e~
e
e

=

L

UFPE

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO

Ariany Franca Cavalcante

Avaliacdo de Métodos de Calibracdo Automatica de Cameras Utilizando Pedestres como

Referéncia

Recife
2025



Ariany Franca Cavalcante

Avaliacao de Métodos de Calibracdo Automatica de Cameras Utilizando Pedestres como

Referéncia

Trabalho de dissertacdo apresentado ao Programa
de Pés-Graduacdo em Ciéncia da Computacdo do
Centro de Informatica da Universidade Federal de
Pernambuco, como requisito para obtencao do titulo
de Mestre em Ciéncia da Computacao.

Area de Concentracao: Inteligéncia Computacio-
nal

Orientacdo: Veronica Teichrieb

Coorientador: Rafael Alves Roberto

Recife
2025



.Catalogac¢éo de Publicacéo na Fonte. UFPE - Biblioteca Central

Caval cante, Ariany Franca.

Aval i acdo de nétodos de calibragcdo automati ca de céaneras
utilizando pedestres conp referéncia / Ariany Franca Caval cante.
- Recife, 2025.

67f.: il.

Di ssertacao (Mestrado)- Universi dade Federal de Pernanbuco,
Centro de Informatica, Progranma de POs-G aduacdo em Ci éncia da
Conput acdo, 2025.

Ori entagdo: Veronica Teichrieb.

1. Visdo conputacional; 2. Calibracdo de céaneras; 3. Deteccdo
de pedestres. |. Teichrieb, Veronica. Il. Titulo.

UFPE- Bi bl i ot eca Central




Ariany Franca Cavalcante

“l Avaliagao de Métodos de Calibragao Automatica de
Cameras Utilizando Pedestres como Referéncia”

Dissertagdo de mestrado apresentada ao
Programa de Pos-Graduagdo em Ciéncia da
Computagdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtengdo do titulo de Mestre em Ciéncia da
Computagdo. Area de Concentragio: Midia e
Interacao.

Aprovado em: 31/03/2025.

Orientadora: Profa. Dra. Veronica Teichrieb

BANCA EXAMINADORA

Prof. Dr. Silvio de Barros Melo
Centro de Informatica / UFPE

Prof. Dr. Lucas Silva Figueiredo
Departamento de Computagdao / UFRPE

Prof. Dr. Rafael Alves Roberto
University of Bath
(coorientador)



A minha familia, que sempre esteve comigo, mesmo a distancia, oferecendo apoio incon-

dicional para que eu pudesse seguir esta jornada.

A minha orientadora, professora Verdnica Teichrieb, pela dedicacdo e incentivo a pesquisa.

Sua experiéncia e compromisso s3o fontes de inspiracao.

Ao meu coorientador, Rafael Alves Roberto, por sua colaboracdo e comprometimento

indispensaveis. Agradeco por cada ensinamento, palavra de incentivo e tempo dedicado.

Ao Voxar Labs, pelo ambiente estimulante e enriquecedor, que me proporcionou a oportuni-
dade de crescer e aprender. A todos os membros do laboratério, agradeco pela troca de ideias,
pelo apoio que tornou esta jornada um processo de aprendizado constante e, especialmente,

pela amizade.

A todos os meus professores e pesquisadores mais experientes que, ao longo do caminho,

com seus ensinamentos, me desafiaram e me impulsionaram para conhecimento.

Aos meus amigos de pesquisa, com quem compartilhei momentos de aprendizado e cres-
cimento. A colaboracdo e o companheirismo de cada um foram essenciais para meu desenvol-

vimento, tanto profissional quanto pessoal.



RESUMO

A visdao computacional desempenha um papel essencial em diversas aplicacdes, como vi-
gilancia inteligente e reconstrucdo 3D, permitindo o rastreamento de pessoas e objetos em
sistemas multi-cdmera. No entanto, para que esses sistemas operem corretamente, é funda-
mental que a calibracdo das cameras seja precisa. A calibracdo automética surge como uma
alternativa promissora a calibracdo manual tradicional, que apresenta desafios significativos,
como a necessidade de um ambiente controlado, a exigéncia de intervencao humana e a difi-
culdade de recalibracdo em sistemas dinamicos. Apesar do seu potencial, muitas técnicas do
estado da arte ainda ndo foram amplamente testadas em cendrios realistas, onde fatores como
oclusoes e rotas curtas podem impactar a precisdo da calibracdo. Diante desse contexto, este
trabalho investiga o desempenho de técnicas de calibracdo automatica baseadas em pedestres,
analisando sua eficacia e limitacdes em ambientes ndo controlados. Os experimentos demons-
tram que, embora a técnica avaliada apresente potencial, ainda ha altos erros de calibracdo
e grande variabilidade nas estimativas dos parametros extrinsecos. A qualidade dos dados de
entrada mostrou-se um fator critico, uma vez que, em condicGes reais, a deteccdo das poses
humanas pode ser comprometida, afetando negativamente a calibracdo. Além disso, a rota
dos pedestres influencia significativamente o desempenho do método. Os resultados indicam
que a calibracdo automatica de redes de cameras ainda enfrenta desafios significativos para
adaptacdo a cendrios dinamicos. Dessa forma, s3o necessérias abordagens mais robustas e ge-
neralizaveis, capazes de lidar com diferentes fontes de erro. A coleta de dados mais controlados

pode ser uma estratégia para isolar e compreender melhor os fatores que afetam a calibracao.

Palavras-chaves: Visao computacional. Calibracdo de cameras. Calibracao automatica. Redes

de cameras. Deteccao de pedestres. Parametros extrinsecos. Ambientes ndo controlados.



ABSTRACT

Computer vision performs a fundamental function in various applications, such as in-
telligent surveillance and 3D reconstruction, enabling the tracking of people and objects in
multi-camera systems. However, for these systems to function correctly, precise camera cal-
ibration is essential. Automatic calibration emerges as a promising alternative to traditional
manual calibration, which presents significant challenges, including the need for a controlled
environment, human intervention, and difficulties in recalibrating dynamic systems. Despite
its potential, many state-of-the-art techniques have not yet been extensively tested in realis-
tic scenarios, where factors such as occlusions and short pedestrian trajectories may impact
calibration accuracy. In this context, this study investigates the performance of pedestrian-
based automatic calibration techniques, analyzing their effectiveness and limitations in uncon-
trolled environments. The experimental results show that, although the evaluated technique
demonstrates potential, it still suffers from high calibration errors and significant variability
in extrinsic parameter estimates. The quality of input data proved to be a critical factor,
as, in real-world conditions, human pose detection may be compromised, negatively affecting
calibration. Moreover, pedestrian motion patterns significantly influence the performance of
the methods. The findings indicate that automatic camera network calibration still encoun-
ters considerable challenges in adapting to dynamic environments. Therefore, more robust and
generalizable approaches are required to handle different sources of error. The collection of
more controlled data may be a strategy to isolate and better understand the factors affecting

calibration.

Keywords: Computer vision. Camera calibration. Automatic calibration. Camera networks.

Pedestrian detection. Extrinsic parameters. Uncontrolled environments.
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1 INTRODUCAO

Organizacdes que atuam no planejamento de espacos urbanos frequentemente enfrentam
o desafio de compreender como esses espacos sdo utilizados por seus usudrios. Entre as in-
formacdes mais relevantes para esse processo estdo os trajetos mais comuns realizados por
pedestres, os pontos de maior permanéncia e as atividades predominantes em determinadas
areas. Atualmente, esse tipo de dado é coletado de forma manual, por meio da observacio
presencial por profissionais em campo, durante algumas horas e em dias especificos, pela Mas-
sapé, uma ONG de urbanismo social de Recife - PE. Esse método, além de ser intensivo em
tempo e mao de obra, oferece uma cobertura limitada e pontual da realidade.

Uma alternativa promissora para melhorar o atendimento dessa demanda consiste no uso
de redes de cameras aliadas a sistemas de visao computacional, capazes de monitorar conti-
nuamente os ambientes e fornecer dados espacializados, como mapas de calor de atividades
e fluxos de movimentacdo de pedestres. Para que tais sistemas operem de forma precisa e
confiavel, é indispensavel que as cameras estejam corretamente calibradas, ou seja, que os
parametros necessarios para associar as imagens captadas com a geometria do ambiente real
estejam devidamente estimados.

O processo de calibracdo de cameras permite estimar dois conjuntos de parametros: os
parametros intrinsecos, que descrevem caracteristicas internas do dispositivo, como distancia
focal e distorcdo da lente; e os parametros extrinsecos, que representam a posicdo e a orienta-
cao da camera no espaco em relacdo a um sistema de coordenadas global. Neste trabalho, o
foco sera direcionado a calibracdo extrinseca, que é a responsavel por espacializar corretamente
as informacdes capturadas pelas cdmeras em um referencial comum.

Tradicionalmente, a calibracdo extrinseca é realizada de forma manual, com o auxilio de
padrdes artificiais, como tabuleiros de xadrez, posicionados em diferentes angulos no campo de
visao das cameras. Esse procedimento, embora muito usado, demanda ambientes controlados
e profissionais especializados, além de apresentar baixa flexibilidade em contextos em que as
cameras rotacionam e ampliam a imagem por meio de zoom. Sempre que uma camera é
reposicionada ou sofre deslocamentos, o processo precisa ser refeito, o que representa um
entrave significativo para aplicacGes em larga escala ou sujeitas a mudancas frequentes.

Diante dessas limitacoes, a calibracdo automatica de cameras surge como uma abordagem

mais eficiente e escalavel. Essa técnica visa estimar os parametros extrinsecos sem a necessi-
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dade de padrdes artificiais ou intervencao manual, reduzindo o tempo e o custo do processo,
além de possibilitar a recalibracdo continua em ambientes sujeitos a mudancas. No contexto
urbano, uma estratégia promissora consiste na utilizacao de pedestres como padrdes naturais,
uma vez que eles estdo frequentemente presentes nesses ambientes, possuem morfologia re-
lativamente estavel e realizam trajetérias que podem ser exploradas para inferir a geometria
da cena. Tais abordagens tém aplicacoes diretas em areas como seguranca publica, analise de
fluxo de pessoas, planejamento urbano e outras tecnologias para cidades inteligentes.

Apesar de seu potencial, as técnicas atuais de calibracao automatica baseadas em pedestres
ainda enfrentam importantes desafios, especialmente quando aplicadas a cenarios urbanos
reais. A literatura existente revela que os testes sao frequentemente realizados em ambientes
controlados, com condi¢cBes simplificadas. Por exemplo, (TRUONG et al, 2019) validam sua
abordagem utilizando no méaximo sete pedestres simultaneamente, enquanto (LEE et al., 2022)
avaliam sua técnica com apenas um individuo posicionado no centro de uma area monitorada
por multiplas cameras. Essas condicGes ndo refletem as complexidades do ambiente urbano
real, onde ha intensa movimentacdo de pessoas.

AplicacGes praticas em contextos reais trazem uma série de desafios adicionais, como
oclusOes causadas por pedestres e objetos do ambiente, variacoes nas condicdes de iluminacao
que geram sombras e dificultam a deteccdo, além da baixa resolucido de muitas cameras
urbanas, o que prejudica a identificacdo e o rastreamento de individuos. Esses fatores impactam
diretamente a robustez das técnicas de calibracao automatica, exigindo investigacbes mais
aprofundadas sobre sua viabilidade e desempenho em condicdes reais de operacdo.

Diante desse contexto, o presente trabalho tem como objetivo investigar a eficacia de
técnicas de calibracdo automatica de cameras baseadas em pedestres em cenarios urbanos reais,
explorando seus pontos fortes, limitacdes e a viabilidade de sua aplicacdo pratica em ambientes
dindmicos. Importa destacar que n3o se trata de um estudo comparativo entre diferentes
métodos, mas sim de uma analise exploratéria voltada a compreensdo do comportamento
dessas abordagens quando aplicadas a situacGes reais. Os testes realizados ndo seguem uma
padronizacao rigida, e sim assumem carater experimental, com o intuito de levantar percepcoes

qualitativas e quantitativas sobre o desempenho das técnicas estudadas.

» Investigar técnicas de calibracao automatica de cameras utilizando pedestres

como referéncia e compreender suas vantagens e limitacdes (Capitulos [2] e ;

» Testar e analisar o desempenho dessas técnicas em diferentes conjuntos de dados
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que simulam cendrios reais, com foco na robustez frente a oclusdes e trajetérias reais

(Capitulos 7?7 e 77);

» ldentificar os principais desafios e possiveis melhorias na calibracao automatica

para tornar essas abordagens mais vidveis para aplicagdes praticas (Capitulo |§[)

Com essa investigacdo, espera-se contribuir para o desenvolvimento de sistemas mais efici-
entes e autonomos de calibracdo de redes de cameras, reduzindo a necessidade de intervencao

manual e tornando a visao computacional mais acessivel e aplicavel a cenarios do mundo real.
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2 REFERENCIAL TEORICO

A calibracdo automatica de camera é bastante relevante em diversos contextos. Alguns
conceitos matematicos s3o fundamentais encontrar os parametros que descrevem a camera.
Este capitulo tem como objetivo mostrar alguns desses principais conceitos. Eles incluem o
modelo matematico de camera mais utilizado, o pinhole, além de geometria epipolar. Também
serd apresentado duas técnicas recentes que ilustram como a calibracdo pode ser realizada

usando pedestres.

2.1 MODELO DE CAMERA PINHOLE

Também conhecido como modelo de orificio, o modelo Pinhole representa a relacdes geo-

métricas entre a cena e a imagem (HARTLEY; ZISSERMAN, 2003)). Ele assume que os raios de

luz passam por um Unico ponto, conhecido como centro de projecao, antes de atingir o plano

da imagem, [T} Isso simplifica a descricdo da formac&o de imagens.

PLANO DA .
MAGEMVIRTUAL (4) " ROEM 3D (8]

PLANO DA IMAGEM (1)

PINHOLE (3)

IMAGEM 2D (2)

Figura 1 — Modelo de cAmera pinhole. Fonte: 2015)).

Matematicamente, o modelo pinhole é descrito por uma matriz de projecao M que mapeia
as coordenadas de um ponto no espaco tridimensional P, = [Zu, Yw, 2w, 1|7 para suas coor-
denadas correspondentes no plano da imagem p = [u, v, 1]. A matriz de projecio é formada
pela matriz de parametros intrinsecos K e a matriz de parametros extrinsecismos [R|t], onde
R é a matriz de rotacdo, e t é o vetor de translacdo. Enquanto os parametros intrinsecos des-
crevem as propriedades internas da camera, como distancia focal e posicao do centro éptico, os
parametros extrinsecos definem a orientacdo e a posicao da camera no espaco tridimensional

em relacdo ao mundo real.
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A calibracdo de camera é um processo para determinar esses parametros intrinsecos e

extrinsecos que descrevem um modelo de camera.

2.1.1 Parametros Intrinsecos e Extrinsecos

Os parametros intrinsecos e extrinsecos desempenham papéis complementares na mode-
lagem de cameras. Enquanto os parametros intrinsecos descrevem as propriedades internas
da camera, como distancia focal e posicdo do centro éptico, os pardmetros extrinsecos de-
finem a orientacdo e a posicao da camera no espaco tridimensional em relacdo ao mundo
real (HARTLEY; ZISSERMAN, 2003)..

Os parametros intrinsecos sdo representados por uma matriz de calibracdo K, que encap-

sula as propriedades internas da camera. Essa matriz é definida como:

f= 0 ¢
K=10 f, ¢l (2.1)
0 0 1

onde f, e f, sdo as distancias focais em pixels nos eixos x e y, e c, e ¢, representam
as coordenadas do centro 6ptico no plano da imagem. Essa matriz projeta os pontos em
coordenadas de camera no plano de imagem, em coordenadas da imagem.

A projecdo de um ponto tridimensional P, = [Zw, Yuw, Zw, 1]7 no sistema de coordenadas
do mundo para a coordenada de camera é feita pelos pardmetros extrinsecos, que sao repre-
sentados pela concatenacdo de uma matriz de rotacdo R e um vetor de translacdo ¢. Esses

parametros transformam o ponto em coordenada de mundo da seguinte forma:

_ 2z
Ry Rix Rz t,
Yw
Pc = [R’t] : Pw = R21 R22 R23 ty . ) (22)
Zw
R31 Rz Rsz t.
- - 1

onde P. = [z, Ye, zC]T sao as coordenadas do ponto no sistema da camera. A matriz R é uma
matriz 3 X 3 que define a orientacdo da camera, enquanto o vetor ¢ representa sua posicao.
A combinacao dos parametros intrinsecos e extrinsecos resulta na matriz de projecdo M,

que mapeia as coordenadas tridimensionais do mundo diretamente para as coordenadas da
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imagem. Essa matriz é definida como:

M =K - [R]1]. (2.3)

O mapeamento completo para as coordenadas da imagem p = [u, v, 1]7 é ent3o dado por:

p=M- P, =K-[R|{] P,. (2.4)

Apesar de sua simplicidade, o modelo pinhole consegue ser til em varias situacoes, refor-
cando a sua popularidade. Porém, ele apresenta limitacSes por ndo considerar as distorcdes
Opticas introduzidas por lentes reais, o que afeta a precisao do mapeamento geométrico. Porém,
modelos complementares podem ser integrados a ele. Isso permite a inclusao de parametros

de distorcdo, por exemplo, aumentando a precisao em situacdes praticas.

2.1.2 Parametros de Distorcao

As lentes das cameras reais introduzem inevitavelmente distorcdes dpticas que comprome-
tem a precisao da projecao geométrica idealizada pelo modelo pinhole. Entre essas distorcdes,
as distorcdes radiais s3o as mais comuns. A correcdo da distorcdo radial é representada por
uma funcdo que ajusta as coordenadas da imagem distorcida (u,v) para as coordenadas cor-
rigidas (u.,v.). Essa relacdo é definida por meio da introducdo de coeficientes de distor¢do

radial k1, ko, k3, . .., e depende da distancia radial r, dada por:

r= \/(u — )2+ (v —¢y)?, (2.5)
onde ¢, e ¢, sdo as coordenadas do ponto central da camera. A correcao é aplicada as

coordenadas normalizadas u e v por meio das seguintes equacoes:

e = u(1 + kir? + kor® + kzr®), (2.6)

Ve = V(1 4 kyr? + kor® + ksr®), (2.7)

onde u. e v, sdo as coordenadas corrigidas apds o ajuste radial.
Além das distorcoes radiais, a distorcao tangencial também pode comprometer a precisao

da projecdo geométrica de uma camera (HEIKKILA; SILVEN, (1997)). Esse tipo de distor¢do ocorre
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devido a imperfeicGes no alinhamento das lentes, o que faz com que os pontos na imagem
sejam deslocados tangencialmente em relacdo ao centro éptico. Ela pode ser descrita por dois
coeficientes p; e p2, que modelam o deslocamento tangencial das coordenadas da imagem,

conforme as seguintes equacoes:

Ue = U + [2p1uv + o (7"2 + 2u2)} , (2.8)

Ve =10+ {pl <r2 + 2112) + 2p2uv} , (2.9)

onde r é a mesma distancia radial dada pela Equacao [2.5

A distorcdo tangencial é frequentemente tratada em conjunto com a distorcao radial, com-
pondo um modelo completo de correcdo. O processo de calibracdo determina os coeficientes
p1 € p2 juntamente com os coeficientes de distorcao radial ky, ko, k3, permitindo uma corre-
cdo combinada que melhora significativamente a qualidade geométrica da projecdo dada pelas

equacoes:

e = u(1 4 kyr? + kord + ksr®) + [2p1uv + po (r2 + 2u2)} , (2.10)

Ve = V(1 4 kyr? 4 kor* + kgr®) + [pl <T2 + 21}2) + 2p2uv} , (2.11)

2.2 GEOMETRIA EPIPOLAR

A geometria epipolar descreve as restricoes geométricas entre duas imagens de uma cena
capturadas a partir de diferentes pontos de vista (HARTLEY; ZISSERMAN, 2003; FAUGERAS; LU-
ONG; PAPADOPOULO, 2001)). Ela é fundamental para a calibracdo de cameras e a reconstrugdo
3D, pois impde relacoes matematicas entre os pontos correspondentes das imagens.

A geometria epipolar se baseia na nocao de epipolo, que é o ponto onde a linha que conecta
os centros de cadmera intersectam o plano de imagem 2

Outro conceito importante é o do plano contendo os centros das cameras e o ponto 3D
que esta sendo observado, chamado de plano epipolar. Quando o ponto 3D é projetado em
uma das imagens, o seu correspondente na outra imagem esta restrito a uma linha, chamada
de linha epipolar. Essa linha é a projecdo da reta que passa pelo centro da primeira camera e o

ponto 3D. Ou seja, se temos o ponto p; na primeira imagem, seu correspondente na segunda
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Figura 2 — Conceitos bésicos de geometria epipolar. Fonte: (TRUCCO; VERRI, [1998]).

imagem est3 restrito a linha epipolar. E importante notar que todas as linhas epipolares passam

pelo epipolo. Matematicamente, essa restricdo é dada pela equacao:

ps - F-p =0, (2.12)

onde p; e ps sdo pontos correspondentes na primeira e segunda cameras, respectivamente, e
F é a matriz fundamental, que encapsula a relacdo geométrica entre as duas cameras.

A matriz fundamental F descreve a relacdo geométrica entre duas cameras. Ela é usada
quando n3o se tem informac3do dos parametros intrinsecos e pode ser calculada a partir de um
conjunto de pontos correspondentes em coordenadas de camera. A matriz essencial E é similar
a matriz fundamental, mas ela assume que o sistema estad calibrado e os pontos expressos
em coordenadas de imagem. A matriz essencial estad relacionada a matriz fundamental pela

seguinte equacao:

E=K, - F-Ki, (2.13)

onde K; e K5 sao as matrizes de parametros intrinsecos das duas cameras.

2.2.1 Erro Epipolar

O erro epipolar mede a distancia entre um ponto projetado e sua linha epipolar correspon-
dente. Essa distancia é um indicativo da precisao da calibracao das cameras e da reconstrucao

3D (HARTLEY; ZISSERMAN, 2003). Uma métrica para esse erro é a distancia simétrica epipolar:

d(p1;l2) + d(p2, 1), (2.14)
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onde d(p,1) é uma funcdo que calcula a menor distancia entre um ponto p em coordenada de

imagem e uma reta na imagem e [y e [y s3o as linhas epipolares na primeira e segunda camera.

2.3 METODOS DE CALIBRACAO DE CAMERA

O processo de calibracdo de cameras é uma etapa fundamental para garantir a precisao
de aplicacdes de visdo computacional. Ele envolve o uso de caracteristicas facilmente distin-
guivel na imagem para calcular as matrizes K e R e o vetor t. Essas caracteristicas podem
ser extraidas de objetos artificiais inseridos na cena, como um template xadrez, assim como
elementos naturais, como linhas e pedestres. Apods isso, os dados extraidos sao utilizados para

estimar as matrizes de calibracao.

2.3.1 Extracao de Caracteristicas por Elementos Artificiais

O método mais comum de calibracdo utiliza padrGes facilmente reconhecidos, como tabu-
leiros de xadrez ou alvos de pontos circulares, colocados na cena. A posicao e dimensao desses
padrbes sdao medidos, que permite correlacionar os pontos extraidos na imagem com uma re-
feréncia em coordenadas de mundo. Por serem padrdes de alto contraste, esses padrbes sdo
mais facilmente identificados e os pontos na imagem correspondentes a eles sdo extraidos na
imagem. Esse tipo de calibracdo é feito capturando mdltiplas imagens do padrdo em diferentes

posicoes e momentos.

2.3.2 Extracao de Caracteristicas por Elementos Naturais

Esta forma de extrair caracteristicas da imagem explora elementos naturais pertencentes a
cena, como pontos de alto destaque, linhas e até pedestres. A grande vantagem dessa forma
é que ela pode automatizar o processo de calibracao, uma vez que nao é necessario interferir
na cena. Por outro lado, essas caracteristicas sao mais dificeis de serem extraidas, que pode
resultar num aumento da imprecisdo, por exemplo.

Uma das formas de extrais caracteristicas da imagem sem a necessidade de inserir ele-
mentos artificiais € identificar pontos de alto destaques, também chamados de features. Eles
podem ser encontrados usando extratores de features, como o SIFT (Scale-Invariant Feature

Transform) (LOWE, 2004). Para encontrar uma referéncia com as coordenadas de mundo,
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normalmente sdo usadas features de objetos cujas dimensdes e posicdes sao conhecidas.

2.3.3 Calibracao de Cameras

As caracteristicas extraidas, seja utilizando elementos artificiais ou naturais, s3o utilizadas
para estimar os parametros intrinsecos e extrinsecos da camera. Essas caracteristicas estdo
presentes varios frames e as correspondéncias delas durante a sequéncia e os seus correspon-
dentes em coordenada de mundo podem ser usados para realizar a calibracdo. Uma das formas
é usando a Transformac3o Linear Direta (cuja sigla do termo em inglés é DLT) (ABDEL-AZIZ;
KARARA; HAUCK|, 2015)). Ela utiliza as correspondéncias 2D-3D para calcular a matriz de pro-
jecdo M. Posteriormente, a matriz M pode ser decomposta em seus componentes intrinsecos
K e extrinsecos [R|t] usando a Decomposicdo em Valores Singulares (cuja sigla do termo em
inglés é SVD) (KLEMA; LAUB, [1980)), seguida por uma etapa de refinamento por métodos de
otimizacao nao linear, como o algoritmo de Levenberg-Marquardt.

Casos onde os pontos 3D s3o coplanares podem ocorrer quando as caracteristicas sao
extraidas usando elementos artificiais. Nesse caso, sdo calculadas as homografias que mapeiam
os pontos 2D das imagens para os pontos 3D do plano. A partir dessas homografias, é possivel
extrair uma estimativa inicial dos parametros, que pode ser posteriormente refinada através

de uma otimizacdo nio linear, minimizando o erro de reprojecdo (ZHANG, 2002).

2.3.4 Calibracao de Rede Multicameras

A calibracdo de cameras pode ser aplicada tanto a sistemas com uma tnica camera quanto
a redes multicameras. No caso de uma Unica camera, o processo envolve a determinacao
dos parametros intrinsecos e extrinsecos em relacdo a um referencial, permitindo mapear
pontos do mundo tridimensional para a imagem bidimensional. Entretanto, em uma rede de
cameras, além da calibracdo individual de cada dispositivo, é necessario estimar as relacoes
espaciais entre elas, ou seja, determinar as matrizes de rotacao e os vetores de translacdo que
alinham os diferentes sistemas de coordenadas em um referencial comum (FAUGERAS; LUONG;
PAPADOPOULO, 2001)).

Em redes multicdmeras, surgem desafios adicionais, como a necessidade de sincroniza-
cdo temporal e de um alinhamento espacial preciso, especialmente em ambientes dinamicos

onde os cenarios podem mudar rapidamente. Técnicas avancadas sao empregadas para ajus-
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tar os parametros de cada camera e minimizar discrepancias entre as diferentes perspectivas,
considerando fatores como iluminacao variavel, oclusdes e movimentos rapidos. Pardametros
compartilhados, como a distancia entre as cameras e a orientacao relativa, sdo fundamentais
para garantir a consisténcia geométrica e a precisdo na reconstrucdo tridimensional, enquanto
a sincronizacao dos frames é crucial para a integracdo confiavel dos dados, especialmente em
aplicacdes de monitoramento em tempo real.

Além disso, a sobreposicao das areas capturadas por diferentes cameras oferece redundancia
e melhora a precisdo dos algoritmos de visao computacional. Métodos robustos de calibracao
aproveitam a correspondéncia de pontos em mdltiplas vistas e a utilizacdo de objetos com
trajetérias conhecidas para refinar as estimativas. A aplicacdo de técnicas de otimizacdo, como
a minimizacdo do erro de reprojecao, permite ajustar globalmente os parametros intrinsecos
e extrinsecos, enquanto modelos matematicos avancados incorporam regularizacdes para lidar
com diferencas de resolucao e sobreposicdo de campos de visdo, transformando o problema

em uma complexa otimizacao multidimensional.

2.4 METODOS DE CALIBRACAO BASEADO EM PEDESTRES

Um outro elemento que pode ser usado na extracao de caracteristicas naturais sao pe-
destres, especialmente quando se trata de cenérios urbanos (GUAN et al., [2016; TEMPELAAR,
2022). Essas técnicas exploram pontos da anatomia humana, como articulacdes e extremi-
dades do corpo humano, como correspondéncias para estimar relacdes entre cameras. Essas
abordagem baseia-se na premissa de que uma pessoa manterad sua estrutura corporal, como
distancia da cabeca aos pés, ao ser capturada em diferentes instantes de tempo. Assim, é
possivel extrair uma relacao entre as caracteristicas extraidas da imagem e as coordenadas de
mundo. Dois tipos de técnicas sdo usados como base para ilustrar como pedestres podem ser

usados para estimar a calibracao extrinseca.

2.4.1 Calibracao Extrinseca Baseada em Torsores de Pedestres

O TorsorCalib (TRUONG et al., [2019)) usa o conceito do torso de um pedestre para obter
os pontos que serdo usados na calibracdo. O torso é um segmento de reta que vai do pescoco
até os pés de uma pessoa. Para obter a posicdo de um pedestre na imagem, é aplicado um

método de deteccao de pose humana, que fornece o esqueleto das principais articulacdes do
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corpo. Esses métodos podem ser o AlphaPose (FANG et al, 2022) ou o OpenPose ((CAO et al.,
2019). A articulagdo do pescoco é utilizada como referéncia para a parte superior do torso,
enquanto a base é definida como o ponto médio entre os tornozelos esquerdo e direito. Essa
técnica assume que os frames estao sincronizacao e a calibracdo intrinseca ja foi realizada.

Seja uma rede de cameras composta por n cameras C,C5,...,C,, e o ponto P, =
[T, Y, 2w, 1]T. Cada cAmera possui seu préprio sistema de coordenadas locais. Assim, o ponto
P,, no sistema da camera i é dado por PV = [0 () 20 1]7 Assim, a transformacdo que
leva do sistema de coordenadas de mundo para o sistema de coordenadas de qual quer uma
das cAmeras é dada por P\) = R(® . P, + (),

No TorsoCalib, a calibracao é realizada por pares de camera. Assim, nessas duas cameras
observadas, supOe-se que o pedestre moveu-se em m frames e manteve a mesma postura.
Sejam a? (f) e ﬁg)p(f) as posicdes de imagem da base e do topo do pedestre na cadmera

bottom

¢t no frame f. Essas coordenadas sao normalizadas como i{ﬁmm(f) e ig)p(f), permitindo a
recuperacdo das coordenadas 3D (GUAN et al., [2016)).
Assumindo que o pedestre tem altura h, define-se as coordenadas tridimensionais da base

e do topo como:

P op() = 28 cop ()Xo (f), (2.15)
Py pottom(F) = 24 vottom () Xbatiom (f)- (2.16)

Dessa forma, tem-se:
Py cop(f) = P portom () = hel?, (2.17)

onde e{) é o vetor unitario do pedestre na camera i.
Pode-se entao calcular um vetor 3D perpendicular ao plano vertical contendo a origem da

camera e os pontos de topo e base:

M (f) = Z{ohom () X Ziop(f)- (2.18)

A intersecio desses planos define a direcio vertical comum, e aplica-se SVD a matriz M®
para determinar e"). Finalmente, usa-se Analise de Procrustes para estimar a transformacio
rigida entre os conjuntos de pontos 3D e, assim, chega-se a matriz de rotacio R e a de

translacdo t(®).
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2.4.2 Calibracao Extrinseca Baseada em Articulacdes Orientadas de um Corpo em

Movimento

O MovingCalib (LEE et al., [2022) considera a movimentacdo do corpo humano para realizar a
calibracdo. Diferente de abordagens convencionais que utilizam apenas pontos correspondentes
2D ou 3D, este método considera as posicdes e orientacoes das articulacdes corporais. Dessa
forma, cada ponto possui uma posicao s e uma dire¢do vy em coordenadas de mundo. Assim,
para uma cimera ¢ com rotacdo matriz de rotacio RV e vetor de translacio ¢(¥), esses pontos

sdo transformados para o sistema da camera por meio das equacdes:

PO =R .pp 4 t® (2.19)
o = RO .oy (2.20)

e projetados na imagem usando a matriz intrinseca K9, obtida previamente.

A calibracdo inicia com a estimativa da rotacdo, que é obtida formando-se uma matriz de
observacao a partir das direcoes v](f) medidas. A decomposicdo em valores singulares (SVD)
dessa matriz permite recuperar rotacoes normalizadas para cada camera. Com as rotacdes
determinadas, a translacdo é estimada utilizando restricdes de colinearidade e coplanaridade,
que garantem a consisténcia entre os pontos 3D e suas projecoes.

Apbs essas etapas, € aplicado um bundle adjustment para minimizar o erro de reprojecao,
refinando simultaneamente os parametros extrinsecos. Complementarmente, um fine-tuning
auto-supervisionado utiliza as poses humanas 3D trianguladas como pseudo ground-truth para

aprimorar o estimador de pose 3D monocular, garantindo uma calibracdo robusta mesmo em

condicdes de entrada ruidosa.
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3 REVISAO DA LITERATURA

Existe uma vasta e diversa literatura na area de calibracdo extrinseca automatica de ca-
meras e redes de cameras. Elas variam em relacdo a quantidade de pedestres necessarios,
passando por abordagens baseadas correspondéncia entre linhas epipolares de silhuetas em
movimento e até métodos nao supervisionados baseados em trajetérias de pessoas.

(H6DLMOSER; KAMPEL, [2010) propdem um método para calibrar redes de cameras de vi-
gilancia utilizando o movimento de um tnico pedestre como referéncia. A abordagem calcula
os parametros intrinsecos e extrinsecos das cimeras, além de um fator de escala para estimar
a altura real do pedestre. Os experimentos, realizados com dados sintéticos e reais, eviden-
ciam a precisao e robustez do método, mesmo na presenca de ruido ou variacdo nos pontos
detectados. A técnica também se destaca pela eficiéncia computacional, com um incremento
de apenas 1,4 segundos no tempo de processamento por camera adicionada. Esta solucdo ofe-
rece uma alternativa pratica e eficaz para calibracdo em cenérios de seguranca, possibilitando
reconstrucdo 3D e estimativas de altura em ambientes desafiadores.

Ja a téenica proposta por (BEN-ARTZI, [2017)) utiliza correspondéncia entre linhas epipolares
das silhuetas de pessoas em movimento. Melhorando em duas vezes o desempenho de métodos
semelhantes e reduzindo outliers. Os pontos positivos deste estudo incluem o uso de um modelo
de grafos que melhora a capacidade de realizar correspondéncias de pontos em diferentes
vistas. Além de que, o uso de estimadores de probabilidade condicional permite um fine-
tuning das correspondéncias, o que pode ser especialmente (til em cenas com movimento
complexo. No entanto, a abordagem é dependente do movimento das silhuetas, o que pode
ser problematico se os objetos possuem contornos pouco definidos. Além disso, a técnica pode
falhar em situacGes em que os epipolos estdo dentro do casco convexo, o que dificulta a
recuperacdo de pontos de correspondéncia precisos.

O trabalho de (POSSEGGER et al., 2012) propde um método de calibracdo extrinseca ndo
supervisionada para redes de cameras estaticas e PTZ (sigla para pan-tilt-zoom), baseado em
correspondéncias entre trajetérias de pessoas em movimento. A abordagem utiliza a extracdo
de localizacGes de cabeca e pés de pedestres a partir de imagens e realiza uma otimizacdo nao
linear do erro de reprojecao para determinar os parametros extrinsecos das cameras. Os expe-
rimentos demonstraram que o método consegue fornecer estimativas precisas dos parametros

de cameras em cendrios variados, incluindo cenéarios externos. Pontos positivos incluem capa-
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cidade do método de lidar com cameras PTZ e cenas com muiltiplos objetos em movimento.
No entanto, pontos negativos envolvem a dependéncia da qualidade dos rastreamentos das
pessoas, 0 que pode ser comprometido por oclusdes ou movimentacoes rapidas.

O estudo de (lLIU; COLLINS; LIU| [2013)) prop&e uma abordagem para a autocalibracdo de ca-
meras em redes de vigilancia, utilizando uma estrutura de otimizacdo conjunta combinada com
estatisticas para obter calibracao precisa. Para esta técnica nao sao necessarios o rastreamento
ou pontos de correspondéncia da mesma pessoa ao longo do tempo ou entre diferentes vistas.
O algoritmo se destaca por sua robustez em cenarios desafiadores, como ambientes com densi-
dades moderadas de multidGes e com ruido significativo proveniente de elementos de primeiro
plano. No entanto, sua eficacia depende da qualidade das deteccoes e pode exigir recursos
computacionais consideraveis, o que pode representar um desafio para implementacdes em
tempo real.

(TEIXEIRA; MAFFRA; BADII, 2014) apresentam um framework para a autocalibragdo de ca-
meras de vigilancia em cendarios reais. O método proposto é generalizavel para cenérios do
mundo real e utiliza segmentacao semantica para gerar um mapa de ocupacao, identificando
areas de interesse na cena, destacando pedestres e minimizando o impacto de oclusGes. Essa
abordagem permite ao framework lidar de forma eficaz com desafios como oclusoes e a pre-
senca de objetos inesperados na cena. Além disso, o método integra a deteccao de pedestres
com a aplicacdo do algoritmo RANSAC para identificar linhas verticais e estimar o ponto
de fuga vertical. Um aspecto adicional destacado no framework é a capacidade de refinar as
estimativas de altura dos pedestres, o que melhora a precisdo para aplicacdes que dependem
dessa funcionalidade.

O método proposto por (PUWEIN et al., 2015)) oferece uma abordagem robusta para a cali-
bracdo de cameras e a estimativa das posicdes 3D das articulacdes humanas em cenas onde ha
a movimentacdo de pedestres. As posicdes das articulacdes sdo estimadas para, em seguida,
realizar uma otimizacdo conjunta dos parametros extrinsecos das cameras e das posicoes 3D
das articulacdes. Os pontos fortes do método incluem sua capacidade de proporcionar uma
calibracdo precisa. Além de que, a otimizacdo considera miltiplos fatores, como continui-
dade temporal, fluxo éptico e visibilidade das partes do corpo. A abordagem demonstrou boa
generalizacao, com bons resultados em diferentes conjuntos de dados.

(LETTRY; DRAGON; GOOL, 2017 propdem um método para a calibrac3o de redes de came-
ras baseado em correspondéncias de planos e amostragem probabilistica, abordando desafios

como planos cruzados e a presenca de outliers. A metodologia utiliza técnicas estatisticas
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combinadas com algoritmos de Monte Carlo via Cadeia de Markov (MCMC) em camadas para
estimar matrizes de homografia entre planos observados por diferentes cameras. O processo
inicia com a calibracdo de pares de cameras que apresentam boa sobreposicao e baixa movi-
mentac3do, aproveitando esses resultados para calibrar, de forma progressiva, pares com menor
sobreposicdo ou maior movimento em um esquema em cascata. A robustez do método é des-
tacada pela sua capacidade de lidar com correspondéncias imprecisas e outliers por meio da
modelagem probabilistica, além de abordar planos cruzados utilizando caminhos triangulares
mais curtos para estabelecer correspondéncias. Entretanto, o uso de MCMC em camadas au-
menta significativamente a complexidade computacional, tornando o método potencialmente
menos eficiente para conjuntos de dados extensos. Além disso, o desempenho depende forte-
mente de uma parametrizacdo adequada, demandando ajustes criteriosos para obter resultados
satisfatorios.

(HALPERIN; WERMAN, 2018)) apresentam um método eficiente para calcular a geometria
epipolar em cenas dindmicas de redes de cadmeras. A base do método considera a corres-
pondéncia entre pixels e linhas epipolares em vistas diferentes. Avaliado em videos reais, o
método demonstrou superioridade em relacao a abordagens semelhantes, gracas aos refina-
mentos aplicados e a significativa reducdo da complexidade computacional. Além disso, a
técnica se destaca por sua eficacia em cenarios onde as cameras possuem angulos de visdo
substancialmente diferentes, superando os desafios associados a correspondéncia de pontos
nesses casos.

O estudo de (TRUONG et al} [2019)), fundamentado na técnica investigada por (GUAN et al|
2016)), propde uma solucdo para a calibragdo de cdmeras em cenérios urbanos com mais de
uma pessoa e oclusdes parciais. O método se baseia na deteccdo de poses humanas em imagens
de cameras, modelando os pedestres como bastdes verticais, para estabelecer correspondéncias
entre pessoas em diferentes imagens. A robustez do método inclui calibracGes com erros de
reprojecdo de 3,76 a 3,69 pixels. Além disso, o método foi integrado com uma estratégia de
amostragem aleatéria, o que aumenta sua resisténcia a ruidos e outliers nos dados de pose
humana, além de reduzir significativamente o tempo de coleta de dados. No entanto, o método
ndo foi testado em conjunto de dados com alta densidade de pessoas.

O estudo de (NOWAK et al} [2021)) apresenta uma metodologia para percepcdo multimodal,
utilizando cdmeras RGB e de profundidade (RGB-D), e introduz a biblioteca OpenHSML (JOR-
DAN, 2021)). A abordagem proposta utiliza calibragdo de cameras RGB-D para determinar as

matrizes fundamentais e de projecdo, através de grafos e estimadores de probabilidade con-
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dicional e similaridade, oferecendo uma solucao de cédigo aberto, pratica e independente de
configuracdes especificas de cameras. A OpenHSML destaca-se pela simplicidade e versatili-
dade. Porém, um problema identificado é a ocorréncia de "buracos"nos mapas de profundidade,
areas em que informacdes de profundidade estao ausentes, inviabilizando medicGes nessa re-
gido. Além disso, erros de projecdo podem surgir quando as cameras estdo distantes entre
si, permitindo que pontos atrds do objeto de interesse sejam visualizados e causem inconsis-
téncias. Nos experimentos realizados, a distancia maxima entre as cameras foi de 2 metros,
limitando a aplicacdo em cendrios mais amplos, como o monitoramento de pedestres, onde
pontos no fundo da cena sdo frequentemente capturados.

(MOLINER; HUANG; ASTROM, [2021)) apresentam um método para estimar os pardmetros
extrinsecos de cameras, incluindo escala, rotacdo e translacio, utilizando apenas imagens
de videos sincronizados e correspondéncia de poses humanas. A técnica aprimora a precisao
da estimativa ao considerar fontes de erro associadas a deteccao de pose e ao utilizar ar-
ticulacoes com maior confiabilidade. Além disso, incorpora uma funcdo objetivo baseada no
bundle adjustment, que combina erro de reprojecao e restricoes relacionadas a plausibilidade
de movimentos humanos, como angulos realistas entre membros. Embora o método tenha
demonstrado reducao significativa no erro de reprojecao, ele é limitado a cenas com um Unico
pedestre, dificultando sua aplicacdo em cenérios reais mais complexos. Como trabalho futuro,
os autores sugerem a extensdo da abordagem para lidar com miltiplos pedestres, ampliando
seu potencial em aplicacoes praticas.

O estudo de (LEE et al, [2022)) propde o uso da orientacdo de articulacdes corporais hu-
manas para estimar os parametros extrinsecos em redes de cameras. Para cada articulacdo,
sao estimados pontos 3D e, a partir deles, s3o encontrados os parametros extrinsecos através
de correspondéncia geométrica através de um algoritmo linear. Apéds isso, se iniciam ciclos
de: ajustes dos parametros de calibracao com bundle adjustment e refinamento das estima-
tivas de coordenadas 3D das articulacoes com a calibracdo ajustada. A técnica destaca-se
pela capacidade de generalizacdo a diferentes ambientes e pela robustez a ruidos e pequenos
movimentos. No entanto, o método enfrenta limitaces, como a ambiguidade de escala, que
requer um objeto de referéncia conhecido para ser resolvida. Além disso, a alta complexidade
computacional pode dificultar sua aplicacdo em tempo real ou em dispositivos com recursos
limitados. Outra restricdo é que a abordagem considera apenas uma pessoa na cena, limitando
sua aplicabilidade em cendrios mais complexos.

(TEMPELAAR, 2022)) apresenta um modelo inovador para a calibragdo automatica de ca-
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meras em cenarios com a presenca de pessoas, utilizando estimativas de poses humanas e
reidentificacdo automatica para ajustar os parametros extrinsecos das cameras. A metodo-
logia emprega um estimador de poses humanas para detectar pontos-chave nos pedestres,
cujas caracteristicas sdo, em seguida, processadas por um algoritmo de reidentificacdo (re-ID)
baseado em afinidade, OSNet (ZHOU et al.,, 2021). Essa abordagem automatiza a correspon-
déncia entre visualizacoes de diferentes cameras, permitindo uma calibrac3o eficiente em redes
multicameras.

Nos experimentos, este modelo demonstrou resultados promissores, atingindo calibracao
com elevada precisdo no conjunto de dados SALSA e calibrando trés das sete cameras no
conjunto de dados WildTrack (CHAVDAROVA et al., [2018)). A limitacdo na calibracdo completa
das cameras no WildTrack foi atribuida a insuficiéncia de meméria da GPU utilizada, desta-
cando um desafio técnico enfrentado na implementacdo. Apesar dessa limitacdo, o método
representa um avanco significativo na calibracdo extrinseca automatizada em cenéarios com
pedestres, oferecendo uma abordagem robusta e aplicavel a contextos reais.

Apesar das contribuicGes significativas, essas abordagens ainda apresentam limitacdes,
como a dependéncia de padrdes visuais especificos, que n3o estdo usualmente presentes no
cenario real. Além disso, as técnicas estudadas ainda carecem de validacdo mais ampla em
cenarios reais, que incluem movimentacdes imprevisiveis e multiddes densas. Muitos métodos
foram avaliados em ambientes controlados ou pouco dindmicos, cenas com menos de dez
pessoas, o que limita sua aplicabilidade pratica em alguns tipos de locais. Assim, existe a
necessidade de expandir o conhecimento para verificar o desempenho dessas solucdes em

cendrios mais desafiadores.
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4 TORSORCALIB

41 METODO

A pesquisa avalia técnicas de calibracao seguindo uma abordagem composta pelas seguintes
etapas: selecdo das técnicas, implementacao ou adaptacdo de cdédigo, anotacao e verificacdo
de dados, experimentos e andlise dos resultados obtidos. llustrada na Figura (3] essas etapas
buscam promover o entendimento de elementos que influenciam a calibracdo automatica em
cenario real, escolhendo os conjuntos de dados de modo a obter informacdes sobre caracteris-

ticas e limitacoes dos métodos.

Sim

T v

Dados anotados
e verificados

\_/\

Figura 3 — Etapas da metodologia. Fonte: Elaborado pelo autor.

A primeira etapa é a selecao da técnica a ser experimentada, considerando os critérios

de adequacdo aos objetivos da pesquisa e as limitacdes dos dados disponiveis. Em seguida,
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procede-se a implementacdo ou adaptacao do cddigo, permitindo que a técnica selecionada
esteja funcional e compativel com os dados e métricas do experimento.

Na etapa de anotacdo e de verificacao de dados, sdo preparados os dados necessarios
para a avaliacdo, com a definicdo dos pedestres de calibraciao, anotacdo manual dos dados e
verificacdo da correspondéncia dos esqueletos anotados. Apds isso, realiza-se os experimentos,
aplicando a técnica aos dados e gerando as métricas de avaliacdo. Por fim, ocorre a analise
dos resultados, permitindo identificar pontos fortes, limitacoes e possibilidades de ajustes para

0s proximos testes.

4.1.1 Selecao de Técnica

O processo de selecao das técnicas ocorre a partir de um mapeamento da literatura, em
que 21 técnicas de calibracdo automatica de cameras sao levantadas. Para cada uma delas, sdo
identificados os aspectos positivos e negativos de cada método, bem como os resultados de
precisdo publicados. Com base nessa analise, é selecionada uma técnica para experimentacao

considerando os seguintes critérios de selecdo:

1. Utilizar pedestres como alvos para calibracao;
2. Calibrar sistemas compostos por multiplas cameras;

3. Apresentar um baixo erro de calibracdo, tendo com referéncia o estado da arte de técnicas

de calibracao;

4. Ser aplicavel a cenarios com miltiplos pedestres presentes simultaneamente.

Com base nesses critérios, a primeira técnica é selecionada:

= TorsorCalib: Propde uma solucdo para a calibracdo de cdmeras em cenéarios complexos
baseada em torsores gerados por pedestres na cena (TRUONG et al, 2019; |LEE et al.,

2022).

4.2 IMPLEMENTACAO OU ADAPTACAO DE TECNICA

Apos a selecdo, cada técnica é analisada em termos de seus algoritmos, requisitos compu-

tacionais e limitacoes com o objetivo de entender como ela pode ser implementada e adaptada
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para este estudo. Nesta analise sdo identificadas ou escolhidas a linguagem de programacao e
ferramentas utilizadas. Vale ressaltar que as adaptacdes realizadas buscam nao apenas possi-
bilitar a execucao técnica dos experimentos, mas também assegurar que o método opere de
forma condizente com os objetivos do estudo.

O TorsorCalib, que nao possui cédigo-fonte disponivel publicamente, é reimplementado a
partir do método descrito nos seus dois artigos base (TRUONG et al,, [2019; |LEE et al| [2022)).
De forma especifica, a implementacdo dessa técnica leva em consideracao a modelagem dos
pedestres como torsores verticais, formados a partir da ligacdo entre os pontos médios dos
ombros e dos pés, para cada frame. Isso com o processo de calibracdo sendo realizado por meio
das correspondéncias destes torsores nas diferentes vistas, obtendo os parametros extrinsecos
para cada camera da rede. Além disso, sdo feitas adaptacGes para as avaliacoes realizadas neste
trabalho. Uma destas é a que permite que a entrada da técnica nao seja a saida direta do
detector de pose humana, mas sim o output do cédigo de anotacdo de dados (mais informacdes
na Secdo .

cada técnica é adaptada para mostrar o erro de reprojecio de duas formas: o erro de

reprojecao de cada vista calibrada e o erro de reprojecao médio do sistema de cameras.

4.2.1 Avaliacdo de Técnica

S3o utilizados trés datasets para os experimentos, selecionados considerando cenarios que
se aproximam de condicGes reais. Esses conjuntos de dados contém pedestres em diferentes
movimentos e posturas, além de variarem em aspectos como: trajetérias percorridas, densi-
dade e nivel de oclusao dos pedestres, posicao das cameras, areas de sobreposicdo das vistas,
quantidade de dados e outros. Essa diversidade permite avaliar o desempenho das técnicas de
calibracdo em diferentes configuracGes e explorar diferentes caracteristicas do método estu-

dado.

4.2.1.1 EPFL Dataset - Campus Sequence

O EPFL Campus Sequence (CHAVDAROVA; FLEURET, [2017)) é um dataset amplo e com
sequéncias projetadas para a avaliacdo de técnicas de visdo computacional em ambientes
urbanos, caracterizados por diferentes cenarios universitarios. A sequéncia selecionada foi a

Campus 4, que possui videos capturados por trés cameras com resolucdo de 360 x 288 pixels
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distribuidas em uma area externa do campus universitario, conforme ilustrado na Figura [4]

T
'.ﬁ--}f"_?ff!x']]

Figura 4 — Representacdo das vistas c0, cl e c2 do EPFL Campus Sequence - Campus 4 usadas para calibrac3o.
Fonte: (CHAVDAROVA; FLEURET, [2017))

Esta sequéncia é caracterizada por um ambiente dinamico, que inclui maltiplos pedestres
se deslocando em postura ereta em direcoes diferentes. As cameras apresentam campos de
visdo parcialmente sobrepostos, o que possibilita analises multivisao, como rastreamento de
pedestres, calibracdo de cameras e reconstrucdo tridimensional.

Porém, apesar de incluir aspectos dindamicos, a sequéncia Campus 4 n3o apresenta uma
elevada densidade de pedestres. S3o trés pessoas se movimentando em trajetérias com aparén-
cia linear e em um espaco aberto. Essa configuracdo resulta em um cenario menos complexo
que os proximos datasets apresentados, mas ainda desafiador pelas oclusdes referentes a saida
dos pedestres da area de sobreposicao das vistas. Essas caracteristicas tornam o dataset uma
ferramenta relevante para avaliar o desempenho de técnicas em condicoes urbanas com menor

densidade de pedestres.
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4.2.1.2 Wildtrack

O Wildtrack Dataset (CHAVDAROVA et al,, [2018]) é amplamente reconhecido na area de

visdo computacional por sua aplicacdo em cenérios ndo controlados e de alta densidade de
pedestres. Ele consiste em capturas realizadas por sete cameras estéticas, com resolucdo de
1920 x 1080 e dispostas ao redor de uma area de interesse, conforme ilustrado na Figura . As
cameras capturam imagens sincronizadas e o dataset fornece anotacdes detalhadas, incluindo
as localizacGes tridimensionais dos pedestres. Essa configuracao multicimera permite explorar
desafios caracteristicos de ambientes reais, como oclusdes severas causadas por pedestres e

objetos no ambiente.

Figura 5 — Representac3o das trés vistas do Wildtrack Dataset usadas para calibracdo. As imagens s3o captu-
radas simultaneamente por cameras estaticas dispostas em torno de uma area central. As imagens
destacam diferentes angulos de visdo, evidenciando a configuracdo multicimera utilizada para a
coleta de dados em cenérios de monitoramento pedestre. Fonte: (CHAVDAROVA et al, [2018))

O Wildtrack se destaca pela diversidade de trajetérias dos pedestres, abrangendo desde
movimentos rapidos e lentos até momentos de parada, além de apresentar, em muitos casos,
percursos mais longos. Essas caracteristicas resultam em um nimero elevado de deteccGes de
poses, aumentando a quantidade de dados disponiveis para calibracdo, aspectos relevantes para
esta pesquisa. A riqueza desse dataset, aliada a complexidade das condicGes presentes, torna-o
uma ferramenta para validar métodos em tarefas como calibracao multicamera, deteccao de

poses e rastreamento de pedestres.
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4.2.1.3 Si.U Dataset

O Si.U Dataset é um dataset préprio, capturado no patio central do Centro de Informatica
(CIn) da Universidade Federal de Pernambuco (UFPE), com o objetivo de fornecer dados
multicamera para pesquisas voltadas a calibracdo de cameras e deteccdo de pedestres em
cenarios reais. O conjunto de dados é composto por imagens de resolucao 1920 x 1080 a
partir de quatro vistas, posicionadas para capturar diferentes angulos e foi criado para refletir
a complexidade de ambientes ndo controlados, variando elementos como densidade de pessoas

e iluminacdo. Imagens do dataset podem ser vistas Figura [6]

Figura 6 — Imagens das trés cameras do Si.U Dataset utilizadas nos experimentos. As vistas capturam dife-
rentes angulos do péatio central do Centro de Informatica da UFPE, evidenciando os desafios do
cenario real, como oclusGes e caminhos percorridos pelos pedestres. Fonte: Elaborado pelo autor.

Este conjunto de dados se destaca por abranger diferentes condicdes de densidade de pe-
destres. Nas cenas mais movimentadas, os principais desafios incluem oclusdes causadas por
pedestres e objetos no ambiente, além de trajetérias curtas, pois os individuos frequentemente
entram e saem rapidamente do campo de visdo das cameras ou assumem posturas diferen-
tes da postura ereta, essencial para a calibracao baseada em torsores. Neste estudo, o Si.U
Dataset representa um ambiente realista com alta variabilidade no movimento dos pedestres,
caracterizado por transicdes frequentes entre diferentes movimentos e posturas. Essas parti-
cularidades, aliadas a configuracao multicamera, fazem dele uma base de dados desafiadora e

relevante para as avaliacbes conduzidas neste trabalho.
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O conjunto de dados originalmente utilizado para validar a técnica TorsorCalib nao foi in-
cluido nos experimentos deste trabalho, uma vez que nao se encontra publicamente disponivel.
Essa indisponibilidade inviabilizou a replicacdo dos testes, com testes de sanidade, e a analise
direta dos resultados apresentados pelos autores, limitando a possibilidade de comparacao com

as avaliacOes realizadas neste estudo.

4.2.2 Anotacdo dos Dados

A técnica é testada em cenarios significativamente mais desafiadores do que aqueles apre-
sentados nos estudos de (TRUONG et al., 2019). Enquanto as abordagens avaliadas n&o oferecem
garantias de bons resultados em cenarios com mais de sete pedestres, os ambientes analisados
neste trabalho contam com dezenas de individuos em movimento simultaneo. Esse fator au-
menta a complexidade da calibracdo, pois o grande niimero de interacoes e possiveis oclusoes
entre pedestres dificulta a obtencdo de amostras confidveis e a correspondéncia precisa dos
pontos de calibracdo entre as diferentes cameras.

Dado esse contexto, a anotacdo manual dos dados dos pontos-chave dos pedestres sera
adotada para isolar fatores de influéncia e garantir a precisdo da anéalise. Primeiramente, a
escolha do pedestre-alvo para calibrac3o precisa ser bem definida em um cenério real, onde os
critérios de selecdo impactam diretamente nos resultados. A anotacdo permite avaliar visual-
mente as rotas percorridas e a qualidade das deteccdes, tornando os dados das juntas mais
precisos e coerentes entre as vistas. Além disso, ambientes ndo controlados frequentemente
limitam a diversidade das trajetérias dos pedestres, tendo trajetérias predominantemente reti-
lineas, tornando a calibracdo mais desafiadora.

Outro fator é a correspondéncia de pontos-chave em todas as cameras. As técnicas de-
pendem fortemente dessas estimativas, e qualquer inconsisténcia no rastreamento pode com-
prometer a calibracdo. Além disso, a coleta de dados de forma consecutiva permite modelar
melhor o comportamento natural dos pedestres. Isso gera uma exigéncia muito grande para os
métodos de rastreamento de pedestres e re-identificacdo de pessoas, que ndo garantem bons
resultados em cenérios tao dinamicos. Também, a anotacao evita erros causados pelo registro
de dados em deslocamentos descontinuos, causados, por exemplo, por oclusoes prolongadas,
ou movimentos em superficies irregulares, como escadas e desniveis, que podem distorcer as
estimativas 3D.

Assim, a anotacdo de dados, feita por um anotador, ao permitir isolar fatores de influén-
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cia, torna possivel relaciona-los com os resultados obtidos, proporcionando uma investigacao
direcionada para o entendimento de elementos que impactam a calibracdo no cenério real.

Nesse contexto, para o processo de anotacao e verificacdo de dados é desenvolvida uma
ferramenta de anotacdo, que recebe como entrada os pontos-chaves extraidos dos pedestres
e gera dados anotados prontos para calibracdo pelas técnicas TorsorCalib ou MovingCalib. Os
pontos-chaves s3o extraidos das imagens de todas as vistas selecionadas, pelos detectores de
pose humana empregados em cada técnica. Além disso, a ferramenta emprega a visualizacao
e registro de informacdes, permitindo um processo estruturado e detalhado de anotacao.

Inicialmente, as imagens do dataset utilizado no experimento siao analisadas visualmente
para identificar as rotas percorridas pelos pedestres. Esse procedimento tem como objetivo
selecionar o pedestre-alvo de calibracdo. A escolha do pedestre-alvo para calibracdo deve
garantir amostras bem distribuidas e variadas, evitando redundancia de dados causadas por
trajetérias muito curtas ou lineares. Em ambientes ndo controlados, a movimentacao restrita
dos pedestres pode dificultar a obtencdo de bons pontos de calibracdo. Além disso, a coleta
deve ser continua para minimizar perdas por oclusoes prolongadas. Pedestres muito pequenos
ou com trajetdrias curtas podem comprometer a calibracdo devido a possiveis imprecisoes nas
deteccoes dos pontos chave. Assim, é essencial garantir um nimero adequado de amostras para
compensar outliers e variacoes sutis na postura dos pedestres. Adota-se como 20 a quantidade
minima de frames para um pedestre-alvo de calibrac3o.

Apbs esta escolha, o fluxo de trabalho para anotacdo é iniciado e esta representado na
Figura |7l que ilustra as etapas realizadas para processar e registrar os dados de cada frame de
maneira sistematica.

As etapas de anotacdo dos dados s3o:

1. Plotar dados de deteccao no frame atual:

Inicialmente, os dados do esqueletos dos pedestres no frame corrente s3o visualizados, um
por vez. Cada deteccdo de pedestre é exibida sequencialmente, permitindo ao anotador
inspecionar as informacdes com clareza e precisdo.

2. Verificar se os dados pertencem ao pedestre selecionado:

Para cada deteccdo, avalia-se se ela corresponde ao pedestre-alvo de calibracao.

» Nao: Caso os dados ndo pertencam ao pedestre-alvo, o sistema avanca para o

préximo pedestre detectado no mesmo frame.
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Figura 7 — Processo sequencial de anotacio dos dados de deteccdo em cada frame, comecando pela plotagem
dos dados do torsor ou do esqueleto completo. A seguir, sdo verificados se os dados pertencem
ao pedestre selecionado para a calibracdo. Caso positivo, o préximo passo é verificar se os dados
de deteccdo estdo completos. Se as articulacdes estdo completas, as informacdes s3o registradas e
salvas; caso contrario, o processo avanca para o préximo frame. Esse processo garante a selecao de
dados completos para a calibracdo precisa das cameras. Fonte: Elaborado pelo autor.

= Sim: Se os dados forem do pedestre-alvo, o processo segue para a préxima etapa.

3. Verificar se os dados de deteccao estao completos:

Uma vez identificado o pedestre-alvo, o anotador confirma e o cddigo analisa se o
esqueleto inclue todas as articulacdes validas. Essa verificacdo é importante para garantir

que apenas informacdes completas sejam usadas no processo de calibracao.

» N3ao: Se os dados estiverem incompletos, o sistema avanca para o préximo frame,

descartando a deteccao atual.

» Sim: Se os dados estiverem completos, a proxima etapa é realizada.
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4. Salvar as informacoes de deteccao e identificacao:

Para as deteccdes validadas como pertencentes ao pedestre selecionado e com dados
completos, as informacdes sdo registradas. Isso inclui as coordenadas das articulacdes,

o ID do pedestre, o nimero do frame e o nimero da camera.

A repeticao deste ciclo para cada frame permite a anotacdo de rotas ao longo do tempo
em todas as vistas. A Figura [8] mostra uma representacao do torsor de um pedestre anotado

para um frame em todas as vistas do Wildtrack.

Figura 8 — Anotacdo de dados de um frame para todas as vistas. Fonte: Elaborado pelo autor.

4.2.2.1 \Verificacdo das Anotacées

Para garantir a consisténcia e correspondéncia das anotacdes, é implementado um pro-
cesso de verificacao dos dados. Esse processo inclui a visualizacao dos dados de deteccao dos
pedestres anotados na etapa anterior, sobrepostos as imagens capturadas por cada camera. A
plotagem direta dos dados sobre as imagens permite uma anélise visual detalhada para con-
firmar que as articulacGes anotadas correspondem corretamente aos pedestres presentes na

cena. Esse procedimento identifica e corrige possiveis erros nos dados gerados pelo anotador
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Figura 9 — No processo de verificac3o inicial dos dados, cada deteccdo de pedestre anotada é verificada visu-
almente para validar se: as articulacdes anotadas correspondem corretamente ao pedestre-alvo de
calibracdo e elas n3o estdo altamente imprecisas. Caso os dados ndo pertencam ao pedestre sele-
cionado ou n3o sejam razoavelmente precisos, eles s3o descartados. Caso sejam, eles s3o salvos.
Fonte: Elaborado pelo autor.

e pelo detector de pose, como falhas de anotacdo ou grandes imprecises na deteccdo de
articulacdes.

O fluxo do processo de verificac3o inicial é apresentado na Figura[9] que descreve as etapas
para verificacdo das anotacdes quanto a correspondéncia com o pedestre-alvo de calibracdo
e precisao das articulacdes. Além disso, existe o passo de verificacao da correspondéncia dos
dados nas vistas, descrito posteriormente.

As etapas de verificac3o inicial dos dados sdo:

1. Plotar a deteccao no frame correspondente: Cada deteccdo salva durante a etapa

de anotacdo ¢ visualizada no frame correspondente.

2. Verificar se a deteccao pertence ao pedestre-alvo de calibracao: A correspon-
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déncia entre as articulacoes plotadas e os pedestre-alvo é visualmente avaliada.

» N3&o: Se a deteccdo ndo corresponde ao pedestre, ela é descartada.

= Sim: Caso positivo, a analise prossegue para a préxima etapa.

3. Verificar a precisao dos dados: A correspondéncia entre as posicoes das articulacdes

detectectadas e as posicoes reais do pedestre na cena s3o analisadas visualmente.

» Nao: Caso sejam identificadas altas inconsisténcias ou falhas na deteccdo de qual-

quer articulacdo, os dados sdo descartados.

= Sim: Se os dados forem considerados precisos ou razoavelemente precisos, eles sdo

salvos.

Apbds concluir o processo de verificacdo inicial dos dados, comeca a etapa de verificacado
dos frames validos para o processo de calibracdo. Nesse estagio, sao analisados os frames
em que os dados de deteccao do pedestre-alvo estdo simultaneamente disponiveis nas vistas
selecionadas. Apenas os frames que apresentam dados correspondentes em todas as vistas sdao

incluidos no conjunto de calibrac3o.

4.3 EXPERIMENTOS

A técnica TorsorCalib é reimplementada nesse trabalho utilizando a linguagem Python e
com as principais bibliotecas sendo: OpenCV (BRADSKI, 2000), Scipy (VIRTANEN et al., 2020)
e Numpy (HARRIS et al., 2020). As adaptacdes realizadas incluem: a integracdo da técnica com
a ferramenta de anotacdo de dados, com o detector de pose humana AlphaPose (FANG et al/
2022), ao invés do OpenPose (ICAO et al, [2019), usado na implementac&o original do artigo.
A escolha do AlphaPose é justificada pelo uso deste detector em outras tecnologias utilizadas
em pesquisas parceiras (LIMA et al., 2021)), objetivando assim a facilidade na integracdo entre
os scripts de calibracdo e essas tecnologias. Além de que o AlphaPose possui performance
equivalente ao OpenPose, o que n3o prejudica a qualidade do experimento.

A partir disso, os experimentos sao conduzidos utilizando o cédigo implementado, aplicando-
0 aos quatro datasets apresentados na metodologia. Também, é utilizada a amostragem alea-
téria de dados empregada pelos autores da técnica. As tabelas apresentadas a seguir mostram
as configuracoes dos experimentos com a técnica TorsorCalib, bem como os resultados obtidos

para cada dataset. A Tabela [T descreve os datasets utilizados, as vistas das cAmeras envolvidas
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em cada experimento e a quantidade de frames, que corresponde ao niimero de deteccdes de
conjuntos de ombros e pés dos pedestres utilizados para calibracao. J4 a Tabela |2 apresenta
os erros de reprojecao em pixels para cada vista de camera e a média dos erros para cada

dataset.

Tabela 1 — Configuraciao dos experimentos com a TorsorCalib. Fonte: Elaborado pelo autor.

Dataset Vistas Quantidade de
frames
EPFL Campus Se- | 0, cl, c2 (Figura |f[) 85
quence - Campus 4
Si.U gopro01, gopro02, gopro03 | 56
(Figura @
Wildtrack cl, c5, c7 (Figura |5 106

Tabela 2 — Resultados dos experimentos com TorsorCalib. Fonte: Elaborado pelo autor.

Erro de Reprojecdo (pixels)
Dataset
Vista | | Vista Il | Vista Ill | Médio
EPFL Campus Sequence | 1008,5 | 1852,3 1582,3 | 1537,5
Si.U 420,5 950,1 620,3 681,7
Wildtrack 700,4 430,6 340,3 489,1

Devido aos resultados com altos erros de reprojecdo apresentados na Tabela [2] pode-se
ver que o desempenho da TorsorCalib pode ser melhor investigado, especialmente por meio
da selecdo de dados que isolem fatores de influéncia.

No experimento realizado com o EPFL Campus Sequence, o erro de reprojecdo médio das
trés vistas é de 1537,5 pixels, um valor elevado que pode ter relacdo com fatores relacionados
as condicdes do dataset. O pedestre alvo de calibracdo esta representado na Figura [10] assim
como os resultados estdo representados na figura [LI} Um dos fatores que pode ter contribuicio
para esse erro é o nimero de frames utilizados na calibracdo, que totaliza 85. Esse nimero
reduzido de frames reflete diretamente a quantidade de dados disponiveis para estimar os
parametros de calibrac3o e é neles que esta descrita a rota do pedestres. Os fatores observados
que contribuem para essa baixa quantidade de esqueletos s3o a area de sobreposicdo entre as
cameras e as oclusdes enfrentadas pelo pedestre durante a sua trajetéria. Uma menor area de
sobreposicdao, em um ambiente dinamico, tende a gerar pontos cegos quando os pedestres nado
sdo vistos por todas as cameras, impedindo sua visualizacdo e deteccdo de seus esqueletos

correspondentes, limitando a quantidade de informacdes (teis para a calibracdo, além de que
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pode limitar a amplitude da rota. Ja oclusGes n3o sdo desejadas, porque quanto mais ocluso
o pedestre estd, menos resultados de deteccao dos pontos médios de ombros e pés é possivel

extrair.

Figura 10 — Pedestre alvo de calibracdo - EPFL Campus Sequence. Fonte: Elaborado pelo autor.

—_——

Iy

-

Figura 11 — Resultados de calibracdo automatica usando o EPFL dataset. Fonte: Elaborado pelo autor.

Além disso, as trajetérias contidas neste dataset estdo caracterizadas visualmente como
retilineas. Isso contribui para que elas fiquem concentradas em algumas areas das imagens,

sem grande amplitude de trajetéria quando consideramos sua projecdo 2D, o que também

pode influenciar os resultados segundo os autores da técnica (|i RUONG et aI.|, |2019|). Também,
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para eles, se as amostras forem muito proximas umas das outras, como alguém caminhando
lentamente em uma area pequena, as informacGes podem ser redundantes e n3o agregar valor
significativo a calibracdo. Uma hipétese é que essa limitacdo na variedade das trajetérias pode
ter comprometido a abrangéncia das estimativas dos parametros de calibracao, influenciando
negativamente a precisao dos resultados obtidos. Esses aspectos indicam a necessidade de mais
dados e maior diversidade nas trajetérias para tentativa de melhoria na precisao da calibracao
em cendrios com caracteristicas semelhantes.

O experimento realizado com o Si.U Dataset, tem o pedestre alvo de calibracdo da Fi-
gura e o erro de reprojecio médio é de 681,7 pixels, figura [I3} um valor inferior ao
encontrado no EPFL Campus Sequence, mas ainda elevado e considerado insatisfatério para
calibracdo precisa. A principal vantagem do Si.U Dataset em relacio ao EPFL é a maior
variabilidade das trajetérias dos pedestres, que resulta em uma distribuicdo mais ampla das
projecoes 2D nas imagens. Essas trajetérias mais amplas sao acompanhadas por variacdes nas

posturas e transicbes dos pedestres, que caracterizam um cenario mais dindmico.

Figura 12 — Pedestre alvo de calibrac3o - Si.U. Fonte: Elaborado pelo autor.

No entanto, isso prejudica a quantidade de frames disponiveis para calibracdo, que é de
apenas 56, uma vez que, para a calibracdo, o pedestre precisa estar na mesma postura durante
toda trajetéria, ndo sendo considerados os frames em que ele se senta, por exemplo. O alto
nivel de oclusdo também representa um desafio significativo na quantidade de esqueletos
identificados. Além da saida dos pedestres da area de sobreposicdo das vistas, o dataset inclui
obstrucdes adicionais, como objetos e vegetacdo, que reduzem ainda mais a quantidade de
dados utilizaveis para a calibracdo. Esse cenario de oclusbes e posturas n3o eretas limita a

quantidade de dados e reitera a necessidade de uma amostra mais ampla para investigacao na
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Figura 13 — Resultados de calibracdo automatica usando o Si.U dataset. Fonte: Elaborado pelo autor.

precisao dos resultados.

No experimento realizado com o Wildtrack Dataset e com pedestre alvo da Figura [14] o
erro de reprojecao médio é de 489,1 pixels, Figura [15] um valor inferior ao encontrado nos
experimentos anteriores, mas ainda elevado. Esse conjunto de dados possui trajetérias visi-
velmente amplas e diversificadas, uma vez que os pedestres se deslocam em vérias direcoes,
incluindo quatro direcGes principais e outras direcdes obliquas. No entanto, embora as tra-
jetérias no Wildtrack sejam variadas e visualmente amplas, a presenca de oclusGes severas
devido a movimentacdo de outros pedestres préximos prejudica a quantidade e a qualidade de
dados utilizaveis para a calibracdo. As oclusdes, causadas pelas interacdes entre os pedestres
nas vistas calibradas, afetam a deteccdo dos pontos de referéncia necessarios para o processo
de calibracdo. Além disso, casacos e mochilas também confundem o detector de pose hu-
mana. Ainda assim, o nimero de frames utilizaveis no Wildtrack foi maior, totalizando 106,
o que oferece uma quantidade mais substancial de dados em comparacdo aos experimentos
anteriores.

O artigo original do TorsorCalib apresenta erros de reprojecdo menores, variando de 3.69
pixels com 300 frames a 3.98 pixels com 20 frames. No entanto, esses resultados s3o obtidos em
um dataset préprio, indisponivel para testes neste trabalho. A auséncia dessas imagens impede

a analise das rotas dos pedestres utilizadas nos experimentos originais. Com base nas imagens
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Figura 15 — Resultados de calibracdo automatica usando o Wildtrack dataset. Fonte: Elaborado pelo autor.

publicadas no artigo, que possuem resolucdo VGA, os cendrios aparentam ser mais controlados,
com baixa incidéncia de oclusGes e cameras posicionadas em angulos elevados. Esses fatores
podem ter favorecido o desempenho da técnica. Dessa forma, uma possivel abordagem para
melhorar os resultados do TensorCalib seria aplicad-lo em cenarios semelhantes. No entanto,
este estudo busca avaliar a técnica em condicGes mais préximas da realidade, testando sua
robustez em ambientes desafiadores.

Portanto, a TorsorCalib pode ter seu desempenho melhor investigado, principalmente atra-

vés da selecdo de dados que isolem fatores de influéncia. Ou seja, a aplicacdo deste método
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deve seguir com atencdo a selecdo criteriosa dos dados, buscando testar de forma isolada
fatores que podem impactar negativamente a calibracdo. Aspectos como a variedade e distri-
buicao de trajetdrias podem ser estudados para verificar a interferéncia destes nos parametros
de calibracdo. Além disso, a incidéncia de oclusdes pode ser reduzida sempre que possivel, pois

limita a quantidade de informacdes Uteis extraidas das imagens para testes.
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5 MOVINGCALIB

Ao longo do desenvolvimento deste trabalho, optou-se por uma reformulacdo no enfoque
metodolégico. Em vez de priorizar uma experimentacao extensa em mudltiplos cendrios, como
inicialmente proposto, foi adotada uma abordagem voltada para o isolamento e anélise mais
controlada dos fatores que influenciam a calibracdo automatica. Essa decisao foi motivada
pela necessidade de compreender com maior profundidade as varidveis criticas que afetam o
desempenho das técnicas avaliadas, incluindo inclusive a andlise de uma nova técnica.

Nesse contexto, dois tipos distintos de avaliacdo foram conduzidos utilizando o conjunto
de dados Wildtrack, cuja escolha se justifica pelo seu equilibrio entre quantidade de dados,
qualidade das anotacdes e diversidade de rotas percorridas pelos pedestres. O uso deste da-
taset permitiu realizar anélises mais direcionadas com o método MovingCalib, focando na
investigacao especifica do comportamento da calibracao em condicbes bem controladas, sem
comprometer a representatividade dos dados.

Essa mudanca metodoldgica ndo visa a generalizacdo estatistica, mas sim a geracao de
insights sobre os fatores que limitam ou favorecem o uso pratico de calibracdo baseada em

pedestres em cenarios reais.

51 METODO

As etapas de selecdo da técnica, implementacao ou adaptacao do cédigo, anotacdo e de
verificacao de dados e experimentos, analise dos resultados descritas no capitulo anterior cor-
respondem também ao método adotado nos experimentos com a segunda técnica selecionada
para os testes, (LEE et al), 2022). A seguir serdo especificados apenas os pontos relativos a

especificidades da técnica selecionada.

5.1.1 Selecao de Técnica

Com base nos critérios apresentados no capitulo anterior, a segunda técnica selecionada é:

= MovingCalib: Usa o movimento de articulacdes corporais humanas para estimar os

parametros extrinsecos em redes de cdmeras (LEE et al., [2022).



49

5.1.2 Implementacdao ou Adaptacao de Técnica

No caso do MovingCalib o cédigo-fonte esta disponivel publicamente El € sao necessarias
apenas adaptacoes. Esta também recebe como entrada os dados vindos do cédigo de anotacao

de dados, ao invés da saida do detector de pose humana.

5.1.3 Avaliacao das Técnicas

Foram realizados testes com o objetivo de isolar melhor fatores de influéncia da calibrac3o,
ao invés de priorizar a experimentacdo extensiva em diferentes cenarios. Nesse intuito, dois
tipos de avaliacbes sdo realizadas usando o Wildtrack. Este dataset foi escolhido para os
experimentos com o MovingCalib devido ao seu equilibrio entre a quantidade de dados e a
variacdo de rotas disponivel.

Na primeira avaliacdo, a técnica é aplicada e o erro de reprojecao é calculado e discutido.
Para isso, sao encontrados dois pedestres: aquele cuja calibracdo apresenta o menor erro de
reprojecdo e aquele que aparece em mais frames. O primeiro pedestre ajuda a entender caracte-
risticas que fazem uma calibracio boa. O segundo ajuda a explorar fatores como a quantidade
de frames, tipo de rotas e qualidade da deteccdo de pedestres. O segundo pedestre apareceu
em 400 frames consecutivos. Assim, além de calcular o erro de reprojecao na totalidade dos
400 frames, é feito experimentos para medir isso também nos 10, 20, 50, 100, 200 e 300
frames iniciais. Também é avaliado se ha relacao entre o erro de reprojecdo e a qualidade da
deteccao dos pedestres. Para isso, é usado o score de deteccao de esqueletos 2D como uma
medida de qualidade (Subsecdo [5.1.6)).

A segunda avaliacdo focou em validar a consisténcia geométrica da cena quando observada
com a camera calibrada usando geometria epipolar. Para isso, foi calculada a distdncia média

do ponto para a sua linha epipolar.

5.1.3.1 Dataset de Avaliacao

Os experimentos ocorrem com trés vistas do Wildtrack dataset e com um (nico
pedestre-alvo para calibracdo. Como pontuado, o Wildtrack se destaca pela diversidade de

trajetérias dos pedestres e apresenta percursos longos na trajetéria dos pedestres. Este da-

1 Disponivel em <https://github.com /kyotovision-public/extrinsic-camera-calibration-from-a-moving-person >


https://github.com/kyotovision-public/extrinsic-camera-calibration-from-a-moving-person
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taset foi escolhido para os experimentos com o MovingCalib devido ao seu equilibrio entre a
quantidade de dados e a variacao de rotas disponivel.

Optou-se por n3o utilizar outros datasets, como o Panoptic Dataset, empregado no trabalho
original, devido a menor complexidade em comparacdo aos cenarios urbanos reais. Embora estes
conjuntos de dados sejam bem estruturados e amplamente utilizados, eles ndo representam
ambientes controlados, com menor densidade de pedestres e baixa ocorréncia de oclusGes, o

que pode comprometer a validade dos resultados no contexto desta investigacdo.

5.1.4 Anotacao dos Dados

Os dados s3o anotados com a ferramenta de anotacdo de dados descrita em [5.1.4]

5.1.5 Meétricas de Avaliacao

As métricas utilizadas para avaliacdo sdo o erro de reprojecao, a distancia epipolar, que

foram explicadas no Capitulo [2] e o score de deteccdo médio que estad explicado a seguir.

5.1.6 Score de Deteccao Médio

O detector de pose humana OpenPose (CAO et al, 2019) determina uma nota de confianca
para cada uma das articulacdes que formam o esqueleto de um pedestre. Essa nota é o score de
deteccdo das articulacdes e, quanto maior o valor, maior a confianca na qualidade da detecc3o.
Consequentemente, esse score pode ser usado para determinar a qualidade das deteccoes.

Neste trabalho, o score do pedestre é definido como a média dos scores de todas as juntas

do esqueleto:

1 J
Sp = *ZS]‘, (51)
Jj:1

onde J representa o nlmero total de juntas do esqueleto e s; é o score atribuido a junta j.

O score de deteccdo médio para um conjunto com n frames é entdo definido como:

> Spis (5.2)

onde Sy é o score do pedestre no frame.
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Por fim, o score de deteccdo médio para um experimento que envolve k pares de vistas é

calculado como:

1 k
Sm = %Zsf,vy (53)
v=1
onde S,, é o score médio do pedestre nos frames do sistema de cameras.

OpenPose retorna scores no intervalo de [0, 1], onde valores préximos de 1 indicam alta

confianca na deteccdo, enquanto valores baixos sugerem maior incerteza ou erros potenciais.

5.2 EXPERIMENTOS

A técnica MovingCalib é adaptada a partir do seu cédigo original, em Python, para integrar-
se ao cédigo de anotacdo de dados. O cddigo original ndo suporta a saida do detector de poses
humanas quando mais de uma pessoa é detectada na cena, pois estd desenvolvido para um
Unico pedestre, o que impede sua execucdo. Para os experimentos com a MovingCalib, o
cédigo de anotacdo de dados é adaptado para corresponder a entrada exigida pela técnica.
O OpenPose é mantido como detector de pose humana, pois ja é a ferramenta utilizada na
implementacdo original da MovingCalib, propiciando a inclusdo de alteracdes minimas nos
cédigos para integracdo. Com as adaptacdes, a saida de dados do codigo de anotacdo passa
todos os pontos-chave do esqueleto do pedestre anotado como entrada para a técnica.

Para os experimentos com esta técnica é utilizado apenas o Wildtrack Dataset devido ao
seu equilibrio entre o niimero de frames e a variacao de rotas disponiveis nesse conjunto de
dados. Considera-se que a diversidade de cenarios explorados nos experimentos com a técnica
TorsoCalib ajudou a identificar possiveis fatores de influéncia presentes nos conjuntos de dados,
mas com a técnica MovingCalib e o Wildtrack pode-se explorar mais especificamente alguns
desses fatores.

S3o utilizadas trés vistas (cl, c6 e c7) do Wildtrack, que objetivam ampliar a quanti-
dade de dados utilizaveis. Os pedestres presentes nas trés vistas sdo anotados e utilizados em
experimentos aplicando a técnica de calibracdo. Dentre os pedestres anotados, dois foram sele-
cionados para analises mais detalhadas. O primeiro é identificado como Pedestre 1, Figura[16]
e seu experimento tem as configuracdes resumidas na Tabela [3] Este pedestre é escolhido por
apresentar o menor erro de reprojecdo dentre todos os pedestres anotados. Seu valor é de 7.18

pixels, Tabela , considerando os 66 frames utilizados. Este erro é considerado baixo dentro
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do contexto dos experimentos, tornando-o um caso relevante para avaliacdo da técnica. Esta

técnica obtém erros de reprojecdo de até 1,569 pixels, com Panoptic Dataset (|JOO et a|.|, |2017|)

, €m seus testes originais.

Figura 16 — Pedestre alvo de calibracdo 1, para experimentos com a técnica MovingCalib. Fonte: Elaborado
pelo autor.

A rota deste pedestre é composta por duas partes distintas: uma dindmica e uma com
caracteristicas estacionarias. Durante a parte dinamica, o pedestre se desloca caminhando
junto a outros pedestres, mas, em determinado momento, ele para e permanece préximo a
outras pessoas na cena, interagindo com elas. Esse periodo estacionario é caracterizado por

momentos de oclusdo, embora sua posicdo varie muito pouco durante esse tempo.

Tabela 3 — Configuracdo do Experimento com o Pedestre 1. Fonte: Elaborado pelo autor.

Parametro Valor
Dataset Wildtrack
Vistas utilizadas cl, c6, c7
Quantidade de frames usados 66

Tabela 4 — Resultados do experimento o Pedestre 1. Fonte: Elaborado pelo autor.

Métrica Valor

Experimento 1 - Erro de Reprojecao Médio

Erro de Reprojecdo Médio (pixels) 7,18

O segundo pedestre, Figura [I7] foi selecionado por possuir a maior quantidade de dados
disponiveis, possibilitando uma analise mais detalhada dos fatores que influenciam a calibracdo.
Em particular, foram investigadas a relacdo entre o niimero de frames utilizados e o erro de

reprojecao, bem como a relacdo entre o score de deteccao médio e o erro de reprojecao.



53

Figura 17 — Pedestre alvo de calibracdo 2, para experimentos com a técnica MovingCalib. Fonte: Elaborado
pelo autor.

O pedestre 2 permanece visivel por um periodo de tempo prolongado nas imagens. Embora
ocorra oclusao em alguns momentos, a maior parte dos dados é aproveitada, resultando no
uso de 400 frames para a calibracdo. Durante parte do trajeto, o pedestre interage com outras

pessoas, permanecendo em uma posicdo mais estacionaria na cena. A MovingCalib requer uma

trajetéria menos dindmica em comparacdo a TorsorCalib (TRUONG et al, [2019)).

Nesse sentido, é realizada uma analise para verificar se a quantidade de frames, que segue
a progressao 10, 20, 50, 100, 200, 300 e 400, influencia significativamente os resultados desta

técnica. Como sabemos, o niimero de dados pode ser importante para a calibracdo em técnicas

que realizam a correspondéncia de dados (SVOBODA; MARTINEC; PAJDLA, 2005)). O resultado

estd mostrado na Figura |18, onde o resultado do erro de reprojecao de cada teste pode ser
visualizado no eixo Y, enquanto se mostra o nimero incremental de frames, correspondente a
cada erro, deste conjunto de dados no eixo X.

O grafico n3o possui uma tendéncia decrescente do valor de erro na medida que a quanti-
dade de frames aumenta. Uma hipdtese é que se as deteccdes de pedestres ndo estdo precisas,

inserir mais frames vai acrescentar mais ruido e, consequentemente, aumentando o erro. Tra-

balhos como o de (POSSEGGER et al}, 2012) discutem especialmente precisdo dos dados de

entrada e até propde um processo sistematico de retirada de outliers, mostrando a importancia
dessa investigacdo.

Para validar essa hipdtese é analisada a qualidade da deteccdo do pedestre em relacdo
ao erro de reprojecdo. A métrica de qualidade escolhida é o score de deteccao médio. Na

Figura |19, o resultado do score de deteccao médio de cada teste pode ser visualizado no eixo
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Figura 18 — Relac3o entre o erro de reprojecdo e a quantidade de frames, com uma progress3o de 10, 20, 50,
100, 200, 300 e 400 frames. Fonte: Elaborado pelo autor.

Y, enquanto a quantidade de frames em ordem crescente é mostrada no eixo X.
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Figura 19 — Relacdo entre o score médio e a quantidade de frames, com uma progressdo de 10, 20, 50, 100,
200, 300 e 400 frames. Fonte: Elaborado pelo autor.

Observa-se que os valores do score médio de deteccdo para os conjuntos de frames ana-
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lisados do Wildtrack Dataset estdao entre 0,089 e 0,102. Esses valores sdao consideravelmente
baixos, o que indica uma baixa precisdo na deteccao de pedestres. Esse score médio é cerca
de cinco vezes menor do que o obtido quando a calibracdo é feita usando o Panoptic (JOO
et al.,, [2017)), dataset em que o MovingCalib foi testado originalmente. Esse dataset apresenta
um ambiente controlado, com pouca oclusdo e o pedestre préximo a camera. Essa diferenca
evidencia uma degradacao significativa na qualidade da deteccao em condicdes ndo controla-
das. Além disso, o fato de o score médio estar mais préximo de 0 que de 1 sugere que, apesar
da visibilidade continua dos pedestres ao longo do trajeto, a qualidade da deteccao pode ser
baixa no cenario real, mesmo apds a verificacdo e refinamento dos dados.

Adicionalmente, ao analisar as Figuras@ el'El, observa-se uma relacao inversamente pro-
porcional entre o score médio de deteccdo e o erro de reprojecdo para até 200 frames. Ou
seja, nos intervalos em que o score de deteccao melhora, o erro de reprojecao tende a di-
minuir. Também, para um conjunto de 100 frames, o menor score médio registrado (0,089)
estd associado ao maior erro de reprojecdo (54,56 pixels). Esse comportamento sugere que a
reducao da qualidade da deteccao impacta negativamente a calibracdo em conjuntos menores
de frames, que, por conterem menos amostras, sdo mais suscetiveis a introduc3do de ruidos nas
deteccoes. Além disso, ao utilizar um ndmero maior de frames, ha um risco de que deteccoes
imprecisas aumentem o ruido no processo de calibracdo, comprometendo a precisao final da
calibracao.

Esses resultados sugerem que a simples inclusdo de um maior nimero de frames ndo é
suficiente para garantir uma calibracdao mais precisa. A confiabilidade das deteccGes deve ser
levada em consideracao. Uma hipétese é que o tamanho da projecdo dos pedestres na imagem
possa comprometer a calibracdo. J4 que quanto maior o tamanho do pedestre (ou o ponto
de interesse), mais facil é para os algoritmos de deteccdo prever suas posicdes. Em cenas
com pedestres pequenos, o score médio pode tender a diminuir, devido a falta de detalhes.
Isso pode ser investigado, por exemplo, através de estratégias que filtrem frames com baixa

confiabilidade ou atribuam pesos diferentes as deteccGes conforme seu nivel de confianca.

5.2.1 Experimentos da Distancia Epipolar

Quando os parametros de calibracdo obtidos com o bom resultado do experimento com
o Pedestre 1 foram testados em uma técnica de deteccdo de pedestres (LIMA et al., [2021)), o

desempenho da deteccao nao foi satisfatério. Os resultados da avaliacdo da distancia do ponto
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a linha epipolar estdo resumidos na Tabela 5]

Tabela 5 — Resultados dos experimentos da distancia epipolar. Fonte: Elaborado pelo autor.

Média Ground Truth 327.49
Desvio Padrao Ground Truth 2.55

Média Calibracdo Automatica 710.43
Desvio Padrao Calibracdo Automatica | 484.53
Erro Absoluto Médio (MAE) 406.42
Erro Quadratico Médio (RMSE) 579.91
Teste t (p-valor) 0.1534

Para esse experimento, a hipotese nula considerada foi de que nao ha diferenca significativa
entre as distancias epipolares obtidas com a calibracdo automaética e o ground truth. Com
base nos resultados apresentados, observou-se uma discrepancia consideravel entre as duas
estimativas, evidenciada pelos altos valores de erro absoluto médio (406.42) e erro quadratico
médio (579.91). Além disso, o desvio padrdo elevado na calibracdo automatica indica uma alta
variabilidade nos erros, sugerindo falta de consisténcia na reconstrucdo da geometria epipolar.

O teste t revela que, embora as distribuicGes das distancias epipolares apresentem diferen-
cas relevantes, o p-valor obtido (0.1534) n3o é suficientemente baixos para rejeitar a hipdtese
nula em um nivel de significancia tradicional. Isso significa que, com base nesse teste, nao
é possivel concluir que a calibracdo automatica tenha um desempenho significativamente di-
ferente da calibracao baseada no ground truth. Essa discrepancia e a falta de consisténcia
nos resultados sugerem que, para melhorar o entendimento da calibracdo automatica, seria
necessario estudar mais o impacto dos fatores de influéncia.

Em geral, a diferenca significativa entre as estimativas automaticas e o ground truth indica
que a técnica MovingCalib ainda apresenta altos erros em sua calibracdo. O desvio padrao
elevado nos resultados reforca a ideia de que a técnica pode ser vulneravel a qualidade dos
dados usados para calibracdo. Para esta técnica, aspectos de rota do pedestre sdo considerados
menos importantes, ja que esta se mostrou robusta a pequenas quantidade de movimento em

seus testes originais (LEE et al., [2022).
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6 DISCUSSOES GERAIS E APRENDIZADOS DO PROCESSO EXPERIMEN-
TAL

6.1 DISCUSSOES GERAIS

Os experimentos mostram que as técnicas avaliadas apresentam dificuldades de adaptacio
a cenarios distintos daqueles em que foram originalmente validadas. Seja em ambientes mais
controlados ou em contextos mais dinamicos, desafios como oclusdes frequentes tem impacto
direto na qualidade da calibracao.

Esta qualidade dos dados de entrada parece ser um fator de influéncia relevante no de-
sempenho das técnicas, principalmente para conjuntos de frames menores, até 200 frames.
Condicoes adversas, como iluminacdo inadequada e a presenca de miultiplos pedestres, sao
elementos que podem comprometer a deteccdo das poses humanas e, consequentemente, afe-
tar a calibracdo (GHARI et al., [2024)). Assim, a dependéncia da técnica em relagcdo a robustez
dos detectores de pose deve ser considerada ao avaliar sua aplicabilidade em cenérios reais.

Até aqui, dois fatores de influéncia principais podem ser explorados para o maior entendi-
mento destes resultados: a qualidade das deteccoes das juntas e a rota do pedestre, ou seja,
a distribuicio de movimento presente nos frames utilizados. Como uma primeira hipétese,
pode-se afirmar que, a calibracdo automatica pode ndo ser precisa se os frames analisados
ndo capturarem rotas adequadas, ou seja, uma trajetéria bem distribuida no espaco e com
deteccbes de qualidade para a técnica TorsorCalib. Isso pode enviesar os parametros de cali-
bracdo. O teste sugerido é investigar como diferentes subconjuntos de frames, com variacdo
na distribuicdo, afetam o erro epipolar e se a distribuicdo dos frames impacta a precisao da
calibracdo. Além de estudar a qualidade da deteccdo de cada experimento, relacionando o
score médio com o erro de reprojecao.

Uma segunda hipdtese pode ser que, se as deteccoes das articulacdes forem ruidosas ou
inconsistentes, o erro epipolar serd maior e mais varidvel para a técnica MovingCalib. Isso
ocorre porque as deteccdes de baixa qualidade afetam diretamente a triangulacdo dos pontos
no espaco 3D, prejudicando a calibracido. O teste proposto é analisar a relacdo entre o erro
epipolar e o score médio das deteccoes das juntas para verificar esse impacto.

Com isso, os resultados obtidos reforcam que a calibracao automatica de redes de cameras
baseada em pedestres enfrenta desafios significativos na adaptacdo a ambientes dindmicos re-

ais. A variabilidade dos dados exige técnicas mais generalistas e capazes de lidar com diferentes
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fontes de erro.

Por fim, embora as técnicas apresentem potencial para calibracdo automatica em redes de
cameras multi-visdo, avancos substanciais ainda sao necessarios para garantir sua aplicacdo em
contextos reais. A coleta de dados mais controlados pode ser uma estratégia para isolar e en-
tender melhor os fatores que afetam a calibracdo. O préximo capitulo apresenta recomendacdes

e direcBes para estudos futuros, visando aprimorar a robustez dessas abordagens.

6.2 APRENDIZADOS DO PROCESSO EXPERIMENTAL

Ao longo dos experimentos realizados s3o identificadas limitacdes que fornecem uma base

para orientar trabalhos futuros. Os principais fatores que influenciaram a calibracdo foram:

1. Rotas dos pedestres: As trajetérias impactam diretamente os resultados. Em especial
para técnicas como a TorsorCalib, a presenca de uma rota bem distribuida entre as
cameras contribui para a precisao da calibracdo, pois fornece uma amostragem espacial
mais representativa. Este aspecto sugere que futuros trabalhos devem priorizar datasets
onde seja possivel controlar ou mapear as rotas dos pedestres. O objetivo é aprofundar
os estudos para identificar se ha melhores rotas para calibracao de cameras. No entanto,
como os datasets existentes frequentemente carecem dessa caracteristica, seria interes-
sante criar um dataset onde rotas possam ser controladas e ajustadas para calibracao
automatica. Isso podera resultar em guidelines que orientem desenvolvedores e usudrios

a como realizar calibracdes de maneira automatica em cendrios reais.

2. Oclusoes e densidade de pedestres: Ambientes com muitas oclusdes ou alta densi-
dade de pedestres dificultaram a correspondéncia de pontos, comprometendo a eficicia
das técnicas por perda de dados e diminuicdo da qualidade da deteccdo de pose humana.
Uma direcdo importante seria investigar solucdes que aumentem a robustez da calibra-
cdo em cenarios com alta densidade, como técnicas baseadas em aprendizado profundo

para prever e corrigir deteccdes perdidas.

3. Método de estimacao da pose humana: A escolha do método de pose pode ter
impacto sobre os resultados. Métodos mais precisos tendem a contribuir para uma melhor

estimativa da posicdo das articulacdes, o que melhora a triangulacao e, por consequéncia,
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a calibracdo. Por outro lado, métodos menos robustos geram deteccdes ruidosas, o que
pode comprometer a precisdo, especialmente na técnica TorsorCalib. Trabalhos futuros
podem explorar a influéncia de diferentes detectores de pose de ultima geracao, avaliando

como suas acuracias se refletem nos erros de calibracao.

4. Quantidade de frames utilizados: Os experimentos realizados neste trabalho n3o per-
mitiram concluir de forma definitiva que a quantidade de dados influencia diretamente
na precisao da calibracdo. Em alguns casos, conjuntos menores com deteccdes mais
confidveis produziram resultados mais consistentes do que sequéncias mais longas com
dados ruidosos. Esse resultado sugere que a qualidade e a diversidade das informacdes
nos frames podem ser mais determinantes que a quantidade absoluta de dados. Traba-
lhos futuros podem aprofundar essa analise, controlando melhor a variacdo nos dados e
comparando diretamente subconjuntos com tamanhos distintos, mas qualidade similar

de deteccao.

5. Quantidade e posicionamento das cameras: O nimero de cameras e sua distribuicdo
no ambiente também influenciaram diretamente os resultados. Trabalhos futuros devem
explorar redes de cameras mais densas e diversificadas em termos de angulos de visao,
especialmente em cendrios controlados, para entender como maximizar a qualidade da
calibracdo. Um ponto importante é garantir que a area de sobreposicao dos equipamentos
inclua a rota do(s) pedestre(s) de interesse por um periodo de duracdo maior que os

datasets atuais proporcionam.

6. Qualidade dos dados de entrada: A anélise mostrou que a qualidade das deteccdes,
medidas pelo score médio de confianca, pode impactar direto nos resultados, como
também é observado por (MOLINER; HUANG; ASTROM, 2021)). Futuros experimentos po-
dem se concentrar em melhorar os pré-processamentos dos dados, utilizando técnicas de

filtragem ou mesmo aprendizado profundo para refinar as deteccGes antes da calibrac3o.

6.3 DIRECIONAMENTO DE TRABALHOS FUTUROS

Os experimentos realizados proporcionaram uma compreens3o valiosa das limitacGes e po-
tencialidades das técnicas analisadas. Para avancar no desenvolvimento de calibracdo automa-

tica em redes de cameras, ¢é essencial adotar abordagens que combinem controle experimental
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rigoroso com robustez em condicdes reais. A criacdo de datasets controlados, o uso de técnicas
avancadas de aprendizado de maquina e a adaptacao a cenarios reais sdo caminhos promissores

para superar os desafios observados e aprimorar a tecnologia para aplicacdes futuras.

6.3.1 Criacao de um Dataset Controlado

Um dos principais desafios identificados foi a falta de datasets que oferecam controle
suficiente sobre varidveis como rotas de pedestres, iluminacao, densidade de pessoas e oclusoes.
Propor a criacdo de um dataset sintético ou real, com controle rigoroso sobre essas condicdes,

poderia avancar significativamente o campo. Esse dataset poderia incluir:

Rotas pré-definidas e bem documentadas.

Variedade de cenérios de iluminacdo (natural e artificial).
» Ndmero ajustavel de pedestres.

» Anotac3do e variacdo sistematica nas posicoes e orientacdes das cameras.

6.3.2 Exploracao de Métodos Avancados

Futuras pesquisas podem integrar técnicas de aprendizado profundo para superar limitacdes

observadas, como:

» Uso de modelos baseados em estimativa de pose humana para melhorar a correspon-

déncia de pontos.

» Aplicacdo de algoritmos de reidentificacao de pedestres para lidar com oclusdes e traje-

tdrias dinamicas.

» Desenvolvimento de modelos hibridos que combinem abordagens geométricas tradicio-

nais com técnicas baseadas em deep learning.

6.3.3 Adaptacao a Cenarios Reais

Trabalhos futuros podem buscar expandir a aplicabilidade das técnicas a cenarios reais,

como areas urbanas dinamicas. Isso incluiria:
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= Testes em condicdes climaticas e de iluminacdo variaveis.
= Anélise de performance em ambientes com grande densidade populacional.

» Uso de redes de cameras parcialmente sobrepostas, como as encontradas no Wildtrack

Dataset.
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7 CONCLUSAO

Com o aumento da complexidade dos cenarios de aplicacdo da visdao computacional, es-
pecialmente em ambientes dindmicos e com uma rede de cameras, como areas urbanas, a
necessidade de técnicas automaticas de calibracdo tornam-se mais necessarias. Este traba-
lho, portanto, propds-se a avaliar métodos automatizados de calibracdo em redes de cameras
usando pedestres em cendrios reais.

A revisdo da literatura mostrou ser possivel a utilizacao de técnicas de deteccao de pedestres
para calibrar cAmeras sem a necessidade de inserir padrdes artificiais. Esses métodos exploram
a capacidade de abordagens tradicionais e dos modelos de aprendizado profundo de extrair
caracteristicas robustas de pedestres. Essas sdo usadas para calibrar de formar automatica um
conjunto de cameras.

Assim, os experimentos realizados ao longo deste trabalho foram projetados para avaliar
duas técnicas de calibracdo automatica em cenérios reais. Eles buscaram levantar os principais
elementos que podem influenciar este processo. O TorsorCalib foi testado em diferentes data-
sets. Os resultados mostraram que a sua precisdo foi comprometida devido a quantidade de
dados disponiveis devido a oclusdes, assim como a qualidade das rotas. Isso indica que ajustes
sdo necessarios para lidar com a complexidade dos ambientes reais, especialmente em relacao
as rotas dos pedestres e a variacdo nas condicOes do cenario.

Ja o MovingCalib apresentou um comportamento inversamente proporcional entre a qua-
lidade da deteccdo de pose humana e o erro de reprojecdo, como conjuntos com até 200
frames. Isso sugere que a qualidade de dados, que foi inferior no cenério real e dinamico do
Wildtrack, influencia os resultados de calibracdo significativamente, exigindo uma abordagem
mais refinada para melhorar a calibracao.

De modo geral, os experimentos mostraram que, embora as técnicas automaticas tenham
evoluido, sua eficacia ainda é limitada em ambientes n3o estruturados. Questdes como oclu-
soes, densidade de pedestres e variacao na qualidade dos dados impactam a calibracao, tor-
nando essencial o desenvolvimento de métodos mais robustos. O uso de estratégias hibridas,

combinando abordagens tradicionais e aprendizado profundo, pode oferecer melhorias.
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7.1 TRABALHOS FUTUROS

Para trabalhos futuros, recomenda-se a investigacdo de novas métricas que captem melhor
as falhas da calibracdo em cenérios dindamicos. Além disso, testar as técnicas em diferentes
datasets e explorar modelos de fusdo de dados podem contribuir para a adaptacao dos métodos
as condicoes reais. A incorporacao de redes neurais para prever e corrigir erros também pode

ser um caminho promissor para aumentar a precisdo da calibracao automatica.

7.2 CONTRIBUICOES

As principais contribuicdes derivadas desta pesquisa sdo:

» Ampliacdo dos conhecimento da area de visdo computacional, através da andlise de
fatores de influéncia, do cenério real, na calibracio automatica de cameras, deixando
licoes aprendidas como ponto de partida para que pesquisas futuras desenvolvam técnicas

mais robustas;

» Cédigo de anotacdo dados de deteccao integrado aos detectores de pose humana: Alpha-

Pose e OpenPose;

» Uma publicacdo em planejamento a partir deste estudo, para comunidade da area de

Visao Computacional e Calibracao Automatica de Cameras;

» Publicacao cientifica nas areas de Reconhecimento de Atividades Humanas e Redes Neu-

rais (CAVALCANTE et al., 2023), propiciada por conhecimentos derivados desta pesquisa;

= Qutras duas publicacdes sendo planejadas nas areas de Reconhecimento de Atividades

Humanas e Redes Neurais.
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