
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA COMPUTAÇÃO

LUAN CARLOS SOARES LINS

MODELAGEM ESTOCÁSTICA DE SISTEMAS DE VIGILÂNCIA COM DRONES
PARA AVALIAÇÃO, PLANEJAMENTO E MELHORIA DO DESEMPENHO E DA

DISPONIBILIDADE

Recife
2024



LUAN CARLOS SOARES LINS

MODELAGEM ESTOCÁSTICA DE SISTEMAS DE VIGILÂNCIA COM DRONES
PARA AVALIAÇÃO, PLANEJAMENTO E MELHORIA DO DESEMPENHO E DA

DISPONIBILIDADE

Dissertação apresentada ao Programa de Pós- Gra-
duação em Ciências da Computação da Universi-
dade Federal de Pernambuco, como requisito parcial
para a obtenção do título de Mestre em Ciências da
Computação.

Área de Concentração: Redes de Computadores
e Sistemas Distribuídos.

Orientador (a): Dr. Paulo Romero Martins Maciel

Coorientador (a): Dr. Jean Carlos Teixeira de
Araujo

Recife
2024



Lins, Luan Carlos Soares.
   Modelagem estocástica de sistemas de vigilância com drones
para avaliação, planejamento e melhoria do desempenho e da
disponibilidade / Luan Carlos Soares Lins. - Recife, 2024.
   111 f.: il.

   Dissertação (Mestrado) - Universidade Federal de Pernambuco,
Centro de Informática, Programa de Pós-Graduação em Ciência da
Computação, 2024.
   Orientação: Paulo Romero Martins Maciel.
   Coorientação: Jean Carlos Teixeira de Araujo.
   Inclui referências e apêndices.

   1. Veículos Aéreos Não Tripulados (VANTs); 2. Sistemas de
vigilância; 3. Modelagem estocástica; 4. Confiabilidade; 5.
Disponibilidade; 6. Performabilidade. I. Maciel, Paulo Romero
Martins. II. Araujo, Jean Carlos Teixeira de. III. Título.

UFPE-Biblioteca Central

.Catalogação de Publicação na Fonte. UFPE - Biblioteca Central



 
Luan Carlos Soares Lins 

 
 

 “MODELAGEM ESTOCÁSTICA DE SISTEMAS DE VIGILÂNCIA COM 
DRONES PARA AVALIAÇÃO, PLANEJAMENTO E MELHORIA DO 

DESEMPENHO E DA DISPONIBILIDADE” 
 
 

 Dissertação de mestrado apresentada ao 
Programa de Pós-Graduação em Ciência da 
Computação da Universidade Federal de 
Pernambuco, como requisito parcial para a 
obtenção do título de Mestre em Ciência da 
Computação. Área de Concentração: Redes 
de Computadores e Sistemas Distribuídos. 

 
 

Aprovado em: 30/10/2024. 
 
 
 

BANCA EXAMINADORA 
 

 
 

_______________________________________ 
Prof. Dr. Jamilson Ramalho Dantas 

Centro de Informática / UFPE 
 
 
 

_______________________________________ 
Prof. Dr. Rubens de Souza Matos Júnior 

Coordenadoria de Informática / IFSE 
 
 
 

_______________________________________ 
Prof. Dr. Paulo Romero Martins Maciel 

Centro de Informática / UFPE 
(orientador) 

 
 
 
 
 



Dedico ao meu avô, Edvaldo Barbosa Ramos (in memoriam), cujos exemplos de honesti-
dade e persistência continuam a me inspirar em todas as conquistas. Seu legado vive em cada
página deste trabalho.



AGRADECIMENTOS

Ao concluir esta etapa significativa de minha jornada acadêmica, sinto-me profundamente
grato por todos aqueles que contribuíram para tornar este momento possível.

Primeiramente, elevo minha gratidão a Deus, fonte inesgotável de força e inspiração que
me guiou ao longo deste caminho desafiador.

Aos meus pais, Paulo e Lindinalva, dedico meu mais profundo reconhecimento. Vocês não
apenas me deram a vida, mas a preencheram com amor, sacrifício e uma inabalável crença
em meu potencial. Mãe, sua resiliência e amor incondicional foram meu porto seguro nos
momentos mais turbulentos. Pai, seu exemplo de integridade e dedicação moldou o homem
que me tornei. Ao meu irmão, Paulo Júnior, agradeço pelo companheirismo constante e pelo
apoio que transcende as palavras.

Estendo minha gratidão a toda minha família - avós, tios, tias e primos. Cada um de
vocês, à sua maneira, contribuiu para minha formação e para a realização deste sonho. Seus
sacrifícios e incentivos não passaram despercebidos e são parte integrante desta conquista.

No âmbito acadêmico, expresso minha mais sincera gratidão ao Professor Paulo Maciel,
meu orientador de mestrado. Sua orientação transcendeu os limites da academia, moldando
não apenas minha pesquisa, mas minha visão do mundo científico. Ao Professor Jean Carlos,
meu coorientador, sou grato pela dedicação incansável, pelos conselhos precisos e pelo apoio
que foi além das expectativas.

Aos membros do grupo de pesquisa Modeling of Distributed and Concurrent Systems
(MoDCS), meu reconhecimento pelo ambiente colaborativo e estimulante que proporcionaram.
As discussões, trocas de ideias e o suporte mútuo foram fundamentais para o desenvolvimento
deste trabalho e para meu crescimento como pesquisador.

Um agradecimento especial é dedicado aos meus amigos da Localhost - Felipe, Erick e
Paulinho. Nossa amizade, forjada nos desafios e celebrações compartilhadas, provou-se um
tesouro inestimável. Vocês trouxeram leveza aos momentos difíceis e multiplicaram a alegria
nas conquistas.

A todos os amigos que fiz durante esta jornada, especialmente no MoDCS, meu sincero
obrigado. Vocês enriqueceram esta experiência com suas perspectivas únicas, apoio constante
e momentos de descontração que tornaram o caminho mais prazeroso.

Por fim, reconheço minha própria perseverança e dedicação. Esta jornada de mestrado me



ensinou lições valiosas sobre resiliência, autoconhecimento e a importância de perseguir os
sonhos com determinação.

A cada pessoa que, direta ou indiretamente, contribuiu para a realização deste trabalho
e para meu desenvolvimento acadêmico e pessoal, expresso minha mais profunda gratidão.
Este mestrado não é apenas uma conquista individual, mas o resultado de uma rede de apoio,
conhecimento e afeto que me cercou.



"O que foi, isso é o que há de ser; e o que se fez, isso se fará; de modo que nada há de
novo debaixo do sol."(Eclesiastes 1:9).



RESUMO

Este trabalho tem como objetivo principal desenvolver modelos para otimização de sistemas
de vigilância com Veículos Aéreos Não Tripulados (VANTs), também chamados de drones,
integrando análises de confiabilidade, disponibilidade e performabilidade. Ao contrário de es-
tudos anteriores que tratam esses aspectos de maneira isolada, esta pesquisa apresenta uma
metodologia integrada que utiliza modelos analíticos, como Cadeias de Markov de Tempo
Contínuo, e modelos numéricos, como Redes de Petri Estocásticas, a um modelo de cobertura
que considera tanto as características das câmeras quanto os parâmetros operacionais dos
drones. Esta abordagem integrada permite uma avaliação mais precisa e abrangente do de-
sempenho do sistema. Os resultados das análises de sensibilidade e estudos de caso revelaram
que a redundância de baterias tem um impacto significativo na disponibilidade do sistema.
Aumentar o número de baterias sobressalentes de 1 para 6 elevou o throughput do sistema em
70%, de 10 para 17 rondas por hora. Para missões de longa duração (30 horas), manter entre
15 e 20 baterias redundantes pode garantir uma confiabilidade acima de 80%. Otimizações
no gerenciamento de energia, como reduzir o tempo de carregamento da bateria para menos
de 36 minutos e utilizar baterias com tempos de descarga superiores a 144 minutos, podem
reduzir o tempo de inatividade anual de aproximadamente 100 horas para menos de 20 horas.
A metodologia desenvolvida permite aos projetistas equilibrar quantitativamente métricas de
desempenho, disponibilidade e custo, oferecendo diretrizes práticas para o dimensionamento
eficiente de sistemas de vigilância com drones. Esta pesquisa se destaca por fornecer uma
abordagem abrangente que integra múltiplos aspectos do desempenho do sistema, permitindo
uma otimização mais eficaz e baseada em dados quantitativos.

Palavras-chave: Veículos Aéreos Não Tripulados (VANTs), Drones, Sistemas de Vigilân-
cia, Modelagem Estocástica, Redes de Petri Estocásticas, Cadeias de Markov, Confiabilidade,
Disponibilidade, Performabilidade, Análise de Sensibilidade, Redundância, Gerenciamento de
Energia, Otimização de Sistemas.



ABSTRACT

This work’s main objective is to develop models for optimizing surveillance systems with
Unmanned Aerial Vehicles (UAVs), also known as drones, integrating analyses of reliability,
availability, and performability. Unlike previous studies that treat these aspects in isolation, this
research presents an integrated methodology that uses analytical models, such as Continuous
Time Markov Chains, and numerical models, such as Stochastic Petri Nets, with a coverage
model that considers both camera characteristics and operational parameters of drones. This
integrated approach allows for a more precise and comprehensive evaluation of system perfor-
mance. The results of sensitivity analyses and case studies revealed that battery redundancy
has a significant impact on system availability. Increasing the number of spare batteries from 1
to 6 raised the system throughput by 70%, from 10 to 17 rounds per hour. For long-duration
missions (30 hours), maintaining between 15 and 20 redundant batteries can ensure reliability
above 80%. Optimizations in energy management, such as reducing battery charging time to
less than 36 minutes and using batteries with discharge times exceeding 144 minutes, can
reduce annual downtime from approximately 100 hours to less than 20 hours. The developed
methodology allows designers to quantitatively balance performance, availability, and cost met-
rics, offering practical guidelines for efficient sizing of drone surveillance systems. This research
stands out by providing a comprehensive approach that integrates multiple aspects of system
performance, enabling more effective optimization based on quantitative data.

Keywords: Unmanned Aerial Vehicles (UAVs), Drones, Surveillance Systems, Stochastic Mod-
eling, Stochastic Petri Nets, Markov Chains, Reliability, Availability, Performability, Sensitivity
Analysis, Redundancy, Energy Management, Systems Optimization.
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1 INTRODUÇÃO

No cenário contemporâneo, a gestão eficaz e segura de multidões é um desafio premente no
nosso mundo cada vez mais interligado e urbanizado. Organizações e indústrias estão adotando
rapidamente a tecnologia de Veículo Aéreo Não Tripulado (VANT) para automatizar tarefas
complexas. Os VANTs podem voar em grandes altitudes para expandir seu alcance de visão
e explorar espaços livres de obstáculos (MASMOUDI et al., 2021). Especificamente, as agências
de aplicação da lei estão recorrendo aos VANTs para investigar crimes e gerir multidões,
especialmente durante eventos públicos significativos (MASMOUDI et al., 2021). Além disso, o
uso de câmeras fixas para monitorar grandes áreas abertas tem se mostrado ineficiente devido
à pequena cobertura de uma única câmera (YANG et al., 2021; PUNN et al., 2020). Isto levou à
crescente adoção de VANTs para atender a esta necessidade de monitoramento abrangente.

Apesar das vantagens dos VANTs, como a sua capacidade de voar em diferentes altitu-
des e os baixos custos de operação e manutenção (SHAKHATREH et al., 2019), eles enfrentam
vários desafios, incluindo a capacidade limitada de suas baterias, que restringe o tempo e as
capacidades de voo (MOHSAN et al., 2022). Além disso, os desafios relacionados ao reconheci-
mento de objetos podem impactar significativamente a qualidade do serviço, especialmente em
situações que envolvem altitudes de cobertura elevadas e sensores de câmeras de baixa resolu-
ção. Algoritmos de processamento de imagem mais avançados, como redes neurais e técnicas
de aprendizado de máquina, como deep learning, podem exigir energia substancial, afetando
ainda mais a autonomia do drone. Isso requer um planejamento cuidadoso para maximizar a
eficiência.

Em resposta a estes desafios, várias soluções foram propostas para aumentar o tempo
de voo dos VANTs, incluindo expansão da capacidade da bateria, carregamento intermitente
e otimização das trajetórias de voo (MOHSAN et al., 2022; ZHANG et al., 2021). No entanto,
expandir a capacidade da bateria é um desafio devido ao peso adicional que isso acarreta
(MOHSAN et al., 2022; LU et al., 2018). Além disso, os VANTs enfrentam restrições regulatórias,
como as impostas pela Administração Federal de Aviação, Federal Aviation Administration
(FAA), que incluem limites de altitude, velocidade e requisitos de linha de visão (SHAKHATREH

et al., 2019). Estas regulamentações podem limitar a eficiência dos VANTs em aplicações como
sistemas de entrega, e as exigências regulatórias variam conforme a jurisdição, dificultando a
implementação de soluções em múltiplos países.
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A incorporação de sistemas de rastreamento baseados em VANT também enfrenta obs-
táculos técnicos, como camuflagem e condições climáticas adversas (LEE; SONG; KIL, 2021).
Ambientes extremos, como tempestades, podem comprometer a estabilidade e funcionamento
dos VANTs, exigindo adaptações complexas e custosas (SHAKHATREH et al., 2019). Apesar des-
ses desafios, os VANTs oferecem uma solução eficiente, de baixo custo e alta confiabilidade
para diversas aplicações, incluindo monitoramento agrícola (ZHANG et al., 2021; SAAD; HAM-

DAN; SARKER, 2021), missões de resgate (SANDINO et al., 2020), tarefas militares (ABUSHAHMA

et al., 2019), transporte e rastreamento de pessoas (SHAKHATREH et al., 2019; OJHA; SAKHARE,
2015). Em particular, para o rastreamento de objetos, os VANTs podem fornecer com rapidez
e precisão a localização de objetos e imagens do seu entorno, economizando tempo e recursos
em diferentes cenários (ALHAFNAWI et al., 2023).

Apesar desses desafios, a tecnologia VANT continua sendo promissora para vigilância autô-
noma e missões de rastreamento de animais, especialmente em áreas grandes e inacessíveis
(SHAKHATREH et al., 2019). Recentes avanços em tecnologias de carregamento de VANTs fo-
cam na eficiência e prática de sistemas de transferência de energia sem fio, Wireless Power
Transfer (WPT), essenciais para aumentar as capacidades operacionais e a sustentabilidade
dos VANTs. A Figura 1 ilustra três principais tecnologias de carregamento para VANTs: sem
fio, fotovoltaico e a laser, destacando abordagens inovadoras.

Figura 1 – Tecnologias de Carregamento

Matriz
Fotovoltaica nas
Asas

Raios Solares Asa Fixa Asa Rotativa

Rastreador 
de Alvo

Emissor de
Feixe Laser

Indução
Magnética

Sem Fio Fotovoltaico Laser

Fonte: Baseado em CHITTOOR; CHOKKALINGAM; MIHET-POPA (2021)

Os métodos de carregamento sem fio evoluíram consideravelmente, principalmente por
meio de acoplamento de ressonância magnética e estruturas de bobinas otimizadas, que fa-
cilitam uma transferência de energia mais eficiente e reduzem o tempo de inatividade dos
VANTs. A integração de estações de carregamento autônomas também tem sido um avanço
significativo (CHITTOOR; CHOKKALINGAM; MIHET-POPA, 2021). Além disso, as tecnologias de
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carregamento sem fio permitem que os VANTs operem em missões de longa duração sem a ne-
cessidade de pousar, utilizando plataformas de recarga em voo para estender significativamente
o tempo de missão.

Técnicas não eletromagnéticas, como transferência de energia a laser, Laser Power Trans-
mission (LPT), permitem carregamento a longas distâncias, essencial para missões em locais
remotos. A integração de células fotovoltaicas também é uma abordagem para prolongar a
autonomia dos VANTs (MOHSAN et al., 2022). Tais células permitem que os drones aproveitem
a luz solar durante o voo, aumentando sua autonomia de maneira sustentável e reduzindo a
dependência de infraestruturas terrestres para recarga.

Tecnologias emergentes incluem o uso de blockchain para otimizar e gerenciar os proces-
sos de carregamento de VANTs, aumentando a segurança e confiabilidade na infraestrutura
de carregamento (MOHSAN et al., 2022). Esses avanços têm um papel crucial na criação de
operações mais eficientes, confiáveis e autônomas para VANTs, contribuindo para sua apli-
cação em setores como agricultura, monitoramento ambiental e cidades inteligentes. Além
disso, a integração dessas tecnologias com redes IoT e sistemas de inteligência artificial tem
proporcionado maior autonomia e capacidade de decisão aos VANTs, permitindo que esses
dispositivos tomem decisões em tempo real baseadas em dados recebidos de múltiplas fontes.

Goncalves, Sobral e Ferreira (2017) desenvolveram um modelo para Avaliação de Segu-
rança de VANTs, possibilitando a identificação de pontos críticos do sistema que necessitam de
melhorias para autorização de voo e certificação de aeronavegabilidade. Sharma et al. (2018)
focaram em proteger o compartilhamento de informações de contexto entre VANTs e melho-
rar a precisão e segurança da localização. Esses estudos exemplificam diversas aplicações de
técnicas formais de modelagem e análise para enfrentar os desafios relacionados aos VANT e
enfatizar a importância da segurança nas operações de VANT.

Neste contexto, este trabalho apresenta mais uma alternativa para otimização de missões
envolvendo operação com VANTS, propondo modelos de avaliação de performance, dispo-
nibilidade e confiabilidade para otimizar o planejamento eficiente de sistemas de vigilância
implementados com VANTS, considerando as limitações de suas baterias. Para atingir este
objetivo, analisamos o planejamento da área de observação e a autonomia do drone, incluindo
fatores como tempos de carregamento, duração da bateria e relocação para a estação base.
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1.1 MOTIVAÇÃO E JUSTIFICATIVA

A adoção de VANTs por organizações e agências de aplicação da lei para tarefas complexas,
como investigação de crimes e gerenciamento de multidões em eventos públicos, está se
tornando cada vez mais comum. Uma das principais razões para esta tendência é a ineficiência
das câmeras fixas em monitorar grandes áreas abertas, tornando os VANTs uma alternativa
atraente devido à sua capacidade de cobrir extensas áreas de observação.

No entanto, os VANTs enfrentam desafios significativos, principalmente relacionados à
capacidade limitada de suas baterias, que restringe o tempo de voo e as capacidades operaci-
onais. Além disso, desafios no reconhecimento de objetos podem afetar a qualidade do serviço
prestado por esses dispositivos. Para abordar esses problemas, o trabalho propõe modelos para
avaliar a performabilidade e otimizar o planejamento de sistemas de vigilância implementados
por VANTs. Este modelo considera os fatores operacionais críticos, como tempos de carrega-
mento, vida útil da bateria e a necessidade de realocação dos VANTs para suas estações-base.

1.2 OBJETIVOS

Como objetivo principal é propor modelos de avaliação de desempenho baseado em Ca-
deias de Markov de Tempo Contínuo, Continuous-time Markov Chains (CTMC) e Redes de
Petri Estocásticas, Stochastic Petri Nets (SPN), para otimizar performance, disponibilidade e
confiabilidade de sistemas de vigilância baseados em VANTs. Estes modelos devem abordar
especificamente desafios como capacidade limitada da bateria e planejamento estratégico para
otimizar áreas de observação.

Objetivos secundários:

• Permitir análise de tempos de carregamento e descarga da bateria.

• Permitir análise de tempos de falha e reparo do VANT.

• Permitir análise da aplicação de redundancia de baterias e VANTs no sistema.

1.3 TRABALHOS RELACIONADOS

Vários estudos têm sido conduzidos nas áreas relacionadas a esta pesquisa, entretanto,
nenhum deles abrange todas as características abordadas neste trabalho. Alguns focam na
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confiabilidade de sistemas baseados em VANTs e suas otimizações estruturais, outros investi-
gam alocar recursos e otimização de missões envolvendo enxames de VANTs, enquanto alguns
exploram o uso de redes de Petri e cadeias de Markov para modelagem e análise de desempenho
em cenários críticos.

A busca por trabalhos foi realizada utilizando uma combinação de palavras-chave relaciona-
das a drones e VANTs, com foco em vigilância e confiabilidade de sistemas. As palavras-chave
utilizadas incluíram termos como "drone", "veículo aéreo não tripulado (VANT)", "vigilância",
"confiabilidade", "disponibilidade", "dependabilidade", "modelagem", "redes de Petri estocás-
ticas", "cadeias de Markov", "redundância de baterias", "missões de confiabilidade", "análise
de sensibilidade", "computação aérea", "avaliação de desempenho", entre outros.

O objetivo foi encontrar estudos que abordassem temas como a confiabilidade de sistemas
baseados em VANTs, a disponibilidade em sistemas de vigilância aérea e o uso de métodos
analíticos e estocásticos para melhorar o desempenho desses sistemas. A pesquisa abrangeu
trabalhos publicados entre 2019 e 2024, consultando bibliotecas digitais importantes como
ACM Digital Library, ScienceDirect, SpringerLink e IEEEXplore, e priorizou estudos que explo-
ram soluções para otimizar missões críticas envolvendo VANTs.

Os estudos mais pertinentes para o desenvolvimento desta dissertação foram escolhidos
considerando suas contribuições específicas e a maneira como se conectam com o foco central
desta pesquisa. Em FENG et al. (2022), por exemplo, a confiabilidade de missões em fases é
avaliada utilizando medidas de importância para determinar o número ideal de VANTs em
um enxame, destacando a influência da quantidade de VANTs na confiabilidade da missão.
Embora este trabalho contribua para a compreensão da otimização de sistemas distribuídos,
sua abordagem é limitada por focar principalmente na quantidade de VANTs, negligenciando
outros fatores críticos como eficiência energética e adaptabilidade a falhas em tempo real.
Já DUI et al. (2021), complementa esse estudo ao explorar a redundância de VANTs e como
ela pode manter a missão em andamento mesmo diante de falhas, alinhando-se ao nosso
objetivo de garantir alta disponibilidade.No entanto, este estudo não aborda adequadamente
a otimização dinâmica de recursos durante a missão, uma lacuna que nossa pesquisa preenche
ao propor estratégias adaptativas de alocação de recursos.

Além disso, trabalhos como o de JIANG; QI et al. (2024) avançam essa discussão ao pro-
por métodos para o planejamento de testes operacionais em enxames de VANTs, focando na
aplicação de diagramas de decisão binária para otimizar a confiabilidade de missões críticas.
Esse estudo é fundamental para validar a eficácia de enxames de VANTs em cenários com-
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plexos. Embora esse estudo seja fundamental para validar a eficácia de enxames de VANTs
em cenários complexos, sua abordagem apresenta limitações significativas. O uso exclusivo
de diagramas de decisão binária pode não capturar adequadamente a natureza dinâmica e
as interações complexas em sistemas de enxames de VANTs. Semelhantemente, ZHAO; WANG

(2019) e BRITO et al. (2021) utilizam redes de Petri estocásticas para analisar o desempenho e
a disponibilidade de sistemas colaborativos de VANTs, com foco na avaliação de arquiteturas
distribuídas. Embora estas abordagens ofereçam insights sobre o comportamento de sistemas
distribuídos, esse estudo não aborda adequadamente a otimização em tempo real de recursos
e a adaptação dinâmica a falhas, aspectos cruciais para missões de longa duração.

KABASHKIN (2024) destaca a importância de estratégias dinâmicas de alocação de re-
cursos, como a gestão de baterias, para garantir operações contínuas em missões de alta
prioridade. Esse trabalho está diretamente relacionado à proposta desta dissertação de oti-
mizar a confiabilidade e a disponibilidade de drones em missões prolongadas. Apesar de sua
relevância, o estudo não integra plenamente essas estratégias com modelos de confiabilidade
e disponibilidade, uma síntese que nossa pesquisa realiza para uma abordagem mais holística.
Complementarmente, FALCÃO et al. (2024) utilizam cadeias de Markov para otimizar o con-
sumo de energia em sistemas VANT, uma abordagem crucial para a melhoria da eficiência
energética e da disponibilidade operacional.

Por outro lado, XING; JOHNSON (2022) exploram a teoria da confiabilidade aplicada a
sistemas VANT, destacando o uso de modelos como diagramas de blocos de confiabilidade,
Reliability Block Diagram (RBD) e diagramas de decisão binária, Binary Decision Diagrams
(BDD), abordagens que complementam as metodologias utilizadas neste trabalho para mode-
lar a confiabilidade de sistemas utilizando VANT. Embora esses modelos sejam importantes,
eles não incorporam adequadamente a natureza dinâmica e adaptativa das missões de longa
duração com VANTs, uma lacuna que nossa metodologia visa preencher por meio de modelos
mais flexíveis. Já LI et al. (2024), ao proporem uma metodologia de otimização de interferências
aleatórias para testar a confiabilidade de VANTs, reforçam o uso de técnicas de otimização
para melhorar a robustez dos sistemas em missões críticas.

Finalmente, o trabalho de STEURER et al. (2019), que utiliza Linguagem de Modelagem de
Sistemas, Systems Modeling Language (SysML) e cadeias de Markov para modelar sistemas
de navegação inercial em VANTs, oferece uma abordagem para a análise de confiabilidade em
sistemas embarcados, alinhada à proposta deste trabalho de utilizar metodologias analíticas
para otimizar a confiabilidade de missões prolongadas. Embora esta abordagem seja bastante
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prática, para ambiente mais complexo onde é considerada redundância de componentes, este
modelo fica limitado. A análise de dependabilidade e a aplicação prática de metodologias
de sistemas baseados em modelos também encontram correlação com os estudos de BRITO

et al. (2021), que analisam a confiabilidade em sistemas de comunicação distribuídos com
VANTs, utilizando redes de Petri estocásticas para avaliação de desempenho. Apesar de sua
contribuição para a avaliação de desempenho, o estudo não integra plenamente aspectos de
otimização de energia e redundância, áreas que nossa pesquisa aborda de forma mais ampla.

Quadro 1 – Comparação de Trabalhos Relacionados
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DUI et al. (2021) Enxame de VANTS ✓ ✓

FENG et al. (2022) Enxame de VANTS ✓ ✓

KABASHKIN (2024) Enxame de VANTS ✓ ✓

JIANG; QI et al. (2024) Enxame de VANTS ✓ ✓

ZHAO; WANG (2019) P Enxame de VANTS ✓ ✓ ✓

SABINO et al. (2024) P Vigilância ✓ ✓

FALCÃO et al. (2024) Comunicação ✓ ✓ ✓

BRITO et al. (2021) Comunicação ✓ ✓ ✓ ✓

STEURER et al. (2020) Vigilância ✓ ✓

KUMARI et al. (2024) Vigilância ✓ ✓

STEURER et al. (2019) Vigilância ✓

LI et al. (2024) Enxame de VANTS ✓ ✓

LIAN et al. (2021) Comunicação ✓ ✓

Este Trabalho Vigilância ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fonte: Elaborado pelo Autor (2024)
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O Quadro 1 apresenta uma comparação detalhada dos trabalhos relacionados, revelando
tendências e lacunas importantes na literatura atual. Observa-se que, enquanto a maioria dos
estudos foca em aspectos específicos como modelagem estocástica ou análise de confiabilidade,
poucos abordam de forma integrada todos os aspectos críticos para sistemas de vigilância
baseados em VANTs.

Analisando o Quadro 1, nota-se que BRITO et al. (2021) apresenta uma abordagem mais
abrangente, incluindo análises de confiabilidade, disponibilidade e performance. No entanto,
este estudo se concentra em computação em nuvem, não abordando as especificidades dos sis-
temas de vigilância com VANTs. Nossa pesquisa se diferencia ao integrar todos esses aspectos
no contexto específico de vigilância aérea, incluindo adicionalmente um modelo de cobertura
e análise de performabilidade.

As abordagens metodológicas utilizadas nos estudos revisados variam significativamente.
Enquanto FENG et al. (2022) e DUI et al. (2021) empregam principalmente modelagem estocás-
tica para análise de confiabilidade, nossa pesquisa propõe uma metodologia mais abrangente.
Integramos modelagem estocástica com análise de performabilidade e otimização de recursos,
permitindo uma avaliação mais completa e realista dos sistemas de vigilância baseados em
VANTs.

Esta revisão da literatura revela uma tendência crescente em direção à análise multifa-
cetada de sistemas complexos, como os de vigilância com VANTs. No entanto, identifica-se
uma oportunidade significativa para desenvolver um framework integrado que considere si-
multaneamente aspectos de confiabilidade, disponibilidade, performance e planejamento de
cobertura.

Nossa pesquisa se propõe a preencher essas lacunas, oferecendo uma abordagem inovadora
que integra modelagem estocástica, análise de confiabilidade e disponibilidade, otimização
de recursos e planejamento de cobertura. Consideramos as especificidades dos sistemas de
vigilância baseados em VANTs, incluindo a dinâmica de operações em ambientes complexos.
Propomos um modelo de performabilidade que captura as interações entre performance e
disponibilidade, uma abordagem não explorada adequadamente nos estudos anteriores. Além
disso, incluímos uma análise de sensibilidade para avaliar o impacto de diferentes parâmetros
na eficácia global do sistema.

Ao abordar estas limitações e integrar múltiplos aspectos críticos, este estudo visa contribuir
significativamente para o avanço do conhecimento na área de sistemas de vigilância baseados
em VANTs, proporcionando insights para o desenvolvimento de sistemas mais eficientes e
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confiáveis. A abordagem holística proposta não apenas preenche as lacunas identificadas na li-
teratura existente, mas também estabelece uma base sólida para futuras pesquisas e aplicações
práticas no campo da vigilância aérea automatizada.

1.4 ESTRUTURA DA DISSERTAÇÃO

Este trabalho segue estruturado da seguinte forma: O Capítulo 2 detalha os conceitos de
avaliação e performabilidade, campo de visão, distribuição poliexponencial, redes de Petri e
análise de sensibilidade utilizados neste estudo; O Capítulo 3 descreve a metodologia utilizada
para realizar este estudo. Fórmulas de dimensionamento do sistema e um modelo numérico
de performance em redes de Petri são apresentados em detalhes no Capítulo 4. Além disso, O
Capítulo 5 apresenta dois estudos de caso que analisam o impacto da redundância e melhorias
de tempo em drones e baterias na disponibilidade, tempo de inatividade e desempenho no
número de rondas de vigilância realizadas por unidade de tempo do sistema e os resultados
encontrados. Finalmente, nosso trabalho termina no Capítulo 6, onde tiramos conclusões dos
resultados e discutimos possíveis direções para trabalhos futuros.
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2 FUNDAMENTAÇÃO

Este capítulo apresenta os fundamentos teóricos essenciais para a compreensão do trabalho
desenvolvido. Inicialmente, abordamos os VANTs, explorando sua classificação, arquitetura e
aplicações. Em seguida, discutimos o conceito de dependabilidade em sistemas computacionais,
incluindo seus atributos, ameaças e meios de alcançá-la. Por fim, apresentamos uma visão
geral sobre modelos estocásticos, com ênfase nas Cadeias de Markov de Tempo Contínuo
(CTMC) e nas Redes de Petri Estocásticas (SPN), ferramentas fundamentais para a análise
de desempenho e confiabilidade de sistemas complexos.

A compreensão desses conceitos é importante para o desenvolvimento de sistemas robus-
tos e confiáveis, especialmente no contexto de VANTs, onde a segurança e o desempenho
são fatores relevantes. Os VANTs representam uma tecnologia em evolução, com aplicações
que incluem agricultura de precisão e operações de vigilância, demandando confiabilidade e
eficiência. A dependabilidade fornece um framework para avaliar e melhorar a confiabilidade
e disponibilidade desses sistemas. Os modelos estocásticos, como as CTMCs e SPNs, ofere-
cem ferramentas para modelar e analisar o comportamento desses sistemas sob condições de
incerteza, permitindo prever e otimizar seu desempenho em diversos cenários operacionais.

2.1 VEÍCULO AÉREO NÃO TRIPULADO - VANT

Os VANTs, comumente conhecidos como drones, são sistemas aéreos autônomos ou con-
trolados remotamente, caracterizados pela ausência de um piloto humano a bordo. Equipados
com sensores sofisticados e microprocessadores, os VANTs operam de forma autônoma ou
sob o controle de operadores remotos, oferecendo soluções versáteis e eficazes em uma ampla
gama de aplicações, devido à sua capacidade de executar tarefas complexas com alta precisão e
eficiência. Nesta seção, discutiremos a classificação, a arquitetura e as aplicações relacionadas
aos VANTs.

A Figura 2 apresenta a classificação principal dos VANTs, englobando modelos de asa
fixa, asa rotatória (como os multirrotores) e drones híbridos. Esta classificação fornece uma
visão abrangente das diferenças estruturais e funcionais entre esses tipos de drones. Com o
constante avanço tecnológico, a evolução desses modelos de drones permite um aperfeiçoa-
mento significativo em suas capacidades operacionais, aumentando tanto a eficiência quanto
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o potencial de aplicação desses sistemas.

Figura 2 – Classificação de Drones

Tipos de Drones

Asa Fixa Drone Híbrido

Asa Rotatoria

Quadricóptero Hexacóptero Octocóptero

Fonte: Baseado em NEWARK (2024)

Os VANTs de asa fixa possuem configuração semelhante à de aeronaves convencionais,
implicando a necessidade de um controle mais elaborado e treinamento especializado. Esses
dispositivos se destacam por sua elevada velocidade e capacidade de voo prolongado, em-
bora apresentem limitações em termos de manobrabilidade, como a incapacidade de pairar
ou realizar movimentos para trás (MOHSAN et al., 2022). Além disso, os VANTs de asa fixa
são frequentemente utilizados em missões que demandam alta eficiência energética e grandes
distâncias de cobertura, sendo particularmente vantajosos para aplicações em monitoramento
e vigilância em larga escala.

Os VANTs de asa rotatória, representados na Figura 2, incluem configurações como qua-
dricópteros, hexacópteros e octocópteros. Eles são particularmente populares devido à capa-
cidade de decolagem e pouso verticais, facilidade de construção e custo relativamente baixo.
São largamente empregados em atividades de imageamento e vigilância, e os quadricópteros,
em especial, se destacam pela sua manobrabilidade e design simples (MOHSAN et al., 2022).
A capacidade de se manter estacionários em pleno ar e de realizar movimentos precisos faz
dos VANTs de asa rotatória uma ferramenta extremamente útil em aplicações como inspeções
detalhadas de infraestruturas, filmagens aéreas e operações de resgate.
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Os drones híbridos, também ilustrados na Figura 2, combinam as vantagens do voo planado
e do voo vertical, conferindo-lhes uma versatilidade operacional única ao aliar os pontos fortes
dos modelos de asa fixa e asa rotatória. Esses dispositivos híbridos conseguem realizar missões
de longa distância mantendo uma boa manobrabilidade, sendo ideais para aplicações que
exigem uma combinação de velocidade, alcance e capacidade de decolagem e pouso em locais
restritos.

Cada tipo de VANT apresenta aplicações específicas de acordo com suas características
técnicas, como tempo de voo, capacidade de carga útil e manobrabilidade. Por exemplo, os
modelos de asa fixa são mais adequados para missões de longa duração, como mapeamento
e inspeção, enquanto os modelos de asa rotatória são ideais para atividades que exigem alta
agilidade e estabilidade estacionária, como a fotografia aérea (TAHIR et al., 2019). Com o
avanço dos sistemas de controle autônomo, os VANTs têm ampliado suas aplicações em
diversas áreas, desde inspeções industriais até o uso em operações de segurança pública.

Adicionalmente, os VANTs podem ser classificados em termos de altitude operacional,
diferenciando-se em plataformas de baixa altitude, Low Altitude Platform (LAP) e alta altitude,
High Altitude Platform (HAP). LAPs são tipicamente utilizados para expansão de comunicação
móvel e monitoramento ambiental, enquanto HAPs operam em altitudes mais elevadas, sendo
empregados em atividades como vigilância de fronteiras e monitoramento climático (MOHSAN

et al., 2022). As plataformas de alta altitude, em especial, têm um papel estratégico na coleta de
dados em grande escala, proporcionando uma cobertura mais ampla e contínua para aplicações
militares e científicas.

2.1.1 Arquitetura e Componentes

Os VANTs apresentam uma arquitetura complexa composta por diversos componentes
fundamentais que garantem suas funcionalidades e aplicações. A Figura 3 mostra a arquitetura
típica de um VANT multirotor, destacando tanto seus principais componentes quanto seu
mecanismo de rotação.

Na Figura 3.a, observam-se os principais componentes de um VANT multirotor. As hélices
geram a propulsão e a sustentação, movimentadas por motores que fornecem a força motriz.
No centro do drone está a controladora de voo, o "cérebro"do dispositivo, responsável por
manter a estabilidade e controlar o voo. A placa de distribuição de energia distribui a energia
da bateria para os diversos componentes, sendo que a bateria, geralmente de Polímero de Lítio,
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Figura 3 – Arquitetura e Componentes
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Fonte: Baseado em NYAMUHUNGU (2022)

Lithium Polymer (LiPo), alimenta o sistema. Uma câmera frequentemente integrada permite
a captura de imagens e vídeos. O controlador eletrônico de velocidade regula os motores,
enquanto o receptor de controle capta sinais do controle remoto e um transmissor envia dados
de telemetria para a estação de controle em terra.

A Figura 3.b representa o mecanismo de rotação de um quadricóptero, ilustrando como as
forças geradas pelos quatro rotores (F1, F2, F3, F4) interagem para controlar o movimento
do drone nos eixos de rotação (𝜑, 𝜃, 𝜓) e gerar a força de sustentação. Esses eixos são
essenciais para a manobrabilidade do drone, permitindo que ele mantenha estabilidade mesmo
em condições adversas, como ventos fortes ou ambientes de operação restritos.

A arquitetura dos VANTs integra componentes essenciais para sua operação. Os contro-
ladores de voo são cruciais, requerendo calibração precisa para evitar falhas. A comunicação
é garantida por controladores de rádio, que mantêm conectividade em distâncias considerá-
veis (AHMED et al., 2022). Ademais, VANTs modernos contam frequentemente com sensores e
câmeras estabilizadas por gimbals, suportes estabilizadores, ampliando suas capacidades para
vigilância, inspeção e monitoramento ambiental (AHMED et al., 2022). Sensores de detecção
de obstáculos, como os sistemas de detecção e alcance de luz, Light Detection and Ranging
(LIDAR), também têm se tornado comuns, proporcionando maior segurança durante o voo e
permitindo que os VANTs operem de forma mais autônoma em ambientes complexos.

Estações de Controle em Terra, Ground Control Station (GCS) e plataformas de comunica-
ção, embora não representadas, são elementos fundamentais que complementam o ecossistema
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dos VANTs, permitindo operações remotas e a troca contínua de dados para tarefas em am-
bientes variados e complexos. As GCSs funcionam como centros de comando que facilitam o
monitoramento em tempo real, o planejamento de missões e a tomada de decisões críticas
durante as operações. Além disso, essas plataformas de comunicação garantem a integração
eficaz dos VANTs com outras infraestruturas, proporcionando conectividade estável mesmo
em locais remotos e adversos. A importância desses sistemas se torna ainda mais evidente em
operações que demandam coordenação entre múltiplos VANTs, como missões de vigilância e
resgate, onde a comunicação constante e precisa é crucial para o sucesso das atividades. A
evolução tecnológica desses componentes está diretamente ligada ao aumento da autonomia
e à eficiência operacional dos VANTs, permitindo que eles desempenhem um papel ainda mais
significativo em diversas aplicações (AHMED et al., 2022).

2.1.2 Aplicabilidades e Benefícios

Os VANTs possuem ampla aplicação em diversos setores, evidenciando sua versatilidade e
capacidade de inovação. A Figura 4 apresenta uma visão geral das múltiplas utilizações dos
VANTs em áreas como agricultura, segurança, monitoramento urbano e muito mais.

Figura 4 – Aplicações de Drones
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Fonte: Baseado em CHITTOOR; CHOKKALINGAM; MIHET-POPA (2021)

Na segurança e vigilância, VANTs são utilizados em missões militares e na detecção de
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atividades ilegais, contribuindo para a prevenção de ameaças. Em situações de desastre, como
ataques terroristas ou catástrofes naturais, os VANTs acessam áreas perigosas para coletar
informações vitais e auxiliar no resgate, além de fornecer suprimentos médicos, o que é crucial
para salvar vidas em momentos críticos (MOHSAN et al., 2022). Em muitas dessas aplicações,
os VANTs operam como uma extensão das equipes humanas, aumentando a segurança dos
profissionais ao evitar que eles precisem entrar em áreas de alto risco.

No sensoriamento remoto, os VANTs oferecem imagens de alta resolução essenciais para
o monitoramento ambiental, detecção de doenças e mapeamento, contribuindo para a ges-
tão sustentável dos recursos naturais. Na agricultura de precisão, VANTs monitoram culturas,
realizam pulverização de pesticidas e coletam dados sobre o solo, aumentando a eficiência e
produtividade (MOHSAN et al., 2022). Além disso, o uso de VANTs na agricultura tem se expan-
dido para incluir aplicações como o plantio de sementes e a aplicação precisa de fertilizantes,
ajudando a reduzir desperdícios e minimizando o impacto ambiental.

VANTs também facilitam a inspeção de infraestrutura, permitindo monitoramento deta-
lhado de projetos e mapeamento 3D. Além disso, contribuem para o monitoramento de tráfego
em tempo real, fornecendo uma solução mais econômica e eficaz do que dispositivos conven-
cionais (MOHSAN et al., 2022). Esses dispositivos são estritamente necessários em ambientes
urbanos, onde o acesso pode ser limitado e a eficiência das inspeções tradicionais pode ser
comprometida devido à complexidade das estruturas.

No contexto de cidades inteligentes, VANTs funcionam como plataformas flexíveis para
implantação de estações-base aéreas, melhorando a eficiência de redes 5G e atuando como
dispositivos conectados no ecossistema IoT. Eles são explorados para transferência de energia e
informação sem fio, suportando o desenvolvimento de redes sustentáveis (MOHSAN et al., 2022;
LABIB et al., 2021). Além disso, em cidades inteligentes, os VANTs podem ser utilizados para
monitoramento ambiental em tempo real, ajudando a detectar níveis de poluição, identificar
áreas de congestionamento e até mesmo prestar suporte em emergências, garantindo uma
resposta rápida e eficiente.

Em síntese, os VANTs oferecem soluções inovadoras e eficientes em segurança, resposta
a desastres, agricultura, inspeção de infraestrutura e cidades inteligentes, contribuindo signi-
ficativamente para a modernização de diferentes setores. Esses dispositivos têm se tornado
ferramentas essenciais, não apenas para melhorar a eficiência de tarefas tradicionais, mas
também para viabilizar novas abordagens e soluções que antes eram impraticáveis devido a
limitações tecnológicas ou de segurança.
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2.2 DEPENDABILIDADE

A confiabilidade em sistemas computacionais, também conhecida como dependabilidade,
é um conceito fundamental que denota a capacidade de um sistema contratado de entregar
seu serviço pretendido consistentemente. Este conceito assume particular importância quando
um ou mais componentes do sistema podem experimentar falhas, potencialmente interrom-
pendo o serviço pretendido. A dependabilidade está intrinsecamente ligada à confiabilidade,
que quantifica a probabilidade de um sistema fornecer seu serviço sem falhas até um tempo es-
pecificado 𝑡 (AVIZIENIS et al., 2004). Especificamente, se o sistema inicia a operação no tempo
0, sua confiabilidade no tempo 𝑡 representa a probabilidade de operação ininterrupta durante
o intervalo de tempo (0, 𝑡) (TRIVEDI, 2008; MACIEL, 2023).

Para melhor compreender este conceito complexo, é útil visualizá-lo através da Árvore de
Dependabilidade, baseada no trabalho de AVIZIENIS et al. (2001). Esta representação visual
oferece uma estrutura organizada para compreender os elementos que compõem a dependa-
bilidade de um sistema, decompondo-o em três componentes principais: ameaças, meios e
atributos. As ameaças englobam falhas, erros e defeitos que podem comprometer o funcio-
namento do sistema. Os meios representam as estratégias para alcançar a dependabilidade,
incluindo prevenção, tolerância, remoção e previsão de falhas. Os atributos são as caracte-
rísticas desejáveis de um sistema confiável, como disponibilidade, confiabilidade, segurança,
confidencialidade, integridade e manutenabilidade (AVIZIENIS et al., 2001).

Cada um desses atributos desempenha um papel crucial na confiabilidade geral do sistema.
A disponibilidade refere-se à prontidão do sistema para o serviço correto, enquanto a confiabi-
lidade está relacionada à continuidade desse serviço. A segurança busca evitar consequências
graves, a confidencialidade protege contra divulgação não autorizada de informações, a inte-
gridade previne alterações indevidas no estado do sistema, e a manutenabilidade permite que
o sistema passe por reparos e modificações quando necessário (AVIZIENIS et al., 2001).

Uma propriedade crucial da dependabilidade é a disponibilidade em estado estacionário,
que caracteriza a capacidade de um sistema de continuar funcionando mesmo na presença
de falhas e reparos subsequentes (TRIVEDI, 2008). O cálculo da disponibilidade pode ser feito
usando o Tempo Médio para Falha, Mean Time to Failure (MTTF) e o Tempo Médio para
Reparo, Mean Time to Repair (MTTR), como mostrado na Equação 2.1:
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Figura 5 – Árvore de Dependabilidade
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𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 +𝑀𝑇𝑇𝑅
. (2.1)

A integral de confiabilidade fornece o MTTF do sistema em função do tempo (Eq. 2.2).
Em contraste, o MTTR é usado para atingir o nível desejado de disponibilidade considerando
a reparação do sistema (Eq. 2.3). Disponibilidade (A) e indisponibilidade (UA= 1-A) estão
relacionadas conforme mostrado na Equação 2.4.

𝑀𝑇𝑇𝐹 = ∫
𝑡

0
𝑅(𝑡)𝑑𝑡. (2.2)

𝑀𝑇𝑇𝑅 = ∫
∞

0
(1 −𝑀(𝑡))𝑑𝑡. (2.3)

Onde 𝑀(𝑡) define a probabilidade que o sistema 𝑆 vai ser reparado no tempo t (definido
como manutenabilidade).

Além disso, o tempo de inatividade (Downtime - DT) pode ser definido como o tempo
total durante o qual um sistema está indisponível:
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𝐷𝑇 =𝑀𝑇𝑇𝑅 × (1 −𝐴). (2.4)

Na modelagem de desempenho e confiabilidade, as variáveis aleatórias exponenciais são
amplamente adotadas devido à sua capacidade de representar certos fenômenos e sua tra-
tabilidade matemática, particularmente sua propriedade de falta de memória. No entanto,
quando a distribuição exponencial é inadequada para modelar um sistema, as distribuições de
fase, Phase-type (PH), incluindo as distribuições Erlang, hipoexponencial e hiperexponencial,
podem oferecer alternativas adequadas. Essas distribuições são essenciais para representar dis-
tribuições de probabilidade complexas usando apenas dados de média e desvio padrão (MACIEL,
2023b). A distribuição de Erlang é um caso particular da distribuição gama com um parâmetro
de forma 𝛾 > 1, 𝛾 ∈ N, e taxa 𝜆. As distribuições PH oferecem uma abordagem controlada
para relaxar a propriedade de ausência de memória e manter a complexidade de avaliação
sob controle, observando o histórico dos processos através de fases exponenciais do passado e
aumentando o poder de modelagem das distribuições exponenciais.

É importante compreender que a dependabilidade de um sistema não é um conceito abso-
luto, mas deve ser interpretada em um sentido probabilístico. Os sistemas, por sua natureza
complexa, não estão completamente livres de falhas. Esta perspectiva realista é útil para en-
tender e avaliar o desempenho dos sistemas em condições operacionais reais.

As quatro técnicas principais para alcançar a dependabilidade, representadas como "Meios"na
árvore de dependabilidade, trabalham em conjunto para fortalecer a dependabilidade do sis-
tema. A prevenção de falhas busca minimizar a ocorrência de problemas, a tolerância a falhas
permite que o sistema continue operando mesmo na presença de falhas, a remoção de fa-
lhas foca na identificação e correção de problemas existentes, e a previsão de falhas antecipa
potenciais problemas futuros (AVIZIENIS et al., 2001; AVIZIENIS et al., 2004).

Complementando a análise de confiabilidade, a modelagem de desempenho é uma abor-
dagem estruturada que visa estimar as principais métricas de desempenho de um sistema
(KLEINROCK, 1975; HAVERKORT, 2001). Uma dessas métricas é a taxa de transferência (th-

roughput), que quantifica o número de operações concluídas num prazo específico:

𝑇𝑃 = 𝜋(𝑖𝑏𝑝 > 0) × 𝜇, (2.5)

onde 𝜋(𝑖𝑏𝑝 > 0) é a probabilidade de haver itens sendo processados (𝑖𝑏𝑝) no sistema, e 𝜇
é a taxa de serviço.
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Outras métricas importantes incluem o número médio de itens, Mean Number of Items
(MNI) em um sistema:

𝑀𝑁𝐼 =
𝑛

∑
𝑖=1
𝑖 ⋅ 𝜋(𝑖), (2.6)

onde 𝜋(𝑖) é a probabilidade de haver 𝑖 itens no sistema, e 𝑛 é o número total de possíveis
estados no sistema.

Já a Utilização (U) de um recurso, é definida como:

𝑈 = 𝜋(𝑖𝑏𝑝 > 0), (2.7)

onde 𝜋(𝑖𝑏𝑝 > 0) é a probabilidade de haver itens sendo processados pelo recurso.
Enquanto a modelagem de desempenho foca nas métricas de eficiência do sistema, a

modelagem de confiabilidade concentra-se na compreensão de como as mudanças na estrutura
de um sistema, muitas vezes devido a falhas, afetam a disponibilidade geral do sistema (MELO

et al., 2015). A integração desses dois aspectos levou ao desenvolvimento do conceito de
performabilidade.

Em 1980, Meyer MEYER (1980) introduziu o conceito de avaliação de performabilidade,
que avalia a qualidade geral de um sistema considerando simultaneamente seus aspectos de
desempenho e confiabilidade. Essa abordagem emprega uma medida composta que quantifica
como o desempenho do sistema se degrada quando ocorrem falhas. A avaliação de perfor-
mabilidade de sistemas refere-se à avaliação da capacidade de um sistema de entregar seu
desempenho pretendido na presença de falhas e condições operacionais variáveis, integrando
métricas de desempenho e dependabilidade.

A performabilidade é, portanto, um fator crucial na obtenção de uma avaliação abrangente
do sistema, considerando a potencial ocorrência de falhas e seu impacto no desempenho. Ava-
liar apenas o desempenho e desconsiderar a confiabilidade pode ser excessivamente simplista,
assumindo que o sistema opera em perfeito estado, o que raramente é o caso em ambientes
reais.

Em síntese, a árvore de dependabilidade, juntamente com os conceitos associados de dis-
tribuições de fase e métricas de desempenho e confiabilidade, fornece uma estrutura visual e
conceitual abrangente para compreender e analisar a confiabilidade em sistemas computacio-
nais. Esta abordagem holística evidencia a complexidade e as inter-relações entre os diversos
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aspectos da confiabilidade, servindo como uma ferramenta valiosa para projetistas e analistas
de sistemas. Ao utilizar esta estrutura e considerar aspectos como performabilidade, os pro-
fissionais podem desenvolver abordagens mais abrangentes e eficazes na busca por sistemas
mais robustos, seguros e confiáveis, essenciais em um mundo cada vez mais dependente de
tecnologias computacionais.

2.3 MODELOS ESTOCÁSTICOS

Modelos estocásticos são ferramentas essenciais na avaliação do desempenho, confiabili-
dade e disponibilidade de sistemas computacionais. Esses modelos incorporam aleatoriedade
e incerteza diretamente na análise, permitindo uma compreensão mais abrangente dos com-
portamentos do sistema sob várias condições operacionais. Entre as técnicas de modelagem
estocástica, as Cadeias de Markov se destacam por sua capacidade de descrever o funciona-
mento do sistema com base em um conjunto de estados e transições, que podem representar
eventos de falha e reparo de um sistema ou componente.

As cadeias de Markov são particularmente vantajosas em relação aos Diagramas de Blocos
de Confiabilidade, RBD, quando se trata de descrever propriedades dinâmicas dos sistemas
(BOLCH et al., 2006). Cada transição em uma cadeia de Markov representa um processo esto-
cástico 𝑋(𝑡), onde 𝑡 ∈ 𝑇 é um conjunto de variáveis aleatórias definidas sobre o mesmo espaço
de probabilidades, e capazes de assumir valores no espaço de estados 𝑆𝑖 ∈ 𝑆 (CASSANDRAS;

LAFORTUNE, 2008).

2.3.1 Cadeias de Markov de Tempo Contínuo - CTMC

O conjunto 𝑇 ao qual a variável pertence determina a natureza do processo. Se 𝑇 for dis-
creto, com 𝑡 = 1,2,3, ..., o processo é denominado de parâmetro discreto ou tempo discreto.
Por outro lado, se 𝑇 for um conjunto contínuo, tem-se um processo de parâmetro contínuo ou
tempo contínuo. Estes processos assumem distribuições geométricas (Cadeia de Markov em
Tempo Discreto, Discrete Time Markov Chain (DTMC)) ou exponenciais (CTMC), respecti-
vamente (SOUSA et al., 2009; MACIEL, 2023a).

Um processo estocástico é classificado como um processo de Markov se, para todo 𝑡0 < 𝑡1 <
... < 𝑡𝑛 < 𝑡𝑛+1 e para todo 𝑋(𝑡0),𝑋(𝑡1),𝑋(𝑡2), ...,𝑋(𝑡𝑛),𝑋(𝑡𝑛+1), a distribuição condicional
de𝑋(𝑡𝑛+1) depende somente do último valor anterior𝑋(𝑡𝑛) e não dos valores que o antecedem
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𝑋(𝑡0),𝑋(𝑡1), ...,𝑋(𝑡𝑛−1). Matematicamente, isso pode ser expresso como:

𝑃 (𝑋𝑛+1 = 𝑠𝑛+1⋃︀𝑋𝑛 = 𝑠𝑛,𝑋𝑛−1 = 𝑠𝑛−1, ...,𝑋0 = 𝑠0) = 𝑃 (𝑋𝑛+1 = 𝑠𝑛+1⋃︀𝑋𝑛 = 𝑠𝑛) (2.8)

para qualquer número real 𝑋0,𝑋1,𝑋2, ...,𝑋𝑛,𝑋𝑛+1 (BOLCH et al., 2006).
Esta característica é também conhecida como ausência de memória, e é uma propriedade

fundamental das Cadeias de Markov. Nas CTMCs, as transições entre estados podem ocorrer a
qualquer momento, tornando-as particularmente úteis para modelar sistemas onde os eventos
ocorrem de forma contínua ao longo do tempo.

Formalmente, uma CTMC é um processo estocástico {𝑋(𝑡), 𝑡 ≥ 0} que satisfaz a propri-
edade de Markov para todo 𝑡0 < 𝑡1 < ... < 𝑡𝑛 < 𝑡𝑛+1:

𝑃 (𝑋(𝑡𝑛+1) = 𝑗⋃︀𝑋(𝑡𝑛) = 𝑖,𝑋(𝑡𝑛−1) = 𝑖𝑛−1, ...,𝑋(𝑡0) = 𝑖0) = 𝑃 (𝑋(𝑡𝑛+1) = 𝑗⋃︀𝑋(𝑡𝑛) = 𝑖) (2.9)

As CTMCs são caracterizadas por uma matriz de taxa de transição 𝑄, onde 𝑞𝑖𝑗 representa
a taxa de transição do estado 𝑖 para o estado 𝑗. A matriz 𝑄 tem a seguinte forma:

𝑄 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑞11 𝑞12 ⋯ 𝑞1𝑛

𝑞21 𝑞22 ⋯ 𝑞2𝑛

⋮ ⋮ ⋱ ⋮

𝑞𝑛1 𝑞𝑛2 ⋯ 𝑞𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.10)

onde 𝑞𝑖𝑖 = −∑𝑗≠𝑖 𝑞𝑖𝑗, garantindo que a soma de cada linha seja zero.
A análise de CTMCs permite obter métricas importantes como probabilidades de estado

estacionário, tempo médio de primeira passagem, e medidas de desempenho e confiabilidade
do sistema. Para resolver uma CTMC e obter estas métricas, geralmente se utiliza a equação
de Chapman-Kolmogorov em sua forma diferencial:

𝑑𝜋(𝑡)

𝑑𝑡
= 𝜋(𝑡)𝑄 (2.11)

onde 𝜋(𝑡) é o vetor de probabilidades de estado no tempo 𝑡.
Para a resolução do sistema, define-se a condição inicial 𝜋(0) = 𝜋0(0), onde 𝜋0(0) repre-

senta o vetor de probabilidades de estado no instante inicial 𝑡 = 0, descrevendo a distribuição
inicial dos estados do sistema.
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As Cadeias de Markov de Tempo Contínuo oferecem um poderoso framework para a aná-
lise de sistemas estocásticos complexos, permitindo aos engenheiros e pesquisadores modelar
e analisar o comportamento de sistemas computacionais sob condições de incerteza e varia-
bilidade. Sua aplicação abrange desde a avaliação de desempenho de redes de computadores
até a análise de confiabilidade de sistemas de missão crítica, tornando-as uma ferramenta
indispensável no campo da engenharia de sistemas e ciência da computação.

2.3.2 Redes de Petri Estocásticas - SPN

As Redes de Petri, Petri Nets (PN), são uma ferramenta de modelagem para sistemas
complexos, concorrentes e assíncronos. Desenvolvidas por Carl Adam Petri em 1962, estas redes
têm sido utilizadas em diversas áreas, incluindo engenharia de software, análise de processos de
negócios e sistemas de manufatura. A estrutura básica das redes de Petri inclui componentes
conhecidos como lugares, transições, arcos e marcações, como ilustrado na Figura 6.

Figura 6 – Principais Componentes de uma Rede de Petri

(a) Lugar (b) Transição (c) Arco (d) Marcação

Fonte: Baseado em MELO (2016)

Os lugares, representados por círculos, podem conter tokens (marcações), e a distribuição
de tokens pelos lugares representa o estado do sistema em um determinado momento. As
transições, representadas por retângulos ou barras, são responsáveis pelo movimento dos tokens
entre os lugares. Este movimento é governado por regras de habilitação e disparo que ditam o
fluxo dentro da rede. Os arcos conectam lugares a transições e vice-versa, indicando o caminho
que os tokens podem seguir.

A Figura 7 apresenta um exemplo de uma rede de Petri antes e após o disparo de uma
transição. Na Figura 7(a), vemos o estado inicial da rede, com tokens distribuídas em deter-
minados lugares. A Figura 7(b) mostra o estado após o disparo da transição, onde as tokens
foram movidas de acordo com as regras da rede. Os disparos de transições ou a ocorrência de
ações em uma rede de Petri são possíveis quando o número de recursos/marcações é sufici-
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Figura 7 – Exemplo de uma Rede de Petri

(a) SPN antes do disparo de transição (b) SPN após o disparo da transição

Fonte: Baseado em MELO (2016)

ente no lugar que as antecede (MACIEL; LINS; CUNHA, 1996). Este mecanismo permite modelar
situações de concorrência e sincronização.

De acordo com (MURATA, 1989), uma rede de Petri pode ser formalmente definida através
de uma 5-tupla, do tipo 𝑃𝑁 = (𝑃,𝑇,𝐹,𝑊,𝑀0), onde:

• 𝑃 = (𝑝1, 𝑝2, ..., 𝑝𝑛) é um conjunto finito de lugares,

• 𝑇 = (𝑡1, 𝑡2, ..., 𝑡𝑚) é um conjunto finito de transições,

• 𝐹 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ) é um conjunto de arcos,

• 𝑊 ∶ 𝐹 → {1,2,3, ...} é a função de peso,

• 𝑀0 ∶ 𝑃 → {0,1,2,3, ...} são as marcações iniciais.

Esta definição matemática fornece uma base para a análise e verificação de propriedades
dos sistemas modelados. Por exemplo, é possível verificar se um sistema pode entrar em
deadlock, se existem estados inalcançáveis, ou se certas condições de segurança são mantidas.

O avanço no estudo das redes de Petri proporcionou uma evolução em seu poder de re-
presentação. Uma extensão útil são as SPNs, que permitem descrever sistemas assíncronos,
temporizados, concorrentes e não-determinísticos (GERMAN, 2000). As SPNs introduzem ele-
mentos probabilísticos, permitindo modelar sistemas com comportamento aleatório ou incerto.

A Figura 8 mostra componentes adicionais para uma rede de Petri estocástica: o arco
inibidor e a transição temporizada. Arcos inibidores, representados por uma linha terminada
em um círculo, determinam se um dado local possui ou não marcações. Eles permitem mo-
delar situações onde a ausência de recursos é uma condição para uma ação. As transições
temporizadas têm seu tempo de disparo pré-estabelecido e baseado em uma distribuição de
probabilidade (MELO et al., 2015). Isso permite modelar ações que levam tempo para serem
concluídas ou que ocorrem em intervalos aleatórios.
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Figura 8 – Componentes Adicionais para uma Rede de Petri Estocástica

(a) Arco Inibidor (b) Transição Tempo-
rizada

Fonte: Baseado em MELO (2016)

As SPNs são uma poderosa extensão das redes de Petri tradicionais, projetadas para mo-
delar sistemas complexos onde a aleatoriedade e os tempos de transição são fundamentais
(SYMONS, 1989; NATKIN, 1980; MOLLOY, 1981). Enquanto as redes de Petri clássicas são efi-
cientes para descrever a lógica de processos concorrentes, elas não são suficientes para modelar
aspectos temporais e probabilísticos. Para resolver isso, as SPNs introduzem transições tem-
porizadas com distribuições estocásticas, permitindo que o tempo de disparo de uma transição
siga uma distribuição de probabilidade, como a exponencial, a determinística ou outras distri-
buições genéricas. Essa abordagem é particularmente útil para modelar e analisar sistemas de
filas, redes de comunicação, e infraestruturas de computação, onde eventos ocorrem de forma
aleatória ao longo do tempo.

Várias extensões foram desenvolvidos a partir do modelo básico das SPNs para aprimo-
rar ainda mais suas capacidades de modelagem. Entre as extensões mais importantes estão
as Redes de Petri Estocásticas Generalizadas, Generalized Stochastic Petri Nets

(GSPN)(MARSAN et al., 1998), que adicionam transições imediatas para capturar eventos que
ocorrem instantaneamente, e as Redes de Petri Estocásticas Determinísticas, Deter-

ministic Stochastic Petri Nets (DSPN)(LINDEMANN, 1998), que incorporam transições
com tempos determinísticos. Essas extensões permitem uma modelagem mais precisa de siste-
mas que possuem comportamentos estocásticos, mas também eventos determinísticos ou de
disparo imediato. Além disso, existem outras variantes, como as Redes de Petri Determi-

nísticas e Estocásticas, Deterministic and Stochastic Petri Nets (eDSPN)(GERMAN,
2000; GERMAN; LINDEMANN, 1994), que ampliam ainda mais a gama de sistemas que podem
ser analisados com precisão por meio de SPNs. Essas extensões tornam as SPNs uma fer-
ramenta robusta para a análise de desempenho, confiabilidade e disponibilidade de sistemas
complexos.
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A definição de uma SPN pode ser descrita formalmente como um conjunto de elementos
que estendem a definição de uma rede de Petri tradicional com comportamentos estocásticos.
Uma SPN é representado pela tupla:

SPN = (𝑃,𝑇, 𝐼,𝑂,𝐻,𝑀0,Atts)

Onde:

– P: Conjunto finito de lugares (𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}).

– T: Conjunto finito de transições (𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑚}), que é dividido em:

– 𝑇𝑖𝑚: Transições imediatas.

– 𝑇𝑒𝑥𝑝: Transições com distribuições exponenciais.

– 𝑇𝑑𝑒𝑡: Transições determinísticas.

– 𝑇𝑔: Transições com distribuições genéricas.

Assim, 𝑇 = 𝑇𝑖𝑚 ∪ 𝑇𝑒𝑥𝑝 ∪ 𝑇𝑑𝑒𝑡 ∪ 𝑇𝑔.

– I: Matriz de entrada que define as conexões entre lugares e transições. Cada elemento
𝑖𝑝,𝑡 representa o peso do arco de entrada do lugar 𝑝 para a transição 𝑡, e pode ser
dependente da marcação atual:

𝐼 = (𝑖𝑝,𝑡)⋃︀𝑃 ⋃︀×⋃︀𝑇 ⋃︀, 𝑖𝑝,𝑡 ∶𝑀𝐷 ×𝑅𝑆SPN → N

onde 𝑀𝐷 = {verdadeiro, falso}, indicando se o arco é dependente da marcação.

– O: Matriz de saída que define as conexões entre transições e lugares. Cada elemento
𝑜𝑝,𝑡 representa o peso do arco de saída da transição 𝑡 para o lugar 𝑝, que também pode
depender da marcação:

𝑂 = (𝑜𝑝,𝑡)⋃︀𝑃 ⋃︀×⋃︀𝑇 ⋃︀, 𝑜𝑝,𝑡 ∶𝑀𝐷 ×𝑅𝑆SPN → N

– H: Matriz de arcos inibidores, onde ℎ𝑝,𝑡 inibe a transição 𝑡 se o número de tokens no
lugar 𝑝 for maior ou igual a ℎ𝑝,𝑡:

𝐻 = (ℎ𝑝,𝑡)⋃︀𝑃 ⋃︀×⋃︀𝑇 ⋃︀, ℎ𝑝,𝑡 ∶𝑀𝐷 ×𝑅𝑆SPN → N
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– 𝑀0: A marcação inicial da rede, que é um vetor que descreve a quantidade inicial de
tokens em cada lugar 𝑝:

𝑀0 = (𝑚𝑝)⋃︀𝑃 ⋃︀

– Atts: O conjunto de atributos associados às transições, definidos como:

Atts = (Π,Dist,MDF,𝑊,𝐺,Policy,Concurrency)

– Π ∶ 𝑇 → N: Atribui uma prioridade às transições.

– Dist ∶ 𝑇𝑒𝑥𝑝 ∪ 𝑇𝑔 → 𝐹 : Função que atribui uma distribuição de probabilidade não
negativa para transições temporizadas.

– MDF ∶ 𝑇 → 𝑀𝐷: Define se a distribuição de probabilidade de uma transição
depende da marcação.

– 𝑊 ∶ 𝑇𝑒𝑥𝑝 ∪ 𝑇𝑑𝑒𝑡 ∪ 𝑇𝑖𝑚 → R+: Atribui taxas (distribuições exponenciais), atrasos
(transições determinísticas), ou pesos (transições imediatas) às transições.

– 𝐺 ∶ 𝑇 → N⋃︀𝑃 ⋃︀: Expressão de guarda que define uma condição booleana para que a
transição seja habilitada.

– Policy ∶ 𝑇 → {prd,prs}: Define a política de memória (reiniciar ou continuar o
temporizador de transições).

– Concurrency ∶ 𝑇 − 𝑇𝑖𝑚 → {sss, iss}: Define a semântica de concorrência, onde SSS

denota semântica de servidor único, Single Server Semantics (SSS) e ISS denota
semântica de servidor infinito, Infinite Server Semantics (ISS).

Regras de habilitação e disparo:

Uma transição 𝑡𝑖 é habilitada em uma marcação 𝑀 se:

𝑀 ≥ 𝐼⋅,𝑡𝑖
∧𝑀 <𝐻⋅,𝑡𝑖

∧𝐺(𝑡𝑖) = verdadeiro

onde 𝐼⋅,𝑡𝑖
é o vetor de entradas para 𝑡𝑖 e 𝐻⋅,𝑡𝑖

é o vetor de inibidores para 𝑡𝑖. O disparo de uma

transição habilitada 𝑡𝑖 em uma marcação 𝑀 leva a uma nova marcação 𝑀 ′, dada por:

𝑀 ′ =𝑀 − 𝐼⋅,𝑡𝑖
+𝑂⋅,𝑡𝑖
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Esta formulação matemática permite que SPNs sejam usados para modelar sistemas es-
tocásticos com comportamentos complexos, incorporando não apenas a dinâmica de redes de
Petri tradicionais, mas também a estocasticidade e características temporais(MACIEL, 2023a)

2.4 ANÁLISE DE SENSIBILIDADE

A análise de sensibilidade é uma técnica essencial para avaliar o impacto das variações nos
parâmetros de entrada sobre a disponibilidade de um sistema. Diferentes abordagens podem
ser aplicadas, como a Análise de Sensibilidade Diferencial, Medidas de Sensibilidade Uma por
Uma, o Método do Desvio Relativo, a Taxa de Desvio Relativo, o Coeficiente de Correlação
Parcial de Postos e o Índice de Sensibilidade, Sensitivity Index (SI) (HAMBY, 1995). Cada uma
dessas técnicas oferece uma perspectiva distinta sobre como as variações nos parâmetros de
entrada afetam a saída do modelo. Neste estudo, utilizamos o SI, uma métrica quantitativa
que mede o impacto das variações de um parâmetro de entrada 𝑦 sobre a disponibilidade do
sistema. O SI expressa esse impacto como uma diferença percentual relativa, o que permite
identificar os parâmetros que possuem maior influência na estabilidade e no desempenho do
sistema, possibilitando assim a priorização de ajustes e melhorias nos parâmetros críticos para
a disponibilidade.

A Equação 2.12 define o índice de sensibilidade, Sensitivity Index (SI), que expressa esse
impacto como uma diferença percentual relativa e é definido pela fórmula:

𝑆𝑥𝑖
(𝑓(𝑥𝑖)) =

𝑚𝑎𝑥𝑓(𝑥𝑖) −𝑚𝑖𝑛𝑓(𝑥𝑖)
𝑚𝑎𝑥𝑓(𝑥𝑖)

(2.12)

onde:

– 𝑚𝑎𝑥𝑓(𝑥𝑖) é o valor máximo do parâmetro 𝑥𝑖 obtido ao variar o parâmetro dentro do seu
intervalo permitido;

– 𝑚𝑖𝑛𝑓(𝑥𝑖) é o valor mínimo correspondente de 𝑥𝑖.

Esse índice de sensibilidade fornece uma medida da proporção da variação da saída em
relação ao valor máximo de 𝑥𝑖, destacando a sensibilidade do parâmetro 𝑥𝑖 às flutuações
do parâmetro analisado. Durante o cálculo de 𝑆𝑥𝑖

(𝑓(𝑥𝑖)), todos os outros parâmetros do
modelo permanecem constantes, garantindo que a análise isolada do impacto do parâmetro
𝑥𝑖 seja precisa (FRANK; ESLAMI, 1980). Essa abordagem é particularmente útil para melhorar
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a previsibilidade do comportamento do sistema, já q ue permite uma avaliação detalhada da
robustez em relação às variações de 𝑥𝑖, auxiliando no planejamento preciso das condições
operacionais.

A escolha do Índice de Sensibilidade neste estudo foi motivada por sua simplicidade e
facilidade de implementação, especialmente na linguagem de scripts da ferramenta Mercury
(MACIEL et al., 2017). A simplicidade da fórmula de 𝑆𝑥𝑖

(𝑓(𝑥𝑖)) facilita sua implementação prá-
tica, permitindo uma análise de sensibilidade eficiente e rápida. Isso é particularmente benéfico
em cenários onde análises ágeis e precisas são necessárias para tomar decisões informadas, tor-
nando o SI uma ferramenta valiosa para otimizar a disponibilidade e a confiabilidade dos
sistemas analisados.
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3 METODOLOGIA

A metodologia utilizada neste trabalho visa garantir uma abordagem sistemática para o
desenvolvimento e a validação de um sistema de vigilância baseado em VANTs. O capítulo
descreve cada uma das etapas envolvidas no processo, desde a compreensão inicial do sistema
até a definição das métricas de interesse, construção e validação do modelo, e análise de
sensibilidade. As etapas são delineadas para fornecer uma visão clara de como os componentes
do sistema interagem para garantir a performance e a disponibilidade do sistema de vigilância. A
abordagem também inclui uma análise detalhada dos resultados, possibilitando a identificação
de áreas de melhoria e a otimização dos recursos envolvidos.

Figura 9 – Visão Geral da Metodologia Adotada para Avaliação de Sistemas de Vigilância por Drones.

Compreensão do sistema

Definir métricas de interesse

Construção de modelo

Elaboração de cenários e
avaliação

Validação

Sim

Não

Resultados
satisfatórios?

Definir arquitetura de sistema de
linha de base

Cálculo do rank de sensibilidade
e identificação de componentes

relevantes

Análise de Resultados

Fonte: Elaborado pelo Autor (2024)

A Figura 9 apresenta uma visão geral da metodologia adotada para a avaliação do sistema
de vigilância com drones, destacando cada etapa do processo, desde a compreensão do sistema
até a análise dos resultados e a identificação dos componentes relevantes. Essa representação
visual facilita o entendimento das etapas sequenciais e das relações entre elas, proporcionando
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uma visão clara do fluxo de trabalho empregado para garantir a eficiência e confiabilidade do
sistema.

O primeiro passo para a execução deste trabalho foi realizar uma revisão da literatura
sobre sistemas de vigilância baseados em drones. O objetivo dessa etapa foi identificar as
principais abordagens utilizadas em diferentes cenários de vigilância e como as características
dos drones e câmeras influenciam na eficiência dos sistemas. Estudos sobre a confiabilidade e a
disponibilidade de drones em missões críticas foram analisados para embasar o desenvolvimento
dos modelos utilizado neste trabalho. Dentre os principais trabalhos revisados, destacaram-se
aqueles que abordam o uso de drones em áreas abertas para monitoramento contínuo, além
de estudos que utilizam métricas como redundância de baterias e drones para garantir a alta
disponibilidade do sistema.

– Compreensão do Sistema: A primeira etapa da metodologia consistiu no estudo apro-
fundado do sistema, onde foi realizada uma análise detalhada dos componentes envolvi-
dos, como a estrutura dos drones, características das câmeras, capacidades de bateria,
sensores, limitações operacionais e gerência de energia. Foram coletadas informações de
fabricantes e de fontes acadêmicas para entender o comportamento esperado do sistema
de vigilância. Esse entendimento serviu como base para a definição dos requisitos que
guiariam as etapas subsequentes, garantindo uma compreensão abrangente do sistema
antes de prosseguir com a modelagem e análise.

– Definir Arquitetura de Sistema Base: Na etapa de definição da arquitetura do sis-
tema de linha de base, foi estabelecida a arquitetura para um sistema de vigilância com
drone e também o modelo utilizado para teste. Esta etapa incluiu a definição do nú-
mero de drones, características das câmeras (resolução, campo de visão), quantidade de
baterias, além do layout da área de vigilância a ser monitorada. Foi utilizado o drone
DJI Mavic Pro, que possui especificações adequadas para os testes em campo aberto.
O drone está equipado com uma câmera de resolução Full HD, permitindo a captura de
imagens de qualidade para vigilância. Além disso, foram utilizadas quatro baterias extras,
cada uma com uma autonomia estimada de 25 minutos de voo. No entanto, durante o
experimento, algumas baterias apresentaram variações na carga inicial, influenciando o
desempenho do drone em determinadas rondas.

A área escolhida para o experimento foi um terreno aberto e plano, adequado para
simular o funcionamento de um sistema de vigilância. A área foi mapeada para o drone
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realizar um padrão de voo específico, cobrindo toda a superfície eficientemente. Esta
arquitetura base serviu como ponto de referência para o desenvolvimento dos modelos
de simulação e para avaliação dos requisitos necessários para garantir a operação do
sistema.

– Definir Métricas de Interesse: Na terceira etapa, realizou-se a definição das métricas
de interesse para avaliar o desempenho do sistema de vigilância. As principais métricas
incluem:

– Disponibilidade estacionária: reflete a capacidade do sistema de se manter opera-
cional;

– Confiabilidade: indica a probabilidade de o sistema funcionar sem falhas por um
determinado período;

– Tempo médio de cobertura, 𝐶𝑜𝑉𝑡𝑖𝑚𝑒, da área de vigilância;

– Número médio de itens no sistema (MNI);

– Utilização dos recursos (U): representa o uso efetivo dos componentes do sistema.

Essas métricas foram importantes para analisar o impacto das diferentes configurações
do sistema, avaliar o nível de serviço oferecido e identificar possíveis áreas de melhoria.

– Construção de Modelo: A construção do modelo estocástico foi realizada utilizando
inicialmente um modelo CTMC para análise de melhorias de tempos médios e posteri-
ormente modelos SPN para representar as operações e interações com redundâncias e
desempenho do sistema de vigilância. Este tipo de modelagem foi escolhido devido à
sua capacidade de representar sistemas complexos, descrevendo comportamentos dinâ-
micos como falhas, reparos, trocas de baterias e movimentação dos drones. O modelo
foi dividido em duas partes principais: uma dedicada à disponibilidade, avaliando o com-
portamento do sistema em caso de falhas e reparos, e outra voltada para a performance,
medindo métricas como o número de rondas de vigilância por hora. Foram utilizadas
transições temporizadas exponenciais e redes do tipo Erlang para representar o fluxo de
estados do sistema, considerando fatores como autonomia de voo, tempos de carga e
descarga das baterias e o impacto de redundâncias.

– Validação: Na quinta etapa, realizou-se a validação do modelo, que visa garantir que
o comportamento do modelo simulado seja consistente com o sistema real. Um drone
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comercial, como o DJI Mavic Pro, foi utilizado para validar o modelo, comparando dados
coletados do drone real com os resultados do modelo. As métricas utilizadas incluíram
tempo de voo, tempo de carga da bateria e a cobertura da área de vigilância. Para
garantir a precisão da validação, utilizou-se o método bootstrap para calcular intervalos
de confiança para os tempos médios de cobertura, a fim de verificar se o modelo reflete
adequadamente as condições reais observadas.

Dentre as variáveis coletadas, os dados de maior interesse foram os relacionados à por-
centagem de bateria, coordenadas GPS, altura de voo, velocidade e tempo de voo. Com
base nessas variáveis, foi possível realizar a análise da performance do drone em relação
ao número de rondas completas que ele conseguia realizar com cada carga de bateria.
Uma ronda foi definida como o trajeto completo de ida e volta, cobrindo toda a área de
vigilância.

– Resultados satisfatórios? (Avaliação dos Resultados): Com os dados coletados,
o modelo de cobertura foi refinado de modo a ajustar os tempos médios observados
com o intervalo de confiança estimado. O objetivo desse ajuste foi garantir que o mo-
delo de cobertura fosse uma representação precisa do comportamento real do drone
durante o processo de vigilância. Caso os resultados não fossem satisfatórios, o modelo
seria ajustado e a simulação refeita até que o desempenho desejado fosse atingido. Este
processo iterativo de ajuste e refinamento visou garantir que o modelo simulasse adequa-
damente as características importantes do sistema, e que as decisões tomadas a partir
dos resultados fossem embasadas em simulações precisas e representativas do cenário
real.

– Cálculo do Rank de Sensibilidade e Identificação de Componentes Relevan-

tes: Uma vez que o modelo foi validado, procedeu-se com a análise de sensibilidade e
identificação dos componentes relevantes. O objetivo desta etapa foi determinar quais
variáveis do sistema possuíam maior impacto sobre a sua disponibilidade e confiabili-
dade. Utilizou-se o SI para medir a variação na disponibilidade em resposta a mudanças
nos parâmetros de entrada, como o Tempo Médio de Carga da Bateria, Mean Time
to Battery Charging (MTTBC) e o Tempo Médio de Descarga da Bateria, Mean Time
to Battery Discharge (MTTBD). A análise de sensibilidade auxiliou na priorização de
ações de melhoria, identificando quais componentes ou parâmetros deveriam ser otimi-
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zados para maximizar o impacto na disponibilidade do sistema, como o investimento em
baterias de maior capacidade ou carregadores mais eficientes.

– Análise de Resultados e Recomendações: O modelo de performabilidade considerou
a quantidade de rondas que o sistema era capaz de realizar levando em conta possíveis
falhas e o tempo de substituição das baterias. A redundância de baterias foi um fator
crítico para manter a disponibilidade do sistema de vigilância, permitindo que o drone
continuasse suas operações sem grandes interrupções. Além disso, falhas potenciais do
drone, como perda de sinal GPS ou falhas no motor, foram modeladas em um só tempo
médio de falha para o drone inteiro, valor obtido na literatura e nas especificações do
drone.

Esse modelo foi importante para avaliar a eficiência operacional do sistema e oferecer
insights sobre o número ideal de baterias e drones necessários para garantir alta disponibili-
dade, performance e confiabilidade em um cenário de vigilância contínua. As recomendações
incluíram intervenções práticas para melhorar a eficiência e a disponibilidade do sistema, tais
como a adição de drones e baterias redundantes, a utilização de carregadores mais rápidos,
ou o uso de baterias com maior capacidade de armazenamento. Também foram consideradas
estratégias para balancear o custo-benefício, visando aumentar a disponibilidade do sistema
sem elevar significativamente os custos operacionais.

Essa metodologia permitiu a construção de um modelo de vigilância baseado em drones
eficaz, considerando não apenas o desempenho operacional dos drones, mas também a ne-
cessidade de manter a vigilância contínua em cenários com falhas e trocas de baterias. O
uso de ferramentas como Dashware, AirData e Bootstrap garantiu uma análise detalhada e
precisa dos dados, permitindo a validação do modelo proposto e sua utilização em cenários
futuros. Dessa forma, a metodologia proposta estabelece uma base para o desenvolvimento
de sistemas VANT robustos, eficientes e adaptáveis, atendendo às demandas específicas de
ambientes dinâmicos de vigilância.
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4 ARQUITETURA E MODELOS

Esta capitulo apresenta uma análise detalhada da arquitetura do sistema em estudo, com
ênfase nos desafios associados ao monitoramento por VANTs. O objetivo é examinar os di-
versos aspectos críticos que influenciam a eficácia do monitoramento, identificando potenciais
gargalos e propondo soluções que melhorem a eficiência operacional. Para isso, utilizamos
diferentes metodologias que permitem uma avaliação de cada componente do sistema, consi-
derando tanto os fatores internos quanto externos que afetam o desempenho. Propomos uma
abordagem que integra modelos analíticos e numéricos para avaliar e otimizar o desempenho
global do sistema, garantindo que cada uma das variáveis seja tratada de maneira sistemática,
com foco na obtenção dos resultados mais eficazes.

Inicialmente, desenvolvemos um modelo estocástico fundamentado em CTMC, a partir
do qual derivamos um modelo analítico para estimar diversos parâmetros temporais críticos,
como tempos médios de transição entre estados e métricas de desempenho relacionadas ao
comportamento estocástico do sistema. Posteriormente, elaboramos um modelo numérico uti-
lizando SPN para analisar a disponibilidade do sistema, considerando diferentes configurações
de redundância e suas implicações no comportamento do sistema (Fig. 10). Esse modelo foi
subsequentemente estendido para incorporar estado absorvente, o que permitiu uma avaliação
da confiabilidade do sistema, fornecendo uma visão sobre as possíveis falhas e a probabilidade
de recuperação em diferentes cenários operacionais.

Figura 10 – Modelos de Avaliação Propostos para Sistemas de Monitoramento por VANTs e suas Inter-
relações.

Confiabilidade Disponibilidade Cobertura

Performabilidade

Performance Disponibilidade

Fonte: Elaborado pelo Autor (2024)

No que se refere à cobertura de área, elaboramos um modelo que contempla as carac-
terísticas do sensor da câmera, incluindo resolução, dimensões e campo de visão, Field of
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View (FOV). Esse modelo contempla as especificações técnicas da câmera, incluindo resolu-
ção, dimensões e FOV. Esse modelo possibilita a estimativa da altura operacional máxima,
o tempo efetivo de cobertura, bem como a análise do impacto de variações na resolução so-
bre a qualidade das imagens obtidas. Os resultados obtidos foram integrados em um modelo
SPN de performabilidade, proporcionando uma análise detalhada do desempenho do sistema
em diferentes condições operacionais, considerando cenário de falhas parciais, interrupções
temporárias do serviço e diferentes níveis de redundância.

Figura 11 – Arquitetura de Vigilância por Drones Ilustrando o Campo de Visão e a Altura Operacional.
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α
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Fonte: Elaborado pelo Autor (2024)

A Figura 11 ilustra detalhadamente a arquitetura de vigilância por drones, destacando
elementos cruciais para o entendimento do sistema de monitoramento. No centro superior
da imagem, observamos o drone principal, equipado com uma câmera de alta resolução e
uma bateria, simbolizando a unidade central de vigilância. A partir deste drone, projeta-se
uma pirâmide de base retangular, que representa a área de cobertura da câmera (FOV), cujo
ângulo é indicado por 𝜃. Este ângulo é fundamental para determinar a área de cobertura do
drone. A altura operacional, denotada por ℎ, representa a distância vertical entre o drone e
a superfície monitorada, sendo crucial para calcular a área de cobertura e a resolução efetiva
das imagens capturadas.

No centro da imagem, uma elipse ilustra a área de ronda, representando a zona principal
de vigilância onde o drone realiza seu patrulhamento. À direita, visualizamos um drone de
substituição, indicando a estratégia de redundância implementada para manter a continuidade
da operação. As setas circulares entre os drones sugerem o ciclo de operação, demonstrando a
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rotação e substituição planejada para otimizar o tempo de voo e a eficiência energética. No solo,
figuras humanas representam a escala e a capacidade do sistema em monitorar movimentações
na área. Esta configuração permite calcular parâmetros essenciais como a largura total da área
coberta pela câmera, que é determinada pela projeção do FOV no solo. A relação entre 𝐻
e 𝜃 define diretamente esta área de cobertura, influenciando significativamente a eficácia do
monitoramento.

Um dos principais desafios enfrentados neste estudo consiste na otimização do tempo de
monitoramento de uma área entre dois pontos, considerando as restrições de eficiência ener-
gética e o desgaste dos dispositivos. A eficiência energética dos VANTs é um fator importante,
especialmente em missões de reconhecimento de imagem, nas quais a resolução do sensor da
câmera desempenha um papel determinante. Resoluções mais altas permitem reconhecer ob-
jetos a distâncias maiores, ampliando o campo de visão e reduzindo potencialmente o tempo
necessário para a cobertura completa da área. Contudo, essa abordagem também aumenta a
demanda energética, exigindo baterias mais robustas em termos de peso também e elevando
o consumo de energia devido à maior potência requerida pelos rotores.

Para mitigar esses desafios, exploramos estratégias como a redundância de baterias, que
envolve aceitar breves interrupções de serviço em prol de uma operação mais prolongada. Além
disso, investigamos o uso de sensores de menor resolução associados ao posicionamento do
VANT mais próximo do alvo. Embora essa estratégia limite o FOV, ela pode potencialmente
aumentar o tempo de cobertura e melhorar a eficiência energética, ao mesmo tempo, em que
reduz o desgaste dos dispositivos. No entanto, é imprescindível investigar este trade-off, pois
o VANT cobre a área de forma mais lenta, necessitando de mais trocas de baterias, mas sem
exigir que os rotores operem em potência máxima.

4.1 MODELO DE DISPONIBILIDADE

Esta seção apresenta um modelo de Cadeia de Markov de Tempo Contínuo (CTMC) e
seu gráfico de alcançabilidade desenvolvidos para calcular a disponibilidade do sistema de
voo do Veículo Aéreo Não Tripulado (VANT). Este modelo foi projetado para representar
as diferentes configurações e estados operacionais do sistema, considerando fatores como o
carregamento e descarregamento da bateria, falhas de hardware, reparos e a troca entre drones
ativos e de reserva. A utilização de CTMC permite uma análise detalhada das transições
entre estados e fornece uma base para a derivação de fórmulas analíticas que quantificam a
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disponibilidade do sistema. As duas representações do modelo, embora equivalentes em termos
de informação, oferecem perspectivas complementares que podem auxiliar na compreensão e
análise do comportamento do sistema em diferentes cenários.

Figura 12 – Gráfico de Alcançabilidade para Disponibilidade de Sistemas de Vigilância por Drone
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Fonte: Elaborado pelo Autor (2024)

A Figura 12 apresenta uma cadeia de Markov que modela o sistema de voo do drone. O
sistema é composto por um drone em voo com bateria, um drone reserva e uma bateria reserva
em modo de operação em cold standby, o sistema é considerando em funcionamento quando
um drone com bateria está ativo e em voo. A cadeia é composta por estados, representados
por círculos, onde os círculos escuros indicam o sistema em operação normal. Os estados do
sistema são descritos por cinco componentes: número de Baterias Prontas (#BR), número
de Baterias Carregando (#BC), número de Drones Prontos (#DR), número de Drones em
Operação (#DU) e número de Drones em Falha (#DF), representando a tupla S=(#BR,
#BC, #DR, #DU, #DF). O estado inicial, representado como S=(1,0,1,1,0), indica 1 bateria
pronta, 0 baterias carregando, 1 drone pronto, 1 drone em operação e 0 drones em falha. Este
estado inicial representa a configuração padrão do sistema quando está totalmente operacional
e pronto para iniciar suas atividades.

As transições entre os estados são governadas por vários parâmetros: taxa de falha do
drone (ld), taxa de reparo do drone (md), taxa de comutação (d), taxa de descarga da
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bateria (lbd) e taxa de carga da bateria (lbc). Estas transições são representadas por setas
entre os círculos, mostrando como o sistema pode mudar de um estado para outro. A dinâmica
do sistema é caracterizada por movimentos entre diferentes estados, dependendo de eventos
como falhas de drones, reparos, trocas de baterias e recargas. Por exemplo, o sistema pode
passar de um estado operacional (círculos escuros) para um estado de falha através de eventos
como falha de drone (ld) ou descarga de bateria (lbd). Da mesma forma, pode retornar a
estados operacionais por meio de reparos de drones (md) ou recarga de baterias (lbc).

A partir do estado inicial S=(1,0,1,1,0), o sistema pode evoluir para diferentes configura-
ções, ilustrando a complexidade e dinamismo do modelo. Por exemplo, se o drone em operação
falhar, o sistema pode transitar para o estado S=(1,0,1,0,1), onde um drone está em falha
e o outro está pronto para substituí-lo. Se a bateria em uso descarregar, representado pelos
estados S=(1,1,2,0,0) e S=(0,1,1,0,1), o sistema pode mudar para S=(0,1,1,1,0) a partir des-
tes estados, iniciando o processo de recarga da bateria esgotada enquanto o drone continua
operando com a bateria reserva. Estas transições demonstram como o sistema se adapta a
diferentes situações, mantendo a operacionalidade sempre que possível e iniciando processos
de recuperação quando necessário.

Figura 13 – Modelo de Disponibilidade CTMC para Sistemas de Vigilância por Drone
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Fonte: Elaborado pelo Autor (2024)

A Figura 13 apresenta uma representação alternativa do mesmo modelo de CTMC para o
sistema de voo do VANT, gerada pela ferramenta de cálculo Mercury (MACIEL et al., 2017).
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Esta visualização mantém os mesmos parâmetros e estrutura do modelo original, incluindo
a taxa de carregamento (𝜇𝑏𝑐) e a taxa de descarregamento (𝜆𝑏𝑑) da bateria do drone por
hora, bem como a taxa de falha do hardware do dispositivo (𝜆𝑑) e a taxa de reparo (𝜇𝑑) por
hora. Além disso, o modelo considera a taxa de troca (𝛿) entre o drone em voo e o drone de
reserva. Nesta representação, os estados operacionais do sistema são claramente identificados
como 𝑆0, 𝑆2, 𝑆7, indicados por círculos escuros. Estes estados representam as configurações
onde o sistema está em pleno funcionamento, com pelo menos um drone ativo e em voo. A
visualização gerada pelo ferramenta oferece uma perspectiva complementar do modelo CTMC,
permitindo uma análise mais aprofundada das transições entre estados e das probabilidades
associadas a cada configuração do sistema. Uma descrição detalhada de todos os parâmetros e
estados das duas CTMCs pode ser vista no Quadro 2 e 3, fornecendo uma referência completa
para a compreensão e análise do modelo.

O modelo CTMC apresentado serve como base para a obtenção de um modelo analítico.
Esta abordagem fornece uma estrutura que arquitetos e projetistas podem utilizar no desen-
volvimento de sistemas com características similares, permitindo a análise do comportamento
e da confiabilidade do sistema de voo do VANT. Uma característica deste modelo é o uso de
tempos distribuídos exponencialmente, possibilitando a derivação de uma fórmula em forma fe-
chada para a disponibilidade do sistema. Esta fórmula, representada pela Eq. 4.1, oferece uma
expressão matemática calculável para a avaliação do desempenho do sistema em diferentes
cenários operacionais.

Após a apresentação dos modelos CTMCs para o cálculo da disponibilidade do sistema de
voo do VANT, passamos às equações analíticas derivadas desses modelos. Estas equações for-
necem uma representação matemática da disponibilidade do sistema, permitindo uma análise
quantitativa do seu desempenho em diferentes cenários operacionais.

A seguir, apresentamos a fórmula em forma fechada para a disponibilidade do VANT
extraídas a partir do modelo CTMC (Modelo 13) com auxílio da ferramenta Wolfram Mathe-
matica (WOLFRAM, 2024). Além disto, a equação da disponibilidade do VANT é seguida pelas
equações que descrevem a disponibilidade do servidor e do roteador. Incluímos os outros com-
ponentes para uma visão abrangente do sistema de monitoramento, embora o foco principal
seja o sistema de voo do VANT. Por fim, apresentamos a equação que combina esses elementos
para calcular a disponibilidade geral do sistema.
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Quadro 2 – Descrição dos Estados do Sistema para o Modelo CTMC

Estado Ferramenta Sistema Descrição
(1,0,1,1,0) 𝑆0 Operacional Uma bateria pronta, nenhuma bateria carre-

gando, um drone pronto, um drone em uso,
nenhum drone em falha

(1,0,1,0,1) 𝑆1 Indisponível Uma bateria pronta, nenhuma bateria carre-
gando, um drone pronto, nenhum drone em
uso, um drone em falha

(0,0,0,1,1) 𝑆2 Operacional Nenhuma bateria pronta disponível, nenhuma
bateria carregando, nenhum drone pronto, um
drone em uso, um drone em falha

(0,0,0,0,2) 𝑆3 Indisponível Nenhuma bateria pronta disponível, nenhuma
bateria carregando, nenhum drone pronto, ne-
nhum drone em uso, dois drones em falha

(1,1,2,0,0) 𝑆6 Indisponível Uma bateria pronta, uma bateria carregando,
dois drones prontos, nenhum drone em uso, ne-
nhum drone em falha

(2,0,2,0,0) 𝑆4 Indisponível Duas baterias prontas, nenhuma bateria carre-
gando, dois drones prontos, nenhum drone em
uso, nenhum drone em falha

(0,1,1,0,1) 𝑆5 Indisponível Nenhuma bateria pronta, uma bateria carre-
gando, um drone pronto, nenhum drone em
uso, um drone em falha

(0,2,2,0,0) 𝑆9 Indisponível Nenhuma bateria pronta, duas baterias carre-
gando, dois drones prontos, nenhum drone em
uso, nenhum drone em falha

(0,1,1,1,0) 𝑆7 Operacional Nenhuma bateria pronta, uma bateria carre-
gando, um drone pronto, um drone em uso,
nenhum drone em falha

(0,1,1,0,1) 𝑆8 Indisponível Nenhuma bateria pronta, uma bateria carre-
gando, um drone pronto, nenhum drone em
uso, um drone em falha

Fonte: Elaborado pelo Autor (2024)

Quadro 3 – Descrição dos Parâmetros para o Modelo CTMC

Parâmetro Ferramenta Descrição
lbd 𝜆𝑏𝑑 Taxa de descarga da bateria por hora
lbc 𝜆𝑏𝑐 Taxa de carga da bateria por hora
md 𝜇𝑑 Taxa de reparo de drones por hora
ld 𝜆𝑑 Taxa de falhas de drones por hora
d 𝛿 Taxa de comutação de drones por hora

Fonte: Elaborado pelo Autor (2024)
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𝐴𝑉 𝐴𝑁𝑇 =
𝛿𝜆𝑏𝑐𝜇𝑑(𝛼2𝛿𝜑2 + 𝛽2𝜇𝑑𝜑1)

𝛼2𝛿2𝜃2 + 𝜆𝑏𝑐𝜇𝑑(𝛼3𝛿𝜆𝑏𝑐𝜆𝑏𝑑𝜆𝑑 + 𝜃1𝜇𝑑) + 𝛽2𝜇3
𝑑𝜑3

(4.1)

Onde:

𝛽 = 𝜆𝑏𝑑 + 𝜆𝑑;

𝛽2 = 𝜆𝑏𝑑 + 𝜇𝑑;

𝛽3 = 𝜆𝑑 + 𝜇𝑑;

𝛽4 = 𝜆𝑏𝑐 + 𝜆𝑏𝑑;

𝛽5 = 𝜆𝑏𝑐 + 𝜇𝑑;

𝛼1 = 𝛽 + 𝜆𝑏𝑐;

𝛼2 = 𝛽 + 𝛽5;

𝛼3 = 𝛽3 + 𝛽4;

𝛼4 = 𝛽3𝜆𝑏𝑐 + 𝜆𝑏𝑑𝜇𝑑;

𝜑1 = 𝛼1𝜆𝑏𝑐 + 𝛽4𝜇𝑑;

𝜑2 = 𝛽3𝜆𝑏𝑐 + 𝜆𝑏𝑑𝜇𝑑;

𝜑3 = 𝛽𝜆2
𝑏𝑐 + 𝜆𝑏𝑑(𝜆𝑏𝑑(𝛿 + 𝜆𝑏𝑐) + 2𝛿𝜆𝑏𝑐);

𝜑4 = 𝛽2
3 + 𝛽3(𝜆𝑏𝑐 + 3𝜆𝑏𝑑) + 𝜆𝑏𝑑(2𝜆𝑏𝑐 + 3𝜆𝑏𝑑);

𝜑5 = 𝜆2
𝑑 + 𝜆𝑑𝜇𝑑 + 𝜇2

𝑑;

𝜃1 = 𝛼1𝛽𝛽2𝜆𝑏𝑐 + 2𝛽𝛽2𝛿𝜆𝑏𝑑 + 𝛿𝜆𝑏𝑐𝜑4;

𝜃2 = 𝛼4𝜆𝑏𝑑𝜇𝑑 + 𝜆2
𝑏𝑐𝜑5;

As equações 4.2 e 4.3 apresentam as fórmulas analíticas para a disponibilidade do servidor
e do roteador, respectivamente. Embora não sejam incluídos nas análises de sensibilidade ou na
avaliação da disponibilidade do sistema, esses componentes são apresentados para completude.
O foco da análise de melhoria de disponibilidade é o dispositivo VANT, considerado o principal
gargalo do sistema.

𝐴𝑆𝑒𝑟𝑣𝑒𝑟 =
𝜆ℎ𝑤

𝜆ℎ𝑤 + 𝜇ℎ𝑤

×
𝜆𝑜𝑠

𝜆𝑜𝑠 + 𝜇𝑜𝑠

×
𝜆ℎ𝑝

𝜆ℎ𝑝 + 𝜇ℎ𝑝

×
𝜇𝑣𝑚

𝜆𝑣𝑚 + 𝜇𝑣𝑚

(4.2)

𝐴𝑅 =
𝜆

𝜆 + 𝜇
(4.3)

Os modelos analíticos para a disponibilidade do servidor (Eq. 4.2) e do roteador (Eq. 4.3)
incorporam a taxa de falha (𝜆) e a taxa de reparo (𝜇). O modelo do servidor inclui componentes
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típicos de um sistema de monitoramento: hardware (ℎ𝑤), sistema operacional (𝑜𝑠), hipervisor

de gerenciamento de máquina virtual (ℎ𝑝) e máquina virtual (𝑣𝑚).
A disponibilidade geral do sistema é dada pela Eq. 4.4:

𝐴 = 𝐴𝑆𝑒𝑟𝑣𝑒𝑟 ×𝐴𝑅 ×𝐴𝑉 𝐴𝑁𝑇 (4.4)

Esta equação representa o produto dos modelos de disponibilidade do servidor, roteador e
sistema de voo do VANT.

As equações apresentadas nesta seção estabelecem a base matemática para a análise da
disponibilidade do sistema de monitoramento baseado em VANT. Elas representam as inte-
rações entre os diferentes componentes e estados operacionais, possibilitando uma avaliação
quantitativa do desempenho do sistema. A obtenção de fórmulas em forma fechada para o
cálculo analítico é particularmente relevante, ao permitir a realização de análises sem a ne-
cessidade de ferramentas computacionais específicas. Isso facilita a execução de análises de
sensibilidade e estudos comparativos, auxiliando na identificação de fatores que influenciam
a disponibilidade do sistema e na avaliação de estratégias para sua melhoria. A compreen-
são dessas equações contribui para a interpretação dos resultados das análises e para orientar
decisões de projeto e operação do sistema de monitoramento.

4.1.1 Modelo de Redundância SPN

O modelo analítico de disponibilidade do sistema de voo do VANT, conforme apresentado
na Eq. 4.1, é formulado para avaliar a disponibilidade de um modo básico de operação do
sistema, que inclui um VANT em voo, um VANT de reserva e uma bateria de reserva. Além
disso, para aumentar a métrica de disponibilidade, pode-se variar os tempos de falha e reparo do
VANT, da bateria e dos componentes de recarga. No entanto, a incorporação de mecanismos
de redundância no modelo para um modo de operação mais avançado resultaria em um espaço
de estados muito grande para a geração explícita de cadeias de Markov e para a obtenção de
um modelo analítico. Para abordar essa questão, propomos um modelo de método numérico
de SPN, que pode ser avaliado usando ferramentas computacionais como o Mercury (MACIEL

et al., 2017).
Aplicar redundância a um sistema de vigilância por drones o torna mais resiliente a fa-

lhas, aumentando sua disponibilidade. Alguns modelos, como cadeias de Markov de tempo
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contínuo, podem modelar um certo grau de redundância e calcular sua disponibilidade e con-
fiabilidade. No entanto, à medida que aumentamos o número de dependências e componentes
sobressalentes, o espaço de estados de uma CTMC cresce substancialmente, tornando sua
manutenção inviável. Para resolver este problema, propomos usar modelos numéricos de SPN
para disponibilidade e confiabilidade, que podem ser construídos e avaliados com a ajuda de
ferramentas computacionais como Mercury (MACIEL et al., 2017).

O modelo de disponibilidade suporta uma análise abrangente da disponibilidade do sistema.
Este modelo permite a estimativa da disponibilidade instantânea e em estado estacionário e
métricas essenciais como tempo de inatividade, tempo de atividade e parâmetros relacionados.
Por outro lado, um modelo de confiabilidade (Figura 15) é fundamental no cálculo de métricas
como tempo médio até a falha, tempo mediano até a falha, percentis e não confiabilidade. Este
modelo pode ser representado por redes de Petri estocásticas com uma marcação absorvente.

A Figura 14 ilustra um modelo de disponibilidade SPN usado para representar a implemen-
tação de mecanismos de redundância no sistema de vigilância e para calcular a disponibilidade.
Este modelo é composto por cinco lugares, DR, DU, DF, BR e BC; seis transições tempori-
zadas exponenciais, DSW, DF, DR2, BCG, BD e DRR; e seus arcos. A Tabela 4 representa
os atributos das transições. Todas as transições são marcadas independentemente, e sua se-
mântica de servidor é SSS. Todas as transições têm prioridade um.

Um token no lugar DU representa o sistema como operacional. Isso significa que um drone
equipado com bateria está ativo e monitorando a área-alvo. Por outro lado, a presença de um
token no lugar DF indica uma falha do sistema resultante de um defeito no drone. Um token
no lugar BC representa uma falha do sistema devido ao esgotamento da bateria do drone. No
entanto, um token no lugar BC também indica que a bateria descarregada está agora sendo
recarregada. Além disso, as quantidades de drones e baterias sobressalentes são representadas
pelo número de tokens nos lugares DR e BR, respectivamente, conforme definido por DN e
BN.

Neste modelo, dois arcos inibidores entre as transições DSW e DR e o lugar DU garantem
que apenas um VANT possa estar ativo por vez e determinam se um VANT sobressalente
ou recuperado pode assumir a posição se atender às condições necessárias. Dado o atraso
atribuído, as transições DRR e DR2 são disparadas assim que o reparo do drone é concluído.
Transições temporizadas, representadas por retângulos brancos, dependem do atraso para
serem habilitadas. Em contraste, transições imediatas, identificadas por retângulos pretos, são
habilitadas assim que os tokens necessários estão presentes no lugar conectado (MELO et al.,
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Figura 14 – Modelo de Disponibilidade Usando SPN para Sistemas de Vigilância por Drone
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Fonte: Elaborado pelo Autor (2024)

2021)
Em operação mínima, o modelo opera sem drones e baterias sobressalentes, com zero

tokens nos lugares DR e BR, ou seja, 𝐷𝑁 = 0 e 𝐵𝑁 = 0, enquanto um VANT com bateria está
ativo com um token no lugar DU. O VANT tem tempos específicos como Tempo Médio até
a Falha do Drone (Mean Time to Drone Failure (MTTDF)), Tempo Médio para Reparo
do Drone (Mean Time to Drone Repair (MTTDR)) e Tempo Médio para Substituição
do Drone (Mean Time to Drone Swap (MTTDS)), Tempo Médio para Carga (MTTBC)
e Descarga da Bateria (MTTBD), todos representados por distribuições exponenciais. O
Quadro 4 resume as transições, o tempo utilizado, as prioridades e as expressões de guarda
utilizadas nas transições.

A disponibilidade do sistema de voo do VANT usando o método numérico pode ser obtida
com a Eq. 4.5 usando uma notação semelhante ao Mercury.

𝐴𝑉 𝐴𝑁𝑇 = 𝑃{#𝐷𝑈 > 0} (4.5)
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Quadro 4 – Parâmetros Associados a Transições dos Modelos de Disponibilidade e Confiabilidade SPN

Transição Parâmetro Prioridade Expressão de Guarda Descrição

DF MTTDF 1 Transição exponencial com tempo
médio para falha do drone

DR MTTDR 1 Transição exponencial com tempo
médio para reparo do drone

DR2 MTTDR 1 #𝐷𝑈 > 0 Transição exponencial com tempo
médio para reparo do drone

BD MTTBD 1 Transição exponencial com tempo
médio para descarga da bateria

BCG MTTBC 1 #𝑆𝐹 = 0 Transição exponencial com tempo
médio para carregar a bateria

DSW MTTDS 1 #𝑆𝐹 = 0 Transição exponencial com tempo
médio para troca de drones

TE0 TTSF 1 Transição exponencial com o
tempo até a falha geral do sistema

TI0 * 2 #𝐷𝑈 > 0 Transição imediata
TI1 * 1 Transição imediata
TI2 * 1 (#𝐷𝑈 > 0)𝐴𝑁𝐷(#𝑃4 > 0) Transição imediata
TI3 * 1 (#𝐷𝑈 > 0)𝐴𝑁𝐷(#𝑃5 > 0) Transição imediata
TI4 * 1 Transição imediata
TI5 * 2 Transição imediata
TI6 * 1 Transição imediata

Fonte: Elaborado pelo Autor (2024)

onde 𝑃 calcula a probabilidade de que o sistema contenha tokens no estado ativo DU. A partir
desta SPN, seu gráfico de alcançabilidade é gerado, e a respectiva CTMC é automaticamente
obtida e resolvida usando métodos numéricos (MACIEL et al., 2017).

4.2 MODELO DE CONFIABILIDADE

Na vigilância por drones, a métrica de confiabilidade nos permite avaliar a probabilidade de
que os drones realizem suas funções de vigilância sem falhas durante um determinado período
ou sob condições específicas. Isso é crucial para garantir a eficácia contínua do sistema de vi-
gilância, pois falhas nos drones podem resultar em lacunas na cobertura, perda de informações
críticas e segurança comprometida.

Propusemos um modelo SPN para avaliar a confiabilidade do nosso sistema, como ilustrado
na Figura 15. Este modelo é composto por cinco lugares e seis transições temporizadas,
semelhante ao modelo de disponibilidade, preservando as mesmas propriedades. Além disso,
incorpora os lugares E0, E3 e de falha do sistema (System Failure (SF)), bem como três
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transições imediatas (TI0, TI5 e TI6) e seus respectivos arcos. Adicionalmente, o modelo
também possui uma subrede do tipo Erlang, composta pelos lugares E1 e E2, quatro transições
imediatas (TI1, TI2, TI3 e TI4) e uma transição temporizada exponencial TE0. Todas as
transições têm prioridade um; sua semântica de servidor é SSS. No entanto, as transições TI5

e TI0 têm prioridade sobre as outras, sendo atribuída uma prioridade de dois.

Figura 15 – Modelo de Confiabilidade Usando SPN para Sistemas de Vigilância por Drone
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Fonte: Elaborado pelo Autor (2024)

Além disso, o modelo também apresenta uma marcação absorvente 𝑀=(DR, DU, DF,
BR, BC, E0, E1, E2, E3, SF)=(0, 0, 0, 0, 0, 0, 0, 0, 0, 1), simbolizando a falha do sistema
após um período específico. Em certos contextos, a ausência de serviços é considerada uma
falha apenas após um certo atraso. Assim, nosso modelo usa uma distribuição poliexponencial
do tipo Erlang, com o objetivo de aproximar um tempo de descarga da bateria com distribuição
determinística. Essa abordagem oferece uma representação mais direta da confiabilidade do
sistema, equilibrando a necessidade de um limite de tempo fixo com a precisão da distribuição
poliexponencial.

A subrede representa a distribuição Erlang do tipo 𝐸𝑟𝑙(𝛾 = 𝑦, 𝜆 = 1⇑𝛽). Onde 𝛾 denota
o parâmetro de forma, também conhecido como número de fases, 𝜆 representa o parâmetro
de escala, correspondendo à taxa de cada fase exponencial. As redes de Petri comumente
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representam este último valor como o atraso médio de cada fase. O Tempo até a Falha do
Sistema, Time to System Failure (TTSF) é de três minutos e segue uma distribuição Erlang
de dez fases e coeficiente de variação de 0,31 (𝑦 = 10, 𝑐𝑣 = 1⌋︂

𝑦 = 0,31), a taxa de cada fase é
definida por 1⇑𝛽, onde 𝛽 = 𝑇𝑇𝑆𝐹 ⇑𝑦. À medida que aumentamos o número de fases, a precisão
na representação de uma distribuição determinística melhora. Escolhemos uma configuração
de distribuição Erlang de 10 fases para este estudo (número de fases é atribuído pelo valor
do peso y, no arco que vai de TI1 para E1). A escolha de tal valor visa equilibrar precisão e
complexidade numérica.

Em nosso modelo, um token no lugar E0 representa inatividade do serviço, seja devido
à falha do drone (transição DF) ou descarga da bateria (transição BD). Este token permite
que a transição TI1 dispare, armazenando um número 𝑦 de tokens no lugar E1; os tokens
são consumidos de acordo com o atraso atribuído à transição TE0, ela dispara assim que este
tempo é atingido, armazenando tokens no lugar E2. A transição TI4 é habilitada e disparada
assim que um número de tokens 𝑦 é encontrado em E2, armazenando um token no lugar E3.
Um token no lugar E3 habilita a transição TI5 se o drone falhar ou a transição TI6 se o drone
descarregar, removendo #DR tokens do lugar DR e um token do lugar DF.

Uma vez disparadas, as transições TI5 e TI6 armazenam um token no lugar SF alcançando
a marcação 𝑀 (estado absorvente), que representa uma falha do sistema devido a um tempo
prolongado de inatividade do serviço. No entanto, esse processo de falha pode ser interrompido
se o sistema for reativado, seja pela manutenção do drone (transição DR) ou pela substituição
por um novo drone e bateria (transição DSW). As transições imediatas TI0, TI2 e TI3

permitem essa quebra de tempo no modelo de distribuição Erlang, removendo todos os tokens
dos lugares E0, E1 e E2 assim que as condições de guarda são quebradas (conforme descrito
na Quadro 4).

4.3 MODELO DE COBERTURA

O modelo de cobertura é um componente importante para o planejamento de missões de
vigilância com drones. Este modelo considera diversos fatores, incluindo as características da
câmera do drone, a área a ser monitorada e os requisitos de resolução para identificação de
objetos-alvo. Nesta seção, apresentaremos os cálculos e considerações necessários para desen-
volver um modelo de cobertura que atenda as especificações da missão. O Quadro 5 apresenta
uma descrição detalhada dos parâmetros utilizados no modelo de cobertura, fornecendo uma
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visão geral dos elementos que serão discutidos ao longo desta seção.

Quadro 5 – Parâmetros Modelo de Tempo de Cobertura

Parâmetro Descrição
FL Distância focal do sensor da câmera em mm

𝐶𝑆𝑖{𝐶𝑆ℎ,𝐶𝑆𝑤}
Altura do sensor da câmera em mm
Largura do sensor da câmera em mm

𝐹𝑉𝜃𝑖{𝐹𝑉𝜃ℎ, 𝐹𝑉𝜃𝑤}
Ângulo vertical do campo de visão
Ângulo horizontal do campo de visão

𝑅ℎ Resolução vertical do sensor da câmera em pixels
𝑂𝑟𝑒𝑎𝑙 Altura do objeto real observado em metros
𝑂𝑖𝑚𝑔 Altura do objeto observado na imagem capturada em pixels

𝐻𝑚𝑎𝑥
Altura máxima da câmera ao objeto observado dada a altura de-
sejada na imagem capturada em metros

𝐹𝑉𝑖{𝐹𝑉ℎ, 𝐹𝑉𝑤}
Altura do campo de visão em metros
Largura do campo de visão em metros

𝐴𝑖{𝐴𝑙,𝐴𝑤}
Comprimento da área em metros
Largura da área em metros

𝑁𝑖{𝑁𝑙𝑛,𝑁𝑐𝑜𝑙}
Número de linhas verticais dado 𝐴ℎ e 𝐹𝑉ℎ

Número de colunas horizontais dado 𝐴𝑤 e 𝐹𝑉𝑤

𝐷𝑠𝑝𝑒𝑒𝑑 Velocidade do VANT em m/s
𝐶𝑜𝑉𝑙𝑒𝑛 Distância percorrida pelo VANT em metros para cobrir toda a área

𝐶𝑜𝑉𝑡𝑖𝑚𝑒
Tempo gasto pelo VANT para cobrir toda a área em minutos,
dado 𝐶𝑜𝑉𝑙𝑒𝑛 e 𝐷𝑠𝑝𝑒𝑒𝑑

Fonte: Elaborado pelo Autor (2024)

Inicialmente, abordaremos o cálculo do ângulo de visão da câmera, que é relevante para
determinar a área que pode ser capturada em uma única imagem. Em seguida, discutiremos
como a distância entre o drone e o objeto observado afeta a qualidade da imagem e a capa-
cidade de reconhecimento. Apresentaremos fórmulas para calcular a distância máxima que o
drone pode alcançar, mantendo a resolução desejada do objeto-alvo. Além disso, exploraremos
como dividir a área de interesse em segmentos menores, permitindo uma cobertura sistemá-
tica. Analisaremos as diferenças entre áreas regulares e irregulares. Por fim, apresentaremos
equações para calcular a distância total percorrida pelo drone e o tempo necessário para cobrir
a área de interesse. Estas considerações são fundamentais para otimizar o uso do drone em
missões de vigilância, garantindo uma cobertura eficiente e eficaz da área alvo.

O modelo de cobertura proposto foi validado através de experimentos práticos, utilizando
um drone comercial em um cenário de vigilância simulado num ambiente real. Esta validação é
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necessária para garantir que o modelo seja aplicável e preciso em condições reais, considerando
variáveis como velocidade do drone e duração da bateria. A validação experimental permitirá
ajustar e refinar o modelo, assegurando sua relevância prática e confiabilidade em diferentes
cenários de vigilância. Esta seção fornecerá uma base para compreender como otimizar missões
de vigilância com drones, equilibrando a qualidade da cobertura com a eficiência operacional.

O ângulo de visão da câmera (FOV), medido em graus, é determinado pela distância focal
do sensor até a lente e pela dimensão horizontal ou vertical do mesmo, dependendo do ângulo
desejado.

𝐹𝑉𝜃𝑖(𝐹𝐿,𝐶𝑆𝑖) = 2 × arctan(𝐶𝑆𝑖

𝐹𝐿
) ×

180
𝜋
. (4.6)

Para calcular o ângulo do triângulo completo, usamos a função arco tangente da razão
entre 𝐶𝑆𝑖 e 𝐹𝐿 para determinar o ângulo do triângulo retângulo e, em seguida, dobramos
esse valor (NGO; ABDUKHAKIMOV; KIM, 2019).

Aumentar a distância entre a câmera do VANT e o objeto observado expande o campo de
visão. No entanto, isso pode diminuir a densidade de píxeis por unidade de área, fazendo com
que o objeto pareça menor e menos definido na imagem, tornando o reconhecimento mais
desafiador. Para resolver esse dilema, calculamos a distância máxima que o drone poderia
alcançar, considerando a altura desejada do objeto na imagem como um parâmetro. Como
mostrado na Equação 4.7.

𝐻𝑚𝑎𝑥(𝑂𝑟𝑒𝑎𝑙,𝑂𝑖𝑚𝑔,𝑅ℎ, 𝐹𝑉𝜃𝑖) =
𝑂𝑟𝑒𝑎𝑙 ×𝑅ℎ

2 × tan(𝐹 𝑉𝜃𝑖× 𝜋
180

2 ) ×𝑂𝑖𝑚𝑔

. (4.7)

A altura real do objeto sob observação é indicada como 𝑂𝑟𝑒𝑎𝑙, enquanto 𝑂𝑖𝑚𝑔 representa a
altura do objeto na imagem capturada. 𝑅ℎ refere-se à resolução vertical do sensor da câmera,
e 𝐹𝑉𝜃𝑖 representa o ângulo horizontal ou vertical que define o campo de visão em graus.

A altura vertical do objeto, em conjunto com a resolução vertical, é frequentemente um
exemplo relevante em sistemas de monitoramento de pessoas, dado que a altura é geralmente
a dimensão predominante neste contexto. No entanto, é essencial destacar que se o objeto
for mais largo do que sua altura, é aconselhável considerar a largura e a resolução horizontal
como parâmetros de análise.
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𝐹𝑉𝑖(𝐻𝑚𝑎𝑥, 𝐹𝑉𝜃𝑖) =𝐻𝑚𝑎𝑥 × tan(
𝐹 𝑉𝜃𝑖

2 × 𝜋

180 ) × 2. (4.8)

Com base nos ângulos de abertura horizontal e vertical e na altura máxima permitida,
calculamos as dimensões horizontais e verticais reais do campo de visão da câmera (𝐹𝑉𝑖)
em metros. A partir desses cálculos, torna-se viável subdividir a área de interesse em seg-
mentos menores, que o drone pode capturar em momentos específicos, dividindo a área de
monitoramento em várias linhas e colunas (𝑁𝑖).

𝑁𝑖 =
𝐴𝑖

𝐹𝑉𝑖

. (4.9)

Considerando a área que a câmera pode capturar, determinada pelas dimensões horizontais
e verticais do FOV, e considerando a influência da altitude, o drone em operação percorrerá
uma distância um pouco menor do que a necessária para cobrir completamente a área de
interesse. Isso acontece porque o ângulo de visão da câmera no VANT é maior do que as
dimensões físicas do próprio VANT.

A Equação 4.10 calcula a distância percorrida pelo drone, considerando a diferença entre
a distância coberta pelo drone e a extensão total da área de interesse.

𝐶𝑜𝑉𝑙𝑒𝑛(𝑁𝑙𝑛,𝑁𝑐𝑜𝑙, 𝐹𝑉ℎ, 𝐹𝑉𝑤) = 𝑁𝑙𝑛 × ((𝑁𝑐𝑜𝑙 − 1) × 𝐹𝑉𝑤) + (𝑁𝑙𝑛 − 1) × 𝐹𝑉ℎ, (4.10)

onde 𝑁𝑙𝑛 e 𝑁𝑐𝑜𝑙 denotam o número de linhas e colunas resultantes da divisão da área de
interesse na área de captura do drone. Estas linhas e colunas são então multiplicadas na
fórmula pelos parâmetros 𝐹𝑉ℎ e 𝐹𝑉𝑤, onde 𝐹𝑉ℎ representa o comprimento vertical, e 𝐹𝑉𝑤

o comprimento horizontal do campo de visão do drone. Isso nos permite calcular a distância
percorrida em metros (𝐶𝑜𝑉𝑙𝑒𝑛).

𝐶𝑜𝑉𝑡𝑖𝑚𝑒(𝐷𝑠𝑝𝑒𝑒𝑑) =
𝐶𝑜𝑉𝑙𝑒𝑛

𝐷𝑠𝑝𝑒𝑒𝑑

. (4.11)

Usando a distância percorrida e a velocidade do drone (𝐷𝑠𝑝𝑒𝑒𝑑), a Equação 4.11 calcula o
tempo necessário para cobrir completamente uma área de interesse em uma única passagem.
No entanto, é essencial notar que esse tempo pode ser influenciado por várias variáveis, algumas
das quais estão relacionadas ao sistema integrado de monitoramento aéreo no drone. Em
contraste, outras são externas e além do nosso controle, como a força do vento na região, a
umidade ou a pressão atmosférica.
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4.3.1 Validação do Modelo de Cobertura

Nosso objetivo é fornecer um modelo que represente de perto um sistema do mundo real.
Uma vez criado, é essencial validar este modelo para garantir sua adaptação ao cenário real.
Como ponto de partida principal, consideramos um ambiente de monitoramento de vigilância
com um drone equipado com uma bateria principal e três baterias sobressalentes para substi-
tuição. Cada bateria tinha uma certa porcentagem de carga, permitindo um número específico
de voltas, considerando o início e o fim da área-alvo. Em seguida, definimos o tempo necessá-
rio para completar essas voltas com base em dados métricos exportados pelo drone utilizado
(Tabela 1).

Figura 16 – Área de Vigilância Alvo Demonstrando Cobertura de Drones.

Fonte: Elaborado pelo Autor (2024)

Em nosso experimento, utilizamos um drone comercial DJI Mavic Pro equipado com um
sensor de câmera semicondutor de óxido metálico complementar, Complementary Metal-Oxide-
Semiconductor (CMOS) de 1/2.3"com 12,35 megapixels, uma distância focal efetiva de 4,89
mm e dimensões de 3,816 mm por 6,780 mm. A resolução de vídeo escolhida para gravação
foi Full HD (1920×1080). O objeto-alvo era uma pessoa com altura média de 1,70 metros, e a
área de cobertura média era de 125 m por 122 m (Fig. 16). O objeto-alvo tinha uma resolução
vertical de 31 pixels na imagem capturada, permitindo melhor visualização e reconhecimento
durante a missão de vigilância. Obtivemos dados de coordenadas geográficas, tempo e veloci-
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dade através dos dados capturados pelo drone extraídos usando o serviço Airdata (AIRDATA,
2024) (Fig. 17).

Figura 17 – Métricas Sobrepostas na Imagem Capturada pelo Drone durante o Monitoramento.

Fonte: Elaborado pelo Autor (2024)

Tabela 1 – Especificações do Teste de Validação

Execução 1 2 3 4 5 6 7 8 9 10 11 12

Tempo(s) 183 133 183 177 186 185 164 185 168 188 164 180

Fonte: Elaborada pelo autor (2024)

Para melhor visualização, utilizamos a ferramenta Dashware para plotar medidores sobre-
postos e avaliamos os tempos médios (Tabela 1)(DASHWARE, 2024). O experimento durou em
média 2096 segundos com quatro baterias, considerando os níveis de carga de cada bateria.
A partir das informações coletadas, calculamos o intervalo de confiança usando o método
bootstrap para o tempo médio de cobertura da área-alvo uma vez. Foi aplicado um intervalo
de confiança de 95%.

Concluímos que o tempo médio está entre 165,16667 < 𝑋 < 181,95833 segundos. Cal-
culamos o tempo médio para cobrir a área-alvo com o modelo de cobertura proposto neste
trabalho (expresso nas Equações 4.10 e 4.11) e obtivemos um tempo médio de 173,56541
segundos, que está dentro do intervalo de confiança. Portanto, não temos evidências para
rejeitar o modelo proposto, confirmando sua adequação ao sistema do mundo real.
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4.4 MODELO DE PERFORMABILIDADE

O modelo de performabilidade proposto nesta seção visa avaliar o desempenho e a confi-
abilidade de sistemas de vigilância por drones, integrando aspectos de performance e disponi-
bilidade. Este modelo considera o tempo necessário para um drone completar uma varredura
completa de uma área específica, abrangendo desde o início da missão até sua conclusão,
incluindo a viagem de ida para a área de interesse e o retorno à base. Além disso, o modelo
analisa como a disponibilidade do sistema afeta o tempo de varredura e examina o impacto
da implementação de redundância no aumento do tempo de monitoramento efetivo.

Dada a complexidade envolvida na modelagem e a necessidade de flexibilidade na parame-
trização, optou-se por um modelo numérico baseado em SPN. Esta abordagem permite uma
representação detalhada dos diversos estados e transições do sistema, facilitando a análise
de cenários complexos e a avaliação de diferentes configurações de redundância. O modelo
pode ser avaliado usando ferramentas computacionais especializadas, como o software Mercury
(MACIEL et al., 2017), que oferece recursos avançados para simulação e análise de SPNs.

A Figura 18 apresenta o modelo de performabilidade desenvolvido, ilustrando a estrutura
da SPN utilizada para representar o sistema de vigilância por drones. O modelo é dividido
em duas partes principais: a superior, responsável pela performance em rondas de vigilância
por unidade de tempo, e a inferior, que modela a disponibilidade do sistema. Esta estrutura
permite uma análise integrada do desempenho e da confiabilidade, capturando as interações
complexas entre os diversos componentes do sistema de vigilância.

Ao longo desta seção, detalharemos os componentes do modelo, explicando as funções de
cada lugar e transição, bem como as regras que governam suas interações. Apresentaremos
também as equações utilizadas para calcular métricas importantes, como a taxa de rondas de
vigilância, a disponibilidade do sistema e o tempo de inatividade. Esta abordagem abrangente
fornecerá uma base sólida para a avaliação e otimização de sistemas de vigilância por drones,
considerando tanto aspectos de performance quanto de disponibilidade.

A parte inferior do modelo consiste em cinco lugares: DR, DU, DF, BR e BC; seis
transições exponenciais temporizadas: DSW, DF, DR2, BCG, BD e DR; e seus arcos.
Todas as transições são marcadas independentemente, e suas semânticas de servidor é SSS.
Além disso, todas as transições são consideradas prioridade um.

A parte superior do modelo consiste em duas sub-redes do tipo Erlang, compostas pelos
lugares START, END, P0, P1, P2 e P3; duas transições exponenciais temporizadas: TE0
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Figura 18 – Modelo de Performabilidade Usando SPN para Sistemas de Vigilância por Drones
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Fonte: Elaborado pelo Autor (2024)

e TE1; e seis transições imediatas: TI1, TI2, TI3, TI4, TI5 e TI6; juntamente com seus
arcos. Como na parte inferior, todas as transições têm prioridade um, são marcadas indepen-
dentemente e têm SSS como suas semânticas de servidor. As transições TI0, TI7 e TI8 são
consideradas transições imediatas, com TI8 tendo prioridade um, enquanto as outras têm pri-
oridade dois. Elas também seguem Semânticas SSS como suas semânticas de servidor. Estas
transições conectam a parte inferior com a parte superior do modelo, juntamente com o lugar
GUARD.

As sub-redes representam uma distribuição Erlang da forma 𝐸𝑟𝑙(𝛾 = 𝑦, 𝜆 = 1⇑𝛽). Aqui,
𝛾 denota o parâmetro de forma, também conhecido como número de fases, e 𝜆 repre-
senta o parâmetro de escala correspondente à taxa de cada fase exponencial. Redes de
Petri frequentemente representam este último valor como o atraso médio de cada fase.
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O tempo de ida (GOINGTIME) e o tempo de retorno à base (BACKTIME) seguem
uma distribuição Erlang de quatro fases (𝑦 = 4), e a taxa para cada fase é 1⇑𝛽, onde
𝛽 = ((𝐺𝑂𝐼𝑁𝐺𝑇𝐼𝑀𝐸)𝑂𝑅(𝐵𝐴𝐶𝐾𝑇𝐼𝑀𝐸))⇑𝑦, com isto, temos 𝛽0 associado ao tempo
TE0 e 𝛽1 associado ao tempo TE1. Optamos por uma configuração de distribuição Erlang
de quatro fases para este estudo (y) para representar um coeficiente de variação de 0,5 para o
tempo. Isso se refere às variáveis que afetam a eficiência operacional dos drones, incluindo, mas
não se limitando a, velocidade do vento, condições atmosféricas e outros fatores ambientais.
Portanto, os tempos de chegada do drone do ponto A ao ponto B não seguem uma distri-
buição com taxa constante, nem exibem tanta variação quanto uma distribuição exponencial,
que tem um coeficiente de variação de 1.

Em nosso modelo, marcar um token nos lugares START e DU indica o início do serviço,
com um drone ativo patrulhando o perímetro inicial da área de interesse. Essa marcação ativa
e dispara a transição TI1, que coloca um número y de tokens no lugar P0. Os tokens são
consumidos conforme o atraso atribuído à transição TE0, que é disparada uma vez que este
tempo é atingido, transferindo os tokens para o lugar P1. A transição TI2 é habilitada e
disparada quando vários tokens y são encontrados em P1, colocando um token no lugar END

e removendo um token do lugar START, representando a chegada do drone ao ponto final da
área monitorada. O processo inverso ocorre com outra ronda de monitoramento ao retornar à
base e ao perímetro inicial da área de interesse, onde um token é novamente armazenado no
lugar.

Esse processo é influenciado pela disponibilidade do sistema, que considera os tempos
médios até a falha (MTTDF) e o reparo do drone (MTTDR), carga (MTTBC) e des-
carga (MTTBD) da bateria, e o tempo médio de voo da base até o ponto de observação,
representado por (MTTDS), sendo modelado na parte inferior do modelo. Quando um to-
ken é removido do lugar DU, significando que o drone não está mais ativo, seja por fa-
lha ou descarga da bateria, as transições TI3 e TI4 são habilitadas devido à quebra das
expressões de guarda atribuídas a elas. A transição TI3 contém uma expressão de guarda
((#𝑃0 > 0)𝑂𝑅(#𝑃2 > 0))𝐴𝑁𝐷(#𝐷𝑈 = 0), enquanto a transição TI4 contém uma ex-
pressão de guarda ((#𝑃1 > 0)𝑂𝑅(#𝑃3 > 0))𝐴𝑁𝐷(#𝐷𝑈 = 0). Essas expressões seguem a
notação semelhante à do Mercury e são aplicadas ao modelo através do software Mercury.

As expressões de guarda aplicadas às transições TI3 e TI4 as habilitam apenas quando o
número de tokens nos lugares P0, P2, P1 e P3 é maior que zero, e o lugar DU não contém
tokens. Além disso, arcos inibidores (arcos com um círculo branco na extremidade) originados
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do lugar DU também habilitam as transições TI0 e TI7 quando este lugar está vazio. A
prioridade das transições TI0 e TI7 permite precedência na ativação sobre as transições TI3

e TI4 com prioridade um, removendo um token dos lugares START ou END e colocando um
token no lugar GUARD, representando a interrupção instantânea do serviço de monitoramento
devido à indisponibilidade de um componente do sistema. Uma vez habilitadas seguindo a
ordem de prioridade, as transições TI3 e TI4 são ativadas e removem um número # de tokens
dos lugares P0, P2, P1 e P3, esvaziando-os, restaurando o processo de monitoramento para
uma marcação inicial. Após a recuperação do sistema para uma marcação ativa, significando
que há um token no lugar DU, um token é removido de GUARD e colocado no lugar START

para reiniciar o monitoramento da base.
Em um sistema básico, o modelo de disponibilidade (parte inferior) opera sem drones e

baterias sobressalentes, com zero tokens nos lugares DR e BR, ou seja, 𝐷𝑁 = 0 e 𝐵𝑁 = 0.
Em contraste, um VANT com bateria está ativo, representado por um token no lugar DU.
Dois arcos inibidores entre as transições DSW e DR e o lugar DU garantem que apenas
um VANT possa estar ativo por vez e determinam se um VANT sobressalente ou reparado
pode tomar a posição, se atender às condições necessárias. Isso restaura a marcação ativa do
sistema de duas maneiras: adicionando um token ao lugar DU quando o reparo é concluído na
ausência de componentes do drone e baterias sobressalentes ou depositando o drone e a bateria
recuperados em seus repositórios para reutilização nos lugares DR e BR, com um token sendo
armazenado em cada lugar. Isso ocorre se a marcação com um drone ativo já foi alcançada
antes que o drone com falha seja recuperado por meio de componentes sobressalentes.

As rondas de vigilância realizadas por unidade de tempo são calculadas avaliando a taxa de
throughput no modelo de desempenho, conforme demonstrado na Equação 4.12. Esta equação
utiliza uma notação de expressão semelhante ao Mercury.

𝑇𝑥 = (𝑃{#𝑆𝑇𝐴𝑅𝑇 > 0} × (1⇑𝐺𝑂𝐼𝑁𝐺𝑇𝐼𝑀𝐸))

+ (𝑃{#𝐸𝑁𝐷 > 0} × (1⇑𝐵𝐴𝐶𝐾𝑇𝐼𝑀𝐸)), (4.12)

onde 𝑃 representa a probabilidade do sistema conter tokens nos estados START e END. A
derivação do valor final em unidades de tempo envolve dividir as probabilidades pelo tempo
total de ida e volta para cada lugar e agregar os resultados.

Além disso, é possível determinar a disponibilidade do sistema de voo do VANT e sua
indisponibilidade e tempo de inatividade por unidade de tempo usando, respectivamente, as
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Equações 4.13, 4.14 e 4.15.

𝐴 = 𝑃{#𝐷𝑈 > 0}. (4.13)

𝑈𝐴 = 1 −𝐴. (4.14)

𝐷𝑇 = 𝑈𝐴 × 𝑇 (4.15)

𝑃 calcula a probabilidade do sistema conter tokens no lugar ativo DU. Um grafo de alcan-
çabilidade é gerado a partir deste modelo de SPN. Em seguida, o correspondente modelo
de CTMC é automaticamente derivado e resolvido usando métodos numéricos (MACIEL et al.,
2017).

Embora os modelos propostos neste capítulo forneçam uma base sólida para a análise
de confiabilidade, disponibilidade e performabilidade dos sistemas de vigilância com drones,
é importante reconhecer algumas limitações e suposições adotadas. Os modelos consideram,
por exemplo, taxas de falha constantes e independentes, simplificando o comportamento do
sistema, mas pode não refletir todas as variações presentes em cenários reais. Além disso, as
condições operacionais foram modeladas com base em um conjunto específico de parâmetros,
o que pode limitar a generalização dos resultados para outros contextos. Essas simplificações
foram necessárias para viabilizar a construção e a análise dos modelos, porém, seus impactos
serão discutidos de forma mais detalhada nos estudos de caso no próximo capítulo. A partir
dessa análise, será possível avaliar o alcance dos resultados obtidos e propor aprimoramentos
para mitigar as limitações identificadas.
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5 ESTUDOS DE CASO

Este capítulo apresenta uma análise do sistema de vigilância baseado em VANTs, explo-
rando os fatores que influenciam sua confiabilidade, disponibilidade e performabilidade. Por
meio de dois estudos de caso, investigamos o impacto das variações nos componentes redun-
dantes de baterias e drones, utilizando técnicas de modelagem e análise de sensibilidade. O
primeiro estudo de caso foca na avaliação da confiabilidade do sistema, examinando como a
redundância de baterias e os tempos médios de carga e descarga afetam o desempenho global
ao longo do tempo por meio de um modelo SPN (Modelo 15). O segundo estudo de caso
expande a investigação para uma análise de disponibilidade e performabilidade, explorando
como o aumento de componentes redundantes influencia métricas como throughput, proba-
bilidade de espera por baterias e tempo de inatividade anual por meio de modelos CTMC e
SPN (Modelos 13, 14 e 18).

Nossa investigação utiliza uma técnica de diferenciação percentual para conduzir a análise
de sensibilidade aplicado a métrica de disponibilidade do sistema, variando sistematicamente
um parâmetro de cada vez enquanto mantemos os outros fixos (HAMBY, 1994; ARAUJO et al.,
2013; MATOS et al., 2020) (Tabela 4). Este método nos permite quantificar o impacto indi-
vidual de cada parâmetro na eficiência do sistema. Um aspecto importante deste capítulo é
a classificação de sensibilidade desenvolvida, que identifica e hierarquiza os parâmetros mais
influentes na disponibilidade do sistema. Esta classificação, apresentada na Tabela 4, oferece
insights para engenheiros e projetistas, destacando áreas para otimização e melhoria. A Ta-
bela 4 indica que os tempos de descarga da bateria (MTTBD) e os tempos de carregamento
(MTTBC) têm o maior impacto na disponibilidade do sistema, seguidos pelo tempo de subs-
tituição da bateria do drone (MTTDS). Estes resultados fornecem diretrizes para melhorar a
disponibilidade do sistema, sugerindo foco na redução dos tempos relacionados ao MTTBC e
MTTDS, bem como no aumento da capacidade de armazenamento das baterias para estender
o MTTBD.

Os estudos de caso apresentados neste capítulo utilizam parâmetros selecionados, detalha-
dos nas Tabelas 2, 3 e 5, que refletem configurações de sistemas de vigilância por drones. Ao
longo do capítulo, apresentamos análises visuais, incluindo gráficos de superfície e de barras
(Figuras 19 a 28), que ilustram as relações entre diversos parâmetros do sistema e suas métri-
cas de desempenho. Estas visualizações oferecem uma compreensão das dinâmicas do sistema
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e apoiam a tomada de decisões no design e operação de sistemas de vigilância por VANTs.
Este capítulo valida os modelos teóricos desenvolvidos anteriormente e oferece uma cone-

xão entre a teoria e a prática. Através destes estudos de caso, demonstramos como análises
quantitativas podem informar decisões de design e operação em sistemas de vigilância com
VANTs, fornecendo insights para otimização de recursos, planejamento de redundância e es-
tabelecimento de níveis de serviço. As seções seguintes detalharão cada estudo de caso, apre-
sentando metodologias, resultados e discussões, com o objetivo de fornecer uma compreensão
dos fatores que influenciam o desempenho destes sistemas de vigilância baseados em drones.

5.1 ESTUDO DE CASO #1

Este estudo de caso avalia o impacto da redundância de componentes na confiabilidade
de um sistema de vigilância por drones, com foco nas baterias. A pesquisa foi motivada
pela observação de que o aumento no número de drones sobressalentes não resultava em
melhorias notáveis na confiabilidade do sistema durante uma análise transiente de 30 horas.
Esta constatação nos levou a direcionar nossa atenção para a redundância das baterias, um
componente importante cuja falha pode comprometer a operação do sistema.

Para conduzir esta análise, desenvolvemos um modelo baseado SPN, modelo apresentado
no Capítulo 4 como uma adaptação do modelo de disponibilidade. Este modelo incorpora
um estado absorvente, como ilustrado na Figura 15, permitindo uma avaliação mais precisa
do impacto da redundância da bateria na confiabilidade geral do sistema. Na modelagem do
comportamento temporal das baterias, optamos por um modelo Erlang com 10 fases para
o parâmetro 𝑦. Esta escolha visa um equilíbrio entre precisão e eficiência computacional,
após testes que demonstraram que um aumento no número de fases não produzia alterações
significativas nos resultados da análise.

Nossa investigação abrangeu três aspectos que influenciam diretamente a confiabilidade
do sistema:

1. Número de Baterias Redundantes (BN): Variamos de 0 a 20 baterias sobressalentes.

2. Tempo Médio para Carga da Bateria (MTTBC): Analisamos cenários com tempos de
carga variando de 18 a 180 minutos.
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3. Tempo Médio para Descarga da Bateria (MTTBD): Consideramos tempos de descarga
também no intervalo de 18 a 180 minutos.

Estes parâmetros foram selecionados para refletir uma variedade de cenários operacionais.
Em todos os experimentos, mantivemos o número de drones sobressalentes (DN) fixo em
zero, permitindo-nos isolar e quantificar o efeito da redundância de baterias na confiabilidade
do sistema. Os parâmetros relacionados aos tempos-base do modelo são descritos na Tabela
2

Tabela 2 – Parâmetros de Avaliação do Modelo de Confiabilidade.

Parâmetro Valores (Horas)
𝑇𝑇𝑆𝐹 5,00 × 10−2

𝑀𝑇𝑇𝐵𝐶 2,00
𝑀𝑇𝑇𝐵𝐷 5,00 × 10−1

𝑀𝑇𝑇𝐷𝐹 5,03 × 103

𝑀𝑇𝑇𝐷𝑅 2,00
𝑀𝑇𝑇𝐷𝑆 1,60 × 10−2

Fonte: Elaborada pelo autor (2024)

Para a execução dos experimentos, utilizamos o software Mercury, uma ferramenta para
análise de modelos SPN (MACIEL et al., 2017). A confiabilidade do sistema foi avaliada através
da expressão 𝑃{#𝑆𝐹 = 0}, que calcula a probabilidade de não haver tokens no lugar SF,
representando assim a probabilidade de o sistema não entrar em estado de falha durante o
período de operação analisado.

Os resultados desta análise são apresentados nas Figuras 19, 20 e 21, que ilustram res-
pectivamente o impacto do número de baterias redundantes, do tempo de carga e do tempo
de descarga na confiabilidade do sistema ao longo do tempo. Estas visualizações fornecem
informações sobre como otimizar a configuração do sistema para melhorar sua confiabilidade
em diferentes cenários operacionais.

A Figura 19 ilustra o impacto do número de baterias redundantes na confiabilidade do
sistema ao longo de 30 horas. Os resultados indicam que com 15-20 baterias redundantes,
o sistema mantém a confiabilidade acima de 80% por quase todo o período. Em contraste,
com 0-5 baterias, a confiabilidade cai rapidamente para menos de 20% em poucas horas.
Estes resultados demonstram claramente a importância crítica da redundância de baterias
para missões de longa duração.
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Figura 19 – Relação entre Confiabilidade do Sistema, Tempo de Operação e Número de Baterias Redundantes
(BN) durante um Período de 30 Horas
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Fonte: Elaborado pelo Autor (2024)

Figura 20 – Impacto do Tempo Médio de Carga da Bateria (MTTBC) na Confiabilidade do Sistema Durante
2 Horas de Operação
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Fonte: Elaborado pelo Autor

A Figura 20 apresenta a relação entre o Tempo Médio de Carga da Bateria (MTTBC) e a
confiabilidade do sistema durante 2 horas de operação. Observa-se um padrão interessante na
relação entre MTTBC e confiabilidade. Para um MTTBC de 18 minutos, a confiabilidade do
sistema começa em 100%, cai para aproximadamente 40% em 30 minutos e chega a zero após
2 horas de operação. Notavelmente, o aumento do MTTBC de 18 minutos até 180 minutos
não apresenta impacto significativo na curva de confiabilidade, com as curvas para diferentes
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valores de MTTBC neste intervalo permanecendo muito próximas. Estes dados sugerem que,
uma vez que o MTTBC atinge um certo limiar (neste caso, 18 minutos), melhorias adicionais
no tempo de carga têm pouco efeito na confiabilidade do sistema ao longo do tempo de
operação analisado.

Figura 21 – Efeito do Tempo Médio de Descarga da Bateria (MTTBD) na Confiabilidade do Sistema ao Longo
de 2 Horas de Operação.
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Fonte: Elaborado pelo Autor (2024)

A Figura 21 demonstra o efeito do Tempo Médio para Descarga da Bateria (MTTBD)
na confiabilidade do sistema, também durante 2 horas de operação. Nota-se uma relação
direta entre MTTBD e confiabilidade. Com um MTTBD de 180 minutos, o sistema mantém
a confiabilidade acima de 60% durante todo o período. Em contraste, com um MTTBD de
36 minutos, a confiabilidade diminui drasticamente, atingindo menos de 20% após 1 hora
de operação. Estes resultados enfatizam a necessidade de baterias de alta capacidade ou
estratégias de otimização de consumo de energia para prolongar o tempo de operação confiável.

Estes resultados demonstram que a confiabilidade do sistema é altamente sensível a múl-
tiplos fatores, sendo o número de baterias redundantes crucial para missões de longa duração,
enquanto os tempos de carga e descarga da bateria são críticos para a confiabilidade em pe-
ríodos mais curtos. Para otimizar o sistema, recomenda-se manter um número adequado de
baterias redundantes, idealmente entre 15 e 20 para missões de 30 horas, como indicado na
Figura 19. Adicionalmente, minimizar o tempo de carga da bateria para menos de 36 minutos
(Figura 20) e usar baterias com tempos de descarga superiores a 144 minutos (Figura 21) são
estratégias aconselháveis para melhorar o desempenho geral do sistema.
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Para ilustrar uma aplicação prática deste estudo, consideremos um cenário de vigilância
urbana, onde uma empresa utiliza drones para monitorar um festival de música ao ar livre com
duração de 4 horas. Baseando-se nos resultados da pesquisa, a empresa pode implementar uma
estratégia eficaz utilizando aproximadamente 10 baterias redundantes, o que manterá uma
confiabilidade do sistema acima de 80% durante todo o evento. Esta abordagem representa
uma otimização significativa de recursos em comparação com as 15-20 baterias que seriam
necessárias para missões mais longas, de 30 horas, permitindo uma redução de custos sem
comprometer a eficácia da operação.

O estudo também fornece diretrizes valiosas para os parâmetros de carga e descarga das
baterias. Um tempo médio de carga de bateria (MTTBC) de cerca de 20 minutos mostra-se
suficiente, eliminando a necessidade de investimentos em sistemas de carga mais rápidos e
potencialmente mais caros. Ademais, a empresa deve priorizar a utilização de drones equi-
pados com baterias que possuam um tempo médio de descarga (MTTBD) de pelo menos
180 minutos, assegurando que cada drone possa operar por um período substancial antes de
necessitar substituição.

Com base nessas recomendações, a empresa pode estabelecer um sistema de rotação efici-
ente, onde drones com baterias completamente carregadas substituem aqueles cujas baterias
estão se esgotando, garantindo uma cobertura ininterrupta do evento. Esta estratégia não
apenas assegura uma alta confiabilidade do sistema durante as 4 horas do festival, mas tam-
bém otimiza os custos operacionais. Adicionalmente, tal configuração oferece a flexibilidade
necessária para estender o monitoramento por algumas horas extras, se preciso, exemplifi-
cando como a análise detalhada da confiabilidade do sistema pode ser traduzida em benefícios
práticos e econômicos em cenários reais de segurança e vigilância urbana.

Ao implementar essas recomendações, os projetistas de sistemas de vigilância por drones
podem equilibrar efetivamente a duração da missão, a confiabilidade do sistema e os recur-
sos disponíveis. As análises apresentadas nas Figuras 19, 20 e 21 fornecem insights valiosos
para otimizar o desempenho do sistema sob várias condições e durações de missão. Essas
estratégias, quando aplicadas coletivamente, podem resultar em um sistema de vigilância por
drones mais robusto e confiável, capaz de operar eficientemente em uma ampla gama de ce-
nários, aumentando, em última análise, a eficácia geral das operações de vigilância baseadas
em drones.

É importante notar algumas limitações deste estudo. O modelo assume taxas de falha e re-
paro constantes, o que pode não refletir precisamente o comportamento real dos componentes
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ao longo do tempo. Além disso, não consideramos fatores ambientais como temperatura ou
condições climáticas, que podem afetar o desempenho das baterias. A análise também focou
apenas na redundância de baterias, não considerando outros componentes que podem falhar.

Para futuras pesquisas, seria valioso expandir o modelo para incluir a redundância de outros
componentes críticos, como sensores e sistemas de comunicação. Além disso, a incorporação
de fatores ambientais e a consideração de taxas de falha e reparo variáveis ao longo do tempo
poderiam fornecer uma visão mais realista e abrangente da confiabilidade do sistema em
diferentes condições operacionais.

5.2 ESTUDO DE CASO #2

Este estudo de caso avalia o impacto da redundância e melhorias de componentes na dis-
ponibilidade e performabilidade de um sistema de vigilância por drones, com foco particular
nas baterias e nos tempos médios do sistema. Os experimentos foram motivados pela observa-
ção inicial de que o aumento no número de drones sobressalentes não resultava em melhorias
significativas na disponibilidade do sistema durante análises preliminares. Esta constatação
nos levou a direcionar nossa atenção para a redundância das baterias e outros parâmetros
temporais críticos, componentes essenciais cuja otimização pode substancialmente melhorar a
performance e a disponibilidade do sistema.

Para conduzir esta análise, desenvolvemos e aplicamos dois modelos complementares:

1. Um modelo de disponibilidade baseado em SPN, apresentado na Figura 14 do Capítulo
4. Este modelo nos permite avaliar como diferentes configurações de redundância e
tempos médios afetam a disponibilidade do sistema.

2. Um modelo de performabilidade, também baseado em SPN, que incorpora o tempo
de cobertura (𝐶𝑜𝑉𝑡𝑖𝑚𝑒) calculado a partir do nosso modelo de cobertura. Este modelo,
ilustrado na Figura 18 do Capítulo 4, nos permite analisar métricas de desempenho como
throughput e probabilidade de espera por baterias.

Na modelagem do comportamento temporal dos componentes, optamos por distribuições
exponenciais para os tempos de falha e reparo, uma escolha que busca equilibrar precisão e
tratabilidade computacional.
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Nossa investigação abrangeu vários aspectos que influenciam a confiabilidade, disponibili-
dade e performabilidade do sistema:

– Número de Baterias Redundantes (BN): Variamos de 1 a 12 baterias sobressalentes.

– Tempo Médio para Carga da Bateria (MTTBC): Analisamos cenários com tempos de
carga variando de 30 a 180 minutos.

– Tempo Médio para Descarga da Bateria (MTTBD): Consideramos tempos de descarga
também no intervalo de 30 a 180 minutos.

– Tempo de Cobertura (𝐶𝑜𝑉𝑡𝑖𝑚𝑒): Incorporamos este parâmetro, derivado do modelo de
dimensionamento, para refletir o tempo necessário para o drone cobrir a área de vigilância
designada.

Estes parâmetros foram selecionados para refletir uma variedade de cenários operacio-
nais. Em todos os experimentos, mantivemos o número de drones sobressalentes (DN) fixo,
permitindo-nos isolar e quantificar o efeito da redundância de baterias e dos tempos médios
do sistema na confiabilidade, disponibilidade e performabilidade.

Para a execução dos experimentos, utilizamos o software Mercury, uma ferramenta para
análise de modelos SPN (MACIEL et al., 2017). Avaliamos métricas como disponibilidade do
sistema, throughput (medido em rondas de vigilância por hora), probabilidade de espera por
baterias e tempo médio de inatividade anual.

Tabela 3 – Parâmetros de Dimensionamento do Sistema de Vigilância por Drone

Parâmetro Valores
FL 4,89 mm
𝐶𝑆ℎ 3,816 mm
𝐶𝑆𝑤 6,780 mm
𝑅ℎ 1080 px
𝑂𝑟𝑒𝑎𝑙 1,70 m
𝑂𝑖𝑚𝑔 31 px
𝐻𝑚𝑎𝑥 32,17 m
𝐴𝑙 124 m
𝐴𝑤 130 m
𝐷𝑠𝑝𝑒𝑒𝑑 3 m/s

Fonte: Elaborada pelo autor (2024)
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Os parâmetros de dimensionamento do VANT selecionado para os experimentos subse-
quentes foram determinados com base nas configurações típicas de câmera e velocidade de
um drone comercial convencional. Além disso, para os experimentos seguintes, assumimos que
este sistema monitora uma área para detectar a entrada e saída de pessoas na área. Neste
contexto, consideramos um ser humano com uma altura média de 1,7 metros (𝑂𝑟𝑒𝑎𝑙) e um
requisito mínimo de 31 pixels na imagem capturada (𝑂𝑖𝑚𝑔). Também estamos considerando
uma área de vigilância equivalente às dimensões da área de validação utilizada, 124 metros de
comprimento (𝐴𝑙) e 130 metros de largura (𝐴𝑤) (Tabela 3).

Calculamos o parâmetro 𝐶𝑜𝑉𝑡𝑖𝑚𝑒 através do dimensionamento e o utilizamos como entrada
para alimentar o modelo de SPN. Os outros valores dos parâmetros iniciais utilizados nos
experimentos estão detalhados na Tabela 5.

A seguir, apresentamos estudos de caso baseados em uma análise de sensibilidade dos
componentes do sistema, visando identificar aqueles com maior grau de criticidade (Tabela
4). A análise utilizou uma técnica de diferenciação percentual descrita na Equação 2.12.
Adicionalmente, fornecemos uma classificação de sensibilidade demonstrando o impacto de
cada parâmetro na métrica de disponibilidade do sistema. Esta métrica interfere na métrica
de throughput do sistema, representado pelo número de voltas que o drone realiza por minuto
e está detalhada na Tabela 5.

Tabela 4 – Classificação de Sensibilidade

Parâmetro Classificação Índice de sensibilidade
𝑀𝑇𝑇𝐵𝐷 1º 5,694 × 10−1

𝑀𝑇𝑇𝐵𝐶 2º 5,396 × 10−1

𝑀𝑇𝑇𝐷𝑆 3º 6,601 × 10−3

𝑀𝑇𝑇𝐷𝐹 4º 5,304 × 10−5

𝑀𝑇𝑇𝐷𝑅 5º 3,508 × 10−5

Fonte: Elaborada pelo autor (2024)

A Tabela 4 indica que os tempos de descarga da bateria (MTTBD) e os tempos de
carga (MTTBC) têm o maior impacto na disponibilidade do sistema. O terceiro fator mais
importante é o tempo de substituição da bateria do drone (MTTDS). Para melhorar a dis-
ponibilidade, engenheiros e projetistas de sistemas devem se concentrar em reduzir os tempos
relacionados ao MTTBC e MTTDS, adquirindo equipamentos melhores, como carregado-
res de bateria de maior eficiência e drones mais ágeis. Baterias com maior capacidade de
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Tabela 5 – Parâmetros de Avaliação de Performabilidade

Parâmetro Valores (Horas)
𝐶𝑜𝑉𝑡𝑖𝑚𝑒 4,82 × 10−2

𝑀𝑇𝑇𝐵𝐶 2,00
𝑀𝑇𝑇𝐵𝐷 5,00 × 10−1

𝑀𝑇𝑇𝐷𝐹 5,03 × 103

𝑀𝑇𝑇𝐷𝑅 2,00
𝑀𝑇𝑇𝐷𝑆 1,60 × 10−2

Fonte: Elaborada pelo autor (2024)

armazenamento também podem estender o período (MTTBD).
Neste estudo de caso, investigamos os fatores que impactam a disponibilidade de siste-

mas de drones de vigilância, focando especificamente no gerenciamento de baterias e peças
sobressalentes. Por meio de análise estacionária, avaliamos a influência de MTTBC, MTTBD
e BN na disponibilidade. O objetivo principal é auxiliar engenheiros e gestores na otimização
do projeto e operação do sistema, identificando estratégias para garantir alta disponibilidade
em vários cenários. Os gráficos ilustram claramente o impacto desses parâmetros na disponi-
bilidade operacional, oferecendo insights valiosos para melhorar o desempenho e a eficiência
dos sistemas de drones de vigilância.

A Figura 22 ilustra o impacto do MTTBC, evidenciando uma clara relação inversa entre o
tempo de carregamento e a disponibilidade do sistema. À medida que o MTTBC aumenta, a
disponibilidade diminui, particularmente com menos baterias sobressalentes. Por exemplo, com
um MTTBC de 30 minutos e BN=3, a disponibilidade varia de 90-100%. No entanto, quando
o MTTBC aumenta para 120 minutos mantendo BN=3, a disponibilidade cai para 80-90%.
Esta tendência indica que investimentos em tecnologias de carregamento podem impactar
significativamente a disponibilidade operacional.

A Figura 23, focada no MTTBD, mostra uma tendência oposta e mais pronunciada -
aumentos no MTTBD resultam em melhorias substanciais na disponibilidade do sistema. Com
MTTBD de 30 minutos e BN=3, a disponibilidade está na faixa de 70-80%. No entanto,
aumentando o MTTBD para 90 minutos enquanto mantém BN=3, a disponibilidade sobe
para 90-100%. Notavelmente, com um MTTBD de 180 minutos, mesmo com apenas duas
baterias sobressalentes (BN=2), é possível manter 90-100% de disponibilidade. Esses dados
indicam que investir em baterias de maior duração pode ser uma estratégia altamente eficaz
para melhorar a disponibilidade do sistema.
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Figura 22 – Impacto do Tempo Médio de Carregamento da Bateria (MTTBC) e do Número de Baterias
Sobressalentes (BN) na Disponibilidade do Sistema de Drones.
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Fonte: Elaborado pelo Autor (2024)

Figura 23 – Impacto do Tempo Médio de Descarga da Bateria (MTTBD) e do Número de Baterias Sobressa-
lentes (BN) na Disponibilidade do Sistema de Drones.
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Fonte: Elaborado pelo Autor (2024)

A análise comparativa dos dois gráficos revela que melhorias no MTTBD têm um im-
pacto mais positivo e imediato na disponibilidade do sistema do que reduções equivalentes
no MTTBC. Por exemplo, para um cenário com BN=3 e tempo de 120 minutos, o gráfico
MTTBC mostra uma disponibilidade de 80-90%, enquanto o gráfico MTTBD indica uma
disponibilidade de 90-100% para os mesmos parâmetros.

Os gráficos permitem identificar áreas de otimização onde se pode alcançar um equilíbrio
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ideal entre os parâmetros. No gráfico MTTBC, a zona ótima está entre 60-90 minutos com
BN=3-4, mantendo a disponibilidade em 90-100%. No gráfico MTTBD, quase toda a área
com MTTBD superior a 90 minutos e BN igual ou superior a três oferece disponibilidade
máxima.

Ambos os gráficos exibem pontos de inflexão. No gráfico MTTBC, um aumento de BN
de 3 para 4, com um tempo de carga de 150 minutos, leva a um aumento na disponibilidade
de 70-80% para 80-90%. Por outro lado, no gráfico MTTBD, a mudança de 80-90% para
90-100% de disponibilidade ocorre rapidamente à medida que o tempo de descarga passa de
60 para 90 minutos, com BN=3.

Em conclusão, os resultados sugerem que, embora reduzir o tempo de carregamento seja
benéfico, investir em baterias de maior duração e aumentar o número de baterias sobressalentes
pode oferecer melhorias mais significativas na disponibilidade do sistema. Essas percepções são
cruciais para otimizar o projeto de sistemas de drones e equilibrar custos, eficiência operacional
e disponibilidade.

No entanto, a Figura 24 retrata a influência do número de drones (DN) e baterias sobres-
salentes (BN) na disponibilidade do sistema, em vez dos gráficos 22 e 23, que destacam os
impactos significativos de MTTBC, MTTBD e BN na disponibilidade. O gráfico 24 indica uma
tendência clara. Neste cenário, deve-se enfatizar que um aumento nos drones sobressalentes
não leva a melhorias substanciais na disponibilidade do sistema. Isso se deve aos baixos tempos
de manutenção e ao alto tempo médio até a falha (MTTDF) dos drones.

Os dados representados no gráfico ilustram que adicionar mais baterias sobressalentes tem
um impacto significativamente mais positivo na disponibilidade do sistema do que adicio-
nar drones sobressalentes. A disponibilidade do sistema tende a atingir um platô após um
certo limite de componentes redundantes, não mostrando melhorias substanciais além desse
ponto. Vale ressaltar que com apenas cinco baterias sobressalentes, o sistema atinge uma
impressionante disponibilidade de 96,74%, enquanto adicionar mais drones sobressalentes não
proporciona benefícios adicionais significativos.

Adicionalmente, focamos também em explorar o impacto da redundância de baterias no
desempenho e disponibilidade do sistema de vigilância por drones. As Figuras 25, 26, 27 e
28 ilustram os principais resultados deste estudo, fornecendo insights significativos para o
planejamento e otimização do sistema. As Figuras 25 à 27 mostra três gráficos críticos: o
throughput do sistema medido em rondas de vigilância por hora, a probabilidade do drone
esperar por baterias, Probability of Drone Waiting for Batteries (PDWB) e o número médio
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Figura 24 – Impacto do Número de Drones (DN) e Baterias Sobressalentes (BN) na Disponibilidade do Sistema
de Drones.
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Fonte: Elaborado pelo Autor (2024)

de baterias disponíveis, Average Number of Batteries Available (AVGBA). Adicionalmente, a
Figura 28 apresenta o tempo de inatividade anual do sistema em horas (DTyd).

Integrar os modelos de cobertura e performabilidade para uma análise completa é essencial.
O modelo de cobertura permite aos analistas determinar a altura máxima de operação do
drone e a área que ele pode cobrir em uma única passagem, considerando as dimensões do
alvo monitorado, a resolução da câmera e o FOV. Por exemplo, ao considerar um alvo humano
com 1,75m de altura, exigindo uma representação de 150 pixels na imagem, e usando uma
câmera com resolução de 1920x1080 pixels, o modelo de cobertura calcula a altura máxima
de voo e o FOV correspondente. Esses parâmetros afetam diretamente o tempo de cobertura
da área monitorada (𝐶𝑜𝑉𝑡𝑖𝑚𝑒).

O modelo de performabilidade considera o 𝐶𝑜𝑉𝑡𝑖𝑚𝑒 um fator crítico. Ele é calculado com
base no campo de visão do drone (FOV), velocidade média e área que precisa monitorar. Por
exemplo, se o 𝐶𝑜𝑉𝑡𝑖𝑚𝑒 for determinado como 10 minutos para uma área de 100x100m, esse
valor é então utilizado no modelo de Rede de Petri para estabelecer a duração de cada ciclo de
vigilância. Portanto, este parâmetro, derivado do modelo de cobertura, impacta diretamente
o throughput do sistema, medido em rondas de vigilância por hora (ver Figura 25).

Os resultados do modelo de performabilidade ilustram uma clara relação entre o aumento
de baterias sobressalentes (BN) e a melhoria no desempenho do sistema. Com BN aumentando
de 1 para 6, há um notável aumento no throughput, subindo de aproximadamente 10 para 17
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Figura 25 – Rondas de Vigilância Realizadas por Hora pelo Drone.
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rondas por hora (Fig. 25). Simultaneamente, PDWB vê uma queda acentuada, caindo de cerca
de 25% para menos de 5% (Fig. 26). Enquanto isso, o AVGBA aumenta de 1 para quase 5
(Fig. 27). Este avanço reflete diretamente na redução do tempo de inatividade anual (DTyd),
diminuindo de aproximadamente 100 horas para menos de 20 horas anualmente (Fig. 28).

Figura 26 – Probabilidade do Drone Esperar pelas Baterias.
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A interação entre os modelos de cobertura e performabilidade permite uma otimização
mais precisa do sistema. Por exemplo, se uma mudança nos atributos do alvo ou na resolução
da câmera aumentar o 𝐶𝑜𝑉𝑡𝑖𝑚𝑒 de 10 para 15 minutos, o modelo de performabilidade pode ser
rapidamente recalibrado para considerar este ajuste. Esta adaptação permitiria aos gestores
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avaliar as repercussões desta modificação no throughput do sistema e discernir se baterias
extras são necessárias para manter o nível de serviço estipulado.

Figura 27 – Número Médio de Baterias Disponíveis.
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É essencial utilizar estes dados integrados para otimizar vários aspectos do sistema. Para
atingir o objetivo operacional de 16 rondas por hora, o 𝐶𝑜𝑉𝑡𝑖𝑚𝑒 calculado sugere que consultar
os dados na Fig. 25 pode ajudar a determinar o número necessário de baterias sobressalentes,
permitindo um planejamento preciso. Para manter um PDWB máximo de 5% conforme Acordo
de Nível de Serviço, Service Level Agreement (SLA), a Figura 26 indica a necessidade de
pelo menos sete baterias sobressalentes, possibilitando o estabelecimento de SLAs realistas
e alcançáveis. Adicionalmente, para reduzir o tempo de inatividade anual para menos de 24
horas, a Fig. 28 propõe que seis baterias sobressalentes seriam necessárias, facilitando um
planejamento mais eficiente das janelas de manutenção.

Os dados indicam que passar de 8 para 9 baterias leva apenas a pequenas melhorias
de desempenho, sugerindo um ponto crítico em um processo de retornos decrescentes. Esta
percepção é essencial para tomar decisões informadas sobre investimentos em redundância. Ao
planejar um aumento de 20% no throughput, as informações na Figura 25 permitem o cálculo
preciso das baterias adicionais necessárias, facilitando o planejamento estratégico de recursos
para expansão futura. Por exemplo, aumentar BN de 10 para 12 mostra melhorias mínimas
em todos os parâmetros, sugerindo que investimentos adicionais além deste limiar podem não
ser justificáveis.

É importante notar algumas limitações deste estudo. Os modelos assumem distribuições
exponenciais para os tempos de falha e reparo, podendo não representar precisamente o com-
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Figura 28 – Análise do Tempo de Inatividade Anual do Sistema (DTyd) em Relação ao Número de Baterias
Sobressalentes.

 0

 12

 24

 36

 48

 60

 72

 84

 96

 108

 120

1 2 3 4 5 6 7 8 9 10 11 12

D
Ty

d 
(h

)

BN

Fonte: Elaborado pelo Autor (2024)

portamento real dos componentes. Não consideramos a degradação das baterias ao longo do
tempo, o que poderia afetar o desempenho em longo prazo. Além disso, a análise não con-
sidera variações nas condições operacionais, como diferentes perfis de missão ou condições
ambientais.

Essas análises ilustram a importância da modelagem de performabilidade na melhoria da
eficiência dos sistemas de vigilância por drones. Ao oferecer insights quantitativos sobre os
efeitos da redundância de baterias, o modelo facilita a tomada de decisões bem informadas que
equilibram desempenho, disponibilidade e custo. Melhorar a eficiência operacional estabelece
uma base sólida para planejamento estratégico, gerenciamento de riscos e alocação de recursos.
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6 CONCLUSÕES

Este trabalho apresentou uma abordagem abrangente para avaliar sistemas de vigilância
baseados em VANTs utilizando modelos estocásticos avançados. O objetivo principal de de-
senvolver modelos para otimização de sistemas de vigilância com drones, integrando análises
de confiabilidade, disponibilidade e performabilidade, foi alcançado com sucesso. Estes mo-
delos integraram fatores críticos como área de vigilância, resolução da câmera, restrições de
altitude, gerenciamento de bateria, falhas e reparos, avaliados por meio de CTMCs e SPNs.
Em relação aos objetivos secundários, conseguimos melhorar significativamente a autonomia
da bateria e gerenciar eficazmente aspectos operacionais como tempos de carregamento e
tempos de trocas de drones no sistema. Os estudos de caso apresentados validaram a eficácia
dos modelos na melhoria do desempenho da vigilância de VANTs, fornecendo insights valiosos
para otimização de sistemas.

Nossa metodologia, que incorporou análises de sensibilidade para identificar componentes
críticos e avaliar o impacto das redundâncias no desempenho do sistema, revelou descobertas
significativas. Notavelmente, a redundância de baterias demonstrou ter um impacto substancial
na disponibilidade e confiabilidade do sistema, superando a redundância de drones. O MTTBC
e o MTTBD foram identificados como fatores críticos que afetam diretamente o desempenho
do sistema. Os resultados dos estudos de caso forneceram diretrizes práticas valiosas para
projetistas e engenheiros de sistemas de vigilância por drones. Para missões de longa duração
(30 horas), descobrimos que manter entre 15 e 20 baterias redundantes pode garantir uma
confiabilidade acima de 80%. Além disso, otimizar o tempo de carregamento da bateria para
menos de 36 minutos e usar baterias com tempos de descarga superiores a 144 minutos pode
melhorar significativamente a confiabilidade do sistema. Estas descobertas têm implicações
diretas para o desenvolvimento de sistemas mais robustos e confiáveis.

É importante, no entanto, reconhecer algumas limitações deste estudo. Os modelos assu-
mem taxas de falha e reparo constantes, podendo não refletir precisamente o comportamento
real dos componentes ao longo do tempo. Além disso, não consideramos fatores ambientais
como temperatura ou condições climáticas, que podem afetar o desempenho das baterias. A
análise também focou na redundância de baterias, não considerando outros componentes que
podem falhar. As implicações práticas deste trabalho são significativas. Os modelos desenvolvi-
dos podem ser aplicados por engenheiros e gestores para otimizar o planejamento de sistemas
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de vigilância, equilibrando efetivamente o desempenho aprimorado com considerações de custo.
Por exemplo, as descobertas sobre o número ideal de baterias redundantes e os tempos óti-
mos de carga e descarga podem informar decisões de compra e manutenção, potencialmente
reduzindo custos operacionais enquanto mantém alta confiabilidade do sistema.

Para trabalhos futuros, sugerimos expandir o modelo para incluir fatores ambientais e
condições climáticas que afetem o desempenho dos drones. Seria particularmente relevante
investigar o impacto de diferentes tecnologias de bateria na disponibilidade e confiabilidade
do sistema. Além disso, o desenvolvimento de um modelo que considere a possibilidade de
múltiplos drones ativos simultaneamente na área-alvo poderia fornecer insights valiosos para
operações de vigilância em larga escala. Outra área promissora para pesquisas futuras é a aná-
lise do impacto de falhas de comunicação entre o drone e a base na disponibilidade do serviço.
Isso poderia levar ao desenvolvimento de estratégias mais robustas para manter a continuidade
operacional em cenários de comunicação degradada. Adicionalmente, o desenvolvimento de al-
goritmos de otimização capazes de recomendar configurações ideais do sistema com base em
requisitos de desempenho definidos - como cobertura máxima da área de vigilância e consumo
mínimo de energia - e restrições, como limitações de altitude e vida útil da bateria, agregaria
valor prático significativo à nossa abordagem.

Em conclusão, nossa abordagem representa um avanço significativo no campo dos sistemas
de vigilância baseados em VANTs. Ao abordar desafios-chave e fornecer insights acionáveis,
nossa pesquisa contribui para a otimização de fluxos de trabalho operacionais, mitigação de
riscos e alcance de resultados sustentáveis em diversas aplicações. As direções de pesquisa pro-
postas podem contribuir significativamente para o desenvolvimento de sistemas de vigilância
por drones mais eficientes, confiáveis e adaptáveis para várias condições operacionais, impul-
sionando avanços neste campo em rápida evolução. Explorar estratégias de otimização para
equilibrar custo, desempenho e confiabilidade na implementação de redundâncias seria valioso,
assim como investigar a integração de fontes alternativas de energia, como carregamento solar,
para aumentar a autonomia dos drones, abrindo novas possibilidades para melhorar a eficiência
e sustentabilidade desses sistemas. Estas direções de pesquisa não apenas expandirão o escopo
do trabalho atual, mas também fornecerão uma base sólida para o desenvolvimento contínuo
e a inovação no campo dos sistemas de vigilância baseados em VANTs.
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APÊNDICE A – CÓDIGOS-FONTE DE DESENVOLVIMENTO

Código Fonte 1 – Código-fonte Extração da Fórmula Fechada CTMC
1 Clear [\[ Lambda]d];

Clear [\[ Lambda]bd];

3 Clear [\[ Lambda]bc];

Clear [\[Mu]d];

5 Clear [\[ Delta ]];

Clear [\[ Beta ]];

7 Clear [\[ Beta ]2];

Clear [\[ Beta ]3];

9 Clear [\[ Beta ]4];

Clear [\[ Beta ]5];

11 Clear [\[ Alpha ]1];

Clear [\[ Alpha ]2];

13 Clear [\[ Alpha ]3];

Clear [\[ Alpha ]4];

15 Clear [\[Phi ]1];

Clear [\[Phi ]2];

17 Clear [\[Phi ]3];

Clear [\[Phi ]4];

19 Clear [\[Phi ]5];

Clear [\[ Theta ]1];

21 Clear [\[ Theta ]2];

ClearAll;

23 Mtemp = {{, \[ Lambda]d, 0, 0, 0, 0, \[ Lambda]bd, 0, 0,

0}, {0, , \[Delta], 0, \[Mu]d, 0, 0, 0, 0, 0}, {\[Mu]d,

25 0, , \[ Lambda]d, 0, \[ Lambda]bd, 0, 0, 0, 0}, {0, 0, \[Mu]d, , 0,

0, 0, 0, 0, 0}, {\[ Delta], 0, 0, 0, , 0, 0, 0, 0,

27 0}, {0, \[ Lambda]bc, 0, 0, 0, , 0, \[Mu]d, 0, 0}, {0, 0, 0, 0, 0,

0, , \[Delta], 0, 0}, {\[ Lambda]bc, 0, 0, 0, 0, 0,

29 0, , \[ Lambda]d, \[ Lambda]bd}, {0, \[ Lambda]bc, 0, 0, 0, 0,

0, \[Mu]d, , 0}, {0, 0, 0, 0, 0, 0, \[ Lambda]bc, 0, 0,}};

31 Labels = {"S0", "S1", "S2", "S3", "S4", "S5", "S6", "S7", "S8", "S9"};

WorkingQ = {True , False , True , False , False , False , False , True ,

33 False , False };

(Mx = SetDiagonal[Transpose[Mtemp ]]) // MatrixForm;

35 Q = Transpose[Mx] // MatrixForm

PlotDiagram[Mx, WorkingQ , Labels]

37 Ps = ProbStationary[Mx] // Simplify;

Availability = 1 - UnAvailability[Ps, WorkingQ ];

39 Z = FullSimplify[Availability ];

\[Beta] = \[ Lambda]bd + \[ Lambda]d;

41 \[Beta]2 = \[ Lambda]bd + \[Mu]d;

\[Beta]3 = \[ Lambda]d + \[Mu]d;

43 \[Beta]4 = \[ Lambda]bc + \[ Lambda]bd
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\[Beta]5 = \[ Lambda]bc + \[Mu]d

45 \[Alpha]1 = \[Beta] + \[ Lambda]bc

\[Alpha]2 = \[Beta] + \[Beta]5

47 \[Alpha]3 = \[Beta]3 + \[Beta ]4;

\[Alpha]4 = \[Beta]3 \[ Lambda]bc + \[ Lambda]bd \[Mu]d;

49 \[Phi]1 = \[Alpha]1 \[ Lambda]bc + \[Beta]4 \[Mu]d

\[Phi]2 = \[Beta]3 \[ Lambda]bc + \[ Lambda]bd \[Mu]d;

51 \[Phi]3 = \[Beta] \[ Lambda]bc^2 + \[ Lambda]bd (2 \[Delta] \[ Lambda]bc \

+ (\[ Delta] + \[ Lambda]bc) \[ Lambda]bd);

53 \[Phi]4 = \[Beta ]3^2 + \[Beta]3 (\[ Lambda]bc +

3 \[ Lambda]bd) + \[ Lambda]bd (2 \[ Lambda]bc + 3 \[ Lambda]bd);

55 \[Phi]5 = \[ Lambda]d^2 + \[ Lambda]d \[Mu]d + \[Mu]d^2;

\[Theta]1 = \[Alpha]1 \[Beta] \[Beta]2 \[ Lambda]bc +

57 2 \[Beta] \[Beta]2 \[Delta] \[ Lambda]bd + \[Delta] \[ Lambda]bc (\

\[Phi]4);

59 \[Theta]2 = \[Alpha]4 \[ Lambda]bd \[Mu]d + \[ Lambda]bc^2 \[Phi]5

P = (\[ Delta] \[ Lambda]bc \[Mu]d (\[Mu]d (\[ Lambda]bd + \[Mu]d) (\

61 \[ Lambda]bc (\[ Lambda]bc + \[Beta]) + (\[ Lambda]bc + \[ Lambda]bd) \

\[Mu]d) + \[Delta] (\[ Lambda]bc + \[Beta] + \[Mu]d) (\[ Lambda]bd \

63 \[Mu]d + \[ Lambda]bc (\[ Lambda]d + \[Mu]d))))/(\[ Lambda]bc \[Mu]d^2 (\

\[ Lambda]bd + \[Mu]d) (\[ Lambda]bc^2 (\[ Beta]) + \[ Lambda]bd^2 \[Mu]d \

65 + \[ Lambda]bc (\[ Beta]) (\[ Beta] + \[Mu]d)) + \[Delta ]^2 (\[ Lambda]bc \

+ \[Beta] + \[Mu]d) (\[ Lambda]bd^2 \[Mu]d^2 + \[ Lambda]bc \[ Lambda]bd \

67 \[Mu]d (\[ Lambda]d + \[Mu]d) + \[ Lambda]bc^2 (\[ Lambda]d^2 + \

\[ Lambda]d \[Mu]d + \[Mu]d^2)) + \[Delta] \[Mu]d (\[ Lambda]bd^2 \

69 \[Mu]d^2 (\[ Lambda]bd + \[Mu]d) + \[ Lambda]bc \[ Lambda]bd \[Mu]d (2 \

\[ Lambda]bd + \[Mu]d) (\[ Beta] + \[Mu]d) + \[ Lambda]bc^3 (\[Mu]d (\

71 \[ Lambda]d + \[Mu]d) + \[ Lambda]bd (\[ Lambda]d +

2 \[Mu]d)) + \[ Lambda]bc^2 (\[Mu]d (\[ Lambda]d + \

73 \[Mu]d)^2 + \[ Lambda]bd^2 (\[ Lambda]d +

3 \[Mu]d) + \[ Lambda]bd (\[ Lambda]d + \[Mu]d) \

75 (\[ Lambda]d + 3 \[Mu]d))));

77 P2 = (\[ Delta] \[ Lambda]bc \[Mu]d (\[ Beta]2 \[Mu]d \[Phi]1 + \

\[Alpha]2 \[Delta] \[Phi]2))/(\[ Alpha]2 \[Delta ]^2 \[Theta]2 + \

79 \[ Lambda]bc \[Mu]d (\[ Alpha]3 \[Delta] \[ Lambda]bc \[ Lambda]bd \

\[ Lambda]d + \[Theta]1 \[Mu]d) + \[Beta]2 \[Mu]d^3 \[Phi]3);

81 FullSimplify[P2]

FullSimplify[Availability] // TeXForm;

Fonte: Elaborado Pelo Autor (2024)

Código Fonte 2 – Código-fonte Validação do Modelo de Cobertura

fl = 4.89;

2 csh = 3.816;

csw = 6.780;

4 oreal = 1.70;
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oimg = 31;

6 rh = 1080;

ah = 124;

8 aw = 130;

dspeed = 3;

10

FVA[fl_ , cs_] := 2* ArcTan[cs/(2*fl)];

12 NFVAh = FVA[fl, csh];

NFVAw = FVA[fl, csw];

14

Hmax[oreal_ , oimg_ , rh_ , FVA_] := (oreal*rh)/(2* Tan[FVA]*oimg);

16 Print[" A n g u l a o Fov vertical : ", N[NFVAh ]];

Print[" A n g u l a o Fov horizontal : ", N[NFVAw ]];

18 NHmax = Hmax[oreal , oimg , rh, NFVAh];

20 FV[Hmax_ , FVA_] := 2*Hmax*Tan[FVA /2];

NFVh = FV[NHmax , NFVAh];

22 NFVw = FV[NHmax , NFVAw];

24 Ni[A_, FV_] := A/FV;

Nc = Ni[aw, NFVw];

26 Nl = Ni[ah, NFVh];

28 CoVlen[Nln_ , Ncol_ , FVh_ , FVw_] :=

Nln*(( Ncol - 1)*FVw) + ((Nln - 1)*FVh);

30

NCoVlen = CoVlen[Nl, Nc, NFVh , NFVw];

32

CoVtime[dspeed_ , CoVlen_] := CoVlen/dspeed;

34

NCoVtime = CoVtime[dspeed , NCoVlen ];

36

Print["Altura Max: ", N[NHmax], " m"];

38 Print[" N m e r o de colunas: ", N[Nc]]

Print[" N m e r o de linhas: ", N[Nl]]

40 Print["Fov Vertical: ", N[NFVh], " m"];

Print["Fov Horizontal: ", N[NFVw], " m"];

42 Print[" D i s t n c i a Percorrida: ", N[NCoVlen], " m"];

Print["Tempo Gasto: ", N[NCoVtime], " s"];

Fonte: Elaborado Pelo Autor (2024)
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APÊNDICE B – SCRIPTS DE DESENVOLVIMENTO

Código Fonte 3 – Script Mercury Modelo de Disponibilidade
1 DN = 20;

BN = 0;

3 mttbc = 2;

mttdf = 5034;

5 mttdr = 2;

mttbd = 0.5;

7 mttds = 0.016666667;

9

SPN Model{

11

place BC;

13 place BR;

place DF;

15 place DR( tokens= DN );

place DU( tokens= 1 );

17

19 timedTransition BCG(

inputs = [BC],

21 outputs = [BR],

delay = mttbc ,

23 serverType = "InfiniteServer"

);

25

timedTransition BD(

27 inputs = [DU],

outputs = [BC, DR],

29 delay = mttbd

);

31

timedTransition DFF(

33 inputs = [DU],

outputs = [DF],

35 delay = mttdf

);

37

timedTransition DR2(

39 inputs = [DF],

outputs = [DR, BR],

41 delay = mttdr ,

guardExpression = #DU >0

43 );
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45 timedTransition DRR(

inputs = [DF],

47 outputs = [DU],

inhibitors = [DU],

49 delay = mttdr

);

51

timedTransition DSW(

53 inputs = [DR, BR],

outputs = [DU],

55 inhibitors = [DU],

delay = mttds ,

57 serverType = "InfiniteServer"

);

59

metric A = stationaryAnalysis( method = "direct", expression = "P{#DU >0}" );

61 metric DTyd = stationaryAnalysis( method = "direct", expression = "((1-(P{#DU

>0}))*8760) /24" );

}

63

main {

65 setIntegerParameters("DN", "BN");

67 A = solve( Model ,A );

println(A);

69

DTyd = solve( Model ,DTyd );

71 println(DTyd);

73 }

Fonte: Elaborado Pelo Autor (2024)

Código Fonte 4 – Script Mercury Modelo de Confiabilidade

1 DN = 1;

BN = 0;

3 mttbc = 2;

mttdf = 5034;

5 mttdr = 2;

mttbd = 3;

7 mttds = 0.016666667;

y = 10;

9 TTF = 0.005;

11

SPN Model{
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13

place BC;

15 place BR;

place DF;

17 place DR( tokens= 1 );

place DU( tokens= 1 );

19 place P1;

place P2;

21 place P3;

place P4;

23 place P5;

25

immediateTransition TI2(

27 priority = 2,

inputs = [DF, P2, DR("#DR")],

29 outputs = [P3]

);

31

immediateTransition TI3(

33 inputs = [P1],

outputs = [P1, P4(y)],

35 inhibitors = [P5, P4]

);

37

immediateTransition TI4(

39 inputs = [P1, P5(y)],

outputs = [P2]

41 );

43 immediateTransition TI5(

priority = 2,

45 enablingFunction = "#DU >0",

inputs = [P1]

47 );

49 immediateTransition TI6(

enablingFunction = "(#DU >0)AND(#P4 >0)",

51 inputs = [P4("#P4")]

);

53

immediateTransition TI7(

55 enablingFunction = "(#DU >0)AND(#P5 >0)",

inputs = [P5("#P5")]

57 );

59 immediateTransition TI8(
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inputs = [DR("#DR"), P2],

61 outputs = [P3]

);

63

timedTransition BCG(

65 inputs = [BC],

outputs = [BR],

67 delay = mttbc ,

serverType = "InfiniteServer",

69 guardExpression = #P3==0

);

71

timedTransition BD(

73 inputs = [DU],

outputs = [BC, DR, P1],

75 delay = mttbd

);

77

timedTransition DFF(

79 inputs = [DU],

outputs = [DF, P1],

81 delay = mttdf

);

83

timedTransition DR2(

85 inputs = [DF],

outputs = [DR, BR],

87 delay = mttdr ,

guardExpression = #DU >0

89 );

91 timedTransition DRR(

inputs = [DF],

93 outputs = [DU],

inhibitors = [DU],

95 delay = mttdr ,

guardExpression = (#DR >0)AND(#BR >0)

97 );

99 timedTransition DSW(

inputs = [DR, BR],

101 outputs = [DU],

inhibitors = [DU],

103 delay = mttds ,

serverType = "InfiniteServer",

105 guardExpression = #P3==0

);
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107

timedTransition TE3(

109 inputs = [P4],

outputs = [P5],

111 delay = TTF

);

113

metric R = stationaryAnalysis( method = "direct", expression = "P{#P3=0}" );

115 }

117 main {

setIntegerParameters("DN", "BN", "y");

119

R = solve( Model ,R );

121 println(R);

123 }

Fonte: Elaborado Pelo Autor (2024)

Código Fonte 5 – Script Mercury Modelo de Performabilidade

1 DN = 0;

BN = 6;

3 mttbc = 2;

mttdf = 5034;

5 mttdr = 2;

mttbd = 0.5;

7 mttds = 0.016666667;

GOINGTIME = 0.048212614;

9 BACKTIME = 0.048212614;

y = 4;

11

13 SPN Model{

15 place BC( tokens= 0 );

place BR( tokens= BN );

17 place DF;

place DR;

19 place DU( tokens= 1 );

place END;

21 place GUARD;

place P0( tokens= y );

23 place P1;

place P2;

25 place P3;

place START( tokens= 1 );
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27

29 immediateTransition TI12(

enablingFunction = "((#P0 >0)OR(#P2 >0))AND(#DU=0)",

31 inputs = [P0("#P0"), P2("#P2")]

);

33

immediateTransition TI13(

35 enablingFunction = "((#P1 >0)OR(#P3 >0))AND(#DU=0)",

inputs = [P1("#P1"), P3("#P3")]

37 );

39 immediateTransition TI3(

priority = 2,

41 inputs = [START],

outputs = [GUARD],

43 inhibitors = [DU]

);

45

immediateTransition TI4(

47 inputs = [DU, GUARD],

outputs = [DU, START]

49 );

51 immediateTransition TI5(

priority = 2,

53 inputs = [END],

outputs = [GUARD],

55 inhibitors = [DU]

);

57

immediateTransition TI6(

59 inputs = [START],

outputs = [START , P0(y)],

61 inhibitors = [P1, P0]

);

63

immediateTransition TI7(

65 inputs = [P1(y), START],

outputs = [END]

67 );

69 immediateTransition TI8(

inputs = [P2(y), END],

71 outputs = [START]

);

73
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immediateTransition TI9(

75 inputs = [END],

outputs = [P3(y), END],

77 inhibitors = [P2, P3]

);

79

timedTransition BCG(

81 inputs = [BC],

outputs = [BR],

83 delay = mttbc ,

serverType = "InfiniteServer"

85 );

87 timedTransition BD(

inputs = [DU],

89 outputs = [BC, DR],

delay = mttbd

91 );

93 timedTransition DFF(

inputs = [DU],

95 outputs = [DF],

delay = mttdf

97 );

99 timedTransition DR2(

inputs = [DF],

101 outputs = [DR, BR],

delay = mttdr

103 );

105 timedTransition DRR(

inputs = [DF],

107 outputs = [DU],

inhibitors = [DU],

109 delay = mttdr

);

111

timedTransition DSW(

113 inputs = [DR, BR],

outputs = [DU],

115 inhibitors = [DU],

delay = mttds ,

117 serverType = "InfiniteServer"

);

119

timedTransition TE0(
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121 inputs = [P0],

outputs = [P1],

123 delay = BACKTIME

);

125

timedTransition TE1(

127 inputs = [P3],

outputs = [P2],

129 delay = GOINGTIME

);

131

metric A = stationaryAnalysis( method = "direct", expression = "P{#DU >0}" );

133 metric DTyd = stationaryAnalysis( method = "direct", expression = "((1-(P{#DU

>0}))*8760) /24" );

metric TPrph = stationaryAnalysis( method = "direct", expression = "((P{#

START >0}*(1/ GOINGTIME))+(P{#END >0}*(1/ BACKTIME)))" );

135 metric PDWB = stationaryAnalysis( method = "direct", expression = "P{(#DU=0)

AND(#BR=0)AND(#DR >0)}" );

metric AVGDA = stationaryAnalysis( method = "direct", expression = "E{#DR}" )

;

137 metric AVGBA = stationaryAnalysis( method = "direct", expression = "E{#BR}" )

;

metric TPrpm = stationaryAnalysis( method = "direct", expression = "((P{#

START >0}*(1/ GOINGTIME))+(P{#END >0}*(1/ BACKTIME)))/(60)" );

139 }

141 main {

setIntegerParameters("DN", "BN", "y");

143

A = solve( Model ,A );

145 println(A);

147 DTyd = solve( Model ,DTyd );

println(DTyd);

149

TPrph = solve( Model ,TPrph );

151 println(TPrph);

153 PDWB = solve( Model ,PDWB );

println(PDWB);

155

AVGDA = solve( Model ,AVGDA );

157 println(AVGDA);

159 AVGBA = solve( Model ,AVGBA );

println(AVGBA);

161
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TPrpm = solve( Model ,TPrpm );

163 println(TPrpm);

165 }

Fonte: Elaborado Pelo Autor (2024)
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