um único corpus.

Os parâmetros finais utilizados nas técnicas de aumento artificial dos dados foram de-
terminados com base em um estudo sistemático de ablação, cujos detalhes metodológicos e
resultados quantitativos são discutidos na Seção 5.2.

4.5.1.2 Conjuntos de dados de teste.

Para a avaliação final, utilizamos 16 conjuntos de teste originais fornecidos pelos autores
das bases. Como cada conjunto foi originalmente anotado em sistemas ou notações diferen-
tes, realizamos um mapeamento manual das classes para a nomenclatura de SignWriting,
garantindo consistência na comparação. Esse alinhamento exigiu analisar o catálogo oficial
de SignWriting e associar cada gesto à representação equivalente, com base em semelhanças
visuais e estruturais.

A Tabela 3 resume as principais características de cada conjunto de dados selecionado,
que em conjunto totalizam 132 classes únicas: NUS Hand Posture dataset I (PISHARADY; VA-

DAKKEPAT; POH, 2014), NUS Hand Posture dataset II (PISHARADY; VADAKKEPAT; LOH, 2012),
OUHANDS (MATILAINEN et al., 2016), ASL Digits (MAVI, 2021), Indian Alphabet (SONAWANE,
2020), HAGRID (KAPITANOV et al., 2024), HG14 (GüLER; YüCEDAğ, 2021), LSA16 handshapes
(RONCHETTI et al., 2016), Pugeault (PUGEAULT; BOWDEN, 2011), ArSL21L (GOCHOO, 2022),
ASL Alphabet (NAGARAJ, 2018), KU-BdSL (JIM et al., 2023), PSL (IMRAN et al., 2021), Ben-
gali Alphabet (RAFI et al., 2019), PHOENIX-14 Handshapes (KOLLER; NEY; BOWDEN, 2016) e
LSWH100 (LOBO-NETO; PEDRINI, 2024).

Exceções: em particular, o conjunto HAGRID não dispunha de partição de teste. Trata-se
de um banco extenso com aproximadamente 500 mil imagens; desse total, extraímos uma
amostra balanceada de 13 mil imagens (mil por classe) para compor o conjunto de teste, além
de selecionar 25 imagens adicionais por classe para compor o treinamento. Essa adaptação
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Tabela 3 – Conjuntos de dados de língua de sinais utilizados nos testes, apresentando informações sobre o
número de classes, tamanhos das imagens e quantidade de amostras destinadas aos testes. As
línguas de sinais suportadas pelos conjuntos de dados são: ASL (American Sign Language), ISL
(Indian Sign Language), LSA (Argentine Sign Language), ArSL (Arabic Sign Language), BdSL
(Bengali Sign Language), PSL (Pakistan Sign Language), DGS (German Sign Language) e LIBRAS
(Língua Brasileira de Sinais).

Nome Linguagem
de Sinal

Classes Tamanho
das imagens

Quantidade de amostras
usadas para teste

NUS Hand Posture dataset I Não definida 9 160x120 241
NUS Hand Posture dataset II Não definida 9 160x120 2.000
OUHANDS Não definida 10 640x480 1.000
ASL Digits ASL 10 100x100 2.062
Indian Alphabet ISL 13 128x128 15.600
HAGRID Não definida 13 512x683 13.000
HG14 Não definida 14 256x256 14.000
LSA16 handshapes LSA 15 640x480 800
Pugeault ASL 21 87x124 12.547
ArSL21L ArSL 21 416x416 14.202
ASL Alphabet ASL 23 200x200 28
KU-BdSL BdSL 25 3024x4032 1.500
PSL PSL 31 640x480 1.480
Bengali Alphabet BdSL 34 224x224 1.520
PHOENIX-14 Handshapes DGS 44 93x132 1.837
LSWH100 LIBRAS 100 500x500 4.000

Fonte: A autora (2025)

assegurou a viabilidade de uso do HAGRID de forma compatível com os demais experimentos.

4.5.2 Métricas de Avaliação

Com o intuito de avaliar tanto a eficácia quanto a viabilidade operacional do modelo
proposto, foram definidas quatro métricas principais. Essas métricas foram selecionadas para
abranger aspectos críticos como precisão do reconhecimento, robustez em contextos multi-
classes e desempenho computacional para aplicações em tempo real:

• Acurácia: Mede a proporção total de predições corretamente classificadas pelo modelo
em relação ao total de predições realizadas, fornecendo uma avaliação direta da eficácia
geral do sistema proposto.

• F1-Score: Combina as métricas de precisão (precision) e revocação (recall) em uma
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única medida harmônica, sendo especialmente relevante para avaliar o desempenho do
modelo em conjuntos com classes desbalanceadas ou com diferentes níveis de dificuldade.

• Tempo de Inferência: Corresponde ao tempo médio, medido em milissegundos, re-
querido pelo modelo para processar uma imagem e fornecer a respectiva predição. Essa
métrica é especialmente importante para garantir a viabilidade prática do sistema em
dispositivos com restrições computacionais, permitindo aplicações efetivas em tempo
real.

• Taxa de inferência (Throughput): Refere-se ao número médio de imagens processa-
das pelo modelo por unidade de tempo, tipicamente em quadros por segundo (frames

per second - FPS). Esta métrica é crucial para avaliar o desempenho computacional e
a escalabilidade do sistema, principalmente em aplicações em larga escala ou cenários
que exigem respostas rápidas.

Para garantir robustez estatística dos resultados obtidos, todas as métricas foram calcu-
ladas com base em múltiplas execuções independentes (10 repetições). Os resultados finais
foram reportados como médias acompanhadas por intervalos de confiança com nível de sig-
nificância de 95%, permitindo assim uma análise estatística da variabilidade dos resultados
obtidos.

4.5.3 Configuração do Ambiente de Treinamento

As especificações detalhadas do equipamento utilizado para a execução dos experimentos
são apresentadas a seguir:

• CPU: Intel Core i7-12700H, 12ª geração (14 núcleos)

• Memória RAM: 16 GB DDR4

A configuração dos hiperparâmetros e da arquitetura do modelo foi definida utilizando
técnicas de otimização automática, especificamente Otimização Bayesiana e Random Search.
As decisões finais sobre a estrutura e hiperparâmetros foram obtidas após experimentos preli-
minares, detalhados na Seção 5. Os detalhes dessa configuração são apresentados abaixo:



45

Arquitetura da Rede Neural

• Número de camadas ocultas: 4 camadas totalmente conectadas.

• Função de ativação: ReLU (Rectified Linear Unit) para introdução de não-linearidade.

• Dropout: Implementado com taxa de 0,4 para prevenir sobreajuste.

4.5.3.1 Hiperparâmetros e Otimização

• Otimizador: Adam (Adaptive Moment Estimation), escolhido devido ao seu desempe-
nho superior e ajuste dinâmico eficiente da taxa de aprendizado durante o treinamento
(KINGMA; BA, 2014).

• Função de perda: Categorical Cross-Entropy, ideal para problemas de classificação
multiclasse, amplamente adotada na literatura da área (BISHOP, 2006).

• Taxa de aprendizado inicial: 0,001, ajustada dinamicamente utilizando um Learning

Rate Scheduler de decaimento exponencial (taxa de decaimento = 0,99 por época).

• Tamanho do lote (batch size): 32.

• Número máximo de épocas: 100, com critério de parada antecipada (Early Stopping)
baseado no desempenho do conjunto de validação para garantir eficiência computacional
e evitar sobreajuste.
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5 RESULTADOS

Neste capítulo são apresentados e discutidos os resultados experimentais obtidos com a
metodologia proposta. As análises realizadas contemplam aspectos essenciais como eficácia
preditiva, robustez a variações ambientais e eficiência computacional da abordagem em diversos
cenários experimentais. Para isso, foram realizados experimentos comparativos abrangentes
em múltiplos conjuntos de dados, visando demonstrar a capacidade do modelo em generalizar
efetivamente para diferentes contextos linguísticos e condições práticas.

Além das análises comparativas de desempenho em diferentes cenários, são discutidos
resultados detalhados obtidos através de estudos sistemáticos de ablação, cujo objetivo é
avaliar quantitativamente o impacto de cada etapa do processo metodológico proposto. Esses
estudos permitem compreender melhor a contribuição específica das técnicas de normalização
espacial, aumento sintético dos dados e componentes arquiteturais do modelo.

Por fim, são apresentados experimentos específicos sobre a robustez do método frente a
variações nas condições ambientais e diferentes níveis de restrição computacional, fornecendo
evidências sobre a eficiência e aplicabilidade prática da abordagem em dispositivos com recursos
limitados, cenário crucial para aplicações reais de reconhecimento automático de gestos.

5.1 COMPARAÇÃO COM MÉTODOS DO ESTADO DA ARTE

Inicialmente, foram conduzidos experimentos quantitativos comparando o desempenho do
método proposto com abordagens consagradas na literatura (estado da arte), utilizando múl-
tiplos conjuntos de dados amplamente reconhecidos na área de reconhecimento automático
de gestos, incluindo NUS I, NUS II, OUHANDS, LSA16 e PHOENIX-14 Handshapes. Os
resultados obtidos nestes experimentos são sintetizados detalhadamente na Tabela 4, permi-
tindo avaliar diretamente o desempenho relativo da abordagem proposta frente a métodos
previamente estabelecidos.

Entre os conjuntos avaliados, destaca-se o LSWH100 que é um novo conjunto de dados que
contêm representações sintéticas de gestos anotados diretamente com símbolos do SignWri-
ting. Trata-se de um conjunto pioneiro, ainda não explorado em estudos anteriores, permitindo
avaliar especificamente a eficácia do método proposto em contextos baseados explicitamente
nessa notação visual.
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Cumpre ressaltar que, em todos os experimentos, o protocolo manteve-se idêntico: empregou-
se a mesma arquitetura de rede, os mesmos hiperparâmetros e uma base inicial de treinamento
comum. Para cada conjunto de dados, foram adicionadas 25 amostras do conjunto de treino do
respectivo conjunto de dados, o que assegura que eventuais variações de desempenho reflitam,
primordialmente, as particularidades de cada conjunto de dados.

Em síntese, mesmo não atingindo o melhor resultado em todos os conjuntos de dados, o
método mantém desempenho competitivo em uma variedade de bases públicas. Essa abran-
gência, aliada à simplicidade arquitetural, ao baixo tempo de inferência e a pequena quantidade
de amostras reais usadas para treinamento, sustenta a viabilidade do sistema em ambientes
de produção que envolvem múltiplas línguas de sinais, diferentes condições de filmagem e
restrições de hardware.

A Figura 8 apresenta as matrizes de confusão normalizadas obtidas nos experimentos re-
alizados com os 16 conjuntos de dados distintos. Nelas, é possível observar detalhadamente
a capacidade do modelo em discriminar corretamente entre diferentes classes de gestos, com
predominância acentuada de valores elevados na diagonal principal indicando um alto desempe-
nho preditivo e robustez significativa. Esses resultados confirmam a eficácia prática do método
proposto na identificação correta dos gestos estáticos de mãos, corroborando claramente a sua
capacidade de generalização e robustez em contextos variados.
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Tabela 4 – Comparação quantitativa entre o método proposto e diversas abordagens de referência em diferen-
tes conjuntos de dados de reconhecimento de gestos. Os métodos comparados incluem modelos
amplamente utilizados, como CNN, Redes de Prototipagem (ProtoNet, do inglês Prototypical
Networks), Redes Neurais Convolucionais com Cápsulas (CCNN, do inglês Convolutional Capsule
Neural Network), DenseNet (do inglês Densely Connected Convolutional Networks), VGG16 (do
inglês Visual Geometry Group 16), You Only Look Once versão 8.0 (YOLOv8) e ViT. Para cada
conjunto de dados, a tabela apresenta a acurácia média obtida por cada método. No caso da nossa
abordagem, os resultados são exibidos com um intervalo de erro calculado a partir de bootstrap
de 10 execuções independentes. Os traços (–) indicam que o respectivo trabalho da literatura não
reportou resultados naquele conjunto específico, já que a maioria dos estudos foi avaliada apenas
em uma, duas ou três bases, e não em todas as utilizadas neste estudo. Dessa forma, a comparação
deve ser entendida como parcial: cada método da literatura é contrastado com o proposto apenas
nos conjuntos em comum.

Método NUS I NUS II OUHANDS ASL Digits

CNN (GUPTA et al., 2022) 0,9943 - - -
2RCNN (SAHOO et al., 2022) - 0,9480 - -
CNN (KUMAR; SURESH; DINESH,
2022)

- - 0,8757 -

CNN (GUPTA et al., 2022) - - - 0,9906

Este estudo 1,0000 ± 0,0000 0,9871 ± 0,0056 0,9818 ± 0,0123 0,9902 ± 0,0053

Método Indian Alphabet HAGRID HG14 LSA16

FC (FALLAH et al., 2024) 0,9995 - - -
CNN (MENON; SRUTHI; LIJIYA, 2022) 0,9986 - - -
Densenet201 (PADHI; DAS, 2022) - 0,9755 - -
CNN (MISHRA et al., 2023) - 0,9921 - -
CCNN (GüLER; YüCEDAğ, 2021) - - 0,8739 -
ResNet50 (AWALUDDIN; CHAO;
CHIOU, 2023)

- - 0,9747 -

ProtoNet (RONCHETTI et al., 2023) - - - 0,9838
VGG16 (QUIROGA et al., 2017) - - - 0,9592

Este estudo 0,9968 ± 0,0009 0,9549 ± 0,0022 0,9685 ± 0,0045 0,8439 ± 0,0584

Método Pugeault ArSL21L ASL Alphabet KU-BdSL

ViT (ZHANG et al., 2023) 0,9653 - 0,9944 -
YOLOv8 (ALAMRI et al., 2024) - 0,9799 - -
FC (FALLAH et al., 2024) - - 0,9940 -
ViT (ALSHARIF et al., 2023) - - 0,9998 -
VGG16 (SURJO et al., 2023) - - - 0,9800

Este estudo 0,9483 ± 0,0068 0,9598 ± 0,0046 0,9167 ± 0,0986 0,9865 ± 0,0091

Método PSL Bengali Alphabet PHOENIX-14
Handshapes

LSWH100

CNN (AROOJ et al., 2024) 0,9874 - - -
FC (FALLAH et al., 2024) - 0,9996 - -
ANN (IRVANIZAM; HORATIUS;
SOFYAN, 2023)

- 0,9841 - -

DenseNet (RONCHETTI et al., 2023) - - 0,9605 -

Este estudo 0,9819 ± 0,0062 0,7258 ± 0,0263 0,8553 ± 0,0175 0,9098 ± 0,0085

Fonte: A autora (2025)



49

Figura 8 – Matrizes de confusão normalizadas para os 16 experimentos realizados em diferentes conjuntos de
dados de reconhecimento de gestos. Cada matriz ilustra o desempenho do modelo em termos de
acurácia de classificação entre classes, com maior intensidade de cor ao longo da diagonal indicando
melhor precisão de predição.

(a) NUS I (b) NUS II (c) OUHANDS (d) ASL Digits

(e) Indian Alphabet (f) HG14 (g) HAGRID (h) LSA16

(i) Pugeault (j) ArSL21L (k) ASL Alphabet (l) KU-BdSL

(m) PSL (n) Bengali Alphabet (o) PHOENIX-14 (p) LSWH100

Fonte: A autora (2025)
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5.2 ESTUDO DE ABLAÇÃO

Com o objetivo de avaliar detalhadamente a contribuição individual de cada componente
metodológico no desempenho geral do modelo proposto, foi realizado um estudo sistemático
de ablação. Essa abordagem permite identificar claramente quais etapas metodológicas são
essenciais para o funcionamento eficaz do sistema, bem como entender precisamente o impacto
isolado e combinado de estratégias como normalização espacial, aumento de dados sintéticos
e diferentes modelos de aprendizado utilizados (HASTIE; TIBSHIRANI; FRIEDMAN, 2009).

Para os experimentos de ablação adotou-se exclusivamente o HAGRID, um corpus de gestos
genéricos de mão que não está vinculado a nenhuma língua de sinais específica. Esta escolha
deve-se a três fatores principais: oferece um conjunto de teste volumoso com 13.000 amostras;
exibe qualidade de imagem superior a coleções mais antigas e já é largamente empregado na
literatura, o que facilita comparações diretas.

5.2.1 Impacto das Arquiteturas e Modelos de Aprendizado

O primeiro experimento realizado visou avaliar quantitativamente o impacto direto das
diferentes arquiteturas e algoritmos de aprendizado sobre a tarefa específica de classificação
automática de gestos. Todos os classificadores avaliados foram inseridos no mesmo fluxo
ilustrado na Figura 5. Os valores resultantes da normalização são então concatenados em um
único vetor de características, que serve de entrada aos modelos comparados.

Foram comparadas múltiplas abordagens amplamente adotadas na literatura, abrangendo
desde métodos clássicos de aprendizado de máquina até arquiteturas profundas mais comple-
xas, conforme detalhado na Tabela 5. Entre as técnicas avaliadas encontram-se FC, Redes Neu-
rais Convolucionais Unidimensionais (CONV1D, do inglês 1D Convolutional Neural Networks),
Florestas Aleatórias (RF, do inglês Random Forest), Máquinas de Vetores de Suporte (SVM,
do inglês, Support Vector Machines), Algoritmo dos K-Vizinhos Mais Próximos (KNN, do in-
glês K-Nearest Neighbors), Regressão Logística (LR, do inglês Logistic Regression), Gradient

Boosting (GBC) e AdaBoost (Adaptive Boosting).
Adicionalmente, foi explorada uma arquitetura baseada em Redes Totalmente Conectadas

com blocos residuais, combinada a um embedding pré-treinado disponibilizado pelo Google
(denominado FC + embedder). Essa abordagem específica busca combinar a eficiência com-
putacional das redes totalmente conectadas com a capacidade aprimorada de representação
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dos embeddings pré-treinados, visando capturar relações mais complexas e robustas presentes
nos dados.

Para garantir uma análise robusta e abrangente, em cada caso também foram avaliadas
diferentes combinações de estratégias de normalização espacial e técnicas de aumento de dados
sintéticos, como Rotação dos Dedos e Adição de Ruído, permitindo uma avaliação rigorosa
do impacto isolado e combinado dessas estratégias sobre o desempenho preditivo do modelo.

Tabela 5 – Comparação do desempenho de diferentes modelos em termos de acurácia e F1-score, conside-
rando várias combinações de normalização e métodos de aumento de dados no conjunto de dados
HAGRID.

Sem métodos de normalização e sem aumento de dados
Modelo Acurácia F1
FC 0,1106 ± 0,0059 0,0421 ± 0,0032
FC + embedder 0,6564 ± 0,0119 0,6212 ± 0,0131
CONV1D 0,0899 ± 0,0069 0,0234 ± 0,0029
RF 0,1214 ± 0,0034 0,0756 ± 0,0033
SVM 0,0841 ± 0,0069 0,0389 ± 0,0046
GBC 0,0766 ± 0,0058 0,0157 ± 0,0021
Adaboost 0,0994 ± 0,0055 0,0607 ± 0,0057
KNN 0,0946 ± 0,0049 0,0616 ± 0,0045
LR 0,1118 ± 0,0033 0,0506 ± 0,0019

Com normalização e sem métodos de aumento
FC 0,5147 ± 0,0082 0,476 ± 0,0104
FC + embedder 0,5317 ± 0,0105 0,5081 ± 0,0107
CONV1D 0,1591 ± 0,0086 0,0566 ± 0,0052
RF 0,6023 ± 0,0158 0,5736 ± 0,0169
SVM 0,6312 ± 0,0084 0,5909 ± 0,0088
GBC 0,3364 ± 0,0103 0,3253 ± 0,0098
Adaboost 0,1138 ± 0,0063 0,098 ± 0,0066
KNN 0,2667 ± 0,0068 0,2362 ± 0,0106
LR 0,5861 ± 0,0056 0,5388 ± 0,0067

Com normalização e com aumento de “Rotação dos Dedos"
FC 0,7305 ± 0,0098 0,7254 ± 0,0106
FC + embedder 0,7042 ± 0,0107 0,7054 ± 0,011
CONV1D 0,5279 ± 0,0078 0,5126 ± 0,0075
RF 0,6433 ± 0,0131 0,6296 ± 0,0137
SVM 0,6534 ± 0,0076 0,6534 ± 0,0081
GBC 0,3389 ± 0,0116 0,3303 ± 0,0111
Adaboost 0,1206 ± 0,0089 0,0684 ± 0,0069
KNN 0,5968 ± 0,0123 0,5962 ± 0,0124
LR 0,6456 ± 0,0088 0,6356 ± 0,0107

Com normalização e com aumentos de “Rotação dos Dedos” e “Ruído”
FC 0,757 ± 0,0085 0,7531 ± 0,0083
FC + embedder 0,6895 ± 0,0117 0,6883 ± 0,0127
CONV1D 0,4893 ± 0,0095 0,4718 ± 0,0094
RF 0,6263 ± 0,0122 0,6095 ± 0,013
SVM 0,6579 ± 0,0082 0,6524 ± 0,0072
GBC 0,3142 ± 0,0126 0,3126 ± 0,0128
Adaboost 0,2131 ± 0,0125 0,1499 ± 0,0084
KNN 0,6002 ± 0,0091 0,5995 ± 0,0085
LR 0,6489 ± 0,0092 0,6391 ± 0,0082

Fonte: A autora (2025)
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5.2.2 Impacto de Diferentes Conjuntos de Treinamento

Um segundo experimento de ablação foi realizado com o objetivo específico de avaliar o
impacto direto que diferentes composições do conjunto de treinamento têm sobre o desem-
penho final do modelo proposto. Para garantir consistência metodológica e comparabilidade
direta dos resultados, foi utilizada a configuração ótima identificada no estudo anterior, in-
cluindo técnicas de normalização espacial ativa e estratégias de aumento sintético de dados
(“Rotação dos Dedos” e “Adição de Ruído”).

Os resultados obtidos com esse experimento são apresentados detalhadamente na Tabela 6,
considerando três configurações distintas de composição do conjunto de treinamento, descritas
a seguir:

• SignWriting (oficial): Modelo treinado exclusivamente com o conjunto oficial de ima-
gens de SignWriting. Esta configuração serve como referência direta (baseline), permi-
tindo avaliar especificamente o desempenho do método na representação padronizada
original, sem a influência de outras variações externas.

• SignWriting + LSWH100: Modelo treinado utilizando a combinação do conjunto
oficial SignWriting com o conjunto LSWH100, contendo 100 classes de gestos represen-
tadas diretamente em SignWriting. Essa configuração foi projetada para avaliar explicita-
mente o impacto da inclusão do LSWH100 sobre a robustez, generalização e desempenho
geral do método em condições variadas.

• SignWriting + Amostra do Experimento: Modelo treinado com a combinação do
conjunto oficial do SignWriting e pequenas amostras específicas extraídas do conjunto
do experimento sendo avaliado. Foram utilizadas 25 amostras adicionais por classe,
provenientes do respectivo conjunto quando disponíveis. Para os conjuntos de dados
sem partições pré-definidas para treinamento, separou-se uma amostra de 25 exemplos
por classe para o treinamento, preservando as demais para teste. Essa configuração
foi adotada para avaliar o impacto prático direto de complementar o treinamento com
amostras específicas do domínio-alvo, visando aumentar a robustez e o desempenho
preditivo do modelo em condições mais próximas da aplicação prática.
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Tabela 6 – Resultados de desempenho do modelo no conjunto de dados HAGRID em três configurações de
treinamento, medidos por acurácia e F1-score, todos acompanhados de intervalos de confiança
calculados por meio de bootstrap.

Conjunto de treinamento Acurácia F1
SW 0,7247 ± 0,0065 0,7166 ± 0,0058
SW + LSWH100 0,8705 ± 0,0060 0,8694 ± 0,0060
SW + Amostra do Experimento 0,9549 ± 0,0022 0,9549 ± 0,0022

Fonte: A autora (2025)

5.2.3 Impacto do Fator de Aumento e do Tamanho da Amostra

Um terceiro estudo de ablação foi realizado com o objetivo de avaliar como o tamanho ini-
cial do conjunto de treinamento e o fator de aumento artificial dos dados (data augmentation)
influenciam o desempenho preditivo do modelo. Mais especificamente, buscou-se identificar
quantitativamente o impacto combinado dessas duas variáveis críticas na capacidade geral de
generalização do método proposto.

Os resultados quantitativos obtidos nesse estudo são apresentados na Tabela 7, desta-
cando o desempenho alcançado em termos de acurácia e F1-score, considerando diferentes
combinações entre o fator de aumento aplicado às amostras e o número inicial de exemplos
de treinamento por classe.

O fator de aumento (augmentation factor) refere-se diretamente ao número de amostras
adicionais geradas artificialmente para cada exemplo original, utilizando técnicas previamente
descritas, como Rotação dos Dedos e Adição de Ruído. Os valores considerados variaram
entre 5 e 25, permitindo expor sistematicamente o modelo a diferentes graus de variabilidade
controlada, com o intuito de aprimorar explicitamente a capacidade de generalização.

Além disso, foi analisado o impacto do número inicial de amostras disponíveis para treina-
mento (antes da aplicação das técnicas de aumento), variando também entre 5 e 25 amostras
por classe. Essa avaliação permitiu compreender a interação entre a quantidade inicial de dados
disponíveis e o fator de aumento artificial na capacidade preditiva e robustez do modelo.

5.2.4 Avaliação de Desempenho sob Diferentes Restrições Computacionais

Visando avaliar como diferentes restrições computacionais impactam o desempenho do mo-
delo durante a etapa de inferência, foram realizados experimentos sistemáticos em ambientes
controlados utilizando Docker. O modelo treinado foi convertido para o formato TensorFlow
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Tabela 7 – Desempenho do modelo em termos de acurácia e F1-score no conjunto de dados HAGRID para
diferentes combinações de fatores de aumento e número de amostras de treinamento. O fator de
aumento, variando de 5 a 25, representa a multiplicação de amostras para elevar a variabilidade
dos dados, enquanto o número de amostras de treinamento (de 5 a 25) indica a quantidade de
exemplos originais utilizados antes do aumento.

Fator Número de amostras Acurácia F1
5 5 0,9227 ± 0,0079 0,9231 ± 0,0077
5 10 0,9419 ± 0,0034 0,9418 ± 0,0035
5 15 0,9462 ± 0,0045 0,9465 ± 0,0044
5 20 0,9515 ± 0,0040 0,9517 ± 0,0040
5 25 0,9507 ± 0,0052 0,9509 ± 0,0051
10 5 0,9133 ± 0,0027 0,9130 ± 0,0027
10 10 0,9356 ± 0,0058 0,9354 ± 0,0058
10 15 0,9491 ± 0,0048 0,9492 ± 0,0048
10 20 0,9485 ± 0,0049 0,9486 ± 0,0050
10 25 0,9538 ± 0,0050 0,9539 ± 0,0049
15 5 0,9198 ± 0,0062 0,9200 ± 0,0062
15 10 0,9390 ± 0,0058 0,9388 ± 0,0058
15 15 0,9439 ± 0,0035 0,9441 ± 0,0035
15 20 0,9457 ± 0,0056 0,9458 ± 0,0057
15 25 0,9541 ± 0,0044 0,9543 ± 0,0044
20 5 0,9209 ± 0,0053 0,9206 ± 0,0054
20 10 0,9415 ± 0,0044 0,9416 ± 0,0043
20 15 0,9486 ± 0,0055 0,9487 ± 0,0055
20 20 0,9521 ± 0,0045 0,9522 ± 0,0045
20 25 0,9482 ± 0,0037 0,9482 ± 0,0037
25 5 0,9358 ± 0,0037 0,9359 ± 0,0037
25 10 0,9335 ± 0,0050 0,9337 ± 0,0049
25 15 0,9501 ± 0,0033 0,9502 ± 0,0033
25 20 0,9518 ± 0,0032 0,9520 ± 0,0032
25 25 0,9554 ± 0,0056 0,9555 ± 0,0056

Fonte: A autora (2025)

Lite (TFLite), sem aplicação de otimizações adicionais (como quantização), resultando em
um arquivo compacto de aproximadamente 3 megabytes. Essa conversão visou especifica-
mente avaliar a capacidade prática do modelo em ambientes com recursos computacionais
limitados.

Durante os testes, foram medidas métricas quantitativas como o tempo médio de inferência,
a taxa de inferências por segundo (throughput), e o consumo médio de CPU e memória. Cada
configuração testada foi repetida 30 vezes, utilizando lotes padronizados de 1.000 inferências
cada, garantindo robustez estatística e replicabilidade dos resultados.
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A Figura 9 detalha a relação entre o número de núcleos de CPU e o throughput obtido em
diferentes configurações de memória, evidenciando a escalabilidade e a estabilidade operacio-
nal da abordagem. Observa-se claramente que o throughput aumenta proporcionalmente ao
número de núcleos de CPU até atingir um ponto de saturação, no qual incrementos adicionais
resultam em ganhos mínimos. Para referência, a configuração mais eficiente obteve aproxi-
madamente 18.500 inferências por segundo, correspondendo a um tempo médio de apenas
0,00005 segundos por inferência.

Figura 9 – Relação entre número de CPUs e throughput

Fonte: A autora (2025)

A Figura 10 ilustra o impacto direto do número de CPUs sobre o tempo médio de in-
ferência por amostra. Observa-se claramente que o tempo médio diminui à medida que são
adicionados núcleos de CPU, até alcançar um platô em que ganhos adicionais são reduzidos.
Esses resultados fornecem evidências claras sobre o equilíbrio ideal entre desempenho obtido
e recursos computacionais utilizados, facilitando decisões práticas sobre alocação eficiente em
aplicações reais.

Finalmente, a Figura 11 apresenta a relação entre quantidade de memória alocada e o
throughput, revelando desempenho constante e robusto em todas as configurações avaliadas.
Esses achados demonstram a capacidade do modelo de operar eficientemente em ambientes
computacionais com recursos limitados, sugerindo sua viabilidade prática mesmo em disposi-
tivos com restrições significativas de memória.
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Figura 10 – Relação entre número de CPUs e tempo médio de inferência

Fonte: A autora (2025)

Figura 11 – Relação entre memória e throughput

Fonte: A autora (2025)

5.2.5 Impacto de Erros de Detecção de Marcos (Landmarks)

Com o objetivo de compreender o impacto das falhas ou imprecisões na etapa de detecção
automática dos marcos anatômicos (landmarks) realizada pelo Mediapipe, foi conduzida uma
análise manual detalhada. Essa análise buscou quantificar o quanto os erros de detecção afetam
diretamente o desempenho global do modelo proposto.

Os resultados quantitativos detalhados obtidos nessa análise estão apresentados na Ta-
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bela 8, especificando a acurácia global original, o número total de erros observados, a quan-
tidade de erros diretamente atribuíveis à detecção dos marcos pelo Mediapipe e a acurácia
ajustada calculada formalmente para cada conjunto de dados.

Essa acurácia ajustada é calculada pela Equação 5.1, que procura isolar os erros diretamente
relacionados à detecção de marcos pelo Mediapipe, oferecendo uma estimativa do desempenho
que poderia ser alcançado caso esses erros fossem mitigados:

Acurácia Ajustada = 𝑁total − 𝑁mediapipe_error − 𝑁model_error
𝑁total − 𝑁mediapipe_error

(5.1)

onde:

• 𝑁total: Número total de amostras avaliadas.

• 𝑁mediapipe_error: Quantidade de erros atribuíveis diretamente ao Mediapipe.

• 𝑁model_error: Número de erros cometidos exclusivamente pelo modelo, excluindo-se as
falhas provenientes diretamente do Mediapipe.

Tabela 8 – Resumo do desempenho do modelo com acurácia ajustada conforme a Equação 5.1 para cada
conjunto de dados. A tabela inclui a acurácia original, a contagem total de erros, os erros atribuídos
ao Mediapipe e a acurácia ajustada recalculada, que leva em consideração as falhas de detecção
relacionadas ao Mediapipe.

Conjunto de dados Acurácia Erro total Erros do
Mediapipe

Erro Media-
pipe (%)

Acurácia
Ajustada

NUS II 0,9871 26 12 46,15% 0,9926
OUHANDS 0,9818 11 4 36,36% 0,9911
ASL Digits 0,9902 15 14 93,33% 0,9994
Indian Alphabet 0,9968 48 4 8,33% 0,9971
HAGRID 0,9549 544 437 80,33% 0,9907
HG14 0,9685 384 245 63,80% 0,9885
LSA16 0,8439 45 23 51,11% 0,9160
Pugeault 0,9483 346 161 46,53% 0,9720
ArSL21L 0,9598 155 48 30,97% 0,9719
ASL Alphabet 0,9167 2 2 100,0% 1,0000
KU-BdSL 0,9865 20 12 60,0% 0,9932
PSL 0,9819 17 15 88,24% 0,9979
Bengali Alphabet 0,7258 393 201 51,15% 0,8482
PHOENIX-14 0,8553 856 804 93,93% 0,9461
LSWH100 0,9098 278 86 30,94% 0,9377

Fonte: A autora (2025)
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É importante enfatizar que essa métrica não substitui as medidas tradicionais de acurácia;
seu objetivo específico é fornecer uma estimativa da penalização sofrida pelo modelo devido aos
erros externos à classificação, provenientes exclusivamente da etapa de detecção automática.

Os resultados apresentados na Tabela 8 indicam que o número de erros do MediaPipe é
elevado em alguns conjuntos, comprometendo de forma significativa a acurácia global. Isso su-
gere que parte considerável das discrepâncias observadas não decorre do classificador proposto,
mas sim de limitações na etapa de pré-processamento. Assim, ao comparar os resultados com
outros métodos da literatura, deve-se considerar que o desempenho do modelo aqui avaliado
sofre restrições adicionais, pois depende integralmente da qualidade dos marcos detectados
pelo MediaPipe. Em outras palavras, a acurácia reportada pode estar subestimando a real ca-
pacidade discriminativa da arquitetura, já que erros do detector são propagados ao classificador
sem possibilidade de correção posterior.

Para mitigar esse problema em trabalhos futuros, algumas estratégias práticas podem ser
exploradas, tais como:

• Aplicação de filtros estatísticos de outliers para descartar quadros com marcos eviden-
temente incoerentes;

• Uso de técnicas de suavização temporal em sequências de vídeo (ex.: filtros de Kalman
ou médias móveis), reduzindo a variabilidade abrupta entre quadros consecutivos;

• Calibração ou ajuste fino dos parâmetros internos do MediaPipe, de forma a adequar o
detector às condições específicas de captura de cada base;

• Exploração de detectores alternativos ou modelos híbridos (ex.: OpenPose combinado
ao MediaPipe), de modo a aumentar a robustez na detecção dos marcos.

Embora o MediaPipe apresente elevada eficiência e seja amplamente adotado pela comu-
nidade de visão computacional, sua utilização em bases heterogêneas expõe limitações que,
neste trabalho, se mostraram relevantes. Reconhecer o peso desses erros é fundamental para
interpretar corretamente os resultados obtidos e para guiar melhorias metodológicas que apro-
ximem o desempenho observado do desempenho potencial estimado pela acurácia ajustada.
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5.3 ANÁLISE QUALITATIVA DE ERROS DE DETECÇÃO DO MEDIAPIPE

Para compreender de forma qualitativa o impacto específico das falhas na etapa de de-
tecção automática de marcos anatômicos (landmarks) pelo Mediapipe sobre o desempenho
geral do modelo de classificação proposto, realizou-se uma análise detalhada por meio de
verificação manual. Essa análise qualitativa buscou identificar quais erros podem ser atribuí-
dos ao Mediapipe, diferenciando-os dos erros diretamente relacionados ao próprio modelo de
reconhecimento de gestos.

Figura 12 – Exemplos qualitativos de erros na detecção de marcos pelo Mediapipe em reconhecimento de
gestos. A figura exibe cinco gestos distintos, cada um em três estágios: (1) a imagem original, (2)
os marcos (landmarks detectados pelo Mediapipe e (3) os marcos normalizados utilizados como
entrada para o modelo. Em cada caso, o Mediapipe falha em capturar corretamente os marcos
da mão, resultando em representações desalinhadas, incompletas ou distorcidas. Esses erros de
detecção, como pontas dos dedos ausentes ou posições incorretas dos dedos, introduzem ruído no
processo, afetando negativamente a precisão de classificação do modelo.

Fonte: A autora (2025)

Na Figura 12, são apresentados exemplos qualitativos representativos de erros específicos
cometidos pela ferramenta Mediapipe durante a detecção automática dos marcos anatômicos
das mãos. Cada exemplo detalha claramente três estágios distintos do processo: a imagem
original contendo o gesto real realizado, os marcos anatômicos detectados automaticamente
pelo Mediapipe e, finalmente, a representação normalizada desses marcos, que corresponde à
entrada fornecida ao modelo durante a etapa de classificação.

Os erros ilustrados ocorrem tipicamente quando o MediaPipe não consegue identificar cor-
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retamente a posição ou orientação dos dedos, resultando em representações incorretas, distor-
cidas ou incompletas em relação aos gestos originais. Consequentemente, tais erros impactam
diretamente e significativamente a eficácia do processo de classificação, já que o modelo passa
a receber entradas ruidosas, imprecisas ou inconsistentes com o gesto originalmente realizado.
Essa situação evidencia a importância crítica da precisão na etapa inicial de detecção dos
marcos para a robustez global do sistema.

Essa análise qualitativa ressalta explicitamente a necessidade de técnicas mais rigorosas de
pré-processamento e evidencia a importância de investigar aprimoramentos ou alternativas ao
Mediapipe na etapa de detecção de marcos anatômicos.
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6 CONCLUSÃO

Este trabalho apresentou o desenvolvimento e a validação experimental de um sistema
automático de reconhecimento de gestos estáticos das mãos baseado no SignWriting, com o
intuito específico de superar barreiras linguísticas e culturais presentes em diferentes línguas de
sinais. A metodologia proposta utilizou marcos anatômicos (landmarks) extraídos automatica-
mente com o MediaPipe, técnicas robustas de normalização espacial, estratégias de aumento
sintético dos dados e uma arquitetura de rede neural totalmente conectada para realizar a
classificação dos gestos.

A avaliação realizada em 16 conjuntos de dados distintos, contemplando um total de 132
classes únicas de gestos, revelou resultados consistentes quanto à capacidade de generalização
do método proposto, destacando o potencial do SignWriting como solução eficaz e unificadora
para o reconhecimento interlinguístico de configurações de mão (handshapes). Além disso, o
estudo evidenciou a praticidade do sistema em cenários reais e reforçou a relevância acadêmica
e tecnológica do SignWriting como notação visual independente de idioma.

Contudo, foram identificadas limitações importantes que oferecem oportunidades futuras
claras para aprimoramentos. A ferramenta MediaPipe, embora eficiente operacionalmente em
tempo real, demonstrou vulnerabilidade em condições adversas, como baixa iluminação e gestos
anatômicos complexos, influenciando diretamente a precisão final do sistema. Além disso,
a abordagem focada exclusivamente em gestos estáticos não contemplou outros aspectos
essenciais das línguas de sinais, especialmente movimentos contínuos e expressões faciais.

Essas limitações identificadas fornecem caminhos concretos para pesquisas futuras:

• Aprimoramento da detecção de marcos: Investigação de técnicas de pós-processamento,
como filtragem robusta de outliers, suavização temporal das detecções e alternativas ou
melhorias ao MediaPipe para aprimorar a robustez da detecção de marcos.

• Reconhecimento de sinais dinâmicos: Incorporar recursos adicionais do SignWriting
relacionados a movimentos e sequências gestuais, ampliando a abrangência linguística e
comunicativa do sistema.

• Integração de expressões faciais e contexto linguístico: Explorar métodos para
integrar expressões faciais e contextuais na classificação, aumentando a completude
linguística e aplicabilidade prática da abordagem.
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Em síntese, os resultados obtidos fornecem evidências de que o SignWriting, em combi-
nação com técnicas de visão computacional e aprendizado profundo, oferece um alicerce para
sistemas futuros mais completos e inclusivos de tradução de línguas de sinais.
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Code Name Front Back Left Right 
S100 Index 

    
S101 Index on Circle 

    
S103 Index on Oval 

    
S105 Index on Angle 

    
S106 Index Bent 

    
S107 Index Bent on Circle 

    
S10a Index Cup 

    
S10b Index Hinge on Fist 

    
S10c Index Hinge on Fist Low 

    
S10e Index Middle 

    
S110 Index Middle Bent 

    
S112 Index Middle Hinge 

    
S115 Index Middle Unit 
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S118 Index Middle Unit Cup 

    
S119 Index Middle Unit Hinge 

    
S11a Index Middle Cross 

    
S11c Middle Bent Over Index 

    
S11e Index Middle Thumb 

    
S124 Index Up, Middle Hinge, 

Thumb Side 

    
S127 Index Middle Up Spread, 

Thumb Forward 

    
S128 Index Middle Thumb Cup 

    
S12a Index Middle Thumb 

Hook 

    
S12b Index Middle Thumb 

Hinge 

    
S12d Index Middle Unit, 

Thumb Side 

    
S12e Index Middle Unit, 

Thumb Tight 

    
S133 Index Middle Cross, 

Thumb Side 

    
S135 Index Middle Unit Cup, 

Thumb Forward 
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S13d Index Middle Thumb, 
Unit Hinge 

    
S13f Index Middle Thumb 

Angle 

    
S140 Middle Thumb Angle 

Out, Index Up 

    
S142 Middle Thumb Angle, 

Index Up 

    
S144 Four Fingers 

    
S147 Four Fingers Unit 

    
S14a Four Fingers Unit Bent 

    
S14c Five Fingers Spread 

    
S14e Five Fingers Spread, 

Four Bent 

    
S150 Five Fingers Spread, All 

Bent 

    
S151 FiveFingers Spread, All 

Bent Heel 

    
S152 Five Fingers Spread, 

Thumb Forward 

    
S153 Five Fingers Spread Cup 

    
S154 Five Fingers Spread Cup 

Open 
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S155 Five Fingers Spread 
Hinge Open 

    
S157 Five Fingers Spread 

Hinge 

    
S15a Flat Hand 

    
S15d Flat Thumb Side 

    
S160 Flat Thumb Forward 

    
S168 Claw No Thumb 

    
S169 Claw Thumb Forward 

    
S16c Open Cup 

    
S16d Cup 

    
S16f Cup Thumb Side 

    
S170 Open Cup No Thumb 

    
S171 Cup No Thumb 

    
S172 Open Cup Thumb 

Forward 

    
S173 Cup Thumb Forward 
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S174 Open Curlicue 

    
S175 Curlicue 

    
S176 Circle 

    
S177 Oval 

    
S178 Oval Thumb Side 

    
S17b Open Hinge 

    
S17c Open Hinge Thumb 

Forward 

    
S17d Hinge 

    
S17e Small Hinge 

    
S17f Open Hinge Thumb Side 

    
S180 Hinge Thumb Side 

    
S181 Open Hinge No Thumb 

    
S182 Hinge No Thumb 

    
S185 Angle 
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S186 Index Middle Ring 

    
S187 Index Middle Ring on 

Circle 

    
S18b Index Middle Ring, Bent 

    
S18c Index Middle Ring, Unit 

    
S18d Index Middle Ring, Unit 

Hinge 

    
S192 Baby Up 

    
S193 Baby Up On Fist Thumb 

Under 

    
S194 Baby Up On Circle 

    
S195 Baby Up On Oval 

    
S198 Baby Bent 

    
S19a Baby Thumb 

    
S19c Baby Index Thumb 

    
S1a0 Baby Index 
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S1a1 Baby Index on Circle 

    
S1a3 Baby Index on Angle 

    
S1a4 Index Middle Baby 

    
S1a5 Index Middle Baby on 

Circle 

    
S1a7 Ring Hinge 

    
S1a8 Index Middle Baby on 

Angle 

    
S1b1 Ring Baby on Circle 

    
S1b2 Ring Baby on Oval 

    
S1bb Index Ring Baby on 

Circle 

    
S1c1 Index Ring Baby on 

Hinge 

    
S1c3 Index Ring Baby on Angle 

    
S1c5 Middle Hinge 

    
S1cd Middle Ring Baby 

    
S1ce Middle Ring Baby on 

Circle 
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S1d0 Middle Ring Baby on Cup 

    
S1d1 Middle Ring Baby on 

Hinge 

    
S1d2 Middle Ring Baby on 

Angle Out 

    
S1d3 Middle Ring Baby on 

Angle In 

    
S1d4 Middle Ring Baby on 

Angle 

    
S1d5 Middle Ring Baby Bent 

    
S1d7 Middle Ring Baby Unit on 

Claw Side 

    
S1d8 Middle Ring Baby Unit on 

Hook Out 

    
S1da Middle Ring Baby Unit on 

Hook 

    
S1dc Index Thumb Side 

    
S1de Index Thumb Side, 

Thumb Diagonal 

    
S1df Index Thumb Side, 

Thumb Unit 

    
S1e1 Index Thumb Side, Index 

Bent 

    
S1e4 Index Thumb Forward, 

Index Straight 

    

78



   
 

   
 

S1e8 Index Thumb Curve, 
Thumb Side 

    
S1ea Index Thumb Curve, 

Thumb Under 

    
S1eb Index Thumb Circle 

    
S1ec Index Thumb Cup 

    
S1ed Index Thumb Cup Open 

    
S1ee Index Thumb Hinge 

Open 

    
S1ef Index Thumb Hinge 

Large 

    
S1f0 Index Thumb Hinge 

    
S1f1 Index Thumb Hinge 

Small 

    
S1f2 Index Thumb Angle Out 

    
S1f4 Index Thumb Angle 

    
S1f5 Thumb 

    
S1f7 Thumb Side Diagonal 

    
S1f8 Thumb Side Unit 
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S1f9 Thumb Side Bent 

    
S1fa Thumb Forward 

    
S1fb Thumb Between Index 

Middle 

    
S1fc Thumb Between Middle 

Ring 

    
S1fd Thumb Between Ring 

Baby 

    
S1ff Thumb Over Two Fingers 

    
S201 Thumb Under Four 

Fingers 

    
S203 Fist 
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