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RESUMO

A visão computacional desempenha um papel essencial em diversas aplicações, como vi-
gilância inteligente e reconstrução 3D, permitindo o rastreamento de pessoas e objetos em
sistemas multi-câmera. No entanto, para que esses sistemas operem corretamente, é funda-
mental que a calibração das câmeras seja precisa. A calibração automática surge como uma
alternativa promissora à calibração manual tradicional, que apresenta desafios significativos,
como a necessidade de um ambiente controlado, a exigência de intervenção humana e a difi-
culdade de recalibração em sistemas dinâmicos. Apesar do seu potencial, muitas técnicas do
estado da arte ainda não foram amplamente testadas em cenários realistas, onde fatores como
oclusões e rotas curtas podem impactar a precisão da calibração. Diante desse contexto, este
trabalho investiga o desempenho de técnicas de calibração automática baseadas em pedestres,
analisando sua eficácia e limitações em ambientes não controlados. Os experimentos demons-
tram que, embora a técnica avaliada apresente potencial, ainda há altos erros de calibração
e grande variabilidade nas estimativas dos parâmetros extrínsecos. A qualidade dos dados de
entrada mostrou-se um fator crítico, uma vez que, em condições reais, a detecção das poses
humanas pode ser comprometida, afetando negativamente a calibração. Além disso, a rota
dos pedestres influencia significativamente o desempenho do método. Os resultados indicam
que a calibração automática de redes de câmeras ainda enfrenta desafios significativos para
adaptação a cenários dinâmicos. Dessa forma, são necessárias abordagens mais robustas e ge-
neralizáveis, capazes de lidar com diferentes fontes de erro. A coleta de dados mais controlados
pode ser uma estratégia para isolar e compreender melhor os fatores que afetam a calibração.

Palavras-chaves: Visão computacional. Calibração de câmeras. Calibração automática. Redes
de câmeras. Detecção de pedestres. Parâmetros extrínsecos. Ambientes não controlados.



ABSTRACT

Computer vision performs a fundamental function in various applications, such as in-
telligent surveillance and 3D reconstruction, enabling the tracking of people and objects in
multi-camera systems. However, for these systems to function correctly, precise camera cal-
ibration is essential. Automatic calibration emerges as a promising alternative to traditional
manual calibration, which presents significant challenges, including the need for a controlled
environment, human intervention, and difficulties in recalibrating dynamic systems. Despite
its potential, many state-of-the-art techniques have not yet been extensively tested in realis-
tic scenarios, where factors such as occlusions and short pedestrian trajectories may impact
calibration accuracy. In this context, this study investigates the performance of pedestrian-
based automatic calibration techniques, analyzing their effectiveness and limitations in uncon-
trolled environments. The experimental results show that, although the evaluated technique
demonstrates potential, it still suffers from high calibration errors and significant variability
in extrinsic parameter estimates. The quality of input data proved to be a critical factor,
as, in real-world conditions, human pose detection may be compromised, negatively affecting
calibration. Moreover, pedestrian motion patterns significantly influence the performance of
the methods. The findings indicate that automatic camera network calibration still encoun-
ters considerable challenges in adapting to dynamic environments. Therefore, more robust and
generalizable approaches are required to handle different sources of error. The collection of
more controlled data may be a strategy to isolate and better understand the factors affecting
calibration.

Keywords: Computer vision. Camera calibration. Automatic calibration. Camera networks.
Pedestrian detection. Extrinsic parameters. Uncontrolled environments.
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1 INTRODUÇÃO

Organizações que atuam no planejamento de espaços urbanos frequentemente enfrentam
o desafio de compreender como esses espaços são utilizados por seus usuários. Entre as in-
formações mais relevantes para esse processo estão os trajetos mais comuns realizados por
pedestres, os pontos de maior permanência e as atividades predominantes em determinadas
áreas. Atualmente, esse tipo de dado é coletado de forma manual, por meio da observação
presencial por profissionais em campo, durante algumas horas e em dias específicos, pela Mas-
sapê, uma ONG de urbanismo social de Recife - PE. Esse método, além de ser intensivo em
tempo e mão de obra, oferece uma cobertura limitada e pontual da realidade.

Uma alternativa promissora para melhorar o atendimento dessa demanda consiste no uso
de redes de câmeras aliadas a sistemas de visão computacional, capazes de monitorar conti-
nuamente os ambientes e fornecer dados espacializados, como mapas de calor de atividades
e fluxos de movimentação de pedestres. Para que tais sistemas operem de forma precisa e
confiável, é indispensável que as câmeras estejam corretamente calibradas, ou seja, que os
parâmetros necessários para associar as imagens captadas com a geometria do ambiente real
estejam devidamente estimados.

O processo de calibração de câmeras permite estimar dois conjuntos de parâmetros: os
parâmetros intrínsecos, que descrevem características internas do dispositivo, como distância
focal e distorção da lente; e os parâmetros extrínsecos, que representam a posição e a orienta-
ção da câmera no espaço em relação a um sistema de coordenadas global. Neste trabalho, o
foco será direcionado à calibração extrínseca, que é a responsável por espacializar corretamente
as informações capturadas pelas câmeras em um referencial comum.

Tradicionalmente, a calibração extrínseca é realizada de forma manual, com o auxílio de
padrões artificiais, como tabuleiros de xadrez, posicionados em diferentes ângulos no campo de
visão das câmeras. Esse procedimento, embora muito usado, demanda ambientes controlados
e profissionais especializados, além de apresentar baixa flexibilidade em contextos em que as
câmeras rotacionam e ampliam a imagem por meio de zoom. Sempre que uma câmera é
reposicionada ou sofre deslocamentos, o processo precisa ser refeito, o que representa um
entrave significativo para aplicações em larga escala ou sujeitas a mudanças frequentes.

Diante dessas limitações, a calibração automática de câmeras surge como uma abordagem
mais eficiente e escalável. Essa técnica visa estimar os parâmetros extrínsecos sem a necessi-
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dade de padrões artificiais ou intervenção manual, reduzindo o tempo e o custo do processo,
além de possibilitar a recalibração contínua em ambientes sujeitos a mudanças. No contexto
urbano, uma estratégia promissora consiste na utilização de pedestres como padrões naturais,
uma vez que eles estão frequentemente presentes nesses ambientes, possuem morfologia re-
lativamente estável e realizam trajetórias que podem ser exploradas para inferir a geometria
da cena. Tais abordagens têm aplicações diretas em áreas como segurança pública, análise de
fluxo de pessoas, planejamento urbano e outras tecnologias para cidades inteligentes.

Apesar de seu potencial, as técnicas atuais de calibração automática baseadas em pedestres
ainda enfrentam importantes desafios, especialmente quando aplicadas a cenários urbanos
reais. A literatura existente revela que os testes são frequentemente realizados em ambientes
controlados, com condições simplificadas. Por exemplo, (TRUONG et al., 2019) validam sua
abordagem utilizando no máximo sete pedestres simultaneamente, enquanto (LEE et al., 2022)
avaliam sua técnica com apenas um indivíduo posicionado no centro de uma área monitorada
por múltiplas câmeras. Essas condições não refletem as complexidades do ambiente urbano
real, onde há intensa movimentação de pessoas.

Aplicações práticas em contextos reais trazem uma série de desafios adicionais, como
oclusões causadas por pedestres e objetos do ambiente, variações nas condições de iluminação
que geram sombras e dificultam a detecção, além da baixa resolução de muitas câmeras
urbanas, o que prejudica a identificação e o rastreamento de indivíduos. Esses fatores impactam
diretamente a robustez das técnicas de calibração automática, exigindo investigações mais
aprofundadas sobre sua viabilidade e desempenho em condições reais de operação.

Diante desse contexto, o presente trabalho tem como objetivo investigar a eficácia de
técnicas de calibração automática de câmeras baseadas em pedestres em cenários urbanos reais,
explorando seus pontos fortes, limitações e a viabilidade de sua aplicação prática em ambientes
dinâmicos. Importa destacar que não se trata de um estudo comparativo entre diferentes
métodos, mas sim de uma análise exploratória voltada à compreensão do comportamento
dessas abordagens quando aplicadas a situações reais. Os testes realizados não seguem uma
padronização rígida, e sim assumem caráter experimental, com o intuito de levantar percepções
qualitativas e quantitativas sobre o desempenho das técnicas estudadas.

• Investigar técnicas de calibração automática de câmeras utilizando pedestres

como referência e compreender suas vantagens e limitações (Capítulos 2 e 3);

• Testar e analisar o desempenho dessas técnicas em diferentes conjuntos de dados
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que simulam cenários reais, com foco na robustez frente a oclusões e trajetórias reais
(Capítulos ?? e ??);

• Identificar os principais desafios e possíveis melhorias na calibração automática

para tornar essas abordagens mais viáveis para aplicações práticas (Capítulo 6).

Com essa investigação, espera-se contribuir para o desenvolvimento de sistemas mais efici-
entes e autônomos de calibração de redes de câmeras, reduzindo a necessidade de intervenção
manual e tornando a visão computacional mais acessível e aplicável a cenários do mundo real.
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2 REFERENCIAL TEÓRICO

A calibração automática de câmera é bastante relevante em diversos contextos. Alguns
conceitos matemáticos são fundamentais encontrar os parâmetros que descrevem a câmera.
Este capítulo tem como objetivo mostrar alguns desses principais conceitos. Eles incluem o
modelo matemático de câmera mais utilizado, o pinhole, além de geometria epipolar. Também
será apresentado duas técnicas recentes que ilustram como a calibração pode ser realizada
usando pedestres.

2.1 MODELO DE CÂMERA PINHOLE

Também conhecido como modelo de orifício, o modelo Pinhole representa a relações geo-
métricas entre a cena e a imagem (HARTLEY; ZISSERMAN, 2003). Ele assume que os raios de
luz passam por um único ponto, conhecido como centro de projeção, antes de atingir o plano
da imagem, 1. Isso simplifica a descrição da formação de imagens.

Figura 1 – Modelo de câmera pinhole. Fonte: (DIAS, 2015).

Matematicamente, o modelo pinhole é descrito por uma matriz de projeção M que mapeia
as coordenadas de um ponto no espaço tridimensional 𝑃𝑤 = [𝑥𝑤, 𝑦𝑤, 𝑧𝑤, 1]𝑇 para suas coor-
denadas correspondentes no plano da imagem 𝑝 = [𝑢, 𝑣, 1]𝑇 . A matriz de projeção é formada
pela matriz de parâmetros intrínsecos K e a matriz de parâmetros extrinsecismos [R|𝑡], onde
R é a matriz de rotação, e 𝑡 é o vetor de translação. Enquanto os parâmetros intrínsecos des-
crevem as propriedades internas da câmera, como distância focal e posição do centro óptico, os
parâmetros extrínsecos definem a orientação e a posição da câmera no espaço tridimensional
em relação ao mundo real.
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A calibração de câmera é um processo para determinar esses parâmetros intrínsecos e
extrínsecos que descrevem um modelo de câmera.

2.1.1 Parâmetros Intrínsecos e Extrínsecos

Os parâmetros intrínsecos e extrínsecos desempenham papéis complementares na mode-
lagem de câmeras. Enquanto os parâmetros intrínsecos descrevem as propriedades internas
da câmera, como distância focal e posição do centro óptico, os parâmetros extrínsecos de-
finem a orientação e a posição da câmera no espaço tridimensional em relação ao mundo
real (HARTLEY; ZISSERMAN, 2003)..

Os parâmetros intrínsecos são representados por uma matriz de calibração K, que encap-
sula as propriedades internas da câmera. Essa matriz é definida como:

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (2.1)

onde 𝑓𝑥 e 𝑓𝑦 são as distâncias focais em pixels nos eixos 𝑥 e 𝑦, e 𝑐𝑥 e 𝑐𝑦 representam
as coordenadas do centro óptico no plano da imagem. Essa matriz projeta os pontos em
coordenadas de câmera no plano de imagem, em coordenadas da imagem.

A projeção de um ponto tridimensional 𝑃𝑤 = [𝑥𝑤, 𝑦𝑤, 𝑧𝑤, 1]𝑇 no sistema de coordenadas
do mundo para a coordenada de câmera é feita pelos parâmetros extrínsecos, que são repre-
sentados pela concatenação de uma matriz de rotação R e um vetor de translação 𝑡. Esses
parâmetros transformam o ponto em coordenada de mundo da seguinte forma:

𝑃𝑐 = [R|𝑡] · 𝑃𝑤 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑅11 𝑅12 𝑅13 𝑡𝑥

𝑅21 𝑅22 𝑅23 𝑡𝑦

𝑅31 𝑅32 𝑅33 𝑡𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑤

𝑦𝑤

𝑧𝑤

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.2)

onde 𝑃𝑐 = [𝑥𝑐, 𝑦𝑐, 𝑧𝑐]𝑇 são as coordenadas do ponto no sistema da câmera. A matriz R é uma
matriz 3 × 3 que define a orientação da câmera, enquanto o vetor 𝑡 representa sua posição.

A combinação dos parâmetros intrínsecos e extrínsecos resulta na matriz de projeção M,
que mapeia as coordenadas tridimensionais do mundo diretamente para as coordenadas da
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imagem. Essa matriz é definida como:

M = K · [R|𝑡]. (2.3)

O mapeamento completo para as coordenadas da imagem 𝑝 = [𝑢, 𝑣, 1]𝑇 é então dado por:

𝑝 = M · 𝑃𝑤 = K · [R|𝑡] · 𝑃𝑤. (2.4)

Apesar de sua simplicidade, o modelo pinhole consegue ser útil em varias situações, refor-
çando a sua popularidade. Porém, ele apresenta limitações por não considerar as distorções
ópticas introduzidas por lentes reais, o que afeta a precisão do mapeamento geométrico. Porém,
modelos complementares podem ser integrados a ele. Isso permite a inclusão de parâmetros
de distorção, por exemplo, aumentando a precisão em situações práticas.

2.1.2 Parâmetros de Distorção

As lentes das câmeras reais introduzem inevitavelmente distorções ópticas que comprome-
tem a precisão da projeção geométrica idealizada pelo modelo pinhole. Entre essas distorções,
as distorções radiais são as mais comuns. A correção da distorção radial é representada por
uma função que ajusta as coordenadas da imagem distorcida (𝑢, 𝑣) para as coordenadas cor-
rigidas (𝑢𝑐, 𝑣𝑐). Essa relação é definida por meio da introdução de coeficientes de distorção
radial 𝑘1, 𝑘2, 𝑘3, . . ., e depende da distância radial 𝑟, dada por:

𝑟 =
√︁

(𝑢 − 𝑐𝑥)2 + (𝑣 − 𝑐𝑦)2, (2.5)

onde 𝑐𝑥 e 𝑐𝑦 são as coordenadas do ponto central da câmera. A correção é aplicada às
coordenadas normalizadas 𝑢 e 𝑣 por meio das seguintes equações:

𝑢𝑐 = 𝑢(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6), (2.6)

𝑣𝑐 = 𝑣(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6), (2.7)

onde 𝑢𝑐 e 𝑣𝑐 são as coordenadas corrigidas após o ajuste radial.
Além das distorções radiais, a distorção tangencial também pode comprometer a precisão

da projeção geométrica de uma câmera (HEIKKILA; SILVÉN, 1997). Esse tipo de distorção ocorre
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devido a imperfeições no alinhamento das lentes, o que faz com que os pontos na imagem
sejam deslocados tangencialmente em relação ao centro óptico. Ela pode ser descrita por dois
coeficientes 𝑝1 e 𝑝2, que modelam o deslocamento tangencial das coordenadas da imagem,
conforme as seguintes equações:

𝑢𝑐 = 𝑢 +
[︁
2𝑝1𝑢𝑣 + 𝑝2

(︁
𝑟2 + 2𝑢2

)︁]︁
, (2.8)

𝑣𝑐 = 𝑣 +
[︁
𝑝1

(︁
𝑟2 + 2𝑣2

)︁
+ 2𝑝2𝑢𝑣

]︁
, (2.9)

onde 𝑟 é a mesma distância radial dada pela Equação 2.5.
A distorção tangencial é frequentemente tratada em conjunto com a distorção radial, com-

pondo um modelo completo de correção. O processo de calibração determina os coeficientes
𝑝1 e 𝑝2 juntamente com os coeficientes de distorção radial 𝑘1, 𝑘2, 𝑘3, permitindo uma corre-
ção combinada que melhora significativamente a qualidade geométrica da projeção dada pelas
equações:

𝑢𝑐 = 𝑢(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) +

[︁
2𝑝1𝑢𝑣 + 𝑝2

(︁
𝑟2 + 2𝑢2

)︁]︁
, (2.10)

𝑣𝑐 = 𝑣(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) +

[︁
𝑝1

(︁
𝑟2 + 2𝑣2

)︁
+ 2𝑝2𝑢𝑣

]︁
, (2.11)

2.2 GEOMETRIA EPIPOLAR

A geometria epipolar descreve as restrições geométricas entre duas imagens de uma cena
capturadas a partir de diferentes pontos de vista (HARTLEY; ZISSERMAN, 2003; FAUGERAS; LU-

ONG; PAPADOPOULO, 2001). Ela é fundamental para a calibração de câmeras e a reconstrução
3D, pois impõe relações matemáticas entre os pontos correspondentes das imagens.

A geometria epipolar se baseia na noção de epipolo, que é o ponto onde a linha que conecta
os centros de câmera intersectam o plano de imagem 2.

Outro conceito importante é o do plano contendo os centros das câmeras e o ponto 3D
que está sendo observado, chamado de plano epipolar. Quando o ponto 3D é projetado em
uma das imagens, o seu correspondente na outra imagem está restrito a uma linha, chamada
de linha epipolar. Essa linha é a projeção da reta que passa pelo centro da primeira câmera e o
ponto 3D. Ou seja, se temos o ponto 𝑝1 na primeira imagem, seu correspondente na segunda
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Figura 2 – Conceitos bésicos de geometria epipolar. Fonte: (TRUCCO; VERRI, 1998).

imagem está restrito à linha epipolar. É importante notar que todas as linhas epipolares passam
pelo epipolo. Matematicamente, essa restrição é dada pela equação:

𝑝𝑇
2 · F · 𝑝1 = 0, (2.12)

onde 𝑝1 e 𝑝2 são pontos correspondentes na primeira e segunda câmeras, respectivamente, e
F é a matriz fundamental, que encapsula a relação geométrica entre as duas câmeras.

A matriz fundamental F descreve a relação geométrica entre duas câmeras. Ela é usada
quando não se tem informação dos parâmetros intrínsecos e pode ser calculada a partir de um
conjunto de pontos correspondentes em coordenadas de câmera. A matriz essencial E é similar
à matriz fundamental, mas ela assume que o sistema está calibrado e os pontos expressos
em coordenadas de imagem. A matriz essencial está relacionada à matriz fundamental pela
seguinte equação:

E = K2
𝑇 · F · K1, (2.13)

onde K1 e K2 são as matrizes de parâmetros intrínsecos das duas câmeras.

2.2.1 Erro Epipolar

O erro epipolar mede a distância entre um ponto projetado e sua linha epipolar correspon-
dente. Essa distância é um indicativo da precisão da calibração das câmeras e da reconstrução
3D (HARTLEY; ZISSERMAN, 2003). Uma métrica para esse erro é a distância simétrica epipolar:

𝑑(𝑝1, 𝑙2) + 𝑑(𝑝2, 𝑙1), (2.14)
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onde 𝑑(𝑝, 𝑙) é uma função que calcula a menor distância entre um ponto 𝑝 em coordenada de
imagem e uma reta na imagem e 𝑙1 e 𝑙2 são as linhas epipolares na primeira e segunda câmera.

2.3 MÉTODOS DE CALIBRAÇÃO DE CÂMERA

O processo de calibração de câmeras é uma etapa fundamental para garantir a precisão
de aplicações de visão computacional. Ele envolve o uso de características facilmente distin-
guível na imagem para calcular as matrizes K e R e o vetor 𝑡. Essas características podem
ser extraídas de objetos artificiais inseridos na cena, como um template xadrez, assim como
elementos naturais, como linhas e pedestres. Após isso, os dados extraídos são utilizados para
estimar as matrizes de calibração.

2.3.1 Extração de Características por Elementos Artificiais

O método mais comum de calibração utiliza padrões facilmente reconhecidos, como tabu-
leiros de xadrez ou alvos de pontos circulares, colocados na cena. A posição e dimensão desses
padrões são medidos, que permite correlacionar os pontos extraídos na imagem com uma re-
ferência em coordenadas de mundo. Por serem padrões de alto contraste, esses padrões são
mais facilmente identificados e os pontos na imagem correspondentes a eles são extraídos na
imagem. Esse tipo de calibração é feito capturando múltiplas imagens do padrão em diferentes
posições e momentos.

2.3.2 Extração de Características por Elementos Naturais

Esta forma de extrair características da imagem explora elementos naturais pertencentes à
cena, como pontos de alto destaque, linhas e até pedestres. A grande vantagem dessa forma
é que ela pode automatizar o processo de calibração, uma vez que não é necessário interferir
na cena. Por outro lado, essas características são mais difíceis de serem extraídas, que pode
resultar num aumento da imprecisão, por exemplo.

Uma das formas de extrais características da imagem sem a necessidade de inserir ele-
mentos artificiais é identificar pontos de alto destaques, também chamados de features. Eles
podem ser encontrados usando extratores de features, como o SIFT (Scale-Invariant Feature
Transform) (LOWE, 2004). Para encontrar uma referência com as coordenadas de mundo,



21

normalmente são usadas features de objetos cujas dimensões e posições são conhecidas.

2.3.3 Calibração de Câmeras

As características extraídas, seja utilizando elementos artificiais ou naturais, são utilizadas
para estimar os parâmetros intrínsecos e extrínsecos da câmera. Essas características estão
presentes vários frames e as correspondências delas durante a sequência e os seus correspon-
dentes em coordenada de mundo podem ser usados para realizar a calibração. Uma das formas
é usando a Transformação Linear Direta (cuja sigla do termo em inglês é DLT) (ABDEL-AZIZ;

KARARA; HAUCK, 2015). Ela utiliza as correspondências 2D-3D para calcular a matriz de pro-
jeção M. Posteriormente, a matriz M pode ser decomposta em seus componentes intrínsecos
K e extrínsecos [R|𝑡] usando a Decomposição em Valores Singulares (cuja sigla do termo em
inglês é SVD) (KLEMA; LAUB, 1980), seguida por uma etapa de refinamento por métodos de
otimização não linear, como o algoritmo de Levenberg-Marquardt.

Casos onde os pontos 3D são coplanares podem ocorrer quando as características são
extraídas usando elementos artificiais. Nesse caso, são calculadas as homografias que mapeiam
os pontos 2D das imagens para os pontos 3D do plano. A partir dessas homografias, é possível
extrair uma estimativa inicial dos parâmetros, que pode ser posteriormente refinada através
de uma otimização não linear, minimizando o erro de reprojeção (ZHANG, 2002).

2.3.4 Calibração de Rede Multicâmeras

A calibração de câmeras pode ser aplicada tanto a sistemas com uma única câmera quanto
a redes multicâmeras. No caso de uma única câmera, o processo envolve a determinação
dos parâmetros intrínsecos e extrínsecos em relação a um referencial, permitindo mapear
pontos do mundo tridimensional para a imagem bidimensional. Entretanto, em uma rede de
câmeras, além da calibração individual de cada dispositivo, é necessário estimar as relações
espaciais entre elas, ou seja, determinar as matrizes de rotação e os vetores de translação que
alinham os diferentes sistemas de coordenadas em um referencial comum (FAUGERAS; LUONG;

PAPADOPOULO, 2001).
Em redes multicâmeras, surgem desafios adicionais, como a necessidade de sincroniza-

ção temporal e de um alinhamento espacial preciso, especialmente em ambientes dinâmicos
onde os cenários podem mudar rapidamente. Técnicas avançadas são empregadas para ajus-
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tar os parâmetros de cada câmera e minimizar discrepâncias entre as diferentes perspectivas,
considerando fatores como iluminação variável, oclusões e movimentos rápidos. Parâmetros
compartilhados, como a distância entre as câmeras e a orientação relativa, são fundamentais
para garantir a consistência geométrica e a precisão na reconstrução tridimensional, enquanto
a sincronização dos frames é crucial para a integração confiável dos dados, especialmente em
aplicações de monitoramento em tempo real.

Além disso, a sobreposição das áreas capturadas por diferentes câmeras oferece redundância
e melhora a precisão dos algoritmos de visão computacional. Métodos robustos de calibração
aproveitam a correspondência de pontos em múltiplas vistas e a utilização de objetos com
trajetórias conhecidas para refinar as estimativas. A aplicação de técnicas de otimização, como
a minimização do erro de reprojeção, permite ajustar globalmente os parâmetros intrínsecos
e extrínsecos, enquanto modelos matemáticos avançados incorporam regularizações para lidar
com diferenças de resolução e sobreposição de campos de visão, transformando o problema
em uma complexa otimização multidimensional.

2.4 MÉTODOS DE CALIBRAÇÃO BASEADO EM PEDESTRES

Um outro elemento que pode ser usado na extração de características naturais são pe-
destres, especialmente quando se trata de cenários urbanos (GUAN et al., 2016; TEMPELAAR,
2022). Essas técnicas exploram pontos da anatomia humana, como articulações e extremi-
dades do corpo humano, como correspondências para estimar relações entre câmeras. Essas
abordagem baseia-se na premissa de que uma pessoa manterá sua estrutura corporal, como
distância da cabeça aos pés, ao ser capturada em diferentes instantes de tempo. Assim, é
possível extrair uma relação entre as características extraídas da imagem e as coordenadas de
mundo. Dois tipos de técnicas são usados como base para ilustrar como pedestres podem ser
usados para estimar a calibração extrínseca.

2.4.1 Calibração Extrínseca Baseada em Torsores de Pedestres

O TorsorCalib (TRUONG et al., 2019) usa o conceito do torso de um pedestre para obter
os pontos que serão usados na calibração. O torso é um segmento de reta que vai do pescoço
até os pés de uma pessoa. Para obter a posição de um pedestre na imagem, é aplicado um
método de detecção de pose humana, que fornece o esqueleto das principais articulações do
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corpo. Esses métodos podem ser o AlphaPose (FANG et al., 2022) ou o OpenPose (CAO et al.,
2019). A articulação do pescoço é utilizada como referência para a parte superior do torso,
enquanto a base é definida como o ponto médio entre os tornozelos esquerdo e direito. Essa
técnica assume que os frames estão sincronização e a calibração intrínseca já foi realizada.

Seja uma rede de câmeras composta por 𝑛 câmeras 𝐶1, 𝐶2, . . . , 𝐶𝑛 e o ponto 𝑃𝑤 =

[𝑥𝑤, 𝑦𝑤, 𝑧𝑤, 1]𝑇 . Cada câmera possui seu próprio sistema de coordenadas locais. Assim, o ponto
𝑃𝑤 no sistema da câmera 𝑖 é dado por 𝑃 (𝑖)

𝑤 = [𝑥(𝑖)
𝑤 , 𝑦(𝑖)

𝑤 , 𝑧(𝑖)
𝑤 , 1]𝑇 . Assim, a transformação que

leva do sistema de coordenadas de mundo para o sistema de coordenadas de qual quer uma
das câmeras é dada por 𝑃 (𝑖)

𝑤 = R(𝑖) · 𝑃𝑤 + 𝑡(𝑖).
No TorsoCalib, a calibração é realizada por pares de câmera. Assim, nessas duas câmeras

observadas, supõe-se que o pedestre moveu-se em 𝑚 frames e manteve a mesma postura.
Sejam ũ(𝑖)

bottom(𝑓) e ũ(𝑖)
top(𝑓) as posições de imagem da base e do topo do pedestre na câmera

𝑖 no frame 𝑓 . Essas coordenadas são normalizadas como x̃(𝑖)
bottom(𝑓) e x̃(𝑖)

top(𝑓), permitindo a
recuperação das coordenadas 3D (GUAN et al., 2016).

Assumindo que o pedestre tem altura ℎ, define-se as coordenadas tridimensionais da base
e do topo como:

𝑃
(𝑖)
𝑤_top(𝑓) = 𝑧

(𝑖)
𝑤_top(𝑓)x̃(𝑖)

top(𝑓), (2.15)

𝑃
(𝑖)
𝑤_bottom(𝑓) = 𝑧

(𝑖)
𝑤_bottom(𝑓)x̃(𝑖)

bottom(𝑓). (2.16)

Dessa forma, tem-se:
𝑃

(𝑖)
𝑤_top(𝑓) − 𝑃

(𝑖)
𝑤_bottom(𝑓) = ℎ𝑒(𝑖)

𝑧 , (2.17)

onde 𝑒(𝑖)
𝑧 é o vetor unitário do pedestre na câmera 𝑖.

Pode-se então calcular um vetor 3D perpendicular ao plano vertical contendo a origem da
câmera e os pontos de topo e base:

m(𝑖)(𝑓) = x̃(𝑖)
bottom(𝑓) × x̃(𝑖)

top(𝑓). (2.18)

A interseção desses planos define a direção vertical comum, e aplica-se SVD à matriz M(𝑖)

para determinar 𝑒(𝑖)
𝑧 . Finalmente, usa-se Análise de Procrustes para estimar a transformação

rígida entre os conjuntos de pontos 3D e, assim, chega-se a matriz de rotação R(𝑖) e a de
translação 𝑡(𝑖).
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2.4.2 Calibração Extrínseca Baseada em Articulações Orientadas de um Corpo em

Movimento

O MovingCalib (LEE et al., 2022) considera a movimentação do corpo humano para realizar a
calibração. Diferente de abordagens convencionais que utilizam apenas pontos correspondentes
2D ou 3D, este método considera as posições e orientações das articulações corporais. Dessa
forma, cada ponto possui uma posição 𝑟𝑓 e uma direção 𝑣𝑓 em coordenadas de mundo. Assim,
para uma câmera 𝑖 com rotação matriz de rotação R(i) e vetor de translação 𝑡(𝑖), esses pontos
são transformados para o sistema da câmera por meio das equações:

𝑃 (𝑖)
𝑤 = R(𝑖) · 𝑟𝑓 + 𝑡(𝑖), (2.19)

𝑣
(𝑖)
𝑓 = R(𝑖) · 𝑣𝑓 (2.20)

e projetados na imagem usando a matriz intrínseca 𝐾(𝑖), obtida previamente.
A calibração inicia com a estimativa da rotação, que é obtida formando-se uma matriz de

observação a partir das direções 𝑣
(𝑖)
𝑓 medidas. A decomposição em valores singulares (SVD)

dessa matriz permite recuperar rotações normalizadas para cada câmera. Com as rotações
determinadas, a translação é estimada utilizando restrições de colinearidade e coplanaridade,
que garantem a consistência entre os pontos 3D e suas projeções.

Após essas etapas, é aplicado um bundle adjustment para minimizar o erro de reprojeção,
refinando simultaneamente os parâmetros extrínsecos. Complementarmente, um fine-tuning
auto-supervisionado utiliza as poses humanas 3D trianguladas como pseudo ground-truth para
aprimorar o estimador de pose 3D monocular, garantindo uma calibração robusta mesmo em
condições de entrada ruidosa.
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3 REVISÃO DA LITERATURA

Existe uma vasta e diversa literatura na área de calibração extrínseca automática de câ-
meras e redes de câmeras. Elas variam em relação à quantidade de pedestres necessários,
passando por abordagens baseadas correspondência entre linhas epipolares de silhuetas em
movimento e até métodos não supervisionados baseados em trajetórias de pessoas.

(HöDLMOSER; KAMPEL, 2010) propõem um método para calibrar redes de câmeras de vi-
gilância utilizando o movimento de um único pedestre como referência. A abordagem calcula
os parâmetros intrínsecos e extrínsecos das câmeras, além de um fator de escala para estimar
a altura real do pedestre. Os experimentos, realizados com dados sintéticos e reais, eviden-
ciam a precisão e robustez do método, mesmo na presença de ruído ou variação nos pontos
detectados. A técnica também se destaca pela eficiência computacional, com um incremento
de apenas 1,4 segundos no tempo de processamento por câmera adicionada. Esta solução ofe-
rece uma alternativa prática e eficaz para calibração em cenários de segurança, possibilitando
reconstrução 3D e estimativas de altura em ambientes desafiadores.

Já a técnica proposta por (BEN-ARTZI, 2017) utiliza correspondência entre linhas epipolares
das silhuetas de pessoas em movimento. Melhorando em duas vezes o desempenho de métodos
semelhantes e reduzindo outliers. Os pontos positivos deste estudo incluem o uso de um modelo
de grafos que melhora a capacidade de realizar correspondências de pontos em diferentes
vistas. Além de que, o uso de estimadores de probabilidade condicional permite um fine-
tuning das correspondências, o que pode ser especialmente útil em cenas com movimento
complexo. No entanto, a abordagem é dependente do movimento das silhuetas, o que pode
ser problemático se os objetos possuem contornos pouco definidos. Além disso, a técnica pode
falhar em situações em que os epípolos estão dentro do casco convexo, o que dificulta a
recuperação de pontos de correspondência precisos.

O trabalho de (POSSEGGER et al., 2012) propõe um método de calibração extrínseca não
supervisionada para redes de câmeras estáticas e PTZ (sigla para pan-tilt-zoom), baseado em
correspondências entre trajetórias de pessoas em movimento. A abordagem utiliza a extração
de localizações de cabeça e pés de pedestres a partir de imagens e realiza uma otimização não
linear do erro de reprojeção para determinar os parâmetros extrínsecos das câmeras. Os expe-
rimentos demonstraram que o método consegue fornecer estimativas precisas dos parâmetros
de câmeras em cenários variados, incluindo cenários externos. Pontos positivos incluem capa-
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cidade do método de lidar com câmeras PTZ e cenas com múltiplos objetos em movimento.
No entanto, pontos negativos envolvem a dependência da qualidade dos rastreamentos das
pessoas, o que pode ser comprometido por oclusões ou movimentações rápidas.

O estudo de (LIU; COLLINS; LIU, 2013) propõe uma abordagem para a autocalibração de câ-
meras em redes de vigilância, utilizando uma estrutura de otimização conjunta combinada com
estatísticas para obter calibração precisa. Para esta técnica não são necessários o rastreamento
ou pontos de correspondência da mesma pessoa ao longo do tempo ou entre diferentes vistas.
O algoritmo se destaca por sua robustez em cenários desafiadores, como ambientes com densi-
dades moderadas de multidões e com ruído significativo proveniente de elementos de primeiro
plano. No entanto, sua eficácia depende da qualidade das detecções e pode exigir recursos
computacionais consideráveis, o que pode representar um desafio para implementações em
tempo real.

(TEIXEIRA; MAFFRA; BADII, 2014) apresentam um framework para a autocalibração de câ-
meras de vigilância em cenários reais. O método proposto é generalizável para cenários do
mundo real e utiliza segmentação semântica para gerar um mapa de ocupação, identificando
áreas de interesse na cena, destacando pedestres e minimizando o impacto de oclusões. Essa
abordagem permite ao framework lidar de forma eficaz com desafios como oclusões e a pre-
sença de objetos inesperados na cena. Além disso, o método integra a detecção de pedestres
com a aplicação do algoritmo RANSAC para identificar linhas verticais e estimar o ponto
de fuga vertical. Um aspecto adicional destacado no framework é a capacidade de refinar as
estimativas de altura dos pedestres, o que melhora a precisão para aplicações que dependem
dessa funcionalidade.

O método proposto por (PUWEIN et al., 2015) oferece uma abordagem robusta para a cali-
bração de câmeras e a estimativa das posições 3D das articulações humanas em cenas onde há
a movimentação de pedestres. As posições das articulações são estimadas para, em seguida,
realizar uma otimização conjunta dos parâmetros extrínsecos das câmeras e das posições 3D
das articulações. Os pontos fortes do método incluem sua capacidade de proporcionar uma
calibração precisa. Além de que, a otimização considera múltiplos fatores, como continui-
dade temporal, fluxo óptico e visibilidade das partes do corpo. A abordagem demonstrou boa
generalização, com bons resultados em diferentes conjuntos de dados.

(LETTRY; DRAGON; GOOL, 2017) propõem um método para a calibração de redes de câme-
ras baseado em correspondências de planos e amostragem probabilística, abordando desafios
como planos cruzados e a presença de outliers. A metodologia utiliza técnicas estatísticas
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combinadas com algoritmos de Monte Carlo via Cadeia de Markov (MCMC) em camadas para
estimar matrizes de homografia entre planos observados por diferentes câmeras. O processo
inicia com a calibração de pares de câmeras que apresentam boa sobreposição e baixa movi-
mentação, aproveitando esses resultados para calibrar, de forma progressiva, pares com menor
sobreposição ou maior movimento em um esquema em cascata. A robustez do método é des-
tacada pela sua capacidade de lidar com correspondências imprecisas e outliers por meio da
modelagem probabilística, além de abordar planos cruzados utilizando caminhos triangulares
mais curtos para estabelecer correspondências. Entretanto, o uso de MCMC em camadas au-
menta significativamente a complexidade computacional, tornando o método potencialmente
menos eficiente para conjuntos de dados extensos. Além disso, o desempenho depende forte-
mente de uma parametrização adequada, demandando ajustes criteriosos para obter resultados
satisfatórios.

(HALPERIN; WERMAN, 2018) apresentam um método eficiente para calcular a geometria
epipolar em cenas dinâmicas de redes de câmeras. A base do método considera a corres-
pondência entre pixels e linhas epipolares em vistas diferentes. Avaliado em vídeos reais, o
método demonstrou superioridade em relação a abordagens semelhantes, graças aos refina-
mentos aplicados e à significativa redução da complexidade computacional. Além disso, a
técnica se destaca por sua eficácia em cenários onde as câmeras possuem ângulos de visão
substancialmente diferentes, superando os desafios associados à correspondência de pontos
nesses casos.

O estudo de (TRUONG et al., 2019), fundamentado na técnica investigada por (GUAN et al.,
2016), propõe uma solução para a calibração de câmeras em cenários urbanos com mais de
uma pessoa e oclusões parciais. O método se baseia na detecção de poses humanas em imagens
de câmeras, modelando os pedestres como bastões verticais, para estabelecer correspondências
entre pessoas em diferentes imagens. A robustez do método inclui calibrações com erros de
reprojeção de 3,76 a 3,69 pixels. Além disso, o método foi integrado com uma estratégia de
amostragem aleatória, o que aumenta sua resistência a ruídos e outliers nos dados de pose
humana, além de reduzir significativamente o tempo de coleta de dados. No entanto, o método
não foi testado em conjunto de dados com alta densidade de pessoas.

O estudo de (NOWAK et al., 2021) apresenta uma metodologia para percepção multimodal,
utilizando câmeras RGB e de profundidade (RGB-D), e introduz a biblioteca OpenHSML (JOR-

DAN, 2021). A abordagem proposta utiliza calibração de câmeras RGB-D para determinar as
matrizes fundamentais e de projeção, através de grafos e estimadores de probabilidade con-
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dicional e similaridade, oferecendo uma solução de código aberto, prática e independente de
configurações específicas de câmeras. A OpenHSML destaca-se pela simplicidade e versatili-
dade. Porém, um problema identificado é a ocorrência de "buracos"nos mapas de profundidade,
áreas em que informações de profundidade estão ausentes, inviabilizando medições nessa re-
gião. Além disso, erros de projeção podem surgir quando as câmeras estão distantes entre
si, permitindo que pontos atrás do objeto de interesse sejam visualizados e causem inconsis-
tências. Nos experimentos realizados, a distância máxima entre as câmeras foi de 2 metros,
limitando a aplicação em cenários mais amplos, como o monitoramento de pedestres, onde
pontos no fundo da cena são frequentemente capturados.

(MOLINER; HUANG; ASTROM, 2021) apresentam um método para estimar os parâmetros
extrínsecos de câmeras, incluindo escala, rotação e translação, utilizando apenas imagens
de vídeos sincronizados e correspondência de poses humanas. A técnica aprimora a precisão
da estimativa ao considerar fontes de erro associadas à detecção de pose e ao utilizar ar-
ticulações com maior confiabilidade. Além disso, incorpora uma função objetivo baseada no
bundle adjustment, que combina erro de reprojeção e restrições relacionadas à plausibilidade
de movimentos humanos, como ângulos realistas entre membros. Embora o método tenha
demonstrado redução significativa no erro de reprojeção, ele é limitado a cenas com um único
pedestre, dificultando sua aplicação em cenários reais mais complexos. Como trabalho futuro,
os autores sugerem a extensão da abordagem para lidar com múltiplos pedestres, ampliando
seu potencial em aplicações práticas.

O estudo de (LEE et al., 2022) propõe o uso da orientação de articulações corporais hu-
manas para estimar os parâmetros extrínsecos em redes de câmeras. Para cada articulação,
são estimados pontos 3D e, a partir deles, são encontrados os parâmetros extrínsecos através
de correspondência geométrica através de um algorítmo linear. Após isso, se iniciam ciclos
de: ajustes dos parâmetros de calibração com bundle adjustment e refinamento das estima-
tivas de coordenadas 3D das articulações com a calibração ajustada. A técnica destaca-se
pela capacidade de generalização a diferentes ambientes e pela robustez a ruídos e pequenos
movimentos. No entanto, o método enfrenta limitações, como a ambiguidade de escala, que
requer um objeto de referência conhecido para ser resolvida. Além disso, a alta complexidade
computacional pode dificultar sua aplicação em tempo real ou em dispositivos com recursos
limitados. Outra restrição é que a abordagem considera apenas uma pessoa na cena, limitando
sua aplicabilidade em cenários mais complexos.

(TEMPELAAR, 2022) apresenta um modelo inovador para a calibração automática de câ-
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meras em cenários com a presença de pessoas, utilizando estimativas de poses humanas e
reidentificação automática para ajustar os parâmetros extrínsecos das câmeras. A metodo-
logia emprega um estimador de poses humanas para detectar pontos-chave nos pedestres,
cujas características são, em seguida, processadas por um algoritmo de reidentificação (re-ID)
baseado em afinidade, OSNet (ZHOU et al., 2021). Essa abordagem automatiza a correspon-
dência entre visualizações de diferentes câmeras, permitindo uma calibração eficiente em redes
multicâmeras.

Nos experimentos, este modelo demonstrou resultados promissores, atingindo calibração
com elevada precisão no conjunto de dados SALSA e calibrando três das sete câmeras no
conjunto de dados WildTrack (CHAVDAROVA et al., 2018). A limitação na calibração completa
das câmeras no WildTrack foi atribuída à insuficiência de memória da GPU utilizada, desta-
cando um desafio técnico enfrentado na implementação. Apesar dessa limitação, o método
representa um avanço significativo na calibração extrínseca automatizada em cenários com
pedestres, oferecendo uma abordagem robusta e aplicável a contextos reais.

Apesar das contribuições significativas, essas abordagens ainda apresentam limitações,
como a dependência de padrões visuais específicos, que não estão usualmente presentes no
cenário real. Além disso, as técnicas estudadas ainda carecem de validação mais ampla em
cenários reais, que incluem movimentações imprevisíveis e multidões densas. Muitos métodos
foram avaliados em ambientes controlados ou pouco dinâmicos, cenas com menos de dez
pessoas, o que limita sua aplicabilidade prática em alguns tipos de locais. Assim, existe a
necessidade de expandir o conhecimento para verificar o desempenho dessas soluções em
cenários mais desafiadores.
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4 TORSORCALIB

4.1 MÉTODO

A pesquisa avalia técnicas de calibração seguindo uma abordagem composta pelas seguintes
etapas: seleção das técnicas, implementação ou adaptação de código, anotação e verificação
de dados, experimentos e análise dos resultados obtidos. Ilustrada na Figura 3, essas etapas
buscam promover o entendimento de elementos que influenciam a calibração automática em
cenário real, escolhendo os conjuntos de dados de modo a obter informações sobre caracterís-
ticas e limitações dos métodos.

Figura 3 – Etapas da metodologia. Fonte: Elaborado pelo autor.

A primeira etapa é a seleção da técnica a ser experimentada, considerando os critérios
de adequação aos objetivos da pesquisa e as limitações dos dados disponíveis. Em seguida,
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procede-se à implementação ou adaptação do código, permitindo que a técnica selecionada
esteja funcional e compatível com os dados e métricas do experimento.

Na etapa de anotação e de verificação de dados, são preparados os dados necessários
para a avaliação, com a definição dos pedestres de calibração, anotação manual dos dados e
verificação da correspondência dos esqueletos anotados. Após isso, realiza-se os experimentos,
aplicando a técnica aos dados e gerando as métricas de avaliação. Por fim, ocorre a análise
dos resultados, permitindo identificar pontos fortes, limitações e possibilidades de ajustes para
os próximos testes.

4.1.1 Seleção de Técnica

O processo de seleção das técnicas ocorre a partir de um mapeamento da literatura, em
que 21 técnicas de calibração automática de câmeras são levantadas. Para cada uma delas, são
identificados os aspectos positivos e negativos de cada método, bem como os resultados de
precisão publicados. Com base nessa análise, é selecionada uma técnica para experimentação
considerando os seguintes critérios de seleção:

1. Utilizar pedestres como alvos para calibração;

2. Calibrar sistemas compostos por múltiplas câmeras;

3. Apresentar um baixo erro de calibração, tendo com referência o estado da arte de técnicas
de calibração;

4. Ser aplicável a cenários com múltiplos pedestres presentes simultaneamente.

Com base nesses critérios, a primeira técnica é selecionada:

• TorsorCalib: Propõe uma solução para a calibração de câmeras em cenários complexos
baseada em torsores gerados por pedestres na cena (TRUONG et al., 2019; LEE et al.,
2022).

4.2 IMPLEMENTAÇÃO OU ADAPTAÇÃO DE TÉCNICA

Após a seleção, cada técnica é analisada em termos de seus algoritmos, requisitos compu-
tacionais e limitações com o objetivo de entender como ela pode ser implementada e adaptada
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para este estudo. Nesta análise são identificadas ou escolhidas a linguagem de programação e
ferramentas utilizadas. Vale ressaltar que as adaptações realizadas buscam não apenas possi-
bilitar a execução técnica dos experimentos, mas também assegurar que o método opere de
forma condizente com os objetivos do estudo.

O TorsorCalib, que não possui código-fonte disponível publicamente, é reimplementado a
partir do método descrito nos seus dois artigos base (TRUONG et al., 2019; LEE et al., 2022).
De forma específica, a implementação dessa técnica leva em consideração a modelagem dos
pedestres como torsores verticais, formados a partir da ligação entre os pontos médios dos
ombros e dos pés, para cada frame. Isso com o processo de calibração sendo realizado por meio
das correspondências destes torsores nas diferentes vistas, obtendo os parâmetros extrínsecos
para cada câmera da rede. Além disso, são feitas adaptações para as avaliações realizadas neste
trabalho. Uma destas é a que permite que a entrada da técnica não seja a saída direta do
detector de pose humana, mas sim o output do código de anotação de dados (mais informações
na Seção 5.1.4).

cada técnica é adaptada para mostrar o erro de reprojeção de duas formas: o erro de
reprojeção de cada vista calibrada e o erro de reprojeção médio do sistema de câmeras.

4.2.1 Avaliação de Técnica

São utilizados três datasets para os experimentos, selecionados considerando cenários que
se aproximam de condições reais. Esses conjuntos de dados contêm pedestres em diferentes
movimentos e posturas, além de variarem em aspectos como: trajetórias percorridas, densi-
dade e nível de oclusão dos pedestres, posição das câmeras, áreas de sobreposição das vistas,
quantidade de dados e outros. Essa diversidade permite avaliar o desempenho das técnicas de
calibração em diferentes configurações e explorar diferentes características do método estu-
dado.

4.2.1.1 EPFL Dataset - Campus Sequence

O EPFL Campus Sequence (CHAVDAROVA; FLEURET, 2017) é um dataset amplo e com
sequências projetadas para a avaliação de técnicas de visão computacional em ambientes
urbanos, caracterizados por diferentes cenários universitários. A sequência selecionada foi a
Campus 4, que possui vídeos capturados por três câmeras com resolução de 360 x 288 pixels
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distribuídas em uma área externa do campus universitário, conforme ilustrado na Figura 4.

i. ii.

iii.

Figura 4 – Representação das vistas c0, c1 e c2 do EPFL Campus Sequence - Campus 4 usadas para calibração.
Fonte: (CHAVDAROVA; FLEURET, 2017)

Esta sequência é caracterizada por um ambiente dinâmico, que inclui múltiplos pedestres
se deslocando em postura ereta em direções diferentes. As câmeras apresentam campos de
visão parcialmente sobrepostos, o que possibilita análises multivisão, como rastreamento de
pedestres, calibração de câmeras e reconstrução tridimensional.

Porém, apesar de incluir aspectos dinâmicos, a sequência Campus 4 não apresenta uma
elevada densidade de pedestres. São três pessoas se movimentando em trajetórias com aparên-
cia linear e em um espaço aberto. Essa configuração resulta em um cenário menos complexo
que os próximos datasets apresentados, mas ainda desafiador pelas oclusões referentes à saída
dos pedestres da área de sobreposição das vistas. Essas características tornam o dataset uma
ferramenta relevante para avaliar o desempenho de técnicas em condições urbanas com menor
densidade de pedestres.
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4.2.1.2 Wildtrack

O Wildtrack Dataset (CHAVDAROVA et al., 2018) é amplamente reconhecido na área de
visão computacional por sua aplicação em cenários não controlados e de alta densidade de
pedestres. Ele consiste em capturas realizadas por sete câmeras estáticas, com resolução de
1920 x 1080 e dispostas ao redor de uma área de interesse, conforme ilustrado na Figura 5. As
câmeras capturam imagens sincronizadas e o dataset fornece anotações detalhadas, incluindo
as localizações tridimensionais dos pedestres. Essa configuração multicâmera permite explorar
desafios característicos de ambientes reais, como oclusões severas causadas por pedestres e
objetos no ambiente.

i. ii.

iii.

Figura 5 – Representação das três vistas do Wildtrack Dataset usadas para calibração. As imagens são captu-
radas simultaneamente por câmeras estáticas dispostas em torno de uma área central. As imagens
destacam diferentes ângulos de visão, evidenciando a configuração multicâmera utilizada para a
coleta de dados em cenários de monitoramento pedestre. Fonte: (CHAVDAROVA et al., 2018)

O Wildtrack se destaca pela diversidade de trajetórias dos pedestres, abrangendo desde
movimentos rápidos e lentos até momentos de parada, além de apresentar, em muitos casos,
percursos mais longos. Essas características resultam em um número elevado de detecções de
poses, aumentando a quantidade de dados disponíveis para calibração, aspectos relevantes para
esta pesquisa. A riqueza desse dataset, aliada à complexidade das condições presentes, torna-o
uma ferramenta para validar métodos em tarefas como calibração multicâmera, detecção de
poses e rastreamento de pedestres.
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4.2.1.3 Si.U Dataset

O Si.U Dataset é um dataset próprio, capturado no pátio central do Centro de Informática
(CIn) da Universidade Federal de Pernambuco (UFPE), com o objetivo de fornecer dados
multicâmera para pesquisas voltadas à calibração de câmeras e detecção de pedestres em
cenários reais. O conjunto de dados é composto por imagens de resolução 1920 x 1080 a
partir de quatro vistas, posicionadas para capturar diferentes ângulos e foi criado para refletir
a complexidade de ambientes não controlados, variando elementos como densidade de pessoas
e iluminação. Imagens do dataset podem ser vistas Figura 6.

i. ii.

iii.
Figura 6 – Imagens das três câmeras do Si.U Dataset utilizadas nos experimentos. As vistas capturam dife-

rentes ângulos do pátio central do Centro de Informática da UFPE, evidenciando os desafios do
cenário real, como oclusões e caminhos percorridos pelos pedestres. Fonte: Elaborado pelo autor.

Este conjunto de dados se destaca por abranger diferentes condições de densidade de pe-
destres. Nas cenas mais movimentadas, os principais desafios incluem oclusões causadas por
pedestres e objetos no ambiente, além de trajetórias curtas, pois os indivíduos frequentemente
entram e saem rapidamente do campo de visão das câmeras ou assumem posturas diferen-
tes da postura ereta, essencial para a calibração baseada em torsores. Neste estudo, o Si.U
Dataset representa um ambiente realista com alta variabilidade no movimento dos pedestres,
caracterizado por transições frequentes entre diferentes movimentos e posturas. Essas parti-
cularidades, aliadas à configuração multicâmera, fazem dele uma base de dados desafiadora e
relevante para as avaliações conduzidas neste trabalho.
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O conjunto de dados originalmente utilizado para validar a técnica TorsorCalib não foi in-
cluído nos experimentos deste trabalho, uma vez que não se encontra publicamente disponível.
Essa indisponibilidade inviabilizou a replicação dos testes, com testes de sanidade, e a análise
direta dos resultados apresentados pelos autores, limitando a possibilidade de comparação com
as avaliações realizadas neste estudo.

4.2.2 Anotação dos Dados

A técnica é testada em cenários significativamente mais desafiadores do que aqueles apre-
sentados nos estudos de (TRUONG et al., 2019). Enquanto as abordagens avaliadas não oferecem
garantias de bons resultados em cenários com mais de sete pedestres, os ambientes analisados
neste trabalho contam com dezenas de indivíduos em movimento simultâneo. Esse fator au-
menta a complexidade da calibração, pois o grande número de interações e possíveis oclusões
entre pedestres dificulta a obtenção de amostras confiáveis e a correspondência precisa dos
pontos de calibração entre as diferentes câmeras.

Dado esse contexto, a anotação manual dos dados dos pontos-chave dos pedestres será
adotada para isolar fatores de influência e garantir a precisão da análise. Primeiramente, a
escolha do pedestre-alvo para calibração precisa ser bem definida em um cenário real, onde os
critérios de seleção impactam diretamente nos resultados. A anotação permite avaliar visual-
mente as rotas percorridas e a qualidade das detecções, tornando os dados das juntas mais
precisos e coerentes entre as vistas. Além disso, ambientes não controlados frequentemente
limitam a diversidade das trajetórias dos pedestres, tendo trajetórias predominantemente reti-
líneas, tornando a calibração mais desafiadora.

Outro fator é a correspondência de pontos-chave em todas as câmeras. As técnicas de-
pendem fortemente dessas estimativas, e qualquer inconsistência no rastreamento pode com-
prometer a calibração. Além disso, a coleta de dados de forma consecutiva permite modelar
melhor o comportamento natural dos pedestres. Isso gera uma exigência muito grande para os
métodos de rastreamento de pedestres e re-identificação de pessoas, que não garantem bons
resultados em cenários tão dinâmicos. Também, a anotação evita erros causados pelo registro
de dados em deslocamentos descontínuos, causados, por exemplo, por oclusões prolongadas,
ou movimentos em superfícies irregulares, como escadas e desníveis, que podem distorcer as
estimativas 3D.

Assim, a anotação de dados, feita por um anotador, ao permitir isolar fatores de influên-
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cia, torna possível relacioná-los com os resultados obtidos, proporcionando uma investigação
direcionada para o entendimento de elementos que impactam a calibração no cenário real.

Nesse contexto, para o processo de anotação e verificação de dados é desenvolvida uma
ferramenta de anotação, que recebe como entrada os pontos-chaves extraídos dos pedestres
e gera dados anotados prontos para calibração pelas técnicas TorsorCalib ou MovingCalib. Os
pontos-chaves são extraídos das imagens de todas as vistas selecionadas, pelos detectores de
pose humana empregados em cada técnica. Além disso, a ferramenta emprega a visualização
e registro de informações, permitindo um processo estruturado e detalhado de anotação.

Inicialmente, as imagens do dataset utilizado no experimento são analisadas visualmente
para identificar as rotas percorridas pelos pedestres. Esse procedimento tem como objetivo
selecionar o pedestre-alvo de calibração. A escolha do pedestre-alvo para calibração deve
garantir amostras bem distribuídas e variadas, evitando redundância de dados causadas por
trajetórias muito curtas ou lineares. Em ambientes não controlados, a movimentação restrita
dos pedestres pode dificultar a obtenção de bons pontos de calibração. Além disso, a coleta
deve ser contínua para minimizar perdas por oclusões prolongadas. Pedestres muito pequenos
ou com trajetórias curtas podem comprometer a calibração devido a possíveis imprecisões nas
detecções dos pontos chave. Assim, é essencial garantir um número adequado de amostras para
compensar outliers e variações sutis na postura dos pedestres. Adota-se como 20 a quantidade
mínima de frames para um pedestre-alvo de calibração.

Após esta escolha, o fluxo de trabalho para anotação é iniciado e está representado na
Figura 7, que ilustra as etapas realizadas para processar e registrar os dados de cada frame de
maneira sistemática.

As etapas de anotação dos dados são:

1. Plotar dados de detecção no frame atual:

Inicialmente, os dados do esqueletos dos pedestres no frame corrente são visualizados, um
por vez. Cada detecção de pedestre é exibida sequencialmente, permitindo ao anotador
inspecionar as informações com clareza e precisão.

2. Verificar se os dados pertencem ao pedestre selecionado:

Para cada detecção, avalia-se se ela corresponde ao pedestre-alvo de calibração.

• Não: Caso os dados não pertençam ao pedestre-alvo, o sistema avança para o
próximo pedestre detectado no mesmo frame.
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Figura 7 – Processo sequencial de anotação dos dados de detecção em cada frame, começando pela plotagem
dos dados do torsor ou do esqueleto completo. A seguir, são verificados se os dados pertencem
ao pedestre selecionado para a calibração. Caso positivo, o próximo passo é verificar se os dados
de detecção estão completos. Se as articulações estão completas, as informações são registradas e
salvas; caso contrário, o processo avança para o próximo frame. Esse processo garante a seleção de
dados completos para a calibração precisa das câmeras. Fonte: Elaborado pelo autor.

• Sim: Se os dados forem do pedestre-alvo, o processo segue para a próxima etapa.

3. Verificar se os dados de detecção estão completos:

Uma vez identificado o pedestre-alvo, o anotador confirma e o código analisa se o
esqueleto inclue todas as articulações válidas. Essa verificação é importante para garantir
que apenas informações completas sejam usadas no processo de calibração.

• Não: Se os dados estiverem incompletos, o sistema avança para o próximo frame,
descartando a detecção atual.

• Sim: Se os dados estiverem completos, a próxima etapa é realizada.
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4. Salvar as informações de detecção e identificação:

Para as detecções validadas como pertencentes ao pedestre selecionado e com dados
completos, as informações são registradas. Isso inclui as coordenadas das articulações,
o ID do pedestre, o número do frame e o número da câmera.

A repetição deste ciclo para cada frame permite a anotação de rotas ao longo do tempo
em todas as vistas. A Figura 8 mostra uma representação do torsor de um pedestre anotado
para um frame em todas as vistas do Wildtrack.

Figura 8 – Anotação de dados de um frame para todas as vistas. Fonte: Elaborado pelo autor.

4.2.2.1 Verificação das Anotações

Para garantir a consistência e correspondência das anotações, é implementado um pro-
cesso de verificação dos dados. Esse processo inclui a visualização dos dados de detecção dos
pedestres anotados na etapa anterior, sobrepostos às imagens capturadas por cada câmera. A
plotagem direta dos dados sobre as imagens permite uma análise visual detalhada para con-
firmar que as articulações anotadas correspondem corretamente aos pedestres presentes na
cena. Esse procedimento identifica e corrige possíveis erros nos dados gerados pelo anotador
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Figura 9 – No processo de verificação inicial dos dados, cada detecção de pedestre anotada é verificada visu-
almente para validar se: as articulações anotadas correspondem corretamente ao pedestre-alvo de
calibração e elas não estão altamente imprecisas. Caso os dados não pertençam ao pedestre sele-
cionado ou não sejam razoavelmente precisos, eles são descartados. Caso sejam, eles são salvos.
Fonte: Elaborado pelo autor.

e pelo detector de pose, como falhas de anotação ou grandes imprecisões na detecção de
articulações.

O fluxo do processo de verificação inicial é apresentado na Figura 9, que descreve as etapas
para verificação das anotações quanto à correspondência com o pedestre-alvo de calibração
e precisão das articulações. Além disso, existe o passo de verificação da correspondência dos
dados nas vistas, descrito posteriormente.

As etapas de verificação inicial dos dados são:

1. Plotar a detecção no frame correspondente: Cada detecção salva durante a etapa
de anotação é visualizada no frame correspondente.

2. Verificar se a detecção pertence ao pedestre-alvo de calibração: A correspon-
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dência entre as articulações plotadas e os pedestre-alvo é visualmente avaliada.

• Não: Se a detecção não corresponde ao pedestre, ela é descartada.

• Sim: Caso positivo, a análise prossegue para a próxima etapa.

3. Verificar a precisão dos dados: A correspondência entre as posições das articulações
detectectadas e às posições reais do pedestre na cena são analisadas visualmente.

• Não: Caso sejam identificadas altas inconsistências ou falhas na detecção de qual-
quer articulação, os dados são descartados.

• Sim: Se os dados forem considerados precisos ou razoavelemente precisos, eles são
salvos.

Após concluir o processo de verificação inicial dos dados, começa a etapa de verificação
dos frames válidos para o processo de calibração. Nesse estágio, são analisados os frames
em que os dados de detecção do pedestre-alvo estão simultaneamente disponíveis nas vistas
selecionadas. Apenas os frames que apresentam dados correspondentes em todas as vistas são
incluídos no conjunto de calibração.

4.3 EXPERIMENTOS

A técnica TorsorCalib é reimplementada nesse trabalho utilizando a linguagem Python e
com as principais bibliotecas sendo: OpenCV (BRADSKI, 2000), Scipy (VIRTANEN et al., 2020)
e Numpy (HARRIS et al., 2020). As adaptações realizadas incluem: a integração da técnica com
a ferramenta de anotação de dados, com o detector de pose humana AlphaPose (FANG et al.,
2022), ao invés do OpenPose (CAO et al., 2019), usado na implementação original do artigo.
A escolha do AlphaPose é justificada pelo uso deste detector em outras tecnologias utilizadas
em pesquisas parceiras (LIMA et al., 2021), objetivando assim a facilidade na integração entre
os scripts de calibração e essas tecnologias. Além de que o AlphaPose possui performance
equivalente ao OpenPose, o que não prejudica a qualidade do experimento.

A partir disso, os experimentos são conduzidos utilizando o código implementado, aplicando-
o aos quatro datasets apresentados na metodologia. Também, é utilizada a amostragem alea-
tória de dados empregada pelos autores da técnica. As tabelas apresentadas a seguir mostram
as configurações dos experimentos com a técnica TorsorCalib, bem como os resultados obtidos
para cada dataset. A Tabela 1 descreve os datasets utilizados, as vistas das câmeras envolvidas
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em cada experimento e a quantidade de frames, que corresponde ao número de detecções de
conjuntos de ombros e pés dos pedestres utilizados para calibração. Já a Tabela 2 apresenta
os erros de reprojeção em pixels para cada vista de câmera e a média dos erros para cada
dataset.

Tabela 1 – Configuração dos experimentos com a TorsorCalib. Fonte: Elaborado pelo autor.

Dataset Vistas Quantidade de
frames

EPFL Campus Se-
quence - Campus 4

c0, c1, c2 (Figura 4) 85

Si.U gopro01, gopro02, gopro03
(Figura 6)

56

Wildtrack c1, c5, c7 (Figura 5) 106

Tabela 2 – Resultados dos experimentos com TorsorCalib. Fonte: Elaborado pelo autor.

Dataset Erro de Reprojeção (pixels)
Vista I Vista II Vista III Médio

EPFL Campus Sequence 1008,5 1852,3 1582,3 1537,5
Si.U 420,5 950,1 620,3 681,7

Wildtrack 700,4 430,6 340,3 489,1

Devido aos resultados com altos erros de reprojeção apresentados na Tabela 2, pode-se
ver que o desempenho da TorsorCalib pode ser melhor investigado, especialmente por meio
da seleção de dados que isolem fatores de influência.

No experimento realizado com o EPFL Campus Sequence, o erro de reprojeção médio das
três vistas é de 1537,5 pixels, um valor elevado que pode ter relação com fatores relacionados
às condições do dataset. O pedestre alvo de calibração está representado na Figura 10, assim
como os resultados estão representados na figura 11. Um dos fatores que pode ter contribuição
para esse erro é o número de frames utilizados na calibração, que totaliza 85. Esse número
reduzido de frames reflete diretamente a quantidade de dados disponíveis para estimar os
parâmetros de calibração e é neles que está descrita a rota do pedestres. Os fatores observados
que contribuem para essa baixa quantidade de esqueletos são a área de sobreposição entre as
câmeras e as oclusões enfrentadas pelo pedestre durante a sua trajetória. Uma menor área de
sobreposição, em um ambiente dinâmico, tende a gerar pontos cegos quando os pedestres não
são vistos por todas as câmeras, impedindo sua visualização e detecção de seus esqueletos
correspondentes, limitando a quantidade de informações úteis para a calibração, além de que
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pode limitar a amplitude da rota. Já oclusões não são desejadas, porque quanto mais ocluso
o pedestre está, menos resultados de detecção dos pontos médios de ombros e pés é possível
extrair.

Figura 10 – Pedestre alvo de calibração - EPFL Campus Sequence. Fonte: Elaborado pelo autor.

Figura 11 – Resultados de calibração automática usando o EPFL dataset. Fonte: Elaborado pelo autor.

Além disso, as trajetórias contidas neste dataset estão caracterizadas visualmente como
retilíneas. Isso contribui para que elas fiquem concentradas em algumas áreas das imagens,
sem grande amplitude de trajetória quando consideramos sua projeção 2D, o que também
pode influenciar os resultados segundo os autores da técnica (TRUONG et al., 2019). Também,
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para eles, se as amostras forem muito próximas umas das outras, como alguém caminhando
lentamente em uma área pequena, as informações podem ser redundantes e não agregar valor
significativo à calibração. Uma hipótese é que essa limitação na variedade das trajetórias pode
ter comprometido a abrangência das estimativas dos parâmetros de calibração, influenciando
negativamente a precisão dos resultados obtidos. Esses aspectos indicam a necessidade de mais
dados e maior diversidade nas trajetórias para tentativa de melhoria na precisão da calibração
em cenários com características semelhantes.

O experimento realizado com o Si.U Dataset, tem o pedestre alvo de calibração da Fi-
gura 12, e o erro de reprojeção médio é de 681,7 pixels, figura 13, um valor inferior ao
encontrado no EPFL Campus Sequence, mas ainda elevado e considerado insatisfatório para
calibração precisa. A principal vantagem do Si.U Dataset em relação ao EPFL é a maior
variabilidade das trajetórias dos pedestres, que resulta em uma distribuição mais ampla das
projeções 2D nas imagens. Essas trajetórias mais amplas são acompanhadas por variações nas
posturas e transições dos pedestres, que caracterizam um cenário mais dinâmico.

Figura 12 – Pedestre alvo de calibração - Si.U. Fonte: Elaborado pelo autor.

No entanto, isso prejudica a quantidade de frames disponíveis para calibração, que é de
apenas 56, uma vez que, para a calibração, o pedestre precisa estar na mesma postura durante
toda trajetória, não sendo considerados os frames em que ele se senta, por exemplo. O alto
nível de oclusão também representa um desafio significativo na quantidade de esqueletos
identificados. Além da saída dos pedestres da área de sobreposição das vistas, o dataset inclui
obstruções adicionais, como objetos e vegetação, que reduzem ainda mais a quantidade de
dados utilizáveis para a calibração. Esse cenário de oclusões e posturas não eretas limita a
quantidade de dados e reitera a necessidade de uma amostra mais ampla para investigação na
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Figura 13 – Resultados de calibração automática usando o Si.U dataset. Fonte: Elaborado pelo autor.

precisão dos resultados.
No experimento realizado com o Wildtrack Dataset e com pedestre alvo da Figura 14, o

erro de reprojeção médio é de 489,1 pixels, Figura 15, um valor inferior ao encontrado nos
experimentos anteriores, mas ainda elevado. Esse conjunto de dados possui trajetórias visi-
velmente amplas e diversificadas, uma vez que os pedestres se deslocam em várias direções,
incluindo quatro direções principais e outras direções oblíquas. No entanto, embora as tra-
jetórias no Wildtrack sejam variadas e visualmente amplas, a presença de oclusões severas
devido à movimentação de outros pedestres próximos prejudica a quantidade e a qualidade de
dados utilizáveis para a calibração. As oclusões, causadas pelas interações entre os pedestres
nas vistas calibradas, afetam a detecção dos pontos de referência necessários para o processo
de calibração. Além disso, casacos e mochilas também confundem o detector de pose hu-
mana. Ainda assim, o número de frames utilizáveis no Wildtrack foi maior, totalizando 106,
o que oferece uma quantidade mais substancial de dados em comparação aos experimentos
anteriores.

O artigo original do TorsorCalib apresenta erros de reprojeção menores, variando de 3.69
pixels com 300 frames a 3.98 pixels com 20 frames. No entanto, esses resultados são obtidos em
um dataset próprio, indisponível para testes neste trabalho. A ausência dessas imagens impede
a análise das rotas dos pedestres utilizadas nos experimentos originais. Com base nas imagens
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Figura 14 – Pedestre alvo de calibração - Wildtrack. Fonte: Elaborado pelo autor.

Figura 15 – Resultados de calibração automática usando o Wildtrack dataset. Fonte: Elaborado pelo autor.

publicadas no artigo, que possuem resolução VGA, os cenários aparentam ser mais controlados,
com baixa incidência de oclusões e câmeras posicionadas em ângulos elevados. Esses fatores
podem ter favorecido o desempenho da técnica. Dessa forma, uma possível abordagem para
melhorar os resultados do TensorCalib seria aplicá-lo em cenários semelhantes. No entanto,
este estudo busca avaliar a técnica em condições mais próximas da realidade, testando sua
robustez em ambientes desafiadores.

Portanto, a TorsorCalib pode ter seu desempenho melhor investigado, principalmente atra-
vés da seleção de dados que isolem fatores de influência. Ou seja, a aplicação deste método
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deve seguir com atenção à seleção criteriosa dos dados, buscando testar de forma isolada
fatores que podem impactar negativamente a calibração. Aspectos como a variedade e distri-
buição de trajetórias podem ser estudados para verificar a interferência destes nos parâmetros
de calibração. Além disso, a incidência de oclusões pode ser reduzida sempre que possível, pois
limita a quantidade de informações úteis extraídas das imagens para testes.
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5 MOVINGCALIB

Ao longo do desenvolvimento deste trabalho, optou-se por uma reformulação no enfoque
metodológico. Em vez de priorizar uma experimentação extensa em múltiplos cenários, como
inicialmente proposto, foi adotada uma abordagem voltada para o isolamento e análise mais
controlada dos fatores que influenciam a calibração automática. Essa decisão foi motivada
pela necessidade de compreender com maior profundidade as variáveis críticas que afetam o
desempenho das técnicas avaliadas, incluindo inclusive a análise de uma nova técnica.

Nesse contexto, dois tipos distintos de avaliação foram conduzidos utilizando o conjunto
de dados Wildtrack, cuja escolha se justifica pelo seu equilíbrio entre quantidade de dados,
qualidade das anotações e diversidade de rotas percorridas pelos pedestres. O uso deste da-
taset permitiu realizar análises mais direcionadas com o método MovingCalib, focando na
investigação específica do comportamento da calibração em condições bem controladas, sem
comprometer a representatividade dos dados.

Essa mudança metodológica não visa à generalização estatística, mas sim à geração de
insights sobre os fatores que limitam ou favorecem o uso prático de calibração baseada em
pedestres em cenários reais.

5.1 MÉTODO

As etapas de seleção da técnica, implementação ou adaptação do código, anotação e de
verificação de dados e experimentos, análise dos resultados descritas no capítulo anterior cor-
respondem também ao método adotado nos experimentos com a segunda técnica selecionada
para os testes, (LEE et al., 2022). A seguir serão especificados apenas os pontos relativos a
especificidades da técnica selecionada.

5.1.1 Seleção de Técnica

Com base nos critérios apresentados no capítulo anterior, a segunda técnica selecionada é:

• MovingCalib: Usa o movimento de articulações corporais humanas para estimar os
parâmetros extrínsecos em redes de câmeras (LEE et al., 2022).
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5.1.2 Implementação ou Adaptação de Técnica

No caso do MovingCalib o código-fonte está disponível publicamente 1 e são necessárias
apenas adaptações. Esta também recebe como entrada os dados vindos do código de anotação
de dados, ao invés da saída do detector de pose humana.

5.1.3 Avaliação das Técnicas

Foram realizados testes com o objetivo de isolar melhor fatores de influência da calibração,
ao invés de priorizar a experimentação extensiva em diferentes cenários. Nesse intuito, dois
tipos de avaliações são realizadas usando o Wildtrack. Este dataset foi escolhido para os
experimentos com o MovingCalib devido ao seu equilíbrio entre a quantidade de dados e a
variação de rotas disponível.

Na primeira avaliação, a técnica é aplicada e o erro de reprojeção é calculado e discutido.
Para isso, são encontrados dois pedestres: aquele cuja calibração apresenta o menor erro de
reprojeção e aquele que aparece em mais frames. O primeiro pedestre ajuda a entender caracte-
rísticas que fazem uma calibração boa. O segundo ajuda a explorar fatores como a quantidade
de frames, tipo de rotas e qualidade da detecção de pedestres. O segundo pedestre apareceu
em 400 frames consecutivos. Assim, além de calcular o erro de reprojeção na totalidade dos
400 frames, é feito experimentos para medir isso também nos 10, 20, 50, 100, 200 e 300
frames iniciais. Também é avaliado se há relação entre o erro de reprojeção e a qualidade da
detecção dos pedestres. Para isso, é usado o score de detecção de esqueletos 2D como uma
medida de qualidade (Subseção 5.1.6).

A segunda avaliação focou em validar a consistência geométrica da cena quando observada
com a câmera calibrada usando geometria epipolar. Para isso, foi calculada a distância média
do ponto para a sua linha epipolar.

5.1.3.1 Dataset de Avaliação

Os experimentos ocorrem com três vistas do Wildtrack dataset 4.2.1.2 e com um único
pedestre-alvo para calibração. Como pontuado, o Wildtrack se destaca pela diversidade de
trajetórias dos pedestres e apresenta percursos longos na trajetória dos pedestres. Este da-
1 Disponível em <https://github.com/kyotovision-public/extrinsic-camera-calibration-from-a-moving-person>

https://github.com/kyotovision-public/extrinsic-camera-calibration-from-a-moving-person
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taset foi escolhido para os experimentos com o MovingCalib devido ao seu equilíbrio entre a
quantidade de dados e a variação de rotas disponível.

Optou-se por não utilizar outros datasets, como o Panoptic Dataset, empregado no trabalho
original, devido a menor complexidade em comparação aos cenários urbanos reais. Embora estes
conjuntos de dados sejam bem estruturados e amplamente utilizados, eles não representam
ambientes controlados, com menor densidade de pedestres e baixa ocorrência de oclusões, o
que pode comprometer a validade dos resultados no contexto desta investigação.

5.1.4 Anotação dos Dados

Os dados são anotados com a ferramenta de anotação de dados descrita em 5.1.4.

5.1.5 Métricas de Avaliação

As métricas utilizadas para avaliação são o erro de reprojeção, a distância epipolar, que
foram explicadas no Capítulo 2 e o score de detecção médio que está explicado a seguir.

5.1.6 Score de Detecção Médio

O detector de pose humana OpenPose (CAO et al., 2019) determina uma nota de confiança
para cada uma das articulações que formam o esqueleto de um pedestre. Essa nota é o score de
detecção das articulações e, quanto maior o valor, maior a confiança na qualidade da detecção.
Consequentemente, esse score pode ser usado para determinar a qualidade das detecções.

Neste trabalho, o score do pedestre é definido como a média dos scores de todas as juntas
do esqueleto:

𝑆𝑝 = 1
𝐽

𝐽∑︁
𝑗=1

𝑠𝑗, (5.1)

onde 𝐽 representa o número total de juntas do esqueleto e 𝑠𝑗 é o score atribuído à junta 𝑗.
O score de detecção médio para um conjunto com 𝑛 frames é então definido como:

𝑆𝑓 = 1
𝑛

𝑛∑︁
𝑖=1

𝑆𝑝,𝑖, (5.2)

onde 𝑆𝑓 é o score do pedestre no frame.
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Por fim, o score de detecção médio para um experimento que envolve 𝑘 pares de vistas é
calculado como:

𝑆𝑚 = 1
𝑘

𝑘∑︁
𝑣=1

𝑆𝑓,𝑣, (5.3)

onde 𝑆𝑚 é o score médio do pedestre nos frames do sistema de câmeras.
OpenPose retorna scores no intervalo de [0, 1], onde valores próximos de 1 indicam alta

confiança na detecção, enquanto valores baixos sugerem maior incerteza ou erros potenciais.

5.2 EXPERIMENTOS

A técnica MovingCalib é adaptada a partir do seu código original, em Python, para integrar-
se ao código de anotação de dados. O código original não suporta a saída do detector de poses
humanas quando mais de uma pessoa é detectada na cena, pois está desenvolvido para um
único pedestre, o que impede sua execução. Para os experimentos com a MovingCalib, o
código de anotação de dados é adaptado para corresponder à entrada exigida pela técnica.
O OpenPose é mantido como detector de pose humana, pois já é a ferramenta utilizada na
implementação original da MovingCalib, propiciando a inclusão de alterações mínimas nos
códigos para integração. Com as adaptações, a saída de dados do código de anotação passa
todos os pontos-chave do esqueleto do pedestre anotado como entrada para a técnica.

Para os experimentos com esta técnica é utilizado apenas o Wildtrack Dataset devido ao
seu equilíbrio entre o número de frames e a variação de rotas disponíveis nesse conjunto de
dados. Considera-se que a diversidade de cenários explorados nos experimentos com a técnica
TorsoCalib ajudou a identificar possíveis fatores de influência presentes nos conjuntos de dados,
mas com a técnica MovingCalib e o Wildtrack pode-se explorar mais especificamente alguns
desses fatores.

São utilizadas três vistas (c1, c6 e c7) do Wildtrack, que objetivam ampliar a quanti-
dade de dados utilizáveis. Os pedestres presentes nas três vistas são anotados e utilizados em
experimentos aplicando a técnica de calibração. Dentre os pedestres anotados, dois foram sele-
cionados para análises mais detalhadas. O primeiro é identificado como Pedestre 1, Figura 16,
e seu experimento tem as configurações resumidas na Tabela 3. Este pedestre é escolhido por
apresentar o menor erro de reprojeção dentre todos os pedestres anotados. Seu valor é de 7.18
pixels, Tabela 4, considerando os 66 frames utilizados. Este erro é considerado baixo dentro
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do contexto dos experimentos, tornando-o um caso relevante para avaliação da técnica. Esta
técnica obtém erros de reprojeção de até 1,569 pixels, com Panoptic Dataset (JOO et al., 2017)
, em seus testes originais.

Figura 16 – Pedestre alvo de calibração 1, para experimentos com a técnica MovingCalib. Fonte: Elaborado
pelo autor.

A rota deste pedestre é composta por duas partes distintas: uma dinâmica e uma com
características estacionárias. Durante a parte dinâmica, o pedestre se desloca caminhando
junto a outros pedestres, mas, em determinado momento, ele para e permanece próximo a
outras pessoas na cena, interagindo com elas. Esse período estacionário é caracterizado por
momentos de oclusão, embora sua posição varie muito pouco durante esse tempo.

Tabela 3 – Configuração do Experimento com o Pedestre 1. Fonte: Elaborado pelo autor.

Parâmetro Valor
Dataset Wildtrack
Vistas utilizadas c1, c6, c7
Quantidade de frames usados 66

Tabela 4 – Resultados do experimento o Pedestre 1. Fonte: Elaborado pelo autor.

Métrica Valor
Experimento 1 - Erro de Reprojeção Médio
Erro de Reprojeção Médio (pixels) 7,18

O segundo pedestre, Figura 17, foi selecionado por possuir a maior quantidade de dados
disponíveis, possibilitando uma análise mais detalhada dos fatores que influenciam a calibração.
Em particular, foram investigadas a relação entre o número de frames utilizados e o erro de
reprojeção, bem como a relação entre o score de detecção médio e o erro de reprojeção.
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Figura 17 – Pedestre alvo de calibração 2, para experimentos com a técnica MovingCalib. Fonte: Elaborado
pelo autor.

O pedestre 2 permanece visível por um período de tempo prolongado nas imagens. Embora
ocorra oclusão em alguns momentos, a maior parte dos dados é aproveitada, resultando no
uso de 400 frames para a calibração. Durante parte do trajeto, o pedestre interage com outras
pessoas, permanecendo em uma posição mais estacionária na cena. A MovingCalib requer uma
trajetória menos dinâmica em comparação à TorsorCalib (TRUONG et al., 2019).

Nesse sentido, é realizada uma análise para verificar se a quantidade de frames, que segue
a progressão 10, 20, 50, 100, 200, 300 e 400, influencia significativamente os resultados desta
técnica. Como sabemos, o número de dados pode ser importante para a calibração em técnicas
que realizam a correspondência de dados (SVOBODA; MARTINEC; PAJDLA, 2005). O resultado
está mostrado na Figura 18, onde o resultado do erro de reprojeção de cada teste pode ser
visualizado no eixo Y, enquanto se mostra o número incremental de frames, correspondente a
cada erro, deste conjunto de dados no eixo X.

O gráfico não possui uma tendência decrescente do valor de erro na medida que a quanti-
dade de frames aumenta. Uma hipótese é que se as detecções de pedestres não estão precisas,
inserir mais frames vai acrescentar mais ruído e, consequentemente, aumentando o erro. Tra-
balhos como o de (POSSEGGER et al., 2012) discutem especialmente precisão dos dados de
entrada e até propõe um processo sistemático de retirada de outliers, mostrando a importância
dessa investigação.

Para validar essa hipótese é analisada a qualidade da detecção do pedestre em relação
ao erro de reprojeção. A métrica de qualidade escolhida é o score de detecção médio. Na
Figura 19, o resultado do score de detecção médio de cada teste pode ser visualizado no eixo
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Figura 18 – Relação entre o erro de reprojeção e a quantidade de frames, com uma progressão de 10, 20, 50,
100, 200, 300 e 400 frames. Fonte: Elaborado pelo autor.

Y, enquanto a quantidade de frames em ordem crescente é mostrada no eixo X.

Figura 19 – Relação entre o score médio e a quantidade de frames, com uma progressão de 10, 20, 50, 100,
200, 300 e 400 frames. Fonte: Elaborado pelo autor.

Observa-se que os valores do score médio de detecção para os conjuntos de frames ana-
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lisados do Wildtrack Dataset estão entre 0,089 e 0,102. Esses valores são consideravelmente
baixos, o que indica uma baixa precisão na detecção de pedestres. Esse score médio é cerca
de cinco vezes menor do que o obtido quando a calibração é feita usando o Panoptic (JOO

et al., 2017), dataset em que o MovingCalib foi testado originalmente. Esse dataset apresenta
um ambiente controlado, com pouca oclusão e o pedestre próximo à câmera. Essa diferença
evidencia uma degradação significativa na qualidade da detecção em condições não controla-
das. Além disso, o fato de o score médio estar mais próximo de 0 que de 1 sugere que, apesar
da visibilidade contínua dos pedestres ao longo do trajeto, a qualidade da detecção pode ser
baixa no cenário real, mesmo após a verificação e refinamento dos dados.

Adicionalmente, ao analisar as Figuras 18 e 19, observa-se uma relação inversamente pro-
porcional entre o score médio de detecção e o erro de reprojeção para até 200 frames. Ou
seja, nos intervalos em que o score de detecção melhora, o erro de reprojeção tende a di-
minuir. Também, para um conjunto de 100 frames, o menor score médio registrado (0,089)
está associado ao maior erro de reprojeção (54,56 pixels). Esse comportamento sugere que a
redução da qualidade da detecção impacta negativamente a calibração em conjuntos menores
de frames, que, por conterem menos amostras, são mais suscetíveis à introdução de ruídos nas
detecções. Além disso, ao utilizar um número maior de frames, há um risco de que detecções
imprecisas aumentem o ruído no processo de calibração, comprometendo a precisão final da
calibração.

Esses resultados sugerem que a simples inclusão de um maior número de frames não é
suficiente para garantir uma calibração mais precisa. A confiabilidade das detecções deve ser
levada em consideração. Uma hipótese é que o tamanho da projeção dos pedestres na imagem
possa comprometer a calibração. Já que quanto maior o tamanho do pedestre (ou o ponto
de interesse), mais fácil é para os algoritmos de detecção prever suas posições. Em cenas
com pedestres pequenos, o score médio pode tender a diminuir, devido à falta de detalhes.
Isso pode ser investigado, por exemplo, através de estratégias que filtrem frames com baixa
confiabilidade ou atribuam pesos diferentes às detecções conforme seu nível de confiança.

5.2.1 Experimentos da Distância Epipolar

Quando os parâmetros de calibração obtidos com o bom resultado do experimento com
o Pedestre 1 foram testados em uma técnica de detecção de pedestres (LIMA et al., 2021), o
desempenho da detecção não foi satisfatório. Os resultados da avaliação da distância do ponto



56

à linha epipolar estão resumidos na Tabela 5.

Tabela 5 – Resultados dos experimentos da distância epipolar. Fonte: Elaborado pelo autor.

Média Ground Truth 327.49
Desvio Padrão Ground Truth 2.55
Média Calibração Automática 710.43
Desvio Padrão Calibração Automática 484.53
Erro Absoluto Médio (MAE) 406.42
Erro Quadrático Médio (RMSE) 579.91
Teste t (p-valor) 0.1534

Para esse experimento, a hipótese nula considerada foi de que não há diferença significativa
entre as distâncias epipolares obtidas com a calibração automática e o ground truth. Com
base nos resultados apresentados, observou-se uma discrepância considerável entre as duas
estimativas, evidenciada pelos altos valores de erro absoluto médio (406.42) e erro quadrático
médio (579.91). Além disso, o desvio padrão elevado na calibração automática indica uma alta
variabilidade nos erros, sugerindo falta de consistência na reconstrução da geometria epipolar.

O teste t revela que, embora as distribuições das distâncias epipolares apresentem diferen-
ças relevantes, o p-valor obtido (0.1534) não é suficientemente baixos para rejeitar a hipótese
nula em um nível de significância tradicional. Isso significa que, com base nesse teste, não
é possível concluir que a calibração automática tenha um desempenho significativamente di-
ferente da calibração baseada no ground truth. Essa discrepância e a falta de consistência
nos resultados sugerem que, para melhorar o entendimento da calibração automática, seria
necessário estudar mais o impacto dos fatores de influência.

Em geral, a diferença significativa entre as estimativas automáticas e o ground truth indica
que a técnica MovingCalib ainda apresenta altos erros em sua calibração. O desvio padrão
elevado nos resultados reforça a ideia de que a técnica pode ser vulnerável à qualidade dos
dados usados para calibração. Para esta técnica, aspectos de rota do pedestre são considerados
menos importantes, já que esta se mostrou robusta a pequenas quantidade de movimento em
seus testes originais (LEE et al., 2022).
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6 DISCUSSÕES GERAIS E APRENDIZADOS DO PROCESSO EXPERIMEN-

TAL

6.1 DISCUSSÕES GERAIS

Os experimentos mostram que as técnicas avaliadas apresentam dificuldades de adaptação
a cenários distintos daqueles em que foram originalmente validadas. Seja em ambientes mais
controlados ou em contextos mais dinâmicos, desafios como oclusões frequentes tem impacto
direto na qualidade da calibração.

Esta qualidade dos dados de entrada parece ser um fator de influência relevante no de-
sempenho das técnicas, principalmente para conjuntos de frames menores, até 200 frames.
Condições adversas, como iluminação inadequada e a presença de múltiplos pedestres, são
elementos que podem comprometer a detecção das poses humanas e, consequentemente, afe-
tar a calibração (GHARI et al., 2024). Assim, a dependência da técnica em relação à robustez
dos detectores de pose deve ser considerada ao avaliar sua aplicabilidade em cenários reais.

Até aqui, dois fatores de influência principais podem ser explorados para o maior entendi-
mento destes resultados: a qualidade das detecções das juntas e a rota do pedestre, ou seja,
a distribuição de movimento presente nos frames utilizados. Como uma primeira hipótese,
pode-se afirmar que, a calibração automática pode não ser precisa se os frames analisados
não capturarem rotas adequadas, ou seja, uma trajetória bem distribuída no espaço e com
detecções de qualidade para a técnica TorsorCalib. Isso pode enviesar os parâmetros de cali-
bração. O teste sugerido é investigar como diferentes subconjuntos de frames, com variação
na distribuição, afetam o erro epipolar e se a distribuição dos frames impacta a precisão da
calibração. Além de estudar a qualidade da detecção de cada experimento, relacionando o
score médio com o erro de reprojeção.

Uma segunda hipótese pode ser que, se as detecções das articulações forem ruidosas ou
inconsistentes, o erro epipolar será maior e mais variável para a técnica MovingCalib. Isso
ocorre porque as detecções de baixa qualidade afetam diretamente a triangulação dos pontos
no espaço 3D, prejudicando a calibração. O teste proposto é analisar a relação entre o erro
epipolar e o score médio das detecções das juntas para verificar esse impacto.

Com isso, os resultados obtidos reforçam que a calibração automática de redes de câmeras
baseada em pedestres enfrenta desafios significativos na adaptação a ambientes dinâmicos re-
ais. A variabilidade dos dados exige técnicas mais generalistas e capazes de lidar com diferentes
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fontes de erro.
Por fim, embora as técnicas apresentem potencial para calibração automática em redes de

câmeras multi-visão, avanços substanciais ainda são necessários para garantir sua aplicação em
contextos reais. A coleta de dados mais controlados pode ser uma estratégia para isolar e en-
tender melhor os fatores que afetam a calibração. O próximo capítulo apresenta recomendações
e direções para estudos futuros, visando aprimorar a robustez dessas abordagens.

6.2 APRENDIZADOS DO PROCESSO EXPERIMENTAL

Ao longo dos experimentos realizados são identificadas limitações que fornecem uma base
para orientar trabalhos futuros. Os principais fatores que influenciaram a calibração foram:

1. Rotas dos pedestres: As trajetórias impactam diretamente os resultados. Em especial
para técnicas como a TorsorCalib, a presença de uma rota bem distribuída entre as
câmeras contribui para a precisão da calibração, pois fornece uma amostragem espacial
mais representativa. Este aspecto sugere que futuros trabalhos devem priorizar datasets
onde seja possível controlar ou mapear as rotas dos pedestres. O objetivo é aprofundar
os estudos para identificar se há melhores rotas para calibração de câmeras. No entanto,
como os datasets existentes frequentemente carecem dessa característica, seria interes-
sante criar um dataset onde rotas possam ser controladas e ajustadas para calibração
automática. Isso poderá resultar em guidelines que orientem desenvolvedores e usuários
a como realizar calibrações de maneira automática em cenários reais.

2. Oclusões e densidade de pedestres: Ambientes com muitas oclusões ou alta densi-
dade de pedestres dificultaram a correspondência de pontos, comprometendo a eficácia
das técnicas por perda de dados e diminuição da qualidade da detecção de pose humana.
Uma direção importante seria investigar soluções que aumentem a robustez da calibra-
ção em cenários com alta densidade, como técnicas baseadas em aprendizado profundo
para prever e corrigir detecções perdidas.

3. Método de estimação da pose humana: A escolha do método de pose pode ter
impacto sobre os resultados. Métodos mais precisos tendem a contribuir para uma melhor
estimativa da posição das articulações, o que melhora a triangulação e, por consequência,
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a calibração. Por outro lado, métodos menos robustos geram detecções ruidosas, o que
pode comprometer a precisão, especialmente na técnica TorsorCalib. Trabalhos futuros
podem explorar a influência de diferentes detectores de pose de última geração, avaliando
como suas acurácias se refletem nos erros de calibração.

4. Quantidade de frames utilizados: Os experimentos realizados neste trabalho não per-
mitiram concluir de forma definitiva que a quantidade de dados influencia diretamente
na precisão da calibração. Em alguns casos, conjuntos menores com detecções mais
confiáveis produziram resultados mais consistentes do que sequências mais longas com
dados ruidosos. Esse resultado sugere que a qualidade e a diversidade das informações
nos frames podem ser mais determinantes que a quantidade absoluta de dados. Traba-
lhos futuros podem aprofundar essa análise, controlando melhor a variação nos dados e
comparando diretamente subconjuntos com tamanhos distintos, mas qualidade similar
de detecção.

5. Quantidade e posicionamento das câmeras: O número de câmeras e sua distribuição
no ambiente também influenciaram diretamente os resultados. Trabalhos futuros devem
explorar redes de câmeras mais densas e diversificadas em termos de ângulos de visão,
especialmente em cenários controlados, para entender como maximizar a qualidade da
calibração. Um ponto importante é garantir que a área de sobreposição dos equipamentos
inclua a rota do(s) pedestre(s) de interesse por um período de duração maior que os
datasets atuais proporcionam.

6. Qualidade dos dados de entrada: A análise mostrou que a qualidade das detecções,
medidas pelo score médio de confiança, pode impactar direto nos resultados, como
também é observado por (MOLINER; HUANG; ASTROM, 2021). Futuros experimentos po-
dem se concentrar em melhorar os pré-processamentos dos dados, utilizando técnicas de
filtragem ou mesmo aprendizado profundo para refinar as detecções antes da calibração.

6.3 DIRECIONAMENTO DE TRABALHOS FUTUROS

Os experimentos realizados proporcionaram uma compreensão valiosa das limitações e po-
tencialidades das técnicas analisadas. Para avançar no desenvolvimento de calibração automá-
tica em redes de câmeras, é essencial adotar abordagens que combinem controle experimental
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rigoroso com robustez em condições reais. A criação de datasets controlados, o uso de técnicas
avançadas de aprendizado de máquina e a adaptação a cenários reais são caminhos promissores
para superar os desafios observados e aprimorar a tecnologia para aplicações futuras.

6.3.1 Criação de um Dataset Controlado

Um dos principais desafios identificados foi a falta de datasets que ofereçam controle
suficiente sobre variáveis como rotas de pedestres, iluminação, densidade de pessoas e oclusões.
Propor a criação de um dataset sintético ou real, com controle rigoroso sobre essas condições,
poderia avançar significativamente o campo. Esse dataset poderia incluir:

• Rotas pré-definidas e bem documentadas.

• Variedade de cenários de iluminação (natural e artificial).

• Número ajustável de pedestres.

• Anotação e variação sistemática nas posições e orientações das câmeras.

6.3.2 Exploração de Métodos Avançados

Futuras pesquisas podem integrar técnicas de aprendizado profundo para superar limitações
observadas, como:

• Uso de modelos baseados em estimativa de pose humana para melhorar a correspon-
dência de pontos.

• Aplicação de algoritmos de reidentificação de pedestres para lidar com oclusões e traje-
tórias dinâmicas.

• Desenvolvimento de modelos híbridos que combinem abordagens geométricas tradicio-
nais com técnicas baseadas em deep learning.

6.3.3 Adaptação a Cenários Reais

Trabalhos futuros podem buscar expandir a aplicabilidade das técnicas a cenários reais,
como áreas urbanas dinâmicas. Isso incluiria:
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• Testes em condições climáticas e de iluminação variáveis.

• Análise de performance em ambientes com grande densidade populacional.

• Uso de redes de câmeras parcialmente sobrepostas, como as encontradas no Wildtrack
Dataset.
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7 CONCLUSÃO

Com o aumento da complexidade dos cenários de aplicação da visão computacional, es-
pecialmente em ambientes dinâmicos e com uma rede de câmeras, como áreas urbanas, a
necessidade de técnicas automáticas de calibração tornam-se mais necessárias. Este traba-
lho, portanto, propôs-se a avaliar métodos automatizados de calibração em redes de câmeras
usando pedestres em cenários reais.

A revisão da literatura mostrou ser possível a utilização de técnicas de detecção de pedestres
para calibrar câmeras sem a necessidade de inserir padrões artificiais. Esses métodos exploram
a capacidade de abordagens tradicionais e dos modelos de aprendizado profundo de extrair
características robustas de pedestres. Essas são usadas para calibrar de formar automática um
conjunto de câmeras.

Assim, os experimentos realizados ao longo deste trabalho foram projetados para avaliar
duas técnicas de calibração automática em cenários reais. Eles buscaram levantar os principais
elementos que podem influenciar este processo. O TorsorCalib foi testado em diferentes data-
sets. Os resultados mostraram que a sua precisão foi comprometida devido à quantidade de
dados disponíveis devido a oclusões, assim como a qualidade das rotas. Isso indica que ajustes
são necessários para lidar com a complexidade dos ambientes reais, especialmente em relação
às rotas dos pedestres e à variação nas condições do cenário.

Já o MovingCalib apresentou um comportamento inversamente proporcional entre a qua-
lidade da detecção de pose humana e o erro de reprojeção, como conjuntos com até 200
frames. Isso sugere que a qualidade de dados, que foi inferior no cenário real e dinâmico do
Wildtrack, influencia os resultados de calibração significativamente, exigindo uma abordagem
mais refinada para melhorar a calibração.

De modo geral, os experimentos mostraram que, embora as técnicas automáticas tenham
evoluído, sua eficácia ainda é limitada em ambientes não estruturados. Questões como oclu-
sões, densidade de pedestres e variação na qualidade dos dados impactam a calibração, tor-
nando essencial o desenvolvimento de métodos mais robustos. O uso de estratégias híbridas,
combinando abordagens tradicionais e aprendizado profundo, pode oferecer melhorias.
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7.1 TRABALHOS FUTUROS

Para trabalhos futuros, recomenda-se a investigação de novas métricas que captem melhor
as falhas da calibração em cenários dinâmicos. Além disso, testar as técnicas em diferentes
datasets e explorar modelos de fusão de dados podem contribuir para a adaptação dos métodos
às condições reais. A incorporação de redes neurais para prever e corrigir erros também pode
ser um caminho promissor para aumentar a precisão da calibração automática.

7.2 CONTRIBUIÇÕES

As principais contribuições derivadas desta pesquisa são:

• Ampliação dos conhecimento da área de visão computacional, através da análise de
fatores de influência, do cenário real, na calibração automática de câmeras, deixando
lições aprendidas como ponto de partida para que pesquisas futuras desenvolvam técnicas
mais robustas;

• Código de anotação dados de detecção integrado aos detectores de pose humana: Alpha-
Pose e OpenPose;

• Uma publicação em planejamento a partir deste estudo, para comunidade da área de
Visão Computacional e Calibração Automática de Câmeras;

• Publicação científica nas áreas de Reconhecimento de Atividades Humanas e Redes Neu-
rais (CAVALCANTE et al., 2023), propiciada por conhecimentos derivados desta pesquisa;

• Outras duas publicações sendo planejadas nas áreas de Reconhecimento de Atividades
Humanas e Redes Neurais.
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