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Resumo

A detecção visual de anomalias em infraestruturas de transmissão de energia elétrica é
fundamental para prevenir falhas críticas e garantir a confiabilidade da rede. À medida que essas
redes se expandem para regiões remotas e complexas, inspeções manuais tradicionais enfrentam
desafios operacionais, como alto custo, riscos à segurança e baixa escalabilidade. Embora
métodos recentes de inspeção visual automatizada baseados em deep learning apresentem
avanços, a maioria é avaliada em cenários controlados, o que limita sua eficácia em aplicações
reais.

O problema central abordado neste trabalho é a baixa capacidade de generalização de
modelos não supervisionados de detecção de anomalias quando aplicados a imagens aéreas
obtidas em condições reais de inspeção. Modelos supervisionados exigem grandes volumes de
dados anotados com falhas raras e variadas—algo impraticável nesse domínio. Por isso, métodos
não supervisionados, que aprendem apenas a partir de dados normais, são mais viáveis, mas
enfrentam dificuldades ao lidar com ruído de fundo, variações de iluminação e anomalias sutis.

Este trabalho demonstra que a integração de mecanismos de atenção e técnicas de
remoção de fundo pode aprimorar significativamente a detecção de anomalias em cenários não
controlados. Para isso, foi desenvolvido o InsPLAD-seg, um novo conjunto de dados com
anotações em nível de pixel de falhas reais. Além disso, foram aplicados módulos de atenção
(SENet e CBAM) e segmentação por objetos utilizando YOLO, com o objetivo de refinar a
extração de características e reduzir interferências visuais.

Os resultados mostram que a combinação de atenção e remoção de fundo melhora
consistentemente os escores de AUROC em níveis de imagem e pixel, com destaque para a
detecção de corrosões e pequenas falhas. Modelos como RD++ e DifferNet, aprimorados com
atenção, alcançaram desempenho de ponta, enquanto a remoção de fundo aumentou a robustez
frente à variabilidade visual.

Esses achados reforçam que mecanismos de atenção e pré-processamentos que simulam
condições controladas são essenciais para aproximar os modelos de detecção do uso prático em
campo. Ao modelar diretamente anomalias em inspeções reais, esta abordagem contribui para
sistemas de monitoramento mais robustos e escaláveis.

Este trabalho viabiliza a aplicação prática de modelos de detecção de anomalias em
ambientes ruidosos, nos quais precisão e escalabilidade são requisitos críticos.

Palavras-chave: detecção de anomalias, transmissão de energia, aprendizado não supervision-
ado, segmentação semântica, deep learning, mecanismos de atenção, inspeção industrial.





Abstract

Visual anomaly detection in power transmission infrastructure is essential for preventing
critical failures and ensuring grid reliability. As electricity networks expand into remote and
complex environments, traditional manual inspections face significant challenges, including
labor intensity, safety hazards, and limited scalability. Recent progress in deep learning has
enabled automated visual inspection, but most anomaly detection models are evaluated under
controlled conditions, limiting their real-world applicability.

The key problem addressed is the poor generalization of unsupervised anomaly detectors
when deployed on aerial images from real-world inspections. Supervised models require large,
labeled datasets of rare and diverse defect types, something infeasible in power line inspection
due to the scarcity and unpredictability of faults. Unsupervised methods, which learn only from
normal data, are more suitable but struggle with cluttered backgrounds, variable lighting, and
subtle anomaly patterns.

This work shows that the integration of attention mechanisms and background removal
techniques enhances the detection of unsupervised anomalies in uncontrolled scenarios. We
created a novel dataset, InsPLAD-seg, with pixel-level annotations of real-world defects and
applied attention modules (SENet, CBAM) and YOLO-based object segmentation to refine
feature extraction and reduce noise interference.

Our results demonstrate that combining attention mechanisms with background removal
consistently improves AUROC scores at both image and pixel levels, especially in corrosion
detection and small defect localization. RD++ and DifferNet models enhanced with attention
modules achieved state-of-the-art results, while background segmentation further improved
robustness to environmental variability.

These findings suggest that controlled-like preprocessing and feature-aware attention
are critical to bridging the gap between laboratory benchmarks and real-world deployments in
infrastructure inspection. By modeling in situ power line anomalies, this approach supports more
resilient and scalable grid monitoring solutions.

This enables real-world deployment of anomaly detection models in noisy environments,
where precision and scalability are critical.

Keywords: anomaly detection, power transmission, unsupervised learning, semantic segmenta-
tion, deep learning, attention mechanisms, industrial inspection.





List of Figures

1.1 Example of power line towers for inspection . . . . . . . . . . . . . . . . . . . 26

2.1 Example images from MVTec AD. The top row contains normal samples, while
the bottom row shows defective samples with pixel-wise annotations of anomalies. 37

3.1 Visual Samples from the InsPLAD-seg Dataset. Examples of normal and anoma-
lous components are shown in the first and second rows, respectively. The third
row presents the corresponding pixel-level ground truth masks for the anomalies. 47

3.2 Distribution of Anomaly Density Across Classes. Each box represents the
variation in pixel-level anomaly coverage within the annotated masks for each
class in the InsPLAD-seg dataset. Abbreviations: GI = glass-insulator, LRS
= lightning-rod-suspension, PIUS = polymer-insulator-upper-shackle, VG =
vari-grip, YS = yoke-suspension. . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 SENet module architecture representation. The Feature Map is refined by the
Excitation application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 CBAM module architecture. The feature map is refined by sequentially applying
channel and spatial attention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Proposed AttentDifferNet architecture. . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Workflow for Preparing Background-Free Datasets Using YOLO Segmentation
for Anomaly Detection Training. . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Training AUROC Progression on InsPLAD-Seg for the Polymer-Insulator-Upper-
Shackle Class. The best Image-Level AUROC is highlighted in red and the best
Pixel-LevelAUROC is highlighted in blue. . . . . . . . . . . . . . . . . . . . . 63

4.2 Comparison of anomaly detection techniques. First row: Vari-grip component
(from left to right: Original image, regular DifferNet, DifferNet with SENet, and
ground truth mask). Second row: Glass-insulator component (from left to right:
Original image, regular DifferNet, DifferNet with SENet, and ground truth mask). 67

4.3 Comparison of anomaly detection techniques. First row: Glass-Insulator compo-
nent (from left to right: Original image, regular RD++, RD++ with SENet, and
ground truth mask). Second row: Polymer Insulator Upper Shackle component
(from left to right: Original image, regular RD++, RD++ with SENet, and ground
truth mask). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



4.4 Comparison of structural and appearance-based anomalies: the left image shows
a glass insulator missing its cap, representing a structural anomaly, while the
right image depicts a vari-grip affected by corrosion, illustrating an appearance-
based anomaly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 AUROC (Image Level) vs. Latency for various anomaly detection methods. . . 70
4.6 AUROC (Pixel Level) vs. Latency for various anomaly detection methods. . . . 71
4.7 Comparative pixel-level accuracy of background removal under different at-

tention mechanisms (No Attention, SENet, and CBAM) combined with three
segmentation strategies: basic thresholding ("Normal"), manual segmentation,
and YOLO-based segmentation. Results indicate that attention modules gener-
ally enhance performance, with CBAM combined with manual segmentation
achieving the highest mean accuracy. . . . . . . . . . . . . . . . . . . . . . . 75



List of Tables

2.1 Comparison of Image-Level and Pixel-Level Anomaly Detection . . . . . . . . 34
2.2 Comparison of publicly available datasets for industrial anomaly detection and

power line inspection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Description of the InsPLAD-seg anomaly detection and localization dataset.
Glass Insulator anomalies are missing caps, while the others are corrosion-
related. The number of mask annotations matches the number of anomalous
images in each category. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Abbreviations of the evaluated methods . . . . . . . . . . . . . . . . . . . . . 62
4.2 Performance of DifferNet variants on the InsPLAD-seg dataset using model

abbreviations. Each entry shows Image-Level AUROC / Pixel-Level AUROC
(I-AUROC% / P-AUROC%) . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Performance of RD++ variants on the InsPLAD-seg dataset using model ab-
breviations. Each entry shows Image-Level AUROC / Pixel-Level AUROC
(I-AUROC% / P-AUROC%) . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Image-Level AUROC of all evaluated methods on the InsPLAD-seg dataset.
Abbreviations defined in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Pixel-Level AUROC of all evaluated methods on the InsPLAD-seg dataset.
Abbreviations defined in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Comparison of the best-performing models. DifferNet achieved the highest
AUROC but incurred the highest latency. EfficientAD had the lowest latency but
comparatively lower AUROC, making it suitable for time-critical applications
with relaxed accuracy demands. RD++ with SENet provided strong AUROC
scores at both image and pixel levels, with only a modest increase in latency,
making it the most balanced model for real-time deployment. . . . . . . . . . . 72

4.7 AUROC results for EfficientAD with and without background. Abbreviations
defined in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73





List of Acronyms





Contents

1 Introduction 25
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.1 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Literature Review 31
2.1 Overview of Visual Anomaly Detection . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Definitions and Categories . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.2 Image-Level vs. Pixel-Level Anomaly Detection . . . . . . . . . . . . 32

2.1.2.1 Image-Level Anomaly Detection . . . . . . . . . . . . . . . 32

2.1.2.1.1 Principles of Image-Level Anomaly Detection . . . 32

2.1.2.1.2 Applications and Challenges . . . . . . . . . . . . 33

2.1.2.2 Pixel-Level Anomaly Detection . . . . . . . . . . . . . . . . 33

2.1.2.2.1 Principles of Pixel-Level Anomaly Detection . . . 33

2.1.2.2.2 Applications and Challenges . . . . . . . . . . . . 34

2.1.2.3 Comparison Between Image-Level and Pixel-Level Detection 34

2.2 Controlled Datasets for Industrial Anomaly Detection . . . . . . . . . . . . . . 35

2.2.1 MNIST, CIFAR-10, and ImageNet-based Datasets . . . . . . . . . . . 35

2.2.2 Pascal VOC with Outliers . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.3 MVTec AD – A Step Forward for Industrial Anomaly Detection . . . . 36

2.2.4 MIAD – A Synthetic Benchmark for Industrial Anomaly Detection . . 38

2.3 Real-World In-the-Wild Datasets for Power Line Inspection . . . . . . . . . . . 38

2.3.1 Single-Class Power Line Inspection Datasets . . . . . . . . . . . . . . 38

2.3.2 Multi-Class Power Line Datasets . . . . . . . . . . . . . . . . . . . . . 39

2.3.3 Extending InsPLAD: From Fault Detection to Pixel-Level Segmentation 40

2.4 Classical Approaches for Anomaly Detection . . . . . . . . . . . . . . . . . . 41

2.5 Modern Deep Learning Approaches for Anomaly Detection . . . . . . . . . . . 42

2.5.1 Object Detection and Segmentation for Anomaly Detection . . . . . . 42

2.5.2 Advanced Architectures for Anomaly Detection . . . . . . . . . . . . . 42

3 Methodology 45
3.1 InsPLAD-seg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Attention Mechanisms in Convolutional Neural Networks . . . . . . . . . . . . 49

3.2.1 Squeeze-and-Excitation Networks (SENet) . . . . . . . . . . . . . . . 49



3.2.1.1 Squeeze Module . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1.2 Excitation Module . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1.3 Scale Module . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Convolutional Block Attention Modules (CBAM) . . . . . . . . . . . . 51

3.2.2.1 Channel Attention Module . . . . . . . . . . . . . . . . . . 51

3.2.2.2 Spatial Attention Module . . . . . . . . . . . . . . . . . . . 52

3.2.3 Self-Supervised Predictive Convolutional Attentive Block (SSPCAB) . 52

3.3 Anomaly Detection Methods with Attention Modules . . . . . . . . . . . . . . 53

3.3.1 DifferNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 SimpleNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 EfficientAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.4 Reverse Distillation++ (RD++) . . . . . . . . . . . . . . . . . . . . . . 55

3.3.5 Integrating Attention Modules in Anomaly Detection . . . . . . . . . . 56

3.4 Noisy Background Removal with Object Segmentation . . . . . . . . . . . . . 57

3.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 AUROC – Area Under the Receiver Operating Characteristic Curve . . 58

3.5.1.1 AUROC for Image-Level Detection . . . . . . . . . . . . . . 59

3.5.1.2 AUROC for Pixel-Level Detection . . . . . . . . . . . . . . 59

3.5.1.3 Justification for AUROC . . . . . . . . . . . . . . . . . . . . 59

3.5.2 Latency Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Experiments, Results and Analysis 61
4.1 Ablation Study on Attention Modules . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Anomaly Detection Models in Insplad-seg . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Quantitative Analysis of Image-Level AUROC Results . . . . . . . . . 64

4.2.2 Quantative Analysis of Pixel-Level AUROC Results . . . . . . . . . . 65

4.2.3 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.4 Effectiveness of Attention Modules in Detecting Structural vs. Appearance-
Based Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Experimental Evaluation of Anomaly Detectors: Accuracy vs. Efficiency . . . 68

4.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2.1 Image-Level Performance . . . . . . . . . . . . . . . . . . . 70

4.3.2.2 Pixel-Level Performance . . . . . . . . . . . . . . . . . . . 71

4.3.2.3 Impact of Attention Modules . . . . . . . . . . . . . . . . . 71

4.3.3 Latency vs. Accuracy Trade-offs . . . . . . . . . . . . . . . . . . . . . 72



23

4.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Object Segmentation for Enhanced Anomaly Detection Performance . . . . . . 72

4.4.1 Experiment 1: Evaluating Background Removal on Anomaly Detection
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.2 Experiment 2: Impact of Segmentation Quality on Anomaly Detection
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Conclusion 77

6 Acknowledgements 79

References 81

Appendix 87





252525

1
Introduction

The task of visually inspecting components for defects is fundamental to ensuring the
safety and reliability of industrial operations. In large-scale environments, particularly those
involving complex and geographically distributed infrastructure, this process is not only essential
but also operationally challenging. Manual inspection remains the predominant approach in many
sectors; however, it is labor-intensive, time-consuming, and prone to human error—especially
under conditions of repetitive analysis, limited visibility, or safety risks. These limitations have
driven the adoption of automated visual inspection systems, which promise greater consistency,
efficiency, and scalability MENDU; MBULI (2025).

Such systems support a range of applications, including quality assurance, maintenance
planning, video surveillance, and security monitoring. These applications span various domains,
notably manufacturing BERGMANN et al. (2019a); RUDOLPH; WANDT; ROSENHAHN
(2021); YU et al. (2021), healthcare SCHLEGL et al. (2019); HAN et al. (2021), and power
systems GE et al. (2021); LEKIDIS; ANASTASIADIS; VOKAS (2022). In particular, this work
focuses on the inspection of power transmission infrastructure, where the detection of visual and
structural anomalies is critical to maintaining operational continuity and preventing large-scale
disruptions. High-voltage transmission lines extend across vast and often remote regions. A
single defective component—such as a cracked insulator or a corroded connector—can initiate
cascading failures, leading to blackouts that affect entire towns or even major cities. As electricity
becomes increasingly central to everyday life and industrial production, the consequences of
such failures extend beyond operational delays to include substantial economic and social
impacts GUAN et al. (2021); HE et al. (2024).

To mitigate these risks, electric utilities conduct routine inspections of transmission
towers and substations. While traditionally performed by field teams, these inspections involve
significant logistical challenges and safety hazards, including high-altitude access and proximity
to live circuits. In recent years, unmanned aerial vehicles (UAVs), commonly referred to as
drones, have become an effective tool to address these limitations, enabling the capture of
high-resolution images from difficult-to-access components LI et al. (2023); CHEN et al. (2018).
These images are then reviewed by engineers and trained professionals to assess potential
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Figure 1.1: Example of power line towers for inspection

damage or wear. However, the manual analysis of UAV imagery remains a labor-intensive
task, particularly as inspection programs scale to cover large grid segments, as the example
in figure 1.1. The high volume of images, combined with the repetitive nature of the task,
increases the likelihood of human fatigue and oversight DUTTA; SONI; GUPTA (2021). These
challenges have reinforced the need for intelligent automation that can assist or even replace
human evaluators in the inspection workflow ZHONG et al. (2021).

Historically, automated defect detection has relied on supervised learning models trained
on labeled examples of defective and non-defective components HUANG; TIAN; CHEN (2022).
These approaches are widely used in industrial settings due to their strong discriminative per-
formance when ample annotated data is available. Yet, in real-world scenarios—particularly
in power systems—fault cases are scarce and diverse, limiting the feasibility of supervised
approaches. The imbalance between normal and defective samples introduces significant general-
ization challenges, as supervised models struggle to adapt to novel or rare fault conditions JALIL
et al. (2019).

To address these limitations, unsupervised anomaly detection methods have emerged as a
promising alternative. Rather than learning from explicit examples of faults, these methods model
the distribution of normal data and identify deviations as potential anomalies. This makes them
suitable for inspection contexts where defective cases are infrequent and heterogeneous BASIT;
MANZOOR; AKRAM (2024); ZHOU et al. (2022). In power transmission systems, unsupervised
models can be effectively combined with UAV imagery to enable scalable and autonomous fault
detection across large infrastructures. These developments point toward a new paradigm of
intelligent, data-driven inspection practices that improve both the coverage and reliability of
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critical infrastructure monitoring.

1.1 Problem Statement

Despite recent advances in anomaly detection techniques, their performance tends to
decline significantly when deployed in uncontrolled environments. Most state-of-the-art methods
have been evaluated under controlled conditions—such as uniform backgrounds, consistent
lighting, fixed resolutions, and standardized viewpoints—which do not reflect the complexities
encountered in real-world industrial applications RUDOLPH; WANDT; ROSENHAHN (2021);
YU et al. (2021); DEFARD et al. (2021); TIEN; WANG; LEE (2023). In particular, tasks
like power transmission line inspection involve substantial variability in camera perspective,
object scale, orientation, illumination, background clutter, and image resolution. These factors
introduce noise and distortions that impair the effectiveness of conventional detection models.

As a result, anomaly detection in uncontrolled environments remains an open and
underexplored challenge. Developing robust methods capable of generalizing across such
variability is essential for advancing automated visual inspection in realistic field conditions.
Addressing this problem requires not only the investigation of novel techniques but also the
construction of dedicated datasets that reflect these real-world complexities—since, as identified
in our literature review, existing public datasets do not adequately represent the visual diversity
and unpredictability of such environments. Once such representative data is available, the focus
must shift toward designing or adapting anomaly detection approaches that remain reliable and
effective under the inherent noise and variability of uncontrolled conditions.

1.2 Research Objectives

This dissertation explores the hypothesis that integrating attention mechanisms and
leveraging background removal through object segmentation can enhance unsupervised anomaly
detection at both image and pixel levels. Attention modules, such as CBAM WOO et al. (2018)
and SENet HU; SHEN; SUN (2018), improve neural network performance by enhancing the
network’s focus on salient spatial and channel information. These mechanisms selectively
highlight foreground features while suppressing irrelevant noise from the background, offering a
robust solution to the challenges posed by uncontrolled environments. Additionally, background
removal using object segmentation can make real-world datasets more comparable to controlled
settings, potentially improving model performance by eliminating extraneous variability.

The objectives of this study are fivefold:

1. To investigate the strengths and limitations of state-of-the-art anomaly detection
methods in uncontrolled environments.



28 CHAPTER 1. INTRODUCTION

2. To develop a pixel-level dataset that enables fine-grained evaluation of anomaly
detection performance under real-world conditions.

3. To benchmark unsupervised anomaly detection methods at both image and pixel
levels using a representative dataset.

4. To analyze the impact of incorporating attention mechanisms on the performance of
anomaly detection models.

5. To evaluate the influence of background removal on anomaly detection effectiveness
in visually complex and uncontrolled settings.

1.3 Contributions

This dissertation makes the following key contributions to the field of unsupervised
anomaly detection for industrial inspection:

■ Creation of a novel dataset, InsPLAD-Seg, by annotating defect masks in the InsPLAD-
Fault dataset to enable pixel-level evaluation, addressing the lack of publicly available
pixel-level datasets for industrial inspection in the wild.

■ Comprehensive evaluation of state-of-the-art unsupervised anomaly detection meth-
ods at both image and pixel levels, providing insights into their strengths and limita-
tions.

■ Integration of attention mechanisms, such as CBAM and SENet, with unsupervised
anomaly detection methods, demonstrating their impact on improving pixel-level
detection accuracy.

■ Development of background-removed versions of the InsPLAD-Seg dataset using ob-
ject segmentation, enabling the study of anomaly detection performance in controlled-
like conditions.

■ Comparative analysis of the impact of attention mechanisms and background re-
moval on the performance of anomaly detection methods, contributing to a deeper
understanding of their roles in real-world applications.

These promising results motivated the exploration of further improvements in unsuper-
vised anomaly detection by integrating attention mechanisms with other methods and addressing
additional challenges such as pixel-level anomaly detection and noisy backgrounds
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1.3.1 Scientific Contributions

This dissertation has led to the publication of the following peer-reviewed works, listed
in chronological order to reflect the progressive development of the research:

■ Attention Modules Improve Modern Image-Level Anomaly Detection: A DifferNet

Case Study SILVA et al. (2023).
André Luiz Vieira e Silva, Felipe Battisti, Francisco Simões, Danny Kowerko,
Tobias Schlosser, Veronica Teichrieb.
This extended abstract presents the first version of AttentDifferNet, introducing atten-
tion mechanisms (SENet and CBAM) into the DifferNet architecture. Initial results
on three industrial anomaly detection datasets demonstrated promising improvements
in AUROC, forming the conceptual foundation for subsequent studies.

■ Attention Modules Improve Image-Level Anomaly Detection for Industrial Inspection:

A DifferNet Case Study SILVA et al. (2024a).
André Luiz Vieira e Silva, Felipe Battisti, Francisco Simões, Danny Kowerko,
Tobias Schlosser, Veronica Teichrieb.
Published in the Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), 2024.
This full paper builds upon the previous abstract, expanding the evaluation of Attent-
DifferNet across controlled and in-the-wild datasets. It establishes state-of-the-art
results on the InsPLAD-fault dataset and offers qualitative evidence through Grad-
CAM analysis, highlighting how attention blocks enhance the network’s focus on
relevant foreground regions.

■ Attention Modules Improve Efficient Anomaly Localization for Industrial Inspection

in the Wild SILVA et al. (2024).
André Luiz Vieira e Silva, Felipe Battisti, Veronica Teichrieb, Francisco Simões.
Published in the LatinX in CV Workshop at CVPR, 2024.
This extended abstract introduces InsPLAD-seg, the preliminary version of a real-
world dataset for pixel-level anomaly detection in power line components. It evaluates
the integration of attention modules into lightweight methods such as SimpleNet and
EfficientAD, demonstrating improved performance in both image- and pixel-level
tasks. The work also highlights the computational efficiency of the proposed models,
reinforcing their applicability in real-time industrial inspection scenarios.

These publications reflect the progressive maturation of this research—from conceptual
exploration to dataset creation and benchmarking. The extended experiments, improved methods,
and additional findings presented throughout this dissertation go beyond what has been published
so far. As such, the results are being consolidated and expanded for a future journal-oriented
publication targeting a broader scientific audience.
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2
Literature Review

2.1 Overview of Visual Anomaly Detection

Visual Anomaly detection is a crucial task in industrial inspection, particularly for
detecting structural defects, equipment degradation, and foreign object interference in power line
towers. Unlike controlled environments, power line inspections face additional challenges due to
uncontrolled backgrounds, varying lighting conditions, and occlusions caused by vegetation
and atmospheric distortions. The visual anomalies encountered in power line towers include
corrosion, broken parts, missing components, birds’ nests, disconnected or damaged wires,
dirt accumulation, and other environmental influences that affect infrastructure integrity.

Traditional inspection methods relied on manual assessments or basic statistical tech-
niques HODGE; AUSTIN (2004); MARKOU; SINGH (2003). However, with advancements
in deep learning, modern approaches leverage convolutional neural networks (CNNs), vision
transformers (ViTs), and self-supervised learning techniques to improve detection accuracy
in complex industrial settings CHALAPATHY; CHAWLA (2019); PANG et al. (2021).

2.1.1 Definitions and Categories

Anomaly detection refers to the process of identifying deviations from normal patterns
in data CHANDOLA; BANERJEE; KUMAR (2009); PIMENTEL et al. (2014). In power line
tower inspections, anomalies are characterized by structural failures, contamination, or external
interference. The nature of these anomalies is diverse and can be categorized as follows:

■ Point Anomalies: Individual instances that significantly deviate from normal con-
ditions, such as a single corroded joint or a loose bolt GOLDSTEIN; UCHIDA
(2016).

■ Contextual Anomalies: Objects or structures that may appear normal in one setting
but anomalous in another, such as a wire that is intact but misaligned due to high
wind stress AHMED; MAHMOOD; HU (2016).
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■ Collective Anomalies: A group of elements forming an anomaly, such as clus-
ters of dirt buildup on insulators or large bird nests obstructing transmission lines
GOLDSTEIN; UCHIDA (2016).

Anomaly detection methods can also be categorized based on the level of analysis:

■ Image-Level Anomaly Detection: Determines whether an image as a whole contains
an anomaly without pinpointing specific regions RUFF et al. (2018).

■ Pixel-Level Anomaly Detection: Focuses on localizing and segmenting anomalies
within an image BERGMANN et al. (2019b).

Furthermore, methods can be divided based on the learning paradigm:

■ Supervised Methods: Require labeled datasets containing both normal and anoma-
lous samples KIRAN; THOMAS; PARAKKAL (2018).

■ Unsupervised Methods: Operate without labeled anomalies, learning the distribution
of normal data and detecting deviations ZONG et al. (2018).

2.1.2 Image-Level vs. Pixel-Level Anomaly Detection

Anomaly detection methods can be broadly categorized into image-level and pixel-
level approaches, depending on the granularity of the detection process. Image-level anomaly
detection focuses on classifying an entire image as normal or anomalous, while pixel-level
anomaly detection localizes specific regions or pixels that deviate from normal patterns. The
choice between these methods depends on the application requirements, such as whether a binary
classification is sufficient or if precise defect localization is necessary.

2.1.2.1 Image-Level Anomaly Detection

Image-level anomaly detection determines whether an image as a whole contains an
anomaly, without identifying the specific location of the irregularity. This approach is commonly
used in automated inspection systems, where rapid screening of large datasets is necessary to
filter out defective or anomalous samples for further evaluation.

2.1.2.1.1 Principles of Image-Level Anomaly Detection At a high level, image-level
anomaly detection encodes images into a feature space and compares them against known
distributions of normal samples. The anomaly decision is typically based on:

■ Feature-Based Methods: The image is processed through a feature extractor (e.g., a
convolutional neural network, or CNN) to generate a high-dimensional representa-
tion that captures relevant visual patterns. Anomalies are identified by computing
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distances between the extracted features and a reference distribution of normal fea-
tures.

■ Classification-Based Methods: A model is trained using labeled normal and ab-
normal images to perform direct classification. This approach is widely used in
supervised settings, where anomaly labels are available during training.

■ Statistical and Probabilistic Methods: Techniques such as one-class classification,
density estimation, and reconstruction-based scoring assign anomaly scores based
on likelihood or deviation from learned distributions.

2.1.2.1.2 Applications and Challenges Image-level anomaly detection is frequently used
in scenarios where global image context is sufficient to determine abnormalities. Examples
include:

■ Industrial Quality Control: Determining if an entire product image contains a
visible defect, such as a broken component in manufacturing.

■ Power Line Tower Inspections: Detecting the presence of corrosion, missing parts,
or structural damage from aerial images.

■ Medical Imaging: Identifying whether an X-ray or MRI scan contains anomalies
without precisely localizing them.

One of the main limitations of image-level anomaly detection is its inability to pinpoint
where an anomaly is present. This restricts its usability in applications requiring precise defect
localization, making it necessary to use pixel-level anomaly detection for more detailed analysis.

2.1.2.2 Pixel-Level Anomaly Detection

Pixel-level anomaly detection, also referred to as anomaly segmentation, focuses on
identifying specific regions or pixels that differ from expected normal patterns. Unlike image-
level detection, which provides a binary classification, pixel-level detection generates anomaly
heatmaps or segmentation masks that indicate the exact locations of defects.

2.1.2.2.1 Principles of Pixel-Level Anomaly Detection Pixel-level anomaly detection oper-
ates by analyzing local spatial structures within an image. The key techniques used include:

■ Reconstruction-Based Methods: Models such as autoencoders (AEs) and generative
adversarial networks (GANs) are trained to reconstruct normal images. Anomalous
regions exhibit high reconstruction errors, as they deviate from the training distri-
bution.
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■ Density Estimation Methods: Approaches like normalizing flows and Bayesian
deep learning estimate the probability distribution of normal samples. Low-likelihood
regions correspond to anomalies.

■ Feature Memory Banks: Methods such as PatchCore and SPADE store normal
feature embeddings and compare new image patches against stored representations.
Anomalies are detected when new patches deviate significantly from memory-stored
patterns.

2.1.2.2.2 Applications and Challenges Pixel-level anomaly detection is used in applications
where precise localization of defects is critical. Some examples include:

■ Industrial Visual Inspection: Identifying localized defects such as cracks, scratches,
or missing components in products.

■ Power Line Tower Inspection: Detecting corrosion, broken wires, or dirt accumula-
tion in specific regions of a transmission tower.

■ Medical Imaging: Segmenting tumor regions or structural abnormalities in radiolog-
ical scans.

A key advantage of pixel-level methods is their ability to provide detailed, interpretable
outputs, making them highly useful in safety-critical applications. However, they often require
more computational resources and may suffer from higher false-positive rates due to fine-
grained noise in images.

2.1.2.3 Comparison Between Image-Level and Pixel-Level Detection

Table 2.1 summarizes the main differences between image-level and pixel-level anomaly
detection.

Table 2.1: Comparison of Image-Level and Pixel-Level Anomaly Detection

Feature Image-Level Detection Pixel-Level Detection

Output Type Binary Label (Normal/Anomaly) Segmentation Map / Heatmap
Localization No localization Precise localization
Computational Cost Low High
Model Complexity Simpler More complex
Common Methods Feature-Based, Classification, PCA Reconstruction, Density Estimation, Memory Banks
Best for Rapid screening, simple defects Complex structures, high-precision tasks
Example Use Cases Industrial sorting, power grid scans Medical imaging, defect segmentation
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2.2 Controlled Datasets for Industrial Anomaly Detection

Datasets play a fundamental role in developing and evaluating machine learning models
for anomaly detection, particularly in industrial settings. Many early studies rely on controlled
datasets, where objects appear under standardized conditions, with uniform lighting and minimal
environmental noise. These datasets help establish baseline performances and refine foundational
methods. However, they often fail to capture the complexities of real-world applications, where
variations in illumination, occlusions, and environmental factors significantly impact model
performance.

A common strategy in novelty detection research is to repurpose multiclass classification
datasets by selecting a subset of classes as anomalies. Models are trained exclusively on inlier
classes and later tested on the artificially designated outliers. While this approach provides
an abundance of labeled training and evaluation data, it does not reflect real-world anomaly
detection scenarios, where anomalies are subtle deviations rather than entirely different object
categories SALEH et al. (2013); HENDRYCKS; GIMPEL (2018). Some of the most frequently
used datasets in this approach include MNIST, CIFAR-10, and ImageNet.

2.2.1 MNIST, CIFAR-10, and ImageNet-based Datasets

One of the simplest ways to benchmark anomaly detection methods is to adapt existing
classification datasets. MNIST LECUN et al. (1998), CIFAR-10 KRIZHEVSKY; HINTON
(2009), and ImageNet DENG et al. (2009) are commonly used in this manner. The approach
consists of designating certain classes as anomalies while training the model exclusively on the
remaining ones. During testing, the objective is to determine whether a sample belongs to an
inlier or outlier class.

While this setup is computationally convenient, it does not provide a realistic assessment
of anomaly detection capabilities. The primary issue is that anomalies in these datasets are entire
object categories rather than subtle defects or structural irregularities. For example, if a model is
trained on images of dogs and later tested on images of airplanes, it is trivially easy to identify
the outliers. In contrast, industrial anomaly detection typically involves detecting small defects,
such as microscopic cracks or missing components, within objects that otherwise appear normal.

Another limitation is the lack of fine-grained feature variations. In industrial applications,
anomalies often share most of their visual characteristics with normal instances, making them
much harder to distinguish. Classification datasets fail to capture this subtlety, as the outlier
classes are inherently disjoint from the inliers. Furthermore, these datasets do not support
pixel-wise annotation, preventing the evaluation of methods that require precise localization of
defects.
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2.2.2 Pascal VOC with Outliers

Recognizing the limitations of standard classification datasets, Saleh et al. SALEH et al.
(2013) introduced an alternative approach based on the Pascal VOC dataset EVERINGHAM
et al. (2010). Their dataset consists of abnormally shaped objects, such as irregularly structured
cars, boats, and airplanes, which are compared against normal instances from Pascal VOC. The
objective is to distinguish objects that deviate in shape from their expected class distributions.

While this dataset presents a more structured novelty detection problem, it still primarily
focuses on entire objects rather than local anomalies. Many industrial applications require detect-
ing small-scale deviations—such as minor deformations, missing parts, or surface defects—rather
than identifying entirely different shapes. Additionally, the dataset is constructed from internet
searches, which introduces inconsistencies and does not simulate real-world environmental
challenges such as occlusions, lighting variations, or background noise.

2.2.3 MVTec AD – A Step Forward for Industrial Anomaly Detection

A significant advancement in industrial anomaly detection benchmarking was introduced
with the MVTec Anomaly Detection dataset (MVTec AD) BERGMANN et al. (2019b). It
consists of 5,354 high-resolution images spanning 15 different real-world product categories,
including metal nuts, circuit boards, textiles, and pharmaceutical capsules. The dataset provides
both normal and defective samples, with pixel-wise ground truth annotations for anomalies.
This feature allows for a more comprehensive evaluation of anomaly detection methods, particu-
larly in terms of localization accuracy, which was previously overlooked in classification-based
benchmarks.

Figure 2.1 presents examples of normal and defective samples from MVTec AD, with
normal instances in the top row and anomalies in the bottom row. The dataset captures a
range of defects, including scratches, dents, misaligned components, missing material, and
contamination, primarily focusing on surface-level defects and structural inconsistencies.
While widely used for benchmarking unsupervised anomaly detection methods, MVTec AD
remains a controlled dataset, with all samples captured under ideal lighting and stable imaging
conditions. This controlled setting limits its ability to reflect real-world industrial inspection
challenges, where variable lighting, occlusions, background clutter, and environmental
interference significantly impact anomaly detection performance. Additionally, the dataset lacks
anomalies caused by external contaminants, such as dirt accumulation, dust, or foreign object
interference, which are common in practical applications like power line inspection.

The introduction of MVTec 3D AD WEIMAR et al. (2022) sought to address the
limitations of 2D image-based inspection by incorporating three-dimensional defect information.
This dataset contains over 4,000 high-resolution 3D scans of industrial products across 10
categories, where each sample is represented as an organized point cloud along with an RGB
image. The alignment between the 3D structure and visual appearance allows for detecting
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Figure 2.1: Example images from MVTec AD. The top row contains normal samples,
while the bottom row shows defective samples with pixel-wise annotations of anomalies.

defects that are difficult to discern in 2D images, such as subtle deformations, dents, and
warping. However, the dataset remains restricted to a controlled acquisition environment,
where objects are scanned in an isolated setting without interference from external environmental
factors.

Another extension, MVTec LOCO AD (Logical Constraints Anomaly Detection)
MADER et al. (2022), introduces a different challenge by incorporating logical anomalies, in
addition to conventional structural defects. The dataset consists of 3,644 images across five
categories, inspired by real-world industrial inspection scenarios. Logical anomalies arise
from misconfigurations, incorrect part placements, and assembly inconsistencies, rather
than material defects. While this dataset expands the definition of industrial anomalies, it
still lacks unstructured real-world conditions, as it remains confined to synthetic industrial
environments where logical inconsistencies are manually introduced rather than organically
occurring.

Despite the advancements brought by these datasets, all MVTec benchmarks share com-
mon limitations. The controlled conditions under which images are captured fail to replicate
real-world challenges such as shadows, reflections, dirt, occlusions, and background dis-
tractions, which can significantly impact model robustness. In industrial applications such as
power line inspection, anomalies are not limited to structural defects but also include foreign
object interference, such as fallen branches, bird nests, and external debris. These types
of anomalies are entirely absent from the MVTec dataset family, making them insufficient for
evaluating models intended for real-world deployment in outdoor industrial scenarios.
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2.2.4 MIAD – A Synthetic Benchmark for Industrial Anomaly Detection

The MIAD dataset ZHANG et al. (2023) is a synthetic benchmark designed for anomaly
detection in outdoor maintenance inspection scenarios. It consists of 105,000 images across seven
industrial settings, including electrical insulators, metal welding, photovoltaic modules, wind
turbines, catenary droppers, nuts and bolts, and witness marks. Unlike traditional manufacturing
inspection datasets captured in controlled environments, MIAD introduces variability in surface
conditions, backgrounds, and viewpoints to better simulate real-world challenges.

The dataset is generated using BlenderProc, a procedural rendering pipeline based on
Blender, allowing precise control over lighting, textures, and object positioning while maintaining
pixel-accurate annotations. However, despite its high-quality rendering, MIAD remains a
synthetic dataset and lacks real-world imperfections such as sensor noise, motion blur, and
natural lighting fluctuations. While it introduces environmental variability through procedural
textures and randomized backgrounds, it does not capture the unpredictability of real-world
industrial anomalies, such as foreign object interference or unexpected environmental conditions.

2.3 Real-World In-the-Wild Datasets for Power Line Inspec-
tion

While controlled and synthetic datasets provide valuable benchmarks, real-world datasets
are essential for evaluating models under practical conditions. Power line inspection, in particular,
demands datasets that account for environmental challenges such as uncontrolled lighting,
occlusions, vegetation interference, and structural variations. Although several datasets have been
proposed, many focus on detecting a single power line component, limiting their applicability
to broader inspection tasks.

2.3.1 Single-Class Power Line Inspection Datasets

Several datasets focus on detecting and analyzing a single power line component, such
as insulators, conductors, or transmission towers. While these datasets provide valuable data for
specific tasks, they are inherently limited in scope, as they do not address the complexity of full
power line inspections, where multiple components and their interactions must be considered.

The Tomaszewski et al. Dataset TOMASZEWSKI; RUSZCZAK; MICHALSKI (2018)
contains 2,630 high-resolution images (5616×3744) of power line insulators captured from
nine video sequences. Despite offering numerous samples, it suffers from redundancy, as images
are extracted from consecutive frames of the same recording. Additionally, lighting variations
and insulator orientations are constrained by the original recording conditions, limiting dataset
variability.

The Chinese Power Line Insulator Dataset (CPLID) TAO et al. (2020) comprises
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600 real-world images of power line insulators and 248 augmented samples, where defective
insulators are synthetically placed against different backgrounds. It includes 1,569 annotations,
covering both intact insulators and missing cap defects. However, the use of synthetically
generated defects raises concerns about domain shift when models are deployed in real-world
scenarios.

For conductor segmentation, the Powerline Dataset LEE et al. (2017) provides 4,200
RGB images and an equal number of infrared images, annotated for semantic segmentation of
power lines. However, its relatively small image sizes (128×128 and 512×512) limit resolution,
restricting fine-grained feature extraction.

Similarly, the VEPL Dataset CANO-SOLIS; BALLESTEROS; BRANCH-BEDOYA
(2023) focuses solely on vegetation encroachment in power line corridors. While it provides
vegetation masks to support automated maintenance, it does not address structural defects or
failures in power line components.

The Tower Dataset BIAN et al. (2019) contains 1,300 images of transmission towers
collected from online sources and video footage. Although image resolutions vary and provide
diverse tower settings, the dataset lacks detailed annotations and excludes other power line
components.

The XAI-Guided Insulator Anomaly Dataset HOEFLER et al. (2024) introduces
explainable AI (XAI)-based anomaly detection for power line insulators, specifically tackling
class imbalance, a prevalent issue in industrial inspection datasets where defective samples
are significantly underrepresented. By integrating XAI techniques into the anomaly detection
pipeline, this dataset enhances interpretability, making it particularly relevant for real-world
deployment. However, it remains limited to insulators and does not encompass broader power
line infrastructure components or environmental interferences.

Despite their contributions, these datasets share a fundamental limitation: they focus
exclusively on a single power line component, rather than addressing the broader challenge of
comprehensive power line inspections. A real-world inspection scenario requires identifying
multiple interacting components, detecting anomalies, and distinguishing between structural
failures and external interferences.

2.3.2 Multi-Class Power Line Datasets

To overcome the limitations of single-class datasets, multi-class datasets have been
introduced, covering various power line components within a single dataset.

The Transmission Towers and Power Lines (TTPLA) dataset consists of 1,100 aerial
images (3840×2160 resolution) with pixel-wise instance segmentation annotations for trans-
mission towers and power line conductors. While providing a more detailed view of multiple
power line components, it remains restricted to only two object classes.

A more diverse dataset is the STN Power Line Asset Dataset (STN PLAD), which
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contains 133 aerial images annotated for object detection across five power line components:
transmission towers, insulators, tower ID plates, yokes, and Stockbridge dampers. With
high-resolution images, it provides dense annotations but lacks segmentation-level details.

The PLT-AI Furnas Dataset expands further by including 6,295 images with 17,808
annotations across five object classes: insulators, balisers, bird nests, separators, and
Stockbridge dampers. In particular, it is one of the few datasets that includes fault annotations,
offering valuable defect samples.

ImageNet also contains 1,290 images of power lines and transmission towers with
bounding box annotations. However, most images are ground-level shots, which makes them
less applicable to aerial inspections.

Among the multiclass datasets designed for power line inspection, InsPLAD-det and
InsPLAD-fault stand out due to their scale, diversity of component types, and inclusion of
defective samples. As summarized in Table 2.2, InsPLAD-det provides object-level annotations
across 17 distinct components under real-world UAV conditions, supporting large-scale object
detection. InsPLAD-fault builds upon this structure by introducing image-level labels for five
key component classes, enabling supervised and unsupervised anomaly detection. However, both
versions are limited to coarse annotations, lacking the spatial detail required for fine-grained
localization tasks.

Table 2.2: Comparison of publicly available datasets for industrial anomaly detection and
power line inspection.

Dataset Env. Asset Classes Annotation Type Images Defective Classes Vision Tasks
MVTec AD Controlled 15 Pixel-level 5,354 15 AD (Pixel), IC
MVTec LOCO AD Controlled 5 Image-level + Logic 3,644 5 AD (Logical), IC
MVTec 3D AD Controlled 10 3D + RGB 4,000 10 AD (3D), IC
MIAD Synthetic 7 Pixel-level (synthetic) 105,000 7 AD, OD
TTPLA Controlled 2 Instance segmentation 1,100 0 IS
STN PLAD In-the-Wild 5 Bounding box 133 0 OD
PLT-AI Furnas In-the-Wild 5 BBox + Faults 6,295 4 OD
CPLID In-the-Wild 1 BBox + Synthetic 848 1 OD
VEPL In-the-Wild 1 Vegetation masks 328 N/A SS (Vegetation)
InsPLAD-det In-the-Wild 17 Bounding box 10,607 — OD
InsPLAD-fault In-the-Wild 5 Image-level 10,378 5 IC, AD (Image-level)
InsPLAD-seg In-the-Wild 5 Pixel-level 302 5 AD (Pixel), SS

2.3.3 Extending InsPLAD: From Fault Detection to Pixel-Level Segmenta-
tion

To address this limitation, our work introduces InsPLAD-seg, an extension of InsPLAD-
fault that incorporates pixel-level annotations of defects for the same five component classes.
With 302 manually segmented defect masks, this version enables semantic segmentation and
pixel-level anomaly detection, supporting more accurate and interpretable inspection pipelines.
Unlike existing datasets that focus on image-level classification, InsPLAD-seg facilitates the
training and evaluation of models that require spatial precision, allowing for more robust and
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detailed fault localization under in-the-wild inspection conditions.

2.4 Classical Approaches for Anomaly Detection

Traditional anomaly detection methods rely on statistical techniques, feature extraction,
and shallow machine learning models. These approaches, while effective in controlled settings,
often struggle with real-world complexities due to their reliance on predefined features and
assumptions about data distribution.

One of the most widely used strategies in classical anomaly detection involves di-
mensionality reduction techniques, such as Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), and Independent Component Analysis (ICA). These methods
project high-dimensional data into lower-dimensional spaces, highlighting variations that may in-
dicate anomalies. PCA is particularly effective in capturing dominant data trends, and it has been
applied in industrial fault detection by identifying residual errors from PCA-reconstructed data
DAGA (2019). LDA, on the other hand, maximizes class separability and has been successfully
applied to gait anomaly detection SABOOR et al. (2020). ICA is particularly suited for mixed
signal environments, such as EEG-based anomaly detection NEHA SARDANA; KANWADE;
TEWARY (2021), where independent source separation aids in identifying unusual patterns.
However, these techniques assume linear relationships in data and struggle with more complex
anomalies.

Another category of classical approaches involves frequency-domain transformations,
such as Fourier Transform (FT) and Discrete Cosine Transform (DCT), which analyze data by
decomposing it into frequency components. These methods have been widely used in industrial
condition monitoring, where fault patterns manifest as changes in frequency spectra VITOR;
GOEDTEL; CASTOLDI (2023). DCT, in particular, has been used in biomedical applications
for detecting arrhythmias BOULIF; ANANOU; OULADSINE (2023). Despite their advantages
in signal processing, these methods struggle with detecting local anomalies, as they focus on
global frequency patterns rather than spatial irregularities.

Classical machine learning models, such as Support Vector Machines (SVM) and
Multilayer Perceptrons (MLP), have also been applied to anomaly detection. SVMs have
been widely used due to their ability to handle high-dimensional feature spaces and small
datasets SHARMA et al. (2023), but they require careful kernel selection and often perform
poorly on complex, high-dimensional data. MLPs, while more flexible, lack spatial awareness,
making them less effective for structured anomaly detection tasks such as defect localization
CHANG’AN; MA; YANG (2022).

The emergence of deep learning-based methods has largely replaced classical ap-
proaches. Convolutional Neural Networks (CNNs) have demonstrated significant improve-
ments in learning hierarchical feature representations for anomaly detection, outperforming
traditional feature extraction-based methods SINGH et al. (2021). Generative Adversarial
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Networks (GANs) have also become prominent for anomaly detection, leveraging their ability to
model complex data distributions and generate synthetic anomalies for training LI et al. (2024).

Despite their historical significance, classical anomaly detection methods suffer from
several limitations: they rely heavily on manual feature engineering, struggle to generalize to
complex, non-linear data, and lack localization capabilities essential for real-world industrial
anomaly detection. These constraints have led to the widespread adoption of deep learning
approaches, which will be discussed in the following sections.

2.5 Modern Deep Learning Approaches for Anomaly Detec-
tion

With the rise of deep learning, anomaly detection has moved beyond traditional feature
engineering, leveraging object detection and semantic segmentation models for improved
accuracy and localization. Unlike classical methods, deep learning architectures extract hier-
archical representations, making them highly effective for identifying structural defects and
out-of-distribution patterns.

2.5.1 Object Detection and Segmentation for Anomaly Detection

Several datasets, including InsPLAD-seg, MVTecAD, and STN PLAD, provide object-
level annotations for power line components, aligning with recent anomaly detection methods
based on object detection frameworks such as Single Shot Multibox Detector (SSD), You
Only Look Once (YOLO), and Region-based CNN (RCNN). Additionally, segmentation-based
models like U-Net have been widely adopted for pixel-level anomaly localization.

SSD and YOLO are particularly popular due to their real-time performance, enabling
efficient detection of power line components ?). While RCNN-based models provide superior
localization accuracy, they come at the cost of higher computational complexity ?). For
finer-grained defect detection, U-Net has demonstrated strong segmentation performance by
capturing both global and local context ?), laying the groundwork for more advanced anomaly
detection architectures.

2.5.2 Advanced Architectures for Anomaly Detection

Beyond standard object detection models, several modern architectures have emerged,
each introducing unique improvements to anomaly detection. Notable among them are Efficient-
Net, SimpleNet, DifferNet, and RD++, which offer different approaches to feature extraction
and representation learning.

EfficientNet is a high-performance model originally designed for image classification
but increasingly adopted for anomaly detection due to its efficient scaling mechanisms. SHETE
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et al. (2024) proposed an EfficientNet-based online-adaptive anomaly detection system,
leveraging Mahalanobis distance-based feature extraction for defect identification in aircraft
assembly. Similarly, GULA; BERTOLDO (2023) demonstrated that EfficientNet outperforms
Principal Component Analysis (PCA)-based anomaly detection, achieving higher accuracy
with fewer components.

SimpleNet streamlines anomaly detection by employing a pre-trained feature extractor,
a shallow feature adapter, and a lightweight discriminator.LIU et al. (2023) introduced a
SimpleNet model that achieved state-of-the-art performance on the MVTec AD benchmark,
attaining a detection AUROC of 99.6% while operating at 77 FPS, making it highly suitable for
real-time applications.

DifferNet is a normalizing flow-based method that models image-level likelihoods
for defect detection. RUDOLPH; WANDT; ROSENHAHN (2020) first introduced DifferNet
as a semi-supervised anomaly detection model, assigning probability scores to image fea-
tures. More recently, ?) improved upon DifferNet by incorporating attention mechanisms,
significantly enhancing anomaly localization on the InsPLAD-fault dataset.

RD++ refines representation disentanglement, aiming for more robust anomaly de-
tection. While recent studies have not directly applied RD++ to industrial tasks, its feature
separation techniques align with those used in DifferNet, making it a promising candidate for
future applications in power line anomaly detection.
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3
Methodology

In this chapter, we present the methodology employed to develop and evaluate an anomaly
detection system for power line components in-the-wild. Our approach is evaluated with the
InsPLAD-seg dataset, a new dataset designed for pixel-level semantic segmentation of anomalies
derived from the InsPLAD-fault dataset SILVA et al. (2023). The newly introduced InsPLAD-seg
dataset offers a comprehensive collection of labeled images that reflect real-world inspection
conditions, serving as a robust foundation for training and benchmarking anomaly detection
models.

To improve anomaly detection accuracy, we integrate attention mechanisms within
convolutional neural networks (CNN), using state-of-the-art modules such as Squeeze and
Excitation Networks (SENet) HU; SHEN; SUN (2018), Convolutional Block Attention Modules
(CBAM) WOO et al. (2018) and Self-Supervised Predictive Convolutional Attentive Block
(SSPCAB) RISTEA et al. (2022a). These mechanisms enhance feature extraction by refining
spatial and channel-wise representations, thereby increasing model robustness against variations
in lighting, occlusion, and background complexity. Furthermore, we examine multiple deep
learning-based anomaly detection methods, including DifferNet, SimpleNet, EfficientAD, and
Reverse Distillation++ (RD++), evaluating their performance under different conditions. A
key component of our approach is background removal through object segmentation, where a
YOLOv11-based segmentation model is trained to isolate components from noisy backgrounds,
thereby reducing interference in feature learning.

To assess the effectiveness of our methodology, we employ AUROC (Area Under the
Receiver Operating Characteristic Curve) as the primary evaluation metric, ensuring compara-
bility with the existing literature. In addition, latency measurements are included to analyze
computational efficiency.

The following sections detail the dataset, attention mechanisms, anomaly detection
models with attention modules, segmentation-based background removal, and evaluation metrics,
which form the basis for the experimental analysis in the next chapter.
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3.1 InsPLAD-seg

The proposed InsPLAD-seg dataset is an evolution of the previous InsPLAD-fault dataset
SILVA et al. (2023), focusing specifically on semantic segmentation to address the need for
pixel-level detection of anomalies in the wild. The primary motivation for this adaptation was to
enable detailed, precise identification of defects, facilitating better maintenance and monitoring
of overhead power lines in real-world conditions.

InsPLAD-seg contains real-world inspection imagery of operating overhead power lines,
encompassing both normal and anomalous components across different classes. This version
includes segmentation masks for five critical components commonly encountered in power line
inspections: Glass Insulators, Vari-grips, Lightning Rod Suspensions, Yoke Suspensions, and the
Polymer Insulator Upper Shackle. Inclusion of detailed masks across multiple component types
enables the development of robust, generalizable segmentation models capable of localizing
defects across varied hardware, which is essential for real-world deployment in automated
inspection pipelines and maintenance planning. The construction of the data set involved
adapting the publicly available InsPLAD fault to incorporate segmentation masks for defects in
these selected objects. Table 3.1 and Figure 3.1 details the attributes of the InsPLAD-seg data
set.

For the annotation process, we utilized the Roboflow annotation tool DWYER; NELSON;
HANSEN (2024). Roboflow provides an AI-assisted segmentation feature that allows annotators
to select a few seed pixels or regions, from which the tool automatically proposes a segmentation
mask based on geometric cues. This proved efficient for well-defined structural components,
where boundaries are clear and consistent. However, for defect types such as missing caps, the
process posed unique challenges, as the defect corresponds to an absent part rather than a visible
anomaly. In such cases, annotators labeled the empty region where the component element
should have been, effectively marking the gap between existing structures.

For rust defects, only visually significant and representative corrosion areas were anno-
tated, excluding minor or superficial discoloration that would not affect component functionality.
This distinction is critical, as small dirt marks or weathering patterns can closely resemble rust in
appearance. To ensure annotation consistency and domain accuracy, annotators worked in close
collaboration with experienced electrical engineers who routinely inspect these components.
Their input was essential in determining defect thresholds and in distinguishing between harmless
surface artifacts and actual degradations.

Figure 3.2 presents the distribution of pixel-level anomaly density across different
component classes in the InsPLAD-seg dataset. It is evident that the glass-insulator (GI) class
exhibits the lowest anomaly density, with minimal variation across samples. This is consistent
with the nature of its primary defect type—missing caps—which are spatially localized and
typically affect only a small region of the image. In contrast, components such as vari-grip

(VG) and polymer-insulator-upper-shackle (PIUS) display broader distributions and higher
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(a) Normal Glass Insulator (b) Normal Lightning Rod
Suspension

(c) Normal Vari-grip

(d) Anomalous Glass Insulator (e) Anomalous Lightning Rod
Suspension

(f) Anomalous Vari-grip

(g) Anomaly Mask: Glass
Insulator

(h) Anomaly Mask: Lightning
Rod Suspension

(i) Anomaly Mask: Vari-grip

Figure 3.1: Visual Samples from the InsPLAD-seg Dataset. Examples of normal and
anomalous components are shown in the first and second rows, respectively. The third

row presents the corresponding pixel-level ground truth masks for the anomalies.
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Figure 3.2: Distribution of Anomaly Density Across Classes. Each box represents the
variation in pixel-level anomaly coverage within the annotated masks for each class in the

InsPLAD-seg dataset. Abbreviations: GI = glass-insulator, LRS =
lightning-rod-suspension, PIUS = polymer-insulator-upper-shackle, VG = vari-grip, YS =

yoke-suspension.

average densities, often corresponding to visually extensive defects such as surface corrosion.
These differences reinforce the importance of pixel-level analysis, as defect severity and spatial
coverage vary substantially not only between classes but also within a single class. The use of
domain expertise during annotation was crucial in ensuring accurate and consistent identification
of defect boundaries, especially in cases where visual characteristics, such as rust versus dirt, are
ambiguous.

The dataset includes several challenges to of real-world conditions accurately:

■ Capture Conditions: Images were captured by drones inspecting fully functioning
transmission power lines in various scenarios, all in the wild with no controlled
background. This introduces variability in the images, such as different angles,
occlusions, and background elements.

■ Lighting Variations: Pictures were taken at different times of the day, resulting in
significant lighting variations, including shadows, glare, and low-light conditions.
This variability tests the robustness of detection algorithms under diverse lighting
scenarios.

■ Corrosion Patterns: The corrosion presented in the anomalous images exhibits differ-
ent patterns and levels of severity. This diversity in corrosion types helps in training
models to recognize a wide range of defects.
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Asset category

Anomaly detection

Train Test

Flawless Flawless Anomalous

Glass Insulator 1104 591 88
Lightning Rod Suspension 462 117 46
Vari-grip 477 114 40
Yoke Suspension 4834 1207 46
Polymer Insulator Upper Shackle 935 235 82

Total Images 7.812 2.264 302
Table 3.1: Description of the InsPLAD-seg anomaly detection and localization dataset.
Glass Insulator anomalies are missing caps, while the others are corrosion-related. The

number of mask annotations matches the number of anomalous images in each category.

3.2 Attention Mechanisms in Convolutional Neural Networks

Attention mechanisms have become a cornerstone in deep learning, enhancing the ability
of Convolutional Neural Networks (CNNs) to emphasize potentially relevant features while
downplaying less informative ones. Inspired by human cognitive attention, these mechanisms
aim to focus computational resources on aspects of the input that are more likely to contribute
to accurate predictions. In CNN architectures, attention modules have been shown to improve
feature representation, particularly in tasks such as object detection, image classification, and
medical imaging.

In our work, we evaluate three notable attention mechanisms: the Squeeze-and-Excitation
Networks (SENet) HU; SHEN; SUN (2018), the Convolutional Block Attention Modules
(CBAM) WOO et al. (2018), and the more recent Self-Supervised Predictive Convolutional
Attentive Block (SSPCAB) RISTEA et al. (2022b). Each of these modules modulates the
flow of information through the network by refining channel-wise dependencies, integrating
spatial context, or introducing self-supervised learning to improve generalization. While these
modules are designed to guide the network toward more informative regions or features, their
effectiveness depends on training dynamics and may vary depending on the dataset and task.

3.2.1 Squeeze-and-Excitation Networks (SENet)

SENet HU; SHEN; SUN (2018) introduces an efficient channel-wise attention mechanism
that recalibrates feature maps by learning interdependencies between channels. It consists of
three key submodules:
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1. Squeeze Module: Reduces spatial dimensions while retaining essential feature
information.

2. Excitation Module: Learns and applies channel-wise attention weights using a
Multi-Layer Perceptron (MLP).

3. Scale Module: Uses a sigmoid activation function to normalize learned weights and
applies them to the original feature maps.

A detailed visualization of the SENet architecture is shown in Figure 3.3.

3.2.1.1 Squeeze Module

The Squeeze Module is responsible for adapting feature maps to optimize channel-wise
attention. To achieve this, it employs a global average pooling (GAP) operation that computes
the average activation for each channel, effectively condensing spatial information into a single
descriptor per channel. This descriptor captures the global distribution of activations, ensuring
that essential features are retained while reducing computational complexity.

Mathematically, the squeezed feature descriptor for a given channel c is computed as:

zc =
1

H ×W

H

∑
i=1

W

∑
j=1

xc(i, j)
�
 �	3.1

where xc(i, j) represents the activation at spatial position (i, j) within channel c, and H

and W denote the height and width of the feature map, respectively.

3.2.1.2 Excitation Module

Once the squeeze operation generates a compact feature descriptor, the Excitation Module
applies a fully connected (FC) network that learns the relationships between channels. The
excitation function consists of a two-layer MLP with a reduction factor r, reducing the channel
dimension before expanding it back to its original size:

s = σ(W2δ (W1z))
�
 �	3.2

where:

■ W1 ∈ RC/r×C and W2 ∈ RC×C/r are learnable weight matrices,

■ δ is the ReLU activation function,

■ σ is the sigmoid function, ensuring the weights remain in the range [0,1].



3.2. ATTENTION MECHANISMS IN CONVOLUTIONAL NEURAL NETWORKS 51

Figure 3.3: SENet module architecture representation. The Feature Map is refined by the
Excitation application.

3.2.1.3 Scale Module

Finally, the output of the Excitation Module is used to scale the original feature maps
via element-wise multiplication:

x̂c = sc · xc
�
 �	3.3

where sc is the learned channel-wise attention weight, and xc is the original feature map.

3.2.2 Convolutional Block Attention Modules (CBAM)

CBAM WOO et al. (2018) extends SENet by introducing channel and spatial attention,
sequentially learning what and where to focus within feature maps (Figure 3.4). It consists of
two submodules:

1. Channel Attention Module — focuses on inter-channel relationships.

2. Spatial Attention Module — focuses on spatially significant regions.

3.2.2.1 Channel Attention Module

Given an input feature map X ∈ RC×H×W , the channel attention mechanism aggregates
spatial information using global average pooling (GAP) and global max pooling (GMP):

zavg
c =

1
HW

H

∑
i=1

W

∑
j=1

Xc(i, j)
�
 �	3.4

zmax
c = max

i, j
Xc(i, j)

�
 �	3.5

where zavg
c and zmax

c are the average and maximum pooled values for channel c.
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These descriptors are forwarded to a shared MLP with a hidden layer, followed by
summation and sigmoid activation to compute the attention map:

Mc = σ (W2 ·δ (W1 · [zavg;zmax]))
�
 �	3.6

where:

■ [zavg;zmax] ∈ R2C is the concatenated vector;

■ W1 ∈ RC
r ×2C and W2 ∈ RC×C

r are the MLP weights with reduction ratio r;

■ δ (·) is the ReLU activation;

■ σ(·) is the sigmoid function;

■ Mc ∈ RC is the channel attention map.

The output is obtained by multiplying Mc with the input feature map along the channel
dimension.

3.2.2.2 Spatial Attention Module

The spatial attention module focuses on the where by aggregating information across
channels. From the input feature map X′ ∈ RC×H×W (output of the channel attention), it
computes:

f avg =
1
C

C

∑
c=1

X ′
c

�
 �	3.7

f max = max
c

X ′
c

�
 �	3.8

where f avg, f max ∈RH×W are average and max pooled maps over the channel dimension.

These are concatenated and passed through a convolutional layer with a 7×7 kernel:

Ms = σ
(

f 7×7([ f avg; f max])
) �
 �	3.9

where Ms ∈ RH×W is the spatial attention map.

The final output is obtained by applying Ms over X′ via element-wise multiplication
along the spatial dimensions.

3.2.3 Self-Supervised Predictive Convolutional Attentive Block (SSPCAB)

The Self-Supervised Predictive Convolutional Attentive Block (SSPCAB) RISTEA et al.
(2022b) introduces a masked prediction mechanism to enforce global feature learning. By
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Figure 3.4: CBAM module architecture. The feature map is refined by sequentially
applying channel and spatial attention.

intentionally masking parts of the feature map and learning to predict them, SSPCAB compels
the network to develop a stronger global contextual understanding.

SSPCAB integrates:

■ A masked convolutional layer for self-supervised feature prediction.

■ A Squeeze-and-Excitation (SE) module for refining learned representations.

■ A learning strategy that enhances robustness and feature generalization in low-data
scenarios.

3.3 Anomaly Detection Methods with Attention Modules

This section presents the anomaly detection methods evaluated in this study. The selected
models—DifferNet, SimpleNet, EfficientAD, and Reverse Distillation++ (RD++)—leverage
deep learning techniques to model normality and detect deviations as an indicator of anomalies.
In addition, we explore how attention modules can enhance feature extraction and improve
anomaly localization in these models.

3.3.1 DifferNet

DifferNet RUDOLPH et al. (2021) is a unsupervised image-based anomaly detection
model that leverages normalizing flows to estimate the probability density of image representa-
tions. The method extracts features from input images using AlexNet as a backbone, mapping
them to a latent space via a normalizing flow model. The key principle is that normal data points
form a high-likelihood region, while anomalous samples exhibit lower likelihood values.

Given an input image x, its feature representation is obtained through a convolutional
encoder fθ : X → Rd , where d is the feature space dimension. These extracted embeddings are
transformed by an invertible function gφ , following the normalizing flow transformation:

y = gφ ( fθ (x)),
�
 �	3.10
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where y follows a predefined simple distribution, such as a standard Gaussian N (0, I).
The likelihood of a sample is computed using the change-of-variables formula:

pX(x) = pY (y)

∣∣∣∣∣det
∂g−1

φ

∂y

∣∣∣∣∣ . �
 �	3.11

The model is trained to maximize the likelihood of normal samples, making it possible
to classify test images based on their likelihood scores.

To improve DifferNet’s effectiveness, we introduce an attention-based variation called
AttentDifferNet, where SENet and CBAM attention modules refine the extracted features.
Attention mechanisms are incorporated at multiple depths to amplify relevant spatial and channel-
wise information while suppressing irrelevant details. The proposed architecture is illustrated in
Figure 3.5.

3.3.2 SimpleNet

SimpleNet LIU et al. (2023) is a lightweight, efficient anomaly detection framework
designed for industrial inspection. Its training process involves extracting features from normal
images and learning a compact representation that can distinguish normal from anomalous data.
The process consists of:

1. Feature Extraction – A pre-trained convolutional network, such as ResNet-18,
extracts features from input images.

2. Feature Adaptation – The extracted features are transformed to align with the target
domain.

3. Anomalous Feature Synthesis – Artificial anomalies are generated by applying
Gaussian noise to the adapted features.

4. Discriminator Training – A discriminator is trained to distinguish between normal
and synthetic anomalous features.

During inference, the synthetic anomaly generator is removed, and the anomaly score for
an image x is computed as:

s(x) =− logDψ( fθ (x)),
�
 �	3.12

where Dψ represents the trained discriminator. To enhance its ability to detect subtle
anomalies, we integrate attention mechanisms into the ResNet-18 backbone, following the
approach of Vieira e Silva et al. SILVA et al. (2024b).
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3.3.3 EfficientAD

EfficientAD BATZNER; HECKLER; KÖNIG (2024) is a computationally efficient
anomaly detection model that combines a patch description network (PDN) with an au-
toencoder. The PDN is a shallow convolutional network responsible for extracting localized
patch-level features, while the autoencoder reconstructs normal patterns to detect deviations.

The student-teacher framework employed by EfficientAD enhances anomaly detection
by training a lightweight student network to replicate the knowledge of a deeper teacher model.
The anomaly score for an image is a weighted combination of the PDN score sPDN(x) and the
autoencoder reconstruction error sAE(x):

s(x) = αsPDN(x)+β sAE(x),
�
 �	3.13

where α,β are weighting parameters.

To further refine feature selection, we incorporate attention modules within the PDN,
improving its ability to focus on fine-grained anomalies.

3.3.4 Reverse Distillation++ (RD++)

RD++ TIEN et al. (2023) is a self-supervised anomaly detection model based on a wide
ResNet-50 decoder and a novel feature distillation strategy. Unlike standard teacher-student
models, RD++ introduces projection layers after each intermediate teacher block to learn a
more compact normal representation.

The model is trained using a multi-component loss function defined as:

L = λKDLKD +λSSOT LSSOT +λConLCon +λReconLRecon,
�
 �	3.14

where:

LKD — Knowledge distillation loss, transferring information from teacher to student.

LSSOT — Self-supervised optimal transport loss, compacting normal feature distributions.

LCon — Contrastive loss, encouraging separation between normal and anomalous features.

LRecon — Reconstruction loss, regularizing the feature space around normal samples.

Additionally, RD++ introduces a pseudo-anomalies mechanism, in which artificial
perturbations are generated during training to improve robustness and help the model detect
subtle or underrepresented anomalies.
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Figure 3.5: Proposed AttentDifferNet architecture.

3.3.5 Integrating Attention Modules in Anomaly Detection

To improve anomaly localization, attention modules are integrated into the feature
extractors of each model, following the structured placement strategy proposed in AttentDif-
ferNet SILVA et al. (2024b). This ensures a consistent enhancement of feature representations
across different architectures.

For ResNet-like architectures, including SimpleNet and RD++, attention modules are
inserted before the summation with the identity branch within each residual block. This
allows attention-refined features to be properly combined with skip connections, maintaining
information flow while improving feature discrimination.

For Inception-like architectures, attention modules are positioned after each Inception
module, ensuring that multi-scale feature maps are effectively modulated.

For models with shallow CNN-based feature extractors, such as the Patch Description
Network (PDN) in EfficientAD, attention mechanisms are integrated at multiple depths to
refine both low-level and high-level feature representations.

All modifications adhere to the structured attention integration pattern proposed in
AttentDifferNet as in Figure 3.5, ensuring that attention mechanisms consistently refine feature
extraction across different anomaly detection methods.
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3.4 Noisy Background Removal with Object Segmentation

To improve the performance of the anomaly detection methods, we propose a straightfor-
ward background removal approach to focus solely on the object of interest. The following steps
outline our methodology:

1. Annotation of Training Images for the Segmentation Model: A subset of 100
images from the training set of the object class is manually annotated. The annota-
tions included only the object of interest, ensuring precise object localization and
segmentation.

2. Training a Segmentation Model: The annotated dataset was used to train a YOLOv11
segmentation model for 100 epochs. The model was configured to segment and detect
the object of interest at a resolution optimized for the dataset. This step generated
a segmentation model capable of accurately detecting and isolating the object of
interest from images.

3. Object Extraction from Full Dataset: The trained YOLOv11 model was applied
to the entire dataset (including both training and test sets). For each image, the
model extracted only the segmented object of interest, effectively removing the noisy
background. The resulting dataset contained only the isolated objects, preserving the
class-specific details required for anomaly detection.

4. Anomaly Detection Training and Evaluation: Using the new dataset without
noisy backgrounds, an anomaly detection model was trained and evaluated. The
background removal process ensured that the anomaly detector focused exclusively
on the object’s intrinsic features, minimizing interference from environmental noise
and enhancing detection performance.

This pipeline demonstrates an efficient approach to preparing data for anomaly detection
by leveraging segmentation techniques to reduce background noise. Figure 3.6 illustrate the
background removal process.

3.5 Evaluation Metrics

This section describes the metrics used to evaluate the anomaly detection methods in
our experiments. The primary evaluation metric is the Area Under the Receiver Operating

Characteristic Curve (AUROC), which is widely employed in anomaly detection research to
measure how well a model distinguishes between normal and anomalous instances. Additionally,
we measure latency to compare the computational efficiency of different methods.
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Figure 3.6: Workflow for Preparing Background-Free Datasets Using YOLO
Segmentation for Anomaly Detection Training.

3.5.1 AUROC – Area Under the Receiver Operating Characteristic Curve

AUROC quantifies a model’s ability to distinguish between normal and anomalous
instances by measuring the area under the Receiver Operating Characteristic (ROC) curve. The
ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR) as the
decision threshold varies. These rates are formally defined as:

TPR =
TP

TP+FN

�
 �	3.15

FPR =
FP

FP+TN

�
 �	3.16

where TP (true positives) refers to correctly classified anomalous samples, TN (true
negatives) refers to correctly classified normal samples, FP (false positives) are normal samples
misclassified as anomalous, and FN (false negatives) are anomalous samples misclassified as
normal.

The AUROC is computed as the area under the ROC curve, mathematically expressed as:



3.5. EVALUATION METRICS 59

AUROC =
∫ 1

0
TPR(FPR)dFPR

�
 �	3.17

An AUROC of 1.0 indicates perfect discrimination, while an AUROC of 0.5 corresponds
to random guessing.

3.5.1.1 AUROC for Image-Level Detection

At the image level, AUROC evaluates whether an entire image is correctly classified as
normal or anomalous. The model assigns a global anomaly score to each image, and the ROC
curve is constructed by thresholding these scores. The AUROC reflects how well the model
separates normal from anomalous images.

3.5.1.2 AUROC for Pixel-Level Detection

At the pixel level, AUROC assesses how accurately the model localizes anomalous
regions within an image. The model produces an anomaly heatmap, assigning a score to each
pixel. The ROC curve is generated by varying a threshold over these pixel-level scores, and
computing the corresponding TPR and FPR at each threshold.

3.5.1.3 Justification for AUROC

AUROC is a threshold-independent metric, making it particularly suitable for anomaly
detection tasks where choosing an optimal threshold is non-trivial. It is widely adopted due to its
robustness under class imbalance, which is inherent to most anomaly detection problems. The
MVTec Anomaly Detection Benchmark BERGMANN et al. (2019b) systematically employs
AUROC to evaluate industrial defect detection methods. Similarly, SimpleNet ZAVRTANIK;
KRISTAN; SKOčAJ (2021) and RD++ COHEN et al. (2022) report AUROC to benchmark
their self-supervised anomaly detection frameworks. Following this standard practice ensures
that the results in this study are directly comparable to prior work and reliably reflect detection
performance.

3.5.2 Latency Measurement

Latency measurement is one of the main approaches to approximate the computational
efficiency of an anomaly detection method. It is defined as the total time required for an input
image to be processed and classified. This includes preprocessing time, inference time, and
postprocessing time. The total latency for a given input image I is given by:

Ttotal = Tpreprocessing +Tinference +Tpostprocessing
�
 �	3.18
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where each component is measured in milliseconds (ms). To ensure fair comparisons,
latency is measured under identical computational conditions, and results are reported as the
mean, standard deviation, and minimum processing time per image.

3.5.3 Conclusion

This chapter outlined the methodology for anomaly detection in overhead power line
components, leveraging the InsPLAD-seg dataset, attention-enhanced CNN architectures, and
state-of-the-art anomaly detection models. We detailed the integration of SENet, CBAM, and
SSPCAB to refine feature extraction, as well as the YOLOv11-based segmentation approach for
removing background noise, ensuring improved inputs for anomaly detection.

To evaluate model performance, we adopted AUROC as the primary metric for detection
accuracy and latency measurements to assess computational efficiency. The next chapter presents
experiments and results, analyzing the impact of attention mechanisms, segmentation strategies,
and different anomaly detection models on performance and efficiency.
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4
Experiments, Results and Analysis

This chapter presents the experimental studies conducted to evaluate the performance
and effectiveness of the proposed anomaly detection models. The experiments are designed to
systematically analyze the impact of attention mechanisms, the trade-offs between accuracy and
computational efficiency, and the influence of object segmentation on anomaly detection.

We begin with an ablation study on attention modules, where their contribution to
image- and pixel-level performance is examined. This is followed by an in-depth analysis of
anomaly detection models within the Insplad-seg dataset, highlighting quantitative and qualitative
evaluations, as well as the effectiveness of attention mechanisms in distinguishing structural
from appearance-based anomalies.

Next, we conduct an experimental evaluation of the anomaly detectors, emphasizing
the balance between accuracy and efficiency. We also explore the impact of attention modules
and examine latency versus accuracy trade-offs. Finally, we investigate the role of object
segmentation in enhancing anomaly detection performance through controlled experiments on
background removal and segmentation quality.

The results of these experiments provide crucial insight into the behavior of the model in
different configurations, providing guidance for future improvements and practical applications
in real world scenarios.

To simplify the visualization of the results in the following tables, we use abbreviated
names for the models. Table 4.1 provides a reference for these abbreviations.

4.1 Ablation Study on Attention Modules

This section presents an ablation study of attention modules integrated into the RD++
and DifferNet anomaly detectors for fault detection in the wild. The objective of this preliminary
experiment was to determine which attention mechanisms (SENet, CBAM, and SSPCAB) are
most effective for anomaly detection at both the image and pixel levels. To achieve this, we first
tested these three modules in DifferNet and RD++. Based on the results, we decided to discard
SSPCAB due to its inferior performance. In the next experiment, we will evaluate SENet and
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Table 4.1: Abbreviations of the evaluated methods

Abbreviation Full Method Name
Diff DifferNet
Diff-SE DifferNet with SENet
Diff-CB DifferNet with CBAM
RD RD++
RD-SE RD++ with SENet
RD-CB RD++ with CBAM
SNet SimpleNet
SNet-SE SimpleNet with SENet
SNet-CB SimpleNet with CBAM
EAD EfficientAD
EAD-SE EfficientAD with SENet
EAD-CB EfficientAD with CBAM

CBAM in EfficientAD and SimpleNet to further investigate their effectiveness.

4.1.1 Experimental Setup

To ensure reproducibility, all experiments were conducted with a fixed random seed, set
to 42. Although alternative seeds were not tested, future work could explore their impact on
training stability and performance variance.

Each model configuration—including the base anomaly detection methods and their
variants incorporating attention modules—was trained for 100 epochs. This training duration
follows the standard protocol used in the original papers of SimpleNet, DifferNet, RD++, and
EfficientAD on the MVTec-AD benchmark, ensuring comparability with existing literature.

A learning rate scheduler was not employed in this phase to maintain consistency with the
training procedures of the original implementations. Introducing schedulers could be considered
in future experiments for further optimization.

Model evaluation was performed every 10 epochs, and the highest AUROC obtained
during training was selected as the representative result, as illustrated in Figure 4.1. The train-test
split adopted follows the configuration detailed in Table 3.1.

All experiments were conducted on a workstation equipped with an NVIDIA RTX 4060
GPU, ensuring consistent computational resources throughout training and evaluation.

4.1.2 Results and Discussion

This experiment evaluates the effect of attention modules on both image-level and pixel-
level anomaly detection performance for DifferNet and RD++. The results are presented in
Tables 4.2 and 4.3, with each entry formatted as I-AUROC%/P-AUROC%.
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Figure 4.1: Training AUROC Progression on InsPLAD-Seg for the
Polymer-Insulator-Upper-Shackle Class. The best Image-Level AUROC is highlighted in

red and the best Pixel-LevelAUROC is highlighted in blue.

Table 4.2: Performance of DifferNet variants on the InsPLAD-seg dataset using model
abbreviations. Each entry shows Image-Level AUROC / Pixel-Level AUROC

(I-AUROC% / P-AUROC%)

Category Diff Diff-SE Diff-CB DifferNet(SSPCAB)
Glass Insulator 82.81/51.53 86.57/62.96 81.03/51.70 64.15/55.98
Lightning Rod Susp. 99.08/55.76 99.62/53.20 99.33/55.50 85.40/54.95
Vari-Grip 91.20/56.31 93.52/76.75 88.99/77.31 82.81/60.74
Yoke-Suspension 96.77/59.89 97.38/53.12 96.86/51.79 80.49/55.80
Polym.-Ins.-Up.-Shack. 92.42/52.96 94.62/54.47 92.10/50.38 90.12/52.69
Average 92.46/55.29 94.34/60.11 91.66/57.33 80.59/56.034

Table 4.3: Performance of RD++ variants on the InsPLAD-seg dataset using model
abbreviations. Each entry shows Image-Level AUROC / Pixel-Level AUROC

(I-AUROC% / P-AUROC%)

Category RD RD-SE RD-CB RD++(SSPCAB)
Glass Insulator 84.09/94.81 85.13/95.28 80.26/91.90 80.35/91.13
Lightning Rod Susp. 94.45/88.96 91.50/92.00 86.60/89.00 66.80/87.40
Vari-Grip 75.70/88.72 87.21/89.82 82.68/92.05 72.35/89.73
Yoke-Suspension 92.58/96.60 89.74/97.16 86.05/95.02 80.42/92.87
Polym.-Ins.-Up.-Shack. 87.68/89.78 82.74/88.36 76.31/89.25 74.10/89.61
Average 86.90/91.774 87.28/92.52 82.38/91.43 74.80/90.15

DifferNet: The base DifferNet model achieves an average image-level AUROC of
92.46%, but its pixel-level performance remains lower (55.29%), indicating persistent limitations
in capturing fine-grained anomalies. Among the attention modules, SENet leads to the highest
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performance at both levels, achieving the best average image-level AUROC (94.34%) and
the highest pixel-level score (60.11%). CBAM, in contrast, does not provide meaningful
improvements — it slightly reduces the image-level average to 91.66%, while offering moderate
pixel-level gains, particularly in the Vari-Grip class (77.31%). The SSPCAB module further
reduces image-level performance to 80.59%, but achieves competitive results at the pixel level
(56.034%), suggesting that its impact is more beneficial for localization rather than classification.

RD++: RD++ exhibits consistently high performance, especially at the pixel level.
The base model already achieves an average of 91.774%, and SENet enhances this further to
92.522%, along with a slight image-level boost (87.285%). While CBAM maintains strong
pixel-level results in specific categories, such as Vari-Grip (92.05%), it does not improve overall
performance and causes a decline in image-level AUROC (82.388%). SSPCAB again yields the
lowest scores, indicating limited compatibility with the RD++ architecture.

Comparison: RD++ clearly outperforms DifferNet at the pixel level, and its integration
with SENet provides the most robust performance across both evaluation metrics. DifferNet
retains an edge in image-level AUROC but struggles with localization, and the attention modules
offer only limited improvements.

The ablation study reveals that SENet is the most effective attention mechanism, par-
ticularly when integrated with RD++. It consistently improves or maintains performance in
both evaluation levels. CBAM offers some category-specific gains, especially in pixel-level
segmentation, but fails to boost the average performance for either model. SSPCAB does not
yield benefits in any configuration and is the least effective across the board.

These findings suggest that RD++ is more compatible with architectural enhancements
via attention modules, especially SENet. Future work will explore the generalizability of these
modules within different detection architectures such as EfficientAD and SimpleNet.

4.2 Anomaly Detection Models in Insplad-seg

This section analyzes the results of integrating attention modules (SENet and CBAM)
into different state-of-the-art anomaly detection models at both image and pixel levels.

4.2.1 Quantitative Analysis of Image-Level AUROC Results

The table 4.4 provided shows the image level performance of various anomaly detection
techniques in different categories, with and without the application of attention modules (SENet
and CBAM). The average AUROC scores offer a comprehensive view of how these attention
modules influence the performance of each method.

1. DifferNet shows an increase in AUROC from 82.81 to 86.57 when SENet is applied
in the Glass Insulator category. However, CBAM leads to a slight decrease to 81.03,
suggesting that SENet provides a more robust enhancement for this model. This
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pattern holds across most categories, where SENet consistently improves DifferNet’s
performance, while CBAM does not yield similar gains and, in some cases, even
slightly degrades performance.

2. RD++ demonstrates a similar pattern. For example, in the Vari-Grip category, the
AUROC increases from 75.70 without any attention module to 87.21 with SENet
and 82.68 with CBAM. However, CBAM tends to have a slightly lower impact
compared to SENet in some cases, suggesting that SENet might be more effective in
this context.

3. SimpleNet also benefits from attention modules, with a notable increase in perfor-
mance when SENet is applied. For instance, in the Glass Insulator category, the
AUROC improves from 78.50 to 81.17 with SENet, although it slightly drops to
78.40 with CBAM.

4. EfficientAD shows modest improvements with attention modules, although the gains
are less pronounced compared to other techniques. For instance, in the Lightning Rod
Suspension category, the AUROC improves from 89.48 with CBAM. Here, CBAM
provides a more significant boost than SENet.

Table 4.4: Image-Level AUROC of all evaluated methods on the InsPLAD-seg dataset.
Abbreviations defined in Table 4.1.

Category Diff Diff-SE Diff-CB RD RD-SE RD-CB SNet SNet-SE SNet-CB EAD EAD-SE EAD-CB
Glass Insulator 82.81 86.57 81.03 84.09 85.13 80.26 78.50 81.17 78.40 79.13 81.98 79.18
Lightning Rod Susp. 99.08 99.62 99.33 94.45 91.50 86.60 79.70 84.60 82.70 88.33 88.25 89.48
Vari-Grip 91.20 93.52 88.99 75.70 87.21 82.68 79.50 82.40 78.60 85.61 89.65 85.15
Yoke-Suspension 96.77 97.38 96.86 92.58 89.74 86.05 80.40 86.20 83.70 78.63 73.92 79.54
Polym.-Ins.-Up.-Shack. 92.42 94.62 92.10 87.68 82.74 76.31 89.80 84.80 81.14 83.22 77.97 78.53

Average 92.46 94.34 91.66 86.90 87.26 82.39 81.58 83.83 80.91 82.98 82.35 82.38

Table 4.5: Pixel-Level AUROC of all evaluated methods on the InsPLAD-seg dataset.
Abbreviations defined in Table 4.1.

Category Diff Diff-SE Diff-CB RD RD-SE RD-CB SNet SNet-SE SNet-CB EAD EAD-SE EAD-CB
Glass Insulator 51.53 62.96 51.70 94.81 95.28 91.90 58.20 59.40 53.50 49.48 58.50 50.20
Lightning Rod Susp. 55.76 53.20 55.50 88.96 92.00 89.00 59.40 54.44 70.10 43.74 42.01 44.65
Vari-Grip 56.31 76.75 77.31 88.72 89.82 92.05 62.80 52.20 60.00 49.45 46.45 47.91
Yoke-Suspension 58.21 53.12 51.79 96.60 97.16 95.02 73.60 76.10 77.10 41.74 37.81 50.01
Polym.-Ins.-Up.-Shack. 53.65 54.52 50.38 89.78 88.36 89.25 71.70 73.90 77.20 48.91 30.25 33.48

Average 55.09 60.11 57.33 91.77 92.52 91.43 65.14 63.21 67.58 46.66 43.00 45.25

4.2.2 Quantative Analysis of Pixel-Level AUROC Results

The pixel-level results in table 4.5 show varying degrees of improvement when attention
modules are applied:
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1. DifferNet sees a notable improvement with SENet and CBAM in several categories.
For example, in the Glass Insulator category, the AUROC increases from 51.53 to
62.96 with SENet and slightly decreases to 51.70 with CBAM. This suggests that
SENet may be more effective than CBAM in enhancing DifferNet’s performance for
certain pixel-level tasks.

2. RD++ demonstrates significant gains with attention modules across most categories.
In the Glass Insulator category, the AUROC jumps from 94.81 without any attention
module to 95.28 with SENet, and slightly decreases to 91.90 with CBAM. This trend
is consistent in other categories, highlighting SENet’s consistent ability to boost
performance more effectively than CBAM.

3. SimpleNet also benefits from attention modules, particularly SENet, which improves
its performance in categories like Yoke-Suspension, where the AUROC increases
from 73.60 to 76.10 . Notably, CBAM achieves its highest average pixel-level
AUROC in this model configuration.

4. EfficientAD shows modest improvements with both SENet and CBAM, although the
gains are less substantial compared to other techniques. For instance, in the Lightning
Rod Suspension category, the AUROC remains relatively stable, with only slight
increases from 43.74 to 44.65 with CBAM.

4.2.3 Qualitative Analysis

To qualitatively assess the effect of attention mechanisms on anomaly localization, we
employed Grad-CAM SELVARAJU et al. (2017), an explainable AI (XAI) technique that
highlights the most influential regions of an input image based on the gradients of the model’s
predictions. The visualizations shown in Figure 4.2 illustrate that the integration of SENet in
DifferNet substantially improves the model’s ability to localize both the object and the associated
anomaly, particularly in the Vari-Grip and Glass Insulator categories. In both cases, SENet helps
the model concentrate on the relevant object structures by reducing the influence of background
noise, as evidenced by more focused and interpretable activation maps.

For the glass-insulator, the SENet-enhanced model demonstrates a more concentrated
focus on the structural defect, specifically the missing cap from the insulator chain. This indicates
that SENet not only improves object localization but also enhances the model’s sensitivity to
structural anomalies, leading to more precise anomaly detection.

The figure 4.3 compares anomaly detection techniques applied to glass-insulator and
Polymer Insulator Upper Shackle components using regular RD++, RD++ enhanced with SENet,
and the ground truth mask. In both rows, RD++ with SENet shows significantly improved
performance over regular RD++, with more precise and less noisy anomaly maps that better align
with the ground truth. In the first row, SENet reduces false positives and focuses on relevant
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Figure 4.2: Comparison of anomaly detection techniques. First row: Vari-grip
component (from left to right: Original image, regular DifferNet, DifferNet with SENet,

and ground truth mask). Second row: Glass-insulator component (from left to right:
Original image, regular DifferNet, DifferNet with SENet, and ground truth mask).

areas of the insulator, while in the second row, it accurately highlights defect-prone regions that
match the ground truth annotations.

4.2.4 Effectiveness of Attention Modules in Detecting Structural vs. Appearance-
Based Anomalies

The experimental results suggest that attention mechanisms, such as SENet and CBAM,
offer **greater performance gains when detecting structural anomalies** than when addressing
appearance-based ones. This difference likely stems from how attention modules enhance
discriminative features. In structural anomalies—such as missing components—these changes
are often more spatially and semantically distinct, allowing attention layers to focus more
effectively on relevant spatial or channel-level signals.

As illustrated in Figure 4.4, the glass insulator missing its cap represents a structural
anomaly characterized by the complete absence of a part. In contrast, the corrosion seen on
the vari-grip is an appearance-based anomaly, which subtly alters surface characteristics like
texture and color without affecting the object’s structure. In our experiments, models equipped
with attention modules achieved notably higher AUROC scores for structural anomalies (e.g.,
RD++ with SENet: 85.13 at image level and 95.28 at pixel level), reinforcing the hypothesis that
attention helps localize and emphasize spatially distinctive features.

However, the benefit of attention was less evident for appearance-based defects. This
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Figure 4.3: Comparison of anomaly detection techniques. First row: Glass-Insulator
component (from left to right: Original image, regular RD++, RD++ with SENet, and

ground truth mask). Second row: Polymer Insulator Upper Shackle component (from left
to right: Original image, regular RD++, RD++ with SENet, and ground truth mask).

may be due to the diffuse and subtle nature of these changes, which do not significantly alter
spatial structure and thus pose a challenge for attention modules to isolate. These findings
suggest that while attention mechanisms can enhance detection performance, their effectiveness
may depend on the anomaly type, and particularly on whether anomalies are spatially structured
or visually subtle.

Overall, this distinction underscores the importance of tailoring architectural enhance-
ments—such as attention modules—to the nature of the anomalies expected in a given application
context.

4.3 Experimental Evaluation of Anomaly Detectors: Accu-
racy vs. Efficiency

Anomaly detection models must balance accuracy and efficiency to be practical for
real-world applications. While AUROC is commonly used to measure detection performance,
inference latency is equally critical in scenarios requiring real-time processing, such as de-
fect inspection LIU (2024); VELESACA; CARRASCO; CARPIO (2024), autonomous driving
VINOTH; SASIKUMAR (2025); BASARAN; DRESSLER (2025), medical imaging diagnostics
LEE; LEE (2024), cybersecurity intrusion detection BHAROT; BRESLIN (2025); GIRUBA-
GARI; RAVI (2024), and industrial IoT for predictive maintenance PILLAI (2024); AJAYI
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Figure 4.4: Comparison of structural and appearance-based anomalies: the left image
shows a glass insulator missing its cap, representing a structural anomaly, while the

right image depicts a vari-grip affected by corrosion, illustrating an appearance-based
anomaly.

(2024).
Latency directly impacts the feasibility of deploying anomaly detection models in real-

world applications. High-latency models, despite achieving superior accuracy, may not be viable
for time-sensitive tasks, such as online quality control in manufacturing or real-time monitoring
in medical imaging. Conversely, ultra-fast models may struggle with accuracy, limiting their
reliability. Current state-of-the-art methods often prioritize accuracy at the expense of efficiency,
making it crucial to evaluate and compare latency alongside AUROC.

This experiment aims to answer the following question: Which anomaly detection
method offers the best trade-off between accuracy and inference time? We evaluate several
state-of-the-art anomaly detection models on both image- and pixel-level AUROC, incorporating
latency as a key performance factor. The results will help determine the most suitable models for
real-time deployment.

4.3.1 Experiment Setup

To ensure a fair and reproducible evaluation, all models were tested on the same Insplad-
Seg dataset using an NVIDIA RTX 4060 GPU. The evaluated models include:

■ DifferNet, RD++, SimpleNet, and EfficientAD, along with their variants incorpo-
rating CBAM (Convolutional Block Attention Module) and SENet (Squeeze-and-
Excitation Network).

The key metrics analyzed were:
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■ AUROC (Image Level): Measures the ability to classify entire images as normal or
anomalous.

■ AUROC (Pixel Level): Evaluates the ability to localize anomalies at the pixel level.

■ Latency: The mean inference time per image across the entire test set, covering five
anomaly classes from the Insplad-Seg dataset.

All models were run using batch inference with batch size 1 and default floating-point
precision (FP32) on an NVIDIA RTX 4060 GPU.

Figure 4.5: AUROC (Image Level) vs. Latency for various anomaly detection methods.

4.3.2 Results

The results of the experiment, as shown in Figures 4.5 and 4.6, reveal significant trade-
offs between accuracy and latency among the evaluated models.

4.3.2.1 Image-Level Performance

■ DifferNet variants achieved the highest AUROC scores, exceeding 94 with SENET,
but had a higher latency (12–16 ms) when compared with the other methods.

■ RD++ variants maintained competitive AUROC (86–88) while significantly reducing
latency (5–9 ms).
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Figure 4.6: AUROC (Pixel Level) vs. Latency for various anomaly detection methods.

■ EfficientAD, although it had lower accuracy (AUROC close to 82%), excelled in
efficiency (< 6 ms), making it ideal for latency-sensitive applications.

4.3.2.2 Pixel-Level Performance

■ RD++ variants outperformed others, achieving AUROC scores of approximately 90
while keeping latency low.

■ DifferNet variants had moderate pixel-level accuracy (AUROC 65–75) but suffered
from high latency.

■ EfficientAD and SimpleNet struggled, with AUROC below 55%, despite their speed.

AUROC was computed from a single test run using fixed seeds for reproducibility. While
this eliminates random variations, further studies could explore variance across multiple test
runs.

4.3.2.3 Impact of Attention Modules

■ CBAM and SENet generally improved AUROC scores but increased latency.

■ RD++ benefited the most, with AUROC gains at a latency cost of only 1–2 ms.

■ EfficientAD and SimpleNet saw minimal accuracy gains with significant latency
overhead, reducing their practicality in real-time applications.
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4.3.3 Latency vs. Accuracy Trade-offs

■ DifferNet variants prioritize accuracy over latency, making them suitable for batch
processing or offline inference.

■ EfficientAD variants sacrifice accuracy for fast inference, making them ideal for edge
computing applications.

■ RD++ finds a balance, delivering high accuracy with low latency, making it ideal for
real-time scenarios.

4.3.4 Conclusion

This experiment evaluated anomaly detectors based on accuracy (AUROC) and inference
latency, revealing a clear trade-off between the two.

Scenario Best Model (AUROC) Best Model (Latency) Best Trade-off
Image-Level Performance DifferNet(SE) EfficientAD RD++(SE)
Pixel-Level Performance RD++(SE) EfficientAD RD++(SE)

Table 4.6: Comparison of the best-performing models. DifferNet achieved the highest
AUROC but incurred the highest latency. EfficientAD had the lowest latency but

comparatively lower AUROC, making it suitable for time-critical applications with
relaxed accuracy demands. RD++ with SENet provided strong AUROC scores at both

image and pixel levels, with only a modest increase in latency, making it the most
balanced model for real-time deployment.

Ultimately, RD++ with SENet emerges as the best overall choice, offering a strong
balance between high AUROC scores and low inference latency. Its ability to deliver robust
image- and pixel-level performance with only a modest increase in computational cost makes
it particularly suitable for real-time industrial applications where both accuracy and speed are
critical.

4.4 Object Segmentation for Enhanced Anomaly Detection
Performance

This section evaluates the impact of applying an object segmentator on the dataset, pre-
senting quantitative and qualitative results that highlight its effectiveness in reducing background
interference and improving overall anomaly detection performance.

In anomaly detection tasks, especially in uncontrolled or "wild" environments, back-
ground noise can obscure critical features, complicating the detection process. To mitigate this
issue, we manually annotated a subset of the data set to create object-specific training data for
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segmentation models. Using these annotations, we trained YOLOv11 models, with each class
having its dedicated object segmentator tailored to isolate the object of interest.

EfficientAD was selected for this experiment because it exhibited the lowest pixel-level
AUROC scores among all evaluated methods (see Table 4.5). This makes it an ideal candidate
to test the effectiveness of background removal: models with weaker spatial localization stand
to benefit the most from the suppression of irrelevant visual context. In other words, any
improvement in anomaly localization after segmentation would be more easily observed in a
model where performance is initially limited.

4.4.1 Experiment 1: Evaluating Background Removal on Anomaly Detec-
tion Performance

This experiment aimed to evaluate the impact of background removal on anomaly
detection performance using the state-of-the-art anomaly detector, EfficientAD. This model
was tested across all five classes of the Insplad-Seg dataset in two formats: the original images
with their natural backgrounds intact and the pre-processed images where the background was
removed using class-specific YOLOv11 object segmentators.

The objective was to determine how background noise influences the effectiveness of
EfficientAD in identifying anomalies and whether the removal of background elements improves
detection accuracy. The results provide a baseline comparison to assess the benefits of integrating
object segmentation into the anomaly detection pipeline.

Table 4.7: AUROC results for EfficientAD with and without background. Abbreviations
defined in Table 4.1.

Image-Level AUROC (%)
Category EAD EAD-SE EAD-CB EAD-NB EAD-NB-SE EAD-NB-CB
Glass Insulator 79.13 81.98 79.18 81.61 81.32 83.59
Lightning Rod Suspension 88.33 88.25 89.48 92.36 93.21 90.46
Vari-Grip 85.61 89.65 85.15 80.24 79.64 83.20
Yoke-Suspension 78.63 73.92 79.54 86.27 83.37 86.17
Polymer Insulator 83.22 77.97 78.53 88.21 86.54 88.39

Average 82.98 82.35 82.38 85.74 84.82 86.36
Pixel-Level AUROC (%)

Category EAD EAD-SE EAD-CB EAD-NB EAD-NB-SE EAD-NB-CB
Glass Insulator 49.48 58.50 50.20 71.68 69.54 74.02
Lightning Rod Suspension 43.74 42.01 44.65 52.40 46.80 63.68
Vari-Grip 49.45 46.45 47.91 77.00 59.65 76.97
Yoke-Suspension 41.74 37.81 50.01 83.21 73.62 83.21
Polymer Insulator 48.91 43.00 45.25 66.41 66.41 61.87

Average 46.66 43.00 45.25 71.68 66.41 72.53
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Table 4.7 presents the AUROC results at the image level and pixel levelpixel level for
EfficientAD and its attentionvariants,iants, with and without background removal. Each column
represents a specific model configuration, following the abbreviation conventions defined in
Table 4.1. Models labeled with the suffix -NB were trained on a version of the dataset in
which background regions were removed, isolating only the object of interest. The highest and
second-highest average AUROC scores within each group are highlighted for ease of comparison.

The results clearly demonstrate that training the anomaly detection models using the
background-free dataset significantly outperforms regular training on both evaluation levels. At
the image level, the best average AUROC was achieved by EAD-NB-CB (86.36%), representing
a notable improvement over the regular EfficientAD baseline (EAD, 82.98%). Similarly, in
the pixel-level evaluation, EAD-NB-CB again achieves the top score (72.53%), compared to
only 46.66% for the original EAD. These findings highlight that background removal effectively
suppresses irrelevant features and allows the models to concentrate on the target object, resulting
in more accurate anomaly localization and classification.

Interestingly, prior to background removal, the integration of attention modules such as
SENet and CBAM yielded minimal improvements to EfficientAD, suggesting limited synergy
under noisy input conditions. However, when trained on the background-free dataset, CBAM
demonstrates a substantial performance gain, surpassing both the baseline and SENet-augmented
variants. These findings highlight that background removal not only enhances anomaly localiza-
tion but also enables attention mechanisms to operate more effectively, allowing the models to
concentrate on the target object by suppressing irrelevant features.

The impact is particularly pronounced in challenging categories such as Yoke-Suspension

and Polymer Insulator, where both image- and pixel-level performance increased substantially
after background removal. This suggests that segmentation-based preprocessing is especially
beneficial in scenarios where background clutter overlaps with subtle anomaly cues.

4.4.2 Experiment 2: Impact of Segmentation Quality on Anomaly Detec-
tion Performance

The second experiment evaluates how the quality of object segmentation impacts anomaly
detection performance. While background removal enhances the focus on objects of interest,
inaccuracies in segmentation—such as cutting out critical parts of the object or missing regions
with anomalies—can negatively affect the overall detection performance. To quantify this, we
trained EfficientAD models on the background-free training set segmented using YOLOv11 and
tested them on two versions of the same test set: one with perfectly manually annotated objects
and the other segmented by the YOLOv11 model. By comparing the AUROC scores between
these two scenarios, we aimed to understand the extent to which automatic segmentation might
reduce performance. The results reveal a measurable drop in AUROC when using automatically
segmented objects compared to manually annotated ones, highlighting that the accuracy of
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Figure 4.7: Comparative pixel-level accuracy of background removal under different
attention mechanisms (No Attention, SENet, and CBAM) combined with three

segmentation strategies: basic thresholding ("Normal"), manual segmentation, and
YOLO-based segmentation. Results indicate that attention modules generally enhance
performance, with CBAM combined with manual segmentation achieving the highest

mean accuracy.

segmentation plays a crucial role in anomaly detection. This underscores the importance of
improving segmentation quality in automated preprocessing pipelines to minimize potential
losses in detection reliability.

Quantitative Analysis

It was anticipated that testing on YOLO-segmented data would result in some perfor-
mance loss compared to testing on objects with perfectly manual segmentation. This is expected
as no segmentation model is flawless and there is always the risk of cutting parts of the object,
potentially including regions with anomalies. However, as shown in Figure 4.7, this performance
loss is relatively small and represents a worthwhile trade-off for the benefits of automation.

At the pixel level, where a finer localization of the anomalies is required, there is a
noticeable but modest drop in performance across all attention modules. For instance, the model
using CBAM attention shows a decrease in mean accuracy from 75.518% (manual segmentation)
to 72.528% (YOLO-based segmentation). Similar trends are observed for SENet and the baseline
without attention, with accuracy differences consistently below 3%.

These results confirm that while manual segmentation yields the highest accuracy, YOLO-
based segmentation introduces only a marginal degradation. The visual trend in Figure 4.7 sup-
ports this conclusion, as the YOLO bars remain close to their manually segmented counterparts.
The ability to automate object segmentation for background removal simplifies the pipeline,
making it feasible for real-world applications without substantially compromising detection
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accuracy. This balance of scalability and precision reinforces the viability of YOLO-based
segmentation in operational anomaly detection systems.
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5
Conclusion

The visual inspection of power line components remains a critical yet challenging task due
to the operational scale and variability of real-world environments. This dissertation addressed
these challenges by investigating how attention mechanisms and background removal via object
segmentation can improve the effectiveness of unsupervised anomaly detection models—aligning
with the core research hypothesis and objectives defined at the outset. When looking back at our
research objectives we achieved our goals.

To address Objective 1, we reviewed and analyzed several state-of-the-art unsupervised
anomaly detection methods, identifying their limitations in uncontrolled environments and
motivating architectural enhancements. For Objective 2, we created the InsPLAD-seg dataset by
annotating pixel-level defect masks, providing a foundation for fine-grained evaluation under
realistic conditions.

Fulfilling Objective 3, a benchmarking study was conducted on InsPLAD-seg, evaluating
four representative anomaly detection methods (DifferNet, RD++, SimpleNet, and EfficientAD)
at both image and pixel levels. The results highlighted consistent performance gains when
integrating attention modules (Objective 4), particularly for structural anomalies like broken
or missing components—validating the hypothesis that attention enhances spatial awareness
and focus. While improvements were also observed for appearance-based anomalies, such as
corrosion, the gains were less pronounced, suggesting that attention mechanisms are especially
effective when anomalies disrupt structural integrity.

Finally, to address Objective 5, we evaluated the effect of background removal using
automated object segmentation. The experiments demonstrated that removing wild, cluttered
backgrounds improves detection performance, and importantly, that automated masks generated
by YOLOv11 yielded results comparable to manual annotations. This supports the feasibility of
applying segmentation-based preprocessing in scalable or real-time industrial settings.

Despite these promising findings, some limitations remain. The quality of segmentation
directly impacts anomaly detection accuracy, and model generalization across domains or unseen
anomaly types requires further investigation.

Future work should explore domain adaptation techniques to generalize this frame-
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work across infrastructure types—such as railway or wind turbine inspection—and investigate
lightweight, real-time implementations suitable for deployment on UAV platforms or edge
devices.

In conclusion, this dissertation achieves all five proposed research objectives by demon-
strating that the combination of attention mechanisms and object segmentation can significantly
improve unsupervised anomaly detection performance in complex, real-world settings. The
resulting approach not only advances the scientific understanding of how these modules interact
but also offers practical solutions for industrial inspection at scale.
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