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RESUMO

Este trabalho tem como objetivo principal desenvolver modelos para otimizacdo de sistemas
de vigilancia com Veiculos Aéreos N3o Tripulados (VANTSs), também chamados de drones,
integrando analises de confiabilidade, disponibilidade e performabilidade. Ao contrario de es-
tudos anteriores que tratam esses aspectos de maneira isolada, esta pesquisa apresenta uma
metodologia integrada que utiliza modelos analiticos, como Cadeias de Markov de Tempo
Continuo, e modelos numéricos, como Redes de Petri Estocasticas, a um modelo de cobertura
que considera tanto as caracteristicas das cameras quanto os parametros operacionais dos
drones. Esta abordagem integrada permite uma avaliacdo mais precisa e abrangente do de-
sempenho do sistema. Os resultados das analises de sensibilidade e estudos de caso revelaram
que a redundancia de baterias tem um impacto significativo na disponibilidade do sistema.
Aumentar o nimero de baterias sobressalentes de 1 para 6 elevou o throughput do sistema em
70%, de 10 para 17 rondas por hora. Para missdes de longa duracdo (30 horas), manter entre
15 e 20 baterias redundantes pode garantir uma confiabilidade acima de 80%. Otimizacdes
no gerenciamento de energia, como reduzir o tempo de carregamento da bateria para menos
de 36 minutos e utilizar baterias com tempos de descarga superiores a 144 minutos, podem
reduzir o tempo de inatividade anual de aproximadamente 100 horas para menos de 20 horas.
A metodologia desenvolvida permite aos projetistas equilibrar quantitativamente métricas de
desempenho, disponibilidade e custo, oferecendo diretrizes praticas para o dimensionamento
eficiente de sistemas de vigilancia com drones. Esta pesquisa se destaca por fornecer uma
abordagem abrangente que integra miultiplos aspectos do desempenho do sistema, permitindo

uma otimizacdo mais eficaz e baseada em dados quantitativos.

Palavras-chave: Veiculos Aéreos N3o Tripulados (VANTs), Drones, Sistemas de Vigilan-
cia, Modelagem Estocastica, Redes de Petri Estocasticas, Cadeias de Markov, Confiabilidade,
Disponibilidade, Performabilidade, Anéalise de Sensibilidade, Redundancia, Gerenciamento de

Energia, Otimizacao de Sistemas.



ABSTRACT

This work’s main objective is to develop models for optimizing surveillance systems with
Unmanned Aerial Vehicles (UAVs), also known as drones, integrating analyses of reliability,
availability, and performability. Unlike previous studies that treat these aspects in isolation, this
research presents an integrated methodology that uses analytical models, such as Continuous
Time Markov Chains, and numerical models, such as Stochastic Petri Nets, with a coverage
model that considers both camera characteristics and operational parameters of drones. This
integrated approach allows for a more precise and comprehensive evaluation of system perfor-
mance. The results of sensitivity analyses and case studies revealed that battery redundancy
has a significant impact on system availability. Increasing the number of spare batteries from 1
to 6 raised the system throughput by 70%, from 10 to 17 rounds per hour. For long-duration
missions (30 hours), maintaining between 15 and 20 redundant batteries can ensure reliability
above 80%. Optimizations in energy management, such as reducing battery charging time to
less than 36 minutes and using batteries with discharge times exceeding 144 minutes, can
reduce annual downtime from approximately 100 hours to less than 20 hours. The developed
methodology allows designers to quantitatively balance performance, availability, and cost met-
rics, offering practical guidelines for efficient sizing of drone surveillance systems. This research
stands out by providing a comprehensive approach that integrates multiple aspects of system

performance, enabling more effective optimization based on quantitative data.

Keywords: Unmanned Aerial Vehicles (UAVs), Drones, Surveillance Systems, Stochastic Mod-
eling, Stochastic Petri Nets, Markov Chains, Reliability, Availability, Performability, Sensitivity

Analysis, Redundancy, Energy Management, Systems Optimization.
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1 INTRODUCAO

No cenario contemporaneo, a gestdo eficaz e segura de multidoes é um desafio premente no

nosso mundo cada vez mais interligado e urbanizado. Organizacdes e inddstrias estdo adotando

rapidamente a tecnologia de [Veiculo Aéreo N3o Tripulado (VANT)| para automatizar tarefas

complexas. Os [VANTE podem voar em grandes altitudes para expandir seu alcance de visdo
e explorar espacos livres de obstaculos (MASMOUDI et al., [2021)). Especificamente, as agéncias
de aplicacdo da lei estdo recorrendo aos [VANTE para investigar crimes e gerir multiddes,
especialmente durante eventos publicos significativos (MASMOUDI et al., [2021)). Além disso, o
uso de cameras fixas para monitorar grandes areas abertas tem se mostrado ineficiente devido
a pequena cobertura de uma Unica cdmera (YANG et al., 2021; |PUNN et al., 2020). Isto levou a
crescente adogao de para atender a esta necessidade de monitoramento abrangente.

Apesar das vantagens dos VANTE, como a sua capacidade de voar em diferentes altitu-
des e os baixos custos de operacdo e manuten¢do (SHAKHATREH et al., [2019), eles enfrentam
varios desafios, incluindo a capacidade limitada de suas baterias, que restringe o tempo e as
capacidades de voo (MOHSAN et al., [2022)). Além disso, os desafios relacionados ao reconheci-
mento de objetos podem impactar significativamente a qualidade do servico, especialmente em
situacoes que envolvem altitudes de cobertura elevadas e sensores de cameras de baixa resolu-
cdo. Algoritmos de processamento de imagem mais avancados, como redes neurais e técnicas
de aprendizado de maquina, como deep learning, podem exigir energia substancial, afetando
ainda mais a autonomia do drone. Isso requer um planejamento cuidadoso para maximizar a
eficiéncia.

Em resposta a estes desafios, varias solucdes foram propostas para aumentar o tempo
de voo dos [VANTE, incluindo expanso da capacidade da bateria, carregamento intermitente
e otimizacdo das trajetérias de voo (MOHSAN et al., | 2022; ZHANG et al., 2021). No entanto,

7

expandir a capacidade da bateria é um desafio devido ao peso adicional que isso acarreta

(MOHSAN et al., 2022} |LU et al., 2018)). Além disso, os|VANTE enfrentam restricSes regulatdrias,

como as impostas pela Administracdo Federal de Aviacdo, |Federal Aviation Administration|

(FAA), que incluem limites de altitude, velocidade e requisitos de linha de visdo (SHAKHATREH
et al}, [2019)). Estas regulamentacbes podem limitar a eficiéncia dos[VANTE em aplicacdes como
sistemas de entrega, e as exigéncias regulatérias variam conforme a jurisdicao, dificultando a

implementacao de solucdoes em multiplos paises.
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A incorporacdo de sistemas de rastreamento baseados em [VANT]| também enfrenta obs-
taculos técnicos, como camuflagem e condi¢des climaticas adversas (LEE; SONG; KIL, 2021)).
Ambientes extremos, como tempestades, podem comprometer a estabilidade e funcionamento
dos , exigindo adaptacdes complexas e custosas (SHAKHATREH et al., 2019). Apesar des-
ses desafios, os VAN Ts oferecem uma solucdo eficiente, de baixo custo e alta confiabilidade
para diversas aplicacdes, incluindo monitoramento agricola (ZHANG et al., 2021; SAAD; HAM-
DAN; SARKER| 2021)), missGes de resgate (SANDINO et al., [2020), tarefas militares (ABUSHAHMA
et al, 2019), transporte e rastreamento de pessoas (SHAKHATREH et al., [2019; |OJHA; SAKHARE,
2015). Em particular, para o rastreamento de objetos, os podem fornecer com rapidez
e precisdo a localizacao de objetos e imagens do seu entorno, economizando tempo e recursos
em diferentes cenarios (ALHAFNAWI et al., 2023)).

Apesar desses desafios, a tecnologiaVANT] continua sendo promissora para vigilancia auté-
noma e missoes de rastreamento de animais, especialmente em dareas grandes e inacessiveis

(SHAKHATREH et al, 2019). Recentes avancos em tecnologias de carregamento de VANTES fo-

cam na eficiéncia e pratica de sistemas de transferéncia de energia sem fio, |Wireless Power|

[Transfer (WPT), essenciais para aumentar as capacidades operacionais e a sustentabilidade

dos VANTE. A Figura [I] ilustra trés principais tecnologias de carregamento para VANTE: sem

fio, fotovoltaico e a laser, destacando abordagens inovadoras.

Figura 1 — Tecnologias de Carregamento

Raios Solares

Asa Fixa Asa Rotativa

Matriz
Fotovoltaica nas
Asas

Rastreador.

de Alvo - .
Emissor de

Feixe Laser

Indugdo N luu yyyyyy

Magnética —~

Sem Fio Fotovoltaico Laser

Fonte: Baseado em |CHITTOOR; CHOKKALINGAM; MIHET-POPA (2021])

Os métodos de carregamento sem fio evoluiram consideravelmente, principalmente por
meio de acoplamento de ressondncia magnética e estruturas de bobinas otimizadas, que fa-
cilitam uma transferéncia de energia mais eficiente e reduzem o tempo de inatividade dos
VANTE. A integracdo de estagdes de carregamento auténomas também tem sido um avango

significativo (CHITTOOR; CHOKKALINGAM; MIHET-POPA, [2021)). Além disso, as tecnologias de



21

carregamento sem fio permitem que os[VANTE operem em missdes de longa duracdo sem a ne-
cessidade de pousar, utilizando plataformas de recarga em voo para estender significativamente

o tempo de missdo.

Técnicas n3o eletromagnéticas, como transferéncia de energia a laser, [Laser Power Trans-|

[mission (LPT)| permitem carregamento a longas disténcias, essencial para missdes em locais

remotos. A integracdo de células fotovoltaicas também é uma abordagem para prolongar a
autonomia dos|[VANTE (MOHSAN et al}, [2022). Tais células permitem que os drones aproveitem
a luz solar durante o voo, aumentando sua autonomia de maneira sustentavel e reduzindo a
dependéncia de infraestruturas terrestres para recarga.

Tecnologias emergentes incluem o uso de blockchain para otimizar e gerenciar os proces-
sos de carregamento de [VANTE, aumentando a seguranca e confiabilidade na infraestrutura
de carregamento (MOHSAN et al.,, 2022). Esses avancos tém um papel crucial na criacdo de
operacdes mais eficientes, confidveis e autonomas para [VANTE, contribuindo para sua apli-
cacdo em setores como agricultura, monitoramento ambiental e cidades inteligentes. Além
disso, a integracdo dessas tecnologias com redes loT e sistemas de inteligéncia artificial tem
proporcionado maior autonomia e capacidade de decisdo aos [VANTE, permitindo que esses
dispositivos tomem decisGes em tempo real baseadas em dados recebidos de mdltiplas fontes.

Goncalves, Sobral e Ferreira (2017)) desenvolveram um modelo para Avaliagdo de Segu-
ranca de[VANTE, possibilitando a identificagdo de pontos criticos do sistema que necessitam de
melhorias para autorizacdo de voo e certificacdo de aeronavegabilidade. [Sharma et al.| (2018)
focaram em proteger o compartilhamento de informacdes de contexto entre VANTE e melho-
rar a precisdo e seguranca da localizac3o. Esses estudos exemplificam diversas aplicacdes de
técnicas formais de modelagem e anélise para enfrentar os desafios relacionados aos e
enfatizar a importancia da seguranca nas operacdes de VANT]

Neste contexto, este trabalho apresenta mais uma alternativa para otimizacao de missdes
envolvendo operacdo com [VANTS, propondo modelos de avaliacdo de performance, dispo-
nibilidade e confiabilidade para otimizar o planejamento eficiente de sistemas de vigilancia
implementados com [VANTS, considerando as limitacdes de suas baterias. Para atingir este
objetivo, analisamos o planejamento da area de observacdo e a autonomia do drone, incluindo

fatores como tempos de carregamento, duracao da bateria e relocacio para a estacao base.
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1.1 MOTIVACAO E JUSTIFICATIVA

A adogdo de[VANTE por organizacdes e agéncias de aplicacdo da lei para tarefas complexas,
como investigacdo de crimes e gerenciamento de multidGes em eventos publicos, estd se
tornando cada vez mais comum. Uma das principais razGes para esta tendéncia é a ineficiéncia
das cameras fixas em monitorar grandes areas abertas, tornando os [VAN Tk uma alternativa
atraente devido a sua capacidade de cobrir extensas areas de observacao.

No entanto, os [VANTE enfrentam desafios significativos, principalmente relacionados a
capacidade limitada de suas baterias, que restringe o tempo de voo e as capacidades operaci-
onais. Além disso, desafios no reconhecimento de objetos podem afetar a qualidade do servico
prestado por esses dispositivos. Para abordar esses problemas, o trabalho propde modelos para
avaliar a performabilidade e otimizar o planejamento de sistemas de vigilancia implementados
por VANTE. Este modelo considera os fatores operacionais criticos, como tempos de carrega-

mento, vida Gtil da bateria e a necessidade de realocacao dos|VAN Tk para suas estacoes-base.

1.2 OBJETIVOS

Como objetivo principal é propor modelos de avaliacio de desempenho baseado em Ca-

deias de Markov de Tempo Continuo, [Continuous-time Markov Chains (CTMC)| e Redes de

Petri Estocasticas, [Stochastic Petri Nets (SPN)| para otimizar performance, disponibilidade e

confiabilidade de sistemas de vigilancia baseados em [VANTE. Estes modelos devem abordar
especificamente desafios como capacidade limitada da bateria e planejamento estratégico para
otimizar areas de observacao.

Objetivos secundarios:
» Permitir anélise de tempos de carregamento e descarga da bateria.
= Permitir andlise de tempos de falha e reparo do VANT]

= Permitir anélise da aplicacdo de redundancia de baterias e VAN Tk no sistema.

1.3 TRABALHOS RELACIONADOS

Varios estudos tém sido conduzidos nas areas relacionadas a esta pesquisa, entretanto,

nenhum deles abrange todas as caracteristicas abordadas neste trabalho. Alguns focam na
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confiabilidade de sistemas baseados em [VANTE e suas otimizacdes estruturais, outros investi-
gam alocar recursos e otimizacdo de missdes envolvendo enxames de VANTE, enquanto alguns
exploram o uso de redes de Petri e cadeias de Markov para modelagem e analise de desempenho
em cenarios criticos.

A busca por trabalhos foi realizada utilizando uma combinacdo de palavras-chave relaciona-
das a drones e[VANTE, com foco em vigilancia e confiabilidade de sistemas. As palavras-chave
utilizadas incluiram termos como "drone", "veiculo aéreo n3o tripulado (VANT)", "vigilancia",
"confiabilidade", "disponibilidade", "dependabilidade", "modelagem", "redes de Petri estocéas-
ticas", "cadeias de Markov", "redundancia de baterias", "missGes de confiabilidade", "anélise
de sensibilidade", "computacao aérea", "avaliacdo de desempenho", entre outros.

O objetivo foi encontrar estudos que abordassem temas como a confiabilidade de sistemas
baseados em VANTE, a disponibilidade em sistemas de vigilancia aérea e o uso de métodos
analiticos e estocasticos para melhorar o desempenho desses sistemas. A pesquisa abrangeu
trabalhos publicados entre 2019 e 2024, consultando bibliotecas digitais importantes como
ACM Digital Library, ScienceDirect, SpringerLink e IEEEXplore, e priorizou estudos que explo-
ram solu¢des para otimizar missdes criticas envolvendo VANTE.

Os estudos mais pertinentes para o desenvolvimento desta dissertacdo foram escolhidos
considerando suas contribuicdes especificas e a maneira como se conectam com o foco central
desta pesquisa. Em |FENG et al| (2022)), por exemplo, a confiabilidade de missGes em fases é
avaliada utilizando medidas de importancia para determinar o niimero ideal de em
um enxame, destacando a influéncia da quantidade de VANTE na confiabilidade da miss&o.
Embora este trabalho contribua para a compreensao da otimizacdo de sistemas distribuidos,
sua abordagem ¢é limitada por focar principalmente na quantidade de VANTE, negligenciando
outros fatores criticos como eficiéncia energética e adaptabilidade a falhas em tempo real.
Ja DUl et al| (2021)), complementa esse estudo ao explorar a redundancia de e como
ela pode manter a missdo em andamento mesmo diante de falhas, alinhando-se ao nosso
objetivo de garantir alta disponibilidade.No entanto, este estudo ndo aborda adequadamente
a otimizacdo dinamica de recursos durante a missdo, uma lacuna que nossa pesquisa preenche
ao propor estratégias adaptativas de alocacao de recursos.

Além disso, trabalhos como o de JIANG; QI et al.| (2024 avancam essa discussdo ao pro-
por métodos para o planejamento de testes operacionais em enxames de VANTE, focando na
aplicacdo de diagramas de decisdo bindria para otimizar a confiabilidade de missdes criticas.

Esse estudo é fundamental para validar a eficicia de enxames de em cendrios com-
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plexos. Embora esse estudo seja fundamental para validar a eficacia de enxames de [VANTE
em cenarios complexos, sua abordagem apresenta limitacGes significativas. O uso exclusivo
de diagramas de decisdo binaria pode n3o capturar adequadamente a natureza dinamica e
as interagdes complexas em sistemas de enxames de [VANTE. Semelhantemente, [ZHAO; WANG
(2019) e BRITO et al. (2021)) utilizam redes de Petri estocasticas para analisar o desempenho e
a disponibilidade de sistemas colaborativos de VANTE, com foco na avaliacdo de arquiteturas
distribuidas. Embora estas abordagens oferecam insights sobre o comportamento de sistemas
distribuidos, esse estudo ndao aborda adequadamente a otimizacdo em tempo real de recursos
e a adaptacao dinamica a falhas, aspectos cruciais para missdes de longa durac3o.

KABASHKIN| (2024)) destaca a importancia de estratégias dindmicas de alocacdo de re-
cursos, como a gestdo de baterias, para garantir operacdes continuas em missdes de alta
prioridade. Esse trabalho estd diretamente relacionado a proposta desta dissertacao de oti-
mizar a confiabilidade e a disponibilidade de drones em missGes prolongadas. Apesar de sua
relevancia, o estudo ndo integra plenamente essas estratégias com modelos de confiabilidade
e disponibilidade, uma sintese que nossa pesquisa realiza para uma abordagem mais holistica.
Complementarmente, |FALCAO et al| (2024)) utilizam cadeias de Markov para otimizar o con-
sumo de energia em sistemas [VANT] uma abordagem crucial para a melhoria da eficiéncia
energética e da disponibilidade operacional.

Por outro lado, XING; JOHNSON| (2022) exploram a teoria da confiabilidade aplicada a
sistemas , destacando o uso de modelos como diagramas de blocos de confiabilidade,

[Reliability Block Diagram (RBD)| e diagramas de decisdo binéaria, [Binary Decision Diagrams|

(BDD)| abordagens que complementam as metodologias utilizadas neste trabalho para mode-
lar a confiabilidade de sistemas utilizando [VANT| Embora esses modelos sejam importantes,
eles ndo incorporam adequadamente a natureza dinamica e adaptativa das missoes de longa
duracdo com [VANTE, uma lacuna que nossa metodologia visa preencher por meio de modelos
mais flexiveis. Ja LI et al| (2024)), ao proporem uma metodologia de otimizac3o de interferéncias
aleatérias para testar a confiabilidade de VANTS, reforcam o uso de técnicas de otimizacdo
para melhorar a robustez dos sistemas em missGes criticas.

Finalmente, o trabalho de STEURER et al.| (2019), que utiliza Linguagem de Modelagem de

Sistemas, Systems Modeling Language (SysML)| e cadeias de Markov para modelar sistemas

de navegacdo inercial em [VANTE, oferece uma abordagem para a anélise de confiabilidade em
sistemas embarcados, alinhada a proposta deste trabalho de utilizar metodologias analiticas

para otimizar a confiabilidade de missdes prolongadas. Embora esta abordagem seja bastante
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pratica, para ambiente mais complexo onde é considerada redundancia de componentes, este
modelo fica limitado. A andlise de dependabilidade e a aplicacdo pratica de metodologias
de sistemas baseados em modelos também encontram correlacdo com os estudos de BRITO
et al| (2021), que analisam a confiabilidade em sistemas de comunicacdo distribuidos com
VAN Tk, utilizando redes de Petri estocasticas para avaliacido de desempenho. Apesar de sua
contribuicao para a avaliacao de desempenho, o estudo ndo integra plenamente aspectos de

otimizacao de energia e redundancia, areas que nossa pesquisa aborda de forma mais ampla.

Quadro 1 — Comparacdo de Trabalhos Relacionados
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Trabalhos Contexto 2 2 2 00 aad

DUI et al| (2021)) Enxame de VANTS v v

FENG et al. (2022)) Enxame de VANTS v v

KABASHKIN| (2024) Enxame de VANTS v v

JIANG; Ql et al| (2024)  Enxame de VANTS v v

ZHAO; WANG (2019) P Enxame de VANTS o/ v

SABINO et al.| (2024) P Vigilancia v v

FALCAO et al| (2024) Comunicagio o/ 4

BRITO et al.| (2021)) Comunicagao 4 o/ v/

STEURER et al,| (2020)  Vigilancia v v

KUMARI et al.| (2024) Vigilancia 4 v

STEURER et al| (2019)  Vigilancia v

LI et al.| (2024) Enxame de VANTS 4 v

LIAN et al,| (2021) Comunicacao v v

Este Trabalho Vigilancia v v v v v v VS

Fonte: Elaborado pelo Autor (2024)
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O Quadro [1] apresenta uma comparacdo detalhada dos trabalhos relacionados, revelando
tendéncias e lacunas importantes na literatura atual. Observa-se que, enquanto a maioria dos
estudos foca em aspectos especificos como modelagem estocastica ou analise de confiabilidade,
poucos abordam de forma integrada todos os aspectos criticos para sistemas de vigilancia
baseados em VANTE.

Analisando o Quadro , nota-se que [BRITO et al.| (2021)) apresenta uma abordagem mais
abrangente, incluindo anélises de confiabilidade, disponibilidade e performance. No entanto,
este estudo se concentra em computacdo em nuvem, n3do abordando as especificidades dos sis-
temas de vigilancia com [VANTE. Nossa pesquisa se diferencia ao integrar todos esses aspectos
no contexto especifico de vigilancia aérea, incluindo adicionalmente um modelo de cobertura
e analise de performabilidade.

As abordagens metodoldgicas utilizadas nos estudos revisados variam significativamente.
Enquanto [FENG et al[(2022) e |DUI et al.| (2021)) empregam principalmente modelagem estocas-
tica para andlise de confiabilidade, nossa pesquisa propée uma metodologia mais abrangente.
Integramos modelagem estocastica com analise de performabilidade e otimizacao de recursos,
permitindo uma avaliacdo mais completa e realista dos sistemas de vigilancia baseados em
VANTE.

Esta revisdo da literatura revela uma tendéncia crescente em direcdo a analise multifa-
cetada de sistemas complexos, como os de vigilancia com VANTE. No entanto, identifica-se
uma oportunidade significativa para desenvolver um framework integrado que considere si-
multaneamente aspectos de confiabilidade, disponibilidade, performance e planejamento de
cobertura.

Nossa pesquisa se propde a preencher essas lacunas, oferecendo uma abordagem inovadora
que integra modelagem estocastica, analise de confiabilidade e disponibilidade, otimizacao
de recursos e planejamento de cobertura. Consideramos as especificidades dos sistemas de
vigilancia baseados em [VANTE, incluindo a dindmica de opera¢des em ambientes complexos.
Propomos um modelo de performabilidade que captura as interacGes entre performance e
disponibilidade, uma abordagem n3o explorada adequadamente nos estudos anteriores. Além
disso, incluimos uma analise de sensibilidade para avaliar o impacto de diferentes parametros
na eficacia global do sistema.

Ao abordar estas limitacdes e integrar multiplos aspectos criticos, este estudo visa contribuir
significativamente para o avanco do conhecimento na area de sistemas de vigilancia baseados

em VANTE, proporcionando insights para o desenvolvimento de sistemas mais eficientes e
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confiaveis. A abordagem holistica proposta nao apenas preenche as lacunas identificadas na li-
teratura existente, mas também estabelece uma base sélida para futuras pesquisas e aplicacdes

praticas no campo da vigilancia aérea automatizada.

1.4 ESTRUTURA DA DISSERTACAO

Este trabalho segue estruturado da seguinte forma: O Capitulo [2| detalha os conceitos de
avaliacdo e performabilidade, campo de visdo, distribuicdo poliexponencial, redes de Petri e
analise de sensibilidade utilizados neste estudo; O Capitulo [3| descreve a metodologia utilizada
para realizar este estudo. Férmulas de dimensionamento do sistema e um modelo numérico
de performance em redes de Petri sdo apresentados em detalhes no Capitulo [4] Além disso, O
Capitulo [5] apresenta dois estudos de caso que analisam o impacto da redundancia e melhorias
de tempo em drones e baterias na disponibilidade, tempo de inatividade e desempenho no
nimero de rondas de vigilancia realizadas por unidade de tempo do sistema e os resultados
encontrados. Finalmente, nosso trabalho termina no Capitulo E] onde tiramos conclusdes dos

resultados e discutimos possiveis direcoes para trabalhos futuros.
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2 FUNDAMENTACAO

Este capitulo apresenta os fundamentos tedricos essenciais para a compreensao do trabalho
desenvolvido. Inicialmente, abordamos os [VANTE, explorando sua classificacdo, arquitetura e
aplicacoes. Em seguida, discutimos o conceito de dependabilidade em sistemas computacionais,
incluindo seus atributos, ameacas e meios de alcanca-la. Por fim, apresentamos uma visao
geral sobre modelos estocasticos, com énfase nas Cadeias de Markov de Tempo Continuo
(CTMC) e nas Redes de Petri Estocasticas (SPN), ferramentas fundamentais para a analise
de desempenho e confiabilidade de sistemas complexos.

A compreens3o desses conceitos é importante para o desenvolvimento de sistemas robus-
tos e confidveis, especialmente no contexto de VANTE, onde a seguranca e o desempenho
sdo fatores relevantes. Os representam uma tecnologia em evolucao, com aplicacoes
que incluem agricultura de precisao e operacoes de vigilancia, demandando confiabilidade e
eficiéncia. A dependabilidade fornece um framework para avaliar e melhorar a confiabilidade

e disponibilidade desses sistemas. Os modelos estocasticos, como as [CTMCs e [SPNE, ofere-

cem ferramentas para modelar e analisar o comportamento desses sistemas sob condicdes de

incerteza, permitindo prever e otimizar seu desempenho em diversos cenarios operacionais.

2.1 VEICULO AEREO NAO TRIPULADO - VANT

Os |[VANTE, comumente conhecidos como drones, s3o sistemas aéreos auténomos ou con-
trolados remotamente, caracterizados pela auséncia de um piloto humano a bordo. Equipados
com sensores sofisticados e microprocessadores, os VANTE operam de forma auténoma ou
sob o controle de operadores remotos, oferecendo solucdes versateis e eficazes em uma ampla
gama de aplicacdes, devido a sua capacidade de executar tarefas complexas com alta precisdo e
eficiéncia. Nesta secao, discutiremos a classificacdo, a arquitetura e as aplicacGes relacionadas
aos VANTS.

A Figura [2 apresenta a classificacdo principal dos VANTE, englobando modelos de asa
fixa, asa rotatéria (como os multirrotores) e drones hibridos. Esta classificacdo fornece uma
visdo abrangente das diferencas estruturais e funcionais entre esses tipos de drones. Com o
constante avanco tecnolégico, a evolucdo desses modelos de drones permite um aperfeicoa-

mento significativo em suas capacidades operacionais, aumentando tanto a eficiéncia quanto
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o potencial de aplicacdo desses sistemas.

Figura 2 — Classificacdo de Drones
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Fonte: Baseado em [NEWARK| (2024)

Os de asa fixa possuem configuragio semelhante a de aeronaves convencionais,
implicando a necessidade de um controle mais elaborado e treinamento especializado. Esses
dispositivos se destacam por sua elevada velocidade e capacidade de voo prolongado, em-
bora apresentem limitacGes em termos de manobrabilidade, como a incapacidade de pairar
ou realizar movimentos para tras (MOHSAN et al), 2022). Além disso, os de asa fixa
sao frequentemente utilizados em missGes que demandam alta eficiéncia energética e grandes
distancias de cobertura, sendo particularmente vantajosos para aplicacdes em monitoramento
e vigilancia em larga escala.

Os [VANTE de asa rotatéria, representados na Figura [2] incluem configuragdes como qua-
dricopteros, hexacopteros e octocédpteros. Eles sdo particularmente populares devido a capa-
cidade de decolagem e pouso verticais, facilidade de construcdo e custo relativamente baixo.
S3o largamente empregados em atividades de imageamento e vigilancia, e os quadricépteros,
em especial, se destacam pela sua manobrabilidade e design simples (MOHSAN et al., 2022).
A capacidade de se manter estacionarios em pleno ar e de realizar movimentos precisos faz
dosVANTE de asa rotatdria uma ferramenta extremamente util em aplicagdes como inspecdes

detalhadas de infraestruturas, filmagens aéreas e operacdes de resgate.
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Os drones hibridos, também ilustrados na Figura[2, combinam as vantagens do voo planado
e do voo vertical, conferindo-lhes uma versatilidade operacional Gnica ao aliar os pontos fortes
dos modelos de asa fixa e asa rotatéria. Esses dispositivos hibridos conseguem realizar missGes
de longa distdncia mantendo uma boa manobrabilidade, sendo ideais para aplicacdes que
exigem uma combinacdo de velocidade, alcance e capacidade de decolagem e pouso em locais
restritos.

Cada tipo de VANT apresenta aplicacGes especificas de acordo com suas caracteristicas
técnicas, como tempo de voo, capacidade de carga Gtil e manobrabilidade. Por exemplo, os
modelos de asa fixa s3o mais adequados para missdes de longa duracdo, como mapeamento
e inspecdo, enquanto os modelos de asa rotatdria sao ideais para atividades que exigem alta
agilidade e estabilidade estaciondria, como a fotografia aérea (TAHIR et al,, 2019). Com o
avanco dos sistemas de controle auténomo, os tém ampliado suas aplicacdes em
diversas areas, desde inspecbes industriais até o uso em operacdes de seguranca publica.

Adicionalmente, os [VANTE podem ser classificados em termos de altitude operacional,

diferenciando-se em plataformas de baixa altitude, [Low Altitude Platform (LAP)|e alta altitude,

[High Altitude Platform (HAP)\ [LAPE s3o tipicamente utilizados para expans3o de comunicac&o

mével e monitoramento ambiental, enquanto [HAPE operam em altitudes mais elevadas, sendo
empregados em atividades como vigilancia de fronteiras e monitoramento climatico (MOHSAN
et al, 2022). As plataformas de alta altitude, em especial, tém um papel estratégico na coleta de
dados em grande escala, proporcionando uma cobertura mais ampla e continua para aplicacoes

militares e cientificas.

2.1.1 Arquitetura e Componentes

Os VAN Tk apresentam uma arquitetura complexa composta por diversos componentes
fundamentais que garantem suas funcionalidades e aplicacoes. A Figura[3|mostra a arquitetura
tipica de um VANT multirotor, destacando tanto seus principais componentes quanto seu
mecanismo de rotacao.

Na Figura[3a, observam-se os principais componentes de um VANT multirotor. As hélices
geram a propulsdo e a sustentacdo, movimentadas por motores que fornecem a forca motriz.
No centro do drone estd a controladora de voo, o "cérebro"do dispositivo, responsavel por
manter a estabilidade e controlar o voo. A placa de distribuicao de energia distribui a energia

da bateria para os diversos componentes, sendo que a bateria, geralmente de Polimero de Litio,
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Figura 3 — Arquitetura e Componentes
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Fonte: Baseado em [NYAMUHUNGU| (2022)

[Lithium Polymer (LiPo), alimenta o sistema. Uma cadmera frequentemente integrada permite

a captura de imagens e videos. O controlador eletrénico de velocidade regula os motores,
enquanto o receptor de controle capta sinais do controle remoto e um transmissor envia dados
de telemetria para a estacao de controle em terra.

A Figura[3|b representa o mecanismo de rotacdo de um quadricéptero, ilustrando como as
forcas geradas pelos quatro rotores (F1, F2, F3, F4) interagem para controlar o movimento
do drone nos eixos de rotacdo (¢, 0, 1)) e gerar a forca de sustentacdo. Esses eixos sdo
essenciais para a manobrabilidade do drone, permitindo que ele mantenha estabilidade mesmo
em condicdes adversas, como ventos fortes ou ambientes de operacdo restritos.

A arquitetura dos [VANTE integra componentes essenciais para sua operacdo. Os contro-
ladores de voo sdo cruciais, requerendo calibracdo precisa para evitar falhas. A comunicacao
é garantida por controladores de radio, que mantém conectividade em distancias considera-
veis (AHMED et al, [2022). Ademais, modernos contam frequentemente com sensores e
cameras estabilizadas por gimbals, suportes estabilizadores, ampliando suas capacidades para

vigilancia, inspecdo e monitoramento ambiental (AHMED et al., 2022). Sensores de deteccdo

de obstéaculos, como os sistemas de deteccdo e alcance de luz, |Light Detection and Ranging]

(LIDAR)|, também tém se tornado comuns, proporcionando maior seguranca durante o voo e

permitindo que os [VANTE operem de forma mais auténoma em ambientes complexos.

Estacdes de Controle em Terra, (Ground Control Station (GCS)|e plataformas de comunica-

cdo, embora nao representadas, s3o elementos fundamentais que complementam o ecossistema
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dos [VANTE, permitindo operacdes remotas e a troca continua de dados para tarefas em am-
bientes variados e complexos. As [GCSE funcionam como centros de comando que facilitam o
monitoramento em tempo real, o planejamento de missdes e a tomada de decisdes criticas
durante as operacoes. Além disso, essas plataformas de comunicacdo garantem a integracao
eficaz dos [VANTE com outras infraestruturas, proporcionando conectividade estdvel mesmo
em locais remotos e adversos. A importancia desses sistemas se torna ainda mais evidente em
operacdes que demandam coordenac3o entre multiplos VANTE, como missdes de vigilancia e
resgate, onde a comunicacdo constante e precisa é crucial para o sucesso das atividades. A
evolucdo tecnoldgica desses componentes esta diretamente ligada ao aumento da autonomia

e a eficiéncia operacional dos [VANTE, permitindo que eles desempenhem um papel ainda mais

significativo em diversas aplicagdes (AHMED et al., 2022).

2.1.2 Aplicabilidades e Beneficios

Os [VANTE possuem ampla aplicagdo em diversos setores, evidenciando sua versatilidade e
capacidade de inovacdo. A Figura [4] apresenta uma visao geral das mdltiplas utilizacdes dos

[VANTE em areas como agricultura, seguranca, monitoramento urbano e muito mais.

Figura 4 — Aplicacdes de Drones
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Na seguranca e vigilancia, VANTE so utilizados em missdes militares e na deteccdo de
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atividades ilegais, contribuindo para a prevencao de ameacas. Em situacdes de desastre, como
ataques terroristas ou catastrofes naturais, os VAN Ts acessam areas perigosas para coletar
informacdes vitais e auxiliar no resgate, além de fornecer suprimentos médicos, o que é crucial
para salvar vidas em momentos criticos (MOHSAN et al., [2022)). Em muitas dessas aplicac¢des,
os VAN Tk operam como uma extensido das equipes humanas, aumentando a seguranca dos
profissionais ao evitar que eles precisem entrar em areas de alto risco.

No sensoriamento remoto, os VANTE oferecem imagens de alta resolucdo essenciais para
o monitoramento ambiental, deteccao de doencas e mapeamento, contribuindo para a ges-
tao sustentavel dos recursos naturais. Na agricultura de precisao, monitoram culturas,
realizam pulverizacdo de pesticidas e coletam dados sobre o solo, aumentando a eficiéncia e
produtividade (MOHSAN et al}, 2022). Além disso, o uso de VANTE na agricultura tem se expan-
dido para incluir aplicacdes como o plantio de sementes e a aplicacdo precisa de fertilizantes,
ajudando a reduzir desperdicios e minimizando o impacto ambiental.

VANTE também facilitam a inspecdo de infraestrutura, permitindo monitoramento deta-
Ilhado de projetos e mapeamento 3D. Além disso, contribuem para o monitoramento de trafego
em tempo real, fornecendo uma solucao mais econémica e eficaz do que dispositivos conven-
cionais (MOHSAN et al., [2022). Esses dispositivos sdo estritamente necessarios em ambientes
urbanos, onde o acesso pode ser limitado e a eficiéncia das inspecdes tradicionais pode ser
comprometida devido a complexidade das estruturas.

No contexto de cidades inteligentes, funcionam como plataformas flexiveis para
implantacao de estacdes-base aéreas, melhorando a eficiéncia de redes 5G e atuando como
dispositivos conectados no ecossistema loT. Eles sdo explorados para transferéncia de energia e
informacdo sem fio, suportando o desenvolvimento de redes sustentaveis (MOHSAN et al |, [2022;
LABIB et al}, [2021)). Além disso, em cidades inteligentes, os [VANTE podem ser utilizados para
monitoramento ambiental em tempo real, ajudando a detectar niveis de poluicdo, identificar
areas de congestionamento e até mesmo prestar suporte em emergéncias, garantindo uma
resposta rapida e eficiente.

Em sintese, os VANTE oferecem solugBes inovadoras e eficientes em seguranca, resposta
a desastres, agricultura, inspecdo de infraestrutura e cidades inteligentes, contribuindo signi-
ficativamente para a modernizacdo de diferentes setores. Esses dispositivos tém se tornado
ferramentas essenciais, nao apenas para melhorar a eficiéncia de tarefas tradicionais, mas
também para viabilizar novas abordagens e solucdes que antes eram impraticaveis devido a

limitacOes tecnolégicas ou de seguranca.
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2.2 DEPENDABILIDADE

A confiabilidade em sistemas computacionais, também conhecida como dependabilidade,
é um conceito fundamental que denota a capacidade de um sistema contratado de entregar
seu servico pretendido consistentemente. Este conceito assume particular importancia quando
um ou mais componentes do sistema podem experimentar falhas, potencialmente interrom-
pendo o servico pretendido. A dependabilidade esta intrinsecamente ligada a confiabilidade,
que quantifica a probabilidade de um sistema fornecer seu servico sem falhas até um tempo es-
pecificado ¢ (AVIZIENIS et al., [2004)). Especificamente, se o sistema inicia a operacdo no tempo
0, sua confiabilidade no tempo ¢ representa a probabilidade de operacdo ininterrupta durante
o intervalo de tempo (0,¢) (TRIVEDI, 2008; MACIEL} 2023)).

Para melhor compreender este conceito complexo, é util visualizi-lo através da Arvore de
Dependabilidade, baseada no trabalho de AVIZIENIS et al| (2001). Esta representacdo visual
oferece uma estrutura organizada para compreender os elementos que compdem a dependa-
bilidade de um sistema, decompondo-o em trés componentes principais: ameacas, meios e
atributos. As ameacas englobam falhas, erros e defeitos que podem comprometer o funcio-
namento do sistema. Os meios representam as estratégias para alcancar a dependabilidade,
incluindo prevencdo, tolerancia, remocdo e previsdo de falhas. Os atributos s3o as caracte-
risticas desejaveis de um sistema confidvel, como disponibilidade, confiabilidade, seguranca,
confidencialidade, integridade e manutenabilidade (AVIZIENIS et al., [2001)).

Cada um desses atributos desempenha um papel crucial na confiabilidade geral do sistema.
A disponibilidade refere-se a prontidao do sistema para o servico correto, enquanto a confiabi-
lidade estd relacionada a continuidade desse servico. A seguranca busca evitar consequéncias
graves, a confidencialidade protege contra divulgacdo n3o autorizada de informacdes, a inte-
gridade previne alteracdes indevidas no estado do sistema, e a manutenabilidade permite que
o sistema passe por reparos e modificacdes quando necessario (AVIZIENIS et al., 2001).

Uma propriedade crucial da dependabilidade é a disponibilidade em estado estacionario,
que caracteriza a capacidade de um sistema de continuar funcionando mesmo na presenca

de falhas e reparos subsequentes (TRIVEDI, [2008)). O célculo da disponibilidade pode ser feito

usando o Tempo Médio para Falha, [Mean Time to Failure (MTTF)/ e o Tempo Médio para
Reparo, [Mean Time to Repair (MTTR)| como mostrado na Equagdo [2.1}
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Figura 5 — Arvore de Dependabilidade
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Fonte: Baseado em |AVIZIENIS et al.| (2001])

B MTTF
" MTTF + MTTR’

A integral de confiabilidade fornece o [MTTF| do sistema em funcdo do tempo (Eq. [2.2).

(2.1)

Em contraste, o[MTTR] é usado para atingir o nivel desejado de disponibilidade considerando
a reparacio do sistema (Eq. [2.3)). Disponibilidade (A) e indisponibilidade (UA= 1-A) est3o

relacionadas conforme mostrado na Equagdo [2.4]

MTTF = fOtR(t)dt. (2.2)

MTTR = [000(1 ~ M(t))dt. (2.3)

Onde M(t) define a probabilidade que o sistema S vai ser reparado no tempo t (definido
como manutenabilidade).
Além disso, o tempo de inatividade (Downtime - DT) pode ser definido como o tempo

total durante o qual um sistema esta indisponivel:
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DT = MTTR x (1 - A). (2.4)

Na modelagem de desempenho e confiabilidade, as variaveis aleatérias exponenciais sao
amplamente adotadas devido a sua capacidade de representar certos fenémenos e sua tra-
tabilidade matematica, particularmente sua propriedade de falta de meméria. No entanto,

quando a distribuicao exponencial é inadequada para modelar um sistema, as distribuicGes de

fase, [Phase-type (PH)| incluindo as distribuicdes Erlang, hipoexponencial e hiperexponencial,

podem oferecer alternativas adequadas. Essas distribuicdes s3o essenciais para representar dis-
tribuices de probabilidade complexas usando apenas dados de média e desvio padréo (MACIEL,
2023b). A distribuicdo de Erlang é um caso particular da distribuicdo gama com um pardmetro
de forma v > 1, v € N, e taxa A. As distribuicdes [PH| oferecem uma abordagem controlada
para relaxar a propriedade de auséncia de memodria e manter a complexidade de avaliacao
sob controle, observando o histérico dos processos através de fases exponenciais do passado e
aumentando o poder de modelagem das distribuicdes exponenciais.

E importante compreender que a dependabilidade de um sistema n3o é um conceito abso-
luto, mas deve ser interpretada em um sentido probabilistico. Os sistemas, por sua natureza
complexa, ndo estdo completamente livres de falhas. Esta perspectiva realista é (til para en-
tender e avaliar o desempenho dos sistemas em condicoes operacionais reais.

As quatro técnicas principais para alcancar a dependabilidade, representadas como "Meios"na
arvore de dependabilidade, trabalham em conjunto para fortalecer a dependabilidade do sis-
tema. A prevencdo de falhas busca minimizar a ocorréncia de problemas, a tolerancia a falhas
permite que o sistema continue operando mesmo na presenca de falhas, a remocdo de fa-
lhas foca na identificac3o e correcdo de problemas existentes, e a previsao de falhas antecipa
potenciais problemas futuros (AVIZIENIS et al., 2001} AVIZIENIS et al., 2004).

Complementando a analise de confiabilidade, a modelagem de desempenho é uma abor-
dagem estruturada que visa estimar as principais métricas de desempenho de um sistema
(KLEINROCK, {1975} [HAVERKORT, 2001). Uma dessas métricas é a taxa de transferéncia (th-

roughput), que quantifica o nimero de operagdes concluidas num prazo especifico:

TP =mn(ibp>0) x p, (2.5)

onde 7(ibp > 0) é a probabilidade de haver itens sendo processados (ibp) no sistema, e y

é a taxa de servico.
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Outras métricas importantes incluem o nimero médio de itens, [Mean Number of Items|

(MNI)| em um sistema:

MNI=Yi-n(i), (2.6)

i=1
onde 7(7) é a probabilidade de haver i itens no sistema, e n é o ndmero total de possiveis
estados no sistema.

Ja a Utilizacdo (U) de um recurso, é definida como:

U =7 (ibp>0), (2.7)

onde 7(ibp > 0) é a probabilidade de haver itens sendo processados pelo recurso.

Enquanto a modelagem de desempenho foca nas métricas de eficiéncia do sistema, a
modelagem de confiabilidade concentra-se na compreensdo de como as mudancas na estrutura
de um sistema, muitas vezes devido a falhas, afetam a disponibilidade geral do sistema (MELO
et al}, [2015)). A integracdo desses dois aspectos levou ao desenvolvimento do conceito de
performabilidade.

Em 1980, Meyer MEYER (1980) introduziu o conceito de avaliagcdo de performabilidade,
que avalia a qualidade geral de um sistema considerando simultaneamente seus aspectos de
desempenho e confiabilidade. Essa abordagem emprega uma medida composta que quantifica
como o desempenho do sistema se degrada quando ocorrem falhas. A avaliacdao de perfor-
mabilidade de sistemas refere-se a avaliacdo da capacidade de um sistema de entregar seu
desempenho pretendido na presenca de falhas e condicdes operacionais variaveis, integrando
métricas de desempenho e dependabilidade.

A performabilidade é, portanto, um fator crucial na obtencao de uma avaliacdo abrangente
do sistema, considerando a potencial ocorréncia de falhas e seu impacto no desempenho. Ava-
liar apenas o desempenho e desconsiderar a confiabilidade pode ser excessivamente simplista,
assumindo que o sistema opera em perfeito estado, o que raramente é o caso em ambientes
reais.

Em sintese, a arvore de dependabilidade, juntamente com os conceitos associados de dis-
tribuicoes de fase e métricas de desempenho e confiabilidade, fornece uma estrutura visual e
conceitual abrangente para compreender e analisar a confiabilidade em sistemas computacio-

nais. Esta abordagem holistica evidencia a complexidade e as inter-relacdes entre os diversos
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aspectos da confiabilidade, servindo como uma ferramenta valiosa para projetistas e analistas
de sistemas. Ao utilizar esta estrutura e considerar aspectos como performabilidade, os pro-
fissionais podem desenvolver abordagens mais abrangentes e eficazes na busca por sistemas
mais robustos, seguros e confidveis, essenciais em um mundo cada vez mais dependente de

tecnologias computacionais.

2.3 MODELOS ESTOCASTICOS

Modelos estocasticos sdo ferramentas essenciais na avaliacdo do desempenho, confiabili-
dade e disponibilidade de sistemas computacionais. Esses modelos incorporam aleatoriedade
e incerteza diretamente na andlise, permitindo uma compreensdo mais abrangente dos com-
portamentos do sistema sob varias condicGes operacionais. Entre as técnicas de modelagem
estocastica, as Cadeias de Markov se destacam por sua capacidade de descrever o funciona-
mento do sistema com base em um conjunto de estados e transicdes, que podem representar
eventos de falha e reparo de um sistema ou componente.

As cadeias de Markov sdo particularmente vantajosas em relacdo aos Diagramas de Blocos
de Confiabilidade, RBD| quando se trata de descrever propriedades dindmicas dos sistemas
(BOLCH et al., 2006)). Cada transicdo em uma cadeia de Markov representa um processo esto-
castico X (t), onde t € T' é um conjunto de variaveis aleatérias definidas sobre 0 mesmo espaco
de probabilidades, e capazes de assumir valores no espaco de estados S; € S (CASSANDRAS;

LAFORTUNE, [2008)).

2.3.1 Cadeias de Markov de Tempo Continuo - CTMC

O conjunto T ao qual a variavel pertence determina a natureza do processo. Se T for dis-
creto, com t =1,2,3,..., o processo é denominado de parametro discreto ou tempo discreto.
Por outro lado, se T for um conjunto continuo, tem-se um processo de parametro continuo ou

tempo continuo. Estes processos assumem distribuicdes geométricas (Cadeia de Markov em

Tempo Discreto, Discrete Time Markov Chain (DTMC))) ou exponenciais (CTMC|), respecti-

vamente (SOUSA et al., 2009; MACIEL, 2023al).
Um processo estocastico é classificado como um processo de Markov se, para todo tg < t; <
. <tp <tny1 € para todo X (tg), X (1), X(t2),..., X(t,), X (t,41), a distribuicdo condicional

de X (t,.1) depende somente do dltimo valor anterior X (¢,,) e ndo dos valores que o antecedem
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X (to), X (1), ..., X(t,-1). Matematicamente, isso pode ser expresso como:

P(Xn+1 = Sn+1|Xn =Sn, Xn—l = Sp-1, -~-7X0 = 30) = P(Xn+1 = 5n+1|Xn = Sn) (28)

para qualquer niimero real Xo, X1, X, ..., X;,, X111 (BOLCH et al, 2006).

Esta caracteristica é também conhecida como auséncia de meméria, e é uma propriedade
fundamental das Cadeias de Markov. Nas[CTMGE, as transicdes entre estados podem ocorrer a
qualquer momento, tornando-as particularmente (teis para modelar sistemas onde os eventos
ocorrem de forma continua ao longo do tempo.

Formalmente, uma é um processo estocastico {X(t),t > 0} que satisfaz a propri-

edade de Markov para todo £y <ty < ...<t, <t,i1:

P(X (1) = JIX () =4, X (En-1) = 150, X (T0) = d0) = P(X(tna1) = j[X(80) =) (2.9)

As[CTMG séo caracterizadas por uma matriz de taxa de transicdo (), onde g;; representa

a taxa de transicdo do estado 7 para o estado j. A matriz () tem a seguinte forma:

qi1 q12  qin
g21 G222 - Qo

Q= (2.10)
dn1 4n2 ** Q4nn

onde ¢;; = — ¥,.; Gij, garantindo que a soma de cada linha seja zero.

A analise de permite obter métricas importantes como probabilidades de estado
estacionario, tempo médio de primeira passagem, e medidas de desempenho e confiabilidade
do sistema. Para resolver uma [CTMC| e obter estas métricas, geralmente se utiliza a equagdo
de Chapman-Kolmogorov em sua forma diferencial:

dm(t)
ke 7(t)Q (2.11)

onde 7(t) é o vetor de probabilidades de estado no tempo t.

Para a resolucdo do sistema, define-se a condicdo inicial 7(0) = m(0), onde my(0) repre-
senta o vetor de probabilidades de estado no instante inicial ¢ = 0, descrevendo a distribuicao

inicial dos estados do sistema.
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As Cadeias de Markov de Tempo Continuo oferecem um poderoso framework para a ana-
lise de sistemas estocasticos complexos, permitindo aos engenheiros e pesquisadores modelar
e analisar o comportamento de sistemas computacionais sob condicoes de incerteza e varia-
bilidade. Sua aplicacdo abrange desde a avaliacdo de desempenho de redes de computadores
até a anélise de confiabilidade de sistemas de missdo critica, tornando-as uma ferramenta

indispensavel no campo da engenharia de sistemas e ciéncia da computacao.

2.3.2 Redes de Petri Estocasticas - SPN

As Redes de Petri, Petri Nets (PN)|, sdo uma ferramenta de modelagem para sistemas

complexos, concorrentes e assincronos. Desenvolvidas por Carl Adam Petri em 1962, estas redes
tém sido utilizadas em diversas areas, incluindo engenharia de software, anélise de processos de
negocios e sistemas de manufatura. A estrutura basica das redes de Petri inclui componentes

conhecidos como lugares, transicOes, arcos e marcacoes, como ilustrado na Figura @]

Figura 6 — Principais Componentes de uma Rede de Petri

— > o

(a) Lugar (b) Transicdo (c) Arco (d) Marcacio

Fonte: Baseado em [MELO| (2016))

Os lugares, representados por circulos, podem conter tokens (marcacdes), e a distribuicdo
de tokens pelos lugares representa o estado do sistema em um determinado momento. As
transicOes, representadas por retangulos ou barras, sdo responsaveis pelo movimento dos tokens
entre os lugares. Este movimento é governado por regras de habilitacdo e disparo que ditam o
fluxo dentro da rede. Os arcos conectam lugares a transicdes e vice-versa, indicando o caminho
que os tokens podem seguir.

A Figura |7| apresenta um exemplo de uma rede de Petri antes e apds o disparo de uma
transicao. Na Figura a), vemos o estado inicial da rede, com tokens distribuidas em deter-
minados lugares. A Figura b) mostra o estado apds o disparo da transicao, onde as tokens
foram movidas de acordo com as regras da rede. Os disparos de transicées ou a ocorréncia de

acBes em uma rede de Petri sdo possiveis quando o niimero de recursos/marcacdes é sufici-
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Figura 7 — Exemplo de uma Rede de Petri

w &F@

) SPN antes do disparo de transicdo ) SPN apés o disparo da transicdo

Fonte: Baseado em MELO| (2016)

ente no lugar que as antecede (MACIEL; LINS; CUNHA, 1996). Este mecanismo permite modelar
situacOes de concorréncia e sincronizacao.
De acordo com (MURATA| [1989)), uma rede de Petri pode ser formalmente definida através

de uma 5-tupla, do tipo PN = (P, T, F,W, M,), onde:

= P=(p1,p2,-..,Pn) € um conjunto finito de lugares,

» T =(ty,tq,...,t;,) € um conjunto finito de transicdes,
» Fc(PxT)u(T xP) éum conjunto de arcos,

» W:F - {1,2,3,...} éa funcio de peso,

» My: P —{0,1,2,3,...} sdo as marcacdes iniciais.

Esta definicdo matematica fornece uma base para a analise e verificacdo de propriedades
dos sistemas modelados. Por exemplo, é possivel verificar se um sistema pode entrar em
deadlock, se existem estados inalcancdveis, ou se certas condicdes de seguranca sao mantidas.

O avanco no estudo das redes de Petri proporcionou uma evolucdo em seu poder de re-
presentacdo. Uma extensdo (til sdo as [SPNk, que permitem descrever sistemas assincronos,
temporizados, concorrentes e ndo-deterministicos (GERMAN, 2000)). As introduzem ele-
mentos probabilisticos, permitindo modelar sistemas com comportamento aleatério ou incerto.

A Figura (8 mostra componentes adicionais para uma rede de Petri estocastica: o arco
inibidor e a transicdo temporizada. Arcos inibidores, representados por uma linha terminada
em um circulo, determinam se um dado local possui ou ndao marcacdes. Eles permitem mo-
delar situacoes onde a auséncia de recursos é uma condicdo para uma acdo. As transicoes
temporizadas tém seu tempo de disparo pré-estabelecido e baseado em uma distribuicdo de
probabilidade (MELO et al/ [2015)). Isso permite modelar acdes que levam tempo para serem

concluidas ou que ocorrem em intervalos aleatérios.
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Figura 8 — Componentes Adicionais para uma Rede de Petri Estocastica

o~ T~

(a) Arco Inibidor (b) Transicdo Tempo-
rizada

Fonte: Baseado em |MELO| (2016)

As[SPNE sio uma poderosa extensdo das redes de Petri tradicionais, projetadas para mo-
delar sistemas complexos onde a aleatoriedade e os tempos de transicdo sao fundamentais
(SYMONS|, 1989; INATKIN, [1980; [MOLLOY, [1981)). Enquanto as redes de Petri classicas sdo efi-
cientes para descrever a logica de processos concorrentes, elas ndo sdo suficientes para modelar
aspectos temporais e probabilisticos. Para resolver isso, as [SPNk introduzem transicdes tem-
porizadas com distribuicoes estocasticas, permitindo que o tempo de disparo de uma transicao
siga uma distribuicao de probabilidade, como a exponencial, a deterministica ou outras distri-
buicoes genéricas. Essa abordagem é particularmente til para modelar e analisar sistemas de
filas, redes de comunicacao, e infraestruturas de computacdo, onde eventos ocorrem de forma
aleatédria ao longo do tempo.

Virias extensdes foram desenvolvidos a partir do modelo basico das [SPNk para aprimo-

rar ainda mais suas capacidades de modelagem. Entre as extensGes mais importantes estao

as Redes de Petri Estocasticas Generalizadas, |Generalized Stochastic Petri Nets|

GSPN)(|[MARSAN et al., 11998), que adicionam transicdes imediatas para capturar eventos que

ocorrem instantaneamente, e as Redes de Petri Estocasticas Deterministicas,

Iministic Stochastic Petri Nets (DSPN)(LINDEMANN, 1998)), que incorporam transicdes

com tempos deterministicos. Essas extensoes permitem uma modelagem mais precisa de siste-
mas que possuem comportamentos estocasticos, mas também eventos deterministicos ou de

disparo imediato. Além disso, existem outras variantes, como as Redes de Petri Determi-

nisticas e Estocasticas, |Deterministic and Stochastic Petri Nets (eDSPN)|(GERMAN,

2000; |GERMAN; LINDEMANN, (1994)), que ampliam ainda mais a gama de sistemas que podem
ser analisados com precisdo por meio de [SPNk. Essas extensdes tornam as [SPNs uma fer-
ramenta robusta para a analise de desempenho, confiabilidade e disponibilidade de sistemas

complexos.
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A definicdo de uma [SPN| pode ser descrita formalmente como um conjunto de elementos
que estendem a definicdo de uma rede de Petri tradicional com comportamentos estocasticos.

Uma [SPN] é representado pela tupla:

SPN = (P, T, 1,0, H, My, Atts)
Onde:
— P: Conjunto finito de lugares (P = {p1,pa,...,Dn})
— T: Conjunto finito de transicdes (T = {t1,t2,...,tm}), que é dividido em:

— T} Transicoes imediatas.
— Teup: Transicoes com distribuicdes exponenciais.
— Tyer: TransicOes deterministicas.
— T,: Transicoes com distribuicdes genéricas.
Assim, T =T}, UT ey U Ty T,
— |: Matriz de entrada que define as conexdes entre lugares e transicoes. Cada elemento

iyt representa o peso do arco de entrada do lugar p para a transicdo ¢, e pode ser

dependente da marcacdo atual:

I'=(ipe)ipixir)s Tpt : MD x RSspy - N

onde M D = {verdadeiro, falso}, indicando se o arco é dependente da marcaco.

— O: Matriz de saida que define as conexdes entre transicbes e lugares. Cada elemento
op,+ representa o peso do arco de saida da transicao ¢ para o lugar p, que também pode

depender da marcacao:

O = (Op,t)|P|><|T|7 Opﬂf . M_D X RSSPN —> N

— H: Matriz de arcos inibidores, onde h,,; inibe a transicdo ¢ se o ndmero de tokens no

lugar p for maior ou igual a h,;:

H = (hpt)ipixir)s, hpt: MD x RSspy - N
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— Mj: A marcacao inicial da rede, que é um vetor que descreve a quantidade inicial de

tokens em cada lugar p:

Mo = (my) p
— Atts: O conjunto de atributos associados as transicdes, definidos como:
Atts = (II, Dist, MDF, W, GG, Policy, Concurrency)

— II: T — N: Atribui uma prioridade as transicoes.
- Dist : T,,, uT, — F: Funcdo que atribui uma distribuicdo de probabilidade ndo
negativa para transicoes temporizadas.

— MDF : T - MD: Define se a distribuicio de probabilidade de uma transicdo

depende da marcacao.
- W Teyp U Tger 0T, - R Atribui taxas (distribuicGes exponenciais), atrasos
(transicdes deterministicas), ou pesos (transicdes imediatas) as transicdes.

— G : T - NIPI: Expressdo de guarda que define uma condicio booleana para que a

transicao seja habilitada.

Policy : T" — {prd, prs}: Define a politica de meméria (reiniciar ou continuar o

temporizador de transicdes).

— Concurrency : T' = T;,,, - {sss,iss}: Define a semantica de concorréncia, onde SSS

denota semantica de servidor Gnico, [Single Server Semantics (SSS)| e ISS denota

semantica de servidor infinito, |Infinite Server Semantics (ISS)|

Regras de habilitacao e disparo:

Uma transicado ¢; é habilitada em uma marcacao M se:
M>>I, nM<H; AG(t;) = verdadeiro

onde I.;, é o vetor de entradas para t; e H.,, é o vetor de inibidores para t,. O disparo de uma

transicao habilitada ¢; em uma marcacao M leva a uma nova marcacao M’, dada por:

M'=M-1,+0,,
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Esta formulacdo matemaética permite que [SPNk sejam usados para modelar sistemas es-
tocasticos com comportamentos complexos, incorporando nao apenas a dinamica de redes de

Petri tradicionais, mas também a estocasticidade e caracteristicas temporais(MACIEL} 2023a))

2.4 ANALISE DE SENSIBILIDADE

A andlise de sensibilidade é uma técnica essencial para avaliar o impacto das variacoes nos
parametros de entrada sobre a disponibilidade de um sistema. Diferentes abordagens podem
ser aplicadas, como a Anélise de Sensibilidade Diferencial, Medidas de Sensibilidade Uma por

Uma, o Método do Desvio Relativo, a Taxa de Desvio Relativo, o Coeficiente de Correlacio

Parcial de Postos e o Indice de Sensibilidade, [Sensitivity Index (SI)| (HAMBY, 1995)). Cada uma

dessas técnicas oferece uma perspectiva distinta sobre como as variacbes nos parametros de
entrada afetam a saida do modelo. Neste estudo, utilizamos o [SI, uma métrica quantitativa
que mede o impacto das variacdes de um parametro de entrada y sobre a disponibilidade do
sistema. O [S| expressa esse impacto como uma diferenca percentual relativa, o que permite
identificar os parametros que possuem maior influéncia na estabilidade e no desempenho do
sistema, possibilitando assim a priorizacdo de ajustes e melhorias nos parametros criticos para
a disponibilidade.

A Equacao define o indice de sensibilidade, Sensitivity Index (SI), que expressa esse

impacto como uma diferenca percentual relativa e é definido pela férmula:

MAT f () = TN f ()

2.12
Max f(a;) ( )

onde:

— Maxy(,,) € o valor maximo do parametro x; obtido ao variar o parametro dentro do seu

intervalo permitido;
— MiNf(y,) € o valor minimo correspondente de ;.

Esse indice de sensibilidade fornece uma medida da proporcdo da variacdo da saida em
relacdo ao valor maximo de z;, destacando a sensibilidade do pardmetro z; as flutuacoes
do parametro analisado. Durante o célculo de S,,(f(x;)), todos os outros pardmetros do
modelo permanecem constantes, garantindo que a analise isolada do impacto do parametro

x; seja precisa (FRANK; ESLAMI, |1980)). Essa abordagem é particularmente (til para melhorar
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a previsibilidade do comportamento do sistema, jd q ue permite uma avaliacao detalhada da
robustez em relacdo as variacdes de x;, auxiliando no planejamento preciso das condicoes
operacionais.

A escolha do Indice de Sensibilidade neste estudo foi motivada por sua simplicidade e
facilidade de implementac3o, especialmente na linguagem de scripts da ferramenta Mercury
(MACIEL et al., 2017)). A simplicidade da férmula de S,,(f(x;)) facilita sua implementacdo pra-
tica, permitindo uma analise de sensibilidade eficiente e rapida. Isso é particularmente benéfico
em cenarios onde analises ageis e precisas s3o necessarias para tomar decisdes informadas, tor-
nando o [SI| uma ferramenta valiosa para otimizar a disponibilidade e a confiabilidade dos

sistemas analisados.
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3 METODOLOGIA

A metodologia utilizada neste trabalho visa garantir uma abordagem sistematica para o
desenvolvimento e a validagdo de um sistema de vigilancia baseado em [VANTE. O capitulo
descreve cada uma das etapas envolvidas no processo, desde a compreensao inicial do sistema
até a definicdo das métricas de interesse, construcao e validacao do modelo, e analise de
sensibilidade. As etapas s3o delineadas para fornecer uma visdo clara de como os componentes
do sistema interagem para garantir a performance e a disponibilidade do sistema de vigilancia. A
abordagem também inclui uma anélise detalhada dos resultados, possibilitando a identificacdo

de areas de melhoria e a otimizacdo dos recursos envolvidos.

Figura 9 — Visdo Geral da Metodologia Adotada para Avaliacdo de Sistemas de Vigilancia por Drones.

4 N\
Compreensao do sistema Calculo do rank de sensibilidade
e identificagdo de componentes
i relevantes
& J
Definir arquitetura de sistema de l
linha de base p |
¢ Elaboragao de cenarios e
avaliacao
Definir métricas de interesse l
- ¢ N Andlise de Resultados
> Construgao de modelo
¢ Sim
Validagao

Fonte: Elaborado pelo Autor (2024)

A Figura[9] apresenta uma visdo geral da metodologia adotada para a avaliacdo do sistema
de vigilancia com drones, destacando cada etapa do processo, desde a compreensao do sistema
até a andlise dos resultados e a identificacdo dos componentes relevantes. Essa representacao

visual facilita o entendimento das etapas sequenciais e das relacdes entre elas, proporcionando
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uma visdo clara do fluxo de trabalho empregado para garantir a eficiéncia e confiabilidade do
sistema.

O primeiro passo para a execucao deste trabalho foi realizar uma revisdo da literatura
sobre sistemas de vigilancia baseados em drones. O objetivo dessa etapa foi identificar as
principais abordagens utilizadas em diferentes cenarios de vigilancia e como as caracteristicas
dos drones e cameras influenciam na eficiéncia dos sistemas. Estudos sobre a confiabilidade e a
disponibilidade de drones em missGes criticas foram analisados para embasar o desenvolvimento
dos modelos utilizado neste trabalho. Dentre os principais trabalhos revisados, destacaram-se
aqueles que abordam o uso de drones em areas abertas para monitoramento continuo, além
de estudos que utilizam métricas como redundancia de baterias e drones para garantir a alta

disponibilidade do sistema.

— Compreensao do Sistema: A primeira etapa da metodologia consistiu no estudo apro-
fundado do sistema, onde foi realizada uma analise detalhada dos componentes envolvi-
dos, como a estrutura dos drones, caracteristicas das cameras, capacidades de bateria,
sensores, limitacOes operacionais e geréncia de energia. Foram coletadas informacoes de
fabricantes e de fontes académicas para entender o comportamento esperado do sistema
de vigilancia. Esse entendimento serviu como base para a definicio dos requisitos que
guiariam as etapas subsequentes, garantindo uma compreensdo abrangente do sistema

antes de prosseguir com a modelagem e analise.

— Definir Arquitetura de Sistema Base: Na etapa de definicdo da arquitetura do sis-
tema de linha de base, foi estabelecida a arquitetura para um sistema de vigilancia com
drone e também o modelo utilizado para teste. Esta etapa incluiu a definicao do nu-
mero de drones, caracteristicas das cAmeras (resolucdo, campo de visdo), quantidade de
baterias, além do layout da area de vigilancia a ser monitorada. Foi utilizado o drone
DJI Mavic Pro, que possui especificacbes adequadas para os testes em campo aberto.
O drone esta equipado com uma camera de resolucdo Full HD, permitindo a captura de
imagens de qualidade para vigilancia. Além disso, foram utilizadas quatro baterias extras,
cada uma com uma autonomia estimada de 25 minutos de voo. No entanto, durante o
experimento, algumas baterias apresentaram variacdes na carga inicial, influenciando o

desempenho do drone em determinadas rondas.

A area escolhida para o experimento foi um terreno aberto e plano, adequado para

simular o funcionamento de um sistema de vigilancia. A area foi mapeada para o drone



49

realizar um padrdo de voo especifico, cobrindo toda a superficie eficientemente. Esta
arquitetura base serviu como ponto de referéncia para o desenvolvimento dos modelos
de simulacdo e para avaliacdo dos requisitos necessarios para garantir a operacao do

sistema.

— Definir Métricas de Interesse: Na terceira etapa, realizou-se a definicdo das métricas
de interesse para avaliar o desempenho do sistema de vigilancia. As principais métricas

incluem:

Disponibilidade estacionaria: reflete a capacidade do sistema de se manter opera-

cional;

Confiabilidade: indica a probabilidade de o sistema funcionar sem falhas por um

determinado periodo;

Tempo médio de cobertura, C'oV};., da area de vigilancia;

Nidmero médio de itens no sistema (MNI));

Utilizacdo dos recursos (U): representa o uso efetivo dos componentes do sistema.

Essas métricas foram importantes para analisar o impacto das diferentes configuracoes

do sistema, avaliar o nivel de servico oferecido e identificar possiveis areas de melhoria.

— Construcao de Modelo: A construcdo do modelo estocastico foi realizada utilizando
inicialmente um modelo [CTMC] para anélise de melhorias de tempos médios e posteri-
ormente modelos [SPN]| para representar as operacdes e interacdes com redundancias e
desempenho do sistema de vigilancia. Este tipo de modelagem foi escolhido devido a
sua capacidade de representar sistemas complexos, descrevendo comportamentos dina-
micos como falhas, reparos, trocas de baterias e movimentacio dos drones. O modelo
foi dividido em duas partes principais: uma dedicada a disponibilidade, avaliando o com-
portamento do sistema em caso de falhas e reparos, e outra voltada para a performance,
medindo métricas como o nimero de rondas de vigilancia por hora. Foram utilizadas
transicdes temporizadas exponenciais e redes do tipo Erlang para representar o fluxo de
estados do sistema, considerando fatores como autonomia de voo, tempos de carga e

descarga das baterias e o impacto de redundancias.

— Validacao: Na quinta etapa, realizou-se a validacdo do modelo, que visa garantir que

o comportamento do modelo simulado seja consistente com o sistema real. Um drone
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comercial, como o DJI Mavic Pro, foi utilizado para validar o modelo, comparando dados
coletados do drone real com os resultados do modelo. As métricas utilizadas incluiram
tempo de voo, tempo de carga da bateria e a cobertura da area de vigilancia. Para
garantir a precisdo da validac3o, utilizou-se o método bootstrap para calcular intervalos
de confianca para os tempos médios de cobertura, a fim de verificar se o0 modelo reflete

adequadamente as condicGes reais observadas.

Dentre as variaveis coletadas, os dados de maior interesse foram os relacionados a por-
centagem de bateria, coordenadas GPS, altura de voo, velocidade e tempo de voo. Com
base nessas variaveis, foi possivel realizar a anélise da performance do drone em relacao
ao numero de rondas completas que ele conseguia realizar com cada carga de bateria.
Uma ronda foi definida como o trajeto completo de ida e volta, cobrindo toda a area de

vigilancia.

Resultados satisfatérios? (Avaliacdo dos Resultados): Com os dados coletados,
o modelo de cobertura foi refinado de modo a ajustar os tempos médios observados
com o intervalo de confianca estimado. O objetivo desse ajuste foi garantir que o mo-
delo de cobertura fosse uma representacao precisa do comportamento real do drone
durante o processo de vigilancia. Caso os resultados ndo fossem satisfatérios, o modelo
seria ajustado e a simulac3o refeita até que o desempenho desejado fosse atingido. Este
processo iterativo de ajuste e refinamento visou garantir que o modelo simulasse adequa-
damente as caracteristicas importantes do sistema, e que as decisdes tomadas a partir
dos resultados fossem embasadas em simulacoes precisas e representativas do cenério

real.

Calculo do Rank de Sensibilidade e Identificacao de Componentes Relevan-
tes: Uma vez que o modelo foi validado, procedeu-se com a analise de sensibilidade e
identificacdo dos componentes relevantes. O objetivo desta etapa foi determinar quais
varidveis do sistema possuiam maior impacto sobre a sua disponibilidade e confiabili-
dade. Utilizou-se o [SI| para medir a variacdo na disponibilidade em resposta a mudancas

nos parametros de entrada, como o Tempo Médio de Carga da Bateria, [Mean Time

fto Battery Charging (MTTBC)| e o Tempo Médio de Descarga da Bateria,

ito Battery Discharge (MTTBD), A anélise de sensibilidade auxiliou na priorizacdo de

acoes de melhoria, identificando quais componentes ou parametros deveriam ser otimi-
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zados para maximizar o impacto na disponibilidade do sistema, como o investimento em

baterias de maior capacidade ou carregadores mais eficientes.

— Analise de Resultados e Recomendacdes: O modelo de performabilidade considerou
a quantidade de rondas que o sistema era capaz de realizar levando em conta possiveis
falhas e o tempo de substituicdo das baterias. A redundancia de baterias foi um fator
critico para manter a disponibilidade do sistema de vigilancia, permitindo que o drone
continuasse suas operacdes sem grandes interrupcoes. Além disso, falhas potenciais do
drone, como perda de sinal GPS ou falhas no motor, foram modeladas em um s6 tempo
médio de falha para o drone inteiro, valor obtido na literatura e nas especificacdes do

drone.

Esse modelo foi importante para avaliar a eficiéncia operacional do sistema e oferecer
insights sobre o nimero ideal de baterias e drones necessarios para garantir alta disponibili-
dade, performance e confiabilidade em um cenério de vigilancia continua. As recomendacdes
incluiram intervencdes praticas para melhorar a eficiéncia e a disponibilidade do sistema, tais
como a adicdo de drones e baterias redundantes, a utilizacao de carregadores mais rapidos,
ou o uso de baterias com maior capacidade de armazenamento. Também foram consideradas
estratégias para balancear o custo-beneficio, visando aumentar a disponibilidade do sistema
sem elevar significativamente os custos operacionais.

Essa metodologia permitiu a construcdo de um modelo de vigilancia baseado em drones
eficaz, considerando n3o apenas o desempenho operacional dos drones, mas também a ne-
cessidade de manter a vigilancia continua em cendrios com falhas e trocas de baterias. O
uso de ferramentas como Dashware, AirData e Bootstrap garantiu uma anélise detalhada e
precisa dos dados, permitindo a validacao do modelo proposto e sua utilizacao em cenarios
futuros. Dessa forma, a metodologia proposta estabelece uma base para o desenvolvimento
de sistemas VANT robustos, eficientes e adaptaveis, atendendo as demandas especificas de

ambientes dinamicos de vigilancia.
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4 ARQUITETURA E MODELOS

Esta capitulo apresenta uma analise detalhada da arquitetura do sistema em estudo, com
énfase nos desafios associados ao monitoramento por VANTE. O objetivo é examinar os di-
versos aspectos criticos que influenciam a eficacia do monitoramento, identificando potenciais
gargalos e propondo solucoes que melhorem a eficiéncia operacional. Para isso, utilizamos
diferentes metodologias que permitem uma avaliacao de cada componente do sistema, consi-
derando tanto os fatores internos quanto externos que afetam o desempenho. Propomos uma
abordagem que integra modelos analiticos € numéricos para avaliar e otimizar o desempenho
global do sistema, garantindo que cada uma das variaveis seja tratada de maneira sistematica,
com foco na obtencdo dos resultados mais eficazes.

Inicialmente, desenvolvemos um modelo estocastico fundamentado em [CTMC| a partir
do qual derivamos um modelo analitico para estimar diversos parametros temporais criticos,
como tempos médios de transicdo entre estados e métricas de desempenho relacionadas ao
comportamento estocastico do sistema. Posteriormente, elaboramos um modelo numérico uti-
lizando para analisar a disponibilidade do sistema, considerando diferentes configuracdes
de redundéancia e suas implicacdes no comportamento do sistema (Fig. . Esse modelo foi
subsequentemente estendido para incorporar estado absorvente, o que permitiu uma avaliacao
da confiabilidade do sistema, fornecendo uma visdo sobre as possiveis falhas e a probabilidade

de recuperacao em diferentes cenérios operacionais.

Figura 10 — Modelos de Avaliacdo Propostos para Sistemas de Monitoramento por VANTs e suas Inter-
relacdes.

Performabilidade

Confiabilidade Disponibilidade Cobertura

Performance = Disponibilidade

Fonte: Elaborado pelo Autor (2024)

No que se refere a cobertura de area, elaboramos um modelo que contempla as carac-

teristicas do sensor da cdmera, incluindo resolucao, dimensdes e campo de visdo, |Field o
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View (FOV)| Esse modelo contempla as especificacdes técnicas da cimera, incluindo resolu-
¢o, dimensdes e [FOV] Esse modelo possibilita a estimativa da altura operacional maxima,
o tempo efetivo de cobertura, bem como a analise do impacto de variacGes na resolucdo so-
bre a qualidade das imagens obtidas. Os resultados obtidos foram integrados em um modelo
[SPN| de performabilidade, proporcionando uma anélise detalhada do desempenho do sistema
em diferentes condicdes operacionais, considerando cenéario de falhas parciais, interrupcdes

temporarias do servico e diferentes niveis de redundancia.

Figura 11 — Arquitetura de Vigilancia por Drones llustrando o Campo de Visdo e a Altura Operacional.

Fonte: Elaborado pelo Autor (2024)

A Figura ilustra detalhadamente a arquitetura de vigilancia por drones, destacando
elementos cruciais para o entendimento do sistema de monitoramento. No centro superior
da imagem, observamos o drone principal, equipado com uma cdmera de alta resolucado e
uma bateria, simbolizando a unidade central de vigilancia. A partir deste drone, projeta-se
uma piramide de base retangular, que representa a area de cobertura da camera , cujo
angulo é indicado por 6. Este angulo é fundamental para determinar a area de cobertura do
drone. A altura operacional, denotada por h, representa a distancia vertical entre o drone e
a superficie monitorada, sendo crucial para calcular a drea de cobertura e a resolucao efetiva
das imagens capturadas.

No centro da imagem, uma elipse ilustra a area de ronda, representando a zona principal
de vigilancia onde o drone realiza seu patrulhamento. A direita, visualizamos um drone de
substituicdo, indicando a estratégia de redundancia implementada para manter a continuidade

da operacdo. As setas circulares entre os drones sugerem o ciclo de operacao, demonstrando a
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rotacao e substituicao planejada para otimizar o tempo de voo e a eficiéncia energética. No solo,
figuras humanas representam a escala e a capacidade do sistema em monitorar movimentacdes
na area. Esta configuracdo permite calcular pardmetros essenciais como a largura total da area
coberta pela cdmera, que é determinada pela projecdo do [FOV] no solo. A relacdo entre H
e 6 define diretamente esta area de cobertura, influenciando significativamente a eficacia do
monitoramento.

Um dos principais desafios enfrentados neste estudo consiste na otimizacao do tempo de
monitoramento de uma area entre dois pontos, considerando as restricoes de eficiéncia ener-
gética e o desgaste dos dispositivos. A eficiéncia energética dos[VANTE é um fator importante,
especialmente em missoes de reconhecimento de imagem, nas quais a resolucao do sensor da
camera desempenha um papel determinante. Resolu¢cdes mais altas permitem reconhecer ob-
jetos a distancias maiores, ampliando o campo de visao e reduzindo potencialmente o tempo
necessario para a cobertura completa da area. Contudo, essa abordagem também aumenta a
demanda energética, exigindo baterias mais robustas em termos de peso também e elevando
o consumo de energia devido a maior poténcia requerida pelos rotores.

Para mitigar esses desafios, exploramos estratégias como a redundancia de baterias, que
envolve aceitar breves interrupcdes de servico em prol de uma operacao mais prolongada. Além
disso, investigamos o uso de sensores de menor resoluciao associados ao posicionamento do
VANT mais préximo do alvo. Embora essa estratégia limite o [FOV] ela pode potencialmente
aumentar o tempo de cobertura e melhorar a eficiéncia energética, ao mesmo tempo, em que
reduz o desgaste dos dispositivos. No entanto, é imprescindivel investigar este trade-off, pois
o VANT cobre a area de forma mais lenta, necessitando de mais trocas de baterias, mas sem

exigir que os rotores operem em poténcia maxima.

4.1 MODELO DE DISPONIBILIDADE

Esta secdo apresenta um modelo de Cadeia de Markov de Tempo Continuo e
seu grafico de alcancabilidade desenvolvidos para calcular a disponibilidade do sistema de
voo do Veiculo Aéreo Nao Tripulado . Este modelo foi projetado para representar
as diferentes configuracoes e estados operacionais do sistema, considerando fatores como o
carregamento e descarregamento da bateria, falhas de hardware, reparos e a troca entre drones
ativos e de reserva. A utilizagdo de permite uma analise detalhada das transicoes

entre estados e fornece uma base para a derivacdo de férmulas analiticas que quantificam a
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disponibilidade do sistema. As duas representacdes do modelo, embora equivalentes em termos
de informacdo, oferecem perspectivas complementares que podem auxiliar na compreensao e

analise do comportamento do sistema em diferentes cenarios.

Figura 12 — Gréfico de Alcancabilidade para Disponibilidade de Sistemas de Vigilancia por Drone

0,0,0,0,2

Ibc

2*Ibc

0,2,2,0,0 0,1,1,1,0

Fonte: Elaborado pelo Autor (2024)

A Figura [12] apresenta uma cadeia de Markov que modela o sistema de voo do drone. O
sistema é composto por um drone em voo com bateria, um drone reserva e uma bateria reserva
em modo de operacdo em cold standby, o sistema é considerando em funcionamento quando
um drone com bateria esta ativo e em voo. A cadeia é composta por estados, representados
por circulos, onde os circulos escuros indicam o sistema em operacdo normal. Os estados do
sistema s3o descritos por cinco componentes: nimero de Baterias Prontas (#BR), nimero
de Baterias Carregando (#BC), niimero de Drones Prontos (#DR), nimero de Drones em
Operacdo (#DU) e nimero de Drones em Falha (#DF), representando a tupla S=(#BR,
#BC, #DR, #DU, #DF). O estado inicial, representado como S=(1,0,1,1,0), indica 1 bateria
pronta, O baterias carregando, 1 drone pronto, 1 drone em operacao e 0 drones em falha. Este
estado inicial representa a configuracao padrdo do sistema quando esta totalmente operacional
e pronto para iniciar suas atividades.

As transicOes entre os estados sdo governadas por varios parametros: taxa de falha do

drone (Id), taxa de reparo do drone (md), taxa de comutacdo (d), taxa de descarga da
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bateria (Ibd) e taxa de carga da bateria (Ibc). Estas transicdes sdo representadas por setas
entre os circulos, mostrando como o sistema pode mudar de um estado para outro. A dinamica
do sistema é caracterizada por movimentos entre diferentes estados, dependendo de eventos
como falhas de drones, reparos, trocas de baterias e recargas. Por exemplo, o sistema pode
passar de um estado operacional (circulos escuros) para um estado de falha através de eventos
como falha de drone (ld) ou descarga de bateria (Ibd). Da mesma forma, pode retornar a
estados operacionais por meio de reparos de drones (md) ou recarga de baterias (Ibc).

A partir do estado inicial 5=(1,0,1,1,0), o sistema pode evoluir para diferentes configura-
¢Oes, ilustrando a complexidade e dinamismo do modelo. Por exemplo, se o drone em operacao
falhar, o sistema pode transitar para o estado S=(1,0,1,0,1), onde um drone estd em falha
e 0 outro estad pronto para substitui-lo. Se a bateria em uso descarregar, representado pelos
estados S=(1,1,2,0,0) e S=(0,1,1,0,1), o sistema pode mudar para S=(0,1,1,1,0) a partir des-
tes estados, iniciando o processo de recarga da bateria esgotada enquanto o drone continua
operando com a bateria reserva. Estas transicoes demonstram como o sistema se adapta a
diferentes situacoes, mantendo a operacionalidade sempre que possivel e iniciando processos

de recuperacao quando necessario.

Figura 13 — Modelo de Disponibilidade CTMC para Sistemas de Vigilancia por Drone

Fonte: Elaborado pelo Autor (2024)

A Figura [13] apresenta uma representacio alternativa do mesmo modelo de [CTMC| para o

sistema de voo do VANT] gerada pela ferramenta de célculo Mercury (MACIEL et al., 2017)).
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Esta visualizacdo mantém os mesmos parametros e estrutura do modelo original, incluindo
a taxa de carregamento (f.) € a taxa de descarregamento ()\,q) da bateria do drone por
hora, bem como a taxa de falha do hardware do dispositivo (\;) e a taxa de reparo (p4) por
hora. Além disso, o modelo considera a taxa de troca (&) entre o drone em voo e o drone de
reserva. Nesta representacdo, os estados operacionais do sistema s3o claramente identificados
como S0,52,57, indicados por circulos escuros. Estes estados representam as configuracdes
onde o sistema estd em pleno funcionamento, com pelo menos um drone ativo e em voo. A
visualizag3o gerada pelo ferramenta oferece uma perspectiva complementar do modelo[CTMC|
permitindo uma andlise mais aprofundada das transicGes entre estados e das probabilidades
associadas a cada configuracdo do sistema. Uma descricao detalhada de todos os parametros e
estados das duas[CTMCk pode ser vista no Quadro[2 e[3} fornecendo uma referéncia completa
para a compreensao e analise do modelo.

O modelo apresentado serve como base para a obtencao de um modelo analitico.
Esta abordagem fornece uma estrutura que arquitetos e projetistas podem utilizar no desen-
volvimento de sistemas com caracteristicas similares, permitindo a analise do comportamento
e da confiabilidade do sistema de voo do [VANT] Uma caracteristica deste modelo é o uso de
tempos distribuidos exponencialmente, possibilitando a derivacao de uma férmula em forma fe-
chada para a disponibilidade do sistema. Esta férmula, representada pela Eq. [4.1], oferece uma
expressdo matematica calculavel para a avaliacdo do desempenho do sistema em diferentes
cenarios operacionais.

Apés a apresentacdo dos modelos [CTMGCk para o célculo da disponibilidade do sistema de
voo do [VANT] passamos as equacdes analiticas derivadas desses modelos. Estas equacdes for-
necem uma representacdo matematica da disponibilidade do sistema, permitindo uma analise
quantitativa do seu desempenho em diferentes cenarios operacionais.

A seguir, apresentamos a férmula em forma fechada para a disponibilidade do [VANT]|
extraidas a partir do modelo [CTMC] (Modelo [L3]) com auxilio da ferramenta Wolfram Mathe-
matica (WOLFRAM, 2024). Além disto, a equac3o da disponibilidade doé seguida pelas
equacdes que descrevem a disponibilidade do servidor e do roteador. Incluimos os outros com-
ponentes para uma visdo abrangente do sistema de monitoramento, embora o foco principal
seja o sistema de voo do VANT. Por fim, apresentamos a equacao que combina esses elementos

para calcular a disponibilidade geral do sistema.
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Quadro 2 — Descricdo dos Estados do Sistema para o Modelo CTMC

Estado

Ferramenta

Sistema

Descricao

(1,0,1,1,0)

S0

Operacional

Uma bateria pronta, nenhuma bateria carre-
gando, um drone pronto, um drone em uso,
nenhum drone em falha

(1,0,1,0,1)

S1

Indisponivel

Uma bateria pronta, nenhuma bateria carre-
gando, um drone pronto, nenhum drone em
uso, um drone em falha

(0,0,0,1,1)

S2

Operacional

Nenhuma bateria pronta disponivel, nenhuma
bateria carregando, nenhum drone pronto, um
drone em uso, um drone em falha

(0,0,0,0,2)

S3

Indisponivel

Nenhuma bateria pronta disponivel, nenhuma
bateria carregando, nenhum drone pronto, ne-
nhum drone em uso, dois drones em falha

(1,1,2,0,0)

S6

Indisponivel

Uma bateria pronta, uma bateria carregando,
dois drones prontos, nenhum drone em uso, ne-
nhum drone em falha

(2,0,2,0,0)

S4

Indisponivel

Duas baterias prontas, nenhuma bateria carre-
gando, dois drones prontos, nenhum drone em
uso, nenhum drone em falha

(0,1,1,0,1)

S5

Indisponivel

Nenhuma bateria pronta, uma bateria carre-
gando, um drone pronto, nenhum drone em
uso, um drone em falha

(0,2,2,0,0)

S9

Indisponivel

Nenhuma bateria pronta, duas baterias carre-
gando, dois drones prontos, nenhum drone em
uso, nenhum drone em falha

(0,1,1,1,0)

ST

Operacional

Nenhuma bateria pronta, uma bateria carre-
gando, um drone pronto, um drone em uso,
nenhum drone em falha

(0,1,1,0,1)

S8

Indisponivel

Nenhuma bateria pronta, uma bateria carre-
gando, um drone pronto, nenhum drone em
uso, um drone em falha

Fonte: Elaborado pelo Autor (2024)

Quadro 3 — Descricdo dos Pardmetros para o Modelo CTMC

Parametro | Ferramenta Descricao
bd Abd Taxa de descarga da bateria por hora
Ibc Nbe Taxa de carga da bateria por hora
md I Taxa de reparo de drones por hora
Id Ad Taxa de falhas de drones por hora
d ) Taxa de comutacdo de drones por hora

Fonte: Elaborado pelo Autor (2024)
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Ay ang = OApepta(2d@g + Baftads) (4.1)
02020 + Npefta (30 Noc Apaa + O111a) + Bopisds
Onde:
8= Xod + Ad;
B2 = Apd + fha;
B3 = Aa + a;
Ba = Ape + Avd;
B5 = Ave + Hd;
a1 =5+ Aye;
g = 5+ P
ag = 3+ O

g = B3N + Abafld;

¢1 = 1 e + Bapid;

®2 = B3Abe + Apafia;

B3 = BN+ Aoa(Apa (0 + Npe) + 20 \c);

b4 = 52+ Bs(Npe + 3Xva) + Apa(2A0e + 3Apa);
G5 = NG+ Aafta + pG;

01 = a1802 X0 + 28520 \oa + 0Ape s

02 = culpapta + A2 P5;

As equacdes [4.2) e [4.3| apresentam as férmulas analiticas para a disponibilidade do servidor
e do roteador, respectivamente. Embora n3o sejam incluidos nas analises de sensibilidade ou na
avaliacdo da disponibilidade do sistema, esses componentes sdo apresentados para completude.
O foco da anélise de melhoria de disponibilidade é o dispositivo [VANT] considerado o principal

gargalo do sistema.

A w >\os A vm
AServer = e X N x e x M— (42)
)\hw + Uhw >\os + Uos )\hp + Hhp >\vm + Uom
A
Ap = 4.3
BTN+ ] (4.3)

Os modelos analiticos para a disponibilidade do servidor (Eq. e do roteador (Eq.

incorporam a taxa de falha () e a taxa de reparo (). O modelo do servidor inclui componentes
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tipicos de um sistema de monitoramento: hardware (hw), sistema operacional (0s), hipervisor
de gerenciamento de maquina virtual (hp) e maquina virtual (vm).

A disponibilidade geral do sistema é dada pela Eq. 4.4

A= AServer X AR X AVANT (44)

Esta equacao representa o produto dos modelos de disponibilidade do servidor, roteador e
sistema de voo do [VANTI

As equacdes apresentadas nesta secdo estabelecem a base matemética para a anélise da
disponibilidade do sistema de monitoramento baseado em [VANT] Elas representam as inte-
racoes entre os diferentes componentes e estados operacionais, possibilitando uma avaliacao
quantitativa do desempenho do sistema. A obtencdo de férmulas em forma fechada para o
calculo analitico é particularmente relevante, ao permitir a realizacdo de analises sem a ne-
cessidade de ferramentas computacionais especificas. Isso facilita a execucdo de analises de
sensibilidade e estudos comparativos, auxiliando na identificacao de fatores que influenciam
a disponibilidade do sistema e na avaliacdo de estratégias para sua melhoria. A compreen-
sao dessas equacoes contribui para a interpretacdo dos resultados das andlises e para orientar

decisoes de projeto e operacdo do sistema de monitoramento.

4.1.1 Modelo de Redundancia SPN

O modelo analitico de disponibilidade do sistema de voo do VANT], conforme apresentado
na Eq. 4.1 é formulado para avaliar a disponibilidade de um modo bésico de operacdo do
sistema, que inclui um [VANT] em voo, um [VANT] de reserva e uma bateria de reserva. Além
disso, para aumentar a métrica de disponibilidade, pode-se variar os tempos de falha e reparo do
, da bateria e dos componentes de recarga. No entanto, a incorporacdo de mecanismos
de redundancia no modelo para um modo de operacdo mais avancado resultaria em um espaco
de estados muito grande para a geracao explicita de cadeias de Markov e para a obtencdo de
um modelo analitico. Para abordar essa questao, propomos um modelo de método numérico
de , que pode ser avaliado usando ferramentas computacionais como o Mercury (MACIEL
et al, 2017)).

Aplicar redundancia a um sistema de vigilancia por drones o torna mais resiliente a fa-

lhas, aumentando sua disponibilidade. Alguns modelos, como cadeias de Markov de tempo
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continuo, podem modelar um certo grau de redundancia e calcular sua disponibilidade e con-
fiabilidade. No entanto, a medida que aumentamos o niimero de dependéncias e componentes
sobressalentes, o espaco de estados de uma [CTMC| cresce substancialmente, tornando sua
manutencdo invidvel. Para resolver este problema, propomos usar modelos numéricos de [SPN]|
para disponibilidade e confiabilidade, que podem ser construidos e avaliados com a ajuda de
ferramentas computacionais como Mercury (MACIEL et al., 2017)).

O modelo de disponibilidade suporta uma anélise abrangente da disponibilidade do sistema.
Este modelo permite a estimativa da disponibilidade instantanea e em estado estacionério e
métricas essenciais como tempo de inatividade, tempo de atividade e parametros relacionados.
Por outro lado, um modelo de confiabilidade (Figura é fundamental no calculo de métricas
como tempo médio até a falha, tempo mediano até a falha, percentis e ndo confiabilidade. Este
modelo pode ser representado por redes de Petri estocasticas com uma marcacao absorvente.

A Figura|l4]ilustra um modelo de disponibilidade usado para representar a implemen-
tacao de mecanismos de redundancia no sistema de vigilancia e para calcular a disponibilidade.
Este modelo é composto por cinco lugares, DR, DU, DF, BR e BC; seis transicdes tempori-
zadas exponenciais, DSW, DF, DR2, BCG, BD e DRR; e seus arcos. A Tabela 4] representa
os atributos das transicoes. Todas as transicoes sao marcadas independentemente, e sua se-
mantica de servidor é[SSS| Todas as transicdes tém prioridade um.

Um token no lugar DU representa o sistema como operacional. Isso significa que um drone
equipado com bateria esta ativo e monitorando a area-alvo. Por outro lado, a presenca de um
token no lugar DF indica uma falha do sistema resultante de um defeito no drone. Um token
no lugar BC representa uma falha do sistema devido ao esgotamento da bateria do drone. No
entanto, um token no lugar BC também indica que a bateria descarregada estd agora sendo
recarregada. Além disso, as quantidades de drones e baterias sobressalentes sdo representadas
pelo nimero de tokens nos lugares DR e BR, respectivamente, conforme definido por DN e
BN.

Neste modelo, dois arcos inibidores entre as transices DSW e DR e o lugar DU garantem
que apenas um [VANT] possa estar ativo por vez e determinam se um [VANT] sobressalente
ou recuperado pode assumir a posicao se atender as condi¢cdes necessarias. Dado o atraso
atribuido, as transicoes DRR e DR2 s3o disparadas assim que o reparo do drone é concluido.
TransicOes temporizadas, representadas por retangulos brancos, dependem do atraso para
serem habilitadas. Em contraste, transicoes imediatas, identificadas por retangulos pretos, sao

habilitadas assim que os tokens necessarios estdo presentes no lugar conectado (MELO et al.
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Figura 14 — Modelo de Disponibilidade Usando SPN para Sistemas de Vigilancia por Drone

Fonte: Elaborado pelo Autor (2024)

2021)

Em operacdo minima, o modelo opera sem drones e baterias sobressalentes, com zero
tokens nos lugares DR e BR, ou seja, DN =0 e BN = 0, enquanto um|VANT]|com bateria esta
ativo com um token no lugar DU. O tem tempos especificos como Tempo Médio até
a Falha do Drone (Mean Time to Drone Failure (MTTDF)|), Tempo Médio para Reparo

do Drone (Mean Time to Drone Repair (MTTDR)) e Tempo Médio para Substituicdo
do Drone (Mean Time to Drone Swap (MTTDS)|), Tempo Médio para Carga (MTTBC]
e Descarga da Bateria (MTTBD)), todos representados por distribuicdes exponenciais. O

Quadro [4] resume as transicdes, o tempo utilizado, as prioridades e as expressdes de guarda
utilizadas nas transicoes.
A disponibilidade do sistema de voo do usando o método numérico pode ser obtida

com a Eq. usando uma notacdo semelhante ao Mercury.

AVANT = P{#DU > O} (45)
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Quadro 4 — Pardmetros Associados a Transicées dos Modelos de Disponibilidade e Confiabilidade SPN

Transicao | Parametro | Prioridade Expressao de Guarda Descricao

DE MTTDE 1 Tr/an.5|gao exponencial com tempo
médio para falha do drone

DR MTTDR 1 Tr,an_5|gao exponencial com tempo
médio para reparo do drone

DR2 MTTDR 1 £DU > 0 Tr:'an.smao exponencial com tempo
médio para reparo do drone

BD MTTED 1 Tr,an_5|gao exponencial com tempo
médio para descarga da bateria

BCG MTTBC 1 L£SF =0 Tr:an.su;ao exponencial com jcempo
médio para carregar a bateria

DSW MTTDS 1 LSF =0 Tr/an.5|gao exponencial com tempo
médio para troca de drones

TEO TTSF 1 Tran5|9ao/ exponencial com o
tempo até a falha geral do sistema

TIO * 2 #DU >0 Transicdo imediata

TI1 * 1 Transicdo imediata

TI2 * 1 (#DU > 0)AND(#P4>0) | Transicdo imediata

TI3 * 1 (#DU > 0)AND(#P5 > 0) | Transicdo imediata

T4 * 1 Transic3o imediata

TI5 * 2 Transicdo imediata

Tl6 * 1 Transicdo imediata

Fonte: Elaborado pelo Autor (2024)

onde P calcula a probabilidade de que o sistema contenha tokens no estado ativo DU. A partir

desta [SPN] seu grafico de alcancabilidade é gerado, e a respectiva[CTMC(| é automaticamente

obtida e resolvida usando métodos numéricos (MACIEL et al., [2017)).

4.2 MODELO DE CONFIABILIDADE

Na vigilancia por drones, a métrica de confiabilidade nos permite avaliar a probabilidade de

que os drones realizem suas funcdes de vigilancia sem falhas durante um determinado periodo

ou sob condicdes especificas. Isso é crucial para garantir a eficicia continua do sistema de vi-

gilancia, pois falhas nos drones podem resultar em lacunas na cobertura, perda de informacdes

criticas e seguranca comprometida.

Propusemos um modelo [SPN]| para avaliar a confiabilidade do nosso sistema, como ilustrado

na Figura [I5] Este modelo é composto por cinco lugares e seis transicdes temporizadas,

semelhante ao modelo de disponibilidade, preservando as mesmas propriedades. Além disso,

incorpora os lugares EO, E3 e de falha do sistema (System Failure (SF)|), bem como trés
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transicGes imediatas (T10, TI5 e TI6) e seus respectivos arcos. Adicionalmente, o modelo
também possui uma subrede do tipo Erlang, composta pelos lugares E1 e E2, quatro transicoes
imediatas (TI1, T12, TI3 e Tl4) e uma transicdo temporizada exponencial TEQ. Todas as
transicSes tém prioridade um; sua semantica de servidor é[SSS| No entanto, as transicdes T15

e TI0 tém prioridade sobre as outras, sendo atribuida uma prioridade de dois.

Figura 15 — Modelo de Confiabilidade Usando SPN para Sistemas de Vigilancia por Drone

DR2

|_|
\T‘ Erlang Subnet
1 s

DF

DF | i

DR

#DR TS

#DR N

Fonte: Elaborado pelo Autor (2024)

Além disso, o modelo também apresenta uma marcacdo absorvente M/=(DR, DU, DF,
BR, BC, EO, E1, E2, E3, SF)=(0,0,0,0,0,0, 0,0, 0, 1), simbolizando a falha do sistema
apds um periodo especifico. Em certos contextos, a auséncia de servicos é considerada uma
falha apenas apds um certo atraso. Assim, nosso modelo usa uma distribuicdo poliexponencial
do tipo Erlang, com o objetivo de aproximar um tempo de descarga da bateria com distribuicao
deterministica. Essa abordagem oferece uma representacao mais direta da confiabilidade do
sistema, equilibrando a necessidade de um limite de tempo fixo com a precisdo da distribuicdo
poliexponencial.

A subrede representa a distribuicdo Erlang do tipo Eri(vy = y,A = 1/3). Onde ~ denota
o parametro de forma, também conhecido como nimero de fases, \ representa o parametro

de escala, correspondendo a taxa de cada fase exponencial. As redes de Petri comumente
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representam este Ultimo valor como o atraso médio de cada fase. O Tempo até a Falha do

Sistema, [Time to System Failure (TTSF)| é de trés minutos e segue uma distribuicdo Erlang

de dez fases e coeficiente de variacdo de 0,31 (y = 10, cv = 1y =0,31), a taxa de cada fase é

7
definida por 1/3, onde 3 = TT.SF/y. A medida que aumentamos o niimero de fases, a precisio
na representacdo de uma distribuicdo deterministica melhora. Escolhemos uma configuracao
de distribuicdo Erlang de 10 fases para este estudo (ndmero de fases é atribuido pelo valor
do peso y, no arco que vai de TI1 para E1). A escolha de tal valor visa equilibrar precisdo e
complexidade numérica.

Em nosso modelo, um token no lugar EQ representa inatividade do servico, seja devido
a falha do drone (transicido DF) ou descarga da bateria (transicio BD). Este token permite
que a transicdo TI1 dispare, armazenando um nimero y de tokens no lugar E1; os tokens
sao consumidos de acordo com o atraso atribuido a transicdo TEO, ela dispara assim que este
tempo ¢é atingido, armazenando tokens no lugar E2. A transicdo TI14 é habilitada e disparada
assim que um numero de tokens y é encontrado em E2, armazenando um token no lugar E3.
Um token no lugar E3 habilita a transicdo TI5 se o drone falhar ou a transicdo T16 se o drone
descarregar, removendo #DR tokens do lugar DR e um token do lugar DF.

Uma vez disparadas, as transicdes T15 e T16 armazenam um token no lugar SF alcancando
a marcacdo M (estado absorvente), que representa uma falha do sistema devido a um tempo
prolongado de inatividade do servico. No entanto, esse processo de falha pode ser interrompido
se o sistema for reativado, seja pela manutencdo do drone (transicio DR) ou pela substituicdo
por um novo drone e bateria (transicio DSW). As transicdes imediatas TI10, TI2 e TI3
permitem essa quebra de tempo no modelo de distribuicao Erlang, removendo todos os tokens

dos lugares EOQ, E1 e E2 assim que as condicdes de guarda sdo quebradas (conforme descrito

na Quadro [4)).

4.3 MODELO DE COBERTURA

O modelo de cobertura é um componente importante para o planejamento de missdes de
vigilancia com drones. Este modelo considera diversos fatores, incluindo as caracteristicas da
camera do drone, a area a ser monitorada e os requisitos de resolucdo para identificacdo de
objetos-alvo. Nesta secdo, apresentaremos os calculos e consideracdes necessarios para desen-
volver um modelo de cobertura que atenda as especificacdes da missdo. O Quadro [5] apresenta

uma descricdo detalhada dos parametros utilizados no modelo de cobertura, fornecendo uma
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visdo geral dos elementos que serao discutidos ao longo desta secao.

Quadro 5 — Pardmetros Modelo de Tempo de Cobertura

Parametro Descricao

FL Distancia focal do sensor da cAmera em mm

CS{CSy, CS) Altura do sensor da camera em mm

Largura do sensor da camera em mm

Angul tical d de vis3
FVoil FVon, FVgw} | & netro Ver'|ca 0 campo de Vlsaf)~
Angulo horizontal do campo de visdo

Ry Resolucao vertical do sensor da camera em pixels

Oreal Altura do objeto real observado em metros

Oim Altura do objeto observado na imagem capturada em pixels
g

Altura maxima da camera ao objeto observado dada a altura de-

H . :
mae sejada na imagem capturada em metros

Altura do campo de visao em metros
FVi{FV,, FV,)} P a°
Largura do campo de visdo em metros

Comprimento da drea em metros
A{A, A} ,
Largura da area em metros

Ni{Nip, Noog) Niamero de linhas verticais dado A, e F'V},
L ol Nimero de colunas horizontais dado A, e F'V,,

Dypeed Velocidade do VANT em m/s

CoVien Distancia percorrida pelo VANT em metros para cobrir toda a area

Tempo gasto pelo VANT para cobrir toda a area em minutos,
dado CoVien, € Dgpeed

Fonte: Elaborado pelo Autor (2024)

CO‘/time

Inicialmente, abordaremos o célculo do angulo de visdo da camera, que é relevante para
determinar a area que pode ser capturada em uma Unica imagem. Em seguida, discutiremos
como a distancia entre o drone e o objeto observado afeta a qualidade da imagem e a capa-
cidade de reconhecimento. Apresentaremos férmulas para calcular a distancia maxima que o
drone pode alcancar, mantendo a resolucdo desejada do objeto-alvo. Além disso, exploraremos
como dividir a area de interesse em segmentos menores, permitindo uma cobertura sistema-
tica. Analisaremos as diferencas entre areas regulares e irregulares. Por fim, apresentaremos
equacdes para calcular a distancia total percorrida pelo drone e o tempo necessario para cobrir
a area de interesse. Estas consideracdes sdo fundamentais para otimizar o uso do drone em
missoes de vigilancia, garantindo uma cobertura eficiente e eficaz da area alvo.

O modelo de cobertura proposto foi validado através de experimentos praticos, utilizando

um drone comercial em um cendrio de vigilancia simulado num ambiente real. Esta validagao é
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necessaria para garantir que o modelo seja aplicavel e preciso em condicdes reais, considerando
varidveis como velocidade do drone e duracdo da bateria. A validacdo experimental permitira
ajustar e refinar o modelo, assegurando sua relevancia pratica e confiabilidade em diferentes
cenarios de vigilancia. Esta secao fornecerd uma base para compreender como otimizar missdes
de vigilancia com drones, equilibrando a qualidade da cobertura com a eficiéncia operacional.

O angulo de visdo da camera (FOV|), medido em graus, é determinado pela distancia focal
do sensor até a lente e pela dimens3do horizontal ou vertical do mesmo, dependendo do angulo

desejado.

O, 180, (4.6)
™

FVa(FL,CS;) =2 x arctan

Para calcular o dngulo do triangulo completo, usamos a funcdo arco tangente da razao
entre C'S; e F'L para determinar o angulo do tridngulo retangulo e, em seguida, dobramos
esse valor (NGO; ABDUKHAKIMOV; KIM, 2019).

Aumentar a distancia entre a camera do e o objeto observado expande o campo de
visdo. No entanto, isso pode diminuir a densidade de pixeis por unidade de area, fazendo com
que o objeto pareca menor e menos definido na imagem, tornando o reconhecimento mais
desafiador. Para resolver esse dilema, calculamos a distancia maxima que o drone poderia
alcancar, considerando a altura desejada do objeto na imagem como um pardmetro. Como

mostrado na Equacdo 4.7]

Oreal X Rh

FVpix
2 X Oimg

Hmax(OrealaOimmthF%i) = (47)

2 x tan

A altura real do objeto sob observacdo é indicada como O,.,;, enquanto O;,,, representa a
altura do objeto na imagem capturada. R, refere-se a resolucdo vertical do sensor da camera,
e F'Vy; representa o angulo horizontal ou vertical que define o campo de visdo em graus.

A altura vertical do objeto, em conjunto com a resolucdo vertical, é frequentemente um
exemplo relevante em sistemas de monitoramento de pessoas, dado que a altura é geralmente
a dimens3ao predominante neste contexto. No entanto, é essencial destacar que se o objeto
for mais largo do que sua altura, é aconselhavel considerar a largura e a resolucdo horizontal

como parametros de analise.
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FVoi o -

FV;(Hpmaz, FVy;) = Hpae x tan 217 x 2. (4.8)

Com base nos angulos de abertura horizontal e vertical e na altura maxima permitida,
calculamos as dimensdes horizontais e verticais reais do campo de visdo da camera (F'V;)
em metros. A partir desses calculos, torna-se vidvel subdividir a area de interesse em seg-
mentos menores, que o drone pode capturar em momentos especificos, dividindo a area de

monitoramento em vdrias linhas e colunas (1V;).

A;
FV;

Considerando a area que a camera pode capturar, determinada pelas dimens&es horizontais

N, = (4.9)

e verticais do [FOV], e considerando a influéncia da altitude, o drone em operacdo percorrerd
uma distancia um pouco menor do que a necessaria para cobrir completamente a area de
interesse. Isso acontece porque o angulo de visdo da camera no é maior do que as
dimensdes fisicas do préprio VANT]

A Equacao |4.10| calcula a distancia percorrida pelo drone, considerando a diferenca entre

a distancia coberta pelo drone e a extensao total da area de interesse.

COWen(NlnaNcolaFthFVw) = Nln X ((Ncol - 1) X Fvw) + (Nln - 1) X vaw (410)

onde N;, e N,.,; denotam o nimero de linhas e colunas resultantes da divisdo da area de
interesse na area de captura do drone. Estas linhas e colunas sao entdo multiplicadas na
férmula pelos parametros F'V), e F'V,,, onde F'V}, representa o comprimento vertical, e F'V,,
o comprimento horizontal do campo de visdo do drone. Isso nos permite calcular a distancia

percorrida em metros (CoVj.,).

CoVien

CO‘/time (Dspeed) = D P .
spee

(4.11)

Usando a distancia percorrida e a velocidade do drone (Dgpecq), @ Equacdo calcula o
tempo necessario para cobrir completamente uma area de interesse em uma Unica passagem.
No entanto, é essencial notar que esse tempo pode ser influenciado por varias variaveis, algumas
das quais estdo relacionadas ao sistema integrado de monitoramento aéreo no drone. Em
contraste, outras s3o externas e além do nosso controle, como a forca do vento na regido, a

umidade ou a pressdo atmosférica.
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4.3.1 Validacdao do Modelo de Cobertura

Nosso objetivo é fornecer um modelo que represente de perto um sistema do mundo real.
Uma vez criado, é essencial validar este modelo para garantir sua adaptacao ao cendrio real.
Como ponto de partida principal, consideramos um ambiente de monitoramento de vigilancia
com um drone equipado com uma bateria principal e trés baterias sobressalentes para substi-
tuicdo. Cada bateria tinha uma certa porcentagem de carga, permitindo um niimero especifico
de voltas, considerando o inicio e o fim da area-alvo. Em seguida, definimos o tempo necessa-

rio para completar essas voltas com base em dados métricos exportados pelo drone utilizado

(Tabela [1)).

Figura 16 — Area de Vigilancia Alvo Demonstrando Cobertura de Drones.

Fonte: Elaborado pelo Autor (2024)

Em nosso experimento, utilizamos um drone comercial DJI Mavic Pro equipado com um

sensor de camera semicondutor de éxido metalico complementar, [Complementary Metal-Oxide-|

[Semiconductor (CMOS)|de 1/2.3"com 12,35 megapixels, uma distancia focal efetiva de 4,89

mm e dimensoes de 3,816 mm por 6,780 mm. A resolucdo de video escolhida para gravacao
foi Full HD (1920x1080). O objeto-alvo era uma pessoa com altura média de 1,70 metros, e a
area de cobertura média era de 125 m por 122 m (Fig. . O objeto-alvo tinha uma resolucao
vertical de 31 pixels na imagem capturada, permitindo melhor visualizacdo e reconhecimento

durante a missao de vigilancia. Obtivemos dados de coordenadas geograficas, tempo e veloci-
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dade através dos dados capturados pelo drone extraidos usando o servico Airdata ,
2024) (Fig. [17).

Figura 17 — Métricas Sobrepostas na Imagem Capturada pelo Drone durante o Monitoramento.

|
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Fonte: Elaborado pelo Autor (2024)

Tabela 1 — Especificacdes do Teste de Validacio

Execucao 1 2 3 4 5 6 7 8 9 10 11 12

Tempo(s) 183 133 183 177 186 185 164 185 168 188 164 180

Fonte: Elaborada pelo autor (2024)

Para melhor visualizac3o, utilizamos a ferramenta Dashware para plotar medidores sobre-

postos e avaliamos os tempos médios (Tabela [I)) (DASHWARE, [2024). O experimento durou em

média 2096 segundos com quatro baterias, considerando os niveis de carga de cada bateria.
A partir das informacdes coletadas, calculamos o intervalo de confianca usando o método
bootstrap para o tempo médio de cobertura da area-alvo uma vez. Foi aplicado um intervalo
de confianca de 95%.

Concluimos que o tempo médio esta entre 165,16667 < X < 181,95833 segundos. Cal-
culamos o tempo médio para cobrir a drea-alvo com o modelo de cobertura proposto neste
trabalho (expresso nas Equacdes e e obtivemos um tempo médio de 173,56541
segundos, que estd dentro do intervalo de confianca. Portanto, nao temos evidéncias para

rejeitar o modelo proposto, confirmando sua adequacdo ao sistema do mundo real.
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44 MODELO DE PERFORMABILIDADE

O modelo de performabilidade proposto nesta secao visa avaliar o desempenho e a confi-
abilidade de sistemas de vigilancia por drones, integrando aspectos de performance e disponi-
bilidade. Este modelo considera o tempo necessario para um drone completar uma varredura
completa de uma area especifica, abrangendo desde o inicio da missdo até sua conclus3o,
incluindo a viagem de ida para a area de interesse e o retorno a base. Além disso, o modelo
analisa como a disponibilidade do sistema afeta o tempo de varredura e examina o impacto
da implementacdo de redundancia no aumento do tempo de monitoramento efetivo.

Dada a complexidade envolvida na modelagem e a necessidade de flexibilidade na parame-
trizacdo, optou-se por um modelo numérico baseado em [SPN| Esta abordagem permite uma
representacdo detalhada dos diversos estados e transicoes do sistema, facilitando a analise
de cenarios complexos e a avaliacdo de diferentes configuracdes de redundancia. O modelo
pode ser avaliado usando ferramentas computacionais especializadas, como o software Mercury
(MACIEL et al., [2017)), que oferece recursos avancados para simulacdo e anélise de .

A Figura [18| apresenta o modelo de performabilidade desenvolvido, ilustrando a estrutura
da [SPN] utilizada para representar o sistema de vigilancia por drones. O modelo é dividido
em duas partes principais: a superior, responsavel pela performance em rondas de vigilancia
por unidade de tempo, e a inferior, que modela a disponibilidade do sistema. Esta estrutura
permite uma andlise integrada do desempenho e da confiabilidade, capturando as interacoes
complexas entre os diversos componentes do sistema de vigilancia.

Ao longo desta secdo, detalharemos os componentes do modelo, explicando as funcdes de
cada lugar e transicao, bem como as regras que governam suas interacdes. Apresentaremos
também as equacdes utilizadas para calcular métricas importantes, como a taxa de rondas de
vigilancia, a disponibilidade do sistema e o tempo de inatividade. Esta abordagem abrangente
fornecera uma base sélida para a avaliacdo e otimizacdo de sistemas de vigilancia por drones,
considerando tanto aspectos de performance quanto de disponibilidade.

A parte inferior do modelo consiste em cinco lugares: DR, DU, DF, BR e BC; seis
transicOes exponenciais temporizadas: DSW, DF, DR2, BCG, BD e DR; e seus arcos.
Todas as transi¢cdes sdo marcadas independentemente, e suas semanticas de servidor é [SSS|
Além disso, todas as transicoes sao consideradas prioridade um.

A parte superior do modelo consiste em duas sub-redes do tipo Erlang, compostas pelos

lugares START, END, PO, P1, P2 e P3; duas transicdes exponenciais temporizadas: TEQ
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Figura 18 — Modelo de Performabilidade Usando SPN para Sistemas de Vigilancia por Drones

Fonte: Elaborado pelo Autor (2024)

e TE1; e seis transicdes imediatas: TI1, TI12, TI3, TI4, TI5 e TI6; juntamente com seus
arcos. Como na parte inferior, todas as transicoes tém prioridade um, sdo marcadas indepen-
dentemente e tém [SSS| como suas semanticas de servidor. As transicdes TI0, TI17 e TI8 sdo
consideradas transicdes imediatas, com TI8 tendo prioridade um, enquanto as outras tém pri-
oridade dois. Elas também seguem Semanticas [SSS] como suas seménticas de servidor. Estas
transicGes conectam a parte inferior com a parte superior do modelo, juntamente com o lugar
GUARD.

As sub-redes representam uma distribuicdo Erlang da forma Eri(vy = y, A = 1/3). Aqui,
~ denota o pardmetro de forma, também conhecido como nlimero de fases, e A repre-
senta o parametro de escala correspondente a taxa de cada fase exponencial. Redes de

Petri frequentemente representam este Gltimo valor como o atraso médio de cada fase.
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O tempo de ida (GOINGTIME) e o tempo de retorno a base (BACKTIME) seguem
uma distribuicdo Erlang de quatro fases (y = 4), e a taxa para cada fase é 1/3, onde
B = ((GOINGTIME)OR(BACKTIME))/y, com isto, temos 0 associado ao tempo
TEOQ e 1 associado ao tempo TE1. Optamos por uma configuracdo de distribuicdo Erlang
de quatro fases para este estudo (y) para representar um coeficiente de variacdo de 0,5 para o
tempo. Isso se refere as varidveis que afetam a eficiéncia operacional dos drones, incluindo, mas
ndo se limitando a, velocidade do vento, condicoes atmosféricas e outros fatores ambientais.
Portanto, os tempos de chegada do drone do ponto A ao ponto B ndo seguem uma distri-
buicdo com taxa constante, nem exibem tanta variacdo quanto uma distribuicao exponencial,
que tem um coeficiente de variacao de 1.

Em nosso modelo, marcar um token nos lugares START e DU indica o inicio do servico,
com um drone ativo patrulhando o perimetro inicial da area de interesse. Essa marcacao ativa
e dispara a transicdo TI1, que coloca um nimero y de tokens no lugar P0. Os tokens sao
consumidos conforme o atraso atribuido a transicdo TEOQ, que é disparada uma vez que este
tempo é atingido, transferindo os tokens para o lugar P1. A transicdo TI2 é habilitada e
disparada quando vérios tokens y sdo encontrados em P1, colocando um token no lugar END
e removendo um token do lugar START, representando a chegada do drone ao ponto final da
area monitorada. O processo inverso ocorre com outra ronda de monitoramento ao retornar a
base e ao perimetro inicial da area de interesse, onde um token é novamente armazenado no
lugar.

Esse processo é influenciado pela disponibilidade do sistema, que considera os tempos
médios até a falha (MTTDF) e o reparo do drone (MTTDR), carga (MTTBC) e des-
carga (MTTBD) da bateria, e o tempo médio de voo da base até o ponto de observacdo,
representado por (MTTDS), sendo modelado na parte inferior do modelo. Quando um to-
ken é removido do lugar DU, significando que o drone nao estd mais ativo, seja por fa-
lha ou descarga da bateria, as transicGes TI3 e TI4 s3o habilitadas devido a quebra das
expressoes de guarda atribuidas a elas. A transicio TI3 contém uma expressdo de guarda
((#P0 > 0)OR(#P2 > 0))AND(#DU = 0), enquanto a transicdo TI4 contém uma ex-
pressdo de guarda ((#P1>0)OR(#P3>0))AND(#DU =0). Essas expressdes seguem a
notacdo semelhante a do Mercury e sdo aplicadas ao modelo através do software Mercury.

As expressbes de guarda aplicadas as transicbes TI3 e TI4 as habilitam apenas quando o
nimero de tokens nos lugares PO, P2, P1 e P3 é maior que zero, e o lugar DU n3o contém

tokens. Além disso, arcos inibidores (arcos com um circulo branco na extremidade) originados
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do lugar DU também habilitam as transicées TI0 e TI7 quando este lugar estd vazio. A
prioridade das transicoes T10 e TI7 permite precedéncia na ativacdo sobre as transicdes TI13
e T14 com prioridade um, removendo um token dos lugares START ou END e colocando um
token no lugar GUARD, representando a interrupcao instantanea do servico de monitoramento
devido a indisponibilidade de um componente do sistema. Uma vez habilitadas seguindo a
ordem de prioridade, as transicoes T13 e T14 s3o ativadas e removem um nlmero # de tokens
dos lugares PO, P2, P1 e P3, esvaziando-os, restaurando o processo de monitoramento para
uma marcacao inicial. Apds a recuperacdo do sistema para uma marcacdo ativa, significando
que ha um token no lugar DU, um token é removido de GUARD e colocado no lugar START
para reiniciar o monitoramento da base.

Em um sistema basico, o modelo de disponibilidade (parte inferior) opera sem drones e
baterias sobressalentes, com zero tokens nos lugares DR e BR, ou seja, DN =0 e BN = 0.
Em contraste, um com bateria estad ativo, representado por um token no lugar DU.
Dois arcos inibidores entre as transicoes DSW e DR e o lugar DU garantem que apenas
um [VANT] possa estar ativo por vez e determinam se um [VANT] sobressalente ou reparado
pode tomar a posicao, se atender as condicoes necessarias. Isso restaura a marcacao ativa do
sistema de duas maneiras: adicionando um token ao lugar DU quando o reparo é concluido na
auséncia de componentes do drone e baterias sobressalentes ou depositando o drone e a bateria
recuperados em seus repositorios para reutilizacao nos lugares DR e BR, com um token sendo
armazenado em cada lugar. Isso ocorre se a marcacao com um drone ativo ja foi alcancada
antes que o drone com falha seja recuperado por meio de componentes sobressalentes.

As rondas de vigilancia realizadas por unidade de tempo sao calculadas avaliando a taxa de
throughput no modelo de desempenho, conforme demonstrado na Equacdo[4.12] Esta equacdo

utiliza uma notacao de expressao semelhante ao Mercury.

Tz = (P{#START > 0} x (1/GOINGTIME))
+ (P{#END >0} x (1/BACKTIME)), (4.12)

onde P representa a probabilidade do sistema conter tokens nos estados START e END. A
derivacao do valor final em unidades de tempo envolve dividir as probabilidades pelo tempo
total de ida e volta para cada lugar e agregar os resultados.

Além disso, é possivel determinar a disponibilidade do sistema de voo do [VANT] e sua

indisponibilidade e tempo de inatividade por unidade de tempo usando, respectivamente, as
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Equacdes 4.13] [4.14| e [4.15]

A= P{#DU > 0}. (4.13)
UA=1-A. (4.14)
DT =UAxT (4.15)

P calcula a probabilidade do sistema conter tokens no lugar ativo DU. Um grafo de alcan-
cabilidade é gerado a partir deste modelo de [SPN| Em seguida, o correspondente modelo
de é automaticamente derivado e resolvido usando métodos numéricos (MACIEL et al.,
2017)).

Embora os modelos propostos neste capitulo fornecam uma base sélida para a anilise
de confiabilidade, disponibilidade e performabilidade dos sistemas de vigilancia com drones,
é importante reconhecer algumas limitacGes e suposicées adotadas. Os modelos consideram,
por exemplo, taxas de falha constantes e independentes, simplificando o comportamento do
sistema, mas pode n3o refletir todas as variacGes presentes em cendrios reais. Além disso, as
condicGes operacionais foram modeladas com base em um conjunto especifico de parametros,
o que pode limitar a generalizacdo dos resultados para outros contextos. Essas simplificacdes
foram necessarias para viabilizar a construcdo e a anélise dos modelos, porém, seus impactos
serdo discutidos de forma mais detalhada nos estudos de caso no préximo capitulo. A partir
dessa analise, sera possivel avaliar o alcance dos resultados obtidos e propor aprimoramentos

para mitigar as limitacdes identificadas.
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5 ESTUDOS DE CASO

Este capitulo apresenta uma analise do sistema de vigilancia baseado em [VANTSE, explo-
rando os fatores que influenciam sua confiabilidade, disponibilidade e performabilidade. Por
meio de dois estudos de caso, investigamos o impacto das variacdes nos componentes redun-
dantes de baterias e drones, utilizando técnicas de modelagem e andlise de sensibilidade. O
primeiro estudo de caso foca na avaliacdo da confiabilidade do sistema, examinando como a
redundancia de baterias e os tempos médios de carga e descarga afetam o desempenho global
ao longo do tempo por meio de um modelo (Modelo . O segundo estudo de caso
expande a investigacdo para uma analise de disponibilidade e performabilidade, explorando
como o aumento de componentes redundantes influencia métricas como throughput, proba-
bilidade de espera por baterias e tempo de inatividade anual por meio de modelos e
SPN| (Modelos [13] [14] e [18).

Nossa investigacdo utiliza uma técnica de diferenciacdo percentual para conduzir a anélise
de sensibilidade aplicado a métrica de disponibilidade do sistema, variando sistematicamente
um paradmetro de cada vez enquanto mantemos os outros fixos (HAMBY, 1994; |ARAUJO et al.,
2013; IMATOS et al, 2020) (Tabela . Este método nos permite quantificar o impacto indi-
vidual de cada pardmetro na eficiéncia do sistema. Um aspecto importante deste capitulo é
a classificacdo de sensibilidade desenvolvida, que identifica e hierarquiza os pardmetros mais
influentes na disponibilidade do sistema. Esta classificacdo, apresentada na Tabela [4] oferece
insights para engenheiros e projetistas, destacando areas para otimizacao e melhoria. A Ta-
bela 4| indica que os tempos de descarga da bateria (MTTBD) e os tempos de carregamento
(MTTBC) tém o maior impacto na disponibilidade do sistema, seguidos pelo tempo de subs-
tituicdo da bateria do drone (MTTDS). Estes resultados fornecem diretrizes para melhorar a
disponibilidade do sistema, sugerindo foco na reducao dos tempos relacionados ao MTTBC e
MTTDS, bem como no aumento da capacidade de armazenamento das baterias para estender
o MTTBD.

Os estudos de caso apresentados neste capitulo utilizam parametros selecionados, detalha-
dos nas Tabelas 2, [3] e [5] que refletem configuracdes de sistemas de vigilancia por drones. Ao
longo do capitulo, apresentamos analises visuais, incluindo graficos de superficie e de barras
(Figuras a , que ilustram as relacdes entre diversos parametros do sistema e suas métri-

cas de desempenho. Estas visualizacdes oferecem uma compreensdo das dinamicas do sistema
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e apoiam a tomada de decisGes no design e operacgdo de sistemas de vigilancia por VANTE.
Este capitulo valida os modelos tedricos desenvolvidos anteriormente e oferece uma cone-
X30 entre a teoria e a pratica. Através destes estudos de caso, demonstramos como analises
quantitativas podem informar decisdes de design e operacdo em sistemas de vigilancia com
VANTE, fornecendo insights para otimizacdo de recursos, planejamento de redundancia e es-
tabelecimento de niveis de servico. As secoes seguintes detalhardo cada estudo de caso, apre-
sentando metodologias, resultados e discussdes, com o objetivo de fornecer uma compreensao

dos fatores que influenciam o desempenho destes sistemas de vigilancia baseados em drones.

5.1 ESTUDO DE CASO #1

Este estudo de caso avalia o impacto da redundancia de componentes na confiabilidade
de um sistema de vigilancia por drones, com foco nas baterias. A pesquisa foi motivada
pela observacdo de que o aumento no numero de drones sobressalentes ndo resultava em
melhorias notaveis na confiabilidade do sistema durante uma analise transiente de 30 horas.
Esta constatacdo nos levou a direcionar nossa atencao para a redundancia das baterias, um
componente importante cuja falha pode comprometer a operacao do sistema.

Para conduzir esta analise, desenvolvemos um modelo baseado @] modelo apresentado
no Capitulo [4f como uma adaptacao do modelo de disponibilidade. Este modelo incorpora
um estado absorvente, como ilustrado na Figura [I5] permitindo uma avaliagdo mais precisa
do impacto da redundancia da bateria na confiabilidade geral do sistema. Na modelagem do
comportamento temporal das baterias, optamos por um modelo Erlang com 10 fases para
o parametro y. Esta escolha visa um equilibrio entre precisdo e eficiéncia computacional,
apds testes que demonstraram que um aumento no nimero de fases ndo produzia alteracdes
significativas nos resultados da anélise.

Nossa investigacao abrangeu trés aspectos que influenciam diretamente a confiabilidade

do sistema:

1. Ndmero de Baterias Redundantes (BN): Variamos de 0 a 20 baterias sobressalentes.

2. Tempo Médio para Carga da Bateria (MTTBC): Analisamos cenérios com tempos de

carga variando de 18 a 180 minutos.
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3. Tempo Médio para Descarga da Bateria (MTTBD): Consideramos tempos de descarga

também no intervalo de 18 a 180 minutos.

Estes parametros foram selecionados para refletir uma variedade de cenarios operacionais.
Em todos os experimentos, mantivemos o niimero de drones sobressalentes (DN) fixo em
zero, permitindo-nos isolar e quantificar o efeito da redundancia de baterias na confiabilidade

do sistema. Os parametros relacionados aos tempos-base do modelo sdo descritos na Tabela

2

Tabela 2 — Pardmetros de Avaliacdo do Modelo de Confiabilidade.

Parametro Valores (Horas)

TTSF 5,00 x 102
MTTBC 2,00
MTTBD 5,00 x 101
MTTDF 5,03 x 103
MTTDR 2,00
MTTDS 1,60 x 102

Fonte: Elaborada pelo autor (2024)

Para a execucdo dos experimentos, utilizamos o software Mercury, uma ferramenta para
analise de modelos [SPN| (MACIEL et al, 2017)). A confiabilidade do sistema foi avaliada através
da expressio P{#SF = 0}, que calcula a probabilidade de n3o haver tokens no lugar @
representando assim a probabilidade de o sistema ndo entrar em estado de falha durante o
periodo de operacdo analisado.

Os resultados desta analise sdo apresentados nas Figuras [19] [20] e 21} que ilustram res-
pectivamente o impacto do niimero de baterias redundantes, do tempo de carga e do tempo
de descarga na confiabilidade do sistema ao longo do tempo. Estas visualizacGes fornecem
informacdes sobre como otimizar a configuracdo do sistema para melhorar sua confiabilidade
em diferentes cendrios operacionais.

A Figura ilustra o impacto do niimero de baterias redundantes na confiabilidade do
sistema ao longo de 30 horas. Os resultados indicam que com 15-20 baterias redundantes,
o sistema mantém a confiabilidade acima de 80% por quase todo o periodo. Em contraste,
com 0-5 baterias, a confiabilidade cai rapidamente para menos de 20% em poucas horas.
Estes resultados demonstram claramente a importancia critica da redundancia de baterias

para missdes de longa duracao.
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Figura 19 — Relacdo entre Confiabilidade do Sistema, Tempo de Operacio e Nimero de Baterias Redundantes
(BN) durante um Periodo de 30 Horas
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Fonte: Elaborado pelo Autor (2024)

Figura 20 — Impacto do Tempo Médio de Carga da Bateria (MTTBC) na Confiabilidade do Sistema Durante
2 Horas de Operacédo

100
90
80
70
60
50
40
30
20
10

100
80
60
40
20

CONFIABILIDADE (%)

o

Fonte: Elaborado pelo Autor

A Figura [20| apresenta a relac3o entre o Tempo Médio de Carga da Bateria (MTTBC) e a
confiabilidade do sistema durante 2 horas de operacdo. Observa-se um padrao interessante na
relacdo entre MTTBC e confiabilidade. Para um MTTBC de 18 minutos, a confiabilidade do
sistema comeca em 100%, cai para aproximadamente 40% em 30 minutos e chega a zero apds
2 horas de operacao. Notavelmente, o aumento do MTTBC de 18 minutos até 180 minutos

ndo apresenta impacto significativo na curva de confiabilidade, com as curvas para diferentes
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valores de MTTBC neste intervalo permanecendo muito préximas. Estes dados sugerem que,
uma vez que o MTTBC atinge um certo limiar (neste caso, 18 minutos), melhorias adicionais
no tempo de carga tém pouco efeito na confiabilidade do sistema ao longo do tempo de

operacdo analisado.

Figura 21 — Efeito do Tempo Médio de Descarga da Bateria (MTTBD) na Confiabilidade do Sistema ao Longo
de 2 Horas de Operacdo.
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Fonte: Elaborado pelo Autor (2024)

A Figura demonstra o efeito do Tempo Médio para Descarga da Bateria (MTTBD)
na confiabilidade do sistema, também durante 2 horas de operacdo. Nota-se uma relacdo
direta entre MTTBD e confiabilidade. Com um MTTBD de 180 minutos, o sistema mantém
a confiabilidade acima de 60% durante todo o periodo. Em contraste, com um MTTBD de
36 minutos, a confiabilidade diminui drasticamente, atingindo menos de 20% apé6s 1 hora
de operacao. Estes resultados enfatizam a necessidade de baterias de alta capacidade ou
estratégias de otimizacdo de consumo de energia para prolongar o tempo de operacao confidvel.

Estes resultados demonstram que a confiabilidade do sistema é altamente sensivel a mdal-
tiplos fatores, sendo o nimero de baterias redundantes crucial para missées de longa duracao,
enquanto os tempos de carga e descarga da bateria s3o criticos para a confiabilidade em pe-
riodos mais curtos. Para otimizar o sistema, recomenda-se manter um nimero adequado de
baterias redundantes, idealmente entre 15 e 20 para missoes de 30 horas, como indicado na
Figura[19 Adicionalmente, minimizar o tempo de carga da bateria para menos de 36 minutos
(Figura e usar baterias com tempos de descarga superiores a 144 minutos (Figura sao

estratégias aconselhaveis para melhorar o desempenho geral do sistema.
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Para ilustrar uma aplicacdo pratica deste estudo, consideremos um cenério de vigilancia
urbana, onde uma empresa utiliza drones para monitorar um festival de musica ao ar livre com
duracdo de 4 horas. Baseando-se nos resultados da pesquisa, a empresa pode implementar uma
estratégia eficaz utilizando aproximadamente 10 baterias redundantes, o que manterd uma
confiabilidade do sistema acima de 80% durante todo o evento. Esta abordagem representa
uma otimizacdo significativa de recursos em comparacdo com as 15-20 baterias que seriam
necessarias para missdes mais longas, de 30 horas, permitindo uma reducdo de custos sem
comprometer a eficacia da operacao.

O estudo também fornece diretrizes valiosas para os pardmetros de carga e descarga das
baterias. Um tempo médio de carga de bateria (MTTBC) de cerca de 20 minutos mostra-se
suficiente, eliminando a necessidade de investimentos em sistemas de carga mais rapidos e
potencialmente mais caros. Ademais, a empresa deve priorizar a utilizacdo de drones equi-
pados com baterias que possuam um tempo médio de descarga (MTTBD) de pelo menos
180 minutos, assegurando que cada drone possa operar por um periodo substancial antes de
necessitar substituicao.

Com base nessas recomendacdes, a empresa pode estabelecer um sistema de rotacdo efici-
ente, onde drones com baterias completamente carregadas substituem aqueles cujas baterias
estdo se esgotando, garantindo uma cobertura ininterrupta do evento. Esta estratégia ndo
apenas assegura uma alta confiabilidade do sistema durante as 4 horas do festival, mas tam-
bém otimiza os custos operacionais. Adicionalmente, tal configuracdo oferece a flexibilidade
necessaria para estender o monitoramento por algumas horas extras, se preciso, exemplifi-
cando como a analise detalhada da confiabilidade do sistema pode ser traduzida em beneficios
praticos e econOmicos em cendrios reais de seguranca e vigilancia urbana.

Ao implementar essas recomendacoes, os projetistas de sistemas de vigilancia por drones
podem equilibrar efetivamente a duracao da missdo, a confiabilidade do sistema e os recur-
sos disponiveis. As andlises apresentadas nas Figuras [19} [20] e [21] fornecem insights valiosos
para otimizar o desempenho do sistema sob vérias condicoes e duracoes de missdo. Essas
estratégias, quando aplicadas coletivamente, podem resultar em um sistema de vigilancia por
drones mais robusto e confiavel, capaz de operar eficientemente em uma ampla gama de ce-
narios, aumentando, em ultima analise, a eficacia geral das operacdes de vigilancia baseadas
em drones.

E importante notar algumas limitacdes deste estudo. O modelo assume taxas de falha e re-

paro constantes, o que pode nao refletir precisamente o comportamento real dos componentes
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ao longo do tempo. Além disso, nao consideramos fatores ambientais como temperatura ou
condicGes climaticas, que podem afetar o desempenho das baterias. A analise também focou
apenas na redundancia de baterias, ndo considerando outros componentes que podem falhar.

Para futuras pesquisas, seria valioso expandir o modelo para incluir a redundéncia de outros
componentes criticos, como sensores e sistemas de comunicacdo. Além disso, a incorporacao
de fatores ambientais e a consideracio de taxas de falha e reparo variaveis ao longo do tempo
poderiam fornecer uma visao mais realista e abrangente da confiabilidade do sistema em

diferentes condicOes operacionais.

5.2 ESTUDO DE CASO #2

Este estudo de caso avalia o impacto da redundancia e melhorias de componentes na dis-
ponibilidade e performabilidade de um sistema de vigilancia por drones, com foco particular
nas baterias e nos tempos médios do sistema. Os experimentos foram motivados pela observa-
cdo inicial de que o aumento no nimero de drones sobressalentes nao resultava em melhorias
significativas na disponibilidade do sistema durante analises preliminares. Esta constatacdo
nos levou a direcionar nossa atencdo para a redundancia das baterias e outros parametros
temporais criticos, componentes essenciais cuja otimizacdao pode substancialmente melhorar a
performance e a disponibilidade do sistema.

Para conduzir esta anélise, desenvolvemos e aplicamos dois modelos complementares:

1. Um modelo de disponibilidade baseado em [SPN] apresentado na Figura [I4] do Capitulo
[l Este modelo nos permite avaliar como diferentes configuracdes de redundancia e

tempos médios afetam a disponibilidade do sistema.

2. Um modelo de performabilidade, também baseado em [SPN| que incorpora o tempo
de cobertura (C'oV},e) calculado a partir do nosso modelo de cobertura. Este modelo,
ilustrado na Figura[18 do Capitulo[d] nos permite analisar métricas de desempenho como

throughput e probabilidade de espera por baterias.

Na modelagem do comportamento temporal dos componentes, optamos por distribuicoes
exponenciais para os tempos de falha e reparo, uma escolha que busca equilibrar precisio e

tratabilidade computacional.
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Nossa investigacao abrangeu varios aspectos que influenciam a confiabilidade, disponibili-

dade e performabilidade do sistema:

Ndmero de Baterias Redundantes (BN): Variamos de 1 a 12 baterias sobressalentes.

— Tempo Médio para Carga da Bateria (MTTBC): Analisamos cenarios com tempos de

carga variando de 30 a 180 minutos.

Tempo Médio para Descarga da Bateria (MTTBD): Consideramos tempos de descarga

também no intervalo de 30 a 180 minutos.

Tempo de Cobertura (CoVy;me): Incorporamos este parametro, derivado do modelo de
dimensionamento, para refletir o tempo necessario para o drone cobrir a area de vigilancia

designada.

Estes parametros foram selecionados para refletir uma variedade de cenarios operacio-
nais. Em todos os experimentos, mantivemos o niimero de drones sobressalentes (DN) fixo,
permitindo-nos isolar e quantificar o efeito da redundancia de baterias e dos tempos médios
do sistema na confiabilidade, disponibilidade e performabilidade.

Para a execucao dos experimentos, utilizamos o software Mercury, uma ferramenta para
analise de modelos (MACIEL et al}, 2017). Avaliamos métricas como disponibilidade do
sistema, throughput (medido em rondas de vigilancia por hora), probabilidade de espera por

baterias e tempo médio de inatividade anual.

Tabela 3 — Parametros de Dimensionamento do Sistema de Vigilancia por Drone

Parametro Valores
FL 4,89 mm
’sy, 3,816 mm
CSy 6,780 mm

Ry, 1080 px
Oreal 1,70 m
Oimg 31 px
H,un 32,17 m

A; 124 m

Ay 130 m
Dgpeed 3m/s

Fonte: Elaborada pelo autor (2024)
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Os parametros de dimensionamento do VANT selecionado para os experimentos subse-
quentes foram determinados com base nas configuracdes tipicas de camera e velocidade de
um drone comercial convencional. Além disso, para os experimentos seguintes, assumimos que
este sistema monitora uma area para detectar a entrada e saida de pessoas na area. Neste
contexto, consideramos um ser humano com uma altura média de 1,7 metros (O,cq) € um
requisito minimo de 31 pixels na imagem capturada (O, ). Também estamos considerando
uma area de vigilancia equivalente as dimensdes da area de validacdo utilizada, 124 metros de
comprimento (4;) e 130 metros de largura (A,) (Tabela [3)).

Calculamos o parametro C'oVy;,,.. através do dimensionamento e o utilizamos como entrada
para alimentar o modelo de [SPN| Os outros valores dos pardmetros iniciais utilizados nos
experimentos estdo detalhados na Tabela 5]

A seguir, apresentamos estudos de caso baseados em uma andlise de sensibilidade dos
componentes do sistema, visando identificar aqueles com maior grau de criticidade (Tabela
. A andlise utilizou uma técnica de diferenciacao percentual descrita na Equacao m
Adicionalmente, fornecemos uma classificacao de sensibilidade demonstrando o impacto de
cada parametro na métrica de disponibilidade do sistema. Esta métrica interfere na métrica
de throughput do sistema, representado pelo niimero de voltas que o drone realiza por minuto

e esta detalhada na Tabela Bl

Tabela 4 — Classificacdo de Sensibilidade

Parametro Classificacao Indice de sensibilidade

MTTBD 1° 5,694 x 107!
MTTBC 2° 5,396 x 107!
MTTDS 3@ 6,601 x 1073
MTTDF 4° 5,304 x 10-°
MTTDR 5e 3,508 x 107°

Fonte: Elaborada pelo autor (2024)

A Tabela {4 indica que os tempos de descarga da bateria (MTTBDJ|) e os tempos de
carga (MTTBC|) tém o maior impacto na disponibilidade do sistema. O terceiro fator mais
importante é o tempo de substituicdo da bateria do drone (MTTDS]). Para melhorar a dis-

ponibilidade, engenheiros e projetistas de sistemas devem se concentrar em reduzir os tempos

relacionados ao [MTTBC| e  MTTDS| adquirindo equipamentos melhores, como carregado-

res de bateria de maior eficiéncia e drones mais ageis. Baterias com maior capacidade de
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Tabela 5 — Pardmetros de Avaliacdo de Performabilidade

Parametro Valores (Horas)

CoViime 4,82 x 102
MTTBC 2,00
MTTBD 5,00 x 101
MTTDF 5,03 x 103
MTTDR 2,00
MTTDS 1,60 x 102

Fonte: Elaborada pelo autor (2024)

armazenamento também podem estender o periodo (MTTBD)).

Neste estudo de caso, investigamos os fatores que impactam a disponibilidade de siste-
mas de drones de vigilancia, focando especificamente no gerenciamento de baterias e pecas
sobressalentes. Por meio de anélise estacionaria, avaliamos a influéncia de MTTBC, MTTBD
e BN na disponibilidade. O objetivo principal é auxiliar engenheiros e gestores na otimizac3do
do projeto e operacao do sistema, identificando estratégias para garantir alta disponibilidade
em varios cenarios. Os graficos ilustram claramente o impacto desses pardmetros na disponi-
bilidade operacional, oferecendo insights valiosos para melhorar o desempenho e a eficiéncia
dos sistemas de drones de vigilancia.

A Figura 22| ilustra o impacto do MTTBC, evidenciando uma clara relacdo inversa entre o
tempo de carregamento e a disponibilidade do sistema. A medida que o MTTBC aumenta, a
disponibilidade diminui, particularmente com menos baterias sobressalentes. Por exemplo, com
um MTTBC de 30 minutos e BN=3, a disponibilidade varia de 90-100%. No entanto, quando
o MTTBC aumenta para 120 minutos mantendo BN=3, a disponibilidade cai para 80-90%.
Esta tendéncia indica que investimentos em tecnologias de carregamento podem impactar
significativamente a disponibilidade operacional.

A Figura 23] focada no MTTBD, mostra uma tendéncia oposta e mais pronunciada -
aumentos no MTTBD resultam em melhorias substanciais na disponibilidade do sistema. Com
MTTBD de 30 minutos e BN=3, a disponibilidade estd na faixa de 70-80%. No entanto,
aumentando o MTTBD para 90 minutos enquanto mantém BN=3, a disponibilidade sobe
para 90-100%. Notavelmente, com um MTTBD de 180 minutos, mesmo com apenas duas
baterias sobressalentes (BN=2), é possivel manter 90-100% de disponibilidade. Esses dados
indicam que investir em baterias de maior duracdo pode ser uma estratégia altamente eficaz

para melhorar a disponibilidade do sistema.
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Figura 22 — Impacto do Tempo Médio de Carregamento da Bateria (MTTBC) e do Nidmero de Baterias
Sobressalentes (BN) na Disponibilidade do Sistema de Drones.
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Fonte: Elaborado pelo Autor (2024)

Figura 23 — Impacto do Tempo Médio de Descarga da Bateria (MTTBD) e do Nimero de Baterias Sobressa-
lentes (BN) na Disponibilidade do Sistema de Drones.
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A andlise comparativa dos dois graficos revela que melhorias no MTTBD tém um im-
pacto mais positivo e imediato na disponibilidade do sistema do que reducdes equivalentes
no MTTBC. Por exemplo, para um cenario com BN=3 e tempo de 120 minutos, o grafico
MTTBC mostra uma disponibilidade de 80-90%, enquanto o grafico MTTBD indica uma
disponibilidade de 90-100% para os mesmos parametros.

Os gréficos permitem identificar areas de otimizaciao onde se pode alcancar um equilibrio
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ideal entre os parametros. No grafico MTTBC, a zona 6tima estd entre 60-90 minutos com
BN=3-4, mantendo a disponibilidade em 90-100%. No grafico MTTBD, quase toda a éarea
com MTTBD superior a 90 minutos e BN igual ou superior a trés oferece disponibilidade
maxima.

Ambos os graficos exibem pontos de inflexdo. No grafico MTTBC, um aumento de BN
de 3 para 4, com um tempo de carga de 150 minutos, leva a um aumento na disponibilidade
de 70-80% para 80-90%. Por outro lado, no grafico MTTBD, a mudanca de 80-90% para
90-100% de disponibilidade ocorre rapidamente a medida que o tempo de descarga passa de
60 para 90 minutos, com BN=3.

Em conclus3o, os resultados sugerem que, embora reduzir o tempo de carregamento seja
benéfico, investir em baterias de maior duracdo e aumentar o nimero de baterias sobressalentes
pode oferecer melhorias mais significativas na disponibilidade do sistema. Essas percepcdes sdo
cruciais para otimizar o projeto de sistemas de drones e equilibrar custos, eficiéncia operacional
e disponibilidade.

No entanto, a Figura [24] retrata a influéncia do nimero de drones (DN) e baterias sobres-
salentes (BN) na disponibilidade do sistema, em vez dos gréficos e , que destacam os
impactos significativos de MTTBC, MTTBD e BN na disponibilidade. O grafico[24]indica uma
tendéncia clara. Neste cenario, deve-se enfatizar que um aumento nos drones sobressalentes
nao leva a melhorias substanciais na disponibilidade do sistema. Isso se deve aos baixos tempos
de manutencdo e ao alto tempo médio até a falha (MTTDF) dos drones.

Os dados representados no gréfico ilustram que adicionar mais baterias sobressalentes tem
um impacto significativamente mais positivo na disponibilidade do sistema do que adicio-
nar drones sobressalentes. A disponibilidade do sistema tende a atingir um platé apés um
certo limite de componentes redundantes, nao mostrando melhorias substanciais além desse
ponto. Vale ressaltar que com apenas cinco baterias sobressalentes, o sistema atinge uma
impressionante disponibilidade de 96,74%, enquanto adicionar mais drones sobressalentes ndo
proporciona beneficios adicionais significativos.

Adicionalmente, focamos também em explorar o impacto da redundéncia de baterias no
desempenho e disponibilidade do sistema de vigilancia por drones. As Figuras [25] 26] [27] e
ilustram os principais resultados deste estudo, fornecendo insights significativos para o
planejamento e otimizacao do sistema. As Figuras a mostra trés graficos criticos: o

throughput do sistema medido em rondas de vigilancia por hora, a probabilidade do drone

esperar por baterias, [Probability of Drone Waiting for Batteries (PDWB)| e o ndmero médio
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Figura 24 — Impacto do Niimero de Drones (DN) e Baterias Sobressalentes (BN) na Disponibilidade do Sistema
de Drones.
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de baterias disponiveis, [Average Number of Batteries Available (AVGBA), Adicionalmente, a

Figura [28] apresenta o tempo de inatividade anual do sistema em horas (DTyd).

Integrar os modelos de cobertura e performabilidade para uma analise completa é essencial.
O modelo de cobertura permite aos analistas determinar a altura maxima de operacdo do
drone e a area que ele pode cobrir em uma Unica passagem, considerando as dimensoes do
alvo monitorado, a resolucdo da camera e o@ Por exemplo, ao considerar um alvo humano
com 1,75m de altura, exigindo uma representacao de 150 pixels na imagem, e usando uma
camera com resolucdo de 1920x1080 pixels, o modelo de cobertura calcula a altura maxima
de voo e o [FOV]| correspondente. Esses pardmetros afetam diretamente o tempo de cobertura
da area monitorada (CoViime).

O modelo de performabilidade considera o C'oV;,,. um fator critico. Ele é calculado com
base no campo de visdo do drone , velocidade média e area que precisa monitorar. Por
exemplo, se 0 C'oV}jne for determinado como 10 minutos para uma area de 100x100m, esse
valor é entdo utilizado no modelo de Rede de Petri para estabelecer a duracdo de cada ciclo de
vigilancia. Portanto, este parametro, derivado do modelo de cobertura, impacta diretamente
o throughput do sistema, medido em rondas de vigilancia por hora (ver Figura .

Os resultados do modelo de performabilidade ilustram uma clara relacdo entre o aumento
de baterias sobressalentes (BN) e a melhoria no desempenho do sistema. Com BN aumentando

de 1 para 6, ha um notavel aumento no throughput, subindo de aproximadamente 10 para 17
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Figura 25 — Rondas de Vigilancia Realizadas por Hora pelo Drone.

21
20
19
18 |
17
16 |
15 |
14 |
13 |
12 |
1"
10

Throughput (ronda/hora)

Fonte: Elaborado pelo Autor (2024)

rondas por hora (Fig. . Simultaneamente, PDWB|vé uma queda acentuada, caindo de cerca
de 25% para menos de 5% (Fig. . Enquanto isso, o JAVGBA| aumenta de 1 para quase 5
(Fig. [27)). Este avanco reflete diretamente na reducdo do tempo de inatividade anual (DTyd),

diminuindo de aproximadamente 100 horas para menos de 20 horas anualmente (Fig. .

Figura 26 — Probabilidade do Drone Esperar pelas Baterias.
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A interacdo entre os modelos de cobertura e performabilidade permite uma otimizacdo
mais precisa do sistema. Por exemplo, se uma mudanca nos atributos do alvo ou na resolucao
da camera aumentar o C'oV};,,. de 10 para 15 minutos, o modelo de performabilidade pode ser

rapidamente recalibrado para considerar este ajuste. Esta adaptacdo permitiria aos gestores
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avaliar as repercussdes desta modificacao no throughput do sistema e discernir se baterias

extras sdo necessarias para manter o nivel de servico estipulado.

Figura 27 — Nimero Médio de Baterias Disponiveis.
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E essencial utilizar estes dados integrados para otimizar vérios aspectos do sistema. Para
atingir o objetivo operacional de 16 rondas por hora, o C'oVy;,,. calculado sugere que consultar
os dados na Fig. [25| pode ajudar a determinar o niimero necessério de baterias sobressalentes,
permitindo um planejamento preciso. Para manter um [PDWB|maximo de 5% conforme Acordo

de Nivel de Servico, [Service Level Agreement (SLA), a Figura [26| indica a necessidade de

pelo menos sete baterias sobressalentes, possibilitando o estabelecimento de SLAs realistas
e alcancaveis. Adicionalmente, para reduzir o tempo de inatividade anual para menos de 24
horas, a Fig. propOe que seis baterias sobressalentes seriam necessarias, facilitando um
planejamento mais eficiente das janelas de manutencao.

Os dados indicam que passar de 8 para 9 baterias leva apenas a pequenas melhorias
de desempenho, sugerindo um ponto critico em um processo de retornos decrescentes. Esta
percepcao é essencial para tomar decisdes informadas sobre investimentos em redundancia. Ao
planejar um aumento de 20% no throughput, as informacdes na Figura [25| permitem o célculo
preciso das baterias adicionais necessarias, facilitando o planejamento estratégico de recursos
para expansao futura. Por exemplo, aumentar BN de 10 para 12 mostra melhorias minimas
em todos os parametros, sugerindo que investimentos adicionais além deste limiar podem nao
ser justificaveis.

E importante notar algumas limitaces deste estudo. Os modelos assumem distribuicdes

exponenciais para os tempos de falha e reparo, podendo n3o representar precisamente o com-
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Figura 28 — Anilise do Tempo de Inatividade Anual do Sistema (DTyd) em Relacdo ao Niimero de Baterias
Sobressalentes.
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portamento real dos componentes. Nao consideramos a degradacao das baterias ao longo do
tempo, o que poderia afetar o desempenho em longo prazo. Além disso, a analise ndo con-
sidera variacdes nas condicdes operacionais, como diferentes perfis de missdao ou condicdes
ambientais.

Essas anélises ilustram a importancia da modelagem de performabilidade na melhoria da
eficiéncia dos sistemas de vigilancia por drones. Ao oferecer insights quantitativos sobre os
efeitos da redundancia de baterias, o modelo facilita a tomada de decisGes bem informadas que
equilibram desempenho, disponibilidade e custo. Melhorar a eficiéncia operacional estabelece

uma base sélida para planejamento estratégico, gerenciamento de riscos e alocacao de recursos.
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6 CONCLUSOES

Este trabalho apresentou uma abordagem abrangente para avaliar sistemas de vigilancia
baseados em [VANTE utilizando modelos estocasticos avancados. O objetivo principal de de-
senvolver modelos para otimizacdo de sistemas de vigilancia com drones, integrando analises
de confiabilidade, disponibilidade e performabilidade, foi alcancado com sucesso. Estes mo-
delos integraram fatores criticos como area de vigilancia, resolucdo da camera, restricoes de

altitude, gerenciamento de bateria, falhas e reparos, avaliados por meio de [CTMCk e [SPNE.

Em relacdo aos objetivos secundarios, conseguimos melhorar significativamente a autonomia
da bateria e gerenciar eficazmente aspectos operacionais como tempos de carregamento e
tempos de trocas de drones no sistema. Os estudos de caso apresentados validaram a eficacia
dos modelos na melhoria do desempenho da vigilancia de VANTE, fornecendo insights valiosos
para otimizacao de sistemas.

Nossa metodologia, que incorporou andlises de sensibilidade para identificar componentes
criticos e avaliar o impacto das redundancias no desempenho do sistema, revelou descobertas
significativas. Notavelmente, a redundancia de baterias demonstrou ter um impacto substancial
na disponibilidade e confiabilidade do sistema, superando a redundancia de drones. O[MTTB(
e o [MTTBD| foram identificados como fatores criticos que afetam diretamente o desempenho
do sistema. Os resultados dos estudos de caso forneceram diretrizes praticas valiosas para
projetistas e engenheiros de sistemas de vigilancia por drones. Para missoes de longa duracao
(30 horas), descobrimos que manter entre 15 e 20 baterias redundantes pode garantir uma
confiabilidade acima de 80%. Além disso, otimizar o tempo de carregamento da bateria para
menos de 36 minutos e usar baterias com tempos de descarga superiores a 144 minutos pode
melhorar significativamente a confiabilidade do sistema. Estas descobertas tém implicacoes
diretas para o desenvolvimento de sistemas mais robustos e confiaveis.

E importante, no entanto, reconhecer algumas limitacdes deste estudo. Os modelos assu-
mem taxas de falha e reparo constantes, podendo nao refletir precisamente o comportamento
real dos componentes ao longo do tempo. Além disso, ndo consideramos fatores ambientais
como temperatura ou condicOes climaticas, que podem afetar o desempenho das baterias. A
analise também focou na redundancia de baterias, ndo considerando outros componentes que
podem falhar. As implicacGes praticas deste trabalho s3o significativas. Os modelos desenvolvi-

dos podem ser aplicados por engenheiros e gestores para otimizar o planejamento de sistemas
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de vigilancia, equilibrando efetivamente o desempenho aprimorado com consideracdes de custo.
Por exemplo, as descobertas sobre o nimero ideal de baterias redundantes e os tempos 6ti-
mos de carga e descarga podem informar decisGes de compra e manutencao, potencialmente
reduzindo custos operacionais enquanto mantém alta confiabilidade do sistema.

Para trabalhos futuros, sugerimos expandir o modelo para incluir fatores ambientais e
condicGes climaticas que afetem o desempenho dos drones. Seria particularmente relevante
investigar o impacto de diferentes tecnologias de bateria na disponibilidade e confiabilidade
do sistema. Além disso, o desenvolvimento de um modelo que considere a possibilidade de
miultiplos drones ativos simultaneamente na area-alvo poderia fornecer insights valiosos para
operacdes de vigilancia em larga escala. Outra area promissora para pesquisas futuras é a ana-
lise do impacto de falhas de comunicacdo entre o drone e a base na disponibilidade do servico.
Isso poderia levar ao desenvolvimento de estratégias mais robustas para manter a continuidade
operacional em cenérios de comunicacao degradada. Adicionalmente, o desenvolvimento de al-
goritmos de otimizacdo capazes de recomendar configuracoes ideais do sistema com base em
requisitos de desempenho definidos - como cobertura maxima da area de vigilancia e consumo
minimo de energia - e restricGes, como limitacoes de altitude e vida Gtil da bateria, agregaria
valor pratico significativo a nossa abordagem.

Em conclus3o, nossa abordagem representa um avanco significativo no campo dos sistemas
de vigilancia baseados em [VANTE. Ao abordar desafios-chave e fornecer insights acionaveis,
nossa pesquisa contribui para a otimizacdo de fluxos de trabalho operacionais, mitigacdo de
riscos e alcance de resultados sustentaveis em diversas aplicacGes. As direcOes de pesquisa pro-
postas podem contribuir significativamente para o desenvolvimento de sistemas de vigilancia
por drones mais eficientes, confidveis e adaptaveis para varias condicoes operacionais, impul-
sionando avancos neste campo em rapida evolucdo. Explorar estratégias de otimizacdo para
equilibrar custo, desempenho e confiabilidade na implementacdo de redundancias seria valioso,
assim como investigar a integracdo de fontes alternativas de energia, como carregamento solar,
para aumentar a autonomia dos drones, abrindo novas possibilidades para melhorar a eficiéncia
e sustentabilidade desses sistemas. Estas direcSes de pesquisa ndo apenas expandirdo o escopo
do trabalho atual, mas também fornecerdao uma base sélida para o desenvolvimento continuo

e a inovacdo no campo dos sistemas de vigilancia baseados em [VANTE.
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APENDICE A - CODIGOS-FONTE DE DESENVOLVIMENTO

Cédigo Fonte 1 — Cédigo-fonte Extracdo da Férmula Fechada CTMC
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43

Clear[\[Lambdaldl;
Clear[\[Lambdalbd];
Clear[\[Lambdalbc];
Clear[\[Muld];
Clear[\[Deltall;
Clear[\[Betall;
Clear[\[Betal2];
Clear[\[Betal3];
Clear[\[Betal4];
Clear[\[Betal5];
Clear[\[Alphalll;
Clear[\[Alphal2];
Clear[\[Alphal3];
Clear[\[Alphal4l;
Clear[\[Phil11];
Clear[\[Phi]2];
Clear[\[Phi]31];
Clear[\[PhiJ41;
Clear[\[Phi]5];
Clear[\[Thetal1];
Clear[\[Thetal]2];
ClearAll;

Mtemp = {{, \[Lambdald, @, @, @, @, \[Lambdalbd,

0}, {0, , \[Deltal, o, \[Muld, o, 0, 0, 0, 0},
0, , \[Lambdald, @, \[Lambdalbd, @, o, 0, 0}, , 0,
0, 0, 0, 0, 0}, {\[Deltal, 0, 0, @, , 0, O,
0}, {0, \[Lambdalbc, @, @0, @, , @, \[Muld, o, o, 0,
0, , \[Deltal, o, @}, {\[Lambdalbc, o, 0, 0,
0, , \[Lambdald, \[Lambdalbd}, {0, \[Lambdalbc,
o, \[Muld, , o}, {0, o, @, 0, @, 0, \[Lambdalbc,
Labels = {"S@"”, "S1”, "S2",6 "S3" "S4" "S5" "gE" "S9"};

WorkingQ = {True, False, True, False,

False, False};

(Mx = SetDiagonal[Transpose[Mtemp]]) // MatrixForm;

Q = Transpose[Mx] // MatrixForm
PlotDiagram[Mx, WorkingQ, Labels]

Ps = ProbStationary[Mx] // Simplify;
Availability = 1 - UnAvailability[Ps,
Z = FullSimplify[Availability];
\[Beta]l = \[Lambdalbd + \[Lambdald;
\[Betal2 = \[Lambdalbd + \[Muld;
\[Beta]3 = \[Lambdald + \[Muld;
\[Betal4 = \[Lambdalbc + \[Lambdalbd

False, False,

WorkingQ1J;
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45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

\[Betal5 = \[Lambdalbc + \[Muld

\[Alphall = \[Beta] + \[Lambda]bc

\[Alphal2 = \[Beta]l + \[Betal5

\[Alphal3 = \[Betal3 + \[Betal4;

\[Alphal4 = \[Betal3 \[Lambdalbc + \[Lambdalbd \[Muld;

\[Phil1 = \[Alphall \[Lambdalbc + \[Betal4 \[Muld
\[Phi]2 = \[Betal3 \[Lambdalbc + \[Lambdalbd \[Muld;
\[Phil]3 = \[Beta] \[Lambdalbc*2 + \[Lambdalbd (2 \[Delta]l \[Lambdalbc \

+ (\[Delta] + \[Lambdalbc) \[Lambdalbd);
\[Phil4 = \[Betal3*2 + \[Betal3 (\[Lambdalbc +
3 \[Lambdalbd) + \[Lambdalbd (2 \[Lambdalbc + 3 \[Lambdalbd);

\[Phil5 = \[Lambdald”2 + \[Lambdald \[Muld + \[Muld*2;
\[Thetall = \[Alphall \[Beta] \[Beta]l2 \[Lambdalbc +

2 \[Beta] \[Betal2 \[Deltal \[Lambdalbd + \[Delta] \[Lambdalbc (\
\[Phil4);
\[Thetal2 = \[Alphal4 \[Lambdalbd \[Muld + \[Lambdalbc*2 \[Phi]5
P = (\[Deltal \[Lambdalbc \[Muld (\[Muld (\[Lambdalbd + \[Muld) (\
\[Lambdalbc (\[Lambdalbc + \[Betal) + (\[Lambdalbc + \[Lambdalbd) \
\[Muld) + \[Delta]l (\[Lambdalbc + \[Betal + \[Muld) (\[Lambdalbd \
\[Muld + \[Lambdalbc (\[Lambdald + \[Muld))))/(\[Lambdalbc \[Muld*2 (\
\[Lambdalbd + \[Muld) (\[Lambdalbc*2 (\[Betal) + \[Lambdalbd”2 \[Muld \
+ \[Lambdalbc (\[Beta]) (\[Betal + \[Muld)) + \[Deltal*2 (\[Lambdalbc \
+ \[Beta]l + \[Muld) (\[Lambdalbd*2 \[Muld*2 + \[Lambdalbc \[Lambdalbd \
\[Muld (\[Lambdald + \[Muld) + \[Lambdalbc”*2 (\[Lambdald"2 + \
\[Lambdald \[Muld + \[Muld”2)) + \[Deltal \[Muld (\[Lambdalbd*2 \
\[Muld*2 (\[Lambdalbd + \[Muld) + \[Lambdalbc \[Lambdalbd \[Muld (2 \
\[Lambdalbd + \[Muld) (\[Betal + \[Muld) + \[Lambdalbc*3 (\[Muld (\
\[Lambdald + \[Muld) + \[Lambdalbd (\[Lambdald +

2 \[Muld)) + \[Lambdalbc”*2 (\[Muld (\[Lambdald + \
\[Muld)*2 + \[Lambdalbd*2 (\[Lambdald +
3 \[Muld) + \[Lambdalbd (\[Lambdald + \[Muld) \

(\[Lambdald + 3 \[Muld))));

P2 = (\[Deltal \[Lambdalbc \[Muld (\[Betal2 \[Muld \[Phi]1 + \
\[Alphal2 \[Deltal \[Phil2))/(\[Alphal2 \[Deltal*2 \[Thetal2 + \
\[Lambdalbc \[Muld (\[Alphal3 \[Delta]l \[Lambdalbc \[Lambdalbd \
\[Lambdald + \[Thetall \[Muld) + \[Betal2 \[Muld”3 \[Phil3);
FullSimplify[P2]

FullSimplify[Availability] // TeXForm;

Fonte: Elaborado Pelo Autor (2024)

Cédigo Fonte 2 — Cédigo-fonte Validacdo do Modelo de Cobertura

fl = 4.89;
csh = 3.816;
csw = 6.780;

oreal = 1.70;
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oimg = 31;
rh = 1080;
ah = 124;
aw = 130;
dspeed = 3;

FVALfl_, cs_]1 := 2xArcTan[cs/(2xfl)];
NFVAh = FVA[fl, csh];
NFVAw = FVA[Lfl, csw];

Hmax[oreal_, oimg_, rh_, FVA_] := (orealxrh)/(2*xTan[FVAl*oimg);
Print["Angula o Fov vertical ", NICNFVAh]];
Print["Angula o Fov horizontal ", NILNFVAw]];

NHmax = Hmax[oreal, oimg, rh, NFVAh];

FV[Hmax_, FVA_] := 2xHmax*Tan[FVA/2];
NFVh = FV[NHmax, NFVAh];
NFVw FVI[NHmax, NFVAw];

Ni[A_, FV_] := A/FV;
Nc = Ni[aw, NFVw]l;
N1 = Ni[ah, NFVh];

CoVlen[Nln_, Ncol_, FVh_, FVw_] :=

NIn*((Ncol - 1)*FVw) + ((Nln - 1)*xFVh);
NCoVlen = CoVlen[Nl, Nc, NFVh, NFVw];
CoVtime[dspeed_, CoVlen_] := CoVlen/dspeed;
NCoVtime = CoVtime[dspeed, NCoVlenl];

Print["Altura Max: ", N[NHmax], " m"];

Print["N mero de colunas: ", N[Nc]]

Print["N mero de linhas: ", N[NI1]]

Print["Fov Vertical: ", NLNFVh], " m"1];

Print["Fov Horizontal: ", N[NFvw]l, " m"7J;
Print["Dist ncia Percorrida: ", N[NCoVlen], " m"];

Print["Tempo Gasto: ", N[NCoVtime], " s"];

Fonte: Elaborado Pelo Autor (2024)
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APENDICE B - SCRIPTS DE DESENVOLVIMENTO

Cédigo Fonte 3 — Script Mercury Modelo de Disponibilidade

mtthd = 0.5;

S
+
+
o
(7]
1

0.016666667;

SPN Model{

place BC;
place BR;
place DF;
place DR( tokens= DN );
place DU( tokens= 1 );

timedTransition BCG(
inputs = [BC],
outputs = [BR],
delay = mttbc,

serverType = "InfiniteServer”

E

timedTransition BD(
inputs = [DU],
outputs = [BC, DRIJ],
delay = mtthd

D

timedTransition DFF(
inputs = [DU],
outputs = [DF],
delay = mttdf

);

timedTransition DR2(
inputs = [DF],
outputs = [DR, BRI],
delay = mttdr,

guardExpression = #DU>0
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timedTransition DRR(

Mk

inputs = [DF1],
outputs = [DU],
inhibitors = [DU],
delay = mttdr

timedTransition DSW(

)

metric A = stationaryAnalysis( method =
metric DTyd = stationaryAnalysis( method =
>0}))*8760) /24" );

main {

setIntegerParameters ("DN",

A =

inputs = [DR, BR],
outputs = [DU],
inhibitors = [DU],
delay = mttds,

serverType = "InfiniteServer”

solve( Model ,A );

println(A);

DTyd

= solve( Model,DTyd );

println(DTyd);

Cédigo Fonte 4 — Script Mercury Modelo de Confiabilidade

0.016666667;

.005;

SPN Model({

expression "P{#DU>01}"

expression "((1-(P{#DU

Fonte: Elaborado Pelo Autor (2024)

)8



104

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

place BC;
place BR;
place DF;
place DR( tokens= 1 );
place DU( tokens= 1 );
place P1;
place P2;
place P3;
place P4;
place P5;

immediateTransition TI2(
priority = 2,
inputs = [DF, P2, DR("#DR")],
outputs = [P3]

D

immediateTransition TI3(
inputs = [P1],
outputs = [P1, P4(y)],
inhibitors = [P5, P4]
)

immediateTransition TI4(
inputs = [P1, P5(y)1,
outputs = [P2]

)

immediateTransition TI5(
priority = 2,
enablingFunction = "#DU>0",
inputs = [P1]

)

immediateTransition TI6(
enablingFunction = " (#DU>0)AND (#P4>0)",
inputs = [P4("#P4")]

Vs

immediateTransition TI7(
enablingFunction = " (#DU>0)AND (#P5>0)",
inputs = [P5("#P5")]

);

immediateTransition TI8(
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61

63

65

67

69

71

73

75

7

79

81

83

85

87

89

91

93

95

97

99

101

103

105

inputs = [DR("#DR"), P21,
outputs = [P3]
E

timedTransition BCG(
inputs = [BC],
outputs = [BR],
delay = mttbc,

serverType = "InfiniteServer”,

guardExpression = #P3==

D g

timedTransition BD(
inputs = [DU],
outputs = [BC, DR, P11,
delay = mttbd

)

timedTransition DFF(
inputs = [DU],
outputs = [DF, P11,
delay = mttdf

D

timedTransition DR2(
inputs = [DF],
outputs = [DR, BR],
delay = mttdr,
guardExpression = #DU>0

)

timedTransition DRR(
inputs = [DF],
outputs = [DU],
inhibitors = [DU],
delay = mttdr,

guardExpression = (#DR>Q)AND (#BR>0)

)

timedTransition DSW(
inputs = [DR, BRI],
outputs = [DU],
inhibitors = [DU],
delay = mttds,

serverType = "InfiniteServer"”,

guardExpression = #P3==
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107
timedTransition TE3(
109 inputs = [P41],
outputs = [P5],
111 delay = TTF
)5
113
metric R = stationaryAnalysis( method = "direct”, expression = "P{#P3=03}" );
115 }
117 main {
setIntegerParameters(”"DN", "BN", "y");
119
R = solve( Model,R );
121 println(R);
123 }
Fonte: Elaborado Pelo Autor (2024)
Cédigo Fonte 5 — Script Mercury Modelo de Performabilidade
1 DN = 0,
BN = 6;

3 mtthc = 2;
mttdf = 5034;
5 mttdr = 2;
mttbd = 0.5;
7 mttds = 0.016666667;
GOINGTIME = ©0.048212614;
9 BACKTIME = 0.048212614;
y = 4
11

13 SPN Model{

15 place BC( tokens= 0 );
place BR( tokens= BN );
17 place DF;
place DR;
19 place DU( tokens= 1 );
place END;
21 place GUARD;
place PO( tokens=y );
23 place P1;
place P2;
25 place P3;

place START( tokens= 1 );



107

immediateTransition TI12(
enablingFunction = " ((#P0>0)0R(#P2>0))AND (#DU=0)",
inputs = [PO("#P0"), P2("#P2")]

)

immediateTransition TI13(
enablingFunction = " ((#P1>0)0R (#P3>0))AND (#DU=0)",
inputs = [PT1("#P1"), P3("#P3")]

E

immediateTransition TI3(
priority = 2,
inputs = [START],
outputs = [GUARD],
inhibitors = [DU]

)

immediateTransition TI4(
inputs = [DU, GUARDI],
outputs = [DU, START]
E

immediateTransition TI5(
priority = 2,
inputs = [END],
outputs = [GUARD],
inhibitors = [DU]

D

immediateTransition TI6(
inputs = [START],
outputs = [START, Po(y)],
inhibitors = [P1, PO]

)

immediateTransition TI7(
inputs = [P1(y), START],
outputs = [END]

D¢

immediateTransition TI8(
inputs = [P2(y), ENDI],
outputs = [START]

)5



108

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

119

immediateTransition TI9(
inputs = [END],
outputs = [P3(y), ENDI,
inhibitors = [P2, P3]
);

timedTransition BCG(
inputs = [BC],
outputs = [BR],
delay = mttbc,

serverType = "InfiniteServer”

)

timedTransition BD(
inputs = [DU],
outputs = [BC, DRI,
delay = mttbhd

D

timedTransition DFF(
inputs = [DUJ],
outputs = [DF],
delay = mttdf

)

timedTransition DR2(
inputs = [DF]J],
outputs = [DR, BRIJ],
delay = mttdr

D

timedTransition DRR(
inputs = [DF],
outputs = [DU],
inhibitors = [DU],
delay = mttdr

D¢

timedTransition DSW(
inputs = [DR, BRI],
outputs = [DU],
inhibitors = [DU],
delay = mttds,

serverType = "InfiniteServer”

)

timedTransition TE®(
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121

123

125

127

129

131

133

135

137

139

141

143

145

147

149

151

153

155

157

159

161

inputs = [PO],

outputs = [P1],

delay = BACKTIME
D

timedTransition TE1(
inputs = [P31],
outputs = [P2],
delay = GOINGTIME

)

metric A = stationaryAnalysis( method = "direct”, expression = "P{#DU>0}" );

metric DTyd = stationaryAnalysis( method = "direct"”, expression = "((1-(P{#DU
>0}))*8760) /24" );

metric TPrph = stationaryAnalysis( method = "direct”, expression = "((P{#
START>0}*(1/GOINGTIME))+(P{#END>0}*(1/BACKTIME)))" );

metric PDWB = stationaryAnalysis( method = "direct”, expression = "P{(#DU=0)
AND (#BR=0) AND (#DR>0) }" );

metric AVGDA = stationaryAnalysis( method = "direct”, expression = "E{#DR}" )

’

metric AVGBA = stationaryAnalysis( method "direct"”, expression = "E{#BR}" )

metric TPrpm = stationaryAnalysis( method = "direct”, expression = " ((P{#

START>03}*(1/GOINGTIME))+(P{#END>0}*(1/BACKTIME)))/(60)" );

main {

setIntegerParameters("DN", "BN", "y");

A = solve( Model,A );
println(A);

DTyd = solve( Model ,DTyd );
println(DTyd);

TPrph = solve( Model, TPrph );
println(TPrph);

PDWB = solve( Model,PDWB );
println (PDWB);

AVGDA = solve( Model, AVGDA );
println (AVGDA);

AVGBA = solve( Model ,AVGBA );
println (AVGBA);
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TPrpm = solve( Model, TPrpm );
163 println(TPrpm);

165 7}

Fonte: Elaborado Pelo Autor (2024)
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