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RESUMO 

A detecção automatizada de Equipamentos de Proteção Individual (EPIs) em 

ambientes industriais representa um desafio significativo devido aos altos custos e 

tempo demandado para anotação manual de dados. Este trabalho investigou a 

eficácia de métodos de aprendizado semi supervisionado como alternativa ao 

aprendizado totalmente supervisionado para detecção de EPIs, visando responder 

qual abordagem apresenta melhor relação custo-benefício. A metodologia 

experimental foi conduzida em ambiente industrial real, utilizando 50.088 imagens 

capturadas em uma indústria para detecção de quatro classes: capacete, colete, 

pessoa e abafador tipo concha. Foram implementadas estratégias de anotação 

parcial com 10%, 20% e 30% dos dados, aplicando técnicas de pseudo-labeling 

através da arquitetura YOLOv8. Os resultados foram avaliados mediante validação 

cruzada com k=10 repetições e análise estatística usando testes de Friedman e 

Nemenyi. Os modelos semi supervisionados demonstraram performance comparável 

ao totalmente supervisionado, com diferenças controladas nas métricas principais: 

mAP@0.5 de 0.971 (10%), 0.979 (20%) e 0,985 (30%) contra 0.986 (100%) e 

mAP@0.5:0.95 de 0.767 (10%), 0.771 (20%) e 0,801 (30%) contra 0.805 (100%). A 

abordagem semi supervisionada resultou em economia substancial de tempo de 

anotação, reduzindo em 85% o processo manual. Os resultados indicam que 

métodos semi supervisionados constituem alternativa viável e economicamente 

vantajosa para desenvolvimento de sistemas de detecção de EPIs, mantendo 

eficácia técnica com significativa redução de recursos humanos especializados. 

Palavras-chave: Aprendizado semi supervisionado; Equipamentos de proteção 

individual; Visão computacional; Detecção de objetos; Segurança ocupacional. 



ABSTRACT 

Automated detection of Personal Protective Equipment (PPE) in industrial 

environments represents a significant challenge due to high costs and time required 

for manual data annotation. This work investigated the effectiveness of semi-

supervised learning methods as an alternative to fully supervised learning for PPE 

detection, aiming to answer which approach presents the best cost-benefit ratio. The 

experimental methodology was conducted in a real industrial environment, using 

50,088 images captured in a São Paulo industry for detecting four classes: helmet, 

vest, person, and ear protection. Partial annotation strategies were implemented with 

10%, 20% and 30% of data, applying pseudo-labeling techniques through YOLOv8 

architecture. Results were evaluated through cross-validation with k=10 repetitions 

and rigorous statistical analysis using Friedman and Nemenyi tests. Semi-supervised 

models demonstrated comparable performance to fully supervised approach, with 

controlled differences in main metrics: mAP@0.5 of 0.971 (10%), 0.979 (20%) and 

0,985 (30%) versus 0.986 (100%) and mAP@0.5:0.95 of 0.767 (10%), 0.771 (20%) 

and 0,801 (30%) versus 0.805 (100%). The semi-supervised approach resulted in 

substantial annotation time savings, reducing the manual process by 85%. Results 

indicate that semi-supervised methods constitute a viable and economically 

advantageous alternative for developing PPE detection systems, maintaining 

technical efficacy with significant reduction of specialized human resources. 

Keywords: Semi-supervised learning; Personal protective equipment; Computer 

vision; Object detection; Occupational safety. 



LISTA DE ILUSTRAÇÕES 

Figura 1 - Subconjuntos da Inteligencia Artificial.  16

Figura 2 - Um diagrama simplificado de um neurônio humano. 1 - dendritos, 2 - 

núcleo do neurônio, 3 - zona de iniciação, 4 - axônio, e 5 - terminais do axônio.  18

Fluxograma 1 - Esquema de uma tarefa auxiliar contrastiva.  22

Fluxograma 2 -  Esquema de uma tarefa auxiliar preditiva.  23

Fluxograma 3 - Esquema de uma tarefa auxiliar generativa.  23

Fluxograma 4 - Esquema genérico de um Aprendizado Autossupervisionado.  24

Figura 3 - Lista de métodos que podem ser empregados em problemas de 

classificação.  27

Figura 4 - Resultados da aplicação do framework STAC em comparação com o 

Aprendizado Supervisionado.  28

Gráfico 1 - Histograma do dataset.  34

Figura 5 - Mão de trabalhador se torna oclusão e impede os modelos de 10% (azul) 

e 20% (vermelho) de realizarem a detecção.  55

Figura 6 - Trabalhador se torna oclusão de outro e impede que dois dos modelos 

(10% e 20%) de realizarem a detecção.  56

Figura 7 - Trabalhador com o celular foi anotado (verde), mas não é detectado em 

modelo algum.  57

Figura 8 - Trabalhador não anotado (verde) é detectado nos modelos de 20% (rosa), 

30% e 100% (vermelho). 58



LISTA DE TABELAS 

Tabela 1 - Resultados da precisão média para os 5 modelos em cada classe.  20

Tabela 2 - Lista de aplicações recentes do estado da arte para Aprendizado 

Autossupervisionado.  25

Tabela 3 - Resultados da aplicação do Unbiased Teacher em comparação com 

outros para o dataset MS COCO.  29

Tabela 4 - Resultados da aplicação do framework CISO em comparação com outros 

para o dataset MS COCO.  30

Tabela 5 - Resultados da aplicação do framework CISO em comparação com outros 

para o dataset VOC.  30

Tabela 6 - Limiar de confiança ótimo por modelo e por classe.  37

Tabela 7 - Estatísticas descritivas do cross-validation.  44

Tabela 8 - Resultados do Teste de Friedman para as métricas.  45

Tabela 9 - Resultados do Teste de Nemenyi para cada comparação par a par.  46

Tabela 10 - Subtrações entre as médias das métricas após o cross-validation, em 

pontos percentuais.  47

Tabela 11 - Valores de mAP@0,5 por classes.  48

Tabela 12 - Valores de mAP@0,5:0,95 por classes.  49

Tabela 13 - Matriz de confusão normalizada para o modelo com 10% de dados 

anotados manualmente.  50

Tabela 14 - Matriz de confusão normalizada para o modelo com 20% de dados 

anotados manualmente.  51

Tabela 15 - Matriz de confusão normalizada para o modelo com 30% de dados 

anotados manualmente.  51

Tabela 16 - Matriz de confusão normalizada para o modelo com todos os dados 

anotados manualmente.  51

Tabela 17 - Estatísticas descritivas dos resultados no SH17. 61



SUMÁRIO

1 INTRODUÇÃO  12
1.1 CONTEXTUALIZAÇÃO DO PROBLEMA E RELEVÂNCIA DO TEMA  12

1.2 OBJETIVOS  14

1.2.1 Objetivo Geral  15
1.2.2 Objetivos Específicos  15
1.3 ESTRUTURA DA DISSERTAÇÃO  15

2 REVISÃO BIBLIOGRÁFICA  16
2.1 APRENDIZAGEM PROFUNDA  16

2.1.1 Origem da Aprendizagem Profunda  17
2.1.2 Visão Computacional  18

2.2 MÉTODOS DE APRENDIZAGEM PROFUNDA  19

2.2.1 Aprendizado Supervisionado  19
2.2.2 Aprendizado Não Supervisionado  21
2.2.3 Aprendizado Autossupervisionado  21
2.2.3.1 Aplicações do Aprendizado Autossupervisionado  24

2.2.4 Aprendizado Semi Supervisionado  26
2.2.4.1 Aplicações do Aprendizado Semi Supervisionado  28

3 METODOLOGIA  32
3.1. COLETA DOS DADOS  32

3.1.1. Cenário industrial e vídeos capturados  32
3.1.2. Estruturação dos frames e classes  32
3.2. ESTRATÉGIAS DE ANOTAÇÃO PARCIAL  35

3.3. MODELO 1 - GERAÇÃO DE RÓTULOS  36

3.4. MODELO 2 - TREINAMENTO FINAL COM ROTULAÇÕES AUTOMÁTICAS  38

3.5. MÉTRICAS DE AVALIAÇÃO  39

3.6 VALIDAÇÃO ESTATÍSTICA  40

3.6.1 Protocolo de Validação Cruzada  40
3.6.2 Teste de Friedman  41
3.6.3 Teste de Nemenyi  41
3.7. FERRAMENTAS, BIBLIOTECAS E AMBIENTE EXPERIMENTAL  42

4 RESULTADOS E DISCUSSÃO  44



4.1. DESEMPENHO GERAL DOS MODELOS COM DIFERENTES PROPORÇÕES 

DE ANOTAÇÃO  44

4.1.1 Estatísticas Descritivas  44
4.1.2 Teste de Friedman  45
4.1.3 Teste de Nemenyi  45
4.1.4 Análise da Magnitude dos Efeitos e Discussão  46
4.2. ANÁLISE QUANTITATIVA DAS CLASSES  48

4.2.1 Análise dos mAPs  48
4.2.2 Matrizes de Confusão  50
4.2.3 Comparação com Abordagem Supervisionada  53
4.3. ANÁLISE VISUAL  54

4.4. DISCUSSÃO SOBRE A ECONOMIA DE TEMPO DE ANOTAÇÃO  58

4.5. VALIDAÇÃO EM DATASET PÚBLICO  59

4.5.1 Contexto do SH17 Dataset  60
4.5.2 Resultados  60
4.6. LIMITAÇÕES E CONSIDERAÇÕES METODOLÓGICAS  61

5 CONCLUSÕES E TRABALHOS FUTUROS  63
5.1. PRINCIPAIS CONCLUSÕES DA PESQUISA  63

5.2. IMPLICAÇÕES PRÁTICAS E ACADÊMICAS  63

5.3. SUGESTÕES DE TRABALHOS FUTUROS  64

5.3.1 Aplicação em outros ambientes industriais  64
5.3.2 Uso de técnicas de active learning  65
REFERÊNCIAS BIBLIOGRÁFICAS 66



12

1 INTRODUÇÃO 

1.1 CONTEXTUALIZAÇÃO DO PROBLEMA E RELEVÂNCIA DO TEMA 

  

 A detecção ou a segmentação de objetos é uma fase importante da anotação 

de dados em aplicações de Visão Computacional (VC), como diagnósticos médicos, 

carros autônomos e robótica (AFLALO et al., 2023).  

 Atualmente, a etapa de anotação de dados em um projeto de Visão 

Computacional é feita comumente por seres humanos. Frame a frame, as pessoas 

detectam quais classes de determinado produto pertence a uma amostra. Esse 

processo utiliza bounding boxes ou segmentação. O tempo investido na atividade é 

alto, comumente sendo a etapa que mais demora em um projeto de detecção de 

objetos (JING; TIAN, 2019). Além disso, há falta de padronização pelos diversos 

agentes que fazem a mesma atividade. Ao mesmo tempo, nem sempre especialistas 

no contexto do problema realizam essas anotações. Isso gera dúvidas sobre a qual 

classe pertence o item que será anotado. Por fim, por ser uma atividade repetitiva, a 

equipe de trabalho pode se desmotivar, o que diminui as chances de sucesso de um 

projeto comum.  

 As abordagens tradicionais de aprendizado supervisionado dependem de 

forma significativa da quantidade de dados anotados disponíveis para treinamento. 

Embora exista uma grande quantidade de dados acessíveis, a escassez de 

anotações tem impulsionado os pesquisadores a explorar abordagens alternativas 

que possam aproveitá-los de maneira eficaz. Nesse contexto, os métodos auto 

supervisionados e semi supervisionados desempenham um papel fundamental no 

avanço do aprendizado profundo, permitindo o aprendizado de representações de 

características sem a necessidade de anotações dispendiosas, aproveitando a 

supervisão implícita fornecida pelos próprios dados (JAISWAL et al., 2020). É por 

isso que esses métodos ganham cada vez mais atenção para diminuir os problemas 

citados (ZHANG et al., 2024). 

 A abordagem autossupervisionada é inspirada na forma que os bebês 

aprendem. Nos primeiros anos de vida, as crianças ganham conhecimento a partir 

da observação e a interação com o seu redor. O método autossupervisionado busca 

dividir as imagens não identificadas em tarefas pré-textuais, com o objetivo de 
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conceder um rótulo àquilo que ainda não é conhecido. Com o rótulo aplicado, as 

atividades comuns de anotação, como detecção e segmentação, são realizadas pelo 

próprio modelo (RANI et al., 2023) 

 As aplicações semi supervisionadas utilizam de poucos dados já anotados com 

seu rótulo de identificação para treinar um modelo que seja capaz de rotular os 

dados não anotados para aumentar a base de treinamento e refinar o modelo a fim 

de otimizar a performance final (XU; XIAO; LÓPEZ, 2019). 

 Apesar dos avanços e estudos desses métodos, poucas são as aplicações em 

contextos de segurança. Segundo o Ministério do Trabalho e Emprego do Brasil 

(2023), 499.955 acidentes de trabalho foram reportados com quase 3 mil óbitos 

associados. Além disso, em 2022, foram registrados 17,9 milhões de dias perdidos 

por auxílio-doença por acidente de trabalho e 8,4 milhões de dias perdidos por 

aposentadoria por invalidez por acidente de trabalho no Brasil. Nos 10 anos 

anteriores, o gasto do INSS com benefícios previdenciais acidentários ultrapassou 

os R$ 100 bilhões de reais, em dados atualizados do Observatório de Segurança e 

Saúde do Trabalho (2023), iniciativa coordenada pelo Ministério Público do Trabalho 

e pelo Escritório da Organização Internacional do Trabalho para o Brasil.  

 Uma das formas de prevenção, mais precisamente a última linha de defesa na 

hierarquia de controles de segurança ocupacional, são os Equipamentos de 

Proteção Individual (EPI). A legislação brasileira, através da Norma 

Regulamentadora NR-6, define EPI como "o dispositivo ou produto de uso individual 

utilizado pelo trabalhador, concebido e fabricado para oferecer proteção contra os 

riscos ocupacionais existentes no ambiente de trabalho" (BRASIL, 2022). Sua 

importância transcende aspectos meramente regulatórios, impactando diretamente a 

saúde, a vida dos trabalhadores e a viabilidade econômica das operações 

industriais. 

 Mesmo com a reconhecida importância, a fiscalização manual do uso de EPIs 

apresenta limitações práticas significativas. Supervisores de segurança não 

conseguem monitorar continuamente todos os trabalhadores em ambientes 

industriais extensos. Fatores como fadiga, distração e limitações de recursos 

humanos resultam em lacunas de monitoramento que podem ter consequências 

graves. Adicionalmente, a fiscalização humana pode ser percebida como invasiva ou 

punitiva, potencialmente gerando resistência cultural e comprometendo a efetividade 
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das políticas de segurança. Neste contexto, sistemas automatizados de detecção de 

EPIs baseados em visão computacional emergem como solução complementar 

promissora, permitindo monitoramento contínuo, objetivo e não invasivo da 

conformidade com protocolos de segurança. A implementação de sistemas 

automatizados de detecção de EPIs pode transformar a gestão de segurança 

ocupacional de reativa para proativa. Ao invés de identificar não-conformidades 

apenas após acidentes ou através de inspeções periódicas, estes sistemas 

permitem identificação em tempo real de situações de risco, possibilitando 

intervenções preventivas imediatas. Alertas automáticos podem ser enviados a 

trabalhadores e supervisores quando não-conformidades são detectadas, criando 

loops de feedback que reforçam comportamentos seguros. Dados agregados sobre 

padrões de conformidade podem informar decisões estratégicas sobre treinamento, 

design de processos e alocação de recursos de segurança. Além disso, registros 

automatizados de conformidade fornecem documentação objetiva para auditorias 

regulatórias e investigações de incidentes, reduzindo riscos legais e reputacionais 

para as organizações.  

 Estas lacunas são especialmente crít icas considerando que o 

desenvolvimento de sistemas requer anotação especializada de grandes volumes de 

dados por profissionais com conhecimento técnico em segurança do trabalho, 

processo que é tanto custoso quanto demorado. A escassez de datasets públicos de 

EPIs específicos para contextos industriais agrava ainda mais este problema, uma 

vez que condições operacionais, tipos de equipamentos e características ambientais 

podem variar significativamente entre diferentes regiões e setores industriais. 

1.2 OBJETIVOS 

 Com todo o contexto apresentado, o presente trabalho busca aplicar métodos 

de aprendizado semi supervisionado e supervisionado para avaliar a abordagem 

mais eficiente em rotulações de imagens na criação de um sistema de detecção de 

Equipamentos de Proteção Individual (EPI), responsáveis por mais de 56% dos 

acidentes em locais de construção (GALLO et al., 2022). Por isso, ao término desta 

dissertação pretende-se responder "Qual a abordagem mais custo-benéfica para o 

caso de uso apresentado?" 
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 1.2.1 Objetivo Geral 

 Avaliar o método de aprendizado mais eficaz em rotulações de imagens de 

detecção de uso de Equipamentos de Proteção Individual em um contexto real. 

 1.2.2 Objetivos Específicos 

- D iscu t i r o impac to do uso das Aprend izagens Superv is ionada, 

Autossupervisionada e Semi Supervisionada ; 
- Comparar os resultados das abordagens Supervisionada e Semi Supervisionada 

em detecção de uso de Equipamentos de Proteção Individual (EPI) em um 

contexto real. 

1.3 ESTRUTURA DA DISSERTAÇÃO 

 Este trabalho está organizado em cinco capítulos que abordam de forma 

sistemática a investigação proposta. O primeiro capítulo apresenta a 

contextualização do problema, destacando os desafios da anotação manual de 

dados em projetos de Visão Computacional e a relevância da aplicação de métodos 

alternativos de aprendizado no contexto de segurança ocupacional, além de 

estabelecer os objetivos da pesquisa. O segundo capítulo desenvolve uma revisão 

bibliográfica abrangente sobre os fundamentos teóricos da aprendizagem profunda, 

métodos de aprendizado supervisionado, autossupervisionado e semi 

supervisionado, bem como suas aplicações em Visão Computacional e detecção de 

objetos, temas centrais do trabalho. O terceiro capítulo detalha a metodologia 

experimental empregada, incluindo os procedimentos de coleta de dados em 

ambiente industrial real, estratégias de anotação parcial, desenvolvimento dos 

modelos propostos e métricas de avaliação utilizadas. O quarto capítulo apresenta e 

discute os resultados obtidos, comparando o desempenho das diferentes 

abordagens de aprendizado, analisando as métricas quantitativas por classe e 

realizando análise visual dos padrões de detecção. Por fim, o quinto capítulo 

sintetiza as principais conclusões da pesquisa, discute as implicações práticas e 

acadêmicas dos achados e propõe direções para trabalhos futuros na área de 

detecção automatizada de equipamentos de proteção individual. 
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2 REVISÃO BIBLIOGRÁFICA 

2.1 APRENDIZAGEM PROFUNDA 

 O recente interesse em tópicos como Inteligência Artificial e Aprendizagem de 

Máquina é grande. Assistentes como o ChatGPT da OpenAI, Bard do Google e 

CoPilot da Microsoft, tornam o tema mais popular e impactam mais pessoas no dia a 

dia. Porém, dentre os pesquisadores outro termo atrai ainda mais curiosidade, a 

Aprendizagem Profunda. Apesar de ser uma subaérea da Inteligência Artificial e da 

Aprendizagem de Máquina, como mostrado na Figura 1, o interesse nos métodos de 

aprendizado profundo se deve ao fato de que eles demonstraram superar as 

técnicas anteriores de última geração em várias tarefas, além da abundância de 

dados complexos de diferentes fontes como, por exemplo, visuais, auditivos, 

médicos, sociais e sensoriais (VOULODIMOS et al., 2018). 

Figura 1 - Subconjuntos da Inteligencia Artificial. 

Fonte: O autor (2025). 

  

INTELIGÊNCIA ARTIFICIAL

APRENDIZAGEM DE MÁQUINA

APRENDIZAGEM PROFUNDA
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 Ao mesmo tempo, o aumento do poder de processamento nas GPUs e CPUs, 

a diminuição do custo dos equipamentos e o avanço nos algoritmos trouxeram 

novos olhares ao tema. 

 Os primeiros sistemas precursores das técnicas de Aprendizagem Profunda (do 

inglês Deep Learning) surgiram entre as décadas de 1960 e 1970, porém a 

expressão “Deep learning” só foi criada em 2006 (SCHMIDHUBER, 2015). O nome 

provém da característica de entender informações padronizadas e cada vez mais 

específicas dos dados disponíveis com várias camadas especializadas, o que torna 

o aprendizado profundo.  

2.1.1 Origem da Aprendizagem Profunda 

 Este tipo de aprendizado foi inspirado na forma como os humanos realizam 

tarefas complexas no dia a dia. O cérebro humano é um órgão complexo, que 

desempenha funções essenciais de processamento de informações em um intervalo 

temporal extremamente reduzido. As unidades fundamentais responsáveis por essas 

funções são os neurônios, mostrados na Figura 2, que facilitam a transmissão e o 

processamento de dados através de suas interações. Por exemplo, no corpo 

humano vários sensores transmitem informações sobre cheiros, imagens, 

temperatura, equilíbrio, dentre outros. Os neurônios, a partir dessas transmissões 

faz com que podemos responder a esses estímulos externos (DOUGHERTY, 2013). 

Além da resposta a estímulos, a habilidade do cérebro de identificar, como o 

reconhecimento um rosto familiar em meio a uma multidão, em poucos segundos, 

aumentou o desejo de criar artificialmente essas funções, dando origem às Redes 

Neurais Artificiais (RNA). 
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Figura 2 - Um diagrama simplificado de um neurônio humano. 1 - dendritos, 2 - núcleo do neurônio, 3 
- zona de iniciação, 4 - axônio, e 5 - terminais do axônio. 

  

  

  

Fonte: Kufel et al, 2023. 

 Nas Redes Neurais Artificiais, as informações de entrada são imagens, textos, 

vídeos, dentre outros. Estes dados atravessarão um conjunto de neurônios artificiais 

que aprenderão suas características específicas. Quando esses neurônios estão 

dispostos em múltiplas camadas, temos o que é chamado de Aprendizagem 

Profunda e as Redes Neurais (KUFEL et al., 2023). 

2.1.2 Visão Computacional  

 Neste contexto de reprodução das funções humanas através das Redes 

Neurais Artificiais, a resolução de problemas multidimensionais com imagens e 

vídeos, seus processamentos e identificações é uma das áreas de interesse, 

chamada de Visão Computacional. A VC é uma tecnologia voltada para a automação 

e integração de diversos processos, por meio da extração de informações presentes 

em imagens ou vídeos, baseando-se nos princípios biológicos da visão. Sua 

fundamentação teórica remonta ao final da década de 1950, quando surgiu 

juntamente com o avanço da Inteligência Artificial (GROSSI, 2020). Uma pessoa 

observa qualquer objeto com seus olhos, mas o principal processo ocorre no 

cérebro. O cérebro é responsável por reconhecer, interpretar, compreender e 
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classificar o objeto por meio dos sinais recebidos dos olhos. Em seguida, ele gera e 

transmite informações sobre esse objeto. Ao mesmo tempo, o cérebro é capaz de 

reconhecer e classificar novos objetos ao compará-los com objetos já conhecidos e 

suas características, como ocorre quando uma pessoa vê um objeto pela primeira 

vez (KHANG et al., 2024). Então, a Visão Computacional utiliza algoritmos de 

reconhecimento de padrões para treinar máquinas com grandes quantidades de 

dados visuais. A máquina então processa as imagens de entrada, pode rotular os 

objetos nessas imagens e encontra padrões nesses objetos (CHATTERJEE, 2022). 

2.2 MÉTODOS DE APRENDIZAGEM PROFUNDA 

 Os tipos de aprendizagem em um problema de Aprendizagem Profunda mais 

comuns são os supervisionados, não supervisionados e semi supervisionados. Será 

dado um foco maior nos dois últimos que farão parte do escopo metodológico deste 

trabalho. 

 2.2.1 Aprendizado Supervisionado 

 O aprendizado supervisionado pode ser definido como o processo de 

aprendizado de uma função que mapeia uma entrada para uma saída (LÓPEZ; 

LÓPEZ; CROSSA, 2022). Os dados de treinamento dessa função consiste em pares 

de objetos: o dado de entrada e a outra, o resultado desejado. A saída da função 

pode ser um valor numérico ou um rótulo de classe, caso este relacionado aos 

problemas de Visão Computacional. O objetivo final é aprender uma função que, 

dada uma amostra de dados e os resultados desejados, melhor aproxime a relação 

entre entrada e saída. Essa função deve ser capaz de prever o valor correspondente 

a qualquer entrada válida após ter visto uma série de exemplos dos dados de 

treinamento. Sob condições ideais, o algoritmo determina corretamente os rótulos de 

classe para instâncias desconhecidas, o que implica em um algoritmo de 

aprendizado capaz de generalizar para dados não vistos.  

 Em 2013, um problema compartilhado no site Kaggle envolveu uma 

competição de quem construía o algoritmo mais otimizado para identificar numa 
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imagem se o animal em questão era um gato ou cachorro. Apesar da resolução 

vencedora utilizar uma abordagem supervisionada, ou seja, rotular na base de 

dados que continham 25.000 imagens quais eram de gato ou cachorro, é razoável 

conjecturar que o tempo e o esforço aplicados podem ter sido grandes para resolver 

o problema.  

 Em 2022, Gallo et al. aplicaram cinco modelos de Aprendizado Supervisionado 

para detecção do uso de Equipamentos de Proteção Individual. Neste caso, foram 

escolhidos capacete, colete e luva para o experimento. No Aprendizado 

Supervisionado, todas as classes são rotuladas, inclusive as negativas. Só pode ser 

detectada a falta de capacete quando o modelo aprende o que é uma cabeça; 

quando não há luva, a mão é detectada; a mesma lógica é verdade para o colete e o 

busto. Portanto, são seis classes de interesse, das quais mais de 65 mil exemplos 

foram anotados manualmente. Os resultados são mostrados na Tabela 1 abaixo. 

Tabela 1 - Resultados da precisão média para os 5 modelos em cada classe. 

Fonte: Gallo et al, 2022. 

 O modelo YOLO (You Only Look Once) foi o melhor em todas as classes e 

representa atualmente o estado da arte em detecção de objetos. Após seu 

lançamento em 2015, o YOLO rapidamente se destacou como uma técnica 

inovadora, uma vez que, por meio de uma nova abordagem, foi capaz de alcançar 

uma precisão equivalente ou superior à dos métodos de detecção de objetos 

disponíveis na época, mas com uma velocidade de detecção significativamente 

superior (REDMON et al., 2016). Outro fator crucial para o sucesso do YOLO é o 

fato de ser totalmente de código aberto e livre de licenças de uso. Em outras 

palavras, tanto o código-fonte quanto a arquitetura da rede neural e os pesos pré-
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treinados estão disponíveis para qualquer pessoa e podem ser utilizados de diversas 

formas, sem restrições. 

 Apesar do resultado citado, é importante notar que em casos com datasets 

maiores, a impossibilidade de rotulação ou o desconhecimento das classes alvo leva 

à segunda abordagem, o Aprendizado Não Supervisionado. 

 2.2.2 Aprendizado Não Supervisionado 

 O Aprendizado Não Supervisionado difere do aprendizado supervisionado pela 

utilização de dados não anotados, ou seja, dados que não foram previamente 

rotulados por seres humanos ou algoritmos (KUFEL et al., 2023). Nesse tipo de 

aprendizado, o modelo aprende a partir dos dados de entrada sem nenhum 

conhecimento prévio sobre as saídas rotuladas ou variáveis de resposta 

correspondentes. Em vez de rotular ou prever saídas, o algoritmo foca em agrupar 

ou associar os dados com base em suas características, na busca da identificação 

de padrões. Porém, há um caso específico que é possível classificar essas imagens 

mesmo sem dados rotulados: o Aprendizado Autossupervisionado. 

 2.2.3 Aprendizado Autossupervisionado 

 O Aprendizado Autossupervisionado foi definido pela primeira vez por Raina et 

al. em 2007. Os autores explicam essa abordagem afirmando que um algoritmo 

começa utilizando dados não rotulados para aprender uma representação concisa 

das entradas. Por exemplo, se os dados forem vetores de valores de intensidade de 

pixels que representam imagens, o algoritmo usará os dados de entrada para 

aprender os elementos básicos que compõem uma imagem. Esse processo pode 

envolver, por exemplo, a descoberta de fortes correlações entre as linhas de pixels, 

simplesmente ao examinar as estatísticas das imagens não rotuladas. Assim, o 

algoritmo pode perceber que a maioria das imagens contém várias bordas. Ao 

aprender essas correlações, o algoritmo passa a representar as imagens não mais 

com base nos valores brutos de intensidade dos pixels, mas em termos das bordas 

que aparecem nelas. Essa representação da imagem, agora centrada nas bordas, 
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em vez dos valores de pixels brutos, constitui uma forma mais abstrata ou de nível 

superior de representar a entrada. Essa abordagem permite que o algoritmo aprenda 

de maneira mais eficiente, simplificando a análise dos dados rotulados ao abstrair 

detalhes complexos, como a intensidade dos pixels, em características mais gerais e 

significativas, como as bordas (RAINA et al., 2007). 

 Em comparação com os métodos de Aprendizado Supervisionado, que exigem 

um par de dados Xi e Yi, no qual Yi é anotado por humanos, o Aprendizado 

Autossupervisionado também é treinado com os dados Xi, juntamente com seu 

pseudo rótulo Pi, sendo que o Pi é gerado automaticamente para uma tarefa auxiliar 

predefinida, sem envolver qualquer anotação humana (JING; TIAN, 2019). As tarefas 

auxiliares geralmente são categorizadas em três grupos: contrastivas, preditivas e 

generativas. 

 No primeiro caso, o objetivo é otimizar a discriminação entre imagens 

contrastantes, ou seja, minimizar a distância entre pares positivos e maximizar a 

distância entre pares negativos. Vamos imaginar que em um exemplo seja 

necessário detectar um capacete de proteção individual em uma pessoa. A situação 

positiva seria o indivíduo no ato do uso do capacete; a negativa, seria o constraste 

disso, ou seja, o não do uso do acessório. Então, dado um par de dados de entrada, 

os codificadores contrastivos selecionados aprenderão a partir desses para calcular 

as representações das vistas e, em seguida, usarão um módulo discriminador para 

comparar a similaridade das instâncias e calcular a perda contrastiva, como 

mostrado no Fluxograma a seguir (TIAN et al., 2020). 

Fluxograma 1 - Esquema de uma tarefa auxiliar contrastiva. 

Fonte: O autor, 2025. 

 Na segunda abordagem, após identificar propriedades ou partes específicas 

dos dados de entrada, os modelos preditivos irão prever um novo rótulo. Em geral, 

as tarefas preditivas consistem em um codificador e uma ou mais prediction head, 

como mostrado no Fluxograma a seguir. O sistema compara os rótulos reais e 

previstos para fornecer uma medida de perda (ZHAO et al., 2024). 

Transformações 
VisuaisPar de Entrada Codificador Representações 

Visuais Discriminador
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                               Fluxograma 2 -  Esquema de uma tarefa auxiliar preditiva. 

 

 

 

Fonte: O autor, 2025. 

 No último caso, o modelo é treinado para reconstruir uma parte do dado de 

entrada original a partir de uma versão parcialmente completa para o aprendizado 

de características. A ideia é que o modelo pode recuperar as informações ausentes 

se as características contextuais forem bem aprendidas (GUO; ZHU; LI, 2021). A 

perda é calculada pela comparação entre a parte faltante no dado de entrada com a 

parte gerada pelo algoritmo. As etapas de construção estão demonstradas no 

Fluxograma abaixo. 
Fluxograma 3 - Esquema de uma tarefa auxiliar generativa. 

 

 

Fonte: O autor, 2025. 

 Independentemente da abordagem utilizada nas tarefas auxiliares, o objetivo é 

minimizar o erro entre os pseudo rótulos e as predições da Rede Neural treinada, 

como mostrado no Fluxograma abaixo. 

Versão Parcial 
da Entrada Codificador ReconstruçãoEntrada Decodificador

Parte Removida 
da Entrada

Perda

Rótulo Previsto

CodificadorEntrada Prediction Head Predição

Perda
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                     Fluxograma 4 - Esquema genérico de um Aprendizado Autossupervisionado. 
 

 
 

                                            Fonte: O autor, 2025.         

 2.2.3.1 Aplicações do Aprendizado Autossupervisionado 

 Zhao et al. (2024) construíram uma tabela com 80 aplicações recentes, entre 

2020 e 2023, que obtiveram performance no nível do estado da arte utilizando 

aprendizado autossupervisionado. Divididas em 11 áreas de aplicação, que variam 

de indústria à física, os artigos estão listados na Tabela 2 a seguir. 

A1 
A2 
A3 
. 
. 
.

Rede 
Neural

S1 
S2 
S3 
. 
. 
.

E(A1,S1) 
E(A2,S2) 
E(A3,S3) 

. 

. 

.

Dados sem Rótulos Saída Erro
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Tabela 2 - Lista de aplicações recentes do estado da arte para Aprendizado Autossupervisionado. 

Fonte: Zhao et al, 2024. 
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 Mesmo com a variedade listada, não há nenhum trabalho citado no contexto de 

segurança. Apesar de haver quatro artigos com a finalidade de detecção de objetos, 

foco da presente dissertação, todos utilizam transfer learning a partir de anotações 

manuais de toda a base de dados, ou seja, Aprendizado Supervisionado. Mesmo 

que esse seja um pequeno recorte, é de fato escasso o número de trabalhos que 

utilizam Aprendizado Autossupervisionado para detecção de EPIs. Por isso, esta 

dissertação se aterá a citar artigos que aplicam Aprendizado Autossupervisionado 

em detecção de objetos. 

 Em 2020, Li et al. utilizaram Aprendizado Autossupervisionado para aumentar 

uma base de dados de cadeiras e mochilas. Isso foi feito pois naquela data, a 

acurácia para detecção desses objetos, com a base devidamente rotulada, era 

abaixo dos 40%. No artigo de comparação, escrito por Lin et al em 2014, foram 

utilizadas 70 mil horas de trabalho manuais e atribuídos 2.5 milhões de rótulos em 

328 mil imagens. Com o uso de 5 mil imagens de mochilas e quase 13 mil de 

cadeiras do artigo de referência, Li et al adicionaram mais de 250 mil imagens da 

internet, sendo cerca de um terço para o primeiro objeto e o restante para o 

segundo, sem a necessidade de anotação manual, para ao fim obter uma acurácia 

acima dos 50%. 

 2.2.4 Aprendizado Semi Supervisionado 

 O aprendizado semi supervisionado é uma abordagem de aprendizado que 

constrói algoritmos que utilizam dados rotulados e não rotulados (YANG et al., 2021). 

Alguns resultados recentes mostraram que, em certos casos, o Aprendizado Semi 

Supervisionado se aproxima do desempenho do Aprendizado Supervisionado, 

mesmo quando uma parte dos rótulos em um determinado conjunto de dados foi 

descartada. Esses resultados são demonstrados ao pegar uma base de dados de 

classificação existente e utilizar apenas uma pequena parte dele como dados 

rotulados, com o restante tratado como não rotulado (OLIVER et al., 2019). 

 O aprendizado semi supervisionado pode ser usado em três grandes tipos de 

problema de Inteligência Artificial: Classificação, Agrupamento e Regressão, sendo o 

primeiro essencial para o presente trabalho. Por ser uma combinação do 
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Aprendizado Supervisionado e Não Supervisionado, essa abordagem mistura suas 

características para surgir como uma nova possibilidade de resolução. 

 Uma condição importante para o aprendizado semi supervisionado é que a 

distribuição dos dados de entrada contenha informações sobre a distribuição dos 

rótulos de saída. Em outras palavras, os dados não rotulados devem ter alguma 

relação com os rótulos que queremos prever. Se isso for verdade, podemos usar os 

dados não rotulados para aprender mais sobre os dados de entrada e, assim, 

também sobre os rótulos de saída. No entanto, se essa condição não for atendida, 

ou seja, se os dados de entrada não fornecerem informações úteis sobre os rótulos, 

não será possível melhorar a precisão das previsões usando os dados não rotulados 

adicionais ou até piorá-la (ENGELER; HOOS, 2019). Com essa premissa, diversos 

métodos podem ser empregados para resolver problemas de classificação, como 

mostrado na Figura 3 a seguir. 

Figura 3 - Lista de métodos que podem ser empregados em problemas de classificação. 

Fonte: Engeler & Hoos, 2019. 
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 2.2.4.1 Aplicações do Aprendizado Semi Supervisionado 

 Em 2020, Sohn et al. introduziram o FixMatch, que representou uma 

simplificação significativa dos métodos de aprendizado semi supervisionado 

mantendo uma performance competitiva. Os resultados do FixMatch estabeleceram 

novos marcos à época no tema em comparação com outros resultados. No 

CIFAR-10 com apenas 250 exemplos rotulados, o método alcançou 94.93% de 

acurácia comparado aos 93.73% do estado da arte anterior. Além disso, o FixMatch 

demonstrou eficácia fora do comum em cenários de extrema escassez de rótulos, 

obtendo 88.61% de acurácia no CIFAR-10 com apenas 4 rótulos por classe. 

 Em 2021, Sohn et al. propuseram um novo framework para aprendizado semi  

supervisionado, chamado STAC, que introduz apenas dois novos hiperparâmetros: o 

limiar de confiança e o peso da perda não supervisionada. O teste foi feito em dois 

banco de dados conhecidos (MS COCO e VOC07) para comparação com os 

trabalhos do estado da arte de algoritmos supervisionados e com modificações na 

porcentagem de dados rotulados utilizados, sendo 1%, 2%, 5% e 10% do total, com 

a finalidade de detectar objetos. Quanto menor o percentual, melhor foi o resultado, 

como mostrado na Figura 4 abaixo. 

Figura 4 - Resultados da aplicação do framework STAC em comparação com o Aprendizado 
Supervisionado. 

Fonte: Sohn et al, 2021. 

 É importante notar que o resultado chegou a ser 54% melhor que o estado da 

arte de algoritmos supervisionados, com a melhora em todas as quatro distribuições. 
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 Em 2021, Liu et al. propuseram o Unbiased Teacher, um framework que aborda 

especificamente o problema de viés em pseudo-labels causado pelo desequilíbrio de 

classes inerente à detecção de objetos. O método introduz uma abordagem 

Teacher-Student que treina mutuamente dois modelos: o Teacher gera pseudo-

labels para treinar o Student, enquanto o Student atualiza gradualmente o Teacher 

via Exponential Moving Average (EMA). O framework também incorpora Focal loss 

para mitigar o problema de desbalanceamento entre classes, questão crítica em 

detecção de objetos que não é adequadamente endereçada pelos métodos de 

classificação de imagens tradicionais. Os resultados experimentais do Unbiased 

Teacher demonstraram melhorias substanciais em relação aos métodos existentes. 

No dataset MS-COCO superou significativamente o STAC, representando uma 

performance melhor em todos os casos sobre o estado da arte no momento, como 

pode ser visto na Tabela 3. Além disso, obteve 10 pontos percentuais a mais de mAP 

quando utilizado com menos de 5% de dados rotulados comparado ao baseline 

supervisionado. 

Tabela 3 - Resultados da aplicação do Unbiased Teacher em comparação com outros para o dataset 
MS COCO. 

Fonte: Liu et al, 2021. 

 Em 2024, Qi, Nguyen e Yan propuseram um outro framework para Aprendizado 

Semi supervisionado, chamado CISO. Para maximizar a utilização dos dados de 

pseudo-labels e lidar com a escassez de dados de pseudo-rótulos devido a 

configurações de limiar alto, foi proposta uma abordagem de iteração média, onde 

todos os dados não rotulados são aplicados a cada iteração de treinamento. O teste 

foi aplicado no conjunto de dados do MS COCO e VOC, com 1%, 5% e 10% de 

dados rotulados. Neste caso, quanto maior o percentual de dados rotulados, melhor 

foi o resultado. Em todos as situações, o CISO teve uma performance superior que o 

STAC, como pode ser visto nas Tabelas 4 e 5 abaixo. Para o dataset VOC, o 

resultado é melhor que todas as outras abordagens. 
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Tabela 4 - Resultados da aplicação do framework CISO em comparação com outros para o dataset 
MS COCO. 

Fonte: Qi; Nguyen; Yan, 2024. 

Tabela 5 - Resultados da aplicação do framework CISO em comparação com outros para o dataset 
VOC. 

Fonte: Qi; Nguyen; Yan, 2024. 

 Em 2024, Liu e Wang abordaram o problema da detecção de EPIs em 

contextos com escassez de dados através de técnicas de rotulação semi-

automática. Os autores criaram um dataset considerando a detecção de capacetes e 

roupas refletivas. O modelo proposto, denominado AL-YOLOv5, incorpora 

mecanismos de atenção para melhorar a extração de características e uma função 

de perda aprimorada para enfrentar desafios relacionados à detecção de roupas 

refletivas e à sobreposição de bounding boxes. 
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 Os resultados experimentais demonstraram avanços notáveis de 0,9 AP na 

categoria com dados limitados e 0,4 mAP no geral comparado ao YOLOv5 baseline, 

com progresso particularmente substancial na detecção de roupas refletivas, 

reduzindo significativamente as falsas detecções e melhorando frames de 

sobreposição. Este trabalho é especialmente relevante no contexto da presente 

dissertação por três razões: primeiro, demonstra que a combinação de rotulação 

semi-automática com arquiteturas aprimoradas pode reduzir significativamente o 

esforço de anotação manual; segundo, evidencia que classes como roupas 

refletivas, podem se beneficiar de abordagens semi supervisionadas; terceiro, 

estabelece um precedente metodológico para o uso de técnicas de rotulação semi-

automática em ambientes industriais reais, alinhando-se diretamente com os 

objetivos desta pesquisa. 
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3 METODOLOGIA 

3.1. COLETA DOS DADOS  

 3.1.1. Cenário industrial e vídeos capturados 

 A coleta de dados foi feita em uma indústria localizada no interior do estado de 

São Paulo, onde foi instalada uma câmera VIP1230B da marca Intelbras para 

captura contínua de uma seção na entrada da fábrica. O monitoramento operou com 

a gravação de vídeos durante diferentes períodos do dia, incluindo os turnos da 

manhã e da tarde. Esta diferença de horário é importante para promover maior 

variabilidade nas condições de iluminação, proporcionando maior robustez ao 

dataset resultante. 

 O processo de aquisição de dados inicial resultou em um conjunto de 26 vídeos 

capturados em um local específico, no qual os colaboradores deviam checar o uso 

dos equipamentos de proteção individual. A decisão de incluir todos os vídeos 

gravados no período de coleta, sem aplicação de critérios de seleção específicos, foi 

motivada pela necessidade de manter representatividade parecida com as 

condições operacionais reais. Isso inclui variações na densidade de trabalhadores, 

diferentes formas de checagem e variabilidade no uso efetivo dos EPIs. A pequena 

quantidade coletada também influenciou essa decisão. 

 A extração de frames resultou em um total de 50.088 imagens estáticas que 

compõem o dataset final. Este processo de decomposição dos vídeos permite a 

aplicação de técnicas de detecção de objetos frame a frame, essencial para a 

metodologia proposta do caso em questão. 

 3.1.2. Estruturação dos frames e classes 

 A estruturação do dataset seguiu o padrão de anotação na qual cada frame é 

acompanhado por um par correspondente contendo as coordenadas normalizadas 

dos objetos detectados. Todas as anotações foram feitas em um total de 77 dias, 
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com o uso da plataforma CVAT (Computer Vision Annotation Tool), uma ferramenta 

open source que permite a segmentação e detecção de objetos, este último o caso 

do presente trabalho. A carga diária variou entre 1h30 e 3h de anotações, feitas 

majoritariamente no turno da manhã. 

 O sistema foi desenvolvido para a detecção automática de quatro classes 

principais de objetos relacionados à segurança ocupacional da indústria em questão, 

definidas com base nas normas regulamentadoras brasileiras (NR-6) e práticas 

internacionais de segurança industrial: 
- Helmet (Capacete de Segurança): destinado à proteção do crânio contra 

impactos, perfurações e choques elétricos; 
- Vest (Colete de Segurança): destinado a aumentar a visibilidade do trabalhador, 

reduzindo o risco de acidentes, especialmente em ambientes com pouca luz ou 

em áreas de risco com presença de veículos ou máquinas; 
- Person (Pessoa): detecção e localização de indivíduos presentes no ambiente 

industrial, fundamental para análise contextual do uso de EPIs; 
- Ear (Protetor Auricular tipo Concha): destinado a bloquear ou reduzir a intensidade 

do som, protegendo os ouvidos de danos causados pela exposição a níveis de 

ruído perigosos. 

 A análise estatística preliminar do dataset revelou uma distribuição 

desbalanceada entre as classes, característica inerente a cenários reais, observada 

no Gráfico abaixo. 
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 Gráfico 1 - Histograma do dataset. 

Fonte: O autor, 2025. 

 A classe Person apresenta frequência significativamente superior às demais, 

uma vez que trabalhadores estão constantemente presentes no ambiente, 

independentemente do uso de EPIs específicos, mas o contrário não é válido, ou 

seja, EPIs que apareceram no frame, mas não foram vestidos por indivíduos, não 

foram anotados, pois são casos que não devem ser detectados pelo sistema final. 

Esta distribuição não foi artificialmente corrigida através de técnicas de 

balanceamento sintético, pois reflete fielmente as condições operacionais reais nas 

quais nem todos os trabalhadores utilizam simultaneamente todos os equipamentos 

de proteção requeridos. Dados rotulados e não rotulados podem não aderir à 

suposição de dados independentes e distribuídos de forma idêntica. Isso ocorre 

porque dados não rotulados podem originar-se de cenários diferentes daqueles dos 

dados rotulados em casos reais (QI et al., 2023) Por fim, o balanceamento destas 

classes quase impossibilitaria a aplicação, a não ser que todos os frames tivesse a 

presença de uma pessoa com todos os EPIs. Porém, neste caso, o algoritmo não 

Helmet Vest Person Ear

22.147

50.088

20.46119.312
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iria ter em sua base nenhum frame de um indivíduo sem EPI e provavelmente 

falharia nessas situações. 

3.2. ESTRATÉGIAS DE ANOTAÇÃO PARCIAL 

 A implementação de estratégias de anotação parcial constitui o núcleo 

metodológico deste trabalho, visando avaliar a viabilidade de uma abordagem semi 

supervisionada em uma indústria real. Foi desenvolvido um algoritmo baseado na 

distribuição de classes para seleção dos subconjuntos de treinamento, garantindo 

representatividade estatística. Inicialmente, é calculada a frequência total de cada 

classe no dataset completo, estabelecendo uma distribuição de referência que 

representa as características estatísticas globais dos dados. Em seguida, o 

algoritmo procede à seleção sequencial de vídeos e avalia iterativamente qual 

combinação melhor preserva a proporção original das classes no subconjunto 

selecionado. O processo de seleção utiliza uma função de distância que calcula a 

divergência entre a distribuição do subconjunto candidato e a distribuição global de 

referência. Esta função de distância considera as frequências relativas de todas as 

classes simultaneamente, penalizando seleções que resultem em desvios 

significativos da distribuição original. A cada iteração, o algoritmo seleciona o vídeo 

que, quando adicionado ao subconjunto atual, resulta na menor distância possível 

em relação à distribuição de referência. 

 Para o cenário experimental de 10% de dados anotados manualmente, a 

seleção resultou em uma divisão estratégica na qual 2 vídeos foram destinados ao 

conjunto de treinamento, 3 vídeos ao conjunto de validação e mais 18 vídeos foram 

reservados para posterior anotação automática. Similarmente, para o cenário de 

20% de dados anotados manualmente, a estratégia de seleção identificou 4 vídeos 

para treinamento e 3 vídeos para validação, deixando 16 vídeos para anotação 

automática posterior. Para o cenário de 30%, foram destinados 6 vídeos para 

treinamento, 3 para validação e os 14 restantes foram anotados automaticamente 

em seguida. Adicionalmente, para os vídeos restantes (3 em cada caso), foi 

estabelecida uma reserva estratégica dos dados totais exclusivamente para 

avaliação final, garantindo que a performance dos modelos seja testada em dados 

completamente não vistos durante qualquer etapa do processo de desenvolvimento. 
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Esta abordagem é fundamental para evitar vazamento de informações entre 

conjuntos e garantir avaliação imparcial dos resultados. 

3.3. MODELO 1 - GERAÇÃO DE RÓTULOS 

 A implementação do Modelo 1, em ambos os casos de 10%, 20% e 30% de 

rotulação manual, representa a fase inicial da abordagem semi supervisionada 

proposta, utilizando a técnica de pseudo-labeling para expandir automaticamente a 

base de dados anotados. Esta estratégia fundamenta-se no princípio de que um 

modelo treinado com dados parcialmente anotados pode generalizar suficientemente 

bem. Dessa forma, pode produzir anotações automáticas de qualidade aceitável em 

dados não rotulados, incluindo um dataset desbalanceado (LEE, 2013). O Modelo 1 

foi implementado utilizando a arquitetura YOLOv8 medium, escolhida por sua 

comprovada eficiência em tarefas de detecção de objetos em tempo real e sua 

capacidade de generalização em diferentes cenários. O YOLOv8 representa o 

estado da arte em detecção de objetos, combinando velocidade de processamento 

com precisão de detecção através de sua arquitetura baseada em redes neurais 

convolucionais profundas.  

 O processo de treinamento do modelo base iniciou-se com a utilização de 

pesos pré-treinados fornecidos pela Ultralytics, aproveitando representações de 

características aprendidas em datasets de larga escala. Esta estratégia de transfer 

learning é fundamental para compensar a limitação de dados anotados disponíveis, 

permitindo que o modelo inicie o treinamento com conhecimento prévio sobre 

detecção de objetos genéricos (ALI et al., 2023). O treinamento foi conduzido por 

150 épocas, período determinado através de análise da convergência do modelo 

nos conjuntos de validação. Foram realizados experimentos preliminares com 

durações variadas (50, 100, 150 e 200 épocas) nos quais se observou que a métrica 

mAP@0.5 no conjunto de validação estabilizava consistentemente após 

aproximadamente 100-120 épocas, apresentando variações inferiores a 0.5% nas 

épocas subsequentes. O limite de 150 épocas foi estabelecido para garantir 

convergência completa em todos os cenários experimentais, considerando que o 

uso de diferentes proporções de dados anotados poderia resultar em taxas de 

convergência ligeiramente distintas. Durante este processo, foram utilizados os 
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subconjuntos de dados parcialmente anotados (10%, 20% ou 30%), com 

monitoramento contínuo das métricas de performance para possível detecção de 

overfitting e ajuste automático de hiperparâmetros. 

 Após a conclusão do treinamento inicial, o modelo foi aplicado aos dados não 

anotados para geração automática de pseudo-labels. Este processo de inferência 

utilizou um limiar de confiança adaptativo para todas as classes, com o limiar ótimo 

mostrado na Tabela 6 a seguir. 

Tabela 6 - Limiar de confiança ótimo por modelo e por classe.  

Fonte: O autor, 2025. 

 O processo de geração de pseudo-labels incluiu a aplicação de supressão de 

não-máximos (Non-Maximum Suppression - NMS) para eliminação de detecções 

redundantes e sobrepostas, evitando duplicações que poderiam confundir o 

treinamento subsequente do Modelo 2. As coordenadas das detecções foram 

normalizadas seguindo o padrão YOLO, na qual cada bounding box é representada 

pelas coordenadas do centro (x, y) e dimensões (largura, altura), todas normalizadas 

em relação às dimensões da imagem. Este formato padronizado facilita o 

processamento posterior e garante compatibilidade com os dados originalmente 

anotados. 

 O controle de qualidade dos pseudo-labels gerados foi realizado através de 

inspeção visual posterior, processo manual no qual todos frames das anotações 

automáticas foram verificados para identificação de erros grosseiros ou padrões 

sistemáticos de falhas. Isso só foi possível devido ao pequeno dataset em questão, 

sendo difícil de ser realizado em casos mais complexos. Embora esta abordagem 

não permita correção automatizada dos erros, fornece insights importantes sobre a 

qualidade geral do processo de pseudo-labeling e possíveis direções para melhorias 

futuras. 

Classe 10% 20% 30% 100%

Helmet 0.3 0.3 0.3 0.3

Vest 0.4 0.5 0.7 0.7

Person 0.3 0.4 0.3 0.3

Ear 0.6 0.3 0.5 0.6
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3.4. MODELO 2 - TREINAMENTO FINAL COM ROTULAÇÕES AUTOMÁTICAS 

 O desenvolvimento do Modelo 2 representa a última etapa experimental, na 

qual a base de dados expandida através dos pseudo-labels gerados pelo Modelo 1 é 

utilizada para treinamento de um modelo final com teórica capacidade de 

generalização superior. Esta estratégia visa combinar o conhecimento extraído dos 

dados originalmente anotados com as informações adicionais fornecidas pelos 

pseudo-labels. O resultado é um sistema mais robusto e preciso. O Modelo 2 foi 

implementado utilizando a mesma arquitetura YOLOv8 do Modelo 1. Esta escolha 

arquitetural permitiu a análise direta do impacto da expansão da base de dados 

através de pseudo-labeling, isolando este fator de possíveis variações introduzidas 

por diferentes arquiteturas de rede. A configuração de treinamento do Modelo 2 

também foi feita com 150 épocas, período mostrado suficiente para convergência 

completa considerando a base de dados expandida. O otimizador AdamW foi 

utilizado por sua capacidade de adaptação automática da taxa de aprendizado e 

eficiente regularização através de weight decay integrado (LOSHCHILOV; HUTTER, 

2019). O sistema de taxa de aprendizado adaptativa com scheduler cosseno foi 

empregado para garantir convergência estável e eficiente (LOSHCHILOV; HUTTER, 

2017). Esta estratégia inicia o treinamento com taxa de aprendizado relativamente 

alta para exploração rápida do espaço de parâmetros, reduzindo gradualmente a 

taxa conforme o treinamento progride para refinamento fino dos pesos da rede 

(NAKAMURA et al., 2021). O padrão cosseno de decaimento proporciona transições 

suaves que evitam oscilações indesejadas na função de perda. O batch size foi 

determinado automaticamente baseado na capacidade de hardware disponível, 

maximizando a utilização de recursos computacionais enquanto mantém 

estabilidade numérica durante o treinamento. Esta abordagem adaptativa é 

particularmente importante quando se trabalha com diferentes configurações de 

hardware, garantindo reprodutibilidade dos resultados independentemente da 

plataforma computacional utilizada. As técnicas de regularização, dropout e o já 

citado weight decay, foram mantidas em suas configurações padrão para tentar 

prevenir overfitting (SRIVASTAVA et al., 2014). Estas técnicas são especialmente 

importantes quando se trabalha com pseudo-labels, na qual a qualidade dos rótulos 

automáticos pode introduzir ruído no processo de aprendizado (ARAZO et al., 2020). 
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O conjunto de dados de treinamento do Modelo 2 foi composto apenas pelos 

pseudo-labels gerados pelo Modelo 1. Esta estratégia permitiu testar a qualidade da 

anotação automática diretamente, uma vez que o dataset pequeno poderia ser 

significativamente influenciado pela rotulação manual. 

 Durante o treinamento, foi implementado monitoramento contínuo das métricas 

de performance no conjunto de validação, permitindo ajuste de hiperparâmetros, se 

necessário. A implementação de early stopping baseado na métrica mAP@0.5 

garantiu que o treinamento fosse interrompido no ponto ótimo de generalização, 

evitando degradação da performance por treinamento excessivo. 

3.5. MÉTRICAS DE AVALIAÇÃO 

 A avaliação quantitativa dos modelos desenvolvidos fundamentou-se em 

métricas que oferecem perspectivas complementares sobre diferentes aspectos da 

performance dos modelos. A métrica principal Mean Average Precision (mAP) com 

limiar de IoU de 0.5 (mAP@0.5) representa o padrão para avaliação de sistemas de 

detecção de objetos. Esta métrica calcula a precisão média através de diferentes 

níveis de recall para cada classe, posteriormente calculando a média geral entre 

todas as classes (EVERINGHAM et al., 2010). O limiar de IoU (Intersection over 

Union) de 0.5 determina que uma detecção é considerada correta quando a 

sobreposição entre a bounding box predita e a anotação verdadeira atinge pelo 

menos 50% (EVERINGHAM et al., 2010). A métrica mAP@0.5:0.95 proporciona uma 

avaliação mais rigorosa ao calcular a média das precisões médias em múltiplos 

limiares de IoU, variando de 0.5 a 0.95 com incrementos de 0.05. Esta abordagem 

multi-limiar fornece análise mais detalhada da qualidade das localizações preditas, 

penalizando detecções com imprecisão espacial mesmo quando a classificação está 

correta (PADILLA; NETTO; DA SILVA, 2020). Para aplicações críticas de segurança, 

nas quais a localização precisa dos EPIs pode ser fundamental para análises 

subsequentes, esta métrica oferece dados valiosos sobre a qualidade das fronteiras 

da anotação. Quando somamos a avaliação da detecção com a localização, teremos 

uma avaliação global do resultado. 

 Além dessas métricas, utilizaremos a matriz de confusão das classes, que 

fornece uma análise detalhada das classificações realizadas pelo modelo, 



40

mostrando não apenas acertos e erros, mas também os padrões específicos de 

confusão entre classes (KOHAVI; PROVOST, 1998). Esta ferramenta é fundamental 

para identificar classes frequentemente confundidas pelo modelo, permitindo análise 

qualitativa dos tipos de erros mais comuns e direcionando esforços de melhoria. 

Nela, podemos calcular a precisão, definida como a proporção de detecções 

corretas em relação ao total de detecções realizadas para cada categoria específica 

(POWERS, 2011). Matematicamente, a equação que permite seu cálculo é TP/

(TP+FP), na qual TP representa verdadeiros positivos e FP representa falsos 

positivos, o que torna possível a identificação de classes que apresentam tendência 

a gerar falsos alarmes. De mesmo modo, com a matriz de confusão, também 

conseguimos calcular o recall, responsável por medir a capacidade do modelo de 

detectar corretamente todos os objetos existentes de uma determinada classe 

(POWERS, 2011). Sua equação é representada como TP/(TP+FN), na qual FN 

representa falsos negativos. Em contextos de segurança industrial, baixo recall das 

classes pode resultar em falhas na identificação de situações de risco.  

 Para garantir contextualização adequada dos resultados, foi estabelecida 

comparação sistemática com uma abordagem totalmente supervisionada, treinada 

utilizando 100% dos dados manualmente anotados e os mesmos 3 vídeos de teste 

utilizados nas estratégias de semi supervisão. Esta proposta permite quantificação 

direta da eficiência da abordagem semi supervisionada, determinando quanto da 

performance do modelo totalmente supervisionado pode ser atingida com o uso de 

frações dos dados anotados. 

3.6 VALIDAÇÃO ESTATÍSTICA 

 Para garantir robustez e validade estatística dos resultados experimentais, foi 

implementado protocolo rigoroso de validação baseado em múltiplas repetições 

independentes e testes estatísticos apropriados para o design experimental 

empregado. 

 3.6.1 Protocolo de Validação Cruzada 
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 O protocolo de validação seguiu abordagem de validação cruzada com k=10 

repetições independentes para cada cenário experimental (10%, 20%, 30% e 100% 

de dados anotados manualmente). O valor de k = 10 foi decidido a partir do número 

de combinações possíveis entre 2 vídeos de treino acrescidos de 3 de validação, 

resultando em uma combinação de 5 elementos tomados 2 a 2, caso experimentado 

na abordagem de 10%. Como os testes feitos precisam do seu par experimental, os 

modelos de 20%, 30% e 100% também tiveram 10 experimentos. Esta estratégia 

visa estimar a variabilidade natural do processo de treinamento e fornecer base 

estatística robusta para comparações entre as abordagens (KOHAVI, 1995). Cada 

repetição consistiu no treinamento completo de um modelo YOLOv8 com 

inicialização aleatória diferente, garantindo independência estatística entre as 

observações. Para cada repetição, foram registradas quatro métricas de 

performance: precision, recall, mAP@0.5 e mAP@0.5:0.95. 

 3.6.2 Teste de Friedman 

 Para avaliar a significância das diferenças entre tratamentos, foi empregado o 

teste não-paramétrico de Friedman (FRIEDMAN, 1937), apropriado para 

experimentos de blocos que não atendem pressupostos de normalidade 

(HOLLANDER et al., 2013). O teste de Friedman é robusto e amplamente 

recomendado para comparações múltiplas em aprendizado de máquina (DEMŠAR, 

2006). 

 3.6.3 Teste de Nemenyi 

 Quando o teste de Friedman indicou diferenças significativas, procedeu-se à 

análise post-hoc através do teste de Nemenyi (NEMENYI, 1963), que controla o erro 

em comparações múltiplas par-a-par (HOLLANDER et al., 2013), o que resulta na 

compreensão de quais pares resultaram em um p < 0,05. O teste de Nemenyi é 

especificamente desenvolvido para uso após o teste de Friedman e é considerado 

conservador, reduzindo a probabilidade de descobertas falsas (DEMŠAR, 2006). 
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3.7. FERRAMENTAS, BIBLIOTECAS E AMBIENTE EXPERIMENTAL 

 A implementação foi desenvolvida com Python como linguagem principal, 

aproveitando seu ecossistema de bibliotecas especializadas em aprendizado de 

máquina e processamento de imagens. Como citado, o YOLOv8 constituiu a base 

arquitetural principal do sistema, sendo esta escolha motivada pela validação da 

comunidade científica e capacidade de integração com pipelines de treinamento 

automatizado. Além da arquitetura de rede neural, o YOLO oferece ferramentas 

completas para treinamento, validação e inferência, reduzindo significativamente a 

complexidade de implementação. 

 A biblioteca OpenCV foi utilizada para processamento de imagens e 

manipulação de vídeos, o que inclui operações de carregamento, 

redimensionamento e salvamento de frames. O PyTorch funciona como a base 

tecnológica essencial para experimentos com redes neurais profundas, oferecendo 

ferramentas otimizadas para cálculos com tensores e com gradientes necessários 

para o treinamento dos modelos. A integração nativa com CUDA permite 

aproveitamento eficiente de recursos de GPU quando disponíveis, acelerando 

significativamente os processos de treinamento e inferência. A biblioteca NumPy foi 

empregada para operações matemáticas e manipulação de arrays 

multidimensionais, a qual fornece base computacional eficiente para processamento 

de dados numéricos. O sistema de configuração baseado em PyYAML permite 

parametrização flexível de todos os aspectos experimentais, desde caminhos de 

diretórios até hiperparâmetros de treinamento. Para visualização de resultados e 

análise de métricas, foram utilizadas as bibliotecas Matplotlib e Seaborn. Estas 

ferramentas são fundamentais para interpretação dos resultados e comunicação 

efetiva dos achados experimentais. O ambiente computacional foi configurado com 

detecção automática de recursos de hardware, com o uso de GPU CUDA quando 

disponível e fallback para CPU se necessário. Esta abordagem adaptativa garante 

funcionalidade em diferentes configurações de hardware, desde estações de 

trabalho mais avançadas até laptops convencionais. 

 A implementação seguiu arquitetura modular com separação clara de 

responsabilidades, facilitando manutenção e extensão futura do código. Funções 

específicas foram desenvolvidas para cada etapa do fluxo experimental, desde 
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preparação de dados até avaliação de resultados, garantindo clareza metodológica e 

facilidade de debugging. Para garantir reprodutibilidade, foram implementados 

mecanismos de controle de seeds aleatórias em todas as bibliotecas utilizadas, 

garantindo que experimentos repetidos produzam resultados idênticos. Esta prática 

é fundamental para validação de resultados e comparação objetiva entre diferentes 

configurações experimentais. 

 O sistema de monitoramento experimental inclui registro contínuo de métricas 

durante o treinamento, salvamento automático de checkpoints do modelo, e geração 

de relatórios detalhados de performance. Estas funcionalidades facilitam análise 

posterior dos experimentos e identificação de padrões na evolução das métricas de 

performance. 
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4 RESULTADOS E DISCUSSÃO 

4.1. DESEMPENHO GERAL DOS MODELOS COM DIFERENTES PROPORÇÕES 

DE ANOTAÇÃO 

 4.1.1 Estatísticas Descritivas 

 Os experimentos conduzidos sugerem que a abordagem semi supervisionada 

proposta é capaz de manter performance elevada mesmo com redução significativa 

na quantidade de dados manualmente anotados, o que corrobora o reportado por 

Sohn et al. (2021), que demonstraram melhorias substanciais com uso limitado de 

dados rotulados. A validação cruzada com k=10 repetições independentes forneceu 

base estatística para comparação entre as quatro abordagens experimentais. O 

Tabela 7 apresenta as estatísticas descritivas das métricas de performance para 

cada cenário de anotação, revelando padrões consistentes de hierarquia entre as 

abordagens. 
Tabela 7 - Estatísticas descritivas do cross-validation.  

Fonte: O autor, 2025. 

 A análise descritiva inicial sugere uma melhora de performance, com a 

abordagem supervisionada (100%) apresentando valores médios superiores em 

todas as métricas. Além disso, o desvio padrão diminui conforme a redução da 

quantidade de dados anotados. 

Métrica 10% 20% 30% 100%

Precision 0.949±0.015 0.962±0.011 0.964±0.008 0.967±0.007

Recall 0.948±0.012 0.960±0.015 0.973±0.010 0.975±0.009

mAP@0,5 0.971±0.010 0.979±0.007 0.985±0.005 0.986±0.003

mAP@0,5:0,95 0.767±0.016 0.771±0.015 0.801±0.012 0.805±0.014
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 4.1.2 Teste de Friedman 

 Para avaliar estatisticamente se as diferenças observadas são significativas, 

foi aplicado o teste não-paramétrico de Friedman a cada métrica. O Tabela 8 

sumariza os resultados da análise global. 

Tabela 8 - Resultados do Teste de Friedman para as métricas.  

Fonte: O autor, 2025. 

 Os resultados do teste de Friedman rejeitam a hipótese nula de igualdade 

entre as abordagens para todas as métricas avaliadas (p < 0.05). As estatísticas χ² 

observadas (18.420-26.460) superam os valores críticos tanto para α = 0.05 quanto 

para α = 0.01, indicando evidência robusta de diferenças entre as abordagens. 

 A análise dos ranks médios revela hierarquia consistente: as abordagens com 

100% e 30% obtém sistematicamente os melhores ranks (1.50-1.90), seguida pela 

semi supervisionada com 20% (2.80-3.10) e, por último, a semi supervisionada com 

10% (3.60-3.90). 

 4.1.3 Teste de Nemenyi 

 Dado que o teste de Friedman indicou diferenças significativas em todas as 

métricas, procedeu-se à análise post-hoc através do teste de Nemenyi para 

identificar quais pares de abordagens diferem significativamente, com os resultados 

mostrados no Tabela 9. A diferença crítica (CD) para α = 0.05 com k = 4 tratamentos 

e N = 10 blocos é maior ou igual a 1.213. 

Métrica Rank Médio Estatística

10% 20% 30% 100% χ²(df=2)

Precision 3.80 2.80 1.90 1.50 19.140

Recall 3.90 3.10 1.60 1.40 26.460

mAP@0,5 3.80 3.00 1.70 1.50 22.680

mAP@0,5:0,95 3.60 2.90 1.80 1.70 18.420
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Tabela 9 - Resultados do Teste de Nemenyi para cada comparação par a par. 

Fonte: O autor, 2025. 

A análise post-hoc revela padrões específicos de significância: 

1. Comparação do modelo supervisionado: A abordagem com 100% dos 

dados é estatisticamente superior à abordagem com 10% em todas as 

métricas (4/4 comparações significativas), à abordagem com 20% em 3/4 

métricas (exceto mAP@0.5:0.95). Em contrapartida, não possui diferença 

estatisticamente significativa em relação à abordagem com 30%. 

2. Diferenças entre abordagens semi supervisionadas: O modelo com 30% é 

estaticamente superior ao modelo com 10% em todas as métricas, e em 2/4 

métricas (Recall e mAP@0,5) em relação ao de 20%. Não foram detectadas 

diferenças significativas entre os modelos com 20% e 10% de dados 

anotados em nenhuma das métricas avaliadas.  

3. Diferenças das métricas Recall e mAP@0,5: Essas métricas demonstraram 

maiores diferenças entre abordagens, sendo a única na qual em todas as 

comparações com a abordagem supervisionada, exceto 100% x 30%, 

resultaram em resultados estatisticamente significativos. 

 4.1.4 Análise da Magnitude dos Efeitos e Discussão 

 Embora as diferenças sejam estatisticamente significativas, é importante 

avaliar sua relevância prática. O Tabela 10 quantifica as magnitudes das diferenças 

em termos das métricas originais em pontos percentuais. 

Métrica 100% x 
30%

100% x 
20%

100% x 
10% 30% x 20% 30% x 10% 20% x 10%

Precision 0.4 1.3 2.3 0.9 1.9 1.0

Recall 0.2 1.7 2.5 1.5 2.3 0.8

mAP@0,5 0.2 1.5 2.3 1.3 2.1 0.8

mAP@0,5:0,95 0.1 1.2 1.9 1.1 1.8 0.7
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Tabela 10 - Subtrações entre as médias das métricas após o cross-validation, em pontos percentuais. 

Fonte: O autor, 2025. 

 A análise das magnitudes revela que, embora geralmente estatisticamente 

significativas, as diferenças absolutas são relativamente modestas para a maioria 

das métricas. A maior perda ocorre na métrica mAP@0.5:0.95, onde a redução de 

100% para 10% de dados anotados resulta em deterioração de 3.8%. Este resultado 

alinha-se com a literatura que demonstra maior sensibilidade de métricas rigorosas 

de localização a reduções na qualidade dos dados de treinamento (PADILLA; 

NETTO; DA SILVA, 2020). Ao mesmo tempo, esta diferença pode fazer pouco efeito 

na prática e não ser custo-benéfica em relação ao esforço de anotação empregado 

para alcançar essa performance. Isto é notado na comparação entre 100% e 30%, 

na qual a métrica com maior diferença de resultado tem resultado apenas 0,4% 

menor. 

 Os resultados obtidos oferecem validação de padrões reportados na 

literatura. Xu et al. (2024) demonstraram que frameworks semi supervisionados 

mantêm performance competitiva com modelos pré treinados em condições de 

escassez de dados anotados, achado que encontra correspondência direta nos 

resultados nos quais a abordagem de 30% mantém 99.5% da performance na 

métrica mais rigorosa (mAP@0.5:0.95: 0.801 vs 0.805). 

 Além disso, as métricas alcançadas corroboram com a discussão de Jin et al. 

(2021) sobre a existência de pontos ótimos na quantidade de dados anotados para 

maximizar qualidade de pseudo-labels. Enquanto a diferença 100% vs 30% não é 

significativa, a diferença 100% vs 10% é significativa em todas as métricas, 

sugerindo que existe um limiar crítico entre 10% e 30% na qual a degradação se 

acelera. 

 Apesar dessas diferenças, as abordagens semi supervisionadas mantém 

diferenças controladas: precision (-1.9%), recall (-2.8%), mAP@0.5 (-1.5%) e 

Métrica 100% x 30% 100% x 20% 100% x 10% 30% x 20% 30% x 10%

Precision 0.3% 0.5% 1.9% 0.7% 2.1%

Recall 0.2% 1.5% 2.7% 1.3% 2.5%

mAP@0,5 0.1% 0.7% 1.5% 0.6% 1.4%

mAP@0,5:0,95 0.4% 3.4% 3.8% 3.0% 3.4%
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mAP@0.5:0.95 (-3.8%) para o cenário de 10%, o pior caso no quesito métricas. 

Estas magnitudes são piores que as reportadas em trabalhos anteriores, porém o 

dataset utilizado é menor em números absolutos. 

4.2. ANÁLISE QUANTITATIVA DAS CLASSES 

 4.2.1 Análise dos mAPs 

 As análises dos mAPs por classe revelam comportamentos que refletem a 

complexidade inerente à detecção de diferentes tipos de EPIs, alinhando-se com os 

desafios reportados por Gallo et al. (2022). A heterogeneidade na performance entre 

classes é um fenômeno bem documentado na literatura de detecção de objetos 

(FANG et al., 2017), particularmente em domínios especializados com um 

background complexo envolvido, como o caso das indústrias. 

 A classe Vest apresentou a melhor performance em todos os cenários 

experimentais, com mAP@0.5 evoluindo de 0.985 (10%) para 0.988 (20%), 0,993 

(30%) até 0.994 (100%), demonstrando excelente detectabilidade. Todos os 

resultados são vistos na Tabela 11 abaixo. 

Tabela 11 - Valores de mAP@0,5 por classes. 

Fonte: O autor, 2025. 

 Este resultado pode ser atribuído às características visuais distintivas dos 

coletes de segurança, que apresentam cores contrastantes e padrões reflexivos que 

facilitam a detecção automática. Esta observação é consistente com os princípios de 

design de EPIs, que intencionalmente maximizam a visibilidade através de cores de 

alta saturação e materiais refletivos para serem processados mais eficientemente 

Classes mAP@0,5 - 10% mAP@0,5 - 20% mAP@0,5 - 30% mAP@0,5 - 100%

Helmet 0,975 0,982 0,990 0,991

Vest 0,985 0,988 0,993 0,994

Person 0,962 0,976 0,979 0,981

Ear 0,962 0,970 0,977 0,978
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por sistemas de visão (TREISMAN; GELADE, 1980). A aplicação desta teoria ao 

contexto de redes neurais convolucionais sugere que características de baixo nível 

como cores e bordas associadas aos coletes são mais facilmente aprendidas e 

generalizadas. 

 A classe Helmet demonstrou ótima performance, com variação mínima entre 

os diferentes cenários. Os modelos variaram de 0,975 (10%) até 0,991 (100%) no 

mAP@0.5. A consistência na detecção de capacetes pode ser atribuída à sua forma 

geométrica distintiva e posicionamento padronizado na região superior da cabeça. 

 A classe Person apresentou mAP@0.5 de 0.962 (10%), 0.976 (20%), 0.979 

(30%) e 0.981 (100%), mostrando progressão consistente, porém baixa, com o 

aumento de dados anotados. Esta classe representa um desafio fundamental em 

ambientes industriais devido à variabilidade de poses, oclusões parciais, condições 

de iluminação variáveis, a presença de equipamentos industriais que podem causar 

confusão visual e sua importância no contexto de detecção de segurança. A 

localização das bounding boxes dessa classe demonstrou bons resultados nos 

cenários testados, com valores de mAP@0.5:0.95, visualizados no Tabela 12, entre 

0.765-0.815. Este padrão é consistente com a arquitetura YOLOv8 utilizada, que foi 

otimizada para detecção de pessoas em diversos contextos. 

Tabela 12 - Valores de mAP@0,5:0,95 por classes. 

Fonte: O autor, 2025. 

 A classe Ear apresentou a maior variabilidade entre os cenários. Com 

mAP@0.5 variando entre 0.962-0.978 e mAP@0.5:0.95 entre 0.703-0.735, esta 

classe representa o maior desafio técnico do sistema proposto. A menor 

performance na métrica mais rigorosa indica dificuldades específicas na localização 

precisa destes objetos, provavelmente devido ao seu tamanho reduzido e alta 

susceptibilidade a oclusões parciais. Esta dificuldade é consistente com os princípios 

Classes mAP@0,5:0,95 - 
10%

mAP@0,5:0,95 - 
20%

mAP@0,5:0,95 - 
30%

mAP@0,5:0,95 - 
100%

Helmet 0,785 0,789 0,820 0,825

Vest 0,815 0,821 0,842 0,845

Person 0,765 0,771 0,809 0,815

Ear 0,703 0,703 0,735 0,735
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de detecção de objetos pequenos em redes neurais convolucionais, nas quais a 

perda de informação espacial pode impactar significativamente a detecção de 

objetos que ocupam pequenas porções da imagem (SINGH; DAVIS, 2018). Além 

disso, protetores auriculares tipo concha apresentam características visuais menos 

distintivas comparados a outros EPIs, frequentemente confundindo-se com cabelo 

escuro ou sombras. Entretanto, Pathiraja, Gunawardhana e Khan (2023) propõem 

uma nova abordagem de que visa calibrar conjuntamente a confiança multiclasse 

preditiva e a localização da bounding box, o que pode indicar um caminho para 

otimizar o caso dessa classe. 

 4.2.2 Matrizes de Confusão 

 A análise das matrizes de confusão normalizadas, apresentadas nas Tabelas 

13, 14, 15 e 16 abaixo, revela padrões de performance que complementam e 

questionam o entendimento dos resultados de mAP apresentados anteriormente. 

Enquanto as métricas gerais de mAP indicaram performance comparável entre as 

abordagens semi supervisionadas e a supervisionada, as matrizes de confusão 

expõem nuances no comportamento classificatório dos modelos em questão. 

Tabela 13 - Matriz de confusão normalizada para o modelo com 10% de dados anotados 
manualmente. 

Fonte: O autor, 2025. 

Helmet 0,97 - - - 0,22

Vest - 0,99 - - 0,06

Person - - 0,92 - 0,54

Ear - - - 0.96 0,18

Background 0,03 0,01 0,08 0,04 -

Helmet Vest Person Ear Background
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Tabela 14 - Matriz de confusão normalizada para o modelo com 20% de dados anotados 
manualmente. 

Fonte: O autor, 2025. 

Tabela 15 - Matriz de confusão normalizada para o modelo com 30% de dados anotados 
manualmente. 

Fonte: O autor, 2025. 

Tabela 16 - Matriz de confusão normalizada para o modelo com todos os dados anotados 
manualmente. 

Fonte: O autor, 2025. 

 A classe Helmet demonstra consistência em todos os cenários experimentais, 

com ótima performance (acima de 0,97) tanto nos modelos semi supervisionados 

quanto no supervisionado. Este resultado corrobora os achados de mAP@0.5 

Helmet 0,98 - - - 0,33

Vest - 0,99 - - 0,07

Person - - 0,94 - 0,48

Ear - - - 0.97 0,12

Background 0,02 0,01 0,06 0,03 -

Helmet Vest Person Ear Background

Helmet 0,99 - - - 0,19

Vest - 1,00 - - 0,12

Person - - 0,96 - 0,41

Ear - - - 0.98 0,21

Background 0,01 - 0,04 0,02 -

Helmet Vest Person Ear Background

Helmet 1,00 - - - 0,17

Vest - 1,00 - - 0,13

Person - - 0,96 - 0,39

Ear - - - 0.98 0,31

Background - - 0,04 0,02 -

Helmet Vest Person Ear Background
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previamente reportados (0.975 para 10%, 0.982 para 20%, 0,990 para 30% e 0.991 

para 100%) e alinha-se com a literatura que argumentam que redes neurais 

convolucionais desenvolvem hierarquias de características, nas quais características 

simples (bordas, contornos) são progressivamente combinadas em representações 

mais complexas. Para capacetes, este processamento hierárquico pode ser 

particularmente eficiente porque a forma distintiva pode criar padrões de bordas e 

gradientes que são facilmente detectáveis nas camadas iniciais e consistentemente 

agregados nas camadas superiores (LECUN; BENGIO; HINTON; 2015). Entretanto, 

a análise da confusão com o background revela um padrão diferente de evolução 

com o aumento de dados anotados. O modelo com 10% apresenta taxa de falsos 

positivos de 0,22 para capacetes classificados incorretamente como background, 

aumentando para 0,33 no modelo de 20%, e reduzindo para 0,19 em 30% e 0,17 no 

100% supervisionado. Bartlett e Mendelson (2002) sugerem que a relação entre 

quantidade de dados de treinamento e performance de generalização não é 

necessariamente diretamente proporcional, especialmente em regimes de dados 

limitados nos quais diferentes mecanismos de generalização podem dominar. Além 

disso, o pequeno dataset pode levar a taxas ruins de signal to noise e afetar a 

capacidade de generalização de um modelo (ADVANI; SAXE, 2017), principalmente 

sendo ele multi-classe. 

 A classe Vest mantém ótima performance (acima de 0,99) em todos os 

cenários, confirmando as observações qualitativas sobre as características visuais 

altamente contrastantes dos coletes de segurança e a citada propriedade de 

características distintivas desses objetos. A taxa de falsos positivos para background 

mantém-se consistentemente baixa (0,06-0,13), indicando que, neste caso, os 

coletes não são confundidos com elementos do ambiente industrial. A robustez da 

detecção de coletes em diferentes proporções de dados anotados sugere a hipótese 

de que esta classe poderia potencialmente servir como referência confiável em 

sistemas multi-classe. Esta possibilidade, embora não diretamente validada na 

literatura existente, merece investigação futura para determinar se detecções como 

esta podem ser sistematicamente utilizadas para calibração de outros componentes 

do sistema.  

 A classe Person apresenta o padrão mais complexo, com sua métrica 

variando entre 0,92-0,96 nos diferentes cenários. O aprendizado supervisionado 
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alcança performance superior (0,96) comparado aos modelos semi supervisionados 

de 10% e 20% (0,92 para 10% e 0,94 para 20%), mas com o mesmo valor para 30% 

(0,96). Porém, a taxa de confusão com background apresenta padrão elevado (0,54 

para 10%, 0,48 para 20%, 0,41 para 30% e 0,39 para 100%) em todos os casos, o 

que contrasta com a estabilidade mostrada pela classe no mAP. O primeiro fator 

explicativo reside no desequilíbrio inerente entre as classes no dataset estudado. 

Conforme reportado no histograma do dataset original, a classe Person apresenta 

50.088 instâncias, significativamente superior às demais classes (Helmet: 22.147, 

Vest: 20.461, Ear: 19.312). Este desequilíbrio cria um viés estatístico fundamental 

que pode afetar diferentemente as métricas de precisão e as taxas de confusão. 

Shahnawaz e Kumar (2025) reportam que em datasets desequilibrados, modelos 

tendem a desenvolver viés em direção à classe majoritária, resultando em alta 

precisão para essa classe devido ao grande número de verdadeiros positivos, 

mesmo na presença de falsos positivos substanciais. Zeiler e Fergus (2013) 

demonstraram como características aprendidas pelos modelos podem ser altamente 

sensíveis por estruturas com padrões visuais similares. Equipamentos, estruturas e 

sombras podem ativar detectores de características humanas, resultando em falsos 

positivos que contribuem para a alta taxa de confusão com background. 

 A classe Ear varia pouco entre cenários (0,96 para 10%, 0,97 para 20%, 0,98 

para 30% e 0,98 para 100%) e sua taxa de confusão com o background segue uma 

tendência diferente (0,18 para 10%, 0,12 para 20%, 0,21 para 30% e 0,31 para 

100%). Porém, o aumento substancial de falsos positivos com o aumento de dados 

anotados pode sugerir um possível overfitting aos padrões específicos do dataset de 

treinamento, fenômeno documentado em cenários nos quais a complexidade do 

modelo excede a diversidade dos dados disponíveis (YING, 2019). 

 4.2.3 Comparação com Abordagem Supervisionada 

 A comparação revela que a abordagem semi supervisionada proposta 

consegue se aproximar das métricas de performance do modelo treinado com 100% 

dos dados anotados. Este resultado é um indicativo importante, considerando a 

redução na quantidade de anotações manuais requeridas. Os resultados obtidos são 

comparáveis aos reportados por Sohn et al. (2021) em seu framework STAC, no qual 



54

demonstraram que modelos semi supervisionados podem até superar estratégias 

supervisionadas quando treinados com 5% de dados anotados manualmente, por 

exemplo. Similarmente, o framework CISO proposto por Qi et al. (2023) demonstrou 

performance superior às abordagens supervisionadas em datasets como MS COCO 

e VOC com proporções similares de dados anotados. 

 Na métrica mAP@0.5, os modelos semi supervisionados praticamente 

equiparam-se ao supervisionado, com diferenças inferiores a 2%. Este resultado é 

particularmente significativo quando contextualizado dentro da literatura de detecção 

de EPIs, na qual Gallo et al. (2022) reportaram o uso de 70.000 frames anotados 

manualmente para atingir performance comparável em uma abordagem 

completamente supervisionada. A métrica mAP@0.5:0.95, mais exigente em termos 

de precisão de localização, mostrou bons resultados e comportamento similar. 

 Estes resultados contraintuitivos, nos quais modelos treinados com menos 

dados anotados tem performance próxima a abordagem supervisionada, têm 

precedentes na literatura e podem ser explicados por certos mecanismos teóricos. 

 Primeiro, o processo de pseudo-labeling pode ter funcionado como uma 

forma de ruído positivo, similar aos efeitos observados por Xie et al. (2020) em seu 

trabalho sobre self-training. A diversidade adicional introduzida pelos pseudo-labels 

pode ter otimizado a capacidade de generalização dos modelos, especialmente 

considerando o tamanho relativamente pequeno do dataset original. 

 Depois, a seleção estratégica dos vídeos para anotação manual, baseada na 

preservação de distribuições de classes, pode ter capturado exemplos 

particularmente informativos do universo amostral. Esta hipótese é suportada pela 

teoria do active learning, que sugere que seleção inteligente de exemplos de 

treinamento pode resultar em performance superior comparada à amostragem 

aleatória (SETTLES, 2009). 

4.3. ANÁLISE VISUAL 

 A análise visual dos frames de detecção revelou padrões específicos de erro 

que fornecem informações fundamentais sobre as limitações e potencialidades da 

abordagem proposta. Esta análise identificou que as classes Ear e Person 

apresentam mais erros de detecção, o que corrobora os resultados quantitativos e 
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os padrões teóricos esperados para estas categorias de objetos. Além disso, foi 

observado que o modelo de 30% obteve exatamente a mesma localização de 

detecções em relação ao de 100% nas Figuras abaixo, o que reforça a semelhança 

dos resultados exibidos anteriormente. 

 Para a classe Ear, foram identificados múltiplos casos nos quais protetores 

auriculares anotados não foram detectados pelos modelos, particularmente quando 

há interferência das mãos dos trabalhadores, o que converge com a hipótese de 

oclusões levantada no tópico anterior. Isto pode ser visto na Figura 5. 

Figura 5 - Mão de trabalhador se torna oclusão e impede os modelos de 10% (azul) e 20% (vermelho) 
de realizarem a detecção. 

 
Fonte: o autor, 2025. 

 Recorrentemente, observa-se a oclusão por membros superiores, o que 

constitui um fator limitante crítico, fenômeno bem documentado na literatura de 

detecção de objetos pequenos (SINGH; DAVIS, 2018). Esta limitação específica 

pode ser explicada através do fato de que objetos parcialmente obstruídos requerem 

inferência contextual que pode exceder a capacidade de generalização dos modelos 

treinados, especialmente com dados limitados. A presença desses falsos negativos 

também pode sugerir que os pseudo-labels gerados podem ter introduzido ruído 

sistemático que foi posteriormente amplificado durante o treinamento do Modelo 2. 
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 A classe Person apresentou padrões de erro relacionados principalmente a 

oclusões e sobreposições entre trabalhadores, problema fundamental em detecção 

de pessoas em ambientes povoados (DOLLÁR et al., 2011), observado na Figura 6.  

Figura 6 - Trabalhador se torna oclusão de outro e impede que dois dos modelos (10% e 20%) de 
realizarem a detecção. 

Fonte: o autor, 2025. 

  A análise qualitativa também identificou casos nos quais pessoas foram 

anotadas mas não detectadas quando posicionadas atrás de outros indivíduos ou 

quando localizadas em segundo plano, evidenciado na Figura 7.  
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 Figura 7 - Trabalhador com o celular foi anotado (verde), mas não é detectado em modelo algum. 

 
Fonte: O autor, 2025.

 Estes padrões são particularmente relevantes para aplicações como esta, nas 

quais a detecção de todos os trabalhadores presentes na cena é fundamental para 

análise contextual do uso de EPIs, e um erro pode resultar em falhas críticas na 

avaliação de conformidade com normas de segurança. A dificuldade em detectar 

pessoas parcialmente oclusas ou em segundo plano reflete limitações conhecidas 

das arquiteturas YOLO, que podem ter maior facilidade com objetos mais 

proeminentes no frame (HU et al., 2023). De mesmo modo foram evidenciados 

casos de detecções corretas de pessoas não originalmente anotadas, como na 

Figura 8, sugerindo que os modelos podem desenvolver capacidade de 

generalização superior à cobertura das anotações manuais originais. 
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Figura 8 - Trabalhador não anotado (verde) é detectado nos modelos de 20% (rosa), 30% e 100% 
(vermelho). 

  
Fonte: o autor, 2025.

 A capacidade dos modelos de identificar instâncias válidas não anotadas 

pode indicar que o processo de pseudo-labeling pode ter sido capaz de enriquecer o 

dataset além das limitações das anotações manuais iniciais. 

4.4. DISCUSSÃO SOBRE A ECONOMIA DE TEMPO DE ANOTAÇÃO 

 A implementação da abordagem semi supervisionada proposta resulta em 

uma economia substancial de recursos humanos dedicados à anotação de dados, 

de acordo com as motivações fundamentais que impulsionam o desenvolvimento de 

métodos semi supervisionados nos trabalhos sobre visão computacional. O cenário 

com 10% de anotação manual requereu 66 dias a menos (77 x 11), enquanto o 

cenário de 20% reduziu em 54 dias o processo (77 x 23) e o cenário de 30% reduziu 

em 45 dias as anotações (77 x 32). Esta economia de tempo tem implicações 

econômicas significativas, especialmente considerando que anotação de dados 

especializados requer expertise técnica e um custo associado que pode ser elevado, 

a depender da complexidade (SNOW et al., 2008). A comparação com custos 

reportados na literatura reforça a relevância econômica dos resultados obtidos. Lin 
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et al. (2014) reportaram que a criação do dataset MS COCO requereu cerca de 

60.000 horas humana. A redução no esforço de anotação, mantendo performance 

comparável, representa avanço significativo na viabilidade prática de sistemas de 

detecção automatizada para aplicações industriais. A análise econômica deve 

também considerar os custos de oportunidade associados ao tempo de 

especialistas. Em contextos industriais, profissionais qualificados em segurança do 

trabalho frequentemente possuem outras responsabilidades críticas, tornando o 

tempo dedicado à anotação de dados uma limitação prática significativa. A redução 

de 77 para 11, 23 e 32 dias de anotação representa liberação substancial de 

recursos humanos especializados para outras atividades de valor agregado, além da 

diminuição da fadiga e possível aumento da motivação no trabalho. 

 A escalabilidade da abordagem proposta constitui uma vantagem adicional 

com implicações práticas importantes. Uma vez estabelecida o fluxo do experimento 

semi supervisionado, novos dados podem ser incorporados com mínimo esforço de 

anotação manual adicional, permitindo adaptação contínua e melhoria iterativa dos 

modelos de detecção. Esta característica é especialmente relevante para aplicações 

industriais, nas quais condições operacionais, equipamentos, layouts e 

procedimentos podem evoluir ao longo do tempo, requerendo adaptação dos 

sistemas de monitoramento. 

4.5. VALIDAÇÃO EM DATASET PÚBLICO 

 Para avaliar a capacidade de generalização da abordagem proposta, além do 

contexto industrial específico no qual os modelos foram desenvolvidos, foi conduzida 

validação adicional utilizando um dataset público para detecção de EPIs. Importante 

ressaltar que para esta validação, a metodologia completa foi reaplicada, com os 

seguintes passos: primeiro, seleção de proporções de dados para anotação manual 

(10%, 20%, 30%); segundo, treinamento do Modelo 1 com dados parcialmente 

anotados; terceiro, geração de pseudo-labels para dados não anotados; e por fim, 

treinamento do Modelo 2 com pseudo-labels gerados. Portanto, os modelos 

avaliados no dataset público foram treinados especificamente nesse dataset 

utilizando a mesma estratégia metodológica, não representando transferência direta 

dos modelos desenvolvidos no dataset industrial coletado pelo autor deste trabalho. 
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 4.5.1 Contexto do SH17 Dataset 

 O SH17 Dataset  representa um dos datasets mais abrangentes disponíveis 1

publicamente para detecção de EPIs em contextos industriais. Composto por 8.099 

imagens anotadas contendo 75.994 instâncias distribuídas em 17 classes de 

equipamentos de proteção individual, o dataset foi coletado em diversos ambientes 

industriais reais, incluindo construção civil e ambientes de produção. Uma 

característica distintiva deste dataset é a prevalência de objetos pequenos: 52% das 

anotações ocupam menos de 1% da área total da imagem, e 78% ocupam menos 

de 5%. 

 As 17 classes incluem não apenas EPIs propriamente ditos (helmet, vest, 

mask, safety glasses, gloves, safety shoes, earmuff, earplug), mas também suas 

correspondentes classes negativas (no-helmet, no-vest, no-mask, no-safety glasses, 

no-gloves, no-safety shoes), além das classes person, head e body. 

 4.5.2 Resultados 

 Para o presente estudo, a avaliação focou nas classes que apresentam 

correspondência conceitual com o dataset industrial original deste trabalho: helmet, 

vest, person e earmuffs. É importante ressaltar que os resultados dos autores do 

dataset contemplam todas as 17 classes (AHMAD; RAHIMI, 2024), estabelecendo 

referência de performance para os resultados deste trabalho. 

 A Tabela 17 mostra os resultados alcançados em cada métrica para cada 

percentual anotado, e a última coluna traz os resultados dos autores originais para a 

mesma arquitetura utilizada. 

 Disponível em: https://www.kaggle.com/datasets/mugheesahmad/sh17-dataset-for-ppe-detection. 1
Acesso em: 19 set. 2025
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Tabela 17 - Estatísticas descritivas dos resultados no SH17.  

Fonte: O autor, 2025. 

 A comparação revela uma performance equivalente aos resultados reportados 

por Ahmad e Rahimi (2024). A métrica mAP@0.5:0.95 para o modelo com 100% de 

anotação tem o melhor resultado, atingindo 0.405, ficando apenas 1.2% abaixo do 

reportado pelos autores originais. A diminuição generalizada pode ser explicada por 

múltiplos fatores que caracterizam a falta de metodologia pensada especificamente 

para o contexto, uma vez que as imagens já anotadas foram incorporadas ao 

processo. 

 Primeiro, o contexto operacional fundamentalmente distinto entre os 

ambientes afeta profundamente a detecção. Enquanto o dataset original foi coletado 

em ambiente industrial controlado de manufatura com ângulos de câmera fixos, 

distâncias padronizadas e iluminação homogênea, o SH17 apresenta diversidade 

extrema: imagens de múltiplos setores industriais, variações de ângulo de câmera, 

distâncias diferentes e condições de iluminação heterogêneas. Por último, o desafio 

de objetos pequenos no SH17 (52% das anotações < 1% da área) torna difícil a 

generalização para aprendizados semi-supervisionados. 

4.6. LIMITAÇÕES E CONSIDERAÇÕES METODOLÓGICAS 

  
 Apesar dos resultados promissores, diversas limitações metodológicas devem 

ser cuidadosamente consideradas na interpretação dos achados apresentados. A 

identificação dessas é fundamental para contextualizar adequadamente as 

contribuições e orientar desenvolvimentos futuros. 

 A primeira limitação significativa refere-se ao tamanho e especificidade da 

base de dados utilizada. Com 50.088 imagens derivadas de um único ambiente 

Métrica 10% 20% 30% 100% Original

Precision 0.673±0.031 0.712±0.026 0.748±0.021 0.781±0.018 0,815

Recall 0.414±0.035 0.458±0.029 0.503±0.024 0.538±0.020 0,557

mAP@0,5 0.492±0.029 0.548±0.024 0.571±0.019 0.609±0.016 0,637

mAP@0,5:0,95 0.323±0.036 0.379±0.031 0.398±0.026 0.405±0.022 0,417
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industrial, o dataset é relativamente pequeno comparado aos padrões estabelecidos 

na literatura de detecção de objetos, na qual datasets como MS COCO contêm 

cerca de 328.000 imagens (LIN et al., 2014). Isto impactou a generalização dos 

resultados para outros contextos industriais com características visuais, condições 

de iluminação e/ou tipos de equipamentos diferentes, como visto na seção 4.6. A 

especificidade do ambiente de coleta também representa uma consideração 

importante. A base foi coletada em uma única instalação industrial no interior de São 

Paulo, com características, equipamentos e procedimentos específicos. A 

generalização para outras indústrias, regiões geográficas ou tipos de EPIs sempre 

irá requerer validação adicional, como feita na seção 4.5. 

 Outro tópico a ser discutido é a dependência crítica da qualidade dos pseudo-

labels gerados pelo Modelo 1. Erros sistemáticos introduzidos durante esta etapa 

podem propagar-se e amplificar-se durante o treinamento do Modelo 2 (OLIVER et 

al., 2019) e levar a vieses de confirmação (ARAZO et al., 2020). A inspeção visual 

manual implementada como controle de qualidade, embora forneça algum nível de 

verificação, possui limitações inerentes. Esta abordagem não é escalável para 

datasets maiores e pode não capturar os padrões de erro relevantes. Métodos 

automatizados de avaliação de qualidade de pseudo-labels podem fornecer controle 

de qualidade mais rigoroso e escalável. 

 Finalmente, a análise qualitativa revelou que certas condições operacionais 

como oclusões e posicionamento de trabalhadores continuam representando 

desafios significativos para todos os modelos testados. Estas limitações são 

inerentes à complexidade do domínio de aplicações reais e refletem desafios 

fundamentais em visão computacional que podem requerer estratégias 

complementares para serem adequadamente endereçadas. As oclusões, em 

particular, representam um desafio técnico que pode requerer abordagens 

arquiteturais mais sofisticadas, como redes neurais com mecanismos de atenção 

(GUO; XU; LIU, 2022). 
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5 CONCLUSÕES E TRABALHOS FUTUROS 

5.1. PRINCIPAIS CONCLUSÕES DA PESQUISA 

 Este trabalho teve como objetivo central avaliar o método de aprendizado 

mais eficaz para rotulação de imagens em detecção de Equipamentos de Proteção 

Individual, respondendo à questão: "Qual a abordagem mais custo-benéfica para o 

caso de uso apresentado?". Com base na investigação experimental conduzida, 

conclui-se que há indícios que a abordagem semi supervisionada constitui uma 

alternativa viável e economicamente vantajosa ao aprendizado totalmente 

supervisionado para o domínio específico de detecção de EPIs no ambiente 

industrial. Esta constatação pode representar uma mudança na forma como 

sistemas de detecção automatizada podem ser desenvolvidos e implementados 

nestes contextos, nos quais tradicionalmente o gargalo reside na disponibilidade de 

dados especializados, na anotação por profissionais qualificados, no tempo 

dedicado, na fadiga, e na falta de motivação para a execução de uma tarefa 

repetitiva. A redução substancial do tempo necessário para anotação manual libera 

profissionais de segurança do trabalho para atividades de maior valor agregado, 

como desenvolvimento de políticas de segurança, treinamento de funcionários e 

análise estratégica de riscos ocupacionais. 

 O presente estudo sugere que diferentes classes de EPIs apresentam 

comportamentos distintos no processo de aprendizado semi supervisionado, 

acrescentando que estratégias de treinamento personalizadas por categoria podem 

otimizar ainda mais os resultados. Isto indica que a abordagem utilizada pode não 

ser ideal para todos os tipos de equipamentos de proteção, indicando um caminho 

para metodologias que trate cada objeto com a especialidade para o contexto de 

cada caso de uso. 

5.2. IMPLICAÇÕES PRÁTICAS E ACADÊMICAS 

 O trabalho promove à discussão um precedente metodológico para 

implementação de sistemas de visão computacional em ambientes com recursos 
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limitados para anotação de dados, como foi aplicado na indústria paulista. A 

demonstração feita pode acelerar a adoção de tecnologias de monitoramento 

automatizado em empresas, que podem enfrentar barreiras de entrada devido aos 

custos de desenvolvimento de datasets especializados, facilitando a democratização 

do acesso a tecnologias avançadas de segurança ocupacional. 

 Do ponto de vista acadêmico, este trabalho contribui para o crescente corpo 

de literatura sobre aplicações práticas de aprendizado semi supervisionado em visão 

computacional. A pesquisa fornece indícios de que princípios teóricos bem 

estabelecidos podem ser efetivamente traduzidos para aplicações, preenchendo 

lacuna importante entre teoria e prática no campo de aprendizado de máquina 

aplicado, com a constituição de uma base de dados real. 

 Esta investigação também destaca a importância de considerar fatores 

econômicos e operacionais no projeto de sistemas de aprendizado de máquina. 

Frequentemente, pesquisas acadêmicas focam exclusivamente em métricas de 

performance técnica, negligenciando considerações práticas que determinam a 

viabilidade de implementação. É importante notar que a otimização conjunta de 

performance técnica e eficiência econômica pode levar a soluções mais sustentáveis 

e amplamente aplicáveis. 

5.3. SUGESTÕES DE TRABALHOS FUTUROS 

 5.3.1 Aplicação em outros ambientes industriais 

 A generalização da metodologia proposta para diferentes setores industriais 

representa uma direção natural de expansão desta pesquisa. Cada ambiente 

apresenta desafios únicos relacionados a condições de iluminação, densidade 

populacional e protocolos específicos de segurança. Investigações futuras deveriam 

explorar a possibilidade do uso de transfer learning dos modelos desenvolvidos 

entre diferentes contextos industriais, avaliando tanto a robustez da abordagem 

quanto a necessidade de adaptações específicas por setor. 

 A aplicação em ambientes de alta complexidade visual, como plataformas 

petrolíferas, minas subterrâneas ou plantas químicas, nos quais condições extremas 
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de operação podem desafiar sistemas convencionais de visão computacional pode 

se tornar uma pesquisa enriquecedora. Tais ambientes frequentemente apresentam 

limitações adicionais de conectividade e processamento que poderiam beneficiar-se 

de abordagens que maximizam o custo-benefício. 

 Além disso, a criação de uma unidade entre as indústrias para 

desenvolvimento colaborativo de datasets padronizados poderia acelerar 

significativamente o progresso na área, como acontece no campo da ciber 

segurança. Compartilhamento de dados anonimizados entre organizações do 

mesmo setor ou setores relacionados permitiria desenvolvimento de modelos mais 

robustos e generalizáveis, enquanto distribui custos de desenvolvimento entre 

múltiplos stakeholders. 

 5.3.2 Uso de técnicas de active learning 

 A integração de estratégias de active learning representa evolução natural da 

abordagem semi supervisionada proposta. Sistemas que identif icam 

automaticamente quais exemplos não rotulados deveriam ser, pelo impacto no 

contexto, poderiam otimizar ainda mais o processo de desenvolvimento de datasets. 

Esta direção é particularmente relevante considerando que nem todos os exemplos 

não rotulados contribuem igualmente e podem até prejudicar o aprendizado do 

modelo, enquanto a rotulação de poucos frames adicionais pode trazer um ganho 

significativo no processo (YOO; KWEON, 2019). Além disso, desenvolvimento de 

interfaces que facilitem a interação entre algoritmos de active learning e equipes 

especialistas em segurança poderia revolucionar o processo de anotação. Sistemas 

que apresentam casos de incerteza máxima ou exemplos representativos de regiões 

inexploradas do espaço de características permitiriam que essas equipes contribuam 

de forma mais estratégica e eficiente. 
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